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Preface

The last thirty years have witnessed an enormous effort in the field of robust
control of dynamical systems. The main objective of this book is that of
presenting, in a unified framework, the main results appeared in the literature
on this topic, with particular reference to the robust stability problem for
linear systems subject to time-varying uncertainties.

The book mainly focuses on those problems for which a definitive solution
has been found; indeed most of the results we shall present are given in the
form of necessary and sufficient conditions involving the feasibility of Linear
Matrix Inequalities based problems.

For self-containedness purposes, most of the results provided in the book
are proven. We have tried to maintain the development of the proofs as simple
as possible, without sacrificing the mathematical rigor.

Some parts of the book (especially those contained in Chaps. 2, 3 and 5)
can be teached in advanced control courses; however this work is mainly
devoted to both researchers in the field of systems and control theory and
engineers working in industries which want to apply the methodologies pre-
sented in the book to practical control problems. To this regard, as the various
results are derived, they are immediately reinforced with real world examples.

Catanzaro Francesco Amato
July 2005
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1. Introduction

According to the celebrated paper [68], linear systems uncertainties can be
divided into two big families: dynamical input-output uncertainties and state-
space uncertainties.

Dynamical input-output uncertainties are typically time-invariant and
come from approximations related to the system model. Often the sys-
tem under consideration is either infinite-dimensional or high order finite-
dimensional; then a first step toward the controller synthesis procedure is
that of associating a reduced order finite-dimensional model to the original
system by neglecting the high frequency dynamics.

Model approximations, neglected dynamics, etc., can be lumped into one
or more dynamical, finite-dimensional, linear time-invariant systems, which
are located in series and/or in parallel to the nominal system. In this case
the whole uncertain system is described as in Fig. 1.1, where u and y are the
input and the output, and G(s) and ∆(s) correspond to the nominal and the
uncertain part of the system respectively.

The complex matrix function ∆(s) can be either a full block transfer func-
tion matrix (when there is only one source of uncertainty) or a block diagonal
transfer function matrix (when there are multiple sources of uncertainties, for
example at the input and the output of the plant). At each frequency, a bound
on the norm of each uncertainty block is given on the basis of experimental
considerations.

In this context, in the last twenty-five years, the problems of checking the
system stability and designing a controller for a given system which maintains
closed loop stability and, at the same time, guarantees given performance re-
quirements in presence of uncertainties, have been widely investigated and
many related issues have been solved in an elegant and computationally ap-
pealing way. The main outcomes of this activity have been the H∞ and µ
control theories; see among others the fundamental works by Zames [181–183],
Zames and Francis [184], Doyle [63], Doyle and Stein [67, 68], Lehtomaki et
al [115], Safonov and Athans [155, 156], Safonov et al [157], Cruz et al [53],
Freudenberg and Looze [76, 77], Francis and Zames [74], Francis et al [73],
Doyle et al [65], and, to witness an assessment of the methodologies, the
books published on this topic ( [64,72,121,166] and [185] among others) and
the collection of papers by Dorato [61] and Dorato and Yedavalli [62].
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∆(s)

u

w∆

G(s)

z∆

y

Fig. 1.1. Dynamical input-output uncertainties

Conversely, state-space uncertainties take into account the approximate
knowledge of the numerical values of the physical parameters on which the
system depends. While dynamical input-output uncertainties appear at a
transfer function level and are time-invariant, state-space uncertainties enter
directly the system matrices, are memoryless (possibly time-varying) and can
be divided into two major classes, that is parametric uncertainties

ẋ = A(p)x + B(p)u p ∈ R ⊂ R
q (1.1a)

y = C(p)x + D(p)u , (1.1b)

and norm bounded uncertainties

ẋ = (A + ∆A) x + (B + ∆B) u (1.2a)
y = (C + ∆C) x + (D + ∆D) u , (1.2b)

where(
∆A ∆B
∆C ∆D

)
=
(

F1

F2

)
∆(I − H∆)−1

(
E1 E2

)
, ‖∆‖ ≤ 1 , (1.3)

and Fi, Ei, i = 1, 2, H are matrices of suitable dimensions.
It can be shown that the uncertain system (1.2)–(1.3) and, under some

assumptions on the parameter dependence, the uncertain system (1.1) can
be recasted into the H∞ and µ frameworks represented in Fig. 1.1. However,
as said, H∞ and µ theories deal with time-invariant dynamical uncertainties
and mainly rely on input-output operator theory methods; conversely, in
this book we deal with time-varying memoryless uncertainties. Therefore an
approach based on the Lyapunov state-space stability theory will be used.
Nevertheless very intriguing connections between the two approaches exist
and will be analyzed in this work.
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To introduce more precisely the problems we deal with in this book, let
us consider a zero-input uncertain system depending on a parameter p (rep-
resentation (1.1)) in the form

ẋ =
(

0 1
−2 + p −1

)
x =: A(p)x . (1.4)

Assume that the exact value of the parameter is unknown, and that we have
only an information regarding the minimum and maximum value that the
parameter can attain

p ∈ [p, p] . (1.5)

At this point we must distinguish between three different situations:

i) The parameter is constant;
ii) the parameter is time-varying, but the time behavior is unknown;
iii) the parameter is time-varying and a bound on the maximum rate of

variation is known.

In case i) to establish system stability it is sufficient to check that the
eigenvalues of A(p) have negative real part for all p ∈ [p, p]. If, as in the case
of system (1.4), the system depends on only one parameter one can apply
the classical Routh Criterion [75]; in the multi-parameter case one can use
techniques based on the Kharitonov Theorem [112], on the Edge Theorem
[27,31], on the µ analysis approach [63].

If the parameter is time-varying (case ii), negativeness of the real part of
the eigenvalues is no longer sufficient to guarantee system stability [57]. In
this case the stability analysis proceeds via the use of Lyapunov techniques,
which leads to the definition of quadratic stability.

Case iii) can be considered intermediate between the two described above,
but differently from these ones it has come to researchers attention more
recently and many issues are still open and will be the subject of future
research.

The central issue of this book will be the stability analysis and synthesis in
presence of time-varying uncertainties and therefore will deal with cases ii)
and iii) above. Since stability versus time-varying parameters implies stability
versus constant parameters, the techniques developed in case ii) can also be
used, at the price of some conservatism, to deal with case i); moreover, the
approaches developed in the context of case iii) can apply to case i), by taking
a zero rate of variation.

1.1 Book Organization

The book is composed of two introductory chapters (this chapter and Chap. 2
which provides some useful results on linear time-varying systems) and four
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chapters dealing more specifically with the analysis and design of uncertain
linear systems.

The first part of Chap. 3 considers systems depending on parametric
uncertainties whose time behavior is unknown. To this end we introduce
the concept of quadratic stability. A system is said to be quadratically stable
when there exists a quadratic Lyapunov function whose derivative, computed
along the solutions of the system, is negative definite for all values of the
parameters. Quadratic stability guarantees exponential stability versus all
admissible time realizations of parameters within their bounding set (which
is assumed to be a hyper-box). It will be shown that testing the quadratic
stability of a given system is equivalent to find a feasible solution to a set of
Linear Matrix Inequalities (LMIs) when the dependence of the system matrix
A(·) on the parameters can be written as the ratio of a multi-affine matrix-
valued function and a multi-affine polynomial. In the case of general nonlinear
dependence on parameters some techniques are provided to transform the
original nonlinear function into a multi-affine one to apply again (at the
price of some conservatism) the previous result.

When the number of uncertain parameters is big, the application of the
above-mentioned techniques may demand a prohibitive computational bur-
den. In this case a statistical approach to quadratic stability analysis of un-
certain systems can be pursued; roughly speaking, by this approach one can
conclude that a given system is quadratically stable with a certain probability.

Often, stability is not the only requirement that a system must exhibit;
therefore a specific section of Chap. 3 is devoted to deal with the problem
of quadratic stability plus performances. In particular quadratic D-stability,
where D is a suitable open domain contained in the left half of the complex
plane, quadratic stability with an L2 performance bound and quadratic sta-
bility with the satisfaction of a linear quadratic (LQ) performance criterion
(guaranteed cost) are considered.

In the second part of Chap. 3 norm bounded uncertainties are considered.
In this case a necessary and sufficient condition for quadratic stability is the
existence of a positive definite solution of a Riccati inequality, which can be
again converted to an LMI problem by using Schur Complements. Interesting
connections existing between quadratic stability and H∞ control theory are
also investigated.

Throughout the chapter, some examples are illustrated to both clarify the
application of the various results presented and to show how the theory can
be applied to real-life systems.

As said, quadratic stability is a strong form of stability; it guarantees
exponential stability of the given system versus arbitrary fast variation of
the parameters. When it is known that some (or all) of the parameters are
constant or slowly time-varying, the quadratic stability approach may become
conservative. Therefore in Chap. 4 some techniques, which allow the stability
analysis by taking into account the information about the rate of variation,
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are provided. These techniques are based on the use of parameter dependent
quadratic Lyapunov functions. We shall show, by continuing the examples of
Chap. 3, that, in this way, it is possible to obtain less conservative conditions
for system stability. This last approach can be used in particular when the
uncertainty is constant (the rate of variation is zero).

In Chap. 5 we consider the design problem. A number of conditions for
quadratic stabilization via state and output feedback, both for parametric
and norm bounded uncertainties, are provided. As in Chap. 3, a section is de-
voted to discuss quadratic stabilization with performances, namely quadratic
D-stabilization, quadratic stabilization with an L2 performance bound and
guaranteed cost control.

The theory developed in previous chapters considered continuous-time
systems. More recently researchers have tried to generalize to discrete-time
systems (which are becoming more and more important as computer con-
trolled systems are playing a major role in control applications) the results
found in the continuous-time case. In Chap. 6 an overview of such results
is provided; moreover an interesting real life application is presented. We
consider the problem of controlling a plasma wind tunnel, to simulate the
re-entry conditions of space vehicles by reproducing desired trajectories in
pressure and temperature on a test model. It is shown that the linearized
model of the plant can be described by a discrete-time system depending on
nine uncertain parameters; eight of such parameters exhibit small excursions
and no bound on their rate of variation is available, while the last parame-
ter turns out to be slowly varying and a bound on the rate of variation is
known. A controller is designed, on the basis of the theory developed in this
chapter, so to robustly stabilize the overall closed loop system versus the
above-mentioned uncertain parameters.

For self-containedness purposes, the proofs of the main theorems are pro-
vided. Whenever possible we give alternative (and simpler) proofs of those
ones available in the literature, while maintaining a rigorous treatment of the
matter; in any case a reference is made to the paper where the theorem has
been originally stated. In the simpler cases the proofs are left as exercises at
the end of the chapter. Moreover each chapter is equipped with a summary
which recalls the main topics we have dealt with, outlines a brief history of
the development of the research concerning such topics and provides further
references for alternative approaches other than the ones considered in the
book.

Finally, all numerical computations done in the examples have been per-
formed with the aid of the MATLABTM software.



2. Linear Time-Varying Systems

In this chapter we consider the qualitative behavior of solutions of the system
of linear differential equations

ẋ(t) = A(t)x(t) , t ∈ R
+ , (2.1)

where x(t) ∈ R
n. In particular we shall investigate which hypothesis the

matrix function A(·) must satisfy such that existence and uniqueness of the
solution of system (2.1) are guaranteed. Moreover some conditions guaran-
teeing stability of the equilibrium of system (2.1) will be given.

2.1 Existence and Uniqueness

Our main result of the section is a theorem guaranteeing existence and
uniqueness of the solution of system (2.1). In the following PC(R+, Rn×n)
denotes the space of the matrix-valued functions of dimension n × n which
are piecewise continuous over R

+. Therefore if Θ(·) is of class PC, in any com-
pact interval contained in R

+ it has a finite number of discontinuity points;
at a discontinuity point the left and right limits of Θ(·) exist and are finite.

Theorem 2.1 (Existence and uniqueness of the solution). Let t0 ≥ 0,
x0 ∈ R

n and assume that A(·) ∈ PC (R+, Rn×n); then system (2.1) admits a
unique solution ϕ(·, t0, x0) ∈ C0 ([t0,+∞), Rn) satisfying ϕ(t0, t0, x0) = x0.

Proof. Since A(·) is of class PC, for any given x, A(t)x is a bounded and
continuous function of t, with the exception of at most a finite number of
points in any compact subset of [t0,+∞). Moreover, for arbitrary x, y ∈ R

n,
T > 0,

‖A(t)x − A(t)y‖ ≤ ‖A(t)‖‖x − y‖
≤ kT ‖x − y‖
:= supt∈[t0,t0+T ]‖A(t)‖‖x − y‖ , t ∈ [t0, t0 + T ] ,

(2.2)

that is the RHS of (2.1) satisfies a global Lipschitz condition in x. This allows
to apply the existence and uniqueness theorem for differential equations (see
[42], pp. 470–471).
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In the following, unless otherwise stated, we shall assume that the hy-
pothesis of Theorem 2.1 hold for A(·).

2.2 The State Transition Matrix

Let us denote by x(t) = ϕ(t, t0, x0) the unique solution of system (2.1) start-
ing from x0 at time t0. Now it is simple to show (see Exercise 2.1) that, for
a given pair (t, t0) ∈ R

+ × R
+, the mapping

x0 ∈ R
n �→ ϕ(t, t0, x0) ∈ R

n (2.3)

is linear. Hence by the Matrix Representation Theorem [130], p. 188, there
exists a matrix Φ(t, t0) such that

ϕ(t, t0, x0) = Φ(t, t0)x0 . (2.4)

The matrix function (t, t0) ∈ R
+ × R

+ → Φ(t, t0) is called the State
Transition Matrix. It plays a fundamental role for the study of linear time-
varying systems. The next result is obvious.

Fact 2.1 (Solution of system (2.1)). The unique solution of system (2.1)
starting at time t0 from x0 is

x(t) = Φ(t, t0)x0 . (2.5)

Note that, for all x0 ∈ R
n, we have Φ(t0, t0)x0 = x(t0) = x0. From this

follows that

Φ(t0, t0) = I . (2.6)

Equality (2.6) is referred to as the consistency property of the State Tran-
sition Matrix.

Definition 2.1 (Fundamental Matrix). Any solution X(·) of the matrix
differential equation

Ẋ(t) = A(t)X(t) , (2.7)

satisfying det(X(t)) 	= 0 for all t ∈ R
+, is called a Fundamental Matrix of

system (2.1). �

Fact 2.2 (Computation of Φ via a Fundamental Matrix). The follow-
ing equality holds for all t, t0 ∈ R

+, t ≥ t0,

Φ(t, t0) = X(t)X−1(t0) , (2.8)

where X(·) is any Fundamental Matrix of system (2.1).
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Proof. The proof follows from the fact that both sides of (2.8) satisfy the
same matrix differential equation

Λ̇(t) = A(t)Λ(t) , Λ(t0) = I . (2.9)

The next properties follow directly from Fact 2.2

Fact 2.3 (Composition (Transition)). For all t, t0, t1 ∈ R
+, t ≥ t1 ≥ t0,

Φ(t, t0) = Φ(t, t1)Φ(t1, t0) . (2.10)

From Fact 2.3 it follows that, letting

x1 = ϕ(t1, t0, x0) , t1 > t0 ,

we have

ϕ(t, t0, x0) = ϕ(t, t1, x1) , t ≥ t1 . (2.11)

Equality (2.11) is called Transition Property of the state; this explains the
name given to Φ(t, t0).

By (2.8) we can extend the definition of Φ(·, ·) to the case in which the
first argument is not greater than the second argument, indeed for 0 ≤ t0 ≤ t

Φ(t0, t) := X(t0)X−1(t) . (2.12)

The next result, which derives directly from (2.8) and (2.12), shows that
Φ(t0, t) is exactly the inverse of Φ(t, t0).

Fact 2.4 (Inversion). For all (t, t0) ∈ R
+ × R

+ we have

Φ(t, t0)−1 = Φ(t0, t) . (2.13)

Note that, for all (t, t0) ∈ R
+×R

+, Φ(t, t0) is always invertible; this means
that, for all 0 ≤ t0 ≤ t, it is always possible to go back in time and obtain x0

starting from x(t):

x0 = Φ(t, t0)−1x(t)
= Φ(t0, t)x(t) . (2.14)

Example 2.1.
Let us consider system (2.1) with

A(t) =
(
−1 − 5 cos t sin t −5 cos2 t + 1

5 sin2 t − 1 −1 + 5 cos t sin t

)
. (2.15)
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It is simple to verify that, according to Fact 2.2, the State Transition
Matrix is given by (2.8), where

X(t) = e−t

(
cos t −5t cos t + sin t
− sin t 5t sin t + cos t

)
. (2.16)



In general, the analytical computation of the Transition Matrix is not a

simple task. The following theorem, provides a way of computing (with some
approximation) Φ(t, t0) as the partial sum of the so-called Peano-Baker (PB)
series.

Theorem 2.2 (Peano-Baker (PB) series, [42], p. 13). The PB series

I +
∫ t

t0

A(τ1)dτ1 +
∫ t

t0

A(τ1)
[∫ τ1

t0

A(τ2)dτ2

]
dτ1

+
∫ t

t0

A(τ1)
[∫ τ1

t0

A(τ2)
[∫ τ2

t0

A(τ3)dτ3

]
dτ2

]
dτ1 + · · ·

(2.17)

uniformly converges to the State Transition Matrix Φ(t, t0) over any compact
interval of R

+.

The next theorem deals with the important case of linear time-invariant
systems.

Theorem 2.3 (State Transition Matrix for LTI systems, [42], p. 71).
Assume that A(·) = A ∈ R

n×n. In this case we have

Φ(t, t0) = Φ(t − t0)

=
+∞∑
i=0

Ai(t − t0)i

i!

=: exp(A(t − t0)) .

Proof. The proof follows from Theorem 2.2 and the fact that

∫ t

t0

A(τ1)
[∫ τ1

t0

A(τ2)
[
· · ·

[∫ τi−1

t0

A(τi)dτi

]
dτi−1

]
· · · dτ2

]
dτ1 =

Ai(t − t0)i

i!
.

(2.18)

The evaluation of Φ(t, t0) in the time-invariant case can be performed
numerically by computing the partial sum of the series

∑+∞
i=0

Ai(t−t0)
i

i! .
However, in the time-invariant case, the Transition Matrix can be also

evaluated in closed form either via the Laplace transform method or by per-
forming a similarity transformation on A to put it in Jordan form (see [42]
Chaps. 3–4).
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2.3 Lyapunov Stability of Linear Time-Varying Systems

In the following the various definitions of Lyapunov stability of the equilib-
rium point x = 0 of system (2.1) are recalled; remember that ϕ(·, t0, x0) is
the solution starting from x0 at time t0.

Good sources for Lyapunov stability theory are the books [96,109,154,170]
and the paper by Kalman [107].

Definition 2.2 (Lyapunov stability). The equilibrium point x = 0 of
system (2.1) is said to be

i) stable if and only if for all t0 ≥ 0 and for all t ≥ t0

∀ε > 0 ∃δ(ε, t0) > 0 : ‖x0‖ < δ(ε, t0) ⇒ ‖ϕ(t, t0, x0)‖ < ε ;

ii) uniformly stable if and only if in i) δ does not depend on t0;
iii) uniformly attractive if and only if for all t0 ≥ 0

∃η > 0 : ‖x0‖ < η ⇒ lim
t→∞

‖ϕ(t, t0, x0)‖ = 0

uniformly with respect to t0 and x0;
iv) uniformly asymptotically stable if and only if it is uniformly stable and

uniformly attractive;
v) unstable if and only if it is not stable.

�

The above definitions apply to linear time-varying systems as well as to
general nonlinear systems. On the other hand, when linear systems are dealt
with, the equilibrium x = 0 is attractive iff it is globally attractive, that is
definition iii) holds for all x0 ∈ R

n; this is a direct consequence of (2.4). From
this fact it follows that the property of uniform asymptotic stability, when
possessed by a linear system, is always global. To this regard, note that for
linear systems, as shown in Theorem 2.4 below, uniform asymptotic stability
only depends on the State Transition Matrix.

In the sequel we shall write, with slight abuse of language, “system (2.1)
is stable (uniformly stable, etc.)” in place of “the equilibrium point x = 0 of
system (2.1) is stable (uniformly stable, etc.)”.

The next theorem is a necessary and sufficient condition for uniform as-
ymptotic stability in terms of the State Transition Matrix (see Exercise 2.2).

Theorem 2.4. System (2.1) is uniformly asymptotically stable if and only
if both the following conditions hold

i) There exists a scalar k > 0 such that for all t0 ≥ 0 and for all t ≥ t0

‖Φ(t, t0)‖ ≤ k ;
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ii)

lim
t→∞

‖Φ(t, t0)‖ = 0

uniformly with respect to t0.

Definition 2.3 (Exponential stability). System (2.1) is said to be expo-
nentially stable if and only if there exist positive scalars k and α such that
for all t0 ≥ 0 and for all t ≥ t0

∃µ > 0 : ‖x0‖ < µ ⇒ ‖ϕ(t, t0, x0)‖ ≤ ke−α(t−t0)‖x0‖ .

�

The following theorem is a necessary and sufficient condition for expo-
nential stability of linear systems in terms of the State Transition Matrix; it
follows directly from Definition 2.3.

Theorem 2.5. System (2.1) is exponentially stable if and only if there exists
positive scalars k and α such that for all t0 ≥ 0 and for all t ≥ t0

‖Φ(t, t0)‖ ≤ ke−α(t−t0) .

From the above theorem, it readily follows that, for linear systems, expo-
nential stability, if exhibited by the system, is always global.

Directly from the definitions we have that exponential stability implies
uniform asymptotic stability; however, when the system is linear, it can be
shown (Exercise 2.3) that the properties of uniform asymptotic stability and
exponential stability are equivalent.

Theorem 2.6. System (2.1) is exponentially stable if and only if it is uni-
formly asymptotically stable.

To use the stability definitions given above, one should compute the solu-
tions of system (2.1); this is often a difficult, or even impossible task, unless
the system we are considering is time-invariant, that is A does not depend on
time. As said in Sect. 2.2, in this last case we can evaluate analytically the
solution of the system; in this way it is readily obtained the following well
known theorem.

Theorem 2.7 (Stability for linear time-invariant systems [42], p.
185). Let A(·) in equation (2.1) be constant, that is A(t) = A ∈ R

n×n. Then
system (2.1) is exponentially stable if and only if all the eigenvalues of A are
located in the open left half of the complex plane.
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Remember that a matrix A having all eigenvalues in the open left half of
the complex plane is said to be “Hurwitz”. In the same way, the statement
“the linear time-invariant system ẋ(t) = Ax(t) is Hurwitz stable” means that
A is an Hurwitz matrix, i. e. that the system is exponentially stable.

Therefore the stability analysis for linear time-invariant systems is re-
duced to the computation of system eigenvalues. Unfortunately this kind of
analysis cannot be extended to time-varying systems, as the following simple
example shows.

Example 2.2.
Consider system (2.1) with

A(t) =
(
−1 − 9 cos2 6t + 12 sin 6t cos 6t 12 cos2 6t + 9 sin 6t cos 6t
−12 sin2 6t + 9 sin 6t cos 6t −1 − 9 sin2 6t − 12 sin 6t cos 6t

)
.

(2.19)

The eigenvalues of A(t) are −1 and −10 for all t. However in [151, 171]
it is shown that the the explicit solution of the system under consideration
starting at t0 = 0 from x0 is

x(t) = Φ(t, 0)x0 =
1
5

(
e2t(cos 6t + 2 sin 6t) + 2e−13t(2 cos 6t − sin 6t)
e2t(2 cos 6t − sin 6t) − 2e−13t(cos 6t + 2 sin 6t)

2e2t(cos 6t + 2 sin 6t) − e−13t(2 cos 6t − sin 6t)
2e2t(2 cos 6t − sin 6t) + e−13t(cos 6t + 2 sin 6t)

)
x0 ,

(2.20)

and therefore the equilibrium x = 0 is unstable. 

It is interesting to notice that there exist cases in which some of the

eigenvalues of the linear system under consideration are in the right half of the
complex plane for all t and still the system is exponentially stable [164,173];
this is the case of the system in Example 2.1.

These considerations show that, when system (2.1) is time-varying, one
cannot infer the stability properties from the eigenvalues location in the com-
plex plane. Note that, in the above example, it was possible to derive the
instability of the equilibrium point directly from Definition 2.2, since the ex-
pression of the State Transition Matrix was available. In general, if the system
matrix is time dependent, it is not possible to analytically express the State
Transition Matrix of the system. To perform the stability analysis in the last
case we have to use the Lyapunov Stability Theorem, which is stated next
(for a proof see [96], p. 199).

Theorem 2.8 (Lyapunov Theorem for exponential stability). Con-
sider system (2.1) and assume there exist a function v(·, ·) : R

+ × R
n �→ R,

(t, x) �→ v(t, x), with v ∈ C0

(
R

+ × R
n, R) and three positive constants a, b

and c such that

i) v(t, 0) = 0 , ∀t ∈ R
+ ;
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ii) for all x ∈ R
n and for all t ∈ R

+

a‖x‖2 ≤ v(t, x) ≤ b‖x‖2 ;

iii) the Dini derivative of v along the system trajectories, defined as

v̇(t, x) := lim suph→0

v(t + h, x + hA(t)x) − v(t, x)
h

,

satisfies for all x ∈ R
n and for all t ∈ R

+ the condition

v̇(t, x) ≤ −c‖x‖2 .

Then system (2.1) is exponentially stable.

If v satisfies condition ii) it is said to be positive definite and decrescent;
if v̇ satisfies iii) it is said to be negative definite.

When v is continuously differentiable the derivative along the solutions
becomes

v̇(t, x) :=
∂v

∂t
+

∂v

∂x
A(t)x . (2.21)

Often we shall use, as candidate Lyapunov function, the quadratic form

v(t, x) = xT P (t)x , (2.22)

with P (·) ∈ C0(R+, Rn×n) and positive definite bounded, that is satisfying

αI ≤ P (t) ≤ βI , ∀t ∈ R
+ , (2.23)

for some positive numbers α and β. In the sequel to denote that the matrix
function Θ(·) is positive definite the notation of [158] is used, that is we write

Θ >> 0 ; (2.24)

in the same way to denote that Θ(·) is negative definite, that is −Θ(·) is
positive definite, we write Θ << 0.

With the choice (2.22) we have

v(t + h, x + hA(t)x) − v(t, x)
h

= xT P (t + h) − P (t)
h

x

+ xT
(
AT (t)P (t + h) + P (t + h)A(t)

)
x

+ hxT AT (t)P (t + h)A(t)x . (2.25)

Obviously, if at a given point t, P (·) is differentiable, by letting h → 0 in
(2.25), we have that negative definiteness of v̇ is guaranteed by imposing

Ṗ (t) + AT (t)P (t) + P (t)A(t) ≤ −γI , (2.26)

for some γ > 0.
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Conversely, at the points where P (·) is not differentiable, to guarantee
negative definiteness of v̇ we must have

P (t + h) − P (t)
h

+ AT (t)P (t + h) + P (t + h)A(t) ≤ −γI , (2.27)

for all h in a neighborhood of h = 0.
In the sequel, for the sake of simplicity, we shall capture both (2.26) and

(2.27) by writing, according to the notation introduced in (2.24),

Ṗ + AT P + PA << 0 , (2.28)

remembering that, at the points where P (·) is not differentiable, the extended
interpretation given in (2.27) has to be considered.

On the basis of the above discussion, we can state the following corollary
of Theorem 2.8.

Corollary 2.1. System (2.1) is exponentially stable if there exists a positive
definite bounded matrix-valued function P (·) ∈ C0(R+, Rn×n) satisfying the
differential Lyapunov inequality (2.28).

It is interesting to note that Corollary 2.1 can be reversed (see Exercise
2.4).

Based on Theorem 2.8 we can derive a number of sufficient conditions
guaranteeing the stability of a linear time-varying system.

2.4 Sufficient Conditions for Exponential Stability

The next theorem (see [109], Exercise 4.24) is useful to better understand the
behavior of time-varying systems.

Theorem 2.9. Consider system (2.1) and assume that limt→∞ A(t) = A ∈
R

n×n. Then system (2.1) is exponentially stable if and only if all the eigen-
values of A are located in the open left half of the complex plane.

Now consider system (2.1) and assume that A(·) is continuous, bounded
and that the eigenvalues of A(t) are uniformly located in the open left half
of the complex plane, that is there exists a scalar µ > 0 such that

Re (λi(A(t))) ≤ −µ , i = 1, . . . , n , ∀t ∈ R
+ . (2.29)

In this case, from Theorem 2.9 it follows that a necessary condition for
such a system to be not exponentially stable is that at least one entry of A(·)
is oscillatory in a neighborhood of +∞.

To clarify this point and to introduce the next result, let us consider the
following example.
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Example 2.3.
Consider system (2.1) with

A(t) =
(
−1 + 5 sin(ωt) cos(ωt) −5 cos2(ωt)

5 sin2(ωt) −1 − 5 sin(ωt) cos(ωt)

)
, (2.30)

where ω > 0. The two eigenvalues are −1 for all t. Note that the value of
the parameter ω is related to the rate of variation of A(·). Indeed simple
computations show that

‖Ȧ(t)‖ = 5ω . (2.31)

In this case for ω ∈ [0, 5) a Fundamental Matrix is given by

X(t) =


 e(

√
ω(5−ω)−1)t

(
cos ωt +

√
ω

5−ω sin ωt
)

e(
√

ω(5−ω)−1)t
(
sinωt −

√
ω

5−ω cos ωt
)

e−(
√

ω(5−ω)+1)t
(
cos(ωt) −

√
ω

5−ω sin(ωt)
)

e−(
√

ω(5−ω)+1)t
(
sin(ωt) +

√
ω

5−ω cos(ωt)
)

 . (2.32)

Note that for ω = ω∗ ∼= 0.209 the exponent of the (1, 1) and (2, 1) entries
is zero. Moreover for ω ∈ [0, ω∗), all the exponential terms are negative, which
guarantees exponential stability of the system, while for ω ≥ ω∗ the system
is not exponentially stable. 


The lesson learned from Example 2.3 is the following: if we consider the
linear time-varying system (2.1) with A(·) continuous, bounded and such that
its eigenvalues have uniformly negative real part, the system is exponentially
stable if the oscillations of the entries of the system matrix are sufficiently
slow. In the next theorem we shall see that this property holds in general for
linear time-varying systems.

Theorem 2.10 (Stability of slowly varying systems, [57, 151]). Con-
sider system (2.1) with A(·) ∈ C0(R+, Rn×n). Moreover assume that

i) the matrix function A(·) is bounded, that is there exists a positive number
m such that

‖A(t)‖ ≤ m, ∀t ∈ R
+ ; (2.33)

ii) the eigenvalues of A(·) are uniformly located in the open left half of the
complex plane, that is (2.29) holds;

iii) there exists a scalar ε > 0 such that1

‖Ȧ(t)‖ ≤ ε , ∀t ∈ R
+ .

1 Again, at the points where A(·) is not differentiable, we have lim suph→0 ‖
(
A(t+

h) − A(t)
)
/h‖ ≤ ε.
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Then if ε is sufficiently small, system (2.1) is exponentially stable2.

Proof. Let us consider, for all t ∈ R
+, the Lyapunov equation

AT (t)P (t) + P (t)A(t) = −Q , (2.34)

where Q is any positive definite matrix.
By virtue of hypotheses ii) there exists, for all t ∈ R

+, a unique positive
definite solution P (t); moreover P (·) is continuous because A(·) is.

Now inequality (A.15) applied to (2.34) yields

λmin(P (t)) ≥ λmin(Q)
2‖A(t)‖ ,

≥ λmin(Q)
2m

, ∀t ∈ R
+ . (2.35)

Now, from (A.19) and hypothesis i) and ii), we have that there exist
positive k and α (which do not depend on t) such that

λmax(P (t)) ≤ k2λmax(Q)
2α

, ∀t ∈ R
+ . (2.36)

Hence P (·) is positive definite bounded since, for all t ∈ R
+,

λmin(Q)
2m

I ≤ P (t) ≤ k2λmax(Q)
2α

I . (2.37)

At the points where P (·) is differentiable we have

Ṗ (t) + AT (t)P (t) + P (t)A(t) = Ṗ (t) − Q

≤
(
‖Ṗ (t)‖ − λmin(Q)

)
I . (2.38)

By deriving (2.34) we obtain that Ṗ (·) satisfies the following Lyapunov equa-
tion

AT (t)Ṗ (t) + Ṗ (t)A(t) = −
(
ȦT (t)P (t) + P (t)Ȧ(t)

)
. (2.39)

Therefore, by applying (A.18), we have that

‖Ṗ (t)‖ ≤ k2‖ȦT (t)P (t) + P (t)Ȧ(t)‖
2α

≤ k2λmax(P (t))‖Ȧ(t)‖
α

≤ k4λmax(Q)ε
2α2

. (2.40)

2 Actually, it is sufficient that condition ii) and iii) hold in a neighborhood of +∞.
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Where P (·) is not differentiable, we can repeat the same computations as
above, by replacing Ṗ (·) and Ȧ(·) by the corresponding incremental ratios.

Finally, from (2.38), we have that for all t ∈ R
+

Ṗ (t) + AT (t)P (t) + P (t)A(t) ≤
(

k4λmax(Q)ε
2α2

− λmin(Q)
)

I . (2.41)

Therefore, for a sufficient small ε, P (·) satisfies (2.28) and Corollary 2.1
guarantees exponential stability of system (2.1).

Remark 2.1. If we relax Assumption ii) of Theorem 2.10, by requiring that,
for all t ∈ R

+, Re
(
λi(A(t))

)
< 0, the simple asymptotic stability rather than

exponential stability is guaranteed (see [7]). �

2.5 Input-Output Gain
of a Linear Time-Varying System

Let us denote by L2(R+, Rm) the space of the real vector-valued functions
with m components which are square integrable on R

+.
Consider an exponentially stable linear time-varying system

ẋ(t) = A(t)x(t) + B(t)w(t) , t ∈ [0,+∞) (2.42a)
z(t) = C(t)x(t) + D(t)w(t) , (2.42b)

where A(·), B(·), C(·) and D(·) are bounded and of class PC of dimensions
n × n, n × v, s × n and s × v respectively.

System (2.42) uniquely defines the linear operator

Γzw : L2(R+, Rv) �→ L2(R+, Rs)

w �→ z = Γzw(w) :=
∫ t

0

C(t)Φ(t, τ)B(τ)w(τ)dτ + D(t)w(t) .

We recall that the L2 induced norm of the operator Γzw is defined as
follows

‖Γzw‖ := sup
w∈L2(R+,Rv)−{0}

‖z‖
‖w‖ , (2.43)

where, for a given vector-valued function u(·) ∈ L2, we define the L2 norm
of u(·) as

‖u‖ :=
(∫ +∞

0

uT (t)u(t)dt

)1/2

. (2.44)

This section concerns the computation of the L2 norm of the input-output
operator Γzw.
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First we consider the case in which system (2.42) is strictly proper (D =
0). The next result provides a necessary and sufficient condition for the L2

norm of the operator Γzw to be less than one in terms of the feasibility of a
certain Riccati differential inequality.

Lemma 2.1 ( [167]). Let us consider system (2.42) and assume that D(·)
is zero. Then the following statements are equivalent:

i) System (2.42) is exponentially stable and ‖Γzw‖ < 1;
ii) there exists a positive definite bounded matrix-valued function P (·) ∈

C0(R+, Rn×n) such that

Ṗ + AT P + PA + PBBT P + CT C << 0 . (2.45)

Proof.
i) ⇒ ii). Let us consider the following system with augmented output

ẋ(t) = A(t)x(t) + B(t)w(t) (2.46a)

z(t) =
(

C(t)
εI

)
x(t) , (2.46b)

where ε is a positive number that will be chosen later.
We have

‖Γzw‖2 = sup
w∈L2(R+,Rv)−{0}

‖z‖2

‖w‖2

= sup
w∈L2(R+,Rv)−{0}

‖z‖2 + ε2‖x‖2

‖w‖2

≤ ‖Γzw‖2 + ε2‖Γxw‖2 , (2.47)

where Γxw is the operator mapping w to x.
Since ‖Γzw‖ < 1, there exists a positive number δ such that

‖Γzw‖2 < 1 − δ2 . (2.48)

Moreover, system (2.46a) is exponentially stable, therefore ‖Γxw‖ is a
finite number; pick ε such that

ε2‖Γxw‖2 <
δ2

2
. (2.49)

From (2.47), (2.48) and (2.49) it follows that

‖Γzw‖2 < 1 − δ2 + ε2‖Γxw‖2

< 1 − δ2

2
. (2.50)
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The last inequality implies that

sup
w∈L2(R+,Rv)−{0}

[
‖z‖2 −

(
1 − δ2/2

)
‖w‖2

]
< 0 . (2.51)

This is equivalent to say that the cost functional
∫ +∞

0

[
xT (t)(CT (t)C(t) + εI)x(t) −

(
1 − δ2/2

)
wT (t)w(t)

]
dt (2.52)

subject to (2.46) has a nonpositive (and therefore finite) supremum. From
differential game theory applied to linear systems it follows (see [32], Theo-
rem 8.3) that there exists a positive definite bounded matrix-valued function
P (·) ∈ C0(R+, Rn×n) such that

Ṗ (t) + AT (t)P (t) + P (t)A(t) + P (t)B(t)BT (t)P (t)

+ CT (t)C(t) + εI = 0 , t ∈ R
+ ; (2.53)

since ε > 0 the proof follows.
ii) ⇒ i). First of all note that system (2.42) is exponentially stable since
ii) guarantees the existence of a positive definite bounded continuous P (·)
satisfying (see Corollary 2.1)

Ṗ + AT P + PA << 0 . (2.54)

Now, since C(·) is bounded, condition ii) implies the existence of a positive
definite bounded continuous matrix-valued function P (·) and a scalar ε > 0
such that

Ṗ (t) + AT (t)P (t) + P (t)A(t) + P (t)B(t)BT (t)P (t)

+ (1 + ε)CT (t)C(t) < 0 , t ∈ R
+ . (2.55)

Let x(·) the unique solution of (2.42a) starting from x(0) = 0 under the
input w(·) ∈ L2; we have

d

dt

(
xT (t)P (t)x(t)

)
= (A(t)x(t) + B(t)w(t))T P (t)x(t)

+ xT (t)P (t)(A(t)x(t) + B(t)w(t)) + xT (t)Ṗ (t)x(t)

= xT (t)
(
AT (t)P (t) + P (t)A(t) + Ṗ (t)

)
x(t)

+ wT (t)BT (t)P (t)x(t) + xT (t)P (t)B(t)w(t)

< −xT (t)P (t)B(t)BT (t)P (t)x(t) − (1 + ε)‖z(t)‖2

+ wT (t)BT (t)P (t)x(t) + xT (t)P (t)B(t)w(t)

= ‖w(t)‖2 − ‖w(t)‖2 − (1 + ε)‖z(t)‖2 , (2.56)

where
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w(t) := w(t) − BT (t)P (t)x(t) . (2.57)

The last inequality can be rewritten

d

dt

(
xT (t)P (t)x(t)

)
+ (1 + ε)‖z(t)‖2 − ‖w(t)‖2 < −‖w(t)‖2 ≤ 0 . (2.58)

By integrating (2.58) between 0 and +∞, taking into account that the
system is exponentially stable and that all the involved signals are of class
L2, we obtain

(1 + ε)‖z‖2 − ‖w‖2 < −‖w‖2 ≤ 0 . (2.59)

From the last inequality the proof follows.

Next, we consider the general case of a non-zero D(·); also we deal with
the more general case of a non-unitary gain. We follow the approach of [34].

To this end let us rescale the output variable as follows

z̃ = γ−1z

= γ−1Cx + γ−1Dw

=: C̃x + D̃w . (2.60)

Note that ‖Γzw‖ < γ implies ‖D(t)‖ < γ for all t ∈ R
+ and therefore

‖D̃(t)‖ < 1 for all t ∈ R
+ (see [167]). Therefore, without loss of generality, in

the following we shall assume that the matrix functions I − D̃T (t)D̃(t) and
I − D̃(t)D̃T (t) are positive definite.

Now consider the following input-output transformation which relates the
original variables w and z̃ to the new variables ŵ and ẑ

(
w(t)
ẑ(t)

)
=

(
D̃T (t)

(
I − D̃T (t)D̃(t)

)1/2

(
I − D̃(t)D̃T (t)

)1/2 −D̃(t)

)(
z̃(t)
ŵ(t)

)
. (2.61)

Since the transformation (2.61) is orthogonal we have that

‖w‖2 + ‖ẑ‖2 = ‖z̃‖2 + ‖ŵ‖2 , (2.62)

which can be rewritten

‖z̃‖2 − ‖w‖2 = ‖ẑ‖2 − ‖ŵ‖2 . (2.63)

If Γz̃w and Γẑŵ denote the operator mapping w to z̃ and the operator
mapping ŵ to ẑ respectively, from (2.63) it follows that ‖Γz̃w‖ < 1 iff ‖Γẑŵ‖ <
1.

Since ‖z̃‖ = γ−1‖z‖, we can conclude that ‖Γzw‖ < γ iff ‖Γẑŵ‖ < 1.
Next we derive the state space equations of the transformed system. Note

that from (2.61) we have
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w(t) = D̃T (t)z̃(t) +
(
I − D̃T (t)D̃(t)

)1/2
ŵ(t)

= D̃T (t)
(
C̃(t)x(t) + D̃(t)w(t)

)
+
(
I − D̃T (t)D̃(t)

)1/2
ŵ(t) ; (2.64)

therefore

w(t) = (I−D̃T (t)D̃(t))−1D̃T (t)C̃(t)x(t)+(I−D̃T (t)D̃(t))−1/2ŵ(t) . (2.65)

By replacing the expression of w into equation (2.42a) we have

ẋ(t) = Â(t)x(t) + B̂(t)ŵ(t) , (2.66)

where

Â(t) = A(t) + γ−2B(t)
(
I − γ−2DT (t)D(t)

)−1
DT (t)C(t) (2.67a)

B̂(t) = B(t)
(
I − γ−2DT (t)D(t)

)−1/2
. (2.67b)

Now replacing the expression of w (2.65) into (2.60) we get

z̃ =
(
I + D̃(t)

(
I − D̃T (t)D̃(t)

)−1
D̃T (t)

)
C̃(t)x(t)

+ D̃(t)
(
I − D̃T (t)D̃(t)

)−1/2
ŵ(t) . (2.68)

Therefore

ẑ(t) =
(
I − D̃(t)D̃T (t)

)1/2
z̃(t) − D̃(t)ŵ(t)

=
(
I − D̃(t)D̃T (t)

)1/2
(
I + D̃(t)

(
I − D̃T (t)D̃(t)

)−1
D̃T (t)

)
C̃(t)x(t)

+
(
I − D̃(t)D̃T (t)

)1/2
D̃(t)

(
I − D̃T (t)D̃(t)

)−1/2
ŵ(t) − D̃(t)ŵ(t)

= Ĉ(t)x(t) + D̂(t)ŵ(t) , (2.69)

where

Ĉ(t) = γ−1
(
I + γ−2D(t)

(
I − γ−2DT (t)D(t)

)−1
DT (t)

)1/2

C(t) (2.70a)

D̂(t) = 0 . (2.70b)

Note that to derive (2.69) we have used the fact that (see Exercise 2.6)

(
I − D̃(t)D̃T (t)

)1/2 =
(
I + D̃(t)(I − D̃T (t)D̃(t))−1D̃T (t)

)−1/2
. (2.71)

Since D̂ = 0, from Lemma 2.1 we have that ‖Γẑŵ‖ < 1 iff there exists a
continuous positive definite P (·) such that

Ṗ + ÂT P + PÂ + ĈT Ĉ + PB̂B̂T P << 0 . (2.72)

By replacing the expressions of Â, B̂ and Ĉ into (2.72) we obtain the
following theorem.
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Theorem 2.11. Let us consider system (2.42); then the following statements
are equivalent:

i) System (2.42) is exponentially stable and ‖Γzw‖ < γ;
ii) ‖D(t)‖ < γ for all t ∈ R

+ and there exists a positive definite bounded
matrix-valued function P (·) ∈ C0(R+, Rn×n) such that

Ṗ + AT P + PA + γ−2CT C

+
(
PB + γ−2CT D

) (
I − γ−2DT D

)−1 (
BT P + γ−2DT C

)
<< 0 .

