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Preface

Through the past 20 years, the framework of Linear Parameter-Varying
(LPV) systems has become a promising system theoretical approach to han-
dle the control of mildly nonlinear and especially position dependent systems
which are common in mechatronic applications and in the process indus-
try. The birth of this system class was initiated by the need of engineers to
achieve better performance for nonlinear and time-varying dynamics, com-
mon in many industrial applications, than what the classical framework of
Linear Time-Invariant (LTI) control can provide. However, it was also a pri-
mary goal to preserve simplicity and “re-use” the powerful LTI results by
extending them to the LPV case. The progress continued according to this
philosophy and LPV control has become a well established field with many
promising applications.

Unfortunately, modeling of LPV systems, especially based on measured
data (which is called system identification) has seen a limited development
since the birth of the framework. Currently this bottleneck of the LPV frame-
work is halting the transfer of the LPV theory into industrial use. Without
good models that fulfill the expectations of the users and without the under-
standing how these models correspond to the dynamics of the application,
it is difficult to design high performance LPV control solutions. This book
aims to bridge the gap between modeling and control by investigating the
fundamental questions of LPV modeling and identification. It explores the
missing details of the LPV system theory that have hindered the formula-
tion of a well established identification framework. By proposing an unified
LPV system theory that is based on a behavioral approach, the concepts of
representations, equivalence transformations, and means to compare model
structures are re-established, giving a solid basis for an identification theory.
It is also explored when and how first-principle nonlinear models can be effi-
ciently converted to LPV descriptions and what are the pitfalls that must be
avoided. Building on well founded system theoretical concepts, the classical
LTI prediction-error framework is extended to the LPV case via the use of
series-expansion representations.



VIII Preface

Beside completing the system theoretical aspects and founding of an LPV
prediction-error framework, the book proposes a novel identification approach
based on orthonormal basis functions, which provides an efficient and easy to
use approach of LPV identification. It has been shown in the LTI case that
decomposing dynamical systems in terms of orthogonal expansions enables
the accurate approximation of the system with a finite length expansion. By
tuning the basis functions to the underlying system characteristics, the rate
of convergence can be drastically decreased. This leads to highly accurate
models (small bias) being represented by a few parameters (small variance),
which in fact can be estimated efficiently via simple linear regression. This
philosophy gives the basic concept of the proposed identification approach,
for which the applicability in practical scenarios is investigated and powerful
algorithms are provided and analyzed.

The work presented here is the result of 5 years of research at the Delft
University of Technology under the supervision of Prof. Paul M.J. Van den
Hof and Peter S.C. Heuberger. Starting with the initial intention to apply
simplicity of orthonormal basis function models to overcome the challenges
of LPV system identification, a long road has led to the theory which is
presented in this book. Walking on this road, many excellent people have
contributed to this work. Especially Prof. Jan C. Willems, at the Catholic
University of Leuven, whose advice and vision about mathematical modeling
helped me to find the right track that lead to the LPV behavioral theory,
that forms the basis of many concepts of this book. Prof. Carsten Scherer,
at the Delft University of Technology, whose advice and extensive knowledge
on LPV systems and control has always helped me to find the missing wheel.
Federico Felici, whose earth-moving questions and discussions made me aware
of missing key points of the LPV system theory. But the main thanks goes to
Prof. Paul M.J. Van den Hof and Peter S.C. Heuberger whose excellent guid-
ance led me through these years, culminating in my Ph.D. thesis [188], which
served as the basis of this book. As co-editors, they also had a significant role
in establishing this book in its current from.

The book is written as a research monograph with a broad scope, trying
to cover the key issues from system theory to modeling and identification.
It is meant to be interesting for both researchers and engineers but also for
graduate students in systems and control who would like to learn about the
LPV framework. It also offers an easy to use guide for engineers about the
off-shelf solutions in LPV modeling and identification.

I hope that you as a reader will enjoy reading it as much as it was fun to
write it.

Delft, December 2009 Roland Tóth
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Ē{�} Generalized expectation
Dim Dimension
Ker Kernel
Img Image



XVIII List of Symbols

Det Determinant
Adj Matrix adjoint
Diag Diagonal matrix composition
Span Algebraic span
Spanrow

R Row span on the ringR[ξ ], subspace inR[ξ ]·×·
Spancol

R Column span on the ringR[ξ ], subspace inR[ξ ]·×·
Hom Homeomorphism
Grad Gradient
Card Cardinality
Col Column composition
Deg Degree
Deg∗ Degree, minimal
Rank Rank
ModuleR[ξ ] Left module in R[ξ ]·×·
∧
t

Concatenation of signals at time instant t

L Laplace transformation
Z Z-transformation

Geometrical Objects

E Euclidian line
L i-line
H h-line
K Euclidian circle
Kh Hyperbolic circle
D Euclidean disc
Dh Hyperbolic disc
D Set of Euclidian discs
e Euclidian center
r Euclidian radius
eh Hyperbolic center
rh Hyperbolic radius
x,y,z,u,v Points
ϕh Hyperbolic coefficient
γh Hyperbolic angle
hH Hyperbolic inversion with respect to H
hx Hyperbolic inversion s.t. hx(x) = 0
Z Hyperbolic coverage

Dynamical Systems

G Dynamical system
GNL Nonlinear dynamical system
S Parameter-varying dynamical system
F LTI system
F LTI system set
FS Frozen system set of an LPV system S



List of Symbols XIX

Behaviors

B Behavior
B∗ Complete (extended) behavior
BL Latent Behavior
BSS State-space Behavior
Bp Frozen behavior for constant scheduling p
BP Scheduling behavior (projected)
BW Signal behavior (projected)
BX Sate signal behavior (projected)
Bp Projected behavior w.r.t. a scheduling trajectory p

Representations and Models

RSS(�) State-space system representation
R�SS(�) Transpose of a state-space system representation
RO

SS(�) State-space representation, observability
RR

SS(�) State-space representation, reachability
ROc

SS (�) State-space representation, companion-observability

RRc
SS (�) State-space representation, companion-reachability

R
OLTI
SS (�) State-space representation, observability, generated via LTI rules

R
RLTI
SS (�) State-space representation, reachability, generated via LTI rules

RIO(�) Input-output representation
RK(�) Kernel representation
RIM(�) Impulse response representation
ROBF(�) OBF expansion representation
MW(�) Wiener LPV OBF model
MH(�) Hammerstein LPV OBF model
MWF(�) Wiener feedback LPV OBF model
MHF(�) Hammerstein feedback LPV OBF model

Equivalence Classes, Transformations

E Equivalence class, LTI
E nP Equivalence class, LPV
E nP

can Set of canonical representations, LPV with Dim(P) = nP
nP∼ Equivalence relation, LPV with Dim(P) = nP

T State-transformation
To State-transformation, observability
Tco State-transformation, companion-observability
Tr State-transformation, reachability
Tcr State-transformation, companion- reachability

Signals and Variables

w System signal/variable
wL Latent variable
w Extended solution
u Input signal



XX List of Symbols

y Output signal
x State signal
p Scheduling variable
xo State signal (observability canonical)
xr State signal (reachability canonical)
ud,yd,xd, pd Discretized signals
h Impulse response
p Point of the scheduling space
ξ Indeterminate variable, time operator
ζ Indeterminate variable, scheduling dependence
ω Frequency
Δ Lagrangian
δ Lagrangian variable
ε Noise/error/residual
v,e Noise, stochastic process
Ry,Ryu (Cross)-covariance
Φy(eiω ),Φyu(eiω) (Cross)-power spectral densities
εk Local unit truncation error (kth-interval)
ηk Global error (kth-interval)
ε∗ Maximal local unit truncation error
η∗ Maximal global error
εmax Acceptable maximal local unit truncation error
ηmax Acceptable maximal global error

Functions

R,P,X ,Q Polynomial matrix functions
M Polynomial matrix function, unimodular
Ru Polynomial matrix function, input side
Ry Polynomial matrix function, output side
RL Polynomial matrix function, latent side
Rcom Common divisor of polynomial matrix functions
RA, . . . ,RF Polynomial functions, classical model parametrization
F,G Transfer function, IRR form
G0 Transfer function / IRR form of the nominal model
H Transfer function / IRR associated with the noise
H0 Transfer function / IRR of the noise part of the nominal model
Gb Inner function
M Transfer function vector
F Transfer function set
FS Transfer function set of frozen behaviors
A(�, �) Transition matrix
C(t) Observability map
V Lyapunov function
J Cost-function
φ Orthonormal basis function



List of Symbols XXI

Φn Orthonormal basis function set with n elements
Φne

ng
Hambo functions generated by a Gb with ng poles and ne

extensions
μ Membership function
W Criterion function
ψ Function defining coefficient dependency in a model

parametrization
Ψ Set of functions defining coefficient dependency
g Scheduling function
1(�) Unit step (Heaviside) function

Spaces and Fields

T Time axis
V Clustering space
W Signal space
WL Latent signal space
R Set of real numbers
R+,R−,R+

0 ,R−0 Positive (negative) real numbers with or without zero
Z Set of integers
Z+,Z−,Z+

0 ,Z−0 Positive (negative) integers with or without zero
C Set of complex numbers
N Set of natural numbers
D Unit disk
J Unit circle
E Exterior of the unit disk
X State-space
U Input-space
Y Output-space
I

n2
n1 Index set {n1,n1 + 1, . . . ,n2}

P Scheduling domain
WT Collection of all maps from T to W

PT Collection of all maps from T to P

M Subspace
M̆ Optimal Subspace
M Set of subspaces with the same dimension
U Membership space
S,K Singularity set
I Set of indices
D Hyperbolic group
H2 Hardy space of proper complex functions square integrable

on J

H2− Hardy space of strictly proper complex functions square
integrable on J

H⊥2 Complement ofH2

H2 (E) Space of allH2 functions that are analytic in E



XXII List of Symbols

H2(C+) Space of allH2 functions that are analytic in C+

H2− (E) Space of allH2− functions that are analytic in E

RH2− (E) Space of all realH2− functions that are analytic in E

Rn Field of meromorphic functions with n variables
R̄n Subset ofRn, non-eliminatable nth variable
R Field of meromorphic functions with finite many variables
R|nP

Field of meromorphic functions with maximal nP variables
R[ξ ] Ring of polynomials (in the indeterminant ξ ) over R

R[ξ ] Ring of polynomials overR
Qn Space of extended solutions for KR’s with coefficients inRn

Q̄n Subset of Qn, non-eliminatable nth variable
Q Additive group of extended solutions
C∞ Space of infinitely differentiable functions
Lloc

1 Space of locally integrable functions
U(n1,n2) Uniform distribution on interval [n1,n2]
N (n1,n2) Normal distribution with mean n1 and variance n2

Poles and Eigenvalues

σ Singular value
σ̄ Maximal singular value
σ Minimal singular value
λ System pole
Ω Pole region
ΩP Pole manifest region
P Pole uncertainty region
Λ Set of poles
R̆ characteristic polynomial

Measures and Norms

‖ �‖n nth vector norm
�n(�) nth-signal norm
Ss Similarity measure
Se Normalized entropy
χ Xie-Beni validity measure
π Kolmogorov distance
κ1 Kolmogorov measure
κn Kolmogorov cost n-width
d Dissimilarity measure
dH2 Distance onH2

Coefficients, Constants, and Rates

A,B,C,D State-space matrices
Ao,Bo,Co,Do State-space matrices, observability canonical
Ar,Br,Cr,Dr State-space matrices, reachability canonical
Aco,Bco,Cco,Dco State-space matrices, companion-observability canonical
Acr,Bcr,Ccr,Dcr State-space matrices, companion-reachability canonical
Ad,Bd,Cd,Dd State-space matrices of a discretized representation



List of Symbols XXIII

α,β State-space matrix elements
αo,β o State-space matrix elements, observability canonical
α r,β r State-space matrix elements, reachability canonical
αco,β co State-space matrix elements, companion-observability

canonical
αcr,β cr State-space matrix elements, companion-reachability

canonical
a,b IO representation coefficients
R Reachability gramian
O Observability gramian
On Observability matrix, n-step
Rn Reachability matrix, n-step
o Observability matrix element
r Reachability matrix element
θ Parameter vector
θ0 Parameter vector associated with the true system
θ ∗ Asymptotic parameter vector estimate
θ̂Nd Parameter vector estimate, based on Nd samples
Θ Parameter vector space
E Ellipsoidal parameter uncertainty region
g,h Markov parameters (of the noise model)
H Hankel/Toeplitz matrix
Td Discretization time
T̆d Stability upperbound of Td

T̂d Performance upperbound of Td

m Fuzzyness parameter
O Rate of convergence
ρ Convergence rate of the series expansion
ρ̆ Worst-case convergence rate of the series expansion
γ Regressor vector
Γ Regressor matrix
i Imaginary unit
M(n) N-sensitivity constant, n-th order
Mmax

x Maximal amplitude of x over all trajectories
ks Spring constant
Su,Sy,Sw,Sx,Sp Selector matrices
Z Data for clustering
υ Cluster center
V Vector of cluster centers
U Membership matrix
w Coefficient in OBF models / expansion coefficient
v Coefficient in OBF models (feedback)
W,V Coefficient matrices in OBF models
Q Set of grid points
Q+ Set of grid points inside a region



XXIV List of Symbols

Q− Set of grid points outside a region
ε Threshold value
εs Similarity threshold
εa Adaptive threshold
εt Termination threshold
α Confidence level

Dimensions

nW Signal dimension
nU Input dimension
nY Output dimension
nX State dimension
nP Scheduling dimension
nr Dimension of a differential equation (number of equations)
nL Dimension of the latent variables
nξ Maximal power of ξ
nζ Maximal power of ζ
ng Inner function dimension
ne Number of bases extension
na Order of the denominator polynomial
nb Order of the nominator polynomial
nc Number of clusters
nθ Parameter vector dimension
nloc Number of local models
nψ Number of used functions in dependency parametrization
nw Dimension of w
nv Dimension of v
Nz Number of data points for clustering
Nav Average number of iterations
Nd Data record length
Np Number of linearization/scheduling points (basis selection)
Nloc Number of linearization / scheduling points (identification)

Data Sets

P Linearization points/ identification points
D Data record



Chapter 1
Introduction

Abstract. In this introductory chapter we give an overview on the origin of linear
parameter-varying (LPV) systems and their role in the control of today’s indus-
trial applications. Beside the history of this framework it is investigated what the
state-of-the-art of LPV systems offers engineers to meet with the increasing expec-
tations towards modern control solutions. We will see that the main bottleneck of
this promising framework is the lack of a well established LPV modeling and iden-
tification theory. To overcome this, the current book sets the goal to explore the
lacking details of the LPV system theory and to establish a solid framework for the
modeling and identification of such systems.

1.1 New Challenges for System Identification

Today, the need to optimize efficiency of plants in terms of performance or energy
consumption and to improve reliability of automatization results in increasing ex-
pectations towards automatic control applications. Engineers working in the control
field have to face challenges in terms of operating industrial process in a more accu-
rate way but at the same time with a lower cost in terms of used energy. For exam-
ple in lithography, moving stages of wafer scanners today require fast and accurate
position tracking with servo error specified in the nanometer scale. In the emerg-
ing alternative energy field, the coupled nonlinear nature of wind turbines and the
rapidly changing conditions of wind and grid load require more efficient and also
easily reconfigurable control solutions. On the other hand, economical efficiency
also drives the control field to replace existing control designs with solutions that
require less sensors or actuators, but still provide the same performance. Like in
the case of induction motors, high performance control based on less built-in sen-
sors, like speed-sensorless drives, has great economical importance. To cope with
these challenges, well applicable theoretical solutions have been developed like op-
timal, robust, and nonlinear (NL) control approaches, trying to refine and extend
the results of linear time-invariant (LTI) control theory, widely used in automatiza-
tion. However to achieve the aimed objectives by these approaches, it is vital that

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 1–20.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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an accurate, compact, and reliable mathematical description of the actual physical
phenomenon is available.

First principle laws of physics, chemistry, biology etc. are commonly used to
construct a dynamic model of the system of interest. However, such a procedure re-
quires detailed process knowledge from specialists. Often it is a challenge to assem-
ble the existing knowledge into a coherent and compact mathematical description.
Usually, this results in a very complex model of the system dynamics, as it is hard
to decide which effects are relevant and must be included in the final model and
which are negligible. Such an approach is also often found to be very laborious and
expensive. If the specialist’s knowledge is lacking, like in case of poorly understood
systems, the derivation of a model from first principles is even impossible. More-
over, certain quantities, like coefficients, rates, etc. required to build the model are
often unknown, and have to be estimated by performing dedicated experiments.

Descriptions of systems can alternatively be derived by system identification,
where the estimation of a dynamical model is accomplished directly from mea-
sured input-output data. The expert’s knowledge still has a major role, as it gives the
basic source of information that is used in the decision on parametrization, model-
structure selection, experiment design, and the actual way of deriving the estimate.
This knowledge also helps in judging the quality and applicability of the obtained
models. Even if system identification requires human intervention and expert knowl-
edge to arrive at appropriate models, it also gives a general framework in which most
of the steps can be automated, providing a less laborious and cost intensive modeling
process.

Starting from frequency domain approaches in the early 1940s, over the years
considerable attention has been given to the identification of LTI systems, which
have proven their usefulness in many engineering applications. Today LTI system
identification has become a strongly founded framework considering issues of un-
certainty and closed-loop identification with a vast theory on experiment design
(for an overview see [144]). But the need to operate processes with higher ac-
curacy/efficiency, has soon resulted in the realization that the commonly NL and
time-varying (TV) nature of many physical systems must be handled by the control
designs. This required better models, which initiated a significant research effort
spent on identification and modeling of NL and linear time-varying (LTV) systems
(see [59, 126] about the developed approaches). Despite many theoretical solutions,
dealing with NL models without any structure has been found infeasible in practice
both in terms of identification and control.

Today, engineers working in the industry still prefer the application of LTI
control-designs, due to the attractive approaches of optimal and robust control.
These approaches are preferred as they guarantee high performance and reliabil-
ity, have easy and quick design schemes, and engineers have a vast experience in
their application. Additionally, it has also been observed in practice that many NL
systems can be well approximated by multiple LTI models that describe the behavior
of the plant around some operation points. The recognition manifested in the 1980s,
that instead jumping into the deep-space of NL and TV systems, a model class is
needed which can serve as an extension of the existing LTI control approaches, but
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Fig. 1.1 The mechanism
of gain-scheduling: inter-
polation of local LTI mod-
els/controllers of the plant
to approximate the global
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is still able to incorporate NL and TV dynamical aspects. This has led to the birth of
linear parameter-varying (LPV) systems through the idea of gain-scheduling [166].

1.2 The Birth of LPV Systems

In gain-scheduling, the basic concept is to linearize the NL system model at dif-
ferent operating points resulting in a collection of local LTI descriptions of the
plant (see Fig. 1.1). Then, subsequently, LTI controllers are designed for each lo-
cal aspect. These controllers are interpolated to give a global control solution to
the entire operation regime [157]. The used interpolation function is called the
scheduling function in this framework and it is dependent on the current operat-
ing point of the plant. To describe the changes of the operating point, a signal is
introduced, which is called the scheduling signal and often denoted by p. In this
way, the parameters of the resulting controller are dependent on the varying sig-
nal p, hence the name parameter-varying, while the dynamic relation between the
system signals is still linear. Due to many successful applications of this design
methodology [177, 228, 179], gain-scheduling has become popular in industrial ap-
plications, even if guarantees for overall stability of the designed LPV controllers
have not been available and the possibility of malfunction has existed. After 20
years, this was resolved by the introduction of interpolation based methods that
guarantee global stability [182, 87]. In the mean time it was realized that in gen-
eral many NL systems can be converted into an LPV form. Approaches have ap-
peared that provided direct LPV models for gain-scheduling without the laborious
process of NL system modeling or identification [120, 124, 36, 185]. LPV control
has gained momentum during the 1990s, when the first results about the exten-
sion ofH∞ andH2 optimal control through linear matrix inequalities (LMIs) based
optimization appeared (see [160, 6, 133]) together with μ-synthesis approaches,
originating from robust LTI control [240]. Contrary to the former gain-scheduling
methods, these approaches guarantee stability, optimal performance, and robust-
ness over the entire operating regime of LPV models. Since then, the LPV field
has evolved rapidly in the last 15 years and has become a promising framework
for modern industrial control with a growing number of applications like aircrafts
[112, 216], re-entry vehicles [212], automobiles [15], wind turbines [23, 103], in-
duction motors [191, 147, 203], servo systems [229], wafer steppers [224, 180],
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internet web servers [152, 187], CD-players [45] and environmental modeling [18].
Unfortunately, LPV system identification and modeling could barely keep up with
the advances of the control field. Only very recently, initiatives have been taken to
explore many open problems and questions in this area.

1.3 The Present State of LPV Identification

In the following, a general picture about the state-of-the-art in LPV system identifi-
cation is presented. Before going into details, we establish the key steps of the clas-
sical identification framework where the specifics of the LPV identification methods
can be positioned and categorized.

1.3.1 The Identification Cycle

Identification of dynamical systems on the basis of experimentally measured data
consists of several design steps, which need careful treatment in order to produce
an acceptable model of the system. These steps are summarized in the so-called
identification cycle presented in Table 1.1. This set of steps is referred as a cycle,
due to the fact that several iterations might take place, using the knowledge gathered
in the previous attempts, till the desired model is delivered. In the following a brief
overview of each step is given, based on [105].

1.3.1.1 Experiment Design and Data Preprocessing

Experiment design focuses on the choice of the excitation of the system to be iden-
tified in order to maximize the information content in the measured signals. The de-
sign procedure is commonly accomplished with respect to a selected model class to
minimize the variance, i.e. the estimation error, of the resulting model estimate. One
of the most important problems is how to choose input signals that are persistently
exciting (PE), i.e. they result in output signals which have enough information con-
tent to describe the relevant dynamical relations of the system for estimation with a
given model structure. An equally important notion is the use of adequately exciting
inputs that result in informative data sets which have enough information content
to distinguish between different models in the considered model class. White noise
inputs are in general considered to be optimal, as they excite all frequencies of an
LTI system. As physical actuation by such signals is often infeasible, in practice
random binary noises, frequency sweeps, and multisines are considered. Often it is
also desirable to design excitation signals for a given frequency range related to the
intended application of the identified model. Beside experiment design, data prepro-
cessing is focusing on the attenuation of disturbances, aliasing or other defects in
the measured data.
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Table 1.1 The identification cycle

Step 1. Experiment design, data collection and data manipulation.
Step 2. Selection of model structure (including parametrization).
Step 3. Choice of the identification criterion.
Step 4. Estimation of a model that is optimal with respect to the criterion.
Step 5. Validation of the resulting model estimate.

1.3.1.2 Choice of the Model Structure

The choice of an appropriate model structure is the most crucial part of the iden-
tification cycle. It determines the set in which a suitable description of the system
is searched for. General questions considered in this step are the selection of the
model structure in terms of the representation form (state-space (SS), input-output
(IO), series expansion, etc.), parametrization, and the type of noise modeling. In
terms of the well known bias/variance trade-off, the size of the model set is also
important, like the number of parameters or order of the model structure. To obtain
an adequate choice, the complexity of the algorithm delivering the model estimate
or undesired local solutions of the estimation, non-uniqueness of the optimum, etc.,
also have to be considered.

1.3.1.3 Choice of the Identification Criterion

Selection of the identification criterion, the mathematical formulation of the perfor-
mance measure of the model estimates, defines the user’s purpose or expectation
towards the model of the plant. In the literature, many identification criteria are
presented, but the most commonly applied is the mean-squared error of the output
prediction of the model estimate.

1.3.1.4 Model Estimation

The model estimation phase is the consequence of the previous choices of the iden-
tification cycle. Commonly the algorithmic solution of the estimation problem, de-
fined in terms of the model structure and the identification criterion, is considered
here.

1.3.1.5 Model (In)validation

A crucial question in identification is wether the obtained model is “good enough”
for the intended purpose. Prior knowledge and experimental data are both used to
confront the estimated model for answering this question. By using experimental
data, validation is often accomplished by comparing simulation results of the model
estimates to the measurements or by analyzing the model as a predictor of future
outputs of the system, based on measured past data.
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1.3.2 General Picture of LPV Identification

Next, the LPV identification problem is discussed, defining the notion of LPV sys-
tems and formulating the LPV model structures that are currently used in the lit-
erature. This sets the stage for the introduction of the state-of-the-art identification
approaches.

1.3.2.1 LPV Systems and the Task of Identification

Based on the original gain-scheduling principle, LPV systems are often viewed as
a linear dynamical relation between input signals u and output signals y, where the
relation itself is dependent on an external variable, the so-called scheduling signal
p. This provides the schematic view presented in Fig. 1.2. The relation can be for-
malized as a convolution in terms of u and p, which reads in discrete time (DT) as

y =
∞

∑
i=0

gi(p)q−iu, (1.1)

where q denotes the forward time shift operator, i.e. qiu(k) = u(k+ i) and q−iu(k) =
u(k− i), u : Z→ RnU is the DT input, y : Z→ RnY is the DT output, and p : Z→ P

is the DT scheduling signal of the system with a scheduling space P ⊆ RnP often
considered to be compact. The coefficients gi of (1.1) are functions of the scheduling
variable and they define the varying linear dynamical relation between u and y. If the
functions gi are considered to be dependent only on the instantaneous value of the
scheduling signal, i.e. gi : P→ RnY×nU , then their functional dependence is called
static. This means that (1.1) has the form

y(k) = g0(p(k))u(k)+g1(p(k))u(k−1)+ . . . (1.2)

If the coefficients gi also depend on the time-shifted versions of p, for instance if
(1.1) is

y(k) = g0(p(k), p(k−1))u(k)+g1(p(k), p(k−1), p(k−2))u(k−1)+ . . . (1.3)

then the functional dependence of gi is called dynamic. An important property of
LPV systems is that for a constant scheduling signal, i.e. p(k) = p for all k ∈ Z,
(1.1) is equal to a convolution describing an LTI system as each gi(p) is constant.
Thus, LPV systems can be seen to be similar to LTI systems, but their signal behav-
ior is different due to the variation of the gi parameters. Note that in the literature
there are many formal definitions of LPV systems, commonly based on particular
model structures with specific parameterizations. The convolution form (1.1) can be
seen as their generalization. In identification, we aim to estimate a dynamical model
of the system based on measured data, which corresponds to the estimation of the
coefficients gi in (1.1). Contrary to the LTI case where gi ∈ R, here gi are func-
tions that depend on p, which makes their estimation to be a challenging task. This
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Fig. 1.2 Input-output signal
flow of LPV systems.
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estimation is formalized in terms of a model structure, an abstraction of (1.1), and
an identification criterion.

1.3.2.2 Input-Output Representations

One particular type of model structure, which is used in some LPV identification
approaches, originates from the IO type of representation of the data generating
system in the LTI prediction-error setting. These LPV-IO representations are com-
monly defined in a filter form

y =−
na

∑
i=1

ai(p)q−iy +
nb

∑
j=0

b j(p)q− ju + e, (1.4)

where e is a noise process, na ≥ nb, and the coefficients {ai}na
i=1 and {bi}nb

j=0 are
functions of p with static dependence. It is commonly assumed that e is a zero-
mean white noise. Alternatively (1.4) can be separated to a process and a noise part
by y = y̆+ v where

y̆ =−
na

∑
i=1

ai(p)q−iy̆ +
nb

∑
j=0

b j(p)q− ju, (1.5a)

v =−
na

∑
i=1

ai(p)q−iv + e. (1.5b)

LPV-IO model structures are formulated based on (1.5a-b) by parametrization of the
coefficient functions in the process and noise part respectively (e.g. see (1.9)).

1.3.2.3 State-Space Representations

Another type of model structure is inspired by the classical SS representation based
LTI models. The so-called LPV-SS representations of the data generating system
are often given with an “innovation” type of noise model:

qx = A(p)x + B(p)u + E1(p)e, (1.6a)

y = C(p)x + D(p)u + E2(p)e, (1.6b)
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Fig. 1.3 Input-output signal
flow of LFR models.
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where x : Z→RnX is the state-variable, e is a vector of independent zero-mean white
noise processes, and (A,B,C,D,E1,E2) are matrix functions with static dependence
on p. It is commonly assumed that the noise part is not dependent on p, i.e. E1 and
E2 are constants, or E1 = I and E2 = I. However there are recent initiatives with
p-dependent noise representations. Additionally, the matrices are often considered
with linear dependence. In case of A, such a dependence is defined as

A(p) = A0 +
nP

∑
l=1

Al pl, (1.7)

where Al ∈RnX×nX and p = [ p1 . . . pnP
]�. This type of dependence is called affine,

and used as a core assumption in many LPV control-design approaches.
Alternatively, the process part of (1.6a-b) is considered in an equivalent linear

fractional representation (LFR), which originates from the robust control inspired
μ-synthesis approaches. In this formalization, the scheduling dependence is ex-
tracted into a feedback gain, while the remaining part of the system is formulated
as a LTI system (see Fig. 1.3 for an upper LFR form). This formulation is described
mathematically as:

⎡
⎣

qx
w
y

⎤
⎦=

⎡
⎣

A1 B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦
⎡
⎣

x
z
u

⎤
⎦ , z = Δ(p)w, (1.8)

where w and z are auxiliary variables and {A1, . . . ,D22} are constant matrices, while
Δ is a function of p with linear static dependence. An equivalent SS realization of
(1.8) is defined as

A(p) = A1 + B1Δ(p)(I−D11Δ(p))−1 C1,

B(p) = B2 + B1Δ(p)(I−D11Δ(p))−1 D12,

C(p) = C2 + D21Δ(p)(I−D11Δ(p))−1 C1,

D(p) = D22 + D21Δ(p)(I−D11Δ(p))−1 D12,

if the matrix function I−D11Δ(p) is invertible. If D11 = 0 then the resulting state-
space matrices have linear dependence on p otherwise they can be polynomial or
rational functions of p.
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1.3.3 LPV-IO Representation Based Methods

The existing LPV identification approaches are almost exclusively formulated in
discrete-time, they assume static dependence, and they are mainly characterized by
the type of the used model structures. As a consequence, the identification methods
of the LPV field are typically categorized as either LPV-IO or LPV-SS represen-
tations based methods. The resulting categories together with their main proper-
ties are investigated in the following sections. First we treat LPV-IO approaches
which extend the results of LTI prediction-error identification. A common feature
of these methods is that the approaches are derived by focusing on the single-input
single-output (SISO) case, i.e. when nY = nU = 1. The following subcategories are
distinguished:

1.3.3.1 Interpolation Approaches

Methods that fall into this category apply the classical gain-scheduling concept:
identification of the system for constant scheduling trajectories and interpolation of
the resulting, so-called “frozen” models. These methods build on the well-worked
out LTI prediction-error framework to achieve high quality estimates of the frozen
aspects of the LPV system even in a closed-loop identification setting. Interpolation
of the frozen models in an IO from is accomplished in various ways, like on the
outputs of the local models [242], or on the inputs [241], or directly on the coeffi-
cients [115, 27]. All these interpolation forms result in different global models. A
common feature of these approaches is that the interpolation is applied in an ad-
hoc manner, most commonly using a polynomial or a spline approach, and that the
methods show close relation with the local-linear-modeling framework [121] and
with various multiple model approaches as well (see Sec. 1.3.4.3).

1.3.3.2 Linear Regression Methods

These methods use the LPV-IO model structure resulting from a specific parametriza-
tion of the coefficients of (1.4). The corresponding structure is an auto-regressive
model with exogenous input (ARX), well known in the LTI identification frame-
work. However, in the LPV case, the coefficients are functions of a varying p. Ad-
ditionally, the approaches use a linear parametrization of {ai}na

i=1 and {b j}nb
j=0 with

polynomial scheduling dependence. In case of nP = 1, this reads for ai as

ai(p) = ai0 +
n

∑
l=1

ail pl , (1.9)

where ail ∈ R. As the resulting model is linear-in-the-parameters, the estimation
of {ail} and {b jl} can be obtained by linear regression (see [226, 225, 12, 11]).
In analogy, recursive least-squares or instrumental-variable methods can be applied
to refine the estimate, building on the concepts of the LTI prediction-error identifi-
cation framework (see [57, 13]). In [28] a closed-loop method is proposed for the



10 1 Introduction

estimation of LPV-ARX models by trying to directly apply the so-called param-
eter adaptation algorithm originating form the LTI case [93]. Extending the LTI
concepts, some conditions of persistency of excitation for LPV-ARX models are
derived in [226] and [13]. In [200] a statistical coefficient shrinkage method has
been applied as well to assist selection of model order and required scheduling de-
pendence in the parametrization of ai(p) and bi(p).

Due to an interest in specific applications, like environmental modeling, to iden-
tify LPV-IO models under heavy noise conditions, instrumental variable methods
have been recently introduced for the estimation of LPV-IO models with output-
error (OE) [34] and Box-Jenkins (BJ) [94] type of noise models. However, the clas-
sical nonlinear optimization approaches used in the LTI case to identify OE, BJ, etc.
models have not been extended to the LPV case yet.

1.3.3.3 Set Membership Approaches

Set membership methods have been studied for the identification of LPV-IO models
as well. Particular feature of these approaches is that the noise in the measured
data is treated as deterministic uncertainty and, instead of a direct estimate of the
parameters, a feasible parameter set is calculated. This feasible set represents the
set of possible parameter values which satisfy the data equation (1.4) under a prior
assumed error bound δe, where ‖e‖ ≤ δe in terms of a given measure ‖ �‖. A direct
parameter estimate is often obtained by calculating the mean of the feasible set. In
[19], identification of LPV finite impulse response (FIR) models, finite truncation
of (1.1), has been studied by this methodology, where the expansion coefficients gi

were assumed to be nonlinear functions of a multi-dimensional p. Optimal worst-
case experiment design has also been addressed in this context. In [38], this concept
has been extended to general LPV-IO models in the form of (1.4). Opposite to [19],
the calculation of the feasible parameter set in this case results in a non-convex
optimization which is overcome by a polytopic outer approximation.

1.3.3.4 Nonlinear Optimization Methods

In this branch of IO approaches, the coefficients {ai} and {b j} of the LPV-IO model
(1.4) are estimated by using nonlinear optimization to minimize the mean-squared
prediction error. The aim is to give better estimates than the linear regression meth-
ods. In some approaches this is achieved by using a nonlinear parametrization

ai(p) = ai0 + ai1z, (1.10)

where ai0,ai1 ∈ R and z is the output of a feed-forward hidden layer neural net-
work with inputs {y,q−1y, . . .}, {u,q−1u, . . .}, and {p,q−1p, . . .}. The estimation is
accomplished via either a mixed linear/nonlinear procedure or by a separable least-
squares approach. In the former case, the functional dependencies of the coefficients
are identified through a neural-network approach while the linear part of the model
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is estimated by linear regression [150, 149, 148]. The approach is developed further
in [151], using a separable least-squares strategy.

In [75], the estimation of LPV-ARX models is reformulated by applying a non-
parametric method for the consistent estimation of the coefficient functions ai(p)
and bi(p) resulting in a convex optimization. This method uses a dispersion func-
tion approach, originating from the machine-learning field, in order to learn the
functional dependence of the coefficients in terms of piece-wise linear functions.

1.3.4 LPV-SS Representation Based Methods

Other type of approaches use the LPV-SS representation (1.6a–b) or its LFR equiva-
lent (1.8) as a model structure by considering specific parametrization of the system
matrices. In applications, these approaches are generally more appreciated, as LPV
control theory requires a state-space representation and most of the LPV-SS iden-
tification methods can also easily handle MIMO plants. The methods of LPV-SS
approaches fall into the following sub-categories:

1.3.4.1 Gradient Methods

These approaches formulate the estimation of the parameter-varying SS matrices
as a NL optimization problem solved via gradient-search-based algorithms. Due
to the nature of gradient-search optimization, the resulting estimate is often a lo-
cally optimal solution of the involved cost function. In [96] and [97], an LFR type
of SS model structure is used where the scheduling dependence is extracted as
Δ(p) = Diag(Ip1, . . . , IpnP

). The estimation of the linear part is formulated as a NL
optimization, which is solved in an iterative scheme based on the gradients of the
mean-squared output error. In every step of the estimation, the system matrices can
be estimated in a different state basis, i.e. a family of matrix estimates can be given
which are all related by state transformations. To eliminate the non-uniqueness of
the estimation, in each iteration step, the matrix estimates are restricted to a spe-
cific structure. Identifiability issues of such LFR structures are investigated in [98].
Other methods have been developed which apply the same methodology, but on
the LPV-SS form (1.6a–b) with radial-basis functions based scheduling dependence
[215, 214]. In this parametrization, the matrices are formulated as

A(p) = A0 +
n

∑
l=0

gl(p)Al (1.11)

where Al ∈ RnX×nX and each gl : P→ [0,1] is a radial basis function.
In [91], the LPV state-space model (1.6a–b) with affine dependence is formulated

as recurrent neural-network model. Estimation of the associated activation functions
and system matrices is performed by training the network on measured data sets,
similar to the neural network approaches in NL system identification [58].
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1.3.4.2 Full-Measurement Approaches

These methods assume that the state x of the LPV-SS model, considered in the LFR
form (1.8), is measurable. In this setting, under the assumption of linear dependence:
Δ(p) = Diag(Ip1, . . . , IpnP

) and D11 = 0, the estimation problem reduces to a linear
regression. In [124], the one-dimensional case of this approach has been treated,
assuming a white noise scheduling signal and using recursive least-squares to obtain
the estimate. Conservative conditions for persistency of excitation have also been
derived. In [118] the robust extension of the method has been worked out, while
in [109] and [107] the approach has been generalized to LFR structures with more
complicated scheduling dependencies. In the latter case, instead of the state, the w
and z signals in (1.8) are assumed to be measurable.

1.3.4.3 Multiple-Model Methods

These methods apply the classical gain-scheduling concept of identification simi-
lar to the interpolation approaches of the IO case (see Sec. 1.3.3.1). However in
this case, interpolation is accomplished via a state-space representation usually in a
rather intuitive manner. In some methods, the identified frozen LTI models are trans-
formed into canonical SS forms [224, 204, 237, 180] or internally balanced modal
form [108] to perform interpolation on P. Some of the methods also apply model
reduction independently on the obtained LTI models before interpolation [108, 180]
or they use LTI discretization [224, 180]. In other approaches, interpolation is ac-
complished via pole locations [136]. As issues of noise and parametrization are dealt
with in a local sense, i.e. by the applied LTI identification, these approaches focus
on the question: how to accomplish interpolation in a more efficient sense. These
approaches closely relate to the local-linear-modeling framework [121].

1.3.4.4 Set-Membership Approaches

Set-membership based identification of LPV-SS models has been first considered
in [184] using a LFR form with a linear dependence: Δ(p) = Diag(Ip1, . . . , IpnP

)
and D11 = 0. The noise/disturbance v of the system is assumed to be output additive
with a moving average structure

v =
n

∑
i=0

Eiq−ie, (1.12)

where Ei ∈RnY×nY and e is a �∞ sequence. This noise model, i.e. each Ei, is assumed
to be known. In order to describe inconsistency with the measured data (error which
cannot be explained by the LPV model nor the assumed noise model), an uncertainty
block (extra Δ -block) is introduced. Under these assumptions and given bounds on
‖e‖∞ and the uncertainty, the estimation problem of the LTI part is formulated as
a LMIs-based optimization to derive a feasible set of parameter estimates. Based
on a similar mechanism, validation of a LFR model with a linearly parameterized



1.3 The Present State of LPV Identification 13

dependence can be formulated as a LMI feasibility problem if norm bounds and
structural properties of the noise are known. In [24] this approach is reformulated to
also compute directly the required bounds on ‖v‖2 and on the uncertainty block in
order to satisfy the data equations. Under structural simplifications of the LFR form,
the resulting optimization is formulated as a bilinear matrix inequality, loosing the
computationally attractive property of the previous approach. It is common to these
approaches that it is not understood how the conservatism of the used assumptions
effect the validity of the calculated models.

1.3.4.5 Global Subspace Techniques

The family of these methods builds strongly on the concepts of the LTI subspace
identification (see [105]), especially using the formulation of the multivariable
output-error state-space (MOESP) algorithm (see [221, 220]). During the estima-
tion process, a generalized data equation of the LPV-SS model (1.6a) is formulated
to obtain both an estimate of the state evolution and the state-space matrices. In
most methods, E1 and E2 are considered to be constant. The estimation is based
on a discrete-time state-observability matrix of (1.6a-b) that is reconstructed from
the measured data using a similar mechanism as in the MOESP algorithm. This
identification strategy also enables the estimation of the system order, similar to the
LTI case. Other similarities of the LPV subspace approaches are the assumption of
affine scheduling dependence (see (1.7)) and the resemblance with bilinear system-
identification methods.

• The early approaches used certain approximations during the reconstruction of
the state, possibly leading to biased estimates [219, 213, 217]. The computational
load of these methods turned out to be rather demanding in practice, as matrix
dimensions quickly explode with an increasing number of scheduling variables
and block dimensions. This has been the reason why the kernel-method-based
modification has been proposed in [219] to regulate the computational load.

• To overcome the resulting bias, non-approximative methods have been derived
by restricting the variation of the scheduling signals in the measured data to be
periodic [53, 52] or piece-wise constant [207]. While the former method is sim-
ilar to periodic LTV identification like in [222] and [104], the latter approach
extends the approximative method of [218]. For these special scheduling signals,
it is possible to find parameter-varying state-transformations such that the states
in the subspace calculation are at the same basis at every time instant. Thus, no
approximation is needed for the state-reconstruction in the noiseless case. How-
ever, the identifiability of SS models is not well understood with such a restricted
class of scheduling signals and as a consequence numerical problems may result
during the estimation.

• In the recent generation of LPV subspace methods, worked out in [210, 206,
208, 209], the predictor-based subspace identification approach, proposed origi-
nally in the LTI case [39, 40], is used to tackle the estimation problem of (1.6a–
b). First the IO behavior of the LPV system is estimated in terms of Markov
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parameters by using a high-order LPV-ARX model structure. Based on the fact
that this estimated sequence of Markov parameters can be written as a product of
the state sequence and the state-observability matrix, a singular value decompo-
sition (SVD) is applied to estimate the state sequence. Consequently, the system
matrices related to the affine parametrization are calculated via linear regression.
In order to handle the high matrix dimensions in a computationally feasible man-
ner, a kernel-based regularization approach is used [210, 206]. In case of small
scale systems, this results in an attractive estimation scheme with negligible re-
strictions compared to earlier subspace approaches. An interesting property of the
approach is that the so-called past window (the length of the estimated Markov
sequence) plays as a trade-off between bias and variance of the estimates. Due to
the quickly exploding number of estimated parameters, commonly a very small
past window is preferred, contrary to the original subspace concept [206].

• In [47] LPV-SS models (1.6a–b) with affine dependence are formulated as LTI
models by assuming white noise p, independent white noise u, and independent
noise signals e1 and e2 in (1.6a–b). The estimation is solved as a bilinear identifi-
cation problem via a Picard type of iterative scheme. In this approach, the state is
reconstructed by a Kalman filter at each time instant, where the filter is based on
the model obtained in the previous time steps. The disadvantage of the method is
that it only provides a meaningful estimate in case the white noise assumptions
of u and p are satisfied, which is hard to verify in practice. In [48] this approach
has been modified to handle non-white noise scheduling sequences by extending
the data equation used in the first iteration. Even if this modification does not
provide an unbiased estimate in case of a colored p, it attenuates the possible
bias or convergence problems.

1.3.4.6 Observer-Based Grey-Box Techniques

These approaches like [55, 54, 3], formulate the LPV identification problem as a
parameter estimation of a known NL model structure. In that case, it is possible
to use an adaptive observer to find the unknown parameters of the model based on
measured data. The used observer is commonly an extended Kalman filter, which is
applied on the augmented form of the NL model, where the state is extended with
unknown parameters as variables. If the estimation has converged, then the obtained
NL model is processed further, using the gain-scheduling approach to derive a LPV-
SS form with affine coefficient dependence [3].

1.3.5 Similarity to Other System Classes

LPV systems are often considered to be similar in some aspects to other system
classes. It has already been mentioned that LPV subspace techniques were inspired
by the identification approaches of bilinear systems. These systems can be consid-
ered as LPV systems where p is equal to the input of the system and the system
dynamics depend linearly on p.
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LPV systems can also be seen as the extension of LTV systems. By restricting the
coefficients of an LPV system to depend on a fixed linear trajectory of time, instead
on a priori unknown trajectory of the scheduling variable, an LTV system results.
Due to the structural similarity, many LPV approaches have been inspired by ideas
of the LTV framework (IO methods, periodic identification) which do not exploit
the priori known linear variation of the time trajectory.

In the fuzzy framework, Takagi-Sugeno (TS) dynamic fuzzy models with linear
signal relations are often considered as LPV systems [86]. However, due to the if-
then structure of the fuzzy rules, commonly LPV control cannot be applied on such
systems and due to other structural differences such an equality of TS and LPV
systems is dubious in the general sense. Thus, in the following, TS dynamic fuzzy
models are treated as non-LPV systems.

1.4 Challenges and Open Problems

In the previous part we have seen that a wide variety of identification methods is
available, approaching the underlying LPV identification problem (see Sect. 1.3.2)
from different viewpoints. Many of these approaches are built around an assumed
model structure and focusing only on the estimation task, which is just one step
of the classical identification cycle. Due to these and many other issues, several
challenges and open problems exist, that deserve further investigation. The most
crucial questions are collected into the following list:

• The current methods use different identification settings, model structures, and
even different views about what an LPV system is. So it is an obvious question
how these concepts and ideas can be brought to a common ground, where they
can be analyzed, compared, and refined.

• Often, the validity of the used identification concepts is not investigated. For
example in prediction-error methods, like the least-squares LPV-IO methods,
the formulation of the predictor, or even the description and analysis of the as-
sumed noise structure is often omitted. Except for some recent contributions like
[94, 34, 200], many approaches use linear regression as an optimization tool in-
stead of estimation in a stochastic sense. How to formulate the prediction-error
setting in the LPV case and how to derive well-founded identification approaches
that dwell on the concepts of the classical framework remain questions to be in-
vestigated.

• In the SS variants of identification methods, based on the gain-scheduling princi-
ple, state-transformations are applied independently on each LTI-SS model esti-
mate. For example, the frozen models are transformed to a canonical or balanced
form and then they are interpolated. However, such transformed models do not
have a common state, making the results of interpolation unpredictable [189].
Similarly, the problem of local transformations applies when model reduction
is used independently on the frozen models or if the interpolation is based only
on their pole locations. Unexpected problems can also occur in the interpolation
process if the McMillan degree of the local models changes at some interpolation
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points. Thus it is also important to investigate how the gain-scheduling principle
can be used in identification such that the interpolation is well structured and
issues of local transformations do not apply.

• Many LPV identification approaches, especially sub-space and gradient-search
methods, have a significant computational load which renders their practical use
to be quite limited in case of large scale systems. Therefore, it is important to
develop approaches that solve the estimation problem efficiently and which are
less effected by the curse of dimensionality.

• Except for some recent preliminary approaches like [75, 200], the selection of
model structure, including parametrization, is often entirely skipped. The way
how possible first-principle knowledge about the data-generating system is trans-
formed to a discrete-time LPV form to assist at least the order selection is
generally ad-hoc. The main reasons are the absence of sound results on LPV
discretization theory or on the conversion of NL differential equations to LPV
representations.

• The cardinal question, concerning the choice of the scheduling variable for a
given physical system is commonly not investigated. As the entire dynamics of
LPV systems depends on this variable, its choice should be part of model struc-
ture selection. This also implies the question when a given NL system can be
efficiently described by a LPV model.

• In LTV system theory, it has been shown in discrete-time that equivalence trans-
formations between SS and IO models result in coefficients that are constructed
from time-shifted versions of the original coefficients [65]. If this is true for LTV
systems, which can be considered as a special cases of LPV systems, may the
same phenomenon hold in the LPV case? This would suggest that equivalent
models in different representation forms depend on the time-shifted versions of
the scheduling, which is called dynamic dependence.

• In LPV identification, many approaches build upon the assumption that LPV-
SS and IO models with static dependence are equivalent representations of the
same system. If in terms of the previous phenomenon, equivalence relations, like
state-transformations and IO realization, result in dynamic dependence, then it
becomes a cardinal question how this phenomenon effects the basic view of LPV
identification and the validity of the used approaches and results.

• In view of the previous observation, further questions arise about how to define
LPV systems, what kind of representations these systems have, what the equiva-
lence relations are between these representations and how they correspond to the
previously used concepts of LPV system theory. Answers to these questions are
required to understand what LPV models correspond to, how they are related,
what is the restriction of specific parameterizations and how the identification
approaches can be compared.

• As LPV control is based on LPV-SS models it is also a question how to convert
the model estimates to equivalent forms on which LPV control can be applied
directly.

• Beside these issues, it is a general feature of the LPV field that many approaches
try to build intuitively on the concepts of the LTI theory, often assuming that
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time-varying filters commute. However, is it true that relations of the LTI frame-
work apply directly to the LPV case? If not, then what are the merits of using the
LTI concepts?

Observing these questions and problems we can conclude that, even though many
LPV identification approaches have been considered in the literature, there is still
a need for a mature modeling framework which can support LPV control synthesis
and practical use of the developed models. By building on the previous results, it is
necessary to establish a well-posed identification setting of LPV systems in terms of
addressing the LPV identification problem in a general well-founded sense, paying
attention to restrictions of the applied model structures and noise considerations,
exploring the yet unknown relations of the LPV system theory, and investigating the
identification cycle in full scope.

1.5 Perspectives of Orthonormal Basis Function Models

In view of the previous observations, a central problem of the LPV field is the ab-
sence of a model structure which has good representation capabilities with a limited
number of parameters, useful for control, and its identification represents a low com-
plexity problem. The latter means for example that the model structure is either well
applicable in a gain-scheduling type of approach, i.e. it is easily interpolatable with-
out the need of local transformations, or its estimation is available through linear
regression.

1.5.1 The Gain-Scheduling Perspective

From the gain-scheduling perspective, orthonormal basis functions (OBF)s-based
model representations offer an easily interpolatable structure with a well worked-out
theory in the context of LTI system approximation and identification [74]. The basis
functions, that provide bases for the space H2 (Hilbert space of complex functions
that are squared integrable on the unit circle), are generated by a cascaded network
of stable all-pass filters, whose pole locations represent the prior knowledge about
the system at hand. This approach characterizes the transfer function of a proper
SISO LTI system as

F(z) =
∞

∑
i=0

wiφi (z) , (1.13)

where {wi}∞i=0 is the set of constant coefficients and Φ∞ = {φi}∞i=0 with φ0 = 1
represents the sequence of OBFs. This implies that every transfer function Fp(z)
that corresponds to (1.1) for constant scheduling p(k) = p can be represented as
a linear combination of a given Φ∞. In LTI identification, only a finite number of
terms in (1.13) is used, like in FIR models. In contrast with FIR structures, the
OBF parametrization can achieve almost zero modeling error with a relatively small
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number of parameters, due to the infinite impulse-response characteristics of the
basis functions. In this way, it is generally possible to find a finite Φn ⊂ Φ∞, with
a relatively small number of functions n ∈ N, such that the representation error for
all Fp(z) is negligible. Then, based on experiments with constant p, frozen aspects
of (1.1) can be identified in the form (1.13) with finitely many terms, resulting in
a set of local basis coefficients. Due to the linearity of (1.13) in these coefficients,
model interpolation can easily be accomplished on the scheduling space P without
the need of any local transformations, resulting in the LPV model:

y =
n

∑
i=0

wi(p)φi (q)u. (1.14)

This type of interpolation would also be well structured against local changes of the
McMillan degree as the coefficients in (1.13) are not related directly to the order
of the system. By using SS realizations of the basis functions {φi}n

i=0 in (1.14)
a direct LPV-SS or LFR realization of this model is available, which means that
model estimates can be directly used for control.

1.5.2 The Global Identification Perspective

OBF-based model structures have many attractive properties in the LTI case. In
the prediction-error framework, they can be considered with an output-error type
of noise model. The resulting model structure has a linear-in-the-parameter prop-
erty, which implies that its estimation is available through linear regression. OBF
models generally need less parameters than FIR models with similar properties.
Non-asymptotic variance and bias bounds of the estimates are also available. These
fruitful properties imply that direct identification of LPV systems may be beneficial
in terms of the model structure (1.14) used in a prediction-error setting. In such a
setting, parameterizing the coefficients as

wi(p) =
nψ

∑
l=0

θilψil(p), (1.15)

where θil ∈R and {ψil} are prior chosen functions of p, would yield that estimation

of {θil}l=0,...,nψ
i=0,...,n is possible via linear regression using experimental data with vary-

ing p. However, for the investigation of this approach, first an LPV prediction-error
framework needs to be established.

1.5.3 Approximation via OBF Structures

In [30] it has been proved that model structures composed from a OBF filter bank
followed by a static nonlinearity are general approximators of nonlinear systems
with fading memory (NL dynamic systems with convolution representation). This
means that a wide class of nonlinear systems can be identified with such OBF model
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structures with arbitrary precision. It is obvious that (1.14) is similar to these gen-
eral approximators, which means that, if the same property can be shown for the
LPV case, then these models have a wide representation capability of LPV systems.
Based on the general approximator property and the attractive identification proper-
ties of OBF models, successful identification approaches based on these structures
have been introduced in the NL and the fuzzy field (see [63, 159]). These methods
provide low complexity and reliable estimates for the considered classes of systems,
giving the hope that similar mechanisms could also be successfully applied in the
LPV case.

It is well known in the LTI case that the approximation error, i.e. the resulting
bias of the model estimate directly depends on how well the chosen basis functions
Φn can represent the dynamics of the system. In terms of gain-scheduling, this refers
to the size of the representation error of Φn with respect to each Fp. This refers back
to the observation that model structure selection has a prime importance in the LPV
case, and as for other type of LPV models, this choice influences the achievable
maximal accuracy of the estimates.

In conclusion, the above discussed perspectives yield the observation that iden-
tification of LPV systems with OBF models like (1.14) could provide answers to
some current challenges of the LPV identification field.

1.6 The Goal of the Book

In this chapter it has been shown that there are many open issues and unresolved
problems/questions in the area of LPV modeling and identification. Based on this
observation, we aim to develop an identification framework in this book where rela-
tions of model structures and the concept of estimation can be understood. In fact we
intend to extend the prediction-error framework to the LPV case and investigate how
we cab benefit from the classical results. Additionally, we also intend to develop an
effective LPV identification mechanism, based on the promising properties of OBF
expansion models, that overcomes the drawbacks of the existing state-of-the-art so-
lutions (see Sect. 1.4).

However, it has been revealed in the previous section that the main obstacle in
the formulation of such an identification framework originates from the gaps of LPV
system theory. To fill these gaps and give a unified system theoretical framework in
the LPV case, which enables the investigation and comparison of model structures
and also provides an algebraic tool for manipulations on them, a new system theo-
retical framework, which is based on the extension of the LTI behavioral approach
[146], is worked out in the first part of the book.

In the sequel we present a theory with new ideas of LPV behaviors, modeling,
and identification methods, that have appealing properties and can be applied suc-
cessfully to fulfill the aimed objectives. Due to the vast number of problems this
book addresses, we also leave many open ends and questions for future research.
The exploration of all issues of the LPV identification cycle of general physical sys-
tems remains a problem, but the use of orthonormal basis functions, the behavioral
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theory, and the proposed prediction-error identification framework open interest-
ing and promising perspectives to approach the identification of this system class
efficiently.

1.7 Overview of Contents

First we start our investigations by introducing in Chap. 2 some basic concepts
of system identification with important mathematical and system theoretical tools
which are used in the remainder.

In Chap. 3 we introduce an LPV behavioral approach that establishes a unified
system theoretical framework. In this framework it becomes possible to understand
relations of LPV models and the behavioral approach also gives the basic tool to
introduce OBFs-based LPV model parameterizations later on.

In Chap. 4 we explore LPV-SS canonical forms and equivalence transformations
between different representations of LPV systems. The discovered relations provide
the tools to analyze and compare LPV model structures.

In Chap. 5 the representation of LPV systems by OBF-based series-expansions is
investigated. It is shown that finite truncations of these representations can be used
as model structures for LPV system identification. Such structures also have wide
approximation capabilities.

Discretization of LPV systems is reviewed in Chap. 6. New discretization ap-
proaches are introduced together with criteria to choose the discretization step size.

In Chap. 7 the modeling of NL systems in a LPV form is investigated and the
available solutions for this problem are studied. Using the framework of the LPV
behavioral approach, a new mechanism is introduced that solves the LPV model-
ing issue of such systems. This approach together with the discretization methods
of Chap. 6 are developed with the intention to assist the model-structure selection
phase of the identification cycle based on first principle knowledge.

In Chap. 8 the basis-selection problem of OBFs-based LPV model structures is
considered. The method is based on the clustering of sample poles that result from
identification of the system with constant scheduling signals. The effect of noise on
identification is also considered and a robust basis-selection procedure is developed
based on hyperbolic-geometry results.

In Chap. 9 the extension of the LTI OBFs-based identification approach to the
LPV case is developed, relying heavily on the tools derived in the previous chap-
ters. The prediction-error framework for the LPV case is established and the model
structures of the current approaches are analyzed. Two identification approaches, a
global and a local one, are formulated with static dependence of the coefficients.
The former approach utilizes the gain-scheduling-based interpolation concept while
the latter yields a global estimate based on linear regression. To overcome the
limiting assumption of static dependence needed for the parametrization of these
approaches, two alternative OBFs-based model structures are worked out. These
structures enable the approximation of dynamic dependence of the coefficients
through a feedback with only static dependence. An identification approach of such
feedback structures is derived through a separable least-squares strategy.



Chapter 2
LTI System Identification and the Role of OBFs

Abstract. This chapter is devoted to the introduction of basic concepts that are fun-
damental for the theory developed in the subsequent chapters. The notion of or-
thonormal basis functions (OBFs) is introduced with a brief overview of the most
important relations and properties. Next, the basic concepts and theory of LTI sys-
tem identification are reviewed focusing on prediction-error methods. OBFs related
parameterizations and the associated identification approaches are also introduced
together with the optimality concept of OBF model structures in terms of the Kol-
mogorov n-width theory.

2.1 The Concept of Orthonormal Basis Functions

In LTI system theory, it is common to represent transfer functions of dynamical
systems in a series-expansion form. The most simplest of these expansions is the
Laurent expansion. Consider a discrete time LTI system F with input u : Z→ RnU

and output signal y : Z→ RnY . Denote the transfer function of F as F(z) : C→
CnY×nU . Let (u,y) be valid signal trajectories of F with left compact support and
denote the Z-transform of u and y by Y (z) = Z {y} and U(z) = Z {u} defined on
their appropriate region of convergence1 (ROC) with z ∈ C called the Z-variable.
Then F satisfies that

Y (z) = F(z)U(z), (2.1)

for any z in the intersection of the ROC of Y (z) and U(z). Substitution of z in F(z)
by eiω gives the frequency response of the discrete-time system for ω ∈ (−π ,π).
Assume thatF is stable, so the domain of F(z) is the exterior of the unit circle. Then,
by applying a Laurent series-expansion of F(z) around z = ∞, it can be shown, that
there exists a unique sequence of constants {gi}∞i=0 ⊂ RnY×nU , so-called Markov
parameters, such that

F(z) =
∞

∑
i=0

giz
−i. (2.2)

1 The region of convergence is the set of points in C for which the summation associated
with the Z-transform converges.

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 21–44.
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Moreover the signal

h = Z −1

{
∞

∑
i=0

giz
−i

}
, (2.3)

is called the impulse response of F (Z −1 is the standard notation of the inverse Z-
transformation). Such a signal corresponds to the response of F for a pulse input at
k = 0 and it uniquely represents the IO behavior of F . Note that in case of unstable
systems, a Laurent expansion of F(z) is available but around z = 0, which results
in an expression in the positive powers of z. By substituting z−1 in (2.2) with the
backward-shift operator q−1, it holds that

y =
∞

∑
i=0

giq
−iu, (2.4)

for all (u,y) valid signal trajectories of F with left compact support. Thus (2.4)
can be considered as a representation of the system itself and it is called the im-
pulse response representation (IRR). Note that such a representation is available for
unstable systems as well, but in terms of the forward-shift operator q.

Finite truncations of the IRR are known as finite impulse response (FIR) models,
which have proven their usefulness in many areas of engineering, ranging from
signal processing to control design and also in approximative system identification.
Despite numerous attractive properties of FIR models, these structures often require
a large number of expansion terms to adequately approximate the original system
dynamics. As an alternative, series-expansion models using general basis functions
have been introduced:

y≈
n

∑
i=1

wiφi(q)u. (2.5)

for a predefined set of rational basis functions {φi}n
i=1 with φ0 = 1 and constant co-

efficients {wi}∞i=0. Such models preserve all the advantages of FIR structures, but in
general they require much less expansion terms for adequate approximation due to
the infinite impulse response (IIR) characteristics of the basis functions. In the fol-
lowing, the basic properties and the theory of orthonormal basis functions (OBF) are
introduced briefly with the intention to derive OBFs based representations/models
of LPV systems later on. To simplify the following discussion, which is based on
[73, 129] and [74], we restrict our attention to discrete time (DT) stable SISO sys-
tems, however some hints are also given later how the theory extends to MIMO or
continuous time (CT) systems.

2.2 Signal Spaces and Inner Functions

Before defining OBFs and their properties in system approximation, some im-
portant concepts of signal spaces and function properties are defined. We de-
note by D = {z ∈ C | |z|< 1} the open unit disk in the complex plane and by
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J = {z ∈ C | |z|= 1} the unit circle. Also introduce E to represent the exterior of
J. The function space we frequently use in the sequel is the following:

Definition 2.1 (Hardy space on E). Denote byH2 (E) the Hardy space of complex
functions (transfer functions) F : C→ C, which are analytic (holomorphic) on E,
and squared integrable on J:

‖F‖H2
:= sup

1<r

√
1

2π

∫ 2π

0
|F(reiω )|2 dω < ∞, (2.6)

where ‖ . ‖H2
is a norm onH2 (E). �

H2 (E) can be interpreted as the space of stable proper transfer functions. Addi-
tionally we denote by H2− (E) the subspace of strictly proper functions in H2 (E).
Introduce alsoRH2− (E) as the subspace of transfer functions inH2− (E) with real
valued impulse response.H2 (E) is equipped with the following inner product:

Definition 2.2 (Inner product of H2 (E)). The inner product of F1,F2 ∈ H2 (E) is
defined as:

〈F1,F2〉 :=
1

2π

∫ +π

−π
F1(eiω)F∗2 (eiω) dω =

1
2iπ

∮

J

F1(z)F∗2 (1/z∗)
dz
z

, (2.7)

where ∗ denotes complex conjugation. �
The norm of F ∈H2 (E) satisfies ‖F‖H2

=
√〈F,F〉. Two transfer functions F1,F2 ∈

H2 (E) are called orthonormal if the following conditions hold:

〈F1,F2〉= 0, ‖F1‖H2
= ‖F2‖H2

= 1. (2.8)

In this sense, the functions {z−k}n
k=1 in H2 (E) are orthonormal, as they trivially

satisfy (2.8). Moreover, for a given transfer function F ∈ H2 (E), the Markov pa-
rameters can be computed as gi =

〈
F,z−i

〉
, yielding the Laurent series-expansion

(2.2). This series-expansion is called convergent if

‖F‖H2
=

√
∞

∑
i=0
|gi|2 < ∞. (2.9)

Relation (2.9) implies that {z−i}∞i=1 are complete inH2− (E). These functions, often
referred as the pulse basis, are the most simple OBFs in H2− (E) and they generate
the IIR of stable dynamical systems.

We distinguish a special set of functions in H2 (E), the so-called inner func-
tions. A function Gb ∈ H2 (E) is called inner, if Gb(z)G∗b(1/z∗) = 1. Such a func-
tion in RH2− (E) is completely determined, modulo the sign, by its poles Λn =
[λ1 . . . λn ] ∈ Dn:

Gb(z) =±
n

∏
i=1

1−λ ∗i z
z−λi

, (2.10)

often called a Blaschke product.
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2.3 General Class of Orthonormal Basis Functions

First the class of DT stable basis functions is considered. Let Gb,0 = 1 and {Gb,i}∞i=1
be a sequence of DT inner functions with McMillan degrees {ni}∞i=1. Let (Ai,Bi,
Ci,Di) be a minimal balanced DT state-space (SS) representation2 of the transfer
function Gb,i(z). Let {λ1,λ2, . . .} denote the collection of all poles of the inner func-
tions {Gb,i}∞i=1. Under the completeness (Szász) condition that ∑∞

i=1(1−|λi|) = ∞,
the scalar elements of the sequence of vector functions

Mi(z) := (zI−Ai)−1Bi

i−1

∏
l=0

Gb,l(z), i > 0, (2.11)

constitute a basis for H2− (E), and each element φi j = [Mi] j is orthonormal in
H2− (E) with respect to the entire sequence. An important aspect of these basis
functions {φi j}∞,ni

i=1, j=1 is that they are uniquely determined, modulo the sign, by the
poles of the generating inner functions (see (2.10) and (2.11)). However, note that
(2.11) is only a particular way to construct OBFs and hence the generated basis
sequence is not unique with respect to {λ1,λ2, . . .} [73].

Any F ∈H2 (E) can be written as

F (z) = W0 +
∞

∑
i=1

WiMi(z), (2.12)

where W�i ∈ Cni (if F,Gb,i ∈ RH2 (E), then W�i ∈ Rni) and it can be shown that
the rate of convergence of this series is bounded. The IO relation of the OBF
parametrization (2.12) is illustrated by Fig. 2.1. Note that in this figure, the state
signals {xi}∞i=1 are the state variables of the balanced SS realizations of {Gb,i}∞i=1.
Additionally, xi = Mi(q)u, i.e. the states are equal to the output of the generated
basis functions.

Basically, the class of OBFs generalized by (2.11) can be classified into five func-
tion sets. These categories, which hierarchically contain the smaller classes from
pulse basis to the Takenaka-Malmquist class, are defined as follows (see [73] for a
detailed overview on these classes):

2.3.1 Takenaka-Malmquist Basis

The functions (2.11) are often referred to as the Takenaka-Malmquist functions. For
a particular3 balanced realization of the inner functions, it can be shown that the
basis functions generated via (2.11) have the form of

2 Note, that only inner functions in RH2− (E) have SS representations with real matrices.
We allow here SS representations, i.e. their matrices to generalize to the complex case.

3 Note that a balanced state-space realization of a inner function is non-unique.
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Fig. 2.1 IO signal flow of OBFs based series-expansion models.

φi j(z) =

√
1− | λi j |
z−λi j

(
j−1

∏
l=1

1− zλ ∗il
z−λil

)(
i−1

∏
k=0

nk

∏
l=1

1− zλ ∗kl

z−λkl

)
, (2.13)

where {λi j}ni
j=1 ⊂ D are the poles of the inner function Gb,i.

2.3.2 Hambo Basis

The special cases when all Gb,i(z) are equal, i.e. Gb,i = Gb, ∀i > 0, where Gb(z)
is an inner function with McMillan degree ng > 0, are known as Hambo functions
or generalized orthonormal basis functions (GOBFs). Let (A,B,C,D) be a minimal
balanced SS representation of Gb(z). Define

MAB
i (z) := (zI−A)−1BGi−1

b (z), (2.14a)

MAC
i (z) := (zI−A�)−1C�Gi−1

b (z). (2.14b)

As system transposition is an equivalence transformation for minimal state-space
representations (see [116]), there exists a unitary4 T ∈Cng×ng such that

MAB
1 = T MAC

1 . (2.15)

Now by using φ j = [MAB
1 ] j, the Hambo basis consists of the functions

Φ∞
ng

:=
{
φ jG

i
b

}i=0,...,∞
j=1,...,ng

. (2.16)

We also introduce
Φne

ng
:=
{
φ jG

i
b

}i=0,...,ne

j=1,...,ng
, ne ≥ 0, (2.17)

to denote the case when we talk only about a set of orthonormal functions generated
by a finite extension of Gb(z). Note that by using MAC

1 to define φ j, a different
basis sequence Φ̃∞

ng
results. However, due to (2.15), these basis sequences can be

4 A square matrix T ∈Cn×n is called unitary if T T ∗ = T ∗T = I, where ∗ denotes conjugate
transpose, also called Hermitian transpose.
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considered equivalent. In the following we use the MAB
1 based construction if not

indicated otherwise.
Similar to the previous generation method, Gb(z) and hence Φ∞

ng
are completely

determined by the poles of Gb(z), Λng = [λ1 . . . λng ] and any F ∈ H2 (E) can be
written as

F (z) = w00 +
∞

∑
i=0

ng

∑
j=1

wi jφ j(z)Gi
b(z), (2.18)

where w00 is associated with the unit gain φ00 = 1. It can be shown, that the rate of
convergence of this series-expansion is bounded by

ρ = max
k
|Gb(1/λ (0)

k )|, (2.19)

where {λ (0)
k } are the poles of F(z). ρ is often called the convergence rate of the

Hambo series-expansion and it is an essential measure of the approximation quality
of the basis function set with respect to F(z). In the best case, where the poles of
F(z) are the same (with multiplicity) as the poles of Gb(z), only the terms with i = 0
in (2.18) are non-zero. Such a basis is commonly considered to be optimal for F .

2.3.3 Kautz Basis

When Gb,i = Gb, ∀i > 0 with ng = 2, the resulting OBFs are called 2-parameter
Kautz functions. Such basis sequences can be considered to be adequate for the
expansion of systems with dominating second order modes.

2.3.4 Laguerre Basis

The case when Gb,i = Gb, ∀i > 0 with ng = 1 are called Laguerre functions. As
this type of basis sequence in RH2− (E) has only a real pole λ , it can provide an
adequate basis for a F ∈RH2− (E) with a dominating first-order mode.

2.3.5 Pulse Basis

The case when Gb,i(z) = z−1, ∀i > 0 are called pulse functions. Based on the expan-
sion of the transfer functions of LTI dynamical systems in terms of the pulse basis,
the impulse response representation of LTI systems is available.

2.3.6 Orthonormal Basis Functions of MIMO Systems

In the MIMO case, two approaches have been introduced for the construction of
OBF functions in HnY×nU

2− (E). The generated functions provide a series-expansion
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of any F ∈ H2− (E)nY×nU . In one of the approaches, the key idea is to use MIMO
functions that are composed from scalar basis sequences:

φ̆l(z) :=

⎡
⎢⎣
φl11(z) . . . φl1nU

(z)
...

. . .
...

φlnY1(z) . . . φlnYnU
(z)

⎤
⎥⎦ (2.20)

where each {φli j}∞l=1 corresponds to a basis of H2− (E). Then any F ∈HnY×nY

2 (E)
can be represented as

F (z) = W0 +
∞

∑
i=0

Wi� φ̆i(z), (2.21)

where Wi ∈ CnY×nU and � denotes the element-by-element matrix product. Similar
to the SISO case, with different basis sequences {φli j}∞l=1, different convergence
rates of the series-expansion can be achieved. However, the degree of freedom in
the basis selection is much higher in the MIMO case. Note, that it is possible to use
different basis sequences in the generation of (2.20), which gives the possibility of
several structural classifications of this type of MIMO bases (see [205]).

Another formulation of MIMO orthonormal basis functions follows by using a
multivariable, specifically square, inner function Gb ∈ HnU×nU

2 (E). The derivation
is the same as the state-space construction approach presented by (2.11), but in this
case φi = Mi constitutes a basis forHnY×nU

2− (E) in the sense that any F ∈HnY×nU

2 (E)
can be written as

F (z) = W0 +
∞

∑
i=1

WiMi(z), (2.22)

where Wi ∈ CnY×nU . An important issue here is the construction of the square all-
pass function Gb(z). Where in the scalar case, Gb(z) can be written as a Blaschke
product and thus modulo the sign it is determined by the poles of the product, the
multivariable-case is more involved and inhibits more freedom. Here also the struc-
ture and/or the dynamic directions are important [73]. See [205] and [72] for more
on MIMO-OBFs of this form.

2.3.7 Basis Functions in Continuous-Time

All the results introduced so far are presented for DT systems as this time domain
is used to formulate OBFs based identification of LPV systems later on. There is
however a completely analogous theory for CT systems, where the Laplace trans-
form is used instead of the Z-transform. The exterior of the unit disk E is replaced
by the right half plane C+ and the inner product (2.7) is defined as integration over
the imaginary axis:

〈F1,F2〉 :=
1

2iπ

∫

iR
F1(s)F∗2 (−s∗) ds. (2.23)
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It is possible to construct an explicit isomorphism between H2 (E) and H2(C+)
using the bilinear transformation

z → s = γ
z−1
z+ 1

, γ > 0. (2.24)

In this way, most of the introduced concepts extend trivially.

2.4 Modeling and Identification of LTI Systems

When identifying a dynamical system on the basis of experimentally measured data
records, the outline of the procedure is summarized in the so-called identification
cycle (see Table 1.1). The two most important steps of this cycle are the choices of an
appropriate model set and the identification criterion. While the previous describes
the set in which the suitable description of the system is sought, the latter defines
the aimed performance of the model. The choice of the model set is crucial as it
directly influences the maximum achievable accuracy or quality of the identified
model in terms of the user-defined criterion. The model set should be as large as
possible in order to contain as many candidate models as possible, which reduces
the structural or bias error of the optimal model in the set. On the other hand, the
number of parameters of the model should be kept as small as possible, because the
variability of the identified models increases with increasing number of parameters.
The conflict between these issues is the well-known bias/variance trade-off that is
present in many estimation problems.

Model structures induced by orthonormal basis functions have attractive proper-
ties in terms of the variance/bias trade-off. When appropriately chosen, they require
only a limited number of parameters to represent models that can accurately de-
scribe the dynamics of the considered system. The choice of basis functions then
becomes a principle design issue. In this section, a brief coverage of DT prediction-
error system identification is given, based on [105] and [73]. We focus on OBFs
based model structures and concepts required for the derivation of the identification
approaches of this book.

2.4.1 The Identification Setting

As a framework, the black-box setting of [105] is adopted. In this setting, identifi-
cation of an unknown system is aimed at without the use of prior structural infor-
mation. We assume that the underlying unknown system, so-called data generating
system, is an LTI discrete-time SISO process:

y = G0(q)u + v, (2.25)

where G ∈ H2 (E), u is a quasi-stationary signal, and v is a stationary stochastic
process (see [105] for a definition of these properties). Furthermore v satisfies
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v = H0(q)e, (2.26)

with monic transfer function H0(q) such that H0,H
−1
0 ∈H2 (E) and e is a zero-mean

white noise process with variance σ2
e . Assume furthermore that data sequences

DNd = {u(k),y(k)}Nd−1
k=0 , generated by (2.25), are available. Under the given as-

sumptions, the so-called one-step ahead prediction of y(k) based on {y(k−1),y(k−
2), . . .} and {u(k),u(k−1), . . .} is

ŷ := (1−H0(q)−1)y + H0(q)−1G0(q)u. (2.27)

In prediction-error identification, a parameterized model (G(q,θ ),H(q,θ )) is hy-
pothesized where θ ⊂ Θ represents the parameter vector, the coefficients of the
model, and Θ ∈ Rn is the allowed parameter space. This model structure leads to
the one-step ahead predictor:

ŷθ := (1−H(q,θ )−1)y + H(q,θ )−1G(q,θ )u. (2.28)

Then in the prediction-error setting, we would like to choose θ such that the result-
ing ŷθ is a good approximation of y, i.e. the so-called prediction error

ε(k,θ ) := y(k)− ŷθ (k), (2.29)

is minimized. This is commonly performed by the minimization of the scalar valued
least-squares (LS) identification criterion

WNd

(
θ ,DNd

)
=

1
Nd

Nd−1

∑
k=0

ε2(k,θ ), (2.30)

resulting in

θ̂Nd = argmin
θ∈Θ
WNd

(
θ ,DNd

)
, (2.31)

based on the available data record DNd . Other criteria using different signal norms
of ε can also be used or prefiltering can be applied on ε to deliver optimal estimates
of θ based on certain considerations (see [105]). Optimization of the identification
criterion according to (2.31) is generally a non-convex optimization problem for
which iterative (gradient) algorithms have to be applied. This also implies that con-
vergence to a global optimum can not be easily guaranteed. However, in specific
cases of parametrization, the optimization reduces to a convex problem with an an-
alytic solution.

For dealing with quasi-stationary signals, we introduce the generalized expecta-
tion operator Ē defined as

Ē{y}= lim
N→∞

1
N

N−1

∑
k=0

E{y(k)}, (2.32)

where E represents the mean value operator. Furthermore we define
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Table 2.1 Black-box model structures

ARX ARMAX OE FIR BJ

G(q,θ ) RB(q−1,θ)
RA(q−1,θ)

RB(q−1,θ)
RA(q−1,θ)

RB(q−1,θ)
RF(q−1,θ) RB(q−1,θ ) RB(q−1,θ)

RF(q−1,θ)

H(q,θ ) 1
RA(q−1,θ)

RC(q−1,θ)
RA(q−1,θ) 1 1 RC(q−1,θ)

RD(q−1,θ)

Var{y}= Ē
{
(y− Ē{y})2} , (2.33)

as the variance operator. The related (cross)-covariance functions are

Ry(τ) := Ē{y(t)y(t− τ)}, Ryu(τ) := Ē{y(t)u(t− τ)}. (2.34)

Additionally, the (cross)-power spectral densities are given as

Φy(eiω ) :=
∞

∑
τ=−∞

Ry(τ)e−iωτ , Φyu(eiω) :=
∞

∑
τ=−∞

Ryu(τ)e−iωτ . (2.35)

2.4.2 Model Structures

There are numerous different black-box model structures available for the para-
metrization of G(q,θ ) and H(q,θ ). Most of them, collected in Table 2.1, parame-
terize the two transfer functions in terms of ratio’s of polynomials RA, . . . ,RF ∈R[ξ ]
in the backward time-shift operator q−1. These structures are known under the
acronyms given in the table. The parameter vector θ of these model structures
contains the collection of the coefficients of the polynomials. Commonly, the de-
nominator polynomials are assumed to be monic to ensure uniqueness of the
parametrization. Every model structure or parametrization induces a set of predictor
models, commonly called the model set:

{(G(q,θ ),H(q,θ )) ∈H2 (E)×H2 (E) | θ ∈Θ ⊂ R
n} . (2.36)

This concept allows us to distinguish the following situations:

• The data generating system (G0(q),H0(q)) is in the model set, i.e. an exact rep-
resentation of the data generating system can be found by the applied model
structure.

• (G0(q),H0(q)) is not in the model set, i.e. no exact representation of the system
exists by the model structure.

When the main attention is given to the IO dynamics of the system, i.e. the underly-
ing deterministic behavior described by G0(q), it is attractive to deal with the set of
so-called IO models:

{G(q,θ ) ∈H2 (E) | θ ∈Θ ⊂ R
n} . (2.37)
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This leads to situations when the IO relation of the plant G0(q) can be or can not be
captured within the chosen model set. Two important properties of the introduced
model structures are the following

• For some model structures, the expression of the output predictor (2.28) is
linear in the unknown parameters θ , i.e. both the terms (1−H(q,θ ))−1 and
H(q,θ )−1G(q,θ ) are polynomials. This property holds for the ARX and FIR
structures and has the major benefit that the LS criterion can be minimized by
solving a set of linear equations.

• If G(q,θ ) and H(q,θ ) are independently parameterized, the two transfer func-
tions can be estimated independently. This property holds for the FIR, OE, and
BJ model structures.

From these viewpoints it is particulary attractive to consider the FIR model, where
both these properties are satisfied.

2.4.3 Properties

Next we investigate the statistical properties of the considered model structures in
terms of prediction-error identification.

2.4.3.1 Consistency and Convergence

When applying the quadratic identification criterion (2.30), the asymptotic proper-
ties of the resulting parameter estimate can be derived in the situation when Nd→∞.
If the noise in the measured data is normally distributed, the LS estimator is equiv-
alent with a maximum likelihood (statistically optimal in an asymptotic sense) es-
timator [105]. With other noise distributions, attractive properties also hold (under
weak conditions on the noise):

• Convergence result: For Nd → ∞, the parameter estimate θ̂Nd converges, i.e.
θ̂Nd → θ ∗, with probability 1, where θ ∗ = argminθ∈Θ Ē{ε2(θ )}. This implies
that the asymptotic parameter estimate is independent from the particular noise
realization in the data sequence.

• Consistency result: If u is persistently exciting (PE) of a sufficient order, then the
asymptotic parameter estimate θ ∗ has the following properties:

– If the data generating system is in the model set, then G0(q) = G(q,θ ∗) and
H0(q) = H(q,θ ∗).

– If G0(q) is in the IO model set and additionally G(q,θ ) and H(q,θ ) are inde-
pendently parameterized, then G0(q) = G(q,θ ∗). This means that consistency
of the estimate G(q,θ ) is also obtained if H(q,θ ) is misspecified.

Persistency of excitation (PE) for an order n means in this context that the quasi-
stationary u, used for excitation during the experiment, satisfy that



32 2 LTI System Identification and the Role of OBFs

Det

⎡
⎢⎢⎢⎣

Ru(0) Ru(1) . . . Ru(n−1)
Ru(1) Ru(0) . . . Ru(n−2)

...
. . .

. . .
...

Ru(n−1) . . . Ru(1) Ru(0)

⎤
⎥⎥⎥⎦ �= 0. (2.38)

This condition guarantees that enough information on the dynamics of G0(q) is pre-
sent in the measured y to approximate n parameters of a model. In the LTI case it is
sufficient to require that Φu(eiω) has a non-zero contribution in the frequency range
−π < ω ≤ π in at least as many points as there are parameters to be estimated in
G(q,θ ).

2.4.3.2 Asymptotic Bias and Variance

In system identification, one also has to deal with estimation errors. This is due to
the fact that information on the system to be estimated is only partially available:
finite data records, effect of noise, etc. A well-accepted approach is to decompose
the estimation error for G(q, θ̂Nd) as:

G0(q)−G(q, θ̂Nd) = G0(q)−G(q,θ ∗)︸ ︷︷ ︸
bias

+ G(q,θ ∗)−G(q, θ̂Nd)︸ ︷︷ ︸
variance

. (2.39)

In this decomposition, the first part is the structural or bias error, usually induced
by the fact that the model set is not rich enough to exactly represent the plant. The
second part is the noise induced or variance error which is due to noise contribution
on the measured data. The bias can be characterized in terms of integral formulas
over the frequency domain. Powerful formulas also exist to express variance error if
both Nd and the model order tend to infinity [105].

One of the most basic results on variance error is formulated in terms of the
variability of asymptotic parameter estimates. In the most general form, the charac-
terization follows from the central limit theorem, proving that

√
Nd(θ̂Nd −θ ∗)→N (0,Qθ ) as Nd→ ∞, (2.40)

i.e. the random variable
√

Nd(θ̂Nd−θ ∗) converges in distribution to a Gaussian prob-
ability density function with zero mean and covariance matrix Qθ . Note that Qθ can
be calculated only in a limited number of situations. One of these is when the data
generating system is in the model set, leading to the consistent estimate θ ∗ = θ0. In
this case:

Qθ = σ2
e

(
Ē
{
ϕ(k,θ0)ϕ�(k,θ0)

})−1
with ϕ(k,θ0) := − ∂

∂θ
ε(k,θ )

∣∣∣∣
θ=θ0

.

2.4.4 Linear Regression

If the model structure has the property of being linear-in-the-parameters, then the LS
problem (2.31) becomes a convex optimization problem with the analytic solution:
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θ̂Nd =
(

1
Nd
Γ�Nd

ΓNd

)−1

·
(

1
Nd
Γ�Nd

YNd

)
. (2.41)

where YNd = [y(0) , . . . ,y(Nd−1)]� is the collection of the measured output samples

and ΓNd = [γ (0) , . . . ,γ (Nd−1)]� contains the regressor vector γ that describes the
data relation according to the one-step-ahead predictor: ŷθ (k) = γ�(k)θ . For the
ARX case with Deg(RA) = na and Deg(RB) = nb, the regressor vector is

γ�(k) =
[

y(k−1) . . . y(k−na) u(k) . . . u(k−nb)
]
,

while in the FIR case with Deg(RB) = nb, the regressor vector becomes

γ�(k) =
[

u(k) . . . u(k−nb)
]
.

Note that on the basis of numerical considerations regarding matrix inversion, the
solution (2.41) is not computed directly, but via a QR-algorithm. Moreover, sta-
tistical analysis of this estimator results in non-asymptotic expressions of the bias
and variance error, which provide important advantages of linear-in-the-parameter
model structures over other model parameterizations.

2.4.5 Identification with OBFs

Considering the classical identification results described in the previous part, it
appears that there are two attractive properties of model structures: linear-in-the-
parameter property and independent parametrization of the process and noise mod-
els. Among the presented classical structures a combination of these two properties
can only be found in the FIR structure. However, the main disadvantage of this
structure is that it generally requires a large number of parameters to capture the
dynamics of the physical system, which implies a relatively large variance of the
estimate. Using OBFs instead of the pulse basis like in (2.5) can significantly de-
creases the number of required parameters and preserve all the attractive properties.
In this section we focus on the model structures:

G(q,θ ) =
n

∑
i=0

wiφi(q), H(q,θ ) = 1, (2.42)

where {φi}n
i=1 with φ0 = 1 are orthonormal basis functions inRH2 (E) with pole lo-

cations Λn = [λ1 . . . λn ]. The unknown series-expansion coefficients of (2.42) are
collected into the parameter vector θ = [ w0 . . . wn ] ⊂ Rn+1. In a general sense,
different identification criteria and settings can be applied for OBFs based model
structures, like for example frequency domain identification in H2/H∞, resulting
in attractive alternatives of LTI system identification [73, 50]. In the following we
explore the LS prediction-error setting to compare the properties of this model struc-
ture to the classical results of other structures. Later, these properties also form the
basic motivation why this model structure with the LS prediction-error setting yields
an attractive candidate for LPV identification.
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2.4.5.1 Least-Squares Identification

Due to the linear-in-the-parameter property of the OBF parametrization, estimation
of the parameters in the LS setting similarly follows as in the FIR or ARX cases. The
only difference with respect to these model structures is that the regression vector is

γ�(k) =
[

u(k) (φ1(q)u)(k) . . . (φn(q)u)(k)
]
,

containing filtered versions of the input signal rather than delayed version of u or y.
This form of the regressor implies that the LS parameter estimate of (2.42) can be
obtained via (2.41). In terms of consistency/bias properties of the estimates all the
classical results about FIR structures hold, if u is a white noise signal, i.e.Φu(eiω) is
constant. This means, that if G0(q) is in the IO model set and the input is white noise,
then the model estimate G(q, θ̂Nd) is unbiased and consistent. This is the case when
the true system has a finite series-expansion in terms of the used basis functions.
In all other cases, the expansion coefficients of G0(q) in terms of the finite basis
functions are estimated consistently, but a bias results due to the truncated tail of the
required infinite expansion. Therefore there is a primal emphasis on the selection of
appropriate basis functions, to reduce the bias by ensuring a fast convergence rate
of the series-expansion.

