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As in the previous editions, this book deals with the fundamentals of s t ~ ~ ~ c s  and their 
application to a broad range of engineering problems. The treatment is intended 
primarily for undergraduate students of  civil, structural and environmental en 
but we hope  that it will  also  be  of  use to anyone with an interest in engineering 
mechanics. 

The present  edition. contains a substantial revision of much of the text of the previous 
work md several additions to it. We have  removed much of the material  related to 
graphical methods of solution, which is now dated and less relevant. Rut in doing so, we 
have tried to ensure that students can  still  gain a physical understand in^ of the solution 
to particular problems, as well as an analytical one, 

A new chapter on fluid statics (Chapter 14) deals with the forces  exerted on 
submerged bodies, as well  as with buoyancy and  the stability of floating bodies. The 
chapter on flexible  cables (Chapter 9) contains what is  believed to be a new ~ ~ p r o a c h  to 
the analysis of the catenary which allows for the direct solution of many cable problems 
that have conventionally been  solved  using trial and error methods. The Appendix has 
been added, dealing with the geometrical properties of plane figures. These properties 
have  been  described and developed by considering some statics problems involving 
parallel  forces acting normal to a plane figure. This approach is directly applicable to 
problems in fluid statics and to beam theory that may  be studied in subsequent courses. 
However, the equations are  also  of  general application. 

Additional tutorial problems have  been added at  the end of most chapters. 
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The subject of  mechanics  deals  generally with the effect of forces on a body from the 
point of  view  of the motion of the body. If a group (or system)  of  forces, when applied 
to a body,  causes no change in its state of motion,  the group is said to be in e ~ ~ i Z ~ ~ r i ~ ~ .  
The study of the conditions of equilibrium constitutes that branch of  mechanics known 
as st~tics, and it is with this branch that this book deals. 

Statics is the cornerstone of structural en~ineering,  but fundamental concepts, 
analytical methods and analogies from statics  are directly applicable in almost every 

ineering. A sound knowledge  of the application,  of the principles of  statics 
is therefore essential for all engineering students and engineering practitioners, 

Aforce is defined as that which changes, or tends to change, the velocity  of a body.  Force 
is a vector quantity, possessing direction as well  as magnitude. A force is not completely 
defined unless  its magnitude, direction and line of action are  specified. It will  be  seen 
later that when effects  of a force upon a body other  than  that relating to its tendency to 
change the velocity  are considered, it is  necessary also to specify the point of application 
of the force. 

The basic unit of  force is the newton (symbol N). The newton is the force required to 
give a mass  of l kg an acceleration  of X m/s2. For many engineering problems, the 
newton is a rather small unit,  and  the  unit most commonly used  is the ~ ~ Z o n e w t o ~  
(symbol kN) which is 1000 N. 

The term body is  used to denote the particular section of matter under consideration. If 
a bowl of water stands upon a table, we may  wish to consider the forces acting on  the 
table alone, the table and bowl together with or without  the water, the water within the 
bowl, or possibly one part only of the table. matever  part is chosen is called the body, 



The forces dealt with in statics  are the forces  exerted upon the body from outside, i.e. 
forces e x t e ~ ~ ~ Z  to that body. 

Before  solving a practical problem it is important to be  clear regarding the extent of 
the body under consideration and the forces acting externally upon it. 

e the whole subject of  mechanics stems from Newton’s three Laws of Motion these 
be stated: 

First Law: A. body will remain at rest or continue to move with uniform velocity 
unless  acted upon by an  external  force. 

Second Law: If an  external  force  acts upon a body, the rate  of change of m o m e n t u ~  
is proportional to the force, and takes  place in the direction of the force. 

Third Law: To every action there is a reaction  equal in magnitude and opposite in 
direction. 

Sir  Isaac Newton developed  these laws in  the late seventeenth century from a study of 
the motion of  objects. The application of these laws to engineering problems is the topic 
of this book. 

The first  law  deals with bodies in equilibrium and is the basis for the study of  statics. 
The second law  is concerned with accelerating  bodies and is the basis of the branch of 
mechanics known as ~ ~ ~ ~ m i c s .  The third law  is fun~amental to an understanding of the 
concept of  force. In engineering applications, ,the word ‘action’  may be taken to mean 
force and so, if a body exerts a force on  a second body, the second body exerts  an equal 
and opposite force on the first, 

Newton also propounded a Law of ~ravitation, which together with his three Laws of 
Motion enabled him to explain the movement of the planets in the solar  system. 
According to this law, any two bodies  of mass m, and mz exert a force  of attraction on 
each other. This gravitational force is proportional to the masses and inversely 
proportional to the square of the distance between their centres, d. That is: 

m1 m2 
F =  G”---- d Z  

where G is a gravitational factor which according to Newton is constant throughout the 
universe. 

The term mass is difficult to define precisely.  However, for engineering purposes it is 
 sufficient^ to know that  the mass  of a body is an absolute quantity, independent of the 
position of the body and its surroundings. 

On  the other hand,  the wei~~t of a body is dependent on its position. For  everyday 
purposes, the weight  of a body may be defined as the gravitational force  exerted on  the 
body by the earth when the body is situated at the earth’s  surface. The acceleration. due 
to gravity at  the earth’s  surface is approximately 9.81 m/s2,  and hence the weehtof a  1 kg 
mass  is a force  of 9.81 N acting towards the earth’s centre (i.e.  vertically downwards). It 
is often taken as IO N for approximate calculations. 



Since the earth is not quite spherical, the weight of a 1 kg mass  will  vary  sli 
place to place on  the earth. If it is moved to a considerable distance above 
surface,  its  weight  will be much less and  at great distances its weight may  become 
negligibly  small. If it approaches another celestial body (the moon or another p1 
will  be attracted to that body, and its  ‘weight’  will  be  greater or less than its we 
earth d e p e ~ ~ i n g  on the size of the celestial body. 





The ~ e s ~ L t ~ ~ t  of a group of  forces is that single  force which, when applied to a body, 
produces the same egect (as far as the motion is concerned) as the group. The resultant 
is thus the equivalent single  force. It should be noted that it is only equivalent as far as 
the external motion of the body is concerned but will not be equivalent in other respects. 
For  example, a single  large  force  may  cause  damage to the body that would not be caused 
by a large number of  small  forces.  For this reason, the resultant is often said to be 
stuticuZLy e ~ ~ ~ ~ ~ L e ~ t  to the group of  forces,  i.e. equivalent as far as statics is concerned, but 
not equivalent in all  respects. 

Figure 2.1 shows two forces Fl and Fz whose  lines  of action intersect at A. To find their 
resultant, the lines  AB and AD are  set out to represent the forces to scale (Figure 2.2). Upon 
completion of the parallelogram ABCD, the diagonal AC represents the resultant in 
magnitude, direction and position. This construction is  called the ~aralle~ogram of  Forces. 

re 2.2 

Alternatively, the two forces  may  be represented in ma~nitude and direction by  AB 
and BC (Figure 2.3). The magnitude and direction of the resultant is then given  by the 
line AC. In this construction the lines AB and BC must be so drawn that  the arrows 
which denote the directions of the forces 'track' in  the same sense around  the figure. The 
arrow of the resultant tracks in the opposite sense. This construction is  called Vector 



Addition. It can be seen that  the triangle of  Figure 2.3 is identical to the upper half  of 
Figure 2.2, 

If the two forces E;; and I;2 are at right angles to each other, the magnitude of the 
resultant and its direction B (with respect to the force E;J are  given  by: 

E; = and B = tan-“ 
4 

The foregoing constructions apply to all  vector quantities, The second construction is 
easily appreciated if applied to displacements.  If AB and BC (Figure 2.3) represent two 
consecutive displacements, then AC is the single displacement which would bring the 
body to the same final position, and is thus the resultant. 

The fact that  the construction shown in Figure 2.2 (or Figure  2.3)  leads to the 
resultant force  may  be deduced from Newton’s Second Law, It may also  be demonstrated 
by a simple laboratory experiment, Consider three strings AB, AC and AD joined 
together at A such that points A, B, C and D all  lie in a vertical plane (Figure 2.4). Strings 
AB and AC pass around  smooth (i.e.  frictionless)  pulleys. Weights W, and VV, are 
attached so that  the tension in AB  is W, and the tension in AC is W2. If a third weight 
W, is suspended from AD, the  point A will  take up an equilibrium position provided 
TV3 is less than (Wi + W2). 

Since the  point A is in equilibrium, the resultant of the two tensions Wl and W2 must 
be equal and opposite to the tension S”;. DA is produced to E so that the length AI? 
represents W3 to some scale,  EF is drawn parallel to AC, and EG is drawn parallel to AB. 
It will  be found  that AF represents Wl and AG represents W2 to the same  scale as m 
represents W3. Line M ,  representing a force  equal and opposite to tension W3, must be 
the resultant of Wl and W2, and it is  given  by the diagonal of the parallelogr~ AFEG 
with sides representing W, and W2. 

A given  force  may  be  replaced  by two forces provided that their vector sum is equal to 
the given  force. These two forces  are known as c o ~ ~ o ~ e ~ t s  of the given  force. 

If a given  force I; (Figure 2.5a) is to be  resolved into components lying in the given 
directions Ox and Oy, the force is first represented to scale  by the line OA (Figure 2.5b). 
If the parallelogram OBAC is then completed by lines~parallel to Ox and Oy, the lines 



OB and OC must represent the required components Fy and respectively,  since 
evidently their resultant is the given  force  (see  Figure 12.2). F' and Fy are  calculated  readily 
from Figure 2.5b using the sine rule. 

( 4  6 )  

B 

0 X 

The process of breaking the single  force into two components is the reverse of finding 
the resultant of two forces; but whereas the two given  forces  have only one possible 
resultant, the single  resultant  may  be  broken into many digerent pairs  of components 
depending on the directions  required  for the components. Thus, there is an infinite number 
of  pairs of components of the force F; as many as there are ways of drawing a triangle 
one of whose  sides is OA, but only one pair  satisfies the given directions Ox and  Oy. 



The most common problem is that of finding components of Fwhich lie  parallel to and 
perpen~icular to a given direction Ox (Figure 2.8). In this case, the axes Oy and Ox are at 

les (4 = 30") and F is at an angle 0 to the direction Ox. From simple  geometry: 

F: = Fcos 6' and Fy = F sin 0 

re 

It follows that Fis the resultant of  its components F, and f;y. In the orthogonal system 
of  Figure 2.8, where the components F, and Fy are at right angles, the magnitude and 
direction of Fare obtained by substituting F' for F2 and F, for F, in Equation 2.1: 

If the lines  of action of a number of  forces  pass through a common point,  the forces  are 
said to be c o ~ ~ ~ ~ ~ e ~ ~ .  

(4 (b) 
4 

point o f /  
concurrence 

C D 

Consider the four concurrent forces Fl to F* shown in Figure  2.9a. The resultant of 
the group of  forces  can  be found from the graphical construction of  Figure 2.9b. Forces 
1;; and F2 may  be combined by the method of  vector addition into a resultant RI (triangle 
Al3C in Figure 2.9b). RI may then be combined with F3 (triangle ACD) to give a 
resultant 4. Finally i;: is combined with 4 (triangle ADE) to give the final resultant R. 
The line AE gives the magnitude and direction of R. The line of action of the resultant 
passes through the point of concurrence (point 0 in Figure 2.9a). By  successively adding 



n Figure 29b, the r e ~ ~ l t ~ n t  of any number 

an 





Determine the x and y components of the forces shown in Figure P2.1. 

Determine the u and v components of the forces shown in Figure P2.2. 

A force  of 100 N acts in  the direction of the x axis.  Resolve this force into two 
components Pand  Qwhich make  angles  of +30" and -45" respectively with 
the x axis. 

The following  forces  are concurrent: 50 N at 0", 80 N at 25", 10 N at 85", 
and 40 N at 190", the angles  being  measured  anticlockwise from the positive 
x direction. Find the resultant analytically. Draw a polygon  of  forces to check 
your solution graphically. 

Find the resultant of two concurrent forces P and Q. P has a magnitude of 80 
N and acts along a line which makes an angle  of 20" with the x direction. The 
magnitude of Qis 30 N and this force  acts along a line which makes an angle 
of 155" with the x direction. Angles  are  measured  anticlockwise from the 
positive x direction. 



two water  skiers as shown in F 
at  at A. The t e ~ s i o ~  in 
e  resultant  force  acting 

to the centreline of the boat. 

10 N 

12 N 

50 N 

10 N x 

15 N 

r e s ~ l t a ~ t  of the s y ~ t e ~  of c o ~ c ~ r  

8 kN 

4 l<N 



For the force s ~ s t e ~ s  shown in Fi 

(i) Find the value of force A and t 

(ii) Find the value of irectio~ of C, if A is the r e s u ~ t ~ ~ t  of the 

(4 (h) (C> 

Y 

A 

B = 1 5 N  x 
X 

D = 12 

300 N 

250 kg 



Two forces P and Q act through a  point,  the angle  between their lines  of 
action being 8. Show that the magnitude of the resultant is: 

Iz  = VP2 + Q2 + 2PQcos 8 

and  that its line of action is inclined at the angle a to the direction of  force P 
where: Qsin t3 

ran a =  P +  Qcos 8 

Forces  of 50 N and 60 N act through the  point 0, as shown in Figure P2.13. 
Find their resultant in magnitude and direction. Calculate the components of 
the resultant in  the directions Ou and Ov. Check the answers  by  ete er mining 
separately the components of the 50 N force and  the 60 N force in  the 
directions Ou and Ov and adding the results. 

0 35" X 

A force of 4 N is the resultant of  two concurrent forces, one of 5 N and the 
other of 7 N. What is the angle  between  these  two  forces? 

Three concurrent forces act in the directions shown in Figure P2.15. If the 
magnitude of the resultant is 14.56 k N ,  find the angles a and p. 

6 kN 

0 



Three forces  act through  the  point 0 in  the directions shown in Figure P2.16. 
The magnitudes  of the forces are 15 kN, 10 and P. The resultant R acts 
at  an angle  of 10" to Ox. Find  the magnitudes  of P and R 

15 kN 

P 





If a body is acted upon by a system  of  forces which has a resultant, this resultant produces 
a change in  the state of motion in accordance with Newton’s Second Law. 

When  the resultant of a group of c u ~ e ~ ~ ~ e ~ t  ~ ~ c e s  is  zero, the motion remains 
unchanged and the body is in e ~ ~ ~ Z i ~ ~ i ~ ~ .  The system  of  forces is also  said to be in 
equilibrium, Conversely, any body  which  remains at rest (as a large number of e~gineering 
structures do) must be acted upon by a system  of  forces  having a zero resultant. 

If the resultant  of a system  is  zero, the forces,  when added vectorially (as in Figure 2.9b, 
page lo), must form a closed polygon  (i.e. the last point of the force  polygon must coincide 
with the initial point), When all the forces but one are known, the magnitude and direction 
of the unknown force  may  be found if the system  is known to be in equilibrium, as the 
unknown force  will  be  represented  by the vector  required to close the force  polygon. 



The force which must be added to a given  system to produce equilibrium is  called the 
~ ~ ~ i ~ i ~ ~ ~ ~ t .  Thus Q is the equilibrant of the three known forces in Example 3.1. The 
equilibrant is equal and opposite to the resultant. For any group of concurrent forces in 
equilibrium, any one force is the equilibrant of the others. 

Analytically, the resultant of a system  of concurrent forces is defined by Equation 2.4 
and Equation 2.5. For the resultant to be zero, both its x  and  y components must be zero 
(i.e. R, = Ry = 0). Hence the conditions of equi~ibrium are: 

F, = 0 

Fy = 0 

The directions x and y need not be at right angles but they must be different. 





It is often  advantageous to resolve in directions perpendicular to Pand Q, rather than  in 
directions Ox and Oy, in order to obtain two equations  each cont~ining only one 
unknown. 



metry of the problem is specified in Example 3.4. In reality, the geometry may 
by the deformation of the cables under load. In fact, any structure will deform 
The calculation of such deformations involves a knowledge  of the physical 

characteristics  of the materials from which the structure is made and is beyond the scope 
of this book. In the remainder of the book, it will  be  assumed that deformations under 

ibly  small (and  in fact they often are) and the solution of problems will  be 
eometry of the unloaded structure. 

W e  have  been concerned up to now with  the processes  of combining forces into a 
resultant or of separating a force into components. The forces  involved  have  been  clearly 
specified  by  means of a diagram. In practical situations the forces  are not usually so 
clearly  specified and the first  task  of the analyst is to identify the forces which must be 
considered before the foregoing processes  can  be applied. 

Forces occur as a result  of the interaction of  two  bodies. The term body is  used to 
specify any material object, or even any arbitrarily chosen grouping of matter. For the 
time being we shall use the term body to mean any easily  recognisable object such as a 
block  of wood, a ladder, a bridge, a roof truss and so on. 

A commonly occurring force is the weight of a body, which was defined in Section l .5 
as the ~ravitational force acting mutually between the body and  the earth. To say that 
the weight of a table is 400 N is to indicate that  the earth pulls the table with a force  of 
400 N and also that  the table  pulls the earth with the same  force.  %en two bodies  are 
in contact they exert a force on one another at  the contact face. Ofien this force is a result 
of the weights  of  these and  other bodies. 

Figure 3.5a shows a block  of weight W resting on a horizontal floor. By virtue of  its 
weight it exerts a force on the floor and  the floor  exerts an equal and opposite force on 
the block. These interactive forces R are shown in Figure 3.5b  and since the block is in 
equilib~ium it is  clear that R must be equal to W The floor exerts just enough force to 
hold the block up. The force  exerted  by the floor on the block is a ~ ~ s ~ ~ e  force. For this 
reason this force is often called the ~eact io~,  while the force  exerted  by the block on the 
floor is called the action, According to Newton's Third Law, action and reaction are 
equal and opposite. 

l 

I w /  p////////////////, 

 re 3.5 
However, the terms action and reaction  are  often  interchangeable: it makes little dif- 

ference to the solution of  problems  which is  called action and which is  called reaction. In 
Figure 3.6a, two  planks  of  wood  of  weight Wl and VV, are  resting on a floor and are  leaning 
against one another in such a way that they  are both in equilibrium. At the intedace B they 
clearly  exert mutual forces on one another. If the interface B is smooth and vertical,  these 
forces  are  horizontal and are  called Xin Figure 3.6b. It is immaterial  which  of  these is  called 
the action and which is  called the reaction. In order to maintain equilibrium of plank AB 
the floor must supply an  upward  reaction RI equal to Wl and also a horizontal  reaction l$ 



equal to X The force R, is  called the n o ~ ~ u ~  reuction (i.e. at right  angles to the  floor)  and 
1p, is a ~ i c t i o n ~ ~ ~ r c ~ .  (This  will be  discussed in the  next  section.) The plank AB of  course 
exerts  equal  and  opposite actions RI and l$ on the  floor. 

B 

B 

C 

In the application  of the principles of statics to any practical problem it is essencial first 
to be  clear about two things: what is the body  whose  equilibrium is being discussed, 
and what are the forces  acting on this body? 

If it is desired to evaluate the force  exerted  between the two planks at the interface B 
in Figure 3.6a, then  it is convenient to consider  the equilibri~m of one of the planks,  say 

. It is advisable to draw this plank separately so the force  can  be  shown  acting on it. 
This i s  often  called a ~ e e ~ o d y  d i ~ ~ ~ ~ .  (Freebodies are discussed further  in  Chapter 6.) 
Freebody  diagrams for both planks AB and BC are  shown in Figure 3.6b. 

The forces on  the chosen  body  will  usually  comprise the weight  of the body and forces 
which  are  applied to  it by any other bodies  which  are in contact with  it,  In  the present 
example,  there is the weight Wl, the force Xexerted by the  other plank and  the force R 
exerted  by the floor. The last  can  be  expressed either by the  components RI and li)2 or by 
a  single  inclined  force R, whichever is more  convenient. Once  the freebody is drawn and 
the forces  acting on  it are clearly identified there is usually little dificulty  in applying the 
principles of statics to those  forces. 

It should  be noted  that  the  term body applies to liquids and gases  as  well  as to solids. 
One of  the  forces  acting on a piston in an engine  will  be  the  force  exerted  by the gas in 
the cylinder, One of the forces  exerted on a dam is that of the water  retained  by the dam. 

When a  force  or  a  system  of  forces  is  applied to a  body in such a way that  it tends to cause 
the  body to slide on another  surface,  a  force  known as ~ i c t ~ o ~  is  called into play at the 
interface.  For instance, if  a  heavy  box  is  resting on the  floor and we attempt  to slide it along 
the  floor  by  applying a moderate  force to it, we  may find that the  box  does not in fact  move. 
A frictional force has been  evoked  sufficient to resist  the  force  which  we  have  applied.  If we 
attempt  to move  the  box in the  other direction friction may  still  defeat us. The force  of 
friction always  acts in a direction to oppose  motion.  However, if  we  increase our egorts 
s u ~ c i e n ~ l y  the  box  will  eventually  move.  Evidently there is a limit to the frictional force. 

Friction is caused  by  surface  roughness.  Even an apparently smooth surface  will  reveal 
irregularities under a  microscope, and if two such  surfaces are in contact  the 



interpenetration of the irregularities tends to resist  relative motion and is the cause  of the 
force which we  call friction. If either surface is made smoother then  the friction force  will 
decrease, The introduction of a layer  of  oil  between the two surfaces  may  prevent contact 
and may almost eliminate friction. Although friction is never in reality quite zero it is 
sometimes small enough to be neglected. A surface is  called ~ ~ o o ~ ~  in mechanics  if it 
generates  negligible frictional forces. 

It can be shown experimentally that  the limiting, or m ~ i m u m ,  frictional force that 
can be generated at the interface  of  two  bodies is proportional to the normal force acting 
at  the interface. If this normal force is Nand the m ~ i m u m  possible friction is k;; then: 

F 
" 

N - = p 
and p is called the c o e ~ c i e ~ t  o ~ ~ i c ~ i o ~ .  The force Fdoes not depend on the area  of the 
contact surface. 

Figure  3.7a  shows a box  of  weight Wresting  on a table, It is being pulled by a rope 
with a force Pa t  an  angle 8 to the horizontal. The forces acting on  the box  are shown in 
the freebody diagram Figure 3.7b. 

~ i ~ p e  3.7 

 though the forces  are not strictly concurrent, since Facts at  the  bottom of the box 
and  the  other forces act at the centre, they will  be considered as concurrent in this 
chapter. The total downward force on  the table is W - P sin 8, and assuming that W 
exceeds P sin 8 the table supplies an upward reaction N equal to W - P sin 8. 
The vertical components of  force  are therefore balanced, and  the ~ u ~ ~ Z  force at the 
surface is: 

N =  W--  Psin 8 

The maximum friction available  is therefore: 

Fmm = lu, N Z =  p ( W -  Psin 8) 

If P cos 8 is  less than F],,, then  the force Fwill also  be  less than Fmm since friction is 
a passive force. It will  be just su~lcient  to balance P cos 8 and the box  will not move.  If 
P cos 8 exceeds qnz the resultant force  will  be P cos 8 - Fma and  the box  will  move. 

Suppose the box  weighs 80 N and the coefficient  of friction is 0.4. Consider first the 
box  is pulled with a force  of 20 N at 8 = 30" (Figure  3.8a).  Figure 3.8b shows the forces 
on the box  expressed in terms of components. The reaction from the table is 70 N and 
the m ~ i m u m  friction available  is therefore 0.4 X 70 N or 28 N. Since the horizontal 
c o m ~ o ~ e n t  of the rope  force is only 17.32 N, the actual friction force just balances this 
and the box  is in e ~ u i l i b r i u ~ .  



17.32 

70 
Fipre 3.8 

In Figure  3.9a, the same  box as in Figure 3.8 is pulled with a force  of 40 N at C;, = 
30". The force components are shown in the freebody diagram Figure 3.9b. Note that 
the increase in  the inclined force  has  decreased the table reaction and consequently the 
m ~ i r n u r n  friction available  is now only 0.4 X 60 = 24 N. The horizontal component 
of the 40 N force  exceeds this and  the box  will  move in this case: it is not  in e~uilibrium. 

34.64 

60 
Fipre 3.9 

For any given  angle 8 it would be a simple matter to determine the value  of P for 
which the value of Pcos C;, is just equal to the m ~ i m u r n  friction force.  For this value we 
say that  the box  is on the  point of  moving.  Actually, once the body starts to move, the 
friction force  decreases  slightly. 

N N 

Fipre 3.10 

It is sometimes convenient to combine the normal reaction Nand the friction force F 
into a resultant inclined reaction R, Figure 3.10a shows a box on a table as before.  Figure 
3. lob is a freebody diagram showing all forces acting on  the box.  For a small  value  of the 
force P, the friction force  called into play is less than Fmm and the body does not move. 
The resultant reaction R is shown in Figure 3.10~.  As P increases the ratio of P to N 
increases. When the box is on  the  point of moving F = F,= = p N(Fi 
force R is then inclined at  the m ~ i m u m  possible  angle to N This angle 
~ f ~ ~ c t ~ ~ ~  (b, and: 

p = tan (b 



in  the case  of a s ~ ~ u ~ ~  plane, no friction is present and  the reaction is  always normal 
to the plane, 
A block  rests on a rou plane inclined at a to the horizontal as shown in 

3.1 la. It is acted upon by own weight K the normal reaction from the plane 
a friction force F shown in the freebody diagram Figure 3. l lb. Since in this case the 
block tends to slide down the plane, F will act up  the plane.  Figure 3. l IC shows the 
force triangle which relates  these  forces provided the block  does not slid 
N = Wcos a and F = Wsin a. The resultant reaction R is inclined a t a  to N: 
slope  of the plane is increased until the block is on  the  point of slidin 
and a is equal to the angle  of friction c$. 

If a box is being pulled up an inclined plane by  means of a rope (~igure 3.12a) the 
e ~ u i l i ~ r i u m  may  be examined by resolving  forces  parallel to and normal to the plane 
(Figure 3.12b). The friction Fwill act down the plane when P cos 
but if Wsin a > P cos 8 then Fwill act up  the plane. 