(2.73)

Multiplying both members of (2.73) by γ2 and rescaling P (·), we have
that condition ii) is equivalent to the existence of a positive definite bounded
continuous matrix-valued function P (·) such that

Ṗ + AT P + PA + CT C

+
(
PB + CT D

) (
γ2I − DT D

)−1 (
BT P + DT C

)
<< 0 . (2.74)

When system (2.42) is time-invariant we can look, in the statement of
Theorem 2.11 and without loss of generality, to a constant positive definite
matrix P .

The time-invariant version of Theorem 2.11 is an alternative statement of
the famous Bounded Real Lemma, which plays a fundamental role in most
of robust control theory and dates back to the work on absolute stability and
passivity theory due to Popov [142, 143], Yakubovich [176–178] and Kalman
[105,106].

An alternative proof for the time-invariant version of Theorem 2.11 can
be obtained via frequency domain arguments according to [110] which, in
turn, is inspired to the work by Willems [172].

2.6 Discrete-Time Systems

In this section we deal with the behavior of the solutions of the discrete-time
linear system

x(k + 1) = A(k)x(k), k ∈ N0 . (2.75)

Starting at time k0 from the initial condition x(k0) = x0, we iteratively
obtain

x(k0 + 1) = A(k0)x0

x(k0 + 2) = A(k0 + 1)A(k0)x0

...
x(k) = A(k − 1)A(k − 2) · · ·A(k0)x0 . (2.76)

From (2.76) we can readily derive the following result.
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Fact 2.5. The unique solution of system (2.75) starting at time k0 from x0

is

x(k) = Φ(k, k0)x0 , (2.77)

where

Φ(k, k0) =
{

A(k − 1)A(k − 2) · · ·A(k0) if k > k0

I if k = k0
. (2.78)

The matrix function (k, k0) ∈ N0 × N0 → Φ(k, k0) is called the State
Transition Matrix of the discrete-time system (2.75). Note that

Φ(k0, k0) = I ; (2.79)

this is in accordance with the fact that

x(k0) = x0 . (2.80)

For this reason (2.79) is referred to as the consistency property of the State
Transition Matrix.

The following result is a direct consequence of the definition of the State
Transition Matrix.

Fact 2.6 (Composition (Transition)). For all k, k0, k1 ∈ N0, k ≥ k1 ≥
k0,

Φ(k, k0) = Φ(k, k1)Φ(k1, k0) . (2.81)

Now assume that A(h) is nonsingular for h ∈ {k0, k0 + 1, . . . , k − 1} and
define

Φ(k0, k) := A−1(k0)A−1(k0 + 1) · · ·A−1(k − 1) . (2.82)

Fact 2.7 (Inversion).
Assume that A(h) is nonsingular for h ∈ {k0, k0 + 1, . . . , k − 1}, then

Φ(k, k0)−1 = Φ(k0, k) . (2.83)

Therefore, while for continuous-time systems the Transition Matrix is
always invertible, for discrete-time systems invertibility is guaranteed by the
nonsingularity of A(·). This means that, given integer numbers k0 and k with
0 ≤ k0 ≤ k, it is not always possible to go back in time and obtain x0 starting
from x(k).
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When system (2.75) is time-invariant, that is A(k) = A ∈ R
n×n for all

k ∈ N0, we have that

Φ(k, k0) = Φ(k − k0)

= Ak−k0 . (2.84)

The Transition Matrix in the time-invariant case can be computed in
closed form either by using the Z-transform method or by performing a sim-
ilarity transformation which puts A in Jordan form (see [42], Chaps. 3–4).

2.6.1 Lyapunov Stability of Discrete-Time Systems

Definition 2.2 generalizes in an obvious manner to discrete-time systems.
Concerning exponential stability, we have the following definition.

Definition 2.4 (Exponential stability for discrete-time systems).
System (2.75) is said to be exponentially stable if and only if there exist
a scalar ρ ∈ [0, 1) and a positive scalar m such that, for all k0 ∈ N0 and for
all integer k ≥ k0,

‖x(k)‖ ≤ mρk−k0‖x0‖ .

�

The following result is a necessary and sufficient condition for exponen-
tial stability involving the State Transition Matrix; it follows directly from
Definition 2.4.

Theorem 2.12. System (2.75) is exponentially stable if and only if there
exists a scalar ρ ∈ [0, 1) and a positive scalar m such that for all integer
k0 ≥ 0 and all integer k ≥ k0

‖Φ(k, k0)‖ ≤ mρk−k0 . (2.85)

Exponential stability is equivalent to uniform asymptotic stability when
the system is linear.

In order to establish the stability properties of system (2.75) one should
analytically compute the State Transition Matrix Φ(k, k0). As for continuous-
time systems, this is always possible only in the time-invariant case.

Theorem 2.13 (Stability of linear time-invariant discrete-time sys-
tems [42], p. 213). Let A(·) in (2.75) be constant, that is A(k) = A ∈ R

n×n.
Then system (2.75) is exponentially stable if and only if all the eigenvalues
of A are located in the open unit disk centered at the origin of the complex
plane, that is

|λi(A)| < 1 , i = 1, . . . , n . (2.86)
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Like in the continuous-time case, Theorem 2.13 cannot be extended to
time-varying systems. Therefore, when the system we deal with is time-
varying, we must resort to the following theorem which generalizes Theo-
rem 2.8 to discrete-time systems.

Theorem 2.14 (Lyapunov Theorem for exponential stability of dis-
crete-time systems). Consider system (2.75) and assume there exists a
function v(·, ·) : N0 × R

n �→ R, (k, x) �→ v(k, x), with v(k, ·) ∈ C0

(
R

n, R) and
three positive constants a, b and c such that

i) v(k, 0) = 0 , ∀k ∈ N0 ;
ii) for all x ∈ R

n and for all k ∈ N0

a‖x‖2 ≤ v(k, x) ≤ b‖x‖2 ;

iii) the first difference of v along system trajectories defined as

∆v(k, x) := v(k + 1, A(k)x) − v(k, x)

satisfies for all x ∈ R
n and for all k ∈ N0 the condition

∆v(k, x) ≤ −c‖x‖2 .

Then system (2.75) is exponentially stable.

The terminology used in the continuous-time case also applies to the
discrete-time case.

When we use as Lyapunov function the quadratic form

v(k, x) = xT P (k)x , (2.87)

with P (·) positive definite bounded

αI ≤ P (k) ≤ βI , α, β > 0 , ∀ k ∈ N0 , (2.88)

we obtain

∆v(k, x) = xT A(k)T P (k + 1)A(k)x − xT P (k)x

= xT
(
A(k)T P (k + 1)A(k) − P (k)

)
x . (2.89)

Therefore we can state the following corollary of Theorem 2.14.

Corollary 2.2. System (2.75) is exponentially stable if there exists a posi-
tive definite bounded matrix-valued function P (·) such that for some positive
scalar γ and for all k ∈ N0

A(k)T P (k + 1)A(k) − P (k) ≤ −γI . (2.90)
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The next result (see Exercise 2.7) is the counterpart of Theorem 2.10 for
discrete-time systems.

Theorem 2.15 (Stability of slowly varying discrete-time systems).
Consider system (2.75) and assume that:

i) The matrix function A(·) is bounded, that is there exists a positive number
m such that

‖A(k)‖ ≤ m, ∀k ∈ N0 ; (2.91)

ii) the eigenvalues of A(·) are uniformly located in the unit disk for all k,
that is there exists a scalar µ < 1 such that

|λi(A(k))| ≤ µ , i = 1, . . . , n , ∀k ∈ N0 ;

iii) there exists a scalar ε > 0 such that

‖A(k + 1) − A(k)‖ ≤ ε , ∀k ∈ N0 .

Then if ε is sufficiently small, system (2.75) is exponentially stable.

Summary

In this chapter we have illustrated some fundamental results on linear time-
varying systems, which will be useful in the sequel of the book.

First we have given a sufficient condition for existence and uniqueness
of the solution of system (2.1); for an extensive treatment of this topic the
reader is referred to the books [51] and [126].

A fundamental role in the study of linear time-varying systems is played
by the State Transition Matrix, which, in principle, can be computed as the
sum of the Peano-Baker series. In practice, the State Transition Matrix can be
evaluated in closed form only if the system is time-invariant. In the last case
it reduces to the matrix exponential which can be computed, for example, by
means of Laplace Transform methods.

Several stability definitions for system (2.1) have been stated; in particular
we have focused on uniform asymptotic stability and exponential stability
which, for linear systems, are equivalent concepts.

A classical necessary and sufficient condition for exponential stability re-
quires the computation of the State Transition Matrix, and therefore it cannot
be applied in practice unless the system we deal with is time-invariant. In
this last case exponential stability is guaranteed if all the eigenvalues of the
system matrix are located in the open left half of the complex plane. In the
general time-varying case it is not possible to infer the stability properties
of the system from the location of the eigenvalues and therefore one has to
resort to the Lyapunov approach.
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An application of the Lyapunov theorem shows that when the system is
sufficiently slowly varying in time the eigenvalues location in the left half of
the complex plane is still sufficient to guarantee exponential stability of the
system.

A particular attention has been given to the definition of input-output
gain of a linear time-varying system, as this concept will be exploited through-
out the book to study the performance problem. In this context, the main
result that has been stated is the time-varying version of the Bounded Real
Lemma.

The chapter is ended by the description of some properties of discrete-
time systems; it is interesting to note that the majority of the results are
analogous to the continuous-time case.

Exercises

Exercise 2.1. Assume that we are under the hypothesis of Theorem 2.1 and
let us denote by ϕ(t, t0, x0) the unique solution of system (2.1) starting from
x0 at t0. Show that, for a given pair (t, t0) ∈ R

+ × R
+, the mapping

x0 ∈ R
n �→ ϕ(t, t0, x0) ∈ R

n , (2.92)

is linear. �

Exercise 2.2 ( [42], p. 183). Prove the statement of Theorem 2.4. �

Exercise 2.3 ( [42], p. 184). Prove the statement of Theorem 2.6. �

Exercise 2.4 ( [109], p. 175). Prove that if system (2.1) is exponentially
stable and A(·) is bounded there exists a positive definite, bounded, contin-
uous matrix function P (·) satisfying the hypothesis of Corollary 2.1.
(Hint: let

P (t) =
∫ +∞

t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ , (2.93)

where Q(·) is any continuous, positive definite bounded matrix-valued func-
tion.) �

Exercise 2.5 ( [7]). Assume that we are under the hypothesis i) and ii) of
Theorem 2.10. Prove that a quantitative estimate of the maximum allowable
rate of variation of the system matrix guaranteeing exponential stability of
system (2.1) is given by

‖Ȧ(t)‖ ≤ µλmin(Q)
2‖Q‖F

σ2
(
A(t) ⊕ A(t)

)
, ∀t ∈ R

+ , (2.94)

where µ is any number belonging to the interval [0, 1), Q is any positive
definite matrix, σ(M) is the minimum singular value of the matrix M , ‖M‖F



Exercises 29

denotes the Frobenius norm of M and M ⊕ N is the Kronecker sum of the
matrices M and N (see Sect. A.2).
(Hint: The solution of (2.34) can be expressed as follows

vec(P (t)) = −
(
AT (t) ⊕ AT (t)

)−1
vec(Q) . ) (2.95)

Note that the RHS in (2.94) is maximized if we choose Q to be the identity
matrix. �

Exercise 2.6. Prove equality (2.71). �

Exercise 2.7 ( [58]). Following the same guidelines of Theorem 2.10, prove
Theorem 2.15.
(Hint: Use inequalities (A.22) and (A.26).) �

Exercise 2.8 ( [7]). Prove the discrete-time counterpart of Exercise 2.5;
that is show that, under the hypothesis i) and ii) of Theorem 2.15, condition

‖A(k + 1) ⊗ A(k + 1) − A(k) ⊗ A(k)‖

≤
µσ

(
A(k) ⊗ A(k) − I

)
σ
(
A(k + 1) ⊗ A(k + 1) − I

)
√

n
, ∀ k ∈ N0 ,

(2.96)

where µ is any number belonging to the interval [0, 1), guarantees exponential
stability of system (2.75). �



3. Quadratic Stability

Most part of this chapter deals with the Lyapunov stability analysis of a
linear system subject to parametric uncertainties as given by

ẋ(t) = A(p)x(t) , t ∈ [0,+∞) , (3.1)

where, as usual, x(t) ∈ R
n, p ∈ R ⊂ R

q is the vector of uncertain parameters
and A(·) is continuous. We assume that the set R is a hyper-box , that is a
set in the form

R := [p
1
, p1] × [p

2
, p2] × · · · × [p

q
, pq] . (3.2)

We denote the set of the vertices of R by Rv.
Obviously equation (3.1) represents a collection of an infinite number of

systems. For any given p ∈ R equation (3.1) yields a system of differential
equations with constant coefficients; conversely if p is a vector-valued function
of time belonging to a certain functional space S, for any p(·) ∈ S system (3.1)
defines a system of differential equations with time-varying coefficients.

A straightforward application of the results of Section 2.3 shows that, if
the parameters are time-varying, Hurwitzness of the system matrix A(p) for
any p ∈ R no longer guarantees exponential stability of system (3.1). In this
case we need a different approach based on quadratic Lyapunov functions.

3.1 Necessary and Sufficient Conditions
for Quadratic Stability

We start with the definition of quadratic stability.

Definition 3.1 (Quadratic Stability [25, 39, 116]). System (3.1) is said
to be quadratically stable (QS) in R if and only if there exists a positive
definite matrix P ∈ R

n×n such that for all p ∈ R

AT (p)P + PA(p) < 0 . (3.3)

�
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As shown in the next theorem, quadratic stability implies exponential
stability of system (3.1) for all admissible (in the sense specified below) time
realizations of the parameters.

Theorem 3.1. Assume that system (3.1) is QS. Then for any function p(·) ∈
PC(R+, R) the linear time-varying system

ẋ(t) = A(p(t))x(t) , t ∈ [0,+∞) , (3.4)

is exponentially stable.

Proof. Let p(·) ∈ PC(R+, R). Then Ã(·) := A(p(·)) ∈ PC(R+, Rn×n); there-
fore, for the given p(·), system (3.4) admits a unique solution according to
Theorem 2.1.

Now, since R is compact, (3.3) implies that there exists a positive definite
matrix P such that

ÃT P + PÃ << 0 . (3.5)

The proof follows from Corollary 2.1 (applied with a constant P ) and the
arbitrariness of the function p(·) ∈ PC(R+, R).

Remark 3.1. It is readily seen that behind Definition 3.1 and the proof
of Theorem 3.1 is the use of a constant quadratic Lyapunov function in
the form v(x) = xT Px. Time invariance is the key point which allows to
deal with arbitrarily varying parameters; in Chapter 4 we shall see that in
presence of further information about the parameters behavior (i.e. a bound
on the rate of variation) it is more convenient to use quadratic Lyapunov
functions which depend on parameters. Such Lyapunov functions, along a
given parameter vector time realization, are time-varying Lyapunov functions
in the form (2.22). �

Remark 3.2. The assumption on piecewise continuity of parameters covers
almost all cases of interest in the engineering applications. From a mathe-
matical point of view, it should be noted that, using the result in [51], p. 67,
it is possible to extend the class of admissible parameters realizations to the
set of Lebesgue measurable vector-valued functions. �

From Definition 3.1 it follows that system (3.1) is QS iff the following
problem admits a feasible solution.

Problem 3.1.
Find a symmetric matrix P ∈ R

n×n such that

P > 0 (3.6a)

AT (p)P + PA(p) < 0 ∀p ∈ R . (3.6b)

�
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The following result shows that quadratic stability of system (3.1) is equiv-
alent to quadratic stability of the dual system; we shall use this fact in Chap. 5
in the quadratic stabilization context.

Lemma 3.1. System (3.1) is QS if and only if there exists a positive definite
matrix Q such that for all p ∈ R

A(p)Q + QAT (p) < 0 . (3.7)

Proof. Pre- and post-multiply (3.3) by P−1; then let P−1 = Q.

Note that, if Q is a positive definite matrix satisfying the hypothesis of
Lemma 3.1, system (3.1) is QS and a suitable Lyapunov function is xT Q−1x.

Problem 3.1 is a feasibility problem in the matrix variable P subject to
an infinite number of Linear Matrix Inequalities (LMIs) (one for each p ∈ R).
The remaining part of this section will be devoted to convert inequality (3.6b)
into a finite number of LMIs.

In particular we shall show that the kind of parameter dependence spec-
ified in the next assumption allows to reduce (3.6b) into a finite number of
inequalities.

Assumption 3.1. The system matrix A(·) : R → R
n×n is the ratio of a

multi-affine matrix-valued function of p and a multi-affine polynomial of p

A(p) =
NA(p)
dA(p)

=

∑1
i1,i2,...,iq=0 Ai1,...,iq

pi1
1 pi2

2 · · · piq
q∑1

i1,i2,...,iq=0 ai1,...,iq
pi1
1 pi2

2 · · · piq
q

, (3.8)

where dA(p) 	= 0 for all p ∈ R and NA(p) ∈ R
n×n. �

Note that the parameter dependence considered in Assumption 3.1 is
quite general and recovers, as particular cases, the usual affine and multi-
affine dependence.

Remark 3.3. Important. The fact that the entries of A(·) are the ratio of
multi-affine polynomials does not guarantee the satisfaction of Assumption
3.1; for example the elements of the matrix function

A(p) =
(p1

p2

p2
p3

0 1

)

are the ratio of multi-affine polynomials, but A(p) does not satisfy Assump-
tion 3.1 since

A(p) =

(
p1p3 p2

2

0 p2p3

)

p2p3
.

�
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Now let

M(p) := AT (p)P + PA(p) . (3.9)

If A(p) satisfies Assumption 3.1, the matrix-valued function M(p) is the
ratio of a multi-affine matrix valued function and a multi-affine polynomial;
therefore we can apply Theorem A.2 and obtain the following result.

Theorem 3.2. System (3.1), where A(·) satisfies Assumption 3.1, is QS if
and only if there exists a positive definite matrix P ∈ R

n×n such that

AT (p(i))P + PA(p(i)) < 0 , i = 1, . . . , 2q ,

where p(i) is the i-th vertex of R.

Remark 3.4. Theorem 3.2 was originally proven in [100] when A(·) depends
multi-affinely on parameters. The generalization to the structure considered
in Assumption 3.1 is made in [85]. Note that in the paper [100] it is not
explicitly recognized that the parameters are allowed to be time-varying. �

Remark 3.5. The parameter dependence considered in Assumption 3.1 is
the more general polynomial dependence for which the vertices type result
of Theorem 3.2 can be stated. To convince about this point consider the first
order system

ẋ(t) = (−p2 + 1)x(t) =: a(p)x(t) , p ∈ R := [−2, 2] . (3.10)

By letting P = 1 > 0 we have that

2a(−2)P = 2a(2)P < 0 . (3.11)

Therefore the hypothesis of Theorem 3.2 are satisfied. On the other hand
system (3.10) is not QS since for p = 0 it is unstable.

In the same way it is simple to build examples of systems for which A(·)
is the ratio of a multi-affine numerator and a quadratic denominator which
satisfy the hypothesis of Theorem 3.2 and are not QS. �

Note that the application of Theorem 3.2 requires us to check that the
denominator of M(·) is never zero in R. Since this denominator is a multi-
affine function of p, this check can be done in a simple way by using an
obvious corollary of Theorem A.2.

Corollary 3.1. Let dM (p) the denominator of M(p). Then dM (p) 	= 0 for
all p ∈ R if and only if either dM (p(i)) > 0, i = 1, . . . , 2q, or dM (p(i)) < 0,
i = 1, . . . , 2q.

Under Assumption 3.1, by virtue of Theorem 3.2, Problem 3.1 is equiva-
lent to the following LMIs based feasibility problem.
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(A0, B, C)

pq

p1

...

u1

uq

y1

yq

...

Fig. 3.1. The closed loop system with uncertain gains on the channels

Problem 3.2.
Find a symmetric matrix P ∈ R

n×n such that

P > 0 (3.12a)

AT (p(i))P + PA(p(i)) < 0 , i = 1, . . . , 2q . (3.12b)

�

Example 3.1 (Quadratic Stability Margin).
Let us consider the feedback system depicted in Fig. 3.1 and described by
the state space equations

ẋ(t) = A0x(t) + Bu(t) (3.13a)
y(t) = Cx(t) (3.13b)
u(t) = ∆(p)y(t) , (3.13c)

where A0 ∈ R
n×n, B =

(
b1 . . . bq

)
∈ R

n×q, CT =
(
c1 . . . cq

)
∈ R

n×q and
∆(p) ∈ R

q×q is a diagonal matrix whose elements are the components of the
parameter vector p =

(
p1 . . . pq

)T . This uncertain system can be described
concisely in the form (3.1) with

A(p) = A0 + B∆(p)C

= A0 +
q∑

i=1

bic
T
i pi

= A0 + L(p) , (3.14)

where L(p) is a linear matrix-valued function. Now, given the unit square in
R

q

Ru := {p ∈ R
q : ‖p‖∞ ≤ 1} , (3.15)
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and defined θ as the dilatation factor of the set Ru

θRu := {p ∈ R
q : ‖p‖∞ ≤ θ} , θ > 0 , (3.16)

we define the Quadratic Stability Margin (QSM) of system (3.13) as follows

ρQ := sup {θ > 0 : system (3.13) is quadratically stable in θRu} . (3.17)

Clearly the QSM can be interpreted as an estimate1 of the supremal
allowable amplitude of time-varying parameters which guarantees a stable
closed loop system; therefore the QSM can be seen as the generalization
to time-varying gains of the classical concept of Multivariable Gain Margin
(MGM, see [56]).

Examining (3.16), (3.17), it is readily seen that an equivalent definition
of the QSM of system (3.13) is the following

ρQ := sup {θ > 0 : system ẋ = A(θp)x is quadratically stable in Ru} .

(3.18)

By noticing from (3.14) that

A(θp) = A0 + θL(p) , (3.19)

we conclude that an estimate of the QSM can be computed by solving the
following Generalized Eigenvalue Problem (GEVP, see [38], p. 11) in the
variables θ and P .

Problem 3.3.

max θ

s.t.
θ > 0
P > 0

AT
0 P + PA0 + θ

(
LT (p(i))P + PL(p(i))

)
< 0 , i = 1, . . . , 2q ,

where p(i) is the i-th vertex of Ru. �

Now let us compute the QSM for a system in the form (3.13) with

A0 =
(

0 1
−2 −1

)
, b1 = b2 =

(
0
1

)
, c1 =

(
1 0

)
, c2 =

(
0 1

)
. (3.20)

By solving the GEVP 3.3 with the aid of the LMI toolbox [83], we find
0.583 < ρQ < 0.584.

By weighting the time-varying gains differently, we can give a more general
definition of QSM. This is simply obtained by replacing the vector infinity
norm in (3.15) by the weighted infinity norm ‖ · ‖w

∞, with w ∈ R
q. 


1 Because quadratic stability is sufficient but not necessary for exponential stability
versus time-varying parameters (see the Summary at the end of the chapter).
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(A0, b, c
T )

v u y

−

Fig. 3.2. Nonlinear system with saturation

−vT

−vT

vTv1 v2

vT

v

u

Fig. 3.3. The saturation element

Example 3.2 (Stability of a nonlinear system with saturation).
Quadratic Stability can be used to study the stability properties of the non-
linear closed-loop system in Fig. 3.2,2 which is composed of the SISO linear
system

ẋ(t) = A0x(t) + bu(t) (3.21a)

y(t) = cT x(t) (3.21b)

and the static nonlinear element with equation u = N(v). It is assumed
(without loss of generality) that the nonlinear element has unitary slope;
moreover we denote by [−vT , vT ] its linear range (see Fig. 3.3).

If, at a given instant t1, the value of the input of the nonlinear element
is v1 ≤ vT (see Fig. 3.3) the value of the instantaneous input-output gain
associated with the nonlinear element is (assume v1 	= 0)

2 The stability analysis can be also performed via the Circle Criterion (see [109],
Sect. 5.1.2), however our goal in this example is to illustrate the possible use of
quadratic stability methods for nonlinear system analysis; our approach is along
the guidelines described in [109], Sect. 5.1.3.
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g(t1) :=
u(t1)
v(t1)

=
v1

v1
= 1 , (3.22)

that is no saturation is present; note that when v1 = 0, the gain g(·) is not
defined. In the same way, if at the time instant t2 the value of the input is
v2 > vT , the input saturates the nonlinear element and the gain becomes

g(t2) =
vT

v2
< 1 . (3.23)

Defining g(t) = 1 when v(t) = 0, the instantaneous input-output gain is
a continuous function g(·) attaining values into the interval [gmin, 1] where
gmin ≥ 0.

Now refer to the linear time-varying element in Fig. 3.4. It is simple to
recognize that, for each admissible input-output pair {v∗(·), u∗(·)} associated
with the nonlinear time-invariant element in Fig. 3.3, there exists a continu-
ous gain realization g∗ : [0,+∞) → [gmin, 1], such that, given the input v∗(·),
the output of the system in Fig. 3.4 is exactly u∗(·).

This fact suggests to replace the nonlinear element described in Fig. 3.3
by the linear time-varying gain described in Fig. 3.4, where the function g(·)
is allowed to be any member of the set{

g(·) ∈ C0(R+, R) : g(t) ∈ [gmin, 1] , t ∈ [0,+∞)
}

. (3.24)

g
v u

Fig. 3.4. The linear time-varying element

This operation leads to the linear closed loop system in Fig. 3.5, which
has the following state-space description

ẋ(t) =
(
A0 − bcT g

)
x(t) . (3.25)

Now assume that system (3.25) is quadratically stable; this means that
there exists a positive definite matrix P such that

(
A0 − bcT g

)T
P + P

(
A0 − bcT g

)
< 0 , g ∈ [gmin, 1] . (3.26)

By Theorem 3.1, quadratic stability in [gmin, 1] of the linear system (3.25)
implies exponential stability of the same system for any time-varying gain g(·)
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g (A0, b, c
T )

v u y

−

Fig. 3.5. Linear system with the time-varying element replacing the saturation
nonlinearity

in the set (3.24); but what can we conclude about the equilibrium x = 0 of
the original nonlinear system in Fig. 3.2?

It is simple to recognize that quadratic stability of system (3.25) im-
plies the existence of a positive definite quadratic Lyapunov function, namely
v(x) = xT Px, whose derivative along the state trajectories of the nonlinear
system in Fig. 3.2 is negative definite whenever |cT x| = |v| ≤ vT /gmin; there-
fore local exponential stability of the equilibrium of the nonlinear system is
guaranteed.

An estimate of the Region of Attraction ( [109], p. 136) can be obtained
according to [109], pp. 141–143. Let a any positive number such that

Ra :=
{
x ∈ R

n : xT Px ≤ a
}
⊆
{
x ∈ R

n : |cT x| ≤ vT /gmin

}
. (3.27)

Any set Ra defined as above represents an estimate of the Region of
Attraction; in order to obtain the less conservative estimate of this region
(for the given Lyapunov function) one must consider the largest number a,
say a, such that (3.27) is satisfied.

We can conclude that every solution of the nonlinear system in Fig. 3.2
starting from an initial state x0 ∈ Ra exponentially converges to zero.

From (3.27) it is clear that the amplitude of the Region of Attraction
depends on gmin, the smaller gmin the bigger the amplitude. If gmin = 0,
then the nonlinear system is globally exponentially stable.

As for the linear system, since the dependence of the system matrix on
g is affine, we have that, from Theorem 3.2, system (3.25) is quadratically
stable iff there exists a positive definite matrix P such that the following pair
of LMIs is satisfied

(
A0 − bcT g

)T
P + P

(
A0 − bcT g

)
< 0 , g ∈ {gmin, 1} . (3.28)

The approach described here has been used in [13] to analyze aircraft
proneness to Pilot Involved Oscillations (PIOs). PIOs are due to a misadap-
tation between the pilot and the aircraft during some tasks in which tight
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closed-loop control of the aircraft is required, with the aircraft not respond-
ing as expected to pilot commands. This situation can trigger a pilot action
capable of driving the aircraft out of control, which in some cases can only
be recovered by the pilot releasing the column and exiting from the control
loop.

PIOs can be of Category I (the closed-loop pilot-vehicle system has a lin-
ear behavior), Category II (the closed-loop system has a nonlinear behavior,
mainly characterized by the saturation of position or rate limited elements)
or Category III (the closed-loop system has a highly nonlinear behavior); in
particular, Category II PIOs have been studied through a quadratic stability
approach in [13].

As said, Category II PIOs are caused by the saturation of position or
rate limiters; such kind of nonlinearities are unavoidably present in every
aircraft, because of physical constraints on elements such as stick/column
deflections, actuators position and rate limiters, etc. Roughly speaking, PIO
occurrence can be identified with closed-loop instability of the aircraft-pilot
system; therefore PIOs analysis is reduced to a robust stability analysis of the
closed-loop system formed by the pilot and the aircraft dynamics in presence
of saturated actuators.

Let us consider the pitch axis model of the X-15 aircraft depicted in
Fig. 3.6 (see [113]). The main blocks in Fig. 3.6 are: the pilot gain kp, the
nonlinear actuator, whose rate limiting is provided by the saturation non-
linearity (normalized to be symmetric with unit slope) which precedes the
position integrator, and the pitch axis transfer function θ(s)/δ(s) from the
control surface position to the variable controlled by the pilot; we denote by
δ̇max the maximum output amplitude of the saturation element. The numer-
ical values of the elements in the block diagrams are

θ(s)
δ(s)

=
3.476(s + 0.0292)(s + 0.883)

(s2 + 0.019s + 0.01)(s2 + 0.8418s + 5.29)
τR = 0.04 [sec]

δ̇max = 15 [deg/sec] .

1

theta

numx15(s)

denx15(s)

Transfer Fcn
theta/delta

Saturation

1/s

Integrator

−1 Kpilot 1/tauR

Fig. 3.6. Analysis model of the X-15 Landing Flare PIO

The stability analysis of the system in Fig. 3.6 is performed versus the
pilot gain kp; indeed it is well known that critical full attention manoeuvres,
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like tracking, aerial refuelling, etc., may require a high pilot gain which can
trigger PIO occurrence. It is also assumed that the pilot gain is uncertain but
constant, i.e. it is held fixed to some particular value during the maneuver,
the actual value maybe depending on the flight phase and the particular pilot.

By block diagram algebra it is clear that the scheme in Fig. 3.6, after the
nonlinearity has been replaced by the linear time-varying gain g(t), can be
rearranged to yield the scheme in Fig. 3.7. Now let us denote by (A0, b, c

T (kp))
a state space representation of the linear time-invariant block in Fig. 3.7
(obtained for example using a controllable canonical form). Note that the
dependence of c(·) on kp is affine.

Now, referring to the system in Fig. 3.7, our goal is to estimate the region
in the (kp, g) plane in which Hurwitz stability versus the time-invariant pa-
rameter kp and quadratic stability versus the parameter g is guaranteed; this
in turn guarantees exponential stability of the nonlinear system in Fig. 3.6.

g
δ(s)+kpθ(s)

τRsδ(s)−

Fig. 3.7. Equivalent system to the one in Fig. 3.6 with the time-varying element
replacing the saturation nonlinearity

To this end the following algorithm is used; the algorithm is based on
the fact that, for a given kp, the closed-loop system is quadratically stable
(see (3.28)) iff there exists a positive definite matrix P such that the following
pair of LMIs are satisfied

(
A0 − bcT (kp)g

)T
P + P

(
A0 − bcT (kp)g

)
< 0 , g ∈ {gmin, 1} . (3.29)

Algorithm 3.1.

Step 1
Let ∆k = 0.01, kmin = 0, kmax = 0 + ∆k, ∆g = 0.025, gmin = 0.0015.

Step 2
Solve the following feasibility problem:

Problem 3.4.
Find P > 0 such that
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(
A0 − bcT (kp)g

)T
P + P

(
A0 − bcT (kp)g

)
< 0

g ∈ {gmin, 1} , kp ∈ {kmin, kmax} .
(3.30)

Step 3
If Problem 3.4 is not feasible then plot the box [gmin, 1] × [0, kmin] and
let gmin = gmin + ∆g, else let kmin = kmax, kmax = kmin + ∆k end.
If gmin < 1 then goto Step 2; else stop.

�

Remark 3.6. Note that the feasibility of the 4 LMIs contained in Prob-
lem 3.4 also guarantees quadratic stability versuskp in the interval[kmin,kmax];
since kp is actually time-invariant, the conditions expressed by the above-
mentioned LMIs could seem conservative. This is not true in practice, because
the interval [kmin, kmax] is very small; indeed, by using continuity arguments,
it is readily seen that Hurwitz stability implies quadratic stability if the pa-
rameter excursion is sufficiently small. �

Remark 3.7. The approach used in Algorithm 3.1 corresponds to consider a
quadratic Lyapunov function which is piecewise constant wrt the parameter
kp and independent on g. Indeed, in Chapter 4 we shall show that to take into
account time-invariant parameters for robust stability analysis it is necessary
to use parameter dependent quadratic Lyapunov functions; however in that
case we shall look to functions which depend continuously on parameters3. �

In Fig. 3.8 we have depicted the stability region computed via Algo-
rithm 3.1; the boundary of the same region is plotted in Fig. 3.9 versus
the operating region of the aircraft, that is a box of the admissible values of
the pair (kp, g).

Note that there is a non-empty region of the operating envelope which
is not contained in the stability region. This means that some admissible
combinations of the pilot gain and the nonlinear gain might give rise to
instability (that is a PIO). Actually the X-15 aircraft has been subject to a
dramatic PIO accident during a landing flare (see [122]).

Finally, it is interesting to notice that, by inspection of Fig. 3.9, we obtain
some hints for the design of an actuator free from PIOs; it is clear that the
operating envelope box must shrink so to coincide with the dashed box. This
requires the use of an actuator with a larger linear range. 

3 The reason for considering in Chap. 4 continuous parameter dependent Lyapunov

functions follows from the fact that we shall treat time-invariant parameters as
parameters with zero rate of variation in the more general context of parame-
ters with bounded rate of variation. For bounded rate parameters the stability
analysis is performed via Theorem 2.8 which requires continuity of the Lyapunov
function.
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Fig. 3.8. The stability region in the (kp, g) plane
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Fig. 3.9. The stability region versus the operating envelope

3.1.1 Polytopic Systems

Consider the uncertain linear time-varying system

ẋ(t) = A(t)x(t) , A(t) ∈ conv
{
A(1), A(2), . . . , A(l)

}
=: A, t ∈ [0,+∞) ,

(3.31)

where A(·) is piecewise continuous.
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An uncertain system in the form (3.31) is also called a polytopic sys-
tem ( [38], p. 53), since it represents a family of linear time-varying sys-
tems whose system matrix attains values into the polytope with vertices
A(i), i = 1, 2, . . . , l; representation (3.31) arises, for example, when we try to
capture the dynamics of a (possibly nonlinear) system working at different
operating conditions.

The polytopic system (3.31) is said to be QS if and only if there exists a
positive definite matrix P such that

AT P + PA < 0 , ∀A ∈ A , (3.32)

which is clearly equivalent to require the existence of a positive definite matrix
P such that

AT
(i)P + PA(i) < 0 , i = 1, . . . , l . (3.33)

It is simple to recognize that quadratic stability of the polytopic system
(3.31) guarantees exponential stability of any linear time-varying system

ẋ(t) = A(t)x(t) (3.34)

with A(·) ∈ PC(R+,A).
In a sense, polytopic systems can be seen as a sub-class of the systems

satisfying Assumption 3.1. Assume, for example, that the polytopic system
we deal with is obtained by the convex hull of two matrices

ẋ(t) = A(t)x(t) , A(t) ∈ conv
{
A(1), A(2)

}
, t ∈ [0,+∞) . (3.35)

Then consider the uncertain system

ẋ(t) = A(p)x(t) = A0 + A1p , (3.36)

where p ∈ [−1, 1] and

A0 =
1
2
(A(1) + A(2)) (3.37a)

A1 =
1
2
(A(2) − A(1)) ; (3.37b)

obviously we have that A(−1) = A(1) and A(1) = A(2).
Since the image of an affine matrix function defined over a hyper-box (an

interval in this case) is equal to the convex hull of the image of the vertices
(see Theorem A.1) we have that

A([−1, 1]) = conv
{
A(1), A(2)

}
; (3.38)

therefore the uncertain system (3.36) is equivalent (from the point of view of
the quadratic stability analysis) to the polytopic system (3.35).
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In general, referring to system (3.31), there always exists an uncertain
system in the form (3.1) satisfying

A(R) ⊇ A . (3.39)

Obviously, when A is a strict subset of A(R), quadratic stability of system
(3.1) is sufficient but not necessary for quadratic stability of system (3.31).

3.2 The General Nonlinear Parameter Dependence Case

In this section we consider the case in which the system matrix A(·) does not
satisfy Assumption 3.1 and, therefore, it is no longer immediate to transform
inequality (3.6b) into a finite number of LMIs. Also, to simplify the notation,
we assume that the denominator of A(·) is unitary, since the ideas of this
section can be immediately extended to the general non-unitary denominator
case.

3.2.1 Polynomial Dependence on Parameters

In [136,162] and [163] the problem of testing robust (Hurwitz) stability of un-
certain characteristic polynomials depending on parameters in a polynomial
fashion is considered. The original idea was to transform the polynomial de-
pendence into a multi-affine one, by introducing further fictitious parameters,
and then to apply the Edge Theorem [31].

This idea can be extended to test quadratic stability of system (3.1) when
A(·) depends polynomially on p, that is

A(p) =
∑

α1,...,αq

Aα1,...,αq
pα1
1 · · · pαq

q , (3.40)

where Aα1,...,αq
∈ R

n×n and αi = 0, 1, . . . , µi, µi ∈ N, i = 1, . . . , q.
After A(·) has been replaced by a multi-affine matrix function, quadratic

stability can be studied via Theorem 3.2; since the image of the new multi-
affine matrix function contains that one of the original system matrix, this
approach introduces a certain degree of conservatism.

For the sake of clarity we illustrate the idea through a simple single pa-
rameter example. Let us consider the matrix function

A(p) =
(
−p2 p
−1 −5

)
, (3.41)

with p ∈ [p, p], and define

Â(δ) :=
(
−δ1δ2 −δ1

−1 −5

)
, (3.42)
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with δ =
(
δ1 δ2

)T ∈ [p, p]2; it is obvious that Â([p, p]2) ⊃ A([p, p]). Obviously,
the replacement of p2 by δ1δ2 is rather conservative because it introduces two
parameters which vary independently each other.

In the general multi-parameter case it is possible to reduce the problem
to the multi-affine case by generalizing the above idea. Let hi be the highest
degree of pi. Introduce fictitious variables δi1, . . . , δihi

, i = 1, . . . , q, such that

δ := (δ11 . . . δ1h1 . . . δq1 . . . δqhq
)T ∈ [p

1
, p1]

h1 × · · · × [p
q
, pq]

hq (3.43)

where δi1 = pi, and replace in (3.40) each pαi
i by the product δi1δi2 · · · δiαi

.
In this way we obtain the multi-affine function defined over the hyper-box
[p

1
, p1]h1 × · · · × [p

q
, pq]hq

Â(δ)=
1∑

i11,...,i1h1,...,iq1,...,iqhq =0

Âi11,...,i1h1 ,...,iq1,...,iqhq
δi11
11 · · · δi1h1

1h1
· · · δiq1

q1 · · · δiqhq

qhq
.

(3.44)

Obviously Â
(
[p

1
, p1]h1 × · · · × [p

q
, pq]hq

)
⊃ A(R).

The conservatism of the technique increases with the number of uncertain
parameters q. Such conservatism can be reduced by splitting the hyper-cube
[p

1
, p1]h1 × · · · × [p

q
, pq]hq into smaller hyper-cubes. This idea is explained

in details in the next section where a more general approach to create a
multi-affine function starting from a nonlinear one is provided.

3.2.2 The Polytopic Covering Technique

In this section the idea of Sect. 3.2.1 is extended to a quite a general class of
nonlinear functions; moreover we propose a different method to replace the
original parameters by a new set of fictitious parameters. Such method may
obtain a tighter covering of the set A(R) and therefore a less conservative
application of the quadratic stability test.

For a given continuous scalar function f : R �→ R, we shall show how to
build a multi-affine function fm(p, δ) such that, for each p ∈ R, there is a
δ ∈ [0, 1] with

fm(p, δ) = f(p) . (3.45)

To this end, let f and f be multi-affine affine functions satisfying for all
p ∈ R

f(p) ≤ f(p) ≤ f(p) . (3.46)

Now define fm : R × [0, 1] �→ R to be the multi-affine function given by
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fm(p, δ) = (1 − δ)f(p) + δf(p) . (3.47)

Clearly, fm is multi-affine. Moreover for a given p ∈ R there exists δ ∈ [0, 1]
given by

δ =
f(p) − f(p)

f(p) − f(p)
(3.48)

such that fm(p, δ) = f(p).
Clearly, for a given f(·), there are several possible choices of the bounding

functions f and f . As we shall see later in this section, the choice of the
bounding functions may strongly influence the degree of conservatism of the
technique; therefore great care must be posed when doing this choice.

If f(·) possesses a complex structure, the application of the above pro-
cedure can be greatly simplified if we split the original function f into the
product of many functions with a simple structure. This idea leads to the
procedure described in the next section.

A General Procedure
Throughout this section we shall consider the following class of matrix-valued
functions.

