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standard model, and the landscape of vacua of string theory.
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close relationship with the lecturers and among each other, be it during the vibrant Gong
Show session, under the shade of the Wisdom Tree or gazing at the beautiful Corsican
coastline. We hope that these proceedings will further serve in fixing the acquired knowl-
edge, and hopefully become a valuable reference for anyone working in this fascinating
domain of physics.
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much indebted to Josette Durin, for her invaluable help in preparing this volume.

Finally, we are very grateful to all the participants of the School for a creating a won-
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in preparing their notes.
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STRINGS IN A LANDSCAPE

TOM BANKS

Santa Cruz Institute for Particle Physics, Santa Cruz CA 95064
NHETC, Rutgers U., Piscataway, NJ 08854

Abstract. This is a summary of some of the topics covered at the Cargese Summer School
on String Theory in June of 2004. Most space is devoted to a discussion of ideas about
the String Landscape, which formed the background for some of the talks and much of
the discussion at the School.

1. Introduction

This paper is a synthesis of my summary remarks at the Cargese School, and my contri-
bution to the wisdom tree discussion with Arkani-Hamed and Polchinski. The topics of
the school were varied. There was a discussion of the interface between cosmology and
Planck/String scale physics, in the talks of Brandenberger, Polchinski, Pioline, Elitzur,
and Rabinovici. Polchinski and Arkani-Hamed devoted some of their time to discussion
of the string landscape and expectations for fine tuning. Arkani-Hamed discussed his
beautiful model of spontaneous breakdown of general coordinate invariance (also known
as ghost condensation), as well as the split supersymmetry model motivated by the string
theory landscape. Polchinski also talked about the emergence of cosmologically stable
cosmic strings in one of the regions of moduli space that are being explored in the land-
scape. Tseytlin’s talks were devoted to the string/gauge theory connection, and in partic-
ular to the emergence of integrable structures on both sides of the duality between maxi-
mally supersymmetric planar Yang-Mills theory and tree level string theory on AdS5×S5.
Dijkgraaf and Ooguri discussed the emergent non-perturbative formulation of topological
string theory. Morozov’s lectures reviewed some of the older connections between exactly
soluble string theories, and matrix models. Okun and Pokorski gave us detailed updates
on neutrino and collider phenomenology. Finally, D. Bernard reminded us that conformal
field theory still has interesting things to say about real problems in condensed matter
physics.

I will confine these paragraphs to brief summaries of cosmology, ghost condensation,
and a somewhat more detailed discussion of the debate over the landscape. I begin with
cosmology.
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4 TOM BANKS

2. Cosmology

Robert Brandberger gave us a review of the calculation of fluctuations in inflationary
cosmologies, with emphasis on the possibility of seeing Transplanckian effects in the
cosmic microwave background. I will give you my understanding of this issue, which may
not coincide with Robert’s. The usual argument for the universality and independence
of microscopic physics of the inflationary fluctuation spectrum relies on the adiabatic
theorem. Given the assumption that the adiabatic theorem applies, effective field theory
arguments show that the corrections to the leading order predictions for fluctuations are
of order (H/MP )2, which usually means they are unobservable. Attempts to produce
effects of order H/MP rely on non-adiabatic initial conditions. Brandenberger showed
us models of initial states which do produce such effects, as well as models which don’t.
String theory does not yet have the tools to express results of stringy cosmologies in terms
of the language of field theory in which these results are presented. It is not clear which
class of models string theory prefers.

What is clear is that models with many e-folds of inflation, which incorporate viola-
tions of the adiabatic theorem (and avoid making the UV more singular than field theory),
must be very fine tuned in order to make an observational effect. Such models make large
modifications to conventional predictions, only over a limited range of scales. It requires
fine tuning to make this range of scales coincide with the range we observe in the CMB.

Elitzur, Pioline and Rabinovici talked about models of string cosmology which use
the machinery of world-sheet conformal field theory to investigate singular cosmologies.
These models fall into two types: those where an infinite universe undergoes a Big Crunch,
which may or may not be followed by a Big Bang (with string theory providing the tool
to remove and glue together the singularities) and those with closed universes which start
with a Big Bang and end with a Big Crunch. Both types of models are generalized orb-
ifold CFTs, i.e. they are gauged σ models, where the gauge group may be continuous or
discrete.

In the Crunch-Bang models the correlation functions of string vertex operators have
the conventional interpretation of a scattering theory. It has been shown pretty definitively
that conventional string perturbation theory breaks down near the singularity. Hopes for
progress depend on the notion that the production of string winding modes, which are
concentrated near the singularity will smooth out the transition without recourse to Planck
scale physics. It is hoped that some modified perturbation expansion will give a clear
picture of what is going on near the singularity.

In Bang-Crunch models there are no asymptotic regions in which to define scattering
amplitudes. Mathematical computations rely on infinite space-like regions with closed
time-like curves, which have been dubbed “whiskers” (actually the Crunch-Bang orb-
ifolds have similar whiskers). I do not understand the physical interpretation of the world
sheet correlators in this context, or how they are related to physics in the actual cosmo-
logical part of the space-time.

3. Ghost condensation

Arkani-Hamed discussed the theory[1] of ghost condensation, which is amusing and beau-
tiful. He and his collaborators have shown that theories which do not have a stable Lorentz
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invariant solution can nonetheless have stable solutions which have the symmetries of ho-
mogeneous isotropic cosmology. Moreover, because these Lagrangians describe a partial
Higgsing of gravity, their low energy behavior is almost universal. It is described by a sin-
gle new massive parameter f , analogous to the pion decay constant. The theory has a new
field φ, whose low energy excitations have a non-Lorentz invariant dispersion relation.
They can modify known theories in ways which are not yet ruled out, but are potentially
observable. In particular, they can produce interesting non-Gaussian fluctuations in the
Cosmic Microwave Background. The theory can also account for the acceleration of the
universe, without a cosmological constant, although it does not solve the cosmological
constant problem.

In order to explain the acceleration, f must be taken very small. The new field in the
theory couples only to gravity, and for small f its effects on ordinary physics are almost
negligible.

There are two problems with this model. The first is that we cannot derive it from
string theory in any known way. The second is that the assumption that the new physics
couples to the old only through gravity is artificial. Standard effective field theory reason-
ing leads us to expect non-renormalizable couplings of φ to standard model fields, scaled
by f . For small values of f this is inconsistent with experiment. It appears to be techni-
cally natural to omit the direct couplings of the Goldstone field to matter. If we postulate
that it couples only to gravity, then the small value of f/MP ensures that radiative cor-
rections do not induce large direct couplings of the Goldstone field to the standard model.
Nonetheless, one would like to have a principle that explained the absence of direct cou-
plings to the standard model, rather than a simple postulate, however self-consistent.

Neither of these criticisms is grounds for abandoning this very interesting new model.
In particular, string theory as we know it is built to handle asymptotically flat and AdS
backgrounds, and has notorious problems with any kind of real cosmology. Ghost con-
densation is an intrinsically cosmological model. It does not have any stable, Lorentz
invariant background solutions. So, the inability to find it among solutions to the effective
field equations of a known string theory, may be more a problem of the limitations of
the present formulation of string theory, than an indication that ghost condensation is an
incorrect idea.

The wonderful thing about ghost condensation is that it makes predictions for novel
phenomena, which are just beyond the current reach of experiment. It should be studied
and tested to the best of our ability.

4. Strings in a landscape

Although there were no talks devoted explicitly to the string landscape at Cargese, it
pervaded many of the discussions. Arkani-Hamed’s split supersymmetry model was mo-
tivated by the landscape, as was Polchinski’s discussion of cosmic strings in string theory.
And our discussion under the wisdom tree was a debate about the landscape.

Part of the confusion in the debate about the landscape is the conflation of two notions
of effective action which occur in quantum field theory. The first is the 1PI effective
action, which is an exact summary of the entire content of a field theory. Knowledge of it
enables us to construct all of the correlation functions of the theory, in any of its vacuum
states. In perturbation theory, we can compute the 1PI action around any vacuum state,
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and get the same result. It is important to realize that there is NO known analog of the
1PI action in string theory, which applies to all solutions of the theory. For example, both
AdS5×S5 and ten dimensional Minkowski space, are solutions of the tree level effective
action of Type IIB SUGRA, but higher order corrections (not to mention non-perturbative
corrections) to the action which generates the S-matrix in Minkowski space will not be
the same as those which generate the correlation functions on the boundary of AdS space.
There is no single quantum effective action which we can use to get both the S-matrix and
the AdS correlation functions by ”shifting the field”.

The other concept of effective action in field theory is the low energy or Wilsonian
action. This is defined, either in a single vacuum, or in a set of quasi-degenerate vacua
whose energy density differences (as well as the heights of the barriers between them)
are small compared to some cutoff scale. The Wilsonian action only contains degrees of
freedom whose fluctuations are significant at these low energy scales. It is important to
avoid using it when the conditions of its validity are violated. For example, in minimally
SUSic QCD with NF ≤ NC − 1, the low energy degrees of freedom consist of a meson
superfield M and one can compute the exact low energy superpotential of M . The low
energy Kahler potential is canonical. If one uses this low energy Lagrangian to compute
the energy density of states with a given expectation value of M , this Lagrangian gives a
divergent answer at the symmetric point of vanishing eigenvalue. This is not the correct
physical answer. The true Kahler potential (in the 1PI sense) of M is modified at the origin
of moduli space, and the energy density there is really of order the QCD scale. We should
stop paying attention to the predictions of the Wilsonian action when they are outside its
range of validity.

In string theory, the effective actions we compute are analogous to Wilsonian actions,
but their range of validity is even more constrained. In particular, the stringy derivation of
the effective action views it as a tool for calculating boundary correlation functions in a
fixed asymptotic space-time background. We tend to forget this because, particularly in sit-
uations with a lot of SUSY, the leading low energy term in the effective action is indepen-
dent of the background. This fosters the illusion that different backgrounds can be viewed
as vacuum states of the same theory. In fact, as emphasized in [2], the italicized phrase is
borrowed from quantum field theory, and refers to concepts which depend entirely on the
separation between IR and UV physics of that formalism. In string theory/quantum grav-
ity, UV and IR physics are much more intimately entangled, and the concept of different
vacuum states of the same underlying string theory Hamiltonian is much more circum-
scribed. When we have a continuous moduli space of super-Poincare invariant S-matrices,
we can do experiments at one value of the moduli, which are sensitive to the S-matrix at
other values of the moduli1. Note however, that the only Hamiltonian form we have for
such models is in light cone frame, where different values of the moduli correspond to
different Hamiltonians. Similarly, a moduli space of correlation functions on the bound-
ary of Anti-deSitter space, corresponds to a one parameter set of different Hamiltonians,
rather than different superselection sectors of the same Hamiltonian.

The recognition that changes in background asymptotics correspond to changes in
the Hamiltonian, rather than changes of superselection sectors for a given Hamiltonian

1These experiments are much more difficult than they would be in a SUSic quantum field theory,
without gravity.
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goes back to [3], and has become commonplace with the advent of AdS/CFT. Changes in
non-normalizable modes of bulk fields2 add relevant terms to the Hamiltonian. Changes
in the (negative) cosmological constant correspond to changes in the fixed point which
defines the boundary CFT, and thus to a completely different set of high energy degrees
of freedom.

These facts lead us3 to be suspicious of attempts to find new string theory models by
patching together an effective potential using the degrees of freedom of e.g. Type II string
theory in flat space-time. Indeed, once we include gravitational effects, the low energy
action itself gives us reason to be suspicious of meta-stable de Sitter vacua constructed in
this way.

Under the wisdom tree, Arkani-Hamed gave us an example of a situation where
we feel pretty confident that we can reliably compute a Wilsonian effective potential
with minima that have positive vacuum energy. Simply take the supersymmetric standard
model, with cubic (A-term) soft supersymmetry breaking terms. We get a host of minima
with energy density differences of order the SUSY breaking scale. There is no doubt that
a TeV scale experimenter could verify the existence of these minima by exciting localized
coherent excitations of the squark and slepton fields. Let us however assume that we are
living in a Poincare invariant state4, and see what this potential implies about the geom-
etry of space-time when gravitational effects are taken into account. In order to exhibit
a meta-stable dS space, we have to excite a region of order the putative Hubble radius
into the meta-stable minimum. Old results of Guth and Farhi[4] show that the external
observer can never verify the existence of the inflating region. A black hole forms around
it. Any observer in the asymptotically flat region, who tries to jump into the black hole to
find inflation, first encounters a singularity. So effective field theory tells us that we can
find and explore meta-stable positive energy density minima of an effective potential, but
not the meta-stable dS spaces that these minima have been thought to imply. That is, the
Guth-Farhi results suggest that the stable asymptotically flat vacuum state does not have
excitations which correspond to meta-stable dS vacua, even when it has an effective po-
tential with positive energy meta-stable minima. Rather, it has excitations in which fields
are excited into meta-stable minima only over regions small compared to the Hubble ra-
dius at those minima. The attempt to create larger regions succeeds only in creating black
holes.

We see that in gravitational theories, the criterion for the validity of non-gravitational
effective field theory reasoning depends on more than just the value of the energy density
in Planck units. When the Schwarzschild radius of a region exceeds its physical size in
the approximation in which gravity is neglected, a black hole forms. Effective field theory
remains valid outside the black hole horizon (if it is large enough), but not inside. In
the above example, no external observer can probe the putative dS region, without first
encountering a singularity.

We also see that the solutions of the same effective equations of motion may not reside
in the same quantum theory.

2Note that if we want to make finite rather than infinitesimal changes we must restrict our atten-
tion to Breitenlohner-Freedman allowed tachyon fields.

3well, at least they lead me
4In other words, fine tune the c.c. to be zero in one preferred vacuum state.
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The results of Coleman and De Lucia[5], on vacuum tunneling in the presence of
gravity, give us a sort of converse to this result. Given the same effective Lagrangian we
used in the previous paragraph, we can assume the existence of the meta-stable dS space,
and ask what it decays into. Here there is a surprise, particularly for those who constantly
repeat the mantra “dS space decays into flat space”. In fact, the analytic continuation of
the CDL instanton is a negatively curved Friedmann Robertson Walker cosmology, which
(if the potential has a stable zero cosmological constant minimum), is asymptotically
matter dominated. Although it locally resembles flat space on slices of large cosmological
time, its global structure is completely different. In particular, an attempt to set up an
asymptotically Minkowskian coordinate system, starting from the local Minkowski frame
of some late time observer, inevitably penetrates into regions where the energy density is
high (the energy density is constant on slices of constant negative spatial curvature, and
is of order the energy density of the false vacuum at early FRW times) .

Thus, both analysis of creation and decay of meta-stable dS states, suggests that if a
potential has a stable minimum with vanishing cosmological constant, and another with
positive energy density, the Minkowski solution and the meta-stable dS solution are sim-
ply not part of the same theory. There remains a possibility of the existence of a theory
with a stable, matter dominated, FRW cosmological solution with a meta-stable dS ex-
citation. The problem with this is that it is very unlikely that we can make a reliable ex-
ploration of this scenario within the realm of low energy effective field theory. The CDL
instanton solution is non-singular. The a = 0 point of the FRW coordinate system is just
a coordinate singularity marking the boundary between the FRW region and a region of
the space-time which continues to inflate. However, arbitrary homogeneous perturbations
of the CDL solution have curvature singularities. Further, there is a large class of local-
ized perturbations which evolve to Big Crunch singularities, rather than passing smoothly
through the a = 0 point. For example, consider a localized perturbation on some hyper-
bolic time slice a finite proper time prior to a = 0. Let it be homogeneous in a large
enough region that signals from its inhomogeneous tail cannot propagate to the a = 0
point. Then we will have a singularity. I will mention a more generic example below.

If we re-examine the Guth-Farhi argument in the FRW context, we see that it con-
tinues to hold until we go back in time to a point where the cosmic energy density is of
order the barrier to the meta-stable minimum. At high enough energy density, there are
FRW solutions in which the field classically evolves into the meta-stable minimum. It
will then decay by tunneling, into the FRW continuation of the CDL instanton. Generic
FRW solutions (including arbitrary homogeneous perturbations of the CDL instanton)
have curvature singularities at a finite cosmic time in the past. To establish their existence
as genuine theories of quantum gravity one must go beyond effective field theory, and
probably beyond perturbative string theory.

Freivogel and Susskind[6] have suggested a scattering theory in which asymptotic
states are associated with incoming and outgoing wave perturbations of the nonsingular,
time symmetric Lorentzian continuations of the, CDL instantons for the various meta-
stable vacua of string theory. They claim that in this framework, the breakdown of ef-
fective field theory is avoided, as long as the effective potential is everywhere smaller
than Planck scale. I find this suggestion interesting, but it is not based on reliable calcu-
lations. If one considers black holes with radius larger than the dS radius, formed in the
remote past of the FRW part of the time symmetric Lorentzian CDL geometry, it is hard
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to see how these solutions asymptote to the future CDL geometry without encountering
a singularity. Near the a = 0 point where the FRW coordinates on the CDL solution be-
come singular, most of the space-time is isometric to dS space at its minimal radius. If
we have formed a black hole in the past, with radius much larger than this, then the entire
space-time must end in a singularity.

Thus, I would claim that unlike asymptotically flat or AdS space-times, we have no
reliable effective field theory argument that there are an infinite number of states in space-
times that asymptote to the time symmetric Lorentzian CDL instanton. An infinite number
of states is a minimal requirement for the existence of a quantum theory that can make
precise mathematical predictions, which can be self consistently measured in the theory.
We must understand the nature of the singularities in these perturbations of the CDL
instanton geometry before we can conclude that the framework makes sense.

I think it is more likely, that meta-stable dS vacua exist only in the context of a Big
Bang cosmology. If we consider the problem of accessing a meta-stable dS minimum of an
effective potential, at times when the cosmic energy density is of order the barrier height
of the potential, then the Guth-Farhi problem does not appear to exist. Starting from a Big
Bang singularity, one can find homogeneous solutions where a scalar field wanders over
its potential surface at a time when the energy is higher than the barriers between minima,
and then settles in to a meta-stable minimum with positive cosmological constant. One
must understand the Big Bang to make a reliable theory of such a situation, but apart
from that the solution is non-singular. In particular, the problem of large black holes in
the initial state, is not present for this situation. The difficulties are all associated with
understanding the Big Bang singularity.

To summarize, it is clear from semi-classical calculations alone, that the concept of a
vacuum state associated with a point in scalar field space is not a valid one in theories of
quantum gravity. A given low energy effective field theory may have different solutions
which do not have anything to do with each other in the quantum theory. One solution
may be a classical approximation to a well defined quantum theory, while the other is
not. It seems likely that the context in which we will have to investigate the existence of
non-existence of the landscape is Big Bang cosmology. This is the only situation in which
we can reliably construct a universe which gets stuck in a meta-stable dS minimum.

Thus, I claim that if string theory really has a multitude of meta-stable dS states, then
exact theory into which they fit is a theory of a Big Bang universe which temporarily gets
stuck, with some probability, in each of these states. This is ultimately followed by decay
to negatively curved FRW universes. These FRW universes have four infinite dimensions
and 6 or 7 large compact dimensions, which are expanding to infinity. It is clear that the
probability for finding a particular dS vacuum is partly determined by the density matrix
at the Big Bang and not just by counting arguments. In the next subsection I will describe
existing proposals for the cosmological distribution of vacua. My main point here is that
the nature of the Big Bang will have to be addressed before we can hope to understand
the correct statistics of stringy vacua.

4.1. ETERNAL INFLATION

The string landscape seems to fit in well with older ideas which go under the name of eter-
nal inflation, the self reproducing inflationary universe, etc.. The simplest model which
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exhibits this sort of behavior is one with a single scalar field with two minima, one with
positive vacuum energy and the other with vanishing energy. One considers the expanding
branch of the meta-stable dS universe with the field in the false minimum. In the quan-
tum field theory approximation this seems to produce an ever-expanding region of space
and one allows the dS space to decay by CDL bubble formation independently in each
horizon volume. In the eternal inflation picture, one tries to interpret the result as a single
classical space-time. One obtains a Penrose diagram with a future space-like boundary.
The future space-like boundary is fractal, with regions corresponding to singularities5 as
well as FRW asymptotics, interspersed in a causally disconnected way. In the landscape
there will be many different singular regions of the boundary, as well as many different
FRW regions. Advocates of the landscape/eternal inflation picture then make the analogy
to maps of the observable universe, with different causally disconnected regions being the
analogs of different planets. Physics it is said, depends on “where you live” and organ-
isms like ourselves can only live in certain regions of the map. A key difference between
different minima of the effective potential in eternal inflation, and different planets is that
we cannot, even in principle, communicate with causally disconnected regions of the uni-
verse.

How is one to interpret such a picture in terms of conventional quantum mechanics?
I believe that the fundamental clue comes from the principle of Black Hole Complemen-
tarity[7]. Black holes also present us with two regions of space-time which are causally
disconnected. Hawking showed long ago that this was an artifact of the semi-classical ap-
proximation, and that black holes return their energy to the external space-time in which
they are embedded. If we assume that the region behind the horizon has independent de-
grees of freedom, commuting with those in the external space, then we are confronted by
the information loss paradox.

String theorists have believed for some years now, that this is not the case. The prin-
ciple of Black Hole Complementarity is the statement that the observables behind the
horizon do not commute with those in the external space-time. For a large black hole,
(and for a long but finite time as measured by the infalling observer), these two sets of
observables are both individually well described by semiclassical approximations, but the
two descriptions are not compatible with each other.

Fischler and I tried to relate this principle to the Problem of Time[8]. In the semi-
classical quantization of gravity one attempts to solve the Wheeler-DeWitt equation

HΨ = 0

with an ansatz

Ψ = eiSχ(t, φ),

where S is the action of some classical space-time background solution, and χ is the wave
functional of a quantum field theory in this space-time

i∂tχ = H(t)χ.

5The singular regions correspond to decays to parts of the potential where the vacuum energy is
negative. They would exist in the landscape context, but not in the simple model we are discussing.
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The (generally time dependent) Hamiltonian H(t) depends both on the choice of classi-
cal background, and on the particular time slicing chosen for that background. For exam-
ple, for the Schwarzschild background we could choose HSch, the Schwarzschild Hamil-
tonian, or some time dependent H(t) where t is the proper time of a family of in-falling
observers. Even ignoring subtle questions of whether these two Hamiltonian evolutions
act on the same Hilbert space, it is clear that they are different and that [H(t),HSchw] �= 0
at any time t. It is therefore not surprising that the semi-classical observables of different
observers do not commute with each other.

Given this description of black holes, it is natural to conjecture that a similar phe-
nomenon occurs for any space-time with horizons. In [8] this was called Cosmological
Complementarity for asymptotically dS spaces. E. Verlinde has suggested the name Ob-
server Complementarity for the general case.

If we apply this logic to Eternal Inflation, we obtain a picture quite different from the
original description of these space-times. We simply associate a single Hilbert space and
many different (generally time dependent) Hamiltonians to the fractal Penrose diagram.
Each Hamiltonian is associated with the causal patch of a given observer. Mathematically,
the situation can be equally well described by saying we have a collection of different the-
ories of the universe. There is a philosophical cachet, associated with the phrase, “physics
depends on where you live in the multiverse”, which is absent from this alternative way
of describing the physics.

In the formalism described in [6] this is almost precisely what is conjectured. For
each meta-stable dS point L in the landscape, which can decay into the Dine-Seiberg
region of moduli space, and for each (typically 10 or 11 dimensional) Super-Poincare
invariant solution V of string theory into which L can decay there is a different unitary
S-matrix SL,V

6. It is claimed that each of these S-matrices contains all the physics of the
landscape, because there is a canonical way to compute the unitary equivalence U in the
formula SL,V = UL,V,L′,V ′SL′V ′U†

L,V,L′,V ′ . The statement that there is a theory of eter-
nal inflation in which all of the points L are meta-stable states is really the statement that
the theory contains a canonical algorithm for computing the “gauge transformations” U 7.
The authors of [6] claim that all of the meta-stable dS states will show up as resonances
in every S-matrix, SV,L. This claim is plausible if the S-matrices are indeed related by
unitary conjugation. The spectrum of the S-matrix is then gauge invariant. In ordinary
scattering theory, time delays, which are related to resonance lifetimes, are related to the
spectrum of the S-matrix. In the eternal inflation context, there is no universal notion of
time for the different asymptotic states, so more work is necessary to understand these
concepts.

If indeed the information about each meta-stable dS vacuum can be extracted from
the spectral density of a given S-matrix SV,L, and if we can find a reliable framework, for
defining and calculating these S-matrices, then the landscape will have a mathematical

6We can also consider initial and final states corresponding to different CDL instantons. In[6]
these are claimed to be different gauge copies of the same information in the S matrices. I will
mention a different interpretation below.

7For the moment, no approximate statement of what this algorithm is has been proposed. I
would conjecture that, if the formalism makes sense, the transition amplitudes between two different
FRW spacetimes, mentioned in the previous footnote, provide the algorithm for calculating the U
mappings.
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definition. From a practical point of view however, we just say that string theory gives us
an algorithm for constructing models of the world (in the landscape context this means
choosing particular stable or meta-stable minima) which is not unique and that we are
trying to use data to constrain which model we choose. In the next section, I will describe
the situation in the language of the approximate Hamiltonian of a given meta-stable dS
observer, rather than that of eternal inflation.

I have emphasized the problems with this S-matrix point of view and suggested the
alternative notion that the landscape could only make sense in the context of Big Bang
Cosmology. One must thus understand how to describe the initial states. There are two
possibilities, either there is some principle which picks out a fixed initial state8 at the Big
Bang, or there is a generalized S-matrix in which we relate a particular state at the Big
Bang to a particular linear combination of final scattering states in one of the FRW back-
grounds defined by a decaying meta-stable dS space. In a manner analogous to Freivo-
gel and Susskind, one would conjecture that the descriptions in terms of different future
FRW backgrounds would be unitarily equivalent to each other, by unitary transformations
which do not respect locality. Since we are unlikely to have much control over the initial
conditions at the Big Bang, one should choose the in-state at the Big Bang to be a high
entropy density matrix. Thus, the practical difference between the two proposals is the
entropy of the initial state.

I know of two proposals for the initial density matrix at the Big Bang, which might
lead to a set of cosmological selection rules for meta-stable points in the landscape. The
first, modular cosmology[9] postulates an early era in which the universe can be described
semi-classically, but the potential on moduli space is smaller than the total energy density.
The metric on moduli space then provides a finite volume measure. Furthermore, the
motion of the moduli is chaotic. These facts suggest that the probability of finding the
universe in a given meta-stable minimum of the potential is the volume of the basin of
attraction of that minimum, divided by the volume of moduli space.

Holographic cosmology[10] gives an alternative view of the initial state of the uni-
verse, as a “dense black hole fluid” where standard notions of local field theory do not
apply. The model contains two phenomenological parameters, which govern the transi-
tion between this phase of the universe and a normal phase in which the field theory
description is valid. There are indications that the transition occurs at an energy density
well below the unification scale of standard model couplings. We might then expect a
transition directly into a state with most of the moduli frozen. In order for the model to
provide an adequate account of the fluctuations in the CMB, one must have at least one
“active” modulus at these low energies, which can provide for a modest number of e-folds
of inflation. In such a model, minima of the potential on moduli space with energy higher
than the scale at which a field theoretic description of the universe is possible, cannot
make any sense. At best a small class of low energy minima could be compatible with
holographic cosmology9. If holographic cosmology is compatible with landscape ideas,
the probability of accessing a particular minimum will be determined by quantum grav-

8e.g. the Hartle Hawking Wave Function of the Universe.
9The potentials calculated in the landscape have no indication of a cut-off at energy scales far

below the unification scale. This suggests that the two theoretical frameworks are not compatible,
but I am trying to avoid jumping to conclusions.
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itational considerations, far removed from effective field theory. In this framework, the
dense black hole fluid is stable and is the most probable state of the universe. A normal
universe like our own is determined by a somewhat improbable initial condition, but one
expects the maximum entropy initial state that does not collapse to a dense black hole
fluid. The survival probability of a given normal state depends on both the properties of
the black hole fluid and the low energy physics of the normal state, so the determination of
the most probable meta-stable minimum would be a complicated quantum gravitational
calculation.

In both of these classes of models, simple enumeration of meta-stable minimum is not
a good account of the physical probability distributions.

5. Phenomenology of the landscape

For practical purposes , the landscape gives us a large set of alternative effective La-
grangians for describing the physics we have observed or will observe in our universe.
These are parametrized by a collection of numbers, which include the dimension of space-
time, the name, rank and representation content of the low energy gauge theory, the value
of the cosmological constant, and the values of all the coupling constants and masses
of fields in the Lagrangian10. These numbers can be collected together and viewed as a
multidimensional probability space. In the supergravity approximation, we have a way
of calculating an a priori distribution for these numbers. Proponents of the landscape
would claim that this is an approximation to some more exact distribution, though no-one
has suggested a procedure for calculating the corrections. In the previous section I have
suggested that early universe cosmology may make important modifications of the distri-
bution of metastable minima. If it turned out that the distribution predicted the Lagrangian
we observe with high probability, it would be a great triumph for string theory.

The value of the cosmological constant tells us that this is not the case. Weinberg’s
bound[11],which constrains cosmological parameters by insisting on the existence of
galaxies, has the form (in Planck units).

Λ ≤ Kρ0Q
3,

where ρ0 is the dark matter density at the beginning of the matter dominated era, Q is
the amplitude of primordial density perturbations at horizon crossing, and K is a pure
number of order 1.. For any reasonable values of the other parameters, this means Λ is
much smaller than the typical value found in the landscape.

It is clear then that we must supply additional data from experiment in order to fix our
description of the world. The landscape framework supplies some theoretical guidance
- it tells us that there are a finite number of possibilities, of order 10102

(to order of
magnitude accuracy in the logarithm). Various authors [12] have begun to investigate the
a priori distribution of properties like the gauge group and number of generations, the
scale of supersymmetry breaking, the existence of large warp factors which give rise to
large hierarchies of energy scales etc., assuming a uniform distribution on the space of

10In principle we could also have non-trivial conformal field theories in the low energy world, at
least in some approximation.
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minima. The hope is that correlations will become evident which will tell us that a small
number of inputs is enough to extract the Lagrangian of the world we live in from the
ensemble of Lagrangians the landscape presents us with.

The anthropic principle has also been invoked as an input datum to impose on the
ensemble of Lagrangians. For its proponents, the attraction of this principle is that the
answer to a single yes/no question, “Is there carbon based life?” puts strong constraints
on a collection of parameters in the Lagrangian (assuming all others fixed at their real
world values). This attraction may be an illusion. In a probability space, the characteristic
function of any subset of data points is a single yes/no question. So physicists must ask if
there is any special merit to the particular characteristic function chosen by the anthropic
principle. This is a hard question to answer, because we do not have much theoretical
understanding of life and intelligence, and we have no experimental evidence about other
forms of life in the universe we inhabit.

If the typical life form resembles the great red spot on Jupiter rather than us, then this
life form would think that the criterion that is most appropriate to apply in our universe
is the Redspotthropic principle. To put this in a more positive manner: if considerations
of carbon based life lead to explanations of the values of the fundamental parameters,
then we are making a prediction about the typical form of life that our descendants will
find when they explore the universe. It should look just like us, or at least be sufficiently
similar that the criteria for its existence are close to the criteria for ours. If instead, our
descendants’ explorations show that the typical life form could tolerate much larger vari-
ations in the fundamental constants, then our so-called explanations would really be a
fine-tuning puzzle. The Red Spot People could calculate and understand that we wouldn’t
be there if the up quark mass were a little bigger, but they might reasonably ask “Who
ordered them?”.

Of all soi disant anthropic arguments, Weinberg’s bound on cosmological parameters
is the least susceptible to this kind of criticism. If there are no galaxies, there are no plan-
ets, no Red Spots, no Black Clouds, perhaps no conceivable form of life. Polchinski and
others at the school cited the numerical success of this bound as evidence that anthropic
reasoning may have relevance to the real world. It is important to realize that this nu-
merical success depends on keeping all other parameters fixed. Arkani-Hamed reported
on unpublished work with Dimopoulos, which showed that if both Λ and MP (really the
ratio of these parameters to particle physics scales, which are held fixed) are allowed to
vary subject only to anthropic constraints, then the preferred value of Λ is larger than ex-
perimental bounds by many orders of magnitude. Similarly the authors of [31] following
[14] argued that if both Λ and Q are allowed to vary then the probability of finding a
universe like our own is of order 10−4. A contrary result was reported in [15], but only by
assuming an a priori probability distribution that favored small values of Q.

In inflationary models of primordial fluctuations, the value of Q depends on details of
the inflaton potential at the end of slow roll. We would certainly expect this parameter to
vary as we jump around the landscape. Similar remarks apply to ρ0. Allowing ρ0 to vary
would further reduce the probability that the anthropic distribution favors the real world.
Thus, at least with our current knowledge of the landscape, it seems likely that the numer-
ical success of Weinberg’s bound in the landscape context is not terribly impressive11.

11I cannot resist remarking that in the context of Cosmological Supersymmetry Breaking[16],
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The greatest challenge to all methods of dealing with the landscape is the large number
of parameters in the standard model which have to be finely tuned to satisfy experimental
constraints. These include the strength of baryon, lepton and flavor violating couplings,
θQCD and the values of many quark and lepton masses. Anthropic reasoning helps with
some of these parameters, but not all, and is insufficient to explain the lifetime of the
proton, the value of θQCD and many parameters involving the second and third generation
quarks and leptons. From the landscape point of view, the best way to deal with this (in
my opinion) is to find classes of vacua in which all of these fine tuning problems are
solved, perhaps by symmetries. One can then ask whether there are enough vacua left to
solve the cosmological constant problem. This might be a relatively easy task. One could
then go on to see whether other features of this class of vacua are in concordance with the
real world.

It is clear that at a certain point in this process, if we don’t falsify the landscape eas-
ily12, we will run into the problem that current technology does not allow one to calculate
the low energy parameters with any degree of precision. Indeed, the error estimates are
only guesses because we don’t even know in principle how to calculate the next term in
the expansion in large fluxes. A more fundamental framework for the discussion of the
landscape is a practical necessity as well as a question of principle. I have suggested that
if a rigorous framework for the landscape exists, it is probably to be found in the context
of a theory of a Big Bang universe with Eternal Inflation, and future FRW asymptotics for
any given observer. It is likely that we will be unable to define more precise calculations
of the properties of the landscape without finding a rigorous mathematical definition of
such a space-time.

The fundamental object in such a space-time would be a scattering matrix[8] relating
a complete set of states at the Big Bang to states in Lorentzian CDL bubble space-times
corresponding to decays of meta-stable dS landscape states into the Dine-Seiberg region
of moduli space. The final states, in addition to particle labels, would carry indices ,(V,L)
describing a particular dS minimum L and a particular “asymptotic vacuum”, V , into
which it decays. Thus, we would have matrix elements

S(I|V,L, pi),

where I labels an initial state at the Big Bang and pi a set of “particle” labels for localized
scattering states in a given CDL bubble. An important unanswered question is whether
the S-matrix is unitary for each (L, V )13 or only when all (L, V ) sectors are taken into
account. The first alternative is analogous to the proposal of [6].

The following argument has a bearing on this question. I have stated above that there
was no problem with an infinite number of final states for fixed L. This is not necessarily
the case. If I extrapolate scattering data on I+ backwards, using the classical equations
of motion, and assuming a minimal finite energy for each particle, then all but a finite
number of states will encounter a space-like singularity before transition to the metastable

only Λ varies, and Weinberg’s bound retains its original numerical status.
12e.g. by showing that the number of vacua left after all the other fine tuning problems are solved

is too small to solve the cosmological constant problem.
13One would then invoke the existence of unitary mappings taking the different unitary S-

matrices into each other.
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dS regime. This is the time reverse of the argument about black holes in the initial state of
the time symmetric CDL bubble. This suggests that for fixed L, the matrix S(I|V.L, pi)
has finite rank: only a finite subspace of the space of all out states on the CDL geometry
labeled by L, V would be allowed. This leads to a modification of the proposal of [6] in
which only the S-matrix for fixed V , keeping all possible values of L, is unitary. However,
there is no clear reason now to assume that V should be fixed, so perhaps only the full
S-matrix is unitary.

A more disturbing conclusion is reached if one combines the claim of [17] that the
number of L sectors is finite, with the above argument. One then concludes that the whole
S-matrix has finite rank, and that the entire landscape fits into a Hilbert space with a finite
number of states. One of the supposed virtues of the landscape picture of metastable dS
was that, unlike a stable dS space, the landscape was part of a system with an infinite
number of states, which could make infinitely precise quantum measurements on itself.
If both Douglas’ claim, and that of the last paragraph are true, this is no longer obvious.
All but a finite number of the final states in a given CDL instanton geometry, would not
connect to a tunneling process from a meta-stable dS vacuum, but instead would evolve
directly from a Big Bang. The part of the scattering matrix that involved meta-stable dS
resonances would be of finite rank. The whole issue of a rigorous framework for the
landscape remains as murky as ever.
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QUANTIZATION OF HOLOMORPHIC FORMS
AND N = 1 SUPERSYMMETRY ON SPECIAL MANIFOLDS
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Université de Paris VI and Paris VII, France

Abstract: We study the quantization of a holomorphic two–form coupled to a Yang–
Mills field on special manifolds in various dimensions, and we show that it yields twisted
supersymmetric theories. For Kähler manifolds in four dimensions, our topological model
is related to N = 1 Super Yang–Mills theory. Extended supersymmetries are recovered
by considering the coupling with chiral multiplets.

1. Introduction

The idea that Poincaré supersymmetry is a ”phase” of a more fundamental symmetry is
appealing. For instance, it was shown that Poincaré supersymmetry and topological sym-
metry are deeply related, and that the field spectrum of dimensionally reduced N = 1
D = 11 supergravity can be determined in the context of an 8-dimensional gravitational
Topological Quantum Field Theory (TQFT) [1]. One can foresee that many models, which
are dimensional reductions and truncations of maximal supergravity, might be possibly
related by twist to topological models [2]. The BRST operator that characterizes a topo-
logical symmetry is a scalar operator which can be defined in any given curved space,
while Poincaré supersymmetry is a delicate concept in curved space. Therefore, topologi-
cal symmetry could be a more fundamental concept than Poincaré supersymmetry. On the
other hand, in order to perform the twist operation that relates Poincaré supersymmetry
and topological symmetry, one often needs to use manifolds with special holonomy.

We will discuss the quantization of (holomorphic) two–forms coupled to a Yang-Mills
field on special manifolds in various dimensions. These theories are basically ATQFT’s
(Almost Topological Quantum Field Theories), in the sense that they are defined in terms
of a classical action and a set of observables which are invariant under changes of co-
ordinates belonging to restricted classes, for instance, reparametrizations that respect a
complex structure. This is to be compared to genuine TQFT that contain observables in-
variant under all possible changes of metrics. Interesting cases that we will analyse in
detail are Kähler manifolds in four dimensions and special manifolds in higher (6,7 and
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8) dimensions. In particular in seven dimensions we will analyse G2 manifolds of the kind
recently studied by Hitchin [15].

One of the original motivations for this work was to try to understand how (twisted)
N = 1 supersymmetric theories can be directly constructed as TQFT. As we will see
in the next section, this immediately leads to the introduction in the classical action of a
“charged” 2-form B, valued in the adjoint representation of a Lie algebra. In these models
one can also consider the coupling to chiral multiplets. If these transforms in the adjoint
representation, one recover in this way also the extended supersymmetry in a twisted
form.

In Sect.2 we introduce the holomorphic BF model and discuss its relationship with
N = 1 (twisted) supersymmetry. Notice that the quantization of this model requires the
use of the Batalin–Vilkoviski formalism. In Sect.3 the four dimensional case is consid-
ered, including a detailed discussion on the coupling with a chiral multiplet. In Sect.4 we
discuss the six–dimensional case on a Calabi–Yau three–fold and show how two differ-
ent quantizations yields respectively to theories related to the B model and A model of
topological string. In Sect.5 we discuss the eight–dimensional theory on a Calabi–Yau
four–fold and its dimensional reduction to CY3 × S1. The eight–dimensional model is
discussed also for manifolds with SU(4) structure. This theory can be regarded as a gen-
eralization of the four–dimensional self–dual Yang–Mills model [22].

2. N = 1 supersymmetry and the holomorphic BF theory

The standard construction of a TQFT leads to models with N = 2 supersymmetry. To see
this, let us consider the ”prototype” case of Topological Yang–Mills theory in four and
eight dimensions. The relevant BRST transformations read

δAµ = Ψµ + Dµc δΨµ = DµΦ− [c,Ψµ]
δc = −Φ− 1

2 [c, c] δΦ = −[c,Φ] (2.1)

These equations stand for the geometrical identity (δ + d)(A + c) + 1
2 [A + c, A + c] =

F + Ψ + Φ [23]. There are as many components in the topological ghosts as in the
gauge fields, and to gauge fix the topological freedom, one must also introduce as many
antighosts as topological ghosts. The antighosts are an anticommuting antiself dual 2-form
κµν and an anticommuting scalar η. For each one of the antighosts, there is an associated
Lagrange multiplier field, and their BRST equations are :

δκµν = bµν − [c, κµν ] δbµν = −[c, bµν ]
δΦ̄ = η − [c, Φ̄] δη = [c, η] (2.2)

The twist operation is a mapping from these ghost and antighost fermionic degrees of
freedom on a pair of spinors, which leads one to reconstruct the spinor spectrum of N =
2 supersymmetry, both in 4 and 8 dimensions. The scalar BRST operator δ can then
be identified as a Lorentz scalar combination of the N = 2 Poincaré supersymmetry
generators. However, this ”twist” operation has different geometrical interpretation in 4
and 8 dimensions. In the former case, it is a redefinition of the Euclidean Lorentz group
contained in the global SUL(2) × SUR(2) × SU(2) invariance of the supersymmetric
theory. In the latter case, it uses the triality of 8-dimensional space. In the previous works
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[4, 5, 6], a constant covariant spinor has been used, which implies that one uses Spin(7)
invariant manifolds; one can also use a manifold with SU(4) holonomy.

Using self-duality equations as gauge functions, one can build a δ-exact action that
provides twisted supersymmetric theories with a δ-exact energy momentum tensor. The
cohomology of the δ symmetry determines therefore a ring of topological observables,
which is a subsector of the familiar set of observables for the gauge particles. The latter
is selected from the cohomology of the ordinary gauge invariance.

From (2.1) and (2.2) one concludes that in these TQFT one has twice as many fermi-
onic degrees of freedom than bosonic ones. This makes seemingly impossible to deter-
mine N = 1 models as a twist of TQFTs. We may, however, look for models with a
“milder” topological symmetry, such as BF models or Chern–Simons type model, char-
acterized by metric independent classical actions. Such actions are not boundary terms,
and thus their topological symmetry cannot be as large as that displayed in (2.1) and
(2.2). This might lead us to models that are twisted N = 1 supersymmetric theories. In
this paper, we will consider the following holomorphic BF action

In−BF =
∫

M2n

Tr(Bn,n−2 ∧ F0,2) (2.3)

which is defined on any complex manifold M of complex dimension n. Some aspects of
the classical action (2.3) were studied in [24]. It would be interesting to study its quanti-
zation and possible relation with supersymmetry. For the moment we only consider some
particular models which can be obtained from (2.3) by choosing a particular form for the
field Bn,n−2. Notice that the equations of motion for this field coming from (2.3) implies
that Bn,n−2 is a holomorphic (n, n− 2) form.

One might try to define a theory that is classically invariant under the following (al-
most) topological symmetry, which is localised in the holomorphic sector 1:

QAm = Ψm + Dmc QΨm = −[c,Ψm]
Qc = − 1

2 [c, c] QAm̄ = Dm̄c
(2.4)

This “heterotic” symmetry was already used [26, ?, ?, ?] in four dimensions and in [4, ?]
in higher dimensions. Here we recover it as a symmetry associated to the classical action
(2.3). If we count the ghost degrees of freedom, we have 2 components for Ψm and one
for c. Notice that Ψm cannot have a ghost of ghost symmetry with a ghost of ghost Φ,
since QΨm = DmΦ − [c,Ψm] and Qc = Φ − 1

2 [c, c] would imply that Q2Am̄ �= 0.
Modulo gauge transformations, only one degree of freedom for the field A is left free by
the symmetry in (2.4). Moreover, if we succeed in writing a BRST gauge–fixed action for
the classical symmetry in (2.4), this will depend on the ghosts Ψm and as many antighost
components as there are in Ψm (four components). Then the number of fermion degrees of
freedom will fit with those of a single Majorana spinor and we have a chance to eventually
reach N = 1 supersymmetry, as we will explain in detail in the next section. Notice that
in these models one can also recover the coupling to a chiral multiplet in the adjoint
representation and the corresponding extended supersymmetry in the twisted form.

1We use the standard notation where the complex indices are denoted with latin letters m, n and
m̄, n̄, and the complex coordinates are given by zm and z̄m̄.
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3. Four dimensions: Kähler manifold

3.1. THE CLASSICAL ACTION FOR A BF SYSTEM ON A KÄHLER MANIFOLD

On a Kähler manifold one can define a complex structure

Jmn = 0 , Jm̄n̄ = 0 ,

Jmn̄ = igmn̄ (3.1)

which allows one to introduce complex coordinates zm and zm̄ and 1 ≤ m, m̄ ≤ N in
2N dimensions by

Jm
n zn = izm , Jm̄

n̄ zn̄ = −izm̄ . (3.2)

In four dimensions, the action (2.3) reads

Icl(A,B) =
∫
M 4

TrB2,0 ∧ F0,2 =
∫
M4

d4x
√

g Tr
(
εmnm̄n̄BmnFm̄n̄

)
(3.3)

where F = dA + A ∧ A is the curvature of the Yang–Mills field A. The equations of
motion are

Fm̄n̄ = 0 εmnm̄n̄Dn̄Bmn = 0 (3.4)

Classically, Am is undetermined, Am̄ is a pure gauge and Bmn is holomorphic. Notice
that B2,0 has no vector gauge invariance. It counts for one propagating degree of free-
dom. Altogether, there are two gauge invariant degrees of freedom that are not specified
classically. Modulo gauge invariance, there is a mixed propagation between A and B. The
symmetries of the action (3.3) are

QAm = Ψm + Dmc QΨm = −[c,Ψm]
Qc = − 1

2 [c, c] QAm̄ = Dm̄c
QBmn = −[c,Bmn]

(3.5)

In the first two lines of the above equation we can recognize the symmetry (2.4). The
geometrical interpretation of complete charged 2-forms is a non-trivial issue. However,
in the language where form degree and positive and negative ghost number are unified
within a bigrading, the charged 2-form can be understood as a sort of Hodge dual to the
Yang–Mills field [30]. Here we only consider the (2, 0) component of such an object, and
we hopefully avoid the ambiguities for defining its theory. We now explain the BRST
quantization of the action (3.3), for the sake of inserting it in a path integral.

3.2. QUANTIZATION OF THE BF SYSTEM ON A KÄHLER MANIFOLD

In order to define a quantum theory, that is, a path integral, we need to gauge fix the
(almost) topological symmetry of the BF system, in a way that respect the BRST sym-
metry associated to this symmetry. As it is well-known, the anti–self–duality condition in
4 dimensions can be expressed in complex coordinates as:

Fmn = 0 , Fm̄n̄ = 0
Jmn̄Fmn̄ = 0 (3.6)
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and one has the identity

Tr
(
Fm̄n̄F m̄n̄ + 1

2 |Jmn̄Fmn̄|2) =
1
4
Tr(FµνFµν + FµνF̃µν) (3.7)

Modulo ordinary gauge invariance, we have two topological freedoms, corresponding to
the two components in Ψm. In order to perform a suitable gauge fixing for the two–form
B2,0 and for A1,0, which is the part of the gauge connection absent from the classical
action (3.3), we introduce two anticommuting antighosts κmn and κ, and two Lagrange
multipliers bmn and b:

Qκmn = bmn Qbmn = 0
Qκ = b Qb = 0 (3.8)

Since Q2 = 0 from the beginning, we have a first order Batalin-Vilkoviski (BV) system.
However, since the treatment of the chiral multiplet in the next Section will produce a
non-trivial second order BV system, we find convenient to introduce right now BV anti-
fields for A and B and their ghosts, antighosts and Lagrangian multipliers. The upper left
notation ∗ labels antifields2. Let us recall that the antifield ∗φ of a field with ghost number
g has ghost number−g−1 and opposite statistics. For a Q-invariant BV action S one has
Qφ = ∂lS

∂∗φ and Q∗φ = −∂lS
∂φ . The property Q2 = 0 is equivalent to the master equation

∂rS

∂φ

∂lS

∂∗φ
= 0 (3.9)

where (∂r, ∂l) indicate respectively the derivatives from the left and from the right.
The following BV action encodes at once the classical action (3.3) and the definition

of its BRST symmetry:

S =
∫
M4

d4x
√

g Tr
(1

4
εmnm̄n̄BmnFm̄n̄

+∗Am(Ψm + Dmc) +∗ Am̄(Dm̄c)
−∗Bmn[c,Bmn]−∗ Ψm[c,Ψm]− 1

2

∗
c[c, c]

+∗κmnbmn +∗ κb
)

(3.10)

The BV master equation (3.9) is satisfied, which implies the gauge invariance of the clas-
sical action as well as the nilpotency Q2 = 0 on all the fields. It is actually important to
note that the invariance of the action (3.10) implies that

Q∗Bmn = εmnm̄n̄Fm̄n̄ − [c,∗ Bmn]. (3.11)

This equation will shortly play a key role for defining the coupling to scalar fields.
The topological gauge fixing corresponds to the elimination of antifields by a suitable

choice of a gauge function Z. The antifields are to be replaced in the path integral by the
BV formula:

∗φ =
δZ

δφ
(3.12)

2As stressed in [30], the antifields of A appear in the ghost expansion of B and vice-versa.
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The Q-invariant observables are formally independent on the choice of Z. In particular,
their mean values are expected to be independent on small changes of the metric that one
must introduce to define Z.

In order to concentrate path integral around the anti-self-duality condition (3.6) we
choose:

Z = κmn(Bmn − εmnm̄n̄F m̄n̄) + κ( 1
2b + iJmn̄Fmn̄) (3.13)

The BV equation (3.12) implies that B2,0 is eliminated in the path integral with Bmn =
εmnm̄n̄F m̄n̄. After Gaussian integration on b, the gauge-fixed action reads

Sg.f. =
∫
M4

d4x
√

g Tr
(
Fm̄n̄F m̄n̄ + 1

2 |Jmn̄Fmn̄|2

−2εm̄n̄pqκm̄n̄DpΨq + iκJm̄lDm̄Ψl
)

(3.14)

Here and in the following discussions we omit the c–dependent terms in the action. In
fact these terms express the covariance of the gauge–fixing conditions (3.6) with respect
to the gauge symmetry, and vanish when these conditions are enforced. Moreover, we
leave aside the standard gauge fixing of the ordinary gauge invariance ∂µAµ = 0.

The action (3.14) can be compared with that of N = 1 SYM on a Kähler manifold. It
is known [31] that on a complex spin manifold the complex spinors can be identified with
forms S± ⊗ C ∼ Ω0,even

odd , so that we can identify our topological ghost Ψm as a left–
handed Weyl spinor λα and the topological anti–ghosts (κm̄n̄, κ) as a right–handed Weyl
spinor λ̄α̇. More explicitly, the holonomy group of a four–dimensional Kähler manifold is
locally given by U(2) ∼ SU(2)L×U(1)R ⊂ SU(2)L×SU(2)R, so that one can naturally
identify the forms σµ α1̇dxµ and σµ α2̇dxµ as (1, 0) and (0, 1) forms respectively [26, 27].
Then the twist reads3

Ψm = λασµ α1̇e
µ
m ,

κm̄n̄ = λ̄α̇ σ̄ α̇
µν 2̇

eµ
m̄eν

n̄ ,

κ = δ α̇
2̇

λ̄α̇ (3.15)

On a Hyperkähler manifold, the twist formula can be reinterpreted by making explicit a
constant spinor dependence in (3.15). With this change of variables, it is immediate to
recognize that the action (3.14) is the N = 1, D = 4 Yang–Mills action

SSY M =
∫
M4

d4x
√

g
1
4
Tr
(
FµνFµν + FµνF̃µν + λ̄γµDµλ

)
(3.16)

As compared to [26], we started from a classical BF system, which, eventually, gives the
N = 1, D = 4 Yang–Mills theory as a microscopic theory in a twisted form. Let us notice
that it should be possible to cast the topological BRST symmetry in the form of conditions
on curvatures yielding descent equations with asymmetric holomorphic decompositions
and eventually solve the cocycle equations for Q, similarly to what has been done in [23]
for the Topological Yang–Mills theory.

3We define the euclidean σ matrices as σµ = (iτ c,1), τ c, c = 1, 2, 3 being the Pauli matrices.
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3.3. COUPLING OF THE BF TO A CHIRAL MULTIPLET

Since the N = 2 SYM theory is an ordinary TQFT, and since its Poincaré supersymmetric
version can be obtained by coupling the N = 1 Yang–Mills multiplet to a chiral multiplet
in the adjoint representation of the gauge group, one expects to have an expression of the
N = 1 scalar theory as an (almost)TQFT on a Kähler manifold. As we shall see, this is
slightly more complicated than the N = 1 Super Yang-Mills theory, since it will involve
the vector gauge symmetry of a (0,2)-charged form, and thus a 2nd rank BV system arises.

In order to introduce the chiral multiplet, we extend the set of classical fields of the
previous section as

B2,0 → (B2,0, B0,2), (3.17)

However, we keep the same classical action as in (3.3):

Icl(A,B0,2, B0,2) =
∫
M4

Tr(B2,0 ∧ F0,2) =
∫
M4

Tr(εmnm̄n̄BmnFm̄n̄) (3.18)

Having a classical action that is independent of B0,2 is equivalent of having the following
symmetry for B0,2

QBm̄n̄ = D[m̄Ψn̄] − [c,Bm̄n̄]− 1
4
εm̄n̄mn[∗Bmn,Φ] (3.19)

QΨm̄ = Dm̄Φ− [c,Ψm̄]
QΦ = −[c,Φ].

In fact, the unique degree of freedom carried by Bm̄n̄ is canceled by the two degrees
of freedom of the topological ghost Ψn̄, defined modulo the ghost of ghost symmetry
generated by Φ. The presence of the antifield ∗Bmn in (3.19) is necessary in order that
Q2 = 0, as one can verify by using (3.19), and (3.11), together with the usual BRST
variation of the ghost c, Qc = −c2. We thus have a second order BV system, since the
BRST variations of the fields depend linearly on the antifield. This non trivial property
justifies, a posteriori, that the classical action depend on the charged (2, 0)-form B2,0 in
an ”almost topological way”, as in (3.3), with the ordinary gauge symmetry QAm̄ = Dm̄c
and QB2,0 = −[c,B2,0]. This determines the relevant Q-transformation of the antifield
of the 2-form, which is eventually necessary to obtain a closed symmetry.

The fate of the (0, 2)-form B0,2 is to be gauge-fixed and eliminated from the action,
as it was the case for B2,0, but wit a different gauge function. For this purpose we choose
a topological antighosts that is a (0,2)-form κm̄n̄, with bosonic Lagrange multiplier bm̄n̄.
The ghost of ghost symmetry of Ψm̄ must be gauge fixed, and we introduce a bosonic
antighost Φ̄ with fermionic Lagrange multiplier η̄. κm̄n̄ and η̄ will be eventually untwisted
and provide half of a Majorana spinor for N = 1 supersymmetry

One has in fact an ordinary pyramidal structure for a 2-form gauge field 4, which
shows that Bm̄n̄ truly carries zero degrees of freedom, and can be consistently gauge-

4In this table, we indicate explicitly the ghost number of the fields by a superscript. The BRST
symmetry acts on the South–West direction, as indicated by the arrows.
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fixed to zero

(3.20)

The vector ghost symmetry of the charged (0, 2)-form with ghost Ψ(1)
m̄ plays the role of a

topological symmetry. In the untwisted theory, Φ and Φ̄ will be identified as the complex
scalar field for the N = 1 chiral multiplet in 4 dimensions. The BV action for the fields
in the Table (3.20) and their antifields is

Smatter =
∫
M4

d4x
√

g Tr
(∗

Bm̄n̄(D[m̄Ψn̄] − [c,Bm̄n̄]− 1
4
εm̄n̄mn[∗Bmn,Φ])

+∗Ψm̄(Dm̄Φ− [c,Ψm̄])−∗ Φ[c,Φ]

+∗κm̄n̄bm̄n̄ +∗ Φ̄η̄
)

(3.21)

For consistency, we have to add to the above action the action (3.10) in order to properly
define the variation of ∗Bmn as in (3.11).

In order to gauge–fix Smatter, we choose the following BV gauge function:

Z ′ = κm̄n̄Bm̄n̄ + Φ̄Dm̄Ψm̄ (3.22)

Using the BV equation (3.12) and integrating on the Lagrangian multiplier bm̄n̄ one gets
Bm̄n̄ = 0, and finds

Sg.f.
matter =

∫
M4

d4x
√

g Tr
(
κm̄n̄D[m̄Ψn̄] + Φ̄Dm̄Dm̄Φ + η̄Dm̄Ψm̄

)
(3.23)

As for the Yang–Mills supermultiplet, we can perform a mapping of the topological ghost
Ψm̄ and of the topological anti–ghosts (κm̄n̄, η̄) on left and right handed spinors (ψα, ψ̄α̇)
respectively. With this change of variables, we now recognize that the action (3.23) is the
N = 1, D = 4 chiral multiplet action

SSY M =
∫
M4

d4x
√

g Tr
(
Φ̄DµDµΦ + ψ̄γµDµψ

)
(3.24)

The sum of both actions (3.10) and (3.21), when the suitable gauge fixing conditions
(3.13) and (3.22) are enforced, corresponds to the twisted N = 2 Super Yang–Mills
action, with notations that are adapted to a Kähler manifold 5.

5In order to recover the Yukawa couplings and the quartic term in the potential [Φ̄, Φ]2 typical of
the N = 2 SYM one should slightly modify the gauge–fixing fermion Z′ in (3.22), but this doesn’t
change the results on the topological observables.
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However, the BRST algebra we discussed so far is mapped only to a N = 1 subsector
of the N = 2 supersymmetry. The complete N = 2 superalgebra on a Kähler manifold
has been discussed in [25, ?, ?]. Let us briefly display how these results can be recov-
ered in our model. In our construction, we can interchange the role of holomorphic and
antiholomorphic coordinates. We can thus consider another operator ∆̄

∆Am = Ψm ∆̄Am = 0
∆Am̄ = 0 ∆̄Am̄ = Ψm̄

∆Ψm = 0 ∆̄Ψm = DmΦ
∆Ψm̄ = Dm̄Φ ∆̄Ψm̄ = 0
∆Φ = 0 ∆̄Φ = 0

(3.25)

where with ∆, ∆̄ we indicate the equivariant BRST operators, with the ghost field c asso-
ciated to the gauge symmetry set to zero. One has:

(∆ + ∆̄)Am = Ψm

(∆ + ∆̄)Am̄ = Ψm̄

(∆ + ∆̄)Ψm = DmΦ
(∆ + ∆̄)Ψm̄ = Dm̄Φ
(∆ + ∆̄)Φ = 0

(3.26)

Thus, ∆2 = ∆̄2 = 0, and (∆+∆̄)2 = {∆, ∆̄} = δΦ, where δΦ is a gauge transformation
with parameter Φ. The operator (∆+∆̄) is the topological BRST symmetry operator (for
c = 0), corresponding to the twisted N = 2 supersymmetry. The classical action which
is invariant under the symmetry (3.26) is the (real) BF action plus a “cosmological term”
Tr(B∧B), with B the complete real two–form. This field transform as (∆+∆̄)B = DΨ.
In a space where one cannot consistently separate holomorphic and antiholomorphic com-
ponents of forms, the only admissible operation is (∆ + ∆̄), which is Lorentz invariant.
Then, to close the BRST symmetry, and get δ2 = (Q + Q̄)2 = 0, one must redefine the
BRST transformation of the Faddeev–Popov ghost c, as follows:

Qc = − 1
2 [c, c] → Qc = −Φ− 1

2 [c, c] (3.27)

In this way one recover the complete symmetry of the Topological Yang–Mills action
(2.1).

4. Six dimensions: Calabi–Yau three–fold

On a Calabi–Yau three–fold CY3 we can use the holomorphic closed (3, 0)–form Ω3,0

and define B3,1 = Ω3,0 ∧B0,1. The classical action (2.3) then becomes

Icl(A,B0,1) =
∫
M6

Ω3,0 ∧ Tr(B0,1 ∧ F ) (4.1)
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The BRST symmetry corresponding to the action (4.1) is

QAm = Ψm + Dmc

QAm̄ = Dm̄c ,

QBm̄ = Dm̄χ− [c,Bm̄] ,

Qχ = −[c, χ] ,

Qc = − 1
2 [c, c] ,

(4.2)

The invariance of the action (4.1) under the transformation of the B field is guaranteed by
part of the Bianchi identity

D[m̄Fn̄l̄] = 0 (4.3)

and the fact that Ω is closed. Notice also that the action (4.1) is invariant under the com-
plexified gauge group GL(N,C). The BRST symmetry (4.2) follows from the following
Batalin–Vilkoviski action

S =
∫
M6

√
g d6x Tr

(
εm̄p̄q̄Bm̄Fp̄q̄ +∗ Bm̄(Dm̄χ− [c,Bm̄])

+∗Am(Ψm + Dm̄c) +∗ Am̄Dm̄c−∗ Ψm[c,Ψm]

+∗c(− 1
2 [c, c])

)
, (4.4)

where we have normalized the (3, 0)–form Ω such that Ω ∧ Ω̄ is the volume form.

Let us now proceed to the quantization of the model: this can be performed in different
ways, which lead us to the study of different sets of observables. If one chooses to quantize
the theory around the perturbative vacuum corresponding to holomorphic flat connections,
the corresponding observables will depend on the complex structure Ω of the manifold, as
usually happens in type B topological string theories. In fact, in this case the holomorphic
BF model has a deep relationship with the holomorphic Chern–Simons theory, which can
be regarded as an effective action for D5 branes in type B topological string [32]. This
relationship should be a generalization of that between BF and Chern Simons theories in
three (real) dimensions [33], and it deserves further investigations.

If instead one quantize the theory around a non-perturbative vacuum corresponding
to a stable holomorphic vector bundle, one can show that the BF model correspond to the
twisted version of a supersymmetric Yang–Mills theory! In this case the observables are
dependent on the Kähler data of the manifold, as happens in type A topological string. In
fact a direct relationship between a twisted U(1) maximally supersymmetric action and
the topological vertex has been shown in [7].

The study of the holomorphic BF model in the abelian case can be then useful to
clarify the issue of S–duality in topological strings pointed out in [8, 9, 10], and the re-
lationship between Gromov–Witten and Donaldson–Thomas invariants discussed in [18].
Let us now show the details of the two quantizations.
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4.1. PERTURBATIVE QUANTIZATION AND B MODEL

In this case, the symmetries are treated as ordinary gauge symmetries and fixed with
transversality conditions on the Am̄ and Bm̄ fields:

Dm̄Am̄ = 0
Dm̄Bm̄ = 0 (4.5)

The BV fermion corresponding to these conditions is

Z = χ̄Dm̄Bm̄ + c̄Dm̄Am̄ (4.6)

Once the gauge fixing conditions (4.5) are enforced, one has a well defined mixed prop-
agator between the A and B field, and can use it to evaluate the path integral in a per-
turbative expansion. The partition function of this model in the semiclassical limit should
be related to the Ray–Singer holomorphic torsion [34] similarly to what happens for the
holomorphic Chern–Simons theory analysed in [35, 36]. The higher order terms in the per-
turbative expansion should be related to other manifold invariants. It would be interesting
to study these invariants along the lines of the perturbative analysis of three–dimensional
Chern–Simons theory [37].

4.2. NON–PERTURBATIVE QUANTIZATION AND A MODEL

The shift symmetry on the (0, 1) part of the connection gives rise to three degrees of
freedom, while the symmetry on the B field to one. These are collected into the ghost
fields (Ψm, χ) respectively. In the non–perturbative case, the gauge fixing conditions are
chosen as follows

Fmn = −4
3
εmnpB

p

Jm̄nFm̄n = 0 (4.7)

and amount to three conditions for the first line and one for the second. The reason for the
particular choice of the coefficient in the first equation of (4.7) will be evident shortly. No-
tice that the second equation in (4.7) reduces the complex gauge group GL(N,C) to the
unitary group U(N), and as such can be considered as a partial gauge–fixing for the com-
plex gauge symmetry of the classical action (4.1). This has to be completed with a further
gauge–fixing for the unitary group, as for example the ordinary Landau gauge ∂µAµ = 0.
We will discuss this issue in more detail in Sect.5.1. The BV fermion corresponding to
(4.7) is given by

Z = χ̄m̄n̄(Fm̄n̄ +
4
3
εmnpB

p) + η̄(2iJm̄nFm̄n − h) , (4.8)

where (χ̄m̄n̄, η̄) are the antighosts associated to the gauge–fixing conditions (4.7), whose
BV action is given by

Saux =
∫

M6

√
g d6x Tr(∗χ̄m̄n̄hm̄n̄ +∗ η̄h +∗ c̄b) (4.9)
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Eliminating the anti–fields by means of (3.12) and implementing the gauge–fixing condi-
tions (4.7) by integration on the Lagrangian multipliers, we get from (4.4) and (4.9)

Sg.f. =
∫
M6

d6x
√

g Tr
(
−3

2
F m̄n̄Fm̄n̄ + |Jmn̄Fmn̄|2)

+χ̄m̄n̄D[m̄Ψn̄] + 2iη̄Jm̄nDm̄Ψn +
4
3
εm̄n̄p̄χ̄

m̄n̄Dp̄χ
)

. (4.10)

By using the identity [38]

−1
4
Tr(F ∧ ∗F ) + J ∧ Tr(F ∧ F ) =

Tr
(
− 3

2
F m̄n̄Fm̄n̄ + |Jm̄nFm̄n|2

)
(4.11)

we can recognize in the first line of (4.10) the bosonic part of the N=1 D=6 SYM ac-
tion, modulo the topological density J ∧ Tr(F ∧ F ), where J is the Kähler two–form.
Concerning the fermionic part, we can make use of the mapping between chiral fermions
and complex forms S± ⊗ C ∼ Ω

odd
even to map the topological ghosts (Ψm, χ) into the

right–handed spinor λ̄ and the topological antighosts into the left–handed spinor λ. More
explicitly, we can use the covariantly constant spinor ζ of the Calabi–Yau three–fold to
perform the mapping

Ψm → λ̄Γmζ

χ → λ̄ζ

χ̄m̄n̄ → ζΓm̄n̄λ

η̄ → εm̄n̄p̄ζΓm̄Γn̄Γp̄λ (4.12)

In this way, one can recognize in (4.10) the twisted version of the N = 1 D = 6 Super
Yang–Mills action. In order to reproduce the U(1) twisted maximally supersymmetric
action discussed in [7], one has to add to the classical action (4.1) the higher Chern class
F ∧ F ∧ F and couple this theory to an hypermultiplet, with a procedure similar to that
discussed in the four dimensional case. As in Sect.3.3, one has to consider the quanti-
zation of a (0, 2)–form B0,2. The corresponding BRST complex is the same as in Table
(3.20), but now with six–dimensional fields (m̄, n̄ = 1̄, 2̄, 3̄). It is straightforward to re-
alize that the fields appearing in the Table (3.20) together with the multiplet discussed in
this subsection give rise exactly to the spectrum of the twisted maximally supersymmetric
Yang–Mills discussed in [7]. An alternative and more economical way would be to pro-
ceed from the dimensional reduction of the eight-dimensional model that we are going to
discuss in the next section. Notice that, as discussed in Sect.3.3, the coupling to the hy-
permultiplet does not change the classical action (4.1). Moreover, the higher Chern class
(F )3 is only a boundary term which does not affect the propagation of the A and B fields.
Thus the relationship with the perturbatively quantized model of the previous subsection
still holds.



QUANTIZATION OF HOLOMORPHIC FORMS 31

5. Eight dimensions

5.1. CALABI–YAU FOUR–FOLD

On a Calabi–Yau four–fold we can write the following generalization of the action (3.3)

Icl(A,B0,2) =
∫
M8

Ω4,0 ∧ Tr(B0,2 ∧ F0,2) (5.1)

Here Ω4,0 is the holomorphic covariantly closed (4,0)-form. This, together with part of
the Bianchi identity, ensures the invariance of the classical action (5.1) analogously to the
CY3 case of the previous section. Also, as in the previous section, we normalize Ω such
that Ω ∧ Ω̄ is the volume element on M8. The action (5.1) displays the symmetry

QAM = ΨM + DMc

QAM̄ = DM̄c ,

QBM̄N̄ = D[M̄χN̄ ] − [c,BM̄N̄ ]− 1
4
εM̄N̄P̄ Q̄[∗BP̄ Q̄, φ] ,

QχN̄ = DN̄φ− [c, χN̄ ] ,

Qc = − 1
2 [c, c] ,

Qφ = −[c, φ] (5.2)

Notice that c is the complexified Faddeev–Popov ghost. The BV action corresponding to
(5.1) is given by

S =
∫
M8

√
g d8x Tr

(
εM̄N̄P̄ Q̄BM̄N̄FP̄ Q̄

+∗BM̄N̄ (D[M̄χN̄ ] − [c,BM̄N̄ ]− 1
4
εM̄N̄P̄ Q̄[∗BP̄ Q̄, φ])

+∗AM (ΨM + DM̄c) +∗ AM̄DM̄c +∗ χN̄ (DN̄φ− [c, χN̄ ])

+∗χ̄M̄N̄hM̄N̄ +∗ χ̄h +∗ c̄b +∗ φ̄η̄

+∗c(− 1
2 [c, c])−∗ φ[c, φ]

)
(5.3)

The action (5.1) only define the propagation of part of the gauge field, as in the case
studied in section 2. It can be gauge–fixed in by imposing six complex conditions for
BM̄N̄

B+
M̄N̄

= 0 ,

B−
M̄N̄

= F−
M̄N̄

, (5.4)

and a gauge–fixing for χM̄

DM̄χM̄ = 0. (5.5)

The projection on self-dual or anti-self-dual part B±
0,2 of the (0, 2)–forms can be done

by using the anti-holomorphic (0, 4) form. The conditions (5.4) can be enforced by using
the BRST doublets of complex antighosts and Lagrangian multipliers (χ̄M̄N̄ , hM̄N̄ ) and
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(φ̄, χ̄) respectively. Then, as a generalization of [4], we complete the above six complex
conditions for BM̄N̄ by the following complex condition :

DM̄ cAM̄ = 0 (5.6)

The real part of (5.6) is the ordinary Landau gauge condition. The imaginary part gives
instead a condition analogous to the second line of (4.7):

ImDM̄AM̄ = 0 ⇒ JMN̄FMN̄ = 0 (5.7)

ReDM̄AM̄ = 0 ⇒ ∂µAµ = 0

The gauge–fixing fermion corresponding to the gauge conditions (5.4), (5.6) and (5.7) is

Z = χ̄M̄N̄+
BM̄N̄ + χ̄M̄N̄−

(BM̄N̄ − 2FM̄N̄ ) + φ̄DM̄χM̄

+χ̄(iJMN̄FMN̄ + 1
2h) + c̄(∂µAµ + 1

2b) (5.8)

By using the BV equation (3.12) and enforcing the gauge conditions (5.4), (5.6) and (5.7)
by integration on the Lagrangian multipliers, we get the wanted action, as a twisted form
of the D = 8 supersymmetric Yang–Mills action. Its gauge invariant part is :

Sg.f. =
∫
M8

d8x
√

g Tr
(
2F M̄N̄−F−

M̄N̄
+ 1

2 |JMN̄FMN̄ |2) + φ̄DM̄DM̄φ

+χ̄M̄N̄−D[M̄χN̄ ] + χ̄M̄N̄+D[M̄ΨN̄ ] + χ̄DMΨM + η̄DM̄χM̄

)
(5.9)

As for the previous cases, we do not display in (5.9) the gauge dependent part of the
action. By using the identity∫

M8

d8x
√

g Tr(2F M̄N̄−F−
M̄N̄

+ 1
2 |JMN̄FMN̄ |2) + S0 =

1
4

∫
M8

d8x
√

g Tr(FµνFµν)

(5.10)
where S0 =

∫
M8

Ω ∧ Tr(F0,2 ∧ F0,2) is a surface term [4], we can recognize the first
line of the action (5.9) as the bosonic part of the D = 8 SYM action. Concerning the
fermionic part, one can use the identification of fermions with forms S± ∼ Ω

even
odd ,0,

which for D = 8 reads

S− ∼ Ω1,0 ⊕ Ω3,0 , (5.11)

S+ ∼ Ω0,0 ⊕ Ω2,0 ⊕ Ω4,0 (5.12)

to identify the topological ghosts (ΨM , χM̄ ) with the right–handed projection of the Ma-
jorana spinor λ̄ȧ, ȧ = 1, . . . , 8, and the topological anti–ghosts (χ̄, χ̄M̄N̄ , η̄) with the
left–handed projection λa. Notice in fact that on a Calabi–Yau four–fold one can use the
holomorphic four–form Ω to identify the (3, 0)–form appearing on the r.h.s. of (5.11) with
the the field χM̄ [31]. Analogously, one can identify the scalar η̄ with the (4, 0)–form ap-
pearing in the r.h.s. of (2.15). More explicitly, one can use the two left–handed covariantly
constant spinors (ζ1, ζ2) of the Calabi–Yau four–fold to identify

χM = εMNPQζ1ΓNΓP ΓQλ̄

χ̄−
MN = ζ1Γ−

MNλ

χ̄ = ζ1λ (5.13)
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and

ΨM = ζ2ΓM λ̄

χ̄+
MN = ζ2Γ+

MNλ

η̄ = εMPNQζ2ΓMΓNΓP ΓQλ (5.14)

moduli space and Spin(7) theory: the moduli space probed by the above TQFT is a
holomorphic (0, 2)–form D̄B02 = 0 and

F+
M̄N̄

= 0 (5.15)

DM̄cAM̄ = 0 (5.16)

Notice that the classical action (5.1) is invariant under the group of complex gauge trans-
formations GL(N,C). The moduli space described by (5.15) and (5.16) with complex
gauge group GL(N,C) should be equivalent to that described by (5.15) and (5.7) with
the unitary group U(N). This last moduli space is directly related with that explored by
a Spin(7) invariant topological action [35]. In fact, by using (5.7) one realizes that the
imaginary part of (5.16) together with (5.15) amount to seven real conditions, which fit
in the 7 part of the Spin(7) decomposition of the (real) two–forms 28 = 7 ⊕ 21. The
real part of (5.16) is the ordinary transversality condition for the unitary gauge group.
Then the theory defined by the action (5.1) should be equivalent to that defined by the
Spin(7)–invariant action

IΨ−BF =
∫

M8

Ψ ∧ Tr(B ∧ F ) (5.17)

where Ψ is the real Spin(7)–invariant Cayley four–form and B,F are real two–forms.
The mapping can be done by identifying the fundamental representation of the SU(4)
group with the real spinor representation of Spin(7).

5.2. SEVEN DIMENSIONS: FROM CY4 TO CY3 × S1

In [4], the case of writing a BRSTQFT for a G2 manifold was directly done by starting
from the topological action ∫

M7

d7xcijkDiϕFjk (5.18)

where cijk stand for the G2-invariant tensor made of octonionic structure coefficients, and
ϕ is a Higgs field. The BRST quantization of this topological term yields a twisted version
of the dimensional reduction to seven dimensions of the D=8 super Yang–Mills action on
a manifold with Spin(7) or SU(4) holonomy. Basically, the topological gauge functions
are the generalization of Bogolmony equations in 7 dimensions, as shown in [4].

G2 manifolds of the kind Σ6 × S1, where Σ6 is a Calabi–Yau 3-fold, are of special
interest both for mathematical [15] and physical [12] applications. A topological theory
for such manifolds can be obtained by considering the dimensional reduction of the model



34 LAURENT BAULIEU

discussed in the previous section, for Calabi–Yau four–fold, although we will shortly give
the classical 7-dimensional action that one can directly quantize on such manifolds.

Starting from the ATQFT for CY4, one can set the fourth component of the gauge
connection to A4̄ = A7−iL, where 7 is the direction along the circle S1 and L a real scalar
field. (L will shortly have a special interpretation in seven dimensions.) Moreover, the
dimensional reduction impose to set i(∂4 − ∂4̄)AM̄ = ∂8AM̄ = 0 for any M̄ = 1̄, . . . , 4̄.
Then one gets from the classical action (5.1) the following action

S =
∫
Σ6×S1

√
g d7x Tr

[
2εm̄n̄p̄(Bm̄n̄Fp̄4̄ + Bm̄Fn̄p̄)

]
(5.19)

with Fp̄4̄ = Fp̄7 − iDp̄L and Bm̄ = Bm̄4̄. In this section we define the complex three–
form Ω0,3 on Σ6 starting from the (normalized) complex four–form in eight dimensions
as εm̄n̄p̄ = εm̄n̄p̄4̄. We thus consider the following classical action:

Icl(A,B0,2) =
∫
M7

Ω3,0 ∧ Tr(B ∧ F ) (5.20)

Here the coordinates on the manifold are zm, zm̄ for Σ6 and the periodic real coordinate
x7 for the circle. The only components of the 2-form that have a relevant propagation are
Bm̄n̄, Bm̄7.

The covariant quantization of Bm̄n̄, Bm̄(= Bm̄7) and A requires seven topological
antighosts (κm̄n̄, κm̄, κ). Modulo the ordinary gauge symmetry, we have indeed seven
freedoms for the classical action (5.19) associated to the topological ghosts (χm̄, χ) for
the fields (Bm̄n̄, Bm̄) and the ghost Ψm for the field Am. The relevant invariance is
Bm̄n̄ ∼ Bm̄n̄ + D[m̄χn], Bm̄ ∼ Bm̄ + Dmχ Am ∼ Am + Ψm, Am̄ ∼ Am̄, A7 ∼ A7,
modulo ordinary gauge transformations. Moreover, in the BRST complex for the field B
it will appear also three commuting scalar ghost of ghosts (Φ, L, Φ̄), for the ”gauge sym-
metries” of the topological ghosts and antighosts of B2. All these fields are conveniently
displayed as elements of the following pyramidal diagram:

From the point of view of the dimensional reduction of the CY4 theory, it is interesting
to observe that the medium ghost of ghost L of the B field can be identified with the
component A8 of the eight dimensional gauge field. The BRST transformations of the
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fields can be read from the following Batalin–Vilkoviski action :

S =
∫
Σ6×S1

√
g d7x Tr

[
2εm̄n̄p̄(Bm̄n̄Fp̄4̄ + Bm̄Fn̄p̄)

+∗Bm̄n̄(D[m̄χn̄] − [c,Bm̄n̄] + 1
2εm̄n̄p̄[∗Bp̄,Φ])

+∗Bm̄(2D[m̄χ7] − 2[c,Bm̄] + 1
2εm̄n̄p̄[∗Bn̄p̄,Φ])

+∗χm̄(Dm̄Φ− [c, χm̄]) +∗ χ(D4̄Φ− [c, χ])
+∗Am(Ψm + Dm̄c) +∗ Am̄Dm̄c +∗ A7D7c−∗ Ψm[c,Ψm]
+∗c(− 1

2 [c, c]) +∗ Φ̄η̄ +∗ Lη

+∗κm̄n̄bm̄n̄ + 2∗κm̄bm̄ +∗ κb
]

(5.21)

This action is actually the dimensional reduction of action (5.3). However, the interpre-
tation of the ghost of ghost system is quite different. Notice that the vectorial part of the
BRST transformation for the field Bm̄ is

δBm̄ = Dm̄χ−D4̄χm̄ = Dm̄χ−D7χm̄ (5.22)

The variation of the action due to the first term in (5.22) simply vanishes after inte-
gration by parts because of the identity (4.3). In the context of the dimensional reduc-
tion, this identity can be read as the M̄ = 4̄ component of the eight–dimensional one
εM̄N̄P̄ Q̄DM̄FN̄Q̄ = 0. The variation associated to the last term in (5.22), together with
that coming from the variation of the field Bm̄n̄, QBm̄n̄ = D[m̄χn̄], gives after integration
by parts the other three components M̄ = 1̄, 2̄, 3̄ of the above eight–dimensional identity.
The topological freedom of the classical action (5.19) can be fixed by choosing seven
independent gauge functions. The first six can be directly obtained from the dimensional
reduction of (5.4)

Bm̄n̄ = 1
2 (Fm̄n̄ − εm̄n̄p̄F

p̄4̄)
Bm̄ = 1

2 (Fn̄4̄ − 1
2εn̄p̄q̄F

p̄q̄)
= 1

2 (Fn̄7 − iDn̄L− 1
2εn̄p̄q̄F

p̄q̄) (5.23)

while the seventh one corresponds to the imaginary part of the complex gauge–fixing
condition (5.6)

1
2Jmn̄Fmn̄ + D7L = 0 (5.24)

Notice in fact that the reduction on a manifold of the kind Σ6 × S1 breaks the complex
group of gauge invariance of the eight–dimensional action (5.1) to the unitary group. The
residual gauge invariance under this group can be fixed by the ordinary transversality
condition ∂m̄Am̄ + ∂mAm + ∂7A7 = 0. The gauge–fixing fermion corresponding to the
conditions (5.23) and (5.24) is

Z = κm̄n̄
[
Bm̄n̄ − 1

2

(
Fm̄n̄ − εm̄n̄p̄(F p̄7 + iDp̄L)

)]
+κm̄

(
Bm̄ − 3

2
(Fn̄7 − iDn̄L− 1

2εn̄p̄q̄F
p̄q̄)

)
+κ

(
2(Jm̄nFm̄n + D7L)− b

)
+Φ̄(Dm̄χm̄ + D7χ) (5.25)
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The bosonic part of the gauge–fixed action, which can be obtained as usual by using the
BV equation (3.12) and enforcing the gauge conditions (5.23) and (5.24) by integration
on the Lagrangian multipliers, reads

Sg.f. =
∫
M7

d7x
√

g Tr
(
−3

2
F m̄n̄Fm̄n̄ + |Jmn̄Fmn̄|2 − 1

2F m̄7Fm̄7

+Φ̄(Dm̄Dm̄ + D7D7)Φ + L(Dm̄Dm̄ + D7D7)L
)

(5.26)

and can be identified with the bosonic part of the seven dimensional Super Yang–Mills on
M7 = Σ6 × S1.

Concerning the fermionic sector, we have 8 topological ghosts, Ψm̄, χm̄, χ and η, and
8 topological antighosts κm̄n̄, κm̄, κ and η̄. The mapping with spinors can be obtained
from the dimensional reduction of the eight–dimensional mapping (5.13) and (5.14). After
the dimensional reduction to Σ6 × S1, the two covariantly–constant eight–dimensional
chiral spinors (ζ1, ζ2) are identified with the unique covariantly constant Majorana spinor
ξ of the Calabi–Yau three–fold Σ6. On the other side, the eight dimensional spinor λ
yields two seven dimensional Majorana spinors (λ1, λ2). This results in the mapping

Ψm → ξΓmλ1 , η → ξΓ7λ1

χm̄ → εmnpξΓnpλ1 , χ→ εmnpξΓmnpλ1 (5.27)

for the topological ghosts and

κmn → ξΓmnλ2 , κm → ξΓm7λ2

κ → ξλ2 , η̄ → εmnpΓmnp7λ2 (5.28)

for the topological antighosts. By this mapping we can identify the topological action
(5.19) gauge fixed with the conditions (5.23) and (5.24) as the twisted version of N = 2
seven dimensional Super Yang–Mills6. The observables of the topological model can be
identified with the dimensional reduction of the eight-dimensional cocycles.

5.3. MANIFOLDS WITH SU(4) GROUP STRUCTURE AND SELF–DUAL
YANG–MILLS IN EIGHT–DIMENSIONS

On a Kähler manifold with a SU(4) group structure we can choose B4,2 = J ∧ J ∧B+
2,0,

where J is as usual the Kähler (1, 1) form. Here the 2-form B+
2,0 is self dual in the indices

[mn]. Self duality is defined from a SU(4) invariant 4-form Ω4,0, which is globally well
defined, but not necessarily closed. It counts for 3 degrees of freedom, according to the
SU(4) independent decomposition of a 2-form in 8 dimensions:

28 = 6⊕ 6̄⊕ 15⊕ 1 (5.29)

and a further decomposition 6 as 6 = 3⊕ 3, using the εmnpq tensor.

6As discussed for the four dimensional case, in order to recover the Yukawa couplings and the
quartic term in the potential [Φ̄, Φ]2 typical of the N = 2 SYM one should slightly modify the
gauge–fixing fermion (5.25).
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The novelty of this case is that neither Kähler (1, 1)-form nor Ω4,0 are necessarily
closed. Both the forms can also be rewritten in terms of spinors, which correspondingly
are not covariantly constant with respect to the usual spin connection, but only with re-
spect to a modified connection including torsion terms. The corresponding classical action
is a generalisation of that in (3.3):

Ik−BF (A,B+
2,0, B

+
0,2) =

∫
M8

J ∧ J ∧ Tr(B+
2,0 ∧ F0,2) (5.30)

The symmetries of this action are

QAm = Ψm QAm̄ = Dm̄c

QB+
mn = −[c,B+

mn] , QBm̄n̄ + =
(
D[m̄Ψn̄]

)+ − [c,B+
m̄n̄] + [∗Bmn +,Φ]

QΨm = 0 , QΨm̄ = Dn̄Φ− [c,Ψn̄]
QΦ = −[c,Φ] , Qc = − 1

2 [c, c] (5.31)

The quantization of this action can be worked out using the BV formalism, and is very
similar to that already discussed in [4].

We have 8 freedoms for gauge-fixing the system (B+
2,0, B

+
0,2, A1,0, A0,1). Indeed, Ψm,

Ψm̄ and c have respectively 4,4 and 1 components, but Ψm̄ has a ghost of ghost symmetry
with ghost of ghost Φ, so it only counts for 3=4-1 freedoms. We can choose the following
7 gauge–fixing conditions in the gauge covariant sector:

B+
mn = εmnlpm̄n̄l̄p̄F

m̄n̄+J ll̄Jpp̄ (5.32)

Bm̄n̄+ = 0
Jmn̄Fmn̄ = 0

plus the ordinary transversality condition for the gauge field, (∂mAm +∂m̄Am̄ = 0). The
transformation law of B+

mn implies that a gauge fixing for Ψm̄ must be also done, with a
gauge function :

Dm̄Ψm̄ = 0 (5.33)

The Q-invariant gauge fixing of the action with these functions is standard, and reproduces
the action as in [4], that is the twisted form of the eight–dimensional Super Yang–Mills
theory. The classical action (5.30) can be considered as an eight–dimensional generaliza-
tion of the self–dual Yang–Mills in four dimensions, in particular of its realisation studied
in [22]. We should notice that we are at the extreme point of the definition of an ATQFT.
The action is the sum of a d-closed term and a Q-exact term. Thus, there is a ring of
observables defined from the cohomology of the BRST operator. However, the classical
action is actually completely dependent of the metrics of the manifold, since it depends
on both the Kähler form and the complex form at the same time.
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91191 Gif-sur-Yvette, France

Abstract. These lecture notes on 2D growth processes are divided in two parts. The first
part is a non-technical introduction to stochastic Loewner evolutions (SLEs). Their rela-
tionship with 2D critical interfaces is illustrated using numerical simulations. Schramm’s
argument mapping conformally invariant interfaces to SLEs is explained. The second part
is a more detailed introduction to the mathematically challenging problems of 2D growth
processes such as Laplacian growth, diffusion limited aggregation (DLA), etc. Their de-
scription in terms of dynamical conformal maps, with discrete or continuous time evolu-
tion, is recalled. We end with a conjecture based on possible dendritic anomalies which,
if true, would imply that the Hele-Shaw problem and DLA are in different universality
classes.

Growth phenomena are ubiquitous in the physical world at many scales, from crystals
to plants to dunes and larger. They can be studied in many frameworks, deterministic of
probabilistic, in discrete or continuous space and time. Understanding growth is usually
a very difficult task. This is true even in two dimensions, the case we concentrate on in
these notes.

Yet two dimensions is a highly favorable situation because it allows to make use of
the power of complex analysis in one variable. In many interesting cases, the growing
object in two dimensions can be seen as a domain, i.e. a contractible open subset of the
Riemann sphere (the complex plane with a point at infinity added). A deep theorem of
Riemann asserts that such a domain, whatever complicated and fancy, is conformally
equivalent to a simple reference domain, which is usually taken as the upper-half plane
or the unit disk. This conformal equivalence is unique once an appropriate normalization,
which may depend on the growth problem at hand, has been chosen. Cauchy’s theorem
allows to write down an integral representation for the conformal map as an integral along
the boundary of the reference domain, involving a density. This density is time dependent.
Then the time derivative of the conformal map has an analogous representation and a nice
way to specify the growth rule is often directly on this density. This leads to the concept
of Loewner chains, which is the central theme of these notes. We shall illustrate Loewner
chains in several situations.
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Our aim is to give a pedagogical introduction to a beautiful subject. We wanted to
show that it leads to many basic mathematical structures whose appearance in the growth
context is not so easy to foresee, like Brownian motion, integrable systems and anomalies
to mention just a few. We have also tried to stress that some growth processes have rules
which are easy to simulate on the computer. A few minutes of CPU are enough to get
an idea of the shape of the growing patterns, to be convinced that something interesting
and non trivial is going on, and even sometimes to get an idea of fractal dimensions.
This is of course not to be compared with serious large scale simulations, but it is a
good illustration of the big contrast between simple rules, complex patterns and involved
mathematical structures. However, other growth models, and among those some have
been conjectured to be equivalent to simple ones, have resisted until recently to precise
numerical calculations due to instabilities.

To avoid any confusion, let us stress that being able to describe a growth process
using tools from complex analysis and conformal geometry does not mean that the growth
process itself is conformally invariant at all. Conformal invariance of the growth process
itself puts rather drastic conditions on the density that appears in the Loewner chain.

This is illustrated by the first part of these notes, which deals with conformally invari-
ant interfaces and their relation to stochastic Loewner evolutions. This part is an elabora-
tion of the the main points developed during the lectures.

The second part is an introduction to a larger class of processes describing the growth
of possibly random fractal planar domains and a review of some of their basic properties.
Due to lack of time, this part was not presented during the lectures.

The study of the continuum limit of non-intersecting curves on the lattice has been
a subject of lasting interest both in mathematics and in physics. A famous example is
given by self-avoiding random walks. The motivation comes from combinatorics, but also
from statistical mechanics. Two dimensions is most interesting because a non-intersecting
curve is the boundary between two domains and can very often be interpreted as an inter-
face separating two coexisting phases.

At a critical point and for short range interactions, such interfaces are expected to be
conformally invariant. The argument for that was given two decades ago in the seminal
paper on conformal field theory [1]. The rough idea is the following. At a critical point,
a system becomes scale invariant. If the interactions on the lattice are short range, the
model is described in the continuum limit by a local field theory and scale invariance
implies that the stress tensor is traceless. In two dimensions this is enough to ensure that
the theory transforms simply –no dynamics is involved, only pure kinematics– when the
domain where it is defined is changed by a conformal transformation.

The local fields are classified by representations of the infinite dimensional Virasoro
algebra and this dictates the way correlation functions transform. This has led to a tremen-
dous accumulation of exact results using conformal field theory (CFT). A situation that
is well under control is that of unitary minimal models. The Hilbert space of the system
splits as a finite sum of representations of the Virasoro algebra, each associated to a (lo-
cal) primary field, and the corresponding correlation functions can be described rather
explicitly. The study of non-local objects like interfaces at criticality has not seen such a
systematic development and only isolated though highly artful results [2, 3, 12] have been
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discovered using conformal field theory techniques.

Non local objects like interfaces are not classified by representations of the Virasoro
algebra but the reasoning that led O. Schramm to the crucial breakthrough [4], i.e. the
definition of stochastic Loewner evolutions (SLEs), rests on a fairly obvious but cleverly
exploited statement of what conformal invariance means for an interface. Surprisingly it
allows to turn this problem into growth problem, something which looks natural only a
posteriori. For some years, probabilistic techniques have been applied to interfaces, lead-
ing to a systematic understanding that was lacking on the CFT side. A sample, surely
biased by our ignorance, can be found in refs.[5, 6, 7, 8, 9]. There is now a satisfactory
understanding of interfaces in the continuum limit. However, from a mathematical view-
point, giving proofs that a discrete interface on the lattice has a conformally invariant limit
remains a hard challenge and only a handful of cases has been settled up to now.

There is now a good explanation of the –initially mysterious– relationship between
SLE and CFT. This was one of the main topics of the lectures. Though this aspect is
mostly due to the work of the present authors ([10], but see also [11]), we have decided
to be very sketchy. The interested reader is referred to the literature.

Stochastic Loewner evolution is a simple but particularly interesting example of
growth process for which the growth is local and continuous so that the resulting set
is a curve without branching. Of course other examples have been studied in connection
with 2d physical systems. The motivations are sometimes very practical. For instance, is
it efficient to put a pump in the center of oil film at the surface of the ocean to fight against
pollution? The answer has to do with the Laplacian growth or Hele-Shaw problem [14].
The names diffusion limited aggregation [15], see Figure (1), and dielectric breakdown
[16] speak for themselves. Various models have been invented, sometimes with less phys-
ical motivation, but in order to find more manageable growth processes. These include
various models of iterated conformal maps [17], etc. See refs.[18] for recent reviews. As
mentioned before, in most cases the shape of the growing domains is encoded in a uni-
formizing conformal map whose evolution describes the evolution of the domain. The
dynamics can be either discrete or continuous in time, it can be either deterministic or
stochastic. But the growth process is always described by a simple generalization of the
Loewner equation called a Loewner chain.

The general understanding of these Loewner chains is still embryonic, in strong con-
trast with the case of Loewner evolutions, which deal with local growth. For many prob-
lems the most basic question are unanswered. For instance, as we shall explain below,
Laplacian growth is at the same time a completely integrable system and an ill-posed
problem because it develops singularities in finite time. Hydrodynamics gives a natural
regularization via the introduction of surface tension. It has been argued for some time
that in the limit of vanishing surface tension one retrieves a model which is in the same
universality class as diffusion limited aggregation. But the experimental and numerical
evidence is inconclusive and there is no consensus. In fact, at the end of these notes we
shall give an argument suggesting that they belong to different universality classes. This is
very conjectural, but as should be clear from this introduction, non-local growth processes
are certainly a source of interesting and challenging problems.
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Figure 1. An example of DLA cluster obtained by iterating conformal maps.

1. Critical interfaces and stochastic processes

The following pedagogical introduction to conformally invariant random curves breaks
in two part. The first is a list of examples of critical interfaces on the lattice and some of
their properties. The second is a presentation of O. Schramm’s derivation of SLE.

In this part the upper-half plane is used as a reference geometry.

1.1. THREE EXAMPLES AND A GENERALITY

Let us start with three examples. Our aim is to explain their definitions, to show a few
samples and, in the first two cases, to give a numerical estimate of the fractal dimension.

The first, loop-erased random walks, belongs to the realm of “pure combinatorics”.
The second, percolation, is at the frontier between pure combinatorics and statistical

mechanics because it arises very naturally as the domain boundary of a statistical mechan-
ics model, but the Boltzmann weights are trivial. It is however a limiting case of a family
of models with non trivial Boltzmann weights and, from that point of view, quantities
relevant for percolation are obtained by exploring an infinitesimal neighborhood around
the trivial Boltzmann weights.

The third example, the Ising model, is deeply rooted in statistical mechanics.
We shall end this section by abstracting a crucial property of interfaces which allows

to make an efficient use of conformal invariance and derive the Markov property for SLEs.

1.1.1. Loop-erased random walks
This example is purely of combinatorial nature. A loop-erased random walk is a random
walk with loops erased along as they appear. More formally, if X0, X1, · · · , Xn is a fi-
nite sequence of abstract objects, we define the associated loop-erased sequence by the
following recursive algorithm.

Until all terms in the sequence are distinct,
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Step 1 Find the couple (l,m) with 0 ≤ l < m such that the terms with indexes from
0 to m− 1 are all distinct but the terms with indexes m and l coincide.

Step 2 Remove the terms with indexes from l + 1 to m, and shift the indexes larger
than m by l −m to get a new sequence.

Let us look at two examples.
For the “month” sequence j, f,m, a,m, j, j, a, s, o, n, d, the first loop is m, a,m, whose
removal leads to j, f,m, j, j, a, s, o, n, d, then j, f,m, j, leading to j, j, a, s, o, n, d, then
j, j leading to j, a, s, o, n, d where all terms are distinct.
For the “reverse month” sequence d, n, o, s, a, j, j,m, a,m, f, j, the first loop is j, j, lead-
ing to d, n, o, s, a, j,m, a,m, f, j, then a, j,m, a leading to d, n, o, s, a,m, f, j.

This shows that the procedure is not “time-reversal” invariant. Moreover, terms that
are within a loop can survive: in the second example m, f , which stands in the j,m, a,m,
f, j loop, survives because the first j is inside the loop a, j,m, a which is removed first.

A loop-erased random walk is when this procedure is applied to a (two dimensional
for our main interest) random walk. This is very easy to simulate. Fig.2 represents a loop-
erased walk of 200 steps. The thin lines build the shadow of the random walk (where
shadow means that we do not keep track of the order and multiplicity of the visits) and
the thick line is the corresponding loop-erased walk. The time asymmetry is clearly visible
and allows to assert with little uncertainty that the walk starts on the left.

Figure 2. A loop-erased random walk with its shadow.

To fit with the general SLE framework, let us restrict to loop-erased random walks in
the upper-half plane. There are a few options for the choice of boundary conditions.
A first choice is to consider reflecting boundary conditions on the real axis for the random
walk.
Another choice is annihilating boundary conditions: if the random walk hits the real axis,
one forgets everything and starts anew at the origin. Why this is a natural boundary con-
dition has to wait until section 1.1.4.

Due to the fact that on a two-dimensional lattice a random walk is recurrent (with
probability one it visits any site infinitely many times), massive rearrangement occur with



46 MICHEL BAUER AND DENIS BERNARD

probability one. This means that if one looks at the loop-erased random walk associated
to a given random walk, it does not have a limit in any sense when the size of the random
walk goes to infinity. Let us illustrate this point. The samples in fig.3 were obtained with
reflecting boundary conditions. It takes 12697 random walk steps to build a loop-erased
walk of length 633, but step 12698 of the random walk closes a long loop, and then the
first occurrence of a loop-erased walk of length 634 is after 34066 random walk steps.
Observe that in the mean time most of the initial steps of the loop-erased walk have been
reorganized.
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Figure 3. On the left: a large loop is about to be created. On the right: the massive rearrangement
to go from 633 to 634 steps.

However, simulations are possible because when the length of the random walk tends
to infinity, so does the maximal length of the corresponding loop-erased walk with prob-
ability one.

Though annihilating boundary conditions lead to remove even more parts of the ran-
dom walk than the reflecting ones, the corresponding process can be arranged (condi-
tioned in probabilistic jargon) to solve the problem of convergence as follows.

Instead of stopping the process when the loop-erased walk has reached a given length,
one can stop it when it reaches a certain altitude, say n, along the y-axis. Whatever the
corresponding random walk has been, the only thing that matters is the last part of it,
connecting the origin to altitude n without returning to altitude 0. Moreover, the first time
the loop-erased walk reaches altitude n is exactly the first time the random walk reaches
altitude n. Now a small miracle happens: if a 1d symmetric random walk is conditioned
to reach altitude n before it hits the origin again, the resulting walk still has the Markov
property. It is a discrete equivalent to the 3d Bessel process (a Bessel process describes
the norm of a Brownian motion, however no knowledge of Bessel processes is needed
here, we just borrow the name). When at site m, 0 < m < n, the probability to go to
m ± 1 is (1 ± 1/m)/2, independently of all previous steps. Observe that there is no n
dependence so that we can forget about n, i.e. let it go to infinity. The discrete 3d Bessel
process is not recurrent and tends to infinity with probability one: for any altitude l there
is with probability one a time after which the discrete 3d Bessel process remains above l
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for ever. Henceforth, we choose to simulate a symmetric simple random walk along the
x axis and the discrete 3d Bessel process along the y-axis and we erase the loops of this
new process. This leads to the convergence of the loop-erased walk and numerically to a
more economical simulation.

Fig.4 is a simulation of about 105 steps, both for reflecting and annihilating boundary
conditions. At first glance, one observes in both cases similar simple (no multiple points)
but irregular curves with possibly fractal behavior.
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Figure 4. A sample of the loop-erased random walk for the two boundary conditions.

To estimate the Hausdorff dimensions in both cases, we have generated samples of
random walks, erased the loops and made the statistics of the number of steps S of the
resulting walks compared to a typical length L (end-to-end distance for reflecting bound-
ary conditions, maximal altitude for annihilating boundary conditions). In both cases,
one observes that S ∝ Lδ and a modest numerical effort (a few hours of CPU) leads
to δ = 1.25 ± .01. This is an indication that the boundary conditions do not change the
universality class.

To get an idea of how small the finite size corrections are, observe fig.5. The altitude
was sampled from 24 to 213. The best fit gives a slope 1.2496 and the first two points
already give 1.2403.