P 
(4 6 )  

os 8 
Wsi 

re 3.12 





If three forces acting in the same plane (coplanar) are in equilibrium they must be 
co~current. If two of the forces intersect at a point A, then they have a resultant which 
also  passes through A. For equilibrium the  third force must be equal and opposite to this 
resultant and must act in  the same  line. Consequently the  third force also  passes t h o u  
A. It follows that three non-coplanar forces cannot be in equilibrium. 

Thus three forces in e~uilibrium must be coplanar and concurrent. (Note: The forces 
may be parallel, i.e. concurrent at infinity,) Some problems are simplified by recognising 
this fact. 

Also peculiar to the case of three coplanar forces  is the fact that any triangle, whose 
sides  are  parallel to the forces taken in order, will  serve as a force  polygon to some scale. 
This is  because  all such triangles  are  geometrically simihdr and have their sides in  the same 
proportion. This  cannot be said  of  polygons with more than three sides. 



Another example  where this theorem may  be  used  is shown in Figure 3.1 Ga. Here, a 
box  of  weight Wrests against a frictionless  wall and is supporte~ by a rope A 
3.16b shows a freebody diagram of the box acted upon by the weight 'clz; th 
from the wall R and the tension in  the rope 7: For equili~rium, these three forces must 
be concurrent. This will dererrnine the ~q~ i l ib r ium position, 
this position is attained. It may  be noted that  the triangle AC 
the forces on the box. 

( 4  
A 

c 

If the forces shown in Figure P3.1 are 
in e ~ ~ i l i b r i u m ,  find  the m a ~ n i t ~ d ~  
and direction of P. 



The forces  shown in Fi e P3.2 are in e~uilibrium. Calculate the m 
of the M O  forces P an (Resolve at right angles to Pand Qin turn,) 

10 N 10" x 

T 

re 

 ete ermine the force in cables AC and BC in Figure P3. 
in e~uilibrium. 

g  the x axis and  at +45" res 
and 60 N, such that  the fo 

e ~ u i l i b r i u ~ .  (Give the rwo possible solutions.) 

10 N rests on a plane 
e P3.5). The  coef~cient 

n the block and  the plane 
on normal to  the plane. 

Figure P3.5 is a freebody di 
block. %at is the horizontal 
is just strficient  to move the block up  the 10 N 
plane with u n i f o r ~  motion? 

C is a roof truss spanning 20 III (Fi re P3.6). It is supported  at A so that 
the reaction, or support in^ force, at A ay act in  any direction. The support 
at C is such that  the reaction  here  must  be  vertically  upward or ~ o w n ~ a r d .  If 

is applied at  the apex of the truss in a direction  of 20" to  the 
value  of the reactions at A and C. 



Figure P3.7 shows a reciprocating mechanism. m e n  the crank is in  the 
position shown the piston instantaneously has no acceleration (its velocity is 
a m ~ i m u m ) .  Consequently the forces acting upon it are in equilibrium. At 
this moment  the force on the face of the piston is 1 and  the force  exerted 
by the connecting rod is in the direction of  BC. Draw a freebody diagram of 
the piston, showing the forces acting on it, and hence find  the force in the 
connecting rod and  the force  exerted by the cylinder walls on  the piston. 

I kN 

piston l 

A heavy uniform bar AB of  weight Wis s u s ~ e n d e ~  from a hing 
point A above a smooth inclined plane, as shown in Figure P3 
end of the bar B rests on the inclined plane. Find: 
(i) the force  exerted  by the bar on the inclined plane 
(ii) the reaction  of the  hin A if the rod is inclined at 30" to the vertical 

and  the inclined plane at 30" to the horizontal, 

The inclined plane in Problem 3.8 forms the upper surface  of a block  of 
negligible  weight which rests on a horizontal table. m e n  the bar A 
resting on the inclined plane the block is on the  point of sliding on the 
horizontal table, What is the coefficient  of friction between the block and the 
table? 



Figure P3.10 is a freebody diagram of a block of weight 20 N being pulled up 
an inclined plane by a force Fwhich makes  an  angle  of 5" with the plane. If 
the coefficient  of friction between the block and the plane is 0.8, find  the 
value  of Fwhich is just sufficient to move the block. 

R 
F 

20 N 

A load of 100  kN is supported by a crane as shown in Figure P3.11. DAE is 
the cable which passes  over a smooth pulley at A. Draw a freebody diagram 
of the pulley A and hence find the forces in the cable, the tie AC and  the jib 
AB of the crane. (Assume that  the diameter of the pulley and  the weight  of 
the jib are both negligib~e.) 

In Figure P3.12, a uniform bar AB is 600 mm long and weighs 40 N. The 
end A rests  against a smooth wall and the end B is supported by a 1 m long 
rope BC which is fixed to the wall at C. Find the inclination of the bar to the 
vertical when it is in equilibrium (other than han 
tension in the rope. 

B 
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A cylinder weighing 2 kN is supported by two smooth wall 
normal forces  exerted  by the walls on the cylinder at A and 

A rod AB weighing 10 kN is supported by a pin at A and a cable BD. The 
centre of  gravity  of the rod is at its midpoint C. Determine the horizontal and 
vertical components of the pin force at A and  the tension in  the cable. 

The system  of  forces shown in Figure P.3.15 is in e~uilibrium, Find the 
unknown forces P and Q by ~onsider in~ the com~onents in the x and y 
directions. 



The plate ABC in Figure P3.16 is in the shape of an equilateral triangle whose 
sides  are  1 m in length. It is supported on a frictionless  peg at A, while the 
corner C rests on the  smooth plane CD. A force  of 10 
the direction shown. Find the reactions at A and C. (The weight of the plate 
is negligible.) 

A 

10 N D 

The rectangular plate ABCD is in equilibrium under the action of the forces 
shown in Figure P3.17. Find the force P and angles 0 and 4. 

15 N 

P 

2 m  

30 N 

A ladder 6 m long rests  against a vertical  wall so that it is inclined at 60" to 
the horizontal floor on which it rests. The ladder weighs 500 N. What is the 
m ~ i m u m  height at which a man weighing 1200 N may stand on the ladder 
without it slipping if the  coeficient of friction bemeen the ladder and wall 
and ladder and floor is 0.4? 

A uniform beam AB of length 6 m and weight W, resting with the  end  A  on 
a rough horizontal plane and with a point C bearing against a smooth fixed 
horizontal rail, is just on the  point of sliding down. The distance AG is 4.5 
m. The coeficient of friction between the beam and  the plane is 0.5. 
(i) What is the angle  of inclination of the beam to the horizontal? 
(ii) What horizontal force applied at A would cause the beam to slide up? 



A lever  of length 2.1 m is  used to move a smooth cylinder  of 700 mm 
diameter and weighing 100 N up a plane inclined to the horizont~ at an 
angle  of 30". m a t  force must be exerted on  the end of the lever  if the lever 
is inclined at 60" to the inclined plane? 

The bar BC in Figure P3.21 is supported by  two  rigid  bars AB and AC 
connected to BC through frictionless  hinges. AB and AC are connected 
through a frictionless hinge to a support  at A. Forces act on BC as shown in 
the diagram. Find the unknown load P and  the reaction at A for equilibriu~. 

75 mm 75 mm 

The block B in Figure P3.22 weighs 500 N and rests on a plane inclined at 
25" to the horizontal. The coeficient of friction between the plane and block 
B is 0.15. On top of this block is another block A, which weighs 1500 N. The 
coefficient  of friction between A and B is 0.4. Block A is pulled wirh a force 
Fwhich makes an angle Q with the plane. If a is greater than a certain critical 
angle the block A will  slide  relative to B provided Fis large enough. However, 
if a is less than this critical  angle, then a suitable force Fwill cause both blocks 
to move  togerher up the plane. What is the critical  value  of Q, and what force 
Fapplied at this angle a will just cause the blocks to move? 

F 



The bent lever in Figure P3.23 has  its arms at 90" and is pivoted at C. 
AC is 375 mm  and BC is 150 mm. A force P of 150 N is applied at A at 15" 
to the horizontal and another force Q is applied at B at 120" to the vertical. 
Find the magnitude of Q and  the magnitude and direction of the reaction at 
C, if the lever is in equilibrium. 

15 

Q 

A bar  AB, which is acted upon by two forces  of 50 V? N and 100 
directions shown in Figure P3.24, is supported by  ropes which are attached 
to a peg C. The total length of the rope is 6 m. Find the lengths AC and  CB 
for the bar to be in equilibriu~.  What are the tensions in  the ropes? 

C 

A square plate of 10 N weight is in equilibrium in a vertical plane 
perpendic~lar to a smooth vertical  wall with one corner of the plate in contact 
with the wall.  An adjacent corner of the plate is attached to a point: in  the wall 
by a string whose length is equal to the side  of the square. Find the angle of 
inclination of the string and its tension. 

* Difficult problems, suitable for later study. 





If a force  acts on a body, then the ~ Q ~ e ~ ~  of the force about any point  in its plane is 
defined as the product of the force and the ~erpendicular distance of the point from the 
line of action of the force. 

The moment of the force Fabout the  point 0 in Figure 4.1 is: 

F 

The moment MF may be thought of as a measure  of the tendency of the force F to 
cause rotation about an imaginary axis through the point 0 and perpendicular to the 
plane contai~ing the force and  the point. If a body is pivoted at 0, the force Facting on 
the body will  cause rotation about 0, in the absence  of any other constraints. However, 
the  moment of a force  can be calculated about any point  and  not just the points about 
which the body can physically rotate. 

The moment of a force Fabout a point 0 is the same as the sum of the moments of 
the components of Fabout the  point 0. Consider the force Fshown in Figure 42a. 



The moment of Fabout the point 0 is: 

(MJ0 = Fxsin 8 

In Figure 4.2b, the force Fis resolved into its  vertical and horizontal components. The 
sum of the moments of the two Components  of Fabout the  point 0 is: 

(MF)-, == Fsin 8 x + Fcos 8 X 0 = Fxsin 8 

In this case, the horizontal component of F passes through the  point 0 (i.e. the 
distance from 0 to the line of action of the horizontal component is zero) and  the 
moment of the horizontal component about 0 is zero. 

The unit of moment is the ~ e ~ t Q ~  metre (Nmj with variations Nmm, kNm, etc. 
according to the choice  of units for force and length respectively, The sign  (positive or 
negative)  will depend upon the direction of rotation and may be arbitrarily taken as 
clockwise or anti-clockwise to suit the particular problem. 

y definition, a resultant has to produce the same efiiect (with respect to the motion it 
causes)  as the group of  forces it replaces. This requires that it has the same moment, 
about any point, as the combined moments of the forces in  the group. 

The magnitude and direction of the resultant of a set  of a on-concurrent forces  are 
determined in  the same manner as for a set  of concurrent forces (Section 2.4). This 
assures  equivalence  as  far as translational motion is concerned. To obtain equivalence  of 
rotation the ~ Q ~ i t i Q ~  of the resultant is determined so that its moment  about any chosen 
point is equal to the algebraic sum of the moments of the forces, Fortunately, it can  be 
shown that if this condition is satisfied with respect to one point then it is satisfied with 
respect to all other points. 

Using the same notation as in Section 2.4 and in addition letting ( ~ ~ j ~  denote the 
~ o m e n t  of the force Fabout a  point A, the magnitude and direction of the resultant are 
specified, as before, by its x  and  y components. 

where 8 is the angle  between the axis O x  and  the given  force. 
In order to satisfj  the rotation condition about an arbitrary point A: 

which determines the position of R. 
As an alternative to expressing the x and  y components of F as F cos8 and F sin@, 

where t) is the angle  between Fand the  x axis, it is often convenient to let Ox and gY be 
the angles  between Fand the  x  and  y axes  respectively. The x and  y components of Fare 
then Fcos Ox and FcosBy. The terms cosox and are  called the ~ i r e ~ ~ i ~ ~  cosines of the 
vector Fand are commonly denoted by land m. With this notation, the components are 
Hand  Fm, 

The magnitudes of the direction cosines land m are  given  by the projection, on the x 
and  y axes,  of a  unit vector in the direction of F: Clearly l2 + m2 = I.. (The FA Fm 
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notation has little advantage  over the notation F cos 6' and F sin 6' in ~o- dimension^ 
problems, but  the advantage is more marked in t~ree-dimensional problems.) In terms 
of direction cosines, Equations 4.2, 4.3 and 4.4 can be written: 



If the force r”, in Figure 4.6, with components F’ and Fy, acts at  the  point (x, y), then  the 
moment of the force about  the origin is (F’ x) - (Fxy), provided the a n t i c ~ o c ~ i s e  sense 
for moments is taken as positive. 



In retrospect it can be  seen that in the case of a system  of  forces concurren~ at a point 
A, the sum of the ~ o ~ e n t s  about A must be  zero. Thus the position equation (Equation 
4.4) is auto~atically satisfied  since the resultant also passes through A. 

A system  of  parallel  forces is a particular case  of non-concurrent forces.  Since the 
directions of all the forces  are the same (althou~h the senses might differ) the ma 
of the resultant may be found by  algebraic addition. The resultant is parallel to the forces, 
and its position may be found by equating its moment  about any point to the sum of the 
~ o m e n t s  of the forces about the same point. 



The method breaks  down in the case of two parallel  forces of equal m 
opposite  sense (as in Figure 4. IO). In this case the magnitude  of the resultant is zero 
(Le. F - F) .  The moment of the system about such  points as B or C is  easily  seen to be 
Fd (i.e.  non-zero).  Such  a pair of forces  is  called  a co~~Ze.  It tends to cause rot~tion 
without translation. It cannot be  replaced  by  a single force, which  must  necessarily tend 
to cause translation as  well  as rotation. In this context, ~~~~~~~0~ means to move  from 
one position to another. 

F 

A 

The  moment of  a  couple is the  same about every point in the plane. If A is any  point 
ure 4.10, and ABC is a transversal  normal to 6 the total moment  about A is: 

M =  &(x" d )  - Fx= Fd 

The ~ o m e n t  is Fdin an  anticlockwise  sense and, being independent of x, is evidently 
the  sarne about every point. The  moment Fd is known as the ~ u ~ e ~ ~  ~~~~e c ~ ~ ~ ~ e .  
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A couple may be replaced  by any other couple having the same moment and  the same 
sense  of rotation. The couples shown in Figure 4.1 1 (a), (b) and (c)  each  have a clockwise 
moment of 60 kNm and are therefore equivalent. The original couple can  also  be 
replaced  by any number of  couples, the algebraic sum of whose moments is equal to the 
moment of the given  couple. 

12 kN 

2 m 5 r n  

12 kN 

A system  of  forces  may  be equivalent to a couple. This would be the case  if the forces 
had a resultant of zero magnitude, but yet had  a non-zero moment about any point. 

Since the actual forces constituting the couple are immaterial it is ofien represented by 
a single symbol showing its  sense and specifying  its magnitude (Figure 4.1 Id).  When this 
symbol occurs in.  soc cia ti on. with other forces  its properties must be  remembered: 

It has no  component force in any direction 
a Its moment is the same about all points. 



In the previous  discussions,  forces  have  been represented as line vectors acting at a 
point. Engineers refer to such forces as po~ntf irces  or concentrat~~firces (or c o ~ c e n t r ~ t ~ ~  
Z o ~ ~ ~ ) .  In many engineering problems, forces occur not as point forces but as  forces 
distributed along a length or over an area.  For instance, the force  exerted  by a floor on 
a sup~orting beam is distributed along the beam and is not  a lied at  a particular point, 
Such a force is measured in terms offarce lcN/rn. If at a particular 
location 011 the beam the floor load is 5 he f irce intenshy, If this 
force intensity is constant, then each metre of beam  carries 5 kN of load. The load is 
said to be z ~ ~ ~ o r ~ ~  distributed. 

In the real world, forces  are  always distributed, and the line vectors  referred to in 
statics  are their resultants. ~ometimes the force intensity and the nature of  its variation 
are well defined, in which case the determination of the mag~itLlde  and position of the 
resultant presents no problem. In other cases, it may  be  necessary to introduce 
a~~roximations, 

0.6 m 0.6 m 

15 kN 

Figure 413a shows a beam which supports a uniforrnly ~istributed load  of 5 W / m  
i n t e n s i ~  acting over the central 3 m of  its length (portion BC). The beam  is supported 
at its ends on walls. It is clear  by inspection that  the resultant of the distributed load on 

e force  of 15 kN and this acts  mid-way  between B and C (in this case, the 
mid-span of the beam). Figure 4.13b shows the resulta 

beam. By symmetry, each  of the  end reactions is 7.4 
distri~ution of  these  reactive  forces  over the 0.6 m length of the 

might assume a uniform distribution and take the resultant to act 0.3 1x1 
e of the support. It might be more realistic to suppose that  the intensity of 

the reaction is greater  near the edge  of the  support  than at the very end of beam, and to 
lace the resultant at only 0.2 m from the edge  of the support. In r al situations, forces 

are  rarely known with great  accuracy either in magnitude or position, Figure 413b is 
called the ~ e e ~ o ~ ~  ~i~~~~ of the beam. (Freebody diagrams  are  discussed in some detail 
in Chapter 6.) The magnitude and position of the resultant of a distributed load of 
varying intensity may be found as  follows. 



0 A B 

ose the load distribution is rep phicaiiy as  in Figure 4.14a, where the 
f &e ~ o ~ d i ~ ~  c ~ ~ v ~  at any point itude of the load i n t e n s i ~  w 
oint, The load on an elemental S wdx (see Figure 414b).  In 

effect the distrib~lted load consists of a 
The resultant Wis the sum of these  forces. That is: 

B 
W = /  W 

A 

is the area under the load distri~ution curve. 
find  the position of the resultant, take m o ~ e n ~ s  about any conve~lie~t point, such 

Figure 4.14, and equate the  moment of the resultant to the sum of the m o ~ e n t s  

The integral / wx i s  the first ~ o ~ ~ n ~  about 0 of the area under the load distribution 
curve. This means that the resultant acts through the centroidof this area. (The concept 
of the first m o ~ e n t  of area and the definition of the centroid of an area is discussed in 

e 4.1 5a. The load i n t e n s i ~  at x = L is 
e of x the load i n t e n s i ~  W, is obtained 

from simple geo~etry: 
W, 

x = L  
" 

and therefore: 
wx 

W, = ~ L 
The load acting on  the small length shown in Figure 4.15 b is: 



The resultant of the linearly  varying (triangular) distributed load Wis the sum of the 
loads acting on all the elemental lengths from x = 0 to x = L. From E~uation 4.5: 

W = !  L, - . . . ~ ~ . ; ; ~ ~ l :  =y WL 

0 

The resultant is the area of the load diagram. The position of the resultant, X in Figure 
4.15c, is obtained from Equation 4.6: 

WL 
and with: ~ 2 

L’ wL2 
0 3  

=- 

2L 
3 the length: 

- x=- 

Evidently, the resultant of a triangular load diagram is located two thirds of the way 
along the length of the diagram (i.e. through the centroidof the trian ular load diagram). 

For most practical problems, it is s u ~ c i e n t  to h o w  that  the centroid of a rectangle is 
its centre (i.e. the intersection of its  diagonals) and  the centroid of a triangle is at  one 
third of the distance from the base to the apex. All linear load distributions can  be 
divided into rectangles and triangles. (For other shapes see Appendix, Table A1 .) 
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uch  of the work  of statics consists of  replacing a given  system  of  forces  by a statically 
quivalent  system  which is more  convenient for calculating the effect  of the system. 

~ o - d i m e n ~ i o n a ~  system  of  forces  can  be  replaced  by  any other system in 
which  there  are at least  three independent quantities, If there  are just three u n k n o ~ n  
quantities in the new  system,  these quantities may  be  specifically  deter 
the  new  force  system is equivalent to the original force  system. If the new  force  system 
contains  more than three unknown quantities, a certain amount of choice  exists in 

consider  here  only the case of  three unknown quantities. These three unknowns 

a system  of  forces  by its resultant is one such  example. 

ing  magnitudes to these  unknowns. 

must then be  chosen so that  the new  system and the  given  system  are: 

as regards their x components 
as  re ards their y  components 

ards their moments  about any  chosen point. 

X 
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Suppose that  the given  system  consists  of the single  force F; acting at A (xl, y,) in a 
direction B, to the x axis (Figure 4.18a). Suppose it is required to replace it by an 
equivalent system consisting of a force XI along the x axis, a force Y, along the y axis and 
a couple MI (Figure 4.18b). Equating the x and y components of the new  system to the 
x and y component of the given  system,  respectively,  gives: 

XI = Fl cos 6', and Y, = Fl sin 4 
Moments can be equated about any point,  but the origin is most convenient in this 

particular problem: 

MI = Fl xI sin Bl --Fl y1 cos 6', 
In a similar way, we could replace a system consisting of any number of forces Fl, F2 

etc. acting in directions B,, % e&. by a new system comprising forces X and  along 
the x and y axes, and a couple M. By equating the new  system to the given  system as 
above, we obtain: 

Of course, it is not necessary for the three components of the new  system to act at  the 
origin. They can be specified to act anywhere, as in Example 4.7. 



The new system  need not consist  of  forces X and Y together with a couple, For 
instance, when a force  system  is  replaced  by  its resultant, the new  system (the resultant) 
is a single  force, the three unknown quantities being its magnitude, direction and 
position. We could replace a given  force  system  by three forces acting along the sides  of 
a specified triangle (although not proportional to the sides). in such a case the direction 
and position of the new  forces  are known, and  the unknown quantities are the three force 
magnitudes. We could not replace a given  system  by three forces  all  parallel to the  x axis 
because such an arrangement would not permit the new  system to provide a y 
component equivalent to that of the original system. In effect, three parallel  forces do not 
represent three ~ ~ d e ~ e ~ d e ~ t  quantities. 

A common example  of the use  of an equivalent system is the replacement of a force 
by a parallel  force and a couple, The force F a t  in Figure 4.20 can be replaced  by an 
equal force F at A together with a couple of moment Fd The couple Fd has the same 
moment  about A, and is in  the same  sense, as the original force F a t  Q. 

F 
* 

Suppose we  have a force  system  expressed in the form of three components XA, YA and 
MA in  the axes at A (Figure 4.21). We now decide that  i auld be more convenient to 
express the system in terms of components in the axes at shown, If the WO systems 
are e~uivalent, then: 
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resolving  parallel to XB gives: XB = XA cos 8 + C sin t) 

resolving  parallel to YB gives: UB = -XA sin 8 + cos 8 

D taking moments about B gives: MB = X,y - + MA 

Figure P4. l shows a lever pivoted at R. At a certain instant it is horizontal and 
has  forces shown exerted at the ends. The force  exerted on  the lever  by the 
pivot B is shown in terms of  its horizontal and vertical ~omponents. 
(i) Find the  moment of the force  system about B. 
(ii) Find the m o ~ e n t  of the force  system about C. 
(ii) Which way  will the bar rotate? 

10 N 10 N 

27.32 N 

Figure P42 shows three forces  actin. on a bar  ABC. Find the resultant. 

80 N 80 N 

c 



ABC is a frame in the shape of an isosceles trian e (Figure P4.3). A force  of 
4 kN acts normal to AB at its mid-point. A force  of 2 kN acts normal to BC 
at its midpoint. The 6 IsN force at B acts in the direction BA. Find the 
resultant of  these  forces  expressed  in terms of  its  vertical and horizontal 
components acting at  point D, together with a couple, 

6 kN 

Calculate the resultant of the four parallel  forces shown in Figure P4.4. 
1 0 N  2 0 N  50 N 10 N 

A 

Calculate the resultant of the parallel  forces which act at  the corners of the 
2 m square ARCD (Figure P4.5). 

2 kN 

Figure P4.6 shows a triangular plate ABC, Forces  of 150 N, 120 N and 
180 N act along the sides  AB, BC and CA respectively. 
6 )  Find the resultant, 
(ii) Find the resultant if the 180 N force is  reversed in direction. 
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120 

A rigid body Al3CD is loaded as shown in Figure P4.7. 
(9 Express the resultant of  these  forces as a horizontal and vertical 

(ii) Find a point P such that  the resultant can be  expressed as a 
horizontal and vertical component only, acting rhrough P. 

Figure P4.8 shows a 1 m square plate ABCD acted upon by a force  of 10 Id4 
along the diagonal BD and an anticlockwise couple of 20 kNm at corner A. 
(i) Find  the ~agni tude,  direction and  point of application of the 

(ii)  Solve the same problem but with the couple applied at 
resultant force. 

of A. 

m 



Find the resultant of the five  forces shown in  Figure P4.9. 

D 3 k N  

In the parallelogram  of  Figure P 4  10, sides AB and DC are 740 mm while 
sides AD and BC are 500 mm. The forces shown act along, but are not 
proportional to, the four sides  of the parallelogram. 
(i) Find a statically equivalent force  system which consists  of a force 

(ii) Find a statically equivalent system which consists of a single  force. 
through A and a couple. 

Figure P 4  l 1 shows a square plate acted upon by  forces  of 8 lN,  12 kN and 
15 kN and also a couple of 20 INm. These are shown by full  lines. &%at 
forces (shown dashed) acting along the sides  of the square will  be  statically 
equivalent to the original system,  given that FI = c3 ? 



A system  of three forces and a couple act on a square plate ADEC (Figure 
P4.12). Eval~ate the statica~~y e ~ u i v ~ e n t  system of forces PI, F2 an 
act along the sides of the equilateral triangle ABC, (These forces  are not 
proportional to the sides  of the triangle.) 

