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Preface

The book is devoted to investigation of a series of problems of convective heat and
mass transfer in rotating-disk systems. Such systems are widespread in scientific
and engineering applications. As examples from the practical area, one can mention
gas turbine and computer engineering, disk brakes of automobiles, rotating-disk air
cleaners, systems of microclimate, extractors, dispensers of liquids, evaporators, cir-
cular saws, medical equipment, food process engineering, etc. Among the scientific
applications, it is necessary to point out rotating-disk electrodes used for experimen-
tal determination of the diffusion coefficient in electrolytes. The system consisting
of a fixed disk and a rotating cone that touches the disk by its vertex is widely used
for measurement of the viscosity coefficient of liquids.

For time being, large volume of experimental and computational data on param-
eters of fluid flow, heat and mass transfer in different types of rotating-disk systems
have been accumulated, and different theoretical approaches to their simulation have
been developed. This obviously causes a need of systematization and generalization
of these data in a book form.

Three books are widely known currently, which are completely or par-
tially devoted to the considered subject. The classical books of L.A. Dorfman
“Hydrodynamic Resistance and the Heat Loss of Rotating Solids” (Oliver and
Boyd, Edinburgh, UK, 1963) and V.G. Levich “Physicochemical Hydrodynam-
ics” (Prentice-Hall, Inc., Englewood Cliffs, N.J.: 1962) for decades became desk-
top books for the specialists in the fields of convective heat transfer at air flow in
rotating-disk systems and experimental determination of the diffusion coefficient in
electrolytes with the help of the rotating-disk electrode technique, respectively. The
fundamental monograph of J.M. Owen, R.H. Rogers “Flow and Heat Transfer in
Rotating-Disc Systems” (Research Studies Press Ltd., UK, 1989 and 1995) repre-
sents an in-depth insight into the modern state-of-the-art of investigations in the field
of secondary air cooling systems of gas turbines including data for a free rotating
disk, rotor–stator systems, as well as rotating cavities formed by parallel co-rotating
disks.

For the last two decades, considerable advance has been done in experimental
and theoretical research of scientific and practical problems of convective heat and
mass transfer, which the above-mentioned books are devoted to. However, degree
of critical analysis and generalizations of the accumulated data, both in these books
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viii Preface

and in newly published works of different authors, are frequently insufficient even
at the level of similarity equations. A series of problems were successfully solved
with the help of integral methods. However, theoretical foundations of the known
integral methods have appeared insufficiently developed that in a number of cases
resulted in essential errors of the solutions obtained on the basis of these meth-
ods. In a number of works, modelling approaches using exact self-similar solutions
of the Navier–Stokes and energy equations have been worked out. However, for
many problems in rotating-disk systems, possible self-similar forms of the solu-
tions have not been found that essentially narrows down capabilities of theoretical
modelling.

A number of other important scientific and practical problems are not elucidated
in the aforementioned books. Among them, the following problems of convective
heat transfer of a disk rotating in air are of interest from the point of view of this
book: (a) non-stationary conjugate heat transfer; (b) impingement of uniform flow
or a single co-axial jet onto an orthogonal disk; (c) flow and heat transfer in a gap
between a rotating disk and/or a cone touching the disk by its vertex; (d) flow in
a rotating-disk air cleaner. Also actual are problems of convective heat and mass
transfer at Prandtl and Schmidt numbers: (e) moderately exceeding unity as applied
to the technique of experimental measurement of mass transfer rate for naphtha-
lene sublimation in air and (f) much exceeding unity with reference to problems of
electrochemistry.

The problems mentioned above became motivation to undertake investigations
that laid down the basis for preparation of this book.

The present book consists of eight chapters. The main attention in the book is
given to heat transfer in air flow, except for Chap. 8, where problems of heat and
mass transfer at Prandtl numbers or Schmidt larger than unity are considered.

Chapter 1 includes characterization of several known types of rotating-disk sys-
tems, description of forces that act on flow and general notations of momentum, con-
tinuity, energy and convective diffusion equations in different coordinate systems.

In Chap. 2, differential equations of motion and energy are written as applied to
rotating-disk systems, methods of their solution known in the literature are briefly
described, an integral method developed by the author is outlined and a general
solution is written for the cases of disk rotation in a fluid rotating as a solid body
and simultaneous imposed accelerating radial flow.

Chapter 3 represents analysis and generalization of the data and models of differ-
ent authors for a free rotating disk. With the help of the integral method developed
by the author, analytical and numerical solutions are obtained possessing essentially
higher accuracy, than the solutions known before.

In Chap. 4, self-similar solutions of the problem of non-stationary heat convec-
tion, as well as analytical and numerical solutions of the problem of conjugate non-
stationary heat transfer of the disk are represented. Peculiarities of application of
transient experimental techniques for determination of heat transfer coefficients are
also discussed.

Chapter 5 is devoted to analysis of the solutions obtained with the help of the inte-
gral method developed by the author for the case of disk rotation in a fluid rotating
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as a solid body without imposed radial flow, and also for accelerating radial flow
(due to its orthogonal impingement) without imposed external rotation.

In Chap. 6, hydrodynamics and heat transfer are modelled for outward under-
swirled and overswirled radial flow between parallel co-rotating disks (the integral
method), and also aerodynamics and heat transfer in a rotating-disk air cleaner (with
the help of CFD).

In Chap. 7, a self-similar solution of a problem of laminar heat transfer in a gap
between a rotating disk and/or a cone, as well as that for outward swirling flow in a
stationary conical diffuser is presented.

Chapter 8 contains analysis and generalization of the data of different authors
for problems of convective heat and mass transfer at Prandtl and Schmidt num-
bers exceeding unity. Recommendations as applied to the technique of experimental
measurement of mass transfer rate for naphthalene sublimation in air are developed.
In the integral method developed by the author, effects of large Prandtl and Schmidt
numbers are taken into account.

The author deeply acknowledges financial support of Alexander von Humboldt
Foundation (Germany) in the form of a Research Fellowship taken by the author
at Technische Universität Dresden in 2003–2005, which enabled him to prepare
the present book. For the three years that passed since then, the author has refined
Chap. 8 and introduced some editing to other chapters in view of the new publica-
tions, which have been published for this time. The author would like to thank all
the colleagues, whom he has collaborated with during the time of performing the
research that laid foundation of the book, for their contribution, useful advices and
fruitful discussions.

Stuttgart, Germany Igor V. Shevchuk
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Nomenclature

a — thermal diffusivity, m2/s; radial velocity  
   gradient on the outer boundary of the  
   boundary layer, Eq. (2.32), 1/s; 

jj VadA /=  — non-dimensional radial velocity gradient  
   on the outer boundary of the boundary  
  layer, 
b — outer radius of a disk, m; 

wbBi λα= /11  — Biot number in unsteady heat transfer of  
   the cylindrical surface of a rotating disk; 

wsBi λα= /5.0 22 , wsBi λα= /5.0  — Biot number in unsteady heat transfer  
  of the flat surface of a rotating disk; 
C — concentration, mol/m3; 

2
*)(2/ Vc wf ρτ=  — surface friction coefficient; 

) (4 52bMCM ωρ=  — moment coefficient of two flat sides of  
   a rotating disk; 
сp — isobaric specific heat, J/(kg⋅K); 

)/( bmCw μ=  — non-dimensional radial mass flowrate  
   through a cavity between two rotating  
   disks; 
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   denotes vector parameter), N/m3; 
Fx, Fy, Fz — mass force components in Cartesian  
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Chapter 1
General Characteristic of Rotating-Disk Systems

1.1 Industrial Applications of Rotating-Disk Systems

Rotating-disk systems are widely used in gas turbine engineering, aircraft engines,
computer disk drives, car breaks systems, rotational air cleaners, extractors, atom-
isers, evaporators, microclimate systems, chemical engineering, electrochemistry,
medical equipment, food processing technologies, etc. Widely spread are the
cases of disk rotation in an infinite resting fluid or fluid rotating with another
angular velocity (Fig. 1.1a), impinging jet cooling of a disk (Fig. 1.1b), co-
rotating or contra-rotating parallel disks with and without forced radial through-
flow in a gap between them (Fig. 1.1c), flow between a rotor and a stator
(Fig. 1.1d), closed non-ventilated cavities of gas turbines formed by two disks
and two cylindrical surfaces (Fig. 1.1e), air cooling systems with inlet flow pre-
swirl (Fig. 1.1f), shrouded rotating disks, flow of a liquid thin film over a disk
surface, etc.

Flows in gaps between rotating surfaces of different geometries are widely used
in power engineering, chemical, oil and food processing industry, medical equip-
ment, aircraft engines, viscosimetry, etc. In particular, one can mention flows in the
gaps between a disk and a cone whose apex touches the disk, with both of them
rotating independently (Fig. 1.2a), as well as swirl flows in a stationary conical
diffuser (Fig. 1.2b).

In practice, one can find flows with constant and also varying angular velocity of
rotation, as well as flows complicated with additional influencing factors.

In this monograph, a series of problems are considered that encompass fluid flow,
heat and mass transfer over disks rotating in a resting, rotating or radially accelerat-
ing fluid; unsteady conjugate heat transfer of a rotating disk (Fig. 1.1a); disk cooling
by means of an impinging jet (Fig. 1.1b); forced radial flow in the cavities between
co-rotating parallel disks (Fig. 1.1c); air cooling systems with inlet flow pre-swirl
(Fig. 1.1f, left); gaps between a rotating disk and/or a rotating cone (Fig. 1.2a) and
swirl flows in a stationary conical diffuser (Fig. 1.2b).

1I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_1,
C© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1.1 Rotating-disk
systems: (a) a disk in a
resting or rotating fluid,
(b) impinging jet cooling of a
disk, (c) parallel co-rotating
disks with and without forced
radial throughflow, (d) flow
between a rotor and a stator,
(e) non-ventilated cavities of
gas turbines, (f) air cooling
systems with inlet flow
pre-swirl

Fig. 1.2 Swirl flow (a) in a
gap between a rotating disk
and/or a cone and (b) in a
stationary conical diffuser

1.2 Acting Forces

It is known that two types of forces act on fluid particles: mass forces (or, in other
words, body forces) and surface forces [113]. Mass forces act on each fluid particle
and include in the most general case gravity, inertia, electrostatic forces, magnetic
or electrical fields, etc. Surface forces act on elementary parts of a surface; they
include pressure, internal friction (viscosity), forces acting on a surface from the
side of flow and forces of reaction from the body onto the flow.

Mass forces are caused by force fields, such as gravitational, inertial or electro-
magnetic [113]. Gravitational forces are a result of the global gravity of the Earth.
Inertial forces emerge at accelerating or decelerating translation motion of a sys-
tem, in which fluid flow takes place. Inertial forces can also be a result of rotation
of a system as a whole or of a fluid only. Electromagnetic fields emerging in flow
of an electrically conducting fluid in a magnetic field are not considered in this
monograph.

In rotating systems, inertial forces are external with respect to fluid flow, and their
strength is determined by conditions of motion both of the system and of fluid flow
itself. When inertial forces emerge as a result of streamline curvature in fluid flow in
a stationary geometry (curvilinear or swirl flows), their value and direction depend
on the velocity distribution in the flow and are ultimately determined by pressure
and viscous forces.

Gravitational and inertial mass forces can be expressed by a relation

F = jρ, (1.1)
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where j is acceleration determining a mass force (for gravitational force, j = g on
the Earth surface). Here and throughout Chap. 1, mass forces are considered per unit
volume, while boldface is used for vectors.

Centrifugal forces are directed outwards from a rotation axis and orthogonal to
it. They are caused either by streamline curvature or by system rotation and can be
determined by the following relation:

Fc = ρω × (ω × R) = −ρω · (R · ω) + ρR ω2. (1.2)

The parameter R included in Fc is a local radius-vector of a fluid particle relative
to the rotation axis, and the symbol d́enotes a vector product of vectors. Scalar
product of vectors R·ω is equal to zero, since vectors R and ω are orthogonal to
each other. In curvilinear flow, where system rotation is absent, a conventional local
velocity of rotation at each specific point can be defined as ω = V/R, which results
in the relation

Fc = ρR (V/R)2 = ρ V2/R, (1.3)

where V is fluid flow velocity relative to the system (i.e. relative velocity).
Coriolis forces emerge in systems rotating as a whole, if the vectors of angular

velocity of rotation ω and the relative velocity V do not coincide. Coriolis force in a
rotating coordinate system is determined by the following relation [51, 162]:

FCor = 2ρω × V. (1.4)

Coriolis force is directed perpendicular to the conventional surface, formed by
vectors ω and V, in that direction from which, after matching the origins of the
vectors FCor, ω and V, the shortest turn from ω to V would appear to be going
counter-clockwise.

Mass forces (a) can serve as a main source of fluid flow, (b) result in secondary
flows (e.g. recirculation) or (c) cause a stabilizing effect onto a fluid. However, these
effects can take place only in a non-uniform field of mass forces, i.e. under condition
of their spatial variation in the system. Difference of mass forces between particular
locations in the system is called an excessive mass force:

F = F2 − F1 = ρ2 j2 − ρ1 j1. (1.5)

The excessive mass force emerges due to non-uniformity of density distribution
in a fluid and/or non-uniformity in the acceleration causing the mass force. Simul-
taneous influence of the above factors is also possible.

Analysis performed by Shchukin [162] showed that “the character of fluid flow
can be affected only by the mass forces, whose value is different from the pressure
gradient caused by these mass forces and counteracting with them”. This means
that the difference between the mass force and the counteracting pressure gradient
is equal to the difference between the mass forces in two different locations of the
system and is in fact the aforementioned excessive mass force.

The field of mass forces can be simple or complex; in the latter case, mass forces
of different nature act simultaneously in the system. On the Earth, all phenomena
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take place in the gravitational field, which is therefore considered to be a simple
field, while any other field of mass forces will be always complemented with gravita-
tional forces. However, gravitational force is very often insignificant in comparison
with inertial mass forces, and therefore gravitational forces are quite often neglected
in physical models.

The vector of a mass force can make different angles with the surface counter-
acting with fluid flow. If the mass force vector makes an angle of 90 degree with
a surface, the mass force field is called transverse. When the mass force vector is
directed along the surface, the field is called longitudinal. One should also discern
steady and unsteady fields of mass forces.

Excessive mass forces can cause active influence on fluid flow (disturbing the
flow, causing secondary flows and increasing turbulence level in turbulent flow
regime) or conservative influence (stabilizing the flow, suppressing different occa-
sional perturbations and turbulent pulsations). If mass forces comply with the
inequality grad|F|>0, this is an evidence of conservative effect of the mass forces on
fluid flow. For grad|F|<0, mass forces cause active effect on fluid flow [85, 88, 162].

1.3 Differential Equations of Continuity, Momentum
and Heat Transfer

Mathematical modelling of substance transfer processes starts from a statement of
a boundary problem, which includes differential or integral–differential equations,
which in the general case describe laws of momentum, heat and mass transfer, con-
tinuity equation, equation of state, plus boundary and initial conditions.

Equations of momentum transfer and continuity were obtained based on linear
dependence of stresses on the strain rate (the Newton’s law). In a vector form in a
rotating coordinate system, these equations for incompressible sub-sonic flow of a
fluid with constant physical properties neglecting viscous dissipation effects have
the following form [51, 85, 158]:

ρ DV
Dt = ρ

[
∂V

∂t
︸ ︷︷ ︸

I

+ (Vgrad) V
]

︸ ︷︷ ︸
II

= ρ F
︸︷︷︸

III

− grad p
︸ ︷︷ ︸

IV

+ div Π
︸ ︷︷ ︸

V

− 2 ρω × V
︸ ︷︷ ︸

VI

− ρω × (ω × R)
︸ ︷︷ ︸

VII

,

(1.6)

div(ρV) = 0. (1.7)

In Eq. (1.6), the value D/Dt is substantial derivative (or total derivative) with
respect to time, which includes a local (term I) and a convective (term II) derivative.
For steady-state processes, the local derivative is equal to zero. Term III represents
mass forces, caused by gravitational, electrostatic, magnetic field, etc., but does
not include inertial forces (i.e. centrifugal and Coriolis forces). Term IV reflects
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pressure effect on the flow, and term V represents friction forces. The stress tensor
(viscous and turbulent stresses) is denoted as Π. Term VI represents the Coriolis
force FCor, while term VII denotes the centrifugal force caused by system rotation
FC. The vector V is the relative velocity (the fluid flow velocity relative to the rotat-
ing coordinate system).

If Eqs. (1.6) and (1.7) are rewritten in a stationary coordinate system, then the
vector V represents absolute velocity, while terms VI and VII are discarded. In
this case, the centrifugal force can be taken into account by Lamé coefficients in
a concrete curvilinear coordinate system, as well as by turbulent viscosity in case of
turbulent flow.

In order to simplify notation of Eq. (1.6) in the case where the mass forces F pos-
sess potential A, i.e. F=gradA, they can be presented, together with the centrifugal
force and pressure, in a form of a modified (reduced) pressure:

p∗ = p + ρ A − 1

2
ρ (ω × R)(ω × R)2. (1.8)

In this case, the equation of momentum transfer takes the following form:

∂V
∂t

+ (Vgrad) V + 2 ρω × V = ρ F − 1

ρ
grad p∗ − 1

ρ
div Π. (1.9)

The stress tensor Π in Eqs. (1.1) and (1.6) looks as follows:

Π =
⎛

⎝
τ 11 τ 21 τ 31
τ 21 τ 22 τ 23
τ 31 τ 23 τ 33

⎞

⎠

2

, (1.10)

where components τik represent a sum of respective viscous and turbulent stresses.
For laminar flow, Navier–Stokes, continuity and energy equations accounting for

mass forces in a Cartesian coordinate system have the following form [158, 162]:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= Fx − ∂p

∂x
+ μ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
, (1.11)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= Fy − ∂p

∂y
+ μ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
, (1.12)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= Fz − ∂p

∂z
+ μ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
, (1.13)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (1.14)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= a

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
. (1.15)
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For turbulent flow, Navier–Stokes and energy equations in a Cartesian coordi-
nate system have the following form [86, 87, 158]:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= Fx − ∂p

∂x
+ μ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)

+ ρ

⎛

⎝∂u′2

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z

⎞

⎠
(1.16)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= Fy − ∂p

∂y
+ μ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)

+ ρ

⎛

⎝∂v′2

∂y
+ ∂u′v′

∂x
+ ∂v′w′

∂z

⎞

⎠
(1.17)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= Fz − ∂p

∂z
+ μ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)

+ ρ

⎛

⎝∂w′2

∂z
+ ∂u′w′

∂x
+ ∂v′w′

∂y

⎞

⎠
(1.18)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (1.19)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= a

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)

−
(

∂u′T ′

∂x
+ ∂v′T ′

∂y
+ ∂w′T ′

∂z

)

.

(1.20)

For laminar flow, Navier–Stokes, continuity and energy equations accounting for
mass forces in a cylindrical polar coordinate system look as follows [86, 87, 158]:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vϕ

r

∂vr

∂ϕ
+ vz

∂vr

∂z
− v2

ϕ

r

)

= Fr − ∂p

∂r

+μ

(
∇2vr − vr

r2
− 2

r2

∂vϕ

∂ϕ

)
,

(1.21)

ρ

(
∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vϕ

r

∂vϕ

∂ϕ
+ vz

∂vϕ

∂z
+ vrvϕ

r

)
= Fϕ − ∂p

∂ϕ

+μ

(
∇2vϕ + 2

r2

∂vr

∂ϕ
− vϕ

r2

)
,

(1.22)
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ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vϕ

r

∂vz

∂ϕ
+ vz

∂vz

∂z

)
= Fz − 1

ρ

∂p

∂z
+ μ

(
∇2vz

)
, (1.23)

∂(r vr)

∂r
+ 1

r

∂(r vϕ)

∂ϕ
+ ∂(r vz)

∂z
= 0, (1.24)

∂T

∂t
+vr

∂T

∂r
+vϕ

r

∂T

∂ϕ
+vz

∂T

∂z
= a

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂

∂z

(
∂T

∂z

)
+ 1

r2

∂

∂ϕ

(
∂T

∂ϕ

)]
,

(1.25)
where

∇2 =
(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2

)
.

For turbulent flow, Navier–Stokes and energy equations accounting for mass
forces in a cylindrical polar coordinate system look as follows [86, 87, 158]:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vϕ

r

∂vr

∂ϕ
+ vz

∂vr

∂z
− v2

ϕ

r

)

= Fr − ∂p

∂r

+μ

(
∇2vr − vr

r2
− 2

r2

∂vϕ

∂ϕ

)
+ 1

r

∂

∂r

(
−ρv′2

r

)

+1

r

∂

∂ϕ

(
−ρv′

rv′
ϕ

)
+ ∂

∂z

(
−ρv′

rv′
z

)
− 1

r

(
−ρv′2

ϕ

)
,

(1.26)

ρ

(
∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vϕ

r

∂vϕ

∂ϕ
+ vz

∂vϕ

∂z
+ vrvϕ

r

)
= Fϕ − ∂p

∂ϕ

+μ

(
∇2vϕ + 2

r2

∂vr

∂ϕ
− vϕ

r2

)
+ 1

r

∂

∂ϕ

(
−ρv′2

ϕ

)
+ ∂

∂r

(
−ρv′

rv′
ϕ

)

+ ∂

∂z

(
−ρv′

ϕv′
z

)
+ 2

r

(
−ρv′

rv′
ϕ

)
,

(1.27)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vϕ

r

∂vz

∂ϕ
+ vz

∂vz

∂z

)
= Fz − ∂p

∂z
+ μ

(
∇2vz

)

+1

r

∂

∂r

(
−ρv′

rv′
z

)
+ 1

r

∂

∂ϕ

(
−ρv′

ϕv′
z

)
+ ∂

∂z

(
−ρv′2

z

)
,

(1.28)

∂(r vr)

∂r
+ 1

r

∂(r vϕ)

∂ϕ
+ ∂(r vz)

∂z
= 0, (1.29)

∂T

∂t
+ vr

∂T

∂r
+ vϕ

r

∂T

∂ϕ
+ vz

∂T

∂z
= 1

r

∂

∂r

[
r

(
a
∂T

∂r
− v′

rT ′
)]

+ ∂

∂z

(
a
∂T

∂z
− v′

zT ′
)

+ 1

r2

∂

∂ϕ

(
a
∂T

∂ϕ
− v′

ϕT ′
)

.
(1.30)
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For an axisymmetric steady-state fluid flow and unsteady heat transfer, deriva-
tives of all functions with respect to the ϕ-coordinate, as well as derivatives
with respect to time in the equations of momentum transfer, are equal to zero:
∂/∂ϕ≡∂/∂t≡0. In these conditions, Eqs. (1.21), (1.22), (1.23), (1.24) and (1.25) take
the following form:

vr
∂vr

∂r
+ vz

∂vr

∂z
− v2

ϕ

r
= 1

ρ
Fr − 1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ ∂2vr

∂z2

)
, (1.31)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= 1

ρ
Fϕ + ν

(
∂2vϕ

∂r2
+ 1

r

∂vϕ

∂r
− vϕ

r2
+ ∂2vϕ

∂z2

)

, (1.32)

vr
∂vz

∂r
+ vz

∂vz

∂z
= 1

ρ
Fz − 1

ρ

∂p

∂z
+ ν

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ ∂2vz

∂z2

)
, (1.33)

∂(r vr)

∂r
+ ∂(r vz)

∂z
= 0, (1.34)

∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z
= a

1

r

∂

∂r

(
r
∂T

∂r

)
+ a

∂2T

∂z2
, (1.35)

while Eqs. (1.26), (1.27), (1.28), (1.29) and (1.30) can be transformed in the
following way:

vr
∂vr

∂r
+ vz

∂vr

∂z
− v2

ϕ

r
= 1

ρ
Fr − 1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ ∂2vr

∂z2

)

+ 1

r

∂

∂r

(
−v′2

r

)
+ ∂

∂z

(
−v′

rv′
z

)
− 1

r

(
−v′2

ϕ

)
,

(1.36)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= 1

ρ
Fϕ + ν

(
∇2vϕ − vϕ

r2

)
+ ∂

∂r

(
−v′

rv′
ϕ

)

+ ∂

∂z

(
−v′

ϕv′
z

)
+ 2

r

(
−v′

rv′
ϕ

)
,

(1.37)

vr
∂vz

∂r
+vz

∂vz

∂z
= 1

ρ
Fz − 1

ρ

∂p

∂z
+ν

(
∇2vz

)
+ 1

r

∂

∂r

(
−v′

rv′
z

)
+ ∂

∂z

(
−v′2

z

)
, (1.38)

∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z
= 1

r

∂

∂r

[
r

(
a
∂T

∂r
− v′

rT ′
)]

+ ∂

∂z

(
a
∂T

∂z
− v′

zT ′
)

. (1.39)

Transformation of Eqs. (1.11)–(1.30) to a rotating coordinate system is per-
formed below for each rotating geometry separately.
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1.4 Differential Equation of Convective Diffusion

The equation of convective diffusion of a substance in a gas (or fluid) is analogous
to the energy equation with the only difference that the role of temperature in the
convective diffusion equation is played by concentration C, while the thermal dif-
fusivity coefficient is substituted with the diffusion coefficient Dm. Given below are
different forms of the convective diffusion equation for constant physical properties
of a substance.

For laminar and turbulent flow, the convective diffusion equations in a Cartesian
coordinate system have the following forms, respectively [82, 105]:

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Dm

(
∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2

)
, (1.40)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Dm

(
∂2C

∂x2
+ ∂2C

∂y2
+ ∂2C

∂z2

)

−
(

∂u′C′

∂x
+ ∂v′C′

∂y
+ ∂w′C′

∂z

)

.

(1.41)

For laminar and turbulent flow, the convective diffusion equations in a cylindrical
polar coordinate system look as follows, respectively [82, 105]:

∂C

∂t
+ vr

∂C

∂r
+ vϕ

r

∂C

∂ϕ
+ vz

∂C

∂z
= Dm

(
1

r

∂

∂r

(
r
∂C

∂r

)
+ ∂2C

∂z2
+ 1

r2

∂2C

∂ϕ2

)
, (1.42)

∂C

∂t
+ vr

∂C

∂r
+ vϕ

r

∂C

∂ϕ
+ vz

∂C

∂z
= Dm

(
1

r

∂

∂r

(
r
∂C

∂r

)
+ ∂2C

∂z2
+ 1

r2

∂2C

∂ϕ2

)

−
(

1

r

∂rv′
rC′

∂r
+ ∂v′

zC′

∂z
+ 1

r2

∂v′
ϕC′

∂ϕ

)

.

(1.43)
For an axisymmetric steady-state fluid flow and unsteady mass transfer, deriva-

tives of all functions with respect to the ϕ-coordinate in the convective diffusion
equation are equal to zero: ∂/∂ϕ≡0. In these conditions, Eqs. (1.42) and (1.43) take
the following forms, respectively:

∂C

∂t
+ vr

∂C

∂r
+ vz

∂C

∂z
= Dm

(
1

r

∂

∂r

(
r
∂C

∂r

)
+ ∂2C

∂z2

)
, (1.44)

∂C

∂t
+ vr

∂C

∂r
+ vz

∂C

∂z
= Dm

(
1

r

∂

∂r

(
r
∂C

∂r

)
+ ∂2C

∂z2
+
)

−
(

1

r

∂rv′
rC′

∂r
+ ∂v′

zC′

∂z

)

.

(1.45)
The equation of convective diffusion of a substance in a gas (or fluid) is used in

Chap. 8 to consider heat and mass transfer over rotating disks for the Prandtl and
Schmidt numbers larger than unity.





Chapter 2
Modelling of Fluid Flow and Heat Transfer
in Rotating-Disk Systems

2.1 Differential and Integral Equations

2.1.1 Differential Navier–Stokes and Energy Equations

We will consider here stationary axisymmetric fluid flow over disks rotating with a
sufficiently high angular velocity so that effects of gravitational forces on momen-
tum transfer are rather low. In a stationary cylindrical coordinate system arranged
in such a way that a disk or a system of disks rotate around its axis of symmetry
coinciding with the axis z, while the point z = 0 is located on a surface of the disk
(Fig. 2.1), laminar fluid flow and heat transfer are described by Eqs. (1.31), (1.32),
(1.33), (1.34) and (1.35) simplified accounting for the conditions Fr = Fϕ = Fz = 0
[41, 138, 139]:

vr
∂vr

∂r
+ vz

∂vr

∂z
− v2

ϕ

r
= − 1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ ∂2vr

∂z2

)
, (2.1)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= ν

(
∂2vϕ

∂r2
+ 1

r

∂vϕ

∂r
− vϕ

r2
+ ∂2vϕ

∂z2

)

, (2.2)

vr
∂vz

∂r
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
+ ν

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ ∂2vz

∂z2

)
, (2.3)

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0, (2.4)

∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z
= a

1

r

∂

∂r

(
r
∂T

∂r

)
+ a

∂2T

∂z2
. (2.5)

For turbulent flow with account for the conditions Fr = Fϕ = Fz = 0, Eqs. (1.36),
(1.37), (1.38) and (1.39) take the following form [41, 138, 139]:

11I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_2,
C© Springer-Verlag Berlin Heidelberg 2009
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Fig. 2.1 Geometrical arrangement and main parameters of the problem of fluid flow and heat
transfer over a rotating disk in still air.

vr
∂vr

∂r
+ vz

∂vr

∂z
− v2

ϕ

r
= − 1

ρ

∂p

∂r
+ ν

(
∇2vr − vr

r2

)

+ 1

r

∂

∂r

(
−v′2

r

)
+ ∂

∂z

(
−v′

rv′
z

)
− 1

r

(
−v′2

ϕ

)
,

(2.6)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= ν

(
∇2vϕ − vϕ

r2

)
+ ∂

∂r

(
−v′

rv′
ϕ

)

+ ∂

∂z

(
−v′

ϕv′
z

)
+ 2

r

(
−v′

rv′
ϕ

)
,

(2.7)

vr
∂vz

∂r
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
+ ν

(
∇2vz

)
+ 1

r

∂

∂r

(
−v′

rv′
z

)
+ ∂

∂z

(
−v′2

z

)
, (2.8)

∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z
= 1

r

∂

∂r

[
r

(
a
∂T

∂r
− v′

rT ′
)]

+ ∂

∂z

(
a
∂T

∂z
− v′

zT ′
)

. (2.9)

In a rotating coordinate system connected with a disk, Eqs. (2.1), (2.2) and (2.3)
for laminar flow can be transformed as follows [138, 139]:

vr
∂vr

∂r
+vz

∂vr

∂z
− v2

ϕ

r
−2ωvϕ −ω2r = − 1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ ∂2vr

∂z2

)
,

(2.10)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
+ 2ωvr = ν

(
∂2vϕ

∂r2
+ 1

r

∂vϕ

∂r
− vϕ

r2
+ ∂2vϕ

∂z2

)

, (2.11)

vr
∂vz

∂r
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
+ ν

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ ∂2vz

∂z2

)
. (2.12)

The terms 2ωvϕ and 2ωvr are the projections of the Coriolis forces onto the axes
r and ϕ, respectively, while the term ω2r is the projection of centrifugal force onto
the axis r (all divided by ρ). For turbulent flow, Eqs. (2.6), (2.7) and (2.8) can be
rewritten in the same way [138, 139].
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2.1.2 Differential Boundary Layer Equations

In the boundary layer approximation, it is assumed that [41, 138, 139]

(a) the velocity component vz is by order of magnitude lower than the components
vr and vϕ;

(b) the rate of variation of the velocity, pressure and temperature in the direction of
the axis z is much larger than the rate of their variation in the direction of the
axis r;

(c) static pressure is constant in the z-direction.

The continuity equation (2.4) remains invariable, while the other equations of the
system (2.6), (2.7), (2.8) and (2.9) take the following form [41, 138, 139]:

vr
∂vr

∂r
+ vz

∂vr

∂z
− v2

ϕ

r
= − 1

ρ

∂p

∂r
+ 1

ρ

∂τr

∂z
, (2.13)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= 1

ρ

∂τϕ

∂z
, (2.14)

1

ρ

∂p

∂z
= 0, (2.15)

∂T

∂t
+ vr

∂T

∂r
+ vz

∂T

∂z
= − 1

ρcp

∂q

∂z
, (2.16)

τr = μ
∂vr

∂z
− ρv′

rv′
ϕ , (2.17)

τϕ = μ
∂vϕ

∂z
− ρv′

ϕv′
z, (2.18)

q = −(λ
∂T

∂z
− ρcpT ′v′

z). (2.19)

In Eqs. (2.17), (2.18) and (2.19), only those components of the turbulent shear
stresses and heat fluxes are taken into account, whose input into momentum and
heat transfer is the most important. It is natural that the pressure in the boundary
layer is assumed to be equal to its value outside of the boundary layer in the region
of potential flow p=p∞.

The equation of the stationary thermal boundary layer looks as follows:

vr
∂T

∂r
+ vz

∂T

∂z
= − 1

ρcp

∂q

∂z
. (2.20)

The system of Eqs. (2.13), (2.14), (2.15), (2.16), (2.17), (2.18) and (2.19) is
completed by an equation in the region of potential flow outside of the boundary
layer, where velocity components and pressure p∞ are considered invariable in the
z-direction:
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1

2

dv2
r,∞

dr
− v2

ϕ,∞
r

= − 1

ρ

dp∞
dr

. (2.21)

2.1.3 Integral Boundary Layer Equations

These equations (which are in fact integral–differential equations) for stationary
fluid flow and heat transfer can be derived from Eqs. (2.13), (2.14), (2.15), (2.17),
(2.18), (2.19) and (2.20) with allowance for Eqs. (2.4) and (2.21) in the following
form [41, 138, 139]:

d

dr

⎡

⎣r

δ∫

0

vr
(
vr,∞ − vr

)
dz

⎤

⎦ + r
dvr,∞

dr

δ∫

0

(
vr,∞ − vr

)
dz

−
δ∫

0

(
v2
ϕ,∞ − v2

ϕ

)
dz = rτwr/ρ,

(2.22)

d

dr

⎡

⎣r2

δ∫

0

vr
(
vϕ − vϕ,∞

)
dz

⎤

⎦ + ṁd

2πρ

d

dr

(
rvϕ,∞

) = −r2τwϕ/ρ, (2.23)

or

d

dr

⎡

⎣r2

δ∫

0

vrvϕdz

⎤

⎦ + rvϕ,∞
d

dr

(
ṁd

2πρ

)
= −r2τwϕ/ρ, (2.24)

d

dr

⎡

⎣r

δT∫

0

vr (T − T∞) dz

⎤

⎦ + dT∞
dr

· ṁd,T

2πρ
= rqw/(ρcp). (2.25)

Equations (2.22), (2.23) and (2.25) can be rewritten as follows [41, 138, 139, 180]:

d

dr

(
v2

r,∞rδδ
∗∗
r

)
+ vr,∞rδ

dvr,∞
dr

δ
∗
r − v2

ϕ,∞δδ
∗∗
ϕ = rτwr/ρ, (2.26)

d

dr
[δr2(ω r)2δ

∗∗
ϕ r] + ṁd

2πρ

d

dr
(rvϕ,∞) = −r2τwϕ/ρ, (2.27)

d

dr
[ω r2δδ

∗∗
T (Tw − T∞)] + dT∞

dr
· ṁd,T

2πρ
= rqw/(ρcp), (2.28)
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where

δ
∗
r =

1∫

0

( 1 − ṽr) dξ , δ
∗∗
r =

1∫

0

ṽr ( 1 − ṽr) dξ , δ
∗∗
ϕ =

1∫

0

(

1 − v2
ϕ

v2
ϕ,∞

)

dξ ,

(2.29)

δ
∗∗
ϕ r =

1∫

0

vr(vϕ − vϕ,∞)

(ω r)2
dξ , ṽr = vr/vr,∞. (2.30)

2.2 Differential Methods of Solution

2.2.1 Self-Similar Solution

For laminar flows over a single rotating disk, exact solutions of the Navier–Stokes
and energy equations were obtained in works [33, 41, 55, 58, 80, 106, 138, 139,
158, 199] using the following self-similar variables:

vr = (a + ω)rF(ζ ), vz = √
(a + ω)νH(ζ ), vϕ = (a + ω)rG(ζ ),

p = −ρνωP(ζ ), θ = (T − T∞)/(Tw − T∞), ζ = z
√

(a + ω)/ν,
(2.31)

under the boundary conditions

ζ → ∞: vr,∞ = ar, vz,∞ = −2az, vϕ,∞ = �r, β = �/ω = const, θ = 0,
(2.32)

ζ = 0: F = H = 0, G = 1, θ = 1, (2.33)

ζ = 0: Tw = Tref + c0wrn∗ , T∞ = Tref + c0∞rn∗ or T∞ = Tref + βc0wrn∗ ,
(2.34)

where c0, c0w, c0∞ and n∗ are constants. Boundary conditions (2.34) can be trans-
formed as follows:

T = Tw − T∞ = c0rn∗ (for c0 = c0w − c0∞), (2.35)
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or

T = c0w(1 − β)rn∗ . (2.36)

Taking into account Eq. (2.21) for the radial pressure gradient in the region of
potential flow, Eqs. (2.1), (2.2), (2.3) and (2.4) and (2.20) take the following self-
similar form:

F2 − G2 + F′H = N2 − β2

(1 + N)2
+ F′′, (2.37)

2FG + G′H = G′′, (2.38)

HH′ = P′ + H′′, (2.39)

2F + H′ = 0, (2.40)

θ ′′ − Pr
(
n∗Fθ + Hθ ′) = 0, (2.41)

where N=a/ω=const (and, naturally, turbulence components were neglected). It
is impossible to assign simultaneously non-zero values of β and N in Eq. (2.37),
because in this case the derivative of the component F(ζ) does not tend to zero on
the outer boundary of the boundary layer. However, Eq. (2.37) still holds either for
N
=0 and β=0 or for β 
=0 and N=0.

In the past, solutions of the Eqs. (2.37), (2.38), (2.39), (2.40) and (2.41) have been
obtained with the help of individually developed computer codes based on expan-
sions in power or exponential series [80], use of the shooting method [58, 106, 138,
199], etc. Currently, standard computer mathematics software like MathCAD, etc.
allows programming solutions of the systems of equations like Eqs. (2.37), (2.38),
(2.39), (2.40) and (2.41) with the help of the user interface options.

As shown in works [41, 138, 139], a self-similar form of the energy equation
with account for dissipation effects imposes restriction onto the boundary condi-
tions (2.34), (2.35) and (2.36): in this case, one can use only the value of the expo-
nent n∗=2. Since effects of radial heat conduction and energy dissipation in air
cooling systems at sub-sonic speeds are negligible, the advantage to use arbitrary
n∗ values in the thermal boundary layer equation (2.41) by far compensates very
minor losses involved because of neglecting the aforementioned terms in the energy
equation.

Exact solutions of Eqs. (2.37), (2.38), (2.39), (2.40) and (2.41) provide a reli-
able database useful, among other applications, in validations of CFD codes and
models aimed at solving much more complicated physical problems. Use of the
self-similar solutions also enables obtaining approximate analytical solutions for
problems with boundary conditions different from Eqs. (2.32), (2.33), (2.34), (2.35)
and (2.36).
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2.2.2 Approximate Analytical Methods for Laminar Flow Based
on Approximations of Velocity Profiles

The method of Slezkin-Targ was used in the work [41] to model laminar fluid flow
over a free rotating disk at β=0 and N=0, as well as for the case of N=const and
β=0. Velocity profiles derived for the case of β=0 and N=0 were described by the
sixth-order power polynomials, which in view of the necessity to further develop the
method would inevitably result in obtaining inconvenient and cumbersome relations
for the Nusselt number. Decreasing the order of the approximating polynomial to
the third order resulted, in the case of N=const and β=0, in noticeable errors in
calculations of surface friction, which were equal to approximately 25% at N=5
and increased sharply with the further increasing values of N.

The author of the work [4] obtained an approximate solution for the velocity
components in laminar fluid flow over a free rotating disk in a form of a rather
complex combination of exponential and logarithmic functions. The method was not
extended to include the heat transfer problem as well as to take into consideration
the boundary condition (2.32). It should be expected that the development of the
method [4] in this direction would result in obtaining even more inconvenient and
cumbersome relations, in particular, for the Nusselt number, than those resulting
from the approach of Slezkin-Targ [41].

The approximate solution [83] for porous injection through a rotating disk has a
form of a combined expansion in power and exponential series. The authors did not
generalize their method for more complex cases; however, it is obvious that their
approach has the same deficiencies as the methods of [4, 41].

It can be thus concluded that velocity, pressure and temperature profiles in lami-
nar boundary layers over a rotating disk are so much complicated from the mathe-
matical point of view that a search of their rather accurate analytical approximation
is inexpedient. As shown below, a combination of an integral method with the data
of self-similar solutions can result in obtaining rather simple and accurate approxi-
mate analytical solutions for surface friction coefficients and Nusselt numbers.

2.2.3 Numerical Methods

Authors of [136] solved boundary layer equations (2.13), (2.14), (2.15), (2.16),
(2.17), (2.18), (2.19) and (2.20) with the help of a finite-difference method employ-
ing a modified algebraic model of turbulent viscosity by Cebeci-Smith [22]. For the
case of laminar steady-state heat transfer with tangential non-uniformity of heating
of the disk surface, Eq. (1.30) was reduced to a two-dimensional equation in works
[205, 206] using modified variables (2.31). A steady-state axisymmetric problem
with a localized heat source was modelled in the work [137] with the help of Eq.
(2.9). In both aforementioned cases, a finite-difference technique was used. Equa-
tions (2.6), (2.7), (2.8) and (2.9) were used to model both laminar and turbulent
flow and heat transfer in cavities between parallel rotating disks [78, 79, 145, 148,
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151]. Authors of [148] applied a finite-difference method for a two-dimensional
laminar steady-state problem. In works [25, 78, 79, 90, 145, 225], an in-house com-
puter code based on the finite-volume method was used to solve Eqs. (2.6), (2.7),
(2.8) and (2.9) closed with low Reynolds number k–ε models of turbulence [101,
128, 129]. Large eddy simulation (LES) approach was used in the work [224] to
model a three-dimensional stationary turbulent flow over a rotating disk, and turbu-
lent flow and heat transfer over a single disk in air flow parallel to the disk surface
(non-symmetrical flow) in works [220, 221]. Author of [38] used a finite-difference
method to solve the Navier–Stokes equations closed with a k–ε turbulence model by
[100] as applied to three-dimensional flow of a carrying phase (air) in a rotating-disk
grinder of solid particles.

Authors of [151, 152] used a commercial CFD code Fluent to solve Eqs. (2.6),
(2.7), (2.8) and (2.9) closed with an RNG k–ε turbulence model. Commercial CFD
code Phoenics was used by the authors of [188] to simulate stationary turbulent
one-phase flow in a rotating-disk air cleaner using a standard k–ε turbulence model.
In the work [61], modelling of laminar conjugate transient heat transfer of a free
rotating disk was performed using a commercial CFD code CFX.

Numerical methods are the most universal tool of mathematical modelling
inevitably used in simulations of problems with complex geometry, arbitrary bound-
ary conditions, etc. Relative complications in use of such methods are significant
time consumption for one run (often tens of hours), generation of a computational
mesh (often weeks), sometimes lack of convergence of the numerical solution, etc.
Therefore, use of such methods is not justified for relatively simple problems that
can be solved by means of simpler approaches.

A general disadvantage of the differential methods (which one can nevertheless
comply with) is obtaining solution in a numerical form that is usually a certain
inconvenience in comparison with analytical solutions.

2.3 Integral Methods of Solution

2.3.1 Momentum Boundary Layer

The essence of integral methods consists in solving Eqs. (2.22), (2.23), (2.24),
(2.25), (2.26), (2.27) and (2.28) closed with models for the velocity profiles and
shear stress components on the wall for the momentum boundary layer, as well as
for the temperature profiles (or enthalpy thickness) and wall heat flux for the thermal
boundary layer.

The most perfect integral method among those known in the literature is the
method of [138, 139], which developed ideas of the authors of [41, 80]. A key point
of the method [138, 139] consists in use of a generalized form of the models that
takes into account existence of laminar or turbulent flow via assigning particular
numerical values to certain parameters of the model. This is a confirmation of the
idea expressed by Loytsyanskiy still in the year of 1945 [113], who said that there
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exists “an analogy between basic characteristics of laminar and turbulent boundary
layers”.

In the boundary layer, the radial vr and tangential vϕ velocity components corre-
late with each other. This correlation is described by the formula [163]

vr = vϕ tanϕ. (2.42)

For flows, where radial velocity of the flow outside of the boundary layer can be
neglected, i.e. for vr,∞=0, authors of [138, 139] specified the velocity profiles as

vϕ = 1 − g(ξ ), vr = α f (ξ ), (2.43)

where functions g(ξ) and f(ξ) expressed in terms of the independent variable ξ=z/δ
were assumed to be self-similar (independent of the coordinate r).

For a laminar boundary layer, functions g(ξ) and f(ξ) can be expressed as

g(ξ ) = G0(ξ ), f (ξ ) = F0(ξ )/α0, (2.44)

where functions G0(ξ) and F0(ξ) are tabulated [41, 138, 139] being a solution of the
problem of fluid flow over a free rotating disk in the self-similar form of Eqs. (2.37),
(2.38), (2.39) and (2.40) at N=0 and β=0.

For a turbulent boundary layer, the following power-law approximations were
used in the works [41, 138, 139]:

g(ξ ) = 1 − ξn, (2.45)

f (ξ ) = ξn(1 − ξ ), tanϕ = α(1 − ξ ), (2.46)

where n=1/5–1/10. The models (2.45) and (2.46) were formulated by von Karman
[80] in 1921 for the first time by analogy with the model for turbulent flow in a
round pipe and over a flat plate [158]. The exponent n is assumed to be known and
selected depending on the characteristic Reynolds number (Figs. 2.2, 2.3 and 2.4).

Model (2.45) for the turbulent boundary layer was also used by the authors of [7,
122, 130]. A more accurate approximation of the function f(ξ) in turbulent flow is
the expression used by the authors of [32, 70, 118, 196]:

f (ξ ) = ξn(1 − ξ )2, tanϕ = α(1 − ξ )2, (2.47)

which, however, has not been used so widely because of somewhat increased com-
plexity in integrating the terms in the left-hand side of Eqs. (2.22), (2.23) and (2.24).

For flows at N=const, the following relation was used in [212]:

tanϕ = α + (N − α) ξ . (2.48)

Authors of [41, 69] used the following expressions:
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[63]

f (ξ ) = ξn(1 − ξn/m), tanϕ = α(1 − ξn/m), (2.49)

where constants n and m could be varied independently. However, model (2.49) has
not been further developed because of its excessive complexity.

Authors of [1, 2] used a trigonometric function to approximate the tangent of the
flow swirl angle
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tanϕ = α[(1 − sinb(cξ )], (2.50)

where constants b and c take the values b=0.7, c=0.12 at n=1/7, and b=0.697,
c=0.117 at n=1/8. Authors [1, 2] asserted that the model (2.50) allows to attain
better agreement with experiments for a free rotating disk than with von Karman’s
approach (2.45), (2.46).

Analysis shows, however, that the values of the constants b and c given in [1] are
erroneous. For example, keeping the value b=0.7 at n=1/7 invariable, it is necessary
to use the value of c=1.2 (Figs. 2.3 and 2.4). However, the model [1, 2] has not been
further developed to include heat transfer, apparently, because resulting expressions
for the Nusselt number obtained on the base of Eq. (2.50) would have been too
cumbersome.

In works [73–75], it was assumed for N=const that

tanϕ = α (1 − ξ) + κ , (2.51)

where κ = ṁ/ [2πρsr(1 − β)ωr]. This approximation is worse than Eq. (2.48),
because it does not agree with the apparent condition tanϕw = α and complicates
the solution of Eqs. (2.22) and (2.23).

The author of [72] used a relation tan ϕ = cN, where N = ṁ/(2πρsr), with
the constant c varying from the value 1.0 at the inlet to a cavity between parallel
co-rotating disks to 1.22 in the region of stabilized flow. This relation was used
for large values of vr,∞ and vϕ,∞≈0. The disadvantages of this approach are lack
of agreement with the boundary condition tanϕw = α and involvement of a new
empirical constant c.

Thus, models (2.49), (2.50) and (2.51) have shown worse performance than Eqs.
(2.42), (2.43), (2.44), (2.45), (2.46), (2.47) and (2.48).
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After integration of the terms in the left-hand side of Eqs. (2.22) and (2.23)
with account for Eqs. (2.42), (2.43), (2.44), (2.45), (2.46), (2.47) and (2.48), the
unknowns to be found are parameters α(r) and δ(r) for a prescribed distribution of
β(r) or α(r) and β(r) for a prescribed δ(r). Under conditions N=const or β=const,
the value of α is also constant, while the value of δ is either also constant in laminar
flow or has a form of a power-law function of r in turbulent flow [41, 138, 139].

Apart from the works [138, 139], no other author has developed an integral
method for laminar flow for an arbitrary distribution of β(r).

In frames of the approach with power-law approximation of the velocity profiles,
shear stresses τwr and τwϕ in the right-hand side of Eqs. (2.22), (2.23) and (2.24) are
determined by the following equations [41, 138, 139]:

τwr = −ατwϕ , τwϕ = −sgn(1 − β)τw(1 + α2)1/2, (2.52)

cf = C−2/(n+1)
n · Re−2n/(n+1)

V∗ , (2.53)

Cn = 2.28 + 0.924/n. (2.54)

The constant Cn takes values 8.74, 9.71, 10.6 and 11.5 for n=1/7, 1/8, 1/9 and
1/10, respectively [41, 80, 130, 138, 139]. Approximation (2.54) was obtained in
the work [69].

In works [73–75], a modified velocity V∗ = ωr |β − 1| [1 + (α + κ)2 ]1/2 was
used that, with no real justification of such a choice, only complicated all the math-
ematical derivations.

One should also mention the model [52], which employed logarithmic approxi-
mations for the velocity profiles. In frames of this approach, one has near the wall

vr = αωr + 2.5αVτ

(1 + α2)1/2
ln (ξ ), vϕ = − 2.5Vτ

(1 + α2)1/2
ln (ξ ). (2.55)

Approach (2.55) was validated only for the free disk case; the heat transfer prob-
lem has not been solved. An algebraic equation for the moment coefficient CM

obtained in the work [52] (see Sect. 3.3) is transcendental. Namely because of its
excessive complexity and inconvenience, the logarithmic approach [52] has not been
widely used further.

2.3.2 Thermal Boundary Layer

In the majority of the known works [41, 68, 72–77, 80, 114, 130, 133, 135, 138, 139,
196], heat transfer modelling in frames of the integral method has been performed
with the help of a theory of local modelling. For the first time, this theory was
applied to rotating-disk systems by Dorfman [41], who used for this purpose the
method of Loytsyanskiy [113]. According to the theory of local modelling, a heat
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transfer law determining variation of the Stanton number has the following form
[41, 82]:

St = MsRe∗∗
T

−σ Pr−ns , (2.56)

where Ms, σ and ns are universal constants independent of the Prandtl number and
temperature distribution Tw on the disk surface. For turbulent flow, the constants in
Eq. (2.56) have the values σ=0.25, ns=0.5 and Ms=7.246·10–3; for laminar flow,
these constants are equal to σ=1.0, ns=1.0 and Ms=0.07303 [41, 89, 138, 139].
Relation (2.56) allows closing the thermal boundary layer equation (2.28), where
the value δ∗∗

T becomes the only unknown.
Instead of the enthalpy thickness δ∗∗

T , the authors of the work [138, 139]
employed the Reynolds analogy parameter χ defined as

qw

τwϕ

= χ
cp(T∞ − Tw)

ωr(1 − β)
. (2.57)

Using model (2.56) and definition (2.57), the authors of [138, 139] solved Eq.
(2.28) to find the unknown value of χ .

For a long time, the work [122] had been the only one that involved a power-law
approximation of the temperature profile in turbulent flow

� = T − Tw

T∞ − Tw
= ξ

nT
T , θ = T − T∞

Tw − T∞
= 1 − � = 1 − ξ

nT
T (2.58)

at nT=1/5. Authors of [122] used an unjustified additional correlation  = δT/δ =
6 at Tw=const and did not offer a model to derive dependence of the parameter
 on the factors affecting heat transfer, which could become an alternative to the
approach based on Eq. (2.56).

2.4 Integral Method for Modelling Fluid Flow and Heat Transfer
in Rotating-Disk Systems

2.4.1 Structure of the Method

A series of original results of investigations into fluid flow and heat transfer in
rotating-disk systems presented in this monograph were obtained with the help of
an improved integral method developed by the author of the monograph [163–181,
184, 189, 190]. This method will be referred to as the present integral method
throughout the monograph.

The present integral method is based on using the following:

(a) integral equations (2.22), (2.23), (2.24), (2.25), (2.26), (2.27) and (2.28);
(b) improved models of the turbulent velocity and temperature profiles;
(c) a novel model for the enthalpy thickness in laminar flow;
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(d) closing relations for the shear stresses and heat fluxes on the disk surface;
(e) boundary conditions for the velocity and temperature outside of the boundary

layer, as well as for the disk surface temperature.

The key point of the present integral method consists in using the same approach
to model both laminar and turbulent flow regimes. The only difference consists in
the particular values of the certain numerical coefficients involved in the model.
Such an approach is in fact a development of the idea of Loytsyanskiy [113], who
noticed an analogy between the main parameters of the laminar and turbulent bound-
ary layers subjected to the same boundary conditions. This idea has already proved
its fruitfulness in the problems of convective heat transfer in rotating-disk systems.
It has already been used by the authors of the works [41, 80, 138, 139]; however,
the approach employed in these works in view of its intrinsic imperfectness lead to
significant inaccuracy in modelling of some heat transfer regimes (see Sect. 3.2).

An important feature of the present integral method is understanding the fact that
any power-law approximation of the velocity and temperature profiles in laminar
flow requires using polynomials of not less than the seventh order. In its turn, this
leads to deriving cumbersome and inconvenient relations for the Nusselt number
and the friction coefficient. On the other hand, simple power-law approximations
of the velocity and temperature profiles for turbulent flow result in quite simple and
lucid relations for the rest of the boundary layer characteristics including the Nusselt
number and the enthalpy thickness. Having obtained, on this basis, the mathematical
form of the necessary parameters for turbulent flow, it is rather easy to extend these
formulas onto laminar flow under an assumption that certain coefficients are deemed
to be unknowns to be found empirically from comparisons with the self-similar
exact solution. As shown below, this method proved to be the most accurate among
all the known integral methods for the rotating-disk systems.

Therefore, the logical sequence of developing the integral method below is as fol-
lows. First, the integral method for turbulent flow will be developed and thoroughly
validated. Second, the integral method will be extended and validated for laminar
flow conditions.

2.4.2 Turbulent Flow: Improved Approximations of the Velocity
and Temperature Profiles

For modelling of the velocity profiles, we will use power-law approximations,
namely, Eq. (2.42) for vr, Eqs. (2.43) (the first one) and (2.45) for vϕ . The function
tanϕ is specified in the form of a quadratic parabola, whose coefficients a, b and c
can be found using the boundary conditions on a disk and on the outer boundary of
the boundary layer:

tanϕ = a + bξ + cξ2, (2.59)

ξ = 0, tanϕ = tanϕw = α, (2.60)
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ξ = 1, tanϕ = tanϕ∞ = vr,∞/(ωr − vϕ,∞) = N/(1 − β) = κ , (2.61)

ξ = 1, d(tanϕ)/dξ = 0. (2.62)

Based on this, one can obtain that

a = α, b = −2(α − κ), c = α − κ , (tanϕ − κ)/(α − κ) = (1 − ξ )2. (2.63)

Profiles of the velocity components vr and vϕ for a free rotating disk (κ=0)
computed by Eqs. (2.42) and (2.63) are depicted in Figs. 2.2 and 2.3.

Wall values of the tangent of the flow swirl angle α depending on the exponent
n were determined with the help of the present integral method and documented
below in Table 3.4 devoted to a free rotating disk. Also presented in Table 3.4 are
numerical data for α obtained using von Karman’s method [80]. Advantages of the
power-law model for the vr and vϕ profiles jointly with the quadratic approximation
of tanϕ in the form of Eq. (2.63) are obvious: it provides computational results that
agree well with the experimental data in the outer region of the boundary layer, with
the profiles at n=1/9 being in best agreement with the experimental data [63, 111]
(Figs. 2.2 and 2.3). The same conclusion follows from Fig. 2.4, where the radial and
tangential velocities are interrelated using an equation obtained from Eqs. (2.42),
(2.43), (2.45) and (2.63) [163]

vr = α vϕ (1 − v1/n
ϕ )L, (2.64)

where L=2 for the present integral method and L=1 for the von Karman’s method
[80] (although, in the near-wall region, the closest agreement between the profiles
is observed for n=1/7–1/8). From Eq. (2.64), a maximum in the dependence of vr

on vϕ can also be obtained in the following form [163]:

vϕ, max = ξn
max, ξmax = n/(n + L). (2.65)

Equation (2.63) is a generalization of the quadratic relation (2.47) proposed for
the case κ=0. Somewhat worse agreement of Eq. (2.47) with experimental data
mentioned in the works [118, 196] may have been caused by a less accurate choice
of the constants n and α.

Temperature profiles in the boundary layer have been approximated with the
power law, Eq. (2.58), which agrees well with known experiments (see Fig. 2.5).

2.4.3 Models of Surface Friction and Heat Transfer

Relations for the shear stresses τwϕ , τwr and wall heat flux qw will be found with
the help of a two-layer model of the velocity and temperature profiles in the wall
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coordinates. It is obvious that in the region where the power-law profiles (2.45) and
(2.58) are in force, one can rewrite these profiles as follows:

V+ = ξn/
√

cf /2, T+ = ξ
nT
T

√
cf /2/St. (2.66)

Since these power-law equations do not hold in the viscous sub-layer, they are
replaced here with the following equations:

V+ = z+, T+ = Pr z+. (2.67)

Splicing relations (2.66) and (2.67) at the boundary of the viscous sub-layer (at
the coordinate z+

1 ) and heat conduction sub-layer (at the coordinate z+
1T ) and trans-

forming, one can finally obtain formulas for the surface friction coefficient and the
Stanton number

cf /2 = (z+
1 )2(n−1)/(n+1) · Re−2n/(n+1)

V∗ , (2.68)

St = (z+
1 )nT−1Re−nT

V∗ (cf
/

2)(1−nT )/2−nT (z+
1T

/
z+

1 )nT−1Pr−nT . (2.69)

The value of z+
1 most often used in a modified form of the coefficient Cn =

(z+
1 )1−n is a constant depending only on the exponent n (see Eq. (2.54)) [41, 130,

138, 139]. The interrelation among shear stresses τw, τwϕ and τwr is defined by Eqs.
(2.52). Taking this into account

τwr/ρ = C−2/(n+1)
n sgn(1 − β)(ν/δ)2n/(n−1)(ωr |1 − β| )2/(n−1)α(1 + α2)0.5(1−n)/(1+n),

τwϕ/ρ = −C−2/(n+1)
n sgn(1 − β)(ν/δ)2n/(n−1)(ωr |1 − β| )2/(n−1)(1 + α2)0.5(1−n)/(1+n).

(2.70)

The ratio (z+
1T

/
z+

1 ) is a function of the Prandtl number only; the quantity 

(the unknown to be found) depends on the boundary condition for Tw(r) and the
Prandtl number Pr. Let us denote (z+

1T

/
z+

1 )nT−1Pr−nT = Pr−np , where the constant
np remains unknown as yet.
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In the majority of the solutions below, an assumption pT=n will be used. In this
case, formulas for the Stanton and the Nusselt number take the following form:

St = (cf
/

2)−nPr−np , (2.71)

Nu = St
V∗r

ν
Pr = StReωPr |β − 1| (1 + α2)1/2. (2.72)

2.4.4 Integral Equations with Account for the Models
for the Velocity and Temperature Profiles

Integration of Eqs. (2.22) and (2.23) with respect to the coordinate z with allowance
for relations (2.42), (2.43), (2.44) and (2.45) and (2.63) yields the following result
[163]:

d

dr

{
δr(ωr)2 (1 − β)2

[
κ (A1α + A2κ) −

(
B1α

2 + B2ακ + B3κ
2
)] }

+

δω r2(1 − β)
d (Nωr)

dr
[κ − (A1α + A2κ)] + ρδ (ωr)2

(
C1 + C2β + C3β

2
)

= rτwr/ρ, (2.73)
d
dr

{
δω2r4(1 − β) [α(D1 + βD2) + κ (D3 + βD4)]

}

− (ωr)2 β d
dr

[
δωr2(1 − β)(A1α + A2κ)

] = −r2τwϕ/ρ
, (2.74)

where A1 = 1/(n + 1) − A2; A2 = 2/(n + 2) − 1/(n + 3);
B1 = 1/(2n + 1) − 2/(n + 1) + 6/(2n + 3) − 2/(n + 2) + 1

/
(2n + 5);

B2 = 2/(n + 1) − 10
/
(2n + 3) + 4/(n + 2) − 2/(2n + 5); D1 = A1 − D2 ;

C1 = −2/(n+1)−C3, C2 = −2 (1/(2n + 1) − 1/(n + 1)); C3 = −1+1
/
(2n + 1);

D1 = A1 − D2 ; D2 = 1/(2n+1)−D4 ; D3 = A2 − D4 ; D4 = 1/(n+1)−1/(2n+3).

The thermal boundary layer equation (2.25), being integrated with respect to the
coordinate z with allowance for Eqs. (2.42), (2.43), (2.45), (2.58) and (2.63), can be
reduced to the following form [168]:

d
dr

[
δωr2 (1 − β) F1 (T∞ − Tw)

] + dT∞
dr δωr2 (1 − β) F2 =

= −StV∗ r −nT Pr−nP (T∞ − Tw)
, (2.75)

where F1 = E1, F2 = E2 at  ≤ 1; F1 = E3, F2 = E4 at  ≥ 1;
E1 = n+1(aa∗T + bb∗T + cc∗T2),
a∗T = 1

/
(1 + n + nT ) − 1

/
(1 + n),

b∗T = 1
/

(2 + n + nT ) − 1
/

(2 + n),
c∗T = 1

/
(3 + n + nT ) − 1

/
(3 + n),

E2 = n+1[a
/

(n + 1) + b
/

(n + 2) + c2
/

(n + 3)],
E3 = E5 + κE6,
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E4 = αA1 + κ( − 1) + κA2,
E5 = α( − A1 + −nT D2T ),
D2T = 1

/
(1 + n + nT) − D4T ,

E6 = ( − −nT )
/

(nT + 1) −  + 1 − A2+−nT D4T ,
D4T = 2

/
(2 + n + nT ) − 1

/
(3 + n + nT ).

Mass flowrate in the boundary layer can be calculated from the following rela-
tion:

ṁd

/
(ρωr3) = 2π (1 − β)(A1α + A2κ)δ/r. (2.76)

As applied to the problems under consideration, Eqs. (2.73), (2.74) and (2.75)
contain three unknowns:

(a) in the entraining boundary layers: α, δ and  for given β and T∞;
(b) in the Ekman-type boundary layers: α, β for a given distribution of δ (i.e. for a

constant mass flowrate ṁd) and T∞ for a given constant value .

In the former case for particular boundary conditions (2.32), (2.33), (2.34), (2.35)
and (2.36) (and N=const), Eqs. (2.73), (2.74) and (2.75) can be solved analytically
at constant values α and  and power law of radial variation of the boundary layer
thickness δ. For arbitrary boundary conditions, Eqs. (2.73), (2.74) and (2.75) are
solved numerically; for the sake of this, they are reduced to a form convenient for
integration using the Runge-Kutte method [164, 169]:

{
α′ = (�1�4 + �2)

/
(1 − �1�3) ,

δ̄′ = (�2�3 + �4)
/
(1 − �1�3) ,

(2.77)

′ = (S1 − S2 − S3)
/

S4. (2.78)

Here

�2 = {[sgn(1 − β)
∣∣cfr

/
2
∣∣ r̄3Re2

V∗/δ̄
2 − Z1δ̄ − G1δ̄ − G2]/(δ̄r̄) − Q2r̄2}

/
Q1;

�4 = {−sgn(1 − β)
∣∣cf ϕ

/
2
∣∣ r̄2Re2

V∗/δ̄
2 − δ̄[αQ′

3 + Q̄′
4 + (βReω)′(αQ5 + Q6)]/Q7};

�1 = −Z1/(δ̄Q1); �3 = −δ̄Q3/Q7; G1 = Re2
ω(C1 + C2β + C3β

2);
Z1 = Re2

ω(1 − β)2[ − B1α
2 + ακ(A1 − B2) + κ2(A2 − B3)]; G2

= Re2
ω(1 − β)δ̄[ − A1α + κ(1 − A2)]v′

r,∞;
Q1 = Re2

ω(1 − β)2[ − 2αB1 + κ(A1 − B2)];
Q2 = Re2

ωi{−α2B1[r̄2(1 − β)2] ′ + α(A1 − B2)[r̄ (1 − β) vr,∞] ′ + (A2 − B3)(v2
r,∞) ′};

Q3 = −Re2
ω(1 − β)2D1; Q4 = −Re2

ω(1 − β)vr,∞D3/r̄; Q5 = −Reω(1 − β)A1;
Q6 = −Reωir̄v̄r,∞A2;
Q7 = αQ3 + Q4; vr,∞ = vr,∞

/
(ωa); Reωi = ωr2

i

/
ν;

∣∣cfr
/

2
∣∣

= (cf
/

2)α
/

(1 + α2)1/2;∣∣cf ϕ
/

2
∣∣ = (cf

/
2)
/

(1 + α2)1/2 δ̄ = δ/ri; r̄ = r/ri.
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In Eq. (2.78), one has at ≤1:
S1 = −Reω |1 − β| (1 + α2)1/2St(T̄∞ − T̄w);
S2 = T̄ ′∞δ̄Reωn+1[α(1 − β)/(n + 1) − 2(α(1 − β) − N)/(n + 2)

+ 2(α(1 − β) − N)/(n + 3)];
S3 = n+1L′

1 + n+2L′
2 + n+3L′

3;
S4 = L1(n + 1)n + L2(n + 2)n+1 + L3(n + 3)n+2;
L1 = L0a∗Tα(1 − β);
L2 = L0b∗T ( − 2)[α(1 − β) − N];
L3 = L0c∗T [α(1 − β) − N];
L0 = δ̄Reω(T̄∞ − T̄w).