As recalled in the introduction, it is believed on the basis of intuitive arguments that in
two dimensions scale invariance implies conformal invariance, providing there are no long
range interactions. What does this absence of long range interactions mean for loop-erased
random walks? Clearly along the loop-erased walk there are long range correlations, if
only because a loop-erased random walk cannot cross itself. However, the relevant feature
for the intuitive argument is that, in the underlying 2d physical space, interactions are
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Figure 5. The logarithm of the average length of the loop-erased random walk versus logarithm of
the maximum altitude. The numerical results are the circles, the straight line is the linear regression,
the error bars are shown.

indeed short range. At each time step, the increment of the underlying random walk is
independent of the rest of the walk, and the formation of a loop to be removed is known
from data at the present position of the random walk.

From the analytical viewpoint, the loop-erased random walk is one of the few systems
that has been proved to have a conformally invariant distribution in the continuum limit,
the fractal dimension being exactly 5/4. A naive idea to get directly a continuum limit
representation of loop-erased walks would be to remove the loops from a Brownian mo-
tion. This turns out to be impossible due to the proliferation of overlapping loops of small
scale. However, the SLE2 process, to be defined later, gives a direct definition. In fact, it
is the consideration of loop-erased random walks that led Schramm [4] to propose SLE
as a description of interfaces.

1.1.2. Percolation
To define a random interface for percolation, one possibility is to pave the upper-half plane
with regular hexagons. Each one is, independently of the others, occupied or empty with
probability 1/2, with the exception of the ones along the real axis, which are all empty
on the positive real axis and occupied on the negative real axis, see fig.6. Then a continu-
ous interface, starting at the origin and separating occupied and unoccupied hexagons, is
uniquely defined. As before, this defines a simple curve on the lattice.

The percolation interface has an obvious but very remarkable property that singles it
out: locality. Locality means that the percolation interface does not depend on the distri-
bution of occupied and empty sites away from itself. Equivalently, if D is a domain (i.e.
in this discrete setting a connected and simply connected family of hexagons in the upper
half plane) containing the origin, the law of the percolation interface in D before it hits the
boundary of D for the first time is independent of the distribution of occupied/empty sites
outside D. It is the same law as for what one would define as the percolation interface in
D without ever mentioning the world outside D.

This observation makes the percolation interface easy to simulate. Indeed, the con-
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O

Figure 6. The definition of the percolation interface.

struction of a percolation interface proceeds inductively, as shown on the fig.7.

Figure 7. The percolation interface as a growth process.

Fig.8 shows a few samples of increasing size.
The contrast with the previous example is rather striking. Even for small samples,

the percolation interface makes many twists and turns. With the resolution of the figure,
the percolation interface for large samples does not look like a simple curve at all! The
intuitive explanation why this does not occur for loop-erased walks is that if it comes
close to itself, then with large probability a few more steps of the random walk will close
a loop.

Getting an estimate of the fractal dimension of the percolation interface proceeds
along lines similar to the first example. If the number of steps S of the percolation inter-
face is compared to a typical length L one observes that S ∝ Lδ and a modest numerical
effort (a few hours of CPU) leads to δ = 1.75± .01.
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Figure 8. Samples of the percolation interface for increasing sizes.

The percolation interface is also build by applying rules involving only a few nearby
sites, and again it is expected on general non rigorous arguments that its scale invariance
should imply its conformal invariance in the continuum limit.

The percolation process is another one among the few systems that has been proved
to have a conformally invariant distribution in the continuum limit, the fractal dimension
being exactly 7/4. As suggested by numerical simulations, the continuum limit does not
describe simple curves but curves with a dense set of double points, and in fact the –to
be defined later– SLE6 process describes not only the percolation interface but also the
percolation hull [2], which is the complement of the set of points that can be joined to
infinity by a continuous path that does not intersect the percolation interface.

1.1.3. The Ising model
Our next example makes also use of the same pictorial representation: it is the Ising model
on the triangular lattice in the low temperature expansion. The spins are fixed to be up
on the left and down on the right of the origin along the real axis. The energy of a con-
figuration is proportional to the length of the curves separating up and down islands. The
proportionality constant has to be adjusted carefully to lead to a critical system with long
range correlations. This time, making accurate simulations is much more demanding. On
the square lattice, the definition of the interface suffers from ambiguities, but these be-
come less relevant for larger sample sizes.

Although there is no question that the fractal dimension of the Ising interface with
the above boundary conditions is 11/8 and is described by –to be defined later– SLE3,



LOEWNER CHAINS 51

Figure 9. A sample for the critical Ising model. The bottom line, where the spins are frozen –black
on the right, white on the left– is not represented. Courtesy of J. Houdayer.

a mathematical proof that a continuum limit distribution for the interface exists and is
conformally invariant is still out of reach.

We conclude this list of examples with two remarks.
First, the pictorial representation by a gas of non-intersecting curves on the hexagonal

lattice that we used in the second and the third example applies to another family of
models, the O(n) models, to which similar interface considerations would apply.

Second, non branching interfaces, described on the lattice by simple curves, are not
the generic situation. For instance the Q = 3 states Potts model, three different phases
coexist and the physical interfaces have branch points.

1.1.4. A generality
Up to now, we have discussed interfaces in –lattice approximations of– the upper half
plane. Let us note that they make sense for more general domains.

Start with the case of the percolation or of the Ising model. In the plane, take any
connected and simply connected collection of hexagons, split it into an interior and a
connected boundary, and split the boundary in two connected pieces in such a way that
exactly two pairs of adjacent boundary hexagons, marked a and b, carry different colors,
see fig.10. Observe that we allow a cut which would correspond to the beginning of the
interface. Hexagons separated by the cut are not to be counted as neighbors.

Then any coloring of the hexagons in the interior will lead to a well-defined interface.
It will also lead to a well defined energy, and then the question of the distribution of
the interface in such a domain is meaningful. For percolation the energy is independent
of the configuration. For the Ising model, it is proportional to the length of the curves
separating up and down sites. Observe that –as the possible cut separates fixed spins–
counting interactions across the cut or not in the energy just adds a constant to it, so that
it has no influence on probabilities.

For the loop-erased random case, the idea is similar. One takes a simply connected
piece of the square lattice with two points a and b on the boundary, again allowing some
cuts, see fig.11. Consider all walks from a to b that do not touch the boundary except
at a before the first step and at b after the last step and give each such walk of length
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Figure 10. A domain on which percolation and the Ising model can be defined.

b

a

Figure 11. A domain on which loop-erased random walks can be defined.

l a weight 4−l. Observe that this choice is exactly the annihilating boundary condition:
in the half plane geometry, a was the origin and b the point at infinity and, due to the
infinite extension of the boundary, we had to go through a limiting procedure. Then erase
the loops to get a probability distribution for loop-erased random walks from a to b in the
domain. The probability for the simple symmetric random walk to hit the boundary for the
first time at b starting from a can be interpreted as the partition function for loop-erased
walks.

We can now go to the point we want to make, valid for all the above examples. For
any of these, we use P(D,a,b) to denote the probability distribution for the interface γ[ab]

from a to b in D.
Suppose that we fix the beginning γ[ac] of a possible interface in domain D, up to a

certain point c. Then 1) we can consider the conditional distribution for the rest of the
interface and 2) we can remove the beginning of the interface from the domain to create
a new domain and consider the distribution of the interface in this new domain. This is
illustrated on fig.12.

We claim that the distributions defined in 1) and 2) coincide. For reasons to be ex-
plained in a moment, we call this property “locality at the interface”. In equations

P(D,a,b)( . |γ[ac]) = P(D\γ[ac[,c,b)( . ).

It is obvious that these two probabilities are supported on the same set, namely simple
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Figure 12. An illustration of situations 1) and 2) for the case of loop-erased walks. What is the
distribution of the dotted curve in both situations ?

curves along the edges of the lattice, going from c to b in D\γ[ac[. Let us however note that
for loop-erased random walks, annihilating boundary conditions are crucial. Reflecting
boundary conditions clearly do not work, if only because the supports do not coincide in
that case.

For the case of loop-erased random walks, the argument for the equivalence of 1) and
2) goes as follows. Take any random walk (possibly with loops) W0 = a,W1, · · · ,Wl =
b that contributes to an interface γ[ab] which is γ[ac] followed by some γ[cb]. Let m be the
largest index for which the walk visits c. Because the interface has to start with γ[ac], the
walk Wm = c, · · · ,Wl = b cannot cross γ[ac[ again, so it is in fact a walk in D\γ[ac[ from
c to b leading to the interface γ[cb]. The weight for the walk W0 = a,W1, · · · ,Wl = b

is 4−l, i.e. simply the product of weights for the walks W0 = a,W1, · · · ,Wm = c and
Wm = c = a, · · · ,Wl = b. Then a simple manipulation of weights leads directly to the
announced result.

For the case of percolation and the Ising model, in fact more is true: we can view
P(D,a,b) not only as a probability distribution for the interface, but as the full probability
distribution for the colors of the hexagons and still check the identity of 1) and 2). Again,
the supports are the same for 1) and 2), namely any configuration of the colors, except
that the colors on both sides of γ[ac] are fixed. For the case of percolation, the colors
are independent of each other so the identity of 1) and 2) is clear. For the Ising model,
the difference is that the conditional probabilities in 1) take into account the interactions
between the colors along the interface, whereas the probability in 2) does not take into
account the interactions between the spins along the cut left by the removal of the inter-
face. However, as already mentioned above, the corresponding colors are fixed anyway,
so the Boltzmann weights for the configurations that are in the support of 1) or 2) differ
by a multiplicative constant, which disappears when probabilities are computed.

This argument extends immediately to systems with only nearest neighbor interac-
tions. They can be defined on any graph. If any subset of edges is chosen and the con-
figuration at both end of each edge is frozen, it makes no difference for probabilities to
consider the model on a new graph in which the frozen edges have been deleted.

Instead of looking for further generalizations, we argue more heuristically that the
continuum limit for a system with short range interactions should satisfy locality at the
interface. The use of this locality property –which, as should be amply evident, has noth-
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ing to do with conformal invariance– together with the conformal invariance assumption
is at the heart of O. Schramm’s derivation of stochastic Loewner evolutions.

1.2. O. SCHRAMM’S ARGUMENT

We break the argument in several pieces. The heart of the probabilistic derivation estab-
lishes two properties of conformally invariant interfaces:

− the Markov property,
− the stationarity of increments,

see sections 1.2.3, 1.2.2 and 1.2.5. The crucial results needed for the probabilistic part, in
particular the basics of Loewner evolutions, are collected in 1.2.1 and 1.2.4. The last two
subsections are not directly related to the argument. They collect some basic facts on the
fractal properties of SLE interfaces and on the connection with CFT.

1.2.1. Riemann’s theorem and hulls
In this section we collect a few indispensable results used in the rest of the course.

A domain is a non empty connected and simply connected open set strictly included in
the complex plane C. Simple connectedness is a notion of purely topological nature which
in two dimensions asserts essentially that a domain has no holes and is contractible. But
it is a deep theorem of Riemann that two domains are always conformally equivalent, i.e.
there is an invertible holomorphic map between them. For instance, the upper-half plane
H is a domain. It is well known that it has a three dimensional Lie group of conformal
automorphisms, PSL2(R), that also acts on the boundary of H. There is a unique auto-
morphism, possible followed by a transposition, that maps any triple of boundary points
to any other triple of boundary points. By Riemann’s theorem, this is also true for any
other domain, at least if the boundary is not too wild.

Riemann’s theorem is used repeatedly in the rest of this course and is the starting point
of many approaches to growth phenomena in two dimensions.

For later use, we note that one can be a bit more explicit when the domain D differs
only locally from the upper half plane H, that is if K = H \ D is bounded. Such a set
K is called a hull. The real points in the closure of K in C form a compact set which we
call KR. Let f : H → D be a conformal bijection. As the boundary of H is smooth, f
has a continuous extension to R ≡ R ∪ ∞, and f−1(R \ KR) is a non-empty open set
in R with compact complement. We call the complement the cut of f . By the Schwarz
symmetry principle, defining f(z) = f(z̄) for �m z ≤ 0 gives an analytic extension of
f to the whole Riemann sphere minus the cut. Across the cut, f has a purely imaginary
nonnegative discontinuity which we write as a Radon-Nikodym derivative dµf/dx.

One can use the PSL2(R) automorphism group of H to ensure that f is holomorphic
at ∞ and f(w) − w = O(1/w) there. This is called the hydrodynamic normalization. It
involves three conditions, so there is no further freedom left. We shall denote this special
representative by fK, which is uniquely determined by K: any property of fK is an intrinsic
property of K.

Cauchy’s theorem yields

fK(w) = w +
1
2π

∫
R

dµfK
(x)

x− w
, (1.1)
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A quantity that plays an important role in the sequel is

CK ≡ 1
2π

∫
R

dµfK
(x),

a positive (unless K = ∅) number called the capacity of K, which is such that fK(w) =
w−CK/w+O(1/w2) at infinity. The usefulness of capacity stems from its good behavior
under compositions: if K and K

′ are two hulls, K ∪ fK(K′) is a hull and

CK∪fK(K′) = CK + CK′ , (1.2)

as seen by straightforward expansion at infinity of fK ◦ fK′ , the map associated to K ∪
fK(K′). In particular capacity is a continuous increasing function on hulls.

Anticipating a little bit, let us note immediately that giving a dynamical rule for the
evolution of the finite positive measure dµfK

(x) is a good way to define growth processes.

1.2.2. Conformally invariant interfaces
Consider a domain D, with two distinct points on its boundary, which we call a and b.
A simple curve, denoted by γ[ab], from a to b in D is the image of a continuous one-to-
one map γ from the interval [0,+∞] to D ∪ {a, b} such that γ(0) = a, γ(∞) = b and
γ]ab[ ≡ γ(]0,∞[) ⊂ D. Alternatively, a simple curve from a to b is an equivalence class of
such maps under increasing reparametrizations. A point on it has no preferred coordinate
but is has a past and a future. If c ∈ D is an interior point, we use a similar definition for
a simple curve γ[ac] from a to c in D.

Note that, apart from the fact that on the lattice we could use lattice length as a pa-
rameter along the interface, we have just rephrased in the continuum –but with the same
notations– what we did before in a discrete setting.

Our aim is to study conformally invariant probability measures on the set of simple
curves from a to b in D. There is a purely kinematical step, which demands that if h is any
conformal map that sends D to another domain h(D), the measure for (h(D), h(a), h(b))
should be the image by h of the measure for (D, a, b):

P(D,a,b)(γ[ab] ⊂ U) = P(h(D),h(a),h(b))(h(γ[ab]) ⊂ h(U)),

where P(D,a,b)(γ[ab] ⊂ U) denotes the probability for the curve γ[ab] to remain in a subset
U of D. See fig.13.

This condition is natural and it is the one that conformal field theory suggests imme-
diately. Let us note however that a totally different definition of conformal invariance is
understood in the familiar statement “two dimensional Brownian motion is conformally
invariant”.

Observe that we could take any measure for (D, a, b) –well, with the invariance under
the one parameter group of automorphisms that fixes (D, a, b)– and declare that the mea-
sure in h(D) is obtained by definition by the rule above. To make progress, we need to
combine conformal invariance with locality at the interface.

1.2.3. Markov property and stationarity of increments
This short section establishes the most crucial properties of conformally invariant inter-
faces.
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Figure 13. Conformal invariance for change of domain.

Take c ∈ D and let γ[ac] be a simple curve from a to c in D. Observe that D \ γ]ac] is a
domain. To answer the question “if the beginning of the interface is fixed to be γ[ac], what
is the distribution of the rest γ′

[cb] of the interface ?” we apply locality at the interface to
argue that this is exactly the distribution of the interface in D \ γ]ac]. We map this domain
conformally to D via a map hγ sending b to b and c to a, see fig.14.
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Figure 14. Conformal invariance for conditional probabilities.

Conformal invariance implies that the image measure is the original measure in P(D,a,b),
where hγ(γ′

[cb]) is an interface that has forgotten γ[ac]. To summarize :

hγ(γ′
[cb]) is independent of γ[ac] (the Markov property) and has the same distrib-

ution as the original interface itself (stationarity of increments).

1.2.4. Local growth and Loewner evolutions
The Markov and stationarity of increments property make it plain that to understand the
distribution of the full interface, it is enough to understand the distribution of a small, or
even infinitesimal, initial segment, and then glue segments via conformal maps.

This calls for a description by differential equations.
For this purpose, it is very convenient –even if by no means mandatory– to have a nat-

ural parametrization of interfaces. Using conformal invariance, we can restrict ourselves
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to the situation when (D, a, b) = (H, 0,∞). If γ[0∞] is a simple curve from 0 to ∞ in H,
and c a point on it, we know that H \ γ]0c] is a domain, and γ]0c] itself is a hull. We use
capacity as a parametrization and define a time parameter by 2t(c) ≡ Cγ]0c] . The factor
of 2 is just historical. The map t is a continuous increasing function of c varying from 0 to
∞ in R̄ when c moves from 0 to∞ along γ[0∞]. The inverse map t → c(t) is well-defined
and gives a parametrization of the curve. So we introduce an increasing family of hulls
Kt, t ∈ [0,∞[, by Kt = γ]0c(t)] which has capacity 2t. Let ft ≡ fKt

be the conformal
homeomorphism from H to H\Kt normalized to satisfy ft(w) = w−2t/w+O(1/w2) at
infinity. Define gt : H\Kt → H to be the inverse of ft. Then gt(z) = z+2t/z+O(1/z2)
at infinity.

To study the evolution of the family of hulls Kt, fix ε ≥ 0 and consider the hull
Kε,t ≡ gt(Kt+ε \ Kt), which has capacity 2ε by eq.(1.2). Define fε,t ≡ fKε,t

. Then
gt = fε,t◦gt+ε on H\Kt+ε. Using the representation of fKε,t

in terms of its discontinuity
eq.(1.1), we obtain

gt+ε − fε,t ◦ gt+ε = gt+ε − gt =
1
2π

∫
R

dµfε,t
(x)

gt+ε − x

We introduce now the notion of local growth which is crucial for interfaces. When ε is
small, Kε,t is a tiny piece of curve and the support of dµfε,t

is small and becomes a point
when ε goes to 0. Measures supported at a point are δ functions, so there is a point ξt such
that, as a measure, dµfε,t

/dx ∼ 2εδ(x−ξt) as ε → 0+. If Kt is a more general increasing
family of hulls of capacity 2t, we say that the condition of local growth is satisfied if the
above small ε behavior holds. At first sight, it might seem that local growth is only true
for curves, but this is not true. We shall give an example below.

Letting ε → 0+, from the local growth condition, we infer the existence of a real
function ξt such that

dgt

dt
(z) =

2
gt(z)− ξt

. (1.3)

It is useful to look at this equation from a slightly different point of view, taking the
function ξt as the primary data. The solutions of this equation for a given function ξt with
initial condition g0(z) = z is called a Loewner evolution. The image of ξt by g−1

t is the
tip of the curve at time t.

The cases when the local growth condition is not satisfied are called Loewner chains,
see below. Had we used another parametrization of the curve, the 2 in the numerator
would be replaced by a positive function of the parameter along the curve.

Informally, if Kt is a growing curve, we expect that gt+ε(z) − gt(z) describes an
infinitesimal cut. This is confirmed by the explicit solution of eq.(1.3) for the trivial case
ξt ≡ 0, which yields gt(z)2 = z2 + 4t, the branch to be chosen being such that at large
z, gt(z) ∼ z. This describes a growing segment along the imaginary axis. So intuitively,
the simple pole in eq.(1.3) accounts for the existence of a cut and different functions ξt

account for the different shapes of curves.
One can also solve the case when Kt is an arc of circle starting from the origin. It

can be obtained from the trivial solution above by applying appropriate time dependent
PSL2(R) transformations both to gt and z and then by a time change to recover the
capacity parametrization. This is an illuminating exercise that we leave to the reader.
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Take an arc going from 0 to 2R along a circle of radius R. It turns out that when the arc
approaches the real axis to close a half disk, the function ξt has a square root singularity
ξt ∝

√
R2 − 2t. The capacity remains finite and goes to R2 and the map itself has a limit

gR2/2(z) = z+R2/(z+R) which has swallowed the half disk without violating the local
growth condition. One can start the growth process again. Making strings of such maps
with various values of the radii is a simple way to construct growing families of hulls that
are not curves and that nevertheless grow locally. Note that a square root singularity for
ξt is the marginal behavior: if ξt is Hölder of exponent > 1/2, Loewner evolution yields
a simple curve.

1.2.5. Stochastic (or Schramm) Loewner evolutions
If we sample locally growing hulls with a certain distribution, we get an associated
random process ξt. In the case of a conformally invariant distribution, we have estab-
lished two crucial properties: Markov property and stationarity of increments. To finish
Schramm’s argument leading to SLE, what remains is to see the implications of these
properties on the distribution of ξt.

The argument and expressions for the meaning of Markov property and stationarity
of increments involved a map h that mapped the tip of the piece of interface to the initial
marked point a and the final marked point b to itself. The map ht(z) = gt(z) − ξt has
the required property when the domain is the upper-half plane with 0 and ∞ as marked
points. It behaves like ht(z) = z−ξt +2t/z+O(1/z2) at infinity. We infer that for s > t,
ht(Ks \Kt) is independent of Kt′ , t′ ≤ t (Markov property) and is distributed like a hull
of capacity s− t = Cht(Ks\Kt) (stationarity of increments).

The hull determines the corresponding map h, so this can be rephrased as: hs ◦ h−1
t

(which uniformizes ht(Ks \ Kt)) is independent of ht′ , t′ ≤ t, and distributed like an
hs−t. As hs ◦h−1

t = z−(ξs−ξt)+(s− t)/z+O(1/z2) at infinity, the driving parameter
for the process hs ◦ h−1

t is ξs − ξt. To summarize:

the Markov property and stationarity of increments for the interface lead to the
familiar statement for the process ξt: for s > t, ξs−ξt is independent of ξt′ , t′ ≤
t, (Markov property) and distributed like a ξs−t (stationarity of increments).

To conclude, a last physical input is needed: one demands that the interface does not
branch, which means that at two nearby times the growth is at nearby points. This implies
that ξt is a continuous process, in the sense that it has continuous trajectories.

One is now in position to apply a mathematical theorem: a 1d Markov process with
continuous trajectories and stationary increments is proportional to a Brownian motion.
We conclude that there is a real positive number κ such that ξt =

√
κBt for some nor-

malized Brownian motion Bt with covariance E[BsBt] = min(s, t). The same argument
without imposing that the time parametrization is given by the capacity of the hull would
lead to the conclusion that the driving parameter is a continuous martingale, which is
nothing but a Brownian motion after a possibly random time change.

A solution of
dgt

dt
(z) =

2
gt(z)−√κBt

(1.4)

is called a chordal Schramm-Loewner evolution of parameter κ, in short a chordal SLEκ.
The connection of this equation with interfaces relies mainly on conformal invariance.
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But local growth, absence of branches and to a lower level locality at the interface also
play a crucial role.

1.2.6. Miscellanea on SLE
Up to now we have only discussed the situation when the interface goes from 0 to ∞
in the upper half plane, or more generally from one point on the boundary of a domain
to another one. This is called chordal SLE. The argument can be extended easily to two
other situations. The first is for an interface starting at a fixed point on the boundary of a
domain and ending at a fixed point in the bulk. This is called radial SLE. For the second
situation, three points are chosen on the boundary and the interface starts from the first
point and ends at a random point between the two others. This is called dipolar SLE. Just
as the upper-half plane is a convenient geometry for chordal SLE, a semi infinite cylinder
is nice for radial SLE and an infinite strip is nice for dipolar SLE.

For radial SLE on a cylinder of circumference π, the equation reads

dgt

dt
(z) =

2
tan(gt(z)−√κBt)

(1.5)

and for dipolar SLE on a strip of width π/2, one has

dgt

dt
(z) =

2
tanh(gt(z)−√κBt)

(1.6)

The generalization of SLE to Riemann surfaces with moduli is easy for the annulus,
but raises non-trivial problems in general, currently subject of active research.

The set of exact results obtained for SLE forms an impressive body of knowledge.
We shall not mention the ones dealing with the explicit computation of certain crossing
probabilities but we list just a few “pictorial” properties with some comments. They (the
properties and the comments) should be understood with the standard proviso “almost
surely” or “with probability 1”.

We start with a surprisingly difficult result[4, 5, 6, 7].

− Whatever the value of κ, the pre-image of the driving parameter limw→√
κBt

g−1
t (w)

is a continuous curve γt, called the SLE trace. The trace never crosses itself. This
property is crucial if the trace is to be interpreted as a curve separating two phases.

− For κ ∈ [0, 4] the SLE trace is a simple curve. For κ ∈]4, 8[, it has double points. For
κ ∈ [8,∞[, it is space filling.

− The fractal dimension dκ of the trace is 1 + κ/8 for κ ≤ 8 and 2 for κ ≥ 8.

Using the formula for the dimension of the trace and confronting with the numerical sim-
ulations, it is plausible (actually, these are among the few cases for which a mathematical
proof exists) that loop-erased random walks correspond to κ = 2, d = 5/4 and percola-
tion to κ = 6, d = 7/4. This is also compatible with the general shape of the numerical
samples, which indicate that loop-erased random walks indeed lead to simple curves and
that percolation doesn’t.

The hull Kt is by definition H \ g−1
t (H). It has the following properties

− The hull Kt is the complement of the connected component of∞ in H \ γ]0,t].
− For κ ∈ [0, 4], the SLE hull is a simple curve coinciding with the trace. For κ ∈

]4,∞[, the SLE hull has an nonempty connected and relatively dense interior.
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This may seem surprising at first sight. It is the sign that for κ > 4, the drift
√

κBt goes
fast enough for the swallowing procedure to take place, as described in the closing arc
example, but on all scales.

This is summarized by fig.15.
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Figure 15. The phases of SLE.

For the many other properties known about SLE, the reader is invited to read the vast
literature [4, 5, 6, 7, 8, 9].

1.3. SHORT REMARKS ON SLE AND CFT

As already mentioned, it is by no means an easy task to prove that a discrete random curve
converges to an SLE. For geometric models like percolation, loop-erased random walks,
self avoiding walks, it is often easier to compute the appropriate κ using known special
properties of the discrete model that are expected to survive in the continuum limit.

For instance, one can formulate locality in the continuum. Showing that SLEκ has the
locality property only for κ = 6 is a standard computation in stochastic Ito calculus, see
e.g. [9].

For critical statistical mechanics models with non trivial Boltzmann weights, things
are more complicated. The system contains local dynamical degrees of freedom indepen-
dently from the interface and, in the continuum limit, these local degrees of freedom are
expected to be described by a conformal field theory (CFT). The most basic parameter of
a CFT is its central charge c. Computing it (even non rigorously) from the lattice model
can be a challenge comparable to the one of computing κ.

On the other hand, the relation between c and κ can be worked out in general. The
idea is elementary. From a technical viewpoint, it rests on assumptions similar to the ones
needed in O. Schramm’s argument.

In the discrete setting, take O to be any observable. If one computes 〈O〉D\γ]ac]
in

D \ γ]ac], i.e. with part of the interface fixed, and then averages over γ]ac] one retrieves
〈O〉D:

E[〈O〉D\γ]ac]
] = 〈O〉D

where the expectation is the average over γ, see the last reference in [10]. This is a straight-
forward application of the usual rules of statistical mechanics

This basic property, which we call the martingale property because in probabilistic
jargon it would be translated as “〈O〉D\γ]ac]

is a closed martingale for any observable
O” is expected to survive in the continuum limit. In this limit, one has two powerful
tools inherited from conformal invariance at hand, CFT to compute correlators and SLE
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to average over the piece of interface. Doing this for arbitrary values of κ and c means
mixing the degrees of freedom from two different models and there is a priori no reason
for the martingale property to hold. An explicit computation shows that it holds only if

2κc = (6− κ)(3κ− 8).

The martingale property also gives information on the operator content of the CFT. As the
discrete statistical mechanics examples show, there is a change in boundary conditions at
the tip of the interface. The martingale property allows to identify this boundary changing
condition operator as a primary field of weight h = (6−κ)/(2κ) degenerate at level two.

This approach also exhibits a family of martingales which are at the heart of many
probabilistic computations. For instance, it gives a systematic way to interpret proba-
bilities for SLE events as correlation functions of a CFT, and shows how the changes of
behavior of the trace at κ = 4, 8 are related to operator product expansions. The interested
reader is refereed to [10].

2. Loewner chains

This section deals with more general 2D growth processes. Although, they do not fulfill
the local growth and conformal invariance properties of SLEs, they are nevertheless de-
scribed by dynamical conformal maps. We first present systems whose conformal maps
have a time continuous evolution and give examples. We then go on by presenting a dis-
crete version thereof in terms of iterated conformal maps. We explain integrability of
Laplacian growth. The last part is a discussion concerning the limit of small ultraviolet
cutoff and the consequences of possible dendritic anomalies.

2.1. CONTINUOUS LOEWNER CHAINS

In this part, the exterior of the unit disk is used as the reference geometry.

2.1.1. Radial Loewner chains
Let Kt be a family of growing closed planar domains with the topology of a disk. Let
Ot ≡ C \ Kt be their complements in the complex plane. See Figure (16). To fix part of
translation invariance we assume that the origin belongs to Kt and the point at infinity to
Ot.

Loewner chains describe the evolution of family of conformal maps ft uniformizing
D = {w ∈ C; |w| > 1} onto Ot. It thus describes the evolution of the physical domains
Ot. We normalize the maps ft : D → Ot by demanding that they fix the point at infinity,
ft(∞) = ∞ and that f ′

t(∞) > 0. With t parameterizing time, Loewner equation reads:

∂

∂t
ft(w) = wf ′

t(w)
∮

du

2iπu

(w + u

w − u

)
ρt(u) (2.1)

The integration is over the unit circle {u ∈ C, |u| = 1}. The Loewner density ρt(u) codes
for the time evolution. It may depends on the map ft in which case the growth process in
non-linear. For the inverse maps gt ≡ f−1

t : Ot → D, Loewner equation reads:

∂

∂t
gt(z) = −gt(z)

∮
du

2iπu

(gt(z) + u

gt(z)− u

)
ρt(u) (2.2)
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The behavior of ft at infinity fixes a scale since at infinity, ft(w) � Rtw + O(1)
where Rt > 0, with the dimension of a [length], is called the conformal radius of
Kt viewed from infinity. Rt may be used to analyze scaling behaviors, since Kobe 1/4-
theorem (see e.g. [13]) ensures that Rt scales as the size of the domain. In particular, the
(fractal) dimension D of the domains Kt may be estimated by comparing their area At

with their linear size measured by Rt: At � RD
t for large t – the proportionality factor

contains a cutoff dependence which restores naive dimensional analysis.

tg
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Figure 16. Uniformizing maps intertwining the ‘physical’ z-plane and the ‘mathematical’ w-plane.

2.1.2. The boundary curves
The boundary curve Γt ≡ ∂Ot is the image of the unit circle by ft. We may parameterize
the boundary points by γt;α = ft(u) with u = eiα. The Loewner equation codes for the
evolution of the shape of Ot and thus for the normal velocity of the boundary points. Only
the normal velocity is relevant as the tangent velocity is parameterization dependent. The
tangent to the curve is τ = iuf ′

t(u)/|f ′
t(u)| and the outward normal is n = −iτ so that

the normal velocity at γt is vn = �e[n̄ ∂tft(u)], or

vn = |f ′
t(u)| �e[∂tft(u)/uf ′

t(u)].

The r.h.s. is determined by the Loewner equation (2.1) because this equation may be
viewed as providing the solution of a boundary value problem. Indeed, recall that for

ĥ(u) a real function on the unit circle, h(w) =
∮

du
2iπu

(
w+u
w−u

)
ĥ(u) is the unique function

analytic outside the unit disk whose real part on the unit circle is ĥ, i.e. �e[h(u) ] = ĥ(u).
Thus, since ∂tft(w)/wf ′

t(w) is analytic in D, the Loewner equation (2.1) is equivalent to:

vn = |f ′
t(u)| ρt(u)

or more explicitly 1:

(∂αγt;α) (∂tγt;α)− (∂αγt;α) (∂tγt;α) = 2i |f ′
t(u)|2 ρt(u) (2.3)

1For SLE this equation has to be modified according to Itô calculus
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Hence, the evolution of the domain may be encoded either in the evolution law for
its uniformizing conformal map as in eq.(2.1) or in the boundary normal velocity as in
eq.(2.3). The two equations are equivalent.

2.2. EXAMPLES

2.2.1. Stochastic Loewner evolution (SLE)
From this point of view, SLE is singular as it corresponds to a Dirac measure δUt

(u)
centered at the position of a Brownian motion on the unit circle. The locality of this
measure reflects the fact that SLE describes growing curves. Continuity of the Brownian
motion reflects the absence of branching in the SLE growths. To make contact with the
previous sections, the reader should check that eq.(1.5) becomes of the form (2.2) after
the cylinder has been mapped to the outside of the unit disk.

2.2.2. Laplacian growth (LG)
This is a process in which the growth of the domain is governed by the solution of Laplace
equation, i.e. by an harmonic function, in the exterior of the domain with appropriate
boundary conditions. It originates from the hydrodynamical Hele-Shaw problem to be
described below.

To be precise, let P be the real solution of Laplace equation, ∇2P = 0, in Ot with
the boundary behavior P = − log |z| + · · · at infinity and P = 0 on the boundary
curve Γt = ∂Ot. The time evolution of the domain is then defined by demanding that
the normal velocity of points on the boundary curve be equal to minus the gradient of P :
vn = −(∇P )n.

This problem may be written as a Loewner chain since, as is well known, Laplace
equation is solved via complex analysis by writing P as the real part of an analytic func-
tion. One first solves Laplace equation in the complement of the unit disk with the appro-
priate boundary conditions and then transports it back to the physical domain Ot using
the map ft. This gives:

P = −�e Φt with Φt(z) = log gt(z)

The evolution equation for the map ft is derived using that the boundary normal ve-
locity is vn = −(∇P )n. The above expression for P gives:

vn = −(∇P )n = |f ′
t(u)|−1

at point γt = ft(u) on the boundary curve. As explained in the previous section, this is
enough to determine ∂tft(w) for any |w| > 1 since this data specifies the real part on the
unit circle of the analytic function ∂tft(w)/wf ′

t(w) on the complement of the unit disk.
The result is:

∂tft(w) = wf ′
t(w)

∮
|u|=1

du

2iπu |f ′
t(u)|2

(w + u

w − u

)
(2.4)

It is a Loewner chain with ρt(u) = |f ′
t(u)|−2.

As we shall see below, Laplacian growth is an integrable system, which may be solved
exactly, but it is ill-posed as the domain develops singularities (cusps y2 � x3) in finite
time. It thus needs to be regularized. There exist different ways of regularizing it.
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One may also formulate Laplacian growth using a language borrowed from electro-
statics by imagining that the inner domain is a perfect conductor. Then V = �eΦt is
the electric potential which vanishes on the conductor but with a charge at infinity. The
electric field �E = �∇V is Ē ≡ Ex− iEy = ∂z Φt. Its normal component En = |f ′

t(u)|−1

is proportional to the surface charge density.

2.2.3. The Hele-Shaw problem (HS)
This provides a hydrodynamic regularization of Laplacian growth. The differences with
Laplacian growth are in the boundary conditions which now involve a term proportional
to the surface tension. It may be formulated as follows [14].

One imagines that the domain Kt is filled with a non viscous fluid, say air, and the
domain Ot with a viscous one, say oil. Air is supposed to be injected at the origin and
there is an oil drain at infinity. The pressure in the air domain Kt is constant and set to zero
by convention. In Ot the pressure satisfies the Laplace equation∇2P = 0 with boundary
behavior P = −φ∞ log |z| + · · · at infinity reflecting the presence of the oil drain. The
boundary conditions on the boundary curve are now P = −σκt with σ the surface tension
and κt the curvature of the boundary curve 2. The fluid velocity in the oil domain Ot

is �v = −�∇P . Laplace equation for P is just a consequence of incompressibility. The
evolution of the shape of the domain is specified by imposing that this relation holds on
the boundary so that the boundary normal velocity is vn = −(∇P )n as in Laplacian
growth.

Compared to Laplacian growth, the only modification is the boundary condition on
the boundary curve. This term prevents the formation of cusps with infinite curvature
singularities. The parameter φ∞ sets the scale of the velocity at infinity. In the following
we set φ∞ = 1. By dimensional analysis this implies that [time] scales as [length2]
and the surface tension σ has dimension of a [length]. It plays the role of an ultraviolet
cut-off.

A standard procedure [14] to solve the equations for the Hele-Shaw problem is by
first determining the pressure using complex analysis and then computing the boundary
normal velocity. By Laplace equation, the pressure is the real part of an analytic function,
P = −�eΦt. The complex velocity v = vx + ivy is v̄ = ∂zΦt. At infinity Φt(z) �
log z + · · · and v̄ � 1/z + · · · . The boundary conditions on P demand that

(Φt ◦ ft)(w) = log w + σϑt(w)

where ϑt(w) is analytic in D with boundary value �e[ϑt(u)] = κt(ft(u)) with κt the
curvature. Explicitly

ϑt(w) =
∮

du

2iπu

(w + u

w − u

)
κt(ft(u))

The evolution of ft is then found by evaluating the boundary normal velocity vn =
�e(∇Φ)n at point γt = ft(u):

vn = �e[n∂zΦt ] = |f ′
t(u)|−1 �e[1 + σu∂uθt(u)]

2The curvature is defined by κ ≡ −�n.∂s�τ/�τ2 = �m[τ̄∂sτ/|τ |3] with �τ the tangent and �n the

normal vectors. An alternative formula is: κ = |f ′
t(u)|−1�e[1 +

uf ′′
t (u)

f ′
t(u)

]. For a disk of radius R,

the curvature is +1/R.
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As above, this determines uniquely ∂tft(u) and it leads to a Loewner chain (2.1) with
density:

ρt(u) = |f ′
t(u)|−2

(
1 + σεt(u)

)
, εt(u) = �e[u∂uϑt(u)] (2.5)

The difference with Laplacian growth is in the extra term proportional to σ. It is highly
non-linear and non-local. This problem is believed to be well defined at all times for σ
positive.

2.2.4. Other regularized Laplacian growth (rLG)
These regularizations amount to introduce an UV cutoff δ in the physical space by eval-
uating |f ′

t | at a finite distance away from ∂Ot. A possible choice [20] is ρt(u)1/2 =
δ−1inf{ε : dist[ft(u + εu); ∂Ot] = δ}. An estimation gives ρt(u) � |f ′

t(u + ε̂uu)|−2

where ε̂u goes to 0 with δ, so that it naively approaches |f ′
t(u)|−2 as δ → 0.

Another possible, but less physical, regularization consists in introducing an UV cut-
off ν in the mathematical space so that ρt(u) = |f ′

t(u + νu)|−2.

2.2.5. Dielectric breakdown and generalizations
A larger class of problems generalizing Laplacian growth have been introduced. Their
Loewner measures are as in Laplacian growth but with a different exponent:

ρt(u) = |f ′
t(u)|−α , 0 ≤ α ≤ 2.

Using an electrostatic interpretation of the harmonic potential, one usually refers to the
case α = 1 as a model of dielectric breakdown because the measure is then proportional to
the local electric field En = |f ′

t(u)|−1. This is a phenomenological description. Just as the
naive Laplacian growth these models are certainly ill-posed. They also require ultraviolet
regularizations, one of which is described below using iterated conformal maps.

2.3. CUSP SINGULARITIES IN LG

The naive LG problem, without regularization, corresponds to the Loewner density ρt(u) =
|f ′

t(u)|−2. The occurrence of singularities may be grasped by looking for the evolution of
domains with a Zn symmetry uniformized by the maps

ft(w) = Rtw(1 +
βt

n− 1
w−n)

for some n > 2 and with |βt| ≤ 1. This form of conformal maps is preserved by the
dynamics. The conformal radius Rt and the coefficients βt evolve with time according
to ∂tR

2
t = 2/(1 − β2

t ) and βt = (Rt/Rc)n−2 with Rc some integration constant. The
singularity appears when βt touches the unit circle which arises at a finite time tc. At that
time the conformal radius is Rc.

At tc the boundary curve Γtc
has cusp singularities of the generic local form

�c (δy)2 � (δx)3

with �c a characteristic local length scale. In the present simple case �c � Rc. At time t ↗
tc, the dynamics is regular in the dimensionless parameter �−1

c

√
tc − t. The maximum
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curvature of the boundary curve scales as κmax � �c/(tc − t) near tc and it is localized
at a distance

√
tc − t away from the would be cusp tip. See Figure (17).

t tc

cc x  =  l c
3l  /(t  −t)=κ

<t c

y
2

Figure 17. Cups formation in Laplacian growth.

This behavior is quite generic. As we shall see, conformal maps ft(w) such that their
derivatives are polynomials in w−1 are stable by the Laplacian growth dynamics. By
construction, their zeroes are localized inside the unit disk. A singularity in the boundary
curve occurs if one of these zeroes converges to the unit circle. The singularity is then
a cusp �c y2 � x3 as can be seen by expanding locally the conformal map around its
singular point.

Once regularized with an explicit ultraviolet cut-off, the processes are believed to be
well defined for all time. The effect of the regularization procedure on the domain proper-
ties is presently unclear. The domain structures may a priori depend on how the problem
has been regularized. In the hydrodynamic regularization –the Hele-Shaw problem– the
cusp production is expected to be replaced by unlimited ramifications leading to dendritic
growth.

In the regularized model, the curvature of Γt is expected to remain finite at all time.
Using scaling theory, a crude estimate of its maximum around the would be singularities
may be obtained by interchanging the short distance scale

√
(tc − t) near the singularity

in the unregularized theory with the UV cutoff of the regularized theory. In the hydrody-
namic regularization this gives κmax � �c/σ2 as σ → 0.

2.4. DISCRETE LOEWNER CHAINS

2.4.1. DLA
DLA stands for diffusion limited aggregation [15]. It refers to processes in which the
domains grow by aggregating diffusing particles. Namely, one imagines building up a
domain by clustering particles one by one. These particles are released from the point at
infinity, or uniformly from a large circle around infinity, and diffuse as random walkers.
They will eventually hit the domain and the first time this happens they stick to it. By
convention, time is incremented by unity each time a particle is added to the domain. Thus
at each time step the area of the domain is increased by the physical size of the particle.
The position at which the particle is added depends on the probability for a random walker
to visit the boundary for the first time at this position.

In a discrete approach one may imagine that the particles are tiny squares whose
centers move on a square lattice whose edge lengths equal that of the particles, so that
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particles fill the lattice when they are glued together. The center of a particle moves as a
random walker on the square lattice. The probability Q(x) that a particle visits a given site
x of the lattice satisfies the lattice version of the Laplace equation ∇2Q = 0. It vanishes
on the boundary of the domain, i.e. Q = 0 on the boundary, because the probability for a
particle to visit a point of the lattice already occupied, i.e. a point of the growing cluster,
is zero. The local speed at which the domain is growing is proportional to the probability
for a site next to the interface but on the outer domain to be visited. This probability is
proportional to the discrete normal gradient of Q, since the visiting probability vanishes
on the interface. So the local speed is vn = (∇Q)n. It is not so easy to make an unbiased
simulation of DLA on the lattice. One of the reasons is that on the lattice there is no such
simple boundary as a circle, for which the hitting distribution from infinity is uniform. The
hitting distribution on the boundary of a square is not such a simple function. Another
reason is that despite the fact that the symmetric random walk is recurrent is 2d, each
walk takes many steps to glue to the growing domain. The typical time to generate a
single sample of reasonable size with an acceptable bias is comparable to the time it takes
to make enough statistics on loop-erased random walks or percolation to get the scaling
exponent with two significant digits. Still this is a modest time, but it is enough to reveal
the intricacy of the patterns that are formed. Fig.18 is such a sample. The similarity with
the sample in fig.1, obtained by iteration of conformal maps, is striking. But a quantitative
comparison of the two models is well out of analytic control and belongs to the realm of
extensive simulations.

Figure 18. A DLA sample.

DLA provides a discrete analogue of Laplacian growth. The particle size plays the
role of an ultraviolet cutoff. Since DLA only assumes that the growth is governed by the
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diffusion of elementary patterns, DLA has been applied to a large variety of aggregation
or deposition phenomena, see eg.[18].

During this process the clustering domain gets ramified and develops branches and
fjords of various scales. The probability for a particle to stick on the cluster is much
higher on the tip of the branches than deep inside the fjords. This property, relevant at all
scales, is responsible for the fractal structure of the DLA clusters.

Since its original presentation [15], DLA has been studied numerically quite ex-
tensively. There is now a consensus that the fractal dimension of 2d DLA clusters is
Ddla � 1.71. There is actually a debate on whether this dimension is geometry dependent
but a recent study [19] seems to indicate that DLA clusters in a radial geometry and a
channel geometry have identical fractal dimension. To add a new particle to the growing
domain, a random walk has to wander around and the position at which it finally sticks is
influenced by the whole domain. To rephrase this, for each new particle one has to solve
the outer Laplace equation, a non-local problem, to know the sticking probability distrib-
ution. This is a typical example when scale invariance is not expected to imply conformal
invariance.

2.4.2. Iterated conformal maps
As proposed in [17], an alternative way to mimic the gluing of elementary particles con-
sists in composing elementary conformal maps, each of which corresponds to adding an
elementary particle to the domain.

One starts with an elementary map corresponding to the gluing of a tiny bump, of
linear size λ, to the unit disk. A large variety of choices is possible, whose influence on
the final structure of the domain is unclear. An example is given by the following formulæ
(gλ is the inverse map of fλ):

gλ(z) = z
z cos λ− 1
z − cos λ

fλ(w) = = (2 cos λ)−1
[
w + 1 +

√
w2 − 2w cos 2λ + 1

]
where fλ correspond to the deformation of the unit disk obtained by gluing a semi-disk
centered at point 1 and whose two intersecting points with the unit circle define a cone of
angle 2λ. For λ � 1, the area of the added bump is of order λ2. But other choices are
possible and have been used.

Gluing a bump around point eiθ on the unit circle is obtained by rotating these maps.
The uniformizing maps are then

fλ;θ(w) = eiθ fλ(we−iθ)

The growth of the domain is obtained by successively iterating the maps fλn;θn
with

various values for the size λn and the position θn of the bumps. See Figure (19). Namely,
if after n iterations the complement of the unit disk is uniformized into the complement
of the domain by the map F(n)(w), then at the next (n + 1)th iteration the uniformizing
map is given by:

F(n+1)(w) = F(n)( fλn+1;θn+1(w) ) (2.6)
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Fn λ; θ

F n+1

f

Figure 19. Iteration of conformal maps.

For the inverse maps, this becomes G(n+1) = gλn+1;θn+1 ◦G(n).
To fully define the model one has to specify the choice of the parameter λn and θn

at each iteration. Since λn codes for the linear size of the added bump and since locally
conformal maps act as dilatations, the usual choice is to rescale λn+1 by a power of
|F ′

(n)(e
iθn)| as:

λn+1 = λ0 |F ′
(n)(e

iθn)|−α/2, 0 ≤ α ≤ 2

The case α = 2 corresponds to DLA as the physical area of the added bump are approx-
imatively constant and equal to λ0 at each iterations. In the other case, the area of the
added bump scales as |F ′

(n)(e
iθn)|2−α.

The positions of the added bump are usually taken uniformly distributed on the math-
ematical unit circle with a measure dθ/2π.

It is clear that this discrete model with α = 2 provides a regularization of Laplacian
growth with λ0 playing the role of an ultraviolet cutoff. This may also be seen by looking
at the naive limit of a small cutoff. Indeed, a naive expansion as λn � 1 gives that
F(n+1) = F(n) + δF(n) with

δF(n)(w) � λn wF ′
(n)(w)

(
w + eiθn

w − eiθn

)
where we used the expression of fλ for λ � 1. Using the recursive expression for λn and
averaging over θ with a uniform distribution yields:

〈δF (w)〉 = λ0 wF ′(w)
∮

dθ

2π
|F ′(eiθ)|−α w + eiθ

w − eiθ

For α = 2 this reproduces the Loewner chain for Laplacian growth. But this computation
is too naive as the small cutoff limit is not smooth, a fact which is at the origin of the non
trivial fractal dimensions of the growing domains.

There are only very few mathematical results on these discrete models. The most re-
cent one [27] deals with the simplest (yet interesting but not very physical) model with
α = 0. It proves the convergence of the iteration to well-defined random maps uniformiz-
ing domains of Hausdorff dimension 1. However, these models have been studied nu-
merically extensively. There exists a huge literature on this subject but see ref.[24] for
instance. These studies confirm that the fractal dimension of DLA clusters with α = 2 is
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Ddla � 1.71 but they also provide further informations on the harmonic measure multi-
fractal spectrum. Results on the α dependence of the fractal dimension may be found eg.
in ref.[25].

Various generalizations have been introduced. For instance, in ref.[26] a model of
iterated conformal maps has been defined in which particles are not added one by one but
by layers. These models have one control parameter coding for the degree of coverage of
the layer at each iterative step. By varying this parameter the model interpolates between
discrete DLA and a discrete version of the Hele-Shaw problem. The fractal dimension
of the resulting clusters varies with this parameter and seems to indicate that the fractal
dimension of this discrete analogue of the Hele-Shaw problem is 2, a point that we shall
discuss further in the last section.

2.5. INTEGRABILITY OF LAPLACIAN GROWTH

Laplacian growth is an integrable system, at least up to the cusp formation. Let us recall
that it corresponds to a Loewner chain with a density ρt(u) = |ft(u)|−2, or equivalently
to the quadratic equation

(∂αγt;α) (∂tγt;α)− (∂αγt;α) (∂tγt;α) = 2i (2.7)

for the dynamics of the boundary points γt;α = ft(u), u = eiα. What makes the model
integrable is the fact that the r.h.s of eq.(2.7) is constant. Eq.(2.7) is then similar to a
quadratic Hirota equation. Hints on the integrable structure were found in [21] and much
further developed in [22, 23].

2.5.1. Conserved quantities
We now define an infinite set of quantities which are conserved in the naive unregularized
LG problem. They reflect its integrability. We follow ref.[22, 23]. These quantities may
be defined via a Riemann-Hilbert problem on Γt specified by,

S+(γ)− S−(γ) = γ̄ , γ ∈ Γt (2.8)

for functions S− and S+ respectively analytic in the outer domain Ot and in the inner do-
main Kt. We fix normalization by demanding S−(∞) = 0. We assume Γt regular enough
for this Riemann-Hilbert problem to be well defined. As usual, S± may be presented as
contour integrals:

S±(z) = −
∮

Γt

dγ

2iπ

γ̄

z − γ
.

The conserved quantities are going to be expressed in terms of S±. We thus need their
time evolution. Differentiation of eq.(2.8) with respect to time and use of the evolution
equation (2.7) gives:

∂tS+(γ)− ∂tS−(γ) = 2g′t(γ)/gt(γ)

Notice now that g′t(γ)/gt(γ) is the boundary value of (log gt)′ which by construction is
analytic in Ot. We may thus rewrite this equation as a trivial Riemann-Hilbert problem,
∂tS+(γ)− (∂tS− + 2(log gt)′)(γ) = 0, so that both terms vanish:

∂tS+(z) = 0 and (∂tS− + 2(log gt)′)(z) = 0 (2.9)
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Since S+ is analytic around the origin, we may expand it in power of z. Equation
∂tS+(z) = 0 then tells us that S+(z) is a generating function of conserved quantities:
S+(z) =

∑
k≥0 zkIk with

Ik =
∮

Γt

dγ

2iπ
γ̄γ−k−1 , ∂tIk = 0. (2.10)

This provides an infinite set of conserved quantities.
Since S− is analytic around infinity, it may be expanded in power of 1/z: S−(z) =

−At/πz + · · · with At = − i
2

∮
Γt

dγγ̄ the area of Kt. The second equation (∂tS− +
2(log gt)′)(z) = 0 with gt(z) = R−1

t z + O(1) then implies ∂tAt = 2π. The area of the
domain grows linearly with time, up to the time at which the first cusp singularity appears.

2.5.2. Simple solutions
A particularly simple class of conformal maps, solutions of the Laplacian growth equa-
tion, are those such that their derivatives are polynomials in w−1. They may be expanded
as:

ft(w) =
N∑

n=0

fnw1−n, f0 = Rt > 0 (2.11)

with N finite but arbitrary. The dynamical variables are the N +1 coefficient f0, · · · , fN .
They are all complex except f0 which is real. It will be convenient to define the function
f̄t by f̄t(w) = ft(w).

The fact that this class is stable under the dynamics follows from the Loewner equation
(2.4). The trick consists in using the fact that the integration contour is on the unit circle so
that |f ′

t(u)|2 = f ′
t(u)f̄ ′

t(1/u). The contour integral then involves a meromorphic function
of u so that it can be evaluated by deforming the contour to pick the residues. This is
enough to prove that ∂tft(w) possesses the same structure as ft(w) itself so that the class
of functions (2.11) is stable under the dynamics.

Alternatively one may expand the quadratic equation (2.7) to get a hierarchy of equa-
tions: ∑

n≥0

(1− n)[fn
˙̄fj+n + f̄nḟ−j+n] = 2δj;0

For j = 0, this equation tells us again that the area of the domain grows linearly with time.
Besides this relation there are only N independent complex equations for j = 1, · · · , N
which actually code for the conserved quantities.

To really have an integrable system we need to have as many independent integrals of
motion as dynamical variables. Thus we need to have N conserved quantities. These are
given by the Ik’s defined above which may rewritten as

Ik =
∮
|u|=1

du

2iπ

f ′
t(u)f̄t(1/u)
ft(u)k+1

Only the first N quantities, I0, · · · , IN−1 = R1−N f̄N are non-vanishing. They are inde-
pendent. They can be used to express algebraically all fn’s, n ≥ 0, in terms of the real
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parameter f0 = Rt. The area law,

At = π[R2
t +

∑
n≥1

(1− n)|fn|2] = 2πt,

with the fn’s expressed in terms of Rt, then reintroduces the time variable by giving its
relation with the conformal radius.

2.5.3. Algebraic curves
As was pointed out in [23], solutions of Laplacian growth and their cusp formations have
an elegant geometrical interpretation involving Riemann surfaces.

Recall that given a sufficiently smooth real curve Γt drawn on the complex plane one
may define a function S(z), called the Schwarz function, analytic in a ribbon enveloping
the curve such that

S(γ) = γ, γ ∈ Γt

By construction, the Schwarz function may be expressed in terms of uniformizing maps
of the domain bounded by the curves as S(z) = f̄t(1/gt(z)).

The Riemann-Hilbert problem (2.8) defining the conserved charges then possesses
a very simple interpretation: S± are the polar part of the Schwarz function respectively
analytic inside or outside Γt, i.e. S(z) = S+(z)−S−(z). Thus the polar part S+, analytic
in the inner domain, is conserved. The polar part S−, analytic in the outer domain, evolves
according to eqs.(2.9). Since log gt(z) is analytic in the outer domain, these equations are
equivalent to the single equation:

∂tS(z) = −2(log gt(z))′ (2.12)

Now the physical curve Γt may be viewed as a real slice of a complex curve, alias a
Riemann surface. The latter is constructed using the Schwarz function as follows. Recall
that s = S(z) is implicitly defined by the relations z = ft(w), s = f̄t(1/w). In the case
of polynomial uniformizing maps we get the pair of equations

z = f0w + f1 + f2w
−1 + · · ·+ fNw1−N

s = f̄0w
−1 + f̄1 + f̄2w + · · ·+ f̄NwN−1

Eliminating w yields an algebraic equation for z and s only:

R : R(z, s) = 0 (2.13)

with R a polynomial of degree N in both variables, R(z, s) = f̄NzN + fNsN + · · · .
Eq.(2.13) defines an algebraic curve R. It is of genus zero since by construction it is
uniformized by points w of the complex sphere. It has many singularities which have to
be resolved to recover a smooth complex manifold.

The Riemann surface R may be viewed as a N -sheeted covering of the complex
z plane: each sheet corresponds to a determination of s above point z. At infinity, the
physical sheet corresponds to z � f0w with w → ∞ so that s � (z/f0)N−1 f̄N , the
other N − 1 sheets are ramified and correspond to z � fN/wN−1 and s � f̄0/w with
w → 0 so that z � (s/f̄0)N−1 fN . Hence infinity is a branch point of order N − 1.
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By the Riemann-Hurwitz formula the genus g is 2g − 2 = −2N + ν with ν the
branching index of the covering. Since the point at infinity counts for ν∞ = N − 2,
there should be N other branch points generically of order two. By definition they are
determined by solving the equations R(z, s) = 0 and ∂sR(z, s) = 0. Since the curve
is uniformized by w ∈ C, these two equations imply that z′(w)∂zR(z(w), s(w)) = 0.
Hence either z′(w) = 0, ∂zR �= 0, and the point is a branch point, or z′(w) �= 0, ∂zR =
0 = ∂sR, and the point is actually a singular point which needs to be desingularized.
So the N branch points at finite distance are the critical points of the uniformizing map
z = ft(w).

The curve R possesses an involution (z, s) → (s̄, z̄) since R(s̄, z̄) = R(z, s) by con-
struction. The set of points fixed by this involution has two components: (i) a continuous
one parametrized by points w = u, |u| = 1 –this is the real curve Γt that we started with–
and (ii) a set of N isolated points which are actually singular points.

The cusp singularity of the real curve Γt arises when a isolated real point merges with
the continuous real slice Γt. Locally the behavior is as for the curve u2 = ε v2 + v3 with
ε → 0.

The simplest example is for N = 3 with Z3 symmetry so that ft(w) = w + b/w2 and

w2 z = w3 + b , w s = 1 + bw3

We set f0 = 1 and f3 = b. Without lost of generality we assume b real. The algebraic
curve is then

R(z, s) ≡ bz3 + bs3 − b2s2z2 + (b2 − 1)(2b2 + 1)sz − (b2 − 1)3 = 0

Infinity is a branch point of order two. The three other branch points are at z = 3ω (b/4)1/3,
s = ω2 (2b2 + 1)(2b)−1/3 corresponding to w = ω(2b)1/3 with ω a third root of unity.
They are critical points of z(w). There are three singular points at z = ω (1 − b2)/b,
s = ω2 (1−b2)/b corresponding to w = ω(1±√1− 4b2)/2b. The physical regime is for
b < 1/2 in which case the real slice Γt = {z(u), |u| = 1} is a simple curve. The singular
points are then in the outer domain and the branch points in the inner domain. The cusp
singularities arise for b = 1/2. For b > 1/2 there are no isolated singular points, they are
all localized on the real slice so that Γt possesses double points. See Figure (20).

2.6. DENDRITIC ANOMALIES

We now would like to discuss a few points concerning the regularized models and their
small cut-off limits –which are actually what we are interested in. We shall point out that
the hydrodynamic regularization used in the Hele-Shaw problem possesses essential dif-
ferences with that used in other regularized models, say DLA. This opens the possibility
for the Hele-Shaw problem and DLA not to be in the same universality class.

This observation is based on the conjectural existence of anomalies in the Hele-Shaw
problem –a word which refers to quantities which, although naively vanishing in the small
cut-off limit, are actually non zero but finite in this limit due to compensating effects.

An analogy with Burgers turbulence may be useful. The 1d Burgers equation is ∂tu+
u∂xu− ν∂2

xu = 0 for a velocity field u(t, x). The viscosity ν plays the role of ultraviolet
cut-off. At ν = 0 this equation is simply Euler equation which may be easily solved.
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Figure 20. Subcritical and critical algebraic curves. Black circles are singular points. Crosses are
branch points.

At ν = 0, any smooth initial data produces shocks in finite time with a discontinuity
of u. In the regularized equation with ν �= 0, there is no shock production but the field
ε̂ ≡ ν(∂xu)2, which naively vanishes when ν → 0, has actually a non trivial limit. It does
not vanish because there is a compensation between small viscosity ν and large velocity
gradient (∂xu). The field ε̂ codes for the amount of energy dissipated inside the shocks.

The analogy that we would like to put forward is that the cusp formation in Laplacian
growth is analogous to shock formation in Burgers and that the surface tension σ in Lapla-
cian growth plays the role of the viscosity in Burgers. There are potential compensating
effects between small surface tension and large curvature in the Hele-Shaw problem.

2.6.1. Almost conserved quantities
We now describe the effect of the regularization procedure on the conserved quantities
of Laplacian growth. Recall that they were defined starting from the Riemann-Hilbert
problem:

h+(γ)− h−(γ) = γ̄ , γ ∈ Γt (2.14)

for functions h− and h+ respectively analytic in Ot and Kt. We use the notation h±
instead of S± in order to avoid confusion with the unregularized Laplacian growth. We
again fix normalization by demanding h−(∞) = 0 so that h±(z) = − ∮

Γt

dγ
2iπ

γ̄
z−γ . Time

differentiating eq.(2.14) using the evolution equation (2.3) now gives:

∂th+(γ)− ∂th−(γ) = 2
g′t(γ)
gt(γ)

vn(γ)
|g′t(γ)| (2.15)

with vn the boundary normal velocity –in LG, we had vn = |g′t(γ)|.
In the case of the Hele-Shaw (HS) problem, the hydrodynamic regularization of Lapla-

cian growth, the normal velocity possesses a particular form (2.5) involving the derivative
of ϑ. Eq.(2.15) may then be rewritten in terms of the potential, Φt(z) = log gt(z) +
σϑt(gt(z)), and of the curvature as:

∂th+(γ)− ∂th−(γ) = 2Φ′
t(γ)− 2σκ′

t(γ)
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Since Φt is analytic in Ot, the solution of this equation is given by that of the Riemann-
Hilbert problem for κt. So, let κ− and κ+ be respectively analytic in Ot and Kt with
boundary values κ+ − κ− = κt on Γt. Then:

∂th+(z) = −2σ∂z κ+(z) (2.16)

∂th−(z) = −2∂zΦt(z)− 2σ∂z κ−(z)

These equations codes for the behavior of h± in the limit of vanishing surface tension.
A noticeable point is that the above r.h.s. are total derivatives. In particular, contribu-

tion to the 1/z term in ∂th− only comes from the logarithmic factor in the potential. This
implies that at σ �= 0 the area of the domains also grows linearly with time, At � 2πt at
large time 3, and it is independent of the UV cutoff σ. This is contrast with other regular-
izations for which the area growth may be cutoff dependent.

2.6.2. A conjecture
The supplementary terms proportional to σκ′

± in the quasi conservation laws (2.16) naively
vanish when the UV cutoff is removed. Dendritic anomalies refer to the possibilities for
these terms not to vanish as the cutoff goes to zero, say σ → 0 in the Hele-Shaw (HS)
problem. Such possibility arises due to a balance between small surface tension and large
curvature.

Recall the previous HS estimation of the maximum curvature κmax � �c/σ2 with �c

the local scale associated to the cusp. These maxima are localized around points γc which
would turn into cusp singularities in absence of surface tension. So, we may expect that in
the HS problem the product σκ(γ) is a function picked around its maximum values and is
of the form �c

σ ϕ(γ−γc

σ ) when the point γ moves away from γc with ϕ finite at the origin
and decreasing rapidly away from it. For isolated singular points γc, this would converge
in the limit σ → 0 to a sum of Dirac point measures.

This leads us to conjecture that the anomalous term σκ(γ) goes to a non trivial but
finite distribution as σ → 0. This distribution then contributes to eq.(2.16) to break the
‘classical’ conservation laws valid in the unregularized theory, hence the name dendritic
anomaly.

The Loewner equation (2.1) –or the evolution equation (2.3)– are then expected to
have a finite limit as σ → 0 with a non trivial right hand side. The solution would be
well-defined for all times and would describe a non trivial familly K̂t such that, for fixed
t, K̂t is the limit of the domains Kt as σ → 0. This is consistent with the observation that
the area of Kt is independant of σ and grows linearly with time for any σ, ie. At � 2πt,
so that the existence of a limiting set K̂t is not ruled out.

It is implicit in the previous conjecture that the uniformizing maps ft have a finite
limit, say f̂t, as σ → 0 such that the image of the unit circle by f̂t is the boundary of
C \ K̂t. This leads us to conjecture that the limiting domain Ôt, which is the component
of C \ K̂t containing infinity, is uniformized onto D by ĝt ≡ f̂−1

t .
Let Rt be the conformal radius computed at finite σ using the maps ft. Recall that

if Dhs is the fractal dimension we have RDhs
t � At for large t. By dimensional analysis

3This result concerning the area is simply a consequence of the fluid incompressibility. But the
general method allows to deal with the complete hierarchy of quasi conserved charges.
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Rt � σ(At/σ2)1/Dhs since σ has dimension of a [length]. Because in the HS problem
the area grows linearly with time without any dependence on σ, this also reads:

RDhs
t � σDhs−2 t

Since we expect the limiting domains and the limiting conformal maps to exit, Rt should
have a finite limit as σ → 0 which coincides with the conformal radius R̂t computed
using f̂t. As consequence, we expect:

Dhs = 2

That is: the fractal dimension of Laplacian growth clusters, within the hydrodynamic reg-
ularization, is 2. If these conjectures are true, they imply that the Hele-Shaw problem is
not in the same universality class as DLA.

These conjectures are compatible with that of ref.[26] based on numerical studies of
generalized iterated conformal maps. They are not expected to apply to arbitrary regular-
izations because in these cases the area may depend on the UV cutoff and the previous
dimensional analysis does not apply. It would then be natural to wonder whether we may
define renormalized uniformizing maps in the limit of a vanishing cutoff.
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Abstract.
The theory of cosmological perturbations is the main tool which connects theories of

the early Universe (based on new fundamental physics such as string theory) with cos-
mological observations. In these lectures, I will provide an introduction to this theory,
beginning with an overview of the Newtonian theory of fluctuations, moving on to the
analysis of fluctuations in the realm of classical general relativity, and culminating with
a discussion of the quantum theory of cosmological perturbations. I will illustrate the
formalism with applications to inflationary cosmology. I will review the basics of infla-
tionary cosmology and discuss why - through the evolution of fluctuations - inflation may
provide a way of observationally testing Planck-scale physics.

1. Introduction

Recent years have provided a wealth of observational data about the cosmos. We have
high resolution maps of the anisotropies in the temperature of the cosmic microwave
background (CMB) [1], surveys of the large-scale structure (LSS) - the distribution of
galaxies in three-dimensional space - are increasing in size and in accuracy (see e.g. [2]
and [3]), and new techniques which will allow us to measure the distribution of the dark
matter are being pioneered. All of this data involves small deviations of the cosmos from
homogeneity and isotropy. The cosmological observations reveal that the Universe has
non-random fluctuations on all scales smaller than the present Hubble radius.

Parallel to this spectacular progress in observational cosmology, new cosmological
scenarios have emerged within which it is possible to explain the origin of non-random
inhomogeneities by means of causal physics. The scenario which has attracted most at-
tention is inflationary cosmology [4, 5], according to which there was a period in the
early Universe in which space was expanding at an accelerated rate. However, there are
also alternative proposals [7, 8] in which our current stage of cosmological expansion

79

L. Baulied et al. (eds.), String Theory: From Gauge Interactions to Cosmology, 79–116.
© 2005 Springer.  Printed in the Netherlands. 



80 ROBERT H. BRANDENBERGER

is preceded by a phase of contraction. These scenarios have in common the fact that for
scales of cosmological interest today, although their physical wavelength is larger than the
Hubble length during most of the history of the universe, it is smaller than the Hubble ra-
dius at very early times, thus in principle allowing for a causal origin of the cosmological
fluctuations.

In order to connect theories of fundamental physics providing an origin of perturba-
tions with the data on the late time universe, one must be able to evolve cosmological
fluctuations from earliest times to today. Since on large scales (scales larger than about 10
Mpc - 1 Mpc being roughly three million light years) the relative density fluctuations are
smaller than one today, and since these relative fluctuations grow in time as a consequence
of gravitational instability, they were smaller than one throughout their history - at least
in a universe which is always expanding. Thus, it is reasonable to expect that a linearized
analysis of the fluctuations will give reliable results.

In most current models of the very early universe it is assumed that the perturbations
originate as quantum vacuum fluctuations. Thus, quantum mechanics is important. On the
other hand, since for most of the history of the universe the wavelengths corresponding to
scales of cosmological interest today were larger than the Hubble radius, it is crucial to
consider the general relativistic theory of fluctuations. Hence, a quantum theory of general
relativistic fluctuations is required. At the level of the linearized theory of cosmological
perturbations, a unified quantum theory of the formation and evolution of fluctuations
exists - and this will be the main topic of these lectures. Note that all of the conceptual
problems of merging quantum mechanics and general relativity have been thrown out by
hand by restricting attention to the linearized analysis. The question of “linearization sta-
bility” of the system, namely whether the solutions of the linearized equations of motion
in fact correspond to the linearization of solutions of the full equations, is a deep one and
will not be addressed here (see e.g. [6] for discussions of this issue).

Inflationary cosmology is at the present time the most successful framework of con-
necting physics of the very early universe with the present structure (although alternatives
such as the Pre-Big-Bang [7] and Ekpyrotic [8] scenarios have been proposed and may
turn out to be successful as well). I will thus begin these lectures with a review of infla-
tionary cosmology, and of scalar field-driven models for inflation. Next, I will provide a
detailed discussion of the theory of cosmological perturbations, beginning with the New-
tonian theory, moving on to the classical general relativistic analysis, and ending with
the quantum theory of cosmological perturbations 1 In the final sections of these notes, I
will return to inflationary cosmology, and focus on some important conceptual problems
which are not addressed in current realizations of inflation in which the accelerated ex-
pansion of space is driven by a scalar matter field. Addressing these conceptual problems
is a challenge and great opportunity for string theory. Since cosmological inflation leads
to a quasi-exponential increase in the wavelength of inhomogeneities, it provides a micro-
scope with which string-scale physics can in principle be probed in current observations.
I will conclude these lectures with a discussion of this “window of opportunity” for string
theory which inflation provides [9].

1These sections are an updated version of the lecture notes [10].



COSMOLOGICAL PERTURBATIONS 81

2. Overview of Inflationary Cosmology

To establish our notation and framework, we will be taking the background space-time to
be homogeneous and isotropic, with a metric given by

ds2 = dt2 − a(t)2dx2 , (2.1)

where t is physical time, dx2 is the Euclidean metric of the spatial hypersurfaces (here
taken for simplicity to be spatially flat), and a(t) is the scale factor. The scale factor
determines the Hubble expansion rate via

H(t) =
ȧ

a
(t) . (2.2)

The coordinates x used above are comoving coordinates, coordinates painted onto the
expanding spatial hypersurfaces.

In standard big bang cosmology, the universe is decelerating, i.e. ä < 0. As a conse-
quence, the Hubble radius

lH(t) = H−1(t) (2.3)

is increasing in comoving coordinates. As will be explained later mathematically, the
Hubble radius is the maximal distance that microphysics can act coherently over a Hubble
expansion time - in particular it is the maximal distance on which any causal process could
create fluctuations. If the universe were decelerating forever, then scales of cosmological
interest today would have had a wavelength larger than the Hubble radius at all early
times. This gives rise to the fluctuation problem for Standard Big Bang (SBB) cosmology,
namely the problem that there cannot be any causal process which at early time creates
perturbations on scales which are being probed in current LSS and CMB observations 2.

The idea of inflationary cosmology is to assume that there was a period in the very
early Universe during which the scale factor was accelerating, i.e. ä > 0. This implies
that the Hubble radius was shrinking in comoving coordinates, or, equivalently, that fixed
comoving scales were “exiting” the Hubble radius. In the simplest models of inflation,
the scale factor increases nearly exponentially. As illustrated in Figure (1), the basic
geometry of inflationary cosmology provides a solution of the fluctuation problem. As
long as the phase of inflation is sufficiently long, all length scales within our present
Hubble radius today originate at the beginning of inflation with a wavelength smaller
than the Hubble radius at that time. Thus, it is possible to create perturbations locally
using physics obeying the laws of special relativity (in particular causality). As will be
discussed later, it is quantum vacuum fluctuations of matter fields and their associated
curvature perturbations which are responsible for the structure we observe today.

Postulating a phase of inflation in the very early universe also solves the horizon prob-
lem of the SBB, namely it explains why the causal horizon at the time trec when photons
last scatter is larger than the radius of the past light cone at trec, the part of the last scat-
tering surface which is visible today in CMB experiments. Inflation also explains the near
flatness of the universe: in a decelerating universe spatial flatness is an unstable fixed

2The reader is encouraged to find the hole in this argument, and is referred to [11, 7, 13] for the
answer.
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Figure 1. Space-time diagram (sketch) showing the evolution of scales in inflationary cosmology.
The vertical axis is time, and the period of inflation lasts between ti and tR, and is followed by
the radiation-dominated phase of standard big bang cosmology. During exponential inflation, the
Hubble radius H−1 is constant in physical spatial coordinates (the horizontal axis), whereas it
increases linearly in time after tR. The physical length corresponding to a fixed comoving length
scale labelled by its wavenumber k increases exponentially during inflation but increases less fast
than the Hubble radius (namely as t1/2), after inflation.

point of the dynamics, whereas in an accelerating universe it becomes an attractor. An-
other important aspect of the inflationary solution of the flatness problem is that inflation
exponentially increases the volume of space. Without inflation, it is not possible that a
Planck scale universe at the Planck time evolves into a sufficiently large universe today.

Let us now consider how it is possible to obtain a phase of cosmological inflation. We
will assume that space-time is to be described using the equations of General Relativity3.
In this case, the dynamics of the scale factor a(t) is determined by the Friedmann-
Robertson-Walker (FRW) equations

(
ȧ

a
)2 = 8πGρ (2.4)

and
ä

a
= −4πG(ρ + 3p) (2.5)

where for simplicity we have omitted the contributions of spatial curvature (since spatial
curvature is diluted during inflation) and of the cosmological constant (since any small
cosmological constant which might be present today has no effect in the early Universe
since the associated energy density does not increase when going into the past). In the
above, ρ and p denote the energy density and pressure, respectively. From (2.5) it is clear

3Note, however, that the first model of exponential expansion of space [14] made use of a higher
derivative gravitational action.
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that in order to obtain an accelerating universe, matter with sufficiently negative pressure

p < −1
3
ρ (2.6)

is required. Exponential inflation is obtained for p = −ρ.
Conventional perfect fluids have positive semi-definite pressure and thus cannot yield

inflation. In addition, we know that a description of matter in terms of classical perfect
fluids must break down at early times. An improved description of matter will be given in
terms of quantum fields. Scalar matter fields are special in that they allow at the level of
a renormalizable action the presence of a potential energy term. The energy density and
pressure of a scalar field ϕ with canonically normalized action 4

L =
√−g

[1
2
∂µϕ∂µϕ− V (ϕ)

]
(2.7)

(where Greek indices are space-time indices, V (ϕ) is the potential energy density, and g
is the determinant of the metric) are given by

ρ =
1
2
(ϕ̇)2 +

1
2
a−2(∇ϕ)2 + V (ϕ)

p =
1
2
(ϕ̇)2 − 1

6
a−2(∇ϕ)2 − V (ϕ) . (2.8)

Thus, it is possible to obtain an almost exponentially expanding universe provided the
scalar field configuration 5 satisfies

1
2
(∇pϕ)2 � V (ϕ) , (2.9)

1
2
(ϕ̇)2 � V (ϕ) . (2.10)

In the above,∇p ≡ a−1∇ is the gradient with respect to physical as opposed to comoving
coordinates. Since spatial gradients redshift as the universe expands, the first condition
will (for single scalar field models) always be satisfied if it is satisfied at the initial time
6. It is the second condition which is harder to satisfy. In particular, this condition is in
general not preserved in time even it is initially satisfied.

It is sufficient to obtain a period of cosmological inflation that the slow-roll conditions
for ϕ are satisfied. Recall that the equation of motion for a homogeneous scalar field in a
cosmological space-time is (as follows from (2.7)) is

ϕ̈ + 3Hϕ̇ = −V ′(ϕ) , (2.11)

where a prime indicates the derivative with respect to ϕ. In order that the scalar field roll
slowly, it is necessary that

ϕ̈ � 3Hϕ̇ (2.12)

4See [15] for a discussion of fields with non-canonical kinetic terms.
5The scalar field yielding inflation is called the inflaton.
6In fact, careful studies [16] show that since the gradients decrease even in a non-inflationary

backgrounds, they can become subdominant even if they are not initially subdominant.
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such that the first term in the scalar field equation of motion (2.11) is negligible. In this
case, the condition (2.10) becomes

(
V ′

V
)2 � 48πG (2.13)

and (3) becomes
V ′′

V
� 24πG . (2.14)

In the initial model of inflation using scalar fields (“old inflation” [4]), it was assumed
that ϕ was initially in a false vacuum with large potential energy. Hence, the conditions
for inflation are trivially satisfied. To end inflation, a quantum tunneling event from the
false vacuum to the true vacuum [75] was invoked (see e.g. [18] for a pedagogical review).
This model, however, has a graceful exit problem since the tunneling leads to an initially
microscopical bubble of the true vacuum which cannot grow to encompass our presently
observed universe - the flatness problem of SBB cosmology in a new form. Hence, atten-
tion shifted to models in which the scalar field ϕ is slowly rolling during inflation.

There are many models of scalar field-driven inflation. Many of them can be di-
vided into three groups [19]: small-field inflation, large-field inflation and hybrid inflation.
Small-field inflationary models are based on ideas from spontaneous symmetry breaking
in particle physics. We take the scalar field to have a potential of the form

V (ϕ) =
1
4
λ(ϕ2 − σ2)2 , (2.15)

where σ can be interpreted as a symmetry breaking scale, and λ is a dimensionless cou-
pling constant. The hope of initial small-field models (“new inflation” [20]) was that the
scalar field would begin rolling close to its symmetric point ϕ = 0, where thermal equilib-
rium initial conditions would localize it in the early universe. At sufficiently high temper-
atures, ϕ = 0 is a stable ground state of the one-loop finite temperature effective potential
VT (ϕ) (see e.g. [18] for a review). Once the temperature drops to a value smaller than the
critical temperature Tc, ϕ = 0 turns into an unstable local maximum of VT (ϕ), and ϕ is
free to roll towards a ground state of the zero temperature potential (2.15). The direction
of the initial rolling is triggered by quantum fluctuations. The reader can easily check that
for the potential (2.15) the slow-roll conditions cannot be satisfied if σ � mpl, where
mpl is the Planck mass which is related to G. If the potential is modified to a Coleman-
Weinberg [21] form

V (ϕ) =
λ

4
ϕ4 +

λ2

44π2
ϕ4
[
ln(

ϕ2

M2
)− 25

6
]

(2.16)

(where M denotes some renormalization scale) then the slow-roll conditions can be sat-
isfied. However, this corresponds to a severe fine-tuning of the shape of the potential. A
further problem for most small-field models of inflation (see e.g. [22] for a review) is that
the slow-roll trajectory is not an attractor in phase space. In order to end up close to the
slow-roll trajectory, the initial field velocity must be constrained to be very small. This
initial condition problem of small-field models of inflation effects a number of recently
proposed brane inflation scenarios, see e.g. [23] for a discussion.
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There is another reason for abandoning small-field inflation models: in order to obtain
a sufficiently small amplitude of density fluctuations, the interaction coefficients of ϕ must
be very small (this problem is discussed at length towards the end of these lectures). In
particular, this makes it inconsistent to assume that ϕ started out in thermal equilibrium.
In the absence of thermal equilibrium, the phase space of initial conditions is much larger
for large values of ϕ.

This brings us to the discussion of large-field inflation models, initially proposed in
[24] under the name “chaotic inflation”. The simplest example is provided by a massive
scalar field with potential

V (ϕ) =
1
2
m2ϕ2 , (2.17)

where m is the mass. It is assumed that the scalar field rolls towards the origin from large
values of |ϕ|. It is a simple exercise for the reader to verify that the slow-roll conditions
(2.13) and (2.14) are satisfied provided

|ϕ| >
1√
12π

mpl . (2.18)

Values of |ϕ| comparable or greater than mpl are also required in other realizations of
large-field inflation. Hence, one may worry whether such a toy model can consistently be
embedded in a realistic particle physics model, e.g. supergravity. In many such models
V (ϕ) receives supergravity-induced correction terms which destroy the flatness of the
potential for |ϕ| > mpl. However, as recently discussed in [25], if the flatness of the
potential is protected by some symmetry, then it can survive inclusion of the correction
terms. As will be discussed later, a value of m ∼ 1013GeV is required in order to obtain
the observed amplitude of density fluctuations. Hence, the configuration space of field
values with |ϕ| > mpl but V (ϕ) < m4

pl is huge. It can also be verified that the slow-roll
trajectory is a local attractor in field initial condition space [16], even including metric
fluctuations at the perturbative level [26].

With two scalar fields it is possible to construct a class of models which combine some
of the nice features of large-field inflation (large phase space of initial conditions yielding
inflation) and of small-field inflation (better contact with conventional particle physics).
These are models of hybrid inflation [27]. To give a prototypical example, consider two
scalar fields ϕ and χ with a potential

V (ϕ, χ) =
1
4
λχ(χ2 − σ2)2 +

1
2
m2ϕ2 − 1

2
g2ϕ2χ2 . (2.19)

In the absence of thermal equilibrium, it is natural to assume that |ϕ| begins at large
values, values for which the effective mass of χ is positive and hence χ begins at χ = 0.
The parameters in the potential (2.19) are now chosen such that ϕ is slowly rolling for
values of |ϕ| somewhat smaller than mpl, but that the potential energy for these field
values is dominated by the first term on the right-hand side of (2.19). The reader can
easily verify that for this model it is no longer required to have values of |ϕ| greater than
mpl in order to obtain slow-rolling 7 The field ϕ is slowly rolling whereas the potential

7Note that the slow-roll conditions (2.13) and (2.14) were derived assuming that H is given by
the contribution of ϕ to V which is not the case here.
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energy is determined by the contribution from χ. Once |ϕ| drops to the value

|ϕc| =

√
λχ

g
σ (2.20)

the configuration χ = 0 becomes unstable and decays to its ground state |χ| = σ, yielding
a graceful exit from inflation. Since in this example the ground state of χ is not unique,
there is the possibility of the formation of topological defects at the end of inflation (see
[11, 7, 13] for reviews of topological defects in cosmology, and the lectures by Polchinski
at this school [28] for a discussion of how this scenario arises in brane inflation models).

After the slow-roll conditions break down, the period of inflation ends, and the inflaton
begins to oscillate around its ground state. Due to couplings of ϕ to other matter fields, the
energy of the universe, which at the end of the period of inflation is stored completely in
ϕ, gets transferred to the matter fields of the particle physics Standard Model. Initially, the
energy transfer was described perturbatively [29, 30]. Later, it was realized [31, 32, 33,
34] that through a parametric resonance instability, particles are very rapidly produced,
leading to a fast energy transfer (“preheating”). The quanta later thermalize, and thereafter
the universe evolves as described by SBB cosmology.

After this review of inflationary cosmology (see e.g. [35] for a more complete recent
review), we turn to the discussion of the main success of inflationary cosmology, namely
the fact that it provides a causal mechanism for generating small inhomogeneities. The
reader is referred to [5] for a comprehensive analysis of this theory of cosmological per-
turbations.

3. Newtonian Theory of Cosmological Perturbations

3.1. INTRODUCTION

The growth of density fluctuations is a consequence of the purely attractive nature of the
gravitational force. Imagine (first in a non-expanding background) a density excess δρ
localized about some point x in space. This fluctuation produces an attractive force which
pulls the surrounding matter towards x. The magnitude of this force is proportional to δρ.
Hence, by Newton’s second law

δ̈ρ ∼ Gδρ , (3.1)

where G is Newton’s gravitational constant. Hence, there is an exponential instability of
flat space-time to the development of fluctuations.

Obviously, in General Relativity it is inconsistent to consider density fluctuations in
a non-expanding background. If we consider density fluctuations in an expanding back-
ground, then the expansion of space leads to a friction term in (3.1). Hence, instead of an
exponential instability to the development of fluctuations, the growth rate of fluctuations
in an expanding Universe will be as a power of time. It is crucial to determine what this
power is and how it depends both on the background cosmological expansion rate and on
the length scale of the fluctuations.

Note that in the following two subsections x will denote the physical coordinates,
and q the comoving ones. The materials covered in this section are discussed in several
excellent textbooks on cosmology, e.g. in [37, 38, 39, 40].
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3.2. PERTURBATIONS ABOUT MINKOWSKI SPACE-TIME

To develop some physical intuition, we first consider the evolution of hydrodynamical
matter fluctuations in a fixed non-expanding background.

In this context, matter is described by a perfect fluid, and gravity by the Newtonian
gravitational potential ϕ. The fluid variables are the energy density ρ, the pressure p, the
fluid velocity v, and the entropy density S. The basic hydrodynamical equations are

ρ̇ +∇ · (ρv) = 0

v̇ + (v · ∇)v +
1
ρ
∇p +∇ϕ = 0

∇2ϕ = 4πGρ (3.2)

Ṡ + (v · ∇)S = 0
p = p(ρ, S) .

The first equation is the continuity equation, the second is the Euler (force) equation, the
third is the Poisson equation of Newtonian gravity, the fourth expresses entropy conser-
vation, and the last describes the equation of state of matter. The derivative with respect
to time is denoted by an over-dot.

The background is given by the background energy density ρo, the background pres-
sure p0, vanishing velocity, constant gravitational potential ϕ0 and constant entropy den-
sity S0. As mentioned above, it does not satisfy the background Poisson equation.

The equations for cosmological perturbations are obtained by perturbing the fluid vari-
ables about the background,

ρ = ρ0 + δρ

v = δv

p = p0 + δp (3.3)

ϕ = ϕ0 + δϕ

S = S0 + δS ,

where the fluctuating fields δρ, δv, δp, δϕ and δS are functions of space and time, by
inserting these expressions into the basic hydrodynamical equations (3.2), by lineariz-
ing, and by combining the resulting equations which are of first order in time. We get
the following differential equations for the energy density fluctuation δρ and the entropy
perturbation δS

δ̈ρ− c2
s∇2δρ− 4πGρ0δρ = σ∇2δS (3.4)

δ̇S = 0 ,

where the variables c2
s and σ describe the equation of state

δp = c2
sδρ + σδS (3.5)

with

c2
s =

(δp

δρ

)
|S (3.6)
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denoting the square of the speed of sound.
Sincethe equations are linear, we can work in Fourier space. Each Fourier component

δρk(t) of the fluctuation field δρ(x, t)

δρ(x, t) =
∫

eik·xδρk(t) (3.7)

evolves independently.
The fluctuations can be classified as follows: If δS vanishes, we have adiabatic fluc-

tuations. If the δS is non-vanishing but δ̇ρ = 0, we speak of an entropy fluctuation.
The first conclusions we can draw from the basic perturbation equations (3.4) are that

1) entropy fluctuations do not grow,
2) adiabatic fluctuations are time-dependent, and
3) entropy fluctuations seed an adiabatic mode.

Taking a closer look at the equation of motion for δρ, we see that the third term on
the left hand side represents the force due to gravity, a purely attractive force yielding
an instability of flat space-time to the development of density fluctuations (as discussed
earlier, see (3.1)). The second term on the left hand side of (3.4) represents a force due
to the fluid pressure which tends to set up pressure waves. In the absence of entropy
fluctuations, the evolution of δρ is governed by the combined action of both pressure and
gravitational forces.

Restricting our attention to adiabatic fluctuations, we see from (3.4) that there is a
critical wavelength, the Jeans length, whose wavenumber kJ is given by

kJ =
(4πGρ0

c2
s

)1/2
. (3.8)

Fluctuations with wavelength longer than the Jeans length (k � kJ ) grow exponentially

δρk(t) ∼ eωkt with ωk ∼ 4(πGρ0)1/2 (3.9)

whereas short wavelength modes (k � kJ ) oscillate with frequency ωk ∼ csk. Note that
the value of the Jeans length depends on the equation of state of the background. For a
background dominated by relativistic radiation, the Jeans length is large (of the order of
the Hubble radius H−1(t)), whereas for pressure-less matter it goes to zero.

3.3. PERTURBATIONS ABOUT AN EXPANDING BACKGROUND

Let us now improve on the previous analysis and study Newtonian cosmological fluctua-
tions about an expanding background. In this case, the background equations are consis-
tent (the non-vanishing average energy density leads to cosmological expansion). How-
ever, we are still neglecting general relativistic effects (the fluctuations of the metric).
Such effects turn out to be dominant on length scales larger than the Hubble radius
H−1(t), and thus the analysis of this section is applicable only to smaller scales.

The background cosmological model is given by the energy density ρ0(t), the pressure
p0(t), and the recessional velocity v0 = H(t)x, where x is the Euclidean spatial coor-
dinate vector (“physical coordinates”). The space- and time-dependent fluctuating fields
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are defined as in the previous section:

ρ(t,x) = ρ0(t)
(
1 + δε(t,x)

)
v(t,x) = v0(t,x) + δv(t,x) (3.10)

p(t,x) = p0(t) + δp(t,x) ,

where δε is the fractional energy density perturbation (we are interested in the fractional
rather than in the absolute energy density fluctuation!), and the pressure perturbation δp
is defined as in (3.5). In addition, there is the possibility of a non-vanishing entropy per-
turbation defined as in (3.3).

We now insert this ansatz into the basic hydrodynamical equations (3.2), linearize in
the perturbation variables, and combine the first order differential equations for δε and
δp into a single second order differential equation for δρε. The result simplifies if we
work in “comoving coordinates” q which are the coordinates painted onto the expanding
background, i.e.

x(t) = a(t)q(t) . (3.11)

After some algebra, we obtain the following equation which describes the time evolution
of density fluctuations:

δ̈ε + 2Hδ̇ε − c2
s

a2
∇2

qδε − 4πGρ0δε =
σ

ρ0a2
δS , (3.12)

where the subscript q on the∇ operator indicates that derivatives with respect to comoving
coordinates are used. In addition, we have the equation of entropy conservation

˙δS = 0 . (3.13)

Comparing with the equations (3.4) obtained in the absence of an expanding back-
ground, we see that the only difference is the presence of a Hubble damping term in the
equation for δε. This term will moderate the exponential instability of the background to
long wavelength density fluctuations. In addition, it will lead to a damping of the oscillat-
ing solutions on short wavelengths. More specifically, for physical wavenumbers kp � kJ

(where kJ is again given by (3.8)), and in a matter-dominated background cosmology, the
general solution of (3.12) in the absence of any entropy fluctuations is given by

δk(t) = c1t
2/3 + c2t

−1 , (3.14)

where c1 and c2 are two constants determined by the initial conditions, and we have
dropped the subscript ε in expressions involving δε. There are two fundamental solutions,
the first is a growing mode with δk(t) ∼ a(t), the second a decaying mode with δk(t) ∼
t−1. On short wavelength, one obtains damped oscillatory motion:

δk(t) ∼ a−1/2(t)exp
(±icsk

∫
dt′a−1(t′)

)
. (3.15)

As a simple application of the Newtonian equations for cosmological perturbations de-
rived above, let us compare the predicted cosmic microwave background (CMB) anisotropies
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in a spatially flat Universe with only baryonic matter - Model A - to the corresponding
anisotropies in a flat Universe with mostly cold dark matter (pressure-less non-baryonic
dark matter) - Model B. We start with the observationally known amplitude of the relative
density fluctuations today (time t0), and we use the fact that the amplitude of the CMB
anisotropies on the angular scale θ(k) corresponding to the comoving wavenumber k is
set by the primordial value of the gravitational potential φ - introduced in the following
section - which in turn is related to the primordial value of the density fluctuations at
Hubble radius crossing (and not to its value of the time trec). See e.g. Chapter 17 of [5]).

In Model A, the dominant component of the pressure-less matter is coupled to radia-
tion between teq and trec, the time of last scattering. Thus, the Jeans length is comparable
to the Hubble radius. Therefore, for comoving galactic scales, k � kJ in this time inter-
val, and thus the fractional density contrast decreases as a(t)−1/2. In contrast, in Model
B, the dominant component of pressure-less matter couples only weakly to radiation, and
hence the Jeans length is negligibly small. Thus, in Model B, the relative density contrast
grows as a(t) between teq and trec. In the time interval trec < t < t0, the fluctuations
scale identically in Models A and B. Summarizing, we conclude, working backwards in
time from a fixed amplitude of δk today, that the amplitudes of δk(teq) in Models A and
B (and thus their primordial values) are related by

δk(teq)|A � (a(trec)
a(teq)

)
δk(teq)|B . (3.16)

Hence, in Model A (without non-baryonic dark matter) the CMB anisotropies are pre-
dicted to be a factor of about 30 larger [76] than in Model B, way in excess of the recent
observational results. This is one of the strongest arguments for the existence of non-
baryonic dark matter. Note that the precise value of the enhancement factor depends on
the value of the cosmological constant Λ - the above value holds for Λ = 0.

3.4. CHARACTERIZING PERTURBATIONS

Let us consider perturbations on a fixed comoving length scale given by a comoving
wavenumber k. The corresponding physical length increases as a(t). This is to be com-
pared to the Hubble radius H−1(t) which scales as t provided a(t) grows as a power of t.
In the late time Universe, a(t) ∼ t1/2 in the radiation-dominated phase (i.e. for t < teq,
and a(t) ∼ t2/3 in the matter-dominated period (teq < t < t0). Thus, we see that at
sufficiently early times, all comoving scales had a physical length larger than the Hubble
radius. If we consider large cosmological scales (e.g. those corresponding to the observed
CMB anisotropies or to galaxy clusters), the time tH(k) of “Hubble radius crossing”
(when the physical length was equal to the Hubble radius) was in fact later than teq. As
we will see in later sections, the time of Hubble radius crossing plays an important role in
the evolution of cosmological perturbations.

Cosmological fluctuations can be described either in position space or in momentum
space. In position space, we compute the root mean square mass fluctuation δM/M(k, t)
in a sphere of radius l = 2π/k at time t. A scale-invariant spectrum of fluctuations is
defined by the relation

δM

M
(k, tH(k)) = const. . (3.17)
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Such a spectrum was first suggested by Harrison [42] and Zeldovich [43] as a reason-
able choice for the spectrum of cosmological fluctuations. We can introduce the “spectral
index” n of cosmological fluctuations by the relation(δM

M

)2(k, tH(k)) ∼ kn−1 , (3.18)

and thus a scale-invariant spectrum corresponds to n = 1.
To make the transition to the (more frequently used) momentum space representation,

we Fourier decompose the fractional spatial density contrast

δε(x, t) =
∫

d3kδ̃ε(k, t)eik·x . (3.19)

The power spectrum Pδ of density fluctuations is defined by

Pδ(k) = k3|δ̃ε(k)|2 , (3.20)

where k is the magnitude of k, and we have assumed for simplicity a Gaussian distribution
of fluctuations in which the amplitude of the fluctuations only depends on k.

We can also define the power spectrum of the gravitational potential ϕ:

Pϕ(k) = k3|δ̃ϕ(k)|2 . (3.21)

These two power spectra are related by the Poisson equation (3.2)

Pϕ(k) ∼ k−4Pδ(k) . (3.22)

In general, the condition of scale-invariance is expressed in momentum space in terms
of the power spectrum evaluated at a fixed time. To obtain this condition, we first use the
time dependence of the fractional density fluctuation from (3.14) to determine the mass
fluctuations at a fixed time t > tH(k) > teq (the last inequality is a condition on the
scales considered) (δM

M

)2(k, t) =
( t

tH(k)
)4/3(δM

M

)2(k, tH(k)) . (3.23)

The time of Hubble radius crossing is given by

a(tH(k))k−1 = 2tH(k) , (3.24)

and thus
tH(k)1/2 ∼ k−1 . (3.25)

Inserting this result into (3.23) making use of (3.18) we find(δM

M

)2(k, t) ∼ kn+3 . (3.26)

Since, for reasonable values of the index of the power spectrum, δM/M(k, t) is domi-
nated by the Fourier modes with wavenumber k, we find that (3.26) implies

|δ̃ε|2 ∼ kn , (3.27)
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or, equivalently,
Pϕ(k) ∼ kn−1 . (3.28)

4. Relativistic Theory of Cosmological Fluctuations

4.1. INTRODUCTION

The Newtonian theory of cosmological fluctuations discussed in the previous section
breaks down on scales larger than the Hubble radius because it neglects perturbations
of the metric, and because on large scales the metric fluctuations dominate the dynamics.

Let us begin with a heuristic argument to show why metric fluctuations are important
on scales larger than the Hubble radius. For such inhomogeneities, one should be able to
approximately describe the evolution of the space-time by applying the first FRW equation
(2.4) of homogeneous and isotropic cosmology to the local Universe (this approximation
is made more rigorous in [44]). Based on this equation, a large-scale fluctuation of the
energy density will lead to a fluctuation (“δa”) of the scale factor a which grows in time.
This is due to the fact that self gravity amplifies fluctuations even on length scales λ
greater than the Hubble radius.

This argument is made rigorous in the following analysis of cosmological fluctua-
tions in the context of general relativity, where both metric and matter inhomogeneities
are taken into account. We will consider fluctuations about a homogeneous and isotropic
background cosmology, given by the metric (2.1), which can be written in conformal time
η (defined by dt = a(t)dη) as

ds2 = a(η)2
(
dη2 − dx2

)
. (4.1)

The theory of cosmological perturbations is based on expanding the Einstein equa-
tions to linear order about the background metric. The theory was initially developed in
pioneering works by Lifshitz [45]. Significant progress in the understanding of the physics
of cosmological fluctuations was achieved by Bardeen [46] who realized the importance
of subtracting gauge artifacts (see below) from the analysis (see also [47]). The following
discussion is based on Part I of the comprehensive review article [5]. Other reviews - in
some cases emphasizing different approaches - are [48, 49, 50, 51].

4.2. CLASSIFYING FLUCTUATIONS

The first step in the analysis of metric fluctuations is to classify them according to their
transformation properties under spatial rotations. There are scalar, vector and second rank
tensor fluctuations. In linear theory, there is no coupling between the different fluctuation
modes, and hence they evolve independently (for some subtleties in this classification, see
[52]).

We begin by expanding the metric about the FRW background metric g
(0)
µν given by

(4.1):
gµν = g(0)

µν + δgµν . (4.2)

The background metric depends only on time, whereas the metric fluctuations δgµν de-
pend on both space and time. Since the metric is a symmetric tensor, there are at first sight
10 fluctuating degrees of freedom in δgµν .
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There are four degrees of freedom which correspond to scalar metric fluctuations (the
only four ways of constructing a metric from scalar functions):

δgµν = a2

(
2φ −B,i

−B,i 2
(
ψδij − E,ij

) )
, (4.3)

where the four fluctuating degrees of freedom are denoted (following the notation of [5])
φ,B,E, and ψ, a comma denotes the ordinary partial derivative (if we had included spa-
tial curvature of the background metric, it would have been the covariant derivative with
respect to the spatial metric), and δij is the Kronecker symbol.

There are also four vector degrees of freedom of metric fluctuations, consisting of the
four ways of constructing metric fluctuations from three vectors:

δgµν = a2

(
0 −Si

−Si Fi,j + Fj,i

)
, (4.4)

where Si and Fi are two divergence-less vectors (for a vector with non-vanishing diver-
gence, the divergence contributes to the scalar gravitational fluctuation modes).

Finally, there are two tensor modes which correspond to the two polarization states of
gravitational waves:

δgµν = −a2

(
0 0
0 hij

)
, (4.5)

where hij is trace-free and divergence-less

hi
i = hj

ij = 0 . (4.6)

Gravitational waves do not couple at linear order to the matter fluctuations. Vector
fluctuations decay in an expanding background cosmology and hence are not usually
cosmologically important. The most important fluctuations, at least in inflationary cos-
mology, are the scalar metric fluctuations, the fluctuations which couple to matter inho-
mogeneities and which are the relativistic generalization of the Newtonian perturbations
considered in the previous section.

4.3. GAUGE TRANSFORMATION

The theory of cosmological perturbations is at first sight complicated by the issue of
gauge invariance (at the final stage, however, we will see that we can make use of the
gauge freedom to substantially simplify the theory). The coordinates t,x of space-time
carry no independent physical meaning. They are just labels to designate points in the
space-time manifold. By performing a small-amplitude transformation of the space-time
coordinates (called “gauge transformation” in the following), we can easily introduce “fic-
titious” fluctuations in a homogeneous and isotropic Universe. These modes are “gauge
artifacts”.

We will in the following take an “active” view of gauge transformation. Let us con-
sider two space-time manifolds, one of them a homogeneous and isotropic UniverseM0,
the other a physical Universe M with inhomogeneities. A choice of coordinates can be
considered to be a mapping D between the manifolds M0 and M. Let us consider a
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second mapping D̃ which will map the same point (e.g. the origin of a fixed coordinate
system) in M0 into different points in M. Using the inverse of these maps D and D̃, we
can assign two different sets of coordinates to points inM.

