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Preface

As in the previous editions, this book deals with the fundamentals of szazics and their
application to a broad range of engineering problems. The treatment is intended
primarily for undergraduate students of civil, structural and environmental engineering,
but we hope that it will also be of use to anyone with an interest in engineering
mechanics.

The present edition contains a substantial revision of much of the text of the previous
work and several additions to it. We have removed much of the material related to
graphical methods of solution, which is now dated and less relevant. But in doing so, we
have tried to ensure that students can still gain a physical understanding of the solution
to particular problems, as well as an analytical one.

A new chapter on fluid statics (Chapter 14) deals with the forces exerted on
submerged bodies, as well as with buoyancy and the stability of floating bodies. The
chapter on flexible cables (Chapter 9) contains what is believed to be a new approach to
the analysis of the catenary which allows for the direct solution of many cable problems
that have conventionally been solved using trial and error methods. The Appendix has
been added, dealing with the geometrical properties of plane figures. These properties
have been described and developed by considering some statics problems involving
parallel forces acting normal to a plane figure. This approach is directly applicable to
problems in fluid statics and to beam theory that may be studied in subsequent courses.
However, the equations are also of general application.

Additional tutorial problems have been added at the end of most chapters.

AS Hall
FE Archer
RI Gilbert
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Introduction

1.1 Scope

The subject of mechanics deals generally with the effect of forces on a body from the
point of view of the motion of the body. If a group (or system) of forces, when applied
to a body, causes no change in its state of motion, the group is said to be in equilibrium.
The study of the conditions of equilibrium constitutes that branch of mechanics known
as statics, and it is with this branch that this book deals.

Statics is the cornerstone of structural engineering, but fundamental concepts,
analytical methods and analogies from statics are directly applicable in almost every
branch of engineering. A sound knowledge of the application of the principles of statics
is therefore essential for all engineering students and engineering practitioners.

1.2 Force

A forceis defined as that which changes, or tends to change, the velocity of a body. Force
is a vector quantity, possessing direction as well as magnitude. A force is not completely
defined unless its magnitude, direction and line of action are specified. It will be seen
later that when effects of a force upon a body other than that relating to its tendency to
change the velocity are considered, it is necessary also to specify the point of application
of the force.

The basic unit of force is the newton (symbol N). The newton is the force required to
give a mass of 1 kg an acceleration of 1 m/s’. For many engineering problems, the
newton is a rather small unit, and the unit most commonly used is the kilonewton

(symbol kN) which is 1000 N.

1.3 Body

The term body is used to denote the particular section of matter under consideration. If
a bowl of water stands upon a table, we may wish to consider the forces acting on the
table alone, the table and bowl together with or without the water, the water within the
bowl, or possibly one part only of the table. Whatever part is chosen is called the body.
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The forces dealt with in statics are the forces exerted upon the body from outside, i.e.
forces external to that body.

Before solving a practical problem it is important to be clear regarding the extent of
the body under consideration and the forces acting externally upon it.

1.4  Newton’s Laws of Motion

Since the whole subject of mechanics stems from Newton’s three Laws of Motion these
will be stated:

First Law: A body will remain at rest or continue to move with uniform velocity

unless acted upon by an external force.

Second Law: If an external force acts upon a body, the rate of change of momentum

is proportional to the force, and takes place in the direction of the force.

Third Law:  To every action there is a reaction equal in magnitude and opposite in

direction.

Sir Isaac Newton developed these laws in the late seventeenth century from a study of
the motion of objects. The application of these laws to engineering problems is the topic
of this book.

The first law deals with bodies in equilibrium and is the basis for the study of statics.
The second law is concerned with accelerating bodies and is the basis of the branch of
mechanics known as dynamics. The third law is fundamental to an understanding of the
concept of force. In engineering applications, the word ‘action’ may be taken to mean
force and so, if a body exerts a force on a second body, the second body exerts an equal
and opposite force on the first.

Newton also propounded a Law of Gravitation, which together with his three Laws of
Motion enabled him to explain the movement of the planets in the solar system.
According to this law, any two bodies of mass m, and m, exert a force of attraction on
each other. This gravitational force is proportional to the masses and inversely
proportional to the square of the distance berween their centres, 4. That is:

™,
F=G" 7 (1.1)
where G'is a gravitational factor which according to Newton is constant throughout the

universe.

1.5 Mass and weight

The term mass is difficult to define precisely. However, for engineering purposes it is
sufficient to know that the mass of a body is an absolute quantity, independent of the
position of the body and its sutroundings.

On the other hand, the weight of a body is dependent on its position. For everyday
purposes, the weight of a body may be defined as the gravitational force exerted on the
body by the earth when the body is situated at the earth’s surface. The acceleration due
to gravity at the earth’s surface is approximately 9.81 m/s’, and hence the weightof a 1 kg
mass is a force of 9.81 N acting towards the earth’s centre (i.e. vertically downwards). It
is often taken as 10 N for approximate calculations.
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Since the earth is not quite spherical, the weight of a 1 kg mass will vary slightly from
place to place on the earth. If it is moved to a considerable distance above the earth’s
surface, its weight will be much less and at great distances its weight may become
negligibly small. If it approaches another celestial body (the moon or another planet) it
will be attracted to that body, and its ‘weight’ will be greater or less than its weight on
earth depending on the size of the celestial body.
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Composition and
Resolution of Forces

2.1 Resultant

The resultant of a group of forces is that single force which, when applied to a body,
produces the same effect (as far as the motion is concerned) as the group. The resultant
is thus the equivalent single force. It should be noted that it is only equivalent as far as
the external motion of the body is concerned but will not be equivalent in other respects.
For example, a single large force may cause damage to the body that would not be caused
by a large number of small forces. For this reason, the resultant is often said to be
statically equivalent to the group of forces, i.e. equivalent as far as statics is concerned, but
not equivalent in all respects.

2.2 Resultant of two forces

Figure 2.1 shows two forces F, and F, whose lines of action intersect at A. To find their
resultant, the lines AB and AD are set out to represent the forces to scale (Figure 2.2). Upon
completion of the parallelogram ABCD, the diagonal AC represents the resultant in
magnitude, direction and position. This construction is called the Parallelogram of Forces.

B C B Fy C
F, F, F,
R
A 2 A 2 b A
Figure 2.1 Figure 2.2 Figure 2.3

Alternatively, the two forces may be represented in magnitude and direction by AB
and BC (Figure 2.3). The magnitude and direction of the resultant is then given by the
line AC. In this construction the lines AB and BC must be so drawn that the arrows
which denote the directions of the forces ‘track’ in the same sense around the figure. The
arrow of the resultant tracks in the opposite sense. This construction is called Vector
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Addition. It can be seen that the triangle of Figure 2.3 is identical to the upper half of

Figure 2.2.
If the two forces F, and F, are at right angles to each other, the magnitude of the

resultant and its direction @ (with respect to the force F,) are given by:
F=VF?+F? and 6= tan*‘;l 2.1)

The foregoing constructions apply to all vectozr quantities. The second construction is
easily appreciated if applied to displacements. If AB and BC (Figure 2.3) represent two
consecutive displacements, then AC is the single displacement which would bring the
body to the same final position, and is thus the resultant.

The fact that the construction shown in Figure 2.2 (or Figure 2.3) leads to the
resultant force may be deduced from Newton’s Second Law. It may also be demonstrated
by a simple laboratory experiment. Consider three strings AB, AC and AD joined
together at A such that points A, B, C and D all lie in a vertical plane (Figure 2.4). Strings
AB and AC pass around smooth (i.e. frictionless) pulleys. Weights W, and W, are
attached so that the tension in AB is W, and the tension in AC is W,. If a third weight
W, is suspended from AD, the point A will take up an equilibrium position provided
W, is less than (W + W)

p tenmsion W,

(N

Figure 2.4

Since the point A is in equilibrium, the resultant of the two tensions W and W, must
be equal and opposite to the tension W,. DA is produced to E so that the length AE
represents W, to some scale, EF is drawn parallel to AC, and EG is drawn parallel to AB.
It will be found that AF represents W, and AG represents W, to the same scale as AE
represents W,. Line AE, representing a force equal and opposite to tension W), must be
the resultant of W, and W, and it is given by the diagonal of the parallelogram AFEG

with sides representing W, and W,.

2.3 Gomponents of a force

A given force may be replaced by two forces provided that their vector sum is equal to
the given force. These two forces are known as components of the given force.

If a given force F (Figure 2.5a) is to be resolved inte components lying in the given
directions Ox and Oy, the force is first represented to scale by the line OA (Figure 2.5b).
If the parallelogram OBAC is then completed by lines. parallel to Ox and Oy, the lines
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OB and OC must represent the required components F, and F_ respectively, since
evidently their resultant is the given force (see Figure 2.2). F and Fy are calculated readily
from Figure 2.5b using the sine rule.

(a) y (b y

parallel to Ox

F B A
/" parallel to Oy
llllq
¢ A¢
O X O F, C X

Figure 25

The process of breaking the single force into two components is the reverse of finding
the resulrant of two forces; but whereas the two given forces have only one possible
resultant, the single resultant may be broken into many different pairs of components
depending on the directions required for the components. Thus, there is an infinite number
of pairs of components of the force F, as many as there are ways of drawing a triangle
one of whose sides is OA, but only one pair satisfies the given directions Ox and Oy.

_ Exavme2.1

Find the components of the force = 20 N in the
directions Ox and Oy (Figure 2.6)‘.

Figure 2.6

SOLUI‘ION

A triangle of forces is drawn, either as Figure 2.7a or 2.7b. ’If the given force F is
represented by the side AB, the components may be thought of as an alternative path
from A to B. Using the sine rule:

20 £ Fy
sin 60 sin 80  sin 40
Hence: £, = 22.7 N and Fy = 148 N
(a)

(b) 1 B

Figure 2.7
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The most common problem is that of finding components of Fwhich lie parallel to and
perpendicular to a given direction Ox (Figure 2.8). In this case, the axes Oy and Ox are at
right angles (¢ = 90°) and Fis at an angle € to the direction Ox. From simple geometry:

F = Fcos # and Fy = Fsin 6 2.2)

Figure 2.8

It follows that Fis the resultant of its components F and F . In the orthogonal system
of Figure 2.8, where the components F, and F are at right angles, the magnitude and
direction of Fare obtained by substltutmg £ for F, and F_ for F, in Equation 2.1:

1

F
F=YV sz + Fy2 and 6= tan"‘;‘ (2.3)

x

2.4 Resultant of concurrent forces

If the lines of action of a number of forces pass through a common point, the forces are
said to be concurrent.
(2) (b)
£
FZ

O
point of/

concurrence

£
Figure 2.9

Consider the four concurrent forces F, to F, shown in Figure 2.92. The resultant of
the group of forces can be found from the graphical construction of Figure 2.9b. Forces
F, and F, may be combined by the method of vector addition into a resultant R, (triangle
ABC in Figure 2.9b). R may then be combined with F, (triangle ACD) to give a
resultant R,. Finally R, is combined with £, (triangle ADE) to give the final resultant R
The line AE gives the magnitude and direction of R. The line of action of the resultant
passes through the point of concurrence (point O in Figure 2.9a). By successively adding
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force vectors using the procedure illustrated in Figure 2.9b, the resultant of any number
of concurrent forces can be determined.

Figure 2.9a, showing the actual disposition of the forces is called a space diagram.
Figure 2.9b is called a force polygon.

It is convenient to think of the forces F, to F, as represented to scale by arrows, or
vectors, radiating from O. These vectors may be ‘picked up” and ‘arranged’ to form the
force polygon ABCDE. The vectors must be placed parallel to the original direction and
the arrows must track around the polygon. Taking the forces in a different order will
produce a different polygon but it will end at the same point E. The resultant is AE, the
alternative straight line path from A to E.

It would be possible to calculate, by trigonometry, the length and direction of the
unknown side AE of the force polygon in Figure 2.9b. A less laborious method is to
resolve each force into its components in two chosen directions, and then combine the
components.

o Ay B, G D, E, X
Figure 2.10

Suppose that two perpendicular axes Ox and Oy are chosen in the plane of the force
polygon (Figure 2.10), and let the forces £, F, etc. make angles of 8,, 8, etc. with the x
_ axis, 8 being measured positive anticlockwise from Ox. Let the components of any force

Fin the x and y directions be F and F, respectively.

If the vertices of the polygon are projected onto the x axisat A, B, C, etc., it will be

- seen that the x component of F, is A B, that of F, is B,C, and so on. The algebraic sum

of these components is A E . Similarly, if the vertices of the polygon are projected on to
the y axis, the y components of the individual forces are A_B,, B,C, etc., their algebraic
sum being AE,.

Then A E| and A E, are the components of the resultant, and may easily be combined
to give the magnitude and direction of R.

For any force, the components F_ and F, are obtained from Equation 2.2. If R_and
R are the components of the resultant in the x and y directions respectively, then:

R =% F =% Fcos# and Ry=2Fy=2Fsin8 (2.4)
and from Equation 2.3:

_ : R
R=VR»+R* and 6= tan’ (f)) 2.5)

X
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_ Exawmz2.2

Find the resultant of the forces concurrent at O shown in F igure 2.11.

¥
260 N
320 N
10°
ON 400 0
230 N
Figure 2.11
SOLUTION
Force (N) (:] F, (= F cos 6) F, (= F sin 6)
230 -40° 176.2. -147.8
400 0° 400.0 0
320 35° 262.1 183.5
260 100° -45.2 256.1
Summations ©793.2 291.8

From Equauons 2.4

291.8
=V793.2% + 291.8° = 8452 N and @ = tan (———) = 20.20°

793.2
A force polygon illustrating the graphical determination of the resultant is shown in
Figure 2.12.
‘0 100. 200 300 N
RV PYPVE BN N
Scale : -
-
R = 845 ,a” 260
-
—’/
-7
—”’
_erT 20°
\ / e
: 320
230 =

400
Figure 2.12
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Prohlems

2.1

(@) v (b) v () y
5 kN
10 kN 60° x
135°
30° 40 kN :
X

2.2

(a) y ), o
300 kN /
150 kN 30° u
75°
45° 60°
30° 45° 200 kN
/ . \ .

2.3

2.4

2.5

Determine the x and y components of the forces shown in Figure P2.1.

X

Figure P2.1

Determine the u and v components of the forces shown in Figure P2.2.

Figure P2.2

A force of 100 N acts in the direction of the x axis. Resolve this force into two
components Pand Q which make angles of +30° and —45° respectively with

the x axis.

The following forces are concurrent: 50 N at 0°, 80 N at 25°, 10 N at 85°,
and 40 N at 190°, the angles being measured anticlockwise from the positive
x direction. Find the resultant analytically. Draw a polygon of forces to check
your solution graphically.

Find the resultant of two concurrent forces Pand Q. Phas a magnitude of 80
N and acts along a line which makes an angle of 20° with the x direction. The
magnitude of Qis 30 N and this force acts along a line which makes an angle
of 155° with the x direction. Angles are measured anticlockwise from the
positive x direction.
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2.6 A boat is towing two water skiers as shown in Figure P2.6. The tow ropes are
attached to the boat at A. The tension in AB is 500 N and the tension in AC
is 420 N. Find the resultant force acting on the boat and its direction relative
to the centreline of the boat.

Figure P2.6
2.7 Find the resultant (magnitude and direction) of the systems of forces shown
in Figure P2.7.
y 5N y
15° F15° 8N
45° 30°
X 4 N X
30°
J 12N
15N
Figure P2.7
2.8

Find the resultant of the system of concurrent forces shown in Figure P2.8
Give the magnitude and direction relative to the x axis.

8 kN
5 kN

45N J 60° 6 kN
EEAN

60° X
3 kN

4 kN

Figure P2.8
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2.9 For the force systems shown in Figure P2.9a to ¢

(i) Find the value of force A and the direction of C, if C is the resultant of the
remaining forces.

(ii) Find the value of A and the direction of C, if A is the resultant of the
remaining forces.

(a) (b) (©
y y
C=20N
A Al
[e4
B=24N "
D=12N
30°
Figure P2.9
2.10 Two men are actempting to lift a crate by means of two ropes atrached to a

ring (Figure P2.10). They need to exert a vertically upward resultant force of
400 N. If one rope has a tension of 300 N at an angle of 45°, while the other:
has tension P at an angle 8 what must be the values of P and 6?

300 N
P
0 45°
Figure P2.10
2.1 In order to support the 250 kg mass, the resultant of the forces in cables AC

and BC must be directed vertically upward (Figure P2.11). Find the forces in
each of the cables.

A . B

Figure P2.11
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2.12 Two forces P and Q act through a point, the angle between their lines of
action being . Show that the magnitude of the resultant is:

R=VP + Q% + 2PQcos 6

and that its line of action is inclined at the angle a to the direction of force P

where: Qsin 8
ana= p+ Qcos

2.13 Forces of 50 N and 60 N act through the point O, as shown in Figure P2.13.
Find their resultant in magnitude and direction. Calculate the components of
the resultant in the directions Ou and Ov. Check the answers by determining
separately the components of the 50 N force and the 60 N force in the
directions Ou and Ov and adding the results.

y
60 N
v
u
10°
50° 50 N
80°
20°
O 35° X
Figure P2.13
2.14 A force of 4 N is the resultant of two concurrent forces, one of 5 N and the

other of 7 N. What is the angle between these two forces?

2.15 Three concurrent forces act in the directions shown in Figure P2.15. If the

magnitude of the resultant is 14.56 kN, find the angles o and 8.

6 kN

/({" 8 kN

O = ~L~ B x
[0 ~~~~~
~~*
R = 14.56 kN

5 kN

Figure P2.15
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2.16 Three forces act through the point O in the directions shown in Figure P2.16.
The magnitudes of the forces are 15 kN, 10 kN and P. The resultant R acts
at an angle of 10° to Ox. Find the magnitudes of Pand R.

15 kN

Figure P2.16
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Equilibrium of

Concurrent Forces

3.1 Equilibrium

If a body is acted upon by a system of forces which has a resultant, this resultant produces
a change in the state of motion in accordance with Newton’s Second Law.

When the resultant of a group of concurrent forces is zero, the motion remains
unchanged and the body is in eguilibrium. The system of forces is also said to be in
equilibrium. Conversely, any body which remains at rest (as a large number of engineering
structures do) must be acted upon by a system of forces having a zero resultant.

3.2 Conditions of equilibrium

If the resultant of a system is zero, the forces, when added vectorially (as in Figure 2.9b,
page 10), must form a closed polygon (i.e. the last point of the force polygon must coincide
with the initial point). When all the forces but one are known, the magnitude and direction
of the unknown force may be found if the system is known to be in equilibrium, as the
unknown force will be represented by the vector required to close the force polygon.

_ Exavme 3.1

Find the magnitude and direction of the force Qif the concutrent system of Figure 3.1
is in equilibrium.

60 kN

30 kN 309
90°

‘80 kN 2
Figure 3.1 '
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SOLUTION

This problem may be solved graphically in the following manner. Combine the known
forces 80 kN, 60 kN and 30 kN vectorially by drawing the three sides of the force
polygon ABCD in Figure 3.2, in which AB, BC and CD are parallel to the directions of

the known forces respectively and the lengths of the sides are proportional to the forces.

0 20 40 60kN
il v i
Scale 233°

60

Figure 3.2

Since, for equilibrium of the four forces, the polygon must close, the final force Q must
be represented by the line DA. Then by measurement:

Q=107 kN and 0 = +233°

The force which must be added to a given system to produce equilibrium is called the
equilibrant. Thus Q is the equilibrant of the three known forces in Example 3.1. The
equilibrant is equal and opposite to the resultant. For any group of concurrent forces in
equilibrium, any one force is the equilibrant of the others.

Analytically, the resultant of a system of concurrent forces is defined by Equation 2.4
and Equation 2.5. For the resultant to be zero, both its x and y components must be zero
(le. R = Ry = 0). Hence the conditions of equilibrium are:

2E=0 (3.1)
%2F=0 (3.2)

The directions x and y need not be at right angles but they must be different.

_ Examr£ 3.2

Re-solve Example 3.1 analytically. 60 kN

30N 500

90°

Figure 3.1 80 kN 5
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SOLUTION
Force (kN) 0 = Fcos @ , = Fsin @
80 0° +80.00 Iy
60 90° 0 : +60.00
30 120° -15.00 +25.98
Q ! ; ] Q cos 0 Q sin @
Summations - Qcos @ Qsin @

+65.00 +85.98

For equilibrium:
Qcos 8+ 65.00=0 or Qcos f=-650
Qsin @+ 8598 =0 or Qsinf=-8598
Di\}iding the second equation by the first to eliminate Q yields:

—85.98
tan 8 = —_6;9—8 and 6= 52.9°or 232.9°

Since both the vertical and horizontal components of Q are negative, Q is directed
in the third quadrant and therefore 8 = 232.9°. Substituting @ into either equation
gives Q = 107.8 kN. '

_ Exavmze 3.3

The members of a truss exert forces on one of the joints as shown in Figure 3.3. Find
the two unknown forces Pand Q.

38 kN 15 kN

45° 50 kN

Figure 3.3

SOLUTION

Qutward forces are considered to be positive. Hence, the unknown forces Pand Q are
taken as acting outward at the angles shown. The given force of 15 kN will be taken
as negative at an angle of 45°, although it could equally well be taken as +15 kN at
2250' P §
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Force (kN) 0 ., = Fcos @ , = Fsin @
+50 0° +50 0
-15 45° -10.61 -10.61
P 90° 0 +P
+38 135° -26.87 +26.87
a 210° -0.886Q -0.5Q
Summations 12.52 16.26
-0.866Q G2
-0.5Q

For equilibrium:
-0.866Q + 12.52 = 0 s Q= 1446 kN
P—0.500Q+ 1626 =0 s P=-9.03 kN

(i.e. Qacts outward as shown in Figure 3.3, and P acts inward).

[t is often advantageous to resolve in directions perpendicular to Pand @, rather than in
directions Ox and Oy, in order to obtain two equations each containing only one
unknown.

_ Exawri=3.4

Calculate the forces in the cables AC and BC supporting the 200 kN weight shown in
Figure 3.4a.

@\ wy ®

A \40° 30° B

200

200 kN

200 kN

Figure 3.4
SOLUTION

The forces acting on the ring at C are shown in Figure 3.4b. The sum of the forces in
the y direction (perpendicular to BC) is zero. Thus:

F, - cos 20 = 200 cos 30 o F = 1843 kN
The sum of the forces in the x direction (along BC) is also zero. Thus:
Fy. = F.sin 20 — 200 5in 30 = 0 v Fy. = 163.0 kN

Alternatively the forces F, . and Fy . could be determined using the sine rule from the
geometry of the force triangle in Figure 3.4c.
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The geometry of the problem is specified in Example 3.4. In reality, the geometry may
be affected by the deformation of the cables under load. In fact, any structure will deform
under load. The calculation of such deformations involves a knowledge of the physical
characteristics of the materials from which the structure is made and is beyond the scope
of this book. In the remainder of the book, it will be assumed that deformations under
load are negligibly small (and in fact they often are) and the solution of problems will be
based on the geometry of the unloaded structure.

3.3 Bodies, actions and reactions

We have been concerned up to now with the processes of combining forces into a
resultant or of separating a force into components. The forces involved have been clearly
specified by means of a diagram. In practical situations the forces are not usually so
clearly specified and the first task of the analyst is to identify the forces which must be
considered before the foregoing processes can be applied.

Forces occur as a result of the interaction of two bodies. The term body is used to
specify any material object, or even any arbitrarily chosen grouping of matter. For the
time being we shall use the term body to mean any easily recognisable object such as a
block of wood, a ladder, a bridge, a roof truss and so on.

A commonly occurring force is the weight of a body, which was defined in Section 1.5
as the gravitational force acting mutually berween the body and the earth. To say that
the weight of a table is 400 N is to indicate that the earth pulls the table with a force of
400 N and also that the table pulls the earth with the same force. When two bodies are
in contact they exert a force on one another at the contact face. Often this force is a result
of the weights of these and other bodies.

Figure 3.5a shows a block of weight W resting on a horizontal floor. By virtue of its
weight it exerts a force on the floor and the floor exerts an equal and opposite force on
the block. These interactive forces R are shown in Figure 3.5b and since the block is in
equilibrium it is clear that R must be equal to W. The floor exerts just enough force to
hold the block up. The force exerted by the floor on the block is a passive force. For this
reason this force is often called the reaction, while the force exerted by the block on the
floor is called the action. According to Newton’s Third Law, action and reaction are
equal and opposite. ‘ '

Figure 3.5

However, the terms action and reaction are often interchangeable: it makes litcle dif-
ference to the solution of problems which is called action and which is called reaction. In
Figure 3.6a, two planks of wood of weight W, and W, are resting on a floor and are leaning
against one another in such a way that they are both in equilibrium. At the inrerface B they
clearly exert mutual forces on one another. If the interface B is smooth and vertical, these
forces are horizontal and are called Xin Figure 3.6b. It is immaterial which of these is called
the action and which is called the reaction. In order to maintain equilibrium of plank AB
the floor must supply an upward reaction R, equal to W, and also a horizontal reaction R,
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equal to X. The force R, is called the normal reaction (i.e. at right angles to the floor) and
R, is a frictional force. (This will be discussed in the next section.) The plank AB of course

exerts equal and opposite actions R and R, on the floor.

(a) (b) B B
B X X
W W,
W, W, A C
Ry == R, R3 - R,

A C R, Ry

7 R *4— -y K3
Figure 3.6

In the application of the principles of statics to any practical problem it is essential first
to be clear about two things: what is the body whose equilibrium is being discussed,
and what are the forces acting on this body?

If it is desired to evaluate the force exerted between the two planks at the interface B
in Figure 3.6a, then it is convenient to consider the equilibrium of one of the planks, say
AB. It is advisable to draw this plank separately so the force can be shown acting on it.
This is often called a freebody diagram. (Freebodies are discussed further in Chapter 6.)
Freebody diagrams for both planks AB and BC are shown in Figure 3.6b.

The forces on the chosen body will usually comprise the weight of the body and forces
which are applied to it by any other bodies which are in contact with it. In the present
example, there is the weight W/, the force X exerted by the other plank and the force R
exerted by the floor. The last can be expressed either by the components R, and R, or by
a single inclined force R, whichever is more convenient. Once the freebody is drawn and
the forces acting on it are clearly identified there is usually litde difficulty in applying the
principles of statics to those forces.

It should be noted that the term body applies to liquids and gases as well as to solids.
One of the forces acting on a piston in an engine will be the force exerted by the gas in
the cylinder. One of the forces exerted on a dam is that of the water retained by the dam.

3.4 Friction

When a force or a system of forces is applied to a body in such a way that ir tends to cause
the body to slide on another surface, a force known as fréction is called into play at the
interface. For instance, if a heavy box is resting on the floor and we attempt to slide it along
the floor by applying a moderate force to it, we may find that the box does not in fact move.
A frictional force has been evoked sufficient to resist the force which we have applied. If we
attempt to move the box in the other direction friction may still defeat us. The force of
friction always acts in a direction to oppose motion. However, if we increase our efforts
sufficiently the box will eventually move. Evidently there is a limit to the frictional force.
Friction is caused by surface roughness. Even an apparently smooth surface will reveal
irregularities under a microscope, and if two such surfaces are in contact the
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interpenetration of the irregularities tends to resist relative motion and is the cause of the
force which we call friction. If either surface is made smoother then the friction force will
decrease. The introduction of a layer of oil between the two surfaces may prevent contact
and may almost eliminate friction. Although friction is never in reality quite zero it is
sometimes small enough to be neglected. A surface is called smooth in mechanics if it
generates negligible frictional forces.

It can be shown experimentally that the limiting, or maximum, frictional force that
can be generated at the interface of two bodies is proportional to the normal force acting
at the interface. If this normal force is Vand the maximum possible friction is F, then:

F
1_\/ = constant = p# {(3.3)

and p is called the coefficient of friction. The force F does not depend on the area of the
contact surface.

Figure 3.7a shows a box of weight W resting on a table. It is being pulled by a rope
with a force Pat an angle 6 to the horizontal. The forces acting on the box are shown in
the freebody diagram Figure 3.7b.

(@) (b

W l* Psing@

—- D05 6

F
4
N

Figure 3.7

Although the forces are not strictly concurrent, since F acts at the bottom of the box
and the other forces act at the centre, they will be considered as concurrent in this
chapter. The total downward force on the table is W — Psin 6, and assuming that W
exceeds P sin @ the table supplies an upward reaction NV equal to W — P sin 6.
The vertical components of force are therefore balanced, and thc normal force at the
surface is:

N=W— Psin 0 (3.4)
The maximum friction available is therefore:
F . =uN=pu(W-— Psin 6 (3.5)

If Pcos @is less than F__, then the force Fwill also be less than F__since friction is
a passive force. It will be just sufficient to balance P cos 6 and the box will not move. If
P cos § exceeds F _the resultant force will be Pcos @ — F_and the box will move.

Suppose the box welghs 80 N and the coefficient of friction is 0.4. Consider first the
box is pulled with a force of 20 N at 6 = 30° (Figure 3.8a). Figure 3.8b shows the forces
on the box expressed in terms of components. The reaction from the table is 70 N and
the maximum friction available is therefore 0.4 X 70 N or 28 N. Since the horizontal
component of the rope force is only 17.32 N, the actual friction force just balances this
and the box is in equilibrium.
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(a) 80 (b)

20 80 10

- I}

30° A

17.32 —- |7.32
/ — 4
70
Figure 3.8

In Figure 3.9a, the same box as in Figure 3.8 is pulled with a force of 40 N at ¢ =
30°. The force components are shown in the freebody diagram Figure 3.9b. Note that
the increase in the inclined force has decreased the table reaction and consequently the
maximum friction available is now only 0.4 X 60 = 24 N. The horizontal component
of the 40 N force exceeds this and the box will move in this case: it is not in equilibrium.

(a) 80 (b)
;0 80 M 20
| 30° Yi
2 — 34.64

4 ﬂ_‘
60
Figure 3.9

For any given angle @ it would be a simple matter to determine the value of P for
which the value of Pcos @ is just equal to the maximum friction force. For this value we
say that the box is on the point of moving. Actually, once the body starts to move, the
friction force decreases slightly.

(a) W (b) W ()

Figure 3.10

It is sometimes convenient to combine the normal reaction Nand the friction force F
into a resultant inclined reaction R. Figure 3.10a shows a box on a table as before. Figure
3.10b is a freebody diagram showing all forces acting on the box. For a small value of the
force P, the friction force called into play is less than  _and the body does not move.
The resultant reaction R is shown in Figure 3.10c. As P increases the ratio of Fto N
increases. When the box is on the point of moving F = F__ = u N (Figure 3.10d). The
force Ris then inclined at the maximum possible angle to V. This angle is called the angle

of friction ¢, and:
M= tan ¢ (3.6)
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In the case of a smooth plane, no friction is present and the reaction is always normal
to the plane.

A block rests on a rough plane inclined at @ to the horizontal as shown in Figure
3.11a. It is acted upon by its own weight W, the normal reaction from the plane N and
a friction force F shown in the freebody diagram Figure 3.11b. Since in this case the
block tends to slide down the plane, Fwill act up the plane. Figure 3.11c shows the
force triangle which relates these forces provided the block does not slide. Clearly
N = Wcos @and F = Wsin a. The resultant reaction Ris inclined atarto N. When the
slope of the plane is increased until the block is on the point of sliding, then F = uN
and e is equal to the angle of friction ¢.

(a) w (b 14 (0) F
F
N\ Y
N
o

Figure 3.11

If a box is being pulled up an inclined plane by means of a rope (Figure 3.12a) the
equilibrium may be examined by resolving forces parallel to and normal to the plane
(Figure 3.12b). The friction Fwill act down the plane when P cos 8 exceeds Wsin «,
but if Wsin @ > P cos 8 then Fwill act up the plane.

P
(@) w (b)

Wsina

Figure 3.12

_ Exawrie 3.4

Find the range of values for which the horizontal force P will prevent the 2.0 kN box
from slipping down or moving up the inclined plane in Figure 3.13. Assume the
coefficient of friction between the box and the inclined surface is & = 0.15.

Figure 3.13
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SOLUTION

When the box is just about to move up the incline, the force Pis at its maximum value
within the required range. The freebody diagram of the box is shown in Figure 3.14a.

@ ‘ ()

N 2.0 kN 0.15 N

Figure 3.14

As the box has not yet begun to move, the forces shown in Figure 3.14a are in equil-
_ ibrium, with the frictional force acting down the plane at its maximum value 2/N. The
sums of the forces parallel to and normal to the incline are zero.

YF =0: . 0.I5N+2.0sin25~ Pcos25 =0
0.1SN — 0.906P = ~0.845
$F=0: N-20cos25— Psin25 =0
N— 0.423P = 1.813
Solving these simultaneous equations gives:
N=2373kN and P=1.325kN
P =1325kN

When the box is just about to slip-down the incline, the force P is at its minimum
value within the required range and the corresponding freebody diagram is shown in
Figure 3.14b. The equilibrium equations are now:

TF =0 015N+ 2.0sin25~ Pcos25 =0
—0.15N’— 0.906P = —0.845
TF =0 N-20cos25~ Psin25=0
N—0.423P=1.813
Solving‘ gives: ,
N=2062 00 and P=0S0VEN=2.
Therefore the required range is:

0.591 kN £ P<1.325 kN
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3.5  Equilibrium of three forces

If three forces acting in the same plane (coplanar) are in equilibrium they must be
concurrent. If two of the forces intersect at a point A, then they have a resultant which
also passes through A. For equilibrium the third force must be equal and opposite to this
resultant and must act in the same line. Consequently the third force also passes through
A. It follows that three non-coplanar forces cannot be in equilibrium.

Thus three forces in equilibrium must be coplanar and concurrent. (Note: The forces
may be parallel, i.e. concurrent at infinity.) Some problems are simplified by recognising
this fact.

Also peculiar to the case of three coplanar forces is the fact that any triangle, whose
sides are parallel to the forces taken in order, will serve as a force polygon to some scale.
This is because all such triangles are geometrically similar and have their sides in the same
proportion. This cannot be said of polygons with more than three sides.

_ Exavme3.5

A ladder 6 m long and weighing 220 N rests against a smooth (i.e. frictionless) wall at
an angle of 30° to the vertical (Figure 3.15a). Find the reactions at the wall at A and
the floor at B. In addition, what is the minimum coefficient of friction between the
ladder and the floor such that the ladder will not slip?

(a) ’ (b)
TA Al

5.20 m

i—l.S m-i-—l.S m-‘

Figure 3.15

SOLUTTON

The forces acting on the ladder AB which maintain it in equilibrium are the weight of
the ladder, the horizontal reaction R, exerted by the wall and the reaction R, exerted
by the floor. These forces are shown in the freebody diagram Figure 3.15b.

Since only three forces are involved, they must be concurrent. The weight, acting
through the mid-point M of the ladder, intersects the reaction R,, which must be
normal to the wall, at D as shown. Therefore R, also passes through D.
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The sides of the triangle DEB are paralle] to the three forces, and therefore proportional
to those forces. After calculating the dimensions of triangle DEB in Figure 3.15 we have:

520 1.5 5.4l
Bafe =% 3 %

1 2

From which: =635 N and 2, =228 0N

The reaction R, has a vertical component Vequal to the weight of the ladder, and a
horizontal component equal to uV (which is equal to R ). From the diagram:
KV 15
V== 0.288

Hence the minimum coefficient of friction required is 0.288.

Another example where this theorem may be used is shown in Figure 3.16a. Here, a
box of weight W rests against a frictionless wall and is supported by a rope AB. Figure
3.16b shows a freebody diagram of the box acted upon by the weight W, the reaction
from the wall R and the tension in the rope 7. For equilibrium, these three forces must
be concurrent. This will determine the equilibrium position, and the box will slide until
this position is attained. It may be noted that the triangle ACD is a triangle of forces for
the forces on the box.

(a)

Figure 3.16
Problems
3.1 If the forces shown in Figure P3.1 are y

in equilibrium, find the magnitude S kN
and direction of P. \ P

o 00° A

6 kN 12kN X
10 kN

Figure P3.1
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The forces shown in Figure P3.2 are in equilibrium. Calculate the magnitude
of the two forces Pand Q. (Resolve at right angles to Pand Q in turn.)

}—2.0 m—

__4A

Figure P3.2

600 N

400NY

Figure P3.3

Determine the force in cables AC and BC in Figure P3.3, if the ring at C is

in equilibrium.

Forces of 100 N and 50 N act along the x axis and at +45° respectively. Find
the directions of two forces 120 N and 60 N, such thar the four forces are in

equilibrium. (Give the two possible solutions.)

R
A block weighing 10 N rests on a plane \

inclined at 20° (Figure P3.5). The coefficient
of friction u, between the block and the plane
is 0.5. R is the reaction normal to the plane. WR

Figure P3.5 is a freebody diagram of the 20°
block. What is the horizontal force H, which \
is just sufficient to move the block up the 10N
plane with uniform motion? Figure P3.5

H

ABC is a roof truss spanning 20 m (Figure P3.6). It is supported at A so that
the reaction, or supporting force, at A may act in any direction. The support
at C is such that the reaction here must be vertically upward or downward. If
a force of 20 kN is applied at the apex of the truss in a direction of 20° to the
vertical, find the value of the reactions at A and C.

‘| 20 m }

Figure P3.6
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3.7 Figure P3.7 shows a reciprocating mechanism. When the crank is in the
position shown the piston instantaneously has no acceleration (its velocity is
a maximum). Consequently the forces acting upon it are in equilibrium. At
this moment the force on the face of the piston is 1 kN and the force exerted
by the connecting rod is in the direction of BC. Draw a freebody diagram of
the piston, showing the forces acting on it, and hence find the force in the
connecting rod and the force exerted by the cylinder walls on the piston.

I kN

piston

connecting [ -

rod

Figure P3.7

3.8 A heavy uniform bar AB of weight Wis suspended from a hinge support ata
point A above a smooth inclined plane, as shown in Figure P3.8. The lower
end of the bar B rests on the inclined plane. Find:

()  the force exerted by the bar on the inclined plane
(ii)  the reaction of the hinge A if the rod is inclined at 30° to the verrtical
and the inclined plane at 30° to the horizontal.

AA

30°

30°

Figure P3.8

3.9 The inclined plane in Problem 3.8 forms the upper surface of a block of
negligible weight which rests on a horizontal table. When the bar AB is
resting on the inclined plane the block is on the point of sliding on the
horizontal table. What is the coefficient of friction between the block and the
table?
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Figure P3.10 is a freebody diagram of a block of weight 20 N being pulled up
an inclined plane by a force Fwhich makes an angle of 5° with the plane. If
the coefficient of friction between the block and the plane is 0.8, find the
value of Fwhich is just sufficient to move the block.

20N

Figure P3.10

A load of 100 kN is supported by a crane as shown in Figure P3.11. DAE is
the cable which passes over a smooth pulley at A. Draw a freebody diagram
of the pulley A and hence find the forces in the cable, the tie AC and the jib
AB of the crane. (Assume that the diameter of the pulley and the weight of
the jib are both negligible.)

T ) A
4m E
100 kN
D
2m

45°

Figure P3.11

In Figure P3.12, a uniform bar AB is 600 mm long and weighs 40 N. The
end A rests against a smooth wall and the end B is supported by a 1 m long
rope BC which is fixed to the wall at C. Find the inclination of the bar to the
vertical when it is in equilibrium (other than hanging straight down) and the
tension in the rope.

Figure P3.12
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3.13 A cylinder weighing 2 kN is supported by two smooth walls. Determine the
normal forces exerted by the walls on the cylinder at A and B.

_vertical

’44

Figure P3.13

3.14 A rod AB weighing 10 kN is supported by a pin at A and a cable BD. The
centre of gravity of the rod is at its midpoint C. Determine the horizontal and
vertical components of the pin force at A and the tension in the cable.

D
45°\ B
60°
C
10 m
A

Figure P3.14

3.15 The system of forces shown in Figure P.3.15 is in equilibrium. Find the
unknown forces P and Q by considering the components in the x and y
directions.

60 N

Figure P3.15
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3.16 The plate ABC in Figure P3.16 is in the shape of an equilateral triangle whose
sides are 1 m in length. It is supported on a frictionless peg at A, while the
corner C rests on the smooth plane CD. A force of 10 N is applied at B in
the direction shown. Find the reactions at A and C. (The weight of the plate
is negligible.)

A
I m I m
C (500
B
gee 1M /é
10 N D
Figure P3.16

3.17%  The rectangular plate ABCD is in equilibrium under the action of the forces
shown in Figure P3.17. Find the force P and angles 6 and ¢.

P
¢
I m

A B
2 m

D C

o 0

4
15N g 30N
Figure P3.17

3.18" A ladder 6 m long rests against a vertical wall so that it is inclined at 60° to
2 g

the horizontal floor on which it rests. The ladder weighs 500 N. What is the

maximum height at which a man weighing 1200 N may stand on the ladder

without it slipping if the coefficient of friction between the ladder and wall
and ladder and floor is 0.4?

3.19" A uniform beam AB of length 6 m and weight W, resting with the end A on
a rough horizontal plane and with a point C bearing against a smooth fixed
horizontal rail, is just on the point of sliding down. The distance AC is 4.5
m. The coefficient of friction between the beam and the plane is 0.5.

(i What is the angle of inclination of the beam to the horizontal?
(i) What horizontal force applied at A would cause the beam to slide up?
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3.20*

3.21*

3.22*

A lever of length 2.1 m is used to move a smooth cylinder of 700 mm
diameter and weighing 100 N up a plane inclined to the horizontal at an
angle of 30°. What force must be exerted on the end of the lever if the lever
is inclined at 60° to the inclined plane?

The bar BC in Figure P3.21 is supported by two rigid bars AB and AC
connected to BC through frictionless hinges. AB and AC are connected
through a frictionless hinge to a support at A. Forces act on BC as shown in
the diagram. Find the unknown load P and the reaction at A for equilibrium.

Ta

|
375 mm
225 mm

B

y 60° ©

5 kN P
—+150 mm———
75 mm 75 mm
Figure P3.21

The block B in Figure P3.22 weighs 500 N and rests on a plane inclined at
25° to the horizontal. The coefficient of friction berween the plane and block
B is 0.15. On top of this block is another block A, which weighs 1500 N. The
coefficient of friction between A and B is 0.4. Block A is pulled with a force
Fwhich makes an angle a with the plane. If « is greater than a certain critical
angle the block A will slide relative to B provided Fis large enough. However,
if @ is less than this critical angle, then a suitable force Fwill cause both blocks
to move together up the plane. What is the critical value of @, and what force
F applied at this angle @ will just cause the blocks to move?

