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Galaxies in the Universe: An Introduction

Galaxies are the places where gas turns into luminous stars, powered by nuclear
reactions that also produce most of the chemical elements. But the gas and stars are
only the tip of an iceberg: a galaxy consists mostly of dark matter, which we know
only by the pull of its gravity. The ages, chemical composition and motions of the
stars we see today, and the shapes that they make up, tell us about each galaxy’s
past life. This book presents the astrophysics of galaxies since their beginnings in
the early Universe. This Second Edition is extensively illustrated with the most
recent observational data. It includes new sections on galaxy clusters, gamma
ray bursts and supermassive black holes. Chapters on the large-scale structure and
early galaxies have been thoroughly revised to take into account recent discoveries
such as dark energy.

The authors begin with the basic properties of stars and explore the Milky
Way before working out towards nearby galaxies and the distant Universe, where
galaxies can be seen in their early stages. They then discuss the structures of
galaxies and how galaxies have developed, and relate this to the evolution of
the Universe. The book also examines ways of observing galaxies across the
electromagnetic spectrum, and explores dark matter through its gravitational pull
on matter and light.

This book is self-contained, including the necessary astronomical background,
and homework problems with hints. It is ideal for advanced undergraduate students
in astronomy and astrophysics.

LINDA SPARKE is a Professor of Astronomy at the University of Wisconsin, and
a Fellow of the American Physical Society.
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Preface to the second edition

This text is aimed primarily at third- and fourth-year undergraduate students of
astronomy or physics, who have undertaken the first year or two of university-level
studies in physics. We hope that graduate students and research workers in related
areas will also find it useful as an introduction to the field. Some background
knowledge of astronomy would be helpful, but we have tried to summarize the
necessary facts and ideas in our introductory chapter, and we give references to
books offering a fuller treatment. This book is intended to provide more than
enough material for a one-semester course, since instructors will differ in their
preferences for areas to emphasize and those to omit. After working through it,
readers should find themselves prepared to tackle standard graduate texts such as
Binney and Tremaine’s Galactic Dynamics, and review articles such as those in
the Annual Reviews of Astronomy and Astrophysics.

Astronomy is not an experimental science like physics; it is a natural science
like geology or meteorology. We must take the Universe as we find it, and deduce
how the basic properties of matter have constrained the galaxies that happened to
form. Sometimes our understanding is general but not detailed. We can estimate
how much water the Sun’s heat can evaporate from Earth’s oceans, and indeed this
is roughly the amount that falls as rain each day; wind speeds are approximately
what is required to dissipate the solar power absorbed by the ground and the
air. But we cannot predict from physical principles when the wind will blow
or the rain fall. Similarly, we know why stellar masses cannot be far larger or
smaller than they are, but we cannot predict the relative numbers of stars that are
born with each mass. Other obvious regularities, such as the rather tight relations
between a galaxy’s luminosity and the stellar orbital speeds within it, are not
yet properly understood. But we trust that they will yield their secrets, just as
the color–magnitude relation among hydrogen-burning stars was revealed as a
mass sequence. On first acquaintance galaxy astronomy can seem confusingly
full of disconnected facts; but we hope to convince you that the correct analogy
is meteorology or botany, rather than stamp-collecting.

vii



viii Preface to the second edition

We have tried to place material which is relatively more difficult or more intri-
cate at the end of each subsection. Students who find some portions heavy going
at a first reading are advised to move to the following subsection and return later to
the troublesome passage. Some problems have been included. These aim mainly
at increasing a reader’s understanding of the calculations and appreciation of the
magnitudes of quantities involved, rather than being mathematically demanding.
Often, material presented in the text is amplified in the problems; more casual
readers may find it useful to look through them along with the rest of the text.

Boldface is used for vectors; italics indicate concepts from physics, or spe-
cialist terms from astronomy which the reader will see again in this text, or will
meet in the astronomical literature. Because they deal with large distances and
long timescales, astronomers use an odd mixture of units, depending on the prob-
lem at hand; Appendix A gives a list, with conversion factors. Increasing the
confusion, many of us are still firmly attached to the centimeter–gram–second
system of units. For electromagnetic formulae, we give a parallel-text transla-
tion between these and units of the Système Internationale d’Unités (SI), which
are based on meters and kilograms. In other cases, we have assumed that read-
ers will be able to convert fairly easily between the two systems with the aid of
Appendix A. Astronomers still disagree significantly on the distance scale of the
Universe, parametrized by the Hubble constant H0. We often indicate explic-
itly the resulting uncertainties in luminosity, distance, etc., but we otherwise
adopt H0 = 75 km s−1 Mpc−1. Where ages are required or we venture across
a substantial fraction of the cosmos, we use the benchmark cosmology with
�� = 0.7, �m = 0.3, and H0 = 70 km s−1 Mpc−1.

We will use an equals sign (=) for mathematical equality, or for measured
quantities known to greater accuracy than a few percent; approximate equality (≈)
usually implies a precision of 10%–20%, while ∼ (pronounced ‘twiddles’) means
that the relation holds to no better than about a factor of two. Logarithms are to
base 10, unless explicitly stated otherwise. Here, and generally in the professional
literature, ranges of error are indicated by ± symbols, or shown by horizontal or
vertical bars in graphs. Following astronomical convention, these usually refer to
1σ error estimates calculated by assuming a Gaussian distribution (which is often
rather a bad approximation to the true random errors). For those more accustomed
to 2σ or 3σ error bars, this practice makes discrepancies between the results of
different workers appear more significant than is in fact the case.

This book is much the better for the assistance, advice, and warnings of our
colleagues and students. Eric Wilcots test flew a prototype in his undergraduate
class; our colleagues Bob Bless, Johan Knapen, John Mathis, Lynn Matthews, and
Alan Watson read through the text and helped us with their detailed comments;
Bob Benjamin tried to set us right on the interstellar medium. We are particularly
grateful to our many colleagues who took the time to provide us with figures or
the material for figures; we identify them in the captions. Bruno Binggeli, Dap
Hartmann, John Hibbard, Jonathan McDowell, Neill Reid, and Jerry Sellwood
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re-analyzed, re-ran, and re-plotted for us, Andrew Cole integrated stellar energy
outputs, Evan Gnam did orbit calculations, and Peter Erwin helped us out with
some huge and complex images. Wanda Ashman turned our scruffy sketches
into line drawings. For the second edition, Bruno Binggeli made us an improved
portrait of the Local Group, David Yu helped with some complex plots, and Tammy
Smecker-Hane and Eric Jensen suggested helpful changes to the problems. Much
thanks to all!

Linda Sparke is grateful to the University of Wisconsin for sabbatical leave
in the 1996–7 and 2004–5 academic years, and to Terry Millar and the Uni-
versity of Wisconsin Graduate School, the Vilas Foundation, and the Wisconsin
Alumni Research Foundation for financial support. She would also like to thank
the directors, staff, and students of the Kapteyn Astronomical Institute (Gronin-
gen University, Netherlands), the Mount Stromlo and Siding Spring Observato-
ries (Australian National University, Canberra), and the Isaac Newton Institute
for Mathematical Sciences (Cambridge University, UK) and Yerkes Observatory
(University of Chicago), for their hospitality while much of the first edition was
written. She is equally grateful to the Dominion Astrophysical Observatory of
Canada, the Max Planck Institute for Astrophysics in Garching, Germany, and
the Observatories of the Carnegie Institute of Washington (Pasadena, California)
for refuge as we prepared the second edition. We are both most grateful to our
colleagues in Madison for putting up with us during the writing. Jay Gallagher
also thanks his family for their patience and support for his work on ‘The Book’.

Both of us appear to lack whatever (strongly recessive?) genes enable accurate
proofreading. We thank our many helpful readers for catching bugs in the first
edition, which we listed on a website. We will do the same for this edition, and
hope also to provide the diagrams in machine-readable form: please see links from
our homepages, which are currently at www.astro.wisc.edu/∼sparke and ∼jsg.
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Introduction

Galaxies appear on the sky as huge clouds of light, thousands of light-years across:
see the illustrations in Section 1.3 below. Each contains anywhere from a million
stars up to a million million (1012); gravity binds the stars together, so they do
not wander freely through space. This introductory chapter gives the astronomical
information that we will need to understand how galaxies are put together.

Almost all the light of galaxies comes from their stars. Our opening section
attempts to summarize what we know about stars, how we think we know it, and
where we might be wrong. We discuss basic observational data, and we describe
the life histories of the stars according to the theory of stellar evolution. Even the
nearest stars appear faint by terrestrial standards. Measuring their light accurately
requires care, and often elaborate equipment and procedures. We devote the final
pages of this section to the arcana of stellar photometry: the magnitude system,
filter bandpasses, and colors.

In Section 1.2 we introduce our own Galaxy, the Milky Way, with its charac-
teristic ‘flying saucer’ shape: a flat disk with a central bulge. In addition to their
stars, our Galaxy and others contain gas and dust; we review the ways in which
these make their presence known. We close this section by presenting some of the
coordinate systems that astronomers use to specify the positions of stars within the
Milky Way. In Section 1.3 we describe the variety found among other galaxies and
discuss how to measure the distribution of light within them. Only the brightest
cores of galaxies can outshine the glow of the night sky, but most of their light
comes from the faint outer parts; photometry of galaxies is even more difficult
than for stars.

One of the great discoveries of the twentieth century is that the Universe is not
static, but expanding; the galaxies all recede from each other, and from us. Our
Universe appears to have had a beginning, the Big Bang, that was not so far in the
past: the cosmos is only about three times older than the Earth. Section 1.4 deals
with the cosmic expansion, and how it affects the light we receive from galaxies.
Finally, Section 1.5 summarizes what happened in the first million years after the
Big Bang, and the ways in which its early history has determined what we see today.

1



2 Introduction

1.1 The stars

1.1.1 Star light, star bright . . .

All the information we have about stars more distant than the Sun has been deduced
by observing their electromagnetic radiation, mainly in the ultraviolet, visible, and
infrared parts of the spectrum. The light that a star emits is determined largely
by its surface area, and by the temperature and chemical composition – the rel-
ative numbers of each type of atom – of its outer layers. Less directly, we learn
about the star’s mass, its age, and the composition of its interior, because these
factors control the conditions at its surface. As we decode and interpret the mes-
sages brought to us by starlight, knowledge gained in laboratories on Earth about
the properties of matter and radiation forms the basis for our theory of stellar
structure.

The luminosity of a star is the amount of energy it emits per second, measured
in watts, or ergs per second. Its apparent brightness or flux is the total energy
received per second on each square meter (or square centimeter) of the observer’s
telescope; the units are W m−2, or erg s−1 cm−2. If a star shines with equal bright-
ness in all directions, we can use the inverse-square law to estimate its luminosity
L from the distance d and measured flux F :

F = L

4πd2
. (1.1)

Often, we do not know the distance d very well, and must remember in subsequent
calculations that our estimated luminosity L is proportional to d2. The Sun’s total
or bolometric luminosity is L� = 3.86 × 1026 W, or 3.86 × 1033 erg s−1. Stars
differ enormously in their luminosity: the brightest are over a million times more
luminous than the Sun, while we observe stars as faint as 10−4L�.

Lengths in astronomy are usually measured using the small-angle formula.
If, for example, two stars in a binary pair at distance d from us appear separated
on the sky by an angle α, the distance D between the stars is given by

α (in radians) = D/d. (1.2)

Usually we measure the angle α in arcseconds: one arcsecond (1′′) is 1/60 of
an arcminute (1′) which is 1/60 of a degree. Length is often given in terms of
the astronomical unit, Earth’s mean orbital radius (1 AU is about 150 million
kilometers) or in parsecs, defined so that, when D = 1 AU and α = 1′′, d =
1 pc = 3.09 × 1013 km or 3.26 light-years.

The orbit of two stars around each other can allow us to determine their masses.
If the two stars are clearly separated on the sky, we use Equation 1.2 to measure the
distance between them. We find the speed of the stars as they orbit each other from
the Doppler shift of lines in their spectra; see Section 1.2. Newton’s equation for
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the gravitational force, in Section 3.1, then gives us the masses. The Sun’s mass,
as determined from the orbit of the Earth and other planets, is M� = 2×1030 kg,
or 2 × 1033 g.

Stellar masses cover a much smaller range than their luminosities. The most
massive stars are around 100M�. A star is a nuclear-fusion reactor, and a ball of
gas more massive than this would burn so violently as to blow itself apart in short
order. The least massive stars are about 0.075M�. A smaller object would never
become hot enough at its center to start the main fusion reaction of a star’s life,
turning hydrogen into helium.

Problem 1.1 Show that the Sun produces 10 000 times less energy per unit mass

than an average human giving out about 1 W kg−1.

The radii of stars are hard to measure directly. The Sun’s radius R� = 6.96 ×
105 km, but no other star appears as a disk when seen from Earth with a normal
telescope. Even the largest stars subtend an angle of only about 0.05′′, 1/20 of
an arcsecond. With difficulty we can measure the radii of nearby stars with an
interferometer; in eclipsing binaries we can estimate the radii of the two stars
by measuring the size of the orbit and the duration of the eclipses. The largest
stars, the red supergiants, have radii about 1000 times larger than the Sun, while
the smallest stars that are still actively burning nuclear fuel have radii around
0.1R�.

A star is a dense ball of hot gas, and its spectrum is approximately that of a
blackbody with a temperature ranging from just below 3000 K up to 100 000 K,
modified by the absorption and emission of atoms and molecules in the star’s
outer layers or atmosphere. A blackbody is an ideal radiator or perfect absorber.
At temperature T , the luminosity L of a blackbody of radius R is given by the
Stefan–Boltzmann equation:

L = 4π R2σSBT 4, (1.3)

where the constant σSB = 5.67×10−8 W m−2 K−4. For a star of luminosity L and

radius R, we define an effective temperature Teff as the temperature of a blackbody
with the same radius, which emits the same total energy. This temperature is
generally close to the average for gas at the star’s ‘surface’, the photosphere. This
is the layer from which light can escape into space. The Sun’s effective temperature
is Teff ≈ 5780 K.

Problem 1.2 Use Equation 1.3 to estimate the solar radius R� from its luminosity

and effective temperature. Show that the gravitational acceleration g at the surface

is about 30 times larger than that on Earth.
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Problem 1.3 The red supergiant star Betelgeuse in the constellation Orion has

Teff ≈ 3500 K and a diameter of 0.045′′. Assuming that it is 140 pc from us, show

that its radius R ≈ 700R�, and that its luminosity L ≈ 105L�.

Generally we do not measure all the light emitted from a star, but only what
arrives in a given interval of wavelength or frequency. We define the flux per
unit wavelength Fλ by setting Fλ(λ)�λ to be the energy of the light received
between wavelengths λ and λ + �λ. Because its size is well matched to the
typical accuracy of their measurements, optical astronomers generally measure
wavelength in units named after the nineteenth-century spectroscopist Anders
Ångström: 1 Å = 10−8 cm or 10−10 m. The flux Fλ has units of W m−2 Å−1 or
erg s−1 cm−2 Å−1. The flux per unit frequency Fν is defined similarly: the energy
received between frequencies ν and ν + �ν is Fν(ν)�ν, so that Fλ = (ν2/c)Fν .
Radio astronomers normally measure Fν in janskys: 1 Jy = 10−26 W m−2 Hz−1.

The apparent brightness F is the integral over all frequencies or wavelengths:

F ≡
∫ ∞

0
Fν(ν) dν =

∫ ∞

0
Fλ(λ) dλ. (1.4)

The hotter a blackbody is, the bluer its light: at temperature T , the peak of Fλ

occurs at wavelength

λmax = [2.9/T (K)] mm. (1.5)

For the Sun, this corresponds to yellow light, at about 5000 Å; human bodies, the
Earth’s atmosphere, and the uncooled parts of a telescope radiate mainly in the
infrared, at about 10 μm.

1.1.2 Stellar spectra

Figure 1.1 shows Fλ for a number of commonly observed types of star, arranged in
order from coolest to hottest. The hottest stars are the bluest, and their spectra show
absorption lines of highly ionized atoms; cool stars emit most of their light at red
or infrared wavelengths, and have absorption lines of neutral atoms or molecules.
Astronomers in the nineteenth century classified the stars according to the strength
of the Balmer lines of neutral hydrogen HI, with A stars having the strongest lines,
B stars the next strongest, and so on; many of the classes subsequently fell into
disuse. In the 1880s, Antonia Maury at Harvard realized that, when the classes
were arranged in the order O B A F G K M, the strengths of all the spectral lines,
not just those of hydrogen, changed continuously along the sequence. The first
large-scale classification was made at Harvard College Observatory between 1911
and 1949: almost 400 000 stars were included in the Henry Draper Catalogue and
its supplements. We now know that Maury’s spectral sequence lists the stars in
order of decreasing surface temperature. Each of the classes has been subdivided
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Fig. 1.1. Optical spectra of main-sequence stars with roughly the solar chemical com-

position. From the top in order of increasing surface temperature, the stars have spectral

classes M5, K0, G2, A1, and O5 – G. Jacoby et al., spectral library.

into subclasses, from 0, the hottest, to 9, the coolest: our Sun is a G2 star. Recently
classes L and T have been added to the system, for the very cool stars discovered by
infrared observers. Astronomers often call stars at the beginning of this sequence
‘early types’, while those toward the end are ‘late types’.

The temperatures of O stars exceed 30 000 K. Figure 1.1 shows that the
strongest lines are those of HeII (once-ionized helium) and CIII (twice-ionized
carbon); the Balmer lines of hydrogen are relatively weak because hydrogen is
almost totally ionized. The spectra of B stars, which are cooler, have stronger
hydrogen lines, together with lines of neutral helium, HeI. The A stars, with tem-
peratures below 11 000 K, are cool enough that the hydrogen in their atmospheres
is largely neutral; they have the strongest Balmer lines, and lines of singly ionized
metals such as calcium. Note that the flux decreases sharply at wavelengths less
than 3800 Å, this is called the Balmer jump. A similar Paschen jump appears at
wavelengths that are 32/22 times longer, at around 8550 Å.
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In F stars, the hydrogen lines are weaker than in A stars, and lines of neutral
metals begin to appear. G stars, like the Sun, are cooler than about 6000 K. The
most prominent absorption features are the ‘H and K’ lines of singly ionized
calcium (CaII), and the G band of CH at 4300 Å. These were named in 1815
by Joseph Fraunhofer, who discovered the strong absorption lines in the Sun’s
spectrum, and labelled them from A to K in order from red to blue. Lines of
neutral metals, such as the pair of D lines of neutral sodium (NaI) at 5890 Å and
5896 Å, are stronger than in hotter stars.

In K stars, we see mainly lines of neutral metals and of molecules such as
TiO, titanium oxide. At wavelengths below 4000 Å metal lines absorb much of
the light, creating the 4000 Å break. The spectrum of the M star, cooler than about
4000 K, shows deep absorption bands of TiO and of VO, vanadium oxide, as well
as lines of neutral metals. This is not because M stars are rich in titanium, but
because these molecules absorb red light very efficiently, and the atmosphere is
cool enough that they do not break apart. L stars have surface temperatures below
about 2500 K, and most of the titanium and vanadium in their atmospheres is
condensed onto dust grains. Hence bands of TiO and VO are much weaker than in
M stars; lines of neutral metals such as cesium appear, while the sodium D lines
become very strong and broad. T stars are those with surfaces cooler than 1400 K;
their spectra show strong lines of water and methane, like the atmospheres of giant
planets.

We can measure masses for these dwarfs by observing them in binary sys-
tems, and comparing with evolutionary models. Such work indicates a mass
M ≈ 0.15M� for a main-sequence M5 star, while M ≈ 0.08M� for a sin-
gle measured L0–L1 binary. Counting the numbers of M, L, and T dwarfs in
the solar neighborhood shows that objects below 0.3M� contribute little to the
total mass in the Milky Way’s thin disk. ‘Stars’ cooler than about L5 have too
little mass to sustain hydrogen burning in their cores. They are not true stars, but
brown dwarfs, cooling as they contract slowly under their own weight. Over its
first 100 Myr or so, a given brown dwarf can cool from spectral class M to L, or
even T; the temperature drops only slowly during its later life.

The spectrum of a galaxy is composite, including the light from a mixture of
stars with different temperatures. The hotter stars give out most of the blue light,
and the lines observed in the blue part of the spectrum of a galaxy such as the
Milky Way are typically those of A, F, or G stars. O and B stars are rare and so
do not contribute much of the visible light, unless a galaxy has had a recent burst
of star formation. In the red part of the spectrum, we see lines from the cooler
K stars, which produce most of the galaxy’s red light. Thus the blue part of the
spectrum of a galaxy such as the Milky Way shows the Balmer lines of hydrogen
in absorption, while TiO bands are present in the red region.

It is much easier to measure the strength of spectral lines relative to the
flux at nearby wavelengths than to determine Fλ(λ) over a large range in wave-
length. Absorption and scattering by dust in interstellar space, and by the Earth’s
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Fig. 1.2. Spectra of an A1 dwarf, an A3 giant, and an A3 supergiant: the most luminous

star has the narrowest spectral lines – G. Jacoby et al., spectral library.

atmosphere, affects the blue light of stars more than the red; blue and red light
also propagate differently through the telescope and the spectrograph. In prac-
tice, stellar temperatures are often estimated by comparing the observed depths of
absorption lines in their spectra with the predictions of a model stellar atmosphere.
This is a computer calculation of the way light propagates through a stellar atmo-
sphere with a given temperature and composition; it is calibrated against stars for
which Fλ has been measured carefully.

The lines in stellar spectra also give us information about the surface gravity.
Figure 1.2 shows the spectra of three stars, all classified as A stars because the
overall strength of their absorption lines is similar. But the Balmer lines of the
A dwarf are broader than those in the giant and supergiant stars, because atoms
in its photosphere are more closely crowded together: this is known as the Stark
effect. If we use a model atmosphere to calculate the surface gravity of the star,
and we also know its mass, we can then find its radius. For most stars, the surface
gravity is within a factor of three of that in the Sun; these stars form the main
sequence and are known as dwarfs, even though the hottest of them are very large
and luminous.

All main-sequence stars are burning hydrogen into helium in their cores. For
any particular spectral type, these stars have nearly the same mass and luminosity,
because they have nearly identical structures: the hottest stars are the most massive,
the most luminous, and the largest. Main-sequence stars have radii between 0.1R�
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and about 25R�: very roughly,

R ∼ R�
( M
M�

)0.7

and L ∼ L�
( M
M�

)α

, (1.6)

where α ≈ 5 for M ∼< M�, and α ≈ 3.9 for M� ∼< M ∼< 10M�. For the most
massive stars with M ∼> 10M�, L ∼ 50L�(M/M�)2.2. Giant and supergiant
stars have a lower surface gravity and are much more distended; the largest stars
have radii exceeding 1000R�. Equation 1.3 tells us that they are much brighter
than main-sequence stars of the same spectral type. Below, we will see that they
represent later stages of a star’s life. White dwarfs are not main-sequence stars,
but have much higher surface gravity and smaller radii; a white dwarf is only
about the size of the Earth, with R ≈ 0.01R�. If we define a star by its property
of generating energy by nuclear fusion, then a white dwarf is no longer a star
at all, but only the ashes or embers of a star’s core; it has exhausted its nuclear
fuel and is now slowly cooling into blackness. A neutron star is an even smaller
stellar remnant, only about 20 km across, despite having a mass larger than the
Sun’s.

Further reading: for an undergraduate-level introduction to stars, see D. A. Ostlie
and B. W. Carroll, 1996, An Introduction to Modern Stellar Astrophysics (Addison-
Wesley, Reading, Massachusetts); and D. Prialnik, 2000, An Introduction to
the Theory of Stellar Structure and Evolution (Cambridge University Press,
Cambridge, UK).

The strength of a given spectral line depends on the temperature of the star
in the layers where the line is formed, and also on the abundance of the various
elements. By comparing the strengths of various lines with those calculated for
a hot gas, Cecelia Payne-Gaposhkin showed in 1925 that the Sun and other stars
are composed mainly of hydrogen. The surface layers of the Sun are about 72%
hydrogen, 26% helium, and about 2% of all other elements, by mass. Astronomers
refer collectively to the elements heavier than helium as heavy elements or metals,
even though substances such as carbon, nitrogen, and oxygen would not normally
be called metals.

There is a good reason to distinguish hydrogen and helium from the rest of
the elements. These atoms were created in the aftermath of the Big Bang, less
than half an hour after the Universe as we now know it came into existence;
the neutrons and protons combined into a mix of about three-quarters hydrogen,
one-quarter helium, and a trace of lithium. Since then, the stars have burned
hydrogen to form helium, and then fused helium into heavier elements; see the
next subsection. Figure 1.3 shows the abundances of the commonest elements in
the Sun’s photosphere. Even oxygen, the most plentiful of the heavy elements, is
over 1000 times rarer than hydrogen. The ‘metals’ are found in almost, but not
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Fig. 1.3. Logarithm of the number of atoms of each element found in the Sun, for every

1012 hydrogen atoms. Hydrogen, helium, and lithium originated mainly in the Big Bang,
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Asplund et al., astro-ph/0410214.

exactly, the same proportions in all stars. The small differences can tell us a lot
about the history of the material that went into making a star; see Section 4.3.

The fraction by mass of the heavy elements is denoted Z : the Sun has Z� ≈
0.02, while the most metal-poor stars in our Galaxy have less than 1/10 000 of
this amount. If we want to specify the fraction of a particular element, such as
oxygen, in a star, we often give its abundance relative to that in the Sun. We use
a logarithmic scale:

[A/B] ≡ log10

{
(number of A atoms/number of B atoms)

(number of A atoms/number of B atoms)�

}
, (1.7)

where 
 refers to the star and we again use � for the Sun. Thus, in a star with
[Fe/H] = −2, iron is 1% as abundant as in the Sun. A warning: [Fe/H] is often
used for a star’s average heavy-element abundance relative to the Sun; it does not
always refer to measured iron content.

1.1.3 The lives of the stars

Understanding how stars proceed through the different stages of their lives is
one of the triumphs of astrophysics in the second half of the twentieth century.
The discovery of nuclear-fusion processes during the 1940s and 1950s, coupled
with the fast digital computers that became available during the 1960s and 1970s,
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has given us a detailed picture of the evolution of a star from a protostellar gas
cloud through to extinction as a white dwarf, or a fiery death in a supernova
explosion.

We are confident that we understand most aspects of main-sequence stars
fairly well. A long-standing discrepancy between predicted nuclear reactions in
the Sun’s core and the number of neutrinos detected on Earth was recently resolved
in favor of the stellar modellers: neutrinos are produced in the expected numbers,
but many had changed their type along the way to Earth. Our theories falter at the
beginning of the process – we do not know how to predict when a gas cloud will
form into stars, or what masses these will have – and toward its end, especially
for massive stars with M ∼> 8M�, and for stars closely bound in binary systems.
This remaining ignorance means that we do not yet know what determines the rate
at which galaxies form their stars; the quantity of elements heavier than helium
that is produced by each type of star; and how those elements are returned to the
interstellar gas, to be incorporated into future generations of stars.

The mass of a star almost entirely determines its structure and ultimate fate;
chemical composition plays a smaller role. Stars begin their existence as clouds
of gas that become dense enough to start contracting under the inward pull of
their own gravity. Compression heats the gas, making its pressure rise to support
the weight of the exterior layers. But the warm gas then radiates away energy,
reducing the pressure, and allowing the cloud to shrink further. In this protostellar
stage, the release of gravitational energy counterbalances that lost by radiation. As
a protostar, the Sun would have been cooler than it now is, but several times more
luminous. This phase is short: it lasted only 50 Myr for the Sun, which will burn
for 10 Gyr on the main sequence. So protostars do not make a large contribution
to a galaxy’s light.

The temperature at the center rises throughout the protostellar stage; when
it reaches about 107 K, the star is hot enough to ‘burn’ hydrogen into helium by
thermonuclear fusion. When four atoms of hydrogen fuse into a single atom of
helium, 0.7% of their mass is set free as energy, according to Einstein’s formula
E = Mc2. Nuclear reactions in the star’s core now supply enough energy to
maintain the pressure at the center, and contraction stops. The star is now quite
stable: it has begun its main-sequence life. Table 1.1 gives the luminosity and
effective temperature for stars of differing mass on the zero-age main sequence;
these are calculated from models for the internal structure, assuming the same
chemical composition as the Sun. Each solid track on Figure 1.4 shows how
those quantities change over the star’s lifetime. A plot like this is often called a
Hertzsprung–Russell diagram, after Ejnar Hertzsprung and Henry Norris Russell,
who realized around 1910 that, if the luminosity of stars is plotted against their
spectral class (or color or temperature), most of the stars fall close to a diagonal
line which is the main sequence. The temperature increases to the left on the
horizontal axis to correspond to the ordering O B A F G K M of the spectral
classes. As the star burns hydrogen to helium, the mean mass of its constituent
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Table 1.1 Stellar models with solar abundance, from Figure 1.4

Mass LZAMS Teff Spectral τMS τred

∫
(L dτ )MS

∫
(L dτ )pMS

(M�) (L�) (K) type (Myr) (Myr) (Gyr × L�) (Gyr × L�)

0.8 0.24 4860 K2 25 000 10
1.0 0.69 5640 G5 9800 3200 10.8 24
1.25 2.1 6430 3900 1650 11.7 38
1.5 4.7 7110 F3 2700 900 16.2 13
2 16 9080 A2 1100 320 22.0 18
3 81 12 250 B7 350 86 38.5 19
5 550 17 180 B4 94 14 75.2 23
9 4100 25 150 26 1.7 169 40
15 20 000 31 050 12 1.1 360 67
25 79 000 37 930 6.4 0.64 768 145
40 240 000 43 650 O5 4.3 0.47 1500 112
60 530 000 48 190 3.4 0.43 2550 9
85 1 000 000 50 700 2.8 3900

120 1 800 000 53 330 2.6 5200

Note: L and Teff are for the zero-age main sequence; spectral types are from Table 1.3; τMS is main-
sequence life; τred is time spent later as a red star (Teff ∼< 6000 K); integrals give energy output on
the main sequence (MS), and in later stages (pMS).

particles slowly increases, and the core must become hotter to support the denser
star against collapse. Nuclear reactions go faster at the higher temperature, and
the star becomes brighter. The Sun is now about 4.5 Gyr old, and its luminosity is
almost 50% higher than when it first reached the main sequence.

Problem 1.4 What mass of hydrogen must the Sun convert to helium each second

in order to supply the luminosity that we observe? If it converted all of its initial

hydrogen into helium, how long could it continue to burn at this rate? Since it

can burn only the hydrogen in its core, and because it is gradually brightening,

it will remain on the main sequence for only about 1/10 as long.

Problem 1.5 Use Equation 1.3 and data from Table 1.1 to show that, when the

Sun arrived on the main sequence, its radius was about 0.87R�.

A star can continue on the main sequence until thermonuclear burning has
consumed the hydrogen in its core, about 10% of the total. Table 1.1 lists the time
τMS that stars of each mass spend there; it is most of the star’s life. So, at any
given time, most of a galaxy’s stars will be on the main sequence. For an average
value α ≈ 3.5 in Equation 1.6, we have

τMS = τMS,�
M/L

M�/L�
∼ 10 Gyr

( M
M�

)−2.5

= 10 Gyr

(
L

L�

)−5/7

. (1.8)
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Fig. 1.4. Luminosity and effective temperature during the main-sequence and later lives

of stars with solar composition: the hatched region shows where the star burns hydrogen in

its core. Only the main-sequence track is shown for the 0.8M� star – Geneva Observatory

tracks.

A better approximation is

log(τMS/10 Gyr) = 1.015 − 3.49 log(M/M�) + 0.83[log(M/M�)]2. (1.9)

The most massive stars will burn out long before the Sun. None of the O stars
shining today were born when dinosaurs walked the Earth 100 million years ago,
and all those we now observe will burn out before the Sun has made another
circuit of the Milky Way. But we have not included any stars with M < 0.8M�
in Figure 1.4, because none has left the main sequence since the Big Bang, ∼14 Gyr
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Fig. 1.5. Evolutionary tracks of a 5M� and a 9M� star with solar composition (dotted

curves), and a metal-poor 5M� star with Z = 0.001 ≈ Z�/20 (solid curve). The metal-

poor star makes a ‘blue loop’ while burning helium in its core; it is always brighter and

bluer than a star of the same mass with solar metallicity – Geneva Observatory tracks.

in the past. Most of the stellar mass of galaxies is locked into these dim long-lived
stars.

Decreasing the fraction of heavy elements in a star makes it brighter and
bluer; see Figure 1.5. The ‘metals’ are a source of opacity, blocking the escape
of photons which carry energy outward from the core through the interior and the
atmosphere. If the metal abundance is low, light moves to the surface more easily;
as a result, a metal-poor star is more compact, meaning that it is denser. So its
core must be hotter, and produce more energy. Consequently, the star uses up its
nuclear fuel faster.

In regions of a star where photons carry its energy out toward the surface,
collisions between atoms cannot mix the ‘ash’ of nuclear burning with fresh
material further out. The star, which began as a homogeneous ball of gas, develops
strata of differing chemical composition. Convection currents can stir up the star’s
interior, mixing the layers. Our figures and table are computed for stars that do not
spin rapidly on their axes. Fast rotation encourages mixing, and the fresh hydrogen
brought into the star’s core extends its life on the main sequence.

At the end of its main-sequence life, the star leaves the hatched area in
Figure 1.4. Its life beyond that point is complex and depends very much on the
star’s mass. All stars below about 0.6M� stay on the main sequence for so long
that none has yet left it in the history of the Universe. In low-mass stars with
0.6M� ∼< M ∼< 2M�, the hydrogen-exhausted core gives out energy by shrink-
ing; it becomes denser, while the star’s outer layers puff up to a hundred times their
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former size. The star now radiates its energy over a larger area, so Equation 1.3
tells us that its surface temperature must fall; it becomes cool and red. This is the
subgiant phase.

When the temperature just outside the core rises high enough, hydrogen starts
to burn in a surrounding shell: the star becomes a red giant. Helium ‘ash’ is
deposited onto the core, making it contract further and raising its temperature.
The shell then burns hotter, so more energy is produced, and the star becomes
gradually brighter. During this phase, the tracks of stars with M ∼< 2M� lie
close together at the right of Figure 1.4, forming the red giant branch. Stars with
M ∼< 1.5M� give out most of their energy as red giants and in later stages; see
Table 1.1. By contrast with main-sequence stars, the luminosity and color of a
red giant depend very little on its mass; so the giant branches in stellar systems
of different ages can be very similar. Just as on the main sequence, stars with low
metallicity are somewhat bluer and brighter.

As it contracts, the core of a red giant becomes dense enough that the electrons
of different atoms interact strongly with each other. The core becomes degenerate;
it starts to behave like a solid or a liquid, rather than a gas. When the temperature
at its core has increased to about 108 K, helium ignites, burning to carbon; this
releases energy that heats the core. In a gas, expansion would dampen the rate
of nuclear reactions to produce a steady flow of energy. But the degenerate core
cannot expand; instead, like a liquid or solid, its density hardly changes, so burning
is explosive, as in an uncontrolled nuclear reactor on Earth. This is the helium flash,
which occurs at the very tip of the red giant branch in Figure 1.4. In about 100 s,
the core of the star heats up enough to turn back into a normal gas, which then
expands.

On the red giant branch, the star’s luminosity is set by the mass of its helium
core. When the helium flash occurs, the core mass is almost the same for all stars
below ∼2M�; so these stars should reach the same luminosity at the tip of the red
giant branch. In any stellar population more than 2–3 Gyr old, stars above 2M�
have already completed their lives; if the metal abundance is below ∼0.5Z�, the
red giants have almost the same color. So the apparent brightness at the tip of the
red giant branch can be used to find the distance of a nearby galaxy.

Helium is now steadily burning in the core, and hydrogen in a surrounding
shell. In Figure 1.4, we see that stars of M� to 2M� stay cool and red during this
phase; they are red clump stars. In Figure 2.2, showing the luminosity and color
of stars close to the Sun, we see a concentration of stars in the red clump. Blue
horizontal branch stars are in the same stage of burning. In these, little material
remains in the star’s outer envelope, so the outer gas is relatively transparent to
radiation escaping from the hot core. Stars that are less massive or poorer in heavy
elements than the red clump will become horizontal branch stars.

Helium burning provides less energy than hydrogen burning. We see from
Table 1.1 that this phase lasts no more than 30% as long as the star’s main-
sequence life. Once the core has used up its helium, it must again contract, and
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the outer envelope again swells. The star moves onto the asymptotic giant branch
(AGB); it now burns both helium and hydrogen in shells, and it is more luminous
and cooler than it was as a red giant. This is as far as we can follow its evolution
in Figure 1.4.

On the AGB, both of the shells undergo pulses of very rapid burning, during
which the loosely held gas of the outer layers is lost as a stellar superwind.
Eventually the hot naked core is exposed, as a white dwarf : its ultraviolet radiation
ionizes the ejected gas, which is briefly seen as a planetary nebula. White dwarfs
near the Sun have masses around 0.6M�, meaning that at least half of the star’s
original material has been lost. The white dwarf core can do no further burning,
and it gradually cools.

Stars of intermediate mass, from 2M� up to 6M� or 8M�, follow much
the same history, up to the point when helium ignites in the core. Because their
central density is lower at a given temperature, the helium core does not become
degenerate before it begins to burn. These stars also become red, but Figure 1.4
shows that they are brighter than red giants; their tracks lie above the place where
those of the lower-mass stars come together. Once helium burning is under way,
the stars become bluer; some of them become Cepheid variables, F- and G-type
supergiant stars which pulsate with periods between one and fifty days. Cepheids
are very useful to astronomers, because the pulsation cycle betrays the star’s
luminosity: the most massive stars, which are also the most luminous, have the
longest periods. So once we have measured the period and apparent brightness,
we can use Equation 1.1 to find the star’s distance. Cepheids are bright enough to
be seen far beyond the Milky Way. In the 1920s, astronomers used them to show
that other galaxies existed outside our own.

Once the core has used up its helium, these stars become red again; they
are asymptotic giant branch stars, with both hydrogen and helium burning in
shells. Rapid pulses of burning dredge gas up from the deep interior, bringing to
the surface newly formed atoms of elements such as carbon, and heavier atoms
which have been further ‘cooked’ in the star by the s-process: the slow capture
of neutrons. For example, the atmospheres of some AGB stars show traces of the
short-lived radioactive element technetium. The stellar superwind pushes polluted
surface gas out into the interstellar environment; these AGB stars are a major
source of the elements carbon and nitrogen in the Galaxy.

An intermediate-mass star makes a spectacular planetary nebula, as its outer
layers are shed and subsequently ionized by the hot central core. The core then
cools to become a white dwarf. Stars at the lower end of this mass range leave a
core which is mainly carbon and oxygen; remnants of slightly more massive stars
are a mix of oxygen, neon, and magnesium. We know that white dwarfs cannot
have masses above 1.4M�; so these stars put most of their material back into the
interstellar gas.

In massive stars, with M ∼> 8M�, the carbon, oxygen, and other elements
left as the ashes of helium burning will ignite in their turn. The star Betelgeuse
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is now a red supergiant burning helium in its core. It probably began its main-
sequence life 10–20 Myr ago, with a mass between 12M� and 17M�. It will
start to burn heavier elements, and finally explode as a supernova, within another
2 Myr. After their time on the main sequence, massive stars like Betelgeuse spend
most of their time as blue or yellow supergiants; Deneb, the brightest star in the
constellation Cygnus, is a yellow supergiant. Helium starts to burn in the core
of a 25M� star while it is a blue supergiant, only slightly cooler than it was on
the main sequence. Once the core’s helium is exhausted, this star becomes a red
supergiant; but mass loss can then turn it once again into a blue supergiant before
the final conflagration.

The later lives of stars with M ∼> 40M� are still uncertain, because they
depend on how much mass has been lost through strong stellar winds, and on
ill-understood details of the earlier convective mixing. A star of about 50M�
may lose mass so rapidly that it never becomes a red supergiant, but is stripped
to its nuclear-burning core and is seen as a blue Wolf–Rayet star. These are
very hot stars, with characteristic strong emission lines of helium, carbon, and
nitrogen coming from a fast stellar wind; the wind is very poor in hydrogen,
since the star’s outer layers were blown off long before. Wolf–Rayet stars live
less than 10 Myr, so they are seen only in regions where stars have recently
formed.

Once helium burning has finished in the core, a massive star’s life is very nearly
over. The carbon core quietly burns to neon, magnesium, and heavier elements.
But this process is rapid, giving out little energy; most of that energy is carried
off by neutrinos, weakly interacting particles which easily escape through the
star’s outer layers. A star that started on its main-sequence life with 10M� ∼<
M ∼< 40M� will burn its core all the way to iron. Such a core has no further
source of energy. Iron is the most tightly bound of all nuclei, and it would require
energy to combine its nuclei into yet heavier elements. The core collapses, and its
neutrons are squeezed so tightly that they become degenerate. The outer layers of
the star, falling in at a tenth of the speed of light, bounce off this suddenly rigid
core, and are ejected in a blazing Type II supernova. Supernova 1987A which
exploded in the Large Magellanic Cloud was of this type, which is distinguished
by strong lines of hydrogen in its spectrum. The core of the star, incorporating
the heavier elements such as iron, is either left as a neutron star or implodes as a
black hole. The gas that escapes is rich in oxygen, magnesium, and other elements
of intermediate atomic mass.

A star with an initial mass between 8M� and 10M� also ends its life as a
Type II supernova, but by a slightly different process; the core probably collapses
before it has burned to iron. After the explosion, a neutron star may remain, or
the star may blow itself apart completely, like the Type Ia supernovae described
below. A Wolf–Rayet star also becomes a supernova. Because its hydrogen has
been lost, hydrogen lines are missing from the spectrum, and it is classified as
Type Ic. These supernovae may be responsible for the energetic γ-ray bursts that
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we discuss in Section 9.2. We shall see in Section 2.1 that massive stars are only
a tiny fraction of the total; but they are a galaxy’s main producers of oxygen
and heavier elements. Detailed study of their later lives can tell us how much
of each element is returned to the interstellar gas by stellar winds or supernova
explosions, and how much will be locked within a remnant neutron star or black
hole. In Section 4.3 we will discuss what the abundances of the various elements
may tell us about the history of our Galaxy and others.

Further reading: see the books by Ostlie and Carroll, and by Prialnik. For stellar
life beyond the main sequence, see the graduate-level treatment of D. Arnett,
1996, Supernovae and Nucleosynthesis (Princeton University Press, Princeton,
New Jersey).

1.1.4 Binary stars

Most stars are not found in isolation; they are in binary or multiple star systems.
Binary stars can easily appear to be single objects unless careful measurements
are made, and astronomers often say that ‘three out of every two stars are in a
binary’. Most binaries are widely separated, and the two stars evolve much like
single stars. These systems cause us difficulty only because usually we cannot see
the two stars as separate objects, even in nearby galaxies. When we observe them,
we get a blend of two stars while thinking that we have only one.

In a close binary system, one star may remove matter from the other. It is
especially easy to ‘steal’ gas from a red giant or an AGB star, since the star’s
gravity does not hold on strongly to the puffed-up outer layers. Then we can
have some dramatic effects. For example, if one of the two stars becomes a white
dwarf, hydrogen-rich gas from the companion can pour onto its surface, building
up until it becomes dense enough to burn explosively to helium, in a sudden flash
which we see as a classical nova. If the more compact star has become a neutron
star or a black hole, gas falls onto its surface with such force that it is heated to
X-ray-emitting temperatures.

A white dwarf in a binary can also explode as a Type Ia supernova. Such
supernovae lack hydrogen lines in their spectra; they result from the explosive
burning of carbon and oxygen. If the white dwarf takes enough matter from
its binary companion, it can be pushed above the Chandrasekhar limit at about
1.4M�. No white dwarf can be heavier than this; if it gains more mass, it is forced
to collapse, like the iron core in the most massive stars. But unlike that core, the
white dwarf still has nuclear fuel: its carbon and oxygen burn to heavier elements,
releasing energy which blows it apart. There is no remnant: the iron and other
elements are scattered to interstellar space. Much of the iron we now find in the
Earth and in the Sun has been produced in these supernovae. Even though close
binary stars are relatively rare, they make a significant difference to the life of
their host galaxy.
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A Type Ia supernova can be as bright as a whole galaxy, with a luminosity
of 2 × 109L� ∼< L ∼<2 × 1010L�. The more luminous the supernova, the longer
its light takes to fade. So, if we monitor its apparent brightness over the weeks
following the explosion, we can estimate its intrinsic luminosity, and use Equa-
tion 1.1 to find the distance. Recently, Type Ia supernovae have been observed in
galaxies more than 1010 light-years away; they are used to probe the structure of
the distant Universe.

1.1.5 Stellar photometry: the magnitude system

Optical astronomers, and those working in the nearby ultraviolet and infrared
regions, often express the apparent brightness of a star as an apparent magnitude.
Originally, this was a measure of how much dimmer a star appeared to the eye
in comparison with the bright A0 star α Lyrae (Vega). The brightest stars in the
sky were of first magnitude, the next brightest were second magnitude, and so on:
brighter stars have numerically smaller magnitudes. The apparent magnitudes m1

and m2 of two stars with measured fluxes F1 and F2 are related by

m1 − m2 = −2.5 log10(F1/F2). (1.10)

So if m2 = m1 + 1, star 1 appears about 2.5 times brighter than star 2. The
magnitude scale is close to that of natural logarithms: a change of 0.1 magnitudes
corresponds to about a 10% difference in brightness.

Problem 1.6 Show that, if two stars of the same luminosity form a close binary

pair, the apparent magnitude of the pair measured together is about 0.75 magni-

tudes brighter than either star individually.

We have referred glibly to ‘measuring a star’s spectrum’. But in fact, this
is almost impossible. At far-ultraviolet wavelengths below 912 Å, even small
amounts of hydrogen gas between us and the star absorb much of its light. The
Earth’s atmosphere blocks out light at wavelengths below 3000 Å, or longer than
a few microns. In addition to the light pollution caused by humans, the night sky
itself emits light. Figure 1.6 shows that the sky is relatively dim between 4000 Å
and 5500 Å; at longer wavelengths, emission from atoms and molecules in the
Earth’s atmosphere is increasingly intrusive. Taking high-resolution spectra of
faint stars is also costly in telescope time. For all these reasons, we often settle
instead for measuring the amount of light that we receive over various broad ranges
of wavelength. Thus, our magnitudes and apparent brightness most often refer to
a specific region of the spectrum.

We define standard filter bandpasses, each specified by the fraction of light
0 ≤ T (λ) ≤ 1 that it transmits at wavelength λ. When all the star’s light is passed
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Fig. 1.6. Sky emission in the visible region, at La Palma in the Canary Islands – C. Benn.

by the filter then T = 1, while T = 0 means that no light gets through at this
wavelength. The star’s apparent brightness in the bandpass described by the filter
TBP is then

FBP ≡
∫ ∞

0
TBP(λ)Fλ(λ)dλ ≈ Fλ(λeff)�λ, (1.11)

where the effective wavelength λeff and width �λ are defined in Table 1.2. The
lower panel in Figure 1.7 shows one set of standard bandpasses for the optical
and near-infrared part of the spectrum. The R and I bands are on the ‘Cousins’
system: the ‘Johnson’ system includes bands with the same names but at different
wavelengths, so beware of confusion! In the visible region, these bands were
originally defined by the transmission of specified glass filters and the sensitivity
of photographic plates or photomultiplier tubes.

The upper curve in Figure 1.7 gives the transmission of the Earth’s atmosphere.
Astronomers refer to the wavelengths where it is fairly transparent, roughly from
3400 Å to 8000 Å, as visible light. At the red end of this range, we encounter
absorption bands of water and of atmospheric molecules such as oxygen, O2.
Between about 9000 Å and 20 μm, windows of transparency alternate with regions
where light is almost completely blocked. For λ ∼> 20 μm up to a few millime-
ters, the atmosphere is not only opaque; Figure 1.15 shows that it emits quite
brightly. The standard infrared bandpasses have been placed in relatively trans-
parent regions. The K ′ bandpass is very similar to K , but it has become popular
because it blocks out light at the longer-wavelength end of the K band, where
atmospheric molecules and warm parts of the telescope emit strongly. Magni-
tudes measured in these standard bands are generally corrected to remove the
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Fig. 1.7. Above, atmospheric transmission in the optical and near-infrared. Below, flux

Fλ of a model A0 star, with transmission curves T (λ) for standard filters (from Bessell

1990 PASP 102, 1181). U X is a version of the U filter that takes account of atmospheric

absorption. For J H K ′K L ′, T (λ) describes transmission through the atmosphere and

subsequently through the filter.

dimming effect of the Earth’s atmosphere; they refer to the stars as we should
observe them from space.

The lower panel of Figure 1.7 also shows the spectrum from a model A0 star.
The Balmer jump occurs just at the blue edge of the B band, so the difference
between the U and the B magnitudes indicates its strength; we can use it to measure
the star’s temperature. Because atmospheric transmission changes greatly between
the short- and the long-wavelength ends of the U bandpass, the correction for it
depends on how the star’s flux Fλ(λ) varies across the bandpass. So U -band fluxes
are tricky to measure, and alternative narrower filters are often used instead. The
R band includes the Balmer Hα line. Where many hot stars are present they ionize
the gas around them, and Hα emission can contribute much to the luminosity in
the R band.

The apparent magnitudes of two stars measured in the same bandpass defined
by the transmission TBP(λ) are related by

m1,BP − m2,BP = −2.5 log10

{∫ ∞

0
TBP(λ)F1,λ(λ)dλ

/∫ ∞

0
TBP(λ)F2,λ(λ)dλ

}
.

(1.12)
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Table 1.2 Fluxes of a standard A0 star with m = 0 in bandpasses of Figure 1.7

U X B V R I J H K L ′

3660 4360 5450 6410 7980 1.22 1.63 2.19 3.80
λeff Å Å Å Å Å μm μm μm μm

Fλ 4150 6360 3630 2190 1130 314 114 39.6 4.85
Fν 1780 4050 3635 3080 2420 1585 1020 640 236
Zero point ZPλ −0.15 −0.61 0.0 0.55 1.27 2.66 3.76 4.91 7.18
Zero point ZPν 0.78 −0.12 0.0 0.18 0.44 0.90 1.38 1.89 2.97

Note: the bandpass U X is defined in Figure 1.7; data from Bessell et al. 1988 AAp 333, 231 and
M. McCall. For each filter, the effective wavelength λeff ≡ ∫

λTBP Fλ(λ) dλ/
∫
TBP Fλ(λ) dλ, while

the effective width �λ = ∫
TBP dλ.

Fν is in janskys, Fλ is in units of 10−12 erg s−1 cm−2 Å−1 or 10−11 W m−2 μm−1.
Zero point ZP: m = −2.5 log10 Fλ + 8.90 − ZPλ or m = −2.5 log10 Fν + 8.90 − ZPν in these units.

Table 1.3 Photometric bandpasses used for the Sloan Digital Sky Survey

Bandpass u g r i z

Average 〈λ〉 3551 Å 4686 Å 6165 Å 7481 Å 8931 Å
Width �λ 580 Å 1260 Å 1150 Å 1240 Å 995 Å

Sun’s magnitude: M� 6.55 5.12 4.68 4.57 4.60

〈λ〉 is the average wavelength; �λ is the full width at half maximum transmission, for point objects
observed at an angle Z A to the zenith, where 1/cos(Z A) = 1.3 (1.3 airmasses); M� is the Sun’s
‘flux-based’ absolute magnitude in each band: Data Release 4.

These ‘in-band’ magnitudes are generally labelled by subscripts: m B is an apparent
magnitude in the B bandpass of Figure 1.7, and m R is the apparent magnitude in
R. Originally, the star Vega was defined to have apparent magnitude zero in all
optical bandpasses. Now, a set of A0 stars is used to define the zero point, and
Vega has apparent magnitude 0.03 in the V band. Sirius, which appears as the
brightest star in the sky, has mV ≈ −1.45; the faintest stars measured are near
mV = 28, so they are roughly 1012 times dimmer. Table 1.2 gives the effective
wavelength – the mean wavelength of the transmitted light – for a standard A0
star viewed through those filters, and the fluxes Fλ and Fν which correspond to
apparent magnitude m = 0 in each filter.

At ultraviolet wavelengths, there is no well-measured set of standard stars to
define the magnitude system, so ‘flux-based’ magnitudes were developed instead.
The apparent magnitude mBP in the bandpass specified by TBP of a star with flux
Fλ(λ) is

mBP = −2.5 log10

( 〈FBP〉
〈FV,0〉

)
, where 〈FBP〉 ≡

∫
TBP(λ)Fλ(λ)dλ∫

TBP(λ)dλ
. (1.13)
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Here 〈FV,0〉 ≈ 3.63 × 10−9 erg s−1 cm−2 Å−1, the average value of Fλ over the V
band of a star which has mV = 0. Equivalently, when 〈FBP〉 is measured in erg
s−1 cm−2 Å−1, we have

mBP = −2.5 log10〈FBP〉 − 21.1; (1.14)

the zero point ZPλ of Table 1.2 is equal to zero for all ‘flux-based’ magnitudes.
Magnitudes on this scale do not coincide with those of the traditional system,
except in the V band, and we no longer have mBP = 0 for a standard A0 star.
The Sloan Digital Sky Survey used a specially-built 2.5 m telescope to measure
the brightness of 100 million stars and galaxies over a quarter of the sky, taking
spectra for a million of them. The survey used ‘flux-based’ magnitudes in the
filters of Table 1.3.

Non-astronomers often ask why the rather awkward magnitude system sur-
vives in use: why not simply give the apparent brightness in W m−2? The answer is
that, in astronomy, our relative measurements are often much more accurate than
absolute ones. The relative brightness of two stars that are observed through the
same telescope, with the same detector equipment, can be established to within
1%. The total (bolometric) luminosity of the Sun is well determined, but the appar-
ent brightness of other stars can be compared with a laboratory standard no more
accurately than within about 3%. One major problem is absorption in the Earth’s
atmosphere, through which starlight must travel to reach our telescopes. The fluxes
in Table 1.2 were derived by using a model stellar atmosphere, which proves to
be more precise than trying to correct for terrestrial absorption. At wavelengths
longer than a few microns we do use physical units, because the response of the
telescope is less stable. The power of a radio source is often known only to within
10%, so a comparison with terrestrial sources is as accurate as intercomparing
two objects in the sky.

The color of a star is defined as the difference between the amounts of light
received in each of two bandpasses. If one star is bluer than another, it will give out
relatively more of its light at shorter wavelengths: this means that the difference
m B − m R will be smaller for a blue star than for a red one. Astronomers refer to
this quantity as the ‘B − R color’ of the star, and often denote it just by B − R.
Other colors, such as V − K , are defined in the same way. We always subtract the
apparent magnitude in the longer-wavelength bandpass from that in the shorter-
wavelength bandpass, so that a low or negative number corresponds to a blue star
and a high one to a red star. Table 1.4 gives colors for main-sequence stars of each
spectral type in most of the bandpasses of Figure 1.7.

Astronomers often try to estimate a star’s spectral type or temperature by
comparing its color in suitably chosen bandpasses with that of stars of known
type. We can see that the blue color B − V is a good indicator of spectral type
for A, F, and G stars. But cool M stars, which emit most of their light at red and
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Table 1.4 Average magnitudes and colors for main-sequence stars: class V (dwarfs)

MV BC U − B B − V V − R V − I J − K V − K Teff

O3 −5.8 4.0 −1.22 −0.32 44 500
O5 −5.2 3.8 −1.19 −0.32 −0.14 −0.32 −0.25 −0.99 41 000
O8 −4.3 3.3 −1.14 −0.32 −0.14 −0.32 −0.24 −0.96 35 000
B0 −3.7 3.0 −1.07 −0.30 −0.13 −0.30 −0.23 −0.91 30 500
B3 −1.4 1.6 −0.75 −0.18 −0.08 −0.2 −0.15 −0.54 18 750
B6 −1.0 1.2 −0.50 −0.14 −0.06 −0.13 −0.09 −0.39 14 000
B8 −0.25 0.8 −0.30 −0.11 −0.04 −0.09 −0.06 −0.26 11 600
A0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 9400
A5 1.8 0.1 0.08 0.19 0.13 0.27 0.08 0.38 7800
F0 2.4 0.1 0.06 0.32 0.16 0.33 0.16 0.70 7300
F5 3.3 0.1 −0.03 0.41 0.27 0.53 0.27 1.10 6500
G0 4.2 0.2 0.05 0.59 0.33 0.66 0.36 1.41 6000
Sun 4.83 0.07 0.14 0.65 0.36 0.72 0.37 1.52 5780
G5 4.93 0.2 0.13 0.69 0.37 0.73 0.41 1.59 5700
K0 5.9 0.4 0.46 0.84 0.48 0.88 0.53 1.89 5250
K5 7.5 0.6 0.91 1.08 0.66 1.33 0.72 2.85 4350
K7 8.3 1.0 1.32 0.83 1.6 0.81 3.16 4000
M0 8.9 1.2 1.41 0.89 1.80 0.84 3.65 3800
M2 11.2 1.7 1.5 1.0 2.2 0.9 4.3 3400
M4 12.7 2.7 1.6 1.2 2.9 0.9 5.3 3200
M6 16.5 4.3 1.9 4.1 1.0 7.3 2600

BC is the bolometric correction defined in Equation 1.16.

infrared wavelengths, all have similar values of B − V ; the infrared V − K color
is a much better guide to their spectral type and temperature. The colors of giant
and supergiant stars are slightly different from those of dwarfs; see Tables 1.5
and 1.6.

Optical and near-infrared colors are often more closely related to each other
and to the star’s effective temperature than to its spectral type. For example, stars
very similar to the Sun, with the same colors and effective temperatures, can have
spectral classification G1 or G3. The colors listed in Tables 1.4, 1.5, and 1.6 have
been compiled from a variety of sources, and they are no more accurate than a few
hundredths of a magnitude. But because the colors of different stars are measured
in the same way, the difference in color between two stars can be found more
accurately than either color individually.

We define the absolute magnitude M of a source as the apparent magnitude it
would have at a standard distance of 10 pc. A star’s absolute magnitude gives the
same information as its luminosity. If there is no dust or other obscuring matter
between us and the star, it is related by Equation 1.1 to the measured apparent
magnitude m and distance d:

M = m − 5 log10(d/10 pc). (1.15)
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Table 1.5 Average magnitudes and colors for red giant stars: class III

MV BC U − B B − V V − R V − I J − K V − K Teff

B0 −5.1 2.8 29 500
G5 0.9 0.3 0.50 0.88 0.48 0.93 0.57 2.10 5000
K0 0.7 0.4 0.90 1.02 0.52 1.00 0.63 2.31 4800
K5 0.3 1.1 1.87 1.56 0.84 1.63 0.95 3.60 3900
M0 −0.4 1.3 1.96 1.55 0.88 1.78 1.01 3.85 3850
M3 −0.6 1.8 1.83 1.59 1.10 2.47 1.13 4.40 3700
M5 −0.4 3 1.56 1.57 1.31 3.05 1.23 5.96 3400
M7 v 5 0.94 1.69 3.25 5.56 1.21 8.13 3100

Note: M7 stars of class III are often variable.

Table 1.6 Average magnitudes and colors for supergiant stars: class I

MV BC U − B B − V V − R V − I V − K Teff

O8 −6.3 3.2 −1.07 −0.24 33 000
09.5 −6.3 2.9 30 500
B0 −6.3 2.8 −1.03 −0.22 −0.08 −0.2 29 000
B6 −6.2 1.0 −0.72 −0.09 −0.01 −0.07 13 500
A0 −6.3 0.2 −0.44 0.02 0.05 0.11 0.9 9600
F0 −6.6 −0.1 0.16 0.17 0.12 0.25 7700
G5 −6.2 0.4 0.84 1.02 0.44 0.82 3 4850
K5 −5.8 1.0 1.7 1.60 0.81 1.50 3850
M0 −5.6 1.4 1.9 1.71 0.95 1.91 4 3650

Note: supergiants have a large range in luminosity at any spectral type; Type Ia (luminous) and Ib
(less luminous) supergiants can differ by 2 or 3 magnitudes.

As for apparent magnitudes, the bandpass in which the absolute magnitude of a star
has been measured is indicated by a subscript. The Sun has absolute magnitudes
MB = 5.48, MV = 4.83, MK = 3.31; because it is redder than an A0 star, the
absolute magnitude is numerically smaller in the longer-wavelength bandpasses.
Supergiant stars have MV ∼ −6; they are over 10 000 times more luminous than
the Sun in this band.

The absolute V -magnitudes listed in the tables are averages for each spectral
subclass. For main-sequence stars near the Sun, the dispersion in MV measured
in magnitudes for each subclass ranges from about 0.4 for A and early F stars
to 0.5 for late F and early G stars, decreasing to about 0.3 for late K and early
M stars. This small variation arises because stars change their colors and lumi-
nosities as they age, and also differ in their metal content. But supergiants with
the same spectral classification can differ in luminosity by as much as 2 or 3
magnitudes.

To compare observations with theoretical models, we need to find the total
amount of energy coming from a star, integrated over all wavelengths; this is its
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bolometric luminosity Lbol. Because we cannot measure all the light of a star, we
use models of stellar atmospheres to find how much energy is emitted in the regions
that we do not observe directly. Then, we can define a bolometric magnitude Mbol.
The zero point of the scale is set by fixing the Sun’s absolute bolometric magnitude
as Mbol,� = 4.75. The second column in each of Tables 1.4, 1.5, and 1.6 gives
the bolometric correction, the amount that must be subtracted from MV to obtain
the bolometric magnitude:

Mbol = MV − BC. (1.16)

For the Sun, BC ≈ 0.07. Bolometric corrections are small for stars that emit most
of their light in the blue–green part of the spectrum. They are large for hot stars,
which give out most of their light at bluer wavelengths, and for the cool red stars.
A warning: some astronomers prefer to define the bolometric correction with a +
sign in Equation 1.16.

Finally, stellar and galaxy luminosities are often expressed as multiples of the
Sun’s luminosity. From near-ultraviolet wavelengths to the near-infrared range
at a few microns, we say that a star has L = 10L� in a given bandpass if its
luminosity in that bandpass is ten times that of the Sun in the same bandpass.
But at frequencies at which the Sun does not emit much radiation, such as the
X-ray and the radio, a source is generally said to have L = 10L� in a given
spectral region if its luminosity there is ten times the Sun’s bolometric luminosity.
Occasionally, this latter definition is used for all wavebands.

Problem 1.7 A star cluster contains 200 F5 stars at the main-sequence turnoff,

and 20 K0III giant stars. Use Tables 1.2 and 1.4 to show that its absolute V -

magnitude MV ≈ −3.25 and its color B − V ≈ 0.68. (These values are similar

to those of the 4 Gyr-old cluster M67: see Table 2.2.)

Problem 1.8 After correcting for dust dimming (see Section 1.2), the star Betel-

geuse has average apparent magnitude mV = 0 and V − K ≈ 5. (Like many

supergiants, it is variable: mV changes by roughly a magnitude over 100–400

days.) Taking the distance d = 140 pc, find its absolute magnitude in V and in

K.

Show that Betelgeuse has LV ≈ 1.7 × 104LV,� while at K its luminosity

is much larger compared with the Sun: L K ≈ 4.1 × 105L K ,�. Using Table 1.4

to find a rough bolometric correction for a star with V − K ≈ 5, show that

Mbol ≈ −8, and the bolometric luminosity Lbol ≈ 1.2 × 105Lbol,�. Looking

back at Problem 1.3, show that the star radiates roughly 4.6 × 1031 W. (The

magnitude system can sometimes be confusing.)
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Fig. 1.8. A schematic side view of the Milky Way.

1.2 Our Milky Way

We are resident in the Milky Way, which is also called the Galaxy (with a capital
G). Here, we have a close-up view of the stellar and gaseous content of a typical
large spiral galaxy. This section gives a brief sketch of our Galaxy, and how we
observe the gas and dust that lie between the stars. We also define some of the
coordinate systems by which astronomers locate objects on the sky and within the
Milky Way.

An external observer might see the Milky Way looking something like what
is drawn in Figure 1.8. The Sun lies some way from the center, in the stellar disk
that is the Milky Way’s most prominent feature. As its name implies, the disk is
thin and roughly circular; when we look out on a dark night, the disk stars appear
as a luminous band stretching across the heavens. Dark patches in this band mark
concentrations of dust and dense gas. In the southern sky, the bright central regions
are seen as a bulge extending above and below the disk. At the center of the bulge
is a dense nucleus of stars; this harbors a radio source, and a black hole with mass
MBH ≈ 4 × 106M�.
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We generally measure distances within the Galaxy in kiloparsecs: 1 kpc is
1000 pc, or about 3×1016 km. The Milky Way’s central bulge is a few kiloparsecs
in radius, while the stellar disk stretches out to at least 15 kpc, with the Sun about
8 kpc from the center. The density n of stars in the disk drops by about a factor
of e as we move out in radius R by one scale length h R , so that n(R) ∝ e−R/h R .
Estimates for h R lie in the range 2.5−4.5 kpc.

The thin disk contains 95% of the disk stars, and all of the young massive
stars. Its scale height, the distance we must move in the direction perpendicular
to the disk to see the density fall by a factor of e, is 300–400 pc. The rest of the
stars form the thick disk, which has a larger scale height of about 1 kpc. We will
see in Chapter 2 that stars of the thick disk were made earlier in the Galaxy’s
history than those of the thin disk, and they are poorer in heavy elements. The gas
and dust of the disk lie in a very thin layer; near the Sun’s position, most of the
neutral hydrogen gas is within 100 pc of the midplane. The thickness of the gas
layer increases roughly in proportion to the distance from the Galactic center.

Both the Milky Way’s disk and its bulge are rotating. Stars in the disk orbit
the Galactic center at about 200 km s−1, so the Sun takes roughly 250 Myr to
complete its orbit. Disk stars follow nearly circular orbits, with small additional
random motions amounting to a few tens of kilometers per second. Bulge stars have
larger random velocities. We will see in Chapter 3 that this means they must orbit
the center with a lower average speed, closer to 100 km s−1. Stars and globular
clusters of the metal-poor halo do not have any organized rotation around the
center of the galaxy. Like comets in the solar system, their orbits follow random
directions, and are often eccentric: the stars spend most of their time in the outer
reaches of the Galaxy but plunge deeply inward at pericenter.

In all, the luminosity of the disk is about (15–20) × 109L�, and the mass
in stars is around 60 × 109M�. For the bulge L ≈ 5 × 109L�, while the mass
of stars is about 20 × 109M�. The halo stars form only a small fraction of the
Galaxy’s mass, accounting for no more than about 109M�. When we measure
the orbital speeds of gas, stars, and star clusters at large distances from the center
of the Milky Way, and use Equation 3.20 to find the mass required to keep them
in those orbits, we find that the total mass of the Galaxy must be more than just
that present in the stars and gas. In particular, most of the Galaxy’s mass appears
to lie more than 10 kpc from the center, where there are relatively few stars. We
call this the dark matter and usually assume, without a compelling reason, that it
lies in a roughly spherical dark halo. The nature of the unseen material making
up the dark halo of our Galaxy and others is one of the main fields of research in
astronomy today.

1.2.1 Gas in the Milky Way

In the neighborhood of the Sun, we find about one star in every 10 pc3. The
diameter of a solar-type star is only about 10−7 pc, so most of interstellar space
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is empty of stars; but it is filled with gas and dust. This dilute material makes
itself apparent both by absorbing radiation from starlight that travels through it
and by its own emission. We receive radiation from gas within the Milky Way
that is ionized (the atoms have lost one or more of their electrons), from neutral
atoms, and from molecules. The radiation can be in the form of emission lines, or
as continuum emission, a continuous spectrum without lines.

Atoms and ions radiate when one of their electrons makes a quantum jump
to a lower energy level; the line photon carries off energy equal to the differ-
ence between the states. If m-times-ionized element X (written X+m) captures an
electron it becomes X+(m−1), which typically forms in an excited state. As this
newly recombined ion relaxes to its ground state, a whole cascade of recombina-
tion radiation is emitted. Transitions between barely bound high levels produce
radio-frequency photons, whereas electrons falling to lower levels give visible
light: the Balmer lines of hydrogen correspond to transitions down to level n = 2.
We observe these transitions in HII regions around hot stars, where hydrogen is
almost completely ionized. Transitions to the lowest energy levels give rise to
more energetic photons. When H+ captures an electron to become neutral, and its
electron drops from n = 2 into the ground state n = 1, it gives out an ultraviolet
photon of the Lyman-α line at 1216 Å (10.2 eV). In heavier atoms, the lowest-
level electrons are more tightly bound, and transitions to these states correspond
to X-ray photons. From very hot gas we often see the 6.7 keV K line of Fe+24,
24-times-ionized iron.

Gas can be photoionized: energetic photons liberate electrons from their
atoms. O and B stars produce ultraviolet photons with wavelength below 912 Å,
or energy above 13.6 eV, which are required to ionize hydrogen from its ground
state. These stars develop HII regions, but cooler stars do not. Atoms can also be
excited up to higher levels by collisions with electrons. Collisional ionization is
important when the gas temperature T is high enough that the average particle
energy kBT is comparable to νhP, the energy of the emitted photon that corre-
sponds to the difference between the levels. When atom A collides with atom B
to form the excited state A∗, we can have the reaction

A + B −→ A∗ + B, A∗ −→ A + νhP.

However, we see an emission line only if state A∗ decays before colliding
yet again. Either the decay must be rapid, or the gas density quite low. Forbidden
lines violate the quantum-mechanical rules that specify the most probable tran-
sitions (electric dipole) by which an atom could return to its ground state. These
‘rule-breaking’ transitions occur via less-probable slower pathways. They are not
observed in dense laboratory plasmas because A∗ typically collides before it can
decay. The electron of a hydrogen atom takes only 10−8 s to move from level
n = 3 to n = 2 by radiating an Hα photon, but for forbidden lines this is typically
1 s or longer. At the critical density ncrit the line is close to its maximum strength;
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Table 1.7 Some common optical and infrared forbidden lines of atoms

Atom Transition Wavelength ncrit (cm−3)

CI 3P1 → 3P0 610 μm 500
3P2 → 3P1 371 μm 1 000

CII (C+) 2P3/2 → 2P1/2 158 μm 50

NII (N+) 1D2 → 3P2 6583 Å 66 000
1D2 → 3P1 6548 Å 66 000

OI 1D2 → 3P2 6300 Å 2 × 106

3P1 → 3P2 63.2 μm 30 000
3P0 → 3P1 145.5 μm 8 000

OII (O+) 2D5/2 → 4S3/2 3729 Å 3 400
2D3/2 → 4S3/2 3726 Å 15 000

OIII (O++) 1D2 → 3P2 5007 Å 7 × 105

1D2 → 3P1 4959 Å 7 × 105

1S0 → 1D2 4363 Å 2 × 107

3P2 → 3P1 51.8 μm 4 000
3P1 → 3P0 88.4 μm 2 000

NeII (Ne+) 2P1/2 → 2P3/2 12.8 μm 7 × 105

NeIII (Ne++) 3P1 → 3P2 15.6 μm 2 × 105

3P0 → 3P1 36.0 μm 3 × 104

NeV (Ne+4) 1D2 → 3P2 3426Å 2 × 107

SII (S+) 2D5/2 → 4S3/2 6716 Å 2 000
2D3/2 → 4S3/2 6731 Å 2 000

SIII (S++) 3P2 → 3P1 18.7 μm 10 000
3P1 → 3P0 33.5 μm 2 000

SiII (Si+) 2P1/2 → 2P3/2 34.8 μm 3 × 105

FeIII (Fe++) a 4D7/2 → a 4D9/2 1.64 μm 3 × 105

The line is close to maximum strength at the critical density ncrit. For lines at
<1 μm, ncrit is calculated for collision with electrons at T = 10 000 K; others
refer to collisions with HI atoms.

in denser gas, collisions are so frequent that A∗ is most often knocked out of its
excited state before it emits the photon.

Because their intensity depends so strongly on these quantities, forbidden lines
often give us detailed information on the density and temperature of the emitting
gas. Astronomers indicate them with square brackets; they refer, for example, to
the [OIII] line at 5007 Å. Forbidden lines of ionized ‘metals’ such as OII, OIII

(once- and twice-ionized oxygen, respectively), NII, and SII account for most of
the energy radiated from HII regions. Table 1.7 lists some common forbidden lines.

Fine structure transitions reflect the coupling between the electron’s orbital
angular momentum and its spin. They correspond roughly to energy differences
only 1/1372 times as large as between the main levels, so for neutral atoms or
low ions, wavelengths lie in the far-infrared. The fine-structure lines of carbon,
oxygen, and nitrogen are in the 10–300 μm range, and must be observed from
aircraft in the stratosphere or from space. Because the energies of the excited
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states are less, these lines are important at lower temperatures. The line of singly
ionized carbon CII at 158 μm, and lines of neutral oxygen at 63 μm and 145 μm,
carry most of the energy radiated by the Milky Way’s atomic gas at T ∼ 100 K.
The line brightness is set by the rate at which C+ ions collide with energetic-
enough electrons or H2 molecules. The energy of a photon at 158 μm corresponds
to T = 91.2 K; in cooler gas, collisions are too slow to excite CII into the upper
state. In a dilute gas with ne electrons and n(C+) carbon ions per cm3, energy is
radiated at the rate

�(C+) = nen(C+) T −1/2 exp(−91.2 K/T ) × 8 × 10−20 erg cm−3 s−1. (1.17)

The exponential term arises because the electrons follow the Maxwellian energy
distribution of Equation 3.58. The line brightness falls rapidly as the temperature
drops below 100 K.

Hyperfine transitions are a consequence of coupling between the nuclear spin
and the magnetic field generated by the orbiting electron. They have energy split-
tings 2000 times smaller yet than the fine-structure lines. The most important of
these is in the hydrogen atom, as the spin of the electron flips from being parallel
to the proton spin, to antiparallel. A photon in the 21 cm line carries off the small
amount of energy released. The average hydrogen atom takes about 11 Myr to
make this transition; but, since hydrogen is by far the most abundant element,
21 cm radio emission is ubiquitous in the Galaxy.

Problem 1.9 To find the strength of 21 cm emission, we first ask how often

hydrogen atoms collide with each other. If the atoms have average speed vth,

each has energy of motion mpv
2
th/2 = 3kBT/2: show that vth ≈ 2 km s−1 at

T = 100 K. We regard each as a small sphere of mass mp with the Bohr radius

a0 = h2
P/(4π2mee2) = 0.529 × 10−8 cm. With nH atoms per cm3, the average

time tcoll for one to run into another is

1

tcoll
= nHπa2

0 vth, so tcoll ≈ 3000

(
1 cm−3

nH

)(
100 K

T

)1/2

yr. (1.18)

In nearby neutral clouds nH ≥ 0.1 (see Table 2.4), so tcoll is much shorter than

the time taken to emit a 21 cm photon. The energy difference between the excited

and ground states is tiny, so after repeated collisions there will be equal numbers

of atoms in each possible state. The excited atom with spins parallel (unit angular

momentum) has three distinct states, the ground state (with opposed spins and

zero angular momentum) only one. Thus each cubic centimeter emits 3nH/4

photons per 11 Myr.

Molecules can radiate like atoms, as electrons move between energy levels.
But the atoms within the molecule also have quantized levels of vibration, and of
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rotation about the center of mass. We see radiation as the molecule jumps between
these levels. The vibrational levels of common small molecules such as CO, CS,
and HCN are separated by energies corresponding to emission at a few microns,
whereas the rotational transitions lead to millimeter waves. The symmetric H2

molecule has no dipole moment, so its rotational transitions are ≈ 1372 times
slower. The least energetic transition of H2 corresponds to emission at 20 μm, so
cold H2 hardly radiates at all; only shocked gas, with T ∼ 1000 K, gives strong
emission. Ultraviolet photons below 2000 Å can excite a hydrogen molecule into a
higher electronic level, where its energy is larger than that of two isolated hydrogen
atoms. About 10% of these molecules dissociate into two H atoms; the rest emit
an ultraviolet photon to return to the ground state. The ultraviolet spectra of hot
stars show many absorption lines from cool H2 between us and the star.

Table 1.8 lists some commonly observed molecular lines. H2 is often excited
by ultraviolet light; but other molecules are mainly excited by collisions, and
we see their lines only when the typical thermal energy kBT exceeds the energy
Eupper of the upper level. The decay rate for a line at frequency ν is proportional
to ν3, so the upper states are long-lived. The line strengths depend on the density,
temperature and composition of the gas, and on the radiation shining on it. Unlike
the atomic lines, the strong rotational transitions of molecules like CO, CS, and
HCN are optically thick: a line photon trying to escape from a molecular cloud is
likely to be absorbed by another molecule, putting it into an excited state. So we
cannot simply define a critical density as we could for the atomic lines.

For CO, the most abundant molecule after H2, the rotational transitions at
1.3 mm and 2.6 mm are normally strongest at densities n(H2) ∼ 100 –1000 cm−3

and require only T ∼ 10–20 K for excitation. Higher transitions at shorter wave-
lengths require larger densities and higher temperatures, so we can investigate the
state of the emitting gas by observing multiple lines. Emission from NH3, CS,
and HCN is strongest at densities 10 to 100 times higher than for CO. We see SiO
emission where silicate dust grains have been broken apart in shocks. Beyond the
Milky Way, lines such as CO are usually weak in dwarf galaxies because their
gas is poor in heavy elements. HCN is often strong in galaxies with active nuclei,
where intense radiation shines on dense gas; but X-rays from the active nucleus
easily destroy HCO+.

Near luminous stars and protostars, and around active galactic nuclei (see
Section 9.1), masing can occur in molecular transitions, such as those of OH at
1.7 GHz and of water, H2O, at 22 GHz. Collisions with fast-moving molecules of
hot H2, and intense infrared radiation, can excite these molecules in a way that
puts more of them into the higher of two energy states. Radiation corresponding
to a transition down to the lower state is then amplified by stimulated emission.
We see a masing spot when the emission happens to be beamed in our direction:
the spot is very small, and the radiation intense.

We often use emission or absorption lines to measure the velocities of gas
clouds or stars. If a light source is moving away from us, the wavelength λobs at
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Table 1.8 Commonly observed lines from molecular clouds

Frequency Wavelength Eupper/kB
aTypical nH

Molecule Transition ν λ (K) (cm−3)

H2 v = 1−0, S(1) 140 THz 2.128 μm
H2 ortho v = 0−0, S(0) 11 THz 28.2 μm 510

v = 0−0, S(2) 24 THz 12.3 μm 1682
H2 para v = 0−0, S(1) 18 THz 17.1 μm 1015

CO J = 1 → 0 115.3 GHz 2.6 mm 5.5 ∼100
J = 2 → 1 230.5 GHz 1.3 mm 17 ∼1 000
J = 3 → 2 345.8 GHz 0.87 mm 34 103–104

CS J = 1 → 0 49 GHz 6.1 mm 2.4 >5 000
J = 5 → 4 244 GHz 1.2 mm 35 106

SiO J = 2 → 1 86.8 GHz 3.5 mm 6.3 cshocks
J = 5 → 4 217.1 GHz 1.4 mm 31.3 cshocks
J = 8 → 7 347.3 GHz 0.86 mm 75 cshocks

HCO+ J = 1 → 0 89 GHz 3.4 mm 4.3 >3 000
J = 3 → 2 268 GHz 1.1 mm 26 >30 000

HCN J = 1 → 0 89 GHz 3.4 mm 4.3 >10 000
J = 3 → 2 266 GHz 1.1 mm 26 >105

HNC 1 → 0 91 GHz 3.3 mm 4.3 4 × 106

3 → 2 272 GHz 1.1 mm 26 107

NH3 para (J, K ) = (1, 1)−(1, 1) 23.69 GHz 12.7 mm 23 2 × 103

(J, K ) = (2, 2)−(2, 2) 23.72 GHz 12.6 mm 64
NH3 ortho (J, K ) = (3, 3)−(3, 3) 23.87 GHz 12.6 mm 122
H2CO ortho 212 → 111 140.8 GHz 2.1 mm 21.9 105

312 → 211 225.7 GHz 1.3 mm 33.5 5 × 105

533 → 432 364.3 GHz 0.82 mm 158.4 106

H2CO para 202 → 101 145.6 GHz 2.1 mm 10.5 2 × 105

322 → 221 218.5 GHz 1.4 mm 68.1 2 × 105

523 → 422 365.4 GHz 0.82 mm 99.7 2 × 106

bOH 2�3/2, J = 3/2 1.7 GHz 18 cm 0.1 104–106

bH2O ortho 616 →523 22.2 GHz 13.5 mm 640 107–109

a This density depends on cloud size, radiation field, etc.
b This line is often seen as a maser.
c This line indicates that shocks at speeds of 10–40 km s−1 have disrupted dust grains.

which we observe the line will be longer than the wavelength λe where it was
emitted; if it moves toward us, we have λobs < λe. The redshift is the fractional
change in wavelength z = λobs/λe − 1. For speeds well below that of light, we
have the Doppler formula:

1 + z ≡ λobs

λe
= 1 + Vr

c
; (1.19)

Vr is the radial velocity, the speed at which the source moves away from us, and c is
the speed of light. Radio telescopes routinely measure wavelengths and velocities
to about one part in 106, while optical telescopes normally do no better than one
part in 105. Astronomers correct for the motion of the Earth, as it varies during
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the year; quoted velocities are generally heliocentric, measured relative to the
Sun.

A diffuse ionized gas also produces continuum radiation. Free–free radiation
(also called bremsstrahlung, or braking radiation) is produced when the electrical
forces from ions deflect free electrons onto curved paths, so that they radiate. Hot
gas in the center of the Milky Way, and in clusters and groups of galaxies, has
T ∼ 107–108 K; its free–free radiation is mainly X-rays. Ionized gas in HII regions
around hot stars, with T ∼ 104 K, can be detected via free–free emission at radio
wavelengths which penetrates the surrounding dusty gas. Strong magnetic fields
also force electrons onto curved paths; if they are moving at nearly the speed of
light, they give out strongly polarized synchrotron radiation. This process powers
the radio emission of supernova remnants, and the radio source at the Milky
Way’s nucleus. If the electrons have very high energy, synchrotron radiation can
be produced at optical and even X-ray energies.

About 1% of the mass of the interstellar material consists of dust particles,
mainly silicates and forms of carbon, smaller than ∼1 μm. These grains scatter
and absorb radiation efficiently at wavelengths less than their own dimensions.
Dust heated by diffuse stellar radiation has T ∼ 10–20 K and glows at ∼200 μm;
dust near bright stars is hotter.

When dust is spread uniformly, light loses an equal fraction of its power for
every parsec that it travels through the dusty gas. Then, if two observers at x and
x + �x look at a distant star in the negative-x direction, it will appear brighter to
the closer observer. We can write the apparent brightness at wavelength λ as

Fλ(x + �x) = Fλ(x)[1 − κλ �x], (1.20)

where the opacity κ represents the rate at which light is absorbed. If the distant
star is at position x0 < x , we have

dFλ

dx
= −κλFλ, so Fλ(x) = Fλ,0e−κλ(x−x0) = Fλ,0e−τλ, (1.21)

where Fλ,0 is the apparent brightness that we would have measured without the
dust, and τλ is the optical depth of the dust layer. Blue and ultraviolet radi-
ation is more strongly scattered and absorbed by dust than red light, so dust
between us and a star makes it appear both dimmer and redder. For interstellar
dust, we often make the approximation κλ ∝1/λ at visible wavelengths in the range
3000 Å < λ < 1 μm.

Problem 1.10 When a source is dimmed by an amount e−τλ , show that, according

to Equation 1.10, its apparent magnitude increases by an amount Aλ = 1.086τλ.

Aλ is called the extinction at wavelength λ.
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Problem 1.11 Near the Sun, the diffuse interstellar gas has a density of about

one atom cm−3. Show that you would need to compress a cube of gas 30 km on

a side into 1 cm3 to bring it to Earth’s normal atmospheric density and pressure

(6 × 1023 atoms in 22.4 liters: a cube 10 cm on a side has a volume of one liter).

Interstellar gas is about 1010 times more rarefied than a good laboratory vacuum,

which is itself ∼1010 times less dense than Earth’s atmosphere.

Assume that each dust grain is a sphere of radius 0.1 μm, and the gas contains

one grain for every 1012 hydrogen atoms. Show that, as light travels through a

1 cm layer of the compressed gas in the previous problem, about 1% of it will be

intercepted. Show that κ = 0.015 cm−1, so that a layer about 70 cm thick would

block a fraction 1/e of the rays (τλ = 1). If the air around you were as dusty

as interstellar space you could see for less than a meter, as in the London fogs

described by Charles Dickens.

Problem 1.12 Assuming that the Milky Way’s luminosity L ≈ 2 × 1010L�,

and making the very rough approximation that it is a sphere 5 kpc in radius, use

Equation 1.3 to show that, if it radiated as a blackbody, Teff ≈ 5 K. Near the Sun,

starlight heats interstellar dust to 15–20 K.

On scales larger than ∼1 pc, dust is fairly evenly mixed with the Galactic
gas. Looking ‘up’ toward the north Galactic pole, we see distant objects dimmed
by an average of 0.15 magnitudes or 13% in the V band. If the dusty layer had
constant thickness z0, objects beyond the Milky Way seen at an angle b from
the Galactic pole are viewed through a length z0/cos b of dusty gas. So τλ, and
the increase in the star’s apparent magnitude, proportional to 1/cos b. Since the
dusty gas is quite clumpy, at high latitudes we can make a better estimate of this
Galactic extinction by using 21 cm emission to measure the neutral hydrogen, and
assuming the amount of dust to be proportional. Roughly, the extinction AV in the
V band is related to the number NH of hydrogen atoms per square centimeter by

NH ≈ 1.8 × 1021 cm−2 × AV (magnitudes). (1.22)

We will discuss our own Galaxy’s interstellar gas further in Section 2.4, and that
of other galaxies in Chapters 4, 5, and 6.

1.2.2 What’s where in the Milky Way: coordinate systems

Just as we use latitude and longitude to specify the position of a point on Earth,
we need a way to give the positions of stars on the sky. Often we use equatorial
coordinates, illustrated in Figure 1.9. We imagine that the stars lie on the celestial
sphere, a very large sphere centred on the Earth, and define the celestial poles
as the points that are directly overhead at the Earth’s north and south poles. The
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Fig. 1.9. The celestial sphere, showing the ecliptic: right ascension α is measured eastward

from the vernal equinox, and declination δ from the celestial equator.

celestial equator is the great circle on the celestial sphere that runs directly above
the Earth’s equator.

A star’s declination, akin to latitude on Earth, is the angle between its position
on the celestial sphere, and the nearest point on the celestial equator. An object
at the north celestial pole has declination δ = 90◦, whereas at the south celestial
pole it has δ = −90◦. During the night, the Earth turns anticlockwise on its axis
as seen from above the north pole, so the stars appear to rise in the east and move
westward across the sky, circling the celestial poles. Each star rises where the
circle of ‘latitude’ corresponding to its declination cuts the eastern horizon, and
sets where that circle intersects the horizon in the west.

Throughout the year, the Sun appears to move slowly from west to east against
the background of the stars; it lies north of the celestial equator in June and south
of it in January, following the great circle of the ecliptic. The ecliptic is inclined
by 23◦27′ to the celestial equator, intersecting it at the vernal equinox and the
autumnal equinox. So the Sun crosses the equator twice a year: at the vernal
equinox in the spring, usually on March 21st, and at the autumnal equinox around
September 23rd. To define a longitude on the sky, we use the vernal equinox as
a zero point, like the Greenwich meridian on Earth. The ‘longitude’ of a star is
its right ascension, denoted by α. Right ascension is measured eastward from the
vernal equinox in hours, with 24 hours making up the complete circle.

The direction of the Earth’s rotation axis changes slowly because of preces-
sion: the celestial poles and equator do not stay in fixed positions on the sky. The
vernal equinox moves westward along the ecliptic at about 50′′ per year, so the
tropical year from one vernal equinox to the next is about 20 minutes shorter than
the Earth’s orbital period, the sidereal year. Hence the coordinates α, δ of a star
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Fig. 1.10. Left, Sun-centred Galactic longitude l and latitude b; right, cylindrical polar

coordinates R, φ, z with the origin at the Galactic center.

will depend on which year we take as the reference for our coordinate system.
Astronomers generally use coordinates relative to the 1950 or 2000 equinox, or
the equinox of the current year. Computer programs easily convert between these
systems. But more than one astronomer has pointed a telescope in the wrong
direction by forgetting to specify the equinox.

The stars that have reached their highest point in the sky at any moment all
lie on a great circle passing through the celestial poles and through the zenith, the
point directly overhead. These stars all have the same right ascension. On the date
of the autumnal equinox, in September, the position of the vernal equinox, and
all stars with right ascension zero, are highest in the sky at midnight. Three hours
later, when the Earth has made an eighth of a turn on its axis, the stars further east,
with right ascension 3h, will be at their highest; and so on through the night. So the
positions of the stars can be used to tell the time. At any moment, the right ascension
of the stars that are at their highest gives the local star time, or sidereal time: all
observatories have clocks telling sidereal time, as well as the usual civil time.

Problem 1.13 Draw a diagram to show that, as the Earth circles the Sun during

the course of a year, relative to the stars it makes 366 1
4 rotations on its axis. The

number of sidereal days in a year is one more than the number of solar days,

which are measured from midnight to midnight. So a sidereal day lasts only

23h56m.

To give the positions of stars as we see them in relation to the Milky Way,
we use the Sun-centred system of Galactic latitude and longitude shown in the
left panel of Figure 1.10. The center of the Galaxy lies in the direction α =
17h42m24s, δ = −28◦55′ (equinox 1950). Galactic longitude l is measured in the
plane of the disk from the Sun–center line, defined as l = 0, toward the direction
of the Sun’s rotation, l = 90◦. The region 0 < l < 180◦ is sometimes called
the ‘northern’ half of the Galaxy, because it is visible from the Earth’s northern
hemisphere, while 180◦ < l < 360◦ is the ‘southern’ Galaxy. The latitude b
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gives the angle of a star away from the plane of the disk; b is measured positive
toward the north Galactic pole at α = 12h49m, δ = 27◦24′ (1950). The north
Galactic pole is just the pole of the disk that is visible from the Earth’s northern
hemisphere. Inconveniently, the Earth’s rotation axis and that of the Milky Way are
at present about 120◦ apart, so the Milky Way’s rotation is clockwise when seen
from ‘above’ the north Galactic pole; its spin axis points closer to the direction of
the south Galactic pole.

To specify the positions of stars in three-dimensional space, we can use a
system of Galactocentric cylindrical polar coordinates R, φ, z (Figure 1.10). The
radius R measures the distance from the Galactic center in the disk plane; the
height ‘above’ the midplane is given by z, with z > 0 in the direction of the north
Galactic pole. The azimuthal angle φ is measured from the direction toward the
Sun, so that it is positive in the direction toward l = 90◦. For motions near the Sun,
we sometimes use Cartesian coordinates x, y, z with x pointing radially outwards
and y in the direction of the Sun’s rotation.

We take a more detailed look at the Milky Way in Chapters 2 and 3.

1.3 Other galaxies

This section introduces the study of galaxies other than our own Milky Way. We
discuss how to classify galaxies according to their appearance in optical light, and
how to measure the amount of light that they give out. Although big galaxies emit
most of the light, the most common type of galaxy is a tiny dim dwarf.

The existence of other galaxies was established only in the 1920s. Before
that, they were listed in catalogues of nebulae: objects that appeared fuzzy in a
telescope and were therefore not stars. Better images revealed stars within some of
these ‘celestial clouds’. Using the newly opened 100′′ telescope on Mount Wilson,
Edwin Hubble was able to find variable stars in the Andromeda ‘nebula’ M31.
He showed that their light followed the same pattern of changing brightness as
Cepheid variable stars within our Galaxy. Assuming that all these stars were of the
same type, with the same luminosities, he could find the relative distances from
Equation 1.1. He concluded that the stars of Andromeda were at least 300 kpc
from the Milky Way, so the nebula must be a galaxy in its own right. We now
know that the Andromeda galaxy is about 800 kpc away.

Hubble set out his scheme for classifying the galaxies in a 1936 book, The
Realm of the Nebulae. With later additions and modifications, this system is still
used today; see Figure 1.11. Hubble recognized three main types of galaxy: ellip-
ticals, lenticulars, and spirals, with a fourth class, the irregulars, for galaxies that
would not fit into any of the other categories.

Elliptical galaxies are usually smooth, round, and almost featureless, devoid of
such photogenic structures as spiral arms and conspicuous dust lanes. Ellipticals
are generally lacking in cool gas and consequently have few young blue stars.
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Fig. 1.11. Galaxy classification: a modified form of Hubble’s scheme.

Though they all appear approximately elliptical on the sky, detailed study shows
that large bright ellipticals have rather different structures from their smaller and
fainter counterparts.

Ellipticals predominate in rich clusters of galaxies, and the largest of them, the
cD galaxies, are found in the densest parts of those clusters. Around an elliptical
core, the enormous diffuse envelope of a cD galaxy may stretch for hundreds of
kiloparsecs; these systems can be up to 100 times more luminous than the Milky
Way. Normal or giant ellipticals have luminosities a few times that of the Milky
Way, with characteristic sizes of tens of kiloparsecs. The stars of these bright
ellipticals show little organized motion, such as rotation; their orbits about the
galaxy center are oriented in random directions. The left panel of Figure 1.12
shows a giant elliptical, which has an active nucleus (see Section 9.1) that is a
bright compact radio source.

In less luminous elliptical galaxies, the stars have more rotation and less
random motion. Often there are signs of a disk embedded within the elliptical
body. The very faintest ellipticals, with less than ∼1/10 of the Milky Way’s
luminosity, split into two groups. The first comprises the rare compact ellipticals,
like the nearby system M32. The other group consists of the faint diffuse dwarf
elliptical (dE) galaxies, and their even less luminous cousins the dwarf spheroidal
(dSph) galaxies, which are so diffuse as to be scarcely visible on sky photographs.
The right panel of Figure 1.12 shows a dwarf elliptical satellite of M31. The dE
and dSph galaxies show almost no ordered rotation.

Lenticular galaxies show a rotating disk in addition to the central elliptical
bulge, but the disk lacks any spiral arms or extensive dust lanes. These galaxies
are labelled S0 (pronounced ‘ess-zero’), and they form a transition class between
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Fig. 1.12. Left, the giant elliptical galaxy NGC 3998; brightness rapidly increases toward

the center, which is over-exposed. Almost all the faint compact objects are globular clus-

ters. Right, nearby dwarf elliptical NGC 147 in the V band; we see individual stars in its

outer parts. The brightest images are foreground stars of the Milky Way – WIYN telescope.

ellipticals and spirals. They resemble ellipticals in lacking extensive gas and dust,
and in preferring regions of space that are fairly densely populated with galaxies;
but they share with spirals the thin and fast-rotating stellar disk. The left panel of
Figure 1.13 shows an SB0 galaxy, with a central linear bar.

Spiral galaxies (Figure 1.14) are named for their bright spiral arms, which are
especially conspicuous in the blue light that was most easily recorded by early
photographic plates. The arms are outlined by clumps of bright hot O and B stars,
and the compressed dusty gas out of which these stars form. About half of all spiral
and lenticular galaxies show a central linear bar: the barred systems SB0, SBa, . . .,
SBd form a sequence parallel to that of the unbarred galaxies. Along the sequence
from Sa spirals to Sc and Sd, the central bulge becomes less important relative to
the rapidly rotating disk, while the spiral arms become more open and the fraction
of gas and young stars in the disk increases. Our Milky Way is probably an Sc
galaxy, or perhaps an intermediate Sbc type; M31 is an Sb. On average, Sc and
Sd galaxies are less luminous than the Sa and Sb systems, but some Sc galaxies
are still brighter than a typical Sa spiral.

At the end of the spiral sequence, in the Sd galaxies, the spiral arms become
more ragged and less well ordered. The Sm and SBm classes are Magellanic
spirals, named after their prototype, which is our Large Magellanic Cloud; see
Section 4.1. In these, the spiral is often reduced to a single stubby arm. As the
galaxy luminosity decreases, so does the speed at which the disk rotates; dimmer
galaxies are less massive. The Large Magellanic Cloud rotates at only 80 km s−1,
a third as fast as the Milky Way. Random stellar motions are also diminished in
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Fig. 1.13. Negative images of two disk galaxies. Left, NGC 936, a luminous barred S0

with L ≈ 2 × 1010L�; the smooth disk has neither dust lanes nor spiral arms. Luminous

regions appear darkest in this negative image – CTIO Blanco telescope. Right, NGC 4449,

classified as irregular or SBm; this is a small gas-rich galaxy with L ≈ 4 × 109L�. Bright

star-forming knots are strewn about the disk – A. Aloisi, F. Annibali, and J. Mack; Hubble

Space Telescope/NASA/ ESA.

the smaller galaxies, but even so, ordered rotational motion forms a less important
part of their total energy. We indicate this in Figure 1.11 by placing these galaxies
to the left of the Sd systems.

The terms ‘early type’ and ‘late type’ are often used to describe the position of
galaxies along the sequence from elliptical galaxies through S0s to Sa, Sb, and Sc
spirals. Some astronomers once believed that this progression might describe the
life cycle of galaxies, with ellipticals turning into S0s and then spirals. Although
this hypothesis has now been discarded, the terms live on. Confusingly, ‘early-
type’ galaxies are full of ‘late-type’ stars, and vice versa.

Hubble placed all galaxies that did not fit into his other categories in the
irregular class. Today, we use that name only for small blue galaxies which lack
any organized spiral or other structure (Figure 1.13). The smallest of the irregular
galaxies are called dwarf irregulars; they differ from the dwarf spheroidals by
having gas and young blue stars. It is possible that dwarf spheroidal galaxies are
just small dwarf irregulars which have lost or used up all of their gas. Locally,
about 70% of moderately bright galaxies are spirals, 30% are elliptical or S0
galaxies, and 3% are irregulars.

Other galaxies that Hubble would have called irregulars include the starburst
galaxies. These systems have formed many stars in the recent past, and their
disturbed appearance results in part from gas thrown out by supernova explosions.
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Fig. 1.14. Our nearest large neighbor, the Andromeda galaxy M31; north is to the right,

east is upward. Note the large central bulge of this Sb galaxy, and dusty spiral arms in

the disk. Two satellites are visible: M32 is round and closer to the center, NGC 205 is the

elongated object to the west – O. Nielsen.

Interacting galaxies, in which two or more systems have come close to each other,
and galaxies that appear to result from the merger of two or more smaller systems,
would also have fallen into this class. We have come to realize that galaxies are
not ‘island universes’, but affect each other’s development throughout their lives.
Chapters 4, 5, and 6 of this book discuss the structures of nearby galaxies, while
Chapter 7 considers how galaxies interact in groups and clusters.

We usually refer to galaxies by their numbering in a catalogue. Charles
Messier’s 1784 catalogue lists 109 objects that look ‘fuzzy’ in a small telescope;
it includes the Andromeda galaxy as M31. The New General Catalogue of more
than 7000 nonstellar objects includes clusters of stars and gaseous nebulae as
well as galaxies. This catalogue, published by J. L. E. Dreyer in 1888, with addi-
tions in 1895 and 1908, was based largely on the work of William Herschel (who
discovered the planet Uranus), his sister Caroline, and his son John Herschel. The
Andromeda galaxy is NGC 224.

Modern catalogues of bright galaxies include the Third Reference Cata-
logue of Bright Galaxies, by G. and A. de Vaucouleurs and their collabora-
tors (1991; Springer, New York), which includes all the NGC galaxies, and the
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Uppsala General Catalogue of Galaxies, by P. Nilson (1973; Uppsala Observa-
tory), with its southern extension, the ESO/Uppsala Survey of the ESO(B) Atlas, by
A. Lauberts (1982; European Southern Observatory). Galaxies that emit brightly in
the radio, X-rays, etc., also appear in catalogues of those sources. Many recent cat-
alogues are published electronically; for example, NASA’s Extragalactic Database
(http://ned.ipac.caltech.edu).

Further reading: E. Hubble, 1936, The Realm of the Nebulae (Yale University
Press; reprinted by Dover, New York); for pictures to illustrate Hubble’s classifi-
cation, see A. Sandage, 1961, The Hubble Atlas of Galaxies (Carnegie Institute
of Washington; Washington, DC). A recent graduate text on galaxy classification
is S. van den Bergh, 1998, Galaxy Morphology and Classification (Cambridge
University Press, Cambridge, UK).

1.3.1 Galaxy photometry

Unlike stars, galaxies do not appear as points of light; they extend across the sky.
Turbulence in the Earth’s atmosphere has the effect of blurring galaxy images; this
is known as seeing. Because of it, a ground-based optical telescope rarely shows
details smaller than about 1/3′′. For sharper images, we must use a telescope in
space or resort to techniques such as interferometry or adaptive optics.

Although the classification of galaxies is still based on their appearance in
optical images, most work on galaxies is quantitative, measuring how much light,
at what wavelengths, is emitted by the different regions. The surface brightness of
a galaxy I (x) is the amount of light per square arcsecond on the sky at a particular
point x in the image. Consider a small square patch of side D in a galaxy that we
view from a distance d , so that it subtends an angle α = D/d on the sky. If the
combined luminosity of all the stars in this region is L , its apparent brightness F
is given by Equation 1.1; then the surface brightness is

I (x) ≡ F

α2
= L/(4πd2)

D2/d2
= L

4π D2
. (1.23)

I is usually given in mag arcsec−2 (the apparent magnitude of a star that appears
as bright as one square arcsecond of the galaxy’s image), or in L� pc−2. The
surface brightness at any point does not depend on distance unless d is so large
that the expansion of the Universe has the effect of reducing I (x); we discuss this
further in Section 8.3. Contours of constant surface brightness on a galaxy image
are called isophotes. Equation 1.23 shows that the position of an isophote within
the galaxy is independent of the observer’s distance.

We generally measure surface brightness in a fixed wavelength band, just as
for stellar photometry. The centers of galaxies reach only IB ≈ 18 mag arcsec−2

or IR ≈ 16 mag arcsec−2, and the stellar disks are much fainter. Galaxies do not



1.3 Other galaxies 43

have sharp edges, so we often measure their sizes within a fixed isophote. One
popular choice is the 25th-magnitude isophote in the blue B band, denoted R25.
This is about 1% of the sky level on an average night; before CCD photometry
(see Section 5.1), it was close to the limit of what could be measured reliably.
Another option is the Holmberg radius at IB(x) = 26.5 mag arcsec−2. To find the
luminosity of the whole galaxy, we measure how the amount of light coming from
within a given radius grows as that radius is moved outward, and we extrapolate
to reach the total.

Problem 1.14 In a galaxy at a distance of d Mpc, what would be the apparent

B-magnitude of a star like our Sun? In this galaxy, show that 1′′ on the sky

corresponds to 5d pc. If the surface brightness IB = 27 mag arcsec−2, how much

B-band light does one square arcsecond of the galaxy emit, compared with a

star like the Sun? Show that this is equivalent to L� pc−2 in the B band, but that

II = 27 mag arcsec−2 corresponds to only 0.3L� pc−2 in the I band.

Table 1.9 gives the surface brightness of the night sky measured in the band-
passes of Figure 1.7. These are approximate average values, since the sky bright-
ness depends on solar activity (the sunspot cycle), the observatory’s location on
Earth, and the direction in the sky. Typically, the sky is brighter than all but the
inner core of a galaxy, and on a moonlit night even the center can disappear into the
bright sky. From Earth’s surface, optical observations of galaxies must generally
be made during the dark of the moon.

If our eyes could perceive colors at such low light levels, we would see the sky
glowing red with emission in the bands of atmospheric molecules. In the near-
infrared at 2 μm, from most observatory sites the sky is over a thousand times
brighter than it would be in space. Figure 1.15 shows how steeply its emission rises
at longer wavelengths, in the thermal infrared. The high cold South Pole is the best
Earth-based site at these wavelengths, but the sky is still enormously brighter than
from space. Standard infrared filters are chosen to lie where the atmosphere is most
transparent. Between these regions, we see a blackbody spectrum corresponding
to the temperature of the opaque layers.

We can cut down the sky light by designing our filters to exclude some
of the strongest lines; using the K ′ filter instead of K blocks out about two-
thirds of the emission. But Table 1.9 makes clear that, when we observe from
the ground, the infrared sky is always brighter than the galaxy. To find the
surface brightness accurately, we must measure the brightness of a patch of
blank sky as it changes throughout the night just as accurately as we measure
the galaxy-plus-sky; the small difference between the two gives I (x). A tele-
scope in space gives us a much darker sky at red and infrared wavelengths.
We can also observe in the near-ultraviolet, where the sky brightness is yet
lower.
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Table 1.9 Average sky brightness in ultraviolet, optical, and infrared wavebands

Full moon Dark sky From space From space South Pole
Band Wavelength ( mag arcsec−2) ( mag arcsec−2) ( mag arcsec−2) (μJy arcsec−2) (μJy arcsec−2)

1500 Å 25.0
2000 Å 26.0
2500 Å 25.6

U 3700 Å 22.0 23.2
B 4400 Å 19.4 22.7 23.4 1.8
V 5500 Å 19.7 21.8 22.7
R 6400 Å 19.9 20.9 22.2
I 8000 Å 19.2 19.9 22.2 3.2
J 1.2 μm 15.0 15.0 20.7 2.4 300–600
H 1.6 μm 13.7 13.7 20.9 4.4 800–2 000
K 2.2 μm 12.5 12.5 21.3 1.9 300–700
K ′ 2.2 μm 13.7 13.7 21.3 1.9 500
L 3.3 μm 1.1 105

M 4.9 μm 8.0 106

N 10.6 μm 220 4 × 107

Q 19 μm 400 3 × 108

The two columns headed ‘from space’ differ only in their units.

      2       4       6       8      10      20
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Fig. 1.15. Sky emission on Mauna Kea, Hawaii, at 4000 m elevation; standard infrared

bandpasses are indicated. The inset shows that the sky background consists mainly of

closely spaced emission lines – Gemini telescope project.

There are many more small dim galaxies than large bright ones. Figure 1.16
shows the number of galaxies measured at absolute magnitude M(BJ ), in the
2dF survey from the Anglo-Australian Observatory. Notice that most of the very
luminous galaxies are red; these are elliptical and S0 galaxies. Most of the dim
galaxies are spirals or irregulars, which are blue because they contain recently born
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Fig. 1.16. Number of galaxies per 10 Mpc cube between absolute magnitude M(BJ ) and

M(BJ ) + 1 (crosses). Dotted lines show numbers of blue (stars) and red (filled dots)

galaxies making up this total; vertical bars indicate errors. The solid line shows the lumi-

nosity function of Equation 1.24; the dashed line gives �(M) × L/L
, the light from

galaxies in each interval of absolute magnitude. The blue bandpass BJ is matched to the

photographic plates used to select the galaxies – 2dF survey, D. Croton.

massive stars. Although spirals and irregulars are far more numerous, elliptical
galaxies contain about half the total mass in stars.

The solid curve in Figure 1.16 shows what is expected if the number of galaxies
�(L)�L per Mpc3 between luminosity L and L + �L is given by

�(L)�L = n


(
L

L


)α

exp

(
− L

L


)
�L

L


; (1.24)

this is the Schechter function. According to this formula, the number of galaxies
brighter than the luminosity L
 drops very rapidly. We often use the criterion
L ∼> 0.1L
 to define a ‘bright’ or ‘giant’ galaxy, as opposed to a dwarf. The solid
curve is for L
 ≈ 9 × 109h−2L�, corresponding to M
(BJ ) = −19.7 + 5 log10h;
as explained in the next section, the parameter h measures the rate at which the
Universe expands. Taking h = 0.7, we find L
 ≈ 2 × 1010L�, roughly the Milky
Way’s luminosity.

The number of galaxies in each unit interval in absolute magnitude is almost
constant when L < L
; the curve is drawn for n
 = 0.02h3 Mpc−3 and α =
−0.46. The Schechter formula overestimates the density of very faint galaxies;
for α ≤ −1, it even predicts that the total number of galaxies

∫∞
L �(L)dL should

increase without limit as L → 0. But the dashed line shows that most of the light
comes from galaxies close to L
. Integrating Equation 1.24, we estimate the total
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luminosity density to be

ρL(BJ ) =
∫ ∞

0
�(L)L dL = n
L
�(α + 2) ≈ 2 × 108hL� Mpc−3, (1.25)

where � is the gamma function; �( j + 1) = j! when j is an integer. In the near-
infrared K band ρL(K ) ≈ 6 × 108hL� Mpc−3; it is larger than ρL(BJ ) because
most light comes from stars redder than the Sun.

1.4 Galaxies in the expanding Universe

The Universe is expanding; the galaxies are rushing away from us. The recession
speed, as measured by the Doppler shift of a galaxy’s spectral lines, is larger
for more distant galaxies. We can extrapolate this motion back into the past, to
estimate when the Universe had its beginning in the Big Bang. Doing this, we link
the recession speed or redshift that we measure for a galaxy with the time after
the Big Bang at which its light was given out; the redshift becomes a measure of
the galaxy’s age when it emitted that light.

In 1929, on the basis of only 22 measurements of radial velocities for nearby
galaxies, and some distance estimates which turned out to be wrong by about a
factor of ten, Hubble claimed that the galaxies are moving away from us with
speeds Vr proportional to their distance d:

Vr ≈ H0d. (1.26)

Subsequent work proved him right, and this relation is now known as Hubble’s
law. Current estimates for the parameter H0, the Hubble constant, lie between
60 and 75 km s−1 Mpc−1. Figure 1.17 shows that galaxies that recede faster are
indeed fainter, as expected if they all have roughly the same luminosity, but are
progressively more distant.

We often use Hubble’s law to estimate the distances of galaxies from their
measured velocities. It is common to indicate the uncertainty in the Hubble con-
stant explicitly, by writing h for the value of H0 in units of 100 km s−1 Mpc−1.
Then Equation 1.26 implies

d = h−1[Vr (km s−1)/100
]

Mpc. (1.27)

When the distance of a galaxy is found from its radial velocity Vr, the derived
luminosity L ∝ h−2. This is why the parameter L
 of Equation 1.24 has a value
proportional to h−2; similarly, the density n
 ∝ h3. If we estimate the mass M of
a galaxy by using Equation 1.2 with a distance from Equation 1.27, together with
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Fig. 1.17. Apparent magnitude in the V band for the brightest galaxies in rich galaxy

clusters. The magnitude increases proportionally to the logarithm of the redshift z, as we

expect if the galaxy’s distance is proportional to its recession speed cz – data from J. E.

Gunn and J. B. Oke 1975 ApJ 195, 255.

Newton’s equation for the gravitational force (see Section 3.1), then we have that
M ∝ h−1.

If the average speeds of the galaxies had always remained constant, they would
have been on top of each other at a time tH before the present, where

tH = 1

H0
= 9.78h−1 Gyr = 15 Gyr × 67 km s−1 Mpc−1

H0
. (1.28)

This is called the Hubble time; we can use it as a rough estimate of the age of the
Universe, the time since the Big Bang.

Problem 1.15 If a galaxy has absolute magnitude M , use Equations 1.1 and

1.27 to show that its apparent magnitude m is related to the redshift z = Vr/c of

Equation 1.19 by m = M + 5 log10 z + C , where C is a constant, the same for

all objects. Draw an approximate straight line through the points in Figure 1.17;

check that its slope is roughly what you would expect if the brightest galaxy in

a rich cluster always had the same luminosity.

Using Hubble’s law to find approximate distances for galaxies, we can exam-
ine their distribution in space: Figure 8.3 shows the region of the 2dF survey of
Figure 1.16. We do not see galaxies spread uniformly through space, but concen-
trated into groups and clusters. Within rich clusters, the galaxies’ orbits give them
peculiar velocities up to 1500 km s−1. So, if we use Equation 1.27 to find their
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positions, they will appear to be closer or more distant than they really are. A
galaxy’s measured radial velocity Vr has two components: the cosmic expansion,
and a peculiar velocity Vpec. Equation 1.26 should be modified to read

Vr = H0d + Vpec. (1.29)

Between the clusters, we will see in Chapter 8 that individual galaxies and
small groups lie along filaments or in large sheets. The groups and associations
of galaxies within these filaments and sheets are less rich than clusters, but more
numerous. Our Milky Way and its neighbor Andromeda form part of the Local
Group, which includes a few dozen smaller systems within a radius of 1–2 Mpc.
Between the sheets and filaments are vast nearly empty regions; in these voids,
we see only a few isolated galaxies.

1.4.1 Densities and ages

In Section 8.2 we will examine the dynamics of the cosmic expansion, and how
it is related to the density of matter and energy in the Universe. If the average
density is now greater than the critical density, the expansion can in future reverse
to a contraction; if it is less, the galaxies continue to recede forever. The critical
density is

ρcrit(now) = 3H 2
0

8πG
= 1.9 × 10−29h2 g cm−3

= 2.8 × 1011h2M� Mpc−3. (1.30)

For H0 = 67 km s−1 Mpc−1, this is equivalent to a good-sized galaxy in each
megaparsec cube, or about five hydrogen atoms per m3. If matter in the Universe
has exactly this density, the time t0 from the Big Bang to the present day is

t0 = 2

3H0
≈ 10 Gyr ×

(
67 km s−1 Mpc−1

H0

)
. (1.31)

If the average density exceeds ρcrit, the Universe is younger than this, whereas
if the density is less, it is older. We shall see that the density is unlikely to be
greater than the critical value, so the time since the Big Bang is at least that given
by Equation 1.31. The present age t0 can be larger than tH only if the equations
of General Relativity are modified by including dark energy, which pushes the
galaxies away from each other.

We will see in the following section that normal matter makes up only
about 4% of the critical density. In the current benchmark model for the cosmic
expansion, the total density has exactly the critical value, and H0 = 70 km s−1

Mpc−1. Matter makes up 30% of ρcrit, but most of it is dark. The dark matter
probably consists of particles that, like neutrinos, are weakly interacting – or we



1.4 Galaxies in the expanding Universe 49

should have seen them – and have some small but nonzero mass. Collectively,
these are known as weakly interacting massive particles, or WIMPs. Dark energy
accounts for the remainder; we have little idea about its nature. The present age
t0 of the benchmark model is 0.964tH or 13.5 Gyr.

Problem 1.16 Use Equation 1.25 to show that, for the Universe to be at the

critical density, the average ratio of mass to luminosity M/L would have to be

approximately 1700hM�/L� in blue light.

1.4.2 Galaxies in the Universe

Why is the history of the Universe relevant to our study of galaxies? First, as we
will see in Section 2.2, the Hubble time tH is very close to the ages that we estimate
for the oldest stars in our own Galaxy and others. The galaxies, and the stars in
them, can be no older than the Universe. To understand how galaxies came into
existence, we must know how much time it took to form the earliest stars, and
to build up the elements heavier than helium. The atmospheres of old low-mass
stars in galaxies are fossils from the early Universe, preserving a record of the
abundances of the various elements in the gas out of which they formed. Our
knowledge of stellar evolution provides us with a clock measuring in gigayears
how long ago these stars began their lives on the main sequence. The redshifts of
distant galaxies tell the time by a different clock, giving information on how long
after the Big Bang their light set off on its journey to us. To relate times measured
by these two clocks, we must know how the scale of the Universe has changed
with time. In Section 8.2 we will see how to calculate the scale length R(t), which
grows proportionally to the distance between the galaxies; the Hubble constant
H0 is given by Ṙ(t0)/R(t0). For the simplest models, R(t) depends only on the
value of H0 and the present density ρ(t0).