12 kN 

6 kN 

kN 

~~~~~ Pd. 12 

se couple of 50 kNm by three forces which act dong the 
sides  of an equilateral triangle  of side 2 m. 

A flat triangular plate ABC is standing so that AC is horizontal and 
AC. Side AB = 5 m, BC = 5 m  and CA = 6 m, Forces of 10 N, 
20 N act along the sides  AB, C  and CA respectively.  Replace this system  of 
forces: 

(ii) by a force through B together with a couple. 
( 8  by a single  force 

The bent bar ABC is subjected to the loading shown in Figure P4. l 
the resultant of the forces shown: 
(i) as a force through B, and a couple 
(ii) as a force th~ough B, and a force at C perpendic~lar to 
(iii) as a force at A, and a force at C perpendicular to BC. 



Four coplanar forces  act at  the points A, B, C and D as shown in 
Figure P4.16. The co-ordinates of  each point are shown in brackets. 
(i) . Find the resultant of the forces. 
(ii) Replace the resultant by the two forces indicated by the dashed lines 

in Figure P4.16. 

' l  
10 N 

B 
("4, 3 

c 
(-3, -3) 

A system  of coplanar forces  acts as shown in Figure P4. 17 along the lines 
AB and BC.  Replace the forces  by an equivalent force through D, and a 
couple at C. 

2 kNtm 
f 

I 1.5 m 
2.5 m D J 

" I  

A system  of coplanar forces, shown by solid lines,  acts as indicated in Figure 
P4.18. Find  the resultant of the system,  expressed as: 
(i) a force through point C, and a couple 
(ii) a force  of 60 N at E, and a force F appropriate~y directed and 

located. 
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6 Nlm 

m apart, one of them passin 

14 N 

"-1"- 
1.5 m 

P 





ce to be zero, the sum of the c o ~ ~ o ~ e ~ t s  of the forces in any two 
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the roller moves. 1 





ence, if we wish to write  an  equation  which  concains only one of the three ~ n ~ l l o w ~  
S, we e~amine the  other two- If these  are  parallel we resolve at r i  

If they  are not parallel we take oint of i~ters~ction, 

en to ensure that  the 
usually  form the basis of 





The bell-crank  lever ABCP in Figure P5.1 is pivoted at C. The forces shown 
are at right angles to the lever. If the lever  is in equili~rium find the 
magnitude of the force Fand the magnitude and direction of the reaction at 
the pivot, 

D 

The square plate ABCP in Figure P 5 2  is in equilibrium. Find the values  of 
F,, F2 and 6. 

2 kN 

4 kN 

What is the significance of the symbols shown at  the supports A  and E of the 
beam shown in Figure P5.3? Find the horizontal and vertical components of 
the reactions at  A  and E. 

5 kN 8 k N   1 0 k N  

Find  the vertical reaction at A, the horizontal reaction at A, and  the vertical 
reaction at D, for the beam loaded as shown in Figure P5.4 (p 



4 n s  !4ns 

re 

The pulley  shown in Figure P5.5 has 
tangential  forces  applied to  it as indicated. 
If the  pulley is in e~uilibrium~ determine: 
(i) the value  of P 0.1 kN .5 kN 
(ii) the vertical and horizontal 

components of the reaction at 
the d e .  

VVhat  is the signi~cance of the  support symbol  shown at A in Figure P5.6? 
How many  reaction components are  there at a support of this type? Find  the 
reactions for the loading  shown. 

n 

3 m  

l 
Figure P5.7 shows the same  beam as that of the previous  problem, but 
supported in a different manner. m a t  is the total number of  reaction 
components for the beam  of  Figure P5.'7? Determine these reactions, 

D 

T 
3 m  



ure P5.8 is a d i a g r a ~ ~ a t i c  sketch of a jib crane. The jib wei 

( 9  the value of the load L is 10 kN find the rea~tions at A 

(ii) At what value of L will the crane overturn? 

A horizontal beam of length m is supported on rollers at each end, the roller 
planes being at 60" and 30" respectively to the horizontal (Fi 
the centre it rests on  a s ~ o o t ~  peg.  For the loadin 
reactions. 

20 kN 30 kN 

0 

rizontal and vertical components of reaction at A and 

3 

Find the reactions to the truss shown in Figure P5. l l. The top inched chord 
is bisected by the inclined strut. 

kN 



The bar ABC shown in Figure P5.12 is in e~uilibrium. Evaluate the unknown 
forces F,, Fz and M. 

re 

A bar AB is loaded with a uniformly distributed load W, by two forces Nand 
S acting at B, and a couple M (Figure PS. 13). If the bar is in e~uilibrium find 
the values of N, S and M in terms of W and x. 

W kNlm -.. S 

The hollow drum of radius 200 mm in Figure P5.14 rests  between two rough 
surfaces inclined at 30" and 60" respectively to the horizontal. A vertical  force 
P is applied to the drum at a distance e from the centreline. If the coefficient 
of friction is 0.4 and  the weight  of the drum is neglected, what is the greatest 
value of e before the drum slips? 

P 

Figure P5.15 shows  seven  beams loaded in various ways. Find the reactions 
for each. Attempt to write down the answer either by inspection or with a 
~ i n i m u m  of calculation. 
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A B 

14 kN 

re 

36 kNm 

11 kN 
28 kNm 

Find the reactions RI, R, and R3 in the frame of Figure P.5.16. Each triangle 
is e ~ u i l a t e r ~ ,  with sides 3 m long. 

10 N 

12 

re 



Three beams are supported,  one  upon  another as shown in Figure P5.17. 
For the loading  shown find: 
(i) the reactions at each end of  beam AB 
(ii) the  reaction at C of  the beam CD. 

2 kNltn 

The ladder of weight W in Figure P5.18 is resting on a floor, where the 
coeflicient of friction is 0.3, and against  a  wall,  where the coefficient of 
friction is 0.2. What is the  minimum value  of the inclination 8 if slipping is 
not  to occur? 

Forces  of 8 N, 10 N and 3 N are  directed  along the edges of the triangular 
plate ABC  shown in Figure  PS. 19.  Find the  reaction RA, and  the reaction 4 
in magnitude and direction. 

N 
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The plank of timber in Figure P5.20 rests with one  end  on  the floor  where 
the coefficient  of friction is 0.3, while the other end rests on an inclined wall 
which slopes at 60" to the horizontal, where the coefficient of friction is 0.4. 
m a t  is the ~ i n i ~ u ~  angle of inclination 0 of the plank? 

\A 









In Part 1, the equations of equilibri~m were employed to express relationships between 
the external  forces acting upon a single body or structure, In this way,  if some of the 
external  forces  were known, other forces,  usually  reactions at supports, could be 

eral, much more infor~ation is required about a structure than 

Most structures and machines are built up of  several components connected together. 
Such components exert  forces upon one another at their junctions, and it is necessary to 
evaluate  these  forces. Such forces  are ~~~~~~Z to the structure as a whole, and no 
information can be obtained about them by considering the equilibrium of the complete 
structure. ~ c c o r ~ i n g  to Newton’s Third Law, the force  exerted  by component X upon 
connponent U is equal and opposite to that exerted  by Y upon X. So even  if  we attempt 
to include these  forces in  the e~uilibrium equations they will  cancel out. 

The only way  we can obtain infor~ation about such forces  is to consider the 
t of the structure. The part is so chosen that  the internal force in 

alto that part. The notion of the ~ e e ~ ~ ~ ~  is of inn 
ters we introduced the concept of the freebody a 

can  be e s t e ~ d ~ d  to apply to a 



R F  RA 

Fipre 6.1 

Consider the step-ladder shown in Figure 6. la.  The ladder rests on  a frictionless 
surface and  a man of  weight W is standing on it in  a known position. The reactions RA 
and RF are  vertical  since there is no friction. Figure 6. l a  is a freebody diagram of the 
complete ladder and from this diagram reactions RA and R, can  be  easily found. 
equilibrium of the complete structure yields no information about the tension in 
rope, or the forces acting on  the hinge at D. To study these  forces it is  necessary to draw 

uppose that RA and I-$ have  been found from Figure &la.  Then by considering the 
equilibrium of the freebody DF, we can find the unknown forces E, X; ,  and YD. The 
force E’ is the reaction to E and is thus equal in magnitu~e  to it, Then by considering 
the equilibrium of the rope alone we  see that B’= E: In this way  we  can find these  forces 
which are internal as  far  as the complete ladder is concerned. 

ody diagrams  of  each  of the components as in Figure 6.1 b. 

As another simple example we may c  e two planks AB and BC of  Figure 6,2a, 
with the cyiinder  of  weight V resting  between them. Consideration of the complete 
assembly  will  yield no information about the force transmitted by the hinge B. Actually, 
in this example we cannot even determine the reactions XA, YA, Xc and Yc since they are 

‘n number  and we  have only three e~uilibrium equations for the complete assembly. 
problems are  overcome if we dismantle the assembly and consider the equili~rium 

of individual components as shown in Figure 6.2b.  This figure  shows three freebody 



diagrams. Equilibrium of the cylinder  will  give us the forces D and E Equilibrium of AB 
C separately  will then give us the other six  forces  since  we  have three equations for 

In drawing freebody diagrams, we take into account certain properties of structures 
and their components. In many cases the properties in question are only approximations 
to those  of the real structure. The reaction forces that may  develop at idealised supports 
were  discussed in Section 5.2 and in freebody diagrams the supports are  replaced by these 
reactions.  For  example,  if a  component of a structure rests  against a frictionless  surface, 
the force  between the  component  and  the surface must be normal to the surface at the 

of contact. Such a support is idealised as a roller support such as that shown at  B 
ure  5.2a  (page 63). 

At a pin-joint, the force  exerted  by one component on another is assumed to pass 
through the pin. It is often convenient to express this force in terms of  its x and  y 
components. In effect, it is assumed that  the structural components are connected by a 
frictionless pin, although the connection in the real structure will  rarely  satisfj. this 
condition. 

m e n  we come to apply the laws of e~uilibrium  to the various  freebodies we must 
bear in mind all the work of the previous chapters. A few of the most useful points are 
mentioned. 

According to Newton's Third Law, action and reaction  are  equal in ma 
opposite in direction. Figure 6.3 shows part of two components which in  the structure 
are pinned together at D. If the forces  exerted on  component 1 by component 2 are (c), and (Fy)L,, then the forces (Fx)', and (FY)lD exerted on 2 by 1 are equal and 
opposite. 



x If any component is acted upon by only two forces,  these  forces must be equal and 
opposite and in the same  line. Suppose the bar AB (Figure 6.4a)  has  forces  exerted on it 
through the pins at A and B only. Then F' = FB and these  act along the line AB. If the 
forces  have  been  expressed in terms of components (Figure 6.5b), then  not only is: 

(<)A = (<)B and ( F y ) A  (Fy )B 

as we can see  by taking moments about B. 

p/ If a body is acted on by three forces only, these  forces must be concurrent. 

The laws of equilibrium may be applied to the complete structure and also to any 
subsection of the structure. It cannot be too strongly emphasized that before any 
equatio~s are written it is essenti to decide what p~t icular  force  system is under 
co~si~eration, 







A great  many  practical  problems  cannot  be  solved without considering the equili~rium 
of  components as  we11 as the  equilibrium  of  the  whole structure. A c o m ~ o n  case is that 
of  a  simple  plane  frame  (Figure 6.7a) consisting  of two rigid  members ABC and C 
joined  together by a  frictionless  hinge at C and supported at A and E by pin  supports. 



Reference to Figure 6.3a indicates that there are four reactions components altogether, 
namely HA and VA at A and H, and V, at E. Since there are only three equations of 
equilibrium for the frame as a whole, the external  reactions cannot be evaluated without 
considering freebodies  of the components, Figure 6.7b shows freebody diagrams for each 
of the Components  ABC and CDE separately. We now have a total of six unknown force 
components, but since there are three equilibrium equations for each component,  the 
problem is  easily solved. As an alternative we could have drawn a freebody  of the whole 
frame and a freebody  of one component. This particular type of problem will  be 
discussed in more detail in Chapter 8. 

Many structures are built up of  physically identifiable components. For instance the 
ladder of  Figure 6.1 comprises the part AD with the steps, the supporting leg DF and 
the rope BE. A roof  truss  comprises a number of  bars which are connected together at 
their ends. In this chapter so  far the impression may  have  been  given that a freebody 
should be separated from the complete structure at  the junction between  physical 
components. In fact the components themselves  may be subdivided. 

A single  beam  may  be arbitrarily divided into two parts and one part considered as a 
freebody in order that we may find the force transmitted at  the interface  between the two 
parts. This particular problem is considered in Chapter 7. 

For  each  of the structures shown in Figure PG. 1, draw freebody  diagrams  of 
the complete system and of  each  of the components including the pins which 
connect the various  bars. 



For each  of the structures shown in Figure P6.2, draw a freebody diagram for 
each  bar,  each pin, the rope and  the pulley. 

For the pin-jointed truss of  Figure P6.3, draw a freebody diagram for  each bar 



Figure P6.4 shows a plane frame supported on pin supports at A and E. The 
two  rigid components are joined by a frictionless hinge at C. Determine the 
reaction Components at A and E. 

Three cylindrical drums A, and C rest in a trough, as shown in Figure P6.5. 
The diameters of the  drums are 0.25 m, 0.375 m and 0.500 m respectively. 
The drums with contents weigh VI = 400 N, Wz = 900  N  and 
W3 == 1600 N. Determine the reactions R, to R6 benveen the drums and 
between the  drums  and  the trough. Also find the reactions R7, between the 
trough and  the ground, and R,, benveen the  strut  and  the ground. (Neglect 
friction and the weight of the trough.) 

A 

A semicircular trough of  weight 2 W, and radius 0.5 m is supported in  the 
shown in Figure P6.6. The members ABC and 
where they are connected by a pin. Two weight 

a cable which passes  over smooth pins at A and D. Find 
and E and the force  exerted on member AC by the pin at 
between the trough and the cradle. 



The primitive hoistin frame in Figure P6.7 is made up of 
which are connected by a pin at , and  a cable at F, The 
is located at G. The member AC is 5 m i 

. The pulleys G and E are  of ne~ l i~ ib l e  siz 
diagrams of the bars ABC and DBEF and write equations of equili~rium for 

ch  freebody. h e  there sufficient equations to enable the reactions at A and 
, the force in the cable and forces  across the pins at B, C and  E to be found? 

If not, express  these  forces in terms of the force Xin the cable. 





ointed out in  Chapter G that internal forces  may be studied by ‘cuttin 
a freebody diagram of one part. If the 
n question is then an external  force  acti 

freebody and it can  be determined by statics. 
his method is of importance when studying the forces and couples acti 
beam  by  reason  of  externally applied loads. That such internal actions 
e seen  by cons ide r i~~~  a beam  AB in Figure 7. l ,  supported at each  end and carryin 

a weight K In this condition, each part of the beam  is at rest. Now if the beam is cut 
through at a cross-section such as C, each part collapses  (i.e. neither AC nor CB is in 
~~uilibrium). Some  force must therefore have  been tra~~smitted previously  across the 
secrion C in order to maintain equilibrium. The details  of this force 

the laws of  statics either to the body AC or to the body 
section C is an  external  surface  of both of  these  bodies, 

The present treatment will  be confined to beams lying in one plane and subjected to 

Consider the straight beam ABCD in e~uilibrium under the action of the forces 
ure 7.2a. Suppose that it is required to determine the force transmitted 

across the section C which is 3 m from A. The bar is cut through at  C and the 
equilibriu~~ of either AC or C D  is examined. Figure 7.2b shows the freebody diagram of 
the portion AC which is acted upon by the given  forces at A and B and by  an unknown 
force Q. Since AC is in equilibriu~, the unknown force Qmust be the equilibrant of the 
other WO and is determined by the method of  Section 5.1. 

forces  lying in the same  plane. 



10 kN 

kN 

2 M"----- 

3 kN 2 kN 

10 kN (4 

Q 
3 ICN 2 kN 

re 7. 

This equilibrant Q is the force  exerted on body AC by body C 
opposite force Q' must be  exerted upon CD by AC, and this force m 
e~uilibrium of  freebody CD is considered (Figure 7.2~) .  

The fact that  the equilibrant force  does not actually pass through the cross-section C 
is of little importance since it may be replaced by a force at C together with a couple 
(Figure 7.3a). It is convenient in practice to resolve the force into its two components, 
one parallel to the axis of the bar and  one  perpendicu~ar to it (Figure 733). Thus in 
Figure 7.2b the equilibrant Q is  expressed  by the three quantities: magnitude, direction 
and position of a single  force,  whereas in Figure 7.3b it is replaced by a statically 
equivalent system comprising two forces S and N and  a couple M, all acting at the 
centroid of the cross-section C. It is more convenient to determine these components 
directly rather than to determine the equilibrant as a single  force. 

(4 
S 

3 kN 

This topic deals with beams  whose  cross-sectional dimensions are  small compared 
with their length. In many examples such beams  will  be represented by a single line 
which is the longitudinal axis of the bar. Where this axis is curved, the  component forces 
of the internal action at any section are taken parallel and perpendicular to the tangent 
to the curve at  that section. 

The component parallel to the axis  is called the ~ ~ ~ Z ~ ~ c e .  This is  usually abbre~iat~d 
to AA? and  the force is denoted by N The component perpendicular to the axis  is  called 
the s ~ e ~ ~ ~ ~ c e .  This is abbreviated to S,E: and is denoted by S (or sometim~s V ) .  The 
couple is called the ~ e n ~ ~ n g  ~ u ~ e n ~ .  This is abbreviated to ~ . M .  and is denoted by M. 



oss-section of a beam  there  may  exist an internal action. 

. In this i l l ~ ~ t ~ a t i o ~ ,  if 
we find  that M is anti 



small 
element 

of 
length 

Cl c2 

The small element in Figure 7.4 is subjected to a pair  of  forces NI and NZ which in 
this instance tend to increase  its length (i.e. the element is in tension). The axial  force IV 
is said to be  positive  if it puts the element in tension, and ne 
compression. 

The element is subjected to a pair  of  forces S, and Sz which tend to cause a shearing 
type of de~ormation* If the forces SI and S, are in the directions shown in Figure 7.4, 
then the shear  force S is said to be positve. 

bending moment M is said to be positive  if the element bends  concavely upward (or 
concavely towards a specified  positive direction if the bar is not horizontal). 

The element is subjected to a pair  of  couples M, and M’ which tend to ben 

These sign conventions are summarized in Figure 7.5. 

+ ve + ve + ve 

- ve - ve - ve 

AXIAL FORCE SHEAR FORCE 

The above definition of the sign conventions indicates the physical  significance  of 
these  signs. In many practical problems the signs  may  be determined bp i ~ a ~ i n i n g  the 
nature of the deformation. For instance, a simply supported beam  carrying downward 
loads  will bend so that it becomes  concave on the  top, Provided the x axis is taken from 
left to right and the y axis upward, such bending will  be denoted as positive. 

In more general problems, the physical determination of  signs is  less simple and 
analytical  rules  are more convenient. This is important also  for computer calculations, 
since the computer cannot imagine the deformed shape  of the beam se 
an x axis as running along the beam as in Figure 7.6. Then, if the beam is cut at a section 
C, the x axis  is directed outward on one cut face, the left-hand face in Figure 7.6, and 
we  may  call this the face o ~ ~ o s ~ ~ ~ ~ e  ~ n c ~ ~ e n c e .  If the forces N, S and M on this face 
with the direction of the x and y axes, then they are defined as positive. 
face, the x axis  is directed inward as on  the right-hand side  of  Figure 7.6. This face is 
called ~ ~ e ~ c e  o ~ n e ~ a t i v e   ~ ~ c i ~ e n c e  and on this face N, S and Mare positive  if they ~ ~ s a ~ e e  
with the x and y axes, 



y Face of +ve  incidence Face of -ve incidence 

ure '7.7 shows the beam  of  Figure '7.2a (page 90) cut at C. On  each  freebody, the 
al actions  are  shown  acting in their positive  sense  as  defined  above. On  the left- 

hand freebody,  which  has the positive cut face, Nand S are  shown in the directions of x 
and  y  and ~ant ic loc~wise .  These indicate the positive directions. In Figure 7.7% the  cut 

ative, so the  positive directions of N and S are opposed to x and  y  and 
ositive M is clockwise. 

(a) y ! 6 )  5 kN S 

kN 

3 kN 2 kN 

Either  freebody  may  now  be  used, and  the equilibrium  equations  will give N, S and 
Mwith the correct signs. 
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n the axis of the beam  is curved at  the section  where it is require 
axes x and y are taken at this particular section such that x is ta 

beam. This is ill~strate$ in Example 7.3. 

~istributed loading was discussed in Section 4.4. &"hen a beam supports a floor, the 
weight  of the floor, as well as the weight of the beam  itself, constitutes a distributed 
loading. If each unit length of  beam supports the same load, the load is ~~~0~~ 

~ ~ s ~ ~ ~ ~ ~ e ~  In order to determine the reactions, the e~uilibrium of the whole  beam is 
considered, and the distributed load is replaced  by its resultant. However, to determine 
internal actions at a section, the beam is cut  at  that section. The freebody to one side of 



the  cut may  well support only part of the distributed load and this part must be included 
in. the freebody diagram. After the  cut has  been made and the freebody drawn, the part 
ofrhe  ~istributed load acting on the freebody is then replaced by its resultant. 





The internal actions vary from point to point along a bearss. In simple cases it is possible 
to express this variation in algebraic terms, If the bending moment is computed for a 

at a distance of x metres from a chosen origin (usually the left-hand end), 
is obtained for M i n  terms of x. Similar functions may be derived for the 

axial  force and shear  force.  Usually such expressions  are  valid only over a limited part of 
the beam. This is the case  if the loading is discontinuous (i.e. if it consists  of concentrated 
loads, or of distributed loads  over some parts only). 

It is frequently convenient to illustrate the variation of bending ~ o m e n t  by plotting 
a graph of M against distance along the beam. Such a (often called a ~e~~~~~ 
~ o ~ e ~ t  ~~~~~~) may  be obtained either by plotting the aic hnctions mentioned 
above, or by simply calculating M at a number of isolated points don 
plotting these  values as ordinates. 







It can  be  seen in Example 7.8 that over the part of the beam which carries uniformly 
distributed load the shear  force  varies  linearly and the bending moment varies 
parabolically. Over the unloaded part of the beam, S is constant and Mvaries linearly, 
This is  discussed again in the next section. 

t beam loaded normal to its axis, simple relationships exist  between the load 
shear  force and  the bending moment. These relationships can be developed 

from the equilibrium equations of a small element of the beam. It is assumed that  the 
beam carries  distribute^ load, the i n t e n s i ~  of which varies from point to point. The ~0~~ 

denoted by W, is the load  per unit length of a beam at the particular section 
considered. The upward direction is taken as positive for all quantities. 



Figure 7.26 shows a beam element of length dx isolated by two cuts dx apart. At  this 
location, the load intensity is W kN/m. Hence the total external  load on the length dx is 
wdxkN. At the left-hand cut, the internal actions  are Mand S, as shown, and at the right- 
hand cut the internal actions have  changed  by  small ~ o u n t s  dMand &, respectively. 

wdx kN 

M +  
""_) 

+ dM 

(~"11) 

For  vertical equilibrium of the element: 
dS 

- S +  (S+ &) + wdx=O 

Taking moments about the centre of the element, we obtain: 

. -  
* *  - w-z 

dx  dx 
ST + ( S +  d S ) z  - M +  ( M +  dM) = 0 

and if the product of the two infinitesimal quantities dS and dx is neglected: 
dM 

S =  - 

Note  that  the change in shear from one point to another is numerically equal to the 
load between the WO points. The increment of bending moment balances the couple 
formed by the shears on each side of the element. The signs in  the WO equations depend 
on the sign convention adopted for W, S and M. 

It is often more useful to express the equations in the alternative forms: 

S=--JUJdX (~. l~)  

M =  "SSdx 

The point of m ~ i m u m  moment occurs when the slope  of the bending moment 
diagram is zero. Equation 7.12 indicates that this point coincides with the  point of  zero 
shear, i.e. when S =I 0. 



In this section we have considered the equilibrium of a small element and  then 
integrated. In the previous  section we considered the equilibrium of a freebody  of finite 
size. The two results in each case depend only upon statics. 





S: 

a concentrated load is applied normal (or transverse) to the axis  of 
beam, a step occurs in  the shear  force diagram equal in magnitude to the 
concentrated load. 
Between oints of load application, the shear  force is constant. 

1 of a beam subjected to a uniformly distributed load, the shear  force 
linear. 

In regions  of a beam subjected to a linearly  varyin load, the shear  force 
diagram is parabolic. 

m The points on  the shear  force diagram where the shear  force is zero 
correspond to the points where the bending moment is either a ~ ~ i m u m  or 
a minimum. 

transverse  load a~plication, the bending m o ~ e n t  diagram 
is linear. 

B In regions of a beam subjected to a uniformly distributed load, the bendin 

subjected to a linearly  varyin 

concentrated transverse  loads 
agram  changes direction (kinks). 

a couple is applied, a step occu 

1 2 k N  20 kN 



ABCD is a bar inclined at 30" to the horizontal (Figure P7.2)) pinned at A, 
and supported at  D on rollers which provide a reaction normal to the bar. It 
carries a horizontal force  of 20 kN at B and  a vertical  force of 10 kN at C, 
Find the B.M., S.F. and A.F. at  the mid-point of the bar. 

A 

For the beam shown in Figure P7.3 find the B.M. and S.F. at E. 

20 kN/m B 
A C 

Calculate M, S and N a t  the mid-points of AB and BC of the beam  of  Figure 
P7.4. 

100 kN 

Pipre PZ 4 

For the beam shown in Figure P7.4, find the bending moment  and shear 
force at the mid-point of segments AB, BC, CD,  DE and EF. 



For the beam of Figure P7.6, find N 12 kN 20 kN 
and M at P, Q and R, and S at Q. 
m y  is the S.F. indererminate at P A B 
and R? 

re P 7 6  

For the beam of Figure P7.7: 
(i) find N, S and M a t  P 
(ii) express S and M in each segment of the beam as a function of 

x, where x is the distance from A. 

260 kNm 

For the beam of Figure P7.8: 
(i> find MA, ME, M,, M, 
(ii) find the shear  force at A, B, just to the left  of C, just above C, 

just to the left  of E, and just to the right of E 
(iii) find the axial force in the portions AB, BC, and CD. 

so kN 

80 kN F 

I I I  4 m  I 

A semi-circular  rigid  beam is loaded as shown in  Fi ure P7.9. Find  the 
bending moment  and axial  force at A, B, C and D. Also find the shear  force 
at A and B. 20 kN 

20 kN 20 kN 

A G 



beam  shown in Figure P7.1 (pa 

For the beam  shown in Figure P73 (page 110): 
(i) express M and S in terms  of x, where x is the distance from A 

.M and S.F.  diagrams for this beam. 

.M. diagram  for  the  beam  of  Figure P7.6 (pa 

For  the  beam  of  Figure P .7 (page 11 1) derive ex~ressions for M and S for 
each  of  the  segments AB, 

A and on rollers at D (Figure P7. 14). Lugs  are  welded 
C, and horizontal  forces  are  applied as shown. 

4 m  8 m  6 m”---- 



1-3 m- 

E 

40 kN 

2 m+2 m-i 

The  stru~ture shown in Figure P7.17 is used as a  ant^ on  a wharf. It is 
r e ~ ~ i r e d  to raise a load of 60 kN at R. Due to wind, a hori~ontal force of 
10 IkN is exerted at 

10 kN 



A bent beam ABCDE (Figure P7.19) lies in  the vertical plane and forms part 
of a structure to support  a projecting portion of a building. It is pinned at E 
and has a vertical  roller support  at A. Calculate N ,  S and M at the mid-points 
of AB, CD and DE, and M a t  C and D. 

4 m  

4 m  li 
E 

SO kN 

kN 

30 kN 

A barge is loaded with both concentrated and distributed loads as shown in 
Figure P7.20. The cross-section of the barge  is uniform along its length. Draw 
the bending moment and shear  force  diagrams for this loading. 



A pipe of 300 mm outside diameter and weighing 750 Nlm is held by means 
of  yokes in a sling as shown in Figure P7.21. Plot bending moment and shear 
force  diagrams for the pipe in this position. 

A beam  ABC is continuous over two spans and is pinned to the three pin- 
ended members AD, BE, CF (Figure P7.22). Plot the bending moment 
diagram for the beam. 

10 kN 

Tfne rigid-jointed frame ABC in Figure P723 is fixed at A and C, and is 
loaded at B. h accurate analysis  shows the bending moments at A, B and C 
to be: MA = -0.01 PL, MB = +O.OIPL and MC = -O,OlPL, where  positive 
bending moment is defined to produce tension on  the lower side of the 
members. Determine the axial  force in  the members. 

Fipre P723 

The beam ABC is loaded as shown in Figure P7.24. Using the relations~ips: 
S = --I W dx and M = --SS h, derive  expression for S and M in. the part AB 
and BC. Find S and M a t  B. 

15 kN/m, 

* DiGcult problems, suitable for later study. 





If a beam, or rigid bar, lies in one plane and supports loads in the same  plane, it requires 
at least three components of reaction to maintain it in eqLlilibriu~. If it has just three 

riate reaction components, then these  can be calculated from the e~ui~ibrium 
equations for a planar system of forces. The problems considered in Chapter 7 were of 
this type. 

If the number of reaction components are too few the structure will be ~llstable, i.e. 
it will move under certain types of load. The beam in Fi ure 8. I has only WO reactions. 
It will resist the load in Figure 8. la, but not  that in Figure 8. Ib, and is therefore unstable. 

W W, 

Even if there are three reactions they must be s ~ i ~ ~ ~ 2 ~ .  They may not be concurrent, 
nor all  parallel  (i.e. concurrent at infinity). The structure of  Fi  ure 8.2a will rotate about 
A. under the load shown (the three reactions  are concurrent). The beam  of Fi 
has three reactions but if subjected to a horizontal load it will not be stable. 

W 

re 8. 
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If the  beam  has  more than three  reaction components, which is quite  common in 
practice, then  the three  equations  of  equilibrium  applied to  the complete  beam  are not 
sufficient to evaluate  these reactions, and additional  information is required. Sometimes 
this extra information is available in the  form  of a h o w n  bending moment  at some point 
other  than  a  support. For instance, the  beam  may  contain one  or more internal hinges. 
If a hinge is assumed to be frictionless, the bending moment must  be  zero at  that 
location. It is then possible to consider the freebody to  one side of  the hinge and  thus 
obtain  an extra equation. 

For  all reactions to be  determined  using  only the principles of statics, the  number of 
internal hinges  must  be the same as the extra number of  equations required. For  instance 
a beam with five reactions must  contain two hinges so that these two ~ ~ ~ ~ t i u ~ ~  of 
c u ~ ~ i t i o ~ ,  together with  the three  equations  of external equi~ibrium are equal to  the 
number of reactions. If there are more than two hinges (in this case) the beam  is not 
stable and will  collapse under certain loads. If there  are less than two hinges the reactions 
cannot be  determined  by statics alone and  the solution is not  the subject of this book. 
Such  beams  are not statically determinate. 

A beam  such as that shown in Figure 8.3 may  be  used in bridge  construction. It is often 
more  economical than two simply supported beams AB and BC. There are four 
reactions, and these cannot be  determined  unless either the freebody AD or DC is 
considered in addition  to overall  equilibrium, To avoid  extensive  arithmetic, it is 
important  to write the equilibrium  equations in a suitable sequence. 



A c o ~ ~ o n  problem is that of a portal frame (Figure 8.5) pinned at each end, and with 
an internal hinge. A three hinged arch is a similar problem. Each structure is essentially 
a bent beam, There is a horizontal and a vertical reaction component at each end, 

four reactions in all. 
F2 

Provided A and B are at  the same  level, an equation of moments about A for the whole 
structure will  yield the value  of V,. An equation of moments about B will  yield the value 
of V,. Next we consider the freebody AC (or BC) to obtain the value of HA (or H,). 

== 0 for the whole structure then gives HB (or H'). 



For  each  of the structures shown in Figures 8.3 and 8.5, there are four reaction 
components and  one internal hinge. We have  seen that these four reactions  can be 
evaluated  using the three equations of equilibrium and a fourth equation resulting from 
the knowledge that  the  moment at the hinge must be  zero. 

From the point of  view  of calculation, a three-hinged arch is the same as the portal of 
Figure 8.5. Arches  are  usually curved but may  be  polygonal  like that of Figure 8.62~. 



A three-pinned portal (or arch) may  have the bases (supports) at different levels, The 
analysis  of  such  problems  is  essentially  the  same as in the previous  examples. 



In Example 8.3, simultaneous equations can be avoided  by  resolving  reactions at A 
onents, as in Figure 8.7c, so that l$ and R* act 
are now easily found from external equilibrium. 

equation of moments to find 4 (or U,) now involves an oblique lever arm. For this 
reason, it may  be  easier to use the solution given  above. 

We have  seen that  a beam with four reaction components can be solved  if it contains an 
internal hinge. More generally it can  be  solved  if the I3.M. at any point is known. The 
hinge is a special case when the I3.M. is known to be  zero. 



re 8.9a shows a beam continuous over three spans and containin 
and F. The part EF is referred to as a s ~ ~ e ~ ~ e ~ ~ ~ ~  in b 

now have  five reactio~ components and two hinges. There are th 
e q u i l i ~ r i u ~  and two e~uations expressin the fact that M ==: O at 
are s o ~ e t i ~ e s  called e ~ ~ ~ t ~ o n s  of c o n ~ ~ t i o ~ ) .  These five equations are sufficient to 
~ e t e r ~ i n e  the reactions. 

ed by the laws of  statics  if it contains n - 3 intern 







There is a hinge at D. Find  the  four reaction c o ~ ~ o n e n t ~ .  

20 kN 30 kN 

The circular bar of 
Find  the reactions a 

10 1cN 



the r e ~ c t i o ~ s  of the s t r ~ c ~ ~ r e  shown in Fi 

A A 

he 
in 

G kN 

24 kN 
10 m 

l3 



The two-span  beam  of  Figure P8.6 has a hinge at D. Find the vertical 
reactions at A, B and C for the loading shown and draw the S.F. and B.M. 
diagrams. 

8 kN 

Find the reactions at A and E for each  of the frames shown ili  Figure P8.7 and 
draw the axial  force,  shear  force and bending moment diagrams. 

C 

9 kN 

t-2 4 m  

? 

(b) 12 kN 

G kN 

T 
'i' 

5 kN 

T 
4 m 

Find the reactions  of the three-hinged semi-circular arch of  Figure P8.8. 

15 kN 

E 



(i) Find  the  reactions  of  the  three-hinged  semi-circular  arch  of  Figure P8.9. 
(ii) Find the resultant force transmitted through the pin at D. 

t - 1 0  m - ~ 1 0  ~~ 

Fipre P8.9 

For the portal frame shown in Figure P8.10, find the reactions at A and G 
and draw the A.F.,  S.F. and B.M. diagrams. 

~3 m~ 10 kN 
C 2 kNlm D E 
B 

The portal frame of Figure P8.11 is pinned at A and E and has a roller 
support at D. For the loading shown find the five reactions,  given that 
MB = - 25 kNm and MD =I: -20 kNm (i.e. there is tension on  the outside 
of the frame at B and D). 

45 kN 
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1 

c-.3 

6 kN 

F 

3 m  U 4 m -  



The structure of Fi P8.14 has built-in supports at A an 

rea~tions for each  load  separately. 

8 kN 

cult problems, suitable for later study. 





Many instances  could  be cited of structures in which one of  the  main  elements is a 
~ e ~ ~ ~ l e  cable. The essential characteristics of  such an element is its inability to resist  any 
actions other  than tensile  forces. In  other words a flexible  cable cannot resisr bending 
~ o ~ e n t ,  shear  force or  a compressive  axial  force. This does not mean,  however,  chat a 
cable cannot carry external loads  which  have a  component normal to  the direction  of the 
cable. A cable  can in fact support such lateral loads  if it is firmly  attached to supports. It 
does so by  taking up a shape to suit the loading,  the  shape  being  such that the  bending 
moment  at every point along the cable is zero. 

W 