Figure P3.22
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3.23%  The bent lever in Figure P3.23 has its arms at 90° and is pivoted at C.
AC is 375 mm and BC is 150 mm. A force P of 150 N is applied at A at 15°
to the horizontal and another force Q is applied at B at 20° to the vertical.

Find the magnitude of Q and the magnitude and direction of the reaction at
C, if the lever is in equilibrium.

Figure P3.23

3.24% A bar AB, which is acted upon by two forces of 50 V'3 N and 100 N in the
directions shown in Figure P3.24, is supported by ropes which are attached
to a peg C. The roral length of the rope is 6 m. Find the lengths AC and CB
for the bar to be in equilibrium. What are the tensions in the ropes?

C

1 B

A=
—l12m—f—12m—f—1.2m—]

Figure P3.24

3.25*

A square plate of 10 N weighe is in equilibrium in a vertical plane
perpendicular to a smooth vertical wall with one corner of the plate in contact
with the wall. An adjacent corner of the plate is attached to a point in the wall
by a string whose length is equal to the side of the square. Find the angle of

inclination of the string and its tension.

* Difficult problems, suitable for later study.






Non-concurrent Forces

4.1  Moments

If a force acts on a body, then the moment of the force about any point in its plane is
defined as the product of the force and the perpendicular distance of the point from the
line of action of the force.

The moment of the force Fabout the point O in Figure 4.1 is:

(M, ), = Fd (8.1)

Figure 4.1

The moment M, may be thought of as a measure of the tendency of the force F to
cause rotation about an imaginary axis through the point O and perpendicular to the
plane containing the force and the point. If a body is pivoted at O, the force Facting on
the body will cause rotation about O, in the absence of any other constraints. However,
the moment of a force can be calculated about any point and not just the points about
which the body can physically rotate.

The moment of a force Fabout a point O is the same as the sum of the moments of
the components of Fabout the point O. Consider the force Fshown in Figure 4.2a.

(a) F (b) Fsin 8

0 — Fcos 6

x sin 00

Figure 4.2
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The moment of Fabout the point O is:
(M), = Fxsin 0

In Figure 4.2b, the force Fis resolved into its vertical and horizontal components. The
sum of the moments of the two components of Fabout the point O is:

(M) = Fsin @ x + Fcos 6 X 0 = Fxsin

In this case, the horizontal component of F passes through the point O (i.e. the
distance from O to the line of action of the horizontal component is zero) and the
moment of the horizontal component about O is zero.

The unit of moment is the Newzton metre (Nm) with variations Nmm, kNm, etc.
according to the choice of units for force and length respectively. The sign (positive or
negative) will depend upon the direction of rotation and may be arbitrarily taken as
clockwise or anti-clockwise to suit the particular problem.

4.2  Resultant of non-concurrent forces

By definition, a resultant has to produce the same effect (with respect to the motion it
causes) as the group of forces it replaces. This requires that it has the same moment,
about any point, as the combined moments of the forces in the group.

The magnitude and direction of the resultant of a set of non-concurrent forces are
determined in the same manner as for a set of concurrent forces (Section 2.4). This
assures equivalence as far as translational motion is concerned. To obtain equivalence of
rotation the position of the resultant is determined so that its moment about any chosen
point is equal to the algebraic sum of the moments of the forces. Fortunately, it can be
shown that if this condition is satisfied with respect to one point then it is satisfied with
respect to all other points.

Using the same notation as in Section 2.4 and in addition letting (M), denote the
moment of the force Fabout a point A, the magnitude and direction of the resultant are
specified, as before, by its x and y components.

R = 21*1 = Y Fcosf (4.2)

Ry = 215 =3 Fsinf (4.3)

where @ is the angle between the axis Ox and the given force.
In order to satisfy the rotation condition about an arbitrary point A:

(M), = X(M), (4.4)

which determines the position of R.

As an alternative to expressing the x and y components of Fas F cosf and F sin,
where 6 is the angle between Fand the x axis, it is often convenient to let 6 and 6, be
the angles between Fand the x and y axes respectively. The x and y components of Fare
then Fcosf_and Fcosf . The terms cos and cos@ are called the direction cosines of the
vector Fand are commonly denoted by /and m. With this notation, the components are
Fland Fm.

The magnitudes of the direction cosines /and m are given by the projection, on the x
and y axes, of a unit vector in the direction of F. Clearly /> + m®> = 1. (The F, Fm
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notation has little advantage over the notation F cos 8 and Fsin 6 in two-dimensional
problems, but the advantage is more marked in three-dimensional problems.) In terms
of direction cosines, Equations 4.2, 4.3 and 4.4 can be written:

R =%Fl (4.2a)
R = > Fm : (4.3a)
(M), = X(M,), (4.42)

Examere 4.1

‘ Find the resultant of the four forces applied to the horizontal rigid bar ABCD shown
in Figure 4.3.

10 kN

6 kN
t—'Z 2 m—t=f 3.5 m ‘
| Yoo |
A GVB C DV"
12 kN 10 kN
Figure 4.3

SOLUTION

When the positions of the forces are specified by horizontal and vertical measurements,
as in this case, it is advisable to break each force into its horizontal and vertical
components before taking moments, rather than attempt to draw lever arms
perpendicular to the forces as given. The force system of Figure 4.3 is replaced by that
of Figure 4.4.

Ry R

5.20 kN
2m 2 m- 3.5m |
6 kN ¥ 3kN '7,07 kN R,

A AB G D A D
e d

10.39 kN Jani

10 kN

Figure 4.4 Figure 4..5
Then: A IR ST i LV T S 4

+t R =-10+1039 —5.20 + 7.07 = 226 kN
Taking moments about A:
N (M), = TM), = +(10.39 X 2) — (5.20 X 4) + (7.07 X 7.5) = 53.00 kNm

Note that for those forces passing through A the moment is zero.
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The position of the resultant is expressed by stating the point at which it intersects some
given line, in this problem the line AD. Let the resultant cut the bar at a point distant
xm from A. Replacing the resultant by its components R and R (Figure 4.5) which are
now known, the moment (M), is equal to (Ry %), since R_has no moment about A.

Hence: (Ry x) = 2.26x = 53.00 . and x=23.45m
Thus: R = -4.07 kN Ry = +2.26 kN and x=2345m

If the force F, in Figure 4.6, with components F, and F, acts at the point (x, y), then the

moment of the force about the origin is (Fy %) — (£, ), provided the anticlockwise sense
for moments is taken as positive.

y
F, F
x E,
¥
|
0 X
Figure 4.6

_ Examme 4.2

Find the resultant of the four forces shown in Figure 4.7. The forces act at points
whose co-ordinates are shown.

y
8kN | (3, 4)
45°
(-1, 3)

r 7

10 kN 30°
Figure 4.7

SOLUTION

Assume thar the resultant cuts the x axis at a distance # (assumed positive) from the
origin. Specify the resultant by its x and y components (assumed positive).
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Force [/} ==l Fy = Fm Acting at Moment about
(kN) | Origin
X y —Fy +Fyx
8 -45° +5.657 -5.657 ~1 3 -16.971 +5.657
6 -90° 0 -6.000 1 0 0 -6.000
1 +90° 0 +1.000 3 4 0 +3.000
10 +60° +5.000 +8.660 38 =2 +10.000 +25.981
Summations +10.657 -1.997 + 21.667
Rx = ZFx = +10.657 kN Ry = ZFY = —1.997 kN

S R=V10.657* + 1.997% = 10.84 kN

R a=%(M,), = 21.667 kNm
+21.667

A= 997 T —10.85 m

The diagramatic representation of the resultant is shown in Figure 4.8

y

10.85 m—
10.66 kN

‘2.00kN  R=10.84 kN

Figure 4.8

In retrospect it can be seen that in the case of a system of forces concurrent at a point
A, the sum of the moments about A must be zero. Thus the position equation (Equation
4.4) is automatically satisfied since the resultant also passes through A.

4.3  Parallel forces: Couples

A system of parallel forces is a particular case of non-concurrent forces. Since the
directions of all the forces are the same (although the senses might differ) the magnitude
of the resultant may be found by algebraic addition. The resultant is parallel to the forces,
and its position may be found by equating its moment about any point to the sum of the
moments of the forces about the same point.
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_ Exwmed.3

Find the resultant of the parallel forces of Figure 4.9a.

(a) 8 kN 2kN 4 kN (b

A E - /:

% \
|'—5 m‘—-{—i;"—f} m*{

B
®

Figure 4.9

SOLUTION
Taking the direction of the 8 kN force as positive, the magnitude of the resultant is:
R=+8—-2-4=+2kN

and it acts in the direction 6. ,

Let R cut the line AB at a point ¥ metres from A, as shown in Figure 4.9b. Taking
moments about A: k
Moment of resultant = Sum of moments of forces

¥D _Resin 0= —(8 X Ssin ) + (2 X 7sin 6) + (4 X 10 sin )
_Re= 40+ 14 + 40 = +14 '

x=-7m -

The method breaks down in the case of two parallel forces of equal magnitude but
opposite sense (as in Figure 4.10). In this case the magnitude of the resultanc is zero
(i.e. F— F). The moment of the system about such points as B or C is easily seen to be
Fd (i.e. non-zero). Such a pair of forces is called a couple. It tends to cause rotation
without translation. It cannot be replaced by a single force, which must necessarily tend
to cause translation as well as rotation. In this context, mranslation means to move from
one position to another.

. L‘Tp“‘f .

Figure 4.10

The moment of a couple is the same about every point in the plane. If A is any point
in Figure 4.10, and ABC is a transversal normal to F, the total moment about A is:

M=FRx+d)— Fx= Fd

The moment is Fdin an anticlockwise sense and, being independent of x, is evidently
the same about every point. The moment F4 is known as the moment of the couple.
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A couple may be replaced by any other couple having the same moment and the same
sense of rotation. The couples shown in Figure 4.11(a), (b) and (c) each have a clockwise
moment of 60 kNm and are therefore equivalent. The original couple can also be
replaced by any number of couples, the algebraic sum of whose moments is equal to the
moment of the given couple.

(a) (b) (¢) 12 kN (d)
20 kN S —

30 kN
/
—3 m— 2 m 5m
> 60 kNm
30 kN

12 kN

20 kN

Figure 4.11

A system of forces may be equivalent to a couple. This would be the case if the forces
had a resultant of zero magnitude, burt yet had a non-zero moment about any point.
Since the actual forces constituting the couple are immaterial it is often represented by
a single symbol showing its sense and specifying its magnitude (Figure 4.11d). When this
symbol occurs in association with other forces its properties must be remembered:
1. It has no component force in any direction
2. Its moment is the same about all points.

_ - Exwvrzd.4

Find the sum of the vertical components of the forces in Figure 4.12 and the total
moment of the forces and the couple about A and abour D.

200 N
—5m . 5 m i 5m
A ‘B £ YD
Y
100 N
Figure 4,12

SOLUTXON ;
Resolving vertically (and ignoring the couple):
+t V, = +100 — 200 = -100 N
Taking moments first about A and then about D gives:

¥ M, = +(100 X 5) + (800) — (200 X 15) = —1700 Nm

N M, = (100 X 10) + (800) = ~200 Nm
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4.4 _ Distributed forces

In the previous discussions, forces have been represented as line vectors acting at a
point. Engineers refer to such forces as point forces or concentrated forces (or concentrated
loads). In many engineering problems, forces occur not as point forces but as forces
distributed along a length or over an area. For instance, the force exerted by a floor on
a supporting beam is distributed along the beam and is not applied at a particular point.
Such a force is measured in terms of force per unit length, e.g. kKN/m. If at a particular
location on the beam the floor load is 5 kIN/m, this is called the force intensizy. If this
force intensity is constant, then each metre of beam carries 5 kN of load. The load is
said to be uniformly distributed.

In the real world, forces are always distributed, and the line vectors referred to in
statics are their resultants. Sometimes the force intensity and the nature of its variation
are well defined, in which case the determination of the magnitude and position of the
resultant presents no problem. In other cases, it may be necessary to introduce
approximations.

(a) 5 kN/m

HHHH

{ 114 m |‘

Figure 4.13

Figure 4.13a shows a beam which supports a uniformly distributed load of 5 kN/m
intensity acting over the central 3 m of its length (portion BC). The beam is supported
at its ends on walls. It is clear by inspection that the resultant of the distributed load on
BC is a single force of 15 kN and this acts mid-way between B and C (in this case, the
midpoint or mid-span of the beam). Figure 4.13b shows the resultants of all the forces
acting on the beam. By symmetry, each of the end reactions is 7.5 kIN. However, the
distribution of these reactive forces over the 0.6 m length of the support is not well
defined. We might assume a uniform distribution and take the resultant to act 0.3 m
from the edge of the support. It might be more realistic to suppose that the intensity of
the reaction is greater near the edge of the support than at the very end of beam, and to
place the resultant at only 0.2 m from the edge of the support. In real situations, forces
are rarely known with great accuracy either in magnitude or position. Figure 4.13b is
called the freebody diagram of the beam. (Freebody diagrams are discussed in some detail
in Chapter 6.) The magnitude and position of the resultant of a distributed load of
varying intensity may be found as follows.
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—— Tk

@x
Figure 4.14

Suppose the load distribution is represented graphically as in Figure 4.14a, where the
height of the loading curve at any point represents the magnitude of the load intensity w
at that point. The load on an elemental length of beam dx is wdlx (see Figure 4.14b). In
effect the distributed load consists of a large number of parallel forces of magnitude w k.
The resultant Wis the sum of these forces. That is:

B
W= J’ w dx (4.5)
A

and Wis the area under the load distribution curve.

To find the position of the resultant, take moments about any convenient point, such
as O in Figure 4.14, and equate the moment of the resultant to the sum of the moments
of the elemental forces wdx. That is:

B
Wd = J’ wx dx (4.6)
A

The integral J’wx dx is the first moment about O of the area under the load distribution
curve. This means that the resultant acts through the centroid of this area. (The concept
of the first moment of area and the definition of the centroid of an area is discussed in
Appendix, Section A.1.)

Consider the triangular load diagram in Figure 4.15a. The load intensity at x = L is
wand at x = 0, it is zero. At any intermediate value of x the load intensity w,_is obtained
from simple geometry:

w w
x =L
and therefore:
wx
w ="
The load acting on the small length #x shown in Figure 4.15b is:

wx

wxafx=Tafx
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(a) (b) ()

w !4
Wy
wX
£ T £ - 3+ £ 3
A . B A dx B A - B
L L L
Figure 4.15

The resultant of the linearly varying (triangular) distributed load Wis the sum of the
loads acting on all the elemental lengths from x = 0 to x = L. From Equation 4.5:

v [ [Fan |5 -5

The resultant is the area of the load diagram. The position of the resultant, x in Figure
4.15¢, is obtained from Equation 4.6:

Wi —f wx di = jwaz [ﬁs]: _wl?

3L 3
wl
and with: W=—
2
2L
the length: x= ?

Evidently, the resultant of a triangular load diagram is located two thirds of the way
along the length of the diagram (i.e. through the centroid of the triangular load diagram).

For most practical problems, it is sufficient to know that the centroid of a rectangle is
its centre (i.e. the intersection of its diagonals) and the centroid of a triangle is at one
third of the distance from the base to the apex. All linear load distributions can be
divided into rectangles and triangles. (For other shapes see Appendix, Table Al.)

_ Exavme 4.5

Find the resultant of the distributed load indicated in Figure 4.16a.

18 kN 30 kN
(b) F

4 kN/m
™ 4=
CF—6m—p = LP_Gm__{D

Figure 4.16

10 kN/m,
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Divide the load diagram CDEF into two components, the centroid of each being
known. In Figure 4.16b, the resultant of the triangular part FEG is:

(6 kN/m X 6 m) X 1/2 = 18 kN

and it acts at 2 m from C.

The resultant of the rectangular part CDEG is:

(4 kKN/m X 6 m) = 24 kN

and it acts at 3 m from C.

These two parallel forces are then combined to give a final resultant of

R = 18 + 24= 42 kN acting at x from C where:

42x =18 X 2+ 24 X 3

L x=257m

(Figure 4.16¢c shows an alternative way of dividing up the trapezium CDEF.)

- Exavr 4 b

The horizontal wind force acting on the windward face AB of a multistorey building
is idealised by the tri-linear load diagram shown in Figure 4.17a. Find the magnitude
and. position of the resultant wind force on AB.

@ 10 kN/m T
20 m

6 kN/m !
20 m

4 kN/m -+

30 m

3 kN/m
77)\W— 7TAN\ _L_
Figure 4.17

SOLUTION

The force intensity diagram is divided into three rectangular and three triangular

(b)

L4

10

6

6

w;

segments as shown in Figure 4.17b. The resultant of each segment is:

W, = 0.5 X 4 X 20 = 40 kN

Caty= 6333 m

D
Y
3

O
o
R

._
o
o
X

i,
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W, =6 X 20 = 120 kN acy =60 m
W, =05&2X20=20kN aty=48.55m
W, =4X20=80kN aty=40m
W, =05X1X30=15kN aty=20m
W, =3 X 30 =90 kN aty=15m

~ The magnitude of the resulcant force R exerted by the wind on surface AB is:
R=W, + W, + W, + W, + W, + W, =365kN

and its position is found by equating the moment of the resultant about A with the
moment of the six components W, to W, abour A:

365Xy=40>(63.33+120X60+20X43.33+80X40+15X20+90X15
Sy =4233m

4.5  Statically equivalent systems

Much of the work of statics consists of replacing a given system of forces by a statically
equivalent system which is more convenient for calculating the effect of the system.
Replacing a system of forces by its resultant is one such example.

A given two-dimensional system of forces can be replaced by any other system in
which there are at least three independent quantities. If there are just three unknown
quantities in the new system, these quantities may be specifically determined such that
the new force system is equivalent to the original force system. If the new force system
contains more than three unknown quantities, a certain amount of choice exists in
assigning magnitudes to these unknowns.

We consider here only the case of three unknown quantities. These three unknowns
must then be chosen so that the new system and the given system are:

1. equal as regards their x components
2. equal as regards their y components
3. equal as regards their moments about any chosen point.

@ Y| A ® Y

[/}
A/

&y Y i

4 .

x M, j j\,l x

Figure 4.18
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Suppose that the given system consists of the single force £, acting at A (x,, y,) in a
direction & to the x axis (Figure 4.18a). Suppose it is required to replace it by an
equivalent system consisting of a force X, along the x axis, a force Y| along the y axis and
a couple M, (Figure 4.18b). Equating the x and y components of the new system to the
x and y component of the given system, respectively, gives:

X, = F cos 6, and Y = F sin 4

Moments can be equated about any point, but the origin is most convenient in this
particular problem:

M, = F1 x, sin 6 —F, y cos 8

In a similar way, we could replace a system consisting of any number of forces £, F,
etc. acting in directions &, &, etc. by a new system comprising forces X and Yalong
the x and y axes, and a couple M. By equating the new system to the given system as
above, we obrain:

X =Y Fcos 0
Y = Y Fsin 6
M = Y (Fxsin § — Fycos @)

Of course, it is not necessary for the three components of the new system to act at the
origin. They can be specified to act anywhere, as in Example 4.7.

_ Exaveie a7

Figure 4.19 shows a system of forces acting at the corners of a 300 mm square block. The
corner A can be considered as the origin of co-ordinates. It is required to determine a new
system of forces which is statically equivalent to the given system. The new system is to
consist of force components X and Y acting at B (400, 200) and a couple M
(anticlockwise being taken as positive). In Figure 4.19 the forces of the given system are
indicated by full lines, while those of the new system are indicated by dotted lines.

y
AN 3000 Nmm
300 \J/ YA
M4 Ll
300 X
A
30° 45° X
10N 12 N
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Sorurion _
1. Equate the total x components of the two systems:
New system = given system

4 X=-10cos 30 — 12 cos 45

s X=-17.15N
2. Equate the total y components of the two systems:
+t Y= +12 5in"45 = 10sim 30 + 8=+ 11 48N

3. Equate the moments of the two systems about any point. (If a point other than
B is chosen, the moment of the new system about the point will involve consideration of
the moments of Xor Yor both about the point. If we choose B, the moment of the new
system is simply M.) Therefore, equating moments of both systems about B gives:

N M = — (8 X 400) — 3000 — (12 cos 45 X 200) — (12 sin 45 X 100)
—(10 cos 30 X 200) + (10 sin 30 X 400)
= — 8478 Nmm

The new system need not consist of forces X and ¥ together with a couple. For
instance, when a force system is replaced by its resultant, the new system (the resultant)
is a single force, the three unknown quantities being its magnitude, direction and
position. We could replace a given force system by three forces acting along the sides of
a specified triangle (although not proportional to the sides). In such a case the direction
and position of the new forces are known, and the unknown quantities are the three force
magnitudes. We could not replace a given system by three forces all parallel to the x axis
because such an arrangement would not permit the new system to provide a y
component equivalent to that of the original system. In effect, three parallel forces do not
represent three independent quantities.

A common example of the use of an equivalent system is the replacement of a force
by a parallel force and a couple. The force Fat Q in Figure 4.20 can be replaced by an
equal force Fat A rogether with a couple of moment Fd. The couple F has the same
moment about A, and is in the same sense, as the original force Fat Q.

Figure 4.20

Suppose we have a force system expressed in the form of three components X,, ¥, and
M, in the axes at A (Figure 4.21). We now decide that it would be more convenient to
express the system in terms of components in the axes at B, as shown. If the two systems
are equivalent, then:
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1. resolving parallel to X, gives: X, =X, cos 0+ Y, sin 0
2 resolving parallel to Y, gives: Y, =-X sin 0+ Y, cos 0
3. taking moments about B gives: M,=Xy—YVx+tM,
YA )’B\
IO X
B ". XV
Y, S e
Al MB'. .\. \ 0
B .
( y)
My,
A Xu XA
Figure 4.21
Problems
4.1 Figure P4.1 shows a lever pivoted at B. At a certain instant it is horizontal and
has forces shown exerted at the ends. The force exerted on the lever by the
pivot B is shown in terms of its horizontal and vertical components.
) Find the moment of the force system about B.
(ii) Find the moment of the force system about C.
(i) Which way will the bar rotate?
10 N
20 N
—3m i 5m i/
60°
—_— ¥
AT 1N TB c
27.32 N
Figure P4.1
4.2

Figure P4.2 shows three forces acting on a bar ABC. Find the resultant.

80N 80N

B /60° 60°\c
|

1.5m ! 1 m4~

Figure P4.2
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4.3 ABC is a frame in the shape of an isosceles triangle (Figure P4.3). A force of
4 kN acts normal to AB at its mid-point. A force of 2 kN acts normal to BC
at its midpoint. The 6 kN force at B acts in the direction BA. Find the
resultant of these forces expressed in terms of its vertical and horizontal
components acting at point D, together with a couple.

6 kN

A D C

I 10 m J| 10 m—{
Figure P4.3
4.4 Calculate the resultant of the four parallel forces shown in Figure P4.4.
10N 20 N 50 N 10N

Jd e
4 m

—5m—] 6 m-—

Figure P4.4

4.5 Calculate the resultant of the parallel forces which act at the corners of the
2 m square ABCD (Figure P4.5).

2 kN

45° A 2 m D

4 kN

5 kN

7 kN

Figure P4.5

4.6 Figure P4.6 shows a triangular plate ABC. Forces of 150 N, 120 N and
180 N act along the sides AB, BC and CA respectively.
(1) Find the resultant.
(i1 Find the resultant if the 180 N force is reversed in direction.
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/ 60 mm C‘
150 N

Figure P{.G

4.7 A rigid body ABCD is loaded as shown in Figure P4.7.
0] Express the resultant of these forces as a horizontal and vertical
component at B and a moment.
(i) Find a point P such that the resultant can be expressed as a
horizontal and vertical component only, acting through P.

D

6 kN

i
|
i
|
2 kN i
i_
!

Figure P4.7

4.8 Figure P4.8 shows a 1 m square plate ABCD acted upon by a force of 10 kN
along the diagonal BD and an anticlockwise couple of 20 kNm at corner A.
) Find the magnitude, direction and point of application of the

resultant force.

(ii) Solve the same problem but with the couple applied at B instead
of A.

A \20 kNm B

(N

10 kN

D 1m C

Figure P4.8
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4.9 Find the resultant of the five forces shown in Figure P4.9.
D 3 kN
4 kN 6 kN -« l

i C

L
oo | %
}"3111 3 m— 4 m | 4m—|

Figure P4.9

4.10 In the parallelogram of Figure P4.10, sides AB and DC are 750 mm while
P g g
sides AD and BC are 500 mm. The forces shown act along, but are not
proportional to, the four sides of the parallelogram.

0 Find a statically equivalent force system which consists of a force
through A and a couple.
(i) Find a statically equivalent system which consists of a single force.
Y

B 10 kN C

300 5 kN 15 kN
A 20kN D X
Figure P4.10

411 Figure P4.11 shows a square plate acted upon by forces of 8 kN, 12 kN and
15 kN and also a couple of 20 kNm. These are shown by full lines. What
forces (shown dashed) acting along the sides of the square will be statically
equivalent to the original system, given that F| = £?

8 kN
A
F,
ceitope 20 kNm
N
A A
Fildm )
15 kN
4m 45°
...... 5

g £
30 4 12 kN

Figure P4.11
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4.13

4.14

4.15
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A system of three forces and a couple act on a square plate ADEC (Figure
P4.12). Evaluate the statically equivalent system of forces F,, F, and F, which
act along the sides of the equilateral triangle ABC. (These forces are not
proportional to the sides of the triangle.)

12 kN
20 kNm
() E
D —t ' » 6 kN
Ba

K '-. 45°
’5/10 kN
4m| £y Y

2 m
4 m
A P C
Figure P4.12

Replace a clockwise couple of 50 kNm by three forces which act along the
sides of an equilateral triangle of side 2 m.

A flat triangular plate ABC is standing so that AC is horizontal and B is above
AC. Side AB = 5 m, BC = 5 m and CA = 6 m. Forces of 10 N, 15 N and
20 N act along the sides AB, BC and CA respectively. Replace this system of
forces:

(1) by a single force

(i1) by a force through B together with a couple.

The bent bar ABC is subjected to the loading shown in Figure P4.15. Find
the resultant of the forces shown:

(i) as a force through B, and a couple
(ii) as a force through B, and a force at C perpendicular to BC
(iii) as a force at A, and a force at C perpendicular to BC.

10 kN/m

3m i

Figure P4.15
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4.16 Four coplanar forces act at the points A, B, C and D as shown in
Figure P4.16. The co-ordinates of each point are shown in brackets.
@) " Find the resultant of the forces.
(ii) Replace the resultant by the two forces indicated by the dashed lines
in Figure P4.16.
Y
10 N
B 150
(-4, 3) 15N 45
A F
(1,2 K4
.."\.oz
—— A
16.05 N 60°
72.16° T1on
D
3,-2)
C
(-3, -3)
Figure P4.16
4.17 A system of coplanar forces acts as shown in Figure P4.17 along the lines
AB and BC. Replace the forces by an equivalent force through D, and a
couple at C.
— 0(.5)(2
B +* ....-
ClF
5m
25m D 1.5 m
- U —
A —eam
I——— 1.5 m
Figure P4.17
4.18

A system of coplanar forces, shown by solid lines, acts as indicated in Figure
P4.18. Find the resultant of the system, expressed as:
(1) a force through point C, and a couple

(ir) a force of 60 N at E, and a force F appropriately directed and
located.
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6 N/m
Nmtbtttt
B C
4 m
..".F
- 7 E L
60 N .7
N 12N
4 m —l>
2m
A D J_
50 N# "50N
-
Figure P4.18

4.19 The shape depicted in Figure P4.19 is a regular hexagon of sides 3 m in
length. Coplanar forces act along the lines shown. Express the resultant of the

forces:

) as a force through O, and a couple.

(i1) as a single force through P with no couple. Whar is the distance OP?
iii) as two parallel, but unequal forces 3 m apart, one of them passing

through O.

14 N

6N

Figure P4.19
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Equilibrium of

Non-concurrent Forces

5.1 Conditions of equilibrium

A body is in equilibrium only if the forces acting upon it have no resultant force and no
resultant couple.

For the resultant force to be zero, the sum of the components of the forces in any two
directions must also be zero (Section 3.2).

2F =0 (5.1)
25=0 (5.2)

When these conditions are satisfied the system is either in equilibrium or it is
equivalent to a couple. If the sum of the moments about any point is zero, i.e.:

SM=0 (5.3)

the system cannot be equal to a couple and must then be in equilibrium. These three
equations are the basic expressions of coplanar equilibrium and are used extensively
throughout engineering.

Equilibrium can be ensured by other sets of three equations, which are sometimes
easier to apply. If the sum of the moments about a point A is zero:

M, =0 (5.4)

then the system cannot be equal to a couple, and if it has a resultant, that resultant must
pass through A. If then, the sum of the moments about a point B is also zero:

XM, =0 {5.5)

the resultant is either zero, or passes through B as well as A. To rule out the latter
possibility we may now either ensure that the sum of the components along AB is zero,

or ensure that the sum of the moments about a point C is zero, where C is not on the
line AB:

SM.=0 (5.6)
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— Exameie 5.1

Figure 5.1 shows a system of forces consisting of five forces and a couple, the locations
of which are defined with reference to a circle of 4 m diameter. If che force system is
in equilibrium, calculate the unknown forces F,, F, and F,. The forces #, and F,
together with the 8 kN force, are parallel to Oy.

Y1 8LkN

l/lOkN

Figure 5.1

SOLUTXON

The sum of the forces in the x direction must be zero (Equation 5.1), thus:

—10cos 60 + F =0 o F = 45kN
Similarly, in the y ditection (Equation 5.2):

F,+ F,— 8~ 105sin 60 = 0 o F, + F,= 1666 kN (&)
Equarting moments about O to zero, Equation 5.3 gives:

F,(2 cos 60) + 8(2cos 60) +4=0 .. F;,=—12kN-

3
and from (A): o F, = +28.66 kN
(Evidently, it would have been quicker to use Equation 5.3 before Equation 5.2.)

5.2  Types of supports for structures

The magnitude and direction of the forces exerted on structures at their supports depend
on the type of support. A hinged or pin support, such as that shown at A in Figure 5.2a,
allows rotation but does not permit translation in any direction. The reaction at A (R,)
can act in any direction and is often replaced by its vertical and horizontal components
(V, and H,) as shown. At a hinged support the reaction cannot include a couple: the
reaction must be a force whose line of action passes through the hinge.
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o L1 ey 111 R
4 P

The roller support at B in Figure 5.2a allows rotation, and translation paralle] to the
surface on which the roller moves, but does not permit translation perpendicular to the
surface. The reaction at B must be a single force at right angles to the surface on which
the roller moves. In Figure 5.2a, the reaction at B is a vertical force (V) since the bearing
surface is horizontal. By convention the roller reaction may be either towards or away
from the structure (either compressive or tensile). The structure cannot lift off the rollers,
as it could if the symbol were interpreted physically.

The hinge support and the roller support are often called simple supports and a single
span beam, with a hinge support at one end and a roller support at the other, such as the
beam in Figure 5.2, is called a simply-~supported beam.

Some supports, called built-in or fixed supports, do not permir either translation or
rotation and, in planar structures, three reaction components may occur at such a
support, as shown at support A of the beam of Figure 5.2b. The hatched symbol for the
built-in support at A in Figure 5.2b is commonly used and should signal that the reaction
at the support consists of a force, with vertical and horizontal components, V, and H,
and a couple, M,. A beam with a built-in support at one end and no support at the other
is called a cantilever.

5.3  Planar structures in equilibrium

_ Examme5.2

The cable tower structure ABC in Figure 5.3a is supported on rollers at B and by a pin
at A. Determine the reactions under the forces shown.

(a) C,lOkN T (b) c 10 kN
iy o
5 kN 5 kN

N T A
PN

A I-—G m—i I;A-»Vf—er

Figure 5.3
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SOLUTION

Figure 5.3b is a frecbody diagram of the structure showing the applied loads and the
reactions exerted by the ground. The body ABC is at rest and the forces shown are all
external to ABC and are the only forces acting. Therefore, they must be in equilibrium.
The three unknown quantities in this system may be taken as the magnitude of the
vertical reaction Ry and the magnitude and direction of the reaction R,. Alternatively
R, and R, may be expressed in terms of their horizontal and vertical components, in
which case the unknowns are H,, V, and V,. ‘
Three solutions will be demonstrated.

iP Using Equations 5.1, 5.2 and 5.3:
El=h . A Ewisli= ~H, =—15kN

IM,=0: ¥ (V,X6) —(5X6)—(10X10)=0 .V,=+217kN

SE=0  +1 V,+ V=0 . AV, =-217kN
The reactions are therefore as shown in Figure 5.4.
C
A ,
15 k§ ‘ iy
21.7 kN 21.7 kN
Figure 5.4

2. Using Equations 5.4, 5.5 and 5.6:
IM, =0 D (V, X6 —(5X6)~(10X10)=0 V= +21.7kN

IMy=0: P —(V, X6 = (5X6) —(10X10)=0 . V,=—21.7kN

IM_=0. N (H X10)—(V, X6+ (5Xx4)=0 ~H==15kN

It is always cheoretically possible to choose the equations such that one unknown is
evaluated at a time, and this sometimes simplifies the arithmetic. If moments are taken
about the point of intersection of two unknown forces, these two forces do not appear
in the equation. If two unknown forces are parallel and the force system is resolved in a
direction normal to these, the two unknowns do not appear in the equation.
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Hence, if we wish to write an equation which contains only one of the three unknown
forces, we examine the other two. If these are parallel we resolve at right angles to them.
If they are not paralle] we take moments about their point of intersection.

3. The three unknowns will be computed independently. To find H,, we note
that V, and V are parallel. Therefore, resolving normal to V, and V.;: -

V=IO e S ~H, = —15kN

To find V,, we note that H, and V; intersect at B. Therefore, taking moments about B:
IM, =0 (¥ (V. X6+ (5X6)+(I0X10)=0 ~V, = =217 kN
To find V, we note that H, and V, intersect at A. Therefore, taking moments about A:

SM, =0 (Y ~(V,XEO+(BX6)+10X100=0  .V,=+217kN

Every precaution should be taken to ensure that the external reactions have been
cotrectly calculated, since they usually form the basis of further work. Consequently,
after finding the reactions by one of the above methods it is advisable to check them by
reference to independent equations.

— Examrie5.3

A beam rests on a roller support at A and a hinge support at B, 19 m apart, and carries
vertical loads as shown in Figure 5.5a. Find the reactions at A and B.

@ SokN 40KN 80 KN ®  SokN 40kN  B0KN

‘-*4 m~t~5 m‘—i’*—é m-—-‘—-4 m-| ‘ ‘ ‘
} A B g

[ ]

& e v

‘/I\ VB
Figure 5.5
Sorurion

Figure 5.5b is a freebody diagram showing only the forces acting on the beam,
including those at the supports. As A is on rollers there is no horizontal reaction at A.
Since the given forces are all vertical, then to satisfy the equation ZF\ = (), the reaction
component H, must be zero.

LM, =0:  (F% (50 X 4) + (40 X 9) + (80 X 15) = (V X19) =0
= V=926 kN
=0 +t V,—50—40-80+ 926 =0 ~V,=774kN
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Now using the equation M, = 0 as a check:
LA —(V, X 19) + (50 X 15) + (14 X 10) + (80 X 4) = 0 s V=774 kN

(Alternatively the equation 3., = 0 may be employed to find V, and the equation
sz = 0 used as the check.) :

_ Examme5.4

The beam ABC is uniformly loaded between B and C and carries a concentrated load
of 10 kN at B, as shown.in Figure 5.6a. It is built in at A. Find the three reaction
components at A.

(@ 10 kN ®) 10 kN

M)
3 kN/m 3 kN/m
} fLIA-—G1

R f‘

SOLUTION

Figure 5.6b is a freebody diagram of the beam. It is necessary first to replace the
distribured load by its resultant, which is a force of 6 kN acting mid-way between B

and C. Then:
ZP;=0: HA‘—:O
TE =0 =06 - AV, =16kN

IM =00 (P M, +(10X2)+(6Xx3)=0 .M =~-38kNm

5.4 _Summary

If a body is in equilibrium, certain relationships must hold berween the forces acting
externally on that body. These are expressed analytically by the equations LF = 0,
ZFy =0 and XM= 0. These relationships enable the determination of any three
unknown quantities in the given force system.

If all the forces acting upon the body pass through one point, the third equation is
automatically satisfied. Only the equations 2.F, = 0 and 2.F, = 0 may then be applied,
and only two quantities can be determined.

In applying these equations, care should be taken that 4/l forces and couples external
o the chosen body are taken into account, and equally that no internal forces are
included or any forces which do not act on the body.
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Prohlems

5.1 The bell-crank lever ABCD in Figure P5.1 is pivoted at C. The forces shown
are at right angles to the lever. If the lever is in equilibrium find the
magnitude of the force Fand the magnitude and direction of the reaction at
the pivot.

6N
A
LS00 D
C
i— 125 mm —-‘
Figure P5.1
5.2 The square plate ABCD in Figure P5.2 is in equilibrium. Find the values of
F,, F,and #.
2 kN
B
F, — c
5 m
45% 4 kN
A 0 e
B
Figure P5.2
5.3 What is the significance of the symbols shown at the supports A and E of the
beam shown in Figure P5.3? Find the horizontal and vertical components of
the reactions at A and E.
5 kN 8kN 10kN
A IE cflsoe s0°\D E
[ V4 \ ]
4, ' &
F—5m—4—5m—t—6 m——F—4 m—]
Figure P5.3
5.4

Find the vertical reaction at A, the horizontal reaction at A, and the vertical
reaction at D, for the beam loaded as shown in Figure P5.4 (page 68).
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15 Nm
m 15N
M, A B H C,/45° D
— |
? 4 m i 4 m 1
Va Vb
Figure P5.4
5.5 The pulley shown in Figure P5.5 has P

tangential forces applied to it as indicated.
If the pulley is in equilibrium, determine:

0 the value of P 0.1 kN 0.5 kN
(i1) the vertical and horizontal
components of the reaction at

the axle. Figure P5.5

5.6 What is the significance of the support symbol shown at A in Figure P5.6
How many reaction components are there at a support of this type? Find the
reactions for the loading shown.

D
302 A | T
6 kN
3m
2 kN
/AA l B C
4 * “t
} 2m I 2m I
Figure P5.6
5.7 Figure P5.7 shows the same beam as that of the previous problem, but

supported in a different manner. What is the total number of reaction
components for the beam of Figure P5.7? Determine these reactions.

D
T
6 kN
3m
2 kN
A 18 C
[ +f ——
I 2 m | 2m I

Figure P5.7
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5.8 Figure P5.8 is a diagrammatic sketch of a jib crane. The jib weighs 5 kN and
the main assembly weighs 40 kN.
1) When the value of the load L is 10 kN find the reactions at A

and B.
(1) At what value of L will the crane overturn?
40 kN
[1]
Y
5 kN
ACC—— (B
F2 m4=3 m—}—3 m—}—3 m—|
Figure P5.8
5.9 A horizontal beam of length 8 m is supported on rollers at each end, the roller

planes being at 60° and 30° respectively to the horizontal (Figure 5.9). At
the centre it rests on a smooth peg. For the loading shown, find all the

reactions.
20 kN 30 kN
—|— )
\VZm ¥ 2m+2m “ m'-1
%A B c%peg D E ;_B?v
60° : i 30°
Figure P5.9
5.10 Find the horizontal and vertical components of reaction at A and B for the
beam of Figure P5.10.
3
25 kNm 4? 5 KN
A (. C D B
[ I S ]
Y | 5
'| 15m —5 m—]
Figure P5.10

5.11 Find the reactions to the truss shown in Figure P5.11. The top inclined chord
is bisected by the inclined strut.

5 kN

I/SkN
5 kN E

5 kN

2.5 kN

|

Figure P5.11



70 TWwWO-DIMENSIONAL STATICS—FORCES

5.12 The bar ABC shown in Figure P5.12 is in equilibrium. Evaluate the unknown
forces F,, F,and M.
15 kN F
10 kNm ‘ M
I +§—o
& |B C F
F—4 m— 6m |

Figure P5.12

5.13 A bar AB is loaded with a uniformly distributed load w, by two forces NV and
Sacting at B, and a couple M (Figure P5.13). If the bar is in equilibrium find
the values of &V, Sand M in terms of wand x.

wkN/m~ M5
leHHH%
A B N
f * |
Figure P5.13

5.14 The hollow drum of radius 200 mm in Figure P5.14 rests berween two rough
surfaces inclined at 30° and 60° respectively to the horizontal. A vertical force
P is applied to the drum at a distance e from the centreline. If the coefficient
of friction is 0.4 and the weight of the drum is neglected, what is the greatest
value of e before the drum slips?

P
._e__.]'
i~ R =200 mm
Ny
( \
\\_/) g
o
Figure P5.14
5.15 Figure P5.15 shows seven beams loaded in various ways. Find the reactions

for each. Attempt to write down the answer either by inspection or with a
minimum of calculation.
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(a) 8 kN b 8kN 6 kN
A ‘c B A c‘ ‘D B
5 .S A K
l——2m \| 6m } I——Zm—‘—Zm—-'—éim———‘
() D (d) 36 kNm
T A N B
10 kN 4m 4|>, ~/ ‘%
‘ | 8m n
A B ¢ L ® 11 kN
L 28 kNm
‘| 4m 1 4 m l A 4\ ‘C B
F—4 m 4m—-o

i
E D T
A b 3|m eiN 6 mA]
% A TN A B C
| - 5 %
® n——sm—tsm
Figure P5.15

Find the reactions R,, R, and R, in the frame of Figure P.5.16. Each triangle

is equilateral, with sides 3 m long.

110 N
J
R

W
12 N
8 N = i 7
77N
TRl RzT

Figure P5.16

5.16
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5.17 Three beams are supported, one upon another as shown in Figure P5.17.
For the loading shown find:
(1) the reactions at each end of beam AB
(i1) the reaction at C of the beam CD.
2 kN/m
_/
ZmTZ m M
E | F
C] s i D
A 0
AT —1 B
+ P
| ML
Figure P5.17
5.18 The ladder of weight W in Figure P5.18 is resting on a floor, where the
coefficient of friction is 0.3, and against a wall, where the coefficient of
friction is 0.2. What is the minimum value of the inclination 8 if slipping is
not to occur?
L
w
6
7
Figure P5.18
5.19

Forces of 8 N, 10 N and 3 N are directed along the edges of the triangular

plate ABC shown in Figure P5.19. Find the reaction R,, and the reaction R,
in magnitude and direction.