Consider now a physical quantity Q (e.g. the Ricci scalar) onM, and the correspond-
ing physical quantity Q(0) on M0 Then, in the first coordinate system given by the map-
ping D, the perturbation δQ of Q at the point p ∈M is defined by

δQ(p) = Q(p)−Q(0)
(D−1(p)

)
. (4.7)

Analogously, in the second coordinate system given by D̃, the perturbation is defined by

˜δQ(p) = Q(p)−Q(0)
(D̃−1(p)

)
. (4.8)

The difference
∆Q(p) = ˜δQ(p)− δQ(p) (4.9)

is obviously a gauge artifact and carries no physical significance.
Some of the metric perturbation degrees of freedom introduced in the first subsection

are gauge artifacts. To isolate these, we must study how coordinate transformations act
on the metric. There are four independent gauge degrees of freedom corresponding to the
coordinate transformation

xµ → x̃µ = xµ + ξµ . (4.10)

The zero (time) component ξ0 of ξµ leads to a scalar metric fluctuation. The spatial three
vector ξi can be decomposed as

ξi = ξi
tr + γijξ,j (4.11)

(where γij is the spatial background metric) into a transverse piece ξi
tr which has two

degrees of freedom which yield vector perturbations, and the second term (given by the
gradient of a scalar ξ) which gives a scalar fluctuation. To summarize this paragraph,
there are two scalar gauge modes given by ξ0 and ξ, and two vector modes given by
the transverse three vector ξi

tr. Thus, there remain two physical scalar and two vector
fluctuation modes. The gravitational waves are gauge-invariant.

Let us now focus on how the scalar gauge transformations (i.e. the transformations
given by ξ0 and ξ) act on the scalar metric fluctuation variables φ,B,E, and ψ. An im-
mediate calculation yields:

φ̃ = φ− a′

a
ξ0 − (ξ0)

′

B̃ = B + ξ0 − ξ
′

(4.12)

Ẽ = E − ξ

ψ̃ = ψ +
a′

a
ξ0 ,

where a prime indicates the derivative with respect to conformal time η.
There are two approaches to deal with the gauge ambiguities. The first is to fix a

gauge, i.e. to pick conditions on the coordinates which completely eliminate the gauge
freedom, the second is to work with a basis of gauge-invariant variables.
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If one wants to adopt the gauge-fixed approach, there are many different gauge choices.
Note that the often used synchronous gauge determined by δg0µ = 0 does not totally fix
the gauge. A convenient system which completely fixes the coordinates is the so-called
longitudinal or conformal Newtonian gauge defined by B = E = 0.

If one prefers a gauge-invariant approach, there are many choices of gauge-invariant
variables. A convenient basis first introduced by [46] is the basis Φ,Ψ given by

Φ = φ +
1
a

[
(B − E′)a

]′
(4.13)

Ψ = ψ − a′

a
(B − E′) . (4.14)

It is obvious from the above equations that the gauge-invariant variables Φ and Ψ coincide
with the corresponding diagonal metric perturbations φ and ψ in longitudinal gauge.

Note that the variables defined above are gauge-invariant only under linear space-time
coordinate transformations. Beyond linear order, the structure of perturbation theory be-
comes much more involved. In fact, one can show [53] that the only fluctuation variables
which are invariant under all coordinate transformations are perturbations of variables
which are constant in the background space-time.

4.4. EQUATIONS OF MOTION

We begin with the Einstein equations

Gµν = 8πGTµν , (4.15)

where Gµν is the Einstein tensor associated with the space-time metric gµν , and Tµν is
the energy-momentum tensor of matter, insert the ansatz for metric and matter perturbed
about a FRW background

(
g
(0)
µν (η), ϕ(0)(η)

)
:

gµν(x, η) = g(0)
µν (η) + δgµν(x, η) (4.16)

ϕ(x, η) = ϕ0(η) + δϕ(x, η) , (4.17)

(where we have for simplicity replaced general matter by a scalar matter field ϕ) and
expand to linear order in the fluctuating fields, obtaining the following equations:

δGµν = 8πGδTµν . (4.18)

In the above, δgµν is the perturbation in the metric and δϕ is the fluctuation of the matter
field ϕ.

Note that the components δGµ
ν and δTµ

ν are not gauge invariant. If we want to use
the gauge-invariant approach, we note [5] that it is possible to construct a gauge-invariant
tensor δG

(gi) µ
ν via

δG
(gi) 0
0 ≡ δG0

0 + ((0)G
′ 0
0 )(B − E′)

δG
(gi) 0
i ≡ δG0

i + ((0)G0
i −

1
3

(0)Gk
k)(B −E′),i (4.19)

δG
(gi) i
j ≡ δGi

j + ((0)G
′ i
j )(B − E′) ,
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where (0)Gµ
ν denote the background values of the Einstein tensor. Analogously, a gauge-

invariant linearized stress-energy tensor δT
(gi) µ
ν can be defined. In terms of these tensors,

the gauge-invariant form of the equations of motion for linear fluctuations reads

δG(gi)
µν = 8πGδT (gi)

µν . (4.20)

If we insert into this equation the ansatz for the general metric and matter fluctuations
(which depend on the gauge), only gauge-invariant combinations of the fluctuation vari-
ables will appear.

In a gauge-fixed approach, one can start with the metric in longitudinal gauge

ds2 = a2
[
(1 + 2φ)dη2 − (1− 2ψ)γijdxidxj

]
(4.21)

and insert this ansatz into the general perturbation equations (4.18). The shortcut of insert-
ing a restricted ansatz for the metric into the action and deriving the full set of variational
equations is justified in this case.

Both approaches yield the following set of equations of motion:

−3H(HΦ + Ψ
′)

+∇2Ψ = 4πGa2δT
(gi) 0
0(HΦ + Ψ

′)
,i

= 4πGa2δT
(gi) 0
i (4.22)[(

2H′
+H2

)
Φ +HΦ

′
+ Ψ

′′
+ 2HΨ

′]
δi
j

+
1
2
∇2Dδi

j −
1
2
γikD,kj = −4πGa2δT

(gi) i
j ,

where D ≡ Φ−Ψ andH = a′/a. If we work in longitudinal gauge, then δT
(gi) i
j = δT i

j ,
Φ = φ and Ψ = ψ.

The first conclusion we can draw is that if no anisotropic stress is present in the matter
at linear order in fluctuating fields, i.e. δT i

j = 0 for i �= j, then the two metric fluctuation
variables coincide:

Φ = Ψ . (4.23)

This will be the case in most simple cosmological models, e.g. in theories with matter
described by a set of scalar fields with canonical form of the action, and in the case of a
perfect fluid with no anisotropic stress.

Let us now restrict our attention to the case of matter described in terms of a single
scalar field ϕ which can be expanded as

ϕ(x, η) = ϕ0(η) + δϕ(x, η) (4.24)

in terms of background matter ϕ0 and matter fluctuation δϕ(x, η). Then, in longitudinal
gauge, (4.22) reduce to the following set of equations of motion (making use of (4.23))

∇2φ− 3Hφ
′ − (H′

+ 2H2
)
φ = 4πG

(
ϕ

′
0δϕ

′
+ V

′
a2δϕ

)
φ

′
+Hφ = 4πGϕ

′
0δϕ (4.25)

φ
′′

+ 3Hφ
′
+
(H′

+ 2H2
)
φ = 4πG

(
ϕ

′
0δϕ

′ − V
′
a2δϕ

)
,
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where V
′

denotes the derivative of V with respect to ϕ. These equations can be combined
to give the following second order differential equation for the relativistic potential φ:

φ
′′

+ 2

(
H− ϕ

′′
0

ϕ
′
0

)
φ

′ −∇2φ + 2

(
H′ −Hϕ

′′
0

ϕ
′
0

)
φ = 0 . (4.26)

This is the final result for the classical evolution of cosmological fluctuations. First
of all, we note the similarities with the equation (3.12) obtained in the Newtonian theory.
The final term in (4.26) is the force due to gravity leading to the instability, the second to
last term is the pressure force leading to oscillations (relativistic since we are considering
matter to be a relativistic field), and the second term is the Hubble friction term. For each
wavenumber there are two fundamental solutions. On small scales (k > H), the solutions
correspond to damped oscillations, on large scales (k < H) the oscillations freeze out and
the dynamics is governed by the gravitational force competing with the Hubble friction
term. Note, in particular, how the Hubble radius naturally emerges as the scale where the
nature of the fluctuating modes changes from oscillatory to frozen.

Considering the equation in a bit more detail, observe that if the equation of state
of the background is independent of time (which will be the case if H′

= ϕ
′′
0 = 0),

then in an expanding background, the dominant mode of (4.26) is constant, and the sub-
dominant mode decays. If the equation of state is not constant, then the dominant mode
is not constant in time. Specifically, at the end of inflation H′

< 0, and this leads to a
growth of φ (see the following subsection).

To study the quantitative implications of the equation of motion (4.26), it is convenient
to introduce [54, 55] the variable ζ (which, up to correction term of the order ∇2φ which
is unimportant for large-scale fluctuations, is equal to the curvature perturbation R in
comoving gauge [56]) by

ζ ≡ φ +
2
3

(
H−1φ̇ + φ

)
1 + w

, (4.27)

where
w =

p

ρ
(4.28)

characterizes the equation of state of matter. In terms of ζ, the equation of motion (4.26)
takes on the form

3
2
ζ̇H(1 + w) = O(∇2φ) . (4.29)

On large scales, the right hand side of the equation is negligible, which leads to the con-
clusion that large-scale cosmological fluctuations satisfy

ζ̇(1 + w) = 0. (4.30)

This implies that ζ is constant except possibly if 1 + w = 0 at some point in time during
the cosmological evolution (which occurs during reheating in inflationary cosmology if
the inflaton field undergoes oscillations - see [57] and [74, 59] for discussions of the con-
sequences in single and double field inflationary models, respectively). In single matter
field models it is indeed possible to show that ζ̇ = 0 on super-Hubble scales indepen-
dent of assumptions on the equation of state [66, 67]. This “conservation law” makes it
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easy to relate initial fluctuations to final fluctuations in inflationary cosmology, as will be
illustrated in the following subsection.

4.5. APPLICATION TO INFLATIONARY COSMOLOGY

Let us now return to the space-time sketch of the evolution of fluctuations in inflationary
cosmology - see Figure (1) - and use the conservation law (4.30) - in the form ζ = const
on large scales - to relate the amplitude of φ at initial Hubble radius crossing during the
inflationary phase (at t = ti(k)) with the amplitude at final Hubble radius crossing at late
times (at t = tf (k)). Since both at early times and at late times φ̇ = 0 on super-Hubble
scales as the equation of state is not changing, (4.30) and (4.27) lead to

φ(tf (k)) � (1 + w)(tf (k))
(1 + w)(ti(k))

φ(ti(k)) . (4.31)

This equation will allow us to evaluate the amplitude of the cosmological perturba-
tions when they re-enter the Hubble radius at time tf (k), under the assumption (discussed
in detail in the following section) that the origin of the primordial fluctuations is quantum
vacuum oscillations.

The time-time perturbed Einstein equation (the first equation of (4.22)) relates the
value of φ at initial Hubble radius crossing to the amplitude of the fractional energy den-
sity fluctuations. This, together with the fact that the amplitude of the scalar matter field
quantum vacuum fluctuations is of the order H , yields

φ(ti(k)) ∼ H
V

′

V
(ti(k)) . (4.32)

In the late time radiation dominated phase, w = 1/3, whereas during slow-roll inflation

1 + w(ti(k)) � ϕ̇2
0

V
(ti(k)) . (4.33)

Making, in addition, use of the slow roll conditions satisfied during the inflationary period

Hϕ̇0 � −V
′

H2 � 8πG

3
V , (4.34)

we arrive at the final result

φ(tf (k)) ∼ V 3/2

V ′m3
pl

(ti(k)) , (4.35)

which gives the position space amplitude of cosmological fluctuations on a scale labelled
by the comoving wavenumber k at the time when the scale re-enters the Hubble radius at
late times, a result first obtained in the case of the Starobinsky model [14] of inflation in
[68], and later in the context of scalar field-driven inflation in [69, 70, 71, 54].

In the case of slow roll inflation, the right hand side of (4.35) is, to a first approxima-
tion, independent of k, and hence the resulting spectrum of fluctuations is nearly scale-
invariant.
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5. Quantum Theory of Cosmological Fluctuations

5.1. OVERVIEW

As already mentioned in the previous section, in many models of the very early Universe,
in particular in inflationary cosmology, but also in the Pre-Big-Bang and in the Ekpyrotic
scenarios, primordial inhomogeneities emerge from quantum vacuum fluctuations on mi-
croscopic scales (wavelengths smaller than the Hubble radius). The wavelength is then
stretched relative to the Hubble radius, becomes larger than the Hubble radius at some
time and then propagates on super-Hubble scales until re-entering at late cosmological
times. In the context of a Universe with a de Sitter phase, the quantum origin of cosmo-
logical fluctuations was first discussed in [68] - see [72] for a more general discussion
of the quantum origin of fluctuations in cosmology, and also [73, 74] for earlier ideas.
In particular, Mukhanov [68] and Press [73] realized that in an exponentially expanding
background, the curvature fluctuations would be scale-invariant, and Mukhanov provided
a quantitative calculation which also yielded the logarithmic deviation from exact scale-
invariance.

To understand the role of the Hubble radius, consider the equation of a free scalar
matter field ϕ on an unperturbed expanding background:

ϕ̈ + 3Hϕ̇− ∇
2

a2
ϕ = 0 . (5.1)

The second term on the left hand side of this equation leads to damping of ϕ with a
characteristic decay rate given by H . As a consequence, in the absence of the spatial
gradient term, ϕ̇ would be of the order of magnitude Hϕ. Thus, comparing the second
and the third term on the left hand side, we immediately see that the microscopic (spatial
gradient) term dominates on length scales smaller than the Hubble radius, leading to os-
cillatory motion, whereas this term is negligible on scales larger than the Hubble radius,
and the evolution of ϕ is determined primarily by gravity. Note that in general cosmolog-
ical models the Hubble radius is much smaller than the horizon (the forward light cone
calculated from the initial time). In an inflationary universe, the horizon is larger by a
factor of at least exp(N), where N is the number of e-foldings of inflation, and the lower
bound is taken on if the Hubble radius and horizon coincide until inflation begins. It is
very important to realize this difference, a difference which is obscured in most articles
on cosmology in which the term “horizon” is used when “Hubble radius” is meant. Note,
in particular, that the homogeneous inflaton field contains causal information on super-
Hubble but sub-horizon scales. Hence, it is completely consistent with causality [57] to
have a microphysical process related to the background scalar matter field lead to expo-
nential amplification of the amplitude of fluctuations during reheating on such scales, as
it does in models in which entropy perturbations are present and not suppressed during
inflation [74, 59].

There are, however, general relativistic conservation laws [60] which imply that adi-
abatic fluctuations produced locally must be Poisson-statistic suppressed on scales larger
than the Hubble radius. For example, fluctuations produced by the formation of topolog-
ical defects at a phase transition in the early universe are initially isocurvature (entropy)
in nature (see e.g. [61] for a discussion). Via the source term in the equation of motion
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(3.4), a growing adiabatic mode is induced, but at any fixed time the spectrum of the cur-
vature fluctuation on scales larger than the Hubble radius has index n = 4 (Poisson). A
similar conclusion applies to recently discussed models [62, 63] of modulated reheating
as a new source of density perturbations (see [64] for a nice discussion), and to models in
which moduli fields obtain masses after some symmetry breaking, their quantum fluctua-
tions then inducing cosmological fluctuations. A prototypical example is given by axion
fluctuations in an inflationary universe (see e.g. [65] and references therein).

To understand the generation and evolution of fluctuations in current models of the
very early Universe, we need both Quantum Mechanics and General Relativity, i.e. quan-
tum gravity. At first sight, we are thus faced with an intractable problem, since the theory
of quantum gravity is not yet established. We are saved by the fact that today on large
cosmological scales the fractional amplitude of the fluctuations is smaller than 1. Since
gravity is a purely attractive force, the fluctuations had to have been - at least in the con-
text of an eternally expanding background cosmology - very small in the early Universe.
Thus, a linearized analysis of the fluctuations (about a classical cosmological background)
is self-consistent.

From the classical theory of cosmological perturbations discussed in the previous sec-
tion, we know that the analysis of scalar metric inhomogeneities can be reduced - after
extracting gauge artifacts - to the study of the evolution of a single fluctuating variable.
Thus, we conclude that the quantum theory of cosmological perturbations must be re-
ducible to the quantum theory of a single free scalar field which we will denote by v.
Since the background in which this scalar field evolves is time-dependent, the mass of v
will be time-dependent. The time-dependence of the mass will lead to quantum particle
production over time if we start the evolution in the vacuum state for v. As we will see,
this quantum particle production corresponds to the development and growth of the cos-
mological fluctuations. Thus, the quantum theory of cosmological fluctuations provides a
consistent framework to study both the generation and the evolution of metric perturba-
tions. The following analysis is based on Part II of [5].

5.2. OUTLINE OF THE ANALYSIS

In order to obtain the action for linearized cosmological perturbations, we expand the
action to quadratic order in the fluctuating degrees of freedom. The linear terms cancel
because the background is taken to satisfy the background equations of motion.

We begin with the Einstein-Hilbert action for gravity and the action of a scalar matter
field (for the more complicated case of general hydrodynamical fluctuations the reader is
referred to [5])

S =
∫

d4x
√−g

[− 1
16πG

R +
1
2
∂µϕ∂µϕ− V (ϕ)

]
, (5.2)

where R is the Ricci curvature scalar.
The simplest way to proceed is to work in longitudinal gauge, in which the metric and

matter take the form

ds2 = a2(η)
[
(1 + 2φ(η,x))dη2 − (1− 2ψ(t,x))dx2

]
(5.3)

ϕ(η,x) = ϕ0(η) + δϕ(η,x) .
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The next step is to reduce the number of degrees of freedom. First, as already men-
tioned in the previous section, the off-diagonal spatial Einstein equations force ψ = φ
since δT i

j = 0 for scalar field matter (no anisotropic stresses to linear order). The two re-
maining fluctuating variables φ and ϕ must be linked by the Einstein constraint equations
since there cannot be matter fluctuations without induced metric fluctuations.

The two nontrivial tasks of the lengthy [5] computation of the quadratic piece of the
action is to find out what combination of ϕ and φ gives the variable v in terms of which
the action has canonical kinetic term, and what the form of the time-dependent mass is.
This calculation involves inserting the ansatz (4.7) into the action (2.1), expanding the
result to second order in the fluctuating fields, making use of the background and of the
constraint equations, and dropping total derivative terms from the action. In the context
of scalar field matter, the quantum theory of cosmological fluctuations was developed by
Mukhanov [75, 76] (see also [77]). The result is the following contribution S(2) to the
action quadratic in the perturbations:

S(2) =
1
2

∫
d4x

[
v′2 − v,iv,i +

z′′

z
v2
]
, (5.4)

where the canonical variable v (the “Mukhanov variable” introduced in [76] - see also
[72]) is given by

v = a
[
δϕ +

ϕ
′
0

H φ
]
, (5.5)

withH = a′/a, and where

z =
aϕ

′
0

H . (5.6)

In both the cases of power law inflation and slow roll inflation,H and ϕ
′
0 are proportional

and hence (as long as the equation of state does not change over time)

z(η) ∼ a(η) . (5.7)

Note that the variable v is related to the curvature perturbationR in comoving coordinates
introduced in [56] and closely related to the variable ζ used in [54, 55]:

v = zR . (5.8)

The equation of motion which follows from the action (5.4) is

v
′′ −∇2v − z

′′

z
v = 0 , (5.9)

or, in momentum space,

v
′′
k + k2vk − z

′′

z
vk = 0 , (5.10)

where vk is the k’th Fourier mode of v. As a consequence of (5.7), the mass term in the
above equation is given by the Hubble scale

k2
H ≡ z

′′

z
� H2 . (5.11)
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Thus, it immediately follows from (5.10) that on small length scales, i.e. for k > kH ,
the solutions for vk are constant amplitude oscillations . These oscillations freeze out at
Hubble radius crossing, i.e. when k = kH . On longer scales (k � kH ), the solutions for
vk increase as z:

vk ∼ z , k � kH . (5.12)

Given the action (5.4), the quantization of the cosmological perturbations can be per-
formed by canonical quantization (in the same way that a scalar matter field on a fixed
cosmological background is quantized [1]).

The final step in the quantum theory of cosmological perturbations is to specify an
initial state. Since in inflationary cosmology all pre-existing classical fluctuations are red-
shifted by the accelerated expansion of space, one usually assumes (we will return to a
criticism of this point when discussing the trans-Planckian problem of inflationary cos-
mology) that the field v starts out at the initial time ti mode by mode in its vacuum state.
Two questions immediately emerge: what is the initial time ti, and which of the many
possible vacuum states should be chosen. It is usually assumed that since the fluctuations
only oscillate on sub-Hubble scales, the choice of the initial time is not important, as long
as it is earlier than the time when scales of cosmological interest today cross the Hub-
ble radius during the inflationary phase. The state is usually taken to be the Bunch-Davies
vacuum (see e.g. [1]), since this state is empty of particles at ti in the coordinate frame de-
termined by the FRW coordinates (see e.g. [79] for a discussion of this point), and since
the Bunch-Davies state is a local attractor in the space of initial states in an expanding
background (see e.g. [80]). Thus, we choose the initial conditions

vk(ηi) =
1√
2ωk

(5.13)

v
′
k(ηi) =

√
ωk√
2

where here ωk = k, and ηi is the conformal time corresponding to the physical time ti.
Let us briefly summarize the quantum theory of cosmological perturbations. In the

linearized theory, fluctuations are set up at some initial time ti mode by mode in their
vacuum state. While the wavelength is smaller than the Hubble radius, the state under-
goes quantum vacuum fluctuations. The accelerated expansion of the background red-
shifts the length scale beyond the Hubble radius. The fluctuations freeze out when the
length scale is equal to the Hubble radius. On larger scales, the amplitude of vk increases
as the scale factor. This corresponds to the squeezing of the quantum state present at Hub-
ble radius crossing (in terms of classical general relativity, it is self-gravity which leads to
this growth of fluctuations). As discussed e.g. in [81], the squeezing of the quantum vac-
uum state sets up the classical correlations in the wave function of the fluctuations which
are an essential ingredient in the classicalization of the perturbations.

5.3. APPLICATION TO INFLATIONARY COSMOLOGY

We will now use the quantum theory of cosmological perturbations developed above to
calculate the spectrum of curvature fluctuations in inflationary cosmology.
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We need to compute the power spectrumPR(k) of the curvature fluctuationR defined
in (5.8), namely

R = z−1v = φ + δϕ
H
ϕ

′
0

(5.14)

The idea in calculating the power spectrum at a late time t is to first relate the power
spectrum via the growth rate (5.12) of v on super-Hubble scales to the power spectrum at
the time tH(k) of Hubble radius crossing, and to then use the constancy of the amplitude
of v on sub-Hubble scales to relate it to the initial conditions (5.13). Thus

PR(k, t) ≡ k3R2
k(t) = k3z−2(t)|vk(t)|2 (5.15)

= k3z−2(t)
( z(t)
z(tH(k))

)2|vk(tH(k))|2

= k3z−2(tH(k))|vk(tH(k))|2
∼ k3a−2(tH(k))|vk(ti)|2 ,

where in the final step we have used (5.7) and the constancy of the amplitude of v on
sub-Hubble scales. Making use of the condition

a−1(tH(k))k = H (5.16)

for Hubble radius crossing, and of the initial conditions (5.13), we immediately see that

PR(k, t) ∼ k3k−2k−1H2 , (5.17)

and that thus a scale invariant power spectrum with amplitude proportional to H2 results,
in agreement with what was argued on heuristic grounds in Section (4.5).

5.4. QUANTUM THEORY OF GRAVITATIONAL WAVES

The quantization of gravitational waves parallels the quantization of scalar metric fluctu-
ations, but is more simple because there are no gauge ambiguities. Note that at the level
of linear fluctuations, scalar metric fluctuations and gravitational waves are independent.
Both can be quantized on the same cosmological background determined by the back-
ground scale factor and the background matter. However, in contrast to the case of scalar
metric fluctuations, the tensor modes are also present in pure gravity (i.e. in the absence
of matter).

Starting point is the action (2.1). Into this action we insert the metric which corre-
sponds to a classical cosmological background plus tensor metric fluctuations:

ds2 = a2(η)
[
dη2 − (δij + hij)dxidxj

]
, (5.18)

where the second rank tensor hij(η,x) represents the gravitational waves, and in turn can
be decomposed as

hij(η,x) = h+(η,x)e+
ij + hx(η,x)ex

ij (5.19)

into the two polarization states. Here, e+
ij and ex

ij are two fixed polarization tensors, and
h+ and hx are the two coefficient functions.
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To quadratic order in the fluctuating fields, the action consists of separate terms in-
volving h+ and hx. Each term is of the form

S(2) =
∫

d4x
a2

2
[
h′2 − (∇h)2

]
, (5.20)

leading to the equation of motion

h
′′
k + 2

a′

a
h

′
k + k2hk = 0 . (5.21)

The variable in terms of which the action (5.20) has canonical kinetic term is

µk ≡ ahk , (5.22)

and its equation of motion is

µ
′′
k +

(
k2 − a′′

a

)
µk = 0 . (5.23)

This equation is very similar to the corresponding equation (5.10) for scalar gravitational
inhomogeneities, except that in the mass term the scale factor a(η) replaces z(η), which
leads to a very different evolution of scalar and tensor modes during the reheating phase
in inflationary cosmology during which the equation of state of the background matter
changes dramatically.

Based on the above discussion we have the following theory for the generation and
evolution of gravitational waves in an accelerating Universe (first developed by Grishchuk
[82]): waves exist as quantum vacuum fluctuations at the initial time on all scales. They
oscillate until the length scale crosses the Hubble radius. At that point, the oscillations
freeze out and the quantum state of gravitational waves begins to be squeezed in the sense
that

µk(η) ∼ a(η) , (5.24)

which, from (5.22) corresponds to constant amplitude of hk. The squeezing of the vacuum
state leads to the emergence of classical properties of this state, as in the case of scalar
metric fluctuations.

6. Conceptual Problems of Inflationary Cosmology

After this detailed survey of the theory of cosmological perturbations applied to inflation-
ary cosmology we can now turn to some conceptual problems of cosmological inflation,
and ways in which string theory may help address these issues. The first two problems
relate to the cosmological perturbations we have just discussed.

The first problem concerns the amplitude of the cosmological fluctuations. Consider-
ing the simplest large-field potential

V (ϕ) =
1
2
m2ϕ2 , (6.1)

the result (4.35) for the amplitude of the gravitational potential φ at late times and large
scales (which modulo a factor of order unity gives the amplitude of the CMB fluctuations
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on large angular scales and hence should be of the order 10−5) yields (making use of
the fact that the result from (4.35) must be evaluated for field values ϕ ∼ mpl when the
relevant scales exit the Hubble radius)

φ(tf (k)) ∼ m

mpl
. (6.2)

Hence, the value of m must be chosen to be about 1013GeV, introducing a new hierarchy
problem into particle physics model building. In a model with quartic potential

V (ϕ) =
1
4
λϕ4 (6.3)

we obtain a severe constraint on the value of the self coupling constant (λ � 10−10

modulo factors of 2π), a constraint which implies that the inflaton cannot be in thermal
equilibrium before inflation. To reach this conclusion we have used “naturalness” con-
siderations on coupling constants which state that the lower bound on the self coupling
constant λ implies lower bounds on the coupling constants describing interactions of ϕ
with other matter fields, since such interactions generate at higher loop order contribu-
tions to the renormalized value of λ. As shown in [83], this hierarchy problem is quite
general.

As has recently been shown [59], this problem is worse in many inflationary models
with entropy fluctuations. If the entropy perturbations are not suppressed during inflation,
they can be parametrically amplified during reheating [84, 57, 74, 59]. This results in
fluctuations which are nonlinear after inflation independent of the values of the coupling
constants, a result derived including the back-reaction of these fluctuations in the Hartree
approximation [85]. Such models are thus phenomenologically ruled out.

The second problem is more important and will be discussed at length in the next sec-
tion. Basically, since in most scalar field-driven inflationary models the period of inflation
lasts much longer than the minimal number of e-foldings required in order that scales of
current cosmological interest start out inside the Hubble radius at the beginning of infla-
tion, in such models these scales thus originate with a wavelength much smaller than the
Planck length, and hence the justification for using the formalism of the previous section
to compute the evolution of fluctuations is doubtful. This is the trans-Planckian problem
for inflationary cosmology [9] which becomes the trans-Planckian window of opportunity
for string theory.

Scalar field-driven inflationary models have been shown to be geodesically incomplete
in the past [86]. Hence, we know that this model cannot describe the very early Universe.
A major challenge for string cosmology is to provide this description.

Most importantly, scalar field-driven inflation uses the time-independent part of V (ϕ)
to generate inflation. However, it is observationally known that (but theoretically not un-
derstood why) the time independent quantum vacuum contribution to the energy density
of any quantum field does not gravitate. This is the famous cosmological constant prob-
lem. It may turn out that the solution of the cosmological constant problem will remove
not only quantum vacuum energy but also the part of V (ϕ) which generates inflation. I
view this issue as the Achilles heel of scalar field-driven inflationary cosmology.



106 ROBERT H. BRANDENBERGER

Finally, standard model particle physics does not provide a candidate for the inflaton.
Models of particle physics beyond the standard model open the window for providing
realizations of inflation.

Why can string theory help? First of all, string theory contains many fields which are
massless in the early Universe, namely the moduli fields. Thus, it provides many candi-
dates for an inflaton. In addition, it is quite possible that the hierarchy of scales required
to give the right magnitude of density fluctuations emerges from a hierarchy of symme-
try breaking scales in string theory. Secondly, string theory is supposed to describe the
physics on all scales. Thus, in string cosmology the equations for evolving the fluctua-
tions will be unambiguous (even if they are not known today), and the trans-Planckian
problem will be solved. One of the main goals of string theory is to provide a nonsingular
cosmology (and a concrete realization of this goal was provided in [87]). Thus, string the-
ory should be able to provide a consistent theory of the very early Universe. This theory
might connect with late-time cosmology through a period of inflation, or through scenar-
ios more similar to [7, 8].

7. The Trans-Planckian Window for Superstring Cosmology

The same background dynamics which yields the causal generation mechanism for cos-
mological fluctuations, the most spectacular success of inflationary cosmology, bears in it
the nucleus of the “trans-Planckian problem”. This can be seen from Fig. (2). If inflation
lasts only slightly longer than the minimal time it needs to last in order to solve the hori-
zon problem and to provide a causal generation mechanism for CMB fluctuations, then the
corresponding physical wavelength of these fluctuations is smaller than the Planck length
at the beginning of the period of inflation. The theory of cosmological perturbations is
based on classical general relativity coupled to a weakly coupled scalar field description
of matter. Both the theories of gravity and of matter will break down on trans-Planckian
scales, and this immediately leads to the trans-Planckian problem: are the predictions of
standard inflationary cosmology robust against effects of trans-Planckian physics [9]?

This question has recently been addressed using a variety of techniques. The simplest
method is to replace the usual dispersion relation for cosmological perturbations by an ad-
hoc modified relation, as was done in [88, 89] in the context of studying the dependence of
the thermal spectrum of black hole radiation on trans-Planckian physics. We will discuss
the application of this method to cosmology [90, 91, 92] below. Other methods include
considerations of modifications of the evolution of cosmological fluctuations coming from
string-motivated space-space uncertainty relations [93, 94, 95, 96, 97], string-motivated
space-time uncertainty relations [98] (reviewed below), from minimal length considera-
tions [99], from an effective action analysis [100], from a minimal trans-Planckian physics
viewpoint (starting each mode out in the vacuum state of the usual action for cosmological
perturbations at the time when the physical wavelength is equal to the new fundamental
length) [101, 102], and from the point of view of boundary renormalization group analysis
[103].

The simplest way of modeling the possible effects of trans-Planckian physics [90,
91, 92] on the evolution of cosmological perturbations, while keeping the mathematical
analysis simple, is to replace the linear dispersion relation ωphys = kphys of the usual
equation for cosmological perturbations by a non standard dispersion relation ωphys =
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Figure 2. Space-time diagram (physical distance vs. time) showing the origin of the trans-Planckian
problem of inflationary cosmology: at very early times, the wavelength is smaller than the Planck
scale �Pl (Phase I), at intermediate times it is larger than �Pl but smaller than the Hubble radius
H−1 (Phase II), and at late times during inflation it is larger than the Hubble radius (Phase III). The
line labeled a) is the physical wavelength associated with a fixed comoving scale k. The line b) is
the Hubble radius or horizon in SBB cosmology. Curve c) shows the Hubble radius during inflation.
The horizon in inflationary cosmology is shown in curve d).

ωphys(kphys) which differs from the standard one only for physical wavenumbers larger
than the Planck scale. This amounts to replacing k2 appearing in (5.10) with k2

eff(n, η)
defined by

k2 → k2
eff(k, η) ≡ a2(η)ω2

phys

(
k

a(η)

)
. (7.1)

For a fixed comoving mode, this implies that the dispersion relation becomes time-dependent.
Therefore, the equation of motion of the quantity vk(η) takes the form (with z(η) ∝ a(η))

v′′
k +

[
k2
eff(k, η)− a′′

a

]
vk = 0 . (7.2)

A more rigorous derivation of this equation, based on a variational principle, has been
provided [104] (see also Ref. [105]).

The evolution of modes thus must be considered separately in three phases, see Fig.
(2). In Phase I the wavelength is smaller than the Planck scale, and trans-Planckian physics
can play an important role. In Phase II, the wavelength is larger than the Planck scale
but smaller than the Hubble radius. In this phase, trans-Planckian physics will have a
negligible effect (this statement can be quantified [106]). Hence, by the analysis of the
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previous section, the wave function of fluctuations is oscillating in this phase,

vk = B1 exp(−ikη) + B2 exp(ikη) (7.3)

with constant coefficients B1 and B2. In the standard approach, the initial conditions are
fixed in this region and the usual choice of the vacuum state leads to B1 = 1/

√
2k,

B2 = 0. Phase III starts at the time tH(k) when the mode crosses the Hubble radius.
During this phase, the wave function is squeezed.

One source of trans-Planckian effects [90, 91] on observations is the possible non-
adiabatic evolution of the wave function during Phase I. If this occurs, then it is possible
that the wave function of the fluctuation mode is not in its vacuum state when it enters
Phase II and, as a consequence, the coefficients B1 and B2 are no longer given by the
standard expressions above. In this case, the wave function will not be in its vacuum
state when it crosses the Hubble radius, and the final spectrum will be different. In par-
ticular, since short wavelength modes spend more time in the trans-Planckian phase, it
is possible that a deviation of the spectrum from scale-invariance could be induced in a
background which is expanding almost exponentially. This would be an order one effect
on the spectrum of cosmological perturbations. In general, B1 and B2 are determined by
the matching conditions between Phase I and II. If the dynamics is adiabatic through-
out (in particular if the a′′/a term is negligible), the WKB approximation holds and the
solution is always given by

vk(η) � 1√
2keff(k, η)

exp
(
−i

∫ η

ηi

keffdτ

)
, (7.4)

where ηi is some initial time. Therefore, if we start with a positive frequency solution
only and use this solution, we find that no negative frequency solution appears. Deep in
Region II where keff � k the solution becomes

vk(η) � 1√
2k

exp(−iφ− ikη), (7.5)

i.e. the standard vacuum solution times a phase which will disappear when we calculate
the modulus. To obtain a modification of the inflationary spectrum, it is necessary to find
a dispersion relation such that the WKB approximation breaks down in Phase I.

A concrete class of dispersion relations for which the WKB approximation breaks
down is [89]

k2
eff(k, η) = k2 − k2|bm|

[
�pl

λ(η)

]2m

, (7.6)

where λ(η) = 2πa(η)/k is the wavelength of a mode. If we follow the evolution of the
modes in Phases I, II and III, matching the mode functions and their derivatives at the
junction times, the calculation [90, 91, 107] demonstrates that the final spectral index
is modified and that superimposed oscillations appear. It has recently been shown [108]
that in the case of this class of dispersion relations, the spectrum of black hole Hawking
radiation is also affected.

However, the above example suffers from several problems. First, in inflationary mod-
els with a long period of inflationary expansion, the dispersion relation (7.6) leads to com-
plex frequencies at the beginning of inflation for scales which are of current interest in
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Figure 3. Sketch of the dispersion relation of [104]. The adiabaticity condition on the evolution of
fluctuations is broken when the physical frequency (vertical axis) is smaller than the Hubble expan-
sion rate. During the phase of inflation, this is the case when the physical wavenumber (horizontal
axis) is in the interval between Λ1 and Λ2. Ultraviolet scales are k > k0, and the value k = k1 is
the value when the dispersion relation turns over.

cosmology. Furthermore, the initial conditions for the Fourier modes of the fluctuation
field have to be set in a region where the evolution is non-adiabatic and the use of the
usual vacuum prescription can be questioned. These problems can be avoided in a toy
model in which we follow the evolution of fluctuations in a bouncing cosmological back-
ground which is asymptotically flat in the past and in the future. The analysis of [109]
shows that even in this case the final spectrum of fluctuations depends on the specific
dispersion relation used. An example (see Fig. (3)) of a dispersion relation which breaks
the WKB approximation in the trans-Planckian regime but does not lead to the problems
mentioned in the previous paragraph was investigated in [104]. It is a dispersion relation
which is linear for both small and large wavenumbers, but has an intermediate interval
during which the frequency decreases as the wavenumber increases, much like what hap-
pens in (7.6). The violation of the WKB condition occurs for wavenumbers near the local
minimum of the ω(k) curve. In this model, modes can be set up in the far ultraviolet in
their Bunch-Davies vacuum. During the time interval when the physical wavenumber kp

passes through the interval Λ1 < kp < Λ2 when the physical frequency is smaller than
the value of the Hubble constant Hinf in the inflationary phase, the mode is squeezed and
thus is no longer in the local vacuum state when kp < Λ1.

A justified criticism against the method summarized in the previous analysis is that
the non-standard dispersion relations used are completely ad hoc, without a clear basis in
trans-Planckian physics. Other recently explored approaches are motivated by string the-
ory. For example, there has been a lot of recent work [93, 94, 95, 96, 97] on the implication
of space-space uncertainty relations [110, 111] for the evolution of fluctuations. The ap-
plication of the uncertainty relations to the fluctuations lead to two effects: Firstly, the
equation of motion of the fluctuations is modified. Secondly, for fixed comoving length
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scale k, the uncertainty relation is saturated at critical time ti(k). Thus, in addition to
a modification of the evolution, trans-Planckian physics leads to a modification of the
boundary conditions for the fluctuation modes. The upshot of this work is that the spec-
trum of fluctuations is modified. The magnitude of the deviations can be of the order
H/mpl, and is thus in principle measurable.

In [98], the implications of the stringy space-time uncertainty relation [112, 113]

∆xphys∆t ≥ l2s (7.7)

on the spectrum of cosmological fluctuations was studied. Again, application of this un-
certainty relation to the fluctuations leads to two effects. Firstly, the coupling between the
background and the fluctuations is nonlocal in time, thus leading to a modified dynamical
equation of motion (a similar modification also results [114] from quantum deformations,
another example of a consequence of non-commutative basic physics). Secondly, the un-
certainty relation is saturated at the time ti(k) when the physical wavelength equals the
string scale ls. Before that time it does not make sense to talk about fluctuations on that
scale. By continuity, it makes sense to assume that fluctuations on scale k are created at
time ti(k) in the local vacuum state (the instantaneous WKB vacuum state).

Let us for the moment neglect the nonlocal coupling between background and fluctu-
ation, and thus consider the usual equation of motion for fluctuations in an accelerating
background cosmology. We assume that a(t) scales as a power of time, i.e. we consider
power-law inflation, and we distinguish two ranges of scales. Ultraviolet modes are gen-
erated at late times when the Hubble radius is larger than ls. On these scales, the spectrum
of fluctuations does not differ from what is predicted by the standard theory, since at the
time of Hubble radius crossing the fluctuation modes will be in their vacuum state. How-
ever, the evolution of the infrared modes which are created when the Hubble radius is
smaller than ls is different. The fluctuations undergo less squeezing than they do in the
absence of the uncertainty relation, and hence the final amplitude of fluctuations is lower.
From the equation (5.15) for the power spectrum of fluctuations, and making use of the
condition

a(ti(k)) = kls (7.8)

for the time ti(k) when the mode is generated, it follows immediately that the power
spectrum is scale-invariant

PR(k) ∼ k0 . (7.9)

In the standard scenario of power-law inflation the spectrum is red (PR(k) ∼ kn−1 with
n < 1). Taking into account the effects of the nonlocal coupling between background and
fluctuation mode leads [98] to a modification of this result: the spectrum of fluctuations
in a power-law inflationary background is in fact blue (n > 1).

Note that, if we neglect the nonlocal coupling between background and fluctuation
mode, the result of (7.9) also holds in a cosmological background which is NOT accel-
erating. Thus, we have a method of obtaining a scale-invariant spectrum of fluctuations
without inflation. This result was also subsequently obtained in [115], however without a
micro-physical basis for the prescription for the initial conditions.

An approach to the trans-Planckian issue pioneered by Danielsson [101] which has
recently received a lot of attention is to avoid the issue of the unknown trans-Planckian
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physics and to start the evolution of the fluctuation modes at the mode-dependent time
when the wavelength equals the limiting scale. Obviously, the resulting spectrum will
depend sensitively on which state is taken to be the initial state. The vacuum state is not
unambiguous, and the choice of a state minimizing the energy density depends on the
space-time splitting [102]. The signatures of this prescription are typically oscillations
superimposed on the usual spectrum. The amplitude of this effect depends sensitively on
the prescription of the initial state, and for a fixed prescription also on the background
cosmology. For a discussion of these issues and a list of references on this approach the
reader is referred to [116]. Note, in particular, that for a fixed background cosmology
and for a fixed initial condition prescription, the amplitude of the correction terms in
the spectrum may be different for scalar cosmological perturbations on one hand and
gravitational waves or test scalar matter fields on the other hand.

If the ultraviolet modes are not in their vacuum state for wavelengths between the
Planck or string scale and the Hubble radius, then the question of their back-reaction
on the background geometry [117, 118, 119] arises. The naive expectation is that such
ultraviolet modes have the equation of state of radiation, and that the mode occupation
number hence must be very small (of order (Hinf/mpl)2) in order for the total energy
density carried by these modes not to prevent inflation. This issue can be analyzed in the
model of [104] in a setting in which there are no ultraviolet problems (in the naive ap-
proach one needs to assume that modes are continuously generated). In this approach,
all modes start in their vacuum state, they are squeezed when Λ1 < kp < Λ2, and
they oscillate at an excited level thereafter. In an exponentially expanding background
it is clear by time-translation invariance that the energy density in the ultraviolet modes
is constant. The stress-energy density of a test scalar field with this dispersion relation
has recently been calculated [120], yielding the result that up to correction terms sup-
pressed by (Hinf/mpl)2, the equation of state is that of a cosmological constant. Thus,
the back-reaction of the excited states does not prevent inflation but rather leads to a
renormalization of the cosmological constant. The back-reaction does effect the speed of
rolling of the scalar field, and this yields constraints on the mode occupation numbers in
the ultraviolet, constraints which, however, are much weaker than the ones conjectured in
[117, 118, 119].

Another constraint on trans-Planckian physics arises from the observational limits on
the flux of ultra-high-energy cosmic rays. Such cosmic rays would be produced [121] in
the present Universe if Trans-Planckian effects would lead to non-adiabatic mode evo-
lution in the ultraviolet today. In the model of [104] this does not happen if the present
Hubble rate H0 is smaller than the local minimum of the dispersion relation, as in the
situation depicted in Fig. (3).

In summary, due to the exponential red-shifting of wavelengths, present cosmolog-
ical scales originate at wavelengths smaller than the Planck length early on during the
period of inflation. Thus, Planck-scale physics may well encode information in these
modes which can now be observed in the spectrum of microwave anisotropies. Two ex-
amples have been shown to demonstrate the existence of this “window of opportunity”
to probe trans-Planckian physics in cosmological observations. The first method makes
use of modified dispersion relations to probe the robustness of the predictions of infla-
tionary cosmology, the second applies the stringy space-time uncertainty relation on the
fluctuation modes. Both methods yield the result that trans-Planckian physics may lead to
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measurable effects in cosmological observables.

8. Conclusions

These lectures have focused on the quantum theory of the generation and evolution of
cosmological fluctuations. This is the theory which connects the fundamental physics of
the very early Universe with current cosmological observations. The general theory was
illustrated in the context of the current paradigm of early universe cosmology, namely
the inflationary universe scenario. In the context of the current approach to early uni-
verse cosmology which involves the coupling of matter described by quantum field theory
to classical general relativity, inflationary cosmology suffers from important conceptual
problems. Resolving these problems is a major goal for superstring cosmology. Thus, I
would argue that inflationary cosmology requires string theory.

Whether string theory requires inflation is a different issue. String theory provides
many candidates for an inflaton, and thus it is possible (maybe even likely) that inflation
can be implemented in string theory. The study of this issue has recently attracted a lot
of attention. However, one should keep in mind that current observations do not prove
the correctness of inflation. They show that the spectrum of fluctuations is nearly scale-
invariant and nearly adiabatic. However, there are other ways to obtain such a spectrum,
although the existing alternatives such as the ad hoc model mentioned in the previous
section of these lecture notes, or the Pre-Big-Bang [7] and Ekpyrotic [8] scenarios are
either not based on fundamental physics or not (yet) as developed as inflationary cos-
mology. Thus, it may be possible that string theory connects with observations using a
cosmological scenario different than inflation. Even in this case, however, the theory of
cosmological perturbations developed here is applicable.

A stringy early Universe may involve the dynamics of higher dimensions in an impor-
tant way. This is the case for the Ekpyrotic scenario (see e.g. [122, 123] for some initial
work). In this case, the formalism of cosmological perturbations needs to be extended (see
e.g. [124] for a formalism which is a direct generalization of what was discussed here).
There may be many interesting effects of bulk fluctuation modes which cannot be seen in
a four-dimensional effective field theory approach. This is a rich field which merits much
more work.
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Abstract. We define new topological theories related to sigma models whose target space
is a 7 dimensional manifold of G2 holonomy. We show how to define the topological twist
and identify the BRST operator and the physical states. Correlation functions at genus
zero are computed and related to Hitchin’s topological action for three-forms. We con-
jecture that one can extend this definition to all genus and construct a seven-dimensional
topological string theory. In contrast to the four-dimensional case, it does not seem to
compute terms in the low-energy effective action in three dimensions.

1. Introduction

Topological strings on Calabi-Yau manifolds describe certain solvable sectors of super-
strings and as such provide simplified toy models of string theory. There are two inequiv-
alent ways to twist the Calabi-Yau sigma model. This yields topological theories known
as the A-model and the B-model, which at first sight depend on different degrees of free-
dom: the A-model apparently only involves the Kähler moduli and the B-model only the
complex moduli. However, this changes once branes are included, and it has been con-
jectured that there is a version of S-duality which maps the A-model to the B-model [1].
Subsequently, several authors found evidence for the existence of seven and/or eight di-
mensional theories that unify and extend the A and B-model [2, 3, 4, 5, 6]. This was one
of our original motivations to take a closer look at string theory on seven-dimensional
manifolds of G2 holonomy, and to see whether it allows for a topological twist, though
we were motivated by other issues as well, such as applications to M-theory compactifica-
tions on G2-manifolds, and as a possible tool to improve our understanding of the relation
between supersymmetric gauge theories in three and four dimensions.

The outline of this note is as follows. We will first review sigma-models on target
spaces of G2 holonomy, and the structure of chiral the algebra of these theories. The
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latter is a non-linear extension of the c = 21
2 N = 1 superconformal algebra that contains

an N = 1 subalgebra with c = 7
10 . This describes a minimal model, the tricritical Ising

model, which plays a crucial role in the twisting. We then go on to describe the twisting,
the BRST operator, the physical states, and we end with a discussion of topological G2

strings. Here we briefly summarize our findings. A more detailed discussion will appear
elsewhere [7].

There is extensive literature about string theory and M-theory compactified on G2

manifolds. The first detailed study of the world-sheet formulation of strings on G2 man-
ifolds appeared in [8]. The world-sheet chiral algebra was studied in some detail in
[8, 9, 10, 11]. For more about type II strings on G2 manifolds and their mirror symmetry,
see e.g. [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A review of M-theory on G2 manifolds
with many references can be found in [22].

2. G2 sigma models

We start from an N = (1, 1) sigma model describing d chiral superfields Xµ = φµ(z) +
θψµ(z)

S =
∫

d2z d2θ (Gµν + Bµν)DθXµDθ̄X
ν . (2.1)

The super stress-energy tensor is given by T (z, θ) = G(z)+θT (z) = −1
2GµνDθX

µ∂zX
ν .

This N = (1, 1) sigma model can be formulated on an arbitrary target space. However,
the target space theory will have some supersymmetry only when the manifold has spe-
cial holonomy. This condition ensures the existence of covariantly constant spinors which
are used to construct supercharges. The existence of a covariantly constant spinor on the
manifold also implies the existence of covariantly constant p-forms given by

φ(p) = εT Γi1...ip
ε dxi1 ∧ · · · ∧ dxip . (2.2)

This formal expression may be identically zero. The details of the target space mani-
fold dictate which p-forms are actually present. If the manifold has special holonomy
H ⊂ SO(d), the non-vanishing forms (2.2) are precisely the forms that transform triv-
ially under H .

The existence of such covariantly constant p-forms on the target space manifold im-
plies the existence of extra elements in the chiral algebra. For example, given a covariantly
constant p form, φ(p) = φi1···ip

dxi1∧· · ·∧dxip satisfying∇φi1···ip
= 0, we can construct

a holomorphic superfield current given by

J(p)(z, θ) = φi1···ip
DθX

i1 · · ·DθX
ip ,

which satisfies Dθ̄J(p) = 0 on shell. In components, this implies the existence of a di-
mension p

2 and a dimension p+1
2 current. For example, on a Kahler manifold, the ex-

istence of a covariantly constant Kahler two form ω = gij̄(dφi ∧ dφj̄ − dφj̄ ∧ dφi)
implies the existence of a dimension 1 current J = gij̄ψ

iψj̄ and a dimension 3
2 current

G′(z) = gij̄(ψi∂zφ
j̄ − ψj̄∂zφ

i), which add to the (1, 1) superconformal currents G(z)
and T (z) to give a (2, 2) superconformal algebra.
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A generic seven dimensional Riemannian manifold has SO(7) holonomy. A G2 man-
ifold has holonomy which sits in a G2 subgroup of SO(7). Under this embedding, the
eight dimensional spinor representation 8 of SO(7) decomposes into a 7 and a singlet
of G2, and the latter corresponds to the covariantly constant spinor. The p-form (2.2) is
non-trivial only when p = 3, 4. In other words, there is a covariantly constant 3-form
φ(3) = φ

(3)
ijkdxi∧dxj∧dxk. The hodge dual 4-form is then also automatically covariantly

constant.
By the above discussion, the 3-form implies the existence of a superfield current

J(3)(z, θ) = φ
(3)
ijkDθX

iDθX
jDθX

k ≡ Φ + θK. Explicitly, Φ is a dimension 3
2 current

Φ = φ
(3)
ijkψiψjψk and K is its dimension 2 superpartner K = φ

(3)
ijkψiψk∂φk. Similarly,

the 4-from implies the existence of a dimension 2 current X and its dimension 5
2 super-

partner M . The chiral algebra of G2 sigma models thus contains 4 extra currents on top
of the two G,T that constitute the N = 1 superconformal algebra. These six generators
form a closed quantum algebra which appears explicitly e.g. in [9, 8, 10] (see also [11]).

An important fact, which will be crucial in almost all the remaining analysis, is that the
generators Φ and X form a closed sub-algebra: if we define the supercurrent GI = i√

15
Φ

and stress-energy tensor TI = − 1
5X we recognize that this is the unique N = 1 super-

conformal algebra of the minimal model with central charge c = 7
10 known as the Tri-

critical Ising Model. This sub-algebra plays a role similar to the U(1) R-symmetry of the
N = 2 algebra in compactifications on Calabi-Yau manifolds.

In fact, with respect to the conformal symmetry, the full Virasoro algebra decomposes
in two commuting1 Virasoro algebras: T = TI + Tr with TI(z)Tr(w) = 0. This means
we can classify conformal primaries by two quantum numbers, namely its tri-critical Ising
model highest weight and its highest weight with respect to Tr: |primary〉 = |hI , hr〉.

Perhaps it is worth emphasizing the logic here: classically, we find a conformal alge-
bra with six generators in sigma-models on manifolds of G2 holonomy. In the quantum
theory we expect, in the absence of anomalies other than the conformal anomaly, to find
a quantum version of this classical algebra. In [9] all quantum extensions were analyzed,
and a two-parameter family of quantum algebras was found. Requiring that the quantum
algebra has the right central charge (necessary to have a critical string theory) and that
it contains the tricritical Ising model (necessary for space-time supersymmetry) fixes the
two-parameters. This motivates why this is the appropriate definition for string theory on
G2 manifolds.

3. Tri-Critical Ising Model

Unitary minimal models are labeled by a positive integer p = 2, 3, . . . and occur only on
the “discrete series” at central charges c = 1 − 6

p(p+1) . The Tri-Critical Ising Model is

the second member (p = 4) which has central charge c = 7
10 . It is at the same time also a

minimal model for the N = 1 superconformal algebra.

1This decomposition only works for the Virasoro part of the corresponding N = 1 algebras.
The full N = 1 structures do not commute. For example the superpartner of Φ with respect to the
full N = 1 algebra is K whereas its superpartner with respect to the N = 1 of the tri-critical Ising
model is X .
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The conformal primaries of unitary minimal models are labeled by two integers 1 ≤
n′ ≤ p and 1 ≤ n < p. The weights in this range are arranged into a “Kac table”. The

conformal weight of the primary Φn′n is hn′n = [pn′−(p+1)n]2−1
4p(p+1) . In the Tri-critical Ising

model (p = 4) there are 6 primaries of weights 0, 1
10 , 6

10 , 3
2 , 7

16 , 3
80 . Below we write the

Kac table for the tricritical Ising model. Beside the Identity operator (h = 0) and the
N = 1 supercurrent (h = 3

2 ) the NS sector (first and third columns) contains a primary
of weight h = 1

10 and its N = 1 superpartner (h = 6
10 ). The primaries of weight 7

16 , 3
80

are in the Ramond sector (middle column).

n′ \ n 1 2 3

1 0 7
16

3
2

2 1
10

3
80

6
10

3 6
10

3
80

1
10

4 3
2

7
16 0

The Hilbert space of the theory decomposes in a similar way, H = ⊕n,n′Hn′,n. A
central theme in this work relies on the fact that since the primaries Φn′n form a closed
algebra under the OPE they can be decomposed into conformal blocks which connect two
Hilbert spaces. Conformal blocks are denoted by Φl′,l

n′,n,m′m which describes the restric-
tion of Φn′,n to a map that only acts fromHm′,m toHl′,l.

An illustrative example, which will prove crucial in what follows, is the block struc-
ture of the primary Φ2,1 of weight 1/10. General arguments show that the fusion rule
of this field with any other primary Φn′n is φ(2,1) × φ(n′,n) = φ(n′−1,n) +
φ(n′+1,n). The only non-vanishing conformal blocks in the decomposition of Φ2,1 are
those that connect a primary with the primary right above it and the primary right below
in the Kac table, namely2, φn′−1,n

2,1,n′,n and φn′+1,n
2,1,n′,n. This can be summarized formally by

defining the following decomposition3

Φ2,1 = Φ↓
2,1 ⊕ Φ↑

2,1. (3.1)

Similarly, the fusion rule of the Ramond field Φ1,2 with any primary is φ(1,2) × φ(n′,n) =
φ(n,n−1) + φ(n′,n+1) showing that it is composed of two blocks, which we denote
as follows Φ1,2 = Φ−

1,2 ⊕ Φ+
1,2. Conformal blocks transforms under conformal trans-

formations exactly like the primary field they reside in but are usually not single-valued
functions of z(z̄).

2Note the confusing notation where down the Kac table means larger n’ and vice-versa.
3We stress that this decomposition is special to the field Φ2,1 and does not necessarily hold for

other primaries which may contain other blocks.
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3.1. CHIRAL PRIMARY STATES

The chiral-algebra associated with manifolds of G2 holonomy4 allows us to draw several
conclusions about the possible spectrum of such theories. It is useful to decompose the
generators of the chiral algebra in terms of primaries of the tri-critical Ising model and pri-
maries of the remainder. The commutation relations of the G2 algebra imply that the some
of the generators of the chiral algebra decompose as [8]: G(z) = Φ2,1⊗ψ 14

10
, K(z) =

Φ3,1 ⊗ ψ 14
10

and M(z) = aΦ2,1 ⊗ χ 24
10

+ b[X−1,Φ2,1]⊗ ψ 14
10

, with ψ, χ primaries of the
indicated weights in the Tr CFT and a, b constants.

Ramond ground states of the full c = 21
2 SCFT are of the form | 7

16 , 0〉 and | 3
80 , 2

5 〉. The
existence of the | 7

16 , 0〉 state living just inside the tricritical Ising model plays a crucial
role in the topological twist. Coupling left and right movers, the only possible RR ground
states compatible with the G2 chiral algebra5 are a single | 7

16 , 0〉L⊗ | 7
16 , 0〉R ground state

and a certain number of states of the form | 3
80 , 2

5 〉L ⊗ | 3
80 , 2

5 〉R. By studying operator
product expansions of the RR ground states we get the following “special” NSNS states
|0, 0〉L ⊗ |0, 0〉R, | 1

10 , 2
5 〉L ⊗ | 1

10 , 2
5 〉R, | 6

10 , 2
5 〉L ⊗ | 6

10 , 2
5 〉R and | 32 , 0〉L ⊗ |32 , 0〉R

corresponding to the 4 NS primaries Φn′,1 with n′ = 1, 2, 3, 4 in the tri-critical Ising
model. Note that for these four states there is a linear relation between the Kac label n′

of the tri-critical Ising model part and the total conformal weight htotal = n′−1
2 . In fact,

it can be shown that, similar to the BPS bound in the N = 2 case, primaries of the G2

chiral algebra satisfy a (non-linear) bound of the form

hI + hr ≥ 1 +
√

1 + 80hI

8
. (3.2)

which is precisely saturated for the four NS states listed above. We will therefore refer
to those states as “chiral primary” states. Just like in the case of Calabi-Yau, the 7

16 field
maps Ramond ground states to NS chiral primaries and is thus an analogue of the “spectral
flow” operators in Calabi-Yau.

4. Topological Twist

To construct a topologically twisted CFT we usually proceed in two steps. First we define
a new stress-energy tensor, which changes the quantum numbers of the fields and opera-
tors of the theory under Lorentz transformations. Secondly, we identify a nilpotent scalar
operator, usually constructed out of the supersymmetry generators of the original theory,
which we declare to be the BRST operator. Often this BRST operator can be obtained in
the usual way by gauge fixing a suitable symmetry. If the new stress tensor is exact with
respect to the BRST operator, observables (which are elements of the BRST cohomol-
ogy) are metric independent and the theory is called topological. In particular, the twisted
stress tensor should have a vanishing central charge.

4We loosely refer to it as “the G2 algebra” but it should not be confused with the Lie algebra of
the group G2.

5Otherwise the spectrum will contain a 1-form which will enhance the chiral algebra. Geomet-
rically this is equivalent to demanding that b1 = 0.
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In practice [23, 24], for the N = 2 theories, an n-point correlator on the sphere in the
twisted theory can conveniently be defined6 as a correlator in the untwisted theory of the
same n operators plus two insertions of a spin-field, related to the space-time supersym-
metry charge, that serves to trivialize the spin bundle. For a Calabi-Yau 3-fold target space
there are two SU(3) invariant spin-fields which are the two spectral flow operators U± 1

2
.

This discrete choice in the left and the right moving sectors is the choice between the
+(−) twists [25] which results in the difference between the topological A/B models.

In [8] a similar expression was written down for sigma models on G2 manifolds,
this time involving the single G2 invariant spin field which is the unique primary Φ1,2

of weight 7
16 . It was proposed that this expression could be a suitable definition of the

correlation functions of a putative topologically twisted G2 theory. In other words the
twisted amplitudes are defined as7

〈V1(z1) . . . Vn(zn)〉twist ≡ 〈Σ(∞)V1(z1) . . . Vn(zn)Σ(0)〉untwist. (4.1)

In [8] further arguments were given, using the Coulomb gas representation of the min-
imal model, that there exists a twisted stress tensor with vanishing central charge. This
argument is however problematic, since the twisted stress tensor proposed there does not
commute with Felder’s BRST operators [26] and therefore it does define a bona fide op-
erator in the minimal model. In addition, a precise definition of a BRST operator was
lacking.

We will proceed somewhat differently. We will first propose a BRST operator, study
its cohomology, and then use a version of (4.1) to compute correlation functions of BRST
invariant observables. We will then comment on the extension to higher genus and on the
existence of a topologically twisted G2 string.

5. The BRST Operator

Our basic idea is that the topological theory for G2 sigma models should be formulated
not in terms of local operators of the untwisted theory but in terms of its (non-local)8

conformal blocks.
By using the decomposition (3.1) into conformal blocks, we can split any field whose

tri-critical Ising model part contains just the conformal family Φ2,1 into its up and down
parts. In particular, the N = 1 supercurrent G(z) can be split as

G(z) = G↓(z) + G↑(z). (5.1)

We claim that G↓ is the BRST current and G↑ carries many features of an anti-ghost.
The basic N = 1 relation

G(z)G(0) =
(
G↓(z) + G↑(z)

) (
G↓(0) + G↑(0)

) ∼ 2c/3
z3

+
2T (0)

z
(5.2)

6Up to proper normalization.
7Up to a coordinate dependent factor that we omit here for brevity and can be found in [7].
8It should be stressed that this splitting into conformal blocks is non-local in the simple sense

that conformal blocks may be multi-valued functions of z(z̄).
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proves the nilpotency of this BRST current (and of the candidate anti-ghost) because the
RHS contains descendants of the identity operator only and has trivial fusion rules with
the primary fields of the tri-critical Ising model and so (G↓)2 = (G↑)2 = 0.

More formally, denote by Pn′ the projection operator on the sub-space Hn′ of states
whose tri-critical Ising model part lies within the conformal family of one of the four NS
primaries Φn′,1. The 4 projectors add to the identity

P1 + P2 + P3 + P4 = 1, (5.3)

because this exhaust the list of possible highest weights in the NS sector of the tri-critical
Ising model9. We can now define our BRST operator in the NS sector more rigorously

Q = G↓
− 1

2
≡
∑
n′

Pn′+1G− 1
2
Pn′ . (5.4)

The nilpotency Q2 = 0 is easily proved

Q2 =
∑
n′

Pn′+2G
2
− 1

2
Pn′ =

∑
n′

Pn′+2L−1Pn′ = 0, (5.5)

where we could replace the intermediate Pn′+1 by the identity because of property 5.1
and the last equality follows since L−1 maps eachHn′ to itself.

Q does not commute with the local operator O∆(1),0, O∆(2), 2
5
, O∆(3), 2

5
and O∆(4),0

corresponding to the chiral states |0, 0〉, | 1
10 , 2

5 〉, | 6
10 , 2

5 〉 and | 32 , 0〉 (for brevity we will
denote those 4 local operators juts by their minimal model Kac label Oi, i = 1, 2, 3, 4).
However, it can be checked that the following blocks,

An′ =
∑
m

Pn′+m−1On′Pm, (5.6)

which pick out the maximal “down component” of the corresponding local operator, do
commute with Q and are thus in its operator cohomology. Thus the chiral operators of the
twisted model are represented in terms of the blocks 5.6 of the local operators correspond-
ing to the chiral states. Furthermore, it can be shown easily that those chiral operator form
a ring under the OPE.

By doing a calculation at large volume, we see that the BRST cohomology has one
operator of type O1 ⊗ O1, b2 + b3 of type O2 ⊗ O2, b4 + b5 of type O3 ⊗ O3, and one
of type O4 ⊗O4. The total BRST cohomology is thus precisely given by H∗(M). Also,
one finds that the b3 operators of type O2 ⊗O2 are precisely the geometric moduli of the
G2 target space10.

In the topological G2 theory, genus zero correlation functions of chiral primaries be-
tween BRST closed states are position independent. Indeed, the generator of translations
on the plane, namely L−1, is BRST exact

9For simplicity, we will set Pn′ = 0 for n′ ≤ 0 and n′ ≥ 5, so that we can simply write∑
n′ Pn′ = 1 instead of (5.3).
10In this work we ignore the b2 moduli corresponding to the B-field.
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{G↓
− 1

2
, G↑

− 1
2
} =

∑
n′

Pn′G− 1
2

(Pn′−1 + Pn′+1) G− 1
2
Pn′ =

∑
n′

Pn′L−1Pn′ = L−1.

(5.7)
This is a crucial ingredient of topological theories.

Moreover, it can be shown [8] that the upper components G̃− 1
2
| 1
10 , 2

5 〉L⊗G− 1
2
| 1
10 , 2

5 〉R
correspond to exactly marginal deformations of the CFT preserving the G2 chiral algebra,
completely in agreement with the identification of them as the geometric moduli of the
theory. Focusing momentarily on the left movers, we can show that [Q, {G− 1

2
,O2}] =

∂A2
11 so that the very same deformation is physical, namely Q exact, also in the topo-

logical theory. Note that the deformation is given by a conventional operator that does not
involve any projectors. Combining with the right-movers, we find that the deformations
in the action of the topological string are exactly the same as the deformations of the non-
topological string as is expected because both should exist on an arbitrary manifold of G2

holonomy.
Most correlation functions at genus zero vanish. The most interesting one is the three-

point function of three operators Y = O2 ⊗ O2. These correspond to geometric moduli.
If we introduce coordinates ti on the moduli space of G2 metrics, then we obtain from a
large volume calculation

〈YiYjYk〉 =
∫

M

d7x
√

gφabc
∂gaa′

∂ti

∂gbb′

∂tj

∂gcc′

∂tk
φa′b′c′ . (5.8)

One might expect, based on general arguments, that this is the third derivative of some
prepotential if suitable ‘flat’ coordinates are used. We do not know the precise definition
of flat coordinates for the moduli space of G2 metrics, but if we take for example M = T 7

and take coordinates such that φ is linear in them, then we can verify

〈YiYjYk〉 = − 1
21

∂3

∂ti∂tj∂tk

∫
φ ∧ ∗φ. (5.9)

The prepotential appearing on the right hand side is exactly the same as the action func-
tional introduced by Hitchin in [27, 28]. A similar action was also used as a starting point
for topological M-theory in [3] (see also [2]). This strongly suggests that our topological
G2 field theory is somehow related to topological M-theory.

6. Topological G2 Strings

In the case of N = 2 theories, the computation of correlation functions at genus zero
outlined above can be generalized to higher genera [23, 24]. An n-point correlator on
a genus-g Riemann surface in the twisted theory can be defined as a correlator in the
untwisted theory of the same n operators plus (2− 2g) insertions of the spin-field that is
related to the space-time supersymmetry charge. For a Calabi-Yau 3-fold target space on
a Riemann surface with g > 1, the meaning of the above prescription is to insert 2g − 2
of the conjugate spectral flow operator.

11Recall that A2 was defined in (5.6).
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To generalize this to the G2 situation, we would like to have something similar. How-
ever, there is only one G2 invariant spin-field. This is where the decomposition in con-
formal blocks given in section 3 is useful: the spin-field Φ2,1 could be decomposed12 in
a block Φ+

2,1 and in a block Φ−
2,1. At genus zero we needed two insertions of Φ+

2,1, so the
natural guess is that at genus g we need 2g − 2 insertions of Φ−

2,1. However, this is not
the full story. We also need to insert 3g − 3 copies of the anti-ghost and integrate over
the moduli space of Riemann surfaces to properly define a topological string theory. The
anti-ghost is very close to G↑, and the fusion rules of the tri-critical Ising model tell us
that there is indeed a non-vanishing contribution to correlation functions of 2g− 2 Φ−

2,1’s
and 3g − 3 G↑.

This prescription would therefore work very nicely if we would have found the right
anti-ghost. The candidates we tried so far all seem to fail in one way or another. One
possible conclusion might be that a twisted stress tensor does not exist and that there is
only a sensible notion of topological G2 sigma models but not of topological G2 strings.
The fact that so far so many properties of theN = 2 topological theories appeared to hold
also in our G2 model leads us to believe that a sensible extension to higher genera indeed
exists. Identifying the correct twisted stress tensor remains an open problem. Barring this
important omission the coupling to topological gravity goes pretty much along the same
lines as for the N = 2 topological string (details can be found in [7]).

7. Conclusions

An important application of topological strings stems from the realization [23, 24, 25] that
its amplitudes agree with certain amplitudes of the physical superstring. Just like N = 2
topological strings compute certain F-terms in four dimensional N = 2 gauge theories,
one might wonder whether the G2 topological string similarly computes F-terms in three
dimensional N = 2 gauge theories.

Since G2 manifolds are Ricci-flat we can consider compactifying the type II super-
string on R1,2×N7 whereN7 is a 7 dimensional manifold of G2 holonomy. This reduces
the supersymmetry down to two real supercharges in 3 dimension from each worldsheet
chirality so we end up with a low energy field theory in 3 dimensions with N = 2 su-
pergravity. By studying amplitudes in some detail we observe that, except perhaps at
genus zero, the amplitudes do involve a sum over conformal blocks, and the topological
G2 string therefore seems to compute only one of many contributions to an amplitude.
This is in contrast to the four dimensional case where the possibility to look only at the
(anti)-self dual gravitons allowed to isolate the topological contributions.

Nevertheless, we believe that topological G2 strings are worthwhile to study. They
may possibly provide a good definition of topological M-theory, and a further study may
teach us many things about non-topological G2 compactifications as well. We leave this,
as well as the generalization to spin(7) compactifications [29] and the study of branes in
these theories to future work.

12In terms of the Coulomb gas representation, one of these can be represented as an ordinary
vertex operator, the other one involves a screening charge.
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CHALLENGES OF MATRIX MODELS

ALEXEI MOROZOV
ITEP, Moscow, Russia

1. Introduction

Matrix models appear again and again at the front line of theoretical physics, and every
new generation of scientists discovers something new in this seemingly simple subject. It
is getting more and more obvious that matrix models capture the very essence of general
quantum field theory and provide the crucial representative example for the string theory
[1]: matrix models may play the same role for string theory as the harmonic oscillator for
quantum mechanics. An essential difference is, however, that we have a nearly exhaustive
understanding of harmonic oscillator, while nothing like a complete description of matrix
models is yet available. Probably, the time is coming to begin a systematic analysis with
the goal of building up a theory of matrix model partition functions as the first special
functions of string theory [2]. Various applications of matrix model techniques should
use these functions as building blocks for the formulation of their results, thus separating
the physical content of different applications from a common mathematical formalism.
The goal can be to build up an analogue of the powerful free-field formalism, developed
in 1980’s, which allowed to reduce many problems in perturbative string theory [3]
(and related issues in representation theory of Kac-Moody algebras, 2d conformal field
theory and finite-zone solutions in integrable-systems theory) to an almost classical set
of special functions: Riemann’s theta-functions [4, 5], associated with Riemann surfaces.
The problem is that matrix model partition functions are non-trivial generalization of
Riemann’s theta-functions, which were not fully investigated in XIX-th century, therefore
the theory should involve essential new ideas, both in physics and in mathematics. This
is the reason why the progress in this field – actually known under the nick-name of non-
perturbative string theory – has been considerably slower. More and more people begin
to realize that generic problems of non-perturbative string theory, i.e. the general theory
of phase transitions, have a lot in common, and these most interesting common properties
are clearly represented at the simplest level of matrix models. Complications introduced
by the sophisticated context of particular applications can and should be separated from
the important content, captured at the matrix model level.

In the development of matrix model theory one can distinguish several stages. In fact,
these stages are typical for every chapter of the string theory, and they characterize not
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so much the history, but the kind of questions that are posed and the level of abstraction
analyzing these questions. Whenever a new problem arises (or is re-addressed again), it is
quite useful to understand its place in this hierarchy.

2. Classical period: introduction of models

During the classical period the main task was to study concrete phenomena, involving
matrix models. Since in these notes we are not going to discuss applications, we just
mention a few crucial theoretical methods, developed at this stage.

The most important idea was to reduce the N2-fold matrix integrals like

Z(t|N) =
1

Vol(U(N))

∫
N×N

dΦexp

(∑
k

tkTr Φk

)
(2.1)

to N -fold integrals over eigenvalues φi of matrices Φ = U†diag(φi)U . This idea, closely
related in general context to the problem of gauge invariance, is technically based on
the possibility to explicitly integrate over ”angular variables” in the simplest situations, of
which (2.1) is a representative example. The single known exactly solvable generalization,
which goes slightly beyond this example, involves the Itzykson-Zuber integral [7]∫

N×N

[dU ] exp(TrAU†BU), (2.2)

which is used in construction of two important classes of matrix theories: generalized
Kontsevich model [8, 9],

ZGKM (L|W ) ∼
∫

m×m

dM exp [tr (W (M) + LM)] (2.3)

and even further generalized Kazakov-Migdal-Kontsevich model [10, 11],

ZG(KM)2({Lµ}|{Wα}) ∼
∏
µ,α

∫
m×m

dM (α)[dU (αβ)][dU (αµ)] ·

· exp
[
tr
(
Wα(Mα) + MαU†

αβMβUαβ + LµU†
αµMαUαµ

)]
, (2.4)

defined for any graph with Hermitian fields Mα and background fields Lµ standing in the
vertices and unitary fields Uαβ and Uαµ on the links. In more general situations (sometime
quite important for applications, e.g. involving non-trivial multi-brane backgrounds), an-
gular integration is highly non-trivial and remains an open problem. The simplest of such
difficulties are echoed in the Gribov copies problem in Yang-Mills theory, while treat-
ment of more sophisticated unitary-matrix integrals face problems, typical for adequate
treatment of quantum gravity. The class of theories where gauge (angular) variables can
be integrated out in effective way is referred to as eigenvalue models [6]. Most of fur-
ther development concerns eigenvalue models, which until recently remained implicitly
synonymous to matrix models.
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The next idea of the classical period used the fact, that angular integration usually
provides non-trivial, but very special measures on the space of eigenvalues, which is often
made from Van-der-Monde determinants [12]. For example, (2.1) can be transformed into

Z(t|N) =
N∏

i=1

∫
dφi exp

(∑
k

tkφk
i

)
N∏

i<j

(φi − φj)2, (2.5)

where
∏N

i<j(φi − φj)2 =
(
deti,j φj−1

i

)2

can be also considered as discriminant of aux-

iliary polynomial PN (z) =
∏N

i=1(z − φi). Occurrence of determinants suggested two
alternative technical methods of investigation of eigenvalue models: technique of orthog-
onal polynomials [13] and free-fermion representation [13, 14]. Occurrence of discrim-
inants was not fully exploited yet, though it opens a set of interesting possibilities, both
technically and conceptually.

The last idea of the classical period which needs to be mentioned, is the idea of
continuum limit, when the matrix size N tends to infinity. In fact there are infinitely
many different continuum limits – relevant for different particular applications, – and
only very few have been analyzed so far. However, from the very beginning the main fact
was broadly realized: continuum limits of matrix models posses description in terms of
Riemann surfaces [15, 16]. Today we know that occurence of spectral surfaces is a general
phenomenon, and they occur already at finite values of N [2].

3. First stringy period: generalizations and hunt for structures

The first stringy period is characterized by the change of interests: from tools to theory.
Instead of studying various applications and developing adequate technical methods to an-
swer the problems, posed by these applications, attention gets concentrated on the search
and understanding of internal structures. Instead of ”study” the main slogan becomes
”deform and generalize” – this is the standard string theory method of revealing hidden
structures. It is at this stage that the three main inter-related structures were discovered
behind eigenvalue matrix models: rich Ward identities, integrability and CFT representa-
tions.

3.1. WARD IDENTITIES

Occurence of Ward identities is the pertinent property of every integral (and thus of
quantum mechanics and all its generalizations, like quantum field and string theory): they
reflect invariance of the integral under the change of integration variable – an archetyp-
ical example of auxiliary field. However, this obvious hidden symmetry manifests itself
in a rather sophisticated manner: as relation between various correlators in the theory.
String theory normally deals with partition functions: the generating functions of all the
correlators, summed up with the coefficients like tk in (2.1), which have the meaning of
extra coupling constants, and can be considered as providing the deformation of the bare
action. This formalism allows to treat Ward identities as equations for partition function,
because the change of integration variables can be compensated by the change of the cou-
pling constants, if there are many enough [6]. In particular case of the integral (2.1) the
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equations are known as Virasoro constraints [17] or loop equations [15],

L̂−(z)Z(t|N) = 0 (3.1)

where

L̂−(z) =
∑

m≥−1

z−m−2L̂m = P−

( ∞∑
m=−∞

z−m−2L̂m

)
= P−

(
1
2
(∂φ̂(z))2

)

φ̂(z) =
∑
k≥0

(
tkzk − 1

2kzk

∂

∂tk

)
For the integral (2.3) the Ward identities can be written in two forms: either as a Gross-
Newman equation [18],

(W ′ (∂/∂Ltr) + L) ZGKM (L|W ) = 0, (3.2)

which generalizes a similar equation [6] for the Itzykson-Zuber integral (2.2), or as a
set of peculiar Wn-constraints (where n = deg W ′(z)) [19]. A particular case of these
equations in the case of n = 2 is continuum Virasoro constraint [20, 21],

L̂2mZGKM

(
L

∣∣∣∣13M3

)
= 0, m ≥ −1, (3.3)

L̂2m =
1
2

∞∑
odd k=1

ktk
∂

∂tk+2m
+

1
4

2m−1∑
odd k=1

∂2

∂tk∂t2m−k
+

1
16

δm,0 +
1
4
t21δm,−1

where tk = rk + 1
k trL−k/n and rk = n

k(n−k) res (W ′(z))1−k/n
dz = − 2

3δk,3. See [6] for
detailed discussion of Ward identities for eigenvalue models and [22] for more technical-
ities, related to generalized Kontsevich model.

3.2. INTEGRABILITY AND RG EVOLUTION

Integrability of matrix models means that partition functions satisfy not only linear equa-
tions (Ward identities), but also bilinear Hirota-type equations,

∆(Z ⊗ Z) = 0.

Technically, the proofs rely upon determinant representations of eigenvalue models, which
are, in turn, immediate corollaries of determinant structures of integration measures, see
[6] and references therein. However, the true meaning of integrability remains obscure.
Several inter-related ideas should be somehow unified to clarify the issue.

First, integrability should express the fact that the system of Ward identities is rich
enough: enough to specify the partition function almost unambiguously – up to some eas-
ily controllable degrees of freedom, a sort of zero modes with some clear cohomological
interpretation. See [23] for the relevant notions of strong and week completeness.
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Second, bilinear equations normally involve the matrix size N in non-trivial way: for
example, the simplest bilinear equation for partition function (2.1) – the lowest term of
the Toda chain hierarchy – states [24] that

ZN
∂2ZN

∂t21
−
(

∂ZN

∂t1

)2

= ZN+1ZN−1 (3.4)

This means that bilinear equations involve not only variations of the coupling constant
tk, but also those of conjugate variables, like N . However, in (2.1) only N – a conjugate
variable for t0 (in the sense that ∂ log ZN/∂t0 = N ) – is present, while there is nothing
like conjugate parameters for all other t’s. This can suggest that Hirota equations for such
restricted partition function are too special to reveal their general structure. In particular,
(3.4) holds only for the simplest phase of the model (2.1), other phases belong to multi-
component generalizations of Toda chain hierarchy.

Third, while coupling constants parameterize the bare action, i.e. the weight of sum-
mation over paths in functional integral, the conjugate variables should rather characterize
the integration domain (range of integration, boundary conditions, the target space – what-
ever formalism one prefers to use in introducing them). In this sense conjugate variables
are intimately related to generalized renormalization group flows, which are supposed to
do exactly the same: describe the dependence of functional integral on the integration
domain.

Relation between integrability and renormalization group is one of the main open
problems in modern theoretical physics [1, 6, 25]. To get fully related, both these concepts
should be considerably modified. To become a pertinent feature of all partition functions,
integrability should not be restricted to ordinary τ -functions [26], associated with free
fermions and single-loop Kac-Moody algebras at level k = 1. Indeed, τ -functions and
bilinear Hirota-like equations can be defined for arbitrary Kac-Moody and even more
general Lie algebras and quantum groups [27]. However, the theory of such τ -functions
is not reducible to that of Plucker (free-fermion) determinants and requires the full-scale
application of the free-field formalism [3] and more sophisticated determinant formulas.
Expressions of this type are expected to arise in the study of unitary matrix integrals, but
only first steps are being done in this direction [28, 29].

Renormalization group theory also requires considerable generalizations, of which
we put especially emphasize on two. First, as already mentioned, it should allow arbitrary
variations of integration domain, not just a one-parameter cut-off procedure: renormal-
ization group should study the changes of the shape of integration domain, not just of its
volume. This seems to be already a widely accepted generalization. Second, renormal-
ization group theory should be made applicable to the study of fractal structures, which
often reproduce themselves (exactly or approximately) at different scales. This means
that the theory should allow non-trivial, periodic and perhaps even chaotic, renormaliza-
tion group flows [30, 31], and this should not contradict the obvious uni-directional nature
of these flows, generated by integrating out degrees of freedom. This entropy-like feature
of renormalization group is usually expressed through the c-theorem [32], but in the case
of systems with infinitely many degrees of freedom the c-function can easily have angular
nature, and monotonic decrease of c does not contradict the existence of periodic mo-
tions. Besides the obvious example of self-similar fractals, today we already have some



134 ALEXEI MOROZOV

field-theory examples of such behaviour [33] – but only at the level of flows. It is not
so easy to provide examples of partition functions (not just flows) with such properties,
and the reason for this is simple: we usually consider as solvable the systems where an-
swers can be expressed through conventional special functions, and these – almost by
definition – have oversimplified branching structure. We do not posses any language to
describe more general – and more realistic situations. At the same time such language
should exist, because what seems to be sophisticated (fractal and/or chaotic) phase struc-
ture is in fact a highly ordered and pure algebraic pattern [34], not so much different from
the algebraic-geometry background under the theory of conventional special functions.
The jump between order (integrability) and chaos (infinite-tree structure of bifurcations
or phase transitions) can be not so big, and most probably the careful study of partition
functions already at the matrix-model level will reveal the deep inter-relation (duality)
between the two concepts.

This duality should play a big role in landscape theory, which studies the distribu-
tions of various algebro-geometric quantities on moduli spaces (either of coupling con-
stants or on the dual space of different branches) and their interplay with renormalization
group flows. The crucial hidden double-loop structure, which is supposed to become the
basis of such theory [35], should be seen already at the level of matrix models. For old
and new attempts to apply – the yet undeveloped – landscape theory to phenomenology
see [1] and [36] respectively.

3.3. RELATION TO CONFORMAL THEORY

The third structure behind eigenvalue matrix models is that of 2d conformal field theories:
partition functions of matrix models coincide with certain correlators in conformal mod-
els. This fact is of course related with the free-fermion and KP τ -function representations
of simplest partition functions, but it was quickly realized to have a more general meaning
[37]: CFT representations are also closely related to Ward identities. In the simplest ex-
ample of (3.1) the natural observation is that 1

2 (∂φ̂)2(z) looks like the stress tensor T (z)
of the 2d free scalar field, and therefore one can look for an intertwiner, relating operator
L̂(z) in (3.1) with T (z) = 1

2 (∂ϕ)2(z) in the free field theory. The intertwiner in this case
is just

〈0|e
∮

v(x)∂ϕ(x),

where ϕ(z) is the 2d scalar, 〈0| – the left vacuum, annihilated by ϕ+(z), 〈0|ϕ+(z) = 0,
and v(z) =

∑
k tkzk. Obviously,

L̂(z)〈0|e
∮

v(x)∂ϕ(x) = 〈0|e
∮

v(x)∂ϕ(x) 1
2
(∂ϕ)2(z),

and acting on the right vacuum (∂ϕ)2−(z)|0〉 = 0, so that

L̂−(z)〈0|e
∮

v(x)∂ϕ(x)Q|0〉 = 0. (3.5)

Here Q is inserted in order to make matrix element non-trivial, and the only requirement
is that Q commutes with T (z) = 1

2 (∂ϕ)2(z). Such Q can be made out of the screening
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charges Q± =
∮

e±
√

2ϕ(x), and Z(t|N) in (2.1) is reproduced if Q = QN
+ . Many gen-

eralizations are straightforward, among them the important class of quiver matrix mod-
els [37, 38]. An immediate desire is to find a representation of this kind for Kontsevich
τ -function – solution of continuum Virasoro constraint (3.3), but this problem appears
surprisingly complicated and still remains open, see [39, 40] for important but still insuf-
ficient steps towards its solution.

4. Transcendental period: absolutization of structures

The transcendental or second stringy period is characterized by absolutization of struc-
tures, revealed at the previous stage. This means that the logic is inverted: now the struc-
tures are given, and we look for generic objects, possessing such structures – expecting
in advance that some of these objects can appear different from original matrix integrals.
Today we are mostly at this stage, at least in the theory of matrix models, and only the
first careful steps are being done in attempts to understand the hidden meaning of the
structures that we observed in applications – and continue to observe again and again in
new physical systems when they come to our attention.

Discussion of generic CFT correlators as well as of generic τ -functions is – old and
important – but still not a very constructive problem. It lies at the very core of landscape
theory, but existing theoretical methods are too week to address the problem directly. The
structure which can be rather effectively analyzed by available tools or by their straight-
forward modifications is that of Ward identities. Working on this structure one can also
hope to develop stronger methods, applicable to analysis of the other two structures. To
mention just one open question, illustrating the degree of ignorance in this field, it remains
unclear to what extent the Virasoro constraints (3.1) and (3.3) per se, without explicit in-
tegral representations like (2.1), imply integrable structure of partition function.

4.1. WARD IDENTITIES

Defining partition function as solution to Ward identities is a typical D-module-style de-
finition, i.e. basically a problem from linear algebra, since Ward identities are linear
equations (this is what makes examination of this structure much simpler than integrable
one, related to quadratic equations). Since we do not expect any mysteries in linear alge-
bra (or, better to say, we think that we already know all of them), the theory building is
straightforward, but by no means trivial: we know what to search for, but exhaustive and
explicit solution can be quite tedious. We are not yet at the stage when solution of a linear-
algebra problem, especially infinite-dimensional, and all its properties can be predicted a
priori.

Normally, the set of questions one asks about the solution consists of several groups.

4.1.1. Domain of definition
First of all, one should decide what class of functions one wants the solution to belong
to. Basically, there are two principal alternatives: formal series and globally defined func-
tions. However, even if one chooses formal series, it is still necessary to specify, where
singularities are allowed to occur. The simplest alternative is between series in positive
powers of a variable (singularities are allowed at infinity of the Riemann sphere) and in
all integer powers (singularities allowed at infinity and at zero). However, there are many
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more possibilities: singularities can be allowed at other points (then negative powers of
[z − a] can be allowed), the underlying bare Riemann surface need not be a sphere (then
certain fractional powers of [z−a] are allowed) etc. More than this, different variables can
have different kinds of singularities and we have infinitely many such variables. In dif-
ferent applications different requirements are imposed, and one and the same quantity –
unique partition function = generic solution to Ward identities – can show up in absolutely
different way: different branches are relevant for different applications. What can look
like a singularity from the point of view of particular application, can be nothing but a
branching point or phase transition to another branch, which acquires a natural inter-
pretation in terms of an absolutely different application. Once again this emphasizes that
the problem of partition functions – even one particular partition function, one particular
matrix model D-module,– is almost undistinguishable from the central problem of the
string theory [1], which can be formulated as a search of unique universal partition func-
tion (a universal object of quantum field theory), of which all other thinkable partition
functions are particular branches and sub-families. Returning closer to the Earth, even
speaking about formal series one – explicitly or implicitly – imposes certain requirements
on allowed singularities of solutions, which often do not follow from the Ward identi-
ties themselves. Actually, the ”rich” Ward identities, that we spoke about in the previous
section, fix everything but the behaviour at singularities, they are rich enough to fully
constrain the dependence on the choice of the action (on coupling constants), but not rich
enough to fix conjugate dependencies, e.g. boundary conditions at possible singularities:
in certain sense they fix exactly one half of possible freedom. This is a typical thing for
the equation on a wave function in quantum mechanics to do (constrain q-dependence
but ignore p, or in other words, there are many solutions of the same Shroedinger equa-
tion, differing, say, by the values of energy): this observation is a starting point on the
road, leading to identification of Ward identities with Shroedinger-type equation and the
partition function with a (string-field theory) wave function.

Convenient way to speak about emerging freedom is in terms of ”globally defined”
functions: to fix it one can ask to solve Ward identities for functions on Riemann sphere
or on torus or anywhere else. The problem is that in most interesting cases – and matrix
model partition functions are not an exception – singularities are unavoidable. Moreover,
small relaxations of compactness, like ”functions with simple poles”, which were enough
for the formalism of free fields (and thus in dealing with arbitrary 2d conformal models),
now are not sufficient: τ -functions are different from conformal blocks because they have
essential singularities, even if we take those defined on punctured Riemann surfaces of
finite genus. Actually, things are even worse: interesting partition functions require this
genus to be infinite, if at all defined. Therefore this language – though widely used – by
itself does not provide unambiguous classification of solutions.

4.1.2. Generating functions
The next question – after the set of allowed functions is somehow specified – is how to
represent the answer. There are few chances that the full answer will be any known special
function: as already stated, the most important thing is that matrix models produce new
special functions. What is important, however, these new functions are not too new, they
are just one step forward more involved than the known special functions, namely the
Riemann’s theta-functions, which occupy the previous level of complexity. We expect that
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all kinds of simplifications of matrix model partition functions reduce them to quantities,
already expressible through Riemann’s theta functions. What can be these simplifications?
Instead of considering a generating function of all correlators, one can select some one-
parametric family, and such reduced generating function can be a candidate. One can take
one or another limit (say, one or another continuum limit: naive, double-scaling, fixed
genus, ...). One can take a ratio of different branches (a kind of monodromy matrix) or
some more sophisticated combination of those.

4.1.3. Different realizations
As usual for a D-module, one can look for solutions of linear equations in different forms.

Integral formulas like (2.1) are particular examples of one possible – integral – rep-
resentation (or realization, to avoid confusion with group-theory representations) of solu-
tions. For integral realizations the Ward identities play a role of Picard-Fucks equations:
solutions are periods of the form which is converted into a full derivative by application
of the corresponding operator (which generates Ward identity). Of course, in such situa-
tion one can integrate along any closed contour and different non-homological contours
give rise to different solutions. Therefore, when one calls eq.(2.1) Hermitian one matrix
model, ”Hermitian” actually refers to the measure, dΦ =

∏N
i,j=1 dΦij (dictated, in its

turn, by the norm ||δΦ||2 = Tr δΦ2), but not to the integration contour: when one defines
partition function as solution of the Virasoro constraints, there is no reason to integrate in
(2.1) over the contour Φ∗

ij = Φji, associated with Hermitian matrices. Moreover, since
D-module is defined by linear equations, the superposition principle is applicable, and a
sum of any two solutions is again a solution. If matrix integrals like (2.1) with different N
satisfy the same Ward identities like Virasoro constraints (3.1), then linear combinations
of integrals with different N still are solutions. This means that the matrix size N can be
also interpreted as characteristic of integration contour, moreover, this characteristic is not
obligatory a positive integer, but can be also negative, rational and even complex-valued.

Differences between possible integral realizations of one and the same partition func-
tion are not exhausted by freedom in the choice of integration contours, even with ex-
tended interpretation of the term ”contour”. Partition function can be represented by ab-
solutely different classes of matrix models. The simplest important example is provided
by the model (2.1): it can be represented not only by (2.1), but also by a Gaussian integral
[41] from Kontsevich family (2.3) with tk = 1

k trL−k [42, 6]:

Z(t|N) ∼ ZGKM

(
L

∣∣∣∣12M2 + N log M

)
∼

∼
∫

m×m

dM(det M)N exp
[
tr
(

1
2
M2 + LM

)]
(4.1)

In this representation analytic continuation to non-integer values of N is even more
straightforward. Again, linear combinations of solutions with different values of N , are
still solutions to the Virasoro constraints (3.1), and all of them should be considered as
particular branches of the 1-matrix model partition function. This provides additional in-
formation about the problem of conjugate variables: N itself can serve as one of them,
or the coefficients of above-mentioned linear combinations can – changing the former for
the latter is a kind of Fourier transform in the space of conjugate variables.
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Possibility to represent one and the same partition function by members of two differ-
ent matrix model families, by (2.1) and by (4.1), is a typical example of duality between
different families of quantum field theories. One more duality follows from existence of
CFT representations for the same partition function, it relates these matrix models to 2d
free scalar theory and – through one more duality – to free fermions. These dualities il-
lustrate the fact that the nature and the number of integration variables can differ in the
most radical way, still partition functions coincide: in absolutely different theories one
can find families of identical correlators. Once again, this is an illustration of the general
stringy idea: everything is the same, one can fully describe one theory (phase) in terms of
another. Matrix models provide a nice framework for testing this principle and can help
to transform it into constructive and reliable procedure.

4.1.4. Limiting procedures and asymptotics

Different realizations of partition functions are adequate or at least convenient for de-
scriptions of different phases of the system (branches of partition function), or at least
different classes of phases. As usual, phases become pronouncely different in particular
asymptotics. Systematic approach implies that all kinds of asymptotics should be investi-
gated. In particular, in the case of matrix models, all kinds of continuum limits should be
examined, not only naive or t’Hooft’s or double-scaling. Obviously, all kinds of multi-cut
solutions and all kinds of multi-scaling limits require attention, but this is only the begin-
ning: by no means all possible asymptotics are exhausted in this way, and also there is a
lot of interesting beyond continuum limits. Unfortunately, not too much is known about
this variety of limits and nothing like classification of asymptotics is available (this was
a trivial thing in the case of one variable and becomes a pretty sophisticated issue in the
case of infinitely many variables).

There are two different possibilities to perform limiting procedures: at the level of
defining equations (linear Ward identities or bilinear Hirota-style equations) and at the
level of particular realizations. Of course, one and the same limit can look very different
in different, though equivalent, representations. Because the subject is under-investigated,
the set of known realizations is poor and many potentially interesting asymptotics either
do not attract attention or are difficult to handle. We mention just two old problems, which
still remain unresolved.

In the class of generalized Kontsevich models (2.3) and (2.4) one naturally distin-
guishes [28, 11] between Kontsevich phase – the asymptotics of large L – and the char-
acters phase – the asymptotics of small L. In these phases the ”time-variables” tk = rk +
1
k trL−k/n with n = deg W ′(z) are respectively close to rk = n

k(n−k) res (W ′(z))1−k/n
dz

and to infinity. Kontsevich phase corresponds, at least through the relation (4.1), to per-
turbative phase of the models like (2.1), while the characters phase is the strong coupling
limit of these models. In this sense (4.1) is an example of S-duality, interchanging weak
and strong coupling phases. Actually, these phases are closely related to the strong and
week coupling limits of Yang-Mills theory and thus to confinement problem. However,
this problem was never exhaustively analyzed even at the level of matrix models – de-
spite the existence of Kazakov-Migdal-Kontsevich family (2.4), which – in variance with
realizations like (2.1) – provides an effective tool for studying both asymptotics and in-
terpolate between them (for these models Kontsevich phase is the WKB asymptotics,
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while the characters phase is perturbative limit). A systematic analysis, like suggested in
[2, 43, 44] for (2.1) continues to wait for its time for Kontsevich and for more general
unitary matrix models.

Another abounded problem would be just a small paragraph in this systematic analy-
sis, still it is quite important by itself. This is the problem of ”double-scaling” limit [45]
of (2.1), which is one of the simplest non-naive large-N asymptotics of Z(t|N), when
N → ∞ together with certain special adjustment of t-variables. For investigation of this
limit one can make use of various techniques, of which the most important are two: taking
limit of loop equations (Virasoro constraints) (3.1) [46] and exploiting the identity (4.1)
and taking limit within the family of Kontsevich models [42, 6]. In these ways one can
argue that

lim
d.s.

Z(t|N) ∼ lim
d.s.

ZGKM

(
L

∣∣∣∣12M2 + N log M

)
=

= Z2
GKM

(
L̃

∣∣∣∣13M3

)
(4.2)

where at the l.h.s. t2k+1 = 1
2k+1 trL−2k−1 = 0 and t2k = 1

2k trL−2k, and the quantity at

the r.h.s. (expressed through t̃2k+1 = 1
k+1/2 trL̃−k−1/2) has a special name of Kontsevich

τ -function τK(t̃) and is an increasingly important matrix-model and string-theory special
function. However, even reliable derivation of the principally important result (4.2) and
exact relation between t, L and t̃, L̃ is not available, nothing to say about corrections to this
formula (describing what happens when one approaches the limit) or its generalizations.
Of special importance among such generalizations are the limits, when Z(t|N) → τ2n

K (t̃)
with n > 1, because of their obvious relation to Givental-style decomposition formulas
[47, 2, 40] and their potential role in applications. It goes without saying that various non-
perturbative asymptotics of τK should be investigated: this is the next natural task after
such program is put on track for the basic special function Z(t|N).

4.2. INTEGRABILITY

Integrability is believed [1, 6] to be the pertinent property of quantum partition func-
tions, reflecting the fact that they are results of integration, which erases most of initial
information (roughly speaking, almost all forms are exact), leaving only cohomological
variables. Therefore integrability is intimately related [48] to topological-cohomological-
holographic-stringy theories and all these kinds of ideas should be considered together.
However, despite many efforts, spent on investigation of particular models, we are still far
from formulating clear concepts. Partly this is because examples are dictated more by ap-
plications than by the internal logic of the theory, and they provide somewhat chaotic flow
of information. There are already several things that we seem to know, but their complete
list and relative significance remain obscure.

4.2.1. Hirota equations
The first in the list are bilinear Hirota-style equations, which establish contact with Lie
algebra theory [27]. Bilinearity is usually related to the properties of comultiplication and
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to the basic relation ∆(g) = g ⊗ g for group elements [49, 50]. Connes-Kreimer the-
ory [50]-[52] implies, that quantum partition functions respect these properties, even if
they are defined through Feynman diagrams, without explicit reference to functional inte-
grals, and identify the underlying algebraic structure with (generalized) renormalization
group. As already mentioned, deeper understanding of relation between integrability and
renormalization groups remains among the main open problems of the theory.

4.2.2. Moduli space of solutions
The second big problem is understanding, classification and control over the freedom
in solving Hirota equations. We mentioned already, that these bilinear equations restrict
the dependence on coupling constants tk, and the freedom remains in the conjugate/dual
variables, like zero-modes, or boundary conditions, or choices of vacua, or holographic
data, or whatever else name and analogy one prefers to use in connection with one’s
favorite application. The problem is to find not just a name, but adequate language to
speak about this data. Suggestive example is provided by original Hirota equations [53],
associated with KP hierarchy: there the freedom (or at least a part of it) can be interpreted
in terms of Riemann surfaces. Different KP τ -functions, at least from the class of the
finite-zone solutions, differ by the choice of Krichever data Σ [54]: a complex curve, a
point on it and holomorphic coordinates in the vicinity of a point. Given this data, the KP
τ -function is fixed to be

τ(t|Σ) = etQtθ(
∑

k

�Bktk|Tij), (4.3)

where Tij is the period matrix of the Riemann surface, �Bk =
∮

�B Ωk and Ωk(ζ) =(
ζ−(k+1) + O(1)

)
dζ are meromorphic 1-forms with vanishing A-periods. If ansatz (4.3)

is substituted into Hirota equations, they become equivalent to Shottky condition for the
period matrix Tij [55], i.e. require θ(�z|Tij) to be Riemannian theta function, not just ar-
bitrary Abelian one. Rather straightforwardly, the simplest – rational and solitonic – KP
τ -functions can be treated as particular cases of (4.3) with Riemann surface of genus
zero. All remaining, non-finite-zone KP τ -functions are more sophisticated and can be
considered as associated with infinite-genus Riemann surfaces, though exact meaning is
not yet ascribed to these words. Clearly, there are many different kinds of ”infinite-genus”
τ -functions. Even the principal example of Kontsevich τ -function τK(t), which belongs
to this infinite-genus family, is not well understood and investigated.