~~~~~e 3. I 

ing ~ o m e n t s  of  all the external forces about B, we find that: 



m o ~ e n t  is e ~ e ~ h e r e  zero, the bendin 
he freebody AC, we  have: 

YfA 
MC = ~ -HAY= 0 2 

From e~uilibrium of the complete cable, we find that: 
W 

V = ~ and . H B  = HA B 2  

The tension T in the cable  is the same in  both portion AC and CB and can be 
tained by considering equilibrium at one of the supports. For e~uilibrium of the three 

concurre~t forces at A: 
I 

where LC is the length of the cable from A to C. 

The shape of a weightless  cable under any system  of  loads  is the same as the shape of 
the bending moment diagram that would be obtained if the same  loads  were applied to 
a simply supported beam  having a span equal to the distance between the cable supports 
L, The particular scale adopted must be such that  the distance around  the bending 
moment graph is equal to the given length of the cable. 
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Figure 3.2a shows a cable  fixed to supports A and B and supporting point loads W*, 
W2 and W, at C, D and E. Considering the equilibrium of the complete structures, we 
can find reaction by taking moments about B, and V, by taking moments about A. 
Provided A and B are at the same  level (in which case H, and HB do  not enter into  the 
equations) V, and V, will  have the same  value as the reactions  of a corresponding straight 
beam which carries the same  loads (Figure 9.2b). 

Consider now the fact that  at any point along the cable the bending moment must be 
zero. At a typical point  F (Figure 9 . 2 ~ )  the bending moment is: 

MF = (VAX) - W, (x - a,) - HAY 
The first WO terms may  be thought of as the bending moment  in a simply supported 

beam (Figure 3.2b). This is  called theFee-span B.M. and is denoted by MC,. Thus: 

This shows that the shape  of the cable is the same as the free-span bending moment 
diagram M, drawn to a particular scale (determined by the magnitude of the horizontal 
reaction H, = HB = H). The actual sags at  the points C, D and E are  related 
geometrically to the length of the cable. 

In the present treatment, it will  be  assumed that  the cables  are  inextensible, so that  the 
length of the cable  is known beforehand. In practice,  cables stretch or elongate under 
load, and since the tension differs from one part of the cable to another, the elongation 
is not uniform, In many practical  cable structures it is  necessary to take this extension 
into account. In such cases, although the shape still corresponds to that of the bending 
moment diagram, the problem is complicated by the fact that  the final length of the 
cable  is initially unknown. 

In the cable of Figure 3.2, the weight  of the cable  was ignored. In consequence the 
cable was straight between  load points, just as the bending moment diagram would be 
for a weightless  beam support in^ point loads.  If the cable  weight i s  taken into account, 
it would be found that the cable  profile is curved. 





case of a cable which supports speci~ed loads, but is sup 
level, the reactions may  be found by resolving  each 

the line joining the  sup 
by taking moments about 

srmply supported beam  of spa 
e loads in the same horizont 
in the  cablesat any point is: 

. Since M == 0, E~uation 9.5 reduces  to: 

110 kN 

The shape of the cable  is thus the same as  chat  of the free-span B.M. diagram, with 
ordinates plotted vertically  (i.e. right angles to A D ) .  The total vertical  reactions  are 
(RA + Htan 4) and (R, - H . The cable tension is greater at A (the higher end) 
than would be the case  if A. an re  level, and less at D. As for a cable with supports 
at  the same  level, the m ~ i m u m  tension in the cable  occurs where it is steepest. 



The above method of  analysis  also  applies to  a cable  which  supports a uniformly 
distributed  load  (i.e.  uniform  per  length  of  horizontal projection), or  a very  large number 
of point loads of equal  magnitude and equally  spaced. 

Fipre 3.5 

The free-span  bending moment diagram for a uniformly distributed load is a parabola 
of maximum ordinate wL2/8 where L is the horizontal  span  (Figure 9.5a). It follows that 
a cable  loaded in this way  takes up  a parabolic  shape, the sag at the centre depending 
upon the  cable length. 

From Equation 9.3, the horizontal  reaction is: 

If the origin of  co-ordinates is taken at C (Figure 9.5b), the equation  of the parabola 
is: 

y = ~~~~2 

and its  slope at x is given  by: 

For equ i~ ib r iu~  of the  portion CD (Figure g..%), Tcos B = Nand hence: 



The m ~ i m u m  cable tension occurs at  the supports where x = ?L/2 and therefore: 

wL2 
T =- 

m a ~  8d 

The length of the cable  can be determined by considering the elemental length of 
cable shown in Figure 9 .5~:  

where from Equation 9.9: a = - L2 
For the cable shown in Figure  9.Sa, the total length Zm is obtained by integrating 

Equation 9.12: 

A simpler expression could be obtained by making use of the binominal expansion  of 
V1 + 2%’ and then integrating the series term by term. In this way the length of the 
cable is expressed as: 

This method will  be  valid (the series  will  be convergent) provided L/d 3 4. Most 
practical cases are within this range  of  validity. For most purposes it will  be  sufficiently 
accurate to take only two or three terms of the expansion. For instance, for L Id = 4, three 
terms of the expansion give I,, = I. 14 1 6L, whereas the closed form solution gives I,, = 1.1477L. When L Id = 8 three terms of the series  give I,, = 1.04016.L compared 
with the closed form solution I,, = 1.040221;. 

In cases where the maximum sag dis specified, the cable length can be obtained from 
Equations 9.13 or 9.14. If the cable length is specified  these equations can  be  used to 
obtain the m ~ i ~ u m  sag, but a trial and error approach would be most appropriate for 
solving the equations. 

For  convenience, the values  of &,/L obtained using Equation 9.13 for parabolic cables 
similar to the cable shown in Figure 9.5a are  given in Table 9.1 for the practical  range of 
sag to span (d /L). 



0 . 0 ~ 0  1.006 
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rts are at ~ i f ~ e r e n t  levels, the m ~ i ~ u ~  sag of a 
occur at the centre of the span. 
ve the level of A. The loadin 

1 



found by setting dy/& = O and solving for x. Performing this operation  yields the co- 
ordinates  of the lowest point, (xo, yo): 

L Hh 
xo=--- 2 WL 

h Hh2 wL2 
Y o = 2 - ~ - ~  

WL2 
If H the cable  will not sag  below A. 

The cable  tension at  any  point can  be obtained from = H sec ti! The m ~ i m u m  
tension  will  occur at  the higher support,  and is: 

In a problem in which W, L, h and yo are specified, H may  be found  from  Equation 
9.17, and  then x. from Equation  9.18, 

The length  of the cable AB can  now  be found as the sum of  the  lengths AC and CB. 
The length AC will  be  half the length  of the symmetrical  parabola  of  base  2xo and 
sag yo, while the length CB will  be  half  the  length  of the parabola  of the base 2(L - XJ 

and  the sag (h  + yo). 



A uniform  cable  carrying its own  weight  hangs in the shape  of a curve  called a catenary 
which is a hyperbolic  cosine  curve. This problem is not of  great  engineering interest, 
since cables  are  rarely  used  simply to carry their own  weight.  Moreover,  unless the ratio 
of  sag to span is quite large, the catenary  does not differ greatly  from a parabola,  since 
for fairly flat curves the weight  per  metre  along the cable is much  the same as the weight 
per  horizontal  metre. 

(a) Y t 
T 

X 

.c ws 

H ( =  WC) 



ris 



0.00 1.0000 0.0000 

0.05 1.000s 0.0125 
0.10 1.0017 0.0250 
0.15 1.0038 0.0376 
0.20 1.0067 0.0502 
0.25 1.0104 0,062 
0.30  1.0151  0.0756 

0.55  1.0512  0.1410 

0.75  1.0964  0.1965 

0.90  1.1406  0.2406 

1.10 1.2142 0.303~ 
1.15 1.2355 0.320 
1.20 1.2579 0.337 

1.30 1.3064 0.3734 
1.35 1.3327 O"3920 
1.40 1.3602 0.4110 
1.45 1.3892 0.430~ 
1.50 1.4195 0*4~08 

1 1 

1.90  1.7201 ~ . 6 3 ~  



Unless the cable  sag is large compared with the span, the shape of the catenary diEers 
little from that of a parabola.  For  practical  purposes,  Example 9.3 could have  been  solved 
on  the basis of a parabolic shape. 
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the cable is weightless. 
A 

E l  
1.5 m 
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The supports A and of the cable shown 
m tension in the cable is 

7 kN 

in Figure P9.3 is shortened un 
eterrnine the tension in C 

8 kN 

A uniform cable AB is 130 m long and wei /m. It is suspended from 
m o  points 120 m apart and at rhe  same l surne that  the cable  hangs in 
the shape of a parabola,  i.e. tbar it carrie r ~ o ~ ~ ~ o ~ t ~ ~  metre. 
(i) Find the sag at  the centre. 
(ii Find the tension at  the centre and at the end. 
(iii) Find the sag at  a  point 40 m from A. 

Solve Problem 9.4 if the weight is correctly taken as N/m along the cable, 
i.e.  if the cable shape is a catenary. 

The cable of Problem 9.4 is to be  used to support  a load suspended above a 
ravine.  If the load of 60 kN is suspended at C, 40 m (horizont~~y) from A. 
Find: 
(i) the sag at C (neglect the cable weight) 
(ii) the increase in sag at C (compared with  the freely hanging cable in 

(iii) the maximum cable tension. 
Problem 9.5) 



G has a total length of 440 m and 
nts A and C and passes  over a fric 

supports are at the same level. The distance 
Find  the m ~ i ~ u m  sag in each  section o 
tension, 

* ~ i ~ c u l t  problems, suitable for later study. 









A structure which consists  of a number of  rigid  bars  fastened together at their ends (see 
Figure 10. 1) is called a ~ ~ ~ e  or tmss. The  individu~ bars  are  called ~ e ~ ~ e ~ s  of the frame. 
For the purpose of calculatin the forces in such a structure, the joints are  considered to 
be either rigid or pinned, 

At a ~~i~ joint  no relative rotation is possible  between the ends of the jointed 
members. Such a state exists in most reinforced concrete framed structures, and also in 
steel structures if the ends  of the steel  bars  are  welded together. 

At a ~ i ~ ~ e ~  joint, the end of each member is free to rotate (in the plane of the frame) 
independently of its neighbours. It is imagined that the members are joined by friction- 
less pins around which they are  free to rotate. Such a structure is  usually  called a t ~ ~ s s .  

I 

In reality,  very  few  Structures  are built with pinned c o n n ~ c t ~ o ~ s  as shown in Figure 
10. la. The connections in practical  steel  trusses  are made by either bolting or welding, 
as shown in Figures 10.1 b and 10.1 c.  As shown in these  figures, some members may  even 



be continuous through  the  joint while other members are  so connected that little if any 
relative rotation can occur between the members meeting at a joint. However,  if the 
members are arranged in a pattern of  triangles, It is found  that  the axial  force  is the 
predominant internal action and there is little tendency for the ends of the members to 
rotate relative to each other. Furthermore, in the majority of  trusses the members are 
comparatively slender and  the  joint fixity  has only a minor effect upon  the internal force 
system.  For  these  reasons a truss is  usually analysed as if the joints are pinned. This 
assumption simplifies the analysis  considerably, and results in a reasonably accurate 
assessment of the forces in each  bar. 

The bar forces determined on the assumption that  the joints are pinned are sometimes 
referred to as the ~ r ~ m u ~  forces,  while the sec on^^ forces  are those arising from the  joint 
fixity. The design engineer must decide if it is  necessary to evaluate the secondary forces 
in any particular design situation. 

Only pin-jointed trusses  will  be considered in this book. The treatment is further limited 
to trusses lying in  one plane and acted upon by  loads in the same plane. The principles 
of solution may be extended to three dimensional trusses provided the statics  of three- 
dimensional force  systems is employed (see Part 5). 

In order to resist a general  type  of loading, the truss must have supports capable of 
supplying reactions which will equilibrate such loading. If the reaction components are 
just sufficient for this purpose they can be determined by the laws of  statics applied to 
the truss as a whole. 

We consider here only statically determinate trusses  (i.e.  trusses such that  the bar 
forces and reactions  can be determined by the laws of  statics alone). For a plane truss we 
may write two equations of equilibrium for each joint, so  if the number of joints is j, the 
number of equilibrium equations is 2j. The quantities to be determined are the axial 
forces in  the bars and  the reaction components. If there are m members and r reaction 
components, the total number of unknowns is m + r. For the truss to be  statically 
determinate it is  necessary that: 

m t- r =  2 j  

Several other conditions are  also  necessary. The number of reaction co~ponents  must 
be at least three, and these must be arranged to ensure overall stability for all  types  of 
loading. 

Also, the bars  of the truss must be suitably arranged. The bars in a stable truss  are 
usually arranged so that  the bars form a series  of triangular units, with bars connected 
together at each joint. An arrangement of pin-ended bars that forms a rectangular or 
quadrilateral unit is unstable, unless  externally restrained, and will  collapse under load, 
as illustrated in Figure 10,2a. The insertion of the diagonal bar AC in Figure 10.2b, to 
form two triangular units, produces a stable truss capable  of  carrying  load. Thus the truss 
of Figure 10.3a is stable while that of  Figure 10.3b is not, although Equation 10.1 is 
satisfied in  both cases. Sometimes the fact that  the truss is not stable cannot be  seen  by 
inspection. For instance, the truss  of  Figure 10.4,  in which the bars  are not connected 



where they cross,  satisfies Equation 10. l. However it is not stable. Investigation of such 
cases of stability will not be dealt with here. 

R2 

C D 

In many practical  trusses, it is possible to write the equilibrium equations joint by joint 
and solve for the bar  forces  as  we go along. Such trusses  may  be  solved  by hand 
calculation, Only this type of  truss  will  be dealt with here. 

Finally we note that when the truss is loaded each  bar  will undergo a slight change in 
length and this will cause a small change in geometry. Such changes  are  usually  negligible 
and  the bar forces  are  calculated on  the basis of the geometry of the ~nloaded truss, 

The forces in the various members may be found by applying the laws of  statics, thus 
making it possible to select suitable sizes for the members.  Since the truss is assumed to 
be permanently at rest, the equations of equilibrium may  be applied to the whole truss 
or to any part of it. 

the equilibrium of the truss as a whole, the external  reactions  are found 
in the same way as they were for rigid  beams. The laws of equili~rium are then applied 
both to the pins and to the bars of which the truss is composed. 

Suppose the structure in Figure 10.5 rests on supports at A and E and carries a load 
Wat the mid-point C. Imagine that  the bar BD is removed, The frame will  collapse and 
the joints B and D will  move  towards one another. The function of bar BP)  is to keep 



these joints apart. The bar is in c o ~ ~ ~ e s s i o n .  If the bar CE is removed,  collapse would 
involve C and E moving apart. The function of this bar is to hold joints C and E 
together, and  the bar  is in tension. 

B D 

W 

In Chapters l1 and 12, we shall consider trusses in which all members are straight and 
external  loads  are applied only at  the joints. In such trusses, the individual members are 
subjected only to ~ i ~ Z ~ ~ c e .  In cases where the members  of the truss  are curved, or when 
loads  are applied to the bars  themselves, the truss members may  be subjected to bending 
moment  and shear  force, in addition to axial  force. These cases are dealt with in 
Chapter 13. 

if the forces in all bars  are required, then it is  necessary to consider the equilibrium of 
every  bar and every joint individually. This procedure is known as the ~ e ~ ~ o ~  ~ ~ ~ o i n t s  
and is described in  Chapter 11, Sometimes it is required to find the forces in only a few 
bars. Frequently it is possible to  do this without  the need to solve the whole truss. The 
procedure for analyzing the forces in individual bars is known as the ~ e t ~ o ~  o ~ s e c t i o ~ s  
and is described in Chapter 12. 
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In most trusses, an analysis starts with the determination of the external reactions by a 
consideration of the e ~ u i l i b r i u ~  of the complete truss. The  ~rocedures for ~ n d i n g  the 
reactions  were  discussed in Chapter 5. 

It should be noted that  in some trusses it is possible to determine the bar  forces 
without first calculati~g the reactions. 

* In the method of analysis known as the method of joints, each  bar and each joint of the 
truss is considered in turn as a ure l l. l a  shows a small tr  
B, C and D. The external load gether with reactions RI, 
system of forces in e~uilibrium. 