3N

8N 1 90° 7 m 8
Ry Ry 10N
Figure P5.19
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5.20 The plank of timber in Figure P5.20 rests with one end on the floor where
the coefficient of friction is 0.3, while the other end rests on an inclined wall
which slopes at 60° to the horizontal, where the coefficient of friction is 0.4.
What is the minimum angle of inclination 0 of the plank?

A

100 N

A\

Figure P5.20
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Preamble ,\

In the following chapters, the basic laws of statics will be applied to a

number of engineering problems. In nearly all cases the problems

* discussed have been greatly simplified compared with the real situations.

For instance, roof trusses are represented as being composed of weightless
bars joined together by frictionless pins, whereas in reality the bars are not
weightless and they are jointed by welding, bolting or other means, but
they are hardly ever pinned. Beams are also often represented as lines; the
depth, and in many problems the weight, is ignored. Support conditions
are idealised.

The purpose of the problems is primarily to illustrate the laws of statics.
The student should not suppose that having solved these problems he or
she is in a position to design roof trusses, beams, suspension bridges and
so on. The statics problems are an essendal first step, but many other
factors must be taken into consideration before practical designs can be
made.

The statical problems involved in real situations are frequently too
complex to be suitable as elementary illuscrations. It is for this reason that
simplified problems are used in a first course of statics in order to provide

practice in the fundamental concepts.
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Freebodies

6.1  Freebodies and freebody diagrams

In Part 1, the equations of equilibrium were employed to express relationships between
the external forces acting upon a single body or structure. In this way, if some of the
external forces were known, other forces, usually reactions at supports, could be
determined. In general, much more information is required about a structure than
merely the support reactions.

Most structures and machines are built up of several components connected together.
Such components exert forces upon one another at their junctions, and it is necessary to
evaluate these forces. Such forces are internal to the structure as a whole, and no
information can be obtained about them by considering the equilibrium of the complete
structure. According to Newton’s Third Law, the force exerted by component X upon
component Y is equal and opposite to that exerted by Y upon X. So even if we artempt
to include these forces in the equilibrium equations they will cancel out.

The only way we can obtain information about such forces is to consider the
equilibrium of one part of the structure. The part is so chosen that the internal force in
question becomes external to that part. The notion of the freebody is of importance here.

In the preceding chapters we introduced the concept of the freebody and the freebody
diagram when considering the equilibrium of any complete structure, isolated from its
supports and acted upon by the given external forces and the reactions exerted by the
supports. The concept of the freebody can be extended to apply to any subsection of a
structure or machine. The corresponding freebody diagram will be a diagram showing
the particular subsection or component, together with the forces which are external to
that component. The forces will consist of those which are applied direcdy to the part
being considered as well as those exerted by the remainder of the structure upon the part
being considered.
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(a) (b)

Figure 6.1

Consider the step-ladder shown in Figure 6.1a. The ladder rests on a frictionless
surface and a man of weight W is standing on it in a known position. The reactions R,
and R_ are vertical since there is no friction. Figure 6.1a is a freebody diagram of the
complete ladder and from this diagram reactions R, and R, can be easily found. But
equilibrium of the complete structure yields no information about the tension in the
rope, or the forces acting on the hinge at D. To study these forces it is necessary to draw
freebody diagrams of each of the components as in Figure 6.1b.

Suppose that R, and R, have been found from Figure 6.1a. Then by considering the
equilibrium of the freebody DF, we can find the unknown forces £, X; and Y. The
force E'is the reaction to E and is thus equal in magnitude to it. Then by considering
the equilibrium of the rope alone we see that B'= E" In this way we can find these forces
which are internal as far as the complete ladder is concerned.

@ Yep  ®

Figure 6.2

As another simple example we may consider the two planks AB and BC of Figure 6.2a,
with the cylinder of weight W resting between them. Consideration of the complete
assembly will yield no information about the force transmitted by the hinge B. Actually,
in this example we cannot even determine the reactions X, Y, X, and Y, since they are
four in number and we have only three equilibrium equations for the complete assembly.
Both problems are overcome if we dismantle the assembly and consider the equilibrium
of individual components as shown in Figure 6.2b. This figure shows three freebody
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diagrams. Equilibrium of the cylinder will give us the forces D and £. Equilibrium of AB
and BC separately will then give us the other six forces since we have three equations for
each component.

In drawing freebody diagrams, we take into account certain properties of structures
and their components. In many cases the properties in question are only approximations
to those of the real structure. The reaction forces that may develop at idealised supports
were discussed in Section 5.2 and in freebody diagrams the supports are replaced by these
reactions. For example, if a component of a structure rests against a frictionless surface,
the force between the component and the surface must be normal to the surface at the
point of contact. Such a support is idealised as a roller support such as that shown ac B
in Figure 5.2a (page 63).

At a pin-joint, the force exerted by one component on another is assumed to pass
through the pin. It is often convenient to express this force in terms of its x and y
components. In effect, it is assumed that the structural components are connected by a
frictionless pin, although the connection in the real structure will rarely sacisfy this
condition.

When we come to apply the laws of equilibrium to the various freebodies we must
bear in mind all the work of the previous chapters. A few of the most useful points are
mentioned.

1. According to Newton’s Third Law, action and reaction are equal in magnitude and
opposite in direction. Figure 6.3 shows part of two components which in the structure
are pinned together at D. If the forces exerted on component 1 by component 2 are
(F) and (Fy)D, then the forces (FX)'D and (Fy)'D exerted on 2 by 1 are equal and
opposite.

@
|
(F)p !
|
) |!
@ ( x) D
(Fp (F)'p
T
Figure 6.3
Fa (A y)f\
A (Fx)/\ A Lx
L,
F,
: 3 (F)p
Fy (F)g

Figure 6.4



80 BEAMS AND CABLES

2. If any component is acted upon by only two forces, these forces must be equal and
opposite and in the same line. Suppose the bar AB (Figure 6.4a) has forces exerted on it
through the pins at A and B only. Then F, = F; and these act along the line AB. If the
forces have been expressed in terms of components (Figure 6.5b), then not only is:

(F)y=(F), and (£),=(F),

(F), L,

as we can see by taking moments about B.

but also:

3. If a body is acted on by three forces only, these forces must be concurrent.

The laws of equilibrium may be applied to the complete structure and also to any
subsection of the structure. It cannot be too strongly emphasized that before any
equations are written it is essential to decide what particular force system is under
consideration.

- Examprie 6.1

Three cylinders A, B and C rest between the walls and on the base of a container D
(Figure 6.5a). Cylinder A weighs 3.24 kN and has a radius of 90 mm; B weighs 9 kN
and has a radius of 150 mm; and C weighs 1 kN and has a radius of 50 mm. Find the
forces exerted by the cylinders on the container and on each other. (Neglect friction.)

@ ‘— 360 mm —{ (b)

D D

— R,
120V/3 mm

R, =]
120 mm
Ry
|t
| I

Figure 6.5 (continues)
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(d)
1 n
Rs

Rs
R
Ry

(e

R
Ry

&)

Figure 6.5

SOLUTION

Figure 6.5b is the freebody diagram of the container alone and shows the forces which
maintain it in equilibrium. Figure 6.5¢ is the freebody diagram of the three cylinders
taken together. It will be noted that of the seven forces which act on this freebody, four
are unknown and therefore cannot be determined directly by applying the three
equations of equilibrium to this body. :

From the given sizes of the cylinders, the dimensions shown in Figure 6.5a are
evaluated. The directions of all the internal forces are thus known. Figure 6.5d shows
the freebody diagram of each cylinderkindividually. By considering the equilibrium of
A, the forces R, and R are found to be:

R =187 kN and R, =374 kN
For cylinder B, R, is now known and R, and R may then be found:
R, = 18.19 kN and R, = 20.40 kN
For cylindei' C, R, is now known and R, and R, may be found:
,=1632kN  and R, = 13.24kN

As a check it will be seen that the forces R, to R, which act on the freebody of Figure
6.5c are in fact in equilibrium with the weights of the cylinders.

~ Exampie6.2

The two bars ABC and DBE shown in Figure 6.6a are continuous past the intersection
B where they are connected by means of a frictionless pin. They are supported at C
and E by hinged supports. A load of 1 kN is hung from a cable which passes over
frictionless pulleys at A and G. The pulleys have a diameter of 1. m. Find the reactions
at C and E and the force transmitted through the pin at B. Neglect the weight of the
pulleys and bars.
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® ey © 2

(a) %
‘ : ! 1 kN &

1 kN

= (e) ’

Figure 6.6

: SOLUTION

The angle between the cable and DB at D is 41.66°. Considering equilibrium of the
freebody of the pulley at A (Figure 6.6b), we get: ;

F,= L665KN and F, % 0.74Z kN
and for the pulley at G (Figure 6.6¢):

F,=10kN and F =10kN
Considering the freebody ABC (Figure 6.6d):

YE=0:  1.665+F +H.=0

SE =0 0747+ E,+ V =0

IM. =0 (0747 X7)+ (535X E)=0
and hence: Fz =—;—1.046 kKN and V_=0.299 kN
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Considering the frcebédy DBE (Figure 6.6¢):
TFE=0: 0665—F —~F+H,=0
SE =0 S0747 = B0 A =0 &V, =0.701 kN
YM, =0: (0.665X9)+(6X F)+ (5X10)=0 ~F =-183kN
and hence: H; = —0.165 kN and H_. = 0.165 kN.
Checking, we see that 2.F_ =0, ZFy =0 and XM_ =0 for the complete Fdnd,

The above solution could have been determined using fewer freebodies. Considering
the freebody of the complete structure, there are four unknown reaction components

V.. H., V, and H,. If one of these can be determined by considering the freebody of
a substructule, the other three can be evaluated from the equilibrium equations

applied to the whole structure. Consider the freebody of thc component EBD shown

in Figure 6.6f. Taking moments abotit B gives:

0.665X3 -1X05-1X05+H X6=0 s H, = —0.165 kN
Consideting now the equilibrium of the whole structure: : _

SE =0 H +H. =0 v H, = 0,165 kN

IM,=0: V.X5-0165X6-1X05=0 — .~V.=0.299kN

SE =0 V,+0299 - 10=0 ' -V, =0.701 kN
The forces at pin B may now be found by considering the freebody EBD again:

SF=0: 0.665—F —10-0165=0 W F = —183kN

ZFy=0: —0.747 — E —]0+0701—0 S F, = —1.046 kN

Equilibrium of the bar ABC could have been considered instead of EBD.

A great many practical problems cannot be solved without considering the equilibrium
of components as well as the equilibrium of the whole structure. A common case is that
of a simple plane frame (Figure 6.7a) consisting of two rigid members ABC and CDE
joined together by a frictionless hinge at C and supported at A and E by pin supports.

£ (b) Ve F,

H, Hy
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Reference to Figure 6.3a indicates that there are four reactions components altogether,
namely A, and V, at A and H; and V at E. Since there are only three equations of
equilibrium for the frame as a whole, the external reactions cannot be evaluated without
considering freebodies of the components. Figure 6.7b shows freebody diagrams for each
of the components ABC and CDE separately. We now have a total of six unknown force
components, but since there are three equilibrium equations for each component, the
problem is easily solved. As an alternative we could have drawn a freebody of the whole
frame and a freebody of one component. This particular type of problem will be
discussed in more detail in Chapter 8.

Many structures are built up of physically identifiable components. For instance the
ladder of Figure 6.1 comprises the part AD with the steps, the supporting leg DF and
the rope BE. A roof truss comprises a number of bars which are connected together at
their ends. In this chapter so far the impression may have been given that a freebody
should be separated from the complete structure at the junction between physical
components. In fact the components themselves may be subdivided.

A single beam may be arbitrarily divided into two parts and one part considered as a
freebody in order that we may find the force transmitted at the interface between the two
parts. This particular problem is considered in Chapter 7.

Prohlems
6.1 For each of the structures shown in Figure P6.1, draw freebody diagrams of

the complete system and of each of the components including the pins which
connect the various bars.

(a) l (b)

Py

rx
v

P

(© (d)

Figure P6.1 (continues)



FREEBODIES 85

(e)

Figure P6.1

6.2 For each of the structures shown in Figure P6.2, draw a freebody diagram for
each bar, each pin, the rope and the pulley.

(a) ‘ (b) o

Figure P6.2

6.3 For the pin-jointed truss of Figure P6.3, draw a freebody diagram for each bar
and for each pin.
Pl

Figure P6.3
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6.4

6.5

6.6

Figure P6.4 shows a plane frame supported on pin supports at A and E. The
two rigid components are joined by a frictionless hinge at C. Determine the
reaction components at A and E.

8 kN

}——1 m+l m—]—1 m‘—‘

10 kN [B

Figure P6.4

Three cylindrical drums A, B and C rest in a trough, as shown in Figure PG.5.
The diameters of the drums are 0.25 m, 0.375 m and 0.500 m respectively.
The drums with contents weigh W, = 400 N, W, = 900 N and
W, = 1600 N. Determine the reactions R, to R, berween the drums and
between the drums and the trough. Also find the reactions R, berween the
trough and the ground, and R, berween the strut and the ground. (Neglect
friction and the weight of the trough.)

Figure P6.5

A semicircular trough of weight 2W, and radius 0.5 m is supported in the
cradle shown in Figure P6.6. The members ABC and DBE are continuous
past B where they are connected by a pin. Two weights W are supported by
a cable which passes over smooth pins at A and D. Find the reactions at C
and E and the force exerted on member AC by the pin at B. Ignore friction
between the trough and the cradle.
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Figure P6.6

The primitive hoisting frame in Figure P6.7 is made up of two straight bars
ABC and DBEF which are connected by a pin at B, and a cable at F. The
winding machine is located at G. The member AC is 5 m long, DE is 5 m
and EF is 1.5 m. The pulleys C and E are of negligible size. Draw freebody
diagrams of the bars ABC and DBEF and write equations of equilibrium for
each freebody. Are there sufficient equations to enable the reactions at A and
D, the force in the cable and forces across the pins at B, C and E to be found?
If not, express these forces in terms of the force Xin the cable.

) = <P
X cable %

F—1.5m—]

Figure P6.7
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Internal Actions
in Beams

7.1 ___Internal actions at a cross-section

It was pointed out in Chapter 6 that internal forces may be studied by ‘cutting’ the
original body and drawing a freebody diagram of one part. If the cutting surface is
suitably chosen, the force in question is then an external force acting on the partial
freebody and it can be determined by statics.

This method is of importance when studying the forces and couples acting within a
rigid beam by reason of externally applied loads. That such internal actions must exist,
can be seen by considering a beam AB in Figure 7.1, supported at each end and carrying
a weight W. In this condition, each part of the beam is at rest. Now if the beam is cut
through at a cross-section such as C, each part collapses (i.e. neither AC nor CB is in
equilibrium). Some force must therefore have been transmitted previously across the
section C in order to maintain equilibrium. The details of this force may be ascertained
by applying the laws of statics either to the body AC or to the body CB, since the cross-
section C is an external surface of both of these bodies.

Figure 7.1

The present treatment will be confined to beams lying in one plane and subjected to
forces lying in the same plane.

Consider the straight beam ABCD in equilibrium under the action of the forces
shown in Figure 7.2a. Suppose that it is required to determine the force transmitted
across the section C which is 3 m from A. The bar is cut through at C and the
equilibrium of either AC or CD is examined. Figure 7.2b shows the freebody diagram of
the portion AC which is acted upon by the given forces at A and B and by an unknown
force Q. Since AC is in equilibrium, the unknown force Q must be the equilibrant of the
other two and is determined by the method of Section 5.1.
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(a) 10 kN
A B 30° C D
| : —
Y ‘ 2D, 8.66 kN
1 2m T 1 m i 2m 1
3 kN 2 kN
(b) 10 kN (c)
A B / C C D
| [ —_—
/ 8.66 kN
T L
Q Q
3 kN 2 kN
Figure 7.2

This equilibrant Q is the force exerted on body AC by body CD. An equal and
opposite force Q' must be exerted upon CD by AC, and this force may be found if the
equilibrium of freebody CD is considered (Figure 7.2¢).

The fact that the equilibrant force does not actually pass through the cross-section C
is of little importance since it may be replaced by a force at C together with a couple
(Figure 7.3a). It is convenient in practice to resolve the force into its two components,
one paralle] to the axis of the bar and one perpendicular to it (Figure 7.3b). Thus in
Figure 7.2b the equilibrant Q is expressed by the three quantities: magnitude, direction
and position of a single force, whereas in Figure 7.3b it is replaced by a statically
equivalent system comprising two forces § and /V and a couple M, all acting at the
centroid of the cross-section C. It is more convenient to determine these components
directly rather than to determine the equilibrant as a single force.

(a) 10 kN (b I0kN §
A B c%/g A i Y
M

i

3 kN Q 3 kN
Fzgure 7.3

This topic deals with beams whose cross-sectional dimensions are small compared
with their length. In many examples such beams will be represented by a single line
which is the longitudinal axis of the bar. Where this axis is curved, the component forces
of the internal action at any section are taken parallel and perpendicular to the tangent
to the curve at that section.

The component parallel to the axis is called the axial force. This is usually abbreviated
to A.F. and the force is denoted by N. The component perpendicular to the axis is called
the shear force. This is abbreviated to S.F. and is denoted by S (or sometimes V). The
couple is called the bending moment. This is abbreviated to B.M. and is denoted by M.
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JEFINITIONS

At any given cross-section of a beam there may exist an internal action.

The axial force is the component of this internal action in a direction parallel
to the longitudinal axis of the beam at the section.

The shear force is the component of this internal action in a direction normal
to the longitudinal axis of the beam at the section.

The bending moment is the moment of the internal action about the point
where the axis of the bar intersects the given cross-section (i.e. about the
centroid of rhe cross-section: see Appendix).

Not only is it convenient to express the internal action at a cross-section of a beam
by the axial force, shear force and bending moment but engineers find that this
y g
procedure facilitates the design of the beam.

1.2 Sign conventions

Before doing numerical examples we must first discuss sign conventions. Figure 7.2
shows that at any cross-section there are two internal forces: the force Q exerted by CD
on AC, and the force Q” exerted by AC on CD. In this illustration, if we determine the
bending moment by considering freebody AC we find that M is anticlockwise (Figure
7.3). On the other hand if we consider the equilibrium of CD we find that M is
clockwise, being the reaction to the couple exerted on AC. Thus if the terms clockwise
and anticlockwise are adopted as criteria of positive and negative, the sign of the bending
moment would differ according to whether AC or CD is considered. Besides being
inconvenient, this does not reflect the significance of the term bending moment. Similar
remarks apply to the axial force and shear force. A more satisfactory sign convention is
obtained by considering the effect which these actions have on a small portion of the bar.

Suppose that at the part of the bar under consideration two cuts C, and C, are made
very close together, thus isolating a small element of the bar as indicated by the side
elevation shown in Figure 7.4. At each of the cuts C, and C, are shown the three actions
and their reactions. The actions at C, and C, will be nearly the same since C, and C, are
close together. The element is thus subjected to three pairs of actions which tend to
distort its shape. It is most important not to confuse these internal actions with forces
and couples. A force would act either to the left or to the right. For a horizontal member
(as in Figure 7.4), an axial force is a pair of forces, one of which acts to the left and one
to the right. Similarly, a shear force is a pair of forces, one up and one down, and a
bending moment is a pair of couples, one clockwise and one anti-clockwise.
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S : S ;
! M] E Ml ’ Mz | M2
small
N, element : N
' of ey m >
N : length N, ‘ *
S S
G G,
Figure 7.4

The small element in Figure 7.4 is subjected to a pair of forces V, and WV, which in
this instance tend to increase its length (i.e. the element is in tension). The axial force N
is said to be positive if it puts the element in tension, and negative if it causes
compression.

The element is subjected to a pair of forces S, and S, which tend to cause a shearing
type of deformation. If the forces S, and S, are in the directions shown in Figure 7.4,
then the shear force S is said to be positve.

The element is subjected to a pair of couples M, and M, which tend to bend it. The
bending moment M is said to be positive if the element bends concavely upward (or
concavely towards a specified positive direction if the bar is not horizontal).

These sign conventions are summarized in Figure 7.5.

AXIAL FORCE SHEAR FORCE BENDING MOMENT
Figure 7.5

The above definition of the sign conventions indicates the physical significance of
these signs. In many practical problems the signs may be determined by imagining the
nature of the deformation. For instance, a simply supported beam carrying downward
loads will bend so that it becomes concave on the top. Provided the x axis is taken from
left to right and the y axis upward, such bending will be denoted as positive.

In more general problems, the physical determination of signs is less simple and
analytical rules are more convenient. This is important also for computer calculations,
since the computer cannot imagine the deformed shape of the beam segment. We define
an x axis as running along the beam as in Figure 7.6. Then, if the beam is cut at a section
C, the x axis is directed outward on one cur face, the left-hand face in Figure 7.6, and
we may call this the face of positive incidence. If the forces N, S and M on this face agree
with the direction of the x and y axes, then they are defined as positive. On the other cut
face, the x axis is directed inward as on the right-hand side of Figure 7.6. This face is
called zhe face of negative incidence and on this face N, Sand M are positive if they disagree
with the x and y axes.
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y+ Faceof +veincidence  Face of —ve incidence

— J o\
I m—

Figure 7.6
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Figure 7.7 shows the beam of Figure 7.2a (page 90) cut at C. On each freebody, the
internal acrions are shown acting in their positive sense as defined above. On the left-
hand freebody, which has the positive cut face, Vand Sare shown in the directions of x
and y and M anriclockwise. These indicate the positive directions. In Figure 7.7b the cut
face C is negative, so the positive directions of IV and § are opposed to x and y and

positive M is clockwise.
@ Y 5 kN S
A B‘:&GG kN N
-------- -X C
[
2m et m—] ¥
3 kN

Figure 7.7

(b)

C

M
N4‘
N

2 m

Either freebody may now be used, and the equilibrium equations will give N, S and

M with the correct signs.

_ Examee 7.1

- For the beam shown in Figure 7.2a (page 90) deterritine the intérnal actions at the
cross-section C. First consider the left-hand freebody, then the right-hand freebody (as

shown in Figure 7.7 above).

SOLUTION

The arithmetic is simplified if the oblique force is replaced by its x and y components.

1. Figure 7.7a shows the freebody ABC which includes all forces acting on ABC

including the internal actions at C. At C, the internal actions are shown as positive:

the arrow NN is drawn in the x direction, S is dmwn in the y direction, and M is

anticlockwise. Then for ABC:
SE =0 -866+N=0
ZFy=O: +3—-5+5=0

Taking moments about C:

KDY (35 3) +(5 3 1) + M=0

. N= +8.66 kN
L S=4+2kN
M= +4 kNm
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2. Figure 7.7b shows the freebody CD. At C, the arrow N is drawn in the negative
x direction, Sis drawn in the negative y direction, and M is clockwise. Then for CD:

CSE=0: —N+866=0 o N= +8.66 kN

‘):Fy=‘0: =S+2=0 S S=+2kN
Taking hxoments about C: ‘

D —M+@2X2)=0 R e S

In the case of a cantilever, all reactions are at one end of the beam. It is not necessary
to find these reactions before calculating internal actions. One may consider the freebody
which includes the free end of the cantilever.

If the beam is not horizontal at the section where N, Sand M are required, the x axis
is taken along the beam axis and the y axis is also tilted by the same amount. Thus Nis
always along the beam and S normal to the beam at the section in question (see Example
7.2 below).

For a completely general case, the direction of the x axis at the given section may be
defined arbitrarily, but it must be tangential to the beam at that section. For instance, if
the beam is vertical at the given section, x may be defined as upward or downward. This
will define member axes at this section. The choice of member axes will define the
meaning of positive B.M. and S.F.

The procedure for finding N, S and M in any planar problem can be summarised as
follows:

1. If necessary, determine the reactions at the supports. This will not be necessary if all
external forces to one side of the given section are already known.

2. Make a freebody drawing of the portion of the bar to one side of the given cross-
section. Include all forces which act on this freebody. Do not include any forces which
act on the discarded portion of the bar.

3. At the cur face insert arrows representing the positive directions of N, S and M as
explained above.

4. Write the three equations of equilibrium for the freebody and thus evaluate /v, Sand
M. Since N, S and M are the only unknown forces acting on the freebody, they can
always be determined using the three equations of equilibrium.

_ Exameie 7.2

A bent bar ABCD is loaded as shown in Figure 7.8 and is supported by a pin at A and
on rollers at D. Find the reactions at A and D. Then calculate the A.F., S.F,; and B.M.
at the mid-point K of the inclined portion. Show that the same results are obtamed by
considering AK as by considering KD.
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20 kN 60 kN

45\\ 4}\ ;&D

40 kN 40kN /K

A l B Y/ 60°

£

\——Sm ! 5 m 1| 5 m S m 5 m

SOLUTION

1. Reactions: Replace the inclined forces by their vertical and horizontal

components. Let the components of the reactions at A be V, and H,. Let the reaction

at D be V, (since no horizontal component force can be resisted at D). The freebody
diagram of the whole structure is shown in Figure 7.9.

14.14 kN 42.43 kN

42.43 kNJ
14.14 ki‘ !

D
3 ;§J T
o
40kN 40 kN
Hy A

A

—5 m ! S m ! 5m S m Sm——-l
Va

Figure 7.9

When finding reactions it is desirable to calculate each independently as far as possible
so that an error in the first does not invalidate the others. Secondly, it is essential to check
the reactions by an alternative calculation before proceeding with the problem.

To obtain an equation involving only V., take moments about A:

¥ (40 X5) — (40 X 10) — (14.14 X 15) — (14.14 X 8.66) — (42.43 X 20)
— (4243 X 8.66) + (V, X 25) = 0

o Vo =86.02 kN

To obrain an equation involving only V,, take moments about E, which is the
intersection of H, and V.
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¥R — (V, X 25) + (40 X 20) + (40 X 15) + (14.14 X 10) — (14.14 X 8.66)
+ (42.43 X 5) — (42.43 X 8.66) = 0
oV, = 50.55 kN
To obtain an equation involving only H,, resolve horizontally (i.e. at right angles
to V, and V})). ’
1+ +H, + 14.14 + 42.43 =0 o H, = ~56.57 kN
=5 b

The reaction A, is thus in the opposite direction to that assumed.

To check: Taking moments about C yields an equation in which all reactions are
involved. Using the above values for H,, V, and V;:

¥R (H, X 8.66) — (V, X 15) + (40 X 10) + (40 X 5) — (42.43 X 5)
+ (V,, X 10) =0

(—56.57 X 8.66) — (50.55 X 15) + (40 X 10) + (40 X 5) — (42.43 X 5)
+ (86.02 X 10) =0
This equation checks, and the values are eithe; correct or have compensating errors,
which is very unlikely.
Y N

2. Internal actions:  Cur the beam at K -l i
and consider the freebody to the left of K s M
(Flgure.7:10). Ax?s X z}nd y are taken at K so 0N 0N,
that x is.in the direction of the beam ar K. K T
Since the cut face K is here a face of positive ‘ 433 m
—— e 7kN A BWeoo| |
incidence, the positive directons of N, < ’
and M are as shown in Figure 7.10. =k 1_5 m‘_‘ﬁ5 =

50,55 kN 25m

Figure 7.10

Resolving forces parallel to /V gives:

+2 —(56.57 cos 60) + (50.55 cos 30) — (40 cos 30) — (40 cos 30) + N=0
5 N=5379 kN

Resolving parallel to § gives:

et (68,57 s &)+ (50:55 i 80}~ (40 i IO} = (40 s 30+ =0

s §= —34.26 kN
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Taking moments about K gives:

¥\ —(56.47 X 4.33) — (50.55 X 12.5) + (40 X 7.5) + (40 X 2.5) + M =0
o M= +476.78 kNm

3. Internal actions: Cut the beam at K and now consider the freebody to the right
of K (KD in Figure 7.11). ‘ ;

14.14 KN 42.43 kN

42.43
14.14 kN kN D

f 86.02 kN

Figure 7.11

Since the face K in this freebody is a face of negative incidence, the positive directions
of the internal actions are opposed to the direction of the x and y axes.
Resolving parallel to N gives:
+y —(14.14 cos 60) + (14.14 cos 30) — (42.43 cos 60) + (42.43 cos 30)
— (86.02 cos 30) + N=10
s N= +5379 kN

Resolving parallel to S gives:

\t +(14.14 sin 60) + (14.14 sin 30) + (42.43 sin 60) + (42.43 sin 30)
— (86.02 sin 30) + S= 0

o S= —3426 kN

Taking moments about K gives: » : :
D~ M= (1414 X 4.33) — (14.14 X 2.5) — (42.43 X 4.33) — (4243 X 7.5)
+ (86.02 X 12.5) = 0 :
. M= +476.75 kNm
TF s S evizes: Deoea e v ais P sehiilods i’ e oarelirie A
_ The internal actions at a given section K may be computed either from the forces to

the left of the section or from the forces to the right; each method giving the same
values. This is because the two sets of forces together form a system in equilibrium.
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When several forces have to be resolved in order to obtain Sand Nas in this example,
it may be simpler initially to find the vertical and horizontal components (or whatever
components are most convenient) of the internal action at the given section. These can
then be resolved into directions tangential and normal to the bar. This can be illustrated
with reference to Example 7.2.

_'—__ALTERNA'FIVE SOLUTION

Suppose that the reactions have been determined as above. Consider portion AK.

- Temporatily represent the internal force at K by its vertical and horizontal components
Vand H and the bending moment M (as shown in Figure 7.12a). The bending.
moment is found as before by taking moments about K. Then Hand Vare determined
by resolving forces horizontally and vertically, respectively. -

(@) B = 2945KN

40 kN
56.57 KN A | : S
= >
1_5,“_4,5,“4,_ K B =5657kN
5055 kN 25m i
Figure 7.12 i
Thatis:  —56.57 + H=0 o H= 5657 kN
5055 —-40—-40+ V=0 oo V= 2945 kN

These two components alenow replaced by the Components N and S in the desired
direction (Figure 7.12b).

N = 29,45 cos 30 + 56.57 sin 30 = 53. 79 kN
S = 29.45 sin 30 — 56.57 cos 30 = —*34.27 kN

Example 7.2 also illustrates the following relationships:

1. The B.M. at any point K of a bar is equal to the algebraic sum of the moments about
K of all forces to one side of K. The moment of a particular force is positive or negative
according to whether that force tends to cause positive or negative bending at K.

2. The S.F. at any point K of a bar is equal to the algebraic sum of the components, in
a direction normal to the longitudinal axis of the bar at K, of all forces to one side of K.
The sign of each force is determined according to whether it causes positive or negative
shear at K.

3. TheAF. at any point K of a bar is equal to the algebraic sum of the components in
a direction tangential to the longitudinal axis of the bar at X, of all forces to one side of
K. The sign «of each force is determined according to whether it causes positive or
negative axial force at K.



INTERNAL ACTIONS IN BEAMS 99

When the axis of the beam is curved at the section where it is required to find N, §
and M, axes x and y are taken ar this particular section such that x is tangential to the
beam. This is illustrated in Example 7.3.

Exampie »7 i’

The semi-circular bar ABCD of radius 8 m is loaded by forces as shown at A, B ahd
D in Figure 7.13a. Find the components of the internal action at the cross-section C.

@) 12 kN (b)

Hor i diel

Figure 7.13
SOLUTION

Cut the bar at C and consider the freebody AC to the left of C (Figure 7.13b). Ac C,
take the x axis tangential to the bar. The cut face is here a face of positive incidence,
so the positive senses of &V, Sand M are as shown, with Nin the x direction, S in the
y direction and M anticlockwise.

Resolving parallel to N gives:

+2 Gcos30+ N=0 o N= =520 kN
Resolving parallel to S gives: ‘

R+ 6sin30 + S=0 S S= —3.0kN
Taking moments about C gives:

¥D M—6(8—8cos30) =0 s M= +6.43 kNm

1.3

Beams with distributed loading

Distributed loading was discussed in Section 4.4. When a beam supports a floor, the
weight of the floor, as well as the weight of the beam itself, constitutes a distributed
loading. If each unit length of beam supports the same load, the load is uniformly
distributed. In order to determine the reactions, the equilibrium of the whole beam is
considered, and the distributed load is replaced by its resultant. However, to determine
internal actions at a section, the beam is cut at that section. The freebody to one side of
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the cut may well support only part of the distributed load and this part must be included
in the freebody diagram. After the cut has been made and the freebody drawn, the part
of the distributed load acting on the freebody is then replaced by its resultant.

_ Examrie 7.4

A straight beam of length 12 m is supported at A and B and is loaded as shown in
Figure 7.14. Find the bending moment at the mid-point C.

8 kN/m
A M C B
1F—3 m —-‘—‘3 m ! 6m
RA RB

Figure 7.14
SOLUTION

To find the reactions at A and B, the distributed loading is temporarily replaced by its
resultant, which is a force of 48 kN at the mid-point of AC.
Taking moments about A:

P 48 X 3) + (R, X 12) =0 o F =125
Taking moments about B:

P (R X 12) + (48 X 9) = 0 o R, =36kN
Check by resolving vertically:

+t R+ R —48=0 36+ 12 — 48 = 0 OK.

To find the B.M. at C it is easier to consider the part CB (Figure 7.15) rather than :
AC. In this case the cut face is one of negative incidence, hence the positive senses of
Nand § are opposite to x and y and M is clockwise positive.

M

M (€ i-—--—.x B
ol
S‘ ﬂrlZ kN
)—Gm

Figure 7,15

Taking moments about C:

DM +12%X6)=0 o M. = +72 kNm
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— Bxawme1.5 »
In the beam of the previous example find the B.M. and S.F. at the point D.

SOLUTION
The reactions R, and R, having been found as before, the beam is cut at D, the

A B
distributed load being left part on each side as it actually occurs. The parc AD is now
loaded as in Figure 7.16, while the part DB is loaded as in Figure 7:17.

S
8 kN/m
R, U EE 5
N

‘F—3 m—[il S*

8 kN/m
C B

e

|

36 kN

Figure 7.16 Figure 7.17
Consider the part AD shown in Figure 7.16 and replace the distributed load by its
resultant which is 24 kN downward at 1.5 m from A. Taking moments about D gives:

(Y36 X3) — (24X 1.5 —M=10 . M= +72 kNm

and resolving vertically gives: : :
G 5= —12:kN

+136-24+5=0
Alrernatively, consider the part DB shown in Figure 7.17. Taking moments about

D gives: )
(NM+ (24X 15 —(12%X9) =0 M= +72kNm

-and resolving vertically gives:
+t—s-@x3)+12=0 s S==12kN

— Exaveiz7.8 e ~
Find the B.M. and S.F. at the mid-span (pomt C) of the mmply—suppoued beam

shown in Figure 7.18 which supports a hncarly varying load.
20 kN/m-__

M/MB
C 5
) ‘ = tRB

1
I

i

~4 m [L -4 m

Figure 7.18

) X
P4
e —
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SOLUTION

The resultant of the linearly varying load is 0.5 X 20 X 8 = 80 kN acting 5.33 m
from A (i.e. through the centroid of the triangular load intensity diagram). Taking
moments about A gives: :

(¥ (80 X 5.33) — (R, X 8) =0 : s Ry = 5333 kN
Taking moments about B gives: k

(7Y (R, X 8) — (80 X 2.67) = 0 . R, =26.67 kN
Checking by resolving vertically gives: ,

+t R, -80+R =0 26.67 — 80+ 5333=0 OK

10 kN/m\él
n M;’N
S
26.67 kN
Figure 7.19

By taking moments about C in the freebody shown in Figure 7.19:
(7Y (2667 X 4) — (0.5 X 10X 4 X 3) = M=0.. M= +80.0 kNm
Applying the vertical force equilibrium equation to the freebody of Figure 7.19 gives:

+1 2667 = (05X 10X 4) +S=0 s 8S=—6.67kN

1.4 _ Variation of A.F., S.F. and B.M. along a heam

The internal actions vary from point to point along a beam. In simple cases it is possible
to express this variation in algebraic terms. If the bending moment is computed for a
typical point at a distance of x metres from a chosen origin (usually the left-hand end),
an expression is obtained for M in terms of x. Similar functions may be derived for the
axial force and shear force. Usually such expressions are valid only over a limited part of
the beamn. This is the case if the loading is discontinuous (i.e. if it consists of concentrared
loads, or of distributed loads over some parts only).

It is frequently convenient to illustrate the variation of bending moment by plotting
a graph of M against distance along the beam. Such a graph (often called a bending
moment diagram) may be obtained either by plotting the algebraic functions mentioned
above, or by simply calculating A at a number of isolated points along the beam and
plotting these values as ordinates.
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3. Now consider a section R which lies between C and D. For this case it is easier to
consider the freebody to the right of R, as shown in Figure 7.21c..

AtR:  M=80(14 — x) = 1120 — 80xkNm , (7.5)
S=80 kN b o : (7.6)
and these expressions are valid for x = 8 m to 14 m.

4. In Figure 7.22, the three expressions for M are plotted against x. It is important
to remember that each equation is only valid for a certain range of x.

A B (€ D
Figure 7.22

Since each of Equations 7.1, 7.3 and 7.5 are linear, it would have been sumciel1t to
compute M at the points B and C. The graph could then have been drawn.

In Figure 7.23, the three expressions for § are plotted against x. These expressions
indicate that S is constant berween one point load and the next.

+80 Eq. 7.6

~30 Eq.74

=90 Eq.7.2 _
Figure 7.23

_ - Exavrs 1.8

For the beam shown in Figure 7.14 (page 100), derive expressions for M and § over
the segments AC and CB. Plot graphs of these functions.

SOLUTION

1. Consider a section P w1th1n segment AC and x metres from A. Figure 7.24a shows
the freebody to the left of P. Replace the dlstubuted load by its resultant. Then by

eqmllbrmm

n 36x = 8x(x2) — M= 0 o M= 36x — 4x* kNm (1.7)

+1 36 = 8x+ S=0 . S$=8x— 36 kN (7.8)
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These expressions dre valid only in the segment AC when 0 < x< 6 m.

2. Consider a section Q within segment CB and x metres from A. Figure 7.24b
shows the freebody to the right of Q.

(@) 8x kN (b)
8 kiN/m N Yl
)y p ‘;M (% MFQ =3
A ! N N 1
' \ A
x i St—(12 - y—
36 kN - I 12 kN
Figure 7.24
AtQ: M=12(12 — x) = 144 — 12xkNm (7.9)
S=12kN (7.10)

These expressions are valid only in the segment CB when 6 € x< 12 m.

3. Graphs of M and S are shown in Figure 7.25.

(a) M, . =8

max

+12

—36
Figure 7.25

It can be seen in Example 7.8 that over the part of the beam which carries uniformly
distributed load the shear force varies linearly and the bending moment varies
parabolically. Over the unloaded part of the beam, Sis constant and M varies linearly.
This is discussed again in the next section.

1.5 Equilibrium of a small heam element

For a straight beam loaded normal to its axis, simple relationships exist between the load
intensity, the shear force and the bending moment. These relationships can be developed
from the equilibrium equations of a small element of the beam. It is assumed that the
beam carries distributed load, the intensity of which varies from point to point. The load
intensity, denoted by w, is the load per unit length of a beam at the particular section
considered. The upward direction is taken as positive for all quantities.



106 BEAMS AND CABLES

Figure 7.26 shows a beam element of length dx isolated by two cuts 4x apart. At this
location, the load intensity is w kIN/m. Hence the total external load on the length dx is
wdx kN. At the left-hand cut, the internal actions are Mand S, as shown, and at the right-
hand cut the internal actions have changed by small amounts 4M and 4, respectively.

wdx kKN
wkN/m\é
1EL
S+ dS
A S
v M t M+ d,
Leeex ( ----- -X
k| M+ )
S+ 4
e
Figure 7.26
For vertical equilibrium of the element: I
+t ~ S+ S+ dS) + wdx=0 = w (7.11)

Taking moments about the centre of the element, we obtain:

N ST H(S+HAS) T — M+ (M+ dM) =0
and if the product of the two infinitesimal quantities &S and dx is neglected:
aM
§=—— (7.12)
Note that the change in shear from one point to another is numerically equal to the
load between the two points. The increment of bending moment balances the couple
formed by the shears on each side of the element. The signs in the two equations depend
on the sign convention adopted for w, Sand M.
It is often more useful to express the equations in the alternative forms:

S=—[wdx (7.13)
M= —[Sdx _ (1.18)

The point of maximum moment occurs when the slope of the bending moment
diagram is zero. Equation 7.12 indicates that this point coincides with the point of zero
shear, i.e. when § = 0.

. Examme?.9
For the beam of Example 7.4 (Figure 7.14 page 100), derive expressions for the S.F.
and B.M. over the portions AC and CB, by means of Equations 7.13 and 7.14, and
find the position and magnitude of the maximum bending moment.
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SOLUTION

For the part AC: w= —8 (negarive downwards)

From Equation 7.13: = §,. = ~fwde=—[-8dc= +8x+ C,

At the left-hand support, the value of §is equal to — R, or —36 kN.
Thus when x = 0, S = —36 and therefore C; = —36 kN. Thus:

Syc = 8x— 36 kN (7.15)

Al

This is the same as Equation 7.8.
From Equation 7.14:

M, = =] Sy dx = —[(8x —36)dx = —45* + 36x + G

At A, M = 0 because the beam is simply supported. Thus when x = 0, M= 0 and
therefore C, = 0. Thus:

M, = 36x — 4x° kNm (7.16)

This is the same as Equation 7.7.
The segment CB is unloaded, so w =0

nSy = —f0de=C,
At B, where x = 12: S=R, = +12kN.
Hence: €, =12 and S, = +12kN (7.17)

This agrees with Equation 7.10.
From Equation 7.14:

M, (124 = =122+ C,

o
At B, where x = 12, M = 0 since the beam is simply supported and hence C, = 144.
Thus: M, = 144 — 12xkNm i ~ {1.18)
This agrees with Equation 7.9.

From Equation 7.15, S = 0 when x = 4.5 m. The maximum bending moment occurs
at this point, and from Equation 7.16: !

