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Preface

The intent of this book is to serve as an undergraduate textbook in electrodynamics
at a basic or advanced level.

The objective is to attain a general understanding of electrodynamic theory and
its basic experiments and phenomena in order to form a foundation for further
studies in the engineering sciences as well as in modern quantum physics.

The outline of the book is based on the following principles:

• Introduce each phenomenon with relevant and complete experiments
• Focus on experiments and observations accessible to the student
• Base the theory on the concept of force and mutual interaction
• Present electrodynamics using the same principles as in the preceding mechanics
course

• Treat electric, magnetic and inductive phenomena cohesively with respect to
force, energy, dipoles and material

• Aim at explaining that theory of relativity is based on the magnetic effect
• Introduce field theory after the basic phenomena have been explored in terms of
force.

Overview

The book starts by considering the different types of forces that occur between
electric charges. These may be directly related to their motion, i.e. charges at rest, in
uniform motion and in acceleration. The forces, known as electric, magnetic and
inductive, are treated cohesively and formulated through observations and mea-
surements. The subsequent chapters are more or less direct applications of the force
formulas.

Chapter 3 introduces the energy concept as a direct consequence of force through
the principle of work. The inductive force is then utilized to derive magnetic
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energy. Neumann’s formula for inductance is fully derived and used to express
magnetic energy.

Chapter 4 covers macroscopic systems whose characteristics are obtained
through a summation of mutual interactions between infinitesimal elements of
charge. Calculation techniques for capacitance and inductance are introduced and
shown to be useful concepts in case the system is homogeneous.

Chapters 5 and 6 deal with the conductor and electric circuits which constitute
the experimental environment from which electrodynamics was developed and
technical applications originated. The microscopic description of electric conduc-
tion, the origin of resistance and its relation to heat are treated first. Then the
resonance circuit which includes the other two circuit components, capacitance and
inductance, is introduced.

Chapter 7 introduces electric and magnetic dipoles, which are significant con-
cepts since nature generally may be described in terms of such objects. The
expressions for electric and magnetic dipole–dipole interaction energies are then
central to providing both force and torque.

Chapter 8 investigates how different electrically and magnetically neutral
materials respond to electric and magnetic influences. It is then assumed that the
material is composed of dipoles. The material parameters are introduced and
techniques for measuring them are described. A mathematically rigorous treatment
of the dipole, or generally multipole, interactions is presented in the accompanying
Appendices A and B.

In Chap. 9, it is shown conceptually how the magnetic and inductive dynamics
arise as motional consequences of the electric force assuming that interactions take
time; they are mediated at the speed of light. Alternatively, one may utilize the
knowledge of electric and magnetic forces to derive the speed of light. In a special
case both the magnetic force and the Faraday-Henry’s law of induction are derived.
It is also shown how electromagnetic dynamics is related to relativity, using the fact
that magnetism is the motional consequence on which the special theory of rela-
tivity is based. Since we build the theory upon the concept of force the material is
unique to this book. Chapter 9 also introduces Lorentz transformation in the form of
a tutorial. Prerequisites of Chap. 9 are only Chaps. 1–3, thus these four chapters
may form a concise course in basic electrodynamics and its relation to relativity.

In Chap. 10, electromagnetic field theory is introduced and Maxwell's equations
formulated. The fields are indeed already defined by the force formulas, but
expressed in Maxwell’s equations in terms of their divergence and curl. This is
motivated by showing that the boundary conditions of the fields are then defined.
Using the fields, the Poynting vector may be formulated corresponding to the power
transported from an electrodynamic system.

An important feature of this book is thus that field theory is introduced after the
physical phenomena that constitute electrodynamics have been described, inter-
preted and formulated in terms of fundamental forces.

In Chap. 11, antenna theory is introduced using the principle of retarded inter-
actions, i.e. taking into account that interactions take time. The small loop and the
small wire antennas are treated assuming current is uniform and varies harmonically
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with time. Furthermore, the antenna array is discussed. The basic principles of
retarded interactions and array effects are thus developed and may then be applied
to natural oscillators as are found in nature. In this way, the reflection law, the
refraction law and the phenomenon of Brewster reflection are derived and fully
explained. The power delivered by an antenna is also analysed using the Poynting
vector derived in a previous chapter.

Appendix D contains solutions to the exercises appearing in the book.

Prerequisites and Target Audience

Although electrodynamics is described in this book from its first principles, prior
knowledge of about one semester of university studies in mathematics and physics
is required, including vector algebra, integral and differential calculus as well as a
course in mechanics, treating Newton’s laws and the energy principle. The target
groups are teachers, engineering and physics students as well as professionals in the
field, e.g. high-school teachers and employees in the telecom industry. Also
chemistry and computer science students may benefit from the book.

Study Tips

Learning physics inevitably implies active involvement, especially in problem-
solving and experimental studies. We recommend that the discussed experiments
also be implemented in practice, not least to avoid tendencies to abstraction.

Some of the exercises, marked with an asterisk, are included in the theory of the
book and need to be solved before the chapter that follows them. The exercises
marked with a ‘C’ are more challenging and normally not suitable for independent
problem solving.

A solution manual is included in Appendix D.

Website

The book has a website where you will find reader comments, recommended
Internet links, videos on relevant experiments/phenomena, further exercises and
suggested laboratory work. Please consult the publisher’s website to obtain the
relevant web address.
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Symbols

�F;�f Force (Newton, N)
U Energy (Joule, J)
W Work (Joule, J)
�s; �L; �d Length (Meter, m)
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θ̂ ¼ x̂ cos θ cosφþ ŷ cos θ sinφ� ẑ sin θ
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Chapter 1
Basic Principles

I think the facts leave no doubt that the very mightiest among
the chemical forces are of electric origin. The atoms cling to their
electric charges, and opposite electric charges cling to each other.

Hermann von Helmholtz, 1881

Electrodynamics is the topic onwhichmost of physics is based. The physics subtopics
such as mechanics, wavemotion, thermodynamics, atomic physics and so on all have
their origin in the electric force. Pressure and temperature, sound, material bending,
winds, atomic and molecular structure etc. are basically the effects of interactions
between electric charges, together with all our senses and our physiology in its
entirety, including the genetic code. Observations beyond the senses are made with
instruments whose design is based exclusively on electrodynamics. So when physi-
cists study subatomic dynamics and discover two other types of interactions, the
strong nuclear force that holds nucleons together and the weak atomic force causing
fusion and radioactive decay, this is donewith senses and instruments whose function
is based on the electric force.

Electrodynamics is, together with gravity, the force controlling everyday life. One
major issue of physics is whether these two forces have a common origin. Rephrased:
is there a relationship between mass and charge; could it be that the one is generated
dynamically from the other? For those who are interested in basic research, issues
of this nature are particularly favourable for fruitful research projects.

Also gravity is experienced through the electric force. As you read this, you
may sit in a chair and feel the so-called normal forces, which are electric and arise
indirectly via your weight. But when gravity acts alone, such as in a free fall, it is
not experienced; you are ‘weightless’.

Electrodynamics is based on the concept of electric charge, which has its origin
in the electrons and protons of the atom and is the source of the electromagnetic
force. All macroscopic charge is composed of these elementary charges and the
attraction between them is the condition for the bonded system known as the atom.
Consequently, also molecules are formed through the electric interaction.

Throughout this book the mutual interaction between charged objects is empha-
sized. These appear ‘pairwise’, i.e. they interact two by two, according to Newton’s
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2 1 Basic Principles

fundamental laws of nature. The dynamics of nature is then a sum of individual
pairwise interactions. This summation requires knowledge of the interaction between
any two fundamental items such as two electrons, both at rest and in general motion.
In electrodynamics there is a good, although not complete, knowledge about this
force, which in the latter case, moving charges, essentially has been observed in
closed conductors.

As a complement to the force view of nature, physics may be described by the
energy concept, defined through the pairwise interaction via the concept of work.
The result of work is stored energyU in the system (also known as potential energy).
Force and energy are intimately connected via the energy principle from which force
F arises as an energy minimization:

F̄ = −∇U (1.1)

i.e. force is the negative gradient of the stored energy U . This principle is one cor-
nerstone of physics. Force is in turn defined by Newton’s laws of motion:

F̄ = d

dt
(mv̄) (1.2)

i.e. force is the time derivative of momentum. Formula (1.2) also defines inertial
mass which is a measure of an object’s resistance to motional change. Furthermore,
the scientific definition of time and space originates from this formula.

Force and energy form the core of physics. Since energy is a scalar it is com-
putationally advantageous to first obtain this quantity and then to use the energy
principle (1.1) to achieve the desirable force vector. In this book, this technique is
used extensively and a prior knowledge in the two concepts is essential.

1.1 Exercises

1.1 a. Apply the energy principle, formula (1.1), in case of free fall toward the
earth’s surface. Explain the origin of the potential energy and how it gener-
ates the active force.

b. Use (1.1) to determine the force acting on the falling object and the earth.
c. Identify the forms of energy involved in the dynamics. What became of the

energy in the final state, i.e. when the object is located on the ground?
d. Why is themotionof the earth usually neglected?Reflect uponhowNewton’s

third law (action and reaction) is affected by this neglect.

1.2 a. Explain why a heavier object has a shorter fall time than a lighter one if they
are released from the same high altitude above the earth.

b. There is a famous film recorded on the moon where the principle of equal
fall time for different weights is tested and verified. What is the difference
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in conditions between the earth and the moon? (Ref: see web link on the
book’s website).

1.3 a. Explain what is meant by the concepts of gravitational and inertial mass.
Give examples of phenomena where the first and second is at work. How
are they related to each other?

b. Find out what Mach’s principle means and explain in your own words how
the inertial mass arises from the gravitational. (Ref: see web link on the
book’s website).

1.4 a. A space station is located at about 400km above the earth’s surface. Estimate
the gravitational force on a person at this height. Explain why a person
staying on a space station can be regarded as being in a weightless condition.

b. Check with what amount a measurement with a balance of a 1 kg mass
would change if it were measured at an altitude of 100m compared to at
the ground. Would it be possible to perform this measurement and thereby
verify the distance dependence of gravity?

1.5 Explain why the coriolis and centrifugal forces must be regarded as fictitious
forces. Give examples of phenomena in which these concepts are used.

1.6 What is meant by the term ‘relativemotion’? Could there be any form of absolute
motion?

1.7 How would you define the concept of time? How are clocks made?

1.8 What does the concept ‘space’ mean to you?What is meant by distance and how
is it measured?

1.9 If a movie is playing at a slower speed, any motion in the movie is seen consis-
tently slower. How does that influence your perception of time in the movie?

Further Readings

A.K.T. Assis, Relational Mechanics, (Apeiron Montreal, 1999)
A.P. French, Newtonian Mechanics, The MIT Introductory Physics Series, (Norton, New York,
1971)

Recommended Mathematical Handbooks

M.R. Spiegel, Mathematical Handbook, (McGraw-Hill, 1968)
R.K. Wangsness, Electromagnetic fields, (Ch. 1), (Wiley, 1986)



Chapter 2
Electrodynamic Force

Electric and magnetic forces. May they live for ever, and never
be forgot, if only to remind us that the science of
electromagnetics, in spite of the abstract nature of its theory,
involving quantities whose nature is entirely unknown at the
present, is really and truly founded on the observations of real
Newtonian forces, electric and magnetic respectively.

Oliver Heaviside, 1900

In this chapter the force between charges at rest, in uniform motion, and in
acceleration will be formulated. These are termed electric, magnetic and induc-
tive respectively. A minimum set of experiments will be introduced through which
the forces may be studied in detail. From the measurements the force formulas are
deduced and expressed in terms of the fundamental entities, i.e. charge and its motion.

It must not be forgotten, however, that force formulas in general are strictly valid
only for the experimental conditions under which they were deduced. New phenom-
ena are therefore expected at higher speeds of the charges as well as at a smaller
distance scale than what is valid for the experiments discussed here. These frontiers
of physics are denoted theory of relativity and quantum mechanics respectively for
which the classical electrodynamic theory is the basis.

2.1 Electric Charges at Rest–Electric Force

Macroscopically electric charged objects arise apparently in different ways. It is
generally, however, a matter of separating unlike elementary charges from each other,
usually electrons from their atoms. A simple way to generate electricity is by friction.
Thunderclouds, for example, are formed at large temperature differences between
wet air masses which create strong air currents whereby friction occurs between the
water droplets. Electrons are then transported from one molecule to another, giving
rise to an imbalance counteracted by nature. This reaction is known as electric force.
Similarly, an electric imbalance occurs when different materials are rubbed against
each other, for instance a cloth on an amber stone.

© Springer International Publishing Switzerland 2015
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6 2 Electrodynamic Force

Torsion constant K
F=Kθ

+ q + q

Fig. 2.1 The torsion balance. The left ball is attached to a rod which in turn is mounted to the thin
vertical thread. The right ball is fixed at a certain position. The balls can be charged for example
by allowing a charged plastic rod touching the balls. When the left-hand ball repels it will cause
the vertical wire to rotate and via its torsion constant K the acting force can be determined from
the rotational angle θ . The size of the equipment is illustrated by means of the matchbox

The word electric is derived from the ancient Greek word for amber,1 which the
first recorded studies on this phenomenon revolve around. In the late 1700s Coulomb
studied these forces in a systematic manner. By means of a torsion balance, Fig. 2.1,
the force between small objects could be determined for varying distance R and
charge q. The latter was varied by allowing a charged object to touch another identical
uncharged object under the assumption that the excess charge is then distributed
equally between the objects. The amount of charge is not directly accessible but
defined by the force that arises.

This force, where the charged objects initially are at rest, is called electric or elec-
trostatic. The measurement can be carried out using for example Pasco’s equipment
in the figure. It is difficult to achieve a precision better than 20 %, so it is reasonable
to ask how Coulomb managed to carry out his experiments at such a precision that
the law which he formulated in the eighteenth century is still valid today:

F̄1→2 = q1q2

4πε0 R2 R̂ (2.1)

which is the force on object 2 caused by object 1, Fig. 2.2.
R̂ is a unit vector which indicates the direction of the distance vector pointing

towards the affected charge. ε0 is a natural constant called the electric permittivity.
The force on charge 1 is opposite in direction but equal in magnitude. By observation,
the electric force is known to be either repulsive or attractive, a fact that is taken into
account by introducing signs of the charges (a mathematical miracle). Science his-
torians suspect that Coulomb never completely verified this formula experimentally
but copied the formula of Newton’s law of gravitation, basically replacing mass with
charge.

1 In greek the word is ηλεκτρo transcribed as ilektro.
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R

q1 q2 – q1 q2

R

F

F F

F
2 1

2 1 1 2

1 2

Fig. 2.2 Two electrically charged objects interact. Left Repulsive force for like charges. Right
Attractive force for unlike charges

Nevertheless, the Coulomb force formula is one of the most important discoveries
in physics, well-proven over time with different methods. Note that the force formula,
like Newton’s gravitational force, deals with pairwise interactions. In order to obtain
force and energy for general systems, the pairwise forces between its constituents
must be summed. This usually requires integration as the number of charges is so large
that a macroscopic object may be considered as consisting of charged infinitesimal
elements, i.e. a continuous charge distribution. More about this in Chap. 4.

The unit of charge is a Coulomb whose magnitude is defined from formula (2.1).

2.2 Uniform Motion–Magnetic Force

Knowledge of electric charges in motion originates mainly from studies of current-
carrying conductors. However, a full understanding requires the study of free charges
in motion, such as in an electron tube or a particle accelerator.

To describe the effect of uniform motion, both parallel and perpendicular relative
motion must be examined where the latter case requires one party to consist of free
charges such as an electron beam. These motional effects should be regarded as a
correction to the Coulomb force (2.1), known as magnetic for historical reasons. The
word originates from ancient Greece, referring to the city where magnetic stones
were found. Today, however, magnetism is known to be about electric charges in
motion, explored and systematised using basically the current-carrying conductor.

2.2.1 Electric Current

In principle, an electric current may be generated in a conductor by bringing a charged
object to its proximity. The conduction electrons in the metal, which can move almost
freely, will then be put into motion. By means of a battery, i.e. a voltage source (see
Chap. 3), the current can be maintained in a closed conductor.

The term ‘closed conductor’ refers to a conductor structure as a closed path where
conduction electrons by means of a battery are moving in a closed path, i.e. a circuit.
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The battery voltage can typically be varied and because the voltage is proportional
to current, described by Ohm’s law (see Chap. 5), different strengths of the current
may be obtained. Alternatively, for a given voltage, current may be varied by the
diversion into different branches of a circuit. Current I corresponds to the amount
of charge that passes an area A per unit time:

I = nqvA (2.2)

where n is the number of charges per volume, q their individual charge and v its
velocity, so-called drift velocity in a conductor, see also Chap. 5. The velocity v is
parallel to the normal of surface A. The current direction is defined by the motional
direction of positive charges, so that the direction of current in a conductor is opposite
the direction of the electron drift velocity.

The unit of current is thus coulomb/second, usually referred to as Ampère.

2.2.2 Measurement of Parallel Motion

For the study of force between charges in parallel/antiparallel motion, the straight
conductors may be used, Fig. 2.3.

The force between these can be measured with an apparatus shown in Fig. 2.4.
Either a torsion balance may be used as in the previous electric experiments or the

force may be balanced by means of weights. Let the parallel conductors have length
L , much larger than the distance x between them. For parallel currents as in the left
of Fig. 2.3, the measurement gives

F̄1→2 = −μ0 I1 I2

2πx
Lx̂ (2.3)

I is current and the natural constant μ0 is called magnetic permeability. As in
the electric case, the force on the other conductor is opposite in direction but equal

F

L

x
x

F

I2

I1

F

F

1 2

2 1

1 2

2 1

I2

I1

Fig. 2.3 Left Attractive force for parallel currents. Right Repulsive force for opposite (anti-parallel)
currents
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Fig. 2.4 Apparatus for measuring the magnetic force. The two parallel conductors at the forefront
are horizontally oriented where the lower one is fixed and the upper one can move freely

in magnitude. An attractive (repulsive) force is observed for parallel (anti-parallel)
currents, included in the force formula using opposite signs for opposite currents.

2.2.3 Measurement of Perpendicular Motion

The force between charges in relative perpendicular motion can be explored using an
electron beam incident on a straight current-carrying conductor as in Fig. 2.5. Since
the conductor is electrically neutral, the generated force is magnetic, arising from
the motion of charge.

Fig. 2.5 Apparatus for
measuring the magnetic
force between charges in
perpendicular motion. An
electron beam is incident
perpendicularly on a long
straight conductor
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Fig. 2.6 Schematic view of
the experiment with q2 < 0

q2v2

x2

I1y

x

F1 2

As is shown in Exercise (2.8) the measurement provides the force on a charge q2
in the beam, Fig. 2.6,

F̄1→2 = μ0 I1

2πx2
q2v2 ŷ (2.4)

where ŷ is the unit vector in the y-direction and I1 is the current in the conductor.
q2, v2 and x2 are charge, velocity and distance to the conductor respectively of
one particular free electron. The current I1 flows in the negative y direction and
is therefore negative as well as charge q2 and speed v2 so that the force becomes
negative, i.e. parallel to the conductor current I1, in accordance with observation.

The measurement assumes a knowledge of the charge to mass ratio of the electron,
a quantity usually measured in high-school, see Exercise (5.12). Alternatively, let an
electron beam pass through a pair of charged parallel plates using an apparatus such
as in Fig. 2.5. By balancing the electric force by a parallel straight current-carrying
conductor, the charge to mass ratio of the electron is obtained. The electric force
from the two charged plates will be calculated in Chap. 4.

The magnetic force of the perpendicular motion can not be studied with closed
conductors because the force then vanishes, see Exercise (2.10).
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Fig. 2.7 From the two
parallel conductors in
Fig. 2.3 the electrons
corresponding to the electric
current are extracted, the
so-called conduction
electrons. Thus, two parallel
fluxes of free electrons are
obtained

q1 q2

x

v2v1

fefe fmfm

2.2.4 Magnetic Force for General Uniform Motion

Based on the two measurements above, a formula is sought for the magnetic force
between two free electric charges in uniform but otherwise arbitrary motion.

Parallel motion. Considering free electrons (or charges in general) in parallel
motion, the expected force situation is then as shown in Fig. 2.7.

To determine the magnetic force on charge 2, replace length L with the infini-
tesimal element d L in formula (2.3). This element corresponds to one and only one
electron. Using formula (2.2) the current element becomes

IdL = nqvAd L = nqvdV = qv (2.5)

where dV is the volume occupied by one electron.
Thus, the magnetic force on electron 2 caused by the left flux (no. 1) of Fig. 2.7 is2

F̄1→el2 = −μ0 I1

2πx
I2d L2 x̂ = −μ0 I1

2πx
q2v2 x̂ (2.6)

where flux 1 is assumed to be long in relation to x . This force is the pairwise sum of
the magnetic forces between all electrons in flux 1 and the single electron 2.

It will now be shown that the contribution to the magnetic force between one
current element in conductor 1, equivalent to an electron, and electron 2 may be
written

f̄m|| = −μ0 I1d L1

4π R2 q2v2(a cos θ ŷ + sin θ x̂) (2.7)

2 The force is written without infinitesimal sign despite the fact that the right-hand side is infinites-
imal. The reason is that the force element is to be regarded as a specific electron.
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Fig. 2.8 Definition of
parameters used in the
expression for the force
between two charges in
parallel motion. The current
elements are defined for
negative charge q

q1

q2

θ

I2dL2

I1dL1

x

x

y

y v2

v1

R

where R is the distance between the electrons, θ is defined in Fig. 2.8 and a is a
constant.

The factors inside the brackets in formula (2.7) is selected with the following
criteria:

• The vertical component ŷ of formula (2.7) should be cancelled after integration
over d L1.

• The horizontal component x̂ of formula (2.7) should coincide with formula (2.6)
after integration.

The first criterion gives of course other possible expressions for the y component
than that in formula (2.7) (which?). The present selection is based on simplicity. To
examine the correctness of formula (2.7), the force is integrated over the entire length
of conductor 1, which is assumed to be of infinite length:

F̄1→el2 = −
∞∫

−∞

μ0 I1dy

4π(y2 + x2)
q2v2(a cos θ ŷ + sin θ x̂) (2.8)

Since cos θ = y/
√

y2 + x2 and sin θ = x/
√

y2 + x2 we obtain

F̄1→el2 = −
∞∫

−∞

μ0 I1dy

4π(y2 + x2)3/2 q2v2(ay
︸ ︷︷ ︸

odd function

ŷ + x x̂) = −μ0 I1

2πx
q2v2 x̂ (2.9)

In formula (2.9) the first term in the integral is an odd function which thus vanishes.
The second term involves the integral
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∞∫

−∞

dy

(y2 + x2)3/2 = 2

x2

Thus, formula (2.6) has been recreated. Formula (2.7) is therefore a possible
candidate for the magnetic force between charges in parallel motion.

Perpendicular motion is treated similarly to the former parallel case. A general
trial formula for the force between two charges is proposed which is then integrated
and compared to the measurement result.

According to observation the magnetic force is vertical in this case, parallel to
current I1, Fig. 2.6. Therefore, the formula should be written so that the horizontal
component vanishes after integration. As the formulas (2.4) and (2.6) are equal in
magnitude, ŷ must be multiplied by sin θ and x̂ is multiplied by b cos θ where b
is a constant (compare previous case), Fig. 2.9. Hence, the force on charge 2 for
perpendicular motion is expressed as:

f̄m⊥ = μ0 I1d L1

4π R2 q2v2(sin θ ŷ + b cos θ x̂) (2.10)

which should be integrated from minus to plus infinity, since the straight conductor is
long. This action is technically equal to the previous case (see Exercise 2.8), so that
the cosine term disappears after integration and the result is formula (2.4). Formula
(2.10) is thus verified as a candidate for the magnetic force between charges in relative
perpendicular motion.

General motion. From the two complementary results, formulas (2.7) and (2.10),
the general magnetic force formula may be deduced. The formula must be expressed
in a coordinate free form and in terms of vectors. In addition, the simplest possible
expression should be chosen. With these restrictions it is quite feasible to obtain the
formula by trial and error. The only vectors that can be used are the velocities and

Fig. 2.9 Definition of
parameters used in the
expression for the force
between charges in
perpendicular motion. The
current elements are defined
for negative charge q

q1

q2

θ

I2dL2

I1dL1

x

x

y

y

v2

Rv1
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the distance. In Appendix E, a systematic approach is given and the result is

f̄m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2] (2.11)

q1

q2

v2
R

v1

which is force on object 2. This formula is valid for both cases f̄m|| and f̄m⊥ (verify
this) and is therefore the general magnetic force formula, i.e. for charges in uniform
motion with arbitrary relative motional direction, see figure to the above. The reader is
reminded that the measurements are based on electric current in conductors, meaning
that charges move slowly.

With a �= 0 longitudinal magnetic forces are allowed which appear when θ = 0 in
Fig. 2.8. These forces have been indicated in experiments but not yet been measured
with any precision.

In 1902/1903 Tait and Whittaker performed an analysis on the full measurement
done in 1820–1825 by Ampère concerning forces between current-carrying conduc-
tors. Whittaker and Tait also argued the validity of Newton’s third law about action
and reaction (see next section) and found the following force formula:

f̄m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + (v̄1 · R̂)v̄2] (2.12)

i.e. (2.11) with a = 1.
However, (2.12) was first proposed by Maxwell in 1865 as one of four candidates

based on Ampère’s measurements.
Another magnetic force formula was proposed by Grassman in 1845. Based on

the measurements of Ampère together with the exclusion of longitudinal forces, i.e.
a = 0 in (2.11), he obtained

f̄ G
m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1] (2.13)

Commonly, (2.13) is taken as the general magnetic force formula. It is usually
written

f̄ G
m2 = μ0q1q2

4π R2 v̄2 × (v̄1 × R̂) (2.14)

as a consequence of vector algebra.
The reason for the popularity of formula (2.14) is that it correctly describes

phenomena appearing in daily life as well as in technical applications. In plaintext it
means that it describes such cases where at least one of the interacting objects moves
in a closed path, including both permanent magnets and electric circuits. In case both
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objects are free charges, a certain problem with Grassman’s formula (2.13)/(2.14)
will appear. This is discussed in the next section.

It may be shown that the general magnetic force formula (2.11) is reduced to
(2.13)/(2.14) in case one of the interacting objects is a closed current, see Exercise
(2.10).

2.2.5 Evaluation of the Magnetic Force Formulas

Momentum. Grassman’s force formula (2.13)/(2.14) is marred by a peculiar property
since for free charges it violates Newton’s third law: to every force there is a coun-
terforce of equal size and opposite direction. Hence, Grassman’s formula violates
the law of momentum conservation. This is shown as follows.

The force (2.13)/(2.14) acts on object 2. To obtain the force on object 1, the
quantities are interchanged and the sign of the distance vector changed:

f̄ G
m1 = μ0q1q2

4π R2 [(v̄1 · v̄2)R̂ − (v̄1 · R̂)v̄2] �= − f̄ G
m2 (2.15)

The problem occurs since formula (2.13) is asymmetric in v1 and v2. This is
corrected in formula (2.12) which for object 1 becomes

f̄m1 = μ0q1q2

4π R2 [(v̄1 · v̄2)R̂ − (v̄1 · R̂)v̄2 − (v̄2 · R̂)v̄1] = − f̄m2 (2.16)

in agreement with Newton’s third law.
In this book, formula (2.11) is considered as the basic magnetic force formula and

it will be referred to as Whittaker’s formula. The constant a is still today unknown.
However, neither Grassman’s nor Whittaker’s force is generally directed along

the connection line of the charges. Such a force will violate the principle of angular
momentum conservation, i.e. rotational motion, discussed in Exercise (2.12).

In technical applications magnetic effects usually appear through closed current-
carrying conductors. In this case, (2.11) is simplified considerably since the two last
terms then vanish, a simplification easily obscured if Grassman’s force (2.14) is used
as guiding formula. This is shown in Exercise (2.10).

Electric charges in parallel motion. Consider the interaction between two identi-
cal charges in parallel motion with equal velocity v perpendicular to distance vector
R, Fig. 2.10. This phenomenon appears both in particle accelerators and in electron
tubes and is therefore well documented for free charges. Both formulas (2.11) and
(2.14) give

f̄m = −μ0qvqvR̂

4π R2 (2.17)

and the total force on q2 becomes
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Fig. 2.10 Force between
two like charges in parallel
motion

q2q1
fm

fm fe

R

fe

v v

f̄ = f̄e + f̄m =
(

q2

4πε0 R2 − μ0q2v2

4π R2

)
R̂ = q2

4πε0 R2 (1 − ε0μ0v2)R̂ (2.18)

Formula (2.18) is well verified for free charges in particle accelerators. Since the
formula stems from measurement on closed conductors it provides another verifica-
tion for the model of electric conductor current which was used above.

Formula (2.2) provides an estimate of the drift velocity of the conduction electrons
in ordinary conductors of about 1 mm/s. Using your self-measured values for ε0 and
μ0 or utilizing tabulated values it is found that at this speed the magnetic force of
Fig. 2.10 is a factor 1023 less than the electric force. Nevertheless, the magnetic force
is easily observed using current-carrying conductors because of the large number of
conduction electrons all contributing to the magnetic force in the same direction.

Now consider the case when the motion of the two like charges is anti-parallel.
From the definition of electric current, formula (2.2), it is clear that this case is, with
respect to magnetic force, equivalent to considering two unlike charges in parallel
motion, see Fig. 2.11.

Since two parallel conductors with opposite currents repel, the magnetic force on
object 2 (right object) is positive and the electric force is negative:

f̄ = f̄e + f̄m =
(

− q2

4πε9 R2 + μ0q2v2

4π R2

)
R̂ = q2

4πε0 R2 (−1 + ε0μ0v2)R̂ (2.19)

in agreement with formulas (2.11) and (2.14).

–
–

R R

fm fe

v

v

+ –
fmfe

vv

Fig. 2.11 Two like charges in anti-parallel motion (left) is, w.r.t. the magnetic force, equivalent to
two unlike charges moving in parallel (right)
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Extrapolating beyond the given measurement range, which is up to a tenth of light
speed, will show that at the speed v = 1/

√
ε0μ0 the magnetic and electric forces are

balanced and the interaction ceases. This phenomenon can be observed in particle
accelerators where like charges move in parallel close to this speed.

On the basis of Figs. 2.10 and 2.11 the origin of magnetic force and its relation to
theory of relativity will be explored in Chap. 9.

2.3 Accelerated Motion–Inductive Force

Electric charges in acceleration may be examined by connecting and disconnecting
a battery included in a circuit, Fig. 2.12.

The current in the loop can be measured using a current meter based on the
magnetic force as above. When the battery is connected the current in the circuit
increases as in Fig. 2.12. Thus, it takes a certain time for the electrons to reach their
final speed. This is a kind of inertia which can be considered as a resistance to the
effect of the battery.

Charges in acceleration can be further studied by using two loops, Fig. 2.13. The
following is then observed:

A. The loops are in the same plane, one enclosing the other and with parallel cross
sections, Fig. 2.13 left

If and only if the current in one varies, a current is induced in the other according
to the following:

• Increasing the current in one conductor induces an opposite current in the other.
• Decreasing the current in one conductor induces a same directed current in the

other.
• The faster the current variation in one conductor the greater induction current in

the other.

 i

t

 i

Battery connected
at this time

Fig. 2.12 An electric conductor is connected to a battery (left). When the battery is turned on, the
current in the circuit increases as in the right figure



18 2 Electrodynamic Force

A

Conductor  1

Conductor 2

Fig. 2.13 Two closed conductors utilized for investigation of the induction effect. One of them is
connected to a battery and the other to a current meter. The right-hand figure shows an example of
an apparatus

B. The loops are in parallel planes with common axes

For larger distances between the loops, examinations as in case A give qualitatively
the same result but quantitatively weaker induction current compared to the result in
case A.

C. Crossed loops, cross section surface at 90 degrees angle to each other

A

Current is not induced from examinations as in case A. Note that our current meter
only registers current that passes it.

D. Constant battery current gives no induction current.
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E. The loops are in the same plane but not enclosing

A

A far smaller current is induced compared to case A, which quickly decreases
with increasing distance.

The observations may be summarized:

• The response, i.e. the induction current, is such that changes of the system’s total
current is opposed.

• The response is strictly anti-parallel to the acceleration the battery causes since no
induction current is registered for crossed conductors.

• The response decreases with distance between the loops.

To reduce the complexity of the phenomena a second experiment is set up. This
consists of two large rectangular circuits, Fig. 2.14.

Since the circuits are large, the two sides closest to each other will control the
interaction. Thus, in this way the interaction between two straight and parallel con-
ductors is examined. As in the previous experiment there is no response from circuit
2 in case the battery current is constant as well as when the two straight conductors
are perpendicular to each other. The force that appears on the electrons in the straight
conductor 2 is therefore either parallel or anti-parallel to the length element dL1. A

A

Current 
increase

dL1 dL2 A

Current 
decrease

dL1 dL2

Fig. 2.14 Two large rectangular circuits are used to examine the induction phenomena. In the left
case, the battery current increases whereas in the right case the battery current decreases
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force appears only if there is an acceleration of the electrons in conductor 1, see
Fig. 2.14. The force is observed to be proportional to the first time derivative of the
battery current as is also observed in the previous experiment.

All observations and measurements from these two experiments may now be
summarized in a concise formula. The inductive force on an electron of conductor 2
is deduced as

f̄ind,2 = −C(R)q2
d I1

dt
d L̄1 (2.20)

which is force on charge q2 in segment 2 belonging to the conductor without battery.
In formula (2.20), the force is really infinitesimal but since the length element d L1
is considered to contain one concrete electron, the force is denoted without the
infinitesimal sign. The formula is motivated as follows:

According to observation, charge 2 is affected even at rest, wherefore it is assumed
that the inductive force is proportional to q2 but independent of the speed of the
charge. This assumption is based on the fact that, according to the electric and
magnetic cases, the source of the force is either current or charge.

The force is directed along segment 1 which motivates the inclusion of the length
element d L̄1 in the formula. The length element is directed along the current.

The time derivative in formula (2.20) reflects the fact that only a variation of
current gives an induction current. Higher order derivatives are excluded as it is
observed that a linearly increasing current induces a constant current in the other
conductor.

The minus sign takes care of the fact that the system opposes current changes; a
phenomenon which is referred to as Lenz’ law.

C(R) is a quantity including other relevant variables, such as the distance R, see
Exercise (2.16). C(R) will be determined in Sect. 3.4.

Formula (2.20) gives the force on a charge q2 from a charge q1 contained in a
length element d L1. To obtain the total force on q2 all length elements of conductor
1 have to be summed up along the conductor

F̄ind,2 = −
∫

Cond. 1

C(R)q2
d I1

dt
d L̄1 (2.21)

Note that q1 and q2 may belong to the same conductor, so-called self induction,
as in Fig. 2.12.

To get a clearer view of the direct interaction between two charges, formula (2.20)
may be rewritten using formula (2.5):

f̄ind,2 = −C(R)q2q1
dv̄1

dt
(2.22)

If this formula is applied to current growth in a single conductor, the similarity to
Newton’s force formula F̄ = m dv̄/dt becomes flagrant, indicating that induction is
a sort of electric counterpart to inertia.
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Finally, the reader is reminded that these results are obtained from measurements
using closed conductors. In analogy to magnetic force, the possibility that further
terms arise for interaction between free charges cannot be excluded. There is no
experimental data for this case available up to now.

The next chapter will discuss the inductive effect from an energy perspective and
based on formula (2.21) the well verified Faraday-Henry induction law is derived.

In Chap. 9 the origin of the inductive force is examined.

2.4 Summary

The force between two charges at rest is called electric and is given by

f̄e = q1q2

4πε0 R2 R̂ (2.1)

where the distance vector R is directed towards the affected charge.

A current element is defined as

I d L̄ = qv̄ (2.5)

The force between two current elements is called magnetic and is given by

f̄m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2] (2.11)

Commonly, the magnetic force is written

f̄ G
m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1] (2.13)

which for free charges violates the principle of momentum conservation, i.e. Newton’s
third law.

Formulas (2.11) and (2.13) are consistent for closed conductors where only the
first term in both formulas remains. They also agree if charge 2 is free but charge 1
is part of a closed conductor.

For charges in acceleration there is also an inductive force. For two interacting
charges in closed conductors it is

f̄ind,2 = −C(R)q2q1
dv̄1

dt
(2.22)

which is the force acting on charge 2.
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According to observation, inductive force decreases with distance.

The total electrodynamic force is (acting on object 2)

f̄ = f̄e + f̄m + f̄ind

= q1q2

4πε0 R2 R̂
︸ ︷︷ ︸

Electric

+ μ0q1q2

4π R2 ((−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2)︸ ︷︷ ︸
Magnetic

−C(R)q2q1
dv̄1

dt︸ ︷︷ ︸
Inductive

(2.23)

The magnetic and inductive forces are obtained from measurements using closed
conductors and are therefore valid at low speed only.

2.5 Exercises

Exercises marked with ‘*’ are an integral part of the book’s curriculum.

Exercises marked with a ‘C’ are more challenging. It is sufficient to be able to follow
the proposed solution found in Appendix D.

2.1 How large an excess/deficit of positive charge of the earth/sun is required
in order for the electric force to be of the same magnitude as gravity?

2.2 a. Determine the drift speed in a current-carrying conductor under normal
circumstances.

b. Two current-carrying straight conductors are oriented in parallel as in
Fig. 2.3. Determine numerically electric and magnetic forces between
two conduction electrons, located as q1 and q2 in Fig. 2.7.

2.3 What does the amount of charge 1 Coulomb signify? How would you
construct a charge meter?

2.4 What is meant by the current strength 1 Ampère? How would you construct
a current meter?

2.5 The apparatuses used to measure electric and magnetic force, described in
Figs. 2.1 and 2.4, utilize either a torsional effect or a weight balance.

a. Could you propose some other way to measure force?

b. On what knowledge are the methods based? How, for example, is the
torsional constant determined?

c. Reflect upon whether knowledge (i.e. science) is absolute or relative.
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*2.6 Principle of relative motion with observer

v

q q

Observer in

motion at speed v

a. Referring to Fig. 2.10, explain what the velocity v is relative to.

b. If the charges are at rest relative to a table, for example, and an observer
is moving with velocity v, perpendicular to the connection line between
the charges, what force situation would you then expect?

c. What exactly is observed by the person?

d. Imagine that you observe a pair of charges at rest. If you suddenly start
to move perpendicular to the connection line of the charges, you will
accordingly perceive a slower repulsion than if you were at relative
rest. How would you as a scientist interpret this phenomenon?

Compare Exercise (1.6).

2.7 A straight current-carrying conductor interacts with a parallel free electron
beam at a distance x .

a. Denote the drift speed vd and let the electron beam be generated by an
acceleration voltage ��. Determine the force on one of the electrons
in the beam.

b. Arrange an experiment to measure the force.

2.8 a. Use formula (2.4) to calculate the magnetic displacement in Figs. 2.5
and 2.6 over a length xa − xb assuming the displacement is small.

b. Show that integration of formula (2.10) over L1 from minus to plus
infinity results in formula (2.4).

2.9 Consider a situation as in the figure.

q2

R

q1 45°
v v
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a. Determine the magnetic force (2.11) with a = 1.

b. Compare with Grassman’s formula (2.13)/(2.14).

c. Check the compatibility with Newton’s third law in both cases.

C* 2.10 Closed conductors and free charges

a. Show that Grassman’s magnetic force, formula (2.13), becomes in
terms of current elements

f̄ G
m2 = μ0 I1 I2

4π R2

[
−R̂(d L̄2 · d L̄1) + d L̄1(d L̄2 · R̂)

]
(2.24)

b. Show that Whittaker’s force, formula (2.11), becomes in terms of cur-
rent elements

f̄m2 = μ0 I1 I2

4π R2

[
−R̂(d L̄2 · d L̄1) + d L̄1(d L̄2 · R̂) + ad L̄2(d L̄1 · R̂)

]
(2.25)

c. Show that Grassman’s and Whittaker’s formulas agree for closed con-
ductors and is given by

f̄ G
m2 = f̄m2 = −μ0 I1 I2

4π R2

[
R̂(d L̄2 · d L̄1)

]
(2.26)

i.e. the two last terms in (2.25) vanish.

Hint: Integrate (2.25) over closed paths and use Stoke’s integral theo-
rem.

d. Show that Grassmann’s and Whittaker’s formulas also agree if object
1 is a closed current-carrying conductor but object 2 is a free charge.

e. Show that a conductor of infinite length is equivalent to a closed con-
ductor.

f. Explain, based on formula (2.26), why the magnetic interaction
between charges in perpendicular relative motion, as in Fig. 2.5, cannot
be studied with closed conductors.

2.11 Ampère’s force law

The first complete investigation of magnetic force was done by Ampère in
1820–1825. He studied the interaction between all possible closed conduc-
tor structures and could compile his measurements in the following force
formula:

f̄ A
m2 = μ0 I1 I2

4π R2

[
−2(d L̄2 · d L̄1) + 3(R̂ · d L̄2)(R̂ · d L̄1)

]
R̂ (2.27)
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a. Check whether Ampère’s force fulfils Newton’s third law.

b. Compare Ampère’s (2.27), Grassman’s (2.13) and Whittaker’s (2.12)
force in the following three cases of interaction between two point
charges q1 and q2:

v1

R R R
x

y
v1

v1

v2

v2 v2

c. Show that for closed conductors the three force formulas agree.

d. Explain why Ampère’s force law cannot be valid at high speeds v ∼
1/

√
ε0μ0 (see also Chap. 9). Hint: Compare formula (2.18).

2.12 Angular momentum issue

Consider the interaction in the figure.

R

v2

v1

a. Determine the magnetic force with formula (2.12). Compare your
result with Grassman’s formula (2.13). Point out the basic difference
between the two results.

b. Both cases generate angular momentum. Could there be any issues
with this?

2.13 a. Explain why Ampère’s force formula conserves angular momentum.

b. Based on Exercise (2.11), give two arguments as to why Ampère’s
force formula cannot be a candidate for the magnetic force between
free charges.

2.14 The names chosen for the forces that have been examined in this chapter,
i.e. electric, magnetic and inductive, have historical origins but are other-
wise non-informative expressions. Based on the information given in this
chapter, could you propose alternative names of these forces?

In Exercises 2.15–2.23 the induction phenomenon is treated for both free
charges and closed conductors. Use the inductive force formula (2.22) in
both cases although it is strictly valid only for charges in closed conductors
at low speed.
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2.15 Elementary inductive force

Consider the two charges in the figure.

a

q1 q2

The right one has an acceleration a, the left one is at rest.

Determine the force on the left charge for

a. like charges,

b. unlike charges.

2.16 Let the inner, battery connected, conductor in Fig. 2.13 be placed outside
the larger conductor as in the figure below. Let the battery generate a
monotonically increasing current.

A

a. It is observed that the induction current decreases with increasing dis-
tance between the loops. What does this imply for the quantity C in
formula (2.20)?

b. Make a sketch of the inductive forces acting on the conduction elec-
trons in the left conductor. Estimate qualitatively the expected induc-
tion current in comparison with the situation in Fig. 2.13.

2.17 A loop with current I and drift velocity v has rounded corners with curvature
radius r . Close to the loop, there is a piece of metal, see figure.

R

I
r
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a. Determine the force on an electron in the piece of metal caused by a
conduction electron with relative positions according to the figure.

b. Is the force dependent on the current direction?

2.18 Synchrotron radiation

A piece of metal is placed outside a circular electron beam made up of one
single electron, see figure. If the beam has radius r and the electron speed
v, with what frequency will a conduction electron in the metal oscillate?

r

e- e-

a. vertically?

b. horizontally?

This is a simplified principle for so-called synchrotron radiation.

2.19 Microwave oven/dipole antenna

In a simplified model of a microwave oven, water molecules are interacting
with a straight current-carrying conductor according to the figure.

e--q q

R
l

The alternating current in the conductor corresponds to a speed of the
conduction electrons according to v = v0 sin ωt .

Let the dipole moment of the water molecules be p̄ = ql̄ where q is the
charge of the poles and l is the distance between these.
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a. For a molecule with horizontal dipole moment, determine the torque
caused by a conduction electron placed as in the figure.

b. Sketch a graph showing how the torque varies with time.

In general distance effects must also be considered. Furthermore, the
straight conductor is also an oscillating electric dipole since charge is
accumulated at its ends. This will be discussed in Chap.11.

2.20 An electron beam is directed towards a square conducting loop. Just in front
of the loop there are two oppositely charged parallel plates, see figure.

e-
+

–

a. Sketch the path of the electrons between the plates.

b. How does the loop respond when an electron moves between the
plates? State the current direction generated in the loop.

2.21 A beam with constantly accelerating electrons interacts with a square con-
ductor loop. Consider the four cases below and state if and in what direction
a current is induced in the loop.

Current into
the plane

2.22 To generate current in a conductor a battery is connected which accelerates
the electrons to their final speed, the so-called drift speed.

a. Let the conductor be a circular loop.

Make a sketch showing the inductive forces on a single electron due
to interactions with the other electrons in the loop.

Assume that the inductive force decreases with distance.

b. Repeat with a straight conductor.

c. If there were only one single electron in the conductor would then
inductive effects arise at all?
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C 2.23 Gravitation

a. Would you think that magnetic and inductive effects, i.e. effects due to
uniform and accelerating motion, also occur in the case of gravitation?

b. The inductive forces generate a type of inertia in a conductor, i.e. they
resist the acceleration of charge. Massive objects also exhibit inertia. If
this inertia has its origin in an effect similar to that for electric charges
in a conductor, what force might be its cause?

c. How does this relate to Mach’s principle (compare Exercise 1.3b)?

d. If in the entire universe there were only one object, would it possesses
inertia?

*2.24 Current densities.

In Sect. (2.2.1) electric current I was defined as a flux. If the vector J̄ is
introduced as the volume density of current, corresponding to current per
unit area, current becomes:

I =
∫

S

J̄ · dā

where S is the area through which charges pass and dā is accordingly an
element of the surface S.

a. Show that the current density J becomes

J̄ = nqv̄

where n is the density of charge carriers, q their charge and v̄ the drift
velocity.

b. Show that a current element

I d L̄ = J̄ dV

where d L̄ is an infinitesimal length element of a conductor and dV the
corresponding volume.

c. In many cases, e.g. for current-carrying plates and wide cables, it is
practical to introduce a surface density of current K̄ , corresponding to
current per unit length where the length is perpendicular to the current
density J̄ . K̄ and J̄ are parallel.
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y

z

x
J

K

Consider for example a current carrying plate as in the figure.

Total current is given by

I =
∫

K dy =
∫∫

Jdxdy

Since

I =
∫

K dy =
∫∫

d K

dx
dxdy

the infinitesimal surface current density becomes

d K̄ = J̄ dx

Hence, show that for an infinitesimal cross section dxdy the current element
becomes

d I d L̄ = d K̄ dydz

C 2.25 A long straight conductor with length T1, part of a closed conductor, inter-
acts with a beam of free electrons with a shorter length T2, perpendicular
to T1. See Figs. 2.5 and 2.6. The force on the free electrons is given by
formula (2.4).

Determine the force on the conductor with

a. Grassman’s force formula (2.24).

b. Whittaker’s force formula (2.25) with a = 1.

c. Is Newton’s principle of action and reaction fulfilled?

d. Arrange an experiment to measure the force. How large a current in
the electron tube is required to get a measurable force?
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Chapter 3
Electrodynamic Energy

That small word ‘Force’, they make a barber’s block,
Ready to put on
Meanings most strange and various, fit to shock
Pupils of Newton…
The phrases of last century in this
Linger to play tricks
Vis viva and Vis Mortua and Vis Acceleratrix:
Those long-nebbed words that to our text books still
Cling by their titles,
And from them creep, as entozoa will,
Into our vitals.
But see! Tait writes in lucid symbols clear
One small equation;
And Force becomes of Energy a mere
Space-variation.

James Clerk Maxwell, 1876

Maxwell refers here to formula (1.1) as Tait’s equation.