Assumption 3.2. The matrix function A(·) has the following structure

A(p) =
1∑

i1,i2,...,iν=0

Ai1,i2,...,iν
f1(p)i1f2(p)i2 · · · fν(p)iν , (3.49)

where fj : R → R is continuous, Ai1,i2,...,iν
∈ R

n×n, and, for all j =
1, 2, . . . , ν, if fj is not multi-affine, there exist known multi-affine functions
f

j
(p), f j(p) such that

f
j
(p) ≤ fj(p) ≤ f j(p), ∀p ∈ R. (3.50)

�

Note that the structure of A(·) considered in Assumption 3.2 is very
general. In particular it recovers the polynomial dependence considered in
Sect. 3.2.1; indeed the matrix function

A(p) =
∑

α1,...,αq

Aα1,...,αq
pα1
1 · · · pαq

q , (3.51)

where αi = 0, 1, . . . , µi, i = 1, . . . , q, is recovered by (3.49) by letting, for
example,

f1(p) = p1, . . . , fµ1(p) = pµ1
1 , fµ1+1(p) = p2, . . . ; (3.52)

moreover it is rather simple to find suitable bounding functions for pαi
i , 2 ≤

αi ≤ µi (again, this topic is dealt with later in this section).
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Remark 3.8. As said at the beginning of Sect. 3.2, the structure considered
in (3.49) can be generalized so to include a denominator in the form

a(p) =
1∑

i1,i2,...,iη=0

ai1,i2,...,iη
g1(p)i1g2(p)i2 · · · gη(p)iη , (3.53)

where gj : R → R is continuous, ai1,i2,...,iη
∈ R and, for all j = 1, 2, . . . , η,

if gj is not multi-affine, there exist known multi-affine functions g
j
(p), gj(p)

such that a condition analogous to (3.50) holds.
It is readily seen that the first two steps of the procedure below can be

easily generalized to take into account the presence of a non-unitary denom-
inator. �

Let µ ≤ ν the number of non-multi-affine functions in (3.49). The fol-
lowing procedure constructs 2q+µ+γ points (not necessarily distinct) in R

n,
where 0 ≤ γ ≤ q(ν − 1). We will show in Theorem 3.3 that the convex hull of
these points includes (that is covers) A(R). The method is named “Polytopic
Covering Technique” since the convex hull is a polytope in R

n×n.

Procedure 3.1 ( [10,11]). The procedure is composed of three steps.

Step 1
Construct the matrix function Ψ(p, δ) obtained from (3.49) by introducing
the fictitious parameters

δj ∈ Ij :=
{

[0, 1] if fj is not multi-affine
{0} if fj is multi-affine , j = 1, . . . , ν , (3.54)

and substituting for fj(p), j = 1, . . . , ν, the multi-affine function

fm
j (p, δj) :=

{
(1 − δj)f j

(p) + δjf j(p) if fj is not multi-affine
fj(p) if fj is multi-affine .

(3.55)

Let D := I1 × I2 × · · · × Iν ; hence Ψ(p, δ) is defined over R × D. Observe
that D is a hyper-box with 2µ vertices and that Ψ(p, δ) is a multi-affine
function of the δi’s and a polynomial function of the pi’s; moreover, since
in (3.49) there are at most ν products, the maximum exponent of each pi

in Ψ(p, δ) cannot exceed ν.
Step 2

Replace each pαi
i , αi > 1, by a multi-affine function as in (3.55); obviously,

in this case, the bounding functions will depend only on pi. The number
of replacements, say γ, may vary between zero (when Ψ is already multi-
affine, that is Ψ does not contain powers of p1, . . . , pq greater than 1) and
q(ν − 1).
In this way we introduce a new vector of fictitious variables ε ranging in
the hyper-box E defined in the same way as D and define the new function
Φ(p, δ, ε). From the previous discussion follows that the hyper-box E has
2γ vertices.
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Step 3
Define the hyper-box Ω := R×D×E and evaluate the points Φ(i) := Φ(ω(i)),
where ω(i), i = 1, . . . , 2q2µ2γ , are the vertices of Ω.

�

Remark 3.9. Note that, in the practical application of Procedure 3.1, there
is no need of introducing the fictitious parameter δj if fj is multi-affine. �

Remark 3.10. It is worth noting that the points Φ(i) are not necessarily
distinct. In many practical situations the number of distinct points is largely
smaller than 2q+µ+γ . �

Remark 3.11. When the dependence on parameters is polynomial, like in
(3.51), and we choose the functions fj according to (3.52), it is simple to
recognize that, after the application of Step 1 of Procedure 3.1, the obtained
function is already multi-affine. Therefore, in this case, we need not to apply
Step 2 of the procedure. �

The key point in the proof of the next theorem is that, as one can simply
recognize, the function Φ constructed in Step 2 depends multi-affinely on p,
δ and ε.

Theorem 3.3 ( [11]).

A(R) ⊆ A := conv{Φ(i), i = 1, . . . , 2q+µ+γ}
Proof. Define Ψ(p, δ) replacing in (3.49) fj(p) with fm

j (p, δj) for j = 1, . . . , ν.
From the expression of fm

j we know that for all p ∈ R there exists
δj ∈ [0, 1] such that fm

j (p, δj) = fj(p), and hence for all p ∈ R there ex-
ists (δ1, . . . , δν)T ∈ D such that Ψ(p, δ) = A(p). Therefore we can conclude
that

A(R) ⊆ Ψ(R ×D). (3.56)

As said, when we apply the procedure described in Step 2 to Ψ(p, δ), the re-
sulting function Φ(p, δ, ε) defined over R×D×E will be multi-affine. Obviously
Φ(p, δ, ε) is such that

Ψ(R ×D) ⊆ Φ(R ×D × E) . (3.57)

Now, let Ω := R × D × E . Inclusion (3.57) together with (3.56) and the
multi-affine nature of Φ, which enables us to apply Lemma A.1, yields

conv{Φ(i), i = 1, . . . , 2q+µ+γ} ⊇ Φ(Ω)
⊇ A(R) . (3.58)

When the number of non-multi-affine functions is big, the Polytopic Cov-
ering technique becomes computationally intractable. In this case we suggest
to resort to the approaches described in Sect. 3.3 to check quadratic stability
of the uncertain system (3.1).
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On the Choice of The Bounding Functions
In general the choice of the bounding functions satisfying (3.50) is not unique;
note, however, that a suitable choice can sensibly improve the goodness of
the covering. For example if the fj ’s are continuous, the multi-affine functions
f

j
and f j can be chosen to be constant and equal to the minimum and the

maximum of fj respectively. On the other hand it should be clear that the
better the functions f

j
and f j fit fj , the less conservative the covering will

be.
For instance consider again matrix A(·) in (3.41) with p ∈ [1, 2]. If we

replace p2 by constant bounding functions, that is f(p) = 1 and f(p) = 4 we
obtain

Ψ(p, δ) =
(
− ((1 − δ) + 4δ) p

−1 −5

)

=
(
−(1 + 3δ) p

−1 −5

)
. (3.59)

Conversely, by using the affine functions f(p) = 3p − 2 (which connects
the extreme points of the graph of p2) and f(p) = 2p − 1 (whose gradient is
the derivative of p2 computed for p = 1), we obtain

Ψ(p, δ) =
(
− ((1 − δ)(2p − 1) + δ(3p − 2)) p

−1 −5

)

=
(
−(pδ + 2p − δ − 1) p

−1 −5

)
. (3.60)

The latter is a better covering of the image of A(p) in the interval [1, 2].
To convince about this point, note that the covering (3.59) is equivalent to
replace the points of the graph of the function p2 by the points belonging to
the shadowed rectangle in Fig. 3.10; conversely covering (3.60) corresponds to
replace the points of the graph of the function p2 by the points belonging to
the triangle evidenced in Fig. 3.11. Finally in Fig. 3.12 the covering obtained
by the approach of Sect. 3.2.1 is represented; note that this last covering
corresponds to choose as bounding functions f(p) = p and f(p) = 2p and is
more conservative than the covering of Fig. 3.11.

To generalize the choice of the bounding functions used to build the less
conservative covering in Fig. 3.11 and to set up a completely automatic pro-
cedure which generates as output the polytopic covering of a given function,
we need the following more strict assumption on the fj ’s.

Assumption 3.3. For all j = 1, . . . , ν if fj is not multi-affine then it is
convex (or concave) and differentiable. �

If fj is a convex or concave differentiable function it is simple to generate
automatically affine functions f

j
and f j satisfying (3.50). We show this fact

in the case of convex functions.
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p1 2

1

4

f(p)

f(p)

p2

Fig. 3.10. Covering of the function f(·) by constant functions

p1 2

1

4
f(p)

f(p)

p2

Fig. 3.11. Covering of the function f(·) by the bounding functions f(p) = 2p − 1

and f(p) = 3p − 2

p1 2

1
2

4
f(p)

f(p)

p2

Fig. 3.12. Covering of the function f(·) via the approach of Sect. 3.2.1
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Procedure 3.2 (Generation of the bounding functions when fj is
convex [11]).

Construction of f
j
.

Let p� ∈ R and πj(p�) the gradient of fj(p) in p�. The following inequality
holds (see [150], Theorem 25.1)

fj(p) ≥ fj(p�) + πj(p�)(p − p�) , ∀p ∈ R . (3.61)

Then set

f
j
(p) = fj(p�) + πj(p�)(p − p�) , p ∈ R . (3.62)

Construction of f j .
Consider the images of the vertices of R under fj , namely fj1 :=
fj(p(1)) , . . . , fj2q := fj(p(2q)), and order them with decreasing magni-
tude, say fjh1 ≥ · · · ≥ fjh2q . Simple considerations from linear algebra
show that there exists an integer r ∈ {q + 1, . . . , 2q} such that it is univo-
cally determined the hyper-plane hj(p) in the space R

q+1 connecting the
points (pT

(h1)
, fjh1),. . . , (pT

(hr), fjhr
). By virtue of the convexity of fj we

have that, for all p ∈ R, fj(p) ≤ hj(p); hence set

f j(p) = hj(p). (3.63)

�

Note that, in the example considered in Fig. 3.11, the covering has been
obtained by choosing p� in (3.62) as the extreme left point of the interval.
Obviously, in general, the choice of p� depends on the nature of the function.

Also it is interesting to note that many functions are convex or concave
only if the parameters on which they depend do not change sign. This is often
the case since, in many practical situations, the parameters have a physical
significance and hence are inherently positive. In any case we can always split,
prior to the application of the procedure, the original hyper-box in smaller
hyper-boxes, each contained only in one orthant of R

q.

Example 3.3 (Automatic Steering of a Bus).
Let us consider the model of the city bus O 305, augmented with an integra-
tor, considered in [1], p. 17,

ẋ = A(p)x + bu (3.64a)

y = cT x , (3.64b)

where u(t) = δ̇f (t) ∈ R, δf is the front wheel steering angle, y(t) ∈ R is the
lateral displacement from the guiding wire measured at the front of the bus,
and
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A(p) =




−(cr + cf )p2 −p1p
2
2 + (crlr − cf lf ) 0 0 cfp2

crlr−cf lf
i2 p2

2 − crl2r+cf l2f
i2 p2 0 0 cf lf

i2 p2
2

0 p1p
2
2 0 0 0

p1p
3
2 lsp1p

2
2 p1p

3
2 0 0

0 0 0 0 0




p1p2
2

b =
(
0 0 0 0 1

)T

cT =
(
0 0 0 1 0

)
p1 = m, p2 = v ,

m and v being the mass and velocity of the bus respectively, with

p =
(
p1 p2

)T ∈ [9950, 32000] × [3, 20] =: R .

The numerical values of the coefficients are [1], p. 24:

i = 3.294 [m] inertial radius
cr = 470000 [N/rad] cornering stiffness (rear wheels)
cf = 198000 [N/rad] cornering stiffness (front wheels)
lr = 1.93 [m] distance between the rear axis and the center

of gravity
ls = 6.12 [m] distance between the center of gravity and the

sensor antenna
lf = 3.67 [m] distance between the front axis and the center

of gravity.

Now the following controller is proposed in [1], p. 327, in order to stabilize
system (3.64) with some performance specifications (see Fig. 3.13)

k(s) = 253 0.15s2 + 0.7s + 0.6
(s + 25)(s2 + 25s + 625)

. (3.65)

The proposed controller stabilizes the system in the presence of constant
uncertain parameters. However, in our example, we assume that the velocity

k(s) 1
s

Steering

dynamics

er u δf y+

−

Fig. 3.13. Closed loop control scheme for the city bus O 305
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is time-varying. This results from reasonable physical considerations. Indeed
following the assigned path, the number of passengers in the bus does not
change (so the mass is time-invariant); on the other hand, velocity may vary.

Our objective in the following is to verify whether the system in Fig. 3.13
is robustly stable, that is whether it is exponentially stable wrt the constant
parameter p1 (mass) and the time-varying parameter p2 (velocity). This ob-
jective is accomplished by exploiting the approach of Algorithm 3.1, (see also
Remarks 3.6–3.7).

Obviously, exponential stability versus the parameter p2 is guaranteed by
quadratic stability. However, since the numerator and denominator of the
system matrices in (3.64) do not depend on p2 in a multi-affine fashion, we
have to use the Polytopic Covering technique to obtain a system depending
multi-affinely on parameters. To this end, note that, according to (3.62) and
(3.63), the function pn

2 , with n ∈ N and p2 ∈ [p
2
, p2], is bounded by the

following functions

f(pn
2 ) = npn−1

2
p2 + pn

2
(1 − n) (3.66a)

f(pn
2 ) =

pn
2 − pn

2

p2 − p
2

p2 +
pn
2
p2 − pn

2p
2

p2 − p
2

. (3.66b)

For n = 2, 3, p
2

= 3, p2 = 20, equations (3.66) yield the following pair of
bounding functions

f(p2
2) = 6p2 − 9 , f(p2

2) = 23p2 − 60

f(p3
2) = 27p2 − 54 , f(p3

2) = 469p2 − 1380 .

By introducing the fictitious parameters δ =
(
δ1 δ2

)T and applying Pro-
cedure 3.1, system (3.64) can be re-written in the form

ẋ = Â(p, δ)x + bu (3.67a)

y = cT x (3.67b)

where (pT , δT )T ∈ R × [0, 1]2.
Now let

ẋk = Akxk + bke (3.68a)

u = cT
k xk (3.68b)

be a state-space representation of the controller k(s). Putting together (3.67)
with (3.68) we obtain that the closed loop system in Fig. 3.13 is described
by the 8-th order uncertain linear system
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(
ẋ
ẋk

)
=
(

Â(p, δ) bcT
k

−bkcT Ak

)(
x
xk

)
=: Âcl(p, δ)

(
x
xk

)
, (3.69)

where Âcl(p, δ) satisfies Assumption 3.1.
To check robust stability of system (3.69), we propose the following algo-

rithm, which, as said, is similar to Algorithm 3.1.

Algorithm 3.2.

Step 1
Let

∆p1 =
32000 − 9950

100
p1min

= 9950
p1max

= p1min
+ ∆p1 .

Step 2
Try to solve the following feasibility problem.

Problem 3.5.
Find P > 0 such that

Âcl(p, δ)T P + PÂcl(p, δ) < 0 ,(
pT , δT

)T ∈
([

p1min
, p1max

]
×
[
3, 20

]
× [0, 1]2

)v
.

(3.70)

Step 3
If Problem 3.5 is not feasible then Stop: we cannot prove robust stability
of system (3.69), else let p1min

= p1max
, p1max

= p1min
+ ∆p1 end.

If p1min
< 32000 then goto Step 2; else stop: system (3.69) is robustly

stable.

�

The application of Algorithm 3.2 shows that an iteration such that Prob-
lem 3.5 is not feasible exists; therefore the application of Algorithm 3.2 does
not allow to prove robust stability of the closed loop system. On the other
hand, since the covering of parameter p2 introduces conservatism in the analy-
sis, at this point we cannot establish whether the system is robustly stable
or not.

To show that, in this case, the system is not robustly stable, it suffices
to notice that the LMIs based feasibility problem below does not admit a
feasible solution.

Problem 3.6.
Find P > 0 such that

Acl(p1, p2)T P + PAcl(p1, p2) < 0 , p1 = 32000 , p2 = 3 : step : 20 ,
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where step =
(
20 − 3

)
/10 and Acl(·) is the “uncovered” closed loop system

matrix

Acl(p) =
(

A(p) bcT
k

−bkcT Ak

)
. (3.71)

�

Finally, it is interesting to observe that the application of Procedure 3.2
allows us to prove robust stability of the system if p2 ∈ [3, 10], that is if the
bus speed belongs to the interval [3, 10] m/sec; also, we shall see in Chap. 4
(Exercise 4.2) that the system is robustly stable if we consider a bounded
rate parameter p2. 


Improving the Covering

Following the ideas contained in [56,162,163] and [11], we will show that the
goodness of the fitting of the set A(R) by the constructed polytope can be
improved by splitting the set R into smaller sub-hyper-boxes. However the
computational complexity growths exponentially; therefore the methodology
described in this section is only applicable when both the number of the non-
multi-affine functions which appear in the expression of A(p) and the number
of uncertain parameters is small.

We say that T = {R1, R2, . . . , Rl} is a rectangular covering of the hyper-
box R if ∪l

r=1Rr = R. We define T as the set of all rectangular coverings of
R.

Now let C(Rn×n) the set composed of all compact sets in R
n×n. We equip

this set with the Hausdorff metric

dH(S1, S2) := max
{

max
x1∈S1

d(x1, S2), max
x2∈S2

d(S1, x2)
}

, S1, S2 ∈ C(Rn×n) ,

(3.72)

where d(x, S) = d(S, x) denotes the usual Euclidean distance of the point x
from the set S.

Let {Th}h∈N, Th ∈ T, a sequence of rectangular coverings, set up as fol-
lows. T1 = {R}; T2 is constructed by splitting R into 2q hyper-boxes by lines
parallel to the coordinate axes; T3 is obtained applying the same procedure
to each hyper-box in T2 and so on; note that Th is composed of 2(h−1)q hyper-
boxes. We denote by Rhr the r-th hyper-box in Th and by Ψ (hr), Φ(hr) the
matrix functions constructed according to Procedure 3.1 for A(·) restricted
to Rhr.

It is rather obvious that, when the bounding functions are constructed ac-
cording to (3.62) and (3.63), as the splitting is made finer and finer, the union
of the convex hull of the images of the functions Φ(hr), r = 1, . . . , 2(h−1)q,
converges to the union of the images of the functions Ψ (hr) which, in turn,
converges to the image of A(·); therefore we can state the following result.
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Theorem 3.4 ( [11]). Consider a matrix function A(·) satisfying Assump-
tion 3.3 and the sequence {Th}h∈N. Then

lim
h→∞

2(h−1)q⋃
r=1

conv Φ(hr)(Rhr ×D × E) = A(R)

in the metric space (C(Rn×n), dH), where Φ(hr) is the matrix function con-
structed on Rhr according to Procedure 3.1 and (3.62), (3.63).

Now, based on Theorem 3.4, we provide an iterative algorithm, which
tests the quadratic stability of the system under consideration.

A sufficiency and a necessary test constitute the core of the algorithm.
The sufficiency test is applied to the system augmented with the fictitious
parameters and therefore guarantees quadratic stability. Conversely, following
the idea behind Problem 3.6, the necessary test is applied to the original
uncovered system evaluated in correspondence of a finite number of points in
the set R; if the last test fails the system is not QS.

Given a collection of sets S, we denote by Sh the h-th element of S and
by card(S) the number of elements of S.

Algorithm 3.3. The algorithm is composed of three steps.

Step 1
Let S = {R}.

Step 2
For h = 1, . . . , card(S) repeat the following procedure:
Sufficiency test.

Apply Procedure 3.1 to A(·) restricted to the hyper-box Sh; in this way
we obtain a polytope Ah including A(Sh). Apply the quadratic stabil-
ity test to

⋃
h Ah. If the test is successful then stop: system (3.1) is

quadratically stable; else carry out the necessary test described below.
Necessary test.

Test the quadratic stability of system (3.1) over the finite set
⋃
h

{
p(hi), i = 1, . . . , 2q

}
,

where p(hi) is the i-th vertex of Sh. If for some pair (h, i) the test fails
then stop, the system is not quadratically stable.

Step 3
Split each element belonging to S into 2q hyper-boxes, put them in S and
goto Step 2.

�
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Due to Theorem 3.4, if system (3.1) is QS Algorithm 3.3 converges into
a finite number of iterations. If system (3.1) is not QS, it can be proven
(see [9]) that either Algorithm 3.3 terminates in a finite number of iterations
or the sequence of the positive definite matrices, generated from the iterative
solution of the necessary test at Step 2 of the algorithm, is unbounded.

3.3 Other Approaches for Quadratic Stability Analysis

When there are many non-multi-affine functions in the expression of A(·) or
q, the number of parameters, is big it may be difficult to apply the approaches
of Sects. 3.1 and 3.2.

In this case one may follow the alternative approaches proposed in the
next sections.

3.3.1 Gridding

Let us consider the following algorithm.

Algorithm 3.4.

Step 1
Define the set (note that the points p(i) are not necessarily the vertices
of R)

P =
{

p(i), i = 1, . . . , η , p(i) ∈ R
}

.

Step 2
Solve the following feasibility problem, subject to a finite number of con-
straints.

Problem 3.7.
Find a symmetric matrix P such that

P > 0

AT (p)P + PA(p) < 0 , ∀p ∈ P .

Step 3
If Problem 3.7 is unfeasible then stop; system (3.1) is not QS.
If Problem 3.7 is feasible, given a feasible solution P ∗, test that

AT (p)P ∗ + P ∗A(p) < 0 , ∀p ∈ R . (3.73)

If (3.73) is satisfied then stop; System (3.1) is QS. Else goto Step 4.
Step 4

Define the set

P ′ =
{

p(i), i = 1, . . . , η′ , p(i) ∈ R
}

, η′ > η ,

such that P ′ ⊃ P; let η = η′, P = P ′ and goto Step 2. �
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In Step 1 of Algorithm 3.4, η points of the set R are collected into the set
P; the matrix-valued function AT (p)P + PA(p) is then evaluated in corre-
spondence of such points in order to obtain the constraints of Problem 3.7.
If Problem 3.7 is feasible, AT (p)P + PA(p) is guaranteed to be negative def-
inite on P. Experience suggests that the first time Step 1 is performed, it is
convenient to collect into P the vertices of R together with its center point.
Assuming that Problem 3.7 admits a feasible solution P ∗, in Step 3 one must
check if condition (3.73) is satisfied; if the LHS of (3.73) does not exhibit
convexity properties, the check can be performed via brute force gridding.
If (3.73) is not satisfied, it is convenient to collect some of the points where
the check has failed (chosen in a suitable strategic way) and join them to the
points already contained in P. This way leads to the definition of the set P ′

in Step 4. In principle the iterative algorithm terminates when either Prob-
lem 3.7 is unfeasible or when the check in Step 3 is satisfied. Actually, since
there is an increment of the set P every time Step 4 is performed, the situ-
ation in which, due to numerical difficulties, it becomes impossible to carry
out Step 2 of the Algorithm, could be reached. In that case no conclusion can
be drawn concerning the quadratic stability of system (3.1).

Obviously, the existence of a solution of Problem 3.7 is only necessary
for (3.73). Therefore sufficiency must be checked at Step 3. As said, if the
matrix function at the LHS in (3.73) does not exhibit convexity properties,
condition (3.73) could be checked by gridding the parameter space (see also
[33] for further comments about the choice of the gridding points). In any
case, this approach becomes prohibitive, from a computational point of view,
in presence of a large number of parameters, since we cannot perform a
sufficiently dense sampling of the parameter space. The alternative, as we
shall show in the next section, is to make use of a probabilistic approach to
generate a set of sample points in the parameter space where to check (3.73);
the key point is that the cardinality of such set is independent, in the sense
specified later, from the dimension of the parameter space.

3.3.2 A Statistical Approach

While in previous sections the parameter vector p has been considered uncer-
tain but deterministic, in the context of this section we look at p as a random
vector attaining values into the set R and described by a probability density
function f(p). The theoretical background of what follows is taken by [168].

Let us consider nS i.i.d. (independent and identically distributed) samples
of p, namely p̃(1), p̃(2), . . . , p̃(nS), generated according to the same probability
density f(p).

Denote by u(·) a given Lebesgue measurable performance real scalar func-
tion defined over R and by ûnS

the maximum of u(·) over the nS samples,
that is

ûns
:= max

i=1,2,...,nS

u(p̃(i)) . (3.74)
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The aim is to evaluate

Pr{u(p) > ûns
} , (3.75)

where Pr(E) denotes the probability of the event E.
Since u(p) is a random variable and the probability density function f(p)

is unknown, we can get only an estimate of the probability expressed by
(3.75).

In [168] it is shown that, given ε ∈ (0, 1) (the so-called accuracy) and
δ ∈ (0, 1) (the confidence), the number nS of samples randomly picked from
the parameter set R, according to a Uniform Probability Distribution, which
guarantees that

Pr{Pr{u(p) > ûnS
} ≤ ε} ≥ 1 − δ (3.76)

is obtained by the following formula

nS ≥
ln(1

δ )
ln( 1

1−ε )
. (3.77)

Roughly speaking, what formula (3.76) says is the following: If ε and δ
are sufficiently “small” numbers then there is a “high” probability (≥ 1 − δ)
that the probability of the event u(p) > ûNS

is “small” (≤ ε).
In other words we can establish that “the ratio between the Lebesgue

measure of the set {p ∈ R : u(p) > ûnS
} and the measure of the set R is

not greater than ε”; this statement is true with probability not smaller than
1 − δ.

Remark 3.12. Obviously, whatever the values of δ and ε are, there is no
guarantee that the estimated maximum ûnS

is close to the actual maximum
maxp∈R u(p). However if ε and δ are sufficiently small and the function u(p)
is sufficiently smooth the estimated and actual maximum may be close. �

Remark 3.13. Note that the bound (3.77) depends on ε and δ; this is ob-
vious, since as δ and ε become smaller and smaller the number of samples
needs to increase because we want to guarantee (3.76) with more accuracy
and confidence. However, differently from the other approaches, the same
bound does not depend on q (the number of uncertain parameters), the size
of the set R and the probability density function f(p). Therefore the statisti-
cal approach can be very useful when there are many uncertain parameters;
indeed in that case the approaches of Sects. 3.1 and 3.2, as well as meth-
ods based on gridding, become practically unapplicable (see also the next
section). �

Remark 3.14. The number nS in (3.76) is considerably smaller than the
number of samples required by the classical Chernoff bound (which equals
ln(2

δ )/(2ε2) [46]). For example, for ε = δ = 0.001 the Chernoff bound requires
3800452 samples, while (3.77) requires 6905 samples; the question concerning
the number of samples is also discussed in [114]. �
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On the basis of the above discussion, we modify Algorithm 3.4 as follows.

Algorithm 3.5.

Step 0
Define a given accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1).

Step 1
Define the set

P =
{

p(i), i = 1, . . . , η , p(i) ∈ R
}

.

Step 2
Solve the following LMIs feasibility problem, subject to a finite number of
constraints.

Problem 3.8.
Find a symmetric matrix P such that

P > 0

AT (p)P + PA(p) < 0 , ∀p ∈ P .

Step 3
If Problem 3.8 is unfeasible then stop; system (3.1) is not QS.
If Problem 3.8 is feasible, given a feasible solution P ∗, define

u(p) = λmax

(
AT (p)P ∗ + P ∗A(p)

)
. (3.78)

Then take nS points, p̃(1), p̃(2), . . . , p̃(nS), where nS satisfies (3.77), from
the parameter set R according to a Uniform Probability Distribution and
evaluate ûnS

on these points (see (3.74)). If ûnS
< 0 then stop (see the

comments below). Else goto Step 4.
Step 4

Define the set

P ′ =
{

p(i), i = 1, . . . , η′ , p(i) ∈ R
}

, η′ > η

such that P ′ ⊃ P; let η = η′, P = P ′ and goto Step 2.

�

According to Remark 3.12, the response of Algorithm 3.5 has to be care-
fully interpreted. If, given ε and δ, the number ûnS

evaluated at Step 3 is
negative we cannot conclude that system (3.1) is QS in the deterministic
sense. What we can say is that, with probability not smaller than 1 − δ, the
ratio between the measure of the set where (3.78) is nonnegative and the
measure of the set R is not greater than ε. If δ and ε are sufficiently small
and the function u(·) defined in (3.78) is sufficiently smooth, the actual max-
imum of u(·) may be negative and therefore the system may be QS in the
deterministic sense. In any case the statistical approach should be used only
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when the other approaches are not applicable due to an hard computational
burden (see also the next section).

Further readings concerning the application of the statistical approach to
quadratic stability are the papers [78, 79] and [30]. The reader interested to
the more general statistical robustness issues are referred to the works by
Ray and Stengel [165] and [149], Barmish and Lagoa [29], Khargonekar and
colleagues [111] and [179].

3.3.3 A Comparison Between the Various Methods
for Quadratic Stability Analysis

It can be interesting to compare the different techniques for quadratic sta-
bility analysis we have discussed so far in this chapter. It is clear that the
key factors to decide which way to follow are the kind of dependence on pa-
rameters, the number of parameters q and the number of non-multi-affine
functions µ involved in the structure of A(p).

To this end we divide the values of q into three categories:

• q ≤ qsmall means that the number of parameters is considered “small”;
• qsmall < q < qbig means that the number of parameters is considered

“medium”;
• q ≥ qbig means that the number of parameters is considered “big”.

Obviously the values of qsmall and qbig are subjective and strongly depend
on the power of the computer one is using to perform computations.

At the same time we roughly divide µ into two categories:

• µ ≤ µmed means that there are a few non-multi-affine functions;
• µ > µmed means that there are a lot of non-multi-affine functions.

If A(·) satisfies Assumption 3.1 it is in any case recommended to use
Theorem 3.2; however in presence of many parameters (say q ≥ qbig) a vi-
able alternative can be that one of applying Algorithm 3.5 (the statistical
approach).

If A(·) does not satisfy Assumption 3.1 and we face with a small number of
parameters (q ≤ qsmall), in place of using the polytopic covering approach it
can be realistic to apply Algorithm 3.4 in which Step 3 is solved by gridding,
since in this case we can perform a so fine sampling of the parameter space
to guarantee practical certainty that, if (3.73) is satisfied, the system is QS.
The drawback of Algorithm 3.4 is that, if we are unlucky, many iterations
are required before finding the optimal P ∗.

If A(·) does not satisfy Assumption 3.1 and q > qsmall, we have to consider
two different situations: if there are a few non-multi-affine functions in A(p)
(µ ≤ µmed) it is preferable to use the polytopic covering approach; conversely
the only practically applicable approach is Algorithm 3.5.

The above considerations are reported in Table 3.1.
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Table 3.1. Choice of the technique for quadratic stability analysis

Dependence Number of Number of Method
parameters q non-multi-affine

functions µ
Assumption 3.1 Small to Not applicable Theorem 3.2

medium (q < qbig)
Assumption 3.1 Big (q ≥ qbig) Not applicable Theorem 3.2

or
Algorithm 3.5
(statistical)

No Assumption 3.1 Small (q ≤ qsmall) A few (µ ≤ µmed) Algorithm 3.4
(gridding)

or
Polytopic Covering

No Assumption 3.1 Small (q ≤ qsmall) A lot (µ > µmed) Algorithm 3.4
(gridding)

No Assumption 3.1 Medium to A few (µ ≤ µmed) Polytopic Covering
Big (q > qsmall)

No Assumption 3.1 Medium to A lot (µ > µmed) Algorithm 3.5
Big (q > qsmall) (statistical)

3.4 Quadratic Stability and Performances

In most engineering applications stability is not the unique requirement that a
system should exhibit. Therefore in this section we investigate the conditions
the systems matrix has to satisfy in order to ensure at the same time quadratic
stability and further performances.

In particular, the first problem we consider is that of ensuring quadratic
stability of the system and, at the same time, that the system poles belong to
prespecified regions of the complex plane. The second problem concerns the
satisfaction of an L2 performance bound together with quadratic stability.
Finally the issue of guaranteeing quadratic stability together with an LQ
criterion is discussed.

Throughout this section we assume that the matrix A(·) depends on pa-
rameters according to Assumption 3.1. In the other circumstances we can use
one of the techniques described in Sects. 3.2 or 3.3.

3.4.1 Quadratic Stability and Pole Placement
(Quadratic D-Stability)

According to [48, 49] we refer to the so-called LMI regions of the complex
plane.

Definition 3.2 (LMI Region [48]). An LMI region is any subset D of the
complex plane defined as

D :=
{
z ∈ C : Λ + zΘ + z∗ΘT < 0

}
, (3.79)
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where Λ ∈ R
h×h and Θ ∈ R

h×h are real matrices, Λ is symmetric and the
matrix-valued function

Λ + zΘ + z∗ΘT =: FD(z) (3.80)

is the characteristic function of D. �

LMI regions include, among others, the strip, the disk and the cone with
apex at the origin. For example the half plane �(z) < −α is characterized by

FD(z) = z + z∗ + 2α , (3.81)

while the unit disk centered at the origin is characterized by

FD(z) =
(
−1 z
z∗ −1

)
; (3.82)

finally the conic sector with apex at the origin and inner angle 2θ is described
by

FD(z) =
(

sin θ(z + z∗) cos θ(z − z∗)
cos θ(z∗ − z) sin θ(z + z∗)

)
< 0 . (3.83)

Definition 3.3 (D-stability). The linear time-invariant system

ẋ(t) = Ax(t) (3.84)

is said to be D-stable if and only if all the eigenvalues of A are in the region
D. �

A generalization of the Lyapunov Theorem for linear systems leads to the
following necessary and sufficient condition for D-stability (see Exercise 3.1);
in the sequel, given two matrices F and G, the symbol F ⊗ G denotes the
Kronecker product of F and G [88].

Theorem 3.5 (D-stability [48,49]). System (3.84) is D-stable if and only
if there exists a positive definite matrix P such that

MD(A,P ) := Λ ⊗ P + Θ ⊗ (PA) + ΘT ⊗ (AT P ) < 0 . (3.85)

The generalization of Definition 3.1 leads to the concept of quadratic D-
stability.

Definition 3.4 (Quadratic D-stability [48, 49]). System (3.1) is said to
be quadratically D-stable if and only if there exists a positive definite matrix
P such that for all p ∈ R

MD(A(p), P ) = Λ ⊗ P + Θ ⊗ (PA(p)) + ΘT ⊗ (AT (p)P ) < 0 . (3.86)

�
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It is simple to show that Definition 3.4 recovers the classical Definition 3.1
when D is the left half of the complex plane; indeed in this case we have Λ = 0
and Θ = 1 (see (3.81) with α = 0).

It can be shown (see Exercise 3.2) that quadratic D-stability of system
(3.1) is equivalent to quadratic D-stability of the dual system. Therefore an
equivalent condition for quadratic D-stability is the existence of a positive
definite matrix Q such that

MD,d(A(p), Q) := Λ⊗Q+Θ⊗ (A(p)Q)+ΘT ⊗ (QAT (p)) < 0 , ∀ p ∈ R .

(3.87)

Obviously, when D is a subset of the left half of the complex plane,
quadratic D-stability guarantees quadratic stability and that the eigenval-
ues of A(p) are in the region D for all p ∈ R. However, since the parameter
vector p is allowed to be time-varying, this last consideration is of little value,
because the concept of ”pole” is meaningless for time-varying system. Nev-
ertheless, when D is a subset of the left half of the complex plane, quadratic
D-stability guarantees more than the simple exponential stability in presence
of time-varying parameters, as the next result shows.

Theorem 3.6 ( [49]). Assume that system (3.1) is quadratically D-stable,
that is there exists a positive definite matrix P satisfying (3.86); then, defined
v(x) = xT Px and given any p(·) ∈ PC(R+, R), we have that for all t ∈ R

+

1
2

v̇(t, x)
v(x)

∈ D ∩ R , (3.88)

where v̇(t, x) is the derivative of v along the solutions of system ẋ(t) =
A(p(t))x(t).

Proof. Multiply the left and right hand side of (3.86) by I ⊗ xT and I ⊗ x
respectively. We obtain, by virtue of (A.8), that for all x 	= 0

Λ ⊗
(
xT Px

)
+ Θ ⊗

(
xT PA(p)x

)
+ ΘT ⊗

(
xT AT (p)Px

)
< 0 . (3.89)

For a given p(·) ∈ PC(R+, R), we have that

v̇(t, x) = xT
(
AT (p(t))P + PA(p(t))

)
x

= 2xT AT (p(t))Px

= 2xT PA(p(t))x . (3.90)

Dividing (3.89) by v(x) and using (3.90) we obtain that for all x 	= 0 and
t ∈ R

+

Λ ⊗ 1 + Θ ⊗ 1
2

v̇(t, x)
v(x)

+ ΘT ⊗ 1
2

v̇(t, x)
v(x)

< 0 . (3.91)

This last inequality implies that 1
2 v̇(t, x)/v(x) belongs to D for all t ∈ R

+;
the proof follows from the fact that 1

2 v̇(t, x)/v(x) is a real scalar.
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Theorem 3.6 implies that if, for example, system (3.1) is quadratically
D-stable with D the half plane described by (3.81) with α > 0, we have for
all p(·) ∈ PC(R+, R)

v̇(t, x)
v(x)

< −2α , (3.92)

which in turn implies that, for all admissible parameter realizations, a solution
x(·) of system (3.1) starting at x0 satisfies

xT (t)Px(t) < e−2αtxT
0 Px0 , ∀t ∈ R

+ , (3.93)

which represents a bound on the decay rate of x(·) for all admissible behaviors
of the uncertain parameters.

Note that, for a given p, (3.86) is an LMI in the variable P ; by using
Assumption 3.1, we have that system (3.1) is quadratically D-stable iff the
following LMIs problem is feasible.

Problem 3.9.
Find a symmetric matrix P such that

P > 0 (3.94a)

Λ ⊗ P + Θ ⊗ (PA(p(i))) + ΘT ⊗ (AT (p(i))P ) < 0 , i = 1, . . . , 2q .
(3.94b)

�

Finally, the concept of quadratic D-stability is useful to deal with discrete-
time systems. Indeed in Chap. 6 we shall show that quadratic D-stability of
the continuous-time system (3.1) is equivalent to quadratic stability of the
discrete-time system x(k + 1) = A(p)x(k) when D is the unit disk centered
at the origin of the complex plane.

3.4.2 Quadratic L2 Performance

The concept of quadratic L2 performance4 has been introduced in [175] to
cope at the same time with quadratic stability and L2 performance.

Consider the uncertain system

ẋ(t) = A(p)x(t) + B(p)w(t) (3.95a)
z(t) = C(p)x(t) + D(p)w(t) , (3.95b)

where A(·) ∈ R
n×n, B(·) ∈ R

n×v, C(·) ∈ R
s×n and D(·) ∈ R

s×v are contin-
uous matrix functions. Note that equations (3.95) define a family of input-
output operators Γzw

(
p(·)

)
where p(·) is any realization of the time-varying

parameter vector.
4 We prefer to use the locution “L2 performance” rather than the more familiar

“H∞ performance” since we deal with time-varying parameters which lead to
input-output operators corresponding to time-varying systems.
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Definition 3.5 ( [175]). Given γ > 0, system (3.95) is said to possess a
quadratic L2 performance bound γ if and only if ‖D(p)‖ < γ for all p ∈ R
and there exists a positive definite matrix P such that, for all p ∈ R,

AT (p)P + PA(p) + CT (p)C(p)

+
(
PB(p) + CT (p)D(p)

) (
γ2I − DT (p)D(p)

)−1 (
BT (p)P + DT (p)C(p)

)
< 0 .

(3.96)

�

The next lemma justifies Definition 3.5.

Lemma 3.2. If system (3.95) possesses a quadratic L2 performance bound γ
then system (3.95a) (with w = 0) is quadratically stable and ‖Γzw

(
p(·)

)
‖ < γ

for all p(·) ∈ PC(R+, R).

Proof. From (3.96) it readily follows that, for all p ∈ R,

A(p)T P + PA(p) < 0 , (3.97)

and hence the quadratic stability of the system ẋ = A(p)x.
Now let p(·) ∈ PC(R+, R) and Ã(·) := A(p(·)), B̃(·) := B(p(·)), C̃(·) :=

C(p(·)), D̃(·) := D(p(·)); note that Ã, B̃, C̃ and D̃ are of class PC.
Since R is compact (3.96) guarantees that

ÃT P +PÃ+C̃T C̃+
(
PB̃ + C̃T D̃

)(
γ2I − D̃T D̃

)−1 (
B̃T P + D̃T C̃

)
<< 0 .

(3.98)

By applying Theorem 2.11, with a constant P , (3.98) guarantees that ‖Γzw(
p(·)

)
‖ < γ.

Now, by applying Fact A.3, we obtain that (3.96) is equivalent to(
AT (p)P + PA(p) + CT (p)C(p) PB(p) + CT (p)D(p)

BT (p)P + DT (p)C(p) −
(
γ2I − DT (p)D(p)

)) < 0 . (3.99)

Then, by applying again Fact A.3 with

Q =
(

AT (p)P + PA(p) PB(p)
BT (p)P −γ2I

)
, S =

(
C(p) D(p)

)
, R = −I , (3.100)

we obtain that (3.96) is equivalent to
AT (p)P + PA(p) PB(p) CT (p)

BT (p)P −γ2I DT (p)
C(p) D(p) −I


 < 0 . (3.101)

Note that, even if A(·), B(·), C(·) and D(·) separately satisfy Assumption
3.1, it is not guaranteed that the LHS of (3.101) satisfies the hypothesis of
Theorem A.2. In order to transform (3.101) into a finite number of inequalities
let us consider the following assumption.
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Assumption 3.4. The matrices of system (3.95) can be written
(

A(p) B(p)
C(p) D(p)

)
=

NS(p)
dS(p)

, (3.102)

where NS(p) is a multi-affine matrix valued function and dS(p) is a multi-
affine function with dS(p) 	= 0 for all p ∈ R. �

Some important cases in which Assumption 3.4 is satisfied are:

• Matrix A(·) satisfies Assumption 3.1 and matrices B(·), C(·) and D(·) are
parameter independent;

• matrices A(·), B(·), C(·) and D(·) satisfy Assumption 3.1 with denominator
equal to one (i.e. they are multi-affine matrix functions).

Under Assumption 3.4, the LHS of (3.101) satisfies the hypothesis of Theorem
A.2 and therefore inequality (3.101) can be converted into a finite number of
LMIs. In this case we can conclude that system (3.95) possesses a quadratic
L2 performance bound γ iff the following LMIs based problem admits a
feasible solution.

Problem 3.10 (Quadratic L2 performance).
Find a symmetric matrix P ∈ R

n×n such that

P > 0 (3.103a)
AT (p(i))P + PA(p(i)) PB(p(i)) CT (p(i))

BT (p(i))P −γ2I DT (p(i))
C(p(i)) D(p(i)) −I


 < 0 , i = 1, . . . , 2q .