The expansion of the Universe also affects the light that we receive from
galaxies. Consider two galaxies separated by a distance d, separating at speed
Vr = H0d according to Equation 1.26. If one of these emits light of wavelength
λe, an observer in the other galaxy will receive it at a time �t = d/c later, with a
longer wavelength λobs = λe +�λ. If the galaxies are fairly close, so that Vr � c,
we can use the Doppler formula of Equation 1.19 to show that the ratio λobs/λe is

1 + �λ

λe
≈ 1 + H0d

c
= 1 + H0 �t = 1 +

[
1

R(t)

dR(t)

dt

]
t0

�t . (1.32)

We can rewrite this as an equation for the wavelength λ as a function of time:

1

λ

dλ

dt
= 1

R(t)

dR(t)

dt
. (1.33)
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Integrating gives the formula for the cosmological redshift z:

1 + z ≡ λobs

λe
= R(t0)

R(te)
, (1.34)

which holds for large redshifts as well as small. Since the wavelength of light
expands proportionally to R(t), its frequency decreases by a factor of 1 + z. All
processes in a distant galaxy appear stretched in time by this factor; when we
observe the distant Universe, we see events taking place in slow motion.

We will discuss galaxy groups and clusters in Chapter 7. The other topics of
this section are treated in greater depth in Chapters 8 and 9.

1.5 The pregalactic era: a brief history of matter

Here, we sketch what we know of the history of matter in the Universe before the
galaxies formed. When a gas is compressed, as in filling a bicycle tire, it heats up;
when it is allowed to expand, as in using a pressurized spray can, its temperature
drops. The gas of the early Universe was extremely hot and dense, and it has been
cooling off during its expansion. This is the Big Bang model for the origin of the
Universe: the cosmos came into existence with matter at a very high temperature,
and expanding rapidly. The physics that we have developed in laboratories on
Earth then predicts how this fireball developed into the cosmos that we know
today. Two aspects of the early hot phase are especially important for our study
of galaxies.

First, the abundance of the lightest elements, hydrogen, deuterium (heavy
hydrogen), helium, and lithium, was largely determined by conditions in the first
half-hour after the Big Bang. The observed abundance of helium is, amazingly,
quite closely what is predicted by the Big Bang model. The measured fraction of
deuterium, 3He, and lithium can tell us how much matter the Universe contains.
In later chapters, we will compare this figure with the masses that we measure in
and around galaxies.

Second, the cosmic microwave background radiation, a relic of the pregalactic
Universe, allows us to find our motion relative to the rest of the cosmos. The Milky
Way’s speed through the cosmic microwave background is our peculiar velocity,
as defined in Equation 1.29. It turns out to be surprisingly large, indicating that
huge concentrations of distant matter have exerted a strong pull on our Local
Group.

Further reading: for an undergraduate-level introduction, see B. Ryden, 2003,
Introduction to Cosmology (Addison Wesley, San Francisco, USA); and A. Liddle,
2003, An Introduction to Modern Cosmology, 2nd edition (John Wiley & Sons,
Chichester, UK).
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1.5.1 The hot early Universe

For at least the first hundred thousand years after the Big Bang, most of the energy
in the Universe was that of the blackbody radiation emitted from the hot matter,
and of relativistic particles: those moving at nearly the speed of light, so rapidly
that they behave much like photons. During the expansion, Equation 1.34 tells us
that wavelengths grow proportionally to the scale length R(t). By Equation 1.5,
the radiation temperature T varies inversely as the wavelength λmax at which most
light is emitted, and the temperature drops as T ∝ 1/R(t); see the problem below.

Problem 1.17 If photons now fill the cosmos uniformly with number density

n(t0), show that, at time t , the density n(t) = n(t0)R3(t0)/R3(t). Use Equa-

tion 1.34 to show that the energy density of radiation decreases as 1/R4(t). For

blackbody radiation at temperature T , the number density of photons with energy

between ν and ν + �ν is

n(ν)�ν = 2ν2

c3

�ν

exp[hν/(kBT )] − 1
. (1.35)

Show that, if the present spectrum is that of blackbody radiation at temperature

T0, then at time t the expansion transforms this exactly into blackbody radiation

at temperature T (t) = T0R(t0)/R(t).

During the first three minutes of its life, the Universe was full of energetic
γ-rays, which would smash any atomic nuclei apart into their constituent particles.
When the temperature of the radiation field is high enough, pairs of particles and
their antiparticles can be created out of the vacuum. Because photons are never
at rest, two of them are required to produce a particle pair. A typical photon of
radiation at temperature T carries energy E = 4kBT , where kB is Boltzmann’s
constant; so proton–antiproton pairs could be produced when kBT ∼> mpc2, where
mp is the proton mass. We usually measure these energies in units of an electron
volt, the energy that an electron gains by moving through a potential difference of
1 volt: 1 eV = 1.6 × 10−19 J or 1.6 × 10−12 erg. In these units, mpc2 ≈ 109 eV or
1 GeV, so pairs of protons and antiprotons were created freely in the first 10−4 s,
when

kBT � mpc2, or T � 1013 K. (1.36)

As the expansion continued, the temperature fell, and the photons had too
little energy to make a proton–antiproton pair; almost all the antiprotons met with
a proton and annihilated to leave a pair of γ-rays. We do not understand why this
was so, but in the early Universe there were slightly more protons: about 109 + 1
protons for every 109 antiprotons. The small excess of matter over antimatter was
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left over to form the galaxies. The photons produced in the annihilation are seen
today as the cosmic microwave background.

Electrons are about 2000 times less massive than protons: their rest energy
mec2 is only 0.5 MeV. So the radiation still produced pairs of electrons and anti-
electrons (positrons, e+), until the temperature dropped a thousandfold, to T ∼
1010 K. Before this time, the reaction

e− + e+ ←→ νe + ν̄e

could produce electron neutrinosνe and their antiparticles ν̄e. The great abundance
of electrons, positrons, and neutrinos allowed neutrons to turn into protons, and
vice versa, through reactions such as

e− + p ←→ n + νe, ν̄e + p ←→ n + e+, n ←→ p + e− + ν̄e.

In equilibrium at temperature T , there would have been slightly fewer neutrons
than protons, since the neutron mass mn is larger. The ratio of neutrons to protons
was given by

n/p = e−Q/(kBT ), where Q = (mn − mp)c2 = 1.293 MeV. (1.37)

Neutrinos are very weakly interacting particles; from the Sun, 1015 of them fly
harmlessly through each square meter of the Earth’s surface every second. Only
in the extremely hot material of supernova cores, or in the early Universe, do
they have an appreciable chance of reacting with other particles. While electron–
positron pairs were still numerous, the density of neutrinos was high enough to
keep the balance between neutrons and protons at this equilibrium level. But later,
once kBT ∼< 0.8 MeV or t ∼> 1 s, expansion had cooled the matter and neutrinos
so much that a neutron or proton was very unlikely to interact with a neutrino.
The neutrons froze out, with n/p ≈ 1/5.

1.5.2 Making the elements

Neutrons can survive if they are bound up in the nuclei of atoms, but free neutrons
are not stable; they decay exponentially into a proton, an electron, and an anti-
neutrino ν̄e. After a time τn = 886 ± 1 s, which is also the mean lifetime, the
number is reduced by a factor 1/e. Very few neutrons would now be left, if they
had not combined with protons to form deuterium, a nucleus of ‘heavy hydrogen’
containing a neutron and a proton, by the reaction

n + p → D + γ;
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here γ represents a photon, a γ-ray carrying away the 2.2 MeV of energy set free
in the reaction. This reaction also took place at earlier times, but any deuterium
that managed to form was immediately torn apart by photons in the blackbody
radiation.

After the electron–positron pairs were gone, at T ∼< 3 × 109 K, the energy
density in the Universe was almost entirely due to blackbody radiation. General
Relativity tells us that the temperature fell according to

t =
(

3c2

32πGaBT 4

)1/2

≈ 230 s

(
109 K

T

)2

; (1.38)

here aB = 7.56 × 10−16 J m−3 K−4 is the blackbody constant. About a quarter of
the neutrons had decayed before the temperature fell to about 109 K, when they
could be locked into deuterium; this left one neutron for every seven protons.
The excess protons, which became the nuclei of hydrogen atoms, accounted for
roughly 75% of the total mass.

Deuterium easily combines with other particles to form 4He, a helium nucleus
with two protons and two neutrons. Essentially all the neutrons, and so about 25%
of the total mass of neutrons and protons, ended up in 4He. Only a little deuterium
and some 3He (with two protons and one neutron) remained. Traces of boron and
lithium were also formed, but the Universe expanded too rapidly to build up heavier
nuclei. The amount of helium produced depends on the half-life of the neutron,
but hardly at all on the density of matter at that time; almost every neutron could
find a proton and form deuterium, and almost every deuterium nucleus reacted
to make helium. The observed abundance of helium is between 22% and 24%,
in rough accord with this calculation. If, for example, we had found the Sun to
contain 10% of helium by weight, that observation would have been very hard to
explain in the Big Bang cosmology.

Problem 1.18 Deuterium can become abundant only when kBT ∼< 70 keV. Use

Equation 1.38 to show that this temperature is reached at t ≈ 365 s, by which

time about 35% of the free neutrons have decayed. The mean lifetime τn is hard

to measure; until recently, laboratory values varied from 700 s to 1400 s. If the

mean lifetime had been 750 s, show that the predicted fraction of helium would

be about 2% lower, whereas if it had been 1100 s, we would expect to find close

to 2% more helium.

By contrast, the small fraction of deuterium left over is very much dependent
on the density of neutrons and protons, collectively known as baryons. If there had
been very little matter, many of the deuterium nuclei would have missed the chance
to collide with other particles, before reactions ceased as the Universe became too
dilute. If the present number of baryons had been as low as nB = 10−8 cm−3, then
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as many as 1% of the deuterium nuclei would remain. If the density were now as
high as nB = 2 × 10−6 cm−3, we would expect to find less than one deuterium
nucleus for each 109 atoms of hydrogen.

Deuterium also burns readily to helium inside stars. So to measure how much
was made in the Big Bang, we must look for old metal-poor stars that have not
burned the deuterium in their outer layers, or at intergalactic clouds of gas that
have not yet formed many stars. Our best measurements show one deuterium
nucleus for every 20 000 or 30 000 atoms of hydrogen. Along with measurements
of 3He and lithium, these show that the combined density of neutrons and protons
today is

nB = (2.5 ± 0.5) × 10−7 cm−3, or ρB = (5−7) × 109M� Mpc−3. (1.39)

This is much less than the critical density of Equation 1.30: the ratio is

0.02h−2 ∼< ρB/ρcrit ∼< 0.025h−2, (1.40)

where h is Hubble’s constant H0 in units of 100 km s−1 Mpc−1. Observations seem
to require h ∼> 0.6, so neutrons and protons cannot make up more than about 7%
of ρcrit. Since h ∼< 0.75, baryons account for no less than 3% of the critical density.
In the benchmark model, ρB = 0.045ρcrit. We will find in Section 5.3 that this is
more mass than we can see as the gas and luminous stars of galaxies; at least part
of their ‘dark stuff’ must consist of normal matter.

Problem 1.19 The Universe must contain at least as much matter as that of

the neutrons and protons: use Equations 1.39 and 1.25 to show that the average

mass-to-light ratio must exceed 50h−1M�/L�.

1.5.3 Recombination: light and matter uncoupled

The next few hundred thousand years of the Universe’s history were rather bor-
ing. Its density had dropped too low for nuclear reactions, and the background
radiation was energetic enough to ionize hydrogen and disrupt other atoms. The
cosmos was filled with glowing gas, like the inside of a fluorescent light. Pho-
tons could not pass freely through this hot plasma, but they were scattered by
free electrons. Matter would not collapse under its own gravity to form stars or
other dense objects, because the pressure of the radiation trapped inside was too
high.

The density of radiation decreases with the scale length R(t) as T 4 ∝ R−4(t).
So after some time it must drop below that of matter, which falls only as R−3(t).
In the benchmark model, at this time of matter–radiation equality radiation had



1.5 The pregalactic era: a brief history of matter 55

temperature

time

redshift

BIG BANG ?

antiprotons
annihilate neutrinos

decouple

helium
made

hydrogen
recombines distant

galaxies

Fig. 1.18. Important moments in the history of the Universe.

cooled to T ≈ 10 000 K. As measured by R(t), the Universe was then about
1/3600 of its present size. Later on, photons of the blackbody radiation lacked
the energy to remove the electron from a hydrogen atom. During its subsequent
expansion, hydrogen atoms recombined, the gas becoming neutral and transparent
as it is today. By the time that R(t)/R(t0) ≈ 1/1100, photons of the background
radiation were able to escape from the matter. Their outward pressure no longer
prevented the collapse of matter, into the galaxies and clusters that we now observe.
The most distant galaxies so far observed are at redshifts z ∼> 6; when their light left
them, the Universe was less than 1 Gyr old. Figure 1.18 presents a brief summary
of cosmic history up to that time.

The radiation coming to us from the period of recombination has been red-
shifted according to Equation 1.34; it now has a much longer wavelength. Its
temperature T = 2.728 ± 0.002 K, so it is known as the cosmic microwave
background. There are about 420 of these photons in each cm3 of space, so,
according to Equation 1.40, we have (2–4) × 109 photons for every neutron
or proton. The energy density of the background radiation is about equal to
that of starlight in the outer reaches of the Milky Way. It is given by aBT 4 =
4.2 × 10−14 J m−3; so from each steradian of the sky we receive caBT 4/(4π ) ≈
10−6 W m−2.

Problem 1.20 Using Equation 1.25, show that, even if we ignore the energy

loss that goes along with the redshift, it would take more than 100 Gyr for all

the galaxies, at their present luminosity, to emit as much energy as is in the

microwave background today.

Figure 1.19 shows the extragalactic background radiation, estimated by
observing from our position in the Milky Way and attempting to subtract local
contributions. The energy of the cosmic background is far larger than that in
the infrared, visible, and ultraviolet spectral regions. It would be very difficult to
explain such enormous energy as coming from any other source than the Big Bang.
Radiation from the submillimeter region through to the ultraviolet at ∼<0.1 keV
comes from stars and active galactic nuclei, either directly or after re-radiation
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Fig. 1.19. Extragalactic background radiation: the vertical logarithmic scale shows energy

density per decade in frequency or wavelength. Arrows show upper and lower limits.

The curve peaking at λ ∼ 1 mm is the cosmic microwave background; the far-infrared

background is the light of stars and active galactic nuclei, re-radiated by dust – T. Ressell

and D. Scott.

by heated dust. The high-energy ‘tail’ in X-rays and γ-rays is mainly from active
nuclei. Since photons lose energy in an expanding Universe, almost all this radia-
tion, aside from that in the microwave background, must have been emitted over
the past ∼10 Gyr, at times corresponding to redshifts z ∼< 3.

The microwave background is now very close to a blackbody spectrum; it is
also extremely uniform. Between different parts of the sky, we see small irreg-
ularities in its temperature that are just a few parts in 100 000 – with only one
exception. In the direction l = 265◦, b = 48◦ the peak wavelength is shorter than
average, and the temperature higher, by a little more than 0.1%. In the opposite
direction, the temperature is lower by the same amount. This difference reflects
the Sun’s motion through the background radiation. If T0 is the temperature mea-
sured by an observer at rest relative to the backgound radiation, then an observer
moving with relative speed V � c would measure a temperature T (θ ) at an angle
θ to the direction of motion, given by

T (θ ) ≈ T0(1 + V cos θ/c). (1.41)
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For the Sun, V = 370 km s−1. Taking into account the Sun’s orbit about the
Milky Way, and the Milky Way’s motion relative to nearby galaxies, we find
that our Local Group has a peculiar motion of Vpec ≈ 600 km s−1 relative to the
background radiation and to the Universe as a whole. The Local Group’s motion
is unexpectedly and troublingly large: we discuss it further in Chapter 8.
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Mapping our Milky Way

Our position in the Milky Way’s disk gives us a detailed and close-up view
of a fairly typical large spiral galaxy. We begin this chapter by looking at the
Sun’s immediate vicinity. Examining the closest stars gives us a sample of
the disk stuff, and we can ask how many stars of each luminosity, mass, com-
position, and age are present. Combining this information with theories of stellar
evolution, we investigate the star-forming past of the solar neighborhood.

In Section 2.2 we venture further afield. Measuring stellar distances allows
us to map out the Milky Way’s structure: the thin and thick disks, the metal-
poor halo, and the central bulge. Star clusters, where all the members were born
together, with the same initial composition, are especially useful; comparing their
color–magnitude diagrams with the predictions of stellar models yields the age
and composition jointly with the cluster’s distance. We find that the youngest stars
belong to the disk, and are relatively rich in elements heavier than helium, whereas
the stars of the metal-poor halo are extremely old.

Most of the Milky Way’s stars and almost all of its gas lie in the disk,
orbiting the center like the planets around the Sun. Section 2.3 deals with the
Galaxy’s rotation: how we measure it, and how we use it to find the distribu-
tion of gas within the disk. By contrast with motions in the solar system, the
rotational speed of material in the furthest part of the disk is nearly the same
as that for gas at the Sun’s position. To prevent this distant gas from flying off
into intergalactic space, a large amount of mass must be concealed in the outer
reaches of the Milky Way, in a form that emits very little light, or none at all: the
dark matter.

Measured by mass, the Milky Way has only a tenth as much gas as stars;
but the gas has profound effects. The densest gas clouds collapse to make new
stars; and at the end of its life a star pollutes the gas with dust and heavy elements
produced by its nuclear burning. Section 2.4 discusses the complex processes that
heat, ionize, and push around the Milky Way’s gas, and how these affect the pace
at which stars are born.

58
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2.1 The solar neighborhood

In this section, we consider the closest stars, the Sun’s immediate neighbors. We
ask what kinds of stars are present, and in what numbers? How many are on the
main sequence, and how many are in the later stages of their lives? How many
were formed recently, and how many are very old? To answer these questions, we
must first find out how far away the stars are.

The distances of astronomical objects are in general extremely difficult to
measure, but they are essential for our understanding of their nature. The lumi-
nosities of stars and galaxies are always derived by using the inverse-square law
(Equation 1.1). We usually find linear dimensions from a measured angular size
on the sky and an estimated distance, and our calculations of masses usually
depend on those size estimates. Many astronomical disputes come down to an
argument over how far away something is; so astronomers have had good rea-
son to develop a wide range of inventive and sometimes bizarre techniques for
measuring distances.

Triangulation, or trigonometric parallax, allows us to measure distances only
for the nearest stars. We then compare more distant stars with similar stars close
at hand, assuming that stars with similar spectra have the same luminosity and
finding the relative distance from their relative apparent brightness. Those distant
stars in turn are used to estimate distances to the nearest galaxies, those close
enough that we can pick out individual stars. This cosmic distance ladder is then
extended to more distant galaxies by comparing them with nearby systems. The
relative distances at each stage of comparison are often quite well determined –
in astronomy, this means to within a few percent – but the accumulation of errors
at each stage can leave extragalactic distances uncertain by as much as a factor of
two. Occasionally we are lucky enough to find a way of circumventing some of the
lower rungs of the ladder, to measure directly the distance to an object beyond the
reach of trigonometric parallax. These opportunities are much prized; we discuss
some of them in Section 2.2 below.

In general, the relative distances of two stars or galaxies can be found far
more accurately than the absolute distance (in meters, or light-years) to either
one. The parsec was adopted in 1922 by the International Astronomical Union
to specify stellar distances in units of the Earth’s mean distance from the Sun,
the astronomical unit. With interplanetary spacecraft, and measurements of the
reflection times for light or radio waves bounced from the surfaces of planets, we
now know the scale of the solar system to within one part in a million; we retain
the parsec for historical reasons. Within the Galaxy, distances are sometimes given
in units of R0, the Galactocentric radius of the Sun.

2.1.1 Trigonometric parallax

Within a few hundred parsecs, we can use trigonometric parallax to find stellar
distances. As the Earth orbits the Sun, our viewing position changes, and closer
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Fig. 2.1. Trigonometric parallax: in the course of a year, the star appears to move in an

ellipse with a major axis of 2p.

stars appear to move relative to more distant objects. In the course of a year, a
nearby star traces out an elliptical path against the background of distant stars
(Figure 2.1). The angle p is the parallax; it is always small, so, for a star at
distance d, we have

1 AU

d
= tan p ≈ p (in radians). (2.1)

One astronomical unit (1 AU) is the Earth’s mean distance from the Sun, about 150
million kilometers or 8.3 light-minutes. The parsec (pc) is defined as the distance
d at which a star has a parallax of 1′′, one second of arc: 1′′ = 1/60 × 1/60
of 1◦. One radian is roughly 206 265′′, so a parsec is 206 265 AU or about 3.26
light-years. The stars are so distant that none has a parallax even as large as 1′′.
Proxima Centauri, the nearest star, has p = 0.8′′, so its distance is 1.3 pc or 4.3
light-years.

The European Space Agency’s Hipparcos satellite (1989–93) repeatedly mea-
sured the apparent motions across the sky of 120 000 bright stars, to an accuracy of
a milli-arcsecond. The Hipparcos database gives us distances, and hence accurate
luminosities, for the stars within a few hundred parsecs, as well as their motions
through space, and orbits for the binary or multiple stars. For this fabulous sample
of stars, the accurate distances allow us to determine many of the basic stellar
parameters that we discussed in Section 1.1.

Problem 2.1 To determine a star’s trigonometric parallax, we need at least three

measurements of its position relative to much more distant objects: why? (What

else could change its position on the sky?)

Often, we express our distance as a distance modulus, which is defined as
the difference between the apparent magnitude m and the absolute magnitude M
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Fig. 2.2. A color–magnitude diagram and approximate spectral types for 15 630 stars

within 100 pc of the Sun, for which Hipparcos measured the trigonometric parallax to

<10%, and the color B − V to within 0.025 magnitudes – M. Perryman.

given by Equation 1.15. We write it as

(m − M)0 ≡ 5 log10

(
d

10 pc

)
= 5 log10

(
0.1′′

p

)
, (2.2)

where the subscript 0 indicates that the apparent magnitude has been adjusted
to compensate for dimming by interstellar dust, which absorbs and scatters the
starlight.

Problem 2.2 Show that an error or uncertainty of 0.1 magnitudes in the distance

modulus is roughly equivalent to a 5% error in d.

If space were transparent, with no dust, it would be easy to find a star’s absolute
magnitude by combining a measurement of its parallax with the observed apparent
magnitude. For nearby stars, the effect of dust is small, and we can generally
neglect it. Figure 2.2 shows the B−V color for all the stars measured by Hipparcos
within 100 pc of the Sun, and the absolute V -magnitude MV derived by using
Equation 2.2. This is a color–magnitude or Hertzsprung–Russell diagram; we can



62 Mapping our Milky Way

compare it with Figure 1.4, to identify the portions corresponding to the various
stages of stellar life.

We can easily pick out the main sequence for stars fainter than MV ≈ −4;
brighter stars are so rare that none falls within this sphere. The main sequence
is quite broad. For stars more luminous than the Sun, this is mainly because the
stars are of different ages. For dimmer stars, variations in the metal abundance
are more important. The very bright stars at the right are the red giants, which
have used up the hydrogen in their central cores. Many stars lie near MV ≈ 1 and
B−V ≈1; these are red clump stars, burning helium in their cores, and hydrogen in
a surrounding shell. Comparing the color of the red clump with the predictions of
stellar models shows that the fraction of heavy elements in these stars lies between
the solar value and about a third of that level: in the language of Section 1.1, this
means −0.5 ∼< [Fe/H] ∼< 0.

Few of the stars brighter than MV ≈ 2 lie in the triangle between the main
sequence and the red stars with B − V ∼> 0.9, corresponding to temperatures
Teff ∼< 5500 K. This nearly empty region is called the Hertzsprung gap. Once
their main-sequence life is over, stars more massive than about 2M� swell very
rapidly to become luminous red stars; they spend very little time at intermediate
temperatures.

A few stars fall about a magnitude below the main sequence; most of these
are metal-poor subdwarfs, which are bluer than stars of the same mass with solar
composition. Four dim white dwarfs are seen at the lower left. Very dim stars are
hard to find; even within 100 pc, it is likely that more than half of the white dwarfs
and the dimmest main-sequence stars have so far escaped our searches.

2.1.2 Luminosity functions and mass functions

Most of the stars in Figure 2.2 are more luminous than absolute magnitude MV ≈
8; but the less luminous stars are in fact more common. The luminosity function
�(MV ) describes how many stars of each luminosity are present in each pc3:
�(MV )�MV is the density of stars with absolute V -magnitude between MV and
MV + �MV . To compute �(MV ), we must know the volume of space within
which we have observed stars of each luminosity. It is common to select for
observation those stars or galaxies that appear brighter than some fixed apparent
magnitude. The Hipparcos observing list included almost all the stars with mV ∼<
8, as well as some that were fainter. A star like the Sun with MV = 4.83 might not
have been included if its distance modulus had been larger than 8 − 4.83 = 3.17,
corresponding to d ≈ 43 pc. The solid dots in Figure 2.3 show an approximate
luminosity function, in one-magnitude bins, calculated by using the formula

�(x) = number of stars with MV − 1/2 < x < MV + 1/2

volume Vmax(MV ) over which these could be seen
. (2.3)
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Fig. 2.3. The histogram shows the luminosity function �(MV ) for nearby stars: solid

dots from stars of Figure 2.2, open circles from Reid et al. 2002 AJ 124, 2721. Lines

with triangles show LV �(MV ), light from stars in each magnitude bin; the dotted curve

is for main-sequence stars alone, the solid curve for the total. The dashed curve gives

M�MS(MV ), the mass in main-sequence stars. Units are L� or M� per 10 pc cube;

vertical bars show uncertainty, based on numbers of stars in each bin.

Problem 2.3 Show that the volume in Equation 2.3 is Vmax(M) ≈ 4πd3
max/3,

where dmax is the smaller of 100 pc and 10 pc × 100.2(8−M). Using Table 1.4 for

MV , find dmax for an M4 dwarf. Why are you surprised to see such faint stars in

Figure 2.2?

It is quite difficult to determine the faint end of the luminosity function, since
dim stars are hard to find. The bright end of �(MV ) also presents problems;
because luminous stars are rare, we will not find enough of them unless we survey
a volume larger than our 100 pc sphere. But stars are not spread out uniformly in
space. For example, their density falls as we go further out of the Milky Way’s
disk in the direction of the Galactic poles. So, if we look far afield for luminous
stars, the average density in our search region is lower than it is near the Sun’s
position. Finally, many stars are in binary systems so close that they are mistaken
for a brighter single star. Despite these uncertainties, it is clear that dim stars are
overwhelmingly more numerous than bright ones.

Figure 2.3 also shows how much of the V -band light is emitted by stars
of each luminosity: stars in the range from MV to MV + �MV contribute an
amount LV �(MV )�MV of the total. Almost all the light comes from the brighter
stars, mainly A and F main-sequence stars and K giants. Rare luminous stars
such as main-sequence O and B stars, and bright supergiants, contribute more
light than all the stars dimmer than the Sun; so the total luminosity of a galaxy
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depends strongly on whether it has recently been active in making these massive
short-lived stars. If we had measured our luminosity function at ultraviolet wave-
lengths rather than in the V band at 5500 Å, almost all the light would be from
O and B stars. The near-infrared light, at a few microns, comes mainly from the
luminous red stars.

We can use the tables of Section 1.1 to find the bolometric luminosity Lbol

from the V -band luminosity LV , and then use Table 1.1, or the mass–luminosity
relation of Equation 1.6, to calculate the average mass of a main-sequence star at
each luminosity. In Figure 2.3, the dashed curve shows the mass in main-sequence
stars with absolute magnitude between MV and MV + �MV . The red giants make
a tiny contribution, since they are even less massive than main-sequence stars of
the same luminosity. Almost all the mass is in K and M dwarfs, stars so faint that
we cannot see them in galaxies beyond the Milky Way and its satellites. The stars
that emit most of the light account for hardly any of the mass.

The luminosity function of Figure 2.3 corresponds to about 65 stars in each
1000 pc3, with a luminosity equivalent to 40L� in the V band. About 75% of the
light comes from main-sequence stars, which have mass totalling about 30M�.
The averaged mass-to-light ratio M/L gives a measure of the proportion of mas-
sive luminous stars to dim stars. We find M/LV ≈ 1 for the main-sequence stars
alone, and M/LV ≈ 0.74 for all the stars, when we measure M in solar masses
and LV as a fraction of the Sun’s V -band luminosity. Even including white dwarfs
and the interstellar gas, the mass-to-light ratio M/LV ∼< 2 locally. In Section 2.3,
we will see that the ratio of mass to light for the Milky Way as a whole is much
larger than that for this sample of stars near the Sun. The outer Galaxy contains
unseen mass, in a form other than the stars and interstellar gas found near the Sun.

Using models of stellar evolution, we can work backward from the present-day
stellar population to find how many stars were born with each mass. We define the
initial luminosity function, �(MV ), such that �(MV )�MV is the number of stars
formed that had absolute magnitude between MV and MV +�MV when they were
on the main sequence. Stars less massive than the Sun have main-sequence lives of
10 Gyr or longer. Counting the numbers of faint white dwarfs indicates that stars
have been forming in the local disk only for a time τgal ≈ 8–10 Gyr, so the first-
born K dwarfs have evolved very little. For these low-mass stars, �(MV ) is almost
the same as the present-day luminosity function �(MV ). But O, B, and A stars
burn out rapidly, and only those most recently born are still on the main sequence.

We can calculate the initial luminosity function if we assume that the disk
has been forming stars at a uniform rate throughout its history. If �MS(MV ) is the
present-day luminosity function for main-sequence stars alone, and a star remains
on the main sequence with absolute magnitude MV for a time τMS(MV ), then

�(MV ) = �MS(MV ) for τMS(MV ) ≥ τgal,

= �MS(MV ) × τgal

τMS(MV )
when τMS(MV ) < τgal. (2.4)
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Fig. 2.4. Circles show the luminosity function �MS(MV ) for main-sequence stars as in

Figure 2.3. The histogram gives the initial luminosity function �(MV ), assuming that

stars were born at a constant rate over the past 10 Gyr. Both functions have a minimum,

the Wielen dip, at MV ≈ 8. This V -band luminosity corresponds to only a tiny range of

stellar mass M. The mass function ξ (M) probably has no dip or inflection at this mass.

Figure 2.4 shows a crude estimate for �(MV ) calculated according to this formula,
assuming τgal = 10 Gyr. Massive stars are formed more rarely than dim low-mass
stars, but the disproportion is not so great as in the present-day luminosity function
�(MV ).

Problem 2.4 Suppose that stars are born at a constant rate. Assuming τgal =
10 Gyr and using Table 1.1 for stellar lifetimes, show that only 11% of all the

2M� stars ever made are still on the main sequence today. What fraction of all

the 3M� stars are still there? What fraction of all the 0.5M� stars? Now suppose

that star formation slows with time t as e−t/t
 , with t
 = 3 Gyr. Show that now

only 1.6% of all 2M� stars survive, and merely 0.46% of stars of 3M�.

For these stars, explain why �(MV ) is larger for a given observed �(MV )

when starbirth declines with time (the 
 and • points in Figure 2.4 must be further

apart) than if it stays constant. How much larger must �(MV )/�(MV ) become

for stars of 2M�? How would a gradual slowdown change the inferred �(MV )

for stars longer-lived than the Sun?

For an accelerating rate of starbirth t
 < 0, in what sense would this affect

our estimates of the initial luminosity function �(MV )?

(�(MV ) is a fairly smooth function, and we have no reason to expect that

�(MV ) will have a kink or change in slope near the Sun’s luminosity. Together,

these imply that star formation locally has not slowed or speeded up by more

than a factor of two over the past few gigayears.)
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E. Moreau.

We can convert the initial luminosity function �(M) into an initial mass
function: ξ (M)�M is the number of stars that have been born with masses
between M and M + �M. Near the Sun, a good approximation for stars more
massive than ∼0.5M� is

ξ (M)�M = ξ0(M/M�)−2.35(�M/M�), (2.5)

where the constant ξ0 sets the local stellar density; this is called the Salpeter initial
mass function. Figure 2.5 shows the observed numbers of stars at each mass in the
Pleiades cluster, shown in Figure 2.11 below. This cluster is only 100 Myr old, so
for masses below 5M� the initial mass function is identical to what we observe
at the present day. The Salpeter function overestimates the number of stars with
masses below 0.5M�, but otherwise it gives a good description. Observations in
very different parts of our Galaxy and the nearby Magellanic Clouds show that
ξ (M) is surprisingly uniform, from dense stellar clusters to diffuse associations
of stars. If we understood better how stars form, we might be able to predict the
initial mass function.

Problem 2.5 Suppose that Equation 2.5 describes stars formed within a 100 pc

cube with masses between M� and an upper limit Mu � M�. Write down and

solve the integrals that give (a) the number of stars, (b) their total mass, and (c)

the total luminosity, assuming that Equation 1.6 holds with α ≈ 3.5. Show that

the number and mass of stars depend mainly on the mass M� of the smallest

stars, while the luminosity depends on Mu, the mass of the largest stars.
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Taking M� = 0.3M� and Mu � 5M�, show that only 2.2% of all stars

have M > 5M�, while these account for 37% of the mass. The Pleiades cluster

has M ≈ 800M�: show that it has about 700 stars. Taking Mu = 10M� (see

Figure 2.5), show that the few stars with M > 5M� should contribute over 80%

of the light. Why do we see so few stars in Figure 2.11 compared with the number

in Figure 2.13?

2.2 The stars in the Galaxy

Most stars do not have measurable parallaxes, which tells us that the Galaxy is
much larger than 500 pc across. To estimate distances of stars further away, we
rely on the cosmic distance ladder; we measure their distances relative to stars
that are close enough to show parallaxes. Occasionally we can use information
from velocities to obtain distances without this intermediate step. In this section,
we first explore some of these opportunities, then discuss the distribution of stars
and star clusters in the Milky Way, which reveals its basic structure. Our position
in the Galactic disk gives us a unique and detailed three-dimensional view of one
spiral galaxy.

2.2.1 Distances from motions

Radial velocities Vr, toward or away from an observer, are measured using the
Doppler shift of emission or absorption lines in the spectra of stars or gas (Equa-
tion 1.19). Tangential velocities Vt are found from the angular rate at which a star
appears to move across the sky: this proper motion μ is so small that it is often
measured in milli-arcseconds per year. The tangential velocity is the product of
distance and proper motion:

Vt = μ (radians/time) × d, or μ (0.001′′/year) = Vt ( km s−1)

4.74 × d (kpc)
. (2.6)

If we know how Vr and Vt are related for a particular object, then, by measuring
Vr and the proper motion, we can find its distance.

Our current best estimate of the Milky Way’s size comes from the proper
motions of stars around a very massive black hole that is believed to mark the
exact center. The stellar orbits are shown in Figure 2.17. The problem below shows
how observations of their position and velocity yield not only the massMBH of the
black hole, but also its distance: the Sun is 7.6 ± 0.3 kpc from the Galactic center.

Problem 2.6 Using an 8-meter telescope to observe the Galactic center regularly

over two decades, you notice that one star moves back and forth across the sky in

a straight line: its orbit is edge-on. You take spectra to measure its radial velocity
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Fig. 2.6. Left, orbits of two stars around a point mass at the origin. Filled dots are at

equal time intervals P/10, open dots at ±0.01P from pericenter. Right, velocity in the

horizontal direction. A distant observer looking along the x-axis sees the radial velocity

vx repeat exactly when the orbit is symmetric about the plane x = 0 of the sky (solid line);

this does not happen if the orbit is misaligned (dotted line).

Vr, and find that this repeats exactly each time the star is at the same point in the

sky. You are in luck: the furthest points of the star’s motion on the sky are also

when it is closest to the black hole (pericenter) and furthest from it (apocenter),

as in Figure 2.6. You measure the separation s of these two points on the sky,

and the orbital period P . Assuming that the black hole provides almost all the

gravitational force, follow these steps to find both the mass MBH of the black

hole and its distance d from us.

From the definition below Equation 2.1, show that the orbit’s semi-major

axis a = 0.5 AU×(s/1′′)(d/1 pc). You observe s = 0.248′′: what would a be at a

distance of 8 kpc? At the two extremes of its motion across the sky, the star’s radial

velocity is Va = 473 km s−1 and Vp = 7 326 km s−1: at which point is it closest

to the black hole? The orbit’s eccentricity is e; explain why the conservation of

angular momentum requires that Vp(1 − e) = Va(1 + e), and show that, here,

e = 0.876.

At distance r from the black hole moving at speed V , the star has kinetic

energy KE = m
V 2/2 and potential energy PE = −Gm
MBH/r . Since the

total energy KE + PE does not change during the orbit, show that

V 2
p − V 2

a = GMBH

a
× 4e

1 − e2
. (2.7)

Measuring v in km s−1,MBH inM�, and a in parsecs, G = 4.3 ×10−3. Convert

a to AU to show thatMBH/M� = 3822(a/1 AU). Because m
 � MBH, we can

use Kepler’s third law: P2 (in years) = a3 (in AU)/MBH (in M�) . You measure

P = 15.24 yr; use Equation 2.7 to eliminate MBH/a and show that a = 942 AU

and MBH = 3.6 × 106M�. What is the distance to the Galactic center?



2.2 The stars in the Galaxy 69

i

R

A

B

Fig. 2.7. The ‘light echo’ from a gas ring around supernova 1987a is seen by an observer

to the right of the figure.

In February 1987, a supernova was seen to explode in the Large Magellanic
Cloud (LMC). Shortly afterward, narrow emission lines of highly ionized carbon,
nitrogen and oxygen appeared in the spectrum; the lines were so narrow that they
must have come from cool gas, surrounding the star. When the supernova faded,
an ellipse of glowing gas was seen around it. This is probably a circular ring of
material, thrown off in the plane of the star’s equator during the red-giant phase,
which is tipped so as to appear elliptical (Figure 2.7).

The narrow emission lines started to become bright only about 85 days after the
supernova had exploded. So it must have taken 85 days longer for light to reach the
nearer edge of the ring and to ionize the gas, and then for the gas emission to reach
us, than for light to come to us directly from the explosion. From this, we can find
the radius of the ring in light-days; see Problem 2.7 below. Together with its mea-
sured size in arcseconds, this gives us a distance to the LMC between 50 kpc and
53 kpc. Information from two spacecraft observatories was used to make this mea-
surement: the gas emission lines were at ultraviolet wavelengths that cannot pene-
trate the Earth’s atmosphere, and the ring was so small that its image in a ground-
based telescope would have been too badly blurred by atmospheric turbulence.

Problem 2.7 The ring around supernova 1987a measures about 1.62′′ × 1.10′′

across on the sky; if its true shape is circular, show that the ring is inclined at

i ≈ 43◦ to face-on. If the ring radius is R, use Figure 2.7 to explain why light

travelling first to the point A and then to us is delayed by a time t− = R(1−sin i)/c

relative to light coming straight to us from the supernova. Thus we see a light

echo. If t+ is the time delay for light reaching us by way of point B, show that

R = c(t− + t+)/2. The measured values are t− = 83 days, t+ = 395 days: find the

radius R in light-days, and hence the distance d to the supernova. At its brightest,

the supernova had apparent magnitude mV ≈ 3; show that its luminosity was

LV ≈ 1.4 × 108L�. (Most Type II supernovae are even more luminous.)

2.2.2 Spectroscopic parallax: the vertical structure of the disk

As we discussed in Section 1.1, the width and depth of lines in a star’s spectrum
depend on its luminosity. We can use this fact as the basis of a technique for finding
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stellar distances. For example, a star with the spectrum of an F2 main-sequence
star is roughly as luminous as other F2 dwarfs with about the same chemical
composition. If we can measure a parallax for one of these, then Equation 2.1
tells us its distance, and hence its luminosity and that of all similar F2 stars. So if
we then measure our more distant star’s apparent brightness and can compensate
for the dimming caused by interstellar dust, Equation 1.1 will tell us its distance.
This method is called spectroscopic parallax because it should give the same
information as that we gain by measuring the trigonometric parallax: namely, the
star’s distance.

Spectroscopic parallax works well for some types of star and poorly for others.
The luminosities of main-sequence stars can often be found to within 10%, leading
to 5% uncertainties in their distance. But in K giants, the temperature in the
atmosphere is almost the same, no matter what the luminosity; the giant branch
is almost vertical in Figure 1.4. The best we can hope for is to determine the
luminosity to within 0.5 in the absolute magnitude, and hence the distance to 25%.

Taking high-quality spectra for many faint stars demands long hours of obser-
vation on large telescopes. A ‘poor man’s variant’ is to estimate the spectral type
of a star from its color, and to rely on other indications to establish whether
it is a dwarf or a giant. This method of photometric parallax can be reason-
ably successful if the measured color changes substantially with the luminosity
of the observed stars, and if we can correct for the effects of interstellar dust.
Results are best when we observe a cluster of stars; with measurements of many
stars, we can estimate both the cluster’s distance and the reddening caused by
dust.

When we look out perpendicular to the Galactic disk and select the sharp
stellar images from among the fuzzy shapes of distant galaxies, almost all the red
stars fainter than apparent magnitude mV ≈ 14 are K and M dwarfs. (At a distance
of 1 kpc, what would be the apparent magnitude of a K or M giant with MV ≈ 0?)
There is little dust in this direction to dim and redden the stars, so the V − I color
should be a good indication of the spectral type. The stellar densities in Figure 2.8
were compiled using photometric distances determined by measuring the V − I
colors of 12 500 stars with apparent magnitude mV < 19 in the direction of the
south Galactic pole. The late G and early K dwarfs are bluer than red giants, and
there are very few giant stars of the same color to mislead us.

Using the Galaxy-centred spherical polar coordinates R, φ, z of Figure 1.10,
we often approximate the density n(R, z, S) of stars of a particular type S by a
double-exponential form

n(R, z, S) = n(0, 0, S)exp[−R/h R(S)]exp[−|z|/hz(S)], (2.8)

where h R is called the scale length of the disk and hz is the scale height. Figure 2.8
shows that, near the midplane, hz ≈ 300–350 pc for K dwarfs, while for more
massive and shorter-lived stars, such as the A dwarfs, it is smaller, hz ∼< 200 pc.
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Fig. 2.8. Looking toward the south Galactic pole, filled circles show the density of stars

with 5< MV <6; these are late G and early K dwarfs. Sloping dashed lines show n(z) ∝
exp(−z/300 pc) (thin disk) and n(z) ∝ exp(−z/1 kpc) (thick disk); the solid curve is their

sum. At z ∼> 2 kpc, most stars belong to the metal-poor halo. A dwarfs (star symbols) lie

in a very thin layer – N. Reid and J. Knude.

Gas in the disk, and the dust that is mixed with it, is confined to an even thinner
layer. Near the Sun, hz < 150 pc for most of the neutral hydrogen gas, and no
more than 60–70 pc for the cold clouds of molecular gas from which stars are
born. Table 2.1 lists values of the scale height hz for various types of stars and
for gas; these are only approximate, since the density does not exactly follow
Equation 2.8. The scale length is probably in the range 2.5 kpc ∼< h R ∼< 4.5 kpc.

Problem 2.8 By integrating Equation 2.8, show that at radius R the number of

stars per unit area (the surface density) of type S is �(R, S) = 2n(0, 0, S)hz(S)

exp[−R/h R(S)]. If each has luminosity L(S), the surface brightness I (R, S) =
L(S)�(R, S). Assuming that h R and hz are the same for all types of star, show

that the disk’s total luminosity L D = 2π I (R = 0)h2
R.

For the Milky Way, taking L D = 1.5 × 1010L� in the V band and h R =
4 kpc, show that the disk’s surface brightness at the Sun’s position 8 kpc from the

center is ∼20L� pc−2. We will see in Section 3.4 that the mass density in the disk

is about (40–60)M� pc−2, so we have M/LV ∼ 2−3. Why is this larger than

M/LV for stars within 100 pc of the Sun? (Which stars are found only close to

the midplane?)

Assuming that the solar neighborhood is a typical place, we can estimate how
fast the Milky Way’s disk is currently making stars. Taking M/LV ≈ 2, the
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Table 2.1 Scale heights and velocities of gas and stars in the disk and halo

hz or σx = σR σy = σφ σz 〈vy〉 Fraction of
Galactic component shape (km s−1) (km s−1) (km s−1) (km s−1) local stars

HI gas near the Sun 130 pc ≈5 ≈7 Tiny
Local CO, H2 gas 65 pc 4 Tiny

Thin disk: Z > Z�/4 (Figure 2.9) 90%
τ < 3 Gyr ≈280 pc 27 17 13 −10
3 < τ < 6 Gyr ≈300 pc 32 23 19 −12
6 < τ < 10 Gyr ≈350 pc 42 24 21 −19
τ > 10 Gyr 45 28 23 −30

Thick disk 0.75–1 kpc 5%–15%
τ > 7 Gyr, Z < Z�/4 (Figure 2.9) 68 40 32 −32
0.2 ∼< Z/Z� ∼< 0.6 63 39 39 −51

Halo stars near Sun b/a ≈ 0.5–0.8 ∼0.1%
Z ∼< Z�/50 140 105 95 −190

Halo at R ∼ 25 kpc Round 100 100 100 −215

Note: gas velocities are measured looking up out of the disk (σz of HI), or at the tangent point (σφ for
HI and CO); velocities for thin-disk stars refer to Figure 2.9. For thick disk and halo, abundance Z ,
shape, and velocities refer to particular samples of stars. Velocity 〈vy〉 is in the direction of Galactic
rotation, relative to the local standard of rest, a circular orbit at the Sun’s radius R0, assuming
vy,� = 5.2 km s−1.

disk’s luminosity LV ∼ 1.5 × 1010L� corresponds to 3 × 1010M� in stars. If
stars are produced with the same initial mass function that we measure locally,
roughly half of their material is returned to the interstellar gas as they age. So,
to build the disk over 10 Gyr, the Milky Way must produce (3−5)M� of new
stars each year. We will see in Section 2.4 that there is (5−10) × 109M� of
cool gas in the disk – so this rate of starbirth can be sustained for at least a few
gigayears.

Even if we cannot measure enough stars to find their distribution in space, we
can still use the volume Vmax of Equation 2.3 to test whether they are uniformly
spread: this is the V/Vmax test. Suppose that we choose a sample of stars by some
well-determined rule (e.g., all brighter than a given apparent magnitude), and find
their distance d and absolute magnitude MV (equivalently, the luminosity LV ).
For each one, we find the largest distance dmax and volumeVmax to which we could
have included it in our sample, and compare that with V(<d), the volume closer
to us than the star. If the stars are equally common everywhere, then on average
V(<d) = Vmax/2: the star is equally likely to be in the nearer or the further half of
the volume Vmax. A smaller value for this average indicates that the stars become
less common further away from us.

Problem 2.9 Suppose that we look at G dwarfs brighter than mV = 15 within 5◦

of the north Galactic pole. Assuming that they all have MV = 5, to what height

zmax can we see them? Then Vmax = �z3
max/3, where �/(4π ) is the fraction of



2.2 The stars in the Galaxy 73

1 2 4 6 8 10 20

30

60

0

30

60

1 0

0

30

60

Fig. 2.9. For nearby main-sequence F and G stars, velocity vz − vz,� is perpendicular to

the Galactic plane, measured relative to the Sun. Open circles show stars with less than a

quarter of the Sun’s iron abundance. Older stars tend to move faster; the average velocity

is negative, showing that the Sun moves ‘upward’ at 7 km s−1 – B. Nordström et al. 2004

AAp 418, 98.

the sky covered by our 5◦ circle. If there are n(z) stars per cubic parsec, show

that the number N that we see is

N = �

∫ zmax

0
n(z)z2 dz, while

〈 V
Vmax

〉
= 1

N z3
max

∫ zmax

0
n(z)z2 · �z3 dz.

When n(z) is constant, show that V/Vmax = 0.5. Suppose that n(z) = 1 for

z < 800 pc and is zero further away: show that V/Vmax = 0.26. Historically, this

test was used to show that quasars were either more luminous or more common

in the past.

The older stars have larger scale heights because the Galactic disk is lumpy.
As they orbit, the stars feel the gravitational force of giant clouds of molecular
gas, which can have masses up to 107M�, and clumps of stars and gas in the
spiral arms. Over time, their orbits are disturbed by random pulls from these
concentrations of matter, which increase both their in-and-out motion in radius
and their vertical speed. Figure 2.9 shows velocities perpendicular to the Galactic
disk for nearby F stars; clearly, older stars are more likely to be fast moving.

In Table 2.1, we give the velocity dispersion σz for different groups of stars.
This quantity measures the spread of vertical velocities vz:

σ 2
z ≡ 〈

v2
z − 〈vz〉2〉, (2.9)

where the angle-brackets denote an average over all the stars. For the F stars of
Figure 2.9, we see that σz increases steadily with the age of the stars. Groups
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of stars that live for only a short time never attain a large velocity dispersion.
Main-sequence A stars live no more than a gigayear; for them, σz is only a few
kilometers per second, whereas the average for G dwarfs like our 5 Gyr-old Sun
is about 30 km s−1.

Table 2.1 also gives velocity dispersions in the disk plane: as shown in
Figure 1.10, σx = σR is measured radially outward from the Galactic center,
and σy = σφ refers to motion in the direction of the disk’s rotation. Older stars of
a given spectral type have both higher speeds in the vertical direction and larger
random motions in the plane of the disk than younger stars. The more rapid the
stars’ vertical motion, the more time they spend further from the midplane of
the disk; accordingly, the scale height hz is larger. Generally, σR ∼> σφ ∼> σz .
The velocity 〈vy〉 gives the asymmetric drift, the speed relative to a circular orbit
in the disk at the Sun’s position. It is systematically negative. Groups of stars with
larger velocity dispersion lag most strongly: we will see why in Section 3.3.

The stars within about 400 pc of the midplane belong mainly to the thin disk of
the Galaxy. At greater heights, Figure 2.8 shows that the density of K dwarfs does
not decrease as fast as predicted by Equation 2.8; these ‘extra’ stars belong to the
thick disk. The density of the thick disk is often described by Equation 2.8, with
hz ≈ 1 kpc, but the true vertical distribution is not very well known. (In fact, the
problem of finding scale heights for both the thin and the thick disk simultaneously
from a single measured run of n(z) is ill posed: small errors or random variations
in n(z) cause huge changes in the values of hz that we infer.)

Stars of the thick disk make up 10% of the total near the Sun at z ≈ 0, and the
number of thick-disk stars per square parsec is only 30% of that of stars in the thin
disk. Unlike the thin disk, which is still forming stars, the thick disk includes no
O, B, or A stars, so it must be older than about 3 Gyr. Because the luminous young
stars are absent, the thick disk will have a higher mass-to-light ratio M/L than the
thin disk. Thus its contribution to the luminosity will be somewhat below 30%.

Problem 2.10 Thin-disk stars make up 90% of the total in the midplane while

10% belong to the thick disk, but hz for the thin disk is roughly three times

smaller than for the thick disk. Starting from Equation 2.8, show that the sur-

face density of stars per square parsec follows �(R, thin disk) ≈ 3�(R, thick

disk).

Most stars in the thin disk have heavy-element abundances between the solar
level and about half-solar, though some are more metal-poor. The spectra of thick-
disk stars generally show a smaller fraction of heavy elements, with most having
Z�/10 ∼< Z ∼< Z�/2. When we see stars with ages and compositions char-
acteristic of the thick disk near the Sun, they have rapid vertical motions, with
σz ∼> 40 km s−1, so they have enough energy to travel a kiloparsec or more above
the midplane.



2.2 The stars in the Galaxy 75

Fig. 2.10. Short-lived bright stars with MV < 3, at distances 100 pc < d < 500 pc from

the Sun, taken from the Hipparcos catalogue. Most of these B and A stars lie in a plane

tilted by about 20◦ to the midplane of the disk.

Our present thick disk may be the remains of an early thin disk in the young
Milky Way. If a small satellite galaxy had collided with our Milky Way and merged
into it, the disk would have been shaken up, and the energy of the impact largely
transferred into increased random motions of the stars. The gas would have fallen
to the midplane of the disk; stars which later formed from it would make up the
thin disk that we observe today.

Disk stars are born in clusters and associations, where a gas cloud has come
together that is large enough to collapse under its own gravity. The Sun lies inside
a partial ring or disk of young stars known as Gould’s Belt. Within 500 pc, stars
younger than about 30 Myr are not found in the plane of the disk, but rather
in a layer tilted by 20◦ about a line roughly along the Sun’s orbit at l = 90◦,
with stars nearer to the Galactic center lying above the midplane (Figure 2.10).
Clouds of hydrogen gas form a similarly tilted ring, which is expanding outward at
1–2 km s−1 from a point about 150 pc away from us. By the time the Sun has made
a few orbits of the Galaxy, the stars of Gould’s Belt will have dispersed into the
disk. But measuring their velocities will show that they follow very similar orbits;
such a collection of stars is called a ‘moving group’.

Problem 2.11 Here you make a numerical model describing both the distribution

of stars and the way we observe them, to explore the Malmquist bias. If we observe

stars down to a fixed apparent brightness, we do not get a fair mixture of all the

stars in the sky, but we include more of the most luminous stars. This method

of ‘Monte Carlo simulation’ is frequently used when a mathematical analysis

would be too complex.

(a) Your model sky consists of G-type stars in regions A (70 pc < d < 90 pc),

B (90 pc < d < 110 pc), and C (110 pc < d < 130 pc). If the density is uniform,

and you have ten stars in region B, how many are in regions A and C (round to
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the nearest integer)? For simplicity, let all the stars in region A be at d = 80 pc,

those in B at 100 pc, and those in C at 120 pc.

G stars do not all have exactly the same luminosity; if the variation corre-

sponds to about 0.3 magnitudes, what fractional change in luminosity is this? For

each of your stars, roll a die, note the number N1 on the upturned face, and give

your star MV = MV,� + 0.2 × (N1 − 3.5). If you like to program, you can use

more stars, place them randomly in space, and choose the absolute magnitudes

from a Gaussian random distribution, with mean MV,� and variance 0.3.

(b) To ‘observe’ your sky, use a ‘telescope’ that can ‘see’ only stars brighter

than apparent magnitude mV = 10; these stars are your sample. How different is

their mean absolute magnitude from that for all the stars that you placed in your

sky?

What is the average distance of all the stars in your sample? Suppose you

assumed that your sample stars each had the average luminosity for all the stars

in your sky, and then calculated their distances from their apparent magnitudes:

what would you find for their average distance? In which sense would you make

an error?

(c) Metal-poor main-sequence stars are bluer for a given luminosity, so they

must be fainter at a particular spectral type; if the star’s fraction by weight of

heavy elements is Z , then �MV ≈ −0.87 log10(Z/Z�). For each of your stars,

roll the die again, note the number N2, set Z/Z� = (N2 + 0.5)/6 and change its

absolute magnitude from part (a) by �MV .

Observe them again with the same telescope. For your sample of stars,

calculate the average Z of those that fall in regions B and C. Are these more or

less metal-rich than all the stars that you placed in your sky?

(Errors in measurement have the same kind of effect as a spread in the

true luminosity of a class of stars or galaxies. You can make corrections if you

know what your measurement errors are; but most people are too optimistic and

underestimate their errors!)

2.2.3 Distances to star clusters

If we can observe not just a single star, but an entire cluster of stars that are all
at the same distance and that were formed together out of the same gaseous raw
material, we can make a much more accurate estimate of the distance. The Pleiades
cluster, shown in Figure 2.11, contains about 700 stars that appear brighter than
mV = 17.

The color–magnitude diagram of Figure 2.12 shows that most of the stars
are still on the main sequence, but those brighter than mV ≈ 5, that can be seen
without a telescope or binoculars, have left it to become blue giants. The main
sequence is much narrower than it is in Figure 2.2, because all the stars are the
same age and have the same abundance of heavy elements. Stars with the lowest
masses have not yet reached the main sequence, and some of them are still
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Fig. 2.11. The central region of the Pleiades open cluster; the brightest few stars easily

outshine the rest of the cluster – NOAO.
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Fig. 2.12. Measured apparent magnitude mV and color B − V for stars in the Pleiades

cluster; points show observed stars, and the solid line is an isochrone for stars 100 Myr

old. The dotted line shows the same isochrone without correction for dust reddening; the

dashed line is an isochrone for age 16 Myr – J.-C. Mermilliod.

partially hidden by dust. The gas and dust still present around this cluster shows that
no stars in it have yet exploded as supernovae; these would have swept it clean of
gas.

The solid line in Figure 2.12 is an isochrone, showing where stars of different
masses, but all of the same age, would appear if they were moved to the distance
modulus corresponding to the Pleiades: (m − M)0 = 5.6. It has been calculated
with the same stellar models as Figure 1.4, for stars with the same chemical



78 Mapping our Milky Way

Table 2.2 Some open clusters in the Milky Way

d MV LV Color rc σr Mass M/L
Cluster (pc) [Fe/H] (mag) (103 L�) (B − V ) (pc) (km s−1 ) Age (M�) (M�/L�)

NGC 3603 6500 − − 20 000 −0.3 0.5 − <5 Myr 7000 0.001
Pleiades (M45) 132 0.0 −4.3 4.5 −0.05 3 0.5 0.125 Gyr 800 0.2
NGC 6705 (M11) 1900 0.14 −6.0 22 0.18 1 − 0.25 Gyr − −
Hyades 46 0.14 −2.7 1.0 0.40 3 0.3 0.625 Gyr 460 0.4
NGC 7789 2000 −0.26 −5.7 17 0.98 5 0.8 1.5 Gyr − −
NGC 2682 (M67) 860 −0.05 −3.3 1.8 0.78 1 0.8 4 Gyr 2000 1
NGC 6791 4000 0.3 −3.5 2.1 1.02 3 − 8–10 Gyr − −

Note: d is distance from the Sun; [Fe/H] = log10(Z/Z�); MV and B − V are corrected for the obscuring
effect of dust; rc is the core radius measured for stars of roughly the Sun’s luminosity; σr is the dispersion
in the radial velocity Vr of stars in the cluster’s central region. Masses are found from the stellar luminosity
function, using infrared observations to find faint or obscured stars.

composition as the Sun, at an age of 100 Myr. Most of the stars lie very close
to the isochrone, but almost a third of the stars in the cluster’s central region are
in binary or multiple star systems that are so close that the stars appear as one
brighter object; these points fall above the isochrone curve. Stars just now leaving
the main sequence have spectral type B8 and a mass M ≈ 5M�. The dashed
line shows an isochrone for a much younger cluster, only 16 Myr old; at that time,
even stars of 10M� would still have been on the main sequence.

To determine the distance and the age of a cluster by this method, we must take
account of interstellar dust, which scatters light from the stars and makes them
appear dimmer. Because blue light is more strongly scattered, the stars appear
redder as well as dimmer. If we did not allow for the effects of dust, the isochrone
would appear as the dotted line, which is clearly too blue at mV ≈ 5 to fit the
observations. Similarly, if we had computed our isochrone for stars with much less
than the solar metal abundance, it would not have been a good fit to the observed
brightness and colors.

Open clusters such as the Pleiades can contain up to several hundred stars,
bound together by their mutual gravitational attraction. Table 2.2 shows that cluster
luminosities generally fall in the range 100L� to 30 000L�. The central density
can be as high as 100L� pc−3 but is frequently less; the core radius, where the
surface brightness falls to half its central value, is typically a few parsecs. The stars
have small random speeds, below 1 km s−1. The mass-to-light ratio is generally
below unity; it increases with the cluster’s age as the luminous massive stars die.
This ratio is hard to determine, because the diffuse outskirts of the cluster contain
disproportionately many of the dim stars that contribute most of the cluster’s mass,
but little of its light. We will see in Section 3.2 how this mass segregation can
develop.

Open clusters are quite often surrounded by gas and dust, and they always lie
close to the plane of the disk. The youngest cluster in Table 2.2, NGC 3603, is
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near the Galactic center. Only ∼1% of its visible light can reach us, so we must
study it in the infrared. In other galaxies, we see open clusters in the spiral arms.
Unfortunately we cannot see most of the Milky Way’s open clusters, because
visible light does not travel well through the dust in the disk. We can make a fairly
complete map of the clusters only within about 5 kpc of the Sun.

Only about 5% of the 1200 or so known open clusters are more than 1 Gyr old,
and most have ages less than 300 Myr; the nearby Hyades cluster is about 600 Myr
old. Because most of a cluster’s light comes from its brightest stars, the color of
its total or integrated light gives us a rough estimate of its age. For example, the
Pleiades cluster has B − V = −0.05, close to the color of its most luminous stars
that are still on the main sequence; see Table 1.4. As the massive stars die, and
more of the cluster’s light comes from red giants, its color becomes redder. We can
use observations of nearby clusters, and the theory of stellar evolution, to relate
a cluster’s color to its age and metal abundance. When we observe star clusters
in other galaxies, generally we measure only the integrated light. Comparing a
cluster’s color with clusters in the Milky Way gives us an estimate of its age and
the composition of its stars.

Outside Gould’s Belt, most of the known open clusters younger than 300 Myr
lie within 50 pc of the Galactic midplane. The older clusters, like the old stars
of the thin disk, have a larger scale height, hz ≈ 375 pc. Clusters older than a
gigayear are found mainly in the outer Galaxy, beyond the Sun’s orbit, where
the gravitational forces are weaker. They are also relatively well populated and
compact. Younger clusters are scattered more uniformly in Galactocentric radius;
many have larger sizes or fewer members, and so are more fragile and prone to
fall apart. Since the gravitational attraction of open clusters does not bind them
together very strongly, they tend to be pulled apart as they pass through the spiral
arms of the disk, and also to dissolve because of the gravitational pull of the
cluster stars on each other. The old clusters that we see today are probably the
robust survivors of a much larger population.

NGC 3603 is a very young and massive cluster; in the central parsec are
several O3 stars, each with L ∼ 30 000L�. The stars are no more than 5 Myr old,
and may be younger. Because its most massive stars are still shining, it is hugely
more luminous than the other clusters in Table 2.2. It is a smaller version of the
super-star-clusters formed in starburst galaxies. Here, starbirth is so vigorous that
it will consume the galaxy’s supply of cool gas within ∼300 Myr. (Recall from
Section 2.2 that the Milky Way will not run out of gas for at least 2–3 Gyr.) We
will discuss starbursts further in Section 7.1.

Since elements heavier than helium are produced in the interiors of stars,
they become more abundant as the Universe ages. Figure 2.9 showed that F stars
older than 10 Gyr are much more likely to be iron-poor than are the younger stars.
So we might expect that old open clusters, which formed earlier in the life of
the Milky Way, should have lower metal abundances than the younger clusters.
Surprisingly, this is not so; the old cluster NGC 6791 is as metal-rich as the Sun.
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Table 2.3 Some globular clusters in the Milky Way, and one belonging to the Fornax

dwarf spheroidal galaxy

d MV LV rc rt σr

Cluster (kpc) [Fe/H] (mag) (103 L�) (pc) (pc) (km s−1)

NGC 5139 ω Cen 5.2 −1.6a −10.2 1100 4 70 20
NGC 104 47 Tuc 4.5 −0.71 −9.5 500 0.5 50 11
NGC 7078 M15 10.8 −2.15 −9.3 440 <0.01b 85 12
NGC 6341 M92 8.5 −2.15 −8.3 180 0.5 35 5
NGC 7099 M30 9.1 −2.13 −7.6 95 <0.1b 45 5
NGC 6121 M4 1.73 −1.2 −7.2 60 0.5 25 4

Pal 13 24.3 −1.9 −3.8 3 0.5 >50 0.6–0.9
NGC 1049 Fornax 3 140 −2.0 −7.8 100 1.6 >50 9

Note: d is distance from the Sun; [Fe/H] = log10(Z/Z�); rc is the core radius, rt is the tidal or
truncation radius; and σr is the dispersion in the radial velocity Vr of stars in the central region.
a 20%–30% of the stars of ω Centauri’s core are more metal-rich.
b A collapsed core: see Section 3.2.

There is considerable scatter in the chemical composition of open clusters at all
ages. The buildup of metals in the Galaxy must have proceeded quite unevenly:
some regions even recently were relatively poor in these elements. Open clusters
further from the Galactic center are more likely to be metal-poor; the outer Milky
Way seems to be enriching itself more slowly than the inner parts.

The globular clusters are very different from open clusters; they contain far
more stars, much more tightly packed. The brightest of the Milky Way’s 150 or
so known globulars is ω Centauri; with L ≈ 106L� it contains about a million
stars. In Figure 2.13 we see 47 Tucanae, another luminous cluster; Table 2.3 shows
that dimmer clusters range down to 104L�. The stellar density is roughly constant
inside the core radius: rc ≈ 5 pc. The stars of globular clusters have higher random
speeds σr than those of stars in the open clusters of Table 2.2. Globular clusters
around Fornax, a small nearby dwarf galaxy, are very similar to those in the Milky
Way. At some outer radius rt, usually beyond 30 pc, the density of stars drops
sharply toward zero. This is the tidal radius or truncation radius. Stars beyond
this point are so loosely bound to the cluster that they can be swept away by the
‘tidal’ gravitational force of the Milky Way as the cluster orbits around it. We will
study this process further in Section 4.1.

None of the Milky Way’s globular clusters is younger than several gigayears,
and most are much older. The two color–magnitude diagrams of Figure 2.14 show
no young stars at all. The globular cluster 47 Tucanae is more than 10 Gyr old. Its
stars have only 15% of the solar abundance of metals, so the main sequence ends
with stars a little bluer and more luminous than the Sun. As in the Pleiades, the
main sequence is very narrow because all the stars are the same age and have the
same composition. Brighter stars fall on a narrow red giant branch, or on the hor-
izontal branch with MV ≈ 0. Like the local disk stars that populate the red clump
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Fig. 2.13. The luminous globular cluster 47 Tucanae – Southern African Large Telescope.

in Figure 2.2, horizontal branch stars burn helium in their cores and hydrogen
in a surrounding shell. The stars of the most metal-poor clusters appear to be
12–15 Gyr old. Even taking account of likely observational errors, and uncer-
tainties in the theory of stellar evolution, their ages are unlikely to be less than
11–12 Gyr. This is close to the estimate tH for the age of the Universe given by
Equation 1.31.

Why has the Milky Way ceased production of globular clusters, when it con-
tinues to make open clusters? We will see in Problem 3.14 that star formation
must be more efficient in globular clusters than it normally is today, to allow them
to remain dense. As the galaxies were assembled, extremely high gas density and
pressure may have produced denser and more massive star clusters than can form
today, scaled-up versions of the open cluster NGC 3603, that could survive as
today’s globular clusters.

Globular clusters are lacking in heavy elements. The stars of metal-rich glob-
ulars have 1/3 to 1/10 of the solar metallicity, while metal-poor clusters contain
as little as 1/300 of the Sun’s proportion of these elements. The color–magnitude
diagram gives a clue about the cluster’s abundance. In a metal-poor globular clus-
ter, the horizontal branch can lie well to the blue of the red giant branch. It shifts
redward in younger clusters and those richer in metals. Horizontal branch stars of
the metal-poor cluster M92 are as blue as spectral type A0 (B − V = 0), while in
47 Tucanae they are about as red as the Sun, with B − V ≈ 0.6 (Figure 2.14).
The main sequence and giant branch of M30 are also much bluer than those in 47
Tucanae.
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Fig. 2.14. Above, color–magnitude diagrams for globular clusters 47 Tucanae and M92;

all vertical scales coincide in luminosity. Above left, the star sequence crossing the main

sequence near B − V, mV = (0.8, 19.5) is the red giant branch of the Small Magellanic

Cloud, seen in the background. The model curve shows stars that are 12 Gyr old. Above

right, the model curve is for metal-poor stars of age 13 Gyr. Below, the central isochrones

match those above; the dotted lines show stars 2 Gyr younger, and the lighter lines those

2 Gyr older – P. Stetson; models from BaSTI at Teramo Observatory.

No globular cluster lies close enough to us that its distance can be measured by
trigonometric parallax. Instead, we compare the observed color–magnitude dia-
gram with the predictions of models for stellar evolution like those in Figure 2.14.
We adjust the assumed distance, age, and fraction of heavy elements to obtain the
best correspondence. Another way to find the distance is from RR Lyrae stars,
low-mass stars on the horizontal branch. These stars pulsate; as the radius grows
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bulge/disk: [Fe/H]>-0.8 blue HB    red HB
Sagittarius cluster

Fig. 2.15. Left, positions on the sky of the Milky Way’s metal-rich ‘disk’ globular clusters

(filled dots), and unusual objects, perhaps remnants of disrupted dwarf galaxies (open

diamonds). Right, metal-poor clusters with [Fe/H]< −0.8. Those of the Sagittarius dwarf

(stars) fall in a great circle on the sky. Clusters with a blue horizontal branch (filled dots) are

more concentrated to the center than are those with a red horizontal branch (open circles).

Circles mark 20◦ and 90◦ from the direction to the Galactic center; the solid line is the

Galactic equator. Between the dashed lines at b = ±5◦, clusters may easily hide in the dusty

disk – D. Mackey.

alternately larger and smaller, their brightness varies regularly with periods of
0.2–1 day, which makes them easy to find. RR Lyrae stars all have about the
same luminosity, L ≈ 50L�; so, if we can measure their apparent brightness,
Equation 1.1 gives the distance.

Unlike open clusters, most globular clusters are high above the midplane, so
they are not hidden from us in the dusty disk. We see many more globular clusters
when we look toward the Galactic center than we do in the anticenter direction,
showing that the Sun lies several kiloparsecs out in the disk. Figure 2.15 shows
that metal-rich globulars are more numerous in the inner Galaxy and closer to the
midplane; they may have been formed together with the bulge and thick disk. The
metal-poor clusters form a rough sphere around the center of the Galaxy. Among
them, red horizontal branches may be a sign of relative youth. Those are less
concentrated toward the Galaxy center than are the clusters with blue horizontal
branches.

We can measure the radial velocities of stars in globular clusters from the
Doppler shift of absorption lines in their spectra. These tell us that the most
metal-poor globular clusters do not follow circular orbits. They plunge deep into
the Galaxy, but spend most of their time at large distances. The orbits of halo
clusters are oriented almost randomly, so the cluster system as a whole does not
rotate about the Galactic center like the disk. The system of metal-rich globular
clusters does rotate; the clusters follow orbits much like those of stars in the thick
disk.
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Stars are made from dense gas clouds: so we might expect the Milky Way’s
oldest stars to be in its dense center. Instead, they are in the halo globular clusters,
its most extended component. How did this happen? Our Milky Way, like other
sizable galaxies, is a cannibal: it has eaten its closest neighbors and satellites. We
will see in Section 7.1 how gravity slows the motion of two galaxies that come
close; if the effect is strong enough they spiral in toward each other and merge.
The Sagittarius dwarf (see Section 4.1), our closest satellite galaxy, is partially
digested and falling apart. A half-dozen metal-poor globular clusters follow orbits
so similar to it that they almost certainly belonged to this dwarf, but are now part
of the Milky Way’s halo. The globular cluster ω Centauri contains stars with
differing metal abundances, unlike a true star cluster. Perhaps it is all that remains
of a dense dwarf galaxy after its outer stars were torn away. The Magellanic Clouds
will share the Sagittarius dwarf’s fate within 3–5 Gyr. Some astronomers believe
that the ‘blue’ metal-poor clusters in Figure 2.15 joined the Milky Way when it
swallowed their parent galaxies.

The metal-poor halo of the Milky Way consists of the halo globular clusters,
and roughly 100 times more individual metal-poor stars, some with less than
10−5 of the Sun’s abundance. Locally, only one star in a thousand belongs to the
metal-poor halo. They follow orbits similar to those of metal-poor globulars, and
so are moving very fast relative to the Sun. We can pick out a few nearby halo
stars by their unusually high proper motions. The blue horizontal branch stars,
distinctive variable stars such as the RR Lyrae, and red giants stand out clearly from
among the more numerous foreground disk stars. Metal-poor globular clusters and
stars of the metal-poor halo have been found as far as 100 kpc from the Galactic
center.

Most halo stars seem to be as old as the metal-poor globular clusters. As
with open clusters, the globular clusters that we see today are the few survivors
of a larger population. Some halo stars must be the remains of globular clusters
that dissolved or were torn apart by the Milky Way’s gravity (see Sections 3.2
and 4.1). The globular cluster Palomar 5 has probably lost 90% of its stars; two
spectacular stellar tails extend away from it more than 10◦ across the sky. Many
globular clusters in the far reaches of the Milky Way, like Palomar 13 in Table 2.3,
have relatively few members. If clusters like this had been formed closer to the
Galactic center, they would have been torn apart long ago. The metal-poor halo
also contains various ‘moving groups’ of stars that follow a common orbit, and are
probably the remains of captured satellite systems. A stream of carbon stars and M
giants apparently stripped from the Sagittarius dwarf galaxy stretches around the
sky.

The most useful approach to mapping the metal-poor halo has been to guess
at the luminosity function and the density of stars in the disk, bulge, and halo,
and then use Monte Carlo techniques to calculate how many stars of each spec-
tral type one expects to see in a particular area of the sky with a given apparent
brightness. We then adjust the guesses to achieve the best correspondence with
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Fig. 2.16. Numbers of stars at each B − V color with apparent V magnitude 19 < mV <

20, per square degree near the north Galactic pole. The solid line shows the prediction of

a model: thin-disk stars (triangles) are red, halo stars (stars) are blue, and thick-disk stars

(squares) have intermediate colors – N. Reid.

what is observed. Figure 2.16 shows the number of stars per square degree at the
north Galactic pole at apparent brightness 19 < mV < 20, compared with the
predictions of a model in which 0.15% of the stars near the Sun belong to
the metal-poor halo, and the density of halo stars drops with radius approxi-
mately as r−3. Almost all the blue stars in this brightness range are halo stars,
while nearly all the red ones are in the thin disk (see the following problem),
so we can separate the various components. The total mass of the metal-poor
halo stars is only about 109M�, much less than that of stars in the disk or
bulge.

Problem 2.12 The range in apparent magnitude for Figure 2.16 was chosen to

separate stars of the thin disk cleanly from those in the halo. To see why this

works, use Figure 2.2 to represent the stars of the local disk, and assume that

the color–magnitude diagram for halo stars is similar to that of the metal-poor

globular cluster M92, in Figure 2.14.

(a) What is the absolute magnitude MV of a disk star at B − V = 0.4? How

far away must it be to have mV = 20? In M92, the bluest stars still on the main

sequence have B − V ≈ 0.4. Show that, if such a star has apparent magnitude

mV = 20, it must be at d ≈ 20 kpc.

(b) What absolute magnitudes MV could a disk star have, if it has B − V =
1.5? How far away would that star be at mV = 20? In M92, what is MV for the

reddest stars, with B − V ≈ 1.2? How distant must these stars be if mV = 20?

(c) Explain why the reddest stars in Figure 2.16 are likely to belong to the

disk, while the bluest stars belong to the halo.
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Comparing models of this type with observations looking out of the disk in
various directions tells us that the metal-poor halo is somewhat flattened, but
rounder than the Galactic bulge. We see in Table 2.1 that for the halo stars the
tangential drift velocity 〈vy〉 is almost equal to the Sun’s rotation speed around
the Galactic center; the halo has little or no rotation of its own. The outer halo
seems to be rounder than the inner part. Table 2.1 shows that outer-halo stars
move slower in the radial direction than they do tangentially: σR < σθ,φ . These
stars do not plunge deep into the Galaxy; their radial speeds are low, just as
we would expect if they had been torn from a satellite spiralling into the Milky
Way.

2.2.4 An infrared view: the bulge and nucleus

Studies of the Galactic disk have always been hampered by interstellar dust. By
scattering and absorbing at visible and ultraviolet wavelengths, the dust denies
us a clear view of distant stars in the disk. By comparing the numbers of stars
in different parts of the sky, William Herschel was able to show in 1800 that the
Milky Way is a disk. But since he saw roughly the same number of stars in every
direction within the disk, he erroneously concluded that the Sun must be near the
center of the Galaxy. In fact, dust in the disk hid most of the stars.

The best way to map the Milky Way’s central bulge is to use infrared light,
which travels more freely than visible light through the dusty disk. These obser-
vations indicate that, both for the thin and for the thick disk, the scale length h R of
Equation 2.8 probably lies in the range 2.5 kpc < h R < 4.5 kpc. Beyond a radius
Rmax ≈ 15 kpc, the density of disk stars appears to drop rapidly toward zero. We
will find in Section 5.1 that an ‘edge’ of this kind is also seen in the stellar disks
of some other galaxies.

The near-infrared image on the front cover of this book shows the Milky
Way as seen at wavelengths of 1.25, 2.5, and 3.5 μm. We clearly see a flattened
central bulge, which accounts for roughly 20% of the Galaxy’s total light; most
of that comes from within ∼1 kpc of the center. The bulge appears pear-shaped,
larger on one side than the other. It is probably a central bar, extending 3–4 kpc
from the center; the end at l > 0 appears larger because it is closer to us. In
Hubble’s classification, the Milky Way is probably an Sbc or Sc galaxy. It is not
so strongly barred as to be an SBbc or SBc, although some astronomers might
place it in a category intermediate between barred and unbarred spirals, labelled
SAB.

The density of the stellar halo rises toward the Galactic center, and it is
natural to wonder whether the galactic bulge is just the dense inner portion of
the halo. It is not. Although the bulge stars are several gigayears old, they are
not metal-poor like the halo. The average metal fraction is at least half of the
solar value, and some stars have up to three times the solar abundance of heavy
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elements. The bulge is more flattened than the inner halo, and the bulge stars
circle the Galactic center in the same direction as the disk does. The averaged
rotation speed in the bulge is about 100 km s−1, somewhat slower than in the disk;
the bulge stars have larger random motions. In Section 4.3 below, we will dis-
cuss how the bulge, halo, and disk of the Milky Way might have been formed
as they are. Very close to the Galactic center, we find dense gas and young
stars. About 150 pc away, near-infrared observations reveal a huge dense star
cluster, Sagittarius B2, which is making stars at a furious rate. Then, 30–50 pc
from the center, the Quintuplet and Arches clusters are each more luminous than
106L�, containing several very massive stars. At the heart of the Galaxy is a
torus of hot dense molecular clouds, about 2 pc in radius with 106M� of gas.
It surrounds the Milky Way’s stellar nucleus, an extraordinary concentration of
stars.

At optical wavelengths the nucleus is invisible, because surrounding dust
absorbs and scatters the light; in the V band, it is dimmed by 31 magnitudes! It is
best seen in the near-infrared, at λ ∼ 5−7 μm; at longer wavelengths the warmed
dust radiates strongly, overwhelming the starlight. In mass and size, the stellar
nucleus is not so different from a massive globular cluster, with 3 × 107M� of
stars within a central cusp of radius 10′′ or 0.2 pc. The density of stars reaches
3 × 107M� pc−3 within 1′′ from the center. But, unlike in globular clusters, at
least 30 massive stars have formed here over the last 2–7 million years. Star-cluster
nuclei are common in giant spiral galaxies; they are by far the densest regions of
these systems. Unlike true star clusters, they contain stars with a range of ages
and composition.

The innermost young stars are less than 0.05 pc from the Milky Way’s central
radio source. Figure 2.17 shows some of their orbits, calculated from the observed
radial velocities and proper motions. These stars follow almost the same Keplerian
motion as the planets in the solar system, and we saw in Problem 2.6 how to use
them to measure the mass of the central compact object. This is almost certainly
a black hole: we cannot otherwise understand how 4 × 106M� can fit into such
a small volume.

Radio maps of the inner region show narrow filaments, tens of parsecs long
but only a fraction of a parsec wide, reaching up out of the Galactic plane. They
are highly polarized, which tells us that this is synchrotron emission; the radiating
electrons are probably held inside the filaments by magnetic fields. At the position
of the black hole is a central pointlike source, Sagittarius A
, which varies its
brightness so rapidly that it must be less than 10 light-minutes, or 1.3 AU, across.
Sagittarius A
 may be a small version of the spectacular nuclear radio and X-ray
sources found in active galactic nuclei, which we will discuss in Section 9.1. If
so, it is a very weak example. Its power is no more than a few thousand times
the Sun’s total energy output, while, in Seyfert galaxies and quasars, the nucleus
alone can outshine the rest of the galaxy.
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Fig. 2.17. Star symbols show the positions of stars in the Galactic nucleus in 1992.25,

with small dots at one-year intervals along the orbits; the stars move faster near the black

hole (filled dot at the origin). The inset shows coordinates measured for the O8/O9 star S2,

which has made almost a complete orbit during 12.5 years of observation – F. Eisenhauer,

MPE Galactic Center Team.

Problem 2.13 Here we make a crude model to estimate how many stars you

could see with your unaided eye, if you observed from the center of the Galaxy.

Naked-eye stars are those brighter than apparent magnitude mV ≈ 5; from Earth,

we see about 7000 of them. Assume that the Milky Way’s nucleus is a uniform

sphere of stars with radius 3 pc, and ignore the dimming effects of dust. What

is the luminosity Leye of a star that is seen 3 pc away with mV = 5? For a

main-sequence star, use Equation 1.6 to show that Leye corresponds to M ≈
0.6M�.

In our simple model, almost all stars that spend less than 3 Gyr on the main

sequence have now died; according to Table 1.1, what stellar mass Mu does

this correspond to? Approximate the number ξ (M)�M of main-sequence stars

with masses between M and M + �M by Equation 2.5: ξ (M) ∝ M−2.35 for

M ∼> 0.2M�, with few stars of lower mass. Find the total number and total

mass of main-sequence stars with M < Mu, in terms of the parameter ξ0. How

do we know that red giants will contribute little mass? Taking the total mass as

107M�, find ξ0; show that the nucleus contains Neye ∼ 4 × 106 main-sequence

stars with L ≥ Leye. How do we know that many fewer red giants will be visible?

(For advanced students: stars with L < Leye will be seen as naked-eye stars if

they are close enough to the observer. Show that these make little difference to

the total.)
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Fig. 2.18. Galactic rotation: stars closer to the Galactic center (GC) pull ahead of us in

their orbits, while those further out are left behind. A star at the same Galactocentric radius

moves sideways relative to us.

Further reading: F. Melia, 2003, The Black Hole at the Center of our Galaxy
(Princeton University Press, Princeton, New Jersey) is written for the general
reader.

2.3 Galactic rotation

To a good approximation, the stars and gas in the disk of our Milky Way move in
near-circular paths about the Galactic center. We can take advantage of this orderly
motion to map out the distribution of galactic gas, from its measured velocities
in each direction. From the observed speeds, we can calculate how much inward
force is needed to keep the gas of the outer Galaxy in its orbit; it turns out to be
far more than expected. Additional mass, the dark matter, is required in addition
to that of the luminous stars and gas.

Stars closer to the Galactic center complete their orbits in less time than do
those further out. This differential rotation was first discovered by considering
the proper motions of nearby stars. Looking inward, we see stars passing us in
their orbits; their motion relative to us is in the same direction as the Sun’s orbital
velocity V0. Looking outward, we see stars falling behind us, so they have proper
motions in the opposite direction (Figure 2.18). Stars at the same Galactocentric
radius orbit at the same rate as the Sun, so they maintain a fixed distance and have
a ‘sideways’ motion. So, for stars close to the Sun, the proper motion μ has a
component that varies with Galactic longitude l as μ ∝ cos(2l). This pattern had
been noticed already by 1900; Dutch astronomer Jan Oort explained it in 1927
as an effect of Galactic rotation. By the 1920s, photographic plates had become
more sensitive, and could record stellar spectra well enough to determine radial
velocities accurately; these are now more useful for measuring differential rotation
in the Galaxy.
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Fig. 2.19. Galactic rotation: a star or gas cloud at P with longitude l and Galactocentric

radius R, at distance d from the Sun, orbits with speed V (R). The line of sight to P is

closest to the Galactic center at the tangent point T.

The Sun does not lie exactly in the Galactic midplane, but about 15 pc above it,
and its path around the Galactic center is not precisely circular. The local standard
of rest is defined as the average motion of stars near the Sun, after correcting for
the asymmetric drift 〈vy〉 of Table 2.1. Relative to this average, the Sun is moving
‘in’ toward the Galactic center at 10 km s−1, and travels faster in the direction of
rotation by about 5 km s−1; its ‘upward’ speed toward the north Galactic pole is
7–8 km s−1. Published velocities of stars and gas are frequently given with respect
to this standard.

Usually (but not always; see Problem 2.16 below), we assume that the local
standard of rest follows a circular orbit around the Galactic center. In 1985 the
International Astronomical Union (IAU) recommended the values R0 = 8.5 kpc,
for the Sun’s distance from the Galactic center, and V0 = 220 km s−1, for its
speed in that circular orbit. To allow workers to compare their measurements,
astronomers often compute the distances and speeds of stars by using the IAU
values, although current estimates are closer to R0 ≈ 8 kpc and V0 ≈ 200 km s−1.

Problem 2.14 Using the IAU values for R0 and V0, show that it takes the Sun

about 240 Myr to complete one orbit about the Galactic center. This period is

sometimes called a ‘Galactic year’.

2.3.1 Measuring the Galactic rotation curve

We can calculate the radial velocity Vr of a star or gas cloud, assuming that it
follows an exactly circular orbit; see Figure 2.19. At radius R0 the Sun (or more
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Fig. 2.20. In the plane of the disk, the intensity of 21 cm emission from neutral hydrogen

gas moving toward or away from us with velocity VLSR, measured relative to the local

standard of rest – D. Hartmann and W. Burton.

precisely, the local standard of rest) orbits with speed V0, while a star P at radius
R has orbital speed V (R). The star moves away from us at speed

Vr = V cos α − V0 sin l. (2.10)

Using the sine rule, we have sin l/R = sin(90◦ + α)/R0, and so

Vr = R0 sin l

(
V

R
− V0

R0

)
. (2.11)

If the Milky Way rotated rigidly like a turntable, the distances between the
stars would not change, and Vr would always be zero. In fact, stars further from
the center take longer to complete their orbits; the angular speed V/R drops
with radius R. Then Equation 2.11 tells us that Vr is positive for nearby objects
in directions 0 < l < 90◦, becoming negative for stars on the other side of the
Galaxy that are so distant that R > R0. For 90◦ < l < 180◦, Vr is always negative,
while for 180◦ < l < 270◦ it is always positive; in the sector 270◦ < l < 360◦,
the pattern of the first quadrant is repeated with the sign of Vr reversed. Figure 2.20
shows the intensity of 21 cm line emission from neutral hydrogen gas in the disk
of the Galaxy: as expected, there is no gas with positive velocities in the second
quadrant (90◦ < l < 180◦), or with negative velocities in the third quadrant. The
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dark narrow bands extending across many degrees in longitude show where gas
has been piled up, and its velocity changed, by gravitational forces in the spiral
arms.

Problem 2.15 For a simple model of the Galaxy with R0 = 8 kpc and

V (R) = 220 km s−1 everywhere, find Vr(l) for gas in circular orbit at R =
4, 6, 10, and 12 kpc. Do this by varying the Galactocentric azimuth φ around

each ring; find d for each (φ, R), and hence the longitude l and Vr. Make a plot

similar to Figure 2.20 showing the gas on these rings. In Figure 2.20 itself, explain

where the gas lies that corresponds to (l ∼ 50◦, V > 0); (l ∼ 50◦, V < 0); (l ∼
120◦, V < 0); (l ∼ 240◦, V > 0); (l ∼ 300◦, V > 0); and (l ∼ 300◦, V < 0).

Where is the gas at (l ∼ 120◦, V > 0)?

Problem 2.16 Suppose that gas in the Galaxy does not follow exactly circular

orbits, but in addition has a velocity U (R, l) radially outward from the Galactic

center; stars near the Sun have an outward motion U0. Show that gas at point P

in Figure 2.19 recedes from us at speed

Vr = R0 sin l

(
V

R
− V0

R0

)
− R0 cos l

(
U

R
− U0

R0

)
+ d

U

R
. (2.12)

Suppose now that the Sun is moving outward with speed U0 > 0, but that gas

in the rest of the Galaxy follows circular orbits; how should velocities measured

in the direction l = 180◦ differ from zero? For gas at a given radius R, in

which direction are the extrema (maxima or minima) of VR shifted away from

l = 90◦ and l = 270◦? Use Figure 2.20 to show that the Sun and the local

standard of rest are probably moving outward from the Galactic center.

When our star or gas cloud is close to the Sun, so that d � R, we can neglect
terms in d2; using the cosine rule for triangle S–P–GC then gives R ≈ R0−d cos l.
The radial velocity of Equation 2.11 becomes

Vr ≈ R0 sin l

(
V

R

)′
(R − R0) ≈ d sin(2l)

[
− R

2

(
V

R

)′]
R0

≡ d A sin(2l), (2.13)

where we use the prime for differentiation with respect to R. The constant A,
named after Oort, is measured as 14.8 ± 0.8 km s−1 kpc−1.

The proper motion of a star at P relative to the Sun can be calculated in a
similar way. From Figure 2.19, the tangential velocity is

Vt = V sin α − V0 cos l. (2.14)
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Noting that R0 cos l = R sin α + d , we have

Vt = R0 cos l

(
V

R
− V0

R0

)
− V

d

R
. (2.15)

Close to the Sun, we can substitute R0 − R ≈ d cos l, to show that Vt varies almost
linearly with the distance d:

Vt ≈ d cos(2l)

[
− R

2

(
V

R

)′]
R0

− d

2

[
1

R
(RV )′

]
R0

≡ d[A cos(2l) + B], (2.16)

where the constant B = −12.4 ± 0.6 km s−1 kpc−1. In Section 3.3, we will see
another method to estimate B. The Oort constants A and B measure respectively
the local shear, or deviation from rigid rotation, and the local vorticity, or angular-
momentum gradient in the disk.

Problem 2.17 Show that A + B = −V ′, while A − B = V0/R0. Show that the

IAU values for V0 and R0 imply A − B = 26 km s−1 kpc−1. Do the measured

values of A and B near the Sun correspond to a rising or a falling rotation curve?

What effects might cause us to measure A + B �= 0 near the Sun, even though

the Milky Way’s rotation speed is roughly constant at that radius?

If we could measure the speed Vr for stars of known distance scattered through-
out the disk, we could work backward to find V (R), the rotation curve of the
Milky Way. Unfortunately, visible light from disk stars and clusters is blocked
by dust. Radio waves can travel through dust, and we receive emission in the
21 cm hyperfine transition of atomic hydrogen from gas almost everywhere in the
Galaxy. But, in general, we have no way of knowing the distance to the emitting
gas.

For the inner Galaxy (R < R0), the tangent-point method circumvents this
difficulty and allows us to find the rotation curve. The angular speed V/R drops
with radius. So Equation 2.11 tells us that, when we look out in the disk along a
fixed direction with 0 < l < 90◦, the radial speed Vr(l, R) is greatest at the tangent
point T in Figure 2.19, where the line of sight passes closest to the Galactic center.
Here, we have

R = R0 sin l and V (R) = Vr + V0 sin l. (2.17)

Thus, if there is emitting gas at virtually every point in the disk, we can find V (R)
by measuring in Figure 2.20 the largest velocity at which emission is seen for
each longitude l; Figure 2.21 shows the results. The gravitational pull of the extra
mass in spiral arms can easily change the velocity of gas passing through them by
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Fig. 2.21. Left, the Milky Way’s rotation from the tangent-point method, taking V0 =
200 km s−1; dots show velocities of northern HI gas with l > 270◦; the curve gives results

from southern gas at l < 90◦. The tangent-point method fails at R ∼< 0.2R0 (open circles)

because this gas follows oval orbits in the Galactic bar. Right, the rotation speed of the

outer Galaxy, calculated for V0 = 200 km s−1 (filled circles) and for V0 = 220 km s−1

(open circles); crosses show estimated errors – W. B. Burton and M. Honma.

10–20 km s−1. If the tangent point falls close to an arm, then the rotation speed
found by using Equation 2.17 will differ from the average speed of an orbit at that
Galactocentric radius.

Measuring rotation speeds in the outer Galaxy is harder. We must first find
the distances to associations of young stars by the methods of spectroscopic or
photometric parallax. Their velocity Vr is then measured from the emission lines
of hot or cool gas around the stars. The stellar distances are often not very well
determined, but they are good enough to tell us that the rotation speed V (R) does
not decline much in the outer Galaxy, and may even rise further.

2.3.2 Dark matter in the Milky Way

In Section 3.1 we will see that, for a spherical system, the speed V in a circular
orbit at radius R is related to the mass M(<R) interior to that radius by the exact
equation

M(<R) = RV 2/G. (2.18)

When R is measured in parsecs, time in megayears, and M in M�, Newton’s
gravitational constant G = 4.5 × 10−3. For orbits in a flattened disk, this formula
gives M(< R) to within 10% − 15%. Since V (R) does not decline, the mass
of the Milky Way must increase almost linearly with radius, even far beyond
the Sun where there are very few stars. Later, we will see that this discrepancy
between the distributions of light and mass is generally present in spiral galaxies.
Astronomers often refer to it as the ‘missing mass’or ‘dark matter’ problem.
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Galaxies presumably contain a large amount of matter that gives out virtually no
light; this nonluminous mass is assumed to lie in a dark halo.

Problem 2.18 Use Equation 2.18 to find the mass M(< R0) within a sphere

of radius R0 about the Galactic center. What is the average density within that

sphere, in M� pc−3? Show that this is about 105 times larger than the critical

density of Equation 1.30.

Taking h R = 4 kpc in Equation 2.8, show that 60% of the Milky Way’s disk

lies within the Sun’s orbit. Taking LV = 5×109L� for the bulge and 15×109L�
for the disk, show that the mass-to-light ratio M/L(<R0) ≈ 5. Using the result

of Problem 2.8, explain why we believe that no more than half of the mass within

R0 is dark matter.

Problem 2.19 The Galaxy’s HI disk extends outward to about 2.5R0. From

Figure 2.21, show that the mass M(<2.5R0) ≈ 2 × 1011M�, so that the mass-

to-light ratio M/LV ∼> 10. How does this compare with what we found in

Problem 2.8? Where is most of the Milky Way’s dark matter?

Problem 2.20 Consider the spherical density distribution ρH(r ) with

4πGρH(r ) = V 2
H

r2 + a2
H

, (2.19)

where VH and aH are constants; what is the mass M(<r ) contained within radius

r? Use Equation 2.18 to show that the speed V (r ) of a circular orbit at radius r

is given by

V 2(r ) = V 2
H[1 − (aH/r )arctan(r/aH)], (2.20)

and sketch V (r ) as a function of radius. This density law is often used to represent

the mass of a galaxy’s dark halo – why?

2.4 Milky Way meteorology: the interstellar gas

Between the Milky Way’s stars lies the gas from which they were made, and to
which they return the heavy elements produced by their nuclear burning. Almost
all of the gas lies in the disk. Although its mass is less than 10% of that in stars, it
gives the Galaxy many of its distinctive properties. Without gas, the Milky Way
would be an S0 galaxy, not a spiral: our disk would have no hot young stars
and no spiral pattern. Only about half of the Galaxy’s starlight escapes freely
into intergalactic space; dusty interstellar gas absorbs the rest. The front cover
shows the Milky Way’s gas, dust and stars observed at wavelengths from radio to
γ-rays.
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Like the stellar disk, the Galaxy’s interstellar material is subject to gravity,
which ultimately causes the densest gas to collapse into new stars. But we must
also consider other forces, which can safely be ignored when discussing stellar
motions: gas pressure, magnetic forces, and the pressure of cosmic rays. The gas
is heated and ionized by stellar radiation; it is shocked and set into motion by fast
stellar winds, violent supernova explosions, and passage through the spiral arms.
Like the Earth’s atmosphere, the interstellar medium is in complex motion.

2.4.1 Mapping the gas layer

Unlike stars, gas does not come in units of standard size. The mass of a clump
of gas is not directly linked to its temperature, or any other quantity that we
could measure independently of its distance. So the distances of gas clouds are
very uncertain, except in special cases: for example, when we know that the gas
surrounds a star. When we see absorption lines from interstellar gas in the spectrum
of a star, we know that the gas is closer to us than the star. For gas in circular
orbits in the Milky Way’s disk, we can calculate a kinematic distance. From its
spectral line emission, we find how much gas is moving at each radial velocity
Vr in the direction at longitude l. Then, from the rotation curve V (R), we can use
Equation 2.11 to estimate its distance. Thus we can build up a picture of how the
Milky Way’s gas is distributed.

When all of its radiation reaches us without being absorbed, the mass of gas
moving with a particular velocity is proportional to the intensity of the radiation at
the corresponding wavelength. Visible light is strongly absorbed by the interstellar
dust, whereas radio waves can travel through the dusty gas. But, in the disk,
we often look through enough material that radio waves from distant gas are
partially absorbed by gas closer to us: the emission is optically thick. The 21 cm
line of neutral hydrogen, HI, is optically thick in the inner parts of the Galaxy.
Dense cool clouds, where the gas is largely molecular, are often traced by the
millimeter-wavelength lines of 12CO, which are nearly always optically thick.
Thus much of the molecular gas may be hidden from our direct view.

Recall from Section 1.2 that we do not see emission lines from cool molecular
hydrogen, because H2 is a symmetric molecule. The next most abundant molecule
in the dense gas is carbon monoxide, with roughly one CO molecule for every 104

of H2. On large scales, we can measure the total amount of atomic and molecular
gas by comparing the numbers of energetic cosmic rays (see below), detected as
they zip through the Earth’s atmosphere, with the brightness in γ-rays, which are
produced as cosmic rays hit the gas atoms in the Galactic plane. By comparing in
turn with observations in CO, we can find the average ratio XCO of the column
density of molecular hydrogen to CO emission in the lowest rotational transition.
In the Milky Way XCO is fairly uniform in the disk. It is higher in the central few
hundred parsecs and in starbursts, where very vigorous star formation gives rise
to a strong radiation field.
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Fig. 2.22. The surface density of neutral hydrogen, as estimated separately for the northern

(0 < l < 180◦; filled dots) and southern (180◦ < l < 360◦; open circles) halves of the

Galaxy. Within the solar circle, the density is sensitive to corrections for optical thickness;

outside, it depends on what is assumed for V (R). The shaded region shows the surface

density of molecular hydrogen, as estimated from the intensity of CO emission – W.

Burton and T. Dame.

Table 1.8 of Section 1.2 lists spectral lines from some common interstellar
molecules. Most of the gas in molecular clouds is cold, with T ≈ 10–20 K, and
emits most strongly in CO. Even colder gas is detected when by chance it lies in
front of a distant radio galaxy or quasar, and absorbs radiation in the appropriate
spectral lines. We will see later that the densest gas is in the small warm cores of
molecular clouds, where clusters and associations of young stars are born. Here
we observe molecules such as NH3, CN, and H2CO.

Figure 2.22 shows how atomic and molecular gases are distributed in the
Galaxy. It is based on kinematic distances, using CO to trace the H2. The Milky
Way probably contains (4–8) × 109M� of HI, and about half that amount of
molecular gas. Almost all of the H2, but less than half of the HI, lies within the
solar circle, at radius R0. Molecular gas is piled up in a ring of radius 4 kpc. Inside
this ring we find little molecular or atomic gas, except in the central few hundred
parsecs. On the cover, we see that atomic hydrogen spreads to much larger radii
than the molecular gas or the stars. It also forms a thicker layer than the molecular
gas. Near the Sun, CO-emitting clouds lie mainly within 80 pc of the midplane,
while the HI disk is about twice as thick. The HI layer puffs up even more strongly
further out.

As in other spiral galaxies, the dense molecular gas, dust, and young stars are
concentrated into the spiral arms: see Section 5.5. The Sun lies just outside the
Sagittarius–Carina arm, which can be traced for almost a full turn around the disk.
Its pitch angle is about 10◦, which is typical for an Sbc or Sc galaxy. Looking
away from the Galactic center, we see a short nearby arm-spur in the constellation
of Orion. Roughly 2 kpc further out lies the Perseus arm, which shows up in
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Figure 2.20 as a dark ridge at l > 90◦, VLSR ≈ 50 km s−1. However, we do not
have a picture of our whole spiral pattern. Dust blocks our view through the disk
in visible light, and kinematic distances for the gas are unreliable, because the
gravitational tug of the spiral arms pulls it out of circular rotation.

Figure 2.23 shows atomic gas far above the Galactic plane. Looking away
from the Galactic center toward l = 180◦, from Equation 2.11 we expect that
gas in circular orbit has Vr ∼ 0, moving neither toward us nor away. Instead,
the gas near b = +70◦ is approaching at >70 km s−1. The high-velocity clouds
of HI rain down on the disk even faster, at over 100 km s−1. Some of these may
be disk material that has been thrown up above the midplane by supernovae or
winds from hot massive stars, so that it is now falling back. Others, like the gas
in the Magellanic Stream (Section 4.1), come from beyond the Milky Way. We
do not generally know the distances to these clouds and so cannot estimate their
masses. If they resemble those found around our neighbor M31 (see Section 4.2),
most lie within 50 kpc of the disk, with masses 104M� to 107M�. Infalling
high-velocity clouds may add metal-poor gas to the disk, potentially solving the
G-dwarf problem which we discuss in Section 4.3.

Beyond 1–2 kpc from the Galactic plane, almost all the gas is hot or warm.
We can probe clouds of warm gas in the halo of our Galaxy and others by looking
at the absorption lines they produce in the ultraviolet spectra of distant stars or
quasars: see Section 9.3. In dense warm gas, light is absorbed by low ions such
as MgII. The more diffuse clouds are highly ionized; we see lines of CIV and
NV. We also see absorption in lines of OVI, which arises in gas at ∼3 × 105 K,
where Figure 2.25 shows that cooling is most rapid. This material must lie at the
boundaries between the warm clouds and the hottest gas at ∼106 K.

Within about 3 kpc of the Galactic center, inside the ring of dense gas, the
average surface density of H2 drops below 5M� pc−2. At these radii, both atomic
and molecular gas lie in a disk tilted 10◦–20◦ from the plane b = 0, with gas
at positive longitudes lying below that plane and that at l < 0 above it. We do
not know what caused the tilt, nor why it persists. The tilted-disk gas is not in
circular rotation. Instead, emission is observed at negative velocities for l > 0,
and at positive velocities at negative longitudes, which by Equation 2.11 would
not be allowed for circular motion. The emission at ‘forbidden’ velocities can be
explained by the barlike Galactic bulge that we discussed in Section 2.2. Under
the bar’s gravitational force, the gas must follow oval orbits that take it alternately
toward and away from the Galactic center.

The central 200 pc of the Galactic bulge is a gas-rich region which is actively
forming stars; it harbors at least 108M� of molecular gas, or about 10% of
the total in the Milky Way. The material in the outer part of this region forms
the inner edge of the tilted disk, its density now so high that the gas has become
predominantly molecular. Further in, dense gas is again found close to the plane
b = 0; here it is drawn out into long arcs and filaments as it orbits the central
black hole.
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There is so much dust in the Milky Way’s disk that we cannot see optical and
ultraviolet light from this central region. We observe X-rays from a hot plasma
with T ≈ 107 K, filling the spaces around the denser and cooler clouds. The
Galaxy’s gravity is too weak to hold onto such hot gas; it may be escaping as a
wind into intergalactic space.

2.4.2 A physical picture

The interstellar gas is a multiphase medium. On scales between 1 pc and about
1 kpc, the hot, warm, and cool phases are all mixed together. Most of the atoms are
in the dense cool phases, but diffuse warm and hot gas occupy most of the volume.
The cold molecular and atomic material is over 10 000 times denser than the hot
plasma – a contrast larger than that between air and water. So we can often think of
clouds of cool gas moving with little hindrance through the more diffuse medium.

The densest gas is in a few thousand giant molecular clouds in the spiral
arms. Any cloud with NH ∼> 1020 H atoms cm−2, or roughly M� pc−2, becomes
largely molecular, since the ultraviolet photons that can break up H2 molecules
do not penetrate to greater depth. (Unshielded molecules are highly vulnerable:
near the Sun, photons of ambient starlight destroy them in only a few hundred
years.) The clouds can be larger than 20 pc, with masses above 105M�, and
densities >∼ 200 H2 molecules cm−3, rising above 104 cm−3 in their cores. They
are surrounded by cool HI, forming large complexes up to ∼100 pc across with
107M� of gas. Between the arms, the clouds are smaller: typically M ∼ 40M�,
sizes are ∼2 pc, and densities hardly rise above nH ∼ 100 cm−3. In the central
200 pc, the clouds are denser (nH ≈ 104 cm−3) and hotter (typically around 70 K)
than those near the Sun.

The cool atomic hydrogen is less dense than molecular clouds, with nH ∼
25 cm−3 and T ≤ 80 K. Near the Sun, about half of the HI is much warmer, with
T ∼ 8000 K and nH ∼ 0.3 cm−3. This neutral gas is mixed with warm ionized
gas, with the same temperature and pressure. Clouds of warm gas are themselves
enveloped in hot diffuse plasma with nH ∼ 0.002 cm−3 and T ∼ 106 K. At
these temperatures hydrogen and helium are almost completely ionized by violent
collisions with fast-moving electrons. Our Sun itself is moving through a warm
cloud, a parsec in size and roughly 50% ionized, which lies within an irregularly
shaped and expanding local bubble of hot gas, 100 pc across. At 1–2 kpc above
the midplane, we still find clouds of HI, but the proportions of warm ionized gas
and hot plasma are larger. Table 2.4 gives a summary of the various phases of
the interstellar gas. Notice that the product nHT = p/kB is approximately the
same for the cool HI clouds, for the warm gas, and for the hot plasma: they are
in pressure balance. We will see why below, and discuss why the hot, warm, and
cool phases have the temperatures that they do.

Only O and B stars emit many photons above 13.6 eV, the energy required to
ionize hydrogen from its ground state. When one of these begins to shine, its ultra-
violet light first breaks up the surrounding H2 molecules into atomic hydrogen,
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Table 2.4 A ‘zeroth-order’ summary of the Milky Way’s interstellar medium (after J. Lequeux)

Density Temperature Pressure Vertical Mass Filling
Component Description (cm−3) (K) (p/kB) extent (M�) factor

Dust grains 107–108 Tiny
large ∼< 1 μm Silicates, soot ∼20 150 pc
small ∼ 100 Å Graphitic C 30–100
PAH < 100 atoms Big molecules 80 pc

Cold clumpy gas Molecular: H2 >200 <100 Big 80 pc (2) × 109 <0.1%
Atomic: HI 25 50–100 2 500 100 pc 3 × 109 2%–3%

Warm diffuse gas Atomic: HI 0.3 8 000 2 500 250 pc 2 × 109 35%
Ionized: HII 0.15 8 000 2 500 1 kpc 109 20%

HII regions Ionized: HII 1–104 ∼10 000 Big 80 pc 5 × 107 Tiny
Hot diffuse gas Ionized: HII ∼0.002 ∼106 2 500 ∼5 kpc (108) 45%
Gas motions 3

2 〈ρHI〉σ 2
r 〈nH〉 ∼ 0.5 10 km s−1 8 000

Cosmic rays Relativistic 1 eV cm−3 8 000 ∼3 kpc Tiny
Magnetic field B ∼ 5 μG 1 eV cm−3 8 000 ∼3 kpc
Starlight 〈νhP〉 ∼ 1 eV 1 eV cm−3 ∼500 pc
UV starlight 11–13.6 eV 0.01 eV cm−3

Note: ( ) denotes a very uncertain value. Pressures and filling factors refer to the disk midplane near the Sun;
notice that the pressures from cosmic rays, in magnetic fields, and the turbulent motions of gas clouds are
roughly equal.

then photoionizes the gas to create an HII region. The zone where this happens
is called the photodissociation region. As the newly-ionized gas is heated to
∼10 000 K, its pressure suddenly shoots up to roughly 1000 times that of the
surrounding cloud. The HII region expands, pushing the cold gas outward super-
sonically. It often pierces the molecular cloud, escaping as a champagne flow.

The Milky Way’s entire gas layer is also threaded by a tangled magnetic
field. Its strength is about 0.5 nT or 5 μG near the Sun; it is higher at smaller
Galactocentric radii and falls to about half its local value at 2R0. All but the
coldest dense gas is sufficiently ionized to be a good electrical conductor, so the
field is frozen into it, moving along with the gas.

The expanding remnant of a supernova explosion sweeps up this magnetic
field along with the gas, and the moving field accelerates protons and heavier
atomic nuclei to near-light speeds, as cosmic rays. Cosmic rays with energy above
109 GeV or 109mpc2 can escape from the Galaxy’s magnetic field, while those
of lower energy are trapped within it. Cosmic rays penetrate into even dense
molecular clouds, keeping them partially ionized. Both cosmic rays and magnetic
field resist attempts to squeeze the gas, effectively adding to the gas pressure.

Expanding supernova remnants also accelerate electrons to relativistic speeds.
We observe their synchrotron radiation at radio wavelengths, as they spiral in the
Galactic magnetic field. This emission is brightest near the Galactic plane, but the
topmost image on the front cover shows that a diffuse radio halo extends many
kiloparsecs above and below it. This shows that both field and fast particles can
escape from the dense disk gas.
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The interstellar gas is in motion on large and small scales. Like stars, inter-
stellar gas clouds do not follow exactly circular orbits about the Galactic center.
They also have random motions: typically about 5 km s−1 for molecular clouds
and 8−10 km s−1 for clouds of atomic gas. Even within molecular clouds, gas in
the denser cores must be in motion: the observed width of CO lines corresponds to
velocities of 1−10 km s−1, while the thermal speeds for CO molecules are below
0.1 km s−1 (see the problem below). Motions that are faster than the local speed
of sound, which is roughly the thermal speed of atoms or molecules in the gas,
give rise to shocks. Here the gas velocity changes sharply across a narrow region,
and energy of motion is converted into heat.

We do not know exactly how these motions arise, just as we cannot predict
the Earth’s weather in detail even though we know that winds derive their energy
from sunlight heating the air and the ground. The interstellar gas may be turbulent,
with energy passed successively from motions on larger scales to smaller. Models
of subsonic turbulence predict that random speeds σ measured inside a cloud of
size L should increase as σ ∝ L1/3. This is approximately true for the atomic and
molecular gas.

Problem 2.21 For molecules of H2 in a cloud with T = 20 K, n(H2) =
200 cm−3, calculate the sound speed cs: kBT = μmHc2

s , where μmH is the

molecular mass. What is the sound speed for CO molecules in this same cloud?

From Table 2.4, what is the sound speed for cool HI and for warm neutral gas?

Show that cool HI clouds move through the warm interstellar medium at speeds

close to the sound speed of that warm gas. An HII region cannot expand into the

surrounding gas faster than this sound speed: how fast is that when T ≈ 104 K?

If its temperature does not change, show that an HII region 1 pc across with

nH = 103 cm−3 would take 1 Myr to expand until its pressure balances that of

the warm diffuse gas.

The Milky Way’s dust absorbs nearly half of its ultraviolet and optical
starlight. Most of this energy warms the grains, which radiate in the infrared, as
we see in the fifth and sixth panels on the front cover. Cool interstellar gas contains
about one grain of dust per 1012 hydrogen atoms: on average, one grain per 100-
meter cube. Most obviously, dust absorbs the visible light of stars, which would
otherwise travel through the gas. Absorption by dust diminishes sharply toward
the infrared. Since dust most efficiently absorbs light of wavelengths smaller than
the grain size, this tells us that most grains have sizes ∼<0.3 μm.

Problem 2.22 Use the blackbody equations of Section 1.1 to find the approx-

imate temperature of a dust grain that radiates mainly at 150 μm. Show that a

large dust grain 1 pc from an O star with L = 106L� will be heated to roughly

this temperature. (Remember that a grain of radius rg absorbs starlight over an

area πr2
g , but emits from its whole surface.) The galaxy M82 is undergoing a
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Fig. 2.24. Infrared spectra of Sb spiral galaxy NGC 7331 and starburst galaxy M82.

Equal heights in λFλ correspond to equal energy radiated per decade in frequency. For

wavelengths of atomic lines, see Table 1.7; PAHs emit shortward of 30 μm; emission

from large dust grains peaks near 100 μm – J. D. Smith, D. Dale, and A. Li: Spitzer Space

Telescope; G. Lagache: ISO.

burst of star formation: at what wavelength does it emit most of its energy? Show

that its large dust grains have T ∼ 50 K. How far from the star would the dust

have to be to reach an average temperature of 150 K, so that it radiates at 30 μm?

Figure 2.24 shows an infrared spectrum of the star-forming ring of NGC 7331,
a galaxy much like the Milky Way or our neighbor M31. We see that its dust grains
are a complex mixture. Large grains, with temperatures ∼30 K, are responsible
for the emission peaking at 100 μm. Radiation at around 30 μm requires hotter
grains at T ∼> 100 K. Few grains are so close to stars that they reach such a high
average temperature. Instead, we believe that this emission comes from grains
smaller than 10 nm, with fewer than 106 carbon atoms. These are so tiny that
absorbing a single ultraviolet photon raises their temperature above 100 K.

Probably 10%–20% of the mass of interstellar dust is in the tiniest particles,
the polycyclic aromatic hydrocarbons (PAHs), with 100 carbon atoms or fewer.
Their carbon atoms are arranged in rings that make up a flat sheet or even a round
‘buckyball’. These behave like large molecules rather than amorphous solids.
Stretching of their C—C and C—H bonds gives rise to the strong emission lines
in the 3–20 μm region. When a PAH molecule absorbs an ultraviolet photon,
about 10% of the time it will throw out a fast-moving photoelectron, which loses
its energy as it collides with electrons in the gas. This is probably the main way
that the atomic gas is heated.

Dust grains consist largely of magnesium and iron silicates, from the oxygen-
rich atmospheres of red giant stars, and carbon in various forms: amorphous soot,
graphite, and PAHs. In dense cold clouds, mantles of water ice, methane, and
ammonia condense out onto the larger grains. Dust makes up about 1% of the
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mass of interstellar material, and more in denser gas. In gas of approximately
solar composition, elements heavier than helium hold only 2% of the mass. Thus,
in dense clouds, almost all of the carbon, oxygen, magnesium, etc. must be in dust,
leaving the gas depleted of those elements. Dust grains are continually knocked
apart as they collide with fast-moving atoms and with each other, and built up by
absorbing atoms of interstellar gas onto their surfaces. The material now present
in a grain has probably been there for less than 500 Myr.

The surface of grains is the main site where hydrogen molecules are made.
These form only slowly in a gas, because the atoms rarely encounter each other and
then find it difficult to lose energy to become bound in a molecule, since the process
is strongly forbidden because of symmetry. At typical densities nH ∼ 100 cm−3,
atomic hydrogen would take 1013 yr to form H2. When the atoms can be absorbed
onto grains to ‘find’ each other there, and then transfer excess energy to the grain
to release a bound molecule, H2 forms ∼108 times faster.

Problem 2.23 In a very simple model, H atoms that collide with a grain stick

to it for long enough to find a partner; the pair departs as a molecule of H2.

In a cloud at T = 50 K, show that the thermal speed of Problem 1.9 is vth ≈
1 km s−1. From Problem 1.11, take the grain radius a = 0.1μm and number

density ng = 10−12nH. Show that an H atom collides with a grain after an average

time (ngπa2vth)−1 or 10 Myr × (1 cm−3/nH). The Sun, and gas orbiting along

with it, takes 5%–10% of a ‘Galactic year’ (see Problem 2.14) to pass through a

spiral arm. Show that this is long enough for an HI cloud with nH = 100 cm−3

to become largely molecular.