A particularly interesting aspect results if the estimation of the parameters is
formulated in state-space. As indicated in (2.14a–b), a basis functions based series-
expansion model G(q,θ ) can be realized efficiently in two SS forms:

[
A B
W w0

]
and

[
A (W T )�

C w0

]
, (2.43)

where (A,B,C,D) is the minimal balanced SS realization of the inner function Gb

generating the basis functions {φi}n
i=1, W = [w1 . . . wn], and T ∈ Rn×n is a unitary

matrix such that (2.15) is satisfied. The SS realization in the left is often called the
AB-invariant while the representation in the right is recognized as the AC-invariant
form. Due to property (2.15), estimation in a AB-invariant form results in a parame-
ter estimate θ̂Nd , whose elements are the linear combinations of a parameter estimate
based on the AC-invariant form. An additional property is that the initial condition
of the AC-invariant form can be easily formulated as the part of the parameter vec-
tor, due to the different formulation of the regressors in that case. Thus, estimation
of the initial condition is available by linear regression in the AC-invariant case.
This property is important when, because of various reasons, the experiment pro-
viding the data record can not be accomplished on the system starting from zero
initial condition.

2.4.5.2 Asymptotic Bias and Variance

As indicated before, the classical results in terms of the FIR structure trivially extend
to OBF model structures if the input sequence is a white noise signal. However, due
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to the fact that finite series expansions often result in the case where G0(q) is not in
the IO model set, it is important to investigate how the estimated coefficients relate
to the expansion coefficients of G0(q) in terms of the finite basis function set. It can
be shown that, if u is white, then the expansion coefficients of G0(q) are identified
consistently in the LS setting. This means that even if G0(q) can not be identified
consistently due to the truncated tail of the expansion, the modeled dynamical part
(the considered finite expansion) is consistently identified. Moreover, in this case θ ∗
obeys:

θ ∗ = argmin
θ∈Θ

1
2π

∫ π

−π

∣∣G0(eiω )−G(eiω ,θ )
∣∣2Φu(eiω)∑n

i=0 |φi(eiω )|2
|H0(eiω)|2 dω , (2.44)

which shows that the basis functions act as data prefilters, emphasizing the fit of the
estimated model on the frequency domain where the gain of the basis functions is
significant. The noise spectrum also does not appear in the expression due to the
fixed noise model, thus the convergence of θ is not influenced by the noise just like
in the case of FIR models. The bias, due to the undermodeling, can be directly com-
puted via the theory of reproducing kernels [73]. Furthermore, for specific transfer
functions, like

G0(z) =
n0

∑
j=1

b j

z−λ (0)
j

(2.45)

an upper bound on the approximation error can be given with respect to G(q,θ ∗)
using the basis functions {φi}n

i=1:

∣∣G0(eiω )−G(eiω ,θ ∗)
∣∣≤

n0

∑
j=1

∣∣∣∣∣
b j

eiω −λ (0)
j

∣∣∣∣∣ ·
n

∏
i=1

∣∣∣∣∣
λ (0)

j −λi

1−λ ∗i λ (0)
j

∣∣∣∣∣

≤ max
j∈I

n0
1

n

∏
i=1

∣∣∣∣∣
λ (0)

j −λi

1−λ ∗i λ (0)
j

∣∣∣∣∣
︸ ︷︷ ︸

ρ

·
n0

∑
l=1

∣∣∣∣∣
bl

eiω −λ (0)
l

∣∣∣∣∣, (2.46)

where {λi}n
i=1 are the poles of {φi}n

i=1 and I
τ2
τ1 = {τ ∈ Z | τ1 ≤ τ ≤ τ2} is the in-

dex set. This expression shows a tight bound on the approximation error in terms
of the bias. If for each pole of the system, there exists a matching pole of the basis

λ (0)
j = λi, then the upperbound is zero (G0 has a finite series-expansion in terms of

the basis). In the general case, the truncation error of the series-expansion is directly
influenced by the convergence rate ρ (see (2.46)), which expresses the natural dis-
tance between the basis and the system poles. This implies that to minimize the bias,
the poles of the basis should be as close to the poles of the system to be identified
as possible.

The variance of the model estimate also obeys the classical results of FIR struc-
tures. In the frequency domain, if both Nd,n→ ∞, n� Nd, the variance of the esti-
mate G(q, θ̂Nd) reads
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Var{G(q, θ̂Nd)} ∼
1

Nd

Φe(eiω )
Φu(eiω )

n

∑
i=1

|φi(eiω )|2, (2.47)

where Φe(eiω ) is the noise spectrum. This expression shows the classical result of
FIR structures when the input is prefiltered. Note that by choosing the poles {λi}n

i=1
of {φi}n

i=1 close to the poles of G0, the variance expression (2.47) peaks if eiω comes
to the close neighborhood of λi. This corresponds to the variance/bias trade-off.

As discussed in this section, OBFs-based parametrization can be effectively used
for LTI system representation with many fruitful properties, however it is required
that the basis function set is “well chosen” with respect to system to be identified. In
the next section, the concept of optimality of an OBF set with respect to a set of LTI
systems is established, giving the key theorem to solve the basis selection problem
of the identification scheme both in the LTI and in the LPV case later on. Before
that, some additional aspects of identification are reviewed.

2.4.5.3 Identification in the MIMO Case

In case of MIMO systems, identification follows similar guidelines as in the SISO
case, except that the model structure (2.42) is formulated with MIMO basis func-
tions. Due to the FIR structure of OBFs models, the analytic solution of (2.31) is
still obtained via a linear regression, however with a more extensive book keeping.

In case the MIMO basis are constructed from scalar basis functions (method 1),
all properties in terms of identification trivially extend to MIMO case [128]. How-
ever, this model structure has a major disadvantage, namely that specific elements
of {Wi} can be insignificantly small for every i > 0, which can result in an over-
parametrization, ergo in a significant bias of the estimate. MIMO basis sequences
generated by square inner functions via (2.11) (method 2) are not affected by the
previous disadvantage, however bias and variance properties of the estimates are
not yet clearly understood. See [205] and [72] for more on identification properties
of model structures based on this type of MIMO-OBFs.

2.4.6 Pole Uncertainty of Model Estimates

In practical situations, identification is unavoidably effected by noise, resulting in
uncertainty of the model estimates. The resulting model uncertainties can be char-
acterized based on numerous concepts of uncertainty in the parameter or frequency
domain. See [67, 105, 127] and [49] for an overview on the available approaches. A
well-known fact in the LTI case is that pole locations of a model estimate are gener-
ally sensitive to parameter uncertainties, see e.g. [66]. In the following, some basic
concepts of pole uncertainty regions are briefly introduced for DT model estimates
in the LS setting. The developed concepts are essential for the formulation of the
robust basis selection approach in Chap. 8.
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In the literature, many approaches have been developed for the calculation of
confidence bounds for the estimated parameters (for a survey see [144]). However,
commonly the first-order Taylor approximation based ellipsoidal bounds are used,
like in the MATLAB System Identification Toolbox [106]. Consider the LS setting
with the model structures given in Table 2.1. In this case, if the data generating
system is in the model set, then this implies that the parameter estimate θ̂Nd is con-
sistent and has an asymptotically normal distribution with a covariance matrix Qθ
(see Sect. 2.4.3). The previous properties provide that

(θ̂Nd −θ0)�Q−1
θ (θ̂Nd −θ0)→ χ2(n), as Nd→ ∞, (2.48)

where χ2(n) is a χ2-distribution with n-degrees of freedom and n is the number of
parameters in θ . Let [ a1 . . . ana ] be the parameters in θ characterizing the denom-
inator part of the process model and let [ b0 . . . bnb ] be the nominator parameters.
Denote�θ :=(θ−θ0) for every θ ∈Θ . Then for a given confidence levelα ∈ [0,1],
the parameter uncertainty of G(q, θ̂Nd) can be defined as an ellipsoid

Eθ (Qθ ,α) :=
{
θ ∈ R

n | �θ�Q−1
θ �θ ≤ χ2

α(nθ )
}

, (2.49)

where χ2
α(n) denotes the α-percentile of χ2(n). This means that the probability of

θ̂Nd ∈ Eθ (Qθ ,α) is equal to α as Nd→ ∞. Often Eθ (Qθ ,α) is restricted toΘ .
In order to establish an uncertainty region of poles associated with each config-

uration of the parameters inside the derived ellipsoidal bound, a nonlinear transfor-
mation of the parameter confidence region Eθ (Qθ ,α) is needed. This transformation
can be accomplished through the method of [223], which gives a hypothesis test to
decide wether a λ ∈ C is a pole location of a model with θ ∈ Eθ (Qθ ,α).

Denote byΛ0 ∈Cna the poles associated with G(q,θ0) and define�Λ :=Λ−Λ0

for every Λ ∈ Cna . Let λ0 be a real valued pole in Λ0 with na > 1. Then, define the
perturbation of this pole as λ = λ0 +�λ such that a parameter vector θ ∈Θ exists
whose associated pole vector contains λ . Note that θ is not unique because λ only
determines the denominator parameters. If θ ∈Θ exists, then it can be chosen such
that the numerator parameters [ b0 . . . bnb ] of θ are equal to numerator parameters
of θ0. Write G(q,θ ) as

G(q,θ ) = G1(q,γ)G2(q, θ̌), (2.50)

with

G1(q,γ) :=
1

1 + γq−1 =
1

1−λq−1 and G2(q, θ̌ ) :=
∑nb

j=0 b jq− j

1 +∑na−1
i=1 ǎiq−i

,

where θ̌ contains the parameters of G2. This factorization implies the existence of
the transformation

θ = T1(λ )θ̌ + T2(λ ), (2.51)

where γ =−λ and
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T1(λ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

γ 1
. . .

...

0
. . .

. . . 0
...

. . .
. . . 1

0 . . . 0 γ

0na×(n−na)

0(n−na)×(na−1) I(n−na)×(n−na)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×(n−1)

T2(λ ) =

⎡
⎢⎢⎢⎣

γ
0
...
0

⎤
⎥⎥⎥⎦

n×1

In case of λ0 is complex valued, define the perturbation of the complex pole pair
λ0,λ ∗0 as λ = λ0 +�λ and λ ∗ = λ ∗0 +�λ ∗. Using the same mechanism, write
G(q,θ ) as

G(q, θ̃) = G1(q,γ1,γ2)G2(q, θ̌ ),

with

G1(q,γ1,γ2) :=
1

1 + γ1q−1 + γ2q−2 =
1

1−2Re(λ )q−1 + |λ |2q−2 ,

G2(q, θ̌ ) :=
∑nb

j=0 b jq− j

1 +∑na−2
i=1 ǎiq−i

.

Again, this factorization implies the existence of the transformation (2.51) with

T1(λ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

γ1 1
. . . 0

γ2 γ1
. . .

...

0 γ2
. . . 1

...
. . .

. . . γ1

0 . . . 0 γ2

0na×(n−na)

0(n−na)×(na−2) I(n−na)×(n−na)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×(n−2)

T2(λ ) =

⎡
⎢⎢⎢⎢⎢⎣

γ1

γ2

0
...
0

⎤
⎥⎥⎥⎥⎥⎦

n×1

where γ1 =−2Re(λ ) and γ2 = |λ |2.
The above derived transformations qualify as a projection of a single pole or

complex pole pair perturbation to the parameter domainΘ through the free param-
eter θ̌ ∈ Rn−1 or θ̌ ∈ Rn−2. In order to test that the parameter variation induced by
�λ is inside the parameter uncertainty region Eθ (Qθ ,α), it is sufficient to show that
there exists a θ̌ ∈ Rn−1 (or θ̌ ∈ Rn−2) which minimizes

(
T1(λ )θ̌ + T2(λ )

)�
Q−1
θ
(
T1(λ )θ̌ + T2(λ )

)
, (2.52)

and the minimum is smaller or equal than χ2
α(nθ ) (see (2.49)). If this condition

is not satisfied, then this proves the hypothesis that the pole perturbation cannot
be associated with a parameter vector in Eθ (Qθ ,α). The minimization problem of
(2.52) has an analytic solution:
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θ̌ =
T�1 (λ )Q−1

θ θ0−T�1 (λ )Q−1
θ T2(λ )

T�1 (λ )Q−1
θ T1(λ )

. (2.53)

Thus for a given pole perturbation�λ , if θ̌ resulting from (2.53) satisfies that (2.52)
is smaller or equal than χ2

α(n), then λ can be the pole of the asymptotic model
estimate with probability α .

Based on the derived hypothesis test, it is possible to calculate the pole uncer-
tainty region

P(Qθ ,α) := {λ ∈ C | ∃θ ∈ Eθ (Qθ ,α) s.t. λ is a pole of G(q,θ )} , (2.54)

associated with Eθ (Qθ ,α). Note that P(Qθ ,α) ⊂ C which means that the hyper
ellipsoid Eθ (Qθ ,α) is projected to a lower dimensional space. This implies that for a
pole locationsΛ, associated with θ ∈ Eθ (Qθ ,α), Λ ∈ (P(Qθ ,α))na holds. However,
it is not true that any Λ ∈ (P(Qθ ,α))na can be associated with a θ ∈ Eθ (Qθ ,α).
So the projection is surjective. This is an advantage in the sense that with the given
hypothesis test, P(Qθ ,α) can be efficiently computed and visualized. However, the
surjective property is also a disadvantage. Instead of representing all configuration
of poles associated with Eθ (Qθ ,α), the complex region P(Qθ ,α) characterizes the
set of pole locations that can occur with the given probability level in the model
estimates. In this way, the perimeter bounds of P(Qθ ,α) describe the uncertain pole
locations in a worst-case sense.

In practical situations, θ0 can be substituted by θ̂Nd if Nd is large enough. Alterna-
tively, using θ̂Nd instead of θ0 results in the hypothesis test that the true poles of the
system are in the uncertainty region of the estimated poles with a given confidence
level. Note that the above given mechanism can be also used for the calculation of
the uncertainty region associated with the zeros of the model, by varying the numer-
ator part in (2.50) instead of the denominator.

Using this pole uncertainty concept, the uncertainty regions can take various
shapes in C, ranging from real segments (real pole) and ellipsoidal or banana shaped
forms to butterfly figures (complex pole pairs) as illustrated in Example 2.1. There-
fore, it is not guaranteed that they constitute convex regions in C. The regions can be
all connected or separated into small sets due to the fact that they are the nonlinear
projection of a hyper dimensional ellipsoid. Increasing α often results in the merg-
ing of previously separated regions. For an increasing α , regions can also popup
unexpectedly in C, due to the higher possibility of parameter variation. This yields
the need of special algorithms to ensure correct calculation of the regions. For this
purpose, an algorithm is developed in [198] that ensures calculation of possibly sep-
arated regions, unlike the existing solutions in the literature.

Note that other concepts of pole uncertainty regions have been developed in the
literature as well. The commonly used ellipsoidal pole regions, also implemented
in the identification toolbox of MATLAB, are calculated using a first order Tay-
lor approximation of the nonlinear projection of Eθ (Qθ ,α) to C. This type of ap-
proximation can introduce significant errors in the calculation of P(Qθ ,α), unlike
the previously presented approach. Other approaches, like discussed in [114], focus
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Fig. 2.2 Pole-uncertainty
regions P(Qθ ,α) of esti-
mated poles (green ◦) with
different confidence levels
α (deep red 0.99↔ bright
yellow 0.01). The true pole
locations Λ0 are denoted by
blue squares.
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more on the quantification of the variance of poles or zeros rather than on the actual
calculation of their uncertainty regions. Based on these, the previously presented ap-
proach provides the state-of-the-art technique to calculate pole uncertainty regions
associated with model estimates.

Example 2.1 (Pole uncertainty regions). Let the transfer function G0 of a discrete-
time asymptotically stable LTI system F with IO partition (u,y) be given as

G0(z) =
1.4

1−1.5z−1 + 0.83z−2−0.26z−3 + 0.05z−4−0.006z−5 z−1. (2.55)

For this system F , a 500 sample long data record has been collected with a white u
based on a uniform distribution U(−1,1) and an additive white output noise ε with
normal distribution N (0,0.15). The LS prediction-error identification of G0 has
been accomplished via OE parametrization with correct denominator and nominator
orders. The resulting pole uncertainty regions P(Qθ ,α) of the estimate G(q, θ̂Nd)
have been calculated with the approach of Sect. 2.4.6 using confidence levels (0.99
↔ 0.01). The perimeter lines of these regions, obtained with the algorithm of [198],
are presented in Fig. 2.2. �

2.4.7 Validation in the Prediction-Error Setting

In the prediction-error setting, commonly either simulation or prediction by the
model estimate based on a measured data record is used for (in)validation. One ap-
proach is to investigate the correlation of the residual, i.e. the error of the prediction,
with respect to the input or itself. In other cases, error measures of the difference
between the measured y and the simulated output ŷ are calculated. These measures
are used to decide on the validity of the model estimate. Some popular measures are
the following:
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Definition 2.3 (Mean squared error, [105]). The mean squared error (MSE) is the
expected value of the squared estimation error :

MSE := Ē{(y− ŷ)2}. (2.56)
�

Definition 2.4 (Best fit rate, [106]). The best fit rate (BFR) percentage or fit score
is defined as

BFR := 100% ·max

(
1− ‖y− ŷ‖2

‖y− ȳ‖2
,0

)
= 100% ·max

(
1−

√
Ē{(y− ŷ)2}
Ē{(y− ȳ)2} ,0

)
,

where ȳ is the mean of y, i.e. ȳ = Ē{y}. �

Definition 2.5 (Variance accounted for). The variance accounted for (VAF) per-
centage is the percentage of the output variation that is explained by the model:

VAF := 100%·max

(
1− Var{y− ŷ}

Var{y} ,0

)
= 100%·max

(
1− Ē

{
(y− ŷ− ē)2

}

Ē{(y− ȳ)2} ,0

)
,

where ē = Ē{y− ŷ}. �

Note that the MSE is equal to the LS criterion (2.30) evaluated for the simulated ŷ,
instead of the predicted output signal. In this way, a high value indicates invalidity of
the model. The BFR percentage is a relative measure, often used in the identification
toolbox of MATLAB, and a low value of this measure indicates invalidity of the
model. The VAF measure describes how much of the output variation is explained
by the model, disregarding possible bias of the estimates.

2.5 The Kolmogorov n-Width Theory

In the identification cycle, one of the key steps is the choice of an adequate model
structure, i.e. the model set, which can represent the system to be identified with a
relatively small number of statistically meaningful parameters. In the identification
approach based on OBF model structures, finding an appropriate model set trans-
lates to the search for a set of basis functionsΦne

nb
, that gives a series-expansion of the

system with a fast convergence rate ρ . In LTI system identification, one approach to
find appropriate model sets is based on the n-width concept [143], which has been
shown to result in appropriate model sets for robust modeling of linear systems
[111]. Using this concept, it has been shown in [131] that OBF model structures are
optimal in the n-width sense for specific subsets of systems and finding the optimal
OBF set for a given system set can be formulated as an optimization problem. In
the following, the basic ingredients of this approach for discrete-time, stable, SISO
systems are described. Later, this theory is used as the backbone of OBFs selection
for the identification of LPV systems.
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Let F denote a set of LTI SISO systems with transfer functions {F(z)} = F ⊆
H2− (E) that we want to approximate with a linear combination of n elements of
H2− (E). Let Φn = {φi}n

i=1 be a sequence of n linearly independent elements of
H2− (E), and let Mn = Span(Φn). Note that Mn describes all the possible linear
combinations of Φn that can be used for the approximation of the elements of F.
The distance dH2(F,Mn) between a F ∈H2− (E) and Mn is defined as

dH2(F,Mn) = inf
F ′∈Mn

∥∥F−F ′
∥∥H2

. (2.57)

This distance describes the best possible approximation error of a given F ∈
H2− (E) in terms of the H2 norm if the linear combination of Φn is used as an
approximation. With respect to the transfer function set F, we can define the worst-
case approximation error by Φn as the maximum of (2.57) on F. Now we can use
this concept to look for a set Φn that has a minimal worst-case approximation error
for F. This minimum is called the Kolmogorov n-width (KnW) of F.

Definition 2.6 (Kolmogorov n-width, [143]). Let Mn be the collection of all n-
dimensional subspaces ofH2− (E). The Kolmogorov n-width of a function set F in
H2− (E) is

πn (F,H2− (E)) = inf
Mn∈Mn

sup
F∈F

dH2(F,Mn). (2.58)

�
In this way, πn (F,H2− (E)) describes the smallest possible dH2 that can be achieved
for all F in F by the linear combination of n independent elements ofH2− (E). The
subspace Mn ∈Mn, for which πn is minimal, is called the optimal subspace in the
KnW sense. This optimal subspace describes a Φn that can approximate F best in
the worst-case sense. Now we can formulate this concept for OBFs.

Proposition 2.1 (n-width optimal OBFs, [131]). Let Gb ∈ H2− (E) be an inner
function with McMillan degree ng > 0, with poles Λng , and let ne ≥ 0. Consider the
subspace

Mn = Span
{
φ j (z)Gi

b (z)
}i=0,...,ne

j=1,...,ng
(2.59)

where φ j = [M1] j and M1(z) is defined by (2.11) with respect to Gb(z). Then the
subspace Mn is optimal in the Kolmogorov n-width sense with n = (ne + 1)ng for
the set of systems with transfer functions F analytic in the complement of the region

Ω
(
Λng ,ρ

)
:= {z ∈ C | |Gb(z−1)| ≤ ρ}, (2.60)

and are square integrable on its boundary. The worst-case approximation error, i.e.
supF∈F dH2(F,Mn), is proportional to ρne+1.

This remarkable result means that the set of OBFsΦne
ng

= {φ j(z)Gi
b(z)}i=0,...,ne

j=1,...,ng
is the

best in the worst-case sense to approximate transfer functions with all pole locations
in Ω(Λng ,ρ). So if in an identification scenario it is known that the system poles lie
inΩ(Λng ,ρ), then the optimal choice of basis functions is the set of OBFs associated
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(a) Gb(z) = z−1, pole at the origin (b) Gb(z) with poles 0.5 and −0.5±0.5i

Fig. 2.3 The plot of the function
∣∣Gb

(
z−1
)∣∣ for different choices of the inner function Gb(z)

and the convergence rate ρ (in dB). Level sets of
∣∣Gb

(
z−1
)∣∣ give the boundaries of the regions

{z∈C,
∣∣Gb

(
z−1
)∣∣≤ ρ}. Optimality of the Gb(z) generated basis is ensured with a worst-case

convergence rate ρne+1 for systems with pole locations inside the regions defined by the level
set boundaries.

with the polesΛng . Additionally, Proposition 2.1 shows that for the specified region
one can not improve on the worst-case error by adding new poles to the ng basis
poles. It also generalizes the well-know fact that the set of pulse functions {z−i}n

i=1
is optimal for the class of stable systems analytic outside the region Ω(Λng ,ρ) =
{|z| ≤ ρ}, ρ > 0. The boundary of Ω(Λng ,ρ) is displayed in Fig. 2.3a as a function
of the convergence rate ρ . For a given ρ > 0, the boundary of the region results as
the level set of this function, like the contour lines at the bottom of the figure. The
worst-case approximation error in this case is proportional to ρn. This implies the
optimality of FIR model structures with respect to the identification of such systems,
which is a well-known result [143]. However, in case of arbitrary regions, like the
regions in Fig. 2.3b, the level sets are commonly non-circular, containing separate
regions that merge for increasing values of ρ . For these regions, the optimal choice
of a basis has to be found among general basis functions (OBF model structures).

In an OBFs-based identification scenario we are dealing with the opposite prob-
lem. We are given a rough idea about the possible pole locations of the system
described as a region Ω0 ⊂ D and we want to find a fixed n number of OBFs that
are optimal with respect to Ω0 in the KnW sense. This problem is referred to as
the inverse Kolmogorov problem, where we want to find an inner function Gb to de-
scribe/approximate a given region of non-analyticityΩ0 in the form Ω(Λng ,ρ) with
ρ as small as possible. The reason is that in terms of Proposition 2.1, the inner func-
tion Gb, associated with the best fitting Ω(Λng ,ρ), generates the ng-width optimal
basis functions with respect to Ω0. Let Gb,Λng

(z) be an inner function, associated
with the poles Λng and define

κng(z,Λng) := |Gb,Λng
(z−1)|=

ng

∏
j=1

∣∣∣∣
z−λ j

1− zλ ∗j

∣∣∣∣. (2.61)
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Then the solution of the inverse Kolmogorov problem for a given number of poles
ng, comes down to the min-max optimization problem:

min
Λng⊂D

max
z∈Ω

κng(z,Λng). (2.62)

See [73] for details on this non-linear optimization problem and solution methods.

2.6 Conclusions

In this introductory chapter basic definitions and concepts of orthonormal basis
functions and the prediction-error identification framework have been introduced
with the aim to establish a solid background for our upcoming investigation of mod-
eling and identification of LPV systems. Through this chapter we have shown that
truncated series-expansion models like OBFs based model structures have attrac-
tive properties in LTI system identification. Such model structures not only provide
consistent model estimation via simple linear regression (in case of an OE noise
model), but need significantly less parameters than FIR models for an adequate ap-
proximation of the system and have a direct characterization of the truncation error.
We will use these attractive properties to develop a low complexity and efficient
identification approach of LPV systems in Chap. 9 using similar truncated series
expansion models. Furthermore, we have discussed in Sect. 2.5 that in the context
of OBF model structures, the optimal choice of the model set can be characterized
by using the Kolmogorov n-width concept. As we will see, this theory will serve as
the backbone of the later developed OBF-model-structure-based model set selection
approach for LPV systems together with the improved concept of pole uncertainty
regions discussed in Sect. 2.4.6. However, before such theories and methods can be
introduced first we will study LPV systems and establish the basic system theoreti-
cal tools which will enable understanding of model structures and estimation in the
LPV context.



Chapter 3
LPV Systems and Representations

Abstract. In this chapter, a behavioral framework of LPV systems is introduced
as an extension of the LTI behavioral approach. This is done with the intention to
give a unified view on LPV system theory, that enables to approach LPV system
identification in a well-founded system theoretic sense. First we define LPV dy-
namical systems from the behavioral point of view. Then we introduce the algebraic
structure in which we formulate kernel, state-space, and input-output representa-
tions of LPV systems. We also analyze the properties of LPV systems in terms of
state-observability, state-reachability, and dynamic stability.

3.1 General Class of LPV Systems

In this section, we establish the basics of a behavioral framework for linear parame-
ter-varying (LPV) systems where a representation-free definition of such systems
can be given and the previously considered concepts of LPV representations and
corresponding theories can be re-established. Our main motivation is to set this
framework as a tool for the analysis of LPV system identification in a well-founded
sense.

One of the key concepts that is required to establish the LPV behavioral frame-
work is an algebraic structure with elements describing differential equations, like
R[ξ ] (the ring of polynomials with real constant coefficients) used in the LTI case.
As we will see, the required structure in the LPV case is based on polynomials
with coefficients that are functions of the scheduling variable p and its derivatives
(continuous-time) or its time-shifts (discrete-time). The construction of this struc-
ture enables us to apply the results of the linear time-varying (LTV) behavioral
approach, worked out by [239] and [78]. We use these results to establish three
key theorems: the existence of kernel representations, the existence of state-kernel
forms, and later in Sect. 3.2 the concept of left/right unimodular transforma-
tions. These theorems give the basic building blocks for the derivation of equiva-
lence transformations between LPV representations, treated in Chap. 4, which have
paramount significance for system identification.

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 45–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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First, let’s investigate what we call an LPV system from the behavioral point
of view and what kind of physical phenomena are represented by this modeling
concept.

3.1.1 Parameter Varying Dynamical Systems

In aerospace engineering, it is well-known that many airplanes, like the F-16 Fight-
ing Falcon presented in Fig. 3.1, are nonlinear dynamical systems, but at a constant
altitude they can be well approximated as an LTI system [181, 42]. Then, by view-
ing the aircraft as a collection of LTI behaviors corresponding to different altitude
levels and using the altitude variable as a scheduling between them, we can arrive
at an approximation of the global behavior. In this context, the concept of schedul-
ing means the selection of the LTI behavior associated with a specific altitude level.
This behavior describes the possible continuation of signal trajectories during the
time interval in which the aircraft remains at the same altitude. Thus, the result-
ing representation of the global behavior involves coefficients that are functions of
the scheduling. Such a modeling approach, that was introduced in Chap. 1 as the
gain-scheduling principle, defines a parameter-varying (due to scheduling) and lin-
ear (in signal relation) system. Such systems are referred as LPV. However, it is
important that an LPV system is more than just an array of LTI systems, because
the governing scheduling rules or functions also define the dynamical behavior be-
tween each scheduling point, i.e. altitude points of this example. The concept of
scheduling functions and “frozen” LTI behaviors provides an essential viewpoint on
LPV systems which will be frequently used in the development of the identification
approaches of Chap. 9.

In the general parameter-varying (PV) framework, the scheduling variable, com-
monly denoted by p, is an external1, so-called free signal of the system, that governs
the dynamical behavior. From this aspect, the role of p can be understood as an other
“time-variable” that determines the change of signal relations. However, the trajec-
tory of p is unknown in advance which property distinguishes LPV systems from
the LTV system class, where the variations of signal relations is directly associated
with time. Based on this, the class of PV systems can be defined as follows:

Definition 3.1 (Parameter-varying dynamical system). A parameter-varying dy-
namical system S is defined as a quadruple

S = (T,P,W,B), (3.1)

with T the time-axis, P the scheduling space with dimension nP, W the signal space
with dimension nW, and B ⊆ (W×P)T the behavior (XT is the standard notation
for the collection of all maps from T to X). �

1 Note that systems where p is an internal variable (like output, input, or state) are called
quasi parameter-varying systems. Still, such systems are commonly treated as a PV system
with external scheduling variable, therefore in the upcoming analysis, p is assumed to be
an independent variable. For more on quasi-PV systems, see Chap. 7.
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F-16 “Fighting Falcon”

Altitude

External 
variable

p(t)

LPV model

Array of local LTI 
models 

Schedules between 
LTI behaviors

Defines transient 
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Velocity, achieved 
Yaw and Pitch

Output

y(t)

Thrust , Yaw, 
and Pitch command

Input

u(t)

Fig. 3.1 The LPV modeling concept of the F-16 Fighting Falcon.

The set T defines the time-axis of the system, describing continuous-time (CT),
T = R, and discrete-time (DT), T = Z, systems alike, while W gives the range
of the system signals. The behavior B ⊆ (W×P)T is the space of all signal and
scheduling trajectories that are compatible with the system. Note that there is no
prior distinction between inputs and outputs in this setting. The scheduling space
P is usually a closed subset of a vector space on which the scheduling variable p
varies: p ∈ PT. In our example, P refers to the altitude range of the aircraft, which
is positive and bounded by a maximum height of operation. Often, the admissible
trajectories of p are further restricted to a subset of PT to bound their variations, e.g.
it is not possible for an aircraft to have discontinuous jumps in altitude. This set of
admissible scheduling trajectories is defined as the projected scheduling behavior:

BP = πpB =
{

p ∈ P
T | ∃w ∈W

T s.t. (w, p) ∈B
}

, (3.2)

where πp denotes projection onto PT. In other words, BP describes all possible
scheduling trajectories of S. Similarly we can define the projected signal behavior
BW. Additionally, for a given fixed scheduling trajectory p ∈ BP, the projected
behavior

Bp =
{

w ∈W
T | (w, p) ∈B

}
, (3.3)

defines all the signal trajectories compatible with the fixed scheduling trajectory p.
The projected behavior gives the possible course of actions or maneuvers that the
aircraft in our example can take to follow a fixed altitude trajectory. In case of a
constant scheduling trajectory, p ∈Bp with p(t) = p for all t ∈ T where p ∈ P, the
projected behavior Bp is called a frozen behavior and denoted as

Bp =
{

w ∈W
T | (w, p) ∈B with p(t) = p, ∀t ∈ T

}
. (3.4)
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Definition 3.2 (Frozen system). Let S = (T,P,W,B) be a PV system and consider
Bp for a given p ∈ P. The dynamical system

Fp = (T,W,Bp) (3.5)

is called a frozen system of S. �

With the previously introduced concepts, we can define LPV systems as follows:

Definition 3.3 (LPV system). The parameter-varying system S is called LPV, if the
following conditions are satisfied:

• W is a vector-space and Bp is a linear subspace of WT for all p∈BP (linearity).
• T is closed under addition.
• For any (w, p) ∈B (a signal trajectory associated with a scheduling trajectory)

and any τ ∈ T, it holds that (w(�+ τ), p(�+ τ)) ∈B, in other words qτB = B
(time-invariance). �

In terms of Def. 3.3, for a constant scheduling trajectory p(k) ≡ p, time-invariance
of S implies time-invariance of Fp. Based on this and the linearity condition of Bp,
it holds for an LPV system that for each p∈ P the associated frozen system Fp is an
LTI system, which is in accordance with previous definitions of LPV systems (see
[156]). In this way, the projected behaviors of a given LPV system S with respect
to constant scheduling trajectories define a set of LTI systems:

Definition 3.4 (Frozen system set). Let S = (T,P,W,B) be an LPV system. The
set of LTI systems

FS =
{F = (T,W,B′) | ∃p ∈ P s.t. B′ = Bp

}
(3.6)

is called the frozen system set of S. �

This set refers in our example to the LTI behaviors of the aircraft for constant altitude
levels. We have already motivated that the LPV system concept is advantageous
compared to nonlinear systems, as the relation of the signals is linear. Definition 3.3
also reveals the advantage of this system class over LTV systems: the variation of
the system dynamics is not associated directly with time, but with the variation of
a free signal. Thus, the LPV modeling concept, compared to LTV systems, is more
suitable for non-stationary/coordinate dependent physical systems as it describes the
underlying phenomena directly (see Example 3.1).

Example 3.1 (Varying mass on a spring). To emphasize the advantage of LPV sys-
tems, let’s investigate the modeling of the motion of a varying mass connected to a
spring (see Fig. 3.2). This problem is one of the typical phenomena occurring in sys-
tems with time-varying masses like in motion control (robotics, rotating crankshafts,
rockets, etc.), biomechanics, and in fluid-structure interaction problems. Denote by
wx the position of the varying mass m. Let ks > 0 be the spring constant, intro-
duce wF as the force acting on the mass, and assume that there is no damping. By
Newton’s second law of motion, the following equation holds:
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Fig. 3.2 Varying-mass con-
nected to a spring.

m(t)

wx(t)

wF(t)

ks

d
dt

(
m

d
dt

wx

)
= wF−kswx, (3.7)

or equivalently

kswx +
(

d
dt

m

)
d
dt

wx + m
d2

dt2 wx = wF. (3.8)

It is immediate that by taking m as a scheduling variable, the behavior of this plant
can be described as an LPV system, preserving the physical insight of Newton’s
second law. On the other hand, viewing m as a time-varying parameter, whose tra-
jectory is fixed in time, results in a LTV system. Such a system would explain the
behavior of the plant for only a fixed trajectory of the mass.

It also holds that for any constant scheduling trajectory p(t) = p, i.e. constant
m for all t ∈ R, the set of admissible signal trajectories of (3.8) is defined as the
solutions of

kswx−wF +p
d2

dt2 wx = 0. (3.9)

This yields that the frozen system set is the collection of LTI systems represented
by (3.9) for all p ∈ P, i.e. all possible constant m. �
In the sequel, we restrict our attention to continuous-time (T = R) and discrete-time
(T = Z) systems with finite dimensional and real signal space (W = RnW) and with
finite dimensional, real, and closed scheduling space (P⊆RnP ). In fact, we consider
LPV systems described by finite order linear differential or difference equations
with parameter-varying effects in the coefficients, and we call such systems linear
parameter-varying differential/difference systems and denote them with S. A basic
property of such systems is that their behaviors B are complete ((w, p) ∈ B⇔
(w, p)|[t0,t1] ∈B|[t0,t1],∀[t0,t1] ⊂ T). In the sequel, if we refer to LPV systems, we
refer to this system class.

3.1.2 Representations of Continuous-Time LPV Systems

In order to re-establish the concept of LPV representations, we introduce kernel
(KR), state-space (SS) and input-output (IO) representations of continuous-time
(CT) LPV systems. However, to define these representations, we first have to intro-
duce differential equations with varying-coefficients as the representations of LPV
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behaviors. These differential equations are described by polynomials of an algebraic
ring where equivalence of representations and other system theoretic concepts can
be characterized by simple algebraic manipulations.

3.1.2.1 Coefficient Functions

As stated, the coefficients of the representations of LPV systems are functions of
the possibly multidimensional scheduling variable p. Thus, first we define the class
of functional dependencies that we consider in the sequel. In fact, we establish an
algebraic field of a wide class of multivariable functions. We show later that if the
variables of these functions are assigned to the elements of p and their derivatives,
then equivalence transformations between different representation domains become
possible. To formulate the class of multivariable functions that we consider, intro-
duce the following definition:

Definition 3.5 (Real-meromorphic function, [88]). A real-meromorphic function
f : Rn→R is a function in the form

f =
g
h
, (3.10)

where g,h : Rn→ R are holomorphic (analytic) functions and h �= 0. �
Meromorphic functions consist of all rational, polynomial functions, trigonomet-
ric expressions, rational exponential functions etc., however functions like f (x) =
sin−1(1/x) are not meromorphic (x = 0 is an accumulation point of the singulari-
ties). Therefore, this class contains the common functional dependencies that result
during LPV modeling of physical systems (see Chap. 1 and 7). Next we formulate
an algebraic field over all multivariable real-meromorphic functions.

Let Rn denote the field of real-meromorphic functions with n variables. Denote
the variables of a r ∈ Rn as ζ1, . . .ζn. Also define an operator � j on Rn with 1 ≤
j ≤ n such that

� j(r(ζ1, . . . ,ζn)) := r(ζ1, . . . ,ζ j,0, . . . ,0). (3.11)

Note that � j projects a meromorphic function to a lower dimensional domain. In-
troduce R̄n, defined as

R̄n = {r ∈Rn | �n−1(r) �= r} . (3.12)

It is clear that R̄n consist of all functions Rn in which the variable ζn has a
nonzero contribution, i.e. it plays a role in the function. Also define the opera-
tor �∗ : (∪i≥0Ri)→ (∪i≥0R̄i), which associates a given r ∈ Rn with a r′ ∈ R̄n′ ,
n ≥ n′, i.e. �∗(r) = r′, such that r′(ζ1, . . . ,ζn′) = r(ζ1, . . . ,ζn′ ,0, . . . ,0) for all
ζ1, . . . ,ζn′ ∈ R, �n′(r) = r and n′ is minimal. In this way, �∗ reduces the vari-
ables of a function till ζn′ can not be left out from the expression because it has
a nonzero contribution to the value of the function. Now define the collection of all
real-meromorphic functions with finite many variables as

R=
⋃
i≥0

R̄i, with R̄0 = R. (3.13)
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The function class R will be used as the collection of coefficient functions (like
{A, . . . ,D} and {ai,b j} in (1.6a-b) and (1.4)) for the representations, giving the ba-
sic building block of PV differential equations. These functions are not only used
to express dependence over multidimensional p but also to enable a distinction be-
tween dynamic scheduling dependence of the coefficients and the dynamic relation
between the signals of the system. The following lemma is important:

Lemma 3.1 (Field property ofR). The setR is a field.

The proof of this lemma is straightforward and is given in [188]. Denote by R·×·
the matrices with elements in R. It is immediate thatR·×· is also a field.

3.1.2.2 Representing Scheduling Dependence

The next step towards the formal definition of PV differential equations and the asso-
ciated kernel representations, is to associate the variables of the coefficient functions
with elements of p and its derivatives. This is required to handle multiplication of
coefficients by time operators. Given the scheduling dimension nP, denote the vari-
ables of r ∈ R̄n (n-dimensional function inR) as:

r({ζi j}nζ ,nP,τ) := r
(
ζ01,ζ02, . . . ,ζ0nP

,ζ11,ζ12, . . . ,ζnζ 1, . . . ,ζnζ τ

)
, (3.14)

where nζ ≥ 0 and 0 < τ ≤ nP such that nζnP + τ = n. In this way, the first variable
of r is denoted by ζ01, the second is denoted by ζ02, etc. Thus, (3.14) gives a unique
labeling of the variables for each R̄n with n≥ 1. In continuous-time, associate each
variable ζi j as

ζi j =
di

dti p j (3.15)

where p j is the jth element of the scheduling signal p. This association provides the
description of parameter-varying coefficients inR, where each coefficient is a mero-
morphic function of the elements of p and their finite order derivatives (see Example
3.2). We call such a coefficient dependence dynamic. To compare this dependency
class to class of dependencies used in the state-of-the-art of LPV identification (see
Chap. 1), define the subset of R for a given nP as R|nP

=
⋃nP

i=0 R̄i. It is easy to
show that R|nP

is a field and it consists of meromorphic coefficient functions de-
pendent on the elements of p (without derivatives). This dependence type is called
static. It has already been discussed in Chap. 1, that LPV representations based
on coefficients in R|nP

are inequivalent (see Chap. 4 and [189, 202] for a detailed
explanation). This is the main motivation to use coefficients in R as the building
blocks of representations, because with these, equivalency of representations can be
re-established.

To express the association (3.15), we introduce the operator � : (R,BP)→ (RR)
that associates r ∈R and p ∈BP with a time function defined as:

r � p = r

({
di

dti p j

}
nζ ,nP,τ

)
. (3.16)



52 3 LPV Systems and Representations

This operator expresses the evaluation of the coefficient function r along a schedul-
ing trajectory p and its derivatives.

Example 3.2 (Coefficient function). Let P = RnP with nP = 2. Consider the real-
meromorphic coefficient function r : R→ R3 defined as

r(x1,x2,x3) =
cos(x1)
sin(x3)

. (3.17)

Then for a scheduling signal p : R→ R2:

r � p = r
(

p1, p2,
d
dt p1

)
=

cos(p1)
sin( d

dt p1)
. (3.18)

On the other hand, if nP = 3, then

r � p = r (p1, p2, p3) =
cos(p1)
sin(p3)

. (3.19)

�

In the sequel the (time-varying) coefficient sequence (r � p) will be used to operate
on a signal w (like ai(p) in (1.4)), giving the varying coefficient sequence of the
representations. In this respect an important property is that multiplication of the
� operation with the operator d

dt is not commutative, in other words d
dt (r � p) �=

(r � p) d
dt . To handle this multiplication, for r ∈ R we define the dot operator on R

to describe differentiation of parameter-varying coefficient functions.

Definition 3.6 (Dot operator). Let r ∈ R̄n be a meromorphic function in R. For a
given scheduling dimension nP, denote the variables of r as {ζi j}nζ ,nP,τ based on
(3.14). Then, in continuous-time, the dot operator onR is introduced as

ṙ := �∗(r̆), (3.20)

where r̆ ∈ R̄n+nP
and is given by

r̆({ζi j}nζ+1,nP,τ) =
nζ

∑
k=0

nP

∑
l=1

∂
∂ζkl

r({ζi j}nζ ,nP,τ )ζ(k+1)l

+
τ

∑
l=1

∂
∂ζnζ l

r({ζi j}nζ ,nP,τ)ζ(nζ+1)l. (3.21)

�

Note that the chain rules of differentiation imply that the dot operator fulfills the
following rules for any r1,r2 ∈R:

⎧
⎪⎨
⎪⎩

if r = r1± r2 then ṙ = ṙ1± ṙ2,
if r = r1r2 then ṙ = ṙ1r2 + r1ṙ2,

if r = r1
r2

then ṙ = ṙ1r2−r1 ṙ2
r2
2

.
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Due to the differentiation to which (3.21) corresponds, the number of variables in the
coefficient functions can grow, representing an increase in the order of derivatives
of p in the functional dependence.

Example 3.3 (Non-commutativity and the dot operation). Consider again Example
3.1 and rewrite the differential equation (3.7) into the form:

kswx−wF + ξ (r �m)ξwx = 0, (3.22)

with ξ = d
dt and r ∈ R is the identity function: r �m = m. Then, due to the non-

commutative multiplication rule (3.32), equation (3.22) is equivalent with

kswx−wF +(ṙ �m)ξwx +(r �m)ξ 2wx = 0, (3.23)

where ṙ �m = d
dt m. Note that (3.23) is identical to (3.8) by using the signal substitu-

tion p = m and w� = [wx wF]. �

3.1.2.3 Polynomials overR

In order to introduce representations of LPV systems, an other key ingredient is
needed, namely the formulation of polynomials with meromorphic coefficient func-
tions that have a finite number of variables. Polynomials of this type are used to
define PV differential equations describing the behavior of CT-LPV systems. First
we define the ring of such polynomials and we show that multiplication, which cor-
responds to differentiation, is non-commutative over this ring.

Introduce R[ξ ] as the collection of all polynomials in the indeterminant ξ and
with coefficients inR. It is a general property of polynomial spaces over a field, that
they define a ring. Also introduce R[ξ ]·×·, the set of matrix polynomial functions
with elements in R[ξ ]. Using R[ξ ] and the operator �, we are now able to define a
parameter-varying differential equation:

Definition 3.7 (PV differential equation). Consider R(ξ ) =∑
nξ
i=0 riξ i ∈R[ξ ]nr×nW

and (w, p) ∈ (RnW ×RnP)R.

(R(
d
dt

)� p)w :=
nξ

∑
i=0

(ri � p)
di

dti w = 0, (3.24)

is called a PV differential equation with order nξ = Deg(R). �
PV differential equations in the form of (3.24) are used to define the class of CT-LPV
systems we consider in the sequel. It will be shown, that this class contains all the
popular definitions of LPV state-space and IO models. Furthermore this mathemati-
cal structure also enables the transformation of a wide class of nonlinear systems to
an LPV form by preserving physical insight (see Example 3.4 and Chap. 7).

Example 3.4 (PV differential equation). Consider the mass-spring system of Exam-
ple 3.1. Let p = m with a scheduling space P = [1,2] and let w = [wx wF]� with
W = R2. Then the possible signal trajectories are defined as the solutions of
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ksw1−w2 +
(

d
dt

p

)
d
dt

w1 + p
d2

dt2 w1 = 0. (3.25)

for all smooth p : R→ P. Such a system equation can be written in the form (3.24)
with nW = 2, nξ = 1, nP = 1, and

r0 � p =
[
ks −1

]
, r1 � p =

[
d
dt p 0

]
, r2 � p =

[
p 0

]
. �

So far we have defined PV differential equations in the form of

(R(
d
dt

)� p)w = 0, (3.26)

which for a given p corresponds to an ordinary differential equation in the variable
w. In the behavioral framework, a PV system is defined as the union of signal and
scheduling trajectories (w, p) that are compatible with the system. Thus to define a
representation of a system in terms of a PV differential equation (3.26) which de-
scribes these signals, we require the concept of admissible signal trajectories of PV
differential equations. DefineLloc

1 (R,RnW), the space of locally integrable functions
w : R→RnW satisfying: ∫ τ2

τ1

‖w(t)‖2 < ∞, (3.27)

with [τ1,τ2] ⊂ R and ‖ � ‖2 denoting the Euclidian norm on RnW . Also define
C∞(R,R·) as the space of infinitely differentiable functions w : R→R·. Now we can
formulate the definition of solutions we consider for (3.26). Restricting ourselves to
C∞ would leave out important functions like steps. On the other hand, the space of
distributions is too large to have the solution at every time instant well-defined. A
vital alternative is Lloc

1 , which is large enough to accommodate steps, ramps, etc.
and still concrete enough to avoid problems with distributions. Thus, the concept of
solution is introduced in the following sense:

Definition 3.8 (Weak solution). We call w∈Lloc
1 (R,RnW) a weak solution of (3.24)

for a given smooth scheduling trajectory p ∈BP ⊆ Lloc
1 (R,RnP), if

〈w,(R†(
d
dt

)� p)ϕ〉 :=
∫

R

w�(R†(
d
dt

)� p)ϕ dt = 0 (3.28)

holds for every smooth, so-called test function, ϕ : R→ Rnr with compact support,
where R† is

R†(ξ ) =
nξ

∑
i=0

(−1)iξ ir�i . (3.29)

�
In the following we only consider scheduling trajectories for which the coefficients
of R(ξ ) � p are bounded, so the set of solutions associated with R is well defined
in terms of (3.28). Additionally, R† (also called the adjoint of R) results in the form
of (3.29), due to integrations by parts of (3.24) to transfer all differential operators
acting on w to differential operators acting on ϕ , similar to the LTI case [51]. Each
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integration by parts entails a multiplication by −1. To compute R† in a form where
the coefficients are right-side multiplied by ξ , repeated use of the multiplication rule
(3.32) is required in (3.29) (see Example 3.5).

Example 3.5 (Weak solution). Consider the parameter-varying differential equation
(3.25). Then

R†(ξ ) = r�0 − ξ r�1 + ξ 2r�2 =
(

r�0 − ṙ�1 + r̈�2
)

+
(

2ṙ�2 − r�1
)
ξ + r�2 ξ ,

R†(ξ )� p =
[
ks

−1

]
+
[

d
dt p
0

]
ξ +

[
p
0

]
ξ 2.

Choose a particular scheduling trajectory p(t) = cos(t) and a test function ϕ(t) =
cos(t). Then

(R†(
d
dt

)� p)(t) ·ϕ(t) =
[
ks cos(t)+ sin2(t)− cos2(t)

−cos(t)

]
, (3.30)

which means that taking w(t) = [cos(t) ks cos(t) + sin2(t)− cos2(t)]� gives 0
for (3.28). It can be shown, that this holds for every ϕ , yielding that w is a
weak solution. Substitution of w into (3.25) satisfies the differential equation with
p(t) = cos(t) for all t ∈ R. This implies that w is a strong solution (satisfies
(3.25) for all t ∈ R) of the varying-mass and spring system. However, taking
w(t) = [ 1

ks cos(t)−cos2(t)+sin2(t)
1

cos(t) ]
� also gives 0 for (3.28) with ϕ(t) = cos(t),

but such a solution does not satisfies (3.25) for {k ·π}k∈Z and as a result it can only
be a weak solution. By considering other test functions, it can be shown that (3.28)
is not satisfied in all cases, which proves that this choice of w is not a weak solution
of (3.25). �

Due to its algebraic structure, it is possible to show that R[ξ ] is a domain, i.e. for
all R1,R2 ∈R[ξ ] it follows that

R1(ξ )R2 = 0(ξ ) ⇒ R1(ξ ) = 0 or R2(ξ ) = 0. (3.31)

Since the indeterminant ξ is associated with d
dt , multiplication with ξ on R[ξ ] is

non-commutative due to the chain rule of differentiation. Multiplication with ξ can
be algebraically defined through the dot operator using the non-commutative rule:

ξ r = ṙ + rξ , (3.32)

where r ∈ R (see Example 3.3). Additionally, the ring R[ξ ] is simple (i.e. the only
ideals that are both right and left ideals are the trivial ones: 0 andR[ξ ] itself) and it
is a left and right principle domain (i.e. every left and right ideal can be generated
by a single element). To show these properties, the argument similarly follows as
in the case of polynomial rings with rational coefficient functions [64]. In fact this
ring is even a right and left Euclidian domain, which means that there exist a right
and left division with remainder [41]. Based on these properties and with the non-
commutative multiplication rule (3.32), R[ξ ] defines an Ore algebra [132].
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Due to the fact that R[ξ ] is a right and left Euclidean domain, there exist left
and right division by remainder. This means, that if R1,R2 ∈ R[ξ ] with Deg(R1)≥
Deg(R2) and R2 �= 0, then there exist unique polynomials R′,R′′ ∈ R[ξ ] such that

R1(ξ ) = R2(ξ )R′(ξ )+ R′′(ξ ), (3.33)

where Deg(R2) > Deg(R′′). Here we call R′′ the right-remainder. Furthermore, as
R[ξ ] is simple, the rank of a matrix polynomial R ∈R[ξ ]nr×nW is well-defined [92].
Denote by Spanrow

R (R) and Spancol
R (R) the subspace spanned by the rows (columns)

of R ∈R[ξ ]·×·, viewed as a linear space of polynomial vector functions with coeffi-
cients in R·×·. Then

Rank(R) = Dim(Spanrow
R (R)) = Dim(Spancol

R (R)). (3.34)

The notion of unimodular matrices, essential to characterize equivalent representa-
tions in Sec. 3.2, is also introduced:

Definition 3.9 (Unimodular polynomial matrix function). Let M ∈R[ξ ]n×n. Then
M is called unimodular, if there exists a M† ∈ R[ξ ]n×n, such that M†(ξ )M(ξ ) = I
and M(ξ )M†(ξ ) = I . �

Any unimodular matrix operator in R[ξ ]·×· is equivalent to the product of finite
many elementary row and column operations [41]:

1. Interchange row (column) i and row (column) j.
2. Multiply on the left (right) a row (column) i by a r ∈R, r �= 0.
3. For i �= j, add to row (column) i row (column) j multiplied by ξ n, n≥ 0.
4. Replace the first element in each of two columns by their highest common left

factor and 0 respectively.

Example 3.6 (Unimodular polynomial matrix function). The matrix polynomials
M,M† ∈R[ξ ]2×2, defined as

M(ξ ) =
[

r2 r2ξ
r1ξ r1ξ 2 + r1

]
, M†(ξ ) =

[
r1 + ξ 2r1 −ξ r2

−ξ r1 r2

]
1

r1r2
,

are unimodular as M(ξ )M†(ξ ) = M†(ξ )M(ξ ) = I. Note that ξ r1 �= r1ξ due to the
non-commutativity of the multiplication by ξ onR[ξ ]. �

Another important property of R[ξ ]·×· is the existence of a Jacobson or so-called
Smith form:

Theorem 3.1 (Jacobson form, [41]). Let R ∈ R[ξ ]nr×nW with R �= 0 and n =
Rank(R). Then there exist unimodular matrices M1 ∈R[ξ ]nr×nr and M2 ∈R[ξ ]nW×nW

such that

M1(ξ )R(ξ )M2(ξ ) =
[

Q(ξ ) 0
0 0

]
, (3.35)

where Q = Diag(1, . . . ,1,r) ∈R[ξ ]n×n and 0 �= r ∈R[ξ ].
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Due to the algebraic structure of R[ξ ]·×·, the proof of Th. 3.1 similarly follows as
in [41, Sect. 8.1]. In terms of the Jacobson form (3.35) of a given R(ξ ), introduce
Deg∗(R) := Deg(r), describing the minimal degree of the polynomial r(ξ ) which
generates R(ξ ).

Example 3.7 (Jacobson form, [239]). Consider

R(ξ ) =
[

r + ξ −1 −1
1− d

dt r − 1
r + ξ −r

]
∈R[ξ ]2×3,

where r is a meromorphic function and ξ = d
dt . Then the Jacobson form of R is

M1(ξ )R(ξ )M2(ξ ) =
[

1 0 0
0 r− 1

r + ξ 0

]
,

with

M1(ξ ) =
[

1 0
−r 1

]
, M2(ξ ) =

⎡
⎣

0 0 1
0 1 r
−1 −1 ξ

⎤
⎦ . �

Now it is possible to show that there exists a duality between the solution spaces
of PV differential equations and the polynomial modules inR[ξ ]·×· associated with
them, which is implied by a so-called injective cogenerator property. This property
makes it possible to use the developed algebraic structure to characterize behaviors
and manipulations on them. Originally the injective cogenerator property has been
shown for the solution spaces of the polynomial ring overR1 in [239]. In Appendix
A.1, this proof is extended to R[ξ ].

3.1.2.4 Kernel Representations

As a next step in the foundation of the LPV behavioral approach, we develop the
concept of KR representations of CT-LPV systems and investigate some relating
properties. Based on the concept of weak solutions of a PV differential equation, we
introduce continuous-time KR representations of LPV dynamic systems as follows:

Definition 3.10 (CT-KR-LPV representation). The parameter-varying differen-
tial equation (3.24) is called a continuous-time kernel representation, denoted by
RK(S), of the LPV dynamical system S = (R,RnP ,RnW ,B) with scheduling vec-
tor p and signals w, if

B =
{

(w, p) ∈ Lloc
1 (R,RnW ×R

nP) | (R(
d
dt

)� p)w = 0 holds weakly

}
. �

It is obvious that the behavior B associated with (3.24) always corresponds to a LPV
system in terms of Def. 3.3. As stated previously, we only consider LPV systems
with T = R that have a KR representation, so existence of such a representation is
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explicitly assumed. It will be shown that this system class includes all LPV systems
that can be described in the classical form of state-space and input-output models
(see Sec. 1.3.2) that have been considered previously in the literature. It is also
important that the allowed trajectories of p are not restricted by (3.24) (only those
p ∈ Lloc

1 (R,RnP) are excluded from B for which a coefficient ri � p is unbounded).
This is in accordance with the classical concept of p being an external variable of
the system. One can also include further restrictions on BP = πpB, like description
of the admissible scheduling trajectories as solutions of a differential equation, etc.
However, to preserve the generality of the developed framework, we do not consider
the latter case.

Based on the concept of rank, the following theorem can be introduced:

Theorem 3.2 (Existence of full row rank KR representation). Let B be given
with a KR representation (3.24). Then B can also be represented by a R′ ∈R[ξ ]·×nW

with full row rank.

The proof of this theorem is given in Appendix A.1. The significance of Th. 3.2 is
that it establishes the concept of minimality for KR representations (see Chap. 3.2).

3.1.2.5 Input-Output Representations

Another key representation form is the IO representation, which we define from the
behavioral point of view in this subsection. Before establishing our definition, we
need the concept of IO partition for LPV systems.

In many applications, in particular in control, it is necessary to group the signals
of dynamical systems into sets of input signals u : R→U and output signals y : R→
Y. This is done to distinguish which of them we would like to (or can) actuate as
inputs in order to drive the remaining so-called output signals to a desired trajectory
of B. The definition of such a IO partition of S, which is commonly non-unique, is
as follows:

Definition 3.11 (IO partition of a LPV system). Let S = (T,RnP ,RnW ,B) be an
LPV system. The partition of the signal space as RnW = U×Y = RnU×RnY and par-
tition of w ∈ Lloc

1 (T,RnW) correspondingly with u ∈ Lloc
1 (T,U) and y ∈ Lloc

1 (T,Y)
is called an IO partition of S, if

1. u is free, i.e. for all u∈Lloc
1 (T,U) and p∈BP, there exists a y ∈Lloc

1 (T,Y) such
that (Col(u,y), p) ∈B.

2. y does not contain any further free component, i.e. given u, none of the compo-
nents of y can be chosen freely for every p ∈BP (maximally free). �

An IO partition implies the existence of matrix-polynomial functions Ry ∈R[ξ ]nY×nY

and Ru ∈R[ξ ]nY×nU with Ry full row rank, such that (3.24) can be written as

(Ry(
d
dt

)� p)y = (Ru(
d
dt

)� p)u, (3.36)

with nW = nU + nY. The corresponding behavior B is given by
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{
(u,y, p) ∈ Lloc

1 (R,U×Y×P) | (Ry(
d
dt

)� p)y = (Ru(
d
dt

)� p)u holds weakly

}
,

with U = RnU and Y = RnY . For those scheduling trajectories p, for which the max-
imum freedom of the input signal u holds in Bp, an IO partition defines a causal
mapping in case the solutions of (3.36) are restricted to have left compact sup-
port. Otherwise, initial conditions also matter. LPV systems with no IO partition are
called autonomous. Note that for some systems it is possible that the freedom of
components of w can change for specific scheduling trajectories. In other words, it
can happen that some of the outputs become free for specific scheduling trajecto-
ries but not for all. In this case, the autonomous part of the behavior is related to
the scheduling dependent nature of the system. In case nU = nY = 1, systems are
referred to as single-input single-output (SISO), while systems with nU > 1,nY > 1
are called multiple-input multiple-output (MIMO) systems.

Now it is possible to introduce IO representations of CT-LPV systems:

Definition 3.12 (CT-LPV-IO representation). The continuous-time IO representa-
tion of S = (R,P⊆RnP ,RnU+nY ,B) with scheduling vector p and IO partition (u,y)
is denoted by RIO(S) and defined as a parameter-varying differential-equation sys-
tem with order na:

na

∑
i=0

(ai � p)
di

dti y =
nb

∑
j=0

(b j � p)
d j

dt j u, (3.37)

where a j ∈RnY×nY and b j ∈RnY×nU with ana �= 0 and bnb �= 0 are the meromorphic
parameter-varying coefficients of the matrix polynomials Ru(ξ ) = ∑nb

j=0 b jξ j and

full rank Ry(ξ ) = ∑na
i=0 aiξ i. As u is maximally free, such polynomials exist with

na ≥ nb ≥ 0 and na > 0. �

In terms of Th. 3.2, any KR representation has a full row-rank equivalent, thus the
existence of IO representations is guaranteed for any valid IO partition. It is also ap-
parent that (3.37) is the continuous-time “dynamic dependent” counterpart of (1.5a).

Example 3.8 (IO partition and representation). In Example 3.1, the force wF is a free
variable as it represents the inhomogeneous part of (3.7). Thus, the choice of w =
[ y u ]� = [ wF wx ]� yields a valid IO partition. With m chosen as the scheduling
signal p the PV behavior can be represented in the form of (3.36) with polynomials

Ry(ξ ) = a0 + a1ξ + a2ξ 2, Ru(ξ ) = b0, (3.38)

which have coefficients

a0 � p = ks, a1 � p =
d
dt

p, a2 � p = p, b0 � p = 1.

Obviously, Ry has full rank. This implies that Ry(ξ ) and Ru(ξ ) define an LPV-IO
representation of the system. �
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In case of continuous-time LPV systems, the notion of transfer function or frequency
response has no meaningful2 interpretation. By using the approximative transfer
function calculus of LTV systems [117], some interpretation of these notions can
be given for LPV systems. However, these concepts do not satisfy the relations of
the LTI case. On the other hand, each element of the frozen system set FS , is an
LTI system. Therefore, each Fp ∈ FS has a transfer function Fp(s), a frequency
response Fp(iω), and an impulse response hp(t) with Markov parameters {gi|p}∞i=0.
The notion of frozen transfer function set or impulse response set can be established
for any LPV system. The set of frozen poles or zeros follows similarly.

3.1.2.6 State-Space Representations

Besides partitioning the signals of the system in an IO sense, we often need to
introduce additional variables in most modeling exercises to express more conve-
niently the relationships of those signals we are particulary interested in. This is
motivated by the first principle laws of physics where we can often meet physically
non-existing (virtual) variables like the potential field in the well-known Maxwell’s
equations. It also can happen that we are just simply not interested in some “inner”
variables of the system, like in the voltage drop on a resistor of a space shuttle, if
we would like to control its motion around the planet. We call these other, auxiliary
variables latent variables. The introduction of latent variables and their associated
representations are essential for LPV systems as they give the mathematical concept
of signals that corresponds to inner variables or states of the system. In the follow-
ing we extend the definition of latent variables and the property of state to the LPV
case. Then we introduce the state-kernel form, proving that all latent variable rep-
resentations have a first order PV differential equation form. The latter property is
used to define SS representations of LPV systems.

If the continuous-time LPV system contains nL latent (eliminatable) and nW man-
ifest (non-latent) variables, then as a generalization of (3.24):

(RW(
d
dt

)� p)w = (RL(
d
dt

)� p)wL (3.39)

holds, where w : R → RnW is the manifest variable, wL : R → RnL is the latent
variable, RW ∈R[ξ ]nr×nW and RL ∈R[ξ ]nr×nL are polynomial matrices with mero-
morphic coefficients. The set of equations (3.39) is called a latent variable repre-
sentation of the LPV latent variable system (Z,RnP ,RnW ×RnL ,BL), where the
so-called full behavior BL of this system is defined as

BL =
{

(w,wL, p) ∈ Lloc
1 (R,RnW ×R

nL×R
nP) | (3.39) holds weakly

}
.

Additionally, B = π(w,p)BL is introduced as the manifest behavior associated
with BL:

2 Some authors [225, 135, 125] introduce LPV transfer functions with varying parameters.
As they commonly refer only to the collection of transfer functions associated with FS ,
this notion of the LPV transfer function is misleading.
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B =
{

(w, p) ∈ Lloc
1 (R,RnW ×R

nP) | ∃wL ∈ Lloc
1 (R,RnL) s.t. (w,wL, p) ∈BL

}
.

Elimination of latent variables is always possible onR[ξ ]·×·.

Theorem 3.3 (Elimination property). Given a LPV latent variable system (T,RnP ,
RnW ×RnL ,BL) with a signal variable w, a latent variable wL, and scheduling
variable p, then there exists a R′ ∈R[ξ ]·×nW which defines a LPV-KR representation
of B = π(w,p)BL.

For a proof see Appendix A.1. Note that elimination of latent variables in CT, can
result in a loss of smoothness constraints of w which have been imposed by the latent
form (3.39) and can not be represented by the resulting KR representation (in detail
see [145]). The most natural way to avoid such problems is to drop these constraints
and consider the closure of π(w,p)BL in the topology of Lloc

1 , i.e. π(w,p)BL. This
allows both to keep Lloc

1 as the solution space and the proper elimination of latent
variables. According to this, in Th. 3.3 the LPV-KR representation has an equal
behavior with π(w,p)BL. Now it is possible to define the concept of state for LPV
systems.

Definition 3.13 (Property of state for LPV systems). Let S = (T,RnP ,RnW×RnL

BL) be a LPV latent variable system with a latent variable wL. Then wL is a state if
for every t0 ∈T and (w1,wL,1, p), (w2,wL,2, p)∈BL with wL,1(t0) = wL,2(t0) and in
case of T = R, with wL,1 and wL,2 continuous on R, it follows that the concatenation
of these signals at t0 satisfies

(w1,wL,1, p)∧
t0

(w2,wL,2, p) ∈BL. (3.40)

Then BL is called a state-space behavior, and the latent variable wL is called the
state. �
In terms of Def. 3.13, wL needs to qualify as a state for each scheduling trajectory
of BP.

Example 3.9 (Latent variable representation). By considering the system in Exam-
ple 3.1 with scheduling p = m and P = [1,2], the following latent variable represen-
tation of the model has the same manifest behavior:

⎡
⎣
−ks 1

0 0
1 0

⎤
⎦
[

wx

wF

]
=

⎡
⎢⎣

d
dt 0

− 1
p

d
dt

0 1

⎤
⎥⎦wL. (3.41)

This can be proved by substituting the third row of (3.41) into the second row, giving

wL,1 = p
d
dt

wF. (3.42)

Substitution of (3.42) into the first row of (3.41) gives a PV differential equation in
the variables wx and wF, which is equal to (3.25). Any wL ∈ Lloc

1 (R,R2) satisfying
weakly the previous equations, trivially fulfills the property of state. �
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To decide whether a latent variable is a state, the following theorem is important:

Theorem 3.4 (State-kernel form). The latent variable wL is a state, iff there exist
matrices rw ∈ Rnr×nW and r0,r1 ∈ Rnr×nL such that the full behavior BL has the
kernel representation:

rww+ r0wL + r1ξwL = 0. (3.43)

The proof is given in Appendix A.1. In this way, a CT-LPV state-space (SS) behav-
ior is defined by a first-order meromorphic-coefficient differential equation. Now
we can give the definition of SS representations of a continuous-time S:

Definition 3.14 (CT-LPV-SS representation). The continuous-time state-space
representation of S = (R,P⊆RnP ,RnU+nY ,B) with scheduling vector p is denoted
by RSS(S) and defined as a first-order parameter-varying differential equation sys-
tem in the latent variable x : R→X:

d
dt

x = (A� p)x +(B� p)u, (3.44a)

y = (C � p)x +(D� p)u, (3.44b)

where (u,y) is the IO partition of S, x is the state-vector, X = RnX is the state-space,

BSS =
{

(u,x,y, p) ∈ Lloc
1 (R,U×X×Y×P) | (3.44a–b) hold weakly

}
,

is the full behavior of (3.44a–b), B is equal to the closure of the manifest behavior
of (3.44a–b), i.e. B = π(u,y,p)BSS, and

[
A B
C D

]
∈
[ RnX×nX RnX×nU

RnY×nX RnY×nU

]
. �

Example 3.10 (SS representation). Continuing Example 3.9, the LPV state-space
representation of the model follows by taking [ y u ]� = [ wx wF ]� as the IO par-
tition and x = wL as the state:

d
dt

x =
[

0 0
1
p 0

]
x +

[−ks 1
0 0

][
y
u

]
, (3.45a)

y =
[

0 1
]

x. (3.45b)

By substitution of (3.45b) into (3.45a), the state equation (3.44a) results, while
(3.45b) gives the output equation (3.44b). Thus the corresponding SS representa-
tion is

[
A� p B� p
C � p D� p

]
=

⎡
⎣

0 −ks 1
1
p 0 0

0 1 0

⎤
⎦ . (3.46)

�
Note that in the full behavior BSS, the latent variable x trivially fulfills the state

property in terms of Th. 3.4. Additionally, this behavioral type of definition of CT-
SS representations includes the definition of LPV state-space models used in the
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state-of-the-art of LPV control. In those models, the dependence of the matrix func-
tions are assumed to be rational and static, which is trivially included in R. Similar
to LPV-IO representations the notions of transfer function, frequency response, and
impulse response can only be defined in a frozen sense for LPV-SS representations.

3.1.3 Representations of Discrete-Time LPV Systems

The concept of discrete-time (DT) parameter-varying dynamical systems is also im-
portant for engineering applications. In the following we formulate the behavioral
framework for DT-LPV systems. First we investigate the concept of DT parameter-
varying systems and then we define their KR, SS and IO representations. To do
so, we use the previously developed ring of polynomials R[ξ ] with meromorphic
coefficient functions. In the DT case, the time operator q is substituted as the inde-
terminate of these polynomials which results in a different non-commutative multi-
plication rule inR[ξ ] than in CT case, but the algebraic structure remains the same.
This property provides that the previously developed theories extend to the DT case.

3.1.3.1 The Discrete-Time Parameter-Varying Concept

In discrete-time, the time-axis is restricted to T = Z. Signals on this axis can be
viewed (but not necessarily) as observations of continuous-time signal trajectories
at equidistant time points. This concept is called periodic, equidistant sampling that
defines the DT projection of a CT signal w : R→W as w′ : Z→W satisfying

w′(k) = w(kTd), ∀k ∈ Z, (3.47)

with discretization-step Td ∈R+ where R+ is the set of positive real numbers. How-
ever in the parameter-varying case, the scheduling signal is also restricted to the DT
time-axis as its observations are only available at the sampling instants. Thus, the
DT projection of a CT scheduling signal p : R→P is defined as p′ : Z→P satisfying

p′(k) = p(kTd), ∀k ∈ Z. (3.48)

In this way, we call S′ = (Z,W,P,B′) the DT equivalent of S = (R,W,P,B) under
the sampling time Td if

B′ =
{

(w′, p′) ∈ (W×P)Z | ∃(w, p) ∈B s.t. (3.47) & (3.48) hold
}

. (3.49)

Note that for arbitrary Td it is not guaranteed that there exists a DT-LPV system such
that (3.49) is satisfied. On the other hand, not every DT-LPV system is equivalent
with a sampled CT-LPV system. Thus sampling provides only a particular viewpoint
for understanding DT systems and it must be emphasized that DT-LPV systems are a
stand alone mathematical concept of modeling just like in the LTI case. Additionally,
the time projection is defined on the signals and not on their derivatives. This means
that finding the DT equivalent of a S = (R,W,P,B), described by a differential
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equation with meromorphic coefficients dependent on p and its derivatives, is a
non-trivial problem (see Sect. 6.2).

3.1.3.2 Polynomials overR

In the following, the DT analog of the concepts introduced in the CT-LPV case is
developed. Similar to the LTI case, the time operator that we use in the discrete-time
PV case to define difference equations is the forward-time shift operator q. Such dif-
ference equations are used to describe the behavior of DT-LPV systems. However,
the operator q has different properties than d

dt , used in the CT case. Additionally, q
being the time operator also implies that the coefficients in the DT case are depen-
dent on p and its time-shifted versions. Due to these differences, in the following we
reformulate concepts of coefficient dependence (association of coefficient variables
with the scheduling) and commutation rules of multiplication in R[ξ ] in order to
define the analog of the concepts of the CT case.

As a first step, we define the variable association of the coefficient functions r∈R
with elements of p and their forward and backward time-shifts. Similar to the CT
case, such a dynamic dependence is needed to establish equivalence transformations
(state elimination/construction) between discrete-time SS and IO representations
(see Chap. 4 and [189, 202] for the details). Contrary to the CT case, in DT the
coefficient functions are required to depend on both forward and backward time-
shifts of p. Thus, labeling of the variables must contain positive and negative indexes
as well.

For a fixed scheduling dimension nP, denote the variables of a r ∈ R̄n (n-
dimensional function inR) as:

r
(
{ζi j}nζ ,nP,τ

)
:= r

(
ζ0,1, . . . ,ζ0,nP

,ζ1,1, . . . ,ζ1,nP
,ζ−1,1, . . . ,ζ−1,nP

,ζ2,1, . . . ,ζτ1,τ2

)

where nζ = 0 and τ = n if n ≤ nP otherwise n = (2nζ − 1)nP + τ with nζ > 0 and
0 < τ ≤ 2nP and

(τ1,τ2) =
{

(nζ ,τ) if τ ≤ nP;
(−nζ ,τ−nP) if τ > nP.

(3.50)

The basic mechanism of this variable labeling scheme is presented in Fig. 3.3 for
nP = 2 and n = 1, . . . ,6. In this figure in each row, the yellow dots represent the
labels of the variables for a n-variable coefficient function. Note that for all finite
dimensions, this labeling sequence is unique.

Now we can associate the variables {ζi j}nP,nζ ,τ of a r ∈R as

ζi j = qi p j, (3.51)

where p j is the jth element of p, nP is the dimension of p, nζ ∈ N is the maximal
order of the shifted versions of p on which r is dependent. For this association, we
define the operator � : (R,BP)→ (RZ) in DT as:
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1
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Fig. 3.3 Labeling scheme for the variables of meromorphic coefficient functions r : R̄n for
nP = 2 and n = 1, . . . ,6.

r � p = r
({

qi p j
}

nζ ,nP,τ

)
= r(p,q p,q−1 p, . . .). (3.52)

This operator evaluates a given coefficient function r ∈ R for a given scheduling
trajectory p ∈BP according to the association rule (3.51). For an example of this
variable association and the associated coefficient dependence see Example 3.11.

Example 3.11 (Coefficient function). Let P = RnP with nP = 2. Consider the real-
meromorphic coefficient function r : R3→ R defined as

r(x1,x2,x3) =
1 +x3

1−x2
.

Then for a scheduling trajectory p : R→R2:

(r � p)(k) = r(p1, p2,q p1)(k) =
1 + p1(k + 1)

1− p2(k)
.

On the other hand, if nP = 1, then

(r � p)(k) = r(p1,q p1,q
−1 p1)(k) =

1 + p1(k−1)
1− p1(k + 1)

. �

With the association rule (3.51) and evaluation operator (3.52) in mind, we can
use polynomial matrices in R[ξ ]nr×nW to define a parameter-varying difference
equation:

Definition 3.15 (PV difference equation). Consider R(ξ ) =∑
nξ
i=0riξ i ∈R[ξ ]nr×nW

and (w, p) ∈ (RnW ×RnP)Z.

(R(q)� p)w =
nξ

∑
i=0

(ri � p)qiw = 0, (3.53)

is called a PV difference equation with order nξ = Deg(R). �

In discrete-time all trajectories in (W×P)Z that satisfy (3.53) are considered as
solutions. PV differential equations in the form (3.53) are used to define the class of
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DT-LPV systems we consider in the sequel. It will be shown that this class contains
all popular definitions of LPV-SS and IO models used in LPV system identification.

Example 3.12 (PV difference equation). Consider again Example 3.1. Let 0 < Td�
1 and develop an approximation of the CT behavior of this system through the Euler
(forward) type of approximation:

d
dt

w≈ qw′ −w′

Td
, (3.54)

where w′(k) = w(kTd) for all k ∈ Z. Repeated substitution of (3.54) for the deriva-
tives of m, wx, and wF in (3.7) yields3

(T2
dks + m(k))wx(k)− (m(k + 1)+ m(k))wx(k + 1)

+ m(k + 1)wx(k + 2) = T2
dwF(k), (3.55)

where the time index k denotes the values of the signals at kTd on R. We consider
these signals as DT signals in the following. Let p = m with a scheduling space
P = [1,2] and let w = [ wx wF ]�. Then the difference equation (3.55), which defines
the possible signal trajectories of the DT approximation of the mass-spring system,
can be written in the form of (3.53) with nW = 2, nξ = 1, nP = 1:

(R(q)� p)w = (r0 � p)w+(r1 � p)qw+(r2 � p)q2w = 0 (3.56)

where

r0 � p =
[
T2

dks + p −T2
d

]
, r1 � p =

[−q p− p 0
]
, r2 � p =

[
q p 0

]
. �

So far we have used the polynomials of the ring R[ξ ] to define parameter-varying
difference equations. Thus, by using the algebraic structure of this ring we can de-
velop the analog of the CT results using similar arguments. However, an important
difference with the CT case is that multiplication in R[ξ ] obeys a different non-
commutative rule in the DT case. To explore the non-commutative multiplication
rule by ξ = q, first introduce the shift operators on R, to describe time-shifts of
parameter-varying coefficient functions:

Definition 3.16 (Shift operators). Let r ∈ R̄n. For a given scheduling dimension
nP, denote the variables of r as {ζi j}nζ ,nP,τ based on the previously introduced la-
beling. The forward-shift and backward-shift operators onR are defined as

−→r = �∗(r ◦m1), (3.57a)
←−r = �∗(r ◦m2), (3.57b)

where ◦ denotes the function concatenation, m1,m2 ∈ Rn
n+2nP

, and m1 assigns each
variable ζi j to ζ(i+1) j, while m2 assigns each variable ζi j to ζ(i−1) j as depicted in
Fig. 3.4. �

3 Note that applying the Euler derivative approximation on different representations (SS, IO,
etc.) can result in inequivalent DT descriptions.
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Fig. 3.4 Variable assign-
ment by the functions m1
and m2 in Def. 3.16.
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In other words, if r � p is dependent on for example p and q p, then −→r is the “same”
function (disregarding the number of variables) except it is now dependent on qp
and q2 p. Similarly,←−r is also the “same” as r except it is now dependent on q−1 p
and p. In this way, the shift operators describe time-shifts on the parameter-varying
coefficient functions just like the dot operator describe differentiation in CT (see
Example 3.13). The shift operators fulfill the following rules for any r1,r2 ∈R:

⎧
⎪⎨
⎪⎩

if r = r1± r2 then −→r =−→r1 ±−→r2 and ←−r =←−r1 ±←−r2 ,
if r = r1r2 then −→r =−→r1

−→r2 and ←−r =←−r1
←−r2 ,

if r = r1
r2

then −→r =
−→r1−→r2

and ←−r =
←−r1←−r2

.

Example 3.13 (Shift operators). Consider the coefficient function r given in Exam-
ple 3.11. Then

−→r ({ζi j}2,2,1) =
1 + ζ21

1− ζ12
, ←−r ({ζi j}1,2,4) =

1 + ζ01

1− ζ−12
.

For a scheduling trajectory p : R→R2, it holds that

(−→r � p)(k) =
1 + p1(k + 2)
1− p2(k + 1)

, (←−r � p)(k) =
1 + p1(k)

1− p2(k−1)
. �

Multiplication onR[ξ ] with ξ now can be defined through the forward-shift opera-
tor using the non-commutative rule:

ξ r =−→r ξ , (3.58)

where r ∈ R. With (3.58) it is possible to show that R[ξ ] still defines an Ore alge-
bra [132]. Contrary to the CT case, R[ξ ], with the multiplication rule (3.58), is a
principle domain but it does not have the simple property (see Sect. 3.1.2.3). These
imply that the general algebraic structure of R[ξ ] remains the same as in the CT
case, except the Jacobson form becomes more involved
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Theorem 3.5 (Jacobson form [41]). Let R ∈ R[ξ ]nr×nW with R �= 0 and n =
Rank(R). Then there exist unimodular matrices M1 ∈R[ξ ]nr×nr and M2 ∈R[ξ ]nW×nW

such that

M1(ξ )R(ξ )M2(ξ ) =
[

Q(ξ ) 0
0 0

]
, (3.59)

where Q = Diag(r′1, . . . ,r
′
n)∈R[ξ ]n×n with monic non-zero r′i ∈R[ξ ]. Furthermore,

there exist g′i ∈R[ξ ] such that r′i+1 = g′ir′i for i = 1, . . . ,n−1.

Due to the algebraic structure of R[ξ ]·×·, the proof of Th. 3.5 similarly follows as
in [41, Chap. 8.1.]. In this case, Deg∗(R) := Deg(r′n) in terms of the Jacobson form
(3.59) of R(ξ ).

Example 3.14 (Jacobson form). Consider

R(ξ ) =
[

r + ξ −1 −1
−r 1 + ξ −−→r

]
∈R[ξ ]2×3,

where r is a meromorphic function and ξ = q. Then the Jacobson form of R is

M1(ξ )R(ξ )M2(ξ ) =
[

1 0 0
0 1 +−→r + ξ 0

]
,

with

M1(ξ ) =
[

1 0
−−→r 1

]
, M2(ξ ) =

⎡
⎣

0 0 1
0 1 r
−1 −1 ξ

⎤
⎦ . �

Due to the fact that all required algebraic properties are still satisfied for R[ξ ] the
proof of the injective cogenerator property similarly follows in DT (see Appendix
A.1). The latter property implies that the theorems, introduced and used in Sect.
3.1.2, also hold in the DT case.

3.1.3.3 Kernel Representations

As a next step, we develop the concept of KR representations of DT-LPV systems
following the same line of discussion as in the CT case.

Definition 3.17 (DT-KR-LPV representation). The parameter-varying difference
equation (3.53) is called a discrete-time kernel representation, denoted by RK(S),
of the LPV dynamical system S = (Z,RnP ,RnW ,B) with scheduling vector p and
signals w, if

B =
{

(w, p) ∈ (RnW×R
nP)Z | (R(q)� p)w = 0

}
. �

Obviously the behavior, i.e. all solutions associated with (3.53) corresponds to a
LPV system in terms of Def. 3.3. On the other hand, in the LPV system class we
consider LPV systems with T = Z that have a KR representation, so existence of
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such a representation is explicitly assumed in the following. Additionally, we denote
the DT-KR representation of a CT-LPV dynamical system S = (R,P, RnW ,B) by
RK(S,Td), if the DT behavior B′ of this representation is equivalent with B in
terms of (3.49) for Td.

The existence of full row rank representations follows directly:

Theorem 3.6 (Existence of full row rank KR representation). Let B be given
with a KR representation (3.53). Then B can also be represented by a R∈R[ξ ]·×nW

with full row rank.

The proof is given in Appendix A.1. This theorem is crucial as the concept of min-
imality for KR representations is also based on the full row rank of the associated
matrix polynomials R. (see Sec. 3.2).

3.1.3.4 Input-Output Representations

IO representations are also important for the DT behavioral framework of LPV sys-
tems. Beside system theoretical aspects, this type of representations connects the
developed behavioral theory to IO models used in the-state-of-the-art of LPV sys-
tem identification. In this way, it enables comparison and analysis of IO identifica-
tion methods. In the following, we define DT-IO representations from the behavioral
point of view, based on the same line of discussion as in the CT case.

For DT-LPV systems, IO partitions are also characterized by Def. 3.11. The
existence of IO partition (u,y) implies the existence of matrix polynomials Ry ∈
R[ξ ]nY×nY and Ru ∈R[ξ ]nY×nU with Ry full rank, such that (3.53) can be written in
a similar form as (3.36). Based on this, it is possible to introduce IO representations
of DT-LPV systems as follows:

Definition 3.18 (DT-LPV-IO representation). The discrete-time IO representation
of S = (Z,P ⊆ RnP ,RnU+nY ,B) with IO partition (u,y) and scheduling vector p is
denoted by RIO(S) and defined as a parameter-varying difference-equation system
with order na:

na

∑
i=0

(ai � p)qiy =
nb

∑
j=0

(b j � p)q ju, (3.60)

where a j ∈RnY×nY and b j ∈RnY×nU with ana �= 0 and bnb �= 0 are the meromorphic
parameter-varying coefficients of the matrix polynomials Ru(ξ ) = ∑nb

j=0 b jξ j and

full rank Ry(ξ ) = ∑na
i=0 aiξ i with na ≥ nb ≥ 0 and na > 0. �

Note that the coefficient dependencies in Def. 3.18 can be polynomial functions of p.
Thus the behavioral definition of IO representations also contains the deterministic
part of IO models (1.5a) used in LPV system identification (see Sect. 1.3.2.2). By
defining u(k) := u(kTd) and y(k) := y(kTd), the DT-IO representation, denoted by
RIO(S,Td), of a CT-LPV system S with scheduling p and IO partition (u,y) can
similarly be given with equivalent behaviors in terms of (3.49) under the sampling-
time Td. Note that the discrete-time projection with arbitrary Td can change the
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validity of the IO partition as dynamic components of the system can be lost due
to slow sampling. Thus, it is important to emphasize that existence of RIO(S,Td) is
not guaranteed.

Example 3.15 (IO partition and representation). In Example 3.12, the sampled force
variable wx is still a free variable as it represents the inhomogen part of difference
equation (3.55). Thus the choice of w = [ y u ]� = [ wx wF ]� yields a valid IO
partition. With m being the scheduling signal, the discrete-time PV behavior can be
represented in the form of (3.60) with polynomials

Ry(ξ ) = a0 + a1ξ + a2ξ 2, Ru(ξ ) = b0,

which have coefficients:

a0 � p = T2
dks + p, a1 � p =−p−q p, a2 � p = q p, b0 � p = T2

d.

Obviously, Ry(ξ ) have full rank. This implies that Ry(ξ ) and Ru(ξ ) define an IO
representation of the model with coefficients as above. �

Similar to the CT-LPV case, the notion of transfer functions for DT-LPV systems
is not well-defined. The introduction of a viable formulation can be tackled via the
formal series approach of [81], constructed for DT-SS systems of the LTV case.
However, the extension of this approximative transfer function calculus to the class
of systems considered here is not available. The notion of frozen transfer functions,
frequency responses, impulse responses, poles, and zeros can be similarly defined
for the frozen system set as in the CT case.

3.1.3.5 State-Space Representations

For the discrete-time LPV behavior B, we can also introduce latent variables with
the property of state (see Def. 3.13). Existence of latent variable representations
with equivalent LPV manifest behaviors is guaranteed in the DT case as Th. 3.4
holds regardless wether ξ is associated with q or d

dt (see Example 3.16). Similarly,
Def. 3.13 of the property of state also applies in the DT case with the exception that
continuity of wL,1 and wL,2 is not required. Furthermore, the elimination property
also applies for the DT case.