(3.103b)

�

We end the section by noting that system (3.95) possesses a quadratic L2

performance bound γ iff there exists a positive definite matrix Q such that,
for all p ∈ R,


QAT (p) + A(p)Q B(p) QCT (p)

BT (p) −γ2I DT (p)
C(p)Q D(p) −I


 < 0 . (3.104)

The last condition is obtained from (3.101) by pre- and post-multiplying the
LHS by diag(P−1, I, I).

3.4.3 Quadratic Guaranteed Cost

The definition of guaranteed cost control has been introduced in [45] and
then casted into the quadratic stability framework by Petersen in [141]. This
definition essentially concerns the satisfaction of an LQ criterion together
with quadratic stability.
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Let us consider system (3.1) with initial condition x0 = x(0); consider the
cost index

J =
∫ +∞

0

xT (t)Πx(t)dt , (3.105)

where Π is a positive definite matrix.

Definition 3.6. Let P a positive definite matrix. System (3.1) is said to
possess a quadratic guaranteed cost with associated cost matrix P wrt the
index (3.105) if and only if for all p ∈ R

AT (p)P + PA(p) + Π < 0 . (3.106)



The next theorem justifies Definition 3.6.

Theorem 3.7. Assume that system (3.1) exhibits a quadratic guaranteed
cost with associated cost matrix P wrt the index (3.105); then system (3.1)
is QS and, for all p(·) ∈ PC(R+, R),

J < xT
0 Px0 . (3.107)

Proof. From (3.106) it follows that, for all p ∈ R,

AT (p)P + PA(p) < −Π < 0 ; (3.108)

therefore system (3.1) is QS.
Now, given any admissible parameter realization p(·), we have that, for

all t ∈ R
+,

xT (t)Πx(t) < − d

dt

(
xT (t)Px(t)

)
. (3.109)

The proof follows by integrating (3.109) between 0 and +∞ and taking
into account that the system is quadratically stable and therefore x(t) → 0
as t → +∞.

Under Assumption 3.1, in order to have the minimum guaranteed cost we
can solve the following EVP in the variables θ and P .

Problem 3.11 (Minimum quadratic guaranteed cost).

min θ

s.t.
P > 0
P < θI

AT (p(i))P + PA(p(i)) + Π < 0 , i = 1, . . . , 2q .

�
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Finally, by pre- and post-multiplying (3.106) by P−1, we obtain that
system (3.1) exhibits a quadratic guaranteed cost with associated cost matrix
Q−1 wrt the index (3.105) iff for all p ∈ R

(
QAT (p) + A(p)Q QΠ

ΠQ −Π

)
< 0 . (3.110)

3.5 Norm Bounded Uncertainties

Let us consider the uncertain linear system

ẋ(t) = (A + F∆E) x(t) , (3.111)

where A ∈ R
n×n, F ∈ R

n×p, E ∈ R
q×n and ‖∆‖ ≤ 1. The uncertainty

considered in (3.111) is said to be norm bounded.
A system in the form (3.111) arises when we consider uncertainty at the

system matrix entries level. Equation (3.111) is a generalization of the more
intuitive uncertainty representation

ẋ(t) = (A + ∆)x(t) , (3.112)

where each entry of ∆ captures the uncertainty of the corresponding element
of A. The advantage of (3.111) is that the uncertain matrix ∆ is normalized,
while F and E take into account scaling factors.

Note that system (3.111) is equivalent to the classical feedback system
given by the connection between the linear system

ẋ(t) = Ax(t) + Fw∆(t) (3.113a)
z∆(t) = Ex(t) , (3.113b)

and the uncertainty ∆, according to

w∆(t) = ∆z∆(t) . (3.114)

Looking at the representation (3.113)–(3.114) of the uncertain system
(3.111), we note that a larger class of uncertainties can be captured by con-
sidering a nonzero direct feedthrough matrix H ∈ R

q×p in (3.113); therefore
in the following of this section we consider the more general uncertain system
obtained by the feedback connection of

ẋ(t) = Ax(t) + Fw∆(t) (3.115a)
z∆(t) = Ex(t) + Hw∆(t) , (3.115b)

and the uncertainty ∆ given by (3.114).
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System (3.115)–(3.114) is depicted in Fig. 3.14; it can be equivalently
rewritten

ẋ(t) =
(
A + F∆(I − H∆)−1E

)
x(t)

=
(
A + F (I − ∆H)−1∆E

)
x(t) , (3.116)

which explains why the uncertainty we deal with in this section is also referred
to as linear-fractional norm bounded.

∆

w∆A F
E H

z∆

( )

Fig. 3.14. Closed loop for the uncertain system (3.116)

Note that (3.116) (as well as (3.115)–(3.114)) is well posed if I − H∆ is
invertible for all ∆ with ‖∆‖ ≤ 1. This is equivalent to require that ‖H‖ < 1;
therefore this assumption will be implicitly done in the following. On the other
hand the conditions for quadratic stability we will find later automatically
guarantee the satisfaction of such assumption.

According to Definition 3.1, system (3.116) is QS iff there exists a positive
definite matrix P such that for all ∆ with ‖∆‖ ≤ 1

(
A + F∆(I − H∆)−1E

)T
P + P

(
A + F∆(I − H∆)−1E

)
< 0 . (3.117)

By following the guidelines of Theorem 3.1, it is simple to show that
quadratic stability of system (3.116) guarantees exponential stability of the
system

ẋ(t) =
(
A + F∆(t)(I − H∆(t))−1E

)
x(t) (3.118)

for all uncertain matrix valued functions ∆(·) ∈ PC(R+, Rp×q)5 with
5 Again, using the result in [51], p. 67, it is possible to extend the class of admis-

sible uncertainty realizations to the set of Lebesgue measurable matrix-valued
functions.
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‖∆(t)‖ ≤ 1 , ∀t ∈ R
+ . (3.119)

The next result is a necessary and sufficient condition for quadratic sta-
bility of system (3.116). It is proven, according to [38], p. 62, by using an
S-Procedure argument (e.g. see [38], p. 24). Essentially the same result (with
H = 0) was proven, in the earlier literature, by exploiting a direct bound
of the uncertain part of the LHS in inequality (3.117) (see [138] and the
Summary at the end of the chapter).

Theorem 3.8. System (3.116) is QS if and only if there exists a positive
definite matrix P such that(

AT P + PA + ET E PF + ET H
FT P + HT E −(I − HT H)

)
< 0 . (3.120)

Proof. First of all note that (3.120) implies that I −HT H > 0; therefore we
have

‖H∆‖ ≤ ‖H‖‖∆‖
≤ ‖H‖ < 1 ; (3.121)

this guarantees that I − H∆ is nonsingular for all ∆ with ‖∆‖ ≤ 1.
System (3.116) is QS iff there exists a positive definite matrix P such

that (3.117) holds for all ∆ with ‖∆‖ ≤ 1. Inequality (3.117) is equivalent to
require that

xT (AT P + PA)x + 2xT PFv < 0 , (3.122)

for all x ∈ R
n, x 	= 0, and v ∈ Sx where

Sx := {v : v = ∆(Hv + Ex) , ‖∆‖ ≤ 1}
=
{
v : vT v ≤ (Hv + Ex)T (Hv + Ex)

}
. (3.123)

We can conclude that system (3.116) is QS iff there exists a positive
definite matrix P such that(

x
v

)T (
AT P + PA PF

FT P 0

)(
x
v

)
< 0 (3.124)

for all x ∈ R
n, x 	= 0, and v ∈ Sx.

By applying the S-procedure (see [38], p. 24) we obtain that the last
condition is equivalent to the existence of a positive definite matrix P and a
nonnegative scalar τ such that(

AT P + PA + τET E PF + τET H
FT P + τHT E −τ(I − HT H)

)
< 0 . (3.125)

Since (3.125) implies τ > 0, without loss of generality we can divide both
members of (3.125) by τ and rescale matrix P by the factor τ . From this
consideration the proof follows.
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Note that Theorem 3.8 is directly stated in the form of LMIs feasibility
problem. An equivalent condition for quadratic stability of system (3.116)
is the existence of a positive definite matrix P which satisfies the Riccati
inequality (with ‖H‖ < 1)

AT P +PA+ET E+(PF +ET H)(I−HT H)−1(FT P +HT E) < 0 ; (3.126)

the last condition is obtained from (3.120) by applying Fact A.3.
Conversely, we have that another application of Fact A.3 to (3.120) leads

to the following equivalent condition for quadratic stability (note the analogy
with (3.101))


AT P + PA PF ET

FT P −I HT

E H −I


 < 0 . (3.127)

Finally, note that by pre- and post-multiplying (3.127) by diag(P−1, I, I)
we obtain that an equivalent condition for quadratic stability of system
(3.116) is the existence of a positive definite matrix Q such that


QAT + AQ F QET

FT −I HT

EQ H −I


 < 0 ; (3.128)

the last condition will be exploited in the context of quadratic stabilization
via state feedback in Sect. 5.4.1.

The next example illustrates the uncertainty characterization via rep-
resentation (3.116). A comparison between parametric and norm bounded
uncertainties is considered; it is also shown that uncertainty modelling via
norm bounded uncertainties may introduce conservatism.

Example 3.4.
Let us consider the linear system

ẋ(t) = Ax(t) =
(
−1 1
−1 −1

)
x(t) . (3.129)

Assume that each entry of the system matrix is subject to uncertainties.
In particular the 11-entry is subject to an uncertainty which is 10% of the
nominal value, the 22-entry is subject to an uncertainty which is 40% of the
nominal value and the off-diagonal entries are subject to an uncertainty which
is 20% of the nominal value.

If we assume that the uncertainties affecting the elements of A are inde-
pendent each other we can represent this uncertain system in the following
way

ẋ(t) = A(p)x(t) =
(
−1 + 0.1p1 1 + 0.2p2

−1 + 0.2p3 −1 + 0.4p4

)
x(t) , ‖p‖∞ ≤ 1 . (3.130)
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For following developments, we rewrite system (3.130) by introducing a
scaling factor θ as follows

ẋ(t) =
[(

−1 1
−1 −1

)
+ θ

(
0.1p1 0.2p2

0.2p3 0.4p4

)]
x(t) , ‖p‖∞ ≤ 1 , (3.131)

where θ takes into account which percentage of the nominal uncertainty is
considered in the quadratic stability analysis; for example for θ = 1 the
nominal uncertainty is considered.

System (3.131) is subject to affine parametric uncertainty; therefore it
satisfies Assumption 3.1 and we can solve a GEVP to estimate (see Problem
3.3)

θsup,par := sup {θ : system (3.131) is QS} . (3.132)

We obtain
2.22 < θsup,par < 2.23.

Now note that system (3.131) can be rewritten

ẋ(t) =
[(

−1 1
−1 −1

)
+ θ

(
0.1 0
0 0.2

)(
p1 p2

p3 p4

)(
1 0
0 2

)]
x(t)

=: (A + θF̂∆E)x(t) . (3.133)

In order to qualify system (3.133) as a system subject to norm bounded
uncertainties, we have to understand how to bound matrix

∆ :=
(

p1 p2

p3 p4

)
(3.134)

in order to capture the original uncertainty representation. This is not a
trivial task; in particular note that the bound ‖∆‖ ≤ 1 is not sufficient,
since, for example, the uncertainty

∆̃ :=
(

1 1
1 1

)
(3.135)

is admissible and ‖∆̃‖ = 2.
In order to give an estimate of the required bound, note that

max
‖p‖∞≤1

‖∆‖2 ≤ max
‖p‖∞≤1

‖∆‖2
F

= max
‖p‖∞≤1

4∑
i=1

p2
i

= 4 . (3.136)

Therefore a suitable bound is ‖∆‖ ≤ 2.
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In conclusion we can capture the original uncertain system via the norm
bounded representation

ẋ(t) = (A + θF∆E)x(t) , ‖∆‖ ≤ 1 (3.137)

with

F := 2F̂ =
(

0.2 0
0 0.4

)
, E =

(
1 0
0 2

)
, (3.138)

and θ is the usual scaling factor.
It is important to note that, for a given θ, the class of systems covered

by (3.137) strictly contains the original class (3.131). This is the weak point
of uncertainty modelling via norm bounded representations: they often intro-
duce conservatism in the quadratic stability analysis.

Now we can apply Theorem 3.8 to estimate

θsup,nb := sup {θ : system (3.137) is QS} . (3.139)

We obtain
1.76 < θsup,nb < 1.77.

As expected

θsup,nb < θsup,par . (3.140)

It is important to remark that the GEVP to evaluate θsup,par is subject to
24 = 16 LMIs while the GEVP to evaluate θsup,nb is subject to only one LMI;
therefore the less conservative approach based on the parametric description
of the uncertainty pays a bigger price in terms of computational burden.

A less conservative estimate of the quadratic stability margin via the norm
bounded uncertainties approach can be obtained by allowing the uncertain
matrix ∆ to be structured; this topic is discussed in the next section. 


3.5.1 The Multi-Block Case

Let us consider the uncertain linear system

ẋ(t) =

(
A +

nb∑
i=1

Fi∆i(I − Hi∆i)−1Ei

)
x(t) , (3.141)

where A ∈ R
n×n, Fi ∈ R

n×pi , Ei ∈ R
qi×n, Hi ∈ R

qi×pi , ‖Hi‖ < 1, and
‖∆i‖ ≤ 1, i = 1, . . . , nb.

Note that system (3.141) can be put in the form (3.116) with (see also
Fig. 3.15)
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∆1 0 · · · 0
0 ∆2 · · · 0
...

...
. . .

...
0 0 · · · ∆nb

w∆

A F1 F2 · · · Fnb

E1 H1 0 · · · 0
E2 0 H2 · · · 0
...

...
...

. . .
...

Enb 0 0 · · · Hnb

z∆













Fig. 3.15. Closed loop form for the uncertain system (3.141)

F =
(
F1 F2 · · · Fnb

)
(3.142a)

E =




E1

E2

...
Enb


 (3.142b)

H = diag(H1,H2, . . . , Hnb
) (3.142c)

∆ = diag(∆1,∆2, . . . ,∆nb
) ; (3.142d)

therefore we say that system (3.141) is subject to structured, norm bounded
uncertainties.

According to Definition 3.1, system (3.141) is QS iff there exists a positive
definite matrix P such that for all ∆ defined in (3.142d) with ‖∆i‖ ≤ 1,
i = 1, . . . , nb,

(
A +

nb∑
i=1

Fi∆i(I−Hi∆i)−1Ei

)T

P+P

(
A +

nb∑
i=1

Fi∆i(I − Hi∆i)−1Ei

)
< 0 .

(3.143)

Obviously quadratic stability of system (3.141) guarantees exponential
stability of the system

ẋ(t) =

(
A +

nb∑
i=1

Fi∆i(t)(I − Hi∆i(t))−1Ei

)
x(t) (3.144)

for all uncertain matrix valued functions ∆(·) with the structure defined in
(3.142d), ∆i ∈ PC(R+, Rpi×qi) with
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‖∆i(t)‖ ≤ 1 , ∀t ∈ R
+ , i = 1, . . . , nb . (3.145)

The following theorem (see Exercise 3.3), which is stated directly in the
form of LMIs feasibility problem, is a sufficient condition for quadratic sta-
bility of system (3.141); it can be proven by following the same guidelines
of Theorem 3.8. Note that the theorem is not necessary for quadratic stabil-
ity; indeed the application of the S-Procedure in the multi-block case does
not yield an equivalent condition as in the single block case (see (3.124) and
(3.125)).

Theorem 3.9. System (3.141) is QS if there exist positive scalars τi, i =
1, . . . , nb − 1, and a positive definite matrix P such that




AT P + PA +
∑nb

i=1 τiE
T
i Ei PF1 + τ1E

T
1 H1 · · · PFnb + τnbET

nb
Hnb

F T
1 P + τ1H

T
1 E1 −τ1(Ip1 − HT

1 H1) · · · 0
...

...
. . .

...
F T

nbP + τnbHT
nb

Enb 0 · · · −τnb(Ipnb
− HT

nb
Hnb)


 < 0 ,

(3.146)

where τnb
= 1.

Example 3.5.
Consider again the uncertain system (3.131); such system can be rewritten,
according to representation (3.141), as follows

ẋ(t) =
[(

−1 1
−1 −1

)
+ θ

[(
0.1
0

)(
1 0

)
p1 +

(
0.2
0

)(
0 1

)
p2

+
(

0
0.2

)(
1 0

)
p3 +

(
0

0.4

)(
0 1

)
p4

]]
x(t) , ‖p‖∞ ≤ 1 . (3.147)

Therefore we can use Theorem 3.9 to compute

θsup,mb := sup {θ : system (3.147) is QS} . (3.148)

We obtain

2.14 < θsup,mb < 2.15 ; (3.149)

note that θsup,mb < θsup,par (see Example 3.4). Although (3.147) is an equiv-
alent representation of the uncertain system (3.131), the fact that the two
margins do not coincide is not surprising. Indeed θsup,par has been computed
by applying Theorem 3.2 which is necessary and sufficient for quadratic sta-
bility of system (3.131), while θsup,mb has been computed applying Theorem
(3.9), which is only sufficient.

We can conclude that, given the uncertain system (3.131), three different
approaches for the computation of the quadratic stability margin can be fol-
lowed; each approach involves a different computational burden and exhibits
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a different level of conservatism. The first approach (see Example 3.4) looks
at the uncertain system as subject to parametric uncertainties; the evaluation
of the quadratic stability margin, in this case, is nonconservative and requires
the solution of a GEVP with two variables (P and θ) and subject to 16 LMIs.
The second approach, pursued in the current example, models the uncertain
part in norm bounded, multi-block form; the evaluation of the quadratic sta-
bility margin is conservative and requires the solution of a GEVP with five
variables (P , θ, τi, i = 1, 2, 3) subject to one multi-block LMI. Finally, the
third approach (see again Example 3.4) captures the uncertainty by a single
norm-bounded block; it is the more conservative and less expensive, from
a computational point of view, since involves a GEVP with two variables
subject to a single LMI. 


Generally speaking, when the uncertain system we deal with depends on
parametric uncertainties according to (3.1), rather than using the approaches
of Sections 3.1–3.2, the system can be brought, under certain hypothesis,
in the multi-block form (3.141) by using, for example, the methodologies
proposed in [71] and [128]; then we can use the sufficient condition (3.146)
to establish quadratic stability. The drawback is that, for high order systems
and/or complex parameter dependencies, it is very difficult to put the given
uncertain system in the form (3.141); moreover the usual presence of many
blocks and/or repeated blocks may render the condition overly conservative.

3.5.2 Quadratic Stability and Performances

Quadratic D-Stability
When the system is subject to norm bounded uncertainties, Definition 3.4
generalizes as follows.

Definition 3.7. System (3.116) is said to be quadratically D-stable if and
only if there exists a positive definite matrix P such that for all ∆ ∈ R

p×q

with ‖∆‖ ≤ 1

Λ ⊗ P + Θ ⊗
(
P (A + F∆(I − H∆)−1E)

)
+ ΘT ⊗

(
(A + F∆(I − H∆)−1E)T P

)
< 0 . (3.150)

�

The interpretation of the quadratic D-stability property is the same as
that one for parametric uncertainties. Remember that Λ = ΛT and Θ are
h × h matrices involved into the definition of the region D (see (3.79)).

The following result is a sufficient condition for quadratic D-stability.

Theorem 3.10 ( [49]). System (3.116) is quadratically D-stable if there exist
positive definite matrices P ∈ R

n×n and Z ∈ R
k×k, where k = rank(Θ), such

that
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 MD(A,P ) ΘT

1 ⊗ (PF )
(
ΘT

2 Z
)
⊗ ET

Θ1 ⊗ (FT P ) −Z ⊗ Ip Z ⊗ HT

(ZΘ2) ⊗ E Z ⊗ H −Z ⊗ Iq


 < 0 . (3.151)

where MD has been defined in (3.85), and Θ1 ∈ R
k×h, Θ2 ∈ R

k×h are full
row rank matrices satisfying Θ = ΘT

1 Θ2.

Proof. The proof resembles that one of Theorem 3.8 with the obvious modi-
fications.

First of all we have that (3.151) implies
(

Z ⊗ Ip −Z ⊗ HT

−Z ⊗ H Z ⊗ Iq

)
> 0 , (3.152)

which in turn guarantees that I − HT H is positive definite. From this it
follows that I − H∆ is invertible for all ∆ with ‖∆‖ ≤ 1.

System (3.116) is quadratically D-stable iff there exists a positive definite
matrix P such that for all ∆ with ‖∆‖ ≤ 1

Λ ⊗ P + Θ ⊗
(
P
(
A + F∆(I − H∆)−1E

))
+ ΘT ⊗

((
A + F∆(I − H∆)−1E

)T
P
)

= MD(A,P ) + Θ ⊗
(
PF∆(I − H∆)−1E

)
+ ΘT ⊗

(
ET (I − H∆)−T ∆T FT P

)
= MD(A,P ) +

(
ΘT

1 ⊗ (PF )
) (

Θ2 ⊗
(
∆(I − H∆)−1E

))
+
(
ΘT

2 ⊗ (ET (I − H∆)−T ∆T )
)(

Θ1 ⊗ (FT P )
)

< 0 ,
(3.153)

where, in the last equality, we have used (A.8).
Condition (3.153) is equivalent to require that for all vector x ∈ R

hn,
x 	= 0, and ∆ with ‖∆‖ ≤ 1

xT MD(A,P )x+2xT
(
ΘT

1 ⊗(PF )
) (

Θ2 ⊗
(
∆(I − H∆)−1E

))
x < 0 , (3.154)

which in turn is equivalent to require that, for any given x 	= 0,

xT MD(A,P )x + 2xT
(
ΘT

1 ⊗ (PF )
)
v < 0 (3.155)

for all v ∈ Sx with

Sx :=
{
v ∈ R

kp : v =
(
Θ2 ⊗

(
∆(I − H∆)−1E

))
x , ‖∆‖ ≤ 1

}
. (3.156)

We have that v =
(
Θ2 ⊗

(
∆(I − H∆)−1E

))
x is the unique solution of

v = (Ik ⊗ ∆)rv,x , (3.157)

where
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rv,x := (Ik ⊗ H)v + (Θ2 ⊗ E)x ∈ R
kq . (3.158)

By virtue of the last consideration an equivalent characterization of the
set Sx is the following

Sx =
{
v ∈ R

kp : v = (Ik ⊗ ∆)rv,x , ‖∆‖ ≤ 1
}

. (3.159)

Now, given any Z > 0, Z ∈ R
k×k, define the set

Ŝx :=
{
v ∈ R

kp : rT
v,x(Z ⊗ Iq)rv,x − vT (Z ⊗ Ip)v ≥ 0

}
. (3.160)

It is simple to recognize that Ŝx ⊇ Sx. Indeed let v ∈ Sx; this means that
there exists ∆ with ‖∆‖ ≤ 1 such that v = (Ik ⊗ ∆)rv,x. Therefore

rT
v,x(Z ⊗ Iq)rv,x − vT (Z ⊗ Ip)v = rT

v,x(Z ⊗ Iq)rv,x

− rT
v,x(Ik ⊗ ∆)T (Z ⊗ Ip)(Ik ⊗ ∆)rv,x

= rT
v,x(Z ⊗ Iq)rv,x − rT

v,xZ ⊗ (∆T ∆)rv,x

= rT
v,x

(
Z ⊗ (Iq − ∆T ∆)

)
rv,x ≥ 0 ,

(3.161)

where the last inequality follows from the fact that the Kronecker product of
two positive semidefinite matrices is still positive semidefinite; (3.161) guar-
antees that v ∈ Ŝx.

On the basis of the last consideration we can conclude that (3.153) is
guaranteed if (3.155) holds for all v ∈ Ŝx.

This last condition can be rewritten
(

x
v

)T (
MD(A,P ) ΘT

1 ⊗ (PF )
Θ1 ⊗ (FT P ) 0

)(
x
v

)
< 0 (3.162)

whenever

(
x
v

)T (
(ΘT

2 ⊗ ET )(Z ⊗ Iq)(Θ2 ⊗ E) (ΘT
2 ⊗ ET )(Z ⊗ Iq)(Ik ⊗ H)

(Ik ⊗ HT )(Z ⊗ Iq)(Θ2 ⊗ E) (Ik ⊗ HT )(Z ⊗ Iq)(Ik ⊗ H) − Z ⊗ Ip

) (
x
v

)
≥ 0 .

(3.163)

Exploiting, as usual, S-Procedure arguments (see [38], p. 24) we have
that the last condition is equivalent to require the existence of a scalar τ > 0
such that
(

MD(A,P ) ΘT
1 ⊗ (PF )

Θ1 ⊗ (FT P ) −τZ ⊗ Ip

)
+τ

(
ΘT

2 ⊗ ET

Ik ⊗ HT

)
(Z⊗Iq)

(
Θ2 ⊗ E Ik ⊗ H

)
< 0 .

(3.164)

The proof follows dividing by τ both members of the last inequality, rescal-
ing P and applying Fact A.3.
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Note that the condition in Theorem 3.10 is only sufficient. However when
Θ has rank one (k = 1 in the proof of the theorem) matrix Z reduces to a
scalar, which can be set without loss of generality to one, the arguments of
the proof can be reversed and the condition becomes also necessary, as in the
case of Theorem 3.8, where D is the left half of the complex plane (see also
Exercise 3.4).

Moreover by pre and post-multiplying (3.151) by

Ih ⊗ P−1 0 0

0 I 0
0 0 I




we obtain that an alternative sufficient condition for quadratic D-stability is
the existence of positive definite matrices Q and Z such that


 MD,d(A,Q) ΘT

1 ⊗ F
(
ΘT

2 Z
)
⊗ (QET )

Θ1 ⊗ FT −Z ⊗ Ip Z ⊗ HT

(ZΘ2) ⊗ (EQ) Z ⊗ H −Z ⊗ Iq


 < 0 , (3.165)

where MD,d(A,Q) has been defined in (3.87); note that the last condition,
differently from (3.151), is not an LMI.

Quadratic L2 Performance Consider the uncertain system (again assume
‖H‖ < 1 for well posedness)

ẋ(t) =
(
A + F∆(I − H∆)−1E

)
x(t) + Bw(t) (3.166a)

z(t) = Cx(t) + Dw(t) , (3.166b)

or equivalently

ẋ(t) = Ax(t) + Fw∆(t) + Bw(t) (3.167a)
z∆(t) = Ex(t) + Hw∆(t) (3.167b)

z(t) = Cx(t) + Dw(t) (3.167c)
w∆(t) = ∆z∆(t) . (3.167d)

Note that system (3.166) defines a family of input-output operators
Γzw

(
∆(·)

)
depending on the time realization of the uncertain matrix ∆.

Definition 3.8. Given γ > 0, system (3.166) is said to possess a quadratic
L2 performance bound γ if and only if ‖D‖ < γ and there exists a positive
definite matrix P such that for all ∆ with ‖∆‖ ≤ 1

(
A + F∆(I − H∆)−1E

)T
P + P

(
A + F∆(I − H∆)−1E

)
+ CT C

+ (PB + CT D)(γ2I − DT D)−1(BT P + DT C) < 0 . (3.168)

�
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By using the same arguments of Lemma 3.2 and taking into account
Theorem 2.11, it is simple to show that if system (3.166) possesses a quadratic
L2 performance bound γ, then it is quadratically stable and ‖Γzw

(
∆(·)

)
‖ < γ

for all ∆(·) ∈ PC(R+, Rp×q) with ‖∆(t)‖ ≤ 1 for all t.
Following the same guidelines of Theorem 3.8 we can prove the next result.

Theorem 3.11. System (3.166) possesses a quadratic L2 performance bound
γ if and only if ‖D‖ < γ and there exists a positive definite matrix P and a
positive scalar τ such that

(
AT P +PA+CT C+τET E+(PB+CT D)(γ2I−DT D)−1(BT P + DT C) PF +τET H

F T P + τHT E −τ(I − HT H)

)
< 0 .

(3.169)

By applying Fact A.3, condition (3.169) can be converted into the usual
matrix Riccati inequality

AT P + PA + τET E + τ−1(PF + τET H)(I − HT H)−1(FT P + τHT E)

+ CT C + (PB + CT D)(γ2I − DT D)−1(BT P + DT C) < 0 .
(3.170)

Remark 3.15. It is interesting to note that in Theorem 3.11, differently from
the simple quadratic stability case, even if D = 0 the scaling of P does not
allow to eliminate the parameter τ from (3.169) or (3.170) (see also Remark 1
in [20]). �

Nor (3.170) neither (3.169) are LMIs in the variable P . Starting from
(3.170) and applying again Fact A.3, we arrive to the following LMIs based
feasibility problem which represents a necessary and sufficient condition for
system (3.166) to possess a quadratic L2 performance bound γ.

Problem 3.12.
Find a symmetric matrix P ∈ R

n×n and a scalar τ such that

P > 0 (3.171a)
τ > 0 (3.171b)


AT P + PA + τET E + CT C PB + CT D PF + τET H

BT P + DT C −(γ2I − DT D) 0
FT P + τHT E 0 −τ(I − HT H)


 < 0 .

(3.171c)

�

By further applying Fact A.3 we have that an equivalent condition to the
feasibility of Problem 3.12 is the existence of a positive definite matrix P and
a positive scalar τ such that
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AT P + PA PB PF τET CT

BT P −γ2I 0 0 DT

FT P 0 −τ2I τHT 0
τE 0 τH −I 0
C D 0 0 −I


 < 0 . (3.172)

Note that the last condition, although convex in P and τ , is not an LMI.
The dual, equivalent condition of (3.171) is (see Exercise 3.5) the existence

of a positive definite matrix Q and a positive scalar τ such that



AQ + QAT + τFFT B + QCT D QET + τFHT QCT

BT + DT CQ −(γ2I − DT D) 0 0
EQ + τHFT 0 −τ(I − HHT ) 0

CQ 0 0 −I


 < 0 . (3.173)

The last condition will be exploited for state feedback design.

Quadratic Guaranteed Cost
Consider system (3.116) with initial condition x0 = x(0) and the cost index
(3.105). We can give the following definition.

Definition 3.9. Let P a positive definite matrix. System (3.116) is said to
possess a quadratic guaranteed cost with associated cost matrix P wrt the
index (3.105) if and only if for all ∆ with ‖∆‖ ≤ 1

(
A + F∆(I − H∆)−1E

)T
P +P

(
A + F∆(I − H∆)−1E

)
+Π < 0 . (3.174)



By using the same arguments of Theorem 3.7, we can conclude that if

system (3.116) exhibits a quadratic guaranteed cost with associated cost
matrix P wrt the index (3.105) then it is QS and J < xT

0 Px0 for all
∆(·) ∈ PC(R+, Rp×q).

The proof of the next theorem follows the same guidelines of Theorem 3.8.

Theorem 3.12. System (3.116) exhibits a quadratic guaranteed cost with
associated cost matrix P wrt the index (3.105) if and only if there exists a
positive scalar τ such that

(
AT P + PA + τET E + Π PF + τET H

FT P + τHT E −τ(I − HT H)

)
< 0 . (3.175)

We can conclude that the minimum guaranteed cost problem can be con-
verted into the following EVP in the variables θ, P and τ .
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Problem 3.13 (Minimum quadratic guaranteed cost - Norm bounded
uncertainties).

min θ

s.t.
τ > 0
P > 0
P < θI

(3.175)
�

The EVP 3.13 admits the optimal solution P � iff the following EVP ad-
mits the optimal solution Q� = P �−1 (see Exercise 3.6).

Problem 3.14.

max θ

s.t.
τ > 0 (3.176a)
θ > 0 (3.176b)
Q > θI (3.176c)

AQ + QAT + τFFT QET + τFHT QΠ
EQ + τHFT −τ(I − HHT ) 0

ΠQ 0 −Π


 < 0 . (3.176d)

�

The formulation of the guaranteed cost problem via Problem 3.14 will be
useful in the design context.

3.6 Connections between Quadratic Stability
and H∞ Control

At the end of the Eighties a number of papers (see among others [98,110,139])
pointed out several connections between quadratic stability and H∞ control.
Actually the results contained in these papers are based on the work on ab-
solute stability and passivity theory due to Popov [142–144], and Yakubovich
[176–178].

The central point is the following result. Remember that for a time-
invariant system the L2 induced norm is equal to the H∞ norm of the corre-
sponding transfer function matrix.
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Theorem 3.13 ( [98,110]). Define the transfer function matrix

W (s) = E(sI − A)−1F + H . (3.177)

Then system (3.116) is QS if and only if A is an Hurwitz matrix and

‖W‖∞ < 1 . (3.178)

Proof. System (3.116) is QS iff there exists a positive definite matrix P which
satisfies (3.126). On the other hand condition (3.126) is equivalent, by virtue
of Theorem 2.11 applied to time-invariant systems with γ = 1, to condition
(3.178) with A Hurwitz.

In other words quadratic stability of system (3.116) is equivalent to a
small gain condition for the system having transfer function matrix given by
(3.177).

Now let us consider the closed loop system in Fig. 3.16, where W (s) ∈
RHq×p

∞ and ∆(s) ∈ RHp×q
∞ . Remember that the closed loop system is well

posed if I − W (∞)∆(∞) is invertible (see [185], p. 67).

∆(s)
+

+
W (s)

Fig. 3.16. Closed loop scheme for Small Gain Theorem

This closed loop system is said to be internally stable if all loop signals
are bounded when the exogenous inputs are bounded. Since both W and ∆
belong to RH∞, a necessary and sufficient condition for internal stability is
(I − ∆W )−1 ∈ RHp×p

∞ (see [185], p. 69).
Now it is well known, from classical H∞ theory, that (3.178) is neces-

sary and sufficient for well posedness and internal stability of the closed loop
system in Fig. 3.16 with respect to dynamic perturbations ∆(s) ∈ RHp×q

∞ sat-
isfying ‖∆‖∞ ≤ 1, which in turn is equivalent to well posedness and internal
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stability versus memoryless, time-invariant, complex perturbations ∆ ∈ C
p×q

satisfying ‖∆‖ ≤ 1 (see [185], p. 139). This is a version of the famous Small
Gain Theorem.

Now consider the following definition which extends the quadratic stabil-
ity definition to complex uncertainties.

Definition 3.10 (Quadratic stability for complex uncertainties [152]).
Consider system (3.116) with ∆ ∈ C

p×q, ‖∆‖ ≤ 1. Then system (3.116)
is quadratically stable if and only if there exists a positive definite matrix
P ∈ C

n×n such that for all ∆ ∈ C
p×q with ‖∆‖ ≤ 1

(A + F∆(I − H∆)−1E)∗P + P (A + F∆(I − H∆)−1E) < 0 . (3.179)

�

It can be proven that (3.178) is also necessary and sufficient for QS versus
complex uncertainties [98,110,152].

The above facts are resumed in the following theorem.

Theorem 3.14. Let us consider the closed loop scheme in Fig. 3.16 and
denote by (A,F,E,H) a (minimal) realization of W (s); assume that W (s) ∈
RHq×p

∞ . Then the following statements are equivalent:

i) ‖W‖∞ < 1.
ii) The closed loop system in Fig. 3.16 is well posed and internally stable

for all dynamic perturbations ∆ ∈ RHp×q
∞ satisfying ‖∆‖∞ ≤ 1.

iii) The closed loop system in Fig. 3.16 is well posed and internally stable
for all ∆ ∈ C

p×q with ‖∆‖ ≤ 1.
iv) System (3.116) is QS.
v) System (3.116) is QS for ∆ ∈ C

p×q with ‖∆‖ ≤ 1.
vi) There exists a positive definite matrix P which satisfies the Riccati in-

equality (3.126).

The link between quadratic stability and H∞ theory is also useful to
determine the amplitude of the largest (in the two-norm sense) uncertainty
(open) ball for which system (3.116) is QS. Indeed it is clear that system
(3.116) is QS for all ∆ such that ‖∆‖ ≤ γ iff

γ <
1

‖W‖∞
. (3.180)

Example 3.6.
Consider again system (3.116) with

A =
(
−1 1
−1 −1

)
, F =

(
0.2 0
0 0.4

)
, E =

(
1 0
0 2

)
, H = 0 . (3.181)
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∆1(s) · · · 0
...

. . .
...

0 · · · ∆nb(s)
+

+
W (s)







Fig. 3.17. Closed loop scheme for Theorem 3.15

In this case we obtain

‖W‖∞ = ‖E(sI − A)−1F‖∞ ∼= 0.567 (3.182)

and therefore the system is QS for all ∆ with ‖∆‖ ≤ γ and γ any number
satisfying

γ <
1

‖W‖∞
∼= 1.76 . (3.183)

As expected, the estimate of the uncertainty upper bound computed via
the H∞ approach is practically coincident with the upper bound θsup,nb es-
timated in Example 3.4 via the LMI approach. 


When we consider the multi-block case (3.141), Theorem 3.14 cannot be
extended as a necessary and sufficient condition. Referring to Fig. 3.17 define
W (s) = E(sI − A)−1F + H with E, F and H given in (3.142).

We can state the following result.

Theorem 3.15 ( [152]). Consider system (3.141); then the following state-
ments are equivalent:

i) Matrix A is Hurwitz and there exist nb − 1 positive numbers d1, d2, . . . ,
dnb−1 such that

‖DoWD−1
i ‖∞ < 1 , (3.184)

where

Di = diag(d1Ip1 , . . . , dnb−1Ipnb−1 , Ipnb
) (3.185a)

Do = diag(d1Iq1 , . . . , dnb−1Iqnb−1 , Iqnb
) . (3.185b)
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ii) There exist nb − 1 positive numbers τ1, . . . , τnb−1 and a positive definite
matrix P such that (3.146) is satisfied.

Either one of these conditions implies the following:

iii) System (3.141) is QS.
iv) System (3.141) is QS for complex ∆ = diag(∆1, . . . ,∆nb

) with ∆i ∈
C

pi×qi , satisfying ‖∆i‖ ≤ 1, i = 1, . . . , nb.
v) The closed loop system in Fig. 3.17 is internally stable for all dynamic

perturbations ∆i(s) ∈ RHpi×qi
∞ satisfying ‖∆i‖∞ ≤ 1, i = 1, . . . , nb.

vi) The closed loop system in Fig. 3.17 is internally stable for all ∆i ∈ C
pi×qi

with ‖∆i‖ ≤ 1, i = 1, . . . , nb.

In the multi-block case condition iii) and vi) (and therefore iv) and v)) are
no longer equivalent; indeed in [152] two two-blocks counter-examples show
that iii) does not imply vi) (and therefore iv) and v)) and that, conversely,
vi) does not imply iii) (obviously iv) does imply iii)).

Therefore in the multi-block case condition i) and ii) are not necessary for
iii), v) and vi); concerning condition iv), when nb = 2 (two blocks) condition
i), ii) and iv) are equivalent (see again [152]).

Conditions v) and vi) are still equivalent and can be expressed in terms of
an equivalent condition involving the infinity norm of the Structured Singular
Value (µ) of W (s) [63, 185]. Indeed we can state the following result (note
that the uncertainty set is open).

Theorem 3.16 ( [63]). The following statements are equivalent:

i) The closed loop system in Fig. 3.17 is internally stable for all dynamic
perturbations ∆i(s) ∈ RHpi×qi∞ satisfying ‖∆i‖∞ < 1, i = 1, . . . , nb.

ii) The closed loop system in Fig. 3.17 is internally stable for all ∆i ∈ C
pi×qi

with ‖∆i‖ < 1, i = 1, . . . , nb.
iii) Matrix A is Hurwitz and

µ∆(W (jω)) ≤ 1 , ∀ω ∈ R
+ ,

where ∆ denotes the block structure of the perturbation in Fig. 3.17, that
is

∆ :=
{
∆ : ∆ = diag

(
∆1, . . . ,∆nb

)
,

∆i ∈ C
pi×qi , i = 1, . . . , nb

}
, (3.186)

and µ∆(W (jω)) is the structured singular value of W (jω) computed wrt
the uncertainty structure ∆.
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Further readings concerning the connections between quadratic stability
and µ theory are the seminal paper [39] and [66,119].

Finally, it is interesting to remark that, with the obvious modifications,
Theorem 3.14 can be extended to illustrate the connections between quadratic
D-stability and H∞ control [49].

Summary

In this chapter we have considered linear systems subject to parametric un-
certainties in the form (3.1). The definition of quadratic stability has been
given and it has been shown that, if the system depends on parameters as
the ratio of a multi-affine matrix-valued function and a multi-affine polyno-
mial (Assumption 3.1), quadratic stability is equivalent to the feasibility of
an LMIs based problem (Theorem 3.2).

Quadratic stability guarantees exponential stability of the system versus
arbitrarily (Lebesgue measurable) time realizations of parameters (Theorem
3.1). A natural question is whether quadratic stability is also necessary for
exponential stability of the uncertain system. The answer is not; indeed there
exist uncertain systems which are exponentially stable for all admissible time
realizations of parameters, but which are not quadratically stable (see for
example [38], p. 73, [133]).

According to [37], a given class of Lyapunov functions is said to be “uni-
versal” for system (3.1) if the existence of a Lyapunov function which proves
exponential stability of the uncertain system implies the existence of a Lya-
punov function belonging to the class. Following this definition, the class of
quadratic Lyapunov functions used in the definition of quadratic stability
is not universal for systems in the form (3.1). Conversely, as shown in [37],
the class of polyhedral Lyapunov functions is universal (for an interesting
discussion on this topic see the seminal paper [40]).

A polyhedral Lyapunov function has the form

v(x) = max
i=1,...,s

vT
i x , (3.187)

where vT
i ∈ R

n, i = 1, . . . , s, are appropriate row-vectors.
For example consider the following system [133]

ẋ(t) =
(

0 1
−1 + p −1

)
x(t) , (3.188)

where |p| ≤ γ.
For γ >

√
3/2 ∼= 0.866 system (3.188) is not QS; in [133] it is shown that

a certain piecewise quadratic Lyapunov function proves exponential stability
for γ = 0.94. Finally in [5], by using polyhedral Lyapunov functions, it has
been proven that the system is exponentially stable whenever γ < 1.
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The fact that the class of polyhedral Lyapunov functions is universal jus-
tifies the effort of searching for a polyhedral Lyapunov function for a system
in the form (3.1). Unfortunately, while the search over the quadratic functions
in the form xT Px, for a given uncertain system, can be conducted exhaus-
tively, the search of the optimal polyhedral function requires to fix a value for
s in (3.187); only for s → ∞ the entire set of polyhedral functions is spanned.
Moreover, as s growths, the computational complexity increases.

When system (3.1) does not satisfy Assumption 3.1 we can resort to
the polytopic covering technique. It consists of the introduction of fictitious
parameters which allow to transform the dependence of A(·) on p into a multi-
affine one. A viable alternative is the use of algorithms based on gridding or
on statistical methods. This last approach guarantees quadratic stability in
a probabilistic sense, and is particularly suited when the system depends on
many uncertain parameters.

Then quadratic stability and performance has been considered; in par-
ticular three important cases have been discussed: quadratic D-stability,
quadratic L2 performance and quadratic stability with an LQ performance
criterion. In all cases necessary and sufficient conditions are provided when
the system matrices satisfy Assumptions 3.1 and 3.4.