The interstellar gas is an ‘open’ system: it needs a continuous energy supply.
A star like our Sun will not change its orbit significantly within a Hubble time,
unless the Milky Way has a near-collision with another galaxy: the stellar disk and
bulge are close to equilibrium. By contrast, the gas layer is like a pan of boiling
water; unless energy is supplied to it, the gas will cool rapidly, and the random
motions of the clouds will dissipate. Energy is added to the interstellar gas by
stellar radiation, by collisions with cosmic rays, and mechanically by supernovae,
stellar winds, and Galactic rotation which stretches the magnetic field.

As one example, we can ask how quickly ionized hydrogen reverts to a neutral
state. In each cubic centimeter, neutral atoms are produced at a rate which increases
as the number of electrons, ne, times the number of protons, np ≈ ne, times
the rate at which they encounter each other and recombine, which depends on
the temperature Te of the (lighter and faster-moving) electrons. Thus electrons
recombine at the rate

− dne

dt
= n2

eα(Te) with α(Te) ≈ 2 × 10−13
(

Te

104 K

)−3/4

cm3 s−1.

(2.21)
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Here, the function α(Te) hides the physics of encounters with a range of relative
speed; we have taken it from Equation 5.6 of the book by Dyson and Williams.
The approximation is good for 5000 K ∼< T ∼< 20 000 K. The recombination
time trec is given by the number of electrons, divided by the rate at which they
disappear:

trec = ne

|dne/dt | = 1

neα(Te)
≈ 1500 yr ×

(
Te

104 K

)3/4(100 cm−3

ne

)
. (2.22)

When the gas is hotter, electrons and protons collide more frequently but are less
likely to stick together, so trec is longer.

Within HII regions, trec is only a few thousand years. The ionized gas rapidly
recombines once the star no longer provides ultraviolet photons. In the warm
ionized interstellar gas the density is only ∼0.1 cm−3, and recombination takes
∼2 Myr. But, because there is so much of this gas, it must absorb at least 25% of
the ultraviolet radiation from all the O and B stars in the disk in order to maintain
its ionized state. These energetic photons must find their way to ∼1 kpc above the
midplane, between the clouds of neutral gas.

Problem 2.24 We can estimate the size of an HII region around a massive star that

radiates S
 photons with energy above 13.6 eV each second. Assume that the gas

within radius r
 absorbs all these photons, becoming almost completely ionized,

so that ne ≈ nH, the density of H nuclei. In a steady state atoms recombine as

fast as they are ionized, so the star ionizes a mass of gas Mg, where

S
 = (4r3

 /3)n2

Hα(Te) = (Mg/mp)nHα(Te).

Use Equation 2.21 to show that a mid-O star radiating S
 = 1049 s−1 into gas of

density 103 cm−3 creates an HII region of radius 0.67 pc, containing ∼30M� of

gas (assume that Te = 104 K). What is r
 if the density is ten times larger? Show

that only a tenth as much gas is ionized. How large is the HII region around a B1

star with nH = 103 cm−3 but only S
 = 3 × 1047 s−1?

The cooling time tcool measures how fast the gas radiates away its thermal
energy. When there are n atoms cm−3, the energy in each cubic centimeter is
proportional to nT ; if it radiates with luminosity L , tcool ∝ nT/L . When the gas
is optically thin, we have a formula like Equations 1.17 and 2.21: the number of
photons from that volume is proportional to n2. We can write

L = n2�(T ), so tcool ∝ T/[n�(T )]. (2.23)

�(T ) depends only on the temperature, so denser gas cools more rapidly.
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Table 2.5 Main processes that cool the interstellar gas

Temperature Cooling process Spectral region

>107 K Free–free X-ray
107 K < T < 108 K Iron resonance lines X-ray
105 K < T < 107 K Metal resonance lines UV, soft X-ray
8000 K < T < 105 K C, N, O, Ne forbidden lines IR, optical
Warm neutral gas: ∼8000 K Lyman-α, [OI] 1216 Å, 6300 Å
100 K < T < 1000 K [OI], [CII], H2 Far IR: 63 μm, 158 μm
T ∼ 10−50 K CO rotational transitions Millimeter-wave

0.3110100

100

1

0.01

Fig. 2.25. For gas of solar composition, luminosity L , from each cubic centimeter (solid

curve), and cooling time tcool (broken curve). Above 10 000 K we set nH = 1 cm−3; the gas

is optically thin, and L = n2�(T ). Below 10 000 K the thermal pressure p/kB = 3000, and

cosmic-ray and ultraviolet fluxes are as measured near the Sun; we set NH = 1019 cm−2,

so almost all H is atomic – M. Wolfire and G. Hensler.

Figure 2.25 shows the cooling curve for gas of roughly solar composition,
and Table 2.5 lists the main processes that carry away energy. Above about
107 K, almost all the atoms are fully ionized, and the gas cools by free–free
radiation (see Section 1.2). Roughly �(T ) ∝ √

T , so tcool ∝ √
T /n; we can

see from Figure 2.25 that hotter gas needs longer to cool. At lower temperatures
the resonance lines of iron and other metals become the main coolants. They are
very efficient, so �(T ) rises steeply between 106 and 104 K; gas cannot remain
long at temperatures between that of the hot and warm phases of the interstellar
medium. In neutral gas below about 8000 K, the energy loss drops sharply. It also
depends on the column density NH, which determines how far ultraviolet pho-
tons penetrate to ionize atoms and dissociate molecules. Almost all of the cooling
below 107 K depends on elements heavier than hydrogen and helium; so, in the
metal-poor gas of the first galaxies, it would have been much weaker than it is
today.
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Various processes heat the Milky Way’s gas, replacing the lost energy. The
diffuse hot gas was heated to ∼106 K, as it passed through the shock caused by
the expanding remnant of a supernova. At the densities observed near the Sun,
Figure 2.25 shows that it cools rapidly, within 104−105 yr, condensing into cooler
clouds. Near the Sun’s position, a given region is crossed by a supernova shock
about once per 1−5 Myr, reheating the gas. Far from the midplane the hot gas is
less dense, and cooling times can reach 1 Gyr.

Clouds of warm and cool HI gas are warmed by photoelectric heating, as
ultraviolet light of stars falls onto the smallest dust grains. They are cooled by
far-infrared lines of oxygen and carbon. When the gas temperature falls below
∼100 K, collisions among gas atoms are not energetic enough to excite the far-
infrared atomic lines. In molecular clouds, energy is lost mainly in the millimeter-
wavelength lines of CO. Table 1.8 shows that the lowest rotational level lies
only 5.5 K above the ground state, so it is excited by collisions in gas near that
temperature or above. The main source of heat is cosmic rays, which penetrate
right through the clouds; they strip electrons from gas atoms, which then share
their energy as they bump into electrons in the gas. Molecular clouds are dark; only
far-infrared and longer wavelengths of light can reach the interior. The infrared
light warms the dust grains, which in turn prevent even the densest and darkest
clouds from cooling below ∼10 K (see Problem 1.12).

Unlike stars, the warm and cool gas clouds are large enough that they occa-
sionally collide with one another. So, like molecules in a gas, they exert pressure.
The random speeds of HI clouds are typically σr ∼ 10 km s−1, and the volume-
averaged density 〈nHI〉 ∼ 0.5 cm−3 near the Sun; so the density of kinetic energy
3〈ρHI〉σ 2

r /2 is equivalent to p/kB ∼ 8000. Table 2.4 shows that this is much larger
than the thermal pressure of the gas, but about the same as the pressures contributed
by magnetic fields and cosmic rays.

This rough equality is no accident. The Milky Way’s magnetic field takes
most of its energy from differential rotation, which tends to pull gas at small
radii ahead of that further out. The magnetic field is frozen into the gas, so field
lines connecting clouds at different radii are stretched out as the Galaxy rotates,
strengthening the field. Random motions of the gas clouds, the pressure of cosmic
rays, and disturbances from stellar winds and supernova explosions also stretch and
tangle the field. The strength of the field depends on the vigor of these processes.

As they collide, much of the clouds’ bulk motion is converted to heat, which
is radiated away. The clouds’ random motion would cease within 10−30 Myr if
they were not shaken about by supernova explosions, winds from HII regions, the
pull of magnetic fields, and passage through spiral arms. Thus we see that energy
is continually transferred among cloud motions, magnetic field, and cosmic rays.
In very complex processes, often the energies of the various motions are driven
to be equal on average, just as kinetic energy is on average distributed equally
among the colliding molecules of gas in a room. Here, each component exerts
roughly equal pressure.
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New stars are born in the Milky Way’s dense molecular clouds. These clouds
are at much higher pressure than the surrounding atomic gas, because they must
resist the inward pull of their own gravity. We will see in Section 8.5 that gravity
will cause a gas cloud of density ρ and temperature T to collapse on itself, if its
diameter exceeds the Jeans length

λJ = cs

√
π

Gρ
;

here cs is the sound speed c2
s = kBT/(μmH), and μmH is the mean molecular

mass. The mass MJ within this sphere is the Jeans mass:

MJ ≡ π

6
λ3

Jρ =
(

1

μmH

)2 (kBT

G

)3/2 (4πn

3

)−1/2
π3

3
√

3

≈ 20

(
T

10 K

)3/2 (100 cm−3

n

)1/2

M�. (2.24)

If gas pressure is not enough to prevent it, the cloud collapses after approximately
a free-fall time (see Equation 3.23 in Section 3.1):

tff =
√

1

Gρ
≈ 108

√
nH

yr. (2.25)

When do we expect collapse to be so rapid? A gas heats up as it is compressed, so
the Jeans mass increases according to Equation 2.24. Unless it can radiate away
this heat, gas pressure will slow the collapse. Thus the cooling time must be short:
tcool � tff. If T does not grow, the Jeans mass decreases as the density rises, and
the original cloud can break into smaller fragments which themselves collapse
independently. This continues until the densest fragments become optically thick;
they heat up and begin to shine as protostars.

Table 2.4 shows that the Galaxy has (1–2) × 109M� in molecular clouds,
at densities above 100 cm−3, and T ∼ 10–20 K. According to Equations 2.24
and 2.25, any of these clouds larger than 60M� should collapse within about
10 Myr. Converting all of the Galaxy’s molecular material to stars in this way
yields ∼100M� yr−1 of new stars – far more than the (3–5)M� yr−1 of new stars
that we observe. Either a collapsing molecular cloud turns very little of its mass
into stars, or something – perhaps ‘frozen’ magnetic fields or turbulent motions –
must slow the collapse.

Just as water passes between solid, liquid, and vapor phases in Earth’s atmo-
sphere, so interstellar material passes continually between different phases. As
HI gas cools or is compressed in a spiral arm, more of it converts to the
dense cold phase. When atomic clouds become dense enough that ultraviolet
light cannot penetrate their interiors, H2 forms on dust grains. The molecular
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clouds lose heat and gradually contract, forming new stars if they are not first
disrupted. As new massive stars shine on the remains of the dense cloud in which
they were born, their ultraviolet photons split H2 molecules apart, then ionize the
atoms to form an HII region. This expands, breaking out of the molecular cloud
to mix with the warm ionized medium.

Near the end of their lives, we saw in Section 1.1 that low-mass stars become
red giants and supergiants, shedding dusty gas enriched in heavy elements pro-
duced by their nuclear burning. Supernova explosions also release dust and heavy
elements. Even though the energy in these explosions is only ∼1% of that in
starlight, supernovae are the main source of the Galaxy’s hot gas and cosmic rays.
Their shock waves heat surrounding gas to over a million degrees, sweep up and
so strengthen the magnetic field, and accelerate cosmic rays.

Once massive stars have destroyed their natal molecular cloud with ultraviolet
radiation, stellar winds, and supernova explosions, no further stars can be born
there until the gas has had time to cool and become dense again. If a galaxy
undergoes a starburst (see Section 7.1), turning most of its cool gas into stars
within ∼<300 Myr, repeated supernova explosions in a small volume can heat up
so much gas that it forces its way out of the galaxy as a superwind. The average
stellar birthrate in the Milky Way is set by this feedback loop: too-vigorous star
formation in a particular region inhibits further starbirth. In a large galaxy like
ours, an expanding supernova compresses cool gas in nearby regions of the disk,
and can trigger collapse of the densest parts to make new stars. Thus star formation
can ‘spread like a disease’ across the face of the galaxy. We will see in Section 4.4
that a dwarf galaxy is more likely to have episodes of rapid starbirth across the
entire system, interspersed with quiet periods.

Further reading: two undergraduate texts are J. E. Dyson and D. A. Williams, 1997,
The Physics of the Interstellar Medium, 2nd edition; and D. C. B. Whittet, 1992,
Dust in the Galactic Environment (both from Institute of Physics Publishing,
London and Bristol, UK). On the origin of cosmic rays, see M. S. Longair, 1994,
High Energy Astrophysics, 2nd edition, Chapters 17–21 of Volume 2, Stars, the
Galaxy and the Interstellar Medium (Cambridge University Press, Cambridge,
UK). On the graduate level, see J. Lequeux, The Interstellar Medium (English
translation, 2004; Springer, Berlin and Heidelberg, Germany).
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The orbits of the stars

Stars travel around the Galaxy, and galaxies orbit within their groups and clusters,
under the force of gravity. Stars are so much denser than the interstellar gas through
which they move that neither gas pressure nor the forces from embedded magnetic
fields can deflect them from their paths. If we know how mass is distributed, we
can find the resulting gravitational force, and from this we can calculate how the
positions and velocities of stars and galaxies will change over time.

But we can also use the stellar motions to tell us where the mass is. As
we discovered in Chapter 2, much of the matter in the Milky Way cannot be
seen directly. Its radiation may be absorbed, as happens for the visible light of
stars in the dusty disk. Some material simply emits too weakly: dense clouds
of cold gas do not show up easily in radio-telescope maps. The infamous dark
matter still remains invisibly mysterious. But, since the orbits of stars take them
through different regions of the galaxies they inhabit, their motions at the time we
observe them have been affected by the gravitational fields through which they
have travelled earlier. So we can use the equations for motion under gravity to
infer from observed motions how mass is distributed in those parts of galaxies
that we cannot see directly.

Newton’s law of gravity, and methods for computing the gravitational forces,
are introduced in Section 3.1. Usually we can consider the stars as point masses,
because their sizes are small compared with the distances between them. Since
galaxies contain anywhere between a million stars and 1012 of them, we usu-
ally want to look at the average motion of many stars, rather than following the
individual orbit of each one. We prove the virial theorem, relating average stellar
speeds to the depth of the gravitational potential well in which they move. Orbital
dynamics and the virial theorem are our tools to find masses of star clusters and
galaxies.

The gravitational potential of a galaxy or star cluster can be regarded as the
sum of a smooth component, the average over a region containing many stars,
and the very deep potential well around each individual star. In Section 3.2, we
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will see that the motion of stars within a galaxy is determined almost entirely by
the smooth part of the force. Two-body encounters, transferring energy between
individual stars, can be important within dense star clusters. We discuss how
these encounters change the cluster’s structure, eventually causing it to disperse
or ‘evaporate’.

Section 3.3 covers the epicycle theory, which is a way to simplify the
calculation of motions for stars like the Sun, that follow very nearly circular orbits
within a galaxy’s disk. Using epicycles, we can explain the observed motions of
disk stars near the Sun. Section 3.4 is the most technical of the book: it introduces
the collisionless Boltzmann equation, linking the number of stars moving with
given velocity at each point in space to the gravitational force acting on them. We
survey a few of its many uses, such as finding the mass density in the Galactic
disk near the Sun. We remind readers of Plato’s warning (Timaeus, 91d): the
innocent and lightminded, who believe that astronomy can be studied by looking
at the heavens without knowledge of mathematics, will return in the next life as
birds.

Symbols. We use boldface to indicate a vector quantity. The energy and angular
momentum of a star are given by E and L; E is energy per unit mass, while L
and its components denote angular momentum per unit mass. F is used both for
a force and for force per unit mass, depending on the context.

3.1 Motion under gravity: weighing the Galaxy

Newton’s law of gravity tells us that a point mass M attracts a second mass
m separated from it by distance r, causing the velocity v of m to change according
to

d

dt
(mv) = −GmM

r3
r, (3.1)

where G is Newton’s gravitational constant. In a cluster of N stars with masses
mα (α = 1, 2, . . . , N ), at positions xα, we can add the forces on star α from all
the other stars:

d

dt
(mαvα) = −

∑
β

α �=β

Gmαmβ

|xα − xβ |3 (xα − xβ). (3.2)

The mass mα cancels out of this equation, so the acceleration dvα/dt is
independent of the star’s mass: light and heavy objects fall equally fast. This is
the principle of equivalence between gravitational and inertial mass, which is the
basis for the general theory of relativity. We can write the force from the cluster on
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a star of mass m at position x as the gradient of the gravitational potential �(x):

d

dt
(mv) = −m ∇�(x), with �(x) = −

∑
α

Gmα

|x − xα| for x �= xα, (3.3)

where we have chosen an arbitrary integration constant so that �(x) → 0 at large
distances. If we think of a continuous distribution of matter in a galaxy or star
cluster, the potential at point x is given by an integral over the density ρ(x′) at all
other points:

�(x) = −
∫

Gρ(x′)
|x − x′| d3x′, (3.4)

and the force F per unit mass is

F(x) = −∇�(x) = −
∫

Gρ(x′)(x − x′)
|x − x′|3 d3x′. (3.5)

The integral relation of Equation 3.4 can be turned into a differential equation.
Applying ∇2 to both sides, we have

∇2�(x) = −
∫

Gρ(x′)∇2
(

1

|x − x′|
)

d3x′. (3.6)

In three dimensions, differentiating with respect to the variable x gives, for x �= x′

(check by trying it in Cartesian coordinates),

∇
(

1

|x − x′|
)

= − x − x′

|x − x′|3 , and ∇2
(

1

|x − x′|
)

= 0. (3.7)

So the integrand on the right-hand side of Equation 3.6 is zero outside a small
sphere Sε(x) of radius ε centred on x. If we take ε small enough that the density
ρ is almost constant inside the sphere, we have

∇2�(x) ≈ −Gρ(x)
∫

Sε(x)
∇2
(

1

|x − x′|
)

d3x′

= −Gρ(x)
∫

Sε(x)
∇2

x′

(
1

|x − x′|
)

dV ′; (3.8)

in the last step, ∇2
x′ means that the derivative is taken with respect to the variable

x′, instead of x. (Check in Cartesian coordinates that the two ∇2s are equal for
any function of |x − x′|.)

Now we can use the divergence theorem: for any smooth-enough function f ,
the volume integral of ∇2

x′ f over the interior of any volume is equal to the integral
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of ∇x′ f · dS′ over the surface. We also have ∇x′ f = −∇ f for any function
f (x − x′). Setting f = 1/|x − x′|, Equation 3.7 tells us that, on the surface of
the sphere Sε(x), the gradient ∇x′ f is a vector of length ε−2 pointing in toward
the point x. The surface area is 4πε2, so the integral of ∇x′ f · dS′ in Equation 3.8
is −4π . We have Poisson’s equation:

∇2�(x) = 4πGρ(x). (3.9)

This can be a more convenient relationship between the potential �(x) and the cor-
responding density than the integral in Equation 3.4. To choose an approximation
for the density ρ(x) of a star cluster or galaxy, we can select a mathematically con-
venient form for the potential �(x), and then calculate the corresponding density.
We must take care that ρ(x) ≥ 0 everywhere for our chosen potential; various
apparently friendly potentials turn out to imply ρ(x) < 0 in some places. The
problems below deal with some commonly used potentials.

Problem 3.1 Use Equation 3.1 to show that, at distance r from a point mass M,

the gravitational potential is

�(r ) = −GM
r

. (3.10)

Problem 3.2 The Plummer sphere is a simple if crude model for star clusters

and round galaxies. Its gravitational potential

�P(r ) = − GM√
r2 + a2

P

(3.11)

approaches that of a point mass at x = 0 when r � aP. What is its total mass?

(Hint: look ahead to Equation 3.22.) Show that its density is

ρP(r ) = 1

4πG

1

r2

d

dr

(
r2 d�P

dr

)
= 3a2

P

4π

M(
r2 + a2

P

)5/2 . (3.12)

In Section 3.4 we will see that ρP(r ) describes a polytropic system, where the

number of stars at each energy E is proportional to a power of (−E).

When the Plummer sphere is viewed from a great distance along the axis z,

show that the surface density at distance R from the center is

�P(R) =
∫ ∞

−∞
ρP(

√
R2 + z2)dz = M

π

a2
P(

a2
P + R2

)2 . (3.13)

Check that the core radius rc, where �P(R) drops to half its central value, is at

rc ≈ 0.644aP.
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Problem 3.3 The potential for the ‘dark halo’ mass distribution of Equation 2.19

cannot be written in a simple form, except in the limit that aH → 0. Show that

the potential corresponding to the density

ρSIS(r ) = ρ(r0)

(r/r0)2
is �SIS(r ) = V 2

H ln(r/r0), (3.14)

where r0 is a constant and V 2
H = 4πGr2

0 ρ(r0): this is the singular isothermal

sphere. The density has a cusp: it grows without limit at the center. Show that

both �SIS and the mass within radius r have no finite limit as r → ∞, and that

the speed in a circular orbit is VH at all radii. The singular isothermal sphere

describes a system in which the number of stars at each energy E is proportional

to exp[−E/(2V 2
H)].

Problem 3.4 A simple disk model potential is that of the Kuzmin disk: in cylin-

drical polar coordinates R, z,

�K(R, z) = − GM√
R2 + (aK + |z|)2

. (3.15)

Irrespective of whether z is positive or negative, this is the potential of a point

mass M at R = 0, displaced by a distance aK along the z axis, on the opposite

side of the plane z = 0. Show that ∇2� = 0 everywhere except at z = 0; use

the divergence theorem to show that there the surface density is

�K(R) = aK

2π

M(
R2 + a2

K

)3/2 . (3.16)

For a spherical galaxy or star cluster, Newton proved two useful theorems
about the gravitational field. The first states that the gravitational force inside a
spherical shell of uniform density is zero. In Figure 3.1, the star at S experiences a
gravitational pull from the material at A within a narrow cone of solid angle ��,
and a force in the opposite direction from mass within the same cone at B. By
symmetry, the line AB makes the same angle with the normal OA to the surface
at A as it does with OB at B. Thus the ratio of the mass enclosed is just (SA/SB)2;
by the inverse-square law, the forces are exactly equal, and cancel each other out.
Thus there is no force on the star, and the potential �(x) must be constant within
the shell.

The second theorem says that, outside any spherically symmetric object, the
gravitational force is the same as if all its mass had been concentrated at the
center. If we can show that this is so for a uniform spherical shell, it must be true
for any spherically symmetric object built from those shells. To find the potential
�(x) at a point P lying outside a uniform spherical shell of mass M and radius a,
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Fig. 3.1. The gravitational force inside a uniform hollow sphere with its center at O.

a

P
Q

P'
Q'

P
Q

P'

r r

Q'

Fig. 3.2. The gravitational potential outside a uniform spherical shell.

at distance r from the center, we can add the contributions �� from small patches
of the shell. On the left of Figure 3.2, the mass in a narrow cone of opening solid
angle �� around Q′ contributes

��[x(P)] = − GM
|x(P) − x(Q′)|

��

4π
. (3.17)

Now think of the potential �′ at point P′, lying at distance a from the center inside
a sphere of the same mass M, but now with radius r . On the right in Figure 3.2,
we see that the contribution ��′ from material in the same cone, which cuts the
larger sphere at Q, is

��′[x(P′)] = − GM
|x(P′) − x(Q)|

��

4π
. (3.18)

But, because PQ′ = P′Q, this is equal to ��[x(P)]. So, when we integrate over
the whole sphere,

�[x(P)] = �′[x(P′)] = �′[x = 0] = −GM
r

; (3.19)

the potential and force at P are exactly the same as if all the mass of the sphere
with radius a had been concentrated at its center.
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These two theorems tell us that, within any spherical object with density ρ(r ),
the gravitational force toward the center is just the sum of the inward forces from
all the matter inside that radius. The acceleration V 2/r of a star moving with
speed V (r ) in an orbit of radius r about the center must be provided by the inward
gravitational force −Fr(r ). So, if M(<r ) is the mass within radius r , we have

V 2(r )

r
= −Fr(r ) = GM(<r )

r2
. (3.20)

We already used this equation in Section 2.3 to find the mass of the Milky Way.
Whenever we can find gas or stars in near-circular orbit within a galaxy, this is by
far the simplest and most reliable way to estimate the mass.

For a point mass, we have V (r ) ∝ r−1/2; in a spherical galaxy the rotation
speed can never fall more rapidly than this. The potential �(r ) is

�(r ) = −
[

GM(<r )

r
+ 4πG

∫ ∞

r
ρ(r ′)r ′ dr ′

]
(3.21)

(check that differentiating this with respect to r gives you back Equation 3.20).
We see that �(r ) is not equal to −GM(< r )/r , unless all the mass lies within
radius r . But Equation 3.4 implies that, at a great distance from any system with
finite mass Mtot,

�(x) −→ −GMtot

|x| . (3.22)

Problem 3.5 Use Equation 3.20 to show that, if the density ρ in a spherical

galaxy is constant, then a star following a circular orbit moves so that its angular

speed �(r ) = V (r )/r is constant. Show that a star moving on a radial orbit, i.e.,

in a straight line through the center, would oscillate harmonically in radius with

period

P =
√

3π

Gρ
∼ 3tff, where tff ≡

√
1/Gρ. (3.23)

The free-fall time tff is roughly the time that a gas cloud of density ρ would take

to collapse under its own gravity, if it is not held up by pressure. Show that, if

you bored a hole through the center of the Earth to the other side, and dropped

an egg down it, then (ignoring air resistance, outflows of molten lava, etc.) you

could return about an hour and a half later to retrieve the egg as it returned to its

starting point.

Problem 3.6 From the Sun’s orbital speed of 200 km s−1, find the mass within

its orbit at r = 8 kpc. Show that the average density inside a sphere of this radius
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around the Galactic center is ∼0.03M� pc−3, so that tff ∼ 100 Myr. This is a

typical density for the inner parts of a galaxy. Processes such as bursts of star

formation that involve large parts of the galaxy happen on roughly this timescale,

because gravitational forces cannot move material any faster through the

galaxy.

Problem 3.7 The Navarro–Frenk–White (NFW) model describes the halos of

cold dark matter that form in simulations like that of Figure 7.16. Show that the

potential corresponding to the density

ρNFW(r ) = ρN

(r/aN)(1 + r/aN)2
is �NFW(r ) = −σ 2

N
ln(1 + r/aN)

(r/aN)
, (3.24)

where σ 2
N = 4πGρNa2

N. The density rises steeply at the center, but less so than

in the singular isothermal sphere; at large radii ρ(r ) ∝ r−3. Show that the speed

V of a circular orbit at radius r is given by

V 2(r ) = σ 2
N

[
ln(1 + r/aN)

(r/aN)
− 1

(1 + r/aN)

]
. (3.25)

When finding the orbit of a single star moving through a galaxy, we will
see in Section 3.2 that we can usually ignore the effect which that star has in
attracting all the other stars, and thus changing the gravitational potential. If the
mass distribution is static (the galaxy is not, for example, collapsing, or colliding
with something), the potential at position x does not depend on time. Then as the
star moves with velocity v, the potential �(x) at its location changes according
to d�/dt = v · ∇�(x). Taking the scalar product of Equation 3.3 with v, we
have

v · d

dt
(mv) + mv · ∇�(x) = 0 = d

dt

[
1

2
mv2 + m�(x)

]
. (3.26)

Thus

E ≡ 1

2
mv2 + m�(x) = constant along the orbit. (3.27)

The star’s energy E is the sum of its kinetic energy KE = mv2/2 and the potential
energy PE = m�(x). The kinetic energy cannot be negative, and Equation 3.22
tells us that, far from an isolated galaxy or star cluster, �(x) → 0. So a star at
position x can escape only if it has E > 0; it must be moving faster than the local
escape speed ve, given by

v2
e = −2�(x). (3.28)
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Problem 3.8 The Sun moves in a near-circular orbit about the Galactic center

at radius R0 ≈ 8 kpc, with speed V0 ≈ 200 km s−1. If all the mass of the Milky

Way were concentrated at its center, show that its total mass would be about

7 × 1010M�, and that a nearby star would escape from the Galaxy if it moved

faster than
√

2V0. In fact, we see local stars with speeds as large as 500 km s−1;

explain why this tells us that the Galaxy contains appreciable mass outside the

Sun’s orbit.

The star’s angular momentum L = x × mv changes according to

dL
dt

= x × d

dt
(mv) = −mx × ∇� (3.29)

(why can we leave out the term dx/dt ×mv?). If a galaxy is spherically symmetric
about x = 0, the force ∇� points toward the center, and L does not change. For
a star moving in an axisymmetric galaxy, we will see in Section 3.3 below that
only the component of angular momentum parallel to the symmetry axis remains
constant.

Problem 3.9 Calculate the energy E and angular momentum L of a star of mass

m moving in a circular orbit of radius r in the Plummer potential of Equation 3.11.

Show that the circular speed V (r ) increases with radius near the center and falls

further out, and that dL/dr > 0 everywhere, while the angular speed �(r ) = V/r

is always decreasing.

Problem 3.10 For a particle in circular orbit in a potential �(r ) = −Kr−α ,

where K and α are positive constants, show that V 2(r ) = −α�(r ). Two gas

clouds, of masses m1 and m2, follow circular orbits at radii r1 and r2, with r1 < r2.

What is the total energy E and the angular momentum L?

The gas clouds are now displaced to different circular orbits at radii r1 +�r1

and r2 + �r2. How must �r1 and �r2 be related so that L remains unchanged?

Assuming that �r1 and �r2 are small, what is the energy change �E? Show that,

if α < 2, the angular momentum r V (r ) of a circular orbit increases with r . We

will see in Section 3.3 that this condition is met whenever the circular orbit is

stable. Show that the second state then has lower energy than the initial energy

if �r1 < 0. Processes that couple different regions of a rotating disk, such as

viscosity or spiral structure, can extract energy from the rotation by moving mass

inward and angular momentum outward.

In a cluster of stars, the gravitational potential will change as the stars move:
� = �(x, t). The energy of each star is no longer conserved, only the total for the
cluster as a whole. To show this, we take the scalar product of Equation 3.2 with
vα, and sum over all the stars. The left-hand side gives the derivative of the total
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kinetic energy KE :

∑
α

vα · d

dt
(mαvα) = d

dt
KE = −

∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (xα − xβ) · vα. (3.30)

But we could have started with the equation for the force on star β, and taken the
scalar product with vβ to find

1

2

∑
β

d

dt
(mβvβ · vβ) = −

∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (xβ − xα) · vβ. (3.31)

Adding the right-hand sides of the last two equations gives

−
∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (xα − xβ) · (vα − vβ) =
∑
α,β
α �=β

d

dt

(
Gmαmβ

|xα − xβ |
)

. (3.32)

The cluster’s potential energy PE is the sum of contributions from pairs of stars:

PE = −1

2

∑
α,β
α �=β

Gmαmβ

|xα − xβ | = 1

2

∑
α

mα�(xα) or
1

2

∫
ρ(x)�(x)dV ; (3.33)

dividing by two means that each pair contributes only one term to the sum. On
adding Equations 3.30 and 3.31, we see that

2
d

dt

⎡
⎢⎣KE − 1

2

∑
α,β
α �=β

Gmαmβ

|xα − xβ |

⎤
⎥⎦ = 0. (3.34)

Thus the total energy E = KE + PE of the cluster is constant.

Problem 3.11 Show that, at radius r inside a uniform sphere of density ρ, the

radial force Fr = −4πGρr/3. If the density is zero for r > a, show that

�(r ) = −2 πGρ

(
a2 − r2

3

)
for r ≤ a, (3.35)

so that the potential energy is related to the mass M by

PE = −16π2

15
Gρ2a5 = −3

5

GM2

a
. (3.36)

Taking a = R�, the solar radius, and the mass M = M�, show that

PE ∼ L� × 107 yr; approximately this much energy was set free as the Sun
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contracted from a diffuse cloud of gas to its present size. Since the Earth is about

4.5 Gyr old, and the Sun has been shining for at least this long, it clearly has

another energy source – nuclear fusion.

Problem 3.12 Show that, for the Plummer sphere of Equation 3.12,

PE = −3π

32

GM2

aP
. (3.37)

We will use this result to find the masses of star clusters.

According to Equation 3.34, the stars in an isolated cluster can change their
kinetic and potential energies, as long as the sum of these remains constant. As
they move further apart, their potential energy increases, and their speeds must
drop so that the kinetic energy can decrease. If the stars moved so far apart that
their speeds dropped to zero, and then just stayed there, the system could still
satisfy this equation. But star clusters cannot remain in this state: Equation 3.2
makes clear that the stars are accelerated into motion. The virial theorem tells us
how, on average, the kinetic and potential energies are in balance.

To prove this theorem, we return to Equation 3.2, but we now add an external
force Fext; this might represent, for example, the gravitational pull of a galaxy on
a star cluster within it. We take the scalar product with xα and sum over all the
stars to find

∑
α

d

dt
(mαvα) · xα = −

∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (xα − xβ) · xα +
∑

α

Fα
ext · xα. (3.38)

We would have had a similar equation if we had started with the β force:

∑
β

d

dt
(mβvβ) · xβ = −

∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (xβ − xα) · xβ +
∑
β

Fβ
ext · xβ. (3.39)

The left-hand sides of these two equations are the same; each is equal to

1

2

∑
α

d2

dt2
(mαxα · xα) −

∑
α

mαvα · vα = 1

2

d2 I

dt2
− 2KE, (3.40)

where I is the moment of inertia of the system:

I ≡
∑

α

mαxα · xα. (3.41)
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By averaging Equations 3.38 and 3.39, we find (compare with Equation 3.32) that
the first term on the right-hand side is the potential energy PE : so

1

2

d2 I

dt2
− 2KE = PE +

∑
α

Fα
ext · xα. (3.42)

Now we average this equation over the time interval 0 < t < τ :

1

2τ

[
dI

dt
(τ ) − dI

dt
(0)

]
= 2 〈KE〉 + 〈PE〉 +

∑
α

〈
Fα

ext · xα

〉
, (3.43)

where the angle brackets are used to represent this long-term average. As long as
all the stars are bound to the cluster, the products |xα · vα|, and hence |dI/dt |,
never exceed some finite limits. Thus the left-hand side of this equation must tend
to zero as τ → ∞, giving

2 〈KE〉 + 〈PE〉 +
∑

α

〈
Fα

ext · xα

〉 = 0. (3.44)

This is the virial theorem, one of the fundamental results of dynamics.
The virial theorem is our tool for finding the masses of star clusters and galax-

ies where the orbits are far from circular. The process is straightforward if the star
cluster or galaxy is nearly spherical and has no strong rotation; otherwise, we must
use the tensor virial theorem of Section 6.2. Unless the system is actively colliding
with another, or is still forming by collapse, we assume that it is close to a steady
state so that the virial theorem applies. Generally we start by assuming that the ratio
of mass to luminosity M/L is the same everywhere in the system, so that the
measured surface brightness I (x) indicates the density of mass. We measure the
stellar radial velocities Vr relative to the cluster’s mean motion, and find the veloc-
ity dispersion σr. This is defined by σ 2

r = 〈Vr
2〉, where the angle brackets represent

an average over the stars of the cluster. For example, in globular clusters Vr can
be measured with a precision of 0.5 km s−1, and σr is typically 5–15 km s−1; see
Table 3.1.

Many star clusters are so distant that tangential motions are very hard to
measure (what proper motion μ corresponds to 10 km s−1 at d = 30 kpc?). We
often assume that the average motions are isotropic, equal in all directions. Then,
〈vα · vα〉 ≈ 3σ 2

r , and the cluster’s kinetic energy is KE ≈ (3σ 2
r /2)(M/L)L tot.

(Proper-motion studies of a few globular clusters have shown that the orbits of
stars in the outer parts are highly elongated; motions toward and away from the
center are on average larger than those in the perpendicular directions. Taking
this anisotropy into account modifies the derived masses slightly.) To estimate the
potential energy PE , we set M = L tot × M/L . Often, we take the cluster to be
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Table 3.1 Dynamical quantities for globular and open clusters in the Milky Way

σr log10 ρc rc trelax,c Mass M/LV

Cluster (km s−1) (M� pc−3) (pc) (Myr) (103M�) (M�/L�)

NGC 5139 ω Cen 20 3.1 4 5000 2600 2.5
NGC 104 47 Tuc 11 4.9 0.7 50 800 1.5
NGC 7078 M15 12 >7 <0.1 <1 900 2
NGC 6341 M92 5 5.2 0.5 2 200 1
NGC 6121 M4 4 4–5 0.5 30 60 1

Pal 13 ∼0.8 2 1.7 10 3 3–7
NGC 1049 Fornax 3 9 3.5 1.6 600 400 ∼3

Open cluster Pleiades 0.5 0.5 3 100 0.8 0.2

Note: σr is the dispersion in radial velocity Vr in the cluster core; ρc is central density; trelax,c is
the relaxation time at the cluster’s center found using Equation 3.55 with V = √

3σr, 〈m∗〉 =
0.3M�, and � = rc/1 AU. Clusters with upper limits to rc probably have collapsed cores.

spherically symmetric. Then, from its surface brightness, we can find the volume
density of stars and hence the potential energy: see the problem below.

Problem 3.13 For a random sample of stars in a globular cluster, σr ≈ 10 km s−1;

the surface brightness can be fit approximately by the Plummer model of Equa-

tion 3.13 with aP = 10 pc. Assuming that the cluster is spherical and contains no

unseen dark matter, use the virial theorem to show that its massM ≈ 2×106M�.

What did you assume about the stars’ random motions?

Another tactic is to measure the cluster’s core radius rc, where the measured
surface brightness I (x) has fallen to half its central value. The core radii of globular
clusters are generally about 10 pc, but can be larger (Table 2.3). We can write the
potential energy as PE = −GM2/(2ηrc) for some constant η ∼ 1. For example,
the homogeneous sphere of Problem 3.1 has rc = √

3a/2, and using Equation 3.36
yields η = 5/(3

√
3) ≈ 0.96. For the Plummer model of Problem 3.12, η ≈ 2.6.

Ignoring external forces from the rest of the Galaxy, Equation 3.44 gives the
cluster’s mass as

M ≈ 6ησ 2
r rc/G. (3.45)

Sometimes it is easier to measure the cluster’s central surface brightness I (x = 0)
than its total luminosity. If we write L tot ≈ 4πr2

c I (0)/3, and for the velocity
dispersion we take σr(0), the observed central value, then

M
L

≈ 9

2π

σ 2
r (0)

G I (0)rc
. (3.46)
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This equation is correct to within a few percent in a spherical system where σr is
exactly constant everywhere (the isothermal model of Section 3.4). It is a fairly
good approximation for a wide range of cluster-like and galaxy-like potentials
(see Richstone and Tremaine 1986 AJ 92, 72).

Most globular clusters have masses in the range 104M� to 106M�. Table 3.1
shows that typically the mass-to-light ratio 1 ∼< M/L ∼< 4. It is larger than that
measured in Section 2.1 for the immediate solar neighborhood, which is not
surprising since all the bright massive stars in these old clusters have now died.
But it is much less than what we found in Problem 2.18 for the Milky Way as a
whole: globular clusters do not seem to contain much, if any, ‘dark matter’. Open
clusters are less dense than globular clusters, and their stars have smaller random
speeds. The mass-to-light ratios in Table 2.2 are even lower than those in globular
clusters because luminous stars are still on the main sequence.

Problem 3.14 Suppose that an isolated cluster of stars is initially in equilibrium.

If a fraction f of its mass is suddenly removed so that the mass mα of each

becomes (1− f )mα , by what factor do the kinetic and potential energies change?

If the initial potential energy is PE0, show that the total energy E0 = PE0/2,

and afterward it is E1 = (1 − f )(1 − 2 f )E0. So, if f > 0.5, the stars are no

longer bound together. Use the virial theorem to show that, when the stars come

to a new equilibrium, the average distance between them is larger by a factor

(1 − f )/(1 − 2 f ).

The fast winds from massive stars, and their final explosion as supernovae,

blow away any cluster gas that was not initially converted into stars. In the Milky

Way’s disk, we see many clumps of young stars that were born together but are

now dissolving; they became unbound as leftover gas was expelled. Globular

clusters must have formed in a different way, using up almost all their gas, or

else the clusters would not have remained as dense as they now are.

To find the average motion of one star within an unchanging cluster potential,
we can regard the gravity of all the other stars as giving rise to an external force.
For each star, the virial theorem now tells us that

〈v2〉 = 〈∇�(x) · x〉. (3.47)

(For a star following a circular orbit in a spherically symmetric potential �(r ),
check that this gives the same orbital speed V (r ) as Equation 3.20.) In the outer
parts of any cluster, the magnitude of ∇� · x begins to decrease with radius.
Just as for planets in the solar system, stars in the central parts of a cluster
or galaxy generally move faster than those spending most of their time in the
outskirts.
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Problem 3.15 The Milky Way’s satellite galaxies orbit at distances of 60–80 kpc:

see Table 4.1 for a list. Their radial velocities Vr(�) measured relative to the Sun

are typically around 100 km s−1. Looking back at Figure 2.19, explain why you

must add V0 sin l cos b to find the motion relative to the Galactic center.

Simplify the problem by taking the Galaxy to be spherically symmetric, with

its mass entirely within the satellite orbits, so you can treat it as a central point

mass MG. The mutual potential energy of the satellites is small compared with

the external force term −GMG/r2, and the satellite’s Galactocentric radius r is

almost equal to d, its distance from the Sun. Assume that on average the satellites

have equal speeds in all directions; for each in turn, use Equation 3.47 to estimate

MG. Average the results, to show that the Milky Way’s mass exceeds 1012M�
so that M/LV ∼> 50.

Further reading: H. Goldstein, C. Poole, and J. Safko, 2002, Classical Mechanics,
3rd edition (Addison-Wesley, San Francisco), Chapters 1–3; and J. Binney and S.
Tremaine, 1987, Galactic Dynamics (Princeton University Press, Princeton, New
Jersey), Sections 2.1, 2.2, and 4.3; these are both graduate texts.

3.2 Why the Galaxy isn’t bumpy: two-body relaxation

Given enough time, molecules of air or scent, or small particles of smoke, will
spread themselves out evenly within a room. This happens because particles can
exchange energy and momentum during ‘collisions’: two of them come so close
that the forces between them are much stronger than the force that each feels from
all the other molecules together. At an average room temperature and normal
atmospheric pressure, each molecule of oxygen or nitrogen has about 1011 such
encounters every second.

Similarly, Figure 3.3 shows how we can think of the gravitational potential
of the Galaxy as the sum of two parts: a smooth component, averaged over a
region containing many stars, and the remainder, which includes the very deep
potential well around each star. The successive tugs of individual stars on each
other, described by the sharply varying part of the potential, cause them to deviate
from the courses they would have taken if just the smooth part of the force had
been present: we can think of these sharp pulls as ‘collisions’ between stars.

We will see in this section that stars in a galaxy behave quite differently from
air molecules. The cumulative effect of the small pulls of distant stars is more
important in changing the course of a star’s motion than the huge forces generated
as stars pass very near to each other. But, except in dense star clusters, even these
distant collisions have little effect over the lifetime of the Galaxy in randomizing
or ‘relaxing’ the stellar motions. For example, the smooth averaged part of the
Galactic potential almost entirely determines the motion of stars like the Sun.
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= +

Fig. 3.3. The potential �(x) of a stellar system, represented here by vertical height, can

be split into a smoothly varying averaged component and a steep potential well near each

star.

Fig. 3.4. During time t , this star will have a strong encounter with any other star lying

within the cylinder of radius rs.

3.2.1 Strong close encounters

We can calculate the average time between strong encounters, in which one star
comes so near to another that the collision completely changes its speed and
direction of motion, as follows. Suppose that the stars all have mass m and move
in random directions with average speed V . For the moment, we neglect the
gravitational force from the rest of the galaxy or cluster. Then, if two stars approach
within a distance r , the sum of their kinetic energies must increase to balance the
change in potential energy. When they are a long way apart, their mutual potential
energy is zero. We say that they have a strong encounter if, at their closest approach,
the change in potential energy is at least as great as their starting kinetic energy.
This requires

Gm2

r ∼>
mV 2

2
, which means r ∼< rs ≡ 2Gm

V 2
; (3.48)

we call rs the strong-encounter radius. Near the Sun, stars have random speeds of
V ≈ 30 km s−1, and taking m = 0.5M� gives rs ≈ 1 AU.

How often does this happen? We know that the Sun has not had a strong
encounter in the past 4.5 Gyr; if another star had come so near, it would have
disrupted the orbits of the planets. As the Sun moves relative to nearby stars at
speed V for a time t , it has a strong encounter with any other stars within a cylinder
of radius rs, and volume πr2

s Vt centred on its path; see Figure 3.4. If there are n
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Fig. 3.5. A weak encounter: starMmoves at speed V past the stationary star m, approach-

ing to within distance b.

stars per unit volume, our Sun will on average have one close encounter in a time
ts such that nπr2

s V t = 1, so the mean time between strong encounters is

ts = V 3

4πG2m2n
≈ 4 × 1012 yr

(
V

10 km s−1

)3 ( m

M�

)−2 ( n

1 pc−3

)−1

. (3.49)

In Section 2.1 we found that n ≈ 0.1 pc−3 for stars near the Sun; so ts ∼ 1015

years. This is about ten million ‘Galactic years’, and it far exceeds the age of the
Universe. Gravity is a much weaker force than the electromagnetic forces between
atoms, and, even though stars are by terrestrial standards very massive, they still
do not often come close enough for the gravitational attraction of one to cause a
large change in another’s orbit. Strong encounters are important only in the dense
cores of globular clusters, and in galactic nuclei.

3.2.2 Distant weak encounters

For molecules in the air, the electric and magnetic forces of distant particles will
tend to cancel each other out, averaging to zero. Thus strong close encounters are
overwhelmingly more important in changing their speeds and direction of motion.
But gravity is always an attractive force; a star is pulled toward all other stars,
however far away. In this section we will see that the cumulative pull of distant
stars is more effective over time in changing a star’s direction of motion than are
single close encounters.

In a distant encounter, the force of one star on another is so weak that the stars
hardly deviate from their original paths while the encounter takes place. So we
can use the impulse approximation, calculating the forces that the stars would feel
as they move along the paths they would follow if they had not been disturbed.
We start with a star of mass M in Figure 3.5, moving at speed V along a path
that will take it within distance b of a stationary star of mass m. The motion of
M is approximately along a straight line; the pull of m gives it a small motion V⊥
perpendicular to that path. If we measure time from the point of closest approach,
the perpendicular force is

F⊥ = GmMb

(b2 + V 2t2)3/2
= M dV⊥

dt
. (3.50)
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Upon integrating over time, we find that, long after the encounter, the perpendicular
speed of M is

�V⊥ = 1

M

∫ ∞

−∞
F⊥(t)dt = 2Gm

bV
; (3.51)

the faster M flies past m, the smaller the velocity change. In this approximation,
the speed V of M along its orginal direction is unaffected; the force pulling it
forward at times t < 0 exactly balances that pulling it back when t > 0. So the
path of M is bent through an angle

α = �V⊥
V

= 2Gm

bV 2
. (3.52)

Setting V = c here shows that, according to Newtonian gravity, light should
be bent by exactly half the angle that General Relativity predicts in Equation
7.13.

Momentum in the direction of F⊥ must be conserved, so after the encounter
m is moving toward the path of M at a speed 2GM/(bV ). The impulse approx-
imation is valid only if the perpendicular motion does not change the relative
positions of M and m significantly over the time �t ∼ b/V during which most
of the velocity change takes place. The perpendicular velocity of approach must
be small compared with V , so we need

b � 2G(m + M)

V 2
. (3.53)

So a weak encounter requires b to be much larger than rs, the strong-encounter
radius of Equation 3.48.

As star M proceeds through the Galaxy many stars m will tug at it, each
changing its motion by an amount �V⊥, but in different directions. If the forces
are random, then we should add the squares of the perpendicular velocities to find
the expected value of �V 2

⊥. During time t, the number of stars m passing M with
separations between b and b+�b is just the product of their number density n and
the volume V t · 2πb �b in which these encounters can take place. Multiplying
by �V 2

⊥ from Equation 3.51 and integrating over b gives the expected squared
speed: after time t,

〈
�V 2

⊥
〉 = ∫ bmax

bmin

nV t

(
2Gm

bV

)2

2πb db = 8πG2m2nt

V
ln

(
bmax

bmin

)
. (3.54)

After a time trelax such that 〈�V 2
⊥〉 = V 2, the star’s expected speed perpendic-

ular to its original path becomes roughly equal to its original forward speed;
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the ‘memory’ of its initial path has been lost. Defining � ≡ (bmax/bmin), we
find that this relaxation time is much shorter than the strong-encounter time ts
of Equation 3.49:

trelax = V 3

8πG2m2n ln �
= ts

2 ln �

≈ 2 × 109 yr

ln �

(
V

10 km s−1

)3 ( m

M�

)−2 ( n

103 pc−3

)−1

. (3.55)

It is not clear what value we should take for �. Our derivation is certainly
not valid if b < rs, and we usually take bmin = rs and bmax to be equal to
the size of the whole stellar system. For stars near the Sun, rs = 1 AU, and
300 pc ∼< bmax ∼< 30 kpc, giving ln � ≈ 18–22; the exact values of bmin and bmax

are clearly not important. Although the many weak pulls of distant stars change
the direction of motion of a star like the Sun more rapidly than do the very infre-
quent close encounters, the time required is still ∼1013 yr, much longer than the
age of the Universe. So, when calculating the motion of stars like the Sun, we
can ignore the pulls of individual stars, and consider all the stars to move in the
smoothed-out potential of the entire Galaxy. We will take advantage of this fact
in the next section, where we examine the orbits of stars in the Milky Way’s
disk.

Table 3.1 gives the average random speed σr and the relaxation time at the
centers of a number of Galactic globular clusters. In ω Centauri, the largest, trelax is
about 5 Gyr. This is much longer than the time tcross ≈ 0.5 Myr that a star takes to
move across the core. We can safely calculate the path of a star over a few orbits
by using only the smoothed part of the gravitational force. But, to understand
how globular clusters change throughout the lifetime of the Galaxy, we must take
account of energy exchanges between individual stars. The central parts of most
clusters have been affected by relaxation.

Problem 3.16 Assuming an average stellar mass of 0.5M� and � = rc/1 AU,

use the information in Table 3.1 to find the relaxation time trelax at the center of

the globular cluster 47 Tucanae. Show that the crossing time tcross ≈ 2rc/σr ∼
10−3trelax.

The open clusters are comparable in size to globular clusters, but they have
much lower densities, typically n ∼ 10 pc−3 or less, and the stars move more
slowly, σr ∼ 1 km s−1. For an average stellar mass of 0.5M� Equation 3.55
predicts trelax ∼ 50 Myr, while for rc = 2−3 pc the crossing time is about 5 Myr.
So, within ten crossing times, the cumulative effect of weak encounters can change
the stellar orbits radically. It is exceptionally difficult to calculate how the structure
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of an open cluster should develop over time. We cannot simply follow the orbits
of stars in the smoothed part of the cluster potential; this would give inaccurate
results after only a few orbits. But a gravitational N-body simulation, integrating
Equation 3.2 accurately to follow the stars through close encounters where their
gravitational forces are strong and rapidly varying, would take far too long on
a standard computer. A further complication is that the relaxation time is close
to the lifetime of a 5M� star, and mass lost from aging stars is likely to escape
from the cluster. Some progress is being made with specially built computer
hardware.

In an isolated cluster consisting of N stars with mass m moving at average
speed V , the average separation between stars is roughly half the size R of the
system. Equation 3.44 then tells us that

1

2
NmV 2 ∼ G(Nm)2

2R
, so � = R

rs
∼ Gm N

V 2
· V 2

2Gm
∼ N

2
. (3.56)

The crossing time tcross ∼ R/V ; since N = 4nπ R3/3, we have

trelax

tcross
∼ V 4 R2

6N G2m2 ln �
∼ N

6 ln(N/2)
. (3.57)

In a galaxy with N ∼ 1011 stars, relaxation will be important only after about
109 crossing times, much longer than the age of the Universe. Globular clusters
contain about 106 stars, so for the cluster as a whole trelax ∼ 104tcross ∼ 1010 yr.
In an open cluster with N = 100, as we saw above, the two timescales are almost
equal.

Gravitational N-body simulations of galaxies generally use between 104 and
106 ‘stars’ attracting each other by their gravity, according to Equation 3.2. Galax-
ies are centrally concentrated, and, in the dense inner regions, crossing times
are only 106−107 years. Equation 3.57 shows that, if the ‘stars’ are treated as
point masses, particles are pulled right off their original orbits on timescales
trelax ∼< 103tcross ∼1010 yr. These computations cannot be trusted to behave like a
real galaxy for longer than a gigayear or two; beyond that, relaxation is important.
We can extend this time limit if we can somehow reduce �. A common tactic is
to soften the potential, reducing the attractive force when ‘stars’ come very near
each other. For example, we could substitute the potential of a Plummer sphere
from Equation 3.11 for that of each point mass. The attractive pull of a ‘star’ of
mass M is limited to GM/a2

p, and so bmin ≈ aP. But we pay the price that our
model galaxy becomes ‘fuzzy’; we cannot properly include any structures smaller
than a few times aP.
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Problem 3.17 Gravitational N-body simulations of galactic disks often confine

all the particles to a single plane: instead of n stars per unit volume we have N
per unit area. The term 2πb db in Equation 3.54 is replaced by 2 db – why? Show

that now trelax does not depend on �, but only on bmin, and that taking bmin = rs

yields trelax/tcross = V 2/(4G RmN ). If the mass density mN is fixed, this ratio

is independent of the number of simulation particles.

3.2.3 Effects of two-body relaxation

While a star moves in the smoothed potential of a star cluster, Equation 3.27 tells
us that its orbit does not depend on whether it is heavy or light, but only on its
position or velocity. If the smoothed potential �(x) does not change with time,
the energy of the star remains constant. By contrast, two-body ‘collisions’ allow
two stars to exchange energy and momentum in a way that depends on both their
masses; this is known as two-body relaxation.

Just as for the air molecules in a room, the exchanges on average will shift
the velocities of the stars toward the most probable way of sharing the available
energy: this is a Maxwellian distribution. The fraction f of stars with velocities v

between v and v + �v is given by fM(E) 4πv2 �v, where

fM(E) ∝ exp

( −E
kBT

)
= exp

{
−
[

m�(x) + mv2

2

]/
(kBT )

}
, (3.58)

where kB is Boltzmann’s constant. The ‘temperature’ T depends on the energy
of the system: it is higher when the stars are moving faster. The problem below
shows that, for stars of mass m, T is related to the average of the squared velocities
by

1

2
m〈v2(x)〉 = 3

2
kBT . (3.59)

Just as oxygen molecules in the Earth’s atmosphere move less rapidly than the
lighter hydrogen molecules, heavier stars in a Maxwellian distribution move on
average more slowly than the less massive ones.

Problem 3.18 Explain why the velocity dispersion is given by

〈v2(x)〉 =
∫ ∞

0
v2 exp

(
− mv2

2kBT

)
4πv2 dv

/∫ ∞

0
exp

(
− mv2

2kBT

)
4πv2 dv.

Write both integrals as multiples of
∫∞

0 x2e−x2
dx to show that Equation 3.59

holds.
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As it pushes their velocity distribution toward the Maxwellian form, two-
body relaxation causes stars to evaporate from the cluster. The distribution fM(E)
includes a small number of stars with arbitrarily high energy; but any stars moving
faster than the escape speed ve given by Equation 3.28 are not bound to the
cluster and will escape. In a cluster of N stars with masses mα at positions xα,
Equation 3.33 tells us that the average kinetic energy needed for escape is

〈
1

2
mv2

e (x)

〉
= − 1

N

∑
α

mα�(xα) = − 2

N
PE = 4

N
KE, (3.60)

wherePE andKE are the potential and kinetic energy of the cluster as a whole; we
have used Equation 3.44, the virial theorem, in the last step. The average kinetic
energy needed for escape is just four times the average for each star, or 6kBT , so
the fraction of escaping stars in the Maxwellian distribution fM is

∫ ∞
√

12kBT/m
fM(E)v2 dv

/∫ ∞

0
fM(E)v2 dv = 0.0074 ≈ 1

136
. (3.61)

These stars leave the cluster; after a further time trelax, new stars are promoted
above the escape energy, and depart in their turn. The cluster loses a substantial
fraction of its stars over an evaporation time

tevap ∼ 136trelax. (3.62)

In the observed globular clusters, tevap is longer than the age of the Universe;
any clusters with very short evaporation times presumably dissolved before we
could observe them. For open clusters tevap is only a few gigayears. In practice,
these clusters fall apart even more rapidly, since evaporation is helped along by the
repeated gravitational tugs from the spiral arms and from giant clouds of molecular
gas in the disk.

Two-body relaxation also leads to mass segregation. Heavier stars congregate
at the cluster center, while lighter stars are expelled toward the periphery; we
see the result in Figure 3.6. If initially the cluster stars are thoroughly mixed,
with similar orbital speeds, the more massive stars will have larger kinetic energy.
But, in a Maxwellian distribution, their kinetic energies must be equal. Thus, on
average, a massive star will be moving slower after a ‘collision’ than it did before.
It then sinks to an orbit of lower energy; the cluster center fills up with stars that
have too little energy to go anywhere else. But, as the cluster becomes centrally
concentrated, these tightly bound stars must move faster than those further out,
increasing their tendency to give up energy.

Meanwhile, the upwardly mobile lighter stars have gained energy from their
encounters, but spend it in moving out to the suburbs. Their new orbits require
slower motion than before, so they have become even poorer in kinetic energy.
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Fig. 3.6. In the Pleiades open cluster, stars with masses above M� (dashed histogram)

are more concentrated toward the center than stars with M < M� (solid histogram) –

J. D. Adams.

Mass segregation is a runaway process: the lightest stars are pushed outward into
an ever-expanding diffuse outer halo, while the heavier stars form an increasingly
dense core at the center. Almost all star clusters have been affected by mass
segregation. The smallest and least luminous stars, that carry most of the cluster’s
mass (recall Figure 2.3), are dispersed far from the center. So we must be careful to
trace them when estimating the cluster’s mass or the stellar mass function. Pairs of
stars bound in a tight binary will effectively behave like a single more-massive star,
sinking to the core. The X-ray sources in globular clusters are binaries in which
a main-sequence star orbits a white dwarf or neutron star; they are all found near
the cluster center.

Even if all the stars in a cluster have exactly the same mass, stars on low-
energy orbits close to the center have higher orbital speeds than do those further
out. So the inner stars tend to lose energy, while the outer stars gain it. Over time,
some stars are expelled from the cluster core into the expanding halo, while the
remaining core contracts. The core becomes denser, while the outer parts puff up
and become more diffuse. Calculations for clusters of equal-mass stars predict that,
after (12–20)trelax, the core radius shrinks to zero, as the central density increases
without limit: this is core collapse. A cluster that is near this state should have a
small dense core and a diffuse halo, as we see for M15 in Figure 3.7.

What happens to a cluster after core collapse? In the dense core, binary stars
become important sources of energy. Just as two-body ‘collisions’ tend to remove
energy from fast-moving stars, so encounters between single stars and a tight
binary pair will on average take energy from the binary. The energy is transferred
to the single star, while the binary is forced closer. Depending on how many are
present, binaries may supply so much energy to the stars around them that the
core of the cluster starts to re-expand.
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Fig. 3.7. Surface brightnesses of two globular clusters. Left, M15: the constant-density

core is absent, or too small to measure. Right, M4: the surface brightness is nearly constant

at small radii, dropping almost to zero at the truncation radius rt ≈ 3000′′. The solid lines

show a King model (Section 3.4) – A. Pasquali, G. Fahlman, and C. Pryor.

Problem 3.19 With the temperature T defined in Equation 3.59, find the kinetic

energy of a system with N stars each of mass m, and use the virial theorem to

show that its energy E satisfies

dE
dT

= −3

2
NkB < 0 (!) (3.63)

The specific heat of a gravitating system is negative – removing energy makes

it hotter. (As a mundane example, think of an orbiting satellite subject to the

frictional drag of the Earth’s atmosphere; as it loses energy, the orbit shrinks, and

its speed increases.)

Further reading: graduate texts covering this material are J. Binney and S.
Tremaine, 1987, Galactic Dynamics (Princeton University Press, Princeton, New
Jersey), Sections 8.0, 8.2, and 8.4; and L. Spitzer, 1987, Dynamical Evolution of
Globular Clusters (Princeton University Press, Princeton, New Jersey).

3.3 Orbits of disk stars: epicycles

We showed in the last section that the orbits of stars in a galaxy depend almost
entirely on the smooth part of the gravitational field, averaged over a region
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containing many stars. From now on, when we refer to gravitational forces or
potentials, we will mean this averaged quantity. Often, the smoothed potential has
some symmetries which simplify the orbit calculations. In this section, we look
at the orbits of stars in an axisymmetric galaxy.

Like the planets circling the Sun, the stars in the Milky Way’s disk follow
orbits that are nearly, but not quite, circular, and lie almost in the same plane.
In the Galactocentric cylindrical polar coordinates (R, φ, z) of Section 1.2, the
midplane of the disk is at z = 0 and the center at R = 0. If we are prepared
to overlook non-axisymmetric structures such as an inner bar, the spiral arms,
and local features such as Gould’s Belt (Section 2.2), the smoothed gravitational
potential is independent of φ. Thus ∂�/∂φ = 0, and there is no force in the φ

direction; a star conserves its angular momentum about the axis z. On writing Lz

for the z angular momentum per unit mass, for each star we have

d

dt
(R2φ̇) = 0, so Lz ≡ R2φ̇ = constant. (3.64)

Since the potential does not change with time, � = �(R, z). We can write the
equation of motion in the radial direction as

R̈ = Rφ̇2 − ∂�

∂ R
= −∂�eff

∂ R
, where �eff ≡ �(R, z) + Lz

2

2R2
. (3.65)

The effective potential �eff(R, z; Lz) behaves like a potential energy for the star’s
motion in R and z. By the same reasoning as that which led us to Equation 3.27,
multiplying Equation 3.65 by Ṙ and integrating shows that, for a star moving in
the midplane z = 0,

1

2
Ṙ2 + �eff(R, z = 0; Lz) = constant. (3.66)

Figure 3.8 shows �eff(R, z = 0; Lz) for the Plummer potential of Equation 3.11.
Since Ṙ2 ≥ 0, the L2

z term in �eff acts as an ‘angular-momentum barrier’, pre-
venting a star with Lz �= 0 from coming closer to the axis R = 0 than some
perigalactic radius where Ṙ = 0. Unless it has enough energy to escape from the
Galaxy, each star must remain within some apogalactic outer limit.

The star’s vertical motion is given by

z̈ = −∂�

∂z
(R, z) = −∂�eff

∂z
(R, z). (3.67)

If the ‘top’ and ‘bottom’ halves of the disk are mirror images of each other, then
�(R, z) = �(R, −z), and the z force is zero in the plane z = 0. Let Rg be the
average value of R for the star’s orbit; we will define it more precisely below.
Expanding �(R, z) in a Taylor series around (Rg, 0), we make fractional errors
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Fig. 3.8. The effective potential �eff (upper curve) for a star with angular momentum

Lz = 0.595, orbiting in a Plummer potential �P (lower curve). The scale length aP = 1; Lz

is in units of
√

GM/aP; units for � and �eff are GM/aP. The vertical dashed line marks

the guiding center Rg; the star oscillates about Rg between inner and outer limiting radii.

only as large as z2/R2 or (R − Rg)2/R2 by keeping the leading term alone. So,
for these nearly circular orbits,

z̈ ≈ −z

[
∂2�

∂z2
(Rg, z)

]
z=0

≡ −ν2(Rg)z; (3.68)

motion in z is almost independent of that in R, φ. So this is the equation of
a harmonic oscillator with angular frequency ν; z = Z cos(νt + θ ), for some
constants Z and θ . In a flattened galaxy, ν(R) is larger than the angular speed
�(R) in a circular orbit.

A star with angular momentum Lz can follow an exactly circular orbit with
Ṙ = 0 only at the radius Rg where the effective potential �eff is stationary with
respect to R. There, Equation 3.65 tells us that

∂�

∂ R
(Rg, z = 0) = L2

z

R3
g

= Rg�
2(Rg), (3.69)

where �(R) is the angular speed of the circular orbit in the plane z = 0. If
the effective potential has a minimum at the radius Rg, a circular path is the
orbit with least energy for the given angular momentum Lz . The circular orbit is
stable, and any star with the same Lz must oscillate around it. As that star moves
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radially in and out, its azimuthal motion must alternately speed up and slow
down. We can show that it approximately follows an elliptical epicycle around
its guiding center, which moves with angular speed �(Rg) in a circular orbit of
radius Rg.

To derive the epicyclic equations, we set R = Rg + x in Equation 3.65. We
assume that x � R and neglect terms in z2/R2 and x2/R2, to find

ẍ ≈ −x

[
∂2�eff

∂ R2

]
Rg

≡ −κ2(Rg)x, so x ≈ X cos(κt + ψ), (3.70)

where X and ψ are arbitrary constants of integration. When κ2 > 0, this equation
describes harmonic motion with the epicyclic frequency κ . If κ2 < 0, the circular
orbit is unstable, and the star moves away from it at an exponentially increasing
rate. From the definition of �eff in Equation 3.65, and recalling that R�2(R) =
∂�(R, z = 0)/∂ R in a circular orbit,

κ2(R) = d

dR
[R�2(R)] + 3L2

z

R4
= 1

R3

d

dR
[(R2�)2] = −4B�, (3.71)

where B is Oort’s constant, defined in Section 2.3. Locally, B < 0, so κ2 is
positive and near-circular orbits like that of our Sun are, fortunately, stable. The
angular momentum on a circular orbit is R2�(R); we see that, if it increases
outward at radius R, the circular orbit there is stable. This condition always holds
for circular orbits in galaxy-like potentials. Near a static black hole of mass M,
however, the last stable circular orbit is at R = 6GM/c2; those at smaller radii are
unstable.

Problem 3.20 Effective potentials have many uses. The motion of a star around

a non-rotating black hole of mass MBH is given by

(
dr

dτ

)2

= E2 −
(

c2 − 2GMBH

r

)(
1 + L2

c2r2

)
≡ E2 − 2�eff(r ); (3.72)

we can interpret r as distance from the center, and τ as time. (More precisely, r is

the usual Schwarzschild radial coordinate, τ is proper time for a static observer

at radius r , and E and L are, respectively, the energy and angular momentum per

unit mass as measured by that observer.) Show that there are no circular orbits at

r < 3GMBH/c2, and that the stable circular orbits lie at r > 6GMBH/c2 with

L > 2
√

3GMBH/c.

Further reading: S. L. Shapiro and S. A. Teukolsky, 1983, Black Holes, White
Dwarfs and Neutron Stars (Wiley, New York).
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Fig. 3.9. The star moves in an elliptical epicycle around its guiding center at (x = 0,

y = 0), which is carried around the Galactic center with angular speed �(Rg).

During its epicyclic motion, the star’s azimuthal speed φ̇ must vary so that
the angular momentum Lz remains constant:

φ̇ = Lz

R2
= �(Rg)R2

g

(Rg + x)2
≈ �(Rg)

(
1 − 2x

Rg
+ · · ·

)
. (3.73)

Substituting from Equation 3.70 for x and integrating, we have

φ(t) = φ0 + �(Rg)t − 1

Rg

2�

κ
X sin(κt + ψ), (3.74)

where φ0 is an arbitrary constant. Here, the first two terms give the guiding center’s
motion. The third represents harmonic motion with the same frequency as the x
oscillation in radius, but 90◦ out of phase, and larger by a factor of 2�/κ (see
Figure 3.9). The epicyclic motion is retrograde, namely in the opposite sense to
the guiding center’s motion; it speeds the star up closer to the center, slowing it
down when it is further out.

In two simple cases, the epicyclic frequency κ is a multiple of the angular speed
� of the guiding center. In the gravitational field of a point mass, �(r ) ∝ r−3/2

and so κ = �. The star’s orbit is an ellipse with the attracting mass at one focus;
the epicycles are twice as long in the φ direction as in x , rather than circular,
as assumed by Ptolemy, Copernicus, and others who used epicycles to describe
planetary motions. Within a sphere of uniform density, �(R) is constant and
κ = 2�. A star moves harmonically in an ellipse which is symmetric about
the center, making two excursions in and out during one circuit around, and the
epicycles are circular. The potential of the Galaxy is intermediate between these
two, so that � < κ < 2�. Near the Sun, κ ≈ 1.4�. The orbits of stars do not
close on themselves; Figure 3.10 shows that they make about 1.4 oscillations in
and out for every circuit of the Galaxy. We will see in Section 5.5 how stars with
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Fig. 3.10. The path of the star of Figure 3.8, viewed from above the Galactic plane; the

orbit started with (R = 1.3, φ = 0) and (Ṙ = 0, Rφ̇ = 0.4574).

guiding centers at different radii Rg can be arranged on their epicycles to produce
a spiral pattern in the disk.

Near the Sun, the period of the epicycles is about 170 Myr, far too long for us
to watch stars complete their circuits. But we can measure the velocities of stars
close to us, at R ≈ R0. Some of these will have guiding centers further out than
the Sun, so they are on the inner parts of their epicycles, while others have their
guiding centers at smaller radii. Because of its epicyclic motion, a nearby star
with its guiding center at Rg > R0 moves faster in the tangential direction than a
circular orbit at our radius. Equation 3.73 gives its relative speed vy as

vy = R0[φ̇ − �(R0)] ≈ R0

[
�(Rg) − 2x

�(Rg)

Rg
− �(R0)

]
. (3.75)

Recalling that R0 = Rg + x , and dropping terms in x2, we have

vy ≈ −x

[
2�(R0) + R0

(
d�

dR

)
R0

]
= −κ2x

2�
or 2Bx . (3.76)

We do not know the value of x for any particular star, so we take an average over
all the stars we see:

〈
v2

y

〉 = (
κ2

2�

)2

〈x2〉 = κ2

4�2

〈
v2

x

〉
. (3.77)
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Fig. 3.11. The dispersion in velocities vx and vy for F and G dwarfs near the Sun increases

with age. The youngest stars show a vertex deviation: vx and vy tend to have the same

sign. Those stars have not yet had time to move away from the groups in which they were

born. The average value of vy is increasingly negative for older stars with larger random

speeds – B. Nordström et al. 2004 AAp 418, 98.

Since κ < 2�, 〈v2
y〉 < 〈v2

x 〉; even though the epicycles are longer in the tangential
y direction, the nearby stars have larger random speeds in the radial x direction.
The tangential velocity dispersion is reduced because the epicycles of stars that
come from further out in the Galaxy are carrying them in the same direction
as the Galactic rotation, augmenting the slower motion of their guiding centers.
Conversely, the epicyclic motion of stars visiting from smaller radii opposes their
faster guiding-center motion. For the ‘thin-disk’ F and G stars of Table 2.1, we have

2 ∼<
〈
v2

x

〉/〈
v2

y

〉
∼< 3; (3.78)

Measuring this ratio for larger groups of nearby stars provides our best
estimate of the constant B; it is about −12 km s−1 kpc−1.

Problem 3.21 Use the result of Problem 2.17 to show that

〈
v2

y

〉 = − B

A − B

〈
v2

x

〉
,

so that for a flat rotation curve we expect 〈v2
x 〉/〈v2

y〉 = 2. Results from larger

studies give this ratio as 2.2; if A = 14.8 ± 0.8 km s−1 kpc−1, what is B?

Figure 3.11 and Table 2.1 show that older stars have larger random speeds.
But why should the orbits change within a few gigayears, when the relaxation
time of Equation 3.55 is ∼1013 yr near the Sun? Clumps of stars and gas in the
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spiral arms have pulled on passing starts, each time tugging them further from a
circular orbit.

The observant reader will have noticed that, in averaging, we did not take
account of any radial variations in the density of stars. In fact, the stellar density
is higher in the inner Galaxy, so that near the Sun we see more stars with guiding
centers at smaller radii than stars that visit us from the outer Galaxy. The majority
of stars will be on the outer parts of their epicycles, with x > 0; so, according
to Equation 3.76, the average tangential motion of stars near the Sun should
fall behind the circular velocity. This prediction is borne out in Figure 3.11 and
Table 2.1; the average 〈vy〉 is negative, an effect known as asymmetric drift. The
drift is stronger for groups of older stars, with larger random speeds, since their
orbits deviate further from circular motion.

Problem 3.22 Show from Equation 3.71 that, within a spherical galaxy of

constant density, κ = 2�, and the Oort constants are A = 0 and B = −�. For

the ‘dark-halo’ potential of Equation 2.19, find �(r ) and κ(r ). Check that they

agree at small radii with those for a uniform sphere of density V 2
H/(4πGa2

H), and

that κ → √
2� as r becomes large. Plot �, κ , and � − κ/2 against radius for

0 < r < 5aH. Show that � − κ/2 approaches zero both as r → 0 and as r

becomes large. We will see in Section 5.5 that this is why two-armed spirals are

so prominent in galaxy disks.

Problem 3.23 We saw in Section 2.3 that the Sun has vx ≈ −10 km s−1 and vy ≈
5 km s−1; how do we know that its guiding center radius Rg > R0? Assuming

the Milky Way’s rotation curve to be roughly flat, with V (R) = R�(R) =
200 km s−1 and R0 = 8 kpc, find κ and Oort’s constant B. Use Equations 3.70

and 3.76 to show that the extent of the Sun’s radial excursions is X = 0.35 kpc,

and that Rg ≈ 8.2 kpc.

3.4 The collisionless Boltzmann equation

In the last section, we looked at the orbit of an individual star in the Galaxy’s
gravitational field. We can also describe the stars in a galaxy as we usually describe
atoms in a gas: not by following the path of each atom, but by asking about
the density of atoms in a particular region and about their average motion. For
simplicity, we assume here that all the stars have the same mass m.

The distribution function f (x, v, t) gives the probability density in the six-
dimensional phase space of (x, v). The average number of particles (stars or atoms)
in a cube of sides �x, �y, and �z centred at x, that have x velocity between vx

and vx + �vx , y velocity between vy and vy + �vy , and z velocity between vz

and vz + �vz , is

f (x, v, t)�x �y �z �vx �vy �vz. (3.79)
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Fig. 3.12. Flow in and out of the region between x and x +�x is described by the equation

of continuity.

The number density n(x, t) at position x is the integral over velocities

n(x, t) ≡
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, v, t)dvx dvy dvz. (3.80)

Averages such as the mean velocity 〈v(x, t)〉 are also given by integrals:

〈v(x, t)〉 n(x, t) ≡
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
v f (x, v, t)dvx dvy dvz. (3.81)

We want to find equations to relate changes in the density and the distribution
function, as stars move about in the Galaxy, to the gravitational potential �(x, t).
For simplicity, we look at stars moving only in one direction, x . At time t, the
number of stars between x and x + �x in the ‘box’ of Figure 3.12 is n(x, t)�x .
Suppose that these stars move at speed v(x) > 0; how does n(x) change with
time? After a time �t , all the stars that are now between x − v(x)�t and x will
have entered the box, while those now within distance v(x + �x)�t of the end
will have left it. So the average number of stars in the box changes according to

�x[n(x, t + �t) − n(x, t)] ≈ n(x, t)v(x)�t − n(x + �x, t)v(x + �x, t)�t.
(3.82)

Taking the limits �t → 0 and �x → 0 gives us

∂n

∂t
+ ∂(nv)

∂x
= 0. (3.83)

This is the equation of continuity; it must hold if no stars are destroyed so that
they disappear from our bookkeeping, and no extra stars are added. For example,
if v > 0 and ∂n/∂x > 0, as in Figure 3.12, the density of stars in our box must
fall with time.

The collisionless Boltzmann equation is like the equation of continuity, but it
allows for changes in velocity and relates the changes in f (x, v, t) to the forces
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Fig. 3.13. Flow in and out of a box in the phase space (x, v) is described by the collisionless

Boltzmann equation.

acting on individual stars. To derive it, we assume that two-body encounters are
unimportant, so that the acceleration dv/dt of an individual star depends only on
the smoothed potential �(x, t). In Figure 3.13, we look at stars in the center box;
these lie between x and x +�x and move at speeds between v and v +�v. After
a time �t , we again find that stars now between x − v �t and x will have entered
the box, while those now within distance v �t of the end have left it. Here we
have specified x and v independently, so v does not depend on x . The number of
stars in the box has increased by approximately

�v �t[v f (x, v, t) − v f (x + �x, v, t)] ≈ −v �x �v �t
∂ f

∂x
. (3.84)

But the number of stars in the center box also changes because the stars’
speeds are altered by the applied forces. Suppose that dv/dt > 0, so that stars are
all being accelerated in the x direction. Then, after time �t , they will all be moving
faster by approximately �t · dv/dt . Stars now moving with speeds between v and
v − �t · dv/dt will have come into the center box, because they will be moving
at speeds faster than v, while those with speeds now just below v + �v will have
left it. In total, the center box has gained a number of stars given by

�x �v[ f (x, v, t + �t) − f (x, v, t)]

≈−v �x �v �t
∂ f

∂x
+ �x �t

[
dv

dt
f (x, v, t) − dv

dt
f (x, v + �v, t)

]
. (3.85)

In the limit that all the � terms are small, we have

∂ f

∂t
+ v

∂ f

∂x
+ dv

dt
(x, v, t) · ∂ f

∂v
= 0.

But a star’s acceleration does not depend on how fast it is moving, only on its
position: dv/dt = −∂�(x, t)/∂x . Thus we have the one-dimensional collisionless
Boltzmann equation:

∂ f

∂t
+ v

∂ f

∂x
− ∂�

∂x
(x, t) · ∂ f

∂v
= 0. (3.86)
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In three dimensions, the collisionless Boltzmann equation takes the form

∂ f (x, v, t)

∂t
+ v · ∇ f − ∇� · ∂ f

∂v
= 0. (3.87)

Equation 3.87 holds if stars are neither created nor destroyed, and if they also
change their positions and velocities smoothly. Close encounters between stars
can alter their velocities much faster than their motion changes in the smoothed
potential. When these are important, we include their effects as an extra ‘colli-
sional’ term on the right-hand side.

Often, we do not solve the collisionless Boltzmann equation explicitly, but
rather integrate to take velocity-moments. Integrating Equation 3.86 over velocity,
and using the definitions 3.80 and 3.81, we find

∂n(x, t)

∂t
+ ∂

∂x
(n(x, t)〈v(x, t)〉) − ∂�

∂x
(x, t)[ f ]∞−∞ = 0. (3.88)

When f (x, v, t) is well behaved, tending to zero as |v| → ∞, the last term is
zero. We arrive back at Equation 3.83, with the velocity v = 〈v(x, t)〉.

Multiplying Equation 3.86 by v and then integrating gives

∂

∂t
[n(x, t)〈v(x, t)〉] + ∂

∂x
[n(x, t)〈v2(x, t)〉] = −n(x, t)

∂�

∂x
; (3.89)

here the average of the squared velocity 〈v2〉 is defined just as for 〈v〉, and we have
integrated by parts, assuming that f v → 0 as |v| → ∞. The velocity dispersion
σ is defined by 〈v2(x, t)〉 = 〈v(x, t)〉2 + σ 2; rearranging terms with the help of
Equation 3.88 and dividing by n, we have

∂〈v〉
∂t

+ 〈v〉 ∂〈v〉
∂x

= −∂�

∂x
− 1

n

∂

∂x
[nσ 2(x, t)]. (3.90)

This is analogous to Euler’s equation of fluid mechanics, with the term in σ 2

replacing the pressure force −∂p/∂x . In a fluid, the equation of state specifies the
pressure at a given density and temperature. For a stellar system there is no such
relation; but sometimes we can make progress by using measured quantities, as
in the next subsection.

3.4.1 Mass density in the Galactic disk

We can use the collisionless Boltzmann equation and the observed vertical motions
of stars to find the mass in the Galactic disk near the Sun. We select a tracer
population of stars (for example, the K dwarf stars) and measure its density n(z)
at height z above the disk’s midplane. Our coordinates are now (z, vz) instead of
(x, v). We assume that the potential �(z) does not change with time, and that our
stars are well mixed, so that the distribution function f and the density n are also
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time-steady. Looking high above the plane, 〈vz〉n(z) → 0; so Equation 3.88 tells
us that the mean velocity 〈vz〉 = 0 everywhere. In Equation 3.90, we write σz for
the velocity dispersion; the terms on the left-hand side vanish, giving

d

dz

[
n(z)σ 2

z

] = −∂�

∂z
n(z). (3.91)

So, if we measure how the density of our stars and their velocity dispersion change
with z, we can find the vertical force at any height.

Poisson’s equation, Equation 3.9, relates that force to the mass density ρ(x)
of the Galaxy. Assuming that the Milky Way is axisymmetric, so that ρ and �

depend only on (R, z), we have

4πGρ(R, z) = ∇2�(R, z) = ∂2�

∂z2
+ 1

R

∂

∂ R

(
R

∂�

∂ R

)
. (3.92)

The density ρ(R, z) here includes all the mass in the disk: luminous stars, gas,
white dwarfs, brown dwarfs, black holes, and dark matter. Writing ∂�/∂ R =
V 2(R)/R, where V (R) is the rotation speed in a circular orbit at radius R, we have

4πGρ(R, z) = d

dz

{
− 1

n(z)

d

dz

[
n(z)σ 2

z

]}+ 1

R

d

dR
[V 2(R)]. (3.93)

Near the Sun, V (R) is nearly constant, so the last term is very small. The
density ρ(R0, 0) in the midplane of the disk has recently been estimated from the
velocities of nearby A stars, measured with the Hipparcos satellite, to be in the
range (70–100)M� per 1000 pc3.

To find the volume density ρ, the observationally determined quantity
n(z) has to be differentiated twice, which amplifies small errors. We can more
accurately determine the surface mass density �(< z) within some distance z
of the midplane. Assuming that the disk is symmetric about z = 0, we integrate
Equation 3.93 to find

2πG�(<z) ≡ 2πG
∫ z

−z
ρ(z′)dz′ ≈ − 1

n(z)

d

dz

[
n(z)σ 2

z

]
. (3.94)

Jan Oort in 1932 was the first to try this, measuring n(z) for bright F dwarfs
and K giants. He assumed that σz did not vary with height, and found that
�(<700 pc) ≈ 90M� pc−2. But, beyond a kiloparsec from the midplane, the
function he derived for �(<z) began to decrease, indicating anti-gravitating matter
with ρ(z) < 0, or, more probably, a failure of the hypothesis that σz is constant.

Recent work with fainter K dwarf stars, which are more numerous and more
evenly spread out in space, indicates that σz increases with height. At 250 pc
from the plane, the vertical dispersion σz ≈ 20 km s−1, growing to 30 km s−1 at
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z ∼1 kpc; at greater heights, a larger fraction of the stars belongs to the thick disk.
Taking account of the increasing dispersion, these studies find �(<1100 pc) ≈
(70–80 M� pc−2. Some of this mass must be in the halo, so the surface density
of the disk itself is probably between 50M� and 60M� pc−2.

We can compare this dynamical estimate with the mass that has been
observed in gas and stars. Near the Sun, molecular gas probably amounts to
∼2M� pc−2. There is roughly 8M� pc−2 of neutral atomic hydrogen, and about
2M� pc−2 of ionized gas, though all these numbers are uncertain by at least 30%.
Main-sequence stars more massive than M dwarfs, and the giants, are easily
counted in surveys; making allowance for the hard-to-find low-mass stars and
stellar remnants such as white dwarfs and neutron stars gives a total of about
(25–40)M� pc−2 in stars. Thus the mass in gas and stars is (40–55)M� pc−2.
We see that the disk does not contain much of the Galaxy’s ‘dark matter’.

Problem 3.24 Use the divergence theorem to show that the potential at height

z above a uniform sheet of matter with surface density � is

�(x) = 2πG�|z|. (3.95)

Show that the vertical force does not depend on z, and check that ∇2� = 0

when z �= 0. Suppose that the mass of the Galaxy was all in a flat uniform

disk; use Equation 3.91 to find the density n(z) of K dwarfs, assuming that they

have a constant velocity dispersion σz . As in the Earth’s atmosphere, where the

acceleration of gravity is also nearly independent of height, show that n(z) drops

by a factor of e as |z| increases by hz = σ 2
z /(2πG�). Estimate hz near the Sun,

taking σz = 20 km s−1.

3.4.2 Integrals of motion, and some of their uses

Often we are interested in solutions of the collisionless Boltzmann equation that
describe stars moving in an unchanging gravitational potential �(x), such that
their distribution function is also constant. Then, it is frequently useful to write
f (x, v) in terms of integrals of the motion. These are functions I(x, v) of a star’s
position x and velocity v that remain constant along its orbit. One example is
the energy per unit mass, E(x, v) = v2/2 + �(x), which is an integral of the
motion whenever the potential �(x) does not depend on time. In an axisymmetric
potential �(R, z, t), the z component of the angular momentum Lz is an integral;
in a spherical potential, the total angular momentum L is an integral.

For any function I that is constant along the orbit, we have

d

dt
I(x, v) ≡ ∂x

∂t
· ∇I + ∂v

∂t
· ∂I

∂v
= 0, or v · ∇I − ∇� · ∂I

∂v
= 0. (3.96)
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This looks suspiciously like Equation 3.87, which we can write as

d f

dt
≡ ∂ f

∂t
+ v · ∂ f

∂x
+ ∂v

∂t
· ∂ f

∂v
= 0. (3.97)

So the phase-space density f (x, v, t) around any particular star remains constant
along its orbit. Where the density n(x) becomes higher, the dispersion in velocities
of the surrounding stars must increase, and any function f (x, v) that is a time-
independent solution to the collisionless Boltzmann equation is itself an integral of
the motion. Conversely, if f (I1, I2, . . .) is any function of integrals of the motion
I1, I2, . . ., then f is a steady-state solution of the equations of motion. Often it is
easy to write down at least some of the integrals of motion, and this is one way to
get started on constructing time-steady solutions of the collisionless Boltzmann
equation.

For example, Equation 3.68 tells us that, for disk stars on nearly circular orbits,
motion perpendicular to the Galactic disk is independent of that in the disk plane,
so the energy of vertical motion Ez = �(R0, z) + v2

z /2 is an integral of motion.
If we select some tracer population of stars that are easy to find and measure,
and which are also well mixed so that their distribution function f (z, vz) is not
changing with time, we can write

f(z, vz) = f (Ez) = f

(
�(R0, z) + 1

2
v2

z

)
. (3.98)

If we guessed at f (Ez) and the potential �(R0, z), we could integrate f over
velocities to find the corresponding density n(z) and the velocity dispersion
σz at any height z. Conversely, if we measured n(z) and guessed at f (Ez), we
could find the potential �(R0, z) by using Equation 3.91. For example, we could
take

f (Ez) = n0√
2πσ 2

exp(−Ez/σ
2) for Ez < 0; (3.99)

stars with Ez ≥ 0 would escape, so we must set f = 0 there. Integrating over vz

shows the density n and velocity dispersion σz to be

n(z) = n0 exp[−�(R0, z)/σ 2], and σz = σ . (3.100)

If n(z) and σ 2 are measured, we can calculate the potential �(R0, z) by using
Equation 3.91; if � and σ 2 are known, we can find the corresponding density
n(z).

If we also have some reason to think that the stars described by the dis-
tribution function f provide all the gravitational force, then the density n(x, t)
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found by integrating f (x, v, t) over velocities must be equal to the density
ρ(x, t) in Poisson’s Equation 3.9. In this case, we say that f provides a self-
consistent model for the system. Many different self-consistent models can give
rise to the same gravitational potential �(x, t); the density n(x, t) is the same
for all of these, but the form of f , and hence the velocities of the stars, will
be different.

Problem 3.25 For stars moving vertically in the Galactic disk, suppose the

distribution function f (z, vz) to be given by Equation 3.99. When the disk is

symmetric about the plane z = 0, then d�(z)/dz = 0 at z = 0, and we can

choose �(0) = 0 too. Find the integral giving the density of stars n(z): what is

n(0)?

To construct a self-consistent model, let �(z) = σ 2φ(z), and let the average

mass of the stars be m; show from Poisson’s equation that

2 d2φ/dy2 = e−φ, where y = z/z0 and z2
0 = σ 2/(8πGmn0).

Integrate this once to find dφ/dy, and then again (substituting u = e−φ/2) to

find φ(y) and hence �(z). Show that the number density of stars is n(z) =
n0 sech2[z/(2z0)]. What is its approximate form at large |z|?

In a spherically symmetric gravitational potential �(r ), any function f (E, L)
of the energy E and angular momentum L per unit mass that does not include
any unbound stars will describe one possible steady distribution of stars in that
gravitational field. If we choose f = f (E) then the random speeds are isotropic,
the same in all directions.

Problem 3.26 When the distribution function for stars in a spherical system

depends only on their energy, so that f (x, v, t) = f (E), explain why the velocity

dispersion is the same in all directions:

〈
v2

x

〉 ≡ 1

n(x)

∫
f

[
�(x) + v2

2

]
v2

x dvx dvy dvz = 〈
v2

y

〉 = 〈
v2

z

〉
. (3.101)

If we choose a form for f (E), we can then calculate the density n(r ) as
a function of the potential �(r ). Then we use Poisson’s equation to find which
potentials �(r ) lead to a self-consistent model, with n(r ) ∝ ρ(r ). For the Plummer
sphere, we can combine Equations 3.11 and 3.12 to find

ρP(r ) = − 3a2
p

4πG5M4
�5

P(r ). (3.102)
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Taking the distribution function

f (E) = k(−E)N−3/2 for E < 0, (3.103)

where k and N are constants, the density is given by

n(r ) =
∫ E=0

v=0
k

[
−�(x) − v2

2

]N−3/2

4πv2 dv. (3.104)

Defining a new variable θ by v2 = −2�(r )cos2θ , we can integrate to show
that n(r ) ∝ (−�)N . Thus the distribution function fP(E) = k(−E)7/2 gives a
self-consistent model for the Plummer sphere. Its mass M is proportional to the
constant k, while the depth of the central potential �(r = 0) sets the radius aP.

Problem 3.27 Fill in the algebraic steps needed to derive Equations 3.102–

3.104.

By analogy with expression 3.99, we might also try the isothermal distribution
function

fI(E) = n0

(2πσ 2)3/2
exp

{
−
[
�(r ) + v2

2

]/
σ 2
}

for E < 0, (3.105)

as a first guess for representing a spherical galaxy or star cluster. As in the planar
case, Equation 3.100 gives us n(r ). Putting this on the right-hand side of Poisson’s
equation, we get

4πGρ(r ) = 1

r2

d

dr

(
r2 d�

dr

)
= 4πGmn0 exp

[
−�(r )

σ 2

]
. (3.106)

To find �(r ), we must integrate this equation outward from r = 0. If the potential
is smooth at the center, the radial force there must be zero, so we must start with
d�/dr = 0. But, however we choose �(r = 0), we find that the total mass is
infinite. We should have expected this result, since, if the mass had been finite, the
escape speed ve of Equation 3.28 would drop below the average random speed σ

at some radius. But that would contradict our assumption that all the stars were
bound to the system.

Problem 3.28 Show that, in the potential �SIS of Equation 3.14, the density

ρ(r ) corresponding to fI(E) is exactly equal to ρSIS, if σ 2 = 2πGρ0r2
0 , and all

the stars have mass m so that ρ0 ≡ mn0 = ρ(r0). The distribution function fI(E)

gives a self-consistent model for the singular isothermal sphere; show that the

average random speed σ is 1/
√

2 times the speed in a circular orbit.
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Only if we reduce the number of stars with energies close to the escape energy
does f give a self-consistent model with finite mass. The King models, sometimes
called ‘lowered isothermal models’, provide a good description of non-rotating
globular clusters and open clusters:

fK(E) = n0

(2πσ 2)3/2
exp

[
−
(

�(r ) + v2

2

)/
σ 2 − 1

]
for E < 0. (3.107)

When we integrate this to find n(r ), and then solve Poisson’s equation, the term
‘−1’ acts to reduce the number of stars with high kinetic energy in the outer
regions. The average random speed decreases and the density drops abruptly to
zero at some truncation radius corresponding to the outer radius rt of Table 2.3
and Figure 3.7.

Including a term involving angular momentum alters the balance between
stars on nearly circular orbits and those that follow eccentric orbits. For example,
the distribution function

fA(E, L) = fK(E)exp
[− L2/(2σ 2r2

a

)]
(3.108)

leads to a density n(r ) which is not very different from that associated with fK(E),
but it describes a cluster with fewer stars on the near-circular orbits that have
high angular momentum. The effect is especially strong in the outer regions,
where the angular momentum of a circular orbit is largest; outside the anisotropy
radius ra, stars have a decided preference for nearly radial orbits. We see evi-
dence for this kind of velocity distribution in some globular clusters and elliptical
galaxies.

If the distribution function f depends on only one component of the angular
momentum, for example Lz , it can describe a system that is flattened along the z
axis. For example, if

f (E, Lz) = f̃ (E)L2
z for E > 0, (3.109)

for some function f̃ , then very few stars have orbits taking them close to the z axis,
with Lz ≈ 0, but relatively many will follow near-circular orbits in the equatorial
plane, with large Lz . Postulating that f = f (E, Lz) seems at first sight to be
useful for describing the motions of stars in the Galactic disk. Since vR and vz

enter the expression for f in the same way, stars must have equal random motions
in those two directions:

n(x)
〈
v2

z

〉 ≡ ∫
f

[
�(x) + v2

2
, Rvφ

]
v2

z dvR dvφ dvz = n(x)
〈
v2

R

〉
. (3.110)
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But we saw in Section 2.2 that, near the Sun, disk stars have larger random speeds
in R than they have in the vertical direction z. They cannot have a distribution
f (E, Lz), but f must depend on a third integral of motion. Curiously, it can be
proven that, in a general axisymmetric potential �(R, z), there is no function of
position and velocity other than E and Lz that is conserved along a star’s orbit. This
dynamical puzzle will resurface in Section 6.2, when we discuss stellar motions
in elliptical galaxies.

Further reading: J. Binney and S. Tremaine, 1987, Galactic Dynamics (Princeton
University Press, Princeton, New Jersey), Section 4.4.
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Our backyard: the Local Group

The Local Group contains roughly three dozen galaxies within a sphere about
a megaparsec in radius, centred between the Milky Way and our nearest large
neighbor, the Andromeda galaxy M31. Figure 4.1 shows the brighter members.
The three most prominent are M31, the Milky Way, and M33; according to the
classification of Section 1.3, these are all spiral galaxies. M31 is about 50% more
luminous than the Milky Way, while M33 is only 20% as luminous. Between them,
these three galaxies emit 90% of the visible light of the Local Group. The only
elliptical galaxy is M32, a satellite to M31. The remaining systems are irregular
galaxies, or the even less luminous dwarf irregulars, dwarf ellipticals, and dwarf
spheroidals. Many of these smaller galaxies are in orbit either around the Milky
Way or around M31.

Table 4.1 lists known and probable members of the Local Group within a
megaparsec of the Sun. The apparent brightness of each member is generally
known to within 10%, except for the Milky Way, where our location within the
disk presents special problems. Distances to Local Group galaxies are derived by
picking out individual stars, measuring their apparent brightness, and estimating
their true luminosity, using methods such as the period–luminosity relation for
Cepheid variables. In this way, distances to the ten or so brightest galaxies can
be measured to within 10%. But fewer stars are available in the less luminous
galaxies, so the distances are less certain; for some dwarfs, they are known to no
better than a factor of two.

Galaxies are not scattered at random within the Local Group; many small
members are satellites of M31 or the Milky Way. The right-hand part of Figure 4.2
shows that most of the Milky Way’s 11 known satellites lie close to a single plane –
they may have formed from a single gas cloud captured into an orbit around the
Milky Way. The Andromeda galaxy also has its brood of satellites; but many
small systems are ‘free fliers’, remote from any larger galaxy. The Local Group
is likely to contain still-undiscovered dwarf galaxies; in particular, galaxies can
hide behind dust in the Milky Way’s disk. The Local Group contains three spiral
galaxies, but only one, small, elliptical. As is typical of groups, it is rich in

151
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Table 4.1 Galaxies of the Local Group within 1 Mpc of the Sun: the Milky Way and its satellites

are listed in boldface; M31 and its companions are listed in italics

d LV Vr(�) l b M(HI)
Galaxy Type (kpc) (107 L�) (km s−1 ) (deg) (deg) (106M�)

M31 (NGC 224) Sb 770 2700 −300 121 −22 5700
Milky Way Sbc 8 1500 −10 0 0 4000
M33 (NGC 598) Sc 850 550 −183 134 −31 1500
Large MC SBm 50 200 274 280 −33 500
Small MC Irr 63 55 148 303 −44 400
NGC 205 dE 830 40 −244 121 −21 0.4
M32 (NGC 221) E2 770 40 −205 121 −22 <2.5c

NGC 6822 dIrr 500 10 −56 25 −18 140c

IC 10 dIrr 660 16 −344 119 −3 100
NGC 185 dE 620 13 −202 121 −15 0.1
NGC 147 dE 760 12 −193 120 −14 None
Sagittarius dSph 30 8 170 6 −14 None
IC 1613 (DDO 8) dIrr 715 6 −233 130 −61 60
WLM (DDO 221) dIrr 950 5 −120 76 −74 60
Pegasus (DDO 216) dIrr/dSph 760 1 −182 95 −44 3
Fornax dSph 140 1.5 53 237 −66 <0.7
Sagittarius DIG dIrr 1050 0.7 −78 21 −16 9
And I dSph 790 0.5 −380 122 −25 None
Leo I (DDO 74) dSph 270 0.5 285 226 49 None
And VII/Cas dSph dSph 760 0.5 −307 110 −10
Leo A (DDO 69) dIrr 800 0.4 20 197 52 8
And VI/Peg dSph dSph 775 0.3 −354 106 −36
And II dSph 680 0.2 −188 129 −29
Sculptor dSph 88 0.2 107 288 −83 ∼<0.1c

LGS3 (Pisces) dIrr/dSph 620 0.13 −286 127 −41 0.2
Aquarius (DDO 210) dIrr/dSph 950 0.1 −137 34 −31 3
And III dSph 760 0.1 −355 119 −26 None
Phoenix dIrr/dSph 405 0.09 56 272 −69 ∼0.2
Cetus dSph 775 0.09 101 −73
Leo II (DDO 93) dSph 205 0.06 76 220 67 None
Tucana dSph 870 0.06 323 −47 None
Sextans dSph 85 0.05 225 244 42 None
Draco (DDO 216) dSph 80 0.05 −293 86 35 None
Carina dSph 95 0.04 223 260 −22 None
And V dSph 810 0.04 −403 126 −15
Ursa Minor dSph 70 0.03 −247 105 45 None
And IX dSph 790 0.02 −210 123 −20
Ursa Major dSph ∼100 0.004 −52 160 54

Note: d is measured from the Sun; Vr(�) is radial velocity with respect to the Sun; ‘no’ HI means <105M�.
c HI is confused with M31’s disk (M32), Galactic emission (NGC 6822), or the Magellanic Stream (Sculptor).
Andromeda IV is an irregular galaxy in the background; Andromeda VIII is probably a stellar concentration
in M31’s disk.
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Fig. 4.2. The Local Group: our Milky Way is at the origin. Spirals are designated S; aster-

isks show the Magellanic Clouds; filled stars mark irregular galaxies; circles are ellipticals

or dwarf ellipticals (filled) and dwarf spheroidals (open). Left, positions projected onto

the Galactic plane; axis x points to the Galactic center, y in the direction of the Sun’s

orbital motion. The arrow shows the direction of view in the right panel. Right, view

perpendicular to the plane containing M31 and axis z toward the north Galactic pole; the

dotted line marks the Galactic midplane. Many of the Milky Way’s satellites, including

the Magellanic Clouds, lie near a single plane.

‘late-type’ galaxies, spirals and irregulars, and poor in the ‘early-type’ giant ellip-
ticals and S0 galaxies.

In the Local Group, mutual gravitational attraction is strong enough to have
overcome the general expansion of the Universe. Allowing for the Sun’s motion
around the Galaxy, we find that the Milky Way and the Andromeda Galaxy are
approaching each other instead of receding, closing at about 120 km s−1. We can
measure proper motions only for the Milky Way’s immediate satellite galaxies
(what proper motion corresponds to Vt = 120 km s−1 at a distance of 100 kpc?).
Even these are difficult, because we must use faint distant quasars and galaxies
to define our nonmoving frame of reference. But the radial velocities are easily
found. They are almost all within 60 km s−1 of the common motion of the Milky
Way and M31; the Local Group galaxies have too little kinetic energy to escape.

Just as stars near the Sun are concentrated in the Milky Way’s disk, so the
galaxies within about 30 Mpc form a roughly flattened distribution. They lie near
the supergalactic plane, approximately perpendicular to the Milky Way’s disk in
the direction l = 140◦ and l = 320◦. We discuss the supergalactic coordinate
system in Section 7.1. Figure 4.3 shows the main concentrations of galaxies near
the Local Group. Well-known clusters of galaxies such as Virgo (15–20 Mpc
distant) and Coma (at 70h−1 Mpc) are seen to form part of larger complexes.
Most of the Universe’s volume is nearly empty of galaxies.
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Fig. 4.3. Galaxy concentrations within 80h−1 Mpc of the Local Group: the ‘mesh’

encloses regions where the density is ∼> 50% above average. The filled dot gives our

position at the origin, and axes x, y, z are as in Figure 4.2. Distance d to each galaxy is

calculated from Hubble’s law: axes show H0d in km s−1. Objects from Abell’s catalogue

of galaxy clusters are denoted A. Left, view from (l, b) = 35◦, 25◦, perpendicular to the

supergalactic X–Y plane; right, view from (l, b) = 125◦, 25◦, looking nearly along that

plane – M. Hudson 1993 MNRAS 265, 43.

About half of all galaxies are found in clusters or groups a few megaparsecs
across, and are dense enough that their gravity has by now halted the cosmological
expansion. The other half lie in looser clouds and associations, within large walls
and long filaments such as those in Figure 8.3; these structures are collapsing, or
at least are expanding much more slowly than the Universe as a whole. Just as the
Sun is a typical star, intermediate in its mass and luminosity, so the Local Group
is a typical galactic environment: it is less dense than a galaxy cluster like Virgo
or Coma, but contains enough mass to bind the galaxies together.

The concentration of galaxies in our Local Group presents an opportunity
to study a variety of systems at close range. In particular, we can distinguish, or
resolve, individual stars in these nearby galaxies. As with Galactic clusters, we can
compare their color–magnitude diagrams with the predictions of stellar-structure
theories, to determine how the stellar population has built up. Astronomers also
take advantage of the Local Group to gather data on variable stars such as Cepheids,
and to study the physical processes affecting galaxies in close proximity.

We begin this chapter with a discussion of the satellites of our Galaxy, consid-
ering some of the problems facing a small galaxy in orbit around a larger system.
Section 4.2 compares the three spiral galaxies of the Local Group; in Section 4.3
we consider how these galaxies might have formed, and how elements heavier
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than helium are built up by their stars. In Section 4.4 we discuss the various kinds
of dwarf galaxies; finally, we consider briefly what the motions of Local Group
galaxies tell us about its ultimate fate.

Further reading: a recent graduate text is S. van den Bergh, 2000, The Galaxies of
the Local Group (Cambridge University Press, Cambridge, UK).

4.1 Satellites of the Milky Way

The most prominent companion galaxies to the Milky Way are the two Magellanic
Clouds; in the southern sky, they are easily visible to the naked eye, even among
city lights. These gas-rich galaxies are forming new stars and star clusters in
abundance. John Herschel, who extended his father William’s nebula-hunting to
the southern skies, noted in 1851 that ‘there are nebulae in abundance, both
regular and irregular; globular clusters in every state of condensation; and
objects of a nebulous character quite peculiar, which have no analogue in any
other region of the heavens. Such is the concentration of these objects [star
clusters] . . . which very far exceeds the average of any other, even the most crowded
part of the nebular heavens’ (Outlines of Astronomy, Longmans, London, p. 164).
Like the Milky Way, the Magellanic Clouds have stars and star clusters with a
wide range of ages. They contain variable stars, which we can compare with those
of our Galaxy, and calibrate for use as ‘standard candles’ in estimating distances
to galaxies beyond the Local Group.

By contrast, the Galaxy’s dwarf spheroidal companions are so diffuse that
they are almost invisible on the sky. These systems of elderly and middle-aged
stars contain hardly any gaseous material from which to make fresh stars. The stars
of the dwarf spheroidals contain so little mass that some of these small galaxies
may be in the process of dissolving, as they are pulled apart by the Milky Way’s
gravitational field.

4.1.1 The Magellanic Clouds

The Large Magellanic Cloud (LMC) measures 15◦ × 13◦ on the sky, so its long
dimension is about 14 kpc; the Small Magellanic Cloud (SMC) covers 7◦ × 4◦,
extending roughly 8 kpc. The LMC has about 10% of the Milky Way’s luminosity,
L ≈ 2×109L�, and is the fourth most luminous member of the Local Group; the
SMC is about ten times fainter; see Table 4.1. The LMC, the prototype of the Sm
class of ‘Magellanic spirals’, is basically a flat disk, tilted by about 45◦ relative
to the plane of the sky; the rotation speed measured from the HI gas reaches
80 km s−1. It has a strong bar, with only one stubby spiral arm (Figure 4.4).
The disk gas does not rotate symmetrically about the bar; instead, the orbits are
centred about 0.9 kpc or 1◦ to the northwest of the brightest region. The SMC
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Fig. 4.4. The Large Magellanic Cloud: (a) the extended and fairly symmetric disk of HI

gas; (b) in Hα we see hot gas around young massive stars, with 30 Doradus the most

prominent bright region; (c) an optical image shows the dense stellar bar and clumps

of young stars, with 30 Doradus near the end of the bar, above and to the left; and

(d) infrared light at 24 μm shows dust heated by young stars. The HI map is 10◦ across,

or ∼ 8.5 kpc; others are 7◦ – S. Kim and L. Staveley-Smith; K. Henize (courtesy of the

Observatories of the Carnegie Institution of Washington); Spitzer.

is very different; it is an elongated ‘cigar’ structure seen roughly end-on, with a
depth of about 15 kpc along the line of sight. Its stars show no organized motions.

Some astronomers would classify both the Magellanic Clouds as irregular
galaxies. They have a profusion of young stars (as shown by the color–magnitude
diagram of Figure 4.5), and there is less dust to block this light than in the Milky
Way. Thus the Clouds are blue in visible light and very bright in the ultraviolet.
Star-forming regions are spread throughout both systems, and they are rich in
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Fig. 4.5. Left, a color–magnitude diagram for stars in the bulge of the Milky Way; the lower

scale shows color corrected for the reddening effects of dust. The wide main sequence

indicates a range of stellar ages, but no horizontal branch is visible (cf. Figure 2.14). Right,

stars in a small patch in the disk of the Large Magellanic Cloud. Note the luminous blue

stars; the main sequence is bluer than that in the bulge because the stars are poorer in

metals – J. Holtzman.

hydrogen gas, the raw material of star formation. The Hα map of the LMC shows
holes, loops, and filaments, which are also present in the HI disk (Figure 4.4).
Some of these coincide with sites of recent starbirth, where supernovae and the
winds of hot stars have given the surrounding interstellar gas enough momentum
to push the cooler HI gas aside, forming a large hot bubble. This morphology is
typical of irregular galaxies; see Section 4.4.

Each of the Magellanic Clouds contains several hundred million solar masses
of neutral hydrogen. The ratio of the HI mass to the luminosity in blue light
(both being measured in solar units) is a useful measure of a galaxy’s progress
in converting gas into stars. For the Milky Way, M(HI)/L B ≈ 0.1, for the LMC
it is about 0.3, and for the SMC and irregular galaxies, M(HI)/L B ∼ 1. Dwarf
spheroidal galaxies contain hardly any HI gas.

A ‘bridge’ of gas, containing young star clusters, connects the two Clouds,
while a series of large gas clouds trails beyond the SMC (Figure 4.6). This
Magellanic Stream wraps a third of the way around the sky, approximately on
a Great Circle through l = 90◦ and l = 270◦. It contains a further 2 × 108M� of
HI gas.
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Fig. 4.6. HI in the Magellanic Clouds and the Magellanic Stream. The map is centred at the

south celestial pole, extending to δ = −62◦; right ascension 0h is at the top – reprinted by

permission from M. Putman et al. 1998 Nature 394, 752; c© 1998, Macmillan Magazines

Ltd.

Problem 4.1 Use the data of Tables 1.4–1.6 to estimate approximate spectral

types for the brightest stars of the LMC, in the right-hand panel of Figure 4.5.

The Magellanic Clouds are in orbit about each other, and they also orbit the
Milky Way in a plane passing almost over the Galactic pole. Just as an Earth
satellite loses energy to the resistance of the upper atmosphere, so the orbit of the
Clouds is slowly decaying as energy is drained into random motions of stars in
the Galaxy; we will discuss this process further in Section 5.6. We can explain the
present positions and velocities of the Magellanic Clouds and the Stream if the
Clouds are on an eccentric plunging orbit around the Galaxy, with a period of
about 2 Gyr, and made their closest approach to the Milky Way between 200 and
400 million years ago. The centers of the Large and Small Clouds are now about
25 kpc apart, but they probably came within 10 kpc of each other during their last
perigalactic passage. At that time, the gravitational attraction of the LMC pulled
out of the SMC the neutral hydrogen gas that we now see as the Magellanic Stream.
The combined gravity of the Milky Way and the LMC has obviously distorted
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the SMC, and perhaps even destroyed it as a bound system; the pieces are now
drifting slowly apart.

The Magellanic Clouds are extremely rich in star clusters. They are close
enough to distinguish individual main-sequence stars; so, just as in Section 2.2,
we can use color–magnitude diagrams of these clusters to find their ages, distances,
and chemical compositions. On comparing the apparent brightness of those stars
that are still on the main sequence in the LMC’s clusters with that of stars in
the Galactic open clusters, we find that the LMC is 50 kpc from the Sun. This
is about the same distance as we estimated in Section 2.2, from observations of
gas around SN 1987a. Measuring the rotation speed in the LMC’s HI disk and
using Equation 3.20 yields a mass of (1.5–2) × 1010M� within about 11 kpc of
its center. For the SMC, by comparing the stars on the giant branch in its old
clusters with those in Galactic globular clusters, and from its variable stars, we
find a distance of around 60 kpc.

The LMC has some globular clusters similar to those of our Milky Way,
although somewhat less dense. They are old (≥10 Gyr) and poor in heavy elements:
some have less than 1/100 of the solar abundance of metals. In contrast to the
Milky Way, the old metal-poor stars and clusters do not form a metal-poor halo;
instead, they lie in a thickened disk. Their random motions are σr ≈ 25−35 km s−1,
larger than the ∼10 km s−1 found for the HI clouds. The metal-poor objects show
strong asymmetric drift (see Section 2.2); they rotate at only 50 km s−1, more
slowly than the gas disk.

Hardly any of the LMC’s clusters have ages in the range 4−10 Gyr; this
galaxy may have made very few stars during that period. There are many younger
clusters and associations; some of these may have formed about 50 Myr ago,
when the LMC and SMC had their last close passage. Some of these are 100 times
more populous than most Galactic open clusters; they may be young versions of
the LMC’s globular clusters. The most luminous is the cluster R136 in nebula
30 Doradus, which is the very bright peak on the left in the Hα map of Figure 4.4.
The cluster is about 3.5 Myr old, and in blue light its luminosity L B ≈ 107L�.
The youngest stars, and the interstellar gas, are the richest in heavy elements, with
a third to a half of the solar proportion of metals.

The star clusters of the SMC cover the same age range as found in the LMC,
but there is no gap in time during which few clusters were formed. The bulk of
their stars may have intermediate ages, between a few gigayears and ∼12 Gyr.
The gas and youngest star clusters are poorer in metals than those of the LMC,
with only 20%−30% of the solar abundance.

4.1.2 Variable stars as ‘standard candles’

The RR Lyrae and Cepheid variable stars are useful for finding distances to galax-
ies within the Local Group and beyond. We discussed RR Lyrae stars in Sec-
tion 2.2; they are low-mass stars which are burning helium in their cores, with
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Fig. 4.7. Apparent magnitude and period in days, for Cepheids in the Large Magellanic

Cloud (squares) and in the SMC (filled dots); dashed lines show mean period–luminosity

relations – J.-P. Beaulieu.

L ≈ 50L�, and varying in brightness with periods of about half a day. Cepheid
variables are massive helium-burning stars, with luminosity ranging up to 1000L�
and pulsation periods from one to fifty days. Both types of star are fairly easy
to identify by taking several images of a galaxy at intervals suitably spaced in
time, and searching for stars that have varied their brightness in the expected
way.

Henrietta Leavitt found in 1912 that, of the Cepheids in the Large Magellanic
Cloud, the brighter stars varied with longer periods (Figure 4.7). Since the stars
are all at about the same distance from us, the apparently brighter stars are in fact
more luminous; we have a period–luminosity relation. If we measure the period
and apparent brightness of Cepheids in another galaxy and assume that the stars
have the same luminosity as their LMC counterparts with the same period, we
can estimate the galaxy’s distance by using Equation 1.1. Care is needed, because
the star’s light output also depends on its composition; Cepheids in the disk of
the Milky Way, where the metal abundance is high, are brighter than stars with the
same period that have a smaller fraction of heavy elements. We must also correct
for the effect of interstellar dust in dimming and reddening the stars. With the
Hubble Space Telescope, we can find distances to galaxies within 2−3 Mpc using
RR Lyrae stars; Cepheids are useful out to about 30 Mpc.

This technique of finding objects in a far-off galaxy which resemble those
found closer by, and assuming that the distant objects have the same luminosity
as their nearby counterparts, is called the method of standard candles. Often we
have no other way to estimate the distance, but this method can lead us badly
astray; the history of extragalactic astronomy includes many instances in which
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Fig. 4.8. The Fornax dwarf spheroidal galaxy; it is far more diffuse than the Large Mag-

ellanic Cloud. Bright objects are stars in the Milky Way – D. Malin, Anglo-Australian

Observatory.

the derived distances were hopelessly wrong. For example, in the 1920s Hubble
observed Cepheids in the disk of M31 and derived their distance by assuming that
they had the same luminosity as apparently similar stars in the Milky Way. But the
distances of Cepheids in the Milky Way’s disk, and thus their luminosities, had
been underestimated because their light was dimmed by interstellar dust. Also,
the W Virginis variable stars in Galactic globular clusters, which were thought to
be as bright as the Cepheids, are in fact significantly dimmer. Because of these
errors, Hubble concluded that the Cepheids in M31 were 1.5 magnitudes dimmer
than in fact they are, so his distance to the galaxy was only half of what it should
have been. Using Equation 1.28, he then arrived at an expansion age tH for the
Universe which was obviously less than the age of the Earth!