M. = (36 X 4.5) — (4 X4.5%) = 81.0 kNm

as shown in Figure 7.25a.

In this section we have considered the equilibrium of a small element and then
integrated. In the previous section we considered the equilibrium of a freebody of finite
size. The two results in each case depend only upon statics.
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— Examme7.10

For the beam of Example 7.6 (Figure 7.18 page 101), derive expressions for the S.F.
and B.M. anywhere on the span. Hence, calculate the position and magnltude of the
maximum B.M.

SOLUTION

The linearly varying load w in Figure 7. 18 can be expressed in terms of the distance x
from the support A as:
20x

iy =75 o (negative downwards)
From Equation 7.13:
= =] -250de=125¢ +C
At the left-hand end, when x = =0, S= —R, = —26.67 kN.
Therefore C, = — 26.67 kN and:

§= 1258 — 26.67 kN (7.19)

From Equation 7.14: ! i
M= ~](125¢ = 26.67) de= 2667~ 5% +C,
At A, where x = 0, M = Ol.Za’gld therefore C, = 0.
Thus: M= 26.67x~ "5+ (7.20)
At the mid-point of the span, point C in Figure 7.18, where x = 4 m, Equations 7.19

and 7.20 give:
= — 6.67kN and M= 80kNm

which agree with the values obtained in Example 7.6.
From Equation 7.19:.

S=0 when x= [=—=Z=4.619m

Substituting this value of x into Equation 7.20 gives the magnitude of the maximum
bending moment:

(125
M, = 26.67 X 4.619 — <T X 4._6193) = 82.13 kNm

1.6 More about shear force & hending moment diagrams

From the discussion and examples in Sections 7.4 and 7.5, the following observations
can be made with respect to straight beams.
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4SHEAR FORCE DIAGRAMS:

1.

Where a concentrated load is applied normal (or transverse) to the axis of
beam, a step occurs in the shear force diagram equal in magnitude to the
concentrated load.

Between points of load application, the shear force is constant.

In regions of a beam subjected to a uniformly distributed load, the shear force
diagram is linear.

In regions of a beam subjected to a linearly varying load, the shear force
diagram is parabolic.

The points on the shear force diagram where the shear force is zero
correspond to the points where the bending moment is either a maximum or
a minimum.

BENDING MOMENT DIAGRAMS:

1. Between points of transverse load application, the bending moment diagram
is linear.

2. In regions of a beam subjected to a uniformly distributed load, the bending
moment diagram is parabolic.

3. In regions of a beam subjected to a linearly varying load, the bending moment
diagram is cubic.

4. At the points where concentrated transverse loads are applied to a beam, the
bending moment diagram changes direction (kinks).

5 At a point where a couple is applied, a step occurs in the bending moment
diagram of magnitude equal to the applied couple.

6. The bending moment diagram reaches a maximum or minimum at points
where the shear force is zero.

Problems
1.1 ABCD is a horizontal beam carrying vertical loads as shown in Figure P7.1.

Find the B.M. and S.F. at the points E and F.
12 kN 20 kN
'*3 m—‘ 1'-—3 m—‘ 1
A A E B E C

——5m ‘| 4m T 6 m

Figure P7.1
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Tl

1.3

1.4

1.5

ABCD is a bar inclined at 30° to the horizontal (Figure P7.2), pinned at A,
and supported at D on rollers which provide a reaction normal to the bar. It
carries a horizontal force of 20 kN at B and a vertical force of 10 kN at C.
Find the B.M., S.F. and A.F. at the mid-point of the bar.

10 kN

Figure P7.2

For the beam shown in Figure P7.3 find the B.M. and S.F. at E.

20 kN/m B

1_3]“_'15 } ]
5m |

Figure P7.3

Calculate M, Sand N at the mid-points of AB and BC of the beam of Figure
P7.4.

100 kN
A D GAB E C
-
} 60°;
5 m | 5 m —]|
100 kN
Figure P7.4

For the beam shown in Figure P7.5, find the bending moment and shear
force at the mid-point of segments AB, BC, CD, DE and EF.

—_— >

502 kN 40 kN
B 40kN/m ¢ 45X\D E Y
= F
5 m——f——5 m———4 m—} 6m f 5 m—o

Figure P7.5
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For the beam of Figure P7.6, find N 12 kN 20 kN
and Mat P, Q and R, and S at Q. ‘ ‘
Why is the S.F. indeterminate at P, . B
and R? 4 P Q R
im—tt— ]
Figure P7.6 }—— m 3m'3m m

For the beam of Figure P7.7:

® find N, Sand M at P

(ii) express S and M in each segment of the beam as a function of
%, where x is the distance from A.

30 kN/m 260 JNm
Mg P B c/' ;});D
|‘—5 m—|-—5 m+6 m—-i-—G m—-|
Figure P7.7

For the beam of Figure P7.8:

) find M,, My, M, M,

(i1) find the shear force at A, B, just to the left of C, just above C,
just to the left of E, and just to the right of E

(iii) find the axial force in the portions AB, BC, and CD.

50 kN
D E y
80 kN =i F
‘ &
4m
16 kN/m B _L
Al C
A,
I 5 m } 3m 6m I 4 m—f
 j
100 kN
Figure P7.8

A semi-circular rigid beam is loaded as shown in Figure P7.9. Find the
bending moment and axial force at A, B, C and D. Also find the shear force
at A and B. 20 kN

Figure P79 | 10 m |
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7.10

711

71.12
7.13

114

7.15*

1.16*

For the beam shown in Figure P7.1 (page 109), draw graphs of the B.M.
and S.F.

For the beam shown in Figure P7.3 (page 110):
(1) express M and S in terms of x, where x is the distance from A
(i1) draw the B.M and S.F. diagrams for this beam.

Draw the B.M. diagram for the beam of Figure P7.6 (page 111).

For the beam of Figure P7.7 (page 111) derive expressions for M and S for
each of the segments AB, BC and CD.

AD is a beam hinged at A and on rollers at D (Figure P7.14). Lugs are welded
onto the beam at B and C, and horizontal forces are applied as shown.

(i) Find R, and R,

(i) Find the B.M. at A, just cach side of B, just each side of C, and at D.
(i) Find the S.F. and A.F. at the mid-point of each segment.

10 kN =—d»- T
3m
Bl | c
Af | i ;&D
2m
3‘“‘ 5 kN
-t 10 kN ’
4 m
‘r 5 kN
4 m 8 m I 6 m

Figure P7.14

Figure P7.15 shows a bar AD hinged at A and on rollers at D. Couples M,
and M, are applied at points B and C.
(1) Find R, and R,.

(ii) Using A as the origin, write equations giving the value of M and §
over each segment of the bar.
A J 'E-;\' ﬁ 1 D
A </u, AN
RAt‘;4 m——} 8 m I 6m ?RD
Figure P7.15

A T-shaped vertical cantilever is used for supporting equipment at a stadium.
The loading is shown in Figure P7.16. Find V, S and M at the mid-points of
CD and BE, and also at E.
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40 kN 25 kN/m
‘ B ¢ /D

Ak\ —///JT'—
}—3 m : 2m—+—2 m—-‘

ey |
Figure P7.16

717" The structure shown in Figure P7.17 is used as a gantry on a wharf. It is
required to raise a load of 60 kN at D. Due to wind, a horizontal force of
10 kN is exerted at B. Draw the B.M. diagrams for ABC and CD.

c—5m—

T
3m

60 kN
10 kN == (B

A
R S U

Figure P7.17
7.18"  Figure P7.18 shows a bent cantilever lying in the vertical plane. It is

cantilevered from A and is required to support a load of 15 kN at D. Find N,
Sand M at the mid-points of AB, BC and CD.

7 m I 3m
B

A

/77—

60°

|
15 kN

Figure P7.18
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7.19" A bent beam ABCDE (Figure P7.19) lies in the vertical plane and forms part
of a structure to support a projecting portion of a building. It is pinned at E
and has a vertical roller support at A. Calculate &V, Sand M at the mid-points
of AB, CD and DE, and Mat C and D.

— BE
4 m
—+ 0 kN
D 5
4m
40 kN
A B 90°
fa C
I 5m 4 m—i
/
30 kN
Figure P7.19

7.20" A barge is loaded with both concentrated and distributed loads as shown in
Figure P7.20. The cross-section of the barge is uniform along its length. Draw
the bending moment and shear force diagrams for this loading.

50 kN/m— 500 kN

IR
_F/x
|‘5 m-IWIO mﬂ-i m-IWIO m—{

Figure P7.20

Figure P7.21
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7.21" A pipe of 300 mm outside diameter and weighing 750 N/m is held by means
of yokes in a sling as shown in Figure P7.21. Plot bending moment and shear
force diagrams for the pipe in this position.

7.22* A beam ABC is continuous over two spans and is pinned to the three pin-
' ended members AD, BE, CF (Figure P7.22). Plot the bending moment
diagram for the beam.

10 kN

|'—-2 m—{——~2 m %‘ 4m I
\ i

45N\, p _90% ¢ 60°

Figure P7.22

1.23"  The rigid-jointed frame ABC in Figure P7.23 is fixed at A and C, and is
loaded at B. An accurate analysis shows the bending moments at A, B and C
to be: M, =-0.01PL, M, = +0.01PL and M =—0.01PL, where positive
bending moment is defined to produce tension on the lower side of the
members. Determine the axial force in the members.

Figure P7.23

7.24 The beam ABC is loaded as shown in Figure P7.24. Using the relationships:
S= —lwdxand M= —[S dx, derive expression for Sand M in the part AB
and BC. Find Sand M at B.

15 kN/m\

3 m | 3m

Figure P7.24

* Difficult problems, suitable for later study.



1
SHINLHVYA B dNHY IAO




8.1 Gonditions of equilibrium

If a beam, or rigid bar, lies in one plane and supports loads in the same plane, it requires
at least three components of reaction to maintain it in equilibrium. If it has just three
appropriate reaction components, then these can be calculated from the equilibrium
equations for a planar system of forces. The problems considered in Chapter 7 were of
this type.

If the number of reaction components are too few the structure will be unstable, i.e.
it will move under certain types of load. The beam in Figure 8.1 has only two reactions.
It will resist the load in Figure.8.1a, but not that in Figure 8.1b, and is therefore unstable.

@ I/ ® v i
| | - |
#h i o .
b be f f
Figure 8.1

Even if there are three reactions they must be suitable. They may not be concurrent,
nor all parallel (i.e. concurrent at infinity). The structure of Figure 8.2a will rotate about
A under the load shown (the three reactions are concurrent). The beam of Figure. 8.2b
has three reactions but if subjected to a horizonral load it will not be stable.

(a) W

‘ (b

W, W,
W,
[ —2> ‘ ]
# £ &
R A & 1 Ry 1 R 1 R
1

R, Figure 8.2
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If the beam has more than three reaction components, which is quite common in
practice, then the three equations of equilibrium applied to the complete beam are not
sufficient to evaluate these reactions, and additional information is required. Sometimes
this extra information is available in the form of a known bending moment at some point
other than a support. For instance, the beam may contain one or more internal hinges.
If a hinge is assumed to be frictionless, the bending moment must be zero at that
location. It is then possible to consider the freebody to one side of the hinge and thus
obtain an extra equation.

For all reactions to be determined using only the principles of statics, the number of
internal hinges must be the same as the extra number of equations required. For instance
a beam with five reactions must contain two hinges so that these two equations of
condition, together with the three equations of external equilibrium are equal to the
number of reactions. If there are more than two hinges (in this case) the beam is not
stable and will collapse under certain loads. If there are less than two hinges the reactions
cannot be determined by statics alone and the solution is not the subject of this book.
Such beams are not statically determinate.

8.2 Beams with one internal hinge

A beam such as that shown in Figure 8.3 may be used in bridge construction. It is often
more economical than two simply supported beams AB and BC. There are four
reactions, and these cannot be determined unless either the freebody AD or DC is
considered in addition to overall equilibrium. To avoid extensive arithmetic, it is
important to write the equilibrium equations in a suitable sequence.

— FExavez 8.1

The beam of Figure 8.3a is supported on rollers at A and B, pinned at C and contains
a hinge at D. Calculate the reactions for the loading shown.

§ 300 kN 500 kN
el l D B 20 kN l C
= @) — ]
Y S »
F—30m 15 m—4—15 m———30 m—— 30 m——

¥ 300 kN 500 kN
A l D B 20kN_J Gl 2
b L L
——30 m——15 m—-15 m~——30 m———F——30 m——

Figure 8.3
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Sorution ;
Consider the equilibrium of the freebody of the complete beam (Figure 8.3b).
ZF;( =0: +20+ R, =0 oo MY = =2A0) kN

The equation 2. F, = 0 involves three unknown reactions. An equation of moments
about A or B or C involves two unknowns. The best procedure is to consider the
freebody AD (Figure 8.4). Since M at the hinge is zero, taking moments about D gives:

45R = (300 X 15) =0 - R =100 kN

300 kN

| Y

F——30 m——~15 m~]

Figure 8.4

Reverting now to the freebody of the complete beam (Flgure 8.3b), an equation of
moments about B gives:

¥ —(100 X 60) +(300 X 30) — (500 X 30) + 60R, =0 .. R, =200 kN
Finally: '

ZF;,=0: +100 — 300 + R, — 500 + 200 = 0 “ R, =500 kN

A common problem is that of a portal frame (Figure 8.5) pinned at each end, and with
an internal hinge. A three hinged arch is a similar problem. Each structure is essentially
a bent beam. There is a horizontal and a vertical reaction component at each end,

making four reactions in all. 5

c |

Figure 8.5

Provided A and B are at the same level, an equation of moments about A for the whole
structure will yield the value of V;. An equation of moments about B will yield the value
of V,. Next we consider the freebody AC (or BC) to obtain the value of H, (or Hy).
Finally, XF = 0 for the whole structure then gives H, (or H,).
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For each of the structures shown in Figures 8.3 and 8.5, there are four reaction
components and one internal hinge. We have seen that these four reactions can be
evaluated using the three equations of equilibrium and a fourth equation resulting from

the knowledge that the moment at the hinge must be zero.

From the point of view of calculation, a three-hinged arch is the same as the portal of

Figure 8.5. Arches are usually curved but may be polygonal like that of Figure 8.6a.

_ Examre 8.2

For the arch of Figure 8.6a, find the reactions at A and E. Also find the bending

moment at D.

(a)
. 60 kN I m—_110 kN
|

4 m 3m | 2.m 4m
\ |y l

‘ B © D

Va Ve
b
1 60 kN S
e
B 5 -
4m B0 m*‘
4'm
- A
Hy
Va
Figure 8.6
SOLUTION

For the whole structure (Figure 8.6a), take moments about A:

(N (60 X 4) + (110 X 8) — (V, X 14) =0 -V, = 80kN

TF =0 V,— 60— 110 + 80 = 0 oV, =90 kN

i/
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Consider freebody AC (Figure 8.6b) and take moments about hinge C:
(N (90 X 7) — (H, X 4) — (60 X 3) = 0 o H= 1125 KN
For the complete arch (Figure 8.6a):

1 s H, = —112.5kN

E___

2. From the freebody ED (Figure 8.6c), the B.M. at D is found by taking moments
about D:

(P M, + (112.5 X 4) — (80 X4) =0 ~ M = ~130 kNm

A three-pinned portal (or arch) may have the bases (supports) at different levels. The
analysis of such problerns is essentially the same as in the previous examples.

Exavere 8.3

Find the reactions to the portal frame of Figure 8.7a.

) M=0
(a) |-—2 1n—+—3 m———-{ 50 kN (b) R (o) 50 kN
> N L
BWE < D B C D
4m
7 m "
A R, oA
Hy
f : !
VA A 1

Ve

Figure 8.7

SOLUT[ON

For the complete frame, take moments about E:

(B (H X3+ (V, X5+ (0X7)=0 . 3H, +5V,+350=0

For freebody AC (Figure 8.7b), take moments about C:
(N —4H +2V,=0



122 BEAMS AND CABLES

In Example 8.3, simultaneous equations can be avoided by resolving reactions at A
and E into oblique components, as in Figure 8.7c, so that R, and R, act along the line
AE. Reactions R, and R, are now easily found from external equlhbrlum However, the
equation of moments to find R, (or R,) now involves an oblique lever arm. For this

reason, it may be easier to use the solution given above.

8.3 Further examples

We have seen that a beam with four reaction components can be solved if it contains an
internal hinge. More generally it can be solved if the B.M. at any point is known. The
hinge is a special case when the B.M. is known to be zero.
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Now consider the freebody ABC (Figure 8.8b). Take moments about C:

D (H X 4) = (56%X2)+20=0 o H, = +23 kN
For the complete frame:
SE=0. H +H—-70=0 o H o= +47 kN

Figure 8.9a shows a beam continuous over three spans and containing hinges (M =
0) at E and F. The part EF is referred to as a suspended span in bridge construction. We
now have five reaction components and two hinges. There are three equations of overall
equilibrium and two equations expressing the fact that A/ = 0 at E and F (the latter two
are sometimes called equations of condition). These five equations are sufficient to
determine the reactions.

(a) £ £

! E‘FcFa\D

A B
- “ 3 P
1 1 1 1
.3 R, Ry R
(b) E B F
£ T_LT 3
A ‘ B C \ D__ R
1 by 1
R R, E F Ry Ry

Figure 8.9

First we may find R, from 2F, = 0. Consideration of freebodies AE and AF yields
two equations for R and R,. Finally R, and R, may then be found from equilibrium of
the complete beam.

Alternatively we may draw the three freebodies AE, EF and FD (Figure 8.9b). The
span EF may be analysed separately first. From this we find the forces which EF exerts
on the ends of the cantilevers BE and CF. Beams ABE and FCD are now independent
simply-supported beams which are quite easy to analyse.

The above concepts can be extended further. A beam loaded in one plane, and having
n reaction components, can be solved by the laws of statics if ir contains » — 3 internal
hinges, provided not more than two occur in any straight length between supports. It
may also be solved if the bending moments are known at # — 3 locations, even if the
known values are not zero.

The portal of Figure 8.10 has five reactions. It is important to note that at the
direction-fixed support A, there is a couple reaction M,, as well as force reactions #, and
V.. There are two internal hinges, and the evaluation of reactions follows from three
equations of overall equilibrium and two equations of condition. The latter are obtained
from two freebodies, i.e. AB and CE, or CE and BE, and so on.
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_ Examrie 8.5

Find the five reactions of the portal frame of Figure 8.10 and draw the axial force, shear
force and bending moment diagrams for the frame.

100 kN‘ ]
B D
<k B i
© : 50 kN
6 m
A I poay
- 7
HA\T/MA H,
i TVE
E 4m ; 4 m J}
Figure 810

SOLUTION
Taking moments about C in the freebody of Figure 8.11a gives:
D (V, X4+ (H X6)=0 2V, +3H, =0
| and taking moments about B in the freebody of Figure 8.11b gives:
D (VX 8) + (H,X6) — (100X4) =0 4V, +3H, =200

Solving these two simultaneous equations gives:

V., = 100 kN and H, = —66.7 kN
- (b}
100 kN 100 kN
4 m D_ MB:O’B 4m ‘ 4m D
& 50 kN \ 1 , € 50 kN
6 m ’ " 6.m
E E
o Jomieliiy--
4 He A
Vi v

Figure 8.11
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With V,, and H, determined; the ‘thrée reactions at A can be determined from the
equilibrium of the entire structure (Figure 8.10):

SE =0 V,=100+100=0 =)
SE=0: . H ~50~-667=0 s H, =116.7 kN
IM, =0: (100 X 8) + (50 X 6) = (100 X 4) — M, =0 ... M, =700 kNm

A check of these results can be made by considering the freebodies AB and AC, taking
moments about B and C, respectively. k

The A.F., S.F. and B.M. at any point on the frame can be determined by considering
the freebody on either the left or the right of the point in question. Appropriate
freebodies for each segment of the frame are shown in Figure 8.12.

Sac
; My Mcp
B ‘ N : ; D
A‘,’:B A AN S LT E ]\:DF‘ :
Man g ok
<1£ , Seo SDE<—\
Sap
i 6 m : 6 m p
x ; o
116.7 kN AJ, 1H67kN |4 ‘ | 66.7 kN gl 66.7 kN
- 777 — A ; - retiffnman o
"f 700 kNm - "f 700 kNm - i ]
0 0 k 100 kN 100 kN
(a) Segment AB (b) Segment BC (¢} Segment CD (d) Segment DE
Figure 8.12
From Figure 8.12a: NEs =20
| Sy = 116.7 kN
M= 7801167 (x=0atAtx=6atrB)
From Figure 8.12b: Ny = —116.7 kN
Sac =0 :
M, =700~ 1167 X 6= 0
From Figure 8.12c: ' Ny =-116.7 kN
» Sy = 100 kN
Mys = 100e= 667 X'§ (¥=4atCip 2=0etiD)
From Figure 8.12d: Ny, =—100kN ’
Spp = —66.7 kN :
Moy B=00:7w (x=6atDtox=0atE)
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The A.F., S.F.‘and B.M. diagrams are shown in Figure 8.13(a) to (c) respectively.

—116.7 kN ‘ ~400 kNm
B e B C D B G —  |-400 kNm
C D + ; D
100 kN G
ot + e
A E AL T A E
—100kN +116.7 kN —66.7 kN +700 kNm
(a) Axial force diagram (b) Shear force diagram (¢) Bending moment diagram
Figure 8.13
— Problems
8.1 The beam of Figure P8.1 is pinned at A and supported on rollers at C and F.
There is a hinge at D. Find the four reaction components.
20 kN 30 kN
A l C D ‘ F
B h |t A&
|
s m—t=sm——6m—t5 5]
Figure P8.1
8.2 The circular bar of Figure P8.2 is pinned at A and C and has a hinge at B.

Find the reactions at A and C.

10 kN

Figure P8.2
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8.3 Find the reactions of the structure shown in Figure P8.3.
4 kN
8 kN 6 kNm J
S is° ~ ¥

fE——A]

5m
60° DJ_

8.4 A solid hexagonal plate of sides 2 m is supported as shown in Figure P8.4 and
loaded in its own plane. Find the reactions at A and B.

Figure P8.3

10kN  SkN

Figure P8.4

8.5 The bent beam ABCD (Figure P8.5 ) lies in a vertical plane and is loaded as
shown. Ifit is known that the bending moment at C is —10 kNm (i.e. tension
at the top of the member), find the reactions at A and D.

24 kN
’—Sm 5 m J‘ 10 m
\
£

A B C

45°

Figure P8.5
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8.6

8.7

8.8

The two-span beam of Figure P8.6 has a hinge at D. Find the vertical
reactions at A, B and C for the loading shown and draw the S.F. and B.M.
diagrams.

8 kN
A 1.5 kN/m B l C
1 D A )
—o2m——2m—15m+—25m—
Figure P8.6

Find the reactions at A and E for each of the frames shown in Figure P8.7 and
draw the axial force, shear force and bending moment diagrams.

(b) 12 kN

POREL 21

o
B C D

9 kN (d) 5 kN 6 kN

w| |
[YS)
3
[3%]
3
1

lm C Im D

—
.

=N

3

PN

3

AERNENEREINRY

\w

hat

Z

<

3

},_
}—

£,

Po
>

Figure P8.7

Find the reactions of the three-hinged semi-circular arch of Figure P8.8.
15 kN

F—20 m—F—20 m—

Figure P8.8
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8.11*
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(1) Find the reactions of the three-hinged semi-circular arch of Figure P8.9.
(i1) Find the resultant force transmitted through the pin at D.

5 kN 2 kN

10 m 10—

Figure P8.9

For the portal frame shown in Figure P8.10, find the reactions at A and G
and draw the A.F., S.F. and B.M. diagrams.

‘| 3m ‘| 3m

|
[ 10 kN

e 2kim D E ’V
B
3m
4m F
2 m
A c| |
Figure P8.10

The portal frame of Figure P8.11 is pinned at A and E and has a roller
support at D. For the loading shown find the five reactions, given that
My = —25 kNm and M, = —20 kNm (i.e. there is tension on the outside
of the frame at B and D).

45 kN

|‘2.5 m“ 5 m_~

B C D

7.5m

10 m

Eg—

Figure P8.11
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8.12%  The frame of Figure P8.12 has a pinned support at G and a roller support at
A. It has an internal hinge at D and is prevented from collapse by a flexible
tie BF. For the loading shown, find the reactions at A and G and the tension,

7, in the tie BF.
|

C‘r 5 m I 5 m g
T D 2kN/m
2m
l— 10 kN
2m

tie

@
[<]
Q
e

B
3

a3,

}—
Bro—

Figure P8.12

8.13%  The structure shown in Figure P8.13 has a built-in support at A and a roller
support at F. The free end B is vertically above A. There is an internal hinge
at D. A 6 kN load is applied successively at B, C, D and E. Find the reactions

for each load separately.

6 kN

}-—3 m——3 m 4m—r—4 m—
Figure P8.13
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8.14%  The structure of Figure P8.14 has built-in supports at A and J. There are
internal hinges at C, D and F, the hinge at C occurring only in the sloping
member CD. An 8 kN load is applied successively at B, E and H. Find the
reactions for each load separately.

8 kN
|——2m-‘-2m—|
‘ D E F
3m
|
8kN C G 8kN
B 4m H
A _L I
~2 m I 4m I 4m T 4m } 2 m-
Figure P8.14

* Difficult problems, suitable for later study.
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Flexible Cables

Many instances could be cited of structures in which one of the main elements is a
Sflexible cable. The essential characteristics of such an element is its inability to resist any
actions other than tensile forces. In other words a flexible cable cannot resist bending
moment, shear force or a compressive axial force. This does not mean, however, that a
cable cannot carry external loads which have a component normal to the direction of the
cable. A cable can in fact support such lateral loads if it is firmly atrached to supports. It
does so by taking up a shape to suit the loading, the shape being such that the bending
moment at every point along the cable is zero. '

9.1 Cabhles supporting point loads

As a very simple case, consider a cable of negligible weight supported at A and B and
carrying a single weight W mid-way between the supports. The supports at A and B are
at the same elevation and are located at a distance L apart, as shown in Figure 9.1. The
sag DC at the point of application of the weight Wis ¥.

Al 2 o 2 B

Figure 9.1
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As the bending moment is everywhere zero, the bending moment at C is zero. Hence,
by considering the freebody AC, we have:

V.L
MC:T_HAYzO

WL

wH, = 3%

From equilibrium of the complete cable, we find that:

w

Vo= and Hy=H,

The tension 7 in the cable is the same in both portion AC and CB and can be
obtained by considering equilibrium at one of the supports. For equilibrium of the three
concurrent forces at A:

W 17
_ 2 2 = _ AC
T=VH!+Vi="\pm+1="3y

where lAc is the length of the cable from A to C.

The shape of a weightless cable under any system of loads is the same as the shape of
the bending moment diagram that would be obtained if the same loads were applied to
.a simply supported beam having a span equal to the distance between the cable supports
L. The particular scale adopted must be such that the distance around the bending
moment graph is equal to the given length of the cable.

&)
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Figure 9.2a shows a cable fixed to supports A and B and supporting point loads W/,
W, and W, at C, D and E. Considering the equilibrium of the complete structures, we
can find reaction V, by raking moments about B, and V; by taking moments about A.
Provided A and B are at the same level (in which case H, and H do not enter into the
equations) V, and Vi will have the same value as the reactions of a corresponding straight
beam which carries the same loads (Figure 9.2b).

Consider now the fact that at any point along the cable the bending moment must be
zero. At a typical point F (Figure 9.2¢) the bending moment is:

M, =V, 0 — Wix—a)— Hy (9.1)

The first two terms may be thought of as the bending moment in a simply supported
beam (Figure 9.2b). This is called the free-span B.M. and is denoted by M. Thus:

M, =M, — H,y 9.2)

Since M, = 0: H,y= M, (9.3)
M

or: y= FAO (9.4)

This shows that the shape of the cable is the same as the free-span bending moment
diagram M drawn to a particular scale (determined by the magnitude of the horizontal
reaction H, = H, = H). The actual sags at the points C, D and E are related
geometrically to the length of the cable.

In the present treatment, it will be assumed that the cables are inextensible, so that the
length of the cable is known beforehand. In practice, cables stretch or elongate under
load, and since the tension differs from one part of the cable to another, the elongation
is not uniform. In many practical cable structures it is necessary to take this extension
into account. In such cases, although the shape still corresponds to that of the bending
moment diagram, the problem is complicated by the fact that the final length of the
cable is initially unknown.

In the cable of Figure 9.2, the weight of the cable was ignored. In consequence the
cable was straight between load points, just as the bending moment diagram would be
for a weightless beam supporting point loads. If the cable weight is taken into account,
it would be found thar the cable profile is curved.

_ Examre 9.1

An inextendible cable of negligible weight is suspended from points A and D, 14 m
apart and at the same level. It carries two loads; one of 60 kN at a horizontal distance
of 4 m from A, and one of 110 kN at 8 m from A. Find the shape of the cable and the
maximum tension when:

(i) the cable length is 20 m

(i) the sag at Cis 4.2 m,
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C

110 kN

Figure 9.3

SOLUTION

The corresponding free-span problem, with the same loads on a horizontal beam, was
solved in Example 7.7 (Figure 7.20 page 103). The free-span B.M. diagram is shown
in Figure 7.22 (page 104). It will be noted in that diagram that the bending moment
is 360 kNm at the 60 kN load, and 480 kNm at the 110 kN load. As the shape of the
hanging cable is similar to the free-span B.M. diagram, the sag at C and D must be
360A and 480X (Figure 9.3), where A is a constant determined by the geometrical
specification, : ‘

)

(i)

For the case where the cable length is 20 m, AB + BC + CD = 20; and:
- AB=V4+ (3600  BC= V4 + (1200 CD=VE + (4804

From these relationships an equation in A can be obtained. This is best solved by
trial and error. It is found that A = 0.0143 Thus: y, = 0.0143 X 360 = 5.15 m
and  y. = 0.0143 X 480 = 6.86 m.

The horizontal reaction H (= H, = H) may be evaluated for this case by
employing, the relationship: '

O

at any point alohg the cable. At B, for example, M, = 360 kNm, y = 5.15 m and
- 360 ’
hence: H = 515~ 69.9 kN

At any point along the cable, the horizontal component of tension is equal to the
horizontal reaction H = 69.9 kN. The actual tension will therefore be greatest
where the cable slope is greatest. In this example, this is the part AB.
The length of AB is: i
6.52

V4 +515=652m and T, =69.9X —— =114kN
For this case, y,. is specified as 4.2 m. Therefore 480A= 4.2, and hence A= 0.00875.
The sag at B is y, = 360A= 3.15 m and the length of the cable is then:

V4% + 315 + V4 + 1.05* + V6 + 4.2% = 16.55 m
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480

‘From Equation 9.2: H="""= 114.3 kN

Now the length of AB is 'V 4* + 3,15% = 5.09 m:

5.09

Aol A1.Smx Y2 5 145.4 kN

In the case of a cable which supports specified loads, but is supported at points not on
the same level, the reactions may be found by resolving each reaction into a vertical
component and a component along the line joining the supports (Figure 9.4). The
components R, and R are obtained by raking moments about D and A respectively.
They are the same as those of a simply supported beam of span equal to the horizonzal
projection of AD and carrying the loads in the same horizontal location. If the B.M. in
this beam is M, then the B.M. in the cable at any point is:

M= M, — F(ycos ¢p) = My — (Fcos ) y= M, — Hy {9.5)
where ¢ is the slope of AD. Since M = 0, Equation 9.5 reduces to:
M,
Hy= M, or y= _[17 {9.6)
4m 6m
5 m
Rp
04 \ l
®
480 A D F
Y
60 kN
C
Y
110 kN
Figure 9.4

The shape of the cable is thus the same as that of the free-span B.M. diagram, with
ordinates plotted vertically (i.e. not at right angles to AD). The total vertical reactions are
(R, + Hran ¢) and (R, — Htan ¢). The cable tension is greater at A (the higher end)
than would be the case if A and D were level, and less at D. As for a cable with suppores
at the same level, the maximum tension in rhe cable occurs where it is steepest.
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9.2 Cables supporting uniformly distributed loads

The above method of analysis also applies to a cable which supports a uniformly
distributed load (i.e. uniform per length of horizontal projection), or a very large number
of point loads of equal magnitude and equally spaced.

Figure 9.5

The free-span bending moment diagram for a uniformly distribured load is a parabola
of maximum ordinate wL?/8 where L is the horizontal span (Figure 9.5a). It follows that
a cable loaded in this way takes up a parabolic shape, the sag at the centre depending
upon the cable length.

From Equation 9.3, the horizontal reaction is:

M, wl’?
H=—7p="4" (9.7)
If the origin of co-ordinates is taken at C (Figure 9.5b), the equation of the parabola
is: 4d
and its slope at x is given by:
dy 8d
tant9=2;= —L_Z x (9.9)

For equilibrium of the portion CD (Figure 9.5b), T cos 8 = H and hence:

8dx\*
T=HsecO0=H,/1+ ? (9.10)
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The maximum cable tension occurs at the supports where x = * 1/2 and therefore:

wl’? 164> wl r

F eV Tes ! .11

me=a 1

The lengeh of the cable can be determined by considering the elemental length of
cable shown in Figure 9.5¢:

d 2
ds ="V (dx)* + (dy)” = dyJ 1 + (Zz) =dxV1+ &% {9.12)
8d

where from Equation 9.9: 2= Iz

For the cable shown in Figure 9.5a, the rotal length / ; is obrained by integrating
Equation 9.12:

L
ZAB=2J2\/1 + &% dx
0

o ol

1 1
=|x 1+tzzx2+;ln(x+; 1+112x2)]

2d r’ L 4d r
=1L L,/1+16d2+8d1n AL ARETYE (9.13)

A simpler expression could be obtained by making use of the binominal expansion of

V1 4+ &% and then integrating the series term by term. In this way the length of the

cable is expressed as:

1/164? 1 /16d*\? 1 [164*\?
ZABZ L1+ G\ 2 40 2 + 112 2
8/d\* 32(/4d\* 256 [d\° 0.1
=L1+35\7) -5\ \7) 1)~ .

This method will be valid (the series will be convergent) provided L/d = 4. Most
practical cases are within this range of validity. For most purposes it will be sufficiently
accurate to take only two or three terms of the expansion. For instance, for L/d = 4, three
terms of the expansion give [, = 1.1416L, whereas the closed form solution gives
Ly = 1.1477L. When L/d = 8 three terms of the series give /,; = 1.04016L compared
with the closed form solution /,; = 1.04022L.

In cases where the maximum sag 4 is specified, the cable length can be obtained from
Equations 9.13 or 9.14. If the cable length is specified these equations can be used to
obtain the maximum sag, but a trial and error approach would be most appropriate for
solving the equations:

For convenience, the values of /, /L obtained using Equation 9.13 for parabolic cables

similar to the cable shown in Figure 9.5a are given in Table 9.1 for the practical range of

sag to span (d /L).
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Table 9.1
L d Ly d s d Ly
L L L L L L L L
0.000 1.0000 0.150 1.0571 0.300 1.2044 0.450 1.4047
0.025 1.0017 0.175 1.0765 0.325 1.2349 0.475 1.4414
0.050 1.0066 0.200 1.0982 0.350 1.2644 0.500 1.4789
0.075 1.0148 0.225 1.1221 0.375 1.2996
0.100 1.0261 0.250 1,1478 0.400 1.3337
0.125 1.0402 0.275 1.1753 0.425 1.3688

_ - Exavme9.2

The cable shown in Figure 9.6 carries a uniformly distributed load of 8 kN per
horizontal metre.

(i) Ifd= 10 m, determine the maximum tension in the cable and the cable’s length.
(i) If the cable length is 120 m, determine the maximum tension in the cable and

the sag 4.
AE % : 50 m { 50 m {B
d 5
VT : B | s 1 %
[ : ' 2 R
8 l(N/mj
Figure 9.6
SOLUT!ON
(i) The horizontal reaction is obtained from Equation 9.7:
8 X 100>
= 8% 10 1000 kN
The maximum tension in the cable occurs at the supports where:
8 X 100
V= ——— =400 kN

2
and is obtained from:

T =VV*+ H=1077 kN

Since L /d > 4, Equation 9.14 may be used to determine the cable length:

8(10)2 32(10)“ 256(10)(’
he =100 1 +3\7565) =S \ig0) * 7 \Too/ | = 10261 m.

Alternatively, from Table 9.1, for 4L = 0.1:

Ly = 1.0261 X 100 = 102.61 m
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l, 120
(ii) With T ey 1.20, interpolation in Table 9.1 gives:
iLi = 0.296 oo d=29.62m
The horizontal reaction is obtained from Equation 9.7:
8 X 100?
H= 8% 2962 337.6 kN

and the vertical reaction is 400 kN as in part (i). The maximum tension is therefore:

T = V337.6% + 400* = 523.4 kN

max

When the supports are at different levels, the maximum sag of a cable subjected to a
uniformly distributed load will not occur at the centre of the span. Consider a cable AB
with the support B a distance 4 above the level of A. The loading is w per unit length of
horizontal projection (Figure 9.7).

L |

IRREREERRRREEERRRREE

w

h
Va
A | x
Yo
XO———‘ C
Figure 9.7
By taking moments of all the forces about B we have:
wl*
VL +Hb—7= 0 {9.15)
As the bending moment at any point on the cable (x, y) is zero:
wx’
V.x+ Hy — 5 = 0 (9.16)

Eliminating V, between Equations 9.15 and 9.16, we find that the shape of the cable
is given by: .
wx* b wl
y=ﬁ+ (z—g{)x (9.17)
Clearly the curve is a parabola. The cable may or may not sag below the support A,
and whether it does will depend upon the value of H. The lowest point on the cable is
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found by setting dy/dx = 0 and solving for x. Performing this operation yields the co-
ordinates of the lowest point, (x,, ,):

L Hb

YT 0T WL (9.18).
h HF  wl?

%= 2" 2wl 8H 8:19)

w
IfH= E—’ the cable will not sag below A.

The cable tension at any point can be obtained from 7, = H sec 6. The maximum
tension will occur at the higher support, and is:

L H

In a problem in which w, L, 4 and y, are specified, H may be found from Equation
9.17, and then x, from Equation 9.18.

The length of the cable AB can now be found as the sum of the lengths AC and CB.
The length AC will be half the length of the symmetrical parabola of base 2x, and
sag y,, while the length CB will be half the length of the parabola of the base 2(L — x))
and the sag (4 + ).

b wL\?
T,=HJ1+|7+ 5, (9.20)

_ Examrie 9.3

A cable of negligible weight is suspended between two points A and B. The horizontal
projection of AB is 50 m and B is 15 m above the level of A. The maximum sag below
A is to be 5 m and the cable carries a uniformly distributed load of 15 N/m. Find the
maximum tension and the length of the cable. ;

3 |
- 50 m |
: B
’ T w= 15 N/m
15m :
A y
Sm X
C
Figure 9.8

SOLUT[ON
 In this example, L = 50 m, # =15 m, y, = —5 m and w = 15 N/m. From Equation
DRl \

(157  15(50)%
3050y~ 8H

The larger value of H corresponds to a negative value of x,

—5'=75 — o H=3750 Nor 417N

(414

“hence H = 417 N.
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From Equation 9.20:

4 Wy
T, =417 l+(5_0+2><417) = 651 N
and from Equation 9.18, the point of maximum sag is:
417 X 15
) = B, = m = 16.66 m

The cable length AB is equal to AC + CB. In calculating the length of the half
parabola AC, Equation 9.14 may be used since L/4> 4.

LS e e A
Ll A=t | T e oyt T S R A L

d

ST 0.1501, then from

More conveniently, for a sag to span ratio of

Table 9.1:

AC

L= 0.5 X 1.0575 X33.32 = 17.62 m

To calculate ZCB, Equation 9.14 is not appropriate since L/d < 4.0. Equation 9.13 must

be used. For 4 = 20 m and L = 2 X 33.34 = 66.68 m, (i.e. 4/L = 0.2999), Table
9.1 gives:

[y = 0.5 X 1.2041 X 66.68 = 40.15 m

Therefore the total length of the cable is:
/ L s =377V W

AB — ‘AC

9.3 The catenary

A uniform cable carrying its own weight hangs in the shape of a curve called a catenary
which is a hyperbolic cosine curve. This problem is not of great engineering interest,
since cables are rarely used simply to carry their own weight. Moreover, unless the ratio
of sag to span is quite large, the catenary does not differ greatly from a parabola, since
for fairly flar curves the weight per metre along the cable is much the same as the weight
per horizontal metre.

@ oy, (b ()

1
mxs
S ds
‘// ” dy

H(= wd d

Figure 9.9
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Consider the segment of a cable of weight w per unit length between the lowest point,
N and any other point P as shown in Figure 9.9a. The segment length is s. The segment
is in equilibrium under its self-weight ws, the tension T at point P and the horizontal
tension / at the lowest point N. Since there are only three forces they must be
concurrent and their relative magnitudes are given by the triangle of forces in Figure
9.9b. The same triangle relates 45, dx and 4y in Figure 9.9¢ where 45 is an infinitesimal
length of cable at point P and #x and 4y are its horizontal and vertical projections.

If the horizontal force A in Figure 9.9a is expressed in terms of the cable weight w
such that:

H= wc (9.21)

then from Figure 9.9b it can be seen that the tension at any point is given by:

T= wVP+ s (9.22)

Comparison of Figures 9.9b and 9.9¢c shows that:
dx H ¢
& TTVE+ S .

By integration:

5
x=csinh™| — ]+ 4 (9.24)
and since s = 0 when x = 0, then 4« = 0.
5 X
Rearranging Equation 9.24 gives: P sinh(?) (9.25)
dy s dy x
From Figures 9.9b and 9.9c: Z—x: - S sinh N
X
By integration: y = ccosh Y R

If the origin is taken at a distance ¢ below the lowest point (Figure 9.9a), then when
x =0,y = cand «, = 0. The shape of the curve (the catenary) is therefore:

x
y = ccosh - (9.26)
and, from Equation 9.25, the distance round the cable from N to a point with abscissa
X, 18t
x
s =csinh{ — (9.27)
¢
H
where ¢ = —
w
The tension at any point (Figure 9.9b) from Equation 9.27 is:
ds x
T= de = wc cosh L= W (9.28)

For a cable hanging under its own weight between two supports A and B, at the same

level and located a distance L apar, the length of the cable [, 1s obrained from Equation
9.27:
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2H wl
ba = smh 2H
and the sag a’below the supports is obtained from Equation 9.26:
L H, wl
d=y— ¢=ccosh ST =, costh 1
wl
If we define @ = 5 g We can re-express Equation 9.29 as:
/ 1
% —sinh &
and Equation 9.30 as:
d 1
z = Zy(cosh a—1)

145

(9.29)

(9.30)

(9.31)

(9.32)

For all practical situations, @ will vary between 0 and 2. For convenience, values of
l,z/L and d/L (calculated using Equations 9.31 and 9.32) are given in Table 9.2 for these

value of @.