Another important class of uncertain systems is that one of systems sub-
ject to norm bounded uncertainties. In this case, testing quadratic stability
is equivalent to check a single LMI: This is Theorem 3.8.

In the earlier literature [138], a different approach was used to prove
Theorem 3.8 (with H = 0). To this regard, note that (3.126) can be easily
derived as a sufficient condition for quadratic stability; indeed, since for any
positive scalar τ

(τ−1/2FT P − τ1/2∆E)T (τ−1/2FT P − τ1/2∆E) ≥ 0 , (3.189)

we have that for all ∆ with ‖∆‖ ≤ 1

ET ∆T FT P + PF∆E ≤ τ−1PFFT P + τET ∆T ∆E

≤ τ−1PFFT P + τET E . (3.190)

It follows that the inequality

AT P + PA + τET E + τ−1PFFT P < 0 (3.191)

implies the satisfaction of (3.117) (with H = 0) for all ∆ with ‖∆‖ ≤ 1.
Without loss of generality we can set τ = 1 in (3.191); this is equivalent

to rescale P .
Proving that (3.191) is necessary for quadratic stability, without recurring

to the S-Procedure arguments exploited in Theorem 3.8, is not immediate
(see [138]).

In the norm bounded uncertainties context it is important to recall the
works by Hinrichsen, Pritchard and colleagues [97, 98, 145, 169] concerning
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the study of the properties of the complex structured stability radius, which
is defined as

ρC := sup
{
γ : A + F∆E is Hurwitz for all ∆ ∈ C

p×q , ‖∆‖ ≤ γ
}

. (3.192)

Since Hurwitz stability for complex uncertainties is equivalent to quadratic
stability for real uncertainties, the complex stability radius can be interpreted
as the quadratic stability radius of system (3.116). According to (3.180) we
have

ρC =
1

‖W‖∞
. (3.193)

As for multi-block norm bounded uncertainties, a sufficient condition for
quadratic stability is provided in terms of a suitable LMIs feasibility problem;
the condition, however, is not necessary.

Finally the quadratic stability and performances problems (quadratic sta-
bility and pole placement, quadratic L2 performance and quadratic guar-
anteed cost) for systems subject to norm bounded uncertainties have been
discussed.

The last section of the chapter has been devoted to illustrate the con-
nections between quadratic stability of systems subject to norm bounded
uncertainties and the H∞ control theory.

Exercises

Exercise 3.1. Prove Theorem 3.5. �

Exercise 3.2. Show that (3.87) is an equivalent condition for quadratic D-
stability of system (3.1).
(Hint: pre- and post-multiply both members of (3.86) by I ⊗ P−1). �

Exercise 3.3 ( [152]). By following the same guidelines of Theorem 3.8,
prove Theorem 3.9. �

Exercise 3.4. Show that condition (3.151) recovers condition (3.120) when
D is the left half of the complex plane. �

Exercise 3.5. Prove that system (3.166) possesses a quadratic L2 perfor-
mance bound γ iff condition (3.173) holds.
(Hint: System (3.166) possesses a quadratic L2 performance bound γ iff
‖D‖ < γ and there exists a positive definite matrix Q such that, for all
∆ with ‖∆‖ ≤ 1,

Q
(
A + F∆(I − H∆)−1E

)T
+
(
A + F∆(I − H∆)−1E

)
Q + QCT CQ

+ (B + QCT D)(γ2I − DT D)−1(BT + DT CQ) < 0 .
(3.194)
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By following the guidelines of the proof of Theorem 3.8 prove that the
last condition is equivalent to the existence of a positive definite matrix Q
and a positive scalar τ such that ‖D‖ < γ and

(
AQ+QAT +QCT CQ+τFF T +(B+QCT D)(γ2I−DT D)−1(BT +DT CQ)QET +τFHT

EQ + τHF T −τ(I − HHT )

)
<0 .

(3.195)

�

Exercise 3.6. Prove that system (3.116) exhibits a quadratic guaranteed
cost with associated cost matrix Q−1 wrt the index (3.105) iff (3.176d) holds.
(Hint: System (3.116) exhibits a quadratic guaranteed cost with associated
cost matrix Q−1 wrt the index (3.105) iff, for all ∆ with ‖∆‖ ≤ 1,

Q
(
A + F∆(I − H∆)−1E

)T
+
(
A + F∆(I − H∆)−1E

)
Q + QΠQ < 0 .

(3.196)

By following the guidelines of the proof of Theorem 3.8 prove that the
last condition is equivalent to the existence of a positive scalar τ such that

(
AQ + QAT + QΠQ + τFFT QET + τFHT

EQ + τHFT −τ(I − HHT )

)
< 0 . (3.197)

�



4. Systems Depending
on Bounded Rate Uncertainties

4.1 Quadratic Stability via Parameter Dependent
Lyapunov Functions

As stated in Theorem 3.1, quadratic stability of system (3.1) guarantees
exponential stability for all time behaviors of parameters which are of interest
in the practise (see also Remark 3.2); in particular, exponential stability is
guaranteed for discontinuous parameters which exhibit an unbounded rate of
variation at the discontinuity points.

Conversely, in many engineering applications, the uncertain parameters
are a continuous and slowly varying function of time. In those cases, the
quadratic stability approach may result an extremely conservative tool to
test system stability.

Assume that p(·) ∈ C0(R+, R), where R is the usual hyper-box defined in
(3.2), and that a bound on the rate of variation is known

|ṗi(t)| ≤ hi , i = 1, . . . , q , t ∈ R
+ . (4.1)

When pi(·) is not differentiable in place of (4.1) we assume that

max
{
|ṗi(t−)|, |ṗi(t+)|

}
≤ hi , (4.2)

where ṗi(t−) and ṗi(t+) are the left and right limit of ṗi(·) at t.
Note that condition (4.1) implies that the time derivative parameter vec-

tor ṗ(·) belongs for all t to the hyper-box Ṙ, defined as follows

Ṙ := [−h1, h1] × [−h2, h2] × · · · × [−hq, hq] , (4.3)

which is centered at the origin of the parameter derivative space; as usual we
denote by Ṙv the set of the 2q vertices of Ṙ and by h(j) the j-th vertex of Ṙ.

To take into account the information on the rate of variation of parame-
ters we have to use a quadratic Lyapunov function depending on parameters
(see [2, 10,81]). More precisely consider the following definition.

Definition 4.1. System (3.1) is said to be quadratically stable via para-
meter dependent Lyapunov functions in R × Ṙ if and only if there ex-
ists a continuously differentiable positive definite matrix valued function
P (·) : p ∈ R �→ P (p) such that
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AT (p)P (p) + P (p)A(p) +
q∑

i=1

∂P (p)
∂pi

h(j)i
< 0 (4.4)

for all p ∈ R and for all j = 1, . . . , 2q (note that h(j)i
denotes the i-th

component of vector h(j)). �

Remark 4.1. Behind Definition 4.1 is the use of a parameter dependent
quadratic Lyapunov function in the form v(p, x) = xT P (p)x. Such Lyapunov
function, along a given parameter vector time realization, is a time-varying
Lyapunov function in the form xT P̃ (t)x = xT P (p(t))x (see also Theorem
2.10 and Remark 3.1). �

Remark 4.2. Condition (4.1) recovers the case in which some of the parame-
ters are constant (hi = 0, for some i). When all the parameters are constant,
the approach via parameter dependent Lyapunov functions can be a viable
alternative to the µ analysis method or to the Routh and Kharitonov based
approaches [27,31,75,112] (when such methods are applicable). �

We can state the following fundamental result.

Theorem 4.1 ( [10, 81]). Assume that system (3.1) is quadratically stable
via parameter dependent Lyapunov functions in R × Ṙ; then system (3.1) is
exponentially stable for all vector valued functions p(·) ∈ C0(R+, R) satisfy-
ing (4.1) and (4.2).

Proof. Let p(·) be any parameter realization satisfying the hypothesis of the
theorem; then Ã(·) := A(p(·)) ∈ C0(R+, Rn×n).

Note that, from Theorem A.2, inequality (4.4) is equivalent to

AT (p)P (p) + P (p)A(p) +
q∑

i=1

∂P (p)
∂pi

hi < 0 (4.5)

for all p ∈ R and for all h ∈ Ṙ.
Now, since R is compact, inequality (4.5) implies that there exists a pos-

itive definite matrix-valued function P̃ (·) := P (p(·)) ∈ C0(R+, Rn×n) such
that

˙̃P + ÃT P̃ + P̃ Ã << 0 . (4.6)

The proof follows from Corollary 2.1 and the arbitrariness of the func-
tion p(·).

Note that, if it is known that A(p) is Hurwitz for some p = p∗ ∈ R, the
satisfaction of (4.4) automatically guarantees that P (p) is positive definite
[81,82]. Indeed, by letting h = 0 in (4.5) we obtain that

AT (p)P (p) + P (p)A(p) < 0 (4.7)
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for all p ∈ R. In particular we have that (4.7) holds for p = p∗; since A(p∗)
is Hurwitz, by Lyapunov inequality theory it follows that

P (p∗) > 0 . (4.8)

From (4.7) it follows that, for all p ∈ R, P (p) is nonsingular; from (4.8)
and the fact that P (·) is continuous we can conclude that P (p) is positive
definite for all p ∈ R.

Therefore, if it is known that there exists p∗ ∈ R such that A(p∗) is
Hurwitz, without loss of generality we can look for a symmetric (in place
of positive definite) continuously differentiable matrix function P (·) which
satisfies (4.4); this allows to eliminate, from the feasibility problem involving
the search of a suitable P (·), all the constraints coming from the requirement
that P (·) is positive definite on R.

On the basis of this consideration, in the sequel of the chapter we shall
assume the following.

Assumption 4.1. For some p∗ ∈ R, A(p∗) is an Hurwitz matrix. �

Finally, let us pre and post-multiply (4.4) by P−1(p); we obtain

P−1(p)AT (p) + A(p)P−1(p) −
q∑

i=1

∂P−1(p)
∂pi

h(j)i
< 0 . (4.9)

Therefore, under Assumption 4.1, system (3.1) is quadratically stable via
parameter dependent Lyapunov functions iff there exists a symmetric con-
tinuously differentiable matrix-valued function Q(·) such that

A(p)Q(p) + Q(p)AT (p) −
q∑

i=1

∂Q(p)
∂pi

h(j)i
< 0 , j = 1, . . . , 2q . (4.10)

Note that, in the last case, the parameter dependent Lyapunov function
proving quadratic stability via parameter dependent Lyapunov functions of
system (3.1) is v(p, x) = xT Q−1(p)x.

4.2 Multi-Affine Quadratic Stability

Concerning the choice of a structure for P (·), we start by keeping the depen-
dence on parameters of P (·) as simple as possible; therefore we consider the
multi-affine dependence

P (p) =
1∑

i1,i2,··· ,iq=0

Pi1i2...iq
pi1
1 pi2

2 · · · piq
q . (4.11)
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Definition 4.2 (Multi-Affine Quadratic Stability). System (3.1) is said
to be multi-affinely quadratically stable (MQS) in R × Ṙ if and only if it is
QS via parameter dependent Lyapunov functions in R × Ṙ with P (·) any
positive definite matrix-valued function in the form (4.11). �

Remark 4.3. The existence of a positive definite matrix-valued function
Q(·) satisfying (4.10) and having a multi-affine dependence on parameters

Q(p) =
1∑

i1,i2,··· ,iq=0

Qi1i2...iq
pi1
1 pi2

2 · · · piq
q , (4.12)

guarantees quadratic stability via parameter dependent Lyapunov functions
of system (3.1); however, the Lyapunov function proving quadratic stability
is xT Q−1(p)x which exhibits a non-multi-affine dependence on parameters.
Therefore, in this case, we cannot conclude that the system is multi-affinely
quadratically stable. �

It is simple to recognize that, under Assumption 4.1, system (3.1) is MQS
iff the following problem admits a feasible solution.

Problem 4.1.
Find symmetric matrices Pi1i2···iq

such that, defined P (p) according to (4.11),
for all p ∈ R and j = 1, . . . , 2q,

M(p) +
q∑

i=1

∂P (p)
∂pi

h(j)i
< 0 , (4.13)

where

M(p) = AT (p)P (p) + P (p)A(p) . (4.14)

�

Note that Problem 4.1 cannot be immediately converted into an LMIs
feasibility problem. Indeed, also when A(·) satisfies Assumption 3.1, M(·)
(and therefore the matrix function at the LHS in (4.13)) is not the ratio of a
multi-affine matrix-valued function and a multi-affine polynomial; conversely
the partial derivatives of P (·) are multi-affine. Therefore condition (4.13)
cannot be converted into a finite number of inequalities.

Remark 4.4. When A(·) satisfies Assumption 3.1, the matrix function M(p)
contains at most quadratic powers of the pi’s, i.e. it is a multi-quadratic func-
tion. If we look at each scalar function p2

i , i = 1, . . . , q, as a single nonlinear
function the number of non-multi-affine functions in M(p), say µ, is exactly
equal to q. Therefore, looking at the last four rows of Table 3.1, we understand
that if q > µmed it may be convenient to use an algorithm along the lines of
Algorithm 3.5 to test feasibility of Problem 4.1. Conversely (q ≤ µmed) we
can use the Polytopic Covering technique described in Sect. 3.2.2 (this is the
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approach followed in [8] and [9], where affine parameter dependent Lyapunov
functions are considered) or the gridding approach. If the Polytopic Covering
approach is used and each function p2

i , i = 1, . . . , q, is bounded according to
the procedure described in Sect. 3.2.2, after the application of Step 1 of Pro-
cedure 3.1, the obtained function Ψ is already multi-affine (see also Remark
3.11). �

Remark 4.5. To decide the value of the threshold µmed between determin-
istic and probabilistic methods, it is important to take also into account that,
differently from the simple quadratic stability analysis of Chap. 3, the number
of vertices which comes out from the covering of the parameter hyper-box
R, namely 2q2µ (= 22q) if we proceed according to Remark 4.4, must be
multiplied by 2q, which is the number of vertices of the parameter derivative
hyper-box Ṙ. �

Therefore, when A(p) satisfies Assumption 3.1 and the Polytopic Covering
approach is used, by applying Procedure 3.1 according to the strategy dis-
cussed in Remark 4.4, we can transform M(p) into the ratio of a multi-affine
matrix-valued function and a multi-affine polynomial, say M̂(p, δ), by the
introduction of fictitious parameters δi, i = 1, . . . , q, ranging into the interval
[0, 1]. The feasibility of the following LMIs problem guarantees multi-affine
quadratic stability of system (3.1).

Problem 4.2.
Find symmetric matrices Pi1,i2,...,iq

such that for all k = 1, . . . , 2q, j =
1, . . . , 2q, l = 1, . . . , 2q,

M̂(p(k), δ(l)) +
q∑

i=1

∂P

∂pi
(p(k))h(j)i

< 0 . (4.15)

�

Example 4.1.
Consider again the feedback system depicted in Fig. 3.1, described by the
state space equations (3.13)–(3.14), and define Ru and θRu according to
(3.15) and (3.16).

We can associate two different robustness measures with system (3.13):
ρQ, that is the QSM defined in Example 3.1, and the Multivariable Gain
Margin (MGM) defined as follows (see [56])

ρG := sup {θ > 0 , matrix A(p) is Hurwitz ∀p ∈ θRu } . (4.16)

As discussed in the previous chapter, the QSM represents an estimate of
the supremal allowable amplitude of time-varying parameters which does not
destabilize the system. In the same way the MGM represents the supremal
allowable amplitude of time-invariant parameters for which the system is
exponentially stable.

Clearly, ρQ ≤ ρG; in general this inequality is strict.
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In this example, we consider the situation in which p ∈ θRu and

ρQ < θ < ρG . (4.17)

We have the following observations:

i) Exponential stability is not guaranteed for arbitrary time-varying p(·) be-
cause θ > ρQ;

ii) exponential stability is guaranteed for time-invariant p because θ < ρG;
iii) for a given θ, exponential stability is guaranteed for time-varying p(·)

which are sufficiently slowly varying in time.

The solution of the following problem provides an estimate of the stability
margin defined as the supremal allowable amplitude of the rate of variation
of parameters which guarantees an exponentially stable system [9].

Problem 4.3.
Given θ satisfying (4.17) find

sup {σ > 0 , system (3.13) is MQS in θRu × σRu} . (4.18)

�

To solve Problem 4.3 let us consider a matrix valued function P (·) in the
form (4.11), define M(p) according to (4.14) and then introduce a vector of
fictitious parameters δ ∈ R

q to obtain a multi-affine matrix valued function
M̂(p, δ) according to Procedure 3.1 (see also Remark 4.4). Then Problem 4.3
can be solved via the following GEVP.

Problem 4.4.

max σ

s.t.
σ > 0

M̂(p(k), δ(l)) +
q∑

i=1

∂P

∂pi
(p(k))h(j)i

< 0 , k, j, l = 1, . . . , 2q ,

where h(j)i
is +σ or −σ according to the vertex j we are considering and the

component i of that vertex (see Fig. 4.1 in the two parameter case). �

Now consider again the system with matrices given in (3.20). In this case
0.583 < ρQ < 0.584 (see Example 3.1); moreover simple computations show
that ρG = 1. Problem 4.4 has been solved for some values of θ between 0.6
and 1. The results are presented in Table 4.1. 


When A(p) does not satisfy Assumption 3.1, one should preliminary ana-
lyze the structure of M(p) in (4.14) to decide, according to Table 3.1, which
kind of approach to follow to establish if the system is MQS. In this case it
makes also sense to consider for P (·) more complex structures than the multi-
affine one, which leads to the more general definition of polynomial quadratic
stability (see the next section).
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h1

h2

h(1) = σ σ
T

h(4) = σ −σ
T

h(2) ) )

)

))

)

))= −σ σ
T

h(3) = −σ −σ
T

Fig. 4.1. Vertices of the set Ṙ = σRu in the two parameter case

Table 4.1. Estimate of the maximum σ for some values of θ

θ 0.6 0.7 0.8 0.9
σmax 2.48 1.45 0.79 0.46

4.3 Polynomial Quadratic Stability

In this section we do not make any particular assumption about the struc-
ture of A(·) and look for parameter dependent Lyapunov functions having a
polynomial dependence on parameters, that is

P (p) =
∑

α1,...,αq

Pα1...αq
pα1
1 · · · pαq

q , (4.19)

where αi = 0, 1, . . . , υi, υi ∈ N, i = 1, . . . , q.

Definition 4.3 (Polynomial Quadratic Stability). System (3.1) is said
to be polynomially quadratically stable in R × Ṙ if and only if it is QS via
parameter dependent Lyapunov functions in R× Ṙ with P (·) any symmetric
matrix-valued function in the form (4.19). �

Again, in this case it is necessary a preliminary analysis of M(p) defined
in (4.14) to choose the approach to follow to check feasibility of the following
problem.
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Problem 4.5.
Find symmetric matrices Pα1,...,αq

such that, defined P (p) according to (4.19),
condition (4.4) is satisfied. �

Example 4.2 (PIO Analysis, cont’d).
Let us consider again the PIO analysis problem defined in Example 3.2.

Assuming an arbitrarily time behavior for the gain g(t) is conserva-
tive whenever the nonlinearity input is slowly varying during the saturation
regime. To this end remember that, in our example, the saturation output
is a pitch rate command with saturation threshold at 15 deg/sec; therefore
it makes sense to consider a pitch acceleration of a few degrees per square
second.

We have that, when the saturation is active,

|ġ(t)| =
vT |v̇(t)|
v2(t)

≤ |v̇(t)|
vT

. (4.20)

Therefore, assuming that the amplitude of the derivative of the input to
the nonlinear element is bounded by v̇M , we immediately obtain a bound on
|ġ(t)|.

For a given kp, we have used a parameter dependent Lyapunov function
in the form xT P (g)x with

P (g) = P0 + P1g + P2g
2 + P3g

3 , (4.21)

to estimate, with gmin and v̇M given and referring to the system in Fig. 3.7,
the region in the (kp, g) plane which guarantees Hurwitz stability versus the
time-invariant parameter kp and exponential stability with respect to the
time-varying parameter g(·) ∈ C0(R+, [gmin, 1]) with

|ġ(t)| ≤ v̇M

vT
=: ġM . (4.22)

To this end we propose the following algorithm, which is similar to Algo-
rithm 3.1.

Algorithm 4.1.

Step 1
Let ∆k = 0.05, kmin = 0, kmax = 0 + ∆k, ∆g = 0.05, gmin = 0.05;

Step 2
Solve the following feasibility problem

Problem 4.6.
Find symmetric matrices Pi, i = 0, . . . , 3, such that, defined P (g) according
to (4.21), for all g ∈ [gmin, 1]
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(
A0 − bcT (kp)g

)T
P (g) + P (g)

(
A0 − bcT (kp)g

)
+

dP (g)
dg

h < 0 (4.23)

h ∈ {−ġM , ġM} , kp ∈ {kmin, kmax} ;

Step 3
If Problem 4.6 is not feasible then plot the box [gmin, 1] × [0, kmin] and
let gmin = gmin + ∆g, else let kmin = kmax, kmax = kmin + ∆k end
If gmin < 1 then goto Step 2; else stop.

�

To find a feasible solution to Problem 4.6 we have used an algorithm which
follows, with the obvious changes, the same lines of Algorithm 3.4; the test
in Step 3 of Algorithm 3.4 is performed by a dense sampling of the interval
[gmin, 1].

In Fig. 4.2 we have depicted the stability region computed via Algo-
rithm 4.1 for v̇M = 0, which is equivalent to consider a time-invariant g.
The curve depicted in the same figure represents the boundary of the (al-
most) exact Hurwitz stability region of the closed loop system in Fig. 3.7
computed, by considering both g and kp as static parameters, with the aid
of the software ROBAN developed at the Italian Aerospace Research Center
(CIRA) [13,21].

g

k p

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.2. The stability region in the (kp, g) plane for v̇M = 0 and the boundary of
the stability region computed by ROBAN
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Fig. 4.3. The stability regions in the (kp, g) plane for v̇M = 0, 0.1,∞

ROBAN uses a procedure similar to Procedure 3.1 to cover the image
of the characteristic polynomial coefficients by a polytope; then Hurwitzness
of this polytope1 is tested by the approach proposed in [43, 44]; the proce-
dure uses a parameter set splitting algorithm which allows to determine the
stability region in the parameter space up to the desired resolution.

Note that the boundary of the region computed by Algorithm 4.1 and
the ROBAN bound are practically coincident; this shows that the parameter
dependent Lyapunov function chosen to study the stability of the closed loop
system in Fig. 4.2 works very well in our case, and it is expected that also
the results obtained for v̇M > 0 are reliable.

In Fig. 4.3 the boundary of the stability regions for v̇M = 0, 0.1,∞ are
plotted. Obviously, the boundary for v̇M = ∞ is coincident with the boundary
of the quadratic stability region depicted in Fig. 3.8.

Note that, to deal with the time-invariant parameter kp, instead of using
Algorithm 4.1, one could have been used a parameter dependent Lyapunov
function depending on both kp and g (see Exercise 4.1). 


4.4 A More General Class
of Parameter Dependent Lyapunov Functions

The approach described in the last section may result overlay conservative in
the following sense. Note that condition

M(p) < 0 (4.24)

1 A family of polynomials is said to be Hurwitz if any member of the family is
Hurwitz.
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is necessary for (4.13); this follows from the obvious fact that system (3.1)
has to be exponentially stable for constant parameters (ṗ = 0).

Obviously, even when A(p) is Hurwitz for all p ∈ R, there is no guar-
antee that a polynomial matrix-valued function P (·) in the form (4.19) and
satisfying (4.24) exists. Therefore, in some cases, the polynomial quadratic
stability approach may have no advantage over the classical quadratic stabil-
ity approach illustrated in Chap. 3.

Since Hurwitz stability is necessary for quadratic stability via parameter
dependent Lyapunov functions, without loss of generality let us assume that
system (3.1) is exponentially stable for constant parameters or, equivalently,
that matrix A(p) is Hurwitz in the hyper-box R.

In this case we can construct a family of positive definite matrices P (·),
such that the matrix function in (4.24) be negative definite, just observing
that for all positive definite matrix valued function S(p) and for all p ∈ R
the Lyapunov equation

AT (p)P (p) + P (p)A(p) = −S(p) (4.25)

univocally defines a positive definite matrix valued function P (·) which, by
construction, at least satisfies condition (4.13) for constant parameters. In
short, the idea is that of optimizing over the set of the S(·)’s to obtain suitable
P (·)’s. We will further discuss this point later, after the proof of Theorem 4.2.

Given F (·) : R
q → R

n×m, p �→ F (p), we define the Vetter derivative of F
with respect to p as follows [41]

dF

dp
:=

(
dF
dp1

dF
dp2

· · · dF
dpq

)T

.

We have the following theorem; for the operator Lyap refer to Appendix A.3.

Theorem 4.2 ( [6]). Assume there exists a symmetric, continuously differ-
entiable matrix valued function S(·) : R → R

n×n such that for all p ∈ R and
for j = 1, . . . , 2q

Lyap(AT (p), A(p), S(p)) > 0 (4.26)

and

−S(p) + X(p)
(
h(j) ⊗ In

)
< 0 , (4.27)

where

X(p) = Lyap

(
AT (p), Iq ⊗ A(p),

(
dS

dp
(p)

)T

+
(

dA

dp
(p)

)T (
Iq ⊗ Lyap

(
AT (p), A(p), S(p)

))

+ Lyap
(
AT (p), A(p), S(p)

)(dAT

dp
(p)

)T
)

; (4.28)
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then system (3.1) is QS via parameter dependent Lyapunov functions in
R × Ṙ.

Proof. First of all note that condition (4.26) guarantees that equation (4.25)
admits, for all p ∈ R, a unique positive definite solution

P (p) = Lyap(AT (p), A(p), S(p)) . (4.29)

Consider the derivative with respect to pT of both members in (4.25).
Using the results in [41] we obtain

dAT

dpT
(p)

(
Iq ⊗ P (p)

)
+ AT (p)

dP

dpT
(p) +

dP

dpT
(p)

(
Iq ⊗ A(p)

)

+ P (p)
dA

dpT
(p) = − dS

dpT
(p) , (4.30)

which can be rewritten

AT (p)
(

dP

dp
(p)

)T

+
(

dP

dp
(p)

)T (
Iq ⊗ A(p)

)

= −
[(

dS

dp
(p)

)T

+
(

dA

dp
(p)

)T (
Iq ⊗ P (p)

)
+ P (p)

(
dAT

dp
(p)

)T
]

.

(4.31)

Now note that (4.31) is a generalized Lyapunov equation (see Appendix
A.3) which admits a unique solution because the matrix Iq ⊗ A(p) has the
same eigenvalues of A(p) repeated q times; indeed, since A(p) is such that
(4.25) admits a unique solution, the same holds for equation (4.31). Therefore
dP
dp (·) is defined for all p ∈ R as follows

(
dP

dp
(p)

)T

= Lyap

(
AT (p), Iq ⊗ A(p),

(
dS

dp
(p)

)T

+

(
dA

dp
(p)

)T (
Iq ⊗ P (p)

)
+ P (p)

(
dAT

dp
(p)

)T
)

;

(4.32)

moreover P (·) results to be continuously differentiable.
Therefore condition (4.27) can be rewritten

AT (p)P (p) + P (p)A(p) +
(

dP

dp
(p)

)T (
h(j) ⊗ In

)
< 0 ; (4.33)

from the last inequality the proof follows.
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Remark 4.6. Note that Hurwitzness of A(p) for all p ∈ R (which repre-
sents the starting point of our discussion) is implicitly guaranteed from the
hypothesis of Theorem 4.2. Indeed (4.27) implies that S(·) is positive definite
over R; then (4.26) guarantees that A(p) is Hurwitz for all p in R. �

In order to optimize over the set of the S(·)’s we need to fix a structure for
S(p); as usual we focus on matrix functions S(·) which depend polynomially
on p, that is

S(p) =
∑

α1,...,αq

Sα1,...,αq
pα1
1 · · · pαq

q , (4.34)

where αi = 1, . . . , υi, υi ∈ N, i = 1, . . . , q.
We propose the following algorithm to find an optimal S(·).

Algorithm 4.2.

Step 1
Define the set

P =
{

p(i), i = 1, . . . , N , p(i) ∈ R
}

.

Step 2
Solve the following feasibility problem, subject to a finite number of con-
straints.

Problem 4.7.
Find symmetric matrices Sα1,...,αq

∈ R
n×n such that, defined S(p)

according to (4.34), for all p ∈ P and j = 1, . . . , 2q,

Lyap(AT (p), A(p), S(p)) > 0 (4.35a)

−S(p) + X(p)
(
h(j) ⊗ In

)
< 0 , (4.35b)

where X(·) has been defined in (4.28). �

Step 3
If Problem 4.7 is unfeasible then stop; a matrix function S(·) with the
structure (4.34) and satisfying Theorem 4.2 does not exist.
If Problem 4.7 is feasible, given a feasible solution S∗(·), test that (4.26)
and (4.27) are satisfied for S(·) = S∗(·); in this case stop; system (3.1)
is QS via parameter dependent Lyapunov functions in R × Ṙ. Else goto
Step 4.

Step 4
Define the set

P ′ =
{

p(i), i = 1, . . . , N ′ , p(i) ∈ R
}

, N ′ > N ,

such that P ′ ⊃ P, let N = N ′, P = P ′ and goto Step 2.

�
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Now we shall show that the constraints (4.35) define a set of LMIs. We
need two auxiliary lemmas.

Lemma 4.1. Assume that, for a given p, the Lyapunov equation (4.25) ad-
mits a unique solution. Under this assumption define the mapping that to any
S = ST ∈ R

n×n associates the unique solution of (4.25); then such mapping
is linear.

Proof. Straightforward.

Lemma 4.2. Assume that, for a given p, the Lyapunov equation (4.25) ad-
mits a unique solution; then the mapping

Lder : R
n×n × R

nq×n → R
n×nq

(S = ST , Ṡ) �→ Lyap
(
AT (p), Iq ⊗ A(p), ṠT

+
(

dA

dp
(p)

)T (
Iq ⊗ Lyap

(
AT (p), A(p), S

))

+ Lyap
(
AT (p), A(p), S

)(dAT

dp
(p)

)T
)

is linear.

Proof. We prove that

Lder(Sa1 + Sa2) = Lder(Sa1) + Lder(Sa2) , (4.36)

where

Sa1 = (S1, Ṡ1) , Sa2 = (S2, Ṡ2) . (4.37)

If we let

Xi = Lder(Sai) , i = 1, 2 , (4.38)

from the definition it follows that, for a given p and i = 1, 2,

AT (p)Xi + Xi

(
Iq ⊗ A(p)

)
= −

[
ṠT

i

+
(

dA

dp
(p)

)T (
Iq ⊗ Lyap

(
AT (p), A(p), Si

))

+Lyap
(
AT (p), A(p), Si

)(dAT

dp
(p)

)T
]

. (4.39)



4.4 A More General Class of Parameter Dependent Lyapunov Functions 107

Summing (4.39) with i = 1 and (4.39) with i = 2 we obtain

AT (p)(X1 + X2) + (X1 + X2)
(
Iq ⊗ A(p)

)
= −

[
(ṠT

1 + ṠT
2 )

+
(

dA

dp
(p)

)T [
Iq ⊗

(
Lyap

(
AT (p), A(p), S1

)
+ Lyap

(
AT (p), A(p), S2

))]

+
(
Lyap

(
AT (p), A(p), S1

)
+ Lyap

(
AT (p), A(p), S2

))(dAT

dp
(p)

)T
]

.

(4.40)

Now, using Lemma 4.1, equation (4.40) can be rewritten

AT (p)(X1 + X2) + (X1 + X2)
(
Iq ⊗ A(p)

)
= −

[
(ṠT

1 + ṠT
2 )

+
(

dA

dp
(p)

)T (
Iq ⊗ Lyap

(
AT (p), A(p), (S1 + S2)

))

+Lyap
(
AT (p), A(p), (S1 + S2)

)(dAT

dp
(p)

)T
]

. (4.41)

From (4.41) we have

X1 + X2 = Lder(Sa1) + Lder(Sa2)
= Lder(Sa1 + Sa2) . (4.42)

The proof that Lder(αSa) = αLder(Sa), with α being any real number,
follows the same guidelines.

Directly from Lemmas 4.1 and 4.2 the next result follows.

Theorem 4.3 ( [6]). The constraints in (4.35) define a set of LMIs in the
variables Sα1,...,αq

.

Similar comments to those ones of Algorithm 3.4 apply to Algorithm 4.2.
In particular the check in Step 3 can be performed either via gridding or
probabilistic methods.

The importance of Theorem 4.2 relies in the fact that it allows to evaluate,
for a given p, the derivative of P (p) (namely X(p) in (4.27)) without having
explicit knowledge of the analytical expression of such derivative, which results
to be very cumbersome also for low order systems. Indeed, to obtain such
expression, one should first compute P (p) using the formula (see Appendix
A.3)

vec[P (p)] = −
(
AT (p) ⊕ AT (p)

)−1
vec[S(p)] , (4.43)

(note that the matrix to be inverted at the right hand side in (4.43) is of
order n2 × n2), and then compute the derivative of such matrix; both these
computations should be performed by symbolic calculus.
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Summary

In this chapter we have considered the situation in which the parameters
have a bounded rate of variation. To exploit this information it is necessary
to resort to parameter dependent quadratic Lyapunov functions in the form
xT P (p)x.

A key point is the choice of a suitable structure for P (·). When A(·)
satisfies Assumption 3.1 it makes sense to optimize over the set of the positive
definite matrix-valued functions P (·) which depend multi-affinely on p. In this
case the product P (p)A(p), which appears in the expression of the Lyapunov
function derivative, is multi-quadratic in p. Also, the number of quadratic
functions equals q, the number of uncertain parameters; therefore, according
to Table 3.1, if q ≤ µmed, the polytopic covering algorithms provided in
Chap. 3 can be used to reduce the Lyapunov derivative to a matrix function
satisfying Assumption 3.1 and then to apply the vertices result of Sect. 3.1.

An alternative way to eliminate the quadratic terms from the Lyapunov
derivative are the convexification methods proposed in [82] and [69].

When A(·) does not satisfy Assumption 3.1 there could be no particular
advantage in considering a multi-affine structure for P (·). In this case a more
general (polynomial) dependence has been considered; a preliminary analysis
of the parameter structure of the Lyapunov derivative is necessary in order
to choose the particular approach (polytopic covering, gridding or statistical
methods). According to Table 3.1, if µ ≤ µmed, the polytopic covering method
can be still suitable; in the other case if q ≤ (>)qsmall the gridding (statistical)
approach may represent a viable alternative. Note that in [101], it has been
shown that, in the single parameter case (q = 1) and for the affine dependence
on parameters (i.e. A(p) = A0 + A1p), there exists a parameter dependent
Lyapunov function xT P (p)x such that AT (p)P (p) + P (p)A(p) < 0 iff there
exists a polynomial parameter dependent Lyapunov function of degree m,
P (p) =

∑m
i=0 Pip

i, where m can be computed via a simple formula. Even
if [101] does not deal with time-varying parameters, this nice result can be
readily applied to the context of Sect. 4.3.

A different approach is proposed in Sect. 4.4. Rather than fixing an a
priori structure for P (·), we optimize over the RHS of the parameter depen-
dent Lyapunov equation (4.25). This approach leads to a class of parameter
dependent matrix functions P (·) which at least guarantees the satisfaction of
the parameter derivative free inequality

AT (p)P (p) + P (p)A(p) < 0 , (4.44)

which, on the other hand, is necessary to guarantee negative definiteness of
the Lyapunov derivative in presence of bounded rate parameters. It is inter-
esting to note that, in the context of uncertain systems subject to static para-
meters, a similar approach has been recently proposed in [47], where, however,
a different algorithm is proposed to find the optimal parameter dependent
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P (·). Further papers dealing with parameter dependent Lyapunov functions
and/or bounded rate uncertain parameters, under various assumptions about
the parameter dependence of A(p), are [50,127,131].

It is rather straightforward to extend the theory for bounded rate pa-
rameters to include some performances. First we have the following result
concerning quadratic D-stability via parameter dependent Lyapunov func-
tions (see Exercise 4.3).

Theorem 4.4. Assume that A(p) satisfies Assumption 4.1 and that there
exists a continuously differentiable symmetric matrix-valued function P (·) :
p ∈ R → R

n×n such that, for all p ∈ R and for all j = 1, . . . , 2q,

Λ ⊗ P + Θ ⊗
[
P (p)A(p) +

1
2

q∑
i=1

∂P

∂pi
h(j)i

]

+ ΘT ⊗
[
AT (p)P (p) +

1
2

q∑
i=1

∂P

∂pi
h(j)i

]
< 0 . (4.45)

Then

i) The eigenvalues of A(p) belong to D for all p ∈ R;
ii) for all p(·) ∈ C0(R+, R) satisfying (4.1) and (4.2), defined v(t, x) =

xT P (p(t))x, we have that

1
2

v̇(t, x)
v(t, x)

∈ D
⋂

R . (4.46)

Further, we can state the following result guaranteeing quadratic L2 per-
formance (see Exercise 4.4).

Theorem 4.5 ( [82]). Assume that A(p) satisfies Assumption 4.1 and that
there exists a continuously differentiable symmetric matrix-valued function
P (·) : p ∈ R → R

n×n such that, for all p ∈ R and for all j = 1, . . . , 2q,

AT (p)P (p) + P (p)A(p) +

∑q
i=1

∂P
∂pi

h(j)i
PB(p) CT (p)

BT (p)P −γ2I DT (p)
C(p) D(p) −I


 < 0 . (4.47)

Then for all vector valued functions p(·) ∈ C0(R+, R) satisfying (4.1) and (4.2)

i) System (3.95) is exponentially stable;
ii) ‖Γzw

(
p(·)

)
‖ < γ.
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For what concerns systems subject to norm bounded uncertainties (see
(3.116)) the question is much more complicated, since it seems difficult to
obtain LMIs conditions guaranteeing exponential stability when we try to
take into account the uncertainty rate of variation. In [3] a sufficient condition
for exponential stability of an uncertain system in the form (3.116) with ∆(t)
satisfying for all t

∆̇T (t)∆̇(t) ≤ D , (4.48)

D being a given positive definite matrix, is provided. This condition requires
the feasibility of an LMIs based problem; however it may result extremely
conservative due to the repetitive application of the S-procedure required
by the proof machinery and to the particular structure chosen for the ∆
dependent Lyapunov function

v(x,∆) = xT (P + N∆E)x , (4.49)

where the matrix N is left free for optimization purposes. Another kind of
structure for v(x,∆) is proposed in [135], where, however, the analysis is
performed for time-invariant uncertainties.

Extensive work in this context has been done by Haddad and Bernstein
[90, 91, 93, 95]. The existence of a suitable ∆ dependent Lyapunov function
is linked to the solvability of a certain Riccati-type equation; an algorithm
to solve such equation is proposed in [93]. On the same topic see also the
works by Rantzer [102, 148], which generalize to the multi-parameter case
the multiplier approach of [129].

Exercises

Exercise 4.1. Study the stability of the closed loop system in Fig. (3.7) with
the aid of a parameter dependent Lyapunov function in the form xT P (kp, g)x
with different structures for P (kp, g), starting with the multi-affine one, that
is

P (kp, g) = P00 + P10kp + P01g + P11kpg .

According to Example 4.2, assume that kp is a constant parameter while g
is a time-varying parameter with a bounded rate of variation. 

Exercise 4.2. Let us consider again the analysis of the control system of
the Bus O305 described in Example 3.3. Assuming that ṗ1 = 0 and that p2 is
arbitrarily time-varying, we found that the system was not robustly stable; on
the other hand taking into account arbitrary fast variation of p2(t) is clearly
conservative. Therefore assume that acceleration is bounded (1m/sec2), that
is

|ṗ2(t)| ≤ 1 .
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By using the approach of Sect. 4.4 with the simple choice S(p) = S (that
is S does not depend on parameters), show that the system is robustly stable.


Exercise 4.3. Prove Theorem 4.4. 

Exercise 4.4. Prove Theorem 4.5. 




5. Controller Design

In this section we consider an uncertain system in the form

ẋ(t) = A(p)x(t) + B(p)u(t) (5.1a)
y(t) = C(p)x(t) , (5.1b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
r, p ∈ R ⊂ R

q is the vector of uncertain
parameters, R is the hyper-box defined in (3.2) and A(·), B(·) and C(·) are
continuous matrix functions of suitable dimensions. Note that, without loss
of generality, we assume that the system is strictly proper (D = 0); indeed
the techniques we shall present later can be easily modified (it amounts to a
change of variable in the controller matrices) in order to capture the case in
which there is a non-zero feedthrough matrix.

Note that systems in the form (5.1), subject to time-varying parameters,
are also known in the control literature as Linear Parameter Varying (LPV)
systems [23,24,34,159,160].

The objective of this chapter is to discuss the stabilization of system (5.1)
under various assumptions on the parameters time behavior. Also, we shall
consider some performance requirements, along the lines of Chap. 3. Finally,
the last section of the chapter is devoted to systems subject to norm bounded
uncertainties.

5.1 Quadratic Stabilization

5.1.1 Quadratic Stabilization via State Feedback

In this section we assume that the whole state of system (5.1) is available for
feedback, that is

ẋ(t) = A(p)x(t) + B(p)u(t) (5.2a)
y(t) = x(t) . (5.2b)

The following definition introduces the concept of quadratic stabilization
via state feedback.
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Definition 5.1 (Quadratic stabilizability via state feedback). Sys-
tem (5.2) is said to be quadratically stabilizable via linear state feedback con-
trol if and only if there exists a matrix G ∈ R

m×n such that the closed loop
system, obtained from (5.2) by letting u = Gx,

ẋ(t) =
(
A(p) + B(p)G

)
x(t) ,

is quadratically stable. �

It is possible to show that quadratic stabilizability via dynamic, time-
varying state feedback linear control implies quadratic stabilizability via
memoryless, time-invariant, state feedback linear control (see [140]). Hence we
do not lose any generality in Definition 5.1 when considering time-invariant
memoryless controllers. On the contrary, in [137] an example shows that a
nonlinear state feedback controller can quadratically stabilize a linear system
subject to parametric uncertainties which is not quadratically stabilizable
via linear state feedback. Therefore quadratic stabilizability via state feed-
back without any other specification does not imply quadratic stabilizability
via state feedback linear control, hence this specification in Definition 5.1 is
mandatory.

From Lemma 3.1 it follows that the uncertain system (5.2) is quadratically
stabilizable via linear control iff there exist a positive definite matrix Q and
a matrix G such that

(A(p) + B(p)G)Q + Q(A(p) + B(p)G)T < 0 , ∀p ∈ R . (5.3)

As shown in [36,86], letting

V = GQ , (5.4)

we obtain the following result.