The value of S1 is the same for both ≥1 and ≤1.
At ≥1:

S2 = T̄ ′∞δ̄Reω [α (1 − β) A1 + NA2 + N ( − 1)];
S3 = L′

1∗C∗
6T + L′

2∗C∗
7T ;

S4 = −nT−nT−1D2TL1∗ + [(1 + nT−nT−1)/(nT + 1) − D4TnT−nT−1 − 1]L2∗;
L1∗ = L0 (1 − β) α;
L2∗ = L0N;
C∗

6T = −A1 + −nT D2T ;
C∗

7T = ( − −nT )/(nT + 1) −  + 1 − A2 + D4T−nT ;
T̄ = T

/
Tref .

The primes denote here derivatives with respect to the radial coordinate d
/

dr̄; ri

is a characteristic radius (very often, the inlet radius).
In the Ekman-type layers

⎧
⎨

⎩

α′ = cf
2 α(β − 1)Reω(1 + α2)1/2 4πA1ri

B1Cwb + dβ
dr̄

α
β−1 − C3[β+n/(n+1)]

r̄(β−1)αB1
− α

r̄ ,

β ′ =
{
− cf

2 (1 − β)2Reω(1 + α2)1/2 4πA1ri
D1Cwb − 2

r̄

[
β
(

1 − A1
D1

)
− 1

]}/(
1 − A1

D1

)
,

(2.79)

dT̄∞
dr̄

=
[

St
V∗r

ν

2π

0.5Cw

ri

b

1

KH

(
T̄∞ − T̄w

) + dT̄w

dr̄

]
KH

KH − 1
. (2.80)

According to the recommendations of [138, 139], parameter KH is considered to
be constant in the Ekman-type layers [164, 167, 170]

KH = 1 − (D2T
/

A1)−nT = const or = const. (2.81)

2.5 General Solution for the Cases of Disk Rotation in a Fluid
Rotating as a Solid Body and Simultaneous Accelerating
Imposed Radial Flow

Let us consider the case where β=const, N=const and κ>0. The condition β=const
means solid-body rotation, which takes place between rotors and stators; the con-
dition N=const means accelerating radial flow that exists in the stagnation region
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of fluid flow impinging on an orthogonal surface; the condition κ>0 means that
recirculation flow does not emerge on a rotating disk [138, 139, 196]. Under these
conditions, the system of Eqs. (2.73) and (2.74) can be solved analytically in the
most general form [174, 180, 189]:

δ = Cδrm, Cδ = γ (ω/ν)−2n/(3n+1), δ
/

r = γ Re−2n/(3n+1)
ω , (2.82)

α = const, m = (1 − n)/(3n + 1), (2.83)

γ = γ∗ |1 − β|(1−n)/(3n+1) , (2.84)

CM = εMRe−2n/(3n+1)
ϕ , (2.85)

ṁd/(μr) = εmRe(n+1)/(3n+1)
ω , (2.86)

cf /2 = AcRe−2n/(3n+1)
ω , (2.87)

α = −H2/2H3 + [(H2/2H3)2 − H1/H3]1/2, (2.88)

γ∗ = C−2/(3n+1)
n (1 + α2)0.5(1−n)/(3n+1)H−(n+1)/(3n+1)

9 , (2.89)

εm = ε∗
m |1 − β|2(n+1)/(3n+1) , ε∗

m = 2πγ (A1α + A2κ)sgn(1 − β), (2.90)

εM = 8π

5 − 4n/(3n + 1)
C

− 2
n+1

n γ
2n

n+1∗ |1 − β| 2(n−1)
3n+1 (1 + α2)

1−n
2(n+1) sgn(1 − β), (2.91)

Ac = C−2/(n+1)
n γ −2n/(n+1)(1 + α2)−n/(n+1) |β − 1|−2n/(n+1) , (2.92)

where H1 = C3(β − C5) + (β − 1)κ2H4; H2 = κ(βH5 + H6); H3 = βH7 + H8;
H4 = 1+(2+m)A2−(3+m)B3; H5 = A1(2+m)−B2(3+m)+D4(m+4)−A2(2+m);
H6 = −A1(2+m)+B2(3+m)+D3(4+m); H7 = −(3+m)B1+(4+m)D2−(2+m)A1;
H8 = (3 + m)B1 + (4 + m)D1; C5 = C1

/
C3;

H9 = α[(D1 +βD2)(4 + m) −β(2 + m)A1] + κ[(D3 +βD4)(4 + m) −βA2(2 + m)].
An analytical solution of Eq. (2.75) is possible only under assumptions of

=const, Pr=const, n=nT and boundary conditions (2.34), (2.35) and (2.36). It
is evident that in this case D2T=D2 and D4T=D4.

Substituting Eqs. (2.36), (2.72), (2.82) and (2.83) into Eq. (2.75) and solving it
jointly with Eq. (2.74), one can obtain [168] that

[
F1 (2 + m + n∗) + βn∗

β − 1
F2

]
nPrnp = (4 + m)C4 + 2β

β − 1
C5. (2.93)

The relations for the functions F1 and F2 are given in explanations to Eq. (2.75),
while C4 = −(αD1 +κD2), C5 = 1/(n+1)+1/(n+2)+1/(n+3). Equation (2.93)
has different solutions for the cases ≥1 and ≤1 (which is reflected by the differ-
ent forms of the functions F1 and F2 for ≥1 and ≤1). Case ≥1 corresponds to
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heat transfer in gases at Pr≤1. Case ≤1 corresponds, in general, to heat transfer
in liquids at Pr≥1; more details relevant to the case where ≤1 can be found in
Chap. 8.

Solution (2.93) in its general form for simultaneously non-zero values of β and N
is a transcendental algebraic equation. A solution for the parameter  in an explicit
form can be obtained at N=0 and ≥1. The exponent nr, which is considered
universally the same for all types of fluid flow, will be found below on analysis of
the free rotating disk case.

Expressions for the Nusselt and Stanton numbers have the following form:

St = AcRe−2n/(3n+1)
ω −nPr−np , (2.94)

Nu = Ac(1 + α2)1/2 |1 − β| Re(n+1)/(3n+1)
ω −nPr1−np . (2.95)

Validations of the present integral method are performed in Chaps. 3, 5 and 6
for air flows. Extension of the present integral method onto the laminar flow case
is performed in Chaps. 3 and 5. Chapter 3 represents results for a free rotating disk
(β=0, N=0). Analysed in Chap. 5 are the cases of a disk rotating in a fluid that
itself rotates as a solid body (β=const, N=0) and a disk rotating in a uniformly
accelerating non-rotating fluid (β=0, N=const). Chapter 6 represents results for
turbulent throughflow between parallel co-rotating disks. In Chap. 8, the method is
validated for cases of Prandtl or Schmidt numbers larger than unity.





Chapter 3
Free Rotating Disk

3.1 Laminar Flow

A schematic of fluid flow and convective heat transfer over a free rotating disk in
infinite ambience is depicted in Fig. 3.1. Velocity and temperature profiles computed
numerically based on a solution of the self-similar system of Eqs. (2.37), (2.38),
(2.39), (2.40) and (2.41) for β = 0, N = 0 with the help of the MathCAD software
are presented in Fig. 3.2. Here F0(ζ ) = vr/(ωr), H0(ζ ) = vz/(ων)1/2, G0(ζ ) = vϕ /(ωr)
and ζ 0 = z(ω/ν)1/2, while subscript “0” denotes a free disk. Self-similar velocity and
temperature profiles are in excellent agreement with earlier computations [41, 138,
139, 158] and experiments [46, 63, 109]. Important characteristics of the profiles of
F0 and G0 are their derivatives on the disk surface, as well as mass flowrate through
the boundary layer [138, 139]:

G′
0w = (dG0/dζ0)ζ= 0 = −0.6159, F′

0w = (dF0/dζ0)ζ= 0 = 0.5102, (3.1)

α0 = −F′
0w/G′

0w = 0.8284, ṁd/(μr) = 0.8845Re1/2
ω . (3.2)

Boundary layer thickness δ0 is constant in laminar flow. Particular choice of the
value of δ0 depends on deviation of the value of G0 from unity at ζ 0=δ0(ω/ν)1/2

specified as a criterion. For example, it was accepted in [138] that δ0 = 5.5(ω/ν)1/2

for G0 = 0.01. A choice of the absolute value of δ0 does not play any role in the
development of an integral method [138].

Moment coefficient of a free rotating disk CM can be calculated by the rela-
tion [41]

CM = 3.87Re−1/2
ϕ . (3.3)

Agreement of Eq. (3.3) with experiments [207] is very good (see Fig. 3.3), while
moderate deviation of Eq. (3.3) from experiments [84, 159] should be probably
attributed to insufficient accuracy of experimental techniques used in the works
[84, 159].

33I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_3,
C© Springer-Verlag Berlin Heidelberg 2009
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Fig. 3.1 Schematic of fluid flow and convective heat transfer over a heated free rotating disk in
infinite ambience
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Fig. 3.2 Velocity and
temperature profiles in
laminar flow over a free
rotating disk. Computations:
1 – F0, 2 – G0, 3 – –H0, 4 – θ

for n∗ = 0, Pr = 0.71.
Experiments: 5 – F0 [63], 6 –
F0 [46], 7 – F0 [109], 8 – G0
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Fig. 3.3 Moment coefficient
of a free rotating disk.
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Heat transfer of rotating disks can be calculated by the following equation:

Nu = K1RenR
ω , Nuav = K2RenR

ϕ . (3.4)

Coefficients K1 and K2 in Eq. (3.4) depend on the flow regime, Prandtl num-
ber and temperature distribution on the wall, while exponent nR depends in general
only on the flow regime. For laminar flow, K1=K2, nR = 1/2 [41, 46, 138, 139]. In
accordance with the most reliable experimental data [11, 24, 32, 46, 64, 65, 97, 138,
139, 142, 143, 146, 195, 201], for an isothermal disk rotating in air (Pr = 0.71–
0.72) the value of the constant K1 is equal to 0.32–0.34 (see Fig. 3.4). Experimen-
tal data for the constant K1 for non-isothermal surfaces and at other values of the
Prandtl number over the range Pr ≤ 1 to our knowledge are absent in the published
literature.

Theoretical values of the constant K1 can be obtained based on a numerical solu-
tion of the self-similar system (2.37), (2.38), (2.39), (2.40) and (2.41) for β= 0 and
N = 0 and boundary condition (2.35)

K1 = −θ ′
ζ = 0. (3.5)

Numerical data for the constant K1 obtained in such a way by the author of this
monograph are represented in Table 3.1. Analogous data obtained by other authors
[58, 138, 199] are less complete and contain inaccuracies or typographical errors.

For laminar flow over a rotating disk, the value of the exponent in the boundary
condition (2.35) is the same n∗ = 0 for the conditions Tw = const and qw = const.
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Fig. 3.4 Local Nusselt numbers over a rotating disk. Experiments [46]: 1 – qw = const; 2 – Tw
≈ const. 3–10 – calculations, Eq. (3.4). Turbulent flow, nR = 0.8: 3 – K1 = 0.0169 [173]; 4 –
K1 = 0.0163 [46]; 5 – K1 = 0.0187 [171]. Laminar flow, nR = 0.5: 6 – K1 = 0.34 [46]. Transitional
flow, nR = 4: 7 – K1 = 10.0 × 10–20 [146]; 8 – K1 = 2.65 × 10–20 [46]. Transitional flow, nR = 2.8:
9 – K1 = 8.01 × 10–14 [19, 20]; 10 – K1 = 1.2 × 10–13 (our suggestion)
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Table 3.1 Values of the constant K1 according to the exact solution, Eqs. (2.37), (2.38), (2.39),
(2.40) and (2.41) [174, 175, 177]

Pr n∗ = –2 n∗ = –1.5 n∗ = –1 n∗ = –0.5 n∗ = 0 n∗ = 1 n∗ = 2 n∗ = 3 n∗ = 4

1.0 0.0 0.1305 0.2352 0.3221 0.3963 0.5180 0.6159 0.6982 0.7693
0.9 0.0 0.1217 0.2204 0.3029 0.3737 0.4905 0.5849 0.6643 0.7331
0.8 0.0 0.1124 0.2046 0.2824 0.3495 0.4608 0.5513 0.6276 0.6939
0.72 0.0 0.1045 0.1911 0.2647 0.3286 0.4352 0.5223 0.5959 0.6599
0.71 0.0 0.1035 0.1893 0.2624 0.3259 0.4319 0.5185 0.5918 0.6555
0.6 0.0 0.0917 0.1691 0.2358 0.2943 0.3929 0.4742 0.5433 0.6036
0.5 0.0 0.0802 0.1490 0.2091 0.2623 0.3531 0.4287 0.4935 0.5502
0.4 0.0 0.0675 0.1267 0.1792 0.2263 0.3078 0.3767 0.4362 0.4887
0.3 0.0 0.0536 0.1017 0.1452 0.1849 0.2550 0.3153 0.3682 0.4153
0.2 0.0 0.0381 0.0732 0.1058 0.1362 0.1912 0.2400 0.2838 0.3234
0.1 0.0 0.0204 0.0399 0.0586 0.0766 0.1104 0.1417 0.1709 0.1981

Following an increase in the value of n∗, the constant K1 also increases significantly.
For air at Pr = 0.71, the constant K1 increases by 3.13 times, if the exponent n∗
varies from –1 to 3 (see Table 3.1).

The exact analytical solution for the constant K1 does not exist. The most widely
known approximate analytical solution for gases was obtained by Dorfman [41]:

K1 = K2 = 0.308 (n∗ + 2)1/2 Pr1/2. (3.6)

Computations by Eq. (3.6) exceed the exact solution by 34–238% over the
range of n∗ = −1.5–0 for Pr = 1–0.1; the differences increase as the Prandtl number
decreases.

For an isothermal disk (Tw = const) and the Prandtl numbers varying over the
range Pr = 0–∞, authors of the works [26, 106] obtained the following approxima-
tions for the constant K1, respectively:

K1 = 0.6109Pr/(0.5301 + 0.3996Pr1/2 + Pr)2/3, (3.7)

K1 = 0.6Pr/(0.56 + 0.26Pr1/2 + Pr)2/3. (3.8)

Maximal deviations of Eqs. (3.7) and (3.8) from the self-similar solution do
not exceed 4 and 5%, respectively. In accordance with these equations, K1∼Pr at
Pr→0, which agrees with the asymptotic solution K1/Pr = 0.885 obtained in [199].
At Pr→∞, one can obtain K1 ≈ 0.62Pr1/3, which also agrees with the data pre-
sented in the work [199]. However, Eqs. (3.7) and (3.8) are valid only for n∗ = 0,
which devalues them to a certain extent from the point of view of heat transfer prob-
lems. A more detailed analysis of Eqs. (3.7) and (3.8) is given in Chap. 8 devoted
to mass transfer of rotating disks for the range of the Prandtl and Schmidt numbers
Pr ≥ 1 and Sc ≥ 1.
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3.2 Transition to Turbulent Flow and Effect of Surface
Roughness

Laminar–turbulent transition over a rotating disk is accompanied by instability of
laminar flow, emergence of spiral vortices and gradual development of turbulence. In
one of the first experimental investigations into the conditions of laminar–turbulent
transition [197], its authors observed 32 standing sinusoidal waves of perturbations
that propagated spirally starting from the axis of rotation. Angle ε between the disk
radius and the direction normal to the spiral line was about 14 degrees. Later, the
authors of [53] made a visualization of the flow by means of a thin layer of kaolin
applied on the surface of a transparent disk, whose reverse side was painted black.
The number of vortices in this research varied from 28 to 31. Photos of the kaolin
layer made after the experiments showed that, following an increase in the radial
coordinate from the rotation axis, there existed ring-like regions of pure laminar
flow, laminar flow with spiral vortices and turbulent flow.

It was shown in works [35, 49, 66, 67, 120] that the number of spiral vortices
emerging, as the flow instability develops, depends on the local Reynolds number
Reω. For example, authors of the work [49] observed 14–16 vortices with the angle ε

equal to 20 degrees. A relation between the number of vortices nv and the Reynolds
number Reω was obtained in the work [120]:

nv = 0.0698Re1/2
ω . (3.9)

This equation agrees well with experimental data of the authors of the works [49,
120, 222].

Table 3.2 summarizes data characterizing Reynolds numbers at the onset of
instability, beginning and end of transition to turbulent flow obtained in experi-
ments of different authors. Average results for each group of techniques (thermo-
anemometry; visualization and acoustic measurements; methods of heat and mass
transfer) are presented in Table 3.3.

Inconsistency of experimental data of different authors regarding Reynolds num-
bers at the onset of instability, beginning and end of transition to turbulent flow is
obviously caused by the use of different criteria for determining the critical val-
ues of Reω. Apparently, despite the emergence of spiral vortices (registered by the
experimental techniques of groups 2 and 3, Table 3.3) already for Reω = (1.14−1.4)
× 105, coefficients of surface heat and mass transfer begin diverting from relations
for laminar flow at higher Reynolds numbers Reω = 1.85 × 105. Besides, increase
in local mass transfer in the beginning of transitional flow was not immediately
reflected by an increase of average mass transfer of an entire disk measured in a
number of investigations. Moreover, the disagreements between different sets of
data may have been caused by different roughnesses, possible vibrations, etc. that
could have taken place in experimental investigations. Data for the end of transition
to turbulent flow averaged within each group of experimental techniques agree with
each other rather well. This serves as an evidence of weak effect of different factors
at the end of transition to turbulent regime.
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Table 3.2 Values of the Reynolds number at the onset of instability, beginning and end of transi-
tion to turbulent flow

No Experimental technique

Values of the Reynolds number Reω

Onset of
instability

Beginning of
transition End of transition

1 Thermoanemometer [197] 2.1 × 105 3.1 × 105

2 Thermoanemometer [92] 8.8 × 104 2.5 × 105 3.2 × 105

3 Thermoanemometer [120] 8.6 × 104 (2.6–2.8) × 105

4 Thermoanemometer [222] 9 × 104 (2.95–3.1) × 105

5 Thermoanemometer, visualization
[226]

(2.4–2.63) × 105

6 Thermoanemometer [66, 67] (2.4–2.6) × 105

7 Thermoanemometer [109] (2.5–2.64) × 105

8 Thermoanemometer [63] 2.5 × 105

9 Thermoanemometer [217, 218] 9.5 × 104 3.4 × 105

10 Acoustic measurements [54] 1.35 × 105 2.55 × 105 2.75 × 105

11 Visualization (kaolin) [53] 1.8 × 105 3.0 × 105

12 Visualization (naphthalene) and
acoustic measurements [49]

1.5 × 105

(0.33–1.9) × 105
2.65 × 105

13 Visualization in water [31] (2.8–2.86) × 105 (3.2–4.6) × 105

14 Heat transfer coefficient [32] 2.0 × 105 2.4 × 105

15 Heat transfer coefficient [46] 2.9 × 105 3.6 × 105

16 Heat transfer coefficient [146] 1.95 × 105 2.5 × 105

17 Heat transfer coefficient [19, 20] 2.5 × 105 3.2 × 105

18 Heat transfer coefficient [36] 2.4 × 105

19 Mass transfer coefficient
(naphthalene sublimation) [64]

2.7 × 105

20 Mass transfer coefficient
(naphthalene sublimation) [24]

1.9 × 105 2.75 × 105

21 Mass transfer coefficient
(naphthalene sublimation) [208]

1.8 × 105

22 Mass transfer coefficient
(naphthalene sublimation) [97]

2.0 × 105

23 Mass transfer coefficient
(electrochemistry) [27]

1.7 × 105 2.6 × 105 3.5 × 105

24 Mass transfer coefficient
(electro-chemistry) [37, 42,
126]

2.3 × 105 2.9 × 105

25 Mass transfer coefficient
(electrochemistry) [39]

2.2 × 105 3.0 × 105

Analysis of the data for the moment coefficient CM in Fig. 3.3 shows that in
some experiments transition to turbulent flow started for Re ϕ ≈3.0 × 105, while in
other cases the so-called bypass transition to turbulent flow set on for much lower
values of Reϕ . Ratio between the Reynolds numbers at the beginning and end of the
transition to turbulent flow is equal to 1.21, which is close to the respective value
1.3 for flow over a flat plate [62].
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Table 3.3 Average values of the Reynolds number for the boundaries of flow regimes over a
rotating disk

No Experimental technique

Values of the Reynolds number Reω

Onset of
instability

Beginning of
transition

End of
transition

1 Thermoanemometer 1.14 × 105 2.54 × 105 3.15 × 105

2 Visualization and acoustic
measurements

1.4 × 105 3.08 × 105 3.3 × 105

3 Methods of heat and mass transfer 1.85 × 105 2.3 × 105 3.1 × 105

4 Average value 1.46 × 105 2.64 × 105 3.18 × 105

Theoretical values of the Reynolds number Re,ω, for which stationary instability
sets on, resulting in emergence of spiral vortices, can be found based on linear
instability theory. Taking into account the Coriolis forces, viscosity and stream-
line curvature [120] allowed for the first time obtaining a theoretical value of the
Reynolds number Re1/2

ω = 286, that is close to the experimental data, at the onset of
instability.

Detailed theoretical investigations of different types of instabilities emerging
in flow over a rotating disk were performed later in works [27, 33, 34, 56, 95,
108–110, 119, 136, 144, 153, 204, 217]. The average theoretical value of the
Reynolds number at the beginning of transition to turbulent flow is Re1/2

ω = 513 [27].
As seen from Table 3.2, in different experimental investigations the region of

transition to turbulent flow corresponds to different ranges of the Reynolds number
Reω. Respectively different was the heat and mass transfer rate measured at the same
local Reynolds number Reω in transitional flow regime:

Nu = 10.0 × 10−20Re4
ω for Reω = (1.95 − 2.5) × 105 [146], (3.10)

Nu = 2.65 × 10−20Re4
ω for Reω = (2.9 − 3.6) × 105 [46], (3.11)

Nu = 8.01 × 10−14Re2.8
ω for Reω = (2.6 − 3.2) × 105 [19, 20], (3.12)

Sh = 20.0 × 10−20Re4
ω for Reω = (2.0 − 2.5) × 105 [24], (3.13)

Sh = 3.4 × 10−14Re3
ωSc1/3 for Reω = (2.0 − 3.0) × 105 [126]. (3.14)

For example, Eq. (3.10) predicts heat transfer rate that formally exceeds data of
Eq. (3.11) by 3.77 times. However, as follows from Fig. 3.4, earlier end of tran-
sition to developed turbulent flow predicted by Eq. (3.10) makes possible esti-
mated differences in the heat transfer rate somewhat smaller. In reality, Nusselt
numbers over the range of the Reynolds numbers Reω = (1.95−3.6) × 105 can be
estimated with a maximal error of 2.3–2.4 times, in particular, over the range of
Reω = (2.5−2.9) × 105.
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Relation (3.12) is apparently erroneous. If its coefficients are true, the range of
validity of Eq. (3.12) is Reω = (3.1−4.5) × 105 (see Fig. 3.4), and this relation
contradicts the experimental data of the authors of [19, 20]. Assuming that the
Reynolds number Reω at the beginning of transition to turbulent flow is equal to
2.6 × 105 (that agrees with experiments [19, 20]), and leaving the power expo-
nent at the Reynolds number unchanged, one can obtain the coefficient K1 in
Eq. (3.12) to be equal to 1.2 × 10–13. Corrected in such a way, Eq. (3.12) agrees
well with experimental data [19, 20], as well as with Eq. (3.11) and experiments
[46] (Fig. 3.4). A minor drawback of the corrected Eq. (3.12) is that it predicts the
end of transition to turbulent flow at Reω = 3.7 × 105, which disagrees with the esti-
mate of the authors [19, 20] themselves and agrees rather with data of the work [46]
(Fig. 3.4).

Relation (3.13) is in good consistency with the experiments of the authors of
[24]. However, comparing Eq. (3.13) with the empirical relations of the authors
[24] for laminar flow, Eq. (8.4) for K1 = 0.59, and turbulent flow, Eq. (3.29), it can
be deduced that the range of validity of Eq. (3.13) should be corrected to the limits
of Reω = (1.9−2.75) × 105.

Equation (3.14) was obtained for high Schmidt numbers Sc = 1192–2465. How-
ever, Eq. (3.14) agrees well with Eq. (3.13) also for Sc = 2.28.

It is obvious that additional investigations are needed in order to obtain more
information regarding boundaries of transitional flow over a rotating disk, as well as
heat and mass transfer rate in the transitional regime of flow.

One of the factors that cause earlier transition to the turbulent flow regime is
surface roughness of the disk.

In laminar flow over a rotating disk, in analogy to flow in a pipe and over a
flat plate, surface roughness practically does not affect surface friction. Heat and
mass transfer for Reω > 5.6 × 104 somewhat increases, most probably, as a result of
enlargement of the surface area of the disk [65, 103, 104].

Surface roughness of the disk causes significant effect on the onset of instability
and boundaries of flow regimes. Experiments made in the work [218] showed that
on a disk with the height of roughness elements of h = 15 μm, the number of spiral
vortices decreases from 32 to 25.

The Reynolds number characterizing onset of spiral vortices decreases from the
value Reω = 0.95 × 105 on a smooth disk to Reω = 0.5 × 105 on a rough disk [218].

It was obtained in experiments [226] that on a rough disk transition to turbu-
lent flow begins at Reω = (0.23−1.23) × 105, while, to remind, on a smooth disk
the transition started at Reω = (2.4−2.63) × 105. Under these conditions, the crit-
ical Reynolds number Reω decreased with an increase in the angular velocity of
rotation, which meant thinning of the boundary layer with simultaneous increase
in the “roughness” Reynolds number Rer = hr(ω/ν)1/2 (where hr is the height of
the roughness elements), which enforced roughness effects. A minimal value of the
Reynolds number Rer, for which effects of roughness were noticeable in experi-
ments [226], was equal to 0.6.

The Reynolds number at the end of transition to turbulent flow also decreased
from the value of Reω = 3.4 × 105 on a flat disk to Reω = 2.55 × 105 on a rough
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disk [218]. Similar to this, in work [64], the end of transition to turbulent flow
was observed at the Reynolds number Reω = 2.0 × 105 on a rough disk, while on
a smooth disk it was equal to Reω = 2.7 × 105 (type and parameters of roughness
not specified).

Thus, in known experiments, the Reynolds number at the onset of instability and
beginning of transition to turbulent flow decreased because of surface roughness by
2–11.5 times, while the Reynolds number at the end of transition to turbulent flow
decreased by 25%.

Experiments [64] in the region of transitional flow exhibit increase in heat and
mass transfer on a rough disk in comparison with a smooth one by 34% over the
particular range of the Reynolds numbers Reω investigated in this work, namely, in
the beginning of transition to turbulent flow.

3.3 Turbulent Flow

3.3.1 Parameters of the Turbulent Boundary Layer

The power-law profile (2.45) for the tangential velocity component vφ , as well as
quadratic approximation (2.63) (or Eq. (2.47)) for the vr component, agrees well
with reliable experimental data [63, 111] (see Figs. 2.2, 2.3 and 2.4). Agreement of
Eq. (2.46) with experimental data in the outer part of the boundary layer is worse
than that of Eq. (2.63).

The power-law approximation of the temperature profiles θ in the form of
Eq. (2.58) agrees well with experiments [46] performed for qw = const (Fig. 2.5).
The value nT = 1/4 corresponds to a heating regime with the inner and outer heaters
on, while the value nT = 1/5 relates to a regime with the outer heater on and the
inner heater off.

The present integral method (see Chap. 2) is validated in this chapter against the
von Karman’s method based on the approach (2.46) that has been very often used
also in other integral methods. Based on the power-law approximations (2.45) and
(2.46) proposed in the work [80], the other parameters of the boundary layer can
be expressed by relations coinciding in their form with Eqs. (2.82), (2.83), (2.84),
(2.85) and (2.86). However, relations for the constants in these equations differ from
Eqs. (2.88), (2.89), (2.90) and (2.91) and can be written in the following form [138,
139]:

α2 = 4(2 + 3/n)(1 + 2/n)(3 + 1/n)

(16n−3 + 85n−2 + 145n−1 + 66)
/

n2
, (3.15)

γ (3n+1)/(n+1) = C−2/(n+1)
n

2(n + 1)(2n + 2)(3n + 1)(n + 2)(1 + α2)(1−n)/[2(n+1)]

3(11n + 5)αn
,

(3.16)
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εm = 2παγ

(1 + n)(2 + n)
, εM = 6παγ

/
n2

(1 + 1
/

n)(2 + 1
/

n)(1 + 2
/

n)
. (3.17)

Numerical values of the constants in Eqs. (2.82), (2.83), (2.84), (2.85) and (2.86)
computed by Eqs. (2.88), (2.89), (2.90) and (2.91) and (3.15), (3.16) and (3.17) are
given in Table 3.4 for n = 1/7–1/10. Both methods are based on the same model
for the tangential velocities and tangential stresses, Eqs. (2.43), (2.45) and (2.52),
(2.53) and (2.54). Therefore, the numerical data obtained for τwϕ , CM, γ and εM

are identical for both methods at n = idem. The constants α and εm dependent on
the approximation of the radial velocity profile are noticeably different in the two
methods compared.

Calculated values of the wall value of the flow swirl angle α=tanϕw are com-
pared in Fig. 3.5 with experimental data [46, 63] and models of other authors [1, 23].
The experimental values of α decrease with increasing Reynolds number Reω within
the interval between the values calculated by Eq. (2.88) at n=1/7 (the upper limit)
and n=1/9 (the lower limit). It is well known [41, 138] that, with increasing Reω, the
exponent n in the power-law approximation (2.45) also decreases, which inevitably

Table 3.4 Constants of the solution for a free disk

Coefficient Equation, source n=1/7 n=1/8 n=1/9 n=1/10

Cn [80] and (2.54) 8.74 9.71 10.6 11.5
α (2.88) [196] 0.2087 0.1842 0.1649 0.1493
α (3.15) [138] 0.162 0.143 0.128 0.116
γ (2.89) [196] 0.5299 0.4977 0.4773 0.4597
γ (3.16) [138] 0.526 0.497 0.479 0.463
εm (2.90) [196] 0.1806 0.1542 0.1355 0.1204
εm (3.17) [138] 0.219 0.187 0.164 0.146
εM (2.91) [196] 0.1466 0.1127 0.0901 0.0734
εM (3.17) [138] 0.1458 0.1122 0.0896 0.073
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Fig. 3.5 Tangent α of the flow swirl angle at the wall. Present integral method [163, 171, 172],
Eq. (3.15): 1 – n = 1/7; 2 – 1/9 (or 1/7 for the von Karman’s method [80]); 3 – model based on
original experiments of the authors [23]; 4 – α=0.2003 for n=1/7, Eq. (2.50) [1] for b=0.7, c=1.2;
5 – model [72]. Experiments: 6 – [63]; 7 – [46]
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Fig. 3.6 Dimensionless mass flowrate through the boundary layer. Calculation, Eq. (2.90): 1 –
n=1/7; 2 – 1/8; 3 – 1/9; 4 – 1/10; 5 – 1/7, von Karman’s method (3.17) [80]. Experiments: 6 – [23];
7 – [21]; 8 – I.V. Shevchuk based on experimental data of [46]; 9 – [69]

results in decreasing α values that is in line with the tendency observed experi-
mentally [23, 46, 63]. The maximal value α=0.162 (at n=1/7) obtained by the von
Karman’s method corresponds to the lower boundary of the experimental data [23,
46, 63].

Relation (2.90) obtained for the dimensionless mass flowrate at n = 1/9 (the
present integral method) agrees well with the experimental data [21, 23, 46] as
well as with the curve obtained by the von Karman’s method at n = 1/7 and
Reω≥0.75 × 106 (Fig. 3.6). Equation (3.20) allows a fairly accurate estimation of
the mass rate ṁd over the range Reω = (0.5−0.75) × 106 at n = 1/7 and n = 1/8,
although it does not correctly describe the variation of ṁd

/
(ρ∞ωr3) as a function

of Reω. The von Karman’s method is inapplicable over this range of Reω at all.
Authors of the work [72] used the model (2.47) and accepted that α = 0.18 for

n = 1/7. As a result, they obtained that γ = 0.518, εM = 0.142 (the value of εm was
not computed). Deviation of these values from the data of [196], Table 3.4, is rather
insignificant, however, the data [196] should be considered more accurate.

In the work [69] in turbulent flow at the Reynolds numbers Reω ≈(3.1−6.64)
× 105, velocity profiles were not self-similar, with the wall value of the tangent of
the flow swirl angle α increasing with an increase in the Reynolds number Reω and
local radial coordinate r/b. An account for this phenomenon was the main incentive
to develop the complicated model (2.49). As a result, the following relations were
obtained in [69]:

α2 = 2(n−1 + 3)(m−1 + n−1 + 2)(2m−1 + n−1 + 2)(m−1 + n−1 + 1)mn
[
8m−1(n−1 + 1)(n−1 + 2)(m−1 + n−1 + 1) + (5n−1 + 11)(m−1 + 2n−1 + 3)(2m−1 + n−1 + 2)

] ,

(3.18)

γ = (1 +α2)p

[
m−1n−1(m−1 + 2n−1 + 3)(5n−1 + 11)α

(n−1 + 1)(n−1 + 2)(n−1 + 3)(m−1 + n−1 + 1)(m−1 + n−1 + 2)

]−q

C−i
n ,

(3.19)

ṁd = 6.28ρωr2αδm−1n−1
/

[(n−1 + 1)(m−1 + n−1 + 1)], (3.20)
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i = 2n−1/(n−1 + 3), q = (1 + n−1)/(3 + n−1), p = (n−1 − 1)/[2(n−1 + 3)],
(3.21)

n−1 = 0.0079Re0.5
ω , m−1 = 1.24 × 10−9(r

/
b)Re1.595

ω . (3.22)

Solutions (3.18), (3.19), (3.20), (3.21) and (3.22) agree well with the original
experiments of [69] for the velocity profiles, mass flowrate through the boundary
layer and values of α. However, these achievements did not compensate the exces-
sive complexity of the method [69], which has not been further developed to include
a model for heat transfer.

The model (2.47) was also used in the work [23] jointly with an additional empir-
ical relation for the radial mass flowrate through the boundary layer, which agreed
with experiments [21, 23] for transitional and turbulent flow. In doing so, accuracy
of the calculation of the turbulent flow parameters does not exceed the accuracy of
the von Karman’s method [80], and an improvement of agreement with the data [23]
for transitional flow did not compensate the complication of the method, which has
not been further developed to include effects of vr,∞
=0 and vϕ,∞
=0.

Thus, the present integral method (see Chap. 2) in comparison with the von Kar-
man’s method provides much more accurate modelling not only for the radial veloc-
ity profiles, but also for the values of α and mass flowrate through the boundary
layer for Reω=(0.5−0.8) × 106. Choice of the values of n depending on the local
Reynolds number Reω can be based on the data of Figs. 2.2, 2.3, 2.4, 3.5 and 3.6.
The rest of the integral methods of other authors are inferior in comparison with
both the present integral method and that of von Karman.

Values of the moment coefficient CM of Eq. (2.85) for n=1/7 agree well with
experimental data in Fig. 3.3 for Re ϕ <2.0 × 106. For higher values of Reϕ , the curve
computed by Eq. (2.85) lies somewhat lower than the experimental data. Use of the
values n=1/8–1/10 somewhat improves agreement of Eq. (2.85) with experimental
data for Reϕ≥3.0 × 106 (Fig. 3.3).

Logarithmic model of velocity profiles allowed obtaining the following relations
for CM:

C−1/2
M = 1.97 lg

(
Reϕ

√
cM

) + 0.03, (3.23)

CM = 0.982
(
lg Reϕ

)−2.58 . (3.24)

Relation (3.23) [52] can serve as the upper limit for experimental data in Fig. 3.3,
while the approximation of Dorfman, Eq. (3.24) [41], provides the best agreement
with experiments in comparison with the other relations.

The author of the work [140] used also the logarithmic model for the velocity
profiles and approximated (in analogy to [41]) his solution for the coefficient CM

over the range Reϕ ≈4.0 × 105–2.0 × 106 by the following relation:

CM = 0.13Re−0.185
ϕ . (3.25)
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Equation (3.25) agrees well with experimental data [47, 111] reprocessed in
[140]; however, it exceeds the data of other authors by 5–10% for Reϕ≥2.0 × 106

(Fig. 3.3).
Logarithmic approximations of the velocity profiles significantly complicate sub-

sequent mathematical derivations; therefore they are almost never used in integral
methods.

According to the work [72], for a boundary layer developing from a location
r=a, the moment coefficient can be calculated by the following relation:

CM = 0.142[(b/a)5.75 − 1]0.8(b/a)−4.6Re−0.2
ϕ . (3.26)

3.3.2 Surface Heat Transfer: Experimental and Theoretical Data
of Different Authors

Using an integral method, Dorfman [41] obtained the following relations for the
coefficients K1 and K2 in Eqs. (3.4) at the boundary condition (2.35) and nR=0.8:

K1 = 0.0197 (n∗ + 2.6)0.2 Pr0.6, (3.27)

K2 = K1 (n∗ + 2) / (n∗ + 2.6) . (3.28)

The value 0.6 of the exponent at the Prandtl number was suggested in works
[138, 139].

Values of the constants K1 and K2 of Eqs. (3.27) and (3.28) for different values
of n∗ are given in Table 3.5 together with experimental data of different authors. As
evident from Table 3.5, results of the authors [18, 32, 36, 98, 132] for an isothermal
disk (n∗=0) obtained mainly in 50th and 60th years of the twentieth century agree
well with Eqs. (3.27) and (3.28). However, the data obtained from more recent and
accurate investigations are noticeably lower than the calculations given in Table 3.5:
by 4.4% [146] and 9.5% [122].

For the case qw=const (which corresponds to the value n∗=–0.6), the value of
K1 according to experiments [19, 20, 46] is less than that predicted by Eq. (3.27)

Table 3.5 Values of the constants K1 and K2 for nR=0.8 and Pr=0.72 (different authors)

Coefficient Source or equation n∗=–0.6 n∗=0 n∗=2 n∗=6

K2 [18, 32, 36, 98] 0.015
K1 [132] 0.0194
K1 [122] 0.0179
K2 [122] 0.0138
K1 [11, 146] 0.0188
K2 [146] 0.0145
K1 [19, 20, 46] 0.0163
K1 Dorfman, Eq. (3.27) 0.0186 0.0196 0.022 0.0249
K2 Dorfman, Eq. (3.28) 0.013 0.0151 0.0191 0.0231
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by 14.1% (see Table 3.5). Results of numerical simulations [205] for the bound-
ary condition qw=const are generalized by Eq. (3.4) at nR=0.83 and K1=0.0111,
K2=0.0086.

In the light of these results, an assertion of the authors [18] that the constant K2
for the cases qw=const and Tw=const has the same value 0.015 looks implausible.

In experiments [133, 135], the Nusselt numbers for the case n∗=–0.2 were also
8–10% lower than data according to Eqs. (3.27) and (3.28). Unfortunately, the
authors of the works [133, 135] did not suggest empirical values of constants K1
and K2; also the thermal boundary condition over the disk in these experiments did
not strictly follow Eq. (2.35).

As a result of experiments [24, 59] on naphthalene sublimation in a rotating disk,
the following relation for the coefficient K1 by the Sherwood number was obtained

K1 = Sh · Re−0.8
ω = const, (3.29)

where K1=0.0512 [24] or K1=0.0518 [59]. Authors of the works [24, 59] rec-
ommended to recalculate their data with the help of the methodology [28], which
established an interrelation Nu = Sh(Pr/Sc)0.4 between the Nusselt and the Sher-
wood numbers. The Schmidt number for naphthalene sublimation in air is equal to
Sc=2.28, while the Prandtl number for heat transfer in air is equal to Pr=0.72. Mass
transfer at constant concentration of a substance on a surface is analogous to heat
transfer at a constant temperature on a surface. In view of this, a recalculation of
Eq. (3.29) results in the value of K1=0.0323 for the condition Tw=const, which is
significantly different from the data in Table 3.5. This is an evidence of significant
inaccuracy of the recalculation technique suggested in the work [28]. Turbulent heat
and mass transfer of rotating disks for the Prandtl and Schmidt numbers larger than
unity is analysed in detail in Chap. 8. There one can also find an improved method-
ology developed by the author of this monograph for turbulent flow regime, which
establishes a relation between the Sherwood numbers for naphthalene sublimation
in air and the Nusselt numbers for heat transfer in air.

A solution for the Nusselt number obtained in works [41, 68, 138, 139]
based on a theory of local modelling for the cases where the boundary condition
(2.35) does not hold is insufficiently accurate and therefore has not been widely
used.

For a case where the boundary layer develops from a non-zero radial location
r=a at the boundary condition (2.35), the authors of the work [72] based on the
approach of Dorfman [41] obtained the following solution:

Nu = 0.0189(n∗ + 2.6)0.2 · Re0.8
ω · r̄0.25n∗+0.65(r̄1.25n∗+3.25 − 1)−0.2 · Pr0.6, (3.30)

Nuav = 0.0226 · (n∗ + 2) Re0.8
ϕ

(1.25n∗ + 3.25)0.8
·
[(

b
/

a
)1.25n∗+3.25 − 1

] 0.8

(
b
/

a
)0.6

[(
b
/

a
)n∗+2 − 1

] , (3.31)
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where r̄ = r/a. Because of the aforementioned inaccuracy in the choice of the
constant α in the work [70], Eqs. (3.30) and (3.31) predict heat transfer rates under-
estimated by ≈4%.

Average Nusselt number for an entire disk. In a number of technical applica-
tions, one needs to calculate average Nusselt numbers Nuav of an entire disk where
regions of laminar and transitional flow or laminar, transitional and turbulent flow
co-exist simultaneously.

The definition of Nuav (see Nomenclature) can be transformed as follows:

Nuav =
b

b∫

0
Nu(Tw − T∞)dr

b∫

0
(Tw − T∞)rdr

. (3.32)

Assuming, following the work [36], that transition from laminar and turbulent
flow occurs instantly at a radial location rtr for the Reynolds number Reω,tr, one can
present Eq. (3.32) in the following form:

Nuav =
b

[
rtr∫

0
Nulam(Tw − T∞)dr +

b∫

rtr

Nuturb(Tw − T∞)dr

]

b∫

rtr

(Tw − T∞)rdr

. (3.33)

The Nusselt numbers in Eq. (3.33) are specified by the first of Eq. (3.4) with
allowance for the values K1,lam and nR=1/2 for laminar flow and the values K1,turb
and nR for turbulent flow.

Assuming further that the temperature of the disk surface varies according to
Eq. (2.35), one can obtain as a result of integration of Eq. (3.33) that

Nuav = K1,lamRe1/2
ω,tr

(
Reω,tr

Reϕ

)n∗/2+1/2

+ 2 + n∗
2nR + 1 + n∗

K1,turbRenR
ϕ

[

1 −
(

Reω,tr

Reϕ

)n∗/2+nR+1/2
]

.

(3.34)

For n∗=0 (an isothermal disk at Tw=const), Eq. (3.34) takes the following form:

Nuav = K1,lamRe1/2
ω,tr

(
Reω,tr

Reϕ

)1/2

+ 2

2nR + 1
K1,turbRenR

ϕ

[

1 −
(

Reω,tr

Reϕ

)nR+1/2
]

.

(3.35)
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Fig. 3.7 Average Nusselt
numbers of an entire disk
rotating in still air.
Experiments: 1 – [36].
Calculations by Eq. (8.4): 2 –
region of developed turbulent
flow, nR=0.8, K2=0.015
(Table 3.5) [36]; 3 – laminar
flow, nR=1/2, K1=0.4 [36].
Calculation of Nuav for an
entire disk: 4 – Eq. (3.35) at
Reω,tr=2.4 × 105; 5 –
Eq. (3.35) at
Reω,tr=2.0 × 105

Authors of the work [36] presented only a particular form of Eq. (3.35) at
nR=0.8, 2K1,turb/(2nR + 1) = 0.015, K1,lam=0.4.

Relation (3.34) is valid, if Reϕ ≥ Reω,tr. When Reϕ < Reω,tr, then the sec-
ond term in Eq. (3.34) should be neglected. In the limiting case Reϕ >> Reω,tr,
Eq. (3.34) reduces to the second of Eq. (3.4) for developed turbulent flow over the
entire disk with

K2,turb = 2 + n∗
2nR + 1 + n∗

K1,turb. (3.36)

Relation (3.36) coincides with Eq. (3.28) for nR=0.8.
The aforementioned particular form of Eq. (3.35) for the case Tw=const was

used in the work [36] to approximate original experimental data for the average
Nusselt number of an entire disk rotating in still air (Fig. 3.7). Given a fixed value
Reω,tr=2.4 × 105, the approximation curve 4 lies 15% lower than experimental data
over the range Reω≤6.5 × 105. For higher Reynolds numbers, curve 4 agrees well
with the experimental data. Agreement of Eq. (3.35) with experimental data can be
improved assuming a somewhat lower value of Reω,tr=2.0 × 105 (curve 5).

3.3.3 Effect of Approximation of the Radial Velocity Profile
on Parameters of Momentum and Thermal Boundary Layers

The integral method [41, 138, 139] is based on the von Karman’s linear approx-
imation (2.46) of the tangent of the flow swirl angle [80] jointly with the model
(2.56) for the Stanton number. This sub-section is devoted to an investigation into
the effect of different approximations of the tangent of the flow swirl angle, used
jointly with the power-law model for the temperature profile in the boundary layer,
on parameters of fluid flow and heat transfer of a free rotating disk [163, 165, 171,
172].
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To attain this goal, the tangent of the flow swirl angle was approximated by the
following relation:

tan ϕ = α(1 − ξ )σ , (3.37)

where exponent σ accepted discrete values σ=2, 1 and 0 (as shown above in
Sect. 2.4, the value σ=2 was accepted as the main one in the present integral
method).

Resultant solutions for constants in Eqs. (2.82)–(2.92) take the following form:

α =
[

C1

(3 + m)B0 + (4 + m)D0

]1/2

, (3.38)

H9 = αD0(4 + m), (3.39)

εM = 8παγ D0, (3.40)

where B0=B1 and D0=D1 for σ=2; D0=1/(n+1)–1/(n+2)–1/(2n+1)+1/(2n+2) and
B0=D2 for σ=1; B0=1/(2n+1) and D0=1/(n+1)–1/(2n+1) for σ=0. Solution for
σ=2 is a particular case of the solutions (2.88), (2.89), (2.90), (2.91) and (2.92) at
κ=0, β=0.

Numerical values of the constants α, γ and εM obtained by Eqs. (3.38), (3.39) and
(3.40) are documented in Table 3.6 (a part of the data for σ = 1 and 2 corresponds
to the results in Table 3.4).

Profiles of the radial velocity component vr for different values of σ are shown in
Fig. 3.8. The profile for σ=0 differs significantly from the others. However, based
on the data for the moment coefficient (Table 3.6), one can conclude that the errors
in predicting the value of CM in the case of a wrong choice of the value of σ (for
instance, σ=0 instead of σ=2) do not exceed 5%, in spite of much larger errors in
the data for the values of α, velocity profiles, etc.

An analytical solution of Eq. (2.75) with allowance for Eqs. (3.37), (3.38), (3.39)
and (3.40) can be obtained only for the case ≥1 [165, 171, 172]. It is obvious that
at σ=2 this solution represents a particular case of Eqs. (2.93), (2.94) and (2.95) for
N=0 and β=0.

Thus, relations for the constants in Eq. (3.4) are as follows:

nR = (n + 1)/(3n + 1), (3.41)

K1 = K3
−nPr1−np , (3.42)

−n =
[

4 + m

2 + m + n∗
KVPr−np + (1 − KV )

]−1

, (3.43)

K1 = K3Pr

[
4 + m

2 + m + n∗
KV + (1 − KV )Prnp

]−1

, (3.44)

K2 = K1 (n∗ + 2) / (2 + n∗ + m) , (3.45)
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Fig. 3.8 Profiles of the radial
velocity component in the
turbulent boundary layer over
a free rotating disk [163, 165,
171, 172]. For notations 1–4,
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Table 3.6 Constants in Eqs. (2.82), (2.83), (2.84) and (2.85), (3.38), (3.40) and (3.41) for different
values of σ [163, 165, 171]

Coefficient n=1/7 n=1/8 n=1/9 n=1/10

α, σ=2
α, σ=1
α, σ=0

0.2087
0.162
0.0925

0.1842
0.143
0.0818

0.1649
0.128
0.0733

0.1493
0.116
0.0664

γ , σ=2
γ , σ=1
γ , σ=0

0.530
0.526
0.616

0.4977
0.497
0.588

0.4773
0.479
0.571

0.4597
0.463
0.556

εM, σ=2
εM, σ=1
εM, σ=0

0.1466
0.146
0.139

0.1127
0.112
0.107

0.0901
0.09
0.086

0.0734
0.073
0.0704

KV, σ=2
KV, σ=1
KV, σ=0

0.203
0.167
0.111

0.183
0.15
0.10

0.1661
0.1364
0.0909

0.1523
0.125
0.0833

K3, σ=2
K3, σ=1
K3, σ=0

0.02683
0.0267
0.0255

0.02079
0.0207
0.0198

0.01673
0.0166
0.016

0.0137
0.0136
0.0131

nR 0.8 0.8182 0.8333 0.8462
m 0.6 0.6363 0.6667 0.6923
np, σ=2
np, σ=1
np, σ=0

0.5018
0.48
0.45

0.4894
0.471
0.444

0.4797
0.463
0.44

0.4719
0.457
0.436
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K3 = Ac(1 + α2)1/2 = C−2/(n+1)
n γ −2n/(n+1)(1 + α2)0.5(1−n)/(n+1), (3.46)

KV = 1 − D2∗/A1∗. (3.47)

Here D2∗=D2 and A1∗=A1 for σ=2; D2∗=1/(2n+1)–1/(2n+2) and A1∗=1/(n+1)–
1/(n+2) for σ=1; D2∗=1/(2n+1) and A1∗=1/(n+1) for σ=0. Values K3 and KV inde-
pendent of n∗ are presented in Table 3.6. Equation (3.45) coincides with Eq. (3.36),
if one takes into account the relation 2nR = 1 + m following from Eqs. (2.83) and
(3.41).

Denoting G = Prnp (2 + m + n∗)
/
(4 + m), expanding the power functions in

Eq. (3.44) in the Taylor’s series in the neighbourhood of the point G=1 (for Pr→1,
n∗→2) and omitting negligible terms, one can derive [163, 165, 171, 172]

Nu = K3

(
2 + m + n∗

4 + m

)KV

RenR
ω Pr1−np(1−KV ). (3.48)

Taking the value n = 1/7 and rounding down the value of KV to 0.2 results in that
relation (3.48), which coincides with the Dorfman’s solution (3.27) for the Nusselt
number, provided that the cumulative exponent at the Prandtl number is equal to 0.6
and remains invariable for the other values of n. Then the value of np, which still
remains unknown, may be defined as

np = 0.4/(1 − KV ). (3.49)

Values of np calculated by Eq. (3.49) and used further in all the other computa-
tions are documented in Table 3.6. Agreement of Eq. (3.48) with Eq. (3.44) takes
place only for Pr→1 and n∗→2. Thus, from a purely mathematical point of view,
Eq. (3.48) is a particular case of the solution (3.44).

Solution (2.93) for ≤1 in the case of a free rotating disk (N=0 and β=0)
remains a transcendental equation:

2n+1
(

a∗ − 2b∗ + c∗2
)

= 4 + m

2 + m + n∗
(a∗ − 2b∗ + c∗) Pr−np . (3.50)

Here, the subscript “T” of the coefficients a∗, b∗ and c∗ is neglected, which means
equality nT=n. Solution (3.50) is valid for Pr≥1 or Sc≥1 that takes place for fluids
or naphthalene sublimation in air. Because of this, Eq. (3.50) is analysed in more
detail in Chap. 8.

The effect of the value of σ in Eqs. (3.44) and (3.45) on the coefficient K1 in com-
parison with Eq. (3.27) is illustrated in Table 3.7 for a series of discrete values of n∗
at Pr=0.72 and 1, as well as in Fig. 3.9 for air at Pr = 0.72. It is obvious that the best
agreement of Eq. (3.44) with experiments, in particular for n∗≤0, takes place at σ

= 2, therefore the value σ = 2 was chosen as the baseline for further computations.
According to Eq. (3.44), one can obtain the value K1 = 0.0115 at 1/n = 8.7647
that is only 3.6% different from the value K1 = 0.0111 obtained in simulations
of [205].



52 3 Free Rotating Disk

Table 3.7 Constants in Eqs. (3.44) and (3.45) for different values of σ [165, 171, 172]

Coefficient Equations n∗=–0.6 n∗=0 n∗=2 n∗=6

Calculation for Pr=0.72
K1 (3.44), σ=2 0.0169 0.0187 0.022 0.0246
K2 (3.45), σ=2 0.0118 0.0144 0.0191 0.0229
K1 (3.44), σ=1 0.0176 0.0191 0.0219 0.0240
K1 (3.44), σ=0 0.0180 0.0191 0.0209 0.0222
Calculation for Pr=1
K1 Dorfman, Eq. (3.27) 0.0226 0.0238 0.0267 0.0303
K2 Dorfman, Eq. (3.28) 0.0158 0.0183 0.0232 0.0282
K1 Eq. (3.44), σ=2 0.0212 0.0232 0.0268 0.0296
K2 Eq. (3.45), σ=2 0.0149 0.0178 0.0233 0.02755
K1 Eq. (3.44), σ=1 0.0219 0.0237 0.0267 0.0289
K1 Eq. (3.44), σ=0 0.0222 0.0235 0.0255 0.0269
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Fig. 3.9 Effect of the
exponent n∗ and value of σ

on the constant K1 in
turbulent flow of air
(Pr=0.72). Experiments: 1 –
[19, 20, 46]; 2 – [11, 146]; 3
– [122]; 4 – [132]; 5 – [205],
lower limit of variation of K1;
6 – [205], upper limit of
variation of K1; 7 – [41, 77,
138, 139]. Calculations: 8 –
Eq. (3.27) [41]; 9 – Eq. (3.44)
for σ=2; 10 – Eq. (3.44) for
σ=1; 11 – Eq. (3.44) for σ=0

Comparison of data in Tables 3.5 and 3.7 also shows that inaccuracies of the
Dorfman’s solutions (3.27) and (3.28) increase with increasing deviation of the
Prandtl number from unity.

Figure 3.4 represents a comparison of the solution (3.44) for the Nusselt number
at σ=2 with the experimental data on local heat transfer obtained in the work [46].
The value of the exponent n∗ in Eq. (2.35) for the case qw=const studied by the
authors [46] can be found with the help of Eq. (3.4) and the definition of the Nusselt
number [173]

Tw − T∞
T∞

= qwb

λT∞K1
Re−(n+1)/(3n+1)

ϕ x(n−1)/(3n+1). (3.51)

Based on this, one can obtain that n∗=(n–1)/(3n+1)=–m for the case qw=const
[173]. Values of m for different n are presented in Table 3.6.
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Fig. 3.10 Temperature
distribution over the surface
of a rotating disk in the
experiments [46].
1 – qw=const; 2 – Tw ≈const.
Calculation [173]: 3 –
Eq. (3.51)

The disk temperature distributions obtained in the experiments [46] are shown
in Fig. 3.10. In [46], the disk was divided into three annular regions. The region
x =0–0.15 was left unheated; in the regions x = 0.15–0.4 and x = 0.4–0.96, the disk
was heated by two separate heaters of the same power. Data 1 were obtained in the
case where both heaters were switched on, and data 2 relate to the case where only
the external heater was switched on.

In case 1, the effect of the unheated section was weak; therefore, in the region
x > 0.5, the power-law distribution of the disk temperature calculated by Eq. (3.51)
at qw=const is in fairly good agreement with the experimental data. The calcula-
tions involved use the following experimental values: K1=0.0163, qw=710 W/m3,
T∞=298.9 K, Reϕ=1.6 × 106, b=0.5 m; the value λ=0.02624 W/(m�K) was deter-
mined by the data of [22] for air at T∞ ≈300 K.

In the experiments of [46], fluid flow was turbulent at Reω > 3.6 × 105. For the
case of Reϕ=1.6 × 106 considered in Fig. 3.10 this means localization of the turbu-
lent region at x=0.474–1.0.

In case 2 (the internal heater is switched off), the value Tw in the heated zone
(turbulent flow) is approximately constant (Fig. 3.10).

The calculated values of the constants K1 and K2 obtained from Eqs. (3.44) and
(3.45) at n=1/7 and σ=2 are equal to K1=0.0169, K2=0.0118 for n∗=–0.6, while
the value obtained in experiments [19, 20, 46] is K1=0.0163. Thus, Eq. (3.44) differs
from experiments by only 3.7%.

A comparison with the experimental data of [46] for the local Nusselt number
is given in Fig. 3.4. Calculations of Eq. (3.4) at K1 = 0.0169 agree with exper-
iments slightly worse than the results of calculations using the empirical value
K1 = 0.0163 [46]. Note the good agreement between the results of the calcula-
tion of Eq. (3.4) for K1 = 0.0187 (Tw=const) and the experimental results of [46]
with the internal heater switched off (data 2 for Tw ≈const in Fig. 3.10). The val-
ues K1 = 0.0187, K2 = 0.0144 at n∗ = 0 predicted by the present integral method
(see Table 3.7) agree with experiments [146] (deviation 0.5%) and [122] (devi-
ation 4.5%) much better than those calculated by Dorfman’s formula (3.27) (see
Table 3.5).
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3.3.4 Numerical Computation of Turbulent Flow and Heat
Transfer for an Arbitrary Distribution of the Wall
Temperature

In the real rotating-disk systems, the wall temperature distribution often cannot be
described by the analytical relations (2.34) and (2.35). In these cases, a numer-
ical version of the integral method can be used [179], and the distribution of
Tw can be approximated by some other dependence. In works [133, 135], the
Dorfman’s method at a fixed value of n=1/7 was employed for numerical simu-
lations of the conditions observed in experiments. As in the case of the analytical
version of the Dorfman’s method, calculations for the Nusselt number [133, 135]
noticeably exceeded the experimental data at dTw/dr ≈0 and dTw/dr<0. Calcula-
tions and experimental results agreed well at dTw/dr > 0 with the exception for the
cases of high Reϕ values, at which the calculated data were lower than the experi-
mental results.

The authors of [136] simulated the experimental conditions of [133, 135] by
solving numerically the differential equations of the boundary layer closed with
the known Cebeci–Smith model of turbulent viscosity [22]. The agreement of the
calculations with the experiments turned out to be good. This is indicative of the
reliability of the experimental data of [133, 135]; therefore substantial inaccuracy
of the Dorfman’s method at dTw/dr≤0 is responsible for the disagreement of the
calculations and experiments performed in [133, 135].

Numerical simulations of turbulent heat transfer over a rotating disk have been
performed by the author of this book with the help of the numerical version of the
present integral method [179]. Boundary layer equations were used in the form of
Eqs. (2.77) and (2.78). Consideration was given to the cases of positive, approx-
imately constant and negative values of dTw/dr in accordance with experimental
conditions [133, 135].

In analogy to the work [136], experimental temperature distributions on the disk
surface were chosen for further analysis that corresponds to determination of the
Nusselt numbers from the measurements with the help of local heat flux meters
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Fig. 3.11 Radial variation of
the disk temperature Tw/T∞:
points are experiments [133,
135], lines are their
polynomial approximations. 1
– case n∗=0.1,
Reϕ=1.135 × 106; 2 – 0.1
and 1.19 × 106; 3 – 0.1 and
3.2 × 106; 4 – –0.2 and
2.65 × 106; 5 – 0.4 and
2.67 × 106; 6 – 0.4 and
3.14 × 106; 7 – 0.6 and
1.59 × 106
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[133, 135]. The Nu numbers obtained in such a way were corrected by subtracting
the radiation component in accordance with the procedure suggested in [135].

The experimental surface temperature distributions of the disk obtained in [133,
135] were classified by their authors into four groups. These groups are character-
ized as those conventionally complying with the distribution (2.35) at the values of
the power exponent n∗=−0.2, 0.1, 0.4 and 0.6. Examples of such distributions for
a series of Reϕ values are given in Fig. 3.11. Inside each group, the Tw distributions
differ from each other, maximum, by 10–15% for different Reϕ values, but at the
same time they exhibit approximately the same general trend of the curves (see, e.g.
curves 1–3 for the case with conventionally n∗=0.1). These curves are character-
ized mainly by the positive (n∗=0.4 and 0.6), approximately constant (n∗=0.1) and
negative (n∗=–0.2) gradients of the wall temperature Tw.

Correspondence of relation (2.35) to the experiments at the n∗ values indicated
above is indeed rather conventional. For instance, Eq. (2.35) obviously does not
assume maxima, minima and inflection points inside the region of determination of
Tw over the disk radius. At the same time, all the dependences depicted in Fig. 3.11
have the aforementioned characteristic points. However, for the sake of convenience,
the conventional subdivision of the curves into groups adopted in [133, 135] is
retained in the present work. The discrete experimental values of the disk temper-
ature (the tabular data given in work [135] are used here) were approximated in
the present work in the form of the seventh-order polynomial to be used in calcula-
tions with the help of the integral method. Examples of such dependences partially
published in the work [179] are shown in Fig. 3.11.

Results of computations of the local Nu number variation are given in Figs. 3.12
and 3.13. The common feature of the data in Figs. 3.12 and 3.13 is non-universality
of the n and nT values used in computations. However, comparisons of the calculated
curves with the experimental data made it possible to develop some qualitative and
quantitative recommendations for the choice of the n and nT values for particular
thermal and hydrodynamic conditions. It should also be noted that the calculated
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Fig. 3.12 Radial variation of
the Nusselt number, case
conventionally n∗=0.1: 1–7 –
experiments [133, 135].
Calculations: 8 – n=1/5,
nT=1/5; 9 – n=1/6, nT=1/5;
10–16 – n=nT=1/6. 1, 8, 10 –
Reϕ=0.819 × 106; 2, 9, 11 –
1.08 × 106; 3, 12 –
1.35 × 106; 4, 13 – 1.6 × 106;
5, 14 – 1.88 × 106; 6, 15 –
2.14 × 106; 7, 16 – 3.2 × 106
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Fig. 3.13 Radial variation of the Nusselt number, case conventionally n∗=0.6: 1, 2 – experiments
[133, 135]; 5, 6 – calculations at n=nT=1/6.5; 7 – calculation at n=nT=1/7. Case conventionally
n∗=0.4: 3, 4 – experiments [133, 135]; 8, 10 – calculations at n=nT=1/6; 9, 11 – calculations at
n=nT=1/7. The Reynolds numbers Reϕ : 1, 5 – 1.59 × 106; 2, 6, 7 – 1.71 × 106. 3, 8, 9 – 2.67 × 106;
4, 10, 11 – 3.14 × 106

curves in Figs. 3.12 and 3.13 agree well with the calculations [136] carried out, as
indicated above, by a differential method.

Results of simulations of the case n∗=0.1 partially published in the work
[179] are presented in Fig. 3.12. The calculations have been carried out mainly
at n=nT=1/6. Agreement of the calculated and experimental data is good,
though for x≤0.85 the values n=1/6 and nT=1/5 allow slightly better agree-
ment at Reϕ=1.08 × 106, and values n=nT=1/5 provide better performance for
Reϕ=0.819 × 106. This can be apparently attributed to the trend towards decreasing
values of n and nT at rather small Reynolds numbers Reω.

Figure 3.13 shows results of simulations of the rather similar cases n∗=0.4
and n∗=0.6, also partially published in the work [179]. At lower values of
Reϕ=(1.59−1.71) × 106, good agreement with experiments can be attained by
using the value n=nT=1/6.5. For higher Reynolds numbers, one should use
the value n=nT=1/6 (at Reϕ=2.67 × 106) or n=nT=1/7 (at Reϕ=3.14 × 106). It
should be noted that the values n and nT for the data given in Fig. 3.13 are,
on the whole, slightly smaller as compared to the case n∗=0.1 (Fig. 3.12). At
Reϕ=idem, the only difference in the boundary conditions for the computations
being compared is the value of the radial temperature gradient of the disk. For
Fig. 3.12, condition dTw/dr ≈0 is valid, while for Fig. 3.13 condition dTw/dr > 0
is in force.

The assumption concerning the influence of the temperature gradient dTw/dr on
the exponents n and nT is confirmed by calculations presented in Fig. 3.14 for the
case n∗=–0.2. For lower values of the Reynolds number Reϕ=(0.548−1.08) × 106,
one needed to choose the values of nT=1/4 and n=1/6. At a higher value of
Reϕ=2.65 × 106, the exponent nT is smaller and equals nT=1/5 at the same value of
n=1/6. Thus, the influence of dTw/dr<0 is evident again as compared to Fig. 3.12:
for Reϕ=idem, the same value n=1/6 is retained and nT increased.
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Fig. 3.14 Radial variation of
the Nusselt number, case
conventionally n∗=–0.2: 1–3
– experiments [133, 135].
Calculations [179]: solid lines
4, 5 – n=1/6, nT=1/4; dashed
lines 5, 6 – 1/6 and 1/5;
dash-dotted lines 5, 6 – 1/6
and 1/6. 1, 4 –
Reϕ=0.548 × 106; 2, 5 –
1.08 × 106; 3, 6 – 2.65 × 106

A characteristic feature of the data in Figs. 3.12, 3.13 and 3.14 is a dip of the
experimental Nu numbers [133, 135] at the point x ≈0.73 as compared to the cal-
culations. The same disagreement between the experiments and calculations at x
≈0.73 was noticed also in [136]; apparently, the reason lies in the systematic error
of experimental measurements [133, 135] at this point.