Table 9.2 Length to span and sag to span ratios for a catenary.

s e 4 @[, W d 4
L L L L L L L L
0.00 1.0000 0.0000 | 0.55 1.0512 0.1410 | 1.10 1.2142 0.3039 | 1.65 1.5197 0.5150
0.05 1.0004 0.0125 | 0.60 1.0611 0.1546 | 1.15 1.2355 0.3206 | 1.70 1.5563 0.5377
0.10 1.0017 0.0250 | 0.65 1.0719 0.1683 | 1.20 1.2579 0.3378 | 1.75 1.5945 0.5612
0.15 1.0038 0.0376 | 0.70 1.0837 0.1823 | 1.25 1.2815 0.3554 | 1.80 1.6345 0.5854
0.20 1.0067 0.0502 | 0.75 1.0964 0.1965 | 1.30 1.3064 0.3734 | 1.85 1.6764 0.6104
0.25 1.0104 0.0628 | 0.80 1.1101 0.2109 | 1.35 1.3327 0.3920 | 1.90 1.7201 0.6362
0.30 1.0151 0.0756 | 0.85 1.1248 0.2256 | 1.40 1.3602 0.4110 | 1.95 1.7657 0.6629
0.35 1.0205 0.0884 | 0.90 1.1406 0.2406 | 1.45 1.3892 0.4306 | 2.00 1.8134 0.6905
0.40 1.0269 0.1013 | 0.95 1.1574 0.2559 | 1.50 1.4195 0.4508
0.45 1.0341 0.1144 | 1.00 1.1752 0.2715 | 1.55 1.4514 0.4716
0.50 1.0422 0.1276 | 1.05 1.1941 0.2875 | 1.60 1.4847 0.4930

+EXAMPLE 9.4

The cable of a high voltage power line is suspended between two points at the same
level and 400 m apart. If the cable weighs 60 N/m and the maximum sag is 24 m ﬁnd

the maximum tension and the length of the cable.

SOLUTION

The maximum sag is given by the difference between yat x = L/2 and yat x = 0. An
examination of Equation 9.26 shows that H cannot be found by one operation and an
iterative solution may be used. A first approximation for / may be found by assuming
that the load w is uniformly distributed in the horizontal projection of the length
between the supports, i.e. by assuming the curve to be a parabola of sag 4 = 24 m.
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wl®> 60 X 400

4T 8L L 8%Z4
With this as an approximate value for H, the sag can be checked using Equation 9.30:
50 X 10° 60 X 400
d=——| cosh—————
60 TR0 x 1P
For a value of H = 51 kN the maximum sag is found to be 23.64 m. By interpolation
the value of H required to give a sag of 24 m is 50.25 kN.
The maximum tension occurs at the end and from Equation 9.28:

wl 60 X 400
T = Hcosh| = |=50.250sh| === | =517 kN

= 1) - 2412 m

it H2 50250 X 2
The total length of the cable is calculated from Equation 9.29:

2X 50250 [ 60 X 400
b==—%  sinh| 5 Sezs0, = 404m

Unless the cable sag is large compared with the span, the shape of the catenary differs
lictle from that of a parabola. For practical purposes, Example 9.3 could have been solved
on the basis of a parabolic shape.

Example 9.4 can be solved more conveniently using Table 9.2.

With L = 400 m, w = 60 N/m and 4 = 24 m then 4/L = 0.060.
By interpolation in Table 9.2:

l
@=02389 and “"=10096 . [,= 10096 X 400 = 404 m
wl 60 X 400
S e Ty e
60 X 404
The vertical reaction at each support is 5, =l kN and the cable tension

at each support is:

T =V(12.12)2+(50.23)* = 51.7 kN

max

_ Exaurc9.5

A cable weighing 60 N/m is to be drawn across a valley. One end of the cable is held
at a point B on one side of the valley. The cable passes over a pulley at A on the other
side of the valley. A and B are at the same level, 400 m apart and 160 m above the
valley floor. What force is required to completely lift the cable from the floor of the
valley? What force is required when the length of the cable between A and B is 440 m?
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SOLUTION

1.

When the cable is just lifted from the valley floor 4 = 160 m.

4 160

Therefore: s P TTT

From Table 9.2, by interpolation:

= 0.40

l
@ = 13711 and -ALE = 1.3443

wl 60 X 400
Then: H= e = 2 X 13711 = 8750 N = 8.75 kN
and /,;, = 1.3443 X 400 = 538 m
. | . 60 X 538 .,
The vertical reaction at Ais —— ~~— = 16.14 kN and therefore the tension in
the cable at A is: 2

T=V16.14* + 875" = 18.36 kN

/

When the cable length /, is reduced to 440 m, ”/Z—B = 1.100 and from Table 9.2,
a = 0.763. ;

60 X 400
Therefore: H= 575, = 15.73 kN

X 0.

P 60 X 440

and the vertical reaction at A is: V= b s 13.2 kN.

The corresponding tension in the cable at A is:

T=V13.2% + 15.73> = 20.53 kN

The sag at this stage may also be obtained from Table 9.2 where 4/L = 0.2003:
o d=0.2003 X 400 = 80.1 m

Proabhlems

9.

-4 . . . . . .
| Determine the maximum tension in the cable shown in Figure P9.1. Assume

the cable is weightless.

A

—3 m— 5m F—25m——3.5m

Figure P9.1
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9.2

9.3

9.4

9.5

9.6

The supports A and B of the cable shown in Figure P9.2 are at the same level
and the maximum tension in the cable is 20 kN. Find the sag of the cable at
its Jowest point.

}-—I.Sm I 3m é 2 m ]lflm—-|
B

A

C E

12 kN 5 kN
7 kN
Figure P9.2

The cable AD in Figure P9.3 is shortened until segment AB is horizontal.
Determine the tension in CD if AB is 2 m and BC is 3 m.

5 m - |

DpY T

3m

C
B 5 kN
ALX ;
8 kN
Figure P9.3

A uniform cable AB is 130 m long and weighs 5 N/m. It is suspended from
two points 120 m apart and at the same level. Assume that the cable hangs in
the shape of a parabola, i.e. that it carries 5 N per horizontal metre.

(1) Find the sag at the centre.

(ii Find the tension at the centre and at the end.

(ii) Find the sag at a point 40 m from A.

Solve Problem 9.4 if the weight is correctly taken as 5 N/m along the cable,
i.e. if the cable shape is a catenary.

The cable of Problem 9.4 is to be used to support a load suspended above a

ravine. If the load of 60 kN is suspended at C, 40 m (horizontally) from A.

Find:

(1) the sag at C (neglect the cable weight)

(i1) the increase in sag at C (compared with the freely hanging cable in
Problem 9.5)

(1ii) the maximum cable tension.
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9.8

9.9

9.10

9.11*
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Solve Problem 9.6 but with a load of 15 kN at D, 80 m from A, instead of the
load at C.

The cable of the foregoing problems supports a load of 60 kN at C (see

Problem 9.6). A load of 15 kN is now suspended at D (80 m from A)

in addition to the load at C. Find:

0] the sag at C and D (neglect the cable weight)

(i) the additional sag at D when the 15 kN is applied.

(iii) Why is this additional sag at D smaller than when the 15 kN was
applied (see Problem 9.7)?

Find the maximum and minimum tensions in the parabolic cable AB shown

in Figure P9.9.

80 m I

10 m /
’kA 20 m

AB

\ //

N~ 60 kN/m

Figure P9.9

A cable ABCD of negligible weight is suspended between A and D, which are
300 m apart and at the same level. The length of the cable is 400 m. A load
0f 200 kN is hung at B (AB = 100 m) and another load of 400 kN at C (BC

= 150 m). Find the sag at B and C and the maximum tension.

A cable ABC has a total length of 440 m and weighs 100 N/m. The cable is
fixed at points A and C and passes over a frictionless pulley at B. The three
supports are at the same level. The distance AB is 180 m and BC is 200 m.
Find the maximum sag in each section of the cable and the maximum
tension.

* Difficult problems, suitable for later study.
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Trusses

10.1__ Definitions

A structure which consists of a number of rigid bars fastened together at their ends (see
Figure 10.1) is called a frame or russ. The individual bars are called members of the frame.
For the purpose of calculating the forces in such a structure, the joints are considered to
be either rigid or pinned.

At a rigid joint no relative rotation is possible between the ends of the jointed
members. Such a state exists in mosr reinforced concrete framed structures, and also in
steel strucrures if the ends of the sreel bars are welded togerher.

At a pinned joint, the end of each member is free to rotate (in the plane of the frame)
independently of its neighbours. It is imagined thar the members are joined by friction-
less pins around which they are free to rotate. Such a srructure is usually called a #russ.

(@) (b

()

L )

Figure 10.1

In reality; very few structures are built with pinned connections as shown in Figure
10.1a. The connections in practical steel trusses are made by either bolting or welding,
as shown in Figures 10.1b and 10.1c. As shown in these figures, some members may even
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be continuous through the joint while other members are so connected thar litele if any
relative rotation can occur between the members meeting at a joint. However, if the
members are arranged in a pattern of triangles, it is found that the axial force is the
predominant internal action and there is little tendency for the ends of the members to
rotate relative to each other. Furthermore, in the majority of trusses the members are
comparatively slender and the joint fixity has only a minor effect upon the internal force
system. For these reasons a truss is usually analysed as if the joints are pinned. This
assumption simplifies the analysis considerably, and results in a reasonably accurate
assessment of the forces in each bar.
The bar forces determined on the assumption that the joints are pinned are sometimes
referred to as the primary forces, while the secondary forces are those arising from the joint
. fixity. The design engineer must decide if it is necessary to evaluate the secondary forces
in any particular design situation.

10.2 Limitations

Only pin-jointed trusses will be considered in this book. The treatment is further limited
to trusses lying in one plane and acted upon by loads in the same plane. The principles
of solution may be extended to three dimensional trusses provided the statics of three-
dimensional force systems is employed (see Part 5).

In order to resist a general type of loading, the truss must have supports capable of
supplying reactions which will equilibrate such loading. If the reaction components are
just sufficient for this purpose they can be determined by the laws of statics applied to
the truss as a whole.

We consider here only statically determinate trusses (i.e. trusses such that the bar
forces and reactions can be determined by the laws of statics alone). For a plane truss we
may write two equations of equilibrium for each joint, so if the number of joints is j, the
number of equilibrium equations is 2j. The quantities to be determined are the axial
forces in the bars and the reaction components. If there are 7 members and  reaction
components, the total number of unknowns is m + r. For the truss to be statically
determinate it is necessary that:

mt r=2j (10.1)

Several other conditions are also necessary. The number of reaction components must
be at least three, and these must be arranged to ensure overall stability for all types of
loading.

Also, the bars of the truss must be suitably arranged. The bars in a stable truss are
usually arranged so that the bars form a series of triangular units, with bars connected
together at each joint. An arrangement of pin-ended bars that forms a rectangular or
quadrilateral unit is unstable, unless externally restrained, and will collapse under load,
as illustrated in Figure 10.2a. The insertion of the diagonal bar AC in Figure 10.2b, to
form two triangular units, produces a stable truss capable of carrying load. Thus the truss
of Figure 10.3a is stable while that of Figure 10.3b is not, although Equation 10.1 is
satisfied in both cases. Sometimes the fact thar the truss is 7oz stable cannot be seen by
inspection. For instance, the truss of Figure 10.4, in which the bars are not connected
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where they cross, satisfies Equation 10.1. However it is not stable. Investigation of such

cases of stability will not be dealt with here.

(a) B . (b)
B C B C
~/ [
A D A D A D
Figure 10.2
(a) B D F

C D
A
R, e E
} }
R, Ry B E
) B D F
} } }

R, Ry Ry Ry

Figure 10.3 Figure 10.4

In many practical crusses, it is possible to write the equilibrium equations joint by joint
and solve for the bar forces as we go along. Such trusses may be solved by hand
calculation. Only this type of truss will be dealt with here.

Finally we note that when the truss is loaded each bar will undergo a slight change in
length and this will cause a small change in geometry. Such changes are usually negligible
and the bar forces are calculated on the basis of the geometry of the unloaded truss.

10.3 _ Principles of solution

The forces in the various members may be found by applying the laws of statics, thus
making it possible to select suitable sizes for the members. Since the truss is assumed to
be permanently at rest, the equations of equilibrium may be applied to the whole truss
or to any part of it.

By considering the equilibrium of the truss as a whole, the external reactions are found
in the same way as they were for rigid beams. The laws of equilibrium are then applied
both to the pins and to the bars of which the truss is composed:

Suppose the structure in Figure 10.5 rests on supports at A and E and carries a load
W at the mid-point C. Imagine that the bar BD is removed. The frame will collapse and
the joints B and D will move towards one another. The function of bar BD is to keep
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these joints apart. The bar is in compression. If the bar CE is removed, collapse would
involve C and E moving apart. The function of this bar is to hold joints C and E
together, and the bar is in tension.

B D

!

w
Figure 10.5

In Chapters 11 and 12, we shall consider trusses in which all members are straight and
external loads are applied only at the joints. In such trusses, the individual members are
subjected only to axial force. In cases where the members of the truss are curved, or when
loads are applied to the bars themselves, the truss members may be subjected to bending
moment and shear force, in addition to axial force. These cases aré dealt with in
Chapter 13.

If the forces in all bars are required, then it is necessary to consider the equilibrium of
every bar and every joint individually. This procedure is known as the method of joints
and is described in Chapter 11. Sometimes it is required to find the forces in only a few
bars. Frequently it is possible to do this without the need to solve the whole truss. The
procedure for analyzing the forces in individual bars is known as the method of sections
and is described in Chapter 12.
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The Method

of Joints

11.1  External reactions

In most trusses, an analysis starts with the determination of the external reactions by a
consideration of the equilibrium of the complete truss. The procedures for finding the
reactions were discussed in Chapter 5.

It should be noted that in some trusses it is possible to determine the bar forces
without first calculating the reactions.

11.2 _ Freebhodies

In the method of analysis known as the method of joints, each bar and each joint of the
truss is considered in turn as a freebody. Figure 11.1a shows a small truss with joints A,
B, C and D. The external loads P, and 2, together with reactions R, R, and R, form a

system of forces in equilibrium.

R
F F
@) (b) ’ BD BD Fop  Fpp "
Fya Fac Foc
F
BA FBC FDC
FAB FCB FCD
Fes Fcp
————————
Fac Fac Fea Fea
1 Py
Figure 11.1

Figure 11.1b shows freebody diagrams of the four bars and the four joints which
comprise the truss. Each bar is in equilibrium under the action of the forces exerted upon
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it by the joints at each end. Each pin is in equilibrium under the action of the forces
exerted upon it by the adjacent bars and the external loads (applied forces or reactions).

11.3 Equilibrium of membhers

In the cases considered here, where the external
loads are all applied at the joints, each bar is in
equilibrium under the action of the two forces
exerted on it by the joints at its ends. These two
forces must therefore be equal and opposite and
must act along the line joining the joints, as shown
in Figure 11.2.

A

Fan .
Figure 11.2

11.4 Equilibrium of joints

Each pin in a truss is in equilibrium under the action of the forces applied to it by the
surrounding bars together with the external loads, if any, acting at that joint. For the
present case (trusses in which all external loads act at joints), the forces exerted by the
bars upon a given pin act in the direction of the lines joining the given pin with its
neighbours, so that the directions of all forces are known. The forces at a given pin form
a concurrent system, implying two equilibrium conditions.

In the method of joints, each joint in turn is considered as a freebody. The two
equations of equilibrium are used to express the relationships between the known and
unknown forces at the joint. The unknown forces at a joint can be determined provided
that there are not more than two such forces.

This is exactly the problem discussed in Section 3.2 (see Example 3.3 page 21). Note
that a bar in tension exerts an outward force on the joint, while a bar in compression
exerts an inward force. In the freebody diagram of any particular joint, known forces are
shown with the appropriate direction. Unknown forces are assumed to be tensile and
shown as outward arrows. Solution of the equilibrium equations will then result in a
positive sign (confirming tension) or a negative sign (indicating compression).

—EWPLE 11.1

Find the forces in the members of the truss shown
in Figure 11.3 under the given loading. The

triangles are all equilateral.

30 kN

B, oAy

Figure LB
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SOLUTION

1. The first step is to find the reactions. The honzontal reaction component at A
must be zero in this case (since no horizontal load components exist). Taking moments
about joints E and A in turn gives: :

V,=35kN and V=20 kN (both upwards)
Checking Z¥'=0: 35 +20 — 30 — 25 =0 .. O.K.

2. Select a joint at which there are only two unknown forces. Joints A and E satisfy this
criterion, joints B, C and D do not. Consider the freebody of joint E shown in Figure
- 11.4a. The two unknown bar forces F,, and Fy are shown as outward arrows acting at
- the joint. Also shown is the known reactnon force V.. Although the magnitudes of F
and F, . are unknown, their lines of action are known, being defined by the geometry of
the truss Writing the equations of vertical and horizontal equilibrium, we have:

>V=0: Fp, sin 60 + 20 =0 AR = =300 kN
ZH=0: F,,cos60 + Fy. nE L EE R cos 60 =+ 1 155 kN

Evidently, F,, is compressive (and acts towards the joint), while F, is tensile, as
assumed.. .

3. Consider the freebody diagram of joint D, shown in Figure 11.4b. The bar force
R

e 1 now known and equals the force F ) calculated in Step 2. Since it is known to
be a compressive force (i.e. acting mward on the joint), it is shown acting in that

direction. There are therefore just two unknown forces acting at joint D, F e and B,
and these may be determined from the two equilibrium equations:
SV=0: 23.09sin 60 — F,_sin 60 = 0 o Fo .= +23.09 kN

SH=0: —F,, — F,;c0s 60 —23.09 cos 60 =0 .. Fop= —23.09 kN

(b) © 30N ~
Fyp = 23.09 kN
B it
60° 60°
Foc By = 23.09 kN 60° ,
Vi = 20 kN - Ba Fe
) , ©  py = 4041 kN

Fop = 577 kN Fop = 23.09 kN

E 60? . 60° !
60° 60° A< ‘F:»\C = 20.21 kN
FCI\, C F(‘E=1155kN s :

Vi=

Figure 11.4
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4. At joint B (Figure 11.4¢), with F,, = F, = —23.09 kN (i.e. 23.09 l(N'acting
inward on the joint), and including the vertical external load of 30 kN, equilibrium
gives:

YV=0: —F,, sin 60 — F, sin 60 — 30 = 0

v 0.866 F,, + 0.866 Fy. = —30.0 kN (11.1)
SH=0: —F,, cos60 + F,.cos60 —23.09=0
o =05 F,, + 0.5 F,. = 23.09 kN (11.2)
Solving Equationé 11.1 and 11.2 gives:
F,, = —4041 kN and F,.= +5.77kN

5. ‘At joint C (Figure 11.4d), all bar forces except F,, are known.

YH=0: =F., —5.77 cos 60 + 23.09 cos 60 + 11.55 = 0
" F. = +2021 kN

6. Finally, the equilibrium equations at joint A (Figure 11.4¢) may be used to check
that the known bar forces and the external load are in fact in equitibrium.

2V=10: —40.415sin60+35=0 . OK.
2H=0: —40.41 cos 60 + 20.21 =0 .. O.K

This provides a check on the previous work.

_ Exavrie 11.2

Find the forces in the members of the truss shown in Figure 11.5.

5 kN 10 kN
Figure 11.5
SOLUTION

1. This truss is a cantilever with all reactions at one end. We can start at joint G and
it is therefore not necessary to calculate the reactions before finding the bar forces.



THE METHOD OF JOINTS 163




164 PiN-JOINTED TRUSSES

In this problem, two equilibrium equations have been used at every joint, and these
equations have provided the values of all the bar forces and also the reactions. The
equations of equilibrium of the complete structure may now be used to check the

reactions. Regarding the complete truss as a freebody (Figure 11.5), we take moments
about B. Then:

(;\(HAX4)+(5><4)+(10><12)=0 U A SN

Considering horizontal equilibrium:

SH=0. H -35=0 . LH =35kN
and from vertical equilibrium:
SV=0 V,~5-10=0 AV, =15kN

These values agree with those determined earlier.
The results are summarised in Figure 11.6 in which tensile forces are denoted as
positive and compressive forces are denoted as negative.
15
35 F Forces in kN

SR

+21.21 ~10 +14.14 —10 +14.14

35 \ :
=53 —20 =
A C E

5 10
Figure 11.6
It is helpful to imagine how this truss would collapse if a particular member was

removed. This leads to the concept of the function of the member (for the given loading)
as either keeping two joints apart (compression) or holding them together (tension).

11.5 Use of components of bar forces | e M
For any joint of a truss, the equations £F, = 0 and ZFY =0 |
involve not the bar forces themselves but the x and y components 40
of these forces. It is often quicker to use these components as the
unknown quantities and to calculate the actual bar forces later.
The x and y components of a bar force are proportional to the x 5'm

and y projections of the bar length, and these dimensions are

usually the ones given on the drawing of the truss. In Figure 11.7, .
the bar GM has projections of 2 m and 5 m. Suppose the x 49 /
component of the force exerted by GM on joint G has been /
determined as 16 kN, acting away from the joint. It follows that the

y component is 16 X 5/2 = 40 kN also acting away from the joint. G I > @
At the other end M the force components are now also known. |—2 m

Figure 11.7
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_ Exavme11.3

Find the components of the bar forces in the truss of Figure 11.8. Hence find the bar’

forces.
8 kN ~
6 kN B 3 m D 3 m A 3 m H 3 m Ly
2m
Xa | A c
—
1 } 12 kN 1
Ya k : Y
Figure 11.8
SOLUT[ON

1. First find the reaction components by considering the equilibrium of the complete

structure. This gives: :
X, =-6kN  Y,=+12kN Y = +8kN

Consider the force components acting on joint A (Figure 11.9a). The two circled
values are known. Without actually writing the equations 25, = 0 and L.F = 0, it
can be seen that bar AC exerts an outward force of 6 kN and bar AB exerts an inward
force of 12 kN on the pin A. These forces are shown in Figure 11.9a, and the reactive
forces at the far ends of the bars are also shown.

3. Consider the force components at joint B (Figure 11.9b). The known forces are

the external force of 6 kN and the upward force of 12 kN in member AB calculated
in Step 2. These are shown circled. The unknown forces are F,, and the components

of P namely X . and ¥, which at first we draw as arrows.

For vertical equilibsium, Y, . must be 12 kN acting downward. From the slope of the

BC
member BC, X, . must be (3/2) Y, .. Hence X, . = 18 kN acting to the right.

Horizontal equilibrium of the joint now gives F, | = 24 kN acting to the left. The

reactions to these components are shown at C'and D. The resultant force in BC is
; g ) ¥ | ,
F VX cl + Y, °, but this need not be computed at this stage.

RES B

BC ?

Figure 11.9
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For trusses with parallel chords, this method allows the truss to be solved without the
need to write the equations down. For a truss with an inclined chord, such as a roof truss,
the equations 2F, = 0 and £F = 0 at a joint will produce two simultaneous equations.
Even so, it may still be quicker to write these in terms of components rather than the
actual bar forces.

Problems

11 For the truss of Figure P11.1, find the 40 kN 80 kN 40 kN
reactions and determine the forces in the
members of the truss.

Figure P11.1
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11.2 For the truss shown in Figure P11.2:
(i) Find the magnitude and direction of the reactions.
(ii) Determine the bar forces.

24 kN

0m C 10m E lOm4VG 10m 45° \RH
1VA 32 kN /

Figure P11.2

11.3 Find the forces in all c
the members of the 40 kN [7 i

truss in Figure P11.3. o
4. .
40 kN \ 3 D Tl Hl 40 kN
6 m
80 kN 80 kN 80 kN
A
Figure P11.3
b,
11.4 Find the reactions and the bar 80 kN 80 kN
fo.rces of the truss shown in CJL 3m E 3m ¥G3m ] GOkN
Figure P11.4. T -
4 m
_B
Hy
4m 80 kN 1VK
A =3 m—|

x|
><>
—

Figure P11.4
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11.5 For the truss shown in Figure P11.5,

find the forces in all the bars. 2_':“
2
_E A F
D .
Figure P11.5 3.5 m~~3.5 m—3.5 m—-3.5 m
11.6 Find the forces in the members of the truss in Figure P11.6 by resolution at joints,
working in terms of components.
B D F H
T
A ] c I E G
% 5 m * 5m * 5m Jw
6 kN 12 kN
Figure P11.6
11.7 Working in terms of the x and y components of bar forces, solve the truss of Figure
P11.7.
8 kN
B ‘D E H
all angles
60

11.8 Solve the truss of Figure P11.8
analytically, working in terms
of the components of the bar
forces.

Figure P11.8
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11.9 Find the forces in the bars of the truss of Figure P11.9.

all angles
45§

Figure P11.9

11.10  Find the bar forces in the truss of Figure P11.10

50 kN

3

Figure P11.10

11.11  Find the forces in the bars of the truss of Figure P11.11

B 90kN

Figure P11.11
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The Method

of Sections

12.1  Method of Sections

In the methods of the last chapter, the equilibrium of each joint is considered
individually. If the force in particular members is required it may be often more
convenient to use the method of sections. This procedure is rather similar to that used
for finding the internal actions at a particular cross-section of a beam.

D
B

O RS P
E i

Figure 12.1

Suppose that in the truss of Figure 12.1 the force in CE is required. The truss is cut
by a plane which passes through CE and the equilibrium of one part of the truss is
considered. The freebody to the left of the cut for instance, is acted upon by the known
forces V, and W, and the unknown forces in the cut bars, which may be denoted by X,
Yand Z It has been shown that when the external loads act at the joints, the force in
each member acts along the straight line joining the ends of the member, hence the lines
of action of X, Yand Zare known, and the forces can be found from the equations of
equilibrium.

The method is subject to certain limitations. If the number of cut members exceeds
three, some of the unknowns cannot be found. Even in this case, one unknown can be
found if all of the others happen to be concurrent. If three members only are cut their
forces can be found provided the members are not concurrent, for in this case only two
equations are available.
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When practicable, each force should be calculated independently of the other
unknowns. If Y and Z intersect, the force X is found by taking moments about the
intersection point of Yand Z, so that these unknowns are not involved in the resulting
equation. If Yand Zare parallel, Xis found by resolving at right angles to Yand Z The
same considerations are used when finding Yand Z.
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‘ZMG =0: P —(48 X 10) + (6 X 10) + (12 X 7.5) + (12 X 5)

+(12X25)+(XX4) =0 S X=+60 kN
The assumed direction is thus correct and the force in CD is 60 kN tension.

If required, the force ¥could be found by taking moments about H, the intersection
of Xand Z The force Z could similarly be found by taking moments about C, the
intersection of Xand Y. For each of these equations, the lever arms of the various forces
are found by calculation.

12.2 Parallel chorded trusses

Trusses and beams have much in common both as regards their function and their
analysis. A beam is used to span a gap between supports and to carry loads. A truss may
be employed for the same purpose, being usually chosen when the span becomes too
large for a beam to be economical. Certain points of similarity can be seen with reference
to trusses with parallel chords.

In a truss of the rype shown in Figure 12.4 the horizontal members are known as
chords, and the remainder are called web members. In the following example, the truss is .
compared with a solid beam spanning between the points A and N, which will be
referred to as the analogous beam AN.

_ Bxamme12.2

In the truss shown in Figure 12.4, find the forces in the members DF, FE, FG and EG.

B D Sy T e K sr=—r—g

\

AN \\ (&
ST

N 20 kN 15 kN 10 kN 35 kN

\

35 kN 10 kN 15k
Figure 12.4

SOLUTION

1. Top chord member DF: The truss is cut by
the plane SS and the freebody to the left of SS is
considered (Figure 12.5). Let the forces in the cut
bars be X, Vand Z and assume that all the cut
bars are in tension.

Figure 12.5 35 kN 10 kN 15 kN
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To obtain X, take moments about E, which is the intersection of Vand Z Use the
panel length h as the unit of length:

R = sal) —185- X 20A 10 % )+ (15X 0) =0 X=~60kN

The force in DF is 60 kN compression.

This calculation is very similar to the one which would be made if the truss were
replaced by the beam AN and it was required to find the bending moment at the
vertical section EF. It is significant that if the truss member DF were removed, the
truss would collapse about the point E.

2. Bottom chord member EG: Use the same cutting plane SS, and refer again to
Figure 12.5. To find the force Z, rake moments about F, the intersection of Xand V:

VA (Ax1)—‘(35><2)+(10><1)+(15><0)—0 s Z= +60 kN

The force in EG is 60 kN tension.

The member EG prevents the truss from collapsing about joint F which is vertically
above E. The force in this' member is again related to the bending moment in the
analogous beam. It might be noted that the chord forces X'and Z form a couple which
is equal to the bending moment in the analogous beam at the section EF.

3. The vertical web member EF: Use the same cutting plane SS, and refer to Figure
12.5. Since the forces Xand Zare parallel, Vis obtained by resolvmg at right angles to
Xand Z, i.e. resolving vertically in this case:

+% 35-10—-15+ V=0 S —IOkN

The assumed direction of ¥V was incorrect. The force in EF is 10 kN compression.

The above equation is similar to that used to find the shear force in the analogous
beam between the points E and G. The force Vis equal to the beam shear force in the
panel EG.
4. The diagonal web member FG: To cut this member the cutting plane TT must
be used. After removing one portion of the truss the freebody of the remainder i is as
shown in Figure 12.6. To find W resolve vertically:

+1 35-10—15 - Weos45=10 o W= +14.14 kN

The force in FG is 14.14 kN tension.

35 kN 10 kN 15 kN

Figure 12.6

~ The vertical component of the force W/xs equal to the shear foxce in the segment EG
- of the analogous beam.
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In a cruss with parallel chotds, the forces in the chord members are related to the
bending moment in the analogous beam, while the forces in the web members are related
to the shear force in the analogous beam. A relationship berween trusses and solid
structures exists even when the chords of the truss are not parallel, but in such a case the
similarity is less clearly defined.

Problems

12.1 Figures P12.1a and P12.1b are freebody diagrams of portions of trusses. Find the forces
X, X etc. in each case.

(a) (b)
45° X

X 50 kN X

X2

5 %

I 70 kN X

30 kN 6 kN 4 kN
Figure P12.1
12.2 For the truss shown in Figure P12.2, find the reactions and determine the forces in the

web members by the method of sections. Also determine the forces in the chord mem-
bers by considering the equilibrium of the top and bottom joints.

VA VL
* 16 kN 29 kN 16 kN 29 kN 8 kN f

o of W

Figure P12.2

12.3 For the truss of Figure P12.3 determine the forces in the members EG, EF and DF by
the method of sections.

100 kN 300 kN 200 kN

Figure P12.3
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12.4 The crane shown in Figure P12.4 carries a load of 50 kN. The jib of the crane is in the
same plane as the tower truss. Find the maximum force in any of:
(i) the verticals of the tower
(ii) the diagonals of the tower due to this crane load.

T
6 panels @ 2 m
.

Figure P12.4

12.5 In the truss of Figure P12.5 find the forces in BD, BE and CE by the method of sections.

K

all angles
45° or 90°

60 kN ] H

95 kN

Figyre P12.5

12.6 In the truss shown in Figure P11.2 (page 167), find the forces in members CD and CE

by the method of sections.

12.7 In the truss shown in Figure P11.6 (page 168), find the forces in bars CE, DE and DF
by the method of sections.
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12.8 In the truss shown in Figure P11.8 (page 168), find the forces in bars CD and CE by the

method of sections.

12.9 The roof structure shown in Figure P12.9 rests on hinged supports at A and G, and the
two trusses are connected by a hinge at F. The member CE = 15 m, while AE = EF and
AB = BC = CD = DE.
(i) Find the reactions at A and G.
(i) Calculate the forces in the members of the left-hand truss.

3 kN

4

|

Figure P12.9

12.10  The roof truss shown in Figure P12.10 is supported on rollers at B, and by a hinge at A.
The vertical loads 2, are equally spaced. By employing both the method of joints and the
method of sections, where appropriate, find the forces in the members in the left half of

the truss. Assume A] = JD and DK = KC.

12.5 m | 15 m ] -12.5m

Figure P12.10
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Trusses with Loaded or

Curved Members

13.1  Equivalent joint loads

If external loads are not applied directly to the joints but to a member of the truss, then
that member performs a dual function. Firstly, it acts as a beam spanning between the
joints at each end of the member, and serves to transfer the loads to these adjacent joints.
In this capacity it will be subjected to bending moments, shear forces and in some cases
axial forces. Secondly, it acts as a member of the truss. In this capacity it sustains an axial
force which is determined by the methods of Chapters 11 and 12.

We note that if the loads on a particular bar in a truss are replaced by a statically
equivalent system, then all bar forces outside the region of change will be unaffected.

Figure 13.1

For example, consider the bar CD of Figure 13.1 loaded by a single force 2. The bar
is in equilibrium under the action of the load P and the bar forces F, E, F and F
exerted by adjacent bars. If the force Pis replaced by forces Q, and Q,, whose resultant
is P, then the forces £, F, etc. remain unchanged. If Q, and Q, act at the joints C and
D, the truss is now loaded at the joints only and may be analysed by the methods of the
previous chapters.

If an analysis of bar CD alone is required, it is often possible by using the method of
sections. This will not give the values of the individual forces F,, F, etc. but it will give
their resultant, which is all that is required in this case. The procedure will be illustrated
by two examples.
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SOLUTION:
1. Find the reactions: As before we find H =0,V =5 kN and V] = 3 kN,

oy

Replace the 8 kN force by a stétically equivalent system of 4 kN at each of joints
D and E.

3. Find the force in bar DE: Use the method of sections. Figure 13.5a shows the

freebody to the left of the cut. Since £, and F,, are both horizontal we write an
- equation of vertical equilibrium to ﬁnd F,,. (noting that 6 = tan ™' (6/5) = 50.2°):
V=0 5-4—F, sin0=0 . F,,=13kN

DE

The other bar forces at D (and E) together must form a system equal and opposite to
the two known forces and are therefore as shown in Figure 13.5b.

) 4kN e Ei @ 4N
B D lL i, I _
s
D 1.3 kN
Fpg
9 ‘ 1.3 kN
1 I
5 kN
Figure 13.5

4. Analyse the bar DE: Replace the two tempbrary end forces of 4 kN by the force
of 8 kN at L (Figure 13.5c¢).
The axial force in segment DL:
Ao = 13 gk §ih U = 457 BN
and in segment LE:

N —13—451116~—1771(N

~ As a check, we note that the difference between these values, 4.37 + 1.77 = 6.14 kN,
is equal to the longitudinal component of the 8 kN load at L (= 8 sin 6). -
The shear force in segment DL:
Sy = 59 4 Cogy - f2.56 kN
‘and in segment LE:

$iy = Hhehs = FZ56 kN
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The signs of the shear forces depend on the direction chosen for x along the bar.
The difference of the shears (2.56 + 2.56 = 5.12 kN) is equal to the transverse
component of the 8 kN load at L (= 8 cos 8).

The maximum bending momentat Lis M =4 X 2.5 = 10 kNm

13.2 _Trusses with non-straight members

Very rarely it may be necessary to analyse a truss having a member which is either curved
or kinked, such as AB in Figure 13.6. Since the member is in equilibrium under the
action of the two end forces, these forces must act in the direction of the straight line AB.
If the actual member does not lie along this line then these end forces will cause bending
moments and shear forces within the member, in addition to axial force. These internal
actions can be calculated by the methods of Chapter 7. The out-of-straightness of
member AB does not affect the analysis of the truss as a whole.

Figure 13.6

Prohlems

13.1 Find the axial force in each member of the truss shown in Figure P13.1. In the case of

the loaded members find also the bending moment at the point of application of the
load.

E
T 8 m 4mﬁ} 12 m |

Figure P13.1
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13.2

13.3

13.4

In Figure P13.2, the 16 kN load acts vertically at the mid-point of AB. Find the A.F.,
S.F. and B.M. at P, which is 1 m from A.

16 kN

60°

Figure P13.2

Figure P13.3 shows a roof truss for a small factory. To accommodate the roof sheeting,
purlins are placed not only at the panel points A, B, C, D and E but also mid-way
between them. If the top chord members AB, BC, CD and DE are to be all the same
size, what are the values of the bending moment, shear force and axial force for which
these members must be designed.

16 kN

Figure P13.3

The truss of Figure P13.4 is pin-jointed and the top member is curved. Find &V, §and
M ar the point X.

20 kN
Figure P13.4
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Fluid Statics

14.1 _ Introduction

The branch of mechanics dealing with the behaviour of fluids at rest or in motion is
known as fluid mechanics. That part of fluid mechanics which is concerned with fluids at
rest (or in equilibrium) is called fluid statics. Fluid statics involves the study of pressure
and its variation throughout a fluid. It also involves the calculation of forces exerted by
a fluid on the surfaces of structures with which it is in contact. In the case of a fluid at
rest, the property that affects the pressure variation is the specific weight or weight
density 7y which is the weight per unit volume.

The previous parts of this book have dealt with two-dimensional statics. Both the
forces and the structures have been essentially coplanar. It is not possible to consider
fluids as two-dimensional, but the force systems considered in this chapter are such that
there should be no difficulty in applying the principles of previous chapters. Three-
dimensional systems of a more general nature will be deale with in Part 5.

In problems associated with civil and environmental engineering, the fluid most
commonly encountered is water. The specific weight of fresh water is 9.81 kN/m’. The
remainder of this chapter will be written in terms of water, but the same principles apply
to any other fluid (using an appropriate value of ).

14.2 _Hydrostatic pressure

A fluid may be defined as a substance that deforms continuously when subjected to a
shear force. In a fluid at rest, therefore, no shear forces exist. This implies that no forces
will exist tangential to a submerged surface. The only forces acting on submerged
surfaces are forces normal to these surfaces.

This definition leads to the direct solution of many problems. In the first place, it
allows us to determine the water pressure at any depth. Consider a prism of water with
vertical sides and with horizontal cross-section of area 4, which is part of a larger body
of water (Figure 14.1). The prism extends from the free surface of the water (i.e. the
surface where the water pressure is zero) down to a depth y. The volume of water
enclosed within this imaginary boundary is Ay and therefore its weight is:

W= 1yAy (14.1)
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free surface

!

o LTT {{{\ pressure, p
F

Figure 14.1

Since the whole body of water is at rest, the forces on the vertical sides of the prism
are everywhere horizontal. Hence the weight W must be equilibrated by the upward
pressure on the base. If the pressure at depth y is p, the resultant force on the base is:

F=pA {14.2)
Hence: A =vAy
and P =7y (14.3)

Pascal formulated a law which states that at any point within a fluid ar rest the pressure
is the same in all directions. This law, together with Equation 14.3 and the definition of
a fluid, tells us that the pressure on any submerged body at depth y below the free surface
is ¥ y and acts normal to the surface of the body.

In the remainder of this chapter, frequent reference will be made to the Appendix of
this book, and it is essential that this Appendix be read in conjunction with the present
chapter.

14.3 Hydrostatic pressure on plane surfaces

14.3.1  Pressure on horizontal surfaces

Consider first the pressure on a horizontal surface of area A. Every part of the surface is
at the same depth below the free water surface and the pressure is equal to ¥ y. The toral
force on the surface is F = y y A This resultant force acts at the centroid of the area A
(see Appendix, Section A.1).

14.3.2  Pressure on vertical surfaces

As an example of water pressure on a vertical plane, we consider the force exerted by
water on the vertical face of a dam (Figure 14.2).
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—»—

Figure 14.2

The resultant force on a 1 m length of the dam may be calculated as the volume of the
pressure incensity diagram, shown in side elevation in Figure 14.2. Thus:

h
F=yhx5x1=0.5yh2 (14.4)

This force acts not at the centroid of the dam wall but at the level of the centroid of

the triangular pressure intensity diagram of Figure 14.2, i.e. at 24/3 below the free water
surface, as shown.

_ BExamre14.1

A large fish tank is 2.0 m long, 0.8 m w1de and 0.9 m deep, and is completely filled
with fresh water.

(i) Find the resultant hydrostanc force on the bottom surface of the tank.
(i) Find the resultant force on the 0.8 m wide side surface of the tank.

SOLUTION
(i) From Equation 14.3, the water pressure at the bottom of the tank is:

p=9.81 X 0.9 = 8.83 kN/m?
and the resultant force on the bottom surface is:
F= p4d=883X20X0.8=1413kN
acting vertically downwards through the centroid of the rectangular bottom surface.

(i) The water pressure varies linearly from zero at the water surface to 8.83 kIN/ m” at
the bottom of the tank. The resulcant force on the 0.8 m wide side surface is therefore
the volume of the triangular pressure block shown in Figure 14.3.

F=0.5X09X8.83 X 0.8=3.18 kN

and is located 24/3 = 0.6 m below the top water surface and vertically below the
centroid of the side surface area of the tank.
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Figure 14.3

— Examrie 14.2

An outlet for the discharge of stormwater into a harbour is covered by a gate AB hinged
at A as shown in Figure 14.4a. The gate is rectangular, 1.5 m deep and 1.2 m wide, and
prevents seawater from entering the outlet at high tide. If the high water level is 2 m
above A, as shown, calculate the magnitude and location of the resultant hydrostatic
force acting on the gate at high tide. The specific weight of seawater is 10.06 kN/m”.

(a) {b) ‘ {c)

7 2
. F-20.12 kN/m®~
= -:il:—: e 1.2~
W = C
A .
2e3n %, I : 4] : l
0.75
R, 1.0
3.5 ‘ . . !
jiAres i N2y L= L
181
-
e o F)_ i
77 B 3.5y . D E
———35.21 kN/m?-——
7
Figure 14.4
SOLUTION

Figure 14.4b shows the variation of pressure from top to bottom of the gate and Figure
14.4¢ shows the three-dimensional pressure block acting on the gate.