Example 3.16 (Latent variable representation). By considering the DT system in
Example 3.12 with scheduling p = m and P = [1,2], the following latent variable
representation of the model has the same manifest behavior:

⎡
⎣

T2
dks + p −T2

d
(−p−q−1p) 0

(−q−1 p) 0

⎤
⎦
[

wx

wF

]
=

⎡
⎣

q 0
−1 q
0 1

⎤
⎦wL. (3.61)
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This can be proved by substituting the third row of (3.61) into the second row, giving

wL,1 = (p + q−1p)wx− pqwx.

Substitution of the previous equation into the first row of (3.61) gives a PV differ-
ence equation in the variables wx and wF, which is equal to (3.55). Note, that any
wL ∈ (R2)Z satisfying (3.61) trivially fulfills the property of state. �

Now we can introduce SS representations of DT-LPV systems as follows:

Definition 3.19 (DT-LPV-SS representation). The discrete-time state-space repre-
sentation of S = (Z,P ⊆ RnP ,RnU+nY ,B) with scheduling vector p is denoted by
RSS(S) and defined as a first-order parameter-varying difference equation system
in the latent variable x : Z→X:

qx = (A� p)x +(B� p)u, (3.62a)

y = (C � p)x +(D� p)u, (3.62b)

where (u,y) is the IO partition of S, x is the state-vector, X = RnX is the state-space,

BSS =
{
(u,x,y, p) ∈ (U×X×Y×P)Z | (3.62a–b) holds

}
,

is the full behavior of (3.62a–b), B is equal to the manifest behavior of (3.62a–b),
i.e. B = π(u,y,pBSS, and

[
A B
C D

]
∈
[RnX×nX RnX×nU

RnY×nX RnY×nU

]
. �

Again, in the full behavior BSS the latent variable x trivially fulfills the state prop-
erty. Also the class of SS representations formulated by Def. 3.19 contains the SS
models used in LPV system identification as the coefficient dependencies in the be-
havioral definition can be linear functions of p. This enables the analysis and com-
parison of the results of LPV-SS system identification. The DT-SS representation
of a CT-LPV dynamical system S = (R,P,RnU+nY , B) is denoted as RSS(S,Td),
where the manifest behavior of RSS(S,Td) is equivalent in terms of (3.49) with
B under the sampling-time Td. As before, existence of such representations is not
guaranteed for arbitrary Td.

Example 3.17 (SS representation). Continuing Example 3.16, the LPV state-space
representation of the model follows by taking [ y u ]� = [ wx wF ]� as the IO parti-
tion and x = wL as the state:

qx =
[

0 0
1 0

]
x +

[
T2

dks + p −T2
d

−p−q−1p 0

][
y
u

]
, (3.63)

y =
[

0 1
−q−1 p

]
x. (3.64)
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By substitution of the second equation into the first one, the state equation in the
form of (3.62a) results, while the second equation gives the output equation in the
form of (3.62b). Thus, the corresponding SS representation is

[
A� p B� p
C � p D� p

]
=

⎡
⎢⎢⎣

0 − p+T2
dks

q−1 p
−T2

d

1 1 + p
q−1 p

0

0 −1
q−1 p

0

⎤
⎥⎥⎦ . �

Similar to LPV-IO representations, the notion of transfer function, frequency re-
sponse, and impulse response can only be defined in a frozen sense for LPV-SS
representations.

3.2 Equivalence Classes and Relations

In this section, we continue the introduction of the LPV behavioral framework by
defining equivalence relations and classes for the introduced representation forms.
These are essential aspects of the theory as they characterize which representations
describe the same system, providing tools to compare and analyze representation
capabilities/validity of LPV models for identification. First we define equality of be-
haviors and investigate why this equality needs to be understood in an almost every-
where. Then, we define equivalency, equivalence relations and equivalence classes
of all representation forms together with the concept of minimality and canonical
forms. To do so, we introduce key theorems of left/right side unimodular transfor-
mations.

The most important concept to begin with is to define equality with respect to
behaviors of PV systems.

Definition 3.20 (Equal behaviors of PV systems). Let B1,B2 ⊆ (W×P)T with
W = RnW , P⊆RnP , and with T equal to either R or Z. We call B1 and B2 equal, if
in case of T = R:

(w, p) ∈B1∩C∞(R,W×P)⇔ (w, p) ∈B2∩C∞(R,W×P),

or in the discrete-time case (T = Z):

(w, p) ∈B1⇔ (w, p) ∈B2. �
Two systems are called equal if they have equal behaviors. However, it is important
to remark that Def. 3.20 establishes the concept of equal behaviors in terms of inter-
nal, and hence not external equality. This means, that even if two LPV systems have
the same behavior in terms of IO signals for a particular IO partition, they are not
necessarily equal as their scheduling signals or latent variables can differ. In case of
systems with latent variables, equality can be defined in terms of the equality of the
manifest behaviors (see Def. 3.29). On the other hand, there also exist systems with
equal signal behavior and isomorphic projected scheduling behavior (see Example
3.18). However, due to technical reasons, we do not consider such systems to be
equal in the sequel.
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Example 3.18 (Equal PV behaviors). Consider the varying-mass and spring system
of Example 3.1 with m as the scheduling function. We have seen in Example 3.4,
that the PV differential equation (KR representation)

ksw1−w2 +
(

d
dt

p

)
d
dt

w1 + p
d2

dt2 w1 = 0. (3.65)

is basically the same as the differential equation (3.7) describing the behavior of
the varying-mass and spring system. Based on the equivalence of the differential
equations, the associated LPV behaviors are also equal. Now consider the latent
variable representation in Example 3.9. The behavior associated with (3.65) is not
equal with the associated behavior of (3.41), as in the latter case the trajectories of
the latent variable are part of the behavior. Another example of inequality is

ksw1−w2−
(

d
dt

p̆

)
d
dt

w1 +(1− p̆)
d2

dt2 w1 = 0. (3.66)

with a scheduling variable p̆ = 1−m. In this case, the solution trajectories of w for
this KR representation are the same as for (3.65), but the behaviors are not equal
due to the different scheduling function. �

3.2.1 Equivalent Kernel Representations

According to the LTI case, R1,R2 ∈ R[ξ ] are expected to define an equal behavior
if they are equivalent up to multiplication by a r ∈ R, r �= 0. However, r can be a
rational function for which (r � p)(t) is unbounded for some scheduling trajectories
p and t ∈ T. The behavior of a kernel representation is defined to contain only those
trajectories of p for which a (weak) solution exists and is well defined. The latter
is guaranteed by the boundedness of r � p. In this way, the behavior (solutions) of
R1 is equal with the behavior of R2(ξ ) = rR1(ξ ) except for those trajectories for
which r� p is unbounded. To consider equality of LPV-KR representations with this
phenomenon of singularity in mind, we define the restriction of B ⊆ (W×P)T to
B̄P ⊆BP as

B |B̄P
=
{
(w, p) ∈B | p ∈ B̄P

}
. (3.67)

The equivalence of LPV-KR representations can now be introduced in an almost-
everywhere sense4:

Definition 3.21 (Equivalent KR representations). Two kernel representations with
polynomials R,R′ ∈ R[ξ ]�×nW , P = RnP and behaviors B,B′ ⊆ Lloc

1 (R,RnW×RnP)
(or B,B′ ⊆ (RnW ×RnP)Z in discrete-time) are called equivalent if B |BP∩B′

P
=

B′ |BP∩B′
P
, i.e. their behaviors are equal for all possible mutually valid trajectories

4 Technically, equivalence of KR representations can be considered in a more complicated
setting without the need of the almost-everywhere concept. However, this requires the use
of a so-called extended solution set (see the proofs in Appendix A.1). To avoid the use of
a too technical language, these details are only presented in the Appendix.
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of p. If equality holds with B′
P

= BP, then the equivalence of the representations is
called full equivalence. �

Example 3.19 (Almost everywhere equivalence). By continuing Example 3.18, the
KR representation

ks

p
w1− 1

p
w2− 1

p

(
d
dt

p

)
d
dt

w1 +
d2

dt2 w1 = 0.

has the same weak solutions as (3.65) except for those trajectories of p = m, where
m(t) = 0 for some t ∈ T. Thus, this KR representation and (3.65) are equivalent in
the almost everywhere sense. �

The existence of equivalent KR equations implies, similar to the LTI case, that rep-
resentations of PV dynamical systems are non-unique. Thus, we need to character-
ize when two KR representations define the same behavior. This characterization
follows trough left/right unimodular transformations just like in the LTI case (see
[230]). To extend these theories to the LPV case, we use the concept of unimodular
matrices in R[ξ ]·×· and the Jacobson form introduced in Sec. 3.1.2. Based on these
concepts it is possible to show that the following theorem holds in the LPV case:

Theorem 3.7 (Left-side unimodular transformation). Let R ∈ R[ξ ]nr×nW and
M ∈ R[ξ ]nr×nr with M unimodular. For a given scheduling dimension nP, define
R′(ξ ) := M(ξ )R(ξ ). Denote the behaviors corresponding to R and R′ by B and B′
with scheduling space P ⊆ RnP and signal space W = RnW . Then B and B′ are
equal (almost everywhere).

The proof is given in Appendix A.1. Furthermore, if R ∈ R[ξ ]nr×nW is not full row
rank, i.e. Rank(R) = n < nr, then there exists an unimodular M ∈ R[ξ ]nr×nr such
that

M(ξ )R(ξ ) =
[

R′(ξ )
0

]
, (3.68)

where R′ ∈ R[ξ ]n×nW is full row rank and the corresponding behaviors are equal
in terms of Th. 3.7. Note that this theorem establishes the concept when two rep-
resentations can be considered equivalent. However, to establish equivalency of SS
representations or latent variable systems, we require the concept of right-side uni-
modular transformation. It can be shown that the following theorem holds:

Theorem 3.8 (Right-side unimodular transformation). Let R ∈ R[ξ ]nr×nW and
M ∈ R[ξ ]nW×nW with M unimodular. Denote the behaviors defined by R and
R′(ξ ) := R(ξ )M(ξ ) as B and B′ with scheduling domain P⊆RnP and signal space
W = RnW . If T = R, then B∩C∞(R,W×P) and B′ ∩ C∞(R,W×P) are isomor-
phic in the almost everywhere sense. If T = Z, then B and B′ are isomorphic in the
almost everywhere sense.

The proof is given in Appendix A.1. It is important that right-side unimodular trans-
formations do not change the underlying relation between the system signals nor the
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projected scheduling behavior, but they do change the system signals, the trajecto-
ries of the behavior.

With all the required tools established, it is now possible to introduce the notion
of equivalence relation for LPV kernel representations. This relation is the key to
characterize the set of equivalent representations of the same behavior, which we
call an equivalence class. In the LPV case, the scheduling dimension nP plays an
important role in R[ξ ] as it determines the exact coefficient dependence and also
how the dot or shift operators behave on R. Thus, an equivalence relation must be
dependent on nP. Based on this, the following definition is given:

Definition 3.22 (LPV Equivalence relation). Introduce the symbol
nP∼ to denote

the equivalence relation on
⋃R[ξ ]·×· (all polynomial matrices with finite dimen-

sion) for an nP-dimensional scheduling space. R1 ∈R[ξ ]n1×nW and R2 ∈R[ξ ]n2×nW

with n1 ≥ n2 are called equivalent, i.e. R1
nP∼ R2, if there exists a unimodular matrix

function M ∈R[ξ ]n1×n1 such that

M(ξ )R1(ξ ) =
[

R2(ξ )
0

] % n2

% n1−n2
. (3.69)

�
This implies that if R1

nP∼ R2, then the corresponding behaviors with P ⊆ RnP and
W = RnW are equal (almost everywhere). Using

nP∼we can define equivalence classes
as follows:

Definition 3.23 (LPV Equivalence class). For a given scheduling dimension nP,
the set E nP ⊆ ⋃R[ξ ]·×· is called an equivalence class, if it is a maximal subset of⋃R[ξ ]·×· such that for all R1,R2 ∈ E nP it holds that R1

nP∼ R2. �
An equivalence class defines the set of all KR representations which have equal
behavior. An important subset of an equivalence class are the so-called minimal
representations:

Definition 3.24 (Minimality). Let R ∈ R[ξ ]nr×nW . Then R is called minimal if it
has full row rank, i.e. Rank(R) = nr. �
Based on the concept of minimality with respect to KR representations and the
Jacobson form, we can also define the order of the system, i.e. the required minimal
number of state variables in a SS realization of RK(S).

Definition 3.25 (Minimal degree of a KR representation). Consider a minimal
RK(S) described by a full row rank R ∈ R[ξ ]nr×nW. Let R(ξ ) = [ R′(ξ ) R′′(ξ ) ]
where R′ ∈ R[ξ ]nr×nr has full column rank. Note that such form can always be
obtained by the permutation of the signal variables and it is not unique. Consider
ndeg := Deg∗(R′) associated with the Jacobson form (see Th. 3.1 and 3.5) of R′.
Assume that R′ is chosen with respect to R such that ndeg is maximal. Then ndeg is
called the minimal degree of RK(S). �
It follows from Th. 3.7, that all KR representations in the equivalence class of
RK(S) have the same minimal degree ndeg. It can also be shown that this degree
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is equal to the required minimal number of state variables in a SS realization of
RK(S), hence ndeg can be considered as the order, i.e. McMillan degree of S. It
is also important to consider the subclass of representations, so-called canonical
forms, that can uniquely characterize each equivalence class:

Definition 3.26 (Canonical forms). For a given scheduling dimension nP, E nP
can ⊂⋃R[ξ ]·×· is called a set of canonical forms if each element of

⋃R[ξ ]·×· is equiv-

alent under
nP∼ with only one element of E nP

can. (E nP
can is the class representative of⋃R[ξ ]·×· under

nP∼). �

Example 3.20 (LPV equivalence relation and minimality). Let the KR representa-
tion RK(S) of an CT-LPV system S with P⊆ R given by

R(ξ )� p =

[
(sin(p)p− cos(p)) d

dt p 0
p 1

cos(p)

]
+
[−cos(p)p −1

1
cos(p) 0

]
ξ +

[−1 0
0 0

]
ξ 2.

Then, there exists a unimodular matrix M ∈R[ξ ]2×2 with

M(ξ )� p =
[

0 1
1 cos(p)ξ − sin(p) d

dt p

]
s.t. (M(ξ )R(ξ ))� p =

[
p+ 1

cos(p)ξ
1

cos(p)
0 0

]
.

Note that this result is obtained by using (3.32), i.e ξ r = ṙ + rξ , so

ξ
1

cos(p)
=

sin(p)
cos2(p)

(
d
dt

p

)
+

1
cos(p)

ξ .

From Th. 3.7 it follows that R
1∼ R′ where [ (R′)�(ξ ) 0 ]�= M(ξ )R(ξ ). Further-

more, Rank(R′) = 1 implies that Rank(R) = 1, hence R′ is minimal while R is not.
By computing ndeg of R′, it follows that the McMillan degree of S is 1. �

3.2.2 Equivalent IO Representations

The introduced concepts generalize to LPV-IO representations as well:

Definition 3.27 (Equivalence relation of LPV-IO representations). Let (Ry,Ru)
and (R′y,R′u) be LPV-IO representations (see Def. 3.12 in CT and Def. 3.18 in DT)
with the same input and output dimensions (nY,nU). For a given scheduling dimen-
sion nP, we call (Ry,Ru) and (R′y,R′u) equivalent

(Ry,Ru)
nP∼ (R′y,R

′
u), (3.70)

if there exists a unimodular matrix M ∈R[ξ ]nY×nY such that

R′y(ξ ) = M(ξ )Ry(ξ ) and R′u(ξ ) = M(ξ )Ru(ξ ). (3.71)

�
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Definition 3.28 (Minimal LPV-IO representation). An IO representation defined
through Ry ∈R[ξ ]nY×nY and Ru ∈R[ξ ]nY×nU is called minimal for a given schedul-
ing dimension nP, if there are no polynomials R′y ∈R[ξ ]nY×nY and R′u ∈R[ξ ]nY×nU

with Deg(Ry) < Deg(R′y) such that

(Ry,Ru)
nP∼ (R′y,R

′
u). �

Using the IO equivalence relation and minimality, the definition of IO equivalence
classes and canonical forms follows naturally. In the IO case, the McMillan degree
is equal to ndeg = Deg∗(Ry) associated with the Jacobson form of Ry.

Example 3.21 (LPV-IO equivalence relation and minimality). Let the IO represen-
tation RIO(S) of an CT-LPV system S with P⊆ R be given by

Ry(ξ )� p =
[

sin2(p)ξ sin2(p)p
−2cot(p) d

dt pξ − ξ 2 (1− p)ξ − d
dt p(1 + 2cot(p)p)

]
,

Ru(ξ )� p =
[

sin2(p)
p−2cot(p) d

dt p− ξ
]
.

Then, there exists a unimodular matrix M ∈R[ξ ]2×2 given by

M(ξ )� p =

[ 1
sin2(p)

0
1

sin2(p)
ξ 1

]
s.t.

⎧⎪⎪⎨
⎪⎪⎩

(M(ξ )Ry(ξ ))� p =
[
ξ p
0 ξ

]
,

(M(ξ )Ru(ξ ))� p =
[

1
p

]
,

which can be verified by using

1

sin2(p)
ξ sin2(p) = 2cot(p)

d
dt

p + ξ .

This implies that (R′y,R′u) = (MRy,MRu) and (Ry,Ru) are equivalent for nP = 1 in
terms of Th. 3.7. From Def. 3.28 it follows that RIO(S) is not minimal as Deg(Ry) =
2 is greater than Deg(R′y) = 1. On the other hand, it is trivial that (R′y,R′u) defines a
minimal IO representation of S. By computing the Jacobson form of R′y it follows
that the McMillan degree of S is 1. �

3.2.3 Equivalent State-space Representations

We can also generalize the introduced concepts to LPV-SS representations. To do so,
we first have to clarify state-transformation in the LPV case which is an important
ingredient to formulate equivalence relations of SS representations.

By definition, the full behavior of a RSS(S) is represented by a zero-order and
a first-order polynomial matrix RW ∈ R[ξ ]nr×(nY+nU) and RL ∈ R[ξ ]nr×nX in the
form of
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(RW(ξ )� p)Col(u,y) = (RL(ξ )� p)x (3.72)

where ξ is either q or d
dt , (u,y) is an IO partition of S, x is the state variable of

RSS(S), and p is the scheduling signal. Similar to the LTI case, left and right side
multiplication of RW and RL with unimodular M1 ∈R[ξ ]nr×nr and M2 ∈R[ξ ]nX×nX

leads to
R′W(ξ ) = M1(ξ )R(ξ ), R′L(ξ ) = M1(ξ )RL(ξ )M2(ξ ). (3.73)

In terms of Th. 3.7 and 3.8, the resulting polynomials R′ and R′L define an equivalent
latent variable representation of S. The new latent variable, given by

x′ = (M†
2(ξ )� p)x, (3.74)

fulfills the property of state as M†
2 is unimodular. To guarantee that the resulting

latent variable representation qualifies as a SS representation, R′L needs to be monic
and Deg(R′W) = 0 with Deg(R′L) = 1 must be satisfied. This implies that the unimod-
ular matrices must have zero order, i.e. M1 ∈Rnr×nr and M2 ∈RnX×nX , and M1 has
a special structure in order to guarantee that R′W and R′L correspond to an equivalent
SS representation. In that case, (3.74) is called a state-transformation and T = M†

2
is called the state-transformation matrix resulting in

x′ = (T � p)x. (3.75)

A major difference with respect to LTI state-transformations is that, in the LPV case,
T is inherently dependent on p and this dependence is dynamic, i.e. T ∈ RnX×nX .
Additionally, it can be shown that an invertible T ∈ RnX×nX used as a state-
transformation is always equivalent with a right and left-side multiplication by uni-
modular matrix functions yielding a valid SS representation of the LPV system.
This is proved by the algebraic equivalency, see (3.75), of the original and the new
state variables [172]. The converse, namely that the state variables of any two SS
representations of the same LPV system are algebraically equivalent up to a state-
transformation, follows directly from Th. 3.7 and 3.8. Based on this, two SS repre-
sentations are equivalent if and only if their states can be related via an invertible
state-transformation (3.75).

Similar to the LTI case, the SS representation, resulting from the state-transfor-
mation of RSS(S), can be analytically computed from the meromorphic matrices
of RSS(S). However, different commutation rules in R[ξ ] for the continuous and
discrete-time cases yield different consequences with respect to the system matrices.
Let RSS(S) be a given LPV-SS representation with X = RnX and state-equation

ξ x = (A� p)x +(B� p)u. (3.76)

Let T ∈ RnX×nX be an invertible matrix function and consider x′, given by (3.75),
as a new state variable. It is immediate that substitution of (3.75) into (3.76) yields

ξ (T−1 � p)x′ = (A� p)(T−1 � p)x′+(B� p)u. (3.77)
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In the continuous-time case, the multiplication by ξ = d
dt in (3.77) yields:

d
dt

x′ =
((

TAT−1 + ṪT−1)� p
)
x′+

(
(T B)� p

)
u. (3.78)

Here we use the fact that Ṫ T−1 =−T Ṫ−1. In the discrete-time case, the multiplica-
tion by ξ = q in (3.77) gives:

qx′ =
((−→

T AT−1
)
� p
)

x′+
((−→

T B
)
� p
)

u. (3.79)

In both cases the new state-equation defines a LPV-SS representation with state-
vector x′. Note that, due to the different commutation rules of the time-operators,
the transformation rules of the original system matrices are different in the CT and
in the DT cases. Now we can give the following definition of equivalence classes:

Definition 3.29 (Equivalence relation of LPV-SS representations). Consider two
LPV-SS representations with SS matrices (A1,B1,C1,D1) and (A2,B2,C2,D2) in
R·×· where A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 and n1 ≥ n2. For a given scheduling
dimension nP, these representations are called equivalent,

[
A1 B1

C1 D1

]
nP∼
[

A2 B2

C2 D2

]
, (3.80)

if there exists an invertible T ∈ Rn1×n1 such that in case of T = R the following
holds:

TA1T−1 + ṪT−1 =
[

A2 0
∗ ∗

]
, TB1 =

[
B2

∗
]
,
% n2

% n1−n2

C1T−1 =
[

C2 0
]
, D1 = D2,

(3.81a)

while in case of T = Z:

−→
T A1T−1 =

[
A2 0
∗ ∗

]
,
−→
T B1 =

[
B2

∗
]
,
% n2

% n1−n2

C1T−1 =
[

C2 0
]
, D1 = D2.

(3.81b)

�

Based on the previous considerations, the existence of a state-transformation T be-
tween the matrices of two SS representations implies that they have the same mani-
fest behavior. Furthermore, the states are related as

(T � p)(t)x1(t) =
[

x2(t)
∗
]
,
% n2

% n1−n2
∀t ∈ T. (3.82)

From the concept of LPV-SS equivalence the concept of minimality directly
follows:

Definition 3.30 (Minimal LPV-SS representation). For a given scheduling dimen-
sion nP, an SS representation defined through the matrix functions (A,B,C,D) is
called minimal if there exist no (A′,B′,C′, D′) with n′

X
< nX such that
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[
A B
C D

]
nP∼
[

A′ B′

C′ D′

]
. �

Again, using the concept of SS equivalence relation and minimality, the definition
of LPV-SS equivalence classes and canonical forms follows naturally. In addition,
the state-dimension nX of a minimal RSS(S) is equal to the McMillan degree of S.

Example 3.22 (LPV-SS equivalence relation and minimality). Consider the LPV-
SS representation derived in Example 3.17. Let T ∈ R2×2 be an invertible state-
transformation defined by

T � p =

[
−1 −1
0 − 1

q−1 p

]
.

Then

T−1 � p =
[−1 q−1 p

0 −q−1 p

]
,
−→
T � p =

[−1 −1
0 − 1

p

]
,

implying
[ −→

T AT−1 −→T B

CT−1 D

]
� p =

⎡
⎢⎣

1 −T2
dks T2

d
1
p 1 0

0 1 0

⎤
⎥⎦ .

The obtained SS representation is an equivalent minimal SS representation of S as it
is in an equivalence relation with RSS(S) and its state dimension is the same. Note
that this realization has only static dependence. �

3.3 Properties of LPV Systems and Representations

In the previous section we have developed the basics of a LPV behavioral frame-
work. In order to use this framework as an analysis tool for LPV system identifi-
cation, we also need to investigate key properties of systems and representations in
terms of dynamic stability and state-observability/reachability. We analyze in this
section these concepts using the results of LTV system theory. We also compare
the developed results with their counterparts in the existing LPV theory. As the
developed behavioral approach addresses a larger set of LPV systems than the state-
of-the-art of LPV system theory, the existing LPV concepts follow as special cases
of the theory presented in this section.

3.3.1 State-Observability and Reachability

The concepts of state-observability and reachability of LPV-SS system representa-
tions are important properties in the LPV case. They are not only key concepts for
control and subspace-based identification, but they also provide the formulation of
special SS canonical forms. These so-called observability or reachability canoni-
cal forms are strongly connected to the observability and reachability matrices of
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SS representations and they are required to develop equivalence transformation be-
tween different representation domains (see Chap. 4).

In the following discussion, we explore complete state-observability and reacha-
bility5 of LPV-SS representations both in CT and DT, based on concepts of the LTV
system theory. We show that these properties are equivalent with the existence of in-
vertible linear maps for all time instances and scheduling trajectories. Based on this,
we define observability and reachability matrices of SS representations. We show
that complete state-observability and reachability are very strong properties in the
LPV case as only a rather restricted class of representations fulfills them. Moreover,
they are not required for minimality nor the generation of observability or reach-
ability canonical forms. We show that a weaker property, the so-called structural
state-observability/reachability, which defines the state-observability/reachability
concept in an almost everywhere sense, is a necessary and sufficient property to
generate these canonical forms.

As a first step, we extended the behavioral definitions of complete state-observ-
ability and reachability (see [231]) to the LPV case:

Definition 3.31 (Complete LPV state-observability). RSS(S) is called completely
state-observable, if for all (u,x,y, p),(u,x′,y, p) ∈BSS it holds that x = x′. �

Definition 3.32 (Complete LPV state-reachability). RSS(S) is called completely
state-reachable, if for any given two states x1,x2 ∈X and any scheduling signal p ∈
BP, there exist an input signal u and an output signal y such that (u,x,y, p) ∈BSS

with x(t1) = x1 and x(t2) = x2 for some t1, t2 ∈ T. �

The main difference of these definitions with respect to the LTI case follows from
the presence of the scheduling signal p that acts as an extra “time-axis” of the sys-
tem. By freezing this axis, i.e. using a constant scheduling, these concepts coincide
with the original LTI definitions (see [146]). To establish conditions when an LPV-
SS representation is completely state-observable or reachable, as a next step, the
concept of state-observability and reachability matrices is introduced. Appropriate
conditions are derived to formulate when and in which sense the full rank of these
matrices implies complete state-observability or reachability. However, the formu-
lation of these matrices follows a different track than in the LTI case, due to the
non-commutative multiplication onR[ξ ].

3.3.1.1 State-Observability in Continuous-Time

First the CT observability case is investigated based on the results of LTV sys-
tem theory by [174] and [35]. Using these approaches, we establish the concept
of state-observability of RSS(S) on a finite time interval and show that this prop-
erty is equivalent with the existence of an invertible linear map. Then we define

5 Note that in many text-books, reachability is also called controllability. As in DT, some-
times controllability is identified as state-stabilizability, usually much confusion rises
around this term. To avoid this problem, here the terminology of reachability is used.
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this linear map as the state-observability matrix of RSS(S) and claim that state-
observability (invertibility of the map) on any finite time interval implies complete
state-observability.

For a given continuous-time LPV-SS representation RSS(S) with matrix func-
tions (A,B,C,D), define A(t1,t0, p) as the state transition matrix function for ẋ =
(A� p)x. Then the state and output evolution of RSS(S) satisfy that

x(t1) = A(t1,t0, p)x(t0)+
∫ t1

t0
A(t1,τ, p)(B� p)(τ)u(τ) dτ, (3.83a)

y(t1) = (C � p)(t1)x(t1), (3.83b)

for all t1 ≥ t0 along a given scheduling trajectory p ∈ BP. For LPV-SS represen-
tations in general, the explicit form of A(t1, t0, p) is hard to derive as it involves
integration over the scheduling trajectory, while in the LTI case, A(t1, t0) = eA(t1−t0).

Complete state-observability of RSS(S) can be described using the concept of
reconstructibility. For a given p ∈BP, define the following linear map from X to
Lloc

1 ([t0,t1],Y):

y(t) = (C � p)(t))A(t,t0, p)︸ ︷︷ ︸
C(t)

x, x ∈X, t ∈ [t0,t1]. (3.84)

For the given p ∈ BP, the mapping y(t) = C(t)x defines the output evolution of
RSS(S) on the finite interval [t0, t1] ⊂ R with initial state x(t0) = x and with zero
input signal u = 0. The state x ∈X is said to be reconstructible on [t0, t1], if x lies in
the kernel of the linear map (3.84). This means that if (3.84) is injective, then every
state is reconstructible on [t0,t1]. If (3.84) is injective for every p∈BP, then RSS(S)
is called state-observable on [t0, t1]. It is easy to show that RSS(S) is completely
state-observable, if it is state-observable for any finite interval of R. Now we can
introduce the following matrix function to describe the map (3.84):

Definition 3.33 (n-step CT state-observability matrix function, [175]). In con-
tinuous time, the n-step state-observability matrix function of RSS(S) is defined as
On ∈R(nnY)×nX with

On =
[
o�1 o�2 . . . o�n

]�
, (3.85)

where o1 = C and
oi+1 = oiA + ȯi, i > 1. (3.86)

�
The n-step state-observability matrix function has a similar role as the state-ob-
servability matrix for LTI representations, as in case of complete state-observability,
it provides an invertible map for the reconstruction of the state from the derivatives
of y.

Example 3.23 (CT state-observability matrix function). Let the SS representation
RSS(S) of a CT-LPV system S with P⊆ R+ be given by
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[
A B
C D

]
� p =

⎡
⎣

p 1 1
0 1

p p

1 p p

⎤
⎦ .

Then the observability matrices of RSS(S) for n = 1,2,3 are as follows:

O1 � p =
[

1 p
]
, O2 � p =

[
1 p
p 2+ d

dt p

]
, O3 � p =

⎡
⎢⎣

1 p
p 2+ d

dt p
d
dt p+ p2 p2+2+ d

dt p
p + d2

dt2 p

⎤
⎥⎦ .

These matrices were computed by using:

ȯ1 � p =
[

0 d
dt p
]
, ȯ2 � p =

[
d
dt p d2

dt2 p
]
. �

Based on the LTI case, one could expect that full rank of OnX
, i.e. Rank(OnX

) =
nX (full rank in a functional sense), is the necessary and sufficient condition for
complete state-observability. However, this not true in the LPV case. It can also
be shown that instead of the functional full rank, full rank of OnX

for every time
instance along every scheduling trajectory, i.e. Rank((OnX

� p)(t)) = nX for all t ∈
R and p ∈ BP, is a sufficient but not a necessary condition for complete state-
observability. To show this and to derive the sufficient and necessary condition for
complete state-observability, first introduce a weaker notion of state-observability:

Definition 3.34 (Structural state-observability). RSS(S) with state-dimension nX

is called structurally state-observable if its nX-step observability matrix OnX
is full

(column) rank, i.e. Rank(OnX
) = nX. �

Note that full rank in a functional sense, does not guarantee that OnX
is invertible

for all t ∈ R and p ∈BP. Therefore, for specific scheduling trajectories and time
instances, reconstructibility of state x by the linear map OnX

is not guaranteed. In
this way, complete state-observability is not implied. Even if reconstructibility may
fail for some scheduling trajectories, for the rest state-observability holds on R. This
gives that structural observability can be understood as complete state-observability
in an almost everywhere sense. In the following we show that in fact structural state-
observability is a necessary condition for complete state-observability.

To derive the appropriate conditions for complete state-observability the follow-
ing lemma has a key importance:

Lemma 3.2 (Constant observability rank, [175]). Let a representation RSS(S) be
given with a projected scheduling behavior BP and observability matrices On. For
a scheduling trajectory p ∈BP, it holds that, if there exists n > 0 such that

Rank((On � p)(τ)) = Rank((On+1 � p)(τ)) = γ, (3.87)

for all τ ∈ T, then Rank((Ol � p)(τ)) = γ for all l ≥ n and τ ∈ T.
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The proof is given in [175]. The minimal n > 0, for which (3.87) holds, is called
the observability radius of RSS(S) with respect to the scheduling trajectory p. This
lemma has the obvious consequence that for a given p ∈BP, if the ranks of On �
p and On+1 � p are constant and equal along the entire trajectory of p, then the
rank of Ol � p remains constant for all l ≥ n. Contrary to the LTI case, it is not
guaranteed that the rank of OnX

� p is equal to the rank of OnX+1 � p for all t, i.e.
the observability radius is smaller or equal than nX. As the observability radius can
vary for each trajectory of p, the introduction of the notion of constant observability
rank representation is required:

Definition 3.35 (Constant observability rank representation, [175]). A RSS(S)
representation has constant observability rank if there exist a n ∈ {1, . . . ,nX} and a
l > 0 such that

Rank((On � p)(τ)) = Rank((On+1 � p)(τ)) = l ≤ nX, (3.88)

for all p ∈BP and τ ∈ T. �

Example 3.24 (CT non-constant observability rank representation). For Example
3.23 it holds, that Rank((O2 � p)(t)) = 2 for all possible scheduling signals and time
instances, except when for a t ∈R the scheduling signal satisfies p2(t) = 2+ d

dt p(t).
At that time instant, Rank((O2 � p)(t)) = 1. Hence it is not a constant observability
rank representation, but its minimal observability radius is 1. For a constant observ-
ability rank representation see Example 3.25. �

Using the previously introduced concepts the following theorem holds:

Theorem 3.9 (Induced complete LPV state-observability in CT, [174]). The CT-
LPV-SS representation RSS(S) is completely state-observable, iff for every p ∈
C∞(R,P)∩BP there exists a 0 < n < ∞ such that Rank((On � p)(t)) = nX for all
t ∈ R. If RSS(S) is a constant observability rank representation, then the condition
is Rank((OnX

� p)(t)) = nX for all t ∈R.

The proof follows similarly as in [174]. The clear interpretation of this result is
important. If a LPV-SS representation is completely state-observable, then it is not
guaranteed that the reconstruction of the state is available for every time instance
through the linear map (OnX

� p)(t), as it is not injective. It can happen that this
property is only satisfied for n > nX. In case RSS(S) is a constant observability
rank representation, then, similar to the LTI case, full rank of (OnX

� p)(t) along
every p∈BP guarantees complete state-observability. For an SS representation with
complete state-observability, see Example 3.25.

It can be shown that the class of LPV-SS representations with constant ob-
servability rank includes the class of LTI-SS representations, similar to the LTV
case [172]. In LPV control design, instead of observability, the so-called detectabil-
ity of the state is investigated together with stabilizibility [96]. These concepts are
formulated in a quadratic sense, similar to quadratic Lyapunov stability (see later
in Sect. 3.3.2). It can be shown that if quadratic detectability is satisfied for a LPV-
SS representation with static linear dependence, then it is a necessary condition in
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terms of Th. 3.9 for complete state-observability. In the existing LPV system theory
the notion of complete-state observability is only considered in [10], where invariant
observability subspaces of LPV-SS representations with static linear dependence are
explored using the concepts of nonlinear system theory. However, the connection of
these results to Th. 3.9 is currently not fully understood.

Example 3.25 (CT complete state-observability). Let the SS representation RSS(S)
of an CT-LPV system S with P = [− 1

2 , 1
2 ] be given by

[
A B
C D

]
� p =

⎡
⎣

tan(p) d
dt p 0 1

sin(p) 2 1
cos(p) 1 0

⎤
⎦ .

Then it follows that

O2 � p =
[

cos(p) 1
sin(p) 2

]
.

As cos(p) �= 2sin(p) on P, O2 has a constant rank of 2 for all p ∈BP and t ∈ R .
This means that RSS(S) is completely state observable on P. �
In case Rank(OnX

) = nX is satisfied, i.e. the SS representation is structurally state-
observable, then it holds that Rank((OnX

� p)(t)) = nX for all t ∈R except for some
p ∈ C∞(R,P)∩BP. Then it is obvious that structural state-observability is a nec-
essary condition for complete state-observability (see Example 3.26). This claim is
also proved in [172].

Example 3.26 (Structural state-observability). The representation defined in Exam-
ple 3.23 has been shown to be not completely state-observable as mint∈R Rank((O2�
p)(t)) = 1 for scheduling trajectories that satisfy p2(t) = 2 + d

dt p(t) at a t ∈ R.
However, it is obvious that it is completely observable for all other scheduling
trajectories, as Rank(O2) = 2 in the functional sense. This implies complete state-
observability of the representation in an almost everywhere sense, i.e. the represen-
tation defined in Example 3.23 is structurally state-observable. �
To check complete state-observability of a given RSS(S), an iterative computation
strategy must be applied in terms of Th. 3.9, checking the rank of Ol � p for in-
creasing l > 0. In step l of this iterative scheme, computation of the minimum of
Rank((Ol � p)(t)) for all p∈BP and t ∈R is required which is usually an infinite di-
mensional and hence unsolvable optimization problem. An approximative solution
may follow through the parametrization of p like polynomial, piecewise continuous,
periodical, etc. and then using this parameterized scheduling to set up a feasibility
problem for the full rank of the matrix function on a large interval of R. If in itera-
tion step l it holds that Rank((Ol � p)(t)) = Rank((Ol−1 � p)(t)) for all p ∈BP and
t ∈ R, then the observability rank of the representation is found. As this condition
cannot be checked in a non-conservative sense, the iterative scheme can only prove
complete state-observability if full rank of Ol � p can be shown in a computationally
feasible number of steps.

On the other hand, the rank test for structural state-observability can be accom-
plished in the SISO case based on symbolic computation of the determinant of OnX

.
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In case the result is a non-zero function, then structural state-observability is satis-
fied. In the MIMO case, full rank of OnX

can be checked by forming square matrices
from the rows of OnX

using all possible combinations and checking if any of the de-
terminants of these matrices is non-zero.

3.3.1.2 State-Reachability in Continuous-Time

The concepts introduced in the observability case can be similarly introduced in
the reachability sense. The only difference is that to show the results, instead of
state-reconstructibility, we need to introduce the so-called reachability map. By in-
troducing this map, we develop the analog of the results of the observability case.

In terms of Def. 3.32, reachability of an LPV representation represents the abil-
ity to transfer an arbitrary initial state to an arbitrary target state of X in case of
any scheduling trajectory. This can be explained using controllability maps between
the space of input signals and the state-space X. For a given p ∈ BP, define the
following linear map from Lloc

1 ([t2, t1],U) to X :

x =
∫ t1

t0
A(t1,τ, p)B(p(τ))u(τ)dτ, x ∈ X, t ∈ [t0, t1]. (3.89)

For the given p, the mapping (3.89) defines the state evolution of RSS(S) in the
finite interval [t0,t1] for an initial condition x(t0) = 0 and input u ∈ Lloc

1 ([t0, t1],U).
The state x ∈ X is said to be controllable on [t0, t1], if x lies in the image of the
linear map (3.89). Note that in case of initial condition x(t0) = x0 and target state
x(t1) = x1, linearity of the signal behavior implies that the input u ∈ Lloc

1 ([t0, t1],U)
which satisfies (3.89) for x= x1−A(t1, t0, p)x0, transfers the state x0 to x1 in [t0, t1].
This means that if (3.89) is surjective, then every state can be reached from an
arbitrary state in the time-interval [t0, t1]. If (3.89) is surjective for every p ∈ BP,
then RSS(S) is called state-reachable on [t0, t1]. It is easy to show that RSS(S) is
completely state-reachable, if it is state-observable for any finite interval in R. Now
we can introduce the following matrix function to describe the linear map (3.89):

Definition 3.36 (n-step CT state-reachability matrix function, [175]). In continu-
ous-time, the n-step state-reachability matrix function of RSS(S) is defined as Rn ∈
RnX×(nnU) with

Rn =
[
r1 r2 . . . rn

]
, (3.90)

where r1 = B and
ri+1 =−Ari + ṙi, i > 1. (3.91)

�
The n-step state-reachability matrix function has similar role as the state-reachabi-
lity matrix for LTI representations.

Example 3.27 (CT state-reachability matrix function). Consider the LPV-SS repre-
sentation RSS(S) defined in Example 3.23. The reachability matrices of RSS(S) for
n = 1,2,3 are as follows:
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R1� p =
[

1
p

]
, R2� p =

[
1 −2p
p d

dt p−1

]
, R3� p =

[
1 −2p 1 + 2p2−3 d

dt p

p d
dt p−1

1− d
dt p
p + d2

dt2 p

]
.

These matrices were computed by using:

ṙ1 � p =
[

0 d
dt p
]�

, ṙ2 � p =
[
−2 d

dt p d2

dt2 p
]�

. �

We can also introduce the notion of structural state-reachability:

Definition 3.37 (Structural state-reachability). RSS(S) with state-dimension nX

is called structurally state-reachable if its nX-step reachability matrix RnX
is full

(row) rank, i.e. Rank(RnX
) = nX. �

Moreover, it can be shown that Lemma 3.2 holds also for Rn, implying all the prop-
erties that have been noted in the observability case [175]. Similarly we can intro-
duce the reachability radius of a given SS representation with respect to a scheduling
signal p ∈BP. As the reachability radius can vary for each trajectory of p, thus the
notion of constant reachability rank representation is introduced:

Definition 3.38 (Constant reachability rank representation, [175]). A RSS(S)
representation has constant reachability rank if there exist a n ∈ {1, . . . ,nX} and a
l > 0 such that

Rank((Rn � p)(τ)) = Rank((Rn+1 � p)(τ)) = l ≤ nX, (3.92)

for all p ∈BP and τ ∈ T. �

Example 3.28 (CT non-constant reachability rank representation). In Example 3.27
it holds that Rank((R2�)p(t)) = 2 for all possible scheduling signals and time in-
stances, except when for a t ∈R the scheduling signal satisfies 2p2(t)=− d

dt p(t)+1.
At that time instant, Rank((R2 � p)(t)) = 1. Hence it is not a constant reachability
rank representation, but its minimal reachability radius is 1. For a constant reacha-
bility rank representation see Example 3.29. �

Using the previously introduced concepts, the analog of Th. 3.9 holds in the reach-
ability case as well:

Theorem 3.10 (Induced complete LPV state-reachability in CT, [174]). The
CT-LPV-SS representation RSS(S) is completely state-reachable, iff for any p ∈
C∞(R,P) ∩BP it holds that there exists a 0 < n < ∞ such that Rank((Rn � p)(t)) =
nX for all t ∈ R. If RSS(S) has constant reachability rank, then the condition is
Rank((RnX

� p)(t)) = nX for all t ∈ R.

The proof follows similarly as in [174]. The interpretation of this theorem is the
same as in the observability case: an LPV-SS can be completely state-reachable,
even if the nX-step state-reachability matrix is not full rank along every scheduling
trajectory. In case RSS(S) is a constant reachability rank representation, then, simi-
lar to the LTI case, full rank of (RnX

� p)(t) along every p∈BP guarantees complete
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state-reachability. For an SS representation with complete state-reachability, see Ex-
ample 3.29.

It can also be shown that the class of LPV-SS representations with constant
reachability rank includes the class of LTI-SS representations (see [172]). Addi-
tionally, quadratic stabilizibility (see [96]) of a LPV-SS representation with static
linear dependence is a necessary condition in terms of Th. 3.10 for complete state-
reachability.

Example 3.29 (CT complete state-reachability). Let the SS representation RSS(S)
of an CT-LPV system S with P = [− 1

2 , 1
2 ] be given by

[
A B
C D

]
� p =

⎡
⎣
− tan(p) d

dt p sin(p) cos(p)
0 2 1
1 1 0

⎤
⎦ .

Then it follows that

R2 � p =
[

cos(p) sin(p)
1 2

]
.

As 2cos(p) �= sin(p) on P, R2 has rank 2 for all p ∈BP and t ∈R. This means that
RSS(S) is completely state reachable on P. �

In case Rank(RnX
) = nX is satisfied, i.e. the SS representation is structurally

state-reachable, then it holds that Rank((Rn � p)(t)) = nX for all t ∈R except some
p ∈ C∞(R,P)∩BP. Then, similar to the previous case, it is obvious that structural
state-reachability is a necessary condition for complete state-reachability. To check
complete or structural state-reachability the computational considerations are the
same as discussed for the observability case.

3.3.1.3 State-Observability in Discrete-Time

The concept of state-observability can be similarly investigated in DT for a given
LPV-SS representation RSS(S) with state and output equations (3.62a–b). By using
a similar line of reasoning, we explore the previously introduced concepts based on
the theory for DT-LTV systems in [61]. Define the state transition matrix as

A(k1,k0, p) =

⎧
⎨
⎩

k1−k0−1
∏
i=0

(A� p)(k1− i), if k1 > k0;

I, if k1 ≤ k0;
(3.93)

for k1,k0 ∈ Z. Then, based on (3.62a–b), the state and output evolution of RSS(S)
in the finite time interval [k0,k1]⊂ Z satisfies

x(k1) = A(k1,k0, p)x(k0)+
k1

∑
i=k0

A(k1, i, p)(B� p)(i)u(i), (3.94a)

y(k1) = (C � p)(k1)x(k1), (3.94b)
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for all k1 ≥ k0 along a scheduling trajectory p ∈ BP. Again, complete state-
observability of RSS(S) can be considered as a reconstruction problem of any
x0 = x(k0) from a zero input response in the time interval [k0,k1] ⊂ Z. Then state-
observability on [k0,k1] requires that the linear map

y(k) = (C � p)(k)A(k,k0, p)x, x ∈ X, k ∈ [k0,k1], (3.95)

from X to Y[k0,k1] is injective for every p ∈ P[k0,k1]. It can be shown again, that
RSS(S) is completely state-observable if it is state-observable for any finite interval
of Z with nX ≤ k1− k0 < ∞. Now we can introduce the following observability
matrix in DT to describe the linear map (3.95):

Definition 3.39 (n-step DT state-observability matrix function, [61]). In discrete-
time, the n-step state-observability matrix function On ∈RnX×nnU of RSS(S) is de-
fined as (3.85) with

o1 = C, oi+1 =−→oi A, ∀i > 1. (3.96)

�
The n-step state-observability matrix function has a similar role as the state-observ-
ability matrix for LTI representations, as in case of complete state-observability, it
provides an invertible map for the reconstruction of the state from the samples of
y. Note that the difference in the structure of the discrete-time n-step state-observ-
ability matrix with respect to its continuous-time counterpart is due to the different
commutation rules for the d

dt and q operators onR[ξ ].

Example 3.30 (DT state-observability matrix function). Consider the DT-LPV-SS
representation RSS(S) given by

[
A B
C D

]
� p =

⎡
⎢⎣

p 1 1
0 p p

1 1
p p

⎤
⎥⎦ ,

with P = [ 1
4 , 3

4 ]. Then the observability matrices of RSS(S) for n = 1,2,3 are as
follows:

O1� p =
[

1 1
p

]
, O2� p =

[
1 1

p
p 1 + p

q p

]
, O3� p =

⎡
⎢⎣

1 1
p

p 1 + p
q p

p(q p) p(1 + (q p)
(q2 p) )+ q p

⎤
⎥⎦ .

These matrices were computed by using:

−→o 1 � p =
[

0 1
q p

]
, −→o 2 � p =

[
q p 1 + (q p)

(q2 p)

]
. �

Again we can introduce structural state-observability in terms of Def. 3.34. Sim-
ilarly, Lemma 3.2 also holds in the DT case and by using the concepts of n-step
state-observability matrix and constant observability-rank representation, given by
Def. 3.39 and 3.35, the induced complete state-observability, Th. 3.9, can be shown
to hold in DT as well:
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Theorem 3.11 (Induced complete LPV state-observability in DT, [61]). The
LPV-SS representation RSS(S) is completely state-observable, iff for any p ∈BP it
holds that there exists a 0 < n <∞ such that Rank((On � p)(k)) = nX for all k ∈Z. If
RSS(S) has constant observability rank, then the condition is Rank((OnX

� p)(k)) =
nX for all k ∈ Z.

The proof follows similarly as in [61]. The consequences of this theorem are similar
as in the CT case, also implying that discrete-time LPV-SS representations with con-
stant observability rank include the class of DT-LTI-SS representations (see [61]).
Furthermore it can be shown, that structural state-observability is a necessary con-
dition for complete state-observability also in the DT case. Again, basic DT results
of the existing LPV system theory follow as special cases of Th. 3.11.

Example 3.31 (DT complete state-observability). Consider Example 3.30. It is triv-
ial that Det(O2 � p) = p

q p can not be zero on P = [ 1
4 , 3

4 ], thus Rank((O2 � p)(k)) = 2
for all p ∈BP and k ∈ Z. Naturally, the same holds for O3. Hence the SS represen-
tation of Example 3.30 is completely state-observable. �

Again an iterative test can be applied to check complete state-observability in terms
of Th. 3.11. However, in the DT case, computation of the minimal rank of (On� p)(τ)
can be accomplished by the generalization of the Popov-Belevitch-Hautus (PBH)
spectral test, resulting in an almost eigenvalue problem [140]. As computation of
the almost eigenvalue/eigenvectors is difficult in most general cases (see [16]), even
for representations with linear dependence, therefore in practice an approximative
approach is suggested. By this approach, the full rank condition of (On � p)(τ) is
checked for finite sequences of p, like {p0, . . . ,pN−1}. Each shifted instance of p in
On, like ql p, is associated with the appropriate element of the sequence, i.e. ql p =
pl . In this way, the full rank test of (On � p)(τ), can be formulated as a feasibility
problem on PN , which can be solved via nonlinear optimization or by gridding. This
mechanism corresponds to a conservative rank test, as the feasibility is checked for
arbitrary variations of p. To compute the actual rank of On, the previous method
is applied iteratively, checking the full rank of Ol for increasing l. This yields an
approach that is easily computable for small dimensions. To check structural state-
observability, the same symbolic approach can be used as given in the CT case.

3.3.1.4 State-Reachability in Discrete-Time

In discrete-time, the concept of complete state-reachability can be similarly investi-
gated as in CT, except that in case of state-reachability on a discrete interval [k0,k1],
it is required that the linear map

x =
k

∑
i=k0

A(k, i, p)(B� p)(i)u(i), k ∈ [k0,k1], (3.97)

from U[k0,k1] to X is surjective for every p ∈BP. Then RSS(S) is completely state-
reachable if it is state-reachable for any finite interval of Z. Similar to the CT case,
we can introduce the following matrix function to describe the linear map (3.97):
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Definition 3.40 (n-step DT state-reachability matrix function, [61]). In discrete-
time, the n-step state-reachability matrix function Rn ∈ RnX×nnU of RSS(S) is de-
fined as (3.90) with

r1 = B, ri+1 = A←−ri , ∀i > 1. (3.98)

�

Similar to the previous part, the difference in the structure of the discrete-time n-
step state-reachability matrix with respect to its continuous-time counterpart is due
to the different commutation rules of the d

dt and q operators onR[ξ ].

Example 3.32 (DT state-reachability matrix function). Consider the SS representa-
tion RSS(S) defined in Example 3.30. The observability matrices of RSS(S) for
n = 1,2,3 are as follows:

R1 � p =
[

1
p

]
, R2 � p =

[
1 p + q−1p
p p(q−1 p)

]
,

R3 � p =
[

1 p + q−1p p(q−1 p)+ (p + q−1p)q−2 p
p p(q−1 p) p(q−1 p)(q−2 p)

]
.

These matrices were computed by using:

←−r 1 =
[

0 q−1 p
]�

, ←−r 2 =
[

q−1 p + q−2p q−1 p(q−2 p)
]�

. �

Again we can introduce structural state-reachability in terms of Def. 3.37. Ad-
ditionally, using the previously introduced concepts, the induced complete state-
reachability, Th. 3.10, holds in DT as well:

Theorem 3.12 (Induced complete LPV state-reachability in DT, [61]). The dis-
crete time LPV-SS representation RSS(S) is completely state-reachable, iff for any
p ∈ BP it holds that there exists a 0 < n < ∞ such that Rank((Rn � p)(k)) = nX

for all k ∈ Z. If RSS(S) has constant reachability rank, then the condition is
Rank((RnX

� p)(k)) = nX for all k ∈ Z.

The proof is follows similarly as in [61]. The consequences of this theorem are the
same as in the CT case, also implying that discrete-time LPV-SS representations
with constant reachability rank include the class of DT-LTI-SS representations [61].
Furthermore, it can be shown that structural state-reachability is a necessary con-
dition for complete state-reachability also in the DT case. Again, basic DT results
of the existing LPV systems theory follow as special cases of Th. 3.11. To check
complete or structural state-reachability in discrete-time, the computational consid-
erations are the same as given in the observability case.

Example 3.33 (DT complete state-reachability). Consider Example 3.32. Det(R2 �
p) = −p2 implies that Rank((R2 � p)(k)) = 2 for all p ∈BP and k ∈ Z. Trivially,
the same holds for R3. Hence the SS representation of Example 3.30 is completely
state-reachable. �
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3.3.1.5 General Properties and Minimality

As a next step we show that structural state-observability/reachability are the nec-
essary ingredients to develop observability and reachability canonical forms of SS
representations which are similar to their LTI counterparts. Additionally, minimality
of LPV-SS representations is implied by structural state-observability instead of the
complete concept.

Based on the definition of structural state-observability/reachability, an important
corollary is the following:

Corollary 3.1. If RSS(S) is structurally state-observable (reachable), i.e.
Rank(OnX

) = nX (Rank(RnX
) = nX), then at least nX number of rows of OnX

(columns of RnX
) are linearly independent in the functional sense. This implies that

in the SISO case, OnX
(RnX

) is invertible.

Based on this property, On and Rn can be used to define state-transformations in
the behavioral framework and, by using similar argumentation as in the LTI case, to
develop canonical forms for LPV-SS representations. Note that, in case of complete
state-observability/reachability, On or Rn are invertible for all scheduling trajecto-
ries and time instances, which is a much stronger property than the previous one.
Thus by requiring this stronger property to generate canonical forms, we would
exclude a large set of SS representations that have an equivalent (in the almost ev-
erywhere sense) observability/reachability canonical form (see Chap. 4).

A key theorem that enables construction of observability/reachability canonical
forms in LPV case is the following:

Theorem 3.13 (Transformation of the state-observability/reachability struc-
ture, [173]). If the matrices of two LPV-SS representations, with state dimensions
nX and with a common nP dimensional scheduling space, fulfill the equivalence
relation

nP∼ via state-transformation T ∈RnX×nX , then for all n ∈ N:

{
for T = R, O′n = OnT−1 and R′n = TRn

for T = Z, O′n = OnT−1 and R′n =
−→
T Rn

(3.99)

hold, where On and O′n, respectively Rn and R′n, are the corresponding n-step state-
observability/reachability matrices of the representations.

The proof of this theorem similarly follows as in [173]. This means that the
state-observability/reachability structure of equivalent representations is projected
through the state-transformation that connects them, which is the required property
to develop canonical forms with special structure of On or Rn. The following theo-
rem is the consequence of the minimality concept of Def. 3.30:

Theorem 3.14 (Induced PV-SS minimality). The representation RSS(S) is mini-
mal iff it is structurally state-observable and it is state-trim, i.e. for all x ∈ X there
exists, in case of T = R, a (u,x,y, p)∈BSS∩C∞(R,W×X×P,) or (u,x,y, p)∈BSS

in case of T = Z, such that x(0) = x.
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The proof of this theorem similarly follows as in the LTI case [153]. Note that,
opposite to the orthodox linear system theory [80], minimality in this context does
not require6 state-reachability. However, when it is necessary to refer to the Kalman
concept of minimality, we use the terminology of joint minimality:

Definition 3.41 (Joint minimality). If RSS(S) is minimal and structurally state-
reachable, then the representation is called jointly minimal. �

Example 3.34 (Induced minimality). Consider Example 3.30 and 3.32. Then the DT-
SS representation is minimal as it is completely state-observable. Additionally it is
completely state-reachable, hence it is jointly minimal. In case of Example 3.23,
structural observability of the representation holds even if it is not completely state-
observable. Thus, this representation is also minimal. �

3.3.2 Stability of LPV Systems

In the literature, there exist various stability concepts of LPV systems, originating
either from the concepts of stability along frozen, i.e. constant scheduling trajecto-
ries (frozen stability) or stability along arbitrary varying p (global stability). While
the first aspect defines stability in the LTI sense of the frozen behaviors, the latter
establishes this concept on the full behavior. In many works, LPV stability issues are
only discussed for the state-space case with static dependence, involving the notion
of state equilibrium points and Lyapunov functions [160, 6], or mixing the concepts
of frozen and global stability by considering slow variations of p [164, 176, 155].
Here we intend to define stability in the developed behavioral framework, investi-
gating dynamic, IO, and Lyapunov stability both in a global and frozen sense. We
also show the connection of the derived theory with the existing results of the LPV
control synthesis framework.

3.3.2.1 Global Stability

Global stability is the natural concept of stability for LPV dynamic systems, as it
means that small causes produce small effects for any scheduling trajectory. Histor-
ically, it originates from LTV system theory [68, 178] and robust control synthesis
[240], where the problem of stability over the variations of the system has been first
encountered. Let R

+
0 denote the set of positive real numbers including 0. Then from

the behavioral point of view, this concept extends the notion of dynamic stability for
LPV systems as follows:

Definition 3.42 (Global dynamic stability). The autonomous LPV dynamical sys-
tem S = (T,RnW ,P⊆RnP ,B) is said to be globally dynamically stable, if ((w, p) ∈
B)⇒ (∃ε ∈R

+
0 such that ‖w(t)‖ ≤ ε for all t ≥ 0) (in an arbitrary norm ‖ �‖). It is

6 Non-reachable systems are very common and they allow a state-minimal representation.
Consider for instance autonomous systems. Such systems define a unique behavior, but
their state representation is never state-reachable.
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said to be globally unstable, if it is not stable; it is said to be globally dynamically
asymptotically stable, if ((w, p) ∈B)⇒ (w(t)→ 0 as t→ ∞). �
The definition strongly builds on the linearity (the only fixed point of the dynamic
relation is 0) and time-invariance (stability on t ≥ 0 implies stability on t ≥ t0 for
all t0 ∈ R) of the LPV system class. Note that in terms of Def. 3.42 any signal tra-
jectory, i.e. signal evolution of the system on the half-line, is bounded no matter the
scheduling trajectory it is associated with, and the bound depends on the particular
solution w. It is obvious that global stability includes stability with respect to frozen
behaviors, as boundedness of w must hold for constant scheduling trajectories as
well. This also emphasizes the difference between LPV and LTV systems, as in
the latter case stability is defined with respect to only one, linear-trajectory of the
scheduling (p(t) = t).

Contrary to the LTI case, conditions of global dynamic stability for LPV-KR
representations can not be formulated in terms of eigenvalues or root conditions of
polynomials inR[ξ ]. To show this, consider the following argument: In the CT-LTI
case, d

dt w = rw has solutions on the half-line in the form of w(t) = erw(0), thus
the condition r < 0 guarantees boundedness of the solutions. However in the CT-
LPV case d

dt w = (r � p)w with r ∈ R, has solutions on the half-line in the form of
w(t) = e(r�p)(t)w(0) only for constant p. Thus boundedness is not guaranteed by
(r � p)(t) < 0, t ≥ 0. In fact, it is often possible to find a scheduling trajectory p
such that the solution diverges even if (r � p)(t) < 0, t ≥ 0. In the sequel, unless
indicated otherwise, we will call a LPV system asymptotically stable if it is globally
dynamically asymptotically stable.

In case of an IO partition of S, the concept of dynamic stability is formulated
around the autonomous part of the behavior on the half line [0,∞), where u = 0.
Similarly, the notion of global dynamic stability generalizes for systems with state-
variables. Furthermore, global dynamic stability of LPV systems with IO parti-
tion also implies bounded-input bounded-output (BIBO) stability in the �∞ norm,
and global asymptotic dynamic stability implies BIBO stability in the �τ norm,
1≤ τ < ∞:

Definition 3.43 (BIBO stability). The LPV dynamical system S = (T,RnW ,P ⊆
RnP ,B) with IO partition (u,y) is said to be BIBO stable in the �τ norm with 1 ≤
τ < ∞, if for all (u,y, p) ∈B it holds that

⎧⎪⎪⎨
⎪⎪⎩

for T = R,

∫ ∞

0
‖u(t)‖τdt < ∞ ⇒

∫ ∞

0
‖y(t)‖τdt < ∞;

for T = Z,
∞

∑
k=0

‖u(k)‖τ < ∞ ⇒
∞

∑
k=0

‖y(k)‖τ < ∞.

It is said to be BIBO stable in the �∞ norm, if for all (u,y, p) ∈B it holds that

sup
t≥0
‖u(t)‖< ∞ ⇒ sup

t≥0
‖y(t)‖< ∞. �

Dynamic stability implies BIBO stability in the �∞ norm as all trajectories of y are
bounded in case of dynamic stability. This boundedness holds due to the fact that the
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autonomous part of the behavior is bounded and B fulfills the linearity and time-
invariance properties in Def. 3.3. Similarly, asymptotic dynamic stability implies
BIBO stability in an arbitrary �τ norm as all trajectories of y in the autonomous
part of the behavior converge to zero. The concept of bounded-input bounded-state
(BIBS) stability can be defined for LPV latent variable systems with both IO parti-
tion and state variables in a similar manner as BIBO stability. Also in the LPV case,
BIBS stability always implies BIBO stability.

Another notion of stability leads through the approach of Lyapunov, which is
widely used for stability analysis of linear and nonlinear systems, with both time-
varying and time-invariant nature. While for LTI systems the Lyapunov method
gives an informative alternative approach, for LPV systems it is the most appli-
cable way to characterize or test stability of a given SS representation. First we
introduce the intuitive idea in the context of first-order parameter-varying differen-
tial/difference equations:

ξw = f (w, p), (3.100)

where f : RnW×nP →RnW is a Lipschitz continuous function and ξ is either d
dt or q.

For notational convenience, assume that f (0, �) = 0, so the equilibrium of (3.100) is
0 for which we investigate the concept of stability. Note, that any isolated non-zero
equilibrium point w∈RnW of (3.100), i.e. f (w, �) = 0, can be transferred to the origin
by an exchange of variables w′ = w−w. We would like to find conditions ensuring
that every solution w : T→ RnW of (3.100) goes to zero as t → ∞. Suppose that
T = R and a continuously partially differentiable function V : RnW → R is given
with V(0) = 0 and V(τ) > 0 for τ �= 0. Assume that the derivative of V along every
solution of (3.100) associated with a given p ∈BP is non-positive. Then V(w(t)) is
non-increasing for any w solution and under some additional requirements it implies
that w(t)→ 0 for t → ∞ along the scheduling trajectory p. To implement this idea,
define the following:

Definition 3.44 (Definiteness of a function). A real valued function g : Rn→ R is

• positive semi-definit (denoted by g	 0) if g(τ)≥ 0, ∀τ ∈ Rn,
• positive definit (denoted by g� 0) if g	 0 and (g(τ) = 0)⇔ (τ = 0),
• negative semi-definit (denoted by g& 0) if g(τ)≤ 0, ∀τ ∈ Rn,
• negative definit (denoted by g≺ 0) if g& 0 and (g(τ) = 0)⇔ (τ = 0). �

Denote fp = f (·, p) for a given p ∈ (RnP)T. Then based on the previously given
considerations about V , the following theorem holds:

Theorem 3.15 (Lyapunov stability, based on [146]). The origin is an asymptoti-
cally stable equilibrium point of (3.100) in a global sense for a given scheduling
trajectory p ∈BP, if there exists a so-called Lyapunov function V : RnW → R such
that the following conditions are satisfied:

1. V � 0 (positive-definit),
2. If T = R, then V is continuously partially differentiable and Grad[V ] fp ≺ 0,
3. If T = Z, then V is continuous at 0 and (V ◦ fp)−V ≺ 0,
4. V(τ)→ ∞ as ‖τ‖→ ∞.



96 3 LPV Systems and Representations

Similar conditions can be given for stability of the equilibrium point by relaxing
Th. 3.15 to require only semi-definiteness in the conditions. Instability condition of
the equilibrium point can also be introduced by exchanging negative-definiteness of
item 2 and 3 with positive-definiteness. However, Th. 3.15 is non-constructive in the
determination of the Lyapunov function which can be laborious in practice.

In the following we focus on LPV systems in the context of the of the Lyapunov
stability concept. Let x ∈ XT be the solution of the autonomous part of a SS repre-
sentation RSS(S) for a given scheduling trajectory p ∈BP:

ξ x = (A� p)x, (3.101)

where ξ is either d
dt or q. Consider the class of quadratic functions as Lyapunov

functions V(τ, p) = τ�(P� p)τ , where τ ∈RnX , P∈RnX×nX , and P = P� (symmet-
ric). Then in continuous-time, using the chain rule of differentiation, it holds that

d
dt
V(x, p) = x�((A�P+ PA + Ṗ︸ ︷︷ ︸

Q

)� p)x, (3.102)

where Q ∈ RnX×nX is symmetric. The term Q = A�P + PA + Ṗ is called the
parameter-varying CT Lyapunov equation. In discrete-time, using a quadratic Lya-
punov function yields

V(qx,q p)−V(x, p) = x�((A�
−→
P A−P︸ ︷︷ ︸

Q

)� p)x, (3.103)

where Q ∈ RnX×nX is also symmetric. Here the term Q = A�
−→
P A− P is the

parameter-varying DT Lyapunov equation. Similar to Th. 3.15, the concept of sta-
bility is formulated around the “definiteness” property of (3.102) or (3.103) and
the quadratic Lyapunov function. In case of a quadratic parameter-varying function
V(τ, p) = τ�(P� p)τ with symmetric P∈RnX×nX , we can define for a given p∈BP

the positive definiteness of P. We call P positive definite for p, i.e. (P � p) � 0, if
there exists a ε > 0 such that (P � p)(t) 	 εI for all t ≥ 0 (P � p is bounded away
from 0). The definition of negative definit, semi definit, etc. similarly follows.

Theorem 3.16 (LPV Quadratic stability). Consider (3.101) and a projected sche-
duling behavior BP. Assume that P ∈ RnX×nX , P = P�, and Q = Q� satisfy the
corresponding Lyapunov equation (see (3.102) and (3.103)) and P � p is bounded
for all p ∈BP. If for all p ∈BP it holds that

• (P� p)� 0 and (Q� p)& 0, then (3.101) is globally dynamically stable.
• (P� p)� 0, (Q� p)& 0, and (A,Q) is completely state-observable, then (3.101)

is globally dynamically asymptotically stable.
• (P� p)≺ 0, (Q� p)& 0, and (A,Q) is completely state-observable, then (3.101)

is globally dynamically unstable.

The proof of this theorem can be given according to [154] in CT and [2] in DT. How-
ever, there are two important facts to be noted. First, complete state-observability is
required to ensure that the behavior of all state trajectories are characterized by the



3.3 Properties of LPV Systems and Representations 97

Lyapunov function. In this way, as V is bounded away from zero with a positive
ε and its derivative (difference) is bounded away from zero with a non-positive ε
along every state and scheduling trajectory, convergence of the state to the origin
is ensured. However, checking complete state-observability of (A,Q) is a computa-
tionally difficult problem (see Sect. 3.3.1). Second, due to the freedom of the func-
tional dependence of P, the theorem is non-constructive in the general case.

Based on the previous considerations, in practiceRnX×nX can be found to be too
general for Lyapunov function construction. Especially in LPV control, the search
for quadratic Lyapunov functions is commonly restricted to either a constant matrix
P ∈ RnX×nX or to rational functions with static dependence on p. This restriction
introduces conservative use of the Lyapunov theorem: If such a P ∈ RnX×nX can be
found that either of the first two items of Th. 3.16 is satisfied, then stability of the
system can be concluded, however, the lack of such a P does not necessarily imply
instability. What we gain by the restriction of P ∈ RnX×nX , is that the parameter-
varying Lyapunov equations are modified as

{
for T = R, (A� � p)P+ P(A� p)≺ 0,

for T = Z, (A� � p)P(A� p)−P≺ 0.
(3.104)

By assuming that A has linear and static dependence on p, then the inequalities
(3.104) become LMIs, defining an infinite dimensional linear semi-definite pro-
gramming (LSDP) problem on P for the synthesis of P. If additionally it is assumed
that P is a convex polytope7 in RnP , then (3.104) reduces to a finite LSDP problem,
where the feasibility of the Lyapunov equations is only checked at the vertices of the
polytope P (see [160, 6]). This gives the foundation of the traditional H2 and H∞
LPV control synthesis. Additionally, the use of full-block multipliers also enables
to handle A with rational dependence through an LFR representation of the system
[161]. In some works, parameter-varying Lyapunov functions with rational [233] or
general [5], static dependence are also considered to overcome the restrictions of
searching for a constant P . In the most simple case, assuming linear dependence of
both P and A on p and restricting the derivative of p to a polytopic set, gives that
the parameter-varying Lyapunov equations (3.102) and (3.103) can be formulated
as LMIs by the use of relaxations, which again translates to a finite LSDP problem.

Example 3.35 (Global LPV stability). Consider the DT-SS representation RSS(S),
defined in Example 3.30. Choose a quadratic Lyapunov function

V(τ, p) = τ�
[

0.1 0
0 1

]

︸ ︷︷ ︸
P

τ.

All eigenvalues of P are positive, thus P� 0. By computing the DT Lyapunov equa-
tion, it follows that

7 A convex polytope is the convex hull of a finite set of points, i.e. it is the intersection of
half-spaces.
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Q� p = (A�
−→
P A−P)� p =

1
10

[
p2−1 p

p 10p2−9

]
.

Because P = [ 1
4 , 3

4 ], it holds that there exists a ε < 0 such that (Q� p)(k)& εI for all
k ∈ Z and p ∈BP. Furthermore (A,Q) is completely state-observable as the rank of
Q is always 2 along any p ∈BP. Thus the chosen Lyapunov function proves global
asymptotic dynamic stability of S. �

3.3.2.2 Frozen Stability

Another important aspect of LPV stability is the so-called frozen stability. Stability
analysis of the frozen behaviors has been in the focus of LPV control during the
gain-scheduling area, before the appearance of global LPV control synthesis tech-
niques. At that time, researchers concluded global dynamic stability of the system
based on the dynamic stability of the frozen behaviors by assuming appropriately
slowly varying scheduling signals [235, 176, 155]. This view has been found mis-
leading as the term “appropriate” was not well-defined (see the arguments of [157]
and [166]). Today, frozen stability is still important in LPV analysis as it is a neces-
sary ingredient for global stability.

Definition 3.45 (Frozen stability). Let FS be the frozen system set (see Def. 3.4)
of the LPV system S with scheduling space P ⊆ RnP . Then, in the frozen sense, S
is

• Uniformly asymptotically stable, if for all p∈P,Fp ∈FS is dynamically asymp-
totically stable.

• Uniformly stable, if for all p ∈ P, Fp is dynamically stable.
• Non-uniformly stable, if it is not uniformly stable but there exists a p ∈ P s.t. Fp

is dynamically stable.
• Uniformly unstable, if for all p ∈ P, Fp is dynamically unstable. �

Note that uniform frozen stability of S does not imply global dynamic stability,
though the converse is true. In terms of Def. 3.45, the stability of the frozen as-
pects of the system is checked separately for each frozen behavior. For example this
means the construction of quadratic Lyapunov functions separately for each p ∈ P.
If there exists such a common quadratic Lyapunov function which proves stability
for all p ∈ P, where P is convex, then in case of linear and static dependence of A, it
also implies global dynamic stability in terms of Th. 3.16. This makes an important
distinction for systems with dynamic dependence, where the evaluation of A along a
constant scheduling trajectory excludes the effect of the dependence on the deriva-
tives/time shifts of p. For these systems, a common Lyapunov function of the frozen
systems set does not imply global dynamic stability.

Example 3.36 (Frozen LPV stability). Consider again the DT-SS representation
RSS(S), defined in Example 3.30. For every constant scheduling trajectory p ∈BP,
where p(k) = p, ∀k ∈ Z, it holds that the eigenvalues of (A � p) are equal to p. As
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p< 1 for all p ∈ P, uniform frozen asymptotic stability of S holds. This is a not sur-
prising discovery, as global asymptotic dynamic stability of S, proved in Example
3.35, implies uniform frozen asymptotic stability of S. Now consider the CT-SS rep-
resentation defined in Example 3.25. For this representation, eigenvalues of (A� p)
are {0,2} for any constant scheduling trajectory which proves uniform frozen in-
stability of the represented system. Uniform frozen instability also implies global
dynamic instability. �

3.3.3 Gramians of LPV State-Space Representations

Gramians are also important concepts for LPV-SS representations, as they describe
the complete state-observability and reachability properties and they can also char-
acterize model reduction (see [232]). Using the previously developed linear input-
map (3.84) and linear output-map (3.89) of the CT case, and their DT equivalents
(3.95) and (3.97), the concept of PV gramians is introduced as follows:

Definition 3.46 (PV gramians). In CT, the observability gramian O and the reach-
ability gramian R of a asymptotically stable RSS(S) on the time interval [t0, t1]⊂ R

and along a scheduling trajectory p ∈BP are defined as:

O(t1,t0, p) =
∫ t1

t0
AT (τ, t0, p)(C�� p)(τ)(C � p)(τ)A(τ, t0, p) dτ, (3.105a)

R(t1,t0, p) =
∫ t1

t0
A(t1,τ, p)(B� p)(τ)(B�� p)(τ)AT (t1,τ, p) dτ, (3.105b)

while in DT, they are given on the time interval [k0,k1]⊂ Z as:

O(k1,k0, p) =
k1

∑
i=k0

AT (i,k0, p)(C� � p)(i)(C � p)(i)A(i,k0, p), (3.106a)

R(k1,k0, p) =
k1

∑
i=k0

A(k1, i, p)(B� p)(i)(B� � p)(i)AT (k1, i, p). (3.106b)

�

Similar to the LTI case, the full rank property of gramians implies complete
state-observability and reachability on the considered time interval and scheduling
trajectory:

Theorem 3.17 (Induced PV observability/reachability, [174]). The LPV-SS rep-
resentation RSS(S), is completely state-observable/reachable) iff its observabil-
ity/reachability gramian is full rank for any finite time interval and each scheduling
trajectory of BP.

See the proofs in [174] for the CT case and in [61] for the DT case.
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3.4 Conclusions

In this chapter, we have developed a behavioral framework of LPV systems as an ex-
tension of the LTI behavioral approach. The introduced theory has been established
to give a unified view on LPV systems and their representations and to enable to ap-
proach LPV system identification in a well-founded system theoretic sense. We has
shown that the behavioral approach provides a well established view on equivalence
relations between LPV representations, gives a clear representation free definition
of LPV systems and it is compatible with the existing system theoretical results. It
was also shown that the use of dynamic scheduling dependence is necessary in order
to establish equivalence relations and also in general to fill the gaps of the existing
theory. In the next chapter, we continue by extending the concept of equivalence
transformations between different representation domains to the LPV system class.
This contribution gives the finishing details of the developed behavioral framework
and enables the comparison of different LPV model structures.



Chapter 4
LPV Equivalence Transformations

Abstract. In this chapter, we continue the discussion of the LPV behavioral frame-
work by establishing equivalence transformations between the state-space and the
input-output representation domains. These equivalence transformations enable the
comparison and analysis of LPV model structures and provide essential tools to
formulate the identification approach of this thesis. First we define LPV canonical
forms based on the concept of observability and reachability and we give an algo-
rithmic scheme to construct them from an existing SS representation of the system.
Then, transformations are introduced which provide an equivalent IO representation
of a SS representation and vice versa. In both cases, the introduced LPV canonical
forms are special cases of the transformation problem, serving as a simple gateway
between the representation domains.

4.1 State-Space Canonical Forms

Specially structured canonical forms of state-space representations of LPV systems
are essential ingredients to accommodate equivalence transformations between the
state-space (SS) and the input-output (IO) representation domains. One set of these
canonical forms are the so-called observability/reachability canonical forms which
are also used in the state-of-the-art of LPV identification and control design.

In this section, LPV canonical forms in continuous-time (CT) and discrete-
time (DT) are introduced through a transformation mechanism applied on a given
SS representation of the LPV system. Using the concept of structural state-
observability/reachability, i.e. the associated observability/reachability matrices,
state-transformations are defined, that result in an equivalent SS representation with
special structure in the system matrices. It is shown that this special structure implies
complete state-observability/reachability of the resulting representation and hence
it is called a LPV observability/reachability canonical form. Additionally, the intro-
duced canonical forms give a unique representation of their associated equivalence

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 101–130.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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class. The applied transformation mechanism is based on the results of LTV sys-
tems theory and it can be seen as extension of the LTI canonical form construction
approach (see [80, 110]).

Besides the derivation of observability/reachability canonical forms, a construc-
tion approach for their companion counterparts is introduced. The concept of trans-
position of SS representations is also investigated, with the main conclusion that
contrary to the LTI case, the transpose of a SS representation in the LPV framework
does not have an equal manifest behavior. This means that such a transformation
alters the dynamical relation.

It is also investigated how the developed concept of canonical forms relates to
applied theories of the current LPV literature. It is shown that the common prac-
tice to use LTI theory to compute canonical forms for LPV systems results in SS
representations that do not have an equal manifest behavior.

4.1.1 The Observability Canonical Form

At first, observability canonical forms are considered. It is assumed that a struc-
turally state-observable state-space representation RSS(S) is given for the SISO
LPV system S. Due to structural state-observability, i.e. full rank of OnX

associated
with RSS(S), it is possible to introduce a new state-basis for the representation with
the parameter-varying transformation matrix, To ∈RnX×nX :

To := OnX
. (4.1)

This leads to a new state variable xo, obtained as

xo := (To � p)x, ∀p ∈BP. (4.2)

Due to the full rank property of OnX
, To is invertible in RnX×nX . If RSS(S) is com-

pletely state-observable with an observability radius nX, then To is invertible for any
scheduling trajectory and time instant. Thus, in that case, (4.2) implies algebraic
equivalence between xo and x. If only structural observability holds, then invert-
ibility is guaranteed in a functional sense, which means that (4.2) implies algebraic
equivalence almost everywhere. However, the latter is a sufficient property for To

to be a PV state-transformation, which leads to an equivalent SS representation of
S in terms of

nP∼. Moreover, this transformation projects the observability structure
in terms of Th. 3.13 to the identity matrix (OnX

O−1
nX

= I). Thus, similar to the LTI
case, we call the equivalent SS representation, resulting by the state transformation
To, the observability canonical form.

To obtain the equivalent representation of S in terms of the new state variable, To

is applied to the system matrices in accordance with
nP∼, resulting in a SS represen-

tation with the following special structure:
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[
Ao Bo

Co Do

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0 β o
nX−1

...
...

. . .
... β o

nX−2

0 0 . . . 1
...

−αo
0 −αo

1 . . . −αo
nX−1 β o

0

1 0 . . . 0 β o
nX

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then

RO
SS(S) :=

[
Ao Bo

Co Do

]
∈
[ RnX×nX RnX×1

R1×nX R

]
, (4.3)

is called the observability canonical state-space representation of S. Proof of that
the invertible state-transformation based on (4.2) always results in the above given
structure follows similarly as in the LTV case (see [172, 238] for the CT case and
[113, 65] for the DT case).

Example 4.1 (CT-LPV observability canonical form, SISO). Consider the struc-
turally state-observable CT-LPV-SS representation RSS(S) of Example 3.23. By
applying state-transformation (4.2) in terms of Def. 3.29, the resulting observability
canonical form is as follows:

RO
SS(S) =

⎡
⎢⎢⎣

0 1 1 + p2

p d2

dt2
p−(2+p2+ d

dt p) d
dt p

p2−2− d
dt p

−1
p3−2p+p d

dt p− d2

dt2
p

p2−2− d
dt p

− 1
p 3p + p d

dt p

1 0 p

⎤
⎥⎥⎦ .

Because the original representation RSS(S) is not completely state-observable, the
resulting canonical representation RO

SS(S) is equivalent with RSS(S) only in the
almost everywhere sense. Furthermore, RO

SS(S) is completely state-observable (its
observability matrix is an identity matrix) even if RSS(S) is not. �
It is important to note that due to the state-transformation (4.2), the complexity of the
dependence of the meromorphic coefficients of RO

SS(S) can increase considerably. If
in the representation RSS(S) all the coefficients/matrices are linear static functions
of p, then the matrix functions defining RO

SS(S) can have rational dependence on
p and its derivatives/forward time-shifts up to the order nX. This property has been
one of the reasons to define coefficient dependence of LPV systems over the field of
meromorphic functionsR with variables associated with p and its derivatives/time-
shifts in the introduced framework.

Example 4.2 (DT-LPV observability canonical form, SISO). As a DT example, we
consider the DT-LPV-SS representation defined in Example 3.30. Again, by ap-
plying state-transformation (4.2) in terms of Def. 3.29, the resulting observability
canonical form of this representation is the following:

RO
SS(S) =

⎡
⎢⎣

0 1 1 + p
q p

−(q p2
) p

q2 p
q p + q p2

q2 p
p(q p)
q2 p

+ p + q p

1 0 p

⎤
⎥⎦ .
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Due to the complete state-observability of the DT example, the resulting canonical
form is fully equivalent with the original representation and it is also completely
state-observable. Note that in the following, we restrict examples to the DT case to
simplify the discussion. �

Next consider the MIMO case. According to theory given for LTV systems in [65],
observability type of canonical forms with respect to a MIMO, structurally state-
observable RSS(S) can be realized by a mapping rule of three steps, similar to the
LTI case:

1. Choose nX-independent rows of the full column-rank OnX
with a given ordering

sequence.
2. Rearrange those nX-independent rows with a fixed ordering to form a nonsingular

state transformation matrix To ∈RnX×nX .
3. By applying the equivalence transformation defined via To, compute the canoni-

cal representation.

In the following, these steps form the line of reasoning for the introduction of a
MIMO observability canonical form through its construction mechanism.

According to Step 1 of the previous algorithm, write OnX
as the sequence of row

vectors:
OnX

=
[
o�11 . . . o�nY1 o�12 . . . o�nY2 . . .

]�
, (4.4)

where C = [o�11 . . . o�nY1 ]�. Each o j = [oi j]
nY

i=1, j > 1 is defined similarly as (3.86)
in the CT case and as (3.96) in the DT case. To complete Step 1 of the algorithm,
the selection of nX linearly independent vector functions from the nX×nY rows of
(4.4) is needed, to form the new state-basis of the canonical representation. Due to
the structural state-observability of the system, it is always possible to make such
a selection, but in general it is not unique [65, 110]. Depending on the particular
way of the selection procedure, different canonical forms can be obtained. In the
following, the selection strategy that reproduces the structure of the previously in-
troduced SISO LPV observability canonical form is used. According to this, select
the vectors of (4.4) in terms of the following ordering:

{
o11,o21, . . . ,onY1,o12,o22, . . . ,onY2, . . .

}
, (4.5)

which matches with the generalization of Young’s selection scheme II (see [110]).
For the sake of simplicity, temporally assume that Rank(C) = nY, meaning that
{o11,o21, . . . ,onY1} are linearly independent vector functions. Then, the linear de-
pendence of every vector function from the ordered sequence (4.5) can be analyzed
one after the other: if τi ∈ I

nx
1 is the smallest number such that oiτi is linearly depen-

dent on the previous vectors, then there exists a set of unique functions {αo
i jl ∈R},

such that

oiτi =
nY

∑
j=1

τi j−1

∑
l=0

αo
i jl o jl, (4.6)

where the ordering of the vectors implies that τi j satisfies
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τi j =

⎧⎨
⎩
τi for i = j,
min(τi + 1,τ j) for i > j,
min(τi,τ j) for i < j.

(4.7)

Once all dependent vector functions have been found, a total of nX = ∑nY

i=1 τi inde-
pendent vectors are selected due to the full rank assumption of OnX

. Furthermore,
as the first nY vectors {o11,o21, . . . ,onY1} are independent, they are automatically
selected, implying that

max
i∈I

nY
1

τi = τmax ≤ nX−nY + 1. (4.8)

Moreover, the remaining linearly dependent relations are described by∑nY

i=1∑
nY

j=1 τi j

number of functions {αo
i jl}. This accomplishes Step 1 of the algorithm.

Using the previously selected vectors, the new state-basis is defined by

To :=
[
o�11 . . . o�1(τi−1) . . . o�nY1 . . . o�nY(τnY

−1)

]�
. (4.9)

Due to the linear independence of the rows, To is invertible and implies an equiva-
lence relation in terms of Def. 3.29. This completes Step 2 of the algorithm.

As a final step, applying the previously constructed equivalence relation on
RSS(S), yields the transformed matrices in the following form:

[
Ao Bo

Co Do

]
:=

⎡
⎢⎢⎢⎣

[
Ao

i j

]
, i, j ∈ I

nY

1

Bo
1
...

Bo
nY

e1 0nY×(τ1−1) . . . enY
0nY×(τnY

−1) D

⎤
⎥⎥⎥⎦ ,

where {ei}nY

i=1 is the standard basis of RnY , and

Ao
ii =

⎡
⎢⎢⎢⎢⎣

0 . . . 0 −αo
ii0

1
. . .

... −αo
ii1

...
. . . 0

...
0 . . . 1 −αo

ii(τi−1)

⎤
⎥⎥⎥⎥⎦

�

(τi×τi)

Ao
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 −αo
i j0

...
...

...
...

... −αo
i j(τi j−1)

...
... 0

...
...

...
0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

(τi×τ j)

Bo
i =

⎡
⎢⎣
β o

i1(τi−1) . . . β o
inU(τi−1)

...
...

β o
i10 . . . β o

inU0

⎤
⎥⎦

(τi×nU)

Do =

⎡
⎢⎣

β o
11τ1

. . . β o
1nUτ1

...
...

β o
nY1τnY

. . . β o
nYnUτnY

⎤
⎥⎦

(nY×nU)
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Proof of that the invertible state-transformation based on (4.9) always results in the
above given structure follows similarly as in [65]. Based on this representation, the
LTI system is separated to an interconnection of subsystems characterized by the
Ao

ii and Bo
i matrices and the connection of these subsystems is defined through the

Ao
i j matrices. In this way, using the constructed state-space transformation To ap-

plied on RSS(S), we have constructed a canonical SS representation of S. Due to
the fact, that the projected nX-step observability matrix of RO

SS(S) is the identity
matrix (SISO case) or composed from zero row vectors and the standard basis of
R1×nX (MIMO case) such a canonical representation is always completely state-
observable. Furthermore, such a structure of the observability matrix also obviously
implies that RO

SS(S) is state trim. Thus the following corollary holds for all repre-
sentations of S with the structural form of (Ao,Bo,Co,Do) both in the SISO and the
MIMO cases:

Corollary 4.1. RO
SS(S) is completely state-observable and state-trim hence it is

minimal.