In describing physical processes, the energy concept is complementary to the force
description. Being a scalar, it is computationally advantageous to compute the energy
of a system and then apply the energy principle, formula (1.1), to obtain all compo-
nents of force.

Energy exists in two forms that are continuously converted into each other:

• Potential energy, also known as stored energy.
• Kinetic energy, also known as motional energy.

The energy principle explains that the total energy in nature is conserved and that
the dynamics, i.e. the forces, result as a minimization process of stored energy.

Energy appears in an interaction and is stored in the system defined by the inter-
acting constituents. Stored energy can not be attributed to a single object.

In this chapter electric and magnetic energy will be defined. The starting point is
the concept of work, i.e. force times distance. The active forces are the electric and
the inductive generating electric and magnetic energy respectively.

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
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34 3 Electrodynamic Energy

Furthermore, the inductance concept will be introduced through which
Faraday-Henry’s law of induction is formulated.

3.1 Electric Energy

A system consisting of a number of charges possesses potential energy known as
electric energy. The amount of energy corresponds to the work needed to merge
these charges.

In Fig. 3.1 a work W is done in bringing together two like charges qi and q j .
While the charge qi is fixed, let the external force F bring charge q j along the R-axis
towards charge qi starting from infinity. The force F must be at least as large as the
repulsive electric force and the minimum work required is thus

W =
Ri j∫

∞
F̄ · ds̄ =

Ri j∫

∞
− qi q j

4πε0R′2
i j

d R′
i j =

[
qi q j

4πε0R′
i j

]Ri j

∞
= qi q j

4πε0Ri j
= Ui j (3.1)

In the first integral F̄ · ds̄ is positive since ds and F are parallel. The integrand of
the second integral is also positive because d R

′
i j is negative since distance decreases.

In formula (3.1), the force F is set equal to the electric force so that kinetic energy
does not appear. Ui j is then the electric stored energy between two charges.

For a general system a pairwise summation is done:

Ue = 1

2

∑
i, j

qi q j

4πε0Ri j
(3.2)

where the sum runs over all charges as long as i does not equal j . The factor 1/2
accounts for double counting. Note that the sign of the charges decides whether the
energy is positive or negative. If for example a pair of charges have opposite signs
the electric energy is negative indicating that the process to bring one charge to the
other does not require any external work but appears naturally.

The concept electric potential �i is defined through the electric energy. At the
position of charge qi the potential is

�i =
∑

j

q j

4πε0Ri j
(3.3)

Fig. 3.1 Two like charges
are brought together by
external force F
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such that the electric energy may be written

Ue = 1

2

∑
i

qi�i (3.4)

The dynamics of a system is governed by the change of the stored energy with
respect to the space coordinates. If a charge q is moved from point a to point b and
everything else is unchanged, the energy change of the system is

�Ue = q(�b − �a) (3.5)

The potential difference between two points is also referred to as voltage

�� = �b − �a (3.6)

a quantity that common voltmeters are calibrated to measure.

3.2 The Voltage Source

Magnetic energywill be defined for closed current-carrying conductors.Before doing
this, the concept ‘voltage source’ needs to be defined. In Sect. 2.2 magnetic force was
discussed in terms of the electric circuit which is driven by a voltage source. This
provides a voltage by which electrons gain kinetic energy. During this process the
voltage source is doing work and therefore its stored energy is diminished.

The function of the voltage source may either be based on an electrochemical or
a magnetic process, see figure.

An electrochemical cell, more commonly known as a battery, transports electrons
through chemical processes from the plus to the minus pole of the battery and works
accordingly against the internal electric force, see left figure above. The electric
energy, of which the electron is one part, increases thereby and will be used to create
kinetic energy of the electron in the next step.

A corresponding process in the gravitational case is rolling a ball uphill and letting
gravity generate motion downhill.
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Amagnetic voltage sourceworks in principle as illustrated in the right-handfigure,
where the moving permanent magnet usually is another current-carrying circuit. In
this case there is accordingly no battery voltage but it is customary to introduce a
fictitious so-called induction voltage defined by the generated current. This will be
discussed in Sect. 3.5.

Henceforth, the word ‘battery’ will be referred to as a voltage source of any kind.

3.3 Magnetic Energy

Magnetic energy for electric circuits is defined by the amount of work a battery has
to do in order to accelerate the conduction electrons to a final current I . The force
the battery has to overcome is accordingly the inductive force, formula (2.20), since
it opposes the external influence as well as being acceleration dependent.

Single loop. Consider a single loop as in Fig. 3.2. Suppose there is a current i
in the loop at time t . As the charges are accelerated, the current increases. The
work required to accelerate an infinitesimal amount of charge dq through the closed
conductor once is

dWb = −
∫

Loop

F̄ind · d L̄1 (3.7)

where formula (2.21) gives

F̄ind = −
∫

Loop

C(R)dq
di

dt
d L̄2 (3.8)

In formula (3.8) the infinitesimal forces are integrated over d L̄2 to sum up the
total inductive force that acts on the infinitesimal charge dq. In formula (3.7) the total
inductive force is integrated over d L̄1 to sum up the total work required to transport
the charge dq through the whole loop. The length elements d L̄1 and d L̄2 are in this
case part of the same loop.

Fig. 3.2 Definition of
interacting current elements
d L for a single loop
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Formula (3.8) is really an infinitesimal force since it acts on the infinitesimal
element dq, which however is to be considered as a real electron. Therefore the
force is denoted without infinitesimal sign.

The infinitesimal magnetic energy becomes

dUm = dWb =
∫∫

Loop

C(R)dq
di

dt
d L̄1 · d L̄2

= dq
di

dt

∫∫

Loop

C(R)d L̄1 · d L̄2 (3.9)

The double integral is called inductance

M =
∫∫

Loop

C(R)d L̄1 · d L̄2 (3.10)

and contains only geometrical properties of the conductor. The integration in (3.10)
includes all pairwise interactions between the length elements of the conductor. The
scalar product ensures that perpendicular elements do not affect each other, which
is experimentally observed (see Sect. 2.3). Applied to only one conductor, as in this
case, M is called self inductance.

The magnetic energy may now be expressed as:

dUm = Mdq
di

dt
= Midt

di

dt
= Mi di (3.11)

The total energy transferred by the battery when the current increases from 0 to
its final value I becomes1

Um =
I∫

0

Mi di = M
I 2

2
(3.12)

Several loops. Consider now a system of several loops, Fig. 3.3. To find the total
magnetic energy the interactions between the loops have to be considered. The inter-
action is governed by the inductance M which can generally be written

M jk =
∫

k

∫

j

C(R)d L̄ j · d L̄k (3.13)

1 Note the similarity between formula (3.12) and mechanical kinetic energy 1/2mv2. This is not a
coincidence since magnetism is directly connected to the motion of charges. It is interesting that
JC Maxwell proposed the name ‘electric inertia’ for inductance M , see also Sect. 2.3.
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Fig. 3.3 Definition of
interacting current elements
d L for a pair of loops

For different conductors j and k, M jk is calledmutual inductance. It will be shown
in Sect. 3.4 that C is solely dependent on the distance between the current elements
so that

M jk = Mkj (3.14)

According to formula (3.11), a current increase dik causes a change of magnetic
energy

dUm =
∑

j

∑
k

M jki j dik (3.15)

which should be integrated to the final current values I j , Ik . To illustrate principles,
consider a system with just two loops:

dUm = M11i1di1 + M12i1di2 + M21i2di1 + M22i2di2 (3.16)

Since the energy of the system is independent of the order in which the currents were
generated in the loops (why?) it may be done for one loop at a time:

1. Increase the current to I1 in loop 1: di2 = 0, i2 = 0,

Um1 = M11
I 21
2

(3.17)

2. Increase the current to I2 in loop 2: i1 = const = I1, di1 = 0,

Um2 = M12 I1 I2 + M22
I 22
2

(3.18)
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The total energy for this system of two loops is Um = Um1 + Um2. Generally, for
a system with N loops (N = 1 for a single loop), the energy becomes

Um = 1

2

N∑
k=1

N∑
j=1

M jk I j Ik (3.19)

where j may also equal k, so-called self inductance.
Formula (3.19) was obtained by assuming fixed inductance. But it is also valid

for varying inductances, which will be utilized in the next section.

3.3.1 Magnetic Force from Magnetic Energy

When dealing with magnetic forces, closed circuits are usually considered where
the current is maintained by a battery and is therefore (quasi)-constant. When apply-
ing the energy force relation, formula (1.1), the battery plays a crucial role in the
following way.

Consider an interaction between two current-carrying loops, Fig. 3.3. For constant
current, a change of the magnetic interaction energy appears through a change of the
mutual inductance, i.e. through a change of the distance between the loops or their
relative orientation. Thus, according to formula (3.19),

dUm = 1

2
I1 I2d M12 + 1

2
I2 I1d M21 = 1

2
[I1d(I2M12) + I2d(I1M21)] (3.20)

where the currents are given at final values, i.e. restored by the batteries. This requires
work from the batteries dWb that will change the energy according to formula (3.16):

dUb = −dWb = −(I1M12d I2 + I2M21d I1)

= −[I1d(M12 I2) + I2d(M21 I1)] (3.21)

where the inductances are regarded as final values and the batteries restore the current
in that situation. Note that the self inductances are not included here since only the
interaction between the loops is considered.

Thus, dUb = −2dUm and the change of the total energy becomes

dU = dUm + dUb = −dUm (3.22)

The force is therefore

F̄m = ∇Um Constant current! (3.23)

so that in case of constant current the magnetic force acts towards maximizing the
magnetic energy.
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3.4 General Inductance—Interaction Between
Two Current Elements

Using formula (3.23) and the knowledge about the magnetic force between paral-
lel currents as well as the general magnetic energy formula (3.19), the inductance
formula (3.13) will now be completed.

It is then first relevant to ask why the magnetic energy, whose definition is based
upon the work done by the inductive force, is related to the magnetic force according
to formula (3.23). Consider two parallel current-carrying conductors, e.g. of circular
form. For parallel currents there is an attractive force. During the attraction the
currents will however decrease, see Exercise (3.9c), which is exactly compensated
by the battery. The work of the battery, related to the work of the inductive force as
explained above, is thereby connected to the energy change that arises because of
the magnetic force between circuits.

Based on the fact that magnetic energy is related to magnetic force according to
formula (3.23), the expression of the factor C in formulas (2.22) and (3.13) may be
determined. The known force formula between two parallel current elements is then
utilized, obtained from formula (2.11), Fig. 3.4.

The force on element 2 becomes

f̄m = −μ0 I1�L1 I2�L2

4π R2 R̂ (3.24)

The magnetic interaction energy for this system is according to formula (3.19)

Um = M12 I1 I2 (3.25)

where from formula (3.13)

M12 = C(R)�L1�L2 (3.26)

so that the magnetic energy may be written

Um = C(R)I1�L1 I2�L2 (3.27)

Fig. 3.4 Two parallel
current elements
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Using formula (3.23), the magnetic force between the current elements becomes

f̄m = ∇Um = I1�L1 I2�L2
dC(R)

d R
R̂ (3.28)

which results in
C(R) = μ0

4π R
+ constant (3.29)

Let the constant equal zero so that the energy tends to zero when distance tends
to infinity. The general formula for inductance becomes

M jk = μ0

4π

∫

k

∫

j

d L̄ j · d L̄k

R
(3.30)

where R is the distance between the length elements, Figs. 3.2 and 3.3. This is
Neumann’s formula from 1845.

Further experimental support to the formulas (3.29) and (3.30) is obtained from
Faraday-Henry’s law of induction, derived in next section.

3.5 Faraday-Henry’s Induction Law

Energy is related to voltage through formulas (3.5) and (3.6). These are now gener-
alized to be valid also for magnetic energy. The induction voltage ε is then given by
formulas (3.9) and (3.10)

ε = dUm

dq
= di

dt
M (3.31)

for a single circuit with constant inductance M .
If inductance is time dependent, (3.31) is generalized as

ε j = d

dt
(ik M jk) (3.32)

By summing over all circuits, including circuit j for self induction, the general
induction formula becomes

ε j =
∑

k

d

dt
(ik M jk) (3.33)

where M jk is given by formula (3.30), i.e. Neumann’s inductance formula.
Formula (3.33) is known as Faraday-Henry’s induction law and is well verified.

It confirms therefore the validity of formulas (2.22) and (3.30).
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3.6 Electrodynamic Force—Updated

Utilizing formula (3.29) the inductive force between two charges, formula (2.22),
becomes

f̄ind = −μ0q2q1
4π R

dv̄1
dt

(3.34)

which is the inductive force acting on charge 2. This is Weber’s formula from 1846.
For like charges it is oppositely directed to the acceleration of charge 1. Note the
distance dependence 1/R.

The force between two electric charges, formula (2.23), becomes

f̄ = f̄e + f̄m + f̄ind

= q1q2
4πε0R2 R̂
︸ ︷︷ ︸

Electric

+ μ0q1q2
4π R2 ((−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2)︸ ︷︷ ︸

Magnetic

− μ0q2q1
4π R

dv̄1
dt︸ ︷︷ ︸

Inductive

(3.35)

and for parallel motion as in Fig. 2.10:

f̄ = q1q2
4πε0R2 (1 − ε0μ0v2)R̂ − μ0q2q1

4π R

dv̄1
dt

(3.36)

which in both cases is the force on charge 2.

3.7 Summary

Electric energy for a system of discrete charges is

Ue = 1

2

∑
i, j

qi q j

4πε0Ri j
(3.2)

Electric potential at a point i is

�i =
∑

j

q j

4πε0Ri j
(3.3)

Potential difference between two points a and b is known as voltage

�� = �b − �a (3.6)
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Magnetic energy appears through the work of the inductive force. The inductive
force between two charges q1 and q2 in a closed conductor is

f̄ind = −μ0q2q1
4π R

dv̄1
dt

(3.34)

for force on object 2.
Magnetic energy for a system of closed conductors is

Um = 1

2

∑
j,k

M jk I j Ik (3.19)

where the mutual inductance is

M jk = μ0

4π

∫

k

∫

j

d L̄ j · d L̄k

R
(3.30)

The induction voltage derives from magnetic energy and is given by

ε j =
∑

k

d

dt
(ik M jk) (3.33)

which is known as Faraday-Henry’s induction law.

3.8 Exercises

3.1 When a chlorophyll molecule absorbs energy from the sun it is sometimes
said that an electron of the molecule is excited. What is wrong with this
description according to the principles outlined in this chapter?

Answer: A single electron cannot be excited. The energy increase is stored
in the molecule through an electric interaction between the electron and the
rest of the molecule. Thus, it is rather the molecule that is being excited.

3.2 Consider the electric pairwise interaction. Convince yourself that the electric
energy decreases for both repulsive and attractive interaction.

3.3 Electrostatic energy

a. Determine the electric energy for a system of three charges q1, q2 and q3,
located at the corners of a uniform triangle with side a.

b. Determine the force on each charge using the energy principle, formula
(1.1).

c. Investigate whether Newton’s third law, the principle of action and reac-
tion, is fulfilled.
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3.4 a. Show that if the mutual inductance (3.30) is used for two charges in
motion the magnetic energy becomes

Um = μ0q1q2
4π R

v̄1 · v̄2 (3.37)

b. Investigate whether formula (1.1) gives the magnetic force (2.16) (for
constant v). Discuss the discrepancy. Under what conditions is (3.37)
valid?

3.5 Consider two conductors. One of them is connected to a battery. Based on
formula (3.34), determine the response in one conductor if the current in the
other increases/decreases for conductors that are

a. straight and parallel,
b. circular and coaxial, as in Fig. 4.13.

Hint: Draw a figure showing the inductive forces on the conduction electrons
in the four cases (compare Exercise2.22).

*3.6 Two circular loops are oriented in parallel and have a common axis. A current
is generated in one of them such that it increases linearly with an amount
�I during a time interval �T . In the other conductor an induced voltage ε

is registered.

a. Determine the mutual inductance.
b. The loops are now placed so far from each other that the distance between

two current elementsmay be considered to be independent of their relative
orientation. For parallel orientation and linear current growth �I/�T , a
voltage ε2 is induced. Determine the mutual inductance for any angle θ

between their surface normals.

3.7 The permanent magnet

Consider a permanent bar magnet with rectangular cross section. Frequently
such an object is described in terms of south and north poles.

a. If you split such an object in the middle, what will happen with the poles?
If you continue to split the objects new magnets with north and south
poles are obtained. Thus, the permanent magnet may be considered as a
collection of small magnetic dipoles.

b. How are these oriented in a homogeneously magnetized material?
c. How are they oriented in a non-magnetic material?
d. What does one of these small dipoles correspond to in terms of current?
e. Draw a figure showing how the dipoles and their corresponding current

loops are oriented in a homogeneously magnetized object.
Answer: see Figs. 7.7 and 8.14.

f. Where are the net currents located in a homogeneous permanent magnet,
see Fig. 8.14?

g. How does a material become magnetized?
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h. How can the stored energy of a magnet be measured? (See also
Exercise 8.22)

3.8 A single loop without battery is located close to a circuit connected to a
battery. Specify the five different ways to induce a current in the former loop.

*3.9 Relative motion—Einstein’s starting point
Two identical circular conductor loops are placed in parallel with a common
axis.

One of them carries a constant current I , see figure. By external influence,
the other loop is now moved along the common axis.

a. Specify the induction law (3.33) for this case.
b. What type of force is acting on the conduction electrons of the moving

loop? Show in a figure how the inductive force, formula (3.34), acts in
this case.

c. Determine the direction of the induced current in the moving loop when
it is approaching and receding the current-carrying loop.

d. What will be the result if instead the current-carrying loop is moving?
e. Discuss the relativity principle of Galilei based on this example.

C 3.10 Magnetic energy between free charges

Formula (3.37) gives the magnetic energy between two charges contained
in closed conductors. The corresponding expression for free charges has for
a long time been sought for.
In (1995), Bueno and Assis combined the four most important proposals in
a single formula:

Um = μ0

4π
q1q2

[
1 + k

2

v̄1 · v̄2
R

+ 1 − k

2

(R̂ · v̄1)(R̂ · v̄2)

R

]

where k takes the value 1, −1, 0 or −5 corresponding to proposals from
Neumann (1845) (compare 3.37), Weber (1846), Maxwell (1870), Darwin
(1920) and Graneau (1985) respectively.

a. Determine the force from this energy formula and compare it with (2.12)
and (2.13).
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b. Are any of the expressions compatible with the observation described by
formula (2.12)?

c. Decide whether Newton’s third law is fulfilled.
d. Show that the second term vanishes for closed conductors as well as for

the situation in Fig. (2.10).
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Chapter 4
Macroscopic Systems of Unbound Charges

God does not care about our mathematical difficulties. He
integrates empirically.

Albert Einstein, 1942

In this chapter macroscopic systems of individual electric charges will be examined.
These are called unbound charges in contrast to the bound charges that materials are
usuallymade up of. The conduction electrons in ametal is themost common example
of unbound charges. These are unbound inside thematerial but cannot normally leave
the metal due to effects of surface bonding.

The aim is to examine the interaction between macroscopic objects. The com-
putational method is introduced using specific examples, gradually increasing in
complexity. The method is based on the principle that the total force between the two
systems can be obtained by summing up the pairwise interactions between its con-
stituents. In practice, this summation becomes an integration where the microscopic
constituents are represented by infinitesimal elements. Electric systems consist of
infinitesimal point charges dq = ρdV where ρ is the charge density and dV a vol-
ume element. The constituents of magnetic systems are the infinitesimal current
elements I dL̄ , i.e. current times the length element.

Often, however, it is impractical to study individual interactions between charges.
The calculations may be facilitated by introducing the concepts of capacitance and
inductance by which the force is considered as a collective action. These concepts
are particularly useful for homogeneous charge and current distributions.

In the calculations, the position vector for the source is denoted r̄ ′ and that for
the influenced element r̄ . The distance vector between the elements is denoted R̄ as
before, pointing to the affected element.

Cylindrical and spherical coordinates are prerequisites for this chapter.
In Chap.8, macroscopic systems will be re-examined, then with emphasis on

bound charge and current appearing as electric and magnetic dipoles.
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4.1 Electric Dynamics

In electrostatic systems the basic interaction is described by Coulomb’s force law,
formula (2.1):

F̄1→2 = q1q2
4πε0R2 R̂ (2.1)

4.1.1 Electrically Charged Wire and Point Charge

The force between a homogeneously charged wire with charge per unit length λ′ and
a point charge q is examined, Fig. 4.1. An infinitesimal amount of charge of the wire
λ′dz′ is located at a position r̄ ′ = (x ′, y′, z′). The position vector r̄ points to the
point charge q and the distance between q and λ′dz′ is R̄. The force on the charge q
from an infinitesimal element on the wire becomes

dF̄ = λ′dz′q
4πε0R2 R̂ = λ′dz′q

4πε0R3 R̄ (4.1)

To obtain the total force of all contributions from the elements on the wire have
to be summed. Firstly, the distance vector is expressed in terms of coordinates

R̄ = r̄ − r̄ ′ = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ (4.2)

Let the wire coincide with the z-axis, i.e. x ′ = y′ = 0. To simplify, let the point
charge q be located at the point (x, y, z) = (d, 0, 0) so that

R̄ = dx̂ − z′ ẑ (4.3)

Fig. 4.1 A point charge q
interacts with a charged wire
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If the length of the wire is L and is centred about the coordinate origin, the total
force on q is

F̄ = λ′q
4πε0

L/2∫

−L/2

(dx̂ − z′ ẑ)dz′

(d2 + z′2)3/2
(4.4)

This is an integral over z′ consisting of two terms corresponding to the x and z
components of the force. The first integral becomes

Fx = λ′qd

4πε0

L/2∫

−L/2

1

(d2 + z′2)3/2
dz′ = λ′qd

4πε0

[
z′

d2
√

z′2 + d2

]L/2

−L/2

= λ′qd

4πε0

(
L/2

d2
√

(L/2)2 + d2
+ L/2

d2
√

(L/2)2 + d2

)

= λ′q
4πε0d

L√
(L/2)2 + d2

(4.5)

The z component is an odd function and vanishes (only in this case where the point
charge is located halfway along the length of the wire).

For a very longwire,mathematically infinite, end effects are neglected. Practically
it means that the charge q is placed close to the wire. The force becomes

lim
L→∞ F̄ = λ′q

2πε0d
x̂ (4.6)

since d2 in the square root of the denominator of formula (4.5) may be neglected.
Thus, the force between a long wire and a point charge is inversely proportional

to the distance between them.

4.1.2 Force Between Two Electrically Charged Wires

Next consider two parallel homogeneously charged wires with length L located in
the xz plane, Fig. 4.2.

If end effects are neglected, i.e. L → ∞, the force on each length element on the
right wire is given by formula (4.6), with q = λdz. The total force between the wires
becomes

F̄ = λ′λL

2πε0d
x̂ (4.7)

If the wires are of finite length, i.e. end effects are included, formula (4.4) is
generalized to a double integral. Thus, with one wire coinciding with the z axis and
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Fig. 4.2 Two parallel
charged wires interact

the other placed at a distance d and both centred about z = 0 (see Exercise 4.1),

F̄ = λ′λ
4πε0

L/2∫

−L/2

L/2∫

−L/2

dx̂ + (z − z′)ẑ
(d2 + (z − z′)2)3/2

dz′dz (4.8)

4.1.3 Force Between a Point Charge and an Electrically
Charged Plate

Consider the force on a point charge from a large homogeneously charged plate, so
large that effects at the edge of the plate may be neglected. This approximation is
valid if the distance d between the point charge and the plate is small relative to the
size of the plate.

The plate is located parallel to the yz plane and the point charge has coordinates
(x, y, z), Fig. 4.3. Viewed along the z direction, Fig. 4.4, the plate may be considered
as being built up by close wires.

The force on the point charge from one wire is given by formula (4.6):

Fig. 4.3 Interaction between
a charged plate and a point
charge
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Fig. 4.4 The plate, observed
from above, is treated as if it
consists of close parallel
wires directed into the plane
(z direction)

dF̄ = λ′q
2πε0R

R̂ = λ′q
2πε0R2 R̄ (4.9)

Using (4.9) a summation of thewires along y can be performed. Thewire thickness
is then considered to be infinitesimal, dy′. A length element of the wire contains a
charge q ′ = λ′dz′ = σdy′dz′ where σ accordingly is charge per unit surface of the
plate. Thus, λ′ = σdy′. The coordinates of the point charge are set to (d, 0, 0). With
the plate in the yz plane the distance vector becomes R̄ = (r̄ − r̄ ′) = dx̂ − y′ ŷ − z′ ẑ.
The calculation is performed in the xy plane so that z = z′ = 0. The force on the
point charge becomes

F̄ =
∞∫

−∞

qσdy′

2πε0(d2 + y′2)
(dx̂ − y′ ŷ) (4.10)

The integral of the y component, the second term, vanishes since the integrand is
an odd function. This is also physically reasonable (why?). The force becomes

F̄ = σqd

2πε0

∞∫

−∞

dy′

(d2 + y′2)
x̂ = σqd

2πε0

[
1

d
arctan

y′

d

]∞

−∞
x̂ = σq

2ε0
x̂ (4.11)

independent of distance from the plate.However, it has been assumed that the distance
d is much smaller than the size of the plate. See also Exercise (4.2).
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4.1.4 Electric Force Between a Point Charge
and a Charged Sphere

Next the force between a point charge and a homogeneously charged sphere is
examined. The calculation is donewith the point charge inside and outside the sphere.
At the intersection, the results should coincide. To utilize the symmetry, spherical
coordinates are used. The charge density of the sphere is denoted ρ. The total charge
of the sphere is Q and its centre is placed at the coordinate origin (Fig. 4.5).

To obtain the force between the objects, it is in this case preferable to use the
energy principle, formula (1.1). The energy is obtained from formula (3.2) with the
sum replaced by an integration:

Ue = q

4πε0

∫

V

ρdV ′

R
(4.12)

where V is the volume of the sphere. Note that the correction factor 1/2 in formula
(3.2) is missing since the sum runs over just one of the objects.

Without losing generality the point charge may be placed on the z axis. Using the
cosine rule, the distance vector may be written

R = (r ′2 + z2 − 2r ′z cos θ ′)1/2 (4.13)

where θ ′ is the angle between r and r ′. The energy becomes

Ue = qρ

4πε0

2π∫

0

π∫

0

a∫

0

r ′2 sin θ ′dr ′dθ ′dφ′

(r ′2 + z2 − 2r ′z cos θ ′)1/2
(4.14)

where a is the radius of the sphere. Integrating over φ′ and making the coordinate
change t = cos θ ′ gives:

Fig. 4.5 Interaction between
a homogeneously charged
sphere and a point charge



4.1 Electric Dynamics 53

Ue = qρ

2ε0

a∫

0

r ′2dr ′
1∫

−1

dt

(r ′2 + z2 − 2r ′zt)1/2
(4.15)

The integral over t is

1∫

−1

dt

(r ′2 + z2 − 2r ′zt)1/2
=

[
−

√
z2 + r ′2 − 2zr ′t

zr ′

]1

−1

(4.16)

= 1

zr ′ (|z + r ′| − |z − r ′|) =
{

2
z z > r ′
2
r ′ z < r ′

For z > a,

Ue = qρ

zε0

a∫

0

r ′2dr ′ = qρa3

3zε0
= q Q

4πε0z
(4.17)

i.e. the same result as between two point charges at a distance z. Thus, outside a
homogeneously charged sphere the sphere is equivalent to a point charge with all its
charge Q located at the centre.

For z < a, the electric energy becomes

Ue = qρ

zε0

z∫

0

r ′2dr ′ + qρ

ε0

a∫

z

r ′dr ′ = qρ

ε0

z2

3
+ qρ

ε0

a2

2
− qρ

ε0

z2

2

= qρ

6ε0

(
3a2 − z2

)
= q Q

8πε0a

(
3 − z2

a2

)
(4.18)

At z = a the two results coincide as expected.
The force on a point charge inside the sphere, say at z = ka where k < 1 becomes

F̄ = −∇Ue = − d

dz
Ueẑ = qρka

3ε0
ẑ = q Q′ka

3ε04π/3 (ka)3
ẑ = q Q′

4πε0(ka)2
ẑ (4.19)

where Q′ is the total charge up to the radius ka. Thus, the force on the point charge
is given solely by the charge existing at a radius less than or equal to the distance
between the point charge and the centre of the sphere. This phenomenon is known
as Gauss’ theorem and will be revisited in Exercise (10.3).
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4.1.5 Capacitor and Capacitance

The capacitance is a useful quantity when describing electric interactions between
macroscopic objects, in particular when the charge distribution is homogeneous. It
may be defined through a construction called a capacitor which usually consists of
two objects, normally two conductors. These are charged by a voltage source which
transports electrons from one object to the other resulting in equal amounts of charge
but with opposite signs on the two objects, Fig. 4.8.

The capacitormay be used to accumulate and temporarily store electric energy and
is as such used in many different technical applications. The name capacitor refers to
having capacity (to store charge). Ideally the imbalance of charge of the capacitor is
maintained after disconnecting the voltage source. Practically, however, a constant
discharge to the surrounding takes place at a rate depending on the properties of the
surrounding environment.

In case the charge distributions on the two objects are homogeneous, it may be
concluded using formula (3.3) that the potential from one object and therefore the
voltage 	
 between the two objects is proportional to the stored charge Q, i.e.,

	
 = Q

C
⇒ C = Q

	

(4.20)

The capacitance C is therefore a purely geometrical quantity. By measuring the
voltage between the two objects, the stored charge on the objects as well as the
stored energy are obtained through the capacitance of the system. Before applying
the capacitance concept to force and energy calculations the capacitance for two
important cases will be derived.

As will be shown in Sect. 5.1, excess charge is collected at the surface of a conduc-
tor wherefore such systems are similar to thin shells. This simplifies the calculation
of capacitance. The concept of capacitance is however not reserved for conductor
systems. In this chapter, the material of the objects will not be specified but will
in general be assumed to be thin shells. In Chap. 5 the discussion of capacitance
continues specifically for conductors.

4.1.5.1 Capacitance of Parallel Plates

Consider two large parallel plates with area A and distance x , Fig. 4.6. What is the
capacitance? To determine the capacitance the relation between voltage and charge
is examined. To this end, the work required to transport a point charge between the
plates is determined. Assume the plates to have the same charge Q with opposite
signs. The force on a point charge q between the plates is twice that of formula (4.11)
since two plates now act on the charge.

F̄q = Qq

Aε0
x̂ (4.21)
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Fig. 4.6 Point charge
between two parallel plates

When the charge q is moving in a direction opposite to the electric force from one
to the other plate, the work done is [see formulas (3.1) and (3.5)]

q	
 = F̄ · x̄ = Qq

Aε0
x (4.22)

so that

	
 = Qx

Aε0
(4.23)

and the capacitance is

C = Aε0

x
(4.24)

4.1.5.2 Capacitance for Two Spherical Shells

Consider two concentric spherical shells. Assume they are charged to Q and −Q
respectively, Fig. 4.7. What is the capacitance? Utilizing the method introduced in
the previous section, the work to bring a point charge from the inner to the outer shell
is determined:

W = q	
 =
b∫

a

F̄ · ds̄ (4.25)

Fig. 4.7 Two concentric
spherical shells forming a
capacitor
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According to Sect. 4.1.4 the force on the point charge is determined solely by the
inner shell and is equal to that between two point charges:

W = q	
 =
b∫

a

F̄ · ds̄ =
b∫

a

q Q

4πε0r2
dr = q Q

4πε0

(
1

a
− 1

b

)
(4.26)

The capacitance becomes

C = 4πε0

(
1

a
− 1

b

)−1

(4.27)

4.1.6 Electric Energy Stored in a Capacitor

The electric energy stored by a charged capacitor is now determined. The work to
generate the energy is provided by a battery.

The battery is connected to the capacitor and its task is to bring electrons from
one plate to the other, Fig. 4.8. Assume that at time t the charge on one of the plates
is q. The work required to bring an infinitesimal amount of charge dq from one plate
to the other is

dWb = dq	
(t) (4.28)

where 	
(t) is the voltage between the plates at time t . This varies with time
according to the change of charge on the plates:

	
(t) = q(t)

C
(4.29)

In reality, the charges are transported through the battery but the work that is con-
verted to potential energy is in magnitude the same as if the charges were transported

Fig. 4.8 Charging a
capacitor using a battery
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between the plates. Thus, the batteryworkwill be partly converted into kinetic energy,
corresponding to heat in the circuit. The minimum work to charge the capacitor to a
charge Q is

Wb =
Q∫

0

q

C
dq

where the charge Q is achieved at time T . Let this denote the final state so that
	
(T ) = 	
 is the battery voltage. The electric energy stored by the capacitor
becomes

Ue = 1

2

Q2

C
= 1

2
Q	
 = 1

2
C	
2 (4.30)

4.1.7 Electric Force Between Two Charged Plates

As an application of formula (4.30) the electric force between two charged plates is
now determined. This will be done in two different ways: firstly without and then
with a voltage source connected to the plates. In both cases the energy principle is
used, keeping in mind that the complete energy of the system must be considered. In
the first case this is the electric energy but in the second case there is also a battery
energy, compare the magnetic case in Sect. 3.3.1.

Consider two identical parallel charged plateswith opposite charges Q and surface
area A, Fig. 4.9 (left). One plate is located at x = x1 and the other at x = x2 where
x2 > x1. The force on the latter becomes

F̄ = −∇U = −∇Ue = − d

dx2

1

2

Q2

C
x̂ = Q2

2

1

C2

dC

dx2
x̂ = 1

2
	
2 dC

dx2
x̂ (4.31)

For large plates, capacitance formula (4.24) may be used so that

dC

dx2
= d

dx2

Aε0

x2 − x1
= − Aε0

(x2 − x1)2
= − C2

Aε0
(4.32)

Fig. 4.9 Interaction between
two parallel plates without
and with a connected battery
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and the force is thus

F̄ = −1

2

	
2C2

Aε0
x̂ = −1

2

Q2

Aε0
x̂ (4.33)

The force is attractive and constant. The voltage between the plates Q/C decreases
during the process but the charge Q remains constant. Measuring the force in this
way is challenging (why?).

By connecting the capacitor to a voltage source the measurement is simplified,
Fig. 4.9 (right). The total energy in the system is then

U = Ue + Ub (4.34)

i.e. the electric energy stored by the plates plus the energy of the battery. The battery
will now maintain the voltage between the plates. When the plates approach each
other the tendency of nature to reduce the voltage between the plates is opposed by
the battery by adding charge to the plates. The battery energy decreases by dUb for
each small amount of charge dq that is added to the plates.

− dUb = dWb = dq	
 = dC	
2 (4.35)

The change of the system’s total energy then becomes

dU = dUe + dUb = 1

2
dC	
2 − dC	
2 (4.36)

so that force on plate 2 is

F̄ = − dU

dx2
x̂ = 1

2
	
2 dC

dx2
x̂ (4.37)

which is the same as in the first case, the only difference being that voltage is main-
tained. This is a clear advantage when performing electrostatic experiments since
discharging effects are then neutralized.

Using the capacitance formula (4.24) results in

F̄ = −1

2
	
2 ε0A

(x2 − x1)2
x̂ (4.38)

which for a voltage of a few kilovolts gives a relatively large and easily measured
force. However, the measurement is dangerous since high voltage and large amounts
of charge are involved. Be careful!
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4.2 Magnetic Dynamics

For magnetic systems, the fundamental interaction is governed by formula (2.11):

f̄m2 = μ0q1q2
4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2] (2.11)

If the force on charge 2 originates from the current in a closed conductor the last
term in (2.11) vanishes and Grassman’s formula results:

f̄ G
m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1] (2.13)

= μ0q1q2
4π R2 [v̄2 × (v̄1 × R̂)] (2.14)

In case the interaction takes place between closed conductors, the second as well
as the third term in formula (2.11) vanish:

f̄m2 = μ0q1q2
4π R2 (−v̄1 · v̄2)R̂ (2.26)

4.2.1 Magnetic Force Between a Point Charge and a Long
Straight Current

In Sect. 2.2.4 it was shown that the force between a long straight current-carrying
conductor and a charge Q with velocity v parallel to the current is given by formula
(2.6)

F̄2→Q = −μ0 I2
2πρ

Qvρ̂ (4.39)

where ρ is the shortest distance between the charge and the conductor. Q is negative
for an electron. This formula will now be generalised to allow for an arbitrary motion
of the charge Q, Fig. 4.10.

Since the straight conductor is considered as being of infinite length and therefore
closed (see Exercise 2.10), Grassman’s magnetic force law may be used. Expressed
in current elements, formula (2.5), the force on element 1 is

dF̄ = μ0 I1dL̄1 × (I2dL̄2 × R̂)

4π R2 (4.40)

where the distance vector R is directed from element 2 to element 1.
The current is directed along the z-axis. Using cylindrical coordinates (z, ρ, φ)

and putting I1dL̄1 = Qv̄ the force becomes
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Fig. 4.10 A straight
current-carrying conductor
interacts with a charge Q in
motion

dF̄ = μ0Qv̄ × (I2dL̄2 × R̂)

4π R2 = μ0Qv̄ × (I2dz sin θφ̂)

4π R2

= Qv̄ × φ̂
μ0 I2
4π

ρ

(z2 + ρ2)3/2
dz (4.41)

where φ̂ is a unit vector in cylindrical coordinates, perpendicular to ẑ and ρ̂.
To get the total force on Q an integration of the complete infinite conductor is

performed,

F̄2→Q = Qv̄ × φ̂
μ0 I2
4π

∞∫

−∞

ρ

(z2 + ρ2)3/2
dz = Qv̄ × φ̂

μ0 I2
2πρ

(4.42)

where the positive current direction is in the positive z direction. This formula gives
formula (2.6) for parallel currents and formula (2.4) for perpendicular currents.

4.2.2 Magnetic Force Between Point Charge and Large
Current-Carrying Plate

Several long straight current-carrying conductors are now put together to form a large
plate. The force between this array of conductors and a point charge at a distance r
from the plate is examined. In Fig. 4.11 the conductors are viewed from above and
the z-axis is directed out of the plane. The calculation is performed for z = 0.

Formula (4.42) gives the force from one of the infinitesimal straight conductors.
Let K denote current per length along y and φ̂ = (sin α x̂ + cos α ŷ) so that
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Fig. 4.11 A point charge Q
in motion outside a
current-carrying plate
assumed to be built up by
infinitesimally thin wires in
the z direction

dF̄ = Qv̄ × μ0

2π

K dy√
y2 + r2

(sin α x̂ + cos α ŷ)

= Qv̄ × μ0

2π

K√
y2 + r2

(
y√

y2 + r2
x̂ + r√

y2 + r2
ŷ

)
dy (4.43)

The total force on Q becomes

F̄ = Qv̄ × ŷ
μ0

2π
Kr

∞∫

−∞

1

y2 + r2
dy = Qv̄ × ŷ

μ0K

2

r

|r | (4.44a)

independent of the distance r from the large plate. For positive x values r/ |r | = 1
and for negative x values r/ |r | = −1. The x component in (4.43) vanishes after
integration since the integrand is an odd function of y. Note that y and therefore also
the angle α are negative for the lower half of the plane.

To express formula (4.44a) in a coordinate free form, the surface current density
K is used as a vector in the current direction. The surface normal of the plate, n̂, is
introduced and defined as a unit vector perpendicular to the surface pointing towards
the other object. Thus

F̄ = Qv̄ × μ0

2
(K̄ × n̂) (4.44b)

4.2.3 Magnetic Force Between a Straight Conductor
and a Large Plate

To obtain the force between a straight current-carrying conductor and a current-
carrying plate, formula (2.5) is used to rewrite (4.44b),
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dF̄ = I dL̄ × μ0

2
(K̄ × n̂) (4.45)

so that the force on the whole conductor becomes

F̄ = I L̄ × μ0

2
(K̄ × n̂) (4.46)

where L is the length of the conductor directed along the current direction. I is the
current in the straight conductor and K is the current per unit length in the plate.

4.2.4 Magnetic Force and Energy Between Two Parallel
Current-Carrying Plates

Formula (4.46) is now used to determine the force between parallel current-carrying
plates. Edge effects are neglected. Let plate 2 be of infinite extent and let the other
have side lengths Y and Z . The plates carry constant currents per unit length, K1 and
K2, in either direction. In Fig. 4.12 the currents have the same sign.

With n̂ directed towards plate 1, formula (4.46) gives the force on an infinitesimal
wire of plate 1

dF̄ = K1dy Z ẑ × ŷ
μ0K2

2
(4.47)

Since plate 2 is of infinite extent there is no dependence on y so the integration gives

F̄ = μ0

2
Y Z K1K2 ẑ × ŷ = −μ0

2
Y Z K1K2 x̂ (4.48)

The force is accordingly attractive for parallel currents.
The magnetic interaction energy is obtained by calculating the work needed to

separate the plates a distance X . For constant current, the force is independent of x .
When parallel currents are separated themagnetic energy decreases. LetUm(x = x2)
denote a reference energy at x = x2. Move plate 1 from x = x2 a distance X so the
magnetic energy becomes

Um = Um(x = x2) − Fext X = −μ0

2
XY Z K1K2 (4.49)

Fig. 4.12 Two parallel
current-carrying planes
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where in the last step the reference energy is put to zero. For parallel currents K1 and
K2, the magnetic energy increases with decreasing distance between the plates, in
accordance with formula (3.23). For opposite currents, formula (4.49) changes sign.

In Exercise (4.9), the energy is used to determine mutual inductance.

4.2.5 Inductance

The quantity inductance may be used to describe magnetic-inductive interactions
between closed circuits. Formula (3.30) defines inductance as

M jk = μ0

4π

∫

Cond k

∫

Cond j

dL̄ j · dL̄k

R
(4.50)

This formula will now be applied to different closed systems. Having determined
inductance, formulas (3.19), (3.23) and (3.33) give energy, force and induction
voltage.

4.2.5.1 Mutual Inductance Between Two Coaxial Loops

Consider two coaxial, circular and homogeneous conductors. What is their mutual
inductance? First, let the loops have a common centre with z1 = z2 = 0, Fig. 4.13.

Denote the radii of the circles r1 = a and r2 = b. The scalar product between the
length elements is

dL̄1 · dL̄2 = ab cos (φ2 − φ1)dφ1dφ2 (4.51)

Fig. 4.13 Two circular
coaxial conductors
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and the distance between the length elements

R = |r̄2 − r̄1| =
(

a2 + b2 − 2ab cos (φ2 − φ1)
)1/2

(4.52)

where the cosine rule has been used. This is inserted into Neumann’s formula (4.50):

M12 = μ0ab

4π

2π∫

0

2π∫

0

cos (φ2 − φ1)dφ1dφ2(
a2 + b2 − 2ab cos (φ2 − φ1)

)1/2 (4.53)

The integral over one of the angles results in a factor 2π so that

M12 = μ0ab

2

2π∫

0

cos φdφ(
a2 + b2 − 2ab cos φ

)1/2

= μ0ab

π∫

0

cos φdφ(
a2 + b2 − 2ab cos φ

)1/2 (4.54)

If the loops are located a distance d from each other in the z direction, the only
change appears in the distance R so that

M12 = μ0ab

π∫

0

cos φdφ(
d2 + a2 + b2 − 2ab cos φ

)1/2 (4.55)

This integral may be solved numerically with a computer but may also be analysed
using elliptical functions.

To this end, the substitution φ = π − 2α is made so that cos φ = − cos 2α =
−(1 − 2 sin2 α) and dφ = −2dα to obtain:

M12 = −2μ0ab

π/2∫

0

(1 − 2 sin2 α)dα

[(a + b)2 + d2 − 4ab sin2 α]1/2

= − 2μ0ab

[(a + b)2 + d2]1/2
π/2∫

0

(1 − 2 sin2 α)dα

(1 − k2 sin2 α)1/2
(4.56)

where k2 = 4ab

(a + b)2 + d2 .
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Formula (4.56)maybe expressed in termsof elliptic functions. The elliptic integral
of the first kind F is defined as

F
(

k,
π

2

)
=

π/2∫

0

dα[
1 − k2 sin2 α

]1/2 (4.57)

and of the second kind

E
(

k,
π

2

)
=

π/2∫

0

[
1 − k2 sin2 α

]1/2
dα (4.58)

The first term of the integral in formula (4.56) is exactly F whereas the second
term may be expressed in terms of F and E :

π/2∫

0

dα
k2 sin2 α

(1 − k2 sin2 α)1/2

=
π/2∫

0

dα

[
1

(1 − k2 sin2 α)1/2
− 1 − k2 sin2 α

(1 − k2 sin2 α)1/2

]
= F − E (4.59)

Thus, formula (4.56) may be written

M12 = − 2μ0ab

[(a + b)2 + d2]1/2
[(

1 − 2

k2

)
F + 2

k2
E

]
(4.60)

a result first obtained by Maxwell (1873). An advantage of this analytical form over
numerical calculation of (4.55) is the possibility tomake approximations. The elliptic
integrals may namely be series expanded in the following way:

F(k, π/2) = π

2

[
1 +

(
1

2

)2

k2 +
(
1 · 3
2 · 4

)2

k4 + · · ·
]

(4.61)

and

E(k, π/2) = π

2

[
1 −

(
1

2

)2

k2 −
(
1 · 3
2 · 4

)2 k4

3
− · · ·

]
(4.62)
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4.2.5.2 Force Between Two Coaxial Circular Loops

Consider two loops at a large distance from each other such that d � a and d � b,
so that k 	 1. The lowest order approximation is then obtained if terms up to fourth
order in k of the elliptic integrals are kept:

M12 = − 2μ0ab

[(a + b)2 + d2]1/2
[(

1 − 2

k2

)(
π

2
+ π

8
k2 + 9π

128
k4

)

+ 2

k2

(
π

2
− π

8
k2 − 3π

128
k4

)]

= − 2μ0ab

[(a + b)2 + d2]1/2
(

π

8
k2 − 3π

16
k2

)
= μ0ab

[(a + b)2 + d2]1/2
πk2

8
(4.63)

Using k2 ≈ 4ab

d2 mutual inductance becomes

M12 = μ0πa2b2

2d3 (4.64)

This lowest order approximation is also known as the dipole approximation since
the dipole is the smallest unit of a magnetic system. This terminology will be further
explained in Sect. 7.2.

The force between two loops may now be determined. Assume the currents in
the loops to be maintained by a battery. The magnetic force is then given by formula
(3.23). The loops are located at z1 and z2, where z2 � z1 so that (4.64) may be used:

M12 = μ0πa2b2

2(z2 − z1)3
(4.65)

The force on loop 2 becomes

F̄2 = I1 I2
d

dz2
M12 ẑ = −I1 I2

3μ0πa2b2

2(z2 − z1)4
ẑ (4.66)

which is an attractive (repulsive) force for parallel (anti-parallel) currents, as
expected.

4.2.5.3 Self Inductance for an Idealized Coil

An idealized coil can be thought of as consisting of parallel circular loops whose
total mutual and individual inductances become the self-inductance of the coil. The
loops are tight with an infinitesimal thickness such that the coil becomes a cylin-
drical homogeneous surface. The total inductance of the coil is obtained through an
infinitesimal summation, i.e. an integration, Fig. 4.14.
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Fig. 4.14 An array of
several close concentric
identical circular loops is
approximated with a
homogeneous cylindrical
surface

In the left-hand figure the total inductance becomes a summation

Mtot =
∑
j,k

M jk (4.67)

where j may also be equal to k. In the right-hand figure the summation is replaced
by an integration

Mtot =
∫ ∫

M ′
jkdz j dzk (4.68)

where z is a coordinate along the axis of the coil. M ′ is inductance density defined
in the following way:

Assume the coil has N turns, length l and current I through one loop. Consider
the interaction energy between two of the loops

Um = M jk I j Ik = M jk
N I

l
	z j

N I

l
	zk (4.69)

so that formula (4.68) should be written

Mtot = N 2

l2

l∫

0

l∫

0

M jkdz j dzk (4.70)

where M jk is given by formula (4.55), i.e. self inductance for one loop or mutual
inductance between two loops.