It should be pointed out that velocity and temperature profiles have not been mea-
sured in the experiments [133, 135]; therefore, the above analysis of the effect of the
exponents n and nT is based on the indirect conclusions concerning behaviour of the
Nusselt number. Nevertheless, taking into consideration the interrelation between
the n=nT values and the exponent nR at the Reynolds number in Eq. (3.4) for
the Nusselt number under the condition (2.35), this analysis can be believed to
be quite justified. For example, at n=nT=1/7 we have nR=0.8. It is evident that
the rate of increase in the Nu numbers with the radius in Figs. 3.12 and 3.13 (the
cases n∗=–0.2 and 0.1) corresponds to the smaller values of nR, and, consequently,
to the larger n and nT, which is confirmed by numerical calculations. Besides, it
is interesting to note that the authors of [46], who measured experimentally tem-
perature profiles at a negative value of dTw/dr in the case qw=const (or n∗ ≈–0.6),
obtained values nT=1/4–1/5 for Reω=106 (see Fig. 2.5). This agrees with the data
of the present investigations for n∗=–0.2.

Thus, the numerical simulations of turbulent heat transfer over a rotating disk
with the help of the present integral method agree well with the known experimental
data [133, 135] for arbitrary thermal boundary conditions different from the condi-
tions (2.34) and (2.35). The calculations allow concluding that the thermal boundary
conditions of the problem affect the exponents in the power-law approximation of
the temperature profiles and suggest the optimum values of these parameters for the
particular conditions considered.



58 3 Free Rotating Disk

3.4 Generalized Analytical Solution for Laminar and Turbulent
Regimes Based on the Novel Model for the Enthalpy
Thickness

As mentioned in Sect. 3.1, Dorfman’s formula (3.6), which is the most general
approximate analytical solution for laminar flow, exceeds the exact solution by
34–238% over the range of n∗ from –1.5 to 0 at Pr = 1–0.1, with the
deviations increasing following decrease in the Prandtl number. Rela-
tions (3.7) and (3.8) offered in the works [26, 106] are much more
accurate; however, they were obtained only for an isothermal disk,
i.e. at n∗=0. Therefore, it was essential to obtain an approximate
analytical solution with the help of the present integral method for the Prandtl
numbers Pr=1–0.1 for any values of n∗ varying from –2 to 4, which can provide
much higher accuracy than Eq. (3.6) [174, 175, 177].

Tangential equation of the momentum boundary layer (2.23) and the thermal
boundary layer equation (2.25) can be transformed as follows:

d

dr

[
r4δKVKm

]
= cf

2
r4(1 + α2)1/2, (3.52)

d

dr

[
r2δKHKm (Tw − T∞)

]
= χ

cf

2
r2(1 + α2)1/2 (Tw − T∞) , (3.53)

where the Reynolds analogy parameter χ is defined by Eq. (2.57); for the definition
of the parameter Km see Nomenclature.

In a generalized form that describes both laminar and turbulent flow, parameters
of the boundary layer are specified by Eqs. (2.82), (2.83), (2.84), (2.85), (2.86) and
(2.87), as well as by relations

KV = const, Km = const. (3.54)

Relations for the majority of the constants for turbulent flow are given above in
Sect. 2.5, while Km=αA1, KV = 1 − D2/A1.

Formally, Eqs. (2.82), (2.83), (2.84), (2.85), (2.86) and (2.87) transform to those
for laminar flow at n=1 and m=0. The numerical solution of the self-similar Navier–
Stokes equations was used in [138, 139] to obtain the following values for the con-
stants for laminar flow:

α = 0.8284, KV= 0.3482, Km = I∞α

δ(ω/ν)1/2
= I∞α

γ
, (3.55)

I∞ = α−1

∞∫

0

vr

ωr
d(z

√
ω/ν) = 0.5338, Ac = 0.6159(1 + α2)−1/2. (3.56)

Under conditions where relation (2.35) is valid, the dimensionless temperature
� and parameter KH do not depend on the coordinate r. By substituting Eqs. (2.35),
(2.82), (2.83), (2.84), (2.85), (2.86) and (2.87), (3.55) and (3.56) into Eqs. (3.52)
and (3.53) one can obtain
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(4 + m)γ KVKm = Ac(1 + α2)1/2, (3.57)

(2 + m + n∗)γ KHKm = χAc(1 + α2)1/2. (3.58)

Equation (3.58) involves two unknown quantities: KH and χ . Dorfman [41] pro-
posed the model (2.56) that imposed an additional relation between KH and χ .
Drawbacks of the Dorfman’s approach were demonstrated above. Results [173] for
turbulent flow described in Sect. 3.3 make it possible to derive a significantly more
accurate model, which is a consequence of the joint use of the power-law velocity
and temperature profiles:

b2KH = 1 − χPr
np

(1 − KV )b1. (3.59)

The correction factors b1 and b2 are introduced for laminar flow. For turbulent
flow, b1=1 and b2=1, while the formula for the exponent np is given by Eq. (3.49).

Based on the definition of the Nusselt number and expressions (2.57), (3.58), it
can be found that the Nu number still follows the first of Eq. (3.4) at nR = (n +
1)/(3n + 1) and

K1 = (2 + m + n∗)γ KHKmPr. (3.60)

Equating the values χ from Eqs. (3.58) and (3.59), expressing KH from the resul-
tant relation and substituting this value into Eq. (3.60), one can obtain

K1 = Ac(1 + α2)1/2Pr

[
4 + m

2 + m + n∗
KVb2 + (1 − KV )Prnpb1

]−1

, (3.61)

K3 = Ac(1 + α2)1/2. (3.62)

At b1=1 and b2=1, Eq. (3.61) becomes the same as solution (3.44) for turbulent
flow. To remind, for laminar flow n=1, m=0, nR = 1/2 and, as follows from the
second of Eq. (3.56),

Ac(1 + α2)1/2 = 0.6159. (3.63)

Relation (3.61) for Pr→0 reduces to its asymptotic form, which for laminar flow
and b2=1 coincides with the solution obtained in the work [138]

K1 = 0.6159Pr(2 + n∗)/(4KV ). (3.64)

Constants b1 and b2 are found via agreeing Eq. (3.61) with the exact solution
(Table 3.1). In order to satisfy the asymptotic solution (3.64), it is necessary that at
Pr=0 the value b1 be finite and b2=1. Let us assume that

b2 = 1 + b3Prnp1 , b1 = const, b3 = const. (3.65)
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Table 3.8 Values of np and np1 depending on the Prandtl number [174, 175, 177]

Pr 0.9 0.8 0.72 0.71 0.6 0.5 0.4 0.3 0.2 0.1 0.01

np 0.7290 0.7349 0.7436 0.7435 0.7529 0.7608 0.7721 0.7860 0.8036 0.8338 0.9156
np1 0.9349 0.9354 0.9316 0.9334 0.9366 0.9439 0.9519 0.9602 0.9765 0.9893 0.999

The constants b1 and b3, which are independent of the Prandtl number, are found
at Pr=1. Further, the exponents np1 and np are determined for each value of the Pr
number from Table 3.1. Because two unknown constants were determined each time
in the matching procedure, there were two matching conditions as well: the values
of the constant K1 from the exact solution were substituted into Eq. (3.61) at n∗=0
and n∗=2. As a result, we have

b1= 0.6827, b3= 0.5939, (3.66)

and the values of the exponents are given in Table 3.8.
For convenience of computations, the exponents np1 and np were approximated

by the relation

np1 =
7∑

0

aiPri, np =
7∑

0

ciPri. (3.67)

Here a0=1, a1=–0.0080733, a2=–0.35578, a3=0.54852, a4=1.7994,
a5=–6.4323, a6=7.3537, a7=–2.9153; c0=0.92485, c1=–1.1705, c2=3.5321,
c3=–3.3762, c4=–5.7250, c5=15.591, c6=–12.282, c7=3.2084.

The values of K1 calculated by Eq. (3.61) in view of Eqs. (3.65), (3.66) and (3.67)
are given in Table 3.9. Maximal deviation of the approximate K1 values from those
of the exact solution reach 3.1% in the worst case of n∗=–1.5 and Pr=1; the errors
vanish at Pr≤0.1. These errors are much less than those involved in the calculation
of K1 by Eq. (3.6) of Dorfman.

Let us show that the Nusselt number in the case of laminar flow at qw=const is
identically equal to that at Tw=const. The exponents at the r values in both sides of
Eq. (3.53) must be equal. For qw=const, this leads to the relation 1 + m + n∗ = 1.
In laminar flow, m=0, therefore, n∗=0, just as for Tw=const. In turbulent flow, as
shown above, the condition qw=const is satisfied at n∗=–m.

Data of the exact solution (2.37), (2.38), (2.39), (2.40) and (2.41) for air at
Pr=0.72 obtained by the author [174, 175, 177] and those of the approximate
solution (3.61) are illustrated in Fig. 3.15 in comparison with the Dorfman’s solution
(3.6) and known experimental data.

Thus, in this section an improved formula for the parameter KH (modified
enthalpy thickness) was derived for laminar flow. The relations KH and Nu suggested
here extend the solution obtained in Sect. 3.3 for the case of turbulent flow onto the
laminar flow conditions. The constants of the model determined via comparisons
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Table 3.9 Values of the constant K1 by Eqs. (3.61), (3.65), (3.66) and (3.67)

Pr n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

1.0 0.0 0.1261 0.2311 0.3199 0.3961 0.5197 0.6159 0.6928 0.7557
0.9 0.0 0.1180 0.2170 0.3012 0.3737 0.4922 0.5849 0.6594 0.7207
0.8 0.0 0.1093 0.2018 0.2809 0.3495 0.4623 0.5513 0.6233 0.6827
0.72 0.0 0.1019 0.1887 0.2635 0.3286 0.4365 0.5223 0.5921 0.6500
0.71 0.0 0.1009 0.187 0.2612 0.3259 0.4332 0.5185 0.5880 0.6457
0.6 0.0 0.0898 0.1673 0.2349 0.2943 0.3939 0.4742 0.5402 0.5955
0.5 0.0 0.0788 0.1477 0.2084 0.2623 0.3539 0.4287 0.4910 0.5437
0.4 0.0 0.0666 0.1258 0.1787 0.2263 0.3084 0.3767 0.4344 0.4839
0.3 0.0 0.0531 0.1012 0.1449 0.1849 0.2553 0.3153 0.3671 0.4122
0.2 0.0 0.0379 0.0730 0.1057 0.1362 0.1914 0.2400 0.2832 0.3217
0.1 0.0 0.0204 0.0399 0.0586 0.0766 0.1104 0.1417 0.1707 0.1977
0.01 0.0 0.00219 0.00438 0.00655 0.00871 0.01301 0.01726 0.02148 0.02565
10–3 0.0 0.000221 0.000442 0.000662 0.000883 0.00132 0.00176 0.00220 0.002643
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Fig. 3.15 Effect of the
exponent n∗ on the constant
K1 in Eq. (3.4) for laminar
flow at Pr=0.72. 1 – exact
solution [174, 175, 177], 2 –
Eq. (3.61), 3 – Eq. (3.6).
Experiments for n∗=0: 4 –
0.335 [46, 64, 143], 5 – 0.33
[11, 32, 146], 6 – 0.32 [24]

with the exact solution were approximated by polynomials. An improved approxi-
mate analytical solution for calculating the Nusselt number was obtained. The error
of this formula with respect to the numerical exact solution does not exceed 3.1%.

3.5 Inverse Problem of Restoration of the Wall Temperature
Distribution at a Specified Arbitrary Power Law
for the Nusselt Number

3.5.1 Solution of the Problem

Most of the approximate analytical solutions of the thermal boundary layer equation
are known to be obtained by way of solving a direct problem using a specified
power-law distribution of the wall temperature (2.35) or, in a rewritten form,
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T = c0xn∗ . (3.68)

The relation for the Nusselt number (3.4) can be presented as follows:

Nu = K1Re(n+1)/(3n+1)
ϕ x2(n+1)/(3n+1), Nu = K1Re(n+1)/(3n+1)

ϕ x1+m. (3.69)

It is essential to restore a distribution for T for the case where the Nusselt
number is described by the following relation:

Nu = K1Re(n+1)/(3n+1)
ϕ xmx , Nub = K1Re(n+1)/(3n+1)

ϕ xmx−1, (3.70)

where mx=const is an arbitrary exponent, which is in the general case different
from 2(n + 1)/(3n + 1) = 1 + m in Eq. (3.69). One of the practical applications
of such a solution is the problem of experimental determination of the stationary
Nusselt number using a transient technique [154–156] (see Chap. 4). In this case,
experimental distributions of T are unsteady, while the steady-state function T
that corresponds to the obtained stationary Nusselt number may be found by means
of solving an inverse problem.

A solution of the stated problem is performed with the help of the present integral
method [176, 177]. The integral equation (3.53) of the thermal boundary layer can
be reduced to the following form:

d

dx

[
Reωδ̄KHKmT

] = Nu

Pr
T . (3.71)

For laminar and turbulent boundary layers, Eq. (2.82) can be rewritten as follows:

δ̄ = C∗
δ xm, C∗

δ = γ Re−2n/(3n+1)
ϕ , (3.72)

where m=1 and Kmδ̄ = I∞αRe−1/2
ϕ in laminar flow (see Eq. (3.55)). Choice of the

values of C∗
δ or γ depends on the desired accuracy of their determination from the

self-similar profiles of vr and vϕ . Since parameters δ̄ and Km are used in Eq. (3.71)
as a product, then, in view of Eq. (3.72), values of C∗

δ or γ for laminar flow do not
affect the subsequent transformations.

Taking a derivative of the left-hand side of Eq. (3.71) and dividing both sides of
this equation by Reωδ̄KHKmT , one can deduce

d

dx

[
ln

(
Reωδ̄KHKmT

)] = Nu

Pr

1

Reωδ̄KHKm
. (3.73)

Taking into account Eq. (3.70) for Nu and (3.72) for δ̄, along with the relation
Reω = Reϕx2, one can obtain

d

dx

[
ln

(
Reωδ̄KHKmT

)] = K1

PrKmγ
· xmx−m

x2KH
, (3.74)
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where the first of the multipliers in the right-hand side of Eq. (3.74) is constant,
while the second one is a function of the radial coordinate x.

Equation (3.74) has to be integrated within the limits from x to 1 (provided that
x
=0 to avoid uncertainty in both sides of this equation):

[
ln

(
Reωδ̄KHKmT

)] 1
x = K1

PrKmγ
·

1∫

x

xmx−mdx

x2KH
. (3.75)

Parameter KH is specified by Eq. (3.59). The Reynolds analogy parameter χ is
given by transformed equation (2.57):

χ = Nu
Cf
2 Reω(1 + α2)1/2Pr

= Cχ xmx−m−1, (3.76)

Cχ = K1

Ac(1 + α2)1/2Pr
. (3.77)

Let us denote

m∗
x = mx − m. (3.78)

In terms of Eq. (3.78), one can easily see that Eq. (3.69) for the Nusselt number
is valid at m∗

x=1, mx = 1 + m.
Equation (3.59) can be expressed with the help of Eqs. (3.76), (3.77) and (3.78),

as follows:

KH = a∗ + b∗xm∗
x−1, (3.79)

a∗ = 1

b2
, b∗ = −Prnp (1 − KV )

b1

b2
Cχ . (3.80)

In view of Eqs. (3.79) and (3.80), the integral in the right-hand side of Eq. (3.75)
takes the following form:

1∫

x

xmx−mdx

x2KH
=

1∫

x

xm∗
x dx

a∗x2 + b∗xm∗
x+1

. (3.81)

Integrating Eq. (3.81) with the help of Mathematica software, one can obtain

1

b∗(1 − m∗
x )

· ln
a∗ + b∗xm∗

x−1

a∗ + b∗
= ln

[
a∗ + b∗xm∗

x−1

a∗ + b∗

] 1
b∗(1−m∗

x )

. (3.82)
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With allowance for Eq. (3.72), the left-hand side of Eq. (3.75) takes the following
form:

[
ln

(
Reωδ̄KHKmT

)] 1
x = ln

[
T

KHx2+m

KHx = 1

]−1

. (3.83)

Substituting Eqs. (3.82), (3.83) into Eq. (3.74), one can finally obtain

T = a∗ + b∗
a∗ + b∗xm∗

x−1
x−2−m

⎡

⎣

(
a∗x1−m∗

x + b∗
a∗ + b∗

) 1
1−m∗

x

x−1

⎤

⎦

− K1
PrKmγ b∗

(3.84)

or

T =
[

KH

KHx=1

]− K1
PrKmγ b∗(1−m∗

x )
−1

x−2−m. (3.85)

3.5.2 Limiting Case of the Solution

Let us consider a limit of Eq. (3.85) at m∗
x→1 or, which is the same, at y = 1−m∗

x →
0. Utilizing the rule of L’Hospital, one can obtain

lim
y→0

ln a∗+b∗x−y

a∗+b∗
b∗y

= − ln x

a∗ + b∗
= ln x− 1

a∗+b∗ . (3.86)

Arguments of logarithms in the right-hand sides of Eqs. (3.82) and (3.86) at
m∗

x→1 become equal to each other:

[
a∗ + b∗xm∗

x−1

a∗ + b∗

] 1
b∗(1−m∗

x )

m∗
x→1

=
[

KH

KHx=1

] 1
b∗(1−m∗

x )

m∗
x→1

= x− 1
a∗+b∗ . (3.87)

At m∗
x→1, solution (3.85) with allowance for relation (3.87) reduces to

T = x
K1

PrKmγ (a∗+b∗) −2−m. (3.88)

Comparing Eqs. (3.68) and (3.88), one can obtain

n∗ = K1

PrKmγ (a∗ + b∗)
− 2 − m. (3.89)
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If the value of n∗ is specified (as has been done elsewhere), then, taking into
account that a∗ + b∗ = KH at m∗

x=1, one can derive a formula for K1, which coin-
cides with Eq. (3.61) obtained earlier for the boundary conditions (2.35) or (3.68).
Thus, distribution (3.68) can be interpreted as a particular case of solution (3.85) at
m∗

x=1.

3.5.3 Properties of the Solution for Temperature Head

Taking a derivative of Eq. (3.85) with respect to the coordinate x and equating the
resulting expression to zero, one can find the abscissa of the extreme point xext for
the temperature head [177, 178]:

xext =
[ K1

PrKmγ
− b∗(mx + 1)

a∗(2 + m)

] 1
1−m∗

x

. (3.90)

Relative thickness of the thermal boundary layer  for the turbulent flow can be
found from Eq. (3.76) for χ and relation χ = −nPr−np . Consequently, the value
of  varies according to the law

 = (χPrnp)−1/n = (Cχ xm∗
x−1Prnp)−1/n = (Cχ Prnp )−1/nx(1−m∗

x )/n. (3.91)

For the boundary condition (3.68), where m∗
x = 1, one can obtain from Eq. (3.91)

that, as expected, =const. At m∗
x < 1, the value of  increases with x. At m∗

x > 1,
the dependence of  on x is decreasing.

Relation (3.79) for the value of KH has a critical point KH=0. Based on the
physical sense of the model used, the parameter KH can be only positive. Thus,
parameters at the critical point can be calculated from the following relations:

χcrit = 1

b1Prnp(1 − KV )
, (3.92)

crit = (χcritPrnp)−1/n =
[

1

b1(1 − KV )

]−1/n

, (3.93)

xcrit =
[
χcrit

Cχ

]1/(m∗
x−1)

. (3.94)

Equations (3.90), (3.91), (3.92), (3.93) and (3.94) are important in calculations
of distributions of T and their analysis.
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3.5.4 Analysis of the Solution

The analytical solution of the heat transfer problem of a free rotating disk obtained
in Sect. 3.5 belongs to a new class of solutions that generalizes the class of solutions
known before [176, 177]. This novel solution can describe a much wider range of
thermal boundary conditions at the wall and includes the previously known solu-
tion as a particular case, where one of the determining parameters of the problem
becomes unity.

Indeed, the family of curves describing distributions of the temperature head
(3.84) or (3.85), as well as the Nusselt number (3.70), is characterized by two
independent parameters K1 and mx. At mx = 1 + m (or m∗

x=1), the novel solutions
(3.84) or (3.85) for T and Eq. (3.70) for the Nusselt number reduce to Eq. (3.68)
for T and Eq. (3.69) (or (3.4)) for Nu, which have only one independent parameter
K1 or n∗. The relation between parameters K1 and n∗ for m∗

x=1 is described by Eqs.
(3.89) or (3.61) (most often, the exponent n∗ is given, while the constant K1 can
be determined from the solution (3.61)). The rest of the parameters of the consid-
ered solutions are not free, as they are determined either by the physical properties
of fluid (the Prandtl number) or by the models of the boundary layer (and thermal
boundary layer) themselves with allowance for the flow regime given. Both of the
compared distributions (3.68) and (3.84) (or (3.85)) for T are independent of the
Reynolds number Reϕ .

Both one-parameter family of dependencies for the Nusselt number (3.69) (or
Eq. (3.4)) and two-parameter family (3.70) allow obtaining monotonic distributions
of the Nusselt number for all values of x, i.e. the sign of the derivative dNu/dx is
constant for any x. At m∗

x = 1, the sign of the derivative dT/dx in the distribution
(3.68) is also constant. However, at m∗

x 
= 1, the distributions of T described by
Eqs. (3.84) or (3.85) are non-monotonic and allow obtaining (under certain condi-
tions) curves of T with points of minimum or maximum.

Application to laminar flow. Let us consider laminar flow of air at Reϕ = 53,500,
Pr = 0.71 (and m = 0, m∗

x = mx). This corresponds to the conditions of experiments
in the works [154–156]. Let us further analyse properties of the novel solution for
the Nusselt number and temperature head [176, 177].

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

4

3

2

1

Nub

x

Fig. 3.16 Radial distribution
of the Nusselt number Nub by
Eq. (3.70) for laminar flow
(m = 0) at Reϕ = 53,500,
Pr = 0.71. 1 – mx = 0.6,
K1 = 0.187; 2 – mx = 1.6,
K1 = 0.5185; 3 – mx = 1.1,
K1 = 0.4; 4 – mx = 0.9,
K1 = 0.3
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Fig. 3.17 Radial distri-
bution of the temperature head
T = (Tw − T∞)/(Tw − T∞)x=1
by Eq. (3.85) for laminar flow
(m = 0) at Reϕ = 53,500,
Pr = 0.71. 1 – mx = 0.6,
K1 = 0.187; 2 – mx = 1.6,
K1 = 0.5185; 3 – mx = 1.1,
K1 = 0.4; 4 – mx = 0.9,
K1 = 0.3

When the temperature head is determined by Eq. (3.68) at n ∗ =−1, the radial
distribution of T is decreasing, while the Nusselt number Nub in accordance with
Eq. (3.69) is constant with K1 = 0.187; this case is also described by Eq. (3.70) at
mx = 1.

Taking the same value K1 = 0.187 and assuming mx = 0.6 instead of mx = 1 in
Eq. (3.70), one can obtain a function for the Nub numbers steadily decreasing in
the radial direction from infinite values at x→0 (see curve 1 in Fig. 3.16) instead of
being constant as at mx = 1. For such set of parameters K1 and mx, the function T
according to Eq. (3.85) increases from zero value at x = 0 and reaches its maximum
T = 2.55 at the point x ≈ 0.2, see curve 1 in Fig. 3.17. Such a behaviour is a
response to the sharp decrease in the Nub numbers in this region. Parameters at the
point of maximum can be calculated by Eqs. (3.92), (3.93) and (3.94). Having come
through its maximum, function T decreases with the increasing x according to the
dependence close to x−1. In all cases, T = 1 at x = 1.

In the case where temperature head is specified by relation (3.68) at n∗ = 2, value
T grows up in the radial direction, while the Nub value is constant at K1 = 0.5185,
and mx again equals to unity.

Taking the same value K1 = 0.5185 and assuming mx=1.6 in Eq. (3.70), one can
obtain a radially increasing function of Nub (instead of being constant as at mx = 1).
For such values of K1 and mx, the temperature head T falls down from infinity to
the value T = 0.4075 at the point of minimum x ≈ 0.4, which is caused by the fast
increase in the Nub values for small x. For x > 0.4, the function T of x becomes
increasing according to a relation close to x2 up to the value T = 1 at x = 1.

Curves 3 (for mx = 1.1, K1 = 0.4) and 4 (for mx = 0.9, K1 = 0.3) in Figs. 3.16 and
3.17 characterize the cases of variation of the Nusselt numbers Nub and temperature
heads T according to dependencies intermediate in comparison with cases 1 and
2 considered above.

Additional comparisons with experiments [154–156] are presented in Chap. 4.
Thus, Eq. (3.84) or (3.85) for T jointly with Eq. (3.70) for the Nub number pro-

vides much stronger potential of modelling different thermal boundary conditions
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Fig. 3.18 Radial variation of the temperature head T = (Tw −T∞)/(Tw −T∞)x=1 for Pr = 0.72,
case conventionally n∗ = 0.1. Experiments [133, 135]: 1 – Reϕ = 1.08 × 106; 2 – 1.6 × 106; 3 –
1.88 × 106; 4 – 2.14 × 106; 5 – 3.2 × 106. Calculations by Eq. (3.85) for n = 1/6: 6 – K1 = 0.0232
and mx = 1.48; 7 – 0.0229 and 1.43; 8 – 0.0224 and 1.38. Calculations by Eq. (3.68): 9 – c0 = 1.16
and n∗ = 0.06; 10 – c0 = 1.25 and n∗ = 0.06

for heat transfer of a rotating disk than Eqs. (2.35) and (3.4) (or Eqs. (3.68) and
(3.69)) known earlier.

Application to turbulent flow. Experimental data [133, 135] were chosen for
the analysis here [178, 189]. Results of the numerical modelling done above in
Sect. 3.3.4 allowed, in particular, selecting values of the exponents n and nT in the
power-law approximation of the temperature and velocity profiles corresponding to
experimental conditions of the works [133, 135]. These values will be used below
in modelling conditions [133, 135] with the help of the solutions (3.70) and (3.85),
with the condition n = nT being always held.

Results of modelling the case with, conventionally, n∗ = 0.1 are shown in Figs.
3.18 and 3.19. Computations were performed at n = nT = 1/6.

Experimental distributions of the temperature head T correlate well with
Eq. (3.68) at n∗ = 0.06, c∗

0 = 1.16 for Reϕ = (1.08−1.35) × 106 and at n∗ = 0.06,
c∗

0 = 1.26 for Reϕ = (2.14−3.2) × 106 over the range x ≈0.3–0.85. Resulting from
this fact is fair consistency of the experimental values for the Nusselt number and
those calculated by Eq. (3.69) (with K1 being computed from Eq. (3.44)) for x ≈0.3–
0.85.

However, for x > (0.7–0.85), decreasing radial variation of experimental val-
ues of the wall temperature is observed contrary to the still increasing predicted
values of T . This phenomenon results in the tendency to exceed by the predicted
Nusselt numbers over the experimental values in the area where signs of the deriva-
tives dT/dx are in disagreement. This tendency is amplified with the increasing
Reynolds numbers Reϕ . It is also necessary to note that the calculation of the Nu
number from Eq. (3.69) with the use of Eq. (3.44) for K1 is still better than the
use of Dorfman’s equation (3.27) at n∗ = 0.1, n = nT = 1/7, like it was done by the
authors of the works [133, 135] (see curves 11–13 in Fig. 3.19 and explanations to
them).
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Fig. 3.19 Radial variation of the Nusselt number, case conventionally n∗ = 0.1: 1–5 – experiments
[133, 135]; 6–11 – calculations by Eqs. (3.69), (3.70) for n = nT = 1/6. Solid lines, Eq. (3.70):
6, 7 – K1 = 0.0232, mx = 1.48; 8–10 – K1 = 0.0224, mx = 1.38. Dashed lines 6–10 – Eq. (3.69),
K1 = 0.0232, nR = 0.778, mx = 1.556. Lines 11–13 – Dorfman’s equation (3.27) for n∗ = 0.1. 1,
6, 13 – Reϕ = 1.08 × 106; 2, 7 – 1.6 × 106; 3, 8 – 1.88 × 106; 4, 9, 12 – 2.14 × 106; 5, 10, 11 –
3.2 × 106

An improvement in the agreement with the experimental data for the Nusselt
number can be attained using Eq. (3.70) (Fig. 3.19) and simulating distributions of
T by Eq. (3.85) (Fig. 3.18). As a whole, the absolute errors of Eq. (3.85) with
respect to the experimental data are not lower than the errors of Eq. (3.68). How-
ever, Eq. (3.68) predicts a constant sign of the derivative dT/dx for any x. On the
contrary, Eq. (3.85) allows quite a good simulation also of the sign of the derivative
dT/dx, which in the considered case changes from positive to negative values with
increasing x. Namely this is the main reason for the improvement of the consistency
between the predicted and experimental values of the Nu number (Fig. 3.19).

Results of simulations of the case conventional n∗ = –0.2 are shown in Figs. 3.20
and 3.21. Predictions using analytical formulas were done for n = nT = 1/6. Numer-
ical modelling with the help of polynomial approximations of the real distributions
of T showed that somewhat better agreement with the experiments can be attained
at a larger value nT = 1/5 and the same value n = 1/6 (see Fig. 3.14). However, ana-
lytical formulas do not allow using values nT and n different from each other.

As is evident from Fig. 3.20, a fair agreement of the predicted and experimental
data for T is observed at x≥0.6. Only curve 4 exhibits qualitative consistency of
the sign of the predicted derivative dT/dx with the experiments at x = 0.35–0.45.

It should be mentioned also that the agreement of Eq. (3.68) with the experiments
is observed only at n∗ = −1.5 (and c0 = 1.14), but not at n∗ =−0.2 (curve 6), as
suggested in the work [133, 135].

At first, differences in the distributions of T in Fig. 3.20 at x≥0.6 obtained
from Eqs. (3.68) and (3.85) seem to be not too essential. However, it is evident from
Fig. 3.21 that the Nusselt numbers are sensitive to the choice of the parameters K1
and mx.
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Values of the Nu number calculated by Eq. (3.69) for Reϕ = 1.08 × 106

show quite a good agreement with the experiments (the lower curve 4 in
Fig. 3.21). However, the experimental point for the Nu number at x ≈0.4
corresponds to laminar flow, and an agreement with it means that the pre-
dicted dependence 4 should be considered underestimated. Confirming this
fact is the upper curve 4 for Reϕ = 2.65 × 106, where the inadequate use
of the model (3.68), (3.69) results in an essential underestimation of the
calculations at x≤0.7 as compared to experiments, with this underestima-
tion being not “compensated” with an insufficient development of the turbu-
lent flow in the experiments (i.e. the turbulent flow is already developed at
x ≈0.4).

Again, an improvement of the agreement with the experimental data for the Nus-
selt number can be achieved due to use of Eq. (3.70), with the distributions T
being modelled by Eq. (3.85). Parameters K1 and mx were chosen here based on the
necessity to agree the predicted and experimental values of the Nu numbers.

A calculation of the Nusselt number by the Dorfman’s equation (3.27) at n∗ = –
0.2 leads to obtaining the values of Nu noticeably overestimated in comparison with
the experiments (curve 7 in Fig. 3.21).

Results for the quite close cases at conventionally n∗ = 0.4 and n∗ = 0.6 are
shown in Figs. 3.22 and 3.23. For Reϕ = 1.59 × 106, a good agreement with the
experiments is attained at n = nT = 1/6.5; for Reϕ = 2.67 × 106, it is necessary to
employ the values n = nT = 1/6 (see line 3 in Fig. 3.23). Analysis of the distribu-
tions of the temperature head T in Fig. 3.22 at x = 0.3–0.6 shows that indeed
the value n∗ = 0.6 at c∗

0 = 1 in Eq. (3.68) agrees well with the experiments for
Reϕ = 1.59 × 106. At the same time, the experiments for Reϕ = 2.67 × 106 can be
simulated better with the value n∗ = 0.7 for c0 = 1, but not with n∗ = 0.4.

Equation (3.85) allows obtaining distributions of T with an error not exceed-
ing the error of Eq. (3.68) (see Fig. 3.22). However, Eq. (3.85) provides an essential
radial variation of the absolute value of the derivative dT/dx and thus more oppor-
tunities to select the parameters K1 and mx.
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Fig. 3.20 Radial variation of
the temperature head T =
(Tw − T∞)/(Tw − T∞)x=1 for
Pr = 0.72, case
conventionally n∗ = –0.2.
Experiments [133, 135]: 1 –
Reϕ = 1.08 × 106; 2 –
2.65 × 106. Calculations by
Eq. (3.85) for n = 1/6: 3 –
K1 = 0.0157, mx = 1.3; 4 –
K1 = 0.0137, mx = 0.775.
Calculations by Eq. (3.68):
5 – c0 = 1.14, n∗ = –1.5;
6 – c0 = 1.0, n∗ = –0.2
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Fig. 3.21 Variation of the Nusselt number, case conventionally n∗ = –0.2: 1, 2 – experiments [133,
135]; 3–5 – Eq. (3.69) for n = nT = 1/6; 6 – Dorfman’s equation (3.27) for n∗ = –0.2. Lower lines
3–6 and 1 – Reϕ = 1.08 × 106; upper lines 3–6 and 2 – 2.65 × 106. Lower line 3 – Eq. (3.70),
K1 = 0.0157, mx = 1.3; upper line 3 – Eq. (3.70), K1 = 0.0137, mx = 0.775. Lines 4 – Eq. (3.69),
K1 = 0.0156, nR = 0.778, mx = 1.556, n∗ = –1.5. Lines 5 – numerical modelling (see Fig. 3.14)
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Fig. 3.22 Radial variation of the temperature head T = (Tw −T∞)/(Tw −T∞)x=1 for Pr = 0.72,
cases conventionally n∗ = 0.4 (data 1, 2, 6, 8) and n∗ = 0.6 (data 3, 4, 5, 7). Experiments [133,
135]: 1 – Reϕ = 2.67 × 106; 2 – 3.14 × 106; 3 – 0.615 × 106; 4 – 1.71 × 106. Calculations by
Eq. (3.85): 5 – K1 = 0.0219, mx = 1.48, n = 1/6.5; 6 – K1 = 0.0249, mx = 1.34, n = 1/6. Calcula-
tions by Eq. (3.68): 7 – c0 = 1, n∗ = 0.6, 8 – c0 = 1, n∗ = 0.7

Analysis of the distributions of the local Nusselt numbers in Fig. 3.23 shows that
Eq. (3.70) together with Eq. (3.85) at specially fitted values K1 and mx provides
better agreement with the experiments than Eq. (3.69) together with Eq. (3.68).
This is especially obvious for the higher value Reϕ = 2.67 × 106. Inexactitudes of
Eq. (3.69) for the K1 values computed by the Dorfman’s equation (3.27) are not so
essential (see curves 6 and 7 in Fig. 3.23). This fact agrees with the earlier conclu-
sions that the errors of the Dorfman’s method become essential at n∗≤0.
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Fig. 3.23 Radial variation of the Nusselt number. 1, 2 – experiments [133, 135]. 3 – numeri-
cal modelling (Fig. 3.13). Case conventionally n∗ = 0.4 (upper group of lines, Reϕ = 2.67 × 106),
calculations at n = nT = 1/6: 4 – Eq. (3.70), K1 = 0.0249, mx = 1.34; 5 – Eq. (3.69),
K1 = 0.0262, nR = 0.778, mx = 1.556, n∗ = 0.7. Case conventionally n∗ = 0.6 (lower group of lines,
Reϕ = 1.59 × 106), calculations at n = nT = 1/6.5: 4 – Eq. (3.70), K1 = 0.0219, mx = 1.48; 5 –
Eq. (3.69), K1 = 0.02265, nR = 0.7896, mx = 1.579, n∗ = 0.6. Line 6 – Dorfman’s equation (3.27),
n∗ = 0.4; line 7 – Eq. (3.27), n∗ = 0.6

Thus, the new solution for the temperature head T and the Nusselt number at
a given value of the Prandtl number represents a two-parameter family of curves,
i.e. depends on two free parameters K1 and m∗

x . The new analytical solution given
by Eqs. (3.70) and (3.85) provides much better accuracy of the agreement with
the experiments [133, 135] than the previously known solutions (3.68) and (3.69).
This significantly widens the potential for analytical modelling of different thermal
boundary conditions for heat transfer of a rotating disk.

3.6 Theory of Local Modelling

3.6.1 Solution of the Problem

The basic assumption of the theory of local modelling is Eq. (2.56) at a constant
value of Ms. Dorfman’s solutions (3.6) and (3.27) were obtained namely at the con-
dition Ms = const. An improvement of the agreement of the theory of local mod-
elling with the experimental data for turbulent flow and exact solution for laminar
flow can be attained only via assuming the value of Ms to be variable depending on
the exponent n∗. Such an investigation has been performed in the work [89].

Thermal boundary layer equation (3.71) can be presented in the following form:

1

T

d

dr

[
Re∗∗

T rT
] = Nu/Pr. (3.95)
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Substituting the law of heat transfer, Eq. (2.56), into the right-hand side of
Eq. (3.95) and using the boundary condition (2.35), one can obtain a relation for
the Nusselt number:

Nu = M
1

1+σ
s (2nR + n∗ + 1)

σ
1+σ (1 + α2)

1
2(1+σ ) Re

1
1+σ
ω Pr

1+σ−ns
1+σ . (3.96)

For the constant value of the coefficient Ms found in the reference point n∗ = 2
(see explanations to Eq. (2.56)) one can obtain the Dorfman’s solutions (3.6) and
(3.27).

For the sake of simplicity, the derivations presented below will be performed
at the constant value of the Prandtl number Pr = 0.72. In this case, Eq. (3.44) for
turbulent flow at n = 1/7, and relations for Ms and St have the following form:

1

K1
= 34.99 + 48.33

2.6 + n∗
, (3.97)

Ms = 1.252

(34.99 + 48.33/(2.6 + n∗))1.25 (2.6 + n∗)0.25
, (3.98)

St = 1.475 · Re∗∗
T

−0.25

(34.99 + 48.33/(2.6 + n∗))1.25 (2.6 + n∗)0.25
. (3.99)

In the work [89], another relation for the constant K1 was obtained based on the
mathematical form of Eq. (3.97) and fitting of the coefficients to experimental data
[46, 146]

1

K1
= 33.27 + 56.16

2.6 + n∗
, (3.100)

with Eqs. (3.98) and (3.99) being modified accordingly. Equation (3.100) can be in
fact treated as a somewhat modified Eq. (3.97), with the accuracy of Eq. (3.100)
being somewhat lower than that of Eq. (3.97) (see Fig. 3.24).

For laminar flow at Pr = 0.72, Eq. (3.61) and the relation for the Stanton number
take the following form:

K1 = 0.4435

0.3486 + 2.002/(2 + n∗)
, (3.101)

St = 0.2922 · Re∗∗
T

−1.0

(2 + n∗) (0.3486 + 2.002/(2 + n∗))2
. (3.102)

Thus, the use of the laws (3.99) and (3.102), which significantly improve agree-
ment with experimental data, required cancellation of the fundamental statement of
the theory of local modelling, namely, that the value of the coefficient Ms is con-
stant. Finding the mathematical form of Eqs. (3.99) and (3.102) required the use of
solution (3.44) obtained on the base of a principally different theoretical approach,
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which significantly devalues the fundamental law (2.56) of the theory of local mod-
elling.

The theory of local modelling assumes using Eqs. (3.99) and (3.102) as the “base-
line” relations in which additional effects of streamwise pressure gradient, porous
injection/suction, physical properties variation with temperature, etc. can be taken
into account in the form of multipliers. However, justification of such assumptions
has never been performed.

In general, the theory of local modelling, even being used together with a vari-
able relation for the coefficient Ms, seems to be a less perfect modelling tool, which
requires purely empirical approaches in those cases, where the present integral
method operates with clear model assumptions.

3.6.2 Other Interpretations

The Dorfman’s approach [41] developed further by the authors of [138, 139] has
been rather extensively used by different authors, and its results have been widely
cited for several decades. Therefore, it makes sense to describe in more detail this
approach in the form employed by the authors of works [41, 138, 139].

Equation (2.56) connecting the Stanton number and the enthalpy Reynolds num-
ber Re∗∗

T was rewritten by Dorfman [41] in the following form:

Nu = F(Pr)Reω

[
2πRe∗∗

T

]−σ = [
2πKHKmReωδ/r

]−σ . (3.103)

Expressing the Nusselt number with the help of the Reynolds analogy parameter
χ and its definition, Eq. (2.57), one can obtain

F(Pr)
[
2πKHKmReωδ/r

]−σ = χ
cf

2
(1 + α2)1/2Pr. (3.104)
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Fig. 3.24 Effect of the
exponent n∗ on the constant
K1 in turbulent flow of air
(Pr = 0.72). For notations for
experimental data 1–7 see
Fig. 3.9. Calculations: 8 –
Eq. (3.27); 9 – Eq. (3.97);
10 – Eq. (3.100); 11 – Eq. (3.44)
for σ = 1 (see Fig. 3.10)
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The unknown function F(Pr) is excluded via substituting it with the value χquad,
which is actually the Reynolds analogy parameter χ for n∗ = 2 and Pr 
=1. This is
done in the following way. Let us assume that KH = KH,quad and χ = χquad for
n∗ = 2 and Pr 
= 1. Then, on the basis of this,

F(Pr)
[
2πKH,quadKmReωδ/r

]−σ = χquad
cf

2
(1 + α2)1/2Pr. (3.105)

Dividing Eq. (3.104) by Eq. (3.105), one can obtain

[
KH/KH,quad

]−σ = χ/χquad. (3.106)

Based on Eqs. (3.52) and (3.53), one can further obtain for n∗ = 2, Pr 
=1 and
χ = χquad that

KH,quad = KVχquad, (3.107)

[
KH/KVχquad

]−σ = χ/χquad. (3.108)

According to the works [138, 139]

χquad = Pr−1/2 for laminar flow,
χquad = Pr−2/5 for turbulent flow.

(3.109)

The exponent σ should have such a value that the exponents at the coordinate r
in both sides of Eq. (3.104) are equal to each other (so that conditions χ = const,
KH =const hold). Then

σ = 2n/(n + 1). (3.110)

Substituting the value of χ from Eq. (3.108) into Eq. (3.53) and using the acces-
sory equation (3.52), one can obtain with allowance for Eq. (3.110)

KH = χquadKV

(
2 + m + n∗

4 + m

)(n+1)/(3n+1)

, (3.111)

χ = χquad

(
2 + m + n∗

4 + m

)2n/(3n+1)

. (3.112)

As a result, the Nusselt number can be expressed by the following relation:

Nu = Ac(1 + α2)1/2
(

2 + m + n∗
4 + m

)2n/(3n+1)

Re(n+1)/(3n+1)
ω χquad Pr. (3.113)

For laminar flow, one has n = 1 and m = 0, which results in Eq. (3.113) with
allowance for Eqs. (2.35) and (3.109) becoming identical to Eq. (3.6). For turbulent
flow, Eq. (3.113) at n = 1/7 with allowance for Eq. (3.109) transforms to Eq. (3.27).
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To our mind, the derivations of the authors [41, 138, 139] given above rather
obscure the essence of the theory of local modelling described in the most strict
form in Sect. 3.6.1.

Thus, Chap. 3 describes in detail solutions of different problems of convective
heat transfer of a free rotating disk obtained using the present integral method
(developed in Chap. 2), which provide noticeably higher accuracy than those known
earlier. These solutions serve also as validations of the present integral method
confirming its superior accuracy in comparison with the previously known meth-
ods. Also, Chap. 3 contains an overview of the most important finding of the other
authors regarding transitional flow, average heat transfer of an entire disk, etc.



Chapter 4
Unsteady Laminar Heat Transfer
of a Free Rotating Disk

4.1 Transient Experimental Technique for Measuring Heat
Transfer over Rotating Disks

Transient heat transfer investigations are a matter of great importance both from
the fundamental and applied points of view, primarily, in turbomachinery. One of
the most widely used applications comprises various transient experimental tech-
niques of determining surface heat transfer of a body in stationary hydrodynamic
conditions. Such techniques, currently employing thermochromic liquid crystals,
are based on the known fact that after a certain period of time from the begin-
ning of the cooling process, the surface heat transfer coefficient becomes a time-
independent function equal to its value for steady-state heat transfer under the same
boundary conditions. The heat flux in this situation can be computed from more or
less simple analytical solutions for unsteady heat conduction inside solid bodies for
known surface temperatures. Experimentally measured dependencies of the surface
temperature on time are substituted into the mentioned analytical solutions, and the
resultant algebraic equations are further solved to find the heat transfer coefficients
[91, 112, 121, 154–156, 176, 215].

Most often, the experimental data analysis is based on the theory of one-
dimensional heat conduction in a semi-infinite slab with a convective boundary con-
dition at the interface between the slab and the cooling/heating medium with a step
change in the coolant’s temperature T∞ [9, 60, 91, 115, 154–156, 215]:

Ft(t) = Tw(t) − T∞
Tw,i − T∞

= exp (γ 2) · erfc (γ ), γ = α
√

awt/λw. (4.1)

Here Tw(t) is the instantaneous disk surface temperature; subscript “w” denotes
physical properties of the wall (i.e. of the disk); α, Tw,i and T∞ are time-independent.
Having measured the temporal curve of the local surface temperature Tw(t), one can
solve Eq. (4.1) for the heat transfer coefficient. The use of this technique is restricted
by an obvious consideration that heat conduction must involve only a small fraction
of the real wall thickness for the semi-infinite slab assumption to hold. Therefore,
the measurement time is strictly limited. In accordance with the classical theory

77I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_4,
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[160], the time of measurements expressed in terms of the Fourier number should
not exceed the value of Fo = 1/4; according to the data of [214], the limiting value
of the Fourier number is Fo = 1. The reason for this restriction is that at Fo>1/4
[160] (or Fo>1 [214]) the temperature of the body of the entire disk diverts from the
initial value Tw,i, and thus the entire disk takes part in the heat transfer process.

Experimental techniques for determining heat transfer coefficients based on the
solution of Eq. (4.1) have been widely used in experimental investigations of heat
transfer of rotating disks [91, 123, 151, 154–156]. However, not all the researchers
who used the transient techniques to determine heat transfer coefficients obtained
experimental data agreeing with theoretical solutions and data of steady-state exper-
imental methods for the same boundary conditions.

For example, in work [156] a Plexiglas R© rotating disk (b = 0.123 m, s = 0.01 m)
was placed in a thermally insulated box and heated up to a constant tempera-
ture of Tw,i = 40◦S (Fig. 4.1). Then the box cover was suddenly removed and
the disk started cooling down, due to convective heat transfer, to room tempera-
ture of T∞ = 24◦S without additional input of heat. Unsteady surface tempera-
tures were measured by means of liquid crystals applied onto the disk surface as
ring-like bands. The heat transfer coefficient was computed by Eq. (4.1). In lami-
nar flow regime (Reϕ = 53,500), instantaneous distributions Tw(t) obtained in [156]
increased weakly according to dependence agreeing rather well with Eq. (2.35) for
n∗ = 0.06 (see Fig. 4.2), and heat transfer coefficients decreased abruptly with an
increasing local radius r, with the values of Nub at r→0 and r→b differing from
each other by a factor of approximately two (Fig. 4.2) [176]. This contradicts the
known theoretical and experimental data discussed above in Chap. 3, in accordance
with which the Nusselt number Nub under conditions of laminar flow is constant
(curve 4, Fig. 4.2). Experimental data for Nub [156] agree with the value Nub = 77.6
(or K1 = 0.336), obtained via the solution of Eqs. (2.37), (2.38), (2.39), (2.40) and
(2.41) for n∗ = 0.06, only at r→b (or x→1).

Fig. 4.1 Geometrical arrangement and main parameters of the problem of fluid flow and unsteady
heat transfer over a rotating disk in still air
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Obviously, some factors affecting quantitative characteristics of unsteady heat
transfer of a rotating disk that lead to the aforementioned deviations of the heat
transfer coefficients measured in [156] from theoretical and experimental data of
other authors should be additionally taken into consideration.

An advantage of solution (4.1) is its simplicity, which however disappears once
one has to take into consideration curvature of the surface at which the measure-
ments are to be made [215]. An alternative to Eq. (4.1) is to use the solution for
unsteady heat transfer of a slab of a finite thickness s/2, where the back face is
insulated [45], or a slab of a finite thickness s (Fig. 4.1) with identical heat transfer
coefficients on both faces [115]:

Ft(t) = ϑ(t,y = 1), ϑ(t,y) =
∞∑

m=1

Em cos (μmy) exp (−μ2
mFo), (4.2)

Em = 2 sin (μm)

μm + sin (μm) cos (μm)
, cot(μm) = μm/Bi, (4.3)

where eigenvalues μn are defined by Eq. (4.3); ϑ(t,y) = (T(t,y) − T∞)/(Tw,i − T∞);
Bi = 0.5αs/λw; y = z/(0.5s).

4.2 Self-Similar Navier–Stokes and Energy Equations

As mentioned above, the transient technique for determining heat transfer coeffi-
cients is based on the fact that after a certain period of time since the unsteady
process of cooling or heating begins, a regime of heat transfer arises in which the
heat transfer coefficient of a body under unsteady-state conditions acquires a value
equal to that in steady-state heat transfer under the very same thermal boundary con-
ditions. However, this technique may be used only when the following conditions
are satisfied:
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(a) heat transfer must occur in a regime in which the heat transfer coefficient ceases
to vary in time; therefore, time limitations of this regime must be found;

(b) one must know a correlation between variation of the disk surface temper-
ature and the heat transfer coefficient; this correlation, which can be found
from a solution of the unsteady heat conduction problem, is different for dif-
ferent geometries of the system and for different initial and thermal boundary
conditions.

This sub-section is devoted to a solution of the non-stationary equation of a lam-
inar thermal boundary layer jointly with stationary Navier–Stokes equations in a
self-similar form for a specified law of temporal variation of the wall temperature,
as well as for determination of variation of the heat transfer coefficient with time
[187, 192].

The thermal boundary layer equation for an unsteady axisymmetric problem in
cylindrical polar system of coordinates has the form of Eq. (2.16).

Assuming that the non-dimensional temperature θ (t,z) = (T(t,r,z) − T∞)/(Tw

(r,t) − T∞) is a self-similar function independent of r, one can transform Eq. (2.16)
as follows:

∂θ

∂t
+ θ

Tt

∂Tt

∂t
+ vrθ

1

Tt

∂Tt

∂r
+ vz

∂θ

∂z
= a

∂2θ

∂z2
, (4.4)

where Tt(t,r) = Tw(t,r) − T∞; Tw(r,t) is the instantaneous temperature of the disk
surface (Fig. 4.1); Tw,i is the initial disk temperature.

For the instantaneous heat transfer coefficient to be equal to its stationary value
existing during the steady-state conditions before the onset of the unsteady cool-
ing/heating of the disk, the instantaneous temperature head Tt should behave in
such a way that

Tt(t,r) = T(r)Ft(t), (4.5)

1

Tt

∂Tt

∂r
= 1

T

dT

dr
, (4.6)

where T(r) = Tw,i(r) − T∞, and Ft(t) = Tt(t,r)/T(r) a function of the only
variable t. This is an indispensable condition, because the first two terms in Eq. (4.4)
become negligible very fast with an increasing process time t, and namely the third
term determines the effect of the radial disk’s surface distribution on heat transfer.

In doing so, Eq. (4.4) takes the following form:

∂θ

∂t
+ θ

Ft

∂Ft

∂t
+ vrθ

1

T

dT

dr
+ vz

∂θ

∂z
= a

∂2θ

∂z2
. (4.7)
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In particular, in view of the boundary condition (2.35), Eq. (4.7) transforms to

∂θ

∂t
+ θ

Ft

∂Ft

∂t
+ n∗θ

vr

r
+ vz

∂θ

∂z
= a

∂2θ

∂z2
. (4.8)

If the disk is isothermal at the initial moment of time, then T(r)=const,
dT/dr = 0, n∗ = 0. If, additionally to the above condition, the external cylindrical
surface of the disk is thermally insulated and the heat transfer coefficient is constant
over the surface (which takes place in laminar flow), then the disk remains further
isothermal during the process of unsteady cooling/heating. This is also valid for the
case where the external radius b of the disk is rather large, and the boundary con-
ditions on the external cylindrical surface have no effect on the inner region of the
disk. As a result, Eq. (4.8) can be simplified to

∂θ

∂t
+ θ

Ft

∂Ft

∂t
+ vz

∂θ

∂z
= a

∂2θ

∂z2
. (4.9)

Using self-similar variables and functions, Eq. (4.8) can be reduced to an ordi-
nary differential equation, which can be solved numerically using MathCAD soft-
ware. The form of self-similar variables for this problem can be found using the
method described in [22]. Let us introduce a linear transformation using the con-
stants αk (k = 1, . . . ,4) and A:

t = Aα1 t, z = Aα2 z, vz = Aα3 vz, θ = Aα4θ . (4.10)

Expressions (4.10) are substituted into Eq. (4.8). The initial and transformed
forms of Eq. (4.8) are invariant, if the cumulative exponents of the constant A in
terms of the transformed equation are equal to each other. As a result, one can
obtain α2 = α1/2, α3 = −α1/2, z2/t = z2/t, vzt1/2 = vzt

1/2. The temperature
θ transforms into itself.

As a result, the self-similar variables, the thermal boundary layer equation and
the boundary conditions have the following form:

θ ′′ = Pr
[
g∗θ + θ ′(H − η/2) + n∗Fθ

]
, (4.11)

η = z/(νt)1/2, H(η) = vz(t/ν)1/2, (4.12)

g∗ = t

Ft

dFt

dt
, (4.13)

θ = 1 for η = 0 and θ = 0 for η → ∞. (4.14)

Here primes denote derivatives with respect to η.
The function N(η) in Eq. (4.11) is time-independent and found as a result of a

solution of a steady-state self-similar system of the Navier–Stokes equations (2.37),
(2.38), (2.39) and (2.40) (for N = 0, β = 0), in which, as applied to the problem at
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hand, the time t plays the role of a parametric non-dimensionalizing variable instead
of the commonly used quantity 1/ω. As a dimensionless parametric variable in these
equations, ωt is used, while the non-dimensional functions

F(η) = vrr/t, G(η) = vϕ t/r and P(η) = −pt/(ρν) (4.15)

are also time-independent. The relevant boundary conditions look as follows:

η = 0: F = H = 0, G = ωt, (4.16)

η → ∞: G = F = 0. (4.17)

The Nusselt number Nub is calculated by the formula

Nub = K1Re1/2
ϕ , K1 = −

(
dθ

dζ

)

ζ=0
= 1√

ω t

(
dθ

dη

)

η=0
, (4.18)

where ζ = z
√

ω/ν.
Authors of the work [26] introduced self-similar variables for a process of

unsteady mass transfer in case of orthogonal uniform air flow impingement onto
a rotating disk, which are analogous to Eq. (4.12) for the parameters η and N(η)
within a constant used as additive term in the brackets:

η = z

[
1

(4Dmt)1/2
+ Sc

(1 + Sc)2/3

(Re2
a + Re2

ωd)1/4

d

]

, (4.19)

H(η) = vz

Dm

[
1

(4Dmt)1/2
+ Sc

(1 + Sc)2/3

(Re2
a + Re2

ωd)1/4

d

]−1

. (4.20)

Such a modification does not change the essence of the self-similar transforma-
tion performed. It should be noticed that the self-similar variable (4.19) and the
function (4.20) were introduced in the work [26] without any justification of such a
choice, while the above-mentioned transformations (4.10) are based on the formal
and strict mathematical background of the group methods [22].

4.3 Exact Solution for Surface Heat Transfer of an Isothermal
Rotating Disk

This section represents a theoretical solution [61, 187] of the problem studied exper-
imentally in the work [156] and described in Sect. 4.1.

The following values of physical and geometric parameters were used in the
calculations: for Plexiglas R© [156] λw = 0.19 W/(m2·K), aw = 1.086×10–7 m2/s;
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for air [22] λ = 0.02624 W/(m2·K), a = 2.216×10–5 m2/s; Pr = 0.71; the disk
thickness s = 0.01 m; ω = 52.36 1/s (500 r.p.m.), which corresponds to the case
Reφ = 5.35×104 [156]. The values of γ and Bi were calculated using a steady-state
value of K1 = 0.326.

Use of Eq. (4.1) for Ft(t) allows obtaining that

g∗ = γ 2 − γ /(π1/2Ft), γ = K1Pr−1/2 (aw/a)1/2 (λ/λw)
√

ω t. (4.21)

Substituting numerical values of physical constants into Eq. (4.21), one can
obtain γ = 0.0768

√
ωt. The numerical solution of Eq. (4.11) (for n∗ = 0) jointly

with Eqs. (2.37), (2.38), (2.39) and (2.40) was obtained using the MathCAD
software.

As one can see from the data in Fig. 4.3, the constant K1 (and the Nusselt number
Nub) accepts stationary values very rapidly.

It was mentioned in the work [187] that the constant K1 accepts its stationary
value for ωt≈1000 or t≈19 s, with the function Ft(t) being respectively equal to
≈0.876. In this case, deviation of the constant K1 from its stationary value is 0.14%,
which is a too strict criterion. If one assumes a standard 1% deviation as a crite-
rion of the steady-state conditions, then the constant K1 reaches its stationary value
already for ωt≈130 or t≈2.5 s, with the function Ft(t) being respectively equal to
≈0.96. Unfortunately, the authors of [156] did not provide the reader with the exper-
imentally obtained curves Ft(t) that would be helpful for comparisons.

In the calculations of the authors [26] for unsteady mass transfer, the Sherwood
number attained its stationary value even earlier, already for ωt≈10. The reason
for this was probably that the concentrations on the surface of the disk Cw and
at the infinity C∞ were time-independent, and at the initial moment of time the
concentration on the disk changed abruptly from the value C∞ to Cw. Thus, the
data of the work [26] can serve as the lowest estimate of the time necessary for
the unsteady heat or mass transfer coefficients to attain their stationary values, which
can be obtained using self-similar solutions of the problem.
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If one interprets the disk as an isothermal slab of finite thickness s (Fig. 4.1)
with identical heat transfer coefficients at z = 0 and z = –s, then the function Ft(t) is
described by Eq. (4.2). Using Eq. (4.2) for Ft(t), one can obtain Bi = 0.395. Already
for t = 69 s, the value of the Fourier number is equal to Fo = 0.3, and the function
Ft(t) with an error of 0.37% may be calculated by Eq. (4.2) using only the first
term of the series, i.e. the so-called regular regime of heat transfer begins [115]. The
function K1(t) calculated by Eq. (4.18) based on a solution of the systems (2.37),
(2.38), (2.39), (2.40), (4.11), (4.12), (4.13) and (4.14) and using Eq. (4.2) for Ft(t)
coincides with the curve for K1(t) obtained using Eq. (4.1) (see Fig. 4.3).

The data for variation of the constant K1 with time obtained in calculations are in
agreement with the known phenomenon that, beginning with some moment of time,
the heat transfer coefficient of a given surface under non-stationary conditions is
independent of the rate of heating/cooling, all other conditions being equal. In doing
so, the values of Ft(t) calculated by Eq. (4.2) are much (by a factor of 2–4 at t>700
s) lower than those of Ft(t) calculated by Eq. (4.1) (see Fig. 4.3). The explanation
of this fact is obvious: according to Eq. (4.2), a real disk of finite thickness (rather
thin in the case being treated) cools down much faster than a semi-infinite body
cooling down according to Eq. (4.1), because the amount of heat accumulated by a
semi-infinite body is much larger than the amount of heat accumulated by a rather
thin disk. In the range of short time intervals, both values of function Ft(t) coincide
until the process of cooling down extends up to the middle of the disk of finite
thickness.

Some additional results for unsteady distributions of the surface temperature of
an isothermal disk are given in Sect. 4.5.4.

Significant discrepancy between transient experimental measurements of the heat
transfer coefficient α and the known experimental and theoretical data [26, 46, 138,
139] may be caused by the use of Eq. (4.1) to restore the values of the heat trans-
fer coefficient in such a way that the time of measurements exceeded the limiting
value mentioned in Sect. 4.1. The actual rate of cooling of the disk surface must
correspond to Eq. (4.2); for instance, at the moment of time t>700 s, this rate must
have been 2–4 times higher than that predicted by Eq. (4.1). For Eq. (4.1) at t>700s
to agree with Eq. (4.2), one must substitute into Eq. (4.1) the values of α, which
are more than twice higher than those calculated by Eq. (3.4) with the steady-state
value of K1 = 0.326. Therefore, use of Eq. (4.1) to restore experimental values of
the heat transfer coefficients at t>700 s results in obtaining values of α, which are
two or more times higher than its actual values.

As applied to experimental techniques for a disk of finite thickness, one can also
recommend using Eq. (4.2) in the regular regime of heat transfer. The conditions in
which this regime takes place for different values of the Biot number that depends,
in particular, on both the flow regime and the Prandtl number (via the heat transfer
coefficient) are discussed below in detail in Sect. 4.5. It is, however, obvious that the
heat transfer coefficient accepts its steady-state value a fortiori before the regular
regime of heat transfer sets in.

Heat transfer coefficients in more complex conditions may be restored using
numerical solutions of two-dimensional problems of heat conduction in a disk
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taking into account the thermal boundary conditions on the reverse side of the disk
and on its rim.

4.4 Numerical Solution of an Unsteady Conjugate Problem
of Hydrodynamics and Heat Transfer of an Initially
Isothermal Disk

4.4.1 Computational Domain and Grid

The commercially available CFD code CFX-5 by ANSYS Inc. was employed for
the numerical simulations by the authors [61, 191], whereas a case-sensitive mesh
generated manually by the Patran volume mesher was used instead of that provided
by the standard automatic mesher implemented in CFX-5. Because of the axisym-
metric character of the problem, the overall computational domain comprised only a
sector of 45 degree-angle with a periodic boundary condition specified on each flat
vertical side of the sector (Fig. 4.4). This domain consisted of two parts: a stationary
fluid domain with the radius and height of 0.5 m and a rotating fluid domain that
contained a solid sub-domain, namely the disk itself (heated by an energy source)
of radius 0.123 m and height of 0.005 m in accordance with the experimental setup
of [156]. The rotating and stationary domains are connected to each other by a so-
called frozen rotor domain interface. The outer flat and top cylindrical boundaries
were defined as walls with a free slip condition and the fixed (ambient) temperature
of T∞ = 297.15 K. All lower surfaces of the computational domain were symme-
try planes. These pre-conditions allowed the simulation of conjugate heat transfer
of a free rotating heated disk with finite dimensions in a stationary fluid domain
where the outer boundaries did not affect fluid flow and heat transfer intensity in the
near-wall region.

Fig. 4.4 Computational mesh for simulations of fluid flow and heat transfer of a rotating disk in
cylindrical coordinates
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For meshing this domain, mainly hexahedrons and a few prisms with 18 elements
in angular direction were used. The overall 333,520 nodes were partitioned in such
a way that 11% were located inside the disk zone, 54% were used to model the
rotating fluid domain with an extension of 0.01 m around the solid disk and the
remaining 35% were necessary to realize the stationary fluid region. Preliminary
investigations of the mesh structure and necessary density in the rotating domain
showed that the manually created structured mesh was necessary for obtaining really
smooth distributions of heat transfer values in the disk surface area according to the
self-similar solution [41, 138, 139, 174]. In order to reduce the overall number of
nodes, an unstructured coarser mesh was used in the outer stationary part of the
computational domain. This was sufficient to simulate the ambience of still air.

4.4.2 Validation for Steady-State Fluid Flow and Heat Transfer

In order to validate the numerical model with its boundary conditions described in
the previous sub-section, several runs of simulations at ω = 52.36 1/s (or 500 r.p.m.)
were performed to obtain a well converging solution for fluid flow and heat transfer
parameters. Physical properties of Plexiglas R© and air coincide with those given in
Sect. 4.3. Target (normalized log) residual for all items was set to 1×10–6. To reach
this value, a timestep of 10·1/ω has been used during the start-up of the simulation,
which finally needed to be reduced to 0.1·1/ω.

Results for fluid flow are presented in Fig. 4.5, whereby dimensionless functions
F, G and H, Eqs. (2.31), have been chosen for vr, vϕ and vz, respectively. For com-
parison purposes, numerical solution of the self-similar ordinary differential equa-
tions (2.31)–(2.40) for N = 0, β = 0 is also presented in Fig. 4.5 (dotted lines). Data
of numerical simulations taken at domain centre (x = 0.3) were chosen for the anal-
ysis. In this area, undisturbed laminar fluid flow existed without any influence of
flow around the disk’s rim, whilst such disturbed flow took place already at x≥0.6.

Fig. 4.5 Profiles of the
velocity components F, G, H
and function tanϕ for
steady-state laminar flow:
comparisons of the
simulations using CFX-5 (at
x = 0.3) and self-similar
solution (dotted lines)
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In addition to the velocity components, the tangent of the flow swirl angle tanϕ

has been calculated and plotted. Both solutions, numerical and self-similar, are
matching very well over the whole boundary layer. Only in the near-wall region
slight deviations of the CFX-5 data from the self-similar solution occur, among
which the most remarkable are in the distributions of tanϕ. Its wall value at ζ = 0 is
0.8284 for the self-similar solution and 0.7645 for the numerical simulations using
CFX-5.

Temperature profiles within the boundary layer and inside the disk taken at sev-
eral radial locations are presented in Fig. 4.6. Again, numerical simulations and self-
similar solution correspond to each other very well for regions without influence of
the flow around the disk’s rim. Deviations of the temperature profiles computed
using the CFX-5 from the self-similar solution are noticeable only above ζ ≈ 1.3.
Also the average value of the constant K1 = 0.341 in the relation (3.4) for the Nus-
selt number computed from results of CFX-5 simulations for undisturbed laminar
flow at x≤0.6 is in close consistence with the value K1 = 0.326 by the self-similar
solution for Pr = 0.71 and Tw = const.