The water pressure at the top of the gate at A is p, = 2y = 20.12 kN/m? and at the
bottom of the gate at Bis p, = 3.5y = 35.21 kN/m”’. The resulrant force on the gate
is the volume of the trapezoidal pressure block of Figure 14.4c:

F=0.5X% (20.12 + 35.21) X 1.5 X 1.2 = 49.80 kN
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To calculate the location of the resultant force, it is convenient to represent the trape-
zoidal pressure block as the sum of a rectangular block (with side ACDB in Figure 14.4¢)
of uniform intensity 20.12 kN/m?” and a triangular block (side CDE in Figure 14.4c)
with intensity varying from zero at the top of the gate to 35.21 — 20.12 = 15.09 kN/m”
at the bottom of the gate.

The resultant force F, of the rectangular pressure block is:

F =2012% 15X 1.2 = 36.22 kN
and is located at the mid-point of the gate (at y, = 0.75 m below A)
The resultant force F, of the triangular pressure block is:
F,=0.5X 15.09 X 1.5 X 1.2 = 13.58 kN
and is located two thirds the way down the gate (at y, = 1.0 m below A).

The moments of the components F, and F, about any point is the same as the
moment of the resultant F about the same point. If Fis located y, below A, then
equating moments of Fand its components about A gives:

Bp=tnt Ey,
49.80 X y, = (36.22 X 0.75) + (13.58 X 1.0)
o= 0.818 m

The resultant force on the gate is £ = 49.80 kN and it acts 0.818 m below A.

For surfaces of simple shapes such as those of Examples 14.1 and 14.2, the resultant
force is easily found by calculating the volume of the pressure block. For more general
shapes the reader is referred to Section A2 of the Appendix. There it is shown that if a
linearly varying pressure acts upon a plane surface of area A, the resultant force is equal
to the pressure at the centroid of the surface times the area A. Thus if the centroid is at
a depth y_below the free surface, the resultant force is (see Equation A.11):

F=yy A {14.5)

The point through which the resultant acts is called the centre of pressure and its depth
is denoted by y_ . From Equation A.27, we have:
I

Vep = Z‘i + (14.6)

where _ is the second moment of area of the surface calculated about a horizontal axis
through its centroid.



194 Fruip STATICS

_ Exavric14.3
Re-solve Example 14.2 using Equations 14.5 and 14.6.

SOLUT]ON

The width of the gate &is 1.2 m and its depth D is 1.5 m. For this rectangular shape
(see Table A2, page 271):

bD? 1.2x%15°

The depth to the centroid of the gate is y. = 2 + 0.75 = 2.75 m and the surface area
A=12X 15 = 1.8 m% The resultant force on the gate (Equation 14.5) is:

P= yyA=10.06 X275 X 1.8 = 49.8 kN

and from Equation 14.6:
4! 0.3375
Yo T 1.8 X 2.75

The centre of pressure is therefore 2.818 m below the free water surface or 0.818 m
below the top of the gate (as calculated in Example 14.2).

+ 275 =2.818m

_ - Examee14.4

This example is similar to Example 14.2 except that the gate is circular with a diameter
of 2.5 m. The centre of the gate is 5.6 m below the free water surface.

SOLUTION
The area of the gate is:
T X 2.5°
A= —4— = 4.909 m*
From Table A.2, for a circular area:
T X 2.5 L
=" —=1917m

and from Equations 14.5 and 14.6:

F =10.06 X 5.6 X 4.909= 277 kN
1.917

Yo= 4909 x 5.6 T 6 =567m

Equation 14.6 shows that the centre of pressure always occurs at a greater depth than
the centroid of the surface on which the hydrostatic pressure acts. The distance
berween the centre of pressure and the centroid £./Ay, decreases as the depth of water
increases.
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14.3.3  Pressure on inclined surfaces

With slight modification Equations 14.5 and 14.6 may be used to find the resultant fluid
pressure on any submerged surface. Consider the inclined surface AB in Figure 14.5a.
The hydrostatic pressure acts at right angles to the surface, with p, = » y, and
23 = Vs Equation 14.5 needs no modification. For Equation 14.6, the position of the
centroid C and the centre of pressure P are best defined by their distance from the line
of intersection of the submerged surface with the free water surface, which we may call
the water line. This line (O in Figure 14.5b) is the line of zero pressure. The distances
from C and P to this line are L and L_, respectively. Equation 14.6 then becomes:

XX

Ly=7r T L (14.7)

where /_ is the second moment of area of the inclined surface about a horizontal axis

through the centroid.

Figure 14.5

The calculation of the fluid force on a plane surface of any shape and inclination may
be summarized as follows:

1. The resultant force is equal to the pressure ar the centroid times the area of the
surface (Equation 14.5).

2. The point P at which this resultant force acts is distant L _ from the water line,
where L__ is given by Equation 14.7.

If the submerged surface is vertical, Z_ is identical to Vep and L_is identical to y_. If the
surface is inclined at 0 to the horizontal:
.yCP .yc

sin 6 and LC:sinO

If the surface is horizontal, P and C coincide.

It remains to locate P in the direction parallel to the water line. Usually there is an axis
of symmetry normal to the water line, in which case P lies on this axis. The case where
there is no axis of symmetry is dealt with in Appendix, Section A.2.3.
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14.4 Hydrostatic pressure on curved surfaces

As for a plane surface, the hydrostatic pressure on a curved surface acts ar right angles to
the surface as shown in Figure 14.7a. The resultant force F has horizontal and vertical
components, F; and F, respectively. F,, is determined by projecting the curved surface
onto a vertical plane and calculating the horizontal force on this projected vertical plane,
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as shown in Figure 14.7b. If y_is the depth from the free fluid surface to the centroid of
the projected area A, then:

E =vyyd (14.8)

The vertical component F, is the weight of the volume V of fluid above the curved
surface (Figure 14.7¢):

F,=yV (14.9)
The magnitude and direction of F are calculated from its two components and are
given by:
£y
_\/r2 2 ot .
F=VE +F  and #=nn E, (14.10)
where 6 is the inclination of Fto the horizontal.
a b c
(a) g (b) g (o) P
? , % E/////,’i//////.:?
Fy i . v
/1 vertical plane MMt
Co E//////// s ,E
:/ N ///////:
F ! .(’//// P
Fy ‘ : o //////4
i i : I/////// e “
B P8 B 2B
’ 1
Fy
Pa
A Pa A A

Figure 14.7
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SOLUT‘ON :
(i) The vertical projected arca of the curved wall surface is rectangular 10 m deep and
the length of the wall wide. The horizontal component of the hydrostatic force on each
1 m of wall is obtained from Equation 14.8 as:

F, =981 X5X10X1 = 490.5 kN/m

This acts 6.67 m below the water surface or 4.83 m above A, as shown in Figure 14.9.
The vertical component of the hydrostaric force F, per metre of wall is the weight of
the volume of water in the hatched region shown in Figure 14.9. By reference to Table
A.l in the Appendix:

F,=981X2X 10X 8X 1 =5232kN/m

 and this acts through the centroid C of the hatched parabolic area, i.e. at 3/8 X 8 = 3 m
from the axis BE, or 7 m to the left of A.

A=

-p=9.81 X 10 = 98.1 kN/m

Figure 14.9
From Equations 14.10: :

F=V490.5" 4 523.2" = 717.2 kN/m

and

g

490.5 ; :
(i) The moment about A caused by Fis the same as the sum of the moments caused
by the components of F:

R M, = 5232 X 7 — 490.5 X 4.83 = 1293 kNm/m

#= tan = 46.85°

- Examrizr 14.7

Find the horizontal and vertical components of the hydrostatic force exerted on the
2.4 m diameter cylinder shown in Figure 14.10. The cylinder is 8 m long,
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Figure 14.10

SOLUT ION

The horizontal component force F, is the force on the vertical projection of the
surface DCB (which acts to the right) minus the force on the vertical projection of the
surface AB (which acts to the left).

4 F,=981X26X22X8—981X36X02X8=3924kN

This is equivalent to the horizontal force acting to the right on the vertical projection

EA. Hence:
Sl | waBlad SO G 26 2.5 e 12 0 3R = S U
-

The vertical component force F, is the upward force on the surface CBA, which is the
weight of the volume of water displaced by the volume HCBAFH, minus the downward
force on the surface DC, which is the weight of the volume of water in HCDG in Figure
14.10.

. F,, = weight of the volume of water GDCBAFG
= 9.81 X 8 X (area of semicircle DCBAD + area of triangle DAE +
area of rectangle GDEF)
=981 X8 X (05X wX 122+ 0.5 X 1.33 X 2.0 + 133 X 1.5)
= 438.5 kN

14.5 Buoyancy

When a rigid body is immersed either partly or completely in water, the water exerts an
upward force on it. Its weight is then offset, either partly or completely by the water
pressure, which is called the buoyancy force.
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Suppose that it is intended to immerse a solid body in an expanse of water. Before the
immersion occurs the space which will later be occupied by the body is occupied by water
(Figure 14.11a). This block of water has a volume V'and a weight yV which acts at the
centre of gravity B of the block. Equilibrium of the block is maintained by the pressure
from the surrounding water. Without the need for calculation we can therefore say that
the resultant of these pressures is an upward force of magnitude yV acting through B,
the centre of gravity of the block of water.

(2) (b)

_______________

water

044 .
1 Figure 14.11

We now replace this water by a rigid body of the same size and shape (Figure 14.11b).
The resultant of the water pressures acting on the body is a force of yV acting at the
centre of gravity of the displaced water.

This upward force is the buoyancy force, and the centre of gravity B of the displaced
water is called the cenrre of buoyancy. The weight of the immersed body is Wacting at its
centre of gravity C, which may not coincide with B.

If Wis greater than vV the body will sink. If Wis less than yV the body will rise. If
C is not vertically above or below B the body will rotate.

Whether the body floats or is totally immersed, the buoyancy force yV'is equal to the
weight of the displaced water and acts through the centre of gravity of the displaced water.

_ Exaumze14.8

A sealed container is rectangular in plan and
cross-section, with a uniformly distributed
weight of 900 kN. Its length is 10 m, its width
is 4 m and its height is 3 m, as shown in
Figure 14.12. Find whether the container will _I_
float or sink in sea water and, in the former

case determine the depth & of the container | 4 m |
below the sea water surface. Figure 14.12
SOLUTION

The volume of the container is 10 X 4 X 3 = 120 m’. This volume of sea water
weighs 120 X 10.06 = 1207.2 kN. Since this is greater than the weight of the
container the latter will rise until the volume of displaced water is 900 kN, Then;

10 X 4 X d X 10.06 = 900 kN .. 4= 2236 m
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14.6  Stability

In Example 14.8, it was assumed that the rectangular container floated with its shortest
dimension vertical. How do we know that it does not rotate so that the 4 m or the 10 m
dimension is vertical? In both of these orientations, the buoyancy force would exactly
balance the weight of the container and thus satisfy equilibrium. We shall see that of
these three equilibrium positions two are unstable. If the container is in one of the
unstable conditions of equilibrium, the slightest movement will cause it to rotate to one
of the other positions. If it is in stable equilibrium, then after a slight disturbance, such
as that caused by a small wave on the sea’s surface, it will return to its former position.

In Figure 14.13 the full line represents the container considered in Example 14.8. The
rectangle JKLM is the submerged portion. The centre of gravity of the container is C and
the centre of buoyancy (i.e. the centre of gravity of the displaced water) is B, which in
this case is 0.382 m below C. '

We now give the container a smal/ rotation 6. The displaced water is now the
quadrilateral JKL'M' (times 10 m, the length of the container). The area of JKL'M' must
be the same as that of JKLM but the centroid is not obvious. However, JKL'M ' may be
regarded as J'K'L'M’ plus the triangle NKK' minus the triangle NJJ'. The centroids of
these figures are readily determined. In effect we are considering the buoyancy force W
as the sum of an upward force Wacting at B’, plus an upward force F, at Y minus a

1
downward force F, at Z. For equilibrium F, and F, must be equal and of opposite sign.

[~ 2m I 2m I
v Zy ke NJ _ F,* K
A Ty ]
: 0737 m | B DY
1.119 m
Clic—r
,-*u h=0382m
_ Bfl 4B — L
/ W',‘*
i i ho
M |
v L
hy
Figure 14.13

The container is acted upon by two couples; a couple F, F, which tends to restore the
container to its original position, and a couple W'W which tends to increase the
displacement. Evaluating, we have:

W=900kN and 4/ =0.382m
The couple W'Wis:
W'W =900 X 0.3820 = 343.8 kNm
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The force F, (= F,) is -y times the triangle VKK times 10 (the length of the block).

F, = F,=10.06 X 3(NKX KK') X 10
=100.6 X0.5X2X286
201.2 G kN

The distance YZ is:

YZ=4X%=267m
and the restoring couple F F, is:

F.F,= 20120 X 2.67 = 536.50 kNm
The resultant couple is:

(536.5 — 343.8) 6 = 192.70 kNm

This couple will restore the container to its original position, hence that position
appears to be stable. The reader should now check that the container is also stable in
respect of a small roration about its other horizontal axis.

The foregoing numerical example may easily be generalised. Figure 14.14a shows a
floating body of general shape in equilibrium, with the C.G. at a distance 4 below the
centre of buoyancy. The plane of intersection of the body with the free water surface is

here called the water level plane (JK in Figure 14.14a).
(b) e

Figure 14.14

If the body is given a small rotation 6, the new system of forces will always consist of
two couples:

1. A couple M, comprising the two forces Farising from the rotation of the water level

plane from /Kto /'K
From Equation A.15 (see Appendix) this couple has a moment:
M =M =wl_ (14.11)

where I is the second moment of area of the water level plane about the axis X through
its centroid, and ), is the water pressure on this plane at unit distance from X. The
vertical displacement at this unit distance is 1 X @ and the resulting water pressure is
0y. Hence the couple formed by FF is:

M, = 0yl (14.12)

This couple always acts to restore the body to its original equilibrium position.
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2. A couple M, formed by the buoyancy force and the weight of the body.

In the original equilibrium position these forces were in the same vertical line. The
distance between them is now 4 6 hence they form a couple:

M, = Who (14.13)

Taking 4 as positive if C is below B, M, is a restoring couple if 4 is positive. The total
restoring couple is thus:

M=M + M, = 0yl +Wh (14.14)
If C is above B, 4 is negative and if Wh is greater than yI_ the body will overturn.

Prablems

14.1 A lock gate on a canal is 5 m wide and is —
perpendicular to the sides of the canal. On
one side of the gate the water is 3.8 m
deep and on the other side 2.1 m deep as
shown in Figure P14.1. Find the
magnitude of the resultant hydrostatic
force on the gate and its height above the
bottom of the canal.

14.2 The dam wall shown in Figure 14.2 has a

strut BD located every 4 m. Determine

the compressive force in each strut BD,
neglecting the weight of the dam wall.

N 7AY

C
Figure P14.2 2 m—t 4m |

14.3 Determine the resultant force F
due to water acting on the 1.1

by 2.0 m rectangular gate AB
shown in Figure P14.3 and its A
line of action.

Figure P14.3

14.4 Determine the resultant force due to water acting on the 1.2 by 2.8 m triangular gate CD
shown in Figure P14.3. The apex of the triangle is at C, and the gate width at D is 1.2 m.
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14.5

14.6

14.7

14.8
14.9

14.10

14.11

A rectangular gate ABC in a vertical tank wall is
pivoted at B and rests against a stop at A as shown
in Figure P14.5. If the gate is 10 m long Cr
perpendicular to the plane of the figure, find:

(1) the reactions at A and B when the free water

5

3

(=]

surface is level with the top of the gate Be
(ii) the height of the water surface above C when 0.3 m
the gate opens (i.e. overturns about B). Al -
Figure P14.5

Find the magnitude and location of the horizontal --%-- —
and vertical components of the hydrostatic force per _ T
metre acting on curved area AB in Figure P14.6. y
The line AB in Figure P14.6 is the quadrant of a ‘
circle radius 2.5 m. What is the moment of the
hydrostatic force on AB about point C.

The 2.4 m diameter cylinder
shown in Figure 14.7 weighs
45 kN and is 2.0 m long. It
retains oil on one side as
shown. Neglecting friction at
A and B, determine the
reactions at A and B. (Assume
the specific weight of the oil is B

Y,q = 785 kN/m”) 1

Figure P14.7 Ry

An object weighs 1.0 kN in air and 0.6 kN in water. Find its volume and specific weight.

A hollow cylinder 1 m in diameter and 2 m long weighs 4 kN.

(i) What weight of lead must be fastened to the outside of the bottom of the cylinder
to male it float vertically with 1.2 m submerged?

(i) What weight of lead is required if the lead is placed inside the cylinder? (Assume
Viewa = 110 kN/m?.)

An iceberg weighing 8.96 kN/m? floats in the ocean (10.06 kN/m?®) with a volume of
14000 m” above the surface. What is the total volume of the iceberg?

The cylindrical tank shown in Figure 14.11 floats in the position shown. Neglecting the
thickness of the tank walls, find the weight of the tank. (Take y = 9.81 kN/m?)



14.12

14.13

14.14

14.15*
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l 1.8 m J|

Figure P14.11

A buoy (Figure P14.12) is to be constructed of a
hemisphere diameter 1.2 m surmounted by a cone and
is placed into seawater (y = 10.06 kN/m?). The total

weight of the buoy is 10.5 kN. H
(i) If the height H of the cone is 2 m, will the buoy

float?
(i) What is the height H when the buoy is on the 1.2m \_

verge of sinking?

Figure P14.12

A prism weighing 2 kN has a length of 1.7 m and its cross-section is an equilateral

triangle of side 0.6 m. It is placed in fresh water (y = 9.81 kN/m?) with the longitudinal

axis vertical.

(i) ‘What is the-exposed length of prism above
the warer?

el
N
A%

1.7 m
(ii) Is this position stable?
(iii) If not, what is the orientation of the prism
in a stable position?
~0.6
Figure P14.13

A solid cylinder has a length / a diameter #and a density of 8 kN/m?. If it is to float in
salt water (y = 10.06 kN/m>) with the circular face horizontal what is the maximum

value of //4?

A solid oblate spheroid (of specific weight
8 kN/m®) has two major axes of 4 m and
the minor axis is 3 m. When it is floating
in fresh water (y = 9.81 kN/m?), what is
the height of the top of the spheroid

above the water surface?

Figure P14.15

* Difficult problem, suitable for later study.
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Composition and
Resolution of Forces

15.1 Components of a force

In considering coplanar forces, it was shown in Section 2.3 that any force could be
resolved into components parallel to and perpendicular to a given direction. As any force
may be tesolved into two components (the force and components being coplanar), each
component may be futther resolved into sub-components in planes not necessarily
containing the original force. Generally we concern ourselves with components in three
mutually perpendicular directions.

Let F be a force through O, its line of action being inclined to three mutually
perpendicular axes Ox, Oy and Oz at angles 6, 6, and 6, respectively (Figure 15.1). The
components could be obtained by first resolving Finto a force Zin direction Oz and a
force R in the plane Oxy, as illustrated in Figure 15.1. R could then be replaced by two
forces Xand Yin directions Ox and Oy, respectively. For this method, it is necessary first
to express the angle between Fand R, and also the angles which R makes with Ox and
Oy, in terms of 0, and Gy.

It is easier to consider first the converse problem of
finding the resultant of component forces. Let X, Y'and
Z be three forces acting along Ox, Oy and Oz,
respectively. The resultant F may be regarded as the
diagonal of a rectangular parallelepiped whose sides are
X, Yand Z respectively.

The resultant of Xand Yis R= VX2 + Y? acting in
the Oxy plane. The resultant of R and Z, which are
perpendicular to each other, is £, where: Figure 15.1

F=VR*+2*=Vx*+ y*+ 72 (15.1)

If we consider the triangle OAB (Figure 15.1) which is right-angled at B, we see that
X = Fcos 6. Similarly from triangles OAC and OAD we see that ¥'= F cos Gy and
Z = F cos 6. Expressed in terms of direction cosines: (/= cos 6; m = cos Gy; ‘n=
cos 6) we have:

X=I[F Y= mF Z = nF (15.2)
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15.2 Resultant of concurrent forces

The methods used for the composition of concurrent coplanar forces can be extended to
deal with the composition of concurrent forces in three dimensions (i.e. forces which are
not necessarily coplanar).

(a) z (b) z
C
F
F 2~ F
! B 3
<R, D
FZ Fl RN
R F,
A A 2 ¢
y y
R E
X F3 X
£
Figure 15.2

Consider the four concurrent forces F,, F,, F, and F, shown in Figure 15.2a. The
forces F, and F, may be added vectorially to give the resultant R, (triangle ABC forming
a plane, Figure 15.2b). Forces R, and F;, not necessatily in the plane of ABC, may now
be added together to give R, (triangle ACD forming a plane). The force R, may now be
added to F,, which is not in the plane of ACD, to give the resultant R (triangle ADE
forming a plane). The process can be used for any number of concurrent forces and the
resultant, which must pass through A, is given in magnitude and direction by the line
joining the first to the last point of the force polygon drawn in space.

As the force polygon in this case is not a plane figure a single diagram of course cannot
deal with the problem. The force polygon can, however, be projected on to two mutually
perpendicular reference planes, and the final ray on each projection gives the projection
of the resultant on the two reference planes. The true length of this line and its direction
give the magnitude and direction of the resultant. Although graphical solutions are
possible they are not considered here since analytical methods are more convenient in
practice.

Consider any number of concurrent forces F, F, 1:3 o F whose directions are
known with respect to three co-ordinate axes Ox, Oy and Oz. The components of each
force in the three directions Ox, Oy and Oz may be written down using Equation 15.2:

Xl = ZIFI )/l = mlFl Zl = anI
X, = L,F, Y

o= myk, Z,=n,F, andsoon. (15.3)

2

The sum of the components in the direction Ox is then:

X=X + X, + X, +.+ X =X, (15.4a)
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The sum of the components in the direction Oy is:

Y=Y+ Y+, +.+Y =1 (15.4b)
and the sum of the components in the direction Oz is:

XZ=2+72,+Z +.+ 27 =27 (15.4c)

2X %Y and 2Z are the components of R, the resultant of F,, F, ... F.. From the
previous section then, the magnitude of the resultant is:

R=V(X)* + (Y + (Z) (155)
and its direction is defined by the direction cosines ZR, mpy and Moo where:
Xr Ir Zr
Iy = 2 my =R RER (15.6)

It is a simple matter to show from the trigonometry of the Parallelogram of Forces; that
if two forces F, and F, (concurrent) are inclined to each other at the angle & then:

R=VFE?+F? + 2FF, cos (15.7)

In a similar manner, the student may prove by expanding the expression for (X.X)?,
(2 Y)? and (£2)* and making use of the relationships:

2 2, 2 _
I"+m+n =1 and cosalz—lllz-i-mlmz-i-nln2

that for the general case:

R= \/F12 +F22 + ...+ Fn2 +2F F, cosar, + 2F F, cosa, + ... erc. (15.8)

where a, is the angle between F and fi

— Exavme15.1

=)

Find the resultant of the three forces shown separately in Figures 15.3a, b and ¢. The
angle between the axis Ox and each force is not given but it is less than 90°.,

(b) =z (c) =z

Fi=15N
F,=15N
309 :
e 45° - 75°
75 o >r%oe o™\
) Wi y 40° Y
‘ X X

Fy=20N

Figure 153
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Problems

15.1 A force of 90 N acts along a line passing through the origin of co-ordinates (0, 0, 0)
towards the point whose co-ordinates are (4, —4, 7). Resolve this force into three
components along the x, y and z axes.

15.2 A force Facts along a line passing through the origin of co-ordinates (0, 0, 0) towards a
point A, having co-ordinates x, y, and z. Find the components along the x, y and z axes
for each of the sets of values of F, x, y, and z, shown in Table P15.2.

Table P15.2

F _ xl yl zl
@) 250 N 3 4 10
(i) 180 N 6 6 -6
(ifi) 300 N -5 9 12
(iv) 520 N 8 -5 AV

) 280 N -2 3 -6
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15.3 Table P15.3 shows the magnitudes and directions of a set of concurrent forces. The
angles from the x, y and z axis to the respective forces are 6,, 6 and 0, respectively. Find
the magnitude and direction of the resultant.

Table P15.3
F 6, 9, 6,
10 N 135° 90° 135°
20 N 45° 45° 90°
30N 54.74° 54.74° 54.74°
15.4 Table P15.4 gives the values of three sets of concurrent forces. Each set refers to the

diagram in Figure P15.4. Find the resultant of each set (i) to (iii).

Table P15.4
Force Direction
(i) 500 N AtoD
280 N AtoG
200 N AtoC
(i) 420 N BtoH
300 N DtoB
100 N AtoB
(iii) 200 N Kto A
440 N " KtoH
130N GtoK
y
6m—ri,
E
' T
2m
G )\X
B K 3m
A3 m— O
z
Figure P15.4

15.5 A block weighing 30 N lies on a smooth plane inclined at 20° to the horizontal. The
block is pulled with a force of 12 N by a rope parallel to the plane and in a direction
making an angle of 60° with the line of greatest slope. The 12 N pull has a component
up the plane. Find the resultant force on the block.
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Equilibrium of

Concurrent Forces

16.1  Equilibrium
’ In Section 3.1, it was shown that as a consequence of Newton’s Second Law, any body
at rest must be acted upon by a system of forces with a zero resultant. This of course
applies equally to three dimensional systems. If the resultant of a three dimensional

system of concurrent forces is zero, the forces when added vectorially must form a closed

polygon in space (i.e. the last point of the force polygon must coincide with the
initial point).

16.2 Conditions of equilibrium

The resultant of a system of concurrent forces has been shown to have three components

given by Equations 15.4. That is:
SX=S4F  SY=3mE  3Z=3nF

If the resultant is zero, each of the components 2X, ¥ Yand ¥.Z must be zero. Hence,
the conditions of equilibrium are:

2X=0 (16.1)
SY=0 , {16.2)
>Z=0 (16.3)

If a concurrent system of forces is known to be in equilibrium and all forces except
one are known in magnitude and direction, the above three equations may be used to
determine the unknown force in magnitude and direction. This problem is simply the
reverse of finding the resultant of the known forces.
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_ Examre 16.1

Five bars AB, AC, AD, AE and AG are connected together at A. They are shown in
Figure 16.1 by their projections on the xy and yz planes. The forces in AB, AC, AD
and AE acting at A are as shown in the figure. Find the direction of AG and the
magnitude of the force in AG if the system is in equilibrium.

o

|——4 m ‘3 m—

Figure 16.1
SOLUTXON

As we did when considering two-dimensional systems, we find the x components of all
forees and equate the sum to zero (Equation 16.1). This gives the x component of the
unknown force. We then proceed similarly for the y and z components.
It is necessary first to calculate the length of each bar and hence the direction cosines
for that bar. For example, for the bar AB we have:
22+4 +4=6m
=9 —~4 4
Then: Lo & ? = o oy Tk
(The value of /, , is negative since the projection of the force AB on the x axis is in the
negative x direction.)
The direction cosines of the other known forces are calculated in the same way and
- are entered in Table 16.1. The direction cosines of the unknown force Pin bar AG are
entered as /, m, and 7. The components of the known forces are calculated

|
numerically, while the components of Pare / P, m Pand » P.

Table 16.1
Bar F(kN) L (m) l m n X=IF Y=mF Z=nf
AB 2 6 -2/6 Z4/6 +4/6 - -0.667 -1.333 +1.333
AC 2 V2 +4(4V2) 0 +4/6V2) 1414 0 +1.414
AD 3 6 +2/6 ~4/6 ~4/6 +1.000 -2.000 -2.000
AE 4 3 0 0 -3/3 L 0 0 ~4.000
AG P [ m, n LP m.P n,P

Summations +1.747 -3.333 ~3.253

= EP + m,P +.n,P
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~ From the three equations of equilibrium:
TX=0: . [P=-1747kN
ZY=0: . mP=+3333kN
3Z=0: &aP=+3253kN

Hence:

P=V1.747* + 3.333> + 3.2532 = 4.974 kN

The direction cosines of P are:

—1.747 : '
§ = 3974 = —0.351
+3.333
=74 = +0.670
3.253 -
and T m = + 0.654

As a check we note that:

L2+ m+ a2 = (-0.351)% + (0.670)> + (0.654)° = 1.00 .. OK.

Exampie 16.2 : vy

Figure 16.2 shows three
bars AB, AC and AD
joined together at A. The
projections of the bars . ; ‘ :
on the xy and yz planes D —4m—r2 "ﬁ+2 IE_I |?4 m—+D—4 mH o
are given. A force of 10 T k o
kN acts at A parallel to 4,
the z axis. Find the force

in each bar.

J0kN A A

Figure 16,2

SOLUTION

As in the previous example, the direction cosines of each force are the same as those of
the bar in which the force acts. Since the bar forces are unknown, it will be assumed that
they act away from A. The direction cosines are found as in Example 16.1 and entered

in Table 16.2.
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SOLUTION
Let the force in AB be Pand assume that it acts away from B. Let the direction cosines
of the force in BE be /, m, and »,.

As in the previous examples, we first calculate the direction cosines of those forces
whose directions are known. Equilibrium is then expressed by equating to zero the
sum of the components in each of che directions x, y and z.

Consider rope BD for example. In terms of the co-ordinates of B and D, the
direction cosines of BD may be found as follows. Let L, L and , be the projections
(with appropriate signs) of BD. Then: :

L. =%, =xg= 0 7205= =20
e imae 20 =0 =E0

and L =VE¥P+E=2131 ;
=20 5 +5
by =315 = "0M3 my, == =0236 my, = o= 40,236

Hence the components of F,, are:

XBD = IBDFBI) = —0.943 X 1.5 = —1.414 kN
Yy = mypFy, = —0.236 X 1.5 = —0.354 kN

Z, = mpF,, = +0236 X 1.5 = +0.354 kN

The components of the other forces are calculated similarly, using symbols where
necessary for unknown forces or direction cosines, as tabulated below.

Table 16.3
Member F (kN) [ m n X=IF Y=mF ZI=nF
BA P -0.816 -0.408 -0.408  -0.816P  -0.408P -0.408P
BE 1 -0.802 -0.535 +0.267 -0.802 -0.535 +0.267
BD 1.5 -0.943 -0.236 +0.236 -1.414 -0.354 +0.354
BE 4 L, m, n, 41 4 m, 4n,
3 kN load 3 0 0 ; =1 0 0 -3.000

The equilibrium equations may now be written as:
XX =0: -0816P— 2216 + 4, =0
Y =0 —0.408F — 0.889 + 4m =0
37 =0 —0.408P— 2379 + 4nl =0

‘These may be re-arranged to give:

= 0.204P + 0.554 (16.7)
m, = 0.102P + 0.222 (16.8)
n,= 0.102P + 0595 (16.9)
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A fourth equation is provided by the fact that:
Paml+ni=1 (16.10)

Substitution of Equations 16.7, 16.8 and 16.9 into 16.10 gives a quadratic in P from
which we obtain:

P= —6958kN or P= +0.667 kN
Corresponding to the first value of 2, Equations 16.7, 16.8 and 16.9 give:

4 = =085 m, = =0.488 ‘n, = <0.115
For the second value of Pwe find that:
4 ="H0.000, 9w, =-FDI290 -7 =F0.6G8

1

Thus there are two positions of the rope BE which will maintain equilibrium with the
given forces. The reader should try to picture the two positions from the values of the
direction cosines. It will be noted that in one case the pole AB is in compression and
in the other case it is in tension.

— Exavrz 16.4

The vertical pole AB (20 m &

long) is loaded at B by the B

loads shown in Figure 16.4. B 4 kN

The ropes BD and BC lie in 2 kN D
the vertical yz plane, BC 3 kN E
being parallel to the y axis. =
The point E lies on the x axis. :
Another guy rope (BF) 25 m 15m 20 m
long is available. Find the co- \ / ;:
ordinates of the point F on 20 m - :

the xy plane, to which the A

guy should be attached to
maintain equilibrium. Also

find the forces in the guy and
in the pole. Figure 16.4

3

g

5m y
S

SOLUTION

Let the direction cosines of the guy rope BF be /, 7, and 7,. Let the force in BF be P
and the force in the pole AB be Q, and assume that both these forces act away from B.
Since the length BF is 25 m and F is on the xy plane:

-20

n =

) —2?= -0.8
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" The direction cosines of BC, BD and BE are calculated as in Example 16.3.

The three equations of equilibrium at B are:

YX=0: (<0.6X3)+/[P=0 ‘ | (16.11)
TY=0: 2+ (08X 4 +mP=0 AT (16.12)
Y7 =0: (08X%3)~(0.6X49) - Q=08P=0. (16.13)

In addition we have the equation:
F+m!+(-08°=1 (16.14)

Equations 16.11 and 16.12 may be re-arranged as:

IP=18 ~ o (8.15)
=110 \ : ‘ (16.16)
Elimination of P from these two equations gives: :
e U
and substitution into Equation 16.14 gives (1'57”1)2 + ml2 + 0.64 = 0:
om = 20333 ‘

‘As in the previous example, there are two positions of the force BF which will
‘maintain equilibsium with the given forces. However, in this problem P must be
positive (tension) since a rope cannot sustain compression. Equation 16.16 shows that
P is of opposite sign to m,, hence we must take m, = —0.333. Therefore, from

Equations 16.15 and 16.16: ‘
P=36kN and /= +0.500
The co-ordinates of F (which is in the xy plane) are: - ‘
5 =250 =+125m |
¥ = 25m, = —8.33m
The force in the pole is given By Equation 16.13:
Q= —7.68 kN : ¥

7 | radius =15 B
Alternatively, we may approach the problem in a rather 5

more physical manner. Figure 16.5 shows a plan view of * ' 1.2
forces at B. Ropes BC and BD both have zero x [l 55 b
components, and their y components together are equal : ;-

L LE= AB ;X
to 1.2 kN. Rope BE has a zero y component and its x
component is —1.8 kN. Since the rope BF is 25 m long e o F

M AB is 20 m long, the point F must be L el
252.— 20% = 15 m from A (Figure 16.5). v plan view

Figure 16.5
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Since the rope BF is in tension, the point F must be in the position shown in Figure
16.5 and notat F'. With:
Xg

1.8
)’F=E and X+ 32 =15

we have:
% =+125m and y = —833m

The component of the rope force P parallel to Ax is 1.8 kN. Since x, = 12.5 m and
the length of the rope is 25 m:

1.8 X 25
" 12.5

As before, vertical equilibrium at B leads to Equation 16.13 which gives Q = —7.68 kN.

= 3.6 kN

16.3 _Further discussion

In the previous section, we considered problems involving a number of concurrent forces
in equilibrium and used the three equations of equilibrium to find information on
unspecified force magnitudes and directions. In such problems, each force is specified by
its magnitude and the signed direction cosines of its line of action, and for each line the
relationship between direction cosines is /2 + m* + n’= 1

In Examples 16.1 to 16.4, the number of unknown forces and directions was such that
they could be determined using only the three equilibrium equations. The question arises
as to the necessary condition to be met in order to be able to solve a problem involving
concurrent forces using only the conditions of equilibrium.

If p is the number of concurrent forces of known or unknown magnitude, there will
then be 3p direction cosines, known or unknown, describing the lines of action of the
forces. If g is the number of forces of specified magnitude and 7 the number of specified
direction cosines, it follows that the number of unknown variables is (4p — 4 — ») and
of these (p — ¢) are force magnitudes and (3p — ) are direction cosines.

For a given problem to be solved by consideration of statics alone, there must be a
total of (4p — g ~ 7) equations available, comprising three equations of equilibrium, and
the remaining equations of the form /> + m> + #*= 1. In any problem where it is
necessary to use equations of the latter type, results will be ambiguous and additional
information may be needed to obtain the correct answers to the particular problem.

Prohlems
16.1 Three forces of magnitude 10 N, 20 N D T
and 30 N act at A in the directions shown / '
in Figure P16.1. Find the forces in the 2m c 0N Lo 1
directions AB, AC and AD which would /
maintain equilibrium. S 30'kN

10 kN

Figure P16.1
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16.3
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A weight of 100 N is to be supported by a rope below a point A to which four other ropes
are attached (see Figure P16.2). One rope lies in the zy plane, and another in the zx plane
and each of these has a tension of 50 N. A rope with tension P lies in the plane xy. In
what direction must the fourth rope, carrying 60 N tension, lie in order to maintain
equilibrium, and what is the value of P?

z
50 N
60 N
50 N
60°
45 Al 30° y
| P
x 100 N
Figure P16.2

A power line cable has a tension of 500 N at the insulators, where it is supported (Figure
P16.3). At each side of the point of support it makes an angle of 10° with the horizontal
and lies in a vertical plane. The insulators are suspended from a point A which is
restrained by two equal struts AD and AE lying in a horizontal plane, and by two equal
ties AB and AC. Find the tension in the ties and the compression in the struts.

lm/l

S00 N

Figure P16.3
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16.4 A load of 10 kN is supported by three ropes as shown in Figure P16.4. OA lies along the
x axis, and OB lies along the (negative) z axis. C is the point (-3, 5, 2). Find the tension

in each rope.
Y
X
10 kN
YA
Figure P16.4
16.5 In a pin-jointed space frame there are three bars only (not in the same plane) which are

joined at the node A. No external load is applied to the node A. What can be said about
the forces in these three bars?

16.6 Figure P16.6 shows a mast AB, which is supported at A in a socket (no moment
resistance) and is held in a vertical position by three guy ropes BC, BD and BE, where
C(—4, 0, —4) and D(—4, 0, 4). Turnbuckles in these guys are used to put inital
tensions in them so that they exert forces at B in the directions shown. The initial tension
in BC and BD is 1800 N. What is the initial tension in BE, and what is the compression
in the mase?

Y
B
J
4 m 7 m
4 m
4 m 3
\
D A 6 m
E
z x

Figure P16.6
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16.8

16.9

16.10
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The guy rope BD of the previous problem is changed so that the co-ordinates of point
D are (—4, 0, 6) while the initial tension remains as 1800 N. The guy BE must now be
changed so that the co-ordinates of E are (6, 0, z). Find the position of E, the initial
tension in BE and the compression in the mast.

A crane is lifting a crate weighing 10 kN off the ground (Figure P16.8). Three slings OA,
OB and OC are attached to the crate, as shown in Figure P16.8, so that A, B and C are
in a horizontal plane, the slings being connected to the ring O which is 1 metre above
the centre of the crate. Initially, the crate is not located directly below the crane hook so
that the rope connecting the ring O to the hook is inclined at 10° to the vertical and lies
in the yz plane. The edges of the crate run parallel to the x and z directions. When the
tension in this lifting rope reaches 6 kN, what are the tensions in the three slings?

Figure P16.8

What are the tensions in the three slings when the crate in Problem 16.8 is lifted clear of
the ground?

Four forces are concurrent at the origin of co-ordinates O (0, 0, 0). The first is a force
of —10kN acting along the y axis; the second is 5 kN acting along the line from O to0 a
point whose co-ordinates are (2, 3, 5); the third is 5 kN acting in an unknown direction
(direction cosines 4, m, n); while the fourth is an unknown force F acting along a line
from O to a point with co-ordinates (-3, 3, —3). Find the values of F, / m and = if the
forces are in equilibrium.



’, i
¥ i
A ‘“
L T
[} [ _
) 3 {
» ot !
Wt |
=

-~
s
w
i

el

N A

i

: -

™,
b o

&
jl

-

At~

f

LI S T
o

2 dNHY 370

g [/

mmwz._.md_‘




Non-concurrent Forces

17.1_Moment of a force

In a planar system of forces, the moment of a force about a point in the plane was defined
as the product of the force and the perpendicular distance from the point to the line of
action of the force (Section 4.1, Figure 4.1). In fact, the moment of the force is not about
the point but about an axis through the point and normal to the plane. In the case of a
three-dimensional system of forces, a single point does not adequately define the axis of
moments and it is essential therefore to always specify the axis clearly.

Consider first the moment of a force Fabout an axis A which is normal to Fbut does
not intersect it, as shown in Figure 17.1a. Let plane AA be the plane which contains axis
A and is parallel to the force F. Plane FF is parallel to plane AA and contains the force
£, as shown. There is only one line normal to these planes which intersects both the axis
A and the force F. This is called the common perpendicular to Fand A. In Figure 17.1a,
the common perpendicular intersects A at point O and Fat point O'. Let O'O be the y
axis and let axis A be the z axis. The normal to these axes through O is then Ox, which
is parallel to the force F. Thus axis A lies in the plane xOz (plane AA) and the force F
lies in the parallel plane x’O’z" (plane FF) which is distant 4 from xOz.

The moment of force Fabout axis A is F X 4, where 4 is the length of the common
perpendicular (i.e. the distance between planes AA and FF).

In effect this is the case considered in Section 4.1, where the force Fand the point O
all lay in the xy plane.
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(a)

y () y

o Plane AA

Figure 17.1

For any force F and any axis A, there is in general one and only one pair of parallel
planes, one containing F and one containing A. When the force F and the axis A
intersect, they share a common plane. The common perpendicular & then equals zero
and the moment of Fabout A is zero.

When F and A are parallel, every plane containing A is parallel to £ One of these
planes, AF, is common to both Fand A. In this case, we may replace the force Fby a
parallel force Falong A together with a couple lying in the plane A.F. If the couple is now
replaced by a pair of forces each of which intersect axis A, the original force is replaced
by a statically equivalent system consisting of three forces each of which intersects A. The
moment of Fabout A is clearly zero.

In summary, we may say that if there is a plane which contains both the force Fand
the axis A, the moment of F about A is zero.

We now consider the general case where the force Fis not normal to the axis A. Figure
17.1b is similar to Figure 17.1a except that the force Fis at the angle 6 to the direction
of O’x’. Fmay be resolved into components Fcos 8 along O’x” and Fsin §along O'z".
The component Fsin @ is parallel to axis A and therefore has no moment about it. Hence
the total moment of the force Fabout the axis A is Fcos 8 X 4.

The moment of a force about an axis is a vector quantity and may be denoted as a
double-headed arrow along the axis of moment, as illustrated in Figure 17.2a. It is
necessary to ascribe a sign (positive or negative) to the vector quantity (i.e. a direction for
the arrow). In Figure 17.2a, the vector is drawn in the direction G to D. This is because
the moment produces a clockwise rotation when the axis is viewed looking from G to D.
This is known as the right-hand screw rule. The arrow points in the direction a right-
hand threaded screw will move if activated by the moment. With this convention,
positive rotation around the co-ordinate axes Ox, Oy, Oz are as shown in Figure 17.2b.
For a two-dimensional system lying in the xy plane, and drawn so that the axis Oz is
towards the viewer (Figure 17.2c), positive rotation about the z axis becomes
anticlockwise since we are looking in the negative direction along Oz.
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~

(a) (b)

G\() .