In case Rank(C) �= nY, the observability canonical form does not exist in the pre-
viously introduced structure as Co cannot be a matrix composed from zero vectors
and standard bases. In this case, To is constructed by considering the system only
with output channels which are associated with the independent rows of C. Then, To

is applied to the original matrix functions. The resulting Co retains the structure of
the conventional canonical form for the linearly independent output channels (con-
taining only zero vectors and standard bases), however it also contains meromorphic
coefficient functions (the weights of the linear combination of the independent chan-
nels) in the rows corresponding to the dependent output channels. If the LPV-SS
representation is not structurally state-observable, then computation of an equiva-
lent observability canonical form by the presented algorithm requires to search for a
SS representation of the LPV system with structural state-observability. Then, such
a representation can be converted to an observability canonical form. As we will see
in Sect. 4.3, the construction of such a representation is always possible for LPV
systems.

Example 4.3 (DT-LPV observability canonical form, MIMO). Let the SS represen-
tation RSS(S) of an DT-LPV system S with P = [0.1,0.3] be given by

[
A B
C D

]
� p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p 0 0 −0.5 1 1
0 −p 0 0 p p
0 0 −p 0 −1 0

0.5 0 0 p 0 1
0 p 0 0 0 0
0 0 1 p 0 0
p 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By computing the 2-step observability matrix of RSS(S),
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O2 � p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p 0 0

0 0 1 p

p 1 0 0

0 −p(qp) 0 0

0.5qp 0 −p p(qp)

p(qp) −p 0 −0.5qp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

results. It is clear, that the first four rows of O2 are independent in the functional
sense, thus RSS(S) is structurally state-observable. However, the first three rows
and the sixth are independent along all possible scheduling trajectories on P, thus
RSS(S) is also completely state-observable. Note that in this case, computation of
O4 is not necessary to show these properties. By calculating the observability canon-
ical form RO

SS(S) of RSS(S) using the first three and the sixth rows of O2, the re-
sulting matrices are the following (the sub-matrices are denoted by dashed lines):

Ao� p=

⎡
⎢⎢⎢⎢⎢⎢⎣

q p 0 0 0

q p2+4p2+8p(q p)+4p2(q p2)
2p2(q p) p − q p+4p3+4p2(q p)

2p
p(p+q p)

2q p

0 0 0 1

− (q p)(q2 p)+4p2(q p2)+4p3(q3 p)+8p2(q p)(q2 p)
4p2(q p) 0 (1+4p2)q2 p

4p − (p+q p)q2p
q2 p

⎤
⎥⎥⎥⎥⎥⎥⎦

Bo � p =

⎡
⎢⎢⎢⎢⎢⎣

p(q p) p(q p)
−1 q p

p + q p p + q p

(q2 p− p)q p 2(q2 p−2p)q p−q2p
2

⎤
⎥⎥⎥⎥⎥⎦

, Co � p =

⎡
⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ .

Note that the resulting LPV-SS representation is the interconnection of 3 subsys-
tems, each associated with a specific output channel. Furthermore, this observabil-
ity canonical form is not generated using Young’s selection scheme as in that case
the first 4 rows of O2 would have been selected for the transformation. In opposite
with the used state-transformation, the transformation of the state, based on the first
4 rows, only provides an equivalent representation in the almost everywhere sense,
as independence of the rows only holds in the functional sense. This underlines that
in the MIMO case there is a freedom in the construction of observability canonical
forms and the provided selection scheme is only one from the available possibilities.

�

4.1.2 Reachability Canonical Form

As a next step, we extend the previously introduced mechanism to the reachability
case. Similar to the previous part, SISO systems are considered first. It is assumed
that a structurally state-reachable state-space representation RSS(S) is given for the
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SISO LPV system S. Due to the full rank of RnX
associated with RSS(S), it is

possible to introduce a new state-basis for the representation by using

T−1
r :=

{
RnX

, if T = R,←−
R nX

, if T = Z,
(4.10)

that leads to a new state variable xr, obtained as

xr := (Tr � p)x, ∀p ∈BP. (4.11)

Again, the full rank property of RnX
implies that Tr is invertible in RnX×nX . Thus,

(4.11) yields an equivalent SS representation of S in terms of
nP∼. In case of complete

state-reachability with reachability radius nX, (4.11) also implies algebraic equiva-
lence of the original and the new states. Moreover, this state-transformation projects
the reachability structure in terms of Th. 3.13 to the identity matrix. Therefore, we
call this equivalent SS representation the reachability canonical form.

By applying the transformation associated with Tr on the matrices of RSS(S) in

accordance with
nP∼, the transformed matrices are given by:

[
Ar Br

Cr Dr

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 −α r
0 1

1
. . .

... −α r
1 0

...
. . . 0

...
...

0 . . . 1 −α r
nX−1 0

β r
nX−1 β r

nX−2 . . . β r
0 β r

nX

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then,

RR
SS(S) :=

[
Ar Br

Cr Dr

]
∈
[
RnX×nX RnX×1

R1×nX R

]
, (4.12)

is called the reachability canonical state-space representation of S and it is equiv-
alent with RSS(S). Proof of the above given matrix operations similarly follows as
for LTV-SS representations (see [172, 238] for the CT case and [113, 139] for the
DT case).

Example 4.4 (LPV reachability canonical form, SISO). Consider the completely
state-reachable DT-LPV-SS representation defined in Example 3.30. By applying
state-transformation (4.11) in terms of Def. 3.29, the resulting reachability canoni-
cal form of this representation is the following:

RR
SS(S) =

⎡
⎢⎣

0 −q−1 p2 1
1 q−1 p + q−2p 0

1 + q−1 p
p

(
1 + q−2 p

p

)
q−1 p + q−2p p

⎤
⎥⎦ .

Due to the complete state-reachability, the resulting canonical form is fully equiva-
lent with the original representation. �
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Note that the previously introduced algorithm can also be applied to generate
reachability-based MIMO canonical forms, but instead of the rows of OnX

, the
columns of RnX

are used in this case. According to Step 1 of this mechanism, RnX

is rewritten as a sequence of its column vectors:

RnX
=
[
r11 . . . rnU1 r12 . . . rnU2 . . .

]
, (4.13)

where B = [r11 . . . rnU1 ] and each r j = [ri j]
nU

i=1, j > 1 is defined similarly as
(3.91) for CT and as (3.98) for DT. To accomplish Step 1, the selection of nX lin-
early independent vectors from the nX× nU column vectors is required in order to
determine the state-basis of the reachability canonical form. In the following, such a
selection strategy is used that reproduces the structure of the previously introduced
SISO LPV reachability canonical form. According to this, select the rows of RnX

as
{
r11,r12, . . . ,r1(nXnU),r21,r22, . . .

}
,

which matches the extension of Young’s selection scheme I (see [110]). Temporally
assume that Rank(B) = nU which means that {r11,r12, . . . ,r1nU

} are linearly inde-
pendent vector functions. Then, the linear dependence of every vector function from
the ordered sequence can be analyzed one after the other just like in the observabil-
ity case. However, in Young’s selection scheme I, the vectors {r11,r21, . . . ,rnU1}
have to be selected to the state transformation even if the ordering would indicate it
else. The explanation is that in the reachability canonical form, every row of Br must
be zero or a standard basis in R1×nU , which needs that all {r1,r2, . . . ,rnU

} must be
the part of Tr. According to this selection scheme, if τi ∈ I

nx
1 is the smallest number

such that riτi is linearly dependent on the previous vectors, then there exists a set of
unique meromorphic functions {α r

i jl ∈R}, such that

riτi =
i

∑
j=1

τi j−1

∑
l=0

α r
i jl ril, (4.14)

where {τi j} satisfies (4.7) because of the ordering of the vectors. Once that all de-
pendent vector functions have been found, a total of nX =∑nU

i=1 τi independent vector
functions are selected due to the full rank assumption of RnX

. Furthermore, by the
selection scheme, the nU number of vectors {r11,r12, . . . ,r1nU

} are automatically
selected implying

max
i∈I

nU
1

τi = τmax ≤ nX−nU + 1. (4.15)

The remaining linearly dependent relations are described by ∑nU

i=1∑
i
j=1 τi j rational

functions {α r
i jl} ∈ R, and Tr is defined as:

T−1
r :=

⎧⎨
⎩

[
r11 . . . r1(τ1−1) . . . rnU1 . . . rnU(τnU

−1)

]
, if T = R;

[←−r 11 . . . ←−r 1(τ1−1) . . . ←−r nU1 . . . ←−r nU(τnU
−1)

]
, if T = Z.

which accomplishes Step 2. Again, linear independence of the selected vector func-
tions assures the existence of the inverse, thus Tr implies an equivalence relation in
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terms of Def. 3.29. As a final step, applying the previously constructed equivalence
relation on RSS(S), yields the transformed matrices in the following form:

[
Ar Br

Cr Dr

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Ar

i j

]
, i, j ∈ I

nU

1

e�1
0(τ1−1)×nU

...
e�nU

0(τnY
−1)×nU

Cr
1 . . . Cr

nU
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where {ei}nU

i=1 is the standard basis of RnU and

Ar
ii =

⎡
⎢⎢⎢⎢⎣

0 . . . 0 −α r
ii0

1
. . .

... −α r
ii1

...
. . . 0

...
0 . . . 1 −α r

ii(τi−1)

⎤
⎥⎥⎥⎥⎦

(τi×τi)

Ar
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 −α r
i j0

...
...

...
...

... −α r
i j(τi j−1)

...
... 0

...
...

...
0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(τi×τ j)

Cr
i =

⎡
⎢⎣
β r

1i(τi−1) . . . β r
1i0

...
...

β r
nYi(τi−1) . . . β r

nYi0

⎤
⎥⎦

(nY×τi)

Dr =

⎡
⎢⎣

β r
11τ1

. . . β r
1nUτ1

...
...

β r
nY1τnY

. . . β r
nYnUτnY

⎤
⎥⎦

(nY×nU)

Proof of that the invertible state-transformation Tr always results in the above given
structure follows similarly as in [139]. Again, RR

SS(S) is equivalent with RSS(S)
and characterizes the decomposition of RR

SS(S) into state-reachable subsystems as-
sociated with each output channels. Due to the fact that the projected nX-step reach-
ability matrix of RR

SS(S) is the identity matrix (SISO case) or composed from zero
column vectors and the standard basis of RnX (MIMO case) the resulting canonical
representation is always completely state-reachable. Thus the following corollary
holds for all representations of S with the structural form of (Ar,Br,Cr,Dr) both in
the SISO and the MIMO cases:

Corollary 4.2. RR
SS(S) is completely state-reachable.

Furthermore it also holds that if RSS(S) is minimal, then the resulting RR
SS(S)

by the given construction procedure is also minimal. In the case of dependent
columns of B, the state transformation is constructed based on the independent input
channels. If the LPV-SS representation is not structurally state-reachable, then com-
putation of an equivalent reachability canonical form is possible by finding an SS
realization of the system which is structurally state-reachable. Similar to the observ-
ability case, such a realization always exists, if S has no autonomous dynamics.
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4.1.3 Companion Canonical Forms

The LPV observability and reachability canonical forms can also be given in an
other, so-called companion or phase-variable form. These representations ROc

SS (S)
and RRc

SS (S) are defined in the SISO case as:

ROc
SS (S) :=

[
Aco Bco

Cco Dco

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 −αco
0 β co

0

1
. . .

... −αco
1 β co

1
...

. . . 0
...

...
0 . . . 1 −αco

nX−1 β co
nX−1

0 . . . 0 1 β co
nX

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

RRc
SS (S) :=

[
Acr Bcr

Ccr Dcr

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
−αcr

0 −αcr
1 . . . −αcr

nX−1 1

β cr
0 β cr

1 . . . β cr
nX−1 β cr

nX

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Again, it can be proved, based on [171] and [227], that every LPV system S admits
a state-variable representation in these forms and they are equivalent with all SS
representations of S. The state-transformations that lead to these canonical forms
can be constructed as:

T−1
co :=

{[
r1, r2, . . . , rnX

]
, if T = R;[←−r1,

←−r2, . . . , ←−r nX

]
, if T = Z;

(4.16a)

T�cr :=
[
o�1 , o�2 , . . . , o�nX

]
, (4.16b)

where r1 is the last column of O−1
nX

which is additionally shifted forward in time
in case of T = Z, o1 is the last row of R−1

nX
which is additionally shifted back-

ward in time in case of T = Z, and ri, oi are generated recursively by (3.86) and
(3.91) in continuous-time and by (3.96) and (3.98) in discrete-time. In the MIMO
case, the companion forms are generated by selecting the linearly independent rows
(columns) based on a different ordering. Similar to the LTI case, the ordering of the
rows of OnX

by Young’s selection scheme I results in the companion observabil-
ity canonical form, while the ordering of the columns of RnX

by Young’s selection
scheme II results in the companion reachability canonical form.

Example 4.5 (Companion canonical forms). Consider again the DT-LPV-SS rep-
resentation defined in Example 3.30. By constructing the state-transformations
(4.16a–b) and applying them to the original SS representation, the following com-
panion canonical forms result.
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Tco � p =

[
− p2

q p 0
1 1

p

]
⇒ ROc

SS (S) =

⎡
⎢⎢⎣

0 −p q p2

q2 p
− q p2

q2 p

1 p + p2

q p 1 + p
q p

0 1 p

⎤
⎥⎥⎦ ,

Tcr � p =

[
1

q−1 p
− 1

q−1 p2

1 0

]
⇒ RRc

SS (S) =

⎡
⎢⎣

0 1 0
−q−1 p2 p + q−1p 1

− q−1 p2

p 1 + q−1 p
p p

⎤
⎥⎦ .

�

4.1.4 Transpose of SS Representations

An important difference with respect to the LTI state-space representations is that
transposed LPV-SS representations do not have an equal manifest behavior. In the
LPV case, this hinders the use of important relations of the LTI system theory and
identification (see [189]) which are based on the transposition property [116]. To
show this, consider the following argument:

Let RSS(S) be a state-space representation of a given SISO LPV system. Then
the transposed SS representation, defined as

R�SS(S) :=
[

A� C�

B� D

]
when RSS(S) =

[
A B
C D

]
, (4.17)

is not a SS representation of S, because the associated output trajectories of these
representations are not equal in case of a varying scheduling signal (see Example
4.6 and [189]). In discrete time, this can be easily proved by computing the output
responses of the representations for an impulsive input at k = 0, i.e u(0) = 1, and
zero initial state x(0) = 0. Denote the resulting output sequences by y for RSS(S)
and y′ for R�SS(S). Then these sequences reads as

y(0) = (D� p)(0), y′(0) = (D� p)(0),
y(1) = (C � p)(1)(B� p)(0), y′(1) = (B� � p)(1)(C� � p)(0),
y(2) = (C � p)(2)(A� p)(1)(B� p)(0), y′(2) = (B� � p)(2)(A� � p)(1)(C� � p)(0),

It is obvious that these sequences are not equal if p is not a constant signal. The
reason for this phenomenon is based on the non-commutativity of the multiplication
onR[ξ ]. Similar arguments hold in the continuous time case.

Example 4.6 (LPV system transposition). In this example, the connection between
LPV canonical forms and their transpose is investigated. Consider the canonical
forms derived in Example 4.2 and 4.4 which are equivalent with the DT-SS rep-
resentation of Example 3.30. The transpose of these canonical forms have been
obtained according to (4.17) by computing the transpose of the matrices. The out-
put response of these transposed canonical forms and the original SS representation
have been calculated for
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Fig. 4.1 Comparison of the transpose of canonical representations given in Examples 4.2
and 4.4 in terms of their output response, i.e. their output error with respect to the original
representation. Transposed canonical observability form (dashed line), transposed canonical
reachability form (dotted line), original representation (solid line).

u(k) = sin

(
1
4

k +
π
6

)
, p(k) =

1
2

+
1
4

sin

(
1
4

k +
π
2

)
,

and with zero initial conditions of the state variables at k = 0. The results are pre-
sented in Fig. 4.1. From these signals one can conclude that the transposed forms
are not equal to the original SS representation. This proves that transposition of SS
representations changes the manifest behavior of LPV-SS representations in general.

�

4.1.5 LTI vs. LPV State Transformation

In the previous part, we have seen that through the developed behavioral framework,
canonical forms of LPV systems can be similarly formulated as in the LTI case. It
has also been emphasized how this framework extends the concepts of LTI system
theory to LPV systems by proper handling of the time operators and their effect on
scheduling-dependent coefficient functions. Comparing the introduced construction
mechanism of LPV canonical forms to the state-of-the-art of the LPV literature,
similar mechanisms can be found, which have been developed for CT-SS represen-
tations with linear dependence (see [89] as a notable approach). Thus the develop
algorithm can be seen as a generalization of these approaches.

However in the general LPV literature, at many occasions the LTI theory is used
intuitively, applying-state transformations in the form:

A′ = T−1AT, (4.18)

where T is dependent on p. Such a state-transformation is equivalent to a state-
transformation applied separately for every constant scheduling signal of BP. Based
on Sect. 3.2, it is obvious that this transformation does not imply equivalence in
any sense if T is not constant. It is also common that canonical forms are usu-
ally “achieved” by generating OnX

and RnX
similar to the LTI case (see Example
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4.7). This corresponds to the observability/reachability matrices of the representa-
tion with respect to constant scheduling signals. Using independent rows (columns)
of these matrices a state-transformation matrix T is formed. Then T is applied ac-
cording to (4.18) to calculate the “canonical” form (see [224] and [180] as exam-
ples). It is not surprising that by this methodology the resulting structures resemble
the observability/reachability canonical forms, however they are not equivalent in
manifest behavior with the original system. To illustrate this see Example 4.7.

Example 4.7 (LTI vs LPV state transformation). Consider the canonical forms of the
DT-SS representation derived in Example 4.2 and 4.4 for the DT-SS representation
RSS(S) defined in Example 3.30. Let O†

nX
and R†

nX
denote the “observability ” and

“reachability ” matrices constructed for RSS(S) in the LTI sense:

O†
nX

=
[

C� A�C�
]�

, R†
nX

=
[

B AB
]

O†
nX
� p =

[
1 1

p
p 2

]
, R†

nX
� p =

[
1 2p
p p2

]
.

Now compute what would result by applying the state transformation (4.18) with
T = O†

nX
or T−1 = R†

nX
just like in the LTI case. This intuitive approach produces

the following so-called “frozen” canonical forms:

R
OLTI
SS (S) =

⎡
⎣

0 1 p
−p −p −p2

1 0 p

⎤
⎦ , R

RLTI
SS (S) =

(
R

OLTI
SS (S)

)�

Generally in the literature some follow this approach (see [224, 180]). It is impor-
tant to note that the two sets of LPV representations derived here and in Example
4.2 and 4.4 are equivalent for constant scheduling trajectories, but they are unequal
globally. To show this phenomenon, the output response of these frozen canonical
representations, the global canonical forms, and the original SS representation have
been calculated for the signals p and u indicated in Example 4.6. The results are pre-
sented in Fig. 4.2. As can be seen, the global canonical forms RO

SS(S) and RR
SS(S)

completely reproduce the original output with zero error. However, ROLTI
SS (S) and

RRLTI
SS (S) have a relatively huge representation error in the magnitude of 35% even

for these very smooth and slowly varying p and u, which mainly comes from a
scheduling dependent phase and gain lag with respect to y. �

4.2 From State-Space to the Input-Output Domain

Equivalence transformations between SS and IO representations in the LPV behav-
ioral framework are of paramount importance. Such transformations are not only
necessary to provide representations of a given system in these domains, but they
are also the key elements to compare LPV model structures in terms of representa-
tion capabilities, to compare identified models in different representation domains,



4.2 From State-Space to the Input-Output Domain 115

0 10 20 30 40 50 60 70 80 90 100
−10

0

10
System output

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4
Output error

Fig. 4.2 Comparison of global and frozen canonical representations of Example 4.7 in terms
of their output response, i.e. their output error with respect to the original representation.
ROLTI

SS (S) (dashed line), RRLTI
SS (S) (dotted line), RO

SS(S) (solid line), RR
SS(S) (identical to

the solid line), original representation (identical to the solid line).

and also to convert results of IO identification approaches to SS models applicable
for control.

In the following we develop these transformations based on the behavioral frame-
work. We introduce algorithms to obtain an IO realization of a given LPV-SS rep-
resentation and vice-versa, solving the core problem of the existing LPV system
theory (see also [202]). We show that the results generalize the theory presented for
LTI systems in case the coefficient dependence on the scheduling vector is mero-
morphic and dynamic. It is also shown that the canonical forms, developed in the
previous part, give special cases of the transformation problem, thus they serve as
a simple gateway between the SS and the IO representation domains. Again, it is
proved that the common practice of the current LPV literature, namely to apply LTI
theory to convert IO models to SS models, provides results which have an unequal
manifest behavior.

At first the equivalence transformation from the SS to the IO representation do-
main is considered. The equivalence transformation in this context means the search
for an equivalence class of IO realizations with the same manifest behavior. Theo-
rem 3.3 shows that the state in an LPV-SS representation can always be eliminated
as a latent variable without changing the manifest behavior. As a consequence of
this elimination property onR[ξ ]·×· the following corollary holds:

Corollary 4.3 (Latent variable elimination). For any latent representation (3.39)
with manifest behavior B and polynomial matrices RW ∈ R[ξ ]nr×nW , RL ∈
R[ξ ]nr×nX , there exists a unimodular matrix M ∈R[ξ ]nr×nr such that

M(ξ )RL(ξ ) =
[

R′L(ξ )
0

]
, M(ξ )RW(ξ ) =

[
R′W(ξ )
R′′W(ξ )

]
, (4.19)

with R′L of full row rank. The manifest behavior defined by (R′′W(ξ ) � p)w = 0 is
equal (almost everywhere) with B.
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Due to the latent nature of the variable wL, such a transformation in terms of Th. 3.3
is always possible and does not change the manifest behavior, hence it is called an
equivalence transformation.

The next step to establish an IO realization is to formulate the unimodular trans-
formation of Th. 4.3 and the resulting R′′ in the form of an output side polynomial Ry

and an input side polynomial Ru. Write the LPV state-space representation RSS(S)
with matrix functions (A,B,C,D) into the latent form (3.39):

[
Iξ −A
−C

]

︸ ︷︷ ︸
RL(ξ )

x =
[

0 B
−I D

]

︸ ︷︷ ︸
RW(ξ )

[
y
u

]
. (4.20)

The resulting polynomials R ∈R[ξ ](nX+nY)×(nY+nU) and RL ∈R[ξ ](nX+nY)×nX give
an equivalent representation of the full behavior of RSS(S). According to Cor. 4.3,
there exists a unimodular matrix

M(ξ ) =
[

M11(ξ ) M12(ξ )
M21(ξ ) M22(ξ )

]
∈R[ξ ](nX+nY)×nX+nY (4.21)

which in terms of M(ξ )RL(ξ ) =
[ ∗ 0

]�
in (4.19) satisfies

M21(ξ )(Iξ −A)−M22(ξ )C = 0.

This yields that
[ ∗ ∗
−M21(ξ ) M21(ξ )B + M22(ξ )D

]

︸ ︷︷ ︸
M(ξ )RW(ξ )

[
y
u

]
=

[∗
0

]

︸︷︷︸
M(ξ )RL(ξ )

x,

and R′′W(ξ ) = [−M21(ξ ) M21(ξ )B + M22(ξ )D ] is in the form of an output side
polynomial Ry(ξ ) = M21(ξ ) and an input side polynomial Ru(ξ ) = M21(ξ )B +
M22(ξ )D. Note that there is a particular freedom in choosing M to satisfy (4.19),
however by restricting M22(ξ ) to be monic and Deg(M22) = nX, M21(ξ ) with
Deg(M21)≤ nX−1 and M22(ξ ) can be uniquely determined.

Corollary 4.4 (IO Equivalence transformation). Let RSS(S) be a state-space
representation with manifest behavior B and system matrices (A,B,C,D) where
A ∈ RnX×nX . Then there exists a unique monic polynomial R̄y ∈ R[ξ ]nY×nY with
Deg(R̄y) = nX and a unique R̄u ∈R[ξ ]nY×nX with Deg(R̄u)≤ nX−1 such that

R̄y(ξ )C = R̄u(ξ )(Iξ −A). (4.22)

Let Rcom = Diag(r1, . . . ,rnY
), ri ∈ R[ξ ], be the greatest common divisor of R̄y and

R̄u such that there exist Ry,Ru ∈R[ξ ] satisfying

Rcom(ξ )Ry(ξ ) = R̄y(ξ ) and Rcom(ξ )Ru(ξ ) = R̄u(ξ )B + R̄y(ξ )D. (4.23)
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Then the IO representation of S, denoted by RIO(S), is given by

(Ry(ξ )� p)y = (Ru(ξ )� p)u. (4.24)

The algorithm defined by (4.22) and (4.23) is structurally similar to the LTI case (see
[153, 146]), but it is more complicated as it involves multiplication with the time
operators on the coefficients. Thus, this transformation can result in an increased
complexity (like dynamic dependence) of the coefficient functions in the equivalent
IO representation. The following property also holds:

Corollary 4.5. Assume that RSS(S) is minimal, i.e. structurally state-observable.
Then the polynomials R̄u and R̄y satisfying (4.22) are left-coprime (their greatest
common divisor Rcom is 1).

Corollary 4.5 means that the equivalence transformation between the SS and IO
domain results in the elimination of dynamics related to unobservable states. Thus
in case of a structurally state-observable SS representation, like the observability
canonical forms, the equivalence transformation simplifies. However, dynamics re-
lated to unreachable states are preserved. This underlines the validity of the pro-
posed minimality concept of LPV-SS representations, namely that minimality is
equivalent with structural state-observability.

Example 4.8 (IO equivalence transformation). Consider the LPV-SS representation
derived in Example 3.22:

[
A B

C D

]
� p =

⎡
⎢⎣

1 −T2
dks T2

d
1
p 1 0

0 1 0

⎤
⎥⎦ .

Let r be the identity function so r � p = p. In terms of (4.22), we are looking for a
R̄u ∈R[ξ ]1×2 with Deg(R̄u)= 1 and a monic polynomial R̄y ∈R[ξ ] with Deg(R̄y)=
2. Parameterize these polynomials as

R̄y(ξ ) = ξ 2 + a1ξ + a0, R̄u(ξ ) =
[

b11ξ + b12 b21ξ + b22
]
.

Then in terms of (4.22):

(ξ 2 + a1ξ + a0)
[

0 1
]
=
[

b11ξ + b12 b21ξ + b22
][ ξ −1 T2

dks

− 1
r ξ −1

]

︸ ︷︷ ︸
Iξ−A

.

Solving this equation system it follows that

a1 =− r−→r −1, b11 = 0, b12 = 1−→r ,

a0 = T2
dks+r
−→r , b21 = 1, b22 =− r−→r .

The resulting polynomials R̄u and R̄y are left coprime, hence

Ry(ξ ) = R̄y(ξ ) = ξ 2 + a1ξ + a0, (4.25a)

Ru(ξ ) = R̄u(ξ )B + R̄y(ξ )D =
T2

d−→r . (4.25b)
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After left-multiplying these polynomials with −→r , the IO representation in the form
of (3.60) with na = 2 and nb = 0 has the coefficients

a2 � p = q p a1 � p =−q p− p,

a0 � p = T2
dks + p, b0 � p = T2

d.

In terms of w = Col(y,u), the resulting LPV-IO representation is equal to (3.56)
which shows its equivalence with the LPV-SS representation in Example 3.22. �

4.3 From the Input-Output to the State-Space Domain

As a next step, the equivalence transformation from the IO to the SS representa-
tion domain is considered. To derive such a transformation, a vital ingredient is to
construct a state-map for a given IO representation that defines an equivalent SS rep-
resentation. This construction can be seen as the counterpart of the previous latent
variable elimination. The actual aim is to introduce a latent variable into (4.24) such
that it satisfies the state-property, ergo it defines a SS representation of the original
system via Th. 3.4.

Generation of a state-map is more involved in the LPV case than for time-
invariant systems as the scheduling dependence of the coefficients does not com-
mute with time operators as integration, derivation, and time-shift. In order to
improve readability of the upcoming rather technical discussion, we first investi-
gate the intuitive idea behind the used state-construction mechanism, the so-called
cut-and-shift operation. Then this operation is formally defined over the ring R[ξ ]
both in CT and in DT. As a next step, state-maps generated by the cut-and-shift pro-
cedure are constructed and it is shown that they introduce latent variables satisfying
the state property. Minimality of the resulting state kernel forms is also shown in
the SISO case. Finally, algorithms are derived that provide realization of a given IO
representation in terms of the previously introduced canonical forms.

4.3.1 The Idea of Recursive State-Construction

First, we explain the intuitive idea of the cut-and-shift-map based state-construction
through a simple example. Assume that, in continuous-time, a kernel representa-
tion RK(S) with P = R is given. RK(S) is described by R ∈ R[ξ ], providing the
differential equation

(r0 � p)w+(r1 � p)
d
dt

w+(r2 � p)
d2

dt2 w = 0. (4.26)

In the following we construct an equivalent SS representation of RK(S). This re-
quires a state-construction, where our aim is the elimination of the derivatives of
w in (4.26) through the introduction of state-variables. Introduce the latent variable
x1 : R→ R, defined by

x1 = ((r1− ṙ2)� p)w+(r2 � p)
d
dt

w. (4.27)
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Then equation (4.26) can be rewritten as

d
dt

x1 +((r0− ṙ1 + r̈2)� p)w = 0, (4.28)

using the rule of chain-derivation. It is obvious, that the resulting equations (4.27)
and (4.28) define the same manifest behavior as (4.26). In this way, we have
eliminated the derivatives of w from (4.26), however the resulting extra equation
(4.27) still contains a first order derivative of w. Thus, introduce the latent variable
x2 : R→ R such that

x2 = (r2 � p)w. (4.29)

Then, equation (4.27) can be rewritten as

d
dt

x2− x1 +((r1−2ṙ2)� p)w = 0. (4.30)

We have arrived at the following equation system

−
⎛
⎝
⎡
⎣

r0− ṙ1 + r̈2

r1−2ṙ2

r2

⎤
⎦� p

⎞
⎠w =

⎡
⎣

d
dt 0
−1 d

dt
0 −1

⎤
⎦
[

x1

x2

]
, (4.31)

which is equivalent with (4.26). Due to the fact that the left side is a zero-order
while the right side is first-order polynomial, (4.31) is a state-kernel form and
x = [ x1 x2 ]� trivially fulfills the property of state (see Th. 3.4). Additionally, the
algebraic equivalence of the introduced state-relations (4.27) and (4.29) implies that
there exists a unimodular transformation in terms of Th. 4.3, which can eliminate x
from (4.31) such that (4.26) is reobtained. Thus, the manifest behavior of (4.31) is
equivalent with the behavior of RK(S). Note that in this way we have defined an
equivalent state-map of the original system. Using this state-map, one choice of an
SS realization follows through the use of (4.29) as the output equation and by the
substitution of this equation into (4.31) to obtain the state-equation:

d
dt

x =

([
0 − r0−ṙ1+r̈2

r2

1 − r1−2ṙ2
r2

]
� p

)
x, (4.32a)

w =
([

0 1
r2

]
� p
)

x, (4.32b)

which is a companion observability canonical form if r2 = 1, i.e. if R is monic. This
SS realization is equivalent with (4.26) only for those scheduling trajectories where
(r2 � p)(t) �= 0 (see (4.29)). Thus, (4.32a–b) is equivalent in an almost everywhere
sense with (4.26). If r2 is nonzero for all scheduling trajectories, then full equiva-
lence holds.

The intuitive idea behind the state construction that we exposed in this example
can be formalized as the following recursive scheme. For a given continuous-time
SISO kernel representation RK(S), the behavior is described by
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(R0(
d
dt

)� p)w = 0. (4.33)

Let l = 1 and define a latent variable as

xl := (Rl(
d
dt

)� p)w, s.t. R(l−1)(ξ ) := R̄l + ξRl(ξ ), (4.34)

where R̄l ∈R, Rl ∈R[ξ ], and due to the multiplication rules, R̄0 is chosen as:

R̄0 := r0 +
nξ

∑
i=1

(−1)iṙ(i)
i , (4.35)

where ṙ(i) denotes the dot operation applied to r ∈ R for i-times (see equations
(4.28) and (4.30) as examples). According to this mechanism

{
for l = 1, d

dt x1 = −(R̄0 � p)w,

for 1 < l ≤ nξ ,
d
dt xl = xl−1− (R̄l−1 � p)w.

(4.36)

holds and (4.34) with (4.36) give a latent variable representation of S. Repeat these
steps recursively on (4.34) till l = nξ which results in Rnξ (ξ ) = 0. Then the obtained

polynomials {Rl(ξ )}nξ
l=1 define a state map and {R̄l}nξ

l=1 give the coefficients of the
associated SS representation, as it holds that

{
for 1≤ l < nξ ,

d
dt x(l+1) = xl− (R̄l � p)w,

for l = nξ , (R̄nξ � p)w = xnξ .
(4.37)

The procedure, defined by (4.34), gives the algorithm of state-construction which
we call the parameter-varying cut-and-shift map δ− : R[ξ ]·×· → R[ξ ]·×·. In this
terminology, R̄l corresponds to the cut term while ξRl(ξ ) is the shift term. Due
to the different non-commutative multiplication rules of differentiation and time-
shift with respect to the scheduling dependent coefficients, the cut-and-shift-map
is defined differently for the CT and DT time-axis. In the following, the technical
definition of δ− is given both in the CT and DT cases, using the idea of the recursive
scheme introduced before.

4.3.2 Cut-and-Shift in Continuous-Time

In the CT case, the indeterminant ξ is associated with d
dt , implying that multipli-

cation with ξ on R[ξ ]·×· gives the non-commutative rule of (3.32). The reverse
operation, multiplication by ξ−1, results in integration, which yields:

ξ−1
(

rξ i +(−1)iṙ(i)
)

=
i−1

∑
j=0

(−1) jṙ( j)ξ i− j−1. (4.38)
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This operation is the same as what is used in (4.34). Based on this, the cut-and-shift-
map in continuous-time is defined onR[ξ ]·×· as

δ−(r0 + r1ξ + . . .+ rnξ n

︸ ︷︷ ︸
R(ξ )

) = r′1 + . . .+ r′nξ
n−1

︸ ︷︷ ︸
R′(ξ )

, (4.39)

where R,R′ ∈ R[ξ ]·×· and each new meromorphic coefficient function of R′ is com-
puted as the result of elementary cut-and-shift operations:

δ−(rξ i) =

⎧⎨
⎩

i−1
∑
j=0

(−1) jṙ( j)ξ i− j−1, if i > 1;

0, if i = 0.

(4.40)

This yields that

r′i =
n−i

∑
j=0

(−1) j ṙ( j)
i+ j. (4.41)

4.3.3 Cut-and-Shift in Discrete-Time

In the DT case, ξ is associated with the forward time-shift operator q, implying
that multiplication with ξ onR[ξ ]·×· gives the non-commutative rule of (3.51). The
reverse operation, multiplication by ξ−1, results in backward time-shift, giving:

ξ−1 (rξ i)=←−r ξ i−1, (4.42)

where←−� is the backward shift operation on R. This implies that in discrete-time,
the cut-and-shift-map is defined on R[ξ ]·×· in the form of (4.39), where each new
meromorphic coefficient function is computed as the result of elementary cut-and-
shift operations:

δ−(rξ i) =
{←−r ξ i−1, if i > 1;

0, if i = 0.
(4.43)

giving that r′i =←−ri .

4.3.4 State-Maps and Polynomial Modules

As a next step we formulate the construction of a state-map, i.e. the generation of
state variables, for a given kernel representation, as the recursive use of the cut-
and-shift operation on the polynomials of R[ξ ]. This procedure is the analog of
the introduced recursive-scheme of state-construction in the CT case (see (4.36)).
The resulting state-map characterizes a state-kernel representation of the system,
which is minimal in the SISO case. In order to describe all equivalent (minimal)
state-kernel representations of the system, equivalence classes of the state-map are
established in terms of polynomial modules overR[ξ ].

Let R ∈ R[ξ ]nr×nW be the associated polynomial of the kernel presentation
RK(S). Assume that R is monic and given as
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R(ξ ) = r[0]
0 + r[0]

1 ξ + . . .+ r[0]
n−1ξ

n−1 + ξ n, (4.44)

where superscript � [0] denotes an additional index of the coefficients. Repeated use
of δ− on R and stacking the resulting polynomial matrices leads to

Σ−(R) =

⎡
⎢⎢⎢⎢⎢⎣

δ−(R)
δ 2−(R)

...
δ n−2
− (R)
δ n−1
− (R)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r[1]
1 + . . .+ r[1]

n−1ξ
n−2 + ξ n−1

r[2]
2 + . . .+ r[2]

n−1ξ
n−3 + ξ n−2

...

r[n−1]
n−1 + ξ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.45)

where each coefficient function r[ j]
i is computed according to the local cut-and-shift

rules based on {r[ j−1]
i }n

i=n− j+1 recursively. It is obvious, that if nr = 1 (SISO case if
additionally nW = 2), then the rows of Σ− are independent. Thus, it can be shown
that X = Σ−(R) defines a minimal state-map in the form of

x = (X(ξ )� p)w. (4.46)

Later it is shown, that such a state-map implies a unique SS representation. Before
that, we characterize all possible minimal state-maps that lead to an equivalent SS
representation.

Denote the multiplication by ξ as δ+, which acts in the same way as as defined
by (3.32) and (3.51). Consequently

δ+

([
Σ−(R)

0

])
=
[

R
Σ−(R)

]
−

⎡
⎢⎢⎢⎢⎣

r[0]
0

r[1]
1
...
1

⎤
⎥⎥⎥⎥⎦

. (4.47)

Note that δ−δ+ = I, while δ+(δ−(R)) = R(ξ )−R(0).
Denote by Spanrow

R (R) the subspace spanned by the rows of R ∈R[ξ ]·×·, viewed
as a linear space of polynomial vector functions with coefficients in R·×·. Also
introduce ModuleR[ξ ](R) as the left-module inR[ξ ]nr×nW generated by the rows of
R ∈R[ξ ]nr×nW :

ModuleR[ξ ](R) = Spanrow
R

⎛
⎜⎝

⎡
⎢⎣

R
δ+(R)

...

⎤
⎥⎦

⎞
⎟⎠ . (4.48)

This module represents the set of equivalence classes on Spanrow
R (Σ−(R)). Let X ∈

R[ξ ]·×nW be a polynomial matrix with independent rows (full row-rank) such that

Spanrow
R (X)⊕ModuleR[ξ ](R) = Spanrow

R (Σ−(R))+ ModuleR[ξ ](R), (4.49)



4.3 From the Input-Output to the State-Space Domain 123

where ⊕ denotes direct sum. Based on arguments used in the LTI case (see [231,
153]), X is a minimal state-map of the LPV system S and it defines a state variable
by (4.46). This way it is possible to obtain all minimal SS realizations of S that are
equivalent with the kernel representation associated with R.

4.3.5 State-Maps Based on Kernel Representations

In the previous part, we have established state-map constructions for kernel rep-
resentations based on the cut-and-shift operation and characterized the class of all
state-maps that result in an equivalent SS representation. The next step is to char-
acterize these SS representations with respect to an IO partition. We develop an
algorithm which, based on a given state-map, provides a SS realization of a ker-
nel representation for a chosen IO partition. We show that, for specific choices of
the state-map, the algorithm provides the SS realization in terms of the previously
introduce observability and companion observability canonical forms.

For a given kernel representation RK(S) associated with the polynomial R ∈
R[ξ ]nr×nW , the input-output partition of R is characterized by choosing a selector
matrix Su ∈ R·×nW giving u = Suw and a complementary matrix Sy ∈ R·×nW giving
y = Syw. In case of an unknown IO partition, the construction of Su follows by com-
puting the subspace ofR1×nW consisting of theR-span of the elements with degree
zero in Spanrow

R (Σ−(R))+ ModuleR[ξ ](R) and choosing Su such that the rows of Su

span a complement of this subspace relative to RnW . Then, Sy is chosen comple-
mentary to Su.

Assume that a full row rank X ∈ R[ξ ]·×nW is given which satisfies (4.49). Then
the matrix polynomial X and the matrix Su jointly lead to the direct sum decompo-
sition:

Spanrow
R (InW×nW

)+ Spanrow
R (Σ−(R))+ ModuleR[ξ ](R) =

Spanrow
R (Σ−(Su))⊕Spanrow

R (Σ−(X))⊕ModuleR[ξ ](R). (4.50)

From (4.47), it follows that

Spanrow
R (δ+(Σ−(X)))⊆ Spanrow

R (InW×nW
)+

Spanrow
R (Σ−(R))+ ModuleR[ξ ](R), (4.51)

which implies

Spanrow
R (δ+(X))⊆ Spanrow

R (X)⊕Spanrow
R (Su)⊕ModuleR[ξ ](R). (4.52)

On the other hand, Sy gives

Spanrow
R (Sy)⊆ Spanrow

R (X)⊕Spanrow
R (Su)⊕ModuleR[ξ ](R). (4.53)
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These inclusions imply, that there exist unique matrix functions (A,B,C,D) inR·×·
and polynomial matrix functions Xu,Xy ∈R[ξ ]·×· with appropriate dimensions such
that

ξX(ξ ) = AX(ξ )+ BSu + Xu(ξ )R(ξ ), (4.54a)

Sy(ξ ) = CX(ξ )+ DSu + Xy(ξ )R(ξ ). (4.54b)

Then [
A B
C D

]
∈
[RnX×nX RnX×nU

RnY×nX RnY×nU

]
, (4.55)

is a minimal state-representation of the LPV system S. This algorithm provides an
SS realization of both LPV-IO and LPV-KR representations.

As a next step, we show that specific choices of X lead to the construction
of the observability and the reachability canonical forms via algorithm (4.54a–b).
Consider the SISO case. Assume that RIO(S) is given with polynomial matrices
Ry,Ru ∈R:

Ry(ξ ) = a[0]
0 + a[0]

1 ξ + . . .+ a[0]
na ξ

na, (4.56)

Ru(ξ ) = b[0]
0 + b[0]

1 ξ + . . .+ b[0]
nbξ

nb . (4.57)

where na = nb. Additionally, let R be monic, i.e. a[0]
na = 1, otherwise redefine the

polynomials by dividing the coefficients with a[0]
na . Then Σ−([ Ry −Ru ]) gives:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a[1]
1 + . . .+ a[1]

na−1ξ
na−2 + ξ na−1 −b[1]

1 − . . .−b[1]
na−1ξ

na−1

a[2]
2 + . . .+ a[2]

na−1ξ
na−3 + ξ na−2 −b[2]

2 − . . .−a[2]
na−1ξ

na−2

...
...

a[na−1]
na−1 + ξ −b[na−1]

na−1 −b[na−1]
na ξ

1 −b[na]
na

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.58)

Obviously, this na× 2 matrix has independent rows and the span of these rows is
linearly independent from ModuleR[ξ ]([ Ry −Ru ]). Thus, the construction of the
state-map in terms of (4.49) requires to choose X ∈R[ξ ]na×2 such that Spanrow

R (X)
equals the rowspan of (4.58). As all rows of (4.58) are independent, therefore X
can be easily constructed. The selector matrices are also evident: Su = [ 0 1 ] and
Sy = [ 1 0 ].

A convenient choice for X is to take the rows of (4.58) in the given order (top-to-
bottom). Application of the algorithm defined by (4.54a–b) with such a X leads to
the companion-observability canonical form ROc

SS (S). This can be shown by solving
the corresponding equation system of (4.54a–b).

To derive a realization in terms of the observability canonical form, define
β0, . . . ,βna ∈R such that

Ru(ξ ) = β [0]
na Ry(ξ )+β [0]

na−1ξ
−1Ry(ξ )+ . . .+β [0]

0 ξ−naRy(ξ )+ . . . (4.59)
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These functions are the resulting expansion coefficients (left-fractions) of Ru in
terms of Ry. Then, by choosing X as

X(ξ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −β [na]
na

ξ −β [na−1]
na−1 −β [na−1]

na ξ
...

...

ξ na−2 −β [2]
2 − . . .−β [2]

na ξ na−2

ξ na−1 −β [1]
1 − . . .−β [1]

na ξ na−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.60)

results in RO
SS(S) via the algorithm defined by (4.54a–b). The resulting coefficients

in this case are
αo

i = a[0]
i , β o

j = β [ j]
j , (4.61)

where i, j ∈ I
nX

1 , nX = na and β o
na

= b[na]
na . The following claim follows from the

structural properties of the canonical forms:

Claim 4.1 The RO
SS(S) and ROc

SS (S) SS realizations of a SISO RIO(S) via (4.54a–
b) are completely state-observable and state-trim hence they are minimal. They are
also structurally state-reachable iff Ry and Ru are left-coprime onR[ξ ].

4.3.6 State-Maps Based on Image-Representations

The previously developed algorithm provides SS realizations based on kernel rep-
resentations. However it is also possible to derive another algorithm that is based
on state-maps generated from the so-called image representations. In this part, we
develop this algorithm and we show that for specific choices of the state-map it
provides the SS realization in terms of the previously introduced reachability and
companion reachability canonical forms.

To deduce reachability canonical forms, investigate RIO(S) in the following, so-
called image representation:

[
u
y

]
= (
[

R′y(ξ )
R′u(ξ )

]

︸ ︷︷ ︸
X̆(ξ )

� p)wL, (4.62)

with ξ either equal to d
dt or q and R′u,R′y ∈ R[ξ ] with R′y monic. Note that any

LPV system has an image representation in the form of (4.62) with equal manifest
behavior (see [239] for a proof). Applying the cut-and-shift based state-construction
mechanism on (4.62) with system variables (wL,u,y) leads to

Σ−(
[

X̆ I2×2
]
) =

[
Σ−(X̆) 0 0

]
,

where
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Σ−(X̆) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a[1]
1 + a[1]

2 ξ + . . .+ ξ na−1

b[1]
1 + b[1]

2 ξ + . . .+ b[1]
nbξ

nb−1

a[2]
2 + . . .+ ξ na−2

b[2]
2 + . . .+ b[2]

nbξ
nb−2

...
1

b[na]
na

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A minimal state for (4.62) is therefore given by

x = (X(ξ )� p)wL, (4.63)

where X ∈R[ξ ]na×1 has independent rows and satisfies

Spanrow
R (X) = Spanrow

R (Σ−(X̆)). (4.64)

The input is given as u = Su(X̆(ξ ) � p)wL with Su a selector matrix such that
Spanrow

R (X) and Spanrow
R (SuX̆) are direct summands. This implies that Su = [ 1 0 ]

and Sy = [ 0 1 ]. Then again, it can be seen that

Spanrow
R (δ+(X)) ⊆ Spanrow

R (X)⊕Spanrow
R (SuX̆), (4.65a)

Spanrow
R (SyX̆) ⊆ Spanrow

R (X)⊕Spanrow
R (SuX̆). (4.65b)

These inclusions imply the existence of unique matrices (A,B,C,D) in R·×· and a
polynomial matrix X ∈R[ξ ]·×· with appropriate dimensions such that

ξX(ξ ) = AX(ξ )+ BSuX̆(ξ ), (4.66a)

SyX̆(ξ ) = CX(ξ )+ DSuX̆(ξ ), (4.66b)

giving a state-representation of the LPV system S.
Consider again the SISO case. By choosing X as

X(ξ ) =
[

1 ξ . . . ξ na−2 ξ na−1
]�

, (4.67)

algorithm (4.66a–b) results in the companion-reachability canonical form RRc
SS (S),

while RR
SS(S) is obtained via

X(ξ ) = Σ−(R′y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a[1]
1 + . . .+ ξ na−1

a[2]
2 + . . .+ ξ na−2

...

a[na−1]
na−1 + ξ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.68)



4.3 From the Input-Output to the State-Space Domain 127

Claim 4.2 The RR
SS(S) and RRc

SS (S) SS realizations of a SISO RIO(S) via (4.66a–
b) are completely state-reachable. They are also structurally state-observable iff R′y
and R′u are coprime.

Example 4.9 (SS equivalence transformation). Consider the LPV-IO representation
derived in Example 4.8:

Ry(ξ ) = ξ 2− (1 + r−→r
)
ξ + T2

dks+r
−→r , Ru(ξ ) = T2

d−→r . (4.69)

In the following we derive a SS realization of this representation in a companion-
observability canonical form. Denote R(ξ ) =

[
Ry(ξ ) −Ru(ξ )

]
, and generate the

state-map

X(ξ ) = Σ−(R(ξ )) =
[
ξ − (1 +

←−r
r ) 0

1 0

]
.

Now with Sy = [ 1 0 ] and Su = [ 0 1 ], equations (4.54a-b) read as
[
ξ 2−

(
1+ r−→r

)
ξ 0

ξ 0

]

︸ ︷︷ ︸
ξX(ξ )

=
[
α11 α12
α21 α22

]

︸ ︷︷ ︸
A

·
[
ξ −(1+

←−r
r

)
0

1 0

]

︸ ︷︷ ︸
X(ξ )

+
[

0 β1
0 β2

]

︸ ︷︷ ︸
BSu

+
[

Xu1(ξ )
Xu2(ξ )

]
R(ξ ),

[
1 0

]
︸ ︷︷ ︸

Sy

=
[

c1 c2
]

︸ ︷︷ ︸
C

·
[
ξ − (1+

←−r
r ) 0

1 0

]

︸ ︷︷ ︸
X(ξ )

+
[

0 d1
]

︸ ︷︷ ︸
DSu

+Xy(ξ )R(ξ ).

By solving these equations, it follows that

α11 = 0 α12 =− T2
dks+r
−→r β1 = T2

d−→r
α21 = 1 α22 = 1 +

←−r
r β2 = 0

c1 = 0 d1 = 0 Xu1(ξ ) = 1

c2 = 1 Xy(ξ ) = 0 Xu2(ξ ) = 0

Then, the companion-observability canonical form results as

ROc
SS (S) =

⎡
⎢⎢⎣

0 − T2
dks+p

qp
T2

d
qp

1 1 + q−1 p
p 0

0 1 0

⎤
⎥⎥⎦ .

By applying the state transformation

T � p =
[

p q−1 p
0 1

]
,
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on ROc
SS (S) its equivalence with the LPV-SS representation of Example 3.22 fol-

lows. The latter proves that the IO representation given by Ry and Ru has the same
manifest behavior as RSS(S).

Next we develop a SS realization of (4.69) in a reachability canonical form. For
this we first transform the IO representation (4.69) into an image representation
form (4.62). Introduce the latent variable

wL =
←−r
T2

d

y → y =
T2

d←−r wL.

By substituting wL into (Ry(q)� p)y = (Ru(q)� p)u, it follows that

u =
(
T2

dks + r
←−r � p

)
wL−

(−→r + r
r
� p

)
qwL + q2wL.

This concludes that

[
u
y

]
=
[

R′y(q)� p
R′u(q)� p

]
wL, where

[
R′y(ξ )
R′u(ξ )

]
=

⎡
⎣

T2
dks+r
←−r − −→r +r

r ξ + ξ 2

T2
d←−r

⎤
⎦

︸ ︷︷ ︸
X̆(ξ )

, (4.70)

is an image representation of S. To introduce a state-map which leads to the reach-
ability form, in terms of (4.68) let

X(ξ ) = Σ−(R′y) =
[− r+←−r←−r + ξ

1

]
.

Now with Sy = [ 0 1 ] and Su = [ 1 0 ], equations (4.66a-b) read as

[
−−→r +r

r ξ + ξ 2

ξ

]

︸ ︷︷ ︸
ξX(ξ )

=
[
α11 α12

α21 α22

]

︸ ︷︷ ︸
A

·
[− r+←−r←−r + ξ

1

]

︸ ︷︷ ︸
X(ξ )

+
[
β1R′y(ξ )
β2R′y(ξ )

]

︸ ︷︷ ︸
BSuX̆(ξ )

,

R′u(ξ )︸ ︷︷ ︸
SyX̆(ξ )

=
[

c1 c2
]

︸ ︷︷ ︸
C

·
[− r+←−r←−r + ξ

1

]

︸ ︷︷ ︸
X(ξ )

+ d1R′y(ξ )︸ ︷︷ ︸
DSyX̆(ξ )

.

By solving these equations, it follows that

α11 = 0 α12 =− T2
dks+r
←−r β1 = 1

α21 = 1 α22 = 1 + r←−r β2 = 0

c1 = 0 c2 = T2
d←−r d1 = 0



4.4 Conclusions 129

The corresponding reachability form is

RR
SS(S) =

⎡
⎢⎢⎢⎣

0 − T2
dks+p
q−1 p

1

1 1 + p
q−1 p

0

0
T2

d
q−1 p

0

⎤
⎥⎥⎥⎦ .

By applying the constant state transformation

T =

[
−T2

d 0
0 − 1

T2
d

]
,

on RR
SS(S) its equivalence with the LPV-SS representation of Example 3.17 follows.

This proves equivalence with the LPV-SS representation of Example 3.22 and hence
also with the previously derived ROc

SS (S). �

4.3.7 State-Construction in the MIMO Case

In the MIMO case, algorithms (4.54a–b) and (4.66a–b) also provide SS realizations
of IO representations, however with different selector matrices (due to the multi-
dimension) and with a more complicated path to select independent rows from the
shift-map for X . It is only guaranteed that at least na number of rows of the shift-
map are independent, thus such a selection is not evident. Similar to the selection
schemes generating the SS MIMO canonical representations, only certain selection
strategies for X lead to the MIMO observability and reachability canonical forms.
Thus minimality of the obtained SS realizations via algorithm (4.54a–b) and (4.66a–
b) is not guaranteed in the general sense.

4.4 Conclusions

In this chapter, we have established equivalence transformations between the state-
space and the input-output representation domains. These transformations and the
corresponding algorithms have been introduced to enable comparison of LPV model
structures and identified models later on and also to provide essential tools to de-
velop LPV identification via OBF model structures. Additionally, we have defined
observability and reachability canonical SS representations of LPV systems and we
have shown that they provide a simple gateway for the conversion between the rep-
resentation domains. Furthermore, it has been shown that the transpose of a LPV-SS
representation does not have the same manifest behavior, which is a notable differ-
ence with respect to the LTI theory. This property also proves that coefficients of
canonical forms that structurally seem to be the transpose of each other (like the
reachability and observability forms), are not equal. The connection of the intro-
duced canonical forms with the applied theories of the current LPV literature has
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also been investigated. This lead to the conclusion that the common practice to use
LTI theory to compute canonical forms or provide a SS realization for LPV systems
yields SS representations that do not have an equal manifest behavior. We next ex-
plore if a series-expansion representation of LPV systems is available and can be
used to establish truncated series-expansion models for the identification of LPV
systems just as in the LTI case.



Chapter 5
LPV Series-Expansion Representations

Abstract. In this chapter, series-expansion representations of LPV systems for a
given IO partition are developed using the framework of the behavioral approach.
In fact, expansion of DT asymptotically stable LPV systems is considered in terms
of OBFs and the connection between this type of expansion and the gain-scheduling
principle is explored. It is shown that this series-expansion representation is unique
and always exists for the considered system class and in some cases only a finite
number of the expansion coefficients are nonzero. This implies that finite truncation
of a OBFs-based series-expansion can be used as a model structure for the identifi-
cation of asymptotically stable DT-LPV systems similar to the LTI case.

5.1 Relevance of Series-Expansion Representations

In the LTI framework, series-expansion representations have proved their usefulness
in a number of contexts. They not only characterize a unique representation of the
input-output (IO) system dynamics, like impulse-response representations, but they
also provide model structures, like orthonormal basis functions (OBFs)-based mod-
els, that provide an efficient alternative for LTI system identification. Using such
model structures for the identification of LPV systems has a number of attractive
proprieties and it would also allow the extension of the OBFs based identification
approaches to the LPV case (see the argument of Chap. 1). Based on this, we de-
velop in this chapter the concept of series-expansion of LPV systems in terms of
OBFs, providing a unique perspective on the representation of the system dynamics
with respect to an IO partition. This enables the formulation of the one-step ahead
predictor in the LPV prediction-error identification framework and also the intro-
duction of model structures as the finite truncation of a OBF series-expansion with
respect to a LPV system. These model structures are vital ingredients of the LPV
identification approach developed later.

To simplify the discussion and to avoid cases that are complicated but unimpor-
tant for the intended identification approach, we restrict the discussion to discrete-
time (DT) asymptotically-stable LPV systems.

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 131–141.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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5.2 Impulse Response Representation of LPV Systems

As a first step, we develop the series-expansion representation of DT asymptotically
stable LPV systems based on a pulse basis (see Sect. 2.1 for the definition of the
pulse basis). LPV systems can not be handled in the frequency domain, thus we
develop the concept of series-expansion in terms of the time operator form of the
pulse basis. As we will see this results in a convolution based description of the
system dynamics. To develop such a description, we first introduce the filter form
of an LPV-IO representation. Then we generate the expansion in terms of the pulse
basis by recursive substitution of the filter form. We show the uniqueness and the
convergence of the resulting expansion coefficients. Additionally we briefly cover
how this series-expansion can be generalized to unstable and continuous-time (CT)
systems.

5.2.1 Filter Form of LPV-IO Representations

Based on the previously given line of discussion, first the filter form of LPV-IO rep-
resentations is introduced. Let a discrete-time (DT) LPV system S = (Z,P,W,B)
be given with an IO partition w = Col(u,y) and scheduling variable p. Assume that
S is asymptotically dynamically stable and that a minimal IO representation RIO(S)
of S is given, characterized by Ru ∈R[ξ ]nY×nU and a full rank Ry ∈R[ξ ]nY×nY with
Deg(Ry) = na ≥ nb = Deg(Ru). In this way, the behavior B is described by the re-
lation

na

∑
i=0

(ai � p)qiy =
nb

∑
j=0

(b j � p)q ju, (5.1)

for every (u,y, p) ∈ B with left compact support. Without loss of generality, as-
sume that Ry is monic and multiply (5.1) by q−na according to the non-commutative
multiplication rules in discrete-time (see Def. 3.16). The resulting expression is

y =−
na−1

∑
i=0

(←−ai
(na) � p

)
qi−nay +

nb

∑
j=0

(←−
b j

(na) � p
)

q j−nau, (5.2)

where←−� (na) denotes the backward shift operator applied on the coefficient function
for na times. As only the backward time-shifted versions of y appear on the right
side of (5.2), the relation (5.2) is called the filter form of (5.1).

5.2.2 Series Expansion in the Pulse Basis

Assume that na = nb, which can be realized by including extra coefficients
{b j}na

j=nb+1 that are zero functions. By substituting the relation (5.2) recursively into
itself to eliminate the shifted versions of y we obtain:

y = (g0 � p)u +(g1� p)q−1u +(g2 � p)q−2u + . . . (5.3)
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where

g0 =
←−
bna

(na),

g1 =
←−−−
bna−1

(na)−←−−−ana−1
(na)←−bna

(na+1),

g2 =
←−−−
bna−2

(na)−←−−−ana−1
(na)←−−−bna−1

(na+1)−←−−−ana−2
(na)←−bna

(na+2) +

+←−−−ana−1
(na)←−−−ana−1

(na+1)←−bna
(na+2).

It is obvious that {g0,g1,g2, . . .} are meromorphic coefficient functions. Further-
more, they are backward-shifted combinations of the coefficients of RIO(S) and
due to the minimality of RIO(S) they are unique with respect to the considered IO
partition of S. In addition, the signal trajectories (u,y, p) ∈ B described by (5.1)
have left-compact support. This means, that there exists a n ∈ N, such that after
n substitutions of the relation (5.2) recursively into itself, y vanishes from the ex-
pression (5.3). This shows, that by this recursive substitution we have obtained an
infinite expansion of (5.2) in terms of the LTI pulse basis {1,q−1,q−2, . . .} with
coefficients gi ∈ RnY×nU for i = 1,2, . . . . If the coefficients of RIO(S) have static
dependence or they are all dependent only on the backward shifted versions of p,
then each gi depends only on the past values of p.

Furthermore, in case of a given scheduling trajectory p ∈BP, and a pulse input
at k = 0, the output trajectory of S satisfies

y(0) = (g0 � p)(0), y(1) = (g1 � p)(1), y(2) = (g2 � p)(2), . . .

thus {gi}∞i=0 can be considered as the impulse response coefficients of S for the
considered IO partition. Additionally, the asymptotic stability of S implies that

y(k)→ 0, as k→ ∞, (5.4)

which means that the sequence of coefficients {gi}∞i=0 converges to zero along every
scheduling trajectory p ∈BP. Thus

lim
i→∞

(gi � p)(i) = 0, ∀p ∈BP. (5.5)

This implies that due to the shift-invariant property of B:

lim
i→∞(gi � p) = 0, ∀p ∈BP, (5.6)

holds, which means that the sequence of coefficient functions {g0,g1,g2, . . .} con-
verges to the zero function with respect to BP. It is also important that asymptotic
stability of S implies BIBO stability in the �∞ norm:

sup
k≥0
‖u(k)‖< ∞ ⇒ sup

k≥0
‖y(k)‖ <∞.
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As (5.3) holds for any (u,y, p) ∈B with left compact support,
(

sup
k≥0
‖u(k)‖< ∞ and sup

k≥0
‖y(k)‖< ∞

)
⇒ sup

k≥0

∞

∑
i=0

‖(gi � p)(k)‖< ∞. (5.7)

These properties yield the following theorem:

Theorem 5.1 (Existence of series-expansion representation, pulse basis). Any
asymptotically stable, discrete-time LPV system S = (Z,P,W,B) with an IO par-
tition (u,y) has a unique, convergent series-expansion in terms of the pulse-basis
{q−i}∞i=0 and coefficients gi ∈RnY×nU , such that

y =
∞

∑
i=0

(gi � p)q−iu, (5.8)

is satisfied for all (u,y, p) ∈BP with left compact support.

For a proof see Appendix A.2. The LPV series-expansion in terms of the pulse basis
is similar to the series-expansion in the LTI case (see (2.4)). This means that the
LPV system has a convergent series-expansion in terms of an LTI basis, which has
a strong connection to the gain-scheduling concept of LPV systems (see Sect. 5.5.1
and [194]). Furthermore it is a general property of the expansion coefficients {gi}∞i=0
that they have dynamic dependence even if the original IO representation, used for
their computation, has coefficients with static dependence.

Note that in case of a uniformly frozen unstable LPV system (S is unstable
for every constant scheduling trajectory in BP), a series-expansion representation
can also be derived in terms of the pulse basis {q1,q2,q3, . . .}. If the system is
only non-uniformly frozen stable, then the series-expansion follows by taking the
two sided pulse basis {. . . ,q−1,1,q1, . . .}. These cases are not treated here as they
would require additional technicalities. Additionally, we will restrict the scope to
asymptotically-stable LPV systems for the identification approaches described in
Chaps. 8–9. Furthermore, the continuous-time case of series expansions is also not
covered. One of the reasons is that in the introduced behavioral framework it would
be cumbersome to handle ξ−1, which corresponds to an integral operator in CT. An
additional problem is that even if CT systems admit an impulse response form, the
unit-step function, which is associated with ξ−1 = s−1 in the LTI case, is not anH2

function, thus it does not correspond to a basis function sequence. Remember, that a
CT basis is related to its DT counterpart by the bilinear transformation (2.24). Based
on these considerations, we only treat the asymptotically stable DT case.

5.2.3 The Impulse Response Representation

Based on Th. 5.1, it is possible to define the series-expansion representation of S in
terms of the LTI pulse basis {1,q−1,q−2, . . .} as follows:
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Definition 5.1 (LPV series-expansion representation, pulse basis). The pulse ba-
sis series-expansion representation of a discrete-time asymptotically stable S =
(Z,P⊆RnP ,RnU+nY ,B) with scheduling signal p and IO partition (u,y) is denoted
by RIM(S) and defined as:

y =
∞

∑
i=0

(gi � p)q−iu (5.9)

where gi ∈RnY×nU , i ∈ I∞0 are the meromorphic expansion coefficients. �

In the following, we call this representation the impulse response representation
(IRR) of the LPV system. Note that RIM(S), similar to the IO representations, de-
scribes the behavior of S restricted to signal trajectories with left-compact support.
However, in contrast with other LPV representations, it is unique. It is also impor-
tant that an equivalence transformation exists from IO representations to the IRR
domain, i.e. RIO(S) can be always transformed to RIM(S) if S is asymptotically
stable. See Example 5.1 for the construction of an IRR. On the other hand, realiza-
tion of an LPV-IO representation from the IRR in the general case is unsolved yet.
Alternatively, the use of the LPV extension of the Ho-Kalman algorithm provides a
LPV-SS realization of a given sequence of PV impulse response coefficients for a
priori chosen class of functional dependencies (see [1] for further details).

Example 5.1 (Pulse basis series-expansion representation of an DT-LPV system).
Consider the DT-LPV-IO representation RIO(S) given in the following filter form:

y =−0.2q−1y−0.1pq−2y + sin(p)q−1u,

with P = [0,1]. By recursive substitution of this equation for q−1y, q−2y, . . . , the
following series-expansion in terms of the pulse basis functions {q−1,q−2, . . .} re-
sults:

y = sin(p)︸ ︷︷ ︸
g1�p

q−1u−10−1 ·2sin(q−1)︸ ︷︷ ︸
−g2�p

q−2u + 10−1 · (0.4−1p)sin(q−2 p)︸ ︷︷ ︸
g3�p

q−3u + . . .

The resulting expansion coefficients are uniquely defined by the above expression
with g0 = 0. As RIO(S) corresponds to an asymptotically stable behavior, the above
series expansion is convergent. This can be seen from the decreasing magnitude of
the Markov parameters. �

5.3 LPV Series Expansion by OBFs

As a next step, we generalize the LPV series-expansion concept to general OBFs in
RH2− (E). To do so, we first show that each element of the pulse basis sequence
can be written in a series-expansion form of an orthonormal basis Φ∞ ofRH2− (E).
By substituting each pulse function by its expansion in terms of a Φ∞, the series-
expansion of a RIO(S) can be obtained for general orthonormal basis functions in a
similar way as before.
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Consider an OBF set Φ∞ ⊂RH2− (E). Then, based on the LTI transfer function
theory, a pulse basis function q−i, i > 0 has a unique series-expansion in terms of
Φ∞ = {φi}∞i=1:

q−i =
∞

∑
j=1

wi jφ j(q), (5.10)

where wi j ∈ R, i, j ∈ I∞1 , are the expansion coefficients. This series-expansion is
convergent and it is a well-known property that for all i ∈ I∞1 , the sequence {wi j}∞j=1
is an �2 sequence. Additionally, the same property holds for each sequence {wi j}∞i=1.

As a next step, by using the relation derived in the previous part, we develop
the series-expansion of a minimal RIO(S) in terms of an OBF set Φ∞ = {φ j}∞j=1 in
RH2− (E). Let S be asymptotically stable and assume that the pulse basis expansion
of RIO(S) has been derived in the form of (5.9). Then by substituting (5.10) into
the expansion (5.9), we obtain

y = (g0 � p)u +(g1� p)
∞

∑
j=1

w1 jφ j(q)u +(g2 � p)
∞

∑
j=1

w2 jφ j(q)u + . . .

By rearranging this expression we arrive at

y = (g0 � p)u +

(
∞

∑
i=1

wi1gi � p

)

︸ ︷︷ ︸
w1�p

φ1(q)u +

(
∞

∑
i=1

wi2gi � p

)

︸ ︷︷ ︸
w2�p

φ2(q)u + . . .

where {w1,w2, . . .} are the coefficient functions of the new series-expansion in terms
of the basis Φ∞. Note that for each j ∈ I∞1 , {wi j}∞i=1 is an �2 sequence. Furthermore
the expansion coefficients satisfy (5.6) and (5.7) for every p ∈BP. Thus, each wi

exists and it is an element ofRnY×nU . Furthermore, zero convergence of all {wi j}∞j=1
and (5.7) implies that the sequence {w1,w2, . . .} converges to zero for every p ∈BP

similarly as in the pulse-basis case. Based on this, the following theorem holds:

Theorem 5.2 (Existence of series-expansion representation, OBFs). Let Φ∞ =
{φi}∞i=1 be a collection of orthonormal basis functions in RH2− (E) with poles
{λ1,λ2, . . .} satisfying the completeness condition ∑∞

i=1(1− |λi|) = ∞. Then any
asymptotically stable, discrete-time LPV system S = (Z,P,W,B) with an IO parti-
tion (u,y) has a unique series-expansion in terms of Φ∞ = {φ j}∞j=1 with coefficients
wi ∈RnY×nU , such that

y = (w0 � p)u +
∞

∑
i=1

(wi � p)φi(q)u, (5.11)

is satisfied for all (u,y, p) ∈BP with left compact support.

For a proof see Appendix A.2. Note that the rate of convergence of the series-
expansion directly depends on the basis sequence Φ∞. Moreover, it is a general
property of the expansion coefficients {wi}∞i=0 that they have dynamic dependence.
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In contrast with the LTI case, commonly the analytical computation of these coeffi-
cients is only available in an approximative manner by truncating their infinite sum
relation with respect to the impulse response coefficients.

5.4 The OBF Expansion Representation

Based on the series-expansion concept, developed in the previous section, we can
extend Def. 5.1. We call (5.11) the discrete-time OBF expansion representation of
the LPV system S = (Z,P ⊆ RnP ,RnU+nY ,B) in terms of the orthonormal basis
functionsΦ∞ = {φi}∞i=1, and we denote this representation as ROBF(S,Φ∞). Similar
to the IRR, ROBF(S,Φ∞) is unique and describes the behavior of S restricted to
signal trajectories with left-compact support. An additional similarity is that the
equivalence transformation from IO representations to the expansion representation
domain exists, however realization in the other direction is unsolved. See Example
5.1 for the construction of a LPV-OBF expansion representation.

Example 5.2 (OBF series-expansion representation of an LPV system). Continue
Example 5.1 to develop the series-expansion of the considered RIO(S) in terms of
the Laguerre basis Φ∞

1 = {φi}∞i=1 with poles Λ1 = 0.5. Based on the LTI transfer
function theory, the pulse basis {q−1,q−2, . . .} has the following series-expansion
in terms of Φ∞

1 :

q−1 = 0.866φ1(q)−0.433φ2(q)+ 0.217φ3(q)+ . . .

q−2 = 0.433φ1(q)+ 0.433φ2(q)−0.541φ3(q)+ . . .

q−3 = 0.217φ1(q)+ 0.541φ2(q)−0.108φ3(q)+ . . .

Then by substituting these series expansions into the pulse basis expansion of Ex-
ample 5.1, it follows that

y = (w1 � p)φ1(q)u +(w2 � p)φ2(q)u + . . . (5.12)

where

w1 � p =0.866sin(p)−0.086sin(q−1 p)+ 0.022(0.4−1p)sin(q−2 p)+ . . .

w2 � p =−0.433sin(p)−0.086sin(q−1 p)+ 0.054(0.4−1p)sin(q−2 p)+ . . .

Note that the infinite sum expression of the coefficients {w1,w2, . . .} converges as
the expansion coefficients of each Laguerre basis φi(q) with respect to the pulse
basis corresponds to an �2 sequence. In this way, the resulting expression is the
series-expansion of RIO(S) in terms of Φ∞

1 . Note that the coefficients {w1,w2, . . .}
of this new series-expansion are linear combinations of the coefficients of the IRR.
The weights of these linear combinations are uniquely determined by the series-
expansion of the pulse basis functions in terms of Φ∞

1 . �
Similar to the LTI case, expansion representations have the property that the relative
contribution of the basis, i.e. the wi functions, converge to the zero function on BP
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as i→∞. In this way, for an asymptotically stable LPV system, it is always possible
to find a finite Φn ⊂Φ∞, i.e. the truncation of (5.11), with a relatively small number
of functions, such that the representation error for all (u,y, p)∈B is negligible. This
provides an efficient approximation of the system. Based on this, finite truncation
of a OBF based expansion representation can be used as a model structure for the
identification of asymptotically stable DT-LPV systems. Similar to the LTI case,
identification based on this type of model structure reduces to the estimation of the
meromorphic coefficient functions {wi}n

i=0 which appear linearly in the dynamic
relation.

5.5 Series Expansions and Gain-Scheduling

There is an interesting relation of the OBF expansion representation and the gain-
scheduling principle. This relation helps to understand whether an orthonormal basis
is adequate for the series-expansion of the LPV system, i.e. how the rate of conver-
gence of the expansion can be characterized. In the following, we explore this re-
lation by first showing that for constant scheduling trajectories the OBF expansion
representation is equivalent with the series-expansion representations of the frozen
system set. As a next step we show, that this equivalence implies that for some LPV
systems, KnW optimality of the basis with respect to the frozen system set implies
an optimal convergence rate of the series-expansion in the LPV case.

5.5.1 The Role of Gain-Scheduling

Let ROBF(S,Φ∞) be the expansion representation of a discrete-time asymptotically
stable LPV system S in terms of an orthonormal basis Φ∞ ⊂ RH2− (E). Denote
by FS the frozen system set of S, and introduce F as the set of transfer functions
associated with each Fp ∈ FS for the IO partition (u,y). As S is asymptotically
stable, each Fp ∈ F is inRH2 (E) and the strictly proper part of Fp has a convergent
series-expansion in terms of Φ∞. It is obvious, that in case of a constant scheduling
signal p(k) = p, the expansion coefficients {wi}∞i=0 of ROBF(S,Φ∞) satisfy that

wi � p = wi|p, (5.13)

where wi|p ∈R, i ∈ I∞0 are the expansion coefficients of the transfer function Fp with
respect to Φ∞. In this way, Φ∞ with coefficients {wi|p}∞i=0 characterizes the behav-
ior of each Fp ∈FS in terms of an LTI expansion representation. We have already
discussed that by the gain-scheduling principle, an LPV system can be viewed as a
collection of LTI behaviors (frozen system set) and a scheduling signal dependent
function set (scheduling functions) that selects one of the behaviors to describe the
possible continuation of the signal trajectories at every time instant. Form the pre-
vious observation it is clear, that the basis Φ∞ with coefficients wi|p characterizes
all frozen systems FS , while the remaining part of the LPV dynamic relation is in
the global expansion coefficients {wi}∞i=0. This provides the conclusion that from
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the gain-scheduling perspective, series-expansion separates the LPV system into a
frozen behavior set, described as the linear combination of the basis functions, and
a scheduling function set, which is represented by the expansion coefficients.

5.5.2 Optimality of the Basis in the Frozen Sense

Now we can use this insight to consider the question, how the basis should be chosen
to achieve a fast convergence rate of the LPV series-expansion. This problem has
a key importance in using truncated series expansions as model structures for LPV
system identification as it formulates the optimality of a model structure with respect
to a given system. To simplify the following discussion, we only investigate the
SISO case.

Consider the optimality concept of OBFs in terms of the Kolmogorov n-width
theory discussed in Sect. 2.5. By this concept, for a given transfer function set F⊂
RH2− (E) with pole locations

Ω = {λ ∈ C | λ is a pole of F ∈ F} , (5.14)

the finite set of OBFs Φn ⊂RH2− (E) is called optimal in the n-width sense, if the
subspace

Mn = Span(Φn), (5.15)

has the minimal distance in terms of (2.57) for the worst-case F ∈ F. Denote byΦ∞
ng

the Hambo basis generated by the inner function Gb with ng number of poles and
let Φne

ng
describe the Hambo functions obtained with ne as the number of extensions

of Gb (finite truncation of Φ∞
ng

). It has been shown in Sect. 2.5, that if Φne
ng

with
ne ≥ 0 is optimal in the n = (ne + 1)ng-width sense with respect to F, then the rate
of convergence of the series-expansion of each F ∈ F in terms of Φ∞

ng
is optimal and

it is bounded by ρne+1 where

ρ = sup
λ∈Ω
|Gb(1/λ )| . (5.16)

This means that in the series-expansion of any F ∈F with a n = (ne +1)ng-width op-

timal Hambo basis Φ∞
ng

= {φi j}i=1,...,∞
j=1,...,ng

, there exists a γ > 0 such that all expansion
coefficients wi j ∈ R satisfy:

|wi j| ≤ γρ (ne+1)(i+1) j. (5.17)

It is obvious that if F corresponds to the transfer function set of FS with respect to
a given IO partition and the Hambo basis Φ∞

ng
is n = (ne + 1)ng-width optimal with

respect to F, then there exists a γ > 0 such that the expansion coefficients of the
LPV system in terms of Φ∞

ng
with respect to the considered IO partition satisfy that

|(wi j � p)(k)|= |wi j|p| ≤ γρ (ne+1)(i+1) j ∀k ∈ Z. (5.18)
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for any constant scheduling trajectory p(k) = p. This means that if the basis is op-
timal with respect to the frozen transfer function set of the LPV system, then fast
convergence rate of the expansion coefficients holds in the frozen sense. However,
this does not imply fast convergence for non-frozen scheduling trajectories in the
general case. This leads to the conclusion, that to achieve a fast convergence rate
for the expansion of general LPV systems, a necessary condition is to have fast
convergence with respect to the frozen system set.

5.5.3 Optimality of the Basis in the Global Sense

As a next step, we investigate when it is possible to characterize the convergence
rate of the global expansion coefficients based on the KnW optimality in the frozen
sense. Though, it has been not proven explicitly, empirical results show that opti-
mality with respect to the frozen system set is also a sufficient condition to achieve
optimal convergence rate of the expansion if the LPV system has a IO representation
with static coefficient dependence. This is formalized in the following conjecture:

Conjecture 5.1 (Optimal basis). Given a discrete-time asymptotically stable SISO
system S = (Z,P ⊆ RnP ,R2,B) with scheduling vector p and IO partition (u,y).
Assume that there exists a minimal RIO(S) such that all coefficient dependencies
in RIO(S) are static. Denote by FS the frozen system set of S and let F be its
associated transfer function set with respect to the IO partition (u,y). Let Φ∞

ng
=

{φi j}i=1,...,∞
j=1,...,ng

be a Hambo basis which is n = (ne + 1)ng-width optimal with respect
to F with convergence rate ρ . Then, there exists a set of meromorphic expansion
coefficients wi j ∈ R and γ > 0, such that for all (u,y, p) ∈ B with left compact
support:

y = (w00 � p)u +
∞

∑
i=0

ng

∑
j=1

(wi j � p)φi j(q)u, (5.19)

and
|(wi j � p)(k)| ≤ γρ (i+1) j(ne+1) ∀p ∈BP and ∀k ∈ Z. (5.20)

If additionally,
F⊆ Span{Φne

ng
}, (5.21)

is satisfied, then
wi j � p = 0, (5.22)

for all i > ne and j ∈ I
ng
1 . �

Conjecture 5.1 is of crucial importance even if its proof is an open problem for the
general case. By this concept, under the condition of a minimal IO representation
with static dependence, the KnW optimality of the basis with respect to the frozen
system set can imply optimality of the basis in the series-expansion of the LPV
system. Optimality in the latter case means that the same convergence rate of the
expansion coefficients is satisfied both in the global and in the frozen sense. Fur-
thermore, an asymptotically stable LPV system can have a finite series-expansion
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in terms of a basis that can represent all the frozen transfer functions of the system
by linear combinations. For example in case of LPV systems with a minimal SS
representation where the A and B matrices are constant and the C and D matrices
have static dependence, (5.21) is satisfied for a basis function set with poles equal
to the eigenvalues of A. In that case, a series-expansion exists with finite nonzero
expansion coefficients. This gives the conclusion, that to achieve a fast conver-
gence rate for the expansion of this subclass of LPV systems, it is both a necessary
and a sufficient condition to have fast convergence with respect to the frozen local
system set.

5.6 Conclusions

In this chapter, series-expansion representations of DT asymptotically stable LPV
systems for a given IO partition have been developed based on the concepts of
the behavioral approach. We investigated expansions in terms of orthonormal basis
functions with the intention to use finite truncation of these expansion representa-
tions as a model structure for the identification of asymptotically stable DT-LPV
systems later on. The developed theory enables the use of the LTI OBF-based iden-
tification approach in the LPV case, which is of crucial importance in providing
an efficient and theoretically well-founded LPV identification method. The connec-
tion between series-expansion representation and the gain-scheduling principle has
been explored, showing that the expansion coefficients of the basis sequence char-
acterize the scheduling function part of the LPV system, while the basis functions
are strongly related to the frozen system set. Based on this connection, it has been
proven that KnW optimality of a basis sequence, with respect to the frozen system
set of a given LPV system S, implies an optimal convergence rate of the series-
expansion in these basis functions in the worst case sense along all possible constant
scheduling trajectories. It has been also motivated that for systems with minimal IO
representations having static coefficient dependence, optimal convergence rate of
the LPV series-expansion with such a basis also holds for every scheduling trajec-
tory. As we will see in Chap. 8, these properties have a paramount importance for
OBFs-based model structure selection in LPV identification.



Chapter 6
Discretization of LPV Systems

Abstract. This chapter is devoted to the discretization of LPV systems through the
discrete-time projection of their state-space representations. Both exact and approx-
imative approaches are developed in a zero-order hold setting. Primary attention is
given to the discretization of state-space representations with static coefficient de-
pendence. For this case, criteria are derived to assist the choice of the sampling-time
in terms of preservation of frozen dynamic stability and acceptable upperbound on
the discretization error.

6.1 The Importance of Discretization

Transformation between LPV systems represented on the continuous-time (CT) and
the discrete-time (DT) axis, has primary importance both for system identification
and control synthesis:

Implementation of LPV control solutions in physical hardware often meets sig-
nificant difficulties, as CT synthesis approaches (see [134, 160]) are preferred over
DT solutions (see [6, 133]). The main motivation for this preference is that stabil-
ity and performance requirements for LPV systems can be expressed significantly
easier in CT, like in a mixed sensitivity setting [240]. As a result, the current design
tools focus on continuous-time LPV state-space (SS) controller synthesis, often in
an LFR form, requiring efficient discretization of such representations for imple-
mentation purposes.

In the LPV modeling framework, first principle LPV models of nonlinear sys-
tems are also often derived in a CT form. In LPV system identification, such models
serve as a primary source of information to assist adequate model structure selec-
tion in terms of order, type of coefficient dependence, etc. However, current LPV
identification methods are developed exclusively for DT. This means that DT pro-
jection of first principle LPV models is required to assist model structure selection
for practical identification.

These issues show how crucial is to well explore and analyze general discretiza-
tion of LPV representations. Surprisingly, the existing literature about LPV dis-
cretization is very limited. In the early work of [4], three different approaches have

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 143–169.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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been introduced based on an isolated (stand-alone discretization of a CT system
aiming at only the preservation of the CT input-output behavior) zero-order-hold
(variation of free CT signals is restricted to be piecewise-constant) setting. These ap-
proaches: the complete, the rectangular, and the trapezoidal methods have been de-
veloped for the discretization of LPV-SS representations by extending the concepts
of the LTI framework (see [119]). However, only a limited discussion on the dis-
cretization error of the introduced approaches and on their applicability for specific
LPV systems has been provided. In [69], an attempt has been made to characterize
the discretization error of the rectangular method by expressing the approximation
error of the involved state-space matrices. Other types of discretization techniques
or criteria for the selection of sampling-time have not been investigated, leaving
the-state-of-the-art of LPV discretization incomplete.

In this chapter, we aim to complete the extension of the isolated discretization
approaches of the LTI framework. We also focus on comparing the properties of
the resulting methods with questions of sampling-time choice, preservation of sta-
bility, and discretization errors. Our main purpose is to give tools for the use of CT
first principle knowledge in the model structure selection of DT-LPV identification
approaches. In this chapter we restrict attention to SS representations, however the
methods discussed can be extended to other representation like LFR’s (see [199]).

6.2 Discretization of LPV System Representations

As a first step, the considered discretization setting is established. Similar to the
major methods of the LTI case, we consider an isolated approach in an ideal ZOH
setting presented in Fig. 6.1 where the following assumption holds:

Assumption 6.1 Given a CT-LPV system S, with input-output partition (u,y) and
scheduling signal p, where u and p are generated by an ideal ZOH and y is sampled
in a perfectly synchronized manner with sampling time Td ∈ R+. The ZOH and the
instrument providing the output sampling have infinite resolution (no quantization
error) and their processing time is zero.

The problem we intend to solve in the following part is to find the DT equivalent
of a given CT-LPV system according to Assumption 6.1. Introduce subscript “d” to
denote sampled/discretized signals. Then it holds for the signals of Fig. 6.1 that

u(t) := ud (k) , ∀t ∈ [kTd,(k + 1)Td) , (6.1a)

p(t) := pd (k) , ∀t ∈ [kTd,(k + 1)Td) , (6.1b)

yd (k) := y(kTd) , (6.1c)

for each k ∈ Z, meaning that u and p can only change at every sampling-time in-
stant. However, in the LPV framework p is considered to be a measurable exter-
nal/environmental effect (general-LPV) or some function of the states or outputs of
the system S (quasi-LPV). Therefore, possibly it can not be fully influenced by the
digitally controlled actuators of the plant which contain the ZOH. Furthermore in
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ZOH

SamplingZOH

S
y(t)u(t)ud(k) yd(k)

Continuous
LPV system

pd(k)

p(t)

Discrete LPV system

Fig. 6.1 Ideal zero-order hold discretization setting of general LPV systems.

Sect. 3.1.3, equivalence of CT and DT behaviors under a given sampling-time has
been established without any restrictions on the variation of u or p.

On the other hand, the variation of u and p inside a sample interval must be
restricted to exactly characterize the effect of these signals on the plant. The reason
is similar as in the LTI case. In DT, observations of the CT signals u and p are
only available at each sampling-time instant. Thus there is no information about the
trajectory of these signals during the sample interval. This means that the output
signal can not be uniquely determined, unless the variation of the signals u and p is
restricted to a certain class of functions. In the ZOH setting, this function class is
chosen to be the piecewise constant (zero-order) class. It is also possible to choose
this class wider, including linear, 2nd-order polynomial, etc., functions and in this
way to define higher-order hold discretization settings of LPV systems. However, in
conclusion it holds true that in any LPV discretization setting, the variation of the
scheduling signals must be restricted, otherwise the resulting DT description would
not be well-posed.

By applying the ZOH setting for the discretization of a given LPV representa-
tion, the piecewise-constant variation of p implies that coefficients with dynamic
dependence simplify as the derivatives of p are zero inside the sampling interval.
This means, that unless the representation has static dependence, the ZOH setting
may result in the loss of certain parts of the original behavior. Based on this, we as-
sume that the CT representation to be discretized has static coefficient dependence.
Later we explore how this limitation can be overcome, i.e. how the discretization of
representations with dynamic dependence can be properly handled.

In conclusion, the introduced discretization setting coincides with the conven-
tional setting of the LTI framework. Moreover, the presented setting is also appli-
cable to closed-loop controllers in the structure given in Fig. 6.2. This closed-loop
setting has also been used in [4]. Note that the assumption that the scheduling vector
of the continuous LPV controller is affected by the ZOH setting, i.e. it can only vary
in piece-wise manner, also holds in this case.
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Sampling

SamplingZOH

K
yd(k)ud(k)

u(t) y(t)

Discrete
LPV controller

pd(k)

p(t)

Continuous LPV controller

N

Continuous Plant

Fig. 6.2 Ideal ZOH discretization setting of closed-loop LPV controllers.