The model provides an adequate and exact prediction of conduction heat transfer
also inside the disk.

For the unsteady temperature distribution inside the disk written as the function
θ (t,y), one can obtain an analytical solution

θ (t,y) = 1

Ft(t)

∞∑

m=1

Em cos [μm(1 + y)] exp (−μ2
mFo), (4.22)

which is a modification of Eq. (4.2), with the variable y = z/(0.5s) varying over the
range y = –1 to 0 (or z = –s/2 to 0).

For the steady-state one-dimensional conduction (in z-direction) with a heat
source inside the disk, one can easily deduce an analytical solution (valid for the
same range of y)

Fig. 4.6 Profiles of the
dimensionless temperature θ

for t = 0 s [191]. 1 – x = 0.5;
2 – 0.7; 3 – 0.9; 4 – boundary
layer, self-similar solution;
5 – disk, analytical solution
(4.22) for t = 400 s (merges
with line 2 inside the disk);
6 – solution (4.23) (merges
with line 1 inside the disk).
Here ζ = 0 is the disk
surface; ζ = –9.37 is the
symmetry plane of the disk
that corresponds to z = –s/2
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θ = −Bi(0.5y2 + y − 1/Bi). (4.23)

Profiles of θ computed using CFX-5 exhibit good agreement with analytical
solutions (4.22) and (4.23) (see Fig. 4.6). It is worth noticing adequate physical
behaviour of the CFX-5 results demonstrating zero derivatives at the symmetry
planes and only minor dependence on the radial location.

Thus, results of simulations of steady-state fluid flow and conjugate heat transfer
parameters of a heated rotating disk are in good agreement with the self-similar solu-
tion for fluid flow and convective heat transfer and the analytical solution for heat
conduction inside the disk. Hence, further two conclusions can be drawn. First, the
model itself and the computational domain can be used for further correct and ade-
quate predictions of the transient problem of heat transfer. Second, the steady-state
solution is suitable for providing initial velocity, pressure and temperature distribu-
tions for the transient simulations.

4.4.3 Unsteady Fluid Flow and Heat Transfer

The temperature, velocity and pressure fields resulted from the steady-state simula-
tions described above were used as initial conditions for the transient run. Switching
off the energy source used to heat the disk during the steady-state run allowed for
analysing unsteady laminar heat transfer of a rotating disk in still air at the same
angular speed of the rotating domain ω = 52.36 1/s. The calculation has been car-
ried out during 1500 s of physical time. Within this period the average disk surface
temperature decreased from the initial value Tw = 312.60 K to Tw = 298.80 K. The
surrounding air temperature has been kept constant at T∞ = 297.15 K.

Expressed in terms of the non-dimensional function Ft(t), a value of 0.106 was
reached up to the time of the simulation abort. Variation of this function versus time
is shown in Fig. 4.7 and compared with Eqs. (4.1) and (4.2). Function Ft(t) computed
using CFX-5 is in very good agreement with Eq. (4.2). Thus, the real cooling rate of
the relatively thin (s = 0.01 m) Plexiglas R© disk indeed very significantly exceeds the
cooling rate predicted by Eq. (4.1) when the time of the cooling process exceeds a
certain limiting value (see Sect. 4.1). The reason for this discrepancy is that Eq. (4.1)
is valid only for high Biot numbers that means a disk of a semi-infinite thickness or
made of a material with low thermal conductivity kw. Such a disk indeed should cool
down much slower than a thin Plexiglas R© disk used in experiments [154–156]. (It
is easy to ascertain that Eqs. (4.1) and (4.2) can provide the same numerical results
at Bi→∞.)

Thus, again, once the time of measurements exceeds the aforementioned limiting
value, the choice of Eq. (4.1) to process the transient experimental data may be the
reason of significant deviation of the experimental results for the Nusselt number
from Eq. (3.4) at K1 = 0.326, like for instance in works [154–156].

The high quality of simulations can also be confirmed by the excellent agreement
of the constant K1 with the self-similar solution also presented in Fig. 4.7.
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Fig. 4.7 Variation of the
parameters K1 and Ft with
time according to the
self-similar solution and
simulations using the CFX-5
[191]. 1 – K1, self-similar
solution; 2 – K1, CFX-5;
3 – Ft(t), Eq. (4.1); 4 – Ft(t),
Eq. (4.2); 5 – Ft(t), CFX-5

Fig. 4.8 Simulations using
CFX-5 for the cooling rate of
the disk surface versus time
starting from with an average
temperature of Tw = 312.6 K
at the initial moment of time
t = 0 s [191]. Dashed lines
are representing intermediate
distributions of Tw(t,x) taken
every 100 s

In consistency with physical expectations, the disk cooled down in a very
homogenous manner. As obvious from Fig. 4.8, the surface temperature at each
moment of time is nearly constant up to x = 0.5 and decreases subsequently to the
value at the disk’s edge. The decreased value of Tw at x = 1 is of course a result of
cooling down of the outer cylindrical surface of the disk. The profile of Tw flattens
more and more until the ambient temperature T∞ is almost reached at t = 1500 s.

The main point of interest is behaviour of the Nusselt number (Fig. 4.9). Flow
in the immediate vicinity of the rotation axis occurs under conditions of a kind of
orthogonal flow impingement onto the disk and at the onset of the boundary layer
development, which results in a time-independent moderate bump in the profile of
Nub up to approximately x = 0.2. At each timestep, the Nusselt number is approxi-
mately constant between x = 0.2 and x = 0.6. The significant peak of the Nub num-
ber distributions in the outer part of the disk surface at t = 0 s gradually vanishing
with time is caused by the non-uniform initial distribution of the disk surface tem-
perature Tw,i. Noticeably decreasing radial distribution of Tw,i results in radial heat
conduction from the region of x≤0.6 towards the outer part of the disk. After a while
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Fig. 4.9 Transitional
behaviour of the Nusselt
number on the disk: CFX-5
simulations from t=0 s to
t=1500 s [61]. Dashed lines
are intermediate distributions,
taken every 100 s

(t≥500 s), surface temperatures become more uniform, because a certain part of the
heat accumulated by the disk is transferred to the ambience by the outer cylindrical
surface of the disk. As a result, heat conduction to the region r→b becomes insignif-
icant, and the aforementioned peak of the Nusselt number at x ≈ 0.8 vanishes.

Average values of Nusselt number for the undisturbed region 0.2≤x≤0.6 disre-
garding effects near rotation axis and outer radius of the disk has been calculated
and plotted versus time in Fig. 4.10. As evident from Fig. 4.10, the Nusselt number
becomes practically time-independent after about 300 s of physical time. After this
period of time, the standard deviation from the mean value of Nub = 75.497 is only
0.103. This mean value of Nub is in excellent agreement with Eq. (3.4), which is
based on the self-similar solution for laminar flow at K1 = 0.326 and nR = 0.5.

Thus, numerical simulations of the problem of unsteady conjugate laminar heat
transfer of a rotating disk (at steady-state fluid flow conditions) using the CFD
code CFX-5 are in good agreement with the self-similar solution applicable to this

Fig. 4.10 Variation of the
average Nusselt number with
time in the region of
0.2≤x≤0.6
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problem. CFX-5 simulations are also in good consistency with analytical solutions
for heat conduction inside the disk.

Both methods showed that the heat transfer coefficient very quickly becomes
time-independent and equal to its value for steady-state conditions determined ear-
lier theoretically and experimentally by the authors of works [19, 20, 41, 46, 146,
174].

It was shown that the solution (4.1) for unsteady one-dimensional heat conduc-
tion in a semi-infinite plate may (if the requirements limiting its use are not satisfied)
significantly underestimate the real cooling rate of the disk surface and consequently
overestimate the heat transfer coefficient calculated from this solution using known
experimental instantaneous disk surface temperature distributions. The alternative
solution for unsteady one-dimensional heat conduction in a finite-thickness plate
given by Eq. (4.2), which for Fo≥0.3 degenerates just to the first term of the Fourier
series, is analysed below.

4.5 Unsteady Conjugate Laminar Heat Transfer of a Rotating
Non-uniformly Heated Disk

4.5.1 Problem Statement

Strictly saying, both solutions (4.1) and (4.2) are valid only for the initially isother-
mal surfaces. In many industrial applications, the surface temperature varies at least
in the streamwise direction. A remedy for such a situation was suggested via divid-
ing the experimental surface on a rather narrow quasi-isothermal zones [154–156].
Within each zone, the surface temperature was assumed to be constant and under-
going a spatial step change at the boundary between the neighbouring zones instead
of the monotonic temperature variation that takes place in practice (see Fig. 4.2).
However, validity of this approach is under question, as the experimental data [154–
156] themselves require reasonable physical explanation. An attempt to find a quan-
titative estimate of the 2D heat conduction effects was made in [12, 13, 91, 223].
Conjugate unsteady heat transfer between parallel co-rotating disks was studied also
in [107].

This section generalizes the solution (4.2) for it to be valid for the case of non-
uniform initial surface temperature distribution [192]. The fact that Eq. (4.2) degen-
erates just to the first term of the Fourier series for Fo≥0.3 reveals one of the impor-
tant fundamental properties of the transient heat transfer such as existence of the
so-called regular regime of heating or cooling of a body when the temporal depen-
dence of the local temperature in any location of the body follows a simple expo-
nential function [115].

The objective of this investigation consists in finding a quasi-conjugate heat
transfer solution for a disk initially pre-heated non-uniformly, which includes (a)
a self-similar solution of the transient laminar convective heat transfer, (b) a solu-
tion of the unsteady two-dimensional heat conduction problem with a non-uniform
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initial temperature distribution, (c) answer to the question whether the shape of the
initial temperature non-uniformity holds with time and (d) validation of a transient
technique for the experimental determination of the heat transfer coefficient based
on the regular heat transfer regime theory, which is free of the restriction in the time
of measurements mentioned in Sects. 4.1, 4.2, 4.3 and 4.4.

The following problem is studied in this section. A disk rotating in still air and
being identical to that studied in Sects. 4.1, 4.2, 4.3 and 4.4 (see Fig. 4.1) is pre-
heated in such a way that its surface temperature Tw,i(r) at the initial moment of
time t = 0 s follows the power-law distribution given by Eq. (2.35) at arbitrary value
of the exponent n∗. Immediately for t>0, the disk starts cooling down up to the
temperature T∞ without additional input of heat.

Of course, Eq. (2.35) does not generally hold at r = 0, because it does not provide
axial symmetry of the disk’s temperature at this point. Besides, choice of a thermally
isolated outer cylindrical disk’s surface invalidates Eq. (2.35) also at r = b. None
of these restrictions is in force as applied to the solution of the thermal boundary
layer equation for an infinite-radius disk using boundary condition (2.35). Since
such a solution is also an integral part of the present research, the boundary condition
(2.35) is still used in this section with an intention also to figure out the magnitude
of the possible numerical inaccuracies in the heat conduction solution caused by
Eq. (2.35). More detailed insight into this particular feature of the obtained solution
is presented in the sub-section discussing the results.

For comparison purposes, unsteady cooling of a disk made of aluminium
was also simulated, whose physical properties are [10]: λw = 204 W/(m2·K),
aw = 0.842×10–4 m2/s.

4.5.2 Self-Similar Solution of the Transient Laminar Convective
Heat Transfer Problem

In order to further denote the heat transfer coefficients and the Biot numbers, sub-
script “1” is used for the outer cylindrical surface of the disk and subscript “2” for
its flat surface.

In analogy to Sects. 4.1, 4.2, 4.3 and 4.4, the value Bi2 = 0.395 was hold constant
throughout the numerical computations. Because the constant K1 varies with n∗, the
condition Bi2 = const means a different value of the Reynolds number Reϕ for every
particular n∗ provided that Reϕ = 5.35×104 at n∗ = 0.

The system of Eqs. (4.11), (4.12), (4.13) and (4.14) was solved with the help
of the MathCAD software. Consequently, in similarity to the results of Sect. 4.3,
it was obtained that the values K1 and Nub in the unsteady conditions accept their
stationary values very quickly. Based on the very same standard 1% deviation, the
constant K1 reaches its stationary value at ωt≈40 for n∗ = 2 and at ωt≈300 for
n∗ = –1. In both cases t≈2 s, while, to remind, the Reynolds number Reϕ and angular
speed of rotation ω decrease with increasing n∗ to keep the Biot number constant
at Bi2 = 0.395. For these small process times, Eqs. (4.1) and (4.2) coincide and
predict vales of Ft equal to Ft≈0.96. Assuming that Reϕ = 5.35×104 is invariant,
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K1 anyway becomes stationary very quickly: at t≈5.5 s for n∗ = –1 and at t≈0.7 s
for n∗ = 2.

4.5.3 Solution of the Unsteady Two-Dimensional Problem of Heat
Conduction in a Disk

Equations of unsteady 2D heat conduction in a disk and boundary conditions are
[192]

∂ϑ

∂Fo
= 1

H2

(
∂2ϑ

∂x2
+ 1

x

∂ϑ

∂x

)
+ ∂2ϑ

∂y2
, (4.24)

Fo = 0: ϑ = xn∗ , (4.25)

x = 0:
∂ϑ

∂x
= 0, x = 1:

(
∂ϑ

∂x

)

x=1
= −Bi1ϑx=1, (4.26)

y = 0:
∂ϑ

∂y
= 0, y = 1:

(
∂ϑ

∂y

)

y=1
= −Bi2ϑy=1, (4.27)

where, to remind, y = z/(0.5s); Bi1 = α1 b/λw; Bi2 = 0.5α2s/λw; Fo = 4awt/s2;
H = b/(0.5s). It is important to point out that the temperature field is specified in
the form of the function ϑ(t,y) = (T(t,y)−T∞)/co∗, where c0∗ = (Tw,i−T∞)n∗=0 =
const has a sense of the radially constant difference between the disk surface tem-
perature at the initial moment of time Tw,i for n∗ = 0 (or, which is the same, for
Tw,i = const) and fluid temperature at the infinity T∞.

Boundary condition (4.25) is in fact Eq. (2.35) which is rewritten in view of the
new variables.

The system of Eqs. (4.24), (4.25), (4.26) and (4.27) is solved using the method of
separation of variables, whose fundamentals as applied to the problems of the type
considered in this section are given in the monograph [115]. The resulting solution
has the following form:

ϑ(Fo,x,y) =
∞∑

n=1

∞∑

m=1

DnEmJ0(μxnx) cos (μymy) exp
[
−

(
μ2

xn/H2 + μ2
ym

)
Fo

]
,

(4.28)

Dn = 1F2(1 + n∗/2; 1, 2 + n∗/2; − μ2
xn/4)/(2 + n∗)

0.5[J2
0(μxn) + J2

1(μxn)]
, (4.29)

J1(μxn)

J0(μxn)
= Bi1

μxn
. (4.30)

Here, 1F2 is a hypergeometric function of the argument −μ2
xn/4 [219]. Con-

stant Em and eigenvalues μym are given by Eqs. (4.3). At n∗ = 0 the numerator of
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Eq. (4.29) is equal to J1(μxn)/μxn, and Eq. (4.28) coincides with the solution pre-
sented for such a case in [115]. It is obvious that by neglecting radial heat conduction
effects one can reduce Eq. (4.28) to Eq. (4.2).

Using a thin-slab approximation, one can neglect temperature variation inside
the disk in the y-direction and substitute the last term in Eq. (4.24) with the so-
called source term −ϑBi2. In doing so, the final solution of Eq. (4.24) reduces to
the following relation:

ϑ(Fo,x) =
∞∑

n=1

DnJ0(μxnx) exp
[
−

(
μ2

xn/H2 + Bi2
)

Fo
]
. (4.31)

4.5.4 Analysis of the Solutions for Unsteady Heat Conduction
in a Disk

In order to render the temporal dependencies of all the functions in the present paper,
the most general appearance, a non-dimensional time in the form of the Fourier
number was used. The interrelation between the real and non-dimensional time is:
for the Plexiglas R© disk t = 230.17 Fo and for the aluminium disk t = 0.297 Fo.

Unsteady surface temperature distributions in an isothermal disk at n∗ = 0.
Detailed results for this case are documented in Sects. 4.1, 4.2, 4.3 and 4.4. Here,
we present some new findings in comparison with what was found above. Variation
of the non-dimensional disk surface temperature Ft with time is shown in Fig. 4.11.
One-dimensional (4.2) and two-dimensional (4.28) solutions for a slab of a finite
thickness coincide over the whole range of the variation of the Fourier number.
Solution for a semi-infinite slab (4.1) agrees well with Eqs. (4.2) and (4.28) only up
to a certain limiting value of Fo, which can be estimated as Fo = 0.456, 0.608 and
0.790, when the divergence between Eqs. (4.1) and (4.2) taken as a criterion is set

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0Ft

Fo

 - 1

 - 2

 - 3

 - 4

Fig. 4.11 Variation of Ft
versus Fo at n∗ = 0. 1 – Eq.
(4.1); 2 – Eq. (4.2); 3 – Eq.
(4.28); 4 – Eq. (4.31)
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as 1, 2.5 and 5%, respectively. Having passed this threshold value of the argument
Fo, data from Eq. (4.1) exceed more and more noticeably solutions (4.2) and (4.28).
As said above, from the physical point of view this means that a finite-thickness
disk cools down more and more rapidly than an infinite-thickness disk. Solution
(4.31) for a thin disk deviates from Eq. (4.28) quite noticeably at Fo<2 and Fo>4.
This means that the 0.01 m thick disk considered in this chapter as a basic geometry
is insufficiently thin for the solution (4.31) to be valid. Results of additional com-
putations showed that for numerical data from Eqs. (4.28) and (4.31) to coincide,
the disk should be 0.001 m thick. Thus, solution (4.31) is of no use for the present
research and will not be discussed further in this section.

Unsteady surface temperature distributions of a non-isothermal disk. At the
beginning we will discuss the results obtained for the disk made of Plexiglas R©. The
results obtained based on solution (4.28) differ for the cases where n∗ is moderately
or strongly different from zero. Cases with n∗ = –1 and 2 illustrated in Figs. 4.12
and 4.13 should be classified as those strongly different from zero. During the cool-
ing process, curves of the normalized wall temperature ϑw/ϑw(x = 1) seem to
repeat the initial power-law distributions (4.25) for the most part of the disk. Plots
of ϑw/ϑw(x = 1) at n∗ = –0.25, –0.5 and 0.5 and 1 (not shown here) behave in the
same way.
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Fig. 4.12 Variation of the
function ϑw/ϑw(x = 1) =
ϑ(Fo,x,y = 1)/ϑ(Fo,x = 1,
y = 1) versus x according to
Eq. (4.28) at n∗ = 2. 1 – Eq.
(4.25); 2 – Fo = 0.261; 3 –
Fo = 0.869; 4 – Fo = 2.607
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Fig. 4.13 Variation of the
function ϑw/ϑw(x = 1) =
ϑ(Fo,x,y = 1)/ϑ(Fo,x = 1,
y = 1) versus x according to
Eq. (4.28) at n∗ = –1. 1 – Eq.
(4.25); 2 – Fo = 0.00652; 3 –
Fo = 0.869; 5 – Fo = 2.607
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There are two visible features of the plots of ϑw/ϑw(x = 1) worth mentioning
here.

First, strictly speaking, Eq. (4.25) does not agree with the boundary conditions
(4.26) at the points x = 0 and x = 1. Hence, solution (4.28) adjusts itself to Eqs.
(4.26) as Fo increases, thus creating instantaneous distributions of ϑw/ϑw(x = 1)
distorted in the neighbourhood of the points x = 0 and x = 1 as compared to Eq.
(4.25). Hence, the temporal behaviour of the heat transfer coefficient α2,t should be
studied within a narrower region, say, at x = 0.2–0.9.

Second, at small Fourier numbers the aforementioned mathematical contradic-
tion of Eqs. (4.25) and (4.26) causes oscillations of the temperature profiles visible
in Figs. 4.13 and 4.14. This is a modest price to be paid for the possibility to operate
with the boundary condition (4.25) as applied to the problem under investigation.

An opportunity to discern the differences between the cases with moderate and
strong deviations of n∗ from zero is provided in Fig. 4.14, where the instantaneous
surface temperature profiles ϑw are plotted as divided by xn∗ . The enlarged scale
of Fig. 4.14 shows that for the initial radial surface temperature distributions (4.25)
moderately different from the isothermal case (e.g. n∗ = 0.5) the non-stationary plots
of ϑw/xn∗ look like horizontal straight lines over the region x = 0.2–0.95 (and even
the initial oscillations at Fo = 0.0261 are almost negligible). This in turn means that
conditions (4.5) and (4.6), which are necessary for the transient experiment to be
valid, hold at x = 0.2–0.95 for the whole duration of the cooling process. When
the temperature distributions (4.25) strongly deviate from the isothermal case (e.g.
n∗ = 2), the plots of ϑw/xn∗ at relatively small values of Fo (and even at Fo = 0.261)
oscillate around some horizontal lines. However, following the further increase in
the Fo number, the curves of ϑw/xn∗ become more noticeably inclined towards the
outer edge of the disk (i.e. towards the value x = 1). The reason lies in the redistri-
bution of heat owing to the radial heat conduction from the more heated outer part
of the disk into its less heated inner part. As a result, one obtains a distorted (as
compared to Eq. (4.25)) distribution of ϑw/xn∗ at high values of Fo, which does not
comply in full with conditions (4.5) and (4.6). This phenomenon is more noticeable
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Fig. 4.14 Variation of the
function ϑw/xn∗ =
ϑ(Fo,x,y = 1)/xn∗ versus x
according to Eq. (4.28) at
n∗ = 2 (dash-dotted lines) and
n∗ = 0.5 (solid lines) for
different values of Fo. 1 – Eq.
(4.25); 2 – Fo = 0.0261; 3 –
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for positive values of n∗ than for negative ones, because for positive values of n∗ the
total amount of heat accumulated by the hotter part of the disk is larger (because the
hotter part of the disk is volumetrically larger in this case).

Transient values of the heat transfer coefficient based on the semi-infinite slab
solution. However, the target quantity in the present investigation is the heat transfer
coefficient rather than the surface temperature. Values of the heat transfer coefficient
computed with the help of Eqs. (4.1) and (4.2) for an isothermal disk at n∗ = 0 are
presented in Fig. 4.15.

Assuming Eq. (4.2) to be a true solution for unsteady heat transfer and specify-
ing a constant value of α2 in the boundary condition (4.27), one can equate Eqs.
(4.1) and (4.2) and compute “transient” values of the heat transfer coefficient α2,t
from Eq. (4.1) depending on the Fourier number. In doing so, one can imitate the
conditions that take place during transient experiments, with Eq. (4.2) playing a role
of the “experimental” data source. The data obtained in such a way and plotted in
Fig. 4.15 as curve 1 testify that the experimental technique based on the use of Eq.
(4.1) can produce valid experimental data for α2,t again up to a certain limiting value
of the Fo number. The limiting value can be estimated as Fo = 0.3, 0.391 and 0.487
in order for the deviation of α2,t from α2 not to exceed 1, 2.5 and 5%, respectively.
These threshold values are lower than those obtained above at the comparison of
deviation of the values Ft computed by Eq. (4.1) from those obtained by Eq. (4.2).
The explanation lies in the fact that an increase in the α2,t values leads to a corre-
sponding increase in the function exp (γ 2) and a decrease in the function erfc (γ ),
which form a product in Eq. (4.1) and thus mutually compensate in part the devi-
ation of α2,t from the pre-determined value α2. Thus, based on the 1%-restriction
in the error of α2,t, the limiting measurement time should be less than Fo = 0.3 or
69 s, which agree rather with the classical value Fo = 1/4 [160] than with the revised
suggestion Fo = 1 [214].

Data for the instantaneous heat transfer coefficient α2,t, obtained for all input val-
ues of n∗ from –1 to 2 investigated using the semi-infinite-slab solution and averaged
over the region x = 0.2–0.9 to avoid the oscillations of the obtained solution at low
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Fig. 4.15 Variation of the
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Fo values, agree with maximal discrepancy of 1% with line 1 in Fig. 4.15. Thus, the
fundamental conclusion from this finding is that the semi-infinite slab approach (4.1)
is still valid as an experimental transient technique also for the cases with strong ini-
tial radial (i.e. streamwise) temperature gradients in the surface under investigation
provided that the measurement time is restricted with the aforementioned limiting
Fourier number values. Of course, this conclusion is valid for the disks made of
Plexiglas R©.

Transient values of the heat transfer coefficient based on the regular heat
transfer regime theory. An alternative technique of determining heat transfer coef-
ficients from the experimentally measured instantaneous distributions of the surface
temperature is based on the theory of regular heat transfer regime [115]. The key
statement of this theory is that with increasing Fourier number the series solutions
(4.2) and (4.28) degenerate just to their first terms. Taking a derivative of logarithm
of the first term of Eq. (4.28) with respect to time, one can obtain

− ∂ϑ(Fo,x,1)

∂t
=

(
μ2

xn/H2 + μ2
y1

) a

(s/2)2
= m, (4.32)

− ∂ϑ(Fo,x,1)

∂t
= μ2

y1
a

(s/2)2
= m for Bi1 = 0. (4.33)

Solution (4.33) for the disk, whose outer rim is thermally insulated to avoid radial
conduction effects in this location (Bi1 = 0, μx1 = 0), is more convenient and will
be used in further derivations. The regular regime of heat transfer takes place when
the experimentally measured curve of the function −∂ϑ(Fo,x,1)/∂t becomes equal
to a constant denoted further as m. Having experimentally found m and keeping in
mind Eq. (4.3), one can easily deduce

μy1 = 0.5s
√

m/a, α2,t = λ
√

m/a

ctg(0.5s
√

m/a)
. (4.34)

It is obvious that Eqs. (4.33) and (4.34) could have been obtained from the solu-
tions (4.2) and (4.3) that disregard radial conduction effects. Assuming again that
Eq. (4.2) is a true solution for the unsteady heat transfer at a constant value of α2
in the boundary condition (4.27), instantaneous values of m and “transient” values
of the heat transfer coefficient α2,t can be computed depending on the Fo number.
Values of α2,t presented in Fig. 4.15 decrease quite rapidly. Already at Fo = 0.543
errors in determination of α2,t are equal to 1% and become negligible with further
increase in the Fourier number.

The advantage of approach (4.34) consists in the fact that the regular heat trans-
fer regime, once it is already established, imposes no restriction on the duration of
measurements within the practical timescale providing visible differences between
the surface and ambient temperatures. Within these time limits, the heat transfer
coefficient α2,t remains constant.

At moderate radial surface temperature gradients, i.e. at n∗ from –0.5 to 0.5, and
for radial locations at x = 0.25–0.9, solution (4.34) as a basis for the experimental
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technique is still valid [192]. The curves of the radial distributions of the heat trans-
fer coefficient α2,t obtained using the regular heat transfer regime theory and plotted
in Fig. 4.16 can prove this conclusion. For the values of n∗ equal to –1 and 1, the
region of the validity of Eq. (4.34) narrows down to x = 0.45–0.85, while for n∗ = 2
approach Eq. (4.34) cannot be recommended at all. Thus, one can conclude that the
regular heat transfer regime theory has restrictions caused by the radial heat con-
duction effects at high values of n∗, which distort the initial temperature distribution
(4.25) and finally the computed radial curves for α2,t at high values of Fo. A remedy
may consist in use of the disks (or, in general, the objects of the experimental study)
made of the materials with lower thermal conductivity in comparison with that of
Plexiglas R©.

Disk made of aluminium. In order to further illustrate the effect of the disk
material, we have modelled unsteady cooling of a disk made of aluminium. From the
very beginning of the cooling process even technique (4.1) is inapplicable, because
already at t≈1 s the distribution of ϑw/ϑw(x = 1) becomes radically distorted in
comparison with that given by Eq. (4.25) because of the radial heat conduction (see
Fig. 4.17).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.6

0.8

1.0

 - 1

 - 2

 - 3

 - 4

 - 5

α2,t /α2

x

Fig. 4.16 Variation of the
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s); 3 – Fo = 20.208 (t = 6 s);
4 – Fo = 84.2 (t = 25 s);
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As a result, one can obtain very high positive values of α2,t at x>0.85 and very
high negative values at x<0.8. A disk having initial temperature distribution with a
value n∗ = 2 becomes isothermal very rapidly.

As the most important findings of the research described in the present section,
one can mention the following:

(1) A self-similar solution of transient laminar convective heat transfer obtained for
an initially non-isothermal disk. Similarly to what was obtained earlier for an
isothermal disk, the values of the heat transfer coefficient reached the steady-
state values very rapidly (in maximum in 6 s).

(2) An analytical solution (4.28) of the unsteady two-dimensional heat conduction
problem at the non-uniform initial temperature distribution (4.25).

(3) Confirmation that conditions (4.5) and (4.6) are necessary for the shape of the
initial temperature non-uniformity to hold with time. These conditions are ful-
filled in full for a disk made of Plexiglas R© in the sense of the applicability
of the semi-infinite-slab approach (4.1), which thus may be used as an exper-
imental technique for determining the heat transfer coefficients α2,t for all the
studied values of n∗ from –1 to 2, provided that the aforementioned limit of the
measurement time is satisfied.

(4) Validation of a transient technique for the experimental determination of α2,t
based on the regular heat transfer regime theory. This technique is valid in full
at n∗ varying from –0.5 to 0.5, partially valid for n∗ equal to –1 and 1, and
cannot be recommended for n∗≥2.



Chapter 5
External Flow Imposed over a Rotating Disk

5.1 Rotation of a Disk in a Fluid Rotating as a Solid Body
Without Imposed Radial Flow

5.1.1 Turbulent Flow

Geometrical arrangements with disks rotating with an angular velocity ω in a fluid,
which rotates in the same direction with a velocity � different from ω, may be
found in many technical applications such as parallel disks co-rotating with different
angular velocities, disks rotating in swirling flows, etc. [114, 138, 139, 196]. If ω>�

(or β=vϕ,∞/(ωr)<1), then fluid flow on the disk surface caused by rotation is radially
outward (centrifugal). A schematic diagram of such flow is outlined in Fig. 5.1.
Physically, flow for β<1 looks like flow over a free disk for β=0, with quantitative
relations for the velocity and temperature fields being dependent on a particular
non-zero value of β.

If ω<� (or β>1), fluid flow on the disk surface becomes radially inward (cen-
tripetal), and ultimately for β→∞ the problem reduces to the case of a rotating
fluid over a stationary surface [138, 139, 158, 196]. However, this particular case
falls out of the subject of the present research.

As well known, radial variation of the parameter β depends on a specific type
of the problem under consideration. Two most widely occurring cases are the solid-
body rotation with β=�/ω=const (2.32) and free-vortex rotation with β=const/r2 or
vϕ,∞=(vϕ,∞r)i/r (this case is considered in detail in Chap. 6), though experimental
and theoretical investigations have revealed some other forms of radial variations of
the parameter β caused by specific flow patterns in different types of rotating-disk
flows [138, 139, 188].

Finding an analytical solution of the given problem for β=const is a problem of
special interest and importance. As shown in [138, 139, 196], such an analytical
solution can serve as a base for a development of an integral method, which in turn
can be applied for cases with other arbitrary distributions of β.

For the considered case of solid-body rotation of fluid and thermal boundary
conditions (2.34), (2.35) or (2.36), a self-similar solution of the Navier–Stokes and

101I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_5,
C© Springer-Verlag Berlin Heidelberg 2009
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Fig. 5.1 Schematic outline of velocity and temperature profiles on a disk rotating in a rotating
fluid for β<1. Tangential velocity component vϕ is turned 90 degree

energy equations can be found only for laminar flow (see Sect. 5.1.2). For turbulent
flow modelled using an integral method for boundary layer equations under condi-
tion β=const with the help of approximations (2.45) and (2.46) for velocity profiles
(with n=1/7), solutions (2.82), (2.83), (2.84), (2.85) and (2.86) remain in force. For
the parameters α, γ , εm and εM to be substituted into Eqs. (2.82), (2.83), (2.84),
(2.85) and (2.86), authors [130, 138] obtained the following solutions:

α2 = 2300(1 + 8β)

49(1789 − 409β)
, γ∗ =

[
81(1 + α2)3/8

49(23 + 37β)α

]4/5

, (5.1)

εm = 49π

60
sgn (1 − β) |1 − β|8/5 αγ∗,

εM = 49π

4140
sgn (1 − β) |1 − β|8/5 (23 + 73β) αγ∗.

(5.2)

A similar integral method based on approximations (2.45) and (2.47) (also with
n=1/7) allowed obtaining the following solutions for the same parameters in Eqs.
(2.82), (2.83), (2.84), (2.85) and (2.86) for the condition β=const≤1 [196]:

α2 = 0.2222(β + 0.125)

0.6374 − 0.1176
, γ∗ = 0.04809(1+α2)3/10 [α (0.2425 + 0.2772β)]−4/5 ,

(5.3)

εm = 1.6332α(1 − β)γ∗, εM = 0.123(1 + α2)0.375γ −0.25∗ |β − 1|1.75 . (5.4)

The present integral method allowed obtaining an analytical solution of the
boundary layer equations (2.73), (2.74) and (2.75) for boundary conditions (2.32),
(2.33), (2.34), (2.35) and (2.36), which is analysed below. The solution for the
momentum boundary layer has a form of Eqs. (2.82)–(2.92), while the solution for
the thermal boundary layer is written in a form of Eqs. (2.93), (2.94) and (2.95). In
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these solutions, one should accept N=0 (or κ=0) for the case of pure solid-body
rotation of fluid considered here. Solution (5.3), (5.4) is in fact a particular case of
the solution (2.82)–(2.92) for N=0 and n=1/7.

As shown by the author of [163], according to Eq. (2.88) a solution for κ=0 exists
only for C5≤β≤H8/H7. For n=1/7 these constants take the values C5=–0.125 and
H8/H7=5.412; for n=1/9 one can obtain C5=–0.1 and H8/H7=6.026 (in [138] for
n=1/7 these quantities take the values C5=–0.125 and H8/H7=4.374). Constants
α, γ , ε∗

m and εM computed according to Eqs. (2.88), (2.89), (2.90) and (2.91) [163,
196] are given in Table 5.1 in comparison with corresponding data by Eqs. (5.1)
and (5.2) [138]. Like for a free rotating disk, values α computed with the help of
the present integral method exceed data of [138], which however does not affect
the moment coefficient (except for the region β>3, where solution [138] tends to
infinity earlier).

For 0.6<β<3, constant ε∗
m (mass flowrate through the boundary layer) obtained by

the two methods are close to each other. According to the definition of mass flowrate
(see Nomenclature), this is obviously a result of two mutually compensating effects:
smaller values of the definite integral of the profile of the radial velocity vr in the
boundary layer because of the smaller fullness of this profile (the present integral
method, Fig. 2.3) are compensated by larger values of the boundary layer thickness
(constant γ , Table 5.1).

For further development of a model of heat transfer for laminar flow, it is impor-
tant to derive a relation for enthalpy thickness δ

∗∗
T based on the present integral

method for turbulent flow (Sect. 2.4) for n=nT. This relation has the following form
[190]:

δ
∗∗
T = −(1 − β) α ( − A1 + χPrnpD2). (5.5)

For the currently considered case N=0, the analytical solution (2.93) for the ther-
mal boundary layer for ≤1 remains a transcendental equation, with correlations
for constants E1, E2, C4, and C5 being simplified in comparison with the case N
=0.

Table 5.1 Constants in Eqs. (2.82), (2.83), (2.84), (2.85) and (2.86) for β=const, N=0

Solution (2.88), (2.89), (2.90) and (2.91)
[163, 196], n=1/7 Solution (5.1), (5.2) [138], n=1/7

β α γ ε∗
m εM α γ ε∗

m εM
0 0.2087 0.5299 0.1806 0.1466 0.162 0.526 0.219 0.146
0.2 0.343 0.3084 0.1727 0.1205 0.267 0.286 0.196 0.1208
0.4 0.4445 0.2232 0.162 0.0845 0.348 0.197 0.1766 0.085
0.6 0.5331 0.1754 0.1527 0.0482 0.42 0.149 0.1603 0.0486
0.8 0.6151 0.1443 0.1449 0.0165 0.487 0.119 0.1446 0.0172
1 0.6936 0.1224 0.1386 0 0.553 0.0983 0.1395 0
2 1.084 0.0683 –0.1208 0.322 0.907 0.0498 0.116 0.326
3 1.564 0.046 –0.1175 1.28 1.445 0.031 –0.1151 1.356
4 2.348 0.0335 –0.1285 3.368 3.182 0.02 –0.1629 4.682
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For the case ≥1 that corresponds to the cases of air cooling in rotating-disk sys-
tems studied in the present work, the value of  can be expressed from Eq. (2.93)
explicitly [163]

−n =
[

(4 + m)KVPr−np + (2 + m + n∗)(1 − KV ) − Pr−np 2β
/

(β − 1)

(2 + m + n∗) − n∗β
/

(β − 1)

]−1

,

(5.6)
where the parameter KV is determined by Eq. (3.47).

For the conditions of the so-called Dorfman analogy [41], where n∗=2 and Pr=1,
one can deduce from Eq. (5.6) that =1. Equations for the Stanton and Nusselt
numbers, Eqs. (2.94) and (2.95), remain invariable. The form of Eq. (2.95) for the
Nu number with allowance for Eq. (5.6) practically coincides for n∗=2 with the
following solution:

Nu =C
2

n+1
n

[
γ |β − 1|(1−n)/(3n+1)

] 2n
n+1

(1 + α2)
1−n

2(n+1) |β − 1|(1−n)/(1+n)

Re(n+1)/(3n+1)
ω Pr,

(5.7)

obtained in [130] with the help of the integral method of Dorfman [41] (see
Sect. 3.6.2) also for the case of n∗=2, β=const and boundary equation (2.36). How-
ever, Eq. (5.7) does not take into account the effect of n∗, and the power exponent at
the Prandtl number in this equation is obviously erroneous. Nevertheless, numerical
values of the Nusselt number computed by Eqs. (5.7) and (2.95) for n∗=2, Pr=1,
β=idem and n=idem differ by only 2–3% in spite of the differences in numeri-
cal values of the constants α and γ calculated for Eq. (5.7) by Eqs. (5.1), and for
Eq. (2.95) by Eqs. (2.88) and (2.89).

Comparing relation (2.57) between the functions qw and τwϕ and relation (2.71)
between the Stanton number and the friction coefficient, one can easily ascertain
that the Reynolds analogy parameter χ in frames of the model used in the present
work and its interrelation with the constant K1 have the following form:

χ = −nPr−np , K1 = χAc(1 + α2)1/2(1 − β)Pr. (5.8)

Then Eq. (5.6) valid for the boundary condition (2.36) can be transformed to the
following expression for χ [190]:

χ = (2 + m + n∗) + n∗β/(1 − β)

(2 + m + n∗)Prnp (1 − KV ) + (4 + m)KV + 2β/(1 − β)
. (5.9)

For the boundary condition (2.35), which is the main one used in the present
work, Eq. (5.9) should be simplified as [190]

χ = 2 + m + n∗
(2 + m + n∗)(1 − KV )Prnp + (4 + m)KV + 2β/(1 − β)

. (5.10)
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Effect of the swirl parameter β on the Reynolds analogy parameter χ in turbulent
flow for four selected values of the power exponent n∗ is illustrated in Fig. 5.2.

More detailed data for χ , along with the constant K1, for Pr=0.71 and 1 and a
series of discrete values of n∗ over the range of n∗=–2.6–4 are given in Tables 5.2,
5.3, 5.4 and 5.5. As follows from these data, heat transfer rate decreases with an
increasing β due to a decrease in the shear of the tangential velocity component,
which is the driving force in convective transfer of momentum and heat in the cur-
rently considered physical problem. As usually, an increase in the exponent n∗ leads
to an increase in the heat transfer rate [190].
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Fig. 5.2 Effect of the swirl
parameter β on the Reynolds
analogy parameter χ in
turbulent flow for Pr=0.71.
1 – n∗=–0.6; 2 – n∗=1; 3 –
n∗=2; 4 – n∗=3

Table 5.2 Constant K1 in turbulent flow for Pr=1 and β=const

β n∗=–2.6 n∗=–0.6 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.0212 0.0232 0.0244 0.0254 0.0268 0.0278 0.0286
0.1 0.0 0.0201 0.0222 0.0236 0.0247 0.0264 1.024 0.0284
0.2 0.0 0.0182 0.0204 0.0219 0.0231 0.0249 0.0262 0.0272
0.3 0.0 0.0159 0.0181 0.0196 0.0208 0.0227 0.0241 0.0252
0.5 0.0 0.0107 0.0126 0.0139 0.015 0.0169 0.0183 0.0195
0.7 0.0 0.0054 0.0065 0.00741 0.0082 0.0096 0.0107 0.0117
0.9 0.0 0.001 0.0013 0.00155 0.0018 0.0022 0.0026 0.0029
0.99 0.0 2.8×10–5 3.6×10–5 4.3×10–5 5.0×10–5 6.3×10–5 8.3×10–5 9.0×10–5

Table 5.3 Parameter χ in turbulent flow for Pr=1 and β=const

β n∗=–2.6 n∗=–0.6 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.7913 0.865 0.9106 0.9466 1 1.0376 1.0655
0.1 0.0 0.7273 0.8054 0.8548 0.8944 0.9539 0.9966 1.0286
0.2 0.0 0.6606 0.7416 0.794 0.8366 0.902 0.9496 0.9859
0.3 0.0 0.5909 0.6731 0.7274 0.7725 0.8429 0.8954 0.936
0.5 0.0 0.4417 0.5194 0.5736 0.6204 0.697 0.7571 0.8054
0.7 0.0 0.278 0.3389 0.3841 0.4251 0.4964 0.5565 0.6077
0.9 0.0 0.013 0.1238 0.1448 0.1651 0.2035 0.2393 0.2728
0.99 0.0 0.01 0.0129 0.0154 0.0178 0.0227 0.0275 0.0323
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Table 5.4 Constant K1 in turbulent flow for Pr=0.71 and β=const

β n∗=–2.6 n∗=–0.6 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.0167 0.0185 0.0196 0.0218 0.0218 0.0227 0.0234
0.1 0.0 0.0157 0.0176 0.0188 0.0198 0.0213 0.0223 0.0232
0.2 0.0 0.0141 0.016 0.0173 0.0183 0.0199 0.0211 0.022
0.3 0.0 0.0122 0.0141 0.0153 0.0164 0.0180 0.0193 0.0203
0.5 0.0 0.008 0.0095 0.0106 0.0116 0.0131 0.0144 0.0154
0.7 0.0 0.0039 0.354 0.00553 0.0062 0.0073 0.0082 0.009
0.9 0.0 0.00075 0.00096 0.00112 0.0013 0.0016 0.0019 0.0022
0.99 0.0 2.0×10–5 2.6×10–5 3.0×10–5 3.5×10–5 4.5×10–5 5.4×10–5 6.4×10–5

Table 5.5 Parameter χ in turbulent flow for Pr=0.71 and β=const

β n∗=–2.6 n∗=–0.6 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.8788 0.9707 1.0285 1.0747 1.144 1.1935 1.2305
0.1 0.0 0.8006 0.8963 0.9579 1.0078 1.0841 1.1395 1.1816
0.2 0.0 0.7205 0.818 0.8821 0.9351 1.0175 1.0785 1.1256
0.3 0.0 0.6384 0.7354 0.8008 0.8557 0.943 1.0091 1.061
0.5 0.0 0.4677 0.5557 0.6183 0.6729 0.764 0.8368 0.8963
0.7 0.0 0.2881 0.354 0.4036 0.4491 0.5295 0.5984 0.658
0.9 0.0 0.0986 0.1257 0.1475 0.1686 0.2089 0.2468 0.2825
0.99 0.0 0.01 0.013 0.0154 0.0179 0.0228 0.0276 0.0325

5.1.2 Laminar Flow

Exact solution. Results of an exact solution of the problem of laminar heat transfer
of a disk rotating in a co-rotating fluid for boundary conditions (2.32), (2.33), (2.34)
and (2.35) and β<1 obtained in works [190] are discussed below. As said above, an
exact solution of the considered problem is possible to obtain numerically with the
help of the self-similar (with respect to r) functions (2.31) for a=0. As a result, the
problem is reduced to the system of ordinary differential equations (2.37), (2.38),
(2.39), (2.40) and (2.41) for N=0.

Respective boundary conditions take the following form:

ζ = 0: F = H = 0, G = 1, θ = 1,
ζ → ∞: G = β, F = 0, H → const, θ = 0.

(5.11)

The Nusselt numbers are calculated by Eqs. (3.4) for nR=1/2, while the constant
K1 is given by Eq. (3.5). The numerical solution of Eqs. (2.37), (2.38), (2.39), (2.40)
and (2.41) was performed using MathCAD software.

Profiles of the velocity components F, G, H and the dimensionless temperature
θ are presented in Figs. 5.3, 5.4, 5.5 and 5.6 for different values of β. The radial
velocity F has a form inherent to wall jets (Fig. 5.4), while the axial velocity H
(Fig. 5.5) is negative, i.e. directed towards the disk surface. Temperature profiles θ

(Fig. 5.6) look similar to the tangential velocity G [190].
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Fig. 5.3 Profiles of the
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Fig. 5.6 Dimensionless
temperature θ profiles: 1 –
β=0; 2 – 0.4; 3 – 0.6; 4 – 0.8;
5 – 0.9

To remind, for the physical problem under consideration, shear of the tangential
velocity G (Fig. 5.3) is the factor that drives flow. Increase in the swirl parameter
β or, in other words, in the value of the angular velocity of the fluid rotation �

reduces the shear of the tangential velocity G and, therefore, intensity of radial and
axial flow over the disk as well as near-wall gradient of the temperature profile θ

(Figs. 5.4, 5.5 and 5.6) [190].
In Tables 5.6 and 5.7, data for parameters of laminar flow are given, which are

needed to calculate the following quantities:

τwϕ/(ρω2r2) = −G′
wRe−1/2

ω , τwr/(ρω2r2) = F′
wRe−1/2

ω ,

ṁd/(μr) = −πH∞Re1/2
ω , CM = −2πG′

wRe−1/2
ϕ .

(5.12)

Thus, an increase in the swirl parameter β leads to a decrease in the wall values
of the shear stresses and mass flowrate through the boundary layer. The data in

Table 5.6 Parameters of laminar flow for N=0 and β=const≤1

β F′
w −G′

w α τwϕ /τwϕ0 –H∞

0.0 0.5102 0.6159 0.8284 1.0 0.8845
0.1 0.5134 0.6016 0.8535 0.9767 0.9176
0.2 0.5019 0.5721 0.8773 0.9289 0.8617
0.3 0.4769 0.5305 0.8989 0.8614 0.7687
0.4 0.4396 0.4787 0.9183 0.7772 0.6600
0.5 0.3908 0.4177 0.9357 0.6782 0.5457
0.6 0.3315 0.3484 0.9513 0.5657 0.4308
0.7 0.2622 0.2716 0.9654 0.4409 0.3178
0.8 0.1835 0.1876 0.9780 0.3046 0.2080
0.9 0.09594 0.09695 0.9895 0.1574 0.1020
1.0 0.0 0.0 1.0 0.0 0.0



5.1 Rotation of a Disk in a Fluid Rotating as a Solid Body Without Imposed Radial Flow 109

Table 5.7 Parameters of laminar flow for N=0 and β=const≥1

β–1 −β−3/2F′
w β−3/2G′

w α −τwϕ /τwϕ0 β−3/2H∞

0.0 0.9420 0.7729 1.2188 1.2549 1.3696
0.1 0.8449 0.7184 1.1761 36.8861 0.1199
0.2 0.7517 0.6584 1.1417 11.952 0.2077
0.3 0.6602 0.5931 1.1132 5.8601 0.2633
0.4 0.5691 0.5225 1.0892 3.3533 0.2915
0.5 0.4776 0.4469 1.0688 2.0522 0.2935
0.6 0.3852 0.3664 1.0512 1.2801 0.2724
0.7 0.2915 0.2814 1.0359 0.7800 0.2307
0.8 0.1961 0.1918 1.0225 0.4352 0.1702
0.9 0.09901 0.09798 1.0106 0.1863 0.07778
1.0 0.0 0.0 1.0 0.0 0.0

Tables 5.6 and 5.7 agree with and complete analogous results obtained in works
[138, 139] (in the first line of Table 5.7, factor β–3/2 is omitted).

Surface heat transfer is also deteriorated with an increase in β. The problem of
heat transfer solved in work [190] is considered below while describing the integral
method.

Integral method: fluid flow. An integral method developed based on the exact
self-similar solution allowed obtaining an approximate analytical solution of the
problem considered in this section [190]. The integral method is based on the very
same ideology as that described in Sect. 2.4.1, which means that a form of the
solution already found for turbulent flow is extended onto the case of laminar flow
by way of assigning few constants of the solution a status of free parameters to be
found empirically via comparing and agreeing them with the self-similar solution
[190].

Integral equations for the momentum boundary layer have a form of Eqs. (2.22)
and (2.23). These equations are the same both for laminar and turbulent flow.

They are completed with models for the velocity profiles [190], which are in fact
modifications of Eqs. (2.43):

vϕ = 1 − g, vr = α

α0
f . (5.13)

Here g and f are the self-similar functions of the only variable ξ . Parameter α

stands for the wall value of the tangent of the flow swirl angle; α0=0.8284 (a free
rotating disk). It follows from here that

g = β − G

β − 1
, f = α0F

α (1 − β)
. (5.14)

Though being self-similar with respect to r, functions g and f (together with G
and F ) as well as integral parameters computed based on these functions depend
parametrically on the value of β. An allowance for the effect of β on the functions
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g and f is a principal difference of the present integral method from the method of
authors [138, 139]. In the works [138, 139], the functions g and f were calculated
using data for a free disk and were assumed to be independent of β. This assump-
tion, as shown beneath, leads to noticeable inaccuracies compared to the exact
solution.

It should also be emphasized that a fundamental assumption of the present inte-
gral method is that the velocity profiles g and f are universally the same when plotted
versus the coordinate ξ=z/δ for β=idem. Using the coordinate ξ instead of ζ allows
avoiding the effect of the boundary layer thickness δ on the profiles of g and f.
Parameter δ thus becomes an unknown to be found, together with the unknown α,
via a solution of the integral boundary layer equations.

After integration with account of model (5.13), Eqs. (2.22) and (2.23) accept a
form still valid both for laminar and turbulent flow:

d

dr

{
δω2r3 (1 − β)2

(
−B1α

2
)}

+ δ (ωr)2 (β − 1) C3 (β − C5) = rτwr/ρ, (5.15)

d

dr

{
δω2r4(β − 1)(1 − β) αD1

}
+δωr2(β−1) αA1

d

dr

(
βωr2

)
= r2τwϕ/ρ. (5.16)

Equations (5.15) and (5.16) are in fact somewhat transformed to Eqs. (2.73) and
(2.74), respectively, valid for the case of κ=0 and N=0. Here

A1 = 1

α0

1∫

0

f dξ , A3 =
1∫

0

g dξ , B1 = 1

α2
0

1∫

0

f 2 dξ , (5.17)

C1 =
1∫

0

g2 dξ , D1 = 1

α0

1∫

0

f g dξ , (5.18)

C3 = C1 − 2A3, C5 = C1/C3. (5.19)

For turbulent flow, functions

g = 1 − ξn, f = α0ξ
n(1 − ξ )2, (5.20)

the first of which coincides with Eq. (2.45), while the second is a modified equation
(2.47), are obviously independent of both r and β. Relations for constants as well as
for shear stress components in Eqs. (5.15) and (5.16) for turbulent flow are given in
Sect. 2.4.

For the further use in the laminar flow case, all above constants are reduced to
free disk conditions by way of multiplying each of them with ζδ0 = δ0

√
ω/ν, so

that

a1 = A1ζδ0, a3 = A3ζδ0, b1 = B1ζδ0, c1 = C1ζδ0, d1 = D1ζδ0, (5.21)

c3 = C3ζδ0 = c1 − 2a3, c5 = C5ζδ0 = c1/c3. (5.22)
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Here δ0 is the boundary layer thickness over a free disk (β=0).
In the numerical solution of Eqs. (2.37), (2.38), (2.39) and (2.40), finding of the

boundary layer thickness δ depends on accepted inaccuracy of determination of the
values F and G at the outer edge of the boundary layer in comparison with the values
specified in boundary conditions (5.11). Therefore, integration of functions F and
G in the present work is performed using the variable ζ = z

√
ω/ν instead of ξ .

The upper limit of the integration ζδ = δ
√

ω/ν is chosen large enough to provide
invariable integral values within the limits of four meaningful digits. It is obvious
that here ξ = z/δ = ζ/ζδ and ζδ/ζδ0 = δ/δ0.

Values of the constants defined in Eqs. (5.17), (5.18), (5.19), (5.21) and (5.22)
are computed based on the exact solution of the system (2.37), (2.38), (2.39) and
(2.40) in view of relations (5.14)

a1δ
δ0

= A1ζδ =
ζδ∫

0

F
(1−β)α dζ , b1δ

δ0
= B1ζδ =

ζδ∫

0

F2

(1−β)2α2 dζ ,

a3δ
δ0

= A3ζδ =
ζδ∫

0

β−G
β−1 dζ , c1δ

δ0
= C1ζδ =

ζδ∫

0

(β−G)2

(β−1)2 dζ ,

d1δ
δ0

= D1ζδ =
ζδ∫

0

F(G−β)
(β−1)2α

dζ .

(5.23)

The right-hand sides of Eqs. (5.23) may be calculated with the highest desirable
precision and therefore they are constant for any value of β.

Shear stress components can be expressed in the following way:

τwϕ = μωr

δ
·
(

dg

dξ

)

ξ=0
= μωr

(ω

ν

)1/2 ·
(

dG

dζ

)

ζ=0
, (5.24)

τwr = μωr

δ
·
(

df

dξ

)

ξ=0
= μωr

(ω

ν

)1/2 ·
(

dF

dζ

)

ζ=0
, (5.25)

τwr

τwϕ

=
(

df

dξ

)

ξ=0

/(
dg

dξ

)

ξ=0
=
(

dF

dζ

)

ζ=0

/(
dG

dζ

)

ζ=0
= − α. (5.26)

It is accepted here that
(
dg

/
dξ

)
ξ=0 = const does not depend on β. It follows

then from Eqs. (5.24) and (5.25) that

(
dF

/
dζ

)
ζ=0 = 0.5102τwr

/
τwr0 = 0.5102(α

/
α0)(τwϕ

/
τwϕ0), (5.27)

(
dG

/
dζ

)
ζ=0 = −0.6159τwϕ

/
τwϕ0 = −0.6159δ0

/
δ, (5.28)

in view of the fact that, according to Eq. (3.1), the following is true:
(
dG

/
dζ

)
ζ=0 =

−0.6159 and
(
dF

/
dζ

)
ζ=0 = 0.5102 for β=0.

Accepting as usually that α=const, δ=const and solving Eqs. (5.15) and (5.16),
one can finally obtain
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α = [−c3(β − c5)/(βh7 + h8)
] 1/2 , (5.29)

h7 = −3b1 − 4d1 + 2a1, h8 = 3b1 + 4d1, (5.30)

δ
/
δ0 = τwϕ0

/
τwϕ , (5.31)

τwϕ

τwϕ0
= δ0

δ
=

[
(1 − β)

α

α0
· d1 + β(0.5a1 − d1)

d1,0

]1/2

. (5.32)

Values of the main parameters of this problem computed based on the self-similar
solution are presented in Table 5.8.

Values of α and τwϕ /τwϕ0 were determined by Eqs. (5.26) and (5.28), while
constants a1, a3, b1, c1 and d1 were found via numerical integration of the velocity
profiles using Eqs. (5.23) with allowance for Eq. (5.31) for δ/δ0 [190]. It may be
concluded from Table 5.8 that constants a1, a3, b1, c1 and d1 vary significantly with
β, and taking into account this variation is obligatory for accurate predictions of α

and τwϕ /τwϕ0 and other parameters of the problem.
In order to provide convenience in use of the integral method, constants a1, a3,

b1, c1 and d1 were approximated by the fourth-order polynomials with respect to β:

Table 5.8 Values α, τwϕ /τwϕ0 a1, a3, b1, c1 and d1 based on the exact solution and the integral
method (bold font)

τwϕ /
β α τwϕ0 a1 a3 b1 c1 d1 d2 KV

0.0 0.8284 1 0.5338 1.2715 0.07887 0.6726 0.18587 0.34793 0.3482
0.8284 1 0.5338 1.2715 0.07887 0.6726 0.18587 0.34793 0.3482

0.1 0.8535 0.9767 0.5834 1.0744 0.09580 0.5897 0.18004 0.40334 0.30862
0.8570 0.9745 0.5751 1.0744 0.09534 0.5902 0.17872 0.39639 0.31076

0.2 0.8773 0.9289 0.5702 0.9007 0.10221 0.5141 0.16531 0.40490 0.28991
0.8773 0.9288 0.5702 0.9007 0.10221 0.5141 0.16531 0.4049 0.28991

0.3 0.8989 0.8614 0.5261 0.7469 0.10109 0.4433 0.14662 0.37949 0.27869
0.8952 0.8634 0.5323 0.7467 0.10157 0.4429 0.14761 0.38468 0.27732

0.4 0.9183 0.7772 0.4655 0.6096 0.09463 0.3757 0.12616 0.33929 0.27105
0.9130 0.7796 0.4724 0.6093 0.09522 0.3752 0.12728 0.34513 0.26942

0.5 0.9357 0.6782 0.3955 0.4856 0.08429 0.3104 0.10497 0.29051 0.26543
0.9318 0.6797 0.3995 0.4854 0.08464 0.3101 0.10561 0.29386 0.26437

0.6 0.9513 0.5657 0.3202 0.3728 0.07105 0.2467 0.08359 0.23662 0.26106
0.9514 0.5657 0.3202 0.3728 0.07105 0.2467 0.08359 0.23662 0.26105

0.7 0.9654 0.4409 0.2419 0.2691 0.05560 0.1841 0.06230 0.17961 0.25753
0.9705 0.4398 0.2393 0.2693 0.05533 0.1843 0.06187 0.17738 0.25860

0.8 0.9780 0.3046 0.1619 0.1731 0.03840 0.1223 0.04123 0.12071 0.25461
0.9869 0.3033 0.1591 0.1734 0.03810 0.1225 0.04077 0.11829 0.25630

0.9 0.9895 0.1574 0.0811 0.08374 0.01978 0.0610 0.02046 0.06068 0.25212
0.9975 0.1569 0.0799 0.08385 0.01965 0.0611 0.02026 0.05966 0.25350

0.99 0.9990 0.0162 0.0081 0.00814 0.00203 0.00609 0.00203 0.00609 0.25016
0.9990 0.0162 0.0081 0.00814 0.00203 0.00609 0.00203 0.00609 0.25015

0.999 0.9999 0.0016 8.1×10–4 8.1×10–4 2.0×10–3 6.1×10–3 2.03×10–3 6.1×10–4 0.25062
1.0011 0.0016 8.1×10–4 8.1×10–4 2.0×10–3 6.1×10–3 2.03×10–3 6.1×10–4 0.25062
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a1 =
4∑

0

a1,iβ
i, a3 =

4∑

0

a3,iβ
i, b1 =

4∑

0

b1,iβ
i, c1 =

4∑

0

c1,iβ
i, d1 =

4∑

0

d1,iβ
i.

(5.33)

Values of the polynomial coefficients are a1,i = 0.5338, 0.6936, –3.0692, 2.7371,
–0.8952; a3,i = 1.2715, –2.1025, 1.3781, –0.7233, 0.1761; b1,i = 0.07887, 0.2204,
–0.5981, 0.4228, –0.1239; c1,i = 0.6726, –0.8612, 0.3994, –0.2969, 0.08607; d1,i =
0.1859, –0.03277, –0.4271, 0.4124, –0.1384 for i=0, 1, 2, 3, 4, respectively.

Approximate values of Eqs. (5.33) were substituted into Eq. (5.29) for α and
Eq. (5.32) for τwϕ /τwϕ0. Approximate values of α and τwϕ /τwϕ0 computed in such
a way in [190] are given in Table 5.8 in boldface. In this Table, the second line of
values for each parameter for a given β (bold font) corresponds to the approximate
solution, Eqs. (5.29), (5.30), (5.31), (5.32) and (5.33). It is obvious that inaccuracies
of the approximate solution are very small and do not exceed 1%.

For the comparison purpose, Fig. 5.7 represents data of an approximate zeroth-
order solution for α and τwϕ /τwϕ0, Eqs. (5.29) and (5.32), based on an assumption
that the profiles of g and f are independent of β. From the mathematical point of
view, this means that the coefficients a1, a3, b1, c1 and d1 were computed by Eqs.
(5.33) with allowance for just the first terms of the polynomial power series (at i=0).
It is obvious that inaccuracies of such a solution are very high and reach 34% for α

and 42% for τwϕ /τwϕ0 for β≤0.5; for β→1 these inaccuracies are equal to 54.3%
for α and 3200% for τwϕ /τwϕ0.

Integral method: heat transfer. The integral equation (2.75) of the thermal
boundary layer is solved together with a transformed equation (5.16) [190]

(4 + m)(1 − β) αD1δ/r + 2βαA1δ/r = cf

2
(1 − β)(1 + α2)1/2, (5.34)

d

dr

[
r2δδ

∗∗∗
T (Tw − T∞)

]
+dT∞

dr
δr2

1∫

0

vr

ωr
dξ = χ

cf

2
r2(1−β)(1+α2)1/2 (Tw − T∞) .

(5.35)
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Fig. 5.7 Effect of the swirl
parameter β on functions α

(curves 1 and 2), τwϕ /τwϕ0
(curves 3 and 4) and χ /χ0
(curve 5) computed based on
the exact solution (1, 3 and 5)
and approximate zeroth-order
approximation (2 and 4)
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For laminar flow, a form of the approximate relation for the enthalpy thickness
δ
∗∗
T is found from generalization of the “turbulent” solution, Eq. (5.5), at the expense

of implementation of coefficients b1 and b2 [190]:

δ
∗∗
T = − (1 − β)α ( − A1

/
b2 + χPrnp D2b1

/
b2). (5.36)

Constants b1 (do not confuse with Eq. (5.21)) and b2, as well as np, depending
for laminar flow on the Prandtl number are accepted to be the same as those found
for a free rotating disk in Sect. 3.4. For turbulent flow, b1=1, b2=1.

Then a joint solution of Eqs. (5.34) and (5.35) with allowance for Eq. (5.36) takes
the following form for the boundary condition (2.36) [190]

χ = (2 + m + n∗) + b2n∗β/(1 − β)∗
(2 + m + n∗)Prnp(1 − KV )b1 + (4 + m)KVb2 + b22β/(1 − β)

, (5.37)

where, according to Eq. (3.47), KV = 1 − D2/A1 = 1 − d2
/

a1. Solution (5.37)
generalizes Eq. (5.9) valid for turbulent flow. For the boundary condition (2.35),
Eq. (5.37) reduces to

χ = 2 + m + n∗
(2 + m + n∗)Prnp(1 − KV )b1 + (4 + m)KVb2 + b22β/(1 − β)

. (5.38)

For laminar flow m=0. Accepting values b1=1, b2=1 for turbulent flow,
Eq. (5.38) reduces to Eq. (5.10).

Parameter KV, together with the constants a1 and d2 (see Eq. (3.47)), for laminar
flow depends on the value of β. One should also determine the dependence of coef-
ficients b1 and b2 on β. In doing so, it is assumed that dependence of the parameters
b2 and np on the Prandtl number (b1 being independent of Pr) is the same as that for
a free disk (Sect. 3.4, Eqs. (3.65), (3.66) and (3.67)).

Based on Eqs. (2.52), (3.5) and (5.24), the Reynolds analogy parameter χ for the
self-similar solution can be calculated from the following relation:

χ = −K1(1 − β)
[
Pr (dG/dζ )ζ=0

]−1 . (5.39)

Equating values of χ obtained by Eq. (5.38) to those computed by the exact solu-
tion (5.39) for any β at Pr=1, n∗=0, n∗=2, one can obtain values of the coefficients
b1 and b2, for the sake of convenience in use approximated with the fourth-order
polynomials [190]

b1 =
4∑

0

b1,iβ
i, b2 = b2,0

(

1 +
4∑

1

b2,iβ
i

)

, (5.40)

where b1,0=0.6827, b1,1=0.1694, b1,2=0.1115, b1,3=0.7931 and b1,4=–0.7569.
The value of b2,0 for β=0 is calculated from Eq. (3.65), while b2,1=0.2866,
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b2,2=–2.5420, b2,3=2.7414 and b2,4=–0.8586. Used as asymptotic values for
β=0.999 were b1=1 and b2=1.

Given a value of χ by Eq. (5.38) based on the integral method, the constant K1
can be found from the following relation:

K1 = 0.6159
τwϕ

τwϕ0
χ

Pr

1 − β
, (5.41)

where the ratio τwϕ /τwϕ0 is specified by Eq. (5.32).
Values of K1 and χ calculated for Pr=1 and 0.71 in accordance with the exact

solution and the integral method, Eqs. (5.38) and (5.41), are given in Tables 5.9,
5.10, 5.11 and 5.12 [190].