4.1.3 Dwarf spheroidal galaxies

The Milky Way’s retinue also includes at least ten dwarf spheroidal galaxies,
which are named after the constellations in which they appear. Their surface
brightness is about a hundred times less than that of the Magellanic Clouds, and
Figure 4.8 shows how hard it can be to spot them among the numerous Galactic
stars in the foreground. The first of the Milky Way’s dwarf spheroidals to be
discovered were Sculptor and Fornax, in 1938; Sagittarius was found only in
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Table 4.2 Dwarf galaxies, compared with the nuclear star cluster of M33, and three Milky Way

globular clusters

LV σr rc rt tsf M/LV log10(Z/Z�)
System (107 L�) (km s−1) (pc) (pc) (Gyr) (M�/L�) range

NGC 147 dE 12 20−30 260 1000 3−5 7 ± 3 −1.5 to −0.7
NGC 185 dE 13 20 170 2000 <0.5 5 ± 2 −1.2 to −0.8
Pegasus dIrr 1 9(HI) 500(HI) <0.1 2−4 −2.3 to −1.7
Fornax dSph 1.5 13 400 5000 <2 ∼15 −2 to −0.4
M33 nucleus 0.25 24 <0.4 <1: ∼1 −1.9 to −0.7
Sculptor dSph 0.2 9 200 2000 >10 ∼10 −2.6 to −0.8
ω Cen gc 0.1 20 4 70 >10 2.5 −1.6 to −1.2
M15 gc 0.04 12 <0.01 85 >10 2 −2.15
Carina dSph 0.04 7 200 900 2–10 ∼40 −2.7 to −0.3
M92 gc 0.02 5 0.5 50 >10 1.5 −2.15

Note: The velocity dispersion σr is highest at the center; at the core radius rc, the surface brightness falls
to half its central value, dropping to near zero at truncation radius rt; tsf the time since last significant star
formation, with : indicating an uncertain value; Z/Z� is metal abundance compared with that of the Sun.
HI denotes a measurement from HI gas, not stars; globular clusters are labelled gc.

1994 and the Ursa Major system in 2005. Almost certainly, the Local Group
contains still-undiscovered dwarf galaxies of low surface brightness. In contrast
to the Magellanic Clouds, the dwarf spheroidals are effectively gas-free, and they
contain hardly any stars younger than 1−2 Gyr. All of them have some very old
stars, such as RR Lyrae variables which require at least 10 Gyr to evolve to that
stage. These systems began forming their stars as early as did ‘giant’ galaxies like
the Milky Way.

The smallest of the dwarf spheroidal galaxies are only about as luminous as the
larger globular clusters, although their radii are much larger (Table 4.2). But our
satellite dwarf spheroidals are really galaxies, not just another form of star cluster.
Fornax, and probably Sagittarius, have globular clusters of their own. Unlike star
clusters within the Milky Way, the dwarf galaxies did not form all their stars at
once; they all include stars born over several gigayears, from gas with differing
proportions of heavy elements. Figure 4.9 shows the color–magnitude diagram for
stars in the Carina dwarf, along with computed isochrones for metal-poor stars.
Only about 2% of the stars are younger than about 2.5 Gyr, and the rest appear to
have been born in three bursts, approximately 3, 7, and 15 Gyr ago. Even the most
luminous of the dwarf spheroidals are only about 1/30 as rich in heavy elements
as the Sun, and the less luminous systems are even more metal-poor; see Table 4.2.
According to a simple model to be discussed in Section 4.3, we would expect a
galaxy that had turned all its gas into stars to have roughly the solar abundance of
heavy elements. Their low metallicity suggests that these galaxies lost much of
their metal-enriched gas into intergalactic space.

Using the information in Table 4.2, we can estimate the masses of dwarf
spheroidal galaxies from their sizes and the radial velocities of their stars. Stellar
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Fig. 4.9. Left, a color–magnitude diagram for the Carina dwarf spheroidal galaxy. Right,

superposed isochrones give the locus of metal-poor stars (Z = Z�/50) at ages of 3 Gyr

(solid), 7 Gyr (dotted), and 15 Gyr (dashed). We see young red clump stars at B− R, m R =
(1, 20), and old stars on the horizontal branch. Carina’s distance modulus is taken as

(m − M)0 = 20.03; dust reddening is assumed to dim stars by 0.108 magnitudes in B and

0.067 magnitudes in R – T. Smecker-Hane; A. Cole, Padova stellar tracks.

random speeds are not very different from those measured in globular clusters, but
the stars in dwarf galaxies are spread over distances ten or a hundred times as great.
So, if we assume that these galaxies are in a steady state, and use the virial theorem,
Equation 3.44, to calculate the masses, we find that the ratio of mass to light
M/L is much greater than that for globular clusters. For the lowest-luminosity
dwarf spheroidals, Ursa Minor, Carina, and Draco, M/L is even higher than that
measured for the Milky Way (Section 2.3) or in spiral galaxies (Section 5.3).
Dwarf spheroidal galaxies may consist largely of dark matter, with luminous stars
as merely the ‘icing on the cake’.

Problem 4.2 The Carina dwarf spheroidal galaxy has a velocity dispersion σ

three times less than that at the center of the globular cluster ω Centauri, while

Carina’s core radius is 50 times greater. Use the virial theorem to show that Carina

is about six times as massive as ω Centauri, so M/L must be 15 times larger.

Another possibility is that some of the dwarf spheroidal galaxies are not
in equilibrium, but are being torn apart by the Milky Way’s gravitational field.
Sagittarius, the most recently discovered dwarf spheroidal, is almost certainly
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losing some of its stars. It lies nearly in the plane of the Galactic disk, only 20 kpc
from the Galactic center. It is strongly distorted and spreads over 22◦ × 7◦ in the
sky, corresponding to the fairly large extent of 12 kpc × 4 kpc. To ask whether
other galactic satellites are likely to hold themselves together, we now look at the
conditions under which a star cluster or satellite galaxy could survive in the Milky
Way’s gravity.

4.1.4 Life in orbit: the tidal limit

As a small galaxy or a star cluster orbits a larger system, its stars feel a combined
gravitational force that is changing in time: they can no longer conserve their
energies according to Equation 3.27. This is the famously insoluble ‘three-body
problem’, in which many of the possible orbits are chaotic; a small change to a
star’s position or velocity has a huge effect on its subsequent motion. But, if the
satellite follows a circular orbit, and the gravitational potential is constant in a
frame of reference rotating uniformly about the center of mass of the combined
system, we can define an effective potential �eff for the star’s motion, and find a
substitute for the no-longer-conserved energy.

If a vector u is constant in an inertial frame, which does not rotate, then an
observer in a frame rotating with constant angular velocity Ω will see it changing
at the rate du/dt ′ = −Ω × u, where d/dt ′ denotes the derivative measured by
the rotating observer. (Check this by taking Cartesian coordinates in the inertial
frame, and writing Ω = �z; look at how a vector along each of the x, y, z axes
changes for a rotating observer.) Suppose that a star has position x and velocity
v relative to an inertial frame. Then, if the rotating observer chooses coordinates
such that the star’s position x′ in that frame instantaneously coincides with x, he
or she measures its velocity as

v′ ≡ dx′

dt ′ = v − Ω × x. (4.1)

For the rotating observer, the star’s velocity v′ changes at the rate

dv′

dt ′ = dv′

dt
− Ω × v′ = dv

dt
− Ω × v − Ω × v′

= −∇� − 2Ω × v′ − Ω × (Ω × x) (4.2)

The scalar product of v′ with the last term is (see Table A.2)

−v′ · Ω × (Ω × x) = �2(x · v′) − (v′ · Ω)(Ω · x) = 1

2

d

dt ′ [(Ω × x)2].
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Since v′ ·(Ω×v′) = 0 and x′ = x, taking the scalar product of v′ with Equation 4.2
gives

1

2

d

dt ′ [v
′2 − (Ω × x′)2] = −v′ · ∇�(x′). (4.3)

If Ω is chosen to follow the satellite in its orbit, then in the rotating frame the
gravitational potential � does not depend on time; so the potential at the particle’s
position changes at the rate d�/dt ′ = v′ · ∇�. If we define the Jacobi constant
EJ by

EJ = 1

2
v′2 + �eff(x′), where �eff(x′) ≡ �(x′) − 1

2
(Ω × x′)2, (4.4)

then Equation 4.3 says that EJ does not change along the star’s path. We can write
the Jacobi constant in terms of the star’s energy E and its angular momentum L
per unit mass, as measured in the inertial frame:

EJ = 1

2
(v − Ω × x)2 + �eff = 1

2
v2 + �(x, t) − Ω · (x × v) = E − Ω · L.

(4.5)

Problem 4.3 You can check that EJ is indeed constant by taking Ω along the z
axis, and looking at a particle moving in the x−y plane. Show from Equation 4.4

that EJ = (v′
x2 + v′

y2 )/2 + �(x′) − �2(x ′ 2 + y′ 2)/2. Write the rate dEJ/dt ′ at

which EJ changes along the particle’s path, as measured by the rotating observer:

you can use Equations 4.1 and 4.2 to find the derivatives dx ′/dt ′, dv′
x/dt ′, etc The

rate should be zero, showing that EJ is conserved along the particle’s orbit. Now

allow motion in the z direction, which does not contribute to Ω × x or Ω × v, in

your calculation to show that EJ is still conserved.

The simplest calculation of a tidal limit is one in which point masses m and
M, respectively, represent the satellite and the main galaxy. They are separated
by distance D, while orbiting their common center of mass C with angular speed
�. If we measure distance x from the satellite m toward M, C lies at position
x = DM/(M + m); along the line joining the two systems,

�eff(x) = − GM
|D − x | − Gm

|x | − �2

2

(
x − DM

M + m

)2

. (4.6)

The effective potential �eff has three maxima, at the first three Lagrange points
(Figure 4.10). The middle point L1 is the lowest; the next lowest point, L2, lies
behind the satellite; and L3 is behind the main galaxy. A star for which EJ <

�eff(L1) must remain bound to either M or m; it cannot wander between them.
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Fig. 4.10. The lower curve gives the effective potential �eff along the line joining point

masses m and M. The Lagrange points L1, L2, and L3 are extrema of �eff(x). The upper

curve shows the quadratic final term of Equation 4.6.

The Lagrange points are found by solving

0 = ∂�eff

∂x
= − GM

(D − x)2
± Gm

x2
− �2

(
x − DM

M + m

)
. (4.7)

The acceleration �2 DM/(M+ m) of m as it circles C is due to the gravitational
attraction of M. By analogy with Equation 3.20,

�2 DM
M + m

= GM
D2

, so �2 = G(M + m)

D3
. (4.8)

If the satellite’s mass is much less than that of the main galaxy, L1 and L2 will
lie close to m. We can substitute for �2 in Equation 4.7, and expand in powers of
x/D, to find

0 ≈ −GM
D2

− 2
GM
D3

x ± Gm

x2
− G(M + m)

D3

(
x − DM

M + m

)
. (4.9)

So at the Lagrange points L1 and L2, respectively,

x = ±rJ, where rJ = D

(
m

3M + m

)1/3

. (4.10)

Stars that cannot stray further from the satellite than rJ, the Jacobi radius, will
remain bound to it: rJ is sometimes called the Roche limit. Note that L1 is not
the point where the gravitational forces from M and m are equal, but lies further
from the less massive body. The Lagrange points are important for close binary
stars; if the outer envelope of one star expands beyond L1, its mass begins to spill
over onto the other.
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Problem 4.4 Show that the gravitational pull of the Sun (mass M) on the Moon

is stronger than that of the Earth (mass m), but the Moon remains in orbit about

the Earth, because its orbital radius r < rJ.

When M � m, Equation 4.10 tells us that the mean density in a sphere of
radius rJ surrounding the satellite, 3m/(4πr3

J ), is exactly three times the mean
density within a sphere of radius D around the main galaxy. Ignoring for the
moment the force from the main galaxy, Equation 3.23 tells us that the period of
a star orbiting the satellite at distance rJ would be roughly equal to the satellite’s
own orbital period. The satellite can retain those stars close enough to circle it in
less time than it takes to complete its own orbit about the main galaxy, but it will
lose its hold on any that are more remote.

Problem 4.5 If the mass M is replaced by the ‘dark-halo’ potential of Equa-

tion 2.19, show that the mass within radius r � aH of its center is M(<r ) ≈
r V 2

H/G. A satellite with mass m � M(< D) orbits at radius D � aH. By substi-

tuting the force from the dark halo for that of the point mass M in Equation 4.7,

show that, instead of Equation 4.10, we have

rJ = D

[
m

2M(< D)

]1/3

. (4.11)

In general, star clusters and satellite galaxies do not follow circular orbits.
We might expect that the force of gravity at the closest approach will determine
which stars remained bound. The truncation radius rt of Section 3.2 and Table 4.2,
where the density of stars drops to zero, should then be approximately equal to rJ

at the pericenter of the orbit. This appears to hold for the Milky Way’s globular
clusters, but some of the Magellanic Cloud globulars overflow the Jacobi limit at
their estimated perigalactic radius. Stars that are no longer bound to these clusters
can perhaps still remain close by for a few orbits about the galaxy.

The LMC’s disk is now safely stable against disruption by the Milky Way.
Calculations of the orbit of the Magellanic Clouds and Stream indicate that it is
now close to pericenter, and that the speed of a circular orbit about the Milky
Way at the LMC’s present distance of 50 kpc is about the same as that near
the Sun, ∼200 km s−1. Using Equation 3.20, we estimate the mass within the
LMC’s orbit as about 5 × 1011M�. The LMC’s mass is about 1010M�, so, by
Equation 4.11,

rJ ≈ 50 kpc ×
(

1010M�
2 × 5 × 1011M�

)1/3

≈ 11 kpc. (4.12)
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The LMC’s disk lies safely within this radius, but we see that the SMC is too
distant from the LMC to remain bound to it. The problem below shows that some
dwarf galaxies are probably being torn apart by the Milky Way’s gravitational
field.

Problem 4.6 The Sagittarius dwarf spheroidal galaxy is now about 20 kpc from

the Galactic center: find the mass of the Milky Way within that radius, assuming

that the rotation curve remains flat with V (R) ≈ 200 km s−1. Show that this

dwarf galaxy would need a mass of about 6 × 109M� if stars 5 kpc from its

center are to remain bound to it. Show that this requires M/LV ∼70, which is

much larger than the values listed in Table 4.2.

4.2 Spirals of the Local Group

The Local Group contains three spiral galaxies: our own Milky Way, the
Andromeda galaxy M31, and M33. At a distance of 770 kpc, M31 is the most
distant object that can easily be seen with the unaided eye; M33 is only slightly
further away but is much harder to spot. By comparing these three systems with
each other, we see what properties spiral galaxies have in common, and how they
differ.

4.2.1 The Andromeda galaxy

M31, shown in Figure 4.11, is in all respects a bigger galaxy than our Milky Way.
It is ∼50% more luminous; the disk scale length h R defined by Equation 2.8 is
6–7 kpc, twice as large as in the Milky Way; and it rotates faster, with speed V (R)
over most of the disk about 260 km s−1, or 20%–30% higher than in our Galaxy.
In addition to about 300 known globular clusters, over twice as many as in the
Milky Way, M31 has its own satellite galaxies. These include the elliptical galaxy
M32, three dwarf ellipticals, and several dwarf spheroidals.

The central bulge of M31 is larger in proportion than that of the Milky Way,
providing 30%−40% of the measured luminosity. The apparent long axis of the
bulge does not line up with the major axis of the disk further out. Either the bulge
is not axisymmetric and would look somewhat oval if seen from above the disk,
or its equator must be tipped relative to the plane of the disk. The bulge is faint in
ultraviolet light, because it contains few young stars. As in our Galaxy, the bulge
stars are all at least a few gigayears old and are generally rich in heavy elements.
The bulge contains dilute ionized gas, and a few denser clouds of HI gas and dust,
which are seen as dark nebulae.

At the center is a compact semi-stellar nucleus. In Hubble Space Telescope
images the nucleus proves to have two separate concentrations of light about 0.5′′
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Fig. 4.11. The Andromeda galaxy, M31: (a) in ultraviolet light; (b) B-band image shows

the prominent bulge; (c) infrared light of warm dust at 24 μm; (d) Hα image shows the

‘ring of fire’ and HII regions in the spiral arms; (e) HI gas; and (f) emission of CO tracing

dense molecular gas – K. Gordon. (a) Galex FUV, D. Thilker et al. 2005 ApJ 619, L67;

(b) and (d) D. Thilker and R. Walterbos; (c) Spitzer; K. Gordon et al. 2005 ApJ 638, L87;

(e) R. Braun et al.; and (f) Nieten et al. 2006 AAp 453, 459.

or 2 pc apart. One of these harbors a dense central object, probably a black hole
of mass MBH ∼3 × 106M�. The other may be a star cluster which has spiralled
into the center under the influence of dynamical friction (see Section 7.1). Unlike
that of the Milky Way, the nucleus of M31 is impressively free of gas and dust.

Just as in the Milky Way, the metal-poor globular clusters of M31 follow
deeply plunging orbits; the cluster system shows little or no ordered rotation. But
the bulge also continues smoothly outward as a luminous spheroid. Most of the
stars a few kiloparsecs above the disk plane are not those of a metal-poor halo;
they are relatively metal-rich, and they probably form a fast-rotating system. It is
as if M31’s bulge has ‘overflowed’, largely swamping the metal-poor halo.

Like the Milky Way, M31 is a cannibal galaxy. The metal-rich halo stars are
roughly 6 Gyr old; they and much of the bulge probably arrived as M31 merged
with another metal-rich (and so fairly massive: see Section 4.3) galaxy. A huge
stream of stars over 100 kpc long has been found, passing from northwest of the
galaxy to the southeast. These stars are also more metal-rich than those of the Milky
Way’s halo; they may have been stripped as M31 swallowed a sizable galaxy.
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Circling the bulge at a radius of about 10 kpc, the star-forming ‘ring of fire’ is
clearly visible in Figure 4.11. Most of the young disk stars lie in this ring or just
outside it; on average, M31’s disk forms stars at a slower rate than does that of the
Milky Way. Ionized gas in HII regions around the young massive stars glows red
in Hα; in the far-infrared we see the dust heated by those stars, and the CO map
shows the dense gas from which they formed. Just outside this ring, ultraviolet-
bright young stars and strings of HII regions in the disk trace segments of fairly
tightly wound spiral arms, where gas, dust, and stars have been compressed to a
higher density. However, there is no clear large-scale spiral pattern. Because of its
large bulge and moderately tightly wound spiral arms, and the relative paucity of
gas and recent star formation in the inner disk, we classify M31 as an Sb galaxy,
whereas our Milky Way is Sbc or Sc.

M31 has about (4−6) × 109M� of neutral hydrogen, about 50% more than
the Milky Way. Molecular gas is probably a smaller fraction of the total, so the
ratio of gas mass to stellar luminosity is lower than that in our Galaxy. Figure 4.11
shows that the HI is concentrated at the ring of fire; but, as in the Milky Way, the
gas extends to larger radii than the stellar disk. In the region of the spiral arms,
high-resolution maps show holes in the HI disk, up to a kiloparsec across; at their
edges, shells containing (103−107)M� of dense HI gas are moving outward at
10–30 km s−1. At this rate, most of the holes would have taken a few megayears to
reach their present sizes. Sometimes an association of massive O and B stars lies
within the hole; winds from these massive stars, and recent supernova explosions,
have blown away the cool gas. Holes in the inner parts of the disk tend to be
smaller, perhaps because the gas is denser or the magnetic field stronger, so it is
harder to push cool material out of the way.

If we measure the velocity of the HI gas at each point, we can use the fact that
the clouds follow near-circular orbits to build up a three-dimensional picture of the
gas disk. The outer parts are not flat but bent into an ‘S’ shape; the stellar disk is
visibly warped in the same sense. An ‘S’ warp in the outer parts of spiral galaxies
is quite common; the Milky Way’s own disk is warped in this way, and systems
with a flat disk are probably in a minority. As in our Galaxy, the HI layer flares out
to become thicker at greater distances from the center. Some outlying clumps of
HI gas clearly do not share the disk’s rotation; lying up to 50 kpc from the center,
they are the analogues of the Milky Way’s high-velocity clouds (Section 2.4). The
clouds are ∼1 kpc across with (105−106)M� of HI . Several of them lie along the
same path as the giant star stream, with roughly the same velocities; perhaps they
were stripped from the same satellite galaxy. Another lies close in both position
and velocity to the dwarf elliptical NGC 205.

4.2.2 M33: a late-type spiral

The other spiral in the Local Group, M33, is definitely an Sc or an Scd galaxy. Its
bulge is tiny; the spiral arms are more open than those in M31 and not as smooth,
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consisting mainly of bright blue concentrations of recently formed stars. M33 is
a smaller and much less luminous galaxy than the Milky Way; the scale length is
small, h R ≈ 1.7 kpc, and the rotation speed V (R) rises only to 120 km s−1.

When observed in the Hα emission line, M33 displays a complex network
of loops, filaments, and shells, like those in the LMC (Figure 4.4) and in the
violently star-forming irregular galaxy IC 10 (see Section 4.4 below). Supernova
explosions, and the winds from stars, heat the surrounding gas and drive it away,
thus affecting the location and rate of future starbirth. Such feedback has a strong
effect on the way that galaxies come into being from lumps of primordial gas, and
on their subsequent development.

M33 is relatively richer in HI gas than M31 or the Milky Way; there is little
CO emission, reflecting either a lack of molecular gas or a smaller ratio of CO
to H2 than in the Milky Way. The latter is more likely, since the disk is rich in
young stars, which are born in the dense cores of molecular clouds. Compared
with the Milky Way, relatively more of the HI gas is in the warm component and
less in cold dense clouds. As in M31, the HI layer has large holes, often centred on
star-forming regions in the disk. M33’s neutral-gas disk is very extended. The HI

continues out at least to 3 Holmberg radii or about 30 kpc, which is a substantial
fraction of the ∼200 kpc separating the galaxy from M31. One rather massive
cloud with 106M� of gas lies about 15 kpc from M33’s center; a streamer of HI

gas links it to the disk. The outer disk is warped, possibly by tides from M31.
At the center of M33, we find a dense nuclear star cluster, with no more than

a small bulge around it. This cluster is more luminous than any Galactic globular,
with LV ≈ 2.5×106L�; its core is tiny, so the stellar density exceeds 107L� pc−3.
In contrast to the single generation of stars in a globular cluster, M33’s nucleus
contains old, middle-aged, and young stars. There is no sign of a black hole: if
one is present, MBH ∼< 104M�, far less than in the Milky Way and in M31. But
we do see evidence for a power source other than ordinary stars. M33’s nucleus
is the single brightest X-ray source of the Local Group, equivalent to several of
the normal binary sources.

M33 is only two or three times more luminous than the LMC, yet it has a much
more symmetric spiral pattern. Low-luminosity galaxies are in general more likely
than larger systems to resemble the LMC in having a strong central bar, with the
brightest parts of the galaxy off-center from the outer disk. But the morphology
clearly depends on factors other than the galaxy’s luminosity alone.

4.3 How did the Local Group galaxies form?

We can now sketch a picture for the formation of the Milky Way and the other
galaxies of the Local Group, starting from the hot dense early Universe that we
discussed in Section 1.5. Roughly 350 000 years after the brilliant beginning of the
Big Bang, photons of the cosmic fireball no longer had enough energy to ionize
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Fig. 4.12. Small galaxies form near large ones: the density of matter (wavy solid line) is

a combination of small clumps within a large region that is denser than average (dashed

line). Regions dense enough to collapse on themselves (above the horizontal line) tend to

be clustered together.

Fig. 4.13. Tidal torques: irregular lumps attract each other and begin to rotate.

hydrogen and helium. The nuclei then combined with electrons to form a gas of
neutral atoms, through which light could propagate freely; the Universe became
transparent. The gas that was to form the galaxies was no longer supported by the
pressure of photons trapped within it. If its gravity was strong enough, a region
that was denser than average would begin to collapse inward.

We will see in Section 8.5 that the denser the gas, the earlier cosmic expansion
must halt and give way to contraction. These collapsing regions would not have
been evenly spread in space. Where there was a general increase in density, more
of the smaller surrounding clumps of matter would have been dense enough to
collapse: see Figure 4.12. Clumps near the center of a large infalling region would
fall toward each other, eventually merging into a single big galaxy, while those
further out might become smaller satellite galaxies. We can think of all the material
that is destined to come together into a single galaxy as making up a protogalaxy.

At their largest extent, just before they started to collapse in on themselves, the
protogalaxies lay closer together than the galaxies do now, because the Universe
was smaller. In general they would not have been neat spheres, but irregularly
shaped lumps, tugging at each other by gravity. Mutual tidal torques would have
pulled them into a slow rotation (Figure 4.13). There is no very definite way to
calculate how much spin a galaxy would receive. In large computer simulations,
which represent the forming galaxies by of many particles, each attracting the
others by the force of gravity, rotation develops such that the average at any radius
is about 5% of what is required for a circular orbit there. As the gas clouds within
each protogalaxy collide with each other, they lose part of their energy and fall
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inward; the protogalaxy’s rotation increases, because the material approximately
conserves its angular momentum.

When did the galaxies form their earliest stars? Stellar light and the emission
lines of hot gas ionized by early stars have been seen from galaxies at redshifts
z ∼> 6, when the Universe was less than 1 Gyr old. Before the first stars could
form, the fireball of the cosmic background radiation had to cool enough to allow
star-sized lumps of gas to radiate heat away. We now observe nascent stars in the
cores of molecular clouds, with temperatures T ∼< 20 K; see Section 2.4. Using
Equation 1.34, we see that the background radiation does not reach this tempera-
ture until redshift z ∼ 6, hundreds of millions of years after the Big Bang.

But the very first stars were made from primeval gas, almost pure hydrogen
and helium. Their atmospheres would have been much less opaque than the Sun’s
outer layers, and so less easily blown away by the pressure of the star’s radiation.
Large lumps of gas might have collapsed earlier, at higher temperatures, to form
extremely massive stars with M > 100M� that could survive for long enough
to allow substantial nuclear burning. When these stars exploded as supernovae,
they would distribute the heavy elements that they had made to the surrounding
gas. We will discuss galaxy formation and early starbirth again in Section 9.4.

4.3.1 Making the Milky Way

The first stars may have lived and died not in a galaxy-sized unit, but in smaller
lumps of gas, with masses perhaps (106–108)M�. Here, one or two supernovae
were enough to add elements such as carbon, nitrogen, and oxygen to the gas in
1/1000 or even 1/100 of the solar proportion. This is approximately what we see
in the Galaxy’s oldest stars, those of the metal-poor globular clusters. The stars in
each cluster generally have very closely the same composition, while abundances
in the Galactic gas today are far from uniform. So we think that globular clusters
formed in smaller parcels of gas, where the nucleosynthetic products of earlier
stars had been thoroughly mixed.

Some of the globular clusters may have been born when gas clouds ran into
each other, as they fell together to form the Milky Way; the collisions would
have compressed the gas, raising its density so that many stars formed in a short
time. Stars, unlike gas, do not lose significant energy through collisions; so their
formation halts the increase in ordered rotation. The orbits of the old metal-poor
globulars and metal-poor halo stars are not circular but elongated. These orbits
are oriented in random directions; the metal-poor halo has virtually no ordered
rotation. This is probably because the material from which it formed did not fall
far into the Galaxy before it became largely stellar.

In 1962, Olin Eggen, Donald Lynden-Bell, and Allan Sandage introduced the
idea that the stars in the metal-poor halo had formed rapidly, as the proto-Milky
Way collapsed under its own gravity. Equation 3.23 tells us that the time taken
for a gas cloud of density ρ to fall in on itself is proportional to 1/

√
ρ. Gas in the
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substructure of lumps that made the stars would have been denser than average,
so material should have started to contract sooner, and turned into stars before the
galaxy-sized cloud had gone far in its own collapse. The problem below shows that
the whole process could have been completed within a few tenths of a gigayear.

Problem 4.7 For a galaxy like our Milky Way with a mass of 1011M� and radius

10 kpc, find the average density. The virial theorem tells us that, if a galaxy of stars

collapses from rest, then, after it has come to equilibrium, it will be eight times

denser than at the start: see the discussion following Problem 8.31. Show that,

for the proto-Milky Way, the free-fall time of Equation 3.23 was tff ∼ 300 Myr.

This is about ten times longer than a protostar of solar mass takes to reach the

main sequence. For the Sculptor dwarf with M ∼ 2 × 107M� and radius 2 kpc

(Table 4.2), show that the average density is only 1/40 of the Milky Way’s, so

the collapse time tff ∼ 2 Gyr.

By contrast, the material that became the Milky Way’s rotating disk had to
lose a considerable amount of its energy. We saw in Section 3.3 that a circle is
the orbit of lowest energy for a given angular momentum. Today’s thin-disk stars
occupy nearly circular orbits because they were born from gas that had lost almost
as much energy as possible. The thick-disk stars, and the more metal-rich globular
clusters, predate most of the thin disk. They may have been born from gas clouds
that had yielded up less of their energy, but still formed a somewhat flattened
rotating system. By the time that the earliest thin-disk stars were born, 8–10 Gyr
ago, heavy elements produced by earlier generations of stars had enriched the gas,
to perhaps 10%−20% of the solar abundance.

Today, disk gas near the Sun follows nearly circular orbits with speed V (R) ≈
200 km s−1. If tidal torques gave this material a rotational speed only 5% of that
needed for a circular orbit, the gas must subsequently have fallen inward until it
reached an orbit appropriate for its angular momentum. We can use Equation 3.29
to estimate where the local gas must have been when the tidal torques were
operating. If the Milky Way’s gravitational potential corresponds to a flat rotation
curve, with V (R) constant, then this gas must have fallen in from a distance
R ∼ 100 kpc; the gas around galaxies must have extended much further out at
earlier times. The disk material had to remain gaseous as it moved inward, forming
only very few stars, so that it could continue to radiate away energy. It may have
been able to do this because it was much less dense than the gas that had earlier
given birth to the globular clusters.

The color–magnitude diagram of Figure 4.5 shows no horizontal branch in
the Galactic bulge. Even allowing for their higher metal content, very few of the
bulge stars can be as old as the globular clusters. The over-whelming majority
have ages less than 8–10 Gyr, and some may be much younger. We do not yet
know how the bulge stars were made. They may have formed in the dense center
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of the protogalactic gas that was to make up the Milky Way; the bulge might have
grown out of a dense inner region of the disk; or its stars may be the remains of
dense clusters that fell victim to dynamical friction, and spiralled into the center;
see Section 7.1. The central kiloparsec of galaxies such as M33 and the LMC is
not as dense as the inner Milky Way; the low density may have prevented a bulge
from developing.

Once the dense central bulge had come into being, the gravitational force
of the whole Galaxy would have helped it to hold onto its gas. By trapping the
hot and fast-moving debris from supernovae, the bulge formed large numbers of
metal-rich stars. Both in the Local Group and beyond (see Section 6.3), the stars
of more luminous galaxies are richer in heavy elements. Their stronger gravity
prevents metal-bearing gas from escaping, and it is incorporated into stars.

Much of the Milky Way’s dark matter is in its outskirts, beyond most of the
stars of the disk. In Section 5.3 we will see that the same is true of most spiral
galaxies. Why does nonluminous material lie mainly in the Galaxy’s outer reaches?
Since its composition remains unknown, we lack a definite answer. However, if
we presume that all forms of matter were mixed evenly at early times, then the
dark matter must have had less opportunity than the star-stuff to get rid of its
energy. It would then be left on orbits taking it far from the Galactic center. A dark
halo of the weakly interacting massive particles (WIMPs) of Section 1.5 could
never radiate away energy as heat; so it is bound to remain more extended than
the gaseous and stellar body. If the dark matter consists of compact objects such
as brown dwarfs or black holes, we would expect that these formed very early in
the Milky Way’s collapse, probably predating even the globular clusters.

The Milky Way is still under construction today. As we saw in Section 2.2,
stars of the Sagittarius dwarf spheroidal galaxy are being added to the Galactic
halo. Near the Sun, groups of young metal-poor halo stars have been found, that
may be the remnants of another partially digested dwarf galaxy. The orbit of the
Magellanic Clouds has been shrinking, and in Section 7.1we will see that the LMC
will probably fall into the Milky Way within 3–5 Gyr. Like meteoric cratering in
the solar system, these late additions represent the final stages of assembly.

4.3.2 The buildup of heavy elements

During its life, a galaxy turns gas into stars. Each star burns hydrogen and helium to
form heavier elements, which are returned to the interstellar gas at the end of its life.
We might define a ‘clock’ for galactic aging by the mass of stars born and of metals
produced, per unit mass of gas that was present initially. Near the Sun, we see some
correspondence between the time told by this ‘metal-production clock’ and time
as measured by stellar aging; Figure 4.14 shows that older disk stars in general
contain little iron, while recently formed stars have larger abundances. We saw in
Section 2.2 that the open clusters of the Milky Way’s thin disk are both younger
and more metal-rich than the stars and globular clusters of the thick disk, while
the globular clusters of the halo are the oldest and the poorest in heavy elements.
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Fig. 4.14. Nearby F and G stars show a large scatter in iron abundance at any age; but

younger stars tend to be richer in iron. Stars with ‘thick-disk’ metal abundance (below

the dashed line) often move faster than at 80 km s−1 relative to the local standard of rest

(open circles) – B. Nordström et al. 2004 AAp 418, 98.

At one stage it was thought that galactic contents could be divided simply
into two components. Young stars and metal-rich material in the disk formed Pop-
ulation I, while the old metal-poor stars in the bulge and stellar halo belonged
to Population II. (Astronomers sometimes refer to the first stars, made from the
hydrogen and helium of the Big Bang without any heavy elements, as Popula-
tion III.) We now know that this is an oversimplification. For example, the bulges
of M31 and the Milky Way are several gigayears old, but they are metal-rich.
Dwarf irregular galaxies, and the outer parts of normal spirals, contain young
metal-poor stars born within the past 100 Myr.

Faced with this complexity, we retreat to a drastically simplified description
of how the metals in a galaxy might build up over time. This is the one-zone,
instantaneous recycling model. We assume that a galaxy’s gas is well mixed,
with the same composition everywhere, and that stars return the products of their
nuclear fusion to the interstellar gas rapidly, much faster than the time taken to
form a significant fraction of the stars. Initially, we assume that no gas escapes
from the galaxy or is added to it – this is a closed-box model – and that all elements
heavier than helium maintain the same proportion relative to each other. We define

• Mg(t) as the mass of gas in the galaxy at time t;
• M
(t) to be the mass in low-mass stars and the white dwarfs, neutron stars,

and black holes that are the remnants of high-mass stars (the matter in these
objects remains locked within them throughout the galaxy’s lifetime); and,
finally,

• Mh(t) is the total mass of elements heavier than helium in the galactic gas;
the metal abundance in the gas is then Z (t) = Mh/Mg.



178 Our backyard: the Local Group

Suppose that, at time t, a mass �′M
 of stars is formed. When the massive
stars have gone through their lives, they leave behind a mass �M
 of low-mass
stars and remnants, and return gas to the interstellar medium which includes a
mass p �M
 of heavy elements. The yield p represents an average over the local
stars; it depends on the initial mass function, specifying the relative number of
stars formed at each mass (see Section 2.1), and on details of the nuclear burning.
The distribution of angular momentum in the stellar material, its metal abundance,
stellar magnetic fields, and the fraction of stars in close binaries can also affect
the yield.

The mass Mh of heavy elements in the interstellar gas alters as the metals
produced by massive stars are returned, while a mass Z �M
 of these elements
is locked into low-mass stars and remnants. We have

�Mh = p �M
 − Z �M
 = (p − Z )�M
; (4.13)

so the metallicity of the gas increases by an amount

�Z ≡ �

(Mh

Mg

)
= p �M
 − Z [�M
 + �Mg]

Mg
. (4.14)

If no gas enters or leaves the system, the total in gas and stars remains constant,
and �M
 + �Mg = 0. When the production of an element in stars does not
depend on the presence of other heavy elements in the stellar material, we call it
a primary element. If we deal with primary elements, p is independent of Z and
we can integrate Equation 4.14 to find how the metal abundance in the gas builds
up. We have

Z (t) = Z (t = 0) + p ln

[Mg(t = 0)

Mg(t)

]
. (4.15)

The metallicity of the gas grows with time, as stars are made and gas is used up.
The mass of stars M
(t) formed before time t, and so with metallicity less than
Z (t), is just Mg(0) − Mg(t); we have

M
(<Z ) = Mg(0)[1 − exp{− [Z − Z (0)] /p }] (4.16)

Time does not appear explicitly here; the mass M
(< Z ) of slowly evolving stars
that have abundances below the given level Z depends only on the quantity of
gas remaining in the galaxy when its metal abundance has reached that value.
This simple model explains a basic fact: where the gas density is high in relation
to the number of stars formed, the average abundance of heavy elements is low.
In gas-rich regions such as in the Magellanic Clouds, or the outer disks of spiral
galaxies, the stars and gas are relatively poor in metals (see Figure 4.15).
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Fig. 4.15. Metal abundance of disk gas in M33, shown as logarithms of the number of

atoms of oxygen (open symbols) and nitrogen (closed symbols) for each 1012 atoms of

hydrogen, plotted against radius given as a fraction of R25, where the surface brightness is

25 mag arcsec−2 in the B band. Horizontal arrows give the Sun’s abundance – D. Garnett.

Once all the gas is gone, this model predicts that the mass of stars with
metallicity between Z and Z + �Z should be

dM
(<Z )

dZ
�Z ∝ exp{− [Z (t) − Z (0)]/p }�Z . (4.17)

Figure 4.16 shows the number of G and K giant stars at each metallicity observed in
Baade’s Window, a partial clearing of the dust in the disk near l = 1◦, b = −4◦,
where we have a good view of the bulge. Our simple model provides a good
approximation to the observed numbers if the gas originally lacked any metals,
and the yield p ≈ Z�. The bulge may have managed to retain all its gas, and turn
it completely into stars.

Problem 4.8 Show that, if stars are made from gas that is initially free of metals,

so that Z (0) = 0, the closed-box model predicts that, when all the gas is gone,

the mean metal abundance of stars is exactly p.

In other cases, the simple model is clearly wrong. Within individual globular
clusters orbiting the Milky Way, there is no gas, and the stars all have the same,
metal-poor, composition. These clusters must have formed out of gas that mixed
very thoroughly after its initial contamination with heavy elements; any material
not used in making their single generation of stars would have been expelled
promptly. Dwarf spheroidal galaxies contain very little gas, although their stars
have metal abundances 30–100 times lower than that in the Galactic bulge. It is
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Fig. 4.16. Metal abundance in G and K giant stars of the Galactic bulge. Left, relative num-

ber in each range of metal fraction Z ; right, number in each bin of [Fe/H] = log10(Z/Z�).

Solid curves show the prediction of a closed-box model with p = Z� and gas that is ini-

tially free of metals: note the tail at high Z – Sadler et al. 1996 AJ 112, 171; and Fullbright

et al. 2006 ApJ 636, 821.

possible that the dwarf spheroidals formed very few massive stars, and so produced
only small amounts of metals. A more likely explanation is that, as in the globular
clusters, most of the heavy elements have been lost. Interstellar gas could easily
escape the weak gravitational force, and only a small fraction of the hot metal-rich
material from supernovae would have mixed with cool gas, to be incorporated into
a new generation of stars. To use Equation 4.15, we must redefine p as the effective
yield, taking into account metals lost from the system. For the globular clusters,
p ≈ 0; p is always less than the true yield of metals produced.

Near the Sun, the Milky Way’s disk contains (30–40)M� pc−2 of stars,
together with about 13M� pc−2 in gas, for a total of ∼50M� pc−2; see Sec-
tion 3.4. The local disk gas has roughly the same average abundances as the Sun.
If heavy elements were originally absent, and no gas had entered or left the solar
vicinity, Equation 4.15 would give the yield p as

Z (now) ≈ Z� ≈ p ln(50/13), so p ≈ 0.74Z� . (4.18)

But there is a difficulty with the closed-box model for the solar neighborhood:
look at its prediction for metal-poor disk stars. Equation 4.16 requires

M
(<Z�/4)

M
(<Z�)
= 1 − exp[−Z�/(4p) ]

1 − exp(−Z�/p)
≈ 0.4; (4.19)

nearly half of all stars in the local disk should have less than a quarter of the Sun’s
metal content. In fact, of a sample of 132 G dwarf stars in the solar neighborhood,
just 33 were found to have less than 25% of the solar abundance of iron, and only
one below 25% of the solar fraction of oxygen. This discrepancy is known as the
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G-dwarf problem, since it was first discovered in these, the most luminous stars
for which we still have a sample of old objects.

A possible solution to the G-dwarf problem is that the gas from which the
disk was made already had some metals before it arrived in the solar vicinity.
Heavy elements produced by the earliest stars could have mixed with the gas that
eventually formed the disk, to ‘pre-enrich’ it. In that case, we should expect all stars
to have metal abundance above some minimum value. Setting Z (0) ≈ 0.15Z�
gives approximately the observed distribution of metal abundance locally; see the
following problem.

Problem 4.9 If the disk gas had Z = 0.15Z� at t = 0 when stars first began to

form, while Z (now) ≈ Z�, and Mg(t = 0)/Mg(t) = 50/13, use Equation 4.15

to show that p ≈ 0.63Z�. From Equation 4.16, show that about 20% of low-mass

stars should have Z < Z�/4 today.

But it is also possible, and even likely, that star formation near the Sun started
before the gaseous raw material had been fully assembled. In that case, the first
stars would enrich only a small amount of gas to a moderately high metal abun-
dance. Subsequent inflow of fresh metal-deficient gas would dilute that material,
preventing the abundance from rising as fast as the closed-box model predicts; see
the following problem. Incomplete mixing could explain the large dispersion in
stellar abundance at any given age (see Figure 4.14). Since gas in the outer parts
of galaxies is poorer in heavy elements, a slow inward flow, perhaps caused by
energy loss in passing through shocks in the spiral arms, would dilute the metals
in the local disk. Long-lived stars formed at early times should also return metal-
poor gas as they age. If enough of this gas were released, the fraction of metals in
newly made stars might even decline with time.

Problem 4.10 Suppose that the inflow of metal-poor gas is proportional to the

rate at which new stars form, so that �M
 +�Mg = ν�M
 for some constant

ν > 0. Show that Equation 4.14 becomes

�Z = (p − νZ )�M


Mg
= p − νZ

ν − 1

�Mg

Mg
, (4.20)

so that the metallicity in the gas is

Z (t) = p

ν

{
1 −

[Mg(t)

Mg(0)

]ν/(1−ν)
}

, (4.21)

which can never exceed p/ν. (See Pei and Fall 1995, ApJ 454, 69.) Taking ν <0

would correspond to the escape of gas: see below.
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Fig. 4.17. Oxygen is more abundant relative to iron in metal-poor stars. Filled dots show

stars of the Milky Way’s halo, open dots represent thick-disk stars, following a slightly

different relation from that for the thin-disk stars (star symbols) – T. Bensby.

The abundances of heavy elements vary relative to each other: Figure 4.17
shows that stars with low metal abundance have more oxygen relative to the amount
of iron than do stars like the Sun. This happens because these elements are made
in stars of different masses. Stars more massive than 10M� end their lives by
exploding as a Type II supernova. They release mainly lighter elements with fewer
than about 30 neutrons and protons, such as oxygen, silicon, and magnesium, back
into the interstellar gas. Most of the heavier nuclei such as iron, which are made in
the star’s core, are swallowed up into the remnant neutron star or black hole. These
massive stars go through their lives within 100 Myr, whereas the local disk has
made its stars fairly steadily over the last 8–10 Gyr; so the instantaneous-recycling
assumption is reasonable.

Not all of the ‘lighter’ heavy elements are produced in very massive stars.
Stars only slightly more massive than the Sun do not become supernovae, but add
carbon and nitrogen to the interstellar gas. These elements are produced during
helium burning, and the stars dredge them up into the envelope during helium
flashes. Later, at the tip of the asymptotic giant branch, those outer layers are
ejected; see Section 1.1. Carbon and silicates often condense as dust grains in the
cool stellar atmosphere. These stars often take far longer than 100 Myr to make
their contribution to the Galaxy’s store of heavy elements.

The main source of iron is supernovae of Type Ia. We saw in Section 1.1 that
these occur when a white dwarf in a binary system collapses under its own gravity.
If matter is added to a white dwarf in a binary system, taking its mass above the
Chandrasekhar limit of 1.4M�, it can no longer support its own weight, and it
implodes. This heats the interior, triggering nuclear burning, which blows the star
apart. No remnant is left; all the iron, nickel, and elements of similar atomic mass
are released back to the interstellar gas. Many of the stars that explode as Type Ia
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supernovae do so only at ages of a gigayear or more; instantaneous recycling is a
poor approximation. In stars formed during the first few gigayears of a galaxy’s
life, we expect the ratio of elements such as oxygen and magnesium to iron to be
higher than it is in the Sun.

To predict the metal abundance of stars in a galaxy, we first need to estimate the
birthrate of stars at each mass. We can then calculate how much of each element is
released back to the interstellar gas over time. In the Milky Way, long-lived stars
that were born soon after the disk formed are now returning metal-poor gas, so
the abundance of heavy elements in the gas is growing only slowly. The chemical
composition of the new stars also depends on how gas moves within the galaxy,
since Figure 4.15 shows that the clock of metal enrichment runs more slowly
in the outer regions. We require chemodynamical models, which are still under
development.

Further reading: for a graduate-level treatment of this subject, see B. E. J. Pagel,
1997, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univer-
sity Press, Cambridge, UK) Chapters 7 and 8; and D. Arnett, 1996, Supernovae
and Nucleosynthesis (Princeton University Press, Princeton, New Jersey).

4.4 Dwarf galaxies in the Local Group

The Local Group contains two main types of dwarf galaxies. In galaxies of the first
type, the dwarf ellipticals and the much more diffuse dwarf spheroidals, almost
all the stars are at least a few gigayears old. These systems contain little gas to
make any new stars. By contrast, dwarf irregulars are tiny, gas-rich galaxies with
active star formation, and a profusion of recently formed blue stars. Like the dwarf
spheroidals of Section 4.1, the dwarf irregulars are diffuse systems. While all the
Local Group’s dwarf ellipticals, and most of its dwarf spheroidal galaxies, orbit
either the Milky Way or M31, many of the dwarf irregulars are not satellites of
larger systems, but ‘free fliers’. We can use color–magnitude diagrams to chart
the star-forming histories of these different varieties of dwarf, and to investigate
the relationship between them.

Remarkably, all the dwarf galaxies of the Local Group contain some stars on
the horizontal branch, which may include RR Lyrae variables. Horizontal branch
stars are at least 10 Gyr old, so the dwarf galaxies made their first stars in the first
2–3 Gyr of cosmic history. We will see in Section 8.5 that cosmological models
with cold dark matter predict exactly this behavior.

4.4.1 Dwarf ellipticals and dwarf spheroidals

We discussed the Milky Way’s dwarf spheroidals in Section 4.1: they are not much
more luminous than a globular cluster, but so diffuse as to be almost invisible on
the sky. Andromeda’s dwarf spheroidals are yet harder to observe; they appear to
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be very similar to our own. The dwarf ellipticals are more luminous versions of the
dwarf spheroidals, with L ∼>3 × 107L� or MV ∼< −14. In the Local Group, they
are represented by three of M31’s satellites: NGC 147, NGC 185, and NGC 205.
Table 4.2 shows that their sizes are similar to those of the dwarf spheroidals, but
they are more luminous, so the stellar density is higher.

Because they are close to Andromeda, the dwarf ellipticals are vulnerable to
tidal damage. In NGC 205 the random speed of the stars is greater at larger radii,
instead of being smaller as Equation 3.47 would imply for an isolated galaxy,
because M31 is pulling at the outer stars. Both dwarf spheroidals and dwarf
ellipticals appear quite oval on the sky rather than round, yet their stars show no
pattern of ordered rotation. We will see in Section 6.2 that these galaxies may
have no axis of symmetry; their shapes are probably triaxial.

Both NGC 205 and NGC 185 show a few patches of dust, and we can trace
small amounts of cool gas by its HI and CO emission. Most of the stars in these
two dwarf ellipticals date from at least 5 Gyr ago. Near the center, however, a
small number (amounting to no more than 106M�) have ages between 100 and
500 Myr; gas lost by the old stars may have supplied the raw material for continued
starbirth. By contrast, NGC 147, although otherwise similar, shows no sign of very
recent star formation. Its nuclear region contains a very few stars in early middle
age, born only a few gigayears ago. In the outer parts, the overwhelming majority
is at least 5 Gyr old.

M32, the most luminous satellite of M31, contains virtually no cool gas and
has no stars younger than a few gigayears. But Figure 4.18 shows its central
brightness to be one of the highest yet measured for any galaxy. High-resolution
images from the Hubble Space Telescope reveal no constant-brightness inner core;
the density continues to climb, to ∼>106L� pc−3 within the central parsec. A black
hole of a few million solar masses may lurk at its center. Although its luminosity
is within the normal range for dwarf ellipticals, its very high density suggests that
M32 is a miniature version of a normal or ‘giant’ elliptical galaxy.

Perhaps M32 is only the remnant center of a much larger galaxy. It lacks
globular clusters, whereas the less luminous dwarf elliptical satellites of M31 do
have them. The stars at its center are red, and approximately as rich as the Sun in
heavy elements; this is typical of more massive galaxies, that have stronger gravity
to confine metal-rich gas from exploding stars; see Section 6.4. The outer regions
of M32 still have an elliptical shape, but its long axis is twisted away from that
of the inner regions. Tidal forces of M31 have probably affected the orbits of the
outermost stars. We cannot yet measure the distances well enough to know how
far M32 is from M31, or whether it could have passed close enough for M31’s
gravity to strip off the outer stars, as described in Section 4.1.

The motion of the stars in M32 is intermediate between that in the disk of
the Milky Way and that in its metal-poor halo. The galaxy is slightly flattened,
and its stars orbit in a common direction, but they also have considerable random
motions. We can measure the degree of ordered rotation in a galaxy by the ratio
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Fig. 4.18. Dwarf and giant galaxies occupy different regions in a plot of absolute V -

magnitude and measured central surface brightness; because of ‘seeing’, the true peak

brightness may be higher. On the left, luminous elliptical galaxies and the bulges of disk

systems have very high surface brightness at their centers. ‘U’ marks ultracompact dwarf

ellipticals (see Figure 6.6). The rightmost of the ‘dE’ points (filled circles) represent what

this text calls dwarf spheroidals; open circles mark irregular and dwarf irregular galaxies.

Disks of spiral galaxies are marked ‘S’. Malin 1 is a low-surface-brightness galaxy; see

Section 5.1 – B. Binggeli.

V/σ of the average speed V of the stars in the direction of rotation to their velocity
dispersion σ . In the Milky Way’s disk, stars like the Sun have V ≈ 200 km s−1

while σ ≈ 30 km s−1, so V/σ ≈ 7. In M32, V/σ ∼ 1, while for the dwarf
spheroidals it is much less than unity. By analogy with the thermal motion of
atoms in a gas, we refer to disks with high values of V/σ as ‘cold’; ‘hot’ systems
are those in which random motions are relatively more important, so that V/σ is
low. The stronger the influence of ordered rotation, the more disklike an object
must be. Within the solar system, the giant planets Jupiter and Saturn, with a ‘day’
only ten hours long, are considerably more flattened at the poles than the compact
and slow-rotating Earth. We will see in Section 6.2 that not all flattened galaxies
rotate fast; but strongly rotating galaxies must always be flattened.

4.4.2 Dwarf irregular galaxies

Irregular galaxies are so called because of their messy and asymmetric appearance
on the sky (see NGC 4449 in Figure 1.13 and NGC 55 in Figure 5.7). Starbirth
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Fig. 4.19. The dwarf irregular galaxy IC 10. Left, HI contours superposed on an R-band

negative image; the box measures 8′ vertically, or 19 kpc. Right, negative image showing

Hα emission from ionized gas – E. Wilcots.

occurs in disorganized patches that occupy a relatively large fraction of the disk,
because the size and luminosity of star-forming regions increases only slowly
with the size of the parent galaxy. Even quite small irregular galaxies can pro-
duce spectacular OB associations, as well as more normal clumps of young stars.
Figure 4.18 tells us that their disks have low average surface brightness; so the
bright concentrations of young stars stand out, to give the galaxy’s optical image
its chaotic aspect.

We draw the line between irregular galaxies and the dwarf irregulars at L ∼
108L�. Dwarf irregulars contain gas and recently formed blue stars; but in some
other ways they resemble the dwarf spheroidals. Irregular galaxies are diffuse,
and ordered rotational motion is much less important than in the Milky Way’s
disk. The stars and gas clouds have a velocity dispersion of σ ∼ 6–10 km s−1,
but the peak rotation speed V declines at lower luminosity. In larger irregulars,
V/σ ∼ 4–5, falling to V/σ ∼< 1 in the smallest dwarf irregulars. The proportion
of metals in dwarf irregular galaxies is very low, generally below 10% of the
solar value, and the least luminous are the most metal-poor. Oxygen in the gas
of the smallest systems such as Leo A is present only at about 1/30 of the solar
level, while the more massive galaxy NGC 6822 has about 1/10 of the solar
abundance.

Dwarf irregulars tend to be brighter than the dwarf spheroidals, but this is only
because of their populations of young stars. They contain relatively large amounts
of gas, seen as neutral hydrogen, and the gas layer often extends well beyond the
main stellar disk. Figure 4.19 shows the HI layer of IC 10; as in Figure 4.4, we
see large ‘holes’ blown by the winds of supernovae and hot stars. Ionized gas
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Fig. 4.20. Color–magnitude diagram for a galaxy in vigorous starbirth: the Sc spiral galaxy

M33. Larger symbols show stars classified by their spectra. Open star-shapes show blue

supergiants; filled stars are luminous blue variables; filled diamonds are Wolf–Rayet stars;

and open circles indicate red supergiants. Most points between the vertical ‘plumes’ of

blue and red supergiants represent fore-ground stars in our Milky Way. For an irregular

galaxy like the Small Magellanic Cloud this diagram would look similar, but with fewer

stars of each type – P. Massey.

shines brightly, showing that young stars have formed in the shells of denser gas
surrounding the holes. This galaxy has little if any organized rotation.

The color–magnitude diagram of an irregular galaxy shows many short-lived
massive stars. It looks very much like Figure 4.20 for the spiral M33, also an
enthusiastic star-former. O and B main-sequence stars occupy the lower half of
the diagram, below 104LV,�. The larger symbols mark massive stars that have
left the main sequence. A nearly-vertical ‘plume’ of blue supergiants, which burn
helium or heavier elements in their cores (recall Figure 1.4), joins the rather wide
main sequence from above. The luminous blue variables are among the most
luminous stars known; their light output varies as they rapidly slough off their
outer envelopes of hydrogen. Wolf–Rayet stars were born with M ∼> 40M�, and
live for less than 10 Myr. They have lost their outer hydrogen, exposing a hot
layer of helium, carbon, and nitrogen. Red and yellow supergiants are massive
stars burning hydrogen or helium in a shell.

Some dwarf galaxies, such as Phoenix and LGS3, are classified as interme-
diate between dwarf irregulars and dwarf spheroidals. Almost all their stars are
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more than a few gigayears old, but they contain a little gas and a few young stars.
Fornax has a few stars as young as 500 Myr, so this dwarf spheroidal galaxy must
have had some gas until quite recently. The Carina dwarf spheroidal made most
of its stars in a few discrete episodes (see Figure 4.9); at times of peak starbirth it
may have been a miniature version of Sextans A. Because of their similar struc-
tures, small irregulars like the Pegasus dwarf may be at an early stage, while dwarf
spheroidals represent the late stages, in the life of a similar type of galaxy. In the
dwarf spheroidals, which orbit close to the Galaxy or M31, gas may have been com-
pressed by interactions with these large galaxies, perhaps encouraging more stars
to form earlier on. By now these galaxies have used up or blown out all their gas,
while the dwarf irregulars, perhaps benefiting from a quieter life, still retain theirs.

Galaxies such as the LMC might represent a transitional class between spiral
galaxies and the dwarf irregulars. Like a spiral galaxy, the LMC is basically
a rotating disk, but it lacks regular or symmetric spiral structure, and random
motions account for more of the kinetic energy of stars and gas: V/σ ∼ 4 for
the old stars. The brightest region of the LMC, the central bar, is off center with
respect to the outer part of the disk; such lopsidedness is also common in dwarf
irregulars. The neutral-hydrogen layer of the LMC has ‘holes’ similar to those in
IC 10, but they are smaller in proportion to the galaxy’s size.

In the Local Group and beyond, dwarf galaxies are not simply smaller or less
luminous versions of bigger and brighter galaxies. Table 4.2 shows that dwarf
elliptical galaxies all have about the same physical size; the core radius is always
rc ∼ 200 pc. Thus Figure 4.18 implies that the more luminous dwarfs have higher
surface brightness. But, among the normal or ‘giant’ ellipticals, the most luminous
galaxies are also the most diffuse. We will see in Section 6.1 that the core radius is
so much larger at higher luminosity that among these the central surface brightness
is lower in the most luminous systems. Because of these contrasting trends, we
think that dwarf galaxies probably developed by processes different from those
that produced the giant spiral and elliptical galaxies.

4.5 The past and future of the Local Group

The galaxies of the Local Group are no longer expanding away from each other
according to Hubble’s law. Their mutual gravitational attraction, and that of any
matter present between the galaxies, has been strong enough to pull the group
members back toward each other. The Milky Way and M31 are now approaching
each other; these two galaxies will probably come near to a head-on collision
within a few gigayears. We can use the orbits to make an estimate of the total
mass within the Local Group. Readers will not be surprised that this analysis
reveals yet more ‘dark matter’.

We start by assuming that all the mass of the Local Group lies in or very close
to the Milky Way or M31, and we treat these two galaxies as point masses m and
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M. They are now separated by r ≈ 770 kpc, and they are closing on each other
with dr/dt ≈ −120 km s−1.

Problem 4.11 Show that the separation xM − xm of two point masses m and M
moving under their mutual gravitational attraction obeys

d2

dt2
(xM − xm) = −G(m + M)(xM − xm)

|xM − xm |3 ; (4.22)

the separation between the two objects obeys the same equation as a star of small

mass, attracted by a mass m + M.

Problem 4.12 For a star orbiting in the plane z = 0 around a much larger mass

M, its distance r from M changes according to Equation 3.65:

d2r

dt2
− L2

z

r3
= −GM

r2
, (4.23)

where Lz is the conserved z angular momentum. By substituting into this equa-

tion, show that its path can be written in terms of the parameter η as

r = a(1 − e cos η), t =
√

a3

GM (η − e sin η) for a = L2
z

GM(1 − e2)
.

(4.24)

This orbit is an ellipse of eccentricity e, with semi-major axis a; the time t is

measured from one of the pericenter passages, where η = 0.

The Milky Way and M31 began moving apart at the Big Bang. So combining
Equations 4.22 and 4.24 tells us that, at the present time t = t0, their relative
distance r is changing at the rate

dr

dt
= dr/dη

dt/dη
=
√

G(m + M)

a

e sin η

1 − e cos η
= r

t0

e sin η(η − e sin η)

(1 − e cos η)2
. (4.25)

Since dr/dt < 0, the galaxies are approaching pericenter; sin η < 0. In a nearly
circular orbit, with e ≈ 0, the speed of approach is a very small fraction of the
orbital speed, which would imply a large total mass. The smallest combined mass
that M31 and the Milky Way could have is given by assuming that the orbit is
almost a straight line, with e ≈ 1, and that the galaxies are falling together for
the first time, so that π < η < 2π . Using the measured values of r and dr/dt ,
and setting 12 Gyr ∼< t0 ∼< 15 Gyr, we can find η by equating the leftmost and
rightmost terms of Equation 4.25. Substituting η into the third term gives
m + M ≈ (4–5) ×1012M�; the larger mass corresponds to the smaller age.
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This is more than ten times the mass that we found for the Milky Way in Prob-
lem 2.18; even beyond 2.5R0, there is yet more dark matter. We have only 3–4 Gyr
until η = 2π , at the next close passage. Since there are no large concentrations
of massive galaxies near the Local Group, that could have pulled on M31 and the
Milky Way to give them an orbit of high angular momentum, it is quite likely that
e ≈ 1. In that case, we will come close to a direct collision: M31 and the Milky
Way could merge to form a single larger system.

Problem 4.13 Taking e = 1 in Equation 4.24, and giving r and dr/dt their

current measured values, use that and Equation 4.25 to show that η = 4.2 cor-

responds to t0 = 12.8 Gyr, and a = 520 kpc. Use Equation 4.24 to show that

the combined mass m + M ≈ 4.8 × 1012M�. Show that the Milky Way and

M31 will again come close to each other in about 3 Gyr. Use the data of Table

4.1 to estimate LV for the Local Group as a whole, and show that the overall

mass-to-light ratio M/L ∼>80 in solar units.

By repeating your calculation for η = 4.25, show that t0 = 14.1 Gyr and

m + M ≈ 4.4 × 1012M�: a greater cosmic age corresponds to a smaller mass

for the Local Group.

The following chapter is devoted to spiral and S0 galaxies. It is often useful to
think of M31, the Milky Way, and M33 as typical spiral galaxies. Like them, most
spirals live in groups. In Section 7.1 we will see that collisions between group
galaxies are fairly common; at earlier times, when the Universe was denser, they
would have been even more frequent. As the disks crash into each other, their gas
is compressed, swiftly converting much of it into stars. Material from the outer
disks will be stripped off as ‘tidal tails’. A few gigayears later a red galaxy might
remain, largely free of gas or young stars. Some astronomers believe that many
of the giant elliptical galaxies that we see today are the remnants of such galactic
traffic accidents.
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Spiral and S0 galaxies

The main feature of a spiral or S0 galaxy is its conspicuous extended stellar disk.
Stars in the disk of a large spiral galaxy, like our Milky Way, follow nearly circular
orbits with very little random motion. Ordered rotation accounts for almost all the
energy of motion, with random speeds contributing less than ∼5%: the disk is
dynamically ‘cold’. In smaller galaxies, random motions are proportionally larger,
but most of the disk’s kinetic energy is still in rotation. Because the stars have
little vertical motion perpendicular to the disk plane, the disk can be quite thin.

Spiral galaxies are distinguished from S0 systems by the multi-armed spiral
pattern in the disk. The disks of spiral galaxies still retain some gas, whereas S0
systems have lost their disk gas, or converted it into stars. Both S0 and spiral
galaxies can show a central linear bar; in Figure 1.11, the sequence of barred
galaxies SB0, SBa, . . . , SBm runs parallel to the ‘unbarred’ sequence S0, Sa, . . .

Apart from the bar and spiral arms, the stellar disks of large galaxies are usually
fairly round; but many smaller systems are quite asymmetric.

Most giant disk galaxies – those with MB ∼< −19 or L B ∼> 6 × 109L� –
are composite systems. Many of them probably have a metal-poor stellar halo
like that of the Milky Way (see Figure 1.8). But the halo accounts for only a
few percent of the galaxy’s light, and is spread over an enormous volume; so the
surface brightness is low, making it difficult to study. The dense inner bulge is
prominent in the Sa and S0 systems, less important in Sb and Sc galaxies, and
absent in the Sd and Sm classes. Bulge stars have considerable random motions,
and they are much more tightly packed than in the disk: near the Sun, the density of
stars is n ∼ 0.1 pc−3, whereas in bulges it is often 10 000 times higher. Bulges are
generally rounder than the very flattened disks. They tend to be gas-poor, except
for their innermost regions; in some respects, they are small elliptical galaxies
placed inside a disk. The central hundred parsecs of the bulge may accumulate
enough gas to fuel violent bursts of star formation. As in our Milky Way, the
centers of many bulges host nuclear star clusters, the densest stellar systems. In
some nuclei, we find massive compact central objects, which are probably black
holes.

191
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Spirals are the most common of the giant galaxies, and produce most of the
visible light in the local Universe. In the opening section we investigate the stellar
content of the disks of spiral and S0 galaxies; Section 5.2 considers the gaseous
component, and its relationship to the stars. In Section 5.3 we discuss the rotation
curves of spiral galaxies, and what these reveal about the gravitational forces. In
most spirals, the force required to maintain the outermost disk material in its orbit
cannot be accounted for by the visible portion of the galaxy, its stars and gas. The
difference is attributed to ‘dark’ material, which we detect only by its gravity.
We then pause, in Section 5.4, to consider how much the scheme of Figure 1.11,
classifying galaxies according to their appearance in visible light, can tell us about
their other properties. Spiral arms and galactic bars form the topic of Section 5.5;
these common and prominent features prove surprisingly difficult to understand.
In Section 5.6 we discuss bulges and nuclei, and speculate on how they are related
to the rest of the galaxy.

5.1 The distribution of starlight

The light coming to us directly from the stars of present-day disk galaxies is
mainly in the near-infrared region of the spectrum: old stars, such as K giants, give
out most of their light at wavelengths close to 1μm. Much of the blue light of hot
massive stars is intercepted by surrounding dust, and re-radiated in the far-infrared,
beyond ∼10 μm. Visible light is next in importance; ultraviolet photons do not
carry much of the energy, except in irregular galaxies where dust is less plentiful,
and the light of young hot stars more easily escapes absorption. Historically,
galaxies have been studied mainly by optical photography. Although infrared
detectors are rapidly improving, optical images still yield most of our information
about galactic structure.

5.1.1 Astronomical array detectors

The standard detector for optical extragalactic astronomy is now the charge-
coupled device, or CCD; the same devices are used to record images in mod-
ern video and electronic cameras. A CCD consists of a thin silicon wafer that
will absorb light (Figure 5.1). A photon’s energy sets free one or more electron–
hole pairs; the electrons are collected and amplified, to produce an output signal
that should be linearly proportional to the number of photons absorbed. Not every
incoming photon produces an electron–hole pair; we define the quantum efficiency
as the ratio of detected photoelectrons to incident photons. In an excellent CCD,
quantum efficiency can peak above 90%, for red light with 5000 Å ∼< λ ∼< 7000 Å.
CCDs are analogue detectors: photons are converted into a current which is
then amplified, rather than measured individually as they are in photon-counting
systems such as photomultiplier tubes.
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Fig. 5.1. A section through a back-illuminated CCD chip turned on its side: photons (wavy

line) enter through the conducting silicon layer, liberating electrons which are attracted
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Fig. 5.2. A back-illuminated CCD chip: photons (wavy line) enter from below, producing

photoelectrons which migrate toward the low point in the nearest of the potential wells.

The lower curve shows the energy level of an electron just below the surface, when the

voltages are set so that V1 < V2 < V3. Insulating channel stops divide each column from

its neighbors; dotted lines show how a column is divided into pixels.

Figure 5.2 shows how the surface of the CCD detector is divided into individual
picture elements or pixels. Thin insulating layers separate the light-collecting layer
of silicon into long ‘channels’; along each of these columns, insulated electrodes
are constructed in a regular pattern on the top surface of the wafer. Together with
doped zones inside the detector, the electrodes produce a localized potential well
that attracts and holds the photoelectrons, dividing the columns into rows of pixels.
In typical astronomical CCDs, each pixel is a square 10–30 μm on a side; for other
applications, such as video recorders, the pixels are often smaller.

The image recorded on a CCD can be that of a portion of the sky, or the spec-
trum of light that has been dispersed into its component colors (for example,
by reflection from a grating in a spectrograph). When the exposure is com-
plete, the image is ‘read out’ by using the electrode potentials like a bucket
brigade. The CCD control system varies or ‘clocks’ their voltages in the sequence
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V1 → V3, V2 → V1, V3 → V2: with each step, electrons are ‘tipped’ into the
deepest part of the potential, which moves down the column to the right in
Figure 5.2. At the base of the column is a similar arrangement, collecting each
pixel’s electrons and moving them sequentially through amplifiers, and into an
analogue-to-digital converter that gives the number of counts for each pixel. We
can then produce a two-dimensional image by encoding the signal level from each
pixel as a gray scale, where the tone varies, or by false color, with color variations
indicating the intensity.

Although CCDs are excellent detectors, they are not perfect. The counts,
which are stored in a computer file, should be proportional to the number of elec-
trons collected, or the number of photons falling on the pixel. Unfortunately, the
amplifiers introduce read noise: a random fluctuation in the count rate, expressed
in units of electrons. Astronomical CCDs of mid-2000s vintage normally have
read noise equivalent to 2–5 electrons per pixel per readout, and devices with read
noise below one electron are being developed.

Usually, the output signal of a CCD deviates from the ideal linear behavior
by a few tenths of a percent. Some CCDs suffer from manufacturing errors; most
often, parts of a few columns are ‘blocked’ and fail to respond to light, making
dark streaks in the image. Thermal vibrations in the silicon create electron–hole
pairs even when no light falls on the detector; these dark counts are an unwanted
noise source. To keep dark counts to a minimum, astronomical CCDs are operated
at low temperatures of 100–200 K, often with liquid nitrogen (which boils at 77 K)
as a coolant.

Energetic particles are readily detected by CCDs, giving rise to a cosmic-
ray background. This limits the exposure times to about an hour on the ground,
and less for telescopes in space, since the atmosphere screens out some cosmic
rays. Often, we take two or more images of the same piece of sky, so that these
‘false stars’ can be removed. The potential well of each pixel can typically hold
at most a few hundred thousand electrons; so, if the CCD is overexposed (e.g.,
by a bright star), electrons spill down the column, producing a bright streak in
the image; see Figure 5.16 below. When the problem is severe, the streaks also
radiate along rows; a residual image of the bright source may be seen in subsequent
exposures.

CCDs are not useful at all wavelengths: even with anti-reflection coatings,
ultraviolet light shortward of about 2000 Å (200 nm) can hardly penetrate into
the silicon. At wavelengths λ ∼> 11 000 Å (1.1μm), infrared photons have too
little energy to liberate an electron–hole pair; they travel easily through the silicon
layer without being absorbed. Photons between these wavelengths give up their
energy to produce a single electron–hole pair. Red light could travel through
the electrodes on top of the CCD wafer and into the silicon below, but bluer
photons, with λ ∼< 4500 Å, cannot. So blue-sensitive CCDs are made with a
thinned lower layer, only 15–20 μm thick, and are back-illuminated so that the
light shines in from below, as in Figures 5.1 and 5.2. CCDs are also efficient X-ray
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detectors; at wavelengths below 1000 Å, each photon produces many electron–
hole pairs. The number of electrons is proportional to the photon energy, so the
CCD also provides spectral information. In this respect, energetic particles like
cosmic rays behave similarly to X-rays, and CCDs are sometimes used to detect
them.

When measuring light from an object using a CCD, the astronomer must
compensate for the fact that the pixels are not exactly uniform: some are more
sensitive than others. Flat fields, images of blank twilight sky, or a diffuse screen
(often called the ‘white spot’) on the interior of the telescope dome, are taken to
measure and to correct for this effect. The CCD must be calibrated, by observing
stars of known brightness to determine how many counts correspond to a given
flux or magnitude. To produce an image of a galaxy, we must subtract out the
contribution of the night sky, since only the brightest parts of galaxies are brighter
than the sky: see Section 1.3. We routinely measure surface brightnesses down
to ∼< 1% of the sky level by using dome or sky flat fields. Special techniques are
required to do much better, because the CCD’s sensitivity changes slowly during
the night, limiting the accuracy of the flat fields.

We can estimate the quality of measurements with a CCD by calculating
a signal-to-noise ratio, S/N . The simplest case is when statistical noise in the
number of detected photons is the main source of error. We say that the CCD
has a gain g if a signal with C counts in some pixel corresponds to S detected
photons (or equivalently, S electrons captured), where S = gC . The number of
photons arriving at that pixel from the galaxy under study has a random fluctuation
of approximately

√
S; so the noise or 1σ error in S is N = √

gC . When we
are photon-noise-limited, then S/N = √

gC ; this is the lowest possible level of
noise.

The read noise R of a CCD is given in units of photoelectrons; including this,
we can write S/N = gC/

√
gC + R2. At low signal levels, R is the dominant noise

source; we are read-noise-limited. In this case R2 � gC and the signal-to-noise
ratio S/N grows linearly with exposure time t . When photon noise dominates,
S/N ∝ √

gC , which grows only as
√

t , and doubling the signal-to-noise ratio of a
measurement requires that we observe four times longer. Extending this approach
to include other noise sources, such as flat field errors, gives us a basis to predict
the performance of real CCDs and other similar detectors.

We may wish to measure the surface brightness I (x), the amount of light
per square arcsecond at position x in the image of a galaxy, or the flux Fλ in a
spectrum. A CCD records only the total amount of light falling on each pixel
during an exposure; it gives us no information on where a photon has landed
within the pixel. So we can measure the angular size of a feature in the image
only if its light is spread over at least two pixels on the CCD. To produce an
image of the sky showing details 1′′ across, the pixels must correspond to a size

∼< 0.5′′ on the image. Similarly, to obtain a spectrum with wavelength resolution
�λ, our spectrograph must disperse light in this wavelength interval over at least
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two pixels on the CCD. The physical size of CCDs is limited, currently to about
10 cm×10 cm; so we must compromise between high resolution and a large field
of view. Images of objects extending over a large region on the sky are sometimes
built up from a mosaic of several exposures, each covering only part of the object.
In using a CCD, we must match its properties to those of the instrument for which
it serves as the detector and those of the telescope; see the following problem.

Problem 5.1 You have a CCD camera with 2048 × 2048 pixels, each 24 μm

square. The angle that a pixel covers on the sky is the angle that it subtends at a

distance FL, the focal length of the telescope. This in turn depends on the focal

ratio, f , and the diameter D of the mirror: FL = f D. Show that each pixel

corresponds to 5′′/( f D), where D is in meters, and the whole CCD covers a

region 168′/( f D) across.

You can use this camera on a 0.6 m telescope with f = 7.5 (usually written

f/7.5), on a 4 m telescope at f/7.5, or at the prime focus of the 4 m telescope,

which has f/2.3. What is its pixel scale and field of view at each location? If

atmospheric seeing blurs the image to 0.8′′ across, where would you want to use

the camera in order to get the sharpest images? If you take images of a nearby

galaxy 10′ across, which option would you use to obtain a brightness profile I (x)

for the entire galaxy?

Array detectors with large numbers of pixels are used for astronomical obser-
vations from X-rays into the infrared. The physical mechanisms that convert pho-
tons into an electrical signal depend on the spectral region, but the basic principles
are similar to those for CCDs, and the signal-to-noise ratio S/N for an observa-
tion depends similarly on the number of photons detected and the sources of
noise within the instrument. Unlike CCDs, most of the devices used for X-ray and
ultraviolet observations count photons; each detected photon produces exactly
one output count, so read noise is absent. But the speed of the electronics then
limits both the maximum rate at which photons arriving at any one pixel can be
counted and the counting rate across the entire array. A photon-counting device
may saturate when observing a bright source.

Infrared detectors, like CCDs, are analogue devices; they rely on a variety of
physical processes. In the thermal infrared, at wavelengths ∼>2 μm, telescopes and
the Earth’s atmosphere, at temperatures ∼300 K, radiate strongly. This extra light
must be taken into account when estimating the expected signal-to-noise ratio.
Cooled telescopes in space can observe in the infrared without this unwanted
background, but must still contend with the emission of warm dust in the solar
system. At radio frequencies, instead of detecting photons, we take advantage of
the wave nature of light; see Section 5.2. Our current perspective on galaxies has
been heavily influenced by our ability to observe at many wavelengths, spanning
the electromagnetic spectrum.
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Fig. 5.3. Sb spiral galaxy NGC 7331. Left, isophotes in the R band; center, negative image

in the R band, including a background galaxy, with contours of CO emission overlaid.

Right, negative image in Hα, showing HII regions in the spiral arms – A. Ferguson, M.

Thornley, and the BIMA survey of nearby galaxies.

Further reading: G. H. Rieke, 1994, Detection of Light: From the Ultraviolet to the
Submillimeter (Cambridge University Press, Cambridge, UK). For a wider wave-
length range, see P. Léna, F. Lebrun, and F. Mignard, Observational Astrophysics,
2nd edition (English translation, 1998; Springer, Berlin). For spectrograph design,
see D. F. Gray, 1992, The Observation and Analysis of Stellar Photospheres, 2nd
edition (Cambridge University Press, Cambridge, UK) – the last two are advanced
texts. On statistics and observational uncertainties, see P. R. Bevington and D. K.
Robinson, 1992, Data Reduction and Error Analysis for the Physical Sciences,
2nd edition (McGraw-Hill, New York).

5.1.2 Surface photometry of disk galaxies

The center panel of Figure 5.3 shows the surface brightness I (x) of the Sb spiral
NGC 7331 from a CCD image in the R band, around 6400Å. Here, the galaxy
resembles M31 in having a bright center, a large central bulge, and tightly wrapped
spiral arms in the disk. At optical wavelengths, atmospheric turbulence, or seeing,
sets a limit to the smallest structures that can be distinguished by a conventional
ground-based telescope. In this image, even the foreground stars are spread out
into a disk about 1′′ across.
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Fig. 5.4. NGC 7331: the solid line shows surface brightness in the I band, near 8000 Å.

The dashed line is an exponential with h R = 55′′; the dotted line represents additional

light – R. Peletier.

The contours in the left panel of Figure 5.3 are the R-band isophotes, lines of
constant surface brightness. The isophotes are fairly circular in the bulge region,
becoming elliptical in the disk, apart from where they are affected by the spiral
arms; they are ragged at the outer edge where the signal-to-noise ratio is low. If
we assume that the disk is circular and very thin, it will appear as an ellipse with
axis ratio cos i when we view it at an angle i from face-on. Real disks have some
thickness, so they appear somewhat rounder at any particular viewing angle; see
Section 6.1. For NGC 7331 the diameter along the minor axis of the disk isophotes
is only 0.35 of that measured along the major axis; the galaxy is inclined at about
75◦ from face-on.

Each square arcsecond at the center of the galaxy emits about ten thousand
times as much light as the same area at R = 300′′; the center is 100 times brighter
than the sky, while the outer regions fade to about 1% of the sky brightness. Our
printed image cannot show so much contrast, so we use a graph like Figure 5.4.
If we can ignore the absorbing dust within the disk, the surface brightness is
larger by a factor 1/cos i than if we had seen the disk face-on. Using this or
another method, we can correct to what we would observe if NGC 7331 had been
face-on, and then find the average surface brightness I (R) at distance R from the
center.

Surface brightness is generally given in units of mag arcsec−2: the flux coming
from each square arcsecond of the galaxy, expressed as an apparent magnitude. At
the center of NGC 7331, the I -band surface brightness II (0) = 15 mag arcsec−2.
Galaxies do not have sharp outer edges; for historical and technical reasons, we
usually measure the size within a given isophote in the B band, centred near
4400 Å. For NGC 7331, the radius at the isophote IB = 25 mag arcsec−2 is
R25 = 315′′.
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Problem 5.2 Show that a central surface brightness of 15 mag arcsec−2 in the

I band corresponds to 18 000L� pc−2; explain why this does not depend on

the galaxy’s distance. About how far does IB = 25 mag arcsec−2 fall below the

brightness of the night sky, given in Table 1.9?

Integrating the surface brightness over the whole of an image such as the
one in Figure 5.3, and extrapolating to allow for those parts of the galaxy too
faint to measure reliably, gives the total apparent magnitude. Catalogues usually
give these in the B band, or the V band at 5500 Å. A face-on galaxy would
be brighter than the same galaxy seen at an angle, since starlight leaving the
disk at a slant must travel further through the absorbing layer of interstellar dust
in the disk. So, to compare the true brightnesses of galaxies that we observe
at different inclinations, we must try to compensate for dust dimming. Finally,
we must correct for the effect of foreground dust, within our own Milky Way.
Catalogues often quote total magnitudes corrected to face-on viewing, denoted
by 0. For NGC 7331, the corrected total B-magnitude is B0

T = 9.37, and in V it
is V 0

T = 8.75, so (B − V )0 ≈ 0.6; taken as a whole, the galaxy is about the same
color as the Sun.

In the stellar disk, when we average over features like spiral arms, the surface
brightness I (R) often follows approximately an exponential form,

I (R) = I (0) exp(−R/h R), (5.1)

as we expect if the density of stars in the disk varies according to the double-
exponential formula of Equation 2.8. The long-dashed line in Figure 5.4 shows
the exponential slope with scale length h R = 55′′. For most disk galaxies, 1 kpc ∼<
h R ∼<10 kpc. When measured in the B band rather than in I , h R is typically about
20% longer because the disks become redder toward the center. The inner part of
the disk is typically richer in heavy elements (as Figure 4.15 shows for M33), and
metal-rich stars are redder (Figure 1.5). The outer disk may have a larger fraction
of young blue stars, or it may be less heavily reddened by dust; frequently it is
hard to separate these effects. The exponential part of the stellar disk in many,
though not all, disk galaxies appears to end at some radius Rmax, usually in the
range 10–30 kpc or (3–5)h R . Beyond Rmax the surface brightness decreases more
sharply; but this is not the edge of the galaxy, since HI gas and some disk stars
may be found still further out.

Problem 5.3 For NGC 7331, the radial velocity Vr = 820 km s−1; if

H0 = 60 km s−1 Mpc−1, find its distance by using Hubble’s law, Equation 1.27.

Show that its V -band luminosity LV ≈5 × 1010LV,�. Is NGC 7331 more or less

luminous than the Milky Way and M31? Show that h R ≈ 3.6 kpc. What is the disk
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Fig. 5.5. A V -band image of Sa galaxy M104, the ‘Sombrero’ (NGC 4594): this is a

luminous galaxy with LV ≈ 8 × 1010L�, about 10 Mpc away. Note the large bulge and

numerous globular clusters – A. Cole, WIYN telescope.

radius R25 in kiloparsecs? How does it compare with the size of the Milky Way’s

disk?

From Figure 5.4 and Problem 5.2, show that the disk’s extrapolated central

surface brightness in the I band, is I (0) ≈ 325L� pc−2. Using Equation 5.1

for the disk’s luminosity, show that L D = 2π I (0)h2
R ≈ 3×1010L I,�: the disk

gives roughly 60% of the total light. What is the surface density of starlight at

R = 8 kpc? How does this compare with what we found near the Sun, in Problem

2.8?

At small radii, the surface brightness I (R) rises above the level which Equa-
tion 5.1 predicts for an exponential disk; the additional light comes from the
central bulge. In Figure 5.3, the rounder inner isophotes tell us that the bulge of
NGC 7331 is an ellipsoid, not a flat disk. The bulge is generally more impor-
tant in S0 and Sa galaxies: in Figure 5.5, most of the light of the Sa galaxy
M104 comes from the very large bulge. Some bulges are clearly round like these,
while others are almost as flat as the disk. Since it contains mainly older, redder,
stars, the bulge’s contribution is relatively larger in red light and smaller in the
blue.
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Fig. 5.6. Apparent magnitude mK ′ and B − K ′ color of galaxies in the Ursa Major group,

plotted by galaxy type. Galaxies to the right of the arrow have L > 109L� at the group’s

distance of 15.5 Mpc. Open circles show galaxies for which the disk has lower central

brightness: IK ′ (0) >19.5. On average, S0 galaxies are luminous and red, while the Sd and

Sm systems are fainter and bluer – M. Verheijen.

In general, galaxies become bluer and fainter along the sequence from S0 to
Sd and Sm. Figure 5.6 shows the apparent magnitude mK ′ , in the K ′ bandpass
at 2.2 μm, and the B − K ′ color, for galaxies in the Ursa Major group. This is
a moderately dense nearby group of galaxies, about 15 Mpc from us, roughly in
the direction of the Virgo cluster. Because all the galaxies have nearly the same
distance from us, those that appear brightest, with small values of mK ′ , are also
the most luminous. But one disadvantage of observing a group is that we do not
obtain a complete sample of all types of galaxy, and may not even have a fair
sample of ‘average’ galaxies.

Figure 5.6 shows that the S0, Sa, Sb, and Sc galaxies in the Ursa Major group
are all more luminous than 109L�; the dimmer spirals are all of types Scd, Sd,
and Sm. The color of the S0 galaxies is approximately that of a K giant; since
young blue stars are absent, most of the light comes from red stars which have
evolved past the main sequence. Sd and Sm galaxies are bluer because they have
a larger fraction of young stars; their optical-band colors are similar to those of
late F and G stars.

In the optical image of an edge-on disk galaxy, such as the right panel of
Figure 5.16 below, we see a thin dark dust lane cutting across the middle of the
disk. As in the Milky Way, the light-scattering and light-absorbing dust lies in a
much thinner layer than the majority of the stars. In an edge-on disk, if we measure
R along the major axis of the image, and z is distance from the midplane, then,
above and below the dust lane, the surface brightness often follows approximately

I (R, z) = I (R) exp(−|z|/hz). (5.2)
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Fig. 5.7. B-band images of two very different late-type disk galaxies. Top: ‘superthin’

Sd UGC 7321, viewed ∼< 2◦ from edge-on. This is a small galaxy: L B ≈ 109L� at d =
10 Mpc – L. Matthews, WIYN telescope. Below: nearby barred Magellanic or irregular

NGC 55, about 10◦ from edge-on. Its linear size is about half that of UGC 7321, and

L B ≈ 2 × 109L� at d = 1.5 Mpc. Note the fluffy disk, and off-center concentration of

light in the bar – A. Ferguson.

Typically, most of the starlight comes from a disk about 10% as thick as it is wide:
hz ≈ 0.1h R . Some Sc and Sd galaxies are ‘superthin’, with even more extreme
flattening, while in Sm and irregular galaxies the disk is quite thick and fluffy
(Figure 5.7). In other systems, the surface brightness drops at high z less rapidly
than Equation 5.2 would predict: like the Milky Way, they have a thick disk.

In luminous disk galaxies, when we extrapolate the disk inward by using
Equation 5.1, we find that the central surface brightness I (0) lies below some
upper bound. One recent study of spiral galaxies found average values of IB(0) ≈
22 mag arcsec−2 and IK (0) ≈ 18 mag arcsec−2; virtually none is more than two
magnitudes brighter. As better methods have allowed us to search for fainter
galaxies, many low-surface-brightness disk galaxies have been discovered. One
of the largest is Malin 1, with IB(0) ≈ 25.5 mag arcsec−2, 25 times less than the
average for ‘normal’ galaxies, and well below the sky brightness given in Table 1.9.
Its huge disk surrounds an apparently normal central bulge. The scale length is
enormous, h R = 55h−1 kpc, so the galaxy is luminous: L ≈ 3 × 1010h−2L�.
But most low-surface-brightness galaxies are much less luminous than ‘normal’
galaxies of high surface brightness, and many do not have bright centers; their
scale lengths h R are not particularly large.
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Fig. 5.8. HI in galaxies of the Ursa Major group. Left, the ratio of HI gas mass to luminosity

in the K ′ band, in units of M�/L K ′,�. Right, fainter galaxies have proportionately more

HI gas and the disk has lower extrapolated central surface brightness IK ′ (0). Open circles

show low-surface-brightness galaxies with IK ′(0) > 19.5 – M. Verheijen.

Figure 5.8 shows data for galaxies in the Ursa Major group: the low-surface-
brightness galaxies are the least luminous, and proportionately the richest in HI

gas. Like dwarf irregular galaxies, they have not been efficient at turning their gas
into stars. On combining the information in this figure with that in Figure 5.6,
we see that Sa and Sb galaxies on average have both higher luminosity and disks
of higher central brightness than do the Sd systems. Irregular galaxies have even
lower values for both quantities; see Section 4.1.

Problem 5.4 According to a study of high-surface-brightness spirals (ApJ 160,

811; 1970), the disks all reach IB(0) ≈ 21.7 mag arcsec−2; this is Freeman’s

law. How many L� does the central square parsec radiate (see Problem 1.14)?

If its absolute magnitude MB = −20.5, how many L� does the galaxy emit in

the B band? If we ignore light from the bulge, show that the exponential disk

must have h R ≈5.4 kpc, while R25 ≈3h R , and 80% of the light falls within this

radius. For a low-surface-brightness galaxy with the same total luminosity, but

IB(0) = 24.5 mag arcsec−2, show that <10% of the light comes from R < R25.

Now consider many spiral disks with L B = 2.5 × 1010L B,�; the larger the

length h R , the smaller I (0) must be. For 1 kpc < h R < 30 kpc, plot R25 (in kpc)

against h R , and R25 against I (0). Show that R25 is small when h R is small, rises

to a maximum, and declines to zero at h R ≈ 24 kpc. Explain why galaxies with

I (0) more than ten times lower than Freeman’s value might have been missed

from his 1970 sample. (Very small galaxies are also difficult to study: those with

R25 < 30′′, or 6 kpc at d ≈ 40 Mpc, are likely to be omitted from catalogues.)
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Fig. 5.9. A negative image of inner parts of Sbc galaxy M100 (NGC 4321): 26′′ = 2 kpc.

Left, K -band image and isophotes at 2.2 μm, showing a central bar. Right, Hα (visible

light) emission from gas around young massive stars, with K -band isophotes superposed;

the bar is hidden by dust – J. Knapen 1995 ApJ 443, L73.

We can also use solid-state devices to detect infrared photons; large arrays are
available for wavelengths λ ≤ 40 μm. These cannot be made from silicon, but must
use semiconductors with lower bandgap energies, such as indium antimonide. To
reduce dark counts, they must be operated very cold, at cryogenic temperatures.
Dust grains affect longer-wavelength light less strongly, so infrared images of the
central parts of galaxies can reveal stars which at optical wavelengths are hidden
behind dust.

An infrared image in the 2.2 μm K band of the central few arcseconds of the
spiral galaxy M100 reveals a central bar, with little sign of the four spiral arms so
clearly outlined in visible light (Figure 5.9). Because hot young O and B stars emit
relatively little of a galaxy’s near-infrared light, images at these wavelengths are
used to investigate the old stellar populations. In the infrared, spiral arms generally
appear smoother and less prominent, showing that much of their light comes from
young massive stars, and that their appearance at visible wavelengths is heavily
influenced by dust lanes.

Problem 5.5 At what wavelength does a blackbody at 300 K emit most of its

radiation? By how much is the flux Fλ reduced at λ = 10 μm if T = 100 K? For

infrared work, it is best to cool those parts of a telescope from which light can

fall onto the detector (e.g., with liquid nitrogen).



5.1 The distribution of starlight 205

Fig. 5.10. SBb barred spiral galaxy NGC 3351 (M95). The left image combines ultraviolet

light at 1530 Å and 2300 Å. We do not see the bar, since it lacks young blue stars; star-

forming knots give the spiral arms a fragmented appearance. Right, in visible light we see

a strong central bar, surrounded by a ring and smooth spiral arms – GALEX.

At ultraviolet wavelengths 1000 Å ∼< λ ∼< 3000 Å, almost all the light of a
normal galaxy comes from its hottest stars. An ultraviolet image of a spiral galaxy
gives us a snapshot of the star formation that is renewing the disk; we do not
see the more smoothly distributed older stars. In the left panel of Figure 5.10 the
central bar, which is made largely of old and middle-aged stars, has disappeared.
We see bright islands of light along the spiral arms, where clumps of short-lived
massive stars have been born in giant molecular clouds. Their brilliance depends
both on how many hot stars are concentrated there and on gaps in the obscuring
dust that allow light to shine through. Figure 5.10 confirms that the spiral pattern
stands out in photographs because of its luminous young stars. When we look in
Section 9.4 at the optical images of galaxies at redshifts z ∼>1, we are seeing the
light which they emitted as ultraviolet radiation, redshifted by cosmic expansion.
We must be careful to compare these with ultraviolet images of nearby galaxies,
rather than with their optical appearance.

Since dust is very opaque at these shorter wavelengths, it can absorb much of a
galaxy’s ultraviolet light. In a galaxy like NGC 7331, 20%–30% of the ultraviolet
photons are absorbed, but only a few percent escape from the most vigorously
star-forming galaxies. The dust re-emits that energy at infrared wavelengths. Fig-
ure 2.24 shows the infrared spectrum of the star-forming inner ring of NGC 7331.
Most of the energy is radiated near 100 μm, by dust with T ∼ 20–30 K. At shorter
wavelengths we see emission from heated molecular hydrogen and from very
large molecules, namely the polycyclic aromatic hydrocarbons.
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The disks of spiral galaxies are not bright in X-rays. The interstellar gas is cool
and supernova remnants expand supersonically; gas heated by their strong shocks,
the hot winds of young stars, and binary stars are the main sources of X-rays. In
a starburst (see Section 5.6 below), the stellar winds and supernova remnants
overlap to heat a bubble of gas that can break through surrounding dense gas to
leave the galaxy as a superwind.

5.2 Observing the gas

Most of the gas of a spiral galaxy is found in the disk; the cool atomic (HI ) and
molecular (H2) hydrogen form the raw material out of which the galaxy makes
new stars. In Section 5.1, we saw how to locate concentrations of gas indirectly, by
looking in optical images for the dark obscuring dust lanes. Cool gas can be seen
directly by its emission in spectral lines at radio wavelengths, which propagate
unhindered through the dusty disk. If it is ionized by the ultraviolet radiation of
hot stars, or by a shock wave, we see it in optical emission lines such as Hα.
Because we observe the gas in its spectral lines, we can also measure its velocity
at each point within the galaxy, and so explore its motion.

5.2.1 Radio-telescope arrays

We observe cool gas mainly at radio wavelengths, longer than about a millimeter.
Because of the longer wavelengths, radio telescopes have fuzzier vision than
optical telescopes. When observing at wavelength λ with a telescope of diameter
D, sources that lie within an angle λ/D of each other on the sky will appear
blended together: this is the diffraction limit, which no telescope can escape. At
optical wavelengths of λ ≈ 5000 Å, the diffraction limit would allow images as
sharp as 1′′ from a small telescope of D = 10 cm, while at 1 mm we would need
a telescope 200 m across to achieve the same resolution. The largest single-dish
radio telescopes are about 100 m in diameter, and most are a few tens of meters
across; so in general their images are not as sharp as those from optical telescopes.
To make an image with 1′′ resolution at λ = 20 cm would require a telescope 40 km
in diameter; a single dish of this size would collapse under its own weight. At
centimeter wavelengths, and increasingly in the millimeter region as well, we use
an array of smaller telescopes for aperture synthesis.

To see how aperture synthesis works, we can think of radio waves as oscil-
lating electric and magnetic fields. If the wavelength is λ, the electric field
E ∝ cos(2πct/λ); the voltage V induced at the focus of a radio telescope is
proportional to the electric field E at that instant. Suppose that we observe with
two telescopes, as in Figure 5.11. Waves from a source at elevation θ must travel
an extra distance d cos θ to arrive at telescope 2, so the wavecrests, and the peaks
in voltage, are delayed by a time d cos θ/c relative to those at telescope 1. The
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Fig. 5.11. A two-element interferometer.

voltages V1 and V2 at the feeds of the two telescopes are

V1 ∝ cos

(
2πct

λ

)
and V2 ∝ cos

(
2π (ct − d cos θ )

λ

)
. (5.3)

We multiply the signals V1 and V2 in a correlator, and then filter the out-
put to remove rapid oscillations. The result is the fringe pattern: a signal
S ∝ cos(2πd cos θ/λ), which varies slowly as the Earth rotates, changing the
angle θ . Two sources that are nearby on the sky will produce completely different
fringe patterns if the elevation cos θ differs by an amount λ/(2d). So this simple
interferometer can distinguish sources separated only by an angle λ/(d sin θ) –
it has the resolving power of a large single dish of diameter d sin θ . The vector
separating the two dishes is called the baseline. The interferometer’s resolution is
set by the component of the baseline that lies perpendicular to a vector pointing
at the source.

Our two-element interferometer cannot measure the source’s position: it can
only tell us the value of cos θ to within a multiple of λ/d. To get more information,
we add more pairs of telescopes, with different baselines. If we could cover all
the area of a circle of radius d with small dishes, and examine the signals from
each of them in conjunction with every other, we would effectively build up, or
synthesize, the whole picture that we would be able to see with a giant dish of
diameter d .

If the source is not varying with time, then we do not need to have all the
small telescopes in place at once. We can space them in an east–west line, as
in the synthesis telescope at Westerbork, in the Netherlands. As seen from the
source, the dishes move around each other in elliptical tracks as the Earth rotates
(Figure 5.12). The Earth’s rotation gives us a large number of baselines at a range
of angles, even with only a few dishes. In twelve hours, we could synthesize a
map of our source as it would be seen by a large elliptical telescope. When the
angle of the source from the celestial equator, its declination, is δ, our elliptical
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Fig. 5.12. Earth-rotation synthesis: during a day’s observation, as seen from the source,

the baseline vectors from dishes 2 and 3 to dish 1 sweep out an ellipse.

‘telescope’ is smaller in the north–south direction than in the east–west direction,
by a factor of |sin δ|. To speed up the observations, radio telescopes like the Very
Large Array (VLA) in New Mexico place the dishes in a large ‘Y’. A four-hour
observation then includes baselines at a full range of angles, and even a brief
‘snapshot’ contains enough information to construct a crude map.

The correlated signal S from each combination of two small telescopes sam-
ples the Fourier transform of the brightness distribution on the sky. We measure
the transform at a wave vector that is proportional to the component of the baseline
separating the two dishes, in the direction perpendicular to the line of sight to the
source. To map a source that is more complicated than just a single point, we must
use a computer to invert the Fourier transform, and construct the image seen by
the large ‘telescope’. A telescope ‘dish’ synthesized in this way has big holes in it,
because the small dishes fill only a fraction of its area: we can sample the Fourier
transform only at a limited set of points. Depending on how the telescopes are
placed, this can make pointlike sources appear elongated or star-shaped instead
of round; computer processing is used to correct the images.

The synthesized telescope has much less light-collecting area than a filled dish
of the same diameter would have; thus, mapping faint sources can require many
hours. The radio sky is so much darker than at visible wavelengths that we can
ignore it; we do not need to subtract its contribution or worry about how it varies
during a long observation. However, radio telescopes can suffer interference of
terrestrial origin and from strong radio sources in other parts of the sky.

Each dish of diameter D receives radiation only from a patch on the sky
which is λ/D across; this limits the region we can map with each pointing of the
synthesis array. If the shortest distance between any pair of small telescopes is
dmin, then sources that cover an angle on the sky larger than λ/dmin will hardly
be detected at all. Since the dishes cannot be closer together than their physical
diameter D, maps from synthesis telescopes always make the gas look clumpier
than it really is. Synthesis maps should be completed by adding in the information
from a single telescope of diameter at least 2D; but often this is not practical.
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Problem 5.6 In the VLA’s C-array configuration, the most widely separated

dishes are 3.4 km apart, and the closest are 73 m from each other. Show that the

resolution in the 21 cm line of HI is roughly 13′′; explain why structures larger

than ∼6′ are missing from the maps.

In synthesis telescopes with diameters up to 100 km, the dishes are connected
by cabling, and their signals are combined online. With widely separated dishes,
we can use an atomic clock at each one for synchronization, and combine the
recorded streams of data after the observations are finished. In very long baseline
interferometry (VLBI), the combined ‘telescope’ can be as big as the whole Earth,
so we can make images of sources less than 0.001′′ across. Putting one of the dishes
into space allows even wider separations and finer resolution.

Further reading: B. Burke and F. Graham-Smith, 1996, Introduction to Radio
Astronomy (Cambridge University Press, Cambridge, UK); and G. L. Verschuur
and K. I. Kellermann, eds., 1974, Galactic and Extragalactic Radio Astronomy
(Springer, New York); Chapters 10 and 11 of this first edition give a clear expla-
nation of aperture synthesis.

5.2.2 Cool gas in the disk

Figure 5.13 shows neutral hydrogen (HI) gas in the galaxy NGC 7331, observed
in the 21 cm emission line. Since the gas is moving within the galaxy, its line
emission is Doppler shifted according to the radial velocity Vr. So we set the
telescope to observe simultaneously in a number of closely spaced frequency
channels; typically, each covers a few kilometers per second in velocity. For
the most part, HI in galaxy disks is optically thin; the 21 cm line suffers little
absorption, so the mass of gas is just proportional to the intensity of its emission.
Just as for visible light, the radio power that we receive from a given cloud of HI

gas decreases with its distance d as 1/d2. We can use the result of Problem 1.9
to find its mass, integrating the flux Fν over the frequencies corresponding to the
galaxy’s gas. When we measure d in Mpc, Fν in janskys, and Vr in km s−1,

M(HI) = 2.36 × 105M� × d2
∫

Fν

[
1421 MHz ×

(
1 − Vr

c

)]
dVr. (5.4)

For NGC 7331, assuming d = 14 Mpc, our measured flux corresponds to 1.1 ×
1010M� of atomic hydrogen; this is twice as much as in M31.

A deep HI map traces gas to ∼1019 H atoms cm−2, corresponding to
0.1M� pc−2. Generally, HI maps are not as sharp as optical images; because
the signal is weak, we use relatively coarse resolution to improve the signal-to-
noise ratio. Adding the emission from all channels gives the overall distribution of
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Fig. 5.13. HI gas in NGC 7331, observed with the VLA. Left, gas surface density; at

d = 14 Mpc, we see 11.3×109M� of HI, and 1′ = 4 kpc. The outer contour shows diffuse

gas, at NH = 2.8 × 1019 cm−2; higher levels are at 1.2, 3.3, 6.4, and 9.5 × 1020 cm−2. The

small oval 15.7′′ × 13.7′′ shows the half-power width of the telescope beam: a pointlike

source would appear with roughly this size and shape. Right, contours of gas velocity Vr,

spaced 30 km s−1 apart – M. Thornley and D. Bambic.

gas. We can also make a contour plot like Figure 5.13 showing the average radial
velocity of gas at each position.

The gas clearly lies in the galaxy’s disk. As in the Milky Way and M31, the
center is largely gas-poor, while HI is piled up in a ring several kiloparsecs in
radius. Figure 5.14 shows how the surface density of HI varies with radius. The
gas is spread out much more uniformly than the stellar light; the peak density
in the ring is only a few times larger than average, much less than the 10 000-
fold variation in surface brightness that we saw in Figure 5.4. The HI disk is
larger than that of the stars; on measuring its size at the radius where the density
has fallen to 1M� pc−2, we find that it extends to about twice the optical size
R25. As Figure 5.15 shows, this is typical for spiral galaxies. The HI layer extends
significantly beyond 2R25 in only 10%–20% of spirals; NGC 3351, in Figure 5.10,
has an enormous HI disk, stretching out to 4R25.
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Fig. 5.14. In NGC 7331, the average surface density of HI gas at each radius, calculated

separately for northern (filled dots) and southern (open circles) halves of the galaxy; the

solid curve shows the average – K. Begeman.
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Fig. 5.15. The mass of HI gas in disk galaxies increases as the square of the optical radius

R25 (open symbols) and the diameter at which the surface density of HI drops to 1M� pc−2

(filled symbols): sloping lines show 10M� pc−2 of HI within R25 and 3.6M� pc−2 within

the HI diameter. Five-pointed symbols represent low-surface-brightness galaxies – A.

Broeils and E. de Blok.

The average column density of neutral hydrogen is about the same in all
spiral galaxies, even those with low-surface-brightness disks. This may be due
to self-shielding. As we discussed in Section 2.4, a thick-enough layer of HI gas
can absorb virtually all the ultraviolet photons that would have enough energy to
break up hydrogen molecules. If the surface density of gas is higher than about
4M� pc−2, those atoms deepest in the layer will combine into H2 molecules,
protected by the atomic gas above and below.

In the outermost reaches of the galaxy, we find gas but very few stars. It
is not completely clear why the outer disk displays so little enthusiasm for star
formation. Perhaps most of the gas is too diffuse to pull itself together by gravity;
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Fig. 5.16. Stars and interstellar gas in the edge-on Sc galaxy NGC 891: the cross marks

the galaxy center. Left, surface density of HI gas; center, an image in Hα, with contours

showing radio emission in the 20 cm continuum; right, R-band optical image; sloping

lines through bright stars show where charge has overflowed into adjoining pixels of the

CCD column – R. Swaters and R. Rand.

the disk’s differential rotation tugs collapsing gas clouds apart before they can
give birth to stars. We do not know whether the edge of the HI marks the end
of the galaxy’s gas disk, or whether there is gas further out that is ionized by
intergalactic radiation.

The left panel of Figure 5.16 shows the distribution of HI in the unusual edge-
on Sc galaxy NGC 891. The dense gas layer in the disk is surrounded by more
diffuse HI, continuing out to ∼5 kpc above and below the midplane. The gas may
have been pushed out of the disk by vigorous star formation, perhaps forming
‘holes’ like those in the HI disks of star-forming galaxies in the Local Group
(Figures 4.4 and 4.19). NGC 891 has a remarkably large amount of gas above
the disk, but all spiral galaxies show some. The gas is ‘effervescent’, bubbling up
from the disk; much of it probably cools and then falls back in. There is much
more HI gas on the southern side of this galaxy than to the north; the outer parts
of galactic disks are quite commonly lopsided.

The right panel of Figure 5.16 shows NGC 891 in the red R band; a thin
absorbing lane of dust bisects the galaxy. The middle panel shows that Hα emis-
sion, from gas ionized by the ultraviolet radiation of hot stars, is brightest at small
radii and close to the disk midplane, but diffuse emission persists even up to
heights of 5 kpc. The 20 cm radio continuum emission comes from roughly the
same region as the Hα. Part of this is free–free radiation from the hot ionized gas
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and part is synchrotron radiation from fast-moving electrons accelerated in super-
nova remnants; see Section 1.2. The diffuse emission shows that both ultraviolet
light and fast electrons can escape from the galactic disk, where they originate.
The gas of the disk must be lumpy, so that both photons and fast particles can
stream out between the clumps or clouds. High above the disk, this galaxy prob-
ably has a halo of hot gas like that of the Milky Way, at temperatures close to a
million degrees.

We cannot search directly for emission lines from cool molecular hydrogen;
see Section 1.2. Instead, we rely on detecting the spectral lines of molecules
such as carbon monoxide, generally at millimeter wavelengths. Radio receivers
at centimeter wavelengths work better than those in the millimeter region; and,
locally, the ratio of CO molecules to H2 is only about 10−4. Hence observations
of molecular gas are less sensitive than those for HI; it is usually easier to detect
a given mass of atomic gas than the same amount of molecular material. But,
because of the shorter wavelength, maps of molecular gas often have better spatial
resolution than those in HI. In Figure 5.3 we see CO emission from a ring within
2′, or 2.2h R , of the center of NGC 7331, corresponding to about 3×109M� of H2.
CO emission in spiral galaxies is generally most intense in the inner regions; there,
most of the gas is molecular. Some spirals, like the Milky Way and NGC 7331,
have an inner ring of dense molecular gas, while in others the CO emission peaks
at the center. Unlike HI, molecular gas is not usually detected beyond the stellar
disk, and the majority of gas in the disk is atomic.

Often, we use the ratio of the HI massM(HI) to the blue luminosity to measure
how gas-rich a galaxy is. This ratio does not depend on the galaxy’s distance d,
because the apparent brightness in visible light, and the radio power received, both
diminish as 1/d2. In S0 and Sa galaxies, M(HI)/L B ∼ (0.05–0.1)M�/L B,�; it
is about ten times larger in the gas-rich Sc and Sd systems. The Sc, Sd, and Sm
galaxies have been consuming their gas supply fairly slowly; a smaller fraction
of their light comes from older, redder, stars and relatively more from hot young
stars. From Figure 5.6, we saw that these galaxies have the bluer colors expected
when young stars predominate. In them, young associations and their HII regions
stand out more clearly, and the individual HII regions around these associations
are also larger than those in Sa and Sb galaxies.

Problem 5.7 For a distance d = 14 Mpc, find the blue luminosity of NGC 7331

from its apparent total magnitude. Show that M(HI)/L B ≈ 0.2 in solar units.

Assuming the galaxies to have the same B − V color as the Sun, use Table 4.1

to show that M31 has about the same M(HI)/L B as NGC 7331, and compute

this ratio for the Magellanic Clouds. On the basis of Problem 2.8, assume that

M/L ∼>2 for the stars in NGC 7331; show that, even if we include the molecular

gas, the mass in its stars is at least five times larger than that in cool gas. This

galaxy has already converted most of its gas into stars.
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Fig. 5.17. A negative image of the S0 galaxy UGC 7576 in the V band: a thin ring of

dust, gas, and stars orbits over the galaxy’s pole. Contours show 5 × 109M� of HI gas

in the polar ring; the disk of the S0 galaxy has hardly any cool gas. The circle on the left

shows the radio telescope’s beam – A. Cox.

The gas content of S0 galaxies is very different from that of spirals. The stellar
disks of most S0s have so little gas that it is hardly measurable. Star formation
or some other process has depleted the gas, leaving behind ‘stellar fossils’: disks
where no significant numbers of new stars have been made over the past few
gigayears. But a few S0 and elliptical galaxies have ∼>1010M� of HI, as much as
the most gas-rich spirals. Often this gas does not lie in the galaxy disk, or share
the orbital motion of the disk stars, but forms a tilted ring encircling the galaxy.
Occasionally, the rotation of the gas is retrograde, opposite to that of the disk stars;
in other cases – see Figure 5.17 – it orbits as a polar ring, perpendicular to the
galaxy’s disk. Because the angular momentum of the ring and that of the central
galaxy are so different, we think that the gas was captured at a late stage, after
the galaxy’s central body had formed. In a few S0 galaxies, such as NGC 4550, a
substantial minority of the disk stars rotate in the opposite sense to the majority:
they presumably formed from late-arriving gas, which was caught into a retrograde
orbit. Counter-rotating stars are not common; they are detected in fewer than 1%
of all disk galaxies.

5.3 Gas motions and the masses of disk galaxies

We saw in Section 2.3 that the stars and gas of the Milky Way account for only
a fraction of its mass; most of it is ‘dark’, undetectable except through its grav-
itational attraction. The same is true for most spiral galaxies. If we measure the
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Fig. 5.18. Left, a rotating disk viewed from above. Azimuth φ, measured in the disk plane,

gives a star’s position in its orbit; an observer looks from above the disk, perpendicular

to diameter AB. Right, the observer’s line of sight makes angle i with the disk’s rotation

axis z.

speed V (R) of a circular orbit at radius R, even in a flattened galaxy we can use
the radial-force equation

V 2(R)

R
= GM(<R)

R2
(3.20)

for a rough estimate of the massM(<R) within that radius. We saw in Section 5.2
that the HI layer of a spiral galaxy generally extends out about twice as far as the
stellar disk, as measured by the isophotal radius R25. Usually, the gas speeds are
approximately constant to the edge of the HI disk, implying thatM(<R) continues
to rise; the outer parts of the galaxy contain much mass but emit little light. This
section discusses how we determine a spiral galaxy’s rotation curve V (R), and
what we know about gravitational forces and dark matter in disk galaxies.

5.3.1 The rotation curve

The predominant motion of gas in a spiral galaxy is rotation; random speeds in
the HI gas are typically only 8–10 km s−1, even less than for the stars. So the
asymmetric drift, which we discussed in Section 2.2, is small; we can assume
that, at radius R, a gas cloud follows a near-circular path with speed V (R). All
we can detect of this motion is the radial velocity Vr toward or away from us; its
value at the galaxy’s center, Vsys, is the systemic velocity. Suppose that we observe
a disk in pure circular rotation, tilted at an angle i to face-on, as in Figure 5.18.
We can specify the position of a star or gas cloud by its radius R and azimuth φ,
measured in the disk from the diameter AB lying perpendicular to our viewing
direction. There, the radial velocity is

Vr(R, i) = Vsys + V (R)sin i cos φ. (5.5)
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Fig. 5.19. Left, the rotation curve V (R) in the ‘dark-halo’ potential of Equation 2.19, in

units of VH = Vmax. Right, the spider diagram of Vr − Vsys for a disk observed 30◦ from

face-on; contours are marked in units of VH sin 30◦, with negative velocities shown dotted.

Contours of constant Vr connect points with the same value of V (R) cos φ, forming
a ‘spider diagram’ like that in Figure 5.19. The line AB is the kinematic major axis,
the azimuth where Vr deviates furthest from Vsys. In the central regions, where
approximately V (R) ∝ R, the contours are parallel to the minor axis; further out,
where the rotation speed is nearly constant, they run radially away from the center.
If V (R) begins to fall, the extreme velocity contours close back on themselves.
Taking Vmax as the peak of the galaxy’s rotation curve, the spread between the
largest and the smallest values of the measured velocity is W = 2Vmax sin i .

Problem 5.8 In a galaxy where the potential follows the Plummer model of

Equation 3.11, use Equation 3.20 to find the rotation curve V (R); show that

V 2
max = V 2(

√
2aP) = 2GM/(3

√
3aP). Sketch V (R) for R ≤ 4aP. For inclination

i = 30◦, draw a spider diagram with contours of Vr − Vsys at 0.2, 0.4, 0.6, and

0.8 times Vmax sin i ; show that the last of these forms a closed loop.

In many galaxies, like our Milky Way, the inclination i changes with radius;
the gas disk is warped. Then, the outer part of the spider is generally rotated with
respect to the inner region; we can use that twist in the kinematic major axis to
deduce the amount of warping. If Vr �= 0 along the apparent minor axis, the gas
must have some motion toward or away from the galaxy’s center. We will see in
Section 5.5 that radial motion is characteristic of barred galaxies, where the gas
follows elongated oval orbits. Random motions of the gas clouds, and streaming
velocities induced by the spiral arms (see Section 5.5 below), also distort the
contours. But the characteristic spider pattern is usually visible: we see it in the
velocity field in the right panel of Figure 5.13.

We can find V (R) and the inclination i by choosing values so that the computed
velocity contours are close to those measured in HI. Figure 5.20 shows the rotation
curve V (R) derived from HI and CO observations of NGC 7331. It climbs steeply
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Fig. 5.20. Points give the rotation curve of NGC 7331, as found from the HI map of

Figure 5.13; vertical bars show uncertainty. CO gas (dotted), observed with a finer spatial

resolution, traces a faster rise. The lower solid curves show contributions to V (R) from

the gas disk, the bulge, and the stellar disk. A dark halo (dashes) must be added before

the combined rotation speed (uppermost curve) matches the measured velocities – K.

Begeman and Y. Sofue.

over the first 1–2 kpc, then remains approximately flat out to the last measured
points, at around 37 kpc. As in many giant spirals, the rising part of the rotation
curve is very steep; often, as here, HI observations lack the spatial resolution
to follow the rapid climb. At all radii, the angular speed V (R)/R is decreasing;
gas further out takes longer to complete an orbit about the galactic center. This
differential rotation is typical of spiral galaxies.

5.3.2 Dark matter in disk galaxies

We can compare the rotation curve of Figure 5.20 with what we would expect
if the mass of the galaxy had been concentrated entirely in its stars and gas. For
the stellar disk and the bulge, we assume that the density of stars is proportional
to the R-band light, and guess at the mass-to-light ratio M/L . For the gas disk,
the surface density is approximately 1.4 times that measured in HI, since helium
contributes a mass about 40% of that in hydrogen; see Section 1.5. We calculate
the contributions to the radial force from each component separately, and we add
them to find the total. Thus V 2(R) for the galaxy is the sum of contributions from
the various parts.

Taking the bulge to be nearly spherical, we can find its inward force from
Equation 3.20. Because the stellar and gas disks are flattened, their force can point
either inward or outward. At R ∼< 6 kpc, the force from the gas disk is outward,
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Fig. 5.21. Rotation curves for disk galaxies of various types. Open circles show the scale

length h R of the stellar disk and the peak rotation speed Vmax for each galaxy. Curves

are plotted in units of R/h R , to the same horizontal scale as for the inset, showing V (R)

for the exponential disk (Equation 5.1). LSB denotes a low-surface-brightness galaxy.