Theorem 5.1. System (5.2) is quadratically stabilizable via linear state feed-
back control if and only if there exist a positive definite matrix Q and a matrix
V such that, for all p ∈ R,

A(p)Q + QAT (p) + B(p)V + V T BT (p) < 0 . (5.5)

In this case a linear state feedback controller which quadratically stabilizes
system (5.2) is given by u = Gx with G = V Q−1.

In order to transform inequality (5.5) into a finite number of LMIs let us
assume the following.

Assumption 5.1. The matrices of system (5.2) can be written

(
A(p) B(p)

)
=

NSx(p)
dSx(p)

, (5.6)

where NSx(p) is a multi-affine matrix-valued function and dSx(p) is a multi-
affine function with dSx(p) 	= 0 for all p ∈ R. �
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If Assumption 5.1 holds, quadratic stabilizability via linear state feedback
control is equivalent to the feasibility of the following LMIs optimization
problem.

Problem 5.1.
Find a symmetric matrix Q ∈ R

n×n and a matrix V ∈ R
m×n such that

Q > 0 (5.7a)

A(p(i))Q + QAT (p(i)) + B(p(i))V + V T BT (p(i)) < 0 , i = 1, . . . , 2q .
(5.7b)

�

When the dependence on parameters of the system matrices in equa-
tion (5.2) does not satisfy Assumption 5.1, constraint (5.5) is no longer re-
ducible to a finite number of LMIs as in (5.7b) of Problem 5.1. In this case (see
also the next example) we have to resort to the Polytopic Covering technique
described in Sect. 3.2.2.

Example 5.1 (Automatic steering of a bus, cont’d).
Let us reconsider Example 3.3. We have found that, with the given controller,
the system is not robustly stable versus the time-invariant parameter p1 ∈
[9950, 32000] and the time-varying parameter p2 ∈ [3, 20] (remember that p1

is the mass and p2 the bus speed).
In the design phase, it is difficult to take into account the time invari-

ance of p1; therefore our goal in this example will be that of designing a
state feedback controller (assuming that the system state is available) which
quadratically stabilizes the closed loop system with respect to both parame-
ters.

Since A(p) does not satisfy Assumption 3.1, we replace the functions
p2
2 and p3

2 via a pair of multi-affine functions, by the introduction of the
fictitious parameters δ1 and δ2, and arrive to the state equation (3.67a).
Then Problem 5.1 is solved in correspondence of the vertices of the hyper-
box [9950, 32000]× [3, 20]× [0, 1]2. Additional constraints have been imposed
to limit the amplitude of the control input (see [38], p. 103) and of the state
variables during the transient (see [4]). The problem is feasible; a solution is

G = −
(
8.3018 5.5491 20.9591 0.6286 5.7631

)
. (5.8)

Therefore we can conclude that system (3.64a) is quadratically stabilizable
via linear state feedback control. 


5.1.2 Quadratic Stabilization via Output Feedback

In this section we consider the general case in which the full state is not
available for feedback. The next definition generalizes Definition 5.1 to the
output feedback case.
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In order to obtain operative results, the controller is allowed to depend
on the parameters; this implies that the parameter vector p(·), although a
priori uncertain, has to be measurable on-line. For the same reason, full order
controllers of order greater than or equal to the plant order are considered.
For the sake of simplicity and without loss of generality, we initially focus on
controllers of the same order as the plant.

A theory can be developed for parameter independent controllers; how-
ever the obtained conditions cannot be converted into tractable optimization
problems. As we shall see in Sect. 5.4.1, this is not true for the norm bounded
uncertainties case.

Definition 5.2 (Quadratic stabilizability via output feedback). Sys-
tem (5.1) is said to be quadratically stabilizable via parameter dependent out-
put feedback linear control if and only if there exists a dynamical controller
in the form

ẋc(t) = AK(p)xc(t) + BK(p)y(t) (5.9a)
u(t) = CK(p)xc(t) + DK(p)y(t) , (5.9b)

where xc(t) ∈ R
n, and AK(·), BK(·), CK(·), DK(·) are continuous matrix-

valued functions, such that the closed loop system obtained by the connection
of system (5.1) and controller (5.9) is quadratically stable. �

In this chapter we shall present two different approaches for controller
design. The first approach considers controllers in the general form (5.9);
the second approach looks for controllers in state feedback/state observer
form and shows how quadratic stabilization can be obtained via a sort of
Separation Property (see [22], Ch. 8). The interesting point is that the two
approaches are shown to be equivalent, that is there is no loss of generality in
assuming that the controller has a state feedback/state observer structure. To
this regard, the last result of the section extends the classical Youla parame-
terization (see [22], Ch. 8) to the quadratic stabilizability context. We shall
see that the class of all quadratically stabilizing controllers is obtained by the
lower Linear Fractional Transformation (LFT) between a quadratically stabi-
lizing controller in state feedback/state observer form and any quadratically
stable system.

To prove the main result of this section, let us consider the following
technical lemma.

Lemma 5.1 ( [34]). Given symmetric matrices S ∈ R
n×n and Q ∈ R

n×n,
the following statements are equivalent.

i) There exist symmetric matrices T ∈ R
n×n, Z ∈ R

n×n, and nonsingular
matrices M ∈ R

n×n, N ∈ R
n×n such that

P :=
(

S M
MT T

)
> 0 , P−1 =

(
Q N

NT Z

)
. (5.10)
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ii)
(

Q I
I S

)
> 0 . (5.11)

Proof. From i) we have
(

S M
MT T

)(
Q N

NT Z

)
= I , (5.12)

and therefore

MNT = I − SQ (5.13a)
SN + MZ = 0 (5.13b)

MT Q + TNT = 0 . (5.13c)

From (5.13) we have that

PΠ1 = Π2 , (5.14)

with

Π1 =
(

Q I
NT 0

)
, Π2 =

(
I S
0 MT

)
. (5.15)

Since N is nonsingular Π1 is nonsingular and

0 < ΠT
1 PΠ1

= ΠT
1 Π2 =

(
Q I
I S

)
. (5.16)

Conversely assume ii) holds. Then I − SQ is nonsingular and we can find
nonsingular matrices M and N such that (5.13a) holds. Moreover define

T = −MT QN−T (5.17a)

Z = −M−1SN . (5.17b)

Note that T and Z are symmetric; indeed (for T )

TT = −N−1QM

= −N−1Q(I − SQ)N−T

= −N−1(I − QS)QN−T

= T . (5.18)
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Now define P and the nonsingular matrix Π1 according to (5.10) and
(5.15) respectively. We have

0 <

(
Q I
I S

)
= ΠT

1 PΠ1 , (5.19)

therefore P > 0; finally, it is simple to verify that P−1 equals the second of
(5.10).

Example 5.2.
We illustrate the application of Lemma 5.1 for what concerns the construction
of P starting from symmetric matrices S and Q satisfying (5.11). Define

Q =
(

5 1
1 5

)
, S =

(
3 1
1 2

)
. (5.20)

Let N = I2 and

M = I2 − SQ =
(
−15 −8
−7 −10

)
; (5.21)

note that M is nonsingular. Now define T and Z according to (5.17); we have

T =
(

82 50
50 58

)
, Z =

(
0.2340 −0.0638
−0.0638 0.2447

)
. (5.22)

Finally define P and P−1 as in (5.10); we have PP−1 = I4, as expected.



Now we have that System (5.1) is quadratically stabilizable via parameter
dependent output feedback linear control iff there exists a controller in the
form (5.9) and a positive definite matrix P ∈ R

2n×2n such that

AT
CL(p)P + PACL(p) < 0 , ∀p ∈ R , (5.23)

where

ACL(p) =
(

A(p) + B(p)DK(p)C(p) B(p)CK(p)
BK(p)C(p) AK(p)

)
. (5.24)

Following [48], let us partition P and its inverse according to (5.10) and
define Π1 and Π2 as in (5.15). Note that there is no loss of generality in
assuming that M (and therefore N) is nonsingular. If this was not true, it is
always possible to slightly perturb M in order to satisfy the nonsingularity
requirement and (5.23) (see [48]).

Since N is nonsingular, Π1 is nonsingular; pre and post-multiplying (5.23)
by ΠT

1 and Π1 and recalling (5.14) we obtain
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A(p)Q + QAT (p) + B(p)ĈK(p) + ĈT

K(p)BT (p) A(p) + ÂT
K(p) + B(p)DK(p)C(p)

AT (p) + ÂK(p) + CT (p)DT
K(p)BT (p) SA(p) + AT (p)S + B̂K(p)C(p) + CT (p)B̂T

K(p)


 <0 ,

∀p ∈ R , (5.25)

where

B̂K(p) = MBK(p) + SB(p)DK(p) (5.26a)

ĈK(p) = CK(p)NT + DK(p)C(p)Q (5.26b)

ÂK(p) = MAK(p)NT + SB(p)CK(p)NT

+ MBK(p)C(p)Q + S
(
A(p) + B(p)DK(p)C(p)

)
Q . (5.26c)

The change of variable in (5.26), proposed in [80] and [48], is the key step
to linearize (5.23) wrt the involved matrix-function variables.

From the above discussion and Lemma 5.1 it follows that quadratic sta-
bilizability of system (5.1) is equivalent to the existence of positive definite
matrices S and Q, and continuous matrix-valued functions ÂK(·), B̂K(·),
ĈK(·) and DK(·) such that (5.25) and (5.11) hold.

Given Q, S, ÂK(p), B̂K(p), ĈK(p) and DK(p) satisfying (5.25) and (5.11),
by inversion of (5.26) we can recover the controller matrices. Indeed, let M
and N be nonsingular matrices satisfying MNT = I − SQ; we have

BK(p) = M−1
(
B̂K(p) − SB(p)DK(p)

)
(5.27a)

CK(p) =
(
ĈK(p) − DK(p)C(p)Q

)
N−T (5.27b)

AK(p) = M−1
(
ÂK(p) − SB(p)CK(p)NT

−MBK(p)C(p)Q − S
(
A(p) + B(p)DK(p)C(p)

)
Q
)
N−T . (5.27c)

Note that (5.27a) and (5.27b) must be solved before (5.27c).
It is simple to recognize that, concerning the abstract condition for

quadratic stabilizability, we can get rid of (5.11); however the satisfaction
of condition (5.11) is necessary in order to reconstruct the controller.

Indeed assume there exist positive definite matrices Q and S and con-
tinuous matrix-valued functions ÂK(·), B̂K(·), ĈK(·) and DK(·) satisfy-
ing (5.25); then, if Q and S does not satisfy (5.11), define Qλ = λQ and
Sλ = λS, with λ > 1 such that (5.11) is satisfied by Qλ and Sλ; then de-
fine B̂Kλ(p) = λB̂K(p) and ĈKλ(p) = λĈK(p). It readily follows that, since
λ > 1, for all p ∈ R,

(
A(p)Qλ + QλAT (p) + B(p)ĈKλ(p) + ĈT

Kλ(p)BT (p) A(p) + ÂT
K(p) + B(p)DK(p)C(p)

AT (p)+ÂK(p)+CT (p)DT
K(p)BT (p) SλA(p)+AT (p)Sλ+B̂Kλ(p)C(p) + CT (p)B̂T

Kλ(p)

)
<0 .

(5.28)

Therefore we can state the following theorem.
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Theorem 5.2. System (5.1) is quadratically stabilizable via parameter de-
pendent output feedback linear control if and only if there exist positive definite
matrices S and Q, and continuous matrix-valued functions ÂK(p), B̂K(p),
ĈK(p) and DK(p) such that (5.25) holds. In this case:

i) If (5.11) holds, defined M and N to be any nonsingular matrices such
that MNT = I − SQ, a quadratically stabilizing controller is given by
(5.9) where AK(p), BK(p), CK(p) are obtained by (5.27);

ii) if (5.11) does not hold, rescale S and Q by a factor λ > 1 such that (5.11)
is satisfied, rescale by the same factor B̂K(p) and ĈK(p) and repeat the
procedure at point i) to evaluate the controller matrices.

The next theorem shows that the quadratic stabilizability condition of
Theorem 5.2 can be further simplified.

Theorem 5.3. System (5.1) is quadratically stabilizable via parameter de-
pendent output feedback linear control if and only if there exist positive definite
matrices Q and S and continuous matrix-valued functions ĈK(·) and B̂K(·)
such that, for all p ∈ R,

A(p)Q + QAT (p) + B(p)ĈK(p) + ĈT
K(p)BT (p) < 0 (5.29a)

SA(p) + AT (p)S + B̂K(p)C(p) + CT (p)B̂T
K(p) < 0 . (5.29b)

In this case:

i) If (5.11) holds, defined M and N to be any nonsingular matrices such
that MNT = I − SQ, ÂK(p) = −AT (p), DK(p) = 0, a quadratically
stabilizing controller is given by (5.9) where AK(p), BK(p), CK(p) are
obtained by (5.27);

ii) if (5.11) does not hold, rescale S and Q by a factor λ > 1 such that (5.11)
is satisfied, rescale by the same factor B̂K(p) and ĈK(p) and repeat the
procedure at point i) to evaluate the controller matrices.

Proof. Condition (5.25) implies (5.29). Conversely, if (5.29) holds, the quadru-
ple ÂK(·) = −AT (·), B̂K(·), ĈK(·), DK = 0 satisfies (5.25).

Concerning the practical computation of a quadratically stabilizing con-
troller, it can be performed if the following assumptions hold (we refer to the
statement of Theorem 5.3).

Assumption 5.2.

i) B̂K(p) and ĈK(p) are restricted to be constant matrices;
ii)matrix-valued functions A(·) and B(·) satisfy Assumption 5.1;
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iii)matrix-valued functions A(·) and C(·) satisfy

(
A(p) C(p)

)
=

NSy(p)
dSy(p)

, (5.30)

where NSy(p) is a multi-affine matrix-valued function and dSy(p) is a multi-
affine function with dSy(p) 	= 0 for all p ∈ R.

�

If Assumption 5.2 holds, we have that system (5.1) is quadratically sta-
bilizable if the following LMIs problem is feasible.

Problem 5.2.
Find symmetric matrices Q, S, and matrices B̂K , ĈK such that

Q > 0 (5.31a)
S > 0 (5.31b)

A(p(i))Q + QAT (p(i)) + B(p(i))ĈK + ĈT
KBT (p(i)) < 0 , i = . . . , 2q

(5.31c)

SA(p(i)) + AT (p(i))S + B̂KC(p(i)) + CT (p(i))B̂T
K < 0 , i = 1, . . . , 2q

(5.31d)(
Q I
I S

)
> 0 . (5.31e)

�

If Problem 5.2 is feasible, a quadratically stabilizing controller can be
computed according to the following procedure:

i) Let ÂK(p) = −AT (p) and DK(p) = 0;
ii) Compute nonsingular matrices M and N such that MNT = I − SQ;
iii) Evaluate the controller matrices according to (5.27).

Example 5.3 (Automatic steering of a bus, cont’d).
Let us consider again the bus control example and remove the assumption
done in Example 5.1 about the availability of the system state.

With the aid of Theorem 5.3 we design a quadratically stabilizing output
feedback controller. First we solve the feasibility Problem 5.2 and find the
matrices
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S = 103




0.0077 0.0019 −0.0043 −0.0229 0.0110
0.0019 0.0433 −0.0049 −0.0243 −0.0013
−0.0043 −0.0049 0.0051 −0.0042 −0.0097
−0.0229 −0.0243 −0.0042 1.1945 −0.0632
0.0110 −0.0013 −0.0097 −0.0632 0.0405


 (5.32a)

Q =




98.8870 7.5472 13.2077 −0.3784 −34.4381
7.5472 42.8816 −1.8198 −0.4720 −40.2997
13.2077 −1.8198 54.7276 −5.0165 −64.5527
−0.3784 −0.4720 −5.0165 1.6515 −2.0111
−34.4381 −40.2997 −64.5527 −2.0111 584.6124


 (5.32b)

B̂K =
(
−29.2007 −1.8144 −11.9009 −8.6387 15.7290

)T (5.32c)

ĈK =
(
−32.8245 −127.0175 16.0563 136.2669 −74.5389

)
. (5.32d)

Setting N = 100I5, M = (I − SQ)N−T and using (5.32), we obtain the
controller matrices

DK = 0 (5.33a)

BK = M−1B̂K (5.33b)

CK = ĈKN−T (5.33c)

AK(p) = −M−1
(
AT (p) + SbCKNT + MBKcT Q + SA(p)Q

)
N−T .

(5.33d)

In Figs. 5.1 and 5.2 the time behaviors of the control input u(t) and of
the output y(t) respectively are reported. The simulation is performed with
respect to an initial output displacement of 0.15 [m], to a constant parameter
p1 = 32000 and a time-varying parameter p2 switching between 3 and 20
[m/sec] according to Fig. 5.1. Note that a discontinuous parameter variation
between the minimum and maximum attainable values can be considered,
according to [146], the worst time-varying parameter realization that can
affect the system. 

Note that (5.29a) has the form of a state feedback design condition (see
(5.5)); inequality (5.29b) is the dual condition which typically arises in the
observer matrix gain design context. While (5.29a) is a quadratic stabilizabil-
ity condition, inequality (5.29b) can be interpreted as a quadratic detectability
condition [119,120]. In other words (5.29) open the doors to the extension of
the Separation Property to the quadratic stabilization context. In the sequel
of this section we shall investigate this point.

In what follows we shall use the following compact notation to denote the
state space realization of controller (5.9)

(
AK(p) BK(p)
CK(p) DK(p)

)
. (5.34)
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Fig. 5.1. Time behavior of the mass p2 and of the control input u
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Fig. 5.2. Time behavior of the output y(t)

Let us consider output feedback controllers which are in the state feed-
back/state observer form, that is

ẋc(t) = A(p)xc(t) + B(p)u(t) + L(p) (C(p)xc(t) − y(t)) (5.35a)
u(t) = G(p)xc(t) , (5.35b)

where L(·) and G(·) are continuous matrix-valued functions left free for op-
timization purposes.

Note that, according to notation (5.34), the state space realization of
system (5.35) can be denoted as

(
A(p) + B(p)G(p) + L(p)C(p) −L(p)

G(p) 0

)
. (5.36)

Now we shall prove that system (5.1) is quadratically stabilizable via
an output feedback linear controller in the form (5.35) iff the hypothesis of
Theorem 5.3 hold; the proof is obtained by following arguments based on
the Separation Property. This approach has been first exploited in [35] (for
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a complete proof of the results of [35] the reader is referred to [120]; see
also [34]).

We need some auxiliary results.

Lemma 5.2 ( [120]). Quadratic stability of system (3.1) is invariant under
a state space nonsingular transformation of the form x̂ = T−1x.

Proof. See Exercise 5.1.

A corollary of Lemma 5.2 is the following result.

Corollary 5.1 ( [120]). Consider the uncertain system (3.1) with

A(p) =
(

A11(p) A12(p)
0 A22(p)

)
; (5.37)

then system (3.1), (5.37) is QS if and only if the following systems are both
QS

v̇(t) = A11(p)v(t) (5.38a)
ẇ(t) = A22(p)w(t) . (5.38b)

Proof. See Exercise 5.2.

Now we have that the connection between (5.1) and (5.35) yields the
following system

(
ẋ(t)
ẋc(t)

)
=
(

A(p) B(p)G(p)
−L(p)C(p) A(p) + B(p)G(p) + L(p)C(p)

)(
x(t)
xc(t)

)
. (5.39)

Let us consider the following state transformation
(

x
x − xc

)
=
(

I 0
I −I

)(
x
xc

)

=: T−1

(
x
xc

)
. (5.40)

By virtue of Lemma 5.2, system (5.39) is QS iff the following system is
QS

(
ẋ(t)

ẋ(t) − ẋc(t)

)
= T−1

(
A(p) B(p)G(p)

−L(p)C(p) A(p) + B(p)G(p) + L(p)C(p)

)
T

(
x(t)

x(t) − xc(t)

)

=

(
A(p) + B(p)G(p) −B(p)G(p)

0 A(p) + L(p)C(p)

)(
x(t)

x(t) − xc(t)

)
. (5.41)

In turn, by virtue of Corollary 5.1, system (5.41) is QS iff the systems
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v̇(t) = (A(p) + B(p)G(p))v(t) (5.42a)
ẇ(t) = (A(p) + L(p)C(p))w(t) (5.42b)

are both QS.
From Lemma 3.1 and Definition 3.1 it follows that systems (5.42a) and

(5.42b) are QS iff there exist positive definite matrices Q and S such that,
for all p ∈ R,

(A(p) + B(p)G(p)) Q + Q (A(p) + B(p)G(p))T
< 0 (5.43a)

(A(p) + L(p)C(p))T
S + S (A(p) + L(p)C(p)) < 0 . (5.43b)

By letting G(p)Q = ĈK(p) and SL(p) = B̂K(p) we reobtain (5.29).
Note that, when the Separation Property based approach is followed, it

is not necessary to satisfy (5.11) for the controller design.
The following theorem provides a parameterization of all controllers which

quadratically stabilizes a given uncertain plant. Note that the parameteri-
zation provides all full order controllers of order greater than or equal to n
and that the ‘central’ controller is observer based. This shows, as said before,
that there is no loss of generality in looking for controllers of order n. The
proof of the theorem can be found in [120] and makes use of the concepts of
quadratic stabilizability and detectability.

Theorem 5.4 (Parameterization of all quadratically stabilizing con-
trollers). Given system (5.1) and G(·), L(·) satisfying (5.43), the set of all
quadratically stabilizing controllers in the form (5.9) is given by the lower
LFT (see [185], Chap. 9) between the system (see Fig. 5.3)

A
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)) ))(p) + B(p)G(p) + L(p)C(p) −L(p) B(( (p)

G(p)

C(p)

0 I

−I 0

AQ(p) BQ(p)

CQ(p) DQ(p)

u y

zQ wQ

Fig. 5.3. Parameterization of all quadratically stabilizing controllers
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A(p) + B(p)G(p) + L(p)C(p)
(
−L(p) B(p)

)
(

G(p)
C(p)

) (
0 I

−I 0

)

 , (5.44)

and any parameter dependent system
(

AQ(p) BQ(p)
CQ(p) DQ(p)

)
, (5.45)

with AQ(·), BQ(·), CQ(·) and DQ(·) continuous matrix-valued functions on
the set R and AQ(·) such that the system

ẋQ(t) = AQ(p)xQ(t) (5.46)

is QS.

5.2 Quadratic Stabilization with Performances

5.2.1 Quadratic D-Stabilization

We start with quadratic D-stabilization via state feedback. Remember that
the region D has been defined in (3.79).

Definition 5.3 (Quadratic D-stabilizability via state feedback). Sys-
tem (5.2) is said to be quadratically D-stabilizable via linear state feedback
control if and only if there exists a matrix G ∈ R

m×n such that the closed loop
system, obtained from (5.2) by letting u = Gx, is quadratically D-stable. �

From (3.87) and Definition 5.3 it follows that system (5.2) is quadratically
D-stabilizable via linear state feedback iff there exist a positive definite matrix
Q and a matrix G such that, for all p ∈ R,

Λ⊗Q+Θ⊗
[(

A(p)+B(p)G
)
Q
]
+ΘT ⊗

[
Q
(
A(p)+B(p)G

)T ]
< 0 . (5.47)

By letting GQ = V we can state the following result.

Theorem 5.5. System (5.2) is quadratically D-stabilizable via state feedback
linear control if and only if there exist a positive definite matrix Q and a
matrix V such that, for all p ∈ R,

Λ⊗Q+Θ⊗ (A(p)Q + B(p)V )+ΘT ⊗
(
QAT (p) + V T BT (p)

)
< 0 ; (5.48)

in this case a state feedback controller which quadratically stabilizes system
(5.2) is given by u = Gx with G = V Q−1.

If Assumption 5.1 holds, quadratic D-stabilizability is equivalent to the
feasibility of the following LMIs based problem.
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Problem 5.3.
Find a symmetric matrix Q and a matrix V such that

Q > 0

(5.49a)

Λ ⊗ Q + Θ ⊗
(
A(p(i))Q + B(p(i))V

)
+ ΘT ⊗

(
QAT (p(i)) + V T BT (p(i))

)
< 0

i = 1, . . . , 2q .
(5.49b)

�

Now we consider quadratic D-stabilization via output feedback.

Definition 5.4 (Quadratic D-stabilizability via output feedback).
System (5.1) is said to be quadratically D-stabilizable via parameter depen-
dent output feedback linear control if and only if there exists a dynamical
compensator in the form (5.9) such that the closed loop system obtained by
the connection of system (5.1) and controller (5.9) is quadratically D-stable.

�

In order to prove the main result of the section we need the following
result (see Exercise 5.3); consider a block partitioned symmetric matrix in
the form

X :=




X11 · · · X1i · · · X1j · · · X1n

...
. . .

...
. . .

...
. . .

...
XT

1i · · · Xii · · · Xij · · · Xin

...
. . .

...
. . .

...
. . .

...
XT

1j · · · XT
ij · · · Xjj · · · Xjn

...
. . .

...
. . .

...
. . .

...
XT

1n · · · XT
in · · · XT

jn · · · Xnn




; (5.50)

now let us denote by Xij the symmetric matrix obtained by permuting the
block row i with the block row j and the block column i with the block
column j, that is

Xij =




X11 · · · X1j · · · X1i · · · X1n

...
. . .

...
. . .

...
. . .

...
XT

1j · · · Xjj · · · XT
ij · · · Xjn

...
. . .

...
. . .

...
. . .

...
XT

1i · · · Xij · · · Xii · · · Xin

...
. . .

...
. . .

...
. . .

...
XT

1n · · · XT
jn · · · XT

in · · · Xnn




. (5.51)
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Lemma 5.3. Matrix X is positive (negative) definite if and only if matrix
Xij is positive (negative) definite.

Theorem 5.6. The following statements are equivalent.

i) System (5.1) is quadratically D-stabilizable via output feedback linear con-
trol.

ii) There exist positive definite matrices Q and S and continuous matrix-
valued functions ÂK(·), B̂K(·), ĈK(·) and DK(·) such that, for all p ∈ R,

(
Λ ⊗ Q Λ ⊗ I
Λ ⊗ I Λ ⊗ S

)

+
(

Θ ⊗
(
A(p)Q + B(p)ĈK(p)

)
Θ ⊗

(
A(p) + B(p)DK(p)C(p)

)
Θ ⊗ ÂK(p) Θ ⊗

(
SA(p) + B̂K(p)C(p)

)
)

+
(

ΘT ⊗
(
QAT (p) + ĈT

K(p)BT (p)
)

ΘT ⊗ ÂT
K(p)

ΘT ⊗
(
AT (p)+CT (p)DT

K(p)BT (p)
)
ΘT ⊗

(
AT (p)S+CT (p)B̂T

K(p)
)
)

<0 .

(5.52)

iii) There exist positive definite matrices Q and S and continuous matrix-
valued functions ĈK(·) and B̂K(·) such that, for all p ∈ R,

Λ ⊗ Q + Θ ⊗
(
A(p)Q + B(p)ĈK(p)

)
+ ΘT ⊗

(
QAT (p) + ĈT

K(p)BT (p)
)

< 0
(5.53a)

Λ ⊗ S + Θ ⊗
(
SA(p) + B̂K(p)C(p)

)
+ ΘT ⊗

(
AT (p)S + CT (p)B̂T

K(p)
)
<0 .

(5.53b)

Proof. According to Definition 3.4, system (5.1) is quadraticallyD-stabilizable
via output feedback linear control iff there exists a positive definite matrix
P such that, for all p ∈ R,

Λ ⊗ P + Θ ⊗
(
PACL(p)

)
+ ΘT ⊗

(
AT

CL(p)P
)

< 0 , (5.54)

where ACL(p) has been defined in (5.24).
Now let us partition P and its inverse according to (5.10); note that,

without loss of generality, we can assume that M and N are nonsingular
matrices [48]. Pre- and post-multiply (5.54) by I⊗ΠT

1 and I⊗Π1 respectively,
where Π1 has been defined in (5.15), and use properties (A.8); by virtue of
Lemma 5.1 we obtain that (5.54) is equivalent to the existence of positive
definite matrices S and Q and and continuous matrix-valued functions ÂK(·),
B̂K(·), ĈK(·) and DK(·) satisfying (5.11) and, for all p ∈ R,
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Λ ⊗
(

Q I
I S

)

+ Θ ⊗
(

A(p)Q + B(p)ĈK(p) A(p) + B(p)DK(p)C(p)
ÂK(p) SA(p) + B̂K(p)C(p)

)

+ ΘT ⊗
(

QAT (p) + ĈT
K(p)BT (p) ÂT

K(p)
AT (p) + CT (p)DT

K(p)BT (p) AT (p)S + CT (p)B̂T
K(p)

)
< 0 ,

(5.55)

where we have used the change of variable (5.27).
The equivalence between (5.55) and ii) follows from the repetitive appli-

cation of Lemma 5.3; moreover, by following the same arguments used in the
proof of Theorem 5.2, it is readily seen that we can get rid of (5.11).

Now ii) clearly implies iii). Conversely, if iii) holds, given any pair of
matrix-valued functions ÂK(·), DK(·), either ii) holds or we can rescale Q,
S, ĈK(·), B̂K(·) by a positive scalar λ > 1 such that the new matrices
satisfy ii).

By virtue of Theorem 5.6 we have two possible choices for controller syn-
thesis. If we look to condition ii), the controller matrices can be designed
according to Theorem 5.2.

Concerning condition iii) it is simple to recognize that it can be directly
derived by an approach based on the Separation Property (see Exercise 5.4).
Therefore, in that case, a quadratically D-stabilizing controller can be ob-
tained by letting G(p) = ĈK(p)Q−1 and L(p) = S−1B̂K(p) in (5.35).

When Assumption 5.2 holds the feasibility of the following LMIs problem
guarantees quadratic D-stabilizability via output feedback; we refer to the
design of controllers in the form (5.35).
Problem 5.4.
Find symmetric matrices Q, S and matrices V , W , such that

Q > 0

(5.56a)

S > 0

(5.56b)

Λ ⊗ Q + Θ ⊗
(
A(p(i))Q + B(p(i))V

)
+ ΘT ⊗

(
QAT (p(i)) + V T BT (p(i))

)
< 0

i = 1, . . . , 2q

(5.56c)

Λ ⊗ S + Θ ⊗
(
SA(p(i)) + WC(p(i))

)
+ ΘT ⊗

(
AT (p(i))S + CT (p(i))W

T
)

< 0

i = 1, . . . , 2q .
(5.56d)

�

If Problem 5.4 is feasible, a quadratically D-stabilizing controller has the
structure (5.35) with constant gain matrices G = V Q−1 and L = S−1W .
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5.2.2 Quadratic L2 Performance Control

As usual we deal with the state feedback first; let us consider the following
system

ẋ(t) = A(p)x(t) + B1(p)w(t) + B2(p)u(t) (5.57a)
z(t) = C1(p)x(t) + D11(p)w(t) + D12(p)u(t) , (5.57b)

where x(t) ∈ R
n, w(t) ∈ R

v, u(t) ∈ R
m and z(t) ∈ R

s.

Definition 5.5 (Quadratic L2 performance control via state feed-
back). Given γ > 0, the uncertain system (5.57) is said to be stabilizable
with a quadratic L2 performance bound γ via linear state feedback control
if and only if there exists a matrix G ∈ R

m×n such that the closed loop
system, obtained from (5.57) by letting u = Gx, possesses a quadratic L2

performance bound γ. �

From (3.104) we know that system (5.57) is stabilizable with a quadratic
L2 performance bound γ via linear state feedback control iff there exist a
matrix G and a positive definite matrix Q such that for all p ∈ R




Q
(
A(p) + B2(p)G

)T
+
(
A(p) + B2(p)G

)
Q B1(p) Q

(
C1(p) + D12(p)G

)T

BT
1 (p) −γ2I DT

11(p)(
C1(p) + D12(p)G

)
Q D11(p) −I


 < 0 .

(5.58)

By using the usual machinery we can state the following result.

Theorem 5.7. System (5.57) is stabilizable with a quadratic L2 performance
bound γ via linear state feedback control if and only if there exist a positive
definite matrix Q and a matrix V such that

A(p)Q + QAT (p) + B2(p)V +V T BT

2 (p) B1(p) QCT
1 (p) + V T DT

12(p)
BT

1 (p) −γ2I DT
11(p)

C1(p)Q + D12(p)V D11(p) −I


<0 .

(5.59)

In this case a state feedback controller which stabilizes system (5.2) with a
quadratic L2 performance bound γ is given by u = Gx with G = V Q−1.

Let us consider the following assumption.

Assumption 5.3. The matrix-valued functions A(·), B1(·), B2(·), C1(·),
D11(·) and D12(·) are such that(

A(p) B1(p) B2(p)
C1(p) D11(p) D12(p)

)
=

NSw(p)
dSw(p)

, (5.60)

where NSw(p) is a multi-affine matrix-valued function and dSw(p) is a multi-
affine function with dSw(p) 	= 0 for all p ∈ R. �
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When Assumption 5.3 holds stabilizability with a quadratic L2 perfor-
mance bound γ via state feedback is equivalent to the feasibility of the fol-
lowing LMIs optimization problem.

Problem 5.5.
Find a symmetric matrix Q and a matrix V such that

Q > 0

(5.61a)




A(p(i))Q + QAT (p(i)) + B2(p(i))V + V T BT
2 (p(i)) B1(p(i)) QCT

1 (p(i)) + V T DT
12(p(i))

BT
1 (p(i)) −γ2I DT

11(p(i))

C1(p(i))Q + D12(p(i))V D11(p(i)) −I


 < 0

i = 1, . . . , 2
q

.

(5.61b)

�

Next, we proceed with dynamic output feedback. Let us consider the
system

ẋ(t) = A(p)x(t) + B1(p)w(t) + B2(p)u(t) (5.62a)
z(t) = C1(p)x(t) + D11(p)w(t) + D12(p)u(t) (5.62b)
y(t) = C2(p)x(t) + D21(p)w(t) . (5.62c)

Definition 5.6 (Quadratic L2 performance control via output feed-
back). The uncertain system (5.62) is said to be stabilizable with a quadratic
L2 performance bound γ via parameter dependent output feedback linear con-
trol if and only if there exists a dynamical compensator in the form (5.9) such
that the closed loop system obtained by the connection of system (5.62) and
controller (5.9) possesses a quadratic L2 performance bound γ. �

Theorem 5.8. System (5.62) is stabilizable with a quadratic L2 performance
bound γ via parameter dependent output feedback linear control if and only if
there exist positive definite matrices S and Q and continuous matrix-valued
functions ÂK(·), B̂K(·), ĈK(·) and DK(·) such that (5.11) holds and (the
dependence on p is omitted to simplify the notation)




AQ+QAT +B2ĈK + ĈT
KBT

2 A + ÂT
K + B2DKC2 B1 + B2DKD21 QCT

1 + ĈT
KDT

12

AT + ÂK + CT
2 DT

KBT
2 SA+AT S+B̂KC2+CT

2 B̂T
K SB1 + B̂KD21 CT

1 + CT
2 DT

KDT
12

BT
1 + DT

21DT
KBT

2 BT
1 S + DT

21B̂T
K −γ2I DT

11+DT
21DT

KDT
12

C1Q + D12ĈK C1 + D12DKC2 D11+D12DKD21 −I




<0

(5.63)

where
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B̂K(p) = MBK(p) + SB2(p)DK(p) (5.64a)

ĈK(p) = CK(p)NT + DK(p)C2(p)Q (5.64b)

ÂK(p) = MAK(p)NT + SB2(p)CK(p)NT

+ MBK(p)C2(p)Q + S(A(p) + B2(p)DK(p)C2(p))Q , (5.64c)

and M , N are any nonsingular matrices such that MNT = I − SQ.
In this case a controller which quadratically stabilizes with an L2 perfor-

mance bound γ system (5.62) is given by (5.9) with AK(p), BK(p) and CK(p)
provided by the inversion of system (5.64).

Proof. From (3.101) it follows that system (5.1) is stabilizable with a quadratic
L2 performance bound γ via output feedback linear control iff there exist a
controller in the form (5.9) and a positive definite matrix P such that

AT
CL(p)P + PACL(p) PBCL(p) CT

CL(p)
BT

CL(p)P −γ2I DT
CL(p)

CCL(p) DCL(p) −I


 < 0 , (5.65)

where

ACL(p) =
(

A(p) + B2(p)DK(p)C2(p) B2(p)CK(p)
BK(p)C2(p) AK(p)

)
(5.66a)

BCL(p) =
(

B1(p) + B2(p)DK(p)D21(p)
BK(p)D21(p)

)
(5.66b)

CCL(p) =
(
C1(p) + D12(p)DK(p)C2(p) D12(p)CK(p)

)
(5.66c)

DCL(p) = D11(p) + D12(p)DK(p)D21(p) . (5.66d)

Let us partition P and P−1 according to (5.10); again, without loss of
generality, we can assume that M and N are nonsingular matrices. Then, pre-
and post-multiplying (5.65) by diag(ΠT

1 , I, I) and diag(Π1, I, I) respectively,
where Π1 and Π2 have been defined in (5.15), recalling that PΠ1 = Π2

and using the change of variable (5.27), we obtain from Lemma 5.1 that
the existence of P > 0 and controller in the form (5.9) satisfying (5.65) is
equivalent to the existence of Q > 0, S > 0 and continuous matrix-valued
functions ÂK(·), B̂K(·), ĈK(·), DK(·) such that (5.63) and (5.11) hold.

An alternative approach for the design of the output feedback controller
is provided in [34] under simplifying assumptions on the system matrices
(see [185], p. 270).

The practical computation of an output feedback controller can be per-
formed if the following assumptions hold.

Assumption 5.4.

i) ÂK(p), B̂K(p), ĈK(p) and DK(p) are restricted to be constant matrices
(note that in any case, by inversion of the system (5.64), the controller
matrices turn out to be parameter dependent).
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ii) The system matrices in (5.62) are such that the LHS in (5.63) can be
written as the ratio of a multi-affine matrix valued function and a multi-
affine polynomial which is nonzero for all p ∈ R.

�

If Assumption 5.4 holds, we have that system (5.62) is stabilizable with
a quadratic L2 performance bound γ if the following LMIs based problem
admits a feasible solution.

Problem 5.6.
Find positive definite matrices Q and S and matrices ÂK , B̂K , ĈK and DK

such that (5.63) and (5.11) hold at the vertices of the hyper-box R. �

5.2.3 Guaranteed Cost Control

We only focus on the state feedback case, since the output feedback would
require the introduction of some concepts which are behind the scope of this
book.

Therefore consider system (5.2). The objective is to find a state feed-
back controller u = Gx such that the overall closed loop system possesses
a quadratic guaranteed cost with associated cost matrix P wrt the in-
dex (3.105).

According to (3.110), this is equivalent to the existence of a matrix G
such that, for Q = P−1,(

Q(A(p) + B(p)G)T + (A(p) + B(p)G)Q QΠ
ΠQ −Π

)
< 0 . (5.67)

If Assumption 5.1 holds we can solve the following EVP in the variables θ,
Q and V in order to find a state feedback controller with minimum guaranteed
cost.

Problem 5.7 (Guaranteed cost via state feedback).

max θ

s.t.
θ > 0
Q > θI(

A(p(i))Q + QAT (p(i)) + B(p(i))V + V T BT (p(i)) QΠ
ΠQ −Π

)
< 0

i = 1, . . . , 2q .

�

If Problem 5.7 is feasible, a state feedback controller which minimizes the
guaranteed cost is obtained by letting G = V Q−1.
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5.3 Robust Stabilization in the Presence
of Bounded Rate Parameters

We consider the state feedback case first. Note that, differently from quadratic
stabilizability, for tractability reasons the controller gain is allowed to depend
on parameters.

Definition 5.7. System (5.2) is said to be quadratically stabilizable via pa-
rameter dependent Lyapunov functions in R × Ṙ via linear state feedback
control if and only if there exists a continuous matrix-valued function G(·)
such that the connection of the control law u = G(p)x with system (5.2) is
quadratically stable via parameter dependent Lyapunov functions in R × Ṙ.

�

From (4.10) it follows that quadratic stabilizability via parameter de-
pendent Lyapunov functions in the state feedback case is equivalent to the
existence of a continuous matrix-valued function G(·) and a positive definite
continuous matrix-valued function Q(·) such that for all p ∈ R

(
A(p) + B(p)G(p)

)
Q(p) + Q(p)

(
A(p) + B(p)G(p)

)T

−
q∑

i=1

∂Q(p)
∂pi

h(j)i
< 0 , j = 1, . . . , 2q . (5.68)

We can easily state the following theorem.

Theorem 5.9. System (5.2) is quadratically stabilizable via parameter de-
pendent Lyapunov functions in R× Ṙ via linear state feedback control if and
only if there exist a continuously differentiable matrix-valued function Q(·)
and a continuous matrix-valued function V (·) such that

A(p)Q(p) + Q(p)AT (p) + B(p)V (p) + V T (p)BT (p)

−
q∑

i=1

∂Q(p)
∂pi

h(j)i
< 0 , j = 1, . . . , 2q . (5.69)

In this case a state feedback controller which quadratically stabilizes sys-
tem (5.2) via parameter dependent Lyapunov functions is given by u = G(p)x
with G(p) = V (p)Q−1(p).

In order to reduce the statement of Theorem 5.9 to an LMIs feasibility
problem we need:

i) To fix a structure for Q(·); for example multi-affine.
ii) To fix a structure for V (·); for example V (·) can be optimized over the

set of constant matrices.
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iii) To reduce the LHS of (5.69) to a matrix-valued function satisfying As-
sumption 3.1.

Now we consider quadratic stabilizability via output feedback.

Definition 5.8. System (5.1) is said to be quadratically stabilizable via pa-
rameter dependent Lyapunov functions in R × Ṙ via parameter dependent
output feedback linear control if and only if there exists a dynamical com-
pensator in the form (5.9) such that the closed loop system obtained by the
connection of system (5.1) and controller (5.9) is quadratically stable via
parameter dependent Lyapunov functions in R × Ṙ. �

Note that Lemma 5.2 and Corollary 5.1 can be extended to the quadratic
stability via parameter dependent Lyapunov functions context; then, gener-
alizing the derivation (5.43)–(5.39), it is easy to obtain the following result.

Theorem 5.10. System (5.1) is quadratically stabilizable via parameter de-
pendent Lyapunov functions in R×Ṙ via parameter dependent output feedback
linear control if there exist positive definite continuously differentiable matrix-
valued functions S(·) and Q(·) and continuous matrix-valued functions V (·)
and W (·) such that, for all p ∈ R and j = 1, . . . , 2q,

A(p)Q(p) + Q(p)AT (p) + B(p)V (p) + V T (p)BT (p) −
q∑

i=1

∂Q(p)
∂pi

h(j)i
< 0

(5.70a)

AT (p)S(p) + S(p)A(p) + W (p)C(p) + CT (p)WT (p) +
q∑

i=1

∂S(p)
∂pi

h(j)i
< 0 .

(5.70b)

In this case a controller which quadratically stabilizes via parameter depen-
dent Lyapunov functions system (5.1) has the structure (5.35) with G(p) =
V (p)Q−1(p) and L(p) = S−1(p)W (p).