Based on formula (4.56), with a = b and the distance between two loops (z j −zk),
the self inductance for an idealized coil becomes

Mtot = − N 2

l2

l∫

0

l∫

0

2μ0a2

[4a2 + (z j − zk)2]1/2
π/2∫

0

(1 − 2 sin2 α)dα

(1 − k2 sin2 α)1/2
dz j dzk (4.71)

k2 = 4a2

4a2 + (z j − zk)2
(4.72)
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For the integration over z, formula (4.71) is rewritten:

Mtot = −2N 2μ0a2/ l2
π/2∫

0

(1 − 2 sin2 α)

×
l∫

0

l∫

0

[
4a2 + (z j − zk)

2 − 4a2 sin2 α
]−1/2

dz j dzkdα (4.73)

Make the variable substitution t = z j − zk ,

l∫

0

l∫

0

[
1

4a2 + (z j − zk)2 − 4a2 sin2 α

]1/2

dz j dzk

=
l∫

0

l−zk∫

−zk

[
1

4a2 cos2 α + t2

]1/2
dtdzk

=
l∫

0

[
sinh−1 t

2a cos α

]l−zk

−zk

dzk =
l∫

0

(
sinh−1 l − zk

2a cos α
+ sinh−1 zk

2a cos α

)
dzk

= 2

[
zk sinh

−1 zk

2a cos α
−

(
z2k + 4a2 cos2 α

)1/2]l

0

= 2

(
l sinh−1 l

2a cos α
−

(
l2 + 4a2 cos2 α

)1/2 + 2a cos α

)
(4.74)

which is inserted into (4.73),

Mtot = − N 24μ0a2

l

×
π/2∫

0

[
(1 − 2 sin2 α)

(
sinh−1 l

2a cos α
−

(
1 + 4a2

l2
cos2 α

)1/2

+2a

l
cos α

)]
dα (4.75)

Consider now the case when l � a, a so-called solenoid. Keeping terms up to
order a/ l the inductance becomes

Mtot = − N 24μ0a2

l

π/2∫

0

[
(1 − 2 sin2 α)

(
ln

l

a cos α
− 1 + 2a

l
cos α

)]
dα
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= − N 24μ0a2

l

⎡
⎣

(
1 − ln

l

a

) π/2∫

0

(2 sin2 α − 1)dα

+
π/2∫

0

(2 sin2 α − 1) ln(cos α)dα

−2a

l

π/2∫

0

(2 sin2 α − 1) cos αdα

⎤
⎦ (4.76)

There are then three integrals to evaluate. The first vanishes:

π/2∫

0

(2 sin2 α − 1)dα = 0 (4.77)

The second integral may be evaluated through integration by parts:

π/2∫

0

(2 sin2 α − 1) ln(cos α)dα

= −
π/2∫

0

cos 2α ln(cos α)dα =
[
− sin 2 α

2
ln(cos α)

]π/2

0︸ ︷︷ ︸
sin π ln 0=0

−
π/2∫

0

sin 2α sin α

2 cos α
dα = −π

4
(4.78)

(note the interesting limit value in (4.78)) and the third integral is

π/2∫

0

(2 sin2 α − 1) cos αdα = −1

3
(4.79)

The self-inductance for a solenoid becomes

Mtot = − N24μ0a2

l

(
−π

4
+ 2a

3l
+ O

(a

l

)2 + · · ·
)

= μ0N2πa2

l

(
1 − 8a

3πl
+ · · ·

)

(4.80)
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Note that the first order correction is rarely negligible and therefore further correction
terms need also be considered, see Exercise (4.18).

4.2.5.4 Self-inductance for a Circular Loop

For a thin circular loop the condition is a � l and formula (4.72) gives k2 ≈ 1.
Formula (4.71) may then be written

Mtot = −μ0N 2a

l2

l∫

0

l∫

0

k

[(
1 − 2

k2

)
F + 2

k2
E

]
dz j dzk (4.81)

According to a prominent handbook1

lim
k2→1

F
(

k,
π

2

)
= 1

2
ln

16

1 − k2
(4.82)

and
lim

k2→1
E

(
k,

π

2

)
= 1 (4.83)

so that

Mtot = −μ0N 2a

l2

l∫

0

l∫

0

(2 − F)dz j dzk

= −μ0N 2a

l2

l∫

0

l∫

0

(
2 − 1

2
ln

16

1 − k2

)
dz j dzk

= −μ0N 2a

l2

l∫

0

l∫

0

(
2 − 1

2
ln

16(4a2 + (z j − zk)
2)

(z j − zk)2

)
dz j dzk

≈ −μ0N 2a

l2

l∫

0

l∫

0

(
2 − ln

8a

z j − zk

)
dz j dzk (4.84)

Evaluating the integral gives (see Exercise 4.15):

Mtot = μ0N 2a

l2

[
−1

2
l2 + l2 ln

8a

l

]
= μ0N 2a

[
ln

8a

l
− 1

2

]
(4.85)

1 See e.g. Abramowitz’ and Stegun’s book available on the www.
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Note, however, that the elliptic integral F varies quickly with k so formula (4.85)
should be used with caution.

4.2.6 Induction in a Moving Rod Interacting
with Current-Carrying Plate

The concept of inductance is useful when only closed currents are involved in the
interaction. The concept of a closed conductor implies that the drift motion of the
conduction electrons is along the conductor (compare Exercise 3.9c). The following
example involves a non-closed conductor and illustrates a case where inductance
should not be used.

Let a thin bar-formed conductor, oriented along the x axis, move at a constant
speed v in the negative z direction. It interacts with an infinite plate with homoge-
neous and constant current in the positive z direction, Fig. 4.15. The induced voltage
between the end points of the bar is now to be found.

Since the bar is a non-closed conductor the complete magnetic force formulamust
be considered:

f̄m2 = μ0q1q2
4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2] (2.11)

If the infinite plate, equivalent to a closed conductor, is object 1 the third term in
(2.11) vanishes.

Since the conduction electrons of the bar are moving in parallel to the conduction
electrons of the plate, these will be attracted in accordance with formula (2.11). A
current I2 will then be generated in the bar until enough charge has accumulated at
its ends so that the electric force balances the horizontal magnetic force.

Fig. 4.15 A straight
conductor in motion interacts
with a large current-carrying
plate
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The current in the bar, I2, is directed in the positive x direction. To initially
accelerate the bar an external force is needed. This force acts against the vertical
magnetic force that I2 causes according to formula (4.46). To maintain a constant
speed, the external force must balance this vertical magnetic force. The external
force is then doing work and the change in magnetic energy during a displacement
dz becomes, using formulas (3.23) and (4.46),

dUm = −μ0K1

2
I2Ldz (4.86)

where L is the length of the bar and K1 is current per unit length along y. This mag-
netic energy is successively converted to electric energy through the accumulation
of electric charge at the ends of the bar which according to formula (3.31) creates a
voltage

ε2 = dUm

dq
= − 1

dq

μ0K1

2

dq

dt
Ldz = −μ0K1L

2

dz

dt
= μ0K1

2
Lv (4.87)

where v is the final speed of the bar conductor.
See Exercise (4.17) for an application.

4.3 Summary

The electric force between a point charge q and a long wire with charge density λ′ is

F̄ = λ′q
2πε0d

x̂ (4.6)

The electric force between two charged long parallel wires is

F̄ = λ′λL

2πε0d
x̂ (4.7)

The electric force between a large plate with charge surface density σ and a point
charge q is

F̄ = σq

2ε0
x̂ (4.11)

A system consisting of two objects with the same charge Q with opposite signs
has a capacitance

C = Q

	

(4.20)
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and stores the electric energy

Ue = 1

2
	
Q = 1

2
C(	
)2 (4.30)

The magnetic force between a point charge Q and a long straight current-carrying
wire is

F̄2→Q = Qv̄ × φ̂
μ0 I2
2πρ

(4.42)

The magnetic force between a point charge Q and a large plate with surface
normal n̂ and linear current density K is

F̄ = Qv̄ × μ0

2
(K̄ × n̂) (4.44b)

Themagnetic force between a straight current and a large current-carrying plate is

F̄ = I L̄ × μ0

2
(K̄ × n̂) (4.46)

The mutual inductance between two coaxial circular loops with radii a and b at a
distance d is

M12 = − 2μ0ab

[(a + b)2 + d2]1/2
[(

1 − 2

k2

)
F

(
k,

π

2

)
+ 2

k2
E

(
k,

π

2

)]
(4.60)

where F and E are elliptical functions.
The exact formula for self inductance of a coil with circular cross section, length l

and cross section radius a is

Mtot = − N 24μ0a2

l

×
π/2∫

0

[
(1 − 2 sin2 α)

(
sinh−1 l

2a cos α
−

(
1 + 4a2

l2
cos2 α

)1/2

+ 2a

l
cos α

)]
dα (4.75)

The approximate formula for self inductance of a coil with a circular cross section
is (third term is obtained from Exercise 4.18)

Mtot = μ0N 2πa2

l

(
1 − 8a

3πl
+ 7

8

a2

l2
+ O

(a

l

)3 · · ·
)
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4.4 Exercises

4.1 Derive formula (4.8), evaluate the integral and show that it reduces to for-
mula (4.7) if L → ∞.

4.2 Formula (4.11) was obtained by summing long wires of a plate. Instead,
determine the force on a point charge at a distance d from the plate by sum-
ming interactions with infinitesimal surface elements of the plate. Assume
that the surface charge density σ is constant. The charge of an element of
the plate is q ′ = σdy′dz′.

C* 4.3 Show that the capacitance for a homogeneously charged system consisting
of two long coaxial cylindrical shells with inner radius a and outer radius b
is

C = 2πε0L

ln b
a

(4.88)

where L is their common length.

4.4 Determine capacitance of a homogeneously charged system consisting of
two long parallel thin cylindrical shells with radius a, length L and distance
d from axis to axis.

4.5 How would you proceed to measure the force (4.38)?

C 4.6 Based on the magnetic force formula (2.25) with a = 1 in Exercise (2.10),
determine the force between two straight and parallel current-carrying con-
ductors separated a distance d in the following cases:

a. They are of equal length T .
b. They have different lengths T1 and T2.
c. In Exercise b, a force directed along the length of the conductor is

obtained, a so-called longitudinal force. How can it be measured? Does
it remain for closed conductors?

4.7 A large current-carrying platewith a constant linear current density K̄ = K ẑ
is located in the yz plane. A straight conductor with length T and current I
is placed parallel to the plate at a distance d forming an angle 45◦ with the
y axis.

Determine the force on the straight conductor.

4.8 Two parallel infinite plates carry opposite linear current density K̄ = ±K ẑ.
Determine the force on a point charge q with constant velocity v̄ for any
position.

4.9 Determine the mutual inductance between two large plates with homoge-
neous current distributions
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a. As in Fig. 4.12.
b. In opposite directions.

Hint: utilize the energy formula (4.49).

4.10 Consider two longparallel conductors, each one part of a large square circuit.
Both have length T and the distance between them is d with T � d.

a. Determine the mutual inductance between the two straight conductors.
b. Determine the force on one of the conductors and compare with Exercise

(4.6).
c. Determine the induced voltage in one of them if the current varies as

I = I0 sin ωt in the other.
d. Explain why the inductance method for force calculation works in this

case although the straight conductors don’t form a closed circuit.

4.11 Using the result in Exercise (4.10a), determine the self inductance for a plate
with length T much longer than its width X .

* 4.12 A thin circular loop with radius a encloses a coil with length l, number of
turns N and circular cross section with radius b. The loop and the coil are
oriented along a common axis. The loop is located at a distance z1 from the
center of the coil, see figure.

a. Determine the mutual inductance.
b. Determine the force on the loop as a function of the distance z1. The

loop and the coil carry currents I1 and I2 respectively.
c. Determine induced voltage in the loop if the current in the coil varies as

I = I0 sin ωt .

C* 4.13 Let the loop in Exercise (4.12) have a radius a much smaller than the radius
b of the coil.



76 4 Macroscopic Systems of Unbound Charges

a. Determine the mutual inductance.

Introduce the concept dipole moment for a loop, m̄ = I An̂, where I is
the current in the loop and A its area with surface normal n̂. The surface
normal is directed according to ‘the right hand rule’, i.e. when fingers
are oriented along the current direction, the thumb points in the direction
of the surface normal.

b. Express the interaction energy in terms of the dipole moment.
c. Now assume that the surface normal of the loop forms an angle θ with

the coil axis z. Show that the interaction energy becomes

Um = μ0
N

l
I2 ẑ · m̄ (4.89)

where ẑ is the surface normal of the coil cross section.
d. Determine the force and the torque on the loop and specify the angles

for stable and unstable equilibrium of the system.

4.14 Consider two cylindrical coils connected in series. They are of different
lengths but have the same density of turns and cross sectional radius.

a. Show that their total inductance is equal to the sum of the individual
self-inductances in the lowest order of formula (4.80) but not for higher
orders.

b. What may be concluded about the interaction between the coils in the
lowest and in the higher order?

4.15 a. Show that (4.85) is a consequence of (4.84).
b. Draw a graph of the elliptical function F(k, π/2) and evaluate the valid-

ity of the limits in (4.82).

*4.16 a. Determine the force between two identical parallel and coaxial current-
carrying circular loopswhen their radius ismuch greater than the distance
between them.
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b. Extend the loops to short coils with N number of turns. Calculate the
force and compare it with that for straight parallel conductors.

c. How would you proceed to measure the force between the coils? See
figure above.

4.17 Estimate themaximum electric voltage between thewings of a typical flying
aircraft.
Model geomagnetism as a large plate with linear current density 80A/m.
Exercise (8.14) discusses a technique that may be used to explore geomag-
netism.

4.18 Determine the third term in the expansion of the coil self-inductance (4.80).

Further Readings

M. Bueno, A.T.K. Assis, Inductance and Force Calculation in Electric Circuits (Nova Biomedical,
New York, 2001)

F. Grover, Inductance Calculations (Dover, New York, 2009)
J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873)
P. Moon, D. Spencer, A new electrodynamics. J. Frankl. Inst. 257, 369 (1954)



Chapter 5
Conductors and Resistive Effects

Electricity is often called wonderful, beautiful; but it is so only in
common with the other forces of nature. The beauty of electric-
ity or of any other force is not that the power is mysterious, and
unexpected, touching every sense at unawares in turn, but that
it is under law, and that the taught intellect can even govern it
largely. The human mind is placed above, and not beneath it, and
it is in such a point of view that the mental education afforded by
science is rendered super-eminent in dignity, in practical appli-
cation and utility; for by enabling the mind to apply the natural
power through law, it conveys the gifts of God to man.

Michael Faraday, 1858

The electric conductor is one corner stone of modern technology. Its unique properties
makes it also suitable for the study of the fundamental dynamics of nature. It has
thereby been found how the constituents of nature, in this case electrons, interact
under different conditions: at rest, in uniform motion and in acceleration.

With the discovery and completion of the periodic system, new knowledge arose
about metals. Its unique properties as a current and thermal conductor originate
from the fact that each atom in the metal contributes with one or two electrons from
their outermost orbitals to the so-called conduction band where electrons can move
relatively freely. However, the motion is not entirely free due to three reasons:

Firstly, the conduction electrons interact electrically with the rest of the material
which consists of the atoms from which they originate. The atomic vibrations con-
stitute a barrier, a so-called resistance, to their motion. This generates heat which
can be of both advantage and disadvantage in engineering applications.

Secondly, there are inductive forces, i.e. internal interactions between the con-
duction electrons themselves, which macroscopically are described by the quantity
inductance. This is, as previously indicated, the electrodynamic counterpart to inertia
in mechanics.

Thirdly, there are capacitive effects which arise due to physical discontinuities of
the conductor. This stores electric energy as in a capacitor, see Chap. 4.

In this chapter, the dynamics that arise in the conductor due to resistive effects are
investigated. In the next chapter, the examination is extended to include the inductive
and capacitive properties of the electric circuit.

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-13171-9_5
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Fig. 5.1 The voltage over a
capacitor is measured
without material (left) and
with material (right)
between its plates

+ –

1

+ Capacitor filled 
with isolated metal

–

2

5.1 The Metal as a Conductor

To investigate the conductor properties of a metal, the following experiment can be
carried out:

Charge a capacitor consisting of two parallel plates. Disconnect the battery and
measure the voltage �� according to Fig. 5.1 (left).1 The voltmeter basically mea-
sures the force between the charges accumulated on the different plates. Then intro-
duce a metallic material between the plates filling the entire volume as in Fig. 5.1
(right). The contact between the metal and the capacitor must be insulated, alterna-
tively leave a small air gap. The voltmeter shows that the voltage between the plates
has almost disappeared.

It can be concluded that in the inserted metallic material, a sufficient amount
of charge has been transported to precisely neutralize the charge on the capacitor
plates. This result occurs for both very small and very large initial voltages between
the plates. The metal can thus easily transport electric charge; it is a good conductor,
which is its distinguished property.

The final state is static since the voltmeter measures zero voltage. If a charge is
placed inside the metallic material, it would not be affected by any force despite the
fact that external forces affect the metallic material.

Thus, it can be concluded that under static conditions, there is no net charge inside
a metal. The negative charge is neutralized everywhere by positive charge. Excess
charge only appears on the metal surface.

5.2 Relaxation Time

The next step in these experiments is to allow the voltage over the capacitor plates to
vary with time. This is achieved by constructing a circuit with a battery that generates
an alternating voltage, Fig. 5.2.

With an oscilloscope, it is recorded that the voltage across the resistor is the same
as the battery voltage, even for high frequencies. The conclusion can be drawn that
the metal neutralizes the voltage across the plates instantly. The process in the metal
to bring charges to the surface of the capacitor plates in order to neutralize its charge

1 To prevent discharges through the meter, a so-called electrostatic voltmeter has to be used. This
has extremely high inner resistance.
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Fig. 5.2 Circuit with a
resistor and a capacitor in
series. The voltage over the
resistor and the voltage
source is registered by an
oscilloscope

Capacitor filled 
with isolated metal

R

Osc 2

Osc 1

is thus extremely fast, faster than what can be measured. This property explains why
one is protected from lightning inside a metal shell such as a car. The charges of the
flash are neutralized immediately on the outer surface.

The time-lapse in a conductor may be estimated by establishing a model of its
dynamics. When the metal is placed between the charged capacitor plates, an electric
force will act on the charges of the metal causing the conduction electrons to move
towards one of the plates, leaving behind a deficit of negative charge on the other
side. During the motion, they are exposed to a frictional force originating in their
interaction with the rest of the conductor material.The frictional force is proportional
to the velocity at low speeds as in this case (see Exercises 2.2 and 5.6). Using formulas
(1.1), (1.2) and (3.5), the equation of motion for the conduction electrons becomes
(neglecting effects of inductance and capacitance):

m
dv̄

dt
= −q∇� − Gv̄ (5.1)

where G is a frictional coefficient depending on the nature of the material, m the
mass of the charge q, v its velocity caused by the external influence (drift speed) and
� the electric potential experienced by the charge q.

The relaxation time is the time it takes for the charges to be restored after the
external influence has ceased. To find this time, put ∇� = 0, so that

m
dv̄

dt
= −Gv̄ (5.2)

which has the solution
v(t) = Ae− G

m t (5.3)

where A is the velocity at t = 0, i.e. when the voltage source is disconnected.
The speed of the charges in the conductor thus decreases exponentially with a time
constant

tr = m

G
(5.4)

called relaxation time. The frictional coefficient G is related to the concept of resis-
tance which will be discussed next.
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5.3 Resistance

A conductor is connected to a battery, Fig. 5.3. The battery voltage �� and current
I through the conductor are measured. A linear relationship between the two is
observed for ordinary values of the voltage. The proportionality is called resistance
R and Ohm’s law is thus obtained:

�� = RI (5.5)

Ohm’s law is valid after several relaxation times because the measurement is
performed a relatively long time after connecting the source. Since relaxation time
is also a measure of the time it takes for the electrons to reach terminal speed, a
constant drift speed is expected.

Solving Eq. (5.1) for the circuit in Fig. 5.3 gives

v̄(t) = − q

G
∇�

(
1 − e− G

m t
)

(5.6)

so that when t → ∞ then v̄ → −q/G ∇�, i.e. a constant.
Ohm’s law may be used to gain information about G. For simplicity, imagine a

homogeneous and straight conductor with length l and cross sectional area S. The
voltage �� = −l∇� and the current I = J̄ · S̄ where J is current per unit surface.
It follows from formula (2.5) that J̄ = nqv̄ where n is the number of conduction
electrons per unit volume and v is the drift speed of the conduction electrons (see
Exercise 2.24). J is oppositely directed to v since q < 0. Ohm’s law may then be
written

l∇� = −Rnqv̄S (5.7)

so that

v̄ = − l

Rnq S
∇� (5.8)

The frictional coefficient becomes

G = q2 RnS

l
(5.9)

Fig. 5.3 A conductor with
resistance R is connected to a
battery

R
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which shows that the origin of resistance is friction. The quantity l/RS = σ is known
as conductivity, which is independent of the conductor geometry. Accordingly, it is
measurable through Ohm’s law and available in tables. Relaxation time becomes

tr = m

G
= m

q2n
σ (5.10)

The charge q and the mass m of the electron may be measured as in Exercises
(5.12) and (5.13) and their density n determined using Avogadro’s number (see
Chap. 2). The order of magnitude estimate of the relaxation time becomes

tr ∼ 10−14s (5.11)

The drift speed is given by

v = I

Snq
(5.12)

Typical values of cross sectional area and current might be S ≈ 10−6 m2 and
I ≈ 1 A which gives v ∼ 0.1 mm/s. The electrons also exhibit a random non-
directional motion which is many orders of magnitude larger.

5.4 Heat Power

A normal kettle utilizes the heat generated by the electric current of a conductor.
This heat power is relatively easy to measure through the temperature change in a
water bath in which the conductor is submerged. Through the heat capacity of water
the heat power is obtained.

In this way, the model for electric conduction described above may be verified
because it predicts the amount of generated heat, whose source is friction. If friction
did not exist, the electrons would be continuously accelerated through the conductor
and achieve very high speeds. Instead, this imagined kinetic energy is converted into
heat which is calculated in the following manner.

The heat energy is the work done by the frictional force, which for one electron is

W f r = Gvl (5.13)

where the homogeneous conductor is utilized once again, with length l, parallel to
the drift speed v. Power P is this energy divided by the time needed for the electron
to pass through the conductor l/v

Pf r = Gv2 = q2 RnS

l
v2 = q2nv2

σ
(5.14)
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To obtain the total heat power per unit volume V this is multiplied by n, the
number of electrons per unit volume:

Pf r

V
= q2n2v2

σ
= J 2

σ
(5.15)

a result first obtained by Joule in 1841.

5.5 The Principle of Charge Conservation

In the analysis above, the fundamental law of electric charge conservation has been
used implicitly. The strongest evidence for this principle originates from the mea-
surement of electric currents in circuits. The well-verified Kirchoff’s law states that
in a branch point of a circuit, the sum of the input currents equals the output. With the
modern understanding of electric current, the conservation of electric charge follows
directly.

This can be expressed mathematically by a continuity equation in the follow-
ing way. The charge Q in a volume V may be changed only by transportation of
charge through the enclosing surface. Thus, if the total current through that surface
is denoted by I :

I + d Q

dt
= 0 (5.16)

This equation is valid over an extended volume, but may be localized by introducing
current density

J̄ = d I

da
n̂ (5.17)

where da is an infinitesimal surface and n̂ its surface normal. The continuity equation
becomes ∮

S

J̄ · dā + d Q

dt
= 0 (5.18)

where S is the surface enclosing the volume V . Using the divergence theorem and
the notation ρ for charge density, (5.18) may be written

∫

V

∇ · J̄ dV +
∫

V

dρ

dt
dV = 0 (5.19)

which must hold for any volume so that

∇ · J̄ (x, y, z) + dρ(x, y, z)

dt
= 0 (5.20)

This is the continuity equation for electric charge in its general form, valid for each
point in space. It will be revisited in Chap. 10 when Maxwell’s equations are derived.
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5.6 Summary

Metals are conductors whose electric current consists of conduction electrons which
are very loosely bound in the material.

Under static conditions, all positions inside a conductor are electrically neutral.
Excess charge only exists on the surface.

The equation of motion for the conduction electrons in a metal is given by

m
dv̄

dt
= −q∇� − Gv̄ (5.1)

Ohm’s law is a definition of resistance

�� = RI (5.5)

The drift speed in a conductor is given by

v̄ = − l

Rnq S
∇� (5.8)

The relaxation time for a conductor is

tr = m

G
= m

q2n
σ (5.10)

The heat power per unit volume in a conductor is given by Joule’s law

Pf r

V
= q2n2v2

σ
= J 2

σ
(5.15)

The continuity equation for electric charge is

∇ · J̄ (x, y, z) + dρ(x, y, z)

dt
= 0 (5.20)

5.7 Exercises

5.1 Determine the capacitance per unit length for a system consisting of two
homogeneous long parallel cylindrical conductors of radii a and b respec-
tively and placed at a distance d between their centers.

5.2 Determine the capacitance per unit length for a system consisting of two
long coaxial homogeneous cylindrical conductors. The inner conductor has
radius a and the outer has inner radius b and outer radius c.
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5.3 Determine the capacitance for a system consisting of two homogeneous
metallic balls with radii a and b respectively and with a distance d between
their centers.

5.4

(a) (b)

A capacitor is charged to a voltage �� between its parallel plates, after
which the battery is disconnected.
A metal slab with isolated surfaces is introduced between the capacitor
plates filling half its volume with two possible orientations as in the figures.
How is the voltage affected in each case?

*5.5 Series coupled capacitors

A metal plate with thickness t = x2 − x1 and area A is placed between and
parallel to the plates of a large capacitor. The capacitor plates have area A
and are separated a distance d.

a. Determine the capacitance.
b. If the capacitor plates are located at x = 0 and x = d, show that the

resulting capacitance may be written

C = C1C2

C1 + C2
(5.21)

where

C1 = ε0 A

x1
, C2 = ε0 A

(d − x2)

c. Show that formula (5.21) is valid for a series coupling of C1 and C2.

*5.6 General motional fluid resistance

The resistive effects in a conductor are similar to the ones appearing in
motion through a gas, e.g. in a fall through air. Generally motional resistance
of this kind is modelled by terms which are linear and quadratic in the speed
so that formula (5.2) may be generalized to
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m
dv

dt
= −Gv − Bv2 (5.22)

where the first term relates to so-called laminar flow and the second to
turbulent flow.
For a sphere with radius r , G = C1r and B = C2r2 where C1 = 3.1 ×
10−4 kg m−1 s−1 and C2 = 0.87 kg/m3 for motion through air.

a. Explain why the term quadratic in speed could be neglected for the
electric conductor.

b. Determine the terminal speed for a sphere falling through air with mass
m = 1 kg and m = 100 kg.

c. Compare with Galilei’s famous experiment at the Leaning Tower of Pisa.
d. In October 2012, the Austrian Baumgartner fell freely from an altitude

of 39 000 m. It was then claimed that he broke the sound barrier. Explain
how such a high final speed could be achieved in this case compared to
task b.

5.7 A homogeneous straight conductor with cross sectional area S and length l
has a conductivity σ .

a. Express the heat generation per unit time in terms of resistance R and
current I .

b. Express Ohm’s law (5.5) with the conductivity σ and the current density
J in vector form.

5.8 The mirror miracle

a. Why does a metallic object become colder than other objects on a cold
winter day?

b. Why do you burn yourself if a metal rod is inserted into the fire but not
if the rod is made of wood?

c. Why are metals shiny? How does a mirror work?
See also Exercise (11.4)

*5.9 Show that the continuity equation (5.20) implies

d

dt
(qv̄) = 0

5.10 Newton’s force law from the continuity equation of mass

a. Formulate the continuity equation for a flux of mass of a liquid or a gas.
b. Show that Newton’s force law F̄ = mā follows from this continuity

equation.

5.11 The long lived mirror image

The Nobel Prize in Physics in 2012 highlighted an experiment based on a
sort of long lived mirror.
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The basic idea may be understood in terms of a metal plate and a light bulb,
according to the figures. The metal in the experiment was Nubidium, Nb.

Nb Nb

After disconnecting the bulb, it could be observed that the mirror was active,
i.e. the mirror image was maintained, for 0.13 s.

a. Estimate the resistivity of the Nubidium plate.
b. How can such a low resistivity be achieved?

In the rewarded experiment the mirror was activated by microwaves.

5.12 Determination of charge to mass ratio of the electron

A beam of electrons is directed towards an ideal coil perpendicular to its
axis. When inside the coil the electrons exhibit a circular path. The radius
of the path is measured and denoted by r . The current per length unit in the
coil along the coil axis is K and the high voltage generating the electron
beam is ��.
Using these measurable quantities find an expression for the charge to mass
ratio of the electron.
Hint: In Exercise (7.12) it is shown that the force on a charge inside an ideal
coil is twice that from a large plate, formula (4.44b).
The performance of this experiment needs a tube filled with a gas at low
pressure. The electrons excite the gas atoms which when de-excited become
visible. The track of the electrons may then be observed from which the
radius can be measured.

5.13 Determination of the electron charge—the Millikan experiment.

In the beginning of 1900 Millikan designed an apparatus for measuring the
elementary charge, i.e. the electron charge. It consists of a vertical parallel
plate capacitor located in a dark container filled with air. On the upper plate
a small hole is drilled. The purpose of this crucial hole is to let small oil
drops pass through into the region between the plates. The oil drops are
produced by using a simple spray mechanism. While passing through the
hole they become charged through the friction that occurs against the wall
of the hole. The drops become randomly charged (Fig. 5.4).
The hypothesis is then that the amount of charge is so small that by mea-
suring on several drops the discreteness of charge may be revealed. In such
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Fg

Fe

Ffr

Fig. 5.4 The Millikan apparatus, student version by PHYWE. The oil drops are illuminated and
observed by the telescope. Using a built-in distance scale the velocity of an oil drop may be deter-
mined through a time measurement. The voltage over the capacitor plates is established by means
of the pins on the picture

a case, the measurement should confirm that the charge of the oil drops is
always a multiple of a smallest charge corresponding to the electron charge.
The measurement consists of determining the speed of the oil drop in two
cases:

• Without voltage over the plates. The drop is falling by gravity with speed
vf.

• With high voltage over the plates. The motion is reversed and the drop
rises with speed vr.

The speeds are terminal speeds which are achieved quickly.
When analysing this phenomena it is first realized that basically three forces
have to be considered:

• The gravitational Fg

• The air resistance Ffr

• The electric Fe

Assuming the oil drops to be spherical, the frictional force is (compare
Exercise 5.6):

F̄ f r = −Gv̄ = 6πηav̄

where η is the viscosity of air and a is the radius of the drop. The last
expression is called Stokes’ law and is obtained from fluid mechanics.

a. Determine the terminal speeds vf and vr.
b. Find an expression from which the charge of the oil drop may be deter-

mined.
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5.14 The origin of electric charge—the atom

In the beginning of 1900 Bohr proposed a model of the atom considering its
constituents as pointlike particles carrying charge. Basically his model has
survived up to the present day. (Compare Exercise (7.19) for a development
of the model.)
Consider a hydrogen atom consisting of one proton as the nucleus and one
surrounding electron.

a. Assuming the electron orbiting around the proton in a circular path with
radius r = 0.5 × 10−10 m, what is the stored electric energy of the
system?

b. Due to its relatively large mass, the proton is assumed to be fixed. What
is the speed of the electron?
Use tabulated values for the elementary charge and electron mass.

C* 5.15 Edge effects of parallel plates capacitor

In Sect. 4.1.5.1 the capacitance for a parallel plate capacitor was derived.
The capacitor was then assumed to be so-called ‘ideal’, meaning that the
plates are so large that their edges may be disregarded. This is of course
in practice never true but ‘edge effects’ are always present. These may
be understood by considering the procedure for obtaining capacitance. In
Fig. 4.6, external work is done by transporting a point charge against the
electric force from one to the other plate.
Consider the following statement.
‘If the transportation of the point charge is done close to the edges of the
plates a smaller electric force will act against the external force and thereby a
smaller work is done. The calculation of work and consequently capacitance
will therefore depend on the path chosen for the point charge.’

a. Is this reasonable? Explain.
b. What is the reason for this wrong statement?
c. What condition must hold for the potential over the plates and for the

electric force between the plates?
d. How will the conditions found in task c affect the charge distribution on

the plates?
e. Assuming the charge distribution to be known, find an expression for

calculating the capacitance.

Solution

a. This is not reasonable since the work should be independent of chosen
path. It depends only on the voltage between the plates.

b. The reason is that a homogeneous charge distribution has been assumed,
as in the ‘ideal’ capacitor case. At the edges there is a deficit of neigh-
bouring charges to build up the force.
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c. The potential is constant over each plate. The electric force parallel to
the surface normal of the plates is constant independent of the location
along the plate.

d. The charge density will increase when approaching the edges of the
plates.

e. Denote surface charge density σ which has been obtained using the
conditions as in task c. Plate area is A and voltage �� = 1 V. Divide
the plate into n small area elements. The true capacitance becomes

Ctrue = Q

��
= A

n

n∑
k=1

σk on positive plate

= − A

n

n∑
k=1

σk on negative plate

which may be used in computer calculations.

Ref: IEEE, components, packaging and manufacturing A, vol. 17(3) 1994
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Chapter 6
Electric Circuits

Watson, ... if I can get a mechanism which will make a current of
electricity vary in its intensity, as the air varies in density when
a sound is passing through it, I can telegraph any sound, even
the sound of speech.

Alexander Graham Bell, 1926

The electric current is the basis for modern technology. The applications consist
of electric circuits, i.e. closed conductors. Using a voltage source, electric currents
are generated which are controlled by the other components of the circuit: resistors,
inductors and capacitors. This chapter examines examples of electric dynamics aris-
ing when all these components co-exist. The objective is to achieve an understanding
of oscillation and resonance circuits.

In circuits, only the collective effect of charges in motion is observed. Therefore,
the theoretical treatment is based on the energy concept. The generated energy is
thus magnetic in an inductor, electric in a capacitor and heat in a resistor. The key to
describing current variation in a circuit is Kirchoff’s potential law, being based on
the principle of energy conservation.

Familiarity with complex numbers is assumed.

6.1 Measurement of Capacitance Using an RC Circuit

Connect a battery in series with a resistor R and capacitor C , Fig. 6.1. C and R denote
the total capacitance and resistance of the circuit, including the internal resistance of
the battery. Applying the potential law, the following equation results

�� − R
dq

dt
− q

C
= 0 (6.1)

where q is the positive charge on one of the capacitor plates. If the source is connected
at time t = 0 the solution for q becomes

q = C��(1 − e− t
RC ) (6.2)

© Springer International Publishing Switzerland 2015
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Fig. 6.1 Capacitor, resistor
and battery connected in
series

R

C

so that the current in the circuit is

i = dq

dt
= ��

R
e− t

RC (6.3)

Usually, the capacitance is so small that the charging process becomes very quick.
Using a pulse generator as a voltage source and an oscilloscope as a voltmeter the
current variation may be studied. By generating a square wave, corresponding to an
alternating connection and disconnection of the battery, formula (6.3) may easily be
explored. It is convenient to determine the time it takes for the current to reach half
its maximum value, the so-called half-time

T1/2 = RC ln 2 (6.4)

which can be used to determine capacitance if R is known.

6.2 Measurement of Inductance Using an RL Circuit

An inductor is now connected in series with a battery and a resistor, Fig. 6.2. In circuit
theory, it is customary to denote self-inductance L . L and R represent the circuit’s
entire inductance and resistance respectively.

When a voltage is applied, the current increases in the circuit, i.e. the conduction
electrons are accelerated. The inductive effect is an inertia against this acceleration,
i.e. a resistance. From the positive to the negative pole of the battery, the poten-
tial across the inductor decreases, described by Faraday-Henry’s law of induction,
formula (3.31):

�� − Ri − L
di

dt
= 0 (6.5)

Fig. 6.2 Inductor, resistor
and battery connected in
series

R

L
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If the battery is connected at time t = 0 the solution becomes

i = ��

R
(1 − e−t R

L ) (6.6)

with half-time

T1/2 = L

R
ln 2 (6.7)

from which inductance can be determined if R is known. As in the capacitor case the
time-lapse is short making it necessary to use a pulse generator and an oscilloscope.

6.3 The Oscillation Circuit

Many instruments that measure inductance and capacitance utilize the so-called oscil-
lation circuit. Consider the series circuit as in Fig. 6.3. Two cases will be analysed.
Firstly, the battery generates a constant voltage and secondly a voltage that varies
sinusoidally with time. This latter case is suitable for studying the important reso-
nance phenomena. Oscillatory solutions are sought in both cases.

6.3.1 The RLC Circuit with Constant Input Voltage

The potential equation is formulated for the circuit in Fig. 6.3:

�� − Ri − q

C
− L

di

dt
= 0 (6.8)

Differentiating with respect to time makes the first term vanish since the input
voltage is constant:

1

LC
i + R

L

di

dt
+ d2i

dt2 = 0 (6.9)

The solution to this homogeneous differential equation of second order is found
by first determining the roots m to the characteristic equation

Fig. 6.3 Capacitor, inductor,
resistor and battery
connected in series

R

L C
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m2 + R

L
m + 1

LC
= 0 (6.10)

This second-order equation has two roots

m1 = − R

2L
+

√
R2

4L2 − 1

LC

m2 = − R

2L
−

√
R2

4L2 − 1

LC
(6.11)

The solution becomes
i(t) = Aem1t + Bem2t (6.12)

so that oscillatory solutions appear only if

R2

4L2 <
1

LC

Then the solution may be written

i(t) =
(

Ae jωt + Be− jωt
)

e− R
2L t (6.13)

where

ω =
√

1

LC
− R2

4L2 and j = √−1 (6.14)

For a non-resistant system the frequency becomes

ω

2π
= 1

2π
√

LC

which is known as the natural frequency of the system.
If current i = 0 at t = 0 then A = −B so that

i(t) = D sin(ωt)e− R
2L t (6.15)

The constant D is determined by noting that at t = 0 there is neither charge q on
the capacitor nor current i in the circuit so that formula (6.8) gives

�� = L
di

dt
|t=0 = LωD ⇒ D = ��

ωL
(6.16)
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Fig. 6.4 Current in a
damped oscillation circuit
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Formula (6.15) describes an attenuated oscillating current. The attenuation may
be used to determine L and the oscillation to determine C , assuming R is known.

A typical time dependence is shown in Fig. 6.4.
There are many mechanical analogues to this oscillation sequence. Consider for

example a weight connected to a spring. At the turning points the energy is purely
potential and at the equilibrium point the energy is purely kinetic. In the electric RLC
circuit the turning points correspond to a collection of electrons on the capacitor plate
storing purely electric energy. The kinetic energy corresponds to magnetic energy
stored as current in the circuit (compare formula 3.12). The attenuation arises due to
friction, i.e. resistance R. In Exercise (6.7) this analogy is further explored.

6.3.2 Forced Oscillation Circuit

Now let the voltage source generate an oscillating force on the electrons. A resonance
phenomenon will then appear similarly to what would happen if an external force acts
on the spring system as in the previous section. When the frequency of the external
force equals the natural frequency of the spring system very large amplitudes appear
known as resonance.

Assume the battery provides a time-harmonic (sinusoidal) voltage with angular
velocity ωs (index s for ‘source’) which by simplicity is described by a complex
exponential function:

�� = ��0e jωs t (6.17)

The solution is then complex and the physical current given by its imaginary part.
In analogy with formulas (6.8) and (6.9), the equation becomes (c for complex)
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1

LC
ic + R

L

dic

dt
+ d2ic

dt2 = Fe jωs t (6.18)

where F = j��0ωs/L

According to the formalism of differential equations, the current is the sum of the
solution to the homogeneous equation (6.9), and a particular solution of (6.18). For
the latter the simplest possible solution is tested (p for particular):

i p
c = Ae jωs t (6.19)

which is introduced in (6.18):

(
1

LC
+ R

L
jωs − ω2

s

)
Ae jωs t = Fe jωs t (6.20)

so that

A = F
1

LC + R
L jωs − ω2

s

=
( 1

LC − ω2
s − R

L jωs
)

F( 1
LC − ω2

s

)2 + ( R
L ωs

)2

=
(

j
( 1

LC − ω2
s

) + R
L ωs

)
ωs
L ��0( 1

LC − ω2
s

)2 + ( R
L ωs

)2 (6.21)

A is now written in polar form:

A = |A| e− jϕ (6.22)

where

|A| = |F |√( 1
LC − ω2

s

)2 + ( R
L ωs

)2
(6.23a)

and

tan ϕ = −
1

LC − ω2
s

R
L ωs

= ωs L − 1
ωsC

R
(6.23b)

The complex particular solution becomes:

i p
c =

ωs
L ��0√( 1

LC − ω2
s

)2 + ( R
L ωs

)2
e j (ωs t−ϕ) = ��0e j (ωs t−ϕ)√(

1
ωsC − Lωs

)2 + R2

(6.24)

The full solution is formula (6.15) plus the imaginary part of (6.24):
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i(t) = ��0

ωL
sin(ωt)e− R

2L t

︸ ︷︷ ︸
Transient

+ ��0√(
1

ωsC − Lωs

)2 + R2

sin(ωs t − ϕ)

︸ ︷︷ ︸
Stationary

(6.25)

The first term is transient since it is damped and vanishes with time. The final
current in the circuit, the so-called stationary current, corresponds to the second term
which is utilized in resonance circuits. Note that the current in such a circuit is shifted
an angle ϕ in phase compared to the input voltage.

The current depends on the frequency of the voltage source and reaches a maxi-
mum at the natural frequency

ωs

2π
= 1

2π
√

LC
(6.26)

known as the resonance frequency at which the current becomes

i(t) = ��0

R
sin(ωs t − ϕ) (6.27)

i.e. the circuit is purely resistive. Thus, by determining the maximum current for
varying frequency, the inductance or the capacitance may be determined if the other
is known.

Resonance circuits have wide applications, e.g. as electronic senders and receivers
of different kinds. The voltage source in the circuits above may for example be a
receiving antenna.

6.3.3 Impedance

For the forced RLC circuit above, the stationary current is

i(t � 0) = ��0√(
1

ωsC − Lωs

)2 + R2

sin(ωs t − ϕ) (6.28)

The expression in the denominator is called impedance Z

Z =
√(

1

ωsC
− Lωs

)2

+ R2 (6.29)

and is the generalization of current resistance since the current amplitude is given by

i0 = ��0

Z
(6.30)
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Reactance is defined as

X = ωs L − 1

ωsC
(6.31)

so that the phase shift ϕ becomes

tan ϕ = X

R
(6.32)

Exercise (6.5) further develops the method of using complex numbers when
working with AC (alternating current) circuits, the so-called jω method.

6.4 Summary

The series RC circuit is described by the equation

�� − R
dq

dt
− q

C
= 0 (6.1)

The series RL circuit is described by the equation

�� − Ri − L
di

dt
= 0 (6.5)

The series RLC circuit with a constant battery voltage is described by the equation

�� − Ri − q

C
− L

di

dt
= 0 (6.8)

and with a sinusoidal time dependent voltage source in complex representation

1

LC
ic + R

L

dic

dt
+ d2ic

dt2 = Fe jωs t (6.18)

The physical solution in the latter case is

i(t) = ��0

ωL
sin ωte− R

2L t + ��0√(
1

ωsC − Lωs

)2 + R2

sin(ωs t − ϕ) (6.25)

where the first term is transient and the second is stationary.
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Impedance is defined by

Z =
√(

1

ωsC
− Lωs

)2

+ R2 (6.29)

6.5 Exercises

6.1 Consider a discharge of a fully charged capacitor as in Fig. 6.1 without an
external voltage source. Determine how the current varies in the circuit. How
would you investigate the discharging process in practice?

6.2 Let the voltage source in the RL circuit of Fig. 6.2 generate a square formed
alternating voltage. When the voltage level reaches zero the current will start
to decrease. Determine the current during this interval.

*6.3 Consider two inductors with self-inductances L1 and L2.

M12

L1 L2

a. If they are connected in series, show that the total inductance becomes
L = L1 + L2 + 2M12

L1

L2

M12

where M12 is the mutual inductance.
b. What is the total inductance if the two inductors are connected in parallel?
c. Show that the mutual inductance between two conductors can be expressed

as
M12 = k

√
L1L2 where −1 ≤ k ≤ 1

Hint: Use formula (3.19).
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*6.4 For the resonance circuit with a sinusoidal input voltage, Fig. 6.3, find

a. the momentary input power.
b. the average input power.
c. the phase difference between current and voltage at maximum input power.
d. an expression for the frequency of the input voltage in terms of capacitance

and inductance at maximum input power.

*6.5 For the resonance circuit with a sinusoidal input voltage, Fig. 6.3, consider
current and voltage as complex, so-called phasors, see formula (6.17).

a. Represent current and voltage as vectors in the complex coordinate plane
and indicate their relative phase difference.

b. If complex impedance is defined as

Zc = ��c

ic

show that Zc = Ze jϕ where Z is given by formula (6.29) and ϕ is defined
by formula (6.23a, 6.23b).

c. Represent complex impedance in the complex plane and state the length of
the vector as well as its projection on the two axes.

6.6 A capacitor microphone consists of two parallel plates where one is fixed and
the other is an easily movable membrane.
Both plates have an area A and are connected to a battery voltage �� and to a
load of resistance R.

Sound waves
(longitudinal wave)

C
R

a. If the distance between the plates is changed from d to d + s, how much
charge passes through the load R?

b. Explain how this change in distance occurs in the microphone.

6.7 Consider the oscillating circuit in Fig. 6.3. It is quite instructive to perform an
analogy to mechanical oscillations by considering a damped oscillation of a
ball connected to a spring. The damping may occur due to viscous forces in the
medium in which it oscillates, see figure.



6.5 Exercises 103

Friction constant 

Spring constant k

Formulate the equation of motion for the ball and identify the correspondence
between the mechanical and the electric quantities, defined by Eq. (6.8):

�� − Ri − q

C
− L

di

dt
= 0

Further Readings

M. Alonso, E.J. Finn, Fundamental University Physics, vol. II (Addison-Wesley, Reading, 1983)
H.T. Glisson, Introduction to Circuit Analysis and Design (Springer, New York, 2011)



Chapter 7
Electric and Magnetic Dipoles

... every chemical combination is wholly and solely dependent
on two opposing forces, positive and negative electricity, and
every chemical compound must be composed of two parts
combined by the agency of their electrochemical reaction, since
there is no third force. Hence it follows that every compound
body, whatever the number of its constituents, can be divided
into two parts, one of which is positively and the other
negatively electrical.

Jöns Jacob Berzelius, 1819

The following two chapters deal with electric and magnetic dipoles. An electric
dipole is a neutral system consisting of two electric poles with the same amount of
charge but with different signs. A magnetic dipole is described analogously by a
north and a south pole, a terminology which originates from geomagnetism. A more
basic description is a simple current loop.

Dipoles are important for two main reasons:

• As an approximation to systems, both macroscopic and microscopic, in the far
distance.

• As a model for electric and magnetic material properties at a microscopic level.

In this chapter the interaction between a dipole and different objects are discussed.
Particularly important is the interaction energy between two dipoles which will be
derived for both the electric and the magnetic case. These formulas are fundamental
for the dynamics of nature.

Chapter 8 discusses material properties resulting from dipole dynamics.

7.1 Electric Dipole

The electric dipole is illustrated in Fig. 7.1. Its poles are point-like and the line
between them reflects the fact that the charges are bound to each other. The dipole
properties are given by the charge q and the distance vector l between the poles. The
dipole moment is

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-13171-9_7
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Fig. 7.1 Electric dipole

-q

q
l

p̄ = ql̄ (7.1)

and is directed from minus to plus pole.
The interaction between an electric dipole and another object stores electric energy

which can be derived as follows. The dipole is in the potential �, associated with the
other object, Fig. 7.2. Let the dipole be so small that the distance between its poles
is infinitesimal.

Since U = q�(r+) − q�(r−) = qd� = qdr̄ · ∇�, the energy becomes

U = p̄ · ∇� (7.2)

This is the interaction energy between the dipole and the system which generates
the potential �.