Anyhow, example (4.3) remains the main reference point in the theory of integrable
systems. It underlies the belief that the right language for description of dual/conjugate
variables to times (coupling constants) should be that of Hodge theory, different τ -func-
tions should be parameterized by data, encoded in spectral surfaces, not obligatory 2-
dimensional. Thus integrability is believed to be a unification of group theory and al-
gebraic geometry, with certain combinatorial flavor, already coming from the studies of
adjacent and clearly related subjects [34, 50, 51]. At the same time, even despite these
ambitious perspectives, too much remains obscure in the general structure of integrability
theory, see [56]-[70] for various important constituents which it should finally unify. All
this makes natural the fastly increasing attention to integrability concepts, but decisive
conceptual breakthrough is still to come.
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4.2.3. Seiberg-Witten theory, Whitham integrability and WDVV equations
The third problem is the search for an adequate language, which can help to merge Hodge
theory with Lie algebra structures. There are various approaches. The most obvious is
to study cohomological (topological) field and string theories [71] and find traces of in-
tegrability there. This program is very successful in dealing with various examples, but
general concepts appear very hard to extract from it. Among such concepts definitely are
the WDVV equations [72, 73] and Batalin-Vilkovisky formalism [74, 75]. Alternative ap-
proach, from integrability side usually starts from (4.3), directly or implicitly, and notes
that theta-function in that formula is oscillating, therefore one can distinguish between
fast (oscillating) and slow variables. Then, as usual, one can take an average over fast
variables and consider an effective theory induced on the space of slow variables. Since,
according to (4.3), the fast variables are exactly the times tk, the slow variables of the
emerging effective theory should be exactly the dual variables, that we are interested in.
This idea, known as Whitham theory, has obvious contacts with those of renormalization
and renormalization group, and not-surprisingly appears to have immediate applications.
While absolutely un-developed in general, it has a solid very well formulated chapter:
the Krichever-Hitchin-Seiberg-Witten theory, describing explicit construction of peculiar
special functions – Seiberg-Witten prepotentials – from the analogue of Krichever data,
associated with peculiar Seiberg-Witten families of spectral surfaces (the best known ex-
amples are Calabi-Yau spaces and special families of Riemann surfaces). The prepotential
F(Sk) is defined [76]-[78] by two equations:

Sk =
∮
Ak

ΩSW ,

∂F
∂Sk

=
∮
Bk

ΩSW , (4.4)

where ΩSW (z) is a linear combination of Ωk(z) in (4.3) and holomorphic 1-differentials
�ω(z) (with non-vanishing A-periods), possessing a special-geometry property that δΩSW

is a symplectic form on the ”sheaf” of spectral surfaces over the moduli space. In prac-
tice this condition states that δΩSW is holomorphic (has no poles) if the variation is taken
along the moduli space of Seiberg-Witten curves. Canonical system of contours {Ak,Bk}
in (4.4) consists of all non-contractable cycles (including those around resolved singular-
ities of Ωk) and their duals, see [78] for details. The variables Si define a sort of flat
coordinates on the moduli space.

It appears that the so defined prepotential always satisfies the (appropriately general-
ized) WDVV equations [73], namely for matrices(

F̂i

)
jk

=
∂3F

∂Si∂Sj∂Sk

made out of prepotential’s third derivatives,

F̂iF̂−1
j F̂k = F̂kF̂−1

j F̂i (4.5)

for any triple (i, j, k). Moreover, this system of equations for infinitely-large matrices
often survives reduction to finite-dimensional matrices when only S-variables, associated
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with ordinary non-contractable contours, are taken into account. This reasons why such
reductions exist are far from obvious, and so is the entire theory of WDVV equations.
Technically, it relies upon residue formulas for moduli derivatives of period matrices,
but conceptually it involves reduction theory of non-trivial algebra of forms and is still
very unsatisfactory. Additional puzzle is that reduced WDVV equations are violated, at
least when applied naively, in the case of elliptic Calogero system (see the third paper in
ref.[73]). Other elliptic examples [79, 70] were not yet analyzed in the context of WDVV
equations.

At the same time the theory of WDVV equations can appear even more important than
it seems. Today this set of equations is the only candidate for a definition of a prepotential
in internal terms, which does not refer to explicit construction procedure. Thus WDVV
equations can probably be promoted to the status of definition of the prepotential and ac-
quire the status, similar to the one that Hirota equations have for τ -functions. (Referring to
its possible origin as a Whitham average of (4.3) – or, more, accurately, of the underlying
Hirota equations,– prepotential is often called Whitham or quasiclassical τ -function, and
the above-mentioned problem is to find the internal definition of quasiclassical integra-
bility – a very important theoretical challenge.) The main problem with WDVV equations
from this point of view is that they describe only ”spherical prepotentials”: from the study
of topological theories and related algebraic constructions [80] we know that there is
a whole hierarchy of prepotentials, associated with the genus expansion of Yang-Mills
and matrix models partition functions, and Seiberg-Witten prepotential is just the zeroth
(genus-zero) term of this sequence. Appropriate generalization of WDVV equations for
entire sequence is not yet found, for first steps in the cases of genus one and two see
[81], and for relation to Batalin-Vilkovisky theory see [82] (to avoid possible confusion,
these papers consider only WDVV equations with additional requirement of ”unit met-
ric”, which is natural in applications to quantum cohomologies [83] and naive topological
models – to ”geometric prepotentials”,– but is not quite straightforward to relax).

4.3. CFT REPRESENTATIONS, WICK THEOREM AND DECOMPOSITION
FORMULAS

The theory of 2d conformal systems [84], once at the front-line of attention in string
theory, was suddenly abandoned before an exhaustive theory was formulated, and many
problems, including effective description of entire variety of conformal models and equiv-
alencies (dualities) between them, are left unresolved. Partly, this happened because at-
tempts to glue the entire subject together – in the framework of landscape theory [35]
– naturally caused a desire to interpolate between different conformal models, and this
unavoidably embeds [32] the world of 2d conformal theories into that of 2d integrable
systems – still a very badly understood subject, intimately related to the theory of quan-
tum Kac-Moody algebras [85, 86, 87], which attracts much less attention than it deserves.

As already mentioned, there is no doubt that every class of matrix models have CFT
representations, i.e. partition function of a given family of matrix models can be repre-
sented as a correlator of some operator in 2d conformal theory. The questions are: what is
the way to build this operator – so far it is matter of art rather than a systematic procedure;–
what kind of information from the much bigger phase space of 2d free fields is lost (pro-
jected out) in transition to the matrix models (in particular, even models which are not
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dual themselves can still produce representations of one and the same matrix model parti-
tion function); how the data of matrix model is mapped into the data of conformal model
etc. Today we do not know anything similar to answers to any of these questions.

The crucial property of free field (and thus of 2d conformal) theories is straightforward
realization of the Wick theorem: all correlators are decomposed into multi-linear combi-
nations of pair correlators (see [88] for a rather fresh discussion of the issue). In principle,
for topological and integrable theories naive Wick theorem is not applicable: even after
all possible simplifications there are contact terms (and prepotential F(S) is almost never
quadratic). In interacting theory transformation to angle-action variables which would ex-
plain to what kind of correlators the naive Wick theorem is applicable, is highly non-linear
and probably not very useful. A very important question is what substitutes the naive
Wick theorem for generic partition functions. As we know, generic partition functions are
not at all in general position in the space of all functions, they satisfy many constraints,
like linear Ward identities, bilinear Hirota equations, highly non-linear WDVV equations.
Thus we can expect that above question about Wick theorem can make sense. Of course,
one can try to interpret as avatars of the Wick theorem all of above-mentioned relations on
partition functions. Remarkably, there is also a much more profound candidate: decompo-
sition formulas. It appears that partition functions can often be represented as poly-linear
combinations of simpler building blocks, like Gaussian matrix models and Kontsevich τ -
functions τK . So far this fact, which we call Givental-style decomposition, was explicitly
formulated in restricted number of cases [47, 2, 40], but we believe that this is just the
tip of the iceberg, and further work will confirm the universality and important role of
decomposition phenomenon: a probable substitute of Wick theorem for generic partition
functions.

5. Towards exhaustive theory of 1-matrix model: the Dijkgraaf-Vafa theory

Dijkgraaf-Vafa theory [89]-[103] deserves special attention, because for the first time an
application was found, which requires understanding of a whole variety of phases of a
single matrix model, namely the model (2.1). Despite it is still not the entire variety –
only peculiar phases are considered interesting, where partition function is consistent with
the genus expansion, – it is still a very big step forward, and it stimulated fast progress
in matrix model theory. In this section we briefly characterize some directions of this
progress As everywhere in these notes, we concentrate on pure theoretical issues and
ignore the – sometime very interesting – results in applications to Yang-Mills, quantum
gravity and model building.

5.1. GENUS EXPANSION

Genus expansion, i.e. the t’Hooft’s 1/N expansion [104], attracts constant attention since
the early studies of matrix models [15]. While it has clear meanings both in diagram tech-
nique (genus expansion for fat graphs) and in WKB approach to the integrals like (2.1),
specification of partition functions possessing genus expansion among generic solutions
of Ward identities [17] is not straightforward and looks somewhat artificial. As explained
in [2, 44], it involves several steps.
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First of all, by rescaling of all time-variables tk → 1
g tk one introduces the new para-

meter g. It appears in Virasoro constraints (3.1) as a coefficient g2 in front of the double-
derivative terms. Second, solution of these Ward identities is looked for among rather
special functions, such that

g2 log Z(t/g|N) =
∑
p≥0

g2pF (p)(t|gN) (5.1)

is a series in non-negative powers of g2, provided the coefficients of this expansion,
F (p)(t|gN), depend on the t’Hooft’s coupling constant S = gN . Though consistent with
(3.1), this is actually a tricky requirement. It implies that Z itself is a series in all inte-
ger, positive and negative, powers of g2, just coefficients in front of negative powers are
strongly correlated. Moreover, there is no N in Ward identities (3.1). N can be introduced
as S = gN = ∂(g2 log Z)/∂t0, but this requirement breaks superposition principle: once
it is imposed, the sum of two solutions is not a solution (this is nearly obvious: a sum of
two exponentials is not an exponential). This means that genus expansion can be at best a
property of the elements of a linear basis in the space of solutions, while generic element
of this space does not respect it. In other words, genus expansion can be a property of
particular integrals, like (2.1), but there is no way to impose this requirement on linear
combinations of integrals with different N , which will still be solutions of the Virasoro
constraints.

There are at least two ways to deal with this problem (the obvious possibility to ignore
it, as is usually done, is not counted). First, one can look for the ways to define special
basises – the problem is to define them in invariant way, by specifying their properties,
not by explicit construction, like matrix integrals. Second, one can try to formulate genus
expansion without explicit reference to N – this road leads to introduction of check op-
erators [44].

5.2. GAUSSIAN AND NON-GAUSSIAN PARTITION FUNCTIONS

Requirement of genus expansion is not enough to specify the phase (branch) of partition
function completely, it regulates only dependence on the common scaling factor of all
couplings tk and says nothing about their ratios. The next step [2] is to select combinations
of t-variables which can appear in denominators. A way to do this is to make a shift,
tk → tk−Tk, and consider W (φ) =

∑
k Tkφk as a bare action and tkφk as perturbations.

In other words, the branch

ZW (t|N) =
1

Vol(U(N))

∫
N×N

dΦexp

(
−TrW (Φ) +

∑
k

tkTr Φk

)
(5.2)

of partition function is defined as a formal series in non-negative powers of tk, while
W (z), i.e. Tk’s, are allowed to appear in denominator. Once W (z) is introduced, one
immediately distinguishes between the Gaussian (with W (φ) = M

2 φ2) and non-Gaussian
phases.

Next, it turns out that while the variable N is naturally introduced in the Gaussian
phase, in non-Gaussian case the situation is more sophisticated: there are naturally n =
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deg W ′(z) parameters like N : the phase is still split into a n-parametric family of phases.
Additional variables can be interpreted as numbers of eigenvalues concentrated near the n
extrema (maxima and minima) of the bare potential W (φ), a more reliable interpretation
is as integration constants in solution of shifted (by W (z)) Virasoro constraints. See [2]
for further details.

Gaussian partition function can be represented as

Z
(M)
G (t|S|g) = exp

(
1
g2

(
−ST0 − M

2
S2

))
exp

⎛⎝∑
p≥0

g2p−2F (p)
G (t|S)

⎞⎠ (5.3)

and information about the t-dependence of prepotentials F (p)
G (t|S) can be represented

in terms of multi-densities, the generating functions of m-point correlators, which – for
given p and m – are ordinary poly-differentials on the Riemann sphere.

Multi-densities can be defined in different ways (for different families of correla-
tors) [2], one of the ways consistent with genus expansion and with the free-field rep-
resentation (3.1) of Virasoro constraints makes use of the operator ∇̂(z) = 2dφ̂−(z) =∑∞

k=0
dz

zk+1
∂

∂tk
:

[
∇̂(z1) . . . ∇̂(zm)

(
g2 log ZW (t|�S|g)

)]∣∣∣
t=0

=

= ρ(·|m)(z1, . . . , zm|�S|g) =
∑
p≥0

g2pρ(p|m)(z1, . . . , zm|�S) (5.4)

The first Gaussian multi-densities are:

ρ
(0|1)
G (z) =

z − yG(z)
2

,

ρ
(1|1)
G (z) =

ν

y5
G

= − y′′
G

4y2
G

,

ρ
(2|1)
G (z) =

5
16

(y′′
G)2

y5
G

− 1
8y2

G

∂2

(
y′′

G

y2
G

)
− 1

8
y′′′′

G

y4
G

,

. . . (5.5)

ρ
(0|2)
G (z1, z2) =

1
2(z1 − z2)2

(
z1z2 − 4ν

yG(z1)yG(z2)
− 1

)
=

= − 1
2yG(z1)

∂

∂z2

yG(z1)− yG(z2)
z1 − z2

= − 1
2yG(z2)

∂

∂z1

yG(z1)− yG(z2)
z1 − z2

,
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ρ
(1|2)
G (z1, z2) =

ν

y7
G(z1)y7

G(z2)

(
z1z2(5z4

1 + 4z3
1z2 + 3z2

1z2
2 + 4z1z

3
2 + 5z4

2) +

+4ν
[
z4
1 − 13z1z2(z2

1 + z1z2 + z2
2) + z4

2

]
+

+16ν2(−z2
1 + 13z1z2 − z2

2) + 320ν3
)

=

=
1

yG1

[(
4

1
4y2

G1

y′′
G1 −

1
2yG1

∂2
1

)
1

2yG1

∂

∂z2

yG1 − yG2

(z1 − z2)
+

+
∂

∂z2

1
z1 − z2

(
1

4y2
G2

y′′
G2 −

1
4y2

G1

y′′
G1+

+
1

yG1

(
− 1

4yG1
y′′

G1 +
1

2yG1

∂

∂z2

yG1 − yG2

(z1 − z2)

))]
,

. . .

ρ
(0|3)
G (z1, z2, z3) =

2ν(z1z2 + z2z3 + z3z1 + 4ν)
y3

G(z1)y3
G(z2)y3

G(z3)
=

=
1

yG1

[
2

1
4y2

G1

(
∂

∂z2

yG1 − yG2

z1 − z2

)(
∂

∂z2

yG1 − yG3

z1 − z3

)
+

+
∂

∂z2

1
z2 − z1

(
1

2yG1

(
∂

∂z3

yG1 − yG3

z1 − z3

)
− 1

2yG2

(
∂

∂z3

yG2 − yG3

z2 − z3

))
+

+
∂

∂z3

1
z3 − z1

(
1

2yG1

(
∂

∂z2

yG1 − yG2

z1 − z2

)
− 1

2yG3

(
∂

∂z2

yG2 − yG3

z2 − z3

))]
,

. . .

We assumed here that M = 1, then y2
G = z2 − 4ν and ν = S = gN .

Non-Gaussian are somewhat more sophisticated, they are actually made from Rie-
mann theta-functions for a peculiar Seiberg-Witten family of hyperelliptic complex cur-
ves. For example, the (p,m) = (0, 2)-density is the 2-point correlator on such surfaces:

ρ
(0|2)
W (z1, z2) = dz1dz2 log E(z1, z2), (5.6)

where E(z1, z2) ∼ ν∗(z1)ν∗(z2)
θ(�z1−�z2)

is the prime form [5, 3].

5.3. DECOMPOSITION FORMULAS

Rewriting (5.2) in terms of the eigenvalues and then separating the eigenvalues into sets,
associated with different extrema of W (φ), one can deduce [92] a decomposition formula
[2] for non-Gaussian ZW :

ZW ∼
∏n

i=1 Vol(U(Ni)) e−NiW (αi)

Vol(U(N))
×

×
n∏

i<j

α
2NiNj

ij Ôij

n∏
i=1

Ôi

n∏
i=1

Z
(Mi)
G (t(i)|Ni) (5.7)
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with αi denoting the n roots of

W ′(z) =
n+1∑
k=0

kTkzk−1 = (n + 1)Tn+1

n∏
i=1

(z − αi),

αij = αi − αj , and operators

Ôij = exp

⎛⎝2
∞∑

k,l=0

(−)k (k + l − 1)!
αk+l

ij k!l!
∂

∂t
(i)
k

∂

∂t
(j)
l

⎞⎠ ,

Ôi = exp

⎛⎝−∑
k≥3

W (k)(αi)
k!

∂

∂t
(i)
k

⎞⎠
Here W (k)(x) = ∂k

xW (x).
As explained in the previous section, this Givental-style formula is an example of gen-

eral phenomenon, generalizing the Wick theorem from free fields and conformal theories
to matrix models and non-trivial integrable systems.

Eq.(5.7) requires (and deserves) deep investigation. Today almost nothing is known
about it. It is unclear how (5.7) follows directly from Virasoro constraints, without ex-
plicit use of matrix integrals. It is unclear what is exact implication of the relation (4.2)
for Gaussian functions, standing at the r.h.s. of (5.7). It is clear that the combination of
(4.2) and (5.7) should represent ZW as some operator acting on τ2n

K , but exact formula
is unavailable (Greg Moore in [39] and especially Ivan Kostov in [40] came very close to
the answer, but it still escapes).

Eq.(5.7) can be also considered as a definition of a linear basis in the space of solutions
of Virasoro constraints, which is formed by the functions, respecting the genus expansion.
Arbitrary solution can be represented as a linear combination,

ZW (t) =
∫

�S

µ(�S)ZW (t|�S), (5.8)

with arbitrary measure µ(�S).

5.4. CHECK-OPERATORS AND T -EVOLUTION OPERATOR

According to their definition (5.4), multi-densities do not depend on the time variables tk,
only on T0, . . . , Tn+1 and �S. Actually, dependence on Tn and Tn+1 is fixed by (3.1), and
multi-densities depend on 2n variables: n of them are T ′s and n are S’s. Therefore one
can ask for a procedure which defines multi-densities directly in terms of these variables,
without an intermediate introduction of – infinitely many – auxiliary (from the point of
view of multi-densities theory) variables tk. This problem is solved, at least conceptually,
in [2, 44] in terms of check-operators.

Multi-densities are not arbitrary functions of their 2n variables, the Ward identities
(3.1) express all of them in terms of a single function of n + 1 variables, T0, . . . , Tn−1

and g [2], which we call bare prepotential. The choice of bare prepotential is actually
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the choice of particular branch of partition function. Note, that this means that there are
not just infinitely many branches, they form a continuous variety – and this is a property
of every reasonable partition function and of anything obtained by application of evolu-
tion operators (for which the functional integral is a particular realization), see [34] for
explanation, how continuous phase structure emerges from discrete bifurcations (phase
transitions), and for discussion of the adequate formalism. This set of questions is very
important, in particular it can help to understand the relevant topology and may be even
the metric structure on the space of phases, what is the principal problem in landscape the-
ory. Development of such formalism for matrix models is a task for the future, today we
know how to proceed within a given phase, when bare prepotential is somehow specified
and the question of relative importance of different choices is not addressed.

5.4.1. Independent variables and bare prepotential
To understand what it means to specify the bare prepotential, we consider immediate
corollary of (3.1) with tk → 1

g (tk − Tk) for partition function at vanishing times tk. It is
given by [44]:

Z(T |g)|t=0 =
∫

dkz(k|η2, . . . , ηn|g2)e
1

g2 (kx−k2w) (5.9)

with an arbitrary function z of n arguments (k, η2, . . . , ηn) and g2. Here the L̂−1-invariant
variables are used,

w =
1

n + 1
log Tn+1, ηk = T

− nk
n+1

n+1

(
T k

n + . . .
)
, x = T0 + . . . ∼ ηn+1

In particular,

η2 =
(

T 2
n −

2(n + 1)
n

Tn−1Tn+1

)
T

− 2n
n+1

n+1 ,

η3 =
(

T 3
n −

3(n + 1)
n

Tn−1TnTn+1 +
3(n + 1)2

n(n− 1)
Tn−2T

2
n+1

)
T

− 3n
n+1

n+1 ,

η4 =
(

T 4
n −

4(n + 1)
n

Tn−1T
2
nTn+1 +

8(n + 1)2

n(n− 1)
Tn−2TnT 2

n+1−

− 8(n + 1)3

n(n− 1)(n− 2)
Tn−3T

3
n+1

)
T

− 4n
n+1

n+1 ,

. . .

ηk =

(
T k

n +
k(k − 2)!

n!

k−1∑
l=1

(−)l (n + 1)l(n− l)!
(k − l − 1)!

Tn−lT
k−l−1
n T l

n+1

)
T

− kn
n+1

n+1

The variable x is obtained from ηn+1 by normalization and it is the only variable which
contains T0. At the same time only T0 appears in double-derivative item of L̂0, thus in
(5.9) the L̂0-constraint links the x- and w-dependencies. Of course, generic (5.9) does
not possess genus expansion, i.e. does not guarantee that the bare prepotential F (T |g) =
g2 log Z(T |g), is expanded in non-negative powers of g2: as explained above, this re-
quirement is somewhat artificial from the perspective of D-module theory. Still, a simple
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ansatz makes things consistent (it is not quite clear if this ansatz is absolutely necessary
for genus expansion to exist): if

S =
∂F

∂T0
= const (5.10)

i.e. is independent of T0, . . . , Tn+1 and g, then,

z(k|η2, . . . , ηn|g2) = δ(k − S)H(η2, . . . , ηn|S|g2) (5.11)

and

F = g2 log Z = Sx +
S2

n + 1
log Tn+1 + g2 log H(η2, . . . , ηn|S|g2) (5.12)

where H is an arbitrary function of n+1 variables. Genus expansion occurs, if we request
g2 log H is expanded in non-negative powers of g2.

Introduction of the other �S-variables can be considered as ingenious version of Fourier-
Radon transform with the help of Dijkgraff-Vafa partition functions (5.7), which converts
H(η2, . . . , ηn) into an arbitrary measure µ(�S) of the �S-variables in (5.8) [2].

5.4.2. Check-operator multi-densities
Remaining constraints L̂k with k > 0 express t-dependencies of Z(t|T ) through T -
dependencies. In particular, they allow to represent multi-densities (both Gaussian and
non-Gaussian) by action of T -dependent operators on partition function (5.9). Such oper-
ators, involving only derivatives with respect to T -variables, are named check-operators in
[44], to distinguish them from hat-operators, acting on t-variables. The task is to express
multi-densities, defined by application of hat-operators to the full prepotential F (t|T |g),
through check-operators applied to the bare prepotential F (T ) = F (t = 0|T |g). These
check operators will predictably be more sophisticated than hat-operators ∇̂(z), but in-
stead they can be applied to the independent (free) function F (T ).

Remarkably, the problem of building check-operator multi-densities appears essen-
tially equivalent to the problem of Gaussian multi-densities [44]. Though this fact is not
fully proved – and even adequately formulated – yet, it is not too surprising: the needed
check-operators are universal, in certain sense they do not depend on the phase, thus they
should be restorable from information, available in any phase, including the Gaussian one
(once again we encounter the main idea of string theory). Anyhow, modulo some details
concerning ordering prescriptions, the first check-operators can be just read from formulas
(5.5) for Gaussian multi-densities [44]:

ρ̌
(0|1)
W (z|g) =

W ′(z)− y̌(z|g)
2

,

ρ̌
(1|1)
W (z|g) = − 1

4y̌2
y̌′′,

ρ̌
(2|1)
W (z|g) =

5
16

(y̌′′)2

y̌5
− 1

8y̌2
∂2

(
y̌′′

y̌2

)
− 1

8
y̌′′′′

y̌4
,

. . . (5.13)
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ρ̌
(0|2)
W (z1, z2|g) = − 1

2y̌(z1|g)
∂

∂z2

y̌(z1|g)− y̌(z2|g)
z1 − z2

,

ρ̌
(1|2)
W (z1, z2|g) =

1
y̌1

[(
4

1
4y̌2

1

y̌′′
1 −

1
2y̌1

∂2
1

)
1

2y̌1

∂

∂z2

y̌1 − y̌2

(z1 − z2)
+

+
∂

∂z2

1
z1 − z2

(
1

4y̌2
2

y̌′′
2 −

1
4y̌2

1

y̌′′
1 +

1
y1

(
− 1

4y̌1
y̌′′
1 +

1
2y̌1

∂

∂z2

y̌1 − y̌2

(z1 − z2)

))]
,

. . .

ρ̌
(0|3)
W (z1, z2, z3|g) =

1
y̌1

(
2

1
2y̌1

(
∂

∂z2

y̌1 − y̌2

z1 − z2

)
1

2y̌1

(
∂

∂z2

y̌1 − y̌3

z1 − z3

)
+

+
∂

∂z2

1
z2 − z1

(
1

2y̌1

(
∂

∂z3

y̌1 − y̌3

z1 − z3

)
− 1

2y̌2

(
∂

∂z3

y̌2 − y̌3

z2 − z3

))
+

+
∂

∂z3

1
z3 − z1

(
1

2y̌1

(
∂

∂z2

y̌1 − y̌2

z1 − z2

)
− 1

2y̌3

(
∂

∂z2

y̌2 − y̌3

z2 − z3

)))
,

. . .

Here

y̌2(z|g) = W ′(z)2 − 4g2ŘW (z)

and

ŘW (z) = −
∑

a,b=0

(a + b + 2)Ta+b+2z
a ∂

∂Tb

The check-multidensities are defined to satisfy

Ǩ
(·|m)
W (z1, . . . , zm|g)ZW (T |g) = K

(·|m)
W (z1, . . . , zm|g)ZW (T |g) =

=
[
∇̂(z1) . . . ∇̂(zm)ZW (t|T |g)

]∣∣∣
t=0

for full correlators K
(·|m)
W (z1, . . . , zm|g), which are derivatives of Z(t), not of its loga-

rithm, while for connected ρ
(·|m)
W (z1, . . . , zm|g)

(ZW (T |g))−1
ρ̌
(·|m)
W (z1, . . . , zm|g) ZW (T |g) �= ρ

(·|m)
W (z1, . . . , zm|g) =

= ∇̂(z1) . . . ∇̂(zm)
(
g2 log ZW (T |g)

)
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Relation between the full and connected correlators is provided by straightforward –
though heavily looking – combinatorial formula [44]

K
(·|m)
W (z1, . . . , zm|g) =

m!∑
σ

m∑
k=1

∞∑
ν1,...,νk=1

∞∑
p1,...,pν=0

g2(p1+...+pν−ν)

⎛⎜⎝ ∑
m1,...,mk

m=ν1m1+...+νkmk

1
ν1!(m1!)ν1 . . . νk!(mk!)νk

ρ
(p1|m̃1)
W (zσ(1), . . . , zσ(m̃1))·

· ρ(p2|m̃2)
W (zσ(m̃1+1), . . . , zσ(m̃2)) . . . ρ

(pν |m̃ν)
W (zσ(m−m̃ν+1), . . . , zσ(m))

⎞⎟⎟⎠
which serves as generalization of the Wick formula from the case when the only connected
correlators are 2-point (note that this simplification does not occur even in Gaussian
phases of matrix models beyond naive continuum limit). A similar expression relates the
check-operators Ǩ and ρ̌, in particular,

Ǩ
(·|1)
W (z; g) =

∞∑
p=0

g2p−2ρ̌
(p|1)
W (z; g). (5.14)

Note also, that in variance with (5.5), expressions in (5.13) explicitly contain g2.
Actually, once the check-operators multi-densities are introduced, one can forget about

the genus-expansion constraint: operators can be applied to any bare partition function.
Instead of being a constraint on partition functions, genus expansion requirement dictates
becomes a selection criterion for a basis in check-operators space. The next step is to
build up a theory of the t-evolution operator Ǔ(t), which generates the t-dependence of
partition function:

Z(t|T ) = Ǔ(t)Z(0|T ). (5.15)

Its existence is almost obvious, see [2, 44], but properties and explicit realizations remain
to be found.

5.5. SEIBERG-WITTEN THEORY

The Dijkgraaf-Vafa theory is intimately related to Seiberg-Witten theory.

5.5.1. Genus-zero level
For detailed discussion of this relation in the particular case of Dijkgraaf-Vafa partition
functions per se, i.e. with requirements that genus expansion exists and only genus-zero
contributions (spherical prepotentials) are considered, see [95]-[99]. Here are the main
points of this analysis. The smallest moduli space of Seiberg-Witten structure unifies all
phases with all the bare potentials W (z) of a fixed degree n. It has (complex) dimension
2n, T and S-variables form the set of 2n flat moduli of Seiberg-Witten structure, de-
fined with the help of ΩSW =

√
W ′(z)2 − 4fW (z)dz, where fW (z) = ŘW (z)F (0)(T )
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is a polynomial of degree n − 1, made from arbitrary function F (0)(T ) of n variables
T0, . . . , Tn−1 (and dependence on Tn and Tn+1 prescribed by Ľ−1 and Ľ0-constraints).
The space of all functions of n variables can – in the framework of Fourier-Radon trans-
forms – be parameterized by arbitrary functions of n other parameters, and �S can play the
role of such parameters no better, no worse than any other set of variables. What distin-
guishes �S is that they are flat Seiberg-Witten moduli, i.e. the symplectic form on the sheaf
of Seiberg-Witten curves is

δΩSW = ωi(z) ∧ δSi + Ωk(z) ∧ δTk (5.16)

and

�S =
∮

�A
ΩSW , Tk = res∞zkΩSW (5.17)

The CIV-DV prepotential [89, 90] is defined by

∂FCIV

∂�S
=
∮

�B
ΩSW ,

∂FCIV

∂Tk
=

1
k

res∞z−kΩSW (5.18)

it can be explicitly calculated term by term and possesses pronounced group-theoretical
structure [97, 2], which still awaits its adequate interpretation and explanation. No rea-
sonable generic formulas for this prepotential are yet found, despite it is a genus-zero
quantity, and despite it can be deduced in at least two dual ways: from (5.18) and from
(5.7). Moreover, even direct relation between these equivalent representations is not yet
established. Also important is that there are various differently looking forms for the same
items in FCIV , their equivalence follows from peculiar identities [98], which are simple
to prove, but not so simple to understand.

5.5.2. WDVV equations
In [95, 98, 99] the proof is given of the WDVV equations (4.5) for the CIV-DV prepoten-
tial. This is an additional check that 2n moduli T and S form complete set, at least at the
level of genus-zero prepotentials. In [96] a less obvious observation is reported: sometime
this set can be reduced further, for example, by elimination of one of the 4 moduli in the
case of n = 2, however, the meaning of this observation remains obscure.

The analogues of the CIV-DV prepotential for higher genera can also be defined be-
cause of its relation to Ward identities (3.1) – this makes the situation different from
generic Seiberg-Witten theory, where the problem of lifting from genus zero to all gen-
era remains very important, but unsolved. This makes it possible to ask, if higher genus
prepotentials satisfy the (properly generalized) WDVV equations, for example the ones
implied by studies of topological models [81]. This problem was not seriously attacked
yet.

5.5.3. Towards the quantum Seiberg-Witten theory of check multi-densities
The next natural question in the theory of check operators concerns definition of S-
variables. Since in particular phases they are periods of ρ

(0|1)
W , it is natural to treat S-

variables as operators, defined as periods of ρ̌(0|1). Moreover, under certain conditions
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the A-periods of higher-genus one-point densities are vanishing, and one can even con-
sider the periods of ρ̌(·|1) or

Ši =
g2

4πi

∮
Ai

Ǩ(·|1)(z). (5.19)

This is a very perspective direction of research. Among other, obvious and not-so-obvious,
questions is developement of the full-scale version of Seiberg-Witten theory for check-
operator quantities, i.e. a quantization of Seiberg-Witten structure. Introduction of check
operators with the goal to deal with arbitrary bare prepotentials in a uniform way is a
nice illustration of string ”third-quantization” procedure, which implies that in order to
study families of models one actually needs to quantize a representative of the family. An
example of the simplest relation in this quantum Seiberg-Witten theory is provided by the
quantum version of (4.4) [44]:[

g2

4πi

∮
Ai

Ǩ,
g2

2

∮
Bj

Ǩ

]
= g2δij , (5.20)

probably, with no corrections at the r.h.s.
The check-operator A-and B-periods in (5.20) are equal respectively to Ši = Š

(0)
i +

g2Š
(1)
i + O(g4) and Π̌(0)

i + O(g2), where [97]

Š
(0)
i =

g2

Mi
Ři, Π̌(0)

i = W (αi), (5.21)

g2Š
(1)
i

(5.13)
= resαi

W ′′′(z)dz

8W ′(z)2
=

∂4W∂2W − (∂3W )2

8(∂2W )3
(αi)

and αi, i = 1, . . . , n are the roots of W ′(z), operators Ři = ŘW (αi),

Mi = W ′′(αi) = (n + 1)Tn+1

∏
j 
=i

αij ,

αij = αi − αj . Note that in the leading order the operator B-periods and genus-1 contri-
butions to A-periods do not containt T -derivatives, thus non-trivial are only commutators,
involving Š

(0)
i . These commutators can be easily deduced from two general formulas from

[44],

[
ŘW (x),W (z)

]
=

W ′(x)−W ′(z)
x− z

,

[
ŘW (x), ŘW (z)

]
= (∂z − ∂x)

Ř′
W (x)− Ř′

W (z)
x− z

, (5.22)

together with

∂αj

∂Tk
= −kαk−1

j

Mj
, (5.23)
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from [98], which implies straightforwardly:

[
ŘW (x), αj

]
=

∑
a,b=0

(a + b + 2)Ta+b+2x
a ∂αj

∂Tb
=

= − 1
Mj

∂z
W ′(x)−W ′(z)

x− z

∣∣∣∣
z=αj

and, since W ′(αi) = W ′(αj) = 0,

[
Ři, αj

]
=
[
ŘW (αi), αj

]
=

1
αij

(5.24)

Eqs.(5.22) need to be supplemented by (5.24), because in commutators of periods (5.21)
the arguments αi also depend on Tk and their derivatives should be taken into account.
Thus instead of (5.22) we need: [

Ři,Mj

]
=
[
ŘW (αi),W ′′(αj)

]
=

= ∂2
z

W ′(αi)−W ′(z)
αi − z

∣∣∣∣
z=αj

+ W ′′′(αj)
[
Ři, αj

]
= −2Mj

α2
ij

, (5.25)

and [
Ři, Řj

]
=
[
ŘW (αi), ŘW (αj)

]
=

= (∂z − ∂x)
ŘW (x)− ŘW (z)

x− z

∣∣∣∣
x=αi, z=αj

+

+
[
ŘW (αi), αj

]
Ř′

W (αj)−
[
ŘW (αj), αi

]
Ř′

W (αi) =

=
2

α2
ij

(
Ři − Řj

)
(5.26)

Now we have everything to check, that[
Š

(0)
i , Š

(0)
j

]
=
[

g2

Mi
Ři,

g2

Mj
Řj

]
=

=
g4

MiMj

([
Ři, Řj

]− 1
Mj

[
Ři,Mj

]
Řj +

1
Mi

[
Řj ,Mi

]
Ři

)
= 0

Direct generalization of (5.25) states, that

[
Ři, ∂

mW (αj)
]

= −m!
m−2∑
k=0

1
(k + 1)!

∂k+2W (αj)
αm−k

ij

,
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in particular, [
Ři,

∂4W∂2W − (∂3W )2

(∂2W )3
(αj)

]
= − 24

Mjα2
ij

,

so that [
Š

(0)
i , g2Š

(1)
j

]
= − 3

MiMjα2
ij

=
[
Š

(0)
j , g2Š

(1)
i

]
is symmetric under the permutation i↔ j. Since also

[
g2Š

(1)
i , g2Š

(1)
j

]
= 0

and
[
g2Š

(1)
i , Π̌(0)

j

]
= 0, we finally obtain:[

Š
(0)
i + g2Š

(1)
i , Š

(0)
j + g2Š

(1)
j

]
= 0,

[
Π̌(0)

i , Π̌(0)
j

]
= [W (αi),W (αj)] = 0,

[
Š

(0)
i + g2Š

(1)
i , Π̌(0)

j

]
=
[

g2

Mi
Ři,W (αj)

]
=

=
g2

W ′′(αi)
W ′(αi)−W ′(αj)

αij
= g2δij (5.27)

Note that in the last formula there is no need to vary the argument αj , because this vari-
ation gets multiplied by W ′(αj) = 0. When j = i one needs to apply l’Hopital rule to
resolve the 0/0 ambiguity, and it provides the non-vanishing answer. This ends the proof
of (5.20). It is an open question, if there are higher order corrections ∼ O(g4) to the r.h.s.
of that formula.

Given (5.20), of special interest is this kind of quantization of the WDVV equations.
At least in principle, such approach opens a possibility to unify WDVV equations for
different genera, the spherical equations from [72, 73] with higher genus equations from
[81, 82], and thus provide a new deep connection with geometry of the moduli space of
punctured Riemann surfaces.

6. Neoclassical period: back to concrete results and back to physics?

The story about the challenges of matrix models is nearly infinite and can be continued
further and further. We, however, draw a line here. The only brief comment that deserves
being made at the end of these notes, is that the transcendental period, when most atten-
tion is concentrated on non-obvious structures underlying the subject and thus on high
abstractions, is never the final stage of developement of a theory. Sooner or later, deep
insights from transcendental studies open a possibility to solve practical problems and, in
our case, derive concrete formulas with the left hand side and the right hand side. Remark-
ably, some of such results are already starting to emerge. Despite they are rather week, it
is principally important that they appear, it means that the theory is on the right track and
new knowledge continues to have many non-trivial intersections with the old – what is a
necessary feature of a healthy research project.
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We mention here just three results of this kind, all concern the theory of CIV-DV
prepotentials and all establish non-trivial relations with free fields on Riemann surfaces:
the previous-level theory, from which one starts from when departing into the world of
integrability and matrix models. The first result [103] identifies 1-loop correction to the
CIV-DV prepotential with certain combination of determinants in some – yet unidenti-
fied – conformal theory. The second result [40] provides additional evidence in a form
of a CFT representation (not fully polished yet) of the all-genus matrix-model partition
function ZW . As expected, this representation actually constructs the partition function
by a Givental-style procedure from 2n (n = deg W ′(z)) Kontsevich tau-functions τK ,
obtained by the application of star operators [39] at 2n points of the bare spectral curve
(Riemann sphere), which become ramification points of the hyperelliptic spectral curve,
associated with ZW . The third result [43] formulates a kind of a perturbation theory for
correlation functions of 2n operators inserted at these points and represents the partition
function as a combinatorial ”quantum field theory”, essentially of Chern-Simons or, bet-
ter, Batalin-Vilkovisky type. We consider this small set of preliminary results as a clear
manifestation that all the ideas, discussed during the transcendental period can indeed be
brought together and the head can catch the tail: the seemingly transcendental ideas will
finally form a dense network of knowledge, not a shaky road leading into nowhere...
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PHENOMENOLOGY OF NEUTRINO OSCILLATIONS

LEV B. OKUN
ITEP, Moscow, Russia

Abstract.
A short review of phenomenological description of neutrino oscillations and recent

experimental data on neutrino masses and mixings.

1. A short history of neutrinos [1-16]

It took about 30 years from the discovery of radioactivity of uranium in 1896 by Henry
Becquerel to the hypothesis of neutrino by Wolfgang Pauli in 1930. It was conjectured
to solve a few puzzles of β-decay, such as continuous β-spectra. The new particle was
baptized by Enrico Fermi who also gave in 1933 the first theory of β-decay. In this theory
neutron transformed into proton by emitting electron and antineutrino, ν̄, while proton
transformed into neutron emitting positron and neutrino, ν.

The difference between neutrino and antineutrino has been questioned in 1937 by
Ettore Majorana, who suggested that ν̄ might be identical to ν, or in other words, that
neutrino, like photon, could be a genuinely neutral particle. This tantalizing possibility is
still the goal of many experiments looking for neutrinoless double beta decay 2β0ν.

After the World War 2 neutrino remained a kind of Cinderella among more famous
elementary particles. But there were physicists unshakebly faithful to it. For me the first
neutrino knight was Bruno Pontecorvo with whom I was in touch for more than forty
years.

In his famous 1946 Chalk River Report he suggested radiochemical Cl-Ar method of
detecting neutrinos from the sun, nuclear reactors, accelerators, radioactive sources. In
1958 he raised the question of neutrino-antineutrino oscillations and in 1959 suggested
an experimental search for muonic neutrinos. In 1969 he and Volodya Gribov derived
formulas describing νµ ↔ νe oscillations. (The idea of νµ ↔ νe mixing was put forward
in 1962 by Ziro Maki, Masami Nakagawa and Shoichi Sakata.) The formula for νe ↔ νµ

oscillations without “extra factor of 2” misprint, which one can find in some of Pontecorvo
papers, was published by Samoil Bilenky and Pontecorvo and by Harald Fritsch and Peter
Minkowski in 1976. In the subsequent years a number of authors argued in favor of this
“extra factor of 2”. But the correct formula has no “extra 2”.
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Two important steps in the theory of neutrino oscillations were made by Lincoln
Wolfenstein in 1978 and by Stanislav Mikheev and Alexey Smirnov in 1985. In the first
step the charged current contribution to the νe-scattering in matter was taken into account.
In the second step the resonant νµ ↔ νe transition due to this scattering in matter was
predicted. This is the famous MSW effect.

The most important land-mark experimental discoveries in the second half of the last
century were:

The first detection of ν̄ from a nuclear reactor by Frederic Reines and Clyde Cowan
in reaction ν̄p → ne+ (1953).

The experimental discovery of parity violation in weak interactions (E. Ambler et al.;
R.L. Garwin, L.M. Lederman, M. Weinrich; J.J. Friedman, V.L. Telegdi (1957)) and the
idea of longitudinal neutrinos (T.D. Lee, C.N. Yang, L. Landau, A. Salam, 1957).

The discovery by Leon Lederman, Melvin Schwartz, Jack Steinberger et al. that νµ

and νe are two different particles (1962).
The discovery of τ -lepton by Martin Perl (1975) and the proof by four collaborations

at LEP I Collider at CERN at the end of last century that only three light neutrinos,
νe, νµ, ντ are coupled to Z-boson.

2. Simple formulas for oscillations

Let us start by considering an oversimplified example of two flavors: νe, νµ. Introduce two
unit vectors: νl, να, where l = e, µ, while α = 1, 2 correspond to two masses: m1,m2.

Let us define the mixing angle θ: c ≡ cos θ, s ≡ sin θ.

νe = cν1 + sν2 , ν1 = cνe − sνµ ;

νµ = −sν1 + cν2 , ν2 = sνe + cνµ .

Usually neutrino oscillations are described by wave functions in “reduced” plane wave
approximation: νl(x, t) are expressed in terms of να(x, t) with fixed boundary conditions
at x = 0, t = 0.

να(x, t) = ναeipαx−iEαt , α = 1, 2

νe(x, t) = cν1(x, t) + sν2(x, t) ; νe(0, 0) = νe .

νµ(x, t) = −sν1(x, t) + cν2(x, t) ; νµ(0, 0) = νµ .

Two scenarios are considered in the literature: “same energy” vs “same momentum”.
“Same energy”: E1 = E2 = E, no oscillations in time at any x, in particular at x = 0.

Free neutrinos (on mass shell): pα =
√

E2 −m2
α = E − m2

α

2E .

∆p = p2 − p1 =
∆m2

2E
, ∆m2 = m2

1 −m2
2

Consider the case when the source emits electron neutrinos: ν(0, 0) = νe. Then the
evolution is described by

νe(x, t) = [cν1 + sν2e
iϕ(x)]e−iEt+ik1x ,
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where

ϕ(x) = ∆px =
∆m2

2E
x .

In order to find projections of νe(x, t) on νµ and νe let us rewrite νe(x, t) in terms of these
flavor states:

νe(x, t) = [c(cνe − sνµ) + s(sνe + cνµ)eiϕ(x)]e−iEt+ip1x .

Now it is easy to find probabilities of transition νe → νµ and of survival νe → νe.

a) Transition νe → νµ (ν(x) = νµ):

P (νe → νµ) = (sc)2 · | − 1 + eiϕ|2 = (sc)2 · 2(1− cos ϕ) =

= sin2 2θ sin2 ϕ
2 = sin2 2θ sin2 ∆m2x

4E

b) Survival νe → νe (ν(x) = νe):

P (νe → νe) = 1− P (νe → νµ) = 1− sin2 2θ sin2 ∆m2x

4E

For applications of these formulas it is convenient to return from �, c units, which
we tacitly used before, to units eV for m, GeV for E, and km for x and to replace x by
L which is widely used in literature to denote the distance between the source and the
detector of neutrino. Then

ϕ(L) = ∆m2L/4E�c = 1.27∆m2(eV2)L(km)/E(GeV) .

Here a comment on dimensions and coefficient 1.27 is in order.

[Et] = [pL] = [�] , [(∆m2/E) · L] = [EL] = [Ect] = [�c] ,

where [Et], ... , [hc] means dimension of Et, ... , hc.

m1,m2 are measured in eV, ∆m2 is measured in eV2,
L is measured in kilometers.
E is measured in GeV.

Recall that � = 6.582 · 10−25 GeV·s ,
c = 299792 km/s ,
�c = 1.973 · 10−19 Gev km .
Hence

eV2 · km
4GeV �c

=
10−18 GeV · km

4 · 1.973 · 10−19 GeV · km
= 1.27 .

My PhD adviser Isaak Yakovlevich Pomeranchuk (1913 – 1966) used to quote a
Ukranian philosopher Grigory Skovoroda (1722 – 1794):

“Thanks God: All what is relevant is simple, all what is not simple is not relevant.”
Most of the experiments done up to now have been analyzed in terms of the “reduced”

two neutrino-flavors plane wave approximation, described in this section. I am tempted to
dub it “Skovoroda approximation” for its simplicity.
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While oscillations of two neutrinos are described by two masses, m1, m2, and one
mixing angle θ12, the oscillations of three neutrinos, νe, νµ, ντ , are described by three
masses, m1,m2,m3, three angles θ12, θ13, θ23, which define the 3×3 PMNS (Pontecorvo–
Maki–Nakagawa–Sakata) matrix Ulα, where l is flavor index (l = e, µ, τ ), while α is
mass index (α = 1, 2, 3). CP-violation is parametrized by one phase δ in case of Dirac
neutrinos, like CKM (Cabibbo–Kobayashi–Maskawa) for quarks, and by three phases
(δ, α1, α2) in case of Majorana neutrinos.⎛⎝ νe

νµ

ντ

⎞⎠ =

⎛⎝ Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞⎠⎛⎝ ν1

ν2

ν3

⎞⎠ ,

U =

⎛⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

eδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎠
×diag(eiα1/2, eiα2/2, 1) .

cij ≡ cos θij , sij ≡ sin θij .

The Majorana phases are sometimes defined by a matrix diag(1, eiφ2 , eiφ3).
They do not influence the neutrino oscillations.

3. “Same energy” vs “same momentum” [12-14], [17-25]

In the previous section we assumed that the neutrino of given flavor is a superposition of
neutrinos of different masses with equal energies. In case of three neutrinos (l = e, µ, τ ;
α = 1, 2, 3):

E1 = E2 = E3 = E , pα = E − m2
α

2E
.

The evolution of matrix U with distance L is expressed by multiplication of each matrix
element Ulα by eipαL.

The oscillations in space are caused by

∆pαβL = (pα − pβ)L = −∆m2
αβ

2E
L ,

where ∆m2
αβ = m2

α −m2
β .

Historically, the prototype of neutrino oscillations were oscillations of neutral kaons
which traditionally were described as a result of evolution in time. Hence Gribov and
Pontecorvo considered evolution of neutrino wave function in time. Accordingly they
assumed that three neutrinos of different masses have the same momentum: p1 = p2 =
p3 = p. Then their energies were Eα = p + m2

α/2p and evolution of matrix U with time
was due to factors e−iEαt. The oscillations in time were caused by

∆Eαβt = (Eα − Eβ)t =
∆m2

αβ

2p
t .
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By taking into account that for ultrarelativistic neutrinos equations pc = E and tc = L
are valid with good accuracy, one derives for the “same momentum” scenario the same
result (up to a non-essential sign) as for the “same energy” one. The fact that for the “same
momentum” the initial wave function of neutrino has oscillating flavor at x = 0 has been
traditionally neglected. This was recently stressed by Michail Vysotsky.

The use of “same energy” was first demonstrated by Igor Kobzarev et al. in 1982
by considering the production of neutrinos on heavy nuclei by a monoenergetic beam of
electrons. Further arguments in favor of “same energy” were presented by Leo Stodolsky
(1998). Especially insightful were remarks by Harry Lipkin (2002) who stressed the role
of massive stationary neutrino detector being at rest in the laboratory frame.

The proper way to rigorously treat neutrino oscillations is to go beyond the “reduced”
neutrino plane wave approximation and to consider the quantum mechanical amplitude,
describing not only propagation of neutrino, but also its production and detection. In all
realistic situations the corrections to the “reduced” formulas are negligible.

4. Solar neutrinos [26]

The study of solar neutrinos is of great interest at least for two reasons: 1) to understand
neutrinos; 2) to understand and to monitor the sun. For the latter task neutrinos are espe-
cially well suited; they cover the distance from the center of the sun to its surface in about
two seconds, while for photons it takes about 100 thousand years.

The main source of solar neutrinos are nuclear reactions of the hydrogen cycle in
which four protons ultimately transform into a 4He nucleus, two positrons, and two neu-
trinos. The hydrogen cycle consists of the following stages:

(1) Burning of protons:

99.75%: p + p→ d + e+ + νe Emax
ν = 0.42 MeV

0.25%: p + e− + p → d + νe (pep) Eν = 1.44 MeV

(2) Burning of d:

d + p→ 3He + γ Q = 5.5 MeV

(3) Burning of 3He:

86%: 3He + 3He → 4He + 2p Q = 12.9 MeV

14%: 3He + 4He → 7Be + γ Q = 1.59 MeV

∼ 10−7 3He + p → 4He + νe + e+ (hep) Emax
ν = 18.77 MeV

(4) Burning of 7Be:

90%: 7Be + e− → 7Li + νe Eν = 0.861 MeV

10%: 7Be + e− → 7Li∗ + νe Eν = 0.383 MeV

0.015%: 7Be + p → 8B + γ Q = 0.133 MeV
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(5) Burning of 7Li:

7Li + p→ 4He + 4He Q = 17.3 MeV

(6) Decay of 8B:

8B → 8Be + e+ + νe Emax
ν = 14.06 MeV

(7) Decay of 8Be:

8Be → 4He + 4He Q = 0.92 MeV

Here Eν is the energy of neutrinos in reactions with two-particle final state, Emax
ν is

the maximum energy of neutrinos in three-particle final state, while Q is the total energy
release in a reaction or decay without neutrinos. The percentage gives the yield of the
relevant reaction.

The first solar neutrino experiment was started in 1960s by Ray Davis et al. in Home-
stake mine at a depth of 1.6 km. The neutrino detector was a tank filled with 600 tones of
perchlorethylene (C2Cl4). The neutrinos were captured in a reaction suggested in 1946
by Bruno Pontecorvo:

νe + 37Cl → 37Ar + e− ,

37Ar → 37Cl + e+ + νe .

The half-life of 37Ar is 35 days. The decay of 37Ar signaled the capture of neu-
trino. The threshold of 37Ar production is 0.86 MeV. Hence the experiment was sensitive
mainly to boron νe. After many years of running it gave two main results: 1) the flux of
boron νe exists, 2) the flux is approximately four times smaller than predicted on the basis
of the Standard Solar Model by J.Bahcall.

The deficit of boron neutrinos made it natural to look for neutrinos produced in other
solar reactions, in particular for pp and 7Be neutrinos. For these low-energy neutrinos
another radiochemical reaction suggested in 1966 by Vadim Kuzmin was used:

νe +71 Ga → e +71 Ge , Ethr = 0.233 MeV ,

71Ge→ 71Ga + e+ + νe , t1/2 = 11.4 days .

During 1990s two international Gallium-Germanium experiments – SAGE (Baksan,
Russia) and GALLEX/GNO (Gran Sasso, Italy) – confirmed the existence of solar neu-
trino deficit in low energy part of neutrino spectrum. This time the number of detected
neutrinos was by a quarter less than expected in the absence of oscillations.

Further study of the solar neutrinos was performed at Kamioka mine in Japan and
at Sudbury Neutrino Observatory (SNO) in Canada. The experiments Kamiokande (1 Kt
H2O) and Superkamiokande (SK, 50 Kt H2O) by Masatoshi Koshiba et al. used Čerenkov
radiation to detect the products of neutrino interactions. They confirmed the solar neutrino
deficit; the SK discovered also the deficit of νµ in atmospheric neutrinos (see below).
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All experiments described above were studying charged current neutrino interactions
(CC), in which neutrinos transform into charged leptons. The only exception was neutrino-
electron scattering (ES) which was observed at Kamiokande and which involved not only
charged currents (CC) but neutral currents (NC) as well. But the number of ES-events was
smaller than that of CC.

The SNO experiment was aimed at a full-fledged study of neutral current interactions
(NC). For that purpose it used 1 Kt of heavy water, D2O, in which three types of processes
took place:

νed → ppe− (CC) ,

νld → pnνl (NC) ,

νle
− → νle

− (ES) .

Here index l = e, µ, τ ; D denotes the atom of deuterium, while d – its nucleus – deuteron.
In 2002 it was proved that the total number of events seen in SNO exactly corre-

sponded to the flux predicted by the Standard Solar Model. Thus, the deficit of electronic
neutrinos turned out to be due to their transitions into νµ and ντ . This was a spectacular
demonstration of neutrino oscillations! The solar values of ∆m2

12 ∼ 0.8 · 10−4 eV2 and
sin2 θ12 ∼ 0.3 were in accord with the so called Large Mixing Angle (LMA) variant of
the MSW-effect.

The 2002 Nobel Prize was awarded to R. Davis and M. Koshiba for their pioneering
experiments on cosmic neutrinos.

5. Reactor antineutrinos [27-30]

There is only one reactor experiment, KamLAND, which detected oscillations of antineu-
trinos produced by nuclear reactors. All previous numerous reactor experiments failed to
detect these oscillations. The most sensitive of these not enough sensitive experiments is
CHOOZ.

The experiment CHOOZ is named after a town in France near the border with Bel-
gium. The source of antineutrinos are two twin pressurized-water reactors with thermal
power yield 4.25 GW each, at short distance ∆L = 117 m. The antineutrino detector at
distance L = 1.05 km contained 5 tons of liquid hydrogen-rich scintillator loaded with
Gadolinium. The antineutrinos were captured in reaction ν̄ep → ne+; Gadolinium was
chosen due to its large neutron cross section and high γ-ray energy released after neutron
capture. At L � 1 km and average Eν̄ � 3 MeV the CHOOZ experiment is not sensitive
to ∆m2

12 ∼ 0.8 · 10−4 eV2, but sensitive to ∆m2
31 ∼ 25 · 10−4 eV2. By using the upper

line of matrix U it is easy to derive the amplitude of ν̄e survival:

A(ν̄e → ν̄e) = c2
12c

2
13e

iϕ1 + s2
12c

2
13e

iϕ2 + s2
13e

iϕ3 =

= eiϕ1(c12c
2
13 + s2

12c
2
13 + s2

13e
iϕ31) = eiϕ1(c2

13 + s2
13e

iϕ31) .

Here ϕi = piL, the CP-violating phase δ is neglected.

ϕ31 = ϕ3 − ϕ1 =
m2

1 −m2
3

2E
, ϕ21 = ϕ2 − ϕ1 � 0 .
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The probability of ν̄e survival:

P (ν̄e → ν̄e) = |A(ν̄e → ν̄e)|2 = c4
13 + s4

13 + 2c2
13s

2
13 cos ϕ31 =

= 1− sin2 2θ13 sin2 ∆m2
13L

4E
.

As no ν̄e-disappearance was detected, CHOOZ agrees with θ13 = 0.
The merit of the CHOOZ experiment was that during the periods when reactors were

off, it was possible to measure the background in the detector. The demerits were rather
low power of the antineutrino source and small mass of the detector. The merits and
demerits are reversed in the experiment KamLAND (Kamioka Liquid-scintillator An-
tineutrino Detector). It contains 1 Kt liquid scintillator in Kamioka mine and receives
antineutrinos from all Japan nuclear power plants (180 GW). With many power plants it
is impossible to measure background when they are off. But the large flux of antineutri-
nos and the large mass of the detector allow to measure antineutrinos coming from large
distances (80% of the ν̄-flux comes from 140-210 km). Large value of L/E, in its turn,
makes KamLAND sensitive to small value of ∆m2

12. The result of 515 days of running
the detector is 258 events of ν̄ep → ne+ reaction. Without oscillations it was expected
about 365 events. By measuring the number of events as a function of positron and hence
neutrino energy E it was established that ∆m2

12 = 0.8 · 10−4 eV2 with accuracy about
10% at 95% CL in accord with solar data. The fitted value sin2 2θ12 = 0.83 is less precise,
because the survival probability

P (ν̄e → ν̄e) = 1− sin2 2θ12 sin2 ∆m2
21L/4E

is maximal at L = 160 km. To become more sensitive to the value of θ12 one needs
L ≈ 60 km.

6. Atmospheric neutrinos [26]

There are many detectors of atmospheric neutrinos: in Antarctica, Mediterranean, Baksan,
Gran Sasso, Baikal, but only one of them – Superkamiokande (SK) – was up to now
sensitive enough to detect their oscillations.

Atmospheric neutrinos are produced in the decays of pions and kaons, created by the
collisions of cosmic ray protons with nuclei of air. At the moment of production most of
them are muonic neutrinos.

The effect discovered at SK is the up-down asymmetry in the fluxes of atmospheric νµ:
the number of the νµ coming from above (directly from the sky) was larger than number
of νµ coming from below (after traversing the Earth). Thus part of these νµ disappeared
on their way through the Earth. Taking into account that the diameter of the Earth is
about 12 000 km, while the energy Eνµ

is in the interval from 1 GeV to 10 GeV, the SK
collaboration estimated ∆m2 = 25 · 10−4 eV2 with uncertainty ±20%. The only effect
observed in atmospheric neutrinos was disappearance of νµ. There was no appearance
of νe, which means that the effect of νµ ↔ νe mixing is negligible. Thus, the effect was
caused by strong νµ ↔ ντ mixing. Hence ∆m2

23 = 25·10−4, θ23 � π/4. (τ -leptons were
not effectively produced by ντ because of moderate energy of atmospheric neutrinos.)
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7. Accelerator neutrinos [27]

The most recent accelerator neutrino experiment is K2K (its name being a slang acronym
for “KEK to Kamikande: K to K). Here the source of muonic neutrinos is 12 GeV proton
accelerator at KEK (Japan). The mean energy of neutrinos Ēνµ

= 1.3 GeV. The target
was 50 Kt water Čerenkov detector Superkamiokande (SK) 250 km away from the source.
The results of K2K are in accord with those of atmospheric neutrinos: pronounced disap-
pearance of νµ without appearance of νe. This was the first confirmation of atmospheric
νµ ↔ ντ oscillations with ∆m2

23 = (28 + 4 − 7) · 10−4 eV2 (November 2004) from
a man-made neutrino source. The total number of νµ-events observed up to now is 108,
while expected without oscillations were 161±11.

Since 1990s there exists the so-called LSND anomaly coming from the liquid scintil-

lator neutrino detector at Los Alamos accelerator according to which
√

∆m2
µe = 0.4 eV.

It was not confirmed by other oscillation data, in particular, by KARMEN at the Ruther-
ford Laboratory (UK, 1990 - 1995). Instead of discussing it, let us wait for the result of
MiniBooNE (the first stage of Booster Neutrino Experiment at FNAL).

8. Patterns of mixing angles and masses [25,31]

Let us summarize the results of neutrino oscillation experiments. Most of the values
quoted below have uncertainties up to 20%. The CP-violating parameter δ is not known.

sin2 θatm = 0.50 ∆m2
atm = 25 · 10−4 eV2

sin2 θsol ≡ sin2 θ21 = 0.30 ∆m2
sol = 0.8 · 10−4 eV2

sin2 θ13 ≤ 0.005

θsol = θ21 � 370 (Sun + KAMLAND)

∆m2
sol ≡ |∆m2

21| ≡ |m2
2 −m2

1|
∆m2

atm ≡ |∆m2
32| ≡ |m2

3 −m2
2|

From oscillations we know that neutrinos do have masses, but we know only the
absolute values of two differences of their squares. We do not know the signs of these
differences.

The case when m3 > m2 is called normal hierarchy.
Normal hierarchy is analogous to that of quarks and charged leptons (their masses are

given in GeV):

Q = 2/3 Q = −1/3 Q = −1 Q = 0
t 175 b 5 τ 1.9 ν3 ∆m2

atm = 25 · 10−4 eV2

c 1.3 s 0.15 µ 0.1 ν2

u 5 · 10−3 d 10 · 10−3 e 0.5 · 10−3 ν1 ∆m2
� = 0.8 · 10−4 eV2

Inverted hierarchy is more promising for solving the Majorana–Dirac alternative in
neutrinoless double β-decay: the heavier m2, the larger < m >, see section 9.

There is also a possibility of quasidegenerate masses: m1 � m2 � m3 � 0.2 − 0.3
eV.
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For the absolute value of mνe
only the upper limit is known from two experiments on

the electron spectrum in tritium β-decay: mνe
< 2.2 eV (Troitsk, 2001), Mainz (2003).

An experiment KATRIN (Karlsruhe Tritium Neutrino Experiment) is designed to
measure the mass of electron antineutrino directly with sensitivity of 0.2 eV.

As for mixing angles, let us note, that for neutrinos two of them are much larger than
for quarks.

9. Double beta decay [32]

While in case of Dirac neutrino the emission of electron proceeds either with absorption
of neutrino, or with emission of antineutrino, the Majorana neutrino can be both emitted
and absorbed. This refers not only to real neutrinos, but to virtual as well. Therefore in the
second order of weak interaction two neutrons in a nucleus can decay into two protons and
two electrons by exchanging a virtual Majorana neutrino. The amplitude of such process
is proportional to a product of two factors:

A(ββ)0ν ∼< m > ·M .

The factor < m > represents the neutrino propagator:

< m >= m1U
2
e1 + m2U

2
e2e

iα21 + m3U
2
e3e

iα31 .

The coefficients Ueα can be read off from the first line of the matrix U at the end of
Section 2.

From neutrino oscillations we know that |Ue2| � |Ue3|. That is why the probability
of 2β0ν decay is larger for larger value of m2 (inverted hierarchy).

The factor M represents the nuclear matrix element estimated on the basis of mea-
surements of the half-life times of the decays 2β2ν.

The most advanced seems to be at present the search of 2β0ν decay of 76Ge by two
collaborations: IGEX and Heidelberg – Moscow. Both give upper limits

| < m > | < (0.35÷ 1.05) eV at 90% CL ,

where factor 3 uncertainty reflects the uncertainty of M . (A part of the latter collaboration
claims to observe the 2β0ν decay and gives a lower limit | < m > | > 0.11 eV.)

Collaboration NEMO3 (100Mo; 82Se) and CUORICINO (130Te) expect to lower the
upper limit for | < m > | to 0.2 eV.

In a more distant future a number of collaborations promise an order of magnitude
better sensitivity: CUORE (130Te), GENIUS (76Ge), EXO (136Xe), MAJORANA (76Ge),
MOON (100Mo).

10. Cosmological and stellar inputs [33]

Though neutrinos play crucial role in astrophysics, up to now the observations of the stars
have not contributed significantly to our knowledge of neutrino masses and mixings. Even
the most spectacular supernova SN 1987 A provided only a rather modest upper limit on
neutrino masses.
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From the theory of white dwarfs an upper limit on neutrino magnetic moment can be
deduced µνe

≤ 10−10µB , where µB is Bohr magneton.
The early universe turns out to be more informative than stars. The precision measure-

ments of cosmic microwave background (CMB) by Wilkinson Microwave Anisotropy
Probe (WMAP) in conjuction with data on large scale structure, 2dFGRS, Lyman Alpha
forest and a host of other astronomical measurements allow to find the best fit to a set of
cosmological parameters and in particular to the upper limit on Ων – the energy density
in neutrinos.

In case of 3 degenerate neutrino species

Σ = 94Ωνh2 ,

where Σ = m1 + m2 + m3, Ων is in units of critical density, and Hubble constant
h = H/H0, where H0 = 100km · s−1 ·Mpc−1.

According to the 2003 fit of WMAP, Σ < 0.7 eV.

11. Challenges and Prospects [31,34]

Challenge #1. Absolute values of neutrino masses (from oscillations we know only the
values of |∆m2

12| and |∆m2
23|). The problem could be solved by KATRIN. At present

even the sign of ∆m2
23 is not known.

Challenge #2. Majorana vs Dirac. The problem could be solved by observing the neu-
trinoless double beta decay.

Challenge #3. CP-violation in leptonic sector. This is especially difficult because we
know that θ13 � 1 and ∆m2

21/∆m2
32 � 1. Note that for θ13 = 0 and/or ∆m2

21/∆m2
32 =

0 the CP-violating effects disappear (recall the mechanism by Kobayashi and Maskawa).
Of special interest would be the measurement of α21 and α31 if the neutrinoless double
beta decay is discovered.

In most of the cases only disappearance effects have been observed (disappearance of
νµ in atmospheric neutrinos, disappearance of νe and ν̄e in solar and reactor neutrinos).
What is needed is the appearance effects, such as the appearance of ντ in the CERN -
Gran Sasso project (detectors Opera, Icarus).

It is necessary to reach much higher statistics, high intensity, high energy, clean beams,
such as beta beams from beta decay of relativistic nuclei, or from neutrino factories where
neutrinos appear in the decays of stored relativistic muons. In the nearest perspective of
great interest is the 50 GeV JHF PS.

It is necessary to reach much higher accuracy in measurements of the key parameters:

δ(∆m2
32) = 10−4 eV2 ,

δ(sin2 2θ13) = 5 · 10−3 ,

δ(sin2 2θ32) = 10−2 .

Solving the puzzles of neutrinos is an absolute must, because these particles are at the
focal point of particle physics, astrophysics and cosmology.



174 LEV B. OKUN

Acknowledgements

Many thanks to Laurent Baulieu and Boris Pioline for their warm hospitality.

I am grateful to A.D. Dolgov, O.V. Lychkovsky, A.A. Mamonov, M.V. Rotaev, M.G. Sch
ep

-
kin, V.L. Telegdi, and M.I. Vysotsky for many valuable comments. This work was partly

supported by RFBR grant No.04-02-16538 and by A.von Humboldt Award.

References

1. H. Becquerel, Comp. Rend. 12 (1896) 501, 509. Discovery of radioactivity of uranium salts
(in fact, of thorium β-rays).

2. E. Rutherford, Phil. Mag., ser.6, 21 (1911) 669.
3. W. Pauli, Letter of 4 December 1930 to a meeting of “radioactive ladies and gentlemen” at
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CLOSED STRINGS IN MISNER SPACE:
A TOY MODEL FOR A BIG BOUNCE ?
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Abstract. Misner space, also known as the Lorentzian orbifold R1,1/boost, is one of the
simplest examples of a cosmological singularity in string theory. In this lecture, we re-
view the semi-classical propagation of closed strings in this background, with a particular
emphasis on the twisted sectors of the orbifold. Tree-level scattering amplitudes and the
one-loop vacuum amplitude are also discussed.

Thus I was moving along the sloping curve of the time loop
towards that place in which the Friday me before the beating

would change into the Friday me already beaten.

I. Tichy, [1]

Despite their remarkable success in explaining a growing body of high precision cos-
mological data, inflationary models, just as the Hot Big Bang Model, predict an Initial
Singularity where effective field theory ceases to be valid [2]. As a quantum theory of
gravity, String Theory ought to make sense even in this strongly curved regime, possibly
by providing an initial quantum state if the Initial Singularity is truely an Origin of Time,
or by escaping it altogether if stringy matter turns out to be less prone to gravitational
collapse than conventional field-theoretic matter. Unfortunately, describing cosmological
singularities and, less ambitiously, time dependence in string theory has been a naggingly
difficult task, partly because of the absence of a tractable closed string field theory frame-
work. Unless stringy (α′) corrections in the two-dimensional sigma model are sufficient
to eliminate the singularity, quantum (gs) corrections are expected to be important due to
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the large blue-shift experienced by particles or strings as they approach the singularity,
invalidating a perturbative approach. Nevertheless, one may expect cosmological produc-
tion of particles, strings and other extended states near the singularity to qualitatively alter
the dynamics, and it is not unplausible, though still speculative, that their contribution to
the vacuum energy be sufficient to lead to a Big Bounce rather than an Big Bang.

In order to make progress on this issue, it is useful to study toy models where at
least α′ corrections are under control, and study string production to leading order in
gs. Orbifolds, being locally flat, are immune to α′ corrections, and thus a good testing
playground. One of the simplest examples of time-dependent orbifolds1 is the Lorentzian
orbifold R

1,1/boost [7, 8, 9], formerly known as Misner space [3] in the gravity literature.
Introduced as a local model for the cosmological singularity and chronological horizon
of Lorentzian Taub-NUT space, Misner space was shown long ago to exhibit divergences
from quantum vacuum fluctuations in field theory, at least for generic choices of vacua
[22]. Not surprisingly, this is also true in string theory, although less apparent since the lo-
cal value of the energy-momentum tensor is not an on-shell observable [5]. Similarly, just
as in field theory, tree-level scattering amplitudes of field-theoretical (untwisted) states
have been found to diverge, as a result of large graviton exchange near the singularity
[32].

While these facts ominously indicate that quantum back-reaction may drastically chan-
ge the character of the singularity, experience from Euclidean orbifolds suggests that
twisted states may alleviate the singularities of the effective field theory description, and
that it may be worthwhile to investigate their classical behaviour, overpassing the proba-
ble inconsistency of perturbation theory. Indeed, in the context of Misner space, twisted
states are just strings that wind around the collapsing spatial direction, and become the
lightest degrees of freedom near the singularity. In these notes, we review classical aspects
of the propagation of closed strings in Misner space, with particular emphasis on twisted
states, based on the recent works [4, 5, 6].

The outline is as follows. In Section 2, we describe the semi-classical dynamics of
charged particles and winding strings, and compute their cosmological production rate, at
tree level in the singular Misner geometry – although our approach is applicable to more
general cases. In Section 3, we analyze the imaginary part of the one-loop amplitude,
which carries the same information in principle. In Section 4, we review recent results
on scattering amplitudes of untwisted and twisted states, and their relation to the problem
of classical back-reaction from a “condensate” of twisted states. Section 5 contains our
closing remarks.

1. Semi-classics of closed strings in Misner space

1.1. MISNER SPACE AS A LORENTZIAN ORBIFOLD

Misner space was first introduced in the gravity literature as a local model [3] for the
singularities of the Taub-NUT space-time [23] . It can be formally defined as the quo-

1The orbifold of R1,1 under time reversal may be even simpler, but raises further puzzles related
to time unorientability [10]. Discussions of other exact cosmological backgrounds in string theory
include [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
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tient of two-dimensional2 Minkowski space R
1,1 by the finite boost transformation B :

(x+, x−) → (e2πβx+, e−2πβx−), where x± are the light-cone coordinates. As such, it
is a locally flat space, with curvature localized at the fixed locus under the identification,
i.e. on the light-cone x+x− = 0. The geometry of the quotient can be pictured as four
Lorentzian cones touching at their apex (See Figure 1), corresponding to the four quad-
rants of the covering space R

1,1. Choosing coordinates adapted to the boost B,

x± = Te±βθ/
√

2 , x+x− > 0 (Milne regions) (1.1)

x± = ±re±βη/
√

2 , x+x− < 0 (Rindler regions) (1.2)

where, due to the boost identification, the coordinates θ and η are compact with period
2π, the metric of the quotient can be written as

ds2 = −2 dx+dx− =
{−dT 2 + β2T 2dθ2

dr2 − β2r2dη2

}
(1.3)

The two regions x+ < 0, x− < 0 (P) and x+ > 0, x− > 0 (F), describe contracting and
expanding cosmologies where the radius of the spatial circle parameterized by θ changes
linearly in time, and are often called (compactified) Milne regions. The space-like cones
x+ > 0, x− < 0 (R) and x+ < 0, x− > 0 (L), often termed “whiskers”, are instead time-
independent Rindler geometries with compact time η 3. The Milne and Rindler regions,
tensored with a sphere of finite size, describe the Taub and NUT regions, respectively, of
the Taub-NUT space-time in the vicinity of one of its infinite sequence of cosmological
singularities. It also captures the local geometry in a variety of other cosmological string
backgrounds [12, 15, 17, 18]. It is also interesting to note that, combining the boost B with
a translation on a spectator direction, one obtains the Gott space-time, i.e. the geometry
around cosmic strings in four dimensions [25].

Due to the compactness of the time coordinate η, both Misner and Taub-NUT space-
times contain closed timelike curves (CTC) which are usually considered as a severe
pathology. In addition to logical paradoxes and exciting prospects [1] raised by time-
loops, the energy-momentum tensor generated by a scalar field at one-loop is typically
divergent, indicating a large quantum back-reaction. According to the Chronology Pro-
tection Conjecture, this back-reaction may prevent the formation of CTC altogether [26].
String theorists need not be intimidated by such considerations, and boldly go and inves-
tigate whether the magics of string theory alleviate some of these problems.

String theory on a quotient of flat space4 is in principle amenable to standard orbifold
conformal field theory techniques, although the latter are usually formulated for Euclidean
orbifolds. While backgrounds with Lorentzian signature can often be dealt with by (often
subtle) Wick rotation from Euclidean backgrounds, the real complication stems from the
fact that the orbifold group is infinite, and its action non proper 5. This however need not

2Higher dimensional analogues have also been considered [24].
3This should not be confused with thermal Rindler space, which is periodic in imaginary time.
4String theory on Taub-NUT space, which is not flat, has been studied recently using heterotic

coset models [20].
5Defining X+ = Z , X− = −Z̄ in the Rindler region, one obtains an orbifold of R

2 by a
rotation with an irrational angle. A related model has been studied recently in [27].
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Figure 1. Free particles or untwisted strings propagate from the past Milne region to the future
Milne region, with a temporary excursion in the whiskers.

be a problem at a classical level: as we shall see, free strings propagate in a perfectly
well-defined fashion on this singular geometry.

1.2. PARTICLES IN MISNER SPACE

As in standard orbifolds, part of the closed string spectrum consists of configurations on
the covering space, which are invariant under the orbifold action. Such “untwisted” states
behave much like point particles of arbitrary mass and spin. Their trajectory, aside from
small-range string oscillations, consist of straight lines on the covering space:

X±
0 = x±

0 + p±τ , (1.4)

where m2 = 2p+p− includes the contribution from momentum in the transverse direc-
tions to Misner space as well as string oscillators. The momentum along the compact
direction is the “boost momentum” j = x+

0 p− + x−
0 p+, and is quantized in units of 1/β

in the quantum theory. A massive particle with positive energy (p+, p− > 0) thus comes
in from the infinite past in the Milne region at τ = −∞ and exits in the future Milne
region at τ = +∞, after wandering in the Rindler regions for a finite proper time. As the
particle approaches the light-cone from the past region, its angular velocity dθ/dT ∼ 1/T
along the Milne circle increases to infinity by the familiar “spinning skater” effect. It is
therefore expected to emit abundant gravitation radiation, and possibly lead to large back-
reaction. From the point of view of an observer in one of the Rindler regions, an infinite
number of particles of Rindler energy j are periodically emitted from the horizon at r = 0
and travel up to a finite radius r = |j|/M before being reabsorbed into the singularity –
and so on around the time loop.

Quantum mechanically, the center of mass of a (spinless) untwisted string is described
by a wave function, solution of the Klein-Gordon equation in the Misner geometry. Diag-
onalizing the boost momentum j, the radial motion is governed by a Schrödinger equation{−∂2

x −m2e2y − j2 = 0
−∂2

y + m2e2y − j2 = 0 where

{
T = ±√2x+x− = ex

r = ±√−2x+x− = ey (1.5)
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The particle therefore bounces against an exponentially rising, Liouville-type wall in the
Rindler regions, while it is accelerated in a Liouville-type well in the Misner regions.
Notice that, in both cases, the origin lies at infinite distance in the canonically normalized
coordinate x (y, resp.). Nevertheless, in and out type of wave functions can be defined
in each region, and extended to globally defined wave functions by analytic continuation
across the horizons at x+x− = 0.

Equivalently, the wave function for an untwisted string in Misner space may be ob-
tained by superposing a Minkowski plane wave with its images under the iterated boosts
Bn, n ∈ Z. Performing a Poisson resummation over the integer n, one obtains wave func-
tions with a well defined value of the boost momentum j, as a continuous superposition
of plane waves

fj,m2,s(x+, x−) =
∫ ∞

−∞
dv exp

(
ip+X−e−2πβv + ip−X+e2πβv + ivj + vs

)
(1.6)

where s denotes the SO(1, 1) spin in R
1,1 [9, 5]. This expression defines global wave

functions in all regions, provided the v-integration contour is deformed to (−∞−iε,+∞+
iε). In particular, there is no overall particle production between the (adiabatic) in vacuum
at T = −∞ and the out vacuum at T = +∞, however there is particle production be-
tween the (adiabatic) in vacuum at T = −∞ and the (conformal) out vacuum at T = 0−.
This is expected, due to the “spinning skater” infinite acceleration near the singularity, as
mentioned above.

1.3. WINDING STRINGS IN MISNER SPACE

In addition to the particle-like untwisted states, the orbifold spectrum contains string con-
figurations which close on the covering space, up to the action of an iterated boost Bw:

X±(σ + 2π, τ) = e±2πwβX±(σ, τ) (1.7)

In the Milne regions, they correspond to strings winding w times around the compact
space-like dimension S1

θ , which become massless at the cosmological singularity. They
are therefore expected to play a prominent rôle in its resolution, if at all. In the Rindler re-
gions, they instead correspond to strings winding around the compact time-like dimension
S1

η . Given that a time-loop exist, there is nothing a priori wrong about a string winding
around time: it is just a superposition of w static (or, more generally, periodic in time)
strings, stretched (in the case of a cylinder topology) over an infinite radial distance.

In order to understand the semi-classical aspects of twisted strings [5], let us again
truncate to the modes with lowest worldsheet energy, satisfying (1.7):

X±
0 (σ, τ) =

1
ν

e∓νσ
[±α±

0 e±ντ ∓ α̃±
0 e∓ντ

]
. (1.8)

where ν = −wβ. As usual, the Virasoro (physical state) conditions determine the mass
and momentum of the state in terms of the oscillators,

M2 = 2α+
0 α−

0 , M̃2 = 2α̃+
0 α̃−

0 (1.9)
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where (M2 = m2 + jν, M̃2 = m2 − jν) are the contributions of the left-moving (resp.
right-moving) oscillators. Restricting to j = 0 for simplicity, one may thus choose α± and
α̃± to be all equal in modulus to m/

√
2, up to choices of sign leading to two qualitatively

different kinds of twisted strings:

− For α+α̃− > 0, one obtains short string configurations

X±
0 (σ, τ) =

m

ν
√

2
sinh(ντ) e±νσ (1.10)

winding around the Milne space-like circle, and propagate from infinite past to in-
finite future (for α+ > 0). When j �= 0, they also extend in the Rindler regions to
a finite distance r2

− = (M − M̃)2/(4ν2), after experiencing a signature flip on the
worldsheet.

− For α+α̃− < 0, one obtains long string configurations,

X±
0 (σ, τ) =

m

ν
√

2
cosh(ντ) e±νσ (1.11)

propagating in the Rindler regions only, and winding around the time-like circle.
They correspond to static configurations which extend from spatial infinity in L or R
to a finite distance r2

+ = (M + M̃)2/(4ν2), and folding back to infinity again.

Notice how, in contrast to Euclidean orbifolds, twisted strings are in no sense localized
near the singularity !

Quantum mechanically, the (quasi) zero-modes α±
0 , α̃±

0 become hermitian operators
with commutation rules [9, 4]

[α+
0 , α−

0 ] = −iν , [α̃+
0 , α̃−

0 ] = iν (1.12)

Representing α+
0 as a creation operator in a Fock space whose vacuum is annihilated by

α−
0 , introduces an imaginary ordering constant iν/2 in (1.9) after normal ordering, which

cannot be cancelled by any of the higher modes in the spectrum6. Thus, in this scheme,
there are no physical states in the twisted sector [9]. However, this quantization does not
maintain the hermiticity of the zero-mode operators. The analogy of (1.12) to the problem
of a charged particle in an electric field will take us to the appropriate quantization scheme
in the next section.

1.4. WINDING STRINGS VS. CHARGED PARTICLES

Returning to (1.11), one notices that the complete worldsheet of a twisted closed string can
be obtained by smearing the trajectory of the left-movers (i.e. a point with τ + σ = cste)
under the action of continuous boosts (See Figure 2). In particular, setting a±

0 = α̃±
0 and

x±
0 = ∓α̃±

0 /ν, the trajectory of the left-movers becomes

X±(τ) = x±
0 ±

a±
0

ν
e±ντ . (1.13)

6Higher excited modes have energy n±iν, and can be quantized in the usual Fock space scheme,
despite the Lorentzian signature of the light-cone directions [4].
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Figure 2. Closed string worldsheets in Misner space are obtained by smearing the trajectory of a
charged particle in Minkowski space with a constant electric field. Short (resp. long) strings corre-
spond to charged particles which do (resp. do not) cross the horizon.

which is nothing but the worldline of a particle of charge w in a constant electric field
E = β ! Indeed, it is easily verified that the short (long, resp.) string worldsheet can be
obtained by smearing the worldline of a charged particle which crosses (does not, resp.)
the horizon at x+x− = 0.

Quantum mechanically, it is easy to see that this analogy continues to hold [4, 5] : the
usual commutation relations for a particle in an electric field

[a+
0 , a−

0 ] = −iν , [x+
0 , x−

0 ] = − i

ν
, (1.14)

reproduce the closed string relations (1.12) under the identification above. The mass of
the charged particle M2 = α+α−+α−α+ reproduces the left-moving Virasoro generator
m2 +νj as well. It is therefore clear that the closed string zero-modes, just as their charge
particle counterpart, can be represented as covariant derivatives acting on complex wave
functions φ(x+, x−):

α±
0 = i∇∓ = i∂∓ ± ν

2
x± , α̃±

0 = i∇̃∓ = i∂∓ ∓ ν

2
x± (1.15)

in such a way that the physical state conditions are simply the Klein-Gordon operators for
a particle with charge ±ν in a constant electric field,

M2 = ∇+∇− +∇−∇+ , M̃2 = ∇̃+∇̃− + ∇̃−∇̃+ (1.16)

Coordinates x± are the (Heisenberg picture) operators corresponding to the location of
the closed string at σ = 0. The radial coordinate

√±2x+x− associated to the coordinate
representation (1.15), should be thought of as the radial position of the closed string in
the Milne or Rindler regions.

From this point of view, it is also clear while the quantization scheme based on a
Fock space has failed: the Klein-Gordon equation of a charged particle in an electric field
is equivalent, for fixed energy pt, to a Schrödinger equation with an inverted harmonic
potential,

−∂2
x + m2 − (pt − Ex)2 ≡ 0 (1.17)

In contrast to the magnetic case which leads to a positive harmonic potential with discrete
Landau levels, the spectrum consists of a continuum of delta-normalization scattering
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states which bounce off (and tunnel through) the potential barrier. These scattering states
are the quantum wave functions corresponding to electrons and positrons being reflected
by the electric field, and their mixing under tunneling is a reflection of Schwinger produc-
tion of charged pairs from the vacuum.

In order to apply this picture to twisted closed strings however, we need to project
on boost invariant states, and therefore understand the charged particle problem from the
point of view of an accelerated observer in Minkowski space, i.e. a static observer in
Rindler space.

1.5. CHARGED PARTICLES IN MISNER SPACE

Charged particles in Rindler space have been discussed in [28]. Classical trajectories are,
of course, the ordinary hyperbolae from Minkowski space, translated into the Rindler
coordinates (y = er, η). For a fixed value j of the energy conjugate to the Rindler time η,
the radial motion is governed by the potential

V (y) = M2r2 −
(

j +
1
2
νr2

)2

=
M2M̃2

ν2
−
(

M2 + M̃2

2ν
− ν

2
r2

)2

(1.18)

where, in the last equality, we have translated the charged particle data into closed string
data. In contrast with the neutral case (ν = 0), the potential is now unbounded from be-
low at r = ∞. For j < M2/(2ν) (which is automatically obeyed in the closed string
case, where M̃2 > 0 for non-tachyonic states), the r = 0 and r = ∞ asymptotic regions
are separated by a potential barrier (See Figure 3). Particles on the right (r → ∞) of the
barrier correspond to electrons coming from and returning to Rindler infinity, while, for
j > 0 (resp. j < 0), particles on the left (r → 0) correspond to positrons (resp. elec-
trons) emitted from and reabsorbed by the Rindler horizon. Quantum tunneling therefore
describes both Schwinger pair production in the electric field (when j > 0), and Hawking
emission of charged particles from the horizon (when j < 0).

Similarly, the trajectories of charged particles in Milne space correspond to other
branches of the same hyperbolae, and their motion along the cosmological time T , for
a fixed value of the momentum j conjugate to the compact spatial direction θ, is governed
by the potential

V (T ) = −M2T 2 −
(

j +
1
2
νT 2

)2

=
M2M̃2

ν2
−
(

M2 + M̃2

2ν
+

ν

2
T 2

)2

(1.19)

The potential is maximal and negative at T = 0, although this is at infinite distance in the
canonically normalized coordinate x. The classical motion therefore covers the complete
time axis T ∈ R.

Quantum mechanically, the Klein-Gordon equation in the Rindler region is equivalent
to a Schrödinger equation in the potential (1.18) or (1.19) at zero-energy, and can be
solved in terms of Whittaker functions [28]. Bases of in and out modes can be defined
in each quadrant and analytically continued accross the horizons, e.g. in the right Rindler
region

Vj
in,R = e−ijηr−1M−i( j

2−M2
2ν ),− ij

2
(iνr2/2) (1.20)
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Figure 3.
Left: Classical trajectories of a charged particle in Rindler/Milne space. j labels the
Rindler energy or Milne momentum, and is measured in units of M2/ν. Right: Poten-
tial governing the radial motion in the right Rindler region, as a function of the canonical
coordinate y = er.

corresponds to incoming modes from Rindler infinity r =∞, while

U j
in,R = e−ijηr−1W

i( j
2−M2

2ν ), ij
2
(−iνr2/2) (1.21)

corresponds to incoming modes from the Rindler horizon r = 0. As usual in time-
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dependent backgroungs, the in and out vacua are related by a non-trivial Bogolubov
transformation, which implies that production of correlated pairs has taken place. The
Bogolubov coefficients have been computed in [28, 4], and yield the pair creation rates in
the Rindler and Milne regions, respectively:

QR = e−πM2/2ν | sinh πj|
cosh

[
πM̃2/2ν

] , QM = e−πM2/2ν
cosh

[
πM̃2/2ν

]
| sinh πj| , (1.22)

In the classical limit M2, M̃2 � ν, these indeed agree with the tunnelling (or scattering
over the barrier, in the Milne regions) rate computed from (1.19).

1.6. SCHWINGER PAIR PRODUCTION OF WINDING STRINGS

Having understood the quantum mechanics of charged particles in Minkowski space from
the point of view of an accelerating observer, we now return to the dynamics of twisted
strings in Misner space. The wave function of the quasi-zero-modes α±

0 , α±
0 is governed

by the same Klein-Gordon equation as in the charged particle case, although only the
dependence on the radial coordinate r is of interest. Its interpretation is however rather
different: e.g, a particle on the right of the potential in the right Rindler region corresponds
to an infinitely long string stretching from infinity in the right whisker to a finite radius
r+ and folded back onto itself, while a particle on the left of the potential is a short string
stretching from the singularity to a finite radius r−. Quantum tunneling relates the two
type of states by evolution in imaginary radius r, and can be viewed semi-classically as
an Euclidean strip stretched between r+ and r−. The wave functions in the Milne region
are less exotic, corresponding to incoming or outgoing short strings at infinite past, future
or near the singularity.

In order to compute pair production, one should in principle define second quantized
vacua, i.e. choose a basis of positive and negative energy states. While it is clear how
to do so for short strings in the Milne regions, second quantizing long strings is less
evident, as they carry an infinite Rindler energy7, and depend on the boundary conditions
at r = ∞. However, they are likely to give the most natural formulation, as any global
wave function in Misner space can be written as a state in the tensor product of the left
and right Rindler regions: the entire cosmological dynamics may thus be described as a
state in a time-independent geometry, albeit with time loops !

Fortunately, even without a proper understanding of these issues, one may still use the
formulae (1.22) to relate incoming and outcoming components of the closed string wave
functions, and compute pair production for given boundary conditions at Rindler infinity.
In particular, it should be noted that the production rate in the Milne regions QM is infinite
for vanishing boost momentum j = 0, as a consequence of the singular geometry.

Moreover, although our analysis has borrowed a lot of intuition from the analogy to
the charged particle problem, we are now in a position to describe pair production of

7The latter can be computed by quantizing the long string worldsheet using σ as the time variable
[5].
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winding strings in any geometry of the form

ds2 = −dT 2 + a2(T )dθ2 or ds2 = dr2 − b2(r)dη2 (1.23)

(despite the fact that these geometries are not exact solutions of the tree level string equa-
tions of motion, they may be a useful mean field description of the back-reacted geome-
try). Neglecting the contributions of excited modes (which no longer decouple since the
metric is not flat), the wave equation for the center of motion of strings winding around
the compact direction θ or η, is obtained by adding to the two-dimensional Laplace oper-
ator describing the free motion of a neutral particle, the contribution of the tensive energy
carried by the winding string:{

1
a(T )∂T a(T ) ∂T + j2

a2(T ) + 1
4w2a2(T )−m2 = 0

1
b(r)∂r b(r) ∂r + j2

b2(r) + 1
4w2b2(r)−m2 = 0

(1.24)

Choosing a(T ) = βT or a(r) = βr and multiplying out by (a2(T ), b2(r)), these equa-
tions indeed reduce to (1.19) and (1.18)8. In particular, for a smooth geometry, the pro-
duction rate of pairs of winding strings is finite.

2. One-loop vacuum amplitude

In the previous section, we have obtain the production rate of winding strings in Misner
space, from the Bogolubov coefficients of the tree-level wave functions. In principle, the
same information could be extracted from the imaginary part of the one-loop amplitude.
In this section, we start by reviewing the vacuum amplitude and stress-energy in field
theory, and go on to study the one-loop amplitude in string theory, both in the twisted and
untwisted sectors.

2.1. FIELD THEORY

The one-loop energy-momentum tensor generated by the quantum fluctuations of a free
field φ with (two-dimensional) mass M2 and spin s can be derived from the Wight-
man functions at coinciding points (and derivatives thereof). These depend on the choice
of vacuum: in the simplest “Minkowski” vacum inherited from the covering space, any
Green function is given by a sum over images of the corresponding one on the covering
space. Using a (Lorentzian) Schwinger time representation and integrating over momenta,
we obtain

G(xµ;x′µ) =
∞∑

l=−∞

∫ ∞

0

dρ (iρ)−D/2 exp
[
iρM2 − 2πsl

]
(2.1)

exp
[
− i

4ρ
(x+ − e2πβlx+′

)(x− − e−2πβlx−′
)
]

8Notice that, in disagreement to a claim in the literature [29], the wave equation for j = 0 is not
regular at the origin.
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where s is the total spin carried by the field bilinear. Taking two derivatives and setting
x = x′, one finds a divergent stress–energy tensor [22]

Tµνdxµdxν =
1

12π2

K

T 4

(−dT 2 − 3T 2dη2
)

(2.2)

where the constant K is given by

K =
∞∑

n=1

cosh[2πnsβ]
2 + cosh 2πnβ

(cosh 2πnβ − 1)2
(2.3)

This divergence is expected due to the large blue-shift of quantum fluctuations near the
singularity. Notice that for spin |s| > 1, the constant K itself becomes infinite, a reflection
of the non-normalizability of the wave functions for fields with spin.

In string theory, the local expectation value 〈0|Tab(x)|0〉ren is not an on-shell quantity,
hence not directly observable. In contrast, the integrated free energy, given by a torus
amplitude, is a valid observable9. In field theory, the free energy may be obtained by
integrating the propagator at coinciding points (2.1) once with respect to M2, as well as
over all positions, leading to

F =
∞∑

l=−∞

∫
dx+dx−

∫ ∞

0

dρ

(iρ)1+
D
2

exp
(−8i sinh2(πβl)x+x− + iM2ρ

)
(2.4)

In contrast to the flat space case, the integral over the zero-modes x±, x does not reduce
to a volume factor, but gives a Gaussian integral, centered on the light cone x+x− = 0.
Dropping as usual the divergent l = 0 flat-space contribution and rotating to imaginary
Schwinger time, one obtains a finite result

F =
+∞∑

l=−∞,l 
=0

∫ ∞

0

dρ

ρ1+ D
2

e−M2ρ−2πβsl

sinh2 (πβl)
(2.5)

Consistently with the existence of globally defined positive energy modes for (untwisted)
particles in Misner space, F does not have any imaginary part, implying the absence of
net particle production between past and future infinity.

2.2. STRING AMPLITUDE IN THE UNTWISTED SECTOR

We may now compare the field theory result (2.5) to the one-loop vacuum amplitude in
string theory with Euclidean world-sheet and Minkowskian target space, as computed in
[9, 16]:

Abos =
∫
F

∞∑
l,w=−∞

dρdρ̄

(2π2ρ2)13
e−2πβ2w2ρ2− R2

4πρ2
|l+wτ |2

|η21(ρ) θ1(iβ(l + wρ); ρ)|2 (2.6)

9Of course, the spatial dependence of the one-loop energy may be probed by scattering e.g.
gravitons at one-loop.
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where θ1 is the Jacobi theta function,

θ1(v; ρ) = 2q1/8 sin πv

∞∏
n=1

(1− e2πivqn)(1− qn)(1− e−2πivqn) , q = e2πiρ (2.7)

In this section, we restrict to the untwisted sector w = 0. Expanding in powers of q, it is
apparent that the string theory vacuum amplitude can be viewed as the field theory result
(2.5) summed over the spectrum of (single particle) excited states, satisfying the matching
condition enforced by the integration over ρ1. As usual, field-theoretical UV divergences
at ρ → 0 are cut-off by restricting the integral to the fundamental domain F of the upper
half plane.

In contrast to the field theory result, where the integrated free energy is finite for each
particle separately, the free energy here has poles in the domain of integration, at

ρ =
m

n
+ i

βl

2πn
(2.8)

Those poles arise only after summing over infinitely many string theory states. Indeed,
each pole originates from the (1 − e±2πivqn) factor in (2.7), hence re-sums the contri-
butions of a complete Regge trajectory of fields with mass M2 = kn and spin s = k
(k ∈ Z). In other words, the usual exponential suppression of the partition function by the
increasing masses along the Regge trajectory is overcome by the spin dependence of that
partition function. Regge trajectories are a universal feature of perturbative string theory,
and these divergences are expected generically in the presence of space-like singularities.
Since the pole (2.8) occurs both on the left- and right-moving part, the integral is not
expected to give any imaginary contribution, in contrast to the charged open string case
considered in [30].

2.3. STRING AMPLITUDE IN THE TWISTED SECTORS

We now turn to the interpretation of the string one-loop amplitude in the twisted sectors
(w �= 0), following the analysis in [5]. As in the rest of this lecture, it is useful to truncate
the twisted string to its quasi-zero-modes, lumping together the excited mode contribu-
tions into a left and right-moving mass squared M2 and M̃2. Equivalently, we truncate
the path integral to the “mini-superspace” of lowest energy configurations on the torus of
modulus ρ = ρ1 + iρ2, satisfying the twisted boundary conditions,

X± = ± 1
2ν

α±e∓(νσ−iAτ) ∓ 1
2ν

α̃±e∓(νσ+iÃτ) (2.9)

where

A =
k

ρ2
− iβ

l + ρ1w

ρ2
, Ã =

k̃

ρ2
+ iβ

l + ρ1w

ρ2
(2.10)

where k, k̃ are a pair of integers labelling the periodic trajectory, for fixed twist numbers
(l, w). Notice that (2.9) is not a solution of the equations of motion, unless ρ coincides
with one of the poles. In order to satisfy the reality condition on X±, one should restrict
to configurations with k = k̃, α± = −(α̃±)∗. Nevertheless, for the sake of generality we
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shall not impose these conditions at this stage, but only exclude the case of a degenerate
worldsheet k = −k̃.

We can now evaluate the Polyakov action for such a classical configuration, after
rotating τ → iτ :

S =− π

2ν2ρ2

(
ν2ρ2

2 − [k − i(βl + νρ1)]
2
)

R2

− π

2ν2ρ2

(
ν2ρ2

2 −
[
k̃ + i(βl + νρ1)

]2)
R̃2

− 2πijνρ1 + 2πµ2ρ2

(2.11)

where the last line, equal to −iπρM2 + iπρ̃M̃2, summarizes the contributions of excited
modes, and α± = ±Re±η/

√
2, α̃± = ±R̃e±η̃/

√
2.

The path integral is thus truncated to an integral over the quasi-zero-modes α±, α̃±.
Since the action (2.11) depends only on the boost-invariant products R2 and R̃2, a first
divergence arises from the integration over η− η̃, giving an infinite factor, independent of
the moduli, while the integral over η + η̃ is regulated to the finite value β after dividing
out by the (infinite) order of the orbifold group.

In addition there are divergences coming from the integration over R and R̃ whenever

ρ1 = −βl

ν
− i

ν

2
(k − k̃) , ρ2 =

|k + k̃|
2ν

(2.12)

which, for k = k̃, are precisely the double poles (2.8). These poles are interpreted as
coming from infrared divergences due to existence of modes with arbitrary size (R, R̃).
For k �= k̃, the double poles are now in the complex ρ1 plane, and may contribute for
specific choices of integration contours, or second-quantized vacua. In either case, these
divergences may be regulated by enforcing a cut off |ρ− ρ0| > ε on the moduli space, or
an infrared cut-off on R. It would be interesting to understand the deformation of Misner
space corresponding to this cut off, analogous to the Liouville wall in AdS3 [31].

Rather than integrating over R, R̃ first, which is ill-defined at ρ satisfying (2.12),
we may choose to integrate over the modulus ρ first. The integral with respect to ρ1 is
Gaussian, dominated by a saddle point at

ρ1 = −βl

ν
+ i

k̃R̃2 − kR2

ν(R2 + R̃2)
− 2i

jνρ2

R2 + R̃2
(2.13)

It is important to note that this saddle point is a local extremum of the Euclidean action,
unstable under perturbations of ρ1. The resulting Bessel-type action has again a stable
saddle point in ρ2, at

ρ2 =
RR̃|k + k̃|

ν
√

(R2 + R̃2)(4µ2 −R2 − R̃2)− 4j2ν2

(2.14)
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Integrating over ρ2 in the saddle point approximation, we finally obtain the action as a
function of the radii R, R̃:

S =
|k + k̃|RR̃

√
(R2 + R̃2)(R2 + R̃2 − 4µ2) + 4j2ν2

ν(R2 + R̃2)

±2πj
k̃R̃2 − kR2

ν(R2 + R̃2)
± 2πiβjl (2.15)

where the sign of the second term is that of k + k̃. S admits an extremum at the on-shell
values

R2 = µ2 − jν, R̃2 = µ2 + jν with action Sk,k̃ =
πMM̃

ν
|k + k̃| (2.16)

Notice that these values are consistent with the reality condition, since the boost momen-
tum j is imaginary in Euclidean proper time. Evaluating (ρ1, ρ2) for the values (2.16),
we reproduce (2.12), which implies that the integral is indeed dominated by the region
around the double pole. Fluctuations in (ρ1, ρ2, R, R̃) directions around the saddle point
have signature (+,+,−,−), hence a positive fluctuation determinant, equal to M2M̃2 up
to a positive numerical constant. This implies that the one-loop amplitude in the twisted
sectors does not have any imaginary part, in accordance with the naive expectation based
on the double pole singularities. It is also in agreement with the answer in the untwisted
sectors, where the globally defined in and out vacua where shown to be identical, despite
the occurence of pair production at intermediate times.

Nevertheless, the instability of the Euclidean action under fluctuations of ρ1 and ρ2 in-
dicates that spontaneous pair production takes place, by condensation of the two unstable
modes. Thus, we find that winding string production takes place in Misner space, at least
for vacua such that the integration contour picks up contributions from these states. This
is consistent with our discussion of the tree-level twisted wave functions, where tunnel-
ing in the Rindler regions implies induced pair production of short and long strings. The
periodic trajectories (2.9) describe the propagation across the potential barrier in imagi-
nary proper time, and correspond to an Euclidean world-sheet interpolating between the
Lorentzian world-sheets of the long and short strings.

3. Tree-level scattering amplitudes

After this brief incursion into one-loop physics, we now return to the classical realm, and
discuss some features of tree-level scattering amplitudes. We start by reviewing the scat-
tering of untwisted modes, then turn to amplitudes involving two twisted modes, which
can still be analyzed by Hamiltonian methods. We conclude with a computation of scatter-
ing amplitudes for more than 2 twisted modes, which can be obtained by a rather different
approach. Our presentation follows [32, 6].