Figure 17.2

Note that if the xy plane (see Figure 17.2b) is rotated positively about Oz, the x axis
moves towards Oy. Similarly, a positive rotation of the yz plane moves Oy towards Oz
and a positive rotation of the zx plane moves Oz towards Ox.

For the present, we will consider problems in which the forces are either parallel to or
perpendicular to the axis of moments. (The more general situation will be considered in

Section 17.7.)

_JWPLE 171

Figute 17.3 shows a rectangular box
acted upon by forces parallel to Ox, Oy
or Oz. Find the total moment of the
force system about the three axes and
also about axis EF. :

Figure 17.3

10 kN

SOLUTION ¥
Summing the moments of each force about the x axis gives:
M = +(10 X 2.5) = (7 X 2.5) = (5 X 1) = +2.5 KNm
“The 3 kN force has no moment about Ox since it is parallel to Ox. k
Summing the moments about the y axis gives:

My = +(5 X 3) + (3 X25) = +22:5 kNm

Neither the 10 kN force nor the 7 kN force has 2 moment about Oy since they are
both parallel to Oy.



230 THREE-DIMENSIONAL STATICS

Summing the moments about the z axis gives:

M = —(10 X 3) = —30 kNm

The 5 kN force is parallel to Oz, and the 3 kN and 7 kN forces each intersect Oz.

Hence none of these forces has any moment about Oz.
The edge EF, being parallel to Oz will be taken as positive from E to F. Then:
My = =7 X3) + (3 X 1) = 18 kNm |
The 10 kN force intersects EF and the 5 kN force is parallel to EF, so neither has a

moment about EF.

17.2__Couples

In Section 4.3, a couple was defined as a pair of parallel forces of equal magnitude but
opposite sense. The same applies to couples in a three dimensional system.

In a two-dimensional system, the only quantity which needed to be specified was the
moment of the couple. This was defined as the product of one of the forces and the
distance between them. In a three-dimensional system it is necessary also to define the
direction of the axis of rotation. This axis may be taken as any line normal to the plane
which contains the forces. The direction of such a normal is taken such that the couple
has a positive moment about the axis.

The statical effect of a couple on a rigid body is unchanged by:

rotating the couple in its plane

transferring it to another position in its plane

transferring the couple to a plane parallel to the original plane

changing the magnitude of the forces and distance between them, provided the

product of the force and the distance remains constant.

These properties are illustrated in Figure 17.4, where A and A’ are parallel planes and
LM is a line normal to them. Each of the five couples shown has a magnitude Fz and
each has an axis in the direction of LM.

o

A

Figure 17.4



NON-CONCURRENT FORCES 231

A couple, having magnitude and direction, is a vector quantity. A force, which requires
magnitude, direction and its line of action for its complete specification, is sometimes
called a localised vector. It is not necessary to specify the line of action in the case of a
couple. It is often convenient to denote a couple by means of a double-headed arrow, the
length of which corresponds to the magnitude. In Figure 17.4, any of the five couples
could be represented by the arrow at L or alternatively by the arrow at N as shown.

17.3 _Resultant of two couples

Two couples may be replaced by a single couple which has the same statical effect as the
two couples combined.

If the two couples lie in the same plane, or in parallel planes, then their magnitudes
may simply be added algebraically, their directions being the same. This was the situation
dealt with in two-dimensional systems (Chapter 4). If they do not lie in parallel planes
(i.e. if they do not have the same direction) an expression for their resultant may be
obtained from the work of earlier chapters, as follows.

Figure 17.5a shows a couple consisting of two forces P lying in a plane A. The
moment of this couple is M, = Pe. Another couple consists of two forces Q lying in
plane B which is at an angle @ to plane A. The moment of this couple is M, = Qf In
order to combine them, the couple of moment M, is replaced by a pair of forces R at
distance « apart in the plane A, such that one of the forces R acts along the line of
intersection of the two planes (line IJ in Figure 17.5a). The couple of moment M, is
similarly replaced by an equivalent couple Rb in plane B, arranged so that one of the
forces R acts along 1] and opposes the force R from the couple M,.

(a)

Figure 17.5

Of the four forces R, two cancel out and the remaining two constitute a couple lying in
a plane oblique to A and B. To find the magnitude of this couple we need the distance
cbetween the forces. Figure 17.5b is a view looking directly along the line of intersection
of planes A and B (i.e. line IJ). It can be seen that:

F=4+ 6 +2abcosa or RBF=R&+ BV + 2(Ra) (R) cos «
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The resultant couple M, is equal to Re. Hence:

M, = \/(MA)2 + (M) + 2M, Mycos (17.1)
It acts in a plane C which makes an angle € to plane B, such that:
asin ¢ M sina
b+ acosee M, + M, cos

These equations show that the two couples can be combined by vector addition. In

Figure 17.5c¢, the couples M, and M, are represented by vectors normal to planes A and

B respectively. The resultant couple is then obtained, both in magnitude and direction,

by the Parallelogram Law.

tan 6 = (17.2)

17.4 _Components of a couple

It follows from the work of the previous section thar a single couple may be replaced by
two component couples using the usual vector procedures.

_EXAMbLE 17.2

(a)

Figure 17.6 shows a plan view of a
cantilever beam AB. At B it is acted upon
by a couple of magnitude 40 kNm with
an axis at 20° to the axis of the beam and A plan
in the horizontal xz plane. Find the

twisting moment and the bending

moment in the cantilever.

<40 kNm

20°

Figure 17.6

SOLUTION‘

The couple is replaced by its components as shown in Figure 17.7a. The component
couple along the beam is:

T = 40 cos 20 = 37.6 kNm

This component causes twisting. [t is illustrated in Figure 17.7b by a curly arrow
acting around the member axis.

13.7 kNm (b)
[
B ‘l ------ »?
e
Plan 37.6 kNm

13.7 kNm

37.6 kNm
Figure 17.7
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The component couple normal to the beam is:
M = 40 sin 20 = 13.7 kNm

This'component causes bending. It is illustrated in Figure 17.7b by a curly arrow
acting about the horizontal axis at B. With the usual directions of the axes, M is
negative.

More generally, if a couple has a magnitude M and its axis has direction cosines 7, m
and 7 then it may be replaced by couples of magnitude /M, mM and nM acting around
the axes Ox, Oy and Oz respectively.

17.5 Resultant of a number of couples

The resultant of a number of couples may be determined by first resolving each couple
into its components around the axes x, y and z. If the resultant couple M, has
components, M , MRy and M, then:

MRx = zMx MR)' = zMy MR7 = 2]‘/11
and finally:
(M) = (M )* + (Mg ) + (M)

_ Examme17.3

The cube OABCDEFG is acted upon by three couples as shown in Figure 17.8a
(over). Find the magnitude and direction of the resultant couple.

SOLUTION

Replace the curly arrows of Figure 17.8a by double-headed arrows (Figure 17.8b). The
vector OF is now replaced by its x, y, z components. Since the figure is a cube the
direction cosines of OF are all equal to l/\/%, and the components of the 3 kNm
couple are thus all equal to V3 kNm. Then: '

M, = XM = V3 kNm

My, =M = (V3 - 2) kNm

My, = IM, = (V3 + 1) kNm

M, =V3+(V3-2?+ (V3+ 1) =325kNm
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() y (b) y
D G D G
Y
¥ 2 kNm
i 2 kNm
F \) F
E E -
(@) r"Q‘—_‘
24 iy R i R e
A B A B
z z
Figure 17.8

The direction cosines of M, are given by:

B2

V3-2 LBl o
3.25 = —0.082 n= = +0.841

YR i
[= =+0533 m= 3.25

3.25

17.6__The concept of a resultant

For a two-dimensional system of forces, lying in the xy plane and concurrent at the point
A, the resultant is the single force which has the same x component as the combined
forces and the same y component as the combined forces. The resultant also passes
through the point A. In Chapter 15, we saw that this concept could readily be extended
to the three-dimensional situation merely by requiring that the resultant also has the
same z component as the combined forces. Again it passes through A. '

In Section 4.2, the determination of the resultant of a two-dimensional system of
non-concurrent forces, such as that shown in Figure 17.9, was discussed. The
magnitude and direction of the resultant are found as for a concurrent system, but the.
position also needs to be established. Provided the resultant force is non-zero, it can be
located so that its moment about any arbitrarily chosen point (say B in Figure 17.9) is
the same as the combined moments of the force system. Fortunately, if R has the same
moment about an axis through B as do the original forces, then its moment about an
axis through any other point C will also be equal to that of the original forces. Of
course, the various axes considered are all normal to the plane of the force system.
However, if the resultant force is zero, it is necessary to express the resultant as a couple,
unless the system is in equilibrium.
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This concept of a single resultant force cannot be
extended to the case of a three-dimensional system of non- .
concurrent forces except in special cases. In three
dimensions it is possible to imagine the moment of a force B
about axes in various directions. We may find the £\
magnitude and direction of R by the methods of Chapter 5 * R
15. By moving R (but retaining the same direction) we
may cause R to have the same moment as the original forces Figure 17.9
about any two axes (say Ox and Oy). But R is then
completely defined, and if its moment about Oz is not equal to that of the original forces,

then we cannot express the resultant as a single force. It must be accompanied by a
suitable couple.

Fl'-__.C

In other words, we can replace a given system of forces by a statically equivalent
system, but this system cannot be a single force except in special cases.

17.7 Statically equivalent systems

In Section 4.5 we saw that a given system of forces in two-dimensions can be replaced
by another system provided that the new system contains three undetermined quantities.
These three quantities can be evaluated so that the new system is statically equivalent to
the original system. '

In a similar way, a three-dimensional system can be replaced by a statically equivalent
system provided the new system contains s&x undetermined quantities. As in the two-
dimensional case there are certain restrictions on the choice of the undetermined quantities.

We consider first the problem of replacing any given force by three component forces
acting along specified axes Ox, Oy and Oz together with three component couples
around these axes. Note that in the new system the directions and positions of six vectors

(three forces and three couples) are specified, but six magnitudes are undetermined.
These may then be determined to ensure equivalence.

(2) y F (b)

ﬂ, my, ny)

A (xp y1 =)

Figure 17.10

Let the given force Fact through the point A (x,, y,, z,) in a direction such that the
direction cosines are (£, m,, n) as shown in Figure 17.10a. The force is first replaced by
its three orthogonal components at A. These are /| F, m Fand n F (Figure 17.10b). We
now have to find a new system consisting of three forces X, Y'and Zand three couples M,
M and M, ac the origin, which is statically equivalent to the system of Figure 17.10b.
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By resolving parallel to each axis in turn and equating the original and the new systems,
we see that the force components of the new system are respectively equal to those at A:

X=IF Y=mF Z=nF

To find the couples we must take moments about each axis in turn. The process of
taking moments about the x axis is easier if we re-draw Figure 17.10b looking directly
along the x axis from the positive x direction back towards the origin (Figure 17.11a).
(@) (b

LF X

Figure 17.11

The component /, Fat A is parallel to the x axis and therefore has no moment about it.
Hence the moment of the system at A about the x axis is (7, Fy, — m, Fz). The moment
of the new system at O is simply M. If the two systems are to be equivalent, then:

Mx = F(”l}'1 - mlzl)

Similarly, Figure 17.11b is a view looking normal to the xz plane. Equating the
moments of the old and new systems abour the y axis we get:

My = F(l,z, — nx)

Finally, Figure 17.11c is a view normal to the xy plane. Equating moments about the
z axis we obtain:

M/, = F(mlxl - [lyl)

Summarising these results, the three forces and three couples at the origin, expressed
in terms of the magnitude direction and position of the original force, are:

X=I1F Y=mF Z=nkF
M = Fny, — mz) My = F(lz — nx) M = Fmx —1ly) (11.3)

The given force Facting at A can be replaced by three forces acting at any point, not
necessarily the origin, and three couples. Suppose it is required to replace Fby compon-
ents at a point B whose co-ordinates are (x, y,, z,). In Figure 17.11, it is only necessary
to re-label point O as point B and to replace x,, y, and z by the distances (x; — x),
(y, — v, and (z, — z,). Equations (17.3) then become:

X=1IF Y= mF Z=nF

M = Fin(y, = 3) — m(z — )]

M, = Fll(z = 2) = n(x, = x)]

ML' = Flm(x, — x) — L (y, — 3] (17.4)
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The three component forces X, Yand Zat B can be re-combined into a single force at
B which will obviously be equal to £ The three couples M, Aly and M at B can also be
combined into a single couple, the axis of which will not, in general, be the same as the
line of action of F. It has therefore been shown that a force can be replaced by a parallel
force at any other point together with a couple. We note that this system again contains
six quantities to be determined, namely a magnitude and two direction cosines to define
the force, and a magnitude and two direction cosines to define the couple.

It is not necessary for the replacement system to comprise three concurrent
component forces and three component couples. To be valid, the replacement system
must contain six independent undetermined quantities. It must be capable of providing
a force component in every direction and must have a moment about every axis. It
follows that at least three of the unknown quantities must be forces. Indeed, all six may
be forces, but in such a case care must be taken to see that the system does have a
moment about every axis in space.

In general we can say that any two systems are statically equivalent if both:

1. in each of three directions (not all in the same plane), the sum of the components of
one system is equal to the sum of the components of the other; and

2. about any three non-parallel axes (not all in the same plane) the sum of the moments
of one system is equal to the sum of the moments of the other.

_ Exavme17.4

The rectangular box shown in Figure 17.12 is acted upon by a system of forces shown
by full lines. Replace these forces by a statically equivalent system indicated by the

dashed lines.
= t 3m
1 S
X,
1 g =
~\ 0.8 m
a_y
D C X,
e ATV
Figure 17.12
SOLUTION

As far as possible, it is desirable to write equations of equivalence such that each
equation contains only one of the unknown values in the new system. This avoids the
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need to solve simultaneous equations. In this case, the force X, is the only member of
the new system which has a moment about AD. All other forces either intersect this
line or are parallel to it. Equating the moments of the new system and the original
system about AD gives:

46.88 kN -

IM: (X,X08)=@B0X15~(5%X15  ~X,=
Summing forcgs in the y direction we obtain:
¥ ¥ =5-30=-25kN
Proceeding in a similar manner: -
EMy: 3% =19X 15 o X = =95kN
TX: -95+4688+X =0 o X, = —37.38 kN

(The zero on the right-hand side of this equation occurs because the original force
system has no x component.)

IM,: 08Z,=30X%3 nZ,= +1125kN

2| &5 =7 =1 N Z = —1245kN

A check may be obtained by taking moments about axes other than those used above.
" In each case it will be found that the moment of the new system is equal to that of the
original system. ‘

In the foregoing problems, moments have always been taken about axes parallel either
to Ox, Oy or Oz. In problems of this sort, even if the forces are oblique, it is appropriate
to resolve them into their x, y, z components before taking moments.

17.82 Moment of a force about any axis

Occasionally it is necessary to take moments about an oblique axis. To deal with this
problem a more general approach to moments is required. An expression for the moment
of a force about any axis can be obtained from the results of Section 17.7. In Figure 17.13,
the force Facts through the point A (x, ¥, 2,) and has direction cosines /, m, and 7,
while the axis S passes through B (xo, Yo Zo) and has direction cosines [0’ ", and n_. The

0
force and the axis do not intersect and are not parallel, so that Fhas a moment about S.

Figure 17.13
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We first replace F by a parallel force through B together with three component
couples. The new force has no moment about S, and the moment of the couples is
readily obtained. From Equations 17.4, the couple about the x axis is:

(7,0 = 30) — m (2, — 2)]
The component of this couple along axis S (i.e. the moment of this couple about §) is:
M =ML = Fln(y, - m(z, — 2)] [

The components of the other couples 1\/[y and M are obtained in a similar way, and upon
summation we have:

M, = Fln(y, = 5) — ml( SN
+ Flm(x, — /(}'1 FALIEA
This expression is conveniently given in the form of a determinant:

(x, = x;) / [

Flh(z, — z) = n(x — x)I m

0 1 )
M =F (yl - }'0) m
(z, — zo) n, n, (17.5)

_ Examme17.5

In Figure 17.14, the 10 kN force acts along the edge CG of the hexagonal pyramid
ABCDEFG. Find the moment of this force abour the axis FB.

@ G —_ (b) E
D
y X
2a a
10 kN e
i S .
AF B.E CD «x
Figure 17.14
SOLUTION
Consider C as the point on the line of action of the force F (10 kN). The co-ordinates
of C are: ;
X, = N3 =0 R
The direction cosines of CG are:
on e R ek
11 = L ey L S L

where L is the length of CG and is given by:
45 \/(xc; i xc)2 ke }'c)2 e Zc:)2
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V3
2

Now: i
Hence: L= aV5
V3 2

=l
and: L= _?\/—5 L = 75 = W;
For the axis FB, we take F as the point on the axis, since it has co-ordinates (0, 0, 0).
The direction cosines of FB are: '

! V3
2

2 Yo " Vo= 12a &

lo=5 = e

Then from Equation 17.5:

AN B

\/5—
AV S

2
M=10 0 7; 0
™
IV ]

assuming that # is measured in metres.

= 44\/5 kNm

Sometimes reference is made to thé moment of a force Fabout a point O in space
distant 4 from F. The moment M really means the moment of F about an axis
through O normal to the plane containing Fand the point O. This situation is the one
considered in Chapter 4 and again in Figure 17.1a.

The moment of F about any oblique axis through O is necessarily less than A as
shown in Figure 17.1b.

_ Exammie 17.6

Figure 17.15 shows an axis OA through the origin O with direction cosines /, = m, =
n, = 1V3. A force of 10 kN acts along a line BC through B (5, 0, 6) with direction
cosines /[ = 0.488, m = 0.781 and », = —0.390. ¢
() Find the moment of the force about point
O (i.e. the moment about axis OD which is
perpendicular to the plane containing the by my my
force and the point O).
(i1) Use this moment to find the moment of A
the force about axis OA. 1Y
(iii) Find the moment of the force abour axis b 7o 7o
OA by direct calculation. ' '

i

Figure 17.15
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Sovution ;
{i) Replace the 10kN force along BC by a parallel force through O and a couple. The
x, y and z components of the couple are given by Equation 17.3 in which the
coordinates (x,, y,, 2,) are those of point B, namely (5, 0, 6). Then:

M, = 10 [(~0.390 X 0) — (0.781 X 6)] = —46.86 kNm

M

o’

10 [(0.488 X 6) — (—0.390 X 5)] = +48.78 kNm

M

z

I

10 [(0.781 X 5) — (0.488 X 0)] = +39.05 kNm
The resultant of these components is:

Moy = V/(—46.86)2 + (48.78)% + (39.05)? = 78.10 kNm

This is often referred to as M, the moment of Fabout O.
(ii) The direction of cosines of M, (and hence of axis OD) are:
—46.86 48.78 39.05
h="7810 -0.60 m,= 7810 = 0.625 n, = 7810 0.50

If a is the angle between OD and OA, then:

cosae = (LE) + (mym) + (n,n,)
= (—0.60/'V3) + (0.625/\V/3) + (0.5/V3)

= 0.303

The moment of Fabour axis OA is:

M, = M cos @ = 78.10 X 0.303 = 23.67 kNm
(iii) M, may be calculated direcdy from Equation 17.5:
s 0488 1/V3
M, = 100 0781 1/V3 |=23.67 kNm
6 -03% 1/V3
Problems
17.1 The two couples M_and M shown in Figure y
P17.1 act on the perpendicular faces of a body J‘*
as shown. What is the magnitude (moment) :

Z

and direction of the resultant couple?
D M, = 30 kNm
[ B ——
M, = 40 kNm
Figure P17.1 '
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17.2 What are the components of the couple shown in Figure P17.2 about the x, y and z axes?
What is the moment of the couple about the axis AB? '

_______________

T —
-
(3]
I
Z,
=]
"

Figure P17.2

17.3 The forces AB and CD shown in Figure P17.3 form a couple. Resolve each force into
three components in the directions of the co-ordinate axes, and by taking moments
about these axes, determine the three components of the couple. What is the moment of
the couple? Use this result to find the distance between AB and CD.

~

: m
D ) 10N
T C =«
A %
10 N / m
1m
z I 2m 1l/
Figure P17.3

17.4 Couples are applied about the axes OA and OB as shown in Figure P17.4. Determine
the resultant couple. What is the moment of this couple about the axis OC?

Y C 3,2 —6)

150 Nm O
B (0, 2, 4)

i 100 Nm
A (3,0, 4)

Figure P17.4
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17.5 The solid shown in Figure P17.5 is a 1 m cube. Find the resultant of the three couples
shown. What is the moment of these couples about the axis AB? What is the moment

about the axis through O parallel to AB?

10 N} 1m
Ot A
L
10 N
z
Figure P17.5
17.6 Replace the forces shown in Figure P17.6 by: B
(i) aforce passing through the centre of the cube plus 2m B
a couple . r T
(ii) two forces, one passing through the centre of the A (— 3N 5
cube, and one lying in the face BCDE. _ ! "
In each case state the forces and couple in terms of L C
their x, y and z components. . NI y
K —_
2N D

Figure P17.6  x

17.7 A1 m cube is acted upon by the five forces shown in Figure P17.7. Replace the forces:
(i} by a force through A, and a couple
(ii) by a force through F, and a couple.

C . G
2N :
| 5N
Ab o) V4
E
D 2N
8N
Figure P17.7

17.8 (i) Replace the forces shown in Figure P17.8 by a force through the origin O together
with a couple. :

(i) Replace the forces by a single force and a couple acting abour an axis parallel to the

direction of the force. Define the line of action of the force and the value of the couple.
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M
6N
10 N /

; sNAK |
' ' 2m

O

. ) X
5N
3m
15 N /
z ‘l 6m I
Figure P17.8
17.9 In general it is not possible to replace a given system of forces by the system of forces
shown as dashed arrows in Figure P17.9. Why is this?
E
l23
»"
z

.4

X v, N
2o

s Y
\{ C
Figure P17.9
17.10

An equilateral tetrahedron ABCD with edges 3 m in length is oriented so that ABC is in

the xz plane with A at the origin. Figure P17.10 shows a system of forces expressed in
terms of forces along, and couples around, the x, y and z axes. Replace this system by a
statically equivalent system comprising forces along each of the sides of the tetrahedron.

Figure P17.10
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17.11  What is the moment of the 150 N force shown in Figure P17.11:
(i) about the axis AB?
(ii) about the axis CD? ’
D
i
2m
T C1soN
3m OB X
. C
Figure P17.11 2 { Sm %
17.12

An equilateral tetrahedron ABCD with 100 mm edges is acted upon by a force of 20 N
from C to D. What is the moment of this force about AB?

17.13

In the cranked member ABCDE shown in Figure P17.13, AB is parallel to the x axis,
BC is parallel to the z axis, CD is parallel to the y axis, and DE is parallel to the x axis.
Replace the forces shown by a force and a couple acting on the support at A.

yme_i 50 N
[

Figure P17.13

17.14  The cube shown in Figure P17.14 has 2 m edges. It is acted upon by the forces and

couples shown. Replace the system by a statically equivalent system comprising forces
along the x, y and z axes, and couples around these axes.

y
2m
] X
L 90 N 12N
, : 20 Nm
: 16N£
- | S
36N
3011111:/ o
10 Nm

Figure P17.14
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17.15

17.16

17.17

The cantilever ABC (Figure P17.15) lies in the horizontal plane, and the angle ABC is
140°. The load system at C consists of a vertical force of 2 kN, a force of 4 kN in the
horizontal plane and normal to BC, and a couple of 22 kNm whose axis coincides with
the 4 kN force. Find the moment of the force system at C about axes normal to the bar
at D and E respectively. These axes also lie in the horizontal plane and D and E are the

mid-points of BC and AB respectively.

C
6m 22 kNm

I 10 m / ~a
D 4 kN
A4 7 2 kN
E B
Figure P17.15

Figure P17.16 shows a bar ACC B bent into the quadrant of a circle centre O and radius
6 m, and lying in the horizontal plane. It is cantilevered from A and is free at B. Ac B it
is subjected to a vertical 10 N force and a couple of 40 Nm whose axis is tangential to
the circle at B. At C (the angle BOC is 60°) the axis CD is radial, CE is tangential and
CF is vertical.

(i) Find the moments of the force system at B, about the axes CD, CE and CF.

(i) Find the moments of the system about the corresponding three axes at C, where the
angle BOC, is 6.

10N
Figure P17.16

A force Fof 50 N acts through the point (2, 8, 4) in a direction for which /= 0.4 and
m = 0.5, the z component of F being positive. An axis S passes through the point (1, 5,
0) and its direction cosines are / = —0.2 and n = 0.6, and m is positive. If the co-
ordinates are given in metres, find:

(1) the moment of Fabout S;

(ii) the component of Fin the direction of S.



17.18  Find the forces in the struts.
OA, OB and OC when a force
F=15kN acts at O. (The co-
ordinates of the points A, B
and C are as shown in Figure
P17.18, lengths are in metres.)
What is the moment of the
force Fabout a line through A
and C? Compare this moment
with the moment of the force
acting from O to B about the
same line AC.

NON-CONCURRENT FORCES 247
y
F=15kN
(direction cosines
0.5, 0.5, 0.707)

X

A8 -8,2) C 6, ~8, ~10)

B (0, —8, 15)

Figure P17.18

17.19% A force of 30 kN acts through a point whose co-ordinates are x = 2,y = 3,2 = 4
(lengths are in metres) and in a direction given by the direction cosines /= 0.4, m = 0.4
and 7 = 0.825. Find the moment of the force about the origin of co-ordinates (i.e. about
the axis through O normal to the plane containing the force and the origin).

* Difficult problem, suitable for later study.
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Equilibrium of

Non-concurrent Forces

18.1 Conditions of equilibrium

Any system of forces may be replaced by a single force through a given point, together
with a couple. The single force has components in three mutually perpendicular
directions which are equal to the sums of the components of the separate forces in these
directions. The couple has components about the three given axes which are equal to the
sums of the moments of all the forces in the system about these axes.

A body is in equilibrium only if the forces acting upon it have no resultant force and
no resultant couple. For the resultant force to be zero, the sum of the components in each
of three mutually perpendicular directions must be zero.

XX=0 (18.1)
2Y=0 {18.2)
YZ=0 : (18.3)

In order that the resultant couple should be zero, the sum of the moments of all of the
forces about each of three mutually perpendicular axes must also be zero.

XM =0 (18.4)
):My =0 (18.5)
XM =0 (18.6)

These six equations are the general conditions of equilibrium of forces in space. In
particular problems a judicious choice of axes about which to take moments will often
shorten the solution. For instance any particular force is eliminated from the moment
calculation if moments are taken about an axis intersecting this force or an axis parallel
to it. This is because a force has no moment about an axis if it either intersects the axis
or is paralle] to it.

In the solution of problems, it is often convenient to consider what motion will be
permitted if a certain reaction is removed. This reveals what equilibrium equation can be
used to evaluate this reaction. For instance, if removal of a given reaction would leave the
body free to rotate about the y axis, then an equation of moments about the y axis will
enable that reaction to be calculated.
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The reactions to the structure of Example 18.1 were all parallel to axes Ox, Oy and Oz.
Many engineering problems are of this nature, but others involve oblique reactions. In such

cases it is often convenient to resolve such reactions into their orthogonal components.
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Figure 18.3 shows a frecbody diagram of the pole with all forces expressed in terms of
their orthogonal components.

0.848 Fypy R,

0'424FED0.318FED SQQN i S

F

0.287 Face 600 N

A 866Nl Sm
0.958 Fipc
2m

2m” I m

Figure 18.3

Taking moments about axis By we have:

~(0.424F,, X 8) + (500 X 7) =0 . F, = 1032 N

Taking moments about axis Bx we have:
—(0.287F, . X 10) — (0.318 X 1032 X 8) + (866 X 7) + (600 X 5) = 0
‘ o F . =2243N

(If required the reactions at B could now be obtained from the equations 3.X = 0,
2Y=0and X Z=10)

It will be noted that there are only five reactions to this pole, namely three
components at B and the tensions in the two ties. These happen to be sufficient to
equilibrare the particular forces given in this problem. Evidently, since there are less than
six reaction components, they will not equilibrate all applied forces even if the ties AC
and ED were capable of resisting compression. It is left to the teader to note what type
of force could not be reacted by the system of support shown.

— Exammre18.3

The shaft AB (Figure 18.4a) transmits power from a belt-driven pulley C of 500 mm
diameter, to a gear-of 160 mm pitch circle diametet at D. The belt forces are 3000 N
and 1800 N. The force at the gear wheel acts tangentially to the pitch circle in a
direction at 30° to the horizontal. An end view of the assembly is shown in Figure
18.4b, If friction in the bearings at A and B is neglected, find the reactions at A and B
in the x and y directions. : ,
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b

C 3000 N

D B
K8
900 \\ zsox\ 1800 N

Figure 18.4

SOLUTION

Tk o BT Sl e Al T idie shaft:
(80 X F) — (3000 — 1800) X 250 =0 s F=3750 N

This force may be resolved into x and y components of 3248 N and -1875 N
respectively. Taking moments about the y axis at A gives:

(B, X 1450) + (3248 X 1200) + (4800 X 300) = 0 . B = 3681 N
2.X = 0 then gives:

3681 ~ 3248 — 4800 + 4 =0 " A =4867N
By taking moments about the x axis at A, we have: :

(By X 1450) — (1875 X 1200) = 0 % By = 1552 N
2. Y= 0 then gives: ’

TZe= 18735 =0 Ay=323N

Prabhlems

18.1

The bar ABC in Figure P18.1 lies in the horizontal plane and the angle ABC is 120°.
The support at A can supply reaction components A, vertically, 4, in the direction AB
and A, normal to A, and A, The support at B can supply a reaction component B,
vertically. The support at
C can supply a reaction
component C, vertically
and C, in the direction of
BC. Find the reactions
due to the force system
shown, where the forces
of 5kN and 16 kN are
vertical, and the 12 kN
force is horizontal and
normal to AB. Figure P18.1
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18.2

18.3

18.4

18.5

A horizontal rectangular platform weighing 400 N is supported on hinges at A and B and
by a chain CD. What are the reactions at the hinges and the tension in the chain when

a load of 200 N is located as shown? Assume that the hinges cannot exert reactions in the
x direction.

Figure P18.2

A heavy uniform circular plate of weight W is supported in a horizontal position on three
steel spheres A, B and C placed under the circumference of the plate. If the arc AB

subtends an angle of 60° at the centre of the plate, and AC subtends an angle of 150°,
find the load on each sphere.

The tripod ABCD in Figure P18.4 rests on horizontal ground. Reaction components can
be exerted at A in the x and y directions, at B in the y and z directions, and at C in the
x and y directions. ABC is an equilateral triangle of sides 6 m. Bars AD, BD and CD are
equal in length and D is 10 m above the ground. Find the reactions due to a 60 N force
ar D, acting in a horizontal plane and in a direction making 30° with the x direction.

(a) {b)

Figure P18.4

The bent bar ABCDE in Figure P18.5 lies in a vertical plane. The support at A can exert
a reaction in any direction; the support at E cannot exert a reaction in the direction of
DE, and the support ar C can exert a reaction only normal to the plane of the bar. The
uniformly distributed load acts vertically, as does the load at B. The 30 kN force at D



18.6

18.7
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and the reactions R, R,, and R, all act normal to the plane of the bar. Find the reaction

components.

Figure P18.5

Figure P18.6 shows a triangular table. Determine the forces in the three legs A, B and C
of the table if a weight of 9 kN is placed on it as shown in Figure P18.6.

Figure P18.6

The beam ABC shown in Figure P18.7 has a right-angled bend at B and lies in the
horizontal plane. AB = BC = 4 m. The support at C can exert a reaction in any
direction. The support at B cannot exert a reaction in the direction BC, and the support
at A can exert a reaction in the vertical direction only. Loads are applied as shown at the
mid-points of AB and BC. The 6 kN and 9 kN loads and the reactions &; and R, are all

horizontal and normal to the beam. Find the six reaction components.

Ry
s f

s
cf

4 kN

) =R

Figure P18.7

}

Ry
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18.8

18.9

18.10

The beam ABCDEF shown in Figure P18.8 lies in a horizontal plane. All joints are 90°.
The length of each portion is 3 m. There is a ball joint at F, providing reactions R, R,
and R,. Vertical reactions are also provided at A and C, and a horizontal reaction at A.
A vertical load of 16 kN and a horizontal load of 12 kN are applied at D. Determine the

sIx reactions.

Ry

Figure P18.8

The body ABCDEFGH in Figure P18.9 is supported by cables or struts which provide
reactions R, to R, acting along lines AE, DC, CG, BC, DH and EF respectively. The

body is acted upon by a force of 490 N acting along the line DF and one of 200 N acting
along FB. Find the six reactions.

Figure P18.9

Figure P18.10 shows a forked cantilever lying in the horizontal plane. Calculate the
reactions at A due to the applied forces at C and D.

y

Figure P18.10
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18.11  Figure P18.11 shows a bent cantilever lying in the horizontal plane. Find the six
reactions at A due to the applied forces at C and D.
y 10 N

Figure P18.11

18.12 Figure P18.12 shows a vertical cantilever DB to the top of which are attached horizontal
arms AB and BC. Forces of 5 kN (in the direction C to B) and 20 kN (vertical) and also
a couple of 30 kNm (about a horizontal axis normal to CB) are applied at C. The arm
AB carries a distributed loading of 5 kIN/m which acts vertically downward. Calculate the
six reacrions at D due to these loads. The arm AB is parallel to the x axis and the arm BC
is parallel to the z axis.

\ 20 kN
A / 5 kN

6m

\/4 " X
5 kN/m
B J/

Figure P18.12

18.13  Figure P18.13 shows the freebody of that part of a bent beam which lies to the right of
a section A. Find the stress resultants (or internal forces) at the cross-section A. The
positive directions of these forces are as indicated in the figure.

18.14 -

L I
Figure P18.13 C
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The freebody BCDE shown in Figure P18.14 is isolated from a bent beam by a cut at
section B. DE is horizontal, CD is vertical, BC is horizontal and at right angles to the
plane CDE. Find the three force components V, S and S, at B and the three component
couples 7, My and M, if the freebody is in equilibrium. (Vis in the direction CB, Sy is
parallel to CD and S is parallel to ED.)

6 m

?
L

\ 100 N

Figure P18.14 Figure P18.15

18.15 A bent cantilever ABC is located in space as shown in Figure P18.15. An axial force of
+26 kN is applied at C in the direction of BC. A couple of +39 kNm is also applied at
C about the longitudinal axis of BC. Find the equilibrating reactions at A.

18.16 Figure P18.16 shows a cantilever ABCD, of which ABC lies in the horizontal plane and
CD is vertical. The part AB lies along the x axis and BC is a quadrant of a circle of radius
r. A horizontal force Pis applied at D in the x direction, together with a vertical force Q,
as shown. Find the six reactions at A due to the two loads applied at D.

y

L

4 1

/ B
90°
LT .
: radius, »
Figure P18.16

18.17  The cranked beam ABCDEF in Figure P18.17 lies in the xz plane. The supports are such
that support A can only resist X, Yand M components, while support F can only resist
Y, Zand IWY components. What are the values of the six reactions due to the three Joads
shown.
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6 kN

y C 4 m Dl Rs

4 KN — ; ‘
2 2
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Figure P18.17

A door of uniform thickness and of weight 300 N measures 2.5 m X 1 m. The door is
supported on hinges A and B, A being 0.25 m from the bottom of the door and capable
of supplying horizontal and vertical reactions. The hinge B is 0.25 m from the top of the
door and cannot supply any vertical support. When the door is erected, the hinge B is
not placed vertically above A, so that when the door is closed the top corner C is 20 mm
out of the vertical through corner D. What force, acting perpendicular to the door at the
mid-height E of the front edge, is required to hold the door open after it has turned
through 45° from the closed position?

20 mm

—

ch

i— vertical

25m|E © through D

Figure P18.18

A steel plate ABCD is 1.5 m square and weighs 2 kN. It is suspended by three chains
from hooks A, B'and M'in the walls of a room which is 4 m square. Hooks A'and B'are
in adjacent corners of the room and are nearest to corners A and B respectively of the
plate. Hook M'is in the middle of the wall opposite A'B ', and is opposite the point M
in the plate which is the mid-point of CD. The hooks are all at the same height above
the floor. Chains connect A, B and M with A’, B'and M’ respectively. Chains AA’ and
BB’ are each 2 m long, while MM'is 2.5 m long. Find the tension in each chain.
(Students who are interested in computational methods may like to solve the problem
when chain AA’ is increased in length t0 2.5 m.)
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Geometrical Properties
of Plane Figures

Many problems in engineering and physics require a knowledge of certain geometrical
properties of plane figures. In this book, it is appropriate to consider the problem of
finding the resultant of a distributed load acting on a plane surface. The results will then
be applicable to problems involving fluid pressure on submerged surfaces. They will also
be applicable to problems involving stresses, and to more abstract problems.

A.1  Area — First Moment of Area — Centroid

We consider first the case of a load of uniform intensity w (N/mm?) acting on a plane
figure (Figure A.1).

Figure A. 1

The load acting on an elemental area dA is:

AW = wdA (A1)
and the total load is:
W=fwdA=wfdA=wA (A.2)

where A is the area of the figure. For figures of simple shape, such as those occurring in
engineering, the value of A is known from earlier studies. Only for unusual shapes is
integration required. W is the resultant of the parallel forces acting on the elemental

areas. It may be thought of as the volume of the pressure block (Figure A.1) of area A and
thickness w.
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The position at which the resultant acts is called the centroid and is denoted by C in
Figure A.2 with co-ordinates x_, y.’ with respect to arbitrary axes Ox’and Oy’. To
evaluate .. | the sum of the moments of the elemental forces about Ox " is equated to the
moment of the resultant W. In the same way, x.."is found by taking moments about Oy’

element dx'dy’

Figure A.2

Consider first the evaluation of y..". The force on the element of area dx'dy'at (x} y")
is wdx'dy’ and its moment about Ox 'is (wa{x dy")y’. The total moment of the elemental
forces is:

M= wf f 'y'dx'a'y' (A.3)

The term f f ydxdy' is a geometrical property of the figure. It is called the frrst

moment ofzzrezz about Ox "and is denoted by Q... The total moment may then be written
as wQ .. The moment of the resultant is wAy .. Equating these, we have:

wAy . = wQ,.

hence:  y. = % (A.4)

The evaluation of Q . involves the double integration of y'with respect to x"and y"
In practice, one integration is avoided by considering elemental strips rather than
elements of area dx'dy’.

We may take a strip parallel to the axis Ox ' of length /and width &y’ (Figure A.2).
Since the force on the element is uniform the resultant is clearly w{/dy") and acts at the
centre of the strip. The moment of this force about Ox'is:

dM = w(ldy)y
and the total moment is:
M= wf hdy'=wQ,

y
In effect, the adoption of the strip instead of the element dx@y'is equivalent to having

integrated with respect to x. When / has been expressed in terms of y, the value of
Q.. is found from:

Q. = by (A.5)
y .
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Alternatively, we may take the elemental strips parallel to Oy’ (Figure A.2). If the
length of the strip is / and its centre is y,'from Ox’, then the moment about Ox'of the
force on the strip is:

dM = w (b dx')y,’
and the total moment is:

M= hyde'= wQ,
When Aand y,’ hav)é been expressed in terms of x'then:

Q= f/f)'dx (A.6)
Similarly, by taking moments about Oy 'we find that:

Xe="4 ' {A.7)




264 APPENDIX

It is usual to use the symbols Cx, Cy for axes with origin at the centroid. The initial
convenient axes are therefore called Ox'and Oy .

If a plane figure has an axis of symmetry, the centroid must be on that axis. In the
plane figure shown in Figure A.4, if the area is divided into elements at right angles to
the axis of symmetry, every element is centred on that axis, and the first moment about
the axis is zero. Hence the first moment of the total area is zero about the axis of
symmetry and the centroid must lie thereon.

!

1f the figure has two axes of symmetry, the centroid must be the point of intersection
of these two axes.

Since the resulrant force W acts at the centroid, the first moment Q about any axis

passing through the centroid must be zero. Also the first moment about any axis AA is
(see Figure A.5):

Q,, = Ae (A.8)
where e is the perpendicular distance of axis AA from the centroid.
A -‘\

/

Figure A.5

Most figures which occur in engineering are very simple, or can be sub-divided into
simple elements whose centroids are known. Integration may then be replaced by
summation, using Equation A.8 for each element. The centroid and properties of some
simple shapes are given in Table A.1.
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Find the centroid of th S8
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SOLUTION

Arbitrary axes Ox 'and Oy 'are chosen (note that the figure is symmetrical about 0,).
The figure is sub-divided into the rectangular elements 1, 2 and 3. The area of each
element and the distance of its centroid from Ox 'are tabulated:

Element A y Ay'
1 6 250 552.5 3 453 125
? 5 000 290 1 450 000
3 4 800 20 96 000
Sum 16 050 4999 125

XAy
Then: y.. = B 311.5 mm

The centroid is located on the axis of symmetry at the point 311.5 mm above Ox !

A.2 _Second Moment of Area — Product Moment of Area

We consider now the case of a plane surface acted upon by a linearly varying distributed
load. Figure A.7 shows a figure ABCD subjected to a load which varies linearly in the y
direction and is uniform in the x direction. The axis Ox'is the line of zero load. If the
load intensity at unit distance from Ox "is denoted by w,, then the intensity at any point
is w y. The axis Oy 'is normal to Ox 'but is otherwise arbitrary. The load intensity is
represented by the block ABCDAB'C'D'.

Figure A.7

The problem is to determine the resultant force W, and the co-ordinates of R, its point
of application, i.e. (x5, %)
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A.2.1  Resultant force

Consider an elemental area distant y'from Ox ' The load intensity here is w,y" The force
on the element is:

AW = (w,y")dx'dy'
and the rotal load is: .