The force on the dipole is

F̄ = −∇U = −∇( p̄ · ∇�)

= −∇� × (∇ × p̄︸ ︷︷ ︸
=0

) − p̄ × (∇ × ∇�︸ ︷︷ ︸
=0

) − (∇� · ∇) p̄︸︷︷︸
=0

− ( p̄ · ∇)∇�

Only the last term is non-vanishing since p is a constant and term no 2 contains
the curl of a gradient which vanishes identically. The force becomes

F̄ = −( p̄ · ∇)∇� (7.3)

The dipole also experiences a torque τ :

τ̄ = −dU

dθ
θ̂ = − d

dθ
( p̄ · ∇�)θ̂

= p |∇�| sin θ θ̂ Unconventional direction! (7.4)

Fig. 7.2 A dipole with
length dr interacts with an
arbitrary system to the left

-q

q

drr-

r+
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where θ is the angle between the dipole moment and the gradient of the potential.
The rotation takes place until θ = π , i.e. when p and ∇� are anti-parallel. The
torque is then zero and the energy (7.2) is at a minimum. The sign in the first equality
of formula (7.4) is not generally valid but has to be chosen according to the specific
circumstances. In this case, the minus sign is adequate since the energy decreases
when θ increases from 0 to π .

The direction of a rotational motion is conventionally defined as perpendicular to
the motion according to the right-hand rule, see figure in Exercise (4.13). The reason
for this definition can be understood from formula (7.4) since this formula may then
be written as a general cross product

τ̄ = − p̄ × ∇� (7.5)

This dynamic will now be investigated in a few examples.

7.1.1 Interaction Between Dipole and Point Charge

Consider the interaction between a dipole and a point charge placed at the origin,
Fig. 7.3. What is the energy and the force?

The potential from a point charge is

� = q

4πε0r
(7.6)

and accordingly the energy is

U = p̄ · ∇� = − q

4πε0r2 r̂ · p̄ (7.7)

The force is obtained using formula (7.3)

F̄ = −( p̄ · ∇)∇� = q

4πε0
( p̄ · ∇)

r̄

r3

= q

4πε0

(
px

d

dx
+ py

d

dy
+ pz

d

dz

)
(x x̂ + y ŷ + zẑ)

(x2 + y2 + z2)3/2 (7.8)

Fig. 7.3 A point charge q
interacts with a dipole p

q

p
r
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which is the force on the dipole since the point charge is located at the origin. This
formula contains a derivative of a product which can be evaluated component-wise
so that

Fx = q

4πε0

(
−3

p̄ · r̄

r5
x + px

r3

)
x̂ (7.9)

and analogously for Fy and Fz . Expressed in vector form the force is

F̄ = q

4πε0

(
−3

p̄ · r̂

r3 r̂ + p̄

r3

)
(7.10)

The verification of these two last formulas as well as the determination of torque
are left to Exercise (7.2).

7.1.2 Dipole-Dipole Interaction

The next example examines the interaction between two dipoles, e.g. two molecules.
To find the energy, the potential generated by a dipole, �dipole, is first determined.
This is achieved by summing the potentials from the two poles, Fig. 7.4.

The potential from a positive point charge is denoted �. Thus,

�dipole = �(|r̄+|) − �(|r̄−|) = �(|r̄+|) − �(|r̄+ + dr̄ |)
= −dr̄ · ∇� = q

4πε0r2 dr̄ · r̂ = p̄ · r̂

4πε0r2 (7.11)

where r is the distance from the pointlike dipole to the point where the potential
is given. Denote the position vectors of the two dipoles r1 and r2 respectively and
the distance between them R, Fig. 7.5. Let the dipole p2 be located in the potential
generated by dipole p1 so that using formula (7.2) energy becomes

U = p̄2 · ∇
(

p̄1 · R̂

4πε0 R2

)
(7.12)

The gradient of a scalar product is found in a handbook, compare formula (7.3).
Treating the dipole moments as constant, the energy becomes

Fig. 7.4 Electric potential
generated by a dipole

-q

q

drr-

r+
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Fig. 7.5 Interaction between
two dipoles

p2

p1

Rr1

r2

U = p̄2

4πε0
·
[

p̄1 ×
(

∇ × R̂

R2

)
+ ( p̄1 · ∇)

R̂

R2

]
(7.13)

The first term contains

∇ × R̂

R2 = ∇ × ∇ 1

R
= 0 (7.14)

and the second term

( p̄1 · ∇)
R̂

R2 = −3
p̄1 · R̂

R3 R̂ + p̄1

R3 (7.15)

in analogy with formula (7.9).
The energy may then be written

U = 1

4πε0 R3 [ p̄1 · p̄2 − 3( p̄1 · R̂)( p̄2 · R̂)] (7.16)

The evaluation of force and torque is left to Exercise (7.16).

7.1.3 Interaction Between a Charged Plate and a Dipole

In Sect. (4.1.3) the force between a point charge q and a large homogeneously charged
plate was found to be F = σq/(2ε0) parallel to the surface normal where σ is the
surface charge density of the plate. Since F̄ = −∇U = −q∇�, the potential from
the plate, oriented in the yz plane as in Fig. 7.6, becomes

� = − σ

2ε0
x (7.17)

up to a constant which is put to zero. The interaction energy between the plate and
a dipole becomes
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Fig. 7.6 Interaction between
a large charged plate and
dipole p

x

σ
p

U = p̄ · ∇� = px
d�

dx
= − pxσ

2ε0
= − p̄ · n̂σ

2ε0
(7.18)

where n̂ is the surface normal of the plate. If the dipole is oriented such that it lacks
dipole moment along the surface normal of the plate, the energy is accordingly zero.

The force on the dipole becomes

F̄ = −( p̄ · ∇)∇� = 0 (7.19)

since the force on a point charge from a large plate is independent of distance. For
the dipole, the force on the positive and the negative pole are of same magnitude but
are oppositely directed.

However, a torque arises

τ̄ = − p̄ × ∇� = σ

2ε0
p̄ × x̂ = σ

2ε0
p̄ × n̂ (7.20)

which is zero when the dipole moment is parallel or anti-parallel to the plate’s surface
normal n̂.

7.1.4 Generalized Electric Dipole Moment

An arbitrary charge distribution may be assigned a dipole moment and an approxi-
mate description of its interactions may be obtained using the formulas above.

If a system is regarded as a dipole, its interactions generally have to appear at
a rather large distance. Indeed, a system looks like a point far away and is treated
accordingly as a point charge. With decreasing distance, the system’s structure is
revealed with the dipole structure as the first correction to the point character. If the
system’s total charge is zero, its dipole structure is the first approximation. At the
next level the quadrupole structure is revealed, next octupole structure and so on.
Based on a series expansion with respect to distance r , the potential can then be
written
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�(r) = 1

4πε0

(
Q

r
+ p̄ · r̂

r2 + O

(
1

r3

)
quadrupole + O

(
1

r4

)
octupole + · · ·

)

(7.21)

where r is the distance from the center of the system to the observation point. O
denotes order in the series expansion. The figure below illustrates the first four
terms of the multipole expansion. Filled and unfilled poles have the same charge but
opposite signs.

OctupoleQuadrupoleDipoleMonopole

The multipole theory is further discussed in Exercise (7.1) and in appendices AB.
The generalized electric dipole moment is the geometrical mean of positive charge

minus the negative counterpart. In the discrete case, the formula becomes

p̄ =
∑

i

r̄i qi (7.22)

where the sum runs over all charges in the system and r̄i is the position vector for
charge i .

Usually, systems are continuous and described by a charge density ρ(r̄i ). An
infinitesimal volume then contains charge ρ(r̄i )dV and the generalization of formula
(7.22) becomes

p̄ =
∫

V

r̄ρ(r̄)dV (7.23)

where V is the volume of the system.

7.2 Magnetic Dipole

The theory of magnetic dipoles and their interactions shares many of its features with
that for electric dipoles.

The idea of a magnetic dipole moment stems from the permanent magnet which
is described in terms of north and south poles together with the effective length
vector between them. This is in analogy with the electric dipole moment. As is now
well-known, magnetism corresponds to charges in motion and the pole description
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is fictitious. In fact, the magnetic properties of a conventional permanent bar magnet
originate from the electric currents flowing on its surface. This will be studied in
detail in Sect. 8.2.1.

The bar magnet may be thought of as a number of closed parallel current loops,
Fig. 7.7. An ideal theoretical dipole is small and consists of two point-like poles.
Since magnetic charge does not exist the smallest magnetic unit is a dipole. The
smallest possible formation of a magnetic dipole is a point-like permanent magnet,
corresponding to a single closed loop. For reasons of symmetry it must be circular.
In the macrocosm, the exact dipole is really a spherical current distribution and the
simple loop is a good dipole approximation at fairly large distance, see Sect. 8.2.2.3.

The question is then what dipole moment should be attributed to this object. The
convention is to define the magnetic dipole moment analogously to the electric. It is
therefore necessary to investigate how two parallel circular loops interact and then
use the equivalence of formula (7.16) (electric dipole-dipole energy) to define the
magnetic dipole moment. Let the loops be positioned far from each other so that
they are perceived as small. Their interaction energy is given by formulas (3.19)
and (4.64):

U = μ0 I1 I2πa2b2

2R3 (7.24)

where a and b are the radii of the respective loop and R is the distance, Fig. 7.8.
The direction of a magnetic dipole moment is defined as the surface normal to

the loop, according to the right-hand rule with current as reference direction, see
figure in Exercise (4.13). For the same current direction, the dipole moments are
parallel and directed along the distance vector R. The currents are treated as constant
so that the force is given by (4.66). As discussed in Sect. 3.3.1, the total energy
is then minimized, since it is understood that the currents are maintained by an
external battery.

Fig. 7.7 A permanent
magnet, on the right,
corresponds to a set of
parallel conducting loops, on
the left

North

South

I

Fig. 7.8 Interaction between
two current loops

m1I1
m2I2

R
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The magnetic dipole moment is defined analogously to the electric. In formula
(7.16) the electric dipole moment is replaced by the magnetic so that the expression
for the interaction energy between two magnetic dipoles with dipole moments m1
and m2 becomes

U = − μ0

4π R3 [m̄1 · m̄2 − 3(m̄1 · R̂)(m̄2 · R̂)] (7.25)

where 1/ε0 has been replaced by the magnetic permeability μ0. Also, a minus sign
has been introduced since the magnetic energy is maximized for constant currents.
Formula (7.25) is derived in Appendix B.

If the dipole moments are parallel to the distance vector R, as in Fig. 7.8, the
energy becomes

U = μ0

2π R3 m1m2 (7.26)

The energy is positive, which indicates an attractive force. Comparison with for-
mula (7.24) gives

m̄1 = I1πa2n̂1

m̄2 = I2πb2n̂2
(7.27)

where n̂ is the surface normal. The dipole moment for a circular current loop is thus
its current times its area. This is generally valid for closed loops with a fixed surface
normal.

7.2.1 Interaction Between a Magnetic Dipole and a Large
Current-Carrying Plate

Consider the interaction between a large current-carrying plate and a magnetic dipole.
The latter consists of a single loop which is arbitrarily oriented and carries a constant
current I .

It was shown in Sect. 4.2.3 that the force on a current element IdL from a large
current-carrying plate is independent of distance and given by formula (4.45)

d F̄ = I d L̄ × μ0

2
(K̄ × n̂) (4.45)

With the coordinate system as in Fig. 7.9 (see also figure in Exercise 7.9) formula
(4.45) becomes

d F̄ = I d L̄ × ŷ
μ0 K

2
(7.28)
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Fig. 7.9 Circular loop with
dipole moment m interacts
with a large plate

x

y

y

m

z

z

r

K

IdL

where K is current per unit length in the y direction and the plate is parallel to the
yz-plane. The current direction in the plate is parallel to the z axis and its surface
normal n̂ points in the positive x direction.

For a circular loop close to the plate the translational force vanishes since opposite
current elements give opposing forces (d L̄ changes sign). Considering the loop as a
bar magnet, the forces on the fictitious poles cancel since the force is independent of
distance. This is equivalent to the electric dipole’s interaction with a large charged
plate, Fig. 7.6.

However, as in the electric case a torque τ arises:

d τ̄ = r̄ × d F̄ = I
μ0 K

2
r̄ × (d L̄ × ŷ) = I

μ0 K

2
[d L̄(r̄ · ŷ) − ŷ(r̄ · d L̄︸ ︷︷ ︸

=0

)] (7.29)

where the last equality follows from vector algebraic rules. For a circle the radius r
is perpendicular to dL so the last term vanishes. Torque becomes

τ̄ = I
μ0 K

2

∮

C

(r̄ · ŷ)d L̄ = I
μ0 K

2

∫

S

dā × ∇(r̄ · ŷ)

= I
μ0 K

2

∫

S

dā × ŷ = μ0 K

2
m̄ × ŷ
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where S is the area defined by the circle and dā is a surface element. In the second
equivalence, a version of Stokes’ theorem has been used. In coordinate free form the
torque becomes

τ̄ = μ0

2
m̄ × (K̄ × n̂) (7.30)

and the dipole moment of the loop is

m̄ = I
∫

S

dā (7.31)

Thus, the loop orients with its dipole moment either parallel or anti-parallel to the
y axis, depending on the current direction of the plate.

The interaction energy may be determined from the torque since

τ̄ = −dU

dθ
θ̂ =

∣∣∣∣μ0 K

2
m sin θ

∣∣∣∣ θ̂ Unconventional direction! (7.32)

where θ is the angle between the dipole moment m and the y axis, Fig. 7.9. Note
that the energy principle for torque is applicable only if the direction of the torque is
along the rotational motion. For reasons discussed in Sect. 7.1 the direction of torque
is redefined to become perpendicular to the motion, in accordance with formula
(7.30).

As in the electric case, formula (7.4), the sign of the first equality in formula
(7.32) must be determined from the specific conditions. Referring to Fig. 7.9 with
the current K in the positive z direction, the magnetic torque acts so as to turn the
loop towards θ = 0. Consequently dθ < 0, increasing the magnetic energy to a
maximum at the stable equilibrium. Therefore

U = μ0 K

2
m̄ · ŷ = μ0

2
m̄ · (K̄ × n̂) (7.33)

which is generally valid for loops with a fixed surface normal.
Considering magnetism at an atomic level with electron spins and electron orbitals

as its source, the currents should be treated as constant. As a consequence, the
magnetic interaction energy is maximized. This is why ferro- and paramagnetic
materials are attracted by an external influence, see Chap. 8. Which voltage source
that maintains the current in these cases is a particularly interesting issue.

7.2.2 Induced Voltage in a Rotating Loop Interacting
with a Current-Carrying Plate

In Sect. 3.5 Faraday-Henry’s induction law was derived. This will now be applied
to a generator construction. Consider two conductors where conductor 1 carries a
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current. A voltage is induced in conductor 2 according to formula (3.32)

ε2 = M12
d

dt
I1 + I1

d

dt
M12 (7.34)

The second term is a so-called motional induction which arises through a change
of the geometrical relation between the two conductors, achieved either by relative
translational or rotational motion of some segment or the whole conductor.

For example, let conductor 1 be a large plate with a constant current I1 in the
z direction and let conductor 2 be a loop close to the plate, Fig. 7.9. Assume the
dipole approximation to be valid for this loop. If the loop is rotating, a voltage will
be induced because of the motional induction term in formula (7.34), which will now
be determined. In principle, Neumann’s inductance formula (3.30) may be utilized
to determine the mutual inductance, which will be time dependent since the angle
between two length elements varies with time. Alternatively, a short-cut through the
energy may be chosen, using formula (7.33). From formula (3.19), the interaction
energy is

U = M12 I1 I2 (7.35)

Rewriting (7.33) in terms of current such that I1 = K Y , where Y is the length of
the plate along y, and m̄ = I2 Ā = I2 An̂2 with A being the area of the loop, energy
becomes

U = μ0
I1

2Y
I2 An̂2 · ŷ = μ0

I1

2Y
I2 A cos θ (7.36)

where θ is the angle between the y axis and the surface normal of the loop. The
mutual inductance becomes

M12 = μ0 A cos θ

2Y
(7.37)

The induced voltage in the loop (conductor 2) becomes

ε2 = I1
d

dt
M12 = −μ0 K

2
A sin θ

dθ

dt
(7.38)

where dθ/dt is called angular velocity.

7.2.3 Generalized Magnetic Dipole Moment—Interaction
Between Rotating Cylinders

As a further example of magnetic dipole moment, consider the interaction between
two homogeneously charged rotating cylinders in the dipole approximation. Since the
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magnetic dipole moment formula (7.31) is valid only for closed loops, a generalized
formula must first be developed and the dipole moment for this case determined.
Then the magnetic energy is derived utilizing formula (7.25). In addition, there is in
this case also electric energy.

The dipole moment, formula (7.31), is generalized in the following way (see also
Appendix B)

m̄ = I
∫

S

dā = 1

2
I
∮

C

(r̄ × d L̄) = 1

2

∫

V

(r̄ × J̄ )dV (7.39)

valid for an arbitrary current distribution with volume V and current density J ,
defined by the relation I d L̄ = J̄ dV , compare formula (2.5) and Exercise (2.24).

Denote the length l, the radius a, the charge Q and the angular velocity about
the cylinder axis ω, Fig. 7.10. The coordinate system is chosen such that its origin is
at the centre of the cylinder. The current density is obtained from formula (2.5) as
J̄ (r) = ρch v̄(r) where ρch is charge density and v̄ is the velocity of a charge element
at position r . This motion is due to the rotation of the cylinder so that

J̄ (r) = ρchω̄ × r̄ (7.40)

Using cylindrical coordinates the position vector is r̄ = ρρ̂ + zẑ and the current
density becomes J̄ (r) = ρchωρφ̂. The integrand of (7.39) may then be written

r̄ × J̄ = ρchρ2ωẑ − ρchωρzρ̂ (7.41)

which is introduced in (7.39)

m̄ = 1

2

a∫

0

l/2∫

−l/2

2π∫

0

ρchρ2ωρdφdzdρ ẑ − ρchωρzρdφdzdρρ̂ (7.42)

The ρ component vanishes after the integration over φ and the dipole moment
becomes

m̄ = 1

4
πρchωla4 ẑ (7.43)

Fig. 7.10 A charged
cylinder rotates about its axis
of symmetry (the z axis)

l

a

z

Q
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Fig. 7.11 Interaction
between charged rotating
cylinders

m1
m2

R

Applying the dipole approximation, valid at large distance, the energy is given by
formula (7.25).

Consider for example two rotating charged parallel cylinders at a large distance
R from each other, oriented as in Fig. 7.11.

The dipole moments are parallel and perpendicular to the distance R. The magnetic
energy becomes

U = − μ0

4π R3 m1m2 (7.44)

For equal rotation directions the energy is negative. If the rotational speed is
maintained by an external source, i.e. a constant current is provided, a repulsive
magnetic force results.

In this case, there is an electric force as well, also repelling for like charges.

7.3 Summary

The electric dipole moment for an ideal dipole is defined as

p̄ = ql̄ (7.1)

The general definition for an electric dipole moment is

p̄ =
∫

V

ρ(r̄)r̄dV (7.23)

An electric dipole interacting with a system associated with a potential � gives
rise to the electric energy

U = p̄ · ∇� (7.2)

Two interacting electric dipoles give rise to the electric energy

U = 1

4πε0 R3 [ p̄1 · p̄2 − 3( p̄1 · R̂)( p̄2 · R̂)] (7.16)
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The magnetic dipole may approximately be modelled by a current loop with the
dipole moment

m̄ = I
∫

S

dā (7.31)

The generalized magnetic dipole moment is

m̄ = 1

2

∫

V

(r̄ × J̄ )dV (7.39)

Two interacting magnetic dipoles give rise to the magnetic energy

U = − μ0

4π R3 [m̄1 · m̄2 − 3(m̄1 · R̂)(m̄2 · R̂)] (7.25)

The interaction energy between a magnetic dipole and a large plate with current
density K and surface normal n̂ is

U = μ0

2
m̄ · (K̄ × n̂) (7.33)

7.4 Exercises

*7.1 Multipole expansion

As was discussed in Sect. 7.1.4, an arbitrary charge distribution may be
expressed as a series of terms corresponding to different orders of multi-
poles, starting with the monopole and the dipole.

Consider the charge distribution in the figure. For an interaction at long
distances, i.e. r � r ′, it is worthwhile to series expand the potential (also
known as Taylor or MacLaurin expansion).

V’

r’

R Interaction   
point

r

Simplify the notation by putting 1/(4πε0) = 1.



120 7 Electric and Magnetic Dipoles

a. Show that the electric potential may be expressed as

�(r) =
∫

V ′

ρ(r ′)dV ′

r(1 + r ′2−2r̄ ·r̄ ′
r2 )1/2

and can be series expanded

�(r) =
∫

V ′

ρ(r ′)dV ′
r

(
1 + r̄ · r̄ ′

r2 −1

2

r ′2
r2 + 3

8

(r ′4 − 4r ′2r̄ · r̄ ′ + 4(̄r · r̄ ′)2

r4 + · · ·
)

b. Keep terms up to order 1/r3 and show that

�(r) = 1

r

∫

V ′
ρ(r̄ ′)dV ′+ r̄

r3 ·
∫

V ′
r̄ ′ρ(r̄ ′)dV ′+ 1

2

∫

V ′

(
3(r̄ · r̄ ′)2

r5
− r ′2

r3

)
ρ(r̄ ′)dV ′

c. The first term is the potential from a monopole, the second from a dipole
(see formulas (7.11) and (7.23)) and the third from a quadrupole.

Show that the quadrupole term Q may be written in coordinate form

Q = 1

2

3∑
i=1

3∑
j=1

xi x j

r5

∫

V ′
(3x

′
i x

′
j − δi j r

′2)ρ(r̄ ′)dV ′

where the integral is known as a quadrupole moment

Q
′
i j =

∫

V ′
(3x

′
i x

′
j − δi j r

′2)ρ(r̄ ′)dV ′

δi j =
⎧⎨
⎩

1 i = j

0 i �= j

x1, x2, x3 corresponds to x , y, z.
d. How many elements of Q

′
i j are independent?
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7.2 a. Determine the general formula for the torque acting on the dipole in
Fig. 7.3.

b. Verify formulas (7.9) and (7.10).
c. Project task: Write a computer program that animates the interaction

between a point charge and a dipole.

Take note of the following:

Consider both translational force and torque. The forces are mutual accord-
ing to Newton’s third law. In an animation, the forces should be calculated
in time steps. For each step the positions of both objects are altered which
have to be calculated. At these actual positions, a new force and torque
calculation has to be done.

Use for example Matlab or Matematica.

7.3 A water molecule positioned at the coordinate origin with dipole moment
along the z axis interacts with a Sodium ion placed on the x axis at the
coordinate x = 1.0µm. The electric dipole moment of a water molecule is
6.2 × 10−30 Cm.

H+

H+

O2- 105°

a. Determine force and torque on the water molecule.
b. The structure of a water molecule is shown in the figure. Knowing

its dipole moment, given above, determine the distance between the
hydrogen atoms.

7.4 Show that for both electrically neutral and magnetic systems, the dipole
moment is independent of the location of the coordinate system’s origin.

Hint: Use formulas (7.23) and (7.39) and make the coordinate transforma-
tion r̄ → r̄ + ā.

7.5 Consider a charge distribution where two electrons are located at the two
lower corners of a square and two protons in the upper corners. The square
has a side length h.
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Determine the electric dipole moment of the system using a coordinate
system with origin

a. at the lower left corner of the square.
b. at the centre of the square.

Is the result in accordance with the theorem obtained in Exercise (7.4)?
c. Determine the quadrupole moment of the system for the two different

coordinate systems as above.

7.6 A sphere of radius a has a homogeneous positive charge q on its upper half
and a homogeneous negative charge on its lower half. Total charge is zero.

Determine its electric dipole moment.

7.7 Apply formula (7.22) for an idealized dipole and compare with formula
(7.1).

7.8 Determine the magnetic dipole moment for a rectangular loop with sides a
and b carrying current I .

7.9 Determine torque and force on a square loop with sides b and current I2
interacting with a large current-carrying plate with surface current density
K ẑ. The loop is oriented such that its surface normal is in the xy plane, see
figure.

x

y

Y

K

-m
Square
loop

Plate with constant 
linear current density  K

I2 n̂

7.10 Motor and generator

Suggest a construction for a

a. motor based on the principles in Exercise (7.9).
b. generator based on the induction principle discussed in Sect. 7.2.2.
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7.11 Consider Exercise (7.9)

a. Is there any difference in induced voltage between a motion such that
the dipole moment of the loop rotates around the x axis and that around
the z axis (as in Exercise 7.9)?

b. What is the induced voltage for a rotation around the y axis?

*7.12 Explain why an ideal coil (a solenoid) is equivalent to two large parallel
plates with opposite homogeneous currents.

Hint: Compare formula (4.89) in Exercise (4.13) with formula (7.33).

*7.13 In this task mass is denoted by μ and angular momentum by L (not to be
confused with self inductance).

Consider a discrete system consisting of charges in motion.

a. Show that the magnetic moment can be written

m̄ = 1

2

∑
i

r̄i × qi v̄i

where r is the position vector, q is charge and v is velocity.

b. Introduce angular momentum L and show that the magnetic moment
may be expressed as

m̄ =
∑

i

qi

2μi
L̄ i

where μi is the mass of charge i .

C* 7.14 Two spherical charge distributions with charge densities ρ1 and ρ2 and
radii a1 and a2 respectively are located on the x axis at a distance d from
each other. Both rotate with constant angular velocities ω1 and ω2 in the z
direction.

a. Determine the magnetic force in the dipole approximation.
b. Determine the total force.
c. Next let them rotate in opposite directions and determine for which angu-

lar velocity the interaction vanishes. In this case, let the spheres have the
same radii, angular speeds and charge densities.

d. For the same conditions as in task c, let the objects move in parallel
with velocity v̄ = vẑ. Determine the resulting force and state the rela-
tion between angular and translational velocity for which the interaction
vanishes.
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e. Additional task: Discuss qualitatively the possibility of neutralizing grav-
itation and thereby facilitating space travel, a subject that is sometimes
encountered in science fiction.

*7.15 A magnetic dipole m1 is fixed at the origin and directed in the positive z
direction. Another free dipole m2 is placed somewhere in the xz plane.

R

m2    
2

m1

1

a. Let the distance R be fixed and show that the relation between the angles
θ1 and θ2, defined in the figure, is

tan θ2 = −1

2
tan θ1 (7.45)

b. Draw a graph showing how m2 orients over the whole xz plane.
c. Draw a corresponding graph for the electric case.
d. Suggest how these phenomena may be investigated experimentally.

Compare Fig. 10.1.

C* 7.16 Force and torque between interacting dipoles

a. Derive general formulas for force and torque between two dipoles for
both electric and magnetic interactions.

b. Consider two water molecules, each with dipole moment 6.2×10−30 Cm.
Let one of them be located at the coordinate origin with its dipole moment
along the z axis. The other one is placed on the x axis at the coordinate
x = 1.0µm with its dipole moment forming an angle of 45◦ to the z
axis.

Determine torque and force on the molecules.

7.17 Consider the two interactions in the figure. The upper object is a fixed
current loop with surface and current given in the figure.

a. Let the loop interact with a constantly rotating sphere as in the left figure.
The sphere has radius a, charge density ρ and angular velocity ω̄ = ωẑ.
In the dipole approximation, determine the magnetic energy for parallel
and anti-parallel dipole moments. Which state is a stable equilibrium?

b. Let the loop interact with a constant current loop as in the right figure.

Determine the magnetic energy for parallel, perpendicular and anti-parallel
dipole moments.
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z

x

A1A

R

I1I

A2

I2

Task a corresponds to the classical, i.e. non-quantum mechanical, model
of electron and nuclear spin resonance. Task b corresponds to the classical
model of the Zeeman effect, in which the lower loop mimics an electron
orbital.

7.18 Geomagnetism

Certain planets in the solar system possess magnetic properties which may
be approximated as dipoles (Table 7.1).

Earth's
equatorial plane 

Jupiter's
equatorial plane

Earth's
magnetic
moment

Jupiter's magnetic 
moment

11.5°

9.6°

a. Using the table and the figure, determine the magnetic force between the
Earth and Jupiter, see Exercise (7.16). Compare with the gravitational
force.
Let the Sun, the Earth and Jupiter be located on a common axis and use
the average distance as the actual distance.

b. How might geomagnetism arise?

Table 7.1 Data for Excercise (7.18)

Planet Average
distance
to Sun
(m)

Tilt of
rotational
plane

Mass
(kg)

Magnetic
dipole
moment
(Am2)

Angle
between
magnetic
dipole and
equator plane

Earth 144 × 109 23.5◦ 5.97 × 1024 8.8 × 1022 NS 11.5◦

Jupiter 749 × 109 3.1◦ 1.90 × 1027 1.5 × 1027 SN 9.6◦
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c. The planet Venus does not possess magnetic properties. What could be
the reason for this?

d. It has been established that migrating animals in air and at sea utilize
geomagnetism as a navigation aid. In several different species it has
been discovered that the brain contains specialized cells filled with the
permanently magnetic material magnetite. The magnetic dipole moment
for such a cell in a salmon trout has been measured to be approximately
10−13 Am2.

Also cranes are believed to have a magnetic navigation ability. Assume
its magneto-sensitive cell to have the same dipole moment as the trout.
Determine the torque on such a cell if the crane is flying at an altitude of
10 000 m with its distance vector parallel to the dipole moment of the earth
and a relative orientation between the dipole moments of 90◦.

Hint: Use the result in Exercise (7.16a).

7.19 The astronomical H line

In the 1950s, the so-called H line was discovered in radio-astronomical
observations, corresponding to microwaves with a wavelength of 21 cm. Its
source was identified as a so-called hyperfine splitting of the energy levels
of the hydrogen atom. Since the source is hydrogen, the dominating sub-
stance of stars, it could be used for a precise measurement of the density of
stars and was utilized, among other things, to establish the spiral structure
of the Milky Way.

As is known from high-school physics, atoms are described by quantum
mechanics. According to the Bohr model of the atom, an interaction takes
place by a change in the atom’s energy level. Quantum mechanics has
revealed that a registration of a wavelength of 21 cm corresponds to an
atomic energy change of 9.4×10−25 J. What could be its dynamical source
in the hydrogen atom?

It was soon established that its source is the interaction due to the spins of
the proton and the electron in the hydrogen atom, i.e. a spin-spin interaction.
The concept of spin corresponds in the macrocosm to a self-rotation, see
Exercise (7.17). Since the proton and the electron are electrically charged,
their spins are associated with a magnetic dipole moment. These have been
measured by isolating electrons and protons and letting them interact with
an external source, such as a current-carrying coil. The measured values
are:

me = 9.27 × 10−24 Am2

m p = 2.86 × 10−26 Am2
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Fig. 7.12 The hydrogen
atom is modelled with a
proton as the nucleus and an
electron orbiting around it.
The relative orientations of
their magnetic dipole
moments can either be
parallel (left) or anti-parallel
(right)

mp

me

a0

mp

me

a0

From these data, determine the energy change of the hydrogen atom when
the relative orientation of the proton and electron spins changes from par-
allel to anti-parallel. The spins are oriented perpendicular to the distance,
which in the Bohr model is a0 = 0.5 × 10−10 m (Fig. 7.12).

Answer:

From formula (7.25), the energy change is

�Um = 2
μ0

4π R3 mem p = 2.1 × 10−25 J

where the factor 2 arises since the two energy levels, corresponding to par-
allel and anti-parallel spins, differ only by sign.

The obtained value is correct in magnitude, indicating that the dynamics is
identified. The deviation is due to so-called quantum mechanical effects.
These appear because in microcosm it is not possible to consider the objects
as distinct particles; they have an extension in both time and space. This
extension is described by a probability function, expressed with a so-called
wave function, specifying the functional form of the extension. Practically,
it means that the distance R is not unique, but each distance value has to be
weighted against a certain probability. In this case, there is a certain prob-
ability even for R = 0 which will contribute largely to the energy since
there is a division by zero in formula (7.25). However, this is done over
an infinitesimal interval in space so the final result is finite. This effect is
called Fermi’s contact term, named after the discoverer and gives rise to
the dominating part of the energy difference.

This example illustrates the importance of quantum mechanics and could
be a good starting point for its study. Also note that this example connects
microcosm to astronomy, the smallest to the largest.



128 7 Electric and Magnetic Dipoles

Further Readings

W.D. Parkinson, Introduction to Geomagnetism (Scottish Academic Press, Edinburgh, 1983)
J.R. Reitz, F.J. Milford, R.W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley,

Reading, 1993)

Original Papers

H.I. Ewen, E.M. Purcell, Radiation from galactic hydrogen at 1,420 Mc/sec. Nature 168, 356 (1951)
D. Gubbinsand, T.G. Masters, Driving mechanism for the Earth’s dynamo. Adv. Geophys. 21, 1

(1979)



Chapter 8
Material Properties

One of the most immediate consequences of the electrochemical
theory is the necessity of regarding all chemical compounds as
binary substances. It is necessary to discover in each of them the
positive and negative constituents… No view was ever more
fitted to retard the progress of organic chemistry. Where the
theory of substitution and the theory of types assume similar
molecules, in which some of the elements can be replaced by
others without the edifice becoming modified either in form or
outward behaviour, the electrochemical theory divides these
same molecules, simply and solely, it may be said, in order to
find in them two opposite groups, which it then supposes to be
combined with each other in virtue of their mutual electrical
activity… I have tried to show that in organic chemistry there
exist types which are capable, without destruction, of
undergoing the most singular transformations according to the
nature of the elements.

Jean-Baptiste-André Dumas, 1828

Electric and magnetic material properties are explored via the material’s response
from an external electric and magnetic influence respectively. The strength and direc-
tion of the response may be derived from the inner structure of the material.

In an approximate model, the material is considered to consist of electric dipoles
(except metals) and magnetic dipoles. By measuring the responding force, informa-
tion on the dipole structure of the material is therefore obtained, within this model.

In this chapter, principal experiments are studied and a theoretical description of
the dipole model is developed. The objective is to establish a connection between
macroscopic (measurable) quantities and the basal microscopic dynamics in the
material.

8.1 Electric Response Forces

A material surrounded by air (vacuum) always responds attractively to an external
electric influence. The reason is that the external charge attracts opposite charges in
the material which therefore are placed closer to the external agent, Fig. 8.1.

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-13171-9_8
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Fig. 8.1 An electric influence on a material in vacuum induces and attracts dipoles resulting in an
attractive force

Fig. 8.2 A material is
introduced into a charged
capacitor

+ –
–
–
–
–
–
–
–

+
+
+
+
+
+
+

To explore the electric material response, an equivalent method as in Fig. 5.1 may
be used, Fig. 8.2. When a material is introduced into the capacitor, it is observed
that the voltage between the plates decreases. A non-conductive material, a so-called
isolator or dielectric material, affects the voltage much less than a metal. While
metals were discussed in Chap. 5, this chapter will focus on the isolator.

According to the discussion in Sect. 5.1, the decrease in voltage must be due to a
charge displacement as illustrated in Fig. 8.2. The electric response is quantified by
introducing a parameter called the dielectric constant κe.1 If the voltage without an
inserted material is denoted ��1 and the voltage with a material that fully fills the
space between the plates is denoted ��2, the definition is

κe = ��1

��2
(8.1)

assuming the material is homogeneous.
Since the voltage always decreases when a material is inserted, κe > 1. For an

ideal metal κe becomes infinite.
The dielectric constant may also be expressed in terms of capacitance, see

Sect. 4.1.5. Since the charge Q on the plates is unchanged

κe = ��1

��2
= Q/C1

Q/C2
= C2

C1
⇒ C2 = κeC1 (8.2)

1 The word ‘dielectric’ refers to the dipole character of an isolator. Older name for dielectric constant
is electric relative permittivity with notation εr .
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so that the capacitance for a material filled capacitor increases a factor κe compared
to an empty capacitor.

8.1.1 Electric Force Between a Charged Capacitor
and a Material

The electric response forces are usually very small and difficult to observe. Indeed,
in the last section the measurement required a refined meter. An experiment will
now be described where this force becomes observable and then the active force is
calculated. Figure 8.3 shows the principal process.

An isolator is placed outside a parallel plate capacitor connected to a battery. It is
observed that the material is drawn into the volume between the plates all the way to
the right edge where the force vanishes. Changing the polarity of the capacitor gives
the same result.

Since the force is extremely small the friction has to be minimized for the material
to move. This may be put into practice by placing the material on an air flow track
(see movie on book’s website).

Alternatively, if the apparatus is turned so that the motion of the material occurs
vertically, the force may be measured by a balance working at a precision of one
milligram. To obtain a measurable force, a high voltage up to 6 kV has to be used.
To minimize the influence of the voltage, the plates have to be placed far away from
the balance, Fig. 8.4.

The average force on the material will now be calculated using the energy method.
The energy stored by the capacitor is 1/2 C��2, which increases during the process.
Including the battery energy, the total energy will decrease.

Using formula (1.1), the average force is

〈F〉 = −�UTOT

L
(8.3)

where �UTOT is the difference in total energy with and without material between the
plates, which becomes

Fig. 8.3 An electrically
neutral material interacts
with a charged capacitor. An
attractive force arises

L

dt
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Fig. 8.4 The material is
placed on a balance at the
lower part of the picture. At
the upper part, the parallel
plates are seen which are
connected to a high voltage
source, located in the rear

�UTOT = UD − U0 + �UB (8.4)

where UD and U0 are the capacitor energies with and without material respectively.
�UB is the change of the battery energy and

UD − U0 = 1

2
�C��2 (8.5)

The task of the battery is to maintain the voltage between the plates. In this way,
work is performed by increasing the charge on the plates so that

�UB = �Q�� = −�C��2 = −2(UD − U0) (8.6)

The minus sign in the second equivalence ensures that the stored battery energy
decreases while it is doing work. The total energy change becomes

�UTOT = −(UD − U0) (8.7)

which is negative as expected. Using (8.5)

�UTOT = −1

2
��2(CD − C0) (8.8)
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Fig. 8.5 Capacitor filled
partly with a material

d-t

d

t

The task is then reduced to determining the capacitance of a partly material filled
capacitor, Fig. 8.5. Assuming an ideal capacitor, it is straight-forward to show that
the capacitance is independent of where in the capacitor the material is placed, see
Exercise (8.2). Letting the material be located at the edge of one of the plates, the
capacitor is equivalent to a series coupling of two capacitors. One of them is fully
filled with a material with thickness t , denoted C1. The other is empty with thickness
d − t , denoted C2.

Using formula (4.24) for the capacitance of an ideal plate capacitor, the total
capacitance is (see Exercise 5.5)

CD = C1C2

C1 + C2
= ε0 A

(
κe/t[1/(d − t)]
κe/t + 1/(d − t)

)
= ε0 A

κe

κe(d − t) + t
(8.9)

The energy change may then be written

�UTOT = −1

2
��2ε0 A

(
κe

κe(d − t) + t
− 1

d

)
(8.10)

The average force on the material becomes

〈F〉 = −�UTOT

L
= 1

2
��2ε0

A

L

(
κe

κe(d − t) + t
− 1

d

)
(8.11)

It is worthwhile to reflect upon how this force arises. Consider Fig. 8.3. Since the
ideal approximation has been used only vertical forces on the material are expected.
What is the origin of the horizontal force? It is in fact so-called edge effects that are
active in this case. These were neglected in the calculation and appear because of the
finite size of the plates, see Exercise (5.15). The material will be polarised in such
a way that its negative charges are turned towards the positive plate and vice versa.
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Thus a net horizontal force appears, see Exercise (8.3). Neglecting these effects in
the calculation is justified since the average force was calculated. The edge effects
are approximately equal before and after the process and almost cancel out in the
energy difference, formula (8.7).

8.1.2 The Dielectric Constant—Not a Constant

Measurements of the dielectric constant κe show that it depends on:

• Material
• Temperature
• The strength of the external influence
• The variation frequency of the external influence.

Within the dipole model, the observations are quite comprehensible. Knowing
that the electric dipoles originate in the material’s molecules, the external influence
acts in the following way, Fig. 8.6:

• It induces a dipole moment by displacing the charge distribution within the mole-
cule

• It creates an alignment of the dipoles through a torque according to formula (7.5).

Referring to Fig. 8.6, it may be concluded that a higher degree of alignment of
the dipoles results in a lower voltage between the plates and accordingly a larger
dielectric constant. The degree of alignment varies with the factors above since:

• Higher temperature results in more random dipole motion.
• Stronger external influence results in a higher degree of alignment.
• Higher frequency results in a lower degree of alignment since it takes time for the

dipoles to align.

Table 8.1 shows the dielectric constant for some materials under different condi-
tions.

Fig. 8.6 A possible
orientation of a material’s
dipoles under influence of
charged parallel plates

+
-q q

–

ΔΦ
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Table 8.1 Values of the dielectric constant

Substance Temp (◦C) Pressure (MPa) κe

Water 25 10 78.9

Water 200 10 35.1

Water 550 10 1.1

Ethanol −60 41.0

Ethanol 25 24.3

Frequency (Hz) 103 106 108

Substance Temp (◦C) κe κe κe

Plastic/Nylon 25 3.5 3.1 3.0

84 11.2 4.4 3.4

Vinylite 24 5.6 3.3 2.8

79 8.1 5.5 3.4

Note the different temperature dependence between liquids and solids

8.1.3 Bound Charges

The measurement of the dielectric constant κe provides information about the dipole
dynamics within the material. It is in this way a link to the microcosm. To establish
the connection between macroscopic (observable) and microscopic (model depen-
dent) quantities, the vector polarisation P̄(r̄) is introduced, corresponding to dipole
moment per unit volume. The total dipole moment in the volume V is therefore

p̄ =
∫

V

P̄(r̄)dV (8.12)

The purpose of this section is to establish a relation between the polarisation and
the external influence.

Polarisation P may be related to the net charge created by the dipoles, so-called
bound charge. Consider a material homogeneously polarised between two charged
metallic plates, Fig. 8.7. The voltage between the plates, denoted ��, is the sum of
the voltages generated by the plates �� f and that generated by the material ��b,
so that

�� = �� f + ��b (8.13)

where the index f refers to free charges and b to bound charges. The free charges
are in this case the conduction electrons of the metallic plates. The voltage from the
bound charges becomes

��b = �� − �� f = �� f

κe
− �� f (8.14)
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Fig. 8.7 A material filled
capacitor +charged

plate
–charged

plate
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Note that �� f and ��b have opposite signs (polarity). This formula may be
expressed in terms of surface charge density σ . Using formula (4.23)

σb

ε0
x = σ f

κeε0
x − σ f

ε0
x (8.15)

where σb is the surface charge density for the bound charges and σ f that for the free
charges. Therefore

σb = σ f (
1

κe
− 1) (8.16)

The next step is to establish the relationship between polarisation P and bound
charge density. Assume that x in Fig. 8.7 is the length of a dipole. Denote with A the
parallel and equal areas of the plates and the material, the bound total charge qb and
the number of dipoles N to obtain

σb = qb

A
= qbx

V
= N p

V
= P (8.17)

and

d P

dx
= qb

V
= ρb (8.18)

where V is the volume of the material. These two relations are valid in magnitude.
Including the vector property of polarisation P̄ gives, for each coordinate,

σb = P̄ · n̂ ρb = −∇ · P̄ (8.19)

where n̂ is the surface normal of the material. The minus sign in front of the divergence
of P̄ is explained with reference to Fig. 8.9: When the dipole moment density P
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increases for increasing z, the negative bound charge will dominate over the positive
charge giving a net negative bound charge in the volume.

The relations (8.19) are general and may be used to determine the electric charge
distribution of a material when the polarisation is known.

Next the polarisation is related to the external influence. Using formula (7.17)
for parallel plates gives σ f = ∣∣ε0∇� f

∣∣.2 The bound charge density may then be
obtained from formula (8.16) which is introduced in formula (8.19) and the polari-
sation becomes

P̄ = ε0∇� f

(
1

κe
− 1

)
Special case! (8.20)

where the sign is determined from the fact that polarisation is directed toward decreas-
ing potential. However, formula (8.20) is a special case valid when the external influ-
ence is directed parallel to the surface normal of the material n̂, i.e. ∇� f ∝ n̂, as in
Fig. 8.7. The general case is treated next.

8.1.3.1 Continuity Conditions

The generalization of formula (8.20) may be derived by considering so-called con-
tinuity conditions of the potential at the intersection between two materials.

To illustrate basic principles, materials will be considered which are

• Linear—the material response is proportional to the strength of the external influ-
ence ∇� f

• Isotropic—the material response is directed parallel to the external influence (see
Exercise 8.12)

• Homogeneous—the dipole structure of the material is independent of position in
the material.

Consider a situation as in Fig. 8.8 where the surface normal of the material forms
an arbitrary angle to the direction of the external influence. The dipoles of the material
align along the direction of the external electric force (effectively) and in this way a
row of bound minus charges line up at the surface of the material. Thus, the material
response is such that a constant potential appears along its surface while along the
surface normal the electric response is such as described previously in formula (8.1).

The following continuity conditions are then valid for the gradient of the potential
at the intersection between a material and air/vacuum:

n̂ · ∇�1 = κen̂ · ∇�2 (8.21)

t̂ · ∇�1 = t̂ · ∇�2 (8.22)

2 Distinguish between �� and ∇�. For example, in the x direction ∇� = d�
dx x̂ ≈ ��

�x x̂ .
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Fig. 8.8 Dipole orientation
in material 2 when
influenced by charged
capacitor e
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Since formula (8.20) concerns only the normal component it may be written

Pnn̂ = ε0

(
1

κe
− 1

)
∇� f n = −ε0(κe − 1)

∇� f n

κe
= −ε0(κe − 1)∇�n (8.23a)

as the normal component of the gradient of the potential is scaled down a factor κe

in the material compared to air.
According to formula (8.22), there is no such down-scaling for the tangential com-
ponent of polarisation, wherefore it may be written

Pt t̂ = −ε0(κe − 1)∇� f t = −ε0(κe − 1)∇�t (8.23b)

By summing (8.23a) and (8.23b) polarisation becomes

P̄ = −ε0(κe − 1)∇� (8.24)

where all quantities are given in the material. Formula (8.24) is the generalisation
of (8.20) and is valid for arbitrary direction of the external influence. It establishes
the connection between the microscopic quantity polarisation and the macroscopic
quantity potential.

8.1.4 Three Examples of Polarisation

8.1.4.1 Polarised Cylinder

Consider a non-conductive cylindrical homogeneous material polarised by a long
negatively charged bar, Fig. 8.9. The cylinder length is L and its plate radius is a.
What is its charge distribution?
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The potential from the bar is the external influence (see formulas 1.1, 3.5 and
4.6). Introducing a coordinate axis ρ perpendicular to the bar according to Fig. 8.9,
the potential and its gradient become

� f = − λ

2πε0
lnρ

∇� f = − λ

2πε0ρ
ρ̂ = λ

2πε0(d − z)
ẑ (8.25)

to the left of the bar. λ is linear charge density, i.e. charge per unit length. Since
the electric influence is parallel to the surface normal of the cylinder plate, formula
(8.20) may be used and the polarisation becomes

P̄ = ε0

(
1

κe
− 1

)
λ

2πε0

1

d − z
ẑ (8.26)

Let the objects be located far away from each other so that

P̄ ≈ ε0

(
1

κe
− 1

)
λ

2πε0d

(
1 + z

d

)
ẑ (8.27)

For negative charge densities λ, the polarisation, i.e. the density of dipole
moments, increases with z. Figure 8.9 shows a possible configuration.