3.1. UNTWISTED AMPLITUDES

Tree-level scattering amplitudes for untwisted states in the Lorentzian orbifold are easily
deduced from tree-level scattering amplitudes on the covering space, by the “inheritance
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principle”: expressing the wave functions of the incoming or outgoing states in Misner
space as superpositions of Minkowski plane waves with well-defined boost momentum j
via Eq. (1.6) (with spin s = 0), the tree-level scattering amplitude is obtained by averaging
the standard Virasoro-Shapiro amplitude

AMink = δ

(∑
i

pi

)
Γ
(
−α′

4 s
)

Γ
(
−α′

4 t
)

Γ
(
−α′

4 u
)

Γ
(
1 + α′

4 s
)

Γ
(
1 + α′

4 t
)

Γ
(
1 + α′

4 u
) (3.1)

under the actions of continuous boosts p±i → p±i (v) = e±βvip±i , with weight eijivi ,
on all (but one) external momenta. Possible divergences come from the boundary of the
parameter space spanned by the vi, where some of the momenta p±i (v) become large.
In a general (Gross Mende, (s, t, u → ∞ with s/t, s/u fixed) high energy regime, the
Virasoro-Shapiro amplitude is exponentially suppressed [33] and the integral over the vi

converges. However, there are also boundary configurations with s, u → ∞ and fixed
t where the Virasoro-Shapiro amplitude has Regge behavior st, in agreement with the
fact that the size of the string at high energy grows like

√
log s. In this regime, using the

Stirling approximation to the Gamma functions in (3.1), it is easy to see that the averaged
amplitude behaves as

AMisner ∼
∫ ∞

dv exp
[
v

(
i(j2 − j4)− 1

2
α′(pi

1 − pi
3)

2 + 1
)]

(3.2)

hence diverges for small momentum transfer (pi
1 − pi

3)
2 ≤ 2/α′ in the directions trans-

verse to Misner space. There are similar collinear divergences in the other channels as
well, both in the bosonic or superstring case.

The situation is slightly improved in the case of Grant space (analogous to the “null
brane” considered in [34]), i.e. when the boost identification is combined with a trans-
lation of length R on a direction x2 transverse to the light-cone: in this case, the boost
momentum is no longer quantized (although the sum Rp2 + βj still is), and one can
construct wave packets which are regular on the horizon, by superposition of states of dif-
ferent boost momentum [34, 16]. Collinear divergences remain, albeit in a reduced range
of momentum transfer [6],

(�p1 + �p3)
2 ≤ (

√
1 + 2α′E2 − 1)2

(α′E)2
, E =

β

R
(3.3)

As R → 0, this reduces to Misner space case as expected.
As a matter of fact, these divergences may be traced to large tree-level graviton ex-

change near the singularity, or, in the Grant space case, near the chronological horizon
[32]. Collinear divergences can in principle be treated in the eikonal approximation, i.e.
by resumming an infinite series of ladder diagrams. While a naive application of the flat
space result [35] suggests that this resummation may lead to finite scattering amplitudes
of untwisted states in Misner space [19], a consistent treatment ensuring that only boost-
invariant gravitons are exchanged has not been proposed yet, and prevents us from draw-
ing a definitive conclusion. More generally, it would be extremely interesting to develop
eikonal techniques in the presence of space-like singularities, and re-evaluate the claim in
[36] that a single particle in Misner space will ineluctably cause the space to collapse.
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3.2. TWO-TWIST AMPLITUDES

As we reviewed in Section 1.4, the zero-mode wave functions in the twisted sectors form
a continuum of delta-normalizable states with arbitrarily negative worldsheet energy. In
contrast to the standard case of twist fields of finite order in Euclidean rotation orbifolds,
twisted states in Misner space should thus be described by a continuum of vertex op-
erators with arbitrarily negative conformal dimension. While the conformal field theory
of such operators remains ill-understood, amplitudes with two twisted fields only can be
computed by ordinary operator methods on the cylinder, in the twisted vacua at τ = ±∞
[6].

Stringy fuzziness.
Vertex operators for untwisted states are just a boost-invariant superposition of the ordi-
nary flat space vertex operators. In order to compute their scattering amplitude against a
twisted string, it is convenient to write them as a normal ordered expression in the twisted
Hilbert space. Since the twisted oscillators have an energy n ± iν with n ∈ Z, normal
ordering gives a different contribution than in the untwisted state,

∆(ν) ≡ [X−
0, X

+
≺0]− [X−

>0, X
+
<0] = ψ(1 + iν) + ψ(1− iν)− 2ψ(1) (3.4)

where ψ(x) =
∑∞

n=1(x + n)−1 = d log Γ(x)/dx. In the above equation, X±
>,< (resp.

X±
,≺) denote the positive and negative frequency parts (excluding the (quasi) zero-mode

contributions) of the embedding coordinates X±(τ, σ), as defined by the untwisted (resp.
twisted) mode expansion. As a result, the vertex operator for an untwisted tachyon be-
comes

: ei(k+X−+k−X+) :(un.)= exp
[−k+k−∆(ν)

]
: ei(k+X−+k−X+) :(ν−tw.) (3.5)

Such a factor is in fact present for all untwisted states, although the normal ordering
prescription is slightly more cumbersome for excited states. Since this normal ordering
constant depends on the winding number w = −ν/β, it cannot be reabsorbed by a field
redefinition of the untwisted state, nor of the twisted string. Instead, it can be interpreted as
the form factor acquired by untwisted states in the background of a twisted string, due to
the zero-point quantum fluctuations of the winding string. The latter polarizes untwisted
string states into a cloud of r.m.s. size

√
∆(ν). which, while proportional to ν at small ν,

grows logarithmically with the winding number,

∆(ν) = 2ζ(3)ν2 + O(ν4) = 2 log ν − 23
20

+ O(ν−2) (3.6)

Notice that this logarithmic growth winding can be viewed as the T-dual of the Regge
growth with energy. It is also interesting to observe the analogy of the form factor in
(3.5) with similar factors appearing in non-commutative gauge theories with matter in the
fundamental representation – in line with the general relation between twisted strings and
charged particles outlined in Section 1.4.

Zero-mode overlaps.
In general, the S-matrix element factorizes into a product of an excited mode contribution,
which can be evaluated, just as in flat space, by normal ordering and commutation, and a
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(quasi)-zero-mode contribution. In the real space representation (1.15) for the quasi-zero-
modes, the latter reduces to an overlap of twisted and untwisted wave functions, e.g. in
the three tachyon case,∫

dx+dx− f∗
1 (x+, x−) ei(p−

2 x++p+
2 x−) f3(x+, x−) (3.7)

where f1 and f3 denote eigenmodes of the charged Klein-Gordon equation, and f2 is
an eigenmode of the neutral Klein-Gordon equation, each of which with fixed angular
momentum ji. Considering higher excited modes such as the graviton would introduce
extra factors of covariant derivatives α± in (3.7).

In order to evaluate these overlaps, it is convenient to use a different representation
and diagonalize half of the covariant derivative operators, e.g.

α− = iν∂α+ , α̃+ = iν∂α̃− (3.8)

acting on functions of the variables α+, α̃− taking values in the quadrant R
ε × R

ε̃. On-
shell wave functions are now powers of their arguments,

f(α+, α̃−) = Nin

(
ε α+

)M2
2iν − 1

2
(
ε̃ α̃−) M̃2

2iν − 1
2 (3.9)

The notation Nin for the normalization factor anticipates the fact that this representation
is appropriate to describe an in state. The choice of the signs ε and ε̃ of α− and α̃+

distinguishes between short strings ( εε̃ = 1) and long strings (εε̃ = −1). Of course,
the oscillator representation (3.8) can be related to the real-space representation via the
intertwiner

f(x+, x−) =
∫

dα̃+dα−Φin
ν,α̃+,α−(x+, x−)f(α+, α̃−) (3.10)

where the kernel is given by

Φin
ν,α+,α̃−(x+, x−) = exp

(
iνx+x−

2
− iα+x− − iα̃−x+ +

i

ν
α+α̃−

)
(3.11)

This kernel may be viewed as the wave function for an off-shell winding state with “mo-
menta” α+ and α̃−. Equivalently, one may diagonalize the complementary set of opera-
tors,

α+ = −iν∂α− , α̃− = −iν∂α̃+ (3.12)

leading to on-shell wave functions

f(α−, α̃+) = Nout

(
ε α−)−M2

2iν − 1
2
(
ε̃ α̃+

)− M̃2
2iν − 1

2 (3.13)

Those are related to the real-space representation by the kernel

Φout
ν,α̃+,α−(x+, x−) = exp

(
− iνx+x−

2
− iα̃+x− − iα−x+ − i

ν
α̃+α−

)
(3.14)

Replacing f∗
1 (x+, x−) and f3(x+, x−) by their expression in terms of the out and in

wave functions (3.9), (3.13) respectively, renders the x± Gaussian (albeit with a non-
positive definite quadratic form). The remaining α±, α̃± integrals can now be computed
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in terms of hypergeometric functions. Including the form factor from the excited modes,
we obtain, for the 3-point amplitude,

〈1| : ei(p+
2 X−+p−

2 X+) : |3〉 =
gs

2ν
δ∑ ji

δ
(∑

p⊥i
)

exp
[
−p+

2 p−2 ∆̃(ν)
]

(−p+
2

)µ−1 (−p−2
)µ̃−1

U

(
λ, µ, i

p+
2 p−2
ν

)
U

(
λ̃, µ̃, i

p+
2 p−2
ν

)
(3.15)

where the non-locality parameter ∆̃(ν) includes the contribution of the quasi-zero-mode,

∆̃(ν) = ψ(iν) + ψ(1− iν)− 2ψ(1) (3.16)

The parameters of the Tricomi confluent hypergeometric functions U appearing in (3.15)
are given by

λ =
1
2

+
M2

3

2iν
λ̃ =

1
2

+
M̃2

3

2iν

µ = 1 +
M2

3 −M2
1

2iν
µ̃ = 1 + i

M̃2
3 − M̃2

1

2iν
. (3.17)

The amplitude is finite, and it is proportional to the overlap of the zero-mode wave-
functions, up to the smearing due to the form factor of the untwisted string in the back-
ground of the twisted string. Similar expressions can be obtained for 3-point functions in
superstring theory involving an untwisted massless state.

Four-point amplitudes.
The same techniques allow to compute 4-point amplitudes, which now include an integral
over the location of the 4-th vertex, as well as on the relative boost parameter v between
the two untwisted vertices. The complete expression can be found in [6] and is somewhat
abstruse, however it is useful to consider the factorization limit z → 0 where T (3), T (4)
(resp. T (1), T (2)) come together:

〈1|T (2)T (3)|4〉 → g2
s δ−j1+j2+j3+j4 δ

(
−�p1 +

3∑
i=1

�pi

)
∫ ∞

−∞
dv ei(j3−j1)v

∫
dzdz̄ |z|2�p3·�p4+�p3·�p3−2 exp

[
− (

p+
2 p−2 + p+

3 p−3
)
∆̃(ν)

]
(−1)µ+µ̃ (p+

2 )−λ̃ (p−2 )−λ (p+
3 )µ−λ−1 (p−3 )µ̃−λ̃−1 z−

1
2 M2

1− iν
2 z̄−

1
2 M̃2

1− iν
2 (3.18)

The amplitude diverges whenever j3 = j1 due to the propagation of winding strings with
vanishing boost momentum in the intermediate channel. This result closely parallels the
discussion in Ref. [32], where tree-level scattering amplitudes of four untwisted states
where found to diverge, due to large graviton exchange near the singularity.

3.3. MORE THAN TWO TWISTED STRINGS

Scattering amplitudes involving three or more twisted states can be obtained by mapping
to an analogous problem which is now very well understood: the Wess-Zumino-Witten
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model of a four-dimensional Neveu-Schwarz plane wave [37, 38, 39], with metric

ds2 = −2dudv + dζdζ̃ − 1
4
ζζ̃du2 , H = dudxdx̄ (3.19)

where ζ = x1 + ix2 is the complex coordinate in the plane. In the light-cone gauge
u = pτ , it is well known that the transverse coordinate X has the mode expansion of a
complex scalar field twisted by a real, non rational angle proportional to the light-cone
momentum p [39]. In fact, there exists a free-field representation where the vertex opera-
tor of a physical state with non-zero p is just the product of a plane wave along the (u, v)
light cone coordinates, times a twist field10 creating a cut zp on the world-sheet. Corre-
lation functions of physical states have been computed using standard WZW techniques
[41, 42], and, by removing the plane wave contribution, it is then possible to extract the
correlator of twist fields with arbitrary angle.

Referring the reader to [6] for more details, we simply quote the result for the three
twist amplitude: in real-space representation (1.15), the amplitude (hence, the OPE coef-
ficient of 3 twist fields) is given by the overlap∫

dx±
1 dx±

2 exp
[
(x+

1 − x+
2 )(x−

1 − x−
2 )Ξ(ν1, ν2)

]
[f1(x±

1 )f2(x±
2 )]∗ f3

(
x±

3 −
ν1x

±
1 + ν2x

±
2

ν1 + ν2

)
(3.20)

where the characteristic size of the kernel is given by the ratio

Ξ(ν1, ν2) = −i
1− iν3

ν1ν2

γ(iν3)
γ(iν1)γ(iν2)

1 + iν3
ν1ν2

γ(iν3)
γ(iν1)γ(iν2)

(3.21)

with γ(p) ≡ Γ(p)/Γ(1− p). As νi → 0, Ξ(ν1, ν2) ∼ 1/(2ζ(3) ν2
3) so that the interaction

becomes local, as expected for flat space vertex operators. For larger ν however, the non-
locality scale 1/

√
Ξ diverges when ν1ν2γ(iν1)γ(iν2) = iν3γ(iν3). The origin of this

divergence is not well understood at present.

3.4. TOWARD CLASSICAL BACK-REACTION

While computing the back-reaction from the quantum production of particles and strings
remains untractable with the present techniques, the results above give us a handle on a
related problem, namely the linear response of closed string fields to a classical (coherent)
condensate of winding strings. Indeed, consider deforming Misner space away from the
orbifold point, by adding to the free worldsheet action a condensate of marginal twist
operators:

Sλ =
∫

d2σ ∂X+∂̄X− + λ−wV+w + λ+wV−w (3.22)

While this deformation is marginal at leading order, it implies a one-point function for
untwisted fields

〈eikX〉λ ∼ λwλ−w〈w|eikX | − w〉 , (3.23)

10For integer p, new “spectrally flowed” states appear describing long strings [40].
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which needs to be cancelled by deformating S at order λ2 by an untwisted field: this is
the untwisted field classically sourced by the winding string with vertex operator V±w. In
addition, the same winding string also sources twisted states whose winding number is a
multiple of w:

〈V−2w〉λ ∼ λwλw〈w|V−2w|w〉 , (3.24)

The 3-point functions in (3.23), (3.24) are precisely the amplitudes which have been com-
puted the two previous sections. It is thus possible to extract the corrections to the metric
and other string fields to leading order in the deformation parameter λw. In the Euclidean
orbifold case, such a procedure allows to resolve a conical ALE singularity into a smooth
Eguchi Hanson gravitational instanton. Whether the same procedure allows to resolve the
divergences of the Lorentzian orbifold remains an intriguing open question.

4. Discussion

In this lecture, we have taken a tour of the classical aspects of the propagation of closed
strings in a toy model of a cosmological singularity: Misner space, a.k.a. the Lorentzian
orbifold R

1,1/Z. Our emphasis has been particularly on twisted sectors, which play such
an important rôle in resolving the conical singularities of Euclidean orbifolds. In partic-
ular, we have obtained a semi-classical understanding of the pair production of winding
strings, as a tunneling effect in the Rindler regions, in close analogy to Schwinger pair
creation in an electric field. Despite the fact that the one-loop amplitude remains real, in-
dicating no overall particle production between infinite past and infinite future, it is clear
that abundant production of particles and strings takes place near the singularity.

While tree-level scattering amplitudes exhibit severe divergences due to the infinite
blue-shift near the singularity, it is quite conceivable that the back-reaction from the cos-
mological production of particles and winding strings may lead to a smooth cosmology,
interpolating between the collapsing and expanding phases. Indeed, winding strings be-
have much like a two-dimensional positive cosmological constant, and may thus lead to a
transient inflation preventing the singularity to occur.

Unfortunately, incorporating back-reaction from quantum production lies outside the
scope of current perturbative string technology at present. A second quantized definition
of string theory would seem to be a prerequisite to even formulate this question, how-
ever, unlike the open string case, a field theory of off-shell closed strings has remained
elusive, and may even be excluded on general grounds. A generalization of the usual first
quantized approach allowing for non-local deformations of the worldsheet [43] may in
principle incorporate emission of correlated pairs of particles, however do not seem very
tractable at present.

Instead, the most practical approach seems to consider classical deformations by
twisted fields away from the orbifold point. In contrast to the problem of quantum back-
reaction, this may be treated in conformal perturbation theory, and we have taken some
steps in this direction. It remains to see whether Misner space is a good approximation to
the resulting space.

More importantly, Misner space appears to be a very finely tuned example of the
space-like singularities which are generically expected to occur in classical Einstein grav-
ity: as shown long ago by Belinsky, Khalatnikov and Lifshitz, and independently by Mis-
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ner himself (see e.g. [44] for a recent review), the generic approach to a cosmological
singularity consists of a chaotic sequence of “Kasner” epochs (of which Milne/Misner
space is a special example with zero curvature) and curvature-induced bounces, occuring
heterogeneously through space. An outstanding question is therefore to understand string
theory in Misner (Mixmaster) space.
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PHENOMENOLOGICAL GUIDE TO PHYSICS
BEYOND THE STANDARD MODEL

STEFAN POKORSKI
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and
Theory Division, CERN, Geneve

Abstract. Various aspects of physics beyond the Standard Model are discussed from the
perspective of the fantastic phenomenological success of the Standard Model, its simplic-
ity and predictive power.

1. Introduction

The Standard Model is a successful theory of interactions of quarks and leptons at en-
ergies up to about hundred GeV. Despite that success it is widely expected that there is
physics beyond the Standard Model, with new characteristic mass scale(s), perhaps up to,
ultimately, a string scale.

The expectation is motivated by several fundamental questions that remain unan-
swered by the Standard Model. The most pressing one is better understanding of the
mechanism of the electroweak symmetry breaking. The origin of flavour and of the pat-
tern of fermion masses and of CP violation also remain beyond its scope. Moreover, we
know now that the physics of the Standard Model cannot explain the baryon asymmetry
in the Universe. And on the top of all that come two recent strong experimental hints for
physics beyond the Standard Model, that is very small neutrino masses and the presence
of dark matter in the Universe. The list can be continued by including dark energy and
inflation.

The Standard Model does not explain the scale of the electroweak symmetry break-
ing. It is a free parameter of the theory, taken from experiment. Moreover, once we accept
the point of view that the Standard Model is only an effective “low energy” theory which
is somehow cut-off at a mass scale M , and if M � MW,Z , the electroweak symme-
try breaking mechanism based on use of an elementary Higgs field is unstable against
quantum corrections (this is the so-called hierarchy problem).

Many different extensions of the Standard Model have been proposed to avoid the hi-
erarchy problem and, more ambitiously, to calculate the scale of the electroweak breaking
in terms of, hopefully, more fundamental parameters. Some extensions give the complete
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Standard Model, with one Higgs doublet, as their low energy approximation in the sense
of the Appelquist - Carazzone decoupling and in some others the mechanism of the elec-
troweak symmetry breaking cannot be decoupled from the bigger theory. The general idea
is that the bigger theory has some characteristic mass scale M only order of magnitude
bigger than MW,Z , which plays the role of a cut-off to the electroweak sector. All those
extensions of the Standard Model have distinct experimental signatures. The experiments
at the LHC will, hopefully, shed more light on the mechanism of the electroweak symme-
try breaking and will support one of those (or still another one ?) directions.

One approach is based on low energy supersymmetry. The scale M is identified with
the mass scale of supersymmetric partners of the Standard Model particles. Supersym-
metry is distinct in several very important points from all other proposed solutions to the
hierarchy problem. First of all, it provides a general theoretical framework which allows
to address many physical questions. Supersymmetric models, like the Minimal Super-
symmetric Standard Model or its simple extensions satisfy a very important criterion of
“perturbative calculability”. In particular, they are easily consistent with the precision
electroweak data. The Standard Model is their low energy approximation in the sense of
the Appelquist - Carazzone decoupling, so most of the successful structure of the Standard
Model is built into supersymmetric models. Unfortunately, there are also some trouble-
some exceptions: there are new potential sources of Flavour Changing Neutral Current
(FCNC) transitions and of CP violation, and baryon and lepton numbers are not auto-
matically conserved by the renormalizable couplings. But even those problems can at
least be discussed in a concrete way. The quadratically divergent quantum corrections to
the Higgs mass parameter (the origin of the hierarchy problem in the Standard Model)
are absent in any order of perturbation theory. Therefore, the cut-off to a supersymmetric
theory can be as high as the Planck scale and “small” scale of the electroweak breaking is
still natural. But the hierarchy problem of the electroweak scale is solved at the price of a
new hierarchy problem of the soft supersymmetry braking scale versus the Planck (string)
scale. Spontaneous supersymmetry breaking and its transmission to the visible sector is a
difficult problem and a fully satisfactory mechanism has not yet been found. Again on the
positive side, supersymmetry is not only consistent with Grand Unification of elementary
forces but, in fact, makes it very successful. And, finally, supersymmetry is needed for
string theory.

All other extensions of the electroweak theory proposed as solutions to the hierarchy
problem rely on an onset of some kind of strong dynamics at energy scales not much
higher than the electroweak scale. In some of them, like Higgless models with dynamical
electroweak symmetry breaking or strong gravity in large extra dimensions, the strong
dynamics is simply a cut-off directly to the electroweak sector and appears already at
O(1 TeV). In models with the Higgs boson as a pseudo-Goldstone boson (e.g. Little Higgs
models) and models with gauge fields present in extra dimensions the cut-off scale M is
identified with the characteristic scale of new perturbative physics, e.g. with the scale of
breaking of some global symmetry or with the radii of extra dimensions. However, since
those models are non-renormalizable and, moreover, in the bigger theory the quadratic
divergences to the scalar mass parameter are absent typically only at one loop level, new
physics itself has to be cut-off by some unknown strong dynamics at a scale one or two
orders of magnitude higher than the M . Generally speaking, there is no Appelquist -
Carazzone decoupling of new physics and the precision tests of such a version of the
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electroweak theory are not possible at the same level of accuracy as in the renormalizable
Standard Model.

It is clear that models with early onset of strong dynamics cannot be easily, if at all,
reconciled with Grand Unification. Also, they are very strongly constrained by precision
electroweak data. There have been constructed models that work but simple models are
usually ruled out. Moreover, various aspects of flavour physics are often very obscure.

Spontaneous symmetry breaking in the condensed matter physics and in QCD is due
to some collective effects. In supersymmetric models, such effects are presumably respon-
sible for spontaneous breaking of supersymmetry and, in consequence, for the generation
of soft mass terms. However, the electroweak symmetry breaking is driven by pertur-
bative quantum corrections, generated by the large top quark Yukawa coupling, to the
scalar potential. In the Little Higgs models, the Higgs boson is a Goldstone boson of
a bigger spontaneously broken global symmetry group. The Higgs potential needed for
the electroweak symmetry breaking is also given by quantum corrections, with important
contribution from the top quark Yukawa coupling. Thus, one thing many models have in
common is that the electroweak symmetry is broken by perturbative quantum effects and
linked to the large mass of the top quark.

At present, all extensions of the Standard Model remain speculative and none is fully
satisfactory. Remembering the simplicity, economy and success of the Standard Model,
one may wonder if in our search for its extensions shouldn’t the Hipocrates principle
Primum non nocere play more important role than it does. Indeed, various new ideas
offer surprisingly low ratios of benefits to losses. It is, therefore, appropriate to begin by
reviewing the basic structure of the Standard Model that underlies its success. It is likely
that it gives us important hints for the physics beyond.

2. The Standard Model

2.1. BASIC STRUCTURE

The underlying principles of the electroweak theory are:

1. local SU(2)L × U(1)Y gauge symmetry and electroweak unification
2. spontaneous breaking of SU(2)L × U(1)Y gauge symmetry to U(1)EM , by the

Higgs mechanism with one Higgs doublet
3. matter content (chiral fermions)
4. renormalizability

Massless chiral fermions are the fundamental objects of matter: left-handed, with he-
licity λ = −1/2, and right-handed, with helicity λ = 1/2. It is so because parity and
charge conjugation are not the symmetries of our world. The left-handed fermions carry
different weak charges from the right-handed fermions. Chiral fermion fields are two-
component (Weyl) spinors (see e.g. [1]):

SU(2)L doublets

q1 ≡
(

u
d

)
q2 ≡

(
c
s

)
q3 ≡

(
t
b

)
(2.1)
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l1 ≡
(

νe

e

)
l2 ≡

(
νµ

µ

)
l3 ≡

(
ντ

τ

)
(2.2)

with the electric charge and the hypercharge (Y = Q− T3) assigned as below

u d ν e

Q 2/3 -1/3 0 -1

Y 1/6 1/6 -1/2 -1/2

These are left-handed chiral fields in the representation (0, 1/2) of the SL(2, C), each
describing two massless degrees of freedom: a particle with the helicity λ = −1/2 and
its antiparticle with λ = +1/2. (The chiral fields can also be written as four-component
spinors (see e.g. [1]) but in the following we shall be using the Weyl notation).

Right-handed fields [(1/2, 0) of SL(2, C)] in the same representations of SU(2)L ×
U(1)Y as the left-handed fields (2.1) and (2.2) do not exist in Nature. Instead, we have

SU(2)L singlets

uR, cR, tR
dR, sR, bR

eR, µR, τR

in (1,+2/3), (1,−1/3) and (1,−1) of SU(2)L × U(1)Y , respectively. These are right-
handed chiral fields in the (1/2, 0) representation of the group SL(2, C). For constructing
a Lorentz invariant Lagrangian, it is more convenient to take as fundamental fields only
the left-handed chiral fields. Thus, we introduce left-handed chiral fields, e.g

uc, cc, tc (2.3)

in (1,−2/3) of SU(2)L × U(1)Y , such that

ūc ≡ CPuc(CP )−1 = uR (2.4)

Indeed, CP transformation results in the simultaneous change of chirality and charges
(representation R → R∗ for internal symmetries). Moreover, we see that the electric
charge Q = T3 + Y satisfies, e.g.

Quc = −2/3 = −Qu (2.5)

and the two left-handed fields u and uc become charge conjugate to each other when
UEM (1) remains the only unbroken symmetry:

CucC−1 = u (2.6)

We note that the matter chiral fields of the SM do not include a right-handed neutrino
field νR in (1, 1) of SU(2)L × U(1)Y (such a charge assignment preserves the relation
Q = T3 + Y ) or equivalently, a left-handed field νc such that

νR = CPνc(CP )−1 (2.7)
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but we can supplement the Standard Model with such a particle, if useful.
The breaking of the electroweak symmetry is generated by the potential of the Higgs

doublet H =
(

H+

H0

)
with the hypercharge Y = +1/2:

V = m2H†H +
λ

2
(H†H)2 (2.8)

When m2 < 0 is chosen, the Higgs doublet acquires the vacuum expectation value. In-
deed, the minimum of the potential is for

〈H†H〉 = −m2

λ
≡ v2

2
(2.9)

By SUL(2) rotation we can always redefine the vacuum so that only the VEV of the
lower component of the Higgs doublet is non-zero. The SUL(2) × UY (1) symmetry is
then broken down to U ′(1) which is identified with UEM (1) with Q = T 3 + Y because

(T 3 + Y )
(

0
v

)
= 0. The parameters m and λ are free parameters of the Standard

Model. Equivalently, the scale of the electroweak symmetry breaking is not predicted by
the theory and must be taken from experiment.

2.2. FERMION MASSES

Higgs doublets (and only doublets) have SU(2)L×U(1)Y invariant renormalizable cou-
plings to the chiral fermions of the Standard Model. For the charged fermions, we can
write down the following Yukawa couplings:

LY ukawa = −Y BA
l H∗

i liAec
B − Y BA

d H∗
i qiAdc

B − Y BA
u εijHiqiAuc

B + hc (2.10)

where i is the SU(2)L index and A,B are generation indices. We use the fact that the
two-dim representation of SU(2) is real and iτ2H transforms as H∗, i.e. as 2∗(≡ 2) of
SU(2). Therefore, (iτ2Hq) = εijHiqj is also an invariant of SU(2). After spontaneous
breaking of SU(2)L × U(1)Y to U(1)EM by the Higgs boson vacuum expectation value
v we obtain the Dirac masses

Lmass = −v(Y BA
l eAec

B + Y BA
d dAdc

B + Y BA
u uAuc

B) + hc (2.11)

However, at the level of the full, SU(2)L ×U(1)Y invariant theory, there is no renormal-
izable term that would give neutrino mass. It is so because νc is absent from the spectrum
of the SM. Thus, in the SM, neutrinos are massless.

The interactions (2.10,2.11) are written in some ”electroweak” basis defined by eigen-
vectors of the SU(2)L×U(1)Y symmetry group. In such a basis, both the fermion masses
and the Yukawa couplings are in general non-diagonal in the flavour indices (A,B). How-
ever, we can introduce another set of fields (say, primed fields) describing physical parti-
cles (mass eigenstates). The flavour of the primed fields is defined in the mass eigenstate
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basis. The two sets of fields are related to each other by unitary transformations:

u = ULu′ d = DLd′

uc = u′cU†
R dc = d′CD†

R

e = ELe′

ec = e′cE†
R

(2.12)

which, of course, do not commute with the SU(2)L × U(1)Y gauge transformations
and can be performed only after the spontaneous breakdown of the gauge symmetry. In
eq.(2.12), the fields u, d , e denote three-dimensional vectors in the flavour space.

The transformations (2.12) diagonalize the mass terms and the Yukawa couplings de-
fined by (2.10). After diagonalization we can combine the chiral fields into Dirac fields.
The weak currents can be expressed in terms of the physical (mass eigenstates) fields:

J−
µ =

∑
A,B

ū′
Aσ̄µ(VCKM )ABd′B

+
∑
A

ν̄′
Aσ̄µe′A (2.13)

where the Cabibbo-Kobayashi-Maskawa matrix VCKM = U†
LDL. Note that the lepton

current is diagonal in flavour (defined in the charged lepton mass eigenstate basis) because
the massless neutrino field can be redefined by the transformation νA = EL

ABν′
B where

EL
AB is the transformation diagonalizing the charged lepton mass matrix (see (2.12)).

Thus, for the lepton current, VCKM = EL†EL = 1.
It is important to remember that in the SM (with only one Higgs doublet) the Yukawa

couplings to the physical Higgs boson (and, in fact, also the couplings to the Z0) and the
mass terms are diagonalized by the same unitary rotations. So they are flavour diagonal.
The only source of flavour non-conservation resides in VCKM . In particular, not only the
global lepton number but also each flavour lepton number is separately conserved.

2.3. APPROXIMATE CUSTODIAL SYMMETRY OF THE STANDARD MODEL
AND THE PRECISION ELECTROWEAK DATA

The Higgs sector of the SM is invariant under global SO(4) symmetry acting on four real
components of the complex doublet. The group SO(4) � SU(2)L × SU(2)R and the
Higgs doublet can be written as a 2× 2 matrix Φ

Φ =
(

H+ H0∗

H0 −H−

)
, (2.14)

which transforms as (2,2) of the latter group (whose first factor is just the gauged weak
isospin group):

Φ −→ Φ′ = ULΦUR . (2.15)
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The vacuum expectation value of the Higgs field breaks SU(2)L×SU(2)R to its diagonal
subgroup called “custodial” SU(2) acting on the three would-be Goldstone bosons Ga:

H =
(
H+ H0

) −→ 1√
2
e

iGaτa

v

(
0 v + h0

)
(2.16)

In the rest of the electroweak Lagrangian the SU(2)R subgroup and therefore also the
custodial SU(2) symmetry is broken by the Yukawa interactions and by the U(1)Y cou-
pling. However, the custodial symmetry is still seen at the tree level since by the Higgs
mechanism it ensures that the gauge bosons W+, W− and W 0 of SU(2)L transform as
a custodial triplet. In consequence, the ratio of the strength of charged and neutral current
interaction at the tree level is equal to one

ρ ≡ M2
W

cos2 θW M2
Z

= 1 , (2.17)

where cos2 θW = g2
2/(g2

2 + g2
1).

This relation is consistent to a very good approximation with experimental data but
this is not the end of the success of the SM. Since the rest of the Lagrangian violates the
custodial symmetry, there are quantum corrections to the relation ρ = 1. Since the global
SU(2)L × SU(2)R symmetry of the Higgs sector fixes the structure of counterterms in
the scalar potential, quantum corrections to the relation ρ = 1 must be finite! In one-loop
approximation one gets

∆ρ ≡ ρ− 1 =
3g2

2

64π2

m2
t −m2

b

M2
W

− g2
1

64π2

11
3

ln
M2

h

M2
W

. (2.18)

The first term is of the order of 1% and, is in perfect agrrement with the precision elec-
troweak data. Thus, fits to the data give Mh ∼ O(MW ) although logarithmic dependence
of ∆ρ on Mh does not allow for precise determination of this mass. We shall discuss later
on the importance of the Higgs particle mass for various extensions of the SM.

We conclude that the approximate custodial symmetry of the SM is in fantastic agree-
ment with experimental data. Any alternative mechanism of the electroweak symmetry
breaking or any extension of the SM must not violate the custodial symmetry of the elec-
troweak interactions. Furthermore, we see that the renormalizable SM with one Higgs
doublet, has very strong predictive power which allows for its precision tests at the level
of one per mille.

2.4. GIM MECHANISM AND THE SUPPRESSION OF FCNC AND CP
VIOLATING TRANSITIONS

It is well established experimentally that the amplitudes for processes such as e.g. K0(ds̄)-
K̄0(d̄s) mixing caused by electroweak interactions, 〈K0|Hweak|K̄0〉, are strongly sup-
pressed in comparison with the amplitudes for the charged current transitions like n →
pe−ν̄e or µ− → e−ν̄eνµ. A good measure of the mixing is the mass difference between
neutral kaon mass eigenstates |K0

L〉 = 1√
2
(|K0〉 − |K̄0〉) and |K0

S〉 = 1√
2
(|K0〉+ |K̄0〉)

(we neglect here even smaller CP violation): ∆MK = 3× 10−12 MeV and is suppressed
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by factor 106 compared to what one could expect for a generic electroweak transition.
This fact finds a very elegant explanation in the Standard Model. The charged current
transitions shown in Fig. 1 are present at the tree level whereas it follows from the struc-
ture of the theory that the diagrams shown in Fig. 2 are absent. In the diagrams the quark
fields are of course mass eigenstate fields and the couplings are obtained by rotating from
an electroweak basis, in which the theory is formulated, to the mass eigenstate basis, in
which the quark flavour is defined. It is obvious that the Z0 couplings are flavour di-

d
u

W−

e−
νe

W−

Figure 1. Charged current transitions in the Standard Model.

d
s

Z0

µ− e−

Z0

d
s

h0

Figure 2. Neutral current transitions absent at the tree level in the SM.

agonal. More interesting is the absence in the SM of the scalar flavour changing neutral
currents. This result follows from the fact that in the SM there is only one Higgs doublet.
Because of that, diagonalizing the fermion mass matrices one simultaneously obtains also
diagonal Yukawa couplings to the physical Higgs boson. In models with more Higgs
doublets, additional discrete symmetry has to be imposed to ensure that only one Higgs
doublet couples to the quarks of the same charge. In the minimal supersymmetric model
two doublets are needed for supersymmetric theory but (by the holomorphicity of the su-
perpotential) only one Higgs doublet can couple to the same charge quarks. The absence
of flavour non-diagonal neutral currents at the tree level is not sufficient to account for the
observed suppression of processes like kaon mixing or b → sγ. For example the 1-loop
diagrams shown in Fig. 3 generate the K0(ds̄)-K̄0(d̄s) transitions and the coefficient C
in the effective Lagrangian

Leff = C (s̄LγµdL)(s̄LγµdL) (2.19)

describing their contribution (in the limit of external quark momenta small compared to
MW ) is generically of order C ∼ α2

M2
W
∼ α GF . However, in the SM the sum of all

such contributions is suppressed by a factor ∼ 10−4 due to the so-called (generalized
to 3 generations of quarks) Glashow-Illiopoulos-Maiani mechanism. The coefficient C
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W± W±

d s

s d

u, c, t

u, c, t

u, c, t u, c, t

d s

s d

W±

W±

Figure 3. Leading SM contribution to K0-K̄0 mixing.

generated by diagrams of Fig. 3 (and the diagrams in which one or both W± are replaced
by the unphysical would-be Goldstone bosons G±) is finite and has dimension mass−2.
The whole effective Lagrangian can be written as

Leff =
1
2

(
g2√
2

)4 ∑
i,j=u,c,t

V �
isVidV

�
jsVjd (2.20)

×
∫

d4q

(2π)4
[ΨsγµPL(� q + mqi

)γνPLΨd][Ψsγ
νPL(� q + mqj

)γµPLΨd]
(q2 −m2

qi
)(q2 −m2

qj
)(q2 −M2

W )2

The top quark contribution is suppressed by the smallness of the product V ∗
tsVtd. The rest

contributes to the coefficient C in (2.19)

Auc ∼
(

g2√
2

)4 1
M2

W

∑
i,j=u,c

V �
isVidV

�
jsVjd

[
1 +O

(
m2

qi

M2
W

,
m2

qj

M2
W

)]

∼ α GF

⎧⎨⎩(V �
tsVtd)

2 +O
⎛⎝ ∑

i,j=u,c

V �
isVidV

�
jsVjd

m2
q

M2
W

⎞⎠⎫⎬⎭ (2.21)

where in the last line, unitarity of the CKM matrix has been used: V �
usVud + V �

csVcd =
−V �

tsVtd.
From this example it is clear that for the empirical pattern of quark masses and mixing

angles there is strong suppression of FCNC in the SM. It is much stronger than “naturally”
expected.

The predictions of the SM for the FCNC transitions are in very good agreement with
experimental data. This is also true for CP violation. The only source of CP violation
in the SM is the phase of the CKM matrix. As a result, the effects of CP violation in
the kaon system, in which they were first observed, are proportional to the masses of the
light quarks and small CKM mixing angles and hence very small (this is not so for the
B-meson systems in which CP violation is probed by present experiments).

The strong suppression of the FCNC and CP violating transitions, so nicely consistent
with the SM is a big challenge for any of its extension. This is easy to understand on a
qualitative basis. Let us suppose that new physics contributes to such transitions at 1-loop
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level (any contribution at the tree level would be a total disaster!) with the couplings of
order of the strong coupling constant αs ≈ 0.12 and with the scale M of the particle
masses in the loop. Then

∆C ∼ α2
s

M2
=

α2

M2
W

(αs

α

)2
(

MW

M

)2

(2.22)

Thus, for such contributions to be comparable or smaller than the SM one, the new physics
scale M has to be higher than 103MW ∼ 100 TeV. If the new couplings are of the order
of α then we get M >∼ 10 TeV. If the scale of new physics extension of the SM is below
these limits, the new physics must somehow control the flavour effects!

2.5. BARYON AND LEPTON NUMBER CONSERVATION

The principles (1) - (4) imply global U(1) symmetries of the theory: baryon and lepton
number conservation ∆B = ∆L = 0. In fact, for leptons the implication is even stronger,
namely Ue(1) × Uµ(1) × Uτ (1) is a global symmetry of the electroweak Lagrangian
and the lepton flavour numbers are separately conserved: ∆Le = ∆Lµ = ∆Lτ =0. For
quarks, quark mixing explicitly breaks quark flavour U(1)’s and only the total baryon
number is conserved.

The conservation of the baryon and lepton numbers by the renormalizable couplings
of the Standard Model is beautifully consistent with experimental limits on the life time
of the proton , τp

>∼ 1033 years, and on the branching ratios for the lepton flavour vi-
olating decays, e.g. BR(µ → eγ) <∼ 10−11. Proton decay and lepton flavour violating
decays occur, if at all, many orders of magnitude less frequently than generic electroweak
processes. Actually, in the Standard Model those conservation laws are violated by chi-
ral anomaly. The diagrams shown in Fig. 4 where ja

µL’s are SU(2)L gauge currents and
jL,B
µ is the baryon or lepton current of the U(1) global symmetries gives (insisting on the

conservation of the gauge currents [1])

∂µjB
µ ∝ (TrB)

3∑
a=1

W a
µνW̃ aµν

∂µjL
µ ∝ (TrL)

3∑
a=1

W a
µνW̃ aµν (2.23)

Only SUL(2) doublets contribute to the traces, so they do not vanish, and W a
µν is the

SU(2)L field strength. Non-perturbative effects give, in general a non-zero condensate
W a

µνW̃µν (topological baryon and lepton number non-conservation) but the effect is to-
tally negligible at zero temperature. At non-zero temperature, the topological baryon and
lepton number non-conservation is enhanced and can play important physical role because
the (B−L) current is anomaly free: ∂µjB−L

µ ∝ Tr(B−L) = 0 and the quantum number
B−L is conserved. Thus in the presence of some hypothetical perturbative lepton number
and CP violation, topological effects may convert leptogenesis into baryogenesis.

Incidentally, with the right-handed neutrino included in the spectrum, the diagrams in
Fig. 5 do not give any anomaly, neither, and the (B − L) symmetry can, therefore, be
gauged.
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jL,B
µ

ja
νL

jb
κL

fL jL,B
µ

ja
νL

jb
κL

fL

Figure 4. Anomalies in the B and L currents in the SM.

jB−L
µ

jB−L
νL

jB−L
κL

f jB−L
µ

jB−L
νL

jB−L
κL

f

Figure 5. [U(1)B−L]3 anomaly.

3. Hints from the Standard Model for its extensions

3.1. IS THE EFFECTIVE LOW ENERGY ELECTROWEAK THEORY INDEED
THE RENORMALIZABLE STANDARD MODEL?

In the construction of the SM Lagrangian we have been, so far, guided by its renormaliz-
ability. Accepting the fact that the SM is only an effective theory one may wonder, how-
ever, how important is its renormalizability. Unitarity and symmetries are certainly more
fundamental requirements and indeed e.g. the physics of pions is described by a non-
renormalizable effective low energy theory (non-linear σ-model). It is, therefore, useful
to recall the main differences between the two classes of quantum field theories.

In a renormalizable theory its cut-off can be taken to infinity and the whole UV sensi-
tivity is hidden in a finite number of free parameters, the same at any order of perturbation
expansion. Calculations with arbitrary precision are, therefore, possible with a fixed num-
ber of parameters whose values can be determined from the experimental data. If some
theory gives as its low energy approximation a renormalizable theory, then according to
the Appelquist-Carazzone decoupling theorem, the effects of heavy degrees of freedom
characterized by a mass scale M show up only as corrections in the form of higher di-
mensional operators allowed by the symmetries of the renormalizable theory:

Leff = Lrenormalizable +O
(

1
Mn

)
O4+n (3.1)

This is a window to new physics (if such corrections are needed by experiment) even if
we do not know the theory at the scale M .
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It is worth putting the view at the Standard Model as an effective low energy theory
into the better known perspective. We know now that Quantum Electrodynamics (QED)
is a renormalizable theory and at the same time it is the low energy approximation to
the electroweak theory. Its renormalizability means calculability with arbitrary precision.
But it is only an effective theory so we know that its predictions disagree with experi-
ment at the level ∼ O(E/Mw), where the energy E is the characteristic energy for a
given process. For example, let us have a look at the lepton magnetic moment. It gets
contributions from the diagrams depicted in Fig. 6. Thus, for the nonrelativistic effective

ll

γ

ll γ

l l

γ

ll ν

W W

γ

Figure 6. One loop contributions to the anomalous lepton magnetic moment in the SM.

interaction with the magnetic field we get

Heff =
e

2ml
σ ·B(1 +

α

2π
+O

(
α

m2
l

M2
W

)
+ . . .) (3.2)

where the role of the energy scale is played by the lepton mass ml. The ”weak” correction
is calculable in the full electroweak theory, but at the level of QED as an effective theory
it has to be added as a new non-renormalizable (but U(1)EM invariant) interaction

Figure 7. Effective photon-lepton vertex.

Leff =
ml

M2
ψ̄σµνψFµν (dim 5) (3.3)

This would have been a way to discover weak interactions (and to measure the weak
scale) in purely electromagnetic processes: we extend QED to a non-renormalizable the-
ory by adding higher dimension operators and look for their experimental manifestation in
purely electromagnetic processes once the experimental precision is high enough. Luck-
ily enough for us, effective QED may also contain other than (3.3) non-renormalizable
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corrections, U(1)EM invariant but violating the conservation of quantum numbers that
are accidentally conserved in QED, for instance flavour. Such corrections manifest them-
selves as different type of interactions - weak interactions - and were easy to discover
experimentally. Similarly, among many possible non-renormalizable corrections to the
SM which respect the SU(2)L × U(1)Y gauge symmetry there are such that violate e.g.
the lepton and/or baryon number conservation or give Majorana masses to neutrinos. We
shall discuss them in the following.

In a non-renormalizable theory one either has to keep explicit logarithmic cut-off de-
pendence ( 1

16π2 ln Λ
µ where µ is some low energy scale) or the number of counterterms

(i.e. the number of free parameters of the theory) must increase at each order of per-
turbation expansion. The value of the cut-off Λ is dictated by the consistency between
one-loop calculations and the contribution of the higher dimensional operators. Typically,
the theory becomes strongly interacting above the cut-off scale.

A physically important non-renormalizable effective theory is the theory of pions [2,
1]. The pions are pseudo-Goldstone bosons of the (approximate) global chiral symmetry
SU(2)L×SU(2)R of strong interactions which is spontaneously broken down to SU(2)V

of isospin. The physics of the light degrees of freedom (pions) is described by a non-
linear σ-model. The chiral symmetry SU(2)L × SU(2)R, non-linearly realized on the
pion fields, requires non-renormalizable interaction. The lowest dimension one is

Lpions = f2
πTr(∂µU†∂µU) (3.4)

where the fields

U = eiπaτa/fπ (3.5)

transform under SU(2)L × SU(2)R linearly: U → VLUV †
R. The constanf fπ is the pion

decay constant. The chiral symmetry cannot be reconciled with an effective renormaliz-
able theory of pions and the Appelquist-Carazzone decoupling does not work.

The important question is: is the true low energy approximation to the more fun-
damental theory which explains the mechanism of electroweak symmetry breaking the
renormalizable SM (like in supersymmetric extensions of the SM) or non-renormalizable
electroweak theory (like in higgsless models with dynamical electroweak symmetry break-
ing and in models with the Higgs boson as a pseudo-Goldstone boson of some sponta-
neously broken bigger global symmetry)?

The predictive power and the phenomenological success of the SM suggests the first
case. On the other hand, one may argue that the second option would more resemble spon-
taneous symmetry breaking in the condensed matter physics and in strong interactions.

3.2. MATTER CONTENT AND DEEPER UNIFICATION?

There are two striking aspects of the matter spectrum in the Standard Model. One is the
chiral anomaly cancellation [2, 1], which is necessary for a unitary (and renormalizable)
theory, and occurs thanks to certain conspiracy between quarks and leptons suggesting a
deeper link between them. The potential source of chiral anomalies in the Standard Model
are the triangle diagrams like the ones shown in Figs. 4 in which now the external lines
correspond to all possible triplets of currents coupled to the three types of gauge fields
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in the electroweak theory: U(1)Y gauge field Bµ, SU(2)L gauge fields W a
µ (a = 1, 2, 3)

and/or SU(3)C gauge fields Aa
µ (a = 1, . . . , 8) and internal fermion lines correspond

to all chiral fermions in the theory. Most of the anomaly coefficients vanish due to the
group structure. The most interesting ones are the anomalies with one U(1)Y current and
two SU(2)L currents and the one with three U(1)Y currents. They vanish (a necessary
condition for consistency of the electroweak theory) provided∑

Qi = 0 , (3.6)

(where Qi’s are the electric charges of the fields) separately for doublets and singlets of
SU(2)L. Incidently, the same condition is sufficient for vanishing of the mixed U(1)Y -
gravitational anomaly given by the diagrams like those shown in Figs. 4 but now with two
currents corresponding to the energy-momentum tensors and the third one to the U(1)Y

current. The condition (3.6) is satisfied in the SM because quark and lepton contributions
cancel each other.

The second striking feature of the matter spectrum in the Standard Model is that it fits
into simple representations of the SU(5) and SO(10) groups [3]. Indeed, we have, for
SU(5)

5∗ =
(

νe

e−

)
L

, dc
L

10 =
(

u
dL

)
, uc

L, ec
L

1 = νc
L (if the right− handed neutrino is added to the spectrum)

and, for SO(10),

16 = 5∗ + 10 + 1

The assignment of fermions to the SU(5) representations fixes the normalization of the
U(1)Y generator:

Q = T3 + Y = L11 +

√
5
3
L12 , (3.7)

where Lij are the SU(5) generators satisfying the normalization condition [Lij , Lkl] =
1
2δikδjl.

Both facts, the anomaly cancellation and the pattern of fermion spectrum, strongly
suggest some kind of quark and lepton unification, at least at some very deep level,
with some big group and some mechanism of its breaking. In addition, in line with the
above conclusion is a well known fact that, with normalization given by eq (3.7), the run-
ning gauge couplings of the Standard Model approach each other at high scale of order
1013 GeV. Although unification of the gauge couplings in the Standard Model is only
very approximate, it is nevertheless a remarkable fact that the strength of strong and elec-
troweak interactions become comparable at certain energy scale.

3.3. NEUTRINO MASSES: EVIDENCE FOR NEW VERY HIGH MASS SCALE?

There is at present strong experimental evidence for neutrino oscillations whose most ob-
vious and most natural explanation is that neutrinos are massive and their mass eigenstates
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are different from the weak interaction eigenstates. This is the first experimental evidence
for physics beyond the Standard Model.

The smallness of the neutrino masses can be easily understood as due to the presence
of a new very high mass scale M . If it makes sense to rely on the Appelquist-Carazzone
decoupling theorem then the mass scale M would manifest itself via higher dimension
operators.

Neutrino mass terms may appear as dimension five operator

1
M

(HlA)λAB(HlB) (3.8)

where we use the following notation: (Hl) ≡ εijH
ilj denotes SU(2)L contraction and

ll ≡ εαβlαlβ denote Lorentz contraction. After spontaneous SM gauge symmetry break-
ing by the Higgs boson VEV the operator (3.8) gives indeed a Majorana mass matrix for
neutrinos:

Lν mass = −mAB νAνB + H.c. , mAB =
v2

M
λAB (3.9)

Small neutrino masses are obtained for big value of M , with the constants λAB ∼ O(1).
This is called a see-saw mechanism.

A possible and, in fact quite elegant, origin of the mass scale M would be the existence
of another left-handed particle νc, a singlet of SU(2)L × U(1)Y , i.e. a field such that

CPνc(CP )−1 ≡ νR (3.10)

with a Majorana mass term

LMajorana = MAB
Maj νc

Aνc
BB + H.c. (3.11)

It can be interpreted as a right-handed neutrino field. Moreover, we can construct Yukawa
interactions

εijHiν
c
BY BA

ν lAj + H.c. (3.12)

with a new set of (neutrino) Yukawa couplings Y BA
ν . Both terms are SU(2)L × U(1)Y

invariant and even renormalizable. We can consider then the diagram shown in Fig. 8. At

×

l l

νc νc

H H

MMaj

Figure 8. Diagram generating the dimension 5 operator.

the electroweak scale v, if MMaj � v, we obtain the effective interaction shown in Fig.
9 described by the operator
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l l

H H

Figure 9. Effective dimension 5 operator.

εijHi lAj Y DA
ν (M−1

Maj)
DCY CB εijHil

B
j (3.13)

We recognize the previously introduced operator (3.8) with

λAB

M
= (Y T

ν M−1
MAJYν)AB (3.14)

The see-saw mechanism with a new mass scale M is the most compelling explanation
of the smallness of the neutrino masses [4, 5]. Indeed

i) the smallness of mν is then related to its zero electric charge
ii) the smallness of mν is also related to lepton number violation at the scale M
iii) with mν ∼ Y 2 v2

M , v = 240 GeV and for Y ∼ O(1) we get mν ∼ (0.01 ÷ 0.1) eV
for M ∼ (1015 ÷ 1013) GeV So, the scale M is close to the GUT scale.

iv) νc completes the spinor representation of S0(10)
v) heavy νc can play important role in baryogenesis via leptogenesis.

3.4. HIERARCHY PROBLEM IN THE SM: HINT FOR A NEW LOW MASS
SCALE?

Quantum corrections to the Higgs potential mass parameter m2 in eq. (2.8) in the SM are
quadratically divergent. If the SM is an effective low energy theory and has a cut-off at
some mass scale M of new physics, ΛSM ∼ M , it means then that quantum corrections
to m2 are quadratically dependent on the new mass scale present in the underlying more
fundamental theory. When M � MZ this is very unnatural even if m2, that is MZ , re-
mains a free parameter of this underlying theory, and particularly difficult to accept if in
the underlying theory m2 is supposed to be fixed or indeed is fixed by some more funda-
mental considerations (as e.g. in supersymmetric and Little Higgs models, respectively).
The latter is necessary if the underlying theory is to predict the scale of the electroweak
symmetry breaking in terms of “more fundamental” parameters and, generically, in terms
of its own cut-off ΛNew. Thus, for naturalness of the Higgs mechanism in the SM there
should exist a new mass scale M >∼ MZ , say only order of magnitude higher than MZ and
better understanding the mechanism of the electroweak symmetry breaking is, hopefully,
a bridge to new physics that will be explored at the LHC.

For a more quantitative discussion of this so-called hierarchy problem we recall that
in general in a field theory with a cut-off Λ and some scalar field(s) φ that can acquire
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VEV(s) the 1-loop effective potential is

∆V1−loop(φ) =
1
2

∫ Λ d4k

(2π)4
STr ln

[
k2 −M2(φ)

]
= cΛ4 + c′Λ4 ln Λ2

+
1

32π2
Λ2STrM2(φ) +

1
64π2

STrM4(φ) ln
M2(φ)

Λ2
+ . . . (3.15)

where StrM2(φ) =Tr[(−)F M2(φ)] with F - the fermion number operator and M2(φ)
is the full φ-dependent mass matrix for all fields of the theory. The first terms in the
expansion are the φ-independent contribution to the vacuum energy. We are interested
in quantum corrections δm2 to the mass parameter m2 of the φ field potential. They are
obtained by expanding

STrM2(φ) = c2φ
2 + . . . , STrM4(φ) = c4φ

2 + . . . , (3.16)

The corrections proportional to c2 (to c4) are in general quadratically (logarithmically)
dependent on the cut-of scale Λ. In the SM with a cut-of ΛSM we find

δm2 =
(

∂2∆V1−loop(φ)
∂φ2

)
min

=
3

64π2

(
3g2

2 + g2
1 + λ− 8y2

t

)
Λ2

SM + . . . , (3.17)

If the SM was the correct theory up to the mass scale suggested by the see-saw mecha-
nism, ΛSM ∼ MGUT

|δm2| ∼ 1030 GeV2 ∼ 1026M2
W !

Clearly, this excludes the possibility of understanding the magnitude of Fermi constant
GF ∼ M−2

W in any sensible way. We also see that for |δm2| ∼ M2
W , 10M2

W , 100M2
W

one needs ΛSM
<∼ 0.5 TeV, <∼ 1 TeV, <∼ 6 TeV, respectively. If the scale of new physics is

in the above range it should be discovered at the LHC.
However, for a solution of the hierarchy problem it is not enough to have a low phys-

ical cut-off scale of the SM. The deeper theory has its own cut-off scale ΛNew and the
dependence on it of δm2 calculated in this deeper theory should be mild enough, in order
not to reintroduce the hierarchy problem for the electroweak scale.1

Many theoretical ideas have been proposed for solving the hierarchy problem of the
electroweak scale. In supersymmetric extensions of the SM the dependence on their own
cut-off scales ΛNew is only logarithmic because the quadratic divergences cancel out at
any order of the perturbation expansion. Since the effective potential V1−loop(φ) depends
only on ln ΛNew (to any order of the perturbation expansion) the scale ΛNew can be as
high as the Planck scale. The quadratic dependence on the SM cut-off scale ΛSM, that is
on the mass scale MSUSY of the superparticles, shows up in

STrM4(φ) = f(M2
SUSY) φ2 + . . . (3.18)

and more explicitly, at the 1-loop as2

δm2 =
1

16π2

(
3g2

2 + g2
1 − 12y2

t

)
M2

SUSY ln
Λ2

New

M2
SUSY

, (3.19)

1The hierarchy of some other (new) scales is nevertheless usually present.
2The formula (3.19) applies in fact to m2

H2 which for tan β >∼ 5 is the most important for
electroweak symmetry breaking.



218 STEFAN POKORSKI

where we have replaced all soft supersymmetry breaking mass terms including the Higgs
boson mass by MSUSY.

Eq. (3.19) shows that in supersymmetric models the electroweak scale is calculable
in terms of the known coupling constants and the (unknown) scales MSUSY and ΛNew.
For a natural solution to the hierarchy problem of the electroweak scale MSUSY has to
be low, say MSUSY

<∼ O(10)MW . However, a new very difficult question appears about
the hierarchy ΛNew/MSUSY. This is the question about the mechanism of supersymmetry
breaking. In gravity mediation scenarios ΛNew ∼ MPl. In gauge mediation scenarios
ΛNew is low but it is a new, introduced by hand, scale.

Other ideas for solving the hierarchy problem of the electroweak scale are more “prag-
matic”. Focusing on the scenarios with some predictive power, their general structure is
the following: the low energy electroweak theory (but not necessarily the renormalizable
SM) is embedded in a bigger one with a characteristic mass scale ΛSM ∼ M ∼ O(1 TeV).
The new physics is under perturbative control up to its cut-off ΛNew

>∼ O(10 TeV), high
enough to avoid any conflict with precision electroweak data (to be discussed later). For
such scenarios with ΛNew

>∼ O(10 TeV) to be useful for solving the electroweak hierar-
chy problem the dependence of δm2 on ΛNew calculated in the extended theory has to be
weak enough. This is obtained by ensuring that at least 1-loop contribution to the effective
potential (3.15) have no quadratic dependence on ΛNew:

(δm2)1−loop = 0 · Λ2
New +O(ln ΛNew) + const. (3.20)

E.g. in the Little Higgs models the vanishing of the c2 in STrM2(φ) in eq. (3.16) is
ensured by cancellation between contributions from particles of the same statistics. Such
models predict the existence of new quark-like fermions and gauge bosons with masses
∼ M . In these models, the quadratic dependence of δm2 on ΛNew is present in higher
order of the perturbation expansion but it is suppressed by loop factors. The tree level
Higgs mass parameter m2 usually vanishes m2(M)tree = 0 as e.g. the Higgs boson
is a Goldstone boson of some bigger (approximate) symmetry spontaneously broken at
the scale M , i.e. M is identified with the “decay constant” and ΛNew ∼ 4πM . The
electroweak symmetry is broken by quantum corrections. The electroweak scale is then
predicted e.g. MW = MW (couplings,M, ΛNew) with a mild dependence on ΛNew

>∼
O(10 TeV) at which new unknown strong interactions set on. The crucial role is played
by the new physics parameter M . In judging the plausibility of such ideas it is worth
remembering our remarks in 3.1.

3.5. NEW LOW MASS SCALE AND PRECISION ELECTROWEAK DATA

The presence of new physics at low energy scale, M ∼ 1 TeV raises the question on
its contribution to the electroweak observables. We can address this question in a model
independent way if again we assume the Appelquist-Carazzone decoupling scenario, i.e.
renormalizable SM and corrections to it from new physics as higher dimension operators:

Leff = LSM +
∑

Ôn+4
i

ci

Mn
Ôn+4

i . (3.21)

This time we are interested in operators which contribute to the electroweak observables.
Such operators are necessarily of dimension n ≥ 6. One can classify various contributions
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from new physics according to the value of the coefficients ci in the Lagrangian (3.21):
ci ∼ O(1) for new tree-level contributions or contributions from new strong interacting
sector; ci ∼ O(1/16π2) for contributions from perturbative new physics at 1-loop. Fitting
the electroweak observables one obtains limits on ci

M2 . Strictly speaking, the limits are
applicable to new physics which gives renormalizable SM as its low energy limit but the
results are also indicative for new mass scales in models like e.g. Little Higgs, in which
the Appelquist-Carazzone decoupling does not work. In any case, the constraints on such
models from the electroweak observables can be discussed model by model.

The task of using electroweak data to put limits on the new scale M is greatly facil-
itated by the expectation that the dominant corrections from new physics will show up
as corrections to the gauge boson self-energies (the so-called oblique corrections). This
expectation is based on the experience gained in the SM and with its various hypothetical
extensions. Several authors have obtained limits on the scale M under plausible assump-
tion that the main corrections to the SM fits appear in gauge boson self-energies

A comment is in order here. Gauge boson self-energies are not gauge invariant ob-
jects. The vertex and box contributions contain also pieces which are independent of the
external legs. They cancel the gauge dependence of the full gauge boson self-energies and
restore Ward-identity. Therefore, strictly speaking, there is an ambiguity in extracting the
gauge boson self energies from fits to experimental data. Fortunately, the vertex and box
contributions are in the SM in the commonly used gauges much smaller than the gauge
boson self energies and the neglection of gauge dependence of the latters in obtaining
experimental information about their magnitude seems to be a reasonable approach.

In the SM, with unbroken electromagnetic U(1) gauge symmetry there are four inde-
pendent gauge boson self-energies Πij(q2):∫

d4x e−iq·x〈Jµ
i (x)Jν

j (0)〉 = igµνΠij(q2) + qµqν term (3.22)

For instance, we can take Πγγ , Π3γ , Π33 and Π11 as independent quantities (i = 1, 3
are SU(2)L indices; the QED Ward identity implies Π11(q2) = Π22(q2). In the limit of
q2 �M2 we can expand

Πγγ(q2) ≈ q2Π′
γγ(0)

Π3γ(q2) ≈ q2Π′
3γ(0)

Π33(q2) ≈ Π33(0) + q2Π′
33(0) (3.23)

Π11(q2) ≈ Π11(0) + q2Π′
11(0)

(Πγγ(0) = 0 by QED Ward identity; the only non-zero contribution to Π3γ(0) comes
from the W±-charged Goldston boson loop). Thus, oblique corrections to the electroweak
observables are to a good approximation parametrized by six constants. Three of them (or
three linear combinations) are fixed in terms of α, MZ and GF by the renormalization
procedure. In the remaining three combinations the UV divergences must cancel.3 One

3The finitness of the gauge sector contribution to S, T and U requires the inclusion of the terms
with Π3γ(0).
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usually defines [6, 7]

αT ≡ e2

s2c2M2
Z

[Π11(0)−Π33(0)] =
ΠWW (0)

M2
W

− ΠZZ(0)
M2

Z

αS ≡ 4e2
[
Π′

33(0)−Π′
3γ(0)

] ∝ Π′
3Y (0) (3.24)

αU ≡ 4e2 [Π′
11(0)−Π′

33(0)]

It is clear from their definition that the parameters S, T and U have important symmetry
properties: T and U vanish in the limit of unbroken custodial SU(2)V symmetry. The
parameter S vanishes when SU(2)L is unbroken; unbroken SU(2)V is not sufficient for
vanishing of S because S ∝ Π′

3Y (0) = Π′
3L,3R(0) + Π′

3L,B−L (the decomposition is
labelled by the SU(2)L×SU(2)R×U(1)B−L quantum numbers) and 3L×3R = 1+5
under SU(2)V .

It turns out that in the SM the quantum corrections to the ρ parameter defined in sec-
tion 2 as a ratio of physical (and measured) observables are to a very good approximation
given by αT :

∆ρ ≡ ρ− 1 =
MW

MZ cos θ
− 1 ≈ αT (3.25)

and, according to the eq. (2.18), depend quadratically on the top quark mass and logarith-
mically on the SM Higgs boson mass. Eq. (3.25) is a good approximation because other
corrections to ρ (vertex corrections) are in the SM negligibly small. Similarly, in the SM

αS =
e2

48π2

(
−2 ln

m2
t

M2
Z

+ ln
M2

h

M2
Z

)
. (3.26)

It was discussed in section 2.3 that the SM quantum corrections agree excellently with
electroweak data. The only free parameter in the fits of the SM to these data is the Higgs
boson mass. The main part of this dependence enters through the ρ parameter and the
data favour negligible contribution to ρ from ln(Mh/MW ) (see eq. (2.18)). The fits give
Mh ≈ O(100 GeV), with a big error since the dependence of the fits on the Higgs boson
mass is only logarithmic. Such fits determine the values of parameters SSM , TSM and
USM for the best fitted value of Mh.

We can discuss the room for new physics contribution to the electroweak fits by writ-
ing more generally:

T = TSM (Mh) + ∆T ,

S = SSM (Mh) + ∆S , (3.27)

U = USM (Mh) + ∆U ,

where TSM (Mh) etc. is the SM contribution for some fixed value of the Higgs boson
mass.

A fit to the data gives now some values for ∆T , ∆S and ∆U as a function of the
assumed value of Mh and shows how much room we have for new physics for different
values of Mh. It is clear that for, say, Mh = 115 GeV such fits give ∆T , ∆S and ∆U
consistent with zero and the only room for new physics is in the errors of the fitted values
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of these quantities. For larger values of Mh we have more room for new physics contribu-
tions. As we can see from eqs. (2.18) and (3.26) it must be positive to T and negative to S
to balance the contribution of the larger Higgs boson mass. The fitted values of ∆T , ∆S
and ∆U for different values of Mh give limits on the coefficients ci/M of the dimension
six operators that contribute to ∆T , ∆S and ∆U .

Several interesting conclusions have been reached in such studies [8]. First of all,
independently of the assumed value of Mh, for ci ∼ O(1) the fits to the electroweak
data give a lower limit M >∼ O(4 TeV) This limit is reached only for very correlated
signs of the coefficients ci. Thus, qualitatively speaking, any new physics with M <∼
O(10 TeV) must be perturbative and cannot contribute at the tree level to be consistent
with electroweak data. This strongly suggests a perturbative solution to the hierarchy
problem.

Secondly, if new physics is indeed perturbative and shows up only at loop level, then
the fits give Mh

<∼ 240 GeV independently of the value of the scale M .
Finally, if Mh

>∼ 300 GeV then new physics with the scale M ∼ 10÷30 TeV and with
ci ∼ O(1) (i.e. strongly interacting) is actually needed! Thus, experimental discovery of
the Higgs boson and the determination of its mass will be a strong hint about the kind of
new physics one may expect.

4. Supersymmetric extensions of the Standard Model

In the rest of these lectures we discuss supersymmetric models as at present the most
complete theoretical framework going beyond the Standard Model [9]. It has quite a few
attractive features and also a number of difficulties, so that the full success of the SM is not
automaticaaly recovered. We have already mentioned some of them in several places in
these lectures but here we collect them together and extend our discussion. We shall not
discuss one fundamental unresolved issue for supersymmetry which is the mechanism
of spontaneous supersymmetry breaking and its transmission to the the SM sector. On
the phenomenological side, the related problem is that of new and potentially dangerous
sources in the soft supersymmetry breaking parameters of the FCNC and CP violating
transitions. For a review of all these aspects of supersymmetric and supergravity models
see e.g. [10, 11, 12].

4.1. PRECISION ELECTROWEAK DATA

As discussed in section 3.4 supersymmetric models like the Minimal Supersymmetric
Standard Model (MSSM) or its simple extensions satisfy a very important criterion of
calculability. Most of the structure of the Standard Model is built into them, so the renor-
malizable Standard Model is their low energy approximation. Supersymmetric models are
easily consistent [14] with the electroweak data since the supersymmetric quantum cor-
rections to the Standard Model fits are suppressed by powers of the mass scale MSUSY of
supersymmetric particles and for MSUSY > O(500) GeV are well below experimental
errors (in particular, the custodial symmetry breaking by the sfermion masses is suffi-
ciently suppressed). Thus, the predictive power of the Standard Model remains intact and
its success is not accidental.
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4.2. THE ELECTROWEAK SYMMETRY BREAKING

Supersymmetric models solve the hierarchy problem of the electroweak scale. In the limit
of unbroken supersymmetry the quadratically divergent quantum corrections to the Higgs
mass parameter are absent in any order of perturbation theory. When supersymmetry is
softly broken by a mass scale M , the superpartners get their masses from the electroweak
breaking and from the supersymmetry breaking mass terms ∼ M . They decouple at en-
ergies smaller than M and the quadratically divergent Standard Model contribution to the
Higgs mass parameter is cut-off by M and, therefore, depends quadratically on M. Thus,
the hierarchy problem of the electroweak scale disappears if M <∼ O(1) TeV. The cut-off
to a supersymmetric theory can be as high as the Planck scale and “small” scale of the
electroweak symmetry breaking is still natural.

The electroweak symmetry breaking may be triggered by radiative corrections to the
Higgs potential:

(δm2
H2

)1−loop ∼ −O(0.1) M2 ln
Λ
M

(4.1)

This formula follows from eq. (3.19). If we assume that m2
0 ∼ M2, i.e. that the tree level

Higgs mass parameter is approximately equal to the soft supersymmetry breaking scale
the radiative electroweak symmetry breaking ((m2

H2
)1−loop < 0) is triggered by the large

top quark Yukawa coupling, hidden in the numerical factors of eq. (4.1). With the Higgs
boson self-interactions fixed by the gauge couplings of the Standard Model

λφ4 → g2φ4 (4.2)

one obtains the correct prediction for the electroweak scale for Λ ∼ MGUT, P l. This
nicely fits with unification of the gauge couplings.

4.3. THE MASS OF THE LIGHTEST HIGGS BOSON

Supersymmetric models typically restrict the couplings in the Higgs potential and give
strong upper bounds on the mass of the lightest Higgs particle [13]. In the minimal model
the Higgs boson self-coupling comes from the D-terms and its self-coupling is the gauge
coupling, eq.(4.2). Therefore, at the tree level

MHiggs < MZ ≈ 91 GeV (4.3)

There are large quantum corrections to this result. They depend quadratically on the top
quark mass and logarithmically on the stop mass scale Mt̃ ∼ MSUSY:

M2
Higgs = λv2 (4.4)

where λ is given by

λ =
1
8
(g2

2 + g2
1) cos2 2β + ∆λ , with ∆λ =

3g2
2

8π2

m4
t

v2M2
W

ln
M2

t̃

m2
t

. (4.5)

The present experimental limit MHiggs > 114 GeV requires Mt̃
>∼ 500 GeV and for

Mt̃ < 1 TeV, MHiggs < 130 GeV. The closer the Higgs mass would be to the present
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experimental limit, the better it would be for the “naturalness” of the electroweak scale.
Clearly, in the MSSM, the tunning in the Higgs potential depends exponentially on the
Higgs mass and one may eventually have some tension here (see eqs. (4.5), (3.19)).

One can depart from the minimal model and relax the bound on the Higgs mass. For
instance, with an additional chiral superfield which is a Standard Model singlet, one may
couple the singlet to the Higgs doublets and get additional contributions to the Higgs self-
coupling. Explicit calculations show that in such and other models, with M <∼ 1 TeV, the
bound on the Higgs mass cannot be raised above ∼ 150 GeV if one wants to preserve
perturbative gauge coupling unification.

4.4. GAUGE COUPLING UNIFICATION

It is well known [15] that in the framework of the MSSM with degenerate sparticle spec-
trum characterized by MSUSY ≈ 1 TeV the three experimentally measured gauge cou-
plings unify with high precision at the scale MGUT ∼ 1016 GeV. This gives support to
perturbative new physics at O(1 TeV). Supersymmetry and the idea of grand unification
(see section 3.2) mutually strengthen their attractiveness.

A closer look at the unification is interesting. One may ask how precise is the unifi-
cation when the superpartner masses are not degenerate and different from 1 TeV. It has
been understood that even for nondegenerate superpartner spectrum the superpartner mass
dependence of the RG evolution of the gauge couplings can be described to a very good
approximation by a single effective parameter T . The superparticle threshold effects are
correctly included in the supersymmetric 1-loop RGE whose running starts at T , with the
SM RG equations used below the scale T . For consistency, 2-loop running should also be
included.

T depends strongly on the higgsino (µ) and gaugino (Mi) mass parameters and much
weaker on the sfermion masses. Exact unification of the measured gauge couplings re-
quires T ≈ 1 TeV, i.e. the higgsino and the gaugino physical masses ∼ 1 TeV if degen-
erate. However, a more plausible assumption that the parameters µ and Mi are approxi-
mately degenerate and ∼ 1 TeV at the GUT scale gives T ≈ 100 GeV because of strong
renormalization effects. Thus, a realistic spectrum does not give exact unification and one
may wonder about the accuracy of unification in the MSSM.

In order to define what we understand by ’successful unification’ let us first recall the
one-loop renormalization group equations in the SM and MSSM. At one-loop the gauge
couplings α̃i of the three group factors of GSM run according to the equations:

1
α̃i(Q)

=
1

α̃i(MZ)
− b

(i)
0

2π
ln
(

Q

MZ

)
+ δi (4.6)

Here, 1/α̃i(MZ) = (58.98 ± 0.04, 29.57 ± 0.03, 8.40 ± 0.14) are the experimental
values of the gauge couplings at the Z0-pole and b

(i)
0 are the one-loop coefficients of the

relevant beta-functions. They read b0 = ( 1
10 + 4

3Ng,− 43
6 + 4

3Ng,−11 + 4
3Ng) in the SM

and b0 = (3
5 + 2Ng,−5 + 2Ng,−9 + 2Ng) in the MSSM, where Ng is the number of

generations. Threshold corrections (e.g. from heavy GUT gauge bosons) are represented
by the parameters δi. As explained earlier using the MSSM RG equations directly from



224 STEFAN POKORSKI

the electroweak scale for T ≈ MZ means that the supersymmetric threshold corrections
corresponding to a realistic mass spectrum are properly included.

In the bottom-up approach one can speak about the gauge coupling unification if in
some range of scales Q the couplings defined by eq. (4.6) with, in general, Q-dependent
δi(Q) can take a common value αi(Q) = αGUT for reasonably small values of δi(Q)
(compared to α−1

GUT).4 The condition for the unification can be succintly written as

εijk

(
1

α̃i(MZ)
+ δi

)
(b(j)

0 − b
(k)
0 ) = 0 (4.7)

Putting in the experimental values for αi(MZ) and the beta-function coefficients we get:

−41.1 + 3.8δ1 − 11.1δ2 + 7.3δ3 = 0 (SM)
−0.9 + 4δ1 − 9.6δ2 + 5.6δ3 = 0 (MSSM) (4.8)

We see, that to achieve the gauge coupling unification at the one-loop level we need
the threshold corrections δi to be of order 10% α−1

GUT in the SM, while in the MSSM we
need only δi ∼1% α−1

GUT. In the MSSM once the two loop effects are inluded one needs
δi’s by factor 2 larger. The unification of the gauge cuplings in the MSSM is indeed very
precise: it admits (and requires) only 2% threshold corrections from the GUT physics.
These 2% corrections give 10% effect on αs at MZ scale, but the precision of unification
in the MSSM should be judged by the necessary for exact unification threshold corrections
at the GUT scale.

Unification of the gauge couplings does not necessarily imply the standard GUT theo-
ries with all their problems, like spontaneous breaking of the GUT gauge group by VEVs
of some Higgs fields, the doublet-triplet splitting problem, etc. Many different solutions
have been proposed.

With the threshold corrections of the right order of magnitude, the unification scale
can be estimated from the equation:

1
α1(MZ)

− 1
α2(MZ)

− 1
2π

(b(1)
0 − b

(2)
0 ) ln

(
MGUT

MZ

)
+ (δ1 − δ2) = 0 (4.9)

For the sake of concreteness, we assume here that δ1 = δ2 = 0 and that all threshold
corrections are accounted for by δ3 (thus, the unification point is assumed to be where α1

and α2 intersect). Putting in the experimental numbers and the beta-function coefficients
we get MGUT ≈ 1× 1013 GeV in the SM and MGUT ≈ 2× 1016 GeV in the MSSM.

The scale of unification in the MSSM is determined very precisely to be in the range
(2 ÷ 4) × 1016 GeV. This is interesting because it is very close to the reduced Planck
scale MPl = 2× 1018 GeV and could be considered as evidence for unification including
gravity.5 But one to two orders of magnitude difference between the two scales needs
some explanation. Of course, new particles in incomplete SU(5) representations would

4Whether there exists a unified model able to provide such values of δi(Q)’s is a different
question.

5In string theories without the stage of Grand Unification below the compactification scale MS

the couplings unify at MS which e.g. in weakly coupled heterotic string is about factor 5 below
MPl.
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alter the running and could push the unification scale closer to the Planck scale. However,
one must not destroy the precision of the unification by new threshold corrections, so
this possibility looks very fine-tuned and ad hoc. An interesting possibility would be to
unify the three gauge interactions with gravity at MGUT ∼ 1016 GeV by changing the
energy dependence of the gravity coupling. This is possible if gravitational interactions
(and only they) live in more than 3 spatial dimentions. The effective four-dimensional
Planck constant is then

M2
Pl = M2+n

Pl (4+n)R
n , (4.10)

where n is the number of extra dimensions, R is their compactification radius and M2+n
Pl (4+n)

is the Planck scale in 4 + n dimensions which we would like to take equal to MGUT ∼
1016 GeV. For n = 1 (like in the M -theory of Horava and Witten) we get 1/R ∼
1014 GeV.

4.5. PROTON DECAY

In the SM the baryon number is (perturbatively) conserved since there are no renormaliz-
able couplings violating this symmetry (see section. 2.5). Experimental search for proton
decay, e.g p→ e+π0, p→ K+ν is one of the most fundamental tasks for particle physics.
The present limit is τp > 1033 years. If the SM is only an effective low energy theory the
remnants of new physics should show up as non-renormalizable corrections to the SM.
The lowest dimension operators for the proton decay (with the particle spectrum of the
SM) is the set of dimension 6 operators of the form

Ô
(6)
i =

c
(6)
i

M2
(6)

qqql (4.11)

For such operators for the proton lifetime we get

1
τp

=
[c(6)

i ]2

16π

m5
p

M4
(6)

The limit τp > 1033 years gives then M(6) >

√
c
(6)
i × 1016 GeV (this is only a very

rough estimate which neglects strong interaction effects). Any new physics with lower
mass scale that could lead to proton decay should be coupled with c

(6)
i � 1. For instance,

for c
(6)
i ∼ αGUT ≈ 1/25 we get M(6)

>∼ ×1015 GeV which is still too high for the SM
unification (MGUT ≈ 1013 GeV).

In supersymmetric extensions of the SM, with softly broken low energy supersymme-
try there are low mass scalars in the spectrum with masses M ∼ O(1 TeV), which may
have renormalizable couplings to quarks and leptons.

Indeed, the most general renormalizable superpotential in the minimal supersymmet-
ric model is

w = Û cQ̂Ĥu + D̂cQ̂Ĥd + ÊcL̂Ĥd + ĤdĤu

+D̂cQ̂L̂ + ÊcL̂L̂ + Û cD̂cD̂c + L̂Ĥu , (4.12)
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(the coupling constants and the flavour indices are suppressed). The second line is also
consistent with the SM gauge symmetry but these interactions do not conserve baryon and
lepton numbers and give renormalizble couplings of scalars to fermions. After integrating
the scalars out one gets dimension 6 operators as in (4.11) with M(6) ∼ MSUSY from
diagrams shown in Fig. 10 and to be consistent with the limit on the proton lifetime we

l dc

q uc

λ1 λ2

d̃c

−→ c(6)

M2
(6)

ūcd̄cql

Figure 10. Diagram generating the dimension 6 operator.

need c(6) = λ1λ2 < 10−26.
One can forbid the terms in the second line of eq. (4.12) by imposing a discrete sym-

metry, the so-called matter parity Rp = (−1)3(B−L). Such a symmetry could for instance,
be a discrete remnant of the gauged U(1)B−L in the SO(10) theory [17]. Matter parity is
equivalent to R-parity R = (−1)2S+3(B−L) acting on the component fields, where S is
their spin, since Lorentz-invariant interactions preserve (−1)2S . We get then a stable LSP
- candidate for dark matter in the Universe.

In supersymmetric GUT models, even with R−parity imposed, there is still another
source of dangerous contributions to the proton decay amplitudes. These are the dimen-
sion 5 operators

Ô
(5)
i =

c
(5)
i

M2
(5)

qqq̃l̃ (4.13)

which when inserted into one loop diagrams with gaugino exchanges give rise via di-
agrams shown in Fig. 11 to dimension 6 operators. In the effective dimension 6 oper-

× W̃

l̃

q̃

q

q

Figure 11. Loop diagram generating the dimension 6 operator form the dimension 5 operator.
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ator of the form (4.11) one then gets c(6) = αGUTc(5), M2
(6) = M(5)MSUSY. From

τp > 1033 years and for MSUSY ∼ O(1 TeV), M(5) ∼ MGUT ∼ 1016 GeV, one gets
c(5) <∼ 10−7. Thus we need small couplings in the amplitudes generating the dimen-
sion 5 operators. In SUSY GUT’s dimension 5 operators originate from the exchange
of the colour triplet scalars present in the Higgs boson GUT multiplets as shown in
Fig. 12, so c(5) ∼ Y 2 (Yukawa couplings for the quarks of the first two generations)

×

q q

Hc Hc

q̃ l̃

MHc

Figure 12. Diagram generating the dimension 5 operator for proton decay.

and M(5) ∼MHc
∼MGUT.

Given various uncertainties, e.g. in the unknown squark, gaugino and heavy Higgs
boson mass spectrum, such contributions in supersymmetric GUT models are marginally
consistent with the experimental limits on the proton lifetime, particularly in models
more complicated than the minimal supersymmetric SU(5) model. Concrete classical
GUT models are, however, not very attractive and plagued with various problems like
e.g. doublet-triplet splitting problem for the Higgs boson multiplets. There are several in-
teresting other ideas like unification in (small) extra dimensions or in string theory [18],
which offer the possibility of avoiding those difficulties and simultaneously preserving
the attractive features of GUT’s. In some of such models proton is stable or its lifetime
makes its decays unobservable experimentally. An interesting question is: what if proton
after all decays but slow enough to rule out classical GUT models?

5. Summary

Thinking about new physics from the perspective of the extremely succesful Standard
Model is very challenging. At present there is no approach that fully and convincingly
incorporates this succes into its structure. Focusing on the electroweak symmetry breaking
alone, one may wonder if the high predictive power of the renormalizable SM for the
electroweak observables and its perfect agreement with experimental data is significant
or partly accidental. If significant - it supports supersymmetry; if partly accidental - we
have more room for various speculations about the mechanism of electroweak symmetry
breaking. Experiments are needed to put us on the right track, and hopefully, experiments
at the LHC will give us the necessary insight.
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INTRODUCTION TO COSMIC F- AND D-STRINGS

JOSEPH POLCHINSKI
KITP, University of California, Santa Barbara, CA USA

Abstract. In these lectures I discuss the possibility that superstrings of cosmic length
might exist and be observable. I first review the original idea of cosmic strings arising
as gauge theory solitons, and discuss in particular their network properties and the ob-
servational bounds that rule out cosmic strings as the principal origin of structure in our
universe. I then consider cosmic superstrings, including the ‘fundamental’ F-strings and
also D-strings and strings arising from wrapped branes. I discuss the conditions under
which these will exist and be observable, and ways in which different kinds of string
might be distinguished. We will see that each of these issues is model-dependent, but that
some of the simplest models of inflation in string theory do lead to cosmic superstrings.
Moreover, these could be the first objects seen in gravitational wave astronomy, and might
have distinctive network properties.

1. Introduction

Seeing superstrings of cosmic size would be a spectacular way to verify string theory.
Witten considered this possibility in the context of perturbative string theory, and found
that it was excluded for several reasons [1]. Perturbative strings have a tension close to
the Planck scale, and so would produce inhomogeneities in the cosmic microwave back-
ground far larger than observed. The scale of this tension also exceeds the upper bound on
the energy scale of the inflationary vacuum, and so it would have been difficult to produce
these strings after inflation, while any strings produced earlier would have been diluted
beyond observation. Ref. [1] also identified instabilities that would prevent long strings
from surviving on cosmic time scales.

In recent years we have understood that there are much more general possibilities for
the geometry of the compact dimensions of string theory, including localized branes, and
this allows the string tension to be much lower, anything between the Planck scale and
the weak scale. Also, we have found new kinds of extended object in string theory. Thus
the question of cosmic superstrings (and branes) must be revisited, and this has been done
beginning in [2, 3]. A necessary set of conditions is:

1. The strings must be produced after inflation.
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2. They must be stable on cosmological timescales.
3. They must be observable in some way, but not already excluded.

Ref. [1] thus showed that perturbative strings fail on all three counts. If we do find models
that satisfy these three conditions then there is one more condition that we would hope to
satisfy:

4. Cosmic superstrings should be distinguishable from other kinds of cosmic string, in
particular gauge theory solitons.

We will see that each of these four issues is separately model-dependent but that some
fortuitous things do happen, and there are simple models in which all these conditions are
met, including some of the most fully-developed models of inflation in string theory.

These lectures give a pedagogical introduction to this subject. Section 2 reviews the
story of cosmic strings that arise as gauge theory solitons. I discuss the network proper-
ties of these strings, and their observational signatures and bounds. Section 3 discusses
the cosmic string candidates in various compactifications of superstring theory. Sections 4
through 7 go through each of the conditions on the list above, explaining the issues and
their dependence on the details of the compactification. Section 8 presents brief conclu-
sions.

The outline of these lectures (and some of the prose!) follows [4], but the treatment is
more detailed and pedagogical.

2. Cosmic string review

2.1. STRING SOLITONS

Cosmic strings might also arise as solitons in a grand unified gauge theory, and for some
time these were a candidate for the source of the inhomogeneities that led to the structure
in our universe. I start with a review of this subject, since almost all of the ideas and results
carry over to superstrings. A complete treatment of this subject would require at least a
full volume, and the interested reader is directed to the book by Vilenkin and Shellard [5]
and the review by Hindmarsh and Kibble [6]; for a recent look at the subject see [7]. I will
have space only to give an overview of the most important ideas.

In any field theory with a broken U(1) symmetry, there will be classical solutions that
are extended in one dimension [8, 9].1 Consider the standard symmetry-breaking potential
for a complex scalar field,

V (Φ) = λ(|Φ|2 − v2)2 . (2.1)

This has a ring of degenerate minima, Φ = veiψ for any phase ψ. Suppose we have a
configuration in two space dimensions such that the potential energy is nonzero only in a
localized region, falling off rapidly at infinity. At sufficiently large radius R the field must
then be approximately at a minimum of the potential, but possibly a different minimum
in different directions:

Φ(R, θ) ≈ veiψ(θ) . (2.2)

1I will make a more precise statement, in terms of homotopy groups, in section 4.
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As we circle the origin at long distance, the phase ψ(θ) must make some integer number
n of circuits of the ring of minima. This winding number is conserved in time because it
is determined by the topology of the field at arbitrarily long distance.

Thus there is a conserved topological quantum number, and the minimum energy
configuration in each sector is a stable topological soliton. By continuity, whenever the
winding number n is nonzero the field must somewhere pass through zero, so a nonzero
winding number implies that there must be a nontrivial ‘lump’ of potential energy. The
size of this core region is set by the Higgs mass mH ∼ a

√
λ. Quantum corrections shift

the minimum energy in each sector, but do not destabilize the soliton unless they actually
restore the U(1) symmetry. Assuming rotational symmetry gives the form

Φ(r, θ) = f(r)einθ , f(0) = 0 , f(∞) → v . (2.3)

We can add in the third dimension simply by extending the polar coordinates to cylindrical
coordinates (r, θ, z) with the field independent of z, so that the lump becomes a long
straight string.

The broken U(1) can be either a global or a gauge symmetry. In the global case the
Hamiltonian density at long distance is

H = |Π|2 + |�∂Φ|2 + V (Φ) → v2n2

r2
, r →∞ , (2.4)

because the gradient of Φ falls as 1/r. The string tension,
∫

dr 2πrH, is logarithmically
divergent at long distance. Nevertheless these solutions are of interest. For example, for
two oppositely oriented straight strings separated by a distance L, the divergence is cut
off at L. This configuration is topologically trivial and unstable to annihilation of the
long strings, but the force between them falls as 1/R so in fact the strings can be quite
long-lived.

When the U(1) is gauged, the gradient in the covariant derivative �DΦ = �∂Φ − i �AΦ
can be cancelled by an appropriate gauge field,

�A(r, θ) = θ̂g(r) , g(0) = 0 , g(∞) → n

r
. (2.5)

The energy is then finite. The core of the gauge string contains a magnetic flux∫
F =

∮
C

A = 2πn , (2.6)

where C is a large circle around the origin. Most of the literature on cosmic strings deals
with gauge strings. Most of the superstrings that we will encounter will indeed be analo-
gous to gauge strings, and so this is what we assume in the discussion of network proper-
ties and signatures below, but we will see that there is also a possibility of global strings.

2.2. FORMATION OF STRINGS

These classical string solutions exist whenever there is a broken U(1) symmetry, and
whenever a U(1) symmetry becomes broken during the evolution of the universe a net-
work of strings must actually form. Such a symmetry-breaking transition can occur as a
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result either of coupling to a time-dependent scalar field or of thermal effects. In the first
case the potential for Φ might be of the form

V (Φ) = λ(|Φ|2 − gχ)2 (2.7)

with χ a scalar field that is slowly rolling from negative values, for which the potential
is minimized at Φ = 0, to positive values, where the symmetry is broken. In the thermal
case, the vacuum is found by minimizing the free energy E − TS. The entropy is usu-
ally larger in the unbroken phase, because it has a greater number of massless degrees of
freedom. Thus the unbroken phase might be favored at high temperature and then the sym-
metry break as the universe cools and we approach the zero-temperature potential (2.1).

The Higgs field Φ thus starts at zero, and then when the symmetry breaks it rolls
down to one of the vacua. However, it will not role in the same direction everywhere: by
causality, it cannot be correlated on distances greater than the horizon scale. In practice,
the correlation length is usually less than this, determined by the intrinsic length scales
of the field theory. Thus it chooses random directions in different places, and inevitably
there will be some trapped winding, so that strings are left over at the end. This is the
Kibble argument [10], and indeed it is what simulations show. A fraction of the string is
in the form of finite sized loops, and a fraction is in the form of infinite strings; the latter
enter and leave the boundaries of the simulation volume no matter how large this is taken
to be. These populations are cleanly separated because the distribution of lengths of finite
loops falls rapidly for long loops, giving a convergent integral for the total amount of
string in loops. Presumably the existence of the infinite strings is implied by the causality
argument. They are important because they begin to stretch with the expansion of the
universe, while the small loops quickly decay away.

2.3. EVOLUTION OF STRING NETWORKS

To get some understanding of the evolution of the string networks, let us first make the
crude assumption that the string network just expands along with the growth of the uni-
verse. If we look at a given comoving region, the length of string within, and therefore the
total energy, grows as the scale factor a(t). The comoving volume scales as a(t)3, so the
energy density ρs scales as a(t)−2. This would dominate over matter, ρm ∝ a(t)−3, and
radiation, ρr ∝ a(t)−4.

However, there are several processes that reduce the string energy density relative to
this estimate:2

1. The long strings, which form as random walks, expand uniformly only on scales
greater than the horizon length t. On shorter scales they tend to straighten over time.

2. When two strings collide they can either pass through each other or they can re-
connect (intercommute), as in Fig. 1. For gauge theory solitons, the value of P is
essentially 1. In an adiabatic collision, gauge theory strings always reconnect, P = 1,

2For reasons of space I will focus on strings whose only long-distance interactions are gravi-
tational. Global strings would also have a long-ranged Goldstone boson field, and could decay via
Goldstone boson emission. There are also superconducting strings [11], which have strong cou-
plings to gauge fields. These are perhaps less likely to arise in the superstring case, for reasons that
I will explain.
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prob. P prob. 1−P

Figure 1. When two strings of the same type collide, they either reconnect, with probability P , or
pass through each other, with probability 1 − P . For classical solitons the process is deterministic,
and P = 1 for the velocities relevant to the string network. When the strings reconnect, a sharp
kink is left on each new string, and each of these separates into a right-moving and a left-moving
kink: the result is four kinks, as shown.

because reconnection allows the flux in the string core to take an energetically favor-
able shortcut. Simulations show that this remains true at the moderately relativistic
velocities that are present in string networks [12, 13, 14].3

(a) When a long string intersects itself, a loop breaks off. Loops on scales shorter
than the horizon do not expand and so behave like massive matter.

(b) When two different long strings reconnect they produce two long kinked strings.
The kinks tend to straighten in time, as in point 1, which reduces the total string
length. (This effect is not enough to produce a scaling solution without also
closed loop formation from self-intersection).

3. The closed loops eventually decay through gravitational radiation.

Simulations show that these processes act with the maximum efficiency allowed by
causality, so that the appearance of the string network at any time looks the same when
viewed at the horizon scale t, with a few dozen strings spanning the horizon volume and
a gas of loops of various sizes [15, 16, 17], as in Fig. 2. This is known as the scaling
solution. The scaling solution is an attractor: if we start with too much string, the higher
collision rate will reduce it, while if we start with too little then there will be few colli-
sions until the amount of string per horizon volume (which is increasing relative to the
comoving volume) approaches the scaling value. Thus the details of the initial distribution
do not matter, as long as there are some infinite strings.

The total length of string within a horizon is then a numerical constant times t, and
the horizon volume is t3, so the energy density ρs is a constant times µt−2, where µ is
the string tension. The scale factor is proportional to t1/2 in the radiation-dominated era
and t2/3 in the matter dominated era, so it works out that the ratio of the string energy
density to the dominant energy density in each era is a constant. The simulations show
that ρs/ρm ∼ 60Gµ during the matter-dominated era and ρs/ρr ∼ 400Gµ during the
radiation dominated era. This is our first encounter with the dimensionless combination
Gµ, about which we will have much more to say, but for now we just assert that we
are interested in values of Gµ less than 10−6. The strings would thus be a small but fixed
fraction of the total density. In particular, it would take some very exotic network scenario
for strings to be the dark matter.

3Cosmic strings move at moderately relativistic speeds. In flat spacetime the virial theorem
implies that v2 has a mean value of 1

2
; this is somewhat reduced by the expansion of the universe.
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Figure 2. Cosmic string simulation. A side of the cube is around a third of the horizon length.
Strings that appear to end are just leaving the simulation volume. From Allen and Shellard [17].

The horizon distance, approximately t, sets the overall scale of the string network, but
there are important features on smaller length scales. In particular, there is a lower cutoff
on the size of loops, coming from their decay via gravitational radiation. Dimensionally,
the gravitational wave power emitted by a loop of size l is Gµ2. Equating the loop mass
µl to the power times t determines the typical lifetime for a loop of size l; equivalently it
determines the size l, as a function of the time t, below which the decay becomes rapid.
Inserting the constants from a more careful treatment, the result is

l ∼ 50Gµt . (2.8)

Taking Gµ = 10−9, which will turn out to be a typical value, gives l ∼ 500 lightyears
today. Thus there is large hierarchy of scales in the network.

Another important property of the network is the existence of a kinked structure at
short distance [16]. We have noted that reconnection of loops produces kinks. As t in-
creases the number of kinks per horizon length necessarily increases, and this effect is
stronger than the tendency of the kinks to straighten as the string stretches. The study of
this structure in simulations is limited by the resolution of the simulations, but it has gen-
erally been assumed that it is cut off by gravitational radiation at the same scale (2.8) (see
however [18]). The short distance structure is important because the simulations indicate
that it determines the typical size of the loops that break off the infinite strings.

In summary, we should note that the behavior of string networks is challenging to un-
derstand in detail: the large ratio of scales makes numerical simulation difficult, and while
there exist various analytic models, the problem is very nonlinear and existing models
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only capture part of the physics. If cosmic strings are ever detected, it will become impor-
tant to work toward a much more precise understanding.

Finally, it is interesting to contrast the properties of one-dimensional defects with
those of two-dimensional and zero-dimensional defects. If a network of domain walls
forms and subsequently annihilates to the maximum extent allowed by causality, then the
typical spacing between walls will be of order t. The energy density in domain walls will
then scale as 1/t, as compared to the 1/t2 of strings, and this would come to dominate
over the matter and radiation densities. Such a network is therefore excluded. For point
particles, annihilation is not able to reduce the density to the scaling value: points have
a harder time finding each other than strings. The spacing then scales as a(t)−1 and the
density as a(t)−3, just like other massive matter; such defects would therefore come to
dominate in the radiation-dominated era and are excluded.

Thus, whereas strings represent a cosmic opportunity, domain walls and point defects
are forbidden. In section 4 we will discuss potential instabilities that could eliminate cos-
mic strings, and the analogous decays would also provide solutions to the domain wall
and point defect problems. However, there is one kind of point defect that provides a se-
rious challenge, namely the magnetic monopole [19, 20]. These exist in all theories that
unify electromagnetism with the other interactions (for a recent overview see [21]). They
cannot decay (magnetic charge conservation) and they are not confined (at least today),
so they present a vexing cosmological problem. However, if the phase transition in which
they are produced took place before inflation, they would have been diluted the point that
a monopole would probably never be seen; this was one of the original motivations for in-
flation [22]. By the same token, cosmic strings will only be of interest if they are produced
at the end of inflation, or later.

2.4. STRING SIGNATURES AND BOUNDS

Since we are considering strings whose only interactions are gravitational, all of their
effects are controlled by the dimensionless product of Newton’s constant and the string
tension, Gµ. One can think of this in two ways: it is the string tension in Planck units, and
it sets the size of the typical metric perturbation produced by a string. For example, the
geometry around a long straight string is conic, with a deficit angle 8πGµ.

The string network produces inhomogeneities proportional to Gµ, and because of the
scaling property of the string network these are scale invariant. A value Gµ ∼ 10−5.5

would give scale-invariant perturbations of the right magnitude to produce the galax-
ies and CMB fluctuations.4 This was a viable theory for some time [23, 24], but it is
now excluded. For example, the CMB power spectrum is wrong: the actual spectrum
shows a pattern of peaks and dips, whereas the spectrum from strings would be smooth.
There is a simple reason for this. The fluctuations produced in inflation have a defi-
nite phase. This phase is maintained from the end of inflation until the perturbations go
nonlinear, and is imprinted as oscillations of the power spectrum. Strings, on the other

4I am going to quote values of Gµ to the nearest half order of magnitude. This is less precise than
most numbers given in the literature, but it is all I will need and it roughly reflects the uncertainties
in the understanding of the string network. To give more precise numbers would require a more
detailed discussion, and so the reader should consult the references.
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hand, each keep their own time, there is no common phase. Fitting cosmological con-
stant plus cold dark matter plus strings to the CMB power spectrum gives an upper limit
Gµ < 10−6 [25, 26]. Beyond the power spectrum, strings will produce nongaussianities
in the CMB. Recent limits are somewhat stronger than those from the power spectrum,
around Gµ < 10−6.5 [27, 28].5 Incidentally, strings affect the CMB in more than one
way. Strings at early times will induce the matter inhomogeneities that are reflected in
the CMB, but even if the CMB were uniform, strings at the present time would produce
apparent inhomogeneities. We have noted that a static string bends light. If a string moves
with velocity v transverse to the observer there will be a differential redshift of order
8πvGµ between the two sides.

Another limit on Gµ comes from pulsar timing. Because the energy in the strings
eventually goes into gravitational waves, strings produce a large stochastic gravitational
wave background. The classic reference on this subject [29] quotes a limit on the energy
density in stochastic gravitational waves, per logarithmic frequency range, as ΩGW <
1.2 × 10−7, using h2 = 0.5 for the Hubble parameter. In the frequency range of inter-
est one can estimate the stochastic background from a network of strings as ΩGW =
0.04Gµ [5], meaning that Gµ < 10−5.5. Different analyses of the same data, with dif-
ferent statistical methods, give a (controversial) bound a factor of 6 stronger [30] and
another a factor of 1.6 weaker [31]. The limits from pulsars should increase rapidly with
greater observation time, and recent work [32] quotes a bound 30 times stronger than [29],
meaning that Gµ < 10−7. However, this paper again obtains much weaker limits using
other methods and so this should not be regarded as a bound until there is agreement on
the analysis.6 The bounds here are from gravitational waves with wavelengths compa-
rable to the size of the emitting string loop, and do not include a potentially substantial
enhancement due to high-frequency cusps; see section 6.

Thus far we have quoted upper bounds, but there are possible detections of strings via
gravitational lensing. A long string will produce a pair of images symmetric about an axis,
very different from lensing by a point mass. Such an event has been reported recently [33,
34]. The separation of around two arc-seconds corresponds to Gµ equal to 4×10−7 times
a geometric factor of order 1. I have heard varying opinions on how seriously to take such
an observation, as similar pairs in the past have turned out to coincidental. There is further
discussion in the review [7], which also discusses a possible time-dependent lens, as from
an oscillating loop, with Gµ ∼ 10−7.5 [35].

3. Cosmic strings from string theory

Now let us consider the candidates for cosmic superstrings that might arise in various
vacua of string theory, starting with the perturbative heterotic string. The gravitational
and gauge couplings in this case have a common origin from the closed string interaction,
and so by calculating the trilinear amplitudes one finds the relation (e.g. Eq. 18.2.4 of [36])

4κ2 = α′g2 . (3.1)

5This limit is for a network of strings. For a single stray cosmic string, the limit is an order of
magnitude weaker.