The fact that conditions (5.70) are also necessary for quadratic stabiliz-
ability via parameter dependent Lyapunov functions via parameter depen-
dent output feedback linear control can be proven by generalizing to the
context of the current section the Youla parameterization result stated in
Theorem 5.4.

In order to practically apply Theorem 5.10 we need:

i) To fix a structure for Q(·) and S(·) (for example multi-affine);
ii) to fix a structure for V (·) and W (·) (for the sake of computational com-

plexity they can be optimized over the set of constant matrices);
iii) to reduce the LHSs of (5.70) to matrix-valued functions which can be

written as the ratio of a multi-affine matrix valued function and a multi-
affine polynomial.
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5.4 Systems Depending
on Norm Bounded Uncertainties

5.4.1 Quadratic Stabilization

Let us consider the following uncertain system

ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t) , (5.71)

where x(t) ∈ R
n, u(t) ∈ R

m and
(
∆A ∆B

)
= F∆(I − H∆)−1

(
E1 E2

)
, (5.72)

where ‖H‖ < 1 and ∆ ∈ R
p×q is any uncertain matrix with ‖∆‖ ≤ 1.

As usual, the uncertain system (5.71) can be obtained as the feedback
loop connection between system

ẋ(t) = Ax(t) + Fw∆(t) + Bu(t) (5.73a)
z∆(t) = E1x(t) + Hw∆(t) + E2u(t) (5.73b)

and w∆ = ∆z∆.
According to the previous definitions, system (5.71), (5.72) is quadrati-

cally stabilizable via state feedback control iff there exists a matrix G ∈ R
m×n

such that the closed loop system, obtained by (5.71) by letting u = Gx
is quadratically stable. Note that, as shown in [153], when dealing with
norm bounded uncertainties, and differently from parametric uncertainties,
quadratic stabilizability implies quadratic stabilizability via linear control
(see also [186]); therefore the use of the adjective “linear” is not necessary.

From Fig. 5.4 it is clear that the closed loop is itself a system subject to
norm bounded uncertainties described by the following equations

ẋ(t) = (A + BG)x(t) + Fw∆(t) (5.74a)
z∆(t) = (E1 + E2G)x(t) + Hw∆(t) (5.74b)
w∆(t) = ∆z∆(t) . (5.74c)

From (3.128) we readily obtain that a necessary and sufficient condition
for quadratic stabilizability via state feedback of system (5.71) is the existence
of a positive definite matrix Q and a matrix G such that


Q(A + BG)T + (A + BG)Q F Q(E1 + E2G)T

FT −I HT

(E1 + E2G)Q H −I


 < 0 . (5.75)

By the usual change of matrix variable GQ = V we obtain that quadratic
stabilizability of system (5.71) is equivalent to the feasibility of the following
LMIs problem.
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∆
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z∆

ux

G

))

Fig. 5.4. The uncertain system (5.71) and the state feedback controller u = Gx

Problem 5.8.
Find a symmetric matrix Q ∈ R

n×n and a matrix V ∈ R
m×n such that

Q > 0 (5.76a)
QAT + AQ + V T BT + BV F QET

1 + V T ET
2

FT −I HT

E1Q + E2V H −I


 < 0 . (5.76b)

�

If Problem 5.8 is feasible a state feedback controller which quadratically
stabilizes system (5.71)–(5.72) is given by u = Gx with G = V Q−1.

Next we move to quadratic stabilizability via output feedback. Let us
consider the uncertain system

ẋ(t) =
(
A + ∆A

)
x(t) +

(
B + ∆B)u(t) (5.77a)

y(t) =
(
C + ∆C

)
x(t) +

(
D + ∆D)u(t) , (5.77b)

where y(t) ∈ R
r and

(
∆A ∆B
∆C ∆D

)
=
(

F1

F2

)
∆(I − H∆)−1

(
E1 E2

)
. (5.78)
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The feedback interpretation of system (5.77) is represented by the equa-
tions

ẋ(t) = Ax(t) + F1w∆(t) + Bu(t) (5.79a)
z∆(t) = E1x(t) + Hw∆(t) + E2u(t) (5.79b)
y(t) = Cx(t) + F2w∆(t) + Du(t) (5.79c)

w∆(t) = ∆z∆(t) . (5.79d)

In the following we assume, for the sake of simplicity but without loss of
generality, that D = 0.

One possible approach would be that of following, along the lines of
[120], the same machinery of the parametric uncertainties case described in
Sect. 5.1.2.

This approach would lead to uncertainty dependent controllers designed
according to the Separation Property. However, in the norm bounded un-
certainties case, it is possible to follow another approach which, differently
from the parametric case, allows to design uncertainty independent dynamical
controllers.

This peculiarity is essentially due to the fact that quadratic stability in
presence of norm bounded uncertainties is equivalent to an H∞ condition for
a suitable certain system (see Sect. 3.6).

Therefore let us consider a dynamical output feedback controller in the
form

ẋc(t) = AKxc(t) + BKy(t) (5.80a)
u(t) = CKxc(t) + DKy(t) . (5.80b)

Definition 5.9. System (5.77) is said to be quadratically stabilizable via
output feedback linear control if and only if there exists a dynamical controller
in the form (5.80) such that the resulting closed loop system is QS. �

The closed loop connection between system (5.77)–(5.78) and controller
(5.80) is depicted in Fig. 5.5.

Again, from this figure it is clear that the closed loop is itself an unforced
system subject to norm bounded uncertainties and described by the equations

ẋa(t) = ACLxa(t) + FCLw∆(t) (5.81a)
z∆(t) = ECLxa(t) + HCLw∆(t) (5.81b)
w∆(t) = ∆z∆(t) , (5.81c)

where xa =
(
xT xT

c

)T and
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Fig. 5.5. The uncertain system (5.77) and the controller (5.80)

ACL =
(

A + BDKC BCK

BKC AK

)
(5.82a)

FCL =
(

F1 + BDKF2

BKF2

)
(5.82b)

ECL =
(
E1 + E2DKC E2CK

)
(5.82c)

HCL = H + E2DKF2 . (5.82d)

According to condition (3.127) the closed loop system is QS iff the fol-
lowing matrix inequality


AT

CLP + PACL PFCL ET
CL

FT
CLP −I HT

CL

ECL HCL −I


 < 0 (5.83)

is satisfied.
By partitioning P and P−1 according to (5.10), where, without loss of

generality we can assume that M and N are nonsingular matrices, and pre-
and post-multiplying (5.83) by diag(ΠT

1 , I, I) and diag(Π1, I, I) respectively,
where Π1 and Π2 have been defined in (5.15), recalling that PΠ1 = Π2, we
obtain
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AQ + QAT + BĈK + ĈT
KBT A + ÂT

K + BDKC F1 + BDKF2 QET
1 + ĈT

KET
2

AT + ÂK + CT DT
KBT SA + AT S + B̂KC + CT B̂T

K SF1 + B̂KF2 ET
1 + CT DT

KET
2

F T
1 + F T

2 DT
KBT F T

1 S + F T
2 B̂T

K −I HT + F T
2 DT

KET
2

E1Q + E2ĈK E1 + E2DKC H + E2DKF2 −I




< 0 ,

(5.84)

where
B̂K = MBK + SBDK (5.85a)

ĈK = CKNT + DKCQ (5.85b)

ÂK = MAKNT + SBCKNT + MBKCQ + S(A + BDKC)Q . (5.85c)

Note the similarity between conditions (5.84) and (5.63); this is not sur-
prising, in view of the equivalence between H∞ control and quadratic stabi-
lization in presence of norm bounded uncertainties (see Sect. 3.6). However
the LHS of (5.84) does not depend on parameters.

We can state the following result.

Theorem 5.11 ( [49]). System (5.77) is quadratically stabilizable via output
feedback linear control if and only if there exist positive definite matrices S
and Q and matrices ÂK , B̂K , ĈK and DK such that (5.84) and (5.11) hold.

Therefore the procedure for designing a quadratically stabilizing controller
consists of the following steps:

i) Find symmetric matrices S and Q and matrices ÂK , B̂K , ĈK and DK

satisfying the hypothesis of Theorem 5.11;
ii) Find nonsingular matrices M and N satisfying MNT = I − SQ;
iii) Resolve system (5.85) for AK , BK and CK .

5.4.2 Quadratic Stabilization and Performances

Quadratic D-Stabilization
As usual, let us consider quadratic D-stabilization via state feedback first.
Obviously, system (5.71), (5.72) is quadratically D-stabilizable via linear state
feedback control if and only if there exists a matrix G ∈ R

m×n such that the
closed loop system (5.74) is quadratically D-stable.

By using condition (3.165) it follows that system (5.71), (5.72) is quadrat-
ically D-stabilizable via state feedback if there exist positive definite matrices
Q ∈ R

n×n, Z ∈ R
k×k and a matrix G such that


 MD,d(A + BG,Q) ΘT

1 ⊗ F
(
ΘT

2 Z
)
⊗
(
Q(E1 + E2G)T

)
Θ1 ⊗ FT −Z ⊗ Ip Z ⊗ HT

(ZΘ2) ⊗ ((E1 + E2G)Q) Z ⊗ H −Z ⊗ Iq


 < 0 ;

(5.86)
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recall that k is the rank of Θ and Θ1 and Θ2 are full row rank matrices
satisfying Θ = ΘT

1 Θ2.
In the following developments we let Z = Ik. This is necessary in order

to transform (5.86) into an LMI. In this context, we recall that, when k = 1
(this happens for example when D is the left half of the complex plane or a
disk centered at the origin of the complex plane), matrix Z turns out to be
a scalar which can be chosen without loss of generality to be unitary; in this
case condition (3.165) is also necessary for quadratic D-stability. Therefore
the following derivation is also necessary when the region D is such that Θ
has rank one.

By letting GQ = V and Z = Ik, we can state the following theorem,
which immediately leads to an LMI feasibility problem for the design of the
state feedback controller.

Theorem 5.12. System (5.71), (5.72) is quadratically D-stabilizable via state
feedback control if there exist a positive definite matrix Q and a matrix V such
that

 MD,LIN (A,Q, V ) ΘT
1 ⊗ F ΘT

2 ⊗ (QET
1 + V T ET

2 )
Θ1 ⊗ FT −Ikp Ik ⊗ HT

Θ2 ⊗ (E1Q + E2V ) Ik ⊗ H −Ikq


 < 0 , (5.87)

where

MD,LIN (A,Q, V ) := Λ⊗Q+Θ⊗(AQ+BV )+ΘT ⊗(QAT +V T BT ) . (5.88)

In this case a state feedback controller which quadratically D-stabilizes
system (5.71) is given by u = Gx with G = V Q−1.

The condition is also necessary if Θ has rank one.

Now we consider the output feedback problem. System (5.77), (5.78) is
said to be quadratically D-stabilizable via output feedback linear control if
and only if there exists a dynamical controller in the form (5.80) which makes
the closed loop system quadratically D-stable.

From (3.151) it follows that a sufficient condition for quadratic D-
stabilizability via output feedback is the existence of positive definite matrices
P ∈ R

n×n, Z ∈ R
k×k and matrices AK , BK , CK and DK such that


MD(ACL, P ) ΘT

1 ⊗ (PFCL)
(
ΘT

2 Z
)
⊗ ET

CL

Θ1 ⊗ (FT
CLP ) −Z ⊗ Ip Z ⊗ HT

CL

(ZΘ2) ⊗ ECL Z ⊗ HCL −Z ⊗ Iq


 < 0 , (5.89)

where ACL, FCL, ECL and HCL are given by (5.82).
Again we let Z = Ik to arrive to LMIs condition.
By following the same machinery of Sect. 5.4.1 we obtain the following

result.
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Theorem 5.13 ( [49]). System (5.77), (5.78) is quadratically D-stabilizable
via output feedback linear control if there exists positive definite matrices S,
Q and matrices ÂK , B̂K , ĈK and DK such that (5.11) holds and



X11 ΘT
1 ⊗


F1 + BDKF2

SF1 + B̂KF2


 ΘT

2 ⊗


 QET

1 + ĈT
KET

2

ET
1 + CT DT

KET
2




Θ1 ⊗
(

F T
1 + F T

2 DT
KBT F T

1 S + F T
2 B̂T

K

)
−Ikp Ik ⊗ (HT + F T

2 DT
KET

2 )

Θ2 ⊗
(

E1Q + E2ĈK E1 + E2DKC

)
Ik ⊗ (H + E2DKF2) −Ikq




<0 ,

(5.90)

where

X11 := Λ⊗


Q I

I S


+Θ⊗


AQ+BĈK A + BDKC

ÂK SA + B̂KC


+Θ

T ⊗


 QAT + ĈT

KBT ÂT
K

AT +CT DT
KBT AT S + CT B̂T

K


 .

(5.91)

In this case a quadratically D-stabilizing controller has the structure (5.80)
where AK , BK and CK can be obtained by solving (5.85).

The condition is also necessary if Θ has rank one.

Quadratic L2 Performance Control
Let us consider the following uncertain system

ẋ(t) = (A + ∆A)x(t) + B1w(t) + (B2 + ∆B)u(t) (5.92a)
z(t) = C1x(t) + D11w(t) + D12u(t) , (5.92b)

where, as usual, x(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
v, z(t) ∈ R

s and the uncertain
part satisfies (5.72).

The closed loop interpretation of system (5.92) is described by the equa-
tions

ẋ(t) = Ax(t) + Fw∆(t) + B1w(t) + B2u(t) (5.93a)
z∆(t) = E1x(t) + Hw∆(t) + E2u(t) (5.93b)

z(t) = C1x(t) + D11w(t) + D12u(t) (5.93c)
w∆(t) = ∆z∆(t) . (5.93d)

System (5.92) is stabilizable with a quadratic L2 performance bound γ via
state feedback if and only if there exist a matrix G such that the connection
between system (5.92) and u = Gx possesses a quadratic L2 performance
bound γ.

By using representation (5.93), the closed loop system can be seen as an
uncertain system subject to norm bounded uncertainties (see Fig. 5.6)

ẋ(t) = (A + B2G)x(t) + Fw∆(t) + B1w(t) (5.94a)
z∆(t) = (E1 + E2G)x(t) + Hw∆(t) (5.94b)

z(t) = (C1 + D12G)x(t) + D11w(t) (5.94c)
w∆ = ∆z∆ . (5.94d)
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Fig. 5.6. The uncertain system (5.93) and the state feedback controller u = Gx

From (3.173) we obtain that a necessary and sufficient condition for sta-
bilizability with a quadratic L2 performance bound γ via state feedback is
the existence of a positive definite matrix Q, a matrix G and a positive scalar
τ such that




(A+B2G)Q+Q(A + B2G)T +τF F T B1 + Q(C1+D12G)T D11 Q(E1+E2G)T +τF HT Q(C1+D12G)T

BT
1 + DT

11(C1 + D12G)Q −(γ2I − DT
11D11) 0 0

(E1 + E2G)Q + τHT F 0 −τ(I − HHT ) 0

(C1 + D12G)Q 0 0 −I




< 0 .

(5.95)

As usual we let GQ = V and arrive to the following LMIs based problem
whose feasibility is necessary and sufficient for stabilizability with a quadratic
L2 performance bound γ via state feedback.

Problem 5.9 (Stabilizability with a quadratic L2 performance bound
via state feedback).
Find a positive definite matrix Q, a matrix V and a positive scalar τ such
that
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AQ+QAT +B2V +V T BT
2 +τF F T B1+QCT

1 D11+V T DT
12D11 QET

1 +V T ET
2 +τF HT QCT

1 +V T DT
12

BT
1 + DT

11C1Q + DT
11D12V −(γ2I − DT

11D11) 0 0

E1Q + E2V + τHF T 0 −τ(I − HHT ) 0

C1Q + D12V 0 0 −I




< 0 .

(5.96)

�

If Problem 5.9 is feasible a quadratically stabilizing controller is given by
u = Gx with G = V Q−1.

Now consider stabilizability with quadratic L2 performance via output
feedback. Let us consider the uncertain system

ẋ(t) =
(
A + ∆A

)
x(t) + B1w(t) +

(
B2 + ∆B)u(t) (5.97a)

z(t) = C1x(t) + D11w(t) + D12u(t) (5.97b)

y(t) =
(
C2 + ∆C

)
x(t) + D21w(t) +

(
D22 + ∆D)u(t) , (5.97c)

where y(t) ∈ R
r and the uncertainties satisfy (5.78).

The closed loop interpretation of system (5.97) is described by the follow-
ing equations

ẋ(t) = Ax(t) + F1w∆(t) + B1w(t) + B2u(t) (5.98a)
z∆(t) = E1x(t) + Hw∆(t) + E2u(t) (5.98b)

z(t) = C1x(t) + D11w(t) + D12u(t) (5.98c)
y(t) = C2x(t) + F2w∆(t) + D21w(t) + D22u(t) (5.98d)

w∆(t) = ∆z∆(t) . (5.98e)

As usual, to simplify computations in the sequel we shall assume D22 = 0.
Obviously system (5.97) is stabilizable with a quadratic L2 performance

bound γ via output feedback if and only if there exists a dynamical con-
troller in the form (5.80) such that the overall closed loop system possesses
a quadratic L2 performance bound γ.

The connection between system (5.98) and the controller (5.80) (see
Fig. 5.7) leads to the following unforced system subject to norm bounded
uncertainties

ẋa(t) = ACLxa(t) + FCLw∆(t) + BCLw(t) (5.99a)
z∆(t) = ECLxa(t) + HCLw∆ + E2DKD21w(t) (5.99b)

z(t) = CCLxa(t) + D12DKF2w∆(t) + DCLw(t) (5.99c)
w∆(t) = ∆z∆(t) , (5.99d)

where
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Fig. 5.7. The uncertain system (5.97) and the output feedback controller

ACL =
(

A + B2DKC2 B2CK

BKC2 AK

)
(5.100a)

FCL =
(

F1 + B2DKF2

BKF2

)
(5.100b)

BCL =
(

B1 + B2DKD21

BKD21

)
(5.100c)

ECL =
(
E1 + E2DKC2 E2CK

)
(5.100d)

HCL = H + E2DKF2 (5.100e)

CCL =
(
C1 + D12DKC2 D12CK

)
(5.100f)

DCL = D11 + D12DKD21 . (5.100g)

In order to avoid the dependence of z∆ on w and z on w∆ in (5.99), we
also assume that DK = 0; conversely (5.99) would not be in the form (3.167).

From (3.172) we have that a necessary and sufficient condition for stabiliz-
ability via output feedback (with DK = 0) with a quadratic L2 performance
bound γ is the existence of a positive definite matrix P and a positive scalar
τ such that
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AT
CLP + PACL PBCL PFCL τET

CL CT
CL

BT
CLP −γ2I 0 0 DT

CL

FT
CLP 0 −τ2I τHT

CL 0
τECL 0 τHCL −I 0
CCL DCL 0 0 −I


 < 0 . (5.101)

As usual, we partition P and P−1 according to (5.10) where, without loss
of generality, M and N can be assumed to be nonsingular, pre- and post-
multiply (5.101) by diag(ΠT

1 , I, I, I, I) and diag(Π1, I, I, I, I) respectively,
where Π1 and Π2 has been defined in (5.15); recalling that PΠ1 = Π2, we
obtain



MLINB
(Q, ĈK ) A + ÂT

K B1 F1 τ(QET
1 + ĈT

K ET
2 ) QCT

1 + ĈT
K DT

12

AT + ÂT
K MLINC

(S, B̂K ) SB1 + B̂K D21 SF1 + B̂K F2 τET
1 CT

1

BT
1 BT

1 S + DT
21B̂T

K −γ2I 0 0 DT
11

F T
1 F T

1 S + F T
2 B̂T

K 0 −τ2I τHT 0

τ(E1Q + E2ĈK ) τE1 0 τH −I 0

C1Q + D12ĈK C1 D11 0 0 −I




<0 ,

(5.102)

where

MLINB
(Q, ĈK) := AQ + QAT + B2ĈK + ĈT

KBT
2 (5.103a)

MLINC
(S, B̂K) := AT S + SA + CT

2 B̂T
K + B̂KC2 , (5.103b)

and B̂K , ĈK and ÂK can be obtained by (5.85) setting DK = 0, B = B2

and C = C2.
Therefore, we can state the following result.

Theorem 5.14. System (5.97) is stabilizable with a quadratic L2 perfor-
mance bound γ via output feedback (with DK = 0) if and only if there exist
positive definite matrices S and Q, matrices ÂK , B̂K and ĈK and a positive
scalar τ such that (5.11) and (5.102) hold.

Note that (5.102) is an LMI if τ is fixed. Concerning the choice of τ the
reader is referred to [138,141].

Therefore the procedure for designing a stabilizing controller with a
quadratic L2 performance bound γ consists of the following steps:

i) Find symmetric matrices S and Q, matrices ÂK , B̂K , ĈK and a positive
scalar τ satisfying the hypothesis of Theorem 5.14;

ii) find nonsingular matrices M and N satisfying MNT = I − SQ;
iii) resolve system (5.85), with DK = 0, B = B2, C = C2, for AK , BK and

CK .

Guaranteed Cost Control Consider system (5.71). The goal is to find a
state feedback controller u = Gx such that the overall closed loop system
possesses a quadratic guaranteed cost with associated cost matrix P wrt the
index (3.105).
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Since, according to (5.74), the closed loop system can be seen as an un-
forced system subject to norm bounded uncertainties, we obtain (see Prob-
lem 3.14) that the solution of the following EVP provides the matrix gain
G = V Q−1 of a state feedback controller ensuring the minimum quadratic
guaranteed cost.

Problem 5.10.

max θ

s.t.
τ > 0 (5.104a)
θ > 0 (5.104b)
Q > θI (5.104c)

AQ + QAT + BV + V T BT + τFFT QET
1 + V T ET

2 + τFHT QΠ
E1Q + E2V + τHFT −τ(I − HHT ) 0

ΠQ 0 −Π


 < 0 .

(5.104d)

�

Summary

Most part of this chapter has dealt with the quadratic stabilization problem
via both state and output feedback for linear systems depending on paramet-
ric uncertainties.

Sufficient conditions for state feedback quadratic stabilizability via non-
linear controllers [52,89,116,117], were provided at the end of the Seventies;
such conditions were known as matching conditions. In [25] a result is pro-
vided which allows to dispense with matching conditions on B(·) as far as
linear controllers are considered; this is accomplished by converting the orig-
inal system (5.2) into an augmented system for which the input matrix does
not depend on parameters.

Later, in [140], it was proven that, in the context of quadratic stabiliz-
ability via state feedback, it is not restrictive to consider memoryless time-
invariant controllers in place of dynamical time-varying controllers. On the
other hand, the existence of a state feedback nonlinear controller which
quadratically stabilizes a given linear system subject to parametric uncer-
tainties does not imply the existence of a linear state feedback controller
with the same property (for a counterexample see [137]).

However, when the input matrix B(·) is parameter independent, quadra-
tic stabilizability via state feedback implies quadratic stabilizability via state
feedback linear control [28, 99]; to this regard, note that, in the example
provided in [137], the input matrix does depend on the parameter vector.
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Finally, under some assumptions on the system matrices, the necessary
and sufficient condition for quadratic stabilizability via state feedback linear
control (5.3) can be converted into the feasibility of the LMIs Problem 5.1
via the classical change of variable proposed in [86].

Then we have considered quadratic stabilizability via parameter depen-
dent output feedback. We have shown that the classical Separation Property
extends to the quadratic stability setting. Indeed quadratic stabilizability via
parameter dependent output feedback is equivalent to the solvability of a pair
of parameter dependent Riccati inequalities, one involving the state feedback
gain and one the observer gain; such conditions can be turned, under some
assumptions on the system matrices, into LMIs.

Since the output feedback controller turns out to be parameter dependent,
the basic assumption is that the parameter vector is measurable on-line. Note
that, in contrast with the controller structure considered in this book, in [123]
sufficient conditions for the existence of a controller guaranteeing quadratic
stabilization and having a multivariable PID structure are provided.

Finally, in the context of parametric uncertainties and when the parame-
ters have a bounded rate of variation, we have considered quadratic stabi-
lization via parameter dependent Lyapunov functions. Concerning the state
feedback case, for tractability reasons, the feedback gain is allowed to depend
on the parameters; regarding the output feedback case, it is shown that the
problem can be reduced to the feasibility of two distinct Riccati inequalities,
one for the state feedback gain design and the other one for the observer gain
design. A probabilistic approach for the state feedback design is proposed
in [132].

As for the norm bounded case, the output feedback controller turns out to
be parameter independent; an interpretation of this fact is that quadratic sta-
bility for norm bounded uncertainties is equivalent to an H∞ control problem
for a certain system.

For both parametric and norm bounded uncertainties the quadratic sta-
bilization plus performance problem has been considered. Necessary and suf-
ficient conditions for stabilization with quadratic L2 performance and guar-
anteed cost control (only the state feedback case) and sufficient conditions
for quadratic D-stabilization have been provided.

As for quadratic stabilization and performances with parameter depen-
dent Lyapunov functions, operative conditions can be obtained, by follow-
ing the usual machinery, starting from Theorems 4.4 and 4.5. Regarding
quadratic L2 performance control the interested reader is also referred to [59]
and [174] (note that in [59] only the state feedback case is considered, how-
ever the feedback gain is parameter independent, while in [174] the output
feedback controller also depends on the parameter derivative); guaranteed
cost control issues are treated in [60].
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Exercises

Exercise 5.1. Consider the uncertain system (3.1) and a nonsingular matrix
T . Show that the system is QS iff the transformed system

dx̂(t)
dt

= T−1A(p)T x̂(t) (5.105)

is QS.
(Hint: Pre- and post-multiply both members of (3.3) by TT and T respec-
tively.) 

Exercise 5.2. Prove Corollary 5.1.
(Hint: Use Lemma 5.2 with

T =
(

1
ε I 0
0 I

)
(5.106)

and ε sufficiently small.) 

Exercise 5.3. Prove Lemma 5.3.
(Hint: Remember that a symmetric matrix Q is positive (negative) definite
iff, for all x 	= 0, xT Qx > (<)0.) 

Exercise 5.4. Prove that condition iii) in Theorem 5.6 can be directly de-
rived following a Separation Property approach (as done in Sect. 5.1.2 for
quadratic stabilization). 




6. Discrete-Time Systems

In this chapter we deal with the discrete-time linear uncertain system in the
form

x(k + 1) = A(p)x(k) , (6.1)

where x(k) ∈ R
n and, given the usual hyper-box R ⊂ R

q defined in (3.2),
p =

(
p1 p2 . . . pq

)T ∈ R is the vector of (possibly time-varying) uncertain
parameters.

Also, we shall consider systems subject to norm bounded uncertainties

x(k + 1) =
(
A + F∆(I − H∆)−1E

)
x(k) , (6.2)

where F ∈ R
n×p, E ∈ R

q×n, H ∈ R
q×p, ‖H‖ < 1, and ‖∆‖ ≤ 1.

6.1 Quadratic Stability

6.1.1 Parametric Uncertainties

Throughout this section we assume that Assumption 3.1 holds; in the other
cases one of the alternative approaches described in Chap. 3 have to be used.

Definition 6.1. System (6.1) is said to be quadratically stable in R if and
only if there exists a positive definite matrix P such that for all p ∈ R

AT (p)PA(p) − P < 0 . (6.3)

�

From Corollary 2.2 it follows that quadratic stability of system (6.1) guar-
antees exponential stability of the time-varying system

x(k + 1) = A(p(k))x(k) (6.4)

versus any time-varying realization of parameters p(·) ranging in R.
Now we will show that, under Assumption 3.1 and for a given P , it is

necessary and sufficient to check the satisfaction of (6.3) on the vertices of the
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hyper-box R. This will allow us to state a necessary and sufficient condition
for quadratic stability in terms of the solvability of a feasibility problem with
LMIs constraints.

In order to prove the main result of this section, note that the condition

AT (p)PA(p) − P < 0 (6.5)

can be equivalently re-written, by using Fact A.3,
(

−P PA(p)
AT (p)P −P

)
< 0 . (6.6)

Note that condition (6.6) can be directly determined from (3.86) when D
is the unit disk centered at the origin of the complex plane (see Exercise 6.1).

This fact allows to state the following result, which will be exploited in
the sequel of this chapter.

Theorem 6.1. Quadratic stability of the discrete-time system (6.1) is equiv-
alent to quadratic D-stability of the continuous-time system (3.1) when D is
the unit disk centered at the origin of the complex plane.

Since Assumption (3.1) holds, the left hand side of (6.6) is negative defi-
nite for all p ∈ R iff it is negative definite at the vertices of R (Theorem A.2).
Therefore (6.6) is equivalent to

(
−P PA(p(i))

AT (p(i))P −P

)
< 0 . (6.7)

Finally applying again Fact A.3 we can conclude that system (6.1) is QS
iff the following LMIs based feasibility problem admits a feasible solution.

Problem 6.1.
Find a symmetric matrix P such that

P > 0 (6.8a)

AT (p(i))PA(p(i)) − P < 0 , i = 1, . . . , 2q . (6.8b)

�

Example 6.1 (Quadratic Stability Margin (QSM)).
We consider the extension of the concept of QSM (Example 3.1) to the
discrete-time case.

Let us consider the feedback system (we can refer again to Fig. 3.1) de-
scribed by the state space equations

x(k + 1) = A0x(k) + Bu(k) (6.9a)
y(k) = Cx(k) (6.9b)
u(k) = ∆(p)y(k) , (6.9c)
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where A0 ∈ R
n×n, B =

(
b1 . . . bq

)
∈ R

n×q, CT =
(
c1 . . . cq

)
∈ R

n×q and
∆(p) ∈ R

q×q is a diagonal matrix whose elements are the components of the
parameter vector p =

(
p1 . . . pq

)T . This uncertain system can be described
concisely in the form (6.1) with A(p) given by (3.14).

Now, given the unit square Ru ⊂ R
q defined by (3.15) and defined θ

as the dilatation factor of the set Ru (see (3.16)), we define the QSM of
system (3.13) as follows

ρQ := sup {θ>0 : system x(k + 1) = A(θp)x(k) is quadratically stable inRu} .

(6.10)

Since A(θp) can be written in the form (3.19) and looking at (6.7), we
conclude that the computation of the QSM can be performed by solving the
following GEVP in the variables θ and P .

Problem 6.2.

max θ

s.t.
θ > 0
P > 0(

−P PA0

AT
0 P −P

)
+ θ

(
0 PL(p(i))

LT (p(i))P 0

)
< 0 , i = 1, . . . , 2q ,

where p(i) is the i-th vertex of Ru. �

For a numerical example see Exercise 6.2. 


6.1.2 Norm Bounded Uncertainties

According to Definition 6.1, the statement system (6.2) is QS means that
there exists a positive definite matrix P such that for all ∆ with ‖∆‖ ≤ 1

(
A + F∆(I − H∆)−1E

)T
P
(
A + F∆(I − H∆)−1E

)
− P < 0 . (6.11)

Again, it is simple to recognize that the above definition is equivalent to
Definition 3.7 when D is the unit circle centered at the origin of the complex
plane; therefore we can state the following result.

Theorem 6.2. Quadratic stability of the discrete-time system (6.2) is equiv-
alent to quadratic D-stability of the continuous-time system (3.116) when D
is the unit circle centered at the origin of the complex plane.

Using Theorems 6.2 and 3.10 we can readily obtain a necessary and suffi-
cient condition for quadratic stability of system (6.2) which is directly stated
in the form of LMIs based feasibility problem (see Exercise 6.3).
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Theorem 6.3. System (6.2) is QS if and only if there exists a positive definite
matrix P such that(

AT PA − P + ET E AT PF + ET H
FT PA + HT E FT PF − (I − HT H)

)
< 0 . (6.12)

6.1.3 Connections Between Quadratic Stability and H∞ Control

In this section we generalize to discrete-time systems the results of Sect. 3.6.
Let us denote by l2(N0, R

m) the space of the real vector-valued sequences
with m components which are square summable on N0.

Remember that the exponentially stable discrete-time system

x(k + 1) = Ax(k) + Fw(k) (6.13a)
z(k) = Ex(k) + Hw(k) , (6.13b)

uniquely defines the linear operator

Γzw : l2(N0, R
p) �→ l2(N0, R

q)

w �→ z = Γzw(w) :=
k−1∑
h=0

EAk−h−1Fw(h) + Hw(k) .

The l2 induced norm of the operator Γzw is defined as follows

‖Γzw‖ := sup
w∈l2(N0,Rp)−{0}

‖z‖
‖w‖ , (6.14)

where, for a given vector-valued sequence v(·) ∈ l2, we define the l2 norm as

‖v‖ :=

(
+∞∑
k=0

vT (k)v(k)

)1/2

. (6.15)

For linear time-invariant systems we have that the l2 induced norm equals
the H∞ norm of the corresponding transfer function

‖Γzw‖ = ‖E(zI−A)−1F +H‖∞ := supθ∈[0,π]‖E(ejθI−A)−1F +H‖ . (6.16)

Now let us consider the closed loop system in Fig. 6.1, where W (z) ∈
RH∞ and ∆(z) ∈ RH∞.

We can state the following theorem which generalizes Theorem 3.14 to
discrete-time systems.

Theorem 6.4 ( [49,134]). Let us consider the closed loop scheme in Fig. 6.1
and denote by (A,F,E,H) a (minimal) realization of W (z); assume that
W (z) ∈ RH∞. Then the following statements are equivalent:
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∆(z)
+

+
W (z)

Fig. 6.1. Closed loop scheme for the Small Gain Theorem applied to discrete-time
systems

i) ‖W‖∞ < 1.
ii) The closed loop system in Fig. 6.1 is well posed and internally stable for

all dynamic perturbations ∆ ∈ RH∞ satisfying ‖∆‖∞ ≤ 1.
iii) The closed loop system in Fig. 6.1 is well posed and internally stable for

all ∆ ∈ C
p×q with ‖∆‖ ≤ 1.

iv) System (6.2) is QS.
v) System (6.2) is QS for ∆ ∈ C

p×q with ‖∆‖ ≤ 1.
vi) There exists a positive definite matrix P which satisfies (6.12).

6.2 Systems Subject to Bounded Rate Parameters

We consider the class of discrete-time, real vector-valued sequences p(·) : k ∈
N0 → p(k), satisfying

p(k) ∈ R , ∀k ∈ N0 , (6.17)

and

|∆
(
pi(k)

)
| ≤ hi , i = 1, 2, . . . , q , ∀k ∈ N0 , (6.18)

where ∆
(
pi(k)

)
:= pi(k + 1) − pi(k) denotes the first difference of the scalar

function pi(·).
The following theory has been developed in [17] and [19] for the one pa-

rameter and the multi-parameter cases respectively. It is interesting to note
that, while there is a complete analogy between the quadratic stability theory
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for continuous-time systems developed in Chap. 3 and that one for discrete-
time systems illustrated in Sect. 6.1, the approach to deal with bounded
rate parameters is rather different in the two cases. Indeed we shall show
that, while for continuous-time systems the approach via parameter depen-
dent continuously differentiable Lyapunov functions has been followed, in the
discrete-time context it is more suitable to use piecewise constant parameter
dependent functions.

Let us split, according to Fig. 6.2, each interval [p
i
, pi] into νi sub-intervals

of equal length ρi
1

[p
i
, pi] =

νi⋃
l=1

[pi,l, pi,l+1]

=:
νi⋃

l=1

Ii,l , pi,l+1 − pi,l = ρi > 0 , i = 1, . . . , q, l = 1, . . . , νi ;

(6.19)

note that pi,1 = p
i

and pi,νi+1 = pi.

p
i
≡ pi,1 pi,2 · · · pi,l pi,l+1 pi,νi pi,νi+1 ≡ pi

ρi

Fig. 6.2. Partition of the interval [p
i
, pi]

Now let us define the following vector function

j : p ∈ R �→ j(p) =
(
j1(p1) j2(p2) · · · jq(pq)

)T ∈ N
q , (6.20)

where

pi ∈ [pi,l, pi,l+1[�→ ji(pi) = l , l = 1, . . . , νi − 1 , (6.21)

and

pi ∈ [pi,νi
, pi] �→ ji(pi) = νi . (6.22)

Note that, at a given instant k, j(p(k)) univocally individuates the sub-
hyper-box
1 The sub-intervals are considered of equal length for the sake of presentation

simplicity.
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Rj := I1,j1 × I2,j2 × · · · × Iq,jq
(6.23)

to which p(k) belongs.
Now define the integers mi ≤ νi − 1, i = 1, 2, . . . , q, as the maximum

number of sub-intervals that the parameter pi can jump in one discrete-time
step compatibly with (6.18). In other words the numbers mi are defined in
such a way that the following inequalities are satisfied

ji(pi(k))
�
⊕ (−mi) ≤ ji(pi(k+1)) ≤ ji(pi(k))

�
⊕ mi , i = 1, 2, . . . , q , (6.24)

where, for any relative integer number x,

ji

�
⊕ x :=




ji + x if ji + x ∈ [1, νi]
νi if ji + x > νi

1 if ji + x < 1
. (6.25)

From the definition of mi and (6.18) it follows that, in one discrete-time
step, pi can move to a sub-interval which is at a distance (measured in number
of sub-intervals of [p

i
, pi]) which is less than or equal to mi (see Fig. 6.3 in

the case mi = 2).

p
i

pipi(k)

Fig. 6.3. Possible transitions of parameter pi in the interval k, k + 1 in the case
mi = 2

Therefore, if the parameter vector p belongs at time k to the hyper-box
Rj at time k + 1 it will belong to the set

⋃
v1∈V1,...,vq∈Vq

I
1,j1

�
⊕v1

×I
2,j2

�
⊕v2

×· · ·×I
q,jq

�
⊕vq

=
⋃

v∈V1×···×Vq

R
j

�
⊕v

, (6.26)

where

Vi := {−mi, . . . , 0, . . . , mi} (6.27)

and

j
�
⊕ v :=

(
j1

�
⊕ v1 j2

�
⊕ v2 · · · jq

�
⊕ vq

)T

. (6.28)

The following is the main result of the section; it is directly stated in form
of LMIs feasibility problem.
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Theorem 6.5 ( [19]). Assume there exist ν1 ·ν2 · · · · ·νq positive definite ma-
trices P (j) = P (j1, j2, . . . , jq), such that for ji = 1, 2, . . . , νi, i = 1, 2, . . . , q,

AT (p)P (j
�
⊕ v)A(p)− P (j) < 0 , ∀p ∈ Rj , ∀v ∈ V1 × · · · × Vq ; (6.29)

then system (6.1) is exponentially stable for any parameter realization p(·)
satisfying (6.17) and (6.18).

Proof. Let p(·) any discrete-time vector function satisfying (6.17) and (6.18);
then consider the positive definite bounded matrix-valued function k �→
P
(
j(p(k))

)
.

Now, assume that p(k) ∈ Rj ; by virtue of how the partition of the set R

is realized, there exists some q-tuple v =
(
v1 v2 · · · vq

)T ∈ V1 × · · · × Vq such

that j(p(k+1)) coincides with j
�
⊕ v. Therefore the satisfaction for all p ∈ Rj

of inequality (6.29) guarantees the existence of a positive scalar γ such that,
for all k ∈ N0,

AT (p(k))P (j(p(k + 1)))A(p(k)) − P (j(p(k))) ≤ −γI . (6.30)

The proof follows from Corollary 2.2 and the arbitrariness of p(·).

Remark 6.1. As said, in Theorem 6.5 we use piecewise constant, parameter
dependent Lyapunov functions. �

Remark 6.2. Note that, when applying Theorem 6.5, the parameter to be
chosen is the number of sub-intervals νi in which we partition the interval
[p

i
, pi], i = 1, . . . , q, which gives place to the following partition of R

R =
ν1⋃

l=1

I1,l ×
ν2⋃

l=1

I2,l × · · · ×
νq⋃

l=1

Iq,l . (6.31)

It is evident that, for a given partitioning of the original hyper-box R,
the faster the parameters are allowed to vary in time, the greater are the
integers mi, i = 1, . . . , q, which satisfy (6.24) and hence the larger is the set
(6.26) to which they can jump in one time step. Since the integers νi and mi,
i = 1, . . . , q, increase the computational burden of the problem to be solved,
one should try to keep the numbers νi as low as possible, compatibly with
the rate of variation of the parameters. �

When A(p) satisfies Assumption 3.1, according to Theorem 6.5, we con-
clude that system (6.1) is exponentially stable for any parameter realization
p(·) satisfying (6.17) and (6.18) if the following LMIs problem admits a fea-
sible solution.

Problem 6.3.
Find positive definite matrices P (j1, . . . , jq) which satisfy condition (6.29) for
ji = 1, 2, . . . , νi, i = 1, . . . , q, with Rv

j replacing Rj . �
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6.2.1 Connections with the Quadratic Stability Approach

The approach proposed for bounded rate parameters can be applied to obtain
sufficient conditions, that are less conservative than those ones proposed in
the standard quadratic stability approach, even in the case of parameters
with unknown bounds on the rate of variation. The key point is that, in the
discrete-time context, the rate of variation of the i-th parameter pi is in any
case bounded if such parameter is assumed to belong to a finite interval.
Indeed pi cannot vary in the unit time step more than the length |p

i
− pi|

of the interval. Hence we have that inequality (6.18) is always satisfied with
hi = |p

i
− pi|.

Therefore if there is no explicit bound on the parameters rate of variation
we can establish the following corollary of Theorem 6.5 (stated directly in
terms of LMIs feasibility problem) which guarantees exponential stability of
system (6.1) for any time realization of the unknown parameter vector p(·).
Such a corollary is obtained by letting mi = νi − 1 in Theorem 6.5; indeed if
no bound on the rate of variation of the parameters is available, one has to
consider that in one step the i-th parameter pi can reach every sub-interval
of the interval [p

i
, pi].

Corollary 6.1 ( [18,19]). System (6.1) is exponentially stable for all vector-
valued sequences p(·) : k ∈ N0 �→ R if there exist ν1 ·ν2 ·· · ··νq positive definite
matrices P (j) = P (j1, j2, . . . , jq), such that for ji = 1, 2 . . . , νi, i = 1, 2, . . . , q

AT (p)P (j
�
⊕ v)A(p)− P (j) < 0 , ∀p ∈ Rj , ∀v ∈ V1 × · · · × Vq , (6.32)

where Vi := {−νi + 1, . . . , 0, . . . , νi − 1}, i = 1, . . . , q.

Note that, by assuming νi = 1, i = 1, . . . , q, Corollary 6.1 recovers the
classical quadratic stability condition; indeed in this case the Lyapunov func-
tion reduces to a fixed quadratic function in the form xT Px, where P is a
constant positive definite matrix. Conversely by assuming, for some i, νi > 1,
we can obtain a less conservative condition guaranteeing exponential stability
of the uncertain system.

6.3 A Real World Example:
Control of a Plasma Wind Tunnel

In this section we consider the problem of controlling a plasma wind tunnel,
to simulate the re-entry conditions of space vehicles by reproducing desired
profiles of pressure and temperature on a test model.