Since the dipoles turn their positive side towards the bar, a negative charge is
expected on the left plate, a negative net charge in the volume and a positive charge on
the right plate. The total amount of bound charge ought to vanish. These expectations
may be verified using the formulas above:

-q q
L

z = 0 z = L z = d z

–

–

–

–

–

–

Fig. 8.9 A charged bar at z = d interacts with an uncharged non-conductive cylinder. The figure
shows qualitatively a possible dipole configuration for a negatively charged bar according to formula
(8.27)
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The surface charge density is σb = P̄ · n̂. For the left plate, z = 0 and n̂ = −ẑ:

σb = −ε0

(
1

κe
− 1

)
λ

2πε0d

which is a negative quantity for negative λ.
For the right plate, z = L and n̂ = ẑ:

σb = ε0

(
1

κe
− 1

)
λ

2πε0d

(
1 + L

d

)

which is positive.
Inside the cylinder the volume charge density becomes

ρb = −∇ · P̄ = −d P

dz
= −ε0

(
1

κe
− 1

)
λ

2πε0d2

i.e. a homogeneous bound negative charge distribution.
The total charge Q of the cylinder is

Q = ρbπa2L + σb(z = 0)πa2 + σb(z = L)πa2 = 0 (8.28)

as expected.
The calculation of the force is left to Exercise (8.4).

8.1.4.2 A Polarised Sphere in Vacuum

To further illustrate the importance of the material shape when dealing with polari-
sation the following case is investigated:

A linear, isotropic and homogeneous non-conductive sphere with radius a is placed
between two charged plates. To find its polarisation, formula (8.24) is used. As
concluded from formula (8.13), the gradient of the potential in the material may be
written

∇� = ∇� f + ∇�b (8.29)

To determine �b consider Fig. 8.10 which shows that its source is the bound
charges at the surface of the sphere. Inside the volume, the bound charges cancel
out. Using formula (8.19), the surface charges may be expressed in terms of polari-
sation P:

σb = P̄ · n̂ = P cos θ (8.30)

The potential is calculated using formula (3.3). Since the polarisation is homoge-
neous, the calculation needs to be done only on the x axis. Placing the origin at the
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Fig. 8.10 A homogeneous
non-conductive sphere is
placed between two charged
plates

-q q

x
a

y
+ –

θ

centre of the sphere, the potential inside the sphere becomes

�b = 1

4πε0

2π∫

0

π∫

0

P cos θa2 sin θdθdφ

(x2 + a2 − 2xa cos θ)1/2

= Pa2

2ε0

1∫

−1

tdt

(x2 + a2 − 2xat)1/2 = Px

3ε0
x ≤ a (8.31)

where t = cos θ . Using (8.24), the following relation is obtained

∇� = ∇� f + P̄

3ε0
= − P̄

ε0(κe − 1)
(8.32)

so that the polarisation becomes

P̄ = −3ε0
κe − 1

κe + 2
∇� f (8.33)

8.1.4.3 Polarisation of a Large Plate with an Arbitrary Surrounding
Medium

Previously the surrounding medium has implicitly been vacuum. Consider now the
case when the surrounding is an arbitrary substance, e.g. water. Let the object be
a plate parallel to the external influence consisting of charged parallel plates, as in
Fig. 8.2. Formula (8.20) becomes

P̄ = ε0∇�p − ε0∇�w (8.34)



142 8 Material Properties

where the index p refers to ‘plate’ or ‘particle’ and w stands for ‘water’ (a particle in
water is a common scenario in applications). Since the external influence is parallel
to the surface normal in this specific case, the gradient of the potential in the object is

∇�p = ∇� f

κp
and ∇�w = ∇� f

κw
(8.35)

such that
∇�p = κw

κp
∇�w (8.36)

and formula (8.34) becomes

P̄ = ε0∇�w

(
κw

κp
− 1

)
(8.37)

Note that the sign of the polarisation depends on whether the dielectric constant of
the surroundings is greater than or less than that of the object. This phenomenon was
first discussed by Mossotti (1850) and Clausius (1879). In Exercise (8.18), the object
is a particle in the form of a sphere and thereby the Clausius-Mossotti polarisation
formula is obtained. This forms the basis for e.g. the application dielectrophoresis,
a popular method for separating and identifying cells and molecules in biological
contexts, such as in DNA analysis.

Another practical example is the electric fish’s polarisation of its surroundings, a
process equivalent to dielectrophoresis, see Exercise (8.20).

8.2 Magnetic Response Forces

Unlike the electric case in air/vacuum, a material’s response to a magnetic influence
may be either attractive or repulsive. Materials are classified into four categories w.r.t.
the response: weak and strong attractive and weak and strong repulsive. The latter
case appears for metals at low temperatures when the material becomes so-called
superconductive.

Let the magnetic influence be a current carrying coil, Fig. 8.11.

κm F I κm

F
I

F

Fig. 8.11 A current-carrying coil and a material interact. Para- and ferromagnetic materials interact
attractively (left). Diamagnetic materials interact repulsively (right)
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Fig. 8.12 A coil filled partly
with a material

z z

I

To describe the magnetic properties of the material, a parameter called the relative
magnetic permeability κm is introduced.3 This is defined as the factor by which the
stored magnetic energy in a coil, or generally in an inductor, changes when a material
is introduced into the coil and fills it completely, provided the current of the coil is
maintained. This definition is equivalent to the electric case for constant voltage
which follows from formulas (8.2) and (4.30), see Exercise (8.1).

Consider the situations in Fig. 8.11. The current in the coil is maintained by a
battery and the magnetic force acts to increase magnetic energy, compare Sect. 3.3.1.
This results in an attractive force for para- and ferromagnetic materials and a repulsive
force for diamagnetic materials.

For an inductor fully filled with material with relative magnetic permeability κm ,
the magnetic energy is

Um = κmU0 = 1

2
κm L0 I 2 (8.38)

where L is the self inductance of the inductor and the index 0 denotes absence of
material, i.e. air/vacuum. For a coil fully filled with a material, the self inductance
in lowest order becomes, using formula (4.80)

L = κmμ0 N 2S

d
(8.39)

where N is the number of turns, S the cross sectional area of the coil and d its length.
Hence, the inductance changes a factor equal to the relative magnetic permeability.

To measure the permeability, a force formula is needed. Assume the coil is filled
by the material up to a length z, Fig. 8.12. The magnetic energy for this system
becomes in lowest order

Um = 1

2
I 2[κmμ0n2Sz + μ0n2S(d − z)] (8.40)

where n = N/d is the density of turns, i.e. number of turns per unit length. For a
constant current, formula (3.23) gives the force

F̄m = ∇Um = dUm

dz
ẑ = 1

2
I 2μ0n2S(κm − 1)ẑ (8.41)

3 Older notation is μr .
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Table 8.2 Relative magnetic permeability

Substance Temp (◦C) κm

Copper 296 0.9999945

Copper 20 0.9999900

Bismuth atp 0.9997199

Carbon atp 0.9999941

Aluminium atp 1.0000165

Calcium atp 1.0000400

Water atp 0.9999870

Oxygen −182.9 7700.0

which is the force on the material since z is the position of its edge. For κm > 1
the force becomes positive and for κm < 1 negative, corresponding to attractive and
repulsive force respectively.

If the cross sectional area of the material, Sm , is less than that of the coil, the force
becomes

F̄m = ∇Um = dUm

dz
ẑ = 1

2
I 2μ0n2Sm(κm − 1)ẑ (8.42)

Table 8.2 shows measured values of the relative magnetic permeability.

8.2.1 Magnetization Currents

Equivalent to the electric case, magnetic material properties may be described approx-
imately in terms of dipoles. Thus, under an external magnetic influence magnetic
dipoles are induced and aligned in the material. In this section, these dipoles will be
expressed in terms of electric current and in the next section the relation between the
external influence and the generated magnetization is derived.

To this end, the vector magnetization M̄(r̄) (not to be confused with inductance
Mi j ) is introduced as the density of magnetic dipole moment m̄:

m̄ =
∫

V

M̄(r̄)dV (8.43)

where r̄ is the position vector. Using formula (7.39), the left-hand side of (8.43) may
be replaced with

1

2

∫

V

(r̄ × J̄ )dV =
∫

V

M̄(r̄)dV (8.44)
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Since the volume V is arbitrary the integrands have to be equal

1

2
(r̄ × J̄ ) = M̄(r̄) (8.45)

By applying the curl operation on both sides, (8.45) may be solved for J , see
Exercise (8.8). Doing this component-wise, magnetization becomes

Mx = 1

2
(y Jz − z Jy)

My = 1

2
(z Jx − x Jz) (8.46)

Mz = 1

2
(x Jy − y Jx )

so that

(∇ × M̄)x = −Jx − 1

2

(
x

d Jx

dx
+ y

d Jx

dy
+ z

d Jx

dz

)

(∇ × M̄)y = −Jy − 1

2

(
x

d Jy

dx
+ y

d Jy

dy
+ z

d Jy

dz

)
(8.47)

(∇ × M̄)z = −Jz − 1

2

(
x

d Jz

dx
+ y

d Jz

dy
+ z

d Jz

dz

)

where ∇ · J̄ = 0 has been used. This follows from formula (5.20) since J , being the
current density of the magnetization, is closed. Since dipole moment is independent
of location in the coordinate system, see Exercise (7.4), its origin may be placed
at the centre of the dipole, Fig. 8.13. In this model, the dipoles are assumed to be
point-like, i.e. r̄ → 0, so that

J̄ = −∇ × M̄ (8.48)

However, the direction of magnetization is defined such that

J̄ = ∇ × M̄ In a volume! (8.49)

Fig. 8.13 Magnetization
current centered at the
coordinate origin

J
r



146 8 Material Properties

meaning that the direction of M is given by the ‘right hand rule’ as illustrated in
the figure of Exercise (4.13). Hence, to define J̄ (r̄) the magnetization M has to be
known in the vicinity of r .

On the surface of a material the concept surface current density K is used, defined
in the following way. Figure 8.14 illustrates a bar which is homogeneously magne-
tised in the negative y direction.

On the surface there is a current I . A current element on the surface in the z
direction with the infinitesimal cross sectional area dxdy is defined as (see Exercise
2.24)

d I dz̄ = J̄ dxdydz = Jzdxdydzẑ = d Kzdydzẑ (8.50)

where K is current per unit length in the y direction. For this vertical current element,
the current density becomes

Jz = d My

dx
− d Mx

dy
= d My

dx
(8.51)

Cross section of a bar 
formed homogeneously 
magnetized material

Net current

z

x

Closed
current loops
in the material

Magnetic
moment  m

Idz

(a) (b)

(c) (d)

Fig. 8.14 Orientation of magnetic dipoles in a homogeneously magnetized material. The circles
illustrate individual magnetic dipoles and the arrows denote current direction. a Cross section of
the material. Inside the volume, the currents cancel whereas a net current exists on the surface. b
Three-dimensional illustration. c The net current on the surface is equivalent to that of the current
in a coil. d The net current corresponds to a magnetic dipole moment in the negative y direction
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since Mx = 0. The surface density of the current is d Kz = Jzdx so that

d Kz = d My ⇒ Kz = My (8.52)

up to a constant which must be set to zero to agree with the definition formula (8.45).
Since K̄ and M̄ are perpendicular, it is generally valid that

K̄ = M̄ × n̂ On the surface! (8.53)

where n̂ is the surface normal.

8.2.2 Magnetization from a Magnetic Influence

A material is magnetized through an external magnetic influence corresponding to
an electric current. Equivalent to the electric case, this current is referred to as free
while currents arising in the material are referred to as bound. The relation between
magnetization and the external influence will now be explored in the dipole approx-
imation. While this will be done here within a special case, using the ideal coil as an
external influence, a general derivation is presented in Appendix C.

Consider a material completely filling the volume of an ideal coil. The magneti-
zation takes place by increasing the current in the coil from zero to the final value I f ,
where f stands for ‘free’. The material is successively magnetized during the process
until the final magnetization M is obtained. In this case, the magnetization becomes
independent of coordinates since the coil affects the material homogeneously.

IfM

As is understood from Sect. 8.2.1, net currents Ib (b for bound) will arise only on
the surface of a homogeneously magnetized material, Fig. 8.14. The energy of the
system is therefore the sum of the coil energy and the interaction energy between
the coil current and the surface current of the material. By equating this energy to
formula (8.38), i.e. the formula defining κm , the sought relation is obtained.

The coil magnetic energy is given by formulas (3.12) and (4.80). Denoting self
inductance L the energy becomes

Ucoil = 1

2
L I 2

f = 1

2
μ0

N 2

d
SI 2

f (8.54)

using coil inductance in lowest order. N is the number of turns, d is the coil length
and S its cross sectional area. Note that the first equality is obtained by integrating
from zero to the final value I f , thereby the factor 1/2 in front, see formula (3.12).
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The interaction energy Uint may also be determined through an integration in the
following way. Consider the material as a magnetic dipole with moment m = ib S. In
the utilized dipole model, the magnetization vector M̄ corresponds to the effective
dipole density. The dipole moments of the material are then parallel or anti-parallel
to the dipole moment of the external influence. According to formula (4.89, Exercise
4.13) the energy change due to a current change is

dUint = ib Sμ0
N

d
di f (8.55)

which shall now be integrated from zero to the final value I f . Assuming that ib

increases at the same rate as i f , so-called linear materials, a function f (t) may be
introduced with a range from 0 to 1 such that

ib = f (t)Ib, di f = I f d f (t) (8.56)

where t denotes time. The interaction energy then becomes

Uint =
1∫

0

Sμ0
N

d
Ib I f f d f = 1

2
Sμ0

N

d
Ib I f (8.57)

Equating the total magnetic energy Um = Ucoil + Uint and formula (8.38)

Um = 1

2
μ0

N 2

d
SI 2

f + 1

2
Sμ0

N

d
Ib I f = κm

1

2
μ0

N 2

d
SI 2

f (8.58)

results in the following relation between bound and free current

Ib = (κm − 1)N I f (8.59)

where Ib is the total current flowing on the surface of the material and I f is the
current in one of the loops of the coil. Since Ib S = M Sd, (8.59) may be expressed
in terms of magnetization M

M = (κm − 1)
N

d
I f (8.60)

where M is directed along the axis of the coil according to the dipole orientation.
For κm > 1 the dipoles of the material align parallel to the dipole moment of the
external influence while for κm < 1 they align anti-parallel.

While (8.60) was obtained for a special case, where the material is surrounded
by an ideal coil, a general formula will now be presented. Here it will be motivated
within the chosen special case. In Appendix C the formula is fully derived.
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Using formulas (8.57) and (8.60) magnetization may be written

M = (κm − 1)
2Uint

μ0mb
(8.61)

where mb = Ib S is the total magnetic dipole moment of the material. This may be
vectorized by noting that its direction is given by the dipole moment mb

M̄ = (κm − 1)
2Uint

μ0mb
m̂b (8.62)

This is a general formula for magnetization in the dipole approximation and should
be compared to the electric counterpart (8.24).

The interaction energy, generally given by formula (8.88) and for homogeneous
magnetization by formula (8.57), is in the dipole approximation given by formula
(7.25):

Uint = −1

2

μ0

4π R3 [m̄b · m̄ f − 3(m̄b · R̂)(m̄ f · R̂)] (8.63)

where in this case there is a factor 1/2 in front since the magnetization is induced.
Hence, Uint is proportional to mb meaning that mb vanishes from the right-hand
side of (8.62). However, the direction m̂b remains, obtained using formula (7.45) in
Exercise (7.15).

A few examples will now be discussed.

8.2.2.1 A Material on the Axis of the Influencing Loop

Consider an interaction between a current-carrying loop and a material, placed at a
distance x on the extended axis of the loop, Fig. 8.15. What is the interaction energy
and the material’s magnetization? Let the distance be large enough to ensure that the
dipole approximation is valid.

In this case the two dipole moments are parallel/anti-parallel to each other as well
as to the distance vector. Formula (8.63) gives the interaction energy for parallel
moments

Uint = 1

2

μ0

2πx3 mbm f (8.64)

Fig. 8.15 A material
interacts with a current loop

κm

If

x
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The magnetization M is obtained from (8.61) as

M = (κm − 1)
I f S f

2πx3 (8.65)

where m f = I f S f . Since mb = MV , where V is the volume of the material, the
interaction energy becomes

Uint = μ0

8π2x6 (κm − 1)
(
I f S f

)2
V (8.66)

Hence, the force between the objects decreases as 1/x7, see Exercise (8.9). Note
that the direction of the force is independent of the direction of the free current.

8.2.2.2 A Material Off the Axis of the Influencing Loop

Now consider an interaction between a current loop and a material placed at an
arbitrary position, Fig. 8.16. As in the previous section, the dipole approximation is
assumed.

The interaction energy and the magnetization will be determined using formulas
(8.63) and (8.62) respectively. To this end, the relative orientation between m̄b and
m̄ f has to be found. According to formula (7.45) in Exercise (7.15) the relationship
between the angles in Fig. 8.16 is

tan θb = −1

2
tan θ f (8.67)

Fig. 8.16 A current loop
interacts with dipole mb

- b

f

m f

mb

R

x

y
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Referring to Fig. 8.16, the dipole moment of the material may be written

m̄b = mb cos(θ f − θb)ŷ + mb sin(θ f − θb)x̂

= mb(cos θ f cos θb + sin θ f sin θb)ŷ

+ mb(sin θ f cos θb − cos θ f sin θb)x̂ (8.68)

which, using (8.67), becomes

m̄b = −3

2
mb sin θ f cos θb

[(
−2

3

cos θ f

sin θ f
+ 1

3

sin θ f

cos θ f

)
ŷ − x̂

]
(8.69)

By dividing this vector by its length, its unit vector is obtained

m̂b =
(

4

9

1

sin2 θ f
+ 1

9

1

cos2 θ f

)−1/2 [(
−2

3

cos θ f

sin θ f
+ 1

3

sin θ f

cos θ f

)
ŷ − x̂

]
(8.70)

The interaction energy (8.63) becomes

Uint = − μ0

8π R3 mbm f (cos(θ f − θb) − 3 cos θ f cos θb) (8.71)

By using formula (8.67) the angle θb may be expressed in terms of θ f

Uint = − μ0

8π R3 mbm f

(
4

cos2 θ f

sin2 θ f
+ 1

)−1/2 [
4 cos2 θ f + sin2 θ f

sin θ f

]
(8.72)

The magnetization of the material is obtained from formula (8.62). The interaction
energy Uint multiplied by the unit vector m̂b in this formula is

Uint m̂b = − μ0

8π R3 mbm f

(
4

cos2 θ f

sin2 θ f
+ 1

)−1/2 [
4 cos2 θ f + sin2 θ f

sin θ f

]

(
4

9

1

sin2 θ f
+ 1

9

1

cos2 θ f

)−1/2 [(
−2

3

cos θ f

sin θ f
+ 1

3

sin θ f

cos θ f

)
ŷ − x̂

]

= − μ0

8π R3 mbm f 3 sin θ f cos θ f

[(
−2

3

cos θ f

sin θ f
+ 1

3

sin θ f

cos θ f

)
ŷ − x̂

]

= − μ0

8π R3 mbm f

[(
−2 cos2 θ f + sin2 θ f

)
ŷ − 3 sin θ f cos θ f x̂

]
(8.73)
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and the magnetization is thus

M̄ = (κm − 1)
m f

4π R3

[(
2 cos2 θ f − sin2 θ f

)
ŷ + 3 sin θ f cos θ f x̂

]
(8.74)

The force between the objects is given by the gradient of Uint (formula 8.72),
where

mb = ∣∣M̄∣∣ V (8.75)

and V is the volume of the material.

8.2.2.3 Magnetization of a Sphere/Cylinder

In this section the significance of the shape of the material when it comes to magneti-
zation is explored, equivalent to the electric case which was discussed in Sect. 8.1.4.2.

Spherical form

Consider first a permanently homogeneously magnetized sphere. To find its magnetic
properties, its interaction with a small current loop, i.e. a point-like magnetic dipole,
is investigated. Let the magnetization of the sphere be directed along the z axis, so
that M̄ = Mẑ. Denote the dipole moment of the current loop m2, directed along z
and located somewhere on the z axis, Fig. 8.17.

θ
a

z

x x

x’
z’

z z

M

m2 m2

dIb

Fig. 8.17 A small magnetic dipole m2 on the z axis interacts with a homogeneously magnetized
sphere (left). The interaction is modelled as a sum of infinitesimal interactions between the dipole
m2 and circular rings on the surface of the sphere. The rings have radius x ′ and carry current d Ib
(right)
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The calculation of the interaction energy is performed by dividing the sphere into
parallel infinitesimal rings located on the surface of the sphere. Here the surface
current density is K̄b = Kbφ̂ in spherical coordinates. These current rings and the
current of the dipole m2 are accordingly concentric. Note that inside the sphere there
are no currents. The task is to sum pairwise interactions between each of these rings
and the dipole m2, equivalent to the case treated in Sect. 4.2.5.1 for an interaction
between two circular coaxial currents.

The interaction energy is obtained from the mutual inductance (4.56). Since the
dipole m2 is small, the quantity k2 � 1 in formula (4.56). Consequently, formula
(4.63) may be used to calculate the mutual inductance.4 Treating the dipole m2 as
a circular current loop with current I2 and radius b and using x ′ as the radii of the
rings on the sphere, the infinitesimal interaction energy becomes

dUint = I2d Ib
μ0x ′b

[(x ′ + b)2 + (z′ − z)2]1/2

π

8

4x ′b
(x ′ + b)2 + (z′ − z)2

= μ0

2
I2πb2 x ′2d Ib

[x ′2 + (z′ − z)2]3/2 (8.76)

where x ′  b has been used and z′ is the z coordinate for the infinitesimal ring of
the sphere, Fig. 8.17.

Making the substitution x ′ = a sin θ and z′ = a cos θ and from formula (8.53)
d Ib = K adθ = M sin θadθ , we obtain

dUint = μ0

2
m2

a2 sin2 θ Ma sin θdθ

[a2 sin2 θ + (a cos θ − z)2]3/2
(8.77)

so that

Uint = μ0

2
m2 Ma3

π∫

0

sin3 θdθ

(a2 + z2 − 2az cos θ)3/2 (8.78)

The integral is evaluated making the substitution t = cos θ . The result is

Uint = μ0

2π z3 m2

(
4

3
πa3 M

)
z ≥ a

Uint = μ0
2

3
m2 M z ≤ a (8.79)

Note that the result for z ≥ a implies that the sphere and the dipole m2 interact
like two exact dipoles outside the sphere which is why a homogeneously magnetized
sphere is equivalent to an exact dipole, as long as it is viewed from the outside.

4 Do not confuse magnetization M with mutual inductance M12.
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Cylindrical form

For a cylinder of length l, radius a and homogeneous magnetization M along its axis
coinciding with the z axis, the infinitesimal interaction energy (8.76) becomes

dUint = μ0

2
I2πb2 a2 Mdz′

[a2 + (z′ − z)2]3/2 (8.80)

where formula (8.53) has been used. Total energy becomes

Uint = μ0

2
m2 Ma2

l∫

0

dz′

[a2 + (z′ − z)2]3/2

= μ0

2
m2 M

(
l − z√

a2 + (l − z)2
+ z√

a2 + z2

)
(8.81a)

Letting z = l/2 and l → ∞, the energy becomes Uint = μ0m2 M . This is the
interaction between a long coil and a magnetic dipole placed inside the coil which was
treated in Exercise (4.13). From formula (4.89), it is realised that the magnetization
of the long coil is

MC = N I f / l (8.81b)

where N is the number of turns and f denotes ‘free’. Formula (8.81b) is in accordance
with formula (8.53).

Sphere under external influence

Next consider a sphere that is being homogeneously magnetized by an ideal coil.
What is the relation between the magnetization M and the current of the external
influence?

For the equivalent calculation in the electric case, Sect. 8.1.4.2, the concept of
potential � was utilized. For the magnetic case there is no such counterpart, since its
source is electric current. Instead, the energy concept is used. While for the electric
case the potential from the bound charges, �b, was calculated within the material, for
the magnetic case the interaction energy between an internal dipole of the material
and the rest of the material is considered. This internal dipole also interacts with
the external coil, so that the total interaction energy becomes the sum of these two
sources. Equating this sum to formula (8.61), fully derived in Appendix C, the sought
relation between the material magnetization M and the external influence is found.

Denote the magnetization of the sphere and the coil MS and MC = N I f / l respec-
tively, where the latter is formula (8.81b). For the case (κm − 1) > 0, corresponding
to e.g. a paramagnetic material, the material response is such that its current appears
in the same direction as the influence, i.e. MS and MC are parallel.

Consider now a small internal dipole with moment mb inside the spherical material
located in a small cavity, Fig. 8.18 (upper). For a homogeneous magnetized material
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Fig. 8.18 Top left Magnetic
dipoles in a circular cross
section of a homogeneously
magnetised material. Top
right A dipole inside the
material interacts with a
current generated by its
neighbours which is
oppositely directed to the net
current on the surface.
Bottom A sphere is being
magnetized by an ideal coil
with the magnetization MC .
In one of the cavities of the
sphere, a dipole interacts
with the rest of the material
as well as with the external
coil. Note that in the upper
diagrams the sphere is
observed from above

Ms

Ms

Ms

1/3 Ms

MC

This dipole
resides
in …

z z
I I

II

x x

x

y

… a cavity interacting
with oppositely 
directed current

there are no net currents inside the volume. However, for the inner surface of the
cavity there will be net currents oppositely directed to the surface currents of the
sphere. Hence, the internal interaction energy of the material is of opposite sign
compared to the interaction between the material and the coil.

Consider first the internal interaction energy, i.e. the energy in the interaction
between the internal dipole and the rest of the material. Using formula (8.79) for
z ≤ a, it may be obtained in the following way. The coil magnetizes the sphere to the
magnetization MS . Had the object been without any form, i.e. of infinite extent, the
energy between the internal dipole and the rest of the material would be 1

2μ0mb MS ,
according to formula (4.89). The extra factor 1/2 appears since the energy is induced
in analogy with formula (8.57). Using formula (8.79), the total energy between the
internal dipole and the magnetized sphere is 1

2μ0
2
3 mb MS , corrected for the inducing

process. However, this energy includes the interaction with the magnetizing coil
since the magnetization of the sphere is generated by the coil.
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The interaction energy between the internal dipole and the material alone is then
− 1

2μ0
1
3 mb MS , illustrated in Fig. 8.18, since μ0

2
3 mb MS = μ0mb MS − μ0

1
3 mb MS

The interaction energy becomes

Uint = 1

2
μ0mb

(
MC − 1

3
MS

)
(8.82)

The first term corresponds to the interaction energy between the internal dipole
and the coil, while the second term to that between the internal dipole and the material.
Formula (8.82) is equivalent to formula (8.32) for the electric case. The difference in
sign of the second term of the right-hand side is due to opposite response directions
between electric and paramagnetic dipoles.

This is now to be equated with the interaction energy given by formula (8.61), i.e.

Uint = 1

2

μ0mb MS

κm − 1
(8.83)

so that
1

2

μ0mb MS

κm − 1
= 1

2
μ0mb

(
MC − 1

3
MS

)
(8.84)

which gives
MS

κm − 1
+ 1

3
MS = MC (8.85)

and

MS = 3
κm − 1

κm + 2
MC (8.86)

If the external influence is a current loop, (8.86) becomes in the dipole approxi-
mation, using formula (7.26)

MS = 3
κm − 1

κm + 2

m f

2πd3 (8.87)

where d is the distance between the objects and m f is the dipole moment of the
external influence. This formula should be compared to the electric counterpart,
formula (8.33).

The two formulas (8.33) and (8.87) have equivalent structures and are also gen-
eralized in the same way for an interaction in arbitrary medium. In the electric case,
the resulting formula is known as Clausius-Mossottis formula, see Exercise (8.18).
This generalization of formulas (8.86) and (8.87) is used in applications equiva-
lent to dielectrophoresis, i.e. to separate and control microscopic particles, a method
accordingly known as magnetophoresis.
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8.3 General Multipole Interactions

Up to now, material effects have been examined in the dipole approximation. In case
this approximation is not valid, the general formulas have to be considered.

For closed currents, the magnetic interaction energy between systems j and k is
given by formula (3.19)

Um = M jk I j Ik (3.19)

Using Neumann’s inductance formula (4.50)

M jk = μ0

4π

∫

Condk

∫

Cond j

d L̄ j · d L̄k

R
(4.50)

(3.19) becomes

Um = μ0

4π

∫

Vj

∫

Vk

J̄ j (r̄ j ) · J̄k(r̄k)

R
dVkdVj (8.88)

The general formula for electric energy is obtained from formula (3.2)

Ue = 1

4πε0

∫

Vj

∫

Vk

ρ j (r̄ j )ρk(r̄k)

R
dVkdVj (8.89)

A strict derivation of multi-pole interactions originates from these formulas by
performing a series expansion w.r.t. the distance between the systems. This is per-
formed in appendices A and B for the electric and magnetic cases respectively.

8.4 Measurement of Electric and Magnetic Material
Properties

The dielectric constant κe and the relative magnetic permeability κm may in principle
be measured using the methods outlined above. Practically, however, these should
be considered as just qualitative investigations. In the electric case, Fig. 8.2, a high
voltage is used since the volt meter requires a high internal resistance and therefore
operates at voltages of several kV. As a consequence, discharge effects appear making
the conditions unstable. In the magnetic experiment, Fig. 8.11, small forces are active
(except for so-called ferromagnetic materials) which are therefore hard to measure.
Also in its electric counterpart, Figs. 8.3 and 8.4, the force becomes too small for a
precise measurement.

Some practical methods for the measurements of material parameters will now
be discussed. First solids are considered and then liquids.
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8.4.1 Measurements on Solids

Since the material parameters κe and κm may be regarded as the factor by which
capacitance and inductance respectively change when introducing materials, see
formulas (8.2) and (8.39), these quantities may be measured in RC and RL circuits
as discussed in Chap. 6.

Consider first the charging and discharging time for a capacitor fully filled with
a material connected in series with a resistance R. The half-time, formula (6.4),
becomes

T1/2 = κeC0 R ln 2 (8.90)

where C0 is the capacitance without material. Hence, the measurement of half-time
gives a value of the dielectric constant provided the capacitance C0 is known.

For the magnetic case, the current growth in a material filled coil connected in
series with a resistance R is investigated. Formula (6.7) gives the half-time

T1/2 = κm L0

R
ln 2 (8.91)

where L0 is the inductance for an empty coil. Using a good oscilloscope precision
measurements may in this way be performed. An interesting investigation is to fill
a coil with diamagnetic materials with κm < 1, such as copper and bismuth, and
accordingly register a decrease of half-time. The effect is small and challenging to
measure.

8.4.2 Measurements on Liquids

In case of measuring on liquids, a direct force action may be utilized.
Consider first the electric case. Let a coaxial cylindrical capacitor be in contact

with the surface of a liquid, Fig. 8.19. When a voltage is applied between the con-
ductors, an attractive force acts on the liquid in analogy with Figs. 8.3 and 8.4. The
liquid is then drawn into the capacitor to a height h which depends on the dielectric
constant of the liquid. Their relation will now be derived using the energy principle.

Three types of energies are involved in the process: gravitational, battery and
electric energy. The final height h is found from energy minimization: The energy
change becomes

�U = �Ue + �Ugr + �UB = −�Ue + �Ugr (8.92)

since, according to Sect. 4.1.7, the change of battery energy at a constant voltage is
twice that of the electric energy change, see formula (4.36).

The change in electric energy is �Ue = 1
2 C��2 − 1

2 C0��2 where C is the
capacitance for the partly liquid filled cylindrical capacitor and C0 is the capacitance
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h

Fig. 8.19 Left A cylindrical capacitor is placed on the surface of a liquid. Right When a voltage is
applied between the conductors the liquid is drawn into the capacitor

of the initially empty capacitor. Referring to Fig. 8.19, neglecting edge effects and
using formula (4.88) it is obtained that

�Ue =
[

1

2
κe

2πε0h

ln(b/a)
+ 1

2

2πε0(L − h)

ln(b/a)
− 1

2

2πε0 L

ln(b/a)

]
��2 (8.93)

where L is the length of the cylinders and their radii are a and b with a < b. In the
final state, the capacitor corresponds to a parallel coupling of two capacitors, one is
fully filled with liquid and the other is empty. Therefore, the capacitance C is the
sum of the individual capacitances.

The change in gravitational energy becomes

�Ugr = ρπ(b2 − a2)hg
h

2
(8.94)

where ρ is the density of the liquid and h/2 is the height of the liquid’s centre of
gravity inside the capacitor. The total energy change then becomes

�U = − πε0

ln(b/a)
[(κe − 1)h]��2 + ρπ(b2 − a2)g

h2

2
(8.95)

Since U is minimized, �U = 0 which gives

− πε0

ln(b/a)
(κe − 1)��2 + ρπ(b2 − a2)g

h

2
= 0 (8.96)
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so that

(κe − 1) = ln(b/a)(b2 − a2)ρgh

2ε0��2 (8.97)

As was discussed in Sect. 8.1.1 the force arises due to edge effects, which are how-
ever neglected in the calculation. This is motivated since these effects are unchanged
from the initial to the final state and are therefore cancelled in the end.

The magnetic permeability for liquids may be measured similarly, using the so-
called Quincke method. A u-tube is filled with the liquid with one leg placed inside
a coil, Fig. 8.20. When the coil carries a current it interacts with the liquid in analogy
with Fig. 8.11. These figures illustrate the case of an attractive interaction. However,
diamagnetic materials will respond with a repulsive force. The height h is directly
related to the relative magnetic permeability, now shown using the energy principle.

As in the previous case there are three forms of energies to be considered: the
magnetic, the battery and the gravitational. The energy change becomes

�U = �Um + �UB + �Ugr = −�Um + �Ugr (8.98)

using the fact that the change of the battery energy is twice that of the magnetic
energy change for constant currents, see Sect. 3.3.1.

In the final state, the coil is partly filled with liquid and its inductance is denoted
L . The inductance of the initially empty coil is denoted L0. Using formula (4.80) in
lowest order, the magnetic energy change becomes

�Um = I 2

2
(L − L0) = I 2

2

(
κmμ0nS

h

l
N + μ0nS

l − h

l
N − μ0nN S

)
(8.99)

where l is the length of the coil, N is the number of turns, S is the cross sectional
area and n = N/ l. Note that this summation of individual inductances is only valid
in the lowest order of formula (4.80), see Exercise (4.14).

The total energy change becomes

�U = − I 2

2
(κm − 1)μ0nS

h

l
N + ρShgh (8.100)

where ρ is the density of the liquid.

Fig. 8.20 A liquid in a
u-tube is inserted in a
current-carrying coil I

h
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At minimum energy, �U = 0, so that

(κm − 1) = 2ρgl

I 2μ0nN
h (8.101)

Permeability for solids may also be measured in this way by preparing a solution
with e.g. water. By measuring at different concentrations an extrapolation of data can
be done down to zero concentration which then corresponds to pure water. In this
way the diamagnetic property of water may be observed, see Table 8.2 and Exercise
(8.11).

8.5 Summary

Both electric and magnetic material properties may be understood within a model
assuming the material to consist of dipoles. In the electric case these dipoles corre-
spond to molecular charge displacements (except for metals). In the magnetic case
the dipoles are current loops at the atomic level, including the conduction electrons.

The dielectric constant κe describes the electric properties of a material. It is
defined as the factor by which the voltage over a capacitor changes when it is filled
by the material

��2 = ��1

κe
(8.1)

Polarisation P̄ is defined as the density of dipole moment

p̄ =
∫

V

P̄(r̄)dV (8.12)

whose source is the bound charges. These are related to polarisation as

σb = P̄ · n̂ At the surface! ρb = −∇ · P̄ In the volume! (8.19)

Polarisation is related to the electric potential in the material according to

P̄ = −ε0(κe − 1)∇� (8.24)

At the intersection between air/vacuum (medium 1) and a material with dielectric
constant κe (medium 2), the following continuity conditions hold

n̂ · ∇�1 = κen̂ · ∇�2 (8.21)

t̂ · ∇�1 = t̂ · ∇�2 (8.22)
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The magnetic properties of a material are described by the relative magnetic
permeability κm . It is defined as the factor by which the magnetic energy for an
inductor changes when it is filled with the material:

Um = κmU0 = 1

2
κm L0 I 2 (8.38)

Magnetization M̄ is defined as the density of magnetic dipole moment

m̄ =
∫

V

M̄(r̄)dV (8.43)

whose source is the bound currents related to magnetization as

K̄ = M̄ × n̂ At the surface! (8.53)

J̄ = ∇ × M̄ In the volume! (8.49)

In the dipole approximation a material’s magnetization induced by an external
magnetic dipole moment m f is

M̄ = (κm − 1)
m f

4π R3 [(2 cos2 θ f − sin2 θ f )ŷ + 3 sin θ f cos θ f x̂] (8.74)

where θ f is the angle between the distance vector R̄ and m̄ f .
A spherically shaped material surrounded by air is polarised/magnetized by an

external influence as

P̄ = −3ε0
κe − 1

κe + 2
∇� f (8.33)

in the electric case and

MS = 3
κm − 1

κm + 2

m f

2πd3 (8.87)

in the magnetic case. The external influence in the latter case is a dipole with the
moment m f acting in the direction of its moment.

A strict treatment of electric and magnetic (closed currents) interactions are based
on the formulas

Ue = 1

4πε0

∫

Vj

∫

Vk

ρ j (r̄ j )ρk(r̄k)

R
dVkdVj (8.89)

and

Um = μ0

4π

∫

Vj

∫

Vk

J̄ j (r̄ j ) · J̄k(r̄k)

R
dVkdVj (8.88)
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respectively. These formulas are series expanded in Appendix A and B respectively
to obtain a so-called multi-pole expansion of the interactions.

8.6 Exercises

8.1 a. Show that the dielectric constant (8.1) for a material may be defined
as the ratio of a plate capacitor’s electric energy when fully filled with
material to that without the material.

b. If a battery is connected to the capacitor in Fig. 8.2 how do charge,
voltage and capacitance change when a material is introduced between
the plates?

8.2 a. Show that the capacitance of the capacitor in Fig. 8.5 is independent of
where the material is placed horizontally.

b. Is the result valid also if the material is a metal? Compare Exercise
(5.5).

*8.3 Referring to Fig. 8.3, draw a figure showing the principal orientation of the
dipoles in the material. Explain from this figure how the attractive force
arises.

8.4 a. Referring to Fig. 8.9, determine in the dipole approximation the force
between the cylinder and the wire. Denote the dielectric constant by
κe and the plate radius of the cylinder by a. Hint: Use formula (7.2).

b. If the cylinder is placed vertically and the long wire above at a distance
d from the lower end of the cylinder, determine the linear charge density
λ of the wire needed to lift the cylinder.
Calculate the force numerically for a = 1.0 cm and d = 10.0 cm.

8.5 Replace the wire in Fig. 8.9 with a positively charged sphere, homoge-
neously charged with total charge Q. The distance from the left edge of
the cylinder to the centre of the sphere is d, plate radius a and the length
of the cylinder L , where d  L .

a. Show qualitatively a possible orientation and distribution of the dipoles
in the cylinder.

b. Calculate the induced dipole moment of the cylinder.
c. Determine the charge densities at the surface and inside the volume of

the cylinder.
d. Determine energy and force.

8.6 a. An unpolarised homogeneous sphere with radius a and dielectric con-
stant κe is placed between two parallel plates with surface charge den-
sity σ .
Determine the induced dipole moment of the sphere.
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b. Determine the bound charge density inside and at the surface of the
sphere.

c. Let the sphere be an electret. This is a material that keeps its induced
electric polarisation after the external influence has ceased. Remove
the sphere from the plates and place it at a long distance a from a
Na+ ion in the coordinate origin. The dipole moment of the sphere is
oriented in the xy plane forming an angle θ with the x axis.
Determine the force on the Na+ ion and the torque on the sphere.

8.7 Express formula (8.40) with free coordinates and determine the force on
the coil and the material.

8.8 Derive (8.48) in the following way:

1. Take the curl of both sides of (8.45).
2. Solve for J with position vector r̄ = 0. Note that the dipole moment is

independent of the location of the coordinate origin, see Exercise (7.4).
3. Utilize the fact that ∇ · J̄ = 0.

8.9 A small solid cylindrical material interacts with a thin coil, as in Fig. 8.15.
The cylinder has radius 0.5 cm and length 3.0 cm. The coil has 100 turns,
cross sectional area 0.03 m2 and carries a current of 10 A. The distance
between the centres of the objects is x = 0.2 m.
Determine the force in the dipole approximation if the material consists of

a. copper, aluminium or liquid oxygen. Refer to Table 8.2.
b. a superconducting material (κm = 0).

8.10 Propose some experimental arrangements to measure the force in Exercise
(8.9). Find the most significant sources of experimental errors.

*8.11 Magnetic material classes

As was discussed in Sect. 8.2, magnetic material properties may be cat-
egorized into four main classes with respect to its response to an exter-
nal magnetic influence: weak/strong attractive and weak/strong repulsive.
These classes are denoted para-, ferro-, diamagnetic and superconducting
materials respectively.

a. State what these classes correspond to in terms of the relative magnetic
permeability κm .

b. The electron motion in a metal may be categorized into three main
classes. Which are these? Compare Exercise (7.17).

c. Assume the electrons to be responsible for the magnetic material prop-
erties. Which one of its motional classes is responsible for the diamag-
netic property in metals?
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d. Superconduction is a material property characterized as maximal
diamagnetism. Explain its origin in metals.
Hint: Superconduction occurs at low temperatures. What happens with
resistance when temperature decreases?

e. Occasionally in amusement parks, you may find a so-called ‘free fall’
attraction. The braking at the end of the fall utilizes a diamagnetic effect
using induced currents. Propose an arrangement for this effect. Could
you imagine other applications of the diamagnetic effect?

f. As was mentioned in Sect. 8.4.2 it is readily demonstrated that water
is diamagnetic. How could this property be explained at a molecular
level?

8.12 Anisotropic materials

There are materials whose response to an external influence is not described
as a dipole alignment along the direction of the influence. These materi-
als are called anisotropic. The figure illustrates this phenomenon in two
dimensions for the electric case to the left and for the magnetic case to the
right (Fig. 8.21).
Thus, the induced dipole moment has a component perpendicular to the
direction of the influence.

a. What could be the reason for this?
b. Consider formula (8.74) for magnetization

M̄ = (κm − 1)
m f

4π R3 [(2 cos2 θ f − sin2 θ f )ŷ + 3 sin θ f cos θ f x̂]

and formula (8.20) for electric polarisation

P̄ = ε0∇� f

(
1

κe
− 1

)

Fig. 8.21 Exercise 8.12
+
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x
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Fig. 8.22 Exercise 8.13

θ

Based on these formulas, suggest a generalization of the material para-
meters to include these anisotropic effects.

c. How could these effects be registered?

8.13 A certain material influenced externally responds with its dipoles as in
(Fig. 8.22). Determine the torque on the centre dipole caused by the other
dipoles, placed at the corners of a square with the side a. All dipoles form
an angle θ with the vertical and their dipole moment is p.

*8.14 The Hall sensor

A Hall sensor is used to measure the magnetic interaction between a mag-
netized (current-carrying) object and a straight current generated in the
sensor. The figure shows the principles of the sensor in an interaction with
an idealized coil (Fig. 8.23).
The Hall element, oriented in the xy plane in the figure, consists of a
metallic rectangular plate where a voltmeter V is connected over two par-
allel side plates as in the figure. A Hall current IH through the plate will
interact magnetically with the coil current. This will cause the electrons of
the Hall current to be displaced to one side of the Hall element. A voltage
builds up over the Hall element whose magnitude depends on the strength
of the two currents as well as on the relative orientation between the cross
sectional surface normals of the two objects. This voltage gives rise to an
electric force that counteracts the magnetic force. At equilibrium between
these two forces the voltage is registered by the voltmeter.
Show that this voltage is given by

�� = vμ0 Kl cos θ (8.102)

where v is the drift velocity in the Hall sensor, K is the current density of
the coil, l is the distance between the Hall plates and θ is the angle between
the surface normals of the objects.
Hint: According to Exercise (7.12) the idealized coil may be considered as
two parallel large plates with opposite current directions so that the force
on the Hall current becomes twice that of formula (4.46).
Since the drift velocity and the dimensions of the Hall sensor are known,
the measurement provides the current density K of the coil.
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Fig. 8.23 Exercise 8.14

C* 8.15 Magnetic hysteresis

Ferromagnetic materials, such as iron, cobalt, and nickel exhibit a strong
attractive magnetic response to an external influence. In addition, κm is
strongly dependent on the strength of the external influence and they may
also be magnetized permanently, i.e. the magnetization remains after the
influence has ceased. Such a material’s magnetic properties may be illus-
trated through a hysteresis curve (from the greek word hystera meaning
womb), see figure (Fig. 8.24).
The curve is registered in the following way:
Place the ferromagnetic material in a solenoid (long coil) with an alternat-
ing current I f .

Fig. 8.24 Exercise 8.15 µ0(Kf + Kb)

Kf is influencing
     current density

Kb is current density 
in the material

Kf
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Fig. 8.25 Exercise 8.16 f
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Fig. 8.26 Exercise 8.16 Osc.
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Saw a thin trail in the material parallel to the loops of the coil where a Hall
sensor is introduced (see Exercise 8.14).
Connect the Hall voltage ��H to the y entrance of an oscilloscope. Con-
nect the AC voltage that generates I f to the x entrance of the oscilloscope.

a. Draw a schematic of the set-up.
b. State the relationship between the Hall voltage and the free current I f .
c. Express the relative magnetic permeability κm in terms of the slope of

the curve. Determine κm at the maximum K f in the figure and explain
its value.

d. Explain how the remanent magnetization of the material, i.e. the
remaining magnetism for K f = 0, may be determined.

e. State some application of this kind of materials.
f. Why is the phenomenon called ‘hysteresis’?

C 8.16 Electric hysteresis

Ferroelectric materials, such as KNO3 and BaTiO3, are able to be perma-
nently polarised. Also, their dielectric constants vary with the strength of
the external influence. Similarly to the ferromagnetic case, Exercise (8.15),
the material exhibits a hysteresis effect according to Fig. 8.25. Note that
compared to the magnetic case, the axes are interchanged.
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The electric polarisation of a material can be measured using a so-called
Sawyer-Tower circuit (1930), see Fig. 8.26.

a. Knowing that the charge on the two capacitors are equal, show that
this circuit gives an approximate hysteresis curve on the oscilloscope
provided that ��S is an AC voltage and CR  CD .

b. Convert the oscilloscope voltages to the quantities forming the hystere-
sis curve above. State the slope of the curve in terms of the dielectric
constant and define the remanent (remaining) polarisation.

c. Show that the surface enclosed by the hysteresis curve corresponds to
the work done over one cycle.

d. State some applications for ferroelectric materials (search the www)

8.17 The complex electric relative permittivity

The heat generation in an isolator material may be formalized using a
complex expression for the dielectric constant:

κc
e = κR + jκI (8.103)

provided current, voltage and impedance are all expressed in complex
form, see Exercise (6.5).
Consider a material-filled capacitor with capacitance C = κeC0.

a. Express its complex impedance, introduce a complex dielectric con-
stant and show that a resistive component appear in the impedance.

b. What is the source of the resistive effects in the capacitor?
c. What is the heat power?

*8.18 Derivation of the Clausius-Mossotti polarisation formula.

a. For a homogeneous external influence as in Fig. 8.10, determine the
polarisation of a sphere with dielectric constant κp surrounded by a
medium with dielectric constant κw.
Hint: Compare formula (8.24) with (8.37) and generalise (8.33).

b. Show that the dipole moment of a sphere of radius a under the above-
mentioned conditions becomes

p̄ = −4πε0a3 κp − κw

κp + 2κw
∇�w (8.104)

*8.19 Dielectrophoresis

A small non-conductive sphere of radius a and a long wire with linear
charge density λ [C/m] interact at a distance x , see Fig. 8.27.
Determine the force on the sphere if the surrounding medium is

a. air
b. water
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Fig. 8.27 Exercise 8.19
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This is a principle description of dielectrophoresis, a method by which
particles/molecules of different kinds are separated and controlled, e.g. in
DNA analysis. In such an application, the particles are influenced by the
wire for a certain amount of time. Depending on form, mass and dipole
moment the particles are displaced a certain distance during this time
interval from which their characteristics can be obtained (Fig. 8.27).