6.3 Discretization of State-Space Representations

Based on the previously introduced discretization setting, the isolated approaches
of the LTI framework are extended to the LPV case. The extension only given with
respect to LPV-SS representations. In case the system description is available in the
form of an other representation, using the equivalence transformations developed
in Chap. 4, an equivalent SS realization can always be obtained. Additionally, we
assume that the SS representation has only static coefficient dependence. For the
case of dynamic dependence see Sec. 6.6. Investigation of the discretization errors
and other properties is postponed till Sections 6.4 and 6.5. Before venturing into the
derivation of discretization methods, consider the following phenomenon:

For the continuous-time signals u, p defined through (6.1a–b) it holds that

u(t) =
∞

∑
k=−∞

1(t− kTd)
(
ud (k)−ud (k−1)

)
, (6.2a)

p(t) =
∞

∑
k=−∞

1(t− kTd)
(

pd (k)− pd (k−1)
)
, (6.2b)

where 1(t) is the unit-step function (positive zero assumption based Heaviside func-
tion) defined as

1(t) :=
{

0, if t < 0;
1, if t ≥ 0.

(6.3)
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The result of 1(t− kTd) on RSS(S) in every sampling period is called the switching
effect of the ZOH actuation. Based on this, the following important assumption is
made:

Assumption 6.2 The switching behavior of the ZOH actuation has no effect on the
CT plant, i.e. the switching of the signals is assumed to take place smoothly.

The analysis of the consequence of this assumption is postponed till Sect. 6.4.

6.3.1 Complete Method

First the complete signal evolution approach of the LTI framework is extended to
the LPV case. Let a continuous-time RSS(S) be given in the ZOH setting. Based on
Assumption 6.1, i.e. p and u are constant signals inside each sampling interval, the
state-equations (3.44a–b) of RSS(S) can be written as

ẋ (t) = (A� p)(kTd)x(t)+ (B� p)(kTd)u(kTd) , (6.4a)

y(t) = (C � p)(kTd)x(t)+ (D� p)(kTd)u(kTd) , (6.4b)

for t ∈ [kTd,(k + 1)Td) with initial condition x(kTd). Assume that, {A,B,C,D} have
static dependence on p. Then the DT signal pd satisfies that1

(A� p)(kTd) = A(pd(k)), (B� p)(kTd) = B(pd(k)),
(C � p)(kTd) = C(pd(k)), (D� p)(kTd) = D(pd(k)).

(6.5)

The state-equation (6.4a), associated with the kth sampling interval, is an ordinary
differential equation (ODE). To derive a solution of this ODE, introduce f (x,u, p)
as the right hand side of (3.44a). Under Assumptions 6.1 and 6.2 it holds that

(k+1)Td∫

kTd

f (x,u, p)(τ) dτ =

(k+1)Td∫

kTd

A(pd(k))x(τ)+ B(pd(k))u(kTd)dτ, (6.6)

which defines the solution of (6.4a) at t = (k + 1)Td as

x((k + 1)Td) = x(kTd)+

(k+1)Td∫

kTd

f (x,u, p)(τ) dτ. (6.7)

Assume that A(p) is invertible for ∀p ∈ P. By substituting xd (k) = x(kTd) and
ud (k) = u(kTd), the previous formula results in

qxd = eTdA(pd)xd + A−1(pd)
(

eTdA(pd)− I
)

B(pd)ud, (6.8a)

yd = C(pd)xd + D(pd)ud, (6.8b)

1 Due to the assumed static dependence of A, i.e. A ∈ R|nX×nX
nP

, it holds that (A � p)(t) =
A(p(t)).
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where yd (k) = y(kTd). Then the complete method gives2 that the DT equivalent of
RSS(S) under Assumptions 6.1 and 6.2 is [4]:

RSS(S,Td) :=
[

eTdA A−1
(
eTdA− I

)
B

C D

]
. (6.9)

Example 6.1 (Complete discretization). Consider the CT-SS representation

RSS(S) =

⎡
⎣

2p−1 p 0
0 −1 1
1 p 0

⎤
⎦

with P = [−1,1] . The above representation has static linear dependence and it can
be shown that it is uniformly frozen stable. By applying the complete method to
RSS(S), the DT equivalent of this representation under the sampling-time Td is

RSS(S,Td) =

⎡
⎢⎣

eTd(2pd−1) 1
2 eTd(2pd−1)− 1

2 e−Td eTd(2pd−1)+(2pd−1)e−Td−2pd
4pd−2

0 e−Td 1− e−Td

1 pd 0

⎤
⎥⎦ .

Even for this simple LPV state-space representation, the DT projection results in a
complicated rational/exponential dependence on the samples of p. �

6.3.2 Approximative State-Space Discretization Methods

The complete method is commonly not favored in the LPV literature as it introduces
heavy nonlinear dependence on pd, like eTdA(pd), which is the main drawback of
this approach. Many identification and control synthesis techniques build on the
assumption of linear, polynomial or low order rational static dependence on pd,
and hence it is required to develop approximative discretization methods that try to
achieve good representation of the original behavior, but with a low complexity of
the coefficient dependence. To do that, we systematically extend the approximative
discretization methods of the LTI case, by using different approximations of the
integral that describes the state-evolution inside the sample-interval.

6.3.2.1 Rectangular (Euler’s forward) Method

The simplest way to avoid the appearance of eTdA is to apply a first-order approxi-
mation:

eTdA(pd(k)) ≈ I +TdA(pd(k)). (6.10)

2 The condition that A(p) is invertible can be relaxed by using the fact that A−1(eA− I) can
be calculated without using the inverse of A(p) (e.g. see [44]).
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Consider f (x,u, p) as defined in the previous section. Then an approximation of
the solution (6.7) can be considered by the left-hand rectangular evaluation of the
integral (6.6), which gives

x((k + 1)Td)≈ x(kTd)+TdA(pd(k))x(kTd)+TdB(pd(k))u(kTd) , (6.11)

coinciding with the suggested matrix exponential approximation of (6.10). Based
on this rectangular approach, the DT approximation of RSS(S) is:

RSS(S,Td)≈
[

I +TdA TdB
C D

]
. (6.12)

Example 6.2 (Rectangular discretization). Continuing Example 6.1, the rectangular
discretization method applied to RSS(S) results in

RSS(S,Td)≈
⎡
⎣

2Td pd + 1−Td Td pd 0
0 1−Td Td

1 pd 0

⎤
⎦ .

Comparing this DT approximation with the result of the complete method (Example
6.1) illustrates the difference in complexity of the resulting coefficient dependencies.

�

6.3.2.2 Polynomial (Hanselmann) Method

It is also possible to develop other methods that achieve better approximation of
the complete case but with increasing complexity. As suggested in the LTI case by
Hanselmann [70], one way leads through the use of higher order Taylor expansion
of the matrix exponential term:

eTdA(pd(k)) ≈ I +
n

∑
l=1

Tl
d

l!
Al(pd(k)), (6.13)

This results in the extension of the LTI polynomial discretization methods. Substi-
tuting (6.13) into (6.8a) gives the following SS representation:

RSS(S,Td)≈
⎡
⎣ I +

n
∑

l=1

Tl
d

l! Al Td

(
I +

n−1
∑

l=1

Tl
d

l+1! Al

)
B

C D

⎤
⎦ . (6.14)

Example 6.3 (Polynomial discretization). Approximating the LPV-SS representa-
tion of Example 6.1 by the 2nd-order polynomial method results in

RSS(S,Td)≈

⎡
⎢⎣

1 +Td(2pd−1)+ 1
2T

2
d(2pd−1)2 (Td−T2

d)pd +T2
dp2

d
1
2T

2
d pd

0 1−Td + 1
2T

2
d Td− 1

2T
2
d

1 pd 0

⎤
⎥⎦ .
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Due to the polynomial approximation, the originally linear coefficient dependencies
are transformed to polynomial functions with order 2. �

6.3.2.3 Trapezoidal (Tustin) Method

An alternative way of approximation leads through the extension of the Tustin
method. By using a trapezoidal evaluation of integral (6.6) we obtain:

x((k + 1)Td)≈ x(kTd)+
Td

2

(
f (x,u, p)(kTd)+ f (x,u, p)((k + 1)Td)

)
, (6.15)

Using this approximation, the derivation of the LPV Tustin method can be given
similarly as in [4]. The key concept is to apply a change of variables:

x̆d (k) =
1√
Td

(
I− Td

2
A(pd(k))

)
x(kTd)−

√
Td

2
B(pd(k))ud (k) . (6.16)

If I− Td
2 A(p) is invertible for all p∈ P, then substitution of (6.16) into (6.15) gives a

DT state-equation after some algebraic manipulations. Based on this state-equation,
the resulting SS representation reads as

RSS(S,Td)≈

⎡
⎢⎣

(
I + Td

2 A
)(

I− Td
2 A
)−1 √

Td

(
I− Td

2 A
)−1

B

√
TdC

(
I− Td

2 A
)−1

Td
2 C
(

I− Td
2 A
)−1

B + D

⎤
⎥⎦ .

It is important to note that, like in the LTI case, the trapezoidal method approximates
only the manifest behavior of RSS(S,Td), as it gives an approximative DT-SS rep-
resentation in terms of the new state variable x̆d.

Example 6.4 (Trapezoidal discretization). Applying the trapezoidal method to the
LPV-SS representation of Example 6.1 results in

RSS(S ,Td)≈

⎡
⎢⎢⎢⎢⎣

2+2Td pd−Td
2−2Td pd+Td

4Td pd
(2−2Td pd+Td)·(2+Td)

2T3/2
d pd

(2−2Td pd+Td)·(2+Td)

0 2−Td
2+Td

2
√
Td

2+Td

2
√
Td

2−2Td pd+Td
4
√
Td pd

Td+1−Td pd
(2−2Td pd+Td)·(2+Td)

2Td pd
Td+1−Td pd

(2−2Td pd+Td)·(2+Td)

⎤
⎥⎥⎥⎥⎦

.

Due to the discretization method, the originally linear coefficient dependencies are
transformed to rational functions. �

6.3.2.4 Multi-Step Methods

Next, the multistep approximation of the LTI case is extended. Consider the state
evolution as the solution of the differential equation defined by (3.44a), where all the
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coefficients are assumed to have static dependence. This solution can be numerically
approximated via multi-step formulas like the Runge-Kutta, Adams-Moulton, or the
Adams-Bashforth type of approaches (see [8]). In commercial engineering software
packages, like MATLAB Simulink, commonly variable step-size implementation of
these algorithms assures accurate simulation of continuous-time systems. However
in the considered ZOH discretization setting, the step size, i.e. the sampling rate,
is fixed and sampled data is only available at past and present sampling instances.
This immediately excludes multi-step implicit methods like the Adams-Moulton
approaches. Moreover f (x,u, p) can only be evaluated for integer multiples of the
sampling-time, as the input only changes at these time instances and the resulting
model must be realized as a single rate (not multi-rate) system. Therefore it is com-
plicated to apply methods like the Runge-Kutta approach. The family of Adams-
Bashforth methods does fulfill these requirements (see [8]). The 3-step version of
this type of numerical approach yields the following approximation:

x((k + 1)Td) ≈ xd (k + 1) = x(kTd)+
Td

12

(
5 f (x,u, p)((k−2)Td)−

−16 f (x,u, p)((k−1)Td)+ 23 f (x,u, p)(kTd)
)
. (6.17)

Formulating this state-space equation in an augmented SS form with the new state-
variable:

x̆d (k) = Col
(
xd (k) , f (xd,u, p)((k−1)Td), f (xd,u, p)((k−2)Td)

)
, (6.18)

leads to

RSS(S,Td)≈

⎡
⎢⎢⎣

I + 23Td
12 A − 16Td

12 I 5Td
12 I 23Td

12 B
A 0 0 B
0 I 0 0
C 0 0 D

⎤
⎥⎥⎦ .

The resulting DT-SS representation is an approximation of RSS(S,Td) in terms of
the new state variable x̆d. Note that multi-step discretization results in linear conver-
sion rules but the state-dimension is increased.

Example 6.5 (3-step Adams-Bashforth discretization). Applying the 3-step Adams-
Bashforth method to the LPV-SS representation of Example 6.1 results in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 23
6 Td pd− 23

12Td
23
12Td pd − 16

12Td 0 5
12Td 0 0 0

0 1− 23
12Td 0 − 16

12Td 0 5
12Td

23
12Td

2pd−1 pd 0 0 0 0 0
0 −1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 pd 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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As expected, the obtained DT projection preserves the originally linear coefficient
dependence. However, the resulting DT representation has a 6 dimensional state-
variable while the original CT representation has only 2 state-variables. �

6.4 Discretization Errors and Performance Criteria

In the following part, the introduced methods are investigated in terms of the gener-
ated discretization error, numerical convergence, and numerical stability. These are
used to derive upperbounds on the sampling-time Td, that guarantee a user-defined
bounded discretization error and stability preservation with respect to the original
CT system. Moreover, the influence of the assumption that no switching effects re-
sult from the ZOH actuation is investigated.

6.4.1 Local Discretization Errors

Characterization of the discretization error for each of the introduced approaches is
important in order to study how adequate the used approximation is with respect to
the original CT behavior. It has been already emphasized that, due to the consid-
ered assumptions, the complete method theoretically gives errorless discretization
in terms of the ZOH setting. For other approaches we investigate the discretization
error in terms of the local unit truncation (LUT) error, which is often applied in
numerical analysis (see [8]). This concept describes the error that results in each
sampling interval due to discretization.

As a first step, the LUT error, denoted by εk ∈ R, is formally introduced. Let
RSS(S) be the SS representation of the CT-LPV system S, with P ⊆ RnP and with
meromorphic matrix functions

[
A B
C D

]
∈
[

(R|nP
)nX×nX (R|nP

)nX×nU

(R|nP
)nY×nX (R|nP

)nY×nU

]
,

defining static dependence on p. Denote by (Ad,Bd,Cd,Dd) the SS matrices of the
DT representation resulting by the discretization methods of Sect. 6.3.2 applied to
RSS(S). Due to static dependence of the original representation, these matrix func-
tions also have static dependence on pd. In the rectangular and the polynomial case,
the state-basis of this representation is equal to the state-basis of the original CT
representation. However, in the trapezoidal and in the multistep cases, the resulting
DT projection also includes a state-transformation. In order to formulate the approx-
imation error of the discretization methods based on the error of the approximation
of the state evolution, the results of those discretization methods which involve state
transformation must be brought back to the original state-basis. Introduce the matrix
polynomials Rx ∈R[ξ ]nX×nX and Ru ∈R[ξ ]nX×nU , that formulate the state update of
the DT approximations on the same state-basis as in RSS(S). In the rectangular and
the polynomial case, Rx(q) = Ad and Ru(q) = Bd, but in the other cases, they also
include the appropriate state-transformation. For example in the trapezoidal case,
(6.15) implies that:
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Fig. 6.3 Local unit trunca-
tion error of the discretized
representation associated
state-signal x̂d with respect
to the CT state-signal x at
the time-step (k +1)Td.

LUT

x

xd

kTd (k+1)Td

Rx(q) =
(

I +
Td

2
A

)(
I− Td

2
−→
A

)−1

, (6.19)

Ru(q) =
Td

2

(
I− Td

2
−→
A

)−1(
B +
−→
B q
)

. (6.20)

Then for each sampling interval, εk is defined by

Tdεk+1 :=
(
qxd− (Rx(q)� pd)xd− (Ru(q)� pd)ud

)
(k). (6.21)

Note, that LUT represents the relative approximation error of the sampled state sig-
nal xd of the CT representation by the state x̂d of the DT representation, when past
samples of xd and ud are used to calculate x̂d via the DT state-equation (see Fig.
6.3). Hence the name “local”. In numerical approximation of differential equations,
εk is considered as the measure of accuracy. The following definition is important:

Definition 6.1 (N-consistency, based on [8]). Let RSS(S) be the SS representation
of the LPV system S with full behavior BSS. The discrete-time approximation of the
state-space equation (3.44a) is called numerically consistent, if for any (u,x,y, p) ∈
BSS, it holds that

lim
Td→0

sup
k∈Z

‖εk‖= 0. (6.22)

�

This means that - in case of N-consistency - the local approximation error reduces
with decreasing Td. However, this does not imply that the supremum of the global
approximation error,

ηk+1 =
(
qxd− (Rx(q)� pd) x̂d− (Ru(q)� pd)ud

)
(k), (6.23)

where x̂d is the discrete-time approximation of the state, decreases/converges to zero
too. As a next step, the LUT error of each discretization method is investigated
together with the N-consistency.

6.4.1.1 LUT Error of the Rectangular Method

For the rectangular method, (6.21) gives

x((k + 1)Td) =
(
I +TdA(pd(k))

)
x(kTd)+TdB(pd(k))u(kTd)+Tdεk+1. (6.24)
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Define the first-order Taylor approximation of x around the time instant kTd as

x(t) = x(kTd)+
(

d
dt

x

)
(kTd) · (t− kTd)+

1
2

(
d2

dt2 x

)
(τ), τ ∈ (kTd, t), (6.25)

for t > kTd. Substraction of (6.25) for t = (k + 1)Td from (6.24) yields that Tdεk+1

is equal to the residual term, giving

εk+1 =
Td

2

(
d2

dt2 x

)
(τ) τ ∈ (kTd,(k + 1)Td). (6.26)

This shows that in the ZOH setting, the rectangular method is consistent in first-

order (in Td) if
∥∥∥
(

d2

dt2 x
)

(τ)
∥∥∥< ∞ for all x ∈BX and τ ∈ R, where BX denotes the

projected signal behavior of BSS on the variable x. As the meromorphic coefficients
functions in (3.44a) are partially differentiable in p, the state evolution f (x,u, p) is
partially differentiable in each variable. Then

d2

dt2 x =
∂ f
∂x

d
dt

x
︸︷︷︸

f

+
∂ f
∂u

d
dt

u +
∂ f
∂ p

d
dt

p. (6.27)

Due to Assumptions 6.1 and 6.2, it holds true that
( d

dt u
)
(t) = 0 and

( d
dt p
)
(t) = 0 in

each sampling interval. Thus, (6.27) gives that for τ ∈ (kTd,(k + 1)Td):
∥∥∥∥
(

d2

dt2 x

)
(τ)

∥∥∥∥ = ‖ A(pd(τ)) · f (x,u, p)(τ) ‖

≤ max
p∈P,x∈X,u∈U

∥∥ A2 (p)x+ A(p)B(p)u
∥∥ , (6.28)

where ‖ �‖ is an arbitrary norm. Note that in (6.28), X and U must be bounded sets
to be able to compute an upperbound. If this is not the case, then commonly X and
U can be restricted to a bounded subset corresponding to the image of the typical
trajectories of the system variables, like it is common in model predictive control
(see [20, 21]). Then the previous bound can be formulated for this region of interest.
In the sequel, we denote the upperbound (6.28) by M(1) and call it the first-order
numerical sensitivity (N-sensitivity) constant. Note, that M(1) can be computed via
nonlinear optimization or alternatively it can be approximated through gridding.
In case of an approximation, gridding of the sets P, X, and U can be demanding,
requiring significant computational power.

6.4.1.2 LUT Error of Other Approximative Methods

Using similar arguments, the LUT error of other discretization methods can be
formulated based on [8]. The results are given in the first row of Table 6.1, showing
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Table 6.1 Local truncation error εk with τ ∈ (kTd,(k + 1)Td) and with τ ∈ ((k− 2)Td,(k +
1)Td) in the Adams-Bashforth case, sampling boundary of stability T̆d, and sampling upper-
bound of performance T̂d of LPV-SS ZOH discretization methods.

Rectangular nth-polynomial

εk
Td
2

(
d2

dt2 x
)

(τ) Tn
d

(n+1)!

(
dn+1

dtn+1 x
)

(τ)

T̆d min
p∈P

min
λ∈σ(A(p))

− 2Re(λ )
|λ |2 argmin

Td∈R
+
0

∣∣∣∣max
p∈P

σ̄
(
∑n

l=0
Tl

d
l! Al (p)

)
−1

∣∣∣∣

T̂d

√
2 εmaxMmax

x

100M(1)
n+1
√

εmaxMmax
x (n+1)!

100M(n)

Trapezoidal Adams-Bashforth (3-step)

εk
1

12T
2
d

(
d3

dt3 x
)

(τ) 3
8T

3
d

(
d4

dt4 x
)

(τ)

T̆d max
p∈P

max
λ∈σ(A(p))
Im(λ )=0

2
Re(λ ) argmin

Td∈R
+
0

∣∣∣∣ max
p0,...,pn−1∈P

λ̄
(
R̆p0,...,pn−1 (ξ ,Td)

)−1

∣∣∣∣

T̂d
3

√
12εmaxMmax

x

100M(2)
4

√
8εmaxMmax

x

300M(3)

that each method is consistent with varying orders [190]. Moreover, using (6.27) and
the chain rule of differentiation, higher order N-sensitivity constants can be derived:

M(n) = max
p∈P,x∈X,u∈U

∥∥ An+1 (p)x+ An (p)B(p)u
∥∥ . (6.29)

6.4.2 Global Convergence and Preservation of Stability

So far, only the LUT error of the introduced methods has been investigated, giving
basic proofs of consistency. As a next step, we investigate global convergence of ap-
proximative methods together with their numerical stability (N-stability). The latter
concept means that small errors in the initial condition of the discrete-time approxi-
mation do not cause the solution to diverge. We show that for the single-step approx-
imative discretization methods, N-stability is identical with the preservation of the
frozen stability of the original representation. This means that in case of numerical
stability, the discretization method does not changes the frozen stability properties
of the discretized model, which is a prime requirement of a successful DT approxi-
mation of a CT system. To derive adequate criteria for the largest sampling-time for
which this property holds (N-stability radius), each method is analyzed and com-
putable formulas are derived. Define Z

−
0 as the set of all negative integer numbers

including 0, and Z+ = Z\Z
−
0 . According to the previously explained line of discus-

sion, we introduce the following concepts:
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Fig. 6.4 N-convergence of the DT approximation. The DT state-signal x̂d converges to the
CT state-signal x of the approximated representation, if the error on the initial conditions
(past) of the approximation converges to zero.

Definition 6.2 (N-convergence, based on [8]). Let RSS(S) be the SS representation
of the CT-LPV system S with state-signal x and projected state behavior BX, and
let x̂d denote the DT approximation of x with Td ∈R+. Then a discretization method
is called numerically convergent, if for any x ∈BX

lim
Td→0

sup
k∈Z

−
0

‖ x̂d (k)− x(kTd) ‖= 0 ⇒ lim
Td→0

sup
k∈Z+
‖ x̂d (k)− x(kTd) ‖= 0. �

Note that in the trapezoidal and multi-step cases, x̂d is the appropriate state-
transform of x̆d with respect to x. In terms of Def. 6.2, N-convergence means that
the discretized solution of the state-equation can get arbitrary close to the original
CT behavior by decreasing Td (see Fig. 6.4).

Definition 6.3 (N-stability, based on [8]). A discretization method is called numer-
ically stable, if for sufficiently small values of Td and ε , any two state-trajectories x̂d

and x̂′d of the discretized representation associated with the same input and schedul-
ing trajectory on the half line Z+ and with ‖x̂′d(0)− x̂d(0)‖< ε implies the existence
of a γ ≥ 0 such that ‖x̂′d(k)− x̂d(k)‖< γε for ∀k ∈ Z+. �

The notion of N-stability means that small errors in the initial condition do not cause
divergence as the solution is iterated (see Fig. 6.5). For the approximative methods,
N-convergence and N-stability are questions of main importance. To analyze these
notions for the introduced discretization approaches, first consider the single-step
methods. Introduce the characteristic polynomial R̆p ∈ R[ξ ] of the frozen aspects
associated with the DT approximation of RSS(S) as

R̆p (ξ ,Td) = Det(ξ I−Ad(pd)), pd(k) = p, ∀k ∈ Z, (6.30)

where the indeterminant ξ is associated with q. Due to the multi-step nature of the
Adams-Bashforth method - to avoid conservatism of the upcoming analysis - R̆ is
defined to reflect the multi-step nature of the state-evolution. In the n-step Adams-
Bashforth case, the state evolution with respect to discretized original state xd is
characterized by

ξ nI−Td

n−1

∑
l=0

γlξ lA, (6.31)
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0
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Fig. 6.5 N-stability of the DT approximation. If the difference between the initial conditions
of two state trajectories x̂d and x̂′d, provided by the approximation method for the same input
and scheduling on the half line Z+, is bounded, then the difference of the two trajectories on
Z+ is also bounded.

with {γl}n−1
l=0 ⊂ R the Adams-Bashforth approximation coefficients (values of these

coefficients for any n > 0 are given in [8]). The form of (6.31) results due to the
augmented state vector x̆d. However, even if RSS(S) has static dependence, the re-
sulting polynomial in (6.31) becomes dynamically dependent on pd. To express this,
the following local characteristic polynomial is introduced in the “frozen” sense for
a scheduling sequence p0, . . . ,pn−1 ∈ P:

R̆p0,...,pn−1 (ξ ,Td) = Det

(
ξ nI−Td

n−1

∑
l=0

γlA(pl)ξ l

)
, (6.32)

Now we can formulate the following theorem to characterize N-stability of the in-
troduced discretization methods:

Theorem 6.1 (Strong root-condition, based on [8]). Discretization methods are
N-convergent and N-stable, if for all λ ∈ C satisfying

∃p0, . . . ,pn−1 ∈ P such that R̆p0,...,pn−1 (λ ,0) = 0, (6.33)

it holds that |λ | ≤ 1 or if |λ |= 1, then ∂
∂ξ R̆p0,...,pn−1 (λ ,0) �= 0.

It can be shown, that all of the introduced LPV-SS discretization methods satisfy
Th. 6.1, as the proofs given in [8] also hold in this case. This means that all methods
discussed in the previous part are N-convergent and N-stable. Now we can extend
the root-condition to compute an exact upperbound T̆d of the “sufficiently small” Td

that provides N-stability (see Def. 6.3):

Definition 6.4 (N-stability radius, [8]). The N-stability radius T̆d is defined as the
largest Td ∈ R

+
0 for which all λ ∈ C with ∃p0, . . . ,pn−1 ∈ P such that

R̆p0,...,pn−1 (λ ,Td) = 0, (6.34)

satisfy that |λ | ≤ 1. �

This definition has an interesting consequence for the discretization of LPV-SS rep-
resentations. Namely, that through the characteristic polynomial R̆, it implies that,
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if Td ≤ T̆d, then in the single-step cases, the resulting DT representation defines a
uniformly frozen stable system (see Sect. 3.3.2), as for this Td it is satisfied that

max
p∈P

σ̄ (Ad (p))≤ 1, (6.35)

where σ̄ (�) = max |σ (�)| is the spectral radius and σ (�) is the eigenvalue operator. If
the original CT system S is globally stable (dynamic, BIBO, etc.), then commonly
it is desirable that its DT approximation is also globally stable. For such a property,
it is necessary that uniform frozen stability of RSS(S):

max
p∈P

max
λ∈σ(A(p))

Re(λ )≤ 0, (6.36)

is preserved, resulting in uniform frozen stability of the DT representation. This
gives the important observation that, for the introduced single-step discretization
methods, preservation of global stability of the original system and N-stability of
the discretization method both require uniform frozen stability of the resulting DT
representation [190]. For N-stability it is a sufficient, for preservation of global sta-
bility of S it is a necessary condition. Note, that this condition of N-stability is
sufficient only for representations with static dependence. In the following, we ana-
lyze the N-stability radius of each discretization method to give computable bounds
for the selection of Td by which the discretization method preserves frozen stability
of the original system, i.e. it has N-stability.

6.4.2.1 Stability Radius of the Rectangular Method

In case of the rectangular method, (6.35) is equivalent with

max
p∈P

σ̄ (I +TdA(p))≤ 1. (6.37)

Due to the basic properties of eigenvalues, it can be shown that (6.37) holds iff

max
p∈P

max
λ∈σ(A(p))

∣∣∣∣
1
Td

+λ
∣∣∣∣<

1
Td

. (6.38)

From (6.38), the stability radius is

T̆d = max

(
0, min

p∈P
min

λ∈σ(A(p))
− 2Re(λ )
|λ |2

)
. (6.39)

Note that T̆d = 0 in case of non-uniformly frozen stable RSS(S), meaning that the
rectangular DT approximation of non-uniformly frozen stable systems is not N-
stable. Computation of the bound (6.39) is a nonlinear optimization problem for
which an approximative solution may follow by the gridding of P.
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6.4.2.2 Stability Radius of the Polynomial Method

In case of the polynomial method, (6.35) translates to

max
p∈P

σ̄

(
I +

n

∑
l=1

Tl
d

l!
Al (p)

)
≤ 1. (6.40)

From (6.40), the stability radius reads as

T̆d = arg min
Td∈R

+
0

∣∣∣∣∣max
p∈P

σ̄

(
n

∑
l=0

Tl
d

l!
Al (p)

)
−1

∣∣∣∣∣ . (6.41)

Again, a possible approximation of T̆d can be given by applying bisection based
search in Td on (6.41) over a grid of P. Note, that in case of non-uniform frozen
stability, T̆d = 0 with this method as well.

6.4.2.3 Stability Radius of the Trapezoidal Method

For the trapezoidal method, condition (6.35) becomes quite complicated due to the
inverse term (I− Td

2 A)−1 in Ad. First it must be guaranteed that this inverse exists
for all scheduling signals, meaning that

Det
(

I− Td
2 A(p)

)
�= 0, ∀p ∈ P, (6.42)

or equivalently

min
p∈P

σ
(

I− Td
2 A(p)

)
> 0, (6.43)

where σ (�) = min |σ (�)|. Again, the eigenvalue properties yield that (6.43) is equiv-
alent with

min
p∈P

min
λ∈σ(A(p))

∣∣∣∣
2
Td
−λ

∣∣∣∣> 0,

which is guaranteed for every 0≤ Td < T̆d, where

T̆d = max
p∈P

max
λ∈σ(A(p))
Im(λ )=0

2
Re (λ )

. (6.44)

Instead of N-stability, here T̆d ensures the existence of the DT projection (existence
of Ad). It is shown later, that if the DT projection exists, then N-stability and N-
convergence hold. Note that, in case of Im(λ ) �= 0 for all λ ∈ σ (A(p)) and p ∈ P,
meaning that every frozen representation of the original CT system has only com-
plex poles, condition (6.42) is guaranteed for arbitrary Td, resulting in T̆d =∞. Sim-
ilarly, uniform frozen stability of RSS(S), meaning that every frozen representation
has poles with only negative or zero real part, gives T̆d = ∞. In [4], the condition
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Td ≤max
p∈P

2
σ̄ (A(p))

, (6.45)

was proposed to guarantee invertibility, which is a rather conservative upperbound
of (6.44). In case 0 ≤ Td < T̆d holds and RSS(S) has uniform frozen stability, then
(6.35) holds, as in this case

max
p∈P

σ̄

((
I +

Td

2
A(p)

)(
I− Td

2
A(p)

)−1
)
≤ 1. (6.46)

See [60] for the proof. Thus, for uniformly frozen stable LPV-SS representations
with static dependence, the trapezoidal method always guarantees N-stability and
N-convergence if Td satisfies condition (6.44).

6.4.2.4 Stability Radius of the Adams-Bashforth Method

In case of the Adams-Bashforth method, the concept of N-stability means that for a
given Td,

max
p0,...,pn−1∈P

λ̄
(
R̆p0,...,pn−1 (ξ ,Td)

)≤ 1, (6.47)

where
λ̄ (R(ξ )) = max

λ∈C
R(λ )=0

|λ | . (6.48)

A necessary condition for (6.47) is that the resulting DT representation has uniform
frozen stability:

max
p∈P

σ̄ (Ad (p))≤ 1. (6.49)

This means, that in the multi-step case, preservation of frozen stability is not
sufficient to imply N-stability. From (6.47) it follows that the N-stability radius
reads as

T̆d = arg min
Td∈R

+
0

∣∣∣∣ max
p0,...,pn−1∈P

λ̄
(
R̆p0,...,pn−1 (ξ ,Td)

)−1

∣∣∣∣ , (6.50)

which is a too complicated expression to be further analyzed. However in practice,
it can be solved in an approximative manner based on gridding and bisection based
search.

6.4.3 Guaranteeing a Desired Level of Discretization Error

In the previous part we have investigated the numerical properties of the introduced
discretion methods and derived criteria on Td in order to guarantee the preservation
of frozen stability of the original CT system. However, the appropriate choice of
Td to arrive at a specific performance in terms of the discretization error is also
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important from a practical point of view. By utilizing the LUT error expressions de-
veloped in Sect. 6.4.1, in this section upperbounds of Td are derived that guarantee
a certain bound on the LUT error in terms of a chosen norm ‖ � ‖. Then it is investi-
gated, how such expressions can be used to achieve a level of global discretization
error.

As a first step, we formulate the concept of desired performance in terms of the
LUT error. For a given continuous-time full behavior BSS, which is approximated
via a discretization method, define

ε∗ := sup
x∈BX

sup
k∈Z

‖εk‖ (6.51)

as the maximal LUT error in a given, arbitrary norm ‖ � ‖. Note that his quantity
describes the maximum of the truncation error with respect to all possible state
trajectories of BSS. Also introduce

Mmax
x := sup

x∈BX

max
t∈R
‖x(t)‖= max

x∈X
‖x‖ , (6.52)

as the maximum “amplitude” of the state signal for any u and p in BSS. Denote
εmax as the maximal acceptable relative local error of the discretization in terms of
percentage. Then a Td ∈ R+ is searched for, that satisfies

ε∗ ≤ εmaxMmax
x

100 ·Td
. (6.53)

Here 1/Td is introduced on the right side of (6.53) as εk is scaled by Td (see (6.24)).
Next, we formulate upperbounds of Td with respect to each method, such that (6.53)
is satisfied for the desired εmax percentage. To derive these criteria, (6.52) must
be bounded, i.e. X must be confined in a ball of RnX . Such an assumption is not
unrealistic in case of global asymptotic stability of S and bounded P and U.

6.4.3.1 Performance Criterion for the Rectangular Method

Based on (6.26), it holds in the rectangular case that

ε∗ = sup
x∈BX

sup
τ∈R

Td

2

∥∥∥∥
(

d2

dt2 x

)
(τ)

∥∥∥∥ . (6.54)

By using the sensitivity constant M(1) (see (6.28)), inequality (6.53) holds for any
0≤ Td ≤ T̂d where

T̂d =

√
2
εmaxMmax

x

100 ·M(1) . (6.55)

Criterion (6.55) gives an upperbound estimate of the required Td, that achieves εmax

percentage local discretization error of the state variable of the approximated repre-
sentation in terms of a chosen norm ‖ �‖.
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6.4.3.2 Performance Criteria of other Approximative Methods

Similar criteria can be developed for the other methods by using the LUT error ex-
pressions of Table 6.1 and the higher-order sensitivity constants M(n). These upper-
bounds are presented in Table 6.1. Note that similar expressions can also be worked
out with respect to the approximation error of the output trajectories.

6.4.3.3 Guaranteeing Bounds on the Global Error

In practical situations, one may be concerned about the maximum relative global
error as a performance measure. Define

η∗ := sup
x∈BX

sup
k∈Z

‖ηk‖ (6.56)

as the maximum global error (see (6.23) for the definition of ηk). Also define ηmax

as the maximal acceptable relative global error of the discretization in terms of per-
centage. Then one would like to choose Td, such that the global error ηk satisfies

η∗ ≤ ηmaxMmax
x

100
. (6.57)

Unfortunately, characterization of η∗ for the introduced discretization methods
requires the introduction of serious restrictions of the considered CT behaviors.
However, in case of Td ≤ T̆d i.e. N-stability, εmax can be often used as a good ap-
proximation of ηmax. Therefore, the performance bound T̂d can be used to approxi-
mate/guarantee a global error bound as well.

6.4.4 Switching Effects

In the previous part, the effect of neglecting the switching phenomena of the ZOH
actuation has not been considered. Here we investigate the case when the signals
u and p described by (6.2a–b) are applied to RSS(S). First we show the effect of
these discontinuous signals on the state evolution of RSS(S) inside a sample interval
and the error that results by neglecting these terms. Then we motivate why this
phenomenon is negligible in practical situations.

Consider the ODE corresponding to (3.44a) in the kth sample interval. By us-
ing the bilateral Laplace transform of this differential equation with reference time
t0 = kTd and assuming that the dependence on p is commutative under addition3, it
follows that for a fixed k:

sX(s) = xd(k)+
[

(A � pd)(k)+(s−1)(A � pd)(k−1)
s

]
X(s)+ (B � pd)(k)

s ud(k)+

+
[

(B � pd)(k)+(s−1)(B � pd)(k−1)
s

]
ud(k−1). (6.58)

3 Without this assumption, the formulation of the Laplace transform becomes complicated,
but the core problem that results in the general case is illustrated well by (6.58).
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Table 6.2 Properties of the derived discretization methods in terms of: (a) consis-
tency/convergence; (b) preservation of stability/N-stability; (c) preservation of instability; (d)
existence; (e) complexity; (f) preservation of linear dependence; (g) computational load; (h)
system order.

Prop. Complete Rectangular nth-polynomial Trapezoidal Adams-Bashforth

(a) always 1st-order nth-order 2nd-order 3rd-order
(b) always global frozen with T̆d frozen with T̆d always frozen frozen with T̆d
(c) + - - + -
(d) always always always conditional always
(e) exponential linear polynomial rational linear
(f) - + - - +
(g) high low moderate high low
(h) preserved preserved preserved preserved increased

where X(s) is the Laplace transform of the solution of the ODE (the behavior of the
state in the kth sample interval). It is immediate that in the given sample interval,
(6.58) does not correspond to (6.8a). (6.58) has a dynamic dependence, and it is not
realizable as a LPV-SS representation directly without associating q−1ud with a new
state-variable. In this way, it becomes clear that neglecting the switching effects in-
troduces discretization errors in the LPV case, which can be even more significant if
Td is decreased (more discontinuous switches in the dynamics). On the other hand,
it is true that the discontinuous phenomenon which is described by (6.58) never hap-
pens in reality. One reason is that usually p is not actuated by ZOH and it changes
smoothly/relatively slowly with respect to the actual dynamics of the plant. Addi-
tionally, ZOH actuation has a transient in practice as the underlying physical device
needs to build up the new signal value, preventing sudden changes of the signals.
In conclusion, for the considered class of LPV representations, the introduced dis-
cretization methods of this section give no step-invariant discretization in the ZOH
setting (meaning equivalence even in case of switching effects), however they are
well applicable methods for practical use. It is important to note that derivation of
LPV discretization methods with step-invariant property is also possible, however
the resulting discretization approaches are technical and their actual performance
gain compared to the previously developed approaches is negligible in practice.

6.5 Properties of the Discretization Approaches

Beside stability and discretization error characteristics, there are other properties of
the derived discretization methods which could assist or hinder further use of the
resulting DT model. With the previously obtained results, these vital properties are
summarized in Table 6.2. From this table it is apparent that the complete method
gives errorless conversion at the price of heavy nonlinear dependence of the DT
model on pd. As in LPV control synthesis low complexity of the p-dependence is
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assumed (like linear, polynomial, or rational functions, see [160]), both for mod-
eling and controller discretization purposes - beside the preservation of stability -
the preservation of linear dependence over the scheduling is preferred. This favors
approximative methods that give acceptable performance, but with less complexity
of the new coefficient dependence on the scheduling. Complicated coefficient func-
tions, like inversion or matrix exponential, also results in a serious increase of the
computation time, which gives a preference towards the linear methods like the rect-
angular or the Adams-Bashforth approach. In the latter case, the order increase of
the DT representation requires extra memory storage or more complicated controller
design depending on the intended use. If the quality of the DT model has priority,
then the trapezoidal and the polynomial methods are suggested due to their fast con-
vergence and large stability radius. In terms of identification, linear dependence of
the suggested model structures is also important as it simplifies parametrization.

6.6 Discretization and Dynamic Dependence

So far, the discretization of LPV-SS representations with static dependence has been
considered in a ZOH setting. It has been already discussed that using the ZOH set-
ting for the discretization of representations with dynamic dependence may result
in the loss of significant parts of the original behavior. These parts, which are as-
sociated with the dynamic nature of the coefficient dependencies, are lost because
in each sample interval the derivatives of p are assumed to be zero. In this way,
dynamic dependence of the original coefficients simplifies to a static dependence.

To show this phenomenon, consider the case when A� p = rp d
dt p with r ∈R and

P = R. Then in the ZOH setting, the following holds in each sample interval:

(A� p)(t) =
{

0, if t �= kTd, k ∈ Z;
±∞, if t = kTd, k ∈ Z;

(6.59)

If the switching effect is neglected, then A is approximated in DT as an identity
matrix by all of the introduced discretization methods. Thus, the original behavior
of the CT representation is lost due to the ZOH setting. However in practice, one
would try to use the approximation

d
dt

p(t)≈ p((k + 1)Td)− p(kTd)
Td

, (6.60)

for each t ∈ [kTd,(k + 1)Td). In fact, (6.60) means that p is assumed to be a linear
function in the sample interval. Then, using this assumption, a better DT approxi-
mation of the original CT representation can be derived. This shows that in case of
dynamic dependence, the ZOH assumption on p is not appropriate and instead of
that, a first or higher order hold discretization setting is necessary for p.

Based on the previous example, consider the case when (u,y) are assumed to
satisfy the ZOH setting, but p varies linearly in t ∈ [kTd,(k + 1)Td)):
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p(t) =
pd(k + 1)− pd(k)

Td︸ ︷︷ ︸
p1k

(t− kTd)+ pd(k). (6.61)

This assumption on the scheduling is called the first-order hold setting. Additionally,
define p0k = (k+1)pd(k)−kpd(k+1). Note that, p(t) = p1kt +p0k for t ∈ [kTd,(k+
1)Td)). Let RSS(S) be a continuous-time LPV-SS representation and consider it
in the above defined first-order hold setting. In case the matrices of RSS(S) are
dependent on p and d

dt p, like A � p = A(p, d
dt p) (dynamic dependence), then the

state-evolution in the kth sampling interval satisfies:

d
dt

x(t) = A(p1kt +p0k,p1k)x(t)+ B(p1kt +p0k,p1k)ud(k). (6.62)

The solution of this ODE can be obtained in the time interval t ∈ [kTd,(k + 1)Td))
for particular meromorphic functions A and B. Similar to the complete method
of the ZOH setting in Sect. 6.3, this analytic solution results in a complete type
of discretization of the continuous-time LPV-SS representation. The resulting DT
counterpart has also dynamic dependence on pd and its time-shifted versions, and
yields a better approximation of the CT representation than what would result in a
pure ZOH setting. This suggests that for the discretization of LPV representations
with dynamic dependence, the order of the hold setting with respect to p should
be greater or equal than the maximal order of derivatives in the coefficient depen-
dencies. With some trivial modifications, the approximative methods treated in this
paper, except the trapezoidal method, can be extended to this hybrid higher-order
hold case. Unfortunately, for the extended approaches, the deduced formulas for
the approximation error and the step-size bounds do not apply. Solving discretiza-
tion of LPV representations with dynamic dependence in a general sense and giving
compact formulas of discretization remains the objective of further research.

6.7 Numerical Example

In the following a simple example is presented to visualize/compare the properties of
the analyzed discretization methods and the performance of the sample-bound cri-
teria. Consider the following state-space representation of a continuous-time SISO
LPV system S with IO partition (u,y):

RSS(S) =
[

A� p B� p
C � p D� p

]
=

⎡
⎣

19.98p−20 202−182p 1 + p
45p−50 0 1 + p

1 + p 1 + p 1+p
10

⎤
⎦

where P = [−1,1] . The above representation has static linear dependence on the
scheduling signal p. Furthermore, for a constant scheduling p(t) = p for all t ∈ R,
RSS(S) is equivalent with an LTI representation that has poles
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Table 6.3 Discretization error of S , given in terms of the achieved average MSE of yd and
η̂max = 100 ·η∗/Mmax

x (relative worst-case ηk) for 100 simulations. (∗) indicates unstable
projection to the discrete domain.

MSE of yd

Td Complete Rectangular 2nd-polynom. Trapezoidal Adams-Bash.

2 ·10−2, (50Hz) 1.68 · 10−10 (∗) (∗) 1.97 · 10−3 (∗)
5 ·10−3, (0.2kHz) 1.69 · 10−10 (∗) 4.70 · 10−4 3.81 · 10−5 2.14 · 10−1

10−4, (10kHz) 1.68 · 10−10 2.27 · 10−6 1.05 · 10−10 1.53 · 10−8 1.60 · 10−8

η̂max of x̂d

Td Complete Rectangular 2nd-polynom. Trapezoidal Adams-Bash.

2 ·10−2, (50Hz) 0.053% (∗) (∗) 106.12% (∗)
5 ·10−3, (0.2kHz) 0.060% (∗) 40.31% 8.02% 665.94%

10−4, (10kHz) 0.063% 2.62% 0.06% 0.19% 0.76%

σ(A(p)) = 9.99p−10± i
√

104−17990.2p+ 8090.2p2. (6.63)

From (6.63), it is obvious that S is uniformly frozen stable on P.
Assume that S is in a ZOH setting with sampling rate Td = 0.02. By applying

the discretization methods of Sect. 6.2, approximative discrete-time representations
of S have been calculated. In order to show the performance of the investigated
discretization methods, the output of the original and its discrete approximations
have been simulated on the [0,1] time interval for zero initial conditions and for
100 different realizations of white ud and pd with uniform distribution U(−1,1).
For fair comparison, the achieved MSE of the resulting output signals ŷd has been
calculated with respect to the output y of RSS(S) and presented in Table 6.3. Be-
side the MSE of the output evolution, the relative worst-case maximum global error
η̂max = 100 ·η∗/Mmax

x of the DT state-signals x̂d associated with the discrete-time SS
representations has also been computed with respect to the state signal x of RSS(S)
and presented in Table 6.3. From these error measures it is immediate that, except
for the complete and the trapezoidal method, all approximations diverge. As ex-
pected, the error of the complete method is extremely small and the trapezoidal
method gives a moderate, but acceptable performance. Note that the response of the
original CT RSS(S) has been calculated via a 5th-order Runge-Kutta numerical ap-
proximation (see [8]) with step size 10−8. This implies that the switching effect of
the ZOH actuation does not show up in the calculated response.

As a second step, we calculate sampling bounds T̆d and T̂d by choosing the
Euclidian norm as an error measure and εmax = 1%, with the intention to achieve
ηmax = 1%. The calculated sampling bounds are presented in Table 6.4. During
the calculation of T̂d it has been assumed that X = [−0.1,0.1]2, which has been
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Table 6.4 Stability (T̆d) and performance (T̂d) bounds provided by the criterion functions of
Table 6.1. The results here are presented in terms of the Euclidian norm and εmax = 1%.

Rectangular 2nd-polynom. Trapezoidal Adams-Bash.

T̆d 2 ·10−4, (5kHz) 5.60 ·10−3, (0.2kHz) ∞ 1.77 ·10−3, (0.6kHz)
T̂d 6.87 ·10−5, (15kHz) 1.73 ·10−3, (0.6kHz) 1.28 ·10−3, (0.8kHz) 1.21 ·10−3, (0.8kHz)
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(b) Td = 0.005, complete (grey), trapezoidal (light grey)
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(c) Td = 0.005, 2nd order polynomial (grey), Adams-Bashforth (light grey)
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(e) Td = 10−4, 2nd order polynomial (grey), Adams-Bashforth (light grey),
rectangular (dash-dotted grey)

Fig. 6.6 Output signal y of RSS(S) (black) in a ZOH setting with Td = 0.02 and its discrete-
time approximations with different sampling-times.
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verified by several simulations of RSS(S) based on ud, pd ∈ U(−1,1). By these re-
sults, the rectangular method needs a fast sampling rate to achieve a stable projection
and even a faster sampling to obtain the required performance. The 2nd-order poly-
nomial projection has significantly better bounds due to the 2nd-order accuracy of
this method. For the trapezoidal case, the existence of the transformation is always
guaranteed because RSS(S) is uniformly frozen stable. For comparison, the bound
(6.45) proposed in [4], would have resulted in T̆d = 0.2.

Now we use the derived bounds to choose a new Td for the calculation of the
discrete projections. As the T̆d bounds of Table 6.4 represent the boundary of sta-
bility, therefore Td < T̆d is used as a new sampling-time in each case. Discretization
of RSS(S) with Td = 0.005, almost the stability bound of the polynomial method,
provides the simulation results given in the second row of Table 6.3. The rectangular
method again results in an unstable projection, while the Adams-Bashforth method
is on the brink of instability due to frozen instability of Ad for some p ∈ P. The
polynomial method gives a stable, convergent approximation, in accordance with
its T̆d bound. The trapezoidal method also improves significantly in performance.
The achieved η̂max of each approximative method is above the aimed 1% which is
in accordance with their T̂d.

As a next step, discretizations of RSS(S) with Td = 10−4, the half of the T̆d bound
of the rectangular method, are calculated. The results are given in the third row of
Table 6.3. Finally, the rectangular method converges and also the approximation ca-
pabilities of the other methods improve. By looking at the achieved η̂max, all the
methods, except the rectangular, obtain the aimed 1% error performance which is
in accordance with their T̂d bound, while in the rectangular case the achieved η̂max

is larger than 1% as 10−4 is larger than its T̂d bound. An interesting phenomenon
is that the approximation error of the complete method is non-zero and it is slightly
increasing by lowering the sampling-time. This increasing approximation error is
due to numerical errors of the digital computation. However, the resulting approxi-
mation error is significantly less than the step size of the numerical approximation
used for the simulation of RSS(S), thus it can be considered zero.

6.8 Conclusions

In this chapter, discretization of LPV state-space representations has been investi-
gated in a zero-order hold setting, where the continuous-time input and scheduling
trajectories are restricted to be piecewise constant. It has been shown that the ZOH
setting provides an adequate discretization concept for SS representations with static
dependence. Extending the approaches of the LTI discretization theory, both exact
and approximative methods have been developed in the ZOH setting for the dis-
cretization of LPV-SS representations. These approaches have been developed to
provide tools that assist DT model structure selection based on first-principle CT
models. Using the results of the numerical analysis field, the introduced methods
have been investigated in terms of numerical consistency, convergence, and stabil-
ity. Criteria have been developed for the choice of sampling-time that guarantees
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a user defined maximum of the truncation error and also the preservation of the
frozen stability characteristics of the original system. As a next step we will explore
how can we arrive at a CT-LPV form of general nonlinear systems, which through
the discretization approaches developed in this chapter can be used to assist model
structure selection.



Chapter 7
LPV Modeling of Physical Systems

Abstract. With the motivation to provide tools for model-structure selection in LPV
identification, in this section modeling of physical systems described by nonlinear
differential equations is studied in the LPV framework. It is investigated how such
a nonlinear system can be realized or approximated by a LPV system, giving mod-
els of the original behavior in terms of LPV representations. First an overview is
presented of the available LPV modeling methods. Then, an algorithmic approach
is introduced that ensures errorless conversion of nonlinear differential equations
into LPV kernel representations. The approach explores adequate choices of the
scheduling variable. Based on equivalent sate-space, input-output or orthonormal
basis functions based representation of the resulting kernel form, an adequate choice
of a model structure can be obtained for the LPV identification of the physical
system.

7.1 Towards Model Structure Selection

A crucial ingredient of any system identification procedure is the choice of model
structure, that describes the model set in which the optimal candidate is to be found.
If this structure is well-founded with respect to the system to be identified, then all
other ingredients, like experiment design, criterion selection, estimation, etc. can
contribute successfully to the validity of the end result. Commonly, a poor choice of
the model set directly results in a poor estimate of the system.

LPV models have considerably more freedom in parametrization than the class of
LTI models. This is due to the presence of functional and often dynamic dependence
of the model parameters on the scheduling. Thus LPV model-structure selection is
even a more sensitive question than in the LTI case. Furthermore, due to the lack
of a general LPV validation theory, mis-modeled dynamics only show up in the
performance loss of the designed controllers.

In LPV identification, initiatives has only recently appeared to assist model-
structure selection based on measured data [75, 200]. Commonly, the sole source
of information available for this decision is in the form of first principle laws or

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 171–195.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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expert’s knowledge. Such knowledge is mostly presented in terms of nonlinear dif-
ferential equations, which must be transformed to or approximated by an LPV rep-
resentation to facilitate model structure selection in this setting. In this chapter, the
concept of LPV modeling of nonlinear dynamical systems is investigated. The in-
tention is to give a practical way of using first principle laws and knowledge in the
decision process of LPV model structures, appropriate for the identification of the
underlying system. Such a process is inevitable for successful identification in the
general LPV framework, as it interprets key information about the order and type of
functional dynamical dependencies on the scheduling signal and even about which
signal(s) can be used for scheduling purposes.

7.2 General Questions of LPV Modeling

Before the first papers on LPV identification methods appeared, modeling of phys-
ical systems in a LPV form was dominated by the gain-scheduling principle (see
Chap. 1). Motivated by the early approaches of LPV control, the available nonlin-
ear (NL) description of the system was linearized in several operating/equilibrium
points resulting in a collection of local LTI descriptions of the plant. These “local ”
descriptions were interpolated to obtain a global approximation of the physical sys-
tem on the entire operation regime. However, unknown coefficients/relations of the
NL model still had to be estimated beforehand. This concept has resulted in many
linearization-based LPV modeling approaches trying to approximate the NL system
in a LPV state-space (SS) form.

For direct approximation of the NL system with an LPV model, LPV identifica-
tion methods has appeared soon (see Chap. 1). However, these approaches only aim
at the identification of an underlying “true LPV system” with completely known
structural information. It has been seemingly forgotten that the true aim has always
been the approximation of the NL physical system. Additionally, many of these ap-
proaches has followed the gain-scheduling principle by identifying local LTI models
and interpolating them.

Due to higher performance demands and the still existing gap between LPV iden-
tification methods and practical applications, a new generation of LPV modeling
approaches have appeared, formulating LPV modeling from a different perspective
than gain-scheduling. These approaches aim at the transformation of the original NL
representation into a particular LPV form by using substitution or other mathemat-
ical manipulations. However, the resulting methods are only able to handle certain
sub-classes of NL systems. So the natural question, what kind of systems can the
LPV framework describe accurately, has remained unanswered.

Till today, both the control and identification literature on LPV systems typically
takes the existence of the plant in a LPV form as a starting point. It is commonly
not pointed out how the underlying nonlinear system is transformed to this LPV
form. On the other hand, the available LPV modeling approaches are focusing only
on particular subclasses of LPV representations. The question whether a significant
loss of generality is introduced by the used assumptions usually remains uninvesti-
gated. This shows that LPV modeling of NL systems deserves much more attention



7.3 Modeling of Nonlinear Systems in the LPV Framework 173

and research in order to understand what can be represented by LPV systems and
how the best description for a given NL system can be found in the LPV system
class. This is why we give in this section an overview on the available approaches,
comparing and evaluating their modeling concepts.

To set the stage for the upcoming discussion we state the following questions that
are intrinsical for the analysis or development of an LPV description with respect to
a physical system:

• The scheduling variable, that governs the dynamics of LPV models, has a crucial
role in the validity or in the approximation quality of the LPV description. Thus,
in the process of formulating an LPV model, one of the most important ques-
tions is which variables of the original system can be selected as the scheduling
variable in order to obtain an equivalent LPV description.

• Another question is whether LPV modeling needs to be formulated in terms of
systems or in terms of particular representations. The latter concept is commonly
used to consider LPV modeling as an approximation of a given state-space equa-
tion, which is a subjective description of the NL system. On the other hand, the
former concept focuses on the approximation/description of the original behav-
ior. Thus formulating modeling on the level of systems provides more freedom
and focuses on the “natural aim” of a modeling problem.

These general considerations are the guidelines by which we explore in the fol-
lowing how a a reliable model-transformation approach can be formulated to sup-
port both identification and control design in the LPV framework.

7.3 Modeling of Nonlinear Systems in the LPV Framework

In the following, an overview is presented about the state-of-the-art methods of ap-
proximation/equivalent realization of NL systems by an LPV form. Our intention is
to give a general picture about the difficulties and the available solutions of this task.
To do so, first we define the class of NL systems we consider. These nonlinear sys-
tems characterize the first-principle laws of the behavior that we want to capture in
the LPV framework. Then we define a particular class of LPV systems, the so-called
quasi-LPV systems, that commonly result in the presented modeling approaches. As
a next step, we give a SS representation of the introduced NL systems. This repre-
sentation is often the starting point of the existing LPV modeling methods. We also
motivate that using such a representation as a starting point implies the assumption
of prior chosen state variables and IO partition, which might restrict the generality
of the resulting LPV description. After this, we systematically present the available
approaches, sorted into categories.

7.3.1 First Principle Models

As first principle laws are commonly (exclusively) available in continuous-time, we
restrict our attention in the sequel to this domain. We consider real, finite dimen-
sional, continuous-time NL systems in the following form:



174 7 LPV Modeling of Physical Systems

Definition 7.1 (Nonlinear dynamic systems). A dynamical system G = (R,W,B)
is called a nonlinear, continuous-time, dynamical system denoted as GNL, if W =
RnW , B⊆WT, and there exists a meromorphic (nonlinear) function f : R(n+1)nW→
Rnr , such that

B =
{

w ∈ Lloc
1 (R,W)

∣∣∣∣ f

(
w,

d
dt

w,
d2

dt2 w, . . . ,
dn

dtn w

)
= 0 holds weakly

}
.

�
Weak solutions of

f

(
w,

d
dt

w,
d2

dt2 w, . . . ,
dn

dtn w

)
= 0, (7.1)

are defined in terms of distributions. Definition 7.1 is wide enough to encompass of
many physical systems and represent their dynamic behavior, however it does not
describe every system which is non-LTI. This class of systems is considered with
the main purpose to illustrate the problem of transformation of first-principle laws to
LPV representations. In the sequel we consider the problem of finding an equivalent
or a well approximating LPV system with respect to a given GNL. Without going
into details, for the considered class of NL systems we can also define the set of
free variables and IO partitions, similarly as in the LTI case. During transformation
of these systems to an LPV form, such free signals are the prime candidates for
scheduling or input signals depending on their role in the NL relationship (7.1).

In the LPV framework, models commonly originate from nonlinear dynamic sys-
tem representations via the gain-scheduling approach. However, linearization of GNL

at different operating points in W and then interpolating the resulting LTI models
by an operating point dependent function implies that the scheduling signal p of the
obtained LPV description is dependent on w. In this way, the fundamental assump-
tion of the LPV framework, namely the property of freedom for p does not hold in
this case. Therefore, these descriptions are often referred to as quasi-LPV systems
(see [102]). In the developed LPV framework, we define these systems as follows:

Definition 7.2 (Quasi-LPV system). A PV dynamical system S = (T,P,W,B)
with signals w and scheduling variable p is called quasi-LPV, if it satisfies Def-
inition 3.3 without p being a free variable, i.e. Bp is not a linear subspace
of WT. �

Note that if some components of p are free signals, then the system is still consid-
ered to be quasi-LPV. During the dawn of the gain-scheduling era, LPV systems
have been defined with the concept of exogenous/external and thus free scheduling
signal (see [165]), opening the possibility of the later development of popular and
theoretically well-founded optimal control solutions for such systems. However in
the practical application, this assumption has been commonly neglected, treating
LPV models with non-free scheduling signal as if their scheduling signal would be
a free variable of the system [17]. Even if such an assumption introduces conser-
vatism into the model, and thus the control design applied to it, this masking of
the dynamical relation made reliable control of many heavily nonlinear processes
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possible. In the upcoming analysis, we also intend to follow this tradition, by seek-
ing out ways of transformation of NL systems into a quasi-LPV or a true LPV form.

The class of NL systems of Definition 7.1 is often found to be too broad in the
literature. Commonly a subclass of state-space realizations is investigated with a
prior selection of the state variable x and the IO partition (u,y):

d
dt

x = f (x,u), (7.2a)

y = g(x,u), (7.2b)

where f and g are partially differentiable (smooth) functions and w = Col(u,y). In
general, not every (7.1) is realizable in the form of (7.2a–b) due to the loss of pos-
sible smoothness constraints [146]. Beside the realization problem, it is even more
important that with respect to obtaining an equivalent or a well approximating LPV
form of a given GNL, prior selection of a state variable may severely restrict the
search space, i.e. the transformation properties. Choosing a state variable or an IO
partition in a priori sense is also not motivated from the viewpoint of first principle
laws as in the laws of physics or chemistry there are no dedicated state variables,
nor predefined inputs or outputs. There are only system variables that are connected
by algebraic and differential equations. Therefore, it must be pointed out that any
latent-variable-based representation is just a particular and subjective description
of the system. As we will see later, such a state-variable based description is not
necessary to arrive at an equivalent LPV description of the considered NL system.
Additionally, an important concept for the linearization based methods is the equi-
librium point of (7.2a), which is defined as (x,u) ∈ (X×U) satisfying:

0 = f (x,u). (7.3)

Note that equilibrium points can be stable or unstable depending on the par-
tial derivatives of f in their neighborhood. Using the previously introduced con-
cepts and notions, the existing LPV modeling approaches fall into the following
categories:

7.3.2 Linearization Based Approximation Methods

The family of these methods applies linearization theory on a given SS representa-
tion (7.2a–b) of the NL system to obtain local LTI models in a state-space form and
then interpolates these models to derive an LPV approximation. Thus, the schedul-
ing of the resulting LPV description is equal to those components of x and u that
the linearization is based on. If we introduce selector matrices Sx ∈ Rn1×nX and
Su ∈Rn2×nU (see Sect. 4.3.5), which select these components, then we can write that
p = Col(Sxx,Suu) with nP = n1 +n2. The following subcategories of these methods
are distinguished:
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7.3.2.1 Linearization around a Set of Equilibrium Points

Application of classical linearization theory requires that each linearization corre-
sponds to an equilibrium of (7.2a). Thus it is a common approach in the LPV model-
ing process to use first-order (Jacobian) linearization of (7.2a–b) at a set of equilib-
rium points. This approach is followed in many works like [7, 77, 164, 157, 95, 102].
More details about first-order linearization and its delicacies, e.g. when it provides
appropriate results can be found in [146]. Based on the linearization concept, an
LPV model of (7.2a–b) is formulated as follows:

First, the equilibrium points pi = Col(xi,ui) ∈ (X×U), i ∈ In
1 of (7.2a) are com-

puted, then

Ai =
∂ f
∂x

(pi), Bi =
∂ f
∂u

(pi), Ci =
∂g
∂x

(pi), Di =
∂g
∂u

(pi), (7.4)

are obtained. Around each equilibrium point pi, the state and output evolution are
approximated by applying a first-order Taylor expansion of f and g:

d
dt

x ≈ Ai(x−xi)+ Bi(u−ui), (7.5a)

y ≈ Ci(x−xi)+ Di(u−ui)+ g(pi). (7.5b)

Then (7.5a–b) can be seen as a local LTI model of the system. Define p = Col(x,u)
and P = X×U with a set of normalized interpolation (scheduling) functions gi : P→
[0,1], like radial basis, triangular functions, etc. with∑n

i=1 gi(p) = 1 for all p∈ P and
gi(pi) = 1 for each i ∈ In

1. Then, the PV model is formulated as

d
dt

x̆ =
n

∑
i=1

gi(p)Aix̆ +
n

∑
i=1

gi(p)Biu− γx(p), (7.6a)

y̆ =
n

∑
i=1

gi(p)Cix̆ +
n

∑
i=1

gi(p)Diu− γy(p), (7.6b)

where x̆ and y̆ are the approximations of the original x and y and the remainder terms
are given as

γx(p) =
n

∑
i=1

gi(p)(Aixi + Biui), (7.7a)

γu(p) =
n

∑
i=1

gi(p)(Cixi + Diui−g(pi)). (7.7b)

It is obvious that for p(t) = pi, (7.6a–b) is equivalent with (7.5a–b), i.e. for each
equilibrium point the global PV model is equal to the local LTI description. Note that
in some cases all the partial derivatives in (7.4) are constants with respect to some
elements of x and u. This means that these partial derivatives have the same value
for all equilibrium points. This observation implies that the associated elements of x
and u can be left out from p, i.e. from the interpolation space to formulate (7.6a–b).
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Additionally, it is an important observation that the PV differential equation
(7.6a–b) is not an LPV-SS representation as it contains the remainder terms γx
and γu. These remainder terms can not be eliminated in general due to their time
dependent nature. In many cases, the remainder terms are either considered as an
additional input/disturbance in (7.6a–b) or eliminated locally from (7.5a–b) by sub-
tracting them from the signal variables (u,y,x), then the locally altered LTI models
are interpolated to obtain a global model. While the previous approach leads to a
conservative model, the latter method results in an alteration of the state-space as,
due to the local transformations, the local states do not have the same meaning any
more. This may lead to a complete misfit of the approximation. An exceptional case
is when n = 1, so the system is linearized in only one point. In such case no interpo-
lation is needed, i.e. g1 = 1. Then by redefining the state as x̆ = x−x1, the input as
ŭ = u−u1, and the output as y̆ = y−g(p1) an LTI-SS approximation of GNL results
via (7.6a–b). Proper elimination of the remainder terms is only available in this case.

In the general sense, linearization in the equilibrium points is a serious restriction
that may lead to poor transient performance and inability to preserve stability char-
acteristics of (7.2a–b). Therefore, an adequate approximation capability requires
the assumption of slowly varying scheduling. However, such an assumption is often
unrealistic as x and u are not slowly varying signals. To improve the approxima-
tion capabilities of this approach many alternative linearization methods have been
considered like higher order series-expansion based linearization [14] or the refor-
mulation of the mean value theorem [31].

Furthermore, interpolation has its own pitfalls as well. If the local LTI models
resulting from the linearization are transformed to a canonical form to accomplish
interpolation, then the effect of local transformations can completely alter the be-
havior (see [130] for an example). In this way, the resulting LPV representation
may not be able to reproduce the dynamical aspects of the original NL form (see
Example 7.1 and [189]). Similar errors result if the interpolation is applied through
the transfer functions of the local LTI models to get a mixed scheduling and fre-
quency dependent description and then applying LTI realization theory to obtain the
LPV form (see [125] for an example). In [142], the interpolation problem of the
local models is formulated in an optimization sense to reduce the complexity of the
resulting dependence of the SS matrices on p. As the procedure avoids any local
manipulations of the SS matrices, it provides a reliable way for efficient generation
of (7.6a–b).

Example 7.1 (Pitfalls of Interpolation). In this example, one of the merits of local
transformations is illustrated. Assume that the linearization of the NL system has
resulted in two local LTI-SS representations

[
α1 1
β1 0

]
if p = 0,

[
α2 1
β2 0

]
if p = 1,

with P = [0,1]. If S1 represents an LPV approximation of the considered NL system,
then a RSS(S1) can be formulated as
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[
A� p B� p
C � p D� p

]
=

2

∑
i=1

[
gi(p)αi 0.5
gi(p)βi 0

]
, (7.8)

where g1(p) = 1− p and g2(p) = p are the linear interpolation functions. The two
local models can also be interpolated based on their IO representation. By using the
same interpolation functions, the resulting RIO(S2) is

d
dt

y− (a0 � p)y = (b0 � p)u, (7.9)

with a0 = ∑2
i=1 giαi and b0 =∑2

i=1 giβi. However, the IO representation of RSS(S1)
reads as:

d
dt

y−
((

a0 +
ḃ0

b0

)
� p

)
y = (b0 � p)u, (7.10)

where ḃ0 � p = (β2−β1) d
dt p. One can conclude that RSS(S1) and RIO(S2) are the

representations of two different LPV systems S1 and S2 unless β1 = β2. This phe-
nomenon clearly emphasizes that interpolation must be carried out in the represen-
tation where the linearization was performed, otherwise unexpected alteration of the
behavior can occur. �

7.3.2.2 Multiple Linearizations around a Single Equilibrium Point

This approach originates from the Fuzzy control framework, where it is used to
obtain linear Takagi-Sugeno (TS) dynamic fuzzy models, which under certain re-
strictions can be viewed as quasi-LPV systems [86]. The basic idea is to linearize
the NL-SS representation at multiple points of X×U around a single equilibrium
point. Then the resulting local models are interpolated in a similar fashion as in the
previous part. The method leads to a LPV model that performs well during tran-
sient operation, because the framework allows some of the local LTI models to be
associated with transient operating regimes. If the system stays close to the used
equilibrium point, no restrictions concerning slowly varying trajectories is needed.
However, a principal disadvantage is that this approach is not suited for NL models
with multiple equilibria.

7.3.2.3 Linearization along a Nominal Trajectory

This approach was introduced in the early 1990s when LPV controllers were typi-
cal scheduled in a open-loop sense based on a chosen reference trajectory (intended
operation trajectory of the plant) or fixed auxiliary input variables (typical operation
trajectories). These user-defined signals were used to describe a nominal trajectory
of system operation. Linearizing the NL model along this nominal signal trajec-
tory gives an LPV model (see [164, 102] for examples of this approach). It is an
advantage of this approach that the resulting LPV description can cover transient
operation of the plant along the used nominal trajectory, however such a description
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also suffers from the drawback that the performance may be poor when the system is
operating far away from it. As the time-variation of the system is considered along a
pre-chosen trajectory of p, the resulting models resemble a LTV system rather than
a LPV system.

7.3.2.4 Off-Equilibrium Linearization around a Set of Operating Points

Linearization of the NL system at points in the state space that may not be equilibria
has been considered in numerous approaches (see [76, 102, 121, 122]) The benefit
of this concept is that the transient (off-equilibrium) dynamics of the LPV approx-
imation may be significantly improved. The LPV model is obtained by selecting a
set of linearization points pi = Col(xi,ui) with (xi,ui) ∈ X×U, i ∈ IN

1 and using
Jacobian linearization of the nonlinear functions f and g around these points in the
sense of (7.5a–b). The only difference is that in (7.5a) an extra term f (pi) appears if
pi is not an equilibrium point. Then the local models are interpolated as described by
(7.6a–b) and the remainder terms are considered as disturbances, extra input chan-
nels or they are locally eliminated to form a global LPV model. This approach has
the same features as the equilibrium-points-based linearization with all the pitfalls
of interpolation and local state transformations. An additional problem rises how-
ever from the selection of linearization points {pi}n

i=1. Equidistant selection on the
space X×U may seem tempting, but it might happen that due to the dynamical
changes of GNL, a non-equidistant selection with dense samples in specific regions
of X×U can lead to far better approximations (see [123] for details).

7.3.3 Multiple Model Design Procedures

Multiple model design techniques investigate the LPV approximation of the NL
system given by the state-space representation

d
dt

x = A(x,u)x + B(x,u)u, (7.11a)

y = C(x,u)x + D(x,u)u. (7.11b)

The LPV modeling of (7.11a–b) is accomplished by selecting a set of interpola-
tion functions {gi}n

i=1. Then the model approximation problem becomes a search
for a set of constant matrices {(Ai,Bi,Ci,Di)}n

i=1 such that the nonlinear functions
(A,B,C,D) are approximated optimally by the weighted sum of the constant matri-
ces, like

A(x,u)≈
n

∑
i=1

gi(p)Ai, where p = Col(x,u). (7.12)

However, these kind of techniques are most often considered to be model reduction
tools rather than LPV model transformation methods as with the scheduling signal
p = Col(x,u) the SS equations (7.11a–b) already define a quasi-LPV model. No-
table approaches that fall into this category are the orthogonal decomposition based
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methods like [29, 163, 236], the convex polytope methods like [82, 86], and the
radial basis functions based optimization techniques of [85, 213].

A unique exception among these methods is [141], where it is only assumed that
some samples {(Â j, B̂ j,Ĉj,D̂ j)}ns

j=1 of (A,B,C,D) are available for certain schedul-
ing points {p j}ns

j=1 of X×U. Then, such an LPV model with affine or polynomial
dependence is searched whose frozen transfer functions at each p j have the min-
imal error in the H2 sense with respect to the transfer functions associated with
{(Â j, B̂ j,Ĉj,D̂ j)}ns

j=1. In this way the resulting procedure can even be used to accom-
plish the interpolation step of various LPV local identification approaches avoiding
the local alteration of the state basis common in many SS methods (see Sec. 1.3.4.3).

7.3.4 Substitution Based Transformation Methods

Methods of this category use substitution techniques on an available SS represen-
tation of the NL system to generate a quasi-LPV model without the need of ap-
proximation. The PV coefficients appear as substituted functions of (x,u) and the
resulting scheduling is p = Col(Sxx,Suu), where Sx and Su are the selector matri-
ces of the components of (x,u) used for the substitution. The subcategories of these
approaches are the following:

7.3.4.1 The “State-Transformation” Method

The “state-transformation” method was first introduced in [167] followed by many
successful applications in aerospace engineering (see [138, 168, 137]). A class of
nonlinear systems that qualifies for this method is described by the following SS
equation:

d
dt

[
x1

x2

]
=
[

f1(x1)
f2(x1)

]
+
[

A11(x1) A21(x1)
A21(x1) A22(x1)

][
x1

x2

]
+
[

B1(x1)
B2(x1)

]
u, (7.13)

where A11, . . . ,A22 with B1,B2 are (nonlinear) matrix functions. Additionally, f1, f2

represent matrix function terms which cannot be written as fi(x1) = f̃i(x1)x1 with
f̃i bounded in the origin. Assume that there exist differentiable functions γx and γu,
such that:
[

0
0

]
=
[

f1(x1)
f2(x1)

]
+
[

A11(x1) A12(x1)
A21(x1) A22(x1)

][
x1

γx(x1)

]
+
[

B1(x1)
B2(x1)

]
γu(x1), (7.14)

holds for all x1 ∈ Lloc
1 (R,Rn1), which are the solutions of (7.13), i.e. for which

there exist signals (x2,u)∈Lloc
1 (R,Rn2×U) such that (7.13) is satisfied. Subtracting

(7.14) from (7.13) with some rearrangement of the signals yields:

d
dt

[
x1

x̆2

]
=

[
0 A12(x1)

0 A22(x1)− ∂γx(x1)
∂x1

A12(x1)

][
x1

x̆2

]
+

[
B1(x1)

B2(x1)− ∂γx(x1)
∂x1

B1(x1)

]
ŭ, (7.15)
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where x̆2 = x2− γx(x1) and ŭ = u− γu(x1). In this way the state-transformation
method has transformed the state-equation (7.13) into the quasi-LPV form (7.15)
with scheduling signal p = x1. Note that there are no approximations involved in this
procedure, but it is only applicable to a limited class of NL-SS representations and
often the resulting LPV representation is non-minimal. Furthermore, no constructive
procedure to find γx and γu is available.

7.3.4.2 Substitution by Virtual Scheduling

Based on specific mathematical manipulations, some nonlinear equations in the
form of (7.2a–b) can be rewritten as (7.11a–b). Then, assigning virtual schedul-
ing signals for each nonlinear function element of the resulting matrix functions
(A,B,C,D), a quasi-LPV SS representation of the system results with static linear
dependence. Due to the several possibilities of assignment, the result of the transfor-
mation is non-unique. Commonly, the methods that fall into this category can only
be applied for specific NL systems without any generality. In most cases, the num-
ber of associated scheduling signals increases rapidly with the system order and it
remains to the skill and insight of the modeler to find an economical representation.
Despite its ad-hoc nature, this method is preferred for mildly-nonlinear systems as
it involves no approximation of the system dynamics, delivering efficient modeling
solutions in many applications (see [55, 191, 156] for examples). At the same time,
many pitfalls are present for unexperienced users. To illustrate this, consider

d
dt

x = x2−1, (7.16)

and represent this differential equation in a LPV form

d
dt

x = px, where p = x− 1
x
. (7.17)

Seemingly, the two differential equations are equivalent. However, the resulting be-
haviors are different for x(t) = 0. Thus using the LPV model (7.17), to design a
stabilizing LPV controller for the original NL system is dangerous as it is unpre-
dictable how the closed loop system will behave when x approaches 0.

7.3.4.3 Velocity-Based Scheduling Technique

The velocity-based method of [100, 101] associates a linear system with every op-
erating point of a NL system, rather than just the equilibrium points or pre-specified
reference points. This is called local linear equivalence in [99]. Assume that a rep-
resentation of the NL system is given in the form

d
dt

x = Ax + Bu + f̆(γ(x,u)), (7.18a)

y = Cx + Du + ğ(γ(x,u)), (7.18b)
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where (A,B,C,D) are constant matrices, f̆ : Rn→ RnX , ğ : Rn→ RnU are partially
differentiable nonlinear functions, and the function γ is given by

γ(x,u) = Exx + Euu, (7.19)

where Ex ∈ Rn×nX and Eu ∈ Rn×nU . This reformulation of (7.2a–b) can always be
achieved. Introduce p = Col(x,u) as the scheduling signal. Differentiating equations
(7.18a–b) gives the following alternative reformulation:

d2

dt2 x =
(

A +
∂
∂γ

f̆ (γ(p))Ex

)
d
dt

x +
(

B +
∂
∂γ

f̆ (γ(p))Eu

)
d
dt

u, (7.20a)

d
dt

y =
(

C +
∂
∂γ

ğ(γ(p))Ex

)
d
dt

x +
(

D+
∂
∂γ

ğ(γ(p))Eu

)
d
dt

u. (7.20b)

By restricting the behavior of (7.2a–b) to signals that are differentiable, the set of
solutions satisfying (7.20a–b) is equivalent with the solution set of (7.2a–b) for ap-
propriate initial conditions. Substitution by x̆ = d

dt x, ŭ = d
dt u, and y̆ = d

dt y delivers
a quasi-LPV form of (7.20a–b), suggesting the conclusion that every nonlinear sys-
tem (7.18a–b) can be reformulated in this way as a quasi-LPV SS representation.
However, by masking differentiation of the system signals into new variables, the
behavior of the resulting quasi-LPV system is different. Additionally, if instead of
d
dt u and d

dt y, only the measurements of u and y are available in the physical system,
then in the practical use of the suggested LPV description the amplification of noise
is inevitable by the differentiation of u and y. Such a phenomenon can have seri-
ous impact on identification or control of the underlying system. Moreover, there
is often little hope of controlling the original NL system only via its differentiated
description.

7.3.4.4 Function Substitution

Another way of quasi-LPV model generation leads through the idea of approximat-
ing the nonlinear functions f and g in (7.2a–b) by a linear combination of scheduling
dependent functions multiplied by x and u. Consider the NL system described by the
state-equation

d
dt

x = A(x1)x + B(x1)u + f (x1), (7.21)

where x = Col(x1,x2). To perform the substitution method, choose an equilibrium
point (x1,x2,u) and transform the variables as x̆1 = x1−x1, x̆2 = x2−x2, ŭ = u−u.
Using these new variables, (7.21) can be rewritten as

d
dt

[
x̆1

x̆2

]
= A(x1)

[
x̆1

x̆2

]
+ B(x1)u + f̆ (x1), (7.22)

where

f̆ (x1) = A(x1)
[
x1

x2

]
+ B(x1)u+ f (x1). (7.23)
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The next step is to reformulate f̆ as

f̆ (x1)≈ Γ (p)x̆1, (7.24)

where Γ is an unknown matrix function and p = x1. Now, the goal of the modeling
approach is to determine Γ such that the approximation (7.24) is adequate for every
trajectory of x1. It is obvious that solutions of (7.24) are not unique since this is an
under-determined problem. In many applications of this idea like [185, 186, 170,
112], Γ is calculated based on a linear parametrization with prior chosen functions
of p, to minimize the approximation error of (7.24) on the entire operating envelope
X1. The solution of this minimization problem is obtained by linear programming.
Then, the final quasi-LPV approximation of (7.21) is given as

d
dt

x̆ =
(
A(p)+

[
Γ (p) 0

])
x̆ + B(p)ŭ (7.25)

with p = x1. The behavior of (7.25) can approximate the behavior of the original
NL representation if (7.24) is satisfied adequately. A disadvantage of this method
is the strong dependence on the equilibrium point (with different reference points
different representations can be obtained) and that the model may not capture the
local stability of the original NL model at other equilibrium points. In [169], an
improved version of the method has been developed to preserve local stability over
the entire operation envelope. In this modified approach, the search for Γ is formu-
lated as a bilinear-matrix-inequality based optimization problem including stability
constraints.

7.3.5 Automated Model Transformation

Automated model transformation is based on the exploration of all possible ways
of reformulating the NL system as a quasi-LPV model with the smallest possible
conservatism. Such a technique can also be seen as a substitution method. Recently
the approach, introduced in [90], has appeared in this context, formulating the con-
version concept in terms of an algorithm.

The proposed procedure starts with the description (7.2a) and by relying on sym-
bolic manipulations it assumes the separation of f to irreducible additive terms, i.e.
the ith row of f is decomposed as:

[ f (x,u)]i =
ni

∑
j=1

fi j(x,u). (7.26)

Then, each summand fi j is written in a rational form and the numerator is factorized
as the product of powers of state and input elements and a remainder term that
is a non-factorizable function of x and u. Summands are assigned to state-space
matrices A and B based on which elements of x or u appear in the product part of
their factorized form. For example, if xk is a factor of fi j , then it is assigned to the kth

state as a coefficientαi jk(x,u) = fi j(x,u)/xk in the ith row and kth column of A. As in
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the factorized form of the summands multiple elements of x and u can be presented
in the product terms, thus such an assignment is non-unique. If the summand is
non-factorizable, then it is divided by xk or ul to be able to write it for example

as fi j(x,u) = fi j(x,u)
xk

xk, and assign the resulting term to A or B. Then, each of the
assigned coefficient functions, i.e. {αi jk} and {βi jk}, are associated with a virtual
scheduling signal pl . Finally, the SS matrices are formed as the linear combination
of these virtual scheduling signals.

By using all assignment possibilities, a set of LPV-SS representations is gener-
ated, each corresponding to (7.2a). These representations are tested for complexity
and the most adequate LPV description is selected by the user. The exact way of
this test and the selection of the most suitable assignment is not formulated in the
approach. Thus, these tests remain to the intuition of the user. The same procedure
can be executed for the output equation (7.2b) as well. The whole approach depends
on how well the simplification of the nonlinear terms can be achieved. As simpli-
fication of symbolic terms is not unique in general, the complexity of the resulting
model can vary with different symbolic solvers (see [71] for an overview of the re-
quired symbolic manipulation techniques). A more serious problem, which has been
already mentioned in the linearization part, arises when non-factorizable terms are
divided by signal components. Such operations can result in the alteration of the
behavior around the origin. It can also happen that no element of u can be lifted out
from any summands and thus the generation procedure results in an autonomous
quasi-LPV description.

Another technique that falls into this category develops an automated transfor-
mation of a nonlinear model to an linear fractional representation (LFR) by using
symbolic manipulation techniques (see [71, 211]). A disadvantage of this method,
implemented in the LFR toolbox of MATLAB, is that it assumes the nonlinear model
to be in the form (7.11a–b) with also a set of algebraic constraints. In this way it
avoids the crucial part of the modeling, namely the generation of the quasi-LPV
form (7.11a–b). This technique shows resemblance with other multiple modeling
methods and implements a particular way of model reduction with respect to LFRs.

Using the tools offered by the LFR toolbox, the previous approach has been re-
cently improved in [46] and [37] by establishing a transformation method between
quasi-LPV forms and nonlinear models formulated in the MODELICA environment
as first order differential algebraic equations (DAEs) with uncertain parameters. The
transformation is based on triangulization of the DAEs and solving them recursively
to obtain a set of system equations. Then uncertain parameters and remaining non-
linear terms are extracted to the Δ block to form the scheduling dependency of the
resulting description. The latter implies that the original latent variables of the DAEs
are forced to be the state variables of the resulting LFR and that there is no control
over what is chosen to be the scheduling variable. Despite these problems and some
restrictions in the allowed nonlinear relationships between the signals themselves
and the uncertain parameters, this approach offers an attractive way of automated
model conversion.
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7.3.6 Summary of Existing Techniques

In conclusion, the existing techniques for transformation of NL systems to a quasi-
LPV form are either based on linearization-based approximation or substitution
techniques. Linearization techniques are commonly easily applicable for this pur-
pose, but they suffer from serious disadvantages in terms of non-eliminatable affine
reminder terms, pitfalls of interpolation, selection of adequate linearization points,
and the loss of general representation of the nonlinear dynamics. On the other hand,
substitution techniques are based on mathematical manipulations that are only appli-
cable for some class of NL systems. Commonly they preserve the original dynamic
behavior, however for the general class of NL systems they may result in loss of
validity or even stability (e.g. division by signal elements).

A common feature of all approaches is that they use a SS representation of the
system as a starting point, thus they try to achieve good approximation with respect
to a prior chosen state variable. As a consequence the scheduling variable of the
resulting LPV description is composed from the priori chosen state and input vari-
ables. This restriction can severely reduce the search-space where an adequate LPV
representation of the original NL behavior can be found as rewriting (7.2a–b) to
another state-basis may result in a simplified/better transformation to a LPV form.

All of the approaches do not pay attention how the scheduling variable is chosen
and what kind of effects a particular choice of p has on the obtained LPV behavior.
Seemingly it does not matter that components of x which are inner variables or
components of u which are free variables are used for p.

As a general conclusion, existing transformation possibilities to a LPV form are
conservative, non-unique, and the validity of the resulting model is based on the skill
of the user. On the other hand, to support LPV identification and control of physical
systems, the LPV modeling phase must be accomplished carefully, exploring the
best possibility of transformation of the first principle laws into an LPV form, with-
out ad hoc selection of state signals and scheduling variables. Based on this conclu-
sion, in the next section the possibilities to accomplish this task are investigated and
a model transformation procedure is proposed, that can tackle this problem using
the powerful theoretical framework of the developed LPV behavioral approach.

7.4 Translation of First Principle Models to LPV Systems

As a next step, a transformation method is investigated that converts first principle
laws represented by (7.1) into a LPV kernel (KR) representation. The procedure
gives the freedom to consider all possibilities of transformation, not restricted by
preselected state or IO partition or particular formulation of the nonlinear dynam-
ical relationship like a SS representation. In fact, the method explores all possible
transformations that are applicable for general NL dynamical systems, to convert the
specific NL behavior into an LPV behavior. Then the obtained LPV-KR representa-
tions are categorized by complexity and transformed to an LPV-SS or IO realization
based on the equivalence transformation theory of Chap. 3. To assist LPV model
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structure selection, the discretization theory developed in Chap. 6 is applied to ob-
tain DT descriptions of the original behavior.

The developed transformation mechanism is based on similar concepts like the
approach of [90], however the proposed method is constructed in a more structured
way, where the validity of the transformation is guaranteed in the applied formulas.
In the following, a brief outline of the procedure is presented to give insight into
the theoretical concept instead of technicalities. First we define the exact problem
setting we consider.