The measured rotation does not fall as it should if the stellar disk contained most of the

mass – A. Broeils and E. de Blok.

making a negative contribution to V 2(R). In Figure 5.20, the ratio M/L has been
adjusted so that gas and luminous stars account for as much of the galaxy’s rotation
as possible: this is the ‘maximum-disk’ model. If no other matter had been present,
we see from Figure 5.20 that the rotation speed should have begun to fall at around
20 kpc from the center. Like the Milky Way, this galaxy contains substantial mass
in regions beyond the visible stellar disk. The curve labelled ‘halo’ shows how a
spherical halo of dark matter could provide enough inward force to account for
the measured rotation speed; at least 75% of the total mass appears to be dark. The
outer reaches of this galaxy contain almost exclusively HI gas and unseen matter.

Problem 5.9 Using Equation 3.20, find the total mass of NGC 7331 within R =
37 kpc, and show that the ratio M/L ≈ 10 in solar units. (This is considerably

higher than the valueM/L ≈ 3 that we found for the gas and stars of the Galactic

disk near the Sun in Problem 2.8; the visible parts of the galaxy contribute only

a small fraction of its mass.)

Figure 5.21 shows the rotation curves for a number of disk galaxies of various
types, found by observing the HI gas. These provide our best information about
rotation in the outer parts of the galaxy. The circle at the starting point of each
curve shows the scale length h R of the stellar disk and the peak rotation speed
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Vmax, while the horizontal extent shows the number of scale lengths out to which
the rotation was measured. Beyond its peak, V (R) remains fairly steady; it does
not drop as it should if the mass of the galaxy had been in an exponential disk.
As in NGC 7331, the higher-than-expected rotation requires an additional inward
force, which we ascribe to a dark halo.

Peak rotation speeds in spiral galaxies are usually 150–300 km s−1. They
rarely rise above 400 km s−1, and the fastest measured rotation is about 500 km s−1,
in the S0/Sa galaxy UGC 12591. Larger galaxies, with longer scale lengths h R ,
generally rotate more rapidly; these tend to be the Sa and Sb galaxies, rather than
the Sc, Sd, and Sm systems. The rotation curves of Sa and Sb galaxies initially
climb steeply, showing that relatively more of their mass is closer to the center.
In these systems, the luminous matter in the disk and the bulge is concentrated at
small radii, and the dark matter in the halo also becomes very dense there. In Sd
and Sm galaxies, the rotation speed increases more gradually. These galaxies do
not have large bulges, and Figure 5.8 showed us that their luminous disks have low
central surface brightness. The rotation curves show that the dark halo also lacks
central concentration; its core, where the density is nearly constant, must be larger
in relation to the galaxy’s stellar disk. Most low-surface-brightness galaxies rotate
slowly, with gently ascending rotation curves like those of Sd or Sm galaxies; but
there are some with higher speeds and faster-rising rotation curves.

The proportion of dark matter required to explain these rotation curves varies
from about 50% in Sa and Sb galaxies to 80%–90% in Sd and Sm galaxies. There
may be yet more dark material out beyond the last point where we have observed HI

gas; the ‘total mass’ of a spiral galaxy measured in this way is only a lower bound.
We must turn to the orbital motion of galaxies in binary pairs or groups to study
the dark matter at larger radii: look back at Section 4.5, or forward to Chapter 7.

Galaxies and their dark matter do not provide enough mass to halt the cosmic
expansion. For most galaxies, we must use Hubble’s law and the recession speed
Vsys to give a rough estimate of the distance d . Equation 1.27 tells us that

d ≈ h−1[Vsys ( km s−1)/100] Mpc, (1.27)

where h = H0/100 km s−1 Mpc−1. So when we estimate the luminosity L of a
galaxy from its apparent brightness by using Equation 1.1, L ∝ h−2. The mass
inferred from Equation 3.20 depends on the Hubble constant as M ∝ h−1, so
the mass-to-light ratios derived from the rotation curves of spiral galaxies follow
M/L ∝ h. For most spirals, we find 5h ∼< M/L ∼< 25h, in units of the Sun’s
mass and blue luminosity.

From Equation 1.25, the blue light of all the galaxies averages out to 2 ×
108hL� Mpc−3. So if the mass-to-light ratio for each were roughly the same as
that for the gas-rich disk systems where we observe HI gas, they would contribute a
density ρgal ∼ (1−5)×109h2M� Mpc−3, less than 0.02 of the critical density ρcrit

given by Equation 1.30. The dark matter in galaxies is far short of what would be
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Fig. 5.22. The HI global profile for NGC 7331: radio power Fν (in janskys) received from

gas moving at each velocity, measured with respect to the Sun; V0 = Vsys, the recession

speed at the galaxy center – K. Begeman.

needed to save us from an ever-expanding Universe. What is more, Equation 1.40
tells us that the Universe contains baryons equivalent to 0.03ρcrit ∼<ρB ∼<0.07ρcrit.
Most of those neutrons and protons are not in the galaxies. We will see below, in
Chapter 7, that groups and clusters of galaxies contain hot diffuse intergalactic
gas, which could be a storehouse for the ‘hidden’ baryons.

5.3.3 The Tully–Fisher relation

If we want to know only the peak rotation speed Vmax in a galaxy, we can use a
single-dish radio telescope with a large enough beam to include all the HI gas, and
measure how much there is at each velocity. Figure 5.22 shows this global profile
for NGC 7331. Because much of the gas lies at radii where V (R) is nearly constant,
most of the emission is crowded into two peaks near the extreme velocities. This
double-horn profile is characteristic of galaxies where the rotation curve first rises,
then remains roughly flat; the separation of the peaks is W ≈ 2Vmax sin i . If instead
we had observed a galaxy in which the rotation curve was rising at all radii, or if we
looked only at the inner part of the disk in Figure 5.19, we would see a flat-topped or
centrally peaked profile instead. Brighter galaxies rotate faster on average, which
tells us that they are more massive. Brent Tully and J. Richard Fisher showed that
the rotation speed of a galaxy increases with its luminosity, roughly as L ∝V α

max,
with α∼ 4: this is the Tully–Fisher relation. The observed values fall closer to a
single curve when L is measured in the red or near-infrared. The blue luminosity
is more likely to fluctuate over time, since young massive stars contribute much of
the light. In the blue, a galaxy that has recently had a burst of star formation will
temporarily be much brighter than it usually is, while Vmax remains unchanged; so
the observed luminosities will scatter widely about their mean at any given rotation
speed.

Figure 5.23 plots the width of the global profile against the apparent magnitude
measured at K ′ ≈ 2.2 μm for galaxies in the Ursa Major group; the luminosity
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Fig. 5.23. For galaxies in the Ursa Major group: from the HI global profile, width

W/sin i ≈ 2Vmax plotted against apparent K ′-magnitude. Low-surface-brightness galaxies

(open circles) follow the same relationship as do those of high surface brightness (filled

circles). The solid line passing through L = 3 × 1010L�, Vmax = 205 km s−1 has slope

L ∝ V 4
max – M. Verheijen.

increases slightly slower than the fourth power of Vmax. Another recent study,
measuring the galaxy light in the I band at 0.8 μm, found

L I

4 × 1010L I,�
≈
(

Vmax

200 km s−1

)4

. (5.6)

When the luminosity L is measured in blue light, the exponent of Vmax is close to
three. Figure 5.6 showed us that more luminous galaxies tend to be redder, so a
fast-rotating luminous galaxy will be even brighter relative to a faint and slowly
rotating one at red or infrared wavelengths than when both are measured in blue
light. This is another of the confusing consequences of the way that the average
luminosity and color of galaxies are related to their other properties.

If galaxies contained no dark matter, we could understand the Tully–Fisher
relation fairly easily; see the following problem. But, since the rotation speed Vmax

is set largely by the unseen material, while the luminosity comes from the stellar
disk, the link between them is puzzling. Somehow, the amount of dark matter is
coordinated with the luminous mass.

The Tully–Fisher relation can be used to estimate distances to galaxies and
galaxy groups; it gives us an important step on the cosmic distance ladder. We
first calibrate the relation, using galaxies close enough that we can estimate their
distances by using Cepheid variables. From the HI profile of a more distant system
observed with a radio telescope, we measure Vmax, and then use the Tully–Fisher
relation to infer the galaxy’s intrinsic luminosity in visible or infrared light.
Comparing this with the observed apparent magnitude yields the distance. If we
know the Hubble constant H0, we can find the peculiar velocities of our galaxies –
the amount by which their motion differs from the homogeneous and isotropic
cosmic expansion. We will discuss these large-scale motions in Section 8.4.
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Problem 5.10 Ignoring the bulge, use Equation 3.20 to explain why we might

expect the mass M of a spiral galaxy to follow approximately

M ∝ V 2
maxh R .

Show from Equation 5.1 that L = 2π I (0)h2
R , and hence that, if the ratio M/L

and the central surface brightness I (0) are constant, then L ∝ V 4
max. In fact I (0)

is lower in low-surface-brightness galaxies: show that, if these objects follow

the same Tully–Fisher relation, they must have higher mass-to-light ratios, with

approximately M/L ∝ 1/
√

I (0).

Problem 5.11 NGC 7331 has apparent magnitude m I = 7.92. Using Table 1.4

to find MI for the Sun, and estimating Vmax from the flat part of the rotation

curve in Figure 5.20, show that Equation 5.6 gives its distance as d ≈ 16 Mpc.

If Vmax = V0 = 200 km s−1 for the Milky Way, what does Equation 5.6 predict

for its luminosity L I ? This differs from LV given in Table 4.1; what might cause

the discrepancy? If a galaxy has a peak rotation speed Vmax = 200 km s−1, and

its apparent magnitude is mK ′ = 13, use Figure 5.23 to show that it is about

20 times more distant than the Ursa Major galaxies.

5.4 Interlude: the sequence of disk galaxies

Edwin Hubble defined the progression from S0 galaxies through Sa to Sc spirals
almost completely by the appearance of the spiral arms in visible light. Spiral
arms are absent from the disks of S0 galaxies, while ‘as the sequence progresses,
the arms increase in bulk at the expense of the nuclear region, unwinding as they
grow, until in the end they are widely open and the nucleus is inconspicuous’:
the ‘nucleus’ here is what we would today call the galaxy’s bulge. Hubble’s
original scheme has since been extended to include the Sd galaxies, which almost
completely lack a bulge, and the Magellanic Sm systems. Nearby galaxies are
still classified by a human expert, comparing optical images of the systems under
study with those of galaxies that have already been assigned a type.

The modified Hubble classification is useful because other characteristics of
galaxies are linked with their position along the sequence. Table 5.1 lists these,
beginning with the spiral structure. Some are linked fairly directly with the spiral
properties: for example, S0 galaxies, which lack the hot young stars that outline
spiral arms, are redder than Sc and Sd galaxies. Figure 5.24 shows spectra of an S0
galaxy, an Sb, and an Sc. Most of the light of the S0 galaxy emerges at the longest
wavelengths, where we see absorption lines characteristic of cool K stars. In the
blue, we see the H and K lines of calcium, and the G band, features characteristic
of the hotter solar-type stars that produce most of the light at these wavelengths;
see Section 1.1. There is little light at wavelengths shorter than 4000 Å and no
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Table 5.1 The sequence of luminous disk galaxies

Characteristic S0–Sa Sb–Sc Sd–Sm

Spiral arms Absent or tight Open spiral
Color Red: late G star Early G star Blue: late F star
a B − V 0.7–0.9 0.6–0.9 0.4–0.8
au − r 2.5–3 1–3 1.5–2.5
Young stars Few Relatively many
HII regions Few, small More, brighter
Gas Little gas Much gas
M(HI)/L B ∼<0.05–0.1 ∼0.25 to >1

Luminous Less luminous
L B (1–4) × 1010 L� (<0.1–2) × 1010 L�
I (0) High central brightness Low central brightness

Massive Less massive
M(<R) (0.5–3) × 1011M� (<0.2–1) × 1011M�
Rotation Fast-rising V (R) Slowly rising V (R)

aSee Tables 1.2 and 1.3 for definitions of these wavelength bands.

prominent emission lines. By contrast, the Sc galaxy emits most of its light in
the blue and near-ultraviolet part of the spectrum; the light comes mainly from
hot young stars, which also heat and ionize the gas responsible for the prominent
emission lines. The uppermost spectrum is for a starburst galaxy, where many
stars have recently been born: see Section 5.6. We saw from Figure 5.8 that Sc
and Sd galaxies contain a higher proportion of gas than do the Sa and Sb systems.
So perhaps it is not surprising that Sc and Sd galaxies have made a larger fraction
of their stars in the past gigayear.

Galactic bulges are much brighter at their centers than the disks; see Figure 5.4.
Thus galaxies early in the sequence have higher central brightness I (0). When
galaxies are too distant to allow a clear view of the spiral arms, Figure 5.25 shows
that we can base a classification on the degree to which their light is concentrated
toward the center. We can also calculate the coarseness or asymmetry, both of
which measure how far the galaxy’s appearance differs from an axially symmetric
disk. Both spiral arms and patches of vigorous star formation are absent in S0
galaxies; Figure 5.25 shows how they become more prominent along the sequence
from Sb to Sm. Distant galaxies can also be classified on the basis of their spectra:
Figures 8.5 and 9.15 make use of such a scheme.

Figure 5.6 showed us that S0 and Sa galaxies are on average more luminous
than Sd and Sm systems, and we saw in the previous section that they also are
generally more massive. Somehow, more luminous and more massive galaxies
know that they must develop into one of the former types, while smaller systems
become Sd and Sm galaxies. But all the relations we have described in this section
hold true only on average. Although the S0, Sa, and Sb galaxies tend to have higher
central surface brightness than do Sd systems, low-surface-brightness S0 galaxies
are also found. Some S0 galaxies are less luminous than some Sm galaxies;
the S0 systems NGC 404 and NGC 5102 both have L B ∼< 109L�. Sc galaxies
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Fig. 5.24. Spectra of galaxies from ultraviolet to near-infrared wavelengths; incompletely

removed emission lines from the night sky are marked. From below: a red S0 spectrum; a

bluer Sb galaxy; an Sc spectrum showing blue and near-ultraviolet light from hot young

stars, and gas emission lines; and a blue starburst galaxy, that has made many of its stars

in the past 100 Myr – A. Kinney.

encompass a huge range in luminosity: the giant UGC 2885, with L B ∼>1011L�,
is two hundred times more luminous than the Local Group’s M33. From the image
alone, it is almost impossible to distinguish between a small nearby spiral and a
distant luminous example.

Such partial linkage of the various properties of galaxies is infuriating to
theoreticians, who do not yet have much understanding of it. Because so many
characteristics of galaxies are related, we must be careful in studying any particular
property. Early work on rotation curves provides a cautionary tale. In local samples
of galaxies within ∼20 Mpc, rotation speeds of early-type spirals were found to be
higher than those of late-type Sc galaxies, inviting the conclusion that early-type
spirals are in general faster rotators. But the most luminous Sc galaxies are rare,
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Fig. 5.25. For 1421 galaxies of the Sloan Digital Sky Survey, the left panel shows how

far the r -band light is concentrated to the center, and the coarseness or deviation from a

smooth image. Elliptical and S0 galaxies (filled dots) are the most concentrated, while

Sc, Sd, and irregular galaxies (stars) are lumpiest, with Sa and Sb galaxies (open dots)

between them. Right, average color becomes bluer along the sequence from S0 to Sd – C.

Yamauchi 2005 AJ 130, 1545.

and there is none close to the Milky Way. Later surveys further afield revealed very
luminous and rapidly rotating Sc galaxies: Vmax depends mainly on luminosity,
through the Tully–Fisher relation.

5.5 Spiral arms and galactic bars

The photogenic arms of spiral galaxies are the most striking luminous structures
in any galaxy atlas, yet spiral structure still has its puzzling aspects. Almost all
giant galaxies with gas in their disks have some kind of spiral, although simple
arguments imply that spiral arms should rapidly disappear. Two properties of the
disk seem to be essential: differential rotation, which tends to shear any feature
into a trailing arm-segment, and self-gravity, which allows the spiral to grow, fed
by the energy of the galaxy’s rotation. Gas appears to be required for a spiral,
although not for a bar: the disks of S0 galaxies lack both gas and spiral arms, but
they are as likely to be barred as are the gas-rich spiral galaxies. Beyond these
simple statements, the subject becomes confusingly complex.

5.5.1 Observed spiral patterns

The arms of a spiral galaxy are bluer than the rest of the disk, and Hα emission
betrays hot ionized gas around young massive stars. Since stars hot enough to
emit the ultraviolet photons that ionize hydrogen atoms live only about 10 Myr,
spiral arms must be sites of active star formation. Figure 5.26 compares the spiral
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Fig. 5.26. Sbc galaxy M100: 26′′ = 2 kpc. Top, B band (left) and I band (right); in these

negative images, dark dust lanes just inside the bright spiral arms appear as thin light

filaments. Lower panels show B − K color. Light areas are blue with young massive

stars, and dark regions show red regions where dust lanes spiral into the galaxy center;

the overexposed core appears as a dark hole. Contours show Hα emission (left) and HI

gas (right), which are both concentrated in spiral arms; the center is largely empty of

HI – J. Knapen 1996 MNRAS 283, 251.

structure of the Sc galaxy M100 in blue light with that seen in the I band at
about 1 μm: the arms are sharper in the blue, since more of their light comes
from young stars. The lower panels show that both the ionized gas of HII regions
and the cool atomic HI gas are concentrated in the spiral arms. Spiral arms stand
out most clearly when they are organized into a grand design that can be traced
over many radians in angle and a substantial range in radius. Using galactocentric
polar coordinates (R, φ), we can describe the shape of an m-armed spiral by
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Fig. 5.27. NGC 3949, a fairly luminous Sbc galaxy with LV ∼ 7 × 109L�, shows a floc-

culent spiral pattern, without long continuous arm-segments – Hubble Space Telescope.

the equation

cos{m[φ + f (R, t)]} = 1. (5.7)

The function f (R, t) describes how tightly the spiral is wound; if |∂ f/∂ R| is large,
the arms are closely wrapped, whereas if it is small, they are open. The pitch angle
i, the angle between the arm and the tangent to the circle at radius R, is given by

1

tan i
=
∣∣∣∣R ∂φ

∂ R

∣∣∣∣ =
∣∣∣∣R ∂ f

∂ R

∣∣∣∣. (5.8)

In Sa spirals, i averages about 5◦, while in Sc galaxies it is generally in the range
10◦ < i < 30◦.

Problem 5.12 If the pitch angle i remains constant, show that we have a loga-

rithmic spiral, with f (R, t) tan i = ln R + k for some constant k. Starting from

a point on an arm, and moving outward at fixed angle φ, explain why we cross

the next arm at a radius exp(2π tan i/m) times larger.

While we often think of a typical spiral as two-armed, many have three or
four arms. Some galaxies have a flocculent pattern, with many short arm-segments
instead of a continuous spiral; see Figure 5.27, or M33 in Figure 4.1. In Magellanic
SBm spirals the bar is often off-center and the spiral is asymmetric, with one arm
being much the strongest. In barred spiral galaxies, the spiral arms usually appear
to grow out from the ends of the bar.
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i

Fig. 5.28. In a disk rotating anticlockwise, where the rotation rate �(R) falls with radius

R, stars that initially lie along a radial line are wound into a trailing spiral; the angle i is

the pitch angle of the spiral.

We can characterize a spiral as leading, with the tips of the arms pointing
forward in the direction of the galaxy’s rotation, or trailing, with tips aimed in
the direction opposite to the rotation. To know which applies, we must first find
which side of the galaxy is nearest to us, usually by looking for differences in
the obscuring effects of dust. This is not easy; but where we can determine the
sense, the spiral arms almost always trail. In Figure 5.26, the narrow dust lanes
on the concave inner sides of the spiral arms show that dust-bearing gas is being
compressed there. We will see this as a sign that the arms do not contain a fixed
population of stars and gas, but form a density wave, a ‘stellar traffic jam’ where
stars are packed more densely and move more slowly along their orbits.

One reason why we believe many spiral arms to be density waves is that the
galaxy’s differential rotation would otherwise wind them rapidly into a very tight
curl. To see why, suppose that stars are initally spread along a straight line through
the galaxy’s center, given by φ = φ0 (Figure 5.28). Each star moves in its orbit
with speed V (R), at the angular rate �(R) = V (R)/R, so after time t they lie
on a spiral given by the curve φ = φ0 + �(R)t . In the language of Equation 5.7,
we have f (R, t) = −φ0 − �(R)t . Since the angular speed �(R) generally drops
with radius, then, if we take �(R) > 0, f (R, t) increases on moving out along
the arm to larger R, so φ must diminish. This is a trailing spiral, since the tip of
the arm points in the opposite sense to the galaxy’s rotation.

As time goes on, this spiral becomes ever more closely wound. Near the
Sun’s position in the Milky Way, where V (R) ≈ 200 km s−1 is nearly constant
and R ≈ 8 kpc, the pitch angle i of Equation 5.8 tightens according to

cot i = R

∣∣∣∣d�(R)

dR

∣∣∣∣t ≈ 200

8

(
t

1 Gyr

)
, or i ≈ 2◦ ×

(
1 Gyr

t

)
. (5.9)
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After only a gigayear, this spiral should be much tighter than those observed in Sc
galaxies like our own. Any initial spiral pattern would suffer a similar winding-up;
the stars of the spiral arms must perpetually be renewed.

5.5.2 Theories for spiral structure

Spiral structure is a complex phenomenon, and it is likely that no single process is
responsible for the whole range of observed structures. Some galaxies, particularly
those with flocculent spiral arms, may simply recreate their spiral patterns every
few rotation periods. Once a cloud of gas has made its first stars, blast waves
from the supernova explosions of short-lived massive stars will compress the
surrounding gas. This may trigger the birth of yet more stars, so that star formation
propagates through the gas. Differential rotation then draws the cloud out into a
segment of a trailing spiral arm. By the time this fragment is strongly stretched,
the gas will have been used up, the hot stars will have faded, and the region will
have blended back into the disk. This model of self-propagating star formation
will work only if the pace of starbirth can be regulated so that it neither dies out
completely nor sets the whole disk afire, exhausting it of gas. It may be able to
explain the fragmentary spiral arms of a galaxy like M33, but is less likely to
apply to a system like M100: in Figure 5.26, the spiral arms can be traced over
more than 180◦.

A spiral pattern can last longer if the stars that make it up are not on circular
orbits, but are arranged in a particular order in their slightly eccentric paths: this
is called a kinematic spiral. In Section 3.3, we saw that a star’s path on a nearly
circular orbit can be described as the sum of circular motion of a guiding center,
at the rate �(Rg) appropriate to its radius Rg, and an epicyclic oscillation moving
the star in and out. The azimuth of the guiding center is φgc = �(Rg)t , while
epicyclic motion causes the star’s radius to vary as

R = Rg + x = Rg + X cos(κt + ψ). (3.70)

Here X is the amplitude of the radial motion, κ is the epicyclic frequency, and
the constant ψ prescribes the initial radius. If we start by placing stars with their
guiding centers spread around the circle at Rg, and set ψ = 2φgc(0) for each of
them, they will lie on an oval, with its long axis pointing along φ = 0.

At a later time t , the guiding centers move, so that φgc(t) = φgc(0) + �t . The
stars advance on their epicycles, to lie at radius R = Rg + x , where

x = X cos{κt + 2[φgc(t) − �t]} = X cos[(2� − κ)t − 2φgc(t)]. (5.10)

The long axis of the oval now points along the direction where

(2� − κ)t − 2φ = 0, or φ = (� − κ/2)t ≡ �pt. (5.11)
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Fig. 5.29. Left, oval orbits nested to form a two-armed spiral; the equation of the pattern is

R = Rg{1 + 0.075 cos[2(5 − 5Rg +φ)]}−1, and 0.3 < Rg < 1. Right, a one-armed spiral,

with R = Rg[1 + 0.15 cos(5 − 5Rg + φ)]−1.

We have defined the pattern speed �p so that the pattern made up by stars with
guiding center Rg will return to its original state after a time 2π/�p, even though
individual stars complete their orbits about the center in the shorter time 2π/�. A
two-armed spiral can be made up from a set of nested ovals of stars with guiding
centers at different radii Rg, as shown on the left of Figure 5.29. Because the
pattern speed �p varies with Rg, this spiral will in time also wind itself into a
tight trailing pattern, but it will do so more slowly by the factor �p/�, which is
about 0.3 when the rotation curve is flat. To describe an m-armed spiral, we would
set ψ = mφgc(0) in Equation 5.10; stars with a given guiding center then lie on
m-fingered shapes that turn with a pattern speed �p = � − κ/m. The right panel
of Figure 5.29 shows a one-armed kinematic spiral.

The density-wave theory of spiral structure is based on the premise that mutual
gravitational attraction of stars and gas clouds at different radii can offset the
kinematic spiral’s tendency to wind up, and will cause the growth of a pattern
which rotates rigidly with a single pattern speed �p. One way to test whether a
spiral pattern can develop spontaneously is to examine how it would affect the
orbits of disk stars: the spiral will grow only if the stars respond to its gravity by
moving so as to reinforce the pattern. A star orbiting at radius R passes through
an arm of an m-fold spiral pattern with frequency m[�p − �(R)]. To see how
this periodic tugging affects the stellar motions, we add a forcing term to the
epicyclic equations. The calculation is lengthy but not difficult: we refer readers
to Section 3.3 of Binney and Tremaine’s book.

Finding how the forced motions of all the stars in turn affects the gravitational
potential of the galaxy’s disk is much more difficult. In general the calculation
can be done only for a tightly wound spiral; it shows that stars respond so as to
strengthen the spiral only if the perturbing frequency m|�p − �(R)| is slower
than the epicyclic frequency κ(R) at that radius. Hence, a continuous spiral wave
can propagate only in the region between the inner Lindblad resonance, where
�p = � − κ/m, and the outer Lindblad resonance, where �p = � + κ/m.
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Fig. 5.30. Frequencies �(R) and �±κ/2 in the Plummer potential of Equation 3.11. For

pattern speed �p, the m = 2 inner Lindblad resonances are marked by vertical ticks, the

corotation radius is labelled ‘CR’, and the outer Lindblad resonance ‘OLR’. If the pattern

speed were twice as large, the inner Lindblad resonances would be absent.

Figure 5.30 shows positions of the m = 2 Lindblad resonances for the Plum-
mer potential of Equation 3.11. Spirals with two or more arms always have an
outer Lindblad resonance, but, if the pattern speed is high, there may be no inner
Lindblad resonance. Stars beyond the outer resonance, or between the two inner
resonances, find that the periodic pull of the spiral is faster than their epicyclic
frequency κ; they cannot respond to reinforce the spiral, and the wave dies out.
Thus we would expect to see a continuous spiral only in the region between the
inner and outer Lindblad resonances. Since for m > 2 the spiral is restricted to
just a narrow annulus of the disk, we would expect two-armed spiral patterns to
be more prominent than those with three or four arms.

Problem 5.13 Show that, if the rotation curve of the Milky Way is flat near the

Sun, then κ = √
2�(R), so that locally κ ≈ 36 km s−1 kpc−1. Sketch the curves

of �, � ± κ/2, and � ± κ/4 in a disk where V (R) is constant everywhere, and

show that the zone where two-armed spiral waves can persist is almost four times

larger than that for four-armed spirals.

But disk stars can reinforce a spiral wave, and help it to grow, only if their
random motion is small enough so as not to take them outside the spiral arms.
Alar Toomre showed in 1964 that axisymmetric (m = 0, so nonspiral) waves can
grow in a thin rotating disk of stars only if the disk is ‘cold’. Stellar speeds in
the radial direction, measured by the dispersion σR , must be low in relation to the
surface density � of mass in the disk: we need

Q ≡ κσR

3.36G� ∼<1. (5.12)
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Fig. 5.31. Gravitational N-body simulation showing how a disk of 50 000 particles that

attract each other by gravity develops first a two-armed spiral pattern, then a bar. The

galactic bulge and dark halo are represented by a fixed inward force. The disk begins with

Q = 1, as defined in Equation 5.12. For a galaxy of mass 2 × 1011M� within the disk

radius of 16 kpc, the run time corresponds to 2.65 Gyr – J. Sellwood.

Computer simulations like that of Figure 5.31, which began with Q = 1, show that
a spiral pattern generally grows if Q ∼<1.2. As it does so, the stars develop larger
epicyclic motions, and Q rises; so we never expect to see a stellar disk with Q ∼<1.
We can test this hypothesis in the solar neighborhood. Here, the stars making up
most of the disk mass, those at least as old as the Sun, have σR ≈ 30 km s−1

(Section 2.2). In Section 3.4 we saw that the density in the disk � ∼50M� pc−2,
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while κ ≈ 36 km s−1 kpc−1. Hence Q ∼1.4 near the Sun, which is safely greater
than unity.

Why does the disk develop trailing spiral arms, instead of leading arms? It
turns out that, in a trailing spiral, the inner parts of the disk exert a torque on the
outer disk, which transfers angular momentum outward and allows material at
small radii to move inward. As we saw in Problem 3.8, this decreases the energy
of the disk’s rotational motion. By contrast, a disk could develop a leading spiral
only if energy were supplied from outside; for example, by the close passage of
another galaxy. The energy released by the spiral torques goes to increase the
epicyclic motion of the stars.

Figure 5.31 shows a gravitational N-body simulation, following what happens
to a disk of ‘stars’ attracting each other by gravity. It is initially axisymmetric,
with the stars on nearly circular orbits. The growing spiral pattern is two-armed; a
straight central bar also forms. As the stellar random speeds grow, the disk ‘heats
up’ and the spiral eventually disappears. The disk of an S0 galaxy, where no gas
is present, would behave in the same way: any spiral pattern would be short-lived.
But, as we saw in Section 2.2, stars freshly born from the disk gas have very
small random speeds. Continued addition of these new stars may be important in
prolonging the life of a spiral pattern, or in re-creating it periodically.

The density-wave theory has not been a complete success. Spiral waves, like
water waves, travel: the individual stars, or water molecules, oscillate about a
fixed radius or position, but the waves move off to leave the water calm, and
the disk without a spiral. Energy taken from the disk’s rotational motion would
be sufficient to regenerate a spiral wave, but we do not understand exactly how
it could be transferred to the wave. Simulations like that in Figure 5.31 suggest
that this happens only if the spiral pattern speed �p is high enough for the inner
Lindblad resonances to be absent. Then, waves can travel through the center of
the disk, changing from a trailing to a leading spiral as they do so. The galaxy’s
differential rotation pulls the leading spiral pattern into a trailing one, amplifying
it in the process; the new trailing waves restart the cycle.

Another possibility is that the spiral is driven by the gravitational pull of a
companion galaxy, or by internal forces from a central rotating bar (see below).
Many of the galaxies with the best grand-design spiral patterns have either close
companions or pronounced central bars. Close to M100, we find the dwarf elliptical
galaxy NGC 4322. In Figure 7.2 below, the galaxy M81 has a two-armed spiral; its
two companions, the starburst galaxy M82 and NGC 3077, lie within 50 kpc. We
will see in Section 7.1 that close passage of a neighboring galaxy can create at least
a temporary two-armed spiral. An orbiting companion might trigger spiral arms as
it came closest to the disk; if Q were close to unity, the disk stars could cooperate
to strengthen the induced spiral. Similarly, a strong bar might encourage a spiral
in a disk that was on the verge of producing one for itself, and would organize
that pattern into a two-armed form.
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Fig. 5.32. The barred galaxy NGC 1300, classified as SBb or SBbc. The spiral arms trail;

note the dust lanes on the leading edge of the bar – WIYN telescope.

The gravitational pull of the spiral arms affects gas even more strongly than
the stellar disk, because the random speeds of gas clouds are only 5–10 km s−1,
much lower than for the stars. Except immediately around the corotation radius,
where �(R) = �p, the linear speed R[�(R)−�p], with which gas and stars move
into the spiral arm, is supersonic. Shocks develop as the gas flows into the arms,
compressing it enormously. The fact that the dust lanes of Figure 5.26 lie on the
concave side of the arm tells us that gas is entering the spiral from this side. So
the local rotation rate �(R) must exceed the pattern speed �p; this part of the arm
lies inside the corotation radius. It takes about 10 Myr for young stars to be born
in the compressed gas and begin to shine; in the lower left panel of Figure 5.26,
the peak of the Hα emission from gas ionized by these stars is not on top of the
dust lane, but ‘downstream’ of it. Radiation from the hottest of these stars also
splits some of the H2 molecules apart, raising the density of atomic hydrogen,
HI, in the spiral arms (lower right).

5.5.3 Barred disks

About half of all disk galaxies show a central linear bar, containing up to a third of
the total light. The ratio of the long to the short axis of the bar can be as extreme
as 1 : 5, as in Figure 5.32. If the bars were much thicker than the disks, we would
expect to see anomalous central thickening in roughly half of all edge-on spiral
and S0 galaxies; this is not observed, so we think that bars must be almost as flat
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Fig. 5.33. Left, gas density from a computer simulation of flow within a bar; the solid

curve outlines the bar, rotating clockwise. Right, particle orbits that close on themselves

in a frame rotating with the bar. The gas flow is compressed in shocks along the leading

edge of the bar, where the aligned orbits have their greatest curvature – P. Englmaier, after

MNRAS 287, 57 (1997).

as disks. S0 galaxies are about as likely to be barred as Sa or Sb spirals; in contrast
to spiral arms, a bar can persist even if the disk is empty of gas. Barred galaxies
still pose a riddle: we do not yet understand why some galaxies are barred while
other, apparently similar, systems are not.

Like spirals, the figure of the bar is not static, but rotates with some pattern
speed �p. But, unlike spiral arms, bars are not density waves; most of their stars
always remain within the bar. Inside a rotating bar, stars and gas no longer follow
near-circular paths, but stay close to orbits that close on themselves as seen by
an observer moving with the bar’s rotation. We can investigate these orbits by
adding a term to the epicyclic equations of Section 3.3 to represent the force of
the bar. Within corotation, where �p < �(R), we find a family of closed orbits
that line up with the long axis of the bar; see Figure 5.33. In a stable bar, most of
the stars would remain fairly near to these orbits, but outside the corotation radius,
all the closed orbits lie perpendicular to the bar; there are no aligned orbits for
stars to follow. For this reason, we think that bars probably rotate slowly enough
that corotation falls beyond the end of the bar.

Gas in the disk of a spiral galaxy can flow in toward the center only if it can
get rid of its angular momentum. The strongly asymmetric gravitational forces of
a bar help it to do just that. In many barred galaxies, dark dust lanes run along the
leading edge of the bar; in Figure 5.32 they are visible as the light lines on the
side of the bar opposite to the (trailing) spiral arms. The left panel of Figure 5.33
shows a computer simulation of the gas flow within a barred galactic disk. Within
the bar, gas stays close to the aligned orbits, shown on the right of the figure.



236 Spiral and S0 galaxies

At the ends, the flow converges sharply, and gas pressure becomes important. A
shock forms, compressing the gas and dust along the leading edge of the bar, as
we see in NGC 1300.

In the shock, the gas loses part of the energy of its forward motion as heat, so
it drops down onto more tightly bound orbits closer to the center of the galaxy.
This energy dissipation continues until the gas meets the rounder orbits that lie
perpendicular to the bar; then, inflow stops, and the gas piles up in a central ring.
The dust lanes produced in simulations where the corotation radius is only slightly
beyond the end of the bar look most like those we observe in real barred galaxies.
So we believe that the pattern speed �p is usually high, and rotation is almost as
fast as it can be; corotation lies just beyond the bar’s end.

Because the spiral arms in barred galaxies usually appear to start from the
ends of the bar, it is often assumed that bar and spiral share the same pattern speed
and always maintain the same relative alignment. This need not be the case: in
Figure 5.31, the outer spiral has a lower pattern speed than the bar. But the eye joins
the spiral pattern to the bar, so that the arms always appear to start near the end of
the bar. There is nothing to prevent a galaxy from developing a bar that rotates faster
(or slower) than the pattern of a surrounding spiral, or from having two or more
independent spirals with discrepant pattern speeds or different numbers of arms.

Further reading: D. M. Elmegreen, 1998, Galaxies and Galactic Structure
(Prentice-Hall, Englewood Cliffs, New Jersey), unfortunately now out of print,
treats spiral structure on an undergraduate level; and Chapter 6 of J. Binney and S.
Tremaine, 1987, Galactic Dynamics (Princeton University Press, Princeton, New
Jersey) gives a graduate-level discussion of the theory.

5.6 Bulges and centers of disk galaxies

Bulges, along with the centers of small elliptical galaxies, are some of the densest
known stellar systems (see Figure 4.18). The Milky Way’s bulge is largely hidden
from us by dust; but when we look at M31 through a small telescope or binoculars,
or at an ‘underexposed’ optical image of a disk galaxy, only the bright bulge is
visible. In Figure 5.4, the surface brightness at the center of NGC 7331 rises to
fifty times that of the inward-extrapolated exponential disk. The bulge is the ‘big
city’ of a disk galaxy: a centrally placed dense region, where old and new stars are
crammed tightly together. Within the central few parsecs we can find a hundred
million stars, packed into a nuclear cluster; these in turn often harbor a large black
hole. In these tiny central regions, densities are enormous, and timescales short.

5.6.1 Bulges

In the images of two edge-on galaxies in Figures 5.5 and 5.16, the bulges appear as
round ellipsoids. Other bulges are quite flattened, almost like bright central disks.
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Some, including those of the Milky Way (Section 2.2) and M31 (Section 4.2)
appear barlike; they may be triaxial ellipsoids, with three unequal axes. SB0,
SBa, and SBb galaxies have a substantial bulge as well as a stellar bar; Figure 1.13
shows the SB0 galaxy NGC 936. When seen edge-on, most bulges appear roughly
elliptical, but about 20% of them have the appearance of a peanut: the isophotes
dip down toward the disk’s midplane at the center. Studies of gas motions within
them suggest that peanut-bulges may in fact be fast-tumbling bars.

The Milky Way’s bulge and that of M31 are fairly typical in being more metal-
rich than the disk, and gas-poor except at the very center. On average, bulges are
only slightly redder than the inner part of the disk; they continue the pattern seen
in the disks, namely that galaxies become redder closer to the center. Like the
colors of disks, bulge colors show a broad spread, varying from B − R ≈ 1.2, the
color of a late F star, to B − R ≈ 1.8, corresponding to a late G star. Almost all
the stars in the bulges of the Milky Way and M31 are at least several gigayears
old. Beyond the Local Group we cannot resolve individual bulge stars, so we have
no good estimates for their ages.

Bulge stars share a common sense of rotation about the center, but have larger
random motions than the disk stars: usually the ratio of rotational to random speeds
V/σ ∼ 1. We would not expect round bulges to rotate very rapidly; if they did,
they should be thin and disklike. In Section 6.2 we will discuss the minimum
flattening that should be associated with a given amount of rotation, and we will
find that large elliptical galaxies rotate less rapidly than would be possible for their
flattening. Bulges and small ellipticals, by contrast, have about as much rotation
as is permitted by their shapes; in these terms they are fast-rotating.

The surface brightness of a bulge is often approximated by Sérsic’s formula

I (R) = I (0)exp[−(R/R0)1/n]. (5.13)

If the parameter n = 1, this is the same exponential law as Equation 5.1, whereas
for n = 4 it is the de Vaucouleurs formula, which was developed to describe
the light distribution in elliptical galaxies: we will meet it again in Section 6.1.
According to this formula, the surface brightness should continue to increase all
the way to the center; the three-dimensional density of stars would then grow
without limit. Because our telescopes have a limited angular resolution, we do
not know how far the stellar density increases; observed values reach thousands
of stars per cubic parsec.

A good measure of a bulge’s extent is the effective radius Re, the radius of a
circle drawn on the sky that includes half of the bulge light. A galaxy in which the
disk has a large scale length h R generally has a bulge with a large effective radius;
one recent study found the ratio Re/h R ≈ 0.1. Re ranges from about 100 pc up
to a few kiloparsecs in galaxies with the largest dimensions; for the bulge of the
Sombrero galaxy in Figure 5.5, Re ≈ 4 kpc.
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The prominence of the bulge, along with the appearance of the spiral arms,
is used to order the disk galaxies along the sequences of Figure 1.11. In S0 and
Sa galaxies the bulge produces a larger fraction of the light than it does in Sb and
Sc systems, while in the Sd class it is usually absent. The bulges of the early-
type S0 and Sa systems have higher surface brightness I (0) at the center, but not
necessarily larger sizes as measured by Re, compared with those in Sb and Sc
galaxies. Most low-surface-brightness galaxies lack a substantial bulge; but in
some, including the giant Malin 1, the bulge is similar to those of high-surface-
brightness galaxies. On the basis of its bulge, Malin 1 could be classified as an
Sb or Sa galaxy. But the spiral arms have the open character of Sc or Sd systems,
although with much lower surface brightness than normal, and many times larger
radial extent.

Because bulges are so much denser than the disks surrounding them, they may
have their origin earlier in the history of the Universe, when the average cosmic
density was higher. Alternatively, they could have been formed later, out of gas
which had been able to lose a great deal of its angular momentum, so it could
sink toward the center of the galaxy. Or gas may have flowed inward, causing the
disk to form a central bar, which in turn became unstable, thickening to become a
peanut-bulge. None of the current theories gives a plausible account of the entire
range of observed bulges.

A bulge like that of the Milky Way probably formed most of its stars within the
first few gigayears after the Big Bang. The Hubble Space Telescope has revealed
a number of compact galaxies at redshifts z ∼> 3 which may be building their
bulges. These objects seen in light that was emitted at 1400 Å ∼< λ ∼< 1900 Å
have sizes comparable to those of present-day galactic bulges; their luminosities
correspond to the birth of (10–100) M� of new stars per year. At this rate, it
would take only about 1 Gyr to make the entire bulge of a galaxy like our own.
But not all bulges are so old. In the spiral galaxy NGC 7331, some of the bulge
stars orbit the center in the opposite sense to the disk’s rotation! The bulge of this
normal-looking galaxy probably contains material that fell into the system later,
from outside. NGC 7331 is the only galaxy known where bulge stars orbit counter
to the disk; such a major late addition cannot be common.

5.6.2 Nuclei and central black holes

Just as water runs downhill, gas tends to flow into the center of a galaxy. In the
bulge, clouds of gas shed from dying stars will collide with each other, lose energy,
and sink to form a fast-rotating inner disk. As we saw in the last section, the action
of a bar can also bring disk gas inward. In the central region, where the galaxy’s
rotation curve V (R) rises linearly, the angular speed V (R)/R is nearly constant:
shear is absent. In contrast to the main disk, gas clouds here would not be pulled
apart by differential rotation; they might collapse easily under their own gravity,
becoming dense enough to make stars. Just as in the Milky Way (see Section 2.2),
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in most spiral galaxies we see abundant gas within the central 100 pc, and some
newly formed stars.

In some galaxies, a central starburst is taking place: stars are being made so
rapidly as to exhaust the gas supply within ∼100 Myr. This exuberant starbirth
cannot be sustained; it will die away, perhaps leaving a compact inner disk of stars.
The uppermost spectrum in Figure 5.24 is from a blue starburst galaxy. Its massive
young stars are bright at short wavelengths; they ionize the gas around them to
produce the strong emission lines. If the young stars are shrouded in dust, that
will intercept most of their light, re-radiating the energy at infrared wavelengths.
Starbursts are often triggered when gas falls into the center of a galaxy, as it is
tugged by another galaxy passing nearby: we discuss this further in Section 7.1.
They sometimes occur in cycles: supernovae from a starburst heat the surrounding
gas and blow it out of the bulge, after which gas must accumulate before the next
burst. This process might build up a dense central cluster of stars.

At the center of the Milky Way, about 107M� of stars are packed into a tight
cluster only ∼3 pc in radius. Such nuclear star clusters are often seen in spiral
and dwarf elliptical galaxies. They differ from the open and globular star clusters
of the Milky Way, where all stars share a common birth, and any leftover gas
was swiftly dispersed. Gas flowing into a galaxy center has nowhere else to go
than into the nuclear cluster; it provides the raw material for multiple episodes of
starbirth. In a single nucleus, we might see the spectral signatures of short-lived
main-sequence B stars, along with much older red giants. The cluster grows as
more stars form; while the radii of nuclear star clusters are no larger than for the
Milky Way’s globulars, their mass, and thus the velocity dispersion, can be many
times higher.

Problem 5.14 The nuclear star cluster of M33 has core radius rc ∼< 0.4 pc and

measured velocity dispersion σ = 24 km s−1 (Table 4.2). The luminosity LV ≈
2.5 × 106L�. Approximating it crudely as a Plummer model, use Equation 3.13

and the virial theorem (see Problem 3.13) to estimate its mass M. Show that

the mass-to-light ratio M/LV ∼ 0.2 – much lower than for a globular cluster,

because young massive stars are present. (Our M/L is less than in Table 4.2

because the newest stars are concentrated to the cluster center; rc reflects their

distribution, rather than that of the older stars that carry most of the mass.)

As in the Milky Way, nuclear clusters can hide objects so small and so massive
that they are almost certainly black holes. As material spirals around and into a
black hole, its energy can be liberated more efficiently than by any other known
process. Turning a mass M of hydrogen into helium releases merely 0.007Mc2

as energy; throwing it into a black hole can yield ∼0.1Mc2. Some large black
holes, with MBH ∼>107M�, are believed to be power sources for active galactic
nuclei: we will discuss these later in Section 9.1. Others, like that in the center
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of our Milky Way, are quiescent, and can be ‘seen’ only by their gravitational
effects.

In disk galaxies with an active nucleus, we see light from the very center of
the galaxy, which does not come from its stars, or gas ionized by their radiation.
The nucleus shines at all wavelengths from radio to γ-rays; in visible light it is
extremely luminous, sometimes as bright as the entire galaxy around it. The optical
and ultraviolet spectrum shows broad emission lines, with widths corresponding
to velocities Vr > 5000 km s−1. Some of these lines come from atoms that are
much more highly ionized even than the gas around hot stars in a starburst. Our
Milky Way has only a very-low-level active nucleus, with a weak central radio
source.

A striking example of an active nucleus is that in the barred spiral galaxy
NGC 4258; see Figure 9.2. Within a few parsecs of its center is a rotating disk
of dense gas. Radiation from the nucleus excites water molecules in the disk, so
that they emit maser radiation in a line at 22.2 GHz. The bright masing spots can
be located very precisely by very long baseline interferometry, and we can use
the Doppler effect to measure the radial velocity Vr. The gas lies in a disk 0.015′′

across, which corresponds to only 0.5 pc, and orbits the center at over 1000 km s−1.
Within the disk must lie a compact object with a mass M > 3 × 107M�; see the
following problem. The density exceeds 109M� pc−3 or 100 000 times higher
than at the center of a globular cluster: this is far too concentrated to be a cluster
of normal stars.

Problem 5.15 The inner edge of the masing gas disk in NGC 4258 is about

0.004′′ from the center. By measuring the motion of the masing spots across

the sky, Herrnstein et al. (1999 Nature 400, 539) found its distance to be 7.2 ±
0.3 Mpc: what is the radius of the inner edge of the disk in parsecs? Gas there

orbits at 1100 km s−1: use Equation 3.20 to show that the mass inside the disk

is ∼ 4 × 107M�. Supposing that the central object consists of solar-type stars,

find the density n per cubic parsec, and the cross-sectional area σ ∼π R2
� of each

star. The mean time t between collisions for any star is given by t ≈ 1/(nσ V );

show that each star would collide with another about every 100 Myr, so that the

cluster could not survive for long.
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Elliptical galaxies

Elliptical galaxies look like simple objects; but they are not. As their name implies,
they appear round on the sky; the light is smoothly distributed, and they lack the
bright clumps of young blue stars and patches of obscuring dust which are such
obvious features of spiral galaxies. Ellipticals are almost devoid of cool gas, except
at the very center; in contrast to S0 systems, they have no prominent disk. Their
smooth appearance suggests that, like the molecules of air in a room, their stars
have had time to reach a well-mixed equilibrium state. As with stars on the main
sequence, we would expect the properties of elliptical galaxies to reflect the most
probable state of a fairly simple system, with ‘no surprises’.

Instead, detailed studies reveal a bewildering complexity. Elliptical galaxies
cover a huge range of luminosity and of light concentration. Some ellipticals rotate
fast, others hardly at all. Some appear to be oblate (grapefruit shaped), while others
have a triaxial shape with three unequal axes, like a squashed (American or rugby)
football. These properties are interlinked: luminous ellipticals are more likely to
be triaxial, slowly rotating, and also strong X-ray sources, while the less luminous
systems are oblate and relatively rapidly rotating, and have dense stellar cusps at
their centers.

It was a mistake to think that elliptical galaxies might be close to an equilibrium
state, because stellar systems have a very long memory. Most of a galaxy’s stars
have made fewer than 100 orbits about the center; we saw in Section 3.2 that the
relaxation time required to randomize their motions is far greater than the age
of the Universe. If a galaxy was assembled in a triaxial shape, or with a dense
central cusp, these characteristics would not yet have been erased. The variety
among elliptical galaxies suggests that they originated by a number of different
pathways. Present-day elliptical galaxies are ‘fossils’ of the earlier Universe; our
task is to reconstruct their birth and youthful star-forming lives from the old low-
mass stars that remain.

We begin this chapter with a section on photometry: how the images of ellip-
tical galaxies appear in visible light, and what this tells us about the distribution
of stars within them. Section 6.2 discusses stellar motions, and how the rotation
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of an elliptical galaxy is linked to its other properties. We consider what stel-
lar orbits would be possible in a triaxial galaxy, with three unequal axes. In
Section 6.3 we look at the stellar populations of elliptical galaxies and at their
gaseous content. Elliptical galaxies are quite rich in interstellar gas, but that gas
is much hotter than the gas in disk systems; it can be studied only in X-rays. Sec-
tion 6.4 discusses the dark matter in elliptical galaxies and the black holes at their
centers.

6.1 Photometry

The brightest galaxies in the Universe are ellipticals, but so also are some of the
dimmest: these systems share little more than their general shape, and their lack of
cool gas and young stars. It is useful to divide elliptical galaxies into three classes.
The luminous giant ellipticals have L ∼> L
, the characteristic luminosity of a
large galaxy that we defined in Equation 1.24: L
 ≈ 2 × 1010L�, equivalent to
blue magnitude MB ≈ −20. Midsized ellipticals are less luminous, but still have
L ∼> 3 × 109L�, or MB ∼< −18. Finally, dwarf elliptical galaxies are those with
luminosities below 3×109L�. We saw in Chapter 5 that many attributes of a disk
galaxy are determined by its position in the classification scheme of Figure 1.11,
with galaxies in each class covering a wide range in size and luminosity. By
contrast, when we measure the luminosity of an elliptical galaxy, we have
largely fixed the other properties. Elliptical galaxies come in ‘one size (sequence)
only’.

Figure 6.1 shows the isophotes, contours of constant surface brightness, of
four elliptical galaxies. In Figure 6.1(a), the isophotes are remarkably close to
being true ellipses. The ratio of the semi-major axis a and the semi-minor axis b
quantifies how far the isophote differs from a circle: the ellipticity ε is defined as
ε = 1 − b/a. Often the ellipticity is fairly constant, and the position of the center
and the direction of the long axis remain stable, from the bright inner isophotes to
the faint outer contours. This allows us to label elliptical galaxies by the Hubble
type En, where n = 10(1−b/a); E0 galaxies appear circular on the sky, while for
an E5 galaxy the short diameter of the image is half the size of the long diameter.
The index n is usually rounded to the nearest whole number, roughly the accuracy
to which we can classify galaxies by eye from photographic plates. Unlike the
classification of a disk galaxy, the Hubble type of an elliptical galaxy depends on
our viewing direction.

The light in elliptical galaxies is much more concentrated toward the center
than it is in the disks of spirals. As for spirals, we can plot the surface brightness
I (R) on the major axis of the image against radius R, as in Figure 6.3. There, we
see that the surface brightness in NGC 1399 falls by more than 10 000, and the
corresponding volume density more than a millionfold, between the center and
the outskirts where the galaxy disappears into the sky.
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Fig. 6.1. Isophotes in the R band of four giant elliptical galaxies: (a) isophotes are elliptical

(NGC 5846); (b) the long axis of the inner isophotes is roughly horizontal, twisting to

near-vertical at the outer contour (EFAR J16WG); (c) diamond-shaped ‘disky’ isophotes,

with a4 ≈ 0.03 (Zw 159-89 in Coma); (d) rectangular ‘boxy’ isophotes, with a4 ≈ −0.01

(NGC 4478). The compact objects, especially prominent in (b), are mainly foreground

stars – R. de Jong.

Just as for the bulges of disk galaxies, we use Sérsic’s empirical formula,
Equation 5.13, to describe the light distribution. We can rewrite it as

I (R) = I (Re)exp{−b[(R/Re)1/n − 1]}, (6.1)

where the constant b is chosen so that a circle of radius Re, the effective radius,
includes half the light of the image. For n > 1, b ≈ 1.999n − 0.327. When the
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Fig. 6.2. From Equation 6.1, R1/4 (n = 4: solid) and exponential (n = 1: dashed) curves.

Points show V -band surface brightness for dE galaxy VCC753 in the Virgo cluster. This

elliptical has Re = 15.8′′ in the B band and IB(Re) = 24.4 mag arcsec−2. Extrapolating

the profile outward gives total apparent magnitude B0
T = 16.4; taking d = 16 Mpc, we

find L ≈ 1.1 × 108L� – H. Jerjen.

index n = 1, this is just the exponential formula of Equation 5.1. For n = 4,
we have the R1/4 or de Vaucouleurs law, proposed in 1948 by Gérard de Vau-
couleurs. Figure 6.2 shows that the R1/4 profile has more light at large radii than
the exponential, but is also more strongly peaked, with central surface brightness
I (0) > 2000I (Re).

Problem 6.1 Show that the R1/4 formula yields a total luminosity

L =
∫ ∞

0
2π RI (R) dR = 8!

e7.67

(7.67)8
π R2

e I (Re) ≈ 7.22π R2
e I (Re). (6.2)

(Remember that
∫∞

0 e−t t7 dt = �(8) = 7!) Use a table of incomplete � functions

to show that half of this light comes from within radius Re.

Problem 6.2 Use Table 1.9 to show that, even at its center, the surface brightness

of the galaxy of Figure 6.2 is less than half that of the night sky. Show from

Figure 6.3 that, for the galaxy G675, I (R) drops below sky level at R ≈ Re;

almost half of its light comes from regions further out.

Outside the very center, the R1/4 formula provides a fairly good description
for the surface brightness of luminous and midsized elliptical galaxies, those
brighter than about 3 × 109L�. Figure 6.3 shows the observed profile of the
elliptical G675; it is close to a straight line except in the very bright core, where
atmospheric turbulence, or seeing, blurs the image. The horizontal bar indicates
the radius of a typical image of a pointlike star measured at half its peak intensity;
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Fig. 6.3. Surface brightness of two luminous ellipticals: an R1/4 law corresponds to a

straight line. Dots show the measured R-band surface brightness for galaxy G675, in cluster

Abell 2572. It has LV ≈2 × 1010L�, and Re = 4.95′′ or 3.8 kpc. The curve gives an R1/4

profile, smoothed by atmospheric seeing: the horizontal bar shows 1.67′′, the half-width

of a stellar image. The upper curve shows the measured B-band profile of the cD galaxy

NGC 1399, which is about twice as luminous as G675. For it, Re = 15.7′′ ≈ 1.4 kpc,

so measurements cover R ∼< 850′′ or 75 kpc. Between the dotted region, where seeing

has affected the measurement, and R ∼ 24 Re, I (R) follows the R1/4 profile closely – R.

Saglia and N. Caon.

this is a common way to quantify the seeing. The overplotted solid curve shows
what we would expect to find if the galaxy followed exactly the R1/4 law, but the
seeing was such as to blur stellar images to their measured extent. The biggest and
brightest systems are generally best fit with larger values of n, while the surface
brightness of dwarf elliptical galaxies is often close to an exponential profile with
n ≈ 1, as in Figure 6.2.

The most luminous of all galaxies are the cD galaxies. These enormous ellipti-
cals contain the largest stellar mass of any galaxies; they are significantly brighter
than L
. In Figure 6.3, the profile of the cD galaxy NGC 1399 (with L ≈ 2L
 or
4 × 1010L�) follows the R1/4 formula fairly well, out to R ∼ 20Re. Beyond that,
the surface brightness is higher than the formula would predict. This outer envelope
of ‘extra’ light is characteristic of cD galaxies, which are found only at the centers
of galaxy groups and clusters: NGC 1399 is in the Fornax cluster. Although it is
not classified as a cD galaxy, the outer envelope of the giant elliptical galaxy M87,
at the center of the Virgo cluster, is also very extended. The starlight can be traced
for nearly 100 kpc on a deep photograph (Figure 6.4). These stars may belong
to the cluster rather than to individual galaxies, or they might be the shredded
remains of smaller galaxies that came too close to the central monster system.

Recently, arclike ‘shells’ and other asymmetric structures have been found in
the faint outer regions of elliptical galaxies (Figure 6.5). The shells are probably
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Fig. 6.4. E0 elliptical galaxy M87 (NGC 4486). Left, the round inner region – J.-C. Cuil-

landre, Canada–France–Hawaii Telescope. Right, the negative from a deep exposure; the

three bright stars of the left image are nearly lost in the galaxy’s extended and asymmetric

outer parts. Starlight can be traced to the SE (lower left) for ∼>15′ or 70 kpc – D. Malin,

Anglo-Australian Observatory.

Fig. 6.5. A negative image shows faint arclike shells around elliptical galaxy NGC 3923;

an out-of-focus copy was subtracted from the original photograph, allowing faint but

sharp features to stand out. The picture is 18′ across, or 110 kpc at d ≈ 21 Mpc. This is a

luminous galaxy (L B ≈ 4 × 1010L�) in a loose group; it appears normal apart from the

shells – D. Malin 1983 ApJ 274, 534.
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Fig. 6.6. Central surface brightness IV (0), in mag arcsec−2 in the V band, and core radius

rc plotted against B-band luminosity MB . Filled circles are elliptical galaxies and bulges of

spirals (including the Andromeda galaxy M31); open circles are dwarf spheroidals; crosses

are globular clusters; the star is the nucleus of Sc galaxy M33. ‘U’ denotes an ultracompact

dwarf elliptical in the Fornax or Virgo cluster – J. Kormendy and S. Phillipps.

remnants of a small galaxy which has been torn apart by the gravitational forces
of the larger one, then swallowed up into it. A few of the galaxies with shells have
clearly suffered a recent merger; they show faint tidal tails such as those seen in
Figure 7.5. After a few gigayears, the shells and tails will be gone, leaving galaxies
that appear in optical images as fairly normal ellipticals.

Unlike for disk galaxies, in an elliptical the central brightness is tightly linked
to luminosity. Figure 6.6 shows the central brightness IV (0) and the core radius
rc, where the surface brightness drops to half its measured central value, for
ellipticals, the central bulges of spirals, and star clusters. Just as with stars in a
color–magnitude diagram, we see that the points are confined to certain regions
of this plane.

Among the luminous and midsized ellipticals, namely those brighter than
L ∼ 3 × 109L�, we find that the more luminous the galaxy, the lower its cen-
tral surface brightness and the larger its core. The surface brightness in some of
the most luminous galaxies, such as the cD systems, is almost as low as that in the
disks of spirals. We will see in Section 7.1 that collisions between galaxies
increase the internal motion of the stars within them, causing them to expand and
become less tightly bound. If the most luminous ellipticals were produced by the
merger of two smaller systems, that could explain why their centers are more
diffuse.

The Local Group galaxy M32 lies at the other extreme, with the highest
measured surface brightness: even with LV ≈ 3 × 108L�, it is the ‘smallest giant
elliptical galaxy’. The extremely compact dwarf ellipticals recently discovered
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Fig. 6.7. Surface brightness IV (R) in the V band at the centers of two elliptical galaxies.

The cD galaxy NGC 1399 (MV =−21.7) has a core at R ∼< 1′′, where I (R) is nearly

constant. NGC 596 (MV = −20.9) is half as luminous; the surface brightness continues

to rise as a cusp. The dashed line shows I (R) ∝ R−0.55 – T. Lauer.

in the Fornax and Virgo clusters of galaxies may be similar. Beyond the Local
Group, our observations often lack the spatial resolution to measure such very
small cores.

The dimmest of the ellipticals, with L ∼< 3 × 109L�, or MB ∼> −18, fall into
two types: rare compact ellipticals like M32 (see Section 4.4) are distinct from
the dwarf elliptical (dE) and dwarf spheroidal (dSph) galaxies described in Sec-
tions 4.1 and 4.4. Compact ellipticals have appreciable rotation, whereas the dwarf
ellipticals and dwarf spheroidals do not rotate significantly. Dwarf spheroidals are
less luminous versions of the dEs, with L ∼< 3 × 107L� or MV ∼> −14. Most
are so diffuse as to be barely visible in images of the sky. Figure 6.6 shows that
the dE and dSph galaxies have larger cores than the midsized ellipticals. The
trend in surface brightness reverses itself: the central brightness is lowest in the
least-luminous dE and dSph galaxies.

We understand why stars populate only certain regions of a color–magnitude
diagram; both luminosity and temperature are controlled largely by the star’s mass,
and the zones where it burns nuclear fuel. Explaining the distribution in Figure 6.6
is harder, since it almost certainly reflects the conditions under which the galaxies
formed, rather than their internal workings at the present day. The pattern tells us
that galaxy formation had some regularity; the way that a galaxy came into being
must be related to its mass. But this clue requires interpretation, which so far is
lacking.

We gain a sharper view of galaxy centers from above the Earth’s atmosphere;
the Hubble Space Telescope can resolve details as fine as 0.05′′ across. Luminous
galaxies, like NGC 1399, generally have central cores within which the surface
brightness is nearly constant. But Figure 6.7 shows that, in the less-bright elliptical
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NGC 596, the surface brightness continues to rise as far in as our observations
can follow; M32 shows a similar structure. Midsized galaxies, with L ∼< L
,
typically have central cusps, not cores. If we assume that the luminosity density is
proportional to the number density n(r ) of stars, then n(r ) must rise more steeply
toward the center than r−1; see the following problem. Even in galaxies with cores,
a central plateau in surface brightness may conceal a peak in stellar density, so
long as this is shallower than n(r ) ∝ r−1.

These results from space observations show that we must be careful when
interpreting diagrams such as Figure 6.6. The measured central surface brightness
observed through the Earth’s turbulent atmosphere is only a lower bound to the
true value. The measured ‘core radius’ may in fact mark a point where the intensity
profile changes its slope, rather than the outer limit of a region where the stellar
density is constant.

Problem 6.3 From Figures 6.6 and 6.7, show that the measured surface bright-

ness at the center of NGC 1399 is IV (0) ∼ 14 000L� pc−2, while that of M32 is

at least 106L� pc−2. (Recall from Problem 5.3 that the disk of the spiral galaxy

NGC 7331 reaches only 350L� pc−2.)

Problem 6.4 When a spherical galaxy with stellar density n(r ) is viewed from a

great distance along the axis z, show that the surface density at distance R from

the center is

�(R) = 2
∫ ∞

0
n(r )dz = 2

∫ ∞

R

n(r )r dr√
r2 − R2

. (6.3)

If n(r ) = n0(r0/r )α , show that as long as α > 1 we have

�(R) = 2n0r0(r0/R)α−1
∫ ∞

1

x1−α dx√
x2 − 1

= �(R = r0)(r0/R)α−1. (6.4)

(What happens if α < 1?) The surface density �(R) remains finite as R → 0 if

the volume density rises less steeply than n ∝ r−1.

6.1.1 The shapes of elliptical galaxies

The appearance of an elliptical galaxy depends on the direction from which we
observe it. If the galaxy is symmetric about some axis, then an observer looking
along that direction will always see a circular image. But, since we view galaxies
with random orientation, we can use the distribution of apparent shapes to infer
the average true three-dimensional figure. The isophotes may also reveal internal
complexity: for example, a small disk hidden within the body of the galaxy.
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Fig. 6.8. Viewing angles for an oblate galaxy.

If a galaxy is an oblate spheroid, symmetric about the shortest axis z, then in
Cartesian coordinates x, y, z, we can write the density of stars ρ(x) as

ρ(x) = ρ(m2), where m2 = x2 + y2

A2
+ z2

B2
, (6.5)

and A≥ B >0. The contours of constant density ρ(x) are ellipsoids m2 = constant.
An observer looking directly along the z axis will see a round E0 galaxy; when
viewed at an angle, the system appears elliptical. To calculate the apparent axis
ratio q = b/a, we place the observer in the x−z plane, as in Figure 6.8, looking
at an angle 0◦ < i <90◦ to the axis z. The line of sight grazes the constant-density
surface m2 = x2/A2 + z2/B2 at the point T where it is tangent to this ellipse; so
we have

tan i = dx/dz = −(z/x)(A2/B2). (6.6)

So the elliptical image has semi-major axis a = m A, while its semi-minor axis
b = OR = OQ sin i . Using Equations 6.5 and 6.6, we have

OQ = OP + PQ = z + (−x)cot i = B2m2/z; (6.7)

the ratio q of apparent minor to major axis is

qobl ≡ b

a
= OQ sin i

m A
= B2m

z A
sin i =

(
B2

A2
+ cot2 i

)1/2

sin i, (6.8)

where we have used the definition 6.5 in the last step. Thus

q2
obl = (b/a)2 = (B/A)2 sin2i + cos2i ; (6.9)
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an oblate spheroidal galaxy never appears more flattened than its true axis ratio
B/A. A prolate galaxy can be described by the same function ρ(x) of Equation 6.5,
with A < B. When viewed at angle i to its symmetry axis, it appears as an ellipse
with the ratio qprol of minor to major axis given by

q2
prol = [(B/A)2 sin2i + cos2i]−1. (6.10)

Thus qprol ≥ A/B; again, the apparent flattening cannot be more than the true axis
ratio.

Looking from a random direction, the fraction of galaxies that we see at an
angle between i and i + �i to the polar axis is just sin i · �i , the fraction of a
sphere around each galaxy corresponding to these viewing directions. If they are
all oblate with axis ratio B/A, then from Equation 6.9 the fraction fobl �q with
apparent axis ratios between q and q + �q is

fobl(q)�q = sin i · �q

|dq/di | = q �q√
1 − (B/A)2

√
q2 − (B/A)2

. (6.11)

For very flattened systems with B � A, this is almost a uniform distribution; all
values q > B/A are about equally probable. For the disks of spiral and S0 galaxies,
apparent shapes rounder than q ≈ 0.2 are found with roughly equal frequency;
so we conclude that most of their disks have B/A ∼< 0.2. Very few disk galaxies
show outer isophotes as elliptical as q ∼< 0.1; so few disks can be as flattened as
B/A ≈ 0.1. This is consistent with what we learned in Section 5.1: the ratio of
the vertical and horizontal scale lengths hz/h R ≈ 0.1−0.2.

There are no elliptical galaxies in the sky more flattened than E7, or q = 0.3.
Astronomers suspect that such a galaxy would be dynamically unstable. A system
with high angular momentum would probably separate into a thin fast-rotating
disk and a central bulge, rather than becoming a very flattened oblate elliptical.
We know that a needle-like prolate galaxy, or a non-rotating oblate ‘pancake’,
would buckle and thicken to a rounder shape.

Figure 6.9 shows that the apparent shapes of small elliptical galaxies are
generally more elongated than those of large luminous systems. On average the
midsized galaxies, with MB ∼> −20, have apparent axis ratio q ≈ 0.75; if these
are oblate, the most common true flattening is in the range 0.55 ∼< B/A ∼< 0.7.
Luminous ellipticals, with L ∼> L
 or MB ∼< −20, have on average q ≈ 0.85;
but so few of them appear almost circular on the sky that no selection of oblate
ellipsoidal shapes can give the observed distribution of q values. Some of these
bright galaxies are probably triaxial, with the stellar density taking a form

ρ(x) = ρ(m2), where m2 = x2

A2
+ y2

B2
+ z2

C2
. (6.12)
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on average appear rounder. Contours show probability density; the top contour level is for

probability density 4.5 times higher than that at the lowest, with others equally spaced –

B. Tremblay and D. Merritt 1996 AJ 111, 2243.

When A > B > C , then z is the shortest axis and x the longest; the cross-section
in any plane perpendicular to each of these principal axes is an ellipse.

Problem 6.5 Use Equation 6.11 to show that, if we view them from random

directions, the fraction of oblate elliptical galaxies with true axis ratio B/A that

appear more flattened than axis ratio q is

Fobl(<q) ≡
∫ q

B/A
fobl(q

′)dq ′ =
√

q2 − (B/A)2

1 − (B/A)2
. (6.13)

If these galaxies have B/A=0.8, show that the number seen in the range 0.95 <

q < 1 should be about one-third that of those with 0.8 < q < 0.85. Show that,

for smaller values of B/A, an even higher proportion of the images will be

nearly circular, with 0.95 < q < 1. Then, in Figure 6.9, count the fraction

of objects with −21 < MB < −20 that appear rounder than q = 0.95, and

explain why it is unlikely that galaxies in this luminosity range all have oblate

shapes.



6.1 Photometry 253

Fig. 6.10. A two-dimensional analogue of isophote twisting in a triaxial galaxy: ellipses

on a flat surface (top) are viewed from below left (lower panel). The left ellipse still points

to top right; but the long axis of the rounder center ellipse now heads to lower right. The

rightmost set of ellipses shows how, if the axis ratios of a triaxial galaxy vary with radius,

the isophotes may twist even when the principal axes do not – after J. Kormendy.

6.1.2 Twisty, disky, or boxy?

The isophotes of elliptical galaxies are close to being true ellipses; but the small
deviations yield information about how the galaxy departs from a simple axisym-
metric form. In Figure 6.1(b), we see the long axis of the isophotes swing from
roughly horizontal in the inner galaxy to almost vertical at the outermost isophote.
An observed isophote twist is generally taken as an indication that the galaxy may
be triaxial. The isophotes of an oblate galaxy always form a sequence of nested
ellipses; the long axis points along the line where the galaxy’s equatorial plane
intersects the plane of the sky, normal to the observer’s direction. Figure 6.10
shows how this twisting can result if the galaxy is triaxial, with the ratio A : B : C
of the axes changing with the radius m, and we view it from a direction other than
along one of the principal axes.

The isophotes of some elliptical galaxies differ from exact ellipses in appearing
disky. They show extra light along the major axis, as though the galaxy contained
an equatorial disk embedded within it; see Figure 6.1(c). Measurements of the
stellar motions show that this is exactly the case; disks containing up to 30% of
the total light are embedded within the elliptical body. By contrast, a galaxy with
boxy isophotes has more light in the ‘corners’ of the ellipse; see Figure 6.1(d). To
quantify these distortions, we write the equation of the ellipse that best matches a
given isophote as

x = a cos t, y = b sin t, (6.14)

where x and y are distances along the major and minor axes, and the parameter
t describes the angle around the ellipse. Let �r (t) be the distance between this
ellipse and the galaxy’s isophote, measured outward from the center. Then, we
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Fig. 6.11. Radio and X-ray power of elliptical galaxies. Boxy galaxies with a4 < 0 tend

to be strong sources; disky ellipticals with a4 > 0 are usually weak. Filled circles show
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can write

�r (t) ≈
∑
k≥3

ak cos(kt) + bk sin(kt); (6.15)

the terms with k = 0, 1, and 2 vanish because we have chosen the best-fitting
ellipse. Terms a3 and b3 would describe slightly egg-shaped isophotes, and they
are generally very small. The term b4 is also usually small, but a4 is not. If a4 > 0,
the isophote is ‘disky’: it is pushed out beyond the best-fitting ellipse on the major
and minor axes, at t = 0, ±π/2, π where �r > 0. When a4 < 0, the isophote
bulges out at 45◦ to the axes, giving a ‘boxy’ or peanut-shaped appearance.

Boxy galaxies are more likely to show isophote twists. They are often luminous
ellipticals, which are also the most likely to be triaxial. Figure 6.11 shows that boxy
ellipticals more often have strong radio and X-ray emission; we will see below
that they also are the slowest rotating. By contrast, midsized elliptical galaxies
are more likely to be disky, oblate, and faster rotating, with less of the X-ray-
luminous hot gas. They resemble S0 galaxies where the bulge is so large as to
swallow the disk. The larger boxy systems may have formed by merger of smaller
galaxies, which would destroy any disks that were present, and can easily leave a
triaxial shape. Some astronomers have suggested that we should describe elliptical
galaxies by their degree of boxiness, in preference to Hubble’s En classification:
disky ellipticals would form an intermediate class between luminous boxy systems
and the S0 galaxies.

6.2 Motions of the stars

In contrast to disk galaxies, the stars of elliptical galaxies do not follow an orderly
pattern of rotation. Instead, most of their kinetic energy is invested in random
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motion. Just as a spiral galaxy’s luminosity is linked to its rotation speed, the more
luminous ellipticals have a higher velocity dispersion; we can use this relation to
determine distances to galaxies. Many astronomers were surprised to find that
elliptical galaxies rotate as slowly as they do; it shows that the stars have not
relaxed into anything close to a most probable final state. Elliptical galaxies still
retain considerable information about their origins.

6.2.1 Measuring stellar velocities

Measuring the orbital velocities of stars within galaxies is relatively difficult. We
can quite easily find the speed of a cool or warm gas cloud using the Doppler
shift at the bright peak of an emission line, such as Hα from warm ionized gas, or
the radio-frequency 21 cm line of neutral atomic hydrogen. But for stars, we must
use absorption features in the spectra; many of these are not narrow atomic lines,
but have an appreciable intrinsic spread in wavelength. We will see below that we
must be concerned not just with the position of the line center, but with its width
and often its shape as well; measuring these demands a high signal-to-noise ratio
and long observations.

The absorption-line spectra of galaxies are usually measured with a long-slit
spectrograph. The slit is placed across the galaxy; reflection from a grating then
spreads the light in wavelength along the perpendicular direction before it falls
onto a detector, most commonly a CCD; see Section 5.1. Sometimes fiber-optic
bundles are used instead; the fibers collect light from various positions across the
face of the galaxy and deliver it onto the grating. Light entering at the ends of
the slit, or through fibers placed far from the galaxy, allows the observer to record
the emission of the night sky (often with that of distant street lights). Except near
its center, the sky is brighter than the galaxy; so we must subtract its spectrum
from what we measure, to recover that of the galaxy.

The light of all the stars in a galaxy is the sum of their individual spectra, each
Doppler-shifted in wavelength according to their motion. Their orbital motion
causes lines in the summed spectrum to be wider and shallower than those of
an individual star. We will see in Section 6.3 that most of the light of elliptical
galaxies comes from G and K giant stars. Typically we observe some nearby
stars of these types as templates for comparison. We take these spectra with the
same telescope and spectrograph setup as for the galaxy, so that we can correct
for instrumental effects. For example, a spectrograph broadens the lines by an
amount �λ corresponding to the spectral resolution; generally λ/�λ ∼> 5000 for
these observations, giving a resolution of 60 km s−1.

Elliptical galaxies contain little cool dusty gas, so their light is quite close
to the sum of what is emitted by all their stars. Let us write the energy received
from a typical star, when it is at rest with respect to an observer, as Fλ,
(λ)�λ

between wavelengths λ and λ+�λ. We choose Cartesian coordinates x, y, z with
z pointing from our position toward the galaxy. Then, if the star moves away from
us with velocity vz � c, the light that we receive at wavelength λ was emitted
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at wavelength λ[1 − vz/c]. To find the spectrum at position x, y on the galaxy
image, we must integrate over all the stars along our line of sight. Approximating
the number density of stars at position x with z velocities between vz and vz +�vz

as f (x, vz)�vz , the observed spectrum is

Fλ,g(x, y, λ) =
∫ ∞

−∞
Fλ,
(λ[1 − vz/c])

{∫ ∞

−∞
f (x, vz)dz

}
dvz. (6.16)

If we knew the distribution function f (x, v) for each type of star, and their
spectra Fλ,
(λ) were exactly the same as those of our template stars, we could
use Equation 6.16 to construct the galaxy’s spectrum. In practice, we usually
guess at a form for the integral of f (x, vz) along the line of sight, the term in
curly braces, depending on a few parameters. We then choose those parameters
to reproduce the galaxy’s observed spectrum as well as possible. A common
choice is the Gaussian form∫ ∞

−∞
f (x, vz)dz ∝ exp

[−(vz − Vr)
2/
(
2σ 2

r

)]
; (6.17)

here σr(x, y), usually written simply as σ , is the velocity dispersion of the stars,
while Vr(x, y) is the mean radial velocity at that position. Rotation is evident as a
gradient in Vr(x, y) across the face of the system. When the spectrum is measured
to high precision, the Gaussian might not provide an adequate approximation.
For example, in some disky ellipticals a long ‘tail’ of rapidly moving stars
shows that a fast-rotating disk is buried within the slower-rotating body of the
galaxy.

Figure 6.12 shows the mean radial velocity and velocity dispersion measured
along the major axis of the cD galaxy NGC 1399 out to a distance of about
5Re, where the surface brightness has fallen more than 100-fold below its central
level. In a spiral galaxy like our own, the ordered rotation of disk stars is almost
ten times faster than their random speeds; but in this elliptical, we see a peak
rotation speed Vmax � σr. We would not expect elliptical galaxies to rotate as
rapidly as spirals, since they are not disks; but we will see in the next subsection
that most of them do not even rotate as fast as they ‘ought to’ for their rounder
shapes.

Problem 6.6 The core radius rc of NGC 1399 is ∼5′′ or 400 pc. Use Equation

3.46 to combine the measured dispersion σr from Figure 6.12 with the result of

Problem 6.3, to show that the mass-to-light ratio in the central parts isM/LV ∼ 7.

This is only slightly larger than that in the Milky Way’s globular clusters

(Section 3.1), suggesting that the core of this galaxy contains little dark matter.

Further reading: for more on spectroscopic techniques, see Chapter 3 of D. F.
Gray, 1992, The Observation and Analysis of Stellar Photospheres, 2nd edition
(Cambridge University Press, Cambridge, UK). For the analysis, see Chapter 11
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Fig. 6.12. Measured radial velocity Vr and velocity dispersion σr on the major axis of

cD galaxy NGC 1399; vertical bars show uncertainties. Notice that (Vr − Vsys)/σr � 1;

Vr reverses slope in the central few arcseconds – A. Graham.

of J. Binney and M. Merrifield, 1998, Galactic Astronomy, 3rd edition (Princeton
University Press, Princeton, New Jersey). These are both graduate texts.

6.2.2 The Faber–Jackson relation and the fundamental plane

The range in the velocity dispersion σ for elliptical galaxies is close to what we
saw in Section 5.3 for the peak rotation speed of disk galaxies. Just as for spirals,
the stars move faster in more luminous galaxies. At the centers of bright ellipticals,
the dispersion can reach 500 km s−1, while σ ∼ 50 km s−1 in the least luminous
objects. The left panel of Figure 6.13 shows that roughly L ∝ σ 4; this is often
called the Faber–Jackson relation. In the V band, roughly

LV

2 × 1010L�
≈
(

σ

200 km s−1

)4

. (6.18)

Like the Tully–Fisher relation for spirals, the Faber–Jackson relation can be
used to estimate a galaxy’s distance from its measured velocity dispersion. But it is
hard to determine the total amount of light we receive from a galaxy, because much
of it comes from the faint outer parts; distances derived from the Faber–Jackson
relation are not very precise. A better method is to measure the diameter D of the
isophote within which the surface brightness averages to a given level. We saw
in Figure 6.6 that a galaxy’s central brightness I (0) depends on its luminosity L;
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Fig. 6.13. Left, central velocity dispersion σ plotted against I (Re)R2
e proportional to

luminosity L B in the B band; the dashed line shows L B ∝ σ 4. Right, the ‘fundamental

plane’. Open circles represent elliptical galaxies in the Coma cluster; filled circles show

those at redshifts 0.8 < z < 1.2 – T. Treu.

so there is a corresponding D−σ relation. Popular choices for D take an average
surface brightness of 20−21 mag arcsec−2 in the B band.

Another possibility is to use the fundamental plane relation. The right panel
of Figure 6.13 shows that the elliptical galaxies of the Coma cluster all lie close to
a plane in the three-dimensional ‘space’ of central velocity dispersion σ , effective
radius Re, and surface brightness Ie = I (Re). Approximately, we have

Re ∝ σ 1.2 I −0.8
e . (6.19)

Like Figure 6.6, the fundamental plane relation reflects some basic processes, still
to be understood, by which elliptical galaxies form. We see the galaxies at z ∼ 1
as they were when the cosmos was half its present age. They are brighter than
those nearby, and do not follow the same fundamental plane; their mass-to-light
ratios are roughly five times lower.

Problem 6.7 Assuming that the velocity dispersion σ and the ratio M/L are

roughly constant throughout the galaxy, and that no dark matter is present, show

that the kinetic energy KE = 3Mσ 2
r /2. Approximating it crudely as a uniform

sphere of radius Re, we have PE = −3GM2/(5Re) from Problem 3.12. Use

Equation 3.44, the virial theorem, to show that the mass M ≈ 5σ 2 Re/G. If all

elliptical galaxies could be described by Equation 6.1 with the same value of n,

explain why we would then have M ∝ σ 2 Re and the luminosity L ∝ Ie R2
e , so

that M/L ∝ σ 2/(Ie Re).

(a) Show that, if all ellipticals had the same ratio M/L and surface brightess

I (Re), they would follow the Faber–Jackson relation.

(b) Show that Equation 6.19 implies that Ie ∝ σ 1.5 R−1.25
e , and hence that

M/L ∝ σ 0.5 R0.25
e or M0.25: the mass-to-light ratio is larger in big galaxies.



6.2 Motions of the stars 259

6.2.3 How fast should an elliptical galaxy rotate?

To understand why astronomers expected elliptical galaxies to rotate faster than
they do, we use a form of the virial theorem. We start from the equation for the
gravitational force on star α at position xα due to the other stars in the galaxy, at
positions xβ , with masses mβ :

d

dt
(mαvα) = −

∑
β

α �=β

Gmαmβ

|xα − xβ |3 (xα − xβ). (3.2)

Then, we follow the process that led us to Equation 3.38 of Section 3.1. But instead
of taking a scalar product, we multiply the z component of Equation 3.2 by the z
coordinate zα and sum over all the stars, to get

∑
α

d

dt
(mαvzα)zα = −

∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (zα − zβ)zα, (6.20)

where vzα is the z component of vα, the velocity of star α. But we could also have
started with the force on star β, to find

∑
β

d

dt
(mβvzβ)zβ = −

∑
α,β
α �=β

Gmαmβ

|xα − xβ |3 (zβ − zα)zβ. (6.21)

Averaging these two yields an equation similar to Equation 3.42:

1

2

d2 Izz

dt2
= 2KE zz + PE zz, (6.22)

where the z component of the moment of inertia is defined as

Izz ≡
∑

α

mαzαzα, (6.23)

the kinetic energy associated with motion in the z direction is

KE zz ≡ 1

2

∑
α

mαvzαvzα, (6.24)

and the zz contribution to the potential energy is

PE zz ≡ −
∑
α,β
α �=β

1

2

Gmαmβ

|xα − xβ |3 (zα − zβ)2. (6.25)
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In the same way as for Equation 3.44, if all the stars are bound within the galaxy,
we can write

2〈KE zz〉 + 〈PE zz〉 = 0. (6.26)

where the angle brackets denote a long-term average. Similar equations hold for the
x and y components of the motion; they make up part of the tensor virial theorem.
This theorem tells us that not only must the average kinetic and potential energies
be in balance, but also contributions in the different directions must separately
be equal. If a galaxy is highly flattened, like the Milky Way, PE zz will be much
smaller in magnitude than PE xx . Equation 6.26 then tells us that the energy in
random speeds in the z direction must be less than that from the random motion
and rotation which make up the x component of the kinetic energy.

Suppose that an elliptical galaxy is axisymmetric, with the density of stars
described by Equation 6.5, and it rotates about the symmetry axis z. Then we can
split the kinetic energy in the x direction into the sum of rotation and random
motions. If we make the simplifying assumption that the rotation speed V and
the velocity dispersions σx and σz in these two directions are almost constant
throughout the galaxy, then

〈PE zz〉
〈PE xx 〉 = 〈KE zz〉

〈KE xx 〉 ≈ σ 2
z

1
2V

2 + σ 2
x

, (6.27)

since the kinetic energy of rotation is split between the x and y directions.
The ratio of the two potential-energy terms turns out to depend only on the

axis ratio B/A, or equivalently the ellipticity ε ≡ 1 − B/A. It is not affected by
how the mass is distributed inside the galaxy; roughly,

〈PE zz〉
〈PE xx 〉 ≈ (B/A)0.9 = (1 − ε)0.9. (6.28)

The true rotation speed V is higher than the measured average speed Vmax,
since the stars spend part of their time in motion across the sky, which does not
contribute to Vmax; to allow for this, we write Vmax ≈ πV/4. If random motions
are isotropic, the same in all directions, we have σx = σz = σ , and Equation 6.27
becomes

(
Vmax

σ

)
=
(

V

σ

)
iso

≡ π

4

√
2[(1 − ε)−0.9 − 1] ≈

√
ε/(1 − ε); (6.29)

the approximation is valid when ε is small. According to this relation, even fairly
round galaxies should rotate quite fast; for example, B/A = 0.7 should imply
Vmax/σ ≈ 0.68.
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Fig. 6.14. The ratio of measured peak rotation speed Vmax to central velocity dispersion σ

for elliptical galaxies, plotted against apparent ellipticity: filled circles show bright galaxies

(MB < −19.5); open circles are dimmer galaxies. Points with downward-extending bars

indicate upper limits on Vmax. The dashed line gives (V/σ )iso, the fastest rotation expected

for a given flattening – R. Bender.

We cannot measure the true flattening B/A for a galaxy, but only the apparent
axis ratio b/a. If we view it at an angle i to the direction of the axis z, the
measured rotation speed Vmax is reduced by a factor sin i from the value it would
have if we looked at it from a position in the x−y plane. But, if the galaxy is
not too flattened, the following problem shows that 2ε ≈ sin2i[1 − (B/A)2], so
the right and left sides of Equation 6.29 both decrease approximately as sin i .
Thus, if we compute (V/σ )iso using the apparent ellipticity εapp = 1 − b/a,
oblate galaxies with isotropic velocity dispersions should still fall close to the line
Vmax/σ = (V/σ )iso in a plot like Figure 6.14. But the giant E1 galaxy NGC 1399
is nowhere close to this relation: for εapp ≈ 0.1 we expect (V/σ )iso = 0.33, while
Figure 6.12 shows that Vmax/σ ∼< 0.15.

Problem 6.8 Show from Equation 6.9 that the apparent flattening εapp = 1−b/a

of an oblate galaxy is given by

sin2i(1 − B2/A2) = 1 − (b/a)2 ≈ 2εapp when εapp � 1. (6.30)

Figures 6.14 and 6.15 show that many ellipticals, especially the brighter ones,
rotate much more slowly than they should if the velocity dispersion were isotropic.
Dwarfs have been omitted from the figures, so they include only luminous and
midsized galaxies. Equation 6.27 tells us that the slow rotation must be compen-
sated by random motion; we deduce that σx � σz . The flattening of these galaxies
is caused not by their rotation, but by velocity anisotropy. Luminous ellipticals
are more likely to have significant anisotropy, whereas midsized ones are fast
rotating. The right panel of Figure 6.15 shows what is going on: ellipticals with
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Fig. 6.15. The ratio (V/σ )
 of measured Vmax/σ to (V/σ )iso, the rotation expected for

an oblate galaxy according to Equation 6.29. Downward-pointing bars show upper limits

on Vmax; filled circles are bright galaxies, with MB < −19.5 for H0 = 75 km s−1 Mpc−1.

Left, luminous galaxies often rotate slowly, falling below the dotted horizontal line at

(V/σ )
 = 0.7. Right, boxy galaxies, with a4 < 0, are almost all slow rotators; many of

these are luminous – R. Bender.

disky isophotes, which are predominantly midsized, rotate rapidly. These are com-
posite systems, with a fast-rotating stellar disk embedded within a slow-rotating
outer body. Recall from Section 4.4 that dwarf ellipticals commonly rotate with
Vmax/σ ∼< 1, despite a considerably flattened appearance; they are also flattened
by velocity anisotropy.

The slow rotation of ellipticals disproved an explanation that had been devel-
oped to explain the very smooth appearance of these galaxies. A star like the
Sun is a round smooth ball of gas because frequent random encounters or ‘col-
lisions’ between atoms change their direction of motion. Statistical mechanics
tells us that, as a result, the velocities of the atoms will tend to be near their most
probable overall state. In this state, the star is slightly flattened along the axis of
its rotation, and is symmetric about that axis. The random velocities v of parti-
cles with mass m at any position x in the star are very close to the Maxwellian
distribution:

fM(x, v) ∝ exp
[−mv2/(kBT )

]
, (3.58)

where kB is Boltzmann’s constant and T is the gas temperature. Random motions
are the same in all directions, since they are set by the single temperature T .

We saw in Section 3.2 that it would take about 1013 years for encounters
between pairs of stars in a galaxy to change their motions significantly. The smooth
roundness of elliptical galaxies must have a different explanation from the smooth
roundness of the Sun. So the theory of violent relaxation was developed. Aside
from periodically rotating bars and spiral patterns, the gravitational potential in
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normal galaxies today appears to change only slowly over time; so Equation 3.27
tells us that a star’s energy E is almost constant along its orbit. But while lumps of
matter were falling together to form the galaxy, the potential �(x, t) at any point
x would swing up and down by large amounts, changing the star’s energy. This
process was expected to mix stars among the various orbits, giving them equal
random motions in all directions.

The observed slow rotation of elliptical galaxies tells us that violent relaxation
was not complete. The stars in these galaxies, unlike the atoms of gas that make
up stars, retain information about the way in which they were assembled. In
particular, they might not have relaxed enough for the galaxy to develop an axis of
symmetry. A further indication of only partial mixing is given by the rotation curve
of Figure 6.12. The innermost part of the galaxy NGC 1399 seems to rotate in the
opposite direction to the outer regions. These kinematically decoupled cores have
been found increasingly often, as the precision of measurement improves. Some
elliptical galaxies also show a gradient in the mean velocity Vr when measurements
are made along the apparent minor axis. This state could not last long in an
axisymmetric galaxy, but we will see below that it can persist if the potential is
triaxial. Minor-axis rotation is generally reckoned as one further piece of evidence
that at least some elliptical galaxies have triaxial shapes.

6.2.4 Stellar orbits in a triaxial galaxy

To understand the implications of a triaxial elliptical galaxy, we must study the
orbits that stars would follow in such a system. One of the simplest triaxial poten-
tials is the triaxial harmonic oscillator

�HO(x) = 1

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2) (6.31)

with ωx < ωy < ωz . This describes the gravitational force inside a homo-
geneous galaxy described by Equation 6.12 with A, B, and C held fixed, and
constant density ρ(m2) for m ≤ 1; there is no mass outside that ellipsoidal sur-
face. A star in this potential would follow independent harmonic motion in the
x, y, and z directions, with frequencies ωx , ωy, and ωz , respectively; these are
complicated functions of the axis ratios A : B : C . Unless the frequencies are
rational multiples of each other, this orbit completely fills a rectangular block,
with sides parallel to the axes: we call it a box orbit. We saw in Section 3.3
that a star moving in an axisymmetric potential must stay away from the center
unless its angular momentum is exactly zero; by contrast, a star on a box orbit
can travel right to the origin. A box orbit has no fixed sense of angular momen-
tum. The sign of Lz reverses as the orbit reaches the ‘edge’ of the block in the
x and y directions, and similarly for Lx and L y; so each of these is zero on
average.
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Problem 6.9 For a particle moving in the potential �HO, use the x component

of Equation 3.3, the force equation, to show that

Ex ≡ 1

2

(
ẋ2 + ω2

x x2
)

(6.32)

is constant, as are Ey and Ez when defined similarly: this potential has three inte-

grals of motion. Write Ex in terms of the maximum extent xmax of the orbit along

the x axis, and explain why the average x speed is independent of the particle’s

motion in the y and z directions. (Unlike the distribution function f (E, Lz) that

we discussed in Section 3.4, making a model galaxy with f = f (Ex , Ey, Ez)

lets us choose the velocity dispersion in the z direction independently of motion

in the x−y plane: the triaxial potential makes it easier to set up a galaxy with

σz � σx .)

Problem 6.10 Show that the potential of Equation 6.31 corresponds to a uniform

density ρ(x) such that 4πGρ = ω2
x + ω2

y + ω2
z . Taking the values ωx = 1, ωy =

π/2, compute the path of a star that at t = 0 has x = 2, y = 1, z = 0 with

ẋ = 0 = ẏ = ż; plot its position at intervals of 0.1 for −10 ≤ t ≤ 10. Show that

Lz = x ẏ − yẋ reverses sign at t = 0.

Orbits in an axisymmetric potential have the rosette shapes of Figure 3.10:
these are loop orbits. A star on a loop orbit is prevented by its angular momentum
from passing through the center, but always circles it in the same sense, keeping
a minimum distance. Triaxial potentials in general allow both loop orbits and
box orbits, along with some more complicated orbits which are generally less
important. Loops can circle any one of the three symmetry axes: a loop around
the z axis has a fixed sense of Lz , while Lx and L y oscillate.

In general, most loop orbits around the longest and the shortest axes of a
triaxial potential are stable. A star that is initially close in position and velocity to
one of these loops will always remain near it. But a star placed near a loop orbit
around the intermediate axis will move away from that orbit at an exponentially
increasing rate; these orbits are unstable. In triaxial galaxies, we expect to find
some stars following orbits that circle the shortest axis, as in an oblate galaxy; so
we will measure a gradient in the mean velocity Vr along the galaxy’s major axis.
Other stars will loop around the longest axis; if these all circle in the same sense,
we would then find a gradient along the minor axis, with Vr increasing on one side
and decreasing on the other.

Figure 6.16 shows orbits in the x–y plane of the triaxial potential

�L(x, y) = 1

2
v2

0 ln

(
Re

2 + x2 + y2

q2

)
, (6.33)



6.2 Motions of the stars 265

−0.5 0 0.5 −0.5 0 0.5

−0.5 0 0.5 −0.5 0 0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−1

0

1

xx

x x

x 
ve

lo
ci

ty

y

y

Fig. 6.16. Orbits in the potential of Equation 6.33, with v0 = 1, q = 0.8, and Re = 0.14;

all have energy E = −0.337. The top left panel shows a loop orbit, which avoids the

center; at the top right is a box orbit, which passes through it; lower left is a chaotic

orbit, produced when a central spherical potential is added. The lower right panel shows

a surface of section: values of (x, ẋ) for all three orbits are plotted each time the orbit

crosses y = 0 in the direction ẏ > 0.

where q <1; this corresponds to a galaxy elongated in the x direction. The box orbit
has roughly a rectangular form, elongated in the same direction as the potential;
stars on loop orbits, that avoid the center, are stretched out in the perpendicular
direction. To maintain its shape, we might expect a triaxial galaxy to contain many
stars on box orbits and only a few on loops; since box orbits have no fixed sense of
rotation, we would measure high random motions and only slow average rotation.

The third orbit is a chaotic orbit, neither loop nor box. Like a loop it avoids the
galaxy center, but it occasionally reverses the sense in which it circles the center.
To produce this orbit, we have added to �L a Plummer potential corresponding
to a small mass M = 0.2 with core aP = 0.1. This changes the asphericity of the
potential close to the center, and disrupts box orbits which venture there. Stars
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on this chaotic orbit do not support the elongation of the galaxy. If a potential
�(x) has too many chaotic orbits, it may be impossible to make a self-consistent
model, in which the density of stars on their orbits gives rise to the potential �.
In particular, the inner regions of a galaxy might not be able to remain triaxial if
a big black hole grows at the center.

Problem 6.11 Show that, if the density of stars ρ(r ) = ρ0(r0/r )α , then the mass

within radius r follows M(<r ) ∝ r3−α , and the radial force

Fr(r ) = −GM(<r )

r2
∝ r1−α.

We see that Fr(r ) → 0 at small radii if the density increases more slowly than

r−1. Recall that this is the same condition as we found in Problem 6.4 for the

surface density �(R) to remain finite at the center.

(If the forces tend to zero at the center of a triaxial potential, box orbits will

exist much as in the triaxial harmonic oscillator. Otherwise, many of the boxes

are replaced by chaotic orbits. Galaxies with central luminous cusps are probably

not triaxial near their centers.)

A compact way of showing a number of orbits is a surface of section plot, as in
the lower right of Figure 6.16. Each time the orbit crosses the x axis in the direction
ẏ > 0, we plot the value of x and the x velocity ẋ . The points made by the loop
orbit fall along the small closed curve on the left; the orbit always transits the x
axis anticlockwise. The points from the box orbit lie on the largest curve, circling
around the origin. This orbit has no fixed sense of circulation, but crosses the x axis
with ẏ > 0 both on x > 0 and on x < 0; ẋ is large whenever x is small, as the par-
ticle passes close to the center. The chaotic orbit shows both senses of circulation
about the center; but, like the loop, it avoids the origin. The points from this orbit
do not fall on a curve at all; their more disorderly distribution betrays the differ-
ence between a chaotic orbit, and the non-chaotic or regular boxes and loops. The
discovery and exploration of chaotic properties was one of the major developments
of twentieth-century mathematics; we refer interested readers to the books below.

Further reading: at the graduate level, Sections 3.3, 3.4, and 4.3 of J. Binney and
S. Tremaine, 1987, Galactic Dynamics (Princeton University Press, Princeton,
New Jersey). For a clear discussion of chaotic orbits, written for the general
reader, see I. Stewart, 1990, Does God Play Dice? The Mathematics of Chaos
(Blackwell, Cambridge, Massachusetts).

6.3 Stellar populations and gas

Unlike spiral and irregular galaxies, elliptical galaxies conspicuously lack lumi-
nous blue stars; the brightest stars are red giants and stars on the asymptotic giant
branch (AGB; see Section 1.1). We cannot see individual stars directly in galaxies



6.3 Stellar populations and gas 267

2000 4000 6000 8000

0

2

4

6

Fig. 6.17. The spectrum of an elliptical galaxy; compare this with the spectra of K and

M stars in Figure 1.1, and those of disk galaxies in Figure 5.24 – A. Kinney.

more distant than about 20 Mpc. So, even in the closest ellipticals, we are limited
to the AGB stars and those near the tip of the red giant branch. The integrated
spectra of ellipticals, such as that in Figure 6.17, show deep absorption lines of
heavy elements such as calcium and magnesium, similar to the K-star spectrum in
Figure 1.1. There is little light below 3500 Å, showing that they have made very
few new stars in the last 1−2 Gyr. Table 1.1 shows that only stars with masses
below 2M� will survive as long as 1 Gyr, and these produce most of their light
as red stars after they have left the main sequence. So the galaxy’s light comes
mainly from red giants. Unlike the old stars in the Milky Way’s globular clus-
ters, but like those of the Galactic bulge, stars at the centers of elliptical galaxies
appear fairly metal-rich, with about the same composition as the Sun. The spec-
trum shows a break at 4000 Å, since lines of metals absorb much of the light at
shorter wavelengths.

Figure 6.18 shows the spectrum of a model galaxy that has made all its stars
in a sudden burst lasting 100 Myr. Shortly afterward, the galaxy is bright and very
blue; helium absorption lines characteristic of hot O and B stars are prominent. We
would also see emission lines from gas ionized by these stars. About 100 Myr after
star formation has ceased, it is both dimmer and redder. At 1 Gyr, we see a post-
starburst spectrum, with the deep Balmer lines characteristic of A stars. Elliptical
galaxies with such a spectrum are called ‘E + A’ systems. They experienced rapid
starbirth ∼1 Gyr ago followed by a sharp decline to almost nothing. After the first
∼2 Gyr cool giants predominate, and the model spectrum starts to resemble that
of the elliptical in Figure 6.17. Over time the galaxy fades and slowly reddens, as
the 4000 Å break becomes more pronounced.

Problem 6.12 At age 10 Gyr the model galaxy of Figure 6.18 is roughly three

times fainter in the B band at 4400 Å than it was at age 1 Gyr, and ten times

fainter than it was at age 100 Myr. Figure 6.13 shows that, compared with the
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Fig. 6.18. Spectra for a ‘galaxy’ that makes its stars in a 108 yr burst, all plotted to the

same vertical scale. Emission lines of ionized gas are strong 10 Myr after the burst ends;

after 100 Myr, the galaxy has faded and reddened, and deep hydrogen lines of A stars are

prominent. Beyond 1 Gyr, the light dims and becomes slightly redder, but changes are

much slower – B. Poggianti.

present-day galaxies of the Coma cluster, the ratio M/L B is five times less for

the systems at z ∼ 1, roughly 8 Gyr ago. If these distant galaxies made all their

stars in a single burst and then simply faded to resemble the galaxies of the Coma

cluster, explain why they must have formed <1Gyr before we observe them.

(It is not likely that this random set of ellipticals all formed very close to

9 Gyr ago. More probably, some starbirth continued until close to z = 1.)

We saw in the previous section that the central brightness, velocity dispersion,
and rotation speed of an elliptical galaxy depend on its luminosity. Figure 6.19
shows that the same is true of the overall color of its light: both at visible wave-
lengths and in the near-infrared K band at 2.2μm, brighter galaxies are redder and
fainter systems bluer. This trend could be explained if small elliptical galaxies were
either younger or more metal-poor than large bright ones. Some astronomers argue
that almost all the stars of luminous ellipticals date from at least 10 Gyr ago, while
those of their smaller counterparts are a few gigayears younger.
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Fig. 6.19. For elliptical galaxies in the Virgo (open symbols) and Coma (closed symbols)

clusters, the U − V and V − K colors are plotted against apparent magnitude. Colors of

giant stars from Table 1.5 are indicated. Coma galaxies are shown 3.6 magnitudes brighter,

as they would appear at the distance of Virgo – data from Bower et al. 1992 MN 254, 601.

Luminous galaxies do on average contain more older stars. The right panel of
Figure 6.20 shows the stellar birthrates in nearby galaxies from the Sloan Digital
Sky Survey. These were estimated from the intensity of the Hα line ionized by
young stars, and the strength of the 4000 Å break. The largest galaxies appear to
complete their starbirth early: in galaxies more than about twice as luminous as
the Milky Way, starbirth is at ∼1% of its cosmic average. We saw this already
in Figure 1.16: the most luminous galaxies today are red systems full of old and
middle-aged stars. Among midsized galaxies, those of roughly the Milky Way’s
luminosity or L ∼ L
 of Equation 1.24, in a minority starbirth has slowed as
strongly as in the massive galaxies. But most midsized galaxies are making stars
at near or above the average rate needed to build their present stellar content
over the lifetime of the Universe. Dwarf galaxies less luminous than Mr ∼ −18
are forming stars even faster than at their average rate. The dwarf elliptical and
dwarf spheroidal galaxies, where starbirth has now ceased, are so dim that few
are included in this survey.

Other astronomers claim that the relation between color and luminosity that we
see in Figure 6.19 can be explained mainly by differences in chemical composition:
big ellipticals are richer in heavy elements than the midsized ones. The left panel
of Figure 6.20 shows the metal abundance in a large sample of nearby galaxies,
calculated from the emission lines of gas at their centers. The most luminous
galaxies are clearly richer in metals. Smaller galaxies may lack them because
they lost most of the metal-enriched gas shed by their old stars. Larger systems
were better able to trap theirs, incorporating the heavy elements into new stars.
Figure 1.5 showed us that metal-poor stars of a given mass are bluer, especially
while they are burning helium in their cores. So we are not surprised to find that
smaller galaxies are bluer.
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Fig. 6.20. For 83 963 galaxies of the Sloan Digital Sky Survey, the left panel shows that

luminous systems are richer in heavy elements. Outer curves show the region where 95%

of the galaxies lie; inner curves enclose 60% of them. The Milky Way would correspond

to (3–4) × 1010L� in the z band of Table 1.3; near its center the metal content Z is slightly

above Z�. Right, time taken to build up a galaxy’s present stellar content, at its current

rate of starbirth. In the most luminous systems, star formation is now far below its cosmic

average. Many small galaxies are making stars considerably faster than that average – C.

Tremonti and J. Brinchmann.

When we look at absorption lines such as the Mgb feature at 5175 Å, we find
that stars at the centers of elliptical galaxies are more metal-rich than those in the
periphery. This is the same pattern as we saw in Figure 4.15 for disk galaxies.
The central stars of luminous ellipticals are at least as metal-rich as the Sun;
but they do not contain heavy elements in the same proportions. Relatively light
atoms such as oxygen, sodium, and magnesium are a few times more abundant
relative to iron. We find the same pattern in old metal-poor stars near the Sun
(Figure 4.17), and in the interstellar gas of the young galaxy cB58 in Figure 9.16,
seen less than 3 Gyr after the Big Bang. The effect is weaker in midsized ellipticals.

As we discussed in Section 4.3, iron in the interstellar gas has been released
mainly by supernovae of Type Ia, which occur in binary stars. Many of the stars
that explode in this way do so at ages of 1 Gyr or more. Stars near the Sun that have
high ratios of oxygen to iron probably formed before many Type Ia supernovae
had exploded, or before the gas they ejected could be confined within the Galaxy.
But the lighter elements like oxygen are ejected mainly in Type II supernova
explosions, of massive stars which run through their lives in 100 Myr or less.
These should be added quickly to the gas, and incorporated into new stars.

A similar argument may apply to elliptical galaxies. Perhaps the most lumi-
nous ellipticals formed most of their stars so early that Type Ia supernovae had
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not yet begun to add iron to the galactic gas. Or these galaxies may have lacked
Type Ia supernovae, because they made relatively more of the massive stars,
or fewer binaries. Another possibility is that, early on, the products of Type Ia
supernova explosions were able to leave the galaxy, perhaps mixing with the
hot X-ray-emitting gas of a surrounding cluster of galaxies. The gas ejected in
Type II supernova explosions moves slower, and so is easier to confine within the
galaxy.

Surprisingly, despite their lack of young hot stars, elliptical galaxies (and
the bulges of disk systems) are not dark at ultraviolet wavelengths. Metal-rich
ellipticals tend to be brightest, suggesting that the sources are not old metal-poor
stars on the horizontal branch, like the ones we see in globular clusters. Instead,
the emission presumably comes from old metal-rich stars that have left the main
sequence and then lost most of their hydrogen envelope, exposing the hot stellar
core. No such stars are found near the Sun, since the Milky Way’s disk is too
young. So we have not been able to study them in detail, and models remain
uncertain.

X-ray sources in elliptical galaxies include active galactic nuclei; stellar bina-
ries where material is accreted onto a black hole or neutron star, or burns on the
surface of a white dwarf; and hot gas at temperatures T ∼> 106 K, either filling the
galaxy or localized in stellar atmospheres, stellar winds, or supernova remnants.
Most elliptical galaxies lack an active nucleus, and X-rays come mainly from the
hot interstellar medium. Their supernova remnants are not strong X-ray sources.
When supernova remnants expand into the cool and warm gas of a galaxy disk
where T ∼< 104 K, they are highly supersonic and create strong shocks that heat gas
to X-ray-emitting temperatures. But in an elliptical galaxy the remnants expand
into the hot gas with barely supersonic speeds, developing only weak shocks.
When the galaxy is gas-poor, stellar binaries are the most important sources of
X-rays.

We should not be surprised that ellipticals today largely lack new stars, since
most now contain very little cool gas from which to make any. At first glance, ellip-
ticals seem generally free of dust and gas. According to Hubble, ‘small patches of
obscuring material are occasionally silhouetted against the luminous background,
but otherwise these nebulae present no structural details’. Closer examination
shows that almost all of them have some dust in the nuclear regions, which is
presumably mixed with cold gas. But only 5%−10% of normal ellipticals contain
enough atomic hydrogen or molecular gas to be detectable – which means that
most big elliptical galaxies have less than (108−109)M� of cool gas, while a large
Sc galaxy contains almost 1010M�.

A minority of elliptical galaxies, especially those with ‘peculiarities’ such as
outer shells or obvious dust lanes, go against this trend: a few have as much cool
gas as a large spiral. Where HI gas is plentiful, it often forms a ring well outside
the stellar body of the galaxy, and it frequently orbits about an axis that is nowhere
close to the short axis of the galaxy’s image or the rotation axis of its stars. The
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Fig. 6.21. The X-ray spectrum of hot gas at T ∼ 2×107 K around the luminous elliptical

M87. The solid line shows emission from gas within 4′ or 5 kpc of the center; the broken

line is for gas between 4′ and 8′ radius. All lines except iron L and nickel L are emitted as

electrons drop to the lowest-energy orbits, in the K shell – XMM-Newton: K. Matsushita

et al. 2002 AAp 386, 77.

elliptical NGC 5128 (Centaurus A), which is also a powerful radio galaxy, has
a spectacular ring of gas and dust circling its apparent major axis. This pattern
contrasts with spirals, but is similar to the gas-rich S0 galaxies that we discussed
in Section 5.2. The cool gas is unlikely to be either a remnant of the raw material
from which the galaxy’s stars were made or gas lost from those stars. Instead, it
was probably captured from outside the galaxy.

However, the average elliptical galaxy contains huge quantities of hot ionized
gas. Over several gigayears, gas lost from aging stars builds up a substantial
reservoir. For a population of stars that is more than a few gigayears old, mass
shed during the red giant and AGB phases amounts to roughly (1–2)M� of gas
per year for each 1010L� of luminosity. The hot gas is invisible at optical and radio
wavelengths because it is too diffuse to emit or absorb much at those energies.
At temperatures of (1–3) ×107 K, it radiates mainly in X-rays. More luminous
galaxies, with higher velocity dispersions, have hotter galactic ‘atmospheres’.
These extend typically at least 30 kpc from the center; the brightest ellipticals
have (109−1011)M� of gas, which is 10%−20% of their mass in luminous stars.
Small, low-mass ellipticals have much less gas; their weaker gravity is less capable
of preventing its escape to intergalactic space.

Figure 6.21 shows the X-ray spectrum of the hot gas around M87. Over this
energy range, the galaxy emits ∼3 × 1035 W, or 109L�, where L� is the Sun’s
total (bolometric) luminosity of 3.86 × 1026 W. We see metal lines, meaning that
at least part of this gas has been processed by nuclear burning in stars; it has
about half the solar proportion of iron. The hot gas around elliptical galaxies is
not hugely metal-rich; generally its abundance is ∼0.5Z�. Material thrown out
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Fig. 6.22. Colors of globular clusters around giant elliptical M87 and shell galaxy

NGC 3923, with a rough estimate of metal abundance – A. Kundu and S. Zepf.

by supernova explosions should be far richer; most of the hot gas is probably the
outer envelope material shed by aging stars. Those stars have large random motions
within the galaxy; as gas from one star runs into that of another at speeds close to
the stellar velocity dispersion σ , shocks convert its kinetic energy into heat. Since
σ ∼> 350 km s−1 in bright ellipticals, this provides enough energy to heat the gas
to the temperatures that we observe. In giant ellipticals at the centers of rich galaxy
clusters, this hot atmosphere merges into the gas of the cluster: see Section 7.2.

Elliptical galaxies are surrounded by swarms of globular clusters: on aver-
age, each has about twice as many as a similarly bright disk system. The cD
galaxy NGC 1399 has 7000 known globular clusters. The number can vary greatly
between galaxies: M87 is about as luminous as NGC 3923, but is four times richer
in bright globulars.

Figure 6.22 shows that the clusters around both these galaxies split into a red-
der and a bluer group. The bluer clusters are older, or poorer in metals. The Milky
Way’s globular clusters would have a similar color distribution, with the two peaks
corresponding to metal-rich clusters of the thick disk and to metal-poor halo clus-
ters; see Section 2.2. The arclike shells around NGC 3923 (Figure 6.5) indicate
that another galaxy has merged into it; perhaps the more metal-rich and presum-
ably younger globular clusters formed as part of that process. Some astronomers
consider the similar color distribution among M87’s clusters to indicate that it too
has suffered a merger.

6.4 Dark matter and black holes

We saw in Sections 2.3 and 5.3 that, for spiral galaxies, we could find the mass
within radius R of the center by using the measured rotation speed V (R) of gas
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following near-circular orbits, along with Equation 3.20 for the gravitational force.
Generally, the mass of these galaxies is more spread out than the luminous stars;
the mass-to-light ratioM/L is larger when measured further from the center. Most
of whatever makes up the outer parts of a spiral emits very little light; we call it
dark matter. Do elliptical galaxies also contain dark matter?

To answer this question, we must estimate the mass within a given region,
from measurements of the gravitational force. If that is significantly larger than the
mass present in stars and gas, we ascribe the difference to dark matter. Finding the
distribution of stars in elliptical galaxies is easier than for spirals, since ellipticals
contain little dust to obscure their light. We can calculate the expected mass-to-
light ratio by comparing the galaxy’s spectrum with models like that of Figure 6.18.
This yields 3 ∼< M/LV ∼< 5, close to what we found by using the virial theorem
for the galaxy cores; see Problem 6.6. But, if we measure at larger radii, generally
we find M/L ∼> 20. As in disk galaxies, most of the mass in the outer parts of
ellipticals is dark.

6.4.1 Dark halos

For the few elliptical galaxies that have cold gas, we can use the same techniques
as for disk systems to find their mass. For example, the luminous E4 galaxy
NGC 5266 has a prominent dust lane along its apparent minor axis. Mapping in
the 21 cm line of neutral hydrogen reveals about 1010M� of HI gas, extending
to 4′ from the center, and apparently following near-circular orbits with V (R) ≈
250 km s−1. Within a radius of 50 kpc, this galaxy hasM/L ≈10–20 in solar units,
which is much larger than we found in Problem 6.6 for the center of NGC 1399,
but similar to results for spiral galaxies in Section 5.3. If the systems containing
cold gas are otherwise typical, then the outer parts of elliptical galaxies consist
mainly of dark matter.

Problem 6.13 The redshift of NGC 5266 is cz ≈ 3000 km s−1; if H0 =
75 km s−1 Mpc−1, show that its distance d ≈ 40 Mpc. Use Equation 3.20 to

show that the mass M(<4′) ≈ 7 × 1011M�. The total apparent magnitude

B0
T = 12.02; show that L B ≈ 4 × 1010L� – this is a big galaxy – so that the

mass-to-light ratio M/L B ≈ 18.

The motions of globular clusters can also be used to test for dark matter in the
outer reaches of elliptical galaxies. In NGC 1399, velocities were measured for
468 globular clusters out to 9′ from the center. Like the halo globular clusters of
our Milky Way, they appear to follow random orbits with no overall rotation, and
the velocity dispersion is almost constant at σr ∼ 275 km s−1. Within 50 kpc of
the center, the mass-to-light ratio M/LV ∼ 50 (see below), several times higher
than we found in Problem 6.6. Most of the mass in the galaxy’s outer parts is dark.
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Problem 6.14 We can use the singular isothermal sphere to represent the globular

clusters of NGC 1399. Problem 3.28 shows that, in this model, a circular orbit has

speed VH =√
2σr which is constant with radius. With a distance d = 20 Mpc for

NGC 1399, show that the measured velocity dispersion corresponds to a rotation

speed VH that implies M ∼ 2×1012M� within 50 kpc. NGC 1399 has absolute

V -magnitude MV =−21.7; show that M/L ∼ 50.