C 8.20 The electric fish

The electric fish registers its surroundings through an electrostatic interac-
tion. A realistic model of the fish is an electric dipole with charge 100 nC
and length 7.0 cm (Fig. 8.28).
The dipole is oriented along the x axis and a foreign spherical object of
radius a and with dielectric constant κp is located at (x = 0, y = 80.0)cm.
Consider the distance to be large so that the dipole of the fish may be
approximated as point-like and the foreign object as small. Determine

a. the polarisation of the foreign object.
b. the force on the object.
c. the change of the potential caused by the foreign object at a point on

the body of the fish with the coordinates (−5.0, 0.0)cm.
d. Model the process in a computer program, e.g. Femlab of the Comsol

company.

Fig. 8.28 Exercise 8.20
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Fig. 8.29 The elephant nose fish senses its environment by means of electric pulses generated
by its modified muscle cells. The white lines at the rear are marks of this organ. At the right, a
measurement of the strength and duration of its pulses is performed. The oscilloscope measures
10 mV and 1 ms per division

Treat the body of the fish and the surrounding environment as water at
normal temperature and pressure (Fig. 8.29).

8.21 Metamaterials

At the end of the 1960s, the existence of so-called meta-materials was
hypothesized. These are characterized by the fact that the dielectric con-
stant and/or the relative magnetic permeability are/is negative. Yet no such
material has been discovered.
If a material would be converted to a meta-material at a certain strength of
the external influence, what would its virgin curve look like in a hysteresis
investigation according to Exercise (8.15) and (8.16)?
See also Exercise (11.10).

8.22 Measurement of permanent magnetization

A circular loop of radius a carries current I1 and is placed at a distance z
from the center of a homogeneously magnetized bar, see figure. The bar
has a circular cross section with radius b and length l. The measured value
of the force is denoted F . Determine the magnetization of the bar.

I1

z

z
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Chapter 9
Motional Consequences

I have long held an opinion, almost amounting to conviction, in
common I believe with many other lovers of natural knowledge,
that the various forms under which the forces of matter are made
manifest have one common origin; or, in other words, are so
directly related and mutually dependent, that they are convertible,
as it were, one into another, and possess equivalents of power in
their action.

Michael Faraday, 1845

The previous Chaps. 1–8 form together a summary of classical electromagnetic
theory. This theory is based upon three forces: the electric, magnetic and induc-
tive. Since they all originate from electric charge, the question arises whether there
is a connection amongst these forces, i.e. are they aspects of one single force? In
Chap. 2 it was shown that the magnetic and inductive forces depend on the motion of
the charges and it was indicated that these forces should be considered as corrections
to the electric force.

To understand why these motional consequences occur, this chapter introduces a
model of the electromagnetic interaction based on the assumption that force action is
established by an exchange of momentum mediated at a finite speed. In this way, the
electric force will depend on the motion of the charges and the magnetic and inductive
forces arise naturally. The relation amongst the three forces is then conceptually
clarified.

While this analysis is done within a special case, which is the parallel motion
as in Fig. 9.1, the general derivation is contained in the theory of special relativity.
From Sect. 9.4, this theory will be in focus. Its starting point is the so-called time
dilation, meaning that the perception of time depends on the motion of the observer.
By defining time through the concept of motion, it is shown that time dilation results
as a consequence of the magnetic force.

The exercise section contains a tutorial for additional development of the theory
of relativity.

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-13171-9_9
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R

q1
q2

fe

vv

fe fm fm

Fig. 9.1 Two identical charges in uniform motion. Electric and magnetic forces are at work

9.1 Modelling the Electrodynamic Interaction

To be able to see the relation between the three electrodynamic forces, the complexity
of the phenomena must be reduced to a minimum. In fact, the issue may be explored
using the smallest constituent of nature: the pairwise mutual interaction between two
fundamental electrically charged objects, e.g. two electrons, Fig. 9.1.

Effects of motion appear if interactions take time, i.e. the momentum is mediated
at a finite speed. In addition, to derive the magnetic and inductive forces as motional
consequences it turns out that the speed of the mediation must be independent of the
speed of the charges.

Thus, the following starting points are obtained:

• The electric force is known.
• Forces are mediated at a finite speed.
• The mediation speed is independent of the objects’ motion.

9.2 Magnetism as a Motional Consequence

What is the origin of the magnetic force, i.e. what is its relation to the electric force?
In Fig. 9.1, the two forces are separated. In reality only the effect of the resulting net
force is observed, so the question may be formulated:

Why is the force between two like electric charges in parallel motion less than
that when they are at rest?

Provided the interactions in some way are mediated at a finite speed, i.e. interac-
tions take time, the effective distance over which the charges interact is altered when
they move. Figure 9.2 illustrates that the effective distance between the two charges
in motion is R∗ > R.

Let w be the velocity at which the interaction is mediated, independent of the
motion of the source and directed along the effective distance R∗. Denote the time
it takes to establish the interaction in motion by T = R∗/w.
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R R

R*

v

vT

vq1 q2

q2
q1

Fig. 9.2 The effective distance over which two charges interact for charges at rest (left) and in
uniform motion (right)

Thus,

R∗ =
√

R2 + (vT )2 =
√

R2 +
(

vR∗
w

)2

(9.1)

which gives

R∗ =
√

R2

1 − v2/w2 (9.2)

In Chap. 2 the total force, i.e. electric plus magnetic, was obtained as

f̄ = q2

4πε0 R2 (1 − ε0μ0v2)R̂ (2.24)

which may be written

f̄ = q2

4πε0 R∗2 R̂ (9.3)

provided that the mediation speed is w = 1/
√

ε0μ0 (show this). Conventionally, w
is referred to as the speed of light and is denoted by c, i.e. c = 1/

√
ε0μ0.

Formula (9.3) is identified as the electric force, formula (2.1), acting at the distance
R∗. The interaction, which has previously been regarded as an electric plus a magnetic
force, is accordingly a sole electric force acting at a distance R∗. This distance
increases with the speed v. Note however that the force is directed horizontally, i.e.
along R, not along the distance of mediation R∗.

The conclusion of this section is thus:
The magnetic force is fictitious, arising as a motional consequence of the electric

force which in turn is an effect of interactions taking time.
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9.3 Induction as a Motional Consequence

In Sect. 2.3, the source of induction was found to be the accelerated charge described
by formula (3.34). The force on charge 2 due to acceleration of charge 1 is

f̄ind = −μ0q2q1

4π R

dv̄1

dt
(3.34)

Induction will now be considered in the interaction as in Fig. 9.1. Momentum is
transferred from one object to the other along the distance vector R∗ according to
Fig. 9.3. Consider three moments in time. The time between two of these moments
is denoted by T , the speed by v and the distance between the objects by R. The
electromagnetic force is known to be horizontal, directed along the distance vector
R between the objects. At time t = t2, object 2 (on the right) receives momentum
from object 1. Since interactions take time, this momentum is transported along the
line R∗. The momentum which is received by object 2 at t = t2 was emitted by object
1 at time t1 (so-called ‘retarded interaction’). Consequently, the received momentum
will result in a diagonal upward force, i.e. along R∗. Thus, there is a force which is
vertical and the sum of this and the electromagnetic force equals the total force ftot ,
Fig. 9.3.

At the next instance object 2 emits an impulse to object 1 resulting in a down-
ward recoiling force (not drawn in Fig. 9.3) so that the vertical forces cancel out.
This is necessary or else the objects would accelerate vertically which is physically
impossible.

The vertical force is presumed to be the inductive find , formula (3.34), since it is
oppositely directed and proportional to the acceleration of its source, object 1, which

R

R* = cT
s = vT

q1 q2

find

ftot

fem

vv

Fig. 9.3 The pairwise interaction at three moments in time. The interaction is established through
an exchange of momentum along the dotted lines. The interaction from t2 to t3 results in a downward
force on object 2 which is not drawn in the figure. The objects may be thought of as being in a
storage ring so that the distance R is fixed
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recoils diagonally downward at t = t1. The purpose is now to derive this force and
thereby verifying (3.34).

Since an acceleration dependent force is sought, the question arises: what accel-
eration would the vertical force cause if it were not cancelled by the corresponding
opposite vertical force? As is worked out in Exercise (9.3), a vertical single force
acting downwards would decelerate the object from v to 0 during time T , i.e. with
acceleration a = v/T . From the geometry in Fig. 9.3 it is then established that

find = vT

R
fem = aT 2

R
fem = a

R

R∗2

c2

q1q2

4πε0 R∗2 (9.4)

The inductive force on object 2 originates in an impulse from object 1 so that, for
identical objects, ā = −dv̄1/dt and the force becomes

f̄ind = − q1q2

4πε0c2 R

dv̄1

dt
(9.5)

which is Weber’s inductive force (3.34).
Thus, the inductive force was obtained as a motional consequence of the electric

force.

9.4 Special Theory of Relativity

9.4.1 Relative Motion

A parallel motion, Fig. 9.1, will now be utilized to introduce the special theory of
relativity. The first step in this theory is to define the concept of relative motion.

The velocity v in Fig. 9.1 has to be related to something. Apparently, the objects
are at rest relative to each other so the velocity v must relate to the motion of an
observer. Galileo formulated the principle of relative motion: there is no absolute
motion, all motion must be expressed relative to something.

Einstein embraced this principle when he examined electrodynamics based on
a well-known phenomenon illustrated in Fig. 9.4, compare Exercise (3.9). In the
left-hand figure the magnet approaches the non-moving loop and vice versa in the
right-hand figure. The induced current depends only on the relative motion.

The principle of relative motion may be extended by introducing an observer who
examines the pairwise interaction between two identical charges, Fig. 9.5.

Fig. 9.4 A magnet
approaches a coil and vice
versa. The same induction
current arises in both cases
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Fig. 9.5 A person observes
the pairwise interaction
between identical charges in
three cases. a Observer at
rest. b Observer in motion.
c Relative rest

vv
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q
fe fm

q

fe fm

(a)

(b)

(c)

The two upper cases are identical because the relative motion is the same. If the
two lower cases are compared it is concluded that a magnetic force may be generated
solely by putting oneself in motion. The magnetic force is therefore fictitious because
it arises due to the motion of the observer. Compare this to the coriolis and centrifugal
forces which are also fictitious as they are generated via motional effects. These
three phenomena are therefore not referred to as forces but as ‘effects’ (meaning
‘consequence’). However, the observer in Fig. 9.5 only observes the total force, or
rather the change in horizontal motion, i.e. the acceleration. In case b, a slower
repulsive motion is observed than in case c.

The total force between the objects thus depends on the motion relative to the
observer which can seem peculiar as the observer does not affect the objects. Should
not the relative motion of the objects to each other be the sole source of influence on
the force with which they interact? It is at this stage that the new physics introduced
by relativity theory becomes apparent: the observer is a part of the course of events.

That this is a part of reality is confirmed by the events in a particle accelerator where
a collection of identical objects, e.g. electrons, are accelerated in close proximity. It
is observed that the repulsion between them becomes vanishingly small for speeds
close to the speed of light even though they are at rest relative to each other. However,
for the accelerator physicist, i.e. the observer, they are travelling close to the speed of
light. The fact that the forces between the particles almost vanish in the final phase
of a particle accelerator is also a condition for its function as otherwise it would be
difficult to obtain a stable beam of particles.

The effect of the relative motion on the observation itself is the very foundation
for the theory of relativity. The interpretation of the result that the force between
charges depends on the motion of the observer is in part that the motion affects
the experienced course of time. To understand this interpretation one must ponder
the concept of time. The basic clock is naturally the motion of the earth; the day
and the year. Other clocks are based on other types of repeated motion, such as the
pendulum and atomic clocks. Time in physics is therefore nothing else but a measure
of a motion in relation to a reference.

That the observer in case b interprets the observation by saying that time runs
slower is therefore natural. One can relate to so-called ‘slow motion’-effects in
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movies. When it is played at a slower pace, all motion is slower and time is experi-
enced as slower. The observer in motion therefore sees the process in ‘slow motion’
and interprets this as time is passing slower.

When the relative motion reaches the speed of light, i.e. v = c = 1/
√

ε0μ0,
the magnetic effect and the electric force cancel each other (see formula 2.24) and
the repulsive force ceases, time stands still. This conclusion must be valid also for
speeds greater than that of light. To understand what happens when the relative motion
approaches the speed of light, consider Fig. 9.2. It may be noted that the distance over
which the momentum is mediated increases with relative speed to become infinitely
large at and above the speed of light. Then no momentum mediation can take place.

9.4.2 Time Dilation

The above discussion will now be quantified by formulating the relativity of time,
the so-called time dilation.

An observation is a registration of an object’s change in motion in terms of space
and time coordinates. Other concepts, such as mass, force and charge are abstract.
They are part of the descriptive model that is used to comprehend reality. Since the
space coordinates are included in the distance vector R, perpendicular to the motion
of the observer in Fig. 9.5, it is assumed that these are not dependent on the observer
in this case. The observers at rest and in motion, cases c and b in Fig. 9.5, are doing the
same horizontal motion, i.e. none. Thus, only the time coordinate remains. Assume
that there is a linear relationship between the time intervals which are perceived by
the observer in motion dt and at rest dt0, i.e. dt = γ dt0 where γ depends on v.
The repulsive motion that is observed (for like charges) is given by Newton’s law of
force. In case b in Fig. 9.5, i.e. for the observer in motion, the following repulsion is
obtained (see formula 2.24)

m
d

dt

d R̄

dt
= 1

4πε0

q1q2

R2

(
1 − v2

c2

)
R̂ (9.6)

and in case c

m
d

dt0

d R̄

dt0
= 1

4πε0

q1q2

R2 R̂ (9.7)

Thus, in case b the repulsive motion is affected by the magnetic effect whereas in
case c only the electric force occurs. m is the mass of the object which at this stage
is considered as constant since a description in terms of the coordinates is sought.

Formula (9.6) may be written

m
d

γ dt0

d R̄

γ dt0
= 1

4πε0

q1q2

R2

(
1 − v2

c2

)
R̂ (9.8)
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Dividing formula (9.7) by formula (9.8) gives γ = 1/
√

1 − v2/c2 resulting in the
time dilation

dt = dt0√
1 − v2/c2

(9.9)

where v is the relative motion between the object and the observer (vertically in
Fig. 9.5). The formula reflects the fact that v < c.

9.4.3 Relativistic Momentum

The time dilation together with the principle of relative motion cause a violation of
momentum conservation as illustrated in the following example.

Consider an interaction between two identical objects in anti-parallel motion,
Fig. 9.6. In the upper diagram the observer’s motion is such that the two objects have
the same speed in opposite directions. In the lower diagram the observer is moving
together with the right charge in its vertical motion.

Due to time dilation, the moving observer perceives a slower horizontal (trans-
verse) motion of the leftward charge as compared to the rightward charge. The elec-
tromagnetic interaction would thus result in a change of momentum which is less for
the leftward charge than for the rightward one. This would violate Newton’s third
law, the principle of action and reaction, and accordingly the principle of momentum
conservation.

To respect this fundamental principle, the expression for the transversal momen-
tum needs to be made invariant, i.e. independent of the vertical motion of the observer.
One way of doing this is to redefine the concept of mass such that the diminishing
horizontal motion is compensated by a larger mass. The higher the speed relative
to an observer the higher the mass becomes. In the lower diagram of Fig. 9.6, the
leftward charge has a higher vertical speed than the rightward charge relative to the
observer and thereby a larger mass of the leftward charge is anticipated.

v

v

v

Accel.

Same acceleration and same mass 
conserve momentum

Different acceleration but motional 
dependent mass conserve momentum

Accel.

Accel. Accel.

v

Fig. 9.6 Observation of two like charges in anti-parallel motion



9.4 Special Theory of Relativity 181

To formalize this discussion formula (9.8) may be rewritten

d

γ dt0
m

d R̄

γ dt0
= 1

4πε0

q1q2

R2

(
1 − v2

c2

)
R̂ = 1

4πε0

q1q2

R2

1

γ 2 R̂ (9.10)

The momentum is then

p̄ = m
d R̄

γ dt0

where m is the mass which is perceived at relative rest and is henceforth denoted
by m0. To achieve invariance of the momentum, i.e. independence of the observer’s
motion v, it is necessary to multiply the momentum by γ . By multiplying the right-
hand as well as the left-hand side of formula (9.10) by γ we obtain

d

dt

(
m0γ

d R̄

dt

)
= 1

4πε0

q1q2

R2

1

γ
R̂ (9.11)

where the rest mass m0 has been introduced and the fact that dt = γ dt0 has been
used.

The relativistic momentum is thus by definition

p̄rel = m0γ
d R̄

γ dt0
= m0γ

d R̄

dt
(9.12)

It is this quantity that fulfils Newton’s principle of action and reaction and is
therefore conserved in the processes of nature.

Note that the right-hand side of formula (9.11) is the redefined electromagnetic
force. The force formula has been rewritten such that the repulsion which is observed
in e.g. Fig. 9.5b is partly caused by the electromagnetic force and partly by a mass
change. This reinterpretation is justified since both mass and force are abstract con-
cepts, i.e. not directly observable.

The transverse momentum is now equal for the two observers but not the motion
itself. The repulsion in Fig. 9.5 is still slower for the observer in relative motion
whereby time dilation arises.

9.4.4 Relativistic Energy

The new definition of momentum, formula (9.12), will result in a new definition of
energy. Consider the kinetic energy a single object acquired under the influence of
an external force, see Fig. 9.7.

In formula (9.12), γ = 1/
√

1 − v2/c2 where v is the vertical velocity while
d R̄/dt is the horizontal velocity. In Fig. 9.7 the object’s direction of motion coincides
with the motion relative to the observer wherefore the momentum of the object may
be written
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F
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Fig. 9.7 A person observes the acceleration of an object along the x axis

p̄ = γ (u)m0ū (9.13)

where u is the speed of the object. This is the general expression for momentum.
Newton’s force law is thus

F̄ = d p̄

dt
= d

dt
γ (u)m0ū (9.14)

Here, the time coordinate t is time dilated as the process takes place in relative
motion. The time coordinate is also included in the speed ū = dx/dt x̂ .

Through the definition of work as force times distance, relativistic kinetic energy
will now be derived. Let the external force F affect the object so that it accelerates
from initial speed 0 at x = 0 to the final speed v at x = X . Consider the case when
no other forces are acting so that potential energy can be neglected. All work will
then be transformed into kinetic energy, W = Ekin , which becomes:

W =
X∫

0

Fdx =
X∫

0

d

dt

[
γ (u)m0u

]
dx =

X∫

0

d

du

[
γ (u)m0u

] du

dt
dx

=
v∫

0

d

du

[
γ (u)m0u

]
udu =

v∫

0

d

du

[
u√

1 − u2/c2
m0

]
udu

=
v∫

0

[
m0u√

1 − u2/c2
+ m0u3/c2

(
1 − u2/c2

)3/2

]
du =

v∫

0

m0u(
1 − u2/c2

)3/2 du

=
[

m0c2√
1 − u2/c2

]v

0

Thus, relativistic kinetic energy is

Ekin = m0c2√
1 − v2/c2︸ ︷︷ ︸

Total energy

− m0c2︸ ︷︷ ︸
Rest energy

(9.15)
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A crucial difference from the Newtonian expression is that one of the terms does
not depend on the velocity v. The conventional interpretation is that m0c2 is to be
considered as rest energy and m0c2/

√
1 − v2/c2 as the total energy ET OT . It may

therefore be written
ET OT = Ekin + m0c2 (9.16)

which is the energy expression that is conserved in nature. Note however that in
general there is also a potential energy appearing on the right-hand side of formula
(9.16).

The energy of an object at rest is

ET OT = m0c2 (9.17)

which is interpreted such as the mass of the object in itself corresponds to a certain
amount of energy.

The work W will convert into the classical expression for kinetic energy at low
speeds which may be shown by series expanding the expression:

Ekin = m0c2√
1 − v2/c2

− m0c2 ≈ m0c2
(

1 + 1

2

v2

c2

)
− m0c2 = m0v2

2
(9.18)

The fact that the relativistic expression turns into the classical one for low speeds
is a general principle. It also applies to momentum and mass.

In classical physics, the relationship between momentum and kinetic energy
is E = p2/(2m). In the relativistic case p = m0v/

√
1 − v2/c2 and ET OT =

m0c2/
√

1 − v2/c2 so that

p2c2 + m2
0c4 = m2

0v2c2

1 − v2/c2 + m2
0c4 = m2

0c4

1 − v2/c2 = E2
T OT (9.19)

Thus
E2

T OT = p2c2 + m2
0c4 (9.20)

which is a useful formula in many contexts, e.g. in quantum mechanics.
In Exercise (9.5), formula (9.20) is used as a starting point for the definition of

so-called four-vectors.

9.5 Summary

Both the magnetic and the inductive force are motional consequences of the electric
force and can be derived from the fact that interactions take time; they are mediated at
the speed of light. These motional consequences are commonly known as ‘relativistic
effects’.



184 9 Motional Consequences

The special theory of relativity is based on the principle of relative motion and
Newton’s principle of action and reaction.

Time dilation

dt = dt0√
1 − v2/c2

(9.9)

is a direct consequence of the magnetic effect.
For an object with rest mass m0, relativistic momentum is

p̄ = γ (u)m0ū (9.13)

by which the principle of action and reaction is fulfilled so that momentum is con-
served.

The relativistic kinetic energy is

Ekin = m0c2√
1 − v2/c2

− m0c2 (9.15)

9.6 Exercises

9.1 A football match is replayed on TV at a five times slower pace compared to
actual time. How quickly do you have to move relative to the football pitch to
obtain the same effect?

9.2 The American physicist Feynman once said: ‘some claim that the special
theory of relativity is derivable from the relationship between the electric and
the magnetic force but nothing could be more wrong’.
Discuss this statement.

9.3 In Sect. 9.3 the acceleration from the inductive force in Fig. 9.3 was claimed
to be a = v/T . Motivate this by considering the initial acceleration brought
about by an external force to put charges in motion v.
Hint: Let this acceleration take place during the interaction time T and con-
vince yourself that the inductive force must equal the external force.

*9.4 Length contraction

The muon is a non-stable particle decaying into an electron and a so-called
neutrino. The life time for a muon at rest is τ0 = 2.2µs.
Muons are part of the cosmic radiation towards the earth and can be identified
using e.g. scintillation detectors. In a classic experiment, the number of muons
at a certain height above the earth was investigated and compared to the number
of muons at the surface. During a certain time interval, 5.0 × 104 muons were
identified at the altitude 3.0 km and 1.1 × 104 were identified at the surface of
the earth. The speed of the muons was determined to be v = 0.95 c.
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The formula for radioactivity is assumed to be valid for the decay of the muons:

N (t) = N (t = 0)e−t/τ

where τ is the life time of the muon.
Investigate how many muons that are expected at the surface of the earth during
the same time interval

a. Without the relativistic effect, i.e. no time dilation.
b. With the relativistic effect.

Now consider the issue in the rest system of the muon. The number of
muons at the surface of the earth should be the same as before, but the life
time of the muon for this observer is that at rest τ0 = 2.2µs.

c. Utilizing this example, show that length contraction is a direct result of
time dilation:

L = L0

√
1 − v2

c2 (9.21)

where L0 is the distance perceived by an observer at rest.

Exercises 9.5–9.11 are written as a tutorial. Lorentz transformations and
the concept of 4-dimensional space-time will be introduced.

*9.5 Four-vectors—four-dimensional space-time

Relativistic effects, i.e. motional consequences originating in time dilation
(equivalent to the magnetic effect), were interpreted by Minkowski as evidence
for a four-dimensional world with time as the fourth dimension. The starting
point for this interpretation is the identification of so-called invariants. These
are quantities independent of the motion of the observer and are formed from
the magnitude of a four-dimensional vector. In this exercise and the next one,
two such four-vectors shall be defined.

a. Starting from (9.20)
E2

T OT = p2c2 + m2
0c4

where p is relativistic momentum, an invariant may be formed:

E2
T OT

c2 − p2 = m2
0c2

which has the same value for any observer in arbitrary motion.

The magnitude squared of a four-vector is defined in the following way:

A2 = A2
1 + A2

2 + A2
3 − A2

4 (9.22)
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Thereby, show that the four-vector

pμ =
(

px , py, pz,
ET OT

c

)
(9.23)

has an invariant magnitude. The greek letter as the index of a four-vector is
standard notation.

*9.6 The figure describes two like electric charges in parallel motion.

R* = ct

R = ct0

v

r = vt

v

With the aid of the figure, show that

r2 + c2t2
0 = c2t2 ⇔ x2 + y2 + z2 + c2t2

0 = c2t2

Form the invariant

x2 + y2 + z2 − c2t2 = −c2t2
0 (9.24)

and show that the four-vector

rμ = (x, y, z, ct) (9.25)

has an invariant magnitude.

*9.7 Lorentz transformations

The special theory of relativity deals with how observers in uniform motion
relative to each other perceive events. This exercise explores how the coordi-
nates in these systems are related.
Let the observer O be at rest whereas the observer O’ is moving with the
velocity v in the x direction according to the figure below. Assume that they
observe an event H (e.g. a spider that spins its web) and wish to describe
the coordinates of the event in time and space. Let their coordinate systems
coincide at t = 0.
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O

x

O’

H

The observer O’ 
passes by the event H

x’

v

In classical physics, the following so-called Galilei transformations apply:

x ′ = x − vt

t ′ = t

y′ = y

z′ = z

Because of time dilation and length contraction, different transformations are
expected within the theory of relativity. Provided that these are linear and
approach Galilei transformations for c → ∞, the general transformations
become

x ′ = A(x − vt)

t ′ = Bx + Dt

y′ = y

z′ = z

The factors A, B and D are determined by the invariant (9.24), i.e.

x2 + y2 + z2 − c2t2 = x ′2 + y′2 + z′2 − c2t ′2 (9.26)

a. Using (9.26), derive the Lorentz transformations:

x ′ = γ (x − vt)

t ′ = γ
(

t − v

c2 x
)

y′ = y

z′ = z (9.27a)

where γ = 1/
√

1 − v2/c2.
b. Show that the Lorentz transformations convert to Galilei transformations

for c → ∞. This is important as it shows that the difference between
classical and relativistic physics is the fact that ‘interactions take time’.

9.8 a. Show that length contraction and time dilation are results of the Lorentz
transformations. Start from (9.27a) in differential form:
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dx ′ = γ (dx − vdt)

dt ′ = γ
(

dt − v

c2 dx
)

dy = dy′

dz = dz′ (9.27b)

Answer: The time dilation is a direct result since dx = 0.

The distance dx ′ should however be expressed for dt ′ = 0 since the end
points of this distance are to be measured simultaneously.

dx ′ = γ (dx − vdt) = γ

(
dx − v

(
dt ′

γ
+ v

c2 dx

))

dx ′ = γ

(
1 − v2

c2

)
dx = dx

γ

b. Based on the Lorentz transformations, show that the concept of simultaneity
is relative, i.e. dependent on the motion of the observer.

Answer: Assume that two events with the positions x1 and x2 occur at time
t = t1 in the system of the observer O. In a moving system, the times for
these two events are:

t ′1 = γ
(

t1 − v

c2 x1

)

t ′2 = γ
(

t1 − v

c2 x2

)

Thus, t ′1 	= t ′2, i.e. no simultaneity in the system of O′.
c. Try to find a conceptual explanation for the relativity of simultaneity.

*9.9 Derive the Lorentz transformations for the four-vector momentum

pμ =
(

px , py, pz,
ET OT

c

)

Answer: Since the Lorentz transformations were obtained from the condition
of invariance (9.26), pμ obeys the same transformations as the coordinate
vector, i.e.:

p′
x = γ

(
px − v

ET OT

c2

)

E ′
T OT

c2 = γ

(
ET OT

c2 − v

c2 px

)

p′
y = py

p′
z = pz (9.28)
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9.10 Velocity transformations

a. Derive the Lorentz transformations for velocity utilizing (9.27b).

Answer: Velocity in the moving system becomes

dx ′

dt ′
= γ (dx − vdt)

γ (dt − v
c2 dx)

=
dx
dt − v

1 − v
c2

dx
dt

dz′

dt ′
= dz

γ (dt − v
c2 dx)

=
dz
dt

γ (1 − v
c2

dx
dt )

b. Let an object be travelling at 0.90 c in the negative x direction in the system
of O. If O′ is travelling at 0.50 c, what speed will be perceived in the system
of O′ in classical and relativistic physics respectively?
O and O′ are observers in relative motion according to Exercise (9.7).

Answer: In classical physics the speed would be 1.4 c. In relativistic physics

dx ′

dt ′
=

dx
dt − v

1 − v
c2

dx
dt

= −0.90c − 0.50c

1 + 0.50c
c2 0.90c

= −1.40c

1.45

i.e. less than c. Nothing can move faster than light in the theory of relativity.

9.11 Relativistic kinematics

In a particle physics experiment an interaction between two protons is studied.
In the rest frame of the observer one proton is at rest and the other is incoming
with speed v̄. Assume that the interaction may be viewed as a collision, such
as between two billiard balls.

v

v1 v2

θ

Determine the angle θ between the two paths of the protons after the ‘collision’
using

a. classical physics
b. relativistic physics. Express the angle in terms of the outgoing velocities.

Hint: Apply the principles of energy and momentum conservation.
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Answer:

a. Momentum and energy conservation

mv̄ = mv̄1 + mv̄2

mv2

2
= mv2

1

2
+ mv2

2

2

give
v2 = v2

1 + v2
2 + 2v̄1 · v̄2

v2 = v2
1 + v2

2

such that

v̄1 · v̄2 = 0 ⇒ cos θ = 0

θ = π

2

b. Momentum and energy conservation

γ m0v̄ = γ1m0v̄1 + γ2m0v̄2

m0c2 + γ m0c2 = γ1m0c2 + γ2m0c2

give
γ v̄ = γ1v̄1 + γ2v̄2 (i)
1 + γ = γ1 + γ2 (i i)

Squaring the first equation gives

γ 2v2 = γ 2
1 v2

1 + γ 2
2 v2

2 + 2γ1γ2v̄1 · v̄2

The left-hand side may be replaced using Eq. (ii):

γ 2 = (γ1 + γ2)
2 − 2(γ1 + γ2) + 1

1

1 − v2

c2

= (γ1 + γ2)
2 − 2(γ1 + γ2) + 1

1 = (γ1 + γ2)
2 − 2(γ1 + γ2) + 1 − [(γ1 + γ2)

2 − 2(γ1 + γ2) + 1]v2

c2

γ 2v2 = c2[(γ1 + γ2)
2 − 2(γ1 + γ2)]
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so that

2γ1γ2v̄1 · v̄2 = c2[(γ1 + γ2)
2 − 2(γ1 + γ2)] − γ 2

1 v2
1 − γ 2

2 v2
2

and

cos θ = c2[(γ1 + γ2)
2 − 2(γ1 + γ2)] − γ 2

1 v2
1 − γ 2

2 v2
2

2γ1γ2v1v2

9.12 The metric tensor gμν

a. Let the space-time coordinates be infinitesimal intervals and express the
invariant (9.24) as

4∑
μ=1

4∑
ν=1

gμνdrμdrν (9.29)

Determine thereby the elements of the metric tensor gμν .
The metric tensor has a fundamental role in the general theory of relativity
dealing with so-called curved space-time. In special theory of relativity,
space-time is flat.

b. Convince yourself that on a curved surface, such as the surface of an orange,
a different metric tensor is obtained than that for a flat surface.
Hint: When forming the invariant (9.24), the starting point was Pythagora’s
theorem. Is this valid on a curved surface?

Starting from this exercise, one may begin to examine the general theory of
relativity dealing with general motions of observers, i.e. including accelera-
tion.

*9.13 Magnetic force

a. Whittaker showed in 1910 that the general magnetic force formula between
two electric charges based on the measurements of Ampère 1820–1825 is

f̄m2 = μ0q1q2

4π R2

[
3(b + 1)(v̄1 · R̂)(v̄2 · R̂)

×R̂ − (2 + b)(v̄1 · v̄2)R̂ − b(v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2

]

where a and b are constants.

Show with the aid of formula (9.3) that b = −1 and compare with formula
(2.11).

b. Under what conditions were Ampère’s measurements carried out?

Answer: Closed conductors and low speed relative that of light. Whittaker’s
formula is thus valid only for low speed of the charges.



192 9 Motional Consequences

9.14 The magnetic effect between two charges in parallel motion, Fig. 9.2, has a
natural conceptual explanation according to Sect. 9.2.
Consider the perpendicular motion, Fig. 2.9. Is it possible to find a natural
explanation also in this case within the model that has been used for the par-
allel motion?

Answer: The problem here is that it is not possible to find a reference system
where both charges are at rest which is necessary for the Coulomb force for-
mula to be valid.

9.15 In this chapter it has been established that the magnetic and inductive dynam-
ics are motional consequences of the electric force.

With this in mind, consider Exercise (2.23) once more.

Ref: K. Prytz, Sources of inertia in an expanding universe, Open Physics, 13
(2015) 130

9.16 Is the quantity temperature relative, i.e. is the observed temperature for a sys-
tem dependent on the motion of the observer?

What is the limit value of the temperature when the observer approaches light
speed?

Answer: The impossibility of travelling at or above the speed of light may
also be realised using thermodynamic principles. To this end, the simple pair-
wise interaction may be generalised into a real system. As has been mentioned
before, all real systems are constructed via the sum of simple pairwise interac-
tions. At the speed of light, the interactions cease, i.e. all motional change in
the system ceases. Because temperature corresponds to microscopic motion,
this would mean that a system has been generated at absolute zero, which is
impossible according to thermodynamic principles. Thus, there is a relation
between light speed and absolute zero temperature.

9.17 In September 2011 the research group OPERA reported a surprising measure-
ment of the speed of so-called neutrinos, a kind of elementary particles which
interact only via weak force and also possibly via gravitation.
The experiment utilized neutrinos that were produced in an accelerator at Cern
in Geneva and travelled below the earth’s surface to a subterranean facility in
central Italy. The distance covered was 731.278 km and the journey time, mea-
sured using the satellite-based GPS-system, was determined to be on average
2.43922 ms.

a. Determine the average speed of the neutrinos.
b. Compare this to the speed of light in vacuum, 299.792 km/s.
c. How does this result compare to the conclusion from the theory of relativity

that nothing can travel faster than light?
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This measurement was however declared to be faulty in March 2012. (Other-
wise this chapter had to be rewritten.)
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Chapter 10
Field Theory

In fact, whenever energy is transmitted from one body to another
in time, there must be a medium or substance in which the
energy exists after it leaves one body and before it reaches the
other ... and if we admit this medium as an hypothesis, I think it
ought to occupy a prominent place in our investigations, and
that we ought to endeavour to construct a mental representation
of all the details of its action, and this has been my constant aim
in this treatise.

James Clerk Maxwell, 1873

10.1 The Concept of a Field

The notion of an electric and magnetic field originates in the issue of conceptually
interpreting action at a distance. By letting a field be emitted from one object and
received by the other, the mechanism of the force action was assumed to be clarified.
Such a description of electromagnetic phenomena may have practical advantages
(often apparent) since the complexity of the problem is then divided into two parts
associated with each object respectively. The field from one object is first calculated
and secondly the force on the other object located in the field from the first object.
The strength of this procedure appears when the field generating object is fixedwhich
is often the case in technical applications. However, in case of mutual interactions,
i.e. basal physics, the field concept is less useful.

Within electromagnetic signal theory, involving for example antennas and wave
guides with belonging transmission and reflection effects, the electromagnetic field
theory is predominant.

Therefore, in this chapter these fields will be defined with the aim to formulate
the four equations describing their dynamics, constituting the basis for the science of
electromagnetic engineering. These are called Maxwell’s equations and were devel-
oped by Maxwell and Heaviside during the second half of the nineteenth century.

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-13171-9_10
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10.2 The Electric and the Magnetic Fields

The electric field Ē from a point charge is defined through the electric force formula
(2.1):

F̄1→2 = q1q2
4πε0R2 R̂ = q2 Ē1→2 (10.1)

such that
Ē1→2 = q1

4πε0R2 R̂ (10.2)

is the electric field generated by charge 1 and received by charge 2.
Similarly, a magnetic field B̄ from a point charge in motion is defined from the

force formula (2.14), i.e. Grassman’s formula, valid if charge 1 is part of a closed
conductor

F̄G
1→2 = μ0q1q2

4π

v̄2 × (v̄1 × R̂)

R2 = q2v̄2 × B̄1→2 (10.3)

such that

B̄1→2 = μ0

4π

q1v̄1 × R̂

R2 (10.4)

which is referred to as Biot-Savart’s formula.
From Chap.4 the field from different configurations may be extracted. Formula

(4.6) gives the electric field from a long straight charged wire

Ē = λ

2πε0d
ρ̂ (10.5)

where ρ̂ is a unit vector perpendicular to the wire.
Formula (4.11) gives the electric field from a large charged plate

Ē = σ

2ε0
n̂ (10.6)

where n̂ is the surface normal of the plate.
The magnetic field from a straight current is obtained from formula (4.42)

B̄ = μ0 I

2πρ
φ̂ (10.7)

and that from a large current-carrying plate from formula (4.44b)

B̄ = μ0

2
(K̄ × n̂) (10.8)
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10.3 Dipoles

An inspiring experiment is to illustrate the electric and magnetic field lines using
macroscopic dipoles, Fig. 10.1.

Put some semolina in oil and let it be influenced by an external charge distribution.
The elongated grains will align with the external electric field. Similarly, iron filings
will align along an external magnetic field. The reason is that the external influence
induces dipoles in the grains and the filings which experience a torque according to
the description in Chap. 7. This will rotate the dipoles until an extreme energy value
is achieved, compare Exercise (7.15). From Chap.7, the torque and the energy for
these processes may be extracted in terms of the fields. From the definition of electric
potential, formula (3.3), it is first established that

Ē = −∇� (10.9)

so that, using formula (7.2),
Ue = − p̄ · Ē (10.10)

which accordingly is the energy arising in an interaction between the dipole and the
charged object that generates the electric field E , nothing else.

The torque is obtained from formula (7.5)

τ̄ = p̄ × Ē (10.11)

In the magnetic case, the energy is given by formula (7.33) (or generally by
formula (C5))

Um = m̄ · B̄ (10.12)

without a minus sign since the magnetic energy is maximized in case of a permanent
dipole m in a constant magnetic field.

Fig. 10.1 Left The metallic plates are oppositely charged by a van de Graaf generator. Semolina
in castor oil is sprinkled around. Right Iron filings are sprinkled around a permanent bar magnet
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The torque (7.30) may then be written

τ̄ = m̄ × B̄ (10.13)

These four last formulas describe the discussed experiments.
In addition, the field lines generated by a dipole is obtained by comparing formulas

(10.10) and (10.12) to the dipole-dipole interaction energy, formulas (7.16) and
(7.25):

Ēdipole = − 1

4πε0R3 [ p̄ − 3( p̄ · R̂)R̂] (10.14)

B̄dipole = − μ0

4π R3 [m̄ − 3(m̄ · R̂)R̂] (10.15)

giving the field lines as illustrated in Fig. 10.1.

10.4 Material Effects

Material effectswere discussed inChap.8. To describe these phenomena, three vector
quantities are needed: the external influence, thematerial response and the total effect
in the material. Table10.1 states how these are represented in field theory.

Note that the magnetic field B is in this context named magnetic flux density
(sometimes also referred to as magnetic induction). This terminology will become
clear in Sect. 10.6.1.

In the electric case, the relation between the field vectors is obtained using formula
(8.24):

P̄ = −ε0(κe − 1)∇� = D̄ − ε0 Ē (10.16)

so that the electric displacement vector becomes

D̄ = −ε0κe∇� = ε0κe Ē (10.17)

where the electric field inside the material is

Ē = −∇� (10.18)

In the magnetic case, formula (C6) is utilized to express magnetization

Table 10.1 Vector fields needed to treat electromagnetic material properties

Influence Material response Total field in the material

Electric Electric displacement D Polarisation P Electric field E

Magnetic Magnetic field intensity H Magnetisation M Magnetic flux density B
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μ0M̄ = (κm − 1)
μ0

4π

∫

V f

J̄ f × R̄

R3 dV f = B̄ − μ0 H̄ (10.19)

so that the magnetic field intensity becomes

H̄ = 1

4π

∫

V f

J̄ f × R̄

R3 dV f (10.20)

and the magnetic flux density

B̄ = μ0κm
1

4π

∫

V f

J̄ f × R̄

R3 dV f (10.21)

Thus, the following relations between total field and the external influence have
been found

Ē = D̄

ε0κe
(10.22)

B̄ = μ0κm H̄ (10.23)

Based on formulas (10.22) and (10.23), materials may be classified with respect
to properties of the material parameters κe and κm :

• Linear[non-linear] material:material parameters are independent [dependent] on
the strength of the external influence. The ferromagnetic and ferroelectricmaterials
are examples of non-linear materials, see Exercises (8.15), (8.16) and (10.6).

• Isotropic [anisotropic material]: material parameters are scalars [matrices], see
Exercise (8.12).

• Homogeneous [non-homogeneous material]: the material parameters are coordi-
nate independent [dependent].

Consider now the interaction energy between a material and an external influence.
In the magnetic case, this is obtained from formula (C5):

U m
int = μ0

4π

1

2

∫

V f

∫

Vb

M̄ · J̄ f × R̄

R3 dVbdV f = 1

2
μ0 H̄ ·

∫

Vb

M̄dVb (10.24a)

To find out the energy stored in the material, (10.19) and (10.23) are used to
rewrite (10.24a) as

dU m
int

dVb
= 1

2
μ0 H̄ · M̄ = 1

2
μ0 H̄(κm − 1)H̄ = 1

2
B̄ · H̄ − 1

2
μ0H2 (10.24b)
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where the first term corresponds to the stored energy density in the material and the
second to the negative free energy density, generated by the external influence.

In the electric case, the interaction energy becomes (see Exercise10.2)

U e
int = −1

2

D̄

ε0
·
∫

Vb

P̄dVb (10.25a)

Following the procedure from the magnetic case, the total interaction energy
(10.25a) may be written as the difference of the energy in the material and the free
energy. Using formulas (10.16) and (10.17) the energy density becomes

dU e
int

dVb
= −1

2

D̄

ε0
· P̄ = −1

2

D̄

ε0
· (D̄ − ε0 Ē) = 1

2
Ē · D̄ − 1

2

D2

ε0
(10.25b)

where the first term corresponds to the energy density stored in the material and the
second to the negative free energy density generated by the external influence.

10.5 Boundary Conditions

One essential advantage using field theory lies in the simplified usage of so-called
boundary conditions. These define specific conditions on the fields at discontinuities
of the surrounding media giving substantial information on the fields globally. For
all types of electromagnetic signal transfers, the boundary conditions are decisive.
Applications include wave guides, antennas, filters and resonance cavities.

Boundary conditions were discussed for the electric case in Sect. 8.1.3.1. This is
now extended to general intersections as well as the magnetic case. Firstly it will be
shown that the boundary conditions require knowledge of the divergence and curl of
the fields. These are then determined for the electric and the magnetic fields, in total
four formulas.

10.5.1 General Vector Field

Consider first a general vector field F traversing a discontinuity of the surroundings,
Fig. 10.2. The normal component of the discontinuity is directed frommedium 1 to 2.
What is the change of the vector’s components parallel (tangential) and perpendicular
(normal) to the discontinuity?

1. Normal component F̄n//n̂
Form a small cylinder with surface S and volume V around the discontinuity,
Fig. 10.3. Using the divergence theorem
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Fig. 10.2 Vector field at a
discontinuity

Fig. 10.3 A cylindrical
surface is formed around the
discontinuity

∮

S

F̄ · dā =
∫

V

∇ · F̄dV (10.26)

a condition for the normal componentmay be obtained in the followingway. Evaluate
the left-hand side

∮

S

F̄ · dā = F̄1 · �ā1 + F̄2 · �ā2 + contribution from the mantle (10.27)

Let the height h → 0 so that the contribution from the mantle vanishes. Using
(10.26), we then obtain

(F̄2 − F̄1) · n̂ = lim
h→0

h∇ · F̄ (10.28)

indicating that the normal component is continuous provided the divergence of the
vector is finite at the intersection surface.

2. Tangential component F̄t⊥n̂
Form a small rectangle C around the discontinuity, Fig. 10.4. Stokes’ theorem is now
utilized to gain information at the discontinuity
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Fig. 10.4 A rectangular path
is formed around the
discontinuity

∮

C

F̄ · ds̄ =
∫

S

∇ × F̄ · dā (10.29)

where dā = n̂′da is a surface element of the rectangle. For a small rectangle we
obtain

t̂ · (F̄2 − F̄1)�s + contribution from verticals = ∇ × F̄ · n̂′h�s (10.30)

Let h → 0 so that the contribution from the vertical sides vanishes:

t̂ · (F̄2 − F̄1)�s = ∇ × F̄ · n̂′h�s (10.31)

Since t̂ = n̂′ × n̂

(n̂′ × n̂) · (F̄2 − F̄1)�s = ∇ × F̄ · n̂′h�s (10.32)

which may be written

n̂′ · (n̂ × (F̄2 − F̄1))�s = ∇ × F̄ · n̂′h�s (10.33)

giving
n̂ × (F̄2 − F̄1) = lim

h→0
h∇ × F̄ (10.34)

which may also be expressed directly in terms of tangential components (show this)

F̄2t − F̄1t = lim
h→0

h[∇ × F̄ × n̂] (10.35)

indicating that the tangential component of a vector field is continuous at a discon-
tinuity provided its curl is finite at the intersection surface.

Formulas (10.28) and (10.35) show that the electromagnetic boundary conditions
are defined by the divergence and curl of the electric and the magnetic fields. This is
the main motivation for introducing Maxwell-Heaviside’s field equations.
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Fig. 10.5 An infinitesimal
element dV’ of volume V’
contributes to the field at the
field point

10.5.2 Divergence and Curl for Static Electric
and Magnetic Fields

The boundary conditions are now to be specified for the electric and magnetic fields
by determining their divergence and curl. Consider first the static (time independent)
case. The time varying case will be treated in Sect. 10.6. Primed coordinates are used
for the position of the source elements, r̄ ′ = (x ′, y′, z′), and unprimed coordinates
for the position of the field, r̄ = (x, y, z), Fig. 10.5.1

The electric field is given by formula (10.2) and may be expressed as

Ē(r̄) = 1

4πε0

∫

V ′

ρ(r̄ ′)
R2 R̂dV′ (10.36)

where R̄ = r̄ − r̄ ′ and ρ is the charge density.
For the divergence of E , ∇ · Ē , ∇ acts on the unprimed coordinate so that

∇ · R̂

R2 = ∇ · R̄

R3 = R̄ · ∇ 1

R3 + 1

R3∇ · R̄ = 0 for R̄ �= 0

and

∇ · Ē(r̄) = 0 for R̄ �= 0

For R̄ = 0 , the following procedure may be used

∫

V ′
∇ · R̂

R2 dV′ =
∮

S′

R̂

R2 · dā′ =
∮

S′

cos θ ′

R2 da′ =
∮

S′
d = 4π

1 This section contains relatively advanced mathematics. For the reader who is not familiar with
this it is recommended to read briefly.
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where d is the infinitesimal solid angle which, over a closed surface, is 4π . Since∫
V ′

∇ · R̂

R2 dV′ vanishes everywhere apart from a point at R̄ = 0 where it is 4π , the

divergence of E may be written

∇ · Ē(r̄) = 1

ε0

∫

V ′
ρ(r̄ ′)δ(r̄ − r̄ ′)dV′ (10.37)

where the delta function is defined as
∫
V ′

f (r̄ ′)δ(r̄ − r̄ ′)dV′ = 0 if r̄ outside the volume V ′
∫
V ′

f (r̄ ′)δ(r̄ − r̄ ′)dV′ = f (r̄) if r̄ inside the volume V ′ (10.38)

It is then obtained

∇ · Ē(r̄) = ρ(r̄)

ε0
(10.39)

Hence, the divergence of the electric field is non-vanishing only at a point where
charge exists.