Dependence of the constant K1 on the swirl parameter β has a point of maximum
at β=0.1, though the value K1 at this point for Pr=0.71–1.0 just by 1–2% exceeds
the value of K1 at β=0. With the further increase in β, the constant K1, at first slowly
(for β≤0.4), and then rapidly decreases. Authors [155], who studied experimentally
heat transfer at a stagnation point of a swirling jet impinging on a stationary sur-
face, also noticed a point of maximum of the dependence of the Nusselt number
on the swirl parameter for small values of β. Remarkable decrease in convective

Table 5.9 Constant K1 for Pr=1.0 based on the exact solution and the integral method (bold font)

β n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=4

0.0 0.0 0.1305 0.2352 0.3221 0.3962 0.4608 0.5180 0.6159 0.7693
0.0 0.1261 0.2311 0.3199 0.3961 0.4620 0.5197 0.6159 0.7557

0.1 0.0 0.1333 0.2396 0.3275 0.4022 0.4672 0.5246 0.6228 0.7764
0.0 0.1287 0.2354 0.3254 0.4022 0.4686 0.5266 0.6228 0.7622

0.2 0.0 0.1305 0.2351 0.3221 0.3962 0.4607 0.5178 0.6155 0.7685
0.0 0.1259 0.2308 0.3196 0.3958 0.4618 0.5195 0.6158 0.7559

0.3 0.0 0.1123 0.2243 0.3086 0.3809 0.4442 0.5003 0.5967 0.7479
0.0 0.1198 0.2205 0.3064 0.3804 0.445 0.5017 0.5969 0.7367

0.4 0.0 0.1138 0.208 0.288 0.3574 0.4184 0.4729 0.5669 0.7151
0.0 0.1111 0.2055 0.2867 0.3574 0.4194 0.4742 0.5669 0.7045

0.5 0.0 0.1013 0.1868 0.2607 0.3255 0.3832 0.4351 0.5253 0.6688
0.0 0.0998 0.1858 0.2607 0.3264 0.3847 0.4366 0.5253 0.6591

0.6 0.0 0.0873 0.1613 0.2268 0.2852 0.3379 0.3858 0.4702 0.6064
0.0 0.0856 0.1608 0.2272 0.2865 0.3395 0.3874 0.4703 0.5983

0.7 0.0 0.0721 0.1319 0.1861 0.2356 0.2811 0.323 0.3983 0.5229
0.0 0.0683 0.1297 0.1852 0.2356 0.2816 0.3237 0.3983 0.5174

0.8 0.0 0.0610 0.1032 0.1426 0.1796 0.2144 0.2472 0.3075 0.4116
0.0 0.0478 0.0921 0.1333 0.1717 0.2077 0.2413 0.3027 0.4058

0.9 0.0 0.0643 0.0314 0.1065 0.1266 0.1461 0.1649 0.2009 0.2670
0.0 0.0247 0.0484 0.0712 0.0933 0.1145 0.1350 0.1739 0.2443

0.99 0.0 0.0987 0.1008 0.1028 0.1048 0.1068 0.1088 0.1128 0.121
0.0 0.0025 0.0050 0.0075 0.0099 0.0124 0.0149 0.0197 0.0294

0.999 0.0 0.1417 0.1418 0.1421 0.1423 0.1424 0.1426 0.1429 0.1437
0.0 0.0003 0.0005 0.0008 0.0010 0.0012 0.0015 0.0020 0.0030
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Table 5.10 Value χ for Pr=1.0 based on the exact solution and the integral method (bold font)

β n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=4

0.0 0.0 0.2119 0.3818 0.5230 0.6433 0.7482 0.8410 1.0 1.1335
0.0 0.2047 0.3752 0.5195 0.6431 0.7502 0.8439 1.0 1.1249

0.1 0.0 0.1995 0.3585 0.49 0.6018 0.699 0.7849 0.9318 1.055
0.0 0.193 0.353 0.4879 0.6031 0.7027 0.7895 0.9339 1.049

0.2 0.0 0.1824 0.3288 0.4504 0.554 0.6442 0.724 0.8608 0.9755
0.0 0.1760 0.3228 0.4470 0.5535 0.6458 0.7265 0.8612 0.9689

0.3 0.0 0.1632 0.296 0.4072 0.5026 0.586 0.6601 0.7873 0.8943
0.0 0.1577 0.2903 0.4033 0.5008 0.5858 0.6605 0.7858 0.8867

0.4 0.0 0.1426 0.2608 0.3611 0.4479 0.5245 0.5928 0.7106 0.8101
0.0 0.1388 0.2568 0.3583 0.4466 0.5240 0.5926 0.7083 0.8024

0.5 0.0 0.1213 0.2236 0.312 0.3897 0.4587 0.5208 0.6288 0.7206
0.0 0.1192 0.2219 0.3113 0.3899 0.4595 0.5215 0.6274 0.7144

0.6 0.0 0.1002 0.1852 0.2603 0.3274 0.3879 0.4429 0.5397 0.623
0.0 0.0983 0.1846 0.2609 0.3288 0.3898 0.4448 0.5399 0.6194

0.7 0.0 0.0796 0.1457 0.2056 0.2603 0.3105 0.3569 0.4400 0.5129
0.0 0.0756 0.1436 0.2051 0.2609 0.3119 0.3586 0.4411 0.5118

0.8 0.0 0.0651 0.1100 0.1521 0.1915 0.2286 0.2635 0.3278 0.3859
0.0 0.0511 0.0986 0.1427 0.1839 0.2223 0.2584 0.3240 0.3823

0.9 0.0 0.0664 0.0885 0.1099 0.1306 0.1507 0.1701 0.2073 0.2423
0.0 0.0255 0.0501 0.0737 0.0965 0.1185 0.1397 0.1800 0.2176

0.99 0.0 0.099 0.1011 0.1031 0.1051 0.1071 0.1091 0.1131 0.1171
0.0 0.0025 0.0050 0.0075 0.0100 0.0124 0.0149 0.0198 0.0247

0.999 0.0 0.1417 0.1419 0.1421 0.1423 0.1424 0.1426 0.143 0.1434
0.0 0.00025 0.0005 0.00075 0.0010 0.0012 0.0015 0.0020 0.0025

heat transfer along the axis z (as well as the axis r) is caused by the decrease in
absolute shear of the tangential velocity vz for β→1. For β≥0.8, the exact solution
for the dimensionless temperature θ and consequently for the coefficients b1 and b2
becomes to be affected by prevailing influence of heat conduction over convective
heat transfer along the axis z. In accordance with the heat conduction equation, one
can obtain for β→1 that

K1 = −θ ′
ζ=0 = 1

/
ζ∞, (5.42)

where ζ∞ is the coordinate at which θ=0. It is worth noting that this solution is inde-
pendent of the values Pr and n∗. Asymptotic values b1=1 and b2=1 for β=0.999
correspond to ζ∞=∞. Data of the exact solution were calculated for β=0.999 at
ζ∞=7.05, and for β=0.99 at ζ∞=9.93 (Tables 5.9, 5.10, 5.11 and 5.12) [190].
These data agree well with the exact solution and the integral method.

An analysis of the data in Tables 5.9, 5.10, 5.11 and 5.12 show that the exact and
approximate solutions agree well for β≤0.7. For β=0.7, their maximal disagree-
ments at the value of n∗=–1.5 (rarely occurred in practice) reach 5.6% for Pr=1 and
13.2% for Pr=0.71. These inaccuracies of the approximate solution reduce with an
increasing n∗. Over the range β=0–0.7 and n∗=−1 to 4, they do not exceed 1.6%
for Pr=1 and 2.5% for Pr=0.71. Inaccuracies of the approximate solution some-
what increase following deviation of the Prandtl number from unity, the value for
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Table 5.11 Constant K1 for Pr=0.71 based on the exact solution and the integral method (bold
font)

β n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=4

0.0 0.0 0.1035 0.1893 0.2624 0.3259 0.3818 0.4319 0.5185 0.6555
0.0 0.1009 0.187 0.2612 0.3259 0.3828 0.4332 0.5185 0.6457

0.1 0.0 0.1060 0.1934 0.2675 0.3316 0.3881 0.4384 0.5254 0.6627
0.0 0.1031 0.1906 0.2658 0.3312 0.3885 0.4392 0.5248 0.6518

0.2 0.0 0.1033 0.189 0.2621 0.3255 0.3815 0.4315 0.518 0.6549
0.0 0.1008 0.1867 0.2609 0.3256 0.3825 0.4329 0.5183 0.6458

0.3 0.0 0.0971 0.1789 0.2493 0.3108 0.3654 0.4145 0.4997 0.6350
0.0 0.0958 0.1782 0.2498 0.3125 0.3680 0.4174 0.5015 0.6281

0.4 0.0 0.0886 0.1643 0.2303 0.2888 0.341 0.3883 0.4710 0.6034
0.0 0.0888 0.1659 0.2334 0.2930 0.3461 0.3936 0.4751 0.5992

0.5 0.0 0.0795 0.1469 0.2067 0.2605 0.3091 0.3535 0.4320 0.5594
0.0 0.0797 0.1497 0.2117 0.2670 0.3165 0.3613 0.4387 0.5585

0.6 0.0 0.0709 0.1279 0.1795 0.2267 0.2701 0.3102 0.3821 0.5013
0.0 0.0683 0.1293 0.1840 0.2334 0.2783 0.3192 0.3910 0.5045

0.7 0.0 0.0616 0.1065 0.1481 0.1869 0.2231 0.2572 0.3195 0.4257
0.0 0.0544 0.1039 0.1493 0.1910 0.2295 0.2651 0.3288 0.4328

0.8 0.0 0.0584 0.0891 0.1183 0.1462 0.1728 0.1982 0.246 0.3308
0.0 0.038 0.0735 0.1069 0.1383 0.1679 0.1959 0.2473 0.3355

0.9 0.0 0.0668 0.0821 0.0970 0.1116 0.1258 0.1397 0.1667 0.2172
0.0 0.0195 0.0385 0.0568 0.0745 0.0916 0.1083 0.1401 0.1983

0.99 0.0 0.0993 0.1007 0.1022 0.1036 0.1050 0.1065 0.1093 0.1149
0.0 0.0020 0.0039 0.0059 0.0079 0.0098 0.0118 0.0156 0.0233

0.999 0.0 0.1417 0.1418 0.1420 0.1421 0.1422 0.1424 0.1426 0.1432
0.0 0.0002 0.0004 0.0006 0.00079 0.00099 0.0012 0.0016 0.0024

which the dependence of coefficients b1 and b2 on β was obtained. However, this
increase in the inaccuracies may be regarded insignificant, which means that Eqs.
(3.65), (3.66) and (3.67) describing dependence of b2 and np on the Pr number
obtained earlier for a free disk (Sect. 3.4) hold also for the solid-body rotation of
fluid. For β=0.8, inaccuracies of the approximate solution reach 10.6% at n∗=–0.5
and decrease to 1.5% at n∗=4, which is an acceptable result. For β=0.9, the present
integral method can be recommended only at n∗=1–4, while for β>0.9 heat conduc-
tion effects in fluid dominate over convective heat transfer, and the integral method
becomes unacceptable [190].

Thus, in the present sub-section an exact self-similar solution of the problem of
laminar heat transfer of a disk rotating in a co-rotating fluid for boundary condi-
tions (2.32), (2.33), (2.34), (2.35) and (2.36) and β<1 was found. Based on the exact
solution, an integral method was developed and an approximate analytical solution
of this problem was found. Inaccuracies of the approximate solution for β=0–0.7,
n∗=−1.0–4.0 and Pr=0.71–1 do not exceed 2.5%. Following an increase in the
parameter β to values β=0.8–0.9, the range of the values of n∗, which can provide
low inaccuracies of the approximate solution, becomes narrower and shifts to the
region of the positive values of n∗=1–4. For β>0.9, heat conduction in fluid domi-
nates over convective heat transfer, and the integral method becomes unacceptable.
Dependence of the constant K1 (i.e. the Nusselt number) on the parameter β exhibits
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Table 5.12 Value χ for Pr=0.71 based on the exact solution and the integral method (bold font)

β n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=4

0.0 0.0 0.2366 0.4330 0.6001 0.7452 0.8732 0.9876 1.1856 1.3533
0.0 0.2308 0.4276 0.5973 0.7453 0.8753 0.9906 1.1857 1.3446

0.1 0.0 0.2233 0.4076 0.5637 0.6988 0.8177 0.9238 1.1071 1.2619
0.0 0.2177 0.4025 0.5614 0.6995 0.8206 0.9276 1.1084 1.2551

0.2 0.0 0.2034 0.3723 0.5162 0.6411 0.7513 0.8499 1.0203 1.1646
0.0 0.1985 0.3678 0.5139 0.6413 0.7534 0.8527 1.0209 1.1580

0.3 0.0 0.1805 0.3325 0.4632 0.5776 0.6791 0.7702 0.9286 1.0630
0.0 0.1777 0.3304 0.4631 0.5794 0.6823 0.7738 0.9298 1.0577

0.4 0.0 0.1564 0.2900 0.4066 0.5098 0.6021 0.6855 0.8315 0.9563
0.0 0.1563 0.2919 0.4107 0.5157 0.6090 0.6926 0.8361 0.9547

0.5 0.0 0.1340 0.2476 0.3486 0.4391 0.5212 0.596 0.7284 0.8426
0.0 0.1341 0.2519 0.3561 0.4491 0.5325 0.6077 0.7381 0.8471

0.6 0.0 0.1146 0.2067 0.2903 0.3666 0.4367 0.5015 0.6179 0.7199
0.0 0.1104 0.2090 0.2975 0.3774 0.4500 0.5161 0.6322 0.7308

0.7 0.0 0.0959 0.1656 0.2304 0.2908 0.3472 0.4002 0.4971 0.5839
0.0 0.0848 0.1621 0.2329 0.2980 0.3580 0.4135 0.5129 0.5993

0.8 0.0 0.0877 0.1338 0.1777 0.2195 0.2595 0.2977 0.3694 0.4355
0.0 0.0572 0.1109 0.1612 0.2086 0.2532 0.2954 0.3729 0.4427

0.9 0.0 0.0970 0.1192 0.1409 0.1621 0.1828 0.2030 0.2421 0.2796
0.0 0.0285 0.0561 0.0827 0.1086 0.1336 0.1579 0.2042 0.2479

0.99 0.0 0.1403 0.1423 0.1443 0.1464 0.1484 0.1504 0.1544 0.1584
0.0 0.0028 0.0056 0.0084 0.0111 0.0139 0.0166 0.0221 0.0275

0.999 0.0 0.1997 0.1998 0.2000 0.2002 0.2004 0.2006 0.2009 0.2013
0.0 0.00029 0.00056 0.00084 0.0011 0.0014 0.0017 0.0022 0.0028

a point of maximum at β=0.1. Afterwards, the constant K1 decreases with increas-
ing β [190].

5.2 Accelerating Radial Flow Without Imposed External
Rotation

5.2.1 Flow Impingement onto an Orthogonal Rotating Disk:
Experimental and Computational Data of Different Authors

Flow impingement onto an orthogonal surface, whose particular case are impinging
jets, is known as a high-performance technique for cooling or heating a surface
[44, 99, 114, 149, 150, 157, 196]. In particular, impinging jet flows of various
types are used in rotating-disk systems for cooling end-wall surfaces of gas turbine
rotors, etc.

Fundamentals of modelling axisymmetric round jets impinging orthogonally
onto a stationary flat disk are documented, e.g. in works [22, 41, 93, 158]. These
authors described, in particular, a known theoretical solution for the case where
an axisymmetric flow with a uniform axial velocity profile impinges orthogonally
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Fig. 5.8 Hydrodynamics and heat transfer between a rotating disk and a uniform flow perpendic-
ular to it [158, 213]

onto a flat surface (Fig. 5.8). For real axisymmetric single jets impinging onto a
stationary disk of a diameter d [14, 44, 57, 158, 213], fluid flow in the region of
impingement and radial turn of a jet on a disk with sufficiently high accuracy can
be considered laminar, and its peculiarities around the stagnation point are close to
those of uniform axisymmetric impingement flow over a disk.

Fluid flow in axisymmetric air jets impinging onto rotating disks has been stud-
ied quite in detail [11, 15, 24, 26, 41, 59, 94, 123, 124, 147, 154–156, 198, 207–
211]. As shown in these works, one can accept that a constant thickness boundary
layer develops in the vicinity of the stagnation point, while the radial vr,∞ and axial
vz,∞ velocity components at the outer edge of the boundary layer are described by
Eqs. (2.32).

In the case where potential uniform flow with the velocity at infinity Vj impinges
orthogonally onto a disk, constant a in Eqs. (2.32) may be calculated by the follow-
ing relation [41]:

a = 2Vj/(πb), A = 4/π . (5.43)

The second of Eqs. (5.43) takes into consideration the fact that flow in this case
impinges onto the whole surface of the disk; hence, in the definition of the parameter
a, it was accepted that dj=d.

The stagnation pressure ps on a disk at a local radius r can be written as

ps = p(r) + (1/2)ρv2
r,∞, (5.44)

where velocity vr,∞ is given by Eqs. (2.32) and (5.43). On the other hand,

ps = p∞ + (1/2)ρV2
j . (5.45)

As a result, based on Eqs. (5.44) and (5.45), one can derive the following relation
[116]:
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p − p∞
(1/2)ρV2

j

= 1 −
(

2

π

)2 ( r

b

)2
. (5.46)

The theoretical equation (5.46) agrees well with experimental data [116] up to the
radial location r/b=0.85 that confirms validity of the model assumptions, Eqs. (2.32)
and (5.43), for the radial velocity vr,∞ over a disk subjected to uniform orthogonal
impingement. Disagreement of Eq. (5.46) with experimental data [116] for pressure
distribution at r/b>0.85 is caused by effects of flow separation at the outer rim of
the disk.

For the case where a single jet impinges onto an orthogonal disk, velocity vr,∞
in the vicinity of the stagnation point follows the first of Eqs. (2.32), while the
parameter a is initially almost constant. Further, the parameter a gradually decreases
with an increasing r till the value of vr,∞ reaches its maximum. Having reached
its maximum, the component vr,∞ begins to decrease. This means beginning of a
principally different region of a turbulent wall jet, which is not studied in the present
work. Empirical correlations, which allow predicting a radial location of the point
of maximum of vr,∞ and its value at this point are given in [44].

In the case of real impinging jets, a significant role belongs to the jet-to-disk
diameter ratio dj/d and dimensionless jet-to-disk distance hj/dj. Value of A for real
jets is different from 4/π and depends on the parameter hj/dj (as well as on the
velocity profile and turbulence level at the nozzle outlet). Experimental data of dif-
ferent authors describing dependence of A on hj/dj differ quite noticeably from each
other. We accept the physically justifiable point of view of the authors [14, 213]
that the value A (together with the Nusselt number at the stagnation point) decreases
with increasing hj/dj for high enough values of Rej. For laminar flow with a uni-
form velocity profile at the nozzle outlet, authors of [14] proposed an empirical
correlation

A = 1.5 · (hj/dj)
−0.22, (5.47)

which is valid over the range hj/dj=2–6.
Heat and mass transfer of impinging jets were experimentally investigated in

works [5, 11, 24, 59, 147, 154–156]. Theoretical studies were undertaken in works
[26, 41, 94, 198, 209, 210]. Authors of [94] obtained an exact self-similar solu-
tion for heat transfer for uniform axisymmetric flow impingement onto a disk for
Pr=0.7, 1, 10 and Tw=const. A self-similar solution for mass transfer was obtained
in the work [198] for Sc=0.2, 3.0 and Cw=const.

Self-similar form of the Navier–Stokes and energy equations for the problem
under consideration reduces to Eqs. (2.37), (2.38), (2.39), (2.40) and (2.41) for β=0.
These equations are solved for boundary conditions (2.32), (2.33), (2.34) and (2.35).
Based on this solution, the Nusselt numbers for a stationary disk are given by the
following equations [44]:

Nud = K1 · Re1/2
a , Nud = 0.763 · Re1/2

j · Pr0.4 · A1/2. (5.48)
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The second of Eqs. (5.48) is valid for a uniform flow impingement onto a disk,
with Rea = Rej · A, dj=d and Tw=const.

Authors of the work [116] investigated both theoretically and experimentally the
problem of laminar fluid flow and heat transfer at uniform orthogonal impinge-
ment of air stream (Pr=0.71) onto a rotating disk with constant surface tempera-
ture Tw=const over a wide range of variation of the ratio between the impingement
velocity and angular velocity of rotation a/ω=0. . .∞. As shown in [116], the self-
similar theoretical solution for the Nusselt number (considered in detail below in
Sect. 3.2.3) agrees well with original experimental data.

Authors of the work [26] approximated results of their self-similar solution for
mass transfer of a rotating disk by the following equation:

[
Sh

(
Re2

a + Re2
ω

)1/4

]m

=
[

β1/4 Sha

Re1/2
a

]m

+
[

(1 + β)1/4 Shω

Re1/2
ω

]m

, (5.49)

valid for Cw=const over a range of the Schmidt numbers Sc=0. . .∞. Sherwood
numbers for a free rotating disk Shω are calculated by Eqs. (3.4) (for nR=1/2) and
(3.7), and substituting in doing so the values of Nu with Sh, and Pr numbers with the
Schmidt numbers Sc, respectively. Sherwood numbers Sha for uniform axisymmet-
ric flow impingement onto a stationary disk are calculated by the following formula
[26]:

Sha/Re1/2
a = K1 = 0.65693Sc1/2/(0.3098 + 1.015Sc1/2 + Sc)1/6, (5.50)

where the local radius r is the characteristic length. Power exponent m in Eq. (5.49)
is specified by empirical values m=2.65 for Sc=0.1–1.0 or m=3.85 for Sc=1–
10,000. Authors [26] asserted that inaccuracies in calculation of the Sherwood num-
ber by Eq. (5.49) comparing to the exact solution do not exceed 7.55% for Sc=0.1–
1.0 and 3.85% for Sc=1–10,000. An analysis shows however that inaccuracies of
Eq. (5.49) with respect to the exact solution reach 12% for Sc=1, primarily, because
of the inaccuracy of Eq. (5.50) and, probably, in the choice of the numerical values
of exponents m.

Experimental data [154–156] for local heat transfer of impinging jets reveal that
both rotation and flow impingement result in heat transfer augmentation (Fig. 5.9).
A detailed analysis of data [154–156] in comparison with computations performed
by the author of the present work is given below.

Experiments [11, 147] for heat transfer of impinging jets were summarized in a
form of average Nusselt numbers for the entire disk and do not include data for
local heat transfer at the stagnation point to be modelled below. Data [24, 59]
also represent results for mass transfer in naphthalene sublimation in air for an
entire disk.

For turbulent flow and boundary conditions (2.32) at β=0 and N=const, the
author of the work [212] using model (2.42), (2.43), (2.44), (2.45) and (2.46) and
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Eq. (2.48) for tanϕ obtained a solution of Eqs. (2.22) and (2.23) for n=1/7. This
solution was generalized in the work [138] for arbitrary values of n

α2 + RαN = S + TN2, γ = K
n+1
3n+1

[
(3n + 1)(1 + α2)0.5(1−n)/(1+n)

(5 + 11n)(Gα + HN)

](n+1)/(3n+1)

,

(5.51)

CM = γ (Gα + HN) Re−2n/(3n+1)
ϕ . (5.52)

Functions R, S, T, G, H and K are tabulated in [138]. Numerical data for selected
parameters of this solution computed in [138] and listed in Table 5.13 are anal-
ysed below in comparison with results obtained using the present integral method
(described in Sect. 2.4).

Table 5.13 Constants in Eqs. (2.82), (2.83), (2.84), (2.85) and (2.86) for N=const, β=0

Solution (2.88), (2.89), (2.90) and (2.91)
[163], n=1/7

Solution (5.51), (5.52) [138, 212],
n=1/7

N α γ εm εM α γ εm εM

0 0.2087 0.5299 0.1806 0.1466 0.162 0.526 0.219 0.146
0.2 0.2818 0.2892 0.3566 0.1727 0.2587 0.2918 0.3648 0.172
0.4 0.4509 0.191 0.4509 0.191 0.496 0.1916 0.4389 0.198
0.6 0.6408 0.1484 0.4994 0.2255 0.6288 0.1486 0.5010 0.224
0.8 0.8373 0.1258 0.5611 0.252 0.8263 0.1259 0.5621 0.25
1 1.037 0.1122 0.6236 0.2794 1.026 0.1122 0.6242 0.278
2 2.046 0.0853 0.9446 0.422 2.033 0.0853 0.9448 0.42
3 3.062 0.076 1.262 0.563 3.044 0.076 1.262 0.56
4 4.073 0.0708 1.567 0.699 4.056 0.0708 1.568 0.696
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5.2.2 Turbulent Flow

In uniform flow impinging onto a perpendicular surface, as well as in the stagnation
region of an impinging jet, the radial velocity component at the outer edge of the
boundary layer increases linearly according to Eq. (2.32), which means N=const.
As mentioned above, flow in such cases is laminar or close to this. However, flow
for N=const can also be turbulent, e.g. in converging channels. Such cases were
studied in works [41, 138, 212]. An investigation of turbulent flow under condition
N=const is also actual here in view of the ideology of the present integral method
that assumes extending a solution obtained for turbulent flow onto the case of lami-
nar regime.

Table 5.13 presents numerical values of constants α, γ , εm and εM computed by
Eqs. (2.88), (2.89), (2.90) and (2.91) based on the present integral method for n=1/7,
as well as analogous data obtained in [138, 212] using the model (2.42), (2.43),
(2.44), (2.45), (2.46) and (2.48) resulting in solutions (5.51) and (5.52). To remind,
these constants are substituted into Eqs. (2.82), (2.83), (2.84), (2.85) and (2.86) for
respective fluid flow parameters. Differences between both solutions disappear very
fast with an increasing N; it is worth noting also that the respective values α and εm

for both methods practically coincide already for N>0.5.
The solution (2.93) of the thermal boundary layer equation for β=0 can be

rewritten as follows:

δ
∗∗
T

αA1
= −

[
(−1 + χPrnp(1 − KV0)) + κ

α

(
−A2

A1
+ χPrnp D4

A1

)]
−

κ
α

1
A1

(
(χPrnp )−1/n−χPrnp

n+1 − (χPrnp)−1/n + 1
)

.

(5.53)

Based on this, a transcendental equation for χ takes the following form:

−1 + χPrnp (1 − KV0) + κ
α

(
−A2

A1
+ χPrnp D4

A1

)
−

κ
α

1
A1

(−n(χPrnp )−1/n−χPrnp

n+1 + 1
)

= χ 4+m
2+m+n∗ KV0

[
1 + κ

α

(
B5
D1

− 1
)]

.
(5.54)

Here KV0 = 1 − D2/A1, B5 = C2/2 = D1 + D3, whereas values χ and  are
interrelated by Eq. (5.8) for β=0.

Since algebraic equation (5.54) is transcendental, it seems actual to find its
approximate analytical solutions. Assuming χPrnp ≈ 1 and (χPrnp)−1/n 
= 1 for
Pr=0.5. . .1, one can obtain

χ = Pr−np

[
1 − n + 1

n

(α

κ
D1 + D3

) (
1 − Pr−np

4 + m

2 + m + n∗

)]−n

. (5.55)

Another approximate solution of Eq. (5.54) can be obtained for small values of
Pr. In this case, assuming χPrnp → 0 and (χPrnp)−1/n → ∞, one can obtain
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χ = Pr−np

[
n + 1

n
Pr−np

(α

κ
D1 + D3

) 4 + m

2 + m + n∗

] −n
n+1

. (5.56)

Computed values of the constants K1 and χ for Pr=0.71 (air) are presented in
Tables 5.14 and 5.15 depending on the parameters κ and n∗.

These results allow making the following important conclusions.
First, coefficient K1 increases steadily with an increasing parameter κ , though

the values of K1 increase much slower than κ . Such a behaviour of the coeffi-
cient K1 is caused by the increase in the coefficient Ac(1 + α2)1/2 according to
Eq. (5.8).

Second, the order of magnitude of the Reynolds analogy parameter χ remains the
same regardless of variation of κ over the range κ=0–∞. The most noticeable vari-
ation of the parameter χ (33.5%) is observed for n∗=–1.5, while the least noticeable
(1.5%) for n∗=4.

Third, results of computations are presented in Tables 5.14 and 5.15 only for
κ=0–5. The reason for this is that the values of χ remain unchanged within
the limits of four meaningful digits already for κ>5. Moreover, it is evident
that with inaccuracy of 2% sufficient for practical computations the parameter
χ becomes asymptotically constant already for κ=0.2. This means that the tur-
bulent thermal boundary layer (strictly saying, in frames of the model used)
becomes very rapidly adapted to the negative pressure gradient superimposed
onto it.

Table 5.14 Values of the constant K1 according to a numerical solution of Eq. (5.54) and its
approximate solutions (5.55) and (5.56) for turbulent flow and Pr=0.71

κ=a/ω κ/α n∗=–1.5 n∗=–1 n∗=–0.6 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

0.0 (5.54) 0.0125 0.0152 0.0167 0.0185 0.0205 0.0218 0.0227 0.0234
0.1 (5.54) 0.4491 0.0197 0.0207 0.0213 0.0221 0.0231 0.0239 0.0246 0.0251
0.1 (5.55) 0.0189 0.0200 0.0207 0.0216 0.0227 0.0237 0.0246 0.0254
0.1 (5.56) 0.0194 0.0203 0.0209 0.0216 0.0225 0.0232 0.0238 0.0243
0.2 (5.54) 0.7098 0.0219 0.0229 0.0236 0.0243 0.0253 0.0261 0.0267 0.0273
0.2 (5.55) 0.0213 0.0225 0.0232 0.0241 0.0252 0.0260 0.0267 0.0273
0.2 (5.56) 0.0220 0.0230 0.0237 0.0244 0.0255 0.0262 0.0269 0.0275
0.3 (5.54) 0.8295 0.0238 0.0249 0.0256 0.0264 0.0274 0.0282 0.0288 0.0294
0.3 (5.55) 0.0232 0.0245 0.0252 0.0261 0.0273 0.0281 0.0288 0.0294
0.3 (5.56) 0.0240 0.0251 0.0258 0.0267 0.0278 0.0287 0.0294 0.0300
0.5 (5.54) 0.9183 0.0273 0.0285 0.0292 0.0301 0.0313 0.0322 0.0329 0.0335
0.5 (5.55) 0.0267 0.0281 0.0289 0.0299 0.0312 0.0321 0.0329 0.0335
0.5 (5.56) 0.0275 0.0289 0.0297 0.0307 0.0313 0.0329 0.0337 0.0344
1.0 (5.54) 0.9649 0.0359 0.0375 0.0385 0.0397 0.0412 0.0423 0.0433 0.0441
1.0 (5.55) 0.0352 0.0370 0.0381 0.0394 0.0411 0.0423 0.0433 0.0441
1.0 (5.56) 0.0363 0.0381 0.0392 0.0405 0.0422 0.0435 0.0445 0.0455
5.0 (5.54) 0.9813 0.1068 0.1116 0.1145 0.1180 0.1224 0.1258 0.1286 0.1310
5.0 (5.55) 0.1048 0.1102 0.1134 0.1173 0.1221 0.1257 0.1286 0.1309
5.0 (5.56) 0.1082 0.1134 0.1166 0.1204 0.1255 0.1294 0.1326 0.1353
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Table 5.15 Values of the Reynolds analogy parameter χ according to a numerical solution of
Eq. (5.54) and its approximate solutions (5.55) and (5.56) for turbulent flow and Pr=0.71

κ=a/ω κ/α n∗=–1.5 n∗=–1 n∗=–0.6 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

0.0 (5.54) 0 0.6580 0.7971 0.8788 0.9707 1.0747 1.144 1.193 1.231
0.1 (5.54) 0.4491 0.954 1.004 1.035 1.072 1.122 1.160 1.192 1.218
0.1 (5.55) 0.916 0.970 1.004 1.046 1.104 1.151 1.193 1.231
0.1 (5.56) 0.941 0.986 1.014 1.048 1.091 1.125 1.153 1.177
0.2 (5.54) 0.7098 0.976 1.022 1.051 1.085 1.129 1.163 1.191 1.215
0.2 (5.55) 0.950 1.002 1.033 1.072 1.122 1.160 1.192 1.218
0.2 (5.56) 0.978 1.025 1.054 1.089 1.134 1.170 1.197 1.224
0.3 (5.54) 0.8295 0.983 1.028 1.055 1.089 1.131 1.164 1.191 1.214
0.3 (5.55) 0.960 1.028 1.042 1.079 1.126 1.162 1.191 1.215
0.3 (5.56) 0.990 1.037 1.067 1.102 1.148 1.184 1.213 1.238
0.5 (5.54) 0.9183 0.987 1.031 1.058 1.091 1.133 1.165 1.191 1.213
0.5 (5.55) 0.966 1.017 1.047 1.084 1.129 1.164 1.191 1.213
0.5 (5.56) 0.997 1.045 1.074 1.110 1.156 1.192 1.222 1.247
1.0 (5.54) 0.9649 0.989 1.033 1.060 1.092 1.133 1.165 1.191 1.213
1.0 (5.55) 0.969 1.019 1.050 1.086 1.131 1.164 1.191 1.213
1.0 (5.56) 1.001 1.048 1.078 1.114 1.160 1.196 1.226 1.252
5.0 (5.54) 0.9813 0.989 1.033 1.060 1.093 1.133 1.165 1.191 1.213
5.0 (5.55) 0.970 1.020 1.050 1.086 1.131 1.164 1.191 1.212
5.0 (5.56) 1.002 1.050 1.079 1.115 1.162 1.198 1.228 1.253

Fourth, both approximate solutions (5.55) and (5.56) agree rather well with the
exact numerical solution (5.54) for χ . Inaccuracies of both approximate solutions
do not exceed 2%, with Eq. (5.55) being more accurate for positive values of n∗ and
Eq. (5.56) showing better performance for negative values of n∗.

5.2.3 Laminar Flow

Exact solution. It is possible to obtain an exact self-similar solution of the Navier–
Stokes and energy equations in cylindrical polar coordinates in the case of co-axial
orthogonal uniform flow impingement onto a rotating disk (Fig. 5.8) for the bound-
ary conditions (2.32), (2.33), (2.34), (2.35) and (2.36) using self-similar functions
and variables (2.31). Such solution was obtained by the authors in [180, 181, 183,
184]. As a result, the problem statement can be reduced to Eqs. (2.37), (2.38), (2.39),
(2.40) and (2.41) (where β=0).

Rearranged boundary conditions can be expressed as

ζ = 0; F = H = 0, G = 1/(1 + κ), θ = 1,
ζ → ∞: G = 0, F = κ/(1 + κ), H → const, θ = 0,

(5.57)

where κ = N = a/ω. Equation for the Nusselt number takes the following form:

Nud = K1 · (Reωd + Rea)
1/2 , K1 = −θ ′

ζ=0, (5.58)
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which is a generalization of Eqs. (3.4) and (5.48).
Setting ω→0 (or a/ω→∞), ϕ=–H/2 and making some transformations, one can

reduce system (2.37), (2.38), (2.39), (2.40) and (2.41) to equations for axisymmetric
impinging flow over a stationary orthogonal surface solved in works [22, 158] and
others. For a→0 and finite value of ω, Eqs. (2.37), (2.38), (2.39), (2.40) and (2.41)
are reduced to the case of a free rotating disk discussed in Chap. 3.

Numerical solution of (2.37), (2.38), (2.39), (2.40) and (2.41) was performed
using the MathCAD software. Dimensionless profiles of the velocity components
F, G, H and temperature θ are depicted in Figs. 5.10, 5.11, 5.12 and 5.13.

Dimensionless temperature profiles are qualitatively similar to each other
(Fig. 5.13), while the radial velocity profiles vary with an increasing κ from a form
typical for wall-jets characteristic in flow over a rotating disk to boundary-layer
profiles already for κ>0.5 (Fig. 5.10).
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Fig. 5.10 Radial velocity
profiles for laminar co-axial
uniform orthogonal flow
impingement onto a rotating
disk [183]. 1 – κ=0; 2 –
κ=0.1; 3 – κ=2; 4 – κ=4000
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Fig. 5.11 Tangential velocity
profiles for laminar co-axial
uniform orthogonal flow
impingement onto a rotating
disk. 1 – κ=0; 2 – κ=0.1; 3 –
κ=2; 4 – κ=4
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Fig. 5.12 Axial velocity
profiles for laminar co-axial
uniform orthogonal flow
impingement onto a rotating
disk. 1 – κ=0; 2 – κ=0.1; 3 –
κ=2; 4 – κ=4000
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Fig. 5.13 Dimensionless
temperature profiles for
laminar co-axial uniform
orthogonal flow impingement
onto a rotating disk, Pr=0.71
(air) and n∗=1 [183]. 1 –
κ=0; 2 – κ=0.1; 3 – κ=2;
4 – κ=4000

This qualitative reshaping of the radial velocity profiles causes drastic changes
in the heat transfer regime over a rotating disk subjected to flow impingement
described below. Profiles of the axial and tangential velocity components do not
change their qualitative behaviour (Figs. 5.11 and 5.12). It is noteworthy that, with
an increase in κ , noticeable decrease in the boundary thickness and simultaneous
increase in the tangential shear stresses on the disk occur. Values of derivatives of
the radial and tangential velocity components (with respect to the coordinate ζ ) and
relative values of the tangential shear stresses on the disk are presented in Table 5.16
(subscript “0” stands for a free disk).

Computed values of the proportionality coefficient K1 in Eq. (5.58) for the Nus-
selt number are given in Tables 5.17 and 5.18 for various values of the parame-
ters κ=a/ω and n∗ and two values of the Prandtl numbers Pr =0.71 and 1.0. As
κ→∞, the value of K1 for n∗=0 (or Tw=const) agrees with Eq. (5.48), whereas
for κ=a/ω=0 the data of Tables 5.17 and 5.18 coincide with the results for a free
rotating disk (Chap. 3).
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Table 5.16 Values of constants of the exact self-similar solution of the Navier–Stokes equations
for uniform flow impingement onto a rotating disk [183]

κ=a/ω α=–F′
w/G′

w τwϕ /τwϕ0 F′
w –G′

w

0.0 0.8284 1.0 0.5102 0.6159
0.1 0.8127 1.0438 0.4529 0.5573
0.2 0.8172 1.1124 0.4259 0.5212
0.4 0.8939 1.2834 0.4266 0.4772
0.6 1.0365 1.4642 0.4619 0.4456
0.8 1.2167 1.6383 0.5084 0.4179
1.0 1.4180 1.8022 0.5565 0.3924
1.5 1.9664 2.1692 0.6646 0.3380
2.0 2.5440 2.4888 0.7505 0.2950
3.0 3.7312 3.0338 0.8715 0.2336
4.0 4.9349 3.4972 0.9508 0.1927
5.0 6.1454 3.9070 1.0062 0.1637
6.0 7.3593 4.2781 1.0470 0.1423
8.0 9.7922 4.9378 1.1030 0.1126
10.0 12.229 5.5195 1.1395 0.0932
50 61.043 12.338 1.2736 0.0209
100 122.08 17.448 1.2925 0.0106
4�103 4883.1 110.35 1.3114 0.00027

Table 5.17 Values of K1 according to the exact self-similar solution for Pr=0.71 [183]

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 N∗=4

0.0 0.0 0.1035 0.1893 0.2624 0.3259 0.3818 0.4319 0.5185 0.5918 0.6555
0.1 0.0 0.1174 0.2078 0.2811 0.3429 0.3964 0.4436 0.5246 0.5927 0.6519
0.2 0.0 0.1306 0.2258 0.3007 0.3626 0.4154 0.4617 0.5405 0.6065 0.6637
0.3 0.0 0.1424 0.2425 0.3197 0.3826 0.4360 0.4825 0.5612 0.6269 0.6836
0.4 0.0 0.1524 0.2573 0.3371 0.4018 0.4562 0.5035 0.5833 0.6496 0.7068
0.5 0.0 0.1612 0.2705 0.3530 0.4194 0.4752 0.5236 0.6049 0.6723 0.7305
0.6 0.0 0.1687 0.2821 0.3671 0.4354 0.4926 0.5421 0.6252 0.6940 0.7532
0.7 0.0 0.1752 0.2922 0.3797 0.4498 0.5084 0.5590 0.6439 0.7141 0.7745
0.8 0.0 0.1809 0.3013 0.3910 0.4627 0.5226 0.5743 0.6609 0.7325 0.7941
0.9 0.0 0.186 0.3093 0.4011 0.4743 0.5354 0.5882 0.6764 0.7493 0.8120
1.0 0.0 0.1905 0.3165 0.4101 0.4847 0.547 0.6007 0.6905 0.7646 0.8283
1.5 0.0 0.2071 0.3432 0.444 0.5241 0.5908 0.6483 0.7442 0.8234 0.8914
2.0 0.0 0.2177 0.3604 0.4659 0.5498 0.6196 0.6796 0.7798 0.8625 0.9334
3.0 0.0 0.2304 0.3812 0.4926 0.5811 0.6546 0.7179 0.8235 0.9106 0.9853
4.0 0.0 0.2378 0.3934 0.5082 0.5994 0.6752 0.7404 0.8492 0.9389 1.0158
5.0 0.0 0.2426 0.4013 0.5184 0.6114 0.6887 0.7551 0.8661 0.9575 1.0359
6.0 0.0 0.2461 0.4069 0.5256 0.6198 0.6982 0.7656 0.878 0.9707 1.0502
8.0 0.0 0.2505 0.4143 0.5351 0.631 0.7108 0.7793 0.8938 0.9881 1.069
10 0.0 0.2533 0.4189 0.5411 0.6381 0.7187 0.788 0.9037 0.9991 1.0808
50 0.0 0.2630 0.4349 0.5618 0.6624 0.7462 0.8181 0.9382 1.0372 1.122
1000 0.0 0.2654 0.4390 0.5671 0.6687 0.7532 0.8258 0.9471 1.0469 1.1331
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Table 5.18 Values of K1 according to the exact self-similar solution for Pr=1 [183]

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.1305 0.2352 0.3221 0.3963 0.4608 0.5180 0.6159 0.6982 0.7693
0.1 0.0 0.1414 0.2483 0.3339 0.4055 0.4669 0.5209 0.6130 0.6901 0.7568
0.2 0.0 0.1542 0.2652 0.3517 0.4227 0.4832 0.5360 0.6254 0.7001 0.7647
0.3 0.0 0.1663 0.2821 0.5744 0.4426 0.5034 0.5562 0.6453 0.7195 0.7836
0.4 0.0 0.1771 0.2978 0.3891 0.4626 0.5244 0.5779 0.6681 0.7428 0.8073
0.5 0.0 0.1867 0.3121 0.4061 0.4815 0.5447 0.5993 0.6910 0.7670 0.8324
0.6 0.0 0.1950 0.3248 0.4216 0.4989 0.5636 0.6194 0.7129 0.7903 0.8569
0.7 0.0 0.2023 0.3361 0.4355 0.5147 0.5809 0.6379 0.7334 0.8123 0.8801
0.8 0.0 0.2088 0.3462 0.4480 0.5290 0.5966 0.6548 0.7521 0.8325 0.9016
0.9 0.0 0.2145 0.3552 0.4592 0.5419 0.6108 0.6701 0.7693 0.8511 0.9214
1.0 0.0 0.2196 0.3633 0.4693 0.5536 0.6237 0.6840 0.7849 0.8681 0.9395
1.5 0.0 0.2385 0.3935 0.5075 0.5977 0.6728 0.7373 0.8450 0.9337 1.0099
2.0 0.0 0.2506 0.4130 0.5323 0.6268 0.7052 0.7726 0.8850 0.9776 1.0571
3.0 0.0 0.2652 0.4368 0.5626 0.6622 0.7449 0.8159 0.9343 1.0318 1.1154
4.0 0.0 0.2737 0.4506 0.5804 0.6830 0.7682 0.8413 0.9633 1.0637 1.1499
5.0 0.0 0.2792 0.4597 0.5920 0.6966 0.7835 0.8580 0.9824 1.0848 1.1726
6.0 0.0 0.2831 0.4661 0.6002 0.7063 0.7943 0.8699 0.9959 1.0997 1.1887
8.0 0.0 0.2883 0.4745 0.6110 0.7190 0.8086 0.8855 1.0138 1.1194 1.2099
10 0.0 0.2915 0.4798 0.6178 0.7270 0.8176 0.8953 1.0250 1.1318 1.2233
50 0.0 0.3026 0.4981 0.6414 0.7547 0.8488 0.9295 1.0641 1.1749 1.2699
1000 0.0 0.3055 0.5028 0.6475 0.7619 0.8568 0.9383 1.0741 1.1860 1.2819
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Fig. 5.14 Effect of the
parameter κ=a/ω on heat
transfer rate at orthogonal
uniform air flow impingement
onto an isothermal rotating
disk (Pr=0.71, Tw=const).
1 – self-similar solution,
Table 5.17. Experiments
[116]: 2 – b=75.3 mm;
3 – b=25 mm

The self-similar solution for an isothermal disk (Tw=const) rotating in air was
validated in the work [116] via comparisons with original experimental data over
a wide range of variation of the parameter a/ω=0. . .∞. As can be seen from
Figs. 5.14 and 5.15, the self-similar solution agrees fairly well with the experimen-
tal data taken within the area of a disk r/b≤0.8 in view of the necessity to fulfil
the requirements of the boundary conditions, Eqs. (2.32) and (5.43), for the radial
velocity vr,∞ (see comments to Eqs. (5.44), (5.45) and (5.46)).

The constant K1 increases significantly with κ . The expression for the Nusselt
number (5.58) can be transformed as follows:
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Table 5.17. Experiments
[116]: 2 – b=75.3 mm;
3 – b=25 mm

Nud = K1 · (1 + ω/a)1/2 Re1/2
a . (5.59)

The value of the product K1∗ = K1 · (1 + ω/a)1/2 is given in Tables 5.19 and
5.20. It is obvious that the parameter K1∗ is conservative and almost constant for
κ=1.5–∞, all values of the Prandtl number and the parameter n∗. This indicates
that, when κ=a/ω is larger than a certain threshold value, heat transfer of a rotat-
ing disk subjected to flow impingement is determined only by the impinging-flow
parameters and is independent of the rotation velocity.

The data in Tables 5.19 and 5.20 may be interpreted in such a way that, in the
case of the flow impingement on a disk, surface rotation leads to increase in heat
transfer for Rea = idem only for values of κ less than the aforementioned threshold
values.

Tables 5.21 and 5.22 represent data for the Reynolds analogy parameter χ

(defined by Eq. (5.8)) for Pr=1 and 0.71 (and β=0). It is obvious that the values of
χ vary depending on κ much weaker than the coefficient K1. Like in turbulent flow,
in case where Pr=0.71 the most noticeable (32%) variation of χ is observed for
n∗=–1.5, whilst the weakest (0.9%) takes place for n∗=4. Apparently, in laminar
flow relative variation of χ depending on κ is somewhat weaker than in turbulent
flow, however, this variation takes place over much larger range of the parameter κ .
Tables 5.21 and 5.22 contain data of calculations for κ=0–50, however, it is evident
that χ is practically constant already for κ=1.5–∞ for any values of n∗ (and for any
Prandtl number).

Expression (5.59) is useful from a practical point of view in order to compare
computations with experimental data. It is convenient that the values of K1∗ become
equal to K1 for κ→∞. However, the constant K1∗ becomes infinite for κ=0, which
makes parameter K1∗ less valuable than χ in view of the necessity to further develop
the present integral method for laminar flow.

Comparisons with experiments for a case of co-axial orthogonal single jet
impingement onto a rotating disk. As mentioned in the literature [22, 41, 93, 158],
flow in a stagnation region of the jet depicted schematically in Fig. 5.16 is analo-
gous to the case of uniform flow impingement onto a disk studied above. Authors
[15] found that the regime where the impinging jet dominates over fluid flow on a
rotating disk emerges under condition
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Table 5.19 Values of K1∗ = K1 · (1 + ω/a)1/2 according to the exact self-similar solution for
Pr=1 [181, 183]

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0.1 0.0 0.4689 0.8234 1.1076 1.3447 1.5486 1.7278 2.0330 2.2887 2.5100
0.2 0.0 0.3777 0.6495 0.8615 1.0355 1.1835 1.3128 1.532 1.7149 1.8731
0.3 0.0 0.3462 0.5872 0.7716 0.9213 1.0478 1.1578 1.3434 1.4978 1.6311
0.4 0.0 0.3314 0.5572 0.7278 0.8654 0.9810 1.0812 1.2498 1.3897 1.5103
0.5 0.0 0.3233 0.5405 0.7034 0.8340 0.9434 1.0380 1.1968 1.3284 1.4417
0.6 0.0 0.3184 0.5304 0.6884 0.8147 0.9203 1.0114 1.1642 1.2906 1.3993
0.7 0.0 0.3153 0.5238 0.6787 0.8021 0.9052 0.9941 1.1429 1.2658 1.3715
0.8 0.0 0.3132 0.5193 0.6720 0.7935 0.8949 0.9821 1.1282 1.2488 1.3524
0.9 0.0 0.3117 0.5161 0.6672 0.7874 0.8875 0.9736 1.1177 1.2366 1.3388
1.0 0.0 0.3106 0.5137 0.6637 0.7829 0.8820 0.9674 1.1100 1.2277 1.3287
1.5 0.0 0.3079 0.5080 0.6551 0.7717 0.8686 0.9519 1.0909 1.2055 1.3038
2.0 0.0 0.3069 0.5059 0.6520 0.7676 0.8637 0.9462 1.0839 1.1973 1.2946
3.0 0.0 0.3062 0.5043 0.6497 0.7646 0.8601 0.9421 1.0788 1.1914 1.2880
4.0 0.0 0.3060 0.5038 0.6489 0.7636 0.8588 0.9406 1.0770 1.1893 1.2856
5.0 0.0 0.3059 0.5035 0.6485 0.7631 0.8583 0.9399 1.0762 1.1883 1.2845
6.0 0.0 0.3058 0.5034 0.6483 0.7628 0.8579 0.9396 1.0757 1.1878 1.2839
8.0 0.0 0.3057 0.5033 0.6481 0.7626 0.8576 0.9392 1.0753 1.1873 1.2833
10 0.0 0.3057 0.5032 0.6480 0.7624 0.8575 0.9390 1.0750 1.1870 1.2830
50 0.0 0.3057 0.5031 0.6478 0.7622 0.8572 0.9387 1.0747 1.1866 1.2825
100. 0.0 0.3057 0.5031 0.6478 0.7622 0.8572 0.9387 1.0747 1.1866 1.2825

Rej/Rerj = Vjdj/ωr2
i > 0.125, (5.60)

a/ω > 0.125A(ri/dj)
2, (5.61)

where Reri = ωr2
i /ν is the rotational Reynolds number based on an impingement

radius ri.
Strictly saying, this parameter becomes senseless for ri=0. However, substituting

b instead of ri (because authors [15] dealt with jets impinging much closer to the
rim of the disk than to the axis of rotation), one can rewrite Eq. (5.60) as

a/ω > 0.03125A(d/dj)
2. (5.62)

According to Eq. (5.47), the value of A varies in experiments [155, 156] over
the range of A=1.0–1.29. Hence, applicably to experiments [155, 156] (where
dj/d=0.09), the regime of impinging jet domination over heat transfer emerges, in
accordance with Eq. (5.62), for a/ω>3.86–5. Allowing for the fact that Eq. (5.60)
was obtained for jets located far enough from the axis of rotation, its agreement with
our estimate at the beginning of the impingement domination regime (a/ω>1.5) is
quite fair. However, it is worth noting that our results are more accurate for the
co-axial impingement case.

For co-axial impingement of jets, whose diameter is significantly less than the
disk diameter, the above-obtained self-similar solution is valid only inside the
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Table 5.20 Values of K1∗ = K1 · (1 + ω/a)1/2 according to the exact self-similar solution for
Pr=0.71 [180, 181, 183]

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0.1 0.0 0.3896 0.6891 0.9323 1.1373 1.3147 1.4714 1.7398 1.9657 2.1620
0.2 0.0 0.3199 0.5531 0.7366 0.8881 1.0176 1.1310 1.3240 1.4856 1.6257
0.3 0.0 0.2965 0.5048 0.6654 0.7965 0.9076 1.0044 1.1683 1.3049 1.4231
0.4 0.0 0.2850 0.4813 0.6307 0.7516 0.8535 0.9420 1.0912 1.2153 1.3223
0.5 0.0 0.2793 0.4685 0.6114 0.7265 0.8231 0.9069 1.0477 1.1645 1.2652
0.6 0.0 0.2755 0.4606 0.5995 0.7110 0.8045 0.8853 1.0209 1.1333 1.2300
0.7 0.0 0.2730 0.4554 0.5918 0.7010 0.7923 0.8712 1.0034 1.1128 1.2069
0.8 0.0 0.2713 0.4519 0.5865 0.6941 0.7839 0.8615 0.9914 1.0988 1.1911
0.9 0.0 0.2702 0.4494 0.5827 0.6891 0.7780 0.8546 0.9828 1.0887 1.1798
1.0 0.0 0.2694 0.4476 0.5800 0.6855 0.7736 0.8495 0.9765 1.0813 1.1714
1.5 0.0 0.2674 0.4431 0.5732 0.6766 0.7628 0.8369 0.9608 1.063 1.1508
2.0 0.0 0.2666 0.4414 0.5707 0.6733 0.7588 0.8323 0.9551 1.0563 1.1432
3.0 0.0 0.2661 0.4402 0.5689 0.6709 0.7559 0.829 0.9509 1.0514 1.1377
4.0 0.0 0.2659 0.4398 0.5682 0.6701 0.7549 0.8278 0.9495 1.0497 1.1357
5.0 0.0 0.2658 0.4396 0.5679 0.6697 0.7544 0.8272 0.9488 1.0489 1.1348
6.0 0.0 0.2658 0.4395 0.5677 0.6695 0.7542 0.8269 0.9484 1.0485 1.1343
8.0 0.0 0.2657 0.4394 0.5676 0.6693 0.7539 0.8266 0.948 1.048 1.1338
10 0.0 0.2657 0.4393 0.5675 0.6692 0.7538 0.8265 0.9478 1.0478 1.1336
50 0.0 0.2656 0.4393 0.5674 0.669 0.7536 0.8262 0.9475 1.0475 1.1332
100. 0.0 0.2656 0.4392 0.5674 0.669 0.7536 0.8262 0.9475 1.0475 1.1332

Fig. 5.16 Geometric arrangement, fluid flow and heat transfer of a single impinging round jet
perpendicular to and co-axial with a rotating disk [181]
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Table 5.21 Values of χ according to the exact self-similar solution and the present integral method
for Pr=1 (bold font)

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.2119 0.3818 0.5230 0.6433 0.7482 0.8410 1.0000 1.1335 1.2490
0.0 0.0 0.2047 0.3752 0.5195 0.6431 0.7502 0.8439 1.0000 1.1249 1.2270
0.1 0.0 0.2306 0.4050 0.5448 0.6614 0.7617 0.8499 1.0000 1.1257 1.2346
0.1 0.0 0.2310 0.4026 0.5446 0.6643 0.7665 0.8549 1.0000 1.1142 1.2063
0.2 0.0 0.2465 0.4240 0.5623 0.6759 0.7726 0.8570 1.0000 1.1194 1.2227
0.2 0.0 0.2478 0.4206 0.5613 0.6783 0.7773 0.8621 1.0000 1.1073 1.1931
0.4 0.0 0.2651 0.4458 0.5824 0.6924 0.7850 0.8651 1.0000 1.1120 1.2085
0.4 0.0 0.2657 0.4402 0.5794 0.6935 0.7889 0.8699 1.0000 1.1000 1.1792
0.5 0.0 0.2701 0.4516 0.5877 0.6968 0.7882 0.8673 1.0000 1.1099 1.2046
0.5 0.0 0.2704 0.4454 0.5842 0.6975 0.7920 0.8719 1.0000 1.0981 1.1756
0.6 0.0 0.2735 0.4556 0.5913 0.6998 0.7905 0.8688 1.0000 1.1086 1.2020
0.6 0.0 0.2737 0.4490 0.5875 0.7003 0.7941 0.8733 1.0000 1.0968 1.1731
0.8 0.0 0.2776 0.4603 0.5956 0.7034 0.7932 0.8706 1.0000 1.1069 1.1988
0.8 0.0 0.2777 0.4534 0.5915 0.7036 0.7966 0.8750 1.0000 1.0952 1.1702
1.0 0.0 0.2798 0.4628 0.5980 0.7053 0.7946 0.8715 1.0000 1.1060 1.1970
1.0 0.0 0.2798 0.4557 0.5937 0.7055 0.7980 0.8759 1.0000 1.0944 1.1686
1.5 0.0 0.2823 0.4656 0.6005 0.7074 0.7962 0.8726 1.0000 1.1050 1.1951
1.5 0.0 0.2822 0.4584 0.5961 0.7075 0.7995 0.8770 1.0000 1.0934 1.1668
5.0 0.0 0.2842 0.4679 0.6026 0.7091 0.7975 0.8734 1.0000 1.1042 1.1936
5.0 0.0 0.2842 0.4605 0.5981 0.7091 0.8008 0.8778 1.0000 1.0927 1.1654
10.0 0.0 0.2844 0.4681 0.6028 0.7092 0.7976 0.8735 1.0000 1.1042 1.1935
10.0 0.0 0.2843 0.4607 0.5983 0.7093 0.8009 0.8778 1.0000 1.0926 1.1653
50.0 0.0 0.2844 0.4681 0.6028 0.7093 0.7976 0.8735 1.0000 1.1041 1.1934
50.0 0.0 0.2844 0.4608 0.5983 0.7093 0.8009 0.8779 1.0000 1.0926 1.1653

stagnation region for r≤dj/2. For the conditions of co-axial jet impingement onto a
rotating disk, Eq. (5.59) should be rewritten so that

Nudj = K1∗ · Re1/2
j · A1/2. (5.63)

Here dj instead of d is used as a characteristic length in both the Nusselt number
and the Reynolds number.

Experimental data [155, 156] are presented in a form of the Nusselt numbers
Nub=Nudj�(b/dj). Therefore, to simplify comparisons with experiments [155, 156],
Eq. (5.63) should be rearranged in the final form

Nub = K1∗ · Re1/2
j · A1/2 · (b/dj). (5.64)

It should also be pointed out that the disk surface in experiments [155, 156] in
the stagnation region was practically isothermal at n∗=0.

Authors [155, 156] kept the ratio dj/d = 0.09 constant, while intensity of rotation
was characterized by the Reϕ number. Using the definition of parameter A, one can
obtain
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Table 5.22 Values of χ according to the exact self-similar solution and the present integral method
for Pr=0.71 [184] (bold font)

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=0.5 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.2366 0.4330 0.6001 0.7452 0.8732 0.9876 1.1856 1.3533 1.4990
0.0 0.0 0.2308 0.4276 0.5973 0.7453 0.8753 0.9906 1.1857 1.3446 1.4766
0.1 0.0 0.2699 0.4774 0.6459 0.7879 0.9108 1.0193 1.2053 1.3618 1.4978
0.1 0.0 0.2698 0.4727 0.6430 0.7883 0.9137 1.0231 1.2048 1.3495 1.4674
0.2 0.0 0.2941 0.5085 0.6772 0.8165 0.9355 1.0398 1.2172 1.3658 1.4946
0.2 0.0 0.2944 0.5020 0.6728 0.8162 0.9385 1.0440 1.2168 1.3525 1.4618
0.4 0.0 0.3212 0.5424 0.7108 0.8470 0.9619 1.0616 1.2297 1.3695 1.4902
0.4 0.0 0.3207 0.5337 0.7049 0.8461 0.9648 1.0660 1.2293 1.3556 1.4560
0.5 0.0 0.3286 0.5513 0.7195 0.8549 0.9687 1.0672 1.2329 1.3704 1.4889
0.5 0.0 0.3276 0.5421 0.7133 0.8540 0.9717 1.0717 1.2326 1.3563 1.4546
0.6 0.0 0.3334 0.5572 0.7253 0.8602 0.9733 1.0710 1.2351 1.3710 1.4880
0.6 0.0 0.3324 0.5479 0.7191 0.8593 0.9764 1.0756 1.2347 1.3569 1.4536
0.8 0.0 0.3388 0.5641 0.7322 0.8665 0.9787 1.0755 1.2377 1.3717 1.4870
0.8 0.0 0.3382 0.5549 0.7262 0.8658 0.9820 1.0803 1.2374 1.3575 1.4524
1.0 0.0 0.3418 0.5679 0.7359 0.8698 0.9816 1.0779 1.2390 1.3721 1.4864
1.0 0.0 0.3414 0.5587 0.7300 0.8694 0.9851 1.0828 1.2388 1.3579 1.4517
1.5 0.0 0.3453 0.5721 0.7400 0.8736 0.9848 1.0805 1.2405 1.3725 1.4857
1.5 0.0 0.3449 0.5630 0.7343 0.8733 0.9885 1.0856 1.2404 1.3583 1.4510
5.0 0.0 0.3479 0.5754 0.7433 0.8765 0.9874 1.0826 1.2417 1.3728 1.4852
5.0 0.0 0.3478 0.5664 0.7377 0.8765 0.9913 1.0879 1.2417 1.3586 1.4505
10.0 0.0 0.3480 0.5756 0.7435 0.8767 0.9876 1.0828 1.2418 1.3728 1.4852
10.0 0.0 0.3480 0.5666 0.7380 0.8767 0.9914 1.0881 1.2418 1.3586 1.4504
50.0 0.0 0.3481 0.5757 0.7436 0.8768 0.9876 1.0829 1.2418 1.3728 1.4852
50.0 0.0 0.3481 0.5668 0.7381 0.8768 0.9916 1.0882 1.2418 1.3586 1.4504

κ = A · Vj

ω · dj
= A · Rej

Reωj
, (5.65)

where Reωj = ωd2
j /ν is the rotational Reynolds number based on the nozzle diam-

eter. It is obvious that Reωj = Reϕ · b2/d2
j = 0.25 · Reϕ · (d/dj)2.

In accordance with Eq. (5.47), parameter A takes values A =1.29, 1.14 and 1.01
for hj/dj=2, 4 and 6, respectively. As shown beneath, these values allow reaching
good agreement of predictions with experiments [155, 156] for the Nusselt number
for Rej=24,700. For Rej=6800, experimental results do not confirm the tendency of
decrease in Nub with an increasing hj/dj. The best agreement with experiments for
Rej=6800 yields the value A=1.12 independent of hj/dj.

Comparisons of the present predictions and experiments are shown in Fig. 5.17
in a form of dependence of K1∗ = Nub/[Re1/2

j A1/2(b/dj)] (transformed equation
(5.64)) on the parameter κ=a/ω, which for experimental conditions [155, 156]
was calculated by Eq. (5.65) using the aforementioned values of the parameter A.
Predictions and experiments agree well both quantitatively (with inaccuracy of
5%) and qualitatively clearly exhibiting tendency of increase with decreasing
values of κ .
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Fig. 5.17 Effect of the
parameter κ=a/ω on the
constant K1∗ for Pr=0.71
[183]. Experiments [155,
156]: 1 – Rej=24,700,
Reb=214,000, hj/dj=2, 4 and
6; 2 – Rej=6800,
Reb=396,000, hj/dj=2, 4 and
6; 3 – Rej=6800,
Reb=53,500, 107,000,
200,000 and 353,000,
hj/dj=2; 4 – Rej=24,700,
Reb=2000 and 396,000,
hj/dj=2. Experiments [44,
200]: 5 – n∗=0, various Rej
and hj/dj. Predictions: 6 –
n∗=0; 7 – n∗=1; 8 – n∗=–1;
9 – n∗=–0.5; 10 – n∗=0.5

Three experimental points fall out of this generally good agreement. This fact
can be explained in the following way. Too high experimental value of K1∗ for
Rej=24,700, Reb=214,000 and hj/dj=6 (κ=3.6) is probably caused by the too
low value A=1.01 used in the recalculation of experimental data for Nub using
Eq. (5.64). Perhaps, real dependence of A on hj/dj is weaker than that predicted
by Eq. (5.47). Too low experimental value of K1∗ for Rej=6800, Reb=53,000 and
hj/dj=2 (κ=4.4) is probably caused by the fact that we used the constant value
A=1.12 in the recalculation of Nu for Rej=6800 and varying Reϕ . Rotation may
affect A for low values of Rej, hence one has to find this dependence in an empirical
way in the future. At last, too low value of K1∗ for Rej=6800, Reb=396,000 and
hj/dj=4 (κ=0.6) is probably explained by experimental inaccuracy. Otherwise, it is
impossible to account for by any physical reason why the value of Nub for hj/dj=4
decreases noticeably in comparison with its value for hj/dj=2 and then increases
again for hj/dj=6 under conditions of Rej=idem, Reb=idem. In order to clarify the
dependence of A on hj/dj and, possibly, on the Reynolds numbers Rej and Reb, an
additional experimental research is needed.

Integral method: fluid flow. An integral method for this problem was developed
by the authors in works [180, 181, 184]. Integral equations of the boundary layer
are used in the form of Eqs. (2.26), (2.27), (2.28), (2.29) and (2.30) for vϕ,∞=0 (or
β=0). Model assumptions for the velocity profiles are

vϕ/(ω r) = g, vr/(ω r) = (1 − g∗) · tanϕ, (5.66)

(tanϕ − κ) / (α − κ) = T . (5.67)

For κ=0, one can write down
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[
vr/(ω r)

]
κ=0 = α0 (1 − g∗) T = f , (5.68)

then

vr/vr,∞ = (1 − g∗) κ + (α − κ) f /α0. (5.69)

Here g, g∗, f, tanϕ and T are universal functions of the only variable ξ ; g = G0 =
Ga=0 and f = F0 = Fa=0 are determined from the exact solution for a free disk at
κ = 0; g∗, tanϕ and T are unknown; α=tanϕw for z=0; α0=0.8284; subscript “0”
indicates the free rotating disk (κ=0).