The whole control strategy proposed in [14, 15] consists of two terms: a
feedforward control action, obtained off-line via a classical receding horizon
technique [124], to guarantee the trajectory following in absence of exter-
nal disturbances and an output feedback control action to compensate for
possible misalignments between the desired trajectory and the actual one.
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Here we focus on the feedback controller which, to take into account the
numerical implementation, is designed in the discrete-time setting. The design
is based on the theory developed in the previous sections.

In [14,15] the plasma wind tunnel (PWT) available at the Italian Aerospace
Research Center (CIRA), is considered. It is shown that the linearized model
of the system under consideration can be represented by the uncertain system

x(k + 1) = A(p, γ)x(k) + B(p, γ)u(k) (6.33a)
y(k) = Cx(k) , (6.33b)

where p ∈ R
8 and γ ∈ R. The input to the system is u(k) =

(
Ia(k) ṁ(k)

)T ,
where Ia and ṁ are the sampled arc current and mass flow rate; the out-
puts is y(k) =

(
Ts(k) ps(k)

)T , where Ts and ps are the sampled stagnation
temperature and pressure on the test model. Moreover we have

A(p, γ) =


 [(k7 + k8)γ + p7 + p8 + p̂70 + p̂80] I2 I2 02

−(k7γ + p7 + p̂70)(k8γ + p8 + p̂80)I2 02 I2

02 02 02


 (6.34a)

B(p, γ) =


k1γ + p1 + p̂10 k2γ + p2 + p̂20

k3γ + p3 + p̂30 k4γ + p4 + p̂40

(k1γ + p1 + p̂10)(1 − k5γ − p5 − p̂50) (k2γ + p2 + p̂20)(1 − k5γ − p5 − p̂50)
(k3γ + p3 + p̂30)(1 − k6γ − p6 − p̂60) (k4γ + p4 + p̂40)(1 − k6γ − p6 − p̂60)
−(k1γ + p1 + p̂10)(k5γ + p5 + p̂50) −(k2γ + p2 + p̂20)(k5γ + p5 + p̂50)
−(k3γ + p3 + p̂30)(k6γ + p6 + p̂60) −(k4γ + p4 + p̂40)(k6γ + p6 + p̂60)




(6.34b)

C =
(
I2 02 02

)
. (6.34c)

The parameters p1, . . . , p8 are time-varying; moreover p ∈ R where

R :=[−10−3, 10−3] × [−1.15, 1.15]

× [−3 · 10−4, 3 · 10−4] × [−5.2 · 10−3, 5.2 · 10−3]

× [−1.7 · 10−3, 1.7 · 10−3] × [−10−3, 10−3]

× [−1.7 · 10−3, 1.7 · 10−3] × [−2.4 · 10−3, 2.4 · 10−3] .

The parameter γ ∈ [0, 1] is slowly varying and is subject to

|γ(k + 1) − γ(k)| ≤ 0.0096. (6.35)

Finally
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p̂10 = 6.5 · 10−3 k1 = 2.50 · 10−3

p̂20 = −0.04 k2 = 15.0
p̂30 = −1.0 · 10−4 k3 = 0.00
p̂40 = 0.022 k4 = 0.0172
p̂50 = 0.8146 k5 = −0.0189
p̂60 = 0.997 k6 = −0.0073
p̂70 = 0.9883 k7 = −0.025
p̂80 = 0.2461 k8 = −0.042 .

Our goal is to solving the following problem.

Problem 6.4.
Design a dynamical output feedback controller guaranteeing the closed loop
robust exponential stability of system (6.33) versus

i) the time-varying parameters p(·) : N0 → R;
ii)the slowly varying parameter γ(·) : N0 → [0, 1] (whose rate of variation is

bounded by (6.35)).

�

Note that the matrices of system (6.33) depend multi-affinely on p and
quadratically on γ.

6.3.1 Controller Design

Now consider the following output feedback γ-gain scheduled controller of
order nc

xc(k + 1) = Ac(γ)xc(k) + Bc(γ)y(k) (6.36a)
u(k) = Cc(γ)xc(k) + Dc(γ)y(k) , (6.36b)

where, by partitioning the interval [0, 1] into 10 sub-intervals of length 0.1
according to (6.19), we obtain the following correspondence for the controller
matrices

Ac : γ ∈ [γj , γj+1] �→ Acj ∈ R
nc×nc (6.37a)

Bc : γ ∈ [γj , γj+1] �→ Bcj ∈ R
nc×2 (6.37b)

Cc : γ ∈ [γj , γj+1] �→ Ccj ∈ R
2×nc (6.37c)

Dc : γ ∈ [γj , γj+1] �→ Dcj ∈ R
2×2 , (6.37d)

with j = 1, . . . , 10, γ1 = 0, γ11 = 1. Note that, by virtue of (6.35), the
maximum number of sub-intervals that the parameter γ can jump in one
time step is equal to one.

The closed loop connection of (6.33) and (6.36) gives rise to the following
system
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(
x(k + 1)
xc(k + 1)

)
= ACL(p, γ)

(
x(k)
xc(k)

)

:=
(

A(p, γ) + B(p, γ)DcjC B(p, γ)Ccj

BcjC Acj

)(
x(k)
xc(k)

)
, (6.38)

for all γ ∈ [γj , γj+1], j = 1, . . . , 10.
By inspection of (6.34) and (6.38) it is readily seen that the matrix func-

tion ACL is multi-affine in p and quadratic in γ. Let Ãj(p, ωj) and B̃j(p, ωj),
ωj =

(
γ δ

)T , be the multi-affine matrix functions obtained by replacing, ac-
cording to Procedures 3.1 and 3.2, in the matrices of system (6.33), restricted
to [γj , γj+1], j = 1, . . . , 10, the term f(γ) = γ2 by fm

j (γ, δ); correspondingly
define as ÃCL(p, ωj) the matrix obtained by substituting in (6.38) the matrix
functions A(·, ·) and B(·, ·) with Ãj(·, ·) and B̃j(·, ·). Consider the following
problem.

Problem 6.5.

Find Pj > 0, Acj , Bcj , Ccj , Dcj , j = 1, . . . , 10, such that for l = 1, . . . , 256,
i = 1, . . . , 4

ÃT
CL(p(l), ω

1
(i))P1ÃCL(p(l), ω

1
(i)) − P1 < 0

ÃT
CL(p(l), ω

1
(i))P2ÃCL(p(l), ω

1
(i)) − P1 < 0

}
(6.39a)

ÃT
CL(p(l), ω

j
(i))PjÃCL(p(l), ω

j
(i)) − Pj < 0

ÃT
CL(p(l), ω

j
(i))Pj+1ÃCL(p(l), ω

j
(i)) − Pj < 0

ÃT
CL(p(l), ω

j
(i))Pj−1ÃCL(p(l), ω

j
(i)) − Pj < 0


 , j = 2, . . . , 9 , (6.39b)

ÃT
CL(p(l), ω

10
(i))P10ÃCL(p(l), ω

10
(i)) − P10 < 0

ÃT
CL(p(l), ω

10
(i))P9ÃCL(p(l), ω

10
(i)) − P10 < 0

}
. (6.39c)

�

Since ÃCL(·, ·) is multi-affine in its arguments we can conclude, by using
the results of Sect. 6.1 and Theorem 6.5, that there exists an output feedback
dynamical, gain scheduled controller in the form (6.36) solving Problem 6.4 if
there exist Pj > 0, Acj , Bcj , Ccj and Dcj , j = 1, . . . , 10, such that Problem 6.5
admits a feasible solution.

6.3.2 Implementation Aspects and Numerical Results

Since Problem 6.5 is nonlinear in the optimization variables and due to the
large number of constraints, some difficulties arise when practically solving
this problem; in this section we consider a computationally tractable problem,
whose solution also satisfies the original Problem 6.5.

The basic observation, which allows to reduce the computational bur-
den in Problem 6.5, is the fact that the plant is, in the first approximation,
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diagonal dominant which means that the stagnation temperature mainly de-
pends on the arc current while the stagnation pressure depends on the mass
flow-rate. Therefore it is possible to separately design two Single-Input Single-
Output (SISO) controllers on the channels 1–1 and 2–2 on low order plants
and to verify a posteriori the robust stability of the two input-two output
whole plant. The following procedure is proposed for the controller synthesis.

Procedure 6.1.

Step 1
A state space model of the 1-1 and 2-2 channels, say (Ai(p, γ), bi(p, γ), cT

i ),
i = 1, 2, is computed.

Step 2
The interval [0, 1], in which γ takes values, is partitioned into 10 sub-
intervals of length 0.1.

Step 3
In order to decrease the number of parameters of the controller and for the
sake of implementation simplicity, a standard PID controller, gain sched-
uled with the parameter γ, is assumed. In this way it is also guaranteed
the complete rejection of the additive constant errors in the computation
of the feedforward control law.

Step 4
For each one of the two input-output channels a reduced optimization
problem is solved in order to achieve nominal performance plus robust
stability by means of the fixed structure gain scheduled PID controllers.

Step 5
Once the values of the two SISO controller gains have been obtained, the
solvability of Problem 6.5 for the whole plant is checked by means of the
solution of the LMI problem (6.39), where the only optimization variables
are the matrices Pj , j = 1, . . . , 10, the controller matrices being already
known from Step 4.

�

As for the choice of the PID controllers, for the arc current–stagnation
temperature channel it is assumed a complete PID controller in the form

kc1z
2 + kc2z + kc3

z2 − z
(6.40)

whose state space realization is

xc1(k + 1) = Ac1xc1(k) + bc1uc1(k)

=
(

0 0
1 1

)
xc1(k) +

(
kc3

kc2 + kc1

)
uc1(k) (6.41a)

yc1(k) = cc1xc1(k) + dc1uc1(k)

=
(
0 1

)
xc1(k) + kc1uc1(k) , (6.41b)
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while for the mass flow rate–stagnation pressure channel an integral action
was sufficient. In state space form we have

xc2(k + 1) = ac2xc2(k) + bc2uc2(k)
= xc2(k) + kc4uc2(k) (6.42a)

yc2(k) = cc2xc2(k) + dc2uc2(k)
= xc2(k) . (6.42b)

In the above expressions, according to (6.37), the scalars kci, i = 1, . . . , 4,
are gain scheduled with the parameter γ.

As for the optimization problems of Step 4, for the i − i input-output
channel (i = 1, 2) we have to solve the following problem.

Problem 6.6.
Find symmetric matrices Pj > 0 and scalar PID gains (kc1j , kc2j , kc3j for the
1 − 1 channel and kc4j for the 2 − 2 channel, j = 1, . . . , 10) which minimize
the following cost function

Ji =
Ni∑

k=1

[yi(k) − ymi(k)]2 + ρiu
2
i (k) (6.43)

subject to the constraints (6.39) properly rewritten considering the closed
loop system related to the i − i channel. In (6.43) Ni is the optimization
time horizon, yi(·) is the step response of the i-th closed loop nominal model
(obtained by letting pi = 0, i = 1, . . . , 8, γ = 0.5), ymi(·) is the step response
of the i-th channel reference model

(
1 +

2ζi

ωni
s +

s2

ω2
ni

)−1

, (6.44)

ui(·) is the i-th input of the system and ρi is a weighting scalar parameter. �

For the solution of Problem 6.6 we assumed N1 = 500, N2 = 200, ζ1 = 0.7,
ζ2 = 0.7, ωn1 = 2, ωn2 = 10, ρ1 = 0.001, ρ2 = 107.

In Table 6.1 the numerical values of the scheduled gains are given. The
solution has been obtained numerically by using the standard algorithms
implemented in the MATLABTM optimization toolbox [87], and by imposing
the LMI constraints with the aid of the LMI toolbox [83].

In Fig. 6.4 the feedback control signals Ia, ṁ and the tracking errors Ts,
ps time behaviors corresponding to the closed loop system response to a step
disturbance on the stagnation heat flux of 50 kW/m2, which is about the
20% of the initial nominal stagnation heat flux, are shown. The simulation
concerns the tracking of trajectory
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Table 6.1. Controller Gains

γ kc1 kc2 kc3 kc4

[0.0, 0.1] 31.000346 -27.390696 -2.9595254 4.0100000
[0.1, 0.2] 30.690535 -27.117538 -2.9230392 3.7000000
[0.2, 0.3] 30.385297 -26.846731 -2.8975177 3.9000000
[0.3, 0.4] 30.076711 -26.577080 -2.8648736 3.8000000
[0.4, 0.5] 29.760077 -26.297461 -2.8340359 3.9000000
[0.5, 0.6] 29.453834 -26.025840 -2.8020896 3.9000000
[0.6, 0.7] 29.140668 -25.748988 -2.7787466 3.9000000
[0.7, 0.8] 28.834175 -25.472897 -2.7503296 4.0000000
[0.8, 0.9] 28.526868 -25.200378 -2.7133745 4.0000000
[0.9, 1.0] 28.215890 -24.931375 -2.6863734 3.9000000
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Fig. 6.4. The feedback control action and the tracking errors

Tsd(t) =




1270K for t ∈ [0, 7) and t ∈ [53, 60]
1270 + 50(t − 7)K for t ∈ [7, 20)
1920K for t ∈ [20, 27)
1920 − 25(t − 27)K for t ∈ [27, 53)

psd(t) = 50mb t ∈ [0, 60] ,
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and is performed in presence of an initial state displacement on the temper-
ature of the test model of 40K.

The perturbation is recovered by the control system and the perfect track-
ing is guaranteed in a few seconds; moreover the control laws are feasible with
respect to the capabilities of the power supply system and the air supply sys-
tem of the plant.

We conclude the section remarking that an accurate analysis must be
performed regarding the gain scheduling mechanism of the controller with the
parameter γ. For more details on this point the interested reader is referred
to [14].

In the following section, by applying the results of Sects. 5.2.1 and 5.4.2,
we shall consider a more systematic approach to the controller design which,
as usual, will require the solution of LMIs based feasibility problems.

6.4 Quadratic Stabilization

6.4.1 Parametric Uncertainties

Consider the uncertain discrete-time system in the form

x(k + 1) = A(p)x(k) + B(p)u(k) , (6.46)

where x(k) ∈ R
n and u(k) ∈ R

m.

Definition 6.2 (Quadratic stabilizability via state feedback). The
uncertain system (6.46) is said to be quadratically stabilizable via linear state
feedback control if and only if there exists a matrix G ∈ R

m×n such that the
closed loop system, obtained from (6.46) by letting u = Gx,

x(k + 1) =
(
A(p) + B(p)G

)
x(k)

is QS. �

By virtue of Theorem 6.1 quadratic stabilizability via state feedback of
the discrete-time system (6.46) is equivalent to quadratic D-stabilizability
via state feedback of the continuous-time system (5.2) with D the unit disk
centered at the origin of the complex plane. Therefore, from Theorem 5.5, we
can state the following result.

Theorem 6.6. System (6.46) is quadratically stabilizable via linear state
feedback control if and only if there exist a positive definite matrix Q and a
matrix V such that

Q > 0 (6.47a)(
−Q A(p)Q + B(p)V

QAT (p) + V T BT (p) −Q

)
< 0 ; (6.47b)

in this case a state feedback controller which quadratically stabilizes system
(6.46) is given by u = Gx with G = V Q−1.
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If Assumption 5.1 holds a necessary and sufficient condition for quadratic
stabilizability via state feedback of system (6.46) is the feasibility of the
following problem involving LMIs.

Problem 6.7.
Find a symmetric matrix Q and a matrix V such that

Q > 0 (6.48a)(
−Q A(p(i))Q + B(p(i))V

QAT (p(i)) + V T BT (p(i)) −Q

)
< 0 , i = 1, . . . , 2q .

(6.48b)

�

Now we proceed with the output feedback case; consider the uncertain
system

x(k + 1) = A(p)x(k) + B(p)u(k) (6.49a)
y(k) = C(p)x(k) , (6.49b)

where y(k) ∈ R
r.

Definition 6.3 (Quadratic stabilizability via output feedback). The
uncertain system (6.49) is said to be quadratically stabilizable via parameter
dependent output feedback linear control if and only if there exists a dynamical
controller in the form

xc(k + 1) = AK(p)xc(k) + BK(p)y(k) (6.50a)
u(k) = CK(p)xc(k) + DK(p)y(k) , (6.50b)

where xc(k) ∈ R
n, and AK(·), BK(·), CK(·), DK(·) are continuous matrix-

valued functions, such that the closed loop system obtained by the connection
of system (6.49) and controller (6.50) is QS. �

From Theorem 5.6, with D the unit disk centered at the origin of the
complex plane, we obtain the following result.

Theorem 6.7. System (6.49) is quadratically stabilizable via parameter de-
pendent output feedback linear control if and only if there exist positive defi-
nite matrices Q and S and matrix-valued functions V (·) ∈ C0(R, Rm×n) and
W (·) ∈ C0(R, Rn×r) such that, for all p ∈ R,

(
−Q A(p)Q + B(p)V (p)

QAT (p) + V T (p)BT (p) −Q

)
< 0 (6.51a)

(
−S SA(p) + W (p)C(p)

AT (p)S + CT (p)WT (p) −S

)
< 0 . (6.51b)

In this case a quadratically stabilizing controller has the structure (5.36) with
G(p) = V (p)Q−1 and L(p) = S−1W (p).
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When Assumption 5.2 holds the feasibility of the following LMIs problem
guarantees quadratic stabilizability via output feedback.

Problem 6.8.
Find symmetric matrices Q, S and matrices V , W , such that

Q > 0 (6.52a)
S > 0 (6.52b)(

−Q A(p(i))Q + B(p(i))V
QAT (p(i)) + V T BT (p(i)) −Q

)
< 0 , i = 1, . . . , 2q

(6.52c)(
−S SA(p(i)) + WC(p(i))

AT (p(i))S + CT (p(i))WT −S

)
< 0 , i = 1, . . . , 2q.

(6.52d)

�

If Problem 6.8 is feasible, a quadratically stabilizing controller has the
structure (5.36) with constant gain matrices G = V Q−1 and L = S−1W .

6.4.2 Norm Bounded Uncertainties

Necessary and sufficient conditions for quadratic stabilizability can be readily
obtained by applying the corresponding results for quadratic D-stabilizability
of continuous-time systems with D the unit disk centered at the origin of the
complex plane.

As for quadratic stabilizability via state feedback we have the following
result. Let us consider the uncertain system

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)u(k) , (6.53)

where x(k) ∈ R
n, u(k) ∈ R

m and the uncertainty satisfies (5.72).
From Theorem 5.12 we have the following result.

Theorem 6.8. System (6.53), (5.72) is quadratically stabilizable via state
feedback control if and only if there exist a positive definite matrix Q and a
matrix V such that


−Q AQ + BV F 0

QAT + V T BT −Q 0 QET
1 + V T ET

2

FT 0 −Ip HT

0 E1Q + E2V H −Iq


 < 0 . (6.54)

In this case a state feedback controller which quadratically stabilizes system
(6.53), (5.72) is given by u = Gx with G = V Q−1.
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Now let us consider the output feedback case; consider the uncertain sys-
tem

x(k + 1) =
(
A + ∆A

)
x(k) +

(
B + ∆B)u(k) (6.55a)

y(k) =
(
C + ∆C

)
x(k) +

(
D + ∆D)u(k) , (6.55b)

where y(k) ∈ R
r and the uncertainty satisfies (5.78).

From Theorem 5.13 we have the following result.

Theorem 6.9. System (6.55), (5.78) is quadratically stabilizable via output
feedback linear control in the form

xc(k + 1) = AKxc(k) + BKy(k) (6.56a)
u(k) = CKxc(k) + DKy(k) (6.56b)

if and only if there exists positive definite matrices S, Q and matrices ÂK ,
B̂K , ĈK and DK such that (5.11) holds and




−Q −In AQ + BĈK A + BDKC F1 + BDKF2 0

−In −S ÂK SA + B̂KC SF1 + B̂KF2 0

QAT + ĈT
KBT ÂT

K −Q −In 0 QET
1 + ĈT

KET
2

AT + CT DT
KBT AT S + CT B̂T

K −In −S 0 ET
1 + CT DT

KET
2

F T
1 + F T

2 DT
k BT F T

1 S + F T
2 B̂T

K 0 0 −Ip HT + F T
2 DT

KET
2

0 0 E1Q + E2ĈK E1 + E2DKC H + E2DKF2 −Iq




<0 .

(6.57)

In this case a quadratically stabilizing controller has the structure (6.56) where
AK , BK and CK can be obtained by solving (5.85).

Summary

In this chapter we have considered discrete-time linear systems subject to
uncertainties. A key point is that quadratic stability of a given discrete-time
linear systems is equivalent to quadratic D-stability, with D the unit disk
centered at the origin of the complex plane, of the continuous-time system
having the same system matrix.

A necessary and sufficient condition for quadratic stability when the sys-
tem depends on parametric uncertainties is derived; it is turned into an LMIs
based feasibility problem when the matrix A(·) depends on parameters as the
ratio of a multi-affine matrix-valued function and a multi-affine polynomial.
This result was first proven in [16] without using Shur Complements argu-
ments. When the dependence on parameters does not satisfy Assumption 3.1
we can resort to one of the approaches suggested in Chap. 3.
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Concerning the systems depending on uncertainties in norm bounded
form, again the equivalence between quadratic D-stability for continuous and
quadratic stability for discrete-time systems is exploited; indeed a necessary
and sufficient condition for quadratic stability is obtained via the direct appli-
cation of Theorem 3.10. Moreover the connections between quadratic stability
and H∞ theory found in the continuous-time case still hold, with the obvious
changes, for discrete-time systems.

It is interesting to note that the parallel between continuous and discrete-
time systems is also valid for the multi-block case. In [134] a pair of counter-
examples shows that, in the multi-block case, quadratic stability for real
uncertainties and robust stability for complex uncertainties are no longer
equivalent concepts.

Then we have considered systems depending on bounded rate parameters.
A sufficient condition for stability has been provided; as usual, this condition
is given in terms of the solvability of a feasibility problem involving LMIs.
Differently from the continuous-time case, piecewise constant parameter de-
pendent quadratic Lyapunov functions have been used in order to establish
the main result of Sect. 6.2.

It is worth to notice that, in the hybrid piecewise affine (PWA) systems
context, an approach similar to the one described in Sect. 6.2 has been pro-
posed in [70] and [125]. The main difference between the robust control con-
text, considered in this chapter, and the hybrid system context is that in the
first case the focus in on the vector of uncertain parameters, whose jumps in a
discrete time interval are bounded by its rate of variation, while in the second
case the focus is on the events that possibly drive the state from a certain
region to another at each time-step. In [70] and [125] sufficient conditions for
the stability and stabilizability with H2/H∞ performance via state feedback
of PWA systems are proposed.

An approach based on parameter dependent Lyapunov functions has been
used in [54] and [55] where, however, the parameters rate of variation is not
taken into account and the parameters bounds are given in terms of the vector
1-norm instead of the vector ∞-norm (note, however, that the two norms are
equivalent when the uncertain system depends on just one parameter).

Finally, in [147] a sufficient condition for the existence of a parameter de-
pendent Lyapunov function for a polytopic discrete-time system is provided.
For a general discussion on parameter dependent Lyapunov functions in the
discrete-time context the interested reader is referred to [92] (for the specific
application to systems depending on bounded rate parameters see [94]); for
an LPV perspective of the topics discussed in this chapter see [161].

An important point is that, differently from continuous-time systems, dis-
crete time-varying parameters are always bounded rate [18,19]. This because
a discrete-time parameter cannot vary in the unit time step more than the
length of the interval to which it belongs. Hence we have that inequality
(6.18) is always satisfied with at least hi = |p

i
− pi|. Therefore, also when
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no information on the parameter rate of variation is known, the approach of
Sect. 6.2 can be applied to obtain less conservative conditions for system sta-
bility (obviously at the price of a greater computational burden with respect
to the classical quadratic stability approach of Sect. 6.1).

The practical application of some results established in the previous sec-
tions has been illustrated in Sect. 6.3, where the robust stabilization of a
plasma wind tunnel is considered. The interesting point is that this system is
subject to both fast and slowly varying parameters; the designed controller,
which is scheduled with respect to the slowly varying parameter, is shown to
exhibit good performances.

Finally, the equivalence between quadratic stability of systems (6.1),
(6.2) and quadratic D-stability of systems (3.1), (3.116) respectively, with
D the unit disk, allows to readily find necessary and sufficient conditions for
quadratic stabilizability via both state and output feedback, both for para-
metric and norm bounded uncertainties.

Exercises

Exercise 6.1. Show that condition (6.6) is equivalent to (3.86) when D is
the unit disk centered at the origin of the complex plane. �

Exercise 6.2. Consider system (6.9) with

A0 =
(

0.9979 −0.01
0.01 1

)
B = b =

(
0.008

0

)
C = cT =

(
0 1

)
. (6.58)

Show that ρQ
∼= 0.249. �

Exercise 6.3. Prove Theorem 6.3. �

Exercise 6.4. In this example we extend the concept of gain margin when
the parameter has a bounded rate. Consider again the uncertain discrete-
time system described by (6.58). We can associate two different robustness
measures with such system; one is the QSM defined in Example 6.1 and
computed in Exercise 6.2, the other is the gain margin, defined as follows2

ρG := sup
{
θ > 0 : matrix A0 + bpcT is Shur∀p ∈ [−θ, θ]

}
. (6.59)

In this case the gain margin can be computed with the aid of the Jury
Stability criterion [103]. As in the continuous-time case, the gain margin
represents the amplitude of the smallest constant parameter which destabi-
lizes the system. In the current case, we have that ρG

∼= 1.25; as expected,
ρQ < ρG.

2 A square matrix is said to be Shur if all its eigenvalues are strictly enclosed in
the unit disk centered at the origin of the complex plane.
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Next we consider the situation in which p is time-varying and satisfies

|p(k)| ≤ p := 1 for all k ∈ N0 . (6.60)

By using Theorem 6.5, compute an estimate of the supremal allowable h
such that the system is exponentially stable for all p(·) satisfying (6.60) and
(6.18). �



A. Appendix

A.1 Definite Matrix Sets

Definition A.1 (Polytope). Given a linear space V over R and µ points
v(i) ∈ V, i = 1, . . . , µ, a polytope of vertices v(i) is a set in the form

Π =

{
v ∈ V : v =

µ∑
i=1

λiv(i),

µ∑
i=1

λi = 1, λi ≥ 0 , i = 1, . . . , µ

}
. (A.1)

We denote the set of the vertices of the polytope by Πv := {v(i), i =
1, . . . , µ}. �

Note that a hyper-box R ⊂ R
q is a particular polytope with 2q vertices.

Definition A.2 (Convex hull). Given a linear space V over R and a set
E ⊂ V the convex hull of E is defined as the subset of V composed of all
vectors obtained via convex combination from the elements of E, namely

conv(E) :=

{
v ∈ V : v =

h∑
i=1

λiv
(i),

h∑
i=1

λi = 1, λi ≥ 0, v(i) ∈ E, i = 1, . . . , h , h = 1, 2, . . .

}
.

(A.2)

�

Obviously conv(E) ⊇ E, and the equality holds if E is a polytope. More-
over, note that the convex hull of a finite set is a polytope.

The next result is known in the literature as the “Mapping Theo-
rem” [180].

Lemma A.1. Let F : R → R
n×n, p → F (p), be a multi-affine matrix-valued

function, where R ⊂ R
q is a hyper-box. Then

conv (F (R)) = conv (F (Rv)) .
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Originally Lemma A.1 was stated for vector-valued functions; however its
extension to the matrix case is immediate, taking into account that we can
establish an isomorphism between R

n×n and R
n2

.
When the dependence is affine (rather than multi-affine), the image

(rather than the convex hull of the image) of a matrix function defined over
a hyper-box coincides with the convex hull of the images of the vertices of
the hyper-box. This can be simply proved by using Lemma A.1.

Theorem A.1. Let F : R → R
n×n, p → F (p), be an affine matrix-valued

function, where R ⊂ R
q is a hyper-box. Then

F (R) = conv (F (Rv)) .

Proof. Note that H ∈ F (R) implies that H ∈ conv (F (R)), which, by virtue
of Lemma A.1, in turn implies that H also belongs to conv (F (Rv)).

Conversely, assume that H ∈ conv (F (Rv)). Therefore there exist λi ≥ 0,
i = 1, . . . , 2q,

∑2q

i=1 λi = 1, such that

H =
2q∑

i=1

λiF (p(i))

= F

(
2q∑

i=1

λip(i)

)
, (A.3)

where the last equality is a consequence of the fact that F (·) is affine. Since
R is a hyper-box, we have that

∑2q

i=1 λip(i) ∈ R; from this the proof follows.

Now, given a set of symmetric matrices Γ , we write Γ > 0 meaning that
G > 0 for all G ∈ Γ .

Lemma A.2. A set of symmetric matrices Γ ⊂ R
n×n is positive definite iff

conv(Γ ) is positive definite.

Proof. The fact that conv(Γ ) > 0 implies Γ > 0 is obvious. Conversely,
assume that Γ > 0. Now any matrix G ∈ conv(Γ ) can be written, according
to the definition of convex hull, as

G =
h∑

i=1

λiGi, (A.4)

where h is some integer,
∑h

i=1 λi = 1, λi ≥ 0, and Gi ∈ Γ , i = 1, . . . , h.
Since Gi > 0, i = 1, . . . , h, we conclude that G is positive definite. From the
arbitrariness of G, the proof follows.

From Lemmas A.1 and A.2 we obtain the following fundamental result.
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Theorem A.2 ( [12, 85]). Let us consider the matrix-valued function F :
R → R

n×n, p → F (p), where R ⊂ Rq is a hyper-box and

F (p) =
NF (p)
dF (p)

,

with NF (·) and dF (·) multi-affine functions of p and dF (p) 	= 0 for all p ∈ R.
Then we have that F (R) > (<)0 iff F (Rv) > (<)0.

Proof. That F (R) > 0 implies F (Rv) > 0 is obvious; conversely, assume that
F (Rv) > 0.

Since dF (p) cannot change sign in R assume that

dF (p) > 0 , ∀p ∈ R . (A.5)

Condition (A.5) implies that dF (p) > 0 for all p ∈ Rv; since F (Rv) > 0, we
have that NF (Rv) > 0.

We have the following chain of statements

NF (Rv) > 0 ⇒ conv(NF (Rv)) > 0 by Lemma A.2
⇒ conv(NF (R)) > 0 by Lemma A.1
⇒ NF (R) > 0 by Lemma A.2 . (A.6)

The last inequality together with condition (A.5) guarantee that F (R) > 0.
The proof is analogous when dF (p) < 0 in R.

A.2 Kronecker Product and Sum

Given two matrices A ∈ R
n×m and B ∈ R

p×q, the Kronecker product of A
and B is defined as

A ⊗ B :=




a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

an1B an2B · · · anmB


 ∈ R

np×mq . (A.7)

Some properties of the Kronecker product are (all matrices are intended
to be of compatible dimensions)

1 ⊗ A = A (A.8a)
(A + B) ⊗ C = A ⊗ C + B ⊗ C (A.8b)

(AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) (A.8c)

(A ⊗ B)T = AT ⊗ BT (A.8d)

(A ⊗ B)−1 = A−1 ⊗ B−1 . (A.8e)
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If A and B are square matrices of dimensions n × n and p × p respec-
tively, the matrix A ⊗ B is square of dimension np × np. In this case the
eigenvalues of A ⊗ B are the pairwise products of the eigenvalues of A and
B; in other words the eigenvalues of A ⊗ B are the elements of the set
{λi(A)λj(B) , i = 1, . . . , n, j = 1, . . . , p}.

In the same way, given two matrices of compatible dimensions A and B,
the Kronecker sum of A and B is given by

A ⊕ B := A ⊗ I + I ⊗ B . (A.9)

If A and B are square matrices of dimensions n × n and p × p respec-
tively, we have A ⊕ B = A ⊗ Ip + In ⊗ B ∈ R

np×np; in this case the
eigenvalues of A ⊕ B are the pairwise sums of the eigenvalues of M and
N ; in other words the eigenvalues of M ⊕ N are the elements of the set
{λi(A) + λj(B) , i = 1, . . . , n, j = 1, . . . , p}.

A.3 The Lyapunov Equation

In this section we deal with the generalized Lyapunov equation

MP + PN = −Q , (A.10)

where M ∈ R
m×m and N ∈ R

n×n.
In [41] it is shown that equation (A.10) admits a unique solution P iff

M ⊕ N in nonsingular, that is iff (see Appendix A.2)

λi(M) + λj(N) 	= 0 , i = 1, . . . , m , j = 1, . . . , n ; (A.11)

in this case we have

vec (P ) = −(NT ⊕ M)−1 vec (Q) , (A.12)

where vec (F ) denotes the operation of stacking the columns of matrix F .
We also use the notation

P = Lyap
(
M,N,Q

)
. (A.13)

When M = AT and N = A ∈ R
n×n we obtain the classical Lyapunov

equation

AT P + PA = −Q . (A.14)

Note that if A is Hurwitz, condition (A.11) is satisfied.
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A.3.1 Some Useful Inequalities

Let us consider the Lyapunov equation (A.14). Assume that A is Hurwitz and
Q is positive definite; in this case P is also positive definite and (see [108])

λmin(P ) ≥ λmin(Q)
2‖A‖ . (A.15)

We now recall the following lemma.

Lemma A.3. Consider the linear time-invariant system

ẋ(t) = Ax(t) . (A.16)

Then system (A.16) is exponentially stable if and only if there exist positive
scalars α and k such that for all t ≥ 0

‖ exp(At)‖ ≤ ke−αt .

Proof. It immediately follows from Theorem 2.5.

When A is Hurwitz the unique solution of equation (A.14) can be written
(see [42], p. 188)

P =
∫ +∞

0

exp(AT t)Q exp(At)dt ; (A.17)

in this case from Lemma A.3 we can derive the following upper bound for
the norm of P

‖P‖ ≤
∫ +∞

0

‖ exp(At)‖2‖Q‖dt

≤ k2

∫ +∞

0

e−2αtdt‖Q‖

=
k2‖Q‖

2α
, (A.18)

for some positive scalars α and k.
When Q is positive definite, the solution P also turns out to be positive

definite and (A.18) can be rewritten

λmax(P ) ≤ k2λmax(Q)
2α

. (A.19)

A.3.2 Discrete-Time Lyapunov Equation

Consider the discrete-time Lyapunov equation
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AT PA − P = −Q , (A.20)

where A ∈ R
n×n is Shur and Q ∈ R

n×n is positive definite; in this case P is
also positive definite and (see [84])

λk(Q) ≤ λk(P ) , k = 1, 2, . . . , n , (A.21)

where, for a given positive definite matrix S ∈ R
n×n, we have ordered the

eigenvalues as λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S).
In particular we have

λmin(P ) = λn(P ) ≥ λn(Q) = λmin(Q) . (A.22)

The following result is the discrete-time counterpart of Lemma (A.3); it
is a straightforward consequence of Theorem 2.12.

Lemma A.4. Consider the linear time-invariant discrete-time system

x(k + 1) = Ax(k) . (A.23)

Then system (A.23) is exponentially stable if and only if there exist positive
scalars ρ ∈ [0, 1) and m such that for all k = 0, 1, . . . , n, . . .

‖Ak‖ ≤ mρk .

When A is Shur, it is simple to recognize that the unique solution of
equation (A.20) has the following expression

P =
+∞∑
k=0

(
Ak

)T
QAk . (A.24)

Therefore, from Lemma A.4, there exist positive scalars ρ ∈ [0, 1) and m
such that

‖P‖ ≤
+∞∑
k=0

‖Ak‖2‖Q‖

≤ m2
+∞∑
k=0

ρ2k‖Q‖

=
m2‖Q‖
1 − ρ2

. (A.25)

When Q is positive definite, the solution P also turns out to be positive
definite and (A.25) can be rewritten

λmax(P ) ≤ m2λmax(Q)
1 − ρ2

. (A.26)
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A.4 Shur Complements

In the following we present a fundamental result of LMIs theory, that is how
to transform a Riccati type inequality into an LMI. First note that we have(

Q S
ST R

)
=
(

I 0
ST Q−1 I

)(
Q 0
0 R − ST Q−1S

)(
I Q−1S
0 I

)
. (A.27)

Since the left and right multipliers at the RHS in (A.27) are full rank
matrices, the LHS in (A.27) is positive definite iff the matrix(

Q 0
0 R − ST Q−1S

)
(A.28)

is positive definite. Therefore we can state the following result.

Fact A.1. The matrix(
Q S
ST R

)
(A.29)

is positive definite iff Q is positive definite and R− ST Q−1S is positive defi-
nite.

The matrix R − ST Q−1S is called the Shur Complement of Q.
In the same way we can write(

Q S
ST R

)
=
(

I SR−1

0 I

)(
Q − SR−1ST 0

0 R

)(
I 0

R−1ST I

)
, (A.30)

from which we obtain the following alternative condition for the positive
definiteness of matrix (A.29).

Fact A.2. The matrix(
Q S
ST R

)
(A.31)

is positive definite iff R is positive definite and Q− SR−1ST is positive defi-
nite.

The matrix Q − SR−1ST is called the Shur Complement of R.
Since(

Q S
ST R

)
< 0 (A.32)

can be equivalently rewritten(
−Q −S
−ST −R

)
> 0 , (A.33)

we have the following conditions concerning negative definiteness.
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Fact A.3. The following conditions are equivalent each other

i) Matrix
(

Q S
ST R

)
(A.34)

is negative definite;
ii) both matrices Q and R − ST Q−1S are negative definite;
iii) both matrices R and Q − SR−1ST are negative definite.



Notation

Matrices and vectors are denoted by capital and small letters respectively;
scalars are denoted by small letters.

Abbreviations

iff if and only if
wrt with respect to
GEVP Generalized Eigenvalue Problem
LFT Linear Fractional Transformation
LHS Left Hand Side
LMI Linear Matrix Inequality
LPV Linear Parameter Varying
LQ Linear Quadratic
MGM Multivariable Gain Margin
MQS Multi-Affine Quadratically Stable
QS Quadratically Stable
QSM Quadratic Stability Margin
RHS Right Hand Side

Mathematical Symbols

: such that
∀ for all
∃ there exists
:= equal by definition
p ⇒ q p implies q

Set Theory

x ∈ A The element x belongs to the set A
S1

⋃
S2 The union of the sets S1 and S2

S1

⋂
S2 The intersection of the sets S1 and S2

S1 ⊆ S2 The set S1 is a subset of the set S2
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S1 ⊂ S2 The set S1 is a strict subset of the set S2

S1 × S2 Cartesian product between the sets S1 and S2

[t, T ] Closed interval t ≤ τ ≤ T
card(S) Number of elements in the set S
conv(E) Convex hull of the set E
Πv Set of the vertices of the polytope Π

p : step : p The vector
(
p p + step · · · p − step p

)T

Numerical Sets

N0 (N) Nonnegative (positive) integer numbers
R Field of real numbers
R

+ Nonnegative real numbers
C Field of complex numbers
R

n Set of the n-tuple of real numbers
R

m×n (Cm×n) Real (complex) matrices with m rows and n columns

Function spaces

PC(Ω,S) Space of the piecewise continuous vector (matrix)-
valued functions defined over Ω and attaining values
into the set S

C0(Ω,S) Space of the continuous vector (matrix)-valued
functions defined over Ω and attaining values into the
set S

L2(Ω,S) Space of the square integrable vector-valued functions
defined over Ω and attaining values into the set S

l2(Ω,S) Space of the square summable vector-valued sequences
defined over Ω and attaining values into the set S

RHn×m
∞ Space of the real-rational proper stable transfer

functions of dimension n × m; the dimension is omitted
if clear from the context

Vector and matrix operators

xi The i-th element of the vector x
aij The ij-th element of the matrix A
det(A) Determinant of a square matrix A
trace(A) Trace of a square matrix A
A−1 Inverse of a square matrix A
AT Transpose of matrix A
A∗ Conjugate transpose of matrix A
diag(A1, A2, · · · , Ar) Block diagonal matrix with A1, A2, . . . , Ar on the

diagonal
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λi(A) i-th eigenvalue of a square matrix A
λmax(A) (λmin(A)) The maximum (minimum) eigenvalue of the

positive definite matrix A
σ(A) Smallest singular value of the matrix A
A > 0 A is (symmetric) positive definite
A(≥)0 A is (symmetric) positive semidefinite
A < 0 A is (symmetric) negative definite
A ≤ 0 A is (symmetric) negative semidefinite
A >> (<<)0 The matrix-valued function A(·) is positive

(negative) definite
rank(A) The rank of matrix A
A ⊗ B Kronecker product of matrices A and B

Special matrices

In Identity matrix of dimension n × n;
n is omitted if the dimension is clear from the context

0n Zero matrix of dimensions n × n;
n is omitted if the dimension is clear from the context

Norms

‖x‖ Euclidean norm of x ∈ R
n;

L2 norm of the square integrable vector-valued function
x(·)

‖x‖∞ Infinity norm of the vector x ∈ R
n

(= max {|x1|, . . . , |xn|})
‖x‖w

∞ Infinity norm of the vector x weighted by the vector w
‖A‖ Spectral norm of the matrix A (i. e. the maximum

singular value of A)
‖A‖F Frobenius norm of matrix A (=

√
Trace(AT A))

‖Γzw‖ L2 (l2) induced norm of the linear operator mapping
the input vector w to the output vector z

‖H‖∞ Infinity norm of the transfer function H(s).

Scalar operators

ln(a) The logarithm of a ∈ R
+

|α| Absolute value of α ∈ R (C)
Re(α) Real part of α ∈ C

Statistical

Pr{E} Probability of the event E
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Other symbols
(

A B

C D

)
Compact notation (also usedwithout internal delimiters)

to denote the state space realization of the system
ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)
End of theorems, lemmas, corollaries, facts and proofs


 End of examples
� End of assumptions, definitions, problems, procedures,

exercises and remarks.
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Quadratic stabilizability, 122
Quadratic stabilization
– and L2, 130, 142
– and LQ, 133, 146
– and pole placement, 126, 140
– continuous-time systems, 113
– – via output feedback, 116, 137
– – via state feedback, 114, 136
– discrete-time systems, 166, 168
– via parameter dependent Lyapunov

functions, 134

Routh Criterion, 3

Separation Property, 116, 122, 125,
138, 149

Shur complement, 179
Shur matrix, 171, 178
Slowly varying systems, 16, 27, 28
Small Gain Theorem, 86, 155
Stability

– absolute, 23, 84
– exponential
– – continuous-time systems, 12, 13, 15
– – discrete-time systems, 25, 26
– Hurwitz, 13
– internal, 85, 155
– robust, 54
– uniform, 11
– uniform asymptotic, 11
State Transition Matrix
– continuous-time systems, 8
– discrete-time systems, 24
Structured singular value, 88

Uncertainties
– bounded rate, 3, 93, 134, 155, 161
– norm bounded, 2, 70, 73–76, 78, 90,

91, 110, 136, 138, 153, 168
– parametric, 2, 31, 73, 74, 78, 93, 113,

151, 166

Well posedness, 85

Youla parameterization, 116, 135