/ 

Figure I I. Ib  shows freebody diagrams  of the four bars and  the four joints which 
comprise the truss. Each  bar is in e ~ u i l i b r i u ~  under the action of the forces  exerted upon 



it by the joints at each end. Each  pin is in equilibrium under  the action  of the forces 
exerted upon  it by the adjacent  bars and  the external loads  (applied  forces or reactions). 

In the cases considered here, where the external 
loads  are  all  applied at  the joints, each  bar is in 
equilibrium under  the action of  the two  forces 
exerted on  it by the joints at its ends.  These two 
forces  must  therefore  be  equal and opposite and 
must act along the line joining the joints, as shown 
in Figure 11.2. 

BA 

Each  pin in a truss is in equilibrium under the  action  of the forces  applied to  it by the 
surrounding bars  together with  the external loads, if  any,  acting at that  joint. For the 
present case  (trusses in which  all external loads  act at joints),  the forces  exerted  by the 
bars upon a  given pin act in the direction  of the lines  joining the given pin  with its 
neighbours, so that  the directions of all forces  are  known. The forces at a  given pin  form 
a  concurrent  system,  implying two equilibrium conditions, 

In the  method of joints, each joint  in  turn is considered as a  freebody, The two 
equations of equilibrium are used to express the relationships between  the  known and 
unknown forces at the  joint. The unknown forces at a joint can  be  determined  provided 
that there are not more than two such  forces. 

This is exactly the problem  discussed in Section 3.2 (see  Example 3.3 page 21). Note 
that a  bar in tension  exerts an outward  force on  the  joint, while  a  bar in compression 
exerts an inward force. In the freebody  diagram  of any particular joint, known  forces are 
shown with  the appropriate direction. ~ n k n o w n  forces  are  assumed to be  tensile and 
shown as outward  arrows,  Solution  of the equilibrium  equations  will then result in a 
positive  sign  (confirming  tension)  or a negative  sign  (indicating  compression). 









It is helpful to imagine how this truss would collapse  if a particular member was 
S to the concept of the function of the member ( 

as either keeping two joints apart (compression) os holding them 

of these  forces. It is often quicker to use these components as the 
unknown quantities and to calculate the actual bar  forces later, 

The x and y Components  of a bar  force  are proportional to the x 
and y projections of the bar length, and these dimensions are 
usually the ones  given on the drawin f the truss. In Figure 1 1 .7, 
the bar GM has  projections of 2 and 5 m. Suppose the S 

component of the force  exerted by GM on joint G has  been 
determined as 16 k N ?  acting away from the ‘oint. It follows that the 
y component is I6  X 512 = 4.0 kN also act away from the joint. c; 
At the other end M the force  Components 





For  trusses with parallel chords, this method allows the truss to be  solved without  the 
need to write the equations down. For a truss with an inclined chord, such as a roof truss, 

F’ == O at a joint will produce two simultaneo~s equations. 
Even so, it may still be quicker to write these in terms of components rather than the 
actual bar  forces. 

For the truss of Figure 
reactions and determine 
members of the truss, 

P1l.l,  find the 
the forces in the 

40 kN 80 kN 40 kN 

V1 



or the truss  shown in Figure P1 l. 
irection of the reactions. 

24 kN 

7 24 
4 m  

the forces in all 
members  of the 40 IcN 

truss in Figure P l l. 

40 IrN 

Find the reactions and  the bar 
forces of the truss shown  in 
Figure PI l .4. 

80 kN 80 kN 80 kN 80 kN 



For the truss shown in Figure P1 1.5, 
find the forces in all the bars. 2 m  

"t 
2 m  

Fipre Pl l. 5 

Find  the forces in the members of the truss in Figure P1 1 .G by resolution at joints, 
working in terms of components. 

B D F H 

6 kN 12 kN 

Working in terms of the x and  y components of  bar  forces,  solve the truss of  Fi 
P1 1.7. 

8 kN 

4 kN 

Solve the truss  of  Figure P1 1 .8 
analytically, working in terms 
of the components of the bar 
forces. 

6 kN 

Fipre Pl l. 8 /------4.5 m , ~ 3  m ~ - 3  m 



Find the forces in  the bars  of the truss of Fi 

l kN 

Find the bar  forces in the truss of Figure P1 1.10 

50 kN 

A 

Find  the forces in  the bars of the truss of  Figure P 1 1.1 1 

B 90kN 





thods of the last chapter, the equilibrium of  each joint is considered 
. If the force in particular members is required it may be often more 
o use the method of sections. This procedure is rather similar to that used 
e internal actions at a articular cross-section  of a beam. 

Suppose that in the truss  of  Figure 12.1 the force in GE is required. The truss is cut 
by a plane which passes through CE and the equilibrium of one part of the truss is 
considered, The freebody to the left  of the  cut for instance, is acted upon by the known 
forces V and Wl and  the unknown forces in  the cut bars, which may  be denoted by X 

It has  been shown that when the external  loads act at  the joints, the force in 
her  acts along the strai t line joining the ends of the member, hence the lines 

of action of X Yand are  lcnown, and the forces  can  be found from the equations of 
equilibrium. 

The method is subject to certain limitations, If the  number of cut members exceeds 
three, some of the unknowns cannot be found. Even in this case, one unknown can be 
found if  all of' the others happen to be concurrent. If three members only are cut their 
forces  can  be found provided the members are not concurrent, for in this case only two 
equations are  available. 



When practicable,  each  force should be calculated independently of the other 
unknowns. If Y and Z intersect, the force X' is found by taking m o ~ e n t s  about the 
intersection point of Yand Z so that these unknowns are not involved in the resulting 
equation. If Yand Zare parallel, Xis found by  res ing at right angles to Yand 
same considerations are  used when finding Yand 



Trusses and beams  have much in common both as regards their function and their 
analysis, A beam is used to span a gap  between supports and to carry  loads. A truss  may 
be employed for the same purpose, being usually  chosen when the span becomes too 
large for a beam to be  economical. Certain points of similarity can be seen with reference 
to trusses with parallel chords. 

In a truss of the type shown in Figure 12.4 the horizontal members are known as 
c ~ u ~ ~ s ,  and  the remainder are  called web ~ e ~ b e ~ s .  In the following  example, the truss is 
compared with a solid beam spanning between the points A and N, which will  be 
referred to as the analogous beam AN. 





3 0 k N  6 kN 4 kN 

For the truss of Figure P1 
the method of sections. 

100 kN 300 kN 200 kN 



The crane shown in Figure P124 carries a load  of 50 
lane as the tower  truss. Find the ~ ~ i m u m  for 

(i) the verticals  of the tower 
(ii) the diagonals of the tower due to this crane load. 

2 m  

In the truss of  Figure P12.5 find the forces in BD, BE and CE by the method of  sections. 

95 kN 

the truss shown in Fi 167), find the forces in   embers C 
the  method of  sections. 

n the truss shown in Figure P1 1 .G (pa ), find the forces in. bars CE, 
by the method of  sections. 



In  the truss shown in Figure P1 1.8 (page 168), find the forces in bars CD an 
method of sections, 

The roof structure shown in Figu P12.9 rests on. hinged supports at A and G, and the 
es are connected by a hi at F. The member CE = 15 m, while 

(i) Find the reactions at A and G. 
(ii) Calculate the forces in  the members of the  lek-hand truss. 

3 kN 

The roof truss shown in Fi  re P12.10 is supported on rollers at 
The vertical  loads P, are  eq . By employing both  the me 
method of sections, where find the forces in  the mem 
the truss, ~ s u m e  AJ = JD and DK = KC. 

P 

P 





If  external  loads  are not applied directly to the joints but to a member of the truss, then 
that member performs a ual function. Firstly, it acts as a beam spannin 
joints at each end of the member, and serves to transfer the loads to these adjacent joints. 
In this capacity it will  be subjected to bending moments, shear  forces and in some cases 
axial  forces.  Secondly, it acts  as a member of the truss. In this capacity it sustains an axial 
force which is deter~ined by the methods of Chapters 1 1 and 12. 

note that if the loads on  a particular bar in a truss are  replaced by 
ent system, then all bar forces outside the region  of chan 

Qz 
B 
I 
I 

For  example, consider the bar C D  of Figure 13.1 loaded by a sin 
is in equilibrium under the action of the load P and the bar forc 
exerted by adjacent bars. if the force P is replaced by  forces 
is P, then the forces F,, F, etc. remain unchanged. If Ql and Qz act at the joints C and 
D, the truss is now loaded at  the joints only and may be analysed by the methods of the 
previous chapters, 

If  an  analysis  of  bar CD alone is required, it is often possible  by  using the  method of 
sections. This will not give the values  of the individual forces Fl, F, etc. but it will  give 
their resultant, which is  all that is required in this case. The procedure will  be illustrated 
by two examples. 









Very  rarely it may  be  necessary to analyse a truss having a member which is either curved 
or kinked, such as  AB in Figure 13.6. Since the member is in e~uilibrium under the 
action of the TWO end forces,  these  forces must act in the direction of the straight line AB. 
If the actual member does not lie along this line then these end forces  will  cause bending 
moments and shear  forces within the member, in addition to axial force. These internal 
actions can be calculated by the methods of Chapter 7. The out-of-strai~htness of 
member AB does not affect the analysis  of the truss as a whole. 

Find the axial  force in each member of the truss shown in Figure P13.1 In the case of 
the loaded members find also the bending moment  at  the  point of application of the 
load. 

B C 



In Figure P13.2, the 16 kN load acts  vertically at the mid-point of AB. Find the A.F., 
S.F. and B.M. at P, which is l m from A. 

Fipre P13.2 

Figure P13.3 shows a roof truss for a small  factory. To accommodate the roof sheeting, 
purlins are  placed not only at  the panel points A, B, C, D and E but also mid-way 
between them. If  the  top chord members AB, BC, C D  and DE are to be  all the same 
size, what are the values  of the bending moment, shear  force and axial force for which 
these  members must be  designed. 

16 kN 

16 kN 16 kN 

8 

A 

Fipre P13.3 

The truss of Figure P13.4 is pin-jointed and  the  top member is curved. Find N: S and 
M a t  the  point X. 

IX 
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The branch of  mechanics  deal with the behaviour of fluids at rest or in motion is 
known as ~~~~ ~ e c ~ ~ ~ ~ c s .  That t of fluid mechanics which is concerned with fluids at 
rest (or in equili~rium) is called ~~i~ statics, Fluid statics  involves the study of  pressure 
and its variation throu t a fluid. It also  involves the calculation of  forces  exerted  by 
a fluid on  the surfaces uctures with which it is in contact, In the case of a flui 
rest, the property that affects the pressure variation is the specific  weight or we 
density y which is the we 

The previous parts of with ~o-dimensional statics. 
forces and the structures have  been  essentially coplanar. It is not possible to 
fluids as ~ o - d i ~ e n s i o n a l ,  but  the force  systems  considered in this chapter are such that 
there should be no difficulty in applying the principles of  previous  chapters. Three- 
 dimension^ systems  of a more general nature will  be dealt with in Part 5. 

In problems associated with civil and environmental en 
commonly encountered is water. The specific  weight  of  fresh 
re~ainder  of this chapter will  be written in terms of  water, but  the same principles apply 
to any other fluid (using an appropriate value  of y ). 

may be defined as a substance that deforms continuously when sL~bjected to a 
rce. In a fluid at rest, therefore, no shear  forces  exist. This implies that  no forces 

ntial to a submerged surface. The only forces actin 
es normal to these  surfaces. 

This definition leads to the direct solution of many problems. In  the first  place, it 
allows  us to determine the water  pressure at any depth. Consider a prism of  water with 
vertical  sides and with horizontal cross-section  of  area A, which is part of a lar 
of  water  (Figure 14. l). The prism extends from the free  surface  of the water  (i.e. the 
surface  where the water  pressure is zero) down to a  depth y. The volume of  water 
enclosed within this ima~inary boundary is Ay and therefore its  weight is: 



free surface 

Since the whole body of  water is at rest, the forces on the vertical  sides  of the prism 
are  everywhere horizontal. Hence the weight Wmust be e~uilibrated by the upward 
pressure on  the base. If the pressure at  depth y is p ,  the resultant force on  the base is: 

F = p.A 
Hence: PA = YAY 
and P = Y Y  

Pascal formulated a law which states that at any point within a fluid at rest the pressure 
is the same in all directions. This law, together with Equation 14.3 and  the definition of 
a fluid, tells  us that the pressure on any subme d body at  depth y below the free  surface 
is y y and acts normal to the surface  of the b 

In the remainder of this chapter, fre~uent referenc  ill  be made to the  append^ of 
this book, and it is essential that this Appendix be  re conj~lnction with the present 
chapter. 

onsider first the pressure on a horizontal surface  of  area A, Ev 
at  the same depth below the free  water  surface and  the pressure 
force on  the surface is I; = y y A, This resultant force  acts at t 
(see Appendix, Section A. l). 

As an. example  of  water  pressure on a vertical  plane, we consi 
water on the vertical face of a darn (Fi 



I 
Y 
I 

The resultant force on a 1 m  length  of the  dam may  be  calculated as the volume  of the 
pressure intensity diagram,  shown in side elevation in Figure 14.2. Thus: 

h 
2 

I;= y h x - X  1 =0.5yh2 

This force acts not at the centroid  of the darn wall but at the level  of the centroid  of 
the triangular pressure intensity diagram of Figure 14.2, i.e. at 2h13 below  the  free  water 
surface, as shown. 





For  surfaces  of simple shapes such as those  of  Examples 14.1 and 14 
force is easily found by c ~ c u l a t i n ~  the volume of the pressure block. F 
shapes the reader is referred to Section A2 of the Appendix. There it is 
linearly v a ~ i n ~  pressure  acts upon a plane  surface  of  area A, the resuitant force is equal 
to the pressure at the centroid of the surface  times the area A. Thus if the centroid is at 
a depth yc below the free  surface, the resultant force i s  (see Equation A, 1 I): 

p =  YycA 

The point through which the resultant acts is called the centre o ~ ~ ~ e s s ~ ~ ~  an 
is denoted by yep. From Equation A.27, we  have: 

where is the second moment of area of the surface c ~ c u ~ a t e d  about a h o r i ~ o n t ~  a i s  
through its centroid. 



E ~ u ~ t i o n  14.6 shows that the centre of  pressure always occurs at a 
the centroid of the surface on which the hydrostatic pressure  acts. 
eween the centre of pressure and  the centroid &./Ayc decreases as the 



With slight modification Equations 14.5 and 14.6 may be  used to find the resultant fluid 
pressure on any submerged surface. Consider the inclined surface AB in Fi 
The hydrostatic pressure  acts at right angles to the surface, with p,  = y y, and 
pB = yyB Equation 14.5 needs no modification. For Equation 14.6, the position of the 
centroid C and  the centre of  pressure P are  best defined by their distance from the line 
of intersection of the submerged surface with the free  water  surface, which we may call 
the ~ ~ t e ~  line. This line (0 in Figure 14.5b) is the line of zero  pressure. The distances 
from C and P to this line are LC and Lcp, respectively. Equation 14.6 then becomes: 

1 

LCP = = 1- LC 
ALC 

where is the second moment of  area  of the inclined surface about a horizontal axis 
through the centroid. 

The calculation  of the fluid force on a plane surface  of any shape and inclination may 
be summarized as follows: 

The resultant force is equal to the pressure at the centroid times the area  of the 
surface (Equation 14.5). 

The point P at which this resultant force  acts is distant Lcp from the water line, 
where LC, is  given  by Equation 14.7. 

d surface is vertical, Lcp is identical to yCp and LC is identical to yC. If the 
surface is inclined at t) to the horizontal: 

L, =------- "' and LC == - 
=P sin 0 sin 0 

YC 

If the surface is horizontal, P and C coincide. 

It remains to locate P in the direction parallel to the water line. Usually there is an axis 
of s y m ~ e t ~  normal to the water line, in which case P lies on this axis. The case wh 
there is no axis of symmetry is dealt with  in Appendix, Section A.2.3. 



As for a plane surface, the hydrostatic pressure on a curved surface  acts at right angles to 
the surface as shown in Figure 14.7a. The resultant force F has horizontal and vertical 
components, FH and F, respectively. FH is determined by projecting the curved surface 
onto a vertical plane and calculating the horizontal force on this projected vertical plane, 



as shown in Figure 14.7%. Ify, is the  depth from the free fluid surface to the centroid of 
the projected area A, then: 

FE1 == rxn 
The vertical component Fv is the weight of the volume Vof fluid above the curved 

surface (Figure 14.7~): 

F,== y V  

The ~agn i tude  and direction of F are  calculated from its two components and are 
given  by: 

F = m and (3 = tan-' - 
FV 
FH 

where 8 is the inclination of F to the horizontal. 

A 

B 

PA A 





en a rigid body is immersed either partly or completely in water, the water  exerts an 
upward force on it, Its weight is then of-fset, either partly or completely  by the water 
pressure,  which is called the buoyancy force. 



Suppose that it is intended to immerse a solid body in an expanse  of  water.  Before the 
immersion occurs the space which will later be occupied by the body is occupied by  water 
(Figure 14. l la). This block  of  water  has a volume Vand a weight yvwhich acts at the 
centre of gravity R of the block. Equilibrium of the block is maintained by the pressure 
from the  surrounding water. Withour  the need for calculation we can therefore say that 
the resultant of  these  pressures is an upward force of magnitude yvacting through R, 
the centre of gravity of the block  of  water. 

We now replace this water  by a rigid body of the same  size and shape (Figure l 4  l l b). 
The resultant of the water  pressures acting on the body is a force of yVacting at the 
centre of  gravity of the displaced  water. 

This upward force is the ~ u u ~ a n ~ ~ ~ c e ,  and  the centre of  gravity R of the displaced 
water is called the centre u ~ ~ u u ~ a ~ ~ .  The weight  of the immersed body is Wacting at its 
centre u ~ ~ a ~ ~ ~  C, which may not coincide with B. 

If Wis greater than yVthe body will sink. If Wis less than yVthe body will  rise. If 
C is not vertically  above or below B the body will rotate. 

Vlrhether the body  floats or is totally  immersed, the buoyancy  force yVis equal to the 
weight of the displaced  water and acts through the centre of gravity  of the displaced  water. 



In Example 14.8, it was assumed that  the rectangular container floated with its shortest 
dimension vertical. How  do we know that it does not rotate so that  the 4 m or the 10 m 
dimension is vertical? In both of  these orientations, the buoyancy  force would exactly 
balance the weight  of the container and thus satisfy equilibrium. We shall see that of 
these three equilibrium positions two are unstable. If the container is in one of the 
unstable conditions of equilibrium, the slightest movement will  cause it to rotate to one 
of the  other positions. If it is in stable e ~ ~ i l i ~ r i ~ ~ ,  then after a slight disturbance, such 
as that caused by a small wave on the sea's surface, it will return to its former position. 

In Figure 14.13 the full line represents the container considered in Example 14.8. The 
rectangle JKLM is the submerged portion. The centre of  gravity  of the container is C and 
the centre of buoyancy  (i.e. the centre of  gravity  of the displaced  water) is B, which in 
this case is 0.382 m below C. 

We now give the container a small rotation 8. The displaced  water is now the 
quadrilateral JKL'M' (times 10 m, the length of the container). The area of JKL'M' must 
be the same as that of JKLM but  the centroid is not obvious.  However, JKL'M ' may  be 
regarded as J'K'L'M' plus the triangle N K  minus the triangle NJJ'. The centroids of 
these  figures  are  readily determined. In effect  we  are considering the buoyancy  force W 
as the sum of  an upward force W acting at B ' , plus an upward force Fl at I! minus a 
downward force F2 at 2. For equilibrium Fl and F2 must be equal and of opposite sign. 

""_ """ 
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The container is acted upon by two couples; a couple FlF2 which tends to restore the 
container to its original position, and a couple W ' ~  which tends to increase the 
displacement. Evaluating, we  have: 

W =  900 kN and h = 0.382 m 

The couple W' W is: 

W'W= 900 X 0.3828 = 343.88 kNm 



The force FI (= F2) is y times  the triangle N ~ ’  times 10 (the len 

F1 = F2 = 10.06 x $(NK x 10 
= 100.6 X 
= 201.2 

and the restoring couple FIE2 is: 

FlF2 = 201.213 x 2.67 = 536.5 

The resultant couple is: 

This couple  will  restore the container to its ori sition, hence that position 
pears to be stable. The reader  should  now  chec 

mall  rotation about its other horizontal  axis. 
numerical  example m 

general  shape in equili 
centre of buoyancy. The plane of inters body with  the free  water  surface is 
here  called the water Z e ~ e Z ~ ~ ~ e  (TK in 
( 4  

If the body is given a small rotatio system of forces  will  always  consist of 
two couples: 

a A couple MI comprising the two forces Farising from the rotation of the water  level 
plane from  JKto J’K’. 

From Equation A. 15 (see ~ p p e n d i ~ )  this couple  has a ~ o ~ e ~ t :  

MI = Mx = w,Im 

where I= is the  second moment of  area  of the water  level  plane about  the axis 
its centroid,  and wI is the water  pressure on this plane at  unit distance  fr 
vertical ~is~lacement  at this unit distance is 1 X 6 and the resulting water  pressure is 

y. Hence  the couple  formed by  FF is: 

M* =I: 1 3 ~ I ~  

This couple  always  acts to restore  the  body to its original equili~rium position. 



m A couple M,  formed by the buoyanc~ force and  the weight  of the body. 

ition these  forces  were in the same  vertical line. The 
hence they form a couple: 

M2 = ~~~ 

h as positive if C is below , M2 is a restoring couple if h is positive. The total 
restoring couple is thus: 

= MI + M2 = ~(~~~ + ~~) 

reater than  the body will overturn. 

B 



A rectangular gate ABC in a vertical tank wall  is - - _ _ _  -v- _ _  _ -  - - _- 
pivoted at B and rests  against a stop at A as shown - - -) - - - - 
in Figure P14.5. If  the gate is 10 m long C 
perpendicular to the plane of the figure, find: 
(i) the reactions at A and B when the free  water 

(ii) the height of the water  surface  above C when 

- - __ - - - - - __ - 

surface is level with  the  top of the gate B 

the gate opens (i.e. overturns about B). A 

C 
Find the magnitude and location of the horizontal 
and vertical components of the hydrostatic force per 
metre acting on curved  area AB in Figure P14.6. 
The line AB in Figure P14.6 is the  quadrant of a pH 
circle  radius 2.5 m. What is the moment of the 
hydrostatic force on AB about  point C. 

B 

The 2.4 m diameter cylinder 
shown in Figure 14.7 weighs oi 

45 kN and is 2.0 m long. It 
retains oil on  one side as 
shown. Neglecting friction at 
A and B, determine  the 
reactions at A and B. (Assume 
the specific  weight  of the oil is 
roil = 7.85  kN/m3.) 

h object weighs  1 .0 kN in air and 0.6 kN in water, Find its volume and specific wei 

cylinder 1 m in diameter and 2 m long weighs 4 &N. 
t weight of lead must be fastened to the outside of the  bottom of the cylinder 

(ii) m a t  weight of lead is required if the lead is placed inside the ~ l i n d e r ?    as sum^ 
to make it float  vertically with 1.2 m submerged? 

yIead = 110  kN/m3.) 

An  iceberg weighing 8.36 kN/m3 floats in the ocean (10.06 /m') with a volume of 
14000 m3 above the surface. Vhat  is the total volume of the iceberg? 

The cylindrical tank shown in Figure 14.1. l floats in  the ~ o s i t i o ~  sho 
thickness  of the tank walls, find the weight of the tank. (Take y = 3. 



air 

Figwe P1 4. l l 

A buoy (Figure P14.12) is to be constructed of a 
hemisphere diameter 1.2 m surmounted by a cone and 
is placed into seawater ( y = 10.06 kN/m3). The total 
weight  of the buoy is 10.5 kN. 
(i) If the height H of the cone is 2 m, will the buoy 

(ii) What is the height H when the buoy is on the 
float? 

verge  of sinking? 

T 
1.2 m 

t 
0.8 m 

A prism weighing 2 kN has a length of 1.7 m and its  cross-section is an equilateral 
triangle of side 0.6 m. It is placed in fresh  water ( y  = 9.81 kN/m3) with the l o n ~ i t u d i n ~  
axis vertical. 
(i) What is the exposed length of prism above Os6 m 

(ii) Is this position stable? 
(iii) If not, what is the orientation of the prism 

the water? 

in a stable position? 
0.6 

A solid cylinder has a length l, a diameter d and a density of 8 kN/m3, If it is to float in 
salt  water ( y  == 10.06 /m3) with  the circular face horizontal what is the ~ ~ i ~ u m  
value of I Id ? 

A solid  oblate spheroid (of  specific  weight 
/m3) has two ma'or axes  of 4 m and """"""""""""""" 

roblem,  suitable for later study. 









In considering coplanar forces, it was shown in Section 2.3 that any force could be 
resolved into Components  parallel to and perpendicular to a given direction, As any force 
rnay  be  resolved into two components (the force and Components  being coplanar), each 
component rnay  be further resolved into sub-components in planes not necessarily 
containing the original force.  Generally we concern ourselves with co~ponents  in three 
mutually perpendicular directions. 

Let F be a force through 0, its line of action being inclined to three mutually 
perpendicular axes Ox, Oy and Oz at angles I;?, 6"y and II , ,  respectively (Figure 15.1). The 
components could be obtained by  first  resolving F into a force ir: in direction Oz and a 
force R in the plane Oxy, as illustrated in Figure 15.1. R could then be  replaced  by two 
forces Xand Yin directions Ox and  Oy, respectively.  For this method, it is necessary  first 
to express the angle  between F and R, and also the angles which R makes with Ox and 

rst the converse problem of 
finding the resultant of component forces.  Let X; Yand 
Z be three forces actin Ox, Oy  and Oz, 
respectively. The resultan be  regarded as the 

ular  parallelepiped  whose  sides  are 

sultant of R and ;?; which are 
perp~ndicular to each other, is F where: 

F =  - - 

B 

x 

If we consider the triangle OA (Figure 15.1) which is 
. Similarly from triangles O A ~  and OA 
. Expressed in terms of direction cosines 

cos NZ) we  have: 
x= IF = nF 



The methods used  for the co~position ofcoIlcurrent coplanar forces  can  be extended to 
deal with the composition of c o ~ c ~ r r e n t  forces in three di~ensions (i.e.  forces which are 
not n e c ~ s ~ a r i l ~  coplanar). 