As a result, one can obtain the following relations for integral parameters:

δ
∗
r = A4 − A1X, δ

∗∗
r = B7 + B8X − B1X2, (5.70)

δ
∗∗
ϕ r = κ (B6 + D1X) = αD1 + κ (B6 − D1) ,

1∫

0

v2
ϕdξ = (ωr)2 C1, (5.71)

A4 =
1∫

0

g∗ dξ , B6 =
1∫

0

(1 − g∗) g dξ , B7 =
1∫

0

(1 − g∗) g∗ dξ , (5.72)

B8 = −A1 + 2D5, D5 = 1

α0

1∫

0

f g∗ dξ , X = α/κ − 1, (5.73)

while constants A1, B1, C1, D1 are specified in Eqs. (5.17), (5.18) and (5.19). Equa-
tions (5.66), (5.67), (5.68), (5.69), (5.70), (5.71), (5.72) and (5.73) are valid both for
laminar and turbulent flow. In the latter case, Eqs. (5.20) and g = g∗ should be used.
Constants A2, A3 = 1 − A1 − A2, B2, B3, B4 = −A1 + 2D1, B5 = ∫ 1

0 (1 − g) g dξ ,
D2, D3 and D4 are used in Sects. 2.4 and 2.5 to obtain the solution for turbulent
flow. Whereas g = g∗, the value of B8 equals to B4, while the values of B6 and B7
are equal to B5.

It is evident that constants (5.72) and (5.73) are universal for a given flow regime,
whilst integral parameters δ

∗
r , δ

∗∗
r and δ

∗∗
ϕ r are functions of the only variable X and

do not depend on the boundary layer thickness δ.
Finding out the value of δ in numerical solution of Eqs. (2.37), (2.38), (2.39)

and (2.40) depends on the desired accuracy of satisfying boundary conditions (5.57)
for the values of F and G at z→∞. Therefore, numerical integration of the func-
tions f and g (and g∗) here, like in Sect. 5.1.2, was conducted using the variable
ζ and then reduced to the conditions for a free disk (κ=N=0 and β=0) using the
variable ζ0 = z

√
ω/ν = ζa=0. The upper limit of integration ζδ = δ

√
ω/ν was

chosen high enough to find four significant digits of the definite integrals. As a
result, for laminar flow Eqs. (5.21), (5.22) and (5.23) for the respective constants
at β=0 remain in force, while the rest of the constants are defined by the following
relations:
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A4 = a4/ζδ0, B6 = b6/ζδ0, B7 = b7/ζδ0, B8 = b8/ζδ0, D5 = d5/ζδ0,
(5.74)

a4 =
ζδ0∫

0

g∗ dζ0, b6 =
ζδ0∫

0

(1 − g∗) g dζ0, b7 =
ζδ0∫

0

(1 − g∗) g∗ dζ0, (5.75)

b8 = −a1 + 2d5, d5 = 1

α0

ζδ0∫

0

f g∗ dζ0. (5.76)

Values of all the above constants are universal and independent of κ . Exact values
of a1, b1, c1 and d1 according to data of Table 5.8 for β=0 are as follows:

a1 = 0.5338, b1 = 0.07887, c1 = 0.6726, d1 = 0.18587. (5.77)

Constants (5.77) coincide with respective values obtained in [139]. The rest of
the constants (5.75) and (5.76) are yet unknown and will be found below.

Shear stresses are determined by Eqs. (5.24), (5.25) and (5.26) and the following
relations:

τwr = μvr,∞
δ

(
dvr
dξ

)

ξ=0
,

(
dvr
dξ

)

ξ=0
= −

(
dg∗
dξ

)

ξ=0
+ X

α

(
df
dξ

)

ξ=0
,

(
df
dξ

)

ξ=0
=

(
df
dζ0

)

ζ=0
· ζδ0,

(
dg∗
dξ

)

ξ=0
=

(
dg∗
dζ0

)

ζ=0
· ζδ0.

Values (dg/dζ0)ζ=0 and (df /dζ0)ζ=0 are given in Eqs. (3.1) based on the solution
for a free disk.

Given α=const, δ=const and X=const [41], one can transform Eqs. (2.26) and
(2.27) as follows:

a2δ
[
3
(
B7 + B8X − B1X2

) + A4 − A1X
] + δω2C1

= νa
δ

[
−

(
dg∗
dξ

)

ξ=0
+ X

α0

(
df
dξ

)

ξ=0

]
, 4aδ [B6 + D1X] = − ν

δ

(
dg
dξ

)

ξ=0
.

(5.78)

Analysis of the exact solution shows that, as applied to Eqs. (5.78) the following
is true:

(dg∗/dξ)ξ=0 = (dg/dξ)ξ=0 . (5.79)

Solving Eqs. (5.78) jointly, one can obtain the following quadratic equation:

X2 + h2

h3
X + h4 + c1/κ

2

h3
= 0, (5.80)

h3 = −3b1 − 4d1, h2 = 3b8 − a1 − 4b6 − 4d1, (5.81)

h1 = h4 + c1/κ
2, h4 = 3b7 + a4 − 4b6. (5.82)
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Its solution looks as follows:

X = Xs1 +
(

Xs2 + Xs3/κ
2
)1/2

, (5.83)

α = (Xs1 + 1) κ +
(

Xs2κ
2 + Xs3

)1/2
, (5.84)

Xs1 = −h2/ (2h3) , Xs2 = X2
s1 − h4/h3, Xs3 = −c1/h3. (5.85)

It is noteworthy that namely constants (5.75), (5.76) and (5.77) rather than (5.72)
and (5.73) are used in Eqs. (5.80), (5.81), (5.82), (5.83), (5.84) and (5.85), which
means that the value ζδ0 was eliminated as a result of the transformations.

Constants of Eqs. (5.83), (5.84) and (5.85) can be found via agreeing these for-
mulas with the exact solution. Equation (5.84) satisfies conditions for κ=0, since
constants h3 and Xs3 are based on the data for a free disk. Imposing a requirement
that the approximate solution (5.83), (5.84) and (5.85) must coincide with the exact
solution for κ=4000 (a stationary disk) and κ=1.65 (optimal value), one can obtain

h2 = −2.79818, h3 = −0.98009, h4 = 0.66556, (5.86)

Xs1 = −1.42751, Xs2 = 2.71687, Xs3 = 0.68625. (5.87)

Based on the second of Eqs. (5.78), one can write

τwϕ

τwϕ0
= δ0

δ
=

[
α + κ (b6/d1 − 1)

α0

]1/2

. (5.88)

Agreeing Eq. (5.88) with the exact solution, one can obtain

b6 = 0.42776, b6/d1 = 2.30137. (5.89)

The constant a4 can be found using Eq. (5.70) for δ
∗
r at κ=4000

a4 = δ
∗
rζ (δ0/δ) (1 + κ)−1/2 , where δ

∗
rζ =

∞∫

0

(
1 − F

1 + κ

κ

)
dζ . (5.90)

Parameter δ
∗
rζ can also be calculated from the exact solution. The remaining con-

stants b7, b8 and d5 can be determined from equations (5.75), (5.76) and (5.82). As
a result, one can obtain

a4 = 1.11052, b7 = 0.42202, b8 = 0.063373, d5 = 0.29859. (5.91)

For κ=4000, the value of b8 determined by means of Eq. (5.70)

b8 =
[
δ̄∗∗

rζ (δ0/δ)(1 + κ)−1/2 − b7 + X2b1

]
X−1, (5.92)
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Table 5.23 Hydrodynamic parameters of the problem by the data of the exact solution and the
integral method [180]

κ=a/ω δ
∗
rζ , δ

∗
rζ δ

∗∗
rζ , δ

∗∗
rζ α, α τwϕ /τwϕ0, τwϕ /τwϕ0

exact exact exact exact

0.1 –1.760 –2.607 –3.057 –2.985 0.8127 0.8019 1.0438 1.0607
0.2 0.0290 –0.4896 –0.1604 –0.1064 0.8172 0.8061 1.1124 1.1346
0.3 0.4849 0.1461 0.2281 0.2652 0.8452 0.8365 1.1947 1.2170
0.4 0.6491 0.4171 0.3207 0.3467 0.8939 0.8877 1.2834 1.3038
0.5 0.7150 0.5499 0.3459 0.3646 0.9591 0.9548 1.3741 1.3921
0.7 0.7497 0.6571 0.3487 0.3593 1.1232 1.1211 1.5525 1.5662
0.9 0.7457 0.6882 0.3391 0.3457 1.3153 1.3143 1.7216 1.7322
1.0 0.7399 0.6931 0.3340 0.3394 1.4180 1.4172 1.8022 1.8116
1.5 0.7072 0.6867 0.3132 0.3156 1.9664 1.9663 2.1692 2.1749
2.0 0.6821 0.6708 0.2999 0.3012 2.5440 2.5441 2.4888 2.4926
4.0 0.6326 0.6300 0.2761 0.2764 4.9349 4.9350 3.4972 3.4987
6.0 0.6130 0.6119 0.2672 0.2673 7.3593 7.3593 4.2781 4.2790
8.0 0.6026 0.6020 0.2625 0.2626 9.7922 9.7923 4.9380 4.9384
10 0.5962 0.5958 0.2597 0.2597 12.229 12.229 5.5197 5.5201
50 0.5746 0.5745 0.2501 0.2501 61.043 61.033 12.338 12.338
100. 0.5717 0.5717 0.2489 0.2489 122.08 122.06 17.449 17.449
1000 0.5692 0.5692 0.2478 0.2478 1220.8 1220.8 55.178 55.178
4000 0.5690 0.5690 0.2477 0.2477 4883.1 4883.1 110.36 110.36

δ
∗∗
rζ =

∞∫

0

(
1 − F

1 + κ

κ

)
F

1 + κ

κ
dζ , (5.93)

coincides with the value b8 computed by Eq. (5.91). Here δ
∗∗
rζ is calculated based on

the exact solution.
Table 5.23 presents data for some parameters of fluid flow calculated both by the

exact solution and the integral method. Maximal discrepancies of the data for α and
τwϕ/τwϕ0 by the integral method with respect to the exact solution do not exceed
1.7% and decrease with increasing κ. Integral parameters δ

∗∗
rζ for κ>0.5 and δ

∗
rζ for

κ>1 calculated using the integral method also agree well with the exact solution.
Integral method: heat transfer. The integral equation (2.28) of the thermal

boundary layer jointly with transformed equation (2.27) can be reduced to a form
analogous to Eqs. (3.52) and (3.53)

d

dr

[
r4δδ

∗∗
ϕ r

]
= cf

2
r4(1 + α2)1/2, (5.94)

d

dr

[
r2δδ

∗∗
T (Tw − T∞)

]
= χ

cf

2
r2(1 + α2)1/2 (Tw − T∞) . (5.95)

The solution (2.82), (2.83), (2.84), (2.85), (2.86) and (2.87) for the parameters of
the laminar and turbulent boundary layers remains in force and will be used further
below.
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Then Eqs. (5.94) and (5.95), in view of the boundary condition (2.35), can be
transformed in the following way:

(2 + m + n∗)
δ
∗∗
T

αA1
= χ (4 + m)

δ
∗∗
ϕ r

αA1
, (5.96)

(2 + m + n∗)
δ
∗∗
T

αA1
= χ (4 + m) KV0

[
1 + κ

α

(
b6

d1
− 1

)]
. (5.97)

In Eqs. (5.96) and (5.97), relations (5.70), (5.71), (5.72), (5.73), (5.74), (5.75),
(5.76), (5.77) and (5.78) are taken into account. For laminar flow KV0 = 0.3482
(Eq. (3.55)). For turbulent flow KV0 = 1 − D2/A1 (Eq. (3.47)), and B5/D1, where
B5 = C2/2 = D1 + D3, is used instead of b6/d1.

To remind, this problem for turbulent flow was already solved in Sect. 5.2.2. The
form of approximating expression for δ

∗∗
T for laminar flow is found by generalization

of Eq. (5.53) obtained for turbulent flow in Sect. 5.2.2. For laminar flow n=1, and
an approximate solution for δ

∗∗
T at κ=0 must be agreed with the solution for a free

disk (Chap. 3). As a result of these considerations, one can transform Eq. (5.53) to
the following relation:

δ
∗∗
T

αA1
= 1

b2
− χPrnp (1 − KV0)

b1

b2
+ κ

α

(
e1χ

−1 + e2χ + e3

)
, (5.98)

where constants b1 (again not to confuse with Eq. (5.77)) and b2, as well as np,
depending on the Prandtl number are given by Eqs. (3.65), (3.66) and (3.67) for a
free disk. Then Eq. (5.97) for laminar flow takes the following form:

1

b2
− χPrnp (1 − KV0)

b1

b2
+ κ

α

(
e1χ

−1 + e2χ + e3

)
=χ

4

2 + n∗
KV0

[
1 + κ

α

(
b6

d1
− 1

)]
.

(5.99)

The coefficients e1, e2 and e3 are assumed to be dependent on the Prandtl number
alone. Equating values of χ in Eq. (5.99) to the results of the exact solution for
n∗=–1.5, 0 and 2, one can obtain values e1, e2 and e3 given in Table 5.24. The value
of χ for the exact solution can be calculated by the formula

χ = −K1
[
(1 + κ) Pr (dG/dζ )ζ=0

]−1 . (5.100)

Given e1, e2 an e3, Eq. (5.99) can be transformed to the quadratic equation

χ2f1 + χ f2 + f3 = 0, (5.101)



5.2 Accelerating Radial Flow Without Imposed External Rotation 141

Table 5.24 Values of the
coefficients e1, e2 and e3
[180, 181, 184]

Pr e1 e2 e3

1 0.1426 –0.7227 1.0333
0.9 0.1591 –0.7313 1.1280
0.8 0.1800 –0.7404 1.2427
0.72 0.2007 –0.7495 1.3556
0.71 0.2042 –0.7497 1.3696
0.6 0.2425 –0.7631 1.5708
0.5 0.2957 –0.7733 1.8104
0.4 0.3618 –0.7915 2.1676
0.3 0.5152 –0.7756 2.6166
0.2 0.7072 –0.8166 3.6207
0.1 1.4528 –0.8052 5.7291

where

f1 = κ
α

e2 − 4
2+n∗ KV0

[
1 + κ

α

(
b6
d1

− 1
)]

− Prnp (1 − KV0)
b1
b2

,

f2 = 1
b2

+ κ
α

e3, f3 = κ
α

e1.

The solution of Eq. (5.101) has the following form:

χ =
[
−f2 − D1/2

]
/(2f1), D = f 2

2 − 4f1f3. (5.102)

Constants K1 and K1∗ at known χ can be calculated from the relations

K1 = −χ
τwϕ

τwϕ0

(
dg

dζ0

)

ζ=0
(1 + κ)−1/2 Pr, (5.103)

K1∗ = −χ
τwϕ

τwϕ0

(
dg

dζ0

)

ζ=0
κ−1/2Pr, (5.104)

with allowance for Eqs. (3.1) and (5.88).
Numerical values of the parameter χ computed using Eq. (5.102) for Pr=0.71

and 1 are presented in Tables 5.21 and 5.22 in comparison with the exact solution.
Maximal deviations of the values χ by Eq. (5.102) from the exact solution do not
exceed 2.4% (for n∗=4). As data in Table 5.25 indicate, the same conclusion is valid
also for K1∗ (as well as for the constant K1). Computations for other values of the
Prandtl number in the range Pr=0.1–1 also confirmed this conclusion.

Table 5.26 represents the values of K1∗ calculated based on the results of the
exact solution and the integral method for a stationary disk (κ≥50) for different
values of Pr. In particular, for a stationary disk at Pr=0.71, it follows from Eqs.
(5.102), (5.103) and (5.104) that
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Table 5.25 Values of K1∗ computed by the integral method for Pr=0.71 (the first line represents
K1) [180]

κ=a/ω n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

0.0 0.0 0.1009 0.187 0.2612 0.3259 0.4332 0.5185 0.5880 0.6457
0.1 0.0 0.3957 0.6933 0.9431 1.1562 1.5007 1.7671 1.9793 2.1524
0.2 0.0 0.3266 0.5569 0.7464 0.9055 1.1582 1.3499 1.5004 1.6217
0.3 0.0 0.3015 0.5063 0.6725 0.8106 1.0273 1.1897 1.3159 1.4169
0.4 0.0 0.2891 0.4811 0.6354 0.7628 0.9610 1.1082 1.2220 1.3126
0.5 0.0 0.2821 0.4667 0.6141 0.7352 0.9226 1.0611 1.1677 1.2523
0.7 0.0 0.2749 0.4518 0.5920 0.7065 0.8827 1.0120 1.1110 1.1893
0.9 0.0 0.2715 0.4448 0.5815 0.6929 0.8637 0.9886 1.0841 1.1593
1.0 0.0 0.2704 0.4426 0.5783 0.6887 0.8578 0.9814 1.0757 1.1500
1.5 0.0 0.2678 0.4371 0.5702 0.6781 0.8430 0.9632 1.0547 1.1268
2.0 0.0 0.2669 0.4351 0.5672 0.6742 0.8376 0.9565 1.0470 1.1181
4.0 0.0 0.2659 0.4331 0.5642 0.6703 0.8321 0.9498 1.0393 1.1096
6.0 0.0 0.2657 0.4328 0.5636 0.6696 0.8311 0.9485 1.0378 1.1080
8.0 0.0 0.2657 0.4326 0.5634 0.6693 0.8307 0.9481 1.0373 1.1074
10. 0.0 0.2657 0.4326 0.5634 0.6692 0.8306 0.9479 1.0371 1.1071
50. 0.0 0.2656 0.4325 0.5632 0.6690 0.8303 0.9475 1.0366 1.1067

K1∗ = K1 = 0.763χ , χ =
−1.8205 −

[
3.8863 + 1.9253

n∗+2

] 1/2

−1.7102 + 5.7551
n∗+2

. (5.105)

Obviously, inaccuracies of the integral method do not exceed 2.4% for any value
of Pr.

Thus, in the present sub-section an exact solution of the problem of fluid flow
and heat transfer under conditions of uniform laminar forced air cooling of a rotat-
ing disk under boundary conditions (2.32), (2.33), (2.34) and (2.35) for β=0 was
obtained. Nusselt numbers were computed for the Prandtl number values equal to 1
and 0.71, and a series of discrete values of the exponent n∗ (in the range n∗=–2 to 4)
in the power law for the radial variation of the disk temperature Tw and ratios of the
impingement-to-rotation velocity κ=a/ω=0–4000. Boundaries of the flow regime
were determined, where heat transfer depends only on the impinging flow velocity.

Such a regime emerges for κ=a/ω=1.5–∞ for any values of Pr and n∗. These
results can be interpreted in such a way that, if a disk is subjected to flow impinge-
ment, disk rotation leads to increase in heat transfer for Rea = idem only for values
of κ less than the aforementioned threshold values.

Results of the computations performed in this sub-section agree overall well with
the experiments [155, 156] in the stagnation region. An improvement of the agree-
ment of the experimental points that fall out of this generally good trend can be
attained via finding a more accurate dependence of the parameter A on hj/dj and the
Reynolds numbers Rej and Reϕ .

An integral method was developed and an approximate analytical solution of this
problem in the range n∗=–2 to 4 was obtained, whose constants were determined
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Table 5.26 Values of K1∗ the data of the exact solution (boldface) and the integral method for
different values of Pr and κ≥50 for a stationary disk [180]

Pr n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

1.0 0.0 0.3057 0.5031 0.6478 0.7622 0.9387 1.0747 1.1866 1.2825
0.0 0.3056 0.4952 0.6430 0.7623 0.9434 1.0747 1.1742 1.2523

0.9 0.0 0.2928 0.4827 0.6221 0.7324 0.9028 1.034 1.1421 1.2348
0.0 0.2928 0.4751 0.6175 0.7325 0.9073 1.0340 1.1302 1.2057

0.8 0.0 0.279 0.4607 0.5944 0.7003 0.864 0.9902 1.0942 1.1833
0.0 0.2790 0.4535 0.5900 0.7003 0.8683 0.9902 1.0829 1.1556

0.72 0.0 0.2671 0.4417 0.5705 0.6726 0.8306 0.9525 1.0529 1.139
0.0 0.2671 0.4349 0.5663 0.6726 0.8347 0.9524 1.0419 1.1123

0.6 0.0 0.2476 0.4105 0.5311 0.6269 0.7754 0.8901 0.9846 1.0657
0.0 0.2476 0.4042 0.5272 0.6269 0.7792 0.8901 0.9745 1.0409

0.5 0.0 0.2295 0.3812 0.494 0.5839 0.7235 0.8314 0.9203 0.9967
0.0 0.2295 0.3755 0.4905 0.5839 0.7269 0.8314 0.9110 0.9737

0.4 0.0 0.2083 0.3477 0.4517 0.5348 0.6641 0.7642 0.8468 0.9178
0.0 0.2083 0.3424 0.4484 0.5348 0.6672 0.7641 0.8381 0.8965

0.3 0.0 0.1838 0.3082 0.4017 0.4766 0.5936 0.6845 0.7595 0.8240
0.0 0.1838 0.3027 0.3975 0.4753 0.5956 0.6844 0.7527 0.8069

0.2 0.0 0.1536 0.2592 0.3393 0.4039 0.5053 0.5843 0.6498 0.7061
0.0 0.1535 0.2554 0.3369 0.4038 0.5076 0.5842 0.6432 0.6901

0.1 0.0 0.1124 0.1911 0.2519 0.3015 0.3802 0.4421 0.4936 0.5381
0.0 0.1124 0.1886 0.2503 0.3015 0.3819 0.4420 0.4888 0.5262

using the data of the exact solution. Maximal errors of the integral method relative
to the exact solution do not exceed 2.4% (for n∗=4) for any values of Pr.

5.3 Non-symmetric Flow over a Parallel Rotating Disk

In this section, theoretical and experimental data of different authors are considered
for the case of forced external flow parallel to flat surfaces of a disk and orthogonal
to its cylindrical surface (Fig. 5.18). The main difference of this type of flow from
the case considered in Sect. 5.2 is that the flow pattern in Fig. 5.18 is non-symmetric,
as fluid flows parallel to the disk only from one side (from left to right in Fig. 5.18).

For the first time, this problem was studied experimentally by the authors of
[36]. They studied only average heat transfer of an entire isothermal (Tw=const)
disk rotating in external flow of air.

According to [36], average heat transfer of a free rotating disk and a station-
ary disk subjected to non-symmetric external parallel flow in turbulent regime is
described by the following empirical relations, respectively,

Nuav = 0.015Re0.8
ϕ , (5.106)

Nuav = 0.036Re0.8∞ , (5.107)
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Fig. 5.18 Fluid flow and heat transfer in non-symmetric flow over a parallel rotating disk

where Re∞ = vr,∞b/ν. In laminar flow regime (Reω≤2.4�105), the authors of [36]
obtained for a free rotating disk

Nuav = 0.4Re0.5
ϕ . (5.108)

Data by Eq. (5.107) exceed values by 33%, which can be calculated using the
relation

Nuav = 0.027Re0.8∞ (5.109)

that was obtained in [36] based on a model given in monograph [158] as applied to a
circular flat plate with a heated starting length. According to the authors of [36], the
deviation of Eq. (5.107) from Eq. (5.109) is caused by separation and subsequent
reattachment of flow impinging on the cylindrical rim of the disk with sharp non-
round edges between the rim and the flat surfaces of the disk. Another consequence
of such disk geometry was that external flow over the disk was always turbulent.

Based on the experimental results of [36], total average heat transfer for simul-
taneous existence of external flow and disk rotation may be calculated as a root-
mean-square of Eqs. (5.106), (5.107) and (5.108), i.e. by the following relations:

Nuav =
√

(0.4Re0.5
ϕ )2 + (0.036Re0.8∞ )2, Reϕ ≤ 4 × 105, (5.110)

Nuav =
√

(0.015Re0.8
ϕ )2 + (0.036Re0.8∞ )2, Reϕ > 4 × 105. (5.111)

Equations (5.110) and (5.111) agree with experiments [36] with an error not
exceeding 2.3%. From Eqs. (5.110) and (5.111), one can also determine boundaries
of regimes with dominant effects of rotation or external flow, as well as of the regime
where both effects are in force.

The author of [220, 221] considered a problem where the disk depicted in
Fig. 5.18 was very thin (actually, it had zero thickness). Because of this, flow sep-
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aration and subsequent reattachment causing significant flow turbulization and heat
transfer enhancement did not occur in the investigation [220, 221]. Therefore, results
of [220, 221] have rather academic than applied value. The problem was modelled
numerically using large eddy simulation (LES) approach also for the boundary con-
dition Tw=const and air flow, Pr=0.7. Distributions of the local Nusselt numbers on
the disk and temperature fields in the wake behind the disk presented in these works
reveal strong non-symmetry of the problem.

According to generalizations of the computational data [220, 221], average Nus-
selt numbers for the disk can be described by the following relations:

(a) for 103 ≤ Re∞ ≤ 5.0×104

Nuav =
{

0.417Re1/2∞ , Reϕ/Re∞ ≤ 1.4,

0.33Re1/2
ϕ , Reϕ/Re∞ > 1.4,

(5.112)

(b) for Re∞ > 5.0×104

Nuav =
⎧
⎨

⎩

√
(0.015Re0.8

ϕ )2 + (0.0127Re0.8∞ )2, Reϕ > 2 × 105,
√

(0.33Re0.5
ϕ )2 + (0.0127Re0.8∞ )2, Reϕ < 2 × 10.

(5.113)

Equations (5.112) and (5.113) agree with the results of numerical simulations
with inaccuracy not exceeding 10% over the entire range of the Reynolds numbers
considered in the study.

It follows from Eqs. (5.112) and (5.113) that case (a) and first of Eq. (5.112) for
Nuav are valid for a stationary disk in laminar flow. For turbulent flow, case (b) is in
force, and the following equation should be used to calculate Nuav over a stationary
disk:

Nuav = 0.0127Re0.8∞ . (5.114)

The Nusselt numbers computed by Eq. (5.114) are significantly lower than exper-
imental data [36] described by both Eqs. (5.107) and (5.109), which again means
that Eqs. (5.112), (5.113) and (5.114) can be hardly used in engineering practice.

Mass transfer in naphthalene sublimation in air from a surface of a rotating disk
of a finite thickness for the problem depicted in Fig. 5.18 was studied experimen-
tally in [59]. Authors of [59] obtained the following empirical relation for the Sher-
wood number and corresponding relation for the Nusselt number at Pr=0.72 and
Tw=const

Shav = 0.00952Re0.925
� , (5.115)

Nuav = 0.00588Re0.925
� , (5.116)
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Fig. 5.19 Heat transfer in
non-symmetric flow over a
parallel stationary disk (see
Fig. 5.18) for Pr=0.72,
Tw=const. 1 – Eq. (5.107)
[36]; 2 – Eq. (5.109) [36]; 3 –
Eq. (5.116) [59]; 4 –
Eq. (5.114) [220, 221]

where the Reynolds number Re� is based on a characteristic velocity taking into
account both the rotation velocity ω and the velocity of external flow vr,∞. Equa-
tions (5.115) and (5.116) are valid for Re�=(2.03–6.86)×105. Unfortunately, the
authors of [59] did not provide the reader with an exact definition of the charac-
teristic velocity. It is however clear that Re�→Re∞ in the case where effects of
rotation become negligible, which justifies use of the equation Nu = Sh(Pr/Sc)0.4

for the recalculation of Eq. (5.115) into Eq. (5.116). This enables comparisons made
in Fig. 5.19, which show that the curve based on (5.116) is in good agreement with
standard equation (5.109). Curve based on experimental equation (5.107) for the
reasons mentioned above lies higher than these data, while data from Eq. (5.114)
[220, 221] as expected are too much lower than the experimental results.

Thus, it may be concluded that the average Nusselt number for the case of simul-
taneous disk rotation and non-symmetrical parallel external flow over its surface can
be calculated as a root-mean-square value of the Nusselt numbers for a free rotating
disk and a stationary disk in non-symmetrical parallel external flow over its surface,
taking into account also the actual ratio of the characteristic Reynolds numbers of
rotation and external flow.



Chapter 6
Outward Underswirled and Overswirled Radial
Flow Between Parallel Co-rotating Disks

6.1 Flow in the Ekman Layers

This section overviews in brief the model and results for the Ekman layers, which
are important for understanding and simulations of the flow regimes that develop in
rotating-disk cavities.

If a disk rotates in a fluid under conditions β→1 and v r, ∞=0, the so-called
Ekman layers develop over the disk [138, 139], in which velocity components vr,
vz and (vϕ–ωr) are negligibly small in comparison with ωr. Given this, the boundary
layer equations in the differential and integral form can be reduced to the following
[139]:

− 2ρω(vϕ − vϕ,∞) = ∂τr

∂z
, 2ρωvr = ∂τϕ

∂z
, (6.1)

2ω ρ δ

1∫

0

(
vϕ − vϕ,∞

)
dξ = τwr, 2ω ρ δ

1∫

0

vrdξ = −τwϕ . (6.2)

For laminar flows, the following solutions of Eqs. (6.1) and (6.2) were obtained
from the work [139]:

vr = ω r(1−β) exp (−ζ ) sin (ζ ), vϕ −vϕ,∞ = ω r(1−β) exp (−ζ ) cos (ζ ), (6.3)

ṁd/(μr) = π (1 − β)Re1/2
ω , δ/r = πRe1/2

ω , (6.4)

τwr/(ρω2r2) = (1 − β)Re−1/2
ω , αE = 0, (6.5)

where ζ = z
√

ω/ν.
For turbulent flow, a solution of the boundary layer equations was obtained for

Ekman layers in [139] using an integral method and the power-law approximation
of the velocity profiles (2.45), (2.46) (and n=1/7). This solution has the form of Eqs.
(2.82), (2.83), (2.84), (2.85) and (2.86), (2.90) and (5.2) provided that αE=0.553,
γ ∗E=0.0983 and ε∗

mE=0.1395. These values αE, γ ∗E and ε∗
mE coincide with the

respective data that can be obtained from Eqs. (5.1) for N=0 and β=1.

147I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_6,
C© Springer-Verlag Berlin Heidelberg 2009
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Table 6.1 Constants αE, γ E and ε∗
mE for Ekman layers [163]

Coefficient n=1/7 n=1/8 n=1/9 n=1/10

αE 0.6936 0.6442 0.604 0.5705
γ E 0.1224 0.0978 0.0807 0.0677
ε∗

mE 0.1386 0.106 0.084 0.0678

Based on the model for power-law profiles (2.59), (2.60), (2.61), (2.62) and
(2.63), the authors of [163] using the present integral method (see Chap. 2) obtained
a similar solution for the Ekman layers for the case of turbulent flow:

αE =
[
A−1

1 n/(n + 1)
] 1/2

, (6.6)

τwr
/
ρ = [

2n
/

(n + 1)
]

(1 − β)ω2rδ, (6.7)

τwϕ/ρ = 2A1αE(1 − β)ω2rδ. (6.8)

In the solution in [163], parameters δ/r, ṁd/(ρωr3) and CM for the Ekman layers
are also given by Eqs. (2.82), (2.83), (2.84), (2.85) and (2.86), (2.89), (2.90) and
(2.91) at N=0 and substitution of H9 with 2A1αE.

Numerical values of αE, γ E and ε∗
mE for the Ekman layers for different n are

documented in Table 6.1. It is obvious that these values coincide with respective
constants for N=0 and β=1 for the case of solid-body rotation (see Sect. 5.1).

In spite of the rather modest differences in the numerical values of αE, solution
for ε∗

mE obtained in the present work at n=1/7 agrees with that given in [138].
Solutions for the Ekman layers are significantly simpler than the solutions of the

full equations of the boundary layer for N=0 and β=const. Nevertheless, the formu-
las for the Ekman layers allow, with the accuracy sufficient for practical purposes,
to calculate parameters of the fluid flow for 0.5≤β≤2; in doing so, no restrictions
are imposed on the dependence of β on the coordinate r.

6.2 Radial Outflow Between Parallel Co-rotating Disks

6.2.1 Flow Structure, Experiments and Computations of Different
Authors

Secondary air is widely used for cooling end surfaces of gas turbine rotors. Cooling
air from a compressor is fed into a cavity between two rotating disks of a turbine (or
between a disk and a cover plate) near the axis of rotation or at a certain radial loca-
tion, then moves radially outwards and finally leaves the cavity (Figs. 6.1 and 6.2).
Fluid flow and heat transfer in radially outward flow in the rotating-disk cavities
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Fig. 6.1 Physical structure of
radially outward flow
between two parallel
co-rotating disks for β i≤1
and a uniform radial inlet
[139]. 1 – source region; 2 –
boundary layer entraining air
from the source region;
3 – Ekman-type layer; 4 –
internal core (no radial
mass-flow); 5 – region of the
outlet from the cavity

Fig. 6.2 Schematic of
streamlines in a rotating
cavity for β i≤1 and axial
inlet [139]. 1 – source region;
2 – boundary layer entraining
air from the source region;
3 – Ekman-type layer; 4 –
internal core (no radial
mass-flow); 5 – region of the
outlet from the cavity; 6 –
upstream disk; 7 –
downstream disk. Subscript
“i” means parameters at the
inlet into the cavity

were studied experimentally and numerically in many works [2, 25, 43, 72, 75–79,
86, 90, 114, 128, 129, 134, 135, 138, 139, 145, 148, 196, 225].

In the present work, cases of radial/axial inlet into the cavity are considered.
Boundary layers on the disk are assumed to be separately developing (non-merging),
and distributions of the disk surface temperature Tw were arbitrary functions (spec-
ified according to experimentally measured data).

For cases of the so-called underswirl of fluid flow, with values of the swirl coef-
ficient at the inlet being less than unity (β i ≤1), experiments [139] showed that flow
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structure for the purely radial inlet into the cavity looks as depicted in Fig. 6.1.
Starting from the inlet up to a certain radial coordinate re, air flows radially out-
wards over the entire cross-section of the cavity, while on the disks boundary layers
develop, which entrain air from the potential flow (the so-called source region).

In the source region, tangential component of the potential flow velocity
decreases according to a free-vortex law:

vϕ,∞ = (
vϕ,∞ · r

)
i

/
r. (6.9)

For the case of the axial inlet into the cavity (Fig. 6.2), incoming flow (totally or
partially) in a form of a jet impinges over the downstream disk and moves further
radially outwards in a form of an annular wall jet. This jet contains usually more than
a half or even the entire amount of air fed into the cavity. However, this situation
does not persist up to the end of the cavity. At the radial coordinate r=re, a part
of air flowing over the downstream disk is released from the wall jet and is finally
entrained by the boundary layer on the upstream disk.

As mentioned above, in the regions with r<re on both disks, boundary layers
develop that entrain air from the source region. For r>re , the entire mass flow of
air is entrained into the so-called Ekman-type layers [139] with a constant mass
flowrate ṁd in them. For the case of the radial inlet into the cavity, in each Ekman-
type layer the following relation holds: ṁd = 0.5ṁ = const (the rate of entrainment
into the layers is zero). For the case of the axial inlet, the fraction of air over the
downstream disk in the impinging jet region is larger than that over the upstream
disk. However, as indicated above, air is redistributed between flows over the disks
even before the onset of the development of the Ekman-type layers, in which the
condition ṁd = 0.5ṁ = const remains in force for both the disks [139]. The tan-
gential velocity in the internal core of flow begins to increase due to the spinning
effect of the disks.

Over a long period of time, modelling of fluid flow and heat transfer in the
rotating-disk cavities has been performed using integral methods.

Assuming that v ϕ =v ϕ,∞ for any value of the axial coordinate z, integrating Eq.
(2.23) from 0 to s and using, for β =0–0.9, the following relation for τwϕ

∣∣τwϕ

∣∣ = 0.0274ρ (ωr)2 (1 − β)1.2 Reω
−0.2, (6.10)

the authors of [196] derived the following differential equation for the swirl param-
eter β

dβ

dx
= −2β

x
+ 2Ax1.6 (1 − β)1.2 , (6.11)

where A = 0.0274 × 2π × Re0.8
ϕ

/
Cw. As shown below, Eq. (6.11) agrees well with

experimental data only in the beginning of the source region and at the end of the
region of the Ekman-type layers.
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Authors of [43], having further developed the approach of [196], obtained the
following equation:

dβ

dx
= −2β

x
+ 0.6c1 (1 − β)c2 [c3 (1 − β) + β] Re(n+1)/(3n+1)

ϕ x2(n+1)/(3n+1)

0.5Cwb/ri − c1 (1 − β)c2 Re(n+1)/(3n+1)
ϕ x(5n+3)/(3n+1)

, (6.12)

where c1 = 0.2054πe−0.175/n, c2 = 0.753n−0.424, c3 = 1.543n0.625, n=1/5. In their
derivations, authors of [43] made a mistake, which resulted in that in the second term
of the right-hand side of Eq. (6.12), the first term 0.5Cwb/r in the denominator was
multiplied by ρ. As shown below, the “erroneous” solution of the authors of [43]
agrees well enough with their own experiments. The corrected Eq. (6.12) agrees
with the experiments of [43] already worse, and both variants of Eq. (6.12) disagree
noticeably with experimental data [139] for the well-developed Ekman-type layers.

The most adequate model for the swirl parameter β was developed in the work
[139] based on the physical understanding of the fluid flow structure discussed above
while describing schematics in Figs. 6.1 and 6.2. Details of the model of [139] are
outlined below in Sects. 6.2.2, 6.2.3 and 6.2.4.

Experiments of [77] for heat transfer in the cavity were performed for β i =1 and
separately developing boundary layers. In case of the axial inlet into the cavity, only
the source region was formed, with the Nusselt numbers (Figs. 6.1 and 6.2) being
described by the following correlation [77]:

Nu = 0.024Re0.8
ω Pr0.6VM , (6.13)

VM = 2.461+0.128r̄2+0.122r̄
/

Ni + 0.02N−2
i − 0.858r̄ − 0.392

/
Ni, r̄ = 1.2 . . . 2,

(6.14)

VM = 1.08N0.07
i , r̄ = 2 . . . 3. (6.15)

Here Ni = vr,i/(ωri)=0.1667–0.5, r̄ = r/ri, Reω=6×104–106, Tw = const.
It was obtained in work [196] that, given the boundary condition (2.35) for the

disk temperature Tw, the Nusselt number can be described by the following correla-
tion:

Nu = 0.0145 (1 − β)0.2 Re0.8
ω (n∗ + 2.6)0.2

[
1 − 0.45 (1 − β)0.6 Re−0.1

ω

]−1
.

(6.16)

Experimental data [70] for flow between a disk and a co-rotating cover plate were
generalized by the empirical correlation:

Nu = 0.046Re0.8
ω N0.328, (6.17)
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where N = ṁ
/

(2πρsr2). The value of β at the inlet to the cavity and at the out-
let from it was equal to unity; the disk was heated from the side of its cylindrical
surface.

For the condition β i=0, the author of [76] developed the following empirical
equation:

Nuav = 0.0306Re0.8
ϕ N0.1

i (b/ri)
0.3 , (6.18)

where Pr=0.72; the distribution of Tw(r) was close to quadratic;vr,∞=(vr,∞ · r)i
/

r;
Ni=0.143–1.67; s/b=0.13; b/ri=2.15–2.7; Reω=5×105 to 4×106.

Authors of [18] generalized their experiments for the case of β i=0 with the cor-
relation

Nu = 0.0339 Reω (1 + N2)0.4 exp ( − 0.148/N). (6.19)

Here ri/b → 0; N = ṁ/(2πρsωr2); Ni =0.4–4.0; Reω(1 + N2)0.4 exp
( − 0.185/N) =104 to 2×105; Reω = ωrrh/v; Nu= qw rh/[k(T)]; rh is the coordi-
nate of the beginning of a heated section of the disk; T = Tw−T∞; the distribution
of Tw (r) not specified (most probably, Tw =const).

While developing their integral methods, the authors of [73, 76, 77] recognized
existence of only the source region and accepted a series of model simplifications,
which significantly devalued their models. Theoretical dependencies given in these
works are less reliable than empirical Eqs. (6.13), (6.14), (6.15), (6.16), (6.17),
(6.18) and (6.19). Relation (6.16) takes into account effect of β, but disregards the
effect of v r,∞ (i.e. the effect of superimposed radial flow) and that of the Prandtl
number. Unfortunately, Eqs. (6.13), (6.14), (6.15), (6.17), (6.18) and (6.19) do not
take into consideration the form of the distribution of Tw(r) and differences in the
flow structure in the source region and the Ekman-type layers.

As shown in the work [139], in the source region the flow temperature T∞ is
constant and equals to Ti . In the region of the Ekman-type layers, entrainment of
cold air from the core into the boundary layers ceases, and the latter, conversely,
begin to release heat into the core. This leads to an increase in the temperature
T∞, which becomes itself one of the unknowns. The Nusselt number defined as
Nu = qw r/[λ( Tw − Ti )], for the cases of dTw /dr≈0 and dTw /dr<0 becomes neg-
ative in the region of the Ekman-type boundary layers [139]. This phenomenon is
analysed below.

6.2.2 Computation of the Radial Variation of the Swirl Parameter
Using the Integral Method

The present integral method described in Sect. 2.4 is used further in this section to
simulate fluid flow in cavities between co-rotating disks. Since in the source region
the swirl parameter β develops according to the free-vortex law (6.9), while in the
Ekman-type layers the value of β becomes one of the unknowns, fluid flow in the
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entire cavity was simulated using the numerical version of the integral method based
on Eqs. (2.77) and (2.79), which were solved using the Runge-Kutta method.

We estimated efficiency of the integral method by comparing its results with
the experimental data available in the literature [43, 139]. The data depicted in
Figs. 6.3, 6.4, 6.5 and 6.6 are based in part on the results of the work [169], while
Fig. 6.7 was plotted partially using the data of [167]. The swirl parameter β was
chosen as the one to be tested. Adequacy of modelling behaviour of the parameter β

in the source region and in the Ekman-type layers and pinpointing the coordinate re

of the boundary between these regions (minimum of the β function) is an evidence
of adequacy of modelling fluid flow as a whole.

Experimental data [43] for a cavity open at its periphery (outlet into a large vol-
ume) indicate that air ingress from atmosphere into the cavity takes place near the
centreplane of the gap between the disks (z=s/2). Because of this ingress, the mass
flowrate in the boundary layers over the disks ceases to be constant at a certain
radial location in the neighbourhood of the periphery and further increases with an
increasing coordinate r. This results in decrease in the β parameter, like in the source
region (Fig. 6.3). In this study, we did not intend to model the region of air ingress
into the cavity; therefore, we compare our computations and the experiments [43]
up to the point of maximum of β depending on r/ri.

As seen from Fig. 6.3, curve 4 calculated for the dimensionless mass flowrates
through the cavity Cw = ṁ/(μb)=2963 and 6173 agrees fairly well with the exper-
imental data [43] up to the point of maximum of the parameter β. According to the
data [43], fluid flow near the radial coordinate r/ri =2.1 is transitional (the shape-
factor H = δ∗/δ∗∗ calculated for the tangential velocity component is equal to 1.85),
which induces certain inaccuracy due to the use of the model of the turbulent bound-
ary layer in this region. Rather high mass flowrates Cw=2963–6173 are likely to
favour turbulization of the boundary layer and reduction of the computational inac-
curacy due to increase in Cw. However, differences between the calculated (curve 4)
and the experimental data for Cw = 1111 are more pronounced.

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

 - 1
 - 2
 - 3

C

B

 - 4
 - 5
 - 6
 - 7

A

β

r/ri

Fig. 6.3 Distribution of the
swirl parameter β in the
cavity open to atmosphere for
Reϕ=4.97×105, β i=1,
s/b=0.068, ri/b=0.285 and
b=0.1 m. 1–3 – experiments
[43]; 4 – computation of the
author [169], Eqs. (2.77) and
(2.79), n=1/7;
5 – “erroneous” equation
(6.12) [43]; 6 – corrected
equation (6.12); 7 – Eq.
(6.11) [196]. Lines A and
experiments 1 – Cw =1111;
B and 2 – 2963; C and 3 –
6173
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Fig. 6.4 Variation of the swirl parameter β in a cavity with a perforated shroud at the periphery for
Cw=2500, β i=1, s/b=0.1 and ri/b=0.1. 1–3 – experiments [139]. Computations, present integral
method, Eqs. (2.77) and (2.79): 4 – n=1/7 [169]; 5 – 1/9. Line 6 – model of the Ekman-type layers
(6.21), n=1/7; line 7 – Eq. (6.11) [196]. Lines A and experiments 1 – Reϕ=1.1×106; B and 2 –
6.177×105; C and 3 – 5.47×105

In [139], a cavity is closed at the periphery with a perforated shroud, which
abruptly decreases the effect of air ingress from atmosphere in comparison with
the cavity open at its periphery [43] considered above. Curves 4 and 5 (Fig. 6.4)
calculated by the present integral method are in good agreement with the experi-
ments [139]. The agreement becomes better with an increasing r/b, i.e. with increas-
ing local Reynolds numbers ReV∗ indicating that flow acquires characteristics of
developed turbulent regime. The data computed for n=1/9 lie somewhat lower than
the curves for n=1/7 in the region of the developed Ekman-type layers, though
transition to these layers begins earlier (which is explained by higher computa-
tional values of the mass flowrate through the boundary layer obtained at n=1/9,
see Fig. 3.6).

Flow at the location of r/b=0.767 (Fig. 6.5) becomes turbulent even for rather
small values of Reϕ=2×105 [139]. For Cw=940, agreement between curve 4 cal-
culated by the present integral method for n=1/9 and the experimental data [139]
is excellent. The calculations for n=1/7 agree better with the experiments for
Cw=1414 and 2500 (curve 5).

The data calculated for Cw=2500 and the experiments of [139] differ rather
significantly near the point of maximum of β. Similar differences in modelling
this experimental case by an integral method were obtained in work [139], whose
authors assumed that the differences were due to a mistake crept into records in the
experimental log-book because, for this experiment, the ratio ri/b should be 0.24
rather than 0.1.

The integral method of [139] is similar to the present integral method (described
in Chap. 2). The differences between these two methods consist in the use of the von
Karman’s approximation in [139] for the vr profile and the assumption vr,∞=0 at
any point of the cavity. Moreover, authors of [139] always used the value n=1/7,
since in the von Karman’s method other values of n lead to substantial errors in
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Fig. 6.5 Effects of Reϕ and
Cw on the swirl coefficient β

for β i=1, x=0.767, ri/b=0.1,
s/b=0.1 (perforated shroud at
the periphery). 1–3 –
experiments [139].
Computations, present
integral method, Eqs. (2.77)
and (2.79) [169]: 4 – n=1/9;
5 – 1/8; 6 – 1/7; 7 – model of
the Ekman-type layers (6.21),
n=1/7. Lines A and
experiments 1 – Cw=940; B
and 2 – 1414; C and 3 – 2500

modelling the mass flowrate through the boundary layer (see Chap. 3). The data
for β calculated in [139] are close to the data calculated using the present integral
method for n=1/7; however, the advantages of the present method consist in the
possibility of varying values of the exponent n from 1/7 to 1/9 to achieve the best
agreement with the experimental data (see Figs. 6.4 and 6.5).

Based on the model for the Ekman layers, mass flowrate through the boundary
layer can be calculated from the following equation:

ṁd/(μr) = ε∗m sgn (1 − β) |1 − β|2(n+1)/(3n+1) Re(n+1)/(3n+1)
ω . (6.20)

Transforming Eq. (6.20) and taking into account that ṁd
/

ṁ=0.5, one can obtain
for the Ekman-type layers

β = 1 − εβY−0.5(5n+1)/(n+1), (6.21)

where Y = xλ−(3n+1)/(5n+3)
T , λT = CwRe−(n+1)/(3n+1)

ϕ . The parameter εβ =
(
0.5

/
ε∗

m

)0.5(2n+1)/(n+1) for n=1/7; 1/8; 1/9; 1/10 takes the values εβ=2.23; 2.581;
2.916; 3.256, respectively; in [139], εβ=2.21 for n=1/7. The dependences of β cal-
culated based on Eq. (6.21) for n=1/7 are given in Figs. 6.4 and 6.5 (curves 6 and 7,
respectively). Being noticeably different from the experimental data at the boundary
between the source region and the Ekman-type layers, curves based on Eq. (6.21)
merge very rapidly, following an increase in x, with the curves calculated by the
integral method. To account for this rather unexpected agreement, the authors of
work [139] calculated values of the individual non-linear terms in the integral equa-
tions; having relatively high absolute values, these terms compensate each other at
β>0.3.

Relations (6.11) [196] and (6.12) [43] are analysed in Figs. 6.3, 6.4 and 6.6.
Figure 6.6 is a repetition of the conditions in Fig. 6.4; the comparisons are made

with the curves plotted based on the present integral method [169] (as Fig. 6.4
shows, these curves agree well with the experiments of [139] and, hence, may be
considered as the baseline data for comparisons).
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Fig. 6.6 Variation of the swirl parameter β in a cavity with a perforated shroud at the periphery
for Cw=2500, β i=1, s/b=0.1 and ri/b=0.1 (experimental conditions of [139]): comparisons of the
present integral method, Eqs. (2.77) and (2.79), with the computations based on the models (6.11)
and (6.12). 1–4 – present integral method [169] (1–3 – n=1/7; 4 – n=1/9); 5–7 – Eq. (6.11); 8–10
– Eq. (6.12). 1, 5, 8 – Reϕ=1.1×106; 2, 6, 9 – 6.177×105; 3, 4, 7, 10 – 5.47×105

Equation (6.12) uses a number of empirical assumptions adapted to the experi-
ment conditions in the work [43]. A peculiarity of these conditions is a small span
of the zone of the Ekman-type layers (Fig. 6.3). Therefore, being in good agree-
ment with the experimental data of [43] (curves 5, 6 in Fig. 6.3), this model dis-
agrees substantially with the data of [139] for the conditions where well-developed
Ekman-type layers exist (curves 8–10 in Fig. 6.6).

On the contrary, assumptions of model (6.11) turned out to perform well for the
developed Ekman-type layers (curve 7 in Fig. 6.4, and curves 5–7 in Fig. 6.6) closer
to the end of this region (the agreement becomes better with increasing Reϕ), as well
as at the beginning of the source region (curve 7 in Fig. 6.3). In the vicinity of the
boundary between these two regions (over rather wide radial span), inaccuracies of
the calculated values of β are significant (Figs. 6.3, 6.4 and 6.6).

Strictly speaking, velocity vr,∞ in the source region is described by relation
vr,∞ = (ṁ − 2ṁd)

/
(2πrs), where s is the distance between the disks. In doing

so, the velocity vr,∞ itself becomes unknown. This leads to the necessity to solve a
third differential equation and thus complicates the integral method. Therefore, it is
interesting to investigate the cases

vr,∞ = (vr,∞ · r)i/r, (6.22)

vr,∞ = 0, (6.23)

which serve as the upper and the lower limit of vr,∞ distributions in the cavity,
respectively.

As Fig. 6.7 indicates, dependencies for the swirl parameter β obtained using
Eq. (6.22) are in better agreement with experiments [139] in the neighbourhood of
the boundary between the source region and the Ekman-type layers [167]. However,
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Fig. 6.7 Variation of the swirl parameter β in a cavity with a perforated shroud at the periphery
for Cw=2500, β i=1, s/b=0.1 and ri/b=0.1 (experimental conditions of [139]). 1–3 – experiments
[139]. Present integral method, Eqs. (2.77) and (2.79), n=1/7: 4 – Eq. (6.22), 5 – Eq. (6.23). Lines
A and experiments 1 – Reϕ=1.1×106; V and 2 – 6.177×105; S and 3 – 5.47×105

Eq. (6.23) also helps to obtain data that are in much better agreement with the exper-
iments than the simplified approaches by other researchers analysed above.

6.2.3 Local Nusselt Numbers

A validation of the present integral method, Eqs. (2.77), (2.78), (2.79) and (2.80),
has been performed via its comparisons against experimental data presented in
works [77, 134, 135]. Data shown in Figs. 6.8, 6.9, 6.10, 6.11 and 6.12 are par-
tially based on the results published by the author of the present work in papers
[164] and [167], respectively.

In experiments [77] performed for β i=1, Tw=const and axial inlet into a cavity,
only a source region existed. The measured Nusselt numbers (data 1 and empirical
curve 2 in Figs. 6.8 and 6.9) were approximated with Eqs. (6.13), (6.14) and (6.15).
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Fig. 6.8 Variation of the
local values of Nu versus Reω

for β i=1, Ni=0.3333,
ri/b=0.245, s/ri=0.18,
Tw=const and Reωi=6×104.
1, 2 – experiments and their
approximation [77]; 3 – Eq.
(6.13) [77]; 4 – present
integral method, Eqs. (2.77)
and (2.78), upper curve for
αi=6.5, lower curve for
αi=4.4
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Fig. 6.10 Radial variation of
the Nusselt numbers for
β i=0, Reϕ=1.9×106,
ri/b=0.103, s/b=0.138,
(s/ri=0.776), b=0.428 m,
dTw/dr>0. 1, 2– experiments
[134, 135]. The present
integral method, Eqs. (2.77),
(2.78), (2.79) and (2.80): 3 –
n=1/7; 4 – n=1/9. Lines A
and experiments 1 –
Cw=13,000; B and 2 – 2800

Experimental data for the Nusselt number obtained in [77] exceed those computed
based on Eq. (6.13) (see curve 3 in Fig. 6.8) by 10–20%. This was caused by the
turbulization effect of protrusions on the heaters glued on the disk, and thus creating
an artificially roughened working surface [77].

Computational data for the Nusselt number obtained via a numerical solution of
Eqs. (2.77), (2.78), (2.79) and (2.80) using the Runge-Kutta method for n=nT=1/7
[164] are shown in Figs. 6.8 (curves 4) and 6.9 (curves 3 and 4).

For Reω≥1.6×105, the computed curves practically coincide with curve 3 plotted
in Fig. 6.8 based on Eq. (6.13) and curves 3 and 4 plotted in Fig. 6.9 based on
Eqs. (6.14) and (6.15). For Reω=6×104–1.6×105, or in other words for r/ri=1–1.5,
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Fig. 6.11 Radial variation of
the Nusselt numbers for
Reϕ=1.9×106, β i=0,
ri/b=0.103, s/b=0.138,
b=0.428 m, dTw/dr>0. 1, 2–
experiments [134, 135].
Present integral method, Eqs.
(2.77), (2.78), (2.79) and
(2.80), n=1/7: 3 – k=0.5; 4 –
0.25; 5 – 0.03. Lines A and
experiments 1 – Cw=13,000;
B and 2 – 2800
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Fig. 6.12 Radial variation of
the boundary layer thickness
for Cw=13,000, Eqs. (2.77),
(2.78), (2.79) and (2.80),
n=1/7: 1 – k=0.5; 2 – 0.025;
3 – 0.03 (for the other
conditions see Fig. 6.11)

computed values of Nu can lie either higher or lower than curves plotted based on
Eqs. (6.13), (6.14) and (6.15) depending on an initial value of the tangent of the flow
swirl angle on the wall αi. Thus, an adjustment of the initial value αi provides an
opportunity in frames of the integral method to take into account the heat transfer
augmentation in the area of the axial inlet into the cavity. As seen from Fig. 6.9,
empirical equations (6.14) and (6.15) do not provide a solution for this problem,
because they are valid just for the specific conditions of work [77]. It appeared also
that Eqs. (6.14) and (6.15) fail to perform as expected for Ni=0.1667 (Fig. 6.9c).

Experimentally measured distributions Tw(r) for dTw/dr>0 for the downstream
disk and an axial inlet into the cavity [134, 135] obtained for Reϕ=1.9×106,
Cw=13,000 and 2800 were approximated by the seventh-order polynomial Tw =∑7

0 Ciri, where coefficients Ci are [164]:

(a) Ci = 293.305; 300.811; –242.70; 0; 0; 0; 0; 0 for i =0,. . .,7 in the region 0≤ r
≤ 0.138 m;

(b) Ci = 660.529; –10406.3; 127631; –810784; 2957727; –6260010; 7207170; –
3529663 for i =0,. . .,7 in the region 0.138 m ≤r≤ 0.428 m.
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In experiments [134, 135], non-swirling flow (β i=0) was axially fed into the
cavity. It is evident from Eq. (2.76) that, under condition β i=0, the radial mass
flowrate through the boundary layer in the source region significantly exceeds that in
the above-analysed case β i=1. Hence, in experiments [134, 135], authors observed
appearance of the Ekman-type layers. In the region of entraining boundary layers,
the temperature of the core T∞ is constant and equal to Ti. In the region of the
Ekman-type boundary layers, entrainment of cold air from the flow’s core ceased,
and these layers start to give the heat back to the flow’s core; so, the temperature T∞
increases, thus becoming one of the unknowns. Therefore, in the definition of the
Nusselt number Nu = qwr/[λ(Tw − Ti)], authors [139] used the known temperature
Ti instead of T∞. This results in that local Nusselt numbers are to be calculated
using the following relation [139]:

Nu = St
V∗r

ν
Pr

Tw − T∞
Tw − Ti

. (6.24)

Experimental data [134, 135] and predictions using the present integral method,
Eqs. (2.77), (2.78), (2.79) and (2.80) (see Fig. 6.10), reveal qualitatively different
behaviour of the Nusselt numbers calculated by Eq. (6.24) in the source region
and in the Ekman-type layers. In the source region, T∞ =Ti, the last factor in Eq.
(6.24) is equal to unity, and the Nu values increase qualitatively in the very same
way as data in Fig. 6.8. In the region of the Ekman-type layers, the temperature
T∞ increases (according to Eq. (2.80)), the last factor in Eq. (6.24) decreases with
increasing T∞, thus resulting in a corresponding decrease in the Nusselt number.
Calculated data for the case Cw=2800 (or Cw/Re0.8

ϕ = 0.027) agree fairly well with
experiments [134, 135], while for the case Cw=13,000 (or Cw/Re0.8

ϕ = 0.222) rather
significant differences are observed.

In works [134, 139], experimental conditions of [134, 135] were simulated using
an integral method based on a linear approximation of the tangent of the flow swirl
angle in the boundary layer and model assumptions (2.56) for the enthalpy thickness
modified in [134, 139] to the form of Eqs. (3.106), (3.107), (3.108) and (3.109). Sim-
ulations [134, 139] are in good consistency with computational curves in Fig. 6.10.
This is an evidence of the fact that inexactitudes of the model assumptions [134,
139] produce weak effect on the Nusselt number for the same distribution of the
disk temperature Tw. It is obvious that in the near-inlet region, which is dominated
by an impinging jet making a 90 degree-turn, one can observe not only augmented
Nusselt numbers (Fig. 6.10), but also increased radial mass flowrates through the
boundary layer (in comparison with Eq. (2.76)), resulting in the earlier entrainment
of air from the flow’s core into the boundary layers and further formation of the
Ekman-type layers. The latter phenomenon is evident from data in Fig. 6.10.

The effect of the exponent n taking values 1/7 or 1/9 is practically insignificant
for the relatively low mass flowrate Cw=2800 and becomes more visible in the
Ekman-type layers for the high mass flowrate Cw=13,000, with the value n=1/9
resulting in the lower Nusselt numbers.



6.2 Radial Outflow Between Parallel Co-rotating Disks 161

A comparative investigation of effects of the boundary conditions (6.22) and
(6.23) on the distributions of the Nusselt numbers in the cavity is elucidated in
Fig. 6.11 [167]. The Nusselt numbers were calculated in such a way that over a
certain initial radial length of the source region Eq. (6.22) was used, and further on
the remaining radial length of the cavity Eq. (6.23) was applied. Transition between
these lengths took place at a location where the condition ṁd = kṁ was satis-
fied. Here k=0.03, 0.25 and 0.5 (the Ekman-type layers started developing always
for k=0.5). Curves for the Nusselt number in Fig. 6.11 are close to each other for
Cw=idem. Note the deflection in the curve A following the transition from Eq. (6.22)
to Eq. (6.23). At k=0.5, a jumpwise decrease in the Nu distribution is observed (the
beginning of the Ekman-type layers).

An explanation of this phenomenon can be found in Fig. 6.12: variation of the
boundary layer thickness δ/b exhibits a deflection or a jump at the radial location
where the law of v r,∞ changes from Eqs. (6.22) to (6.23). The decreasing func-
tion δ/b of x corresponds to the Ekman-type layers. An upward jump at the begin-
ning of this region for k=0.5 can be explained based on Eq. (2.76) for the mass
flowrate in the boundary layer. At the end of the source region, the velocity v r,∞
decreases jumpwise from a non-zero value to zero; the smaller this non-zero value
is, the smaller the jump of the Nu number occurs. These peculiarities are practi-
cally absent in curve B in Fig. 6.11, because for Cw=2800 (i.e. for Reϕ=idem)
the value of vr,∞ at the location of the transition between the source region and
the Ekman-type layers is close to zero. Graphical data for the dependence of δ/b
on x at n=1/9 analogous to those depicted in Fig. 6.12 are documented in the
work [167].

6.2.4 Effect of the Radial Distribution of the Disk Surface
Temperature

It was shown above (see Chaps. 3, 4 and 5) that the law of radial variation of the
disk surface temperature affects significantly heat transfer rate over the disk. It was
therefore interesting to validate the present integral method via simulations of heat
transfer for radially outward turbulent flow in a cavity between rotating disks for
different laws of variation of the disk surface temperature Tw [170]. Distributions of
Tw used as boundary conditions in the computations were those obtained experimen-
tally in works [134, 139] and presented there in the form of smoothing curves. To
employ these distributions of Tw in computations using the present integral method,
they were approximated by the author [170] in a functional form of the seventh-
order polynomial with respect to r. These distributions are shown in a transformed
form in Fig. 6.13.

Variations of the centreplane temperature T∞ and Nusselt numbers for positive,
approximately constant and negative radial gradients of Tw are shown in Figs. 6.13
and 6.14.

Computations were compared with the experimental data both for Tw and the Nu
numbers for the upstream disk presented in works [134, 139]. The experiments [134,
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139] selected for the comparisons were carried out for β i=0, Reϕ=(3.2–3.3)×106,
ri/b=0.103, s/b=0.138, b=0.428 m, Cw=7000 (or Cw/Re0.8

ϕ = 0.044). Majority of
the computations were performed for n=1/10; this value corresponds to high Reϕ

numbers observed in experiments. Use of a higher value n=1/7 leads to worse agree-
ment of the computed Nusselt numbers with the experimental data (see Fig. 6.14).
As mentioned in Chap. 3, temperature profiles are more conservative with respect
to the Reϕ numbers; this caused a choice of the value nT=1/7 for the parameters of
the thermal boundary layer [170].

In the region of the entrainment boundary layers (source region), condition
T∞=Ti holds, while the Nusselt number increases like in the case of fluid flow over
a free rotating disk. In the region of the Ekman-type layers, the rate of increase in the
Nusselt number slows down, and finally the Nu values begin to decrease (Fig. 6.14)
due to increase in the local values of T∞ (Fig. 6.13). This decrease in the region
of the Ekman-type layers is more distinct, and the smaller the difference between
temperatures Tw and T∞ is due to their actual radial distributions.



6.2 Radial Outflow Between Parallel Co-rotating Disks 163

Both the experiments and the calculations using the present integral method
show that for cases dTw/dr≈0 and dTw/dr<0, a region of negative Nusselt num-
bers emerges in the periphery. Physically this means that, because of the high
rate of decrease in the wall temperature Tw and increase in the centreplane tem-
perature T∞, there emerges a region in which the temperature T∞ becomes
higher than the disk temperature Tw (Fig. 6.13). This leads to change in sign of
heat flux on the disk surface: the air begins to heat up the disk rather than the
reverse, as occurred practically in the entire cavity at lower values of the radial
coordinate r.

Thus, based on the results of the application of the present integral method to
simulations of fluid mechanics and heat transfer for the cases where underswirled
(β i=1) radially outward flow enters a cavity, one can make the following conclu-
sions.

The integral method for the turbulent boundary layer based on the power-law
approximation of the tangential velocity component vϕ and quadratic approximation
of the tangent of the flow swirl angle tanϕ described in Sect. 2.4 allows obtaining
a good agreement of simulations with known experimental data [77, 134, 135, 139]
for a series of cases of radially outward flow in a cavity between parallel rotating
disks, which cannot be attained with the help of integral methods developed earlier
[43, 77, 196].

Advantages of the present integral method in comparison with the integral
method developed in [139] consist in taking into account the radial flow outside
of the boundary layer in the cavity and more accurate approximation of the radial
velocity v r component in the boundary layer (to remind, method [139] is based on
the von Karman’s linear approximation of v r ). This allows in a number of cases
to increase accuracy of computations, in particular, at the expense of varying the
value of the exponent n in the power-law approximation of the velocity profiles.
Besides, the model of heat transfer based on the power-law approximation (2.58) of
the temperature profiles in the thermal boundary layer also exceeds in its accuracy
the approach based on the theory of local modelling, Eq. (2.56), used by the authors
of [139] in the form of Eqs. (3.106), (3.107) and (3.108).

The present integral method, Eqs. (2.77), (2.78), (2.79) and (2.80), like the
method of [138, 139], takes into account different conditions of fluid flow and
heat transfer in the source region and the Ekman-type layers. Models (2.77), (2.78),
(2.79) and (2.80) are valid for arbitrary radial distributions of the temperatures on
the wall Tw and at the centreplane T∞.

In case of high mass flowrates and axial inlet into the cavity (in particular, for
C w =13,000), the present integral method becomes inaccurate: apparently, in the
region around the inlet into the cavity mass flowrates in the boundary layer exceed
values computed from Eq. (2.76), and therefore the Ekman-type layers develop
much earlier (at smaller local radii). Approaches to account for this phenomenon
in the integral methods have not been developed so far.

Effect of the law of variation of the radial velocity outside of the boundary
layer is rather weak. However, use of Eq. (6.22) leads to obtaining more accurate
data, whereas possible jumpwise changes in the curve of the Nusselt number vari-
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ation at the boundary between the source region and the Ekman-type layers can be
rather easily eliminated using standard procedures of smoothing the computational
data.

Effect of the law of radial variation of the disk surface temperature on the Nusselt
number is weak in the source region and becomes however decisive in the Ekman-
type layers. For negative or approximately constant radial gradients of the disk sur-
face temperature, a region with negative Nusselt numbers (reversed direction of the
wall heat flux) can emerge within the radial span of the Ekman-type layers.