7.4.1 Problem Statement

Consider a NL dynamical system GNL = (R,W,B) with signal space W = RnW and
behavior B ⊆WT, where B is represented by (7.1). Assume that f is a meromor-
phic function: f ∈Rnr×1. Then as a short hand notation, introduce

f �w = f

(
w,

d
dt

w,
d2

dt2 w, . . . ,
dn

dtn w

)
, (7.27)

as the evaluation of f along the signal trajectory w ∈B. In this way, we associate
variables of f with specific signal elements of w and their derivatives, similar to
the mechanism of Chap. 3. Furthermore, assume that each element of the variable
w is of prime interest to the user (they are non-latent variables) and the functional
relation described by f can not be simplified without changing the behavior B. The
latter assumption means that (7.1) is minimal in the sense that no equation can be
eliminated from (7.1) by simple row operations like addition or multiplication by
functional terms, similar to left-side unimodular transformations in the LPV case.
Additionally, if for any i ∈ I

nW

1 there exists a f̂ ∈Rnr×1, a partition w = Col(w1,w2)
with Dim(w2) = n2 and a invertible holomorphic function g : RnW → Rn2 such that

f �w = f̂ �Col(w1,g(w)), (7.28)

for all w ∈B and f̂ is a less complicated function than f , then redefine w2 as g(w)
to achieve simplification of f . This operation is similar to right-side unimodular
transformations in the LPV case. By applying such a simplification, the resulting
behavior is isomorphic with B. Now we define our idealistic transformation prob-
lem as follows:

Problem 7.1 (Translation of dynamic NL systems to LPV systems). For a given
NL dynamical system GNL = (R,RnW ,B) with signal variable w, find an LPV sys-
tem S′ = (R,P′,W′,B′) with signal variable w′ and scheduling variable p′ such that
there exist selector matrices Sp,Sw ∈ R·×nW satisfying w′ = Sww and p′ = Spw and
it holds that

w ∈B∩C∞(R,W) ⇔ (w′, p′) ∈B′ ∩C∞(R,W′ ×P
′). �

Based on this problem setting, we are looking for such an LPV system that has
a behavior equal to the behavior of the original NL system. We will see that in
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most cases the if and only if condition of Problem 7.1 has to be relaxed such that
w ∈B∩C∞(R,W) ⇒ (w′, p′) ∈B′ ∩C∞(R,W′ ×P′).

7.4.2 The Transformation Algorithm

In the following, an algorithm is applied on the simplified differential equation to
explore all possibilities of its transformation to an LPV form and in this way to
solve Problem 7.1. We follow a similar strategy as the algorithm of [90] but in
a different setting. First we separate the rows of f in (7.1) into summands. Then
we factorize the nominator of these summands in a specific way to lift out signal
variables in a product form. Next we collect all factorization possibilities and their
associated coefficients in terms of factors into a decision tree. By selecting a route
in the resulting tree we assign elements of w to signals or scheduling variables and
use their associated coefficients to form a LPV-KR representation. In the process
we assume that all summands are factorizable. This assumption is relaxed later. The
proposed algorithm reads as follows:

Algorithm 7.1 (Translation to LPV-KR representations)

Step 1. Write f in (7.1) as a summation of additive functional terms (summands)
for each row separately. The ith row is written as

[ f �w]i =
ni

∑
j=1

fi j �w, (7.29)

where each fi j ∈ R is not separable to further summands. This assumes
that ideal symbolic recognition of additive terms is available. The results
of this operation are unique up to multiplication by a constant. Store the
summands in a graph structure, as shown in Fig. 7.1 where each node
represents a specific summand or a row of f .

Step 2. Each summand is written in the form of

fi j =
ĝi j

ǧi j
, (7.30)

where ĝi j, ǧi j : R(n+1)nW → R are coprime holomorphic functions with
n denoting the highest derivative order in (7.27). Such a formulation is
again unique up to multiplication by a constant.

Step 3. For each i ∈ I
nr
1 , j ∈ I

ni
1 , k ∈ I

nW

1 , and l ∈ In
0, it is investigated if the sum-

mand fi j is factorizable to the form

fi j �w =
(

ği jlk

ǧi j
�w

)
dl

dtl wk, (7.31)
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where ği jkl : RnnW → R is holomorphic. Contrary to the algorithm de-
scribed in [90], factorization in this case only involves first-order product
terms, as any higher order relation is not interesting for the further proce-
dure. Denote

f̆i jkl =
ği jlk

ǧi j
. (7.32)

Note that f̆i jkl ∈ R. Assume for the moment that each fi j can be factor-

ized by at least one dl

dtl wk. The results of the factorization are stored in the
graph structure of Fig. 7.1. In this graph each node representing a sum-
mand fi j gets a leaf for each dl

dtl wk it can be factorized with. The edges,
that connect the leafs to their associated summand, receive a label, which
is the set of the specific variables {w1, . . . ,wn} that are involved in the
remaining f̆i jkl expression. All other edges of the graph get a label of an
empty set. Note that leafs with an edge having an empty set label are the
linear terms of the nonlinear equation. The resulting graph describes a
decision tree.

Step 4. As a next step, possible LPV-KR representations are generated based on
the previously developed decision tree. All possible routes in this graph
are considered, which involve all nodes and a single leaf for each node
if it has one. Routes are only considered to be different if they consist
of different leafs. This yields all realization possibilities of (7.1) as a
PV differential equation in the following way. For a specific route (see
Fig. 7.1), compute the union of the sets of variables associated with la-
bels along the edges of the route. This gives a subset of all variables
{w1, . . . ,wnW

}. These variables are recognized as scheduling signals and
denoted as {p1, . . . , pnP

} where nP ≤ nW. Define p = [ p1 . . . pnP
] as the

scheduling variable for the specific route. Additionally, let P be the pro-
jected subspace of W with respect to p. Consider all leaves in the route.
Define index sets Iikl , containing all indexes j ∈ I

ni
1 for which the node,

associated with the summand fi j , has a leaf of dl

dtl wk in the considered

route. For each leaf in the route, collect the remainder terms { f̆i jlk} of the
factorization into meromorphic coefficient functions rl ∈ Rnr×nW , l ∈ In

0
where

[rl ]ik = ∑
j∈Iikl

f̆i jlk, ∀(i,k) ∈ I
nr
1 × I

nW

1 . (7.33)

With the resulting coefficients {ri}n
i=1 the NL differential equation (7.1)

is formulated as an LPV-KR representation:

(R(
d
dt

)� p)w =
n

∑
i=0

(ri � p)
di

dti w = 0, (7.34)

where R ∈ R[ξ ]nr×nW . Now define w̆ as the vector containing the subset
of the variables {w1, . . . ,wnW

}, such that for each variable wi in w̆, there is
a a leaf in the route where the label of the leaf contains wi or its derivative.



7.4 Translation of First Principle Models to LPV Systems 189

Those signals that do not satisfy this property are simply presented with
0 weights in (7.34), thus they do not participate in the signal relation as
variables. To eliminate such superfluous terms, (7.34) is rewritten in terms
of w̆ by deleting from R the zero columns associated with the additional
variables. Furthermore the signal space associated with w̆ is defined as the
projected subspace of W with respect to the variables presented in w̆.

Step 5. As a result of the previous step, numerous PV differential equation forms
of (7.1) are formulated based on all possible routes in the graph struc-
ture. However, it is not guaranteed that all of them preserve the dynami-
cal aspects of the original nonlinear behavior B. To ensure validity of the
transformation, the freedom of the remaining signal variables w̆ for each
PV description has to be checked. If for every IO partition w̆ = (ŭ, y̆) of
the resulting LPV-KR representation RK(S), there exists an IO partition
w = (u,y) for the original NL system such that y̆ = y and the elements
of ŭ are a subset of u and the maximal order of derivatives of y in each
row of RK(S) are the same as in f , then the LPV representation can be
considered as a valid transform of the original system. Otherwise alter-
ation of the dynamical behavior occurred during the process by masking
essential dynamics into coefficients. If it is also true for every IO parti-
tion of RK(S), that u = Col(p, ŭ), meaning that all elements of p are free
variables of the original system and they are independent from ŭ, then the
model corresponds to a true LPV system S, not just a quasi-LPV, and it
is a prime candidate for representing the original system behavior.

Step 6. The resulting LPV representations can be ranked based on the corre-
sponding routes in the graph. Representations which involve the smallest
cost in terms of the number of variables associated with scheduling sig-
nals give the simplest models of the NL system. From these candidates,
representations with free scheduling signals have priority. Further distinc-
tion can be the maximal order of derivatives of the leafs. Based on these,
the resulting valid representations can be ordered in terms of complexity,
to assist selection by the user.

For each LPV-KR representation, that has been found to be a valid representation of
GNL, the PV behavior can be considered to be equal with the original NL behavior
B. Then the most attractive representation can be selected by the user based on the
complexity ordering derived in Step 6. In this way, a solution for our transformation
problem, i.e. for Problem 7.1 is obtained. Next, the behavioral approach is applied
on the chosen representation to obtain a full row rank KR representation together
with an SS or IO realization of the resulting LPV system. With the introduced dis-
cretization theory, this methodology serves as a model selection tool for DT-LPV
identification routines.

Example 7.2 (Transformation of an NL model to LPV). Consider the nonlinear sys-
tem GNL = (R,R4,B) with w = [ w1 w2 w3 w4 ]� in the form:
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f

(
w,

d
dt

w,
d2

dt2 w

)
= 0,

where f �w is equal to
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f11︷ ︸︸ ︷
w1 cos2(w3)+

f12︷ ︸︸ ︷
sin2(w3)

d
dt

w1 +

f13︷ ︸︸ ︷
2w3w4 +

f14︷ ︸︸ ︷
2

d
dt

w2 +

f15︷ ︸︸ ︷(
d
dt

w2

)
d
dt

w3 +

f16︷ ︸︸ ︷
w3

d2

dt2 w1

w3
d
dt

w1
︸ ︷︷ ︸

f21

+ w2︸︷︷︸
f22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that for this nonlinear system the only available IO partition is y = [ w1 w2 ]�

and u = [ w3 w4 ]�. This is easy to show by rewriting the second row as w2 =
−w3

d
dt w1, and substituting it into the first row of f . Then a differential equation

results where only the derivatives of w1 appear. Thus w1 is an obvious output of
the system and therefore w2 is also an output as its trajectory is described by the
used substitution rule. The remaining variables w3 and w4 are free in the resulting
description and thus they are the obvious inputs of the system. However, the second
equation written as w3 =−w2/

d2

dt2 w1, cannot be used for substitution as it would ex-

clude trajectories of w1 with d
dt w1 = 0. Hence w3 cannot be the output of the system

instead of w2.
Additionally, the nonlinear equations of the above given representation have al-

ready been separated to minimal summand terms and it can be shown that no fur-
ther symbolic simplification of the equations is possible. A further property is that
all summand terms are factorizable. By applying the decision tree generation proce-
dure described in the previous part, the resulting tree is presented in Fig. 7.1. This
completes Step 1 to Step 3 of the proposed algorithm.

In terms of Step 4, now we generate all possible routes that contain all nodes and
one leaf for each node. There are 25 = 32 possibilities. One of these routes is given
by bold lines in Fig. 7.1. By using this specific route, a LPV-KR representation is
generated in terms of Step 4. The resulting scheduling variable is the collection of
variables in the labels along the route: p = w3 and the new signal variable is the
collection of variables of the leafs along the route: w̆ = [ w1 w2 w4 ]�. Then by
these choices, the LPV-KR representation has the following form
[

cos2(p1) 0 2p1

0 1 0

]
w̆+

[
sin2(p1) 2 + d

dt p1 0

p1 0 0

]
d
dt

w̆+

[
p1 0 0

0 0 0

]
d2

dt2 w̆ = 0.

Note that the IO partition of the obtained LPV-KR representation is y = [ w1 w2 ]�
and u = w4, and the maximal orders of the derivatives of w1 and w2 in the represen-
tation are the same as in f , thus it corresponds a valid LPV model of the original
nonlinear system. As the chosen scheduling variable is a free variable in the original
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system and is independent from w̆, the obtained representation corresponds to a true
(non-quasi) LPV system. This completes Step 5 of the proposed algorithm.

Another choice of route is similar to the previous one except taking the right
branch at f16. The resulting scheduling variable is p = [ w3 w1 ]� and the signal
variable is w̆ = [ w1 w2 w3 w4 ]�. Then by these choices, the following LPV-KR
representation results:

[
cos2(p1) 0 d2

dt2 p2 2p1

0 1 0 0

]
w̆+

[
sin2(p1) 2 + d

dt p1 0 0

p1 0 0 0

]
d
dt

w̆ = 0.

A valid IO partition of the obtained LPV-KR representation is y = [ w1 w2 ]� and
u = [ w3 w4 ]�, the IO partition of the original nonlinear system. However, the max-
imal order of derivatives with respect to w1 is 1. This means that the dynamics of f
has been simplified, i.e. masked into coefficient dependence, during the transforma-
tion process. Thus the resulting LPV representation is not a valid representation of
the nonlinear system.

A third choice is to use the route given with bold lines but to take the left branch
at f13. The resulting scheduling variable is p = [ w3 w4 ]� and the signal variable is
w̆ = [ w1 w2 w3 ]�. Then by these choices, the following LPV-KR representation
results:
[

cos2(p1) 0 2p2

0 1 0

]
w̆+

[
sin2(p1) 2 + d

dt p1 0

p1 0 0

]
d
dt

w̆+

[
p1 0 0

0 0 0

]
d2

dt2 w̆ = 0.

Note that the resulting LPV-KR representation with IO partition y = [ w1 w2 ]� and
u = w3 is a valid representation of the nonlinear system similarly as the representa-
tion associated with the bold lines, but with an increased scheduling dimension and
a free but not independent scheduling variable p.

The remaining choices of available routes are the combinations of the previous
ones with no interesting further property. Thus in conclusion, the best choice of
LPV-KR representation of the system follows through the decision route indicated
by bold lines in Fig. 7.1. This concludes the final step of the algorithmic scheme. �

7.4.3 Handling Non-Factorizable Terms

Now we investigate the case, when not all summand terms { fi j} are factorizable. In
that case, there is little chance for the elimination of these terms and to enable the
use of the previously introduced mechanism without any approximation. Variable
substitution to eliminate these terms (see Example 7.3) generally does not work,
as the substitution must satisfy the equation for all derivative relations of the sub-
stituted variables. This may result in ad hoc operations, cancelations of terms and
alteration of the behavior. This unfortunate phenomenon even holds for constant
terms in general (see Example 7.3).
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Fig. 7.1 Decision tree of NL model transformation to LPV-KR representations

Example 7.3 (Elimination of non-factorizable terms). Consider the case when fi j =
1. Then this constant term is a non-factorizable expression in the nonlinear differ-
ential equation described by f . If f reads as

f �w = w2
d
dt

w1 + w1 + 1,

then the non factorizable term 1 can be eliminated by substituting w1 with w̆1 =
w1 + 1, which gives

w2
d
dt

w̆1 + w̆1 = 0.

Such an expression contains only factorizable summands thus the previously de-
scribed procedure can be applied on this new differential equation to obtain an LPV
representation in terms of (w̆1,w2). However, if f is

f �w =
[

w2
d
dt w1 + w1 + 1
w1 + d

dt w2

]
,

then this elimination cannot be applied on the upper equation as it would introduce
a nonfactorizable term −1 in the lower one. In case of other non-factorizable terms,
it is generally true that elimination through variable substitution can be applied if it
satisfies all the equations without introducing new non-factorizable terms. �
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A sound possibility is however to approximate the non-factorizable terms in the
following way:

1. Let fi j be a non-factorizable summand. Let Ii j be an index set containing all

indexes (k, l) ∈ I
nW

1 × In
0 such that fi j is dependent on dl

dtl wk.
2. For each (k, l) ∈ Ii j, try to approximate the function fi j as

( fi j �w)(t)≈
(

( f̆i jkl �w)
dl

dtl wk

)
(t) ∀w ∈B ∀t ∈ R, (7.35)

where f̆i jkl ∈R.
3. If such approximation exists for some (k, l) ∈ Ii j, then treat them as valid factor-

izations of fi j and proceed with the original algorithm, else transformation to a
PV form does not exist with the given precision.

The resulting LPV representation can be considered as the approximation of the
original NL system if the conditions described in Step 5 are satisfied. Note that
what is considered to be an appropriate approximation is highly dependent on the
intended accuracy. For some specific non-factorizable functions like sin(�), such an
approximation can be carried out even in an exact sense (see Example 7.4). If the
non-factorizable term is a constant fi j = γ ∈ R\ {0}, then no sound approximation
exists and one may risk to either use an approximation fi j = γ

wk
wk or multiply the ith

row of f with wk and restart the transformation procedure from the first step. Both
approaches may result in alteration of the original NL behavior.

Note that in the LPV behavioral approach, the terminology of almost everywhere
equivalence has been introduced to handle singularities of the coefficient functions
that result or change due to transformations in R[ξ ]. One can sense that in case
of non-factorizable terms, we face the same situation as by dividing with a wi any
non-factorizable term can be turned to a factorized relation. However, the price to
be paid is an almost everywhere equivalence of the resulting representation if wi is a
free signal. However in case wi is non-free, division by wi can destabilize the origin
of the signal-space, critically altering the dynamical behavior of the system.

Example 7.4 (Approximation of non-factorizable terms). Consider the case, when
the non-factorizable term is sin(w). Then by writing this term as

sin(w) = sinc(w)w,

where sinc(w) = sin(w)
w and sinc(0) = 1, we get an exact factorization. However in

case of cos(w),

cos(w) =
cos(w)

w
w,

where limx→0
cos(x)
x = ∞. Thus this form can only be considered a factorization

if w is a non-zero signal. As an alternative, a finite Taylor expansion of cos(�) is
suggested
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cos(w) = 1 +
1
2

w2 +
1

24
w4 + . . .

where if the non-factorizable term 1 can be eliminated, then the remaining tail con-
tains only factorizable parts. This holds for all common functions like trigonomet-
ric, exponential, logarithmic, etc. It holds in general that approximation problems of
non-factorizable terms relate to the question, how constant terms can be eliminated
or approximated with a factorized expression. �

7.4.4 Properties of the Transformation Procedure

It can be concluded that the proposed method can transform a wide class of NL
systems satisfying Definition 7.1. An advantage of the method is that it provides
a systematic way of conversion, examining all possibilities of an equivalent LPV
realization. By checking validity of the derived LPV representation with respect to
the behavior of the original NL system, it provides a successful tool to solve Prob-
lem 7.1. Additionally, the algorithm gives a structured selection of the scheduling
variable p highlighting when not only a quasi-LPV but a true LPV formulation is
possible.

However, the approach has disadvantages as well. One of them is the heavy de-
pendence on symbolic recognition of summands and possible ways of factorization.
Thus the performance of the algorithm is clearly limited by the available symbolic
computational tools. Another disadvantage is that investigating all possible LPV-KR
representations that can be obtained from the generated decision tree can be quite
demanding in case of large signal dimensions or a complicated f . Moreover, in case
of large scale systems, computing and comparing the possible IO partitions of the
resulting LPV descriptions is hopeless.

It may also happen for some cases that no valid transformation of the NL dy-
namic system is available via the proposed algorithm. Commonly, there is little
chance of any ad-hoc transformation to succeed if the proposed method does not
work as the original system description is minimal and all possibilities are inves-
tigated. That means that some sort of approximation technique must be applied in
advance. In principle, it must be accepted that not every NL system can be appropri-
ately transformed to an LPV form, which is especially true for systems not satisfying
Definition 7.1. Examples for such dynamical relations are systems with delays, hys-
teresis, or non-functional signal relations like if-then rules. In such cases, the LPV
framework may be inappropriate for dealing with the system dynamics without con-
siderable approximation.

Comparing the proposed approach of model transformation to the available ap-
proaches presented in Sect. 7.3, it can be concluded that this method gives adequate
transformation for a much wider class of NL systems. The selection of the schedul-
ing variable follows a more structured procedure, without the ad hoc selection of
input, output, or latent variables. This gives the flexibility to find the most efficient
form of transformation. In case of non-factorizable terms, approximation is inher-
ently involved in the transformation, similar to the methods of Sect. 7.3, which result
in an approximation of the original behavior up to a specific precision.
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7.5 Conclusions

In this chapter, modeling of physical systems described by nonlinear differential
equations has been studied in the LPV framework. Our motivation has been to derive
tools that can assist model structure selection in LPV identification.

First we investigated the general questions of LPV modeling and the available
approaches. One of the major conclusions has been that instead of the transforma-
tion of a given mathematical description of the NL system to a LPV description,
the modeling problem needs to be approached from the perspective of a search for
a LPV system with equal behavior. This also implies that there is a prime emphasis
on the selection of the scheduling vector, i.e. which variables of the original sys-
tem are used as scheduling variables in order to find an equivalent LPV description.
The latter gives that the common starting point of the available approaches: the use
of a priori chosen state-space representation of the NL system, has the danger that
the prespecified state variable can seriously lower the realization possibilities in the
LPV system class. Furthermore, it has been shown that for linearization based meth-
ods any local transformation of the obtained linearized models can seriously alter
the result of their interpolation, i.e. the behavior of the obtained LPV description
may not even resemble the original NL system.

By showing the open problems of LPV modeling, in Sect. 7.4 a transformation
algorithm has been proposed that aims at the exploration of all possible LPV systems
that are equivalent with respect to a given dynamical NL system and selecting that
specific description which preserves the original behavior the best. The approach
is formulated in terms of conversion of a NL differential equation to a PV form,
avoiding the problems related to other conversion tools. The developed technique
provides a useful tool to assist the identification methods of the LPV field with
structural information about the plant and ease the choice of parametrization of the
coefficient dependencies.



Chapter 8
Optimal Selection of OBFs

Abstract. In this chapter, selection of the optimal basis, i.e. the basis with the fastest
convergence rate, for the series-expansion of LPV systems is investigated. In fact,
we consider the situation when information about the system is only available in
terms of measured data records of the frozen signal behavior. Solution of this prob-
lem is crucial to provide a model structure selection tool for LPV identification
based on truncated series-expansion models. In case of an optimal basis, a fast con-
vergence rate of the expansion representation implies that only the estimation of a
few expansion coefficients is necessary for a good approximation of the system. By
using the concept of Kolmogorov n-width optimality of the basis with respect to the
frozen behaviors, we derive a practically applicable algorithm, that provides opti-
mal basis selection based on fuzzy clustering of estimated “frozen” poles. The pole
estimates are the results of LTI identification of the system with constant scheduling
trajectories. To consider the effect of noise on the estimation of the frozen poles, a
robust version of the algorithm is also developed using the strong relation between
the Kolmogorov n-width theory and hyperbolic geometry.

8.1 Perspectives of OBFs Selection

The concept of modeling discrete-time asymptotically stable LPV systems with or-
thonormal basis functions (OBFs) based truncated series expansions has been in-
troduced in Chap. 5 to develop an effective model structure for LPV identification.
However, practical application of this concept requires the selection of basis func-
tions that guarantees a fast convergence rate of the LPV expansion representation
of a system. The reason is that using a truncated expansion with a fast convergence
rate, i.e. only a finite number of OBFs from the basis sequence, a model results that
approximates the system well with only a few expansion coefficients.

In Sect. 5.5, it has been motivated that to achieve a fast convergence rate of the
LPV expansion representation, a necessary condition is to use a basis which has fast
convergence rate with respect to FS , the set of transfer functions of the frozen system
set for the considered input-output (IO) partition. In order to characterize optimal-
ity of the convergence rate with respect to a given transfer function set, like FS , we
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have introduced the worst-case concept of the Kolmogorov n-width (KnW) theory in
Sect. 2.5. However, to use this concept to choose an n-width optimal basis, it is re-
quired to know the pole locations of FS , i.e. the regionΩP, which contains the points
where not all transfer functions in FS are analytic. If reliable first-principle knowl-
edge is available to calculate ΩP, then by solving the min-max problem of (2.62),
optimal basis selection in the KnW sense can be achieved for the system. However,
in an identification scenario, such knowledge might not be available. Therefore, if
no reliable first-principle information is available about ΩP, selection of the basis
has to be based on measured data records of the system. In this chapter, we consider
the situation when data records of some frozen behaviors of the LPV system are
available. Estimating LTI models based on these data records, result in pole samples
of ΩP. Based on these sample poles, we aim at the derivation of a basis selection
mechanism, that is capable to accomplish the following objectives:

• Reconstruction of ΩP based on the sample pole locations.
• Determination of the set of KnW optimal OBFs with respect to ΩP.

The method we propose to solve these objectives simultaneously is based on the
fusion of the KnW theory and the fuzzy c-means (FcM) clustering approach (see
[22, 79]). These theories are applied together to derive KnW optimal basis functions
by the clustering of the sample pole locations. The resulting mechanism guarantees
optimality in the KnW sense for the obtained basis functions with poles at the cluster
centers in case the fuzzyness parameter approaches infinity. In this way it provides
a trade-off between the optimality of the chosen basis and the complexity of the
optimization.

8.2 Kolmogorov n-Width Optimality in the Frozen Sense

As a first step, we investigate the KnW optimality concept of orthonormal basis
functions with respect to a LPV system in a frozen sense. To do so we revisit the
KnW theory presented in Sect. 2.5 and we highlight properties that are important
for the discussion of the basis selection mechanism. As the presented KnW theory
is formulated in the SISO case, we restrict the discussion to SISO asymptotically
stable LPV systems in the following. The basis selection problem for MIMO LPV
systems is postponed till Chap. 9.

Let FS denote the set of transfer functions corresponding to the frozen system
set FS for a given IO partition of the LPV system S. In Sect. 2.5 it has been al-
ready discussed that the KnW concept provides the selection of ng poles of an inner
function Gb ∈ H2− (E), such that the Hambo basis sequence Φ∞

ng
generated by Gb

(see Sect. 2.3) is optimal in the n = ng(ne + 1)-width sense with respect to a given
transfer function set. This optimality means that among all Hambo bases, the linear
combination of the set of ng(ne + 1) functions Φne

ng
has the smallest worst-case rep-

resentation error (in the H2 norm). In this sense, optimality means also the fastest
worst-case convergence rate ρ of the expansion of these transfer functions with the
basis sequence Φ∞

ng
. In other words, a KnW optimal basis for FS provides series-

expansion representations of all frozen systems FS , such that the convergence rate
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of the coefficients is optimal for the considered width. Note that n, i.e. the width in
which the optimality of the basis is considered represents a particular freedom. In
fact, it is a trade of between ρ and the number of poles required for Gb to achieve
it. By using a KnW optimal basis where both the optimal convergence rate ρ and
the width n is small, it is guaranteed that truncated expansion representations of all
FS need only a few expansion coefficients to approximate each frozen behavior
adequately. This means that beside finding n-width optimal OBFs for a fixed n, it
is also important to search for an adequate n. The latter problem indirectly refers
to the question how many basis functions are required for the truncated expansion
representation to achieve a good approximation.

Introduce the pole manifest set

ΩP =
{
λ ∈ C | ∃p ∈ P, such that λ is a pole of Fp ∈ FS

}
, (8.1)

the collection of pole locations belonging to FS . For a given ΩP and a fixed n = ng,
the KnW basis selection problem with respect to FS comes down to the inverse
Kolmogorov problem (see Sect. 2.5): finding the best fitting hull of ΩP in the form

Ω(Λng ,ρ) := {z ∈C | |Gb(z−1)| ≤ ρ}, (8.2)

where Gb is defined by the poles Λng = [λ1 . . . λng ] and ρ > 0 is as small as
possible. Then, in terms of Proposition 2.1, the inner function Gb, associated with
the best fittingΩ(Λng ,ρ), generates the n-width optimal basis functions with respect
to FS . For a given inner function Gb with poles Λng , define

κng(z,Λng) := |Gb(z−1)|=
ng

∏
j=1

∣∣∣∣
z−λ j

1− zλ ∗j

∣∣∣∣, (8.3)

the so-called Kolmogorov cost. Then for a given ng > 0, the solution of the inverse
Kolmogorov problem is equivalent with the min-max problem (2.62), formulated in
this case as an optimization:

minimize ρ = maxz∈ΩP
κng(z,Λng),

such that Λng =
[
λ1 . . . λng

] ∈Dng .
(8.4)

The minimizer of (8.4), is an array of pole locationsΛng which defines the best inner
function, i.e. Hambo basis in the KnW sense. If the resulting Ω(Λng ,ρ) is equal to
ΩP, then in terms of Proposition 2.1, the generated basis is also optimal in the k ·ng-
width sense for any k ∈N. Otherwise, higher width optimality of the basis does not
hold in the general case (see Example 8.1). This underlines that to find an optimal
OBF set for ΩP, an optimal choice of ng is also needed. We will see that by using
powerful results in hyperbolic geometry, in some cases, an optimal choice of the
width is available.

Example 8.1 (Optimal n-widths). In this example, we show that a basis sequence
which is optimal in the KnW sense is not necessary optimal in the 2n-width
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Fig. 8.1 Kolmogorov 2-
width optimal basis func-
tions Φ0

2 with poles Λ2
(denoted by �) and Kol-
mogorov 4-width optimal
basis functions Φ0

4 with
poles Λ4 (denoted by ×)
with respect to the pole
manifest region ΩP (shaded
grey area). The perimeter of
the associated minimal re-
gions Ω(Λ2,0.5333) (thick
black line) and Ω(Λ4,0.1)
(identical toΩP) is indicated
with contour lines. −1 −0.5 0 0.5 1
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or other higher width cases. Let an inner function Gb be given with poles
Λ4 = [ 0.55±0.55i −0.25±0.25i ]. For ρ = 0.1, Gb defines the complex region
Ω(Λ4,ρ) whose perimeter is given with a grey line in Fig. 8.1. Any strictly proper
transfer function (and associated LTI system) with all poles inΩ(Λ4,ρ) has a series-
expansion in terms of the inner function Gb generated Hambo basis Φ∞

4 with a
worst-case convergence rate 0.1. Denote by ΩP = Ω(Λ4,ρ), the region for which
we would like to find optimal OBFs in the KnW sense. It is obvious that in the
4-width sense, the Hambo functions Φ0

4 are optimal with respect to ΩP and the
convergence rate is 0.1.

Now we would like to derive a 2-width optimal basis with respect to ΩP. By ap-
plying nonlinear optimization in terms of (8.4), the resulting optimal Hambo func-
tionsΦ0

2 are associated with the pole locationsΛ2 = [0.2995±0.3318i]. In this case,
the convergence rate, i.e. the minimal ρ > 0 such that ΩP ⊆ Ω(Λ2,ρ) is 0.5333.
With this ρ , the perimeter bound of Ω(Λ2,ρ) is given with a thick black line in
Fig. 8.1.

Now we can see that series-expansion of any strictly proper transfer function
with all poles in ΩP has a convergence rate 0.1 in case of the 4-width optimal basis
Φ∞

4 and 0.5333 in case of the 2-width optimal basis Φ∞
2 . This clearly shows that

the worst-case decay rate of a Hambo basis Φ ′∞4 generated by a inner function with
poles Λ ′4 = [Λ2 Λ2 ] (repetition of the 2-width optimal poles) has a convergence
rate (0.5333)2 = 0.2844. Comparing this to the convergence rate 0.1 of Φ0

4 it is
clear that the Hambo functions Φ ′04 are not optimal in the 4-width sense. In general
it is true that higher width optimality is only guaranteed for basis functions with
Ω(Λ,ρ) = ΩP. From Fig. 8.1 it follows that this is not the case for Λ2. However in
case of Λ4, this equivalence is satisfied, thus with respect to ΩP, Φ1

4 is optimal in
the 8-width sense, Φ2

4 is optimal in the 12-width sense, etc. �

If ΩP is known, then a solution of (8.4) for a fixed ng can be obtained via the
gradient-search based method of [73]. However, in case of an identification sce-
nario, when ΩP is not available, the gradient approach is not applicable unless ΩP
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is reconstructed from some estimated samples. This raises the need for an approach
that solves both objectives (reconstruction and KnW optimization) and gives a prac-
tical solution for the basis selection step.

8.3 The Fuzzy-Kolmogorov c-Max Clustering Approach

In the following we introduce a particular data clustering algorithm, proposed in
[196], which is the extension of the fuzzy c-means (FcM) clustering approach used
in a wide collection of applications like pattern recognition, data analysis, image
processing and fuzzy modeling (see [22, 79]). As we will show, the proposed ap-
proach is able to effectively handle the reconstruction problem of ΩP jointly with
the solution of (8.4). First, in section 8.3.1, we formulate the exact problem setting
for the clustering approach to interpret our basis selection goal. Then we charac-
terize the optimal solution of the clustering problem and introduce the extension of
the FcM algorithm. As a next step, in Sect. 8.3.2, we show how the derived optimal
solution provides an answer for the original basis selection problem of Sect. 8.2.
Numerical properties of the derived algorithm are investigated together with practi-
cal aspects, like the use of adaptive cluster merging (ACM) in this setting. At last,
a simulation example is presented to show the effectiveness of the introduced basis
selection mechanism.

8.3.1 The Pole Clustering Algorithm

Objective-function-based fuzzy clustering algorithms, such as FcM, partitions the
data into overlapping groups, so-called clusters, where each data element is asso-
ciated with a set of membership levels with respect to these clusters. These levels
indicate the strength of the association between that data element and a particular
cluster. In this way, fuzzy clustering is a process of assigning these membership lev-
els such that the resulting clusters describe the underlying structure within the data
[79]. This enables the determination of the region ΩP on the basis of the observed
poles by exploring the underlying data coherency.

Let nc > 1 be the number of clusters (pole regions) to be used to reconstructΩP.
Note that due to the uniform frozen asymptotic stability of FS , it is guaranteed that
ΩP ⊆ D, i.e. all sample poles zk are in the unit disc D. Thus, let D be the clustering
space and let Z = {zk}Nz

k=1 ⊂D, be the set of observed poles for clustering. In fuzzy
clustering, a cluster is defined by two ingredients: a center (or prototype) υi ∈ D,
i ∈ I

nc
1 and a membership function μi : D → [0,1]. While the former defines the

central point, the latter describes the “degree of membership” to the cluster for all
z ∈ D. Note that the shapes of fuzzy clusters are not described by hard borders but
by the commonly bell-like shape of the membership functions on D. Introduce also
the so-called dissimilarity measure d := D×D→R

+
0 . This dissimilarity measure is

used to define the memberships of the clusters, i.e. how the function set {μi}nc
i=1 is

distributed on D. By using a threshold value ε , we can obtain a set
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Ωε = {z ∈ D | ∃i ∈ I
nc
1 , μi(z)≥ ε}. (8.5)

This set characterizes the region approximated by the clusters for the minimal mem-
bership level ε . Now we formulate the clustering problem that is considered:

Problem 8.1 (Pole clustering problem). For a set of sampled pole locations Z and
for a given number of clusters nc, find a set of cluster centers {υi}nc

i=1, a set of
membership functions {μi}nc

i=1, and the maximum of ε , such that
• Ωε contains Z and it describes the underlying distribution of Z in terms of a

chosen dissimilarity measure d.
• With respect to Ωε , the OBFs, with poles Λnc in the cluster centers {υi}nc

i=1, are
optimal in the KnW sense, where n = nc. �

The solution is based on finding clusters in accordance with the KnW concept
and subsequently finding a maximal value for ε , such that all sampled poles are
inside Ωε . The latter is equivalent to minimizing ρ in the optimization problem
of (8.4). Note that optimality of the OBFs is considered with ne = 0. According
to the principle of the KnW theory, this might result in repetitive optimal poles
and therefore similar clusters. In the following we focus on finding n-width-based
clusters. Additionally, in case nc ≥ Nz, the solution of Problem 8.1 is trivial: the
cluster centers are associated with the sample poles. Thus only the case when nc <
Nz is considered in the sequel.

Denote by V = [υi]nc
i=1 the vector of cluster centers and introduce the membership

matrix U = [μik]nc×Nz
, where μik is the degree of membership of zk to cluster i, i.e.

μik := μi(zk). In order to achieve the clustering goal, the dissimilarity measure d is
formulated in terms of the 1-width version of the n-width Kolmogorov cost (2.61):

Definition 8.1 (Kolmogorov measure)

κ1(x,y) :=
∣∣∣∣
x−y

1−xy∗

∣∣∣∣ : D×D→ R
+
0 , (8.6)

is called the Kolmogorov measure (KM) on D. �

Later we show that κ1 is a metric in D. As notation,

dik = κ1(υi,zk), (8.7)

is introduced. In the following discussion it is shown how the KM relates the FcM
clustering asymptotically to the KnW theory, and in this way to the solution of
Problem 8.1. In order to uniquely associate each dik with a membership level μik,
the set of membership functions we consider must be restricted. A particular way is
to restrict them to ∑nc

i=1 μi(z) = 1 for all z ∈ D, i.e. requiring that U ∈ UNz
nc

, where
UNz

nc
, defined as

{
U ∈ [0,1]nc×Nz |

nc

∑
i=1

μik = 1, ∀k ∈ I
Nz
1 and 0 <

Nz

∑
k=1

μik, ∀i ∈ I
nc
1

}
, (8.8)
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characterizes the fuzzy constraints. The solution of Problem 8.1 can be viewed as a
minimization of the fuzzy-functional Jm (U,V ) : UNz

nc
×Dnc → R

+
0 formulated as

Jm (U,V ) := max
k∈I

Nz
1

nc

∑
i=1

μm
ik dik. (8.9)

This functional defines the cost function, i.e. the criterion of the expected solution
for Problem 8.1. It can be observed that (8.9) corresponds to a worst-case (max)
sum-of-error criterion, contrary to the mean-squared-error criterion of the original
FcM, see [22]. Hence, we call the algorithm that minimizes the fuzzy-functional
(8.9) fuzzy-Kolmogorov c-max (FKcM) clustering. The exact relation of (8.9) with
the KnW optimality of a partition (U,V ) is explained later (see Th. 8.2). The design
parameter m ∈ (1,∞), which is called the fuzzyness, determines the sharpness of the
cluster separation in the global minima of (8.9). This means that for low values of
m, the clusters in the optimal partition (U,V ) are separated, i.e. even for a low value
of ε they contribute disjoint regions to Ωε . For large values of m, the contribution of
the regions are indistinguishable in almost every point of D. This gives the intuition
that for low m, we try to achieve the reconstruction of ΩP with the clusters in an
“individual” sense, while for large m in a “cooperative” sense. Based on this, the
following theorem yields the ingredients to solve Problem 8.1:

Theorem 8.1 (Optimal partition). Let m > 1, a data set Z ⊂ D with Nz elements,
and a fuzzy partition (U,V ) ∈UNz

nc
×Dnc be given. Denote [V ]i = υi and [U ]i j = μi j .

Define γi(ν,U) as the minimal value of τ ∈ [0,1] fulfilling the quadratic constraints:

[ |1−z∗kν|2 μm
ik · (zk−ν)

μm
ik · (zk−ν)∗ τ2

]
	 0, ∀zk ∈ Z, (8.10)

where ν ∈ D. Additionally, let dik = κ1(υi,zk) be the dissimilarity measure of zk

with respect to V and S(V,zk) =
{

i ∈ I
nc
1 | dik = 0

}
be the singularity set of zk with

Card(S(V,zk)) = nk (number of elements). If (U,V ) is a local minimum of Jm, then
for any (i,k) ∈ I

nc
1 × I

Nz
1 :

μik =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
nc

∑
j=1

(
dik
d jk

) 1
m−1

)−1

if S(V,zk) = /0;

1
nk

if i ∈ S(V,zk);

0 if i /∈ S(V,zk) �= /0;

(8.11a)

υi = argmin
ν∈D

γi(ν,U). (8.11b)

The proof is given in Appendix A.3. Using the approach of the FcM case, mini-
mization of (8.9) subject to (8.8) is tackled by alternating optimization (Picard iter-
ation), steering the solution towards a settling partition in the sense of Th. 8.1. For
the FKcM, this yields Algorithm 8.1.
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Algorithm 8.1 (FKcM clustering)

Step 1. Fix nc and m; and initialize V0 ∈ Dnc , l = 0.

Step 2. With (8.11a), solve Ul+1 = arg min
U∈UNz

nc

Jm (U,Vl).

Step 3. With (8.11b), solve Vl+1 = arg min
V∈Dnc

Jm (Ul+1,V ).

Step 4. If Jm (Ul+1,Vl+1) has converged, then stop, else l = l +1 and goto Step 2.

8.3.2 Properties of the FKcM

Next,we investigate the properties of the introduced algorithm, showing that KnW
optimality of the resulting cluster centers (if the solution is the global minima of
(8.9)) holds in an asymptotic sense (m→∞). It is also discussed how Algorithm 8.1
can be implemented in practice, how convergence of the solution can be detected,
and how numerical problems can be avoided.

8.3.2.1 Asymptotic Property

In order to explain the specific choices for the fuzzy functional (8.9) and the dissim-
ilarity measure dik, we use the following theorem.

Theorem 8.2 (Asymptotic property of Jm). Given a data set Z ⊂ D with Nz ele-
ments, and a vector of cluster centers V ∈Dnc , such that dik = κ1(υi,zk) �= 0 for all
(i,k) ∈ I

Nz
1 × I

nc
1 (no singularity). Define Um as a membership matrix of V satisfying

(8.11a) for m > 1. Then

a. limm→1 Jm(Um,V ) = maxk∈I
Nz
1

mini∈I
nc
1
{dik}, which corresponds to the hard par-

titioning of Z, i.e. μik ∈ {0,1}, ∀(i,k) ∈ I
nc
1 × I

Nz
1 .

b. J2(U2,V ) = maxk∈I
Nz
1

(
∑nc

i=1 dik
)−1

, which is the maximum of the harmonic-

means-based distance of each zk with respect to the clusters.

c. Jm(Um,V ) = n1−m
c maxk∈I

Nz
1

(
∏nc

i=1 dik
)1/nc +O(e−m). Furthermore, Jm(Um,V )

decreases monotonically with m, and limm→∞ Jm(Um,V ) = 0.

The proof is presented in Appendix A.3. Th. 8.2 shows that the value of m has
great impact on what the minimization of the fuzzy-functional (8.9) represents. If
m = 1, each sample pole is assigned exactly to one cluster. Thus, minimizing the
KM distance of the cluster center with respect to only the assigned poles yields that
the resulting cluster center is the pole of the 1-width optimal basis function with
respect to the assigned sample poles. In this way, the optimal partition corresponds
to a collection of 1-width optimal basis functions with respect to each separated
groups of the sample poles. In case m > 1, each of the sample poles belongs to
all clusters with different membership levels. Thus minimizing the KM distance of
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each cluster center with respect to the sample poles with these membership weights
(see (8.9)), yields a set of pole locations that approximates the poles of the KnW
optimal solution. If m→ ∞, then these weights/memberships become equal, and all
cluster centers try to decrease the KM distance for all sampled poles in a coopera-
tive manner, which is equivalent with the KnW optimization problem (8.4). In this
way, the minimization of Jm corresponds to a close approximation of (8.4) for large
m. This property enables the FKcM to solve Problem 8.1 directly and explains all
the particular choices1 (dissimilarity measure, modified fuzzy-functional) we made
during its introduction. In this way, as a clustering mechanism, the algorithm solves
the reconstruction of the possible ΩP and at the same time it solves the optimization
problem (8.4) in an approximative manner.

It should be noted that, in case m→ ∞, μik → 1/nc for all (i,k) ∈ I
nc
1 × I

Nz
1 in

the optimal partition, which can cause numerical problems in the minimization of
(8.11b). Therefore m acts as a trade-off parameter: to obtain a well approximating
solution of Problem 8.1, an appropriately large value of m ∈ (1,∞) should be used,
but at the same time m must be as low as possible to reduce the complexity of the
optimization. Based on experience in the application of the algorithm, m ∈ [5,10]
usually yields satisfactory results (see [196]).

For m > 1, the FKcM-functional (8.9) is a bounded (0≤ Jm ≤ 1) monotonically
decreasing function both in {dik} and U , which allows Algorithm 8.1 to converge in
practice2. The convergence point, which directly depends on the initial V0, can either
be a local minimum or a saddle point of Jm, fulfilling Th. 8.1. Therefore, just like for
FcM clustering, it is advisable to repeat the algorithm multiple times with different
initial choices for V0 and then select the best resulting set of OBFs. The performance
comparison of the resulting clusters is available by computing the Kolmogorov cost
(8.3), i.e. associated decay rate, ρ̆ of the cluster centers with respect to the sample
poles:

ρ̆ := max
z∈Ω

κng(z,Λng) = max
z∈Z

nc

∏
i=1

∣∣∣∣
z−υi

1−zυ∗i

∣∣∣∣ . (8.12)

An other performance indicator is how tight the boundary region Ω(ρ̆ ,Λnc = V )
(see (8.1)) is with respect to Z. In practice, uniformly random choices for V0 are
suggested. Initial partitions based on the distribution of Z can also be used (V0 cho-
sen as random elements of Z, V0 is given as the points of a circle around the mean
of Z, etc.) however they limit the possibilities to explore all local minima, while
random initialization based on a uniform distribution gives equal probability.

In the rare case of singularity of the resulting partition (some dik = 0), Th. 8.2
does not hold. Such a phenomenon can only happen in extreme situations when for
example nc ≈ Nz. In that case, an optimal partition can contain some clusters whose
cluster center is equal to sample pole locations. Singularity of the partition can also
result if the samples of ΩP do not describe any data coherency, suggesting that ΩP

1 See [192] for a comparison between different choices of the dissimilarity measure and the
fuzzy-functional to solve Problem 8.1.

2 For the standard FcM, convergence to a local minimum can be shown [22], but the under-
lying reasoning does not hold for the FKcM case as Jm is discontinuous on UNz

nc .
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is not a region but a finite set of isolated points. In such cases, the best solution in
the KnW sense is to assign a dedicated OBF with respect to some sampled poles.
However, whenΩP is a region, this solution should be avoided, as the reconstruction
of ΩP based on the pole samples is required before choosing the basis functions.
Thus, to assist the validity of the reconstruction, nc must be chosen a priori such
that it correctly describes the separated pole regions of ΩP. This can be achieved
by visual inspection of the sampled poles, by trial-and-error or by using automated
selection (see Sect. 8.3.2.4).

8.3.2.2 Optimization and Numerical Conditioning

While Step 3 in Algorithm 8.1, i.e. the membership update, can be analytically
computed through (8.11a), Step 4, i.e. the cluster center update, requires the so-
lution of (8.11b). The optimization defined by (8.11b) is a minimization problem
with quadratic constraints (QC)s, where γ is the optimization variable and ν is the
decision variable. Based on [162], it is possible to derive sum-of-squares (SoS) re-
laxations of such constraints, through which (8.10) is turned into a linear matrix in-
equality (LMI). The resulting convex minimization of γ , based on these constrains,
is a linear semi definite programming (LSDP) problem that can be efficiently solved
by a variety of (interior-point-based) solvers like SeDuMi [183] or CSDP etc. Al-
ternatively, bisection-based recursive search (see [8]) can also be used to obtain the
minimization of {γi} with respect to (8.10). In each step of this bisection-based
minimization, every QCs with a fixed τ is rewritten as a LMI constraint. Checking
feasibility of the constraints indicates how to proceed with the minimization of γi

(see [193] for the details).
For high values of m, the QCs (8.10) become numerically ill-conditioned, which

can be avoided by the normalization of
{
μm

ik

}Nz

k=1:

μ̄ik =
μm

ik

μ̆i
, with μ̆i =

Nz

∑
k=1

μm
ik . (8.13)

8.3.2.3 Termination Criterion

In Algorithm 8.1, the cost function Jm “flattens” when m increases. This yields that
for high values of m, Jm is almost constant for all points of UNz

nc
×Dnc except in the

close neighborhood of its local minima where its value decreases quickly. To avoid
unnecessary termination of the algorithm on the flat surface of the cost function, the
relative evolution of Jm, in each iteration step l, has to be checked in a windowed
sense:

1− maxk (Jm (Uk,Vk)− Jm (Uk−1,Vk−1))
maxk Jm (Uk,Vk)

< εt (8.14)
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where k ∈ Il
l−n, n > 0 is the length of the window, and 0� εt < 1 is a user defined

termination constant. If in step l (8.14) is satisfied, then the relative evolution of Jm

has been small in the considered window, so the optimization is terminated. Expe-
rience has shown, that for m ∈ [5,10], the threshold εt = 0.99 with n = 3 usually
works well.

8.3.2.4 Cluster Merging

The determination of the number of “natural” pole groups in Z, i.e. the best suitable
nc for clustering, is important for the successful application of the FKcM method.
Similarity-based adaptive cluster merging (ACM) can be effectively used for this
purpose [196]. The basic idea of ACM is the following: a measure of similarity is
introduced with respect to cluster pairs. Then, in each iteration step of Algorithm
8.1, a cluster pair is merged when its similarity between iterations changes negli-
gibly (characterized with a threshold εs ∈ [0,1]) and if also this pair is the most
similar of all cluster pairs. However, merging is only applied if the similarity mea-
sure exceeds a certain threshold value, εa ∈ [0,1]. In FcM clustering, commonly the
so-called inclusion similarity measure is applied (see [83]) and εa is taken as an

adaptive threshold ε(l)
a = (n(l)

c − 1)−1, where ε(l)
a is the value of the threshold and

n(l)
c the remaining number of clusters in iteration l. In [83] this adaptive threshold

has been observed empirically to work well if the initial number of clusters n(0)
c

satisfies: n(0)
c < 1

2 Nz.
In [196] it has been shown that starting from a large nc, the use of the ACM strat-

egy in the FKcM algorithm gives the possibility to “adequately”choose the number
of clusters to describe the region ΩP, associated with the samples Z. In the consid-
ered problem setting, adequateness means that for the reconstructed region Ωε , in
which width sense we search for KnW optimal OBFs, where the basis functions are
associated with the cluster centers. If the available information, the sampling of ΩP,
is dense, then in the optimal solution of Problem 8.1: Ωε ≈ ΩP. This implies that
the ACM provides an effective choice of the width, i.e. the value of n in which the
KnW basis is searched for ΩP with the proposed algorithm. However in terms of
Proposition 2.1, the setting of Problem (8.1) implies that repetitive basis poles can
also be part of the optimal solution. With ACM, these solutions are not accessible as
repetitive poles result in perfectly similar clusters which are immediately joined. As
a result, the ACM only yields convergence to partitions with distinct cluster centers.
This means that the choice of the adequate width in the KnW sense is restricted such
that the optimal basis poles for the adequate width must be distinct.

8.3.2.5 Validity Measures of Fuzzy Partitions

To check the quality of the resulting (U,V ) partition in terms of the clustering
goal, several measures can be introduced that quantify the compactness, separation,
and validity of (U,V ) (see [9] and [43]). A measure that can jointly express these
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concepts and give a common ground of comparison between different FcM parti-
tions is the Xie-Beni validity index [234]:

χ =
1

Nz

Nz

∑
k=1

nc

∑
i=1
μ2

ikd2(υi,zk)

min
i, j∈I

nc
1

d2(υi,υ j)
. (8.15)

It can be proved that the smaller χ is, the better the corresponding fit of (U,V ) with
respect to Z is.

Based on the initialization of the FcM algorithm, optimal partitions with differ-
ent nc can be attractive solutions of Algorithm 8.1 with ACM. To decide which
of the solutions represents the underlying data-structure best, the separation of the
clusters can give an indication. To quantify the quality of separation, commonly the
normalized entropy is used [22]:

Se =−

nc

∑
i=1

Nz

∑
k=1

μik log( μik
Nz

)

Nz−nc
. (8.16)

The smaller Se is, the more valid the hypothesis is that the clusters match with the
natural data groups (if they exist).

8.3.3 Simulation Example

To allow insight into the basis selection method an extensive example is studied.

8.3.3.1 The Data Generating System

Consider an asymptotically stable discrete-time SISO LPV system S with IO parti-
tion (u,y) and scheduling signal p. Let a minimal IO representation of S, RIO(S)
be given as:

5

∑
i=0

(ai � p)qiy = (b4 � p)q4u, (8.17)

with P = [0.6,0.8] and coefficients

a0 � p =−0.003, a3 � p = 61
110 −0.2sin(q5 p),

a1 � p = 12
125 −0.1sin(q5 p), a4 � p =− 511+192q5 p2−258(cos(q5 p)−sin(q5 p))

860 ,

a2 � p =− 23
85 + 0.2sin(q5 p), a5 � p = 0.58−0.1q5p,

b4 � p = cos(q5 p).

In Fig. 8.2a, the pole manifest set ΩP of RIO(S) is presented with a solid red line,
while in Fig. 8.2b the first 15 Markov parameters of the frozen impulse responses
of RIO(S) are given for all constant scheduling trajectories p(k) = p. These frozen
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Fig. 8.2 (a) The pole manifest set ΩP (solid red line) of the LPV-IO representation RIO(S).
Sampled pole locations are denoted by �. (b) First 15 Markov parameters of the impulse
responses of RIO(S) with respect to all constant scheduling trajectories p(k) = p.

impulse responses are associated with the behaviors of the frozen system set FS of
S for the considered IO partition. These pictures show that the dynamic changes of
S are quite heavy for different constant scheduling trajectories.

By using constant scheduling signals with values {0.6;0.6 + τ; . . . ;0.8}, where
τ = 0.02, 11 frozen LTI representations of S are obtained, whose pole locations
are samples of ΩP. These samples are given with yellow � in Fig. 8.2a. In our ba-
sis selection approach, these LTI representation are considered to be the results of
identification of S with constant p.

8.3.3.2 FKcM Clustering of the Sample Poles

By using the obtained Nz = 11 · 5 sample pole locations as a data set Z, the FKcM
algorithm has been executed with different values of m and both with a fixed num-

ber of clusters as with the application of ACM starting from n(0)
c = 27 ≈ Nz/2. In

the fixed case, nc = 8 is used and the obtained solution is denoted as m2nc8 for a
fuzzyness m = 2. In case of ACM, if the algorithm has resulted in nc = 11 clusters
for a fixed m, like m = 8, then the solution is denoted by m8ad11. Note that in the
fixed case we use the particular choice of 8 clusters as this number of clusters agrees
with the number of sets by visual inspection (two times 3 sets for the complex and
2 sets for the real poles). It is shown in the sequel that this number of clusters is also
selected by the ACM.

The results of the algorithm are presented in Table 8.1 and in Fig. 8.3. The com-
parison in Table 8.1 is given in terms of Nav, the average number of iterations based
on 10 runs of the algorithm starting from random V0; nc, the number of obtained
clusters; Se, the Normalized Entropy (see (8.16)); χ , the Xie-Beni validity index
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Table 8.1 Comparison of algorithmic results in terms of Nav, the average number of itera-
tions based on 10 runs of the algorithm starting from random V0; nc, the number of obtained
clusters; Se, the Normalized Entropy; χ , the Xie-Beni validity index; ρ̆ , the achieved decay
rate; and εne

max, the worst-case absolute error of the impulse responses of the truncated series-
expansion representation of each Fp ∈ FS in terms of the cluster centers generated OBFs
with ne repetition.

Test case Nav nc χ (dB) ρ̆ (dB) Se εne=1
max (dB) εne=3

max (dB)

m2nc8 21 8 −17.49 −55.86 1.79 −43.73 −146.61
m8ad8 37 8 −12.42 −58.38 2.41 −46.90 −171.41
m8ad11 65 11 −8.44 −83.11 2.94 −77.33 −249.63
m25nc8 56 8 −13.20 −61.36 2.43 −45.34 −168.83

(see (8.15)); ρ̆ , the achieved decay rate (see (8.12)); and εne
max, the worst-case abso-

lute error of the impulse responses of the truncated series-expansion representation
of each Fp ∈FS in terms of the resulting OBFs with ne repetitions. In Fig. 8.3, the
resulting basis poles are given by blue × for each solutions together with the sam-
pled poles (red ◦). By using the cluster centers as basis poles,Λnc = V , the resulting
boundary of Ω (Λnc , ρ̆) is also given in Fig. 8.3. Based on these, the following ob-
servations can be made:

8.3.3.3 Analysis of the Results

• The values of Nav, which are based on the results of 10 runs starting from random
V0, are relatively low, but they are growing with m. Explanation lies in Th. 8.2, by
which Jm→ 0 as m→ ∞. This property introduces both increased computational
error and flat shapes of membership surfaces for large m (compare Fig. 8.4a to
8.4b). Flat surfaces give smaller improvements towards the minimum of Jm in
each iteration of Algorithm 8.1, than the smooth slope of the m = 2 case.

• The FKcM with ACM (εs = −15dB), starting from n(0)
c = Nz/2, converges to

a 8-cluster-based partition for low m, but in case of higher values of m, the op-
timization has different attractive solutions, like the m8ad8 and m8ad11 cases.
Here both the 8 and the 11 cluster-based partitions are attractive, depending on
the initial position of the cluster centers. However, m8ad8 achieves a lower en-
tropy Se than m8ad11, suggesting that m8ad8 corresponds better to the natural
data structure. As different initial conditions can drive the FKcM with ACM to
converge to partitions with different nc, it is suggested to the user to choose the
one with the lowest Se, as it most likely yields the “best” partition.

• χ is small in all cases, showing that each partition represents the underlying
structure well. However, χ is not comparable for different m. χ has a decreasing
tendency with growing nc and an increasing tendency for growing m, therefore
the fact that χm25nc8 < χm8ad8 supports that m25nc8 corresponds better to the
underlying data structure in the KnW sense than m8ad8. However, such a com-
parison can not be made with respect to the m8ad11-case.
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(d) m25nc8

Fig. 8.3 Results of FKcM clustering in the considered cases: sampled poles (red o), resulting
cluster centers (blue �), and boundaries of Ω (Λnc , ρ̆) (green bold lines).

• The region Ω (Λnc , ρ̆) describes the pole locations of all transfer functions that
have a series-expansion with a worst-case convergence rate of ρ̆ in terms of
the Λnc associated OBFs. For the resulting cluster centers, the boundary of
Ω (Λnc , ρ̆) is relatively tight in all cases except for m2nc8 and it also includes
ΩP (see Fig. 8.2). This means that the convergence rate of the basis has been
focused/optimized for LTI systems with transfer functions that have poles close
to the frozen poles of RIO(S). ρ̆ is also acceptable, which means small modeling
error, i.e. fast convergence rate if the corresponding poles generated orthonormal
basis are used for the series-expansion representation of the frozen behaviors of
S. In terms of Sect. 5.5, this implies fast convergence rate of the series-expansion
of S with respect to the derived basis. In the m8ad11-case, ρ̆ is the best, which
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(a) m = 2, nc = 8 (b) m = 25, nc = 8

Fig. 8.4 Membership functions of the 8th cluster for different m. In the second case the point
corresponding to υ8 is not shown due to the peaking nature of the function to 1 (only a straight
line to 1 from a flat surface would be presented).

is the consequence of the larger (nc = 11) number of OBFs only. By repeating
the obtained pole sets in the Hambo generation of the basis functions, i.e. using
ne > 0, such that the number of generated basis functions are equal, compari-
son of the KnW performance of these cases becomes available. Based on such
a comparison, it follows that m25nc8 is better in the KnW sense, which is in
agreement with Th. 8.2. The partition m2nc8 is the worst among these results,
which suggests that only larger values of m can ensure the quality of the obtained
solution.

• Fig. 8.5 and Table 8.1 show the representation errors of the frozen impulse re-
sponses of RIO(S) by the impulse responses of the truncated series-expansion
representation of each Fp ∈FS in terms of the OBFs generated by the cluster
centers with ne repetitions. From these results it follows that the obtained set
of OBFs has negligible representation error with respect to FS , which has been
our main objective (see Sect. 8.3.1). Among the solutions with 8 basis functions,
surprisingly m8nc8 has the lowest representation error of the frozen impulse re-
sponses instead of m25nc8. Based on the previous results, one would expect that
the representation error of the frozen impulse responses is less for OBFs gen-
erated with higher m, however this is not the case here, due to the fact that ΩP

is sampled. Even if m25nc8 delivers a better choice with respect to the sampled
pole locations, it is not guaranteed that the reconstruction of ΩP, based on the
sample poles, resulted in a better estimate than in the other cases. By comparing
the results in terms of Se, such a phenomenon is clearly indicated. The quality
of the information, i.e. how well the pole samples describe ΩP is highly signif-
icant in establishing optimality between the sampled-poles-based OBFs and the
original system.

In conclusion, the FKcM solutions for the considered example are converging
relatively fast to optimal partitions in terms of Th. 8.1. In accordance with Th. 8.2, as
m increases, these partitions give better solutions of Problem 8.1. ACM also ensures
proper selection of an efficient number of OBFs in the KnW sense, if the different
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(a) m2nc8 (b) m8ad8

(c) m8ad11 (d) m25nc8

Fig. 8.5 Approximation error of the frozen impulse responses of RIO(S) by the impulse
responses of the truncated expansion representations of each Fp ∈FS in terms of the FKcM
clustering obtained OBFs.

settling partitions are compared in terms of Se. Furthermore, validity of the derived
partitions is supported by low χ in all cases.

Comparison of results to solutions obtained by the gradient search method [73,
Ch. 11], is only possible if the number of available samples of ΩP is so high that
there is no need for the reconstruction of ΩP. Thus an advantage of the FKcM ap-
proach is that it gives a solution for the practical case when only few samples of ΩP

are available. In the unrealistic case, when ΩP is known, both algorithms converge
to similar solutions, but with a lower computational time in the FKcM case. The two
algorithms also have similar properties in the sense that they only yield convergence
to local minima. As online selection of the efficient number of OBFs is difficult to
implement into the gradient search method, the FKcM approach, with strategies like
the ACM, has a second advantage over gradient approaches.
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8.4 Robust Extension of the FKcM Approach

During the development of the FKcM approach, we have assumed that some sam-
ples of ΩP are given. These samples have been used as a data set, i.e. a source
of information on which the developed basis selection tool is based on. We have
motivated that such samples are available in practice either based on first principle
information or as the poles of model estimates of the frozen system set FS . These
model estimates are considered to be the result of LTI identification of the LPV sys-
tem with constant scheduling signals. However, system identification is in practice
always affected by noise, thus the pole locations of the estimated models are the re-
alizations of an underlying probability function of the frozen poles. This means that
selecting basis functions, based on estimated poles, carries the risk that the result of
the basis selection by the FKcM method is significantly effected by the noise. In this
section, we aim to provide a robust solution of the previously considered basis se-
lection problem by reformulating the developed FKcM approach, such that it takes
into account the uncertainty of the pole estimates.

8.4.1 Questions of Robustness

In prediction-error identification, each estimated pole can be associated with an un-
certainty region in the complex plain for a certain level of confidence. In the classical
literature, ellipsoidal regions are quantified that are the results of the linearization
of the map from parameters θ to pole locations {λ}. In Sect. 2.4.6, an alternative
approach of [223] has been introduced that characterizes pole uncertainty regions
of the model estimates without linearization. The approach leads to a (possibly dis-
connected) uncertainty region P(Qθ ,α)⊂ C for which it holds that

λ̂1, . . . , λ̂n ∈ P(Qθ ,α), with probability≥ α (8.18)

where {λ̂1, . . . , λ̂n} are the poles of the model estimate. Note that this uncertainty
concept is still necessarily conservative as it disregards covariance of the pole es-
timates. However, later it will be shown that the locations of the possible pole es-
timates, i.e. possible poles of a transfer function set, are formulated in the same
worst-case sense as the KnW theory. Based on this, it is clear that by using the un-
certainty regions provided by this approach as data objects in both the reconstruction
problem of ΩP and the KnW optimization problem, the basis selection task can be
solved in a robust sense.

In the original problem of FKcM clustering, the samples of ΩP form a finite
set of points Z in D. Because of the fact that Z is finite, both the reconstruction
problem and the minimization of (8.4) can be analytically computed and solved via
the proposed algorithm. However, if Z is not a finite set but a collection of complex
regions, i.e. uncertainty sets, it is not trivial how to calculate ρ in (8.4) with respect
to these regions or how to obtain the worst-case KM distance used in the FKcM
algorithm as the dissimilarity measure dik. Subsequently the problem rises how to
solve the selection problem of the OBFs poles by using the FKcM mechanism.
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To provide answers for these questions, in Sect. 8.4.2 we first show that by using
results of hyperbolic geometry, (8.3) and its 1-width version, the so-called Kol-
mogorov measure, can be analytically computed if the regions in Z are hyperbolic
circles or hyperbolic segments. However, shapes of uncertainty regions can vary ar-
bitrary, thus to use the developed hyperbolic results, the regions must be covered by
a collection of hyperbolic circles or hyperbolic segments. In Sect. 8.4.2 a practically
applicable multistep procedure is developed that covers complex regions with the
union of hyperbolic circles. In this way the KnW optimization problem (8.4) and
also the reconstruction problem of ΩP by the clustering of pole uncertainty regions
can be solved along a similar line of reasoning as in Sect. 8.3. This robust extension
of the FKcM clustering is developed in Sect. 8.4.4 and its properties are investigated
again in terms of optimality of the solution, numerical convergence, etc. It is shown
that the resulting algorithm provides the selection of asymptotically optimal OBFs
in the KnW sense for the local behaviors of S even in case of significant measure-
ment noise. This property is also illustrated through an example.

8.4.2 Basic Concepts of Hyperbolic Geometry

In order to develop the required geometrical tools, the basic aspects of the 2-
dimensional Poincaré disc model of hyperbolic geometry are introduced in the se-
quel. It is also shown how hyperbolic geometry can be used to generalize the results
of the KnW theory.

The 2-dimensional Poincaré model provides a conformal disc model, where
points of the geometry are in a complex disc. The lines are segments of circles
that lie inside the disc, where the circles themselves are orthogonal to the boundary
of the disc, or the segments are part of a diameter of the disc (see Fig. 8.6). Be-
fore defining these objects, it is motivated why this geometric model has important
relations to the KnW theory.

We have already discussed that the Kolmogorov measure (see Definition 8.1) is
equal to the cost function of the 1-width Kolmogorov problem (ng = 1) (see (8.3)).
Based on this property, the KM had an important role as a dissimilarity measure in
the FKcM algorithm to formulate KnW optimality of the obtained solution in an
asymptotic sense. Additionally, this observation has an important consequence for
geometrical objects in D which are convex in terms of the KM. Namely, that in the
ng = 1 case, the solution of (8.4) with respect to regions equivalent with these ob-
jects can be found through LMI’s based optimization. We will see that this property
provides an efficient way to solve the heavy nonlinear optimization problem that
(8.4) represents and is also the key ingredient to handle the robust basis selection
problem. In the following, we first introduce some simple convex objects in the KM
sense and additional geometrical tools that are required in the second part to develop
three key results for the above mentioned property.

The most simplest of the convex objects in the KM sense are the segments of
hyperbolic lines which are introduced through the concept of i-lines (see Fig. 8.6.a)
and their orthogonality in C:
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Definition 8.2 (i-line, [32]). In C, an i-line L is either an Euclidian line E:

L = E (e,r) :=
{

z ∈ C

∣∣∣∣
if r <∞, Im(z) = rRe(z)+e
else, Re (z) = e

}
, (8.19)

with y-intercept e ∈ C and slope r ∈ R
+
0 ∪{∞}, or Euclidian circle K

L = K (e,r) := {z ∈C | |z−e|= r} , (8.20)

with center e ∈ C and radius r ∈R+, such that L∩D �= /0. �

Definition 8.3 (Orthogonality, [32]). Two i-lines L1 and L2 are orthogonal, iff

L1 L2 L1⊥L2

line line Euclidian orthogonality
circle line L1 = K (e1,r1), then e1 ∈ L2

circle circle ∀z ∈ L1∩L2 �= /0, the radii of L1 and L2 through z are orthogonal

�
Now it is possible to define hyperbolic lines and segments (see Fig. 8.6):

Definition 8.4 (h-line & h-segment, [32]). A hyperbolic line (h-line) is defined as
H = L∩D, where L is an i-line and L ⊥ J (orthogonal to the unit circle). The sec-
tion of H between x,y ∈ H is denoted as Hxy and called a hyperbolic segment (h-
segment). �

Lemma 8.1 (Uniqueness of h-lines, [32]). If x �= y and x,y ∈ D, then there is a
unique h-line H such that x,y ∈ H.

Hence h-lines are part of Euclidean circles orthogonal to the unit circle or part of
Euclidian lines through the origin, where the part is strictly inside D. The concept of
h-bisectors of h-segments (see Fig. 8.6.b) is also important to develop connections
of Euclidian and hyperbolic geometry.
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Fig. 8.6 Hyperbolic objects of the Poincaré disc model.
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Definition 8.5 (h-bisector, [32]). The h-bisector of the h-segment Hxy (segment of
h-line H), is an h-line H⊥(xy) containing the midpoint (in the KM sense) of Hxy and
H⊥(xy)⊥ H, meaning that their corresponding i-lines are orthogonal. �

Circles are convex geometrical objects in Euclidian geometry. Their counterpart in
hyperbolic geometry (see Fig. 8.6.b) is defined as follows:

Definition 8.6 (h-circle & h-disc, [32]). A hyperbolic circle (h-circle) Kh (eh,rh)
and a hyperbolic disc (h-disc) Dh (eh,rh) with h-center eh ∈ D and h-radius rh ∈
(0,1) are defined as

Kh (eh,rh) := {z ∈D | κ1 (z,eh) = rh} , (8.21a)

Dh (eh,rh) := {z ∈D | κ1 (z,eh)≤ rh} . (8.21b)

�

To establish connection with the Euclidian geometry, the following lemmas are im-
portant:

Lemma 8.2 (h-circle equivalence, [32]). For any Euclidian circle K(e,r)⊂D with
r > 0, there exists a unique h-circle Kh (eh,rh), such that Kh (eh,rh) = K(e,r) and
eh is strictly inside K(e,r), i.e. | eh−e |< r.

Lemma 8.3 (h-center relation). For any h-circle Kh (eh,rh) and its Euclidian
equivalent K(e,r), there exists a ϕh ∈ R, such that e = ϕheh.

The proof of Lemma 8.3 is given in Appendix A.3. From Lemma 8.2, it follows that
the same equivalence holds between discs and h-discs. Furthermore, Lemma 8.3
states that the h-center and the Euclidian center of a circle or a disc lie on the same
Euclidian line connecting them to the origin. Note that hyperbolic circles are defined
through the KM measure. Therefore, based on (2.62) and Proposition 2.1, for any
circular pole region Ω = Dh (eh,rh), the optimal Λn in the Kolmogorov n-width
sense is Λn = [eh . . . eh ]1×n with ρ = rn

h. This important consequence generalizes
the result of [143] for the pulse basis (see Sect. 2.5):

Theorem 8.3 (KnW optimal OBFs for circular regions of non-analyticity). For
the class of stable transfer functions analytical outside the disc Dh (eh,rh) with
eh ∈ D and rh ∈ (0,1), the set of (complex) OBFs

{√
1− | eh |2
z−eh

Gi
b(z)

}n−1

i=0

, with Gb(z) =
1− ze∗h
z−eh

, (8.22)

are optimal in the KnW sense.

The proof of Th. 8.3 is trivial from the previously described motivation. To utilize
this property of h-circles in the sequel, the following concepts are crucial:
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Hxy or (b) h-disc Dh (eh,rh).

Definition 8.7 (Angle of h-lines, [32]). Let H1 and H2 be two h-lines intersecting
in point x and let H3 be an h-line intersecting H1 in y and H2 in z. Then the angle
γh between H1 and H2 is defined by the cosine rule:

sin(κ1(x,y))sin(κ1(x,z))cos(γh) = cos(κ1(x,y))cos(κ1(x,z))− cos(κ1(y,z)),

By convention, γh is the acute angle between H1 and H2. �

Definition 8.8 (h-inversion, [32]). hH : D→ D is called an inversion with respect
to the h-line H, iff hH maps h-lines to h-lines, preserves angles between h-lines, and
hH(z) = z for ∀z ∈H. �

The following properties are immediate:

Lemma 8.4 (h-inversion uniqueness, [32]). For ∀x∈D, there exists an h-inversion
hH, such that hH(x) = 0 and hH(0) = x. If x �= 0, then the h-line H associated with
hH is unique and H = H⊥(x,0) , otherwise H can be any h-line through the origin.

In the sequel, the notation hx is used to denote the h-inversion associated with x.

Lemma 8.5 (Hyperbolic group, [32]). The h-inversions generate a hyperbolic
group D whose elements h : D→ D are called hyperbolic transformations. Each
h ∈ D is a conformal mapping of D.

These give the following crucial observations:

Lemma 8.6 (h-circle transformation, [32]). For any h ∈ D and h-circle
Kh (eh,rh),

h (Kh (eh,rh)) = Kh (h (eh) ,rh) . (8.23)

Corollary 8.1 (κ1-invariance, [32]). κ1(x,y) is invariant under D, meaning that
κ1(x,y) = κ1 (h (x) ,h (y)), for all h ∈ D and x,y ∈ D.

Now it is possible to develop three key results that are used for the robust solution
of the basis selection problem.
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Theorem 8.4 (κ1-metric). The Kolmogorov measure κ1 is a metric on D.

The proof is given in Appendix A.3. This shows that KM is a natural “distance3” on
D.

Theorem 8.5 (h-segment worst-case distance). Given x,y ∈D, x �= y, defining the
h-segment Hxy, then for any v ∈ D

max
z∈Hxy

κ1(v,z) = max
z∈{x,y}

κ1(v,z). (8.24)

The proof is given in Appendix A.3. Theorem 8.5 shows (see Fig. 8.7a), that the
worst-case KM of any point in D with respect to an h-segment can be calculated
as the maximum of the KMs with respect to the endpoints of the segment. In Sect.
8.4.4, this result is used in the solution of the KnW optimization problem for calcu-
lating the worst-case cost of basis pole candidates with respect to uncertainty regions
associated with real pole estimates.

Theorem 8.6 (h-disc worst-case distance). Let Dh (eh,rh) be an h-disc and v ∈D.
Denote by Kh (eh,rh) the perimeter circle of Dh (eh,rh) and by H the unique h-line
through v and eh if v �= eh. Then,

max
z∈Dh

κ1(v,z) =

{
max

z∈{x,y}
κ1(v,z), if v �= eh;

rh, if v = eh;
(8.25)

where {x,y}= Kh (eh,rh)∩H (see Fig. 8.7b).

The proof is given in Appendix A.3. Again this key result is used in the solution of
the KnW optimization problem for calculating the worst-case cost of basis pole can-
didates with respect to uncertainty regions associated with complex pole estimates.
Furthermore:

Theorem 8.7 (Convexity). h-segments and h-discs are convex in D in terms of the
metric κ1.

The proof is given in Appendix A.3. In conclusion, the importance of hyperbolic
geometry with respect to the KnW theory is twofold. First of all, it can be shown
that the metric associated with this geometry is equal to the cost function of the
Kolmogorov ng = 1-width optimization problem described by (8.3). This equality
is a key property used during the derivation of the FcM based basis selection algo-
rithm (see Sect. 8.3). The second importance is that by using convex objects of the
hyperbolic geometry as h-lines and h-circles, the solution of (8.4) over these regions
can be turned into a convex optimization problem with LMI constraints. The latter
property is essential to the robust basis selection algorithm developed later.

3 Note that KM is not a distance on D in the geometrical sense; only 2arctanh (κ1(x,y))
bears this property and is called the Poincaré distance [32].
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8.4.3 Pole Uncertainty Regions as Hyperbolic Objects

In the robust basis selection problem the results of hyperbolic geometry will be ap-
plied on pole uncertainty regions. However, the pole uncertainty regions of Sect.
2.4.6 do not necessary coincide with hyperbolic objects. Thus, it is required to ap-
proximate these regions by a coverage of hyperbolic objects in order to apply the
developed results. In the following, a simple pragmatic procedure for this approxi-
mation is briefly explained.

In principle it is true that, if an identified transfer function G(q, θ̂Nd) has a real
valued pole, then the pole-uncertainty region P(Qθ ,α) of G(q, θ̂Nd) (for a given con-
fidence level α) contains segments of the real axis. Therefore, these segment parts
of P(Qθ ,α) can be associated with h-segments without the need of any approxi-
mation. In case G(q, θ̂Nd) has a complex pole pair, then P(Qθ ,α) contains complex
regions which come in complex conjugate pairs. Depending on the uncertainty of
the model estimate, these complex regions can merge into one another, and can also
encircle parts of D which seemingly do not contain any of the estimated or original
pole locations (see Sect. 2.4.6). Thus complex pole uncertainty regions can occur in
complicated shapes. However, with a simple methodology, quite effective coverage
of such shapes can be achieved by h-discs.

Let Ω be a separate, complex region in P(Qθ ,α). Due to the method of [198], the
separated regions are distinguished during the calculation of P(Qθ ,α). Assume that
an equidistant gridding of D is given with step size τ ∈R+ and the set of grid points
is denoted by Q. Let Q+ = Ω ∩Q be the grid points in Ω and let Q− = Q \Q+.
Next, define D0 as a collection of equidistant Euclidian discs with centers at each

points of Q+ and with radii r =
√

2
2 τ . In this way, a coverage of Ω is obtained by

an unnecessary large number of Euclidian discs determining uniquely their h-disc
counterparts. This is used as the initialization of the iterative optimization procedure
of Algorithm 8.2 to find an efficient disc-coverage based on a fixed number of n discs
with unequal radii.

In Step 2 of this algorithm, a disc is selected from the coverage which is the
furthest from the points of Q− and its radii can be increased by

√
2

2 τ , without
causing the discs to contain any point of Q−. In case of a tie, an arbitrary disc is
selected from the possible choices. The radius of the selected disc is increased with√

2
2 τ in Step 3. If a disc contains other discs after its radius was increased, then

those discs are removed from the coverage in Step 4. The procedure is repeated till

there is no disc whose radius can be increased by
√

2
2 τ without containing a point of

Q−. The optimization results in a h-disc coverage that gives an “optimal” coverage
for the grid-points Q+ with a minimal number of circles, however this number
can be much larger than desired. Therefore a second optimization is initiated in
Step 6, which gives a suboptimal approximation of this coverage by a predefined
number of discs n. In Step 7, two discs that have the smallest dissimilarity in terms
of εi j =

∣∣e j−ei
∣∣+ ∣∣r j−ri

∣∣, where e j,ei are the Euclidean centers and r j,ri the
Euclidian radiuses of the discs, are selected. These discs are merged in Step 8 by
increasing the radii of the larger disc with εi j. If a disc contains other discs after
merging, then the contained discs are removed from the coverage. Merging is
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repeated till the desired number of circles is achieved. Example 8.2 shows how the
method works in practice.

Algorithm 8.2 (Disc coverage of complex regions)

Step 1. Let D0 := {D(e,
√

2
2 τ)}e∈Q+ be a disc coverage of Ω based on the step

size τ > 0. Let n > 0 and l := 0.

Step 2. Find a D(e,r) ∈ Dl such that minv∈Q−minz∈D(e,r) |v−z| is maximal on

Dl and D(e,r+
√

2
2 τ)∩Q−= /0. Let D̂l = D(e,r+

√
2

2 τ) otherwise D̂l = /0.
Step 3. If such D exists, then Dl+1 = (Dl \D)∪ D̂l.

Step 4. Remove all D from Dl+1 which satisfy D⊆ D̂l .

Step 5. If D̂l �= /0, then set l := l + 1 and goto Step 2.

Step 6. If Card(Dl+1)≤ n, then stop, else set l := l +1 and continue with Step 7.
Step 7. Find Di(ei,ri),D j(e j,r j) ∈ Dl such that Di �= D j, ri ≥ r j, and εi j =∣∣e j−ei

∣∣+ ∣∣r j−ri
∣∣ is minimal.

Step 8. D̂l = D(ei,ri + εi j) and Dl+1 = (Dl \{Di,D j})∪ D̂l . Perform Step 4 and
goto Step 6.

Example 8.2 (Hyperbolic coverage of pole-uncertainty regions). Continue Example
2.1 by computing the hyperbolic coverage of the pole uncertainty regions with Al-
gorithm 8.2 using τ = 10−3. For regions associated with different confidence levels,
the results are given in Fig. 8.8. As can be seen, even the complicated butterfly
region is rather well approximated with a small number of h-discs. �

8.4.4 The Robust Pole Clustering Algorithm

In the following, the robust extension of the original FKcM approach is discussed.
As the mechanism of the clustering remains the same in the robust extension, we
will follow the same line of reasoning as in Sect. 8.3. However, we investigate and
derive these results in a different problem setting.

Let {Ĝpi}nloc
i=1 be a set of estimated frozen transfer functions of the LPV system

S identified for constant scheduling signals: pi ∈ P and IO partition (u,y). Each Ĝpi

is associated with a pole uncertainty region Ppi containing a number of regions in
D. Let {Ωk}Nz

k=1 denote the collection of these regions and introduce Zk as the set
of hyperbolic objects describing/approximating each Ωk, as has been discussed in
Sect. 8.4.3. If Ωk is a segment on the real axis (real pole), then associate Zk with an
h-segment being equal to Ωk, else associate it with a union of h-discs covering Ωk

(complex case). Denote Z = {Zk}Nz
k=1 and call it the data set. Similar to the original

FKcM algorithm, introduce 1 < nc < Nz as the number of clusters or data groups,
υi ∈D as the cluster centers, and μi : D→ [0,1] as the membership functions of the
clusters for all z ∈ D. By using the threshold value ε , we again obtain the set
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Fig. 8.8 (a) 20 h-discs based coverage of a non-connected uncertainty region of Fig. 2.2
with confidence level 1%. The overfit in area is 4.55%. (b) 40 h-discs based coverage of a
connected uncertainty region of Fig. 2.2 with confidence level 99%. The overfit in area is
4.35%.

Ωε = {z ∈ D | ∃i ∈ I
nc
1 , μi(z)≥ ε}, (8.26)

which is used to formulate the robust variant of Problem 8.1:

Problem 8.2 (Robust pole clustering problem). For a set of pole uncertainty re-
gions {Ppi}nloc

i=1, described by a set of hyperbolic objects Z, and for a given number
of clusters nc, find a set of cluster centers {υi}nc

i=1, a set of membership functions
{μi}nc

i=1, and the maximum of ε , such that

• Ωε contains Z.
• With respect to Ωε , the OBFs, with poles Λnc in the cluster centers {υi}nc

i=1, are
optimal in the KnW sense, where n = nc. �

Again, the solution is based on finding clusters in accordance with the KnW concept
and subsequently finding a maximal value for ε , such that all uncertainty regions are
inside Ωε . It is obvious that the only difference between the robust and non-robust
clustering problem is in terms of the data objects, which are points (poles) of the
complex plane in the non-robust case and regions of the complex plane in the robust
case.

Denote V = [υi]
nc
i=1 and U = [μik]nc×Nz

, where μik = maxz∈Zk
μi(z) is the degree

of membership of Zk to cluster i. Furthermore, “distances” dik between υi and Zk

are also introduced to measure dissimilarity of Z with respect to each cluster. To
derive an algorithmic solution of Problem 8.2, this dissimilarity measure is defined
as the Kolmogorov measure, the cost function of the 1-width version of (8.4), but
instead of pointwise, it is defined with respect to each Zk in a worst-case sense:

dik = max
z∈Zk

κ1 (υi,z) . (8.27)

Note that by applying Theorems 8.5 and 8.6, dik can be computed analytically with
respect to each Zk ∈ Z. If Zk is a h-segment between points zk1,zk2 ∈ (−1,1), then
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dik is the maximum of the Euclidian distance between υi and these end-points. In
case Zk is a union of h-discs, then first the intersection points are computed for each
disc between the perimeter of the disc and the h-line connecting its h-center with
υi. Then dik results by calculating the maximum of the KM between these points
and υi. In all cases dik > 0, as the worst-case “distance” over regions can never drop
to zero. In the sequel, it is shown that similar to the original FKcM approach, this
specific choice of dissimilarity measure relates the FcM asymptotically to the KnW
theory, and in this way to the solution of Problem 8.2. In order to uniquely associate
each dik with a membership level μik the set of membership function is restricted to
satisfy ∑nc

i=1 μi(z) = 1, which requires again that U ∈ UNz
nc

(see (8.8)).
In the robust FKcM case, the fuzzy-functional Jm (U,V) is formulated as

Jm (U,V ) := max
k∈I

Nz
1

nc

∑
i=1

μm
ik dik = max

k∈I
Nz
1

max
z∈Zk

nc

∑
i=1

μm
ikκ1(υi,z), (8.28)

where the design parameter m ∈ (1,∞) determines the fuzziness of the resulting
partition. (8.28) defines the criterion of the expected solution for Problem 8.2, cor-
responding to a worst-case (max) sum of error criterion. Its relation with the KnW
optimality of (U,V ) is the same as in the FKcM algorithm except that here the KnW
problem is considered for regions and not for points of D. Regarding the fuzzyness
m, its role in (8.28) is the same as discussed in the non-robust case. Based on this,
the following theorem yields the solution of Problem 8.2:

Theorem 8.8 (Optimal robust partition). Let m > 1, a fuzzy partition (U,V ) ∈
UNz

nc
×Dnc , and a data set Z = {Zk}Nz

k=1 be given, where Zk is either an h-segment
between points zk1,zk2 ∈ (−1,1) or a union of nk h-discs with h-centers {ekl}nk

l=1 and
h-radii {rkl}nk

l=1. Denote [V ]i = υi and [U ]i j = μi j . Define γi(ν,U) as the minimal
value of τ ∈ [0,1] fulfilling the quadratic constraints:

[ |1− z∗ν|2 μm
ik · (z−ν)

μm
ik · (z−ν)∗ τ2

]
	 0, ∀z ∈ Zk, (8.29)

for all k ∈ I
Nz
1 , where ν ∈D. Additionally, let dik = maxz∈Zk

κ1(υi,z) be the dissim-
ilarity measure of Zk with respect to V . If (U,V ) is a local minimum of Jm, then for
any (i,k) ∈ I

nc
1 × I

Nz
1 :

μik =

(
nc

∑
j=1

(
dik

d jk

) 1
m−1
)−1

, (8.30a)

υi = argmin
ν∈D

γi(ν,U). (8.30b)

The proof is given in Appendix A.3. Similar to the FcM case, minimization of
(8.28), subject to (8.8), is tackled by alternating optimization which yields the same
algorithm as Algorithm 8.1, except in Step 3 and Step 4 the solutions are obtained
via (8.30a) and (8.30b).
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8.4.5 Properties of the Robust FKcM

As a next step we investigate the properties of the robust extension of the FKcM
algorithm. It is shown that KnW optimality of the resulting cluster centers (if the
solution is the global minima of (8.28)) holds again in an asymptotic sense (m→∞).
Practical implementation of the algorithm is also discussed together with how the
conservatism of the used pole uncertainty concept influences the procedure.

8.4.5.1 Asymptotic Property

We use the asymptotic properties of Jm to explain the specific choices for the fuzzy
functional (8.28) and the dissimilarity measure (8.27).

Theorem 8.9 (Asymptotic property of Jm in the robust FKcM). Given a data set
Z = {Zk}Nz

k=1, and a set of cluster centers V ∈ Dnc . Define Um as a membership
matrix of V satisfying (8.30a) for m > 1 and let dik be defined as 8.27. Then

Jm(Um,V ) = n1−m
c max

k∈I
Nz
1

(
∏nc

i=1 dik

)1/nc
+O(e−m) (8.31)

Furthermore, Jm(Um,V ) decreases monotonically with m, and limm→∞ Jm(Um,V )
= 0.