The magnetic field is given by formula (10.4)

B̄ = μ0

4π

∫

V ′

J̄ × R̄

R3 dV′ = μ0 I

4π

∮

C ′

d L̄ ′ × R̄

R3 (10.40)

for a closed conductorC ′. Here it has been used that IdL̄ = J̄ dV, see Exercise (2.24).
The divergence of B becomes

∇ · B̄ = μ0 I

4π

∫

C ′
[−d L̄ ′ · ∇ × R̄

R3︸ ︷︷ ︸
=o

+ R̄

R3 · ∇ × d L̄ ′︸ ︷︷ ︸
=o

] (10.41)

The second term vanishes since the differential operator acts on the unprimed
coordinates. The first term also vanishes since

∇ × R̄

R3 = ∇ × ∇
(

− 1

R

)
= 0 (10.42)

because it generally holds that the curl of a gradient vanishes. Thus

∇ · B̄ = 0 (10.43)
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The curl of the electric field

∇ × Ē(r̄) = 1

4πε0

∫

V ′
ρ(r̄ ′)∇ × R̄

R3 dV′ = 0 (10.44)

according to formula (10.42).
The curl of the magnetic field

∇ × B̄(r̄) = μ0

4π

∫

V ′
∇ ×

(
J̄ (r̄ ′) × R̄

R3

)
dV′ (10.45)

Since

J̄ (r̄ ′) × R̄

R3 = − J̄ × ∇ 1

R
= ∇ × J̄

R
(10.46)

curl of B becomes

∇ × B̄(r̄) = μ0

4π

∫

V ′
∇ × ∇ × J̄

R
dV′ = μ0

4π

∫

V ′

(
∇

(
∇ · J̄

R

)
− ∇2 J̄

R

)
dV′ (10.47)

The first integral

μ0

4π

∫

V ′
∇

(
∇ · J̄

R

)
dV′ = μ0

4π
∇

∫

V ′
J̄∇ 1

R
dV′ = −μ0

4π
∇

∫

V ′
J̄∇′ 1

R
dV′ (10.48)

where ∇′ means differentiation w.r.t. r̄ ′.
The integral in formula (10.48) may be integrated by parts

∫

V ′
J̄∇′ 1

R
dV′ =

[
J̄

R

]
−

∫

V ′

∇′ · J̄ (r̄ ′)
R

dV′ = 0 (10.49)

since such a large volume may be chosen so that the first term vanishes. The second
term vanishes by formula (5.20) for static conditions.

The second term in (10.47) is evaluated using

∇2 J̄

R
= − J̄∇ · R̂

R2 (10.50)

so that
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μ0

4π

∫

V ′
−

(
∇2 J̄

R

)
dV′ = μ0

4π

∫

V ′
J̄

(
∇ · R̂

R2

)
dV′

= μ0

4π

∫

V ′
J̄ (r̄ ′)(4πδ(r̄ − r̄ ′))dV′ = μ0 J̄ (r̄) (10.51)

where the introduction of the delta function in the third step parallelizes the procedure
for obtaining the divergence of the electric field, formula (10.37). We then obtain

∇ × B̄(r̄) = μ0 J̄ (r̄) (10.52)

10.5.3 Boundary Conditions for Static Electric
and Magnetic Fields

The boundary conditions for a general vector field, obtained in Sect. 10.5.1, are now
specified for the electric and magnetic fields in case of static conditions. The results
from Sects. 10.5.1 and 10.5.2 are first compiled in Table10.2:

1. Normal component of E
Table10.2 gives

(Ē2 − Ē1) · n̂ = lim
h→0

h∇ · Ē = lim
h→0

h
ρ

ε0
(10.53)

Referring to Fig. 10.3 it is understood that Q = h�aρ is the total charge contained
in the cylinder. When h → 0 this may be written Q = �aσ where σ is charge per
unit surface. Therefore

(Ē2 − Ē1) · n̂ = σ

ε0
(10.54)

2. Tangential component of E
Ē2t − Ē1t = 0 (10.55)

3. Normal component of B
(B̄2 − B̄1) · n̂ = 0 (10.56)

4. Tangential component of B

B̄2t − B̄1t = μ0 lim
h→0

h[ J̄ × n̂] (10.57)

Table 10.2 Conditions used for deriving boundary conditions

General Electric Magnetic

(F̄2 − F̄1) · n̂ = lim
h→0

h∇ · F̄ ∇ · Ē(r̄) = ρ(r̄)/ε0 ∇ · B̄ = 0

F̄2t − F̄1t = lim
h→0

h[∇ × F̄ × n̂] ∇ × Ē(r̄) = 0 ∇ × B̄(r̄) = μ0 J̄ (r̄)
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J̄ is current density, i.e. current per area. Referring to Fig. 10.4, the total current
through the rectangle’s area becomes I = J̄ · h�sn̂′ so that

B̄2t − B̄1t = μ0 K̄ × n̂ (10.58)

where K̄ = I/�s n̂′, i.e. current per length unit. The current is parallel to the surface
normal of the rectangle.

10.6 Maxwell’s Equations

The four equations defining the boundary conditions of the electromagnetic fields
are called Maxwell’s equations and given in the static case by Table10.2:

∇ · Ē(r̄) = ρ(r̄)

ε0
(10.59)

∇ · B̄(r̄) = 0 (10.60)

∇ × Ē(r̄) = 0 (10.61)

∇ × B̄(r̄) = μ0 J̄ (r̄) (10.62)

However, there are known electromagnetic phenomena not included in the formu-
las above. These are Faraday-Henry’s induction effect, formulas (3.33) and (3.34),
and the continuity equation for electric charge, formula (5.20). These include the
time variation of the fields.

10.6.1 Accelerating Charges—The Time Variation
of the Magnetic Field

Induction effects occur for time varying current, i.e. accelerating charges correspond-
ing to time varying magnetic field. The underlying force on charges in acceleration
is the Weber formula (3.34)

f̄ind = −μ0q2q1
4π R

dv̄1
dt

(10.63)

for force on charge 2 giving an induced voltage in circuit 2, formula (3.33),

ε2 = d

dt
(i1M12) = d

dt

⎛
⎜⎝i1

μ0

4π

∮

C2

∮

C1

d L̄1 · d L̄2

R

⎞
⎟⎠ (10.64)
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where R̄ = r̄2 − r̄1. The right-hand side may be expressed in terms of the magnetic
flux density B in the following way. Consider the integrand in the expression for the
magnetic field, formula (10.40):

d L̄1 × R̄

R3 = −d L̄1 × ∇2
1

R
= ∇2 × d L̄1

R
(10.65)

since ∇2 × d L̄1 = 0. The magnetic field becomes

B̄(r̄2) = ∇2 × i1
μ0

4π

∮

C1

d L̄1

R
(10.66)

The magnetic flux through the surface S2 is

∫

S2

B̄(r̄2) · dā2 =
∫

S2

∇2 ×
⎛
⎜⎝i1

μ0

4π

∮

C1

d L̄1

R

⎞
⎟⎠ · dā2 = i1

μ0

4π

∮

C2

∮

C1

d L̄1 · d L̄2

R

(10.67)
where Stokes’ theorem was used in the last equality. Thus, the magnetic flux through
the surface S2 generated by circuit 1 is

�1→2 = i1
μ0

4π

∮

C2

∮

C1

d L̄1 · d L̄2

R
(10.68)

whose time derivative is the right-hand side of formula (10.64). Accordingly, induc-
tion voltage becomes

ε2 = d

dt

∫

S2

B̄(r̄2) · dā2 (10.69)

This is the voltage induced in circuit 2, which according to formula (10.9) together
with the definition of voltage, formula (3.6), may be written

ε2 =
∮

C2

Ē · d L̄2 =
∫

S2

(∇ × Ē) · dā2 (10.70)

so that

∇ × Ē = −d B̄

dt
(10.71a)

where a minus sign has been introduced on the right-hand side by the following
reason. By combining (10.69) and (10.70) including the minus sign from (10.71a)
the voltage becomes
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∮

C2

Ē · d L̄2 = − d

dt

∫

S2

B̄(r̄2) · dā2 (10.71b)

so that an increasing (decreasing) magnetic field gives a negative (positive) cur-
rent change in accordance with observation. This effect is known as Lenz’s law,
see Exercise (3.5). Note that the direction of current is defined to be parallel to the
electric field.

10.6.2 The Continuity Equation—Time Variation
of Electric Field

The continuity equation for electric charge, formula (5.20)

∇ · J̄ + dρ

dt
= 0 (10.72)

constitutes implicit information on the dynamics of free charges based on the hypoth-
esis that electric charge is conserved. The equation deals with charges in motion and
accordingly a time varying electric field. This effect may be included in the field
static formula (10.62) by considering the divergence of current

∇ · J̄ = 1

μ0
∇ · ∇ × B̄ = 0 (10.73)

For a time varying electric field, (10.73) becomes using (10.72)

∇ · J̄ + dρ

dt
= 1

μ0
∇ · ∇ × B̄ (10.74)

Using formula (10.59), the charge density may be replaced by

ε0∇ · Ē = ρ (10.75)

so that

∇ · J̄ + ε0
d∇ · Ē

dt
= 1

μ0
∇ · ∇ × B̄ (10.76)

or

∇ × B̄ = μ0 J̄ + μ0ε0
d Ē

dt
(10.77)

This may be interpreted that the sources to the magnetic field are both an electric
current and a time varying electric field.
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10.7 Potentials

The mathematical structure of Maxwell’s equations allows for an introduction of
so-called potentials by which the fields may be expressed. The purpose of this pro-
cedure is to simplify the computational technique.

Consider first the field static case. Since ∇ × Ē(r̄) = 0 and the curl of a gradient
vanishes, the electric field may be expressed by a scalar potential �:

Ē = −∇� (10.78)

which is formula (10.9).
In the magnetic case, since ∇ · B̄(r̄) = 0 and the divergence of a curl vanishes,

the magnetic field may be expressed as

B̄ = ∇ × Ā (10.79)

where A is called the magnetic vector potential. Using formula (10.66), the vector
potential is

Ā = I
μ0

4π

∮

C

d L̄

R
(10.80)

For time varying fields, the electric field ismodified according to Faraday-Henry’s
induction law (10.71a)

∇ × Ē(r̄ , t) = − d

dt
∇ × Ā(r̄ , t) (10.81)

so that

Ē(r̄ , t) = −∇�(r̄ , t) − d Ā(r̄ , t)

dt
(10.82)

Since
∇ · B̄(r̄ , t) = 0 (10.83)

also for time varying fields, formula (10.79) is unaltered

B̄(r̄ , t) = ∇ × Ā(r̄ , t) (10.84)

10.8 Power Transportation—The Poynting Vector

The power evaluated in an electrodynamic system may be expressed exclusively in
terms of fields. The stored energy of a system changes by reasons of heat generation
and energy transportation in or out of the system. It is the objective here to express
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these energy forms in terms of fields in order to identify the power transportation
in/out of the volume. This is of crucial importance when dealing with signal transfer
between electrodynamic systems such as antennas.

The analysis starts from the expression of heat power, i.e. Joule’s law (5.15).
Using the principle of energy conservation, heat power equals the change of stored
energy minus the power transported out from the system. Consider a volume V . The
heat power density is

Pfr

V
= J 2

σ
(10.85)

where J is the current density in the volume and σ is the conductivity. The index fr
stands for friction, the origin of heat power. According to Exercise5.7, Ohm’s law
may be written

J̄ = σ Ē (10.86)

where E is the electric field generating the current J . Since the current is generated
in the direction of the electric field, the heat power density may be written as a scalar
product

Pfr

V
= J̄ · Ē (10.87)

The heat power becomes

Pfr =
∫

V

J̄ · ĒdV (10.88)

which is now to be expressed in terms of fields only. Using Maxwell’s equation
(10.77) together with (10.22) and (10.23), current density becomes

J̄ = ∇ × H̄ − d D̄

dt
(10.89)

so that heat power may be written

Pf r =
∫

V

(
∇ × H̄ − d D̄

dt

)
· Ē (10.90)

Using vector algebra, the first term of the integrand

(∇ × H̄) · Ē = H̄ · (∇ × Ē) − ∇ · (Ē × H̄) = −H̄ · d B̄

dt
− ∇ · (Ē × H̄) (10.91)

where the Faraday-Henry induction law (10.71a) has been used in the last equality.
Rearranging terms and utilizing the divergence theorem we obtain
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−
∫

V

(
Ē · d D̄

dt
+ H̄ · d B̄

dt

)
dV = Pfr +

∮

A

(Ē × H̄) · dā (10.92)

where A is the surface enclosing the volume V .
The left-hand side is then rewritten so that

− d

dt

∫

V

(
1

2
Ē · D̄ + 1

2
H̄ · B̄

)
dV = Pfr +

∮

A

(Ē × H̄) · dā (10.93)

According to formulas (10.24b) and (10.25b) the left-hand side corresponds to the
time change of stored electric and magnetic energy. The second term of the right-
hand side is therefore the power transported in or out of the volume. The integrand
of this term is called the Poynting vector

S̄ = Ē × H̄ (10.94)

corresponding to the power transported per unit area. In Chap. 11 the Poynting vector
will be applied to find the power transmitted by an antenna.

10.9 Summary

In static conditions, the electric field E is defined by the electric force formula

F̄1→2 = q1q2
4πε0R2 R̂ = q2 Ē1→2 (10.1)

Ē1→2 = q1
4πε0R2 R̂ (10.2)

InMaxwell-Heaviside field theory, the static magnetic field B is defined byGrass-
man’s force formula

f̄ G
m2 = μ0q1q2

4π

v̄2 × (v̄1 × R̂)

R2 = q2v̄2 × B̄1→2 (10.3)

B̄1→2 = μ0

4π

q1v̄1 × R̂

R2 (10.4)

Using the continuity equation and the Faraday-Henry induction law, the time
variation of the fields may be derived to obtain the general Maxwell-Heaviside field
equations

∇ · Ē(r̄ , t) = ρ(r̄ , t)

ε0
(10.59)
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∇ · B̄(r̄ , t) = 0 (10.60)

∇ × Ē(r̄ , t) = −d B̄(r̄ , t)

dt
(10.71)

∇ × B̄(r̄ , t) = μ0 J̄ (r̄ , t) + μ0ε0
d Ē(r̄ , t)

dt
(10.77)

The boundary conditions of the electric and magnetic fields are

(Ē2 − Ē1) · n̂ = σ

ε0
(10.54)

Ē2t − Ē1t = 0 (10.55)

(B̄2 − B̄1) · n̂ = 0 (10.56)

B̄2t − B̄1t = μ0 K̄ × n̂ (10.58)

The power transported in or out of a volume is

Pt =
∮

A

(Ē × H̄) · dā

where A is the surface enclosing the volume.
Table10.3 summarizes the field theoretical description of material effects.

Table 10.3 Summary of field theory with respect to material effects

Electric Magnetic

Components C = κeC0 L = κm L0

Dipole moment p̄ = ∫
V

P̄(r̄)dV m̄ = ∫
V

M̄(r̄)dV

Charge and current densities ρb = −∇ · P̄ J̄b = ∇ × M̄

σb = P̄ · n̂ K̄b = M̄ × n̂

σb = σ f (1/κe − 1) Ib = (κm − 1)N I f

Polarisation from external influence P̄ = (1 − 1/κe)D̄ M̄ = (κm − 1)H̄

Total field in the material ε0 Ē = D̄ − P̄ B̄/μ0 = H̄ + M̄

Fields from free charge/current ∇ · D̄ = ρ f ∇ × H̄ = J̄ f

Energy density in the material dUe
dV = 1

2 Ē · D̄ dUm
dV = 1

2 B̄ · H̄



214 10 Field Theory

10.10 Exercises

10.1 Determine the magnetic field intensity H far away from a current loop.
Hint: Utilize formula (8.74).

C 10.2 Derive the electric energy for the interaction between free (unbound) charge
and a material, formula (10.25a).

*10.3 Derive the following integral forms of Maxwell-Heaviside equations in the
field static case:

a. ∮

S

Ē · dā = Q

ε0
(10.95)

where S is a closed surface and Q is the charge enclosed by this surface.
b. ∮

C

B̄ · dl̄ = μ0 I (10.96)

where C is a closed curve and I is the current enclosed by this curve.
c. ∮

S

B̄ · dā = 0 (10.97)

where S is a closed surface.

*10.4 Use formula (10.95) to obtain the electric field outside the following homo-
geneously charged objects:

a. Large plate, surface charge density σ

b. Long cylinder, charge per meter λ

c. Sphere with total charge Q

*10.5 Use formula (10.96) to determine the magnetic field B generated by the
following homogeneous current distributions:

a. Outside a long straight conductor carrying current I
b. Outside a large plate carrying current per meter K
c. Inside and outside a long coil with n close turns per meter and carrying

current I .

*10.6 Express (a) the magnetic and (b) the electric hysteresis curve in terms of
the magnetic fields B, H and the electric fields E , D respectively. Utilize
Exercises (8.15) and (8.16).
c. Express the work done over one ferroelectric cycle in terms of the fields
E and D. Utilize Exercise (8.16c).
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10.7 Apply the continuity condition (10.54) to determine the magnitude of the
electric field from a large plate with a constant surface charge density σ . The
surrounding is air/vacuum.

C 10.8 A sphere with radius a is homogeneously magnetized with magnetization
M̄ = Mẑ. Its center is located in the coordinate origin as in Fig. 8.17.

a. Determine the magnetic flux density B̄ on the z axis inside and outside
the sphere.

b. Determine the magnetic field intensity H̄ on the z axis inside and outside
the sphere.

c. Give the continuity condition for the normal component of H̄ and verify
that this is fulfilled in this case.
Hint: Use formula (8.79) and apply formulas (10.23) and (10.56).

d. According to formula (10.20), the source of the magnetic field intensity
H̄ is free current J̄ f . Explain why H̄ even so is finite in this case.

C 10.9 A sphere with its center in the coordinate origin and with radius a is homo-
geneously electrically polarised with polarisation P̄ = Pẑ.

a. Determine the electric field Ē on the z axis inside and outside the sphere.
b. Determine the electric displacement D̄ on the z axis inside and outside

the sphere.
c. Give the continuity condition for the normal component of the displace-

ment vector D̄ and verify that this is fulfilled in this case.
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Hint: Utilize formula (8.31) and apply formulas (10.22) and (10.54).
d. Show that ∇ · D̄ = ρ f . Accordingly, the source of D̄ is free charge.

Explain why D̄ is finite despite the fact that only a bound charge exists
in this case.

10.10 A large plate consists of parallel vibrating electric

P

x

z

dipoles homogeneously distributed with a density of dipole moment as

P̄ = P0 sinωt ẑ

where ω is the angular velocity of the vibration and t is the time coordinate.
Determine the magnetic flux density generated by these dipoles.

10.11 A coaxial cable is connected to a voltage source�� in one end and a resistive
load R in the other.

a. Calculate the Poynting vector between and outside the conductors.
b. Determine the direction of the Poynting vector inside the conductors.
c. Determine the power transfer to the load and compare with the circuit

theoretical expression.

10.12 A cylindrical parallel plate ideal capacitor with plate radius a and with a
distance d between the plates is being charged with a voltage source ��.

a. Determine the power transportation into the volume between the plates.
b. Show that the volume density of this power equals the time derivative of

formula (10.25b).



Further Readings 217

Further Readings

J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)
A.L. Davalos, D. Zanette, Fundamentals of Electromagnetism (Springer, Berlin, 1999)
P. Lorrain, D.R. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman and Company,
New York, 1988)

R.K. Wangsness, Electromagnetic Fields (Wiley, New York, 1986)

Original Papers

O. Heaviside, Electromagnetic Theory (The Electrician, London, 1893)
J.C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155,
459 (1865)

J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond.
175, 343 (1884)



Chapter 11
Antenna Theory—The Loop and the Dipole

It was shortly after midday on December 12, 1901, [in a hut on the
cliffs at St. John’s, Newfoundland] that I placed a single earphone
to my ear and started listening. The receiver on the table before
me was very crude - a few coils and condensers and a coherer -
no valves [vacuum tubes], no amplifiers, not even a crystal. I was
at last on the point of putting the correctness of all my beliefs to
test. … [The] answer came at 12:30. … Suddenly, about half past
twelve there sounded the sharp click of the ‘tapper’ … Unmistak-
ably, the three sharp clicks corresponding to three dots sounded
in my ear. ‘Can you hear anything, Mr. Kemp?’ I asked, handing
the telephone to my assistant. Kemp heard the same thing as I. …
I knew then that I had been absolutely right in my calculations.
The electric waves which were being sent out from Poldhu [Corn-
wall, England] had travelled the Atlantic, serenely ignoring the
curvature of the earth which so many doubters considered a fatal
obstacle. … I knew that the day on which I should be able to send
full messages without wires or cables across the Atlantic was not
far distant.

Guglielmo Marconi

(Extracted from the book ‘Marconi, my father’ by D. Marconi
(2000). Used by kind permission of Guernica Editions.)

In Chap. 9 it was shown that the magnetic and inductive forces may be interpreted as
motional consequences of the electric force, an interpretation based on the fact that
interactions take time, Figs. 9.1 and 9.2.

Figure 9.2 shows that charge 2 receives the momentum at t = t2, emitted by
charge 1 at time t1. These times are related according to

t1 = t2 − R∗

c
(11.1)

where time t1 is called ‘retarded time’. In e.g. Exercise (2.19), the retardation effect
was not considered since the distance is small and the two times t1 and t2 are almost
equal. To describe a general interaction the retardation effects must be considered.

In this chapter, two basic examples will be analysed showing the importance of
retardation. These are the loop and dipole antennas, corresponding to a closed circular

© Springer International Publishing Switzerland 2015
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220 11 Antenna Theory—The Loop and the Dipole

and a straight (non-closed) conductor respectively, both fed by an AC voltage and
assumed to be small so that the current is uniform. The principles of an antenna array
are then discussed by analysing a two-element system.

In the exercise section it is shown that antenna theory is also applicable to natural
processes. By modelling matter as vibrating dipoles, equivalent to the dipole antenna,
the reflection and refraction laws may be derived and thoroughly understood. In
particular, the interesting phenomenon called Brewster reflection is clarified.

11.1 The Loop Antenna

Consider a closed circular current-carrying conductor interacting with a point-like
charge q at rest and at a large distance from the loop, Fig. 11.1.

From the electrodynamical force formula (3.35) it is first noted that an interaction
occurs only through the inductive force, i.e. the acceleration dependent Weber force
(3.34). For an interaction at a distance R,

d F̄ = − qd L̄

4πε0c2 R

d I (t)

dt
(11.2)

which becomes in retarded form

d F̄ = − qd L̄

4πε0c2 R

d I (t − R/c)

dt
(11.3)

Let the current I vary harmonically with time so that in complex form:

I (t) = I0e jωt (11.4)

Fig. 11.1 A circular
current-carrying loop with
radius a and located in the
xy plane interacts with
charge q. The vector m is its
dipole moment

x

y

z

r'
r''

qm=Iπa2

IdL''

a

x

y

q

IdL'

θ
r

φ'
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giving
d I (t − R/c)

dt
= jω I0e jωt e− jωR/c (11.5)

The infinitesimal force becomes

d F̄ = − jωqd L̄

4πε0c2 R
I0e jωt e− jωR/c (11.6)

Consider now the circular loop, Fig. 11.1. By symmetry reasons, the total force is
directed along the spherical coordinate φ of the point charge q. Let it be located at
y = 0, i.e. on the x axis in the xy plane as in Fig. 11.1. The length element d L ′
contributes to the infinitesimal φ component of the force as

d Fφ = − jωqadφ′ cos φ′

4πε0c2r ′ I0e jωt e− jωr ′/c (11.7)

where d L ′ = adφ′.
Consider two diametrically opposite length elements of the loop. These will con-

tribute to the force in opposite directions but due to their different distance to the
charge q, a net effect will appear:

d Fφ = − jωqadφ′ cos φ′

4πε0c2 I0e jωt [e− jωr ′/c

r ′ − e− jωr ′′/c

r ′′ ] (11.8)

Using the cosine theorem, the distances are given by

r ′2 = a2 + r2 − 2ar sin θ cos φ′

r ′′2 = a2 + r2 + 2ar sin θ cos φ′

where the last two terms have different signs since the elements are diametrically
opposite and the angle φ′ refers to the primed element.

Since r � a, these distances may be Taylor expanded. Keeping terms up to the
order a/r gives

r ′ ≈ r(1 − a

r
sin θ cos φ′)

r ′′ ≈ r(1 + a

r
sin θ cos φ′)

1

r ′ ≈ 1

r
(1 + a

r
sin θ cos φ′)

1

r ′′ ≈ 1

r
(1 − a

r
sin θ cos φ′)
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which are introduced in formula (11.8)

d Fφ = − jωqadφ′ cos φ′

2πε0c2r
I0e jωt e− jωr

c

× [ j sin(
ωa

c
sin θ cos φ′) + a

r
sin θ cos φ′ cos(

ωa

c
sin θ cos φ′)] (11.9)

In case ωa � c, formula (11.9) is simplified:

d Fφ = − jωqadφ′ cos φ′

2πε0c2r
I0e jω(t−r/c)[ j

ωa

c
sin θ cos φ′ + a

r
sin θ cos φ′]

= − jωqa2

2πε0c2r
I0e jω(t−r/c)[ j

ω

c
+ 1

r
] sin θ cos2 φ′dφ′ (11.10)

To obtain total force, all elements along the loop have to be summed up. Let the loop
be small so that the current is uniform, i.e. it does not vary along the loop:

Fφ = − jωqa2

2πε0c2r
I0e jω(t−r/c)[ j

ω

c
+ 1

r
] sin θ

π∫

0

cos2 φ′dφ′

so that

Fφ = ωqπa2 sin θ

4πε0c2r
I0e jω(t−r/c)[ω

c
− j

r
] (11.11)

The real part is the physical force:

F R
φ = ωqπa2 sin θ

4πε0c2r
I0[cos(ω(t − r/c))

ω

c
+ sin(ω(t − r/c))

1

r
] (11.12)

The first term, varying as 1/r , is predominant at large distance and is known as
‘radio waves’. In the direction along the loop axis there is no force on the resting
charge q.

11.2 The Dipole Antenna

The dipole antenna consists of a straight AC fed wire. The feed gap will here be
neglected, Fig. 11.2.

For this antenna there is in addition to the Weber force an electric force, the reason
being that charges accumulate at the ends of the wire, motivating its name. The forces
will be treated separately, starting with the electric interaction.
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Fig. 11.2 The flow of charge
in a dipole antenna. The time
period of the AC voltage is
denoted T . The AC source is
usually connected at the
center of the wire

– +

+

t=0 t=T/2 t=3/4T

Current I

t=T/4

–

11.2.1 The Oscillating Electric Dipole

The charge accumulation at the ends of the wire is treated as a harmonically oscillating
electric dipole:

Q(t) = Q0e jωt (11.13)

and the retarded charge becomes

Q(t − R/c) = Q0e jω(t−R/c) (11.14)

Using formulas (10.1) and (10.9), the force between point charge Q and another
point charge q may be written:

F̄ = − 1

4πε0
q∇� = − q

4πε0

d

d R

Q(t − R/c)

R
R̂ = −q Q0e jωt

4πε0

d

d R

e− jωR/c

R
R̂

= q Q0e jω(t−R/c)

4πε0
[ jω

cR
+ 1

R2 ]R̂ (11.15)

The forces on the point charge q from the dipole in Fig. 11.3 becomes

F̄upper = q Q0e jω(t−r ′/c)

4πε0
[ jω

cr ′ + 1

r ′2 ]r̂ ′ (11.16)

F̄lower = q Q0e jω(t−r ′′/c)

4πε0
[ jω

cr ′′ + 1

r ′′2 ]r̂ ′′ (11.17)
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Fig. 11.3 The electric
dipole as a model for the
charge accumulation at the
ends of an AC fed wire r'

r θ

θ

b
Q

-Q

l

z

r

r'

r''

q

r''

From the geometry of Fig. 11.3, the distance magnitudes are

r ′ ≈ r − l

2
cos θ = r(1 − l

2r
cos θ)

r ′′ ≈ r + l

2
cos θ = r(1 + l

2r
cos θ)

Using the approximation l � r and keeping only first order terms in l/r we obtain

1

r ′ ≈ 1

r
(1 + l

2r
cos θ)

1

r ′′ ≈ 1

r
(1 − l

2r
cos θ)

which is introduced in formulas (11.16) and (11.17)

F̄upper = q Q0e jω(t−r ′/c)

4πε0
[ jω

cr (1 + l
2r cos θ) + 1

r2 (1 + l
r cos θ)]r̂ ′

F̄lower = q Q0e jω(t−r ′′/c)

4πε0
[ jω

cr (1 − l
2r cos θ) + 1

r2 (1 − l
r cos θ)]r̂ ′′ (11.18)

The direction vectors are obtained as follows. Referring to Fig. 11.3 it is seen that

r̂ ′ = r̂ cos b + θ̂ sin b

The sinus theorem gives r ′

sin θ
= l/2

sin b

so that up to order l/r

cos b = (1 − sin2 b)1/2 = (1 − sin2 θ(
l

2r ′ )
2)1/2 ≈ 1
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and

sin b = l

2r ′ sin θ ≈ l

2r
sin θ

Thus,

r̂ ′ = r̂ + θ̂
l sin θ

2r
(11.19)

Equivalently

r̂ ′′ = −r̂ + θ̂
l sin θ

2r
(11.20)

taking into account the opposite signs of the two charges.
For a small dipole the current is uniform along the wire. The current becomes

I = d

dt
Q(t) = d

dt
Q0e jωt = jωQ0e jωt (11.21)

and the forces

F̄upper = q I e− jωr ′/c

jω4πε0
[ jω

cr
(1 + l

2r
cos θ) + 1

r2 (1 + l

r
cos θ)]r̂ ′

= q I e− jωr(1− l
2r cos θ)/c

jω4πε0
[ jω

cr
(1 + l

2r
cos θ) + 1

r2 (1 + l

r
cos θ)]r̂ ′

= q I e− jωr(1− l
2r cos θ)/c

jω4πε0
[ jω

cr
(1 + l

2r
cos θ) + 1

r2 (1 + l

r
cos θ)]

× (r̂ + θ̂
l sin θ

2r
);

F̄lower = q I e− jωr ′′/c

jω4πε0
[ jω

cr
(1 − l

2r
cos θ) + 1

r2 (1 − l

r
cos θ)]r̂ ′′

= q I e− jωr(1+ l
2r cos θ)/c

jω4πε0
[ jω

cr
(1 − l

2r
cos θ) + 1

r2 (1 − l

r
cos θ)]

× (−r̂ + θ̂
l sin θ

2r
) (11.22)

The radial components become

Fupper
r = q I e jω l

2c cos θe− jωr/c

jω4πε0
[ jω

cr
(1 + l

2r
cos θ) + 1

r2 (1 + l

r
cos θ)]

Flower
r = q I e− jω l

2c cos θe− jωr/c

jω4πε0
[ jω

cr
(−1 + l

2r
cos θ) − 1

r2 (1 − l

r
cos θ)]

(11.23)
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Putting

A = q I e− jωr/c

jω4πε0

(11.23) is written

Fupper
r = Ae jω l

2c cos θ[ jω

cr
+ 1

r2 + jωl

2cr2 cos θ + l

r3 cos θ]

Flower
r = Ae− jω l

2c cos θ[− jω

cr
− 1

r2 + jωl

2cr2 cos θ + l

r3 cos θ] (11.24)

Summing the two forces

Fr = A(
jω

cr
+ 1

r2 )(e jω l
2c cos θ − e− jω l

2c cos θ)

+ A(
jωl

2cr2 cos θ + l

r3 cos θ)(e jω l
2c cos θ + e− jω l

2c cos θ)

= A(
jω

cr
+ 1

r2 )2 j sin(ω
l

2c
cos θ) + A(

jωl

2cr2 cos θ + l

r3 cos θ)2 cos(ω
l

2c
cos θ)

(11.25)

For ωl � c Taylor expansion gives

sin(ω
l

2c
cos θ) ≈ ω

l

2c
cos θ

cos(ω
l

2c
cos θ) ≈ 1

so that the radial component of force becomes

Fr = A(
jω

cr
+ 1

r2 )2 jω
l

2c
cos θ + A(

jωl

2cr2 cos θ + l

r3 cos θ)2

= 2A cos θ(
jω

cr
jω

l

2c
+ 1

r2 jω
l

2c
+ jωl

2cr2 + l

r3 )

= q I e− jωr/c

2πε0
cos θ(

jωl

2c2r
+ l

cr2 − jl

ωr3 )

= q I e− jωr/cl

4πε0c
cos θ(

jω

cr
+ 2

r2 − 2
jc

ωr3 ) (11.26)

The θ component becomes

Fupper
θ = Ae jω l

2c cos θ[ jω

cr
+ 1

r2 + jωl

2cr2 cos θ + l

r3 cos θ] l sin θ

2r
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≈ Ae jω l
2c cos θ[ jω

cr
+ 1

r2 ] l sin θ

2r

Flower
θ ≈ Ae− jω l

2c cos θ[ jω

cr
+ 1

r2 ] l sin θ

2r
(11.27)

and total force in the theta direction is

Fθ ≈ A
l sin θ

2r
[ jω

cr
+ 1

r2 ](e− jω l
2c cos θ + e jω l

2c cos θ)

≈ A
l sin θ

2r
[ jω

cr
+ 1

r2 ]2

= q I e− jωr/c

jω4πε0

l sin θ

r
[ jω

cr
+ 1

r2 ] = q I e− jωr/cl sin θ

4πε0c
[ 1

r2 − jc

ωr3 ] (11.28)

11.2.2 The Inductive Force

For the dipole antenna there is also an inductive force acting on the point charge q.
This is the acceleration dependent Weber force, formula (11.3):

d F̄ = − qd L̄

4πε0c2r

d I (t − r/c)

dt

For a small antenna with uniform current in the z direction the force becomes

F̄ = − jωql

4πε0c2r
I0e jωt e− jωr/c ẑ (11.29)

The direction vector is in spherical coordinates

ẑ = r̂ cos θ − θ̂ sin θ

and the inductive force is

F̄ = − I jωql

4πε0c2r
e− jωr/c(cos θr̂ − sin θθ̂) (11.30)

11.2.3 Total Force

From (11.28) and (11.30), the θ component of the total force becomes

Fθ = q I e− jωr/cl sin θ

4πε0c
[ jω

cr
+ 1

r2 − jc

ωr3 ] (11.31)



228 11 Antenna Theory—The Loop and the Dipole

and the r component, using (11.26) and (11.30),

Fr = q I e− jωr/cl

4πε0c
cos θ(− jω

cr
+ jω

cr
+ 2

r2 − 2
jc

ωr3 )

= q I e− jωr/cl

4πε0c
cos θ(

2

r2 − 2 jc

ωr3 ) (11.32)

The first term in (11.31) predominates the total force in the far distance from the
source, commonly known as ‘radio waves’. In this case there is no interaction along
the wire, θ = 0, compare Exercise (11.6).

11.3 Antenna Array

An array of antenna elements may be used to create a focused directed force action.
Consider a two-element array of two small (point-like) dipole antennas, Fig. 11.4.
The dipoles are now oriented along the x axis. To simplify, consider the interaction
in the xz plane only so that sin θ in formula (11.31) is just replaced by cos θ. In the
far distance the total force becomes

Fθ = q I jωl

4πε0c2 [e− jωr1/c

r1
cos θ1 + e− jωr2/c

r2
cos θ2] (11.33)

where θ is the angle between the distance vector and the z axis. In the far distance
the following approximations may be done:

θ

z

r1

d/2

d/2
xr2

r

θ1

θ2

θ

z
r1

r2

r

θ

θ

Fig. 11.4 An antenna array consisting of two dipole elements. Left Exact geometry. Right The far
distance approximation
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1. For phase variation, i.e. for the exponent in the exponential

r1 ≈ r − d

2
cos θ

r2 ≈ r + d

2
cos θ

2. For the amplitude, i.e. the 1/r1 and 1/r2 factors

r1 ≈ r2 ≈ r

3. For the angle θ
θ1 ≈ θ2 ≈ θ

The force becomes

Fθ = q I jωl

4πε0c2 [e− jω(r− d
2 cos θ)/c

r
cos θ + e− jω(r+ d

2 cos θ)/c

r
cos θ]

= q I jωl

4πε0c2

e− j ω
c r

r
cos θ[e jω d

2 cos θ/c + e− jω d
2 cos θ/c]

= q I jωl

4πε0c2

e− j ω
c r

r
2 cos θ cos(

dω

2c
cos θ) (11.34)

Formula (11.34) is valid in the far distance. It also assumes that the antennas oscillate
in phase. The force action may be focused in different directions by introducing a
phase shift β between the element oscillations. The force then becomes:

Fθ = q I jωl

4πε0c2 [e− jω(r− d
2 cos θ)/c+ jβ

2

r
cos θ + e− jω(r+ d

2 cos θ)/c− jβ
2

r
cos θ]

so that

Fθ = q I jωl

4πε0c2

e− j ω
c r

r
2 cos θ cos(

dω

2c
cos θ + β

2
) (11.35)

11.4 Power Transmission

The antenna power transmission will now be formulated using the Poynting vector
(10.94). In field theory the force acting on a point charge at rest is due to an electric
field. Both the electrostatic and inductive forces are therefore associated with an
electric field, obtained by dividing the force formulas by q, see Exercise (11.11).
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The power transmitted per unit area is

S̄ = Ē × H̄ (11.36)

where the magnetic field intensity H in the far distance is generated solely by the
electric field E and vice versa.

Since the time variation is usually quicker than what can be measured, the time
averaged power is considered. As is shown in Exercise (11.12), when working with
complex quantities varying harmonically with time (so-called phasors), the time
average of the real Poynting vector is

〈
S̄
〉 = 1

2
Ē × H̄∗ (11.37)

where the star denotes complex conjugate.
The magnetic field is given by Maxwell’s equation (10.71), the induction law

∇ × Ē = −d B̄

dt
(11.38)

The time dependence of the magnetic field is the same as that for the electric field
so that

∇ × Ē = − jω B̄ (11.39)

11.4.1 The Dipole Antenna

Consider first the small dipole antenna with uniform current. Far away from the
source, the so-called far field, the electric field is obtained from (11.31):

Eθ ≈ I e− jωr/cl sin θ

4πε0c

jω

cr
(11.40)

The coordinates are spherical and the curl becomes

∇ × Ē = 1

r
[ d

dr
(r Eθ)]φ̂ = 1

r

d

dr

I e− jωr/cl sin θ

4πε0c

jω

c
φ̂

= Iω2e− jωr/cl sin θ

4πε0c3 φ̂ = − jω

c
Eθφ̂ (11.41)

Thus, the magnetic field is

B̄ = Eθ

c
φ̂ (11.42)
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The time-averaged real Poynting vector becomes

〈
S̄
〉 = 1

2
Ē × H̄∗ = 1

2
Ē × B̄∗

μ0
= |Eθ|2

2μ0c
r̂

〈
S̄
〉 = 1

2μ0c
(

I0ωl sin θ

4πε0c2r
)2r̂ (11.43)

which is the power per unit area transmitted by the antenna. It propagates in the
radial direction perpendicular to both the electric and the magnetic fields. The fields
themselves are perpendicular to each other.

11.4.2 The Loop Antenna

The electric far field associated with a loop antenna with uniform current is given by
formula (11.11):

Eφ = ωπa2 sin θ

4πε0c2r
I0e jω(t−r/c) ω

c
(11.44)

To find the magnetic far field, the curl of E has to be evaluated

∇ × Ē = 1

r sin θ
[ d

dθ
(Eφ sin θ)]r̂ − 1

r
[ d

dr
(r Eφ)]θ̂ (11.45)

The first term varies as 1/r2 and is neglected in the far field. The second term gives

∇ × Ē = −1

r
[ d

dr
(r Eφ)]θ̂ = −1

r

ω2πa2 sin θ

4πε0c3 I0
d

dr
(e jω(t−r/c))θ̂

= jω3πa2 sin θ

4πε0c4r
I0e jω(t−r/c)θ̂ (11.46)

The magnetic field becomes

B̄ = j
∇ × Ē

ω
= −ω2πa2 sin θ

4πε0c4r
I0e jω(t−r/c)θ̂ (11.47)

and the time averaged Poynting vector

〈
S̄
〉 = 1

2
Ē × H̄∗ = 1

2
Ē × B̄∗

μ0

〈
S̄
〉 = 1

2μ0c
(

I0ω
2πa2 sin θ

4πε0c3r
)2r̂ (11.48)

suppressed by a factor (ωa/c)2 compared to the dipole antenna.



232 11 Antenna Theory—The Loop and the Dipole

11.5 The Wave Concept

The basic antenna theory outlined above is actually a wave theory. A wave is a
concept defined by the following three criteria:

• A wave causes a periodic disturbance in space and time propagating at a finite speed
• A wave exhibits interference effects
• An undisturbed wave has an infinite range

In antenna theory item 1 is true by virtue of the resulting formulas (11.11) and (11.31)
which shows periodic disturbances in both space and time.

Item 2 is proved in Exercise (11.2) where formula (11.34) is applied to find maxima
and minima in the force pattern.

Item 3 demands a distance dependence as 1/r , i.e. the far field terms of the
formulas. The reason is that the power through a closed sphere is then distance
independent. Integrating for example formula (11.43) around a spherical shell of
radius r , the power becomes

〈P〉 = const ·
∫ 2π

0

∫ π

0
sin2 θ(

1

r
)2r2 sin θdθdφ

independent of distance. The far field approximation is accordingly equivalent to a
wave propagation.

An important approximation in wave theory is the concept of a ‘plane wave’. This
corresponds to a wave with an extended wave front propagating in one particular
direction. This may be achieved in two ways:

1. Far away from an oscillating point source where the circular wave fronts are
approximately straight over an extended distance.

2. Close to a straight row of pointlike oscillators, i.e. an antenna array.

11.6 Summary

The force on a point charge at rest from a small loop antenna with uniform and
harmonically time varying current is

Fφ = ωqπa2 sin θ

4πε0c2r
I0e jω(t−r/c)[ω

c
− j

r
] (11.11)

in spherical coordinates where the loop is located in the xy plane.
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The force on a point charge at rest from a small dipole antenna located along the
z axis with uniform and harmonically time varying current is

Fθ = q I e− jωr/cl sin θ

4πε0c
[ jω

cr
+ 1

r2 − jc

ωr3 ] (11.31)

Fr = q I e− jωr/cl

4πε0c
cos θ(

2

r2 − 2 jc

ωr3 ) (11.32)

in spherical coordinates.
An array consisting of two small dipole antennas on the z axis at a distance d

oriented along the x axis creates a force on a point charge at rest in the far distance

Fθ = q I jωl

4πε0c2

e− j ω
c r

r
2 cos θ cos(

dω

2c
cos θ + β

2
) (11.35)

where currents vary harmonically in time and β is the oscillating phase difference
between the two elements.

The time average power from an antenna is given by

〈
S̄
〉 = 1

2
Ē × H̄∗ (11.37)

where in the far field the magnetic field is given by the Faraday-Henry induction law

∇ × Ē = − jω B̄ (11.39)

for harmonically time varying fields.
The force generated by oscillating charges may also be considered in wave theory.

The generated far distance action fulfils all three criteria of wave propagation.

11.7 Exercises

11.1 Force magnitude pattern

Show in a graph the relative force magnitude pattern on a point charge at rest
in the far region as a function of the angle θ to the z axis in the following
two cases:

a. For a single dipole antenna oriented along the z axis as in Fig. 11.1.
b. For a single loop antenna with surface normal along the z axis as in

Fig. 11.3.

What is the direction of maximum and vanishing force in the two cases?
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11.2 Interference

For a two-element array oscillating in phase what is the condition

a. for interference minimum and maximum?
b. on the distance between the elements in order to avoid destructive inter-

ference?

11.3 Directed interaction

Consider a two-element dipole array oriented as in Fig. 11.4. The distance
between the elements is d = c

4 f , where c is the speed of mediation and f is
the frequency of the oscillation.
What is the direction of maximum force on a point charge at rest in the xz
plane for the following cases of oscillation phase difference:

a. β = 0
b. β = −π

2
c. β = π

2

*11.4 Reflection law

a. An antenna interacts in the far distance with a polished metal surface such
as a mirror. The figure shows the propagation direction of the plane wave
associated with the antenna. Find a relation between the angles α and
γ defined in the figure, where the dashed line is surface normal of the
material.
Compare with Exercise (5.8).

b. Repeat with a non-conductive material.

d

z

α

α
γ

Plane wave 
propagation direction

Hint: Use the two element antenna array as a principal model for a general
antenna array and determine the angle γ for which there is maximum force
on a hypothetical point charge outside the material. The natural oscillators
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at the surface are activated by the incoming wave to form an antenna
array with an oscillating phase shift β. In task a, the natural oscillators are
the free conductions electrons whereas in task b these are the molecular
dipoles.

Explain why this phenomenon is better described by the term ‘re-radiation’,
rather than ‘reflection’.

*11.5 Snell’s refraction law

Consider an antenna interacting with a non-conductive material in the far dis-
tance. Show that the relation between the incident angle α and the ‘refraction’
angle γ is given by

c sin α = c0 sin γ

where c is the mediation speed in the material and c0 that in the incident
medium.
Hint: Utilize the same model as in Exercise (11.4b).

d

z

α

α

γ

θ

Plane wave 
propagation direction 

*11.6 Brewster reflection

In the far distance from the source, the force is perpendicular to the lines
of interaction, see formulas (11.11) and (11.31). Accordingly, there are two
possible directions of the force.
Consider an interaction between an antenna and a material as in Exercise
(11.5). The two possible direction of force is divided into a direction perpen-
dicular to surface normal, i.e. out of the plane in the figure, and a direction
in the plane of the figure. The latter case involves a phenomenon known as
‘Brewster reflection’. At a certain incident angle the reflection vanishes.
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z

α

γ

α

-
+

F1
F2

Plane wave 
propagation direction

Show that the relation between this angle and the speeds of mediation is

tan αB = c0

c

Hint: Use the model as in Exercise (11.4b) and utilize the force pattern for a
dipole obtained in Exercise (11.1).

*11.7 Spider vision

Many species of spider have evolved a vision sense that is sensitive to the
direction of force from a source, so-called polarisation vision. Of their usually
four pair of eyes, one pair is used for this purpose. The two eyes are struc-
tured such that they are sensitive to direction of force in relative perpendicular
directions. The spider uses this sense to orient and navigate during dawn and
morning when the sun is too close to the horizon to be visible for the spider.

β

Reflection surface

In this case the sun is the source antenna and the spider looks towards heaven.
Determine the angle β in the figure for which the spider experiences only
one direction of force. This will be the spot on heaven most usable for
navigation aid (Fig. 11.5).



11.7 Exercises 237

Fig. 11.5 Left The pair of this spider’s eight eyes which are used for polarisation vision. Used by per-
mission of Marie Dacke, Lund University. Right Heaven observed through polarisation sun glasses

*11.8 Refractive index and speed of light

Snell’s refraction law is frequently expressed with the so-called refractive
index n, a material quantity defined by writing the refraction law in the
following way:

n1 sin α1 = n2 sin α2

where index 1 refers to the incident material and index 2 to the transmit-
ted material. The refractive index is given in relation to ‘vacuum’ such that
nvacuum = 1 exactly.
Find an expression for the refractive index in terms of the material parame-
ters dielectric constant κe and relative magnetic permeability κm .

11.9 Refractive index for water is around 1.6 whereas the dielectric constant is
around 80 in the electrostatic case. Since κm ≈ 1 for water there seem to be
an inconsistency. Could you explain this?

11.10 Metamaterials

Metamaterials are characterized as having a negative refractive index mean-
ing that the angle γ in Exercise (11.5) is negative.
Prove that this violates the principle of cause and effect.
What is the angle of re-radiation for a meta-material?

*11.11 Using formulas (10.80) and (10.82) show that the Weber inductive force is
associated with an electric field in field theory.

*11.12 Time average of Poynting vector

Show that the time average of the Poynting vector is given by formula
(11.37).