6.3 Effect of the Flow Overswirl

Rotating cavities formed by parallel disks with radially outward flow therein func-
tion as radial rotating diffusers. They are used in gas turbines to compress air in the
cooling system [86, 139, 166, 196]. If non-swirling flow enters a cavity, the increase
in the pressure rate is limited by the geometric dimensions of the diffuser. Swirl of
incoming flow (β i 
=0) enables, in particular, to attain an additional transformation
of the velocity into pressure.

Overswirl of flow (β i>1) supplied radially outwards into a cavity changes its
physical structure in the vicinity of the walls: a zone of reverse radially inward flow
emerges on the disks in the region where β i ≥β≥1, while near the centreplane of
the cavity radially outward flow still persists. In other words, in the region where
β i ≥β≥1, recirculation flow emerges (Fig. 6.15). A radial coordinate, where β=1,
becomes a location where (a) ring-like impinging jets hit the surfaces of both disks
and (b) because of this, two boundary layers originate on each disk developing fur-
ther in the opposite directions. Flow structure in the region of fully radially outward
flow for β i ≤1 is traditional: a part of the cavity is occupied by the source region in
which entrainment boundary layers develop and afterwards the Ekman-type layers
can originate (for ṁ = 0.5ṁ = const).

In works [79, 145], overswirled flow (co-rotating with disks) with β i =2.01 was
axially supplied into the cavity at the radial location x i =0.44 and impinged onto
the downstream disk at x=0.5. For x<0.5, recirculation flow developed being radi-
ally inward on the disks; for x>0.5, flow over the disks was radially outward. For
x<0.6, predicted Nu numbers exhibit the trends peculiar to impinging jets (with a Nu
number maximum at x=0.5). Further downstream for 0.6<x<0.95, the Nu number
curves show the behaviour typical for boundary layer flows.

As well known, results of numerical simulations of the two- and three-
dimensional flows are rather sensitive with respect to a choice of turbulence model,
in particular, in singularity points. In simulations [145], two turbulence models
were used, namely the model of Morse (1) [128, 129] and the model of Launder-
Sharma (2) [101]. Details of the numerical solution of the Navier–Stokes and energy
equations in a rotating cavity using an original in-house elliptic solver are doc-
umented in work [145] and references therein. Curves of the Nusselt number
predicted using the turbulence model of Morse [128, 129] agree with the experimen-
tal data much better than those obtained using the Launder-Sharma model [101].
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Fig. 6.15 Streamlines (a) and swirl parameter β=vϕ /ωr variation (b) in the rotating cavity with
flow overswirl at the inlet (β i>1) [79, 145]. 1 – local value of β at z=s/2 [145]; 2 – free vortex
(6.9); 3 – present integral method [166]

This section contains results of simulations of fluid flow and heat transfer in rotat-
ing cavities where air enters radially outwards being overswirled at the inlet with
β i>1 (Fig. 6.15). The simulations were performed using the present integral method,
Eqs. (2.77), (2.78), (2.79) and (2.80) [166]. In the recirculation and source regions,
vϕ,∞ follows the free-vortex law (6.9). On the outer boundary of the boundary layer
in the recirculation region and in the Ekman-type layers, boundary condition (6.22)
for vr,∞ is used, while in the source region, the value vr,∞ is specified using both
Eqs. (6.22) and (6.23). Results of computations are compared with experimental
and computational data obtained in the work [145]. The region of fluid flow near the
outlet opening from the cavity located in the downstream disk was not considered
for computations.

Predictions were carried out for β i=1.5; Reϕ=1.5×106; Cw=8730; λT=0.1;
ri=0.1 m, b=0.206 m; s=0.005 m. The wall temperature Tw was described by
the seventh-oder polynomial Tw = ∑7

0 Ciri, where coefficients Ci for i=0–7 were
equal to Ci = 3103.5; 188545; –4362370; 54725200; –402333000; 1735320000;
–4067840000; 4000000000, respectively; Ti = 293 K.

As said above, the point β=1 is the origin of two boundary layers developing
oppositely. In view of the features of the integral method, each of these layers was
calculated separately. Data for the parameter β in the Ekman-type layers obtained
with the help of the present integral method and in computations of [145] correlate
well (Fig. 6.15).
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Fig. 6.16 Nusselt numbers in
the cavity. 1, 2 –
computations of [145]; 3–6 –
present integral method. 1 –
turbulence model 1 [128,
129]; 2 – turbulence model 2
[101]; 3 – underswirled flow,
α1=0.7; 4 – underswirled
flow, α1=5.5; 5 – overswirled
flow, α1=0.7; 6 – overswirled
flow, α1=15 [166]

Heat transfer in the region of underswirled flow (β<1) is characterized by the fol-
lowing features (Fig. 6.16). Near the point β=1, the Nusselt number predicted using
the integral method for α1=0.7 (subscript “1” here means conditions for β→1) is
noticeably lower than the results computed in [145]. This zone is fairly short, and
afterwards the Nusselt numbers obtained using both methods practically coincide up
to the outlet opening region, where the integral method is inapplicable. An increase
in the initial value of α1 brings results of the integral method noticeably closer to
those of [145]. For α1=5.5, the curves for both methods practically coincide.

The improving effect of increased values of α1 can be understood via considering
the definition of this quantity α = −τwr/τwϕ . In the region of the singularity point
β=1, the shear stresses τwϕ tend to zero, whereas τwr remain non-zero as a result
of the persistent radial flow. An analogy to this phenomenon can be found in Chap.
5, where fluid flow in the stagnation region of a jet impinging onto an orthogonal
surface is considered. It seems rather difficult to propose a justifiable method of
determining α1. Clearly, the magnitude of α1 should not be smaller than the values
for the Ekman layers at β=idem [5] and, at the same time, should not generate mass
flowrates in the boundary layer (Eq. (2.76)) exceeding 0.5 ṁ. It is worth noting
that α distributions (Fig. 6.17) for various α1 merge at a certain value of the radial
coordinate, the same coordinate where the relations for the Nusselt number merge.
The value of α predicted in [145] does not have such a pronounced maximum in the
vicinity of the point where β=1, and agrees well with the results obtained using the
present integral method starting approximately from the point where the different
curves for the Nusselt number merge.
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Fig. 6.17 Tangent of the flow
swirl angle on the wall. 1 –
computations of [145]; 2–4 –
present integral method; 2 –
underswirled flow, α1=0.7;
3 – underswirled flow,
α1=5.5; 4 – overswirled flow,
α1=15 [166]

To remind, the effects of the initial value of α on the Nusselt number over a
certain span of the radial length near the inlet to the cavity were already discussed
above while considering initially underswirled flows (Figs. 6.8 and 6.9).

Heat transfer in the region of overswirled flow has the following characteristic
properties. Whilst moving from the point where β=1 towards decreasing r, the Nu
numbers predicted using the integral method for α1=0.7 increase monotonically
from zero to finite values for β=1 at the cavity inlet. These values are in fair agree-
ment with the results of [145] near the inlet to the cavity. However, the coincidence
ends here. When moving towards increasing r from the cavity inlet, the Nusselt
numbers computed in [145] increase rather than decrease. Apparently, the computa-
tions of [145] are closer to reality, since the point where β=1 represents a stagnation
region where a kind of a ring-like jet, which recirculation flow look like at the point
of its reattachment to the wall, impinges onto the disk. As shown in Chap. 5, the
Nu numbers for impinging jets have a maximum at the stagnation point and further
decrease in its vicinity. A relative weakness of the methodology used in [145] as well
as in other kinds of currently existing CFD software is that the results of simulations
depend on turbulence model chosen, especially at the singularity points. In the case
under consideration, turbulence model 1 [128, 129] appears to be more preferable.
However, a local minimum at the point where β=1 instead of a maximum calls for
an explanation.

As for the integral method, the condition Nu=0 at β=1 is incorporated in its
mathematical model by its very nature. This indicates inadequacy of some model
assumptions of the method as applied to recirculating flows. It was necessary to use
the value α1=15 to obtain Nu number distributions more or less consistent with
the computations [145] (Fig. 6.16). However, this success is restricted, since, again,
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recommendations for selection of α1 in this case are unclear. For example, use of
the value α1=15 for other values of β and Cw lead to results that were in worse
agreement with the computations based on the methodology [145] and described in
work [78].

Thus, the above investigation of the fluid mechanics and heat transfer for the
cases where overswirled flow enters a cavity allowed making the following conclu-
sions.

The flow overswirl at the cavity inlet results in development of a recirculation
flow region for β i ≥β≥1.

Modelling of recirculation flows in rotating cavities necessitates use of method-
ology involving solutions of the complete elliptic Navier–Stokes equations. In addi-
tion to this, careful validations are needed in order to select an optimal turbulence
model for this class of flows.

Integral methods are effective in the underswirled flow region even when β i>1 at
the inlet to the cavity. However, in the neighbourhood of the point β=1 and in
the recirculation region, the present integral method provides markedly lower Nu
numbers for traditional initial values α1=0.5–0.7 or requires high values α1=5.5–
15 to improve accuracy of predictions. Also, the problem of the zero values of the
Nu number obtained using the integral method at the location where β=1 remains
unresolved.

6.4 Aerodynamics and Heat Transfer in a Rotating-Disk
Air Cleaner

6.4.1 General Characteristics of the Problem

Radially inward flow in rotating-disk cavities takes place in compressors, rotating-
disk air cleaners, etc. [139, 145, 188, 202]. If the vector of the radial velocity com-
ponent of flow fed into the cavity in its periphery is directed towards the axis of
rotation of the disks (i.e. radially inwards), the initial underswirl of flow (β i<1)
results in emergence of recirculation flow in a region of the cavity where β i≤β≤1.
In this region, flow moves radially inwards near the centreplane of the cavity, while
over the disks radially outward flow develops. As the main flow moves further radi-
ally inwards, swirling effect of the disks results in increase in the tangential velocity
component of flow, so that the parameter β reaches a value of 1 at a certain radial
location, which means the end of the recirculation flow region. Further streamwise
(i.e. radially inwards), the Ekman-type layers develop on the disks at a radial loca-
tion re. Finally, flow leaves the cavity at lower radii [139].

Experiments for radially inward flows in rotating cavities of gas turbines with a
perforated peripheral shroud elucidating these phenomena were analysed in detail
in [139].

The present section describes data of numerical simulations of fluid mechanics
and heat transfer in radially inward fluid flow in a rotating-disk air cleaner based on
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Fig. 6.18 Rotating air
cleaner with radially inward
air flow between the disks
[202]

results obtained in [188]. Modelling of recirculation flow required to solve numer-
ically the full elliptic Navier–Stokes and energy equations, which was performed
with the help of the commercial CFD code Phoenics.

6.4.2 Geometrical and Regime Parameters of the Air Cleaner

Rotating air cleaners are widely used in industrial and technological processes [88,
188, 202]. In rotating air cleaners, separation of dust particles takes place due to
effects of centrifugal forces in two-phase flow in channels of a rotor. By the direc-
tion of fluid flow in the rotor, the entire variety of design of rotating air cleaners can
be divided into three groups. The first group includes air cleaners where air flows
along axial channels of the rotor (i.e. parallel to the axis of rotation). The second
group includes air cleaners in which main air flow and dust move in the radially
outward direction. The third group includes air cleaners in which air is sucked by a
fan into the rotor channels and moves radially inwards from periphery towards the
axis of rotation (Fig. 6.18). Centrifugal forces push dust particles to a casing and
then towards a dust collector. Devices of this type require high specific energy for
driving the rotor, as compared to devices of the first two groups [88, 202]. However,
none of the known works, except for work [188], attempted to model aerodynamics
in the third-group devices to elucidate the reasons for the increased energy use and
identify methods for optimization of such devices. In work [188], simulations of
aerodynamics of a carrying phase (air) in absence of solid particles using a com-
mercial code Phoenics (version 3.5.1) were carried out. Since incoming air flow is
often more (or less) heated compared to the air cleaner, heat transfer in this device
has been also simulated.

Figure 6.19 shows a segment of the air cleaner used as a model for numerical
computations by means of the Phoenics code. This model included three disks with
an identical outer radius b and height h between disks rotating with frequency n
(r.p.m.). One of the disks was solid, while the other two had an internal hole with
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Fig. 6.19 Model of the
rotating air cleaner used in
simulations with the help of a
commercial Phoenics code
[188]

a radius a. Since the problem is axisymmetric, modelling was performed using a
segment with the angle of 0.1 rad.

Air was fed into the cavities between the disks with the volumetric flowrate Q
(m3/h). The number of cavities between the disks in a real industrial prototype was
39; one of them was solid and the rest 39 had internal holes in the centre. In simu-
lations, the number of cavities m between the disks, through which the flowrate Q
was pumped, varied that affected the magnitude of the air velocity at the inlet to the
model air cleaner (see Table 6.2).

The radial flow velocity at the inlet to the cavity vri was calculated based on the
formula

vri = Q

3600 · 2πbhm
. (6.25)

Tangential vϕi and axial vzi velocity components at the inlet to the cavities were
also specified as regime parameters.

Angular velocity of rotation of the disks ω (rad/s) was determined from the
relation

ω = 2πn/60. (6.26)

In simulations using the Phoenics code [188], an excess static pressure field P
was computed relative to the atmospheric pressure. It was assumed that the excess
pressure was equal to zero at the outlet from the device, while the magnitude of P
at the inlet was determined from computations. The physical meaning of the value
P at the inlet is therefore the pressure needed to pump air through the chosen model
of the air cleaner or, which is the same, the pressure losses in this model.

Values of the geometric and regime parameters of the rotating air cleaner used
in simulations are documented in Table 6.2. Variant 1 was taken as the baseline,
while the others were selected in such a way that one or two parameters varied
in comparison with variant 1. Variants 13 and 14 stand aside from the common
sequence, because in these variants external and internal radii of the cleaner varied,
with the ratio between them remaining approximately the same.

Heat transfer was simulated for the baseline variant 1. In investigations fulfilled
in work [188], only modelling of temperature field in the cleaner was performed.



6.4 Aerodynamics and Heat Transfer in a Rotating-Disk Air Cleaner 171

Table 6.2 Regime and geometric parameters of the rotating air cleaner in simulations [188]

No Geometric parameters Regime parameters
b, m a, m m h, m n, r.p.m. ω, rad/s Q, m3/h v ri , m/s v ϕi , rad/sv zi ,

m/s

1 0.4 0.3 39 0.008 1500 157.08 3000 –1.063 0 0
2 0.4 0.3 39 0.008 1500 157.08 1500 –0.531 0 0
3 0.4 0.3 39 0.008 3000 314.16 3000 –1.063 0 0
4 0.4 0.3 39 0.008 750 76.214 3000 –1.063 0 0
5 0.4 0.3 39 0.012 1500 157.08 3000 –0.709 0 0
6 0.4 0.3 39 0.004 1500 157.08 3000 –2.126 0 0
7 0.4 0.2 39 0.008 1500 157.08 3000 –1.063 0 0
8 0.4 0.3 39 0.008 1500 157.08 3000 –1.063 31.4 0
9 0.4 0.3 39 0.008 1500 157.08 3000 –1.063 31.4 –2
10 0.4 0.3 78 0.004 1500 157.08 3000 –1.063 0 0
11 0.4 0.3 26 0.012 1500 157.08 3000 –1.063 0 0
12 0.4 0.3 19.5 0.016 1500 157.08 3000 –1.063 0 0
13 0.3 0.22 39 0.008 1500 157.08 2250.6 –1.063 0 0
14 0.2 0.12 39 0.008 1500 157.08 1500 –1.063 0 0

6.4.3 Parameters of the Computational Scheme

The total height of computational domain (coordinate z) was equal to 2h, angular
segment (coordinate ϕ) was limited by 0.1 rad and the maximum external radius of
the domain equalled to b.

Parameters of the computational mesh for the model domain used in simulations
were as follows:

(a) 80 cells in the radial direction, with an even distribution in each region; of them,
60 cells in the region 0≤r≤a, and 20 cells in the region a≤r≤b for all variants
1–6 and 8–14; 40 cells in the region 0≤r≤a and 40 cells in the region a≤r≤b
for variant 7;

(b) 120 cells in the axial direction (coordinate z); of them, 30 cells in each region
0≤z≤h/2, h/2≤z≤h, h≤z≤3h/2 and 3h/2≤z≤2, with the mesh being refined
in the direction from the centreplanes of the cavities (values z=h/2 and 3h/2)
towards the surfaces of the disks (stretching factor 2.0);

(c) one cell along the coordinate ϕ, because the problem is axisymmetrical.

Turbulent flow parameters were calculated using the k–ε turbulence model [100],
whereas the solver is based on the finite-difference method.

6.4.4 Results of Simulations

Geometric division of the air cleaner domain into the hole region in the disks for
0≤r≤a and the region of cavities between the disks for a≤r≤b determines principal



172 6 Outward Underswirled and Overswirled Radial Flow

0.000 0.004 0.008 0.012 0.016

–3

–2

–1

0

1

2

3

4

0.29

r  = 0.175

0.30.315r  = 0.345

0.05

Vr, m/s

z, m

Fig. 6.20 Variant 1: radial
velocity variation over the
height of the air cleaner

0.000 0.004 0.008 0.012 0.016
0

10

20

30

40

50

60

70

0.175

r = 0.31

 0.3

0.295

0.4

z, m

Vϕ, m/s
Fig. 6.21 Variant 1:
tangential velocity variation
over the height of the air
cleaner

features of flow aerodynamics in these regions. Results of computations of the
velocity components and static pressure in the air cleaner partially published in
[188] are presented below in Figs. 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.26 and 6.27.

Flow of air in the hole region is radial outward, close by its features to the flow
near a free rotating disk (Chap. 3), whose role is played in this case by the lower
solid disk. The tangential velocity component vϕ varies from the value ωr on the
solid disk at z=0 to zero at z→2h. Radial velocity component vr has a form typical
for wall jets (similar to flow near a free rotating disk) directed radially outwards. The
axial velocity component vz is directed downwards (towards the solid disk), which
was caused by the need to compensate the volume of air pushed due to pumping
effect of the solid disk radially outwards to the region with r→a.

Main features of aerodynamics in the cavities between the disks are similar to
those described above for rotating-disk cavities in gas turbines.

Variant 1. For the baseline variant 1, radial flow of air near the centreplane of the
cavity between the disks at the inlet to it (r is somewhat smaller than b) is radially
inward with vr≈const, whereas on the disks boundary layers exist with radially
outward flow within them vr>0 (Fig. 6.20).
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Tangential velocity component vϕ at the inlet to the cavity for variant 1 (and all
the other variants, where vϕ was specified zero at the inlet), in fact, acquired some
small non-zero value. This agrees with experimental results of [138], on the basis of
which the authors of [138] introduced an idea of an efficient swirl parameter at the
inlet into the cavity. This swirl is formed practically instantly and is related to the
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process of flow restructuring. Further, with a decrease in the coordinate r, velocity
component vϕ was virtually constant vϕ=vϕs over the height of the cavity forming
a boundary layer in the vicinity of the disks, whereas vϕ varied from the value vϕs
to ωr on the surfaces of the disks (Fig. 6.21).
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Within a narrow radial region r<a, radially outward flow from the hole region and
radially inward flow leaving the space between the disks collided, turned and moved
upwards along the axis of rotation of the air cleaner, and finally left the hole region
at z=2h (Fig. 6.22). Thus, two opposite air flows were observed in the outlet cross-
section of the cleaner, with one of them (non-swirling) moving into the air cleaner
towards the solid disk and occupying almost the entire hole region. The second
flow (with the tangential velocity vϕ≈0.5ωr) moved outwards from the solid disk,
being confined within a narrow region at r≤a. Radial variation of the axial velocity
component is qualitatively the same for all variants 1–14.

Effective parameter of swirl β at the inlet into the cavity was equal to 0.11. Then,
the value of β gradually increased with a decrease of r due to the swirling effect
of the disks (Fig. 6.23). In the radial location r≈0.315, the value of β near the
centreplane of the cavity became equal to unity; and with the further movement of
flow towards smaller r, the flow became overswirled relative to the disks (vϕ>ωr)
over the entire height of the cavity.

Radial variation of vrs is similar for all variants: a minimum point was observed
at a certain radial location in the cavity (which corresponded to maximum strength
of inward flow between the disks), whereas in the hole region, a maximum of radi-
ally outward flow due to pumping effect of the bottom solid disk was observed. The
values vrs are close to zero in the region where radially inward and outward flows
collide, i.e. where r→a (Fig. 6.24). In the region where β>1, flow becomes radially
inward over the entire height of the cavity (Fig. 6.24).

Total pressure drop in the air cleaner occurred almost in full over the cavities
region between the disks, while in the hole region the pressure was practically con-
stant (Fig. 6.25).

Compared to variant 1, the swirling effect of the disks on forced radial flow
is amplified in the following cases: with a decrease of the air flowrate (and vri) in
variant 2; with a decrease of the disk rotational velocity in variant 3; with an increase
in the height of the inter-disk spacing in variants 6 and 10; with shifting the disk hole
radius inside the air cleaner to the value a=0.2 m in variant 7; with an increase in
the tangential velocity of flow at the inlet to the cavity in variants 8 and 9; with a
relative enlarging cavities region between the disks in variant 14. This effect is most
prominent in variant 7, where an extended region of overswirled flow is observed for
r=0.2–0.315 m, with a maximum value of the swirl parameter β=1.67 being located
at r=0.215 m (Figs. 6.23 and 6.26). In the region of underswirled flow at the inlet
into the cavities, there is a substantial radially outward flow in the boundary layers
on the disks, whereas in the region of overswirled flow radially inwards developing
boundary layers emerge with pronounced radial velocity maxima near the disks
(Fig. 6.27).

Enhancement of the overswirled flow region and an increase in the rotational
velocity of the disks increase the pressure drop required to pump flow through the
air cleaner (Fig. 6.25).

Compared to variant 1, the swirling effect of the disks on the forced radial flow
weakened, the overswirled flow did not develop and the pressure drop across the
cavity decreased in the following cases: with a decrease in the angular speed of disk
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rotation in variant 4 and an increase in the inter-disk spacing in variants 5, 11 and
12 (Figs. 6.23 and 6.25).

An increase in the spacing between the disks resulted in some additional effects.
For instance, if the mass flowrate or the radial velocity at the inlet into the cavity
remained constant in variants 5, 11 and 12, the radially outwards developing bound-
ary layers on the surfaces of the disks became stronger.

Scaling of the air cleaner and keeping the same ratio between the external and
internal radii of the disks and a constant value of the radial velocity at the inlet to the
cavities (variants 13 and 14) in fact retained the unchanged basic features of flow
aerodynamics in the cavities and resulted in decrease in the pressure drop due to
decrease in the mass flowrate through the air cleaner (Fig. 6.25).

In work [188], a case of heat transfer was simulated where air with Ti=20◦S was
fed into the air cleaner, which was heated up to a constant temperature Tw=100◦S.
This corresponds to one of non-optimum operating modes of the air cleaner, in
which the surface friction was so high that the air cleaner was heated up to such
a high temperature. The temperature field in the air cleaner is similar to the field of
the tangential velocity component (Fig. 6.28).

A substantial difference of the temperature profiles in Fig. 6.28 from the pro-
files of vϕ consists in that the local temperature in the centre of the gap between
the disks cannot exceed the value of the wall temperature Tw. Maximum air tem-
peratures were observed near the outlet from the inter-disk cavity (r→a). Cold air
was constantly sucked into the outlet region from the outside; this air mixed with
heated air flowing towards the outlet region from the cavities between the disks.
More detailed investigations of heat transfer in the air cleaner were not performed
in [188].

Thus, based on the parametric studies of the aerodynamics of turbulent flow in
the rotating-disk air cleaner, the following conclusions were made. It is possible to
improve performance of the air cleaner in terms of reduction of pressure losses in
it, if regimes with flow overswirl are avoided. It is obvious that particle separation
can be improved, provided that radially outwards developing boundary layers on the
disks are enhanced, which is possible both if flow overswirl conditions are avoided
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and if the spacing between the disks is increased to some extent, compared to the
baseline variant 1, with all the other conditions being equal.

The investigation of the temperature field demonstrated that maximum air tem-
peratures are observed in the region of the outlet from the cavities between the disks
(r→a), while cold air is constantly sucked into the outlet region from outside.





Chapter 7
Laminar Fluid Flow and Heat Transfer in a Gap
Between a Disk and a Cone that Touches the
Disk with Its Apex

7.1 General Characterization of the Problem

Conical diffusers with stationary walls (Fig. 7.1) are known in engineering [158].
For modelling fluid flow in such devices, with flow swirl at the inlet being absent,
simplified Navier–Stokes equations were used in [158], while heat transfer has never
been simulated in any of the known investigations.

Devices in which fluid flow occurs in a gap with small solid angles γ=1...5
degree between a rotating cone and a stationary flat surface (Fig. 7.2) are used in
viscosimetry [50, 127, 161]. In medicine, such a device is used for growing endothe-
lium cells, which are placed in a form of a monolayer on the stationary surface, while
the slowly rotating cone makes possible circulation of feeding culture medium in the
gap [16, 17].

Fig. 7.1 Schematic of
swirling flow in a stationary
conical diffuser

For the cases of small angles γ , the Navier–Stokes equations (2.1), (2.2) and
(2.3) can be simplified as follows [16, 17, 161]:

− v2
ϕ

r
= − 1

ρ

∂p

∂r
+ ν

∂2vr

∂z2
, (7.1)

vr
∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= ν

∂2vϕ

∂z2
, (7.2)

179I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_7,
C© Springer-Verlag Berlin Heidelberg 2009
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Fig. 7.2 Schematic of fluid
flow in a conical gap with a
rotating cone and a stationary
disk

− 1

ρ

∂p

∂z
+ ν

∂2vz

∂z2
= 0. (7.3)

In work [161], Eqs. (7.1), (7.2) and (7.3) were solved by a method of expansion
in the small parameter Re = Re�η2

1/12. Here η1 = h
/

r, whereas h=r·tgγ is a
height of the gap. As a result, the following relations for the velocity components
were obtained:

vr
/

(� r) = Re (1.8z̃2 − z̃4 − 0.8z̃), (7.4)

vϕ

/
(� r) = z̃ + Re2 ( − 83z̃ + 70z̃4 + 63z̃5 − 50z̃7)/175, (7.5)

vz
/

(� r) = Reη1(z̃2 − z̃3), (7.6)

where z̃ = z
/

h.
Analysis of Eqs. (7.4), (7.5) and (7.6) in comparison with data of a self-similar

solution of the full Navier–Stokes equations obtained by the author [185] is given
below. Using expressions (7.4) and (7.5) for the velocity components v r and v ϕ ,
one can obtain the following relations for the flow swirl angle on the surface of the
disk ϕw:

ϕw = arctan[0.8Re/(1 − 83Re2/175)] for Re = 1 − 1.452, (7.7)

ϕw = arctan(0.8Re) for Re << 1. (7.8)

To remind, the flow swirl angle is defined as ϕ = arctan[vr
/

(� r − vϕ)].
Equation (7.7) agrees with experiments [161] and Eq. (7.8) only for Re≤0.5

(Fig. 7.3). Equation (7.8), being formally valid only for Re<<1, agrees well with
the experiments up to Re = 2. It should be noticed that authors [161] derived and
compared with experiments only Eq. (7.8), while Eq. (7.7) logically resulting from
Eqs. (7.4) and (7.5) was not obtained in [161]. It should be pointed out that Eq. (7.7)
holds only for Re ≤ 1.452. At Re = 1.452, the value of ϕw according to Eq. (7.7)
is equal to 90 degree, while the argument of the function arctan in the right-hand
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side of Eq. (7.7) tends to infinity that does not agree with physics of the process
considered.

Authors [16, 17], similar to work [161], solved the system of Eqs. (7.1), (7.2)
and (7.3) using a method of series expansion in a small parameter Re. However,
while the solutions (7.4), (7.5) and (7.6) [161] are restricted only to two terms of the
power series in Re, the authors of [16, 17] used up to 70 terms of the expansion. In
doing so, the calculated parameter ϕw [16, 17] agreed with the experiments [161]
for Re=0.5–1 somewhat worse than Eq. (7.8), while at Re = 1.2928 the value of ϕw

computed by [16, 17] tends to infinity that contradicts to the physics of the process.
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Fig. 7.3 Flow swirl angle on
the surface of a stationary
disk with a cone rotating.
Computations: 1 – Eq. (7.7);
2 – Eq. (7.8) [161]; 3 –
self-similar Eqs. (7.19),
(7.20), (7.21) and (7.22)
[185]; 4 – self-similar Eqs.
(7.24), (7.25) and (7.26)
[185]. Data 5 – experiments
[161]

Full Navier–Stokes equations for small values of γ were solved numerically in
[50].

None of the known investigations has dealt with the cases of (a) a rotating disk at
a stationary cone and (b) simultaneous rotation of a disk and a cone with different
angular speeds, which could allow determining optimal parameters of the entire
system. Heat transfer in the cone–disk systems has never been simulated as well.
Besides, no attempt has been made to derive self-similar forms of the full Navier–
Stokes equations together with the thermal boundary layer equation for a conical
diffuser for any value of the conical angle γ .

This chapter represents results for the cases of swirl flow in the gap between a
stationary cone and a disk (Fig. 7.1) and a rotating disk and/or a cone with no initial
swirl of the flow (Fig. 7.2) [182, 185, 186].

7.2 Navier–Stokes and Energy Equations in the Self-similar
Form

In this study, full Navier–Stokes equations in cylindrical coordinates for a steady-
state axisymmetric laminar flow (2.1), (2.2) and (2.3) and simplified Eqs. (7.1),
(7.2) and (7.3) will be solved. The energy equation is used in a form of the thermal
boundary layer equation (2.20) for laminar flow. Boundary conditions for the case
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of a rotating disk and/or a cone with no initial swirl of flow look as follows:

z = 0: vr = 0, vz = 0, vϕ = ωr, Tw − T∞ = c0rn∗ , (7.9)

z = h: vr = 0, vz = 0, vϕ = �r, T = T∞. (7.10)

For the case of swirl flow in a gap between a stationary cone and a disk

z = 0: vr = vϕ = vz = 0, Tw − T∞ = c0rn∗ , (7.11)

z = z1 = h/2: vr = vr1, vϕ = vϕ1, d vr/dz = 0, T = T∞. (7.12)

Here c0 and n∗ are constants, and subscript “1” relates to boundary conditions
at z = z1 = h/2. In the present work, heat transfer of a disk with air is studied
for boundary conditions (7.9) and (7.11) equivalent to boundary condition (2.35).
Therefore, for the sake of simplification, it is accepted that the temperature of a
cone is constant, T ∞ = const.

The thermal boundary layer equation is used instead of the full energy equation,
because in the case of laminar flow viscous dissipation effects are minor, and thermal
conductivity in the radial (i.e. marching) direction should be taken into account, as a
rule, only for Pr→0 [22]. In addition, a self-similar form of the full energy equation
imposes restrictions on the boundary conditions for Tw given by Eqs. (7.9) or (7.11):
for rotating disks, for example, one can use only the value of n∗ = 2 [41, 138, 139].

The use of variables and functions that are self-similar relative to coordinate r
enables, in a number of physical problems, to reduce partial differential equations
(2.1), (2.2), (2.3) and (2.4), (7.1), (7.2) and (7.3) and (2.20) to a set of ordinary
differential equations, which can be solved numerically using applied mathematical
computer codes (Mathcad, etc.) [22, 41, 138, 158, 165, 174, 180].

A form of self-similar variables and functions for the problem under considera-
tion can be found by the method of group analysis of differential equations already
used above in Sect. 4.2 [185, 186]. Let us introduce the so-called linear transforma-
tion:

r = Aα1 r, z = Aα2 z, vr = Aα3 vr, vϕ = Aα4 vϕ , vz = Aα5 vz, p = Aα6 p,
(7.13)

where αk (k = 1, . . ., 6) and a coefficient of transformation A are constants [22].
Relations (7.13) are substituted into Eqs. (2.1), (2.2), (2.3) and (2.4), (2.20) and
(7.1), (7.2) and (7.3). The initial and transformed forms of each equation are invari-
ant, if the overall exponents of the constant A are the same for each term of the
transformed equation (so that this constant can be eliminated). As a result, one can
obtain the following relations between constants αk:

α1 = α2 = α, α3 = α4 = α5 = −α, α6 = −2α. (7.14)
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Having obtained Eqs. (7.14) for the constants αk, one can find relations between
parameters with overbars and without them in Eqs. (7.13). This results in the fol-
lowing:

A =
( r

r

)1/α =
(

z

z

)1/α

=
(

vr

vr

)1/α

=
(

vϕ

vϕ

)1/α

=
(

vz

vz

)1/α

=
(

p

p

)1/(2α)

,

(7.15)

z
/

z = r
/

r, vrr = vrr, vϕr = vϕr, vzr = vzr, p · r2 = p · r2. (7.16)

Combinations of variables (7.16) are invariant with respect to the linear transfor-
mations (7.13) and are named absolute variables. In accordance with the Morgan
theorem [22], they are similar variables provided that the boundary conditions of a
particular problem can be expressed in an r-independent form.

Based on Eqs. (7.15) and (7.16), one can derive the following self-similar vari-
ables and functions:

η = z/r, F = vrr
/
ν, G = vϕr

/
ν, H = vzr

/
ν, (7.17)

P = pr2/(ρν2), θ = (T − T∞)/(Tw − T∞). (7.18)

The function θ remains therefore invariable.
Substituting formulas (7.17) and (7.18) into the full Navier–Stokes equations

(2.1), (2.2) and (2.3), as well as into Eqs. (2.4) and (2.20), and omitting the terms
that include derivatives with respect to r, one can obtain a final system of ordinary
differential equations:

F2 + G2 + 2P + F′L + ηP′ + F′′M = 0 , (7.19)

G′L + G′′M = 0 , (7.20)

P′ − H(1 + F) − H′L − H′′M = 0 , (7.21)

H′ − ηF′ = 0 , (7.22)

θ ′′ = Pr
[
n∗Fθ + θ ′(H − ηF)

]
, (7.23)

where M = 1 + η2, L = 3η + ηF − H. Here, the primes denote differentiation
with respect to coordinate η.

Simplified Eqs. (7.1), (7.2) and (7.3) take the following form:

G2 + 2P + ηP′ + F′′ = 0 , (7.24)

G′ (ηF − H) + G′′ = 0 , (7.25)

P′ = H′′ , (7.26)
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Transformed boundary conditions (7.9) and (7.10) look as follows:

η = 0: F = H = 0, G = G0, θ = 1, (7.27)

η = η1: F = H = 0, G = G1, θ = 0, (7.28)

where η1 = h/r, G0 = Reω, G1 = Re�. Subscripts “0” and “1” denote conditions
at η = 0 and η = η 1 respectively.

Transformed boundary conditions (7.11) and (7.12) look as follows:

η = 0: F = G = H = 0, θ = 1, (7.29)

η = η1: G = G1, F = F1, F′ = 0, θ = 0, (7.30)

where η1 = 0.5 h
/

r.
Strictly speaking, boundary conditions (7.27) and (7.28) for functions G0 = Reω

and G1 = Re� are not self-similar, since they depend on the coordinate r. The
boundary conditions are self-similar in the case of G0 = 0, i.e. Eq. (7.29) (stationary
disk), and G1 = const, F1 = const, Eqs. (7.30), i.e. for the case where the tangential
and radial velocities at the point η = η1 develop as a free vortex:

(vϕ)η=η1 = G1ν/r, (vr)η=η1 = F1ν/r. (7.31)

However, the boundary conditions (7.27) and (7.28) may be regarded as locally
self-similar, and it may be assumed that G0 and G1 are parameters of the problem
at each particular point r [185, 186]. As will be shown below, this approach enables
to obtain results, which agree well with the known experimental and computational
data.

7.3 Rotating Disk and/or Cone

7.3.1 Numerical Values of Parameters in the Computations

Equations (7.19)–(7.26) were numerically solved using the Mathcad software with
its built-in sbval function (shooting method). Use of this method in the above chap-
ters, in particular, to solve the self-similar set of Eqs. (2.37), (2.38), (2.39), (2.40)
and (2.41) for rotating-disk systems (Chaps. 3 and 5) made it possible to calculate
profiles of the velocity components and temperature, together with their derivatives,
which coincide with the known data [41, 138, 139] up to the fourth significant digit.

The full self-similar set of Eqs. (7.19), (7.20), (7.21), (7.22) and (7.23), which is
valid for any value of the angle γ , was used to solve all of the problems investigated
below. The simplified set of Eqs. (7.24), (7.25) and (7.26) (simultaneously with
Eqs. (7.22) and (7.23)) was used to compute velocity components in the problem of
rotation of a cone with a stationary disk for small angles γ ≤ 5 degree. The cases of
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small angle γ = 4 degree (η1 = 0.0698) and rather large cone angles γ = 45 degree
(η1=1) were investigated. As was revealed by the computations, the value of η1 in
the range of γ=1–5 degree has no effect on the parameters of flow and heat transfer.

The value of Pr = 0.71 (air) was chosen for the heat transfer investigation; this
enables one to make comparisons with the cases of air cooling in rotating-disk
systems, which were well investigated both theoretically and experimentally (see
Chap. 3). An increase in the Prandtl number causes an increase in the Nusselt num-
ber (see Chaps. 3 and 5 for the cases of Pr ≤ 1, as well as Chap. 8 for the cases of Pr
≥ 1). However, in the present chapter, effects of the Prandtl number on heat transfer
have not been studied. The cases of decreasing (n∗ = –1), constant (n∗ = 0), and
square-law increasing (n∗ = 2) disk temperatures were investigated, which incorpo-
rate the range of thermal boundary conditions on a disk observed in engineering [41,
138, 139, 196]. The calculations were performed for the value of Re = Reωη2

1/12
(or Re = Re�η2

1/12) equal to unity, which corresponds to Reω = 12, Re� = 12 at
η1 = 1, and Reω = 2463, Re� = 2463 at η1 = 0.0698.

7.3.2 Cone Rotation at a Stationary Disk

The components of the velocity profile in the gap calculated by Eqs. (7.19), (7.20),
(7.21), (7.22), (7.23), (7.24), (7.25) and (7.26) and obtained in [161] by the method
of expansion in the small parameter Re are given in Figs. 7.4, 7.5 and 7.6. Here, Re
= 1 (Reω = 2463). It follows from these figures that the tangential velocity compo-
nent (Fig. 7.6) is an order of magnitude higher than the radial component (Fig. 7.4)
which, in turn, is an order higher than the axial component (Fig. 7.5). The results of
calculations by Eqs. (7.19), (7.20), (7.21) and (7.22) and (7.24), (7.25) and (7.26)
almost coincide, and this confirms the possibility of using the simplified Eqs. (7.24),
(7.25) and (7.26) for conical gaps with small angles γ . The results of calculations
by Eqs. (7.19), (7.20), (7.21) and (7.22) and (7.24), (7.25) and (7.26) and the data of
[161] for the radial velocity component vr are in a quite close agreement (Fig. 7.4).
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The differences between the two sets of equations under consideration with respect
to the components vz and vϕ are more pronounced (Figs. 7.5 and 7.6)

The adequacy of simulation of the tangential velocity component is illus-
trated by comparison of the computed results and experiments of [161] for the
flow swirl angle on the disk surface ϕw. On a disk at η=0, we have ϕw =
arctan[vr

/
(� r − vϕ)]z=0 = arctan(−F′

w
/

G′
w). The prediction data for ϕw agree

well with the experimental results of [161] over the entire range of variation of the
Reynolds number Re (Fig. 7.3). It follows from this that the profiles of the veloc-
ity components in Figs. 7.4, 7.5 and 7.6 obtained as a result of calculations by Eqs.
(7.19), (7.20), (7.21) and (7.22) and (7.24), (7.25), (7.26), (7.27) and (7.28) describe
real flow in the gap more adequately than the solutions (7.4), (7.5), (7.6), (7.7) and
(7.8) [161].

The dimensionless temperature in the gap, which decreases from unity on the
disk to zero on the cone, depends on the value of n ∗; it should be pointed out that in
the vicinity of the disk the θ curve becomes smoother with increasing n ∗ (Fig. 7.6).

The local Nusselt number is calculated by the relation:

Nu = −θ ′
η=0, (7.32)
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where differentiation in the right-hand part of Eq. (7.32) is done with respect to the
variable η.

In analogy with the relations (3.4) and (3.5) for the rotating-disk systems, the
Nusselt number may be represented as

Nu = K1Re1/2
� (7.33)

K1 = −(dθ/dη)η=0

Re1/2
�

= −
(

dθ

dζ

)

ζ=0
(7.34)

where ζ = z
√

�/ν.
As a result, for the case where η1 = 0.0698 (or Re� = 2463), it was obtained that

Nu = 15.28, 13.40, 9.35 and K1 = 0.308, 0.270, 0.188 for n∗ = –1, 0, 2, respec-
tively. The order of magnitude of the constant K1 is comparable with the data for a
free rotating disk, where K1 = 0.189, 0.326, 0.519 for the same values of n∗ (see
Table 3.8). It should be pointed out that, following an increase in n∗, the constant
K1 decreases for the problem under consideration, while for a free rotating disk K1
increases. It can be thus concluded that the decrease in the constant K1 with increas-
ing n∗ observed in the currently considered case occurs under conditions of radially
inward flow over a stationary disk caused by a rotating cone. And vice versa, an
increase in the constant K1 with increasing n∗ is observed under conditions of radi-
ally outward flow over a rotating disk in a stationary or co-rotating fluid (see Chaps.
3, 4, 5 and 6). At η1 = 1 and Re = 1 (or Re� = 12), it was obtained that Nu = 1.047,
0.954, 0.760 and K1 = 0.302, 0.275, 0.219 for the same values of n∗. It is thus obvi-
ous that the constant K1 is a conservative parameter and varies rather weakly with
an increasing angle of the gap γ .

7.3.3 Disk Rotation at a Stationary Cone

The direction of radial flows for the problem at hand is opposite to that in the case
of cone rotation at a stationary disk: the flow over the cone is radially inward, and
that over the disk is radially outward (Fig. 7.7). The tangential velocity vϕ linearly
decreases with increasing coordinate z, and the profile of the axial component vz is
mirror-symmetrical (relative to the abscissa axis) to the vz curve given in Fig. 7.5.
The profile of the dimensionless temperature θ in Fig. 7.7 is close to the vϕ /(ωr)
distribution.

The Nusselt number on the disk is calculated by Eqs. (7.32), (7.33) and (7.34)
substituting ω instead of � (in the definition of both the Reynolds number Re and
the coordinate ζ ) or, that is in fact the same, using Eqs. (3.4) (for nR = 1/2) and (3.5).
As a result, for Re = 1 (Reω = 2463) and η1 = 0.0698, it was obtained that Nu =
13.33, 15.35, 19.13 and K1 = 0.269, 0.309, 0.386 at n∗ = –1, 0, 2, respectively.

One can see that, as n∗ increases, the constant K1 also increases, though at a
slower rate than in the case of a free rotating disk (where, just to remind, K1=0.189,
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0.326, 0.519 for the same n∗). With η1=1 and Re=1 (Reω=12) one can obtain
Nu=0.96, 1.041, 1.197 and K1=0.277, 0.301, 0.345 for the same values of n∗, i.e.,
the constant K1 is still conservative with respect to the cone angle γ .

7.3.4 Co-rotating Disk and Cone

In this case, the flow pattern is determined by the ratio between the Re� and Reω

numbers. If a cone rotates faster than a disk, i.e. for Re� > Reω, the fluid flows radi-
ally outward over the cone and radially inward over the disk. If a disk rotates faster
than a cone, i.e. for Re� < Reω, the flow pattern is reversed. The Nusselt number
was calculated by Eqs. (7.32), (7.33) and (7.34), where � is the reference angu-
lar velocity. It is interesting to analyse the case of approximately the same angular
speed of rotation of the disk and cone. With Reω = 1.01 Re�, the calculations give
Nu = 14.31, 14.35, 14.43 and K1 = 0.288, 0.289, 0.291, while condition Reω =
0.99 Re� results in Nu = 14.35, 14.31, 14.23 and K1 = 0.289, 0.288, 0.287 at n∗ =
–1, 0, 2, respectively. For both examples, the conditions Re = 1 and η1 = 0.0698
(Re� = 2463) were held. With Reω = 1.01 Re�, Re = 1 and η1 = 1 (Re� = 12),
the calculated values were Nu = 0.999, 1.001, 1.004 and K1 = 0.288, 0.289, 0.290.

It is evident that the constant K1 is almost invariable for all variants. The effect
of the flow direction on the dependence of the Nusselt number on the exponent n∗
exhibits the same pattern (in a weak form) as that mentioned above in Sect. 7.3.2.
For the radially outward flow over the disk Nu numbers increase, and for the radially
inward flow the values of Nu decrease with increasing n∗. An increase in the gap
height has almost no effect on the value of K1.

7.3.5 Counter-Rotating Disk and Cone

In this case, one can observe the most complex pattern of radial flow, which is radi-
ally outward over the disk and the cone and radially inward in the middle of the gap
(Fig. 7.8). The axial velocity component vz changes its sign twice, being negative
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in the vicinity of the surfaces and positive in the middle of the gap; the tangential
velocity vϕ /(�r) linearly increases from –1 to 1 with increasing coordinate z, and
the temperature θ monotonically decreases from unity to zero. With η1 = 0.0698,
Re = 1 and Reω = –Re� = 2463, the profile of the radial velocity vr becomes sym-
metrical about the middle of the gap (curve 2, Fig. 7.8). The Nusselt number was
calculated by Eqs. (7.32), (7.33) and (7.34), where � was a reference velocity. On
the disk, one can obtain Nu = 14.21, 14.44, 14.85 and K1 = 0.286, 0.201, 0.299 at
n∗ = –1, 0, 2, i.e., the Nusselt number increases with n∗. With η1 = 1, Re = 1, Reω

= 12 and Re� = –12, the profile of the radial velocity vr becomes non-symmetrical,
because radial flow is more pronounced over the cone (curve 4, Fig. 7.8). In view
of this, the Nusselt number on the disk decreases with increasing n∗: Nu = 1.011,
0.989, 0.942 and K1 = 0.292, 0.285, 0.272 for the same values of n∗ as above.

Therefore, in this case, heat transfer is weakly sensitive to the variation of the
value and sign of the disk temperature gradient. The variation of the gap height
and of the angular speeds of disk and cone rotation affect the vr profile and the
qualitative character of the influence of n∗ on Nu.

7.4 Radially Outward Swirling Flow in a Stationary Conical
Diffuser

Computations were performed for a stationary diffuser with an angle of g = 35
degree or h1 = 0.35. From a physical point of view, boundary conditions (7.30) and
(7.31) mean that swirling flow develops as a free vortex along the gap angle bisector.
In reality, the free vortex may occupy a considerable part of the gap height, while the
boundary layer is formed only near the walls. In this study, we consider a somewhat
idealized case in which conditions (7.30) and (7.31) hold only for h = h1.

Computations showed that non-swirling radial flow (G1 = 0) does not sepa-
rate from the walls of the diffuser for F1 < 63. Separation occurs for F1 ≈ 63,
while for F1 > 63 one can observe a recirculation flow zone near the disk surface
(Fig. 7.9). The reason for the flow separation is the large angle of conicity: reduc-
ing it to η1 = 0.035 results in the separation value of F1 increasing to about 7500.
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Flow swirl (G1 = 97.96, Re = G1η
2
1/12 = 1) inevitably leads to formation of

pronounced recirculation flow near the disk (Fig. 7.9). In the limiting case of zero
radial velocity F1 = 0 at the swirler outlet, the velocity vr is negative for any η

except for η = η1 (curve 6; the quantity |F|max is the maximum absolute magnitude
of F at the minimum of the curve F/|F|max at η/η1≈0.4, that is, Fmax = –24.28). As
F1 increases, the recirculation flow zone shrinks, while near the axis of the gap the
radially outward flow region expands. In the gap, the tangential velocity component
G/G1 increases almost linearly from zero at η = 0–1 for η = η1 (curve 1 in Fig.
7.10).

The diffuser serves to restore static pressure: the pressure increases with the r
coordinate due to reduction in the velocity components (vr)η=η1 and (vϕ)η=η1 with
increasing r. In order for the function P to be self-similar, it is necessary that the
quantity p in Eq. (7.18) be understood to represent the excess pressure p−p∞, which
decreases as r increases (p = p∞ = const for r→r∞). In non-swirling flow (G1 =
0), the parameter P characterizing the pressure recovery rate increases with F1 (Fig.
7.11). For G1 = 97.96, the flow swirl leads to a noticeable increase in the pressure
recovery rate P, while the contribution of the parameter F1 over its range of variation
from F1 = 0–20 becomes weak.

For F1 ranging from 50 to 63, the curves of the Nusselt number (calculated by
Eq. (7.32)) versus F1 exhibit points of maxima for n∗ = 2 and 0 and minima for n∗
= –1 (Fig. 7.12).

If the inlet flow swirl is absent (G1 = 0) and values of the radial velocity at the
inlet F1 are non-zero, an increase in the exponent n∗ leads to an increase in the
Nusselt number (curves 1–3, Fig. 7.12). Over the range of variation of n∗ = 0–2,
the Nusselt numbers following an increase in F1 also increase for non-separating
radially outward flow, remain approximately constant for the values of F1 close to
separating flow and decrease for radially inward recirculation flow near the disk
surface (curves 1 and 2 in Fig. 7.12). For n∗ = 0, these tendencies are very weak,
while the maximum of the Nu number curve shifts towards larger values of F1.
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Imposing initial swirl with G1 = 97.96 leads to different signs of vr and dTw/dr
and a decrease in the Nusselt numbers for n∗ = 2 and 0 (curves 4 and 5 in Fig. 7.12)
in comparison with non-swirling flow. At the same time, for n∗ = –1, the signs of vr

and dTw/dr are the same, and the Nusselt number of swirling flow (curve 6 in Fig.
7.12) increases in comparison with non-swirling flow. It should be pointed out that
though for G1 = 97.96 the radial velocity component vr does not change its sign
near the disk as F1 increases (i.e. near-disk flow remains always radially inward),
the shapes of curves 4, 5 and 6 of the Nu number dependency on F1 are qualitatively
similar to curves 1, 2 and 3 for non-swirling flow for n∗ = idem (see Fig. 7.12).

For swirling flow (G1 = 97.96) and n∗ = 2, temperature profiles decrease mono-
tonically along the height of the gap under condition F1>21 (curves 2 and 3 in Fig.
7.10). Under condition of F1≤21, the temperature profile in a fluid flowing in the
direction of simultaneous decrease in r and Tw has a maximum near the wall (curve
4 in Fig. 7.10). Because of this, the Nusselt number becomes negative, which indi-
cates a change in the heat flux sign: the fluid heats the disk surface, rather than the
reverse (curve 4 in Fig. 7.12).

Thus, in the present chapter, self-similar forms of the full and simplified Navier–
Stokes equations and the energy equation applicable to the fluid flow in a gap
between a disk and a cone that touches the disk with its apex were derived for any
angles of conicity. Exact solutions of the self-similar sets of equations were obtained
for the problems of cone rotation at a stationary disk, disk rotation at a stationary
cone, simultaneous co-rotation or contra-rotation of a disk and a cone, as well as for
radially outward swirling flow in a stationary conical diffuser. Peculiarities of fluid
flow and heat transfer in these conditions were analysed. It was shown that compu-
tations agree well with the experimental data available in the literature. Effects of
the parameters of the boundary conditions on the pressure, velocity and temperature
profiles, as well as on the Nusselt numbers, were investigated.



Chapter 8
Heat and Mass Transfer of a Free Rotating Disk
for the Prandtl and Schmidt Numbers Larger
than Unity

8.1 Laminar Flow

Problems of heat and mass transfer in fluid flow over a rotating disk for the Prandtl
or Schmidt numbers larger than unity are of great importance in a number of indus-
trial and scientific applications. To mention a few, one should count electrochem-
istry, where the rotating-disk electrode technique is widely used for experimental
determination of the diffusion coefficient at the Schmidt numbers much larger than
unity [3, 6, 8, 37, 39, 40, 42, 48, 81, 102, 105, 126, 131, 157]. The second area of
application actual for the present research is the naphthalene sublimation technique
often employed in experimental measurements of the mass transfer coefficients αm

[24, 28, 29, 59, 64, 96, 97, 117, 193, 195, 201, 208].
Differential equations of convective diffusion for axisymmetric flow in the cylin-

drical polar coordinate system for laminar and turbulent flow regimes, Eqs. (1.44)
and (1.45), are analogous to the respective forms of the energy equation, Eqs. (2.5)
and (2.9), in case of reciprocal substitution of local temperatures T by local concen-
trations C, as well as substitution of thermal diffusivity a by the diffusion coefficient
Dm. The Navier–Stokes equations for laminar flow, Eqs. (2.1), (2.2) and (2.3), and
those for turbulent flow, Eqs. (2.6), (2.7) and (2.8), as well as continuity equation
(2.4) retain the very same form as stated in Chap. 2.

The system of Eqs. (2.37), (2.38), (2.39), (2.40) and (2.41) for steady-state
axisymmetric laminar flow in the self-similar form can be also used to model con-
vective mass transfer, if the non-dimensional function θ is defined as follows:

θ = (C − C∞)/(Cw − C∞), (8.1)

and the Prandtl number in Eq. (2.41) is substituted by its analogue for convective
mass transfer, i.e. Schmidt number Sc (called sometimes Prandtl–Schmidt number).

The boundary condition for the concentration on the disk surface Cw is simplified
in comparison with the boundary conditions (2.34), (2.35) and (2.36), because the
surface concentration of a substance is constant in the radial (as well as circumfer-
ential) direction:

193I.V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Lecture
Notes in Applied and Computational Mechanics 45, DOI 10.1007/978-3-642-00718-7_8,
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Cw = const. (8.2)

The self-similar convective diffusion equation (i.e. transformed equation (2.41))
takes the following form:

θ ′′ − ScHθ ′ = 0. (8.3)

Local and average Nusselt numbers are, as before, calculated by the generalized
equations (3.4), which hold both for laminar and for turbulent flow regimes. The
Sherwood number Sh, which is often referred to as the mass transfer Nusselt number
Num, is calculated by the relations that formally coincide with Eqs. (3.4):

Sh ≡ Num = K1RenR
ω , Shav ≡ Num,av = K2RenR

ϕ . (8.4)

In Eqs (8.4), coefficients K1 and K2 depend on the boundary conditions, flow
regime and Sc numbers, while the constant nR is, generally speaking, dependent
only on the flow regime; for laminar flow K1=K2 and nR=1/2.

Thus, the energy and convective diffusion equations, along with their boundary
conditions Tw = const or Cw = const, are analogous, so that one can switch between
their solutions (or equations for heat/mass transfer parameters obtained experimen-
tally) simply substituting C, Sc and Sh instead of T, Pr and Nu (and vice versa),
respectively.

For laminar flow, the problem under consideration can be rather easily solved
numerically using the self-similar system of Eqs. (2.37), (2.38), (2.39), (2.40) and
(2.41). To remind, for the case of a free rotating disk, parameters N and β in
Eq. (2.37) are equal to zero. Numerical solution of Eqs. (2.37), (2.38), (2.39), (2.40)
and (2.41) for the Prandtl and Schmidt numbers larger than unity has been per-
formed using MathCAD software similar to the case of Pr ≤ 1 analysed in Chap. 3.
Computed values of the constant K1 depending on the Pr (or Sc) number are given
in Table 8.1.

Following increase in the Prandtl numbers, numerical values of the constant K1
also increase: by 6.73 times for Pr = 100 and by 155 times for Pr = 106 in com-
parison with the case of Pr = 1 (data for n∗ = 0, Table 8.1). For a constant value
of the Prandtl number, the coefficient K1 increases also with the exponent n∗. For
instance, for Pr = 2 the value of K1 increases by 2.73 times, while for Pr = 106 the
increase amounts up to 2.20 times with the increase in the exponent n∗ from –1 to 3.
As mentioned in Chap. 3, for Pr = 0.71 the constant K1 increases by 3.3 times over
the same range of variation of the exponent n∗. This means that the effect of the
exponent n∗ on the coefficient K1 becomes weaker at increased Prandtl numbers.

Use of a tabulated exact solution is often inconvenient in practice, if there exists
a need to express a relation between parameters in an explicit form.

The only known approximate analytical solution for the constant K1 under the
boundary condition (2.35) at Pr ≥ 1 and arbitrary non-zero values of the exponent
n∗ was found by Dorfman in the form of Eq. (3.6) [41]. As it is evident from Table
8.2, the values of K1 calculated by Eq. (3.6) systematically exceed data of the exact
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Table 8.1 Values of the constant K1 according to the exact solution of Eqs. (2.37), (2.38), (2.39),
(2.40) and (2.41) for the Prandtl or Schmidt numbers larger than unity

Pr (Sc) n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

1.0 0.0 0.1305 0.2352 0.3221 0.3963 0.5180 0.6159 0.6982 0.7693
1.05 0.0 0.1347 0.2422 0.3312 0.4070 0.5310 0.6306 0.7142 0.7865
1.1 0.0 0.1388 0.2491 0.3401 0.4173 0.5436 0.6449 0.7297 0.8031
1.5 0.0 0.1682 0.2979 0.4028 0.4906 0.6324 0.7450 0.8389 0.9199
2.0 0.0 0.1989 0.3482 0.4669 0.5653 0.7226 0.8466 0.9498 1.0386
2.28 0.0 0.2140 0.3728 0.4982 0.6016 0.7663 0.8960 1.0036 1.0963
2.4 0.0 0.2201 0.3827 0.5108 0.6162 0.7840 0.9158 1.0253 1.1195
2.5 0.0 0.2251 0.3907 0.5209 0.6280 0.7982 0.9319 1.0428 1.1383
3.0 0.0 0.2480 0.4279 0.5680 0.6826 0.8640 1.0061 1.1238 1.2251
4.0 0.0 0.2873 0.4912 0.6480 0.7753 0.9758 1.1321 1.2615 1.3728
5.0 0.0 0.3206 0.5445 0.7153 0.8533 1.0697 1.2382 1.3774 1.4971
7.0 0.0 0.3756 0.6325 0.8262 0.9818 1.2247 1.4131 1.5687 1.7024
9.0 0.0 0.4209 0.7047 0.9173 1.0873 1.3518 1.5568 1.7259 1.8711
10.0 0.0 0.4410 0.7368 0.9577 1.1341 1.4083 1.6206 1.7957 1.9460
11.0 0.0 0.4599 0.7668 0.9955 1.1779 1.4611 1.6802 1.8609 2.0161
13.0 0.0 0.4943 0.8216 1.0646 1.2579 1.5576 1.7893 1.9804 2.1444
15.0 0.0 0.5254 0.8710 1.1268 1.3300 1.6446 1.8877 2.0880 2.2599
17.0 0.0 0.5537 0.9162 1.1836 1.3958 1.7241 1.9775 2.1864 2.3656
19.0 0.0 0.5800 0.9579 1.2361 1.4567 1.7975 2.0605 2.2773 2.4632
20.0 0.0 0.5924 0.9776 1.2610 1.4855 1.8323 2.0999 2.3203 2.5095
50 0.0 0.8536 1.3925 1.7835 2.0909 2.5635 2.9269 3.2260 3.4825
100 0.0 1.1108 1.8009 2.2979 2.6871 3.2840 3.7422 4.1190 4.4421
500 0.0 1.9943 3.2033 4.0644 4.7351 5.7596 6.5442 7.1888 7.7413
1000 0.0 2.5467 4.0802 5.1691 6.0162 7.3083 8.2972 9.1096 9.8057
5000 0.0 4.4470 7.0967 8.9694 10.423 12.636 14.329 15.718 16.909
104 0.0 5.6363 8.9846 11.348 13.181 15.971 18.104 19.855 21.356
105 0.0 12.291 19.548 24.657 28.613 34.632 39.230 43.003 46.236
106 0.0 26.626 42.304 53.328 61.860 74.834 84.742 92.873 99.838

solution. Inaccuracies of Eq. (3.6) at n∗≤0 are unacceptably high and reach 16–40%
already for Pr = 1. For the case of n∗ = 0, the inaccuracies of Eq. (3.6) for Pr = 1–
3 reach 10–11%, respectively. At higher values of the exponent n∗ and Pr = 1–3,
inaccuracies of Eq. (3.6) are relatively low (1–6%); however, for further increased
Prandtl numbers the inaccuracies of Eq. (3.6) become approximately the same for
any n∗ and abruptly increase for Pr→∞.

The effect of the Schmidt (or Prandtl) number on the constant K1 and the rate of
increase in the divergence of the Dorfman’s equation (3.6) and the exact solution at
n∗=0 (Tw=const or Cw=const) is illustrated in Fig. 8.1. It is evident that inaccura-
cies of Eq. (3.6) make it unacceptable for problems of mass transfer at Cw=const
even over the range of the Prandtl or Schmidt numbers moderately different from
unity, e.g. for Sc=1–3.

As mentioned in Chap. 3, for a disk with a constant surface temperature
Tw=const the authors of [26, 106] developed approximate equations (3.7) and (3.8)
for the constant K1 over the range of the Prandtl numbers Pr=0–∞. As applied to
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Table 8.2 Values of the constant K1 calculated by Eq. (3.6) for the Prandtl or Schmidt numbers
larger than unity

Pr (Sc) n∗=–2 n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

1.0 0.0 0.2178 0.3080 0.3772 0.4356 0.5335 0.616 0.6887 0.7544
2.0 0.0 0.308 0.4356 0.5335 0.616 0.7544 0.8712 0.9740 1.0669
2.28 0.0 0.3289 0.4651 0.5696 0.6577 0.8055 0.9301 1.0399 1.1392
3.0 0.0 0.3772 0.5335 0.6534 0.7544 0.9240 1.0669 1.1929 1.3067
5.0 0.0 0.4870 0.6887 0.8435 0.9740 1.1929 1.3774 1.5400 1.6870
10.0 0.0 0.6887 0.9740 1.1929 1.3774 1.6870 1.9480 2.1779 2.3858
50 0.0 1.5400 2.1779 2.6674 3.0801 3.7722 4.3558 4.8699 5.3347
500 0.0 4.8699 6.8871 8.4349 9.7398 11.929 6.5442 15.400 16.870
1000 0.0 6.8871 9.7398 11.929 13.775 16.870 19.480 21.779 9.8057
5000 0.0 15.400 21.779 26.674 30.800 37.722 43.558 48.699 53.347
104 0.0 21.779 30.800 37.722 43.558 53.347 61.600 68.871 75.444
105 0.0 68.871 97.398 119.29 137.74 168.70 194.80 217.79 238.58
106 0.0 217.79 308.00 377.22 435.58 533.47 616.00 688.71 754.44
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Fig. 8.1 Constant K1 in
Eq. (8.4), laminar flow at
Cw=const. 1 – exact solution,
Eqs. (2.37), (2.38), (2.39),
(2.40) and (2.41); 2 –
Eq. (3.6) for n∗=0; 3 – Eqs.
(8.5), (8.6); 4 – Eq. (8.7); 5 –
Eq. (8.8); 6 – Eq. (8.9).
Experiments: 7 – K1=0.59,
Sc=2.28 [24]; 8 – K1=0.604,
Sc=2.28 [29]; 9 – K1=0.625,
Sc=2.4 [96, 97, 208]; 10 –
K1=0.636, Sc=2.44 [64];
11 – K1=0.625, Sc=2.5 [201];
12 – K1=0.69, Sc=2.5 [195];
13 – K1=0.628, Sc=2.5 [117]

the problem of mass transfer at the boundary condition Cw=const, Eqs. (3.7) and
(3.8) take the following form, respectively:

K1 = 0.6109Sc/(0.5301 + 0.3996Sc1/2 + Sc)2/3, (8.5)

K1 = 0.6Sc/(0.56 + 0.26Sc1/2 + Sc)2/3. (8.6)

Data computed by Eqs. (8.5) and (8.6) practically coincide. Maximal inaccura-
cies of these equations with respect to the exact solution reach 4 and 5%, respec-
tively, over the range of Sc=5–20 (Fig. 8.1). For further increased Prandtl or
Schmidt numbers, the inaccuracies of Eqs. (8.5) and (8.6) become negligibly small
(Table 8.3).

Authors of the work [131] offered another relation
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Table 8.3 Values of the constant K1 given by Eqs. (8.5), (8.6), (8.7), (8.8) and (8.9) for a disk at
Tw=const or Cw=const

Pr (Sc) Exact Equation
(8.5) [26]

Equation
(8.6)
[106]

Equation
(8.7)
[131]

Equation
(8.8) [6]

Equation
(8.9)
[105]

1.0 0.3963 0.3941 0.4025 0.4303 0.3827 0.62
2.0 0.5653 0.5753 0.5864 0.5892 0.5664 0.7812
2.28 0.6016 0.6144 0.6257 0.6238 0.6065 0.816
2.4 0.6162 0.6300 0.6415 0.6378 0.6227 0.8301
2.5 0.6280 0.6430 0.6543 0.6491 0.6358 0.8415
5.0 0.8533 0.8839 0.8946 0.8676 0.8855 1.0602
20.0 1.4855 1.5414 1.5414 1.4924 1.5688 1.6829
50 2.0909 2.1552 2.1424 2.0958 2.2019 2.2841
100 2.6871 2.753 2.7278 2.6915 2.8147 2.8778
500 4.7351 4.7885 4.7222 4.7400 4.8890 4.9209
1000 6.0162 6.056 5.9651 6.0218 6.1773 6.2000
104 13.181 13.126 12.904 13.192 13.3565 13.358
105 28.613 28.332 27.834 28.639 28.7954 28.7779
106 61.860 61.074 59.990 61.915 62.0461 62.000

K1 = 0.621Sc/(1 + 0.298Sc−1/3 + 0.14514Sc−2/3), (8.7)

which at the expense of decreased accuracy at Sc=1–2 (at Sc=1 its inaccuracy with
respect to the exact solution is about 8% and decreases to 4% already at the point
Sc=2) provides inaccuracy of not more than 1–3% with respect to the exact solution
over the remaining range of variation of the Prandtl or Schmidt numbers (Fig. 8.1,
Table 8.3).