6.4.2 Central black holes

Recent spectroscopic observations with high spatial resolution, from the ground
and with the Hubble Space Telescope, have helped in the hunt for massive black
holes at the centers of nearby galaxies. Stars close to a central black hole should
move faster than those further out (as we see in Figure 2.17). If they orbit in
random directions, we will see a central rise in the velocity dispersion measured
from the absorption lines of the galaxy’s spectrum. We should notice this effect
when we probe close enough to the center that the circular speed of an orbit around
it exceeds the velocity dispersion σc of the surrounding stars, meaning that

V 2(r ) ≈ GMBH

r ∼> σ 2
c . (6.34)

So we must observe within a radius rBH such that

rBH ≈ 45 pc ×
( MBH

108M�

)
×
(

σ 2
c

100 km s−1

)−2

. (6.35)

Figure 6.23 shows the masses inferred for compact objects at the centers of
nearby elliptical galaxies and some bulges of disk systems. In the Local Group
galaxy M32, we need an extra 2 × 106M� within the central parsec; in the giant
elliptical M87 the excess mass is ∼3 × 109M� within 20 pc. Our own Milky
Way’s black hole with MBH ≈ 4 × 106M� fits neatly onto the trend:

MBH ≈ 2 × 108M� ×
(

σc

200 km s−1

)4.86

. (6.36)

The largest central masses are found in galaxies where the velocity dispersion
σ is highest, and the virial theorem indicates the deepest gravitational potential
wells. These are also the most luminous objects, as we should expect from the
Faber–Jackson relation and the fundamental plane of Figure 6.13. The right panel
shows that these masses are close to the minimum that could have been found in
the best current observations. Smaller objects could have remained hidden.

If line-emitting gas is present in orbit about the center so that we can measure
the orbital speed V (r ), then we can use Equation 3.20 to find how much mass is
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present within that orbit. In M87, there is a small disk of gas around the nucleus:
its rotation speed, as measured from the gas emission lines, is exactly as expected
for material orbiting a central object of 3×109M�. We suspect, but cannot prove,
that these large masses are black holes. To confirm it would require observations
of gas at a few times the Schwarzschild radius, orbiting at speeds close to that of
light; that is far from our present capabilities.

Problem 6.15 The Schwarzschild radius Rs of a black hole was defined in Sec-

tion 2.3. Show that, for MBH = 3 × 109M�,

Rs ≡ 2GMBH

c2
≈ 1010 km or 3 × 10−4 pc,

corresponding to 4 × 10−6 arcsec at the distance d ∼ 16 Mpc of M87.

Problem 6.16 Emission lines from gas near the center of M87 have been

observed with the Hubble Space Telescope. The observations are best fit with

orbital speeds of 1000 km s−1 at 0.1′′ from the center. Assuming that the distance

d = 16 Mpc, show that a mass M ∼ 2 × 109M� is present inside this radius.

(Why was a space telescope needed to make this measurement?)

Most elliptical galaxies brighter than MB ∼ −20 or L ∼> L
 are radio sources,
emitting power P ∼> 1020 W Hz−1 at 20 cm wavelength. Although the energy in
radio emission is only about a hundred times the Sun’s total luminosity, it is still
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ten times more than we expect to see from the HII regions and supernova remnants
that power most of the radio emission of spiral galaxies. Ellipticals usually have a
small radio-bright core, no more than a few parsecs across, in the nucleus. Those
systems with P ∼> 1023 W Hz−1 often show double-lobed structures, miniatures
of those of the powerful radio galaxies that we will study in Section 9.1, where
we do observe motion at near-light speeds. If the radio sources of normal bright
ellipticals really are underpowered versions of what we observe in active nuclei,
this may be the best evidence that black holes with mass MBH ∼> 106M� lurk at
the centers of virtually all elliptical galaxies more luminous than L ∼ L
.
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Galaxy groups and clusters

About half the galaxies in the Universe are found in groups and clusters, complexes
where typically half the member galaxies are packed into a region ∼<1 Mpc across.
Groups and clusters no longer expand with the cosmic flow: mutual gravitational
attraction is strong enough that the galaxies are moving inward, or have already
passed through the core. Clusters are the denser and richer structures. Within the
central megaparsec, they typically contain at least 50 luminous galaxies: those with
L ∼> L
 ∼ 2 × 1010L�. Poorer associations are called groups; they are generally
less massive than ∼1014M�.

Galaxies and clusters are not simply concentrations of galaxies: the fact that
a galaxy is a member significantly affects its development. The most common
inhabitants of groups are spiral and irregular galaxies. The Local Group is typical;
its three bright members are all spirals. Almost all the large galaxies of the Ursa
Major group, featured in Figures 5.6, 5.8, and 5.23, are disk systems; there are
no more than two ellipticals among the brightest 79 galaxies. Elliptical and S0
galaxies predominate in dense clusters. Curiously, both the most luminous giant
ellipticals and the dwarfs with L ∼< 3 × 109L� are concentrated more strongly
into clusters than the midsized ellipticals.

By contrast with groups, which we discuss in Section 7.1, we will see in
Section 7.2 that most of the baryonic (‘normal’) matter in galaxy clusters is not
in the galaxies themselves. Galaxy clusters are filled with hot gas at temperatures
T ∼107–108 K, and glow brightly in X-rays. As new galaxies join a cluster they
fall in through the hot gas, and its pressure strips away their cool atomic and
molecular gas. The HI disks of galaxies in dense regions, such as the inner parts
of the Virgo cluster, are much smaller than those further out, since they have lost
the cool gas in their outer parts. Galaxy groups largely lack this relatively dense
hot atmosphere of intergalactic gas. However, far more dilute gas between their
galaxies may contain 90% of all the baryons in the Universe. Since this gas is too
diffuse to cool by radiation, we can trace it only as it absorbs the light of bright
background galaxies.

278
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Problem 7.1 Measured speeds of galaxies in the Coma cluster are σr ∼
1000 km s−1 near the center, falling to σr ∼ 800 km s−1 at radii R ∼> 1.5 Mpc.

How long will it take for an average galaxy at R ∼ 3 Mpc to cross the cluster?

Show that this is almost half of the cosmic time tH.

Compared with the oldest stars in our Milky Way, galaxy groups and clusters
are latecomers to the cosmos. The motions of galaxies within a cluster are only a
few times larger than the speeds of stars within the galaxies, but the clusters are a
hundred times larger; so galaxies on the outskirts have not had time to travel once
through the cluster since the Big Bang. In our Local Group, we saw in Section 4.5
that the Milky Way and M31 are falling together for the first time. So how did our
Milky Way, which began to form its stellar disk at least 10 Gyr ago, ‘know’ that
it would spend its life in a sparse group? How did the elliptical galaxies that are
already full of old red stars at redshifts z ∼> 2 develop into typical cluster mem-
bers, long before the rich clusters in which they live had come together? We will
discuss these questions in Section 7.3, but unfortunately we cannot answer them
yet.

As in galaxies themselves, most of the mass in groups and clusters appears to
be dark. However, our usual methods for estimating masses assume that the system
is in equilibrium, so that its overall structure is not changing, and also that it is
isolated. Neither of these is true for most galaxy groups and clusters. In Section 7.4
we discuss how to measure masses using the gravitational bending of light, a
method that can be applied even when the cluster is still growing and changing.

Further reading: there is no comprehensive undergraduate-level treatment of these
topics. A graduate-level text is M. S. Longair, 1998, Galaxy Formation (Springer,
Berlin). Abell’s catalogue of galaxy clusters is given in G. O. Abell, H. G. Corwin,
and R. P. Olowin, 1989, Astrophysical Journal Supplement, 70, 1.

7.1 Groups: the homes of disk galaxies

Figure 7.1 shows Stephan’s Quintet, a rare compact group in which galaxies almost
touch. Their mutual gravitational pull has torn long tails of stars from the galaxies’
disks. Stars equivalent to an entire bright galaxy are scattered around the barred
spiral NGC 7319 and the two overlapping galaxies (a spiral and an elliptical) near
it. Around these three galaxies, 109M� of hot gas at TX ∼ 107 K glows brightly
in X-rays. There is about 1010M� of cool gas in this group, but very little is in
the galaxies. Instead, a tail of HI over 100 kpc long curls around the hot gas to the
south and east. Probably, cool HI gas was stripped from the galaxy disks as they
came close. Some of the gas clouds were then heated to X-ray temperatures as
they ran into each other.
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Fig. 7.1. Stephan’s Quintet (compact group Hickson 92) is ∼85 Mpc distant and 80 kpc

across, or 3.2′ on the sky. North is at the top and east is to the left. NGC 7319, the barred

spiral, has an active nucleus: it is a Seyfert 2. The large spiral in the lower center, NGC

7320, is not a group member; it is in the foreground with a much smaller redshift – D. J.

Pisano, WIYN telescope.

The observed motion of the galaxies and the stellar tails lets us reconstruct part
of the group’s history. The spiral NGC 7318b (one of the two overlapping galaxies)
has only just arrived in the group, tearing out the bright stellar trail leading from
one of the spiral arms in NGC7319. Its cool gas is now being stripped away.
To the south, the longer but more diffuse tail of stars curves toward the small
galaxy NGC 7320c, 140 kpc to the east; this passed through the group ∼500 Myr
ago, and will return. Stephan’s Quintet has about twice as much gas as the Milky
Way, and three times as much stellar light. One could imagine that its galaxies
began life much like our Milky Way, losing their gas in repeated collisions and
near-misses.

Problem 7.2 Suppose that gas atoms and galaxies in a group move at the same

average random speed σ along each direction. At temperature T , the average

energy of a gas particle is 3kBT/2, where kB is Boltzmann’s constant. If the gas

is mainly ionized hydrogen, these particles are protons and electrons; show that,

if the atom’s kinetic energy (3mp/2)σ 2 is shared equally between them, then

T ≈ (mp/2)σ 2

kB
≈ 5 × 106

(
σ

300 km s−1

)2

K. (7.1)

Hot gas in a group or cluster is usually close to this virial temperature.
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Fig. 7.2. The group around the large Sc spiral galaxy M81, about 3.5 Mpc distant. Left,

negative image in visible light; the elongated object north of M81 is starburst galaxy M82;

NGC 3077 is to the southeast. Right, map in HI to the same spatial scale – M. Yun.

Problem 7.3 The energies of X-ray photons are measured in kilo-electron-volts

(keV), 1000 times the energy that an electron gains in moving through a one-

volt potential. In Stephan’s Quintet, the gas radiates X-rays with typical energy

kBTX = 0.5 keV; show that this implies TX ≈ 6 × 106 K. The speeds Vr of the

galaxies along our line of sight have a dispersion σr ∼ 350 km s−1. Show that

the kinetic energy of a hydrogen atom moving at speed σr is roughly equal to

the one-dimensional energy kBT/2 for each of two particles (a proton and an

electron) at T = 7 × 106 K. Thus, as group galaxies run into each other, the

energy of their motion can heat gas to the observed temperature.

Figure 7.2 shows the sparse group around the nearby spiral M81. We see only a
few intergalactic stars, but the galaxies are connected by long streamers of atomic
hydrogen torn from their disks as they passed close to one another. Because the HI

layer of a spiral galaxy extends much further in radius than its main stellar disk,
the gas disks are more easily damaged. Here, almost all of the gas that was torn
from the galaxies has remained cool. Similarly, in Figure 4.6, we see HI gas from
the Magellanic Clouds pulled out into a stream around the Milky Way.

Only half of galaxy groups contain gas hot enough to shine in X-rays, which
requires T ∼>3 × 106 K. Those groups are generally more populous, and include
at least one elliptical galaxy. For example, the group of 15 galaxies within 1 Mpc
around the S0 galaxy NGC 1550 (including two ellipticals) radiates 4 × 109L� in
X-rays, 100 times more than Stephan’s Quintet. X-ray spectral lines of 24-times
ionized iron, and of multiply-ionized oxygen, magnesium, and sulfur, show that
elements heavier than helium are present in a few tenths of the solar proportions.
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Iron lines at ∼1 keV tell us that the innermost gas of the NGC 1550 group has about
half the solar metal abundance Z�, while at 200 kpc from the center Z ≈ 0.1Z�.

Our usual tricks can tell us the mass of a galaxy group: we watch something
that moves, and apply the equations of Newton’s gravity. In the NGC 1550 group,
the velocity dispersion of the galaxies is σr = 310 km s−1. If we assume that the
group is isolated and in equilibrium, and approximate its density by the Plummer
sphere of Equations 3.12 and 3.37 with aP = 100 kpc, then Equation 3.44 (the
virial theorem) tells us that its mass M is

3Mσ 2
r

2
= KE = −PE

2
= 3π

64

GM2

aP
, so M ≈ 2 × 1013M�.

When a group contains hot gas we have another way to find its mass, as we did
for elliptical galaxies in Section 6.4. We first estimate the X-ray temperature TX

from spectral lines. The gas is diffuse, so we can use Equation 2.23 from Section 2.4
to find the density. When TX ∼>107 K, gas of roughly the Sun’s composition loses
energy mainly by free–free radiation, also called thermal bremsstrahlung. If each
cubic centimeter contains n atoms, its luminosity is

LX = n2�(TX), where � ≈ 3 × 10−27T 1/2
X erg s−1. (7.2)

(Look back at Figure 2.25 to see how slowly � increases with temperature.) So
we can work backward from the measured surface brightness IX to find n.

The equation of hydrostatic equilibrium tells us how much gravity is needed
to prevent the hot gas from blowing away as a wind. Its pressure p must be
counterbalanced by an inward pull: if ρ(r ) is the gas density, then, in a spherical
galaxy,

dp

dr
= −ρ(r )

GM(<r )

r2
. (7.3)

We write the average mass m of a gas particle as m = μmp: for fully ionized
hydrogen μ = 0.5, whereas μ ≈ 0.6 for gas of solar composition. For a perfect
gas at temperature T and density ρ, we have

p = ρ

μmp
kBT , so M(<r ) = kB

μmp

r2

Gρ(r )

d

dr
(−ρT ). (7.4)

Problem 7.4 Suppose that the hot gas of a group has a uniform temperature TX,

and outside the very center the surface brightness in X-rays drops with radius R

as IX ∝ R−γ . Writing the gas density ρ(r ) ∝ r−β , use Equation 7.2 to show that

the luminosity per cubic centimeter follows L(r ) ∝ r−2β . Now use the result of

Problem 6.4 to show that γ = 2β − 1.
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In the NGC 1550 group, TX = 1.6 × 107 K and ρ(r ) ∝ r−1.1 out to 200 kpc

from the center. Use Equation 7.4 to show that the group’s mass is roughly

1013M�. The hot gas itself accounts for 8 × 1011M�, while the light of the

galaxies adds up to L B ≈ 8 × 1010M�. The mass-to-light ratio of the stars is

unlikely to be more than what we found for the old stars at the center of NGC

1399 in Problem 6.6. Show that the mass of hot gas is at least twice that in all

the stars, so the group contains about eight times as much mass as is present in

the galaxies and hot gas.

In general, the mass-to-light ratio of groups is in the range 80 ∼< M/L ∼<
300M�/L�. Stars and gas hot enough to shine in X-rays typically make up less
than 10% of the total. Groups as a whole appear to contain several times more
mass than what we found in Section 5.3 from the rotation curves of individual
spirals. Either the dark matter halo of each galaxy extends several times further
out than the HI disk gas with which we measure its rotation, or substantial mass
is present between the galaxies as a ‘group halo’.

Problem 7.5 Suppose that all galaxy groups share a common form for the density

ρ(r ): for example, the Plummer sphere of Equations 3.12 and 3.37. If all groups

have the same radius aP, and their mass is proportional to the number of members

N , show that the virial theorem predicts that σr ∝ √
N . This is roughly what we

see in Figure 7.3. Points for the sparsest groups lie above this relation: show that

those groups should have smaller radii.

Figure 7.3 shows that the speeds of group galaxies are σr ∼100–500 km s−1,
not much faster than the motion of stars within the galaxies. Because of their low
relative speeds, gravity has more time to pull strongly at the gas and stars in the
outer parts of other galaxies as they pass. In the next subsection, we see how this
can lead two galaxies to merge and become one.

7.1.1 Close encounters between galaxies: dynamical friction

We use the methods of Section 3.2 to examine what happens as two galaxies pass
close to one another: part of their energy of forward motion is transferred to motion
of the stars within them. Thus, as they separate, they travel more slowly than they
did on their approach. If the galaxies are then moving too sluggishly to escape
from one another, their orbits bring them back together to encounter each other
again. Usually, they end by merging.

In Figure 7.4, as in Figure 3.5, an object of mass M moves at speed V past a
star of mass m at a distance b from its path. But now M is one of our galaxies,
while the star m belongs to another: so M/m ∼108–1011 (!) As the two galaxies
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Fig. 7.4. A fast or weak encounter: a galaxy of mass M moves with speed V past a

stationary star of mass m in a second galaxy at distance b from its path.

pass, M acquires a motion

�V⊥ = 2Gm

bV
(3.51)

in the direction perpendicular to its original path. This formula applies when the
approach is not too close, so that galaxy M is contained within a radius �b. We
also require a rapid flyby, in which M and m do not move significantly toward
each other during the encounter. As before, we must have

b � 2G(M + m)

V 2
≡ 2rs (3.53)

(for M = m, rs is the strong-encounter radius defined by Equation 3.48). The
star m in the second galaxy must gain an equal and opposite momentum, so the
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total kinetic energy in perpendicular motions is

�KE⊥ = M
2

(
2Gm

bV

)2

+ m

2

(
2GM

bV

)2

= 2G2mM(M + m)

b2V 2
. (7.5)

Note that the object of smaller mass acquires most of the energy. This energy can
be provided only from the forward motion of the galaxy M, which consequently
changes by an amount �V‖. Long before the encounter and long afterward, the
potential energy is small; so the kinetic energies are equal, and we have

M
2

V 2 = �KE⊥ + M
2

(V + �V‖)2 + m

2

(M
m

�V‖
)2

. (7.6)

If �V‖ � V , we can drop terms in �V 2
‖ to find that each star m in the ‘stationary’

galaxy slows M by an amount

−�V‖ ≈ �KE⊥
MV

= 2G2m(M + m)

b2V 3
. (7.7)

Because the kinetic energy transferred to m grows as M2, the forward motion is
braked more quickly as the mass M of the passing galaxy increases. The faster
M flies by, the less time it has to transfer energy to m, and the less speed it
loses.

Suppose that our intruding galaxy M passes through a region of the second
galaxy that contains n stars of mass m per cubic parsec. Then we can integrate
over all those stars to find the average rate at which it slows:

− dV

dt
=
∫ bmax

bmin

nV
2G2m(M + m)

b2V 3
2πb db = 4πG2(M + m)

V 2
nm ln �, (7.8)

where � = bmax/bmin. As in the discussion following Equation 3.55, we usually
take bmin as the radius rs of Equation 3.48, within which M’s deflection is no
longer small, and bmax as the distance at which the density of stars becomes
much less than it is in the neighborhood of M. This deceleration is described as
dynamical friction, since it acts to brake any motion relative to the background of
stars.

According to Equation 7.8, the slower the galaxy M moves, the larger its
deceleration. A high-speed encounter between two galaxies drains less energy
from their forward motion than a slow passage. But this is true only as long as
we can neglect the random motions of the stars m compared with the forward
motion of galaxy M. If not, the drag is reduced. When V is far below the velocity
dispersion of the stars in the second galaxy, we have dV/dt ∝ −V , just as in
Stokes’ law describing the fall of a parachutist through the air.
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Formula 7.8 can be applied, for example, to a small satellite galaxy orbiting
within the dark halo of a larger galaxy; its orbit decays, like that of an Earth satellite
subject to atmospheric drag, and it spirals inward. The frictional force does not
depend on the mass of whatever objects make up the dark halo, but only on their
mass density, through the product nm. A massive satellite is slowed more quickly
than a small one. So the following problem shows that the Large Magellanic Cloud
(LMC) is likely to merge with our Galaxy within a few gigayears, but most of the
globular clusters, which are 105 times lighter, are in no danger.

Problem 7.6 Far outside the core aH of the ‘dark halo’ potential of Equation 2.19,

use Equation 3.14 to show that the density ρ(r ) ≈ V 2
H/(4πGr2). Explain why

the force opposing the motion of a satellite of mass M in a circular orbit at radius

r is approximately

F‖ = −GM2

r2
ln � · F .

The force is reduced by a factor F compared with Equation 7.8 because the

particles of the dark halo have their own random motions: F ≈ 0.4 if the ran-

dom speeds of the halo particles are equal to VH/
√

2 in all directions, as in the

singular isothermal sphere of Equation 3.105. As the satellite spirals in, its angu-

lar momentum is L = Mr VH. Setting the frictional torque equal to the rate of

change in L , show that

r
dr

dt
= −GM

VH
ln � · F, and so tsink = r2VH

2GM
1

ln � · F ,

where tsink is the time that the satellite takes to reach the center of the potential.

For the LMC, with M ≈ 2 × 1010M�, VH ≈ 200 km s−1, and r ≈ 50 kpc,

estimate the radius rs ≈ bmin, and hence show that � ∼ 20. Show that, with

F ≈ 0.4, this simple formula predicts that the LMC will merge with the Milky

Way within 3 Gyr, but a globular cluster with M = 106M� will not sink far in

that time unless it orbits within a kiloparsec of the Galactic center.

(In fact, we are on shaky ground when we use Equation 7.8 for two galaxies

in orbit about each other. To find the rate at which M is slowed, we added

the effects of successive encounters with masses m, assuming that these were

independent of each other. But the stars m are bound together in a galaxy and

affect each other’s motion. Also, as M orbits that galaxy, it will encounter the

same stars m repeatedly, experiencing resonance effects that may either weaken

or strengthen the ‘friction’.)

Dynamical friction removes energy from the forward motion of two passing
galaxies, transferring it to the random motions of their stars. Long afterward,
though, the combination of rotational motion and random speeds within each



7.1 Groups: the homes of disk galaxies 287

galaxy will be lower than before the collision. To see why, suppose that, before
the encounter, the internal kinetic energy of one of the galaxies was KE0. By
Equation 3.44, the virial theorem, the potential energy PE0 = −2KE0; so its
internal energy E0 must be

E0 = KE0 + PE0 = −KE0. (7.9)

Dynamical friction increases the energy in random stellar motions, and hence
the galaxy’s internal energy, by �KE . The system is less strongly bound, so it
expands. Long after the encounter, when it is once again in virial equilibrium, the
kinetic energy is less than before:

KE1 = −(E0 + �KE) = KE0 − �KE . (7.10)

The stars that acquire the most energy escape from the galaxy; those receiving
less remain loosely attached, as a bloated outer envelope. In a spiral or S0 galaxy,
the energy added to vertical motions thickens the stellar disk.

If two galaxies pass by one another at the high speeds typical of rich galaxy
clusters, they are unlikely to slow each other enough to become a bound pair.
They separate, leaving both somewhat dishevelled. But in groups the galaxies
travel more slowly, not much faster than the stellar motions within them; so a
close passage is far more disturbing. Almost all galaxies that we now see in the
process of merging are group members.

Many group galaxies show evidence of near-miss encounters. These can push
a galaxy into making a bar or spiral that would not have done so if it had been
alone. Like M81, many galaxies with spectacular two-armed spirals have close
companions. Mergers and near-misses also force disk gas in toward the galaxy’s
center. Because the changing gravity pulls material away from its near-circular
orbits, gas streams converge from different directions. As we discussed in Sec-
tion 5.5, this causes shocks that remove energy from the gas, letting some of it
fall inward. If it reaches the galaxy’s center, it can grow a massive black hole or
fuel activity in the nucleus. Both NGC 7319 in Stephan’s Quintet and M81 are
Seyfert galaxies, a type of active nucleus that we discuss in Section 9.1.

7.1.2 Galaxy mergers and starbursts

If an encounter has drained enough energy from the galaxies’ orbital motion
to leave them bound to each other, they will probably merge. Figure 7.5 shows
three views of what appears to be such a merger in progress, and Figure 7.6
shows a computer simulation of the collision that may have led to it. This is
a gravitational N-body simulation, in which roughly 106 particles attract each
other by the gravitational force of Equation 3.2. In fact, we cannot solve these
equations exactly; it is too much work to calculate the forces between 1012 different
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Fig. 7.5. The galaxy pair NGC 4676, known as ‘the Mice’. Left, an R-band optical

image, with white contours showing neutral hydrogen gas in the tails; center, results of a

gravitational N-body simulation following two disks of ‘stars’. Positions of the stars are

shown on top of the outer HI contour. Right, velocities of the stars compared with the gas

at each position along the tail – J. Hibbard and J. Barnes.

pairs of particles, particularly when they come very close. This simulation uses
a ‘tree code’, which divides space into cells by a grid, and approximates the pull
of distant material by regarding all the mass in any grid cell as making up a
single particle. Each particle has its own grid, which is coarser for more distant
material, while the forces of near-neighbor particles are calculated one by one.
Even this is too time-consuming for the largest simulations. Then, we simply
lay down a single grid for the whole calculation, and average the forces from all
particles within each cell. Using a grid also has the same beneficial effect as the
‘softening’ that we discussed in Section 3.2, in suppressing unwanted two-body
relaxation.

In this collision, the disk of one galaxy happens to lie close to the plane in
which the two systems orbit one another, and rotates in the same sense; so we
see particularly strong effects. On the side of the disk nearer to the intruding
system, the rotation cancels out much of the relative motion of the two bodies.
Stars and gas here spend a long time close to the perturber. They receive both
angular momentum and energy, pushing them onto elongated orbits which can
take them out to very large radii. The material that has been torn off the disks will
remain visible as ‘tidal tails’ for several gigayears before it falls back onto the
merged remnant of the galaxies.



7.1 Groups: the homes of disk galaxies 289

Fig. 7.6. Galaxy pair NGC 4676: the computer simulation of Figure 7.5. Left, motion in

the galaxies’ initial orbital plane; center, view along our line of sight; right, radial velocity

Vr of particles at each declination. Time is in megayears from closest first approach,

distance in kiloparsecs, assuming that H0 = 75 km s−1 Mpc−1. Material at the tips of the

tails is still travelling outward at the end of the run; it will not fall back onto the galaxies

for many gigayears – J. Hibbard and J. Barnes.

Because the close passage or merger of two gas-rich galaxies compresses their
gas, it often causes a starburst: stars form so rapidly as to exhaust the gas supply
within a few hundred million years. Galaxies with tidal tails and other indications
of a recent merger often have (109–1010)M� of dense molecular gas at the center.
Much of it was probably brought inward from the main disk during the encounter.
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As this gas is squeezed by gravity, the likely result is violent star formation. After
this dies away, it may leave a bright compact inner disk of stars.

The uppermost spectrum in Figure 5.24 is from a blue starburst galaxy.
Its newly-born massive stars are bright in the ultraviolet, and ionize the gas
around them to produce the strong emission lines. The small galaxy M82 in
Figure 7.2 is also a starburst. It is making (2–4)M� yr−1 of new stars, about the
same as a large spiral like the Milky Way, but in a region only 600 pc across.
The radio-bright knots show where young stars have ionized the gas, producing
free–free radiation. At this rate, its supply of 2 × 108M� of atomic and molec-
ular gas will be consumed within 100 Myr, the free-fall or dynamical time of
Equation 3.23.

On the back cover are two images of M82, showing how the starburst is
blowing gas out of the galaxy as a strong wind. The top image was taken in
infrared light at 3–9 μm. The new stars have heated dust in the escaping wind,
which glows ‘red’ at 8 μm while the stellar disk is ‘blue’. The lower one shows
dust lanes crossing the whitish stellar disk; the purple color shows emission in the
Hα line from the wind, which removes about as much mass from the galaxy as it
turns into new stars.

Starbursts are not simply scaled-up versions of the star-forming regions in
galaxies like our own. In M82, where we can directly measure the gas pressure, it
is 100 times greater than that in the solar neighborhood. More of their gas is actively
star-forming: emission lines of HCN, which trace the dense gas of star-forming
cores (see Table 1.8) are about five times stronger in starbursts relative to the CO
emission from more diffuse gas. In Section 9.4, we will find that many distant
galaxies have the chaotic appearance and high surface brightness characteristic of
starbursts. The very fact that we can observe them at all means that they are much
more powerful than most local starbursts, and also relatively unobscured by dust.
These gigantic starbursts at z ∼> 2, less than 5 Gyr after the Big Bang, probably
built up the dense old regions of present-day galaxies.

If a starburst is shrouded in the dusty gas from which the stars were born,
that dust intercepts most of the stellar light, re-radiating the energy at infrared
wavelengths. Figure 7.7 shows that about 90% of M82’s starlight suffers this
fate. A galaxy like the Milky Way radiates about 1010L� in the far-infrared,
but a powerful starburst surrounded by dust will be seen as a luminous infrared
galaxy with LFIR ∼> 1011L�, while only a few percent of its starlight escapes
directly. Even brighter sources with LFIR > 1012L� are known as ultralumi-
nous infrared galaxies or ULIRGs. Almost all ULIRGs are in the late stages of a
merger.

If we assume that starbursts form the same relative numbers of stars of different
masses as in the Milky Way (the initial mass function of Section 2.1 is the same),
then the energy emitted at infrared wavelengths tells us how fast new stars are
made. Measuring the luminosity LFIR between 10 μm and 1 mm in units of the
Sun’s bolometric luminosity of 3.86 × 1026 W, new stars are formed roughly at
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Fig. 7.7. Normal elliptical and disk galaxies are brightest in the visible and near-infrared,

at λ < 2 μm. Most dust grains are cooler than 30 K, and their emission peaks beyond

100 μm. In the starburst M82 and the ultraluminous infrared galaxy, dust intercepts far

more of the light, and it is hotter, radiating mainly at λ < 100 μm. See Figure 2.24 for

details of emission lines – ISO: P. Chanial and G. Lagache.

the rate

Ṁ
 ∼ LFIR

6 × 109L�
M� yr−1 . (7.11)

So the most powerful ULIRGs, radiating LFIR ∼>1013L�, give birth to ∼1000M�
of new stars each year. About half of these have an active nucleus (see Section 9.1)
in addition to a ferocious starburst.

Arp 220, a merging pair of galaxies with characteristic tidal tails, is only
75 Mpc away, giving us a close-up view of a ULIRG. It is making ∼200M� yr−1

of new stars, but only a few percent of their light escapes directly. The rest is
absorbed by dust, so we see LFIR ∼1.5×1012L�. Radio and infrared observations
that can see through the dust reveal two nuclei, each surrounded by a gas disk
∼20 pc in radius with 6 × 108M� of gas at densities n(H2) ∼ 103 cm−3. These
in turn are embedded in a kiloparsec-sized disk with >109M� of dense gas.
Typically a ULIRG contains (5–10) × 109M� of dense molecular gas, mainly
in a rotating disk or ring in the central kiloparsec. The Milky Way has half as
much gas (see Table 2.4), but it is spread over ten times the area and forms stars
a hundred times more slowly.

Within a gigayear after two disk galaxies have merged, the excitement is
mostly over. The hot massive stars made from gas compressed during the merger
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have burned out, and the most conspicuous remaining sign of the original disks is
the tidal tails extending outward. Often the inner part of the combined galaxy
has become rounder, and the former disk stars now make up a system with
large random motions and little rotation. Its structure looks very much like an
elliptical galaxy. Many astronomers would argue that all bright ellipticals have
their origin in such a violent galactic collision: we will discuss this further in
Section 7.3.

What does the future hold for a galaxy group? The Local Group is quite
isolated, with no substantial galaxies poised to fall into it. In Section 4.5 we
saw that M31 and the Milky Way are likely to collide, and will probably merge.
The Local Group will probably become a ‘fossil group’, with a single isolated
galaxy that has eaten all the luminous systems, so that only small satellites remain.
The cannibal might end up as an elliptical, or a giant S0 or Sa galaxy like the
Sombrero in Figure 5.5. While new galaxies fall into a group, as they are still
doing in Stephan’s Quintet, their gravitational pull increases the random speeds
of the other galaxies. That replaces some of the energy sapped by dynamical
friction, and delays merging. We will see in the next section that rich clusters
grow by absorbing clumps of galaxies. Many groups will end by dissolving in
larger systems before their component galaxies merge.

7.2 Rich clusters: the domain of S0 and elliptical galaxies

About 5%–10% of luminous galaxies live in clusters. The nearest populous clusters
are 15–20 Mpc from us, in the constellations of Virgo in the northern sky and
Fornax in the south. We list some of their properties in Table 7.1, comparing them
with richer clusters and with Stephan’s Quintet. George Abell’s 1958 catalogue
and its 1989 supplement list 4073 rich clusters having at least 30 giant member
galaxies within a radius of ∼1.5h−1 Mpc.

Of the 1300 catalogued members of the Virgo cluster, only 150 are brighter
than apparent total B-magnitude BT = 14, equivalent to L ∼>109L� if the distance
d = 16 Mpc. Figure 7.8 shows that most of the galaxies are dwarfs. In the densest
part of the Virgo cluster, near the giant elliptical M87, the averaged B-band surface
brightness is ∼5 × 1011L� Mpc−2, or about 0.5L� pc−2. The core radius, where
the surface density of galaxies falls to half its central value, is approximately
rc = 1.7◦ or 0.5 Mpc. Making the very rough approximation that the cluster is
spherical, in the core we have 3 × 1011L� Mpc−3. Within the central 6◦, the
cluster’s total luminosity is L ≈ 1.3 × 1012L�, giving an average density of
4×1010L� Mpc−3. At the core of the Fornax cluster is the cD galaxy NGC 1399.
Fornax has only a fifth as many bright members as Virgo but is more compact; at its
center we find one of the highest galaxy densities anywhere in the local Universe.
Continuing the trend that we found among galaxy groups, Fornax has less hot gas
in proportion to its starlight than does the more luminous Virgo cluster.
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Table 7.1 Nearby galaxy clusters, compared with a distant cluster and a nearby group

Coma Perseus RDCS Stephan’s
Virgo Fornax A1656 A426 1252.9–2927 Quintet

Distance (Mpc) 16 20 100 80 a z = 1.24 85
Number of galaxies >109 L� 150 30 450 350 120 4
B-band starlight L B (1010 L�) 130 20 500 300 b300 7
Velocity dispersion σr (km s−1) 700–800 350 ∼1000 1300→600 800 350
Core rc (kpc) 400 200 200 250 100 25

X-ray LX (1010 L�) 1.3 0.03 25 50 20 0.005
Temperature TX (107 K) 2 1–2 9 7 7 0.6
cHot gas MX (1010M�) 2 000 ∼>60 7 000 7 000 2 000 ∼>0.07
cMass M (1010M�) 20 000 5 000 40 000 50 000 20 000 100

M/L B 150 250 80 180 b ∼200 14
M/MX 10 80 6 7 10 >1000

a At z = 1.24 the benchmark cosmology gives dL = 8.5 Gpc, dA = 1.7 Gpc.
b Luminosity in the z band at 9000 Å. c Mass within 1 Mpc of the cluster’s center.
X-ray telescopes are less sensitive to gas with TX ∼< 107 K, so masses MX may be underestimated.
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Fig. 7.8. The Virgo cluster: numbers of galaxies of various types between absolute magni-

tude MB and MB +1. The luminosity function �(L) depends on galaxy type; the Schechter

function of Equation 1.24 is only an average. Here, most bright galaxies with MB ∼<−20

are spirals; there are many faint ellipticals and even fainter dwarf galaxies. The heavy

solid curve shows the total – H. Jerjen.

Problem 7.7 Use the result of Problem 6.3 for NGC 1399’s central surface

brightness, and assume that all this light comes from the core of radius rc = 2′′

or 650 pc, to find the core luminosity density. Show that the luminosity density at

the center of the Virgo cluster is 2500 times greater than average for the Universe

as a whole (see Equation 1.25), but the core of NGC 1399 is 107 times denser

yet. Stars are packed far more tightly into galaxies than galaxies are packed into

clusters.
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Fig. 7.9. The core of the Perseus cluster. Left, an R-band negative image showing the

huge cD galaxy NGC 1275 on the lower left, with numerous dwarf galaxies, other bright

ellipticals, and S0s. Right, an image in a narrow band including the Hα line; bright

filaments of glowing gas surround NGC 1275 – C. Conselice, WIYN telescope.

The Coma cluster, Abell 1656, and Perseus cluster, Abell 426, are even bigger
than Virgo. Coma is three times more luminous; although it is 70h−1 Mpc from us,
it stretches more than 4◦ across the sky, or about 7 Mpc. The cluster looks round
and quite symmetric; at the center is a pair of very luminous elliptical galaxies.
Perseus is the brightest cluster in the X-ray sky. Near the center, 10–15 bright
galaxies appear strung out into a line. At one end is the huge elliptical NGC 1275
shown in Figure 7.9, which is also a radio galaxy (see Section 9.1). But Perseus
has been less well studied because it is only 13◦ from the Galactic plane, so we
must view it through the Milky Way’s dust.

Most clusters have irregular or lumpy shapes. Like big cities, they grow as
they absorb surrounding groups and clusters. But unlike suburbs, the orbits of
newly-acquired groups take them ‘downtown’ through the core of the cluster.
Clusters become more massive, but their radii increase only slowly. In the Virgo
cluster, roughly a third of the galaxies form a clump around the elliptical M49,
while the rest surround M87 about 1 Mpc to the north (see Figure 8.2). In Fornax,
15% of the galaxies clump around NGC 1316, about 3◦ (1 Mpc) from the center.
These include two of the cluster’s most vigorously star-forming galaxies, together
with 5 × 108M� of HI gas, which will probably be stripped out when it joins the
main cluster. The Coma cluster looks smooth on the sky, but measuring velocities
shows that systems bunch around the three brightest galaxies. The clump around
the cD galaxy NGC 4839 is clearly visible in Figure 7.10, about 1◦ southwest of
the center where the X-ray contours bulge out. At this rate, infalling clumps add at
least 10% to the Coma cluster’s mass every 2–3 Gyr. But once the scale a(t) of the
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Fig. 7.10. The Coma cluster: solid dots show elliptical galaxies; open stars are spirals.

Contours show the intensity of X-rays: they bulge to the south-west where a clump of gas

and galaxies surrounds the cD NGC 4839. The diffuse emission is from hot cluster gas,

the point sources are distant active galaxies – M. van Haarlem.

Universe has reached 2–3 times its present size, we expect cosmic acceleration
caused by the dark energy (see Section 8.2) to overpower the cluster’s gravity, so
that infall almost ceases.

The Virgo cluster is a fairly loose cluster, and contains many spiral galaxies
which are still forming new stars. By contrast, spirals are almost excluded from
the densest parts of rich clusters. Figure 7.10 illustrates this morphology–density
relation: Coma’s core contains only elliptical galaxies, while the spirals are rele-
gated to the outer suburbs. Perseus has an even stronger deficiency of star-forming
galaxies. Figure 7.11 shows quite generally that, in dense places such as rich clus-
ters, the most luminous galaxies are red, with spectra that show no sign of recently
born hot stars. There are hardly any luminous blue galaxies, and we see star for-
mation only in unusual central galaxies, such as NGC 1275 in Figure 7.9. In the
sparse ‘void’ regions (illustrated in Section 8.1 below), a fairly luminous galaxy
is as likely to be a blue star-former as to be ‘red and dead’, while dwarf galaxies
are overwhelmingly blue star-forming irregulars. In clusters, most of the dwarfs
are of types dE and dSph, which contain only old and middle-aged stars.

Most cluster galaxies can no longer make stars because they have lost all their
cool gas. As galaxies fall in to join a cluster, they rush through the hot cluster
gas much faster than the sound speed in the galaxy’s gas (∼10 km s−1 in the
disk of a galaxy like ours: recall Problem 2.21 of Section 2.4). A shock develops
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Fig. 7.11. Luminosity functions of blue star-forming galaxies (stars) and red galaxies

(filled dots). Bright red galaxies predominate in clusters, but dim blue galaxies are more

frequent in the low-density field or void regions. Clouds of neutral hydrogen, found in

low-density regions, resemble blue galaxies in that small systems are far more common

than big ones – D. Croton, 2dF survey; M. Zwaan, HIPASS.

at the boundary between the galaxy’s gas and the hot intergalactic gas, which
prevents them from moving freely through each other. The stars and dark matter
are unaffected, so the gas can be left behind while the rest of the galaxy falls in.
In spiral galaxies nearest to the cores of the Virgo and Coma clusters, the HI disks
have smaller radii; these inner spirals have already lost the outer parts of their
neutral hydrogen layers.

Just as in galaxy groups, there are stars between the galaxies of rich clusters,
but they are hard to find because they are so thinly spread. The Hubble Space
Telescope barely picks out red giants at the distance of Virgo; in most clusters,
only special objects such as an exploding nova or supernova, or planetary nebulae,
can be seen individually. Some intergalactic novae have been spotted in the Fornax
cluster. In a planetary nebula, a low-mass star has exhausted its nuclear fuel and
blown off its outer layers, baring the hot stellar core. The core’s ultraviolet radiation
ionizes the ejected gas, which glows strongly in emission lines, particularly the
oxygen line at 5007Å. By searching for objects shining brightly in this line,
planetary nebulae have been found between the galaxies in several nearby clusters.
In the Virgo cluster, their numbers imply that 10%–20% of all the stars lie between
the galaxies. The ‘vagabond’ stars could have been torn from galaxies during a
merger, or they may be remnants of loosely bound small galaxies torn apart by
tides (recall Section 4.1).

Just as for the stars in individual elliptical galaxies, we can use the virial
theorem to find the mass of a galaxy cluster from the motions of the galaxies
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within it. The rate at which the spiral galaxies in the outskirts of the Virgo
cluster fall in toward the center depends on the mass at smaller radii: we infer
M ≈ 2 × 1014M�, so the mass-to-light ratio M/L ∼ 150M�/L�. The mass
is only approximate, because the clusters are neither spherical nor in dynamical
equilibrium.

Problem 7.8 In the Coma cluster, the core radius measured from the galaxy den-

sity is rc = 200 kpc from Table 7.1. Make a crude model by assuming the cluster

to be a Plummer sphere; from Problem 3.2, show that aP ≈ 300 kpc. Taking the

average velocity dispersion σr from Table 7.1, use the result of Problem 3.11 and

follow the method of Problem 3.13 to show that M∼ 7 × 1014M�, implying

M/L ∼150M�/L�.

As for groups, we can use Equation 7.4 to find the cluster masses from
observations of hot gas. In the Virgo cluster, this yields M ∼ 3 × 1014M�
within 6◦ or 1.7 Mpc of the cluster’s center. It is more than we found from the
motions of the galaxies, because the gas can be traced to larger radii. A recent
study of 32 clusters using this method found that the mass-to-light ratio mostly
lies in the range 180 ∼<M/L ∼< 300. These ratios are much greater than the
range 5h ∼<M/L ∼< 25h that we found for individual spiral galaxies in Sec-
tion 5.3, or for ellipticals in Problems 6.6 and 6.14. Like the hot gas (see below),
most of a cluster’s dark matter must lie between the galaxies rather than within
them.

7.2.1 Hot gas in clusters of galaxies

Galaxy clusters do not really deserve their name: they are huge accumulations of
X-ray-luminous hot gas, cohabiting with a few galaxies. The mass of hot gas is
roughly equal to that in stars in a poorer cluster like Fornax; it rises to a ratio of
10 : 1 in the richest systems like Coma. Table 7.1 shows that the largest clusters
have been least efficient at turning their gas into stars. By contrast with groups
like Stephan’s Quintet, there is so much hot gas in rich clusters that it cannot all
have been stripped from the galaxies. The hot gas fills the whole cluster, and can
often be traced to larger radii than can the stellar light.

Figure 7.12 shows that the most luminous clusters contain the hottest gas, with
temperatures of up to 108 K. As in groups, the cluster gas is roughly at the virial
temperature predicted from the velocity dispersion σr of the galaxies. Because new
clumps of galaxies are continually added to a cluster, both its X-ray luminosity and
the virial temperature should grow over time. Models predict that the temperature
increases faster, so that a cluster with a particular luminosity should be cooler at
earlier times. But we see no sign of this effect in Figure 7.12, even for clusters
at z ∼ 1 when the Universe was half its present age. Perhaps winds from early
starburst galaxies and active nuclei also added energy to the gas.
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Fig. 7.12. The X-ray luminosity LX of a galaxy cluster or group, in units of the Sun’s

bolometric luminosity, increases with the gas temperature TX: the dashed line shows

LX ∝ T 3
X. Stephan’s Quintet and the NGC 1550 group follow the same trend. This relation

has changed little since redshift z ≈ 1. In most clusters with TX >3 × 107 K, the gas has

roughly one-third of the solar content of iron – D. Horner.

Problem 7.9 Suppose that all galaxy groups and clusters have the same average

density, according to Problem 8.2 below. If the gas in a cluster is heated to the

virial temperature of Problem 7.2, show that the cluster’s mass M ∝ T 3/2
X . If hot

gas makes up a fixed fraction of the cluster’s mass, the average density n is the

same for all of them. Use Equation 7.2 to show that we expect LX ∝ M
√

TX

so that LX ∝ T 2
X. (Figure 7.12 shows that LX increases even more steeply with

temperature; the gas in galaxy groups and poor clusters must be less dense than

that in rich clusters.)

The cooling time tcool measures how fast the hot gas radiates away its thermal
energy. A cubic centimeter of completely ionized hydrogen containing n atoms
has thermal energy 2n × (3kBT/2), so from Equation 7.2

tcool = 3nkBT

3 × 10−27n2
√

T
s ≈ 14

(
10−3 cm−3

n

)(
107 K

T

)1/2

Gyr. (7.12)

The gas density in galaxy clusters varies from a few times 10−2 cm−3 in the
center to 10−4 cm−3 in the outer parts. In the cores of rich clusters, around
the most luminous galaxies, the gas should cool within the cosmic time tH.
Unless its energy is replenished, that gas should cool and become dense, giv-
ing birth to new stars. But we do not see such vigorous star formation in the
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central galaxy. So we believe that the gas is reheated, perhaps by hot winds
from supernovae, or the outflows from radio sources that we will discuss in
Section 9.1. Gas in the outskirts will remain hot for >10 Gyr, so it cannot form
stars.

Problem 7.10 Around NGC 1399 at the center of the Fornax cluster, the X-ray

emission from hot gas extends out to radii of 100 kpc. The gas temperature TX ≈
1.5×107 K; within 45′′ or 5 kpc of the center, the density nH ≈ 0.02 cm−3, falling

approximately as nH ∝ r−1. Show that tcool ≈ 0.5 Gyr in the core, increasing to

10 Gyr at r = 100 kpc.

Galaxy clusters often appear lumpier in an X-ray image than at optical wave-
lengths. On the lower right of Figure 7.10, we see X-rays from the clump around
the galaxy NGC 4839 in the Coma cluster. Here, the gas is only half as hot as the
main cluster. At the ‘neck’ in the X-ray contours, temperatures roughly double to
108 K where the clump gas meets the main cluster. In the Perseus cluster, we see
low-density ‘bubbles’ in the central X-ray gas, which probably were blown by
energetic outflows from the radio galaxy NGC 1275. Most galaxy clusters today
are still growing; even their centers are not always near equilibrium, since they
are disturbed as newly-added galaxies fall through them.

The hot cluster gas contains iron and other heavy elements in roughly one-third
of the solar proportion: see Figure 7.12. Gas near the center is more metal-rich;
neither infalling clumps of galaxies nor the outflows from active galaxies have
been able to mix it with the rest of the cluster gas. Although these heavy elements
must have been ‘cooked’ by nuclear burning in stars, most of a cluster’s supply
of metals is now in the hot gas. Perhaps they were made in galactic stars, and the
force of supernova explosions carried metal-bearing material out into the cluster.
Or perhaps many early stars formed in smaller clumps which later fell together to
make galaxies, releasing metal-enriched gas as they merged. However, the stars
of the galaxies themselves are as metal-rich as the Milky Way. So, if the metals
were made inside the galaxies, these systems must have been very efficient at
producing heavy elements.

The hot gas itself accounts for roughly a tenth of the mass of a luminous cluster,
but much less in systems with TX < (2–3) × 107 K. If we take M/L B = 4–8
for the stars of the galaxies, then stars and hot gas together make up roughly a
sixth of the cluster’s mass. This is close to the cosmic average for the benchmark
cosmology of Section 1.5, so galaxy clusters appear to be a ‘fair sample’ of the mix
of dark and luminous material. By contrast, baryons are more concentrated into
galaxies: recall from Problem 2.18 that at most half the mass inside the Sun’s orbit
around the Milky Way can be dark. In galaxy groups, we find too little luminous
gas and stars for the amount of dark matter. Some baryons may have been lost,
blown out during episodes of violent star formation; others may be hidden as very
dilute gas between the galaxies.
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Table 7.2 The cosmic baryon budget

Where it is Density (10−3ρcrit)

Total (benchmark cosmology) 45
Intergalactic gas

Diffuse and ionized ≈40
Damped Lyman-α clouds 1

Hot gas in clusters and Es 1.8
Stars and stellar remnants

Stars in Es and bulges 1.5
Stars in disks 0.55
Dead stars 0.48
Brown dwarfs 0.14

Cool gas in galaxies 0.78

We can find only 10% of the baryons, which make up ∼< 15% of
the matter, which is ∼<30% of the critical density – M. Fukugita and
P. J. E. Peebles 2004 ApJ 616, 643.

7.2.2 Where have all the baryons gone?

Throughout this book, we have seen that the stars and gas within galaxies form
only a fraction of their mass. Table 7.2 shows that luminous and dead stars,
together with the cool gas in galaxy disks, make up only (3–4) × 10−3ρcrit. But
Equation 1.40 tells us that baryons (neutrons and protons) in the Universe account
for a fraction �B of the critical density, where 0.03 ∼< �B ∼< 0.07. The stars and
the cool gas together contribute only 10% of this total. Where is the rest?

The hot X-ray-emitting gas in clusters of galaxies holds nearly as much mass as
all the stars. In groups, there is cool gas between the galaxies: recall the HIstream-
ers of the M81 group, in Figure 7.2. The amount of ionized gas that they might
accomodate is unknown; but it could be large, since galaxy groups are more numer-
ous than rich clusters. If gas is heated close to the virial temperature of Figure 7.3
as the group forms, then Equation 7.12 shows that, if n < 10−3 cm−2, its low den-
sity will prevent it from cooling. It would remain ionized up to the present; since
it does not absorb in the Lyman-α line, it would be almost impossible to detect.

In Section 9.3 we will discuss the intergalactic gas, which we can investigate
through the absorption lines it produces in the spectra of distant objects. The
densest gas is in the damped Lyman-α clouds, which are mainly neutral and atomic,
and contain more cool gas than there is in today’s galaxies. But they leave us far
from balancing the account. Most of the baryons are likely to be in the Lyman-α
forest, the most diffuse gas, in which hydrogen is almost completely ionized.

7.3 Galaxy formation: nature, nurture, or merger?

Clusters are not simply places where galaxies are more densely packed: clus-
ter galaxies themselves are different. Figure 7.11 shows that the largest red
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galaxies, the ellipticals and cD galaxies, live in dense regions of rich clusters,
while starforming spirals and irregulars inhabit less crowded regions. This segre-
gation is puzzling, because the stars of elliptical galaxies may be almost as old
as the Universe, while we will see in Section 8.1 that galaxy clusters are still
coming together today. As a galaxy forms, how can it know whether it will end up
‘downtown’ in the cluster core, or as a spiral in the suburbs? We do not understand
this process yet, and have only some hints.

In Section 4.3 we took a brief look at the origin of galaxies. Early in cosmic
history, dark matter was evenly spread, mixed with baryons in the form of hot
gas. In slightly denser regions, clumps of matter were pulled together under their
own gravity. The larger clumps absorbed smaller ones that fell into them, much
as we see in galaxy clusters today. As clumps collided, their gas was compressed
and heated. If it was dense enough to cool, the gas lost energy and fell inward.
The particles of dark matter could not lose energy, so the central parts of a galaxy
consist mainly of cool gas and luminous stars. Where the heated gas was too
diffuse it did not cool, and its pressure prevented it from flowing inward.

Perhaps elliptical galaxies are not as old as their stars. We know that some
nearby ellipticals have recently eaten other galaxies. They show faint shells and
other asymmetries in the outer parts (Section 6.1); stars in the core rotate differently
from those in the main galaxy (Section 6.2); cold gas orbits at seemingly random
inclination (Section 6.3). We will see in Section 9.4 that 5%–10% of fairly bright
galaxies at z ∼ 1 appear to be in the throes of a major merger. At this rate,
between one and two thirds of today’s fairly luminous galaxies (with L ∼> 0.4L
)
underwent a major merger within the past 5 Gyr. Did all elliptical galaxies form
by merger of smaller galaxies, so that their stars were born before the galaxy had
completely assembled? If so, we could understand why they live in rich clusters,
which grow by adding smaller clumps of galaxies. The clumps are excellent sites
for mergers because their galaxies have fairly low random speeds, as we discussed
in Section 7.1.

What should a merger remnant look like, long after the initial disturbance and
subsequent vigorous starbirth? That depends on whether the colliding systems
contained gas, or only stars and dark matter. When two galaxies of about the same
size merge, their stellar disks are destroyed. When cool gas is present, a disk where
new stars will be born can be rebuilt. Without cool gas, no new stars can form; the
remnant will have only old and middle-aged stars. For these, the virial theorem
makes a strong prediction: the merged system should become less dense.

Problem 7.11 Suppose that a galaxy is made from N identical fragments, each

of mass M and size R. In each one, the average separation between any two stars

(or particles of dark matter) is R/2; so the potential energy PE ≈ −GM2/R,

as in Equation 3.56. Use Equation 3.44 to show that each fragment has energy

PE/2, so that, while they are well separated and moving toward each other only



302 Galaxy groups and clusters

slowly, the total energy E ≈ −GM2 N/(2R). Long after the merged galaxy has

come to virial equilibrium, its energy is −G(MN )2/(2Rg); show that its new

size Rg = N R, and its density is only 1/N 2 as large as that of the original

fragments. Explain why Figure 6.6 supports the idea that giant elliptical galaxies

(filled circles) arise by repeated merger.

But we cannot just combine the stellar populations of two smaller gas-free
galaxies to form a massive elliptical. Recall from Figure 6.20 that stars at the
center of a luminous elliptical galaxy are more abundant in heavy elements than
those in any part of a smaller galaxy. If the merging systems contain some cool
gas, then new stars can be made. As we discussed in Section 7.1, rapidly changing
gravitational forces will drive gas inward to form a central disk and trigger star
formation. If more than one generation of stars is born, later stars incorporate
heavy elements released by the earliest, so the galaxy can develop a dense metal-
rich center. In the disorder of a collision such as that in Figure 7.6, the spin of the
inward-driven gas need not be aligned with the stars around it. The galaxy’s core
then differs in its rotation from the rest of the system, as it does in NGC 1399: see
Figure 6.12.

Thus merging two systems that contain some cool gas could produce a ‘disky’
elliptical galaxy of moderate luminosity with a bright center. Because of the small
dense inner disk, containing the youngest stars, these galaxies would rotate rapidly,
as Figure 6.15 shows that disky ellipticals do. Some of these in turn might collide
to form the most luminous ellipticals. Gravitational N-body simulations show that
the result is likely to be triaxial, with a ‘boxy’ shape. Indeed, Figure 6.11 shows
that boxy systems are the most luminous.

But we still have some potentially awkward facts to explain. Astronomers
who do not agree that most elliptical galaxies result from merger will point to
the fundamental plane of Figure 6.13, relating a galaxy’s luminosity to its core
size and central brightness. Why should galaxies merge in such a way as to pro-
duce this relation? What is more, a galaxy’s luminosity should depend mainly on
the total of stars and gaseous raw material assembled throughout its history,
whereas color is sensitive to the metal abundance. So why are the two linked,
as Figure 6.19 shows them to be?

If the most luminous galaxies are formed by multiple generations of merger,
then early in cosmic history they should be very rare indeed. But we will see
in Section 9.4 that very luminous red galaxies were fairly common as far back
as redshift z ∼ 2, when the Universe was less than 5 Gyr old. These systems
contain up to twice the mass of stars that the Milky Way has today. They lack
young blue stars or the deep Balmer absorption lines of A stars, so those stars
formed at least a gigayear earlier. A few galaxies at z ∼> 6, when the cosmic
age was not even 1 Gyr, already show a strong 4000 Å break. Models such as
that in Figure 6.18 tell us that their stars are at least 100 Myr old, while the
galaxies appear to have grown to a fifth or more of the Milky Way’s stellar



7.4 Intergalactic dark matter: gravitational lensing 303

Fig. 7.13. Cluster Abell 383 at z = 0.188: north is to the left. The bright arc 16′′ in radius

curving around the central cD galaxy is the image of a background galaxy at z = 1.01.

The inset shows details of complex arcs where light from another distant galaxy passes

close to individual cluster galaxies – G. P. Smith et al. 2001 ApJ 552, 493.

mass. This is quite unexpected. If these early galaxies formed by merger, both the
merging process and early starbirth must have been far more efficient than either
is today.

7.4 Intergalactic dark matter: gravitational lensing

Gravity acts on light itself, bending the paths of photons. If we look at two galaxies
that are neighbors on the sky, then the light of the more distant system swerves
toward the nearer galaxy as it passes by on its way to us. Figure 7.13 shows
the cluster Abell 383 at redshift z = 0.188. The bright arc curving around the
huge cD galaxy is the image of a background galaxy at z = 1.01. The gravity of
the entire cluster has bent its light, forming multiple images that run together to
make up the arc. Another distant galaxy gives rise to the broken arc further out
that twists past two fainter cluster members. The cluster’s gravity has deflected
more light toward us than we would otherwise receive, so the arcs are brighter
than the original sources. They are also distorted and magnified in size. This effect
is called gravitational lensing, even though the light is not brought to a focus.

Gravitational lensing provides a powerful method to study the dark matter
between galaxies, because the effect does not depend on whether a cluster has
reached equilibrium, or is still growing and changing. We will begin our discussion
with the simple case in which the lensing mass is compact, and can be treated like
a single point. Then we consider how to calculate the bending from an extended
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Fig. 7.14. The gravity of the mass M at L bends light from a distant source at S′ toward

the observer at O; the source appears instead at position I.

‘lens’ such as a galaxy or cluster. Lensing allows us to study distant objects that
would otherwise be far too faint. Some of the best-studied galaxies at high redshift,
such as cB58 in Figure 9.16, are strongly brightened in this way. But we must
beware of lensing when taking a census of any type of distant object.

7.4.1 Microlensing: light bent by a compact object

The Sun’s bending of light provided one of the first tests of Einstein’s General
Relativity. During the total solar eclipse of 1919, an expedition led by Arthur
Eddington took photographs of the sky around the obscured Sun. They found
that light was bent as shown in Figure 7.14, so that nearby stars appeared to have
moved very slightly away from the calculated position of the Sun’s center. Einstein
predicted that light passing at distance b from a mass M is bent by an angle α

given by

α ≈ 4GM
bc2

= 2Rs

b
. (7.13)

Here Rs is the Schwarzschild radius 2GM/c2, about 3 km for an object of the
Sun’s mass. The approximation holds as long as the bending is small, with α � 1.
This formula prescribes exactly twice the bending that we get by applying Equa-
tion 3.51 to particles travelling at speed c.

Using this formula, we can calculate where the image of a distant source will
appear, if a point object of mass M is placed in front of it to act as a gravitational
lens. If the lens L in Figure 7.14 had been absent, we would have seen the star S′

at an angle β on the sky from the direction to L; β ≈ y/dS if the distance dS � y.
Because the light is bent by an amount α, the star appears instead at an angle θ to
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that direction; θ ≈ x/dS if dS � x . If x is the distance between the line OL and I,
the star’s apparent position in the image plane, then Figure 7.14 shows that, when
bending is small, x − y = αdLS. Finally, the impact parameter b = θdLens as long
as dS � b. Using Equation 7.13 for α, we divide by dS to find

θ − β = αdLS

dS
= 1

θ

4GM
c2

dLS

dLensdS
≡ 1

θ
θ2

E; (7.14)

the angle θE is called the Einstein radius. We have a quadratic equation for the
angular distance θ between L and the star’s image:

θ2 − βθ − θ2
E = 0, so θ± =

β ±
√

β2 + 4θ2
E

2
. (7.15)

A star exactly behind the lens, with β = 0, will be seen as a circle of light on the
sky, with radius θE. When β > 0, the image at θ+ is further from the lens, with
θ+ > β, and it lies outside the Einstein radius: θ+ > θE. These exterior images
were the ones seen around the eclipsed Sun. The image at θ− is inverted; it lies
within the Einstein radius, on the opposite side of the lens.

Problem 7.12 Show that, when dLens = 1 AU � dS, then θ − β ≈ α. When

light from a distant star S is bent by the Sun’s gravity, show that the Einstein

radius θE ≈ 40′′. The Sun’s disk has a diameter of 30′ or 0.5◦; show that starlight

that just grazes the Sun’s surface would be bent by about 2′′, making the star

appear further from the Sun’s center.

Quite regularly, one star in the Milky Way’s bulge is gravitationally lensed
by another in the disk. The images θ+ and θ− are then too close to distinguish
individually. But we can tell that a star is lensed because it appears to become
brighter (see below). Because of the small size of the Einstein ring, gravitational
lensing by compact objects in the halo of a galaxy is often called microlensing.

Problem 7.13 If the lens L is an object of mass M� at distance dLens from us,

show that the Einstein radius for a star at distance dS = 2dLens is

θE =
√

Rs

dLens
≈ 2 × 10−3

√
1 kpc

dLens
arcsec. (7.16)

If our point-mass lens is in front of a small extended patch of brightness, its
image will be two patches around θ±. Gravitational lensing leaves the surface
brightness I (x) unchanged, so the apparent brightness of each image of a source
is just proportional to its area. Consider a region S′ that is a segment of an annulus



306 Galaxy groups and clusters

L
S'

I

x

y

Δy

Δφ

Δx

Fig. 7.15. Magnification of an image by gravitational lensing.

centred on L, between radius y and y + �y, as in Figure 7.15. An image I of
S′ occupies the same angle �φ, but distances from the center are expanded or
contracted: x/y = θ/β while �x/�y = dθ/dβ. The ratio of areas is

A±(image)

A(source)
=
∣∣∣∣ θβ dθ

dβ

∣∣∣∣= 1

4

⎛
⎝ β√

β2 + 4θ2
E

+
√

β2 + 4θ2
E

β
± 2

⎞
⎠. (7.17)

Thus the image θ+ that is further from L is always brighter than the source; it is
also stretched in the tangential direction. The closer image, θ−, is dimmer unless
β2 < (3 − 2

√
2) θ2

E /
√

2 or β <∼ 0.348 θE . This also holds when the lens is an
extended system such as a galaxy or cluster: at least one of the images is brighter
than the source would be without lensing.

Problem 7.14 From Equation 7.17, show that A+ + A− > A(source): more

light reaches us in the two images, taken together, than we would have received

from the source S if the lens had been absent. When β = θE, show that the

increase is roughly 40%, while the total brightness doubles when β ≈ 0.7θE.

Problem 7.15 Show that, if the distance dS to the source is fixed, then the area

πθ2
Ed2

Lens inside the Einstein radius is largest when the lens is midway between

the source and the observer: dS = 2dLens. If the objects that might act as lenses

are uniformly spread in space, a source is most likely to be strongly brightened

by a lens that is about halfway between it and the observer.

7.4.2 Lensing by galaxies and clusters

When the lens is an entire galaxy or cluster, we can think of it as a collection of
point masses. We first rewrite Equation 7.13 to define a lensing potential ψL:

α(b) ≡ dψL

db
, where ψL = 4GM

c2
ln b. (7.18)
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Fig. 7.16. Gravitational bending of light by a circular ring of uniform density.

We can then calculate the bending by summing up the effect of all the mass within
the lens. If the lens is compact compared with both the distance dLens from us
and the distance dLS from it to the light source, then the deflection depends only
on the surface density �(x) of the lens. In general we must specify the light ray’s
closest approach to the cluster’s center by a vector b; integrating over the cluster
gives the vector deflection α:

α(b) ≡ ∇ψL(b), where ψL(b) = 4G

c2

∫
�(b′)ln|b − b′|dS′. (7.19)

This has a very similar form to Equation 3.4 for the gravitational potential �(x), but
the integral is now in two dimensions, and a logarithmic term replaces 1/|x − x′|.

In general we must calculate ψL(b) with a computer, from the distribution of
matter given by �(b). But suppose that the lens galaxy or cluster is axisymmetric,
so that the surface density depends only on the projected distance R from the
center. We can show that the bending of a ray passing at radius b then depends
only on the mass M(<b) projected within that circle:

α(b) = 4G

bc2

∫ b

0
�(R)2π R dR = 4G

c2

M(<b)

b
. (7.20)

To prove this, we adapt the arguments that we used in Section 3.1 to show that
the gravitational force at distance r from a spherical object is the same as if all
the matter at radii less than r had been concentrated at the center of the sphere.
Readers who are willing to trust our assertion should skip beyond Equation 7.24
for applications of the result.

First, we show that a light ray passing through a uniform circular ring is not
bent at all. In Figure 7.16, a ray through point S is pulled in opposite directions
by the sections of the ring falling within the cone at A and at B. The sides AO and
BO of the triangle AOB are equal; so the angle OAB between the line AB and the
normal OA at A is the same as the angle OBA at B. Thus the arcs lying within
the narrow cone have lengths (and masses) in the ratio SA/SB. Since the bending
is inversely proportional to the distance from S, the deflections by the matter at



308 Galaxy groups and clusters

a

P
Q

P'
Q'

P
Q

P'

R R

Q'

O
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A and B are equal and opposite, cancelling each other out. So the ray is not bent;
the lensing potential ψL must be constant inside the ring. It is easiest to calculate
ψL at the center; for a ring of mass M and radius a,

ψL(R < a) = 4GM
c2

ln a. (7.21)

Next, we must prove that a ray passing outside the ring is bent in the same
way as by a point mass at its center. We use Figure 7.17 to show that the lensing
potential ψL(P) at a point P lying at distance R > a from the center of a uniform
ring of mass M is the same as the potential ψ ′

L(P′) inside a ring of the same mass,
but with radius R. In the picture on the left, the mass in an arc �θ around Q′

contributes an amount

�ψL(P) = 4G

c2

M�θ

2π
ln|x(P) − x(Q′)| (7.22)

to the potential at P. From the picture on the right, the mass within the same wedge
at Q contributes to the lensing potential at P′ an amount

�ψ ′
L(P′) = 4G

c2

M�θ

2π
· ln|x(P′) − x(Q)|. (7.23)

But PQ′ = P′Q, so these are equal; integrating over the whole ring,

ψL(P) = ψ ′
L(P′) = 4GM

c2
ln R : (7.24)

the bending angle for light passing outside the ring at radius R is the same as if
all its mass had been concentrated at the center. So we arrive at Equation 7.20: if
the lens is axisymmetric, light is bent just as if all the material projected within
that radius had been exactly at the center.

We can use Equation 7.20 to find how an axisymmetric galaxy cluster bends
the light of a distant galaxy behind it, as in Figure 7.14. If the cluster had been
absent, we would have seen the galaxy at S′, at an angle β to the cluster’s direction
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OL. Instead, we see its image I at an angle θ to OL. Equation 7.14 is now modified
to read

θ − β = α(θ)
dLS

dS
= 1

θ
· 4GM(<b)

c2

dLS

dLensdS
. (7.25)

Remembering that b = θdLens, we can rewrite this in terms of �crit, the critical
density for lensing:

β = θ

[
1 − 1

�crit

M(<b)

πb2

]
, where �crit ≡ c2

4πG

dS

dLensdLS
. (7.26)

The quantity M(<b)/(πb2) is just the average surface density within radius b;
usually the surface density �(R) declines from a peak at the center, so this average
will fall as well. If the central density exceeds �crit, then the image of a source
at β = 0, exactly in line with the cluster’s center, will be a thin circular Einstein
ring, of angular size θE = bE/dLens, where bE is the radius where the average
density falls to the critical value:

M(<bE)

πb2
E

= �crit. (7.27)

If the central surface density is less than �crit, then the cluster cannot produce
multiple images of any source behind it; no ring is seen.

Problem 7.16 Show that, when the lensing object is a point mass, Equa-

tions 7.27 and 7.14 give the same result for the Einstein radius θE.

Problem 7.17 If a lens at distance dLens bends the light of a much more distant

galaxy, so that dS and dLS � dLens, show that the critical density is

�crit ≈ 2 × 104

(
100 Mpc

dLens

)
M� pc−2, (7.28)

and that the mass projected within angle θE of the center is

M(< θE) ≈
(

dLens

100 Mpc

)(
θE

1′′

)2

1010M�. (7.29)

Use the results of Problems 6.3 and 6.6 to show that in the cD galaxy NGC 1399

we have roughly 6 × 104M� pc−2. At the center of the Virgo cluster we see

0.5L� pc−2, which for M/L ∼150 corresponds to <100M� pc−2. We expect

to see lensed arcs around individual luminous galaxies, but clusters with giant

arcs like Abell 383 are far more massive than Virgo, and often at dLens >

1 Gpc.
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Problem 7.18 The ‘Einstein Cross’ is a set of five images of a quasar at redshift

z = 1.695, shining through a spiral galaxy, 2237+0305, at z = 0.039. Show that

dLens ≈ 120h−1 Mpc, and that, since dS � dLens, �crit ≈ 1.4 × 104hM� pc−2.

Four of the images lie close to a circle, with radius 0.9′′: taking this value for θE,

show that bE ≈ 0.5h−1 kpc, and M(<bE) ≈ 1010h−1M�, which is appropriate

for the center of a bright galaxy.

Problem 7.19 For the ‘dark halo’ potential of Equation 2.19, show that

�(R) = V 2
H

4G

1√
R2 + a2

H

, so M(<b) = aHV 2
H

G

π

2

[√
1 + (b/aH)2 − 1

]
. (7.30)

Use Equation 7.20 to show that, when dS, dLS � dLens, a light ray passing far

enough from the center that b � aH is bent by an angle

α ≈ 2πV 2
H

c2
radians, or 5′′ ×

(
VH

600 km s−1

)2

. (7.31)

A distant source with β = 0 directly behind the cluster will appear as a ring

of radius θE ≈ α. Figure 7.13 shows Abell 383 with a large tangential arc

16′′ from the center, corresponding to VH ≈ 1800 km s−1. What is the kinetic

energy of a particle in circular orbit in this potential? To what virial temperature

(Equation 7.1) does this correspond? Show that this is similar to the observed

X-ray temperature TX ≈ 6 × 107 K.

Problem 7.20 Show that, for the Plummer sphere of Problem 3.2,

M(<b) = Mb2

a2
P + b2

. (7.32)

In clusters where both lensed arcs and the X-ray emission of hot gas are
observed, we can compare masses estimated with the two methods. Equation 7.29
shows that, to explain arcs with radii of tens of arcseconds in very distant clusters,
we need masses rising beyond 1014M�. The mass required to account for the
positions of the arcs agrees well with what is indicated by the X-ray observations.
Disagreement is most common for lumpy clusters, where clumps of galaxies are
still falling in and may heat the cluster gas, or where two clumps lie behind each
other.

The light of the various images reaches us by different paths, and rays that
left the source together do not arrive simultaneously. A strongly bent ray must
travel further, and time passes more slowly deep in the gravitational potential. If a
distant quasar is lensed by a centrally concentrated galaxy, light arrives fastest at
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Fig. 7.18. Positions of a lensed galaxy and its image. Left, for a Plummer sphere with

�(0) = 6�crit (solid curve); angles are in units of aP/dLens. Rays passing far from the

center are bent in almost the same way as by an equal point mass (dashed curve): stars

show images of a source at β = 1.5. Right, for a ‘dark halo’ potential; angles are in units

aH/dLens. With more mass at large radii the curve approaches the dotted line θ = β (no

bending) much more slowly.

the images furthest from the center: those rays have suffered the least bending, and
have spent less time in the depths of the potential. Time delays have been measured
by observing quasars that vary their light output, so the different images brighten
in sequence.

The positions and shapes of the images tell us how mass is distributed within
the lensing galaxy or cluster. Figure 7.18 shows how we can apply Equation 7.26 to
find image positions in the simple cluster models of Equations 7.30 and 7.32. The
images of a source directly behind the cluster are a point at θ = 0, and an Einstein
ring at the radius θE where the curve β(θ ) crosses the axis β = 0. An object close
to the center forms three images: one on the same side of the cluster and two on
the opposite side. The image nearest to the center is inverted, since dθ/dβ <0. As
the source is taken further from the axis OS, the two images closest to the center
move together: as dβ/dθ → 0, at β = βr, they fuse and then disappear. A source
further out produces only a single image. The odd-image theorem guarantees that,
if the lens has a finite surface density everywhere, then a single source produces
an odd number of images.

If the galaxy is almost centred behind the cluster, β is small, and Equation 7.17
tells us that its images can be highly magnified and hence very bright. Two of them
form arcs near the circle θ = θE, called the tangential critical curve. If the cluster
is not exactly round, these can each split into a number of separate images. Images
near the center where θ ≈ 0 will always be faint.

When the source is just inside the radius βr, then dβ/dθ → 0, and Equa-
tion 7.17 tells us that the image is again extremely luminous. Since now the
image is extended radially, the curve β = βr is called the radial caustic.
Figure 7.18 shows that these bright streaks must lie on a circle inside the
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Einstein radius, at θ = θr; this is called the radial critical curve. In the left
panel, the cluster has the density of a Plummer sphere, and θE = √

5aP/dLens.
The right panel shows critical points for a cluster with the potential of the
dark halo of Equation 2.19. The Einstein radius θE is larger in relation to
θr than for the Plummer model, because its mass is less concentrated to the
center.

Problem 7.21 For the Plummer model, show that the surface density (Equa-

tion 3.13) drops to half its central value at the core radius rc = 0.644aP. What

is rc for the ‘dark halo’ potential of Problem 7.19? Taking the central density to

be 2�crit, 4�crit, and finally 10�crit, find the Einstein radius θE for the Plummer

model in units of rc/dLens. Now do the same for the dark halo. (For a wide range

of central density, and for many cluster-like potentials, dLensθE is a few times the

core radius.)

Problem 7.22 In the galaxy cluster Abell 383 of Figure 7.13, a radial arc

lies 2′′ ≈ θr from the center. The large tangential arc of Figure 7.13 is at

16′′ ≈ θE. Find dLens, assuming H0 = 70 km s−1 Mpc−1 (if you have read Sec-

tion 8.3: use the angular size distance dA and the benchmark cosmology). Show

that dLensθE ∼50 kpc; the cluster’s core radius rc will be a few times smaller.

From Equation 7.29, show that the mass projected within the tangential arc is

M(< θE) ∼ 2 × 1013M�. The luminosity within θE corresponds to LV ∼
4 × 1011L�, so M/L ∼ 50. (A model placing both radial and tangential arcs

at the observed positions has rc ≈ 40 kpc; in the X-ray-emitting gas, the core is

twice as large.)

7.4.3 Weak gravitational lensing

When galaxies lie behind a cluster but well outside its Einstein radius, their images
are weakly magnified and slightly stretched in the tangential direction. Figure 7.15
shows why the image of a round galaxy will be an ellipse, with tangential and
radial axes in the ratio x/y : �x/�y or |dβ/dθ | : |β/θ |. The shear γ measures the
difference in the amount that the image has been compressed in the two directions.
For an image at distance b � θEdLens from the cluster’s center we have

γ ≡ 1

2

(
dβ

dθ
− β

θ

)
= �̄(<b) − �(b)

�crit
. (7.33)

Here �̄(<b) = M(<b)/(πb2) is the average surface density of matter projected
within radius b, and �(b) is the surface density at that radius.
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Problem 7.23 Derive Equation 7.33 from Equation 7.26. Why must we specify

θ � θE? Show that, if the surface density �(R) is constant, then we have

θ ∝ β. Use Figure 7.15 to explain why images of a round galaxy will be circular:

the shear is zero. This mass-sheet degeneracy means that we can always add a

uniform sheet of matter to our model cluster without changing the shapes of the

images.

Measuring the average shape of many galaxies in the background that have
been weakly distorted allows us to estimate the shear, and hence the distribution
of mass in the outer parts of galaxy clusters. Generally the results agree with what
we found from the hot gas. But, for some clusters, weak lensing indicates a higher
mass. These may be composites, with one cluster behind the other. Some distant
clusters have even been discovered by the signature of their weak lensing alone.

Weak lensing has also been used to study the halos of individual bright galax-
ies. To do this, we measure the average shape of more distant galaxies that lie close
to the nearby lensing system on the sky, and then average these results over many
lens-galaxies. Recent studies show that the dark halo of a typical bright elliptical or
S0 galaxy, with L ∼ L
, extends to at least 200 kpc and has mass ∼>1012h−1M�;
so the mass-to-light ratio M/L > 50 in solar units. So dark halos are larger and
more massive than we were able to show by measuring rotation in the outer parts
of disk galaxies. Blue galaxies that are still making stars are brighter for a given
dark-halo mass. The halo appears to be slightly aspherical, distorted in the same
sense as the galaxy’s stellar body.

Unlike galaxies themselves, groups and clusters do not separate cleanly from
one another: we will see in the next chapter how they are connected by walls and
filaments of luminous galaxies. Weak lensing lets us measure how the dark matter
is distributed in this structure, but the calculation is more complex. The light of
a distant source is bent many times as it passes by each of these large structures
on its way to us, so we cannot make the approximation of Equation 7.19, that
all the bending takes place at a single lens-distance dLens. Instead, we must use
computers to calculate it.

Further reading: a detailed presentation of gravitational lensing is given by P.
Schneider, J. Ehlers, and E. E. Falco, 1992, Gravitational Lenses (Springer, New
York); this is an advanced text. A popular book is N. Cohen, 1989, Gravity’s Lens:
Views of the New Cosmology (Wiley, New York).



8

The large-scale distribution
of galaxies

Since the early 1980s, multi-object spectrographs, CCD detectors, and some dedi-
cated telescopes have allowed the mass production of galaxy redshifts. These large
surveys have revealed a very surprising picture of the luminous matter in the Uni-
verse. Many astronomers had imagined roughly spherical galaxy clusters floating
amongst randomly scattered field galaxies, like meatballs in sauce. Instead, they
saw galaxies concentrated into enormous walls and long filaments, surrounding
huge voids that appear largely empty. The galaxy distribution has been compared
to walls of soapy water, surrounding bubbles of air in a basinful of suds; linear
filaments appear where the walls of different soap bubbles join, and rich clusters
where three or more walls run into each other. A more accurate metaphor is that of
a sponge; the voids are interlinked by low-density ‘holes’ in the walls. Sometimes
we think of the filaments as forming a cosmic web.

For a star like the Sun in the disk of our Milky Way, the task of finding where it
formed is essentially hopeless, because it has already made many orbits about the
galaxy, and the memory of its birthplace is largely lost. But the large structures that
we discuss in this chapter are still under construction, and the regions where mass
is presently concentrated reveal where denser material was laid down in the early
Universe. The peculiar motions of groups and clusters of galaxies, their speeds
relative to the uniformly expanding cosmos, are motions of infall toward larger
concentrations of mass. So the problem of understanding the large-scale structure
that we see today becomes one of explaining small variations in the density of the
early Universe.

We begin in Section 8.1 by surveying the galaxies around us, mapping out
both the local distribution and the larger structures stretching over hundreds of
megaparsecs. The following sections discuss the history of our expanding Uni-
verse, within which the observed spongy structures grew, and how the expansion
and large-scale curvature affect our observations of galaxies. In Section 8.4 we
discuss fluctuations in the cosmic microwave background and what they tell us
about the initial irregularities that might have given rise to the galaxies that we
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see today. We will see how we can use the observed peculiar motions of galaxies
to estimate how much matter is present. The final section asks how dense systems
such as galaxies developed from these small beginnings.

Further reading: B. Ryden, 2003, Introduction to Cosmology (Addison Wesley, San
Francisco, USA) and A. Liddle, 2003, An Introduction to Modern Cosmology, 2nd
edition (John Wiley & Sons, Chichester, UK) are undergraduate texts on roughly
the level of this book. On the graduate level, see M. S. Longair, 1998, Galaxy
Formation (Springer, Berlin) and T. Padmanabhan, 1993, Structure Formation in
the Universe (Cambridge University Press, Cambridge, UK).

8.1 Large-scale structure today

As we look out into the sky, it is quite clear that galaxies are not spread uniformly
through space. Figure 8.1 shows the positions on the sky of almost 15 000 bright
galaxies, taken from three different catalogues compiled from optical photographs.
Very few of them are seen close to the plane of the Milky Way’s disk at b = 0,
and this region is sometimes called the Zone of Avoidance. The term is unfair:
surveys in the 21 cm line of neutral hydrogen, and in far-infrared light, show that
galaxies are indeed present, but their visible light is obscured by dust in the Milky
Way’s disk. Dense areas on the map mark rich clusters: the Virgo cluster is close
to the north Galactic pole, at b = 90◦. Few galaxies are seen in the Local Void,
stretching from l = 40◦, b = −20◦ across to l = 0, b = 30◦.

The galaxy clusters themselves are not spread evenly on the sky: those within
about 100 Mpc form a rough ellipsoid lying almost perpendicular to the Milky
Way’s disk. Its midplane, the supergalactic plane, is well defined in the northern
Galactic hemisphere (b > 0), but becomes rather scruffy in the south. The pole
or Z axis of the supergalactic plane points to l = 47.4◦, b = 6.3◦. We take the
supergalactic X direction in the Galactic plane, pointing to l = 137.3◦, b = 0,
while the Y axis points close to the north Galactic pole at b = 90◦, so that Y ≈ 0
along the Zone of Avoidance. The supergalactic plane is close to the Great Circle
through Galactic longitude l = 140◦ and l = 320◦, shown as a heavy line in
Figure 8.1. It passes through the Ursa Major group of Figures 5.6 and 5.8, and
the four nearby galaxy clusters described in Section 7.2; the Virgo cluster at right
ascension α = 12h, declination δ = 12◦; Perseus at α = 3h, δ = 40◦; Fornax at
α = 4h, δ = −35◦; and the Coma cluster at α = 13h, δ = 28◦, almost at the north
Galactic pole.

Figure 8.2 shows the positions of the elliptical galaxies within about 20 Mpc,
tracing out the Virgo and Fornax clusters. The distances to these galaxies have
been found by analyzing surface brightness fluctuations. Even though they are
too far away for us to distinguish individual bright stars, the number N of stars
falling within any arcsecond square on the image has some random variation.
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Fig. 8.2. Positions of nearby elliptical galaxies on the supergalactic X–Y plane; the origin

is the Milky Way. Shading indicates recession velocity Vr – J. Tonry.

So the surface brightness of any square fluctuates about some average value.
The closer the galaxy, the fewer stars lie within each square, and the stronger the
fluctuations between neighboring squares: when N is large, the fractional variation
is proportional to 1/

√
N . So if we measure the surface brightness fluctuations in

two galaxies where we know the relative luminosity of the bright stars that emit
most of the light, we can find their relative distances.

This method works only for relatively nearby galaxies in which the stars are
at least 3–5 Gyr old. In these, nearly all the light comes from stars close to the
tip of the red giant branch. As we noted in Section 1.1, these have almost the
same luminosity for all stars below about 2M�. These stars are old enough that
they have made many orbits around the center, so they are dispersed smoothly
through the galaxy. The observations are usually made in the I band near 8000 Å,
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or in the K band at 2.2 μm, to minimize the contribution of the younger bluer
stars. The technique fails for spiral galaxies, because their brightest stars are
younger: they are red supergiants and the late stages of intermediate-mass stars,
and their luminosity depends on the stellar mass, and so on the average age of
the stellar population. Since that average changes across the face of the galaxy, so
does the luminosity of those bright stars. Also, the luminous stars are too short-
lived to move far from the stellar associations where they formed. Their clumpy
distribution causes much stronger fluctuations in the galaxy’s surface brightness
than those from random variations in the number of older stars.

In Figure 8.2, we see that the Virgo cluster is roughly 16 Mpc away. It
appears to consist of two separate pieces, which do not coincide exactly with
the two velocity clumps around the galaxies M87 and M49 that we discussed in
Section 7.2. Here, galaxies in the northern part of the cluster, near M49, lie mainly
in the nearer grouping, while those in the south near M86 are more distant; M87
lies between the two clumps. The Fornax cluster, in the south with Y<0, is at
about the same distance as Virgo. Both these clusters are part of larger complexes
of galaxies. Because galaxy groups contain relatively few ellipticals, they do not
show up well in this figure. The Local Group is represented only by the elliptical
and dwarf elliptical companions of M31, as the overlapping circles just to the right
of the origin.

Problem 8.1 In Section 4.5 we saw that the motions of the Milky Way and M31

indicate that the Local Group’s mass exceeds 3 × 1012M�: taking its radius

as 1 Mpc, what is its average density? Show that this is only about 3h−2 of the

critical density ρcrit defined in Equation 1.30 – the Local Group is only just

massive enough to collapse on itself.

Problem 8.2 The free-fall time tff = 1/
√

Gρ of Equation 3.23 provides a rough

estimate of the time taken for a galaxy or cluster to grow to density ρ. In

Problem 4.7 we saw that, for the Milky Way, with average density of 105ρcrit

within the Sun’s orbit, this minimum time is ∼3 × 108 years or 0.03 × tH, the

expansion age given by Equation 1.28. Show that a cluster of galaxies with den-

sity 200ρcrit can barely collapse within the age of the Universe. This density

divides structures like the Local Group that are still collapsing from those that

might have settled into an equilibrium.

To probe further afield, we use a ‘wedge diagram’ like Figure 8.3 from the 2dF
survey, which measured redshifts of galaxies in two large slices across the sky. If
we ignore peculiar motions, Equation 1.27 tells us that the recession speed Vr ≈
cz ≈ H0d , where H0 is the Hubble constant; the redshift is roughly proportional
to the galaxy’s distance d from our position at the apex of each wedge. So this
figure gives us a somewhat distorted map of the region out to 600h−1 Mpc.
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Fig. 8.3. A ‘wedge diagram’ of 93 170 galaxies from the 2dF survey with the Anglo-

Australian 4-meter telescope, in slices −4◦ <δ<2◦ in the north (left wedge) and −32◦ <

δ < −28◦ in the south (right) – M. Colless et al. 2001 MNRAS 328, 1039.

The three-dimensional distribution of galaxies in Figure 8.3 has even more
pronounced structure than Figure 8.1. We see dense linear features, the walls and
stringlike filaments of the cosmic web; at their intersections there are complexes
of rich clusters. Between the filaments we find large regions that are almost empty
of bright galaxies: these voids are typically ∼>50h−1 Mpc across. The galaxies
appear to thin out beyond z = 0.15 because redshifts were measured only for
objects that exceeded a fixed apparent brightness. Figure 8.4 shows that, at large
distances, just the rarest and most luminous systems have been included. When a
solid angle � on the sky is surveyed, the volume between distance d and d +�d is
�V = �d2�d, which increases rapidly with d . Accordingly, we see few galaxies
nearby; most of the measured objects lie beyond 25 000 km s−1.

Problem 8.3 The Local Group moves at 600 km s−1 relative to the cosmic

background radiation. At this speed, show that an average galaxy would take

∼40h−1 Gyr to travel from the center to the edge of a typical void. Whatever

process removed material from the voids must have taken place very early, when

the Universe was far more compact.

In Figures 8.3 and 8.4, the walls appear to be several times denser than the void
regions. But ignoring the peculiar motions has exaggerated their narrowness and
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Fig. 8.4. Luminosity (absolute magnitude in BJ ) of 8438 galaxies near 13h20m in Fig-

ure 8.3, showing the number at each redshift. The luminosity L∗ of a typical bright galaxy

is taken from Figure 1.16; the dashed line at apparent magnitude m(BJ ) = 19.25 shows

the approximate limit of the survey.

sharpness; they would appear less pronounced if we could plot the true distances
of the galaxies. The extra mass in a wall or filament attracts nearby galaxies in
front of the structure, pulling them toward it and away from us. So the radial
velocities of those objects are increased above that of the cosmic expansion,
and we overestimate their distances, placing them further from us and closer
to the wall. Conversely, galaxies behind the wall are pulled in our direction,
reducing their redshifts; these systems appear nearer to us and closer to the wall
than they really are. In fact, the walls are only a few times denser than the local
average.

By contrast, dense clusters of galaxies appear elongated in the direction toward
the observer. The cores of these clusters have completed their collapse, and galax-
ies are packed tightly together in space. They orbit each other with speeds as large
as 1500 km s−1, so their distances inferred from Equation 1.27 can have random
errors of 15h−1 Mpc. In a wedge diagram, rich clusters appear as dense ‘fingers’
that point toward the observer.

Problem 8.4 How long is the narrow ‘finger’ in the left panel of Figure 8.5

near z = 0.12 and 12h30m? Show that this represents a large galaxy cluster with

σr ≈ 1500 km s−1.

Figure 8.5 shows wedge diagrams for red galaxies, with spectra that show little
sign of recent star formation, and blue galaxies, with spectral lines characteristic
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Fig. 8.5. About 27 000 red galaxies (left) with spectra like those of elliptical galaxies, and

the same number of star-forming blue galaxies (right), in a slice −32◦ < δ < −28◦ from

the 2dF survey. These are luminous galaxies, with −21 < M(BJ ) < −19. The elliptical

and S0 galaxies cluster more strongly than the spiral-like systems.

of young massive stars and the ionized gas around them. In Figure 8.4 we see
clumps of galaxies around 13h20m at z = 0.05, 0.08, 0.11, and 0.15. These are
quite clear in the left wedge of Figure 8.5, but much weaker in the right wedge.
Similarly, the void at 12h and z = 0.08 is emptier in the left wedge – why? The
left-wing galaxies are red elliptical and S0 systems, while on the right are spirals
and irregulars. As we saw in Section 7.2, elliptical galaxies live communally in the
cores of rich clusters, where spiral galaxies are rare. Accordingly, the clustering
of the red galaxies is stronger than that of the bluer systems of the right panel.
Whether galaxies are spiral or elliptical is clearly related to how closely packed
they are: we see a morphology–density relation.

In fact, we should not talk simply of ‘the distribution of galaxies’, but must be
careful to specify which galaxies we are looking at. We never see all the galaxies in
a given volume; our surveys are always biassed by the way we choose systems for
observation. For example, if we select objects that are large enough on the sky that
they appear fuzzy and hence distinctly nonstellar, we will omit the most compact
galaxies. A survey that finds galaxies by detecting the 21 cm radio emission of
their neutral hydrogen gas will readily locate optically dim but gas-rich dwarf
irregular galaxies, but will miss the luminous ellipticals which usually lack HI

gas. The Malmquist bias of Problem 2.11 is present in any sample selected by
apparent magnitude. Even more insidious are the ways in which the bias changes
with redshift and apparent brightness. Mapping even the luminous matter of the
Universe is no easy task.
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8.1.1 Measures of galaxy clustering

One way to describe the tendency of galaxies to cluster together is the two-point
correlation function ξ (r ). If we make a random choice of two small volumes �V1

and �V2, and the average spatial density of galaxies is n per cubic megaparsec,
then the chance of finding a galaxy in �V1 is just n�V1. If galaxies tend to clump
together, then the probability that we then also have a galaxy in �V2 will be
greater when the separation r12 between the two regions is small. We write the
joint probability of finding a particular galaxy in both volumes as

�P = n2[1 + ξ (r12)]�V1 �V2; (8.1)

if ξ (r ) > 0 at small r , then galaxies are clustered, whereas if ξ (r ) < 0, they tend
to avoid each other. We generally compute ξ (r ) by estimating the distances of
galaxies from their redshifts, making a correction for the distortion introduced by
peculiar velocities. On scales r ∼< 10h−1 Mpc, it takes roughly the form

ξ (r ) ≈ (r/r0)−γ , (8.2)

with γ > 0. When r < r0, the correlation length, the probability of finding one
galaxy within radius r of another is significantly larger than for a strictly random
distribution. Since ξ (r ) represents the deviation from an average density, it must
at some point become negative as r increases.

Figure 8.6 shows the two-point correlation function ξ (r ) for galaxies in the 2dF
survey. The correlation length r0 ≈ 5h−1 Mpc; it is 6h−1 Mpc for the ellipticals,
which are more strongly clustered, and smaller for the star-forming galaxies. The
slope γ ≈ 1.7 around r0. For r ∼> 50h−1 Mpc, which is roughly the size of the
largest wall or void features, ξ (r ) oscillates around zero: the galaxy distribution
is fairly uniform on larger scales.

Unfortunately, the correlation function is not very useful for describing the
one-dimensional filaments or two-dimensional walls of Figure 8.3. If our volume
�V1 lies in one of these, the probability of finding a galaxy in �V2 is high only
when it also lies within the structure. Since ξ (r ) is an average over all possible
placements of �V2, it will not rise far above zero once the separation r exceeds
the thickness of the wall or filament. We can try to overcome this by defining the
three-point and four-point correlation functions, which give the joint probability
of finding that number of galaxies with particular separations; but this is not very
satisfactory. We do not yet have a good statistical method to describe the strength
and prevalence of walls and filaments.

The Fourier transform of ξ (r ) is the power spectrum P(k):

P(k) ≡
∫

ξ (r)exp(ik · r)d3r = 4π

∫ ∞

0
ξ (r )

sin(kr )

kr
r2 dr , (8.3)

so that small k corresponds to a large spatial scale.
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Fig. 8.6. Left, the correlation function ξ (s) for the 2dF galaxies, at small (circles, left

logarithmic scale) and large (triangles, right linear scale) separations; vertical bars show

uncertainties. ξ (s) is calculated assuming that Hubble’s law holds exactly: the ‘fingers’ of

Figure 8.5 reduce ξ (s) on scales r ∼< 1 Mpc, but infall to the walls makes clustering look

stronger on scales near r0. The dashed line shows ξ (r ), corrected for these effects. Right,

the variance σR of Equation 8.4, describing how much the average density varies between

regions of size R – S. Maddox and S. Cole.

Since ξ (r ) is dimensionless, P(k) has the dimensions of a volume. The func-
tion sin(kr )/kr is positive for |kr | < π , and it oscillates with decreasing amplitude
as kr becomes large; so, very roughly, P(k) will have its maximum when k−1 is
close to the radius where ξ (r ) drops to zero. In Figure 8.17 we show P(k) cal-
culated by combining the 2dF galaxy survey with observations of the cosmic
microwave background.

Problem 8.5 Prove the last equality of Equation 8.3. One method is to write the

volume integral for P(k) in spherical polar coordinates r, θ, φ and set k · r =
kr cos θ . Show that, because ξ (r ) describes departures from the mean density,

Equation 8.1 gives
∫∞

0 ξ (r )r2 dr = 0, and hence P(k) → 0 as k → 0.

Problem 8.6 Show that the power spectrum P(k) ∝ kn corresponds to a corre-

lation function ξ (r ) ∝ r−(3+n). Hence γ ≈ 1.5 implies n ≈ −1.5. Figure 8.17

shows that when k is large P(k) declines roughly as k−1.8, about as expected.

Another way to describe the non-uniformity of the galaxy distribution is to
ask how likely we are to find a given deviation from the average density. We
can write the local density at position x as a multiple of the mean level ρ̄, as
ρ(x) = ρ̄[1 + δ(x)], and let δR be the fractional deviation δ(x) averaged within a
sphere of radius R. When we take the average 〈δR〉 over all such spheres, this must
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be zero. Its variance σ 2
R = 〈δ2

R〉 measures how clumpy the galaxy distribution is
on this scale. We can relate it to k3 P(k), the dimensionless number prescribing the
fluctuation in density within a volume k−1 Mpc in radius. If clumps of galaxies
with size k−1 ≈ R are placed randomly in relation to those on larger or smaller
scales (the random-phase hypothesis), we have

σ 2
R ≈ k3 P(k)

2π2
≡ �2

k ; so, if P(k) ∝ kn, then σR ∝ R−(n+3)/2. (8.4)

Thus, if n > −3, the Universe is lumpiest on small scales.
Figure 8.6 shows σR (or �k) for the 2dF galaxies. It increases with k: the

smaller the region we consider, the greater the probability of finding a very high
density of galaxies. We often parametrize the clustering by σ8, the average fluc-
tuation on a scale R = 8h−1 Mpc: Figure 8.6 shows that σ8 ≈ 0.9. The wiggles
at k ∼ 0.1 correspond to the ‘baryon oscillations’ that influence the cosmic back-
ground radiation: see Section 8.5. If P(k) ∝ kn and σ (M) is the variance in density
over a region containing a mass M ≈ 4π R3ρ̄/3, then, since M ∝ R3, we have
σ (M) ∝ M−(n+3)/6. Cosmological models for the development of structure can
predict P(k); we return to this topic in Section 8.5.

Problem 8.7 The quantity 〈�2
k〉1/2 gives the expected fractional deviation |δ(x)|

from the mean density in an overdense or diffuse region of size 1/k. Write δ(x)

and �(x) as Fourier transforms and use Equation 3.9, Poisson’s equation, to

show that these lumps and voids cause fluctuations ��k in the gravitational

potential, where k2|��k | ∼ 4πGρ̄〈�2
k〉1/2. Show that, when P(k) ∝ k, the

Harrison–Zel’dovich spectrum, |��k | does not depend on k: the potential is

equally ‘rippled’ on all spatial scales.

In this section we have seen that the present-day distribution of galaxies is
very lumpy and inhomogeneous on scales up to 50h−1 Mpc. But measurements
of the cosmic background radiation show that its temperature is the same in all
parts of the sky to within a few parts in 100 000. As we saw in Section 1.5,
before the time of recombination when z = zrec ≈ 1100, the cosmos was largely
filled with ionized gas. Since light could not stream freely through the charged
particles, the gas was opaque and glowing like a giant neon tube. The Universe
became largely neutral and transparent only after recombination. Because the
cosmic background radiation is smooth today, we know that the matter and
radiation were quite smoothly distributed at that time. How could our present
highly structured Universe of galaxies have arisen from such uniform beginnings?
To understand what might have happened, we must look at how the Universe
expanded following the Big Bang, and how concentrations of galaxies could form
within it.
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8.2 Expansion of a homogeneous Universe

Because the cosmic background radiation is highly uniform, we infer that the
Universe is isotropic – it is the same in all directions. We believe that on a large
scale the cosmos is also homogeneous – it would look much the same if we lived
in any other galaxy. Then, mathematics tells us that the length s of a path linking
any two points at time t must be given by integrating the expression

�s2 = R2
(

�σ 2

1 − kσ 2
+ σ 2 �θ2 + σ 2 sin2θ �φ2

)
, (8.5)

where σ, φ, θ are spherical polar coordinates in a curved space. The origin σ = 0
looks like a special point, but in fact it is not. Just as at the Earth’s poles where
lines of longitude converge, the curvature here is the same as everywhere else,
and we can equally well take any point to be σ = 0. The constant k specifies the
curvature of space. For k = 1, the Universe is closed, with positive curvature and
finite volume, analogous to the surface of a sphere; R is the radius of curvature. If
k = −1, we have an open Universe, a negatively curved space of infinite volume,
while k = 0 describes familiar unbounded flat space.

Near the origin, where σ � 1, the formula for �s is almost the same for all
values of k; on a small enough scale, curvature does not matter. If we look at a tiny
region, the relationships among angles, lengths, and volumes will be the same as
they are in flat space. We can call the comoving coordinate σ of Equation 8.5 an
‘area radius’, because at time t the area of a sphere around the origin at radius σ is

A(σ, t) = 4πR2σ 2. (8.6)

Problem 8.8 In ordinary three-dimensional space, using cylindrical polar coor-

dinates we can write the distance between two nearby points (R, θ, z) and

(R + �R, θ + �θ, z + �z) as �s2 = �R2 + R2 �θ2 + �z2. The equation

R2 + z2 = R2 describes a sphere of radius R: show that, if our points lie on this

sphere, then the distance between them is

�s2 = �R2(1 + R2/z2) + R2 �θ2 = R2

(
�σ 2

1 − σ 2
+ σ 2 �θ2

)
, (8.7)

where σ = R/R. Integrate from a point P, at radius R and with z > 0, to the

‘north pole’ at z = R to show that the distance s = R arcsin σ . Show that the

circumference 2π R of the ‘circle of latitude’ through P is always larger than

2πs, but approaches it when s � R. When k = 1 in Equation 8.5, any surface

of constant φ is the surface of a sphere of radius R.

The cosmic expansion is described by setting R = R(t), allowing the radius
of curvature to grow with time. Apart from their small peculiar speeds, galaxies
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remain at points with fixed values of σ, φ, θ ; so these are called comoving
coordinates. The separation d of two galaxies is just the length s of the short-
est path between them. So, if they stay at fixed comoving coordinates, d expands
proportionally to R(t): Hubble’s law is just one symptom of the expansion of
curved space. Equation 8.5 tells us that the two systems are carried away from
each other at a speed

Vr = ḋ = Ṙ(t)

R(t)
d ≡ H (t)d. (8.8)

Here H (t) is the Hubble parameter, which at present has the value H0. Equation 8.8
describes the average motion of the galaxies; we defer discussion of the peculiar
motions that develop from the gravitational pull of near neighbors until Section 8.4
below.

General Relativity tells us that the distance between two events happening at
different times and in different places depends on the motion of the observer. But
all observers will measure the same proper time τ along a path through space and
time connecting the events, which is found by integrating

�τ 2 = �t2 − �s2/c2. (8.9)

Light rays always travel along paths of zero proper time, �τ = 0. If we place
ourselves at the origin of coordinates, then the light we receive from a galaxy at
comoving distance σe has followed the radial path

c �t

R(t)
= − �σ√

1 − kσ 2
. (8.10)

The light covers less comoving distance per unit of time as the scale length R(t)
of the Universe grows. We can integrate this equation for a wavecrest that sets off
at time te, arriving at our position now at time t0:

c
∫ t0

te

dt

R(t)
=
∫ σe

0

dσ√
1 − kσ 2

. (8.11)

Suppose that another wavecrest sets off later, by a time �te. We receive it at time
t0 + �t , given by the same equation with the new departure and arrival times.
The galaxy’s comoving position σe, and the integral on the right-hand side of
Equation 8.11, have not changed. So the left-hand side also stays constant:

∫ t0+�t

te+�te

dt

R(t)
=
∫ t0

te

dt

R(t)
, so

�te
R(te)

= �t

R(t0)
, (8.12)

as long as �t � R(t)/Ṙ(t). Thus all processes in the distant galaxy appear
to be slowed down by the factor R(t0)/R(te). If �te is the time between two
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consecutive crests emitted with wavelength λe = c �te, that light is received with
λobs = c �t . So the wavelength grows along with the scale length R(t), while
the frequency, momentum, and energy of each photon decay proportionally to
1/R(t). The measured redshift z of a distant galaxy tells us how much expansion
has taken place since the time te when its light set off on its journey to us. This is
the cosmological redshift of Equation 1.34:

1 + z = λobs

λe
= R(t0)

R(te)
. (8.13)

We often use redshift z(t) as a substitute for time te or comoving distance σe. The
time te corresponding to a given redshift depends on how fast the Universe has
expanded, while Equation 8.11 tells us the comoving distance σe from which the
light would have started.

The rate at which the Universe expands is set by the gravitational pull of matter
and energy within it. We first use Newtonian physics to calculate the expansion,
and then discuss how General Relativity modifies the result. Consider a small
sphere of radius r , at a time t when our homogeneous Universe has density ρ(t);
we take r � R(t), so that we can neglect the curvature of space. Everything
is symmetric about the origin r = 0, so we appeal to Newton’s first theorem
in Section 3.1: the gravitational force at radius r is determined only by the mass
M(<r ) within the sphere. If our sphere is large enough that gas pressure forces are
much smaller than the pull of gravity (see Section 8.5 below), then Equation 3.20
gives the force on a gas cloud of mass m at that radius:

m
d2r

dt2
= −GmM(<r)

r2
= −4πGm

3
ρ(t)r . (8.14)

Our sphere of matter is expanding along with the rest of the Universe, so its radius
r (t) ∝ R(t). The mass m of the cloud cancels out, giving

R̈(t) = −4πG

3
ρ(t)R(t); (8.15)

the higher the density, the more strongly gravity slows the expansion.
Nothing enters or leaves our sphere, so the mass within it does not change:

ρ(t)R3(t) is constant. Multiplying by Ṙ(t) tells us how the kinetic energy
decreases as the sphere expands:

1

2

d

dt
[Ṙ2(t)] = −4πG

3

ρ(t0)R3(t0)

R2(t)
Ṙ(t), (8.16)

where the time t0 refers to the present day. Integrating, we have

Ṙ2(t) = 8πG

3
ρ(t)R2(t) − kc2, (8.17)
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where k is a constant of integration. Although we derived it using Newtonian
theory, Equation 8.17 is also correct in General Relativity, which tells us that the
constant k is the same one as in Equation 8.5. According to thermodynamics, as
heat �Q flows into a volume V its internal energy E must increase, or it expands
and does work against pressure:

�Q = �E + p �V = V �(ρc2) + (ρc2 + p)�V, (8.18)

where the density ρ includes all forms of matter and energy. The cosmos is
uniform, so no volume V gains heat at the expense of another:

�Q = 0 = �ρ +
(
ρ + p

c2

)�V
V , or

dρ

dt
= −3

Ṙ(t)

R(t)

(
ρ + p

c2

)
. (8.19)

Differentiating Equation 8.17 and substituting for dρ/dt yields

R̈(t) = −4πG

3
R(t)

[
ρ(t) + 3p(t)

c2

]
. (8.20)

This change to Equation 8.15 shows that, in General Relativity, the pressure p adds
to the gravitational attraction. Equations 8.17 and 8.20 describe the Friedmann
models, telling us how the contents of the Universe determine its expansion.

For cool matter, the pressure p ∼ ρc2
s , where the sound speed cs � c. So

we can safely neglect the pressure term in Equation 8.20, and Equation 8.19 tells
us that the density follows ρ(t) ∝ R−3(t). For radiation, and particles moving
almost at the speed of light, pressure is important: p ≈ ρc2/3, where ρ is the
energy density divided by c2. We have ρ(t) ∝ R−4(t) from Equation 8.19. For
any mixture of matter and radiation, the term ρ + 3p/c2 must be positive, so the
expansion always slows down. While matter and radiation account for most of
the energy, ρ(t)R2(t) decreases as R(t) grows. Thus, in a closed Universe with
k = 1, the right-hand side of Equation 8.17 becomes negative at large R. But Ṙ2

cannot be negative, so the distance between galaxies cannot grow forever; R(t)
attains some maximum before shrinking again. If the Universe is open with k ≥ 0,
the expansion will never halt.

General Relativity also allows a vacuum energy, with constant density ρVAC =
�/(8πG). Since ρVAC does not change, the rightmost term of Equation 8.19
must also be zero, so the pressure pVAC = −�c2/(8πG). Instead of a pressure
pushing inwards on the contents of our sphere, this term represents a tension
pulling outwards. The vacuum energy contributes a positive term to the right-
hand side of Equation 8.20, speeding up the expansion. If the Universe expands
far enough, the vacuum energy must become the largest term, andR(t) then grows
exponentially.
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Problem 8.9 By substituting into Equation 8.20, show that, when vacuum energy

dominates the expansion, we have R(t) ∝ exp(t
√

�/3).

There are reasons to believe that very early, at t ∼< 10−32 s, ρVAC might have
been much larger than the density of matter or radiation. During this period, R(t)
inflated, growing exponentially by a factor ∼e70 ≈ 1030. The almost uniform
cosmos that we now observe would have resulted from the expansion of a tiny
near-homogeneous region. Because this patch was so small, the curvature of space
within it would have been negligible; hence devotees of inflation expect our present
Universe to be nearly flat, with k = 0. We will see in Section 8.4 that the measured
temperature fluctuations in the cosmic background radiation imply that this is in
fact so.

Further reading: for a discussion of the physics behind inflation, see Chapter 11
of Ryden’s Introduction to Cosmology.

In the borderline case when space is flat and k = 0, Equation 8.17 requires
that the density ρ is equal to the critical value

ρ(t) = ρcrit(t) ≡ 3H 2(t)

8πG
. (8.21)

At the present day, the critical density ρcrit(t0) = 3.3 × 1011h2M� Mpc−3. We
can measure the mass content of the Universe as a fraction of this critical density,
defining the density parameter �(t) as

�(t) ≡ ρ(t)/ρcrit(t), (8.22)

and writing �0 for its present-day value. Equation 8.17 then becomes

H 2(t)[1 − �(t)] = −kc2/R2(t). (8.23)

If the Universe is closed, with k = 1, then �(t) > 1 and the density always
exceeds the critical value, whereas if k = −1, we always have �(t) < 1. If the
density is now equal to the critical value, then Equation 8.23 tells us that �(t) must
be unity at all times. The present value �(t0) is often written as �tot or (especially
when � = 0) as �0.

We already saw in Section 1.5 that normal (baryonic) matter, largely neutrons
and protons, makes up only 4%–5% of the critical density. Including the dark
matter, in Section 8.4 below we arrive at only (0.2−0.3)ρcrit. Radiation contributes
hardly anything. So space can be flat only if there is a nonzero vacuum energy. This
is often called the dark energy. It probably has a different physical origin from
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Fig. 8.7. For the benchmark cosmology with�r = 8.42×10−5,�m = 0.3, and�� = 0.7,

the fraction of the critical density contributed at each time by radiation (dotted line), matter

(solid), and the dark energy (dashed). For this model, matter–radiation equality occurs at

zeq = 3570, teq = 0.05 Myr; recombination is complete at zrec = 1100, trec = 0.35 Myr.

The present age t0 = 13.5 Gyr.

the vacuum energy causing inflation at early times. We describe the contributions
of matter and dark energy at the present time by writing

�m ≡ ρm(t0)/ρcrit(t0) and �� ≡ ρVAC/ρcrit(t0). (8.24)

In the benchmark model illustrated in Figure 8.7, �m = 0.3, �� = 0.7, and
H0 = 70 km s−1 Mpc−1; thus space is flat. The baryon density �B = 0.045, with
cold dark matter (see Section 8.5) making up the remainder of �m. A warning:
although �m, ��, and similar quantities do not carry the subscript 0, they always
refer to the present day.

After inflation ended, the Universe was radiation-dominated. It was so
extremely hot that its energy was almost entirely due to radiation and relativistic
particles, moving so close to light speed that their energy, momentum, and pres-
sure are related in the same way as for photons. From Equation 8.19, we know
that the energy density ρrc2 is proportional to R−4(t). (If few photons are created
or destroyed, the number per unit volume is proportional to 1/R3(t), while by
Equation 8.12 the energy of each falls as 1/R(t).) For a blackbody spectrum, the
temperature T ∝ 1/R(t): recall Problem 1.17.

As expansion proceeded the density of matter followed ρm(t) ∝ R−3(t),
falling more slowly than the radiation density. At the time teq of matter–radiation
equality, about a million years after the Big Bang, its energy density ρm(t)c2

exceeded that in radiation, and the Universe became matter-dominated. Figure 8.7
shows that, in the benchmark model, the matter density has only recently dropped
below that of the dark energy.
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Problem 8.10 The cosmic background radiation is now a blackbody of tem-

perature T = 2.73 K: show that its energy density ρrc2 = 4.2 × 10−13 erg cm−3,

so �r = 4.1 × 10−5h−2. From Equation 1.30, the matter density ρm = 1.9 ×
10−29�mh2 g cm−3. Show that the energy density ρmc2 was equal to that in radi-

ation at redshift zeq ≈ 40 000�mh2. This is well before the redshift of recom-

bination, when the gas becomes largely neutral. If the neutrinos νe, νμ, and ντ

have masses mν � kBTeq/c2, where Teq is the temperature at the time teq, then at

earlier times they are relativistic. The energy density of ‘radiation’ is increased by

a factor of 1.68, and equalization is delayed until zeq ≈ 24 000�mh2, or z ≈ 3600

in the benchmark model.

To measure the cosmic expansion relative to the present day, we define the
dimensionless scale factor a(t) ≡ R(t)/R(t0). We use Equation 8.23 to rewrite
k/R2(t0) in terms of the present-day quantities H0 and �tot = �(t0). Then Equa-
tion 8.17 becomes

kc2

R2(t0)
= H 2

0 (1 − �tot) = a2(t)

[
H 2(t) − 8πG

3
ρ(t)

]
. (8.25)

Adding up the contributions to ρ(t) and recalling that 1 + z = 1/a(t), we have

H 2(t) = H 2
0 [�r(1 + z)4 + �m(1 + z)3 + (1 − �tot)(1 + z)2 + ��]. (8.26)

Problem 8.11 Blackbody radiation and relativistic particles provide most of the

energy density at t � teq. Show that Equation 8.26 then implies that H (t) =
ȧ/a ∝ a−2, so ȧ ∝ 1/a(t); hence R(t) ∝ t1/2, and H (t) = 1/(2t). Early on,

the leftmost term of Equation 8.25 is tiny, so H 2(t) ≈ 8πGρ(t)/3: show that the

temperature T (t) is given by Equation 1.38.

Problem 8.12 Use Equation 8.20 to show that, in the benchmark model, cosmic

expansion has speeded up since ρm(t) = 2ρVAC, at redshift z = 0.67. According

to this model, we live during that small fraction of cosmic history in which

normal gravity and the cosmological constant have roughly equal influence on

the expansion. At z ≥ 1, the � term hardly affects the expansion, whereas when

R(t) ≥ 2R(t0), the gravitational pull of matter will become irrelevant.

Problem 8.13 Show that, when cool matter accounts for most of the energy

density, and the Universe is flat with k = 0, we have

ȧ ∝ a−1/2 , and a(t) ∝ t2/3 . (8.27)
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Show that, if k = 0, then Equation 8.27 holds when zeq � 1 + z � (��/�m)1/3,

whereas at very late times a(t) ∝ exp (t
√

�/3). If the curvature is negative, with

�tot = �r + �m + �� < 1, the third term of Equation 8.26 exceeds the second

when 1 + z < (1 − �tot)/�m. Expansion then proceeds almost at a constant

speed, with a(t) ∝ t ; it is barely slowed by the matter, and not accelerated by

dark energy until (1 + z)2 < ��/(1 − �tot).

Equation 8.27 is a good description of the expansion over much of cosmic
history. In particular, most of the structure of galaxy clusters and voids that we
see today developed after the Universe became matter-dominated, but before the
dark energy became important.

Problem 8.14 Even if the cosmos has infinite volume, we can observe only a

finite part of it because light travels at a finite speed. From Equation 8.11, light

reaching us at time t has travelled no further than the distance σH given by

c
∫ t

0

dt ′

R(t ′)
≡
∫ σH

0

dσ√
1 − kσ 2

, (8.28)

so we cannot see beyond our horizon, at comoving radius σH. Explain why only

points within σH(t) of each other can exchange signals or particles before time

t . Use Equation 8.27 to show that, while the Universe was matter-dominated,

R(t)σH ≈ 3ct ; at the time trec of recombination R(trec)σH ≈ 0.43 Mpc in the

benchmark model of Figure 8.7. We will see below that a sphere of matter with

this diameter would cover only about 2◦ on the sky. So it is very surprising that the

cosmic microwave background has almost the same spectrum across the whole

sky.