6I would like to thank E. Flanagan and H. Tye for communications on this point.
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The gauge and gravitational couplings are equal up to a factor of α′ required by the di-
mensions, and a factor of 4 which arises from various conventions. This holds for the
ten-dimensional couplings, but because the gauge and gravitational fields both live in the
bulk they reduce in the same way, κ2

4 = κ2
10/V and g2

4 = g2
10/V where V is the compact-

ification volume. Expressing the relation in terms of G = κ2
4/8π, µ = 1/2πα′, and the

heterotic gauge coupling αh = g2
4/4π gives

Gµ =
αh

16π
. (3.2)

The heterotic gauge coupling should be at or above the minimal GUT value 1/20, so Gµ
is at least of order 10−3. The existence of such cosmic strings is therefore excluded [1].

We cannot turn this around and use it as evidence against perturbative heterotic string
theory, because in fact a cosmic string network of this type could not form. The CMB limit
on tensor perturbations implies an upper limit on the vacuum energy during inflation,
G2Vinf

<∼ (δT/T )2 ∼ 10−10. In most cases this bounds the tension of any strings that
might subsequently form, Gµ <∼ (G2Vinf)1/2 <∼ 10−5. Thus, perturbative heterotic strings
could only have been produced in a phase transition before inflation, and the many e-
foldings of inflation then make it unlikely that any would be found within our horizon.
There is a second reason that heterotic strings would not reach cosmic size, as we see in
section 5.

For the perturbative type I string the dimensional analysis is a bit different but the
conclusions are the same. The strongly coupled E8×E8 heterotic string can have a lower
tension [37]. This is because the gauge fields live on the nine-dimensional boundary while
gravity lives in the ten-dimensional bulk. More generally, if the gauge fields are confined
to a brane while gravity propagates in the bulk, the string tension is suppressed by some
power of R/LP where R is the size of the dimensions transverse to the brane [38, 39].

Even without large compact dimensions, the string tension can be reduced by a grav-
itational redshift (warp factor) [40]

ds2 = e2A(y)ηµνdxµ dxν + . . . (3.3)

where y are the compact coordinates. The string is localized at some point y0 in the
compact space, so the string worldsheet action is proportional to

µ =
e2A(y0)

2πα′ . (3.4)

In interesting compactifications there are often throats where the warp factor e2A is much
less than 1. The string will fall to the bottom of such a throat, so the four-dimensional
tension µ measured in four dimensions can be reduced by a large factor relative to the
tension 1/2πα′ seen by a local ten-dimensional observer. This is the RS idea, that dif-
ferent four-dimensional scales arise from a single underlying scale through gravitational
redshifting.

Thus the tension is essentially a free parameter, which can lie anywhere from the
Planck scale down to the experimental limit near the weak scale. For example, in the
warped models it is determined by the depth of the throat, which comes out as the expo-
nential of a function of flux integers that can take a wide range of values [41].
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The range becomes much smaller when we focus on brane-antibrane inflation mod-
els [42, 43, 44, 45]. This is a nice geometric idea for obtaining a slow-roll inflationary
potential, and the basis for most current attempts to describe inflation in string theory.
That is, the early universe could have contained an extra brane-antibrane pair, separated
in the compact directions. The potential energy of these branes would drive inflation. The
inflaton field is then the separation between the branes: this has a potential which is rather
flat when the branes are separated and steepens as they approach, until at some point a
field becomes tachyonic and the brane and antibrane annihilate rapidly.

To understand inflationary cosmology in detail one needs to know the scalar potential.
This potential has long been problematic, especially for states of positive vacuum energy,
because of potential instabilities in the moduli directions. Recently the tools have been
developed to identify a large class of stable solutions [46, 47]. Thus we will focus on
the resulting KLMT model [48], since it is the most detailed model of inflation in string
theory. This is based on a strongly warped compactification of the IIB string theory, with
inflation arising from a D3/D3 pair at the bottom of a throat.

In models of brane inflation, the value of Gµ can be deduced from the observed mag-
nitude of the CMB fluctuations δT/T . That is, one assumes that δT/T arises from the
quantum fluctuations of the inflaton; this is natural given the flat form of the inflaton po-
tential. For any given brane geometry the inflaton potential has a definite functional form.
For example, in the KLMT model the D3/D3 potential is V ∼ V0[1−O(φ−4)]. One then
finds (Eq. C.12 of [48])

G2V0 ∼ 0.05(δT/T )3N−5/2
e ∼ 1.5× 10−20 ; (3.5)

here Ne ∼ 60 is the number of e-foldings at the wavelengths responsible for structure
formation. The vacuum energy from a D3/D3 in the warped space is 2T3e

4A0 where A0

refers to the bottom of the inflationary throat. The F-strings produced after inflation (the
mechanism for which is the subject of the next section) will sit in the same throat and so
µ = e2A0/2πα′. Since T3 = T 2

F/2πgs in ten dimensions [36] we have for the tension of
the IIB string in the inflationary throat

µF ∼ 2× 10−10√gs , (3.6)

where gs is the string coupling.
One might take gs to have a representative value of 0.1. There is one very specific class

of models in which it is related to observed quantities. If the matter fields live on D3’s or
D3’s, then gs turns out to be exactly αYM. However, gs is really eΦ at the position of the
brane, and the dilaton Φ in most solutions varies in the compact space and so will not
have the same value at the position of the strings as it has at the Standard Model brane. In
the special case that it is constant, we can identify gs in the brane tension with the unified
coupling αGUT. Unification in brane models is generally nonstandard, but a likely value
for αGUT is still around 0.1.

Note that these warped manifolds can have many throats and therefore strings of many
different tensions. One possibility is that the Standard Model fields live in a throat whose
depth corresponds to the weak scale, whereas the depth (3.5) of the inflationary throat
gives something closer to the GUT scale. Thus there would be the possibility to see TeV-
scale strings and extra dimensions at accelerators, and at the same time GUT-scale strings
in the sky.
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In addition to the fundamental F-strings, string theory has many other extended ob-
jects. For example the IIB theory has a D-string whose tension in ten dimensions is
TD = TF/gs, and so in the KKLMMT model

µD ∼ 2× 10−10/
√

gs; (3.7)

the geometric mean (µFµD)1/2 is independent even of gs. There are also bound states of
p F-strings and q D-strings with a distinctive tension formula

µ(p,q) = µF

√
p2 + q2/g2

s . (3.8)

There are also a variety of higher dimensional D-, NS- and M-branes in the various
regimes of string theory. Any of these will look like a string if all but one of its spatial
directions is wrapped on a compact cycle. In the KKLMMT model, any brane not contained
fully in a throat will have a Planck-scale tension because a portion of it passes through the
region where the warp factor is close to 1, so we will get additional interesting strings only
if there are nontrivial cycles in the throat. The most generic throat, the Klebanov-Strassler
throat [2] based on the conifold singularity [50], has no cycles that give additional strings,
but there are many less generic singularities with a wide variety of nontrivial cycles; these
have been extensively studied in the context of gauge/string duality.

For models based on large compact dimensions, no fully stabilized examples are
known. One can fix the bulk moduli by hand and study inflation based on the brane
moduli. This is done in [3, 51], which consider a variety of wrapped branes in type II
compactifications, and find values in the range

10−12 <∼ Gµ <∼ 10−6 . (3.9)

We should emphasize again that it is the assumption that the inhomogeneities arise from
the quantum fluctuation of the inflaton, rather than some other mechanism, that allow
us to tie the tension to observed quantities in brane inflation. If another mechanism is
responsible, the inflation scale and the tension could be much lower.

It may still turn out to be the case that our vacuum is well-described by weakly cou-
pled heterotic string theory. If so, inflation and cosmic strings might simply arise in the
effective low energy field theory (this would be true for other compactifications as well).
The possible strings include both the magnetic flux tubes discussed in section 2, and
also electric flux tubes that exist in strongly coupled confining theories [1]. The heterotic
string, whether weakly or strongly coupled, has the advantage that it more readily makes
contact with standard grand unification. A recent paper [52] argues that cosmic strings
should be present in a wide class of grand unified inflationary models.

4. Production of cosmic F- and D-strings

If these branes are D-branes, then there is a U(1) gauge symmetry on each of the brane
and antibrane, and this U(1) × U(1) disappears when the branes annihilate. One linear
combination of the U(1)’s is Higged. The Kibble argument then applies, so that a network
of strings must be left over when the branes annihilate [2, 3]. These are D-strings, as one
can see by studying the conserved charges [53, 54]. More precisely, if the branes that
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annihilate are D(3 + k)-branes, extended in the three large dimensions and wrapped on k
small dimensions, then the result is D(1 + k)-branes that extend in one large dimension
and are wrapped on the same small dimensions. The simplest case is k = 0, where D3/D3
annihilation produces D1-branes.

The second linear combination of U(1)’s is confined. We can think of confinement
as dual Higgsing, by a magnetically charged field, and so we would expect that again the
Kibble argument implies production of strings [55, 56]. These are simply the F-strings, the
‘fundamental’ superstrings whose quantization defines the theory, at least perturbatively.

It is notable that this process produces only strings, and not the cosmologically dan-
gerous monopoles or domain walls [2, 3]. The breaking of a U(1) produces defects of
codimension two, and the Kibble argument requires that the codimension be in the large
directions: the small directions are in causal contact.7

It is striking that what appears to be the most natural implementation of inflation in
string theory produces strings and not dangerous defects, but we should now ask how
generic this is. Even these models are not, in their current form, completely natural: like
all models of inflation they require tuning at the per cent level to give a sufficiently flat
potential [48, 58]. There might well be other flat regions in the large potential energy land-
scape of string theory. An optimistic sign is that there are arguments entirely independent
of string theory to indicate that inflation terminates with a symmetry-breaking transition:
this is known as hybrid inflation [59], and leads to efficient reheating as well as pro-
duction of strings [60, 61, 62]. However, not every symmetry-breaking pattern produces
strings. For example, in strongly coupled heterotic string theory [37], there are M5-branes
and M2-branes. It would seem natural to use M5-branes with two wrapped directions to
implement brane inflation. Since the M2-branes have codimension three relative to the
M5-branes it will not be so easy to produce strings; this is currently under investigation.8

In [69] it was proposed that cosmic fundamental strings could have been produced in
a Hagedorn transition in the early universe. The Hagedorn transition corresponds to the
formation of strings of infinite length, and so some percolating strings would survive as
the universe cooled below the Hagedorn temperature. This idea has a simple realization
in the warped models.9 We have noted that the effective string tension, and so the Hage-
dorn temperature, is different in different throats. It is possible that after inflation a deeper
throat reheats above its Hagedorn temperature, leading to string formation as the universe
cools (a black hole horizon would then form at the bottom of the throat, corresponding
to the Hawking-Page transition [70, 71]). In fact, this is essentially equivalent to the Kib-
ble mechanism. The throat degrees of freedom have a dual gauge description, in terms
of which the Hagedorn transition corresponds to deconfinement. The transition to a con-
fining phase as the universe cools is the electric-magnetic dual of a symmetry-breaking
transition. The strings produced in this way would necessarily have a lower tension than

7Ref. [55] identifies processes that might suppress production of D-strings. Ref. [57] argues
that in some cases there can be disorder in the compact dimensions and so monopoles and domain
walls would be produced. We believe that, at least for the KLMT model, neither of these should be
relevant.

8There has also been recent discussion of a more exotic symmetry-breaking pattern in D-brane
inflation [63, 64, 65]. For other discussions of string production in brane inflation see [66, 67, 68]

9Similar ideas are being considered by A. Frey and R. Myers.
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b)a)

Figure 3. Instabilities of macroscopic strings: a) Confinement by a domain wall. b) Breakage.

those produced directly in brane annihilation, because of the inefficiency of the extra ther-
mal step.

5. Stability of strings

5.1. FIELD THEORY STRINGS

Ref. [1] identified two instabilities that would prevent superstrings from growing to cos-
mic size. Actually, these same two instabilities exist for field theory soliton strings [72]
— one for global strings and the other for gauge strings — so let us first discuss them in
this context.

In the case of global strings, we have noted that the long-ranged Goldstone boson has
gradient energy. It does not have potential energy at long distance as long as the broken
U(1) symmetry is exact: the broken vacua are then exactly degenerate. However, there
are general arguments in string theory that there are no exact global symmetries [73, 36].
More generally, the no-hair theorems imply that black holes can destroy global charges,
so in any theory of gravity these can not be exactly conserved. Thus the degeneracy of
the vacua will not be exact; the trough in the potential is tilted and so there is a potential
energy cost even at long distance for a field configuration that circles the trough. This cost
is minimized by have the scalar field make its excursion in a kink of finite width, rather
than uniformly in angle as in the exact case (2.3). Thus there is a domain wall, with energy
proportional to its area, bounded by the string.

The wall exerts a transverse force on the string and forces it to collapse, as in Fig. 3.
This is clear for a loop of string bounding a domain wall, but is less intuitive for a network
with infinite strings. One can picture the network, with the domain walls, as a complicated
shape formed from strips whose width is the typical transverse separation between strings.
The timescale for the collapse of the strips, and the disappearance of the strings, is set by
the width of the strips, not their (potentially unbounded) length [74].

For gauge strings, the U(1) symmetry is exact because it is a gauge symmetry, and
all energies fall exponentially with distance from the string. A magnetic flux runs along
the core of the string, and it is the conservation of this flux that prevents the string from
breaking. However, in any unified theory one expects that there will be electric and mag-
netic sources for every flux [21], so that the string can break by creation of a mono-
pole/antimonopole pair. If this is possible, it will happen not only once but everywhere
along the length of the string, and so the string breaks up into short segments rather thans
growing to cosmic length.
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There can be absolutely stable strings. Consider the Abrikosov flux tubes in an or-
dinary superconductor. The Higgs field there is an electron pair and has charge 2e, so
the tube has total flux 2π/2e. However, because there do exist singly charged electrons,
Dirac quantization requires the minimum monopole charge to be twice this, 2π/e. Thus
a flux tube cannot end on a monopole, though two can; equivalently one can think of the
monopole as a bead on a string, at which the flux reverses. So the Abrikosov flux tubes
(in an infinite system) are absolutely stable. One can think of this in terms of an unbro-
ken discrete gauge symmetry (−1)Q/e, which acts as −1 on the electron and +1 on the
BCS condensate. As one circles the string, fields come back to themselves only up to this
transformation. Thus the string can be detected by an Aharonov-Bohm experiment at ar-
bitrarily long distance, and so it can never just disappear. We will refer to these absolutely
stable strings as ‘discrete’ strings. Gauge strings without a discrete gauge charge are truly
invisible at long distance, and so there is no obstacle to their breaking.

As an aside, we explain this in terms of the homotopy classification of defects (see e.g.
Ref. [75] for an introduction). For gauge group G broken to H there is an exact sequence

Π2(G/H) → Π1(H) → Π1(G) → Π1(G/H)
→ Π0(H) → Π0(G) → Π0(G/H) . (5.1)

In the discussion of strings we started with G = U(1), for which Π1(G) = Z, and
broke to H = I for which Π1(H) = Π0(H) = I . Thus the strings are charged under
Π1(G/H) = Z. Now however let us embed the U(1) into a semisimple group; we are
always free to assume this to be simply connected by going to the covering group, so
Π1(G) = I and the stable strings are classified by Π1(G/H) = Π0(H)G — that is, by
unbroken discrete symmetries that lie in the connected component of the identity in G.

It can also be that strings that are not absolutely stable have decays that are slow on
cosmic timescales. For monopole pair creation, for example, the classic Schwinger cal-
culation gives a pair production rate suppressed by e−πM2/µ, where M is the monopole
mass. If the monopole mass is an order of magnitude larger than the scale of the string
tension, then the decay will be slow on cosmological time scales. One can think of a
succession of symmetry breakings such as SU(2) → U(1) → 1. There are no stable
strings for this pattern, but if the scale of the first symmetry breaking is higher than that
of the second then there will be string solutions in the effective field theory describing the
second breaking, and these can be long-lived. Similarly the tension of the domain walls
might be suppressed by a hierarchy of scales.

5.2. STRING THEORY STRINGS

5.2.1. Perturbative strings
Now let us turn to string theory. Consider first perturbative strings [1], compactified for
example on a torus or a Calabi-Yau manifold. The type I string couples to no form field,
and of course it can break. The heterotic and type II strings are effectively global strings,
because they couple to the long-distance form field Bµν which in four dimensions is dual
to a scalar. A confining force is produced by instantons, which are magnetic sources for
Bµν (thus the completeness of the magnetic sources [21] again enters). It is simplest to
analyze this in terms of the dual scalar Θ, defined by dΘ = ∗dB modulo Chern-Simons
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terms; Θ is the phase of the earlier Φ. The instantons become electric sources, meaning
that they give rise to explicitly Θ-dependent terms in the effective action: the instanton
and anti-instanton amplitudes are weighted by e±iΘ.

It is an interesting exercise to work out the decay rates for the various strings. The
time scale for the breaking of Type I strings is the string scale unless one tunes the string
coupling essentially to zero. For the heterotic string, the one definite contribution comes
from QCD instantons. The field strength for Bµν is of the form

H = dB + ω(A) , (5.2)

where dω(A) = TrF 2 and the trace runs over all gauge fields. Thus the magnetic source
dH contains the QCD instanton number. The scale of the potential is mumdmsΛQCD ∼
10−7GeV4 ≡ Vinst. The potential energy∫

M2
P(∂Θ)2 + Vinst cos Θ (5.3)

is of order M2
Pτ−1 + Vinstτ for a domain wall of thickness τ . This is minimized for

τ ∼MP/
√

Vinst (the inverse axion mass), giving tension

Tdw ∼MP

√
Vinst . (5.4)

The acceleration of a string due to the wall is then a = Tdw/µ which is roughly√
Vinst/MP. The string network will collapse when this is comparable to the Hubble

expansion rate, which is just when the energy density in matter is of order
√

Vinst, near
the QCD scale. This is too early to leave observable traces. Further, the estimate (5.4) is
just a lower bound, because it is likely that there are other gauge groups becoming strong
at higher energy. Indeed, it is a challenge to find an scalar (axion) in string theory whose
potential is dominated by QCD instantons and so would solve the strong-CP problem.

NS5-brane instantons, wrapped on the whole compact space, are also a magnetic
source for Bµν [76]. The NS5-brane instantons have action

T5V6 =
4π2α′

2κ2
10

V6 =
2π

αh
. (5.5)

This is the same as the action for a gauge theory instanton at the string scale. In fact
the heterotic NS5-branes are just the string-scale limit of instantons, whereas above we
considered QCD-scale instantons. If we take the standard GUT value αh ∼ 0.05 then
the contribution to Vinst is of order 10−50M4

P. This is larger than the QCD contribution;
it might be suppressed by fermion masses (from zero modes), or enhanced if the GUT
coupling is increased.

The same estimates apply to perturbative (non-brane) compactifications of the Type
II theory, with the gauge fields arising from world-sheet current algebras, although it is
known that the Standard Model cannot be obtained from these [77].

5.2.2. Brane models
In the KKLMMT model [48] we have noted that the candidate cosmic strings are the F- and
D1-strings. In ten dimensions these strings couple to form fields Bµν and Cµν , but these
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form fields have no four-dimensional massless modes in this model. They transform non-
trivially under the orientifold projection or F theory monodromy that the model requires,
and this removes their zero modes. Thus the strings should be unstable to breakage, and
indeed this can occur in several ways.

First, the projection that removes the form field produces an oppositely oriented im-
age string on the covering space of the compactification, and breakage occurs through
a segment of the string annihilating with its image. If the image is coincident with the
string, breakage will be rapid. If the image is not coincident, then the string must fluctuate
to find its image. Due to the warp factor the strings feel a potential

µ = e2A(y)µ10 . (5.6)

The strings are normally confined to the throat where inflation occurs, which as discussed
in section 3 has a warp factor eA0 of order 10−4. When the string annihilates with its
image, the role of the monopole is played by a bit of string that stretches out of the
inflationary throat over to the image throat. Since this passes through bulk region where
the warp factor is of order one, the breakage rate is proportional to e−πe−2A0 and so totally
negligible even on cosmological timescales [56]. Thus the strings will be stable to self-
annihilation if there is no orientifold fixed point (or F-theory equivalent) in the inflationary
throat. There is no particular reason for the throat to be coincident with any fixed point.
Their relative positions are fixed by the complex structure moduli, which depend on flux
integers, and these are expected to take rather generic values [78, 79, 80].

The strings can also break on a brane. The model must include branes on which the
Standard Model (SM) fields live. If these are D3-branes in the inflationary throat then the
strings will break; if they are D7-branes that pass through the inflationary throat then all
but the D1-string will break [56]. If they are outside the throat then the strings are stable
for the same reason as above. In the simplest implementation of the RS idea the SM branes
must be in a different throat: the depth of the inflationary throat is something of order the
GUT scale, while the depth of the SM throat should be of order the weak scale. One must
ask whether other branes might still be in the inflationary throat, but this is not possible:
these would have low energy degrees of freedom which would receive most of the energy
during reheating, rather than the SM fields. So this gives a simple scenario in which the
strings are stable, but much more work is needed to see whether it is viable, and whether
it is generic. An important question is whether reheating through the bulk can transfer
energy efficiently to the SM throat; a recent paper gives an affirmative answer [81].

More complicated geometries with additional cycles in the inflationary throat have
additional strings from wrapped branes. These strings have not been studied in full detail,
but in examples one finds that they can be gauge, global, or discrete, depending on the
details of the topology (both in the throat and globally). Similarly their production and
stability depends on details.

The stabilization of moduli is not been as fully developed in models based on large
compact dimensions, but as a prototype we can consider the T 6/Z2 orientifold which is
T -dual to the Type I string. In the Type I string there are BPS D1- and D5-branes [82],
which couple electrically and magnetically to the sole Type I RR form Cµν . There are
also non-BPS D3- and D7-branes [54]. All of these give rise to strings when all but one
direction are wrapped on the T 6. After T -duality these become BPS D7- and D3-branes,
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and non-BPS D5- and D1-branes, all of which are strings in four dimensions. The BPS
strings couple to RR form fields and so are global. The relevant instantons come from a
Euclidean D-branes. The calculation is similar to that for the NS5-brane instanton above,
with the brane volume replacing V6, but now the compact dimensions can be much larger
and so we get essentially stable strings with a long-range RR axion field.

The non-BPS strings separate into two images as in the earlier discussion. Now, it is
important to note that the T 6/Z2 example is nongeneric in an important sense: because
of its high degree of symmetry the strings have moduli and move freely in the compact
dimensions. Even if there is not a deep warp factor, supersymmetry breaking will lead to
a potential at some scale that will localize the strings. Just like a large warping, a large
separation leads to a large action for the decay and so these strings can again be stable if
separated from their images.

Adding the SM and other branes to the large dimension models, the stability of the
strings depends on the exact geometry. In some cases it might appear that a string has both
instabilities, in that it couples to a form field but can break on a brane [56, 83]. The point
is that breakage on a brane implies the existence of a gauge field on the brane to ensure
continuity of the form source, and this Higgses the form field so that the result is a gauge
string, subject to breakage but not confinement [56]. We expect that in string theory as
in field theory these strings willl be exactly stable only if stabilized by a discrete gauge
symmetry visible in the Aharanov-Bohm effect: anything that can happen will [21].

In summary, it is encouraging to see that strings can be stabilized as a side effect of
certain generic properties such as warping and/or large dimensions, which are needed to
lower the inflationary scale below the Planck scale in these models.

6. Seeing Cosmic Strings

We will consider below strings that have only gravitational interactions. However, the
possibility, noted above, of global strings with a long-ranged scalar field should not be
overlooked. Another possibility is a strong coupling to SM or other light fields, and in par-
ticular superconducting strings [11] which carry massless degrees of freedom charged un-
der an unbroken gauge symmetry. Generically the strings that one finds are rather boring.
In ten dimensions they have massless collective coordinates in the transverse directions,
and massless fermions, but these are all gapped by symmetry-breaking effects leaving
only the minimal collective coordinates. Light four-dimensional fields generally live on
branes, and we have seen that stability requires cosmic strings to be separated from most
other branes, implying interactions of gravitational strength. An example of an exception
would be a D7-brane coincident with a D1 string; the SM fields might live on or couple
strongly to the D7-brane. However, a superconducting string requires that the D1 and D7
be exactly coincident; to ensure this would require a discrete symmetry (which might be
orbifolded). More interesting strings are thus possible in special cases.

The CMB and pulsar bounds on Gµ quoted in section 2 are at the upper end of the
brane inflation range, ruling out the highest-tension models. Both bounds will improve
in the coming decade by at least one or two orders of magnitude. An additional exciting
prospect comes from LIGO [84, 85]. Under most circumstances LIGO is at a disadvan-
tage looking for cosmological backgrounds because these fall with increasing frequency:
LIGO is looking at frequencies that are 1010 times those of the pulsar measurements
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(100 Hz versus years−1). For example, the stochastic background coming from the low
harmonics of cosmic strings has a constant energy density per logarithmic scale.10 This
translates into ω2h̃(ω)2 ∝ ω−1 for the Fourier transform h̃ of the strain (fractional change
in the metric). For a stochastic background (different frequencies uncorrelated) the strain
from approximate frequency ω is of order ω1/2h̃(ω) which is of order ω−1 here. Pulsar
timing is sensitive to strains around 10−14 or 10−15 while LIGO is sensitive to much
smaller strains 10−22 or 10−23, but the frequency penalty of 1010 more than offsets this.

However, something unexpectedly nice happens. When a loop of string in three space
dimensions oscillates as governed by the Nambu action, it typically forms a cusp several
times per oscillation [86]. To see this go to conformal gauge, where the solution is just a
sum or right- and left-movers

Xµ(σ, τ) = fµ(σ − τ) + gµ(σ + τ) , (6.1)

and the gauge conditions imply that f ′ and g′ are both null. Classically there is enough
residual gauge freedom to set X0 = 2τ so that f0 = τ − σ, g0 = τ + σ. Then �f ′ and
−�g′ both have unit norm, and as functions of their arguments they trace out closed curves
on the unit sphere as σ goes around the strings; also, each averages to zero by periodicity.
It follows that these curves will typically intersect (an even number of times).11 Each
intersection represents an event that occurs once per period, and when it occurs the σ-
parameterization becomes singular. A representative example for the leading behavior at
the singularity (where for simplicity we put the intersection at σ = τ = 0) is

fx = (σ − τ)− c2(σ − τ)3/2 , fy = c(σ − τ)2 ,

gx = −(σ + τ) + c′2(σ + τ)3/2 , gy = c′(σ + τ)2 , (6.2)

with c and c′ constants of order the inverse size of the loop. It follows (for the generic
case that c �= c′) that at τ = 0 the string forms a cusp, y ∝ |x|2/3.

The instantaneous velocity (�f ′−�g′)/2 approaches the speed of light at the cusp. Like
the crack of a whip, a great deal of energy is concentrated in the tip, but this whip is
perhaps hundreds of light-years long and with a tension not so far below the Planck scale.
It thus emits an intense beam of gravitational waves in the direction of its motion [84].
The Fourier transform of a cusp singularity is much larger at high frequency than for a
smooth function, so that even when the suppression for being off-axis is included this
comes within reach of LIGO.

This is shown in Fig. 4, reproduced from [85]. Under optimistic assumptions (but
not, I think, too optimistic), even LIGO I is close to discovery sensitivity of one event
per year over much of the range of interesting tensions, including the narrow range of

10In making this statement we must consider the relative redshifting of modes at different fre-
quencies. At both the pulsar and the LIGO frequencies the current bounds come from waves emit-
ted during the radiation dominated era, and in this case the effective red shifts are the same due
to the scaling property. (One can deduce the time of emission for a current freqency ω by solving
ω = l−1(t)/(1 + z(t)) with l(t) the loop size (2.8) and z(t) the redshift.) Lower frequency waves
emitted during the matter-dominated era will experience less redshifting.

11A kink implies a discontinuity in f ′ or g′ and so a gap in one of the curves. Since cosmic strings
have a short distance structure with many kinks, there will be many gaps and this may reduce the
number of intersections.
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Figure 4. Gravitational wave cusp signals, taken from Damour and Vilenkin [85]. The horizontal
axis is log10 α where α = 50Gµ. Thus the brane inflation range 10−12 <∼ Gµ <∼ 10−6 becomes
−10.3 < log10 α < −4.3. The vertical axis is log10 h where h is the gravitational strain in the
LIGO frequency band. The upper and lower dashed horizontals are the sensitivities of LIGO I and
Advanced LIGO at one event per year. The upper two curves are the cusp signal under optimistic
and pessimistic network assumptions; the pessimism is that a large number of kinks may suppress
the cusps. The lowest solid curve is the signal from kinks, which form whenever strings reconnect.
The dashed curve is the stochastic signal.

the KKLMMT model. This is remarkable: cosmic superstrings might be the brightest objects
in gravitational wave astronomy, and the first discovered! LIGO I to date has around 0.1
design-year of data, but it is supposed to begin a new science run in January 2005 at close
to design sensitivity and with a good duty cycle. Advanced LIGO is sensitive over almost
the whole range, and with a higher event rate; it has a target date of 2009. LISA, a few
years later, is even more sensitive. In magnitude of strain it is comparable to LIGO I, but
it is looking at a frequency 10,000 times lower and so the typical cusp strains are 1000
times greater [85]. The cusp events might be seen in a search for unmodeled bursts. The
shape is not as complex as for stellar and black hole inspirals, but modeling the specific
frequency dependence will increase the signal-to-noise ratio. The power-law frequency
dependence of the cusp is distinctive. See also [87] for a discussion of the form of the
cusp signal.

The dependence of the sensitivity on string tension in Fig. 4 is interesting because it
is not monotonic. This comes about as follows [85]. As the string tension decreases, the
coupling to gravity becomes weaker and so does the gravitational wave burst from a given
cusp. However, since gravitational radiation is the only decay channel for string loops they
will live longer.12 Thus as we decrease Gµ there are more but smaller cusps. With smaller
intrinsic events one cannot see as far, but there are more events to see; the competition
between these effects depends on the geometry of the universe. Thus, the three regimes

12There is another effect as well, the dependence of the short-distance network structure on the
gravitational radiation, but we can overlook this for simplicity.
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that are evident in Fig. 4 correspond at the smallest tensions to cusps that took place at
redshifts less than one, at the intermediate tensions to cusps that are at redshifts greater
than one but in the matter-dominated era, and at the largest tensions to cusps that occurred
during the radiation-dominated era. The rise in the event rate with decreasing tension in
the middle range comes about because the signals from smaller, later, cusps suffer less
from redshifting during the relatively rapid matter-dominated expansion.

The pulsar bounds are also strengthed by taking into account the cusps. This is ana-
lyzed in detail in [88]; this quotes a current bound on Gµ of around 10−7, but the curve
is very flat as a function of Gµ so that a small uncertainty in the pulsar analysis or the
network properties produces a much larger uncertainty in Gµ. Correspondingly, improved
pulsar data and improved understanding of the networks would make it possible to reach
much smaller values of Gµ.

One may wonder whether the enormous energy stored in cosmic strings can manifest
itself in other spectacular effects. The cusps appear to be the best source potential source
of high energy particles and radiation, but [89] argues that this is still not observable.
Note that short distance physics affects the string only very near the cusp, and even LIGO
frequency range is looking on a much longer scale.

7. Distinguishing Superstrings

If gravitational wave cusps or some other signature of cosmic strings are seen, this will
be just the beginning of the story. Detailed observations will be able to determine some of
the microscopic properties of the strings. For example, it is possible to cleanly distinguish
weakly coupled fundamental strings from cosmic strings in perturbative GUTs.

7.1. RECONNECTION

The microscopic structure of the string core does not affect the evolution of strings that
are light-years in length, except when two strings cross and their cores interact. We have
noted that gauge theory solitons will always reconnect. For F-strings, reconnection is a
quantum process, and takes place with a probability P of order g2

s . The numerical factors
are worked out in [90]. To be precise, P is a function of the relative angle and velocity in
the collision, but it is simplest to the value averaged over collision parameters.

An important issue is the motion of the string in the compact dimensions. For many su-
persymmetric compactifications, strings can wander over the whole compact space. Thus
they can miss each other, leading to a substantial suppression of P [51, 55]. However,
we have noted that in realistic compactifications strings will always be confined by a
potential in the compact dimensions. Even if the scale of the potential is low, the fluctu-
ations of the strings are only logarithmic in the ratio of scales — this is characteristic of
one-dimensional objects [56]. Thus there is no suppression by powers of the size of the
compact dimensions, but the logarithm can be numerically important — it tends to offset
powers of π that appear in the numerator. The value of gs, and the scale of the confining
potential, are not known, but in a variety of models [90] finds 10−3 <∼ P <∼ 1. For D-D col-
lisions the situation is more complicated, and in the same models one finds 10−1 <∼ P <∼ 1.
For F-D collisions, P can vary from 0 to 1.
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To determine the observational effect of changing P one must feed the given value into
the network evolution. A simple argument suggests that the signatures scale as 1/P : the
amount of string in the network must be increased by this factor in order for an increased
number of collisions per unit length of string to offset the reduced P in each collision ([88]
and references therein). This is a bit oversimplified, because there are issues connected
with the sub-horizon scale structure in the string network [16, 91] that can work in either
direction, but is supported by simulations as well ([92] and reference therein).13 If we take
this 1/P as a model, we see that for the smaller values of P discussed above there can
be a substantial increase in the signal even above the encouraging values found in the last
section, so that LIGO might soon begin to see many cusps. Of course, the existing bounds
become stronger.

To first approximation there are two relevant parameters, µ and P . Each individual
cusp event has only a single parameter to measure, its overall strength h: because it is a
power law there is no characteristic frequency scale. (There is a high frequency cutoff,
determined by the alignment of the cusp with the detector [85], but this gives no informa-
tion about the cusp itself.) After O(10) cusps are seen one can begin to plot a spectrum,
dN ∼ Ah−Bdh, and from the two parameters A and B constrain µ and P . There are
degeneracies — B depends primarily on the epoch in which the cusp took place — but
with a more detailed spectrum, and ultimately with data from kink events and pulsars,
this degeneracy will be resolved. Thus µ and P will be overdetermined, and nonstandard
network behavior (such as we are about to discuss) will be detectable.

If P is only slightly less than one, say 0.5, then it will require precision simulation of
the networks and good statistics on the signatures to distinguish this from 1.0. It should
be noted that even with given values of µ and P there are still substantial uncertainties
in the current understanding of the behavior of string networks. This has recently been
discussed in [88], which concludes that the sensitivities given in Fig. 3 are only weakly
dependent on the unknowns.

The discussion of cosmic strings from grand unified theories has focussed on pertur-
bative unification, as suggested by the successful prediction of the Weinberg angle. In this
case the only strings are the classical solitons, and P = 1 is a fairly robust signature. Thus
these can be differentiated from fundamental strings unless we are very unlucky and gs is
very close to 1, or we have a very unusual field theory.14

Strongly coupled confining gauge theories can have electric flux tube strings. For
these the reconnection probability is of order 1/N2

color, so finding a small value for P
would not rule out a field-theoretic origin entirely, just a perturbative one. We should note
that perturbative string theory gives a prediction for the functional dependence on the
collision parameters, P (v, θ) [95, 90]. It would seem very difficult to determine this from
observations. If it were possible to map out the string network in detail, through lensing,
then perhaps this function might be studied.

13Refs. [93, 94] discuss other network evolution issues. We should note that the second of these
is concerned with higher-dimensional excitations which, according to our discussion, should be
massive and so decoupled except at early times.

14One example: a soliton string with a massless internal scalar mode (besides its normal collective
coordinates) would be like a string moving in a higher dimensional space and so two such strings
could ‘miss’ each other in field space. However, such modes will always get a mass from symmetry
breaking, and I expect that this effect will be significant only in rather contrived models.
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7.2. NETWORKS

The second potentially distinguishing feature of the superstring networks is the existence
of both F- and D-strings [55, 56, 90], and moreover bound states of p F-strings and q
D-strings with the distinctive tension formula (3.8). In this case, when strings of different
types collide, rather than reconnecting they form more complicated networks with trilin-
ear vertices. It is then possible that the network does not scale, but gets into a frozen phase
where it just stretches with the expansion of the universe [10, 96]. If so, its density would
come to dominate at the tensions that we are considering. The F-D networks have not yet
been simulated, but simulations of comparable networks suggest that they scale, possibly
with an enhanced density of strings [97, 98, 99]. From the discussion above, it follows that
one will not directly read off the spectrum (3.8) from the observations, but there should
eventually be enough information to distinguish F-D string networks from other types.

Warped models with more complicated throats, as well as models with large compact
dimensions, can give rise to a richer spectrum of strings [3, 51]. Still, the (p, q) spec-
trum (3.8) is worth particular attention: it is an attractive possibility that inflation takes
place in a warped throat, and this is the spectrum that arises in the most generic throat.
Thus, while the landscape of string theory may be vast, this particular local geometric
feature may be common to a large swath of it.

Networks with multiple types of string can also arise in field theories, though I do
not know any perturbative field theory that gives the particular spectrum (3.8). However,
because of duality there will be gauge theory strings that are very hard to differentiate
from the F- and D-strings that we are discussing. In particular, in the KKLMMT model the
strings exist in a Klebanov-Strassler throat [2], which has a dual description as a cascading
gauge theory, in which there are (p, q) strings.15

Indeed, the existence of dualities between string theories and field theories raises the
issue, what really is string theory? This is beyond our current scope, but I note that in the
present case there is a quantitative question. The Klebanov-Strassler throat has a parame-
ter gsM ; when this is large the string description is the valid one, and when it is small
the gauge description is the valid one. If we can get enough information about the string
network, perhaps combined with information from the CMB, then there might well be
enough information to test the hypothesis that we are seeing a Klebanov-Strassler theory,
and to measure gsM .

8. Conclusions

As we have seen, each of the four conditions that we discussed at the beginning is indepen-
dently model-dependent. However, quite a number of things have worked out surprisingly
well: the production of strings in brane inflation, the possible stabilization of the strings
as a side effect of other properties of the models (in particular, of the stabilization of the
vacuum itself), the possibility to see strings over many interesting orders of magnitude of
tension, and the existence of properties that distinguish different kinds of string so that af-
ter the strings are discovered we can do a lot of science with them. In any case, searching

15For discussions of relations between field theory strings and F- and D-strings see [100, 101,
102, 103, 104, 105, 106, 107, 108]; see [109, 110] for some related recent bounds.
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for cosmic strings is a tiny marginal cost on top of experiments that will already be done,
and it is great that string theorists will have a stake in these experiments over the coming
decade and more.
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Abstract. We discuss the various scales determining the temporal behaviour of correla-
tion functions in the presence of eternal black holes. We point out the origins of the failure
of the semiclassical gravity approximation to respect a unitarity-based bound suggested
by Maldacena. We find that the presence of a subleading (in the large-N approximation
involved) master field does restore the compliance with one bound but additional configu-
rations are needed to explain the more detailed expected time dependence of the Poincaré
recurrences and their magnitude.

1. Introduction

Hawking’s semiclassical analysis of black hole evaporation suggests that most of the in-
formation contained in initial scattering states is shielded behind the event horizon, never
to return back to the asymptotic region far from the evaporating black hole [1]. In this
picture, the singularity is capable of absorbing all the infalling information, which is
then destroyed or transmitted to other geometrical realms, depending on one’s hypotheses
about the microphysics of the singularity. From the point of view of measurements on the
Hawking radiation, the evaporation is not described by a unitary S-matrix. Rather, quan-
tum coherence is violated and the linear evolution in Hilbert space takes pure states into
mixed states. Still, probability is conserved, since density matrices ρ remain Hermitian,
ρ† = ρ, positive, ρ > 0 and normalized, Trρ = 1 under time evolution.

The AdS/CFT correspondence [2] is not consistent with this picture. In this construc-
tion, quantum gravity in a (d + 1)-dimensional asymptotically Anti-de Sitter spacetime
(AdS) of curvature radius R is defined in terms of a conformal field theory (CFT) on a
spatial sphere Sd−1 of radius R. The effective expansion parameter in the gravity side
1/N2 ∼ GN/Rd−1, maps to an appropriate large N limit of the CFT. For example, for
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Figure 1. The energy spectrum of a CFT representing AdSd+1 quantum gravity. The spectrum is
discrete on a sphere of radius R, with gap of order 1/R. The asymptotic energy band of very dense
“black hole” states sets in beyond energies of order N2/R. The corresponding density of states is
that of a conformal fixed point in d spacetime dimensions.

two-dimensional CFT’s N2 is the central charge. When the CFT is a gauge theory, the
AdS side is a string theory, N is the rank of the gauge group, and the string perturbative
expansion in powers of gs ∼ 1/N is identified with ’t Hooft’s 1/N expansion in the gauge
theory side.

According to this definition, the formation and evaporation of small black holes with
Schwarschild radius RS � R, should be described by a unitary process in terms of
the CFT Hamiltonian. Thus, there is no room for violations of coherence as a matter of
principle. Unfortunately, the CFT states corresponding to small black holes are hard to
describe, and it remains a challenge to put the finger on the precise error in Hawking’s
semiclassical analysis in that case.

For large AdS black holes with Schwarschild radius RS � R one may attempt to rise
to the challenge, since they are thermodynamically stable and can exist in equilibrium at
fixed (high) temperatures 1/β � 1/R. Indeed, the corresponding Bekenstein–Hawking
entropy scales like that of N2 conformal degrees of freedom at high energy,

S ∼
√

N (E R)
d−1

d ∼ N2 (R/β)d−1 . (1.1)

Therefore, large AdS black holes with inverse Hawking temperature β � R describe the
leading approximation to the thermodynamical functions of the canonical CFT state

ρβ =
e−βH

Z(β)
, Z(β) = Tr exp(−βH) . (1.2)

This suggests that we can test the semiclassical unitarity argument by careful analysis of
slight departures from thermal equilibrium, rather than studying a complete evaporation
instability in the vacuum. Ref. [3] proposes to look at the very long time structure of
correlators of the form

G(t) = Tr [ ρA(t)A(0) ] , (1.3)
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for appropriate Hermitian operators A. In the semiclassical approximation, one expects
these correlators to decay as exp(−Γ t) with Γ ∼ β−1. However, because the CFT lives
in finite volume, the spectrum is actually discrete (c.f. Fig 1), and the correlator must
show nontrivial long time structure in the form of Poincaré recurrences (see [4, ?]). This
result, which is straightforward from the boundary theory point of view, has far reaching
consequences as far as the bulk physics is concerned.

Hence, the failure of G(t) to vanish as t →∞ can be used as a criterion for unitarity
preservation beyond the semiclassical approximation. This argument can be made more
explicit by checking the effect of coherence loss on the long-time behaviour of G(t).
Using the results of [6] one can simulate the required decoherence by coupling an ordinary
quantum mechanical system to a random classical noise. It is then shown in [7] that this
random noise forces G(t) to decay exponentially for large t, despite having a discrete
energy spectrum. This shows that the long-time behaviour of correlators probes the strict
quantum coherence of the bounded system.

At the same time, one would like to identify what kind of systematic corrections to
the leading semiclassical approximation are capable of restoring unitarity. A proposal
was made in [3] in terms of topology-changing fluctuations of the AdS background. Our
purpose here is to investigate these questions and offer an explicit estimate of the instanton
effects suggested in [3] (see also [8]). Ultimately, this analysis should provide information
about the nature of the black hole singularity.

2. Long-time details of thermal quasi-equilibrium

Poincaré recurrences occur in general bounded systems. Classically they follow from the
compactness of available phase space, plus the preservation of the phase-space volume in
time (Liouville’s theorem). Quantum mechanically, they follow from discreteness of the
energy spectrum (characteristic of spatially bounded systems) and unitarity, since

Gβ(t) =
1

Z(β)

∑
i,j

e−βEi |Aij |2 ei(Ei−Ej)t (2.1)

defines a quasiperiodic function of time (we have chosen the canonical density matrix
for the initial state). After initial dissipation on a time scale Γ−1, where Γ measures the
approximate width of matrix elements of A in the energy basis, the correlator will show
O(1) “resurgences” when most of the relevant phases complete a period (c.f. Fig 2). The
associated time scale is tH ≡ 1/〈ω〉, with 〈ω〉 = 〈Ei−Ej〉 an average frequency in (2.1).
We can estimate 〈ω〉 as Γ/∆nΓ, where ∆nΓ is the number of energy levels in the relevant
band of width Γ. Introducing the microcanonical entropy in terms of the level-number
function as n(E) ≡ exp S(E), we have

∆nΓ ≈
∫ 〈E〉+Γ/2

〈E〉−Γ/2

dE
dn

dE
=
∫ 〈E〉+Γ/2

〈E〉−Γ/2

dE β(E) eS(E) ≈ Γ β eS(β) . (2.2)

where we have introduced the microcanonical inverse temperature as β(E) ≡ dS/dE.
From this analysis we obtain an estimate

tH ∼ β eS(β) . (2.3)
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exp (−      t )Γ

t H2Γ −1

Figure 2. Schematic representation of the very long time behaviour of the normalized time cor-
relator L(t) in bounded systems. The initial decay with lifetime of order Γ−1 is followed by O(1)
“resurgences” after the Heisenberg time tH ∼ β exp(S) has elapsed. Poincaré recurrence times
can be defined by demanding the resurgences to approach unity with a given a priori accuracy, and
scale like a double exponential of the entropy.

Following [9] we call this the Heisenberg time scale. Poincaré times can be defined in
terms of quasiperiodic returns of Gβ(t) with a given a priori accuracy. In a sense, the
Heisenberg time is the smallest possible Poincaré time.

A more quantitative criterion can be used by defining a normalized positive correlator,
L(t), satisfying L(0) = 1, and its infinite time average,

L(t) ≡
∣∣∣∣G(t)
G(0)

∣∣∣∣2 , L ≡ lim
T→∞

1
T

∫ T

0

dt L(t) . (2.4)

The profile of L(t) is sketched in Fig 2. The time average can be estimated by noticing
that the graph of L(t) features positive “bumps” of height ∆L and width Γ, separated a
time tH , so that

L ∼ ∆L

Γ tH
. (2.5)

For the case at hand ∆L ∼ 1, tH ∼ β eS , and we obtain (c.f. [5, 7])

L ∼ e−S(β)

β Γ
. (2.6)

Since both β and Γ scale as N0 in the large-N limit of the dual CFT, the “recurrence
index” L ∼ exp(−N2) scales as a nonperturbative effect in the semiclassical approxima-
tion.

Indeed, one finds L = 0 in gravity perturbation theory in the AdS black hole back-
ground. The reason is that the relevant eigenfrequencies ω (the so-called normal modes
of the black hole) form a continuous spectrum to all orders in the 1/N expansion. For a
static metric of the form

ds2 = −g(r) dt2 +
dr2

g(r)
+ r2 dΩ2

d−2 , (2.7)
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Figure 3. The effective potential determining the semiclassical normal frequency modes in a large
AdS black hole background (left). In Regge–Wheeler coordinates the horizon is at r∗ = −∞,
whereas the boundary of AdS is at r∗ = πR/2 (only the region exterior to the horizon ap-
pears). There is a universal exponential behaviour in the near-horizon (Rindler) region. The effective
one-dimensional Schrödinger problem represents a semi-infinite barrier with a continuous energy
spectrum. This contrasts with the analogous effective potential in vacuum AdS with global coordi-
nates (right). The domain of r∗ is compact and the spectrum of normal modes is discrete with gap
of order 1/R.

the normal frequency spectrum follows from the diagonalization of a radial Schrödinger
operator

ω2 = − d2

dr2∗
+ Veff(r∗) , (2.8)

with

Veff =
d− 2

2
g(r)

(
g′(r)

r
+

d− 4
2r2

g(r)
)

+ g(r)
(
−∇

2
Ω

r2
+ m2

)
(2.9)

for a scalar field of mass m (analogous potentials can be deduced for higher spin fields).
Here we have defined the Regge–Wheeler or “tortoise” coordinate dr∗ = dr/g(r). We
have shown in Fig. 3 the form of the resulting effective potentials for large AdS black
holes, compared with the case of the vacuum AdS manifold. The vacuum AdS manifold,
corresponding to the choice g(r) = 1 + r2/R2 in (2.7), behaves like a finite cavity, as
expected. The distinguishing feature of the black-hole horizon is a a non-degenerate zero,
g(r0) = 0, which induces the universal scaling

Veff(r∗) ∝ exp(4πr∗/β) as r∗ → −∞ , (2.10)

with 1/β = g′(r0)/4π the Hawking temperature and the horizon r = r0 appearing at
r∗ = −∞. The spectrum is discrete in pure AdS, and continuous in the AdS black hole.
Physically, this just reflects the fact that the horizon is an infinite redshift surface, so
that we can store an arbitrary number of modes with finite total energy, provided they
are sufficiently red-shifted by approaching the horizon [10]. Since the thermal entropy of
perturbative gravity excitations in the vacuum AdS spacetime scales as S(β)AdS ∼ N0,
we see that the perturbative Heisenberg time of the AdS spacetime is of O(1) in the
large-N limit, leading to LAdS = O(1). On the other hand, we have Lbh = 0 in this
approximation.
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Figure 4. Summing over large-scale fluctuations of the thermal ensemble in which a black hole
spontaneously turns into radiation (and viceversa) is represented in the Euclidean formalism as the
coherent sum of thermal saddle points of different topology. The “cigar-like” geometry X represents
the black-hole master field (in the CFT language) and the cylindrical topology Y represents the
thermal gas of particles.

3. Topological diversity and unitarity

It is instructive to understand these perturbative results in the Euclidean formalism, ob-
tained by t = −iτ in (2.7), followed by an identification τ ≡ τ + β. The resulting metric
for the vacuum AdS spacetime has a non-contractible S1 given by the τ compact direc-
tion. We call Y this Euclidean manifold. On the other hand, the black hole spacetime with
g(r0) = 0 has different topology, since the thermal S1 shrinks to zero size at r = r0. The
choice 1/β = g′(r0)/4π ensures smoothness at r = r0. We call this Euclidean black hole
manifold X .

The real-time correlation functions in the black hole background, G(t)X , follow by
analytic continuation from their Euclidean counterparts. Since X is a completely smooth
manifold in the 1/N expansion, so is the Euclidean correlator G(it)X for t �= 0. The
continuous spectrum arising in the spectral decomposition of G(t)X is a consequence
of the contractible topology of X , since the Hamiltonian folliation by τ = constant
surfaces is singular at r = r0. Therefore, it seems that improving on the semiclassical
prediction for L requires some sort of topology-change process. The proposal of [3] is
precisely that: instead of evaluating the semiclassical correlators on X , one should sum
coherently the contribution of X and Y . Normally one neglects the contribution of Y
on a quantitative basis (at high temperatures R � β). However, here the contribution
of X to L vanishes and one is forced to consider the first correction. Since Y has a
discrete spectrum in perturbation theory, the net result for L should be non-vanishing in
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Figure 5. The instanton approximation to the correlator L(t)inst features the expected ex-
ponential decay exp(−Γ t) induced by the contribution of the X-manifold, whereas the resur-
gences are entirely due to the interference with the Y -manifold, leading to small bumps of order
exp(−2∆I) ∼ exp(−N2), separated a time tH(Y ) ∼ N0. These bumps are noticeable against
the background of the X-manifold after a time tc ∼ ∆I/Γ.

this approximation. Physically, this superposition of Euclidean saddle points (or master
fields, in the language of the CFT) corresponds to large-scale fluctuations in which the
AdS black hole is converted into a graviton gas at the same temperature and viceversa.

A more detailed estimate of this “instanton” approximation to L yields (c.f. [7])

Linst ≈ C e−2∆I , (3.1)

where C = O(N0), ∆I = IY − IX and I = − log Z(β), calculated in the classical
gravity approximation. Since IY ∼ −N0 and IX ∼ −N2, the exponential suppression
factor is of order exp(−2|IX |) ∼ exp(−N2), reproducing the expected scaling (2.6), at
least in order of magnitude (however, in general SX �= −2|IX |, even at high temperature).

However, the apparent success of (3.1) turns out to be somewhat coincidental. If we
consider the full time profile of L(t) rather than the infinite time average, we find

L(t)inst ≈ L(t)X + C e−2∆I L(t)Y . (3.2)

The resulting structure is shown in Figs. 5 and 6. The instanton approximation to the
normalized correlator features the normal dissipation with lifetime Γ−1 ∼ β coming from
the contribution of X . However, the resurgences are controlled by L(t)Y , damped by a
factor exp(−2∆I) ∼ exp(−N2), and separated a time tH(Y ) ∼ N0. Hence, the very
long time behaviour as shown in Fig. 6 is very different from the expected one, although
the infinite time average comes out right in order of magnitude:

L ∼ ∆L

Γ tH
∼ e−N2

Γ · β ∼ 1
Γ · β eN2 . (3.3)

We can also find the time scale tc for which the large-scale instantons considered
here are quantitatively important on the graph of L(t). This is shown in Fig. 5 and yields
tc ∼ ∆I/Γ ∼ N2.
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t     (Y)                               t
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Figure 6. Schematic representation of the very long time behaviour of L(t)inst (dark line) com-
pared to the expected pattern for the exact quantity L(t). The resurgences of L(t)inst occur with
periods of order tH(Y ) = O(N0) and have amplitude of order exp(−N2) 	 1. The expec-
tations for the exact CFT, in the dashed line, are O(1) resurgences with a much larger period
tH ∼ exp(N2) 
 tH(Y ), corresponding to tiny energy spacings of order exp(−N2). Despite

the gross difference of both profiles, the infinite time average is O(e−N2
) for both of them.

A more complicated set of Euclidean saddle points can be analyzed for the three-
dimensional case of BTZ black holes. The authors of [11] conclude that resummation of
an infinite family of SL(2,Z) saddle points is unlikely to alter the conclusions presented
here on the basis of the leading instanton approximation. They also point out that the
semiclassical approximation breaks down for times longer than tc ∼ c, where c is the
central charge of the dual two-dimensional CFT.

4. Conclusions

The study of very long time features of correlators in black hole backgrounds is a poten-
tially important approach towards unraveling the mysteries of black hole evaporation and
the associated physics at the spacelike singularity. We have seen that large scale topology-
changing fluctuations proposed in [3] begin to restore some of the fine structure required
by unitarity, but fall short at the quantitative level. Presumably the appropriate instantons
occur on microscopic scales and involve stringy dynamics. While semiclassical black
holes do faithfully reproduce “coarse grained” inclusive properties of the system such as
the entropy (c.f. [12]), additional dynamical features of the horizon may be necessary to
resolve finer details of the information loss problem. Roughly, one needs a systematic set
of corrections that could generate a “stretched horizon” of Planckian thickness [13]. The
crudest model of such stretched horizon is the brick-wall model of ’t Hooft [10]. In this
phenomenological description one replaces the horizon by a reflecting boundary condi-
tion at Planck distance ε ∼ �P from the horizon. This defines a “mutilated” Xε manifold,
of cylindrical topology, leading to a discrete spectrum of the right spacing in order of
magnitude.

We have also seen that the characteristic time for large topological fluctuations to
be important is tc ∼ O(N2) in the semiclassical approximation. In [14] it was argued
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that semiclassical two-point functions probe the black hole singularity on much shorter
characteristic times, thereby justifying the analysis on the single standard black hole man-
ifold. However, we have seen that detailed unitarity is only restored on time scales of order
tH ∼ exp(N2). Thus tc � tH and we conclude that such semiclassical analysis of the
singularity is bound to be incomplete, as it misses whatever microphysics is responsible
for the detailed unitarity restoration in the quantum mechanical time evolution.
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Abstract. We discuss AdS/CFT duality in the sector of “semiclassical” string states with
large quantum numbers. We review the coherent-state effective action approach, in which
similar 2d sigma model actions appear from the AdS5 × S5 string action and from the
integrable spin chain Hamiltonian representing the N=4 super Yang-Mills dilatation op-
erator. We consider mostly the leading-order terms in the energies/anomalous dimensions
which match but comment also on higher-order corrections.

1. Introduction

The N = 4 SYM theory with SU(N) gauge group is a family of conformal theories
parametrized by the two numbers – N and gYM . Four-dimensional conformal theories
have apparently much less symmetry than their two-dimensional cousins and thus should
be much harder to solve (i.e. to determine their spectrum of dimensions of conformal
primary operators and their correlation functions). There are strong indications that this
problem may simplify in the planar (N → ∞, λ ≡ g2

YM
N=fixed) limit. In the large N

limit there are no formal objections to integrability of a 4-d quantum field theory, and,
indeed, the AdS/CFT duality [1, 2, 3] implies the existence of a hidden integrable 2-d
structure corresponding to that of AdS5×S5 string sigma model (on a sphere or a cylin-
der). A major first step towards the solution of the SYM theory would be to determine the
spectrum of anomalous dimensions ∆(λ) of the primary operators built out of products
of local gauge-covariant fields.

The AdS/CFT duality implies the equality between the AdS5 energies E of quantum
closed string states (as functions of the effective string tension T = R2

2πα′ =
√

λ
2π and quan-

tum numbers like S5 angular momenta Ji) and the dimensions ∆ of the corresponding
local SYM operators (see, e.g., [4]). To check the duality one would like also to understand
how strings “emerge” from the field theory, in particular, which (local, single-trace) gauge
theory operators [5] correspond to which “excited” string states and how one may verify
the matching of their dimensions/energies beyond the well-understood BPS/supergravity
sector. One would then like to use the duality as a guide to deeper level of the structure
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of quantum SYM theory. For example, the results motivated by comparison to string the-
ory may allow one to “guess” the general structure of the SYM anomalous dimension
matrix and may also suggest new methods of computing anomalous dimensions in less
supersymmetric gauge theories.

Below we shall review some recent progress in checking AdS/CFT correspondence in
a subsector of non-BPS string/SYM states with large quantum numbers.

1.1. GENERALITIES

Let us start with brief remarks on the SYM and the string sides of the duality. The SYM
theory contains a gauge field, 6 scalars φm and 4 Weyl fermions, all in adjoint repre-
sentation of SU(N). It has global conformal and R-symmetry, i.e. is invariant under
SO(2, 4) × SO(6). To determine (in the planar limit) scaling the dimensions of local
gauge-invariant operators one, in general, needs to find the anomalous dimension matrix
to all orders in λ and then to diagonalize it. The special case is that of chiral primary or
BPS operators (and their descendants) tr(φ{m1 ...φmk}) whose dimensions are protected,
i.e. do not depend on λ. The problem of finding dimensions appears to simplify also in
the case of “long” operators containing large number of fields under the trace. One exam-
ple is provided by “near-BPS” operators [6] like tr(ΦJ

1 Φn
2 ...) + ..., where J � n, and

Φk = φk + iφk+3, k = 1, 2, 3. Below we shall consider “far-from-BPS” operators like
tr(ΦJ1

1 ΦJ2
2 ...) + ..., with J1 ∼ J2 � 1.

The type IIB string action in AdS5 × S5 space has the following structure

I = −1
2
T

∫
dτ

∫ 2π

0

dσ (∂pY µ∂pY
νηµν + ∂pXm∂pX

nδmn + ...) , (1.1)

where Y µY νηµν = −1, XmXnδmn = 1 , ηµν = (− + + + +−), T =
√

λ
2π and

dots stand for the fermionic terms [7] that ensure that this model defines a 2-d confor-
mal field theory. The closed string states can be classified by the values of the Cartan
charges of the obvious symmetry group SO(2, 4)×SO(6) – E,S1, S2;J1, J2, J3, i.e. by
the AdS5 energy, two spins in AdS5 and 3 spins in S5. The mass shell (conformal gauge
constraint) condition then gives a relation E = E(Q,T ). Here T is the string tension
and Q = (S1, S2, J1, J2, J3;nk) where nk stand for higher conserved charges (analogs
of oscillation numbers in flat space). The BPS (chiral primary) string states are point-like
(supergravity modes), near-BPS (BMN) states are nearly pointlike, while generic semi-
classical far-from-BPS states are represented by extended closed string configurations.

According to the AdS/CFT duality quantum closed string states in AdS5×S5 should
be dual to quantum SYM states at the boundary, i.e. in R×S3 or, via radial quantization,
to local single-trace operators at the origin of R4. Such operators have the following
structure
tr(DS1

1+i2D
S2
3+i4Φ

J1
1 ΦJ2

2 ΦJ2
3 ...) + ... (where scalars and covariant derivatives may be also

replaced by gauge field strength factors and fermions). The energy of a string state should
then be equal to the dimension of the corresponding SYM operator, E(Q,T ) = ∆(Q,λ),
where on the SYM side the charges Q should characterise the eigen-operator of the anom-
alous dimension matrix. By analogy with the flat space case and ignoring α′ corrections
(i.e. assuming R →∞ or α′ → 0) the excited string states are expected to have energies
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E ∼ m ∼ 1√
α′ ∼ λ1/4 [2]. This represents a non-trivial prediction for strong-coupling

asymptotics of SYM dimensions. The asymptotics may, however, be different in the limits
where the charges Q are also large, e.g., of order λ1/2 as in the semiclassical limit [8].

In general, the natural (inverse-tension) perturbative expansion on the string side will
be given by E =

∑∞
n=−1

cn

(
√

λ)n
, while on the SYM side the usual planar perturbation

theory will give the eigenvalues of the anomalous dimension matrix as ∆ =
∑∞

n=0 anλn.
The AdS/CFT duality implies that the two expansions should be the strong-coupling and
the weak-coupling asymptotics of the same function. To check the relation E = ∆ is then
a non-trivial problem, except in the case of 1/2 BPS (single-trace chiral primary) operators
which are dual to the supergravity states when the energies/dimensions are protected from
corrections [4] and thus can be matched on the symmetry grounds.

1.2. SEMICLASSICAL STRING STATES: BMN AND BEYOND

For generic non-BPS states the situation with checking the duality looked hopeless until
the remarkable suggestion of [6]1 and then of [8] that a progress can be made by (i)
concentrating on a subsector of states with large or “semiclassical” values of quantum
numbers, Q ∼ T ∼ √λ and (ii) considering a new limit

Q →∞ , λ̃ ≡ λ

Q2
= fixed . (1.2)

On the string side Q√
λ

= 1√
λ̃

plays the role of a semiclassical parameter (like rotation

frequency) which can then be taken to be large. The energy of such states is E = Q +
f(Q,λ), where f → 0 in the λ → 0 limit. The duality implies that such semiclassical
string states (as well as states represented by small fluctuations near them) should be dual
to “long” SYM operators with a large canonical dimension, i.e. containing large number
of fields or derivatives under the trace. In this case the duality map becomes more explicit.

1The history of the BMN limit is somewhat non-trivial. It started with the important observation
that the Penrose limit of the AdS5 × S5 space [9] leads to a maximally supersymmetric plane
wave geometry supported by the Ramond-Ramond 5-form flux. Remarkably, the AdS5×S5 string
theory action [7] in this limit (i.e. Green-Schwarz string action in plane-wave background) becomes
essentially quadratic and thus its spectrum can be found explicitly [10]. Motivated by that, ref. [6]
gave a dual SYM interpretation of the corresponding string states, suggested that string energies
can be compared to perturbative SYM dimensions computed in the same limit, and indeed directly
checked this to the first non-trivial order. Ref. [8] then explained that, on the string-theory side, the
BMN limit is nothing but a semiclassical expansion near a particular (point-like) string solution.
This interpretation was further clarified and extended in [11, 12], suggesting, in particular, how one
can in principle compute corrections to the BMN limit (which was later done in full detail in [13]
and especially in [14]). This made it clear that the plane-wave connection is not fundamental but
rather is a special feature of semiclassical expansion near a certain string configuration (represented
by massless AdS5 × S5 geodesic wrapping S5). Expanding near other string solutions leads to
other special “Penrose-type” limits of string geometry (geometry “seen” by a fundamental string
probe) which are described by the corresponding quadratic fluctuation actions. Expansions near a
class of “fast” string configurations (discussed below) for which the world sheet becomes null in
the effective zero-tension limit [15, 16, 17] may be interpreted as a stringy generalization of the
Penrose limit (keeping in mind, of course, that this analogy applies only in the strict zero-tension
limit).
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The simplest possibility is to start with a BPS state that carries a large quantum number
and consider small fluctuations near it, i.e. a set of near-BPS states characterised by a large
parameter [6]. The only non-trivial example of such a BPS state is represented by a point-
like string moving along a geodesic in S5 with a large angular momentum Q = J . Then
E = J and the dual operator is trΦJ , Φ = φ1+iφ2. The small closed strings representing
near-by fluctuations are ultrarelativistic, i.e. their kinetic energy is much larger than their
mass. They are dual to SYM operators of the form tr(ΦJ ...) where dots stand for a small
number of other fields and/or covariant derivatives (one needs to sum over different orders
of the factors to find an eigenstate of the anomalous dimension matrix). The energies of
the small fluctuations happen to have the structure [10, 6]

E = J +
√

1 + n2λ̃ K + O(
1
J

) = J + K + k1λ̃ + k2λ̃
2 + ... . (1.3)

One can argue in general [11, 12] and check explicitly [13, 14] that higher-order quantum
string sigma model corrections are indeed suppressed in the limit (1.2), i.e. in the large J ,
fixed λ̃ ≡ λ

J2 = λ′ limit. A remarkable feature of this expression is that E is analytic in
λ̃, suggesting direct comparison with perturbative SYM expansion in λ.

Indeed, it can be shown that the first three λ̃, λ̃2 and λ̃3 terms in the expansion of the
square root agree precisely with the one [6], two [19] and three [20, 21, 23] loop terms in
the anomalous dimensions of the corresponding operators. There is also (for a 2-impurity

K = 2 case) an argument [24] suggesting how the full
√

1 + n2λ̃ expression may appear
on the perturbative SYM side (for reviews of various aspects of the BMN limit see also
[25]). However, the general proof of the consistency of the BMN limit in the SYM theory
(i.e. that the usual perturbative expansion can be rewritten as an expansion in λ̃ and 1

J )
remains to be given. Also, to explain why the string and the SYM expressions match one
should show that the string limit (first J →∞, then λ̃ = λ

J2 → 0) and the SYM limit (first
λ → 0, then J →∞) produce exactly the same expressions for the energies/dimensions,
even though, in general, the two limits may not commute, cf. [26, 27, 28].

If one moves away from the near-BPS limit and considers, e.g., a non-supersymmetric
state with a large angular momentum Q = S in AdS5 [8], a similar direct quantitative
check of the duality is no longer possible: here the classical energy is not analytic in
λ and quantum corrections are no longer suppressed by powers of 1

S (but as usual are
suppressed by powers of 1√

λ
). However, it is still possible to demonstrate a remarkable

qualitative agreement between S-dependence of the string energy and of the SYM anom-
alous dimension. The energy of a folded closed string rotating at the center of AdS5 which
is dual [8] to twist 2 operators on the SYM side (tr(Φ∗

kDSΦk), D = D1 + iD2, and
similar operators with spinors and gauge bosons that mix at higher loops [32, 33]) has the
following form when expanded at large S :

E = S + f(λ) ln S + O(S0) (1.4)

On the string side

f(λ)
λ�1 = c0

√
λ + c1 +

c2√
λ

+ ... , (1.5)
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where c0 = 1
π is the classical [8] and c1 = − 3

π ln 2 is the 1-loop [11] coefficient. On the
gauge theory side one finds the same S-dependence of the anomalous dimension with the
perturbative expansion of the lnS coefficient being

f(λ)
λ�1 = a1λ + a2λ

2 + a3λ
3 + ... (1.6)

where a1 = 1
2π2 [31], a2 = − 1

96π2 [32], and a3 = 11
360×64π2 [33]. Like in the case of

the SYM entropy [34], here one expects the existence of a smooth interpolating function
f(λ) that connects the two perturbative expansions. In fact, observing that the factor 1

π in
(1.5) and factor 1

π2 in (1.6) seem to factorize, one can suggest a simple square root type
interpolating formula for f(λ) that seem indeed to give a good fit [32, 33] (cf. also the
discussion end of section 4).

1.3. MULTISPIN STRING STATES

One may wonder still if examples of quantitative agreement between string energies and
SYM dimensions found for the near-BPS (BMN) states exist also for more general non-
BPS string states. Indeed, it was noticed already in [11] that a string state that carries
large spin in AdS5 as well as large spin J in S5 has, in contrast to the above J = 0
case, an analytic expansion of its energy in λ̃ = λ

J2 , just as in the BMN case with a large
oscillation number K ∼ S. It was observed in [35] that semiclassical string states carrying
several large spins (with at least one of them being in S5) have a regular expansion of their
energy E in powers of λ̃ and it was then suggested, by analogy with the near-BPS case,
that the expansion of E in small effective tension or λ̃ may be possible to match with the
perturbative expansion of the SYM dimensions.

For a classical rotating closed string solution in S5 one has E =
√

λE(wi), Ji =√
λwi so that E = E(Ji, λ). The required key property is that (in contrast to the case

of a single spin in AdS5) there should be no
√

λ factors in the expansion of the classical
energy E in small λ

E = J + c1
λ

J
+ c2

λ2

J3
+ ... = J

[
1 + c1λ̃ + c2λ̃

2 + ...
]

. (1.7)

Here J =
∑3

i=1 Ji, λ̃ ≡ λ
J2 and cn = cn(Ji

J ) are functions of ratios of the spins which
are finite in the limit Ji � 1, λ̃ =fixed.

The simplest example of such solution is provided by a circular string rotating in two
orthogonal planes in S3 part of S5 with the two angular momenta being equal, J1 = J2

[35]:

X1 ≡ X1 + iX2 = cos(nσ) eiwτ , X2 ≡ X3 + iX4 = sin(nσ) eiwτ ,

and with the global AdS5 time being t = κτ . The conformal gauge constraint implies
κ2 = w2 + n2 and thus

E =
√

J2 + n2λ = J(1 +
1
2
n2λ̃− 1

8
n4λ̃2 + ...) , (1.8)

where J = J1 + J2 = 2J1. For fixed J the energy thus has a regular expansion in string

tension (in contrast to what happens in flat space where E =
√

2
α′ J).
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Similar expressions (1.7) are found also for more general rigid multispin closed strings
[35, 36, 37, 38, 39, 40]. In particular, for a folded string rotating in one plane of S5 and
with its center of mass orbiting along big circle in another plane the coefficients cn are
transcendental functions (expressed in terms of elliptic integrals) [37]. More generally,
the 3-spin solutions are described by an integrable Neumann model [38, 39] and the coef-
ficients cn in the energy are expressed in terms of genus two hyperelliptic functions. The
reason why choosing a particular string ansatz one gets an integrable effective 1-d model
lies in the integrability of the original S5 = SO(6)/SO(5) classical sigma model [30]
(see also [44]).

To be able to hope to compare the classical energy to the SYM dimension one should
be sure that higher string α′ corrections are suppressed in the limit J → ∞, λ̃ =fixed.
Formally, this is of course the case since α′ ∼ 1√

λ
∼ 1

J
√

λ̃
; what is more important, the

1
J corrections are again analytic in λ̃ [36], i.e., as in the BMN case, the expansion in large
J and small λ̃ is well-defined on the string side,

E = J

[
1 + λ̃(c1 +

d1

J
+ ...) + λ̃2(c2 +

d2

J
+ ...) + ...

]
, (1.9)

with the classical energy (1.7) being the J →∞ limit of the exact expression.
The reason for this particular form of the energy (1.9) can be explained as follows

[11, 12, 40]. We are computing the AdS5×S5 superstring sigma model loop corrections
to the mass of a stationary solitonic solution on a 2-d cylinder (no IR divergences). This
theory is conformal (due to the crucial presence of the fermionic fluctuations) and thus
it does not depend on a UV cutoff. The relevant 2d fluctuations are massive and their
masses scale as w ∼ 1√

λ̃
. As a result, the inverse mass expansion is well-defined and the

quantum corrections should be proportional to positive powers of λ̃. This was explicitly
demonstrated by a 1-loop computation in [36, 66].

Similar expressions are found for the energies of small fluctuations near a given clas-
sical solution: as in the BMN case, the fluctuation energies are suppressed by extra factor
of J , i.e.

δE = λ̃(k1 +
m1

J
+ ...) + λ̃2(k2 +

m2

J
+ ...) + ... . (1.10)

1.4. ADS/CFT DUALITY: NON-BPS STATES

Assuming that the same large J limit is well-defined also on the SYM side, one should
then be able to compare the coefficients in (1.9) to the coefficients in the anomalous di-
mensions of the corresponding SYM operators tr(ΦJ1

1 ΦJ2
2 ΦJ3

3 ) + ... (and also do similar
matching for near-by fluctuation modes) [35]. In practice, what is known (at least in prin-
ciple) is how to compute the dimensions in the different limit: by first expanding in λ and
then expanding in 1

J . One may expect that this expansion of anomalous dimensions may
take the form equivalent to (1.9), i.e.

∆ = J + λ(
a1

J
+

b1

J2
+ ...) + λ2(

a2

J3
+

b2

J4
+ ...) + ... , (1.11)
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and that the respective coefficients in E and ∆ may agree with each other. The subsequent
work [41, 42, 43, 44, 45, 2, 27, 47, 3, 49] did verify this structure of ∆ and, moreover,
established the general agreement between the two leading coefficients c1, c2 in E (1.9)
and the one-loop and two-loop coefficients a1, a2 in ∆ (1.11) (as usual, by “n-loop” term
in ∆ we mean the term multiplied by λn).

To compute ∆ one is to diagonalize the anomalous dimension matrix defined on a set
of “long” scalar operators, and this is obviously a non-trivial problem. The important step
to this goal was made in [41] where it was observed that the one-loop planar dilatation
operator in the scalar sector can be interpreted as a Hamiltonian of an integrable SO(6)
spin chain and thus can be diagonalized even for large length L = J by the Bethe ansatz
method.2 In the simplest case of the “SU(2)” sector of operators tr(ΦJ1

1 ΦJ2
2 ) + ... built

out of two chiral scalars, the dilatation operator can be interpreted as “spin up” and “spin
down” states of periodic XXX1/2 spin chain with length L = J = J1 + J2. Then the
1-loop dilatation operator becomes equivalent to the Hamiltonian of the ferromagnetic
Heisenberg model

D1 =
λ

(4π)2

J∑
l=1

(I − �σl · �σl+1) . (1.12)

By considering the thermodynamic limit (J → ∞) of the corresponding Bethe ansatz
equations, the proposal of [35] was confirmed at the leading order of expansion in λ̃
[42, 43]: for eigen-operators with J1 ∼ J2 � 1 it was shown (i) that ∆− J = λa1

J + ...,
and (ii) a remarkable agreement was found between a1 = a1(J1

J2
) and the coefficient c1

in the energies (1.9) of various 2-spin string solutions. It was also possible also to match
(as in the BMN case) the energies of fluctuations near the circular J1 = J2 solution with
the corresponding eigenvalues of (1.12) [42].

Similar leading-order agreement between string energies and SYM dimensions was
observed also in other sectors of states with large quantum numbers:

(1) in the SU(3) sector: for specific solutions [35, 38, 39] with 3 spins in S5 which
are dual to the operators tr(ΦJ1

1 ΦJ2
2 ΦJ3

3 ) + ... [45, 50];
(2) in the SL(2) [51] sector: for a folded string state [11] with one spin in AdS5 and

one spin in S5 (with E = J + S + λ
J c1(S

J ) + ... [11, 35]) which is dual to the operators
tr(DSΦJ ) + ... [43];

(3) in a “subsector” of SO(6) states containing pulsating (and rotating) solutions
which again have regular [52] expansion of the energy in the limit of large oscillation
number L, i.e. E = L + c1

λ
L + ... [42, 45].

This agreement between the leading-order terms in the expansion of energies of cer-
tain semiclassical string states and dimensions of the corresponding “long” SYM opera-
tors leaves, however, many questions, in particular:

(i) How to understand this agreement beyond specific examples, i.e. in a more univer-
sal way?

(ii) Which is the precise relation between profiles of string solutions and the structure
of the dual SYM operators?

2Relations between 1-loop anomalous dimension matrix for a certain class of composite opera-
tors and integrable spin chain Hamiltonians were observed previously in the large N QCD context
[63] (for a review and connections to AdS/CFT see [64]).
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(iii) How to characterise the set of semiclassical string states and dual SYM operators
to which this direct relation should apply?

(iv) Why the agreement holds at all, i.e. why the two limits (first J → ∞, and then
λ̃ → 0, or vice versa) taken on the string and the SYM sides give equivalent results to the
first two orders in expansion in λ̃? Why/when it does not work to all orders in expansion
in λ̃ (and 1

J )?
The questions (i),(ii) were addressed in [2, 3, 55, 56, 57] using the low-energy effec-

tive action approach for coherent states; an alternative approach based on matching the
general solution (and the integrable structure) of the string sigma model with that of the
thermodynamic limit of the Bethe ansatz in the SU(2) sector was developed in [47]. The
question (iii) was addressed in [15, 16, 17, 57], and the question (iv) – in [27, 28, 29].
Still, our understanding of why there is a direct agreement with gauge theory at the first
two λ̃ and λ̃2 orders of expansion and why it does not [43, 28] continue to the λ̃3 order is
still rather rudimentory.3

Below we shall review the effective action approach as developed in [2, 3, 56, 57],
concentrating mostly on the leading (“1-loop”) order in expansion in λ̃.

2. Effective actions for coherent states

The suggestion of how to understand the agreement between leading-order terms in the
multispin string energies and the corresponding one-loop anomalous dimensions in a uni-
versal way was made in [2] and was clarified and elaborated further in [3, 57]. The key
idea was that instead of comparing particular solutions one should try to match effective
sigma models which appear on the string side and the SYM side. Another related idea of
[2, 3, 57] was that since the “semiclassical” string states carrying large quantum numbers
are represented in the quantum theory by coherent states, one should be comparing coher-
ent string states to coherent SYM states (and thus to coherent states of the spin chain). In
view of the ferromagnetic nature of the dilatation operator (1.12), in the thermodynamic
limit J = J1 + J2 → ∞ with fixed large number of impurities (i.e. with fixed J1

J2
) it is

favorable to form large clusters of spins. Then a “low-energy” approximation and con-
tinuum limit should apply, leading to an effective “non-relativistic” sigma model for a
coherent-state expectation value of the spin operator.

At the same time, on the string side, taking the “large space-time energy” (or large
J) limit directly in the classical string action produces a reduced “non-relativistic” sigma
model that describes in a universal way the leading-order O(λ̃) corrections to energies of
all string solutions in the two-spin sector. The resulting sigma model action turns out to
agree exactly [2] with the semiclassical coherent state action found from the SU(2) sector
of the spin chain in the J → ∞, λ̃ =fixed limit. This demonstrates how a string action
can directly “emerge” from a gauge theory in the large-N limit and provides a direct map
between the “coherent” SYM states (or the corresponding operators built out of two holo-
morphic scalars) and all two-spin classical string states. Furthermore, the correspondence
established at the level of the action implies also (i) the matching of the integrable struc-
tures and (ii) the matching of the fluctuations around particular solutions and thus it goes
beyond the special examples of rigidly rotating strings.

3Similar (dis)agreements were found for the 1/J corrections to the BMN states [14].
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2.1. COHERENT STATES

Let us briefly review the definition of coherent states (see, e.g., [53]). For a harmonic
oscillator ([a, a†] = 1) one can define the coherent state |u〉 as a|u〉 = u|u〉, where u

is a complex number. Equivalently, |u〉 = R(u)|0〉, where R = eua†−u∗a so that acting
on the vacuum |0〉 the operator R is simply proportional to eua†

. Note that |u〉 can be
written as a superposition of the eigenstates |n〉 of the harmonic oscillator Hamiltonian,
|u〉 ∼∑∞

n=0
un√
n!
|n〉. An alternative definition of a coherent state is that it is a state with

minimal uncertainty for both the coordinate q̂ = 1√
2
(a + a†) and the momentum p̂ =

− i√
2
(a− a†) operators, ∆hatp2 = ∆ 1

2 tq2 = 1
2 , ∆p̂2 ≡ 〈u|p̂2|u〉 − (〈u|p̂|u〉)2. For that

reason it is the “best” approximation to a classical state. If one defines a time-dependent
state |u(t)〉 = e−iHt|u〉 then the expectation values of q̂ and p̂, i.e. 〈u|q̂|u〉 = 1√

2
(u+u∗),

〈u|p̂|u〉 = − i√
2
(u− u∗) follow the classical trajectories.

Starting instead of the Heisenberg algebra with the SU(2) algebra [S3, S±] = ±S±,

[S+, S−] = 2S3 and considering the s = 1/2 representation where �S = 1
2�σ one can

define a spin coherent state as a linear superposition of spin up and spin down states:
|u〉 = R(u)|0〉. Here R = euS+−u∗S− , |0〉 = | 12 , 1

2 〉 and u is a complex number. An
equivalent way to label the coherent state is by a unit 3-vector �n defining a point of S2.
Then |�n〉 = R(�n)|0〉 where |0〉 corresponds to a 3-vector (0, 0, 1) along the 3rd axis. One
can write �n = U†�σU, U = (u1, u2), and then R(�n) is an SO(3) rotation from a north
pole to a generic point of S2 defined by �n. The key property of the coherent state is that
�n determines the coherent state expectation value of the spin operator:

〈�n|�S|�n〉 =
1
2
�n . (2.1)

Similar definition of coherent states can be given in the case when SU(2) is replaced
by a generic group G. Given a semisimple group G with the Cartan basis of its alge-
bra (Hi,Eα,E−α) ([Hi,Hj ] = 0, [Hi,Eα] = αiEα, [Eα,E−α] = αiHi, [Eα,Eβ ] =
NαβEα+β) whose interpretation will be a symmetry group of a quantum Hamiltonian
(acting in a unitary irreducible representation Λ on the Hilbert space VΛ) one may de-
fine a set of coherent states by choosing a particular state |0〉 (with 〈0||0〉 = 1) in VΛ

and acting on it by the elements of G. A subroup H of G that leaves |0〉 invariant up
to a phase (Λ(h)|0〉 = eiφ(h)|0〉) is called maximum stability subgroup. One may then
define the coset space G/H , the elements of which (g = ωh, h ∈ H, ω ∈ G/H ,
Λ(g) = Λ(ω)Λ(h)) will parametrize the coherent states, |ω, Λ〉 = Λ(ω)|0〉.

This definition depends on a choice of group G, its representation Λ and the vector |0〉.
It is natural to assume also that |0〉 is an eigenstate of the Hamiltonian H , e.g., a ground
state. For a unitary representation Λ we may choose H†

i = Hi, E†
α = E−α and select |0〉

to be the highest-weight vector of the representation Λ, i.e. demand that it is annihilated
by “raising” generators and is an eigen-state of the Cartan generators: (i) Eα|0〉 = 0 for all
positive roots α; (ii) Hi|0〉 = hi|0〉. In addition, we may demand that |0〉 is annihilated
also by some “lowering” generators, i.e. (iii) E−β |0〉 = 0 for some negative roots β; the
remaining negative roots will be denoted by γ. Then the coherent states are given by

|ω, Λ〉 = exp
[∑

γ

(wγE−γ − w∗
γEγ)

] |0〉 , (2.2)
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where γ are the negative roots for which Eγ |0〉 �= 0. wγ may be interpreted as coordinates
on G/H where H is generated by (Hi,Eα,E−β).

For example, in the case of G = SU(3) with the Cartan basis
(H1,H2,Eα,Eβ ,Eα+β ,E−α,E−β ,E−α−β) and with |0〉 being the highest-weight of the
fundamental representation, i.e. E−β |0〉 = 0, E−α|0〉 �= 0, E−α−β |0〉 �= 0, the subgroup
H is generated by (H1,H2,Eβ ,E−β), i.e. is SU(2)×U(1) and G/H = SU(3)/(SU(2)×
U(1)) = CP 2 (see also [56]). We shall apply this general definition of coherent states in
section 3.

2.2. LANDAU-LIFSHITZ MODEL FROM SPIN CHAIN

In general, one can rewrite the usual phase space path integral as an integral over the
overcomplete set of coherent states (for the harmonic oscillator this is simply a change of
variables from q, p to u = 1√

2
(q + ip)):

Z =
∫

[du] eiS[u] , S =
∫

dt

(
〈u|i d

dt
|u〉 − 〈u|H|u〉

)
. (2.3)

The first (“Wess-Zumino” or “Berry phase”) term in the action ∼ iu∗ d
dtu is the analog of

the usual pq̇ term in the phase-space action. Applying this to the case of the Heisenberg
spin chain Hamiltonian (1.12) one ends up with with the following action for the coherent
state variables �nl(t) at sites l = 1, ..., J (see, e.g., [54]):

S =
∫

dt

J∑
l=1

[
�C(nl) · �nl − λ

2(4π)2
(�nl+1 − �nl)2

]
. (2.4)

Here dC = εijknidnj ∧ dnk (i.e. �C is a monopole potential on S2). In local coordinates
(at each site l) one has �n = (sin θ cos φ, sin θ sin φ, cos θ), �C · d�n = 1

2 cos θdφ. In the
limit J → ∞ with fixed λ̃ = λ

J2 (which we are interested in) we can take a continuum
limit by introducing the 2-d field �n(t, σ) = {�n(t, 2π

J l)}, l = 1, ..., J . Then

S = J

∫
dt

∫ 2π

0

dσ

2π

[
�C · ∂t�n− 1

8
λ̃(∂σ�n)2 + ...

]
, (2.5)

where dots stand for higher derivative terms suppressed by 1
J . Since J appears as a fac-

tor in front of the action, in the limit J → ∞ all quantum corrections should be also
suppressed by 1

J , and thus the above action can be treated classically. The corresponding
equations of motion

∂tni =
1
2
λ̃εijknj∂

2
σnk (2.6)

are the Landau-Lifshitz equations for a classical ferromagnet. An alternative derivation
of them is based on first writing down the Heisenberg equation for the time evolution of
the spin operator directly from the spin chain Hamiltonian, then considering the coherent
state expectation value and finally taking the continuum limit.
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2.3. LANDAU-LIFSHITZ MODEL FROM STRING ACTION

The action (2.5) should be describing the coherent states of the Heisenberg spin chain in
the above thermodynamic limit. One may wonder how a similar “non-relativistic” action
may appear on the string side where one starts with the usual “relativistic” sigma model
(1.1). To obtain such an effective action one is to perform the following sequence of steps
[2, 3, 57]:

(i) isolate a “fast” coordinate α whose momentum pα is large for a class of string
configurations we consider;

(ii) gauge-fix t ∼ τ and pα ∼ J (or α̃ ∼ σ where α̃ is “T-dual” to α);
(iii) expand the action in derivatives of “slow” or “transverse” coordinates (to be iden-

tified with �n).
To illustrate this procedure let us consider the SU(2) sector of string states carrying

two large spins in S5, with string motions restricted to S3 part of S5. The relevant part of
the AdS5 × S5 metric is then ds2 = −dt2 + dXidX∗

i , with XiX∗
i = 1. Let us set

X1 = X1 + iX2 = u1e
iα , X2 = X3 + iX4 = u2e

iα , uiu
∗
i = 1 .

Here α will be a coordinate associated to the total spin in the two planes (which in general
will be the sum of orbital and internal spin). ui (defined modulo U(1) gauge transforma-
tions) will be the “slow” coordinates determining the “transverse” string profile. Then

dXidX∗
i = (dα + C)2 + DuiDu∗

i , C = −iu∗
i dui, Dui = dui − iCui,

where the second |Dui|2 term represent the metric of CP 1 (this parametrisation corre-
sponds to the Hopf fibration S3 ∼ S1 × S2). Introducing �n = U†�σU, U = (u1, u2) we
get

dXidX∗
i = (Dα)2 +

1
4
(d�n)2 , Dα = dα + C(n) . (2.7)

Writing the resulting sigma model action in phase space form and imposing the (non-
conformal) gauge t = τ, pα =const= J , one gets [3] the same action (2.5) with the WZ
term �C ·∂t�n originating from the pαDα term in the phase-space Lagrangian (cf. its origin
on the spin chain side as an analog of the pq̇ in the coherent state path integral action).

An equivalent approach [57] leading to the same action (2.5) is based on first applying
a 2-d duality (or “T-duality”) transformation α → α̃ and then choosing the “static” gauge
t = τ, α̃ = 1√

λ̃
σ with 1√

λ̃
= J√

λ
. Indeed, starting with

L = −1
2
√−g gpq

(− ∂pt∂qt + DpαDqα + Dpu
∗
i Dqui

)
(2.8)

and applying the 2-d duality in α we get

L = −1
2
√−ggpq

(− ∂pt∂qt + ∂pα̃∂qα̃ + Dpu
∗
i Dqui

)
+ εpqCp∂qα̃ . (2.9)

Thus the “T-dual” background has no off-diagonal metric component but has a non-trivial
NS-NS 2-form coupling in the (α̃, ui) sector. It is useful not to use conformal gauge here.
Eliminating the 2-d metric gpq we then get the Nambu-type action

L = εpqCp∂qα̃ −
√

h , (2.10)
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where h = |det hpq| and hpq = −∂pt∂qt + ∂pα̃∂qα̃ + D(pu
∗
i Dq)ui. If we now fix the

static gauge, t = τ, α̃ = 1√
λ̃
σ, we finish with the action I = J

∫
dt
∫ 2π

0
dσ
2π L, where

L = Ct −
√

(1 + λ̃|Dσui|2)(1− |Dtui|2) +
1
4
λ̃(Dtu∗

i Dσui + c.c.)2 . (2.11)

Making the key assumption that the evolution of ui in t is slow, i.e. the time derivatives
are suppressed (which can be implemented by rescaling t by λ̃ and expanding in powers
of λ̃), we find, to the leading order in λ̃,

L = −iu∗
i ∂tui − 1

2
λ̃|Dσui|2 . (2.12)

This is the same as the CP 1 Landau-Lifshitz action (2.5) when written in terms of �n. Thus
the string-theory counterpart of the WZ term in the spin-chain coherent state effective
action originates from the 2-d NS-NS WZ term in the action for the “T-dual” coordinate
α̃ upon the static gauge fixing of the latter [57].

To summarize:
(i) (t, α̃) are the “longitudinal” coordinates that are gauge-fixed (with α̃ playing the

role of the string direction or the spin chain direction on the SYM side);
(ii) U = (u1, u2) or �n = U†�σU are the “transverse” coordinates that determine the

semiclassical string profile and also the structure of the coherent operator on the SYM
side, tr(Πσui(σ)Φi) (see [2, 57] and below).

The agreement between the low-energy effective actions on the spin chain and the
string side explains not only the matching of energies of coherent states representing
configurations with two large spins (and also the matching of near-by fluctuations) but
also the equivalence of the integrable structures (which was observed on specific examples
in [44, 45]).

2.4. HIGHER ORDERS IN λ

The above leading-order agreement in SU(2) sector has several generalizations.
First, we may include higher-order terms on the string side. Expanding (2.11) in λ̃ and

eliminating higher powers of time derivatives by field redefinitions (which can be done
since the leading-order equation of motion is first order in time derivative) we end up with
[3] (n′ ≡ ∂σn)

L = �C · �̇n− λ̃

8
�n′2 +

λ̃2

32
(�n′′2 − 3

4
�n′4)

− λ̃3

64
[
�n′′′2 − 7

4
�n′2�n′′2 − 25

2
(�n′�n′′)2 +

13
16

�n′6]+ O(λ̃4) . (2.13)

The same λ̃2 term is obtained [3] in the coherent state action on the spin chain side by
starting with the sum of the 1-loop dilatation operator (1.12) and the 2-loop term found in
[20]

D2 =
2λ2

(4π)4

J∑
l=1

(Ql,l+2 − 4Ql,l+1) , Qk,l ≡ 1
2
(I − �σk · �σl) . (2.14)
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The �n′4 term originates from a non-trivial quantum correction on the spin chain side. This
explains the matching of energies and dimensions to the first two orders in λ̃, observed on
specific examples (using the generalized Bethe ansatz on the spin chain side) in [27]. The
equivalent general conclusion about 2-loop matching was obtained in the integrability-
based approach in [47].

The order-by-order agreement seems to break down at λ̃3 term. A natural explanation
[27, 28] is that the string limit (first J → ∞, then λ̃ → 0) and the SYM limit (first
λ → 0, then J → ∞) need not produce the same result when applied to the 2-parameter
functions E = ∆(λ, J). A proposal of how to “complete” the perturbative gauge-theory
expression to make the agreement with string theory manifest appeared in [28]; ref. [29]
also suggested a possible form of generalized Bethe ansatz on the string side that would
naturally interpolate between the string and gauge theory results (see also [62]). These
proposals also suggest a resolution of the order λ̃3 disagreement [14] between the string
theory and gauge theory predictions for 1

J corrections to the BMN spectrum.

A possible explanation of why we found the agreement of λ̃ and λ̃2 terms is that the
structure of the dilatation operator at one and two loop orders is, in a sense, fixed by the
BMN limit, which thus essentially determines the low energy effective action in a unique
way. This is no longer so starting with the 3-loop order, where the dilatation operator
already contains [20] the 4-spin QQ interactions (cf. (2.14)) which do not contribute to
anomalous dimensions in the strict BMN limit.

By analogy with non-renormalization (due to underlaying supersymmetry) of few
leading terms in low-energy effective actions, one may suggest that here the 3-loop prob-
lem may be related to the appearance of non-trivial interpolating functions as coefficients
of the Qn (n ≥ 2) terms in the dilatation operator. This would, in particular, explain
why different structures of the QQ terms are found in the “gauge theory” [20] and “string
theory” [62] limits.

As was suggested in [27, 28], the disagreement between the string and gauge theory
results at 3-loop order in λ and the leading order in J can be repaired by adding “wrap-
ping” contributions to the dilatation operator (and thus to the Bethe ansatz relations) on
the gauge theory side. To illustrate this possibility, let us consider the circular solution
case [35], and use the function λJ

(1+λ)J [28], which is equal to 1 in the string theory limit

(J → ∞ with fixed λ
J2 ≡ λ̃) but zero in the perturbative gauge theory limit, in order to

interpolate between the different λ3

J5 coefficients as follows:

∆ = J +
λ

2J
− λ2

8J3
+

λ3

16J5

λJ−3

(1 + λ)J−3
+ ... . (2.15)

This expression agrees with both the string result (E =
√

J2 + λ in (1.8) with n = 1)
and the perturbative gauge theory result (∆pert = J + λ

2J − λ2

8J3 + 0× λ3 + ... [27]).
Let us add few details about the coherent-state expectation value of higher-loop SYM

dilatation operator. This expectation value appears in the action in the coherent state path
integral (2.3) of the quantum spin chain. Written in terms of independent permutations or
Ql,k ≡ I − Pl,k = 1

2 (1 − σl · σk) the “r-loop” term in the planar dilatation operator is
expected [20, 61] to contain Q in maximal power [ r+1

2 ], i.e. D1, D2 ∼
∑

Q, D3, D4 ∼
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∑
Q +

∑
QQ, etc. Explicitly,

D =
∞∑

r=0

λr

(4π)2r
Dr , Dr =

J∑
l=1

Dr(l) , (2.16)

where as in (1.12) [41] and (2.14) [20]

D0 = I , D1 = 2Ql,l+1 , D2 = −2(4Ql,l+1 −Ql,l+2) . (2.17)

The 3-loop term [20, 61] is a special case of a 2-parameter family [21, 62]

D3(α, c) = 4(15Ql,l+1 − 6Ql,l+2 + Ql,l+3)

+ b1Ql,l+2Ql+1,l+3 + b2Ql,l+3Ql+1,l+2 + b3Ql,l+1Ql+2,l+3 , (2.18)

b1 = 4 + 2c− α , b2 = −4− 4c + α , b3 = −2c + 5α . (2.19)

The choice of c = 0, α = 0 corresponds to the 3-loop gauge theory operator of [20]
whose form is fixed [61] by the superconformal algebra and the structure of Feynman
diagrams (and the BMN scaling). This choice is also consistent with integrability of the
spin chain. To preserve integrability [21] one should set α = 0 (this is the parameter
α2 of [21]), while to have consistency with the gauge-theory perturbative expansion [62]
one should set c = 0 (c ≡ c4 in [62]). The case of α = 2, c = 0 corresponds to the
operator mentioned in [21] which seemed to agree with some string-theory results. The
case of α = 0, c = 1 is the “string” operator [62] which should correspond to the “string”
modification of the Bethe ansatz equations in [29].

Starting with an SU(2) coherent state satisfying (2.1) for which

〈n|Ql,k|n〉 =
1
2
(1− nl · nk) =

1
4
(nl − nk)2 , (2.20)

computing 〈n|D|n〉 and then taking the continuum limit (by introducing a spatial coordi-
nate 0 < σ ≤ 2π, and n(σl) = n( 2πl

J ), so that nl+1 − nl = 2π
J ∂σn + . . ., etc.) we find,

using Taylor expansion and dropping a total derivative over σ, see [3],

λ

(4π)2
〈n|D1|n〉 → λ̃

8

[
�n′2 + O(

1
J2

∂4�n)
]

, λ̃ =
λ

J2
, (2.21)

λ2

(4π)4
〈n|D2|n〉 → − λ̃2

32

[
�n′′2 + O(

1
J2

∂6�n)
]

, (2.22)

λ3

(4π)6
〈n|D3|n〉 → λ̃3

64

[
k1

J2

(2π)2
�n′4

+ �n′′′2 + k2�n
′2�n′′2 + k3(�n′�n′′)2 + O(

1
J2

∂8�n)
]

. (2.23)

Here

k1 =
1
16

(16b1 + 9b2 + b3) =
1
8
(14− 3c− α)
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k2 = − 1
96

(64b1 + 45b2 + b3) = − 1
48

(38− 27c− 7α) ,

k3 = − 5
48

(32b1 + 9b2 + 5b3) = − 5
24

(46 + 9c + α) . (2.24)

Note a relation: k1 +k2 + 1
10k3 = 0. The problematic scaling-violating term J2(∂2

1n)4 in
(2.23) does not cancel automatically; it should cancel after one takes into account quan-
tum corrections (which survive the continuum limit beyond the order λ̃ approximation
[3]). Quantum corrections are expected also to be important in order to demonstrate the
equivalence of the spin-chain result (for the “string” choice of c = 1, α = 0) with the
string-theory result in (2.13). Verifying this equivalence beyond the quadratic �n2-terms
(which obviously agree) remains an open problem.

Let us also mention that one can sum up all terms in the string effective Hamiltonian
that are of second order in �n but to arbitrary order in σ-derivatives [3]

L = �C · �̇n− 1
4
�n

(√
1− λ̃ ∂2 − 1

)
�n + O(�n3) . (2.25)

This expression is in agreement with the leading-order results (2.13) and with the exact
BMN spectrum (see also [1]). The coherent analogs of BMN states correspond to small
fluctuations near the vacuum state �n0 = (0, 0, 1). On the spin chain side these correspond
(in discrete version) to the microscopic spin wave excitations or magnons.

2.5. OTHER SECTORS

It is possible to extend the approach of [2, 3] to other sectors of rotating string states
[55, 56, 57]. First, one is to identify subsectors of operators of the SYM theory which are
closed under renormalization at least to one-loop. Such bosonic subsectors are:

(i) the three-spin “SU(3)” sector of string configurations with all three S5 angular
momenta (J1, J2, J3) being non-zero. They are dual to chiral operators tr(ΦJ1

1 ΦJ2
2 ΦJ3

3 )+
.... These form a set closed only under one-loop renormalization [20], but in the limit
when L = J1 + J2 + J3 is large one can treat this sector as closed even beyond one loop
(mixings with fermionic operators are suppressed by 1/L [59]).

(ii) the “SO(6)” sector of generic (pulsating and rotating) string motions in S5 which
are dual to operators built out of 6 real scalars. Examples of pulsating string states were
considered in [52, 45] and more generally in [57]; this sector will be discussed in the next
section. As was pointed out in [59], one can also consider SO(3) and SO(4) subsectors
of the SO(6) sector which are again closed modulo 1/L corrections.

(iii) the two-spin “SL(2)” sector of string configurations with one AdS5 spin S = S1

and one S5 angular momentum J = J3, which are dual to operators tr(DS
1+i2Φ

J ) + ...
(forming a set closed under renormalization to all orders [51, 64]).

(iv) the three-spin “SU(1, 2)” sector of string configurations with two AdS5 angular
momenta S1, S2 and one S5 spin J = J3, dual to operators tr(DS1

1+i2D
S2
3+i4Φ

J )
+ ... which form a set closed under one-loop renormalization.

Operators carrying more general combinations of non-zero spins from the list (S1, S2,
J1, J2, J3) mix with fermionic and field-strenth operators already at one loop and would
require to consider the full superspin chains [51, 65]; on the string side one would then
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need to include fermions of the GS action [18]. It may happen that one can again isolate
some more general subsectors closed modulo 1/L corrections, but it appears that in order
to apply a derivation of the reduced sigma model action on the string side one would need
to impose additional constraints on the form of string configurations [56].

It is indeed straightforward to generalize [55, 56] the leading-order agreement ob-
served in the SU(2) sector to the SU(3) sector of states with three large S5 spins Ji, i =
1, 2, 3, finding the CP 2 analog of the CP 1 Landau-Lifshitz Lagrangian in (2.5),(2.12)
[56] L = −iu∗

i ∂0ui − 1
2 λ̃|D1ui|2 on both the string and the spin chain sides.