W= jjwly'dx'dy'= wljjy'dx'dy' (A.9)
The integral | | ydx'dy'is the first moment of area about Ox ' Hence:

W=wQ, (A.10)
If the distance from the centroid to axis Ox’ is y'., then:
Q.=y.A and W= wy A (A.11)

But w,y'is the intensity of loading at the centroid, which may be denoted by w;.. So
the total load is the intensity of load at the centroid times the area of the figure:

W= w.A (A.12)

A22  Determination of y',

Since the load intensity varies in one direction and not in the other, the determination
of x7 and y7 will be different. To find the distance of R from Ox, we take moments
about Ox . The moment of the element force (w,y") dx'dy’about Oxis:

dM .= (wyds'dy')y' = w y dxdy’ (A.13)

Hence the sum of the moments of all the element forces about Ox 'is:
M= [ [ wydcty=w[ [ yaxay
y© x y” x

The term J.J. y"%dx'dy’ is a geometrical property of the figure. It is called the second

moment of area about Ox'and is denoted by 7 . That is:
I, = ”y'zdx'dy' (A.13)

and: M. =wl,. (A.15)

The moment of the resultant about Ox'is Wy and from Equation A.11:
Wy = (wy Ay
Hence: (wy Ay, = wl .
1

x%'

IR= A (A.16)
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A23  Determination of /..

The evaluation of 7 , .involves the double integration of (y') with respect to xand y .
As in the case of the calculation of the first moment of area, one integration may be
avoided by considering a strip parallel to the axis Ox " of length /and width 4y’ (Figure
A.8). The force on the strip is uniform and equal to w,y'(dy"). The moment of this force
about Ox'is:

dM .= wy'(ldy")y' = wly*dy'

The total moment is:

M. = wljb"zdy' (A.17)
When / has been expressed in terms of y; then:
I, .= j{y'zdy' (A.18)

The use of an elemental strip parallel to Oy 'will rarely be beneficial in this case because
the load on such a strip would not be uniform. The position of the resultant force on the
element would therefore not be obvious.
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A24  Determination of x',

To find the distance of the resultant W from Oy’ in Figure A.7 (page 266), we take
moments about Oy The force on an element (dxdy’) is w, y'(dx'dy’) and the moment
of this force about Oy 'is:

a’My, = wy'(ds'dy)x’' (R.19)
The total moment is:
M, = wJJy'x'afx'a’y' (A.20)

The term ffy'x'dx'a’y'is a geometrical property called the product moment of area and
is denoted by 1 .y

L= fijvy'x'aix'dy' (a.21)
and: M.=wl.. (A.22)
y X'y

The moment of the resultant about Oy 'is:
Wxp = (wyAxy
Hence: (wly'CA)x'R = wllx,y.

! x y

Ry A (a.23)

X

A2s5  Determination of /..

Considering the strip element as before (Figure A.7, page 266), the moment of the force
on this area about Oy "is:

dM,. = w,y'(ldy')x,

where x’ is the distance of the mid-point of the element from Oy’ Thus:
M, = wlfy'[x;a'y'= wl..
Ix,y, = fy'lx; dy’ (A.24)

The dimensions /and x| must be expressed in terms of y' before integration.

Y’
Exameie A.4 _'
For the right-angled triangle of Figure A.9, find the W

value of [, with respect to the axes shown.

Figure A.9 %
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SOLUTION

For the typical element:

i gt S LR BT
M e
and hence from Equation A.24:
2 b }’, 2
IX’y’=?0(l _;>}1H}l,

7

24

Summary_
~ For the case of a load varying linearly in the y direction, the resultant force on the area

is the load intensity at the centroid times the area,

W= wly'CA

This acts at the point (x, y%) where:

'

R_}I'CA and }’Rz}l'CA

. Xy x'x

X

In these expressions the axis Ox 'must be the line of zero load and the axis Oy 'is any
axis normal to Ox

A2.6  lLoad varying in the x direction

A similar analysis may be made for a load which varies linearly in the x direction and is
constant in the y direction, Oy 'being the axis of zero load. Such a load would have a

resultant:
W= wx.A
- acting at (x, y,) where:
1., I..
P Yy d b XY
*r x.A an Ir x4
The second moment / (.is given by:
I,.= fx'zdxﬂy' (A.25)

The second moments of area and product moment of area of some simple shapes are
given in Table A.2.
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Table A.2: Second moments of area and product moments of area of figures (courtesy of Jacaranda Wiley Ltd)

YA 3
_ b
.L—e—-ID jyy 36

—’7 |

Wl
~
I
I
O
i

(The sign of /, is the same
as that of the abscissa of D.)

jyy:[;_hg
Iyz:—%z
jyy:%%}'
=%
I, =+

A.3 _ Shift of axes — Parallel axis theorems

Fairly simple relationships exist berween the quantities / . ,and [ , .expressed in one set
of axes and the same quantities expressed in a parallel set of axes with origin at the
centroid. It is often convenient to compute the values in one set of axes and then to
derive the values in other axes where direct computation may be more complex.

A3.1 Effect of axis change on /...

Since I, .= Jy'sz, it is independent of x'and hence a shift of the axis Oy 'has no effect
on this quantity. Moreover (y)?4A is a positive quantity whether y'is positive or
negative. Therefore I . .will be positive with respect to any position of Ox . We note also
that a shift of axis Ox'implies a shift of the line of zero pressure.



272 APPENDIX

Figure A.10

Figure A.10 shows a typical element of area 4A4 at distance y'from axis x . Its distance
from the parallel axis Cx through the centroid is 3, hence:

Y=yt
The second moment of area about Cx is:
I = fysz
The second moment of area about Ox"is:
I..= jy'sz
= [+ yyaa
= jysz + 2y, jydA + y'czfdA

Now: [ = jyza’A; jya’A is the first moment of 4 about the axis Cx through the

centroid and is therefore zero; and | 4A is the area A. Hence:

L.=1 +(y.)A (A.26)

The term ( y,.)*Ais positive whether y_. is positive or negative. Therefore the second
moment of area about an axis through the centroid is less than that about any other
parallel axis.

Equation A.26 is often called the Theorem of Parallel Axes. It enables us to re-state
Equation A.16 in a more convenient form. From Equation A.16, we have:

x'x"
'

IRy A
and using Equation A.26:
L ()4
Y™ y A
L
}l'R=y,C—A+}l'C (A.27)
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It is of interest to interpret the parallel axis theorem in terms of force systems. Figure
A.11a shows (in side elevation) a plane figure of area A (represented in side elevation by
the line segment EF), with centroid C, acted upon by a linearly varying pressure. The
total pressure block EFGH may be regarded as a block of uniform pressure (EFKL) plus
a couple represented by HLKG. The uniform pressure block has a resultant W= w, y..A4
(Equation A.11) acting at the centroid. The figure HLKG is a couple of moment
M = w I_ (Equation A.15).

(@ M G b {e)

M

A e Yy

X
E C ;F ¢ F

ye

, D

Figure A.11

The force Wand the couple M may be replaced by a single resultant force R at a
distance M/ W from C (see Chapter 4, Section 4.5). In this case:

Mo
W = Ay (A.28)

The total moment of the pressure system about axis x is:
M+ Wy =wl +wdy’
Hence: [..=1 + Ay'c2 : (A.29)

which is the same as Equation A.26. The significance of the two terms on the right-hand
side of this equation may be seen from Figure A.11b in which the axis of zero load moves
nearer to the centroid C, and Figure A.11c in which this axis coincides with C. Clearly
the moment of the uniform pressure block, w, (Ay'cz) diminishes as y. decreases, while
the moment of the couple w, [ remains constant. The distance from the centroid to the
position of the resultant force increases as W becomes smaller. In the limit, as y. tends
to zero, this distance tends to infinity, since the resultant force is now zero.

The Parallel Axis Theorem could be used to find the second moment of area of the
rectangle of Figure A.8 about an axis xx through the centroid and parallel to AA. The
axis xx is D/2 from AA. From Equation A.26:

D2
1“=1M—A(“2‘)

b0 (bD)D
T
o

T 12

The theorem is particularly useful for finding the second moment of composite
figures, a very common problem in engineering.
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A3.2 Effect of axis change on /..

The value of the product moment is affected by changes both of Ox "and of Oy’ Note
that for a given element of area dA the product xy' will be positive if x"and y'have the

same sign (i.e. dA lies in the first or third quadrants) and negative if they have opposite
signs (i.e. dA lies in the second or fourth quadrants).

’

y y
element
e ]
Y
cl X
xc { x ! x
' Yc
* | |
0 N
Figure A.12

Figure A.12 shows a typical element with co-ordinates x} y' with respect to the origin
O and x, y with respect to the origin at the centroid.

x'=xtxg
y=y+tye

The product moment about C is:
1= Joda

The product moment about O is:
L= [xyaa

= [+ 200+ y) dd
=ijydA+x'c fydAer'C jdi+xlc}"c fdA

=[xy+x'CQx+y'CQy+Ax'Cy'c
Since axes x and y pass through the centroid, Q = Q, = 0 and therefore:
L,=1,+Ax

oy cYc ' (A.30)

The term /_ may be regarded as the product moment of the figure about its ‘own’ axes

and the second term Ax[. y. as the product moment about axes x%’ with the area 4

concentrated at the centroid.
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Figure A.13 shows a figure which, with respect to its ‘own’ axes at C, lies
predominantly in the first and third quandrants and thus has a positive value of 7 . With
respect to axes Ox'and Oy the figure lies entirely in the second quadrant and 7 . . is
negative. Similarly a shift of origin to O, would give a positive value of the proc[vuct
moment considerably greater than I,
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The co-ordinates of the centroid of the whole figure are:
164 X 10’ 304 % 10°
e 565X 10° 29mm and y.= m 54 mm
The co-ordinates of the element centroids with respect to C are:
Element 11 % = 12,5 = 29 = =165
=S = g =N

Element 2: %, =62.5:—20 =385
3, =125 — 54 = —415

2. Calculate Ix'i, Iy(;, Ify for each element for axes through its own centroid:

. bp? 5 bb*

Element b b 1e="1 Iyn=713
1 25 150 7031 X 10° 195 x 10°

2 75 Y Fi P 98 X 10° 879 X 10°

Because of symmetry, [x(; = 0 for both elements.

3. Calculate I, I and I for the composite figure: Using the parallel axes
theorems (Equatlons A.26 and A.30):

(a) I_: Element Y it Ix(; + Ay2

1 = (7031 + (3.750 X 21%) X 10* = 8685 X 10°
2 = (98 + (1.875 X —41.5%) X 10° = 3327 X 10’
Total: I = 12012 X 10’ mm*
(b) I : Element Lae Iy(; + A
1 = (195 + (3.750 X ~16.5%)) X 10> = 1216 X 10
2 = (879 + (1.875 X 33.5%) x 10° = 2983 X 107
Total: Iyy= 4199 X 10° mm*
(c) ]xy : Element Ixy = sz + Axy
1 = (0 + (3.750 X —16.5 X 21)) X 10> = -1299 X 10*
2 = (0 + (1.875 X 33.5 X —41.5)) X 10°> = -2607 X 10°
Tortal: Ixy = —3906 X 10®> mm*

A.4  Rotation of axes ~ Principal axes

Suppose that the figure shown in Figure A.14 (page 275) is subjected to a linearly varying
pressure with zero pressure along either Cx or Cy. There will be no resultant force but
there will be a moment about both Cx and Cy since /__ is not zero.
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Rotation of the axes relative to the figure will change the values of /_, I and I . In
particular [ will change sign if the axes are rotated through 90° since elements
previously in the first quadrant will now be in the second or fourth quadrant. Some axis
rotation less than 90° must therefore result in a zero value of I _. These axes are called
principal axes and are denoted by C1 and C2. The second moments about these axes are
denoted by 7, and 7,,. One of these is the maximum and one the minimum second
moment about any axis. A pressure system varying parallel to one of these axes will have
a moment only abour the axis of zero pressure.

Figure A .15

Suppose that for the figure shown in Figure A.15 the values of /_, [ _and /_have been
calculated. Consider axes Cx 'and Cyat an angle 8 to Cx and Cy respecuvely

x'=xcos 6+ ysin 0

y'= —xsin 6 + ycos 0

Then:
L, = f}"sz
= J- (—xsin® + ycos@)’dA
= sinZOJ. X dA + coszaj-ysz - 2sin0c050J-xydA
=1 sin®f + I cos’6 — I sin26
or: Lo=3U +1)+5U, ~1)cos20 = I_sin20 (A.31)
Similarly:
I, =3 +1 ) - - ) cos26 + I sin26 (.32)
and: [, .= 3(/, ~ 1) sin20 + I cos26 (A.33)
To locate the principal axes, we set I .-t zero in Equation A.33. This gives:
an2f = _—[xy (A.34)
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which results in two values of 26 which differ by 180°, or two values of 6 which differ
by 90°.

For the figure examined in Example A.5 (page 275), we have:

+3906 X 10°
0.5(12012 — 4199) X 10°

Hence 260 = 45° and 6 = 22.5° or 260 = 225°and 6 = 112.5°

tan26 = =+ 1.00

The values of /;; and 5, are obtained from Equations A.31 and A.32:
Iy = 0.5(12012 +4199) X 10° + 0.5(12012 — 4199) X 10> cos 45
+ 3906 X 10 sin 45

= 8105 X 10° + 2762 X 10®> + 2762 X 10°
13629 X 10° mm*

L, = 8105 X10*> — 2762 X 10° — 2762 X 10°

= 2581 X 10> mm*



ANSWERS TO PROBLEMS

CHAPTER 2

2.1

2.2

2.3
2.4
2.5
2.6
2.7

2.8
29

2.10
2n
2.13
2.14
215
216

(@ F =866kN; F =50KkN.

(b) F =—200kN; F = —34.64 kN.
(© F=-354kN; F = +3.54kN.
() F =109.8kN; F =77.65kN.
(b) F =269.0kN; F =219.6kN.
(O E =2000kN; £ = —103.5kN.

P=7321N and Q= 51.76N.
R=91.70 N at 6 = 23.67°.
R=0625N at 6= 39.84°.
R=8345N at 6= 7.32°
(a) R=638N at 6= —16.42°. (b) R=3.427 N at = —10.01°.
() R=9790N at 6= 102.4°
R =8.04 kN at 6 = 223.2°,
1 @ a=53.1°(r—53.1°) and A= 20 N (or —20 N).
(b) a = 25.84° (or —25.84°) and A = 19.11 (or 1.67 N).
(¢ a=100.3°and A= 11.1N or @ =199.7° and 4= —27.1 N.
(i) (@ a=126.9° (or —126.9°) and A = 20 N (or —20 N).
(b) a = 154.2° (or —154.2°) and A= —1.67 N (or —19.10 N).
() a=19.7° and A= +27.1N or a = —79.7° and A= —11.1 N,
0= 41.54° and P = 283.4 N,
F.c=1795N and Foe = 2199 N.
R=9539N ar 53.01°% F,,=98.62N and F, = 30.53 N.
6 = 146.0°,
a = 69.92° and 8 = 9.39°
R= 2690 kN and P = 27.90 kN.

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10
3.1

P=6.66kN and a=121.7°

Q= —15.63N and P= —24.92N.

F.=—1202N and F,_ =8333N.

169.4° and 253.1° respectively, or 219.8° and 136.1° respectively.
H=10.56 N

R, = 1029 kN at 48.33° to the horizontal and R. = 11.11 kN (upwards).
Force in connecting rod, F,. = 1.02 kN compression; Force on cylinder wall
= 0.20 kN.

() Ry =0.289W.

(i) R, = 0.764W at 10.9° to the vertical.

#=0577.

F=19.36 N.

F,, = 219.9 kN compression;  F,. = 72.3 kN tension; £, = 100 kN.
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312 0=39.66° and F_, = 433 N.

313 R, =267 kN and R, = 3.33 kN.

314 H =183kN; V,=817kN; 7, =259kN.

315 P=632N and Q= —20.74 N.

316 R, = 12.85 N at —10° to the horizontal and R. = 18.79 N
at 140° to the horizontal.

397 P=4048N; ¢ =7.53% 6=10.18"

3.18 4.3 m above the ground.

319 (1) 6 =45° (i) 0.667W

3.20  5.56 N perpendicular to the lever.

3.21 P=14.11 kN and R, = 14.97 kN -
(V,=972kN +1 andH, = 1138 kN +).

3.22 a=12.64° and F = 1108 N.

3.23 R. = 487.1 N at = 55.39° to horizontal and Q = 385.3 N.
(H.=2767N and V.= 400.9 N)

324 L, =259 m; L., =3405m; F,.=126.1N and F,. = 96.1 N.

3.25 6 = 18.43° to the vertical and 7= 10.54 N.

CHAPTER 4

4.1 (1) ZMB = 56.6 Nm clockwise.
(i) XM, = 56.6 Nm clockwise.
(it) Clockwise.

4.2 Resultant is a vertical force R = 58.56 N +] which cuts AC 4.732 m to
right of A.

4.3  ResultantatD: Ry = 2.196 kN( t ), R, = 4.732 KN(+{), M, = 17.32 kNm
anticlockwise.

4.4  Resultantis 70 N at 70° cutting AD 5.43m to right of A.

4.5  Resultant is 8 kN at —45° cutting BD at 3.01m from B.

4.6 (i) Resultantis a clockwise couple of 5953 Nmm.
(ii) Resultant is a 360 N horizontal force at 16.54 mm above AC.

4.7 (1) R = —5.196kN; Ry = —5.0 kN; MB = 9,59 kNm anticlockwise.
(i) x= 0.082 m.

4.8 (i) Resultant R = 10 kN acting in direction BD cutting BA 2\/£m from B.
(it) Same as (i).

4.9  Resultant is 11.08 kN at 33.6° to the horizontal and cutting ABC 9.31 m to
the left of B.

410 (i) Force = 17.32 kN at 210° to direction Ax and couple = 12.99 kNm

clockwise.

(i) Forceis 17.32 kN at 210° to direction Ax cutting Ax 1.5 m from A.

411 F =F =-2303kN; F,= —17.91 kN; F, = 491 kN.

812 F, =2248XN; F,= 1678 kN; F, =20.70 kN,

4.13  28.87 kN along each side.

4.14 (i) Single force is 6.403 N at 38.66° to the horizontal cutting the line through

AC 18m to the right of A.
(ii) Force is 6.403 N at 38.66° to the horizontal; couple is 80 kNm clockwise.



4.15

4.16

417
4.18

4.19
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(i) F,=32.39 kN at 64.11° below horizontal and couple is 10 kNm
anticlockwise.

(i) F =1.67kN +1 and F, = 33.90 kN acting 65.35° below horizontal.

(i) F. =12.73 kN +! and F, = 21.66 kN acting 49.25° below horizontal.

(i) Resultant is an anticlockwise couple of 99.44 Nm.

(i) F= 10N, a = 90° and x, = 9.944 m.

P=2142kN; 6= 13.50° and couple at C = 48.12 kNm.

(i) Force at C = 32.56N at 47.49° above horizontal and couple is 162.67 Nm
clockwise.

(i) F=30.57 N at § = 168.68° intersecting line through BC 41.75 m to
right of C.

() Force through O is 46.53 N at —7.24° (i.e. 7.24° below Ox) and
couple = 70.74 Nm clockwise.

(ii) Force is 46.53 N at § = —7.24°. Distance Ox = 23.91 m.

(iii) Two forces are 22.95 N through O and 23.58 N 3 m from O both at
6= —7.24°,

CHAPTER 5

5.1
5.2

5.3
5.4
5.5

5.6

5.7
5.8
5.9
5.10
5.1
5.12
5.13
5.14

5.15

F=84N and R. = 1421 N at §= 60.81°.
F, = —483kN, F,=9.05kN, 0= 147.8".

1

V. =895kN +}, H =10kN T and V,=11.64kN +}.
V,=1030N, V,=030N and H, = 10.61 N.

(i) P=0.4kN. (i) V,=052kN +} and H,=0.60kN * .
v, =50 kN(+t), H =520kN(F ) and M, = —041 kNm

(i.e. anticlockwise).

V,=490kN, H, =520kN and V_.=0.10kN.
() R, =9 kN and R, = 46 kN. (i) L=17.5LkN.
R, =50kN, R.=40.0kN and R, = 8.66kN.

V.= —025kN, V, = +425kN and H; = +3.0 kN.
V, = 13.08 kN, V, = 10.25 kN and H, = 6.25 kN.
F

=0, F2=+15kN and M = —80 kNm.

N=0, S=wxand M= —wx’/2

e = 104.3 mm.

@ H,=0, V,=6kN(+t), V,=2kN(+t)

b H, =0, V,=9kN(+1), v, =5kN(+1)

(© H,=10kN( + ), V,=10kN(+t), H =10kN( F ).
(d) H,=0, V,=45kN(+t) Vv, =45kN(+}).

@ V,=7kN(+t), H, =1007kN( %), V, = 1407 kN (+1 ).
(O H, =0 V,=90kN(+1), v, =20kN(+1).

@ V,=3kN(+t), H. =0, V.=15kN(+1)
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516 R = —7.97kN; R, = 3598 kN; R, = —19.04 kN .
5.17 (i R, = 1.78 kN and R, = 6.22 kN. (i) R. = —0.38 kN.
518 0= 57.45°
519 R, = 1.68 N ( +1), R, = —-7.19N at 6= 103.1°.
5.20 0 45.9°,
CHAPTER 6
6.1
7] N
/“ ° \ 6 r
H—PPl %—»H K M
} b
7 N
R2 —N} R4
RI

G .
C T
B N
Ry L
A U
) U
R, Ry




(c)

(d)

(e)

>
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a5
Ry B —-O-t— C

A

BN
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6.2
Ry
(a) Ry
P
Ry
Rl
b) »
P
Ry
R R
6.3
Pl
PZ
Ry

&,
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6.4V, =4kN(+}), H =2kN(F), V, = 12kN (+1)and 4, = 8 kN ( ;).
8.5 R =3406N, R, =2887N, R, =7113N, R =9288N, R =998.7N,
R, =2050.6N, R, = 1813.6 Nat = 79.05° and R, = 1171Nat 6 = 107.1°.
66 V.=V, =2W H =—H_=1906W, F, =224W(%) and £y, = 0.
67  H = —0233W+ 296X V, = —0.058W + 0.796X;
H = 1142W- 1.96% V= 1474W— 0.796 X,
Foy =0708W— 296X  F, =0.178W— 0.796X;
Fo = —0.434W; F,, = —1296W
F = —0.476 W4 Fey = —0.121W.
CHAPTER 7
7.1 S, = —16 kN, M, = 48 kNm; S, = —4 kN, M, =92kNm.
1.2 N= —5.0kN, S= +0.447 kN, M = 93.3 kNm.
7.3 S, = —15kN and M = 135.0 kNm.
7.4 N = 100 kN; S5 =00 M —4330kNm, -—SOkN 5—866kN
ME = 216.5 kNm.
7.5 At mid-point of AB: M =325kNm and S= —130kN.
« BC: M=850kNm and S= —30kN.
“ CD: M=0660 kNm and §=70kN.
« DE: M=160kNm and §= 120kN.
« EF: M= —100 kNm and §= —40kN.
7.6 N, = Ny=N,=0; M, =7289kNm Q=91.56kNm;
M = 1102kN and SQ— —6.22kN.
1.1 (1) AtD: N=0, S=—-70kN and M= 725kNm.
(i) InAB: S =30x—220kN and M, = 220x — 15" kNm.
In BC: S,= +80kN and M = 1500 — 80xkNm.
In CD: S = +80 kN and M = 1760 — 80xkNm.
7.8 )] M, = 0; M = 157.2 kNm; MC = 131.4 kNm;
and M, = 451 4 kNm.
i S, = —71.43 kN; 5, = 8.57 kN; S, = 8.57 kN; S, = —80 kN;
Sep = 108.6 kN; and S, = —50 kN.
(iii) N,z = 80kN, N,.=80kN and N, = 108.6 kN.
79 N, = -2732kN; S, =0; M, = 0; N, = —23.66kN; S, = —13.66
kN; M, = 18.30 kNm; N_ = —13.66 kN; M_ = 68.3 kNm;
N, = —10.0 kN; and M, = 86.6 kNm.
7.10

96
80

M (kNm) L L
A
+16

S (kN)
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711 (@) InAB: S=20x—75 and M= 75x— 10"
InBC:. S=25 and M= 250 — 25x.
(i) 125

M (kNm) !
A B C
+25
S (kN) —I
=75
71.12
110.2
729
M (kNm) i ]
A P R B
+13.8
S (kN)

—6.2 ‘

-18.2

713  In AB: S=30x— 220 and M= 220x— 154"
In BC: S=280 and M= 1500 — 80x.
In CD: S=80 and M= 1760 — 80x.

74 () H,=0; V,=222kN( +{) =222 kN ( +1).
(i) M, =0 M, =-889kNm; M,=5111kNm;
M, = 33.33 INm; M., = 13.33 kNm; M, = 0;

(i) S5 = Sac = Sep = 2.22kN; Ny = Ny = N, =0
715 () R =M, — M)18 +t and R, = (M, - M)n8 +t.
(i) InAB: S= (M, — M)/18 and M= (M, — M )x/18.
InBC: S= (M, — M)/18 and M= (M, ~ M)x/18 + M
InCD: S= (M, — M)/18 and M= (M, — M)x/18 + M, — M,
716 Atmidpoint CD: N=0; §= —25kN; and M= —12.5kNm.
At midpoint BE: N=—-90kN; S=0; and M= —30 kNm.
At E: N=—-90kN; S=0; and M= —30kNm.
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C 300
Br 300
A 350

7.18  Midpoint AB: N=0; S= —15kN; M= +7.5kNm.
Midpoint BC: N=1299kN; S§=—-75kN M = 825 kNm.
Midpoint DC: N=0; S=15kN; M =525 kNm.

719  Midpoint AB: N= —6743kN; §=0; M=0.
Midpoint CD: N=068.89kN; S§S= —13.54kN; M = 81.72 kNm.
Midpoint DE: N = 5828 kN; S§= —10.86kN; M = 21.72 kNm.
AtD: M, = 4343 KNm,

AtC: M. = —120.0 kNm.
7.20
1667
1250
417
M (kNm) L ! !
A B C D E
+333
SN ]
—-167 -167
7.21
1556
M (Nm)
_440\/'
—-709
—1968
1575 1762
S(N)
=760 ~945 l/

287
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1.22
3.66
M (kNm)
—12.68
7.23  Thrust = 0.687P.
7.24  1n AB: §=125x"—2625 and M= 26.25x — 5x°/6.
In BC: S=15x— 48.75 and M= —7.55 + 48.75x — 22.50
At B: S=—375kN and M= 56.25kNm.
CHAPTER 8
8.1 H, =0 V., =1kN; VC=34kN;VF=15kN.
8.2 H, =177 kN;  V, = 4.27 kN; H.= —177 kN; V. =573 kN.
8.3 H, = 10.64kN; V, =1.03kN; H = —4.98 lN; V, = 8.63 kN.
8.4 H, = —0.62kN; V, = 1424 kN; H, = 4.62 kN; Ve = 4.62 kN.
8.5 HA=14kN; vV, = 11kN; HD=~14kN; VD=l3kN.
8.6 V,=15 kN; Ve = 11LOKN; Ve=15 kN.
8.7 (@) H, = —6.67kN; V.= —4.8kN; H, = —9.33 kN; and V, = 4.8 kN.
b) H,=-6kN; V,=—-15kN; H, =0; and V, = 13.5 kN.
(0 H,=3kN; V, =6kN; HE=—3kN; and V, = 3 kN.
(d) H,=-625kN; V, =133kN; A, = —575kN; and V, = 9.67 kN.
8.8 H, =119 kN; V,=225kN; H = —11.9 kN; and Ve =225 kN.
8.9 (B H,=220kN; V, =9.03kN; H, = —2.20kN; and V_ = 4.97 kN.
(i)  Resultant force through D = 2.41 kN.
8.10 H, = —525 kN; vV, = 125 kN; M, = 21 kNm; H_ = —4.75 kN;
Ve = 4.75 kN; and M. = 9.5 kNm
81 H =333 kN; V, = 30.67 kN; H = —~1.33 kN; H, = —2.0 kN;
and V, = 14.33 kN
81z VvV, =85 kN; H, = 10 kN; Ve =15 kN; T =15.6kN
8.13
V,(kN) H, (kN) M, (kNm) V. (kN)
Load at B 6 0 0 0
Load at C 6 0 18 0
Load at D 6 0 36 0
Load at E 3 0 18 3
8.14
H(kN)  V,(kN) M, (kNm) H (kN)  V.(kN) M (kNm)
Load at B 0 8 —-16 0 0 0
Load at E 5.33 4 —21.33 —5.33 4 21.33

Load at H 0 0 0 0 8 16
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CHAPTER 9

9.1 T .. =2075 kN.
9.2 Sagac D = 1.506 m.
9.3 T.. = 15.94 kN.

CD

9.4 () 21.94 m. (i) 410.1 N, 508.1 N, respectively. (iii) 19.5 m.

9.5 () 21.82 m. (ii) 429.6N, 538.7 N, respectively. (iii) 19.5 m.
9.6 (i) 23.78 m. (i) 4.27 m. (i) 78.27 kN.
9.7 (i) 11.89 m. (i) —7.64 m. (iii) 19.56 kN

9.8 (i) 23.43 m and 15.62 m. (ii) 3.73 m.
9.9 T . =7537 kN and 7, = 6800 kN.
9.10 SagactB = 74.8 m; Sagat C = 119.6 m; Tméx = 390 kN.

289

9.11  Maximum sag in AB =37.1 m and in BC =593 m; and 7, =152kN.

CHAPTER 11

111 H =20kN; V. =126kN; and V, = 74 kN.
1 1 2

Member AB AC BC BD D CE DE DF
Force (kN) —86 —44.7 55.3 —30.7 —103.4 68.0 7.2 —-92
Member EF EG FG
Force (kN) 40.9 49.3 —88.9
1.2 () R =57.60kN; R, =3566kN; R, = 49.46LN.

(ii)
Member AB AC BC BD CD CE DE EG
Force (kN) —50.4 —-21.9 —-2.6 —38.4 3.2 —23.8 0 —23.8
Member DG DF FG GH FH
Force (kN) 2.0 -37.7  21.0 0 —49.5
11.3
Member AB AD BD BC D CE ED DF
Force (kN) —80 0 —40 —80 133.3 —146.7 0 66.7
Member EF EG GF GJ FJ FH HJ
Force (kN) 0 —146.7 0 —146.7 133.3 —40 80
1.4 R =24kN; R =128kN; R =36kN; R, = —48LkN.
Member AB AD BD BC b CE ED DF
Force (kN) —-96 —40 0 -96 20 -12 —48 -12
Member EF EG GF FH GH GJ HJ JK
Force (kN) 60 —48 —48 24 —40 —24 —48 60

1.5V, =917kN; V,=839kN; H,=546kN.
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Member AD AB BD BC CD CE DE DF
Force (kN) 16.1 —18.5 —-8.1 —10.4 10.3 -10.4 -12.8 20.1
Member EF

Force (kN) ~16.9

11.6

Member AB AC BC BD DC CE DE DF
Force (kN) -8 0 15.5 -13.3 -2.0 13.3 3.9 —16.7
Membe EF EG EH FH GH

Force (kN) 0 0 19.4 —16.7 -10

11.7

Member AB AC BC BD CD CE DE DF
Force (kN) —-15.0 7.5 15.0 —15.0 —10.4 20.2 1.1 -20.8
Member EF EG FG FH GH GK HK

Force (kN) 5.8 17.9 —-5.8 -15.0 15.0 7.5 —15.0

1.8

Member AC AB BC BD CD CE DE DF
Force (kN) 131 —10.2  —4.7 -8.7 3.7 8.1 -6.7 -5.7
Member EF EG FG

Force (kN) 6.3 3.1 -9.9

11.9

Member AB BD BC AC D DF DE CE
Force (kN) 0 4 2 -5 -1 3 V2 -4
Member FG EG GH HK HJ GJ JK KL
Force (kN) V2 -3 -1 1 V2 -2 -1 V2
Member EF FH JL

Force (kN) -1 2 -1

11.10

Member AC AB BC CE BE BD DE EG
Force (kN) 100.6 —112.5 0 100.6 -62.5 -75.0 28.0 44.7
Member DG DF FG GH FH

Force (kN) —-79.0 —37.5 55.9 -11.2 -100.8

1.1

Member AE AD AC AB BC CcD DE

Force (kN) 0 32.1 30.2 73.4 —82.9 —88.3 —88.3
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CHAPTER 12

121 (@) X =-74kN; X, = 20V2kN; and X, = 54 kN.
(b) = —50kN; X, =0; X, =0; and X, = 70kN.

122 R =0; R =51.67kN;and R, = 46.33 kN.

b <

Member BC BE DE DG FG GH HI 1J

Force (kN) —-51.7 50.4 —35.7 9.4 —16.0 13.2 ~38.2 54.2
Member JK

Force (kN) —46.3

Member AB BD DF FH HJ JL AC CE

Force (kN) -51.7 —87.3 —94.0 —-94.0 —84.7 —46.3 73.1 51.7
Member EG GI 1K KL

Force (kN) 87.3 84.7 46.3 65.5

123 F,. = —8333kN; F_ = 1682kN; and F,, = 711.9 kN.

12.4 (i)  Force in vertical members nearest load = —300 kN.
Force in vertical members away from load = +250 kN.

(i)  Force in diagonal members = 0.

125  Fypy = —100kN; F,, = 50V2kN; and F, = —5kN.

126 F_ =32kN; F_=-238KkN.

127 F_ =133kN; F,_=39kN; F,_=—167kN

128 F_ =37kN; F._=81kN.

129 () V,=476kN; H, =559kN; V. =1624kN;

H, = 14.41 kN.

() F,=—1562kN; F,_ =1439LkN; F, = —6.84 kN;
Foo=—1039kN; F._ =483 kN; Fy = —11.99 kN;
Fo.=—346kN; F_=—13.05kN; and F., =1141kN.

E
1210 F,, = —7.826P; F, =70P;, F,=—0894P; F, = —7.379P;
Fy =10P; Fy =60P F, =—1789P; F_ = —6932P;

GJ

Fo =10P; F, =20P;, F, =—08%4P; F, = —6485P;

Fy =3.0Pand F . = 4.0P.

131 M, =80 kNm and M, = 24 kNm.
Member AB AE BE BC CE DE cY YD
Force (kN) ~12V2 12 12Ve -2 8Ve 16 -12V2 —20V2

13.2 AtP: N=0; S=4kN; M= 4kNm.
133 N=—-1109kN; S=72kN; M= 12.0kNm.
134 N=-20kN; §=0; M= —10kNm.
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CHAPTER 14

14.1
14.2
14.3

14.4
14.5

14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13

14.14
14.15

F= 246.0 kN at 1.516 m above bottom of canal.

F,, = 220.0 kN.

F = 6043 kN acting 2.919 m below the free water surface on the vertical
centreline of the gate.

F=41.75 kN,

(i R, =4.598 kN and R, = 22.99 kN (both horizontal).

(ii) 0.15 m.

F, = 30.66 kN; y= 1.67 m; E, = 48.15 kN; x = 1.061 m; and M.=0 kNm.
R, = 4522 kN and R, = 9.49 kN.

V'=0.0408 m® and ¥ = 24.53 kN/m’.

(1)  5.759 kN. (i)  5.246 kN.
128 040 m°.

9.99 kN.

(1)  Yes. (iiy H=1.569 m.
1 039 m. (i)  No.

(iii) With one longitudinal face parallel to and above the free water surface.
0.876.
h=0.822 m.

CHAPTER 15

151 X=40N; Y=—40N; Z=70N.
15.2
X Y z

() 67.1 N 89.4 N 223.6 N

(ii) 103.9 N 103.9 N —103.9 N

(iii) —94.9 N 170.8 N 227.7 N

(iv) 320.0 N —200.0 N 357.8 N

(v) ~80.0 N 120.0 N 240.0 N
15.3  R=41.11 N in a direction given by 6, = 53.60°, 9y = 40.06°, and 6 = 75.56°.
15.4

R l m n

(i) 945.8 N 0.9715 0.0846 0.2214

(if) 160.4 N 0.5715 0.7480 0.3376

(i) 439.5 N 0.0724 0.2628 —0.9621
15.5 11.2 N at 67.7° to the line of greatest slope with a component down the plane.
161 F,, = 53.6N; F o= —87.6N; and F,, = 89N.
16.2

P =137 N; the 60 N force acts in the direction with 6 = 134.74°,
0y =127.95% and 6, = 69.16°
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16.3  Ties: TAB = TAC = 113.1 N; Struts: CAD = CAE = 61.9 N.

164 T, =G60kN; 7., =40kN;and T, =123 kN.

16.5  All three bar forces must be zero.

16.6 T, = 2459 N and compression in mast = 4667 N.

16.7  z= —1.087 m; T,, = 2346 N; compression in mast = 4423 N.

16.8 TOA = 0.25 kN; TOB = 4.03 kN; and Toc = 2.30 kN.

169 7T, =T,= 3.62 kN; and Toe = 3.89 kN.

16.10 F=10.32 kN; /= 0.8670; m = 0.3219; and » = 0.3804: or
F=497kN; [/=0.2500; m=0.9389; and #»n= —0.2366.

CHAPTER 17

171 M, =50kNm; /=06 m= —08 »n=0.

17.2 MX = —25.46 Nm; My = 0; 1\4z = —25.46 Nm; MAB = —29.39 Nm.

173 M = 4.08 Nm; 1\4y = 8.16 Nm; M =0; M=9.13 Nm;
d=0.913 m.

17.4 M _= —60 Nm; My = —(7.08 Nm; M, = ~214.2 Nm;
M, = 2323 Nm; M. = 138.7 Nm.

175 M, = —12 Nm; My=0; M, = —18 Nm; MR=21.63 Nm
about axis with /= —0.554; m = 0; n = —0.831; M, , = 4.243 Nm;
moment about axis through O parallel to AB = —4.243 Nm.

176 () X=-4kN; Y=1kN; Z=—-2kN; M = 11kNm;
M, =12 kNm; M, = 5kNm.
(i) Atcentre X=1kN; Y=1kN; Z= —13kN. InBCDE:
X= —5kN; Y= 0; Z= 11 kN (the force intersecting CD at 4/11 m from C).

177 ()  F=5Nindirection DA; €= 13.75 Nm about axis 6, =54.40°,
6, =68.70° and 6 = 43.30°.
(i)  F= 5N indirection GF; €= 16.40 Nm about axis § = 37.60°,
6 =90° and 6 = 52.40°.

178 () R=1517N; [=0989); m=0065% n=0.1319;
M, = 101.5 Nm; [=0.1872; m=09161; »n= 0.3546.
(i)  Force passes through the point (32.09, 0, 10.35) and M = 29.67 Nm.

17.9  The system of forces shown in Figure P17.9 does not have a moment about the
axis BC.

1740 F,, = 10.88 kN; F, = 674 kN; F., = 1.83kN; F,_ = 7.07 kN;
Fo.=598kN; F. =820kN.

1741 () 1355 Nm. (i) 2027 Nm.

17.12 1.414 Nm

17.13 R = 111.8 N in direction 8_= 26.56°, 0y =90° and § = 63.43°.
M, = 67.1 Nm about an axis with §_= 90°, 9y = 63.43°, and 6, = 26.56°.

1714 X=20kN; Y= —16kN; Z=0; M = =22 Nm; My=92 Nm;
and M = —22 Nm.

17.15 —16kNm; 2.34 kNm

17.16 (1)) 86.6Nm; 10Nm; and 0.

@ity 100 sin #Nm; (60 — 100 cos ) Nm; and O.
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17147 (1) 8.18 Nm (i) 38.41N

1718 F,, = 13.78 kN ; Foy = —10.68 kN ; Foe = 5.06 kN;
(M, )e = 75.80 kNm; (M, ), = —75.80 kNm.

17.19 28.80 kNm.

CHAPTER 18

18.1 =25kN; A, =346kN; A, =60kN; B =10.5kN;
C 8.0kN; C, = 6.93kN.

18.2 Ay— —1733N; A, =676 N; By=413.3 N; B =-52N;
Tdm. = 720 N.

183 A=B=0268W, C= 0464 W.

184 X = —69 28N; Y, = -100N; Y. =0, X.=1732N;
YB= 100 N;  Z, = 30 N.

185 R =0, R=194kN; R =0; R=15kN; R =20.6kN; R =I5kN.

186 R, =30kN; R, =36kN; R.=24kN.

18.7 Rl=2kN R,=2kN; R =15kN; R = R, =7.5kN;
R =6k

18.8 R16=533kN R=8KN; R =0; R=-533kN; R =4kN;
R, = 16 kN.

189 R =200N; R =0; R =60N; R =210N; R =-200N;
R, = —420 N.

1810 R = —10N; Ry= -5N; R =0; M = 20 Nm; My=40 Nm;
M, = —60 Nm.

18.11 R=—6N R—ION R =0; M =60 Nm; My=36Nm;
M = 20 Nm.

18.12 R=0 R"SOkN R = —5kN, M = 30kNm; My=0;
M = —90 kNm.

18.13 N=20N S—O S =—10N; T=0; My=120Nm;
M = =20 Nm

18.14 N= 0; Sy =0; Sz = —100N; T = 600Nm; My = —200 Nm;
M, =0.

18.15 X= —8kN; Y=-6kN; Z= —24 kN; Cx=—12kNm;
Cy =39kNm; C = —48 kNm.

1816 X=-12 Y= (@ Z=0; C=-Qn G =—"rn
C=QL +n—

1817 R = —4kN; RZ—ISkN R, = 12kNm; R, =4.2kN;
R, = —-3kN; R = —1kNm.

- 18.18 0.849 N.
18.18 AA'= BB'= 0927 kN; MM'= 1.073 kN.
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ENGINEERING STATICS second edition, deals with the fundamen-
tals of slatics and their application lo & broad range of engineering
problems. It is primarily intended as a textbook for undergraduate
engineering students, and should also be of value to anyone involved or
interested in engineering mechanics.

- The second edition Is a substantial revision of {he previous work, which
was highly regarded by leciurers and students for its brevity and clarity of
expression, These qualities have been retained in this edition, which has
been updated and improved both in content and design. Feedback from
students and people working in the field has been Enmrpnratad into this
edition.

Changes Irom thie prevdus aditicn inulude

« anew chapter on fluid statics

« in the chapter on flexible cables, a new direct method of solving
many cable problems conventionally approached using trial-and-error
methods
an addition of an appendix dealing with the geomelric properties of

plane figures

extra lutorial problems in all chapters

improved descriptions and explanations of many principles and
procedures with numerous additional worked examples,
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