As the proof is not affected by the specific choice of dik, the same proof can be
exploited as in the original FKcM case (see Th. 8.2). Based on Th. 8.9, for large m
and for a U satisfying (8.30a), Jm corresponds to

Jm(U,V )≈ n1−m
c max

k∈I
Nz
1

max
z∈Zk

(
∏nc

i=1κ1 (υi,z)
)1/nc

, (8.32)

thus its minimization gives a close approximation of (8.4), enabling the FKcM to
solve Problem 8.2 directly. However, if m→ ∞, then again numerical problems can
occur in the minimization of (8.30b). Therefore, to obtain a well approximating
solution of Problem 8.2, an appropriately large value of m ∈ (1,∞) should be used.
Just like for the original FKcM, m ∈ [5,10] usually yields satisfactory results.

Similar to the previous case, for m > 1 the FKcM-functional (8.28) is a bounded
(0≤ Jm ≤ 1) monotonically decreasing function both in {dik} and U , which allows
Algorithm 8.1 to converge in practice in the same sense as has been discussed in the
non-robust case. By using different initial choices of V0, all local minima of (8.28)
can be explored. From these multiple runs, the best set of the obtained OBFs can
be selected by comparison of the achieved decay rate, which is formulated in the
robust case as:

ρ̆ = max
k∈I

Nz
1

max
z∈Zk

nc

∏
i=1

∣∣∣∣
z−υi

1− zυ∗i

∣∣∣∣ . (8.33)

Comparison can also be made by visual inspection of the boundary region of
Ω (Λnc , ρ̆). In practice, uniformly random choices for V0 are suggested.
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8.4.5.2 Optimization

In order to derive an algorithmic solution of Problem 8.2 in terms of Th. 8.8, it is
important to define the regions Zk as inequality constrains. Such form would enable
to use (8.29) as a quadratic constraint and apply the same LMIs based optimization
as in the FKcM case. Using the hyperbolic geometry, each uncertainty region can
be represented in the following way:

• If Zk is an h-segment then for z ∈ Zk it holds that

zk1 ≤ z≤ zk2. (8.34)

• If Zk is the union of h-disks then for a z ∈ Zk there exists a l ∈ I
nk
1 such that

[ | 1− z∗ekl |2 z−ekl

z∗ −e∗kl r2
kl

]
	 0. (8.35)

As the resulting descriptions define an inequality (see 8.34) or a set of quadratic con-
straints (see 8.35) thus (8.30b) is equivalent with a minimization problem with QCs
where γ is the optimization variable and ν is the decision variable. As the structure
of these constraints is similar as in the non-robust case, it is possible to derive SoS
relaxations through which (8.29) and (8.34) turn into LMIs. The resulting LSDP can
be efficiently solved by LMI solvers. Alternatively, bisection-based recursive search
can be used to obtain the minimization of γi in (8.30b). Also numerical conditioning
of Ul can relax the computational need of the LMI’s based optimization and the ter-
mination criterion of the overall algorithm can be established similar to the original
FKcM method. For details on these items see Sect. 8.3.2. Similarity-based ACM
(see Sect. 8.3.2.4) can also be used for the determination of the number of “natural”
groups in Z, i.e. the best suitable nc for clustering, which is also important for the
successful application of the robust FKcM method.

8.4.5.3 Conservatism of the Pole Uncertainty Concept

The approach of calculating pole uncertainty regions, presented in Sect. 2.4.6,
projects ellipsoidal uncertainty regions of parameter estimates to regions in the com-
plex plane. It has been already explained in Sect. 2.4.6 that these regions represent
the set of possible pole locations of the model with respect to the parameter uncer-
tainties with the given confidence level. However, the covariance of the poles, i.e.
which poles occur together in the model estimate with the given confidence level,
is disregarded in this representation. Thus, the projection is inherently conservative
as for a pole uncertainty region P of a 5th order LTI model it is not guaranteed that
for any 5 arbitrary chosen points {λ1, . . . ,λ5} in P there exists a parameter vec-
tor θ in the ellipsoidal parameter uncertainty region such that the model associated
with θ has poles {λ1, . . . ,λ5}. In other words, neglecting the covariance between
the pole estimates introduces conservatism. However, it is true that for any point
in P it is guaranteed that there exist 4 other points in P, such that these 5 points
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correspond to the pole locations of a model whose parameters are in the ellipsoidal
parameter uncertainty region. This means that the pole uncertainty regions obtained
by this method contain all possible, including the worst-case pole locations that
can occur due to the uncertainty of the obtained model. However, such worst-case
conservatism completely matches the worst-case concept of the KnW theory (see
Sect. 2.5). Thus the conservatism of the projection does not affect the basis selec-
tion mechanism. This is an important observation which underlines the validity of
the presented approach.

8.4.6 Simulation Example

In the following an example is given to visualize the applicability of the robust basis
selection mechanism and to enable comparison with the original FKcM method.
In this example it is shown that disregarding pole uncertainties during the basis
selection process can result in a lower worst-case convergence rate of the obtained
basis functions.

8.4.6.1 Data Generation

Consider again the asymptotically stable SISO LPV system S given by the LPV-IO
representation (8.17). By using constant scheduling signals with values {0.6;0.6 +
τ; . . . ;0.8}, where τ = 0.04, 6 local LTI-IO representations of S are obtained,
whose pole locations are samples of ΩP (see Fig. 8.2a). We use fewer constant
scheduling points in this case than before, to make the results and the figures more
transparent. The LTI models, associated with constant scheduling signals, in this
example are estimated. The identification of each frozen model has been based on
a OE parametrization and 250 samples long measured IO signals of the system.
The measurements contained additive white output noise ε with normal distribution
N (0,0.1) and a white input signal u with uniform distribution U(−1,1). Using the
pole uncertainty concept of Sect. 2.4.6, the pole uncertainty regions {Pi}6

i=1 of the
estimated models have been calculated with confidence level α = 99%. The result-
ing uncertainty regions consist of Nz = 6 · 5 complex regions {Ωk}Nz

k=1 which are
presented in Figures 8.9a–b. In Fig. 8.9a, the estimated frozen poles are denoted by
◦ with a color indicating the constant scheduling trajectory they are associated with
(deep red p1 = 0.6↔ yellow p6 = 0.8). The perimeter lines of the pole uncertainty
regions are given in Fig. 8.9b with a color indicating which poles they are associated
with. Based on these figures, the resulting uncertainty regions are relatively large,
prognosticating that using only the estimated poles by the non-robust algorithm can
result in a serious performance degradation of the obtained solution. In order to de-
rive an OBF set for S based on the robust FKcM mechanism, a hyperbolic coverage
{Zk}Nz

k=1 has been generated with respect to each regionΩk, using gridding step size
0.01 and 20 h-discs per complex region. The average overfit in area has been 4.5%
of the resulting coverage (see Sect. 8.4.3 for details on this algorithm).
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8.4.6.2 Robust and Non-robust Pole Clustering

For the identified pole locations, the non-robust FKcM algorithm has been applied
with m = 8 and nc = 8 (denoted by m8nc8), while for the obtained hyperbolic cov-
erage, the robust FKcM with the same fuzzyness m and number of clusters nc has
been executed (denoted by rob-m8nc8). Note that m = 8 has been used to guarantee
close approximation of the asymptotic case similar to the choices of the example
presented in Sect. 8.3.3. Moreover, nc = 8 has been used in both algorithms to en-
able comparison to the previous example. Note that the estimated poles form more
or less 8 groups in this case as well (see Fig. 8.9a), however this is not true for
their associated uncertainty regions where only 5 groups can be detected (see Fig.
8.9b). The results of the clustering are presented in Figures 8.10a–b and also in
Table 8.2. In these figures, the resulting cluster centers are given by blue ×. To vi-
sualize the performance of the associated OBFs, the perimeter of their Ω(Λnc , ρ̆)
region with respect to the uncertainty regions/pole estimates is given with a green
line. Additionally, to compare the performance of the resulting OBFs, the achieved
Ω(Λnc , ρ̆id) regions (green line) of the basis functions with worst-case convergence
rate ρ̆id are given in Figures 8.11a–b with respect to the estimated pole locations.
The performance is also compared in terms of their achieved Ω(Λnc , ρ̆unc) regions
given with respect to the uncertainty regions in Figures 8.12a–b, and also in terms
of their achieved Ω(Λnc , ρ̆true) regions given with respect to the true frozen poles
in Figures 8.13a–b. These figures have been generated for comparison purposes to
show why the use of the robust FKcM clustering delivers a better basis for the frozen
behaviors than the non-robust solution. In Table 8.2, the comparison of the results
is presented in terms of the previously used indicators like χ , the Xie-Beni validity
index and Se, the normalized entropy together with the achieved decay rate with re-
spect to the estimated pole locations: ρ̆id, to the uncertainty regions: ρ̆unc, and to the
true pole location of the local systems: ρ̆true. Additionally, εne

max, the worst-case abso-
lute error of the impulse responses of the truncated series-expansion representation
of each Fp ∈FS in terms of the generated OBFs with ne repetitions, is also given.
Based on these and the previous results of Sect. 8.3.3, the following observations
can be made:

8.4.6.3 Analyzing the Results

The resulting partitions of the non-robust (m8nc8) and the robust FKcM cluster-
ing (rob-m8nc8) solve the basis selection problem for the identified pole locations
/ pole uncertainty regions. This follows from the tight fit of the resulting bound-
ary regions (see Figures 8.10a–b) with respect to the data sets and the achieved
small value of the worst-case convergence rate with respect to the used estimated
poles/uncertainty regions (see ρ̆unc for rob-m8nc8 and ρ̆id for m8nc8 in Table 8.2).
However, the OBFs represented by the rob-m8nc8 partition are better basis func-
tions for S than the m8nc8 solution, as the worst-case convergence rate ρ̆true of the
basis poles with respect to the true frozen pole locations is smaller in the former
case. This is also shown in Fig. 8.13a, where the rob-m8nc8 solution achieves a
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(a) estimated poles
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(b) uncertainty regions

Fig. 8.9 Estimated frozen poles of RIO(S) and their associated uncertainty regions. The
poles are denoted by ◦ in subfigure (a) with a color indicating the constant scheduling tra-
jectory they are associated with (deep red p1 = 0.6↔ yellow p6 = 0.8). The perimeter lines
of the pole uncertainty regions are given in subfigure (b) with a color indicating that which
estimated poles they belong to.
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(a) robust algorithm
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Fig. 8.10 Resulting cluster centers (blue×) of robust FKcM clustering of the pole uncertainty
regions (deep red for p1 = 0.6↔ light orange for p6 = 0.8) and non-robust FKcM clustering
of the estimated poles (red ◦). To visualize the performance of the cluster centers associated
OBFs, the perimeter of their Ω(Λnc , ρ̆) region with respect to the uncertainty regions/pole
estimates is given with a green line.
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Table 8.2 Comparison of algorithmic results in terms of χ , the Xie-Beni validity index; Se,
the Normalized Entropy; the achieved decay rate with respect to the estimated pole locations:
ρ̆id, to the uncertainty regions: ρ̆unc, and to the true pole location of the local systems: ρ̆true;
and εne

max, the worst-case absolute error of the impulse responses of the truncated series-
expansion representation of each Fp ∈ FS in terms of the cluster centers generated OBFs
with ne repetition. All results are given in dB.

Test case χ ρ̆id ρ̆unc ρ̆true Se εne=1
max εne=3

max

rob-m8nc8 38.958 −52.444 −43.695 −47.012 2.830 −37.326 −140.919
m8nc8 −5.003 −62.809 −32.165 −44.052 2.828 −32.165 −131.207
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Fig. 8.11 Performance comparison of the resulting cluster centers (blue ×) associated OBFs
in terms of the perimeter of their Ω(Λnc , ρ̆id) region (green line) with respect to the estimated
frozen poles (red ◦) of RIO(S).

relatively tight Ω(Λnc , ρ̆true) on the true pole locations, while the m8nc8 case has
quite high performance degradation resulting in a loose bound (see in Fig. 8.13b).
This yields a smaller representation error if the rob-m8nc8 OBFs are used for a
truncated series-expansion representation of S, which is proved by comparing the
worst-case impulse response representation errors εne

max in Table 8.2. The reason why
rob-m8nc8 outperforms the m8nc8 solution, comes from the fact that the m8nc8 so-
lution is based on only one realization of the probability density function (pdf) asso-
ciated with the pole estimation, while rob-m8nc8 is based on pole regions associated
with a level set of the pdf through the pole uncertainty concept of Sect. 2.4.6. There-
fore, if the realization, i.e. the estimated poles, is far from the true pole locations,
then there is no guarantee about the true performance of the non-robust OBF se-
lection (ρ̆true > ρ̆id). Contrary, the robust solution obtains guaranteed performance
for any realization inside the used uncertainty regions, giving a high probability in
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Fig. 8.12 Performance comparison of the resulting cluster centers (blue ×) associated OBFs
in terms of the perimeter of their Ω(Λnc , ρ̆unc) region (green line) with respect to the uncer-
tainty regions of the estimated frozen poles.
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Fig. 8.13 Performance comparison of the resulting cluster centers (blue ×) associated OBFs
in terms of the perimeter of their Ω(Λnc , ρ̆true) region (green line) with respect to the true
frozen poles (red ◦) of RIO(S).

terms of α , that this guaranteed performance is the upper bound of the achieved
performance with respect to the true pole locations. This is clearly shown by com-
paring ρ̆true to ρ̆unc in the robust case. Obviously, the optimal performance of the
non-robust solution with respect to the true pole locations, ρ̆true = −58.38 dB (see
Table 8.1) can be achieved in the noiseless case only.
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χ is quite high in the rob-m8nc8 case and also moderately high in the m8nc8
case, showing that each partition represents the underlying structure inefficiently.
Moreover, the relatively high value of Se in both cases suggests also that a smaller
number of clusters is more suitable to describe the underlying data structure, which
agrees with the visual inspection of the almost colliding cluster centers (see Fig.
8.10). This phenomenon is due to the noise uncertainty: the originally required 8
clusters (see Sect. 8.3.3) to describe the samples of ΩP are more than the number of
clusters suggested by the identified poles, i.e. their associated uncertainty regions.
Using the ACM, the solution converges to a partition that consist of 7 clusters in the
non-robust case and 5 clusters in the robust case which agrees with visual inspection.
By comparing properties of clustering with varying m, the same conclusions can be
drawn as in the non-robust case in Sect. 8.3.3, except that the computation time
increases more rapidly with increasing m.

8.5 Conclusions

In this chapter, optimal basis selection for series expansion of LPV systems has been
investigated in the case when only measured data records of the frozen signal behav-
ior are available. The solution of this problem is crucial to provide a practical model
structure selection tool for LPV identification based on truncated series-expansion
models. In case of an optimal basis, a fast convergence rate of the expansion rep-
resentation implies that only the estimation of a few coefficients is necessary for a
good approximation of the system.

A crucial conclusion that we could draw is that a practically applicable and ef-
fective basis selection can be formulated based on estimated pole locations of the
system with respect to constant scheduling trajectories. By reconstruction of the
pole manifest set of the system based on these sample pole locations and finding
the KnW optimal basis with respect to the reconstructed regions adequate selection
of the basis follows. We could see that both of these tasks can be efficiently solved
in one step by using a modified fuzzy clustering approach. This approach is also
applicable in situations where the measurement noise has a significant effect on the
sample pole estimates, as by the use of hyperbolic geometry the basis selection al-
gorithm can be robustified with respect to pole uncertainty regions. In conclusion
the algorithms, developed in this chapter, provide effective tools for model structure
selection in terms of LPV truncated series-expansion models. In the next chapter
we will see how all tools developed so far, enable the identification of LPV systems
through a simple and effective approach.



Chapter 9
LPV Identification via OBFs

Abstract. All the theory that has been introduced so far has served the sole purpose
of providing tools to formulate identification of general LPV systems in a well-
established manner. Building on the developed tools, a widely applicable identifi-
cation approach is proposed in this chapter by using model structures that originate
from truncated OBF expansion representations of LPV systems. First, under the
assumption of static dependence of the expansion coefficients, two identification
methods, a local and global one, are developed for the introduced model structures.
While the local approach uses the gain-scheduling principle: identification with con-
stant scheduling signals and interpolation of the resulting LTI models, the global
approach provides a direct LPV model estimate via linear regression based on data
records with varying scheduling trajectories. The approaches are analyzed in terms
of variance, bias, consistency, and applicability together with the validation of the
model estimates. Finally, to enable the estimation of modes with dynamic coeffi-
cient dependencies, a modified feedback-based OBF model structure is proposed
and estimation in this framework is formulated through a separable least-squares
strategy.

9.1 Aim and Motivation of an Alternative Approach

In the previous chapters we have built up an extensive LPV system theoretical
framework to provide understanding of model structures and to develop tools for
their analysis. Based on this framework it has been shown that a series-expansion
representation of discrete-time asymptotically stable LPV systems is available in
terms of orthonormal basis functions (OBFs). Based on the motivation given in
Chap. 1, we aim to use finite truncations of such representations as models for the
identification of LPV systems in the classical least-squared (LS) setting. We will
show that these structures:

• provide an easily scalable trade-off between model complexity and accuracy of
the estimate,

• simplify identification and control design,

R. Tóth: Modeling and Identification of Linear Parameter-Varying Systems, LNCIS 403, pp. 233–284.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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• do not suffer from locally changing system order,
• they extend the results of LTI system identification.

We also formulate the prediction-error setting for LPV identification, in order to
analyze the stochastical properties of estimation in these model structures and to
be able to investigate possible noise model concepts. This provides the final tool in
order to compare identification algorithms of the LPV field.

The aim of this chapter is to give a set of identification approaches that are capa-
ble to deliver theoretically well-founded model estimates in the LPV framework, ac-
complishing our primary objective. Here we do not pursue the proper exploration of
the other two steps of the identification cycle: experiment design and model valida-
tion, though some basic results about these issues are briefly covered in the analysis
of the identification approaches. The proper treatment of these steps is reserved for
further studies. Our intention is to open a new and sound alternative for the existing
identification literature and to stimulate the development of a future generation of
LPV identification approaches.

9.2 OBFs Based LPV Model Structures

LPV model structures based on truncated OBF expansion representations are intro-
duced in this section. The structures are defined by using the concepts of the classi-
cal prediction-error setting. Thus first, characterization of this setting is developed
in the LPV case. Due to the absence of a transfer function type of description of
LPV systems, the process and noise models are formulated based on their impulse-
response representation. This gives the possibility to develop one-step-ahead predic-
tors in this framework. As a next step, the proposed model structures, as truncated
OBF expansion representations are formulated with an output-error (OE) type of
noise models. Based on the fact that the coefficients can appear on the left or on
the right-side of the basis functions in the expansion, different model structures can
be introduced. Finally, important properties of the proposed model structures are
investigated and compared to other model structures of the LPV identification field.

9.2.1 The LPV Prediction-Error Framework

As a starting point, we assume that a non-autonomous, SISO, asymptotically stable
LPV system S = (Z,P,W,B) is given in discrete-time (DT) with scheduling signal
p. We aim at the identification of this system based on a predefined input-output (IO)
partition (u,y). We suppose that S is equivalent with the deterministic part of the
data generating physical system (i.e. the deterministic part of the physical system
corresponds to an LPV system with the considered scheduling signal). Based on
first principles information, it is possible in practice to select scheduling variables
for a plant that yield an LPV equivalent (see the procedure developed in Sect. 7.4).
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Fig. 9.1 Data generat-
ing system in the LPV
prediction-error framework.

u

p
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9.2.1.1 Prediction Error Setting

First we clarify the identification setting in which we position our models. Using the
concept of the classical prediction-error identification (see Sect. 2.4), it is assumed
that the data generating system, illustrated in Fig. 9.1, is given as

y = (G0(q)� p)u + v, (9.1)

where the process part, i.e. the LPV system S, is represented in a impulse response
form RIM(S):

G0(q)� p =
∞

∑
i=0

(gi � p)q−i, (9.2)

with gi ∈R. Note that due to the asymptotic stability assumption, every considered
discrete-time LPV system has a impulse response representation (IRR) (see Sect.
5.3). The reason why we use the IRR to define the data generating equation (9.1) is
due to the fact that a transfer function form of the dynamic relation, like in the LTI
counterpart (2.25), is not available for LPV systems. Additionally, the noise part of
(9.1) is given as v, satisfying

(QA0(q)� p)v = (QB0(q)� p)e, (9.3)

where e is a zero-mean white noise process with variance σ2
e and QA0 ,QB0 ∈ R[ξ ]

are polynomial functions such that they define an LPV-IO representation with IO
partition (v,e), implying that Deg(QA0) ≥ Deg(QB0). Similar to the LTI case, it is
assumed that the IO representation (9.3) defines an asymptotically stable system in
the deterministic sense, otherwise the identification of G0 in (9.1) is not meaningful.
Under this assumption, the representation of the noise structure (9.3) has a pulse
basis series-expansion, which is denoted by H0(q) and satisfies

v = (H0(q)� p)e with H0(q) =
∞

∑
i=0

(hi � p)q−i, (9.4)

where hi ∈R.
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9.2.1.2 One-Step-Ahead Prediction of v

Similar to the LTI case, to formulate a one-step-ahead predictor with respect to y,
it is required to clarify how we can predict v(k) at a given time step k, if we have
observed v(τ) for τ ≤ k−1. A crucial property of (9.4) that we will impose to enable
an answer to this question is that it should be invertible, i.e. there exists a stable
inverse H†

0 (q, p) of H0(q, p), where H†
0 (q, p) is a convergent LPV series-expansion

and
e = (H†

0 (q)� p)v. (9.5)

Note that by taking QB0 ,QA0 ∈ R[ξ ], where R[ξ ] (the ring of polynomials with real
constant coefficients) is a subspace ofR[ξ ], H0 is equivalent with a transfer function
and H†

0 is its stable inverse. This results in the LTI case discussed in Sect. 2.4.
As a next step, write (9.4) as

v(k) = (h0 � p)(k)e(k)+
∞

∑
i=1

(hi � p)(k)e(k− i). (9.6)

Now the knowledge of {v(τ)}τ≤k−1 and a given trajectory of p implies the knowl-
edge of {e(τ)}τ≤k−1 in the view of (9.6). Based on this relation, there are many
ways to define the prediction of v(k), like the maximum a posteriori prediction or
the mean value of the distribution in question, etc. The classical approach we use in
the following is to view the prediction of v(k) as the conditional expectation of v(k)
based on {e(τ)}τ≤k−1 and a fixed trajectory of p ∈BP:

v̂(k|k−1) := E{v(k) | {e(τ)}τ≤k−1,{p(τ)}τ∈Z} , (9.7)

where E is the expectation operator. Assume that p is deterministic and h0 = 1,
which also implies that the feedthrough term in H†

0 is 1. These imply, that the con-
ditional expectation of v(k) is given as

v̂(k|k−1) =
∞

∑
i=1

(hi � p)(k)e(k− i). (9.8)

It is also easy to establish that the conditional expectation minimizes the mean-
squared error of the prediction [105]:

v̂(k|k−1) = argmin
v̂(k)

E{v(k)− v̂(k)}2 , (9.9)

where the minimization is carried out over all functions v̂ ∈RZ. Additionally, using
(9.5) we can write

v̂ =
(
(H0(q)� p)−1

)
e =

(
1− (H†

0 (q)� p)
)
v, (9.10)

which gives the classical one-step-ahead predictor result of v. In case p is a stochas-
tic process, it is a difficult problem to establish conditional expectation of v(k), as
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each Markov parameter hi can be a nonlinear function of p(k− l) where l ∈ Z, i.e.
it contains forward and backward samples of p. Due to this fact, in the upcoming
analysis p is considered to be a deterministic signal.

9.2.1.3 One-Step-Ahead Prediction of y

As a next objective, we develop the one-step-ahead prediction of y(k) based on
{y(τ)}τ≤k−1, {u(τ)}τ≤k and a given scheduling trajectory p ∈BP. Since

v(k) = y(k)−
∞

∑
i=0

(gi � p)(k)u(k− i), (9.11)

this means that also v(τ) is known for τ ≤ k−1. We would like to predict the value
of y(k) based on this information. Using the reasoning of the previous discussion,
the conditional expectation ŷ(k|k−1) of y(k) is

ŷ = (G0(q)� p)u + v̂

= (G0(q)� p)u+
(
1− (H†

0 (q)� p)
)
v

= (G0(q)� p)u+
(
1− (H†

0 (q)� p)
)(

y− (G0(q)� p)u
)

=
(
(H†

0 (q)G0(q))� p
)
u+
(
1− (H†

0 (q)� p)
)
y. (9.12)

This gives that in the view of the developed IRR representation of LPV systems, the
classical result of the one-step-ahead predictor also holds in the LPV case, giving a
powerful tool to develop and analyze identification methods.

9.2.1.4 Prediction Error Models

Following a similar reasoning as in the LTI case, we introduce the parameterized
model

(G(q,θ ),H(q,θ )), (9.13)

where θ ∈Rn represents the “parameter vector”, the collection of meromorphic co-
efficients associated with G and H (in case H is not dependent on p, then θ contains
the real constant coefficients of H). Note that these coefficients are not necessarily
associated with Markov parameters. So θ can correspond to the coefficients of the
process and the noise models given in a SS or IO representation. Then, these pa-
rameterized structures are represented in a series-expansion form by G and H. The
parameterized model of (9.13) leads to the following one-step-ahead parameter-
varying (PV) predictor based on (9.12):

ŷθ :=
(
1−H†(q,θ )� p

)
y +

(
(H†(q,θ )G(q,θ ))� p

)
u. (9.14)

In this case, the allowed parameter space isΘ ⊆Rn. Now again, we are looking for
an estimate of θ such that ŷθ is a good approximation of y, i.e. the prediction error:
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ε(k,θ ) := y(k)− ŷθ (k), (9.15)

is minimized. Just like in the LTI case, it is possible to apply the LS criterion (2.30)
for this purpose based on an available data record DNd = {y(k),u(k), p(k)}Nd−1

k=0 .

9.2.2 The Wiener and the Hammerstein OBF Models

In the introduced prediction-error setting, we aim to develop model structures in
which the process model G is a finite truncation of a OBF expansion representation
and the noise model H is equal to identity. The motivation is similar as in the LTI
case (see Sect. 2.4.5), namely that with this particular choice of the process and
noise models the coefficients of G appear linearly in (9.14) and the noise model H
is parameterized independently from G.

Assume that we are given a set of Hambo orthonormal basis functions Φ∞
ng

, de-
fined as

Φ∞
ng

:=
{
φ j(z)Gi

b(z)
}i=0,...,∞

j=1,...,ng
(9.16)

where Gb is an inner function in H2 (E). Note that Φ∞
ng

can be arbitrary or chosen
by a basis selection mechanism, as described in Chap. 8. In terms of these basis
functions, a series-expansion representation of S, i.e. the process part of (9.1), is
available in the form of (5.19), implying that:

y = e +(w00 � p)u +
∞

∑
i=0

ng

∑
j=1

(wi j � p)φ j(q)Gi
b(q)u, (9.17)

where wi j ∈R and the feedthrough-term w00 ∈R are meromorphic coefficient func-
tions. As a next step, we define model structures as the finite truncation of the series-
expansion in (9.17). Here, one should realize that (9.17) can also be formulated in
an alternative way, where the expansion coefficients appear after the basis functions.
Since multiplication by the time operator q is non-commutative with respect to wi j

(see Sect. 3.1.3), a finite truncation of that alternative form would lead to a model
with different approximation capabilities. To show that the alternative formulation
of (9.17) exists, consider (5.3). It is obvious that this pulse basis expansion can be
also written as

y = (g0 � p)u + q−1(−→g 1 � p)u + q−2(
−→−→g 2 � p)u + . . . (9.18)

where−→� is the forward-shift operator onR (see Definition 3.16). Using this alterna-
tive formulation of (5.3) to derive OBF expansions of asymptotically LPV systems
via the substitution rule (5.10), leads to

y = e +(w00 � p)u +
∞

∑
i=0

ng

∑
j=1

φ j(q)Gi
b(q)(wi j � p)u. (9.19)
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Fig. 9.2 IO signal flow graph of (a) the W-LPV OBF model described by (9.21) and (b)
the H-LPV OBF model described by (9.24) with W = [w01 . . . wneng ] and excluding the
feedthrough term (w00 = 0).

Note that in (9.19), the coefficient functions {wi j} are generally not equal to the
coefficients of (9.17) due to the non-commutativity of q under multiplication.

Now consider the finite truncation of the Hambo basis Φ∞
ng

:

Φne
ng

:=
{
φ j(z)Gi

b(z)
}i=0,...,ne

j=1,...,ng
(9.20)

with ne < ∞. In terms of this truncation, (9.17) or (9.19) provide an approximation
of the data generating system (9.1), i.e the LPV system S. The resulting structures,
presented in Fig. 9.2a–b, can be viewed as a filter bank of OBFs, which is a LTI sys-
tem, followed or preceded by a meromorphic weighting function set with dynamic
dependence on p. Thus, these structures have some resemblance with nonlinear
Wiener (NW) and nonlinear Hammerstein (NH) models, important model classes
for chemical, biological, and sensor/actuator systems [25]. An LTI model with static
nonlinearity on its output is called a Wiener model while an LTI model with static
nonlinearity on its input is called a Hammerstein model. The consequences of this
similarity are investigated later on, but for the time being, to respect this relation,
the introduced structures are called a Wiener LPV OBF model (W-LPV OBF) and a
Hammerstein LPV OBF model (W-LPV OBF). These model structures are formally
defined as follows:

• Wiener LPV OBF model (W-LPV OBF)

G(q,θ )� p = w00 � p +
ne

∑
i=0

ng

∑
j=1

(wi j � p)φ j(q)Gi
b(q), H(q,θ ) = 1, (9.21)

with θ =
[

w00 w01 . . . wneng

]�∈ R1+(ne+1)ng and p ∈ BP, where BP is con-
sidered to be known. This model, given in Fig. 9.2a, is called the W-LPV OBF
model and denoted by MW(Φne

ng
,θ ,BP). In terms of (9.14), the predictor form

of (9.21) reads as

ŷθ = (w00 � p) u︸︷︷︸
y̆00

+
ne

∑
i=0

ng

∑
j=1

(wi j � p)φ j(q)Gi
b(q)u︸ ︷︷ ︸

y̆i j

. (9.22)
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Let (A,B,C,D) be a minimal balanced LTI state-space (SS) realization of Φne
ng

.
Using this realization, the SS equivalent representation of (9.22), is given by

qx = Ax + Bu, (9.23a)

ŷθ = (W � p)x +(w00 � p)u, (9.23b)

where x =
[
y̆01 . . . y̆neng

]�
and W =

[
w01 . . . wneng

]
.

• Hammerstein LPV OBF model (H-LPV OBF)

G(q,θ )� p = w00 � p +
ne

∑
i=0

ng

∑
j=1

φ j(q)Gi
b(q)(wi j � p), H(q,θ ) = 1, (9.24)

with θ =
[

w00 w01 . . . wneng

]�∈ R1+(ne+1)ng and p ∈ BP, where BP is con-
sidered to be known. This model, given in Fig. 9.2b, is called the H-LPV OBF
model and denoted by MH(Φne

ng
,θ ,BP). In this case, the predictor reads as

ŷθ = (w00 � p)u︸ ︷︷ ︸
ŭ00

+
ne

∑
i=0

ng

∑
j=1

φ j(q)Gi
b(q)(wi j � p)u︸ ︷︷ ︸

ŭi j

. (9.25)

The SS equivalent representation of (9.25), is given by

qx = Ax +(W � p)�u, (9.26a)

ŷθ = Cx +(w00 � p)u, (9.26b)

where
[
ŭ01 . . . ŭneng

]� = (W � p)�u.

These model structures are the PV forms of the (A,B) and the (A,C) invariant
Hambo OBFs based model parameterizations in the LTI case (see Sect. 2.1). Those
LTI model parameterizations are considered to be equivalent in a SISO setting, as
their coefficients are equivalent up to a linear transformation (Sect. 2.4.5). However,
this does not hold in the LPV case due to the absence of the transposition property
(Sect. 4.1.4), therefore the coefficients {wi j}i=0,...,ne

j=1,...,ng
are generally not equivalent in

(9.21) and (9.24). Thus, these model structures are distinguished in the sequel.

9.2.3 Properties of Wiener and Hammerstein OBF Models

As a next step, important properties of the introduced models are investigated from
the viewpoint of system identification. First we prove that the W-LPV OBF and H-
LPV OBF models are general approximators of LPV systems, so by these models,
LPV systems can be approximated with arbitrary precision. Then we explore how a
locally changing McMillan degree of the system, which is a crucial problem in the
interpolation-based identification methods, affects these model structures. Next we
show why these model structures are beneficial in the prediction-error setting and
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how estimates in these structural forms can be used for control design, i.e. that these
models are compatible with the existing LPV control theory.

9.2.3.1 General Approximation Property

It has been show in Chap. 5 that an asymptotically stable discrete-time LPV systems
has a series-expansion representation in terms of an arbitrary basis for RH2− (E).
For such an approximation-free representation, infinitely many basis functions,Φ∞

ng
,

are required in the general case. This implies that using a finite number of basis
functions,Φne

ng
, restricts the class of realizable LPV systems. Thus, it is important to

investigate the approximation capabilities of these models.
In the work of [30], it has been proved for nonlinear Wiener models that, if the

LTI part is an OBF filter bank, then such models are general approximators of non-
linear systems with fading memory (NL dynamic systems with convolution rep-
resentation). This means that, if the number of the OBFs in the filter bank tends
to infinity, then the best achievable approximation error of the output trajectories
converges to zero in an arbitrary norm, under the condition that the correct static
nonlinearity is used in the weighting block.

Now consider the LPV case. In Chap. 5 it has been shown that the series-
expansion of asymptotically stable LPV systems in terms of an orthonormal ba-
sis Φ∞

ng
is convergent. It has also been highlighted, that such series expansions in

general only exist, if the expansion coefficients have dynamic dependence. Further-
more, it has been shown that the expansion coefficients yield a sequence, which
converges to zero for each scheduling trajectory. For a given basis sequence Φ∞

ng
,

the worst-case approximation error of a truncated expansion representation is

sup
(y,u,p)∈B

∥∥∥∥
∞

∑
i=ne+1

ng

∑
j=1

(wi j � p)φ j(q)Gi
b(q)u

∥∥∥∥. (9.27)

Based on the previous, it holds that this worst-case approximation error satisfies that

lim
ne→∞

sup
(y,u,p)∈B

∥∥∥∥
∞

∑
i=ne+1

ng

∑
j=1

(wi j � p)φ j(q)Gi
b(q)u

∥∥∥∥= 0. (9.28)

W-LPV and H-LPV OBF models are formulated based on finite truncation of LPV
expansion representations, thus (9.28) proves the following property:

Property 9.1 (General LPV approximation) W-LPV and H-LPV OBF models are
general approximators of LPV systems.

This result means that, by extending the basis function set of these models, ap-
proximation of general LPV systems can be achieved with arbitrary precision. An
additional property is that, in practice, careful selection of the basis functions can
ensure almost error free representation of the frozen transfer function set FS of S
with a limited number of OBFs (see Chap. 8). Such a basis function set has fast con-
vergence rate in the series-expansion of S. This provides the conclusion that with
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the general approximator property, the proposed model structures offer an efficient
approximation structure for identification.

There is also an important difference with respect to the previously mentioned
nonlinear counterpart of this result. In the nonlinear case, a necessary condition of
the general approximator property is that the static nonlinearity must contain all
possible combinations of the products of the output signals y̆i j of the filter bank.
Due to the linear signal relation of the LPV setting, this condition is not required for
Property 9.1, i.e. the linear combination of y̆i j with meromorphic PV coefficients is
sufficient.

9.2.3.2 McMillan Degree Property

An additional property of the introduced model structures is that they are well struc-
tured against changes of the McMillan degree in the frozen system set FS of S.
It is generally true that, if for a constant scheduling signal p(t) = p the associated
Fp ∈ FS has a lower McMillan degree than the rest of the systems in FS , then
this does not imply that any of the coefficient functions {wi j} of the OBF series-
expansion is zero for p. This shows that these model parameterizations are not af-
fected by problems that are common for LPV-SS or IO representations based model
structures (see Chap. 1).

9.2.3.3 Linear in the Coefficients Property

The third, but equally important property of W-LPV OBF and H-LPV OBF models
is that they are linear in the coefficients θ , i.e. both in predictor equations (9.22) and
(9.25) the coefficients {wi j} appear linearly. This means that for a LS identification
criterion and with a linear parametrization of {wi j}, the estimation problem of these
coefficient functions has an analytic solution.

9.2.3.4 Models for Control

The proposed models are also efficiently applicable for LPV control design.
Through (9.23a–b) and (9.26a–b), a SS realization of the estimated models is avail-
able. Such SS forms have a trivial LFR realization if the coefficients {wi j} have
polynomial or rational dependence on p. Therefore the existing LPV control ap-
proaches, which are exclusively formulated for SS representations, can be directly
applied. Due to the fact, that both in (9.23a) and (9.26a) the matrix A is constant,
optimal control design greatly simplifies with respect to these model estimates. The
reason is that global dynamic stability of models with constant A can be always
expressed by a Lyapunov equation with non-parameter dependent, i.e. constant P
(see Sect. (3.3.2)). The only disadvantage is that many control approaches assumes
static dependence of the matrices. This implies, that dependence of {wi j} must be
restricted to static dependence, i.e. wi j ∈ R|nP

, to provide models to which these
control solutions can be applied. However, for the general approximator property,
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dynamic dependence of the coefficients is required, which means that the restric-
tion to static dependence reduces the representation capabilities of the models. This
issue is explored further in Sect. 9.3 and 9.4.

9.2.4 OBF Models vs. Other Model Structures

The prediction-error setting with the one-step-ahead predictor (9.14) enables the
comparison with other model structures used in the LPV identification literature.
Hence in the following, the properties of LPV-IO and SS models, introduced in
Chap. 1, are discussed in the prediction-error setting and compared to OBFs models.
As we will show, there are hidden assumptions in these LPV model structures in
terms of the noise models.

9.2.4.1 Comparison to LPV-IO Models

Consider

y =−
na

∑
i=1

(ai � p)q−iy +
nb

∑
j=0

(b j � p)q−iu + e, (9.29)

the LPV-IO filter model of the IO identification approaches (see Chap. 1). The pa-
rameter vector θ for this so-called LPV-ARX model consists of the coefficients in
(9.29), θ = [ a1 . . . ana b0 . . . bnb ], where each coefficient has static dependence.
It can be easily shown that the one-step-ahead predictor of y reads as

ŷθ =−
na

∑
i=1

(ai � p)q−iy +
nb

∑
j=0

(b j � p)q−iu, (9.30)

if the noise model H is chosen in a way that

H†(q,θ )� p = 1 +
na

∑
i=1

(ai � p)q−i. (9.31)

Note that, similar to the OBF models, this model structure is also linear in the coef-
ficients, but its noise model is not independently parameterized from the processes
part, as it is well-known for the LTI case. However, the suggested noise model

e = v +
na

∑
i=1

(ai � p)q−iv, (9.32)

reveals that

H(q,θ )� p = 1−
na

∑
i=1

(ai � p)q−i +

(
na

∑
i=1

(ai � p)q−i

)(
na

∑
i=1

(ai � p)q−i

)
− . . .

This shows that, even if each ai has static dependence, the noise model H(q,θ )
has dynamic dependence, i.e. v is dependent on the entire past of the scheduling
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signal p. Thus the assumed noise structure of an ARX model is rather artificial,
implying much more conservatism than in the LTI case. It must be noted, that in the
cited works [226, 225, 12, 11], only the estimation problem (9.29) has been solved in
the LS setting, while the assumed noise model of this model structure and its effects
have not been investigated. Recently, preliminary results have also appeared on the
possible use of more realistic OE or BJ noise models in the estimation of LPV-
IO models [34, 94]. Contrary to the previous results, the role of the noise model is
taken into consideration in these studies and an instrumental variable (IV) approach
is used to provide consistent estimation of the parameters with such noise models.

9.2.4.2 Comparison to LPV-SS Models

In the SS case, the model structure of the global identification methods, like the
global subspace techniques and gradient methods, is given by

qx = (A� p)x +(B� p)u +(E1� p)e, (9.33a)

y = (C � p)x +(D� p)u +(E2� p)e, (9.33b)

where the matrix functions (A,B,C,D) define a DT-LPV-SS representation, E1,E2 ∈
RnX×1, and e is a vector of independent zero-mean white noise processes (see
Chap. 1). The parameter vector θ in this case is composed from the elements of
(A, . . . ,E2) corresponding to functions which are commonly assumed to have static
p-dependence. In the SISO case, by applying a pulse basis expansion on this model,
the process model G and the noise model H trivially follow:

G(q,θ ) = D+
∞

∑
i=1

C

( i−1

∏
j=1

A[ j]
)

B[i]q−i, (9.34a)

H(q,θ ) = E2 +
∞

∑
i=1

C

( i−1

∏
j=1

A[ j]
)

E [i]
1 q−i, (9.34b)

where � [ j] denotes that the backward-shift operator (see Definition 3.16) is ap-
plied j-times on the matrix. Note that the noise model (9.34b) involves matrices
of the process part, thus it is obvious that its not independently parameterized from
G and it depends on the entire past of the scheduling signal p. Furthermore, the
coefficients, i.e. the matrices, do not appear linearly in (9.34a). Thus, the model
(9.33a–b) can be used in the prediction-error identification setting successfully by
either applying a (complicated) nonlinear estimation procedure, like gradient search
[96, 97, 215, 214] or in the unrealistic case, when the state signals x are measurable.
In the latter case, prediction of the state and output signals becomes linear in the co-
efficients, thus in a LS setting, linear regression can be used to derive a model esti-
mate (see [124, 109, 107]). Based on this, LPV-SS models are commonly estimated
in a non-prediction-error setting like the subspace approaches of [207, 52, 219].
An exception is the PBSID approach, extended to the LPV case in [210], where
the Markov coefficients of the system (in terms of finite truncation of (9.34a)), are



9.2 OBFs Based LPV Model Structures 245

estimated first via linear regression in a prediction-error setting (by assuming an
ARX noise model). Then, the estimated Markov coefficients are used in the sub-
space mechanism to calculate a corresponding LPV-SS form.

Comparison of the proposed model structures with the considered model struc-
tures underlines that the introduced OBFs-based series-expansion models are at-
tractive candidates in the prediction-error identification setting of LPV systems as
with an OE type of noise model they are linear in the coefficients and the noise
model is independently parameterized from the process part and independent from
the scheduling.

9.2.4.3 Similarity to the Nonlinear Wiener and Hammerstein Models

By comparing NW and NH models to the introduced structures, the structural simi-
larity is immediate. However, there are some fundamental differences:

• In the NW and NH case, a static nonlinearity is assumed on the output/input of
the LTI part. In the W-LPV and H-LPV OBF case, the “nonlinearity” is entering
through a dynamic dependence on p, which can be composed of external (strict
LPV systems) and internal (quasi-LPV systems) variables alike. Assuming that p
is equal to u or y, NW and NH models can be viewed as special cases of W-LPV
and H-LPV OBF models under minor restrictions on the static nonlinearities (see
Sect. 7.4.3).

• The LTI parts of W-LPV and H-LPV OBF are respectively single-input multiple-
output (SIMO) and multiple-input single-output (MISO) systems as opposed to
the SISO LTI part of NW and NH models1.

9.2.5 Identification of W-LPV and H-LPV OBF Models

In the following, a general outline of LPV identification based on W-LPV and H-
LPV OBF models is presented. The major steps of the identification cycle: model
structure selection, identification criterion selection, and estimation are considered.
Our aim is to set the stage for the upcoming discussion of LPV-OBF identification
approaches, which are based on particular choices with respect to these steps.

9.2.5.1 OBF Selection

In the case of W-LPV and H-LPV OBF models, there is a primal emphasis on the
model structure selection step of the identification cycle. This is due to the fact that
selection of the finite OBF set, that defines the structure, effects the approximation
capabilities in terms of the convergence rate of the series-expansion with respect to

1 Originally both Wiener and Hammerstein proposed their models with SIMO and MISO
LTI parts, but because of the complexity of the problem, the LTI part has been simplified
to be SISO [25, 105].
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this basis. With an adequate selection of the basis functions, i.e. with high conver-
gence rate, negligible approximation error, i.e. bias can be achieved. Beside selec-
tion of an adequate basis it is also important to decide how many of the functions in
the chosen basis function sequence are considered in the model, i.e. in which degree
the expansion is truncated. This decision directly effects the efficiency of the model
structure in terms of the number of coefficients to be estimated.

Tools to provide adequate selection of the basis functions have already been dis-
cussed in Chap. 7, where an algorithm has been proposed to assist basis selection
based on first principle information. By using this algorithm, the set of frozen pole
locations of the system can be characterized, and based on this pole set, the optimal
choice of a orthonormal basis follows in the Kolmogorov n-width (KnW) sense.
Additionally, in Chap. 8, a clustering algorithm has been introduced, that solves the
KnW optimal basis selection problem based on measured data. The latter approach
is useful in a black-box identification scenario, where no reliable structural infor-
mation about the LPV system/physical plant is available. Moreover, via adaptive
cluster merging, the algorithm is also capable to efficiently choose the number of
OBFs required for an adequate approximation of the system. This practically appli-
cable tool, which accomplishes the model structure selection in terms of the basis
functions can be summarized in the following algorithm:

Algorithm 9.1 (OBFs based LPV identification, basis function selection)

Step 1. Estimation of samples of the pole manifest set ΩP, associated with the
LPV system S. The estimation is accomplished by LTI identification of
each Fpi ∈FP of S for a given set of scheduling points {pi}Np

i=1 ⊂ P.

Step 2. Based on FKcM clustering of the sample poles, determination of an ade-
quate (optimal) OBF set Φne

ng
⊂RH2− (E) with respect to S.

9.2.5.2 Parametrization of Coefficient Dependencies

Beside the selection of basis functions, model structure selection with respect to W-
LPV and H-LPV OBF also contains an equally important part: the parametrization
of the functional dependence of the coefficients wi j on the scheduling signal p:

wi j = ψi j(θ ), (9.35)

where ψi j ∈ R is meromorphic with constant parameters θ ∈ Rn. The aim of the
identification is to estimate θ based on a measured data record. To simplify the esti-
mation problem, often a linear parametrization of the structural dependence in (9.35)
is used. In fact wi j is considered to be a linear combination of fixed meromorphic
functions ψi jl ∈R|nP

:

wi j =
ni j

∑
l=0

θi jlψi jl, (9.36)
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where θi jl ∈ R. A linear parametrization not only reduces the complexity of the
associated estimation problem but also makes the problem of adequate selection
of the underlaying structural dependence well-posed [197]. In terms of (9.36), the
selection problem of an adequate parametrization translates to a search for a set
of functions {ψi jl} such that the true expansion coefficient w o

i j of the system with

respect to the used basis functions satisfies wi j ∈ Span({ψi jl}ni j
l=0). Considering that

the class of meromorphic functions R presents degrees of freedom in terms of the
order of dynamic dependence and in terms of functions, any structural information
about the coefficients can considerably reduce the search space for an optimal choice
of {ψi jl}.

In case of a black-box scenario, the choice of {ψi jl} can be arbitrary. One can
consider all {ψi jl} to be rational functions or polynomials with a fixed degree and a
fixed order of dynamic dependence. However the possible choices are enormous. By
including a too large set of functions {ψi jl} can easily lead to over-parametrization,
while restriction of {ψi jl} to only a few basic functions can lead to serious bias.
In order to assist the selection of an efficient set of functional dependencies in
the parametrization of linear regression models recently practically applicable ap-
proaches have been proposed in [200] and [75]. While in [75] a dispersion functions
based approach, originating form the machine learning field, has been developed to
basically learn the underlying (possibly) static nonlinear dependence of the coeffi-
cients, in [200] a coefficient shrinkage method, originating form statistics, has been
introduced for this purpose. Contrary to the dispersion approach, the coefficient
shrinkage method, which is based on a so-called non-negative garotte approach, is
uses regularization in terms of weights to penalize individual elements of the param-
eter vector θ . In this way, the approach starts with a relatively large set of possible
functional dependencies from which those functions that do not contribute signif-
icantly to the validity of the estimated model are eliminated by decreasing their
weights. In this way the nonnegative garotte approach gives a practically useful tool
to decide from a set of functional dependencies, expected in the model, which are
needed for an efficient parametrization in terms of (9.36).

9.2.5.3 Criterion Selection and Estimation

Based on the predictor form (9.14), many different classical identification criteria
can be applied for the selected model structure. A particularly interesting choice is
the least-squared (LS) prediction-error criterion

WNd

(
θ ,DNd

)
=

1
Nd

Nd−1

∑
k=0

ε2(k,θ ). (9.37)

where the residual ε is given by (9.15). If the parametrization of the coefficients is
linear (see (9.36)), then with respect to (9.37), the estimation of {θi jl}, similar to the
LTI case, reduces to a linear regression problem for the W-LPV and H-LPV OBF
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models. In other cases, when the parametrization of the coefficients is nonlinear,
then estimation corresponds to a nonlinear optimization problem.

To guarantee a unique solution of (9.37), one condition is that the set of functional
dependencies {ψi jl} are chosen such that (9.21) and (9.24) are globally identifiable:

Definition 9.1 (Identifiability, [56]). A model structure (G(q,θ ),H(q,θ )) with a
parameter domainΘ ⊆Rn is called locally identifiable at a parameter value θ1 ∈Θ ,
if ∃ε > 0 such that for all θ ∈Θ with ‖θ − θ1‖ ≤ ε the corresponding one-step-
ahead predictors (see (9.14)) are distinguishable:

H(q,θ ) = H(q,θ1) and H†(q,θ )G(q,θ ) = H†(q,θ1)G(q,θ1) ⇒ θ = θ1.

The model structure (G(q,θ ),H(q,θ )) is called globally identifiable at θ1 if it is
locally identifiable at θ1 with ε→∞. Moreover, (G(q,θ ),H(q,θ )) is called globally
identifiable if it is globally identifiable at all θ ∈Θ . �

In terms of the 1-step ahead predictor of the considered OBF models, (9.22) and
(9.25), one way to guarantee this important condition is to assume that each set
{ψi jl}ni j

l=0 contains functions ψi jl which are orthogonal with respect to each other
for all possible trajectories of p, i.e. p ∈ BP. In case of static dependence, this
means that ψi jl are orthogonal with respect to each other on P.

9.3 Identification with Static Dependence

In the previous part, we have developed truncated OBF expansion models, as the
basic ingredients of a well-posed LPV identification approach. As a next step, we
show how these model structures can be efficiently identified in the prediction-error
setting, such that the obtained models are directly applicable for control design.
First we clarify the exact identification setting (parametrization, identification cri-
terion, etc.) in which we aim to derive the model estimates. Then we develop our
approaches using either the gain-scheduling identification strategy (local approach)
or a linear regression based strategy with varying scheduling trajectory (global
approach). We only treat the SISO case. The MIMO extension of the developed
approaches is covered later. The methods are analyzed in terms of variance, bias,
consistency and validation of the model estimates is also investigated. Finally, a
simulation example is studied to visualize the performance of the approaches.

9.3.1 The Identification Setting

In the previous parts, we have seen that a common feature of all LPV model struc-
tures, either based on SS, IO, or series-expansion representations, is that to represent
general LPV systems they need dynamic dependence in the parametrization of their
coefficients. However, LPV control design approaches often assume only static de-
pendence of the model estimate. On the other hand, it is hard to handle the extra
degree of freedom that dynamic dependence constitutes in an estimation problem.



9.3 Identification with Static Dependence 249

This gives the motivation to investigate identification in the special case, when the
coefficients of W-LPV and H-LPV OBF model structures are parameterized with
static dependence, i.e in (9.35) the chosen structural dependence ψi j is only depen-
dent on the instantaneous value of p. To make a clear distinction when we talk about
static and respectively dynamic dependence, we use w(p) to express evaluation of
a static coefficient dependence along a scheduling trajectory p, contrary to w � p.

We have already motivated that using a linear parametrization of the expansion
coefficients (see (9.36)), estimation of the parameters can be formulated as a linear
regression if the LS identification criterion (9.37) is used. Based on this, we aim
in this section at the identification of LPV systems by the MW(Φne

ng
,θ ,BP) and

MH(Φne
ng

,θ ,BP) model structures, where the process part G is parameterized as:

G(q,θ )� p =
n00

∑
l=0

θ00lψ00l(p)

︸ ︷︷ ︸
w00 � p

+
ne

∑
i=0

ng

∑
j=1

ni j

∑
l=0

θi jlψi jl(p)

︸ ︷︷ ︸
wi j � p

φi j(q), (9.38a)

in the Wiener case and

G(q,θ )� p =
n00

∑
l=0

θ00lψ00l(p)

︸ ︷︷ ︸
w00 � p

+
ne

∑
i=0

ng

∑
j=1

φi j(q)
ni j

∑
l=0

θi jlψi jl(p)

︸ ︷︷ ︸
wi j � p

. (9.38b)

in the Hammerstein case, where θi jl ∈ R, ψi jl ∈ R|nP
, and Φne

ng
= {φi j}i=0,...,ne

j=1,...,ng
. In

these parameterizations, the basis functions Φne
ng

are considered to be the result of a
basis selection and hence they are fixed, while the functionsψi jl are either chosen by
the user, or derived from first-principle information (like by the use of the approach
given in Chap. 7). It is also assumed that in each set {ψi jl}ni j

l=0 the functions ψi jl

are orthogonal on P to ensure global identifiability of the model. Consequently,
the remaining unknowns in the model are the real parameters {θi jl} which appear
linearly in the structures. Thus by using the LS criterion they can be identified by
linear regression. Here we do not consider the identification or optimal choice of
the functionsψi jl . However, there are recent approaches available which can handle
efficient selection of {ψi jl} in the prediction-error setting, see [200, 75].

9.3.2 LPV Identification with Fixed OBFs

Based on the choice of linear parametrization with static dependence and the LS
criterion, two pragmatical approaches are available for the identification of the LPV
system S via W-LPV and H-LPV OBF models:

Local approach Identify wi j = ∑
ni j
l θi jlψi jl(p) for several p ∈ P and interpo-

late the obtained estimates to calculate {θi jl}. This gives the
freedom to choose the functions ψi jl(p) based on the local es-
timates wi j. However, an apparent disadvantage is that many
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Fig. 9.3 Block diagram of local and global identification methods

experiments with different constant scheduling trajectories are
needed for successful interpolation.

Global approach Using a data record with varying p, formulate a linear regres-
sion problem with respect {θi jl}. The resulting problem has
an analytic solution, giving a direct estimate of the parameters
without the need of interpolation.

In the following a detailed description of these approaches is presented based on
[194, 197], including an investigation in which situations one is more applicable
than the other. The approaches are formulated by assuming that the basis selection
phase has already been accomplished, so we pick up the line of reasoning right
after Step 2 in Sect. 9.2.5.1. Fig. 9.3 illustrates the basic steps of the approaches.
For reasons of simplicity, we assume that no feedthrough term is present, w00 = 0.
Later, the estimation of w00 is also investigated for both algorithms.

9.3.3 Local Approach

Assume that a set of constant scheduling points P = {pτ}Nloc
τ=1 ⊂ P is given for S,

where it is assumed that P is well covered, meaning that maxi min j �=i |pi − p j|,
i, j ∈ I

Nloc
1 is small enough. This is required for successful interpolation by most

numerical methods. See [84] for an approach to optimally choose such scheduling
points under a linear regression identification criterion. Assume also that measured
data records DNd,pτ = {y(k) ,u(k) ,p}Nd−1

k=0 with length Nd ∈ N are available. Then
the identification of S is solved as (continuing from Step 2 in Sect. 9.2.5.1) [194]:
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Algorithm 9.2 (OBFs based LPV identification, local method)

Step 3a. For a given OBF setΦne
ng

= {φi j}i=0,...,ne
j=1,...,ng

, scheduling points P = {pτ}Nloc
τ=1

⊂ P, and identification criterionW, identify each frozen system Fpτ ∈
FP, τ ∈ I

Nloc
1 based on the LTI-OBF model structure:

Gpτ (q,θ ) =
ne

∑
i=0

ng

∑
j=1

wi jτφi j(q), H(q,θ ) = 1, (9.39)

and data records DNd,pτ of S collected with constant scheduling trajecto-
ries and with u that is persistently exciting with the required order. This
results in a set of estimated coefficients {ŵi jτ}ne,ng,Nloc

i=0, j=1,τ=1 ⊂ R, where

{ŵi jτ}ne,ng
i=0, j=1 describes the coefficients of Φne

ng
with respect to Fpτ .

Step 4a. Interpolation of the frozen OBF coefficients {wi jτ}. For each (i, j) ∈
I

ne
0 × I

ng
1 , choose a set of orthogonal interpolation functions {ψ̂l}ni j

l=0,
being a set of meromorphic functions over P, i.e. ψ̂τ ∈ R|nP

, and a set
of constants {θ̂i jl}ni j

l=0 such that

ŵi jτ =
ni j

∑
l

θ̂i jlψ̂l(pτ), ∀τ ∈ I
Nloc
1 . (9.40)

In this way the estimate of the expansion coefficients results as

ŵi j :=
ni j

∑
l=0

θ̂i jlψ̂l . (9.41)

In general, any interpolation technique can be used to approximate the coeffi-
cient functions {wi j}, however most commonly polynomial, rational, or Chebyshev
interpolation provides adequate results (see [158]). Naturally, specific choices of
the interpolation functions result in different estimates of (9.41). Validation of the
model estimate is required to verify these choices.

9.3.4 Global Approach

Opposite to the local approach, the global approach utilizes only one data set which
is collected from S with varying scheduling, i.e. one global experiment. Assume
that measured IO data DNd = {y(k) ,u(k) , p(k)}Nd−1

k=0 is available and it is informa-
tive for S. Informative means in this case that with the considered parametrization
(9.38a–b), a unique model in the considered model class can be found in the
statistical sense such that (9.37) is minimal. For a more detailed discussion on
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informativity and its connection to the classical notion of persistency of excitation
see Sect. 9.3.5.2. Using this data set, the global identification of S is solved in the
W-LPV OBF case as [195]:

Algorithm 9.3 (OBFs based LPV identification, global method, Wiener case)

Step 3b. For a given OBF set Φne
ng

= {φi j}i=0,...,ne
j=1,...,ng

and data record DNd , generate

y̆ = [y̆i j]
i=0,...,ne
j=1...ng

with y̆i j = φi j(q)u. This step can be efficiently accom-

plished by using a minimal balanced SS realization (A,B,C,D) of Φne
ng

.
The state evolution (9.23a) in the time interval [0,Nd−1] with respect to
{u(k)}Nd−1

k=0 and x(0) = 0, gives y̆ on [0,Nd−1] as y̆ = x.

Step 4b. Choose a row vector of meromorphic functions Ψ = [ψl]
nψ
l=0 for the

parametrization of each wi j in (9.21) as wi j = ∑
nψ
l=0 θi jlψl where {θi jl}

are real unknown parameters, ψl ∈ R|nP
(meromorphic functions with

static dependence), ψ0 = 1 and {ψl}nψ
l=0 are orthogonal on P.

Step 5b. Using the data set DNd , estimate the parameters
{
θi jl
}ne,ng,nψ

i=0, j=1,l=1 by lin-
ear regression. Based on the predictor (9.22), define the regressors as

γ�(k) = y̆�(k)⊗Ψ(p(k)), ∀k ∈ [0,Nd−1], (9.42)

with ⊗ denoting the Kronecker tensor product. Collect the data into

ΓNd =
[
γ(0) . . . γ(Nd−1)

]�
, YNd =

[
y(0) . . . y(Nd−1)

]�
.

Arrange the parameters to be estimated into a column vector

θ =
[
θ010 . . . θ01nr . . . θnengnψ

]�
. (9.43)

Then, to minimize the LS prediction-error criterion

WNd

(
θ ,DNd

)
=

1
Nd

∥∥YNd −ΓNdθ
∥∥2

2 , (9.44)

the analytic solution is obtained by

θ̂Nd =
(

1
Nd
Γ�Nd

ΓNd

)−1

·
(

1
Nd
Γ�Nd

YNd

)
. (9.45)

In this way the estimates of the expansion coefficients result in the form
of:

ŵi j :=
nψ

∑
l=0

θ̂i jlψl . (9.46)
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In the H-LPV OBF case, the identification procedure is similar. However, the
formulation of the regressor is more complicated as the coefficients appear linearly
at the input side. Next, it is described how ΓNd can be formulated for the H-LPV
OBF case. The first step is the calculation of a parameter-varying transition matrix,
associated with the predictor (9.25–b), such that:

ŶNd =

⎡
⎢⎢⎢⎣

0 0 . . .
CW (p(0)) 0 . . .

CAW (p(0)) CW (p(1))
...

...
. . .

⎤
⎥⎥⎥⎦UNd , (9.47)

where ŶNd = [ ŷθ (0) . . . ŷθ (Nd−1) ]� is the stacked predicted output vector of the
H-LPV OBF structure. By simple rearrangement it follows that

ŶNd =

⎡
⎢⎢⎢⎣

0 0 . . .
CIu(0) 0 . . .

CAIu(0) CIu(1)
...

...
. . .

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ĤNd

⎡
⎢⎣

W (p(0))
W (p(1))

...

⎤
⎥⎦ . (9.48)

Let δ be the delta function, i.e. pulse input at k = 0. Now define h = [hi j]
i=0,...,ne
j=1...ng

as
the state evolution of

qh = A�h +C�δ , (9.49)

on the interval [0,Nd− 1] with h(0) = 0. Then h is used to calculate the columns
of the transition matrix ĤNd . By combining each column of ĤNd in a Kronecker
product with Ψ , the parameters

{
θi jl
}

to be estimated are separated, giving the
regressor matrix as ΓNd = [ Ĥ0 . . . ĤnP

] where

Ĥl =
Nd−1

∑
k=0

Hku(k)ψl (p(k)) , (9.50)

and Hk =
[

0 . . . 0 h�(0) . . . h�(Nd− k−1)
]� ∈ RNd×ng(ne+1).

Algorithm 9.3 can also be extended for both model structures to estimate a di-
rect feedthrough term. The extension is obtained by defining w00 =∑

nψ
l=0 θ00lψl and

formulating the regressor matrix as

Γ ′Nd
=

⎡
⎢⎣

u(0)⊗ψ(p(0)
...

u(Nd−1)⊗ψ(p(Nd−1))
ΓNd

⎤
⎥⎦ . (9.51)

Including {θ00l} into θ implies that the estimate follows via (9.45).
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9.3.5 Properties

In this part the properties of the introduced identification approaches are investi-
gated. First we analyze the restriction of the used linear parametrization with static
dependence in the identification of general LPV systems and we characterize that
subclass of LPV systems where no bias results. Next we motivate when the use of
a global approach or a local approach is more fruitful in practice. Then we show
convergence and consistency of the parameter estimates. By using similarity of the
identification methods with respect to LTI prediction-error identification, we charac-
terize basic results about variance and bias of the estimates. Finally, (in)validation
issues are discussed in the introduced framework together with the estimation of
initial conditions.

9.3.5.1 Representation Capabilities via Static Dependence

It is important to investigate the effects of the linear parametrization with static
dependence on the representation capabilities of the models. From the SS repre-
sentation form of the models (see (9.23a–b) and (9.26a–b)) it is obvious that the
assumption of static dependence restricts the class of representable LPV systems
to systems which have a SS representation with static p-dependence only in the C
(see (9.23a)–b) or in the B (see (9.26a)–b) system matrices. This means that sys-
tems that have no representation that satisfies these conditions are not in the model
class. Hence, due to parametrization, a modeling error inevitably occurs during the
identification process in these cases. Additionally, the linear parametrization of the
expansion coefficients (see (9.38a–b)) implies that systems that are identifiable in
the considered way are further restricted to have a SS representation where only the
C (or B) matrix depends on p and the functional dependence is the linear combina-
tion of the used functionsψi j. This underlines that selection of these functions based
on prior information is an important part of the model structure selection process.

A second consequence of the parametrization (9.38a–b) rises with respect to the
general approximator property of the W-LPV and H-LPV OBF models. We have
seen in the general case that increasing ne lowers the achievable approximation er-
ror with these models. However, in case of static dependence, increasing ne enlarges
Span{Φne

ng
} which means that the worst-case representation error in the KnW sense

is lowered with respect to the frozen system set of the data generating system. How-
ever, an increase in ne may not lower the representation error of the LPV system
in a global sense as the modeling error can be significantly dominated by the miss-
ing non-static p-dependence of the expansion coefficients. This results in the loss
of the general approximator property, meaning that the approximation capability of
the model is restricted by the absence of dynamic coefficient dependence. Thus in-
creasing ne in the hope of better accuracy can easily result in over-parametrization
in this case.

We will see that despite the theoretically presented restrictions of the applied
parametrization, commonly in a practical situation, adequate approximation of the
data generating system can be achieved by the resulting model estimates. It is an
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important remark that the global method is also applicable in the situations where
the coefficients of the W-LPV and H-LPV OBF model structures are not assumed
to be static. As the estimation algorithm is independent from the choice of the ψi j

functions, these functions can be considered with dynamic dependence. Then with
a data record containing sufficiently exciting p, estimation of the parameters is sim-
ilarly available as in the static case. Unfortunately, this property does not apply for
the local method, as in that case, interpolation with dynamic dependence based on
frozen estimates is an ill-conditioned problem.

9.3.5.2 Informativity of Data Sets and Persistency of Excitation

In order to estimate an adequate model in a given model set, most prediction-error
algorithms require persistency of excitation in terms of DNd collected from the sys-
tem. This condition is required to guarantee consistency and convergence of the
estimates (see Sect. 2.4.3). In order to analyze the estimation in the defined LPV-
OBFs model structures, a characterization of the data sets satisfying this condition
is required.

In the LTI case persistency of excitation is associated with the notion of an infor-
mative data set. Let DNd = {y(k),u(k)}Nd−1

k=0 be a data set of quasi-stationary u and y
collected from the data generating system, and letWNd(θ ,DNd) be an identification
criterion. DNd is called informative with respect to a parametric model set with pa-
rameters θ and a givenWNd if any two models in the model set can be distinguished
underWNd(θ ,DNd) [56]. Basically this means that if the model set is globally iden-
tifiable (no two different parameters θ1 and θ2 give rise to the same predictor) and
the data set DNd is informative, then WNd(θ ,DNd) has a global optimum in the
statistical sense. The latter is the essential requirement for consistency of any min-
imization method. The notion of persistency of excitation of order n relates in the
LTI case to an informative DNd with respect to a model structure with n parameters.
The latter is equivalent to the possibility of statistically uniquely estimating a nth

order FIR filter based on DNd .
In the LPV case there are numerous differences. First of all, the requirements for

identifiability imply that the linear combinations of the used functions {ψl}nψ
l=0 in the

coefficient parametrization provide inequivalent dynamical behaviors of the model
structure for each θ . Moreover, the notion of an informative data set in the LPV case
is not equivalent to the condition of persistency of excitation with a given order.
First of all, the model parameters θ are related to signals ψl(p)φi j(q)u and not only
the time-shifted versions of u and y, thus the functions {ψl}nψ

l=0 and the scheduling
trajectory p together also influence the estimation of θ . Moreover, the estimation of
the parameters of a LPV-FIR filter, irrelevant to the coefficient parametrization, is
not equivalent with the estimation of LPV-ARX models or LPV-OBF models due
to the non-commutativity of multiplication by q. This means that the terminology
of persistency of excitation with order n is ill-defined in the LPV case. Instead, the
informativity of the data sets with respect to the assumed coefficient parametrization
and model order must be satisfied in order to ensure consistency and convergence
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of the estimation. However, conditions for data sets to be informative have not been
investigated directly in the LPV literature.

For the case of LPV-ARX models with polynomial dependence of the coefficients
on the parameters, conditions for persistency of excitation have been studied in [57]
and [225], unknowingly also addressing the question of informativity of the data
set. In these works it is assumed that a LPV system is a family of LTI systems, each
associated with a point in P. If the dependence on p is polynomial of order nψ , then
the LPV system identification can be realized by identifying at least nψ LTI models
operating at distinct values of P, and using these to determine the coefficients of the
polynomial dependence based on the interpolation principle. This means that a data
set DNd is informative if

• p visits at least nψ different points p1, . . . ,pnψ ∈ P.
• Each sequence of u associated with a pl must be persistently exciting with respect

to the LTI model corresponding to pl .
• The number of revisits of each pl must be large enough to approximate the er-

godicity condition in a given neighborhood around the considered points of P.

These conditions are rather conservative from a number of viewpoints. A LPV sys-
tem can be considered as a set of LTI systems associated with points of P, but these
systems share a common memory so they can describe the continuation of the signal
trajectories when p changes. This means that in terms of the above given conditions
the variation of p must be infinitely slow in order to consider these systems to be
independent LTI systems. However, ergodicity requires basically that the number of
revisits of the chosen points must be infinite in the general case, which means that
the p should vary as fast as possible to revisit these points more often. This shows
that the above given conditions are too conservative for practical use. In [225], an
improved version of this approach has been developed which tries to overcome the
problem of conservativeness, but since it is based on the same principle of indepen-
dent LTI system estimation, the question whether a data set is informative in the
LPV case remains open. However, in practice, the absence of a solid criterion re-
stricts the user to the paradigm to excite the system as much as possible in order to
guarantee consistency and convergence of the estimation.

9.3.5.3 Consistency and Convergence

Similar to the classical LTI identification framework, it is possible to show that under
minor conditions, the parameter estimates of local and global W-LPV and H-LPV
OBF approaches are convergent and consistent. Convergence means that for Nd→∞
the parameter estimate θ̂Nd converges, i.e. θ̂Nd → θ ∗ with probability 1, while con-
sistency means that the convergence point θ ∗ is equal to the parameters of the data
generating system (9.1). Obviously, the latter property requires that the data gen-
erating system is in the model class of the MW(Φne

ng
,θ ,BP) and MW(Φne

ng
,θ ,BP)

structures. For a given OBF set Φne
ng

and LPV system S, this means that for the
considered IO partition, S has a series-expansion in terms of Φ∞

ng
where only the

first (ne + 1)ng expansion coefficients are not zero. Furthermore these expansion
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coefficients {w o
i j}i=0,...,ne

j=1,...,ng
, appearing on the left (or the right) side of the basis func-

tions, are the linear combination of the functions {ψi jl} used in the parametrization
(9.38a–b):

w o
i j =

ni j

∑
l=0

θ o
i jlψi jl. (9.52)

Collect these true parameters {θ o
i jl} into the parameter vector θ0. Then, consistency

means that θ̂Nd → θ0 with probability 1.
In the local case, assume that in the measurements D

p
Nd

, the noise is uncorre-
lated with u and D

p
Nd

is informative with respect to the considered model set. Then,
convergence and consistency of the estimated LTI models with parameters {wi jτ} is
well-known [73, 105]. This implies the following theorem:

Theorem 9.1 (Convergence and consistency, local method). Given a model struc-
ture MW(Φne

ng
,θ ,BP), with OBFs Φne

ng
and coefficient parametrization (9.38a),

where θi jl ∈ R, each {ψi jl}ni j
l=0 is a set of orthogonal functions on P, P is com-

pact, and each ψi jl : P→ R is Lipschitz continuous. Consider the estimate θ̂Nd de-
termined by the local method for Nd-long informative data records, gathered for
Nloc frozen scheduling signals. If Nloc → ∞ and Nd → ∞ then θ̂Nd → θ ∗ where
θ ∗ is the minimizing argument of the expected value of the squared residual error,
θ ∗ = argminθ∈Θ Ē{ε2(θ )}. Furthermore, if S is in the model class with parameters
θ0, then θ ∗ = θ0.

Theorem (9.1) similarly holds in the H-LPV OBF case. This theorem implies that
the asymptotic parameter estimate is independent from the particular noise realiza-
tion in the data sequence and identification of the true system is possible if it is in
the model class. Proof of the theorem follows from the consistency and convergence
of the local model estimates together with the convergence of the interpolation in
case of Lipschitz continuous functions (for the latter property see [8]).

Consider the global approach. Assume that the available data record is informa-
tive with respect to the considered model. Then based on the OE structure of the
W-LPV and H-LPV OBF models and the applied linear parametrization of the coef-
ficient functions, it is well-known in the nonlinear case (see [105]), that under these
conditions, the least-squares estimate of θ is strongly convergent and consistent. So
the following theorem obviously holds:

Theorem 9.2 (Convergence and consistency, global method). Consider the esti-
mate θ̂Nd determined by (9.45) with respect to the model structure MW(Φne

ng
,θ ,BP)

or MH(Φne
ng

,θ ,BP). Assume that the data record D∞ is informative and the model

structure is globally identifiable. If Nd→∞, then θ̂Nd → θ ∗ with probability 1 where
θ ∗ is the minimizing argument of the expected value of the squared residual error,
θ ∗ = argminθ∈Θ Ē{ε2(θ )}. Furthermore, if S is in the model class with parameters
θ0, then θ ∗ = θ0.
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9.3.5.4 The Concept of Variance and Bias

Estimation errors of the resulting model estimates can be decomposed into variance
and bias parts:

G0(q)−G(q, θ̂Nd) = G0(q)−G(q,θ ∗)︸ ︷︷ ︸
bias

+ G(q,θ ∗)−G(q, θ̂Nd)︸ ︷︷ ︸
variance

. (9.53)

where G0(q) is the pulse basis expansion of the process part of the data gener-
ating system (9.1), while G(q, θ̂Nd) corresponds to the truncated OBF expansion
form of the estimated model MW(Φne

ng
, θ̂Nd ,BP) or MH(Φne

ng
, θ̂Nd ,BP). Similar to

the LTI case, the bias part corresponds to the structural error, i.e. the modeling er-
ror introduced by the finite truncation of the expansion and the applied coefficient
parametrization, while the variance corresponds to the error which is due to the
noise contribution on the data.

9.3.5.5 Variance

In case of the local approach, the concepts of variance and bias can be formulated in
the frozen sense. By viewing the result of each frozen identification as a LTI model
estimate in terms of the considered basis functions, all results of the LTI framework
apply in terms of variance and bias (see Sect. 2.4.5). However, due to interpolation
of these local model estimates through their expansion coefficients, there is a little
hope to characterize the variance and the bias of the resulting LPV model estimate.
In terms of the bias, the main difficulty is that the number of frozen models, i.e. the
number of interpolation points has a significant, but not well understood effect on
the bias. For the variance, the problem is that, by knowing the distribution of {ŵi jτ},
it is a difficult problem in general to deduce the distribution of {θ̂i jl} in (9.40).
Based on these, variance and bias are only characterized in the frozen sense with
respect to the estimates by the local method.

In the global case, we face a different situation. We have already shown that the
parameter estimates in this case are consistent. Let D∞ be informative with respect
to S. Then due to the prediction-error setting of the estimation, the classical result
of the LTI framework holds:

Theorem 9.3 (Asymptotic variance, global method). Consider the estimate θ̂Nd

determined by (9.45) with respect to the model structure MW(Φne
ng

,θ ,BP) or
MH(Φne

ng
,θ ,BP). Assume that the data record D∞ is informative and the used

model structure is globally identifiable. Due to the convergence of θ̂Nd , there ex-
ists a θ ∗ ∈Θ such that θ̂Nd → θ ∗ with probability 1 if Nd→ ∞. Then

√
Nd(θ̂Nd −θ ∗)→N (0,Qθ ) as Nd→ ∞, (9.54)

where
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Qθ = lim
Nd→∞

Nd ·E
{[

∂
∂θ
WNd

(
θ ∗,DNd

)][ ∂
∂θ
WNd

(
θ ∗,DNd

)�]}
.

Note that the proof follows similarly as in the LTI case [105], due to the fact that the
considered model sets correspond to asymptotically stable models with respect to all
θ ∈Θ , the estimates of θ are convergent, and the considered prediction-error frame-
work is equivalent with the classical formulation. This basic result on the variance of
the parameter estimates provides some insights, however further properties in terms
of asymptotic model order or frequency characterization of the variance are hard to
derive due to the parameter variation. Developing more informative expressions for
the asymptotic variance is an aim of future research.

9.3.5.6 Bias

Consider the estimated models MW(Φne
ng

, θ̂Nd ,BP) and MH(Φne
ng

, θ̂Nd ,BP). In the
global case it holds that, if the data record DNd is informative and the data gen-
erating system is in the model class, then the classical results of prediction-error
identification imply that the estimate θ̂Nd of the parameters θ is unbiased. In case
the process part G0, i.e. the LPV system S, in (9.1) is not in the model class, i.e.
either in the series expansion of S by Φ∞

ng
there are non-zero coefficients {w o

i j} in
the truncated part (wi j �= 0 for i > ne), or the coefficients have a different depen-
dence than the used parametrization (9.38a–b), then for the asymptotic estimate θ ∗
it holds that for a given p ∈BP

(G0(q)−G(q,θ ∗))� p =
ne

∑
i=0

ng

∑
j=1

((
w o

i j−
ni j

∑
l=0

θ ∗i jlψi jl

)
� p

)
φi j(q)

︸ ︷︷ ︸
parametrization bias

+
∞

∑
i=ne+1

ng

∑
j=1

(wi j � p)φi j(q)

︸ ︷︷ ︸
truncation bias

, (9.55)

where θ ∗= [θ ∗i jl ]
ne,ng,ni j
i=0, j=1,l=0 and {w o

i j} are the expansion coefficients of S in terms of
Φ∞

ne
. The first part in expression (9.55) describes bias due to improper assumptions

on the scheduling dependence while the second part describes bias due to the non-
considered tail of the series expansion. Based on (9.55), it can be concluded that by
extending the number of basis functions, i.e. increasing ne, the truncation bias can
be arbitrary decreased. However, increasing ne means that more coefficients appear
in the parametrization bias, which results in an eventual increase of this term. This
underlines that choosing a good coefficient dependence in terms of {ψi jl} is equally
important as the choice of a OBF set with fast convergence rate. Fortunately, due
to the model transformation approach of Chap. 7, first principle information can
be used to assist the adequate choice of ψi jl with respect to a given basis Φne

ng
. If

reliable first principle information is not available, the recently developed statistical
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tool based on a non-negative garotte approach can accommodate adequate selection
of {ψi jl}, see [200].

9.3.5.7 (In)validation

In general, reliable (in)validation of LPV model estimates is a theoretically hard
task. One problem is that uncertainty of the model estimates has not been investi-
gated in the LPV framework and, on the other hand, it is difficult to judge how the
estimated model relates or fits to the available first principle knowledge.

In general, only (in)validation through model simulation is available, comparing
the model output with respect to measured data records which are assumed to be
informative. Here the richness of p in terms of excitation has a prime importance,
as with slowly varying scheduling trajectories, model estimates with significantly
different transient behavior can seem to be both valid models of the plant. Error
measures like MSE, BFR and VAF, introduced in Sect. 2.4.7, can be successfully
used to accommodate comparison of the simulated and measured signals and to
decide on the validity of the model estimates. However, in case of an invalidated
model estimate, it is hard to give any indication how to identify the system with a
better end result (reconfiguration of the model structure, more exciting (u, p), other
type of identification method, etc.).

Additionally, for the introduced models, (in)validation can also be accomplished
based on the residual signal ε in the one-step-ahead prediction error (9.15). The
residual can be easily computed for the proposed models as the inverse of the noise
model is 1. Applying residual analysis, similar to the LTI case, the hypothesis that
ε is white noise or ε is uncorrelated with the past inputs can be tested. If these
hypothesis tests result in rejection, then the deficiency of the applied model structure
is implied. The only problem is that due to the approximative nature of the applied
model structure (both in terms of the finite series expansion and in terms of the
assumption of static dependence), some unmodeled dynamics of the system always
contribute to the residual term. This implies that, based on residual analysis, the
models are most likely to be rejected. Thus, in the following, we only consider
(in)validation in terms of simulations and error measures.

9.3.5.8 Initial Conditions

In practice, slow dynamics of the system, safety considerations, or high costs of long
measurements often result in data records which are collected with non-zero initial
conditions of the plant. For these data sets, the initial conditions need to be estimated
during the identification process. In the LTI case the identification framework of
OBFs supports estimation of initial conditions (see [73]), which can be efficiently
applied in the local algorithm to estimate initial conditions of the frozen systems of
S. Therefore, further investigation of initial condition estimation is only interesting
for the global identification approach.
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In the global method the SS form of the H-LPV OBF model structure can be used
to formulate an extended data matrix which involves the initial condition x(0) of the
model. The extended data matrix Ŷ ′Nd

is introduced as

Ŷ ′Nd
=

⎡
⎢⎣

Cx(0)
...

CANd−1x(0)

⎤
⎥⎦+ ŶNd . (9.56)

where ŶNd satisfies (9.47), i.e. it is the predicted output of MH(Φne
ng

,θ ,BP) with
zero initial condition. By extending θ with x(0) as parameters and including
[C� A�C� . . . ]� into ΓNd , estimation of x(0) becomes available through linear re-
gression. In the W-LPV OBF case, the extended data matrix is

Ŷ ′Nd
=

⎡
⎢⎣

W (p(0))x(0)
...

W (p(Nd))ANd−1x(0)

⎤
⎥⎦+ ŶNd . (9.57)

Based on (9.57), simultaneous estimation of θ and x(0) is a bilinear optimization
problem for the LS criterion. This optimization is solvable by the application of a
separable least-squares strategy (see [62]), however the obtained solutions are only
local minima or saddle points of the involved cost function.

9.3.5.9 (Quasi) LPV System Identification

There is an important aspect of the proposed identification methods if the data gen-
erating system is a quasi LPV system. For quasi LPV systems, generally, p cannot
be held constant, as the scheduling is an internal signal of the system like elements
of the state or output variables. Thus, for this case, only the global method is applica-
ble, as the local approach needs identification of the system with respect to constant
scheduling trajectories. Violation of the freedom of p, how this affects the previous
results and what happens in case p is influenced by noise are not well understood
phenomena and these questions are in the focus of current research.

9.3.5.10 Global versus Local Approach

As demonstrated both the global and the local approaches provide attractive ways of
identifying an LPV system an obvious question is when to use which approach. In
most situations the global approach is considered to be a more attractive candidate
as it provides estimation of the system with a varying trajectory of p, giving a better
possibility to approximate the global dynamic behavior of the system instead of just
the frozen aspects. As shown, estimation in the global case can be formulated in a
simple least-squares setting and cumbersome problems of interpolation are avoided
due to the fixed functional dependencies of the parametrization. The theoretically
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better understood behavior of the stochastic nature of estimation in the global setting
also suggests that it is a theoretically more sound approach than the local method if
informativity of the measured data set can be guaranteed in the application.

However, practical use of LPV identification on industrial problems often turns
out to favor different properties. In most practical applications, identification is must
be accomplished in a closed-loop setting due to instability of the plant or because
the current production can not be disturbed in the favor of identification. In terms
of the local approach, the well worked out methods of the LTI framework can be
fully used to solve the identification problem in a divide-and-conquer manner. This
implies that closed-loop identification is practically feasible via this approach. For
the global case, closed-loop identification in the general sense is not well worked
out even though some recent research directions are promising [210, 94, 28].

The use of frequency-based identification is also supported in the local setting.
The latter is important in mechatronic applications where the often tight model-
ing specifications with respect to the frozen behaviors are only available in the fre-
quency domain. Such specifications can often not be addressed in the global setting.
On the other hand interpolation can result in unexpected global behavior as the lo-
cal identification approach only focuses on the frozen behaviors. However, such a
drawback can be avoided by using data with varying p to assist the interpolation.

As a general receipt the use of the global approach is advised whenever there is
enough possibility to perturb the system for an informative data record and if the
model specifications are not given in the frequency domain. In other situations the
use of a local approach is advised due to its higher capability to meet the target
performance under the given information content of available data sets.

9.3.5.11 Similarity to Nonlinear Identification Methods

In Chap. 1 it has been discussed that the attractive properties of truncated OBF
expansion representations inspired some identification approaches in the NL and
the fuzzy field. In order to position the developed approaches with respect to those
methods, i.e. to clarify the connection or dissimilarities, the following properties are
important:

• In the nonlinear case, the method of [63] uses Wiener and Hammerstein type of
models where the LTI part is the linear combination of a filter bank of OBFs.
We have already shown that these models result as “special cases”of W-LPV and
H-LPV OBF models in the quasi-LPV case. In [159], the used model structure
contains fuzzy membership functions associated with a (Laguerre) basis function
in the filter bank.

• In our approach, the OBFs, the backbone of the model structures, are optimized
for S, while in the methods of [159] and [63] they are assumed to be chosen by
the user.

• In [63], the LTI part is parameterized and estimated as a linear combination of
the chosen basis functions simultaneously with the estimation of the static non-
linearity. Similarly in [159], both the LTI part and the fuzzy part are identified
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together. In our approach, the parametrization is focused on the expansion coef-
ficients while the LTI part is fixed, thus the complicated estimation structure of
the fuzzy and NL methods is not required in this case.

• Both the proposed and the NL/fuzzy approaches use the least-squares criterion
for the identification of the system, however, the proposed LPV approach is sim-
pler as it solves the estimation problem via an analytic solution (linear regres-
sion).

9.3.6 Examples

In this section, the applicability of the introduced identification methods is shown
through three different examples.

9.3.6.1 SS Example with Invariant (A,B)

As a first example, consider an asymptotically stable LPV system S1, with an
RSS(S1) equal to

[
A1 B1

C1 � p 0

]
=

⎡
⎢⎢⎣

0.3 0.2 0.4 1
−0.1 0.2 0.2 1
0.4 −0.1 0.5 1

2p −p2 sin(p) 0

⎤
⎥⎥⎦ ,

and P = [−1,1]. Note that in this representation, only C depends on p and the under-
lying dependence is static. Using the poles of A to generate Hambo basis functions
Φ0

3 , the resulting OBFs satisfy with respect to FS1 of RSS(S1) that FS1 ⊂ Span(Φ0
3 ).

As only C depends on p and FS1 ⊂ Span(Φ0
3 ), the system lies in the model class of

the W-LPV OBF structure with these basis functions. Furthermore, the expansion
coefficients of RSS(S1) in terms of the basis functions Φ0

3 have static dependence,
thus choosing the parametrization of the W-LPV OBF model with static dependence
still implies that the system lies in the model class. Based on the OBF setΦ0

3 and 100
experiments with varying p, global identification of S with the W-LPV OBF struc-
ture has been carried out in 100 Monte Carlo runs. In each experiment, a Nd = 500
sample long data record of the system has been generated, based on white u and
p with uniform distribution U(−1,1). For each data record, a white output noise e
with distribution N (0,0.5) has been added, which matches with the noise concept
of the prediction-error setting (see Sect. 9.2.1). The resulting signal-to-noise ratio
(SNR) has been 29.5 dB, while the relative signal-to-noise amplitude has been 26%.
Using the same conditions in the local case, DNd,p data records have been collected
100 times with constant scheduling points P11 = {−1 + 0.2τ}10

τ=0. Based on these
data records, 11 local estimates of RSS(S) have been produced using an LTI-OBF
model structure with Φ0

3 . The resulting “frozen” basis coefficients have been inter-
polated in each of the 100 cases. In both the global and local methods, a 2nd-order
polynomial-based parametrization has been used in the estimation of W (see (9.38a)
with ψi jl(p) = pl and ni j = 2).
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Table 9.1 Validation results of 100 identification experiments by the global and local meth-
ods using the W-LPV and H-LPV OBF model structures in the considered examples. The
results are given in terms of the average MSE, BFR and VAF of the simulated output signals
of the model estimates.