Equations (8.5), (8.6) and (8.7) agree fairly well with the asymptotic solution
K1/Sc=0.885 [199]. In the limiting case of Sc→∞, these equations agree with the
asymptotic solution K1=0.62Sc1/3 [105, 199].

Author of the work [6] constructed a relation for the constant K1 over the range
Pr=0–∞ by way of combining the asymptotic solutions for the cases Pr→0 and
Pr→∞. As applied to the mass transfer problems, the relation of [6] has the follow-
ing form:

K1 =
[
(0.88447Sc)−1.077 + (0.62048Sc1/3)−1.077

]−1/1.077
. (8.8)

Relation (8.8) practically coincides with the exact solution at Sc=2 (inaccuracy
0.2%). Following increase in the Schmidt numbers, inaccuracy of Eq. (8.8) increases
up to 3.2% already at Sc=2.5 and reaches its maximum of 5.6% at Sc≈20, slowly
decreasing afterwards with the following increase in the Schmidt numbers (e.g. inac-
curacy of Eq. (8.8) is 4.7% at Sc=100; 2.7% at Sc=1000; 0.6% at Sc=105). If the
Schmidt numbers decrease over the range of Sc<2, inaccuracy of Eq. (8.8) changes
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its sign, while its absolute value steadily increase reaching 3.4% at Sc=1 and 8.2%
at Sc=0.1 (see Table 8.3).

Thus, Eqs. (8.5), (8.6), (8.7) and (8.8) provide, generally speaking, approxi-
mately the same accuracy of prediction of the constant K1. However, in particu-
lar applied problems, preference should be given to a relation, which provides the
highest accuracy over the particular range of the Schmidt numbers peculiar to the
problem at hand.

Application to electrochemistry problems. An asymptotic theoretical solution
for mass transfer problems at very high Schmidt numbers Sc>>1 was obtained by
Levich [105]

K1 = 0.62Sc1/3. (8.9)

This solution coincides with the respective asymptotic solution for heat transfer
problems obtained at Pr>>1 in the work [199].

As can be seen from Table 8.3, asymptotic equation (8.9) agrees well with the
exact solution at Sc>500 (inaccuracy of Eq. (8.9) at Sc=500 equals to only 3.9% and
tends practically to zero at Sc→∞). Equation (8.9) looses its accuracy for Sc<500
and exceeds the exact solution by 7.1% at Sc=100 and by 56.7% at Sc=1 (see Table
8.3 and Fig. 8.1).

Authors of experimental investigations [37, 39, 42, 48, 126, 157] confirmed
validity of the Levich’s equation (8.9) for high Schmidt numbers.

Rotating-disk electrodes are widely used in experimental electrochemistry [3,
105]. Due to the pumping effect of a rotating-disk electrode, an electrolyte moves
from the outer volume of liquid to the disk surface. Flow of an electrolyte towards
the disk surface is proportional to the angular velocity of rotation of the electrode.
The process of convective mass transfer, which in this case is represented by inten-
sity of diffusion electrical current on the electrode, is described by Eqs. (1.44) and
(1.45).

Solution (8.4) with account for Eq. (8.9) is usually employed in the following
form [3, 105]:

iL = 0.62nFAC0D2/3
m ν−1/6ω1/2, (8.10)

where iL is limiting diffusion current of electrons to a disk electrode; n is the number
of electrons transferred; F is the area of the electrode; A is Faraday constant (96,485
C/mol); C0 is concentration of diffusion substance in the volume at a sufficiently
large distance from the electrode, mol/m3. It is easy to see that in this case the mass
transfer coefficient is equal to αm = iL/(nFAC0), whereas Eq. (8.10) can be reduced
to Eq. (8.9).

The following three problems are interesting for practice: (a) finding out depen-
dence of iL on ω; (b) determination of the diffusion coefficient Dm based on the
value of iL; and (c) analysis of volt–ampere characteristics obtained on a rotating-
disk electrode.
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Application to experimental determination of mass and heat transfer coeffi-
cients with the help of naphthalene sublimation technique. As mentioned above,
there exists analogy between the processes of convective heat transfer from a surface
with surrounding air and mass transfer for naphthalene sublimation into air from the
same surface. In the past, the naphthalene sublimation technique was used only to
determine surface-averaged mass transfer of an entire disk by means of its weighing
before and after the experiment and subsequent determination of the mass of naph-
thalene sublimated for the period of experiments [64, 96, 97, 201, 208]. At present,
exact and reliable techniques are already available for the determination of not only
surface-averaged, but also local mass transfer coefficients for laminar, transitional
and turbulent flow at any point on the surface [24, 28–30, 59, 117, 195].

The essence of the analogy between the processes of heat and mass transfer from
a surface consists in the following. Relations for the coefficients K1 in the equations
for the Nusselt number, Eq. (3.4), and Sherwood number, Eq. (8.4), can be written
as follows, respectively [193],

K1 = CPrmp , (8.11)

K1 = C Scmp , (8.12)

where the constant S is the same for both equations, whereas the effect of the
Prandtl and Schmidt numbers is taken into account by the respective factors in Eqs.
(8.11) and (8.12).

In fact, the Levich’s equation (8.9) applicable only for the asymptotic conditions
Sc>>1 and Pr>>1 is a particular case of Eq. (8.12) at mp=1/3 and C=0.62.

An application for the naphthalene sublimation technique means that Eqs. (8.11)
and (8.12) will be used for the cases with the Prandtl and Schmidt numbers moder-
ately less or larger than unity: Pr=0.7–0.74 for heat transfer in air, and Sc=2.28–2.5
for naphthalene sublimation in air. Hence, it is logical to assume that the coeffi-
cient C is equal to the constant K1 at Sc=1 and Pr=1 for the boundary conditions
Tw=const or Cw=const (see Table 8.1)

C = 0.3963. (8.13)

In all the known applications of the naphthalene sublimation technique for the
rotating-disk problems [24, 28, 29, 59, 64, 195], it was assumed that the exponent
mp is independent of the values of Pr and Sc, with the relation between the Nusselt
and Sherwood numbers being written as

Nu/Sh = (Pr/Sc)mp . (8.14)

Different authors recommended various values of the exponent mp, which differ
from each other by up to 45%. The values used were: mp=1/3 [29]; mp=0.4 [24,
29, 59, 96]; mp=0.53 [64]; and mp=0.58 [195].
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It is obvious that an error in the choice of the value of mp can lead to significant
errors in the recalculations of the data obtained using the naphthalene sublimation
technique to the case of heat transfer in air. It is therefore necessary to analyse the
values of mp suggested by different authors and develop recommendations regarding
its most accurate value.

The values of the exponent mp can be determined from the exact solution of the
system of the Navier–Stokes and thermal boundary layer equations in a self-similar
form (Tables 3.1 and 8.1). The data for mp for a series of discrete values of the
Prandtl (or Schmidt) numbers moderately different from unity are given in Table
8.4 [193]. One can conclude from these results that the exponent mp decreases from
the value mp=0.5723 to mp=0.5024 with the Prandtl or Schmidt numbers increasing
from 0.7 to 2.5. Thus, the value mp=0.53 offered in [64] is, in fact, the average over
the range of its variation with the Prandtl or Schmidt numbers varying from Pr=0.7
to 2.5.

Table 8.4 Values of mp in Eqs. (8.11), (8.12) and (8.14) based on the exact solution of Eqs. (2.37),
(2.38), (2.39), (2.40) and (2.41) for laminar flow [193]

Pr (Sc) 0.5 0.6 0.7 0.71 0.72 0.8 0.9 0.95 0.99

mp 0.5954 0.5827 0.5723 0.5714 0.5705 0.5638 0.5571 0.5551 0.5632
Pr (Sc) 1.05 1.1 1.5 2 2.28 2.4 2.5 3 4
mp 0.5438 0.5424 0.5264 0.5123 0.5064 0.5041 0.5024 0.4949 0.4841
Pr (Sc) 5 10 20 50
mp 0.4765 0.4566 0.4411 0.4251

Experimental data of different authors for the coefficient K1 for naphthalene sub-
limation in air are given in Fig. 8.1 and explained in detail in its caption. In general,
these data agree well with the results of the exact solution (see Table 8.3) with
an exception for the too high value K1=0.69 obtained for Sc=2.5 by the authors
of [195]. Having recalculated the experimental data with the help of Eq. (8.14) at
mp=0.53 to the case of Pr=0.71, one can obtain [193]: K1=0.318 [24]; K1=0.325
[29]; K1=0.328 [96, 97, 208]; K1=0.331 [64]; K1=0.321 [201]; K1=0.322 [117];
K1=0.354 [195]. Thus, data of [29, 64, 96, 97, 117, 201, 208] are in excellent agree-
ment with the exact solution K1=0.326 for Pr=0.71 and Tw=const (see Table 3.1)
and experimental data on heat transfer in these conditions (see Chap. 3). The value
K1=0.318 [24] is somewhat lower than the data of other authors, and the reason lies
probably in the somewhat low value of K1=0.59 obtained in [24] for naphthalene
sublimation at Sc=2.28. The value K1=0.354 [195] is too high, because the experi-
mental value K1=0.69 of these authors for naphthalene sublimation is also too high
(see also Fig. 8.1).

With the value of mp=0.4 recommended in [24, 29, 59, 96], one can obtain for
the conditions at Pr=0.71 [193]: K1=0.37 [24]; K1=0.379 [29]; K1=0.384 [96, 97,
208]; K1=0.388 [64]; K1=0.378 [201]; K1=0.380 [117]; K1=0.417 [195]. These
values of the coefficient K1 are too high in comparison with the exact solution
K1=0.326. It is especially important to accentuate this, because the experimental
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results [24, 29, 59] obtained relatively recently (as well as data of [117]) are accu-
rate in the part of the mass transfer data.

Authors [29] recommended the value mp=1/3. In this case, one can obtain for
Pr=0.71 [193]: K1=0.4 [24]; K1=0.409 [29]; K1=0.416 [96, 97, 208]; K1=0.421
[64]; K1=0.411 [201]; K1=0.413 [117]; K1=0.454 [195]. Thus, all the values of
K1 recalculated for the case of Pr=0.71 are even more overestimated in comparison
with the exact solution.

Authors of the work [195] suggested the value mp=0.58. In this case one can
obtain for Pr=0.71 [193]: K1=0.3 [24]; K1=0.307 [29]; K1=0.308 [96, 97, 208];
K1=0.311 [64]; K1=0.301 [201]; K1=0.303 [117]; K1=0.332 [195]. Hence, all the
values of K1 recalculated for the case of Pr=0.71 are too low in comparison with the
exact solution except for the data [195]. Apparently, authors of the work [195] had
to choose such a high value of mp in order to obtain the recalculated coefficient K1
agreeing well with the data for heat transfer at Pr=0.71. It is obvious, however, that
the problem is that the value K1=0.69 obtained in [195] for naphthalene sublimation
is too high and disagree with the numerous data of other researchers.

A modification of Eq. (8.14) was offered in [201]

Nu/ShSc=2.5 = f (Pr)Pr1/3 (8.15)

This means that mp=1/3, and all inaccuracies in the recalculation of the Nus-
selt number using the known value K1=0.625 at Sc=2.5 for the conditions at
other Prandtl or Schmidt numbers should be corrected by means of the function
f(Pr)=0.576, 0.634, 0.737, 0.842 and 0.926 at Pr=0.1, 1, 2.5, 10 and 100, respec-
tively. As a result, one can obtain that K1=0.321, 0.396, 0.625, 1.134 and 2.686 for
the same Prandtl numbers. This coincides with the exact solution at Tw=const (see
Table 8.1, n∗=0). With such an approach, the factor Pr1/3 is in principle redundant,
because the correction function f(Pr) can be tabulated via a computation of the ratio
Nu/ShSc=2.5 with the help of the exact solution over any range of Pr and Sc. An
advantage of such a method is its higher accuracy and universality, while the dis-
advantage of Eq. (8.15) is its poorer obviousness in comparison with Eq. (8.14),
because a tabulated function is always less convenient than an accurate approximat-
ing formula.

Thus, for the recalculation of the data for laminar mass transfer from a rotating
disk for naphthalene sublimation in air to the case of laminar heat transfer in air,
one can recommend to use Eq. (8.14) at the value of the power exponent mp=0.53
offered in [64] or, alternatively, Eq. (8.15) (or its modification) with the appropri-
ately tabulated function f(Pr).

8.2 Transitional and Turbulent Flows for the Prandtl or Schmidt
Numbers Moderately Different from Unity

In the current section, values of Pr≤5 and Sc≤5 are understood under the Prandtl
or Schmidt numbers moderately different from unity. The main application of the
results described in this section is development of recommendations applied to the
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experimental technique based on naphthalene sublimation in air at Sc=2.28–2.5
[193].

As mentioned above, only surface-averaged mass transfer coefficients for an
entire disk have been determined with the help of naphthalene sublimation tech-
nique in the past [64, 96, 97, 201, 208]. Experimental data for the local coefficients
of mass transfer for naphthalene sublimation from a surface of a rotating disk in
transitional and turbulent flow regimes were apparently obtained for the first time in
the recent investigations [24, 59].

Experimental data of different authors for local Sherwood numbers for naphtha-
lene sublimation in air and their approximations by empirical equations for laminar,
transitional and turbulent flows are shown in Fig. 8.2.
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Fig. 8.2 Local Sherwood
numbers for naphthalene
sublimation in air [193].
Experiments: 1 – Sc=2.28
[24]; 2 – Sc=2.4 [97]; 3 –
Sc=2.4 [208]; 4 – Sc=2.44
[64]; 5 – Sc not mentioned
[59]. Empirical
approximations of the
experiments with the help of
Eq. (8.4): 6 – laminar flow,
nR=1/2, K1=0.625 [96, 97,
201, 208]; 7 – laminar flow,
nR=1/2, K1=0.604 [29]; 8 –
transitional flow, nR=4,
K1=2×10–19, Eq. (8.16) [24];
9 – turbulent flow, nR=0.8,
K1=0.0512, Eq. (8.17) [24]

It makes sense to rewrite Eqs. (3.13) and (3.29) approximating experimental data
of the authors [24, 59] for transitional and turbulent flow regimes in a corrected
(range of validity of Eq. (3.13)) or transformed (Eq. (3.29)) form more convenient
for further analysis in the current section

Sh = 2.0 × 10−19 · Re4
ω for Reω = (1.9 − 2.75) × 105, (8.16)

Sh = 0.0512Re0.8
ω for Reω ≥ 2.75 × 105, (8.17)

Sh = 0.0518Re0.8
ω for Reω ≥ 2.5 × 105. (8.18)

For a number of engineering applications, it is important to determine average
Sherwood numbers Shav (or average Nusselt numbers Nuav) of an entire disk, where
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regions of laminar and transitional flow or laminar, transitional and turbulent flow
co-exist simultaneously.

Authors of works [64, 96, 97, 201, 208] obtained experimental data for the aver-
age Sherwood number of the entire disk where regions of laminar, transitional and,
in some cases, turbulent flows existed simultaneously. In order to obtain a relation
for Shav for the entire disk, authors of [97, 208] used an approach based on the
Reynolds analogy between the processes of heat (and mass) transfer and fluid flow.
Equations for the Nusselt and Sherwood numbers obtained as a result are inconve-
nient and contain parameters, whose determination in frames of the model used was
quite complicated. The application of the Reynolds analogy seems to be forced by
the lack of experimental data for the local Sherwood numbers that could have been
used for constructing models for Shav for the entire disk in a more direct way.

Model [42] for Shav used in electrochemical applications looks much more per-
spective and justifiable. An extension of this model to the mass transfer for naphtha-
lene sublimation allowed validations of the relatively recent data for the local values
of the Sherwood numbers via comparisons with the huge data for Shav available for
the entire disk [193].

The author [42] assumed that at simultaneous existence of the regions of laminar,
transitional and turbulent flows on the disk, the span of the transitional zone is rather
small, and the transition from laminar to turbulent flow occurs abruptly at a radial
location rtr for a Reynolds number Reω,tr. Then the integration in order to obtain the
value Shav for the entire disk should be performed as

Shav = 2

b

⎡

⎣
rtr∫

0

Shlamdr +
b∫

rtr

Shturbdr

⎤

⎦ . (8.19)

The Sherwood numbers are defined by the first of Eqs. (8.4); the allowance
should be made for the actual values K1,lam and nR=1/2 for laminar flow (subscript
“lam”), and K1,turb and nR=0.8 for turbulent flow (subscript “turb”).

As a result of the integration of Eq. (8.19), one can obtain

Shav = K1,lamRe1/2
ω,tr

(
Reω,tr

Reϕ

)1/2

+ 2

2nR + 1
K1,turbRenR

ϕ

[

1 −
(

Reω,tr

Reϕ

)nR+1/2
]

.

(8.20)
Equation (8.20) is valid for Reϕ ≥ Reω,tr. If Reϕ < Reω,tr, the second term

in Eq. (8.20) should be neglected. In the limiting case Reϕ >> Reω,tr, Eq. (8.20)
reduces to the second of Eqs. (8.4) for developed turbulent flow existing over the
entire disk surface, where

K2,turb = 2

2nR + 1
K1,turb. (8.21)

Equation (8.20) coincides with Eq. (3.35), while Eq. (8.21) coincides with
Eq. (3.45) under condition n∗=0 (which corresponds to the cases Tw=const and
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Cw=const being compared) with account for the relation 2nR = 1 + m that follows
from Eqs. (2.83) and (3.41).

The model of [42] can be generalized taking into account every region of the
laminar, transitional and turbulent flows separately as suggested in [126]. Assum-
ing that the transition starts at the radial coordinate rtr1 for the Reynolds number
Reω,tr1, while the end of the transition takes place at the radial coordinate rtr2 for the
Reynolds number Reω,tr2, then the integration to find Shav should be performed as
follows:

Shav = 2

b

⎡

⎣
rtr1∫

0

Shlamdr +
rtr2∫

rtr1

Shtrandr +
b∫

rtr2

Shturbdr

⎤

⎦ (8.22)

Newly introduced function Shtran is defined by the first of Eqs. (8.4) with
allowance for experimentally determined values of K1,tran and nR,tran for transitional
flow (subscript “tran”).

As a result of the integration of Eq. (8.22), one can obtain

Shav = K1,lamRe1/2
ω,tr1

(
Reω,tr1

Reϕ

)1/2 + 2
2nR,tran+1 K1,tranRe

nR,tran
ω,tr2

(
Reω,tr2

Reϕ

)1/2

[
1 −

(
Reω,tr1
Reω,tr2

)nR,tran+1/2
]

+ 2
2nR+1 K1,turbRenR

ϕ

[
1 −

(
Reω,tr2

Reϕ

)nR+1/2
]

.
(8.23)

Equation (8.23) is applicable for Reϕ ≥ Reω,tr2. If Reϕ < Reω,tr2, the third term
in Eq. (8.23) should be neglected, with the second term taking a simpler form:

Shav = K1,lamRe1/2
ω,tr1

(
Reω,tr1

Reϕ

)1/2

+ 2

2nR,tran + 1
K1,tranRe

nR,tran
ϕ

[

1 −
(

Reω,tr1

Reϕ

)nR,tran+1/2
] (8.24)

In the limiting case of Reϕ >> Reω,tr2, Eq. (8.23) reduces to the second of Eqs.
(8.4) with K2,turb being given by Eq. (8.21).

Authors [126], while determining the average Sherwood number for an entire
disk, derived an expression that is a particular case of Eq. (8.23), because all its
empirical constants are represented by their numerical values obtained in experi-
ments [126] (electrochemical applications at high Schmidt numbers). Because of
this, expression [126] cannot be directly applied for the case of naphthalene subli-
mation in air.

In order to make comparisons with the experimental data for Shav, let us substi-
tute numerical values of the constants obtained in [24] (see Eqs. (8.16), (8.17) and
caption in Fig. 8.1) into the general equations derived above. As a result, one can
obtain for Eqs. (8.20), (8.21), (8.23) and (8.24), respectively:

(a) for Eq. (8.20)
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Shav = 0.59Re1/2
ω,tr

(
Reω,tr

Reϕ

)1/2

+ 2

2.6
0.512Re0.8

ϕ

[

1 −
(

Reω,tr

Reϕ

)1.3
]

(8.25)

(b) for Eq. (8.21)

K2,turb = 2

2.6
K1,turb = 0.0394 (8.26)

(c) for Eq. (8.23)

Shav = 0.59 × 1.9 × 105Re−1/2
ϕ + 4

9 10−19(2.75 × 105)4.5Re−1/2
ϕ

[
1 −

(
1.9×105

2.75×105

)4.5
]

+ 0.0394Re0.8
ϕ

[
1 −

(
2.75×105

Reϕ

)1.3
]

, Reϕ ≥ 2.75 × 105,

(8.27)
(d) for Eq. (8.24)

Shav = 0.59 × 1.9 × 105Re−1/2
ϕ + 4

9
10−19Re4

ϕ

[

1 −
(

1.9 × 105

Reϕ

)4.5]

,

Reϕ = (1.9 − 2.75) × 105.
(8.28)

The Reynolds number of the abrupt transition to turbulent flow Reω,tr in
Eq. (8.25) was left as a unknown parameter that can be varied to reach a better
agreement with the experiments.

A comparison of Eqs. (8.25), (8.26), (8.27) and (8.28) with experimental data
of different authors is presented in Fig. 8.3. Experimental data 1, 5 and curve 6
for Shav for developed turbulent flow were obtained in the present work by means
of a recalculation of the experimental data [24, 59] and Eq. (8.17) with the help
of Eq. (8.26). It should be remembered also that for laminar flow K2,lam = K1,lam
(curves 7 and 8). Curve 9, computed via combining Eqs. (8.27) and (8.28) and taking
into account boundaries at the beginning and end of the transition to turbulent flow,
agrees well with the experimental data [64, 97, 208] for Shav for the entire disk
presented in Fig. 8.3.

Experimental points 1 for Shav for the entire disk presented in Fig. 8.3 were
computed in the present work based on the data [24] for laminar, transitional and
turbulent flow with the help of Eqs. (8.27) and (8.28). It is obvious that these points
coincide with curve 9 for the corresponding values of the Reynolds number.

Substituting the Reynolds numbers on the lower and upper border of the tran-
sitional region (i.e. 1.9×105 and 2.75×105, respectively) as Reω,tr in Eq. (8.25)
(abrupt transition to turbulent flow) resulted in curves 10 and 11, which lie higher
and lower than curve 9, respectively. In order to agree with curve 9, one should
choose an average (or “effective”) Reynolds number of the abrupt transition to tur-
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Fig. 8.3 Average Sherwood
numbers for naphthalene
sublimation in air [193].
Experiments: 1 – Sc=2.28
[24]; 2 – Sc=2.4 [97]; 3 –
Sc=2.4 [208]; 4 – Sc=2.44
[64]; 5 – Sc not mentioned
[59]. Calculation based on
Eq. (8.4): 6 – turbulent flow
region, nR=0.8, K2=0.0394,
Eq. (8.26) [24]; 7 – laminar
flow, nR=1/2, K1=0.625 [96,
97, 201, 208]; 8 – laminar
flow, nR=1/2, K1=0.59 [24].
Calculation of Shav for the
entire disk: 9 – Eqs. (8.27)
and (8.28); 10 – Eq. (8.25) at
Reω,tr = 1.9×105; 11 –
Eq. (8.25) at Reω,tr =
2.75×105; 12 – Eq. (8.25) at
Reω,tr = 2.35×105

bulent flow, which in this case is equal to Reω,tr = 2.35× 105 (curve 12). This effec-
tive Reynolds number Reω,tr is, in fact, the arithmetic mean of the Reynolds numbers
at the beginning Reω,tr1 and end Reω,tr2 of the transition to developed turbulent flow.

It should be pointed out that all curves 9–12 in the limiting case of Reϕ→∞
merge with curve 6 for developed turbulent flow over the entire disk.

Thus, Eqs. (8.23) and (8.24), based on the model taking into account simultane-
ous existence of the regions of laminar, transitional and turbulent flows, provide the
highest accuracy in predicting the average Sherwood numbers for the entire disk.
The simpler equation (8.20), which is based on the model [42], also provides the
accuracy comparable with that of Eqs. (8.23) and (8.24) under the condition of cor-
rect determining of the “effective” Reynolds number Reω,tr of the abrupt transition
to turbulent flow. One should also point out that the conditions at the beginning
and end of the transition to turbulent flow are different in experiments of different
authors; therefore, the “effective” value Reω,tr should be found out individually in
every case.

Application to experimental determination of mass and heat transfer coef-
ficients using naphthalene sublimation technique. The aforementioned analogy
between heat transfer in air flow over a surface and mass transfer for naphthalene
sublimation in air may be also applied to transitional and turbulent flow over a disk.
However, one should correctly use correlations that follow from this analogy.

Like in the laminar regime of flow, a recalculation of the data for mass transfer to
the respective relations for heat transfer is based on Eqs. (3.4) for the Nusselt number
and Eqs. (8.4) for the Sherwood number, with coefficients K1 in these equations
being written as Eqs. (8.11) and (8.12), respectively [193]. In doing so, the factor
C is considered to be equal to the value of K1 at Sc=1, Pr=1 for the boundary
conditions Tw=const or Cw=const.
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It was pointed out above (in Sect. 8.1) that for laminar flow the exponent mp,
strictly speaking, is not constant, but varies depending on the Prandtl or Schmidt
numbers (see Table 8.4). However, authors of the work [64] succeeded in determin-
ing a constant value mp=0.53, which, being average over the range of the Prandtl
and Schmidt numbers Pr=Sc=0.7–2.5, allows with good accuracy to recalculate
mass transfer data into heat transfer data with the help of Eq. (8.14) that follows
from Eqs. (8.11) and (8.12) under condition mp=const.

In fact, authors [24, 59] assumed that, over the range of Pr=Sc=0.7–2.5, the
exponent mp is constant also for turbulent flow and is equal to mp=0.4. This assump-
tion was made based on the recommendations of [28]. As far as we know, no other
author developed any recommendation regarding the value of mp for transitional
and turbulent flows. In Sect. 3.3.2, a recalculation was done by means of Eq. (8.14)
of the values K1 for Sc=2.28 given in explanations to Eq. (3.29) (or, which is the
same, in Eqs. (8.17) and (8.18)) as applied to conditions of heat transfer of a rotating
disk in air for Pr=0.72. It was obtained as a result that the value of K1 at Tw=const
should be equal to K1=0.0323. However, in reality, at Tw=const and Pr=0.72, the
coefficient K1 is equal to 0.0188 according to experiments [11, 46, 146] (see Table
3.5) or to 0.0187 based on the theoretical model [173, 189].

So, it is again obvious also for turbulent flow that the aforementioned error in
the choice of the value of mp leads to the significant error in the recalculation of the
data from the naphthalene sublimation technique for the case of heat transfer in air.

To remind, Eqs. (8.11) and (8.12) are supposed to be used for the Prandtl num-
bers moderately less than unity (for air Pr=0.7–0.74) and the Schmidt numbers
moderately larger than unity (for naphthalene sublimation in air Sc=2.28–2.5). It is
logical therefore to assume that the coefficient C in Eqs. (8.11) and (8.12) should
be equal to the value of the constant K1 for turbulent flow at Sc=1, Pr=1 for the
boundary conditions Tw=const or Cw=const according to Table 3.7:

C = 0.0232 (8.29)

Contrary to the laminar flow case, an exact self-similar solution for the turbu-
lent flow regime does not exist at all. Hence, a determination of the exponent mp

should be based on experimental data. In fact, only experiments [24, 59] for naph-
thalene sublimation and their approximations in the form of Eqs. (8.17) and (8.18)
are available for this purpose. In view of Eqs. (8.17) and (8.29), as well as the value
K1=0.0188 at Tw=const and Pr=0.72 [11, 46, 146], Eqs. (8.11) and (8.12) take the
following form:

K1 = 0.0232Pr0.64 for Pr ≤ 1, (8.30)

K1 = 0.0232Sc0.96 for Sc ≥ 1. (8.31)

Thus, the exponent mp for turbulent flow varies significantly depending on the
Prandtl and Schmidt numbers. The relation between the Nusselt number for heat
transfer in air and the Sherwood number for naphthalene sublimation in air looks
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therefore as follows:

Nu/Sh = Pr0.64/Sc0.96 (8.32)

As a development of the idea [201] expressed in Eq. (8.15), one can rewrite
Eq. (8.32) as

Nu/ShSc=2.28 = f (Pr) (8.33)

where the function f(Pr) is equal to 0.367 at Pr=0.72.
Finally, in analogy to laminar flow, one can choose an effective value of mp that

allows using the relation between the Nu and Sh numbers in the form of Eq. (8.14)

Nu/Sh = (Pr/Sc)0.87 (8.34)

The value of the exponent mp in Eq. (8.34) is more than twice as high as the value
0.4 erroneously recommended in [24, 59]. One should remember, however, that the
value mp=0.87 must not be used in Eqs. (8.30) and (8.31), because this can cause
significant errors in the calculations of the coefficient K1.

Analysis for the transitional flow shows that the empirical equation (3.10)
[146] for Tw=const and Pr=0.72 fits in the best way to compare with the case
of Cw=const at hand. For transitional flow, Eq. (8.14) should be modified with
allowance for Eqs. (3.10) and (8.16) in the following way:

Nu/Sh = (Pr/Sc)0.6 (8.35)

The range of validity of Eq. (3.10), where Reω=(1.95–2.5)×105, is somewhat
narrower in comparison with that of Eq. (8.16), where Reω=(1.9–2.75) ×105. How-
ever, this difference is rather small.

Thus, in order to recalculate the data for turbulent mass transfer for naphtha-
lene sublimation from a disk into air to the case of heat transfer with air, one can
recommend using any of Eqs. (8.32), (8.33) and (8.34), while for transitional flow
Eq. (8.35) should be applied [193].

8.3 Transitional and Turbulent Flows at High Prandtl
and Schmidt Numbers

For high values of the Prandtl and Schmidt numbers in the current section, the values
peculiar for electrochemistry problems are understood. For example, in experiments
[37, 39, 42, 48, 126], whose data are analysed below, Schmidt numbers were in the
range of Sc=34–10,320. The main objective pursued in this section included com-
parisons, analysis and generalization of the experimental data and theoretical solu-
tions of different authors and development of recommendations for their use [194].
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Given below are empirical correlations for the Sherwood numbers in transitional
and turbulent flow obtained by different authors experimentally as well as based on
various semi-empirical models.

Author [42] measured average Sherwood numbers for the entire disk. Experi-
mental data obtained for Reϕ=(0.278–1.8) ×106, Sc=930–10,320 agree well with
the approximating equation [42]

Shav = Sc1/3Re−1/2
ϕ [0.62Reω,tr + 1.08 × 10−2(Re1.37

ϕ − Re1.37
ω,tr )]. (8.36)

Equation (8.36) was obtained based on Eq. (8.20) at K1,lam=0.62 · Sc1/3,
K1,turb=0.0148 · Sc1/3, nR=0.87 and agrees well with the experiments at
Reω,tr=2.78×105. According to [42], transitional region existed at Reω=(2.3–2.9)
×105. Relation (8.36) lies somewhat lower than the experimental data [42] in the
region of transitional flow (similar to curve 12 in Fig. 8.3) that is caused by the
simplified assumptions accepted in model (8.20) and discussed in Sect. 8.2.

An asymptotic form of Eq. (8.36) for developed turbulent flow looks as fol-
lows [42]:

Shav = 1.08 × 10−2Re0.87
ϕ Sc1/3. (8.37)

Based on Eq. (8.37) with allowance for Eq. (8.21), one can obtain a relation for
the local Sherwood numbers

Sh = 1.48 × 10−2Re0.87
ϕ Sc1/3. (8.38)

Average Sherwood numbers for the entire disk were measured also in work
[37] over the range Reϕ=5×104–1.8×106, Sc=345–6450. Transitional flow
was observed at Reϕ=(2.3–2.9) ×105. For developed turbulent flow, i.e. for
Reϕ=3×105–1.8×106, authors [37] obtained the following asymptotic correlation:

Shav = 0.0725Re0.9
ϕ Sc0.33. (8.39)

Experimental data for Shav for the entire disk as well as the data for the
local Sherwood numbers at laminar, transitional and turbulent flow over the range
Reω=4×104–2.2×106, Sc=680–7200 were obtained by the authors [39]. In experi-
ments [39], transitional flow existed for Reω=(2.2–3.0) ×105. For developed turbu-
lent flow at Reω=3.0×105–2.2×106, authors [39] obtained the following relations:

Sh = 1.09 × 10−2Re0.91
ω Sc1/3, (8.40)

Shav = 7.67 × 10−3Re0.91
ϕ Sc1/3. (8.41)

In order to approximate experimental data [39] for the average Sherwood num-
bers of an entire disk, the following relation was developed by the author of this
monograph in analogy to Eq. (8.36)
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Shav = Sc1/3Re−1/2
ϕ [0.62Reω,tr + 7.67 × 10−3(Re1.41

ϕ − Re1.41
ω,tr )], (8.42)

where the Reynolds number of abrupt transition was assumed to be equal to the
value Reω,tr=2.78×105 as suggested in the work [42].

Experimental data [48] for Shav for an entire disk were obtained for Reϕ=104–
1.18×107, Sc=34–1400. For the developed turbulent flow region at Reϕ=8.9×105–
1.18×107, authors [48] obtained the following empirical correlation:

Shav = 1.17 × 10−2Re0.896
ϕ Sc0.249. (8.43)

One should point out significant deviations of the experimental data [48] from
the approximating dependence (8.43).

Original experimental data for the local Sherwood numbers at transitional flow
over the range Reω=(2.0–3.0) ×105 and Sc=1192–2465 were obtained in [126]
and approximated by empirical equation (3.14), which for the sake of convenience
is rewritten in the current section

Sh = 3.4 × 10−14Re3
ωSc1/3. (8.44)

Authors [126] presented also their own approximation of the experimental data
[37] for developed turbulent flow

Shav = 7.8 × 10−3Re0.9
ϕ Sc1/3. (8.45)

Authors [126] also obtained an equation for the average Sherwood numbers at
simultaneous existence of laminar and transitional flow that is in fact a particular
case of Eq. (8.24) based on Eq. (8.9) for laminar flow and original equation (8.44):

Shav = Sc1/3Re−1/2
ϕ [0.89 × 105 + 9.7 × 10−15Re3.5

ϕ ]. (8.46)

For the average Sherwood numbers of the entire disk, where regions of laminar,
transitional and turbulent flow existed simultaneously, authors [126] obtained an
equation

Shav = Sc1/3Re−1/2
ϕ [7.8 × 10−3Re1.4

ϕ − 1.3 × 105], (8.47)

which is in fact a particular case of Eq. (8.23) with Eq. (8.9) being used for the
laminar flow, Eq. (8.44) for transitional regime and Eq. (8.45) for turbulent flow.

Theoretical correlations for local Sherwood numbers for developed turbulent
flow and high Schmidt numbers obtained with the help of different model assump-
tions in [81, 216] look as follows, respectively,

Shav = 7.07 × 10−3Re0.9
ϕ Sc1/3, (8.48)

Shav = 5.93 × 10−3Re0.91
ϕ Sc0.34. (8.49)
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A solution for the average Sherwood numbers that coincides with experimen-
tal equation (8.45) was obtained in the theoretical investigation [102]. A similar
solution was obtained using a theoretical model in [141] with the coefficient at the
Reynolds number equal to 6.43 × 10−3.

Authors [125] proposed a relation intended to take into account the effect of the
Schmidt number on the Shav over the wide range of variation of Sc=0.72 to ∞

Shav = 0.0267ScRe0.8
ϕ

1.3 + 3.19(Sc − 1)Sc−1/3Re−0.1
ϕ

. (8.50)

Several empirical and theoretical equations agree well with each other while cal-
culating the Sherwood numbers for the developed turbulent flow as well as for the
average Sherwood numbers for the entire disk at simultaneous co-existence of lam-
inar, transitional and turbulent flows over the disk. As seen from Fig. 8.4, empir-
ical equations (8.37) and (8.39), as well as the theoretical equation (8.48), practi-
cally coincide. Theoretical solution (8.49) also agrees well with Eqs. (8.37), (8.39)
and (8.48). Approximation (8.45) exceeds noticeably the original experimental data
[37]. Theoretical solution in the form of Eq. (8.45) with the coefficient 6.43 × 10−3

[141] provides the data that are 9% lower than those obtained by Eq. (8.48). Very
good agreement of empirical equations (8.37) and (8.39) is thus an evidence in
favour of reliability of these experimental data.

As the data in Fig. 8.5 show, Eq. (8.41) for turbulent flow and Eq. (8.42) for the
entire disk exceed significantly Eqs. (8.37) and (8.36), respectively.

Empirical equation (8.43) obtained in the work [48] is in fact the only one where
the power exponent 0.249 at the Schmidt number differs noticeably from 1/3. Such a
significant disagreement with the results of all the other experimental and theoretical
investigations known in the literature, together with the aforementioned deviation of
the experimental data from the approximation curve [48], is most probably the evi-
dence of the erroneous value of the exponent 0.249 suggested in [48]. As the data in
Fig. 8.6 show, differences among the curves that one can obtain based on Eq. (8.43)
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disk [42]; 3 – Eq. (8.37) [42];
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in the coordinates Shav/Sc1/3 versus Reϕ for different Schmidt numbers (over the
range of variation of Sc observed in experiments [48]) are rather significant. There-
fore, Eq. (8.43) should be considered unreliable.

Based on the analysis done with the help of Figs. 8.4, 8.5 and 8.6, one can con-
clude that the most reliable empirical relations obtained via approximations of the
experimental data for developed turbulent flow and an entire disk are Eqs. (8.36),
(8.37), (8.38) and (8.39).

The range of the Schmidt numbers investigated in electrochemical experiments
[37, 42], the data which we consider the most reliable, is within Sc=345–10,320.
Reliable experimental data [24, 59] for the average and local Sherwood numbers
for naphthalene sublimation in air at Sc=2.28 were published significantly later.
It is therefore interesting to find out whether Eqs. (8.36), (8.37), (8.38) and (8.39)
obtained for the asymptotic case of very high Schmidt numbers can be applied to
the case of the moderate values Sc=2.28–2.5.

Exponent at the Reynolds number in Eq. (8.38) for developed turbulent flow
is different from the respective exponents in Eqs. (8.17) and (8.18) for the case
Sc=2.28. For the convenience of comparisons, let us transform Eq. (8.38) in such
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a way that the power exponent at the Reynolds number is equal to 0.8, like in
Eq. (8.17).

Given in Fig. 8.5 is curve 2 obtained by Eq. (8.36), as well as curve 4 computed
using the following correlation obtained by the author of the present work:

ShavSc−1/3 = 0.62Re1/2
ω,tr

(
Reω,tr

Reϕ

)1/2

+ 2

2.6
0.0365Re0.8

ϕ

[

1 −
(

Reω,tr

Reϕ

)1.3
]

(8.51)
Here again, like in Eq. (8.36), Reω,tr=2.78×105. Curves 2 and 4 practically coin-

cide for Reϕ≤9.0×105. Differences between curves 2 and 4 become noticeable for
the Reynolds numbers increasing over the range Reϕ>9.0×105.

For the developed turbulent flow, asymptotical forms of Eq. (8.51) for local and
average Sherwood numbers are

Sh = 3.65 × 10−2Re0.8
ω Sc1/3, (8.52)

Shav = 3.65 × 10−2 2

2.6
Re0.8

ϕ Sc1/3 = 2.81 × 10−2Re0.8
ϕ Sc1/3. (8.53)

Analysis of the data for naphthalene sublimation in air fulfilled in Fig. 8.7 shows
that empirical equation (8.38) [42] used at Sc=2.28 allows computing Sherwood
numbers close enough to the experimental data [24, 59] and their approximation
equation (8.17). Equations (8.38) (curve 10) and (8.17) (curve 9) agree well with
each other at sufficiently high Reynolds numbers Reω=(0.6–2.0) ×106. As could
be expected, curve 11 plotted using Eq. (8.52) is close to empirical curve 10 at
lower Reynolds numbers Reω≤7.0×105. Using Eq. (8.52), one can obtain the value
of K1=0.048 at Sc=2.28, that is only 6.7% lower than the value of K1=0.0512 in
Eq. (8.17).

Curve 12 plotted based on Eq. (8.40) exceeds significantly experimental data in
Fig. 8.7 and their approximation curve 9 (Eq. (8.17)), as well as curves 10, 11 plotted
using Eqs. (8.38) and (8.52) (similar to Fig. 8.5).

Empirical equation (8.44) [126] for transitional flow region at Sc=2.28 (curve 13
in Fig. 8.7) agrees very well with Eq. (8.16) and experimental data [24].

Theoretical equation (8.50) is very inaccurate. According to Eq. (8.50), for the
power exponent at Reϕ equal to 0.8, one can obtain the value K2≈0.029 at Sc=2.28
noticeably different from the experimental value K2=0.0394 [24], Eq. (8.26). For
high Schmidt numbers, Eq. (8.50) yields K2/Sc1/3 ≈ 0.035, which is much higher
than the respective value 0.0281 in Eq. (8.53). For air at Pr=0.72, Eq. (8.50) gives
K2≈0.018–0.019 that is significantly different from the reliable experimental values
K2=0.0145–0.015 [41, 138, 173] (see Table 3.5).

Thus, Eqs. (8.36), (8.37), (8.38) and (8.39) should be recognized as the most
reliable empirical equations for the computation of the Sherwood numbers for the
cases of high Schmidt numbers at the developed turbulent flow and for an entire disk.
As the analysis has shown, these equations with the maximal inexactitude less than
7% can allow estimating mass transfer intensity also at moderate Schmidt numbers
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of Sc=2.28. For transitional flow, empirical equation (8.44) originally obtained by
the authors of the work [126] at high Schmidt numbers Sc=1192–2465 remains
valid also for Sc=2.28.

8.4 An Integral Method for Modelling Heat and Mass Transfer
in Turbulent Flow for the Prandtl and Schmidt Numbers
Larger than Unity

8.4.1 Prandtl and Schmidt Numbers Moderately Different
from Unity

In analogy to what was said in Sect. 8.2, understood under the Prandtl and Schmidt
numbers moderately different from unity are values of Pr≤5 or Sc≤5. However, real
validation of the solution described below is possible only via comparisons with the
data on mass transfer in naphthalene sublimation in air at Sc=2.28–2.5.

Analysis performed below is based on the present integral method for the prob-
lem of heat transfer over a free rotating disk using power-law approximations of
the velocity and temperature profiles, as well as power laws for surface friction and
heat transfer described in Sect. 2.4. As mentioned in Sect. 2.4, it is possible to obtain
an analytical solution of the heat transfer problem with boundary conditions (2.34),
(2.35) and (2.36) under assumptions that (a) relative thermal boundary layer thick-
ness =δT/δ is constant and independent of the radial coordinate r, (b) exponents
in power-law approximations of the profiles of velocity components (2.42), (2.43),
(2.44), (2.45), (2.46) and (2.47) and temperature (2.58) are equal to each other n=nT

and (c) under condition that Pr=const.
Finally, Nusselt numbers obtained as a result of the solution can be calculated by

Eqs. (3.4). Under condition that ≥1 (thermal boundary layer thickness δT exceeds
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momentum boundary layer thickness δ), the constants K1 for the local Nusselt num-
bers and K2 for the average Nusselt numbers in Eqs. (3.4) as applied to the case
of a free rotating disk can be calculated by Eqs. (3.38)–(3.49) presented in Sect.
3.3.3. In order to compute  for the case where ≤1, one should numerically solve
transcendental equation (3.50) instead of using Eqs. (3.43), (3.44) and (3.48). Rec-
ommendations for calculation of the exponent np at the Prandtl number for the case
of ≤1 were not developed in Sect. 3.3.3, because in air cooling systems, i.e. at
Pr=0.7–0.74, condition ≥1 always holds.

As mentioned in Sect. 8.2, for the case of mass transfer in naphthalene sublima-
tion in air, local Sherwood numbers measured in experiments [24, 59] were approx-
imated by Eqs. (8.17) or (8.18). In these formulas, the exponent at the Reynolds
number is equal to 0.8, which corresponds to that in the solutions (3.38)–(3.49) at
n=nT=1/7 (see Table 3.6). Technique of naphthalene sublimation in air is used for
experimental determination of heat transfer rate of the disk in air at Tw=const (see
Eqs. (8.29), (8.30), (8.31), (8.32), (8.33), (8.34) and (8.35)). This is an evidence of
the fact that the approximate analytical solution (3.38)–(3.49) for the problem of
heat transfer of a rotating disk at n=nT and =const, which has proved its effi-
ciency for the Prandtl numbers less than unity, can be also applied for modelling
heat and mass transfer problems for the Prandtl and Schmidt numbers moderately
different from unity.

It should be found out first of all, which of Eqs. (3.43) or (3.50) for the relative
thickness  of the thermal boundary layer can be applied for the case at hand.
Numerical values of  for the Prandtl numbers Pr=0.72, 1.0 and 2.28 at different
values of the exponent n∗ in the boundary condition (2.35) calculated by Eqs. (3.43)
and (3.50) are given in Table 8.5. The value of the exponent np at the Prandtl number
for Pr=2.28 was chosen in such a way that the constant K1 in Eq. (3.4) for the local
Nusselt number calculated by Eq. (3.44) for ≥1 for an isothermal disk (n∗=0) is
equal to K1=0.0512. This corresponds to the value of the constant K1=0.0512 in
Eq. (8.17) for the Sherwood number obtained at Sc=2.28 in experiments [24]. It
was obtained as a result at Pr=2.28 that

np = 0.042/(1 − KV ). (8.54)

Analysis of data in Table 8.5 reveals that at Pr=0.72–1, the value of the rela-
tive thickness  of the thermal boundary layer exceeds unity for n∗<3. However,
Eq. (3.43), which is formally valid only for the case ≥1, allows also over the
range of n∗=3–4 to calculate values of ≤1 that coincide with the data predicted
by Eq. (3.50). This is another confirmation of the fact that Eq. (3.44) for the coef-
ficient K1 at Pr=0.72–1 and its analogues for more complicated cases of fluid flow
considered in Chaps. 5 and 6 can be used over the entire range of the values n∗=-1.5
to 4 studied in this monograph.

For the value of the Prandtl number Pr=2.28 one can find out that ≥1 at
n∗<2. In analogy to what was said above, Eq. (3.43) also for n∗=2–4 allows pre-
dicting values of ≤1 that in fact coincide with the results obtained with the help of
Eq. (3.50).
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Table 8.5 Values of  given by Eqs. (3.43) and (3.50) at n=nT=1/7

Pr Equations n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

0.72
0.72

(3.43) 60.664 15.924 7.0271 4.0322 1.984 1.2841 0.9563 0.7728
(3.50) 3.3117 2.9253 2.6237 2.3549 1.81476 1.2819 0.9563 0.7720

1.0
1.0

(3.43) 32.677 9.5524 4.5472 2.7600 1.4679 1.0 0.7723 0.6413
(3.50) 3.1437 2.7462 2.4200 2.1093 1.4530 1.0 0.7715 0.6364

2.28
2.28

(3.43) 27.983 8.4144 4.0845 2.5149 1.3640 0.9412 0.7335 0.6131
(3.50) 3.0991 2.6972 2.3621 2.0361 1.3582 0.9412 0.7320 0.6064

As applied to the range of ≥1, Eq. (3.50) also predicts values of  exceeding
unity; however, their numerical values significantly deviate from those predicted
by Eq. (3.43). These deviations increase very strongly with the decreasing values
of the exponent n∗, in particular, when n∗ becomes negative. Therefore, Eq. (3.50)
becomes inapplicable for prediction of the values of  over the range ≥1, which
means that in this case Eqs. (3.43) and (3.50) cannot substitute each other.

The fact that thermal boundary layer thickness can still exceed momentum
boundary layer thickness also for the Prandtl numbers larger than unity from the
first look seems to be paradoxical. Apparently, the reason for this phenomenon is
that for the Prandtl or Schmidt numbers moderately larger than unity the effect of
Pr and Sc values is insufficiently strong to overcome the effect of the radial tempera-
ture gradient, which results in the values of ≥1 at n∗<2. However, the effect of the
radial temperature gradient on the disk surface weakens with the increased Prandtl
numbers, which results in that the values of n∗ that make possible conditions with
≥1 at Pr>1 gradually decrease (see Table 8.5).

Thus, the present integral method developed in Chap. 2 and validated in detail
for the case of a free rotating disk in air in Chap. 3 remains still applicable for the
cases where Prandtl and Schmidt numbers moderately exceed unity. One should use
in this case the corrected value of the exponent np at the Prandtl or Schmidt number,
which for naphthalene sublimation in air can be calculated by Eq. (8.54). It is also
important to point out that based on the value of np found for the conditions with
n∗=0 the integral method allows modelling heat transfer of a rotating disk at all
the other thermal boundary conditions on its surface and, in particular, for arbitrary
values of n∗ in the boundary condition (2.35). Values of the coefficient K1 given
by Eq. (3.44) with account for Eq. (8.54) at different values of n∗ and Pr=2.28 are
presented in Table 8.6.

For higher values of Pr and Sc (for instance, for heat transfer in water or techni-
cal oil, etc.), the numerical coefficient in Eq. (8.54) apparently accepts other values,
which should be determined via comparisons with experimental data. Such exper-
imental data can, in particular, allow pinpointing Prandtl and Schmidt numbers, at
which thermal/diffusion boundary layer thickness under conditions Tw=const or
Cw=const becomes less than momentum boundary layer thickness.

Ratio  of the thicknesses of the thermal/diffusion and momentum boundary
layers causes significant effect on peculiarities of the model used in frames of the
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Table 8.6 Values of the coefficient K1 given by Eqs. (3.44) and (8.54) at n=nT=1/7 and Pr=2.28

n∗ n∗=–1.5 n∗=–1 n∗=–0.5 n∗=0 n∗=1 n∗=2 n∗=3 n∗=4

K1 0.0363 0.0431 0.0478 0.0512 0.0559 0.0590 0.0611 0.0627

present integral method. As will be shown below, parameter  at very high Schmidt
numbers is very small and becomes itself a function of the local rotational Reynolds
number Reω. Temperature/concentration profiles in wall coordinates also become
functions of the local Reynolds number Reω. It is of significant interest to determine
limiting Prandtl or Schmidt numbers, for which fundamental assumptions =const
and T+ ≡ T+(y+) (see Eq. (2.66)) of the present integral method become invalid.
However, such investigation was not included in objectives pursued in frames of this
monograph.

8.4.2 High Prandtl and Schmidt Numbers

Model with a constant value of �<<1. At very high Prandtl (or Schmidt) numbers,
the ratio  of thicknesses of the thermal (or diffusion) and momentum boundary
layers becomes very small. Owing to this, transcendental equation (3.50) obtained
under assumptions =const, n=nT and T+ ≡ T+(y+) can be simplified, because
all the terms in the parentheses in the left-hand side except for a∗ become negligibly
small:

2n+1a∗ = 4 + m

4 + m + n∗
(a∗ − 2b∗ + c∗) Pr−np . (8.55)

From Eq. (8.55), one can obtain an analytical solution for :

 =
[

4 + m

4 + m + n∗

(
1 − 2D3

C2

)] 1
2n+1

Pr− np
2n+1 , (8.56)

where constants C2 are D3 are defined in explanations to Eqs. (2.73) and (2.74).
Based on Eqs. (3.42) and (8.56), the constant K1 can be expressed as

K1 = K3

[
4 + m

4 + m + n∗

(
1 − 2D3

C2

)] −n
2n+1

Pr
1+np

(
n

2n+1 −1
)

. (8.57)

As shown in Sect. 8.3, the exponent at the Prandtl number in Eq. (8.57) for very
high values of Pr should be equal to 1/3. This leads to the following expression
for np:

np = 2

3
· 2n + 1

n + 1
. (8.58)
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Finally, the solutions for the constants K1 and K2 with account for Eq. (3.45) are

K1 = K3

[
4 + m

4 + m + n∗

(
1 − 2D3

C2

)] −n
2n+1

Pr1/3, (8.59)

K2 = K3

[
4 + m

4 + m + n∗

(
1 − 2D3

C2

)] −n
2n+1 n∗ + 2

2 + n∗ + m
Pr1/3. (8.60)

To make comparisons with electrochemical experiments, we will consider Sher-
wood numbers instead of the Nusselt numbers, thus substituting also Pr with Sc.

Comparisons of the solution (8.60) for Shav (at n∗=0) with empirical equation
(8.37) [42] and theoretical formula (8.48) [81] are performed in Fig. 8.8. As may
be concluded, curves 5 and 6 computed by Eq. (8.60) at n=1/7 and 1/9 lie 20–30%
lower than curves 3 and 4 plotted based on Eqs. (8.37) and (8.48), respectively. Such
deviations of the theory from experiments are unacceptable. Besides, the slope angle
of curves 5 and 6 (the exponent at Reϕ is equal to 0.8 and 0.833, with the constant K2
being equal to 0.0207 and 0.0126, respectively) is visibly different from the slope
angle of curves 3 and 4 (the exponent at Reϕ is 0.87 and 0.9, whereas the constant
K2 is equal to 0.0207 and 0.126, respectively). This is the evidence of the partial
inadequacy of the model assumptions of the present integral method as applied to
the conditions of convective heat and mass transfer at high Pr and Sc values. There-
fore, it is necessary to revise these assumptions to improve the agreement with the
empirical equations and solutions obtained using other theoretical models. Analysis
of Eq. (3.42) for the constant K1 shows that increase in the exponent at the Reynolds
number in the relation for the Sherwood number can be reached, if the parameter 

becomes variable decreasing with increase in the local Reynolds number Reω.
Model with a variable value of �. The present integral method is based on the

two-layer model of velocity and temperature profiles in the boundary layer. In the
viscous sub-layer of the momentum boundary layer, the first of Eqs. (2.67) is in
force, while in the heat conduction sub-layer the temperature profile is used that is
described by the second of Eqs. (2.67). Outside of the viscous sub-layer, tangential
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and radial velocity components of the fluid are approximated by the power-law pro-
files analysed in detail in Sects. 2.3.1, 2.3.2 and 2.4.2, as well as in Sect. 3.3.3. In
the cases of convective heat and mass transfer at the Prandtl and Schmidt numbers
moderately different from unity (less or larger than unity), the thickness of the ther-
mal/diffusion boundary layer is larger or moderately less than that of the momentum
boundary layer (see Table 8.5). Hence, to obtain a solution of the integral equation
(2.28) for the thermal boundary layer, the integral in its right-hand side or, in other
words, the enthalpy thickness δ∗∗

T has been found using profiles (2.42), (3.37) for
the radial velocity component vr across the entire momentum boundary layer that
was only somewhat thicker or somewhat thinner than the thermal boundary layer.
Viscous and heat conduction sub-layers were ignored at the integration, since their
thickness is negligibly small and does not change the value of the definite integral.
Integration of the velocity profiles in the boundary layer equations (2.22), (2.23) and
(2.24) is usually done in the very same way [41, 80, 138, 173, 189].

The situation is principally different for very high Prandtl and Schmidt numbers.
Here thermal/diffusion boundary layers are very thin and develop within the viscous
sub-layer of the momentum boundary layer, where the profile of vr is a linear func-
tion of the coordinate z orthogonal to the disk. This fact was noticed and used in the
development of theoretical models of convective heat and mass transfer of a rotating
disk at large Pr and Sc numbers in the works [39, 81, 102, 105, 141, 199].

Linear profile of vr in the vicinity of the wall can be written as

vr = τwr

μ
z = τwα

μ(1 + α2)1/2
z = ρV2∗α

μ(1 + α2)1/2

cf

2
z = α(1 + α2)1/2ωAcRenR

ω z.

(8.61)
where the exponent nR is given in Eq. (3.41).

Based on the definition of the constant z+
1 , one can derive the following formula:

z1

δ
= z+

1

γ (1 + α2)1/2A1/2
c Re1/(1+3n)

ω

. (8.62)

According to Eq. (8.62), linear model (8.61) for the radial velocity profile holds
up to the values of z/ from z/δ ≤ 0.01 to 0.02. As analysis in Fig. 8.9 confirms,
linear model (8.61) approximately up to z/δ∗∗

ϕ ≤ 0.2 or z/δ ≤ 0.02 agrees well with
the experiments and power-law profiles of vr. Thus, the value of =δT/δ=0.02
outlines the limit up to which the linear equation (8.61) can be used to model the
radial velocity profile.

In frames of the power-law model used, the Stanton number characterizing heat
transfer rate on the disk surface is described by Eq. (2.69). In Sect. 2.4.3, the
model assumption (z+

1T

/
z+

1 )nT−1Pr−nT = Pr−np is used for the last two factors
in Eq. (2.69) (where exponent np remains unknown to be found via comparisons
with experimental data for the Nusselt number). Such assumption is justifiable
for the cases considered above, where thermal/diffusion boundary layer thickness
exceeded or was somewhat less than momentum boundary layer thickness. At high
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Prandtl or Schmidt numbers, another boundary layer structure takes place: entire
temperature/concentration profile in very thin thermal/diffusion boundary layers
develops within the viscous sub-layer of the momentum boundary layer. It is there-
fore deemed to be logical to suppose that the interrelation between coordinates of the
boundary of the viscous sub-layer (point z+

1 ) and heat conduction sub-layer (point
z+

1T ) has a more complicated form

(z+
1T

/
z+

1 )nT−1Pr−nT = KαPr−np . (8.63)

Constants Kα and np in Eq. (8.63) should be found via comparisons with exper-
imental data for the Nu or Sh numbers. Therefore, Eqs. (2.71) and (2.72) for the
Stanton and Nusselt numbers at n=nT can be written as

St = (cf
/

2)−nPr−np Kα = AcRe−2n/(3n+1)
ω −nPr−np Kα , (8.64)

Nu = StReωPr(1 + α2)1/2 = Ac(1 + α2)1/2RenR
ω −nPr1−np Kα . (8.65)

Finding the definite integral in the left-hand side of Eq. (2.25) with allowance for
the linear model (8.61) for vr and power-law function (2.58) for �, and substituting
Eqs. (8.64) and (8.65) into the right-hand side of Eq. (2.25), one can reduce the
integral equation of the thermal boundary layer (2.25) to the following form:

n

2(n + 2)
αω

d

dr

[
rδ22RenR

ω T
]

= Kα−nPr−np RenR
ω νT (8.66)
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where, to remind, T = Tw−T∞, n=nT, and the parameter  is given by Eq. (2.82).
It was assumed in the present integral method as applied to the problems of con-

vective heat and mass transfer at the Prandtl and Schmidt numbers moderately larger
than unity that =const. This condition is inapplicable to Eq. (8.66), because, given
=const, exponents at the variable r in both sides of Eq. (8.66) do not coincide.

One can assume by analogy to Eq. (2.82) that parameter  is a power-law func-
tion of the radial coordinate r:

 = Crk. (8.67)

Substituting Eq. (8.67) into Eq. (8.66), one can derive with account for Eqs.
(2.35), (2.82), (2.83) and (3.41) that

 = C∗Rek/2
ω , (8.68)

C∗ = C∗∗ Pr−np/(2+n), (8.69)

C∗∗ =
[

Kα2(n + 2)/n

αγ 2(1 − nk + n∗ + 2nR)

]1/(n+2)

.

k = −2m/(2 + n). (8.71)

As a result, Eqs. (8.65) for the local Nusselt number and the respective relation
for the average Nusselt number Nuav take the following form:

Nu = K1RenR∗
ω , (8.72)

Nuav = K2RenR∗
ϕ , (8.73)

nR∗ = nR + mn/(2 + n), (8.74)

K1 = KαK3C−n
∗∗Pr1/3, (8.75)

K2 = 2K1/(2nR∗ + 1), (8.76)

np = (2 + n)/3. (8.77)

Relation (8.77) for the exponent pp was obtained in view of the requirement that
the cumulative exponent at the Prandtl number in Eq. (8.75) should be equal to 1/3.

Thus, in Eqs. (8.72) and (8.73), the cumulative exponent nR∗ at the Reynolds
number given in Eq. (8.74) increases in comparison with Eq. (3.41) by the additional
term mn/(2 + n), owing to that parameter  becomes variable decreasing with
the increasing local Reynolds number (i.e. local coordinate r) in accordance with
Eq. (8.68).

At n=1/7 one has nR∗=0.84, and at n=1/9 one can obtain nR∗=0.868, which
practically coincides with the exponent 0.87 at the Reϕ number in empirical equation
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(8.38) generalizing experimental data [42]. In order for Eqs. (8.72) and (8.73) at
n=1/9 and nR∗=0.868, as applied to Sherwood and Schmidt numbers, to agree with
Eqs. (8.38) and (8.37), respectively, one should choose the value Kα=1.254, that
finally entails for n∗=0

Nu = 1.52 × 10−2Re0.868
ω Pr1/3, (8.78)

Nuav = 1.11 × 10−2Re0.868
ϕ Pr1/3, (8.79)

 = 18.31Re−0.3158
ω Pr−1/3. (8.80)

Curve 7 plotted in Fig. 8.8 based on Eq. (8.79) coincides with curve 3 depicted
based on empirical equation (8.37) [42]. Equations (8.78) and (8.38) also practically
coincide.

Experiments [42] were performed at Sc=930–10,320, Reϕ=(0.278–1.8) ×106.
According to Eq. (8.80), one can obtain the value =0.036 at minimal values
Sc=930 and Reω=0.278×106 [42]. Parameter  decreases with an increase in the
Schmidt and Reynolds numbers Reω. At Sc=10,320 and Reω=0.278×106, one has
=0.015; at Sc=930 and Reω=1.8×106 one has =0.02. These  values agree
well with the aforementioned limit  ≤ 0.02, at which the linearity of the radial
velocity profile remains in force.

Model with a variable value � and profile T+ depending on Reω. It was obtained
in works [81, 102, 105, 141] based on the analysis of models for eddy-viscosity in
the near-wall region at high Prandtl numbers that the Nusselt and Stanton numbers
are determined by the following equations:

Nu = KN(1 + α2)1/2(cf /2)1/2ReωPr1/3, (8.81)

St = KN(cf /2)1/2Pr−2/3, (8.82)

where the constant KN assumes different values depending on the model assump-
tions used by the authors.

In the above-mentioned works, power-law dependence, Eq. (2.87), was used for
the friction coefficient at n=1/7. Then the relations for the local and average Nusselt
numbers with allowance for Eq. (8.61) reduce to the form of Eqs. (8.72) and (8.73),
respectively, where

K1 = KN(1 + α2)1/2A1/2
c Pr1/3, (8.83)

nR∗ = (2n + 1)/(3n + 1), (8.84)

and the interrelation between the constants K1 and K2 is given in Eq. (8.76). For
n=1/7, Eq. (8.84) results in nR∗=0.9.

As shown in Sect. 8.3, Eq. (8.48) is the most accurate among the correlations
obtained in [81, 102, 105, 141] based on model (8.81) (presented in a transformed



8.4 An Integral Method for Modelling Heat and Mass Transfer 223

form of an equation for average Sherwood numbers). Then, agreeing Eqs. (8.81)
and (8.48) with allowance for Eq. (8.76), one can obtain the value KN=0.05986.

Solving the thermal boundary layer equation using assumption (8.67), like it was
done for the model with a variable value of , one can come again to the solution
(8.68) for , where

C∗ = C∗∗Pr−1/3, (8.85)

C∗∗ =
[

KN 2(n + 2)/n

αγ 2(1 + 2m + 2 k + n∗ + 2nR)A1/2
c

]1/(n+2)

(8.86)

k = (2n − 1)/(3n + 1). (8.87)

Substituting values n=1/7 and n∗=0 into Eqs. (8.68), (8.85), (8.86) and (8.87)
results in

 = 12.54Re−1/4
ω Pr−1/3 (8.88)

One can estimate values , which can be obtained by Eq. (8.88) with allowance
for Eqs. (8.85), (8.86) and (8.87) for the conditions of experiments [42] with
Sc=930–0320, Reϕ=(0.278–1.8) ×106. For the minimal values of Sc=930 and
Reω=0.278×106 [42], the relative thermal boundary layer thickness  in accor-
dance with Eq. (8.88) is equal to =0.037 and decreases with both Sc and Reϕ

increasing. At Sc=10,320 and Reω=0.278×106, one can obtain =0.016, while
at Sc=930 and Reω=1.8×106 one has =0.023. These  values exceed insignifi-
cantly the data obtained by Eq. (8.80) in frames of the model with a variable value
of , and they also agree rather well with the limiting value  ≤ 0.02, at which the
linear model of the radial velocity profile holds.

Let us consider the temperature profile in wall coordinates T+. In frames of the
models with a constant and variable value of , profile T+ in the region where the
power law (2.28) at n=nT is valid remains independent of the Reynolds number:

T+ = (z+)n(1 + α2)−n/2γ −nA−(n+1)/2
c Prnp K−1

α (8.89)

This agrees with suggestions of the authors of works [71, 203].
Model based on Eqs. (8.81) and (8.82) leads to the profile of T+ dependent on

Reω:

T+ = (z+)n(1 + α2)−n/2γ −nA−n/2
c C−n

∗ K−1
N Pr2/3Re−0.5(2n2+n)/(3n+1)

ω . (8.90)

Thus, the investigations performed above resulted in the following accomplish-
ments [194].

Empirical/theoretical relations for Sherwood numbers available in the literature
were thoroughly validated, and the most reliable were distinguished.

A novel approach to modelling temperature/concentration profiles for the val-
ues of Pr and Sc significantly larger than unity was proposed. An original integral
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method developed based on this allows estimating relative thickness  of the ther-
mal/diffusion boundary layers that has not been accomplished by theoretical models
of the other authors. It was shown that namely decrease in the values of  with the
increasing local radii entails the additional increase in the exponent at the Reynolds
number in the expression for the Nu or Sh numbers in comparison with air flows.
As a result, solutions obtained for the surface heat and mass transfer agree well with
the selected empirical formulas.
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