Similar conclusion is reached [56] (see also [69]) in the SL(2) sector of (S, J) states
dual to operators like tr(DSΦJ ) + .... Like in the SU(2) sector here the one-loop dilata-
tion operator D1 may be interpreted as the XXX−1/2 Heisenberg spin chain Hamiltonian
[51]. The corresponding coherent states (related to the SU(2) ones by an “analytic con-
tinuation” from the 2-sphere to the 2-hyperboloid, �n → ��, ηij�i�j = −�21+�22+�23 = −1)
are defined so that for the SL(2) generators Si one has 〈�|Si|�〉 = − 1

2�i and then [56]

〈�|(D1)SL(2) |�〉 =
2λ

(4π)2

J∑
l=1

ln[
1
2
(1− ηij�

i
l�

j
l+1)]

=
2λ

(4π)2

J∑
l=1

ln
[
1 +

1
4
ηij(�i

l − �i
l+1)(�

j
l − �j

l+1)
]

. (2.26)

Note that this is the direct (− + +) signature analog on the classically integrable lattice
Hamiltonian for the Heisenberg magnetic [58]. Since we are interested in comparing to the
semiclassical string case, S as well as J should be large, and, in view of the ferromagnetic
nature of the spin chain, this effectively amounts to a low-energy semiclassical limit of
the chain. Considering the limit J →∞ with fixed λ̃ = λ

J2 we get, as in the SU(2) case,
�(σl) = �( 2πl

J ) ≡ �l and �l+1− �l = 2π
J ∂σ� +O( 1

J2 ∂2
σ�). To the one loop order, i.e. with

only one power of λ in (2.26), in expanding the logarithm we need to keep only the order
1

J2 term, i.e. the term quadratic in first derivatives. This leads to

〈�|(D1)SL(2) |�〉 → J

∫ 2π

0

dσ

2π

[
λ̃

8
ηij�

′i�′j +O(
1
J2

∂4�)
]

. (2.27)

As in the SU(2) case, the same term in the action (containing also the WZ term) is found
on the string theory side. This implies the general agreement between the string and SYM
theory predictions for the energies/dimensions at leading order in λ̃ in the SL(2) sector
and thus generalizes the previous results [43] found for particular solutions.

3. General fast motion in S5 and SO(6) scalar operators

One would like to try to understand the general conditions on string states and SYM
operators for which the above correspondence works, and incorporate also states with
large oscillation numbers. Here we will follow [56, 57] (a closely related approach was
developed in [16, 17, 18]). For strings moving in S5 with large oscillation number the
energy is E = L+c1

λ
L +..., i.e. it is again regular in the limit L →∞, λ̃ = λ

L2 → 0 [52].
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The leading-order duality relation between string energies and anomalous dimensions in
this case was checked in [42, 45, 59]. The general condition on string solutions for which
E/L = f(λ̃) has a regular expansion in λ̃ appears to be that the world sheet metric should
degenerate [16] in the λ̃ → 0 limit, i.e. the string motion should be ultra-relativistic in the
small effective string tension limit (in the strict tensionless limit the corresponding states
become BPS [15]).

For example, in the conformal gauge the 2-d induced metric in general scales as g00 =
−κ2 + ... (assuming t = κτ , etc.), or, after a rescaling of the 2-d time coordinate, g00 =
−1 + O(λ̃) + ..., where we used that κ = 1√

λ̃
. For the fast-moving strings, the leading

O(1) term in the metric gets cancelled out, and thus the metric degenerates in the λ̃ → 0
limit.

In the strict tensionless λ̃ → 0 limit each string piece is following a geodesic (big
circle) in S5, while switching on tension leads to a slight deviation from geodesic flow,
i.e. to a nearly-null world surface [16]. The dual coherent SYM operators are then “locally
BPS”, i.e. each string bit corresponds to a BPS linear combination of 6 scalars (see below).
In general, the scalar operators can be written as

O = Cm1...mL
tr(φm1 ...φmL

) . (3.1)

The planar 1-loop dilatation operator D1 acting on Cm1...mL
was found in [41] to be

equivalent to an integrable SO(6) spin chain Hamiltonian

Hn1...nL
m1···mL

=
λ

(4π)2

L∑
l=1

(
δmlml+1δ

nlnl+1 + 4δnl

[ml
δ

nl+1

ml+1]

)
. (3.2)

To find the analog of the coherent-state action (2.12) we choose a natural set of coherent
states Πl|vl〉, where at each site |v〉 = R(v)|0〉. Here R is an G = SO(6) rotation and |0〉
is the BPS vacuum state corresponding to tr(φ1 + iφ2)L or v(0) = (1, i, 0, 0, 0, 0), which
is invariant under the subgroup H = SO(2) × SO(4). Then the rotation R(v) and thus
the coherent state is parametrized by a point in

G/H = SO(6)/[SO(4)× SO(2)] ,

i.e. v belongs to the Grassmanian G2,6 [56]. G2,6 is thus the coherent state target space
for the spin chain sigma model since it parametrizes the orbits of the half-BPS operator
φ1 + iφ2 under the SO(6) rotations. This is the space of 2-planes passing through zero
in R6, or the space of big circles in S5, i.e. the moduli space of geodesics in S5 [17].
It can be represented also as an 8-dimensional quadric in CP 5: a complex 6-vector vm

should be subject, in addition to vmv∗
m = 1 (and gauging away the common phase) also

to vmvm = 0 condition. Taking the limit L → ∞ with fixed λ̃ = λ
L2 and the continuum

limit vlm(t) → vm(t, σ) we then get the G2,6 analog of the CP 1 action (2.5),(2.12)

S = L

∫
dt

∫ 2π

0

dσ

2π

(
−iv∗m∂tvm − 1

2
λ̃|Dσvm|2

)
, (3.3)

vmv∗
m = 1 , vmvm = 0 , Dσvm = ∂σvm − (v∗∂σv)vm .
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This is also a generalization of the CP 2 action found in the SU(3) sector [56].
One may wonder how this 8-dimensional sigma model may be related to the string

sigma model on R × S5 where the coordinate space of transverse motions is only 4-
dimensional. The crucial point is that the coherent state action is defined on the phase
space (cf. the harmonic oscillator case in sect. 2.1), and 8 = (1+5)× 2− 2× 2 is indeed
the phase space dimension of a string moving in Rt × S5.

On the string side, the need to use the phase space description is related to the fact
that to isolate a “fast” coordinate α for a generic string motion we need to specify both
the position and velocity of each string piece. Given L = −(∂t)2 +(∂Xm)2 in conformal
gauge (ẊX ′ = 0, Ẋ2 + X ′2 = κ2, X2

m = 1) we find that the point-like trajectories
(geodesics) are described by

Xm = am cos α + bm sin α , α = κτ, a2
m = 1, b2

m = 1, ambm = 0 .

Equivalently,

Xm =
1√
2
(eiαvm + e−iαv∗

m) , vm =
1√
2
(am − ibm), |v|2 = 1, v2 = 0 ,

where the constant vector vm thus belongs to G2,6. In general, for near-relativistic string
motions vm should change slowly with τ and σ. Then starting with the phase space La-
grangian for (Xm, pm)

L = pmẊm − 1
2
pmpm − 1

2
X ′

mX ′
m , (3.4)

we may change the variables according to [57] (cf. again the harmonic oscillator case)

Xm =
1√
2
(eiαvm + e−iαv∗

m) , pm =
i√
2
pα(eiαvm − e−iαv∗

m) , (3.5)

where α and vm now depend on τ and σ and vm again belongs to G2,6. There is an
obvious U(1) gauge invariance, α → α− β, vm → eiβvm. Gauge-fixing the 2-d repara-
metrizations by t ∼ τ, pα ∼ L (or, doing an approximate T-duality α → α̃ and setting
α̃ ∼ σ as in sect. 2.3) one finds, after an additional rescaling of the time coordinate, that
the phase-space Lagrangian becomes [57]:

L = pαDtα− 1
2
λ̃|Dσv|2 − 1

4
λ̃
[
e2iα(Dσv)2 + c.c.

]
. (3.6)

The first term here produces the WZ term −iv∗m∂tvm and the last one averages to zero

since α ≈ κτ + ..., where κ = (
√

λ̃)−1 →∞.
Equivalently, the α-dependent terms in the action (that were absent in the SU(2) or

SU(3) sectors) can be eliminated by canonical transformations [57]. We then end up with
the following 8-dimensional phase-space Lagrangian for the “transverse” string motions,
L = −iv∗m∂tvm − 1

2 λ̃|Dσvm|2, which is the same as found on the spin chain side (3.3).
The 3-spin SU(3) case is the special case when vm = (u1, iu1, u2, iu2, u3, iu3), where
ui belongs to the CP 2 subspace of G2,6. The agreement between the spin chain and the
string sides in this general G2,6 = SO(6)/[SO(4) × SO(2)] case explains not only the
matching for pulsating solutions [52, 45] but also for near-by fluctuations.
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Let us now discuss the reason for the restriction v2 = 0 on the spin chain side and
also clarify the structure of the coherent operators corresponding to semiclassical string
states. Given the scalar operator O = Cm1...mL

tr (φm1 . . . φmL
) one may obtain the

Schrödinger equation for the wave function Cm1...mL
(t) from4

S = −
∫

dt

(
iC∗

m1...mL
∂tCm1...mL

+ C∗
m1...mL

Hn1...nL
m1···mL

Cn1...nL

)
. (3.7)

In the limit L → ∞ we may consider the coherent state description and assume the
factorized ansatz [57]

Cm1...mL
= vm1 ...vmL

, (3.8)

where each vl = {vml
} (l = 1, ..., L) is a complex unit-norm 6-vector. The BPS case

corresponding to the totally symmetric traceless Cm1...mL
is represented by vl = v(0),

v2
(0) = 0. Using (3.2) and substituting the ansatz for Cm1...mL

into the above action one
finds

S = −
∫

dt

L∑
l=1

(
iv∗l∂tvl

+
λ

(4π)2

[
(v∗

lv
∗
l+1)(vlvl+1) + 2− 2(v∗

lvl+1)(vlv
∗
l+1)

])
, (3.9)

where we suppressed the 6-vector indices in the scalar products. As expected [41], the
coherent state expectation value of the Hamiltonian (i.e. order λ term in (3.9)) vanishes for
the BPS case when vl does not depend on l and v2 = 0. More generally, if we assume that
vl is changing slowly with l (i.e. vl � vl+1), then we find that (3.9) contains a potential
term (v∗

lv
∗
l)(vlvl) coming from the first “trace” structure in (3.2). This term will lead to

large (order λL [41]) shifts of anomalous dimensions, invalidating low-energy expansion,
i.e. prohibiting one from taking the continuum limit L → ∞, λ̃ = λ

L2 = fixed, and thus
from establishing direct correspondence with string theory along the lines of [2, 3, 56].5

To get solutions with small variations of vl from site to site we are thus to impose

v2
l = 0 , l = 1, . . . , L (3.10)

which minimizes the potential energy coming from the first term in (3.2). This con-
dition implies that the operator at each site is invariant under half of supersymme-
tries: if v2 = 0 the matrix vmΓm appearing in the variation of the operator vmφm, i.e.
δε(vmφm) = i

2 ε̄(vmΓm)ψ, satisfies (vmΓm)2 = 0. This means that vmφm is invariant
under the variations associated with the null eigenvalues [57]. One may thus call v2 = 0
a “locally BPS” condition since the preserved combinations of supercharges in general
are different for each vl, i.e. the operator corresponding to C = v1...vL is not BPS. Here

4For the coherent states we consider the corresponding equation of motion may be interpreted
as a (non-trivial) RG equation for the coupling constant associated to the operator O.

5Even SU(2) sector has in general other higher-energy states with dimensions∼ λL (in addition
to magnons with energies ∼ λ

L2 and macroscopic spin waves with ∆ ∼ λ
L

there are also spinons
with ∆ ∼ λL) but these do not correspond to fast strings – they are not captured by the low-energy
continuum limit of the coherent state path integral.



284 ARKADY A. TSEYTLIN

“local” should be understood in the sense of the spin chain, or, equivalently, the spatial
world-sheet direction.6

In the case when vl are slowly changing we can take the continuum limit as in [2, 3, 56]
by introducing the 2-d field vm(t, σ) with vml(t) = vm(t, 2πl

L ). Then (3.9) reduces to
(3.3) (all higher derivative terms are suppressed by powers of 1

L and the potential term is
absent due to the condition v2 = 0). Then (3.9) becomes equivalent to the G2,6 Landau-
Lifshitz sigma model (3.3) which was derived from the phase space action on the string
side.

To summarize, considering ultra-relativistic strings in S5 one can isolate a fast variable
α (a “polar angle” in the string phase space) whose momentum pα is large. One may
gauge-fix pα to be constant∼ L or set α̃ ∼ Lσ, so that σ or the “operator direction” on the
SYM side gets interpretation of “T-dual to fast coordinate” direction. As a result, one finds
a local phase-space action with 8-dimensional target space (where one can not eliminate
4 momenta without spoiling the locality). This action is equivalent to the Grassmanian
G2,6 Landau-Lifshitz sigma model action appearing on the spin chain side.

As a by-product, we thus get a precise mapping between string solutions and SYM
operators representing coherent spin chain states [2, 57]. Explicit examples correspond-
ing to pulsating and rotating solutions were given in [57]. In the continuum limit we
may write the operator corresponding to the solution v(t, σ) as O = tr[

∏
σ v(t, σ)], v ≡

vm(t, σ)φm. This locally BPS coherent operator is the SYM operator naturally associated
to a ultra-relativistic string solution. The t-dependence of the string solution thus trans-
lates into the RG scale dependence of O, while the σ-dependence describes the ordering
of scalar field factors under the trace.

In general, semiclassical string states represented by classical string solutions should
be dual to coherent spin chain states or coherent operators, which are different from the
exact eigenstates of the dilatation operator but which should lead to the same energy
or anomalous dimension expressions. At the same time, the Bethe ansatz approach [41,
42, 43, 47] is determining the exact eigenvalues of the dilatation operator. The reason
why the two approaches happen to be in agreement is that in the limit we consider the
problem is essentially semiclassical, and because of the integrability of the spin chain,
its exact eigenvalues are not just well-approximated by the classical solutions but are
actually exactly reproduced by them for L→∞, i.e. (just as in the harmonic oscillator or
flat space string theory case, cf. also [67]) the semiclassical coherent state sigma model
approach happens to be exact.

4. Concluding remarks

As discussed above, there exists a remarkable generalization of the near-BPS (BMN)
limit to non-BPS but “locally-BPS” sector of string/SYM states (for related reviews see
[12, 40, 22]). It remains to understand better when and why this direct relation works
or fails, but the hope is to use it as a guide towards finding the string/SYM spectrum
exactly in λ, at least in a subsector of states. The relation between phase-space action

6This generalizes the argument implicit in [2]; an equivalent proposal was made in [17]. This
is related to but different from the “nearly BPS” operators discussed in [15] (which, by definition,
were those which become BPS in the limit λ → 0).
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for “slow” variables on the string side and the coherent-state action on the SYM (spin
chain) side gives a very explicit picture of how string action “emerges” on the conformal
gauge theory side (with the central role played by the dilatation operator). This implies
not only an equivalence between string energies and SYM dimensions (established to first
two orders in expansion in the effective coupling λ̃) but also a direct relation between the
string profiles and the structure of coherent SYM operators.

One may try also to use the duality as a tool to uncover the structure of planar SYM
theory to all orders in λ by assuming the exact correspondence between particular SYM
and string states. For example, demanding the consistency with the BMN scaling limit
(along with superconformal algebra) determines the structure of the full 3-loop SYM
dilatation operator in the SU(2) sector [20, 21]. One can also use the BMN limit to fix
only part of the dilatation operator but to all orders in λ [1]. Generalizing (1.12),(2.14)
and the 3- and 4-loop expressions in [20, 21] one can organize [27, 3, 1] the dilatation
operator as an expansion in powers of Qk,l = 1

2 (I − �σk · �σl) which reflect interactions
between spin chain sites,

D =
∑

Q +
∑

QQ +
∑

QQQ + ... .

Here the products Q...Q are “irreducible”, i.e. index of each site appears only once. The
Q2-terms first appear at 3 loops, Q3-terms – at 5 loops, etc. [20, 21]. Concentrating on
the order-Q part D(1) of D one can write:

D(1) =
∞∑

r=0

λr

(4π)r

L∑
l=1

Dr(l) , Dr(l) = 2
r∑

k=1

ar,kQl,l+k , (4.1)

or D(1) =
∑L

l=1

∑L−1
k=1 hk(L, λ) Ql,l+k. Demanding the agreement with the BMN limit

one can then determine the coefficients ar,k and thus the function hk explicitly to all
orders in λ [1]. In particular, for large L, i.e. when D acts on “long” operators, one finds

D(1) = 2
L∑

l=1

∞∑
k=1

fk(λ) Ql,l+k , fk(λ) =
∞∑

r=k

λr

(4π)2r
ar,l , (4.2)

where the coefficients fk(λ) can be summed up in terms of the standard Gauss hyperge-
ometric function [1]

fk(λ) =
(

λ

4π2

)k Γ(k − 1
2 )

4
√

π Γ(k + 1) 2F1(k − 1
2
, k +

1
2
; 2k + 1;− λ

π2
) , (4.3)

or, equivalently,

fk(λ) =
1

4π(2k − 1)

(
λ

π2

)k ∫ 1

0

du

[
u(1− u)
1 + λ

π2 u

]k−1/2

. (4.4)

fk goes rapidly to zero at large k, so we get a spin chain with short-range interactions.
One may hope that imposing additional constraints coming from correspondence with

other string solutions (and using recent insights in [28, 29]) may help to determine the
structure of the dilatation operator further.
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The function fk(λ) in (4.3) smoothly interpolates between the usual perturbative ex-
pansion at small λ and fk(λ) ∼ √

λ behaviour at large λ. The latter is the expected
behaviour of anomalous dimensions of “long” operators dual to “semiclassical” string
states.

Similar interpolating functions should appear also in anomalous dimensions of other
SYM operators, though for “short” operators the strong-coupling asymptotics of the di-
mensions should be λ1/4. Let us consider, for example, the following dimension 4 super-
symmetry descendant of the Konishi operator, tr([Φ1,Φ2]2) (which belongs to the SU(2)
sector and should have the same anomalous dimension as the Konishi operator). The first
few terms in the perturbative λ-expansion of its anomalous dimension are known to be
[68, 20, 33, 61]

∆
λ�1 = 4 + 3λ̄− 3λ̄2 +

21
4

λ̄3 − 705
64

λ̄4 + O(λ̄5) , (4.5)

λ̄ ≡ λ

4π2
.

If one would to ignore all non-linear in Q terms in the dilatation operator (4.1), then the
resummed expression for the anomalous dimension would be [1]

∆(1) = 4 +
3
2
(√

1 + 4λ̄− 1
)

, (4.6)

which does not, however, have the expected large λ asymptotics,

∆
λ�1 = 2λ1/4 + ... = 2

√
2π(λ̄)1/4 + ... . (4.7)

Note that one cannot reproduce such asymptotics with an interpolating expression for ∆
built out of rational functions of the square of the effective string λ̄ = T 2: while the

expansion of a rational function (like
√√

a + bλ̄ + d) at small λ would have the same
form as (4.5), the factors of π would not match in the strong coupling limit (4.7).

The reason for the above extra factor of
√

π in ∆
λ�1 in (4.7) expressed in terms

of λ̄ can be understood following ref. [2]. The Konishi operator should correspond to
the lowest-level scalar string mode. The masses of the AdS5 × S5 string modes are,
in general, non-trivial functions of the string tension (the corresponding wave equations
receive α′-corrections), but, in the large-tension limit, they should simply be the same as
in flat space, i.e. (in units where R = 1)

m2 =
4n

α′ = 4n
√

λ = 8nπT , T =

√
λ

2π
=
√

λ̄ . (4.8)

Then the standard AdS5 formula ∆(∆− 4) = m2 for the dimension of a scalar field with
mass m (again, expected to be valid in the large tension limit) predicts that for n = 1

∆− 2 =
√

4 + m2 → m + ... = 2
√

2π
√

λ̄ + ... . (4.9)

It thus appears that instead of being a rational function of λ̄, the dimension ∆ of the
Konishi operator should be a transcendental function. In fact, the hypergeometric function
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like the one appearing in (4.3), i.e. 2F1(a, b; c;−kλ̄), seems to be a natural candidate: one
can choose its arguments (and an overall coefficient) so that to match the powers of λ
and π in both the strong and the weak coupling limits (one example with required strong-
coupling asymptotics has a = −1/4, b = 3/4, c = 3/2, k = 4). With ∆ ∼ 2F1 (or ∆
being a rational function of 2F1) it is possible also to satisfy the string-theory requirement
that the strong-coupling expansion should be organized as an expansion in powers of the
inverse string tension, i.e. ∆ = λ1/4(c1 + c2√

λ
+ c3

(
√

λ)2
+ ...) (cf. (4.9)).

At the same time, for “long” operators with large canonical dimensions (like BMN
operators or non-BPS operators discussed in the previous sections) the interpolating func-
tions appearing in ∆ may be simple rational functions like square roots: here both the
weak (gauge theory) and the strong (string theory) expansions are organized in terms of
λ̄ = λ

4π2 with the leading coefficients which do not contain extra powers of π (see also
the discussion below eq. (1.6)).
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BARYOGENESIS WITH LARGE EXTRA DIMENSIONS
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Abstract. Baryogenesis is a challenge, particularly for low string scale models because
there is an upper bound on the reheat temperature of the Universe, and because certain
baryon number violating operators must be suppressed. We review the model using hor-
izontal family symmetries presented in [1] to emphasis its prediction for the weak angle
0.239 very close to experimental value.

In these proceedings I wish to return to the model proposed in [1]: it shows that it is
in principle possible to reconcile explanation of the observed baryonic asymmetry of the
universe (BAU),with the possibility of large extra dimensions (references will be found in
[1]).

Baryogenesis is a challenge in the class of models, mainly because the reheat tem-
perature Treh is constrained to be so low that most existing scenarios are ruled out. For
example, the reheat temperature must be less than ∼ 100 GeV for a large range of values
of the string scale Ms, so the electroweak B + L violating processes are not available for
baryogenesis.

The low Treh creates a generic difficulty. One of the Sakharov conditions for baryo-
gensis is that one needs some out-of-equilibrium dynamics. This can be found at phase
transitions, or when some interaction is not fast enough to keep up with the expansion
of the Universe. However when the temperature (or energy density) of the Universe is
low, the expansion rate is too (H ∼ 10−18T at T ∼GeV), so interactions have no diffi-
culty keeping up with the expansion. Getting the out-of-equilibrium anywhere but a phase
transition is hard. If the reheat temperature is less than ∼ 0.1 GeV, then the only phase
transition available appears to be the one out of inflation.

Another difficulty for baryogenesis models is the bounds on baryon number viola-
tion. For instance, to avoid fast proton decay through |∆B| = |∆L| = 1 operators, and
neutron-anti-neutron oscillations through ∆B = 2 operators, one may assume that B is
conserved mod 3 . This is problematic for scenarios where the BAU is generated in the
out-of-equilibrium decay of a particle X . X must have at least two decay modes with
different baryon number in the final state, and approximately the same branching ratios.
Otherwise the baryon asymmetry generated will be small as a consequence of CPT. If B
is conserved mod 3, then X must decay to final states with B = 1 and with B = 2 (or
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generation q uc dc � ec

1 5 5 2 1 5

2 4 2 1 0 4

3 1 0 1 0 1

TABLE 1. Possible charges for the fermi-
ons and the Higgs under the horizontal
U(1), for three generations. The first gen-
eration is u, d, e, and so on. These charges
generate approximately the right Yukawa
couplings.

B = 0 and B = 3), so that X exchange generates a vertex that conserves B mod 3. But
B = 2 operators are of higher dimension that B = 1 operators, so the branching ratio of
X to the B = 2 final state will be very small.

Suppose that Ms ≤ 105 GeV, so symmetries are required to forbid the n − n̄ oper-
ator udsuds, and the fast proton decay vertices. Then, one can consider that the BAU is
generated in an out-of-equilibrium decay of a scalar particle X . It should decay out of
equilibrium to final states with different baryon numbers, with enough CP violation in the
decay rates to generate a baryon to photon ratio η ∼ 3×10−10. X can be the inflaton and
it would decay before nucleosynthesis, at about the right time to reheat the Universe. Or,X
is a particle generated in the reheating process, with a number density nX = δnγ . The
condition such that X annihilations will be out of equilibrium at the reheat temperature
and thereafter, so all the Xs will decay is that it is very weakly coupled. Large suppression
factor in the couplings could originate from the volume of internal dimensions.

We assume that the SM yukawa couplings are generated by some horizontal U(1)
gauge symmetry, which is spontaneously broken below Ms. The quarks (q, uc, dc) and
leptons (�, ec) carry positive charges under this symmetry, and the charges are higher for
the lighter fermions. The Higgs that breaks the horizontal U(1) with vev θ carries neg-
ative charge. By choosing the horizontal charges of the fermions QH

f with care, one can
generate approximately the right structure for the Yukawa matrices, because the interac-
tion ucuH ∼ muūu appears multiplied by (θ/Λ)QH

uc+QH
u and tctH ∼ mtt̄t appears

multiplied by (θ/Λ)QH
tc+QH

t . Such a mechanism is probably required in models with a
low Ms to avoid FCNC. It will also suppress the problematic ucdcscucdcsc operator: at
Ms where θ is zero, it is forbidden by the horizontal symmetry (if all the fermions are
positively charged), and once the horizontal symmetry is broken, ucdcscucdcsc can ap-
pear suppressed by (θ/Λ)2(Q

H
uc+QH

dc+QH
sc ). For θ/Λ ≡ ε ∼ .2 and the charges in table 2,

the operator ucdcscucdcsc will be multiplied by ε16, which is compatible with the exper-
imental limit for Λ ≤ few TeV. The proton is stable enough provided that L is conserved
mod 2.

Suppose that X is a light (∼ 10 GeV) gauge singlet scalar with L = 1. It can decay
to SM particles via the dimension 7 operators Xqqq� and Xucucdcec. These violate B
respectively by 1 and -1 units, so a baryon asymmetry could be generated. We suppose
that the fermions have the charges under the horizontal U(1) that are listed in table 2. In
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this case the principle decay rates will be

Γp̄ ∼ ε18
m7

X

Λ6
X → cc uc bc τ c (D̄ B̄ p̄ τ+) (0.1)

Γp ∼ ε18
m7

X

Λ6
X → c s b ντ (D B K p ντ ) (0.2)

Γp2 ∼ ε20
m7

X

Λ6
X → c d b ντ (D B p ντ ) (0.3)

where ε = θ/Λ ∼ .2. We neglect kinematics, factors of 4π, and so on, so these are very
approximate estimates. However, for Λ ∼ 3 TeV, and Treh ∼ 3 MeV, we get mX ∼ 25
GeV. This is heavy enough to decay to B– and D–mesons, but light enough to (possibly)
be produced in the reheating process, or to be the inflaton. For larger Λ, we would need a
larger mX .

We now need to consider whether a sufficient baryon asymmetry can be generated in
the decays. We assume that Γp � Γp2 so we neglect Γp2 and all the other smaller decay
modes. The net number of baryons produced per X particle will be

nb

nX
� Γp − Γp̄ + Γ̄p̄ − Γ̄p

Γp + Γp̄
≡ θCP (0.4)

where Γ̄ is the CP conjugate decay. The baryon-to-photon ratio nb/nγ ≡ η � 3× 10−10

will be
η � nX

nγ
θCP . (0.5)

If X is the inflaton, then nX/nγ ∼ Treh/mX ∼ 10−3. If X is produced in the reheating
process, then nX/nγ = δ is a model dependent parameter. One would not expect to make
more than one or two Xs in the decay of each inflaton, so in this case δ ≤ 10−3. This
means that we need θCP ≥ 10−7. If we assume that the CP violation arises through loop
corrections involving new particles at the scale Ms, then θCP ∼ (mX/Λ)2 ∼ 10−6,
which is approximately right.

The family symmetry presented here obviously suffers from anomalies. These might
be cancelled in two different ways. The first is to assume that massive particles in a hid-
den sector are charged under this U(1), standard model symmetries and some hidden
gauge group. The hidden symmetry might suppress any undesirable non-renormalisable
operator.

A more interesting possibility is to appeal to a Green-Schwarz mechanism to cancel
the anomalies. If the standard model gauge couplings are all given by the vacuum expec-
tation value of a single modulus (dilaton) then anomaly cancellation implies particular
tree level relations between the couplings. For the model at hand, the strong, weak and
hypercharge U(1) couplings are in the ratio 1 : 1 : 105/33 at Ms ∼ TeV instead of the
usual relation 1 : 1 : 5/3 at 1016 GeV. To compare the tree level prediction with exper-
imental measurements we see that the value obtained for sin 0.239 is extremely close to
the measured one.! Here I would like to stress this point which we did not in [1].

In conclusion, if the large extra dimension models deal quite easily with particle ex-
periments, explaining the cosmological observation, as to generate in a natural way the
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measured small or big ratio in the universe, remains a challenge. If one accepts a certain
amount of fine-tuning, as it is fashionable today, then models can be easily build as shown
above.
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Abstract. We review some general aspects of braneworld cosmologies in which an infla-
tionary period driven by a scalar field confined on the brane is described by a nonstandard
effective Friedmann equation. The perturbation spectra, consistency equations and obser-
vational consequences of these models are considered.

1. Introduction

Motivated by recent developments in string, superstring and M theory, several models
for a multidimensional target spacetime have been proposed. Among them, particular
attention has been devoted to brane-world scenarios, according to which the visible uni-
verse is a (3+1)-dimensional variety (a 3-brane) embedded in a bulk with some either
non-compact or compactified extra dimensions. Typically, the background metric on the
brane is assumed to be the Friedmann-Robertson-Walker (FRW) metric and the Einstein
equations are modified in accordance with the gravity model describing spacetime. Their
projection on the brane results in the basic FRW equations for the cosmological evolution.
For an introduction to the subject and some lists of references, see [1].

In this paper we review how to look for cosmic signatures of high-energy, higher-
derivative gravity models. In particular, the construction of a nontrivial set of consistency
equations permits us to compare theoretical predictions with the perturbation spectra of
the cosmic microwave background (CMB). It turns out that CMB experiments of this
and next generation might be able to discriminate between the standard four-dimensional
lore and the braneworld paradigm. In Secs. 2 and 3 we introduce the basic ingredients
of the patch and slow-roll formalisms, taking as examples the five-dimensional Randall-
Sundrum (RS) scenarios and their Gauss-Bonnet (GB) generalization. In Sec. 4 we outline
some results on cosmological perturbations in the presence of an extra dimension and find
their observational consequences. Conclusions are in Sec. 5

297

L. Baulied et al. (eds.), String Theory: From Gauge Interactions to Cosmology, 297–303.
© 2005 Springer.  Printed in the Netherlands. 



298 GIANLUCA CALCAGNI

2. Setup

One of the first problems one has to deal with when constructing braneworld models is
how to stabilize the extra dimension. This can be achieved in a number of ways; in the
RS example, Goldberger and Wise have provided a mechanism according to which a 5D
massive scalar is put into the bulk with a potential of the same order of the brane tension
λ [2]. If the energy density ρ on the brane is smaller than the characteristic energy of the
scalar potential, ρ/V ∼ ρ/λ � 1, then the radion is stabilized and one gets the standard
Friedmann equation H2 ∝ ρ on the brane. On the contrary, if the brane energy density
is comparable with the stabilization potential, ρ/λ � 1, the bulk backreacts because it
feels the presence of the brane matter, the minimum of the potential is shifted and the
well-known quadratic corrections to the Friedmann equation arise:

H2 =
κ2

4

6λ
ρ(2λ + ρ) , (2.1)

where H is the effective Hubble rate experienced by an observer on the brane and κ4 is
the 4D gravitational coupling.

The RS model can be viewed as a particular energy limit of a Gauss-Bonnet braneworld,
characterized by the 5D Planck mass M5 ≡ κ

−2/3
5 and a Friedmann equation

H2 =
c+ + c− − 2

8α
, (2.2)

where α = 1/(8g2
s) is the Gauss-Bonnet coupling (gs is the string coupling) and, defining√

α/2 κ2
5 ≡ σ−1

0 ,

c± =
{[

(1 + 4αΛ5/3)3/2 + (σ/σ0)
2
]1/2

± σ/σ0

}2/3

. (2.3)

Λ5 < 0 is the bulk cosmological constant and σ is the matter energy density which
is decomposed into a matter contribution plus the brane tension λ: σ = ρ + λ. When
σ/σ0 � 1, one gets the “pure Gauss-Bonnet” high-energy regime,

H2 =
(

κ2
5

16α

)2/3

ρ2/3 . (2.4)

When the energy density is far below the 5D scale but ρ� λ, one recovers the Friedmann
equation of the RS scenario with vanishing 4D cosmological constant, provided that some
relations among the parameters of the action are satisfied.

Here we shall consider nonstandard cosmological evolutions on the brane and extend
the RS and GB discussion to arbitrary scenarios we dubbed “patch cosmologies” [3], with

H2 = β2
qρq . (2.5)

βq is a constant and the exponent q is equal to 1 in the pure 4D (radion-stabilized) regime,
q = 2 in the high-energy limit of the RS braneworld and q = 2/3 in the high-energy
limit of the GB scenario. In order to simplify the framework, we make the following
assumptions:
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1. There is a confinement mechanism such that matter lives on the brane only, while
gravitons are free to propagate in the bulk. This is guaranteed as long as ρ < M4

5 .
2. The contribution of the Weyl tensor is neglected.
3. The contribution of the anisotropic stress is neglected.
4. We concentrate on the large-scale limit of the cosmological perturbations.

Assumption 2 closes the system of equations on the brane and sets aside the nonlocal
contributions from the bulk, while assumptions 3 and 4 reduce the number of degrees of
freedom of gauge invariant scalar perturbations.

This list might seem too restrictive and to spoil almost all the interesting features
of the model. However, assumptions 4 and 2 nicely fit in the inflationary regime, since
the long wavelength region of the spectrum, corresponding to the Sachs-Wolfe plateau,
encodes the main physics of the inflationary era. Moreover, the dark radiation term, which
is the simplest contribution of the Weyl tensor, scales as a−4 and is exponentially damped
during the accelerated expansion. Finally, bulk physics mainly affects the small-scale/late-
time cosmological structure and can be consistently neglected during inflation. This is a
highly nontrivial result which has been confirmed with several methods both analytically
and numerically [4].

Imposing a perfect fluid on the brane with equation of state p = wρ, the continuity
equation governing the cosmological dynamics is the same as in four dimensions, thanks
to assumption 2:

ρ̇ + 3H(ρ + p) = 0 . (2.6)

There are two candidates for the role of inflation. The first one is an ordinary scalar field
φ with energy density and pressure

ρ = φ̇2/2 + V (φ) = p + 2V (φ) . (2.7)

The second one is a Dirac-Born-Infeld (DBI) tachyon T such that

ρ = V (T )/cS = −V (T )2/p , (2.8)

cS ≡
√

1− Ṫ 2 . (2.9)

From a string-theoretical point of view, the evolution of the tachyon proceeds up to the
condensation Ṫ → 1 into the closed string vacuum, where no signal of open excita-
tions propagates (Carrollian limit). Also, near the minimum the strong coupling regime
emerges, gs = O(1), and the perturbative description implicit in the DBI action may
fail down. However, from a cosmological perspective Eq. (2.8) is a toy model and, like in
standard inflation, an additional reheating mechanism around the condensation is required
for gracefully exiting the inflationary period. Here we will not consider this and other (in-
deed solvable) problems concerning the tachyon and just implement the DBI action in the
cosmological dynamics as an alternative model of inflation.

3. Slow-roll parameters

Let ψ denote the inflaton field irrespectively of its action. Expressions involving ψ will be
valid for both the ordinary scalar and the tachyon. The first-order slow-roll (SR) parame-
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ters are defined as

ε ≡ − Ḣ

H2
, η ≡ − ψ̈

Hψ̇
, (3.1)

together with their evolution equations with respect to synchronous time

ε̇ = Hε
[(

2− θ̃
)

ε− 2η
]

, η̇ = H
(
εη − ξ2

)
, (3.2)

where ξ2 ≡ (ψ̈/ψ̇)·/H2 is a second-order parameter, in the sense that it appears only
in expressions which are O(ε2, η2, εη). Here θ̃ = 2 for the tachyon field and θ̃ = θ ≡
2(1 − q−1) for the ordinary scalar field (4D: θ = 0; RS: θ = 1; GB: θ = −1). Note that
each time derivative of the SR parameters increases the order of the SR expressions by
one.

One can construct infinite towers of SR parameters encoding the full dynamics of the
inflationary model. For instance, Eq. (3.1) provides the first entries of the “Hubble” SR
tower; another, sometimes more convenient tower is the potential tower defined as

εφV,0 ≡ q

6β2
q

V ′2

V 1+q
, (3.3)

εφV,n ≡ 1
3β2

q

[
V (n+1)(V ′)n−1

V nq

]1/n

, n ≥ 1 , (3.4)

in the case of the normal scalar field. The potential tower can be related to the Hubble
tower by approximated relations [3].

The first SR parameter is actually the time derivative of the Hubble radius RH ≡
H−1. Because of its purely geometrical content, it cannot be implemented in these SR
towers recursively. By definition, there is inflation when ε < 1:

ä

a
= H2(1− ε) . (3.5)

Under the slow-roll approximation, if the potential term dominates over the kinetic term,
then the inflaton slowly rolls down its potential, ε, η � 1, and the perfect fluid mimics
that of a cosmological constant, p ≈ −ρ. Deviations from the de Sitter behaviour generate
large-scale perturbations which explain the anisotropies in the CMB.

4. Cosmological perturbations: theory and observations

Quantum fluctuations of the scalar field governing the accelerated era are inflated to cos-
mological scales because of the superluminal expansion. They constitute the seeds of both
the small anisotropies observed in the microwave sky and the large-scale nonlinear struc-
tures around which gravitating matter organizes itself. For an introduction of the subject in
the general relativistic case, see [5]. The standard procedure to adopt in order to compute
the perturbation spetrum is: (a) Write the linearly perturbed metric in terms of gauge-
invariant scalar quantities. (b) Compute the effective action of the scalar field fluctuation
and the associated equation of motion. (c) Write the perturbation amplitude as a function
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of an exact solution of the equation of motion with constant SR parameters. (d) Perturb
this solution with small variations of the parameters.

In scenarios with an extra dimension the full computation is very nontrivial due to
either the extra degrees of freedom in the 5D metric and the complicated geometrical
background on which to solve the Einstein equations coupled with the junction conditions
on the brane. However, as explained above things become simpler when going to the large-
scale limit. In this case, several arguments show that the resulting spectra are, to lowest
SR order,

A =
k

5πz
, (4.1)

z(φ) =
aφ̇

H
, (4.2)

z(T ) =
aṪ

cSβ
1/q
q Hθ/2

, (4.3)

z(h) =
√

2a

κ4Fq
, (4.4)

F 2
q ≡ 3qβ2−θ

q Hθ

ζqκ2
4

, (4.5)

where A(h) = At is the tensor spectrum of the gravitational sector and ζq is a numerical
constant which depends on the concrete gravity model one is considering: it is ζ1 = 1 =
ζ2/3 for the 4D and GB cases and ζ2 = 2/3 for RS [6].

To lowest order, the scalar and tensor spectral indices are first order in the SR pa-
rameter, nt ≡ d ln A2

t /d ln k ∼ O(ε) ∼ ns − 1 ≡ d ln A2
s/d ln k, while their running

αs,t ≡ dns,t/d ln k is second order. Here k is the comoving wave number of the pertur-
bation and the subscripts s and t refer to scalar and tensor perturbations, respectively. In
the case of exact scale invariance, ns = 1 and nt = 0. The tensor-to-scalar ratio is

r ≡ A2
t /A

2
s = ε/ζq + O(ε2) . (4.6)

Combining the SR expressions of the observables, one gets the consistency equations

nt = −(2 + θ)ζqr + O(ε2) , (4.7)

αt = (2 + θ)ζqr[(2 + θ)ζqr + (ns − 1)] , (4.8)

αs(φ) ≈ ζqr[4(3 + θ)ζqr + 5(ns − 1)] , (4.9)

αs(T ) ≈ (3 + θ)ζqr[(2 + θ)ζqr + (ns − 1)] . (4.10)

The key point is that the set of consistency relations is not degenerate when considering
different patches θ and θ′. The only known (accidental) degeneracy is for Eq. (4.7) in the
RS and 4D case, where nt = −2r at first SR order. However, the second-order version
of this equation together with the expressions for the runnings definitely break the degen-
eracy. This implies that, at least in principle, braneworld scenarios can be discriminated
between each other.

To quantify the effect of the extra dimension, we can use the recent CMB data coming
from WMAP [7]. With the upper bound r < 0.06 for the tensor-to-scalar ratio and the
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best-fit value ns ≈ 0.95 for the scalar spectral index, the relative scalar running in two
different patches is

α(θ,ψ)
s − α(θ′,ψ′)

s ∼ O(10−2) , (4.11)

which is close to the WMAP estimate of the experimental error. This estimate will be
highly improved by either the updated WMAP data set and near-future experiments, in-
cluding the European Planck satellite, for which the forecast precision should be amelio-
rated by one order of magnitude, ∆αs ∼ O(10−3).

5. Conclusions

In this paper we have summarized some results on braneworld inflation and their ob-
servable consequences. We have not presented a full 5D calculation but we expect that
bulk physics would not dramatically improve large-scale results [4]. The study of the mi-
crowave background could give the first clues of a wider spacetime in the next years or
even months.

In addition to the brane conjecture, one may insert other exotic ingredients, borrowed
from string and M theory, that may give rise to characteristic predictions, although at the
price of increasing the number and complexity of concurring models. For instance, the
introduction of a noncommutative scale can generate a blue-tilted spectrum and explain,
at least partially, the low-multipole suppression of the CMB spectrum detected by WMAP
(e.g. [8]).

It would be interesting to find new cosmological scenarios with θ �= 0,±1 and exploit
the compact formalism provided by the patch formulation of the cosmological dynamics.
Certainly there could be a lot of work for M/string theorists in this direction.

A final important question is in order: Will the CMB be the smoking gun of extra
dimensions? In the context of the patch formalism the answer, unfortunately, is no. Some
general relativisticmodels may predict a set of values for the observables{n t, n s, r, α s, . . .}
close to that of a braneworld within the experimental sensitivity. Even noncommutativity
may not escape this “cosmic degeneracy” since, for example, a blue-tilted spectrum can
be achieved by the 4D hybrid inflation. So we can talk about clues but not proofs about
high-energy cosmologies when examining the experimental data. The subject has to be
further explored in a more precise way than that provided here in order to find out more
compelling and sophisticated predictions, extending the discussion also to the small-scale
region of the spectrum.
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Abstract. We briefly review our work on the cascading renormalization group flows for
gauge theories on D-branes probing Calabi-Yau singularities. Such RG flows are some-
times chaotic and exhibit duality walls. We construct supergravity solutions dual to loga-
rithmic flows for these theories. We make new observations about a surface of conformal
theories and more complicated supergravity solutions.

1. Introduction

Extending the revolutionary AdS/CFT correspondence [1] beyond the original relation
between N = 4 SYM on N D3-branes and Type IIB supergravity (sugra) in AdS5 × S5

with N units of RR 5-form flux on the S5 is important to understanding realistic strongly
coupled field theories such as QCD.

Two standard extensions have been (1) reducing the SUSY to N = 1 by placing
the D3-branes transverse to a Calabi-Yau singularity (the dual sugra background becomes
AdS5×X5, where X5 is some non-spherical horizon); and (2) breaking conformal invari-
ance and inducing an RG flow, by introducing fractional branes, i.e., D5-branes wrapped
over collapsing 2-cycles of the singularity (in the sugra dual, 3-form fluxes are turned on).
A fascinating type of RG flow is the duality cascade: Seiberg duality is used to switch to
an alternative description whenever infinite coupling is reached. This idea was introduced
in [2] for the gauge theory on D-branes probing the conifold.
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306 SEBASTIÁN FRANCO ET AL.

x1

x3

x2

(A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t

0

0.5

1

1.5

2

xi

(B)

0 0.125 0.25 0.375 0.5 0.625 0.75

0.4

0.5

0.6

0.7

0 0.125 0.25 0.375 0.5 0.625 0.75

0.2295 0.22955 0.2296 0.22965 0.2297

0.51343

0.51344

0.51345

0.51346

0.51347

0.51348

0.51349

0.5135

0.2295 0.22955 0.2296 0.22965 0.2297

0.22325 0.22335 0.22345 0.22355

0.51104

0.51106

0.51108

0.5111

0.51112

0.51114

0.51116

0.22325 0.22335 0.22345 0.22355

0.22 0.225 0.23 0.235

0.509

0.51

0.511

0.512

0.513

0.514
0.22 0.225 0.23 0.235

23
(2

)

23
(1

)

23
1(

2)

23
2(

1)

23
2(

3)

23
(2

)

23
(1

)

23
1(

3)

23
21

(2
)

23
21

(3
)

23
2(

1)

23
2(

3)

23
23

(1
)

23
23

(2
)

23
12

(3
)

23
12

(1
)

23
1(

3)

23
1(

2)

23
13

(2
)

23
13

(1
)

(b)

(c)

(a)

(C)

Figure 1.

2. Cascades in coupling space

There is an interesting way to look at cascading RG flows. In a gauge theory described by
a quiver with k gauge groups, the inverse squared couplings xi ≡ 1/g2

i are positive and
define a k-dimensional cone (R+)k. Inside this cone, the RG flow generates a trajectory
dictated by the beta functions and satisfying

∑k
i ri/g2

i = constant. Each step between
dualizations then corresponds to a straight line in the simplex defined by the intersection
between this hyperplane and the (R+)k cone. We show such a trajectory in Figure 1(A).
Now, each wall of the cone corresponds to one of the gauge couplings going to infinity.
Therefore, whenever one of them is reached, we switch to a Seiberg dual theory at weak
coupling. There will be then a different simplex associated to the dual theory. The entire
cascade corresponds to a flow in the space of glued simplices. From this perspective,
which resembles a billiard bouncing in coupling space, one foresees that cascading RG
flows will exhibit chaotic behavior.

3. Duality Walls and Fractals

After introducing the notion of a duality cascade, it is natural to wonder whether some
supersymmetric extension of the Standard Model, such as the MSSM, can sit at the IR
endpoint of a cascade. This question was posed by Matthew Strassler [3]. Generically,
while trying to reconstruct such a RG flow, one encounters a UV accumulation point
beyond which Seiberg duality cannot proceed. This phenomenon is dubbed a duality wall
and has been constructed for gauge theories engineered with D-branes on singularities
[4]. Figure 1(B) shows the behavior of couplings for a cascade with a duality wall for the
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theory on D-branes over a complex cone over the Zeroth-Hirzebruch surface F0
1.

Postponing the question of a possible UV completion of duality walls, we can study
the dependence of its position on initial couplings. Illustrating with F0, the result is re-
markable and is presented in Figure 1(C). The curve is a fractal, with concave and convex
cusps. Whenever we zoom in on a convex cusp, an infinite, self-similar structure of more
cusps emerges.

One subtle point which was not emphasized in [5] involves the existence in coupling
space of a codimension two surface of conformal theories for F0 and the other del Pezzo
quiver gauge theories. If the number of gauge couplings is n+2, then a naive counting of
the linearly independent β-functions constrains only two combinations of gauge couplings
when the theory is conformal, leaving an n-dimensional surface of conformal theories.
This n-dimensional surface is parametrized on the gravity side by the dilaton and the
integral of the NSNS B2 form through n− 1 independent 2-cycles.

The existence of this codimension two surface may well affect the existence and be-
havior of the duality wall for F0. In [4], it was assumed that a generic choice of initial
couplings would lie on the conformal surface. However, if the initial conditions do not lie
on the conformal surface, one expects large coupling constant corrections to the anom-
alous dimensions, which will in turn affect the strengths of the β-functions.

4. Supergravity Duals

The main support for the idea of a cascading RG flow in the original case of the coni-
fold comes from a supergravity dual construction. This dual reproduces the logarithmic
decrease in the effective number of colors towards the IR and also matches the beta func-
tions for the gauge couplings.

In [5], analog supergravity solutions were constructed describing logarithmic cascades
for the gauge theories on D-branes probing complex cones over del Pezzo surfaces. The
fact that this was possible is remarkable, since they were obtained without knowing the
explicit metric. These supergravity solutions are of the general type studied by Graña and
Polchinski [6].

The general form of the metric is a warped product of flat four-dimensional Minkowski
space and a Calabi-Yau X

ds2 = Z−1/2ηµνdxµdxν + Z1/2ds2
X , (4.1)

The solution also carries 3-form flux G3 = F3 − i
gs

H3. In order to preserve N = 1
supersymmetry, G3 must be supported only on X , imaginary self-dual, a (2, 1) form and
harmonic. Indeed, it is possible to construct a G3 satisfying all these condition. It has the
form

G3 =
n∑

I=1

aI(η + i
dr

r
) ∧ φI (4.2)

where the φI , I = 1 . . . n, are a basis of (1, 1) forms orthogonal to the Kähler class of
the del Pezzo and η =

(
1
3dψ + σ

)
. The one-form σ satisfies dσ = 2ω, with ω the Kähler

form on dPn, and 0 ≤ ψ < 2π is the angular coordinate on the circle bundle over dPn.

1We refer the reader to [4, 5] for a detailed description of the associated quiver theory.
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The intersection product between the φI is
∫

dPn
φI ∧ φJ = −AIJ , where AIJ is the

Cartan matrix for the exceptional Lie algebra En. There is a different type of fractional
brane associated to each φI , given by D5-branes wrapping the 2-cycle in the del Pezzo
Poincaré dual to φI .

Let us now study the number of D5-branes and D3-branes associated to these solutions

D5-Branes: The number of D5-branes is given by the Dirac quantization of the RR 3-
form F3: aJ = 6πα′MJ . Hence, this family of solutions are dual to cascades in which
the number of fractional branes of each type remains constant.

D3-Branes: Similarly, the effective number of D3-branes is computed from F5 = F5 +
∗F5 where F5 = d4x ∧ d(Z−1) and Z is the warp factor in (3.1). The factor Z satisfies
the equation

∇2
XZ = −1

6
|H3|2 . (4.3)

In [5], |F3|2 was assumed to be a function only of the radius, in which case

Z(r) =
2 · 34

9− n
α′2g2

s

(
ln(r/r0)

r4
+

1
4r4

)∑
i,j

M IAIJMJ (4.4)

and from Dirac quantization, the number of D3-branes will grow logarithmically: N =
3
2π gs ln(r/r0)

∑
I,J M IAIJMJ . However, generically, Z may depend on other coordi-

nates on the Calabi-Yau cone X.2 The function Z averaged over the other coordinates
may still be logarithmic in r [7].

5. Recent developments

Recently, there has been further progress in the study of quiver theories and their sugra
duals. In [8], a-maximization [9] was used to compute the volume of the 5d horizon
of the dual of the dP1 gauge theory, yielding an irrational value. This result corrected
previous computations in the literature and was obtained by carefully taking into account
the global symmetries that are actually preserved by the superpotential. In [5], the duality
cascade for dP1 was analyzed using naive R-charges that did not take into account these
global symmetries. A stable elliptical region in coupling space was found with a self-
similar logarithmic cascade. Redoing the analysis with the new R-charges, we find the
same elliptical region albeit with a slightly different shape and center.

The 5d horizon for the complex cone over dP1 is called Y 2,1 and is a member of an
infinite family of Sasaki-Einstein geometries denoted Y p,q . They have S2 × S3 topology
and their metrics have been explicitly constructed [10]. Furthermore, the gauge theory
duals to the entire Y p,q family have been constructed [11]. These developments change
profoundly the status of the AdS/CFT, providing an infinite number of field theories with
explicit sugra duals.

2We would like to thank Q. J. Ejaz for telling us about this possibility.
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N = 1 GAUGE THEORY EFFECTIVE SUPERPOTENTIALS

BEN M. GRIPAIOS
Rudolf Peierls Centre for Theoretical Physics, University of Oxford,
1, Keble Road, Oxford, OX1 3NP, United Kingdom

Abstract. Recent advances in computing effective superpotentials of four dimensional
N = 1 SUSY gauge theories coupled to matter are described. The correspondence with
matrix models and two proofs of this are discussed. By considering the case with matter
transforming in the fundamental representation, a Wilsonian derivation of the Veneziano-
Yankielowicz effective superpotential for a pure gauge theory is given using the general-
ized Konishi anomaly.

1. Introduction

This work provides a brief introduction to recent advances in the study of four-dimensional
gauge theories with the minimal amount (that is N = 1) of supersymmetry. We consider
general theories of this type, with arbitrary gauge group coupled to matter in an arbitrary
representation, and with an arbitrary superpotential for the matter. The aim is to compute
the effective superpotential for the light gauge superfields obtained (à la Wilson) by inte-
grating out the matter1. Minimising this effective superpotential then yields the quantum
vacua of the theory. In doing so, one discovers two remarkable things [1]. The first remark-
able thing is that the ‘integrating out’ part, which involves evaluating Feynman diagrams
in superspace, reduces to the computation of planar diagrams in a matrix model. That
is, the entire dependence on (super)space ‘disappears’!2 The second remarkable thing is
that, having done the perturbative computation in this way to n loops, one finds (upon
minimising the effective superpotential) that one has calculated the n-instanton correc-
tion to the vacuum structure. Thus, a perturbative computation leads to non-perturbative
information about the physics!

We stress that although the methods apply to general minimally supersymmetric four-
dimensional gauge theories, they do not tell us everything about such theories. A complete
specification of the theory is given by the effective action; here one is only able to calculate

1The matter must be massive, so that we can sensibly integrate it out.
2The disappearance is not a straightforward dimensional reduction however. If it were, the

arguments presented here would hold in arbitrary dimensions; in fact they are specifically four-
dimensional.
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the so-called F -terms (the effective superpotential) in the effective action. The Kähler, or
D-terms (which lack the strong constraint of holomorphy) are not determined.

In the next section, we sketch two proofs [2, 3] of the gauge theory/matrix model
correspondence (conjectured in [1]) and show how the superpotentials are calculated in
each case. We then show that there are matter-independent (i.e. pure gauge) contributions
to the effective superpotential which are undetermined. These contributions turn out to
be non-perturbative and provide the bridge between the perturbative computation and the
non-perturbative physics mentioned above. In section 3 we show that these contributions
can in fact be determined in this framework [4], and we do this. These pure gauge the-
ory contributions correspond to the Veneziano-Yankielowicz superpotential [5, 6]. In the
framework presented here, the effective superpotential is derived by integrating out mas-
sive matter and the Veneziano-Yankielowicz superpotential is thus a bona-fide Wilsonian
effective superpotential in this context.

2. The Gauge Theory/Matrix Model Correspondence

We employ N = 1 superspace notations (see e.g. [7]). The gauge fields (and their su-
perpartners) are written as components of a real vector superfield V ; by acting with su-
perspace covariant derivatives, one can form the analogue of the gauge field strength,
Wα ∼ D̄2e−V DαeV and the gauge-invariant glueball chiral superfield S ∼ trWαWα.
The matter is represented by chiral superfields Φ with a tree-level matter superpotential
in the action which is polynomial in the matter superfields3∫

d4xd2θWtree =
∫

d4xd2θgkΦk. (2.1)

Here, the coefficients gk are called the tree-level matter couplings. We consider integrating
out the matter Φ in some background glueball field S to obtain an effective superpotential
Weff , which depends on S, the gk, and the gauge coupling (which we write in terms of
the dimensionally-transmuted scale Λ).

It was claimed in the introduction that the perturbative computation of Weff reduces
to the evaluation of planar diagrams in a bosonic matrix model, and one might well ask
how this can be demonstrated. Two proofs have appeared. The first [2] simply considers
the contributing Feynman diagrams in superspace and shows that the momentum depen-
dence of the bosons and their fermion superpartners cancels in all such diagrams. The
only things left to consider are insertions of S, factors of gk coming from the vertices,
and numerical symmetry factors. One can show that these can be obtained from planar
diagrams of the matrix model

exp
F (S)
g2

s

=
∫

dφ exp
Wtree(φ)

gs
, (2.2)

where φ are N ′ ×N ′ bosonic matrices and S = gsN
′. The restriction to planar diagrams

is enforced by taking the ’t Hooft limit: N ′ � 1 and gs � 1, with S fixed. The action

3Only polynomials of degree three or less are renormalizable. However, since we claim that
the computation of the effective superpotential reduces to a matrix model, the results must be in-
dependent of the momenta and any momentum cutoff. The results are thus independent of the UV
completion of the theory and one is free to consider ‘non-renormalizable’ tree-level superpotentials.
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of the matrix model is given by the tree-level matter superpotential Wtree with the matter
superfields Φ replaced by bosonic matrices φ.

To compute the perturbative computation to Weff obtained by integrating out the mat-
ter (e.g. for gauge group SU(N)), one evaluates

N
∂F (S)

∂S
, (2.3)

where F (S) is the perturbative free energy of the matrix model in the planar limit.
The second proof [3] is rather different. One considers the effect of general chiral

changes of variables δΦ = εf(Φ,Wα) in the path integral. These lead to anomalous
Ward identities generalizing the Konishi anomaly [8, 9]. For example, the variation δΦ =
εΦ′(Φ) yields 〈

Φ′ ∂Wtree

∂Φ
− S

∂Φ′

∂Φ

〉
= 0. (2.4)

From the general chiral change of variables specified by f , one obtains a complete set of
anomalous Ward identities for the chiral matter fields, and one can show that these are in
one-to-one correspondence with the complete set of Ward identities in the matrix model
(which, since the matrix model partition function (2.2) is just an integral, correspond to
integration by parts identities). This establishes the correspondence between the SUSY
gauge theory and the bosonic matrix model.

Having established the correspondence, one can go on and calculate the effective su-
perpotential for any given theory. To do this, one needs to solve the complete set of Ward
identities to obtain the expectation values 〈Φk〉 appearing in the tree-level matter super-
potential in terms of the background glueball superfield S and the couplings gk. The
effective superpotential can then be determined from the partial differential equations

∂Weff

∂gk
= 〈Φk〉, (2.5)

which follow from standard supersymmetry and holomorphy arguments.
We note that these partial differential equations only specify the effective superpoten-

tial up to a term which is independent of the matter couplings gk, but which may depend
on both S and the gauge coupling scale Λ. This term must contain any contribution to the
effective superpotential coming from the pure gauge theory without matter. So let us ask
the question: is there a pure gauge theory contribution? It turns out that there is, as was
shown many years ago by Veneziano and Yankielowicz [5, 6] using the U(1)R symmetry
of the pure gauge theory. For the gauge group SU(N), for example, the pure gauge theory
superpotential is

Weff(S,Λ) = N

(
−S log

S

Λ3
+ S

)
. (2.6)

Such terms are non-perturbative. One way to see this is to minimise Weff with respect
to S. This reproduces the vacuum condensate SN = Λ3N , due to (non-perturbative)
instantons [10]. In the next section, we show how such terms can be derived using the
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generalized Konishi anomaly in the presence of matter discussed above [4]. This then
renders the above approach self-contained, as well as providing an independent derivation
of the Veneziano-Yankielowicz terms.

Before doing so, one might ask where the missing terms are hidden in the perturbative
approach using Feynman diagrams. One might assume that they correspond to diagrams
with gauge superfields in the loops; this is not really correct, since the missing terms are
non-perturbative and thus cannot show up in any diagram. Intriguingly, these terms can
be generated by the measure of the matrix model (i.e. the volume of the gauge group)
[11, 1], though it is not at all clear why.

3. Pure Gauge Terms

In order to derive the pure gauge theory contributions, we determine the effective super-
potential in the case where the matter sector consists of F flavours of ‘quarks’ transform-
ing in the fundamental representation of the gauge group, which we take to be SU(N)
(though the argument can be applied to any classical Lie group). Furthermore, we choose
a tree-level superpotential in which the quarks can have either zero or non-zero classical
expectation values at the minima. If a quark has a non-zero vev, then since the quarks
transform non-trivially under the gauge group, the gauge group must be spontaneously
broken via the Higgs mechanism. By putting each of the F quarks at zero or non-zero
minima, we can engineer the gauge symmetry breaking such that the unbroken gauge
group is anything from SU(N) down to SU(N−F ). We then solve the Konishi anomaly
Ward identities (2.4) and the resulting partial differential equations (2.5), determining the
effective superpotential in each vacuum, up to a constant term (by ‘constant’ we mean
‘independent of the tree-level matter couplings’).

The tree-level matter couplings are free parameters in the theory. We vary them such
that both the quark masses and the Higgs vevs (which determine the masses of the mas-
sive gauge bosons) become large. In that limit, the massive matter decouples from the
unbroken low energy gauge group, and the effective superpotential contains a sum of
contributions from the decoupled matter and the low energy gauge group. Once we have
identified the contribution of the massive matter and discarded it, we are left with the
superpotential of the low energy gauge group. This includes the constant term.

Now any two distinct vacua have different unbroken gauge groups, but the same con-
stant term. If we subtract the two superpotentials (with the massive matter discarded),
the constant cancels and we are left with a difference equation for the pure gauge theory
superpotential. The solution to this difference equation yields precisely the Veneziano-
Yankielowicz terms (2.6). To determine the constant term in any theory, one then demands
that Weff(S, gk,Λ) reproduces the correct decoupled contributions of the unbroken gauge
group and massive matter in any vacuum in the massive limit [12]. Incidentally, the fact
that the matching in one vacuum correctly reproduces the superpotential in all vacua jus-
tifies a posteriori the assumption that the constant term is the same for each vacuum
branch.

Having explained the argument, let us now carry it out. Since quarks are Dirac fermi-
ons and chiral supermultiplets contain Weyl fermions, we represent F flavours of quarks
by F chiral superfields Qi transforming in the fundamental representation of SU(N)
and a further F chiral superfields Q̃j transforming in the anti-fundamental representation.
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The tree-level matter superpotential is written in terms of the gauge invariant mesons
M j

i = QiQ̃
j as

Wtree = mtrM − λtrM2. (3.1)

The classical vacua are then

mM j
i − 2λMk

i M j
k = 0, (3.2)

with F− eigenvalues at M i
i = 0 and F+ = F − F− eigenvalues at M i

i = m/2λ. If M i
i

has a non-zero vev, then so have Qi and Q̃i, and the gauge symmetry is broken. The low
energy gauge group is thus broken down to SU(N − F+). The quantum theory has the
Konishi anomaly and the classical vacua are modified to (2.4)

m〈M j
i 〉 − 2λ〈Mk

i M j
k〉 = δj

i S, (3.3)

with F± eigenvalues at

〈M i
i 〉 =

m

4λ

(
1±

√
1− 8λS

m2

)
. (3.4)

The partial differential equations following from holomorphy and supersymmetry are [3]

∂Weff

∂m
= 〈trM〉,

∂Weff

∂λ
= −〈trM2〉. (3.5)

We shall not write here the expression for the effective superpotential Weff which is ob-
tained by integrating these equations (it is rather cumbersome). Taking the limit of Weff

in which the quark mass m and Higgs vev
√

m/2λ become large and subtracting the
superpotentials for the vacua in which the number of Higgsed quarks is F1,2, one obtains

Weff,1 −Weff,2 → (F1 − F2)
m2

4λ
+ (F1 − F2)

[
S log

S

m2/2λ
− S

]
. (3.6)

The first term represents the decoupled matter: it is given (according to the non-renormali-
zation theorem) by the classical expectation value of Wtree. The second term must there-
fore represent the contribution of the low energy pure gauge group SU(N − F1,2).4 It
seems peculiar that what we have identified as the superpotential of the low energy gauge
group contains the matter couplings m and λ. However, these are precisely the factors
needed to convert the SU(N) gauge coupling scale Λ to the SU(N − F1,2) scales Λ1,2

via the scale-matching relation

Λ3(N−F1)
1

(
m2

2λ

)F1

= Λ3N−F mF = Λ3(N−F2)
2

(
m2

2λ

)F2

. (3.7)

4There is a subtlety here: the glueball superfield S includes the massive gauge bosons, which
should be integrated out by replacing them with their vevs. However, in the decoupled limit, the
massive gauge bosons have zero vevs, so the field S is equivalent to the glueball superfield of the
low energy gauge group once the massive gauge bosons have been integrated out.
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This relation comes from requiring that the coupling constants of the high energy theory
(with dynamic matter) and the low energy theory (with matter integrated out) match at
the Higgs and quark mass scales (see e.g. [13]). Replacing the matter couplings by the
appropriate gauge coupling scales in this way (and discarding the massive matter) leads
to the difference equation

Weff,1 −Weff,2 =

(N − F1)
(
−S log

S

Λ3
1

+ S

)
− (N − F2)

(
−S log

S

Λ3
2

+ S

)
, (3.8)

with solution

Weff(S,Λ) = N

(
−S log

S

Λ3
+ S

)
+ f(S). (3.9)

Here, f(S) is an arbitrary function of S alone; it is independent of all other parameters.
On dimensional grounds, f(S) ∝ S and one sees that the ambiguity in f (which can be
re-written as a pure number multiplying Λ3N ) corresponds to the freedom to choose a
renormalisation group scheme [13].

4. Discussion

The methods summarised above provide a very powerful framework in which to study
gauge theories with N = 1 SUSY, and it is certainly of interest to go on and study the
vacuum structure and phases of specific models.

More general extensions to this work include the question of whether similar results
hold in dimensions other than four [14], the extension to supergravity (rather than super-
gauge) backgrounds [1, 15, 16, 17, 18] and whether dynamical breaking of supersymme-
try may be studied in this framework.

References

1. R. Dijkgraaf and C. Vafa, A perturbative window into non-perturbative physics,
hep-th/0208048.

2. R. Dijkgraaf, M. T. Grisaru, C. S. Lam, C. Vafa, and D. Zanon, Perturbative computation of
glueball superpotentials, hep-th/0211017.

3. F. Cachazo, M. R. Douglas, N. Seiberg, and E. Witten, Chiral rings and anomalies in super-
symmetric gauge theory, JHEP 12 (2002) 071, [hep-th/0211170].

4. B. M. Gripaios and J. F. Wheater, Veneziano-Yankielowicz superpotential terms in N = 1 SUSY
gauge theories, Phys. Lett. B587 (2004) 150.

5. G. Veneziano and S. Yankielowicz, An effective Lagrangian for the pure N=1 supersymmetric
Yang-Mills theory, Phys. Lett. B113 (1982) 231.

6. T. R. Taylor, G. Veneziano, and S. Yankielowicz, Supersymmetric QCD and its massless limit:
An effective Lagrangian analysis, Nucl. Phys. B218 (1983) 493.

7. S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, Superspace, or one thousand and one
lessons in supersymmetry, Front. Phys. 58 (1983) 1–548, [hep-th/0108200].

8. K. Konishi, Anomalous supersymmetry transformation of some composite operators in SQCD,
Phys. Lett. B135 (1984) 439.

9. K.-I. Konishi and K.-I. Shizuya, Functional integral approach to chiral anomalies in super-
symmetric gauge theories, Nuovo Cim. A90 (1985) 111.



N = 1 GAUGE THEORY EFFECTIVE SUPERPOTENTIALS 317

10. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Instanton effects in su-
persymmetric theories, Nucl. Phys. B229 (1983) 407.

11. H. Ooguri and C. Vafa, Worldsheet derivation of a large N duality, Nucl. Phys. B641 (2002)
3–34, [hep-th/0205297].

12. A. Brandhuber, H. Ita, H. Nieder, Y. Oz, and C. Romelsberger, Chiral rings, superpotentials
and the vacuum structure of N = 1 supersymmetric gauge theories, hep-th/0303001.

13. J. Terning, Tasi-2002 lectures: Non-perturbative supersymmetry, hep-th/0306119.
14. R. Dijkgraaf and C. Vafa, N = 1 supersymmetry, deconstruction, and bosonic gauge theories,

hep-th/0302011.
15. A. Klemm, M. Marino, and S. Theisen, Gravitational corrections in supersymmetric gauge

theory and matrix models, JHEP 03 (2003) 051, [hep-th/0211216].
16. R. Dijkgraaf, A. Sinkovics, and M. Temurhan, Matrix models and gravitational corrections,

hep-th/0211241.
17. J. R. David, E. Gava, and K. S. Narain, Konishi anomaly approach to gravitational F-terms,

hep-th/0304227.
18. B. M. Gripaios, Superpotentials for glueball and conformal supergravity backgrounds, Com-

mun. Math. Phys. in press, hep-th/0311025.



GROMOV-WITTEN THEORY AND AUTOMORPHIC FORMS

DANIEL GRÜNBERG
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Abstract. Here’s a quick introduction to Gromov-Witten invariants, their origin in topo-
logical strings, their relation to BPS states counting, and the automorphic properties of
their generating function (GW potential). The plan is to interpolate between Morozov’s
and Dijkgraaf’s lectures, i.e. between KdV hierarchies (or their solutions as τ -functions)
and topological strings (or correlators of operators on a worldsheet).

1. Recap TFT

Topological Field Theory studies maps f from a Riemann surface Σg of genus g (string
worldsheet) to a target space X . Examples are obtained by twisting non-linear sigma
models with CY threefold as targets. So what is twisting ?

For a NLσM, bosons φ are simply coordinates on the target space (like the map
above), while fermions squat in bundles:

ψ+ ∈ K1/2 ⊗ f∗(TX) ψ− ∈ K̄1/2 ⊗ f∗(TX)

K is the canonical bundle1 on Σg . Since X is a complex manifold (even Kähler), we can
split ψ± into holomorphic and anti-holomorphic components, ψi

± and ψī
±.

Twisting consists in multiplying the bundles by K±1/2 so that now

ψi
+ ∈ f∗(TX) ψī

+ ∈ K ⊗ f∗(T̄X).

Idem for ψ−. There are two kinds of twisting, leading to the A- and B-models, according
to whether you twist the holomorphic or anti-holomorphic components of ψ+ and ψ− in
the same way or opposite. Twisting ensures that the Lagrangian can now be rewritten in
very compact form (here for the A-model):

L = t

∫
Σg

f∗(γ)︸ ︷︷ ︸
=:d (degree of f)

+it

∫
Σg

{Q,V }

1ie the highest power of the cotangent bundle (here: power 1, hence line bundle Ω of differential
forms, c1(K) = 2g − 2).
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Σ
f

X

g

Figure 1. An instanton, ie a map from the worldsheet to the target space.

where t plays the role of coupling constant (t = 1/gs), Q is the BRST operator and
V ∼ gij̄ ψ+∂̄φ. We shall incorporate t into the Kähler form γ on X , so that it becomes a
complex Kähler parameter, and

∫
Σg

f∗(γ) =
∫

f∗[Σg]
γ =

∫
d
γ = d · t. Here, d ∈ H2(X)

is called the degree of the map f .
Varying the complex structure of X will vary the metric gij̄ and hence V , which will

merely generate vanishing terms of the form {Q, . . . }; the action will remain unchanged.
Thus our model does not depend on the complex structure of X nor on that of the world-
sheet ! This is the reason why we call it topological. 2

For the same reason, e−it{Q,
∫

V } is actually independent of t, and so we’ll go to
the limit Re t → ∞ to evaluate the path integral for the action. What sort of maps (or
‘instantons’) contribute the most to the path integral for e−L = e−dt e−it{Q,

∫
V } ? Since

t is large, the phase will wobble (and cancel itself out) for any value of V , except if V
vanishes, ie if ∂̄φ = 0. Since the boson φ is just the map f (I should have used the same
letter), this means only holomorphic maps contribute, ie holomorphic instantons.

Warning: there are four different wordings in the literature for one and the same limit
Re t → ∞: weak coupling limit (since t ∼ 1/gs), large volume limit (since t became a
Kähler parameter of X), holomorphic limit and topological limit (reasons above).

2. Correlation Functions

What operators can we insert on the worldsheet Σg to build correlators ? Each operator
will stand in correspondence with a complex subvariety of X . Choose n subvarieties
Z1, . . . , Zn; their homology classes have duals γ1, . . . , γn ∈ H2∗(X). For each choice of
Z (or γ), we build the operator

Oγ(p) := γi1...ik
(f(p)) ψi1

+ . . . ψik
+

of ghost number k, and supported on Z. The point p is a marking on Σg such that f(p) ∈
Z, representing the insertion of (the pullback of) Oγ . 3

We are now in a position do define the correlators:

〈Oγ1 . . .Oγn
〉g,d :=

∫
Mg,n(X,d)

DφDψ e−L Oγ1 . . .Oγn
,

2For the B-model, there is no dependence on the Kähler structure of X and on the complex
structure of the worldsheet.

3As an aside, I can disclose to you that {Q,Oγ} = −Odγ , that is, the BRST cohomology of
the A-model TFT is isomorphic to the de Rham cohomology of X . In other words, the chiral ring
is isomorphic to the (quantum) cohomology ring.
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where Mg,n(X, d) is the moduli space of n-pointed holomorphic maps from Σg to X
of degree d. We go again to the large t limit to make connection with the correlators en
vogue among algebraic geometers:

〈γ1 . . . γn〉g,d :=
∫
Mg,n(X,d)

ev∗(γ1 ∧ · · · ∧ γn),

where the evaluation map at each point pi is simply evi : Mg,n(X, d) → X : {mapf} →
f(pi). Again, this is to vanish unless f(pi) ∈ Zi ∀i ! Note that from the mathematical
perspective, the operators have dropped off of the picture. The enumerative meaning as-
sociated with 〈γ1 . . . γn〉g,d is the ‘number of maps’ of degree d such that f(pi) ∈ Zi.
These are the Gopakumar-Vafa invariants (invariants of the complex structure of X).

3. BPS Invariants

One has to be careful in your choice of differential forms γi (how many and of what
degrees); after all, their total degree has to match the dimension of the moduli space to be
integrated over, which is known to be

dimC Mg,n(X, d) = d · c1(X) + (dimX − 3)(1− g) + n
= n for CY threefolds
= 3d− 1 + n for rational curves (ie. g = 0) in CP2

!= 1
2

∑
deg γi

Thus, when studying plane rational curves (embeddings of the line CP1), we could
choose 3d − 1 four-forms γi � [pt.] so that lhs and rhs equal 6d − 2. The latter are
dual to points Zi in the complex plane, and so the geometric meaning of f(pi) ∈ Zi is:
you need to specify 3d − 1 points to end up with a finite number of rational curves (of
degree d) passing through them (eg. degree 1: through 2 points passes 1 line).

That in itself is quite cool to know, but you can do better: compute that number,
〈[pt.]3d−1〉0,d, via the so-called WDVV equation (asserts associativity of the quantum
cohomology ring) and end-up with a recursion formula (by Kontsevich): 1,1,12, 620,...
for d = 1, 2, 3, 4, ....

Similarly, for CY threefolds, we could very well choose n = 0, ie no insertion of op-
erators (hence no γi), and both the integrand and integration space are 0-dimensional. In
that case, the output is defined to be the degree of the 0-cycle [Mg,n(X, d)] and denoted
by 〈1〉g,d or anew by Ng,d. There’s no constraint f(pi) ∈ Zi needed, ie embedded curves
are already isolated, they don’t show up in infinite families. Here too, the N0,d were com-
puted (this time using Mirror Symmetry for the quintic, by Candelas et al), and yielded
2875, 4876875/8,... for d = 1, 2, ....

But they are not integers! What went wrong ? In fact, N0,d are not quite the numbers
of rational curves in a CY threefold, but rather the ‘numbers of maps’. If nd is the number
of rational curves of degree d, then it will also contribute to N0,2d via a double cover; etc.
The two quantities are linearly related: N0,d =

∑
k|d k−3 nd/k, so that now we do obtain

integers: nd = 2875, 609250,... for d = 1, 2, .... For higher genus, the linear relation still
holds: Ng,d =

∑
k|d,g′≥g . . . ng′,d/k where the dots are universal coefficients (rational

numbers, known for CY threefolds).
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These new instanton invariants ng,d (believed to be integers by the Gopakumar-Vafa
conjecture) count BPS states (or D-branes) wrapped around cycles of X . There are at-
tempts to define them via the moduli space M of such objects: ng,d = (−1)dimMχ(M)
(can be negative!). Their mathematical meaning is still shadowy.

4. GW Potentials

The genus-g topological string amplitude is obtained by summing over all degrees of the
instanton:

Fg :=
∑

d,n≥0

1
n!
〈Oγ1 . . .Oγn

〉g,d

The algebro-geometric version of this is the GW potential at genus g:

Fg(ti) :=
∑

d,n≥0

1
n!

∑
i1...in

ti1 . . . tin
〈γ1 . . . γn〉g,d

The complex parameters ti are gathered together into one class γ =
∑

tiγi (γi form a
basis of H2∗(X)), and the last sum is simply 〈γn〉g,d.

For CY threefolds, the correlators 〈γn〉g,d vanish except when γ ∈ H2(X), ie a
Kähler class, in which case they give (−d · t)n〈1〉g,d (by the divisor axiom). So the GW
potential can be more suggestively written as

Fg(ti) =
∑
d≥0

〈1〉g,d

∑
n≥0

(−d · t)n

n!
=
∑
d≥0

Ng,d e−d·t =
∑

holo maps f

exp
∫

Σg

f∗(γ)

which is the starting point of topological string theory: summing over all holomorphic
maps, whereby Ng,d is the size of the moduli space of maps of a given degree.

Let us collect all amplitudes into a single generating function, the full GW potential
or ‘free energy’:

F (ti, λ) =
∑
g≥0

Fgλ
2g−2

where λ is the string coupling. The partition function is then Z = eF , which can always
be rewritten as an infinite product – at least formally:

Z = eF =
∏
l,d

(1− ylqd)cl,d , y := eiλ, q := e−t (4.1)

Compare this with the vacuum τ -function in Morozov’s lecture in this volume: log τ =∑
g≥0 Fgλ

2g−2, which is related to the solution u of the KdV hierarchy by ∂2
x log τ = u.

5. KdV Hierarchy

Indeed, the Virasoro conjecture claims that u := ∂2
t0F is a solution of the ‘KdV hierar-

chy’, a single equation which can be unwound into an infinite set (or hierarchy) – denoting
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t0 by x:

k = 1 : λ−2∂t1u = 1
2uux + 1

4uxxx

k = 2 : λ−4∂t2u = 1
2u2ux + 1

6uxuxx + 1
12uxxx + 1

240∂5
xu

etc,

of which the first line is the traditional KdV equation (hence the name).
This KdV hierarchy for ∂2

t0F is equivalent to another hierarchy for Z, namely LmZ =
0 for m ≥ −1, where the Lm form the Virasoro algebra [Lk, Lm] = (k−m)Lk+m (hence
the name for the conjecture). Explicitly:

L−1 = ∂t0 + t20 +
∑

i≥0 ti+1∂ti

L0 = ∂t1 +
∑

i≥0 ti∂ti

L1 = . . .

(see again Morozov’s lectures.)
If we rather work with the simpler moduli space of curves, Mg,n, instead of

Mg,n(X, d), yet keep all the formalism above, then the KdV hierarchy is known to
hold (proof by Kontsevich, conjecture by Witten). In this case, the correlators are sim-
ply 〈γi1 . . . γin

〉g,d :=
∫
Mg,n

c1(L1)i1 . . . c1(Ln)i1 for the tautological line bundles4 Li

(no mention of X nor of any map f anymore).

6. Automorphic Products

For an example of (4.1), the product form is explicitly known for the contribution from
constant maps (d = 0) in case of CY threefolds with Euler characteristic χ (see ‘melting
crystals’):

Zconst =
[∏

(1− yl)l
]−χ/2

.

The reason we would like to know the explicit product form of the full partition func-
tion Z (ie know the powers cl,d) is that such products can have enticing automorphic
properties, ie the function transforms covariantly under some group (eg: modular forms
have automorphism group SL(2,Z)). Borcherds has proved that the product (4.1) is au-
tomorphic under the Lorentz group O(2, s + 2;Z) if the powers cl,d are the coefficients
in the Taylor expansion of a modular form. This can be generalised to the lifting of Jacobi
forms.

Eg: Set j(τ)−744 =:
∑

c(n)qn, a modular function of weight 0. Then p−1
∏

m>0,n∈Z

(1− pmqn)c(mn) is an automorphic form of weight 0 for the group O(2, 2;Z). Since this
group is isomorphic to SL(2,Z)× SL(2,Z) · Z2, we expect a function modular in each
variable p, q and symmetric under swap of p and q. Indeed, it’s easy to show the product
boils down to j(p)− j(q). This is the case s = 0 from Borcherds’ theorem.

Eg: More easily, since 12 θ = 12(1 + 2q + 2q2 + . . . ) is a modular form of weight
1/2, the product q

∏
(1 − qn)24 is an automorphic form for SL(2,Z). Indeed, this is

just the discriminant ∆. Similarly, you could write all Eisenstein series in product form

4The fibre of Li at each point of Mg,n (ie above each n-pointed genus-g curve Σg,n) is simply
the cotangent line at the ith marked point.
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with powers given in a closed formula: E4 = (1 − q)240(1 − q2)... . . . . Also: j(τ) =
q−1(1− q)1728 . . . .

Now what can we learn from this ? Lots. Automorphic forms – let alone modular
forms – tie the knot with virtually all corners of maths. For instance, in number theory,
their coefficients (in Taylor expansion of q) often have interesting properties. Ramanu-
jan studied the generating function for partitions, q1/24/η =:

∑
c(n)qn, and discovered

smashing congruences: c(7n + 5) ≡ 0 mod 7, or c(11n + 6) ≡ 0 mod 11, etc.
If GW invariants Ng,d or BPS invariants ng,d are contained in powers of GW poten-

tials that have automorphic properties, its natural to expect that they have similar con-
gruences. Wild conjecture! Tiny evidence yet! Only in few examples of heterotic string
compactifications on certain CY threefold are there known results for the prepotential F0

(genus-0) with a suitable product formula for exp(F0).
If true (or even half-true), these speculations turn would shed light on the enumerative

meaning of these invariants, and on the geometry of the curves or of the moduli space
they pertain to.
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Abstract. Generalised black holes have a horizon given by an arbitrary Einstein manifold.
I review a criterion for the classical stability of these black holes. Roughly, spherical
horizons are stable but lemon-shaped horizons can be unstable. In Anti-de Sitter space
these black holes are dual to gauge theory on a curved background given by the same
Einstein manifold. The dual thermal field theory effect is a novel phase transition induced
by inhomogeneous Casimir pressures and characterised by a “condensation of pressure”.

1. Generalised AdS black holes

The AdS/CFT correspondence relates the physics of black holes in AdSd+2 to a thermal
field theory living on the ‘boundary’ S1 × Sd. Here we discuss an instability and dual
phase transition that arises when the black hole has boundary S1×M, withM a general
Einstein manifold.

Let us review the stability of generalised black holes [1, 2] with a negative cosmolog-
ical constant. Generalised black holes take the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2ds2

d , (1.1)

where f(r) = 1−(1+r2
+/L2)(r+/r)d−1+r2/L2. The event horizon is at r = r+. If ds2

d

were the round metric on Sd, then the spacetime would be the usual Schwarzschild black
hole in AdS space. However, the d + 2 dimensional vacuum Einstein equations allow the
horizon metric ds2

d to be any d dimensional Einstein metric on a Riemannian manifold
M

Rαβ = (d− 1)gαβ , (1.2)

where α, β are indices forM. The resulting spacetime is called a generalised black hole.
The asymptotic geometry of the background has now changed and the dual thermal field
theory lives on S1 ×M rather than S1 × Sd.

The linearised stability of generalised black holes under perturbations gab → gab+hab

has recently been investigated [1, 2, 3]. For large, r+/L� 1, generalised AdS black holes
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one finds

λL < −A2 r2
+

L2
⇔ instability , (1.3)

where λL is the minimum eigenvalue of the Lichnerowicz operator onM and A2 is a pos-
itive O(1) number that may be determined numerically [2]. Recall that the Lichnerowicz
operator acts on symmetric rank two tensors as

(∆Lh)ab = 2Rc
abdh

d
c + Rcahc

b + Rcbh
c
a −∇c∇chab . (1.4)

Note from (1.3) that the minimum Lichnerowicz eigenvalue needs to be very negative in
order for instability to occur. Examples of Einstein manifolds with large negative Lich-
nerowicz eigenvalues are the Böhm metrics on S5 . . . S9 and on products of spheres [3].

2Riem   >> R2
Riem  ~  R2 2

Figure 1. The Böhm metrics have regions of large curvature near θ = 0 and θ = θf . The Ricci
scalar is constant.

The Böhm metrics on S5 have the form

ds2
5 = dθ2 + a(θ)2dΩ2

2 + b(θ)2dΩ̃2
2 , (1.5)

where dΩ2
2 and dΩ̃2

2 are round metrics on spheres S2 and S̃2. The coordinate θ has range
0 to θf . The Einstein equations imply some nonlinear differential equations for a(θ) and
b(θ). The boundary conditions for topology S5 are that a(0) = 0, b(0) = b0 and a(θf ) =
a0, b(θf ) = 0. In fact, the solutions to the equations on S5 have a(θ) = b(θf − θ). There
is a discrete infinity of solutions, at specific values of b0. Solutions exist for arbitrarily
small b0. As b0 → 0 the metric develops conical singularities at θ = 0, θ = θf . Thus
b0 gives the resolution of the singularity. Figure 1.1 illustrates a Böhm metric. Also as
b0 → 0 one finds that λL → −∞ [3]. Therefore if we use Böhm metrics as the horizon
of a generalised black hole then the black hole will be unstable if the curvature at the tips
of the manifold is sufficiently large.

The connection between large curvatures and the Lichnerowicz spectrum which ap-
pears for the Böhm metrics is more general. On Einstein manifolds with positive curvature
the minimum Lichnerowicz eigenvalue is related to the Weyl curvature. Roughly, one ex-
pects [3]

λ2
L ∼ CαβγδC

αβγδ|max. , (1.6)

where CαβγδC
αβγδ|max. is the maximum value taken by CαβγδC

αβγδ on the manifold
M. One finds that the unstable mode tends to relax the curvatures of the spacetime near
the horizon.
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2. Dual phase transition

The criterion for instability (1.3) may be translated into a dual field theory language using
the standard AdS/CFT dictionary to give [2]

T 2 < −λL ×O(1) ⇔ instability , (2.1)

where T is the temperature of the field theory. Thus the duality predicts a critical temper-
ature in the dual field theory on S1 ×M:

T 2
C ∼ |λL| . (2.2)

The unstable mode of the generalised black hole is a tensor mode on M. That is, the
mode has no legs in the t or r directions and satisfies

∇αhαβ = 0 , hα
α = 0 . (2.3)

Furthermore the unstable mode has finite energy and is thus the “normalisable mode” in
the AdS/CFT language. Therefore the growth in hαβ due to the instability is mapped via
the AdS/CFT correspondence to a growth in the expectation value of the spatial compo-
nents of the energy momentum tensor

hαβ ∼ eωt ⇒ < Tαβ >∼ eωt . (2.4)

Combining the two facts (2.2) and (2.4) suggests that the dual thermal field theory
undergoes a phase transition when cooled below the temperature TC . The phase transition
is characterised by a “condensation of pressure”, that is, by the spatial components of the
energy momentum tensor gaining a vacuum expectation value.

The appearance of the pressure suggests a thermodynamic characterisation of the in-
stability. Recent work on black brane instabilities has supported the Gubser-Mitra conjec-
ture which states that translationally invariant horizons are classically stable if and only
if they are locally thermodynamically stable. Local thermodynamic stability requires the
Helmholtz free energy of the system to be a concave function of temperature and a con-
vex function of volume. The known instabilities of black branes are due to a negative heat
capacity

CV = −T
∂2F

∂T 2

∣∣∣∣
V

< 0 . (2.5)

The large generalised AdS black holes which have been considered here always have
positive heat capacity. The alternative thermodynamic instability is to have a negative
isothermal compressibility [4]

K−1
T = V

∂2F

∂V 2

∣∣∣∣
T

= −V
∂P

∂V

∣∣∣∣
T

< 0 . (2.6)

If this were indeed the thermodynamic instability of the dual field theory that triggers the
phase transition, then generalised black holes would provide an example of a generalisa-
tion of the Gubser-Mitra correspondence to horizons without translational invariance.
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A negative compressibility would most likely arise in the regions of the manifold with
large curvature, as this is where the Casimir pressures are greatest. The compressibility
would want to relax the curvatures to reduce the Casimir effect. This mimics the be-
haviour of the bulk unstable mode mentioned above. The field theory background is not
dynamical, so the condensation of pressure provides an alternative means of cancelling
the wrong-sign Casimir pressure.
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Abstract. We review the method of holographically extracting information about the sin-
gularity of a Schwarzschild-AdS black hole and contrast this with probing cosmological
singularities.

1. Introduction

Curvature singularities are a rather generic feature in general relativity. As demonstrated
by the singularity theorems [1], even relatively mild initial data can evolve to a singularity.
Indeed, in nature, we expect singularities inside black holes as well as cosmological ones.
Of course, the laws of general relativity break down at a singularity, thereby precluding
us from evolving the classical spacetime into its causal future. But the real world is not
classical, and it should not suffer from singularities; in fact we expect quantum effects to
become important long before the actual singularity is reached. Unfortunately, to answer
the intriguing and fundamental question of what actually happens requires understanding
of quantum gravity, which is beyond the scope of our present knowledge.

Nevertheless, probing singularities within the quantum framework which is available—
namely string theory—should provide us with further clues to the full theory of quantum
gravity. String theory has already proved very successful in resolving many timelike sin-
gularities. In simple examples like orbifold singularities, perturbative string dynamics
suffices to explain the resolution, while more complicated examples such as the conifold
singularity require stringy non-perturbative effects. Spacelike singularities are even more
subtle, and we expect that a fully non-perturbative formulation of string theory will be
essential for their resolution.

While there already exist several remarkable nonperturbative formulations of string
theory, the one best suited for our purposes is the well-known AdS/CFT correspondence
[2]. In particular, we will use the duality between 10-dimensional IIB string theory on
asymptotically AdS5×S5 spacetimes and 4-dimensionalN = 4 Super Yang Mills gauge
theory, living on the boundary of AdS. Since the bulk has gravity, it can contain black
holes, as well as cosmological regions. Once we discover how these are represented by
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the dual (non-gravitational) gauge theory, we will be able to learn how the respective
singularities are resolved.

In the following section, we review the method proposed by FHKS [3] of probing
the spacelike singularity inside a Schwarzschild-AdS black hole. Although one can ex-
tract specific information about the singularity from certain correlators in the dual CFT,
this extraction is rather subtle and in particular requires analytic continuation through a
branch cut. This reflects the fact that the singularity is hidden behind an event horizon,
and therefore is not directly “visible” from the boundary where the CFT resides.

On the other hand, if the singularity could be directly visible from the boundary, one
might expect the CFT to encode it more directly and hence provide a more explicit mech-
anism for singularity resolution. HHM [3] had presented scenarios which seemed to guar-
antee the requisite naked singularities; however after more detailed study [5], we believe
it unlikely that one will be able to find a clean example with naked singularities (see M.
Rangamani’s talk in this volume).

The set-up of [3], however, included a cosmological region in the bulk, with Big Bang
and Big Crunch singularities, cast within the AdS/CFT framework. One may therefore ask
whether one can revert to the methods of FHKS to probe these cosmological singularities.
In section 3, we show that the answer is no; the black hole and cosmological singularities
in fact behave very differently from each other.

2. Black hole singularity

To study a singularity and an event horizon in the bulk gravity theory, we will consider
the Schwarzschild-AdS geometry, describing a large black hole in AdS, whose gauge dual
corresponds to an approximately thermal state. By analyzing the properties of this state,
such as the expectation values of various operators, we can hope to extract information
about the black hole. Indeed, due to the powerful nature of the AdS/CFT duality, we
expect to be able to decode the full quantum near-singularity bulk physics from the gauge
dual.

However, since such decoding requires that the gauge theory encodes behind-the-
horizon physics in the first place, we should first ask, how much of the bulk physics does
the gauge dual encode? Naive considerations might lead one to expect that the CFT en-
codes only the region of the bulk which is causally connected to the boundary, i.e. out-
side the event horizon. On the other hand, event horizon is a global object (defined as
the boundary of the past of future infinity), which means that we cannot determine the
presence or position of the event horizon without knowing the entire future evolution of
the spacetime. Hence if the horizon were to bound what the CFT can encode, then the
AdS/CFT correspondence would have to be very nonlocal in time.

We illustrate this point by a simple gedanken-experiment [6]: The holographic nature
of the AdS/CFT correspondence suggests that as a boundary observer, one can obtain
instantaneous information about the event in the bulk, for instance by measuring appro-
priately decorated Wilson loop [7]. Once this information is obtained, i.e. entirely to the
future of this measurement, the boundary observer may collapse in a shell which forms a
black hole whose horizon will have encompassed the measured event.

While the above argument indicates that the CFT should encode at least some physics
inside a horizon, it does not lend itself to detailed computational analysis. Instead, it is
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more fruitful to turn to a simpler set-up, namely that of the eternal black hole, which is
static outside the horizon and has both future and past singularities, as well as two bound-
aries. This geometry was analyzed previously in 3 dimensions by a number of authors
[8, 9, 10]; here we study the higher-dimensional analog [3]. The real-time or thermofield
formalism for thermal field theory [11] is especially well-suited for this analysis. One
copy of the CFT resides on each of the two asymptotic regions; the CFTs are nonin-
teracting but entangled through the Hartle-Hawking state [9]. In this approach, a single
boundary thermal description is recovered by tracing over the Hilbert space of the other
boundary CFT.

Moreover, as demonstrated previously for 3 dimensions [10], one can probe physics
behind the horizon by studying the correlator of two operators, one on each asymptotic
boundary, each creating a large mass bulk particle. As the mass m → ∞, the correlator
can be evaluated in the semi-classical geodesic approximation and is given by exp(−mL),
where L is the (regularized) proper length of the spacelike geodesic joining the boundary
points. Because the geodesic passes through spacetime regions inside the horizon, this
boundary correlator reveals information about the geometry behind the horizon.

Unfortunately, the three dimensional case, which is simple enough to study analyt-
ically, is rather special. The geometry is locally that of pure AdS3, and the black hole
singularity is merely a result of the orbifold nature of this geometry [12]. Consequently,
the geodesics are not sensitive to the position of the singularity, and correspondingly the
correlation function is relatively structureless.

On the other hand, this situation changes drastically in higher dimensions. In particu-
lar, the singularity in d > 3 dimensions approaches that of the d-dimensional
Schwarzschild black hole singularity, which has a dramatic effect on the spacelike geode-
sics: pictorially, spacelike radial geodesics “bounce off” from the singularity. For sim-
plicity, we focus on d = 5 where the boundary CFT is four dimensional N = 4 SYM;
however, our results are qualitatively similar to those in other higher dimensions as well.

The first surprise, underlining the marked difference from the previously-studied 3-
dimensional case, is that the Penrose diagram of the Schw-AdS5 spacetime is different.
While the Schw-AdS3 geometry has a square-shaped Penrose diagram, this can no longer
hold in higher dimensions [3]. One reason, apparent from Fig.1.1, is that outgoing ra-
dial null geodesics starting at the past singularity do not reach the boundary at a time-
symmetric point. Apart from the differences in the Penrose diagrams, there are two im-
portant features in the symmetric radial spacelike geodesics in higher dimensions which
are absent in the 3-D case: There exists a particular time tc beyond which there are no
geodesics connecting the two boundaries, and the geodesics cross each other.

This has an important consequence for our present goal of finding a signature of the
singularity in the dual field theory. Consider the boundary to boundary correlator 〈φφ〉(t)
between two high-dimension operators inserted in a symmetric fashion on the two bound-
aries at time t. Since this correlation function is related to the proper length of a spacelike
geodesic connecting the two points, we expect that it reflects the special behaviour of the
geodesics as t → tc. In fact, direct evaluation suggests that we should see a pole in the
correlation function:

〈φφ〉(t) ∼ e−mL(t) ∼ 1
(t− tc)2m

as t → tc . (2.1)
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(a) (b)

t=0

ct

Figure 1. Penrose diagrams of Schw-AdS in (a) 3 and (b) 5 dimensions. The top and bottom curves
are the future and past singularities, the vertical lines are the boundaries, the dashed diagonal lines
are the event horizons, and the remaining curves are spacelike radial geodesics.

This corresponds to a light-cone singularity in the field theory, since the geodesics are
becoming almost null.

Had this been the full story, we would have a striking signature of the black hole
singularity in the gauge theory dual. However, general considerations of the boundary
field theory rule this out; one can easily show that |〈φφ〉(t)| ≤ |〈φφ〉(0)| < ∞. What
went wrong? In evaluating Eq.(2.1) we assumed that the correlator is dominated by a
single geodesic, namely the real, “bounce” geodesic shown in Fig.1.1b. But, in fact, this
geodesic does not dominate the correlator, for there are in general multiple geodesics
that connect the two boundary points. One indicator of this fact is the intersection of
nearby geodesics around t = 0; in a cut-off field theory there would be three geodesics
connecting the two points at (cut-off) boundaries. Alternately, in a Euclidean picture, one
real and two complex geodesics contribute. At t = 0 their proper distances coincide,
creating a branch point in the correlator which behaves as L ∼ t4/3 for small t. (The 3 in
the denominator of the exponent, implying a 3-sheeted Riemann surface, corresponds to
the 3 geodesics.)

By studying various resolutions of this branch point, one can show that as t increases
from 0, the correlator defined by the boundary CFT is given by a symmetric sum of
the two complex branches of this expression, each attributed to a complex geodesic in
the complexified spacetime. But the correlator is an analytic function of t and can be
continued onto the real sheet. This is the essential feature of the CFT which enables us
to extract information which is not directly measurable. On the real sheet, the “light cone
singularity” does appear. So the boundary correlator does contain information about the
singularity, albeit in a subtle way.

3. Cosmological singularity

In the preceding section we have seen that despite the singularity being spacelike, we can
study it in the CFT by analyzing analytically continued correlators which correspond to
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spacelike geodesics which bounce off the singularity. Let us now contrast this story with
a different type of spacelike singularity, namely a cosmological (Big Crunch) singularity.
Since one can embed cosmological singularities into an AdS/CFT set-up [3], one might
expect that CFT correlators, related to bulk geodesics as above, would similarly yield
information about the singularity. Surprisingly, this is not the case, due to a classical GR
distinction between these two scenarios. Namely, spacelike geodesics can bounce off the
black hole singularity, but they cannot bounce off the cosmological one.

To see this, let us for simplicity consider spherically symmetric spacetimes and focus
on the radial geodesics. Writing the radial part of the metric suggestively as

ds2 = −dt2 + a2(t) dr2 , (3.1)

we obtain the t-component of the geodesic equation:

ẗ + a(t) a′(t) ṙ2 = 0 (3.2)

where ˙ ≡ d
dλ (λ being the affine parameter along the geodesic), and ′ ≡ d

dt . In order
for the geodesic to bounce off from a (future) spacelike singularity, there must be a point
along the geodesic at which ṫ = 0 while ẗ < 0. Evidently, the first condition can be
satisfied for spacelike geodesics; whether the second condition can be satisfied as well
depends on the sign of a′(t) (since a(t) > 0), as dictated by Eq.(3.2).

Consider now a homogeneous FRW cosmology with a Big Crunch. Then a(t) is sim-
ply the scale factor. Near the future singularity the space is imploding, so that a′(t) < 0,
which implies that ẗ > 0 everywhere along the geodesic. Hence, spacelike geodesics can-
not bounce off the singularity in these cosmologies.1 Since spacelike geodesics cannot
bounce, they will hit the singularity, which makes these FRW cosmologies spacelike geo-
desically incomplete. As we have seen, this is very different from the behaviour in the
black hole geometry.2

As emphasized in the previous section, the classical feature that spacelike geodesics
bounce off from the black hole singularity was crucial for extracting information about
the Schwarzschild-AdS black hole singularity via the CFT [3]; in fact, studying the CFT
correlators may provide further insight into the singularity resolution in quantum gravity.
On the other hand, this feature of the singularity being absent in the cosmological case,
the corresponding singularity resolution should be very different from that of the black
hole3.

1Note that to bounce off from a past Big Bang singularity, we would need ẗ > 0 when ṫ = 0;
but this cannot be satisfied either, because in that region a′(t) > 0.

2In order to write the metric in the form of Eq.(3.1), we need to perform a change of coordinates
from the usual Schwarzschild form; near the singularity, this yields a(t) ∼ −1/t, so that a′(t) > 0,
which allows ẗ < 0 when ṫ = 0. In other words, the Schwarzschild “time” direction, which is
spacelike inside the horizon, is actually expanding as one approaches the future singularity.

3This argument assumes that the difference in the behaviour of certain specific probes of the
singularity are manifestations of the difference in the actual singularity itself; this is by no means
guaranteed, merely suggestive.
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4. Discussion

In summary, we have seen that the CFT encodes physics behind the horizon, including the
near-singularity region. Unlike the previously-studied three dimensional case, in higher
dimensions there is a genuine curvature singularity which is bowed in on the Penrose di-
agram, leading to a special behaviour of the geodesics as a critical time tc is approached.
Despite subtleties related to the nontrivial analytic structure of L(t), the CFT correlators
reveal distinct signals of the black hole singularity. In fact, given4 the CFT data 〈φφ〉,
the properties of the singularity are computationally accessible [3]. Since the “tc” singu-
larity persists to all orders in 1

m and gs, as well as for small ls, we can also extract the
stringy and quantum behaviour near the black hole singularity. Thus, using analyticity,
we have demonstrated that a significant amount of information from behind the horizon,
and in particular from near the singularity, is encoded in boundary theory correlators.
Since analyticity was essential for our arguments, it would be worthwhile to understand
its implications in the context of AdS/CFT at a much deeper level.