An inflationary cosmology can explain this horizon problem. When R(t) ∝
exp (t

√
�/3) after some initial time ti, show that when t � ti

∫ t

ti

dt ′

R(t ′)
≈
√

3

�

1

R(ti)
so R(t)σH ≈ c

√
3

�

R(tf)

R(ti)
. (8.29)

For ti ∼ 10−35 s and
√

3/� ∼ ti as in most inflationary models, show that,

when inflation ends at tf ≈ 70ti, the horizon distance R(tf)σH ≈ ctf × e70/70 ≈
3.6 × 1028ctf or ∼7 km. After inflation, the Universe is radiation-dominated, so

a(t) ∝ t1/2. Show that, by the time of matter–radiation equality at ∼0.35 Myr,

this distance has grown by z(teq)/z(tf) to about 30 Gpc. Inflation expands a region

within which light signals could be exchanged, until it is much larger than the

entire Universe that we can see today.

Further reading: on cosmic horizons, see Chapter 10 of the book by Padmanabhan.
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8.2.1 How old is that galaxy? Lookback times and ages

Because light travels at a finite speed, we see a younger cosmos as we look toward
more distant galaxies at higher redshifts. As we observe a galaxy at redshift z, at
what time te did those photons leave on their journey toward us? Equation 8.13
tells us that they arrive today at time t0 with redshift 1 + z = R(t0)/R(te). Light
from another galaxy at a smaller redshift z − �z must have been emitted slightly
later by a small interval �te, when R(te) was larger by �R = Ṙ(te)�te. Since

�z = −�R R(t0)

R2(te)
, we have �te = − 1

H (te)

�z

1 + z
, (8.30)

where H (t) ≡ Ṙ(t)/R(t) is the Hubble parameter. Integrating the second relation
gives us the lookback time t0 − te:

t0 − te =
∫ z

0

1

H (t)

dz′

1 + z′ . (8.31)

At redshifts z ∼< zeq, when the density of radiation is no longer important, we
can calculate this time simply for two special cases: a flat Universe with k = 0,
and one with matter only, so that � = 0. When the densities of dark energy and
of matter must add to give �m + �� = 1,

te =
∫ ∞

z

1

H (z′)
dz′

1 + z′ =
∫ ∞

z

dz′

H0(1 + z′)[�m(1 + z′)3 + ��]1/2
, (8.32)

which integrates to

te = 2

3H0
√

��

ln

(
1 + cos θ

sin θ

)
, where tan2θ ≡ (1 − ��)

��

(1 + z)3. (8.33a)

Even if k �= 0, this formula is accurate to within a few percent if we replace ��

by 0.3�� + 0.7(1 −�m), so long as this quantity is positive. For � = 0, we have

te =
∫ ∞

z

1

H0
√

1 + �0z

dz′

(1 + z′)2
,

where �0 = �m is the present-day value of the density parameter �(t). We have
exact expressions when �0 = 1 and the density is equal to the critical value, or
in an empty Universe with �0 = 0:

t0 − te =

⎧⎪⎪⎨
⎪⎪⎩

1

H0

∫ z

0

dz′

(1 + z′)5/2
= 2

3H0

[
1 − 1

(1 + z)3/2

]
if �0 = 1,

1

H0

∫ z

0

dz′

(1 + z′)2
= 1

H0

z

(1 + z)
for �0 = 0 .

(8.33b)
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Fig. 8.8. Left, lookback time t0 − te to an object seen with redshift z, in units of the Hubble

time tH; the right-hand scale and right curve-segments show te itself. Right, comoving

volume per unit redshift,R−3(t)dV/dz, in units (c/H0)3. The solid line is for � = 0, �m =
1; the dashed line shows � = 0 = �m; the dotted line is for the benchmark model.

Early in the matter-dominated era, the curvature term that we left out of Equa-
tion 8.32 will be tiny and the �� term is also small, so

te ≈ 2

3H0
√

�m

1

(1 + z)3/2
when

�m

�r
� 1 + z �

(
��

�m

)1/3

and
1

�m
. (8.34)

Problem 8.15 Nearby, Hubble’s law tells us that an object at distance d recedes

with speed Vr = cz = H0d. The lookback time is just the time that light takes

to cover this distance, so t0 − te = d/c = z/H0. Show that both parts of

Equation 8.33 agree with this in the limit z � 1.

Problem 8.16 Show that, if � = 1 in a matter-dominated Universe, then H (t) =
2/(3t), so that the time t0 since the Big Bang is two-thirds of our simple estimate

tH = 1/H0 in Equation 1.28. From Equation 8.21, show that the density falls as

1/t2.

Equation 8.33 also tells us t0, the present age of the Universe. When � = 0,
this is always less than our simple estimate tH = 1/H0 in Equation 1.28. For an
empty Universe with � = 0, t0 = H−1

0 = tH, whereas for �0 = 1 the age is only
two-thirds as large. For a fixed value of H0, Figure 8.8 shows that the lookback
time in gigayears to a given redshift z is longer in the case �0 = 0 than for �0 = 1,
but the galaxies are older: the time te is longer. When � > 0 and k = 0 so the
Universe is flat, t0 exceeds the Hubble time tH = 1/H0 if the matter density is
low, with �m ∼< 0.2. For example, �� = 0.9, �m = 0.1 yields t0 = 1.3tH. In the
benchmark model, the age is 0.964tH or 13.5 Gyr.
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Problem 8.17 Galaxies have now been observed at redshifts z ∼> 5: how old are

they? Show that, at z = 5, te = 0.17t0 = 1.6h−1 Gyr if the Universe is nearly

empty so �0 ≈ 0, but only 0.07t0 = 0.44h−1 Gyr if �0 = 1, while for the

benchmark model te = 0.8h−1 Gyr. The time available to assemble the earliest

galaxies is very short! Show that, at redshift z = 3, the time te is 2.4h−1 Gyr if

�0 = 0, 0.82h−1 Gyr for �0 = 1, and 0.07tH = 1.5h−1 Gyr for the benchmark

model.

8.3 Observing the earliest galaxies

Our view of very distant objects is complicated by the cosmic expansion, and
by the curvature of the space through which their light must travel. Because of
the expansion, distant galaxies look bigger than we would expect: at redshifts
z larger than 1/�m a given object covers more of the sky when it is further
from us. But the starlight of these big galaxies is rapidly dimmed as it spreads
out in the expanding cosmos. Their ultraviolet and visible light is also shifted
into the infrared, where strong emission lines from the Earth’s atmosphere (see
Figure 1.15) make it more difficult to observe from the ground. To estimate how
densely galaxies are scattered through space, we need to take account of both
cosmic expansion and the curvature of space.

8.3.1 Luminosity, size, and surface brightness

For nearby objects, the apparent brightness F of a star or galaxy at distance d is
related to its luminosity L by

F = L/(4πd2). (1.1)

In an expanding Universe, this no longer holds. Objects appear dimmer because
the cosmic expansion saps photons of their energy, and the area of the sphere over
which the light rays must spread is expanding. This is just as well, because in a
homogeneous static cosmos the light of distant stars would accumulate without
limit, making the sky bright everywhere: this is Olbers’ paradox.

Problem 8.18 Suppose that galaxies of luminosity L are spread uniformly

through space. Show that the number N (>F) that you observe to have apparent

brightness larger than F varies as F−3/2, while the number between F and

F + �F varies as N (F) ∝ F−5/2. Explain why N (F) ∝ F−5/2 even when the

galaxies have a range of luminosities, as long as they are spread uniformly and

the luminosity function is the same everywhere.
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Fig. 8.9. Left: as observer O receives the light of galaxy G, its energy is spread over

a sphere of area 4πR2(t0)σ 2
e . Right: as seen by observer O, galaxy G with diameter D

covers D/R(te)σe radians on the sky.

Show that the total light from all galaxies that appear brighter than F
 is

proportional to
∫∞

F

F N (F)dF . Whenever N (F) rises faster than 1/F as F → 0,

this grows without limit as F
 decreases.

To see how we should modify Equation 1.1, let σe be the comoving distance
or ‘area radius’ of a galaxy G that we observe today with redshift z. The apparent
brightness of a distant galaxy is diminished by one power of 1 + z because each
photon carries less energy, and by another because those photons arrive at a slower
rate. The left panel of Figure 8.9 shows that G’s light is now spread over a sphere
with area 4πR2(t0)σ 2

e . The flux of energy F that we receive, in W m−2, is related
to the total or bolometric luminosity L by

F = L

4πR2(t0)σ 2
e (1 + z)2

≡ L

4πd2
L

, where dL = (1 + z)R(t0)σe. (8.35)

We call dL the luminosity distance of the galaxy.
Similarly, we must modify Equation 1.2, telling us how large an object will

appear on the sky. Suppose that galaxy G is D kpc across. The right panel of
Figure 8.9 shows that, at time te, it covered a fraction D/[2πR(te)σe] of the
circumference of the sky. So it extends over an angle

α (in radians) = D

R(te)σe
≡ D

dA
, so dA = R(te)σe = R(t0)σe

1 + z
. (8.36)

Thus the angular-size distance dA is less than the luminosity distance dL by
a factor (1 + z)2. We must use the distance dA when calculating the gravita-
tional bending of light using Equations 7.14 and 7.25. A warning: some authors
refer to R(t0)σe as the angular-size distance; this is 1 + z times larger than our
dA.
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Fig. 8.10. Left, the measured radii R25 of two model galaxies: an exponential disk (solid

curve) and an R1/4 spheroid (Equation 6.1: dashed curve). At z = 0 we take R25 = 5h R

for the disk and R25 = 4Re for the spheroid, then for each redshift we plot the radius where

the measured surface brightness reaches this level. Right, the fraction of the total light

within this radius. At small redshifts, the exponential disk shrinks less than the spheroid,

but when z ∼> 1 it is more strongly affected.

Problem 8.19 Show that a galaxy of known luminosity L and diameter D at

redshift z will appear larger by a factor of (1 + z)2 than one would expect by

using Equation 1.1 to calculate its distance from its measured apparent brightness,

and then finding the apparent diameter from Equation 1.2.

The surface brightness I (x) of a galaxy is the flux we receive from each square
arcsecond as it appears on the sky. If we integrate over all wavelengths to measure
the bolometric surface brightness, then, instead of Equation 1.23, we have

I (x) = F

α2
= L/

(
4πd2

L

)
D2/d2

A

= L

4π D2

(
dA

dL

)2

= L

4π D2

1

(1 + z)4
. (8.37)

The bolometric surface brightness of a nearby galaxy, with z � 1, does not
diminish with distance. If we neglect changes caused by the birth of new stars
or by stellar aging, then a given isophote always corresponds to a fixed radius
in the galaxy, and encloses the same fraction of the galaxy’s light, regardless
of the distance. But at redshifts beyond a few tenths I (x) drops rapidly, making
photometry increasingly difficult and expensive.

Figure 8.10 shows how an isophote defined by a fixed surface brightness
shrinks, and the amount of light within it decreases. We must correct for this
missing light when comparing the luminosities of distant galaxies with those
of nearby systems. The correction would depend only on the redshift z if the
luminosity from each square parsec of the galaxy had remained unchanged. But
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we will see in Section 9.4 that many galaxies at z ∼> 0.5 were significantly brighter
than their counterparts today. We can interpret the brightening with models to tell
us how the light of new stars should fade through time; Figure 6.18 illustrates a
simple model in which all the galaxy’s stars are born at once. To turn this into
a prediction about luminosity at a given redshift, we need Equation 8.31, which
involves the expansion rate H (z) as well as the redshift.

To calculate the distances dL and dA to a galaxy G seen at redshift z, we must
know its comoving ‘area’ distance σe. We start by asking how far its light must
go to reach us. According to Equation 8.5, at time t the distance from the origin
to a point with area radius σ is

R(t)χ ≡
∫ σ

0
ds = R(t)

∫ σ

0

dσ ′
√

1 − kσ ′2 . (8.38)

This defines the comoving ‘distance radius’ χ , with

χ (σ ) =
⎧⎨
⎩

arcsin(σ ) for k = 1,

σ for k = 0,

arcsinh(σ ) = ln(σ + √
1 + σ 2) for k = −1.

(8.39)

The two distances are the same if the Universe is flat, with k = 0. In a closed
Universe, with k = 1, the area radius σ is smaller than the distance radius χ , just
as the length of a circle of latitude on the Earth is less than 2π times the distance
to the pole. Conversely, if k = −1, and the Universe is open, we have σ > χ :
the perimeter of a circle, or the area of a sphere, is larger than we would expect,
compared with the distance from the center to its boundary.

Moving at light speed, in time �t galaxy G’s light travels a distance c �t =
R(t)�χ toward us. Using Equation 8.30 to relate �t to the redshift, the total
distance is

χe =
∫ t0

te

c dt

R(t)
=
∫ z

0

c

R(t0)

dz′

H (t)
. (8.40)

This integral can be done exactly when � = 0:

R(t0)H0

c
χe =

⎧⎪⎪⎨
⎪⎪⎩

∫ z

0

dz′

(1 + z′)3/2
= 2

(
1 − 1√

1 + z

)
for �0 = 1,∫ z

0

dz′

(1 + z′)
= ln(1 + z) for �0 = 0.

(8.41)

Now, substituting for χe in Equation 8.39 gives the comoving radius σe:

R(t0)σe =

⎧⎪⎪⎨
⎪⎪⎩

2c

H0

[
1 − 1√

1 + z

]
for �0 = 1,

c

H0

z(1 + z/2)

1 + z
for �0 = 0.

(8.42a)
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Fig. 8.11. Left, the luminosity distance dL; and right, the angular-size distance dA, for a

source at redshift z; both are in units of c/H0 ≈ 3h−1 Gpc. The solid curve (�0 = 1) and

the dashed line (�0 = 0) are for � = 0; the dotted line is for the benchmark model.

An excessive quantity of algebra yields the more general Mattig formula

R(t0)σe = c

H0

2

�2
0(1 + z)

[�0z + (�0 − 2)(
√

1 + �0z − 1)]. (8.42b)

Notice that at large redshift we have R(t0)σe → 2c/(H0�0). When the density is
small, with �0 � 1, a more convenient form is

R(t0)σe = c

H0

z

1 + z

1 + √
1 + �0z + z

1 + √
1 + �0z + �0z/2

. (8.42c)

For the flat Universe with �tot = 1 there is no general solution, but for �m >∼ 0.1

R(t0)σe ≈ 2c
/ (

H0z � 0.4
m

)
as z → ∞. (8.43)

Figure 8.11 shows dL and dA for some special cases. Nearby, both grow
linearly with the redshift, according to Problem 8.21. But the luminosity distance
dL always increases faster than this linear relation, more strongly so when the
density �tot is low: this rescues us from Olbers’ paradox. The angular-size distance
dA grows more slowly; it reaches a maximum at z ∼ 1/�0 (or z ∼ 1/�m in the
flat model with � = 0), and then declines. In our benchmark model, at redshifts
z ∼> 1.5 a source looks larger as it is moved further away.

Problem 8.20 Show from Equation 8.39 that σ ≈ χ when both are much less

than unity, and that both dA and dL are then much less than c/H0 ≈ 2990h−1 Mpc.

(We do not have to worry about the curvature of space when measuring nearby

galaxies, just as we are not concerned with the Earth’s curvature when crossing

a town.)
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Problem 8.21 Use Equation 8.40 to show that, when the redshift z � 1, both

dL and dA tend to the distance that we would normally calculate from the redshift

z: dA = R(te)σe → c/H0 ≈ dL. From Equation 8.42b, show that, when � = 0

and the redshift is large, dA → 2c/(H0z�m).

Problem 8.22 With Mbol,� = 4.75, L
 = 2 × 1010L�, and H0 = 70 km s−1

Mpc−1, show that, if � = 0, an L
 galaxy at redshift z = 3 would have mbol =
25.2 if �0 = 1, or mbol = 26.6 for �0 = 0, whereas mbol = 26.1 in the

benchmark cosmology.

Problem 8.23 Show that, in a low-density Universe with �0 = 0, dA → c/(2H0)

at large redshifts. Use Figure 8.11 to show that the angle subtended by an object

10 kpc across is always at least 1.4h arcsec for �0 = 0, and ∼>3h arcsec if �0 = 1.

(The star-forming regions of Figure 9.14 have radii of 0.1–0.2 arcseconds; so

these bright patches are ∼<1 kpc across.)

8.3.2 Galaxy spectra and photometric redshifts

In practice we do not measure bolometric luminosities; we measure the appar-
ent brightness in a specific band of wavelength or frequency. Cosmic expansion
changes a galaxy’s color: when we observe in a particular waveband, the light
we now see was radiated in a bluer part of the spectrum. Suppose that, at time te,
a galaxy that we see at redshift z has luminosity Lλ(λ, te)�λ in the wavelength
range from λ to λ + �λ. The apparent brightness FBP in a bandpass BP that
transmits all the light between wavelengths λ1 and λ2 is given by Equation 8.35,
if we take the luminosity L to be the energy emitted at wavelengths that will pass
through our bandpass when we receive it. So

FBP = 1

4πd2
L

∫ λ2/(1+z)

λ1/(1+z)
Lλ(λ, te)dλ

= 1

4πd2
L

1

1 + z

∫ λ2

λ1

Lλ[λ/(1 + z), te]dλ. (8.44)

For a nearby galaxy, Equation 1.15 tells us how to calculate its apparent
magnitude at any distance. But at large redshift we must add two more terms: the
apparent magnitude mBP in this bandpass is

mBP = MBP + 5 log10

(
dL

10 pc

)
+ kBP(z) + eBP(z). (8.45)

The absolute magnitude MBP is the apparent magnitude that the galaxy would
have if seen from a distance of 10 pc, emitting as it does at the present time t0.
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The term k(z), historically known as the k correction, represents the effect of
shifting the galaxy’s light in wavelength. The evolutionary term e(z), which we
will discuss in Section 9.3, allows for changes in the galaxy’s luminosity between
the time that its light was emitted and the present day.

From Equation 8.44, we have

kBP(z) ≡ 2.5 log10(1 + z) − 2.5 log10

{∫ λ2
λ1

Lλ[λ/(1 + z), t0]dλ∫ λ2
λ1

Lλ(λ, t0)dλ

}
, (8.46)

where Lλ(λ, t0) is the present-day spectrum. Of course, we cannot measure the
spectrum of a distant galaxy as it is today; that light is still on its way to us. But
we can calculate how a present-day galaxy would appear if we observed it at a
redshift z. Figure 8.12 shows that, if we observe in the B band at 4400 Å, an
elliptical galaxy will dim rapidly as its redshift increases, since our passband
moves into the ultraviolet region where its stars emit little light. A starburst galaxy
will fade much less, because its hot young stars are bright at short wavelengths.
At z ∼< 1 both galaxies fade much less in the red light of the I band at 8000 Å than
in the B band. So the B − I color becomes progressively redder at higher redshift.
At redshifts z ∼> 2, the light of both galaxies has largely moved into the infrared
region.

Problem 8.24 If a galaxy emits a spectrum Lν ∝ ν−α , show that Lλ ∝ λα−2,

and that k(z) = (α−1)×2.5 log10(1+z). The k correction is zero if νLν is nearly

constant so that α ≈ 1, as it is for many quasars (see Section 9.1). When the

spectrum declines more rapidly than Lν ∝ν−1 toward high frequencies, k(z) > 0,

and the object appears dimmer.

A photometric redshift is an estimate of a galaxy’s redshift made by comparing
its apparent brightness in several bandpasses with that predicted by a diagram like
Figure 8.12. For example, an elliptical galaxy at z ∼0.5 has already become very
red in the B − I color, but it is less so in V − I . At z ∼1, it is fading rapidly in the
I band, so the I − H color starts to redden. With 17 filters at wavelengths from
3640 Å to 9140 Å, the COMBO-17 team could estimate redshifts to �z ≈ 0.05
over the range 0.2 < z < 1.2. The most spectacular use of photometric redshifts
has been to find galaxies at z > 3. These Lyman break galaxies almost disappear at
wavelengths less than 912(1 + z) Å, where intergalactic atoms of neutral hydrogen
absorb nearly all their light (see Section 9.4).

Problem 8.25 Explain why, if we base a galaxy survey on images in the B band,

then at z ∼> 0.5 we will fail to include many of the systems with red spectra

similar to present-day ellipticals.
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Fig. 8.12. Spectra of two model galaxies: the stars of the bluer system formed in a single

burst 100 Myr ago, while those of the redder galaxy are all 4 Gyr old. Vertical lines show

B, I, H, and L wavelength regions from Figure 1.7. The top panel shows the emitted

light of each galaxy, while the lower panels illustrate how the redshift affects the relative

brightness in each bandpass. The energy in each wavelength region is proportional to the

area under the curve – S. Charlot.

8.3.3 How many galaxies? Space densities

To trace the formation of galaxies through cosmic history, we must take account
of the expansion in counting the number within any given volume. The number
of objects that we will see between redshifts z and z + �z is proportional to the
corresponding volume of space �V . This is just the product of the areaA(σe, te) =
4πR2(te)σ 2

e of the sphere containing the galaxy at the time its light was emitted
and the distance c|�te| that the light travels toward us in the time corresponding
to this interval in redshift. From Equations 8.30 and 8.31, we have

Ac|�te|
�z

≈ dV
dz

= 4πcR2(t0)σ 2
e

H (z)(1 + z)3
, (8.47)

where we replaced R(te) by R(t0)/(1 + z) in the last step.
The volume �V at redshift z will expand to fill a volume �V(1 + z)3 by

the present day: we refer to �V(1 + z)3 as the comoving volume. If the number
of galaxies in the Universe had always remained constant, then the comoving
density, the number in each unit of comoving volume, would not change. If there
are presently n0 of a particular galaxy type in each cubic gigaparsec, then between
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redshift z and z + �z we would expect (dN−/dz)�z of them, where

dN−
dz

= n0(1 + z)3 dV
dz

= n0c
4πR2(t0)σ 2

e

H (z)
. (8.48)

Comparing the measured number of galaxies dN /dz at each redshift with dN−/dz
from Equation 8.48 tells us how the comoving density has changed.

The left panel of Figure 8.8 shows the comoving volume (1 + z)3 dV/dz
between redshifts z and z + �z. It is much larger in the open Universe with
� = �0 = 0 than it is in the flat model with �0 = 1. So we expect to see
relatively more galaxies at high redshift in the open model. The benchmark model
has slightly more volume at low redshift than the � = �0 = 0 model, but less at
z ∼> 2.

Problem 8.26 Use Equations 8.23 and 8.42 to show that, if �0 = 0, then

redshift z = 5 corresponds to R(t0)σe = 2.92c/H0, whereas for �0 = 1,

R(t0)σe = 1.18c/H0. For any given density n(z), use Equation 8.48 to show that,

if �0 = 0, then at z = 5 we would expect to find roughly 15 times as many objects

within a small redshift range �z as we would see if �0 = 1. What is this ratio

at z = 3?

Quasars, the extremely luminous ‘active’ nuclei of galaxies which we discuss
in the following chapter, are so bright that we can see them across most of the
observable Universe. They also have strong emission lines that make it easy to
measure their redshifts. Figure 1.16 told us that each cubic gigaparsec now contains
∼106 galaxies with L ≈ L
, where L
 ≈ 2×1010L� is the luminosity of a bright
galaxy defined by Equation 1.24. At present, each cubic gigaparsec contains about
one very luminous quasar with L ∼> 100L
; bright quasars are much rarer than
luminous galaxies. But Figure 8.13 shows that, at redshifts z ≈ 2, the brightest
quasars were about 100 times more common than they are today. There was
roughly one quasar for every 10 000 present-day giant galaxies. What happened
to them?

If quasars represent the youth of a galactic nucleus, then at least one in 10 000
luminous galaxies must have been bright quasars in the past. The fraction could
be as high as 100% if the nuclear activity lasts much less than a gigayear. A period
with a quasar nucleus might be a normal part of a galaxy’s early development.

We will see in Section 9.1 that quasars shine by the energy released as gas
falls into a hugely massive black hole of ∼>109M�. In Section 6.4 we found that
today’s luminous galaxies harbor massive black holes at their centers; perhaps
these remain from an early quasar phase. It takes time to build up the black hole
as it consumes gas, so quasars are rare during the first quarter of cosmic history,
before z ∼ 2. It is perhaps more surprising that we begin to see them already at
z > 6, less than a gigayear after the Big Bang.
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Fig. 8.13. The curve shows the density of very radio-loud (νLν > 3 × 1010Lbol,� at

2.7 GHz) quasars, triangles show optically-bright quasars (L ∼> 100L
); both are most

common at redshifts z ∼ 2. Numbers of quasars bright in soft X-rays (filled dots) and

hard X-rays (open dots) follow the same pattern. Density per comoving Gpc3 is calculated

using the benchmark model – J. Wall.

8.4 Growth of structure: from small beginnings

The cosmic background radiation is almost, but not quite, uniform: across the
sky, its temperature differs by a few parts in 105. These tiny differences tell us
how lumpy the cosmos was at the time trec of recombination, when the radi-
ation cooled enough for neutral atoms to form. Quantum fluctuations in the
field responsible for inflation left their imprint as irregularities in the density
of matter and radiation. Most versions of inflation predict that fluctuations should
obey the random-phase hypothesis, and that the power spectrum P(k) ∝ k (see
Problem 8.7): we will call these the benchmark initial fluctuations. Equation 8.4
then tells us that the density varies most strongly on small spatial scales or
large k.

The largest features, extending a degree or more across the sky, tell us about
that early physics. Smaller-scale irregularities are modified by the excess grav-
itational pull toward regions of high density and by the pressure of that denser
gas. Observing them tells us about the geometry of the Universe and its matter
content. After recombination, dense regions rapidly became yet denser as sur-
rounding matter fell into them. By observing the peculiar motions of infalling
galaxies, we can probe the large-scale distribution of mass today and compare it
with what is revealed by the light of the galaxies.

8.4.1 Fluctuations in the cosmic microwave background radiation

How did the distribution of matter affect the cosmic background radiation as we
observe it today? To reach us from an overdense region, radiation has to climb
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out of a deeper gravitational potential. In doing this, it suffers a gravitational
redshift proportional to ��g, the excess depth of the potential: its temperature
T changes by �T , where �T/T ∼��g/c2. The temperature is reduced where
the potential is unusually deep, since ��g is negative there. But time also runs
more slowly within the denser region by a fraction �t/t = ��g/c2, so we see
the gas at an earlier time when it was hotter. The radiation temperature decreases
as T ∝ 1/a(t), so

�T

T
= −�a

a
= −2

3

�t

t
= −2

3

��g

c2
, (8.49)

where we have used a ∝ t2/3 from Equation 8.27. This partly cancels out the
gravitational redshift to give �T/T ∼��g/(3c2). At these early times, the aver-
age density ρ̄ is very nearly equal to the critical density of Equation 8.21. If our
region has density ρ̄(1 + δ) and radius R, its excess mass is �M = 4πρ̄R3δ/3.
We can write

3c2 �T

T
= ��g ∼−2G�M

R
= −8π

3
Gρ̄R2δ ≈ −δ(t)[H̄ (t)R]2. (8.50)

Radiation reaching us from denser regions is cooler.
The best current measurements of the cosmic microwave background on scales

larger than 0.3◦ are from the WMAP satellite, which was launched in June 2001.
WMAP confirmed that the background radiation has the form of a blackbody
everywhere on the sky: only its temperature differs slightly from point to point.
This is exactly what we would expect if it was affected by non-uniformities in
the matter density. We can describe the temperature variations by choosing some
polar coordinates θ, φ on the sky. As we look in a given direction, we can write
the difference �T from the mean temperature T using the spherical harmonic
functions Y m

l :

�T (θ, φ) =
∑
l>1

∑
−l≤m≤l

am
l Y m

l (θ, φ). (8.51)

Since Y m
l has l zeros as the angle θ varies from 0 to π , the am

l measure an
average temperature difference between points separated by an angle (180/ l)◦

on the sky. Apart from the l = 1 terms which reflect our motion relative to
the background radiation, all the am

l must average to zero; their squared aver-
age measures how strongly T fluctuates across the sky. Theorists aim to predict
Cl = 〈|am

l |2〉 averaged over all the m-values, since this does not depend on which
direction we chose for θ = 0, our ‘north pole’. Figure 8.14 shows �T (l), defined
by �2

T = T 2l(l + 1)Cl/(2π ).
Gravity, which makes denser regions even denser, and pressure forces that tend

to even out the density, have modified the fluctuations left behind after inflation.
These forces cannot propagate faster than light, so they act only within the horizon
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Fig. 8.14. Temperature fluctuations �T in the cosmic microwave background: triangular

points combine data from many experiments, circles are from WMAP. Horizontal bars

show the range of angular scales. Curves show predictions for the benchmark model

(solid), for a flat model with half as many baryons (dotted), and for �0 = 0.3, � = 0

(dashed). The second, third, and subsequent peaks correspond to regions that sound waves

could cross twice, three times, etc., before recombination. When l is small, we have few

am
l to average over (only five for l = 2), and vertical bars indicate larger uncertainties –

M. Tegmark, CMBFAST.

scale of Problem 8.14. When the gas became transparent, the comoving distance
σH to the horizon was

R(trec)σH = 3ctrec = 2c

H (trec)
≈ 2c

H0
√

�m(1 + zrec)3/2
, (8.52)

where we used Equation 8.26 in the last step. (Why can we ignore ��?) A region
of this size will expand to 184/(h2�m)1/2 Mpc by today. Because inflation left
us with P(k) ∝ k, on larger scales (at small l), we should expect �T (l) to rise
smoothly as l increases.

The angle θH that the horizon covers on the sky depends on �� and �m

through the angular-size distance dA. When � = 0 and �0z � 1, Equation 8.42
tells us that dA → 2c/(H0z�0). So only points separated by less than the angle

θH ≈ R(trec)σH

dA(trec)
≈
√

�0

zrec
≈ 2◦ ×

√
�0 (8.53)

can communicate before time trec. The lower the matter density, the smaller this
angle should be. Detailed calculation shows that, if �0 = 1, �T is largest on
scales just less than a degree, where we see the main acoustic peak in Figure 8.14.
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A model with �0 = 0.3 places the peak at roughly half this angle. Setting �m +
�� = 1 changes the way that the distance radius dA depends on the matter density.
From Equation 8.43 we have dA ∝ 1/� 0.4

m at large redshift, so the angular size
of the ripples is almost independent of �m. The observed position of the acoustic
peak is the most powerful current evidence in favor of dark energy.

We will see in the following section that, before recombination, irregularities
built up most strongly in the dark matter. The mixed fluid of baryons and radiation
then simply fell into the denser regions under gravity. The maximum distance
through which that mixed fluid can fall by trec sets the position of the first peak
in �T , at l = 220. In the benchmark cosmology, this distance corresponds to
105 Mpc today, or a sphere containing 2.5 × 1016M�. The second peak, at l =
540, corresponds to a smaller lump of dark matter, where the fluid has time to
fall in and be pushed out again by its own increased pressure. The third peak
corresponds to ‘in–out–in’, the fourth to ‘in–out–in–out’, and so on: hence the
label of ‘acoustic peaks’. The more dark matter is present, the stronger its gravity
causes its irregularities to become, and so the greater the height of the main peak.
The mass of the baryonic matter ‘helps’ the baryon–radiation fluid to fall into
dense regions of dark matter, but hinders its ‘bouncing’ out again; this strengthens
the odd-numbered peaks relative to the even peaks. The benchmark model, with
�B ≈ 0.045, �m = 0.3, �� = 0.7, and H0 = 70 km s−1 Mpc−1, gives correct
predictions for the abundance of deuterium and lithium (see Section 1.5), the
motions of the galaxies, and fluctuations in the cosmic background radiation.

Further reading: see Chapter 6 of the book by Padmanabhan.

8.4.2 Peculiar motions of galaxies

One way that we can explore the largest structures is to map out the galaxies, as
in Figure 8.3; but this samples only the luminous matter. Another is to look at
the peculiar motions of galaxies, their deviation from the uniform flow described
by Equation 8.8. Peculiar motions grow because of the extra tug of gravity from
denser regions. In the Local Group, the Milky Way and the Andromeda galaxy
M31 approach each other under their mutual gravitational attraction (Section 4.5),
while groups of galaxies fall into nearby clusters (Section 7.2). We saw how to
use these motions to weigh the groups and clusters. Similarly, we can use the
observed peculiar motions on larger scales to reconstruct the distribution of mass,
most of which is dark.

We can see the peculiar motions of the nearby elliptical galaxies in Figure 8.2.
Although the Fornax cluster is roughly as far away as the Virgo cluster, the galaxies
of Fornax on average are moving more rapidly away from us. It appears that the
Local Group, and the galaxies nearby, are falling toward the complex of galaxies
around Virgo. To examine the Virgocentric infall, in Figure 8.15 we look at the
average radial velocity with which each group of galaxies in Figure 8.2 recedes
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Fig. 8.15. Diamonds show average recession speed Vr, measured relative to the Local

Group, for groups of galaxies in Figure 8.2. The two largest white symbols are two

clumps within the Virgo cluster; others decrease in size to show distance from Virgo. Left,

velocity Vr falls further below the linear trend, the closer the group is to Virgo; right, after

correction for Virgocentric infall – J. Tonry.

from us. The peculiar velocities of individual galaxies are affected by their orbits
within the group, but averaging over the whole group should reveal the larger-
scale motions. These velocities are plotted in the left panel. The two largest white
symbols represent the two clumps of Virgo cluster galaxies, around M86 and M49.
The other big symbols, indicating groups close to Virgo, fall below the general
linear trend.

The right panel of Figure 8.15 shows the result of subtracting out Virgocentric
inflow according to a simple model, which predicts an infall speed of 270 km s−1

at our position. We now see roughly Vr ∝ d . Within about 25 Mpc of Virgo,
most of the plotted values deviate from the linear trend by less than 100 km s−1.
Peculiar motions complicate our attempts to measure H0. If we tried to do this by
finding distances and velocities of galaxies in the direction of Virgo, we would
underestimate the Hubble constant, because Virgocentric inflow partially cancels
out the cosmic expansion. But if we had observed galaxies in the opposite direction,
our value for H0 would be too high.

The best-measured peculiar motion is that of the Local Group, determined
from the Sun’s velocity relative to the cosmic microwave radiation: recall Sec-
tion 1.5. The Local Group now moves with Vpec ≈ 630 km s−1 in the direction
(l, b) ≈ (276◦, 30◦). Most of that peculiar motion seems to be caused by the
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gravitational pull of very distant matter, tugging at both us and the Virgo cluster.
The velocities of galaxies furthest from the Virgo cluster, which are mostly on
the opposite side of the sky, lie mainly above the sloping line in the right panel
of Figure 8.15. This is what we would expect if more distant matter were pulling
Virgo and Fornax apart.

Both the local velocity dispersion and the Local Group’s motion toward
the Virgo cluster are significantly less than our motion relative to the cosmic
microwave background. The flow of galaxies through space is ‘cold’ on small
scales: galaxies within tens of megaparsecs of each other share a large fraction of
their peculiar velocity.

Problem 8.27 Here you use Monte Carlo simulation to show that the peculiar

velocities of nearby galaxies must be very close to that of the Milky Way, or

Hubble could never have discovered the cosmic expansion from his sample of

22 local galaxies.

Your model sky consists of galaxies in regions A (1 Mpc < d < 3 Mpc), B

(3 Mpc < d < 5 Mpc), C (5 Mpc < d < 7 Mpc), and D (7 Mpc < d < 9 Mpc).

If the density is uniform, and you have four galaxies in region B, how many

are in regions A, C, and D (round to the nearest integer)? For simplicity, put

all the objects in region A at d = 2 Mpc, those in B at 4 Mpc, those in C at

6 Mpc, and those in D at 8 Mpc. Now assign peculiar velocities at random to

the galaxies. For each one, roll a die, note the number N on the upturned face,

and give your galaxy a radial velocity Vr = H0d + (N − 3.5) × 350 km s−1,

taking H0 = 70 km s−1 Mpc−1. (If you like to program you can use more

galaxies; place them randomly in space, and choose the peculiar velocities

from a Gaussian random distribution with zero mean and standard deviation of

600 km s−1.)

Plot both Vr and also the average velocity in each region against the distance

d; is there a clear trend? How many of your model galaxies have negative radial

velocities? How does your plot compare with the right panel of Figure 8.15?

Hubble found no galaxies beyond the Local Group that are approaching us.

8.4.3 How do peculiar velocities build up?

Peculiar velocities tend to die away as the Universe expands, because a mov-
ing galaxy keeps overtaking others, until it reaches the region where its motion
matches that of the cosmic expansion. We can imagine two nearby comoving
observers, P and Q, at rest relative to the background radiation; they recede from
each other only because of cosmic expansion. A galaxy passes observer P heading
toward Q with a peculiar motion Vpec, and arrives there after a time ≈d/Vpec. If P
and Q are close enough that Vpec � H (t)d , their separation remains almost con-
stant as the galaxy travels between them. But relative to observer Q, the galaxy
moves only at speed Vpec − H (t)d . The galaxy’s speed, relative to a comoving
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observer at its current position, has decreased at the rate

dVpec

dt
= − H (t)d

d/Vpec
= −Vpec

Ṙ(t)

R(t)
. (8.54)

Integrating this shows that Vpec ∝ 1/R(t); a galaxy’s peculiar velocity Vpec falls
in exactly the same way as the momentum of a photon is reduced according to
Equation 8.12.

If peculiar velocities simply decreased according to Equation 8.54, then
shortly after recombination at z ≈ 1100, the material of the Local Group would
have been moving at nearly the speed of light. But this would have caused shocks
in the gas and huge distortions in the cosmic microwave background. In fact, the
peculiar motions of the galaxies were generated quite recently, by their mutual
gravitational attraction. When some part of the Universe contains more matter than
average, its increased gravity brakes the expansion more strongly. Where there is
less matter than average, the expansion is faster; the region becomes even more
diffuse relative to its surroundings. So the galaxies move relative to the cosmic
background: they acquire peculiar motions.

To calculate how this happens, suppose that the average density of matter
is ρ̄m(t), and the average expansion is described by the scale factor ā(t) and
the Hubble parameter H̄ (t). Locally, within the volume we are studying we can
write

ρm(t) = ρ̄m(t)[1 + δ(t)], and a(t) = ā(t)[1 − ε(t)]. (8.55)

If our region is approximately spherical, the matter outside will not exert any
gravitational force within it; it will behave just like part of a denser, more slowly
expanding, cosmos. Where �m[1 + δ(t)] > 1 so the local density exceeds the
critical value, expansion can be halted to form bound groups and clusters of
galaxies.

Life is much simpler if we stay in the linear regime, where δ and ε of Equa-
tion 8.55 are much less than unity. We saw in the discussion following Equa-
tion 8.4 that this applies to structures with sizes larger than about 8h−1 Mpc:
their density differs by only a small fraction from the cosmic average. When we
substitute the expressions for ρm(t) and a(t) into Equation 8.25, we can then
ignore terms in δ2, δε, ε2, and higher powers of these variables. Remembering
that a(t)H (t) = ȧ(t) and that terms involving only barred average quantities will
cancel out, Equation 8.25 becomes

�
[
H 2

0 (1 − �tot)
]+ 2

dā

dt

d

dt
[āε(t)] + 8πG

3
ρ̄(t)ā2(t)[δ(t) − 2ε(t)] = 0. (8.56)

Here the first term represents the change in the present density and expansion rate
within our denser region.
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We saw from Figure 8.7 that, for most of the period during which galaxy clus-
ters and groups were forming, dark energy was not important, and we can simply
use Equation 8.27 to describe the average expansion ā(t). While the Universe is
matter-dominated, ρa3 is constant, so δ = 3ε. Then

δ ∝ t2/3 ∝ ā(t) as long as 1 + z � (1 − �tot)/�m , (��/�m)1/3 (8.57)

is a ‘growing’ solution to Equation 8.56 (substitute back to check!). Early on, the
contrast δ grows proportionally to R(t). If �m + �� < 1, then at some point the
first condition on z is violated, and the average motion becomes ā ∝ t : matter
coasts outward with constant speed. Once the matter exerts too little gravity to
have any effect on the expansion, δ remains fixed: the structure freezes out. In
a flat model with �tot = 1, growth continues until 1 + z ∼ (��/�m)1/3. In
the benchmark model, large structures continued to grow until very recently, at
z ∼ 0.3. In a low-density Universe with �m = 0.3 and �� = 0, they would have
ceased to become denser around redshift z ∼ 2.

Further reading: On peculiar motions, see Chapter 4 of Padmanabhan’s book.

8.4.4 Weighing galaxy clusters with peculiar motions

Any denser-than-average region pulled the surrounding galaxies more strongly
toward it. While the fractional deviations δ(x, t) from uniform density remain
small, Equation 8.57 tells us that, over a given time, δ(x) increased by an equal
factor everywhere. Because the pull on a galaxy from each overdense region
increases in the same proportion, its acceleration, and hence its peculiar velocity, is
always parallel to the local gravitational force. So, by measuring peculiar motions,
we can reconstruct the force vector, and hence the distribution of mass.

To see how this works, we can write the velocity u(x, t) of matter at point x
as the sum of the average cosmic expansion directly away from the origin and a
peculiar velocity v:

u(x, t) = H̄ (t)x + v(x, t). (8.58)

The equation of mass conservation relates the velocity field u(x, t) to the density,
which we write as ρ(x, t) = ρ̄(t)[1 + δ(x, t)]:(

∂ρ

∂t

)
x
+ ∇x · ρ u = 0. (8.59)

Remembering that terms involving only the barred average quantities will cancel
out, and dropping terms in δ2, δv, and v2, we have

(
∂δ

∂t

)
x
+ H̄ (t) x · ∇xδ + ∇xv = 0. (8.60)
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Setting x = ā(t)r, we switch to the coordinate r comoving with the average
expansion. The time derivative following a point at fixed r is

(
∂

∂t

)
r
=
(

∂

∂t

)
x
+ H̄ (t) x · ∇x, (8.61)

and, since ā(t)∇r = ∇x, Equation 8.60 simplifies to

(
∂δ

∂t

)
r
+ ∇xv = 0. (8.62)

For a small enough volume, if we assume that the Universe beyond is homo-
geneous and isotropic, we can use Newton’s laws to calculate the gravitational
potential �g corresponding to local deviations from the average density ρ̄. The
gravitational force Fg = −∇�g = dv(x, t)/dt , so we have 0 = d(∇ × v)/dt .
Peculiar motions that have grown in this way from small initial fluctuations thus
have ∇ × v ≈ 0, and we can define a velocity potential �v such that v = ∇x�v.
Rewriting Equation 8.62 in terms of �v gives

∇2
x�v = −

(
∂δ

∂t

)
r
. (8.63)

Equation 3.9, Poisson’s equation, tells us that

∇2
x�g = −∇x · Fg = 4πGρ̄δ(x, t) (8.64)

– which looks suspiciously like the equation for �v. Equation 8.57 assures us that
all perturbations grow at the same rate: if δ is twice as large, then so is δ̇. Thus
δ(x, t) ∝ ∂δ(x, t)/∂t , and the right-hand sides of Equations 8.63 and 8.64 are
proportional to each other. Then, as long as both v(x, t) and Fg diminish to zero as
|x| increases, they must also be proportional: the peculiar velocity is in the same
direction as the force resulting from local concentrations of matter. On dividing
the right-hand side of Equation 8.63 by that of 8.64, we find

|v(x, t)|
|Fg| = H̄ (t) f

4πGρ̄(t)
, where f ≡ ā(t)

δ

(
∂δ

∂t

)
r

/
dā

dt
. (8.65)

From Equation 8.57, in a matter-dominated Universe we have f = 1 for �m ≈ 1,
and f → 0 as �m → 0. In general, f (�) ≈ � 0.6 is a good approximation.
Using Equation 3.5 for the force, we can write the peculiar velocity as

v(x, t) = H̄ (t) f (�)

4π

∫
δ(x′)(x − x′)

|x − x′|3 d3x′. (8.66)
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Problem 8.28 Show that, if the density is uniform apart from a single overdense

lump at x = 0, then distant galaxies move toward the origin with v(x, t) ∝ 1/x2.

Problem 8.29 In the expanding (comoving) coordinate r, show that

v(r, t) = H̄ (t) f (�)ā(t)

4π

∫
δ(r′)(r − r′)

|r − r′|3 d3r′ . (8.67)

Show that, while it is early enough that we can use Equation 8.57 for δ(r),

the peculiar velocity v ∝ t1/3. (Why did we have to transform to comoving

coordinates to apply Equation 8.57?)

So, if we can measure the overdensity δ(x) of the nearby rich galaxy clusters,
and the peculiar velocities of the galaxies around them, we should be able to
test Equation 8.66, and solve for the matter density �m. First, we determine the
average peculiar motion v(x) of our galaxies. We must assume that the Universe
is homogeneous and isotropic on even larger scales, so that forces from galaxies
outside our survey volume will average to zero. Inverting Equation 8.66 should
then yield the product f (�0) · δ(x), from which we can find �m.

But the mass distributions predicted from measured peculiar velocities do
not match the observed clustering of galaxies very well. Alternatively, we could
say that the forces calculated from the galaxies at their observed positions do not
yield the measured peculiar motions. The pull of matter outside the volume of
our present surveys appears to be significant. In particular, we still do not know
that concentration of matter is responsible for most of the Local Group’s peculiar
motion of ∼600 km s−1. Work is under way on this problem, and galaxy surveys
are being extended as techniques for finding distances improve.

Locally, we can use the crude model of Figure 8.15 for the Virgocentric infall
to estimate the mass density �m. Let dV ≈ 16 Mpc be the distance of the Local
Group from the center of the Virgo cluster. Within a sphere of radius dV about the
cluster’s center, the density of luminous galaxies is roughly 2.4 times the mean;
if the mass density is increased by the same factor, then the overdensity δ ≈ 1.4.
Although Equation 8.65 was derived for δ � 1, we can use it to make a rough
calculation of f (�).

Assuming that the Virgo cluster is roughly spherical, the additional gravita-
tional pull on the Local Group is Fg ≈ 4πGdVρ̄δ/3, just as if all the cluster’s
mass had been concentrated at its center. So our peculiar motion toward Virgo is

|vLG| ≈ (H0dV)�0.6
m δ

3
≈ 270 km s−1. (8.68)

Cosmic expansion is pulling the cluster away from us at a speed H0dV ≈
1200 km s−1, so this yields �m ≈ 0.3, in reasonable agreement with the bench-
mark model.
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8.4.5 Tidal torques: how did galaxies get their spin?

The Sun rotates for the same reason that water swirls around the plug-hole as it runs
out of a sink. The material originally had a small amount of angular momentum
ρx × v about its center in a random sense. This is approximately conserved as
the fluid is drawn radially inward, so as |x| decreases the rotation described by v
must speed up. But galaxies and clusters do not owe their rotation to early random
motions; this peculiar motion arises from irregular lumps of matter pulling on
each another by gravity, as illustrated in Figure 4.13.

In Problem 8.29 we saw that, while the Universe is matter-dominated, peculiar
velocities grow as t1/3, while the distance d between galaxies follows a(t) ∝ t2/3.
So angular momentum builds up as d × v ∝ t as long as we remain in the linear
regime with δ(t) � 1. It stops increasing when the dense region starts to collapse
on itself, as we will discuss in Section 8.5. The denser the initial lump, the sooner
it collapses and the less time it has to spin up. But tidal torques are stronger in
denser regions, so, in a cosmos filled with cold dark matter, objects acquire the
same average angular momentum in relation to their mass and energy.

To measure how important a galaxy’s angular momentum is, we note that a
galaxy of radius R, mass M, and angular momentum L will rotate with angular
speed ω ∼L/(MR2). The angular speed ωc of a circular orbit at radius R is given
by ω2

c R ∼GM/R2. The energy E ∼−GM2/R (see Problem 3.36 and recall the
virial theorem). So the ratio

λ = ω

ωc
= L

MR2
× R3/2

√
GM

= L|E |1/2

GM5/2
(8.69)

tells us how far the galaxy is supported against collapse by rotation, rather than
pressure or random motion of its stars. Gravitational N -body simulations show that
the distribution of galaxies we observe would not spin up collapsing lumps very
strongly: we expect 0.01 < λ < 0.1. This is similar to what we see in elliptical
galaxies, but disk galaxies like our Milky Way have λ ≈ 0.5. The parameter λ

can increase if material loses energy to move inward, as a gas disk can do by
radiation.

This argument already tells us that the Milky Way has a dark halo – otherwise
its disk would not have time to form. Without a halo, L and M do not change as
the proto-disk moves inward, so its radius must shrink 100-fold to increase E by
the same factor. Disk material near the Sun must originate 800 kpc from the center,
but the mass M(<R) within that radius would be just what now lies between the
Sun’s orbit and the Galactic center. Equation 3.20 shows that the orbital period
would then be 1000 times longer than that in the Sun’s current orbit, or about
240 Gyr. The Galaxy would shrink at roughly the same rate; it would take several
times longer than the age of the Universe to make the disk.

But in Problem 3.5 we saw that the Milky Way hasM/L ∼> 50; at least 90% of
its mass is dark. Because the dark halo cannot lose energy and shrink, the gas that
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is to become the disk originates closer to the center by a factorM(disk)/M(total).
So our disk had to collapse only to a tenth of its original size to reach λ ≈ 0.5.
Since the infall and orbital speeds are set by the dark halo, they would have been
near today’s values. Shrinking at 200 km s−1 from a radius of 80 kpc, the disk
could have formed in ∼<2 Gyr.

Further reading: see Chapter 8 of Padmanabhan’s book.

8.5 Growth of structure: clusters, walls, and voids

The galaxy clusters and huge walls that we see in Figure 8.3 are visible because
the density of luminous matter in them is a few times greater than that in the
surrounding regions. If galaxies trace out the mass density, then the fractional
variations in density are now large: in the language of Equation 8.55, δ(t0) ∼> 1.
How did the small fluctuations that we examined in Section 8.4 develop into the
structure that we now see?

8.5.1 Pressure battles gravity: the Jeans mass

Objects like stars are supported by gas pressure, which counteracts the inward
pull of gravity. The larger a body is, the more likely it is that gravity will win the
fight against the outward forces holding it up. In life, the giant insects of horror
movies would be crushed by their own weight. For a spherical cloud of gas, we can
estimate the potential energy PE using the result of Problem 3.11 for a uniform
sphere of radius r and density ρ. We then compare it with the thermal energy KE .
The sound speed cs in a gas is close to the average speed of motion of the particles
along one direction, so we can write

PE ≡ −1

2

∫
ρ(x)�(x)d3x ≈ −16π2

15
Gρ2r5, and KE ≈ 3c2

s

2

4πr3ρ

3
. (8.70)

In equilibrium the virial theorem, Equation 3.44, requires |PE | = 2KE ; we
might expect the cloud to collapse if the kinetic energy is less than this. That
always happens if the cloud is big enough: KE < |PE |/2 when

2r ∼>
√

15

π

√
c2

s

Gρ
≈ λJ, where λJ ≡ cs

√
π

Gρ
. (8.71)

The length λJ is called the Jeans length. When a gas cloud is compressed, its
internal pressure rises and tends to cause expansion, but the inward pull of gravity
also strengthens. If its diameter is less than λJ, the additional pressure more than
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offsets the increased gravity: the cloud re-expands. In a larger cloud gravity wins,
and collapse ensues.

Early on, while the Universe is radiation-dominated, the densityρr = aBT 4/c2

is low and the pressure is high, with cs = c/
√

3. So Equation 8.71 gives

λJ = c2
(

π

3GaBT 4

)1/2

∝ T −2. (8.72)

The Jeans mass MJ is the amount of matter in a sphere of diameter λJ:

MJ ≡ π

6
λ3

Jρm, (8.73)

where ρm refers only to the matter density. In the radiation-dominated period we
have MJ ∝ ρmT −6, with T ∝ 1/R(t) and ρm decreasing as R−3. So the Jeans
mass grows asMJ ∝ R3(t); the mass enclosed in a sphere of diameter λJ increases
as the Universe becomes more diffuse. At the time teq when the density of matter
is equal to that of radiation, the temperature is Teq and ρm = ρr = aBT 4

eq/c2.
Radiation still provides most of the pressure, so p ≈ c2ρr/3 and

MJ(teq) = π

6
ρm(teq)

(
πc4/3

GaBT 4
eq

)3/2

= π5/2

18
√

3

c4

G3/2a1/2
B

1

T 2
eq

. (8.74)

If equality occurs at the redshift 1 + zeq = 24 000�mh2 of Problem 8.10, then

MJ(Teq) = 3.6 × 1016(�mh2)−2M�. (8.75)

This is 100 times more than the Virgo cluster, or roughly the mass that we would
find today in a huge cube 50/(�mh2) Mpc on a side. This is approximately the
spatial scale of some of the largest voids and complexes of galaxy clusters in
Figure 8.3. Overdense regions with masses below MJ could not collapse because
the outward pressure of radiation was too strong. Instead, radiation gradually
diffused out of them, taking the ionized gas with it, and damping out small irreg-
ularities.

After this time, matter provides most of the mass and energy, but the pressure
comes mainly from the radiation: so ρ ≈ ρm, but p ≈ c2ρr/3. If a small box
of the combined matter–radiation fluid is squeezed adiabatically, then, just as in
the cosmic expansion, the change �ρm in the matter density is related to �ρr by
4 �ρm/ρm = 3 �ρr/ρr. So the sound speed

c2
s = ∂p

∂ρ
= c2 �ρr/3

�ρm
= c2

3

4ρr

3ρm
∝ 1

R(t)
, so λJ = cs

√
π

Gρm
∝ R(t) (8.76)

and the Jeans mass of Equation 8.73 stays constant.
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By a redshift zrec ∼ 1100 when the temperature Trec ≈ 3000 K, hydrogen
atoms had recombined. Radiation streamed freely through the neutral matter, and
no longer contributed to the pressure. The sound speed dropped to that of the
matter:

cs(trec) ≈
√

kBT

mp
≈ 5 km s−1. (8.77)

Just afterward, the Jeans mass is

MJ = π

6
ρm

(
πkBTrec

Gρmmp

)3/2

≈ 5 × 104(�mh2)−1/2M�; (8.78)

it has fallen abruptly by a factor of ∼1012.
Radiation continues to transfer some heat to the matter, keeping their tem-

peratures roughly equal until z ∼ 100. Now the Jeans mass MJ ∝ T 3/2ρ
−1/2
m ,

and, because the radiation cools as Tr ∝ R−1, that decrease offsets the drop in
density ρm to keep MJ nearly constant. If the first dense objects formed with
roughly this mass, similar to that of a globular cluster, they could subsequently
have merged to build up larger bodies. Once it is no longer receiving heat, the
matter cools according to Tm ∝ R−2. To see why, think of the perfect gas law
relating temperature to volume, or recall that expansion reduces the random speeds
of atoms according to Equation 8.54. So the Jeans mass falls further; after recom-
bination, gas pressure is far too feeble to affect the collapse of anything as big as a
galaxy.

But how can we make objects the size of galaxies or galaxy clusters, that are
too small to grow before recombination? Equation 8.57 tells us that the fraction
δ by which their density exceeds the average grows with time as t2/3 or R(t). To
reach δ ∼> 1 before the present, we would need δ(trec) ∼> 10−3 at zrec = 1100.
But, aside from the highest peak in Figure 8.14, �T < 50 mK or 2 × 10−5 times
the average temperature. This is far too small; so why do we see any galaxies and
galaxy clusters today?

8.5.2 WIMPs to the rescue!

The dark matter far outweighs the neutrons and protons. Although we have yet
to detect the particles themselves, dark matter is most probably composed of
weakly interacting massive particles (WIMPs). Like neutrinos, WIMPS lack
strong and electromagnetic interactions – or they would not be ‘dark’ – and
they have some small but nonzero mass. WIMPs can collapse into galaxy-sized
lumps early on, because, unlike the baryons, they are unaffected by radiation
pressure.
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To describe this collapse, we can follow the same calculation as for the Jeans
length and Jeans mass, but for WIMPs with density ρw and typical random speeds
cw. Instead of Equation 8.73, we find that a dense region has too little kinetic
energy and falls in on itself if it contains a mass larger than

MJ,wimp = π

6
ρw

(
πc2

w

Gρw

)3/2

. (8.79)

While the WIMPs are relativistic, their Jeans mass is high and grows with time
just as in the radiation-dominated case. A slightly overdense region that is not
actively collapsing simply disperses, as WIMPs stream out of it at light speed.
All structure smaller than the horizon scale of Problem 8.14 is erased in this
way.

But as soon as the speed cw of random motions drops appreciably below c/
√

3,
the Jeans mass starts to fall. Very roughly, all dense clumps of WIMPs that are
larger than the horizon scale at the time when they cease moving relativistically
now begin to collapse. Since inflation left behind fluctuations with a power spec-
trum P(k) rising with k, lumps just larger than this will have the highest densities.
The more massive the WIMPs, the smaller the horizon scale when they cease to
move relativistically, and the smaller and denser the structures that form.

Neutrinos, with masses of a few electron-volts, remain relativistic until almost
teq, when the comoving size of the horizon is ∼16(h2�m)−1 Mpc. Such light par-
ticles are called hot dark matter. If the dark matter is hot, we still have difficulty
in understanding how something as small as a galaxy or even a galaxy clus-
ter can form. WIMPs massive enough that their sound speed cw fell below the
speed of light long before the time teq of matter–radiation equality are called cold
dark matter. The most popular WIMP candidates have masses ∼>1 GeV; their
random motions drop well below light speed when T < 1013 K, only 10−6 s
after the Big Bang, when the mass MH(WIMP) within the horizon was less
than M�.

As it escaped from the contracting clouds of WIMPs, the radiation took
the normal matter with it. So both of these should be quite evenly spread at
recombination, and the temperature of the cosmic background radiation should
be nearly the same across the whole sky. At recombination, as the matter became
neutral and was freed of the radiation pressure, it fell into the already-dense
clumps of WIMPs. Fluctuations in the density of normal matter could then
grow far more rapidly than Equation 8.57 allows, building up the galaxies and
clusters.

If the dark matter is cold, galaxies themselves would be built from successive
merger of these smaller fragments. We call this the bottom-up picture because
galaxies form early, and then fall together to form clusters and larger structures.
Figure 8.16 shows results from a gravitational N-body simulation following the
way that gravity amplifies small initial ripples in an expanding Universe of cold
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Fig. 8.16. A slice 20h−1 Mpc thick, through a gravitational N-body simulation with cold

dark matter, viewed at the present day. Side frames show magnified views of dense clumps;

galaxy groups would form in these ‘dark halos’ – D. Weinberg.

dark matter. The figure shows a stage of the calculation representing the present
day. Notice the profusion of small dense clumps linked by the filamentary cosmic
web, and that smaller structures look like denser, scaled-down copies of larger
ones. The densest regions, shown in the side boxes, have ceased to expand and
have fallen back on themselves. Gas would accumulate there, cooling to form
clusters of luminous galaxies.

Figure 8.17 combines the information from WMAP in Figure 8.14 with
that from the 2dF galaxy survey in Figures 8.3–8.5 to estimate the power
spectrum P(k) for matter today. Using a model close to the benchmark cosmology,
Dr. Sánchez deduced from the irregularities in the cosmic microwave background
what the distribution of WIMPS and baryons must have been at the time trec. He
then calculated how the concentrations of WIMPS became denser according to
Equation 8.57, while baryons fell into them. The results agree with P(k) mea-
sured from the galaxies of 2dF in the region where they overlap. On these scales,
luminous galaxies are distributed in the same way as the dark matter, and both are
well described by the model curve. Does this mean that we have now solved all
the problems of cosmology? One might hope for a physical understanding of the
dark energy, which is now simply inserted as a term in the Friedmann equations.
But for the large structures that we have discussed in this chapter, the benchmark
cosmology and benchmark initial fluctuations give an excellent account of what
we can observe.
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Fig. 8.17. Data from WMAP (triangles) and the 2dF galaxy survey (dots) are combined to

trace the power spectrum P(k). The smooth curve shows the prediction from a flat (k = 0)

model similar to the benchmark cosmology. The wiggle at k ≈ 0.1 is an acoustic peak on

a scale of ∼10 Mpc, too small to be measured by WMAP – A. Sánchez: model b5 from

MNRAS 366, 189 (2006).

8.5.3 How early can galaxies and clusters form?

To find out how long a galaxy or cluster takes to reach its present density, we
can use the ‘top-hat’ model, thinking of the overdense protocluster as a uniform
sphere. In a homogeneous Universe, the matter beyond that sphere does not exert
any forces within it. So we are free to make our sphere more or less dense than its
surroundings, and the Friedmann equations still hold. In the following problem,
we use Equation 8.26 to examine the collapse of a denser-than-usual region that
is destined to become a galaxy or cluster.

Problem 8.30 Suppose that the time t0 refers to a moment when the Universe

is matter-dominated, and �m > 1 in our spherical protocluster. By substituting

into Equation 8.26, show that the parametric equations

R(t)

R(t0)
= �m

2(�m − 1)
(1 − cos η),

(8.80)

H0t = �m

2(�m − 1)3/2
(η − sin η)

describe a solution. (This is the same as Equation 4.24 of Section 4.5, for e = 0

– why?) Show that R(t) is largest when η = π , at the turn-around time

tta = π�m/[2H0(�m − 1)3/2], and that the sphere collapses to high density

at time 2tta.
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At time t0, suppose that this denser region is expanding at the same rate as

its surroundings, and that t0 is early enough that we can apply Equation 8.27:

R(t) ∝ t2/3 so that ρ(t) ∝ 1/t2, and t0 H0 = 2/3. Using the result of Prob-

lem 8.16, show that, between t0 and tta, the density ρout outside the sphere drops

such that

ρout(tta)

ρout(t0)
=
[

9π2

16

�2
m

(1 − �m)3

]
while inside

ρin(tta)

ρin(t0)
=
(

�m − 1

�m

)3

. (8.81)

So ρin(tta)/ρout(tta) = (3π/4)2. As it turns around and begins to collapse, this

sphere is roughly 5.6 times denser than its surroundings.

Just as the free-fall time of Equation 3.23 is the same for all particles in a sphere
of uniform density, the collapse time 2tta is the same throughout this sphere. So,
in our simple model, all the particles reach the center at the same moment. In the
real cosmos, they would have small random motions which prevent this. The dark
matter and any stars present will undergo violent relaxation (see Section 6.2) as
they settle into virial equilibrium. Gas can lose energy by radiating heat away as it
is compressed. Once our protocluster settles into equilibrium, the virial theorem
tells us that its energy E1 = PE1 + KE1 = −PE1/2. The final energy E1 can be
no greater than the total energy E0 = PE0 when it was at rest at time tta, poised
between expansion and contraction: so we must have PE1 < 2PE0.

Problem 8.31 Use Equation 3.33 for the potential energy PE of a galaxy of

stars to show that, if the distances between stars all shrink by a factor f , so the

density increases as 1/ f 3, then PE increases as 1/ f .

If we make the too-simple approximation that the collapse is homologous,
so that all distances between particles shrink by an equal factor, Problem 8.31
tells us that our protocluster’s final radius is no more than half as large as it was
at turn-around, and the density is at least eight times greater. Meanwhile, the
cosmos continues to expand, and its average density has dropped at least four
times since tta (why?). So at the time that it reaches virial equilibrium, our cluster
is 4×8×5.6 ≈ 180 times denser than the critical density for the Universe around
it: recall Problem 8.2. In a galaxy cluster, we define the radius r200 such that,
within it, the average density is 200 times the critical density; r200 is sometimes
called the virial radius. At larger radii, the cluster cannot yet be relaxed and in
virial equilibrium. Even the relaxed core will be disturbed when new galaxies fall
through it as they join the cluster.

We can use the ‘top-hat’ model to estimate when the galaxies and clusters
could have formed. Within the Sun’s orbit, the Milky Way’s density averages
to 105ρcrit. So when it collapsed at time 2tta, the average cosmic density was no
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more than 500 times the present critical density; �m = 0.3, so this is 1700 times
the present average density. The average density varies as (1 + z)3, so the collapse
was at 1 + z ≤ (1700)1/3 ≈ 12. It could have been later, since the gas can radiate
away energy, and become denser than the virial theorem predicts. But it could not
have taken place any earlier.

Problem 8.32 In Problem 7.7 we found that, in the core of the Virgo cluster,

luminous galaxies are packed 2500 times more densely than the cosmic average.

Assuming that dark and luminous matter are well mixed in the cluster, show that

its core could not have assembled before redshift z = 1.3. How early could the

central region of NGC 1399, from Problem 6.4, come together?

8.5.4 Using galaxies to test model cosmologies

How well does the benchmark cosmology with cold dark matter account for real
galaxies? Its huge success is to explain why the cosmic microwave background
is so smooth, while the distribution of galaxies is so lumpy. We can even explain
the shape of the power spectrum P(k) in Figure 8.17, which describes the non-
uniformity. That power spectrum requires that the smallest lumps of matter are
now densest, as we saw in Figure 8.6. Problem 8.30 shows that they are the first to
stop expanding and collapse on themselves. So we might expect that all galaxies
will contain some very dense regions, which should have made stars early on. Even
the smallest galaxies should have some very old stars – as we saw in Section 4.4
for the dwarf galaxies of the Local Group.

Structures that collapsed most recently should be larger and less dense than
those that formed earlier. Using Equation 8.21 for the critical density, we can find
the mass M200 measured within the virial radius r200:

M200 = 4

3
πr3

200 × 200ρcrit = 100r3
200 H 2(t)

G
, (8.82)

while the speed of a circular orbit at that radius is

V 2
c (r200) = GM200

r200
, so M200(t) = V 3

c (r200)

10G H (t)
. (8.83)

So, if we measure rotational or random speeds near the radius r200 (or if they do
not change very much with radius), the mass or luminosity should increase steeply
with those measured speeds.

We see this pattern in the Tully–Fisher relation for disk galaxies (Figure 5.23),
the fundamental plane for elliptical galaxies (Figure 6.13), and the relation
between temperature and X-ray luminosity for gas in galaxy clusters (Figure 7.12).
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In the past the Hubble parameter H (t) was larger, so we expect that temperatures
and speeds were higher for a given mass or luminosity. Figure 6.13 shows this
effect, but in Figure 7.12 galaxy clusters at z ∼1 follow the same relation as local
objects. Adding gas to simulations like that of Figure 8.16 does result in model
galaxies that follow Tully and Fisher’s dependence of mass on rotation speed. But
the ‘galaxies’ fail to gather enough gas from large distances, so the disk has too
little angular momentum and its radius is too small.

The slope of P(k) in Figure 8.17 means that small objects will be far more
numerous than large ones. The smallest have roughly the solar mass, since this is
the massMH(WIMP) within the horizon when the random motions of the WIMPs
drop below near-light speeds. The halo of a galaxy like the Milky Way is made by
merging many thousands of smaller objects, most of which are torn apart. Those
that fall in relatively late survive today as distinct objects: satellite dark halos.
In models such as that in Figure 8.16 a Milky-Way-sized dark halo will have
∼300 dark satellites massive enough to have Vc > 10 km s−1. But the real Milky
Way only has ten or so luminous satellites. Choosing ‘warm’ dark matter, for
which the random motions remained relativistic until the mass within the horizon
MH(WIMP) ∼> 109M�, would erase all but the largest satellites. Some theories
of particle physics include a ‘sterile neutrino’ with mass ∼1 keV, which would
have this property. Other possibilities are that their first few stars blew all the
remaining gas out of most of these dark halos, or that fierce ultraviolet and X-ray
radiation from the first galaxies heated it so far that it could not cool to make new
stars. The Milky Way would then have 10 luminous satellites and 290 dark ones.

Another facet of the same difficulty is that we see large objects ‘too early’
in cosmic history. In Section 9.4 we will find that some massive galaxies have
formed more than 1011M� of stars, corresponding to more than 1012M� of dark
matter, less than 2 Gyr after the Big Bang, at z ∼> 3. The benchmark model with
cold dark matter predicts that such early ‘monster’ galaxies should be extremely
rare; it is not clear whether the model already conflicts with the observations.

If the dark matter is cold, then all galaxies should have very dense cores.
Figure 8.6 shows that σR , the variation in density on lengthscale R, rises at small
R or large k. So the first regions to collapse will be the smallest and also the
densest. Equation 8.83 shows that the velocities of particles within them will
also be low, because H (t) is large. So the positions and velocities of these first
objects are tightly grouped: the density in phase space is high. Simulations like
Figure 8.16 show that, as the galaxy is built, such objects fall together into a very
dense center: the density of WIMPs follows ρw ∝ r−α, where 1 ∼< α ∼< 1.5. The
Navarro–Frenk–White model of Equation 3.24 was developed to describe this
central cusp. The prevalence of dwarfs in galaxy clusters (see Figure 7.8) shows
that they must indeed be robust, and hence dense, to avoid being torn apart by tidal
forces. But the stars we observe are never as concentrated as this model requires
the WIMPS to be, and the rotation curves of spiral galaxies in Figure 5.21 also
seem to rise more gently than this form of ρw would allow.
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However, we know that galaxy centers contain mostly normal baryonic matter,
and that gas physics is complex – we do not even know how to predict the masses
of stars formed locally in our own Milky Way. So it is no surprise that we cannot
yet use basic physics to calculate exactly how the galaxies should form. In the
next chapter we turn to observations of the distant Universe, and to what we can
learn by viewing galaxies and protogalactic gas as they were 8–10 Gyr ago as the
Milky Way began to form its disk, and even earlier when our oldest stars were
born.



9

Active galactic nuclei and the
early history of galaxies

We begin this chapter by discussing galaxies with an active nucleus, a compact
central region from which we observe substantial radiation that is not the light of
stars or emission from the gas heated by them. Active nuclei emit strongly over
the whole electromagnetic spectrum, including the radio, X-ray, and γ-ray regions
where most galaxies hardly radiate at all. The most powerful of them, the quasars,
easily outshine their host galaxies. With luminosities exceeding 1012L�, many
are bright enough to be seen most of the way across the observable Universe. But
the emitting region may be no bigger than the solar system; its power source is
probably the energy released by gas falling into a central black hole. Very luminous
active nuclei, such as the quasars, were far more common when the Universe was
20%–40% of its present age than they are today; nuclear activity seems to be
characteristic of a galaxy’s early life.

In many bright quasars, narrow twin jets are seen to emerge from the nucleus;
they are probably launched and kept narrow by strong magnetic fields that build
up in the surrounding disk of inflowing matter. In some cases, the jets appear to
move outward faster than the speed of light. This is an illusion: the motion is
slower than, but close to, light speed. In Section 9.2 we discuss these and similar
‘superluminal’ jets from stellar-mass objects: microquasars, which are neutron
stars and black holes accreting mass from a binary companion, and γ-ray bursts,
the final explosion of a very massive star.

In Section 9.3 we consider gas lying between us and a distant galaxy or quasar,
which produces absorption lines in its spectrum. Most of the absorbing material is
very distant from the quasar, and simply lies along our line of sight to it. The denser
gas is probably in the outer parts of galaxies, while the most tenuous material,
only a few times denser than the cosmic average, follows the filamentary ‘cosmic
web’ of the dark matter. Surprisingly, this gas is not pristine hydrogen and helium;
even when it lies far from any galaxy, it is polluted with the heavy elements which
result from nuclear burning in stars.

In the last section of this final chapter, we turn to the question of how today’s
galaxies grew out of the primeval mixture of hydrogen and helium. Roughly

365
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halfway in time back to the Big Bang, galaxies appear fairly normal although
starbirth was more vigorous than it is at present. Beyond a redshift z ∼ 2, they are
furiously star-forming, often very dusty, and can no longer be classified according
to the scheme of Figure 1.11. The most distant observed systems are seen at z ∼ 6,
less than a gigayear after the Big Bang. New and more sensitive telescopes in the
infrared and millimeter-wave regions promise us a much clearer view of the birth
of the galaxies.

9.1 Active galactic nuclei

Twinkle, twinkle, little star,
We know exactly what you are:
Nuclear furnace in the sky,
You’ll burn to ashes, by and by.

But twinkle, twinkle, quasi-star,
Biggest puzzle from afar;
How unlike the other ones,
Brighter than a trillion suns.
Twinkle, twinkle, quasi-star,
How we wonder what you are . . .

after G. Gamow and N. Calder

Many galactic nuclei are very luminous at optical, ultraviolet, and X-ray
wavelengths. Others are far dimmer than their host galaxies in these spectral
regions, but are strong radio sources. What they have in common is a large energy
output from a very small volume, and internal motions that are relativistic, with
speeds >0.1c and often much larger.

The optical and ultraviolet spectrum of a quasar typically shows strong broad
emission lines characteristic of moderately dense gas (Figure 9.1). The widths of
the lines correspond to the Doppler shifts expected from emitting gas travelling at
speeds ∼10 000 km s−1. These emitting clouds are moving much faster than the
galaxy’s stars, which typically orbit at a few hundred kilometers per second. Many
active nuclei are variable, changing their luminosity substantially within a few
months, days, or even hours. The emission lines also strengthen and decline, within
a few days or weeks. To allow such fast variability, both broad lines and continuum
radiation must come from a region no more than a few light-weeks across.

This tiny volume contains a huge mass. We can use Equation 3.20 to calcu-
late the gravitational force required to prevent the clouds that produce the broad
emission lines from escaping out of the nucleus. For velocities V ∼ 104 km s−1,
and radii r = 0.01 pc or about two light-weeks, the inferred mass is ∼108M�. In
the nearby radio galaxy M87, we have ∼3 × 109M� within 10 pc of the center
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Fig. 9.1. The ultraviolet and optical spectrum of an ‘average’ radio-quiet quasar – R. Telfer

et al. 2002 Ap J 565, 773.

(Problem 6.16). The only way to pack the mass of a hundred million suns into a
region little bigger than the solar system is as a black hole. We then expect the
active nucleus to generate its power within a few times the Schwarzschild radius
Rs. For a mass MBH, this is

Rs = 2GMBH

c2
≈ 3 × MBH

M�
km. (9.1)

Problem 9.1 Show that, for a black hole with the Earth’s mass, Rs ≈ 1 cm,

whereas if MBH = 108M�, Rs ≈ 2AU or 15 light-minutes. What is Rs for the

black hole in the Seyfert galaxy NGC 4258, of Problem 5.15?

Broad emission lines from a galactic nucleus were first reported in 1907, in the
early days of galaxy spectroscopy, but no systematic study was made until 1943.
Then, Carl Seyfert published a list of 12 galaxies in which the nuclear spectrum
showed strong broad emission lines of ions that could be excited only by photons
more energetic than those of the young stars that ionize HII regions. These were
later divided into the Seyfert 1 class, with very broad emission lines like those of
Figure 9.1, and Seyfert 2 spectra with lines ∼<1000 km s−1 wide. Most of Seyfert’s
galaxies were spirals, but his list included the huge cD galaxy NGC 1275 at the
center of the Perseus cluster of galaxies, which is an elliptical; see Figure 7.9.
Table 9.1 shows that 1%–2% of luminous galaxies have Seyfert nuclei.

In the 1950s, as radio astronomy blossomed, many of the strongest radio
sources were found to be associated with luminous elliptical galaxies; these are
now called radio galaxies. In many of these, twin radio-bright lobes, each up to
1 Mpc across, straddle the galaxy. The radio emission is nonthermal, produced
by energetic particles moving through magnetic fields. For some years, radio
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Table 9.1 Densities of normal and active galaxies

Locally At z ∼ 1 z ∼ 2−3 z ∼ 4–5
Type (Gpc−3) (∗Gpc−3) (∗Gpc−3) (∗Gpc−3)

Luminous galaxies: L > 0.3L
 7 000 000 20 000 000
(Fig. 1.16)

Lyman break galaxies: L > 0.3L
 1 000 000 (300 000)
LIRGs: LFIR > 1011 L� 30 000 3 000 000
ULIRGs: LFIR > 1012 L� <10 000 2 000 000
Massive galaxies: L > (2 − −3)L
 400 000a 200 000b (10 000c)

Seyfert galaxies 100 000
Radio galaxies: L r > 2 × 108 L� 1 000
X-ray AGN: LX > 8 × 1010 L� 100 5 000

LX > 2.5 × 109 L� 20 000 100 000 30 000
Quasars: L > 25L
 90

L > 100L
 (Fig. 8.13) 20 600 50
Radio-loud quasars: L r > 5 × 108 L� 4

L r > 3 × 1010 L� (Fig. 8.13) 0.004 0.6 0.05

∗Densities per comoving Gpc3 with benchmark cosmology; L
 ≈ 2 × 1010 L� from Figure 1.16.
Values in ( ) are known to no better than a factor of 3–5.
aLocal galaxies from 2dF; b ‘red and dead’ galaxies at z ∼ 1.5; c submillimeter-detected galaxies.

astronomers were puzzled by finding some galaxies with radio-bright compact
nuclei and others with huge lobes. Better radio maps revealed tiny central cores
at the nuclei of radio galaxies, linked to the outer lobes by bright linear jets that
carried energy outward.

The first quasars (for ‘quasi-stellar radio source’) were discovered in the fol-
lowing decade, as ‘radio galaxies with no galaxy’. They appeared pointlike in
optical photographs; only their enormous redshifts betrayed that they were not
Galactic stars. Rather, they were gigaparsecs distant, and hence extremely lumi-
nous. Subsequently ‘radio-quiet’ quasars, called quasi-stellar objects, or QSOs,
were found by searching for objects that appeared stellar, but emitted too strongly
at infrared or ultraviolet wavelengths relative to their brightness in visible light.
Radio-quiet QSOs outnumber radio-loud quasars by at least a factor of 30; both
are now believed to be variants of the same type of object, so we use the term
‘quasar’ to include the QSOs. In the 1980s, deep images of nearby quasars showed
us that they were in fact the bright nuclei of galaxies, so luminous as to outshine
the surrounding stars. Most astronomers now regard quasars as more powerful
versions of a Seyfert nucleus. Quasars cover a very wide range in luminosity:
Table 9.1 shows that the most powerful are also the rarest.

BL Lac objects are quasars with very weak emission lines; they may be the
most extreme form of active nucleus. They are named after their prototype, which
was originally thought to be a variable star, and designated BL Lacertae. The
light output of these objects can fluctuate enormously within a few days; one was
seen to double its brightness within three hours. Both radio and optical emission
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are strongly polarized. Quasars with the same pattern of variability, but having
stronger emission lines, are called ‘optically violently variable’ (OVV) quasars;
these and the BL Lac objects are collectively known as blazars. All known blazars
are radio-loud. Blazars appear as the most luminous objects in the Universe: if
their light were emitted equally in all directions – but see below for reasons why
we do not think this is the case – their total output would exceed 1014L�.

Active nuclei all derive their energy in the same way: gas gives up potential
energy as it falls into a black hole. Here, we briefly sketch some of the physical
processes involved in turning that energy into the radiation we observe, and explain
how a single basic model might explain the diversity observed among active
galaxies.

Further reading: B. M. Peterson, 1997, Active Galactic Nuclei (Cambridge Uni-
versity Press, Cambridge, UK) reviews the observations. For radio galaxies, see
B. F. Burke and F. Graham-Smith, 1997, An Introduction to Radio Astronomy
(Cambridge University Press, Cambridge, UK). For relevant physics, see M. S.
Longair, High Energy Astrophysics, 2nd edition: Volume 1, Particles, Photons and
Their Detection 1992; Volume 2, Stars, the Galaxy and the Interstellar Medium
1994 (Cambridge University Press, Cambridge, UK); a graduate-level text is F. H.
Shu, 1991, The Physics of Astrophysics, Volume 1: Radiation (University Science
Books, Mill Valley, California).

9.1.1 Seyfert galaxies

Figure 9.2 shows the Seyfert 2 galaxy NGC 4258. In visible light, we see the
spiral arms and bright nucleus of a galaxy of type Sbc. The radio map shows
emission from bright knots in spiral arms, but also two narrow jets emerging from
the nucleus, bending into an ‘S’ shape, and terminating in twin bright lobes on
either side of the galaxy. The nucleus is a bright pointlike source in both radio
and X-ray bands. The radio emission is strongly polarized, which tells us that it is
synchrotron radiation, given off as electrons spiral around lines of magnetic field
at speeds close to that of light. In this galaxy the radio jets are unusually strong;
they overlap with thin helical jets of ionized gas, from which we see emission lines
in the optical and ultraviolet. NGC 4258 shows two features common to Seyfert
galaxies: radiation that does not appear to originate from stars, and the directed
outflow of matter and energy. As we saw in Section 5.5, the nucleus is surrounded
by a small disk of fast-rotating gas which we see edge-on; it probably harbors
a black hole with a mass exceeding 107M�. Seyfert galaxies and quasars shine
brightly at infrared, ultraviolet, and X-ray wavelengths, as well as in visible light;
but most are not strong radio sources. The quantity νLν is roughly constant from
the infrared to the X-rays; equal energy is emitted in each interval over which the
frequency increases by a factor of ten. The luminosity drops at γ-ray energies,
above ∼100 keV. Seyfert 2 nuclei tend to be less luminous than the Seyfert 1 nuclei
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Fig. 9.2. Seyfert 2 galaxy NGC 4258 (Sbc). Left, a radio map at 20 cm shows oppositely

directed twin jets (within the circle), channelling radio-bright plasma from the nucleus to

lobes at east and west, and HII regions in the spiral arms. Right, an image in the U band

at 3700 Å shows the bright center, and brilliant knots of young stars in the spiral arms. At

distance d ≈ 7 Mpc, 1′ = 2 kpc – G. Cecil.

in the spectral regions from infrared to soft X-rays, but have similar power in γ-
rays. Seyfert nuclei have MV ∼> −22.5 or L ∼< 1011L�; more luminous objects
would be classified as quasars. The X-ray power ranges from ∼2 × 108L� to
1011L�.

The active nucleus is probably powered by gas that falls into a central black
hole. Because it inevitably has some angular momentum, infalling gas forms an
accretion disk. Viscosity causes the disk gas to spiral slowly inward, heating up
and radiating away its gravitational potential energy, until it reaches the last stable
orbit around the black hole (see Problem 3.20) and falls in. Theoretically, up
to 42% of Mc2, the rest energy of the material, can be extracted from a mass
M falling into a black hole. In practice, astronomers do not expect more than
∼0.1Mc2 to emerge as radiation. This is still much more efficient than nuclear
burning, which releases less than 1% of Mc2. Magnetic fields are pulled inward
with the flow of the hot ionized gas. Close to the black hole, the field can become
strong enough to channel twin jets of relativistic plasma, moving out along the
spin axis at speeds close to that of light.

Some of the infrared flux and all the radio emission comes from particles
accelerated to relativistic energies in the jet; paradoxically, we can use long-
wavelength radio waves to trace extremely energetic processes. Electrons in the
jet scatter some radio or visible-light photons, boosting them to γ-ray energies.
The X-ray and ultraviolet emission might come from the hot innermost part of the
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disk, or from the jet; the visible light probably originates further out in the disk
or jet. Additional infrared light may be emitted by surrounding dust grains heated
by the nuclear radiation.

The light of a Seyfert nucleus is intense enough to exert considerable pressure
on gas around it. If that outward push is too strong, no gas can fall into the
center, and the nucleus runs out of fuel. So we have a limit on the luminosity
that it could sustain. For a spherically symmetric object, we can calculate at what
point radiation pressure just balances the inward force of gravity. We assume
that the gas near the nucleus is fully ionized hydrogen, and we calculate the
outward force due to Thomson scattering by the electrons; scattering from protons
is much less efficient because of their larger mass. The cross-section σT of each
electron is

σT = e4

6πε2
0c4m2

e

(SI) or
8πe4

3c4m2
e

(cgs) = 6.653 × 10−25 cm2, (9.2)

where e is the charge on the electron and me is its mass. If the central source
emits photons carrying luminosity L , these have momentum L/c, so an electron
at radius r receives momentum σTL/(4πr2c) each second.

The electrons cannot move outward unless they take the protons with them;
electrostatic forces are strong enough to prevent the positive and negative charges
from separating. So we must compare the combined outward force on the proton
and the electron with the inward force of gravity on both of them. If the central
object has mass M, radiation pressure and gravity balance when

GM(me + mp)

r2
≈ GMmp

r2
= σTL

4πr2c
, (9.3)

where mp is the proton mass. The Eddington luminosity LE is the largest value of
L that still allows material to fall inward:

LE = 4πGMmpc

σT
≈ 1.3 × 1031 M

M�
W ≈ 30 000 × M

M�
L�, (9.4)

where L� is the Sun’s bolometric luminosity of 3.86 × 1026 W. Stars like the
Sun come nowhere near the Eddington luminosity, though the brightest super-
giants approach it. Although part of the radiation of a Seyfert nucleus comes
out in a directed jet, its total luminosity is unlikely to be more than a few times
greater than LE. If L ∼ 109L� then Equation 9.4 shows that the central mass
must exceed 107M�, to avoid blowing away all the gas that could fuel the active
nucleus.
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Problem 9.2 As a mass m of gas falls into a black hole, at most 0.1mc2 is

likely to emerge as radiation; the rest is swallowed by the black hole. Show

that the Eddington luminosity for a black hole of mass M is equivalent to 2 ×
10−9Mc2 yr−1. Explain why we expect the black hole’s mass to grow by at least

a factor of e every 5 × 107 years.

The spectrum of a Seyfert 1 nucleus is similar to the quasar spectrum shown
in Figure 9.1; broad emission lines from a wide range of ions are present. Some
of these, such as the Balmer lines of hydrogen and lines of singly ionized species
such as MgII, can be excited by ultraviolet photons; they are also seen in the HII

regions around hot stars. Others, such as the multiply ionized species NV and
OVI, require higher energies. The relative strengths of the various lines can be
understood if they are photoionized by radiation from the nucleus; its soft X-rays
excite the high-ionization lines.

Figure 9.3 illustrates a basic model for an active nucleus. In the broad-line
region, gas forms dense clouds with nH ∼> 1010 atoms cm−3. From most Seyfert
nuclei, we see continuum radiation with wavelengths λ < 912 Å, shortward of the
Lyman limit. These photons would be absorbed if they had to travel through the
broad-line emitting gas; so the clouds must cover up only a small fraction of the
central source. The emission lines we observe are the sum of Doppler-shifted
components from many individual clouds close to the nucleus, each moving at
thousands of kilometers per second. As the continuum radiation waxes and wanes,
so do the broad emission lines. High-ionization lines follow the continuum with
a delay of a few days. Those of low ionization respond later, within a few weeks,
showing that they originate further from the nucleus.

The narrow emission lines, such as [OII] at 3727 Å and [OIII] at 5007 Å, come
from forbidden transitions; see Section 1.2. Forbidden lines are seen only when
the density nH ∼< 108 atoms cm−3; at normal laboratory densities, collisions
would knock the ion out of its excited state before a photon could be emitted.
The forbidden lines of Seyfert galaxies and quasars have widths corresponding
to velocities below 1000 km s−1. Forbidden lines have not been observed to vary
as the nucleus brightens, indicating that they originate further from the nucleus
than the broad lines. The narrow-line region is generally a few kiloparsecs across,
although in some objects ionized gas has been seen hundreds of kiloparsecs from
the center. It is probably a combination of gas glowing in response to the active
nucleus and material ionized by massive stars nearby.

Further reading: on the emission-line spectra of active nuclei, see D. E. Osterbrock
and G. J. Ferland, 2005, Astrophysics of Gaseous Nebulae and Active Galactic
Nuclei, 2nd edition (University Science Books, Mill Valley, California).

In Seyfert 2 nuclei, most of the emission lines have roughly the same width,

∼<1000 km s−1. Some strong lines, such as Hα, may show very faint broad wings.
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Fig. 9.3. A simple model for an active nucleus. Energetic twin jets emerge at near-light

speeds along the spin axis of the central accretion disk. Radiation from the disk and jet

photoionizes the dense fast-moving clouds of the broad-line region, which is often ∼<1 pc

across. The more diffuse and slower-moving gas of the narrow-line region is at larger

radii. Observers looking directly down the jet would see a brilliant Seyfert 1 nucleus; but

when it is viewed sideways, through the opaque accretion torus (gray), we have a Seyfert 2

galaxy.

Intermediate classes are used to indicate their strength; a galaxy with fairly weak
broad wings might be labelled a Seyfert 1.8 or 1.9. Some Seyfert 2 galaxies,
including NGC 4258, have been observed in polarized light: the spectrum then
resembles that of a Seyfert 1, with broad emission lines. Reflected light is gener-
ally polarized; that is why polaroid sunglasses reduce the glare of light reflected
from snow or water. Seyfert 2 galaxies probably have a hidden broad-line region,
which we can see only by the reflection of its light in a layer of dust or gas.
Figure 9.3 illustrates how a galaxy could appear as either a Seyfert 1 or a Seyfert 2,
depending on the viewing angle. This object would be a Seyfert 1 nucleus for
observers looking down on the central disk. For those viewing the galaxy close to
the plane of the inner disk (as we do for NGC 4258), the continuum source and the
broad-line region are hidden by the doughnut-shaped accretion torus; they would
see a Seyfert 2 nucleus. Because lower-energy X-rays from the nucleus are more
easily absorbed by the gas torus, the spectra of Seyfert 2 galaxies show a larger
proportion of energetic ‘hard’ X-rays, those with energies above a few keV, than
is found in spectra of Seyfert 1 galaxies.
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Almost all Seyfert nuclei inhabit spiral or S0 galaxies. Roughly 10% of all
Sa and Sb spirals have them, so either all these galaxies spend about 10% of their
lives as Seyferts, or one in ten of them has a long-lasting Seyfert nucleus. Most
Seyfert galaxies are fairly luminous with L > 0.3L
, where L
 of Equation 1.24
represents the luminosity of a sizable galaxy. But NGC 4395, a tiny Sd galaxy with
MB = −17.1 or L B ∼ 109L� ∼ 0.05L
, has a Seyfert 1 nucleus. The spectra of
Seyfert 2 nuclei often show absorption lines characteristic of hot massive stars;
there is a starburst in addition to the nuclear activity.

About 25% of Sa and Sb galaxies have low-ionization nuclear emission
regions, known as LINERs. These are less luminous than Seyfert 2 nuclei, and
have spectra with emission lines such as [OI] at 6300 Å and [SII] at 6716 Å and
6731 Å, which do not require high energies for their excitation. The ratios of the
line strengths suggest that the gas is ionized as it passes through shock waves. In
LINERs [NII] lines at 6548 Å and 6583 Å are normally stronger than Hα, unlike
for the galaxies of Figure 5.24. In star-forming systems, [OIII] at 5007 Å is strong
relative to Hβ only when [NII]/Hα is weak, while in active nuclei both ratios are
normally >1/3. In large surveys such as the Sloan Digital Sky Survey and 2dF,
we use these ratios to select galaxies with LINER or Seyfert nuclei.

How does the galaxy feed gas into the central black hole? The fuel required is
usually less than the mass lost by aging stars in a sizable galaxy. Large quantities
of molecular gas, above 108M�, have been found in the central regions of some
nearby Seyfert galaxies. But several nearby disk galaxies, including our Milky
Way, have gas at their centers, and nuclear black holes exceeding 106M� – with
little or no nuclear activity. The presence of dilute gas or stars near the black hole is
insufficient to fuel activity. Large concentrations of massive stars could move the
interstellar gas around, aiding the accretion. Intense star formation is often found
in Seyfert nuclei, supporting this idea. But many radio galaxies conspicuously
lack any sign of starbirth.

Problem 9.3 Show that 1012L� corresponds to an energy output of 0.1M�c2

per year. As they age, stars like those in the solar neighborhood eject about M�
per year of gas for each 1010L� of stars. If all the gas lost by stars in our Galaxy

could be funnelled into the center, and 10% of its mass released as energy, how

bright would the Milky Way’s nucleus be?

9.1.2 Radio galaxies

If our eyes could see in radio wavelengths, many of the brightest objects in the sky
would not be within our Milky Way; they would be the luminous active nuclei of
galaxies halfway across the Universe. Normal stars, and normal galaxies, are not
powerful radio sources. The Milky Way’s optical luminosity exceeds 1010L�; but
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Fig. 9.4. Four radio galaxies, observed at 20 cm: galaxy luminosity L is measured in the R

band, radio power P in units of 1025 W Hz−1 at 20 cm. Clockwise from top left: a twin jet

with L ≈ 6L
, P ≈ 1; a narrow-angle tail source (L ≈ 3L
, P ≈ 1); an edge-brightened

classical double (L ≈ 1.4L
, P ≈ 7); and a wide-angle tail (L ≈ 2L
, P ≈ 1.7).

The scale bar shows 50 kpc, assuming H0 = 75 km s−1 Mpc−1 and �0 = 1 –

M. Ledlow.

its radio output is only about 1030 W, or about 2500L� when measured in terms
of the Sun’s bolometric luminosity Lbol,� = 3.86 × 1026 W. Seyfert galaxies are
100–1000 times more luminous in the radio waveband, while galaxies with radio
power in excess of about 1034 W or ∼108L� are labelled radio galaxies. The
most powerful radio galaxies and quasars radiate up to 1038 W or ∼1012L�. The
emission is highly polarized synchrotron radiation. Radio galaxies are much rarer
than Seyfert nuclei: Table 9.1 shows that there is only one for every 104 normal
galaxies.

Radio galaxies have a distinctive structure, with twin radio-bright lobes on
either side of the galaxy. The galaxy in the lower right corner of Figure 9.4 is a
classical radio galaxy, brightest at the outer edges of the twin lobes. The stronger



376 Active galactic nuclei and the early history of galaxies

the radio source, the bigger the lobes tend to be; the largest are ∼3 Mpc across.
To allow time for emitting material to fill the lobes, the nucleus must have been
active for at least 10–50 million years. When the radio source is less powerful,
the lobes are smaller; in Seyfert galaxies, they often fit within the optical image
of the galaxy, as in Figure 9.2. The lobes are optically thin and are brightest at
low radio frequencies. Within them are luminous ‘hot spots’ with sizes of ∼1 kpc.
About 10% of these emit polarized visible light, also synchrotron radiation. We
often approximate a radio spectrum as

Lν ∝ ν−α; (9.5)

in the lobes, the spectral index α is usually 0.7 ∼< α ∼< 1.2.
The active nucleus is seen as a core radio source, only a few parsecs across. The

cores have spectral index α ∼ 0; in contrast to the lobes, they are brightest at higher
radio frequencies. The cores are optically thick, and low-frequency radiation has
the most difficulty in escaping. Many cores vary in luminosity over periods of a
year or less; so they must be less than a light-year across.

Narrow bright jets of emission are often seen to emerge from deep within the
central core. Some of these are two-sided, while others are visible on only one
side of the galaxy. The path of the jet shows where energy is channelled outward
from the nucleus to the radio lobes; we will see below that this matter moves
at near-light speeds when it is close to the galactic nucleus. Some jets also emit
synchrotron radiation at optical and X-ray wavelengths. The optical jet of the
radio galaxy M87, shown in Figure 9.5, was already noted as a ‘curious straight
ray’ in a 1918 report by H. D. Curtis. Much later, M87 was discovered to be a
radio galaxy; the radio jet coincides with the optical jet and is also bright in X-
rays.

Galaxies with large radio lobes turn out to be giant ellipticals and cD galaxies.
Often, they are the brightest galaxies in a cluster. Most radio galaxies appear fairly
normal in visible light, although some, especially the more powerful, are very
peculiar objects indeed. Many have blue colors, and signs of recent star formation
at the center. Their nuclei can show an emission-line spectrum similar to that of
a Seyfert: an example is the bizarre elliptical NGC 1275 in Perseus (Figure 7.9).
When a radio source is present in a less luminous elliptical that is orbiting within
the cluster, its motion through the hot cluster gas can sweep the jets sideways into
a ‘C’ shape. The top right and lower left panels of Figure 9.4 show a narrow-tail
and a wide-tail source, respectively.

A relative paucity of cool gas appears to favor strong radio emission: radio
galaxies are always ellipticals, while Seyfert galaxies are generally spirals. Seyfert
galaxies are weaker radio sources than the radio galaxies. The core produces a
larger fraction of their emission, and, if twin lobes are present, they are only a few
kiloparsecs across, as in Figure 9.2. It is as though the radio lobes are ‘smothered’
by the dense gas around a Seyfert nucleus.
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Fig. 9.5. A one-sided jet in the elliptical galaxy M87. Top, in visible light near 8000 Å,

from the Hubble Space Telescope, the jet emerges from the glare of the galaxy’s center;

round white spots are globular clusters. Below, the image at 2 cm shows the radio-bright

plasma; 1 arcsec ≈ 80 pc – J. Biretta.

9.1.3 Synchrotron emission from radio galaxies

The energy stored in the lobes of a giant radio galaxy is enormous. To estimate
it, we use results from the books by Longair and by Shu, which readers should
consult for more detail. Longair uses SI units, and Shu the cgs system which is
still common in astronomical publications. An accelerated charge q radiates away
its energy E at the rate

− dE
dt

= q2|a|2
6πε0c3

(SI) or
2q2|a|2

3c3
(cgs), (9.6)

where a is the acceleration in the frame where the charge is instantaneously at
rest (see formula 3.9 of Longair’s book or Chapter 16 of Shu’s). The radiation is
polarized, with its electric vector perpendicular to the direction of the acceleration:
we can think of the charge dragging its electric field lines along as it moves, as
in Figure 9.6. In a uniform magnetic field B, an electron spirals around the field
lines with frequency

νL = eB

2πme
(SI) or

eB

2πmec
(cgs). (9.7)
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Fig. 9.6. Lines of electric field E around a point charge moving horizontally in harmonic

motion with angular frequency ω. Left, the charge is centred and moving to the right at

speed c/2; its radiation is beamed forward. Right, the charge is at rest in its rightmost

position. The arrow and bar have length 2πc/ω, the wavelength of light with frequency

ω; wiggles in the field lines have roughly this scale.
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1/γ

VΔt

A B

Fig. 9.7. An electron spirals with speed V ≈ c around a magnetic field pointing into the

page; its radiation is beamed forward in the direction of travel.

The acceleration of an electron moving with speed V at an angle θ to the field
lines is then a = 2πνLV sin θ , so we can use Equation 9.6 to calculate the energy
that it loses through cyclotron radiation at frequency νL. The radiation is emitted
in a dipole pattern, so its intensity is highest in the direction of that component
of the electron’s motion that is perpendicular to the field. Because of their larger
mass, protons are less strongly accelerated, and their radiation is weaker by the
factor (mp/me)2 ≈ 3 × 106.

As its speed V → c, the electron’s inertia increases. Its orbital frequency
drops to νL/γ , where γ ≡ 1/

√
1 − V 2/c2, but the frequency of its radiation

increases by a factor γ 2. When the electron moves relativistically, with γ � 1,
it emits synchrotron radiation; almost all of the radiation propagating ahead of
it is squeezed into a narrow cone, within an angle 1/γ of the forward direction.
In Figure 9.7, the emission is beamed toward us only during the small interval
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�t ∼ 2/νL when the electron is between points A and B. The arrival of that energy
is squeezed into an even shorter time. Photons from point B are emitted later than
those from A by a time �t , but their arrival is delayed only by

�t(1 − V/c) ≈ �t/(2γ 2) ∼ 1/(γ 2νL). (9.8)

Thus the frequency of the light received is not νL/γ , but roughly γ 2νL. A more
accurate calculation (see Chapter 18 of both Longair’s book and Shu’s book)
shows that most power is emitted close to the frequency

νc = 3

2
γ 2νL = 4.2γ 2

(
B

1 G or 10−6 T

)
MHz. (9.9)

Problem 9.4 Show that, in a radio lobe where B ≈ 10 μG, an electron radiating

at 5 GHz must have γ ∼ 104.

Equation 9.6 tells us how fast the electron loses its energy. We first compute
its four-velocity �u and four-vector acceleration �a = d�u/dτ , where τ is the proper
time of Equation 8.9. In the instantaneous restframe of the spiralling electron
�a = (0, a), so |a|2 of Equation 9.6 is equal to |�a · �a|. But �a · �a is a Lorentz
invariant, the same for all uniformly moving observers; we can compute it in
our observer’s frame. There, dt/dτ = γ ; apart from radiative losses, γ remains
constant as the electron circles the field lines, so we have

�u ≡ d�x
dτ

= d�x
dt

dt

dτ
= γ

(
1
v

)
and

d�u
dτ

= γ 2
(

0
dv/dt

)
= �a. (9.10)

Since |dv/dt | = 2π (νL/γ )V sin θ , the product |�a · �a| = (2πγ νLV sin θ )2;
the radiated energy −dE/dt ∝ γ 2. (Compare this with Longair’s derivation of
formula 18.5.)

To calculate how fast the energy of an average electron decays, we assume
that they move in random directions, so that sin2θ averages to 2/3. When γ � 1,
the energy loss is

− dE
dt

= 4

3
σTcUmagγ

2, where Umag = B2

2μ0
(SI), or

B2

8π
(cgs). (9.11)

Roughly half the electron’s energy E = γ mec2 is gone after a time

t1/2 = E
2

∣∣∣∣ dt

dE

∣∣∣∣ ≈ 170

(
10−5 G or 10−11 T

B

)2(
1000

γ

)
Myr. (9.12)
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For electrons radiating at a fixed frequency ν, the energy E = γ mec2 is propor-
tional to B−1/2, so we can write

t1/2 ≈ 34

(
10−5 G or 10−11 T

B

)3/2(
109 Hz

ν

)1/2

Myr. (9.13)

For the fields of 10−5 G believed to be typical in radio lobes, the life of electrons
emitting at 5 GHz is about 10 million years. But those responsible for the higher-
frequency optical and X-ray synchrotron radiation of jets and hotspots lose their
energy much more rapidly. In ambient magnetic fields of ∼10−4 G, electrons
radiating visible light at 1015 Hz lose half their energy in 103–104 years, and those
producing X-rays last no more than 100 years. Since the emitting regions lie many
kiloparsecs from the galaxy’s center, electrons must be boosted to high energies
when they are well outside the nucleus. They are probably accelerated as they
pass through shock waves in the jet, and are then scattered by tangled magnetic
fields. Further X-ray and γ-ray emission can be produced by the synchrotron-self-
Compton process. As radio-frequency photons scatter off relativistic electrons,
the photon energy is increased by a factor ∼γ 2.

Equation 9.11 relates the power output Lν at frequency ν from a volume V ,
filled with a number density n of electrons radiating at that frequency, to the total
energy Ue in the emitting electrons. We have

Lν ∝ nVE2 B2, while Ue = nVE ∝ Lν B−3/2. (9.14)

The energy required to produce the observed emission is the sum of the electron
energy Ue, which is lower in a stronger magnetic field, and the magnetic energy
Umag ∝ VB2, which becomes larger. The source’s total energy is minimized close
to equipartition, when Umag ≈ Ue. For the lobes of giant radio galaxies, this
amounts to 1059–1061 erg; 1060 erg represents the luminosity of 1010 suns over a
gigayear, or the emission of a powerful radio source for 107 years. The energy
stored in the compact core and jets is much less, only 1052–1058 erg.

We have hardly any other information on the field strength and electron energy
in radio sources, and we tend to assume that they are close to these equipartition
values. Typically B = 1–10 μG or 10−11–10−12 T for the giant radio lobes, about
the same strength as near the Sun’s position in the disk of the Milky Way. Fields in
the radio jets are about ten times higher. In the very compact cores, the equipartition
magnetic fields are about 0.1 G. So electrons emitting at 5 GHz have γ ∼100, and
can radiate for only about 100 years.

9.1.4 Quasars

Quasars are active nuclei so bright as to outshine their host galaxies: all but
the closest appear quasi-stellar in optical images. Their optical luminosities are
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Fig. 9.8. Left, radio loudness RL = log10[Lν(5 GHz)/Lν(B band)] for a sample of 137

quasars. Right, radio-loud objects (those with RL > 1, shaded) are rarely found among

the less luminous quasars with L < 1012L� – J. McDowell.

LV ∼> 5L
 or 1011L�; fainter objects would be labelled Seyfert 1 nuclei. Quasars
are the most luminous objects known and have been observed with redshifts z > 6,
when the Universe was no more than one-seventh of its present size. Curiously,
the spectra of quasars look very similar at all redshifts. It is difficult to estimate
the composition of the broad-line clouds, but the relative strength of the lines
shows that they have at least the solar abundance of heavy elements. Just less than
a gigayear after the Big Bang, the central parts of some galaxies have already
formed, and a first generation of stars has polluted the gas with metals.

The spectral energy distribution of a quasar is very different from that of a
normal galaxy, with substantial power all the way from the radio to γ-rays. Only a
few percent of quasars are strong radio sources (see Table 9.1). In the radio-quiet
remainder, Figure 9.8 shows that the radio power is ∼<1% of its level in the loud
variety. The central core and the jets of a radio-loud quasar are typically 10–100
times stronger than in radio galaxies; the core accounts for a larger fraction of
the emission compared with the extended lobes. The quasars showing the highest
optical polarization, and some of the blazars (see below), emit most of their energy
as γ-rays: Figure 9.9 shows that νFν in γ-rays can be ten times as large as in the
radio, millimeter, optical, or X-ray parts of the spectrum.

In the same way as for Seyfert 2 nuclei, a quasar can be hidden from us by the
dense gas of the accretion torus shown in Figure 9.3, which conceals the clouds
producing the broad emission lines. In these Type 2 quasars, we do not see the inner
torus that gives out most of the optical and ultraviolet light, and the emission lines
are less than 2000 km s−1 broad. We have found only the most luminous of them,
from their powerful X-ray emission and very strong lines of [OIII] at 5007 Å. In
both Seyfert 2 galaxies and Type 2 quasars, the intense radiation shining through
the dense gas of the torus can power water masers beamed toward us and radiating
at 22.2 GHz, like that in NGC 4258.
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Fig. 9.9. Average spectral energy distributions for blazars, grouped by radio power: the

most radio-bright are also the most luminous in γ-rays. The lower-energy peaks in the

ultraviolet and X-ray regions represent synchrotron radiation from electrons in the jet;

these photons scatter from the same spiralling electrons to produce the γ-ray peak. When

the electrons are more energetic, both peaks move to higher frequency – G. Fossati.

Figure 8.13 shows that the very brightest active nuclei of all kinds were most
common at z ∼ 2, roughly 3 Gyr after the Big Bang. Then we see 30−100 times
more quasars than in the local Universe, while at z ∼ 5 the density was only a few
times larger than at present. Less luminous active nuclei show a pattern more like
star-forming galaxies (look ahead to Figure 9.17), being most common closer to
z ∼ 1.

Nuclear activity is characteristic of a galaxy’s youth, and the masses of black
holes in galaxies today tell us that it must be a passing phase. Equation 9.4 tells us
that in a quasar shining at 1012L� the central black hole has MBH ∼> 3×107M�,
and must put on weight at ∼>M� per year while it maintains that power. So, if
activity lasts for at least 100 Myr, a mass of at least 109M� should remain. No
nearby galaxy has a black hole as massive as 1010M� (Figure 6.23): so quasars
probably do not remain as bright as 1012L� for longer than ∼1 Gyr. But, just as
for radio galaxies, activity is likely to continue for at least 100 Myr.

How does the active nucleus ‘know’ about the galaxy in which it lives, so
that the black hole can grow large enough to produce the relation that we see in
Figure 6.23 between its mass and the random stellar speeds? Probably they are
connected through star formation. Despite their intense radiation, quasars contain
dense molecular gas. Radio emission from CO molecules has been found in a
few dozen objects at redshifts z > 2; half of them are quasars, along with a few
radio galaxies. In the high-redshift quasar J1148 at z = 6.4, roughly 1010M� of
molecular gas orbits 2.5 kpc from the center at almost 300 km s−1. On average,
quasars detected in CO contain ∼ (1010−1011)M� of molecular gas. J1148 emits
1013L� in the far-infrared. Equation 7.11 shows that, if this all came from dust
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heated by young stars, the system would form 600M� yr−1 of stars, using up the
available gas within ∼20 Myr; but the active nucleus probably provides some of
that energy.

Problem 9.5 Show that the mass within the orbiting molecular gas of J1148 is

Morbit ∼ 5 × 109M�. The quasar’s bolometric luminosity is roughly Lbol =
4×1040 W; use Equation 9.4 to show that the central mass MBH ∼> 3×109M�.

The black hole and the molecular gas account for almost all of Morbit; the galaxy

probably lacks the massive bulge that we would expect on the basis of Figure 6.23.

Some quasars show very broad absorption lines with widths up to
10 000 km s−1, at redshifts that imply that the absorbing material moves toward
us at speeds ∼0.1c. The most prominent lines are those of ions such as SiIV,
CIV, NV, and OVI, which require high energies for their excitation. The absorbing
gas is dense, with 1019–1021 atoms cm−2. Few radio-loud quasars show broad
absorption lines: they may lack gas in the required form. We do not know whether
the 15% of quasars with broad absorption lines are different from those without,
or whether every quasar has clouds of dense gas along the line of sight to 15% of
all possible observers.

We do not know exactly how the quasar throws this absorbing gas outward at
such high speeds. For example, the broad absorption might be produced if our line
of sight passed by chance through one of the broad-line emitting clouds. Another
possibility is that absorption takes place in supernova remnants, in a dense star clus-
ter around the quasar; this would explain why the gas is metal-rich. Or the absorb-
ing material may be propelled outward by the pressure of the quasar’s radiation.

9.2 Fast jets in active nuclei, microquasars, and γ-ray bursts

The central compact radio cores of quasars and radio galaxies are only a few
parsecs across, but they can be mapped by very long baseline interferometry (see
Section 5.2) to reveal features less than a milli-arcsecond across. The majority
show a bright inner core with an elongated feature or a series of blobs stretching
for 10–50 pc away from it. Where the outer, kiloparsec-scale jet is one-sided, the
central elongated feature always lies on the same side as the jet. Figure 9.10 shows
the jet of BL Lac. Close to the inner core, the jet of blobs is often curved through
tens of degrees, but its outer parts are aligned with the larger-scale jet. So the
material of the outer jets, which can be hundreds of kiloparsecs long, must have
been focussed into a narrow beam within a parsec of the galaxy center.

Nearly all compact cores are variable, changing their luminosity over days,
weeks, or months. Times of peak brightness coincide with the appearance of new
blobs, which travel out along corkscrew paths as they fade, as in Figure 9.10.
In about half the well-studied cores, motion is superluminal: the blobs appear to
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Fig. 9.10. Radio maps at 22 GHz of the blazar BL Lac; the scale bar is 5 light-years long,

assuming that H0 = 67 km s−1 Mpc−1. Blob S8 moves in a corkscrew path away from the

core at apparent speed ∼3c. The hatched ellipse shows the telescope beam; a pointlike

source would appear with roughly this size and shape – G. Denn.

move away from the core with transverse speeds of (3−50)c. These high apparent
speeds arise because the emitting gas is moving toward us at speeds close to that of
light. The one-sidedness of the parsec-scale jet is only apparent; the approaching
side is enormously brightened by relativistic beaming.

In the 1990s astronomers learned that the compact remnants of stars can also
shoot out narrow jets of material at near-light speeds. In microquasars, jets emerge
as mass captured from a binary companion forms an accretion disk around a black
hole or neutron star. Supernovae marking the violent death of a very massive star
can produce twin relativistic jets that are seen as gamma-ray bursts.

9.2.1 Superluminal motion and relativistic beaming

To understand these apparently superluminal speeds, consider an observer who
sees a blob of jet material approaching at speed V , on a course making an angle θ

with the line of sight (Figure 9.11). The blob passes point S at time t = 0, and point
T at a time �t later. Radiation emitted at T reaches our observer later than radiation
from S; but, because T is closer, the interval between the two arrivals is only

�tobs = �t(1 − V cos θ/c). (9.15)

In this time, the blob has travelled a distance V �t sin θ across the sky, so its
apparent transverse speed is

Vobs = V sin θ

1 − V cos θ/c
. (9.16)

As V → c, the blob’s motion can appear faster than light.
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Fig. 9.11. Luminous blobs ejected at angle θ to the line of sight can appear to move

superluminally across the sky if their speed V ≈ c.

Problem 9.6 Defining γ = 1/
√

1 − V 2/c2, show that Vobs ≤ γ V , with equality

when cos θ = V/c, and that Vobs can exceed c only if V > c/
√

2.

Expansion speeds in blazars are most often around (5–10)c; thus the blobs
must move outward with γ ∼> 5–10, which is well below the average energy that
Equation 9.9 gave us for the radiating electrons. We will observe superluminal
motion only in jets that point within an angle 1/γ of our direction, which is less
than 10◦ in most cases. But, because the radiation is beamed in the direction of the
jet’s motion, those cores where the jet points toward us will appear much brighter.

To calculate this brightening, we recall that, for the stationary observer, atomic
clocks aboard an emitting blob appear to run slow by a factor of γ . But, by
Equation 9.15, its forward motion multiplies observed time intervals by the factor
(1 − V cos θ/c). So radiation emitted over a time �tblob with frequency νe in the
restframe of the blob arrives during an interval �tobs at frequency νobs, where

�tobs = �tblob[γ (1 − V cos θ/c)], and νobs = νe[γ (1 − V cos θ/c)]−1. (9.17)

Thus, when γ � 1 and the jet moves toward us, so that θ ≈ 0, we have �tobs ∼
�tblob/(2γ ). Just as in our discussion of synchrotron radiation, the observer sees
all the emission squeezed into a narrow cone, within an angle 1/γ of the direction
of motion. If the radiation is isotropic in the blob’s restframe, this brightens an
approaching blob by a factor ∼(2γ )2. The photons are blueshifted according to
Equation 9.17, which also expands their frequency range.

Gathering all the factors, we find that the flux Fν(ν) received at frequency ν

from a single blob, which in its restframe emits a power Lν ∝ ν−α, is amplified by
∼ (2γ )3+α when it moves directly toward the observer. The blob appears dimmed
by the same factor when receding. If oppositely directed twin jets are made up
of a series of identical blobs, and each radiates for a fixed time as measured in
its restframe, then Equation 9.17 shows that the observed lifetime of approaching
blobs is shortened. Thus the jet pointed directly at us is brightened only by the
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factor (2γ )2+α, while the receding jet is dimmed by the same factor. For compact
cores, α ∼ 0; thus, when γ ∼ 5–10, the jet travelling toward the observer appears
(2γ )4 ∼ 104–106 times brighter than that heading away. Often, we see only the
material heading toward us, as a one-sided jet; the receding half is almost invisible.
We have a much better chance of detecting as bright sources those objects for which
the jet points nearly in our direction, which explains why about half of observed
bright radio cores show superluminal motion.

Blazars always have strong radio emission from a compact core. They are
generally found in ellipticals; probably they are radio galaxies where we look
directly down the jet. Its relativistic motion makes the approaching half of the jet
appear so bright as to outshine the accretion disk and the line-emitting regions.
Blazars are strongly variable; some have doubled their optical and radio brightness
over a few days. This fast variation is natural, since by Equation 9.17 the time for
any change in the jet’s luminosity is shortened by the factor γ (1−V cos θ/c). The
visible light of most quasars is polarized at levels of a few percent, indicating that
part of it may be synchrotron radiation from the jet. But in blazars, polarization
can be as high as 20%; much more of the radiation comes from the jet. Only
one in every thousand quasars is a blazar; but, because they are brightened by
forward beaming, these objects account for a few percent of observed bright
quasars.

9.2.2 Microquasars: relativistic jets in stellar binaries

In the 1990s, astronomers were startled to discover radio jets emerging at close to
light speed from stellar-mass black holes. In a microquasar, a massive star transfers
mass onto an accretion disk around a black-hole or neutron-star companion. These
systems were long known as X-ray sources, and about 10% of them are also radio-
loud; so the fast jets should not have come as a surprise. The jets are quite narrow,
with opening angles less than 10◦, and the radio emission is synchrotron, just
as in active nuclei. At least two of the dozen or so known microquasars show
superluminal motion.