Model Case MSE (dB) BFR (%) VAF (%)

W-LPV S1 local −94.99 99.84% 99.99%
global −62.35 98.54% 98.98%

H-LPV S2 local −95.90 99.71% 99.99%
global −62.78 98.39% 99.97%

W-LPV S3 local −18.01 75.82% 94.12%
global −31.03 86.34% 98.23%

H-LPV S3 local −10.16 62.13% 85.69%
global −26.41 82.11% 96.18%

In the first row of Table 9.1, the (in)validation results of the resulting 100 model
estimates are shown in both the local and global cases. The (in)validation results
are given in terms of average MSE, BFR and VAF of the simulated output signals
of the models (see Sect. 2.4) for realizations of u and p that are different from the
ones used during the identification. In Fig. 9.4, a typical plot of the simulated output
signals and the resulting output-error of the models are presented. As expected, both
approaches identified the system with adequate validation results. This underlines,
that with respect to systems that are in the considered W-LPV OBF model class, both
approaches provide reliable estimates even in case of significant output noise. By
further investigating the results it is obvious that the global approach has produced
a slightly worse result than the local approach. Explanation of this phenomenon lies
in the much larger amount of data (11 ·Nd) available in the local case.

9.3.6.2 SS Example with Invariant (A,C)

As a second example, consider an asymptotically stable LPV system S2, with an
RSS(S2) equal to the transpose of RSS(S1):

[
A2 B2

C2 0

]
=

[
A�1 C�1
B�1 0

]
.

Note that RSS(S1) and RSS(S2) are not equivalent. However, the OBF set Φ0
3 of

the previous example still satisfy that FS2 ⊂ Span(Φ0
3 ) with respect to the frozen

transfer function set FS2 of RSS(S2). In this case, the true system lies in the model
class of the H-LPV OBF structure with the basis functions Φ0

3 and with static co-
efficient dependence. By using the same setting of data sequences and local model
estimates as in the previous example, identification of S2 has been accomplished by
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Fig. 9.4 Comparison of the identified models of S1 by their responses for white u, p with
distribution U(−1,1): RSS(S) (black), W-LPV OBF local (grey), W-LPV OBF global (light
grey).
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Fig. 9.5 Comparison of the identified models of S2 by their responses for white u, p with
distribution U(−1,1): RSS(S2) (black), H-LPV OBF local (grey), H-LPV OBF global (light
grey).

using the H-LPV OBF model structure with Φ0
3 . The (in)validation results in terms

of simulation are shown in Fig. 9.5 and in the second row of Table 9.1. As expected,
both approaches identified the system adequately just like in the previous example.

9.3.6.3 IO Example

As a third example, the asymptotically stable LPV system S3 for which OBF se-
lection has been extensively studied in Sect. 8.3.3 is identified. Consider the IO
representation RIO(S3) defined by (8.17) and with P = [0.6,0.8]. Using the poles
obtained via the FKcM algorithm with fuzzyness m = 25 and nc = 8, a OBF set
Φ0

8 has resulted, which has been found adequate for the truncated series-expansion
based approximation of the system. Using this basis function set and the proposed
identification algorithms, we show that quite accurate estimated models of the sys-
tem can be derived.

Based on Φ0
8 and a 2nd-order polynomial-based parametrization of the coeffi-

cients, identification of S3 with both methods and structures has been accomplished
in 100 Monte Carlo runs. The used data sequences have been based on the same
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Fig. 9.6 Comparison of the identified models of S3 by their responses for white (u, p) with
distribution (U(−1,1),U(0.6,0.8)): S3 (black), W-LPV OBF global (light grey), H-LPV
OBF global (grey).
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Fig. 9.7 Comparison of the identified models of S3 by their responses for white (u, p) with
distribution (U(−1,1),U(0.6,0.8)): S3 (black), W-LPV OBF local (light grey), H-LPV OBF
local (grey).

setting and conditions as in the previous examples, only now p has been generated
with a distribution U(0.6,0.8). The SNR was 20 dB in the resulting data records
with a relative signal-to-noise amplitude of 25 %. Calculation time of the algo-
rithms was a few seconds on a Pentium 4, 2.8 GHz PC. In Fig. 9.6 and 9.7 and
in the last two rows of Table 9.1, the (in)validation results are shown for different
realizations of u, p than used during the identification. As expected, the W-LPV and
H-LPV OBF structures based on coefficients with static dependence could not fully
cope with the variations in the {al}5

l=0 parameters. However, the global W-LPV
OBF identification provided quite acceptable results for such a heavily nonlinear
system. The explanation why the H-LPV OBF structure gave a worse result lies in
the different approximation capabilities of these models. By computing the left-side
expansion coefficients of (8.17) in terms of the used basis, which corresponds to the
true coefficients of the system with respect to the W-LPV OBF model structure, the
resulting expansion coefficients have a dominant part with static dependence. This
means that a good approximation of the system can be found among the used W-
LPV OBF models with static dependence (both the parametrization and truncation
bias are small). On the other hand, the right-side expansion coefficients of (8.17) in
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terms of Φ∞
8 have a dominant part with dynamic dependence. This means that the

parametrization bias of H-LPV OBF models with static dependence must be larger
than in the previous case. This implies that with the considered parametrization, W-
LPV OBF model structures are generally better for systems with a IO representation
where the dynamics are dominated by the variation of the {ai} coefficients, while
H-LPV OBF model structures are better for the cases, where {b j} are dominant.

In this example global methods prevail, because they have been able to capture
the transient dynamics of the system between frozen scheduling points of P, while
in the local case the number of 11 local model estimates was not enough for correct
interpolation. By using Nloc > 11, the local method quickly improves. Note that in
the asymptotic sense (in Nloc) the local and global method converge to the same op-
timal model in the utilized model class. Extension of Φ8 with ne = 1,2, . . . has not
improved the results as Φ8 is well chosen with respect to S3, i.e. the local model-
ing error is negligible due to the optimal choice by the FKcM. Therefore, the error
in Table 9.1 is mainly governed by the modeling error of the used parametrization
(9.55). Using higher order polynomials inΨ produces a 2-5% percentage improve-
ment in the results of Table 9.1, but in order to achieve full representation with the
proposed models, incorporation of dynamic dependence on p is required.

9.4 Approximation of Dynamic Dependence

In the previous part, OBFs-based model structures have been introduced for the
identification of LPV systems, with the main intention to give flexible models that
are able to describe general LPV systems, simplify identification, are useful for con-
trol, and are unaffected by the difficulties present in the identification of LPV-SS or
IO models. It has been shown that to describe any LPV system, the coefficients
of the W-LPV and H-LPV OBF models, similar to the coefficients of other LPV
models, need to have dynamic dependence on p. We have motivated that dynamic
dependence presents an extra freedom of the parametrization and is not supported
by the existing control approaches. To overcome this problem, in Sect. 9.3 the coef-
ficients have been restricted to static dependence. This assumption led to a novel and
efficient identification approach of W-LPV and H-LPV OBF model structures based
on the LS criterion. However, the drawback of the assumption has also been pointed
out: it limits the class of representable LPV systems. In this section an alternative
of LPV truncated OBF expansion models and its identification approach is intro-
duced with the intention to improve the representation capabilities of the previously
considered model structures and parametrization, but without the use of dynamic
dependence. In fact the idea that we will apply is the introduction of an additional
feedback-loop around each basis component of the W-LPV and H-LPV OBF model
structures with a gain incorporating also static dependence (see Figures 9.8 and 9.9).
In this way, the filter bank of OBFs as a dynamical LTI system is “reused”to provide
dynamic expansion coefficients. This implies that these modified structures can ap-
proximate a much wider class of LPV systems than W-LPV and H-LPV OBF mod-
els with static dependence. The introduction of feedback-based weighting leads to
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Fig. 9.8 IO signal flow graph of WF-LPV OBF models with feedback coefficients V =
[v01 . . . vneng ] and output-side coefficients W = [w01 . . . wneng ] without a feedthrough term.
All coefficients are considered with static dependence.

two new model structures given in Fig. 9.8 and 9.9, which we call Wiener feedback
(WF) and Hammerstein feedback (HF) LPV OBF models.

9.4.1 Feedback-Based OBF Model Structures

Again we consider the prediction-error setting of Sect. 9.2.1. Let Φne
ng

be a set of
Hambo basis functions in RH2− (E). Denote the input and output of each basis
function in Φne

ng
by ŭi j and y̆i j satisfying:

y̆i j = φ j(q)Gi
b(q)ŭi j. (9.58)

Additionally, let (Ai j,Bi j,Ci j,Di j) be a minimal balanced SS realization of each
basis function φ jGi

b and introduce A = Diag(A01, . . . ,Aneng). Similarly define B and
C. Denote ŭ = [ ŭ01 . . . ŭneng ]� and y̆ = [ y̆01 . . . y̆neng ]�. Then, the SS form of the
IO relation (9.58) is

qx = Ax + Bŭ, (9.59a)

y̆ = Cx. (9.59b)

Note that this is a non-minimal SS representation, but it is needed to introduce the
feedback loops around each basis function separately (see Figures 9.8 and 9.9). Let
S be an asymptotically stable SISO LPV system with scheduling space P ⊆ RnP ,
scheduling signal p, and IO partition (u,y). Then the feedback model structures of
Figures 9.8 and 9.9 are formulated as follows [195]:
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Fig. 9.9 IO signal flow graph of HF-LPV OBF models with feedback coefficients V =
[v01 . . . vneng ] and input-side coefficients W = [w01 . . . wneng ] without a feedthrough term.
All coefficients are considered with static dependence.

• Wiener feedback LPV OBF model (WF-LPV OBF)

y̆i j = φ j(q)Gi
b(q)u−φ j(q)Gi

b(q)vi j(p)y̆i j, (9.60a)

y = e + w00(p)u +
ne

∑
i=0

ng

∑
j=1

wi j(p)y̆i j, (9.60b)

with p ∈BP, where BP is considered to be known and with

θ =
[

w00 w01 . . . wneng v01 . . . vneng

]� ∈ (R|nP
)1+2(ne+1)ng .

This model, given in Fig. 9.8, is called the WF-LPV OBF model and denoted
by MWF(Φne

ng
,θ ,BP). As y̆i j is independent from e (u and p are assumed to be

deterministic), the one-step-ahead predictor in this case reads as

y̆i j = φ j(q)Gi
b(q)u−φ j(q)Gi

b(q)vi j(p)y̆i j, (9.61a)

ŷθ = w00(p)u +
ne

∑
i=0

ng

∑
j=1

wi j(p)y̆i j. (9.61b)

Denote W = Diag(w01, . . . , wneng) and V accordingly and let E = [1 . . . 1]. Then,
the SS equivalent of (9.61a–b) is given by

qx = (A−BV(p)C)x + BE�u, (9.62a)

ŷθ = W (p)Cx + w00(p)u. (9.62b)
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• Hammerstein feedback LPV OBF model (HF-LPV OBF)

ŭi j = wi j(p)u− vi j(p)φ j(q)Gi
b(q)ŭi j, (9.63a)

y = e + w00(p)u +
ne

∑
i=0

ng

∑
j=1

φ j(q)Gi
b(q)ŭi j. (9.63b)

with p ∈BP, where BP is considered to be known, and with

θ =
[

w00 w01 . . . wneng v01 . . . vneng

]� ∈ (R|nP
)1+2(ne+1)ng .

This model, given in Fig. 9.9, is called the HF-LPV OBF model and denoted
by MHF(Φne

ng
,θ ,BP). As ŭi j is independent from e, the one-step-ahead predictor

reads as

ŭi j = wi j(p)u− vi j(p)φ j(q)Gi
b(q)ŭi j, (9.64a)

ŷθ = w00(p)u +
ne

∑
i=0

ng

∑
j=1

φ j(q)Gi
b(q)ŭi j. (9.64b)

Following a similar formulation as in the Wiener case, the SS equivalent of
(9.64a–b) is given by

qx = (A−BV(p)C)x + BW(p)u, (9.65a)

ŷθ = ECx + w00(p)u, (9.65b)

Note that the weighting functions {wi j}, {vi j} are not necessarily equivalent in
(9.60a–b) and (9.63a–b). Thus similar to the previous case, these model structures
are distinguished in the sequel.

9.4.2 Properties of Wiener and Hammerstein Feedback Models

In order to show the importance of the introduced feedback based model structures,
their key properties are investigated in this section.

9.4.2.1 Representation of Dynamic Dependence

First, the representation capabilities of the feedback based model structures are dis-
cussed:

Property 9.1 (Representation of dynamic dependence). Let S be an asymptotically
stable LPV system and Φ∞

ng
⊂ RH2− (E) be a Hambo basis. Consider a Wiener-

feedback model MWF(Φne
ng

,θ ,BP) of S with coefficients wi j and vi j having static
dependence. If MWF(Φne

ng
,θ ,BP) is asymptotically stable, then its deterministic

part has a convergent series-expansion in terms of Φ∞
ng

. If there is a feedback co-
efficient vi j of MWF(Φne

ng
,θ ,BP) which is dependent on p, i.e. not constant, then
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the coefficients of the series-expansion have dynamic dependence, otherwise all ex-
pansion coefficients have static dependence.

Obviously the same property holds for the Hammerstein case. For a proof see Ap-
pendix A.4. Note that in terms of Property 9.1, a WF-LPV or a HF-LPV OBF model
can be considered to be equivalent with a W-LPV or a H-LPV OBF model with
dynamic coefficient dependence. However, the converse does not hold in general.
Thus, through static weighting functions wi j,vi j ∈ R|nP

the feedback based OBF
models can approximate general LPV systems. It is trivial that such an approxi-
mation is more adequate than using W-LPV and H-LPV OBF models with static
coefficient dependence. In fact, those models are special cases of the WF-LPV OBF
and HF-LPV OBF structures. Equations (9.62a–b) and (9.65a–b) imply that the WF-
LPV and HF-LPV OBF structures can approximate static scheduling dependence in
the A matrix as well as static scheduling dependence in the autoregressive part, see
(9.60a–b) and (9.63a–b). However, this improved representation capability comes
at a price, namely that due to the feedback, stability of the model is not internally
guaranteed like in the W-LPV or the H-LPV OBF case.

9.4.2.2 General Approximation Property

Based on the previous part, a WF-LPV or a HF-LPV OBF model can only approx-
imate and not represent an arbitrary LPV system S. So the general approximator
property does not hold in this case as it would require dynamic dependence of W
and V . However, these models have a series-expansion representation with coeffi-
cients incorporating dynamic dependence, thus they give better approximations of
general LPV systems than W-LPV and H-LPV OBF models restricted to have static
dependence.

9.4.2.3 Loss of Linearity in the Coefficients

The second price to be paid is that, by the introduction of the feedback loop, the
linear-in-the-coefficients property of the original series-expansion structure is lost.
The resulting predictors (9.61a–b) and (9.64a–b) are bilinear in the coefficients.

9.4.2.4 McMillan Degree Property

Due to the fact that the introduced feedback based structures are still based on trun-
cated series expansions, just like the W-LPV and H-LPV OBF models, they are well
structured against changes of the McMillan degree in the frozen system set FS .

9.4.2.5 Models for Control

The existing approaches of LPV control theory are also directly applicable for es-
timates with the introduced model structures. Through (9.62a–b) and (9.65a–b),
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immediate SS realizations of estimated models are available where all dependen-
cies are static. Opposite to the previous case, in (9.62a) and (9.65a) the resulting A
matrix is dependent on p, thus control design does not simplify for these models.
However, the specific structure of the dependence may be exploited during control
design. The resulting SS forms also have a trivial LFR realization if the coefficients
have polynomial or rational dependence on p.

9.4.3 Identification by Dynamic Dependence Approximation

In the following, an approach is proposed based on [195] for the identification with
the introduced WF-LPV and HF-LPV OBF model structures using the LS criterion.
This identification approach is the extension of the global method of Sect. 9.3. Again
we consider the parametrization of each wi j and vi j as

wi j =
nw

∑
l=0

θwi jlψ
w
l , vi j =

nv

∑
l=0

θvi jlψ
v
l , (9.66)

where {θwi jl} and {θvi jl} are real-valued unknown coefficients and ψw
l ,ψv

l ∈ R|nP
,

with ψw
0 = ψv

0 = 1, are given orthogonal meromorphic functions with static depen-
dence. We also assume that no feedthrough term is present, w00 = 0, however later
the estimation of w00 is also investigated for the algorithm. Similar to the previous
case, the approach is formulated by assuming that the basis selection phase has al-
ready been accomplished, so we pick up the line of reasoning right after Step 2 in
Sect. 9.2.5.1.

Similar to the global approach of Sect. 9.3, the estimation phase of the
identification approach based on WF-LPV and HF-LPV OBF model structures
uses only one data set DNd = {y(k) ,u(k) , p(k)}Nd−1

k=0 which is collected from
S with varying scheduling and it is assumed to be informative with respect to
the considered model structure. Note that due to the linear parametrization of
the coefficients, the unknown parameters {θvi jl} and {θvi jl} appear in a bilinear
relationship in the predictors (9.61a–b) and (9.64a–b). This implies that by using
the LS criterion (9.37) as an identification criterion with residual (9.15), the
minimization of (9.37) can be tackled by a separable least-squares algorithm. In
each step of this iterative solution, either {θvi jl} or {θvi jl} is fixed, while the other
parameter set is estimated by linear regression. This iterative scheme is repeated,
till (9.37) converges. The procedure for the Wiener case is given in detail as follows:

Algorithm 9.4 (OBFs based LPV identification, Wiener-Feedback case)

Step 3c. Given an OBF set Φne
ng

= {φi j}i=0,...,ne
j=1,...,ng

and data record DNd of S. Pa-
rameterize each wi j and vi j of (9.60a–b) according to (9.66) where
ψw

l ,ψv
l ∈R|nP

are meromorphic functional dependencies chosen by the
user with ψw

0 = ψv
0 = 1. Collect these functions as
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Ψw = [ψw
0 . . . ψw

nw
], Ψv = [ψv

0 . . . ψv
nw

],

and also collect the real parameters, associated with the parametrization
(9.66), into the vectors:

θw =
[
θw010 θw011 . . . θwnengnw

]�
, θv =

[
θv010 θv011 . . . θvnengnv

]�
.

Step 4c. Choose a set of initial values for the parameters {θvi jl}, like θvi jl = 0.

Step 5c. Based on DNd , compute y̆ = [y̆i j]
i=0,...,ne
j=1...ng

via (9.60a) with respect to the
OBF set Φne

ng
.

Step 6c. Estimate the parameter set {θwi jl}
ne,ng,nψ
i=0, j=1,l=0 by linear regression with re-

spect to fixed {θvi jl}
ne,ng,nψ
i=0, j=1,l=0. This is done by defining the regressors

as
γ� (k) = y̆(k)⊗Ψw (p(k)) , k ∈ [0,Nd−1]. (9.67)

Collect the data into

ΓNd =
[
γ(0) . . . γ(Nd−1)

]�
, YNd =

[
y(0) . . . y(Nd−1)

]�
.

Then, to minimize the prediction-error criterion (9.44), the analytic so-
lution θ is obtained via (9.45).

Step 7c. Fix {θwi jl} to θ̂wNd
and estimate the parameters {θvi jl} in the following

iterative way. In each iteration step we calculate an update for each
θvi j = [θvi j0 . . . θvi jnv

] and choose that estimate which gives the best im-
provement on the prediction error of the model. This is formalized in the
following steps:

1. For each basis function φ jGi
b, compute

ỹi j = 1
wi j(p)

(
y−

ne

∑
k=0
k �=i

ng

∑
l=1
l �= j

wkl(p)y̆kl

)
. (9.68)

If wi j(p(k)) = 0 for some k, then do not consider those time instants
in the further procedure.

2. Collect each ỹi j into Ỹ (i j)
Nd

and u into UNd similar to YNd . Let Hi j

be the lower triangular Toeplitz matrix of the Markov parameters
associated with (Ai j,Bi j,Ci j):

Hi j =

⎡
⎢⎢⎢⎣

0 0 . . . . . .
Ci jBi j 0 . . . . . .

Ci jAi jBi j Ci jBi j 0 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ . (9.69)

Define
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γ�i j (k) = y̆i j (k)⊗ψv (p(k)) , k ∈ [0,Nd−1], (9.70)

and collect it into Γ (i j)
Nd

. Then, based on (9.62a–b), it holds that

Ŷ (i j)
Nd

= Hi jUNd −Hi jΓ
(i j)

Nd
θvi j, (9.71)

where

Ŷ (i j)
Nd

=
[

ŷ(i j)
θ (0) ŷ(i j)

θ (1) . . . ŷ(i j)
θ (Nd−1)

]�
, (9.72)

is the predicted output of the basis function φ j(q)Gi
b(q). Estimation

of θvi j can be formulated as a linear regression, similarly as in Step

6.c, to minimize the residual of Ỹ (i j)
Nd
− Ŷ (i j)

Nd
. The regressor in this

case is Hi jΓ
(i j)

Nd
and the data matrix is Hi jUNd − Ỹ (i j)

Nd
.

3. For each θ̂vi j , compute the prediction error with only this element

updated in θv. Choose the θ̂vi j which renders the smallest error and
only update the value of θv with this element.

4. If the overall prediction error did not converge, then goto Step 7.c.1.

Step 8c. If the prediction error converged with respect to both {θwi jl} and {θvi jl},
then stop, else goto 5.c.

In the HF-LPV OBF case, the identification procedure is similar. However, the
formulation of the regressor is accomplished differently just like in Sect. 9.3. Based
on (9.65a–b), for x(0) = 0 and w00 = 0, the predicted output of the HF-LPV OBF
model ŶNd = [ ŷθ (0) ŷθ (1) . . . ŷθ (Nd−1) ]� satisfies

ŶNd =

⎡
⎢⎢⎢⎣

0 0 . . .
ECBW (p(0)) 0 . . .

EC [A−BV(p(1))C]BW (p(0)) ECBW (p(1))
...

...
. . .

⎤
⎥⎥⎥⎦UNd .

By simple rearrangement it follows that

ŶNd =

⎡
⎢⎢⎢⎣

0 0 . . .
ECBIu(0) 0 . . .

EC [A−BV(p(1))C]BIu(0) ECBIu(1)
...

...
. . .

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ĤNd

⎡
⎢⎣

W (p(0))
W (p(1))

...

⎤
⎥⎦
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Now similar to the global method of Sect. 9.3, the formulation of the regressor
can be accomplished based on ĤNd and the estimate of {θwi jl} follows via linear
regression.

The other difference occurs in Step 7.c.1 where, due to the Hammerstein structure
of the model, (9.68) simplifies to

ỹi j = y−
ne

∑
k=0
k �=i

ng

∑
l=1
l �= j

y̆kl. (9.73)

Furthermore, (9.71) is translated to

Ŷ (i j)
Nd

= Hi jÛ
(i j)
Nd
−Hi jΓ

(i j)
Nd

θvi j, (9.74)

where

Û (i j)
Nd

=
[

wi j(p(0))u(0) wi j(p(1))u(1) . . . wi j(p(Nd−1))u(Nd−1)
]�

.

The procedure can also be extended to estimate a direct feedthrough term in the
same way as discussed in Sect. 9.3.

9.4.4 Properties

In the following important properties of the introduced identification approach of
WF-LPV and HF-LPV OBF models are investigated. It is motivated that the sep-
arable least-squares estimation scheme is convergent and the obtained parameter
estimates are local minima or saddle points of the LS criterion.

9.4.4.1 Convergence of the Iterative Estimation Scheme

In the proposed identification scheme, the coefficients wi j and vi j are parameterized
linearly via (9.66), resulting in a set of unknown parameters {θwi jl} and {θvi jl}. Due
to the bilinear relationship in which these parameters appear in the one-step-ahead
predictors (9.61a) and (9.64a), a separable least-squares algorithm is applied to
tackle the minimization of the LS criterion. It is a cardinal question if this iterative
scheme is convergent, i.e. is it guaranteed that the value of the LS criterion decreases
in each consecutive iteration step. In each iteration cycle of this scheme, one set of
the parameters is fixed, {θwi jl} or {θvi jl}, in order to form a linear regression based
estimation of the other set by minimizing the mean squared error of the residual.
This results in a steepest descend type of iterative optimization in the search for the
optimal LS prediction error. For such a separable least squares strategy, it is well
known that it is convergent and the convergence point is a saddle point or a local
minimum of the cost function [62]. The exact convergence point is characterized
by the initial choice of {θvi jl} in Step 3c. The estimates converge to that point of the
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parameter spaceΘ whose associated region of attraction, based on the given data set,
contains the initial choice of {θvi jl}. Similar to the numerical optimization schemes
of LTI OE or Box-Jenkins models, the global optimum of (9.37) can only be ob-
tained by starting the iterative search from different initial values and comparing the
results [105].

9.4.4.2 Unstable Model Estimates

A further problem may arise in cases where the resulting model estimate is unstable,
even if S is asymptotically stable. This phenomenon is due to the fact that the feed-
back weighting is tuned on a particular, finite scheduling trajectory. As this feedback
tuning can be thought of as the reoptimization of the basis with respect to DNd , the
finite data length and the excitation capabilities of the input and scheduling signals
directly effect the estimation. Thus, even if the resulting model is stable with respect
to the scheduling trajectory in DNd it is not guaranteed that it is stable for any other
p ∈BP.

9.4.4.3 Practical Use and (In)validation

Local minima and the possibility of unstable model estimates do not necessarily cre-
ate problems in practice. If the resulting model passes the validation test it should
be an acceptable model [105]. The problem is that the only theoretically sound
(in)validation approach of the model estimates is based on simulation. By comput-
ing error measures of the difference of simulated and measured outputs, the qualities
of the model estimates can be compared. As is shown in the example of Sect. 9.4.5,
the proposed method quickly converges in practice and provides a reliable estimate
of LPV systems.

9.4.4.4 Consistency, Variance, and Bias of the Estimates

In the previous section, the linear-in-the-parameter property of the used model struc-
tures in the one-step-ahead predictor enabled results on the consistency, variance,
and bias of the resulting model estimates. In the feedback case, the linear-in-the-
parameter property is lost, due to the bilinear relationship of the coefficients. Thus
the previously developed results do not hold in this case. In nonlinear system iden-
tification, there are many results on the consistency, variance, and bias of model
estimates obtained via different types of separable least-squares strategies. How-
ever, none of these results seem to apply to the considered model structures and
estimation strategies used here. Investigation of consistency, variance, and bias of
the estimation mechanism remains the subject of future research for the feedback
based model structures.
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Table 9.2 Validation results of 100 identification experiments with the Wiener (W) and the
Wiener Feedback (WF) model structures. The results are given in terms of the average MSE,
BFR and VAF of the simulated output signals of the model estimates. Subscript 1 denotes the
values of these error measures for simulation with multisine u and p and subscript 2 denotes
the case when uniform noise superimposed on multisines is used as an excitation.

LPV Wiener model

SNR MSE1 (dB) BFR1 (%) VAF1 (%) MSE2 (dB) BFR2 (%) VAF2 (%)

no noise −18.23 85.39 97.84 −34.96 90.04 99.00
35 dB −18.21 85.38 97.82 −34.77 89.92 98.99
20 dB −17.81 85.17 97.75 −32.75 88.69 98.71
10 dB −20.68 86.27 98.47 −31.81 87.73 98.19

LPV Wiener Feedback model

SNR MSE1 (dB) BFR1 (%) VAF1 (%) MSE2 (dB) BFR2 (%) VAF2 (%)

no noise −31.32 94.04 99.55 −39.75 92.40 99.42
35 dB −31.30 93.64 99.53 −39.17 92.15 99.39
20 dB −21.60 89.30 98.52 −35.01 90.06 99.00
10 dB −22.60 88.44 98.98 −32.38 88.15 98.59

9.4.5 Example

In this section applicability of the WF-LPV OBF model structure and its identifi-
cation approach for the approximation of general LPV systems is shown through
an example. Comparison is made with the static-coefficient-function based Wiener
OBF model structure to show that by using the proposed feedback structure, better
performance of the model estimates can be achieved.

As in the previous case, the asymptotically stable LPV system S3 is considered
which has been studied in Sect. 8.3.3. The IO representation of S3, RIO(S3) is de-
fined by (8.17). This system has also been identified in Sect. 9.3.6 by using the
basis functions set Φ0

8 obtained via the FKcM algorithm with fuzzyness m = 25 and
nc = 8.

Here we aim at the identification of S3 with the WF-LPV and W-LPV OBF model
structures. To ensure fair comparison of the results, both model structures are used
with basis functions Φ0

8 and the coefficients in W are parameterized as 2nd-order
polynomials in p. In the feedback case, the coefficients in V are parameterized as
3rd-order polynomials. These orders have been found optimal after several trial and
error experiments. Identification of S3 with the global approach has been accom-
plished 100 times in 4 different noise settings with both the Wiener and the Wiener-
feedback model structures. The data records for each identification have been
generated by a white (u, p) with uniform distribution (U(−0.5,0.5),U(0.65,0.75))
superimposed on random multisines (3 sines with random phase in [0,π ] and fre-
quency in [0,π/5] and with overall amplitude of 0.5 and 0.05). The reason why this
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Fig. 9.10 Typical convergence plot of the prediction error in terms of (9.37) for the iterative
WF-LPV OBF identification algorithm.

particular excitation has been used is explained later. For each data record the iden-
tification has been accomplished in a noiseless setting and also with additive zero-
mean white output noise with normal distribution and variance σ2

e = 0.01, 0.1, and
0.5. The resulting SNR has been 35 dB, 20 dB, and 10 dB, while the relative noise
amplitudes have been 7%, 25%, and 54% in average for the three noise cases. For the
σ2 = 0.5 noise case Nd = 1000, and in the other cases Nd = 500 samples long data
records have been used. In the iterative identification method, the feedback weights
have been initialized at zero. The iterative identification method converged in an
average of 14 iterations for the 4×100 runs. A typical convergence plot is given in
Fig. 9.10 and the typical output trajectories of the resulting estimates are shown in
Fig. 9.11. Calculation time for each data set has been approximately 2 minutes with
the WF-LPV OBF structure and only a few seconds with the W-LPV OBF struc-
ture on a Pentium 4, 2.8 GHz PC. In Table 9.2, the (in)validation results are shown
for multisine (u, p) with random frequencies and phases and also for uniform noise
superimposed on random multisine, similarly generated like the identification data.
As expected, both approaches identified the system with adequate average MSE,
BFR and VAF even in case of a heavy output noise, which underlines the effec-
tiveness of the proposed OBF identification philosophy. For all measures, validation
signals, and noise cases, the WF-LPV OBF model provided better estimates than
the pure static dependence based W-LPV OBF model estimate. This clearly shows
the improvement in the approximation capability due to the approximation of dy-
namic dependence with feedback-based weighting. Additional extension ofΦ0

8 with
ne = 1,2, . . . has not improved the results as Φ0

8 is well chosen with respect to S,
i.e. the local modeling error is negligible due to the FKcM (see Sect. 8.3.3). Even
in the SNR= 10dB case, the model estimates proved to be accurate, showing that
the proposed identification scheme is applicable even in the presence of significant
measurement noise.

It has been observed that by using multisines superimposed on the realization of
a noise sequence for the excitation of the system, the results have been better with
the feedback-based structures in the presence of output additive noise. Explanation
lies in the presence of the feedback gain of the model structure. In case significant
noise is present in short data records, it is possible that the feedback weights are
fitted to the noise process during the iterative optimization. By using multisines that
emphasizes certain frequencies in the input and the scheduling signal, this effect
can be attenuated. This underlines that much more understanding of feedback-based
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Fig. 9.11 Typical validation results of identified WF-LPV OBF (light grey) and W-LPV OBF
(grey) models in the SNR = 20dB case. The response of the true system is given in black.

OBF models, especially in terms of sufficient excitation, is needed to achieve high
quality model estimates.

9.5 Extension towards MIMO Systems

Next, we investigate how the developed approaches and model structures can be
used for identification in the MIMO case. We show that by different choices of
the basis (scalar or multivariable) different extensions of the previously studied ap-
proaches are available.

9.5.1 Scalar Basis Functions

The OBF expansion representation of asymptotically stable LPV systems has been
developed in Sect. 5.3 in a general sense, using a set of scalar basis functions. This
implies that such a series expansion is also available in the MIMO case, result-
ing in a sequence of multidimensional expansion coefficients wi j ∈ RnY×nU . As a
consequence, the formulation of the W-LPV and H-LPV OBF model structures for
asymptotically stable MIMO LPV systems follows similarly as in Sect. 9.2 and the
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MIMO W-LPV OBF structure like (9.21) or a MIMO H-LPV OBF model like (9.24)
can be formulated with wi j ∈RnY×nU . By assuming static dependence of these co-
efficients, identification follows by applying the algorithms of Sect. 9.3 with some
extra book keeping due to the multidimensional input and output signals. Addi-
tionally, the basis selection algorithm of Chap. 8 is also applicable in this case, by
selecting the scalar basis with respect to the pole manifest set of the frozen MIMO
systems of S.

Note that a multidimensional p results in a multidimensional interpolation in the
local case or the use of multidimensional ψ (p) in the global case. Multidimen-
sional interpolation problems are hard to solve and they require many interpola-
tion points, i.e. many local experiments. Therefore, the global method is practically
better-applicable for large scheduling dimensions. Note that the global approach is
even applicable for significantly large scheduling dimensions which is an advan-
tageous property with respect to LPV subspace identification methods due to the
serious increase of block dimensions in such cases.

9.5.2 Multivariable Basis Functions

Due to the scalar basis sequence, it can happen that a MIMO series expansion con-
verges fast with respect to specific input-output channels, but quite slow for others
just like in the LTI case (see Sect. 2.3). As a result, some elements of the resulting
coefficient matrices can have negligibly small amplitudes over all trajectories of the
scheduling behavior BP. This implies that their estimation can result in a consid-
erable variance. To overcome this effect, series expansion of asymptotically stable
multivariable LPV systems can be introduced using a MIMO basis ofRHnY×nU

2− (E).
Again, the key idea is to use MIMO basis functions that are composed from scalar
basis sequences (see Sect. 2.3):

φ̆l(q) :=

⎡
⎢⎣
φl11(q) . . . φl1nU

(q)
...

. . .
...

φlnY1(q) . . . φlnYnU
(q)

⎤
⎥⎦ , (9.75)

where each {φli j}∞l=1 separately corresponds to a basis ofRH2− (E). Then, in terms
of Th. 5.2, an asymptotically stable LPV system, with respect to a given IO partition,
can be represented as

y = (W0 � p)u +
∞

∑
i=0

(
(Wi � p)� φ̆i(q)

)
u, (9.76)

where Wi ∈ RnY×nU and � denotes the element-by-element matrix product. By
choosing the basis sequences appropriately, a fast convergence rate can be achieved
for each IO channel. The basis selection can follow by the OBF selection procedure
of Chap. 8 with respect to each input-output channel separately. This means that the
method is applied for a set of pole samples that are associated with the set of SISO
systems describing the frozen behavior of S restricted to the considered IO channel.
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As a next step, we formulate these model structures for a given MIMO basis se-
quence Φn = {φ̆i}n

i=1 composed from these scalar elements. Note that, in this case,
each basis sequence {φli j}∞l=1 is generated with a different inner function, thus Φn
denotes the first n functions in each sequence.

• MIMO Wiener LPV-OBF model, MW(Φn,θ ,BP)

G(q,θ )� p = W0 � p +
n

∑
i=0

(Wi � p)� φ̆i(q), H(q,θ ) = I, (9.77)

where Wi ∈RnY×nU and e in this case is a vector of independent zero-mean white
noise processes. The parameter vector of the coefficients is

θ =
[

W0 W1 . . . Wn
]�

. (9.78)

In this case, the one-step-ahead predictor is formulated as

ŷθ = (W0 � p)u +
n

∑
i=0

(
(Wi � p)� φ̆ j(q)

)
u. (9.79)

Let E = [1 . . . 1]� and introduce y̆i : Z→RnY×nU defined as y̆i = φ̆ j(q)� (Eu�).
These signals are the multidimensional counterparts of the output signals of the
filter bank part of the model structures in the SISO case (see Fig. 9.2).

• MIMO Hammerstein LPV-OBF model, MH(Φn,θ ,BP)

G(q,θ )� p = W0 � p +
n

∑
i=0

φ̆i(q)� (Wi � p), H(q,θ ) = I, (9.80)

where Wi ∈RnY×nU . The one-step-ahead predictor is formulated in this case as

ŷθ = (W0 � p)u +
n

∑
i=0

(
φ̆ j(q)� (Wi � p)

)
u. (9.81)

Additionally, the multidimensional ŭi : Z→RnY×nU (see Fig. 9.2) are introduced
as ŭi = (Wi � p)� (Eu�).

By assuming static dependence of the matrix coefficients {Wi} and introducing
a parametrization of {Wi} in terms of linear combination of predefined orthogonal
functions:

Wi =
ni

∑
l=0

θl�ψl (9.82)

where θl ∈ RnY×nU and ψl ∈ (R|nP
)nY×nU , identification follows by applying the

algorithms of Sect. 9.3 with an extended matrix regressor γ and a stacked out-
put record YNd formulated as YNd = [ y1(0) . . . ynY

(0) y1(1) . . . ynY
(Nd−1) ]�. All

results in this case about consistency, bias, variance, etc. obviously extend to the
MIMO case.
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9.5.3 Multivariable Basis Functions in the Feedback Case

In case of the feedback structures of Sect. 9.4, the MIMO version of the model struc-
tures based on a given MIMO basis sequence Φn composed from scalar elements
can also be formulated.

• MIMO WF-LPV OBF model, MWF(Φn,θ ,BP)

y̆i = φ̆i(q)� (Eyu�)− φ̆i(q)� (Vi � p)� y̆i (9.83a)

y = e +(W0 � p)u +
n

∑
i=0

(
(Wi � p)� y̆i

)
Eu, (9.83b)

where Ey ∈ RnY , Ey = [1 . . . 1]� and Eu ∈ RnU , Eu = [1 . . . 1]�. Furthermore,
each y̆i : Z→ RnY×nU is a multidimensional signal, Wi,Vj ∈ RnY×nU and e is
a vector of independent zero-mean white noise processes. Again as each y̆i is
independent from e, the one-step-ahead predictor reads as

ŷθ = (W0 � p)u +
n

∑
i=0

(
(Wi � p)� y̆i

)
Eu, (9.84)

• MIMO HF-LPV OBF model, MHF(Φn,θ ,BP)

ŭi = (Wi � p)� (Eyu�)− (Vi � p)� φ̆i(q)� ŭi, (9.85a)

y = e +(W0 � p)u +
n

∑
i=0

(
φ̆i(q)� ŭi

)
Eu. (9.85b)

where each ŭi : Z→ RnY×nU is a multidimensional signal, Wi,Vj ∈RnY×nU . The
one-step-ahead predictor reads as

ŷθ = (W0 � p)u +
n

∑
i=0

(
φ̆i(q)� ŭi

)
Eu. (9.86)

Assume that each element of the coefficient matrix functions of these structures is
parameterized as a linear combination of functions with static dependence. Then the
specific structure of the used MIMO forms enables the application of the separable
least-squares algorithm for the estimation of the coefficient functions. Note that the
crucial point of the algorithm is the propagation of the error backwards to the output
of a basis function (see (9.68) or (9.73)). The propagated error can be computed
for each element of the basis-function matrix separately. Each OBF has a separate
feedback via (9.85a) or (9.83a), thus re-optimization of each feedback weight on an
output channel can be done in parallel.

9.5.4 General Remarks on the MIMO Extension

Similar to the LTI case, OBFs based identification of MIMO LPV systems has a
much larger freedom than the LTI case. There are different approaches that can be
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applied to derive a MIMO basis expansion, to formulate MIMO version of W-LPV
and H-LPV OBF models, and to develop identification algorithms that can deliver
the estimate. We have taken here specific choices in order to be able to apply the
introduced estimation mechanisms of Sect. 9.3 and 9.4 without any modification or
reformulation. However, there are numerous possibilities that may be interesting for
further investigation. For example, by considering left or right side placement of the
expansion coefficients for specific IO channels, like mixing the structures of H-LPV
OBF and W-LPV OBF models, or using other formulations of MIMO orthonormal
basis functions, like presented in Sect. 2.3.

In conclusion, it can be stated that the introduced identification approaches can
directly be applied to MIMO LPV systems without the need of any modification or
further assumptions. This implies that the proposed identification scheme in terms
of model structure selection, parametrization, and estimation offers an effective and
easily applicable identification method for a wide variety of LPV systems.

9.6 Conclusions

In this final chapter we have extended the classical prediction-error setting to the
LPV framework. Using this framework and the concept of LPV series expansion
we have introduced discrete-time OBF based model structures and identification
methods of LPV systems. Our purpose was to establish a well understood frame-
work of LPV identification and to introduce an efficient LPV system identification
approach which benefits from the attractive properties of truncated expansion model
structures.

Due to the absence of a transfer function type of description in the LPV case,
we have seen that the behavioral theory and the series expansion representation of
LPV systems were crucial ingredients in order to formulate the extension of the
prediction-error framework to the LPV case. The process and noise models were
formulated based on their impulse response presentation which made it possible to
establish the one-step-ahead predictor in the classical sense, under the assumption
that the scheduling variable is a deterministic signal.

We have shown that using truncated OBF-expansion models it is possible to ben-
efit from a number of attractive properties both in terms of local and global type
of LPV system identification. Beside the simple linear regression based estimation
schemes it has been also shown that the introduced structures can approximate any
LPV system with arbitrary accuracy if the coefficients have dynamic dependence.
Furthermore, these models are not effected by changing McMillan degree of the
frozen aspects of the LPV system, which represents a significant difficulty for the
identification of other type of LPV model structures. We have motivated that the
introduced models are effectively applicable for control as they have a direct state-
space realization, however to satisfy assumptions of the control approaches, their
coefficient dependencies must be restricted to be static. The introduced approaches
have also been analyzed in terms of variance, bias, and consistency.

To enable the estimation of truncated expansion models with dynamic coeffi-
cient dependencies, but at the same time still provide applicable models for control,
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feedback-based OBF model structures have been proposed in Sect. 9.4. It has been
shown, that by using static dependence, the introduced model structure is equiv-
alent to OBF expansion models with dynamic coefficient dependencies. For the
identification with such feedback-based model structures, the previously developed
global approach is extended, formulating the parameter estimation through a sepa-
rable least-squares approach. Finally, in Sect. 9.5, the extension of the introduced
approaches to MIMO systems is investigated. It has been shown that for OBF mod-
els, based on MIMO functions composed from scalar basis sequences, the developed
approaches and results are applicable.

We can conclude that we achieved our primary objective, giving an alternative,
practically applicable approach for identification of LPV systems as models of an
underlying physical process. On the other hand we left many open problems in terms
of the whole identification cycle in the LPV context. These provide ample food for
thought and objectives of future research.



Appendix A
Proofs

Abstract. In this appendix, the proofs of the theories and lemmas of this book are
presented. The proofs relay heavily on the notation and concepts introduced in the
previous chapters.

A.1 Proofs of Chapter 3

A.1.1 The Injective Cogenerator Property

Proof. The concept of the proof is based on [239]. Let R∞ = R∪ {−∞,∞} and
denote by Qn all maps from (R,Rn) to R∞ bounded almost everywhere on Rn,
i.e. for each w ∈ Qn there exists a set S(w) ⊂ Rn such that w ∈ RR×(Rn\S(w)) and
S(w) has a measure 0. The set Qn is a real vector space for each n ∈ N. Denote by
Q̄n ⊂Qn the set of all w ∈ Qn for which there exist a t ∈ R and x1, . . .xn ∈ R such
that w(t,x1, . . . ,xn) �= w(t,x1, . . . ,xn−1,0). DenoteQ=

⋃
n∈N Q̄n.Q is an (additive)

Abelian group.
Consider a R ∈R[ξ ]nr×nW with P = RnP . For a w ∈Q, R�w = 0 means that any

(w, p) ∈ Lloc
1 (R,RnW ×RnP) satisfying

w(t) = w(t, [ p(t) d
dt p(t) d2

dt2 p(t) . . . ]), (A.1)

for all k ∈ Z with p being smooth enough, also satisfies (R( d
dt ) � p)(t)w(t) = 0

weakly for all t ∈R\K(w , p), where K(w , p) = {t ∈Z | [ p(t) d
dt p(t) d2

dt2 p(t) . . . ]∈
S(w)}. As S(w) has zero measure, this means that there exists a (w, p) ∈
Lloc

1 (R,RnW ×RnP) satisfying (A.1) such that (R( d
dt )� p)(t)w(t) = 0 holds weakly

for all t ∈ R. The set B∗ given as B∗ = {w ∈ QnW | R � w = 0}, is called the
complete solution space of the linear system of PV differential equations (KR-
representation) (R( d

dt ) � p)w = 0. Note that the behavior B of R (see Def. 3.10),
contains the set of trajectories (w, p) that satisfy w ∈ B∗, while B∗ describes the
relationship of the trajectories containing the descriptions of possible solutions that
are excluded from B due to the singularity of the coefficients in R.
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Let M1 ∈ R[ξ ]nr×nr and M2 ∈ R[ξ ]nW×nW be unimodular matrices such that
(3.35) is the Jacobson form of R with Q = Diag(1, . . . ,1,r) ∈ R[ξ ]n×n and 0 �=
r ∈ R[ξ ]. It can be shown (see [41, 188]), that (R( d

dt ) � p)w = 0 has the same
solutions as

(M1(
d
dt

)R(
d
dt

)� p)w = (Q(
d
dt

)M†
2(

d
dt

)� p)w = 0, (A.2)

so there is an isomorphism between solution spaces

B∗ ∼= B̃∗ := {w̃ ∈ QnW | [ Q 0 ]� w̃ = 0}, (A.3a)

w → w̃ := M†
2 (q)w , (A.3b)

where w̃i = 0 for i∈ {1, . . . ,n−1} and rn �w̃n = 0. IntroduceMR = ModuleR[ξ ](R)
as the left module in R[ξ ]nr×nW generated by the rows of R ∈R[ξ ]nr×nW . Then

B∗ ∼= HomR[ξ ](MR,QnW), (A.4)

which corresponds to the so-called Malgrange isomorphism. Explicitly, (A.4) as-
signs to each w ∈B∗ the linear map φw :MR →Q defined by φw ([r]) := r(q)w
where [r] denotes the residue class of r ∈R[ξ ]1×nW inMR, and the well definedness
of φw follows from

[r1] = [r2] → r1− r2 ∈ Spanrow
R (R) → r1(q)w = r2(q)w ,

for all w ∈ B∗ which also implies that QnW ∼= HomR[ξ ](R[ξ ]1×nW ,QnW). Con-
versely, for a linear map φ :MR→Q one defines wi := φ([ei]), where ei is the i-th
natural basis vector ofR[ξ ]1×nW . Then we have

φ([r]) = φ
([
∑nW

i=1 riei
])

= ∑nW

i=1 ri(q)φ([ei]) = ∑nW

i=1 ri(q)wi = r(q)w .

Due to (A.1), the above equation implies an isomorphism of left modules:

ModuleR[ξ ](R)∼= ModuleR[ξ ]([ Q 0 ]), (A.5a)

[r]→ [rM2]. (A.5b)

Let M1,M2,M3 be left modules in R[ξ ]nr×nW and let φ12 :M1 →M2 and
φ23 :M2→M3 be linear maps, i.e. left module homomorphisms. Then

M1
φ12→M2

φ23→M3 (A.6)

is exact if im(φ12) = ker(φ23). The same notion can be used if M1,M2,M3 are
Abelian groups and φ12,φ23 are group homomorphisms. Then Q is called an injec-
tive cogenerator if the sequence

M1→M2→M3, (A.7)

is exact iff the sequence
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HomR[ξ ](M1,QnW)← HomR[ξ ](M2,QnW)← HomR[ξ ](M3,QnW)

of Abelian groups is exact.
For injectivity, one needs to prove according to Corollary 3.17 of [92]: For every

0 �= R ∈R[ξ ] and every wu ∈ Q, there exists a wy ∈ Q such that R � wy = wu. Let

R(ξ ) = ∑
nξ
i=0 riξ i be given with rnξ �= 0. If nξ = 0, there is nothing to prove. Since

R is a field, assume that rnξ = 1. Then R�wy = wu can be rewritten as a first-order
system

(rx,1
d
dt

+ rx,0)� wx = ru � wu, (A.8)

where wx = [ wy . . . d
nξ−1

dt
nξ−1 wy ]�, rx,1 = I, ru = [ 0 . . . 0 1 ]� ∈R

nξ and

rx,0 =
[

0 −I
r0 r∗

]
∈Rnξ×nξ , with r∗ = [ r1 . . . rn ]. (A.9)

Let S(R) denote the discrete set of singularities of the meromorphic coefficients
ri in R. Let S(wy) := S(wu)∪S(R) which is still discrete. Hence, R· \ S(wy) is a
countable union of open intervals Ii ∈ R· and on each Ii it holds that R0 and wu are
bounded. Therefore there exists a bounded solution wx : (Z× Ii)→R

nξ to (A.8) on
each Ii. By concatenating them, one gets a solution wx ∈ Qnξ and thus wy ∈Q.

For the cogenerator property, it has to be shown that if for some R ∈ R[ξ ],
R � wy = 0 has only the zero solution, then this implies that R ∈ R and R �= 0.
Assume the contrary and let Deg(R) = nξ ≥ 1. Then one can rewrite R � wy = 0
as d

dt wx = −rx,0 � wx like in the previous part. Let S(wy) = S(R), then on each of
the intervals Ii, the solution set of this homogenous equation is an nξ -dimensional
subspace of (Rnξ )R×Ii , in particular there exist non-zero solutions. By concatenat-
ing them, we get a non-zero solution wx ∈ Qn. If wy = wx,1 was identically zero,

then wx = [ wy . . . d
nξ−1

dt
nξ−1 wy ]� would be identically zero which leads to a contra-

diction. The same proof can be given in discrete-time with minor changes due to the
difference in the solution spaces and the Jacobson form (see [201] for the details).�

A.1.2 Existence of Full Row Rank KR Representation

Proof (Theorem 3.2). Consider a continuous-time RK(S) with R ∈ R[ξ ]nr×nW ,
P = RnP , and represented behavior B. Without loss of generality, let R �= 0 as the
behavior B =Lloc

1 (R,RnW×RnP) for R = 0 can be represented by the empty matrix
which is full rank by convention. Let M1 ∈R[ξ ]nr×nr and M2 ∈R[ξ ]nW×nW be uni-
modular matrices such that (3.35) is the Jacobson form of R in terms of Theorem 3.1
with Q = Diag(1, . . . ,1,r) ∈ R[ξ ]n×n and 0 �= r ∈ R[ξ ]. Partition M†

2 = [W1 W2 ]�
according to the partition of the Jacobson form. Since M1 is unimodular, the solution
space of (R( d

dt )� p)w = 0 is equal to the solution space of (M1( d
dt )R( d

dt )� p)w = 0
(see the previous proof in Sect. A.1.1). Thus R′(ξ ) := Q(ξ )W1(ξ ) also represents
B in an almost everywhere sense, i.e. for all trajectories of p ∈Bp for which the
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coefficients of R′ are bounded, and Rank(R′) = n. For the DT case, the proof anal-
ogously follows only the formulation of the Jacobson form and the definition of
solution spaces are different. �

A.1.3 Elimination Property

Proof (Theorem 3.3). Based on the proof of the injective cogenerator property, con-
sider

B∗ = {w ∈ QnW | ∃w L ∈ QnL s.t. RW � w = RL � w L}, (A.10)

where RW ∈ R[ξ ]nr×nW and RL ∈ R[ξ ]nr×nL define an LPV latent variable repre-
sentation in the form of (3.39) with P = RnP . Then showing that B∗ has a kernel
representation is equivalent with showing that the manifest behavior of (3.39) has a
kernel representation in an almost everywhere sense. Define the left kernel of RL as

KerR[ξ ](RL) = {r ∈R[ξ ]1×nr | r(ξ )RL(ξ ) = 0}, (A.11)

which is a left submodule ofR[ξ ]1×nr . Thus, it is finitely generated, i.e. there exists
a Q ∈R[ξ ]n×nr such that ImgR[ξ ](Q) := {r(ξ )Q(ξ ) | r(ξ ) ∈R[ξ ]1×nr} is equal to
KerR[ξ ](RL). Then we have an exact sequence

R[ξ ]1×n ·Q→R[ξ ]1×nr ·RL→R[ξ ]1×nL (A.12)

and therefore the sequence Qn Q(q)← Qnr
RL(q)← QnL is also exact. This signifies that

RW(q)w ∈ ImgQ(RL) := {RL(q)w L |w L ∈QnL} iff RW(q)w ∈KerQ(Q), i.e. B∗ =
{w ∈ QnW |QRW � w = 0}. �

A.1.4 State-Kernel Form

Proof (Theorem 3.4). The concept of the proof is based on [153]. To simplify the
discussion, we prove only the so-called Markovian case as the state case follows
trivially from this concept due to the linearity and time-invariance of LPV systems.
We call the continuous-time LPV system S = (R,P,W,B) Markovian, if for all
p ∈BP

(w1,w2 ∈Bp)∧ (w1,w2 continuous at 0)∧ (w1(0) = w2(0))⇒ (w1∧
0

w2) ∈Bp.

In case of a discrete-time S, i.e. T = Z, the definition is similar except continuity
of w1 and w2 is not required at 0. In the following we prove that S is Markovian iff
there exist matrices r0,r1 ∈Rnr×nW such that B has the kernel representation:

r0w+ r1ξw = 0. (A.13)
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For the sake of simplicity we consider only the continuous-time case as the DT
case follows similarly. For T = R, ξ = d

dt and the “if” part is trivial. To show the
“only if” case, assume that a KR representation of S is given with R ∈ R[ξ ]nr×nW

for which the solutions of (3.24) satisfy the above given connectability condition.
Without loss of generality it can be assumed that R is full row rank. Also, there
exists a unimodular M ∈R[ξ ]·×nr such that R′(ξ ) = M(ξ )R(ξ ) is in a row reduced
form, meaning that the matrix formed by the coefficient functions of the highest
powers in ξ of the rows R′(ξ ) has full row rank. Due to the fact that M is a left-side
unimodular transformation, the behaviors of R and R′ are equivalent.

We now show that Deg(R′) = 1. Assume the contrary and write R′ in the IO form:

(R1(
d
dt

)� p)w1 = (R2(
d
dt

)� p)w2, (A.14)

where Col(w1,w2) = w corresponds to an IO partition and Deg(R1)≥Deg(R2). The
assumption that Deg(R′) > 1 implies that Deg(R1) > 1. Similarly, the assumption
that (R′( d

dt )� p)w = 0 is Markovian implies that (R1( d
dt )� p)w1 = 0 is Markovian.

Now let w′1,w
′′
1 be the solutions of (R1( d

dt )� p)w1 = 0 for a p∈BP with w′1(0) =
w′′1(0). Since (w1,w2) is an IO partition of S, thus Col(w′1,0) and Col(w′′1 ,0) are also
solutions of (R′( d

dt )� p)w = 0 and due to Markovian property, they are connectable.
This implies that in order to obtain contradiction it suffices to prove contradiction
for autonomous systems. Let nξ = Deg(R1) and by assumption nξ > 1. Introduce
auxiliary variables w̆i j defined as

w̆i j :=
di

dti w j, (i, j) ∈ I
nξ
0 × I

nW

1 , (A.15)

where w = [ w1 . . . wnW
]�. Collect these variables in a column vector

w̆ =
[

w̆01 w̆02 . . . w̆0nW
w̆11 . . . w̆nξ nW

]�
. (A.16)

Now consider the system with latent variable w̆ as

d
dt

w̆ = (r � p)w̆, (A.17a)

wj = w̆0 j, ∀ j ∈ I
nW

1 . (A.17b)

where the coefficient r ∈ R(nξ nW)×(nξ nW) is determined from the coefficients of
R1(ξ ) and the definition (A.15). The manifest behavior of (A.17a) is equivalent
with the manifest behavior of R1(ξ ), which can be checked by elimination of the
latent variables of (A.17a–b). However, the manifest behavior can not be Marko-
vian as (A.17a–b) has exactly one solution (w, w̆) for each initial condition w̆(0) and
scheduling trajectory p ∈ BP. This contradicts Markovianity, since two solutions
(w, w̆) and (w′, w̆′) with w̆0 j(0) = w̆′0 j(0), ∀ j ∈ I

nW

1 cannot be connected unless also

w̆i j(0) = w̆′i j(0), ∀(i, j) ∈ I
nξ−1
1 × I

nW

1 . �
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A.1.5 Left/Right-Side Unimodular Transformation

Proof (Theorem 3.7 & 3.8). First consider the left side transformation. Let R ∈
R[ξ ]nr×nW and R′ ∈ R[ξ ]n×nr and P = RnP . Based on the proof of the injective
cogenerator property, consider B∗ and B′∗ as the complete behaviors of R and R′.
Then the inclusion B′∗ ⊆B∗ can be expressed as an exact sequence

0→B′∗ →B∗, (A.18)

which is equivalent to the exact sequence

0←ModuleR[ξ ](R
′)←ModuleR[ξ ](R). (A.19)

Equivalently, we have Spanrow
R (R′) ⊇ Spanrow

R (R) or R′(ξ ) = Q(ξ )R(ξ ) for some
Q ∈ R[ξ ]n×nr . If B∗ = B′∗, then R′(ξ ) = Q1(ξ )R(ξ ) and R(ξ ) = Q2(ξ )R′(ξ ),
which shows that R and R′ has the same rank. If additionally, R and R′ are full
rank, then this implies that Q1 = Q†

2, ergo Q1 and Q2 are unimodular. As the com-
plete behaviors are equal therefore this implies that the behaviors of R and R′ for
each commonly valid trajectory of p are equal.

Consider the right side transformation. Based on the proof of the injective co-
generator property, there is a homomorphism between the the complete behaviors
of R(ξ ) and R′(ξ ) = R(ξ )Q1(ξ ) and also between R(ξ ) = R′(ξ )Q2(ξ ) and R′(ξ ).
This implies that if Q1 = Q†

2, ergo Q1 and Q2 are unimodular, then there exists a
isomorphism between the behaviors. �

A.2 Proofs of Chapter 5

A.2.1 LPV Series Expansion, Pulse Basis

Proof (Theorem 5.1). Let S = (Z,P ⊆ RnP ,RnW ,B) be a discrete-time LPV sys-
tem. Assume that S is not autonomous, i.e., in terms of Def. 3.11, S has an IO
partition which can be non-unique. Denote the scheduling variable of S as p. For
a given IO partition of S with output dimension nY and input dimension nU, an IO
representation of S is characterized by the polynomials Ru ∈ R[ξ ]nY×nU and full
rank Ry ∈R[ξ ]nY×nY . Among the IO representations that belong to the equivalence
class of S for this IO partition, there exists a subset of representations where Ry and
Ru are coprime. Those representations are called minimal (see Def. 3.28). Among
these minimal representations the representation with monic Ry is unique. Consider
this unique, minimal IO representation of S and denote its polynomials with Ry and
Ru. Then the dynamic relation reads as

qnay +
na−1

∑
i=0

(ai � p)qiy =
nb

∑
j=0

(b j � p)q ju, (A.20)
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where ai ∈ RnY×nY and b j ∈ RnY×nU are the coefficients of Ry and Ru. Due to
the maximum freedom of u in the IO partition, it holds that Deg(Ry) = na ≥ nb =
Deg(Ru).

Assume that S is asymptotically stable. Multiply the expression (A.20) with q−na

which according to the non-commutative multiplication rules in discrete time (see
Def. 3.16) results in

y =−
na−1

∑
i=0

(←−ai
(na) � p

)
qi−nay +

nb

∑
j=0

(←−
b j

(na) � p
)

q j−nau, (A.21)

where←−� (na) denotes the backward shift operator applied on the coefficient function
for na times. We call (A.21) the filter form of (A.20). Now substitute q−1y in (A.21)
by the left-hand side of (A.21) multiplied by q−1. This results in the following ex-
pression:

y = −←−−−ana−1
(na)

(
−

na−1

∑
i=0

(←−ai
(na+1) � p

)
qi−1−nay +

nb

∑
j=0

(←−
b j

(na+1) � p
)

q j−1−nau

)

−
na−2

∑
i=0

(←−ai
(na) � p

)
qi−nay +

nb

∑
j=0

(←−
b j

(na) � p
)

q j−nau, (A.22)

Notice that in (A.22), the smallest time-shift of y has the order of−2 and that all co-
efficient relations with (A.21) are uniquely determined. Note that (A.20) represents
B restricted to signals y and u with left compact support. Thus, by applying this pro-
cedure recursively on q−2y, q−3y, etc., there exists a n ∈ N for every (u,y, p) ∈B
such that y vanishes after substitution of q−ny. This yields that the recursive proce-
dure results in a Laurent-like series expansion of (A.20).

Denote by gi the resulting expressions of the coefficients of Ry and Ru associated
with each q−iu in (A.22). It is obvious that gi ∈RnY×nU . However, it is not obvious
how this coefficient sequence behaves for increasing i and if it is convergent or not.
As a next step, we investigate this property.

Due to the asymptotic stability of S, it holds that for all p ∈BP and k ∈ Z

lim
i→∞

(gi � p)(k) = 0. (A.23)

Otherwise there exists a k0 ∈ Z, and an input signal

u(k) =
{

1, if k = k0;
0, else.

(A.24)

such that the associated output trajectory y in terms of the IO representation does not
converge to the origin when k→ ∞, which contradicts with the asymptotic stability.
This implies that

lim
i→∞(gi � p) = 0 ∀p ∈BP, (A.25)
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meaning that the coefficient sequence of the expansion converges to the zero func-
tion on BP. In this way, the limit of the function sequence {g0,g1,g2, . . .} can be
considered zero.

Asymptotic stability of S also implies global BIBO stability in the �∞ norm:

sup
k≥0
‖u(k)‖< ∞ ⇒ sup

k≥0
‖y(k)‖< ∞.

In the view of global �∞ BIBO stability, the resulting series expansion form satisfies

sup
k≥0
‖y(k)‖= sup

k≥0
‖(g0 � p)(k)u(k)+ (g1 � p)(k)u(k−1)+ . . .‖,

for all (u,y, p) ∈B. As supk≥0 ‖u(k)‖<∞ and supk≥0 ‖y(k)‖<∞, the above equa-
tion implies that

sup
k≥0

∞

∑
i=0
‖(gi � p)(k)‖< ∞, (A.26)

for all p ∈Bp. These properties prove that

y =
∞

∑
i=0

(gi � p)q−iu, (A.27)

exists and it is satisfied for all (u,y, p)∈B with left compact support. In this way, an
asymptotically stable discrete-time LPV system has a unique, convergent series ex-
pansion in terms of the LTI pulse basis {1,q−1,q−2, . . .} with expansion coefficients
inRnY×nU . �

A.2.2 LPV Series Expansion, OBFs

Proof (Theorem 5.2). To simplify the discussion consider the SISO case as the
MIMO case analogously follows. In the LTI theory it is proven that any pulse ba-
sis function q−i, i > 0, has a unique series expansion in terms of an arbitrary basis
sequence Φ∞ = {φi}∞i=1 inRH2− (E) [73]. This implies that

⎡
⎢⎢⎢⎣

q−1

q−2

q−3

...

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

w11 w12 w13 . . .
w21 w22 w23 . . .
w31 w32 w33 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ1(q)
φ2(q)
φ3(q)

...

⎤
⎥⎥⎥⎦ , (A.28)

where wi j ∈ R, i, j ∈ I∞1 , are the expansion coefficients. It holds for all i ∈ I∞1 , that
the sequence {wi j}∞j=1 is an �2 sequence [73]. The same property also holds for each
sequence {wi j}∞i=1.

Based on Th. 5.1, there exists a pulse basis series expansion of any discrete-time
asymptotically stable LPV system S = (Z,P,W,B) with IO partition (u,y). This
series expansion can be written in the form of
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y = g0u +
([

g1 g2 g3 . . .
]� p

)
⎡
⎢⎢⎢⎣

q−1

q−2

q−3

...

⎤
⎥⎥⎥⎦u, (A.29)

where gi ∈R, i ∈ I∞0 . Now by substituting (A.28) into (A.29) it follows that

y = g0u +
([

w1 w2 w3 . . .
]� p

)
⎡
⎢⎢⎢⎣

φ1

φ2

φ3
...

⎤
⎥⎥⎥⎦u, (A.30)

where

[
w1 w2 w3 . . .

]
=
[
g1 g2 g3 . . .

]
⎡
⎢⎢⎢⎣

w11 w12 w13 . . .
w21 w22 w23 . . .
w31 w32 w33 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦ . (A.31)

Due to the fact that {gi}∞i=1 converges to zero and it satisfies (A.26) for all p ∈BP

and each {wi j}∞i=1 is an �2 sequence, each wi ∈RnY×nU is unique and well defined.
On the other hand, convergence of each {wi j}∞j=1 to zero implies that

lim
i→∞(wi � p) = 0 ∀p ∈BP, (A.32)

meaning that the new coefficient sequence converges to the zero function on BP.
This provides that (A.30) is a unique, convergent series expansion of the asymptot-
ically stable LPV system in terms of Φ∞ ⊂RH2− (E). As in the considered system
class any system has a convergent series expansion in terms of the pulse basis, there-
fore any of these systems has a convergent series expansion in terms of an arbitrary
Φ∞ ⊂RH2− (E) basis. �

A.3 Proofs of Chapter 8

A.3.1 Optimal Partition

Proof (Theorem 8.1). The proof is given in an alternating minimization sense. First,
fix V and define Ĵm (U) = Jm(U,V ), for U ∈ UNz

nc
. Since the membership values

[μik]
nc
i=1 of zk to the fixed clusters are not depending on the memberships of other

data points, the columns of U are degenerate to each other (decoupled) in the mini-
mization of Ĵm (U), therefore:

min
U∈UNz

nc

Ĵm (U) = min
U∈UNz

nc

max
k∈I

Nz
1

nc

∑
i=1

μm
ik dik = max

k∈I
nc
1

min
U∈UNz

nc

Nz

∑
i=1

μm
ik dik. (A.33)
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Denote Ĵ (k)
m (U) = ∑nc

i=1 μ
m
ik dik. To introduce the constraints UNz

nc
, the Lagrangian

Δk (δk,U) of Ĵ (k)
m (U) is defined for each k ∈ I

Nz
1 as

Δk (δk,U) =
nc

∑
i=1

μm
ik dik− δk

((
nc

∑
i=1
μik

)
−1

)
. (A.34)

Assume that S(V,zk) = /0, then (δk,U) is a stationary point for Δk, only if

∂
∂ (δ ,U)

Δk (δk,U) =
(
0Nz ,0nc×Nz

)
, (A.35)

for all k ∈ I
Nz
1 . Setting all of these gradients equal to zero yields that

∂Δk (δk,U)
∂δk

=
nc

∑
i=1

μik−1 = 0, (A.36a)

∂Δk (δk,U)
∂μik

= mμm−1
ik dik− δk = 0, (A.36b)

for every k ∈ I
Nz
1 and i ∈ I

nc
1 . From (A.36b), it follows that

μik =
(

δk

mdik

) 1
m−1

. (A.37)

Moreover, by substitution of (A.37) into (A.36a):

0 =
nc

∑
l=1

(
δk

m

) 1
m−1

(
1

dlk

) 1
m−1

−1 (A.38a)

(
δk

m

) 1
m−1

=

(
nc

∑
l=1

(
1

dlk

) 1
m−1
)−1

. (A.38b)

If (A.38b) is substituted back into (A.37), then

μik =

(
1

dik

) 1
m−1

nc

∑
l=1

(
1

dlk

) 1
m−1

=
1

nc

∑
l=1

(
dik
dlk

) 1
m−1

. (A.39)

In this way we have proved that in a local minima of Jm(U,V ), all μik have to satisfy
(8.11a). If S(V,zk) �= /0, then (A.39) is singular. In this situation, choosing μik as

given by (8.11a) results in Ĵ(k)
m (U) = 0, because the non-zero weights are placed

on zero distances, while positive distances with nonzero weights would increase
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Ĵ(k)
m (U), contradicting minimality. As the zero-distances can have arbitrary weights,

for the shake of simplicity equal weights are considered fulfilling (8.11a). Note,
that such a singularity hardly occurs in reality, since machine round-off prevents its
encounter.

To establish (8.11b), fix U ∈ UNz
nc

and define J̌m (V ) = Jm(U,V ). Minimization of
J̌m (V ) is unconstrained on Dnc and it is decoupled for each υi. Therefore

min
V∈Dnc

J̌m (V ) = min
V∈Dnc

max
k∈I

Nz
1

nc

∑
i=1

μm
ik dik =

nc

∑
i=1

min
V∈Dnc

J̌ (i)
m (V ) , (A.40)

where J̌ (i)
m (V ) = maxk∈I

Nz
1
μm

ik dik, depending only on υi. This means that

υi = arg min
V∈Dnc

J̌ (i)
m (V ) = arg min

υi∈D
max
k∈I

Nz
1

μm
ik dik. (A.41)

Optimization (A.41) can be formulated as a matrix inequalities constrained mini-
mization problem. Denote

γi = J̌ (i)
m (V ) = max

k∈I
Nz
1

μm
ik dik, (A.42)

then the solution of (A.41) can be obtained by solving

minimize γi ≥ 0,

subject to μm
ik

∣∣∣ zk−υ
1−z∗kυ

∣∣∣≤ γi, ∀k ∈ I
Nz
1 ,

υ ∈ D.

The constraints of this minimization can be written for each k as

μm
ik

∣∣∣∣
zk−υ

1−z∗kυ

∣∣∣∣ ≤ γi, (A.43a)

μ2m
ik |zk−υ |2 |1−z∗kυ |−2 ≤ γ2

i . (A.43b)

From the Schur-complement of (A.43b) it follows that (A.43a) holds iff
[ |1−z∗kυ |2 μm

ik (zk−υ)
μm

ik (zk−υ)∗ γ2
i

]
	 0, ∀k ∈ I

Nz
1 , (A.44)

where υ ∈ D. Then a necessary but not sufficient condition for (U,V ) being local
minima of Jm is to satisfy (A.39) and (A.41). This concludes the proof. It is impor-
tant to remark that Jm (U,V ) has more stationary points than what can be reached
through alternating minimization, however all points fulfilling Th. 8.1 are stationary
points of Jm (U,V ). �
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A.3.2 Asymptotic Property of Jm

Proof (Theorem 8.2). As the cluster centers of V are assumed to be “nonsingular”
with respect to Z, i.e. dik > 0 for all (i,k) ∈ I

nc
1 × I

Nz
1 , thus based on the optimality

of Um, substitution of (A.39) into (8.9) implies, that for m > 1:

Jm(Um,V ) = max
k∈I

Nz
1

nc

∑
i=1

μm
ik dik = max

k∈I
Nz
1

nc

∑
i=1

μik μm−1
ik dik =

= max
k∈I

Nz
1

nc

∑
i=1

μik
dik

dik

(
nc

∑
l=1

(
1

dlk

) 1
m−1
)m−1 =

= max
k∈I

Nz
1

(
nc

∑
l=1

(dlk)
1

1−m

)1−m

,

holds as ∑nc
i=1 μik = 1. Now introduce

J̄ (k)
τ (V ) =

(
nc

∑
i=1

1
nc

(dik)
τ

)1/τ

, (A.45)

with τ = 1
1−m . Then

Jm(Um,V ) = J τ−1
τ

(U τ−1
τ

,V ) = n1/τ
c max

k∈I
Nz
1

J̄ (k)
τ (V ). (A.46)

Equation (A.45) is called the Hölder or generalized mean [33] of dik. Based on the
properties of the generalized mean in terms of τ , the following hold:

• Case m→ 1 ⇔ τ → −∞ ⇒ J̄(k)
τ (V )→ mini∈I

nc
1
{dik} for all k ∈ I

Nz
1 . Since

n1−m
c → 1, the minimum over I

nc
1 is unique for each k:

lim
m→1

Jm(Um,V ) = max
k∈I

Nz
1

min
i∈I

nc
1

{dik} . (A.47)

• Case m = 2 ⇔ τ =−1. Then J̄ (k)
−1(V ) is the harmonic mean of {dik}nc

i=1 for each

k ∈ I
Nz
1 , so

J2(U2,V ) =
1
nc

max
k∈I

Nz
1

nc

∑nc
i=1

1
dik

. (A.48)

• Case m→ ∞ ⇔ τ → 0. Then, the asymptotic convergence of the generalized

mean to the geometric mean yields: J̄ (k)
τ (V ) =

(
∏nc

i=1 dik
)1/nc +O(e

1
τ ), which

gives

Jm(Um,V ) = n1−m
c max

k∈I
Nz
1

(
nc

∏
i=1

dik

) 1
nc

+O(e−m), (A.49)



A.3 Proofs of Chapter 8 297

and since n1−m
c → 0, therefore

lim
m→∞ Jm(Um,V ) = 0. (A.50)

�

A.3.3 h-Center Relation

Proof (Lemma 8.3). From Lemma 8.2 we obtain that for any Kh (eh,rh), there exists
a K (e,r), such that all z ∈ Kh (eh,rh) satisfies both

∣∣∣∣
z−eh

1− z∗eh

∣∣∣∣= rh, |z−e|= r. (A.51)

Straightforward calculus leads to

e =
1−r2

h

1−r2
h |eh|2

eh, r =
1−|eh|2

1−r2
h |eh|2

rh, (A.52)

concluding that

e = ϕheh where ϕh =
1−r2

h

1−r2
h |eh|2

∈R. (A.53)

�

A.3.4 κ1-Metric

Proof (Theorem 8.4). In order to prove that KM is a metric on D, the following 3
properties have to be verified for all x,y,z ∈ D:

(i) Zero metricity: κ1(x,x) = 0. By substitution:

κ1(x,x) =
∣∣∣∣
x−x

1−x∗x

∣∣∣∣=
∣∣∣∣∣

0

1−|x|2
∣∣∣∣∣= 0, ∀x ∈D. (A.54)

(ii) Symmetry: κ1(x,y) = κ1(y,x). Let x,y ∈ D be arbitrary, then:

κ1(x,y) =
|x−y|
|1−x∗y| =

|−(y−x)|∣∣(1− (x∗y))∗
∣∣ = κ1(y,x). (A.55)

(iii) Triangular inequality: κ1(x,y) ≤ κ1(z,x) + κ1(z,y). Assume that x,y ∈ D

and z ∈ Hxy (see Fig. A.1.a). If x = y, then (iii) holds trivially as κ1(x,x) =
0 ≤ 2κ1(z,x). Moreover, if z = x or z = y then (iii) holds with equality as
κ1(x,y) = κ1(x,x) + κ1(x,y) = κ1(x,y) or κ1(x,y) = κ1(y,y) + κ1(x,y) =
κ1(x,y). Now assume that x,y,z are distinct points. Define x̂ = hz(x) and
ŷ = hz(y), where hz is the h-inversion that maps z → 0. Then, hz(Hxy) =
Hx̂ŷ is a segment of an Euclidian line, a diameter of J (dark grey line in
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Fig. A.1 Inversion of h-lines and points proving the Triangular equality.

Fig. A.1.a). Let H̃ be the diameter line (also an h-line) bisecting the angle
between H0x̂ and the real axis. Then hH̃(x̂) = x̃ and hH̃(ŷ) = ỹ are points
of the real axis and hH̃(Hx̂ŷ) = Hx̃ỹ ⊂ (−1,1) with 0 ∈ Hx̃ỹ (light grey line
in Fig. A.1.a). As hH̃ ◦ hz ∈ D, then by Corollary 8.1, (iii) can be written as
κ1(x̃, ỹ)≤ κ1(0, x̃)+κ1(0, ỹ). Assuming that x̃ and ỹ are ordered as x̃∈ (−1,0)
and ỹ ∈ (0,1), then

|x̃− ỹ|
|1− x̃∗ỹ| ≤ −x̃+ ỹ,

ỹ− x̃

1 + |x̃| ỹ ≤ ỹ− x̃,

1 ≤ 1 + |x̃| ỹ,
0 ≤ |x̃| ỹ.

In the second part of the proof assume that z /∈ Hxy. Define h-circles
Kh1(x,rh1) and Kh2(y,rh2) (dark grey circles in Fig. A.1.b) such that z ∈
Kh1,Kh2. Note that κ1(z,x) = rh1 and κ1(z,y) = rh2. If max(rh1,rh2) ≤
κ1 (x,y), then Kh1∩Hxy = x̃ and Kh2∩Hxy = ỹ exist (light grey points in Fig.
A.1.b). Since x̃,z ∈ Kh1, therefore κ1 (x̃,x) = κ1 (z,x) and since ỹ,z ∈ Kh2,
therefore κ1 (ỹ,y) = κ1 (z,y). Moreover, κ1 (x̃,x) > κ1 (ỹ,x) and κ1 (ỹ,y) >
κ1 (x̃,y), otherwise Kh1∩Kh2 = /0. Then, κ1(x,y)≤ κ1 (x̃,x)+κ1 (x̃,y), which
gives κ1(x,y)≤κ1 (z,x)+κ1 (ỹ,y) implying (iii). If max(rh1,rh2)> κ1 (x,y),
then either x̃ /∈Hxy or ỹ /∈Hxy. x̃ /∈Hxy means that the circle Kh1 is containing
the circle Kh(x,κ1(x,y)), so κ1(x,y) < rh1 = κ1 (z,x) . This implies that (iii)
holds. The case of ỹ /∈ Hxy analogously follows. �

A.3.5 h-Segment Worst-Case Distance

Proof (Theorem 8.5). Define x̂= hv (x), ŷ= hv (y) and Hx̂ŷ = hv
(
Hxy

)
. As hv (v)=

0, κ1 (0, ẑ) = |ẑ| for all ẑ ∈ Hx̂ŷ. Moreover, hv keeps distances in the Kolmogorov
sense (Corollary 8.1), therefore
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max
z∈Hxy

κ1 (v,z) = max
ẑ∈Hx̂ŷ

|ẑ| . (A.56)

In accordance to this, the most distant point of Hx̂ŷ in the Euclidian sense from the
origin represents the furthest point of Hxy in the Kolmogorov sense from v. Based
on the Euclidian geometry:

max
ẑ∈Hx̂ŷ

|ẑ|= max(|x̂| , |ŷ|) = max(κ1 (x,v) ,κ1 (y,v)) . (A.57)

�

A.3.6 h-Disc Worst-Case Distance

Proof (Theorem 8.6). Define êh = hv (eh), then due to Lemma 8.6,
hv (Dh (eh,rh)) = Dh (êh,rh). As hv (v) = 0, thus κ1 (0, ẑ) = |ẑ| for every
ẑ ∈Dh (êh,rh). Due to Corollary 8.1:

z̆ = arg max
z∈Dh(eh,rh)

κ1(v,z) = hv(arg max
ẑ∈Dh(êh,rh)

|ẑ|). (A.58)

Assume that v = eh, then êh = 0 and hv (Dh (eh,rh)) is equal to the Euclidean disc
D(0,rh). Then

arg max
ẑ∈D(0,rh)

|ẑ|= K (0,rh) , (A.59)

and z̆ = hv (K (0,rh)) = Kh (eh,rh), i.e. all the perimeter points of Dh (eh,rh), with

max
z∈Dh(eh,rh)

κ1(v,z) = rh. (A.60)

If v �= eh, then due to Lemma 8.3, êh and the Euclidian center of Dh (êh,rh) are on
the same Euclidian line from the origin. Therefore, based on the Euclidian geometry:

z̆ = hv(arg max
ẑ∈{ẑ1,ẑ2}

|ẑ|) (A.61)

where {ẑ1, ẑ2} = E (0, r̂)∩Kh (êh,rh) with E (0, r̂), the Euclidian line connecting
the origin with êh. Furthermore,

max
z∈Dh(eh,rh)

κ1(v,z) = max(|ẑ1| , |ẑ2|) . (A.62)

As hv (E (0, r̂)) = Hveh the h-line connecting v with eh, therefore Hveh ∩
Kh (eh,rh) = {hv (ẑ1) ,hv (ẑ2)}. �

A.3.7 Convexity

Proof (Theorem 8.7). Any conformal mapping in D preserves convexity of subsets
of D [26]. As any he, with e ∈ D, is a conformal mapping, therefore he preserves



300 A Proofs

convexity of sets in D (convexity preservation in the KM sense). Let an arbitrary
h-segment Hxy be given. Then e = Hxy ∩H⊥(xy) is the midpoint of Hxy and Hx̂ŷ =
he
(
Hxy

)
is the part of a diameter of D. Then based on the convexity of Euclidian

lines, for any z1,z2 ∈Hx̂ŷ and r ∈ [0,1] it holds that rz1 +(1−r)z2 ∈Hx̂ŷ. There-
fore convexity holds for Hxy in the KM sense. Furthermore, for any Dh (eh,rh),
there exists an equivalent Euclidian disc D(e,r). Based on the convexity of Euclid-
ian discs, the convexity of Dh (eh,rh) is straightforward. �

A.3.8 Optimal Robust Partition

Proof (Theorem 8.8). Similar to the proof of Th. 8.1 an alternating minimization
approach is utilized. First, fix V and define Ĵm (U) = Jm(U,V ), for U ∈ UNz

nc
. Since

the minimization of Ĵm (U) does not depend on the actual computation of {dik},
therefore the first part of the proof deriving the condition (8.30a) is the same as
given for the proof of Th. 8.1 with the exception, that in this case no singularity can
occur as dik > 0 for all (i, j)∈ I

nc
1 ×I

Nz
1 . See Sect. 8.3 for details. To establish (8.30b),

fix U ∈ UNz
nc

and define J̌m (V ) = Jm(U,V ). Minimization of J̌m (V ) is decoupled for
each υi, therefore

min
V∈Dc

J̌m (V ) = min
V∈Dnc

max
k∈I

Nz
1

nc

∑
i=1

μm
ik dik =

nc

∑
i=1

min
V∈Dnc

J̌ (i)
m (V ) , (A.63)

where J̌ (i)
m (V ) = maxk∈I

Nz
1
μm

ik dik, depending only on υi. As the elements of V are

degenerate to each other (decoupled) in the minimization of J̌ (i)
m (V ), the minimizer

of J̌ (i)
m is obtained as

υi = arg min
υi∈D

max
k∈I

Nz
1

max
zk∈Zk

μm
ikκ1(υi,zk). (A.64)

Optimization (A.64) can be formulated as a QCs’ constrained minimization prob-
lem. Denote

γi = J̌ (i)
m (V ) = max

k∈I
Nz
1

μm
ik dik, (A.65)

then the solution of (A.64) can be obtained by solving

minimize γi ≥ 0,

subject to μm
ik

∣∣ z−ν
1−z∗ν

∣∣≤ γi, ∀k ∈ I
nc
1 , ∀z ∈ Zk

ν ∈ D.

Moreover, the constraints of the minimization can be rewritten for each k as (A.43a–
b). The same holds for the h-discs induced constraints. From the Schur-complement
it follows that (A.43a) holds iff (8.29) is fulfilled and the h-disc coverage induced
constraints hold iff (8.35) is fulfilled. Then a necessary but not sufficient condition
for (U,V ) being a local minimum of Jm is to satisfy (8.30a) and (8.30b). �
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A.4 Proofs of Chapter 9

A.4.1 Representation of Dynamic Dependence

Proof (Property 9.1). Let S be an asymptotically stable SISO LPV system
and Φ∞

ng
⊂ RH2− (E) be a Hambo basis. Consider an asymptotically stable

Wiener-feedback model MWF(Φne
ng

,θ ,BP) of S. The deterministic part F(q,θ ) of
MWF(Φne

ng
,θ ,BP) has the representation:

y̆i j = φ j(q)Gi
b(q)u−φ j(q)Gi

b(q)vi j(p)y̆i j, (A.66a)

y = w00(p)u +
ne

∑
i=0

ng

∑
j=1

wi j(p)y̆i j, (A.66b)

where wi j,vi j ∈ R|nP
are meromorphic coefficients with static dependence. As

MWF(Φne
ng

,θ ,BP) is asymptotically stable, (A.66a–b) has a convergent series ex-
pansion in terms of Φ∞

ng
(see Th. 5.2). By substituting (A.66a) into (A.66b) recur-

sively, this series expansion can be derived as follows:

y = w00(p)u +
ne

∑
i=0

ng

∑
j=1

wi j(p)φ j(q)Gi
b(q)u

−
ne

∑
i=0

ng

∑
j=1

wi j(p)φ j(q)Gi
b(q)vi j(p)φ j(q)Gi

b(q)u + . . . (A.67)

Consider φ j(q)Gi
b(q)vi j(p). In this term, φ j(q)Gi

b(q) is a stable LTI filter, hence
there exist polynomials R1,R2 ∈ R[ξ ] such that

φ j(q)Gi
b(q) =

R1(q−1)
R2(q−1)

, (A.68)

where the polynomial qnR2(q−1) in q is monic for n = Deg(R2(q)). Then due the
stability of (A.68), there exists a v̂i j ∈R such that

R1(q−1)
R2(q−1)

vi j(p) =
∞

∑
l=0

(
1−R2(q−1)

)l
R1(q−1)vi j(p)

=
∞

∑
l=0

(v̂i j � p)
(
1−R2(q−1)

)l
R1(q−1) = (v̂i j � p)

R1(q−1)
R2(q−1)

.

If vi j ∈R, i.e. vi j is a constant, then v̂i j = vi j, otherwise v̂i j has dynamic dependence
on p due to the shift operation (see Def. 3.16). Then in (A.67), the terms in the
second summation reads as

wi j(p)φ j(q)Gi
b(q)vi j(p)φ j(q)Gi

b(q)u = wi j(p)(v̂i j � p)φ2
j (q)G2i

b (q)u. (A.69)
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For this expression it holds true that φ2
j (q)G2i

b can be written a finite sum of

{φτ(q)Gl
b}l=0,...,2i+1

τ=1,...,ng
. Then by considering all summation terms in (A.67) in analogy

with the previous manipulations, (A.67) reads as

y = w00(p)u +
∞

∑
i=0

ng

∑
j=1

(ŵi j � p)φ j(q)Gi
b(q)u, (A.70)

where ŵi j ∈R. It is obvious that in (A.70) ŵi j = wi j for i≤ ne and ŵi j for i > ne has
static dependence on p iff each vi j is constant in MWF(Φne

ng
,θ ,BP). This concludes

the proof in the WF-LPV OBF case. With respect to HF-LPV OBF models, the
proof follows similarly. �
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13. Bamieh, B., Giarré, L.: Identification of linear parameter varying models. Int. Journal
of Robust and Nonlinear Control 12, 841–853 (2002)

14. Banks, S.P., Al-Jurani, S.K.: Pseudo-linear systems, Lie’s algebra, and stability. IMA
Journal of Mathematical Control and Information 13, 385–401 (1996)
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