A 

X 

C 



The sum ofthe co~ponenrs  in the  direction 

Y= q + y2 + y3 +...+ y, = YK 

the sum of the ~ o ~ p o ~ ~ n t s  in the direct 

e the ~ o ~ ~ o n e n t s  of R, the resu~t~nt  of Fl, F, . . 
previous  section then, the m a ~ n i t u ~ e  of the resultant is: 

4, 'F,, + 2""F2 cos a! 

ilar ~ ~ n n e ~ ,  the  student may prove by expan 
use of the  relationshi~s: 

2+ $2, = l and cos 



A force  of 90 N acts along a line passing through the origin of co-ordinates (0, 0, 0) 
towards the point whose co-ordinates are (4, -4, 7). Resolve this force into three 
components along the x, y and z axes. 

A force Facts along a line passing through the origin of co-ordinates (0, 0, 0) towards a 
point A, having co-ordinates xl, yI and zI, Find the components along the x, y and z axes 
for each of the sets  of  values  of rl; xl, y1 and zI shown in Table PI 5.2. 

Table P15.2 

F X, V. E .  

0) 250 N 
(ii) 180 N 
(iii) 300 N 
(iv) 520 N 
(v) 280 N 

3 
6 

-5 
8 

-2 

4 l0 
6 -6 
9 12 

3 -6 
-5 4v% 



Table PlS.3 shows the magnitudes and directions of a set  of concurrent forces. The 
om  the x, y and z axis to the respective  forces  are Ox, By and Oz respectively. Find 
itude  and direction of the resultant. 

r? % c? 
10 N 135' goo 135' 
20 N 45O 45O goo 
30 N 54.74O 54.74.O  54.74O 

Table PlS.4 gives the values  of three sets  of concurrent forces.  Each  set  refers to the 
diagram in Figure P1 5.4. Find  the resultant of  each  set  (i) to (iii). 

arc i r e c t i o ~  

0 )  500 N 
280 N 
200 N 

A to D 
A to G 
A t o  C 

(ii) 420 N 
300 N 
100 N 

B t o  H 
D to B 
A t o  B 

(iii) 200 N 
440 N 
130 N 

K to A 
K t o  H 
G t o  K 

A block  weighing 30 N lies on a smooth plane inclined at 20" to the horizont~.  The 
block is pulled with a force  of 12 N by a rope parallel to the plane and  in a direction 
making an angle of 60" with the line of  greatest  slope. The 12 N pull has a component 
up the plane. Find the resultant force on  the block. 





In Section 3.1, it was shown that as a consequence of Newton’s Second Law, any body 
at rest must be acted upon by a system  of  forces with a zero resultant. This of course 
applies  equally to three dimensional systems. If the resultant of a three di~ensional 
system  of concurrent forces is zero, the forces when added vectorially must form a closed 
polygon in space  (i.e. the last point of the force  polygon must coincide with the 
initial point). 

The resultant of a system of concurrent forces  has  been shown to have three components 
given  by Equations 15.4. That is: 

If the resultant is zero,  each of the components ust  be  zero. Hence, 
the conditions of equilibrium are: 

x= 0 

I/= 0 

z= 0 

If a concurrent system of forces  is known to be in equilibrium and all forces  except 
one are known in magnitude and direction, the above three equations may be  used to 
determine the u n ~ o w n  force in magnitude and direction. This problem is simply the 
reverse  of finding the resultant of the known forces. 
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In the previous section, we considered prob~ems involvin a number of concurrent forces 
in equilibrium and used the three equations of equil rium to find information on 
unspecified  force magnitudes and directions. In such problems, each  force is specified by 
its magni~ude  and the signed direction cosines  of  its line of action, and for each line the 
relationship between direction cosines  is Z2 + m2 + B ~ =  l 

In Examples 16. l to 16.4, the  number of unknown forces and directions was such that 
they could be determined using only the three equilibrium equations. The quesrion arises 
as to the necessary condition to be met in order to be able to solve a problem involvin~ 
concurrent forces  using only the conditions of equilibrium. 

If p is the number of concurrent forces  of known or unknown magnitude, there will 
then be 3p direction cosines, known or unknown, describing the lines  of action of the 
forces. If q is the number of  forces  of  specified magnitude and r the  number of specified 
direction cosines, it follows that  the  number of unknown variables  is (4p - q - r) and 
of  these (p  - q) are  force m a ~ n i t u ~ e s  and (38 - .p) are direction cosines. 

For a given problem to be  solved  by consideration of statics alone, there must be a 
total of (4p - q - r) equations available, com~rising three equations of equilibrium, and 
the remaining equations of the form L2 + m2 + E?= l. In any problem where it is 
necessary to use equations of the latter type,  results  will  be ambi uous and additional 
information may be needed to obtain the correct answers to the particular problem, 

Three forces  of magnitude 10 N, 20 N 
and 30 N act at A. in the directions shown 
in Figure P16  1. Find the forces in  the 
directions AB, AC and AD which would 
maintain equilibrium. 



be supported by a rope below a point A to which four other ropes 
P 16.2). One rope lies in  the zy plane, and another in 
tension of 50 N. A rope with tension P lies in  the 

what direction must the  fourth rope, carrying 60 N tension, lie in order to maintain 
e ~ u i ~ i b r i u ~ ,  and what is the value of P? 

ZA 

50 N 

power line cable  has a tension of 500 N at the i~sulators, 
16.3). At each  side of the point of support it makes an an 

and lies in a vertical plane. The  i~sulators are suspend 
struts AD and AE lying in a horizontal plane, and 

he tension in the ties and the c o ~ ~ ~ r e s s i o n  in  the st 



A load  of 10 kN is supported by  three  ropes as shown in Figure  P16.4. OA Lies along the 
x axis, and OB lies  along the (negative) z axis, C is the  point (-3, 5,2). Find the tension 
in each  rope. 

Y 
t 

In a pin-jointed  space  frame  there  are three bars  only (not  in  the same  plane)  which  are 
joined at  the node A. No external load is applied to  the  node A. What can  be said about 
the  forces in these  three bars? 

Figure P16.6 shows a mast AB, which is supported at A i socket (no  moment 
resistal~ce) and is held in  a vertical  position  by  three  guy  rope BD and BE, where 
C(--4, 0, "-4) and D(-4, 0, 4). Turnbuc l~~s  in these  guys are used to  put initial 
tensions in  them so that they exert forces at B in  the dire ns  shown. The initial tension 
in BC and BD is 1800 N. What is the initial tension in and what is the compression 
in  the mast? 



uy rope BD of the previous problem is changed so that  the co-ordinates of point 
D are (-4, 0, 6) while the initial tension remains as 1800 N. The guy BE must now be 
changed so that the co-ordinates of E are (6, 0, z). Find the position of E, the initial 
tension in BE and  the com~r~ssion in the mast. 

A crane is lifting a crate weighing 10 kN off the ground (Figure P 16, ). Three slings OA, 
OB and OG are attached to the crate, as shown in Figure P16.8, so that A, 
in a horizontal plane, the slings  being connected to the ring 0 which is 1 metre above 
the centre of the crate. Initially, the crate is not located directly below the crane hook so 
that the rope connecting the ring 0 to the hook is inclined at 10" to the verti 
in  the yz, plane. The edges  of the crate run parallel to the x and z directions. 
tension in this lifting rope reaches 6 kN, what are the tensions in the three slings? 

Y t  

m 

at are the tensions in  the three slings when the crate in Problem 16, 

Four forces  are concurrent at  the origin of co-ordinates 0 (0, 0, 0). The first is a force 
along the  y axis; the second is 5 kN acting along the line from 0 to a 
dinates are (2, 3, 5); the  third is 5 kN acting in an u n ~ o ~ n  

(direction cosines I ,  m, n); while the  fourth is an unknown force Pactin 
from 0 to a  point with co-ordinates (-3, 3, - 3). Find the values of E I, m and n if the 
forces  are in e~uilibrium. 





In a planar system of forces, the  moment of a force about a point in the plane was defined 
as the product of the force and  the perpendicular distance from the  point to the line of 
action.  of the force (Section 4. l, Figure 4. l). In fact, the ~ o m e n t  of the force is not about 
the  point but about an axis through the  point and normal to the plane. In the case of a 
three-dimensional system  of  forces, a single point does not adequately define the axis  of 
moments and it is essential therefore to always speci+ the axis  clearly. 

Consider first the  moment of a force Fabout an asis A which is normal to F but does 
not intersect it, as shown in Figure 17. l a. Let plane AA be the plane which contains axis 
A and is parallel to the force I;. Plane FF is parallel to plane AA and contains the force 
E as shown. There is only one line normal to these  planes which intersects both the axis 
A and  the force I;. This is called the common ~ e ~ e n d ~ c ~ ~ ~  to F and A. In Fi 
the  common perpendicular intersects A at  point 0 and Fa t  point 0‘. Let 0‘0 be the y 
axis and let axis A be the z axis. The normal to these axes through 0 is then Ox, which 
is parallel to the force I;. Thus axis A lies in  the plane xOz (plane A A )  and  the force F 
lies in the parallel plane x’O’z’ (plane FF) which is distant d from xOz, 

The moment of force F about asis A is F X d, where d is the length of the c o ~ m o n  
perpendicular (i.e. the distance between  planes M and FF). 

In effect this is the case considered in Section 4. l ,  where the force Fand the  point 0 
all lay in  the xy plane. 



""_ J"""" / 

For any force Fand any axis A, there is in general one and only one pair  of  parallel 
planes, one containing F and  one containing A. When the force F and the axis A 
intersect, they share a common plane. The common perpendicular d then equals  zero 
and the  moment of Fabout A is zero. 

When F and A are  parallel,  every plane containing A is parallel to E One of  these 
planes, AI;I is common to both F and A. In this case,  we  may  replace the force F by a 
parallel  force Falong A together with a couple lying in the plane M. If the couple is now 
replaced by a pair of forces  each  of which intersect axis A, the original force is replaced 
by a statically equivalent system consisting of three forces  each  of which intersects A. The 
moment of Fabout A is  clearly zero. 

In summary, we  may  say that if there is a plane which contains both  the force Fand 
the axis A, the  moment of Fabout A is zero. 

We now consider the general case where the force Pis not normal to the axis A. Figure 
17. I b is similar to Figure 17. l a  except that  the force F is at  the angle 0 to the direction 
of O'x'.  Fmay be  resolved into components Fcos 8 along O'x' and Fsin 0 along O'z'. 
The component Fsin 0 is parallel to axis A and therefore has no moment about it. Hence 
the total moment of the force Fabout the axis A is Fcos 0 X d 

The moment of a force about an axis  is a vector quantity  and may be denoted as a 
double-headed arrow along the axis of moment, as illustrated in  Figure 17.2a. It is 
necessary to ascribe a sign  (positive or negative) to the vector quantity (i.e. a direction for 
the arrow), In Figure 17.2a, the vector is drawn in the direction G to D. This is because 
the moment produces a clockwise rotation when the axis  is  viewed looking from G to D. 
This is known as the right-hand screw  rule. The arrow points in  the direction a right- 
hand threaded screw  will  move  if  activated  by the  moment. With this convention, 
positive rotation around the co-ordinate axes Ox,  Oy, Oz are as shown in Figure 17.2b. 
For a ~o-dimensional system  lying in  the xy plane, and drawn so that the axis Oz is 
towards the viewer (Figure 17.2c), positive rotation about  the z axis  becomes 
anticlockwise  since we are looking in the ~ e g ~ ~ ~ v e  direction along Oz. 



D 
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X 

X 

Note  that if the xy plane (see Figure 17.2b) is rotated positively about Oz, the x axis 
moves  towards Oy. Similarly, a positive rotation of the yz plane moves Oy towards Oz 
and  a positive rotation of the zx plane moves Oz towards Ox. 

For the present, we  will consider problems in which the forces  are either parallel to or 
perpendicular to the axis of moments. (The more general situation will  be considered in 
Section 17.7.) 



In Section 4.3, a c u ~ ~ Z e  was defined as a pair of  parallel  forces  of  equal magnitude but 
opposite sense. The same  applies to couples in a three dimensional system. 

In a two-dimensional system, the only quantity which needed to be specified was the 
~ o ~ e ~ t  ufthe cu~~Ze. This was defined as the product of one of the forces and  the 
distance between them. In a thr~e-dimensional system it is necessa~ also to define the 

ctzbn ofthe &xis of rotation. This axis may  be  r&en as any line normal to the plane 
h contains the forces. The direction of such a normal is taken such that  the couple 

has a positive moment  about  the asis. 

D rotating the couple in its plane 
I transferring it to another position in its plane 

The statical effect  of a couple on a rigid body is unchanged by: 

transferring the couple to a plane parallel to the original plane 

product of the force and  the distance remains constant. 
ing the magnitude of the forces and distance between them, provided the 

These properties are illustrated in Figure 17.4, where A and A' are  parallel  planes and 
LM is a line normal to them. Each of the five couples shown has a magnitude F& and 
each  has an axis in the direction of LM. 
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A couple,  having magnitude and direction, is a vector quantity. A force,  which  requires 
ma~nitude, direction and its line of action for  its complete specification, is sometimes 
called a ~uc~Z j se~  uecm+. It is not necessary to specify the line of action in the case  of a 
couple. It is ofien convenient to denote a couple by  means  of a double-headed arrow, the 
length of which corresponds to the magnitude. In Figure 17.4, any  of the five couples 
could be represented  by the arrow at L or alternatively by the arrow at N as shown. 

Two couples  may  be  replaced  by a single couple which has the same  statical  effect as the 
two couples combined. 

If the two couples  lie in  the same plane, or in parallel  planes, then their ~ a g n i t u ~ e s  
may simply be added algebraically, their directions being the same. This was the situation 
dealt with in ~o-dimensional systems (Chapter 4). If they do not lie in parallel  planes 
(i.e.  if they do not have the same direction) an expression for their resultant may be 
obtained from the work of  earlier chapters, as follows. 

Figure 17.5a shows a couple consisting of two forces P lying in a plane A. The 
moment of this couple is M' = Pe. Another couple consists  of two forces 
plane B which is at  an angle a to plane A. The moment of this couple is MB = Qf In 
order to combine them, the couple of moment MA is replaced  by a pair  of  forces R at 
distance LZ apart in  the plane A, such that  one of the forces R acts along the line of 
intersection of the two planes (line IJ in Figure 17.5a). The couple of moment M, is 
similarly  replaced  by an equivalent couple Rb in plane B, arranged so that one of the 
forces R acts along IJ and opposes the force R from the couple MA. 

""""_ 
plane A """ """"_ 

Pipre IZ.5 

Of the four forces R, two cancel out and the remaining two constitute a couple lying in 
a plane oblique to A and B. To find the magnitude of this couple we need the distance 
c between the forces.  Figure 17.5b is a view looking directly along the line of intersection 
of  planes A and B (i.e. line IJ). It can be  seen that: 

c" = L? + b2 + 2abcos cx or PC2 PL? + R2b2 + 2(&) (Rb) cos a 
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The resultant couple MR is equal to RC. Hence: 

LWR = ~ ( " ~ ) z  + ( ~ ~ ) 2  + 2"~M~COS a 

It acts in  a plane C which makes an angle 6 to plane 

asin a "'sin a 
b +  COS a AdB +  cos a tan 0 = - 

_I 

3, such that: 

These equations show that  the two couples  can be combined by  vector addition. In 
Figure 17.5c, the couples M, and MB are represented by  vectors normal to planes A and 
€3 respectively. The resultant couple is then obtained, both in magnitude and direction, 
by the Parallelogram Law. 

It follows from the work of the previous section that a single couple may  be  replaced by 
two component couples  using the usual vector procedures. 



More generally,  if a couple has a magnitude IM and its axis  has direction cosines I ,  m 
and n then it may  be  replaced  by  couples  of magnitude IM, mIMand n M a c t i ~  
the axes Ox, Oy and Oz respectively. 

The resultant of a number of couples  may be determined by  first  resolvin 
into its components around  the axes x, y and z. If the resultant couple MR, has 
components, Mk, M& and M& then: 

and finally: 

= ( y J 2  + + (MR~)2 



For a two-dimensional system  of  forces,  lying in the xy plane and concurrent at the  point 
A, the resultant is the single  force which has the same x component as the combined 
forces and  the same y component as the combined forces. The resultant also  passes 
through the  point A. In Chapter 15, we  saw that this concept could readily be extended 
to the three-dimensional situation merely  by requiring that  the resultant also  has the 
same z component as the combined forces.  Again it passes through A. 

In Section 4.2, the  determination of the resultant of a two-dimensional system of 
non-concurrent forces, such as that shown in Figure 17.9, was discussed. The 
magnitude and direction of the resultant are found as for a concurrent system, but the 
position also  needs to be established. Provided the resultant force is non-zero, it can  be 
located so that its moment  about any arbitrarily chosen point (say B in Figure 17.9) is 
the same as the combined moments of the force system. Fortunately, if R has the same 
moment  about an axis through B as do the original forces, then its moment  about an 
axis through  any  other  point C will  also  be equal to  that of the original forces. Of 
course, the various axes considered are all normal to the plane of the force  system. 
However, if the resultant force is zero, it is  necessary to express the resultant as a couple, 
unless the system is in equilibrium. 



N O N - C O N C U R R E N T  F O R C E S  2.35 

This concept of a single resultant force cannot be 
extended to the case of a three-dimensional system  of non- 
conc~~rrent forces except in special cases. In three 
dimensions it is possible to imagine the  moment of a force 
about axes in various directions. We may find  the 
magnitude and direction of R by the methods of Chapter 
15. By moving R (but retaining the same direction) we 
may  cause R to have the same moment as the original forces 
about any two axes  (say Ox and Oy). But R is then 
completely defined, and if  its moment about Oz is not equal to that of the original forces, 
then we cannot express the resultant as a single  force. It must be accompanied by a 
suitable couple. 

In other words, we can  replace a given  system  of  forces  by a statically equivalent 
system, but this system cannot be a single  force  except in special cases. 

In Section 4.5 we  saw that a given  system  of  forces in two-dimensions can  be  replaced 
by another system provided that the new  system contains three undeter~ined quantities. 
These three quantities can  be  evaluated so that  the new  system is statically equivalent to 

a three-dimensional  system  can  be  replaced  by a statically  equivalent 
system  provided the new  system  contains six undetermined quantities. As in the two- 
d i ~ e n s i o n ~  case there are  certain  restrictions on the choice  of the undetermined quantities. 

We consider first the problem of  replaci any given  force  by three component forces 
specified axes Ox, Oy and together with three component couples 

ote that in  the new s y s t e ~  the directions and positions of  six  vectors 
(three forces and three couples)  are  specified, but six ma~nitudes are undetermined. 
These may then be determined to ensure equivalence. 

2 

iven force F act through the point A (x,? yI, zs) in a direction such that the 
sines  are (,ll, m,, n,) as shown in Figure 17. loa.  The force is first  replaced by 

its three orthogonal components at A. These are Z I F ,  m,Fand n,F (Fi 
now have to find a new  system  consisting  of three forces .X Yand Zand three couples Mx, 
My and Mz at the origin, which is statically  equivalent to the system  of  Figure 17.10b. 



By resolving  parallel to each  axis in turn  and equating the original and the new systel~s, 
we  see that the force components of the new  system  are  respectively  equal to those at A: 

To find the couples we must take moments about each axis in turn,  The process  of 
taking ~ o m e n t s  about  the x axis  is  easier if we re-draw  Figure 17. lob looking directly 
along the x axis from the positive x direction back towards the origin (Figure 17. l la), 

The component 2,Fat A is  parallel to the x axis and therefore  has no moment about it. 
Hence the moment of the system at A about the x axis  is (n,Fyl - m,Fz~). The moment 
of the new  system at Q is simply Mx. If the two systems  are to be equivalent, then: 

Similarly,  Figure 17. l  l b is a view looking normal to the xz plane. Equatin 
~ o ~ e n t s  of the old and new  systems about  the y axis  we get: 

My = F(Zlz, - n,x,) 

Finally,  Figure 17. l IC is a view normal to the xy plane. Equating moments about the 
z axis  we obtain: 

Summarising these  results, the three forces and three couples at  the  ori 
in terms of the magnitude direction and position of the original force,  are: 

X =  ZIF Y =  m,F Z =  n,F 

The given  force F acting at A can be replaced  by three forces actin 
necessarily the origin, and three couples. Suppose it is required to re 

whose co-ordinates are (x,, yo, 2,). En Figure 1’7. l l, it is only   le cess^^ 
to re-label point Q as point B and to replace xI, y1 and z1 by the distances (x1 - x,), 
(y,  - yo) and (zl - 2,). Equations (17.3) then become: 

X =  ZIF Y =  mlF = n, F 
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The three component forces x Yand Z a t  El can be  re-co 
E which will  obviously  be equal to I;. The three couples Mx 
combined into a single couple, the axis of which will not, i 
line of action of E It has therefore been shown that a force can be replaced  by a parallel 
force at any other point together with a couple. We note that this system  again contains 
six quantities to be determined, namely a ma~nitude and two direction cosin 
the force, and a magnitude and two direction cosines to define the couple, 

It is not necessary for the replacement system to comprise three concurren~ 
Component  forces and three component couples, To be  valid, the replacement system 
must contain six inde~endent ulldetermined quantities. It must be capable  of providing 
a force component in every direction and must have a moment about every axis. It 
follows that  at least three of the unknown quantities must be  forces. Indeed, all six may 

t in such a case  care must be taken to see that  the system  does  have a 
t every axis in space. 
e can  say that any two systems  are  statically equivalent if both: 

a in each  of three directions (not all in the same plane), the sum of the com~onents of 

a about any three  on-parallel axes (not all in  the same plane) the sum of the moments 
one system is equal to the sum of the components of the other; and 

of" one system is equal to the sum of the moments of the other. 



In the  foregoing  problems, m o ~ e n t s  have  always  been  taken about axes  parallel eirher 
x, Oy or Oz. In problems  of this sort, even if the forces  are  oblique, it is a ~ ~ r o ~ r i a t e  

to resolve them  into their x, y, z components before  taking ~ o m e n t s .  

ccasionally it is  necessary to take ~ o ~ e n t s  about an  oblique  axis. To deal  with this 
problem  a  more  general  approach to m o ~ e n t s  is required. An expression for the ~ o m e n r  
of a force about any axis can  be  obtained from the results of Section 17.7. In Figure  17.13, 
rhe  force F acts  through  the point A (xi, yl, zi) and has direction cosines I,, m, an 
while  the axis S passes through B (xo, yo, zo) and has direction  cosines I,, m. and no. The 
force and the axis do not intersect and are not parallel, so that Fhas a ~ o m e n t  about S. 



We first replace F by a parallel  force through B together with three component 
couples. The new  force  has no ~ o m e n t  about S, and  the  moment of the cou 
readily obtained, From  Equations 17.4, the couple about  the x axis  is: 

Mx = F[n,(y, - yo> - m, (g1 

n/ls = M x ~  = F[n,(y, - yo> - ml(zl - 4 1  l* 
The component of this couple  along axis the mom en^ of this cou 

The  com~onen~s of the  other couples My and M' are obtained in a similar way, and  upon 

This expression is convenientl~ iven in  the form  of a  determinant: 



~ometimes reference is made to the ~ o m ~ n t  of a force Fabout a  point 0 in space 
om F. The moment MO really  means  the ~ o m e ~ t  of F about an. axis 
ormal to  the plane containi oinc 0. This §it~acion is the  one 

ter 4 and again in F 

The moment of Fabout any  obliqu 0 is necessarily  less than 



The two couples &lx and My shown in Figure 
P17.1 act on  the ~ ~ r p e n ~ i c u l a r  faces of a body 
as shown. What is the magnitude ( ~ o ~ e n t )  
and di~ection of the resultant couple? 

re P l Z l  
= 40 kNm 



at are the components of the couple shown in Figure P17.2 about the x, y and z axes? 
at is the momelit of the couple about the axis  AB? 

T 
3 m  

1.. 

The forces  AB and CD shown in  Figure P17.3 form a couple. Resolve each  force into 
three components in the directions of the co-ordinate axes, and by taking moments 
about these axes, determine the three components of the couple. What is the ~ o m e n t  of 
the couple? Use this result to find the distance between AB and CD. 

uples  are applied about the axes 014 and 
resultant couple. What is the  moment of 

Y t  
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The solid shown in  Figure P17.5 is a l m cube. Find  the resultant of  the  three  couples 
shown. m a t  is the  moment of  these  couples about  the axis  AB?  %at i s  the m o ~ e ~ t  
about the  axis through 0 parallel to AB? 

y /  l m  

/ 1 0 N  
z 

Replace the forces  shown in Figure P17.6 by: 
(i) a  force  passing through the  centre  of the cube  plus 

(ii) two forces, one passing through  the centre  of the A 

In each  case state the forces and couple in terms  of 
their x, y and z components. 

a couple 

cube, and  one lying in the face BCDE. 

Y 
5 

rePl%G x 

A 1 m cube is acted upon by the five  forces  shown in Figure P 17.7. Replace the forces: 
(i) by  a force through A, and a  couple 
(ii) by  a  force through F, and a couple. 

8 N  

2 N  
N 

(i) Replace  the  forces  shown in Figure P17.8 by a force through  the origin 0 together 
with a couple. 
Replace  the  forces  by  a  single  force and a  couple  acting  about  an axis  parallel to the 
direction of  the  force.  Define  the line of  action  of  the  force and the  value  of  the  couple. 



y l  

5 N  

6 N  

In general it is not possible to replace a given  system  of  forces  by the system of forces 
shown as dashed  arrows in Figure P17.9. Why is this? 