We have given an example of how we can learn about (and presumably resolve) space-
like singularities in the bulk, using AdS/CFT. Hitherto, it has been commonly assumed
that understanding the black hole singularity will help us understand the cosmological
Big Bang or Big Crunch singularities as well. We have seen that this may not be a well-
founded expectation; the black hole singularities should be encoded very differently from
the cosmological ones. The fact that, even at the classical level, the near-singularity geo-
desic properties differ may be viewed as a hint to the singularity resolutions being dif-
ferent. As already evidenced in our experience with timelike singularities, there are many
different channels of resolution depending on the details of the singularity in question; it
is not surprising that this situation has an analog in the context of spacelike singularities.
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INFLATION UNLOADED
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Abstract. I present a brief review of astro-ph/0406099, which argues that there is a limit
on the number of efolds of inflation which are observable in a universe which undergoes
an eternally accelerated expansion in the future. Such an acceleration can arise from an
equation of state p = wρ, with w < −1/3, and it implies the existence of event horizons.
In some respects the future acceleration acts as a second period of inflation, and “initial
perturbations” (including signatures of the first inflationary period) are inflated away or
thermalize with the ambient Hawking radiation. Thus the current CMB data may be look-
ing as far back in the history of the universe as will ever be possible even in principle,
making our era a most opportune time to study cosmology.

1. Introduction

Quantum fluctuations produced during inflation are imprinted on the curvature, and are
subsequently stretched by inflation to super (Hubble) horizon scales1. Once there, they
“freeze out”, i.e. their amplitude approaches a constant set by the horizon crossing con-
dition, and their wavelength scales with the particle horizon, λ(t) = λ0 a(t)/a0. What
happens next depends on the subsequent evolution of a(t). When inflation ends, the Hub-
ble horizon begins to grow linearly in time, but the wavelength stretches more slowly, as
λ(t) ∼ a(t). If the vacuum energy is zero, this situation will persist indefinitely, and the
Hubble horizon eventually catches up with the perturbation (see the left panel of Fig. 1),
after which it can collapse and form structure. A patient observer in such a universe can
see arbitrarily far back in time by measuring these perturbations: the longer she waits, the
farther back during inflation the fluctuations she sees were generated.

However, if at some time the post-inflationary universe begins to accelerate (and con-
tinues to do so forever), there will be event horizons [2]. In this case a part of the global
spacetime is permanently inaccessible to any given observer, and the evolution of pertur-
bations is very different. Depending on when they were produced, inflationary fluctuations
may or may not re-enter the Hubble horizon during matter domination (see the right panel

1Because space is tightly constrained in these proceedings, I have included only the most imme-
diately relevant references. Please see [1] for more.
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Figure 1. Evolution of the wav elengths of some typical inflationary perturbations in a
univ erse without (left panel) and with (right panel) event horizons. In the left panel, all
fluctuations ev entually reenter the Hubble horizon. In the right panel, in the case a), a
fluctuation is stretched outside of the Hubble horizon during inflation, remains there for
a time, then reenters during a matter dominated era after inflation, and ev entually gets
expelled out of the horizon once more during the final stage of acceleration. In b), the
fluctuation w ould hav e reentered about no w , but the late acceleration just pre v ents that.
In c), the late acceleration pre v ents the fluctuation from ev er reentering the Hubble hori-
zon. AH = apparent horizon, RS = reheating surf ace, PT = photon trajectory , F(P) H =
future(past) horizon, t 0 = n ow .

of Fig. 1). If they do not re-enter by the time the universe begins to accelerate, they will
never do so and hence will never be directly observable.

The photons which comprise the CMB originate on the slice (i.e. a sphere) of the last
scattering surface which is separated from the observer by null geodesics (labelled PT in
Fig. 1). In a decelerating universe the radius of this last scattering sphere grows without
bound, and new information about inflation continues to become available over time.

In a universe which accelerates, the last-scattering sphere asymptotes to the size of
the event horizon at the time of last scattering, which is finite. Therefore, the pattern of
temperature anisotropies in the CMB “freezes” after the transition to future acceleration.

Eventually even this remnant will be permanently erased. Spacetimes with event hori-
zons contain Hawking particles, and as the cosmological expansion continues, the CMB
redshifts until it is colder than the Hawking radiation. After this time, any remaining in-
formation in the CMB will be masked by quantum effects.

2. Quantification

The condition that an initial Hubble-scale perturbation (generated at some time ti during
inflation with scale Hi) has expanded to fill the observable universe today (subscript 0
refers to now) is:

a(ti)H(ti) = a0H0 . (2.1)

Using a(t) = ae exp(Hi(t− te)) for times during inflation yields

N ≡ Hi(te − tb) = ln
(

aeHi

a0H0

)
, (2.2)
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quantity for a universe that
enters a late-time accelerating phase.

for some time tb during inflation. After inflation, the universe grew by a factor of about
a0/ae ∼ Te/T0, where Te is the reheating temperature and T0 ∼ 10−3eV the current
CMB temperature. Taking this ratio to be about 1026 − 1028 and the scale of inflation to
be Hi ∼ 1014GeV , one finds N ∼ 60. Hence, to use inflation to solve the horizon and
flatness problems requires at least 60 efolds (this is somewhat model dependent).

If the universe accelerates in the future, the comoving Hubble scale a(t)H(t) grows at
late times. At a time tf when the comoving Hubble scale equals its value at reheating, the
last perturbation generated during inflation will be larger than the horizon, and afterwards
no new structure will form from inflationary perturbations. The equality

a(tf )H(tf ) = a(te)Hi , (2.3)

(where te is the time at reheating) defines tf ; it is calculated below).
Spacetimes with event horizons contain (approximately) thermal Hawking particles,

with a characteristic temperature TH = H/2π. Being a quantum effect, this spectrum
does not redshift in the usual way. If the universe is accelerating, the CMB temperature
TCMB will eventually decrease to a point where it is equal to TH ∼ H(t). This occurs at
a time tT when

a(tT )H(tT ) = a(te)Te . (2.4)

Taking the ratio Hi/Te ∼ 1, tf ∼ tT . Using (2.3), eqs. (2.1) and (2.2), and the scaling
a(t)H(t) ∼ a0H0(t/t0)−(1+3w)/[3(1+w)] when −1 < w < −1/3:

tT ∼ tf ∼ 1078(1+w)/|1+3w|t0 . (2.5)

In the limit w → −1/3 the time diverges. The limit w → −1 yields

tT ∼ 60
H0

. (2.6)

Therefore if the cosmic acceleration never ends, only those inflationary fluctuations
produced in the interval between the end of inflation and 60 efolds before the end will
ever be observable. Further, the information which is accessible now will be lost after the

verse which
 inflates, followed by radiation and matter domination; on the right, the same

Figure 2. On the left, the evolution of the comoving Hubble scale a(t)H (t) for a uni
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time tT . It is interesting that the future acceleration appears in this sense to shield us from
the past incompleteness of inflation, e.g. the big bang singularity.

3. Summary

Eternal dark energy with w < −1/3 prevents us from ever detecting inflationary pertur-
bations which originated before the ones currently observable. Further, it slowly degrades
the information stored in the currently observable perturbations. This allows us to re-
formulate the “Why now?” problem in a novel and interesting way: why are we living in
the best time to do cosmology; the time at which we can see back the farthest?
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Abstract. We present an alternative way to construct the D-brane effective action in the
case where the background gauge field strengths are not slowly varying and/or in the case
of multiple coinciding D-branes.

1. Introduction

It has been known for quite some time that the effective action for a single D-brane in
the presence of slowly varying background gauge field strengths is the Dirac-Born-Infeld
action [1]. A class of derivative corrections was calculated to all orders in α′ in [2] using
boundary conformal field theory methods. When multiple D-branes coincide the gauge
group becomes non-abelian and much less is known about the effective action beyond the
leading orders. As became clear from an analysis of the spectrum of strings stretching
between intersecting branes, the answer is not just a symmetrized trace version of the
abelian Dirac-Born-Infeld action [3]. Furthermore, the corrections containing commuta-
tors of field strengths turn out to be intimately related to the derivative corrections. We
present an alternative way of constructing these D-brane effective actions based on requir-
ing the existence of a type of BPS equations which are an α′-deformation of the equations
introduced in [4]. For more details and further references, I refer to my PhD thesis [5].

2. Derivative corrections

In [4] the (anti-)self-duality equations of euclidian Yang-Mills theory in 4 dimensions
were generalized to dimensions greater than 4. One can show that solutions to these gen-
eralized equations satisfy a Bogomolny bound and preserve part of the supersymmetry, so
we will call these equations BPS equations. Their symmetry is only a subgroup G of the
rotation group SO(d). We will focus on the case were G = U(k) ⊂ SO(2k). Introducing
complex coordinates the BPS equations read

Fαβ = Fᾱβ̄ = 0, (2.1)∑
α

Fαᾱ = 0. (2.2)
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The first equation is the condition for a holomorphic vector bundle while the second one
is called the DUY condition [6]. It turns out that the abelian Born-Infeld action is (without
derivative corrections) the unique deformation of the Maxwell action allowing for an α′

deformation of these BPS equations to automatically solve the equations of motion. The
holomorphicity condition stays uncorrected while the DUY condition becomes∑

α

arctanh 2πα′Fαᾱ = 0 . (2.3)

It is still possible to establish a Bogomolny bound and show that part of the supersymme-
try is unbroken by solutions to this deformed equation.

Interestingly, if we study the derivative corrections introduced in [2], which can be
written as

SWyl = −τp

∫
dp+1x (1 + P )

√
−det (η + 2πα′F ) , (2.4)

with

P =
1
48

Sρ1
ρ2µ1µ2S

ρ2
ρ1µ3µ4

δ

δ(2πα′Fµ1µ2)
δ

δ(2πα′Fµ3µ4)
,

Sρ1
ρ2µ1µ2 = hρ1ρ3

(
(2πα′)2 ∂ρ1∂ρ3Fµ1µ2

+2 (2πα′)3hν1ν2∂ρ1F[µ1|ν1∂ρ3|Fµ2]ν2

)
. (2.5)

one can still find a deformation of the DUY condition which is now given by∑
α

(1 + P ) [arctanh 2πα′F ]αᾱ = 0 . (2.6)

Assuming that these BPS equations should still exist in the non-abelian case, we were
successful in using them as a constraint to construct the non-abelian D-brane effective
action up to order α′4 [7]. Our results passed the spectrum test which the symmetrized
trace Born-Infeld action failed [8].

3. Outlook

Another interesting aspect is that the transverse scalars describing the positions of the D-
branes become matrices if the D-branes coincide [9]. One can study general coordinate
invariance in this context [10]. The most interesting transformations seem to be ones that
mix the transversal and the longitudinal coordinates. Invariance under these transforma-
tions seems again to impose strong constraints on the form of the non-abelian D-brane
effective action [11].
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ADS2 × S2 AS AN EXACT HETEROTIC STRING BACKGROUND
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Abstract. An exact heterotic string theory on an AdS2 × S2 background is found as
deformation of an SL (2, R)× SU (2) WZW model. Based on [1].

1. Intro

Anti de Sitter in three dimensions and S3 are among the most simple and yet interesting
string backgrounds. They are exact solutions to the string equations beyond the super-
gravity approximation and, at the same time, are simple to deal with although non-trivial
thanks to the presence of non-vanishing curvatures. For this reason they constitute an
unique setting in which to analyze AdS/CFT correspondence, black-hole physics, little-
string theory.

String propagation in these backgrounds is described in terms of WZW models for the
SL (2, R) and SU (2) groups, hence marginal deformations of such models allow to study
moduli space of the string vacua. In particular well-known class of marginal deformations
for wzw models are those driven by left–right current bilinears [2, 3]. On the other hand S3

and AdS3 are embedded in larger structures so one can consider marginal deformations
where just one of the currents belongs to the SU (2) or AdS3 algebra, the other belonging
to some other U (1) corresponding to an internal magnetic or electric field.

This kind of deformation generates a continuous line of exact CFT’s. In this note we
will show how with an appropriate choice for the deforming current we obtain a boundary
in moduli space and that this boundary can be given a simple geometric interpretation in
terms of the AdS2×S2 near-horizon geometry of the Bertotti-Robinson black hole [4, 5].

2. SU (2) asymmetric deformation

In the SU (2) case, there exists just one possible choice for the deforming current the two
other being related by inner automorphisms, since the group has rank one, is compact and
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its Lie algebra simple. Take the WZW model for SU (2):

SSU(2)k
=

1
2π

∫
d2z

{
k

4
(
∂α∂̄α + ∂β∂̄β + ∂γ∂̄γ + 2 cos β ∂α∂̄γ

)
+

3∑
a=1

ψa∂̄ψa

}
(2.1)

where ψa are the left-moving free fermions, superpartners of the bosonic SU(2)k cur-
rents, and (α, β, γ) are the usual Euler angles parameterizing the SU(2) group manifold.
The left-moving fermions transform in the adjoint of SU (2); there are no right-moving
superpartners but a right-moving current algebra of total charge c = 16 can be realized in
terms of right-moving free fermions. This means that we can build a N = (1, 0) world-
sheet supersymmetry-compatible deformation given by:

δSmagnetic =
√

kkGH

2π

∫
d2z

(
J3 + ıψ1ψ2

)
J̄G; (2.2)

where J3 belongs to the SU (2) algebra and J̄g is the current of the algebra at level kg

realized by the right-moving free fermions. An exact CFT is obtained for any value of the
deformation parameter H .

2.1. GEOMETRY

These new backgrounds all present a constant dilaton, a magnetic field, a NS-NS field
proportional to the unperturbed one and a metric retaining a residual SU (2) × U (1)
isometry [6]. The most remarkable property is that the deformation line in moduli space
has a boundary corresponding to a critical value of the deformation parameter H2 = 1/2.
At this point the U (1) subgroup decompactifies and the resulting geometry is the left coset
SU (2) /U (1) ∼ S2 which is thus found to be an exact CFT background only supported
by a magnetic field (the dilaton remains constant and NS field vanishes). A geometrical
interpretation for this process can be given as follows: the initial S3 sphere is a Hopf
fibration of an S1 fiber generated by the J3 current over an S2 base; the deformation only
acts on the fiber, changing its radius up to the point where this seems to vanish, actually
marking the trivialization of the fibration:

S3 −−−−−−→
H2→H2

max

R× S2, (2.3)

If we turn our attention to the gauge field one can show that a quantization of the
magnetic charge is only compatible with levels of the affine algebras such that k

kG
=

p2 , p ∈ Z. We will find the same condition in terms of the partition function for the
boundary deformation.

Although this construction has been implicitly carried on for first order in α′ back-
ground fields, it is important to stress that the resulting metric is nevertheless exact at all
orders since the renormalization boils down to the redefinition of the level k that is simply
shifted by the dual Coxeter number (just as in the WZW case).
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2.2. PARTITION FUNCTION

Consider the case of kg = 2 (one right-moving C fermion). The relevant components
of the initial partition funciton are given by a SU(2)k−2-modular-invariance-compatible
combination of SU(2)k−2 supersymmetric characters and fermions from the gauge sector.
For our pourposes it is useful to further decompose the supersymmetric SU(2)k charac-
ters in terms of those of the N = 2 minimal models:

χj(τ) ϑ

[
a

b

]
(τ, ν) =

∑
m∈Z2k

Cj
m

[
a

b

]
Θm,k

(
τ,−2ν

k

)
. (2.4)

The deformation acts as a boost on the left-lattice contribution of the Cartan current of the
supersymmetric SU(2)k and on the right current from the gauge sector:

Θm,k ϑ̄

[
h

g

]
=
∑
n,n̄

e−ıπg(n̄+ h
2 )q

1
2

(√
2kn+ m√

2k

)2

q̄
1
2 (n̄+ h

2 )2

−→
∑
n,n̄

e−ıπg(n̄+ h
2 ) q

1
2

[(√
2kn+ m√

2k

)
cosh x+(n̄+ h

2 ) sinh x
]2

× q̄
1
2

[
(n̄+ h

2 ) cosh x+
(√

2kn+ m√
2k

)
sinh x

]2
, (2.5)

where the boost parameter x is given by cosh x = 1
1−2H2 .

Although an exact CFT is obtained for any value of the deformation parameter H
we will concentrate, as before, on the boundary value H2 = 1/2. In this case the boost
parameter diverges thus giving the following constraints: 4(k + 2)n + 2m + 2

√
2kn̄ +√

2kh = 0. Therefore, the limit is well-defined only if the level of the supersymmetric
SU(2)k satisfies the quantization condition k = 2p2 , p ∈ Z i.e. the charge quantization
for the flux of the gauge field. Under these constraints the U(1) corresponding to the
combination of charges orthogonal our condition decouples and can be removed. In this
way we end up with the expression for the S2 partition function:

ZS2

[
a;h
b; g

]
=
∑
j,j̄

M jj̄
∑

N∈Z2p

eıπg(N+ h
2 ) Cj

p(2N−h)

[
a

b

]
χ̄j̄ (2.6)

in agreement with the result found in [8] by using the coset construction. The remaining
charge N labels the magnetic charge of the state under consideration.

3. SL (2, R) deformation

The same construction as above can be repeated for the SL (2, R) WZW model. In this case
the moduli space is somewhat richer for it is possible to realize three different asymmetric
deformations using the three generators of the group. These are not equivalent (SL (2, R)
is not compact) and in fact they lead to three physically different backgrounds. The elliptic
deformation line, in example, contains the Gödel universe [7], the parabolic deformation
gives the superposition of AdS3 and a gravitational plane wave. Two of these deforma-
tion lines present the same boundary effect as the SU (2) deformation. In particular the
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elliptic deformation leads to the hyperbolic space H2 = SL (2, R) /U (1) supported by
an immaginary magnetic field, ie an exact but non-unitary CFT. The hyperbolic deforma-
tion, on the other hand, leads to AdS2 = SL (2, R) /U (1) supported by an electric field.
No charge quantization is present in this case, because of the non-compact nature of the
background.

In this latter case it is not yet possible to give the same construction for the partition
function as for the SU (2) case since this would require the decomposition of the ini-
tial partition function in a basis of hyperbolic characters which is not a simple exercize.
Nevertheless by following the same procedure as before it is possible to evaluate the ef-
fect of the deformation on the spectrum of primaries and hence give the resulting AdS2

background spectrum.

4. AdS2 × S2

The S2 and AdS2 backgrounds can be combined so to give an exact CFT corresponding
to the AdS2 × S2 near-horizon geometry of the BR black-hole.

Let us now consider the complete heterotic string background which consists of the
AdS2 × S2 space–time times an N = 2 internal conformal field theory M, that we will
assume to be of central charge ĉ = 6 and with integral R-charges. The levels k of SU(2)
and k̂ of SL(2, R) are such that the string background is critical:

ĉ =
2(k − 2)

k
+

2(k̂ + 2)

k̂
= 4 =⇒ k = k̂. (4.1)

This translates into the equality of the radii of the corresponding S2 and AdS2 factors,
which is in turn necessary for supersymmetry. Furthermore, the charge quantization con-
dition for the two-sphere restricts further the level to k = 2p2, p ∈ N.

The combined AdS2 × S2 background can give new insights about the physics of
the BR black hole in particular by analizing the Schwinger-pair production in such back-
ground, or the study of the stability and propagation of D-branes.
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STRINGS AND D-BRANES IN HOLOGRAPHIC BACKGROUNDS
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The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract. We review recent progress in the study of non-rational (boundary) CFTs and
their applications to holographic backgrounds in superstring theory. We focus on the su-
persymmetric coset SL(2, R)/U(1) and its dual N=2 Liouville. We discuss the modular
properties of their characters, their partition function and boundary states for their D-
branes. Then these results are used to study the CFT of the NS5-brane background, with
applications to Little String Theories.

1. Introduction

Conformal field theories (CFT) are the natural building blocks for the exact perturbative
description of superstring theory in non-trivial backgrounds without RR fluxes. When
the curved space is non-compact, the CFTs needed are non-rational (NRCFTs). They are
more difficult to handle that the rational ones, and the simplest examples have been fairly
understood only in the last years.

This progress has been largely motivated by their relevance to describe holographic
backgrounds. Among the latter, the most famous are AdS(3) and strings in d ≤ 2. The
holographic nature of five-branes solutions is less clear, mainly due to the non-triviality
of the dual non-gravitational theory, called Little String Theory.

These constructions can typically be recast as non-rational analogues of Gepner mod-
els, with a non-compact factor given by the supersymmetric coset SL(2, R)/U(1) . It is
this last theory that we shall study in detail in this note.

The non-rational CFTs are defined in opposition to rational ones. The techniques used
to solve the latter do not work for the former, or need to be adapted. The complications
arise because the Hilbert space has a continuous spectrum, due to the non-compactness
of the target space. In general the spectrum of these theories splits into two categories of
states. On the one hand the spectrum contains continuous representations, corresponding
to asymptotic states propagating in the non-compact “radial” direction(s). On the other
hand the states of the discrete representations correspond to (a finite set of) localized
bound states. As we may infer from general considerations of scattering theory, these two
kinds of states mix. For example, in the coset SL(2, R)/U(1) , the reflection amplitude
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for continuous representations has poles whenever it is analytically continued to a discrete
representation.

The modular properties of the characters exhibit a similar pattern. While the continu-
ous representations modular transform into themselves, the discrete representations yield
both discrete and continuous ones. These results hold both in the bosonic and susy cosets
[1], and are shown using a lemma proven in [1]. These new features complicate the con-
struction of partition functions and boundary states by a large amount.

A last important aspect is that for specific values of the level, these theories acquire
some kind of rational behavior. Remember that a free a boson on a circle at rational radius,
has an extended chiral symmetry, and summing over the orbits of this symmetry one gets
a finite set of extended characters. The same holds for the (super) coset SL(2, R)/U(1) at
rational level, since the target space asymptotes a cylinder of radius

√
2k. In particular,

in the supersymmetric case one obtain a finite set of rational N=2 R-charges, which is
desirable to construct space-time supersymmetric vacua.

2. SL(2,R)/U(1) and N=2 Liouville

The theory is obtained applying the rules of an elliptic coset construction to the super-
symmetric WZW model SL(2, R) at level k. For the axial coset the sigma model is well
defined because the action of the gauge field has no fixed point, and corresponds to an
Euclidean two-dimensional black hole. The spectrum of primaries is obtained by descent
from AdS3.

The worldsheet-supersymmetric partition function has been computed using the pow-
erful techniques of marginal deformations of WZW models[3]. This amplitude splits natu-
rally into (non-minimal) characters of the N=2 superconformal algebra. An exact decom-
position of the partition function has been carried out in[2]. We have found first a contri-
bution of discrete representations, with the correct multiplicities for all the descendants.
For the continuous representations, their contribution is divergent, due to the infinite vol-
ume available for them. An infrared regularization of the partition function is possible,
leading to a finite non-trivial density of continuous representations, compatible with N=2
supersymmetry. However this regulator breaks (super)conformal symmetry, and there is a
price to pay: the partition function contains an extra non-universal contribution which is
not related to the N=2 algebra.

The super-coset SL(2, R)/U(1) has been conjectured to be dual to the N=2 Liouville
theory. Evidence for this equivalence comes from a sigma-model mirror symmetry and
from the agreement between perturbative computations of correlators. However, we ar-
gue that these results come from a more fundamental structure of these theories. Indeed,
both theories possess the same chiral algebra, which is the (non-minimal) N=2 SCA. This
algebra can be decomposed into the bosonic coset SL(2, R)/U(1) and a free boson[1].
Since conformal bootstrap results for the Euclidean AdS3 are obtained using only the chi-
ral symmetries of the model (without an explicit reference to a specific action), they can
be applied to the supersymmetric SL(2, R)/U(1) coset and to the N=2 Liouville theory
as well, because they both lift to the same current algebra[4]. Therefore the theories can
differ only by the way the left and right representations of the algebra are glued in the
closed string spectrum.
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The vector coset SL(2, R)/U(1) has a singular sigma-model, therefore it receives
substantial corrections; its single cover is a Zk orbifold of the cigar[3]. It is likely that the
N=2 Liouville is the corrected form of this vector coset.

3. D-branes from boundary AdS3

The study of D-branes in these exact superstrings backgrounds is essential, in order to
understand the non-perturbative dynamics in these non-compact manifolds, and it may
give indications about its holographic degrees of freedom. The construction of the exact
boundary states, which contain all the information about the couplings of the D-branes to
the closed string states, follows the same logic as before. Conformal bootstrap methods
were employed successfully to study D-branes in the bosonic Liouville theory in Euclid-
ean AdS3. The results have been used later to study the bosonic coset.

Figure 1. The consistent D-branes in the cigar: D0-, D1- and D2-branes (left to right)

In[4] we constructed the D-branes in the super-coset SL(2, R)/U(1) using simi-
lar methods. An important aspect of this analysis is that the boundary conformal boot-
strap uses only chiral symmetries. Therefore the arguments given above about the duality
super-coset SL(2, R)/U(1) / N=2 Liouville extend straightforwardly in the presence of a
boundary. However, one should be careful about the way left and right representations are
glued, in order to construct the basis of Ishibashi states. Then the various boundary states
of the theory can be constructed by descent from D-branes of Euclidean AdS3. There is a
direct connection between the boundary conditions for the currents of the ŝl(2, R)algebra
and the gluing conditions of type A or B defined in. The D-branes that we obtained satisfy
by construction the factorization constraints, since they descend from consistent D-branes
in Euclidean AdS3. We also checked the Cardy condition, i.e. the open-closed channel
consistency of the annulus diagram. The various D-branes of the cigar are depicted in
fig. 1.

4. strings near NS5 branes

The results given above can be lifted to the background created by NS5-branes distributed
on a topologically trivial circle, known to be T-dual to an exact CFT. When all the NS5-
branes are separated from each other, the background is perturbative and one can take a
double scaling limit where gravity decouples and this perturbative nature holds. We have
shown in[2] that the complicated solution for the ring of NS5 in this limit can be obtained
as a null gauging of the super-WZW model SL(2, R)× SU(2). This CFT has worldsheet
N=4 SCA, so there are no perturbative corrections metric. However, instantons corrections
show up, and they are indeed captured by the supergravity solution. The null coset can be
recast as a Zk orbifold of SL(2, R)/U(1)×SU(2)/U(1). The Zk orbifold can be thought
as coming from the GSO projection generalizing Gepner models. However, this orbifold
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changes deeply the background of the effective theory, because in the semi-classical limit
its twisted sectors become very light; hence the correct geometry is not given by the sum
of the two coset factors.

Once this identification is understood it is possible to write the one-loop amplitude for
this NS5-brane backgroud[2]. Various BPS D-branes in this background are now under
study. In particular there are new non-factorizable D-branes that can be constructed out
of the coset D-branes[5]. In type IIA we have also D4-branes stretched between the NS5-
branes on which a D=4, N=2 SYM theory lives. Quite remarkably, the one-point function
for these D4-branes can be related to the beta-function of the gauge theory.
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COSMIC CENSORSHIP IN ADS/CFT
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Abstract. We review recent attempts at violations of cosmic censorship in asymptotically
Anti-deSitter spacetimes. The essential logic behind the potential counter-examples was
that there exist smooth initial data that are guaranteed to evolve in the future to a sin-
gularity, which nonetheless are not going to be cloaked by a black hole horizon, owing
to the configuration possessing insufficient energy to produce the desired black hole. We
demonstrate that a refined analysis indicates that the kinematics always allows for black
hole formation, thereby upholding cosmic censorship in this context.

1. Introduction

Singularities are a ubiquitous feature in classical general relativity. As attested to by the
singularity theorems, mild initial data can often evolve to singular spacetimes. Within the
classical framework, formation of singularities implies lack of predictability. Moreover, it
implies that formation of singularities in some local region would lead to drastic effects
arbitrarily far away. To avert this consequence it was proposed by Penrose [1] that the is
a universal cosmic censor that prevents these singularities from being causally accessible
to asymptotic observers. In a more colloquial phrasing the cosmic censorship conjecture
may be stated as follows: whenever initial data under evolution form singularities, the
singularities are hidden behind event horizons of black holes, thereby preventing them
from influencing the physics at large distances.

While the spirit of the cosmic censorship conjecture is appropriate within the limited
sense of classical general relativity, it is not clear that this is a desirable state of affairs
in the quantum gravity context. As such one would expect that accessing the large curva-
ture effects should provide insight into the workings of quantum gravity (see V. Hubeny’s
talk in this volume for a discussion of these issues). To this end it is useful and instruc-
tive to analyze the domain of validity of the cosmic censorship conjecture. At the same
time given its recalcitance to being proven, one wonders whether there might be some
important piece of physics that we are missing.

Ideally one would like to talk about cosmic censorship violation in contexts where we
have some level of confidence about what we expect in the full quantum gravity context.
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Figure 1. The scalar potential and the field profile.

As of date the framework wherein this criterion is met is the AdS/CFT correspondence.
Here we know that there is an in principle formulation of quantum gravity in asymptot-
ically Anti-deSitter spacetimes in terms of a quantum field theory. This makes it ideal to
explore consequences of cosmic censorship in asymptotically AdS spacetimes.

The first steps in the direction of potential cosmic censorship violation were taken
in [2] and more recently this was extended to a context with greater control from the
AdS/CFT point of view in [3]. The essence of their argument is to produce a simple con-
figuration that reliably evolves into a singularity, and then show that there is insufficient
energy available to make a black hole whose horizon is big enough to cloak the singular-
ity. A careful study of this scenario with the purpose of identifying a region in parameter
space where we can reliably argue that naked singularities will form and moreover the
dual CFT will be well-behaved was carried out in [5]. It was argued that there aren’t any
initial conditions that satisfy the aforementioned criteria. In particular, we carry out a re-
fined estimate of the proper size of the singularity and the energitics in the system to show
that there is always a potential for black hole formation. This is in agreement with the nu-
merical results of [4], [6], and [7], wherein full evolution of the initial data was carried
out.

We begin by reviewing the framework in which we will consider cosmic censorship
violation and then proceed to proceed to detail how we can make reliable estimates of the
size of the singularity and the energetics involved and end with a short discussion.

2. The Framework

The simplest context in which we can discuss the formation of naked singularities in
asymptotically AdS is to consider a scalar gravity system with the scalar potential being
picked arbitrarily, with the only constraint that it admits AdS vacua. In [2], such a set-up
was chosen, where it was argued that with a suitable choice of scalar potential one can
ensure that it is possible to find configurations with very little energy, which nonetheless
make black holes. Choosing an arbitrary scalar potential is not viable within the AdS/CFT
context. Nonetheless, [3] argue that it is possible to create naked singularities in this case
as well. The idea is to use the well known fact that in AdS, scalar fields can have negative
mass squared, but nevertheless be stable. In fact such fields are available in the context
of N = 8 gauged supergravity on AdS5. Consider then the following action, which is a
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Figure 2. A sketch of the causal diagram for the evolution of the scalar field profile presented in
Fig 1.1b.

consistent truncation of the supergravity theory:

S =
∫ √−g

[
1
2
R− 1

2
(∇φ)2 − V (φ)

]
, (2.1)

where the potential is plotted in Fig. 1.1.a, and is given by

V (φ) = −2 e2φ/
√

3 − 4 e−φ/
√

3 . (2.2)

The initial data is prescribed in the form of the field profile φ(r) as indicated in Fig. 1.1b.
We are assuming that we have time symmetric initial data and will be parametrising the
metric on the inital data surface as

ds2
Σ =

(
1− m(r)

3π2 r2
+ r2

)−1

dr2 + r2 dΩ2
3 , (2.3)

so that r denotes the proper size of the S3 on the initial data surface and m(r) is related
to the ADM mass of the configuration and is determined in terms of φ(r) by virtue of the
constraint equations.

As is clear from Fig. 1.1.b, there are two parameters at our disposal: R0 which is
size of the homogeneous region of the scalar field and φ0 the value of the scalar field
in the homogeneous region. The choice of this homogeneous profile has been made to
ensure that the future evolution of the initial data results in a singularity. Thinking in
terms of FRW cosmologies, a homogenous scalar field tends to roll down the potential
and collapse to a singularity in open universes with a negative cosmological constant. The
asymptotic fall-off of the scalar field is dictated by the requirement that the geometry be
asymptotically AdS. In Fig. 1.2 we sketch the conformal diagram for the evolution of the
scalar field in the domain of dependence of the region r ≤ R0.

For the sake of concreteness there are two distinct scalar profiles which we can con-
sider:
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− Normalizable fall-off

φ(r) = φ0 ≡ A

R2
0

r ≤ R0 , φ(r) =
A

r2
r > R0 . (2.4)

− Non-normalizable fall-off with a rigid cut-off at r = R1

φ(r) = φ0 , r ≤ R0 φ(r) =
φ1 R2

1

lnR1

ln r

r2
, R0 < r ≤ R1 . (2.5)

With the explicit expressions for the field profile, the ADM mass can be calculated
from the constraint equations. We refer the reader to [5] for the details. In what follows
we assume that we denote Mconfig(φ0, R0) as the energy contained in the initial data.

Given the kinematical information about how much energy is contained in the initial
data, the strategy is to ask whether we have enough energy to form a black hole which
can enclose the singularity which is guaranteed to form upon evolution. To this end we
need to be aware of the size of the singularity, in order to ascertain the size of the event
horizon of the black hole. This we turn to next.

3. The Size of the singularity

The first step is to model the evolution of a homogeneous scalar field in hyperbolic slices
of AdS. This is an accurate description of the dynamics in the domain of dependence of
the homogeneous region r ≤ R0 for the configurations considered in the body of the
paper. The metric in d dimensions can be written as

ds2 = −dT 2 + a(T )2
(

dR2

1 + R2
+ R2 dΩ2

d−2

)
. (3.1)

where the scale factor a(T ) and the scalar field φ(T ) are to be determined from the Ein-
stein’s equations, which read:

ȧ2 − 2
(d− 1)(d− 2)

a2

(
1
2

φ̇2 + V

)
= 1

ä

a
− 2

(d− 1)(d− 2)

(
V − (d− 2)

2
φ̇2

)
= 0

φ̈ + (d− 1)
ȧ

a
φ̇ + V,φ = 0 . (3.2)

Using (3.2) it can be shown that we get a curvature singularity as a → 0, unless a(T ) ∼
cos T as for pure AdS, where a = 0 corresponds merely to a coordinate singularity.

Evolving these equations is difficult to do analytically, but it is relatively straightfor-
ward numerically. There are two cases where we can make analytic statements, The first
is where we assume that the field is small and study only the Gaussian fluctuations in the
potential, and the other is the near-singularity regime, where the potential is negligible.
Armed with this information it is possible to show that a curvature singularity will occur
in T < π

2 .
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Figure 3. Refined causal digram for the FRW region where the homogeneous scalar field collapses.

Let us now turn to the next step, namely estimating the mass of the black hole required
to cloak the singularity. This involves a bit more detailed analysis, since it depends on
the behaviour of the null geodesics in the dynamical background. What we can do is to
estimate when the pure AdS metric cease to approximate the actual geometry. We will
then use that as the cutoff for the ingoing radial null geodesic starting at T = 0 at radius
R0; namely, we approximate the black hole size rh0 by the proper radius reached by this
null geodesic at the cut-off time Ttrust, cf., Fig. 1.2. Carrying out this exercise we find:

rh0 = 0.27R0 φ
2/3
0 . (3.3)

We must emphasise here that the above serves as an estimate for the lower bound on the
size of the black hole that needs to form.

To get a more reliable estimate on the size of the black hole necessary to cloak the
singularity, we solve FRW equations (3.2) numerically. With an explicit numerical solu-
tion to the scale factor a(T ), we can study the property of null geodesics in the resulting
big crunch geometry. Note that this is still a much easier problem than having to solve for
the full evolution.

In particular we can obtain the behavior of rh0(φ0). As indicated in Fig. 1.3, we start
from a point on the initial data slice where the spheres have proper size R0 and consider
a radially ingoing null geodesic. At some point very close to the singularity we cut-off
the geometry and from the end-point of the geodesic from R0 onto this cut-off surface
we take a radially ingoing null geodesic. This would intersect the initial data slice at
Rs0. However, the proper size of the spheres will peak at some intermediate time Tmax.
Call this radius rh2; this will be the lower bound on the size of the black hole. We use
the numerical solution for a(T ) to estimate rh2. In Fig. 1.4 we show the behavior of
rh2(φ0)/R0. We see that for large φ0, rh2 is independent of φ0. This follows from the
fact that the potential is exponential in φ. Moreover, we find that for small φ0,

rh2(φ0) = 0.37R0 φ
2/3
0 (3.4)
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Figure 4. Accurate numerical estimate for the size of the singularity with the domain of depen-
dence.

The numerical evaluation of rh2 differs from our weak field estimate rh0 only in the
numerical factor, which is attributable to a more accurate determination of the point where
the geometry deviates significantly from pure AdS.

The estimate for the black hole size (3.4), does not constitute the tightest lower bound.
In deriving it we assumed that the singularity stretched out to the boundary of the domain
of dependence at time Ts. However, we can argue that it necessarily has to be bigger and
so obtain more stringent bounds. By following an outgoing congruence of null geodesics
from the initial data surface, we can show that the best estimate of the size of the singu-
larity is given by rh3 in Fig. 1.3. The basic idea is to exploit the fact that we are able to
move all the way to the boundary of the domain of dependence (see [5] for details). In
fact, with a bit of numerical work we can show that for small φ0

rh3(φ0) = 0.58R0 φ
1/2
0 , for φ0 � 1 , (3.5)

is the best estimate that can be obtained within the domain of dependence. Moreover we
can show that for

rh3 → σs R0 = 0.577R0 , for φ0 � 1 . (3.6)

Plots of rh3 as function of φ0 are shown in Fig. 1.4.
With the numerical information about the singularity in hand, we can ask what is the

energy required to form the black hole of the requisite size. For the normalizable scalar
mode, the black hole in question is the Schwarzschild AdS black hole, while for the non-
normalizable configuration it is the scalar hair black hole. Referring the interested reader
to [5] for details; we find at the end of the day:

Mconfig −MBH > 0 (3.7)

indicating that there is always enough energy in the system to form the black hole of the
appropriate size. One might worry that since we only estimate the lower bound on the
black size by the ray tracing arguments it might be possible that the singularity will be
a bit bigger and there would be a potential for a naked singularity. However, numerical
evolution of the data [7] that our estimate for the size of the singularity is quite robust and
hence there is no violation of cosmic censorship.
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4. Discussion

In this talk we have discussed the potential violation of cosmic censorship within the
AdS/CFT context. At the face value one is tempted to think that naked singularity forma-
tion should be easy in AdS spacetimes, since it is easy to form singularities (as attested to
by the FRW collapse scenario) and moreover black holes are quite heavy in AdS space-
times. Nonetheless in the context of AdS/CFT correspondence we see that there is an in-
teresting obtacle to violation of cosmic censorship. In fact, the arguments can be extended
to the original context of cosmic censorship violation in AdS spacetimes as suggested in
[2]; see [5] and [8]. The essential reason for the upholding of the cosmic censorship con-
jecture is that the singularity that forms from the initial data is rather small, and there is
always sufficient energy in the system to cloak it with a black hole of the desired size.

At the same time, one begins to wonder whether there is an interesting lesson to be
learnt from the CFT. Although we have not explicitly discussed the issue, the estimates
of the energy in the initial configuration are most reliably carried out from the CFT side
owing to the fact that the bulk ADM energy has finite boundary contributions. In any event
it is the CFT which lives on the boundary that has a well defined Hamiltonian evolution
and it is the eigenvalues of this conserved Hamiltonian that are of interest to us.

There are other physical effects from the string theoretic viewpoint that we have
not discussed here. It is shown in [5] that in the situations where we turn on the non-
normalizable modes we have to content with a D-brane instability of the system. In these
contexts one can imagine that there are stringy effects at work which serve to cloak the
singularity. At this stage one might speculate whether there is an underlying mechanism
in the field theory that serves to prevent cosmic censorship violation. After all one might
argue that smooth initial data in the bulk maps to a well defined state in the CFT and since
the Hamiltonian evolution is well behaved, there is no room for singularities. Fleshing
out this statement in a quantitative fashion could serve to prove the cosmic censorship
conjecture.
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2004 ASI for an excellent summer school and the Kavli Institute for Theoretical Physics
for hospitality. This work was supported by the funds from the Berkeley Center for The-
oretical Physics, and also by the DOE grant DE-AC03-76SF00098 and the NSF grant
PHY-0098840.

References

1. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969) [Gen. Rel. Grav. 34, 1141 (2002)].
2. T. Hertog, G. T. Horowitz and K. Maeda, Phys. Rev. Lett. 92, 131101 (2004) [arXiv:gr-

qc/0307102].
3. T. Hertog, G. T. Horowitz and K. Maeda, Phys. Rev. D 69, 105001 (2004) [arXiv:hep-

th/0310054].
4. M. Gutperle and P. Kraus, JHEP 0404, 024 (2004) [arXiv:hep-th/0402109].
5. V. E. Hubeny, X. Liu, M. Rangamani and S. Shenker, arXiv:hep-th/0403198.



362 MUKUND RANGAMANI

6. D. Garfinkle, Phys. Rev. D 69, 124017 (2004) [arXiv:gr-qc/0403078].
7. A. V. Frolov, arXiv:hep-th/0409117.
8. T. Hertog, G. T. Horowitz and K. Maeda, arXiv:gr-qc/0405050.



TOPICS IN BLACK HOLE PRODUCTION

VYACHESLAV S. RYCHKOV

Institute for Theoretical Physics, University of Amsterdam,
1018XE Amsterdam, The Netherlands

Abstract. We revisit Voloshin’s model of multiple black hole production in trans-
Planckian elementary particle collisions in D = 4. Our revised computation shows that
the cross section to produce n additional black holes is suppressed by s−1, rather than
being enhanced as was originally found. We also review the semiclassical gravity picture
of black hole production from hep-th/0409131, making additional comments about the
meaning of wavepacket subdivision.

1. Introduction

Black hole (BH) production in trans-Planckian elementary particle collisions
(E � EPlanck) has long been considered a theoretical possibility. If TeV-scale grav-
ity scenarios based on large extra dimensions or warped compactifications are realized
in nature, this possibility may be realized in practice at future accelerators (see [1] for
a recent review). The key question is the cross section of this process, which is usually
assumed to be set by the horizon radius of the produced BH (the so called “geometric
cross section” σ ∼ πr2

h).

In this note I would like to discuss two aspects of the BH production problem rele-
vant for justifying the geometric cross section estimate. First I will explain how to derive
this estimate from a controlled semiclassical gravity approximation to the BH production
process, adding some comments to the original discussion of [2] (also recently reviewed
in [3]). Then I will estimate the cross section of multiple BH production due to colli-
sions between virtual gravitons emitted by the primary particles, in a model first proposed
by Voloshin [4]. The conclusion (contrary to [4]) is that multiple BH production gives a
subdominant contribution to the total cross section.

The size of produced BHs in large extra dimension scenarios is typically much smaller
than the size of extra dimensions, and their production may be considered as happening
in flat D dimensional spacetime. Since we are focussing on theoretical issues, to keep the
discussion clear we will work in D = 4. We will use Planck units, setting EPlanck = 1.
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2. Wavepackets and Semiclassics

In this note we will adhere to the standard believe that in quantum theory of gravity
classical BHs with mass M � 1 will be realized as long-lived resonance states, decaying
via Hawking radiation, with lifetime ∼ M3. It is then energetically allowed to produce
such BHs in trans-Planckian (E � 1) elementary particle collisions.

To estimate the cross section of this process, Eardley and Giddings [5] looked at the
grazing collision of two ultrarelativistic point particles in classical general relativity, using
formation of a closed trapped surface (CTS) as a sufficient condition for BH formation.
In this totally classical description, lower bound for the cross section is given by πb2

max,
where bmax is the maximal impact parameter for which we are able to find a CTS in the
spacetime formed by two colliding Aichelburg-Sexl shock waves. [5] found bmax ∼ E ∼
rh, and this implies σ ∼ πr2

h. Recourse to such an indirect method is necessary, because
explicit solutions of Einstein’s equations exhibiting the final BH state are out of reach.

How do we justify this approach from quantum gravity point of view? A point of
immediate concern is that particles in a collider experiment are described by wide wave-
packet states of macroscopic size (set essentially by the beam radius, which in turn is de-
termined by the focussing ability of accelerator magnets). These wavepackets are vastly
larger than BHs whose production we are trying to describe. If we use the energy mo-
mentum tensor of these wavepacket states |ψ〉 in the RHS of the semiclassical Einstein’s
equations

Rµν − 1
2gµνR = 〈ψ|Tµν |ψ〉, (2.1)

we won’t see any BH production whatsoever, since the energy is spread out over a huge
volume, and the energy density is insufficient to cause collapse. Informally speaking,
particles “do not fit” inside a BH.

However, this does not mean that BHs do not form. The correct interpretation is
that the part of the gravitational field wavefunction corresponding to BH production was
erased—averaged away—by eq. (2.1). Some averaging is always inevitable when using
the semiclassical field equations, since we substitute Tµν by its expectation value. Unfor-
tunately, in this case it destroys precisely the part of the wavefunction we are interested
in. To see BH production, one should instead proceed as follows. First of all, we have to
subdivide the initial wavepackets into much smaller wavepackets of size w � rh:

|ψ〉 = N−1/2
∑N

i=1
|ψi〉. (2.2)

This subdivision is carried out so that the small wavepackets |ψi〉 in the RHS are almost
orthogonal. This orthogonality is quite obvious in the position representation (see Fig. 1).
Because of the orthogonality, collisions between different pairs of small wavepackets are
mutually excluded possibilities, and probabilities of BH production in each such elemen-
tary collision should be added. Now, it is the collisions of the small wavepackets that we
are going to analyze using eq. (2.1). Condition w � rh ensures that the small wavepack-
ets produce a collision spacetime which is a small perturbation of the one corresponding
to point particles of the same energy. Thus the Eardley-Giddings analysis applies, and
adding probabilities results in the geometric cross section.
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Using finite-size wavepackets instead of point particles has an additional bonus in
that it puts the conditions of applicability of the semiclassical approximation under con-
trol. For example, curvature blows up when the shock fronts of Aichelburg-Sexl waves
corresponding to point particles collide [6]. However, taking wavepacket size into ac-
count regulates the curvature and brings it below the Planck value, so that we can trust the
semiclassical gravity approximation [2].

3. Multiple Black Hole Production

According to the above discussion, the geometric cross section formula provides a lower
bound for a single large BH production cross section in a trans-Planckian collision. How-
ever, as the energy of the particles grows, multiple BH production also becomes energet-
ically allowed. It is important to understand which process is dominant at asymptotically
high energies. If multiple BHs dominate, it will be much harder to observe dipole patterns
of emitted particles expected in the Hawking evaporation of a single large BH.

We are going to discuss a model proposed by Voloshin [4], in which multiple BHs
are produced due to collisions between virtual gravitons emitted by the trans-Planckian
projectiles. Such virtual graviton emission is a quantum effect: classically, any radiation
happens after the particles collide. The process is studied diagrammatically, with a typical
diagram shown in Fig. 2. Only the case of small peripheral BHs (1 � mi � E, i =
1 . . . n) is considered, so that the gravitons are “soft”.

The production amplitude is computed from the diagrams using the standard QFT
propagators and particular vertices for soft graviton emission and for BH production
(Fig. 3). The amplitude to emit a positive helicity graviton of energy ω � E and small
transverse momentum k = (k2, k3), |k| � ω is given by (see Appendix A)

A ∝ (E/ω)2(k2 + ik3)2 . (3.1)

(We will not pay attention to constant numerical factors. Thus our final result (3.3) is valid
up to a factor cn.)

Although we are unable to compute the elementary BH production vertex f(q2), the
geometric cross section allows to fix the combination

|f(q2)|2ρ(q2) ∼ (q2)2, (3.2)

where ρ(q2) is the density of BH states at mass
√

q2.
A crucial final element of the model is a condition which ensures that the emitted

gravitons do not subsequently fall into a common large BH. Such an infall may happen

Figure 1. Subdivision of the right-moving particle wavepacket. Similar subdivision has to be done
for the left-moving particle.
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due to graviton rescattering diagrams, which we are not going to compute. Thus, with-
out a “fall safe” condition we would be in danger of greatly overestimating the multiple
BH amplitude. Voloshin’s “fall safe” condition limits the transverse momenta of emitted
gravitons by |k| � 1/E. To derive this condition, we note that a typical emitted graviton
will be off-shell by ∆E ∼ k2/ω. It will exist for a time interval ∆t ∼ 1/∆E, during
which it will reach transverse separation ∆z ∼ (k/ω)∆t from the projectile. Voloshin’s
condition arises if we require that this transverse separation is larger than the horizon
radius of the big BH formed in the collision of the primary particles: ∆z � E.

In the described model, our computation (see Appendix B) gives the following ampli-
tude to produce n additional BHs with 4-momenta qi:

f (n)(s, q2
i ) ∼ f(s)

∏n

i=1
(q2

i )−2f(q2
i ) . (3.3)

The original computation of [4], Eq. (5), gave an amplitude larger than (3.3) by a factor
of (sq2

i )n. We believe that our result is correct; see Appendix B for an explanation.
Using (3.2), we can compute from (3.3) the contribution of the diagrams from Fig. 2

into the total cross section σn to produce one large (m2 ∼ s) and n small BHs. This con-
tribution will behave like s1−n, the suppression being due to the phase space restriction
|k| � 1/E satisfied by the small BHs as a consequence of the “fall safe” condition.

However, for n ≥ 2 there are diagrams which give a larger contribution, so that σn ∼
const is likely for any n ≥ 1. Consider, e.g., Fig. 4, where the primary particles emit
“fall safe” gravitons of energy E1, 1 � E1 � E, and it is these gravitons that form n
smaller BHs according to the previous model. The allowed phase space for this diagram
will be much bigger, since the individual small BHs can now have much larger transverse
momenta |k| � 1/E1, only their sum being � 1/E. Choosing E1 above the threshold of
n BH production, we will get an s-independent contribution to σn.1 In any case, we see
that σn is suppressed compared to the geometric cross section value σ0 ∼ s.

4. Conclusions

In this note we discussed two aspects of the BH production problem. In Section 2 we dis-
cussed how wavepacket arguments can be used to justify the use of semiclassical gravity
in this problem. In Section 3, we revisited Voloshin’s model of multiple BH production,
and presented a revised computation which shows that this process is suppressed com-
pared to the production of a single large BH. Our main conclusion is that the geometric

1It is also easy to see that the inclusive cross section of multiple BH production cannot decay
with s. This is because the particles may first reduce their energy by emitting one or more “fall safe”
gravitons (which costs no s-dependent factor, see [4], Eq. (3)), and then collide to form BHs. I am
grateful to M. Voloshin for this remark.

Figure 2. A typical diagram for multiple BH production in Voloshin’s model
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cross section estimate seems to be in rather good health, surviving all checks and resisting
any disproving attempts.

Acknowledgements

I would like to thank Steve Giddings for the opportunity to collaborate on [2]. A part of
Section 2 arose as an answer to Marco Cavaglià’s interesting questions. I am especially
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Appendix

A. Soft graviton emission vertex

Consider emission of a positive helicity collinear graviton with energy ω and small trans-
verse momentum k = (k2, 0), k2 � ω. Its polarization tensor, satisfying the constraints
hijkj = 0, hii = 0, is given by

hij ≈
⎛⎝ k2

2/ω2 −k2/ω −ik2/ω
−k2/ω 1 i
−ik2/ω i −1− k2

2/ω2

⎞⎠ . (4.1)

The emission amplitude is A ∝ 〈p − k|Tij |p〉hij , where the energy momentum tensor
matrix element is

〈P |Tµν |p〉 = 〈P |φ,µφ,ν − 1
2
ηµν(∂φ)2|p〉 = pµPν + pνPµ − ηµν(pP ) . (4.2)

From this we find A ∝ E2k2
2/ω2.

B. Multiple BH production amplitude

We will compute the n = 2 amplitude in the case when both small BHs are produced
at rest in the c.m. frame: qi = (mi, 0, 0, 0) in Fig. 5. The calculation naturally splits
into 3 steps: 1) compute the loop integral over the longitudinal momenta; 2) multiply by
the emission vertices and integrate over the transverse momenta; 3) multiply by the BH
production vertices. It is convenient to write the graviton momenta as

ki = (
mi

2
+

xi − yi

2
,
mi

2
− xi + yi

2
,ki), k′

i = qi − ki (4.3)

Figure 3. Graviton emission and BH production vertices
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Figure 4. A diagram giving an s-independent contribution to σn

Figure 5. A diagram for one large and two small BHs in the final state

(i = 1, 2). The longitudinal loop integral now separates into the integrals over xi and yi.
The part depending on xi is

I =
∫

dx1 dx2
1

k2
1k

2
2(p− k1)2(p− k1 − k2)2

(4.4)

≈
∫

dx1 dx2

(m1x1 − k2
1)(m2x2 − k2

2)(−Ex1 − k2
1)(−E(x1 + x2)− k2

12)
.

The +iε is implicit in each denominator. This integral is easy to compute by closing the
contour in the lower half-plane. Omitting corrections of the order m/E � 1, we have

I ∝ [E2k2
1(k

2
1 + k2

2)]
−1 . (4.5)

Since we used complex analysis, it is important to check that the integral is dominated
by soft, almost real gravitons. This is indeed true, the important region being |xi| �
k2

i /mi. The tail corresponding to |xi| � k2
i /mi can be estimated directly as:

1
m1m2E2

∫
dx1

x2
1

dx2

x2
2

� I . (4.6)

This check also justifies post factum neglecting the dependence of the graviton emission
vertices on xi, as well as the omission of x2 terms in the denominators of (4.4).

Before proceeding to the next step, we have to add diagrams differing by the order of
graviton emission (Fig. 6). This summation has the effect I → [E2k2

1k
2
2]

−1. Finally, we

Figure 6. One of the 3 permuted diagrams
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multiply by the same factor arising from the y-integration, and get:

[E2k2
1k

2
2]

−2 (longitudinal part) . (4.7)

We will assume that the small BHs are produced in the spin 0 state, so that the colliding
gravitons have opposite helicities. The product of the corresponding emission vertices is

∝ (E/m)4(k2 + ik3)2(k2 − ik3)2 = (E/m)4(k2)2 . (4.8)

Multiplying (4.7) by such factors for both BHs and integrating over |ki| � 1/E (the “fall
safe” condition), we get a number ∼ (m1m2)−4.

Finally, we multiply by the BH production vertices and arrive at

f (2) ∼ f(s) f(m2
1) f(m2

2) (m1m2)−4 . (4.9)

This formula agrees with the general result (3.3) in the considered case.
Extension of the above computation to the general case is quite straightforward. A

point worth mentioning is the use of the standard identity∑
perm

[a1(a1 + a2) · · · (a1 + . . . + an)]−1 = [a1 · · · an]−1 (4.10)

when summing over the order of graviton emission in the n > 2 case.
In [4], the estimate

∫
d4ki/(k2

i k′
i
2) ∼ O(1) was used in computing the amplitude.

However, our analysis shows that the correct estimate is:∫
d4k

k2k′2 ∝
∫

dx dy d2k
(mx− k2 + iε)(my − k2 + iε)

∼ 1
m2E2

. (4.11)

This extra factor, for each of n BHs, explains the difference between (3.3) and the result
of [4].
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TOWARDS THE EXACT DILATATION OPERATOR OF N = 4
SUPER YANG-MILLS THEORY

ANTON V. RYZHOV
Department of Physics, Brandeis University
Waltham, MA 02454, USA

Abstract. I present a summary of hep-th/0404215, which suggested a novel way of orga-
nizing the dilatation operator D of planarN = 4 SYM in the SU(2) sector. Instead of the
usual perturbative expansion in powers of λ, we split D into parts D(n) according to the
number n of independent pairwise interactions between spins at different sites. The BMN
limit fixes D(1) completely, and it has regular expansions at both small and large values
of λ. Anomalous dimensions of “long” operators in the two-scalar sector then generically
scale as

√
λ at large λ, i.e. in the same way as energies of semiclassical states in the dual

AdS5 × S5 string theory.

1. Introduction

TheN = 4 supersymmetric SU(N) Yang-Mills theory is a family of CFT’s parametrized
by N and the ‘t Hooft coupling λ = g2

YMN . The problem of computing dimensions of
local gauge invariant operators should simplify in the planar limit of N →∞, λ fixed. In
this limit the AdS/CFT duality conjecture suggests that conformal dimensions should be
smooth functions of λ, and have regular expansions at both large and small λ.

The main obstacle to verifying the correspondence explicitly is our lack of tools
for obtaining exact all-order results on either gauge theory (

∑
cnλn) or string theory

(
∑ bn

(
√

λ)
n ) side. One potentially fruitful idea of how to go beyond the first few orders in

SYM perturbation theory is to try to determine the exact structure of the dilatation op-
erator D by imposing additional conditions (like superconformal symmetry, BMN limit,
integrability, etc.), implied by the expected correspondence with AdS5×S5 string theory.
One may then be able to see if they admit a regular expansion not only at small but also
at large λ.

This is the approach explored in [1]. Using regularity of a BMN-type scaling limit
[2, ?] as an input, we concentrate on the planar SU(2) sector of single trace SYM op-
erators built out of chiral combinations X and Z of two the 6 SYM adjoint scalars, i.e.
tr(X...XZ...ZX...) with canonical dimension L. This sector is closed under renormal-
ization. The eigen-operators of D with J1 Z’s and J2 X’s (so L = J1 + J2) should be
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dual to string states with two components of the SO(6) spin. On general grounds, the
SYM dilatation operator computed in the planar limit should be a series in λ

D =
∞∑

r=0

λr

(4π)2r
D2r. (1.1)

Restricting D to planar graphs suggests that D2r should be given by local sums over sites
a = 1, ..., L with Z and X interpreted as a spin “up” and spin “down” state of a periodic
(a + L ≡ a) spin chain for which D is the Hamiltonian. The one-loop term D2 turns out
to be equivalent to the Hamiltonian of the ferromagnetic XXX 1

2
Heisenberg spin chain,

and r-loop contributions involve interactions of r + 1 nearest neighbors. Generic r-loop
contributions to 1.1 contain terms linear in the projectors Qa,b = 1−Pa,b (Pa,b permutes
spins at sites a and b), a term quadratic in Qa,b, and so on:

D2r = D
(1)
2r + D

(2)
2r + ..., (1.2)

D
(1)
2r = 2

r∑
c=1

ar,cQa,a+c, D
(n)
2r ∼

∑
Qn. (1.3)

Qn in D
(n)
2r stands for products of independent projectors, i.e. with all indices correspond-

ing to different sites. Then

D = D0 + D(1) + D(2) + ..., D(1) = 2
∞∑

r=1

λr

(4π)2r

L∑
a=1

r∑
c=1

ar,cQa,a+c. (1.4)

Using the periodicity of the chain (Qa,b+L = Qa,b, etc.) D(1) can be rewritten as

D(1) =
L∑

a=1

L−1∑
c=1

hc(L, λ)Qa,a+c (1.5)

In [1] we determined the general expression for the coefficients ar,c and thus the functions
hc(L, λ), i.e. found the spin-spin (linear in Q) part of the exact dilatation operator D. The
key point was to demand that the BMN-type scaling limit

L→∞, λ̃ ≡ λ

L2
= fixed (1.6)

of the coherent-state expectation value of D(1) is well defined [2, 3]. This turns out to
be (nearly) equivalent to the consistency with the BMN expression for the anomalous
dimensions of the 2-impurity operators. Imposing the condition of agreement with the
BMN square root formula fixes one remaining free coefficient at each order in r.

2. Constraints on D(1)

Following [2, 3], we consider the coherent state path integral representation for the quan-
tum mechanics of D as a generalized spin chain Hamiltonian. The corresponding action
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for a collection of unit 3-vectors �na(t) at each of L sites of the chain (〈n|σi
a |n〉 = ni

a,
(ni

a)2 = 1, i = 1, 2, 3) is then given by

S =
∫

dt

[ L∑
a=1

LWZ(na)− 〈D〉
]

, 〈D〉 = 〈n|D |n〉 , (2.1)

where LWZ(�na) = Ci(�na)ṅi
a ensures the proper SU(2) commutation relations if one

considers �na back as spin operators. The spin chain in question is ferromagnetic,1 and in
the long spin chain limit L → ∞ one expects that the low energy excitations of the spin
chain will be captured by the semiclassical dynamics of 2.1. The correspondence with
string theory then suggests that the low energy effective action for the system governed
by (2.1) should have a well defined continuum limit. To take the continuum limit one may
introduce a field �n(σ, t), 0 < σ ≤ 2π, with �na(t) = �n(2πa

L , t), so that 2.1 becomes

S → L

∫
dt

∫ 2π

0

dσ

2π

[
Ci(�n)ṅi

a −H(∂�n, ∂2�n, ...; λ̃)
]

. (2.2)

H which originated from 〈D〉 should be a regular function of the effective coupling λ̃ and
σ-derivatives of �n(t, σ) in the limit L→∞, λ̃ fixed (with subleading 1

Ln terms omitted).
Quantum corrections are then suppressed because of the large prefactor L in front of the
action.

Since the Qa,b in (1.4) satisfy

〈n|Qa,b|〉n =
1
2
(1− �na · �nb) =

1
4
(�na − �nb)2 , (2.3)

〈n|D(1) |n〉 contains terms quadratic in �n (but all orders in derivatives); 〈n|D(2) |n〉,
terms quartic in n, etc. The approximation that distinguishes D(1) from all higher D(k)

in 1.2 is the one in which one keeps only small fluctuations of �n(t, σ) near its (“all-spins-
up”) ground-state value �n0 = (0, 0, 1). Then �n = �n0 + �δn, where | �δn| � 1, so that
higher powers of the fluctuating field �δn are suppressed, regardless the number of spa-
tial derivatives acting on them. Such configurations correspond to semiclassical spinning
string states with J1 � J2, and are close to a single-spin BPS state. They should indeed
represent semiclassical or coherent-state analogs of few-impurity BMN states, having the
same BMN energy-spin relation which is indeed reproduced in the limit J1 � J2 by the
classical two-spin string solutions. In this BMN-type approximation, demanding that the
continuum version of 〈n|D(1) |n〉 have a regular scaling limit 1.6 implies (after integrat-
ing by parts)

λr

(4π)2r
〈D(1)

2r 〉 =
λr

2(4π)2r

r∑
c=1

ar,c(�na − �na+c)2

→ drλ̃
r

[
(∂r�n)2 +O

(
∂2r+2

L2

)]
, (2.4)

1Then the state with all spins “up” (represented by the operator trZL) is a true vacuum.
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with the coefficients ar,c satisfying

ar,c =
(−1)r−c(2r)!

(r − c)!(r + c)!
ar,r , c = 1, ..., r − 1 . (2.5)

The first non-vanishing coefficient becomes

dr =
(−1)r−1

22r(2r)!

r∑
c=1

c2rar,c =
(−1)r−1

22r+1
ar,r , (2.6)

and the r-loop contribution to the expectation value of D(1) takes the form (cf. 2.4)

λr

(4π)2r
〈D(1)

2r 〉 → L

[
drλ̃

r

∫ 2π

0

dσ

2π
(∂r�n)2 +O(

1
L

)
]

(2.7)

What remains is to find the values of ar,r, which can be done by analyzing the spectrum
of two-impurity BMN operators

OBMN
n =

1√
J + 1

J∑
p=0

cos
[
πn(2p + 1)

J + 1

]
tr(XZpXZJ−p) . (2.8)

Their anomalous dimensions can be computed in both string theory and gauge theory in
the large J , fixed λ

J2 limit, and one finds

∆BMN = J + 2

√
1 +

λ

J2
n2 +O(

1
J

) . (2.9)

To reproduce 2.9 by acting with the dilatation operator (1.1) on OBMN
n , we should have

ar,c =
(−1)r−c Γ(2r + 1) Γ(2r − 1)

Γ(r − c + 1) Γ(r + c + 1) Γ(r) Γ(r + 1)
. (2.10)

3. Summing D(1) to all orders

The expression for D(1) can actually be summed up explicitly. First, summing 2.7 over r
with dr in 2.6 gives a very simple formula for the quadratic in �n (“small fluctuation” or
“BMN”) part of the coherent state effective Hamiltonian in 2.2:

〈D(1)〉 =
∞∑

r=1

λr

(4π)2r
〈D(1)

2r 〉

→ L

∫ 2π

0

dσ

2π

[
1
4

�n

(√
1− λ̃ ∂2 − 1

)
�n +O(

1
L

)
]

. (3.1)

Remarkably, this is the same expression that follows from the classical AdS5 × S5 string
sigma model action expanded in the limit 1.6. Next, let us substitute the values 2.10 for
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the coefficients ar,c we have found above into D(1) in 1.4 and try to formally perform the
summation over r first, independently for each Qa,a+c term. We get

D(1) = 2
L∑

a=1

∞∑
c=1

fc(λ) Qa,a+c , fc(λ) =
∞∑

r=c

λr

(4π)2r
ar,c . (3.2)

Remarkably, the series representation for the coefficients fc(λ) can then be summed up
in terms of the standard hypergeometric functions,

fc(λ) =
(

λ

4π2

)c Γ(c− 1
2 )

4
√

π Γ(c + 1) 2F1(c− 1
2
, c +

1
2
; 2c + 1;− λ

π2
) (3.3)

The coefficient in front of 2F1 is equal to 2λc

(4π)2c ac,c. The fc go to 0 rapidly at large c, so
we effectively have a spin chain with short range interactions. The resulting coefficients
fc(λ) are smooth positive functions of λ having regular expansion at both small λ and
large λ, in which case we find

fc(λ)
λ→∞ =

√
λ

π2

[
1

4c2 − 1
+O(

1
λ

) ,

]
(3.4)

The square root fc →
√

λ asymptotics of (3.4) is related to the cut structure of 2F1.
So far, we have treated all Qa,a+c terms as independent but for finite L the terms with

c and c + mL are the same because of the periodicity of the chain (implied by cyclicity
of the trace in the operators). Also, under the sum over a one has Qa,a+c = Qa,a+L−c.
Therefore, for finite L the sum over c should, in fact, be restricted to run from c = 1 to
c = L− 1,

D(1) = 2
L∑

a=1

∞∑
c=1

fc(λ) Qa,a+c =
L∑

a=1

L−1∑
c=1

hc(L, λ) Qa,a+c . (3.5)

The new coefficients hc depend on both the the length of the chain and ’t Hooft coupling

hc(L, λ) =
∞∑

m=0

[ (
λ

4π2

)c+mL Γ(c + mL− 1
2 )

4
√

π Γ(c + mL + 1)

× 2F1(c + mL− 1
2
, c + mL +

1
2
; 2c + 2mL + 1;− λ

π2
)
]

+ (c → L− c) . (3.6)

For finite L, we may expand the hypergeometric functions in 3.6 at large λ as in (3.4)
and then do the sum over m. Ignoring the issue of convergence of the resulting strong-
coupling expansion, that leads to the following simple result for the leading-order term

hc(L, λ)
λ→∞ =

√
λ

2πL

[
sin π

L

cos π
L − cos 2πc

L

+O(λ−1)
]

(3.7)
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We can apply the above relations to the first non-trivial case of small length. The non-
BPS operator with L = 4 is the level four descendant K of the Konishi scalar operator

K = tr[X,Z]2 = 2 tr(XZXZ −XXZZ) . (3.8)

The action of D(1) 3.5 on K is determined by noting that

Π1K = Π3K = 6K, Π2K = 0 , D(1)K = γ(1)K , (3.9)

and one finds the following surprisingly simple result

γ(1) =
3
2

(√
1 +

λ

π2
− 1

)
. (3.10)

4. Concluding remarks

The resulting D(1) may be interpreted as a Hamiltonian of a periodic spin chain with
long-range interactions. One could conjecture that this spin chain may be integrable; and,
furthermore, the higher-order terms D(2), D(3), ... in 1.4 may be effectively determined
by D(1), e.g., expressed in terms of higher conserved charges of the chain. This would
then determine the full D.

Inspired by recent work in spin chains, in [1] we suggested to organize the dilatation
operator as an expansion 1.4, 1.2 in powers of independent projection operators Qa,b [3]
at L sites of spin chain

D = D0 +
∞∑

n=1

D(n) with D0 = L, D(1) =
L∑

a=1

L−1∑
c=1

hc(L, λ) Qa,a+c, ... (4.1)

where D(n) are given by sums of products of n Q’s at independent sites of the spin chain.
We determined the coefficients in D(1) by demanding that its BMN-type scaling limit
[2, 3] be regular, and found that it admits a very simple representation 3.2, applicable at
least in the large L limit. This representation includes all orders in λ and suggests that the
corresponding anomalous dimensions should grow as

√
λ for large λ.

A natural extension of this work would be to try to find the next term in the expansion
(4.1), namely

D(2) =
L∑

a=1

L−1∑
c1,c2,c3=1

′ hc1;c2,c3(L, λ) Qa,a+c1Qa+c2,a+c2+c3 (4.2)

The prime on the sum here means that certain terms should be omitted: since Qa,bQb,c +
Qb,cQa,b = Qa,b + Qb,c − Qa,c the terms with c2 = c1 and c2 = c3 − c1 have already
been included in D(1). The contributions of higher D(n) terms should be crucial at finite
L, resolving, in particular, the above-mentioned contradiction between the

√
λ asymptot-

ics of the coefficients in D(1) and the expected 4
√

λ scaling of dimensions of operators
corresponding to string modes.
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The AdS/CFT duality suggests that D should correspond to an integrable spin chain.
The simplest possibility could be that, by analogy with the Inozemtsev chain , the op-
erator D(1) (with interaction coefficients given by 3.6) represents a Hamiltonian of an
integrable spin 1/2 chain, while all higher order terms D(n) are effectively determined by
D(1) through integrability. Satisfying the requirements of integrability, BMN scaling and
consistency with gauge theory should be essentially unique.
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MODULI TRAPPING AND STRING GAS COSMOLOGY

SCOTT WATSON
Department of Physics, Brown University, Box 1843,
Providence, RI 02912, USA

Abstract. In this talk I will discuss the role of finite temperature quantum corrections in
string cosmology and show that they can lead to a stabilization mechanism for the vol-
ume moduli. I will show that from the higher dimensional perspective this results from the
effect of states of enhanced symmetry on the one-loop free energy. These states lead not
only to stabilization, but also suggest an alternative model for ΛCDM. At late times, when
the low energy effective field theory gives the appropriate description of the dynamics, the
moduli will begin to slow-roll and stabilization will generically fail. However, stabiliza-
tion can be recovered by considering cosmological particle production near the points of
enhanced symmetry leading to the process known as moduli trapping.

1. Initial Conditions

One problem in string cosmology is the issue of initial conditions. Not only must mod-
els of string cosmology address the standard initial condition problems in cosmology, but
string theory also predicts the existence of extra dimensions. The usual prescription for
dealing with the extra dimensions is to take them small, stable, and unobservable. How-
ever a complete model of string cosmology should explain how this came about and why
the explicit breaking of Lorentz invariance should be allowed. A step in this direction
was first proposed by Brandenberger and Vafa[1]. They argued that, by considering the
dynamics of a string gas in nine, compact spatial dimensions initially taken at the string
scale, one could explain why three dimensions grow large while six stay compact. The
crux of their argument is based on the fact that in addition to the usual Kaluza Klein
modes of a particle on a compact space, strings also possess winding modes. These extra
degrees of freedom will generically halt cosmological expansion; however, if these modes
could annihilate with their anti-partners through the process,

W+ + W− � unwound string, (1.1)

this would allow the dimension they occupy to expand. Then, the fact that strings gener-
ically intersect (interact) in at most three spatial dimensions means that in the remaining
six dimensions thermal equilibrium cannot be maintained. Thus, the winding modes will
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drop out of equilibrium and the six spatial dimensions will be frozen near the string scale.
Furthermore, once all the winding modes in the three large dimensions annihilate, the
universe emerges filled with a gas of momentum modes, which evolves as a radiation
dominated universe.

2. Strings at Finite Temperature

The usual starting point of string cosmology is the action,

S =
1

2κ2

∫
dd+1x

√−ge−2ϕ

(
R + 4(∇ϕ)2 − 1

12
H2 +O(α′)

)
+O(gs). (2.1)

For simplicity we will ignore the Ramond sector and set H = 0. Here we have in mind the
heterotic string on a toroidal background. Motivated by the Brandenberger-Vafa scenario
we will take the background to be R

4 × T 6, where we assume that the three spatial
dimensions have grown large enough to be approximated by an FRW universe and the
six small dimensions are toroidal and near the string scale. To include time dependence
we make use of the adiabatic approximation, which implies that we can replace static
quantities by slow varying functions of time1.

The action (2.1) represents a double expansion in both the string coupling gs ∼ e〈ϕ〉

and the string tension, T = 1
4πα′ . We now want to include terms coming from gs correc-

tions at finite temperature[2, 3]. Let us consider the 1-loop free energy

F = TZ1 ∼ β−1
∑

e−βM(n,ω,N,N̄), (2.2)

where Z1 is the one loop partition function, M(n, ω,N, N̄) is the string mass, and β =
1/T is the inverse temperature. In the early universe we are interested in temperatures
near or below the string scale (β �

√
α′) where the major contribution to the one-loop

free energy can be seen to come from the massless modes of the string.
In the case of the heterotic string there are additional massless states that occur at the

special radius R =
√

α′. These extra states include winding and momentum modes of the
string. To understand the dynamics that result by including these states we can find the
energy density and pressure, which follow from the free energy as

ρ =
1
V

∂

∂β
(βF )

pi = − 1
9V

∂F

∂(lnRi)
, (2.3)

where V is the spatial volume and Ri is the scale factor in the ith direction. As discussed
above, we take initial conditions where three dimensions have grown large and six remain
near the string scale. For such initial data, the above pressure in three dimensions corre-
sponds to the equation of state of a radiation dominated universe p3 = 1

3ρ, whereas the

1This is known to be a good approximation in the early universe, and is equivalent to saying that
the time scale for string interactions is greater than the rate of expansion. However, one should keep
in mind that such an approximation will mostly likely break down near a curvature singularity.
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Figure 1. The evolution of the volume modulus of the extra dimensions for different initial values
near the self-dual radius. We see that the moduli are eventually stabilized at the self-dual radius
where the pressure is found to vanish.

pressure in the small dimensions gives the behavior,

p6 < 0 for R6 >
√

α′ and p6 > 0 for R6 <
√

α′. (2.4)

In dilaton gravity negative pressure implies a contracting universe, whereas positive pres-
sure leads to expansion. Thus, as can be seen in Figure 2, pressure leads to a stabilizing
effect for the scale factor of the extra dimensions driving the radius toward the enhanced
symmetry point R(6) =

√
α′ where the pressure vanishes. At this location the gauge

symmetry of the heterotic string is enhanced, E8×E8 + U(1)6 −→ E8×E8 + SU(2)6.
In addition to stabilizing the volume moduli, it has been shown that the remnant string

modes, if taken in the dark sector, can also lead to an interesting cold dark matter candi-
date[4, 5] (see also[6]).

3. Moduli Trapping

If one attempts to extend the arguments above to the 4D effective field theory, one finds
that the stabilization mechanism no longer holds. This is not surprising since the pressure
in the extra dimensions has no analog from the 4D perspective. However, one thing that
should remain is the idea of enhanced symmetry.
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Recall that it was the contribution of the enhanced symmetry states near R =
√

α′
that led to the pressure terms in (2.4) stabilizing the extra dimensions. We can account for
these enhanced states from the effective field theory (EFT) perspective by considering the
effects of particle production near the enhanced symmetry point, R =

√
α′.

To understand how this mechanism works let us consider the simplest case of het-
erotic strings on the background R

4 × S1. The low energy effective action comes from
the compactification of the action (2.1). The dynamics are then given by dilaton gravity
coupled to a chiral U(1) gauge theory,

Lm = (∂σ)2 − 1
4g2

(Fµν)2 − 1
4g2

(F̄µν)2, (3.1)

where F = dA (F̄ = dĀ) is the left (right) gauge theory resulting from the compactifica-
tion of the higher dimensional metric and flux and g is the gauge coupling. The scalar σ
gives the radius of the compactification and can be scaled to measure the departure from
the self-dual radius, i.e. σ = 0 at R =

√
α′.

We see that σ has only a kinetic term and the lack of a potential implies the radius is
free to take any value. However, as the modulus passes near the self-dual radius we have
noted that there are additional massless degrees of freedom. If our theory is to be complete
these extra degrees of freedom must be included in the low energy effective action. This
is accomplished by lifting the effective lagrangian in (3.1) to a non-abelian gauge theory,
in this case chiral SU(2). We introduce the covariant derivative,

Dµσ = ∂µσ + gAµσ. (3.2)

This leads to a time dependent mass for the new vector Aµ

1
2
g2σ(t)2A2

µ. (3.3)

This time dependent mass implies particle production in our cosmological space-time.
The stabilization of the radius σ can now be realized as follows; initially σ is dominated
strictly by the kinetic term, however once it passes near the enhanced symmetry point
σ = 0, Aµ particles will be produced. Then, as σ continues its trajectory the mass of the
Aµ’s will increase and this leads to backreaction on σ. This force, along with friction from
the cosmological expansion, will eventually stabilize σ at the enhanced symmetry point
σ = 0.

This is a simple example of moduli trapping[7, 8, 9]. Although we have considered
here a simple toy model of a string on a circle, points of enhanced symmetry are present
in nearly all string and M-theory compactifications. Moreover, it is worth mentioning that
this mechanism need not apply only to volume moduli. In fact, in Kofman, et. al.[7] the
modulus of interest was the distance between two branes which is of course related by
T-duality to the case we have considered here.

4. Conclusions

We have seen that from the 10D perspective it is possible to stabilize the volume modu-
lus of a heterotic string compactification on a T 6. The stabilization was found to be the



MODULI TRAPPING AND STRING GAS COSMOLOGY 383

result of the pressure exerted on the compact space due to the presence of enhanced sym-
metry states contributing to the one-loop free energy of the strings at finite temperature.
In the 4D effective field theory such effects can be understood by considering particle
production near the enhanced symmetry point. Near this point additional massless states
are allowed which can be particle produced in the cosmological space-time. These states
then get masses via the string Higgs Effect and backreact on the modulus stabilizing the
extra dimensions at the self-dual radius.
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STRINGY GEOMETRY:
GENERALIZED COMPLEX STRUCTURE

MAXIM ZABZINE
LPTHE, Université Paris 6,
4 pl Jussieu, 75252 Paris cedex, France

Abstract. We consider a worldsheet realization of generalized complex geometry, a no-
tion introduced recently by Hitchin which interpolates between complex and symplectic
manifolds.

The recently developed notion of generalized complex geometry naturally extends
and unifies complex and symplectic geometries, in general interpolating between the two
[1, 2]. There have been many hints that this geometry should be relevant to string the-
ory. In this note, we present toy 2D models which provide the “physical” derivation of
the generalized complex geometry. This note is based on the joint with U. Lindström,
R. Minasian and A. Tomasiello [3].

1. Mathematical preliminaries

In this Section we review some basic notions and fix notations. Namely we collect general
facts concerning the generalized complex structure, see [1] and [2] for further details.
Also we work out the coordinate form of the integrability conditions for the generalized
complex structure.

Let us start by recalling the definition of the standard complex structure on a manifold
M (dimM = d). An almost complex structure is defined as a linear map on the tangent
bundle1 J : T → T such that J2 = −1d. This allows the definition of projectors on T ,

π± =
1
2
(1d ± iJ). (1.1)

An almost complex structure is called integrable if the projectors π± define integrable
distributions on T , namely if

π∓[π±X,π±Y ] = 0 (1.2)

for any X,Y ∈ T where [ , ] is a standard Lie bracket on T .

1In this note we consider the complexified tangent and cotangent bundles.
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A generalization of the notion of complex structure has been proposed by Hitchin [1].
In Hitchin’s construction T is replaced by T ⊕ T ∗ and the Lie bracket is replaced by the
appropriate bracket on T⊕T ∗, the so called Courant bracket. Thus a generalized complex
structure is an almost complex structure J on T⊕T ∗ whose±i-eigenbundles are Courant
involutive. In other words, a generalized complex structure is splitting of T ⊕ T ∗ into a
sum of two complementary Dirac subbundles. A detailed study of generalized complex
geometry can be found in Gualtieri’s thesis [2].

Now let us give detailed definitions. On T ⊕ T ∗ there is a natural indefinite metric
defined by (X + ξ,X + ξ) = −iXξ. In the coordinate basis (∂µ, dxµ) we can write this
metric as follows

I =
(

0 1d

1d 0

)
. (1.3)

A generalized almost complex structure is a map J : T ⊕ T ∗ → T ⊕ T ∗ such that
J 2 = −12d and that I is hermitian with respect to J , J tIJ = I. On T ⊕ T ∗ there is a
Courant bracket which is defined as follows

[X + ξ, Y + η]c = [X,Y ] + LXη − LY ξ − 1
2
d(iXη − iY ξ). (1.4)

This bracket is skew-symmetric but in general does not satisfy the Jacobi identity. How-
ever if there is a subbundle L ⊂ T ⊕ T ∗ which is involutive (closed under the Courant
bracket) and isotropic with respect to I then the Courant bracket on the sections of L does
satisfy the Jacobi identity. This is a reason for imposing hermiticity of I with respect toJ .
One important feature of the Courant bracket is that, unlike the Lie bracket, this bracket
has a nontrivial automorphism defined by a closed two-form b,

eb(X + ξ) = X + ξ + iXb. (1.5)

such that
[eb(X + ξ), eb(Y + η)]c = eb[X + ξ, Y + η]c. (1.6)

We can construct the projectors on T ⊕ T ∗

Π± =
1
2
(I ± iJ ) ; (1.7)

the almost generalized complex structure J is integrable if

Π∓[Π±(X + ξ),Π±(Y + η)]c = 0, (1.8)

for any (X + ξ), (Y + η) ∈ T ⊕ T ∗. This is equivalent to the single statement

[X + ξ, Y + η]c − [J (X + ξ),J (Y + η)]c + J [J (X + ξ), Y + η]c+

+J [X + ξ,J (Y + η)]c = 0 (1.9)

which resembles the definition of the Nijenhuis tensor.
To relate this construction to the physical models we have to reexpress the above

definitions in coordinate form. The map J can be written in the form

J =
(

J P
L K

)
, (1.10)
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where J : TM → TM, P : T ∗M → TM, L : TM → T ∗M and K : T ∗M →
T ∗M and hence they correspond to the tensor fields, Jµ

ν , Lµν , Pµν and K ν
µ . Then the

condition J 2 = −12d becomes

Jµ
νJν

λ + PµνLνλ = −δµ
λ, (1.11)

Jµ
νP νλ + PµνK λ

ν = 0, (1.12)

K ν
µ K λ

ν + LµνP νλ = −δµ
λ, (1.13)

K ν
µ Lνλ + LµνJν

λ = 0. (1.14)

The hermiticity of I with respect to J translates into the following conditions

Jµ
ν + K ν

µ = 0, Pµν = −P νµ, Lµν = −Lνµ. (1.15)

In local coordinates the integrability condition (1.9) is equivalent to the following four
conditions

Jν
[λJµ

ρ],ν + Jµ
νJν

[λ,ρ] + PµνL[λρ,ν] = 0 (1.16)

P [µ|νP |λρ]
,ν = 0 (1.17)

Jµ
ν,ρP

ρλ + P ρλ
,νJµ

ρ − Jλ
ρ,νPµρ + Jλ

ν,ρP
µρ − Pµλ

,ρJ
ρ
ν = 0 (1.18)

Jλ
νL[λρ,γ] + LνλJλ

[γ,ρ] + Jλ
[ρLγ]ν,λ + LλρJ

λ
γ,ν + Jλ

ρLλγ,ν = 0 (1.19)

To summarize, the generalized complex structure J is defined by three tensor fields Jµ
ν ,

Lµν and Pµν which satisfy the algebraic conditions (1.11)-(1.15) and the differential
conditions (1.16)-(1.19).

The usual complex structure J is embedded in the notion of generalized complex
structure

J =
(

J 0
0 −J t

)
. (1.20)

One can check that all properties (1.11)-(1.19) are satisfied provided that J is a complex
structure. Also, a symplectic structure is an example of a generalized complex structure

J =
(

0 −ω−1

ω 0

)
(1.21)

where ω is an ordinary symplectic structure (dω = 0). More exotic examples exist and
are given by manifolds, that do not admit any known complex or symplectic structure, but
do admit a generalized complex structure [2].

Consider a generalized complex structure J ; a new generalized complex structure can
be generated by

Jb =
(

1 0
b 1

)
J
(

1 0
−b 1

)
(1.22)

if b ∈ Ω2
closed(M). The structure Jb is integrable due to the fact that the transformation

(1.5) is an automorphism of the Courant bracket. The transformation (1.5) is called a
b-transform.
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The key feature of a complex manifold is that is locally equivalent to CI k via a dif-
feomorphism. For symplectic manifolds the Darboux theorem states that a symplectic
structure is locally equivalent, via diffeomorphism, to the standard symplectic structure
(RI 2k, ω), where

ω = dx1 ∧ dx2 + ... + dx2k−1 ∧ dx2k. (1.23)

For generalized complex manifolds there exists a generalized Darboux theorem [2], which
states that in a neighborhood of a regular point2 a generalized complex structure on a
manifold M is locally equivalent via a diffeomorphism and a b-transform (see (1.22)),
to the product of an open set in CI k and an open set in the standard symplectic space
(RI d−2k, ω).

The Courant bracket on T ⊕ T ∗ can be twisted by a closed three form H . Namely
given a closed three form H one can define another bracket on T ⊕ T ∗ by

[X + ξ, Y + η]H = [X + ξ, Y + η]c + iX iY H. (1.24)

This bracket has similar properties to the Courant bracket. Again if a subbundle L ⊂
T ⊕ T ∗ is closed under the twisted Courant bracket and isotropic with respect to I, then
the Courant bracket on the sections of L does satisfy the Jacobi identity. Thus in the
integrability condition (1.9) the Courant bracket [ , ]c can be replaced by the new twisted
Courant bracket [ , ]H . In local coordinates the new integrability condition is equivalent
to four expressions

Jν
[λJµ

ρ],ν + Jµ
νJν

[λ,ρ] + Pµν(L[λρ,ν] + Jσ
[λHρ]σν) = 0 (1.25)

P [µ|νP |λρ]
,ν = 0 (1.26)

Jµ
ν,ρP

ρλ + P ρλ
,νJµ

ρ + Jλ
[ν,ρ]P

µρ − Pµλ
,ρJ

ρ
ν − PλσPµρHσρν = 0 (1.27)

Jλ
νL[λρ,γ] + LνλJλ

[γ,ρ] + Jλ
ρLγν,λ + Jλ

γLνρ,λ + LλρJ
λ
γ,ν+

+Jλ
ρLλγ,ν + Hργν − Jλ

[ρJ
σ
γHν]λσ = 0 (1.28)

2. Topological model

In this Section we consider a toy topological model which will provide a “physical”
derivation of generalized complex geometry. The model has the following action

Stop =
∫

d2σ dθ S+µ∂=Φµ (2.1)

written in N = (1, 0) superfields where (++,=) are worldsheet indices and (+,−) are
two-dimensional spinor indices. This is a topological system which describes the holo-
morphic maps Φ : Σ→M. The model is manifestly N = (1, 0) supersymmetric and can
be defined over any differential manifoldM. We would like to find the restrictions onM
arising from the requirement that the model admits (2, 0) supersymmetry.

2P is a Poisson structure and it will define a symplectic foliation. The point is called regular if
P has constant rank in a neighborhood.
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We have to look for additional (non manifest) supersymmetry transformations. The
general transformations of S+ and Φ are given by the following expressions

δ(ε)Φµ = ε+D+ΦνJµ
ν − ε+S+νPµν , (2.2)

δ(ε)S+µ = iε+∂++ΦνLµν − ε+D+S+νK ν
µ + ε+S+νS+ρN

νρ
µ +

+ε+D+ΦνD+ΦρMµνρ + ε+D+ΦρS+νQ ν
µρ (2.3)

Classically the Ansatz (2.2) and (2.3) is unique on dimensional grounds and by Lorentz
covariance [4]. This Ansatz involves seven different tensors on M. We have to require
the standard N = (2, 0) supersymmetry algebra, i.e. the manifest and non-manifest super-
symmetry transformations commute and the nonmanifest supersymmetry transformations
satisfy the following conditions

[δ(ε2), δ(ε1)]Φµ = 2iε+1 ε+2 ∂++Φµ, [δ(ε2), δ(ε1)]S+µ = 2iε+1 ε+2 ∂++S+µ. (2.4)

Since the nonmanifest transformations are written in (1, 0) superfield then the first re-
quirement is automatically satisfied. Next we have to calculate the commutator of two
nonmanifest supersymmetry transformations. Imposing the condition (2.4) implies four
algebraic and eleven differential conditions on the seven tensors introduced in (2.2) and
(2.3).

Before analyzing the algebra in detail it is useful to look at the invariance of the action.
The action (2.1) is invariant under (2.2) and (2.3) if the following algebraic conditions

Jµ
ν + K µ

ν = 0, Lµν = −Lνµ, Pµν = −P νµ (2.5)

as well as the differential conditions

1
2
Pµν

,ρ = −N µν
ρ , Jµ

[ν,ρ] = Q µ
νρ ,

1
2
L[µν,ρ] = Mρνµ (2.6)

are satisfied. The differential conditions (2.6) allow us to express all three index tensors
in terms of appropriate derivatives of two index tensors J , P , L and K. These two index
tensors can be combined as a single object

J =
(

J P
L K

)
, (2.7)

where J : T ⊕ T ∗ → T ⊕ T ∗. It is easy to see that the algebraic part of the supersym-
metry algebra (2.4) can be written as a single equation, namely that J 2 = −12d. Passing
then to the action, the algebraic condition (2.5) is equivalent to a hermiticity of I with
respect to J (i.e., the natural pairing on T ⊕ T ∗, see previous Section). Therefore J is
an almost generalized complex structure. Finally we have to analyze the eleven differen-
tial conditions coming from the algebra using (2.6). Using the results from the previous
Section, we can show that all differential conditions arising from (2.4) are the same as the
conditions (1.16)-(1.19). Therefore we have proved that the differential conditions that
come from the supersymmetry algebra are equivalent to integrability of J with respect to
the Courant bracket.

To summarize the topological model (2.1) admits (2, 0) supersymmetry if and only if
manifoldM is generalized complex manifold.
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As we briefly mentioned in the previous Section, a generalized complex manifold is
equivalent locally, via diffeomorphism and b-transform, to a product of a symplectic and a
complex manifolds. If we choose the Darboux coordinates (label n) along the symplectic
leaf and the standard complex coordinates (label i, ī) transverse to the leaf the super-
symmetry transformations (2.2) and (2.3) is simplified drastically and have the following
form

δΦi = iε+D+Φi, δΦī = −iε+D+Φī (2.8)

δS+i = iε+D+S+i, δS+ī = −iε+D+S+ī (2.9)

δΦn = −ε+S+(n+1), δS+(n+1) = −iε+∂++Φn (2.10)

δΦn+1 = ε+S+n, δS+n = iε+∂++Φn+1 (2.11)

3. Topological model with WZ term

In the previous Section we presented the topological model for which the extended super-
symmetry is related to the generalized complex structure with integrability defined with
the respect to the Courant bracket. The natural question is now the following: if in the
integrability condition the Courant bracket is replaced by the twisted Courant bracket,
can we then construct a model which incorporates twisted integrability? This is in fact
possible and the solution is related to the WZ term.

We consider the topological model with an additional term

Stop =
∫

d2σ dθ S+µ∂=Φµ − 1
2

∫
d2σ dθ D+Φµ∂=ΦνBµν (3.1)

The last term is a WZ term and it depends only on a closed three-form H

Hµνλ =
1
2
(Bµν,λ + Bλµ,ν + Bνλ,µ) (3.2)

if the world-sheet does not have a boundary. The model (3.1) has N = (1, 0) super-
symmetry and can be defined over any differential manifold M equipped with a closed
three-form H . The Ansatz for the nonmanifest supersymmetry transformations is given
by the same expressions as before, (2.2) and (2.3). The off-shell supersymmetry algebra
is exactly the same, (2.4).

The main difference comes from the action. Namely invariance of the new action (3.1)
under the transformations (2.2) and (2.3) leads to new relations between the three and two
index tensors in the supersymmetry transformations. The action (3.1) is invariant under
(2.2) and (2.3) if the following algebraic conditions are satisfied

Jµ
ν + K µ

ν = 0, Lµν = −Lνµ, Pµν = −P νµ (3.3)

as well as the differential conditions

1
2
Pµν

,ρ = −N µν
ρ , Jµ

[ν,ρ] + PµλHλνρ = Q µ
νρ ,

1
2
L[µν,ρ] +

1
2
Jλ

[µHν]λρ = Mρνµ. (3.4)
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The algebraic part of all conditions remains the same as in the previous Section and there-
fore the two-index tensors can be combined in a single object J which is an almost gen-
eralized complex structure. However the differential conditions will change. Using (3.4)
we have to study the supersymmetry algebra (2.4). We can show that the three differen-
tial conditions arising from (2.4) are the same as conditions (1.25)-(1.28). Therefore we
have proved that the differential conditions coming from the supersymmetry algebra are
equivalent to integrability of J with respect to the twisted Courant bracket.

Finally let us remark that both actions (2.1) and (3.1) are invariant under following
transformation with b ∈ Ω2

closed(M)

Φ → Φ, S+µ → S+µ +
1
2
bµνD+Φν (3.5)

which correspond to a b-transform in T ⊕ T ∗ (since ∂=Φ → ∂=Φ).
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INTEGRABILITY OF SUPERCONFORMAL FIELD THEORY
AND SUSY N=1 KDV

ANTON M. ZEITLIN
Department of High Energy Physics, Physics Faculty,
St. Petersburg State University, Ul’yanovskaja 1, Petrodvoretz,
St.Petersburg, 198904, Russia

Abstract. The quantum SUSY N=1 hierarchy based on sl(2|1)(2) twisted affine superal-
gebra is considered. The construction of the corresponding Baxter’s Q-operators and fu-
sion relations is outlined. The relation with the superconformal field theory is discussed.

One of the most famous integrable systems (IS) is the Korteweg-de Vries hierarchy.
It is related with the superconformal field theory because its Poisson brackets give the
Virasoro algebra and the involutive family of integrals of motion (IM) providing the in-
tegrability of the conformal field theory (CFT). Since the late 1980-s the supersymmetric
and fermionic extensions of the KdV system have been known (see e.g. [1], [2], [3] and
references therein), which in turn are related with superconformal field theory (SCFT).
During the following years it was extensively studied both on the classical and the quan-
tum level.

However, up to the present nobody has applied the most successful method in the
theory of integrable systems, the so-called quantum inverse scattering method (QISM) to
these IS. In this short paper we demonstrate some algebraic tools giving possibility to
study SUSY N=1 KdV via QISM.

1. RTT-relation

The SUSY N=1 KdV model is related to the following L-operator:

LF = Du,θ −Du,θΦhα − (eδ−α + eα),

where hα, eδ−α ≡ eα0 , eα are the Chevalley generators of twisted affine Lie superalgebra
sl(2|1)(2) ∼= osp(2|2)(2) ∼= C(2)(2), Du,θ = ∂θ + θ∂u is a superderivative, the variable
u lies on a cylinder of circumference 2π, θ is a Grassmann variable, Φ(u, θ) = φ(u) −

i√
2
θξ(u) is a bosonic superfield with the following Poisson brackets: {Du,θΦ(u, θ),

Du′,θ′Φ(u′, θ′)} = Du,θ(δ(u − u′)(θ − θ′)). Making a gauge transformation of the L-
operator we obtain a new superfield U(u, θ) ≡ Du,θΦ(u, θ)∂uΦ(u, θ) − D3

u,θΦ(u, θ)
=−θU(u) − iα(u)/

√
2, where U and α generate the superconformal algebra under the
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Poisson brackets:

{U(u), U(v)} = δ′′′(u− v) + 2U ′(u)δ(u− v) + 4U(u)δ′(u− v),
{U(u), α(v)} = 3α(u)δ′(u− v) + α′(u)δ(u− v),
{α(u), α(v)} = 2δ′′(u− v) + 2U(u)δ(u− v).

The SUSY N=1 KdV system has an infinite number of conservation laws and the first
nontrivial one gives the SUSY N=1 KdV equation: Ut = −Uuuu + 3(UDu,θU)u. The
integrals of motion are generated by the logarithm of the supertrace of the corresponding
monodromy matrix, which has the following form:

M(cl) = e2πiphα1 P exp
∫ 2π

0

du
( i√

2
ξ(u)e−φ(u)eα1

− i√
2
ξ(u)eφ(u)eα0 − e2

α1
e−2φ(u) − e2

α0
e2φ(u) − [eα1 , eα0 ]

)
.

Its quantum generalization can be represented in the quantum P-exponential form (for the
explanation of this notion see below and [3] for details):

M(q) = e2πiPhα1 Pexp(q)

∫ 2π

0

du(W−(u)eα1 + W+(u)eα0).

Vertex operators W± are defined in the following way W±(u) =
∫

dθ : e±Φ(u,θ) :=
∓ i√

2
ξ(u) : e±φ(u) :. The universal R-matrix with the lower Borel subalgebra represented

by (q−1−q)−1
∫ 2π

0
duW±(u) is equal to L = e−πiPhα1M(q). Due to this fact L satisfies

the RTT-relation:

Rss′
(
Ls ⊗ I

)(
I⊗ Ls′

)
= (I⊗ Ls′

)(
Ls ⊗ I

)
Rss′ ,

where s, s′ mean that the corresponding object is considered in some representation
of Cq(2)(2). Thus the supertraces of the monodromy matrix (“transfer matrices”) ts =
strMs commute, providing the quantum integrability. It is very useful to consider the
evaluation representations of Cq(2)(2), ρs(λ), where now the symbol s means integer and
half-integer numbers. Denoting ρs(λ)(M) as Ms(λ) we find that ts(λ) = strMs(λ)
commute: [ts(λ), ts′(µ)] = 0. The expansion of log(t 1

2
(λ)) in λ (the transfer matrix in

the fundamental 3-dimensional representation) is believed to give us as coefficients the
local IM, the quantum counterparts of the mentioned IM of SUSY N = 1 KdV.

2. The Q-operator

Using the super q-oscillator representations of the upper Borel subalgebra of the quan-
tum affine superalgebra Cq(2)(2) we define the Q± operators (see [4] for details). The
transfer-matrices in different evaluation representations can be expressed in such a way:

2cos(πP )ts(λ) = Q+(qs+ 1
4 λ)Q−(q−s− 1

4 λ) + Q+(q−s− 1
4 λ)Q−(qs+ 1

4 λ),
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where s runs over integer and half-integer nonnegative numbers. Q± operators satisfy
quantum super-Wronskian relation:

2cos(πP ) = Q+(q
1
4 λ)Q−(q−

1
4 λ) + Q+(q−

1
4 λ)Q−(q

1
4 λ).

One should note, that we use only 4s + 1-dimensional “osp(1|2)-induced” representa-
tions (sometimes called atypical) of C(2)(2). It allows, however, to construct the fusion
relations, see below. To construct the relations like Baxter’s ones we introduce additional
“quarter”-operators, constructed “by hands” from the Q-operators:

2cos(πP )t k
4
(λ) = Q+(q

k
4 + 1

4 λ)Q−(q−
k
4− 1

4 λ)−Q+(q−
k
4− 1

4 λ)Q−(q
k
4 + 1

4 λ)

for odd integer k. The Baxter’s relations are:

t 1
4
(λ)Q±(λ) = ±Q±(q

1
2 λ)∓Q±(q−

1
2 λ),

t 1
2
(q

1
4 λ)Q±(λ) = t 1

4
(q

1
2 λ)Q±(q−

1
2 λ) + Q±(qλ).

The fusion relations have the following form very similar to the A
(1)
1 case:

tj(q
1
4 λ)tj(q−

1
4 λ) = tj+ 1

4
(λ)tj− 1

4
(λ) + (−1)4j .

But they are only “fusion-like” because the “quarter”-operators do not seem to correspond
to any representation of C(2)(2). The truncation of these relations for different values of
q, being the root of unity: qN = ±1, N ∈ Z, N > 0 has the following form:

tN
2
(λ) + tN

2 − 1
2
(λ) = 2cos(πNP ).

In the case when p = l+1
N , where l ≥ 0, l ∈ Z there exists an additional number of

truncations:
tN

2 − 1
4
(λ) = 0, tN

2
(λ) = tN

2 − 1
2
(λ) = (−1)l+1,

tN
2 − 1

2−s(λq
N
2 ) = (−1)4sts(λ)(−1)l+1.

These relations allow us to rewrite the fusion relation system in the Thermodynamic Bethe
Ansatz Equations of D2N type.

3. Conclusions

In this paper we studied algebraic relations arising from the integrable structure of CFT
provided by the SUSY N=1 KdV hierarchy. The construction of the Q-operator as a
“transfer”-matrix corresponding to the infinite-dimensional q-oscillator representation
could be also applied to the lattice models. The relations like Baxter’s and fusion ones
will be also valid in the lattice case because they depend only on the decomposition prop-
erties of the representations.

In the following we also plan to study the quantization of N > 1 SUSY KdV hierar-
chies, related with super-W conformal/topological integrable field theories.
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