Because the central mass is only a few M�, the accretion disk around a
microquasar is hotter than that in an active nucleus, and emits most of its power
as X-rays rather than ultraviolet light. To calculate its temperature, we look at the
energy lost by a gas cloud of mass m in circular orbit around a massMBH, moving
from radius r to r − �r . Its initial energy is

E = −GmMBH

2r
, so �E = −GmMBH

2r2
�r. (9.18)

This energy is transferred to the portion of the disk between r and r +�r , which
must get rid of it. If it does that by radiating as a blackbody at temperature T , its
luminosity is σSBT 4 per unit area. Remembering that a disk has two sides, when
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a mass Ṁ flows inward per unit time we have

GṀMBH

2r2
�r = σSBT 4 × 4πr �r, so T 4(r ) = GṀMBH

8πr3σSB
. (9.19)

If the inflowing mass is converted to energy with some efficiency ε ≈ 10%, we
can measure Ṁ in units of the mass LE/(εc2) required to radiate at the Eddington
luminosity of Equation 9.4. Writing r in units of the Schwarzschild radius Rs =
2GMBH/c2, we have

T 4(r ) = 1

GMBH

(
r

Rs

)−3( Ṁ
LE/(εc2)

)
c5mp

16εσTσSB
. (9.20)

So the temperature near the inner edge of a disk accreting near its Eddington limit
decreases with the mass of the black hole, as M−1/4

BH .
These arguments are not quite right, since we have ignored the fact that matter

can fall in only when angular momentum is carried outward in the disk. Since
energy is transported along with it, the disk at r � Rs radiates three times as
much energy as is given by Equation 9.19, while the inner disk radiates less.

Problem 9.7 Recall from Problem 3.20 that the last stable orbit around a non-

rotating black hole is at 3Rs. Show that, when MBH = M� and Ṁ is near the

Eddington limit, the inner edge of the disk is at T ≈ 3 × 107 K, corresponding

to a photon energy of 2.6 keV. Assuming that the orbital speed of material there

is given by Equation 3.20, show that the orbital period P ≈ 3 × 10−4 s.

The material is already collimated into a narrow jet within 10 AU of the central
source, and the jet travels for a few parsecs rather than megaparsecs. We can watch
as bright clumps travel out from the nucleus and fade within a month or two rather
than over decades or centuries, as in an active nucleus. These clumps seem to
be ejected when the source enters an X-ray-bright state – perhaps as material in
the accretion disk swirls rapidly inward and onto the central object. The jet may
speed up, so we see bright knots of radio emission as the faster material runs into
the slower plasma ahead of it. Microquasars are a remarkable demonstration that
gravitational and electromagnetic forces can operate on all spatial scales.

Further reading: Chapter 16 of M. S. Longair, High Energy Astrophysics, 2nd
edition (Cambridge University Press, Cambridge, UK).

9.2.3 Fast jets from exploding stars: gamma-ray bursts

Gamma-ray bursts (GRBs) were discovered in the 1960s by satellites watching
for nuclear bomb tests. They are short, intense spurts of γ-rays, with peak energies
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around 1 MeV and a low-energy tail of X-rays. They last typically 500 s or less, and
appear to arrive from random directions in the sky. Since γ-ray telescopes cannot
normally pinpoint a source more closely than to within ∼1◦ on the sky, none was
identified with an optically-visible object until the Beppo-SAX satellite began
observing in 1997. Once it detected a burst, Beppo-SAX could point immediately
to take an X-ray image with 3′ resolution, good enough to tell optical astronomers
where to look. ‘Long’ bursts lasting 2 s or more are typically found in star-forming
galaxies. We have now identified the optical counterparts of about a hundred
GRBs, at redshifts up to 6.3.

A long burst lasts 50 s on average, but most are made up of many short sub-
pulses that peak and fade within 1−100 ms. So the emitting region must be smaller
than a light-millisecond or 300 km, the Schwarzschild radius for a 100M� black
hole. The bursts must be caused by objects of stellar mass, rather than the giant
black holes found at galaxy centers. We never find repeated GRBs from the same
spot, which suggests that they originate from some catastrophic event: a massive
star exploding, or perhaps one black hole merging with another, or with a neutron
star.

We see roughly one GRB for every 100 000 supernovae, but this is likely to
be a small fraction of the total. Like blazars, GRBs beam their luminous material
in narrow jets. If they radiated equally in all directions, the energy of a typical
burst would be an astounding 1052−1054 erg, or nearly M�c2. The radiation from
a normal supernova, and the energy of motion in its ejected outer layers, amount
to only ∼1051 erg. The jet’s opening angle θ is typically 1◦–20◦, so the energy
required from each burst is reduced by a factor θ2 to only 1050−1051 erg, which is
within the energy budget of a supernova. But we fail to detect most bursts because
the jet is not pointing in our direction.

The radiating material is expanding at close to light speed. Otherwise, the
γ-rays would be so tightly packed that they could not escape, but would lose their
energy in producing particle–antiparticle pairs. To avoid that fate, the ‘fireball’
must expand with Lorenz factor γ ≡

√
1 − V 2/c2 > 100. Emission from material

heading directly toward us is boosted by a factor (2γ )4, so nearly all the energy we
receive is from a small cone where the outward motion is directed within an angle
1/γ of our line of sight. As outgoing material slows and γ drops, this cone widens
to include a larger fraction of the radiating volume. Equation 9.17 shows that we
see the burst compressed in time by 1/(2γ ), compared with an observer moving
with the outflowing gas. The gamma-rays are probably synchrotron radiation,
produced by fast electrons accelerated by shocks in the outflowing relativistic
material.

Along with the X-rays, we often see an afterglow in optical and radio bands.
Absorption lines at visible wavelengths let us measure the redshift of the host
galaxy. The light is usually polarized, suggesting that it is synchrotron radiation
from electrons accelerated in shocks as the jet runs into the surrounding gas. The
visible afterglow starts to dim more rapidly after 1–100 days, which may mark
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the time when outflowing material has slowed so that 1/γ ∼ θ , so we receive
radiation from the entire approaching jet. The jet also begins to expand sideways
(since the opening angle is now comparable to the Mach number M ∼ 1/γ ),
causing its density and emissivity to drop. The radio afterglow becomes strong
only a day or so after the burst, and can remain fairly bright for a year or more.
During this time the outward motion slows to well below c and the expansion
becomes spherical, so we can reliably estimate the total energy in the outward-
moving material. Many bursts seem to have roughly the same amount of energy
in the relativistic outflow, roughly 1051 erg divided between prompt emission and
the afterglow.

After some long bursts, the declining curve of visible light shows a bump that
rises to a maximum after ∼20(1 + z) days and then fades. In some well-observed
cases, broad emission lines identify the bump as the light of a Type Ic supernova
that exploded at the same time as the burst. Such an explosion is thought to mark
the end of life for a rotating star that had a mass of (20−40)M� when it was on
the main sequence. As the star’s iron core collapses, enough other material may
join it that the core cannot become a stable neutron star, but forms a black hole
instead. The rest of the star’s material has too much angular momentum to fall
directly into the black hole. Most of it is expelled in the explosion, but ∼0.1M� is
thought to form a short-lived accretion disk around the black hole, which channels
twin outflowing jets as shown in Figure 9.3.

Short GRBs, lasting less than 2 s, have a much fainter afterglow. The first was
identified only in 2005; GRB 050724 was relatively close, in an elliptical galaxy
at z = 0.26. The burst itself was at least ten times fainter than a typical long burst,
and the afterglow at least a hundred times dimmer. This may have been a merger
between two neutron stars (expected to be 10 000 times rarer than a supernova),
or even between a neutron star and a black hole. These bursts would be shorter
than one from a collapsing massive star because both partners are already very
compact.

Gamma-ray bursts may have been relatively more frequent in the early Uni-
verse, since it is easier to make very massive stars when metals are absent from
the gas. (If these first-generation stars were all massive, and have now ended their
lives, this would explain why we see none in the Milky Way today.) Gamma-rays
are neither scattered by dust nor readily absorbed by the interstellar gas, so they
can help us to probe starbirth in the most distant galaxies. Some of the bursts
detected by our present γ-ray telescopes are likely to be at redshifts z ∼ 10 or
higher, too distant for us to see the afterglow at longer wavelengths. If a better
understanding allows us to estimate redshifts from the X-ray and γ-ray emission,
we could use GRBs to trace the earliest massive stars.

Further reading: J. I. Katz, 2002, The Biggest Bangs: The Mystery of Gamma Ray
Bursts (Oxford University Press, Oxford, UK) is written for the general reader.
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9.3 Intergalactic gas

In the spectra of most quasars, we see multiple systems of absorption lines, at
significantly lower redshifts than the emission. Most of the lines are narrow; their
widths correspond to internal motions slower than 100 km s−1, although their
redshifts imply that the gas is travelling away from the quasar and toward us
at almost light speed. In fact, this gas is nowhere near the quasar, but simply
intercepts its light. Counting the baryons in galaxies and clusters today shows
that their formation was not very efficient: recall Table 7.2. Most of the baryons
remain in diffuse clouds, that we see only when they intercept the light of a distant
source. This is the reservoir from which gas flowed into the nascent galaxies, and
which continues to feed them to the present day.

Absorption lines are usually identified in groups that show a simple pattern,
such as the Lyman series of hydrogen, or doublets of magnesium and carbon. A
small wavelength difference makes it easier, since a single measured spectrum is
likely to show both lines of a pair. The MgII lines at 2796.3 Å and 2803.5 Å fall
into the visible window when the absorbing cloud’s redshift is 0.2 ∼< zabs ∼< 1.5,
and the CIV lines at 1548.2 Å and 1550.8 Å do so for 1.1 ∼< zabs ∼< 3.5. The
OVI lines at 1031.9 Å and 1037.6 Å are harder to observe, since they can be lost
among the lines of the Lyman-α forest (see below). Once the absorption redshift
is known, isolated lines of other elements can often be found.

The intergalactic gas ranges from clouds of largely neutral material, which are
as dense as present-day galactic disks, to diffuse gas where the fraction of neutral
atoms is 10−3 or less. The number N of absorption lines with N (HI) hydrogen
atoms along the line of sight approximately follows N ∝ N (HI)−1.5: the very
diffuse clouds are the most common, but the densest of them contain almost all of
the neutral gas. The absorbing material is not pristine, but already contains heavy
elements produced by nuclear burning in stars.

9.3.1 Neutral gas: damped Lyman-α clouds

If the column density of neutral gas exceeds N (HI) ≈ 2 × 1020 cm−2, the
Lyman-α (Lyα) line is optically thick with prominent damping wings: these are
called damped Lyα clouds. This gas density corresponds to 1.5M� pc−2, which
is typical for the outer HI disks of galaxies today: see Section 5.2. A Lyman-limit
cloud has N (HI) ∼> 2 × 1017 cm−2; it absorbs almost all photons that have enough
energy to ionize a hydrogen atom, so the quasar’s measured flux drops nearly to
zero at wavelengths just short of 912(1 + zabs) Å. The damped Lyα clouds are
largely neutral, but most of the hydrogen in the Lyman-limit clouds is ionized.
The spectrum of Figure 9.12 shows a damped Lyα line with zabs = 2.827; the col-
umn density is close to 2 × 1020 cm−2. Damped Lyα clouds in front of radio-loud
quasars can also be detected by their absorption in the 21 cm line of HI. Counting
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Fig. 9.12. The spectrum of quasar 1425+6039 with zem = 3.173: broad Lyα emission at

1216 Å is redshifted to the visible region. At shorter wavelengths, narrow absorption lines

of the Lyα forest are dense. The squarish profile at 4650 Å is a damped line of Lyα, at

zabs = 2.827. The arrow shows absorption at the same redshift in the CIV doublet with rest

wavelength near 1550 Å: the inset reveals distinct absorption components from multiple

gas clouds – L. Lu and M. Rauch.

the number of clouds in the spectrum of a typical quasar tells us that they contain
enough dense gas to make the disks of present-day spiral and irregular galaxies.

Problem 9.8 Suppose that there are n(z) = n0(1 + z)3 damped Lyα clouds per

Mpc3 at redshift z, each with cross-sectional area σ . Explain why we expect to see

through n(z)σ l of them along a length l of the path toward the quasar. Use Equa-

tion 8.47 to show that between z and z + �z the path �l = c�z/[H (z)(1 + z)],

so the number per unit redshift is

dN
dz

�z = n(z)σc �z

H (z)(1 + z)
≡ n0σc

H0
�z

dX (z)

dz
, (9.21)

where (using Equation 8.26 for the second equality)

dX (z)

dz
= H0(1 + z)2

H (z)
= (1 + z)2√

�m(1 + z)3 + (1 − �tot)(1 + z)2 + ��

.

Show that, if the Universe is flat and �tot = 1, then at early times

X (z) = 2

3
√

�m
[(1 + z)3/2 − 1] while (1 + z)3 � ��/�m. (9.22)

Locally we find dN /dz ≈ 0.045; if the cross-sectionσ does not change, show that

we expect dN /dz ≈ 0.16 at z = 3. At z = 5 we observe dN /dz ≈ 0.4. Show

that this is roughly twice what we expect if σ is constant: this result indicates

that there were more absorbing clouds, or each was larger.
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Problem 9.9 Suppose that the clouds of Problem 9.8 are uniform spheres of

radius r with density nH hydrogen atoms cm−3. Their mass is given by M =
(4/3)πr3nHμmH, where the mean mass per hydrogen atom is μmH (μ ≈ 1.3

for a gas with 75% hydrogen and 25% helium by weight), and the average

column density N (HI) ≈ rnH. Show that, for neutral clouds,M ≈ σμmH N (HI),

where σ = πr2 is the cross-section and N (HI) the column density of hydrogen

atoms. Use Equation 9.21 to show that the density ρg of neutral gas at redshift

z is

ρg(z) ≡ n(z)M = μmH

c
N (HI)

dN
dz

H (z)(1 + z).

If this gas survived unchanged to the present day, explain why it would now

represent a fraction �g of the critical density of Equation 8.21, where

�g ≡ n0M
ρcrit(t0)

=
[

μmH H0

ρcrit(t0)c

]
N (HI)

dN
dz

/
dX

dz
. (9.23)

This fraction depends on the present-day Hubble constant as �g(z) ∝ h−1 –

why? Show that the term in square brackets is 1.2 × 10−23h−1 cm2. Taking

dN /dz = 0.2, and an average N (HI) = 1021 cm−2 at z ∼ 2, show that for the

benchmark cosmology dX/dz = 3.0 and �g(z = 2) ≈ 10−3.

We saw in Table 7.2 that the neutral atomic and molecular gas now in galaxy
disks corresponds to �g ∼ 8 × 10−4, while stars in the disks of galaxies now
make up �
 ∼ 6 × 10−4. So there is about enough neutral gas in the damped Lyα

clouds at z ∼ 2 to make the galaxy disks that we see today. But, if the benchmark
cosmology is correct, �g has remained at this level over 6 Gyr between redshifts
0.7 ∼< z ∼< 5, when half of the stars in disks like the Milky Way’s were born.
So we think that the damped Lyα clouds have been replenished, as more tenuous
ionized gas flowed into them and became dense enough to recombine.

Are the damped Lyα clouds simply gas in the disks of galaxies? We do not
really know. The HI disks of nearby galaxies are large and numerous enough
to account for the absorption features at z ∼< 1. At least half of them should be
caused by less luminous galaxies with L ≤ 0.2L
, since these have relatively
large HI disks. When zabs < 1.5, we can often see a bright patch of stars within
an arcsecond or so of the quasar on the sky, at the same redshift as the damped
Lyα cloud. These systems are a mix of star-forming disk galaxies, irregulars, and
compact knots of star formation, with luminosities 0.02L
 < L < 3L
. At higher
redshifts, Problem 9.8 shows that the galaxies must be larger or more numerous
than they are today, to provide enough absorption lines. Lyman break galaxies at
2 ∼< z ∼< 3, selected because they are bright in the ultraviolet, usually give rise
to Lyα absorption if they lie within 300 kpc of the path to a quasar. Typically,
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the closer the quasar’s light passes to the galaxy, the denser is the absorbing gas.
Curiously, a third of Lyman break galaxies seem to produce no Lyα absorption
at all.

Problem 9.10 At present, the density of L
 galaxies is roughly n
 of Equation

1.24, or 0.02h3 Mpc−3. Figure 1.16 shows that about half of them are disk galax-

ies, so, taking h = 0.7, we now have n0 ≈ 0.003 Mpc−3 bright spiral galaxies.

At z ∼ 3, we see dN /dz ≈ 0.25. If galaxies had already assembled their disks

by then, we would expect the density n(z) ≈ n0(1 + z)3. For the benchmark

cosmology, show that dX/dz = 3.6, and use Equation 9.21 to show that we must

have σ = 2500 kpc2, so that the absorbing material extends to radii ∼30 kpc.

Figure 5.15 shows that the HI disk of a galaxy like the Milky Way with M(HI) =
1010M� extends almost to this radius.

9.3.2 Metals in the intergalactic gas

Damped Lyα clouds contain metals and dust, as well as hydrogen and helium: we
see lines of low ions such as MgII, ZnII, and CrII along with high-ionization lines
such as CIV and SiIV. In Figure 9.12, there is a cluster of CIV lines at zabs = 2.83
near 5920 Å; they come from the same gas as is producing the damped Lyα

absorption. In less dense clouds with N (HI) ∼> 1016 cm−2, the strongest metal
lines are of low-ionization species such as MgII, SiII, and OI, which in present-
day galaxies are found along with neutral hydrogen in their disks. CIV and SiIV
lines, which are characteristic of the diffuse hot gas of today’s galactic halos,
become more common when N (HI) is yet lower. Such complexes of metal lines
are generally 300–500 km s−1 wide, but the widths of individual components range
down to 10 km s−1, corresponding to T ∼<105 K. A plasma in thermal equilibrium
at this temperature would contain very few CIV ions; so the absorbing gas is
probably ionized by intergalactic radiation from quasars, or by hot stars born
within it.

All damped Lyα clouds cause absorption in MgII, but the reverse is not true.
At a given redshift, lines of MgII are about ten times as common as damped Lyα

systems, while CIV lines are yet more frequent. So the gas responsible for the
MgII absorption must cover a larger area than that producing the damped Lyα

features. Strong MgII absorption generally occurs within 40h−1 Mpc, and weaker
absorption up to 80h−1 Mpc, of a galaxy. Gas causing CIV absorption usually
extends 50–100 kpc, but sometimes is seen 200 kpc away. Where gravitational
lensing has produced multiple images of a quasar separated by ∼ 1 arcsec on
the sky, the two light paths are ∼10 kpc apart as they pass through the absorber.
Strong lines of CIV in the two quasar spectra differ when the paths to the images
are separated by more than 20−50 kpc, giving the rough size of these complexes
of absorbing clouds.
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Fig. 9.13. Abundance of zinc relative to hydrogen in gas clouds causing damped Lyα

absorption: circled dots show the densest clouds with N (HI) ≥ 1021 cm−2, filled dots

show less dense clouds, and downward triangles show upper limits. Horizontal bars show

average abundances weighted by N (HI); lookback time refers to the benchmark model.

Zinc is not readily incorporated into dust grains, so its abundance in the gas indicates the

total fraction of metals – after Kulkarni et al. 2005 ApJ 618, 68.

Just as in galactic halos, OVI absorption mainly comes from a thin layer around
partially ionized warm clouds that absorb in CIV and MgII. Sometimes the OVI

lines are broad, as expected when T ∼> 3 × 105 K and OVI is collisionally ionized
at densities n ≥ 10−3 cm−3, over 100 times the cosmic mean. This gas may have
been heated by shocks in outflowing winds from star-forming galaxies.

Where we can also measure the column density NH of hydrogen in an absorb-
ing cloud, we can use the strength of the metal lines to estimate the fraction of
heavy elements in the gas. Figure 9.13 shows that the average metal abundance
in the damped Lyα clouds has slowly risen over time. But it was still less than
one-tenth of the solar value 8–10 Gyr ago, when the Milky Way’s disk made many
of its stars. The gas of Figure 9.13 could not have been the gas from which the
Milky Way’s disk formed: Table 2.1 and Figure 4.14 show that almost all the disk
stars have Z > 0.1Z�. But we saw in Figure 4.15 that galaxy disks are richer
in heavy elements toward their centers, while the points in Figure 9.13 are more
likely to represent a quasar shining through the metal-poor periphery of one.

In the Milky Way, we noted in Section 2.4 that any cloud denser than N (HI) =
1020 cm−2 becomes largely molecular. Hydrogen molecules in damped Lyα clouds
would easily be seen since they absorb the quasar’s ultraviolet radiation; but in
fact H2 is rare. Probably the gas contains too little dust to allow molecules to
form easily. In some damped Lyα clouds elements such as iron, that are readily
incorporated into dust, are rarer with respect to those like zinc and silicon that are
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not. These clouds must have begun to produce a little dust, but the ratio of dust to
gas is ∼30 times smaller than Equation 1.22 gives for the Milky Way.

Absorption lines of CII∗, excited C+, at 1335.7 Å indicate that far-ultraviolet
photons are heating the dust grains, just as they do in the Milky Way. The heat is
transmitted to the surrounding gas, and carbon excited to CII∗ re-radiates most of
it away at 158 μm (see Table 2.5). From the strength of the CII∗ absorption we
can estimate how much heat is re-radiated; it is far more than can be supplied by
the intergalactic radiation field. These damped Lyα clouds must have their own
source of ultraviolet photons – they are forming stars. In a few cases, we have
even seen the Lyα emission of those stars. The inferred pace of starbirth is rapid
enough at redshifts z ∼ 2–4 that it would use up all the gas of the damped Lyα

clouds within ∼2 Gyr – further evidence that those clouds are replenished from
the reservoir of more diffuse gas.

If these metal lines indeed trace gas that now lies in galaxies or galaxy
groups, their redshifts should be clumped in much the same way as for the
galaxies. As expected, if a CIV absorption line is detected, it is more probable
to find a second line nearby in velocity, but the effect disappears for separations
beyond 500 km s−1. The same is true for lines of OVI that lie closer together than
750 km s−1. These speeds are somewhat higher than the rotation speeds of galax-
ies, or the velocity dispersion within groups of galaxies. But this is roughly the
thickness of the velocity peaks in Figure 8.4, which correspond to looking through
a wall or filament of galaxies.

9.3.3 The Lyman-α forest

At column densities below N (HI) ∼2 × 1017 cm−2, ultraviolet photons penetrate
through a gas cloud, and most of the hydrogen is ionized. When N (HI) ∼<3 ×
1014 cm−2, we usually detect only the Lyα lines of hydrogen, although deep
spectroscopy can reveal weak CIV and OVI lines. The dense profusion of hydrogen
absorption lines at wavelengths just short of the quasar’s Lyα emission is the
Lyman-α forest. While we detect the forest through its neutral hydrogen, almost
all the gas is ionized; HI forms only a tiny fraction, often less than 0.1% of the total.
But these clouds may be the Universe’s main repository of neutrons and protons.

In Figure 9.12 we see that forest clouds can remove a substantial fraction
of the quasar’s light just shortward of its Lyα emission line, leaving the average
intensity lower than that on the long-wavelength side of the emission line: the
Gunn–Peterson effect. Between the lines of the Lyα forest in Figure 9.12, the
light level is the same on both sides of the emission line. The Lyα line saturates
at N (HI) ∼ 1014 cm−2, so there must be hardly any HI gas between the absorbing
clouds. This is typical for quasars at redshift z ∼< 5.8. But in many objects with
z ∼> 6, we see a Gunn–Peterson trough: all the light just shortward of the Lyα

emission line is missing, having been absorbed by diffuse neutral gas at z ∼> 5.8.
The earliest quasars and star-forming galaxies shone on gas that had become

neutral at the time of recombination, at zrec ≈ 1100. They formed HII regions,
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‘islands’ of ionized gas like those around hot massive stars in the Milky Way.
As the Universe expanded the densest gas clumped together into clouds, while
more stars and quasars were born to ionize the smaller amount of diffuse gas that
remained. The disappearance of the Gunn–Peterson trough tells us that at z ∼ 6
those completely ionized regions linked up to surround tiny islands of denser
neutral gas. Quite abruptly, over ∼100 Myr, the Universe became transparent to
ultraviolet radiation; it was reionized. After that, the ultraviolet light of a quasar
was absorbed only where it encountered a cloud of neutral gas.

What is the source of the ultraviolet photons that reionized the gas? Not the
luminous quasars: Figure 8.13 tells us that before z ∼ 6 these were very rare,
and contribute little. Can star-forming galaxies do the job? That depends on how
much of their ultraviolet light escapes to intergalactic space, and how much denser
the gas around them is than the cosmic average. Problem 2.24 shows that, as the
surrounding density drops, a given galaxy or quasar can ionize a larger mass of
gas. Large galaxies such as the ultraviolet-luminous objects of Figure 9.17 form
in dense regions (see Figure 7.11). Thus handicapped, their stars are inadequate
to the task. But dim galaxies are far more common than luminous ones (recall
Figure 1.16), and predominate where the galaxy density is low; so the gas around
them will be less dense. If all galaxies formed stars in proportion to their dark
matter, most would individually be too faint for us to see, but together they could
reionize the gas. However, we argued in Section 8.5 that most small clumps of
dark matter should not make stars, or else the Milky Way would have far more
satellites than we observe. Another suggestion is that the X-ray and ultraviolet
light of numerous faint quasars provides the energy for reionization.

We can estimate the level of ionizing radiation between the galaxies by looking
at how the Lyα forest thins out near the quasar’s emission redshift. Clouds with
zabs ≈ zem lie close enough to be affected by the quasar’s radiation, which boosts
ionization so that very little HI remains. The redshift interval where the forest lines
are sparse shows where that radiation makes a significant addition to the general
intergalactic background. Measuring this proximity effect shows that over the range
1.6 < z < 4 the photons close to 912 Å that can ionize a hydrogen atom amount
to ∼3×10−22 erg cm−2 s−1 Hz−1 sr−1 . This corresponds to ν Iν ∼ 2nWm−2sr−1,
somewhat higher than today (see Figure 1.19).

With so many ionizing photons, only one hydrogen atom in 103 or 104 of the
diffuse gas of the Lyα forest would remain neutral. The most diffuse clouds that
we observe are only a few times denser than the cosmic mean. Their gas is too
rarified to radiate energy so that it could cool and become denser; it is still fairly
evenly mixed with dark matter in the filaments of the cosmic web of Figure 8.16.
Observations of quasars lying close to each other on the sky with absorption lines
at the same redshift show that at z ∼ 2 a filament of the Lyα forest gas can stretch
for ∼>0.5h−1 Mpc.

Most of the diffuse ionized gas appears to contain elements heavier than
hydrogen and helium. One recent study found carbon and oxygen at about a
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Fig. 9.14. A section of the Hubble Ultra Deep Field in blue (B, left) and red (i , right)

light. Redshifts of selected galaxies are marked. Note the normal-looking spiral at z ∼< 1

to the right of the center, and the merging group to the left – Space Telescope Science

Institute.

thousandth of the solar level, although about 30% of the clouds were even more
metal-poor with Z ∼ Z�/3000. If many stars were formed early in small galaxies,
the products of their nucleosynthesis would be spread throughout the Lyα forest.
How much of the heavy elements should they make? Adding up the ultraviolet
light from the galaxies of Figure 9.17, we find that by z ∼ 2.5 they alone would
produce enough metals to give an average abundance ∼Z�/30 if mixed evenly
through the baryons. So why do we see only 0.001Z� in the Lyα forest, which
contains most of the baryons? This is known as the missing metals problem. For
lack of definite information, we conclude that the missing metals are hidden in
highly ionized states in hot gas that is too diffuse to cool.

9.4 The first galaxies

Figure 9.14 shows part of the Hubble Ultra Deep Field, a region of the sky where
deep images have been taken with the Hubble Space Telescope in four colors,
roughly the U, B, i , and z passbands of Tables 1.2 and 1.3. Some of the galaxies
in this field are small nearby objects, but others are known to have redshifts up to
z ∼ 5. These look more irregular and asymmetric than present-day systems. But
we see them by light that was emitted in the ultraviolet, by their young massive
stars, and Figure 5.10 shows that the ultraviolet images of nearby normal galaxies
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can look very different from those in visible light. Local star-forming galaxies are
also apt to look ragged in the ultraviolet.

Even when we observe in the infrared to map out light that was emitted at
visible wavelengths, only the most luminous of the galaxies at z ∼ 1 can be
classified according to Figure 1.11. By redshift z ∼> 2, hardly any of the luminous
patches in Figure 9.14 resemble the spirals and ellipticals of our nearby Universe.
They have irregular shapes, very high surface brightness, and the bright blue colors
of starbursts. They are much smaller than present-day galaxies, only 0.1′′–0.2′′

across. These may be only protogalactic fragments that will merge to form the
galaxies, or the centers of galaxies that are not yet full-grown.

A galaxy’s light output changes with time as new stars are born and age,
affecting both its color and luminosity. Although we cannot normally test whether
an individual galaxy was brighter or fainter in the past than it is now, we can
compare the average population of galaxies at the present day with that at higher
redshifts. We can make a model by specifying the star-forming history, and using
our knowledge of stellar evolution to calculate how its spectrum should change
with time. This amounts to finding the evolutionary term e(z) in Equation 8.46.
We then test the model by calculating how many galaxies of a given type should be
found. For example, if galaxy disks have built up their stars at a steady rate, then
they should always have roughly the same number of young blue stars, while the
red stars build up over time. If elliptical galaxies made all their stars at redshifts
z ∼> 3, we can see from the starburst model of Figure 6.18 that their stars should
have been both bluer and brighter in the past.

Figure 9.15 represents a look backward over at least half of the Universe’s
history, showing the numbers of galaxies at each luminosity per comoving volume.
The number of red galaxies, with spectra showing only old stars, is about the same
as today. We know that the population of stars that makes up each galaxy at z ∼ 1
will have faded by the present, as in Figure 6.18. So these galaxies must make
new stars, or grow by eating their companions as we discussed in Section 7.1; or
else new bright red galaxies have been produced. For example, a blue galaxy that
ceases forming stars will become red.

At z ∼ 1 the number of blue galaxies that are actively forming new stars was
larger at each luminosity than it is today. Each one was about three times brighter,
or else there were more blue galaxies in the past. We cannot blame stellar fading:
today’s blue galaxies have formed new stars in the past gigayear, or they would now
be red, not blue. The extra starbirth is not caused by starbursts in galaxy mergers;
fewer than 10% of the galaxies that contribute to Figure 9.15 are merging. Instead,
normal galaxies like our own must have made stars more rapidly than they do now.
These systems should redden over time, as old stars make up more of their mass;
and indeed the average color of a star-forming galaxy is now redder than it was at
z ∼ 1.

We can compare the observed rate of starbirth in a galaxy with what is needed
to build up the stars that we see over the lifetime of the Universe; a starburst galaxy
is one that makes stars much faster than this average rate. We saw in Section 2.1
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S. Faber et al., astroph/0506044.

that our Milky Way’s disk has formed stars at a steady pace over the past few
gigayears, while small galaxies more often make their stars in spurts (Section 4.4).
Figure 6.20 shows that the biggest galaxies, with L r > 8 × 1010L� or twice the
Milky Way’s luminosity, are now forming stars at only 1%–10% of their average
rates over cosmic history. Today, <1% of galaxies with more than 2×1010M� of
stars (about a third as much as the Milky Way) have a global starburst, although
bursts confined to the center are more common. But at z ∼ 0.7, fully 40% of such
galaxies are making stars significantly faster than their average rate.

The spectrum of a galaxy that forms its stars in bursts will resemble those
in Figure 6.18, with the addition of some red light from the older stars. At
z ∼ 0.7 almost half of large galaxies show ‘post-starburst’ spectra, with deep
Balmer absorption lines; they must have stopped making stars quite abruptly
about 0.5–2 Gyr earlier. This is as we expect for galaxies where starbirth took
place in spurts of ∼100 Myr, separated by quieter periods of a gigayear or more.
Today, only a few percent of large galaxies have post-starburst spectra.

9.4.1 Lyman break galaxies

To study galaxies at high redshift, we must first find a good way to pick them out
from our images. All gas-rich galaxies show a break in the spectrum at 912 Å:
neutral gas around the star and within the galaxy absorbs much of the light at
shorter wavelengths. In objects at z ∼> 4, intergalactic gas of the Lyα forest
removes light below 1216 Å. The Lyman break galaxies are distant star-forming
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Fig. 9.16. The spectrum of the Lyman break galaxy cB58 at z = 2.723. Lines character-

istic of hot stellar photospheres are marked ∗; near 5100 Å, we see MgII absorption from

gas at lower redshift. The spectral lines are similar to the starburst in Figure 5.24, but this

galaxy is bluer with Fν approximately constant; that starburst has roughly Fλ ∝ λ−1 or

Fν ∝ ν−1 – C. Steidel.

systems found by searching for these spectral signatures. At z ∼ 3, the break at
912 Å shifts to wavelengths λ ≈ 3650 Å, in the near-ultraviolet U band. So
galaxies at this redshift will almost disappear from U -band images, while the
color B − V in visible light is still blue or neutral. At redshifts z ∼ 4−5 a star-
forming galaxy is not seen in the B band but is still bright in V . At z ∼ 6 it becomes
dark in the I band at 8000 Å as the break at 1216 Å moves into that region.

Figure 9.16 shows cB58, a Lyman break galaxy at redshift z = 2.7, corre-
sponding to 2.4 Gyr after the Big Bang. The ultraviolet spectral lines are similar
to those of the nearby starburst galaxy of Figure 5.24, but this galaxy is bluer.
There is no strong Lyα emission line. Although hot stars radiate profusely here,
the Lyα photons scatter repeatedly from hydrogen atoms before they leave the
galaxy; during their lengthy travels they are easily absorbed by even small amounts
of dust. The CIV absorption line has an abrupt edge on the red side, but blends
smoothly away to the blue. This P Cygni profile is characteristic of the expanding
atmospheres of massive hot stars.

The metal lines tell us that the young stars have metal abundance 0.4Z� ∼<
Z ∼< Z�; those heavy elements were made by previous generations of stars. In
the gas we can measure the abundances of several elements; oxygen is at 40% of
the solar level while iron reaches only ∼10%, although more may be hidden in
dust grains. This is the same pattern as we see in old stars in the Milky Way in
Figure 4.17. Oxygen is produced in Type II supernovae, the explosions of short-
lived massive stars, while iron is released from Type Ia supernovae which involve
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low-mass long-lived stars. So oxygen is added to the gas within ∼10 Myr after the
first significant star formation, whereas iron will be released only ∼1 Gyr later.
Together with a low level of nitrogen, also made in low-mass stars (see Section 4.2),
this ratio suggests that cB58 made most of its stars in the past 250 Myr.

We see blueshifted absorption lines showing that gas is streaming outward;
this is typical for Lyman break galaxies. In cB58 the wind moves outward at
250 km s−1, carrying off about as much mass as the galaxy turns into new stars.
At least some of this metal-bearing material will escape to intergalactic space.
Stars are made from dense gas, so it is not surprising to detect radio-frequency
lines from molecules such as CO. In cB58 we find ∼109M� of molecular gas,
enough to form stars at its current rate for only about 50 Myr. This gas is dense
enough to absorb 80% of the ultraviolet light of the young stars, re-radiating
energy LFIR ∼ 1011L� in the far-infrared.

Observing these distant galaxies in visible or near-infrared light, we receive
energy emitted in the ultraviolet, which comes only from their most massive and
recently born stars. To infer the pace of starbirth, we must guess at the initial mass
function, giving the proportions of massive and less-massive stars. In cB58, the
P Cygni profile of the CIV line and the shapes of other lines tell us that, at least
among its massive stars, this galaxy has roughly the same initial mass function
as the Milky Way. We can measure the ultraviolet luminosity Lλ(1500 Å) in the

hybrid units of 3.86 × 1026 W Å
−1

; recall that L� = 3.86 × 1026 W is the Sun’s
bolometric luminosity. Then, if the initial mass function has the Salpeter form of
Equation 2.5 for M ∼> 0.1M�, stars are produced at the rate

Ṁ
 ∼ (3–5) × 10−7Lλ(1500 Å)M� yr−1. (9.24)

Making M� yr−1 in stars corresponds to Lλ(1500 Å) ∼ 3 × 106L�Å
−1

, or a
luminosity λLλ ∼ 4 × 109L�. For a more realistic mass function that includes
fewer low-mass stars, Ṁ
 is only half as large for a given ultraviolet luminosity.

The best estimate of starbirth would be to add the rate given by Equation 9.24
to that given by Equation 7.11, which measures the stellar light intercepted by
dust and re-radiated in the far-infrared. Typically, the more vigorous the starbirth,
the larger the fraction of the young stars’ light intercepted by dust. Most of the
Lyman break galaxies studied at z ∼ 3 make (10–50)M� yr−1 of new stars;
cB58 produces ∼40M� yr−1. This is modest compared with 200M� yr−1 in the
nearby ultraluminous merging system Arp 220 or the submillimeter galaxies (see
below). Today ∼5M� yr−1 of stars are born in a large spiral galaxy like the Milky
Way, while rates for typical local starbursts range up to 30M� yr−1.

Lyman break galaxies are very bright because of their short-lived massive
stars: they are typically several times more luminous in visible light than an
L
 galaxy defined by Figure 1.16. Figure 6.18 shows that, between roughly
50 Myr and 1 Gyr after a starburst, the Balmer jump near 4000 Å increases in
strength. Using it to date the current episode of starbirth, we find that the fastest
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star-formers have typically been making stars for only 30−100 Myr, while the
more sedate galaxies have continued for ∼>1 Gyr. The color of light emitted at
visible wavelengths gives information on older stars, which represent most of the
mass. We find that Lyman break galaxies are not massive: a few have assembled
5 × 1010M� of stars, roughly the same as the Milky Way today, but most are
small systems like cB58 with M
 ∼ 1010M�.

Because the light must be spread out in wavelength, spectroscopy of these
faint galaxies is very demanding. Some of the best-observed high-redshift galaxies
appear many times brighter because of gravitational lensing: their light is bent as
it passes through a galaxy cluster on its way to us (see Section 7.4). Light from
cB58 is amplified about 30-fold in this way. Otherwise, spectroscopy of the most
distant galaxies is a task for the large 8–10 m telescopes.

Very bright Lyman break galaxies are seen to z ∼> 6; BD38 at z = 5.515 is an
example. The spectrum looks much like that of cB58 in Figure 9.16, although we
see it barely 1 Gyr after the Big Bang. It was then making 140M� yr−1 of new
stars, in an episode that had already lasted ∼200 Myr. These are not the galaxy’s
first stars; the strength of their spectral lines shows that they already are half as
metal-rich as the Sun. Observations with the Spitzer Space Telescope at 4.5 μm
show the red light of (1−6)×1010M� of stars with ages of 600−700 Myr. These
systems are quite small: BD38 is one of the largest, but is only 1.6 kpc in radius.
In contrast to the very gas-rich objects that we discuss below, an active nucleus
of any kind is rare; we see them in only a few percent of Lyman break galaxies.

Problem 9.11 At optical and near-infrared wavelengths, the flux Fλ from each

square arcsecond of the night sky increases roughly as Fλ ∝ λ2.5. To measure

the energy that a galaxy emits near the Lyα line at 1216 Å, we must observe near

1216(1+ z) Å. Explain why the measured flux Fλ from each square arcsecond of

the galaxy’s image decreases as (1+z)5, so that Fλ(galaxy)/Fλ(sky) ∝ (1+z)−7.5.

Lyα emission from protogalaxies at z ∼ 5 is hard to see without an 8–10 m

telescope.

9.4.2 Hidden stars: submillimeter galaxies and molecular gas

Even locally, galaxies with intense star formation hide most of the blue and ultra-
violet light of their young stars behind dusty gas. As we saw in Section 7.1, only
a few percent of this light escapes from a starburst galaxy like M82 or Arp 220.
On average, about two-thirds of the ultraviolet light escapes from local galaxies;
the rest is absorbed to warm the grains of dust, and re-radiated in the infrared. At
z ∼ 1, most stars were made in dusty places: the energy of starlight emerges mainly
as the infrared light of luminous infrared galaxies (LIRGs) with LFIR > 1011L�,
making ∼>50M� yr−1 of new stars (see Equation 7.11). At higher redshifts, dusty
starbursts become even more common. Just as some quasars have large quantities
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of molecular gas around their centers, so many of the most luminous star-forming
galaxies have nuclear activity. The active nuclei are conspicuous in X-rays, which
can shine out through the dusty gas, but star formation still contributes most of
their energy output.

We saw in Section 7.1 that galaxy mergers can trigger a starburst. These are
rare today, and contribute little to the total of star formation. Locally, fewer than
1% of Milky-Way-sized galaxies are locked in close interaction and likely to merge
soon with a comparably large system. Even at z ∼ 1, roughly a third of LIRGs
are normal-looking spiral galaxies; a quarter are irregulars; in another quarter,
the light is concentrated into a compact center. Only 20% are clearly undergoing
major mergers, though these are the most powerful sources. But, at redshifts
z = 2−3, the far-infrared light comes predominantly from ultraluminous infrared
galaxies (ULIRGs), with LFIR > 1012L�, forming more than 200M� yr−1 of
new stars. Many of the ULIRGs show signs of recent or ongoing merger. It is
not simply that our telescopes are not powerful enough to see dimmer objects: at
these wavelengths, adding up the light of the ULIRGs accounts for almost all of
the background radiation shown in Figure 1.19.

In observing dusty galaxies, Equation 8.46 comes to our aid: the term k(z) is so
large and negative that the measured flux of a galaxy atλ ∼ 1 mm is nearly constant
over the range 1 ∼< z ∼< 10. Some of the most vigorously star-forming galaxies
were found first by searching at 850 μm for the redshifted emission of warm
dust. In an optical image, these submillimeter galaxies are faint with irregular and
complex shapes, and often seem to be merging with a neighbor. At these redshifts,
lines from the 3 → 2 and 4 → 3 transitions of the CO molecule (see Table 1.8)
are shifted to around 3 mm, where they can be observed from the ground.

One object studied in this way, J02399 at z = 2.8, lies behind a galaxy cluster
where gravitational lensing makes it appear 2.5 times brighter. With LFIR ∼
1013L�, Equation 7.11 indicates that it is making 600M� yr−1 of new stars. At
this rate, its supply of 6 × 1010M� of molecular gas will last only 100 Myr. The
gas lies in a ring at radius 8 kpc, rotating at 420 km s−1, so the mass inside is
3 × 1011M�. Recall from Section 2.3 and Problem 6.6 that most of the mass in
the central few kiloparsecs of a galaxy is stars and gas, not dark matter. If J02399
is similar, the galaxy has built ∼2 × 1011M� of stars – too many for the current
burst, unless by coincidence we see it on the point of exhausting its gas.

The most luminous galaxies discovered at 850 μm have redshifts 1.5 < z <

3.5. Like the very powerful quasars of Figure 8.13, but unlike bright star-forming
galaxies (look ahead to Figure 9.17), their numbers peak at z ∼ 2. Most contain
∼2 × 1010M� of molecular gas, far more than the Lyman break galaxies, and ten
times as much as the Milky Way. But this is only enough to fuel their starbirth for
20–40 Myr. The gas usually lies in a ring or disk within 2 kpc of the center rotating
at 400–500 km s−1, enclosing a mass ∼>1011M�. They contain ∼3 × 1010M�
of young stars, and possibly many more old stars. The gas and young stars alone
amount to 5×1010M�, which is roughly the mass of normal (baryonic) matter in
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the Milky Way today. But less-luminous objects also contribute much of the total
submillimeter emission, and those lie mostly at z ∼< 1.5, in a pattern more like that
of Figure 9.17. The ALMA (Atacama Large Millimeter Array) radio telescope
observing at 0.4−4 mm will make sensitive and detailed maps of dusty starbursts
at 3 ∼< z ∼< 12.

Problem 9.12 Dust grains in a starburst galaxy are heated to a temperature

T ∼ 50 K. For a blackbody at temperature T , the luminosity Lν ∝ νn(ν),

where n(ν) is given by Equation 1.35. But because the grains are small, with

sizes ∼<1 μm, they radiate inefficiently at longer wavelengths: the dust emission

follows Lν ∝ ν3n(ν). Show that, for λ � 300 μm, we have Lν ∝ ν4.

If we observe at 100 GHz or 3 mm, the power Fν(ν)�ν that we receive

between frequencies ν and ν + �ν was emitted between ν(1 + z) and (ν +
�ν)(1 + z). Equation 8.37 tells us that the redshift decreases the energy received

from each square arcsecond by a factor of (1 + z)4. Show that, near this frequency,

the flux Fν from each square arcsecond of a starburst galaxy is almost constant

for redshifts 5 ∼< z ∼< 20. Once we have large telescopes with sensitive detectors

in this spectral region, we should be able to see extremely distant star-forming

galaxies.

9.4.3 Old, red, and dead?

Figure 6.20 shows that the most optically-luminous galaxies today are making
hardly any new stars. When did the earliest galaxies finish building their stellar
bodies? Locally, almost all red galaxies are red because they lack young blue stars;
only a few, like the starburst M82, are red because dust hides those stars. Recent
observations from space, where the infrared sky is dark, show that this is reversed
at z = 2−3. In one recent sample, only 3 of 13 red galaxies at z ∼ 2.5 really seem
to be ‘dead’: observed at 8μm in the infrared, they are dim while the dusty galaxies
blaze brightly with re-radiated starlight. Comparing their spectra with models like
Figure 6.18 shows that these are massive galaxies, with M
 > 3 × 1010M�,
where hardly any stars have been born for the past ∼2 Gyr. They are making new
stars at less than 0.1% of the average rate needed to build the galaxy in the 2.6 Gyr
since the Big Bang.

The earliest ‘red and dead’ galaxies yet observed are at z ∼ 6. They are too
faint for us to take their spectra, but we can look at their light in broad bands. Some
of them show increased light at wavelengths longer than 3 μm. The 4000 Å break
of Figure 6.17 is so strong that most of the stars must be 200–600 Myr old – they
were born already at z ∼ 7–13! These galaxies have M
 ∼ (1– 4) ×1010M� –
they have made stars equivalent to 20%−50% of the Milky Way.

By z ∼ 1.5 or 4.2 Gyr after the Big Bang, red galaxies with roughly the same
stellar mass as the Milky Way, M
 > 5 × 1010M�, probably contain more than
half the stars in the galaxies. A few real monsters even have M
 > 1011M� at
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z ≈ 1.5. Since there is roughly six times more dark matter in the Universe than
baryonic material, these objects must have dark halos of ∼1012M�. According to
the cold dark matter models of Section 8.5, such massive halos should be very rare
at early times. Their stars are about as metal-rich as the Sun, and have ages around
2 Gyr, so the last significant starbirth was at z ∼ 3. Forming (300–500)M� yr−1

of new stars, it would take only 300 Myr (a typical timescale for starbursts) for
the ‘hidden’ systems of the last subsection to build up these masses. The most
luminous of the dusty starbursts discovered at 850 μm might have developed first
into these ‘red and dead’ galaxies, and then into today’s luminous ellipticals.

9.4.4 The star-forming history of the Universe

Using variants of Equation 9.24, we can estimate how fast the ultraviolet-luminous
galaxies formed their stars. According to Figure 9.17 most stars in the Universe
were born at z ∼ 1, between 5 and 8 Gyr after the Big Bang. Star-forming galaxies
seem to have flourished later than the luminous active nuclei of Figure 8.13, which
reach their peak at z ∼ 2. It also shows less extreme variation: starbirth today is
only about five times less vigorous than it was at its peak, whereas at z ∼ 4 it is
at roughly half the peak level.

At z ∼> 0.7 much of the ultraviolet radiation of young stars is absorbed by
dust, and Figure 9.17 includes a correction based on the color of the ultraviolet
light. But virtually no ultraviolet light escapes from the dustiest systems such as
the submillimeter galaxies, so they will be missed from the plot. We have also
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missed fainter star-forming galaxies, even if they host much of the starbirth. But
the number of stars formed should not be less than that given in Figure 9.17.

The rate at which those stars have produced metals is related to the ultraviolet
luminosity of their massive stars. We must add up the yield of heavy elements
from supernovae resulting from stars of each mass, which are known to within

about a factor of two. Measuring the ultraviolet flux in the same units of L� Å
−1

as for Equation 9.24, we find that elements heavier than helium are produced at
the rate

ṀZ ∼ 8 × 10−9Lλ(1500 Å)M� yr−1. (9.25)

We also had to assume here that high-mass stars, with M ∼> 6M�, are formed in
the relative proportions specified by the Salpeter function of Equation 2.5. Luckily,
all such stars burn roughly the same fraction of their gas into metals, so Equation
9.25 is not very sensitive to the initial mass function adopted.

According to Figure 9.17, roughly a quarter of all the stars had formed by
z = 2, and they should have released enough metals to give an average abundance
∼Z�/30 if mixed evenly throughout the baryons. At the end of the previous
section we saw that this level is already higher than what we observe. If many
small star-forming galaxies contributed to reionization, then even more ‘missing
metals’ must be hidden in diffuse gas.

Is our picture of the life of distant galaxies consistent with what we see in the
Local Group, where we can take spectra of individual bright stars to reconstruct
the star-forming history? About half of its stellar mass is in the bulges of M31 and
the Milky Way, and in Chapter 4 we saw that most of these stars are probably old
enough to predate z ∼ 1.5. The Milky Way’s disk has formed stars steadily over the
past few gigayears. The disk of M31 is more luminous but has fewer young stars,
suggesting that the pace of starbirth has slackened over that period. Averaging over
the Local Group, starbirth appears to have been at its most vigorous 8–13 Gyr in
the past, perhaps somewhat earlier than the peak in Figure 9.17. However, the
atmospheres of the stars that we see locally all contain elements heavier than
helium; very few have less than 10−3 of the Sun’s metal abundance. We have
found no ‘fossils’ from the earliest stellar generation, formed out of hydrogen
and helium alone. Thus further studies both of nearby and of distant galaxies are
needed in order to tell us whether Figure 9.17 fairly represents cosmic starbirth.
New instruments that can observe at longer wavelengths, such as ALMA and the
planned James Webb Space Telescope, will help us to pierce through the dust to
explore the birth of the galaxies.
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Units and conversions

Table A.1 Units and prefixes

magnitudes see Section 1.1
arcsecond 1′′ = (1/60) × 1′; 1/206 265 radians
arcminute 1′ = (1/60) × 1◦

angstrom Å = 10−10 m = 0.1 nm
nanometer nm = 10−9 m
micron μm = 10−6 m = 10−4 cm
centimeter cm = 10−2 m
jansky Jy = 10−26 W m−2 Hz−1

joule J = 107 erg or 107 g cm2 s−2

watt W = 107 erg s−1

micro μ 1 μ s = 10−6 s: microsecond
milli m 1 mJy = 10−3 Jy: millijansky
kilo k 1 km = 103 m: kilometer
mega M 1 Mpc = 106 pc: megaparsec
giga G 1 Gyr = 109 yr: gigayear

Table A.2 Conversion factors

Sound speed in atomic hydrogen cs = √
kBT/mp = 9 km s−1 ×√

T/104 K
Surface density M� pc−2 = 1.25 × 1020 H atoms cm−2

Volume density M� pc−3 = 6.7 × 10−23 g cm−3

or 44 H atoms cm−3

Surface brightness L� pc−2 = 27 mag arcsec−2 in B
Luminosity MB = −20, L B = 1.6 × 1010 L�

MB = −18, L B = 2.5 × 109 L�
MB = −16, L B = 3.9 × 108 L�

Speed 1 km s−1 = 1.023 pc Myr−1

Gravitational constant G = 4.5 × 10−3 if mass is in M�,
distance in pc, time in Myr

Vector products A × (B × C) = (A · C)B − (A · B)C
(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

407
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Table A.3 Physical constants

Gravitational constant G = 6.67 × 10−8 cm3 s−2 g−1 or 6.67 × 10−11 N m2 kg−2

Speed of light c = 2.997 924 58 × 1010 cm s−1 or 2.997 924 58 × 108 m s−1

Planck’s constant hP = 6.626 × 10−27 erg s or 6.626 × 10−34 J s
Photon energy νhP = 4.136 × (ν/1015 Hz) eV or 1.240 × (1 μm/λ) eV
Boltzmann constant kB = 1.381 × 10−16 erg K−1 or 1.381 × 10−23 J K−1

or 0.862 MeV/1010 K
Blackbody constant aB = 8π5k4

B/(15c2h3
P) = 7.566 × 10−15 erg cm−3 K−4

or 7.566 × 10−16 J m−3 K−4

Stefan–Boltzmann σSB = caB/4 = 2π5k4
B/(15c2h3

P) = 5.671 × 10−8 W m−2 K−4

constant or 5.671 × 10−5 erg s−1 cm−2 K−4

Charge on electron e = 1.602 × 10−19 coulomb or 4.803 × 10−10 esu
Electron-volt eV = 1.602 × 10−12 erg or 1.602 × 10−19 J
Electron mass me = 9.11 × 10−28 g or 9.11 × 10−31 kg

mec2 = 0.511 MeV
Proton mass mp = 1.673 × 10−24 g or 1.673 × 10−27 kg

mpc2 = 938.3 MeV
Neutron mass (mn − mp)c2 = 1.293 MeV
Thomson cross-section σT = (8π/3)[e2/mec2]2 (cgs) or (8π/3)[e2/(4πε0mec2)]2 (SI)

6.652 × 10−25 cm2 or 6.652 × 10−29 m2

Fine structure constant α = 2πe2/(chP) (cgs) or e2/(2ε0chP) (SI)
7.297 × 10−3 or 1/137.04

SI electromagnetic μ0 = 4π × 10−7 H m−1

constants ε0 = 1/(μ0c2) = 8.854 × 10−12 C2 m−2 N−1

Table A.4 Astronomical constants

Tropical year (1900) yr = 3.155 693 × 107 s
Astronomical unit AU = 1.496 × 1013 cm or 1.496 × 108 km
Light-year ly = 9.46 × 1017 cm or 9.46 × 1012 km
Parsec pc = (648 000/π) AU or 206 265 AU,

3.09 × 1018 cm or 3.26 light-years
Solar radius R� = 6.96 × 1010 cm or 6.96 × 105 km
Solar mass M� = 1.99 × 1033 g or 1.99 × 1030 kg
Solar luminosity (bolometric) L� = 3.86 × 1033 erg s−1 or 3.86 × 1026 W
Sun’s effective temperature Teff = 5780 K
Sun’s surface gravity g� = 2.74 × 104 cm s−2 or 274 m s−2

Solar absolute magnitude MB,� = +5.48
MV,� = +4.83
MK ,� = +3.31

Mbol,� = +4.75
Earth’s mass ME = 5.98 × 1027 g or 5.98 × 1024 kg
Earth’s radius RE = 6.38 × 108 cm or 6.38 × 103 km
Earth’s surface gravity gE = 980.7 cm s−2 or 9.807 m s−2

Earth’s orbit (sidereal year) 3.155 815 × 107 s
Average Earth–Moon distance 3.84 × 105 km
Hubble ‘constant’ H0 = 100h km s−1 Mpc−1; 0.4 ∼< h ∼< 0.8
Hubble time tH = 1/H0 = 9.78h−1 gigayears

c/H0 = 2.99h−1 gigaparsecs
Critical density ρcrit = 1.9 × 10−26h2 kg m−3

or 2.8 × 1011h2 M� Mpc−3
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Table A.5 Frequently used symbols

γ Lorentz factor 1/
√

1 − V 2/c2

λ wavelength
ν frequency
ρ volume density of mass
σ velocity dispersion, standard deviation, or

comoving radius coordinate (cosmology)
� surface density of mass
�(x, t) gravitational potential energy per unit mass
�(L) luminosity function
�(R) angular speed in circular orbit at radius R
�(t) ratio of cosmic density to critical value ρcrit: present value �0

�m, �B present-day ratio of density in matter or in baryons to critical value
�� present-day ratio of ‘dark energy’ density to critical value
a(t) R(t)/R(t0): dimensionless scale factor for cosmic expansion
E energy
E energy per unit mass
Fλ, Fν flux of energy per unit wavelength or frequency
f (x, v, t) distribution function: density of particles at x, v in phase space
H0 Hubble ‘constant’: present value of parameter H (t) = Ṙ(t)/R(t)
h H0 in units of 100 km s−1 Mpc−1

HI atomic hydrogen
HII ionized hydrogen
H2 molecular hydrogen
I (x) surface brightness (units of mag arcsec−2 or L� pc−2)
L luminosity: L� is the Sun’s luminosity
L
 2 × 1010 L�, typical luminosity of bright galaxy: see Equation 1.24
L angular momentum
L angular momentum per unit mass (vector)
M absolute magnitude
m apparent magnitude, or mass
M mass: M� is the solar mass
M/L mass-to-light ratio: units M�/L�
N surface density: number of stars or atoms
n volume density: number of stars or atoms
r radius (in three-dimensional space)
R radius (two-dimensional) or distance from point in disk to Galactic center
R0 distance from Sun to Galactic center
R(t) scale length for Universe at time t after the Big Bang
t time
T temperature
Vr radial velocity: motion away from or toward the observer
V (R) linear speed in circular orbit at radius R
Vmax peak rotation speed
Z mass fraction of metals, elements heavier than H and He
z redshift or distance above Galactic midplane
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Table A.6 Astronomical buzzwords

Early-type star hot: early in spectral sequence OBAFGKM
Late-type star cool: late in spectral sequence OBAFGKM
Dwarf star main-sequence star (except for ‘white dwarf’)
Early-type galaxy E or S0: ‘early’ in Hubble sequence
Late-type galaxy spiral or irregular: ‘late’ in Hubble sequence
Dwarf galaxy luminosity L ∼< 109 L�
Metals elements heavier than helium
Redshift z Doppler shift (λobs − λe)/λe

Radial velocity Vr motion away from or toward the observer
Tangential velocity Vt motion perpendicular to the observer
Scale length or height distance over which density falls by factor of e
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Chapter 6

I. Stewart, 1990, Does God Play Dice? The Mathematics of Chaos (Blackwell, Cambridge,
Massachusetts) gives a clear discussion of mathematical chaos, written for the general
reader.

Chapter 7
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Nuclei (Cambridge University Press, Cambridge, UK); and A. J. Kembhavi & J. V.
Narlikar, 1999, Quasars and Active Galactic Nuclei (Cambridge University Press,
Cambridge, UK).
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Astrophysics, 2nd edition (Cambridge University Press, Cambridge, UK): 1992,
Volume 1, Particles, Photons and their Detection; 1994, Volume 2, Stars, the Galaxy
and the Interstellar Medium.

On the graduate level, and in cgs units, are F. H. Shu, 1991, The Physics of Astrophysics,
Volume 1, Radiation (University Science Books, Mill Valley, California); and J. H.
Krolik, 1999, Active Galactic Nuclei (Princeton University Press, Princeton, New
Jersey).
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Hints for problems

Problem 1.14 See Table 1.4 for the Sun’s absolute magnitude MV , and remember that

MB = MV + (B − V ), while MI = MV − (V − I ).

Problem 1.20 The energy in the background radiation is 1054 J Mpc−3. The Sun radi-

ates 4 × 1026 W or 1043 J Gyr−1; so, from Equation 1.25, galaxies emit about 2 ×
1051 J Mpc−3 Gyr−1. Even though the galaxies were brighter in the past, all the starlight

radiated since the Big Bang falls far short of the energy in the cosmic background

radiation.

Problem 2.4 If the rate of starbirth at time t is B(t), then, for stars that spend time

τMS < τgal on the main sequence, the initial luminosity function �(MV ) is related to the

present-day luminosity function �MS by

�(MV ) = �MS(MV ) ×
∫ τgal

0
B(t) dt

/∫ τgal

τgal−τMS

B(t)dt .

The faster B(t) declines with time, the more of these short-lived stars must be born to

yield the numbers that we see today.

Problem 2.5 Taking L ∝ M3.5 for each star, the number N of stars and their total

luminosity L are

N = ξ0

∫ Mu

Ml

( M
M�

)−2.35 dM
M�

, L = L�ξ0

∫ Mu

Ml

( M
M�

)−2.35+3.5 dM
M�

.

The integral for N and that for the total mass both diverge as the lower limit Ml → 0,

while that for L becomes large as Mu increases. Almost all the light of a young cluster

comes from the few most massive stars. At ages beyond 2–3 Gyr light comes mainly from

red giants, which reach roughly the same luminosity independently of the star’s initial

mass.
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Fig. C.1. Radial velocity Vr of gas on four rings, at radii R = 4, 6, 10, and 12 kpc, with

circular speed V (R) = 220 km s−1. The Sun � is at R0 = 8 kpc.

Problem 2.7 See astro-ph/0309416.

Problem 2.11 Because of the Malmquist bias, the stars in your sample are brighter than

the average for the whole sky. If you do not correct for the bias, and simply assume that

the stars of your sample are an average selection of those in the sky, you will overestimate

their distances. The average values that you infer for any other properties that are linked

to the luminosity will also be wrong.

Problem 2.12 Blue stars with mV = 20 must be far from the midplane, where disk stars

are rare. The red stars are dim nearby dwarfs; at this apparent magnitude, a red giant would

be halfway to M31!

Problem 2.13 Leye = 0.08L�, corresponding via Equation 1.6 to Meye ≈ 0.6M�. After

3 Gyr, only stars below Mu ≈ 1.5M� are still on the main sequence. Between Ml =
0.2M� andMu, 6.08ξ0 stars were made; their total mass is 2.54ξ0M�, so ξ0 = 3.95×106.

There are Neye = 1.05ξ0 ≈ 4 × 106 main-sequence stars with Meye ∼< M ∼< Mu.

Table 1.1 shows that, for low-mass stars, the red giant phase lasts about a third as long

as the main-sequence life. There are 0.1ξ0 stars that live between 2.25 and 3 Gyr on the

main sequence (1.5M� ∼< M ∼< 1.8M�); adding them makes little difference to Neye. A

star with L < Leye can be seen only to rmax = 3 pc(L/Leye)0.5 ≈ 3 pc(M/Meye)2.5. The

number of stars between M and M+ �M within the sphere rmax(M) is proportional to

(M/Meye)7.5−2.35, decreasing rapidly as M < Meye.

Problem 2.15 See Figure C.1. At (l = 120◦, V > 0) we see local motions in gas near

the Sun, not Galactic rotation.

Problem 2.20 Near the center where the density is close to ρH(0), Equation 2.19 gives

V (r ) → r VH/(
√

3aH). At large radius V (R) → VH: see Figure 5.19. Far beyond aH,

the mass M(r ) rises linearly with radius. In a real galaxy, the dark halo does not extend

forever; at some radius its density must start to fall below that of Equation 2.19. But

Equation 2.18 tells us that, in a spherical halo, the orbital speed at radius r depends only
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on the mass within r . As long as the density is close to that of Equation 2.19 within radius

r , we can use Equation 2.20 to calculate V (r ).

Problem 3.2 On setting s2 = z2/(R2 + a2
P) we have

�P(R) = 3Ma2
P

2π
(
R2 + a2

P

)2

∫ ∞

0

ds

(1 + s2)5/2
.

Write s = tan φ to show that the integral is 2/3.

Problem 3.10 E = m�(1 − α/2), L = m
√

αKr1−α/2.

�Ltot = 0 when �r2 = −�r1(m1/m2)(r1/r2)−α/2; the energy change is then

�Etot = αK (1 − α/2)m1 �r1 r−α−1
1 [1 − (r1/r2)1+α/2] .

Problem 3.12 Substituting s = tan φ shows that the integral

∫ ∞

0

s2 ds

(1 + s2)3
= π

16
.

Problem 3.20 Differentiating the effective potential gives

r4 d�eff

dr
= L2

(
3GMBH

c2
− r

)
+ GMBHr2,

which is zero in circular orbit: L2 > 0 so r > 3GM/c2. For stability,

r5 d2�eff

dr2
= L2

(
r − 6GMBH

c2

)
> 0.

Problem 3.22 See Figure C.2. From Equation 3.71,

κ2(R) = �2(R) + V 2
H

a2
H

1

1 + R2/a2
H

.

Problem 2.20 gives �2(R) → V 2
H/(3a2

H) at the center, so κ → 2�, as expected when the

density is constant. At large radius � → VH/R and κ2 → 2�2.

Problem 3.25 Note that 2 d2φ/dy2 · dφ/dy = d(dφ/dy)2/dy, so multiply the equation

by dφ/dy and integrate to find (dφ/dy)2. Then, recall that we set φ = 0 and dφ/dy = 0

at y = 0, so that

y(φ) =
∫ φ

0

dψ√
1 − e−ψ

.
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Fig. C.2. For a circular orbit at radius R in the ‘dark-halo’ potential, the angular velocity

� (solid curve), the epicyclic frequency κ (dashed curve), and � − κ/2 (dotted curve).

The units are VH/aH.

Setting u = e−ψ/2, and then t = sech u, and integrating yields e−φ/2 = sech(y/2). At

large z, n(z) = n0e−φ → 4n0e−|z|/z0 ; the midplane density n0 is four times lower than the

inward extrapolation of the exponential.

Problem 4.1 The brightest blue stars in this region have V − I ≈ 0 ≈ MV ; they are

main-sequence stars, of late B or early A types. The brightest red stars are K giants,

not supergiants. Just as we found few supergiants among the solar-neighborhood stars of

Figure 2.2, such rare very luminous stars are missing from this small patch of the LMC’s

disk.

Problem 4.4 The Jacobi radius rJ = 0.01 AU, while the average distance between Earth

and Moon rEM = 0.0026 AU. The ratio of the gravitational forces from Earth and Sun is

(m/M)(1 AU/rEM)2 ≈ 0.5.

Problem 4.5 Since m � M, the mass center C is at the halo center. What rotation rate �

must you choose to follow m in its circular orbit? In Equation 4.7, you can find ∂�H/∂x

from M(<r ).

Problem 4.10 We have yet another reason to think that gas is entering the Galaxy. The

Milky Way’s disk produces (3–5)M� of new stars each year (Section 2.1) which will use up

our (5–10) × 109M� of disk gas within 1–3 Gyr. Dying stars return (M� to 2M�) of gas

per year, which is not enough to avoid exhausting the supply. If gas flows into the disk

from outside, we avoid the uncomfortable conclusion that we see the Milky Way and other

spiral galaxies at the very end of their star-forming lives.

Problem 5.1 At the 0.6 m telescope: 1.1′′ pixel; 37′ field. At 4 m prime focus: 0.54′′ pixel;

18′ field. For 4 m f/7.5: 0.167′′ pixel; 5.7′ field. If seeing is 0.8′′, the image at f/7.5 will

be no sharper than at prime focus; the entire galaxy fits into the field of view only at the

0.6 m telescope.



418 Appendix C

24 22 20 18 16

0.515 225 10

Freeman

0

5

10

15

20

Fig. C.3. For an exponential disk of luminosity 2.5 × 1010L B,�, the radius R25 where the

surface brightness I (B) = 25 mag arcsec−2 is plotted as a function of scale length h R or

central surface brightness IB(0).

Problem 5.2 Look back at Problem 1.14.

Problem 5.3 NGC 7331 is a larger and brighter galaxy than our Milky Way. For d =
13.7 Mpc, R25 ≈ 22 kpc. At 8 kpc radius the surface brightness is 40L I,� pc−2, about

twice that near the Sun: Problem 2.8. Why did we choose H0 = 60 km s−1 Mpc−1 for

this problem, rather than our usual value of 75? For nearby galaxies, those with Vr ∼<
2000 km s−1, peculiar motions (see Section 1.4) can be large compared with the cosmic

expansion. Looking at these galaxies, we would measure a higher or lower value for the

Hubble constant. Using Cepheid variable stars (see Section 4.1; Hughes et al. 1998 ApJ

501, 32) places NGC 7331 at 15.5 Mpc; the Tully–Fisher relation (see Problem 5.11)

gives a similar distance, which corresponds to an ‘effective H0’ near 55 km s−1 Mpc−1.

Section 8.4 discusses how the uneven gravitational pull of clustered galaxies induces

peculiar motions.

Problem 5.4 See Figure C.3. The central brightness is 140L B,� pc−2, and MB = −20.5

is equivalent to 2.5 × 1010L B,�.

Problem 5.5 By Equation 1.35, the energy received between wavelength λ and λ + �λ

from each steradian of a blackbody at temperature T is

Fλ �λ = 2h2
Pc2

λ5

�λ

ehPc/(λkBT ) − 1
W m−2.

Fλ peaks at 10 μm when T = 300 K; see Equation 1.5. When λ = 10 μm, at T = 100 K

the factor ehPc/λkBT − 1 is ∼ 1.5 × 104 times larger than it is at 300 K, so Fλ is reduced by

the same multiple.

Problem 5.6 λ/D = 21 cm/73 m corresponds to ∼10′, but structures larger than about

half this size are already significantly ‘resolved out’ of interferometric maps.
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Fig. C.4. Left, the rotation curve in the Plummer potential; V (R) is in units of Vmax, radius

R is in units of aP. Right, a ‘spider diagram’ of contours of radial velocity Vr − Vsys in

units of sin iVmax, for gas in a disk tilted at i = 30◦ from face-on; negative contours are

shown dotted.

Problem 5.8 V 2(r ) = GMr2/(r2 +a2
P)3/2. Where V (r ) starts to fall with radius, we find

closed loops in the spider diagram of Figure C.4.

Problem 5.11 For NGC 7331, Figure 5.20 shows that Vmax = 250 km s−1; by Equa-

tion 5.6, this corresponds to L I ≈ 1011L�. That would imply a distance d ≈ 16 Mpc

for the galaxy. But the Tully–Fisher relation is not exact; we see in Figure 5.23 that

some galaxies are more luminous than average for their rotation speed, and others are

dimmer.

Problem 5.13 All the frequencies fall as 1/R. A two-armed spiral with pattern speed �p

can live between radii R+ and R−, where �p = � ± κ/2, respectively; κ = √
2�, so

R+/R− = (
√

2 + 1)/(
√

2 − 1) ≈ 5.8. The radii where �p = � ± κ/4 are in the ratio

(2
√

2 + 1)/(2
√

2 − 1) ≈ 1.6.

Problem 5.14 From Problem 3.2, the Plummer radius for M33’s nucleus is aP ∼< 0.6 pc,

about 1/17 of that for the globular cluster in Problem 3.13. The velocity dispersion is

twice as large, so the nuclear cluster is no more than 2.42/16.6 ≈ 1/4 times as massive,

or about 5 × 105M�.

Problem 7.19 Follow the method of Problem 3.2, setting s = tan φ to show that∫∞
0 (1 + s2)−1 ds = π/2 .

Problem 7.21 For the Plummer and dark-halo models we have

θE(P) = aP

dLens

√
�(0)

�crit
− 1; θE(DH) = 2aH

dLens

√
�(0)

�crit

√
�(0)

�crit
− 1.
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Problem 8.6 If ξ (r ) = ξ0r−(3+n) then

P(k) = 4πξ0

∫ ∞

0

sin(kr )

kr
r−(1+n) dr = 4πξ0kn

∫ ∞

0
t−(2+n) sin t dt.

Problem 8.7 We can write the potential �(x) and the fluctuation in density ρ̄δ(x) in terms

of their Fourier transforms as

�(x) = 1

(2π)3

∫
�ke−ik·x d3k and δ(x) = 1

(2π)3

∫
δke−ik·x d3k .

In the random-phase approximation, the δk are independent random variables. Since δ is

real, δ−k = δ∗
k, the complex conjugate. Applying Poisson’s equation for each k-component

in turn gives −k2�k = 4πGρ̄δk.

Now we must link δk to P(k). The correlation function ξ (r) is the average at all

possible points x of δ(x)δ(x + r); when counting galaxies, think of δ(x) as being nonzero

only very near the position where one is present. If the cosmos is isotropic, it will not

matter in which direction we take our step r away from the initial point x. So we can write

ξ (r ) = 1

(2π )3

∫
|δ2

k|e−ik·r d3k;

On comparing this with Equation 8.3, we see that P(k) = |δ2
k|.

Using Parseval’s theorem, and remembering that δk depends only on the magnitude

of k, the fluctuation in density ρ̄δ(x) follows

δ2 = 1

(2π )3

∫
δkδ

∗
k d3k = 1

(2π )3

∫
|δ2

k|4πk2 dk =
∫

k3 P(k)

2π2

dk

k
.

So wavenumbers near k contribute an amount �2
k = k3 P(k)/(2π2) to the fluctuations 〈δ2〉

in the density, as stated in Equation 8.4. By similar reasoning, the same range of wavenum-

bers gives rise to fluctuations in the potential � amounting to �2
� = k3|�2

k |/(2π2).

Poisson’s equation tells us that k4|�2
�| ∝ |�2

k| ∝ k3 P(k). If P(k) ∝ k then |�2
�| does not

vary with k, so we have equal fluctuations in � on all spatial scales.
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4000 Å break: see under stellar atmospheres

absolute magnitude, 23
abundances: see heavy elements
accretion disk: see under active galactic nuclei
acoustic peak, 347
active galactic nuclei, 365ff

γ-ray emission, 369, 371
absorption lines, 383, 390: see also gas,

intergalactic
accretion disk or torus, 370, 372, 373, 387
black holes, 367, 374, 382
blazars, BL Lac objects, 368, 381, 383, 384,

386
broad-line region, 366, 372, 373, 383
Eddington luminosity, 371
fuel supply, 374
gas

heating in clusters, 299
maser, 240, 381
molecular, 240, 383
outflowing, 383

jets and relativistic beaming, 368–371, 373,
375–377, 380, 381, 383–389

life cycle, 342–344, 382
low-ionization nuclear emission regions

(LINERs), 374
luminosity, 371
narrow-line region, 372, 373
quasars, 344, 367, 368, 380, 381

Types 1 and 2, 381
radio emission, 367, 369, 371, 375, 377, 382
radio galaxies, 374
Seyfert galaxies, 240, 287, 367, 369, 370,

373, 375, 376
Types 1 and 2, 367, 372, 373

space densities, 343, 344, 368

spectra, 366–370, 372, 374, 381, 382
starburst galaxies, 374, 402
superluminal motion, 383–386
unified model, 370, 372, 373
variability, 366, 368
X-ray emission, 369, 371–373, 382

age
galaxies, 238, 267, 268, 362, 401, 405, 406

dwarf, 163, 164, 187
Milky Way bulge, 86, 158, 175
Milky Way disk, 73, 83, 177
star clusters, 77–80, 82, 160, 163
stars: see stellar evolution, stellar

age–metallicity relation
Sun, 11
Universe, 47, 48, 334

age–metallicity relation, 72, 160, 176, 177, 181
AGN: see active galactic nuclei
angular momentum, 118, 149, 175, 263, 264

λ parameter, 354
tidal torque origin, 173, 175, 354

angular-size distance, 336, 337, 339, 340
anisotropy in velocities, 149, 150, 261
antimatter, in early Universe, 51, 52
apparent brightness, 4
apparent magnitude, 18
area radius σ , 325
array detectors, 192–196, 204

cosmic-ray hits, 194
asymmetric drift: see under Milky Way, stellar

disk
asymptotic giant branch: see under stars

background radiation, 56
cosmic: see under cosmic expansion
night sky, 19, 43, 44, 244, 245, 255, 402

Balmer jump: see under stellar atmospheres

421
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bars: see under disks of galaxies
baryon oscillations, 323, 346, 347, 359
baryons

cosmic density, 48, 53, 54, 220, 300,
397

benchmark cosmology: see under cosmic
expansion

Big Bang nucleosynthesis, 9, 50, 52
Big Bang: see cosmic expansion
binary stars, 2, 17, 157, 182,

270
Lagrange points, 166, 167
microquasars, 386, 387
star clusters, 132
Type Ia supernova, 17, 18
X-rays, 17, 271

black holes
active nuclei, 367, 374, 382
from supernovae, 16
galaxy center, 169, 172, 184, 239, 240, 266,

273, 275–277, 287, 382
microquasars, 387
Milky Way center, 67, 68, 86–88
orbits around, 136
Schwarzschild radius, 276, 304, 367
stellar binaries, 271

blackbody radiation, 3, 4, 33, 43, 51,
331

blazars, BL Lac objects: see under active
galactic nuclei

bolometric correction, 21, 23–25
bolometric luminosity, 2, 25
bremsstrahlung: see free–free radiation
brown dwarfs, 6
bulges of galaxies, 169, 170, 191, 200,

236–238, 247, 275
Milky Way, 26, 86, 87, 99, 158, 175,

180
rotation, 87, 237

counter-rotation, 214

celestial poles, 34
Cepheid variable stars, 15, 37

period–luminosity relation, 161
Chandrasekhar limit, 17, 182
charge-coupled device (CCD), 192–196
closed-box model: see under heavy elements
closed Universe, 325
clusters of galaxies: see groups and clusters of

galaxies
collisional ionization, 28
collisionless Boltzmann equation, 140ff
collisions and mergers: see galaxy collisions

and mergers
color, definition, 22

comoving
coordinates, 326, 352
density, 342
volume, 342, 343

cooling
curve for gas, 105, 106, 299
time, 105, 106, 298, 299

coordinates
comoving, 326
equatorial (α, δ), 34
Galactic (l, b), 36
Galactocentric (R, φ, z), 37
supergalactic, 154, 316

core collapse of star cluster, 132
core radius, 78, 80, 113, 122, 132, 163, 247,

249, 292
correlation function ξ (r ): see large-scale

structure
cosmic background radiation (CMB): see

under cosmic expansion
cosmic expansion 46ff, 325ff

age of Universe, 47, 81, 333, 334
angular-size distance, 336, 338, 339
area radius σ , 325
background radiation, 50–56, 344, 356,

357
baryon oscillations: see under large-scale

structure
fluctuations, 344–347, 359

benchmark model, 48, 330, 334
initial fluctuations, 344, 359, 362

cold dark matter, 358, 359, 362, 363, 405
WIMPs, 176, 357, 358, 363

comoving length and volume, 342, 343, 352
cosmological constant �: see dark energy,

inflation
cosmological redshift, 50, 326, 327, 336
dark energy, 48, 295, 329, 347
dark matter: see separate entry
density parameter �(t), 329
distance radius χ , 338
Friedmann models, 328
growth of fluctuations: see under large-scale

structure
horizon, 332, 356
hot dark matter, 358
inflation, 328, 329, 332, 344
lookback time, 333–335
luminosity distance, 336, 338, 339
matter-dominated Universe, 330, 331, 334,

351, 352, 353
matter–radiation equality, 55, 330, 331, 356
Olbers’ paradox, 335, 339
photometric redshifts, 340, 341, 342
radiation-dominated Universe, 330, 356
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recombination, 54, 55, 324, 331, 332, 344
reionization, 395, 396
scale factor a(t), 331
scale length R(t), 326
surface brightness dimming, 337

cosmic rays, 101, 107, 109, 375
effect on array detectors, 194

counter-rotation, 214, 238, 263
critical density ρcrit, 48
critical surface density �crit, 309
crossing time tcross, 128
curved space, 325

D–σ relation for ellipticals, 258
damped Lyman-α clouds, 390–395
dark energy, 48, 295, 329, 347
dark matter, 27, 48, 54

between galaxies, 188–190, 283, 297, 299,
310, 312

cold, 176, 358, 359, 362, 363, 405
galaxies, 164, 176, 217–221, 256, 258,

273–275, 283
hot, 358
large-scale structure, 358
Milky Way, 94, 95, 123, 145
weakly interacting massive particles, 49,

176, 357, 358
de Vaucouleurs law, 244, 245
declination: see coordinates, equatorial
density parameter �(t), 329
deuterium

produced in Big Bang, 50, 52, 54
diffraction limit, 206
disks of galaxies, 39, 41, 169, 191ff: see also

Milky Way
asymmetric drift, 160
barred, 39, 40, 86, 191, 204, 232, 234ff
classification, 39, 222
exponential law, 70, 71, 198, 199, 337

scale height hz , 27, 71–74, 202
scale length h R , 27, 71, 86, 169, 171, 199,

202
formation, 175, 181, 392, 393
gas, 170–172, 206, 212, 226, 236

atomic, 157, 209–212, 220, 223, 226, 392
dusty, 205, 212, 234, 235, 239
ionized, 157, 212, 226
molecular, 213

low-surface-brightness, 185, 186, 201, 202,
203, 211, 218

mass density, 143, 144
radial gradients, 179, 199
radio emission, 212, 213
rotation, 39, 156, 169, 184ff

differential, 89, 217, 225, 228

spiral pattern, 39, 172, 191, 204, 222, 223,
225ff, 235, 287

Q parameter, 232
corotation radius, 231, 233, 235, 236
density-wave theory, 228, 230, 233
flocculent, 227
Lindblad resonances, 230, 231
pattern speed, 230–236
pitch angle, 227, 228
theories, 229

stability, 135, 136, 231–233
star formation, 170, 205, 212, 239, 270
stellar content, 157, 158, 170, 192, 197ff,

222ff
thick disk, 27, 71, 72, 74, 75, 83, 202
thin disk, 27, 71, 72, 74, 75
Tully–Fisher relation, 220, 221, 222, 362
vertical motions, 144–147
warps, 171, 172, 216

distance
angular size, 336, 337, 339, 340
kinematic, 96
luminosity, 336, 337, 339
modulus, 60

distance radius χ , 338
distances to galaxies, 160

Cepheids, 160, 161
kinematics, 257
redshifts, 46
standard candles, 160–162
supernovae, 18, 69
tip of red giant branch, 14, 316, 317
Tully–Fisher relation, 221, 222

distances to stars
clusters, 76, 81, 160
inverse-square law, 2, 18
period–luminosity relation, 161
photometric parallax, 70, 71
spectroscopic parallax, 70
trigonometric parallax, 59, 60

distribution function, 140
Maxwellian, 130
polytrope, 147

Doppler shift: see under redshift
dust, 6, 33, 34, 56, 78, 182

active nuclei, 371
disk galaxies, 103, 169–171, 182, 192, 201,

204, 212, 226, 234, 235
elliptical galaxies, 39, 184, 271, 302
emission spectrum, 103, 205, 291
extinction and scattering, 33, 34
formation, 104
heating, 34, 102, 103, 107, 290, 291
high-redshift galaxies, 400, 402, 404, 405
intergalactic gas, 395
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dust (cont.)
Milky Way, 27, 34, 77, 78, 86, 87, 99,

102–104, 107, 316
opacity, 33
polycyclic aromatic hydrocarbons (PAHs),

103, 205
starburst galaxies, 103, 239, 290, 291

dynamical friction, 283, 285, 286

early-type galaxy, 40, 410
early-type star, 5, 410
ecliptic plane, 35
Eddington luminosity, 371, 372, 387
effective radius Re, 237, 243
Einstein radius θE, 305
elliptical galaxies, 37, 184, 241ff

ages, 267, 301, 397ff
boxy, 243, 253, 254, 302
cD galaxies, 245, 246, 248, 257, 294,

376
centers, 248, 249, 257, 263, 275

black holes, 275–277
colors and spectra, 254, 267–270
D–σ relation, 258
dark matter, 256, 258, 273, 274
de Vaucouleurs law, 244, 245, 337
disky, 38, 243, 253, 254, 302
dwarf: see under galaxies, dwarf
Faber–Jackson relation, 257, 258
formation, 300, 302, 405
fundamental plane, 257, 258, 302, 362
gas

cool and dusty, 39, 184, 271, 274, 302
hot, 272, 299

globular clusters, 273, 274
luminosities, 242, 245, 247, 248, 251
masses, 256, 258, 273–275
metal abundance, 267–273, 302
midsized, 242, 244, 248, 249
radio emission, 254, 276, 294, 376, 377
rotation: see stellar motions
Sérsic formula, 244
shapes, 249, 253, 254, 261, 262
shells around, 245, 246, 273
stellar content, 184, 185, 263, 266–270
stellar motions, 185, 254, 263ff
surface brightness fluctuations, 316, 317
triaxial, 251, 253, 263
ultracompact, 247
ultraviolet light, 271
X-ray emission, 254, 271

energy
gravitational potential, 117, 119, 259, 301,

370
kinetic, 117, 119, 259, 281, 282, 284, 287

epicycles: see under orbits of stars
equinox, 35
errata: see online listing
extinction: see under dust

Faber–Jackson relation, 257, 258
fine structure lines, 29, 30
flux, 2
forbidden spectral lines, 28, 372
free-fall time, 108, 116, 175, 318
free–free radiation, 33, 213, 281, 290
Freeman ‘law’ of disk brightness, 203
Friedmann models: see under cosmic

expansion
fundamental plane of elliptical galaxies, 257,

258, 302, 362

G-dwarf problem, 180, 181
Galactic poles, 37
galaxies

barred: see under disks of galaxies
cD, 245, 246, 248, 257, 294, 376
disk: see disks of galaxies
dwarf, 163, 183, 185, 188, 294, 410

age, 164, 183, 187
elliptical, 38, 39, 184, 242, 248
irregular, 40, 185–187
rotation, 184, 186–188
Sagittarius, 83, 84, 164, 169
spheroidal, 38, 162, 169, 184, 187, 248
ultracompact, 247

early, 40
elliptical: see separate entry
giant, 38, 185, 242, 244, 376
high redshift, 238, 397
individual

Andromeda (M31), 37, 39, 41, 152,
169–171, 188

Arp 220, 291
M32, 152, 169, 184
M33, 152, 163, 171, 172, 179, 239
M81, 281, 287
M82, 103, 281, 290, 291
M87, 245, 246, 272, 273, 276, 292, 294,

376, 377
M104 (Sombrero), 200
Magellanic Clouds and Stream, 69, 152,

156ff, 168, 188, 286
Milky Way: see separate entry
NGC 1275, 294, 299, 367, 376
NGC 1399, 245, 248, 249, 256, 257, 263,

273, 292, 293, 299
NGC 3923, 246, 273
NGC 4258, 240, 367, 369, 370
NGC 4676, 288, 289
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NGC 7331, 103, 197–199, 209–211, 213,
216–218, 220, 236, 238

interacting: see galaxy collisions and
mergers

irregular, 40, 157, 185–187
late, 40
luminous infrared, 290, 291, 403
Lyman break, 393, 399, 401, 402

winds, 401
Magellanic type, 39, 40, 202, 222
nucleus: see separate entry
peculiar velocities: see under large-scale

structure
photometric redshifts, 340–342
post-starburst, 267, 399
radio, 367, 374ff
S0, 38, 40, 191, 213, 214, 223, 224
satellite, 38, 151, 159, 169, 285, 286, 363
Seyfert: see under active galactic nuclei
spiral: see disks of galaxies
starburst, 40, 224, 233, 239, 281, 287, 288,

291, 297, 374, 399, 404
active nucleus cohabiting, 402
dusty, 290, 291, 402
winds, 109, 290, 401

see also Lyman break galaxies
submillimeter, 403

galaxy
ages, 238, 267, 268, 362, 401, 405, 406
angular momentum, 173, 354
bulges: see separate entry
catalogues and surveys, 22, 41, 42, 224, 279,

283, 292, 318, 374
centers, 99, 169, 172, 239, 240, 248, 249,

276, 363: see also nucleus of galaxy
cusps in brightness, 114, 117, 249, 266,

363
classification, 38ff, 222, 223, 237, 242, 254
collisions and mergers, 84, 159, 164, 170,

176, 188, 190, 245, 246, 273, 283ff,
287–289, 290, 292, 300, 302

colors, 199, 201, 223, 237, 269, 302, 341,
399

distribution in space: see large-scale
structure

formation, 172ff, 238, 300, 318, 354, 362,
397ff

halo: see separate entry
luminosities, 152, 163, 186, 199, 201, 203,

223, 224, 242, 398, 399, 401, 402, 405
luminosity function, 293

Schechter’s L
, 43, 45
mass-to-light ratio: see separate entry
masses, 163, 164, 169, 213, 214ff, 239, 274,

403, 404

morphology–density relation, 278, 295, 300,
320, 321

photometry, 42ff, 197ff, 243, 253, 335ff
space densities, 43–46, 49, 293, 342,

405
spectra, 6, 222, 223, 267, 268, 341, 367,

398–400, 402
spheroid: see under halo, metal-poor
star-formation rates, 72, 238, 270, 290, 399,

401–406
galaxy clusters, galaxy groups: see groups and

clusters of galaxies
Galaxy: see Milky Way
gamma-ray bursts (GRBs), 387–389

afterglow, 388
gas

atomic
fine structure lines, 29, 30
forbidden emission lines, 103
hyperfine transitions, 30

collisional ionization, 28
cooling, 105, 298
forbidden emission lines, 28, 103, 372
free–free radiation, 33, 281, 290
ionized, spectral lines, 28
molecular, spectral lines, 30, 31
photoionization, 28
ram pressure, 295
synchrotron radiation, 33, 377
Thomson scattering, 371

gas around active galactic nuclei, 372, 373,
383

molecular, 383
outflowing, 383

gas in galaxies: see also Milky Way
cosmic rays, 101, 109
dusty, 33, 34, 39, 86, 102–104, 107,

169–171, 182, 184, 201, 212, 226, 234,
235, 271, 400, 402, 404, 405

flow in bars, 235
heating and cooling, 106, 107
hot, 28, 33, 100, 157, 213, 272, 299
ionized, 28, 101, 102, 104, 157, 170, 212,

226
HII region, 28, 101, 105

magnetic fields, 101, 109
masers, 31, 240
molecular, 30, 31, 100, 102, 108, 172, 213,

289, 401
formation, 104

neutral hydrogen, 30, 100–102, 152, 157,
158, 170, 171, 186, 203, 209–214, 220,
223, 226, 271, 274, 295, 296, 392,
393

high-velocity clouds, 99, 159
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gas in galaxy groups and clusters
cool, 279, 281, 288
heavy elements, 282, 297, 299
hot, 279–281, 283, 293, 295–299
ionized, 300, 395
neutral hydrogen, 159
warm, 294

gas, intergalactic, 297ff, 390ff
damped Lyman-α clouds, 390ff
dusty, 395
Gunn–Peterson test, 395
heavy elements, 393–395
hot, 393
Lyman-α forest, 395ff, 399
Lyman-limit clouds, 390
molecular, 394
neutral hydrogen, 390, 391, 393–395
reionization, 395, 396

globular clusters: see under star clusters
Gould’s Belt: see under Milky Way
gravitational lensing, 303ff

caustics and critical curves, 311, 312
critical density �crit, 309
Einstein radius θE, 305
galaxies and clusters, 306–313
image brightening, 305, 306, 311, 402
image distortion, 306, 311–313
lensing potential ψL, 307
mass-sheet degeneracy, 313
odd-image theorem, 311
point mass (microlensing), 304, 305
time delay, 311
weak, 312

gravitational N -body simulation, 129, 130,
232, 233, 287–289, 302, 358, 359, 363

gravity, Newton’s law, 111ff
groups and clusters of galaxies, 47, 155, 278ff,

315, 316, 318, 320, 321
Abell catalogue, 155, 279, 292
compact groups, 280
core radius, 293
dark matter: see masses
density, 155, 293, 318
galaxy mergers, 190, 280, 300
galaxy morphology, 295, 300
galaxy motions, 278, 280, 283, 293, 297
gas, 293, 294, 300

cool, 159, 279, 281
hot, 279–283, 295–299
ionized, 395

gravitational lensing, 303
growth and future, 188, 292, 295, 297
individual

Abell 383, 303, 310, 312

Coma, 154, 258, 269, 278, 293–295, 297,
299, 316

Fornax, 292–294, 296, 316
Local Group: see separate entry
Perseus, 293–295, 299, 316, 367,

376
Stephan’s Quintet, 280, 293
Ursa Major, 201–203, 221
Virgo, 154, 269, 276, 292–297, 316, 318,

347, 348
infall toward, 347, 353
intergalactic stars, 279
masses, 189, 190, 282, 283, 293, 297, 299,

310, 312
morphology–density relation, 295
virial radius, 361, 362
X-ray emission, 279–283, 293, 297–300

temperature–luminosity relation, 297,
298, 362

Gunn–Peterson test, 395

HII region: see under gas in galaxies, ionized
halo of galaxy

dark, 27, 94, 95, 164, 176, 217–221, 274,
283, 304

hot gas, 99, 213
metal-poor, 27, 84–86, 170, 174, 191

Harrison–Zel’dovich spectrum, 324
heavy elements, 9, 186, 269

closed-box model, 177, 179, 180
G-dwarf problem, 180, 181
gas, 160, 177–180, 182, 272, 282, 297, 299,

391, 393–396, 406
missing metals problem, 397
production, 8, 9, 15–17, 53, 174, 176ff, 182,

270, 400, 406
s-process, 15

radial gradients, 80, 179, 269
stars, 8, 13, 62, 74, 78–81, 83, 86, 160, 163,

177–183, 269, 270, 302
heliocentric velocity, 33
helium, 8

burning in stars, 13, 14, 62, 81, 82,
160

flash, 14
produced in Big Bang, 50, 52–54

Hertzsprung gap, 62
Hertzsprung–Russell diagram: see stellar

color–magnitude diagram
Holmberg radius R26.5, 43
horizon, 332, 346
horizontal branch: see under stars
Hubble classification of galaxies, 38, 222, 242
Hubble Deep Field, 397
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Hubble’s law, 46, 47, 326
Hubble constant H0, 46, 326
Hubble time tH, 47, 334
parameter H (t), 326

hydrostatic equilibrium, 282
hyperfine transitions, 30

impulse approximation, 126
inflation: see cosmic expansion
integrals of motion, 145, 264
intergalactic medium: see gas in galaxy groups

and clusters and gas, intergalactic
interstellar medium: see gas in galaxies
isochrones, 77, 82, 164

Jacobi constant EJ, 166
jansky (Jy), 4, 407
Jeans

instability, 355–357
length, 108
mass, 108, 356–358

jets and relativistic beaming, 368–371, 373,
375–378, 380–388

k correction: see redshift, photometric
kinematic distance, 96
Kuzmin disk, 114

L
 galaxy: see galaxy luminosity function
Lagrange points, 166, 167
large-scale structure, 314ff

acoustic peak, 347
baryon oscillations, 323, 346, 347, 359
cold dark matter, 359, 362
correlation function ξ (r ), 322–324
density fluctuations, 318, 323, 324

growth, 173, 344ff
fluctuations in CMB, 344–347, 359
Harrison–Zel’dovich spectrum, 324
Jeans instability, 355–357
peculiar velocities, 50, 314, 319, 348–353
power spectrum P(k), 322–324, 346, 359,

362, 363
random-phase hypothesis, 324, 344
supergalactic plane, 155, 315, 316
walls and voids, 48, 295, 314, 315, 318–320,

355, 359, 396
late-type galaxy, 40, 410
late-type star, 5, 410
Local Group, 48, 151ff, 318, 406

collisions and mergers, 159, 164, 170, 176
growth and future, 188
membership, 152
peculiar velocity, 56

local standard of rest, 89
lookback time, 333, 334
low-surface-brightness galaxy: see under disks

of galaxies
luminosity

bolometric, 25
in-band: see under photometry, magnitude

system
luminosity distance, 336, 337, 339
luminosity function

galaxies, 44, 45, 293, 399
stellar, 62–65

luminous infrared galaxies (LIRGs), 290, 291,
402, 403

Lyman-α forest, 395–397, 399
Lyman-limit clouds, 390

Magellanic Clouds, Magellanic Stream: see
under galaxies, individual

magnetic field, 171, 377
active nuclei, 370, 380
Milky Way, 87, 102, 107

magnitude systems: see under photometry
Malmquist bias, 75, 415
maser, 31

galaxy nucleus, 240, 381
mass function, stellar

initial, 66, 401, 406
Salpeter, 66, 401, 406

mass models
dark halo, 95, 114, 168, 216, 286, 310, 311

singular isothermal sphere, 114, 148
King model, 149
Kuzmin disk, 114
Navarro–Frenk–White (NFW), 117, 363
Plummer sphere, 113, 118, 120, 147, 216,

282, 310, 311
polytrope, 113, 147
self-consistent, 147, 148, 266
softened potential, 129
truncation (tidal) radius, 149

mass segregation, 78, 131, 132
mass-to-light ratio

galaxies, 163, 164, 169, 213, 217–220, 222,
239, 256, 258, 273–275

galaxy groups and clusters, 283, 297, 299,
312

Milky Way, 64, 71, 74, 123
on larger scales, 49, 190
star clusters, 78, 122

masses
black holes, 68, 87, 88, 276, 277
galaxies, 94, 95, 124, 160, 163, 214ff, 223,

274, 403, 404
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masses (cont.)
galaxy groups and clusters, 282, 283, 293,

297, 299, 310, 312
Milky Way, 124
on large scales, 353
star clusters, 78, 121–123, 132, 239
stars, 2, 7

matter-dominated Universe: see under cosmic
expansion

Maxwellian distribution function, 130
metal abundance: see heavy elements
microquasars, 386, 387
Milky Way, 26ff, 58ff

age–metallicity relation, 176, 177, 182, 183
bulge, 26, 86, 87, 99, 158, 180

age, 86, 158, 175
cannibalism, 84
cosmic rays, 101, 107
dark matter, 94, 95, 123, 145
disk, 26, 86

mass density, 144, 145, 147
formation, 174ff
G-dwarf problem, 180
gas, 95ff

cosmic rays, 101, 109
dusty, 27, 34, 77, 78, 86, 87, 101–103, 107
hot, 99, 100
ionized, 28, 97, 99, 101, 102, 104, 107
molecular, 30, 72, 96, 97, 99–102, 104,

107, 108
neutral hydrogen, 30, 72, 91, 96–102, 152
random motions, 101, 107

Gould’s Belt, 75
heavy elements, 176, 177, 179–183
luminosity, 27, 152
magnetic field, 101, 102, 109
mass, 94, 95, 117, 118, 124
metal-poor halo, 27, 83–86, 182
nucleus, 26, 33, 86, 87, 99

black hole, 67, 68, 87, 88
radio emission, 87, 102
rotation, 74, 86, 87, 89ff

Oort constants A, B, 92, 93, 136, 139, 140
satellites, 124, 156ff, 363

Magellanic Clouds, 69, 156ff
Sagittarius dwarf, 83, 84, 164, 169

spiral arms, 91, 97
star clusters: see separate entry
stellar disk, 27, 67ff, 72, 84–86, 144

age, 73, 83, 176, 177
asymmetric drift, 74, 139, 140
bar, 86, 99
thick, 27, 74, 75
thin, 27, 74, 75
vertex deviation, 139

stellar populations, 83, 85, 177
tidal streams, 84
see also solar neighborhood

Monte Carlo simulation, 75, 349
moving groups of stars, 75, 86

neutrinos, 16, 52
neutron stars, 8, 16, 182
Newton’s law of gravity, 111ff

theorems for spherical systems, 114, 115
night-sky emission, 19, 43, 44
nucleosynthesis: see heavy elements,

production
nucleus of galaxy, 169, 172, 238, 239,

247–249, 271, 276
active: see separate entry
black holes, 273, 275, 276
LINER: see under active galactic nuclei
Milky Way, 26, 33, 86, 87, 99
see also under black holes, star clusters

Olbers’ paradox, 335, 339
Oort constants: see under Milky Way, rotation
opacity, 33
open clusters: see under star clusters
open Universe, 325
optical depth, 33
orbits of stars, 235, 264

chaos, 265, 266
collisionless Boltzmann equation, 140ff
epicyclic approximation, 133ff, 229–231,

235
escape speed, 117, 122, 131
impulse approximation, 126
surface of section, 265, 266
triaxial potential, 263, 264, 266

P Cygni profiles, 400
parallax: see also distances of stars

photometric, 70, 71
spectroscopic, 69, 70
trigonometric, 59, 60

parsec, 408
definition, 60

pattern speed: see under disks of galaxies,
spiral pattern

peculiar velocities, 48, 50, 314, 319, 347ff, 418
growth, 349, 351, 353
Local Group, 56

photoionization, 28
photometric redshift: see under redshift
photometry

array detectors: see separate entry
bolometric correction, 24, 25
colors, definition, 22
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effects of cosmic expansion, 335
galaxies, 42ff, 192ff, 242, 337

effective radius Re, 237, 243
Holmberg radius R26.5, 43
isophotes, 43, 197, 243, 253
photometric redshifts, 340–342
radius R25, 43, 337
total magnitude, 199

magnitude system, 18ff
absolute magnitude, 23
apparent magnitude, 18
definition, 18
flux-based, 21
Johnson, Cousins, 18, 21
Sloan Digital Sky Survey, 21, 22

seeing (Earth’s atmosphere), 42, 244
signal-to-noise ratio, 195
sky brightness, 19, 42–44
stars, 18

photosphere of star, 3
planetary nebula, 15, 296
Plummer sphere: see under mass models
Poisson’s equation, 113, 144
polycyclic aromatic hydrocarbons (PAHs): see

under dust
Population I and II: see under stellar

populations
potential

effective �eff, 134, 136, 165, 167
gravitational �(x), 112
lensing ψL, 306
velocity �v, 352

power spectrum P(k), 322, 359, 362, 363
proper motion, 67, 87, 89, 92
proper time, 326, 379
protostars, 10

QSO absorption lines: see gas, intergalactic
QSOs, quasars: see under active galactic nuclei

radial velocity Vr, 67, 410
radii Re, R25, and Holmberg radius: see under

photometry, galaxies
radio emission

active galactic nuclei: see separate entry
disk galaxies, 212, 213, 369, 370
elliptical galaxies, 254, 276, 294, 377
Milky Way, 87, 99, 102
spectral lines, 29–31
synchrotron radiation, 33, 87, 102, 213, 369,

375, 377ff
radio galaxies: see under active galactic nuclei
radio telescopes, 32, 206ff, 404

interferometry, 206, 208, 209
VLBI, 209, 240, 384

ram pressure of gas, 295
random-phase hypothesis, 324, 344
recombination, 54, 55, 324, 331, 344
reddening: see under dust
redshift, 47

cosmological, 50, 327, 336
Doppler, 32
gravitational, 344
photometric, 340–342

reionization, 395
relaxation

time trelax, 122, 128–130, 132
two-body, 124ff
violent, 262

resolution of observations
on the sky, 195, 206–208, 404
spectrum, 195, 206, 255

right ascension: see coordinates, equatorial
rotation, 214ff

curve, 90, 215
disk galaxies, 156, 169, 184, 214
dwarf galaxies, 185–187
elliptical galaxies, 185, 256, 261, 262
galactic bulges, 87, 237
Milky Way, 27, 74, 83, 86, 87

tangent-point method, 93, 94

scale factor a(t), 331
scale length R(t), 326
seeing: see under photometry
Sérsic formula, 244
shocks, 102, 109, 234–236, 295, 374, 380, 388,

394
signal-to-noise of observations, 195
sky brightness: see under photometry
Sloan Digital Sky Survey, 22, 270
solar neighborhood, 59ff

age–metallicity relation, 72–74, 177
asymmetric drift, 74
mass density in disk, 143–145
stellar motions, 72–74, 84, 118, 139, 140
stellar populations, 61, 63–65, 72, 73, 75, 139

specific heat of gravitating system, 133
spiral galaxies: see disks of galaxies
star clusters

ages, 77–80, 82, 160, 163
binary stars, 132
core collapse, 132
distances, 76, 78, 81–83
evaporation, 131
formation, 81
globular, 80–84, 122, 128, 133, 160, 163,

168–170, 174, 175, 184, 200, 273
Magellanic Clouds, 156, 160
mass models: see separate entry
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star clusters (cont.)
mass segregation, 131, 132
masses, 78, 80, 121–123, 132
nuclear, 87, 163, 172, 239
open, 66, 76–78, 122, 128, 132

Pleiades, 66, 77, 132
super-star-clusters, 79, 160
tidal (truncation) radius: see separate entry

star counts, 71, 85
star death: see stars, dead and supernovae
star-forming regions, 75, 77, 87, 158, 160, 170,

172, 185, 205, 212, 267, 370, 374, 401:
see also galaxies, starburst

starbirth, 10, 75, 108, 109
starburst galaxies: see under galaxies
starbursts, 40, 223, 233, 239, 281, 287, 288,

290, 291
stars

asymptotic giant branch (AGB), 15, 182
binary: see separate entry
brown dwarfs, 6
dead

gamma-ray bursts (GRBs), 387–389
neutron star, 8, 16
planetary nebula, 15, 296
supernova: see separate entry
white dwarf, 8, 15, 62, 182

early, 5
giant, 7
horizontal branch, 14, 81–84, 158, 164, 175,

183, 271
intergalactic, 279, 296
late, 5
main sequence: see under stellar main

sequence
microquasar, 386, 387
protostars, 10
red clump, 14, 62, 187
red giants, red giant branch, 8, 11, 14, 24, 62,

187, 267, 317
subdwarf, 62
subgiant, 14
supergiant, 3, 7, 8, 11, 15, 16, 23, 24
temperatures, 11, 23
variable

Cepheid, 15, 37, 160, 161
RR Lyrae, 82, 84, 160, 161, 163,

183
Wolf–Rayet, 16

Stefan–Boltzmann equation, 3
stellar

abundances: see under heavy elements
age–metallicity relation, 72–74, 79, 83, 86,

176, 177, 181

atmospheres, 3, 5, 15
4000 Å break, 6, 267, 404
Balmer jump, 5, 401
model, 7, 22
Stark effect, 7

classification, 5ff, 7, 10, 20
color–magnitude diagram, 10, 61, 77, 82,

158, 164
Hertzsprung gap, 62

colors, 22, 24
densities

V/Vmax test, 72
distances: see distances to stars
effective temperature Teff, 3
evolution (life cycle), 9
isochrones, 77, 82
lifetimes, 11
luminosities, 7, 11, 24

Wielen dip, 65
luminosity function: see separate entry
main sequence, 7, 11–13, 62

zero age, 10
masses, 2, 7, 11

Chandrasekhar limit, 17
see also mass function, stellar

orbits: see orbits of stars
photometry: see separate entry
photosphere, 3
populations: see stellar populations
radii, 3, 7, 8
surface gravity, 7, 8
temperatures, 3, 5, 11, 24
winds, 15, 16, 99, 109, 171, 172,

186
stellar populations, 155, 266–268, 302, 398,

399, 401, 402, 404
ages, 267, 269, 401
Milky Way, 61, 63–65, 73, 75, 83, 85, 139,

177
Population III, 177
Populations I and II, 177
single-burst model, 268

Sun, 2, 3, 5, 8, 10, 24, 25, 52, 408
age, 11
heavy elements in, 9
location in Milky Way, 27, 67, 83, 90
motion, 27, 56, 73, 89, 90, 92

supergalactic coordinates: see under
coordinates

superluminal motion, 383
supernovae, 15, 69, 99, 101, 106, 158, 171,

172, 174, 182, 186, 270
Type Ia, 17, 18, 182, 270, 400
Type Ic, 16, 389
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Type II, 16, 182, 270
see also gamma-ray bursts

synchrotron radiation: see under radio emission

tangent point, 90, 93
tangential velocity Vt, 67, 92
temperature

effective temperature Teff, 3
stellar system, 133
virial, 283

tensor virial theorem, 259, 260, 262
thermal infrared, 43
Thomson scattering, 371
tidal effects, 172ff, 175, 287, 288, 290, 292

torques, 173, 354
truncation (tidal) radius, 80, 133, 149, 163, 167
Tully–Fisher relation, 220–222, 362

Universe: see also cosmic expansion,
large-scale structure

age, 47, 48, 81, 333
benchmark cosmology, 48, 330
cosmic background radiation: see under

cosmic expansion
dark energy, 48, 329
dark matter, 48
density

average, 220, 329, 331, 353, 404
baryons, 53, 54, 220, 300, 393, 397
critical, 48, 49, 329
dark energy, 330
luminosity, 46, 405
matter, 330
radiation, 330

homogeneity and isotropy, 56, 325

V/Vmax test, 72
vacuum energy: see cosmic expansion, dark

energy

vertex deviation: see under Milky Way, stellar
disk

very long baseline interferometry (VLBI): see
under radio telescopes

Virgocentric infall, 347, 348, 353
virial

radius, 318, 361, 362
temperature, 283
tensor virial theorem, 259, 260, 262
theorem, 120, 121, 260, 281–283, 287, 301,

361
visible light, 19

website: see preface
white dwarf: see under stars, dead
Wielen dip, 65
winds

galaxies, 109, 290, 394, 401
P Cygni profiles, 400
stars, 15, 16, 99, 109, 158, 171, 172, 186

Wolf–Rayet stars, 16

X-ray emission, 28
active galactic nuclei, 369, 371–373, 380,

382
binary stars, 17, 132, 157

microquasars, 386, 387
disk galaxies, 157, 172, 206
elliptical galaxies, 254, 271, 272
galaxies, 33
galaxy groups and clusters, 279–283, 293,

295, 297–300
Milky Way, 99

yield of heavy elements, 178

zero-age main sequence: see under stellar main
sequence

zone of avoidance, 316


	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface to the second edition
	1 Introduction
	1.1 The stars
	1.1.1 Star light, star bright . . .
	1.1.2 Stellar spectra
	1.1.3 The lives of the stars
	1.1.4 Binary stars
	1.1.5 Stellar photometry: the magnitude system

	1.2 Our Milky Way
	1.2.1 Gas in the Milky Way
	1.2.2 What’s where in the Milky Way: coordinate systems

	1.3 Other galaxies
	1.3.1 Galaxy photometry

	1.4 Galaxies in the expanding Universe
	1.4.1 Densities and ages
	1.4.2 Galaxies in the Universe

	1.5 The pregalactic era: a brief history of matter
	1.5.1 The hot early Universe
	1.5.2 Making the elements
	1.5.3 Recombination: light and matter uncoupled


	2 Mapping our Milky Way
	2.1 The solar neighborhood
	2.1.1 Trigonometric parallax
	2.1.2 Luminosity functions and mass functions

	2.2 The stars in the Galaxy
	2.2.1 Distances from motions
	2.2.2 Spectroscopic parallax: the vertical structure of the disk
	2.2.3 Distances to star clusters
	2.2.4 An infrared view: the bulge and nucleus

	2.3 Galactic rotation
	2.3.1 Measuring the Galactic rotation curve
	2.3.2 Dark matter in the Milky Way

	2.4 Milky Way meteorology: the interstellar gas
	2.4.1 Mapping the gas layer
	2.4.2 A physical picture


	3 The orbits of the stars
	3.1 Motion under gravity: weighing the Galaxy
	3.2 Why the Galaxy isn’t bumpy: two-body relaxation
	3.2.1 Strong close encounters
	3.2.2 Distant weak encounters
	3.2.3 Effects of two-body relaxation

	3.3 Orbits of disk stars: epicycles
	3.4 The collisionless Boltzmann equation
	3.4.1 Mass density in the Galactic disk
	3.4.2 Integrals of motion, and some of their uses


	4 Our backyard: the Local Group
	4.1 Satellites of the Milky Way
	4.1.1 The Magellanic Clouds
	4.1.2 Variable stars as ‘standard candles’
	4.1.3 Dwarf spheroidal galaxies
	4.1.4 Life in orbit: the tidal limit

	4.2 Spirals of the Local Group
	4.2.1 The Andromeda galaxy
	4.2.2 M33: a late-type spiral

	4.3 How did the Local Group galaxies form?
	4.3.1 Making the Milky Way
	4.3.2 The buildup of heavy elements

	4.4 Dwarf galaxies in the Local Group
	4.4.1 Dwarf ellipticals and dwarf spheroidals
	4.4.2 Dwarf irregular galaxies

	4.5 The past and future of the Local Group

	5 Spiral and S0 galaxies
	5.1 The distribution of starlight
	5.1.1 Astronomical array detectors
	5.1.2 Surface photometry of disk galaxies

	5.2 Observing the gas
	5.2.1 Radio-telescope arrays
	5.2.2 Cool gas in the disk

	5.3 Gas motions and the masses of disk galaxies
	5.3.1 The rotation curve
	5.3.2 Dark matter in disk galaxies
	5.3.3 The Tully–Fisher relation

	5.4 Interlude: the sequence of disk galaxies
	5.5 Spiral arms and galactic bars
	5.5.1 Observed spiral patterns
	5.5.2 Theories for spiral structure
	5.5.3 Barred disks

	5.6 Bulges and centers of disk galaxies
	5.6.1 Bulges
	5.6.2 Nuclei and central black holes


	6 Elliptical galaxies
	6.1 Photometry
	6.1.1 The shapes of elliptical galaxies
	6.1.2 Twisty, disky, or boxy?

	6.2 Motions of the stars
	6.2.1 Measuring stellar velocities
	6.2.2 The Faber–Jackson relation and the fundamental plane
	6.2.3 How fast should an elliptical galaxy rotate?
	6.2.4 Stellar orbits in a triaxial galaxy

	6.3 Stellar populations and gas
	6.4 Dark matter and black holes
	6.4.1 Dark halos
	6.4.2 Central black holes


	7 Galaxy groups and clusters
	7.1 Groups: the homes of disk galaxies
	7.1.1 Close encounters between galaxies: dynamical friction
	7.1.2 Galaxy mergers and starbursts

	7.2 Rich clusters: the domain of S0 and elliptical galaxies
	7.2.1 Hot gas in clusters of galaxies
	7.2.2 Where have all the baryons gone?

	7.3 Galaxy formation: nature, nurture, or merger?
	7.4 Intergalactic dark matter: gravitational lensing
	7.4.1 Microlensing: light bent by a compact object
	7.4.2 Lensing by galaxies and clusters
	7.4.3 Weak gravitational lensing


	8 The large-scale distribution of galaxies
	8.1 Large-scale structure today
	8.1.1 Measures of galaxy clustering

	8.2 Expansion of a homogeneous Universe
	8.2.1 How old is that galaxy? Lookback times and ages

	8.3 Observing the earliest galaxies
	8.3.1 Luminosity, size, and surface brightness
	8.3.2 Galaxy spectra and photometric redshifts
	8.3.3 How many galaxies? Space densities

	8.4 Growth of structure: from small beginnings
	8.4.1 Fluctuations in the cosmic microwave background radiation
	8.4.2 Peculiar motions of galaxies
	8.4.3 How do peculiar velocities build up?
	8.4.4 Weighing galaxy clusters with peculiar motions
	8.4.5 Tidal torques: how did galaxies get their spin?

	8.5 Growth of structure: clusters, walls, and voids
	8.5.1 Pressure battles gravity: the Jeans mass
	8.5.2 WIMPs to the rescue!
	8.5.3 How early can galaxies and clusters form?
	8.5.4 Using galaxies to test model cosmologies


	9 Active galactic nuclei and the early history of galaxies
	9.1 Active galactic nuclei
	9.1.1 Seyfert galaxies
	9.1.2 Radio galaxies
	9.1.3 Synchrotron emission from radio galaxies
	9.1.4 Quasars

	9.2 Fast jets in active nuclei, microquasars, and γ-ray bursts
	9.2.1 Superluminal motion and relativistic beaming
	9.2.2 Microquasars: relativistic jets in stellar binaries
	9.2.3 Fast jets from exploding stars: gamma-ray bursts

	9.3 Intergalactic gas
	9.3.1 Neutral gas: damped Lyman-α clouds
	9.3.2 Metals in the intergalactic gas
	9.3.3 The Lyman-α forest

	9.4 The .rst galaxies
	9.4.1 Lyman break galaxies
	9.4.2 Hidden stars: submillimeter galaxies and molecular gas
	9.4.3 Old, red, and dead?
	9.4.4 The star-forming history of the Universe


	Appendix A Units and conversions
	Appendix B Bibliography
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

	Appendix C Hints for problems
	Index