E 

An equilateral tetrahedron ABCD with edges 3 m in length is oriented so that ABC is in 
the xz plane with A at  the origin. Figure P17.10 shows a system  of  forces  expressed in 
terms of  forces along, and couples around, the x, y and z axes. Replace this system by a 
statically equivalent system comprising forces along each of the sides  of the tetrahedron. 

Y 

10 kNm 

D 
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What is the  moment of the 150 N force shown in Figure P17. l 1 : 
(i) about the axis  AB? 
(ii) about the axis CD? '1 

h equilateral tetrahedron ABCD with 100 mm edges  is acted upon by a force  of 20 N 
from C to D, What is the moment of this force about AB? 

In the cranked member ABCDE shown in Figure P17.13, AB is parallel to the x axis, 
BC is parallel to the z axis, CD is parallel to the y axis, and DE is parallel to the x axis. 
Replace the forces shown by a force and a couple acting on  the  support at A. 

100 N 

E 

The cube shown in Figure P17.14 has 2 m edges, It is acted upon by the forces and 
couples shown. Replace the system  by a statically equivalent system comprising forces 
along the x, y and z axes, and couples around these axes. 

30 

10 Nrn 



The cantilever  ABC (Figure P17.15) lies in the horizontal plane, and the angle ABC is 
140". The load system at C consists  of a vertical  force  of 2 kN, a force  of 4 lcN in the 
horizontal plane and normal to BC, and a couple of 22 kNm whose axis coincides with 
the 4 kN force. Find the moment of the force  system at C about axes normal to the bar 
at D and E respectively. These axes  also  lie in the horizontal plane and D and E are the 
mid-points of BC and AB respectively. 

Gm 

1-10 In  
I 

A 

kNm 

F i ~ r e  P1 7.15 

Figure P17.16 shows a bar ACC,B bent into  the  quadrant of a circle centre 0 and radius 
6 m, and lying in the horizontal plane. It is cantilevered from A and is  free at B. At B it 
is subjected to a vertical 10 N force and a couple of 40 Nm whose axis  is tangential to 
the circle at B, At C (the angle BOC is 60") the axis CD is radial, CE is tangential and 
CF is vertical. 
(i) Find the moments of the force  system at B, about the axes CD,  CE  and CF. 
(ii) Find the moments of the system about the corresponding three axes at C, where the 

angle BOC, is 0. 

0 

40 N 

10 N 

Fipre P1 7. l G 

A force Pof  50 N acts through the  point (2, 8, 4) in a direction for which I = 0.4 and 
m = 0.5, the z component of F being  positive.  An axis S passes through the point (1, 5, 
0) and its direction cosines  are I = -0.2 and n = 0.6, and m is positive.  If the co- 
ordinates are  given in metres, find: 
(i) the  moment of Fabout S; 
(ii) the  component of P i n  the direction of S, 
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y /  F =  15 kN 
(direction  cosines 

A ( - 8 ,  - 8 ,  2) 

B (0, -8 ,  15) 

re P1Z 18 

acts through a point whose co-ordinates are x = 2, y = 3, z = 4 
(lengths are in metres) and in. a direction given  by the direction cosines I = 0.4, m = 0.4 
and n = 0.825. Find the ~ o m e n t  of the force about  the origin of co-ordinates (Le. about 
the axis through 0 normal to the plane containin the force and  the origin). 

* ~ i ~ c u l t  ~roblem, suitable for later study. 





Any  system  of  forces  may  be  replaced  by a single  force throu 
with a couple. The single  force  has components in  thre 

irections which are  equal to the sums of the components of the separate forces in these 
directions. The couple has components about the three given  axes which are  equal to the 
sums of the m o ~ e n t s  of  all the forces in the system about these axes. 

A body is in equilibriu~ only if the forces acting upon it have no resultant force and 
no resultant couple.  For the resultant force to be zero, the SUM of the ~ompollents in each 
of three mutually perpendicular directions must be zero. 

x= 0 
Y =  0 
z=  0 

In order that  the resultant couple should be zero, the sum of the ~ o m e ~ t s  of  all  of the 
forces about each  of three ~u tua l ly  perpendicular axes must also  be  zero. 

M. = 0 
My = 0 
M- = 0 

These six equations are the general conditions of equilibrium of  forces in space. In 
particular problems a judicious choice of axes about which to take moments will often 
shorten the solution, For instance any particular force is eliminated from the ~ o m e n t  
calculation  if moments are taken about an axis intersecting this force or an axis parallel 
to it. This is because a force  has no  moment  about an axis if it either intersects the axis 
or is parallel to it. 

In the solution of problems, it is often convenient to consider what motion will  be 
permitted if a certain reaction is removed. This reveals what equilibrium equation can  be 
used to evaluate this reaction. For instance, if  removal  of a given reaction would leave the 
body free to rotate about the y axis, then an equation of moments about the y axis  will 
enable that reaction to be calculated. 
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The reactions to the structure of Exarnple 18.1 were all parailel to axes Ox, Oy and Oz. 
ineering  problems  are ofthis nature, but others involve oblique reactions. In such 

cases it is ofien convenient to resolve such  reactions into their orthogonal components. 



It will  be noted that there are only five reactions to this pole,  namely three 
co~ponents  at B and the tensions in  the two ties. These happen to be s u ~ c i e n t  to 
equilibrate the particular forces  given in this problem. Evidently, since there are less than 
six reaction components, they will not equilibrate all applied forces  even if the cies AC 
and ED were  capable  of  resisting  compression. It is  left to the reader to note what type 
of force could not be  reacted  by the system of support shown. 



The bar ABC in Figure P18.1 lies in the horizontal plane and  the angle ABC is 120". 
The support  at A can supply reaction components A, vertically, 4 in the direction AB 
and A3 normal to A, and A,. The support at B can supply a reaction component B, 
vertically. The support  at 
C can supply a reaction 
component C, vertically 
and Cz in  the direction of 
BC. Find  the reactions 
due to the force  system 
shown, where the forces A, 

of 5 kN and 16 kN are 
vertical, and  the 12 kN 
force is horizontal and 
normal to AB. 



horizontal rectangular platform weighing 400 N is supported on hin 
by a chain CD. %%at  are the reactions at  the hinges and the tension in the chain when 
a load of 200 N is located as shown? ~ s u m e  that  the hinges cannot exert  reactions in the 
x direction. 

Y t  

rcular  plate of weight W is supported in a horizo~tal position on three 
and C placed under the c i r c ~ ~ f e  
f 60" at the centre of the plate, a 

find the load on each sphere. 

.4 rests on horizont 
be exerted at A in  the x and y directions, at 
x and y directions. ABC is an equilateral tria 
equal in length and D is 10 m above the ground. F 
at D, acting in a horizonta~ plane and  in a directio 

CDE in Figure P185 lies in a vertical  plane. The support  at A can  exert 
a rea~tion in any direction; the  support  at E cannot exert a re tion in the 
DE, and  the  support  at C can exert a reaction only normal to 
uniformly  distribute^ load  acts  vertically, as does the load at 



and  the reactions R,, , and R6 all act normal to  the plane of the bar, Fin 
~ o ~ p o n e ~ t s .  

igure P18.6 shows  a triangular table. ~ e t e r ~ i n e  the forces in the  three  le 
of the table if a  weight of 3 kN is placed an it as shown in Fi 

$7 has  a r i~ht-an~led bend 
The support at C can ex 



The beam ABCDEF shown in Figure P18.8 lies in a horizontal plane. All joints are  90". 
th of  each portion is 3 m. There is a ball joint  at F, providing reactions RI, I(z 

and R3. Vertical  reactions  are  also provided at A and C,  and a horizontal reaction at A. 
A vertical  load of 16 kN and a horizontal load of 12 kN are applied at D. Determine the 
six reactions. 

K 

C 

Fipre PI8.8 

The body ABCDEFGH  in Figure P1 8.9 is supported by  cables or struts which provide 
reactions RI to R6 acting along lines M ,  DC,  CG, BC, DH and EF  respectively. The 
body is acted upon by a force  of 490 N acting along the line DF and  one of 200 N acting 
along FB. Find the six reactions. 

' I  

L c 
F i p ~ e  PI 8. IO  

10 N 



Figure P1 8.1 l shows a bent cantilever lying in  the horizontal plane. Find the six 
reactions at A due to the applied forces at C and D. 

Figure P1 8.12 shows a vertical  cantilever DB  to the  top of which are attached horizontal 
arms AB and BC.  Forces  of 5 kN (in the direction C to B) and 20 kt? (vertical) and also 
a couple of 30 khlm (about a horizontal axis normal to CB) are applied at C. The arm 
AB carries a distributed loading of 5 kN/m which acts  vertically downward. Calculate the 
six reactions at D due to these  loads. The arm AB  is parallel to the x axis and  the arm BC 
is parallel to the z axis. 

I 20 kN 

13 shows the freebody of that part of a bent beam which lies to the right of 
a section A. Find the stress resultants (or internal forces) at  the cross-section A. The 
positive directions of  these  forces  are  as indicated in the figure. 

m 



The fre CDE shown in Figure P a bent beam  by a cut  at 
section IS horizontal, CD is verti 

ne CDE, Find  the three force components NJ Sy and Sz at B 
uples 71 My and Mz, if the freebody is in equilibrium. (Nis 

parallel to CD and is parallel to ED.) 

't 

N 

re P18.14 re PI 8, I 

tilever ABC is located in space as shown in Figure P 18.15. 
applied at C in  the direction of BC. A couple of +33 kNm is  also applied at 

itudinal axis of BC. Find the equili~ratin 

.l6 shows a cantilever ABCD, of which C lies in the horizontal plane and 
al. The part AB lies along rhe x axis an is a quadrant of a circle of radius 

r. A horizontal force Pis applied at D in the x direction, togerher wit 
as shown. Find the six  reactions at A due to the two loads applied a 

'l 

Z 

e cranked beam ABCDEF in Figure P18.17 lies in the xz plane. The sup 
upport A can only resist X, Yand Mx ~ o ~ p o n e n t s ,  while support F 
and My co~ponents,  m a t  are the values  of the six reactions  ue to the three loads 

shown, 



6 kN 

A door of uniform thickness and of  weight 300 N measures 
, A. being 0.25 m from the ttom of the door and capable 

vertical  reactions, The hinge is 0.25 m from the to 
vertical support. When  th oor is erected, the  hi 

not placed  vertically  above A, so that when the door is  closed the  top corner C is 20 mm 
out of the vertical through corner D. %at  force, acting perpendicular to the  door  at  the 
mid-height E of the  front edge, is required to hold the door open after it has turned 

45" from the closed position? 
20 mm 

is I .5 m square and weighs 2 kN. It is suspended by  rhree chains 
d M i n  the walls of a room which is 4 m square. Hoo 
f the room and are  nearest to corners A and respectively  of the 
he middle of the wall opposite A'B ', and is 

in the plate which.  is the mid-point of CD. The hooks are  all at  the 
floor. Chains co~nect  A, B and M with A', 
' are  each 2 m long, while MM' is 2.5 m 

re interested in co~putational methods may  like to solve the problem 
is increased in length to 2.5 m.) 
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d physics require a howled 
book, it is appropriate to consider 

istributed load acting on  a plane surface. The 
fluid pressure on submer 

be applicable to problems involving  stresses, and to more ab 

r first the case of a lo of uniform intensity W ( 

The load acting on an elemental area dA is: 
dW= W 

and the total load is: 

W =  IWdA = W ~ d A  = W A  

where A is the area of the figure. For figures  of simple shape, such as those occurring in 
engineerillg, the value of A is known from earlier studies. nly for unusual shapes is 
integration required. W is the resultant of the parallel  forces acting on  the elemental 
areas. It may  be thought of as the volume of the ~ ~ e s s ~ ~ e  ~ ~ u c ~  (Figure A. 1) of  area A and 
thickness W, 



The position at which the resultant acts  is  calle 
re A.2 with co-ordinates xc, yc ' with respect to arbit 

e yc ', the sum of the moments of the elemental forces 
t of the resultant CEi: In the same  way, xc 'is found by 

Y' ' dX' 

U . X' 

er  first the evaluation of yc ' (I on the element of area 
is ' and its moment about Ox 'i y '. The total moment 
forces  is: 

M =  W/ J , y ~ ~ y f  
Y X  

Zy' is a geometrical property of the figure. It is called the  st 
and is denoted by Q), . The total moment may then be written 

, The moment of the resultant is WAY L. Equating these, we  have: 

, involves the double in  ation of y 'with respect to x ' and y '. 
ation is avoided  by c ering elemental strips rather than 

We may take a strip parallel to the axis Ox ' of length I and width dy ' (Figure A.2). 
ince the force on the element is uniform the resultant is  clearly ~ ~ y ' )  and acts at  the 

elements of  area 

centre of the strip. The moment of this force about Ox 'is: 

dM = W ( ~ y ' ) y '  

and  the total moment is: 

strip instead of the element d3c'dy 'is e q u i v ~ e ~ t  to having 
en I has  been  expressed in terms of y ;  the value  of 
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~ternatively, we may  take the elemental strips parallel to Oy' (Figure A.2). If the 
length of the strip is h and its centre is ys'from Ox', then  the  moment  about Ox'of the 
force on the strip is: 

dM = W ( h  &')& ' 

and  the total moment is: 

M== W/ by:&'= wQ, 
X( 

VUhen h and ys ' have  been  expressed in terms of x' then: 

cr: = J" ,h&&' 
X 

Similarly, by  taking moments  about Oy 'we find that: 

1 " .  % .xc - A 



It is usual to use the symbols Cx, Cy for axes with origin at the centroid. The initial 
convenient axes are therefore called Ox  ‘and  Oy ‘. 

If a plane figure has an axis of symmetry, the centroid must be on  that axis. In the 
plane figure shown in Figure A.4, if the area is divided into elements at right angles to 
the axis of symmetry, every element is centred on that axis, and  the first moment about 
the axis  is zero. Hence the first moment of the total area is zero about the axis of 
symmetry and the centroid must lie thereon. 

1 

If the figure  has two axes of symmetry, the centroid must be the point of intersection 
of these two axes. 

Since the resultant force Wacts at  the centroid, the first moment Q about any axis 
passing through the centroid must be zero. Also the first moment  about any axis AA is 
(see Figure A.5): 

Q, = Ae 

where e is the perpendicular distance of axis AA from 
A ’.. 

7.. .. 

the centroid. 

Most figures which occur in engineering are  very simple, or can be sub-divided into 
simplie elements whose centroids are known. Integration may then be  replaced  by 
summation, using Equation A.8 for each element. The centroid and properties of some 
simple shapes  are  given in  Table A. 1. 



Table A, I :  ~ ~ ~ o i ~  o ~ ~ ~ ~ e s  (courtesy of Jacaranda  Wiley  Ltd) 

I 

I 

semicircle 

semicircular 
strip 

sector of 
a circle 



We consider now the case of a plane surface acted upon by a linearly  varying distributed 
load.  Figure A.7 shows a figure ABCD subjected to a load which varies  linearly in the y 
direction and is uniform in  the x direction, The axis Ox ' is the line of zero  load. If the 
load intensity at  unit distance from Ox 'is denoted by wl, then  the intensity at any point 
is wlyl The axis Oy ' is normal to Ox  ' but is otherwise arbitrary. The load intensity is 
represented by the block ABCDAB'C'D'. 

Y' ! ~~~""""""""""----- 

I' , element $x'd I ,+' E 
*:B' 

I 

I' 
I' 

Pipre R 7 

The problem is to determine the resultant force K and  the co-ordinates of R, its point 
of application, i.e. (xi, y L). 



Consider an elemental area distant y 'from Ox The load intensity here is wly t The force 
on  the element is: 

dW= ( ~ , y ' ) ~ ' d y '  

and  the total load is: 

'dy'= w l I I y ~ ~ y '  

The integral I ~ y ~ ' d y '  is the first moment of  area about Ox '. Hence: 

W =  WIQ, 

If the distance from the centroid to axis Ox' is y:, then: 

Q , = y L A  and W =  w,y',A 

But wtyc'is the intensity of loading at  the centroid, which may  be denoted by wc. So 
the total load is the intensity of load at the centroid times the area  of the figure: 

W =  

R 

Since the load intensity varies in  one direction and not in  the other, the ~etermination 
of .xk and y will  be different. To  find the distance of R from Ox we take moments 
about Ox t The moment of the element force ( wly ') dx U'' about Ox ' is: 

~ ~ ' ,  = (w1yfdx'dy')yf = ~ ~ y ' 2 ~ ' d y f  

Hence the sum of the ~ o ~ e n t s  of all the element forces about Ox 'is: 

The term ff y '2&'dy' is a geometrical property of the figure. It is  called the second 

~ u ~ e n t  ofarea about Ox 'and is denoted by I' j , ,  That is: 

rxk, = f f y ~ 2 ~ ' d y f  

and: I W ~ ,  = wsrxk, 

The moment of the resultant about O x  'is Wy K and from Equation A. 1 1 : 

W y ~  = ( w ~ y ~ A ) y ~  



'x' 

The evaluation of L k ,  involves the double integration of (J ')' with respect to x ' and y 
As in the case of the calculation of the first moment of area, one integration may  be 
avoided  by considering a strip parallel to the axis Ox of length I and width dy ' (Figure 
AS). The force on the strip is uniform and equal to wly '( Uy '). The moment of this force 
about Ox 'is: 

dMx, = ~ ~ y ~ ( ~ y f ) y f  = w , ~ f 2 d y f  

The total moment is: 

M', = ~ 1 f ~ ~ 2 d y f  

Ix,. = f ~ f 2 d y '  

When I has  been  expressed in terms  of y : then: 

The use of an elemental strip parallel to  Oy will  rarely  be  beneficial in this case  because 
the load on such a strip would not be uniform. The position of the resultant force on  the 
element would therefore not be  obvious. 



f the resultant W from Oy ’ in Figure 12.7 (page 266), we take 
moments about Oy  The force on an element (dx Uy ’) is WJ ’(dx Uy ‘) and  the  moment 
of this force about Oy ‘ is: 

~ ~ , ,  = W~y’(~Uy‘)x‘  

The total moment is: 

IMy ’  = w ~ ~ ~ y j , ~ ~ y ‘  

‘xt. = J” yj,~Uy’ 

The term J”/y j, Xy Uy ’ is a geometrical property called the ~ r u d ~ c t  ~ u ~ e ~ t  ufdrea and 

is denoted by IX,,, 

Y x *  

and: M,, = wlrx,,, 

The moment of the resultant about Oy ‘is: 

WXC, = (W1y~A)xC, 

Hence: (w,y &4)x C, = w1 I’ 

‘Y’ 
Considering the  strip element as before (Figure 12.7, page 266), the  moment of the force 
on this area about Oy ‘ is: 

dMy , = W J  ’( Ldy ‘)x 6 
where  x: is the distance of the mid-point of the element from Oy Thus: 

My. = w , J ” ~ ~ ~ d ~ f =  W I I x p .  

<‘,, = /yYx: dy’ 

The dimensions Land  x: must be  expressed in terms of y’before integration, 



270 A P P E N D I X  

For the case of a load varying  linearly in the y direction, the resultant force on the area 
is the load intensity at  the centroid times the area, 

W =  w1y&4 

This acts at  the  point (x;, y k) where: 

In these  expressions the axis Ox must be the line of  zero  load and  the axis Oy 'is any 
axis normal to  Ox: 

A similar  analysis  may  be made for a load which varies  linearly in the x direction and is 
constant in the y direction, Oy ' being the axis of  zero  load. Such a load would have a 
resultant: 

W =  w1xLA 

acting at (x;, y K) where: 

The second moment I ,is given  by: 
YP 

Iy,y. = Jx'%k2yf 

The second moments of area and product moment of  area  of some simple shapes  are 
given in Table A.2. 
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a. T 
A- I, 2 

(The sign of lyz is the  same 
as that of the abscissa of D.) 

Fairly  simple relationships exist  between the quantities ,,, and Iy expressed in  one set 
of axes and the  same quantities expressed in a parallel  set  of  axes with origin at  the 
centroid. It is often  convenient to  compute  the values in one set of axes and  then  to 
derive the values in  other axes where direct computation may  be  more  complex. 

'X '  

Since I, ,,, = /y f2dA,  it is independent of x'and hence  a shift of the axis Oy 'has no effect 
on this quantity. Moreover ( jy2dA is a  positive quantity whether y '  is positive or 
negative.  Therefore I, ,, ,will be  positive with respect to  any position  of Ox  We note also 
that a shift of  axis Ox 'implies a shift of the line of  zero  pressure. 



* X  

Figwe A. 10 

Figure A. 10 shows a typical element of  area dA at distance y from axis x Its distance 
from the parallel axis Cx through the centroid is y, hence: 

Y 1 =  Y + Y;: 

The second moment of  area about Cx is: 

I,, = /y2dA 

The second moment of  area about Ox 'is: 

Now: IXx = /YdA; /yd. is the first moment of A about the axis Cx through the 
centroid and is therefore zero; and /dA is the area A. Hence: 

Ixk ,  = In + ( Y ~ ) ~ A  

The term ( Y ; J ) ~ A  is positive whether y;: is positive or negative. Therefore the second 
moment of  area about an axis through the centroid is  less than that  about any other 
parallel axis. 

Equation A.26 is often called the Theorem o ~ ~ ~ r ~ Z Z e Z ~ e ~ .  It enables us to re-state 
Equation A. 16 in a more convenient form. From Equation A. 16, we  have: 

I , * , *  

yK=y;:A 

and using Equation A.26: 



It is of interest to interpret the parallel axis theorem in terms of  force  systems.  Figure 
A, l l a  shows (in side elevation) a plane figure of area A (represented in side  elevation  by 
the line segment EF), with centroid C, acted upon by a linearly  varying  pressure. The 
total pressure  block EFGH may  be  regarded as a block  of uniform pressure (EFKL) plus 
a couple represented by HLKG, The uniform pressure  block  has a resultant W = wIy LA 
(Equation A.1 1) acting at  the centroid. The figure HLKG is a couple of moment 
M = w1 I, (Equation A. 15). 

K 
M 

X' 

Fipre A. l l 

The force W and  the couple M may  be  replaced  by a single resultant force R at a 
distance M/ W from C (see Chapter 4, Section 4.5). In this case: 

The total moment of the pressure  system about axis x is: 

M +  Wy;: = w,Ixx + w,AyL2 

which is the same as Equation A.26. The significance of the two terms on  the right-hand 
side of this equation may be seen from Figure A. 1 1 b in which the axis of  zero load moves 
nearer to the centroid C, and Figure A. l IC in which this axis coincides with C. Clearly 
the  moment of the uniform pressure  block, w1 (Ay L2) diminishes as y decreases,  while 
the m o m ~ n t  of the couple w,Ixx remains constant. The distance from the centroid to the 
position of the resultant force  increases  as Wbecomes smaller. In the limit, as y;: tends 
to zero, this distance tends to infinity, since the resultant force is now zero. 

The Parallel Axis Theorem could be  used to find the second moment of area of the 
rectangle  of  Figure A.8 about an axis xx through the centroid and parallel to M. The 
axis xx is D/2 from M. From Equation A.26: 

The 
figures, 

b d  (&l)@ 

3 4 
b d  

" - - - 

-- - 
12 

theorem is particularly useful for finding the second moment of composite 
a very common problem in engineering. 



'Y' 

The value  of the product moment is affected  by  changes both of Ox 'and of Oy Note 
that for a given element of  area d4 the product xly'wiil be positive if x'and  y'have the 
same  sign  (i.e. d4 lies in the first or third quadrants} and negative  if they have opposite 
signs  (i.e. d4 lies in the second or fourth quadrants). 

Figure A. 12 

Figure A. 12 shows a typical element with co-ordinates x; y ' with respect to the origin 
0 and x, y with respect to the origin at the centroid. 

x' =f: x +  x;: 

.Y'":Y+Y:, 
The product moment about C is: 

I-= Ixyd 

I&'= ~xlyld4 

The product m o ~ e n t  about 0 is: 

= !(x+ x;:,(Y+y:,> 

=I , 'x ; :Q,+Y;:QY+~;:y; :  

Since axes x and y pass through  the centroid, Q = = 0 and therefore: 

I& = I- + Ax:, y;: 

The term Iw may be regarded as the product moment of the figure about its 'own' axes 
and  the second term Ax; y as the product moment  about axes x j  ' with the area A 
concentrated at the centroid. 



Figure A13 shows a figure which, with respect to its 'own' axes at C, lies 
predominantly in the first and third quandrants and thus has a positive  value  of I With 
respect to axes Ox ' and Oy the figure  lies entirely in the second quadrant an2 L ,  , is 
negative.  Similarly a shift of origin to 0, would give a positive  value of the proluct 
moment considerably greater than Ix,. 

t 

I 
I """""" 

0:  X' 

""t""""""""""""""" 
0 1  i Figwe A. 13 



Suppose that  the figure shown in Figure A. 14 (page 27’5) is subjected to a linearly  varying 
pressure with zero  pressure along either Cx or Cy. There will  be no resultant force but 
there will  be a moment about both Cx and  Cy since Ixy is not zero. 



Rotation of the axes  relative to the figure  will  change the values  of IXX, Iyy and IXy. In 
particular IXy will  change  sign  if the axes are rotated through 90" since elements 
previously in  the first quadrant will now be in  the second ar fourth  quadrant, Some axis 
rotation less than 90" must therefore result in a zero  value  of IT. These axes are  called 
principal axes and are denoted by C1 and C2.  The second moments about these axes are 
denoted by I,, and 122. One of  these is the maximum and  one  the ~ i n i m u m  second 
moment  about any axis. A pressure  system  varying  parallel to one of  these axes  will  have 
a moment only about the axis of zero  pressure. 

' l  

Suppose that for the figure shown in Figure A. 15 the values of I=, Iyy and IXy have  been 
calculated. Consider axes Cx ' and Cy ' at an  angle 8 to Cx and  Cy respectively. 

X'= xcos 8 + ysin 8 

y r  = -xsin 8 + y cos 8 

Then: 

= sin28 J" + cos28 J" yd - 2sin8 cos8 J" qt 
= r' sin2@ + I ~ ,  cos2@ - I~ sin2 8 

I' (x ~ = ? (I, + 1') +;(Im - I") cos2 8 - Ixy sin2 8 or: 

Similarly: 

l S 

'y ,y ,  = ?(I= + I,,, - z(Im - IT) cos28 + Ixy sin28 S S 

and: I , ~ = ?(Ixx - IT) sin28 + IT cos28 

To locate the principal axes,  we set IXt, to zero in Equation A.33. This gives: 

1 

X Y  



which results in two values  of 20 which differ by 1 80", or two values  of 0 which diflier 
by 90". 

For the figure examined in Example A.5 (page 275), we  have: 

1-3906  X lo3 
0.5(12012 - 4199) X 10 tan20 = 7 = + 1.00 

Hence 20 = 45" and 0 = 22.5", or 20 = 225" and 0 = 112.5" 

The values  of AI and are obtained from Equations A 3 1  and A.32: 

h ,  = 0.5(12012 t-4199) X lo3  + 0.5(12012 - 4199)  X lo3 cos 45 
+ 3906 X lo3 sin 45 

= $105  X lo3 + 2762  X lo3 + 2762 X lo3 
= 13629  X lo3 mm4 



(a) F' = 8.66 kN; F' = 5.0 kN. 
(b) Fx = -20.0  kN; F' = -34.64 kN, 
(c) F, = -3.54 kN; Fy = "3.54 k N ,  

(a) F, = 109.8  kN; F, = 77.65 kN. 
(b) F, = 269.0 W; F' = 219.6  kN. 
(C) F, = 200.0 kN; Fv = - 103.5 W. 
P = 73.21  N  and Q = 51.76 N. 
R = 91.70 N at 0 = 23.67". 
R = 62.5 N at 8 = 39.84". 
R = 834.5  N  at 8 = 7.32". 
(a) R = 6.38 N at 0 = - 16.42". (b) R = 3.427 N at 8 = -10.01". 
(c) R = 97.90  N at 0 = 102.4". 
R = 8.04 kN at 0 == 223.2". 
(i) (a) a = 53.1" (or -53.1")  and A = 20  N  (or  -20 N). 

(b) a = 25.84" (or -25.84") and A = 19.11  (or  1.67 N). 
(c) a = 100.3" and A = 11.1  N  or a = 199.7"  and A = -27.1 N. 

(ii) (a) a = 126.9" (or - 126.9") and A = 20 N (or  -20 N), 
(b) a = 154.2" (or -154.2")  and A = -1.67  N (or -19.10 N). 
(c) a =  19.7" and A =  "27.1 N or a = -79.7"  and A = -11.1 N. 

0 = 41.54" and P = 283.4 N. 
FA, = 1795 N and FBc = 2199 N. 
R = 95.39  N  at 53.01"; FUR = 98.62  N  and FvR = 30.53 N. 
0 = 146.0". 
a = 69.92"  and p = 9.39". 
R = 26.90 kN  and P = 27.90  kN. 

P = 6.66  kN  and a = 121.7". 
Q = -15.63 N and P = -24.92 N. 
F', = -120.2  N  and FBc = 833.3 N. 
169.4." and 253.1"  respectively, or  219.8"  and  136.1" respectively. 
H =  10.56 N 
RA = 10.29 kN at 48.33" to  the horizontal and & = 11.1 1 kN (upwards). 
Force in connecting  rod, F,, = 1.02 kN compression; Force on cylinder wall 
= 0.20 kN. 
(i) RB = 0.289K 
(ii) RA = 0.764W at 10.9" to  the vertical. 
p = 0.577. 
F = 19.36 N. 
FA, = 219.9 W cornpression; FAc = 72.3  kN tension; FDA = 100  kN. 



0 = 39.66" and FCB = 43.3 N. 
RA = 2.67 kN and I;ln = 3.33 W. 
HA = 1.83 k N ;  I/A = 8.17 lcN; TB, = 2.59  kN. 
P = 6.32 N and Q= -20.74 N. 
RA = 12.85  N  at - 10"  to  the horizontal and R, = 18.79 N 
at  140"  to  the horizontal. 
P = 40.48 N; 4 = 7.53"; 0 = 10.18". 
4.3 m above the  ground. 
(i) 0 = 450 (ii)  0.667 V 
5.56 N ~ e r p e n d i c u l ~  to  the lever. 
P = 14.1  1 kN and RA = 14.97  kN 

a = 12-64"  and F = 1108 N. 
RC: = 487.1 N at = 55.39" to horizontal and Q = 385.3 N. 
(Hc = 276.7 N and V, = 400.3 N) 
LAC = 2.595 m; L,, = 3.405 m; FBc = 126.1 N and FA, = 96.1 
0 = 18.43"  to the vertical and T== 10.54 N. 

andHA = 1 I .38 ks\J 

M, = 56.6 Nm clockwise. 
M, = 56.6 Nm clockwise. 

Resultant is a vertical  force R = 58.56 N + which cuts AC 4.732 m to 

esultant at D: 4 = 2.196 kN( 
anticlockwise. 
Resultant is 70  N  at 70" cutting  AD 5.43111 to right of A, 

sultant is 8 kN at  -45"  cutting BD at  3.01m from B. 
(i) Resultant is a clockwise couple of 5953 Nmm. 
(ii) Resultant is a 360 N horizontal force at  16.54 mm above AC. 
(i) R, = -5,196kN; R. = -5.0  kN; M, = 9.59 kNm anticloc~ise.  
(ii) x = 0.082 m. 
(i) Resultant R = 10 kN acting in direction BD cutting BA 2"5m from B. 
(ii)  Same as (i). 
Resultant is 11.08 lcN at 33.6" to  the horizontal and  cutting ABC 9.31 m to 
the left  of B. 
(i) Force = 17.32 kN at 210"  to  direction A x  and couple = 12.39 kNm 

(ii)  Force is 17.32  kN  at  210"  to  direction Ax cutting Ax 1 .5 m from A. 
F, f3 = -2.303  kN; F, = -17.91  kN; F' = 4.91 k N .  
Fl = 22.48 k N ;  F, = 16.78  kN; E; = 20.70 k N .  
28.87 lcN along each  side. 
(i) Single  force is 6.403  N  at  38.66"  to the horizontal cutting  the line through 

(ii)  Force is 6.403 N at 38.66" to  the horizontal; couple i s  80 kNm clockwise. 

clockwise. 

AC 18m  to the right of A. 



(ii) 

(iii) 

(9  
(ii) 
P =  
(i) 

(ii) 

(ii) 
(iii) 

F =  

Fk = 32.39 kN at  64.1 1' below horizontal and couple is 10  kNm 
anticlockwise, 

and FB = 33.90 kN acting 65.35' below horizontal, 

and F' = 21.66  kN  acting 43.25" below horizontal, 
lockwise couple of 99.44 Nm, 

F = ION, ct! = 90' and xF = 9.944 m. 
21.42 kN; 8 = 13.50' and couple at C = 48.12  kNm. 
Force at C = 32.56N  at 47.49'  above horizontal and couple is 162.67 Nm 
clockwise. 
F = 30.57  N  at 8 = 168.68" intersecting line  through 

ht of C. 
rce through 0 is 46.53  N at -7.24O (i.e. 7.24" below Ox) and 

couple = 70.74 Nm clockwise. 
Force is 46.53 N at 8 = -7.24'. Distance Ox = 23.91 m. 

WO forces  are 22.95  N  through 0 and  23.58  N 3 m from O both at 
= -7.24". 

8.4 N and RC = 14.21  N  at 8 = 60.81'. 
Fl = -4.83  kN, F2 = 3.05 kN, 8 = 147.8'. 

(i) P = 0.4 kN. 

, HA r= 5.20 kN and V, = 0.10 kN. 

VA = 13.08  kN, v;3 = 10.25  kN  and HB = 6.25 kN. 
F, 0, F2 = + l 5  kN and M =  -80 kNm. 
N= 0, S = wx and M = - wx212. 
e = 104.3  mm. 

(a) HA = 0, VA = 6 kN ( + ), V B = 2 k N (  + 
(b) HA = 0, VA = 9 ( + ), % = 5 k N (  + 
(c) HA = 10  kN ( ), v , = l O k N (  + ), HD = 10 kN ( 
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RI I=: -7.97 kN; l$ = 35.98 kN; l$ I=: -19.04 kN . 
8 kN and RB == 6.22 kN. (ii) RC I=: -0.38 kN. 

), l$ = -7.19 N at B = 103.1". 

B E H K M S 

E H K  M 

n D G J N 
"4 

B 



C L 

P, 



E M 

E 

R2 A F 



R6 = ~050 .6  N, R, = 1813.6 N at 13 = 79.05" and 4 = 1171N at 8 = 107.1". 

V, = V, = 2l.K HE = -Hc 1.906l.K FBH = 2.24W( 
HA = -0.233 W +  2.96.X VA = -0.058 W +  0.79641"11; 
H, = 1.142W- 1.96.X VD 1.474W- 0.796 Iru", 
FBH = 0.708 W - 2.96X; FRv = 0.178 W -  0.796X; 
F& -0.434E FEv = - 1.296 E 
FcH = -0.476 <-v = -0.121 

S, = -16kN, ME 48 kNm; S, 
N= -5.0 k N ,  S =  t-0.447 kN, M =  9 
SE = -15 kN  and ME = 135.0  kNm. 
ND = 100 k N ;  S, = 0; M, = 433.0  kNm; NE = 50 kN; SE = 86.6 k N ;  
ME = 216.5 m m .  
At mid-point of AB: M = 325 kNm and S = - 130 kN. 

CL BC: M =  850 kNrn and S = -30 kN. 
CD: M =  660 kNrn and S = 70 kN. 
DE: M = 160 kNm and S = 120 kN. 
EE;: M =  -1OOkNrn and S= -40 

Np NQ = N, = 0; MP = 72.89 kNm; M~ = 91.56 kNrn; 
MR 1 10.2 kN; and S, = -6.22kN. 

C( 

LC 

cc 

N= 0, S= -7OkN and M =  725kNm. 
: S, = 30x - 220 kN and M, = 220x - 15x2 kNm, 
: S, = +80 kN and M, = 1500 - 80x~Nrn .  

In CD: S' = +80 kN and M, = 1760 - 80x 
(i) MA= 0; MB = 157.2 m m ;  M, = 131.4 kNm; 

and MD = 451.4 kNm. 
(ii) S' = -71.43 kN; SB = 8.57 kN; SCB = 8.57 kN; S,, = - 

S,, =; 108.6 k N ;  and SEF = -50 kN, 
(iii) NAB = 80 kN, NB, = 80 kN and N,, = 108.6 kN. 
NA = -27.32 k N ;  S' == 0; MA =I 0; NB = -23.66 k N ;  SB = - 13.66 
m; MB = 18.30 kNm; Nc = -13.66  kN; M, = 68.3  kNm; 
ND = - 10.0 W; and M, = 86.6 kNm. 

A B c D 

- 16 



(i)  In AB: S = 2Ox - 75 and M =  75x - lox2. 
In BC: S = 25  and M =  250 - 25x. 

A B C 

+25 

-75 

110.2 

- 18.2 

In AB: S = 30x - 220  and M = 220x - 15x2. 
In BC: S = 80 and M = 1500 - 80x. 
In CD: S = 80 and 
(i) HA = 0; V, = 2.22 kN( 
(ii) MA = 0; MB, = - 8 .  

McB = 33.33 m m ;  M,, = 13.33 kNm; MD 0; 
(iii) SAB - - SBc = St.* = 2.22 kN; NAB = NB, = N,, = 0 
(i) RA = (M, - M1)/18 -l- and RD = (M,  - M2)/1 8 -l- 
(ii) In AB: S = (M, - M, 18 and M =  (M, - M1)x/18. 

In BC: S =  (Ml - M2)/18  and M =  (M, - M1)x/18 -l- MI 
In CD: S = (M, - M,)/l 8 and M = (M, - Ml)x/18 -l- MI - M2. 

At midpoint CD: N = 0; S = - 25 kN; and M = - 12.5 kNm. 
At midpoint BE: N = - 90 kN; S = 0; and M == -30  kNm. 
At E: N= -90 kN; S = 0; and M = -30 kNm. 
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Midpoint 
Midpoint 
Midpoint 
Midpoint 
Midpoint 
Midpoint 
At D: 
At C: 

C 

C D 

300 I 

100 

J0O 

AB: N =  0; S =  -15  kN; M =  t-7.5  kNm. 
BC: N Z  12.99 kN; S = -7.5 kN M =  82.5 kNm. 
DC: N Z  0; S =  15 k N ;  M = 52.5 kNm. 
AB: N = -67.43  kN; S = 0; M =  0. 
CD: N =  68.89 k N ;  S -13.54 kN; M =  81.72 kNm. 
DE: NZ 58.28  kN; S = - 10.86 kN; M =  21.72 kNm. 
MD = 43.43  kNm. 
MC = - 120.0  kNm. 

166’7 

M (kNrn) 
A B G D E 

- 167 - 167 

1762 
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3.66 

Thrust = 0 .687~ .  

In AB: S = 2 . 5 ~ ~  - 26.25 and M = 26 .25~  - 5 ~ ~ 1 6 .  
e: S = 15x - 48.75 and M = - 7 . 5 ~ ~  + 4 8 . 7 5 ~  - 22.50 

S = -3.75 kN and M = 56.25 kNm, 

= 0; V, = 1 kN; V, = 34 l d ;  V;: = 15 kN. 
= 1.77 kN; = 4.27 kN; Hc = - 1.77 kN; V, = 

H" = 10.64 M; V' = 1.03 kN; H, -4.98 
H' = -0.62 kN; V, = .24 kN; HB = 4.62 kN; 5 
H, = 14 kN; V, = l 1  ; HD -14kN; V, = 13 
V, = 1.5 k N ;  V, = 11.0 kN; 
(a) H'' = -6.67 kN; V, = -4 
(b) HA = -6 kN; V, = -1.5 

V, = 4.75 kN; and MG = 9.5 kNm 
H, = 3.33 kN; V' = 30.67 kN; H, = -1.33 kN; HE = -2.0 kN; 
and VE = 14.33 kN 
V' 8.5 kN; H, 10 kN; VG = 1.5 kN; 2"= 15.6 kN 

Load a t  l3 6 0 0 0 
Load a t  C 6 0 18 0 
Load a t  D 6 0 36 0 
Load a t  E 3 0 18  3 

-~ 

Load a t  E 5.33 4 -21.33 -5.33 4 21.33 
Load a t  W 0 0 0 0 16 
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TmaX = 20.75 kN. 
Sag at D = 1.506 m. 
Tcn = 15.94 kN. 
(i) 21.94 m. (ii) 410.1 N, 508.1 N, respectively, (iii) 19.5 m. 
(i) 21.82 m. (ii) 429.6N,  538.7 N, respectively. (iii) 19.5 m. 
(i) 23.78 m. (ii) 4.27 m. (iii) 78,127 kN. 

9 m. (ii) -7.64 m. (iii) 19.56 kN 
(i) 23.43 m and  15.62 m. (ii) 3.73 m, 
TmaX = 7537 kN and Tmin = 6800 W. 
Sag at B = 74.8 m; Sag at C = 119.6 m; TnL == 390 kN. 
~ ~ i m u m  sag  in AB ~ 3 7 . 1  m and in BC ~ 5 9 . 3  m ; and Til, = 15. 

Member AB AC BC BD CD CE  DE  DF 
Force (kN) -86 -44.7 55.3  -30.7  -103.4  68.0  7.2 -92 

Me~ber EF EG FG 
Force (kN) 40.9  49.3 -88.9 

Force (kN) -50.4 -21.9 -2.6  -38.4 3.2  -23.8 0 -23.8 

 ember DG DF FG GH FH 
Force (kN) 2.0 -37.7 21.0 0 -49.5 

Member EF EG GF GJ FJ FW HJ 
Force (kN) 0 -146.7 0 -146.7 133.3 -40 80 

Member AB AD BD BC CD CE ED DF 
Force (kN) -96 -40 0 - 96 20 -12 -48 -12 

Me~ber EF EG GF FH GH GJ  HJ JK 
Force (kN) 60 -48 -48 24 -40 -24 -48 60 

; 8.39 kN; H2 = 5.46 k F 4 ,  



 ember AD AB  BD  BC CD CE  DE  DF 
Force (kN) 16.1  -18.5  -8.1  -10.4  10.3  -10.4  -12.8  20.1 

Member EF 
Force (kN) -16.9 

Member AB AC BC BD DC CE DE  DF 
Force (kN) -8 0 15.5 -13.3 -2.0 13.3 3.9  -16.7 

Membe EF EG EH FH GH 
Force (kN) 0 0 19.4 -16.7 -10 

M e ~ b e r  AB AC BC BD CD CE DE  DF 
Force (kN) -15.0 7.5  15.0 -15.0 -10.4 20.2 1.1 -20.8 

Member EF EG FG FH GH GK  HK 
Force (kN) 5.8  17.9 -5.8 -15.0 15.0 7.5  -15.0 

Member AC AB BC BD CD CE DE DF 
Force (kN) 13.1 -10.2 -4.7 -8.7 3.7  8.1 -6.7 -5.7 

Member EF EG FG 
Force (kN) 6.3  3.1 -9.9 

 ember AB BD AC CD DF  CE 
Force (kN) 0 4 -1 3 

Member 
Force (kN) -1 1 -1 3 
Member EF FH JL 
Force (kN) -1 2 -1 

;"; -3 x -2 
EG  GH  HK GJ JK 

Member AC AB BC CE BE BD  DE  EG 
Force (kN) 100.6 -112.5 0 100.6 -62.5  -75.0  28.0  44.7 

Member DG DF FG GH FH 
Force (kN) -79.0 -37.5 55.9  "-11.2 "-100.8 

Member AE AD AC AB BC CD DE 
Force (kN) 0 32.1 30.2 73.4 -82.9 -88.3 -88.3 



X, = -74 kN; X, 202/2 kN; and X, = 54 kN. 
(b) X, = -50 kN; 4 = 0; 4 = 0; and 4 = 70 kN. 

Member BC BE DE DG FG GH HI IJ 
Force (kN) -51.7 50.4 -35.7 9.4 -16.0 13.2 -38.2 54.2 

Member JK 
Force (kN) -46.3 

Member AB BD DF FH HJ JL AC CE 
Force (kN) -51.7 -87.3 -94.0 -94.0 -84.7 -46.3 73.1 51.7 

Member EG GI IK KL 
Force (kN) 87.3 84.7 46.3 65.5 

FE, = -833.3 kN; FE, = 168.2 kN; and F,, = 711.9 kN. 
(i) Force in vertical  members  nearest  load = -300 kN. 

(ii) Force in diagonal members = 0. 
FB, - 100 kN; FBE = 5 0 f i  k N ;  and F& = - 5 kN. 
F,, = 3.2 kN; FCE = -23.8 kN. 
FcE = 13.3 k N ;  FDE 3.9 kN; F,, = -16.7 kN 
Fc, = 3.7 M; F& = 8.1 kN. 
(i) V' = 4.76 M; HA = 5.59 k N ;  VG = 16.24 kN; 

(ii) FM = -15.62 kN; Fm = 14.39 k N ;  FBE = -6.84 kN; 

Force in vertical  members  away from load = t-250 k N ,  

HG = 14.41 kN. 

FBc = - 10.39 kN; FcE = 4.83 kN; Fc, = - 11.99 kN; 
FDE = -3.46 kN; F*, = -13.05 kN; and FE, = 11.41 kN. 

F', = -7.826P; F', = 7.0P; FFJ = -0,8941); FFG = -7.379P; 
FGJ = 1.OP; E;, 6.0P; F,, = -1.7831); FGH = -6.932P; 
FGK = 1.OP; FDK = 2.0P; FHK = -0.894P; FHc = -6.485P; 
FcK = 3.0P; and FDE = 4.01). 

Mx = 80 kNm and My = 24 kNm. 

Member AB AE BE BC DE  CY YD 
Force (kN) - 1 2 f i  1 2  1 2 f i  - 2 4  1 6   - 1 2 f i  - 2 O f i  

At P: N= 0; S =  4 kN; M =  4 kNm, 
N E  - 110.9 k N ;  S = '7.2 kN; M = 12.0 kNm. 
NZ -2OkN; S =  0; M =  -10 kNm. 



F = 246.0 kN at 1.5 16 m above bottom of  canal. 

F = 60.43 WV actin 2.9 19 m below the free  water  surface on  the vertical 
centreline of the gate. 
F =  41.75  kN, 
(i) RA == 4.598  kN and = 22.99 kN (both horizontal). 

y =  1.67 m; F, = 48.15 kN; x= 1.061 m; andMc= 0 kNm. 
and RB == 9.49 IsN. 

V =  0.0408 m3 and y = 24.53 kN/rn3, 
(i) 5.759  kN. (ii) 5.246  kN. 
128 040 rn3. 

(i) Yes. (ii) H = 1.569 m. 
(i) 0.39 m. (ii) No. 
(iii) With one longitudinal face  parallel to and above the free  water  surface. 
0.8'76. 
h = 0.822 m. 

(i) 67.1 N 89.4 N 223.G N 
(ii) 103.9 N 103.9 N -103.9 N 
(iii) -94.9 N 170.8 N 227.7 N 
(iv) 320.0 N -200.0 N 357.8 N 
(v) -80.0 N 120.0 N 240.0 N 

R = 41.1 1 N in a direction given  by 0, = 53-60", 0y = 40.06", and SZ = 75.56". 

( V  945.8 N 0.9715  0.0846  0,2214 

~~ 

(ii) 160.4 N 0.5715 0.7480 0.3376 

(iii) 439.5 N 0.0724 0.2~28 -0,9621 

11.2  N at 67.7" to the line of  greatest  slope with a component down the plane. 

FAB = 53.6 N; FAc = -87.6 N; and Fm == 8.9 N. 
P = 13.7 N; the  60  N force  acts in the direction with Ox = 134,74", 
0 = 127.95", and eZ = 69.16" 



Ties: TA, = TAc = 1 13. 
ToA = 6.0 kN; ToB = 4 
All three bar  forces must be  zero. 
7k, = 2459 N and compression in mast = 4667 N. 
x = - 1.087 m; TBE == 2346 N; compression in mast = 44 
To, = 0.25 W; To, = 4.03 kN; and ToC = 2.30 kN. 
ToA = ToB = 3.62 kN and TOc = 3.89 kN. 
F== 10.32 kN; l = 0. 
F = 4.97 kN; l = 0.2500; m = ~.9389; an 

Mx = -12 Nm; My = 0; 
about axis with I = -0.554; m == 0; n = -0.831; 

= 68.70", and dZ = 43.30'. 

= 90', and 6z = 52.40". 

axis BC. 
FDA = 10.88 kN; FAB =IL 6.74 kN; Fa = 1.83 kN; F,, 7.07 kN; 
FDC = 5.98 kN; FCB = 8.20 kN. 
(i) 135.5 Nm. (ii) 202.7 Nm. 
1,414 Nm 
R = l 11.8 N in direction Ox = 26-56", 13y = 90', and QZ = 63.43'. 
MR == 67.1 Nm about an axis with 6x = 90", = 63.43", and 6z = 26.56". 
.X= 20kN;  Y= -16kI?; Z= 0; Mx = -22Nm;  My = 9 2 N m ;  
and Ad' = -22  Nm. 
- 16 kNm; 2.34 m m  
(i) 86.6 Nm; 10 Nm; and 0. 
(ii) 100 sin 13 Nm; (60 - 100 COS 6) Nm; and 0. 



(ii) 38.41  N 
; FOB = - 10.68 kN ; FOc = 5.06  kN; 

(MAc), = 75.80  kNm; (MA~)OB = -75.80 M m .  

A, = 2.5 kN; A, = 3.46  kN; A, = 6.0  kN; B, = 10.5 W; 
C, = 8.0 kN; C, = 6.93 kN. 
Ay = -173.3 N; A, = 676  N; By = 413.3 N; B' -52  N; 
Thain = 720 N. 
A = B = 0.268 C = 0.464 K 
XA -69.28 N; yA = - 100 N; Yc: = 0; Xc = 17.32 N; 
5 = 100 N; = 30  N. 
R,=O; K,=19.4kN; %=IO; R4= 15kN;  R5=20.6kN; RG= i5kN. 
RA = 3.0 k N ;  % = 3.6  kN; RC = 2.4 kN. 
R, = 2 k N ;  fzz = 2  kN; 4 = 1.5 kN; R4 = 0; R5 7.5 kN; 
R6 = 6  kN, 
RI = 5.33 k N ;  fzz = 8  kN; $ = 0; R4 = -5.33 kN; R5 = 4 kN; 
R6 = 16 kN. 

R6 = -420  N. 
R, -10 N; Ry = -5  N; RL = 0; M' = 20 Nm; M = 40  Nm; 
M, = -60 Nm. 
Rx -6 N; Ry = 10 N; R, 0; Mx = 60 Nm; M = 36  Nm; 
M, 20 Nm. 
R, = 0; Ry = 50 kN; R, = -5 kN, M' = 30  kNm; M = 0; 
M, = -90 kNm. 
N'= 20N;  Sy = 0; Sx -10N; T =  0; M'= 120Nm; 
M' = -20  Nm. 

RI = 200  N; K, = 0; 4 = 60  N; R4 =I 210  N; R5 = -200 N; 

0; Sy = 0; S, = -100 N; T =  600 Nm; My -200  Nm; 
M, = 0. 
X= -8 k N ;  Y= -6 kN; Z =  -24 k N ;  C, = -12 m m ;  
Cy = 39  kNm; C' = -48 kNm. 

C' = Q& + r) - PL,. 
RI = -4  kN; fzz = 1.8 k N ;  R, = 12 kNm; R4 = 4.2 kN; 
R5 = -3 kN; RG = -1 W m .  
0.849 N. 
A'= BB' 0.927 k N ;  ~ M '  = 1.073 kN. 

x= -R Y= Q z= 0; c,= - Q C  cy= -Pc 
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