11.13 Determine the Poynting vector in the far field for an antenna array consisting
of two parallel small dipole antennas.
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11.14 Mirror theory

d

Perfect electric conductor

Consider a small dipole antenna above a sheet of a perfect conductor. Practi-
cal examples are an antenna placed on a metal roof, a car or a mobile phone.
If the antenna is oriented parallel to the sheet at a distance d as in the figure,
determine the generated far field averaged power per unit area.
Hint: Consider the re-radiated (so-called reflected) power as originating from
a mirror image of the antenna.

Further Readings

C.A. Balanis, Antenna Theory (Wiley, New York, 1997)
P. Moon, D.E. Spencer, A new electrodynamics. J. Frankl. Inst. 257, 369 (1954)

Original Paper

First dipole antenna:
H.R. Hertz, Ueber sehr schnelle electrische Schwingungen. Ann. der Phys. 267, 421 (1887)



Appendix A
Electric Multipoles

In Sects. 7.1.4 and 8.3, the general multipole expansion was discussed. In Exercise
(7.1), a multipole expansion of the electrostatic potential is performed. In this and the
next appendix, the expansion will be obtained from a general interaction picture in
the electric and the magnetic case respectively. The starting point is the basic energy
formulas (8.89) and (8.88).

The electric energy is given by (8.89), Fig. A.1,

Ue = 1

4πε0

∫

V

∫

V ′

ρ(r̄)ρ′(r̄ ′)
R

dV ′dV (A.1)

where R̄ = r̄ − r̄ ′. If the systems interact at a large distance, the energy may be
expressed through the multipole expansion. The energy is then series-expanded (also
known as Taylor or Maclaurin expansion) with respect to the distance between the
systems.

In the first step, let the system V ′ interact with a pointlike system V with the
position vector r̄ , where r � r ′, and expand the energy arisen about the centre of
V ′. This means that the system V ′ is expressed in multipole terms. The second step
involves a series expansion about the centre of the system V , for each multipole order
of V ′, thereby expressing the system V in terms of multipoles.

The calculation will be made up to the order 1/d5 corresponding to a quadrupole–
quadrupole interaction, where d is the distance between the centres of the systems.
The following definitions will be used:

For a system with volume τ , the total charge is

q =
∫

τ

ρ(x, y, z)dτ (A.2)

the dipole moment

pi =
∫

τ

riρ(x, y, z)dτ (A.3)

© Springer International Publishing Switzerland 2015
K. Prytz, Electrodynamics: The Field-Free Approach,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-13171-9
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ρdV

ρdV

ρ’dV’  Charge elements

R Distance between  elements 

r, r’     Position of elements

d 

x 

Distance between system's centers 

Position of unprimed  element
relative the center of system V

ρ’dV’

xd

r

r’

V’

V

R

Fig. A.1 Two systems interact electrically

the quadrupole moment

Qi j =
∫

τ

rir jρ(x, y, z)dτ (A.4)

and so on for higher order moments, where r1 = x, r2 = y, r3 = z. Note that for-
mula (A.4) differs from the definition of quadrupole moment in Exercise (7.1). The
latter is known as reduced quadrupole moment and is the more common form. Here,
formula (A.4) is chosen as this definition is simpler and results in more transparent
formulas.

A.1 Multipole Expansion of System V ′

In analogy with Exercise (7.1), the series expansion up to quadrupole order of the
primed system gives

Ue ≈ 1

4πε0

⎡
⎣
∫

V

∫

V ′

ρ(r̄)ρ′(r̄ ′)
r

dV ′dV +
∫

V

∫

V ′

ρρ′r̄ · r̄ ′

r3 dV ′dV

+ 1

2

∫

V

∫

V ′
ρρ′

(
3(r̄ · r̄ ′)2

r5
− r ′2r2

r5

)
dV ′dV

⎤
⎦ (A.5)
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Fig. A.2 Interaction point Interaction point 
between two charge 
elements

ρ’dV’

r

V’
r’

R

These terms correspond to monopole, dipole and quadrupole structures of the primed
system (Fig. A.2).

A.2 Multipole Expansion of System V

Now let the multipoles of the primed system interact individually with the different
multipoles of the system V .

A.2.1 V ′ Monopole

The first term in (A.5) corresponds to a monopole of system V ′:

U m−
e = 1

4πε0

∫

V

∫

V ′

ρ(r̄)ρ′(r̄ ′)
r

dV ′dV (A.6)

A series expansion is performed about the unprimed system’s centre in order to
include its structure, Fig. A.1. Let the vector x̄ be the distance between the centre of
the system V and an element of charge, i.e. r̄ = x̄ + d̄ , where d � x . Then

1

r
= 1

d
(

1 + x2+2d̄·x̄
d2

)1/2 ≈ 1

d

(
1 − 1

2

x2 + 2d̄ · x̄

d2 + 3

8

(
x2 + 2d̄ · x̄

d2

)2)
(A.7)

Terms which are linear and quadratic in x correspond to dipole and quadrupole of the
system V . The first term gives the monopole structure, i.e. the point charge. Thus,

Monopole–monopole

U mm
e = 1

4πε0

1

d

∫

V

∫

V ′
ρ(r̄)ρ′(r̄ ′)dV ′dV = qq ′

4πε0d
(A.8)
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Monopole-dipole

U md
e = 1

4πε0

∫

V

∫

V ′
ρ(r̄)ρ′(r̄ ′) 1

d

(
−1

2

2d̄ · x̄

d2

)
dV ′dV = − q ′d̂ · p̄

4πε0d2 (A.9)

which is formula (7.7).

Monopole-quadrupole

U mq
e = 1

4πε0

∫

V

∫

V ′
ρ(r̄)ρ′(r̄ ′) 1

d

(
−1

2

x2

d2 + 3

8

(
2d̄ · x̄

d2

)2)
dV ′dV

= − q ′

8πε0d3

⎛
⎝∑

i

Qii − 3

d2

∑
i, j

di d j Qi j

⎞
⎠ (A.10)

Compare with Exercise (7.1).

A.2.2 V ′ Dipole

Now consider the next term in the V ′-structure, formula (A.5), corresponding to a
dipole. Similarly to the procedure above, a series expansion is performed about the
centre of the unprimed system. The integrand of the second term in formula (A.5)
becomes

ρρ′r̄ · r̄ ′

r3 = ρρ′ (x̄ + d̄) · r̄ ′

r3 = ρρ′ x̄ · r̄ ′

r3 + ρρ′ d̄ · r̄ ′

r3

≈ ρρ′ x̄ · r̄ ′

d3

(
1 − 3

2

x2 + 2d̄ · x̄

d2 + 15

8

(
x2 + 2d̄ · x̄

d2

)2)

+ ρρ′ d̄ · r̄ ′

d3

(
1 − 3

2

x2 + 2d̄ · x̄

d2 + 15

8

(
x2 + 2d̄ · x̄

d2

)2)
(A.11)

The dipole-monopole term is equivalent to the monopole-dipole term, which was
calculated above. The next order is therefore dipole–dipole.

Dipole–dipole
This order corresponds to terms which are linear in r ′ and x :

U dd
e = 1

4πε0

∫∫
ρρ′r̄ · r̄ ′

r3 dV ′dV

≈ 1

4πε0

∫∫
ρρ′

[
x̄ · r̄ ′

d3 + d̄ · r̄ ′

d3

(
−3

2

2d̄ · x̄

d2

)]
dV ′dV
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= 1

4πε0d3 (( p̄ · p̄′) − 3(d̂ · p̄)(d̂ · p̄′)) (A.12)

which is formula (7.16).

Dipole-quadrupole
In this order, terms which are linear in r ′ and quadratic in x contribute:

Udq
e ≈ 1

4πε0

∫∫
ρρ′

[
x̄ · r̄ ′
d3

(
−3

2

2d̄ · x̄

d2

)
+ d̄ · r̄ ′

d3

(
−3

2

x2

d2 + 15

8

(
2d̄ · x̄

d2

)2)]
dV ′dV

= 3

4πε0d5

⎡
⎣−

∑
i, j

Qi j p′
i d j − 1

2
d̄ · p̄′ ∑

i

Qii + 5

2d2 d̄ · p̄′ ∑
i, j

di d j Qi j

⎤
⎦ (A.13)

A.2.3 V ′ Quadrupole

Quadrupole-monopole and quadrupole-dipole were calculated above but with
reversed systems. The energy is of course independent of which system is primed or
unprimed. Therefore, there is only one remaining interaction at this level:

Quadrupole–quadrupole
The quadrupole–quadrupole interaction corresponds to the quadratic terms with
respect to both r ′ and x . The quadrupole term in (A.5) is

U q−
e = 1

4πε0

[
1

2

∫∫
ρρ′

(
3(r̄ · r̄ ′)2

r5
− r ′2r2

r5

)
dV ′dV

]
(A.14)

ρρ′(3(r̄ · r̄ ′)2 − r ′2r2)

r5

≈ ρρ′(3(x̄ + d̄) · r̄ ′)2 − r ′2(x̄ + d̄)2)
1

d5

(
1 − 5

2

x2 + 2d̄ · x̄

d2 + 35

8

(
x2 + 2d̄ · x̄

d2

)2)

= ρρ′[3((x̄ · r̄ ′)2 + 2(x̄ · r̄ ′)(d̄ · r̄ ′) + (d̄ · r̄ ′)2) − r ′2x2 − r ′22(x̄ · d̄) − r ′2d2] 1

d5

+ ρρ′[3((x̄ · r̄ ′)2 + 2(x̄ · r̄ ′)(d̄ · r̄ ′) + (d̄ · r̄ ′)2) − r ′2x2 − r ′22(x̄ · d̄) − r ′2d2]
(

−5

2

x2

d7

)

+ ρρ′[3((x̄ · r̄ ′)2 + 2(x̄ · r̄ ′)(d̄ · r̄ ′) + (d̄ · r̄ ′)2) − r ′2x2 − r ′22(x̄ · d̄) − r ′2d2]
(

−5
d̄ · x̄

d7

)

+ ρρ′[3((x̄ · r̄ ′)2 + 2(x̄ · r̄ ′)(d̄ · r̄ ′) + (d̄ · r̄ ′)2) − r ′2x2 − r ′22(x̄ · d̄) − r ′2d2]35

2

(d̄ · x̄)2

d9

(A.15)

where terms which are up to quadratic in r ′ and x have been kept.
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The quadratic terms result in

ρρ′[3(x̄ · r̄ ′)2 − r ′2x2] 1

d5
+ ρρ′[3(d̄ · r̄ ′)2 − r ′2d2]

(
−5

2

x2

d7

)

+ ρρ′[3(2(x̄ · r̄ ′)(d̄ · r̄ ′)) − r ′22(x̄ · d̄)]
(

−5
d̄ · x̄

d7

)

+ ρρ′[3(d̄ · r̄ ′)2 − r ′2d2]35

2

(d̄ · x̄)2

d9

= ρρ′
[

3(x̄ · r̄ ′)2 + 3
2r ′2x2

d5
− 15

2
(d̄ · r̄ ′)2 x2

d7 − 30(x̄ · r̄ ′)(d̄ · r̄ ′)(d̄ · x̄)

d7

−
15
2 r ′2(d̄ · x̄)2

d7 + 105

2

(d̄ · r̄ ′)2(d̄ · x̄)2

d9

]

= 3

d5

∑
i, j

(
Q̃i j Q̃′

i j + 1

2
Q̃ii Q̃′

j j

)
− 15

2d7

∑
i, j

di d j Q̃′
i j

∑
i

Q̃ii

− 30

d7

∑
i, j,k

Q̃ik Q̃′
i j d j dk − 15

2d7

∑
i

Q̃′
i i

∑
i, j

di d j Q̃i j

+ 105

2d9

∑
i, j

di d j Q̃′
i j

∑
i, j

di d j Q̃i j (A.16)

where Q̃ denotes the density of quadrupole moment.
The quadrupole–quadrupole energy is

U qq
e = 1

4πε0

3

4

⎡
⎣ 1

d5

∑
i, j

(2Qi j Q′
i j + Qii Q′

j j ) − 5

d7

∑
i, j

di d j Q′
i j

∑
i

Qii

− 20

d7

∑
i, j,k

Qik Q′
i j d j dk − 5

d7

∑
i

Q′
i i

∑
i, j

di d j Qi j

+ 35

d9

∑
i, j

di d j Q′
i j

∑
i, j

di d j Qi j

⎤
⎦ (A.17)

The total energy in quadrupole order becomes

Ue = U mm
e + U md

e + U mq
e + U dm

e + U dd
e + U dq

e + U qm
e + U qd

e + U qq
e

= U mm
e + U dd

e + U qq
e + 2U md

e + 2U mq
e + 2U dq

e
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Exercises

A.1 Use formula (A.10) to determine the electric potential from a pure quadrupole.

Answer:

�q = − 1

8πε0d3

⎛
⎝∑

i

Qii − 3

d2

∑
i, j

di d j Qi j

⎞
⎠

In matrix form

�q = − 1

8πε0d3

(
T r Q − 3

d2 d̄ · ( Qd̄)

)

A.2 Express the electric field associated with a pure quadrupole system.

Hint: Use formula (A.13)

Answer:

Ē = 3

4πε0d5

⎡
⎣Qd̄ + 1

2
d̄
∑

i

Qii − 5

2d2 d̄
∑
i, j

di d j Qi j

⎤
⎦

where Q is the quadrupole moment matrix so that

Qd̄ = (Q11d1 + Q12d2 + Q13d3, Q21d1 + Q22d2 + Q23d3,

Q31d1 + Q32d2 + Q33d3)

Expressing also the second and third terms in matrix form the electric field may
be written

Ē = 3

4πε0d5

[
Qd̄ + 1

2
d̄T r Q − 5

2d2 d̄ d̄ · ( Qd̄)

]

A.3 A simple system for which the monopole and the dipole moments vanish is
given in the figure.

-q-q q q

x

y

ss

Therefore, the quadrupole approximation is the lowest order term in the multi-
pole expansion.
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Use Exercise (A.2) to determine the electric field from this system in the far
field, i.e. taking into account the lowest order (quadrupole) term only. The two
positive charges in the center may be taken as one single object with charge 2q
and placed in the origin.

Solution:

Qi j =
∑

n

ri,nr j,nqn

Qxx = x2
1q1 + x2

2q2 + x2
3 q3 = −2qs2

Qyy = Qzz = Qxy = Qxz = Qyz = 0

Q =
⎛
⎝−2qs2 0 0

0 0 0
0 0 0

⎞
⎠

Qd̄ =
⎛
⎝−2qs2 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝−2qs2x

0
0

⎞
⎠

T r Q = −2qs2

d̄ · Qd̄ = −2qs2x2

Ē = 3

4πε0d5

⎡
⎣
⎛
⎝−2qs2x

0
0

⎞
⎠ + 1

2

⎛
⎝ x

y
z

⎞
⎠ (−2qs2) − 5

2d2

⎛
⎝ x

y
z

⎞
⎠ (−2qs2x2)

⎤
⎦

= − 3qs2

2πε0d5

⎡
⎢⎢⎣

⎛
⎜⎜⎝

3
2 x − 5

2d2 x3

1
2 y − 5

2d2 x2 y
1
2 z − 5

2d2 x2z

⎞
⎟⎟⎠

⎤
⎥⎥⎦

where

d2 = x2 + y2 + z2
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The general formula for the magnetic energy between two systems of closed current
distributions is given by (8.88), Fig. B.1,

Um = μ0

4π

∫

V

∫

V ′

J̄ (r̄) · J̄ ′(r̄ ′)
R

dV ′dV (B.1)

where R is the distance between two current elements and J is the current density.
If the systems interact at a large distance, the multipole expansion of the energy
is useful. Denoting volume with τ , the first moments of magnetic multipoles are
defined as

m0 =
∫

τ

J̄ (x, y, z)dτ

m̄ = 1

2

∫

τ

r̄ × J̄ (x, y, z)dτ

mi j = 2

3

∫

τ

(r̄ × J̄ (x, y, z))i r j dτ (B.2)

and are named monopole, dipole, and quadrupole moment respectively.
In the first step, let the system V ′ interact with a pointlike system V with the

position vector r , where r � r ′, and expand the arisen energy about the centre of V ′.
This means that the system V ′ is expressed in terms of multipoles. Secondly, series-
expand for each multipole order of V ′ about the centre of the system V , thereby
expressing the system V in multipoles (equivalent to Appendix A).
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JdV

JdV

J’dV’ Current elements

R Distance between elements

r, r’     Position of elements

d 

x 

Distance between system's centers 

Position of unprimed  element
relative the center of system V

J’dV’

xd

r

r’

V’

V

R

Fig. B.1 Two systems interact magnetically. The figure is the same as Fig. A.1 except that charge
elements have been replaced by current elements

B.1 Multipole Expansion of the System V ′

The magnitude of R̄ = r̄ − r̄ ′ can be written

R = r

(
1 + r ′2 − 2r̄ · r̄ ′

r2

)1/2

(B.3)

As the second term under the square root sign is small, series expansion is applied

1

R
= 1

r

[
1

(1 + r ′2−2r̄ ·r̄ ′
r2 )1/2

]

= 1

r

[
1 − 1

2

r ′2 − 2r̄ · r̄ ′

r2 + 3

8

(
r ′2 − 2r̄ · r̄ ′

r2

)2

+ · · ·
]

(B.4)

Up to quadrupole order, i.e. terms which are quadratic in r ′, we obtain

1

R
≈ 1

r
+ r̄ · r̄ ′

r3 − 1

2

r ′2

r3 + 3

2

(r̄ · r̄ ′)2

r5
(B.5)
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The energy becomes

Um ≈ μ0

4π

∫

V

∫

V ′
J̄ (r̄) · J̄ ′(r̄ ′)

[
1

r
+ r̄ · r̄ ′

r3 + 1

2

(3(r̄ · r̄ ′)2 − r2r ′2)
r5

]
dV ′dV (B.6)

equivalent to formula (A.5). The first term corresponds to a monopole and vanishes
since

∫
V ′ J̄ ′(r̄ ′)dV ′ = 0 for closed currents.

B.2 Multipole Expansion of the System V

A series expansion is now performed about the centre of V in order to include its
structure. The vector x̄ is the distance between the centre of the system V and a
current element in the volume V , i.e. r̄ = x̄ + d̄ , where d � x . Consider the term
corresponding to a dipole for V ′. Series expansion of V up to quadrupole order
results in

J̄ · J̄ ′r̄ · r̄ ′

r3 = J̄ · J̄ ′ (x̄ + d̄) · r̄ ′

r3 = J̄ · J̄ ′ x̄ · r̄ ′

r3 + J̄ · J̄ ′ d̄ · r̄ ′

r3

≈ J̄ · J̄ ′ x̄ · r̄ ′

d3

(
1 − 3

2

x2 + 2d̄ · x̄

d2 + 15

8

(
x2 + 2d̄ · x̄

d2

)2)

+ J̄ · J̄ ′ d̄ · r̄ ′

d3

(
1 − 3

2

x2 + 2d̄ · x̄

d2 + 15

8

(
x2 + 2d̄ · x̄

d2

)2)
(B.7)

B.3 Dipole–Dipole Interaction

Terms which contain only the one variable, either r ′ or x , such as

J̄ · J̄ ′ d̄ · r̄ ′

d3

vanish since they correspond to a monopole structure. The lowest order is therefore
linear in x and r ′, corresponding to a dipole–dipole interaction. The energy is

U dd
m = μ0

4π

∫

V

∫

V ′
( J̄ (r̄) · J̄ ′(r̄ ′)x̄ · r̄ ′ 1

d3 −3 J̄ (r̄) · J̄ ′(r̄ ′)d̄ · r̄ ′d̄ · x̄
1

d5
)dV ′dV (B.8)

which should be expressed in terms of dipole moment, formula (B.2).
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The first term in formula (B.8) is expanded in the following manner:
According to vector algebra

( J̄ · J̄ ′)(x̄ · r̄ ′) = ( J̄ × x̄) · ( J̄ ′ × r̄ ′) + ( J̄ · r̄ ′)( J̄ ′ · x̄) (B.9)

Since for closed currents ∇′ · J̄ ′ = 0 we obtain
∫

V ′

∫

V

∇′(x̄ · r̄ ′)(r̄ ′ · J̄ ) J̄ ′dV dV ′

=
∫

V ′

∫

V

[(x̄ · J̄ ′)(r̄ ′ · J̄ ) + (x̄ · r̄ ′)( J̄ · J̄ ′)]dV dV ′ = 0 (B.10)

The expression above vanishes due to the divergence theorem:

∫

V ′

∫

V

∇′(x̄ · r̄ ′)(r̄ ′ · J̄ ) J̄ ′dV dV ′ =
∫

S′

∫

V

(x̄ · r̄ ′)(r̄ ′ · J̄ )dV J̄ ′ · d Ā′ = 0 (B.11)

since the volume V ′ may be chosen greater than the volume for which J ′ exists so
that J ′ disappears on the surface S′.

The results are compiled:

∫

V ′

∫

V

( J̄ · J̄ ′)(x̄ · r̄ ′)dV dV ′ =
∫

V ′

∫

V

[( J̄ × x̄) · ( J̄ ′ × r̄ ′) + ( J̄ · r̄ ′)( J̄ ′ · x̄)]dV dV ′

∫

V ′

∫

V

[(x̄ · J̄ ′)(r̄ ′ · J̄ ) + (x̄ · r̄ ′)( J̄ · J̄ ′)]dV dV ′ = 0 (B.12)

from which it is clear that
∫

V ′

∫

V

( J̄ · J̄ ′)(x̄ · r̄ ′)dV dV ′ = 1

2

∫

V ′

∫

V

( J̄ × x̄) · ( J̄ ′ × r̄ ′)dV dV ′

= 2
∫

V ′

∫

V

M̄(x̄) · M̄ ′(r̄ ′)dV dV ′ (B.13)

where M is the density of magnetic dipole moment, that is

m̄ =
∫

V

M̄dV, m̄′ =
∫

V ′
M̄ ′dV ′
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The second term of formula (B.8) is evaluated in the following manner:
Because x̄ was treated as a constant during the calculation of the first step of (B.13),
it is also valid that
∫

V ′

∫

V

( J̄ · J̄ ′)(d̄ · r̄ ′)(d̄ · x̄)dV dV ′ = 1

2

∫

V ′

∫

V

( J̄ × d̄) · ( J̄ ′ × r̄ ′)(d̄ · x̄)dV dV ′ (B.14)

since the factor (d̄ · x̄) is also treated as a constant during the calculation, which is
made via the primed coordinate. The right-hand side may be rewritten

( J̄ · J̄ ′)(d̄ · r̄ ′)(d̄ · x̄) ⇔ 1

2
( J̄ × d̄) · ( J̄ ′ × r̄ ′)(d̄ · x̄)

= 1

2
( J̄ × d̄) · x̄( J̄ ′ × r̄ ′) · d̄ + 1

2
( J̄ × d̄) × d̄ · ( J̄ ′ × r̄ ′) × x̄

(B.15)

where the equivalence signs indicate that the relationship is valid after integration
over the volume V ′. This notation is used in the following.

Consider the second term of the right-hand side

( J̄ × d̄) × d̄ · ( J̄ ′ × r̄ ′) × x̄ = (d̄ · ( J̄ · d̄) − J̄ d2)(r̄ ′( J̄ ′ · x̄) − J̄ ′(r̄ ′ · x̄))

= (d̄ · r̄ ′)( J̄ · d̄)( J̄ ′ · x̄) − (d̄ · J̄ ′)( J̄ · d̄)(r̄ ′ · x̄)

− ( J̄ · r̄ ′)( J̄ ′ · x̄)d2 + ( J̄ · J̄ ′)(r̄ ′ · x̄)d2

= (d̄ · r̄ ′)( J̄ · d̄)( J̄ ′ · x̄) − (d̄ · J̄ ′)( J̄ · d̄)(r̄ ′ · x̄)

+ d2( J̄ × x̄) · ( J̄ ′ × r̄ ′) (B.16)

The following relations will now be used,

∇′ · (d̄ · r̄ ′)(x̄ · r̄ ′) J̄ ′ = (d̄ · J̄ ′)(x̄ · r̄ ′) + (d̄ · r̄ ′)( J̄ ′ · x̄) ⇔ 0 (B.17)

∇ · (d̄ · x̄)(d̄ · r̄ ′)( J̄ ′ · x̄) J̄

= (d̄ · J̄ )(d̄ · r̄ ′)( J̄ ′ · x̄) + (d̄ · x̄)(d̄ · r̄ ′)( J̄ ′ · J̄ ) ⇔ 0 (B.18)

Formula (B.16) then becomes

( J̄ × d̄)× d̄ ·( J̄ ′ × r̄ ′)× x̄ ⇔ −2(d̄ · x̄)(d̄ · r̄ ′)( J̄ ′ J̄ )+d2( J̄ × x̄) ·( J̄ ′ × r̄ ′) (B.19)

Formula (B.15) thus becomes

( J̄ · J̄ ′)(d̄ · r̄ ′)(d̄ · x̄)

⇔ 1

2
( J̄ × d̄) · x̄( J̄ ′ × r̄ ′) · d̄ − (d̄ · x̄)(d̄ · r̄ ′)( J̄ ′ · J̄ ) + 1

2
d2( J̄ × x̄) · ( J̄ ′ × r̄ ′)

(B.20)
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so that

( J̄ · J̄ ′)(d̄ · r̄ ′)(d̄ · x̄) ⇔ 1

4
( J̄ × d̄) · x̄( J̄ ′ × r̄ ′) · d̄ + 1

4
d2( J̄ × x̄) · ( J̄ ′ × r̄ ′)

= −1

4
( J̄ × x̄) · d̄( J̄ ′ × r̄ ′) · d̄ + 1

4
d2( J̄ × x̄) · ( J̄ ′ × r̄ ′)

(B.21)

B.4 Results

The dipole–dipole energy, formula (B.8), becomes, using formulas (B.13) and (B.21),

U dd
m = μ0

4π

∫

V

∫

V ′

(
2M̄ · M̄ ′

d3 − 3

[
−1

4
( J̄ × x̄) · d̄( J̄ ′ × r̄ ′) · d̄

+1

4
d2( J̄ × x̄) · ( J̄ ′ × r̄ ′)

]
1

d5

)
dV ′dV

= μ0

4π

∫

V

∫

V ′

(
2M̄ · M̄ ′

d3 − 3[−(M̄ · d̂)(M̄ ′ · d̂) + M̄ · M̄ ′] 1

d3

)
dV ′dV

= −μ0

4π

(
m̄ · m̄′

d3 − 3(m̄ · d̂)(m̄′ · d̂)

d3

)
(B.22)

which is formula (7.25).



Appendix C
Magnetic Energy in the Presence
of a Material

In Sect. 8.2.2 formula (8.61) is derived within a special case. In this appendix, formula
(8.61) is derived from general principles.

The interaction between an influencing current J f and a magnetisation current Jb

is expressed using formula (8.88)

Uint = μ0

4π

1

2

∫

V f

∫

Vb

J̄b(r̄b) · J̄ f (r̄ f )

R
dVbdV f (C.1)

where the factor 1/2 is introduced since Jb is induced by J f and R̄ = r̄b − r̄ f

Formula (C1) may be rewritten using formula (8.49):

Uint = μ0

4π

1

2

∫

V f

∫

Vb

(∇b × M̄) · J̄ f

R
dVbdV f (C.2)

With the aid of vector algebra, the integrand may be expressed as:

(∇b × M̄) · J̄ f

R
= ∇b ·

(
M̄ × J̄ f

R

)
+ M̄ · ∇b × J̄ f

R
(C.3)

The first term of the right-hand side vanishes at integration because of the diver-
gence theorem:

∫

Vb

∇b ·
(

M̄ × J̄ f

R

)
dVb =

∮

Sb

(
M̄ × J̄ f

R

)
· ds̄b = 0 (C.4)

since the volume may be chosen large enough so that M vanishes on the surface Sb.
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The energy is then

Uint = μ0

4π

1

2

∫

V f

∫

Vb

M̄ · ∇b × J̄ f

R
dVbdV f = μ0

4π

1

2

∫

V f

∫

Vb

M̄ · J̄ f × R̄

R3 dVbdV f

(C.5)

since ∇b × J̄ f = 0
The second factor of formula (C.5),

μ0

4π

∫

V f

J̄ f × R̄

R3 dV f

may be interpreted as the influence which generates and interacts with the bound
current. The numerator has the structure of a magnetic dipole and for isotropic and
linear materials, i.e. materials which respond in the same dimension as the external
influence as well as in proportion to its strength, it may be stated as

μ0

4π

∫

V f

J̄ f × R̄

R3 dV f = μ0

κm − 1
M̄ (C.6)

The constant in front of the magnetisation M is chosen such that the result will be
congruent with formula (8.61). The energy is then

Uint = μ0

4π

1

2

∫

Vb

M̄ ·
∫

V f

J̄ f × R̄

R3 dVbdV f

= μ0

4π

1

2

∫

Vb

dVb M̄ ·
∫

V f

J̄ f × R̄

R3 dV f = 1

2

μ0

κm − 1
mb M (C.7)

which is formula (8.61).

Exercises

C1. Show that if the volumes are pointlike, formula (C.5) is reduced to the dipole–
dipole energy.

C2. Show that compass needles are oriented in a circle about a straight current-
carrying conductor.



Appendix D
Solutions to Exercises

The mind has its illusions as the sense of sight; and in the same
manner that the sense of feeling corrects the latter, reflection
and calculation correct the former.

Pierre-Simon Laplace 1749–1827

D.1 Basic Principles

1.1 a. A force appears as a minimization of the gravitational energy U . The work
W done by the gravitational force is

dW = F̄ · ds̄ = −dU

so that a decrease of energy U gives a positive work meaning that the force is
parallel to the displacement ds. Thus, the energy principle gives the direction
of the force.

b. If R denotes distance between a falling object with mass m and the center of
the earth, the force becomes

F̄ = −∇U = − d

d R
mgR R̂ = −mg R̂

where the distance vector is directed towards the object for which the force
is calculated and g is the gravitational acceleration. The forces on the objects
have accordingly the same magnitude but opposite direction.

c. The concept ‘free fall’ implies neglect of air resistance. The energy forms are
then the stored gravitation appearing in the interaction between the objects
and kinetic energy of both objects.

d. The kinetic energy of the earth may be neglected since its mass is so large.
As a consequence, one object in the mutual interaction appears as being fixed
which is fundamentally wrong.

1.2 a. Provided the altitude is high enough, the air resistance results in a higher ter-
minal speed for the heavier object. The reason is that air resistance increases

© Springer International Publishing Switzerland 2015
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with speed, implying that its balance with the gravitational force occurs at a
higher speed for the heavier object.

b. The moon has negligible atmosphere so that the principle of equal falling
times for objects with different masses may be tested and verified.
This phenomenon is closer analysed in Exercise (5.6).

1.3 a. Gravitational mass is the source of gravitational force. The acceleration
caused by the force is inversely proportional to inertial mass. The observation
of falling times for objects with different masses is one of many possibilities
to investigate the relation between gravitational and inertial mass. To a very
high degree of accuracy they have been found to be equal.

b. Mach’s principle is a hypothesis on the origin of inertial mass. It says that the
equality between gravitational and inertial mass is due to the fact that inertia
is generated by gravitation. It explains that when an object is accelerated,
the rest of the mass in the universe will interact with it so as to oppose the
acceleration, i.e. an inertial effect appears.
See also Exercises (2.23) and (9.15).

1.4 a. At this position the only relevant gravitation is that from the earth. The force is

F = G
m1m2

R2 = 6.67 × 10−11 5.98 × 1024 × 100

(6.38 × 106 + 4.00 × 105)2
N

= 3988 × 1013

(6.78 × 106)2 N = 868 N

Hence, the word ‘weightless’ is misleading. The floating state the person
experiences is due to being in a free fall where the gravitational force acts
alone. Thus, the electromagnetic forces, so-called normal forces, are absent.

b. The change of weight would be 31 mg which is easily measurable with a
modern precision balance.

1.5 These occur due to the motion of the observer and are not caused by any natural
dynamics. A coriolis effect occurs for example because of the rotation of the
earth affecting direction of winds and water flow. A centrifugal effect occurs
in curved motion, e.g. in a merry-go-round. Through the active force directed
towards the circular center, an inertia is generated known as the centrifugal effect.

1.6 All motion must be related to something. There is no absolute motion.

D.2 Electrodynamic Force

2.3 The unit Coulomb C is defined through the basic electric force formula:

F̄1→2 = q1q2

4πε0 R2 R̂

in SI units.
Two charges of 1 C at a distance of one meter interact with a force 1/4πε0.



Appendix D: Solutions to Exercises 257

2.4 The force formula for two parallel currents is

F̄1→2 = −μ0 I1 I2

2πx
Lx̂

in SI units.
Two parallel currents of 1 A at a distance of one meter interact with a force
per meter equal to μ0/2π .

*2.6 a. v is the relative velocity between the observer and the charges.
b. Same as in Fig. 2.10 where the charges are in motion.
c. The viewer observes in the horizontal direction the motional change, i.e.

the acceleration of the two objects, nothing else.
d. Either that the force is less or that the mass is greater or that time is running

slower or all these possibilities as in Einstein’s theory of relativity.

2.7 a. Use formula (2.6)

F̄1→el2 = −μ0 I1

2πx
I2d L2 x̂ = −μ0 I1

2πx
q2v2 x̂

where I1 = nqvd A and mev2
2/2 = q��

b. Utilize an ordinary electron tube and a current-carrying straight conductor.

The force may be measured by for example letting the electron beam pass
through two plates connected to a variable voltage source. The voltage
between the plates is adjusted so that the electric force balances the mag-
netic force. The electric force may then be obtained according to Sect. 4.1.

2.8

y

x

sI1

Fm

q2

xb xa

a. Formula (2.4):

F̄m = μ0 I1

2πx
q2v2 ŷ
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m
d2 y

dt2 = μ0 I1

2πx
q2v2 = μ0 I1q2

2π

v2

xa − v2t

since x = xa − v2t where t = 0 at x = xa .
Velocity in the y direction becomes

vy(xb) = −μo I1q2

2πm
[ln(xa − v2t)]tb

ta = μo I1q2

2πm
ln

(
xa − v2ta
xa − v2tb

)

= μo I1q2

2πm
ln

(
xa

xb

)

For a small displacement s the path may be approximated by a straight line:

s

xb − xa
= vy(xb)

v2
= μo I1q2

2πmv2
ln

(
xa

xb

)

2.9

q2q1
v

45°
v

z

x

R2→1

R1→2

a. Magnetic force on charge 2 is

f̄m2 = μ0q1q2

4π R2

⎡
⎣(− v̄1 · v̄2︸ ︷︷ ︸

=0

)R̂ + (v̄2 · R̂)v̄1 + (v̄1 · R̂)v̄2

⎤
⎦

= μ0q1q2

4π R2

v√
2
(−v̄1 + v̄2) = −μ0q1q2

4π R2 v2 x̂

and on charge 1

f̄m1 = μ0q1q2

4π R2 [(v̄1 · v̄2)R̂ − (v̄2 · R̂)v̄1 − (v̄1 · R̂)v̄2] = μ0q1q2

4π R2 v2 x̂

since the distance vector then changes direction.
Hence, there is accordance with Newton’s third law.

b. From Grassman’s formula, force on charge 2 becomes

f̄m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1] = −μ0q1q2

4π R2

v2

√
2

v̄1

v
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and force on charge 1 becomes

f̄m1 = μ0q1q2

4π R2 [(v̄1 · v̄2)R̂ − (v̄1 · R̂)v̄2] = −μ0q1q2

4π R2

v2

√
2

v̄2

v

which violates Newton’s third law.
However, there is also an electric force which at ordinary speeds dominates
over the magnetic force. Only at speeds close to light speed is the magnetic
force comparable to the electric one.

*2.10 c. f̄m2 = μ0 I1 I2
4π R2

[
−R̂(d L̄2 · d L̄1) + d L̄1(d L̄2 · R̂) + ad L̄2(d L̄1 · R̂)

]

For closed conductors the infinitesimal elements are summed up in closed
path integrals.
Consider term 3 integrated over conductor 1 and 2.

∮

1

∮

2

d L̄2
(d L̄1 · R̂)

R2

Apply Stokes’ law

∮

2

d L̄2

∮

1

R̂ · d L̄1

R2 =
∮

2

d L̄2

∫

S1

(
∇1 × R̂

R2

)
· d S̄1

where S1 is the surface enclosed by conductor 1.

∇1 × R̂

R2 = ∇1 × R̄

R3 =
(

∇1
1

R3

)
× R̄ + 1

R3 ∇1 × R̄ = 0

In the same manner it is shown that also term 2 vanishes for closed con-
ductors.

d. According to Exercise c, if charge 1 is part of a closed conductor the last
term of Whittakers formula (2.25) vanishes so that this formula becomes
identical to Grassman’s formula.

e. If charge 1 is part of an infinitely long straight conductor the last term in
(2.25) becomes

d L̄2

∞∫

−∞

R̂ · d L̄1

R2 = d L̄2

∞∫

−∞

cos θdy

(y2 + x2)

= d L̄2

∞∫

−∞

y

(y2 + x2)3/2 dy = 0

equivalent to a closed conductor.
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y

x

dL1

R
θ

f. Since the two last terms in (2.25) vanish.

2.11 a. Yes
b.

f̄ A
m2 = μ0q1q2

4π R2 [−2(v̄2 · v̄1) + 3(R̂ · v̄2)(R̂ · v̄1)]R̂

f̄ G
m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1]

f̄m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + (v̄1 · R̂)v̄2]

Leaving out the constant gives

Grassman

Left F̄1→2 = −v1v2

R2 R̂ F̄2→1 = v1v2

R2 R̂

Middle F̄1→2 = v1v2

R2 ŷ F̄2→1 = 0

Right F̄1→2 = 0 F̄2→1 = 0

Ampère

Left F̄1→2 = −2
v1v2

R2 R̂ F̄2→1 = 2
v1v2

R2 R̂

Middle F̄1→2 = 0 F̄2→1 = 0

Right F̄1→2 = v1v2

R2 R̂ F̄2→1 = −v1v2

R2 R̂

Whittaker

Left F̄1→2 = −v1v2

R2 R̂ F̄2→1 = v1v2

R2 R̂

Middle F̄1→2 = v1v2

R2 ŷ F̄2→1 = −v1v2

R2 ŷ

Right F̄1→2 = v1v2

R2 R̂ F̄2→1 = −v1v2

R2 R̂
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y

x

v1

v2

R
θ

2.12 a. Leaving out the constant gives

Grassman

F̄1→2 = −v1v2

R2 sin θ x̂ F̄2→1 = v1v2

R2 sin θ x̂

Whittaker

F̄1→2 = −v1v2

R2 sin θ x̂ + v1v2

R2 cos θ ŷ

F̄2→1 = +v1v2

R2 sin θ x̂ − v1v2

R2 cos θ ŷ

b. Yes, this is still an unsolved problem, as is the non-conservation of momen-
tum for Grassman’s and Whittaker’s (a 
= 1) formulae. However, note that
this might be related to the inductive force which is not fully known for
free charges.

2.13 a. Ampère’s force formula conserves both linear and angular momentum
since the force acts along the connection line between the two objects.

b. It doesn’t reduce to formula (2.18) for the parallel motion and it gives zero
force for the perpendicular motion.

2.15

Like charges

Unlike charges

fe

fe

find

find

a

a

q1 q2

q1 q2

where f̄ind = −C(R)q2q1ā
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2.16 a. The distance dependent factor C(R)must decrease with increasing distance
and tend to zero when distance tends to infinity.

b. On the small loop, the conduction electron on the left-hand side will affect
the large loop more since it is closer. On the large loop, the right-hand side
will be more affected since it is closer. As in Fig. 2.13, there will be an
induction current but much smaller since the two forces counteract each
other.

A

find

find

2.17 a. The active force is here the inductive, formula (2.22).

f̄ind = −C(R)q2q1
dv̄1

dt

The acceleration of a conduction electron in the loop is

dv̄1

dt
= v2

r
r̂

so that the force on an electron of the metal piece becomes

f̄ind = −C(R)q2q1
v2

r
r̂

b. The force is independent of current direction since the acceleration is
always directed inwards.

2.18 The active force is here solely the inductive

f̄ind = −C(R)q2q1
dv̄1

dt
= −C(R)q2q1

v2

r
r̂

so that diametrically opposite positions in the beam will give oppositely
directed forces and the electron in the metal will oscillate with frequency
v/(2πr) vertically as well as horizontally.

2.19 The poles of the water molecule are affected by oppositely directed vertical
forces. Since the length of the dipole may be taken as much less than the
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distance to the conductor, the distances to the poles are equal and denoted by
R. The torque becomes

τ̄ = 2
l̄

2
× f̄ind = −C(R)q2q1l̄ × dv̄1

dt
= −C(R)pH2 Oeωv0 cos ωt ẑ

where e is the charge of the electron (negative) and ẑ is directed into the paper.
Hence, in a microwave oven the water molecules oscillate perpendicular
to their own axes which in turn affects the surroundings such that heat is
generated.
In general one must here also consider distance effects as well as the fact that
the straight conductor is also an oscillating dipole since charge is accumu-
lated at its ends, see Chap. 11.

2.20 Since the right leg is closer to the beam, the inductive force will be larger on
this one than on the left leg. Hence, the electrons are driven clockwise, i.e.
the current direction becomes anti-clockwise. The inductive force acts also
on the horizontal sides but will here not contribute to the current.

find

fe

e-
+

–
find

2.21

find

find Current directed  
into the plane

First case from left: the inductive force will be largest on the upper side since
it is closest to the beam.
Second case: there is no induction current since the inductive force on the two
horizontal sides cancel each other.
Third case: equivalent to the first case.
Fourth case: There is no force in the plane of the loop and thus no induction
current.
These experiments are simple to perform since an ordinary straight conductor
current may be used as the electron beam.

2.22 a. Consider the electron in the figure. Its net acceleration is clockwise along
the tangent of the loop. The inductive force between two electrons is a
response oppositely directed the acceleration of the affecting object. The
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horizontal inductive forces cancel. The net inductive force will be directed
upwards since the electrons closest to the considered electron accelerate
downwards.

Net inductive force 

e-

a

The inductive force acts accordingly as a resistance to the acceleration
caused by the battery.

b. In the straight conductor, the acceleration on the electrons is everywhere
the same. The inductive force is oppositely directed to this direction and
accordingly acts a resistance to the battery acceleration.

c. The inductive force, as all kind of force, occurs in interactions.

2.23 It might be fruitful to consider this phenomena already at this stage. However,
this issue will be returned to in Chap. 9, Exercise (9.15).

2.25

y

x = a x = b

I1

I2

dL2

dL1

x

R

e-

a. Grassman’s formula for force on object 1 is

f̄ G
m1 = μ0 I1 I2

4π R2

[
R̂(d L̄2 · d L̄1) − d L̄2(d L̄1 · R̂)

]

Since d L1 and d L2 are perpendicular the first term vanishes. Since object
1 is a closed conductor the second term vanishes too, see Exercise (2.19).
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Hence

f̄ G
m1 = 0

b. Whittaker’s force for a = 1 is

f̄m1 = μ0 I1 I2

4π R2

[
R̂(d L̄2 · d L̄1) − d L̄1(d L̄2 · R̂) − d L̄2(d L̄1 · R̂)

]

The first and the third terms vanish as in Exercise a. The second term
involves

b∫

a

∞∫

−∞

dy ŷ(d L̄2 · R̂)

R2 =
b∫

a

∞∫

−∞

dy ŷxdx

R3

= −
∞∫

−∞
dy

[
1

(x2 + y2)1/2

]x=b

x=a
ŷ

= −
∞∫

−∞
dy

[
1

(b2 + y2)1/2 − 1

(a2 + y2)1/2

]
ŷ

= −2

∞∫

0

dy

[
1

(b2 + y2)1/2 − 1

(a2 + y2)1/2

]
ŷ

= −2

[
ln

y + (b2 + y2)1/2

y + (a2 + y2)1/2

]∞

0
ŷ = 2 ln

b

a
ŷ

so that force becomes

f̄m1 = −μ0 I1 I2

2π
ln

b

a
ŷ

c. The force on a charge in the beam is given by formula (2.4)

f̄m2 = μ0 I1

2πx2
q2v2 ŷ

Converting charge to a current element gives

d F̄1→2 = μ0 I1

2πx2
I2dx ŷ

whose direction should agree with the observation described in Fig. 2.6
(compare Exercise 2.8).
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Total force on all electrons in the beam becomes

F̄m2 =
b∫

a

μ0 I1

2πx
I2dx ŷ = μ0 I1 I2

2π
ln

b

a
ŷ

Newton’s third law is fulfilled for Whittaker’s force but not for Grassman’s
conventional force.

d. One way is to place a square circuit with small mass on a torsion balance
and let the electron beam impinge on one of its sides. With this arrange-
ment a smallest force of approximately 5 µN may be measured. How large
a force is expected?
For I1 = 20 A, the force becomes

Fm1 = μ0 I1 I2

2π
ln

b

a
ŷ = I240 · 10−7 ln

0.2

0.002
≈ I220µN

so that I2 > 250 mA. Electron tubes with this current strength exist on the
market but are unusual in student laboratories.

Nevertheless, this simple experiment is sufficient to disprove Grassman’s force
formula.

D.3 Electrodynamic Energy

3.3

y

x
60°

q1 q3

q2

aa

a

a.

Ue = 1

4πε0

{
q1q2

[(x2 − x1)2 + (y2 − y1)2]1/2 + q1q3

x3 − x1

+ q2q3

[(x3 − x2)2 + (y3 − y2)2]1/2

}
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b. The force on charge 1 becomes

F̄1 = −∇1Ue = − d

dx1
Uex̂ − d

dy1
Ue ŷ

= − 1

4πε0

[
q1q2((x2 − x1)x̂ + (y2 − y1)ŷ)

[(x2 − x1)2 + (y2 − y1)2]3/2 + q1q3

(x3 − x1)2 x̂

]

= − 1

4πε0

[
q1q2

a
2 x̂ +

√
3a
2 ŷ

a3 + q1q3
x̂

a2

]

= − 1

4πε0a2

[q1q2

2
(x̂ + √

3ŷ) + q1q3 x̂
]

and equivalently for force on charges 2 and 3.
c. Yes

3.4 a. The inductance

M jk = μ0

4π

∫

k

∫

j

d L̄ j · d L̄k

R

gives the magnetic energy for two charges in motion as

Um = M12 I1 I2 = μ0

4π
I1 I2

d L̄1 · d L̄2

R
= μ0q1q2

4π R
v̄1 · v̄2

where formula (2.5), i.e. I d L = qv, has been used in the last equality.
b. Assume the charges are placed on the x axis with distance vector R directed

towards charge 2. For constant speed, force becomes

F̄1 = ∇1Um = μ0q1q2

4π
v̄1 · v̄2

d

dx1

1

x2 − x1
= μ0q1q2

4π R2 v̄1 · v̄2 R̂

This formula is valid only in the following two cases:

1. Both charges reside in closed conductors, formula (2.26).
2. Parallel motion as in Fig. 2.10.

Thus, the magnetic energy (3.37) is not generally valid.
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3.5

I1

I1

Inductive 
force on 
this 
electron

Acc. of 
electron

Induced
current

Induced
current

Inductive
force on
electronAcc. of

electron

Current increases in 
the left conductor

Current increases in 
the inner conductor

Inductive 
force on 
this 
electron

I1

I1
Acc. of 
electron

Induced currentInduced
current

Inductive
force on
electron

Acc. of
electron

Current decreases 
in left conductor

Current decreases in 
the inner conductor

Inductive 
force on 
this 
electron

Inductive 
force on 
this 
electron

Thus, the inductive response acts to oppose changes, which is called the
Lenz law.

3.6 a. Faraday-Henry’s induction law

ε j =
∑

k

d

dt
(ik M jk)

becomes

ε j = M jk
d

dt
ik ⇒ M jk = ε j

�I/�T

where ε j is the induced voltage.
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b.
M jk(θ = 0) = ε2

�I/�T

From the general inductance formula

M jk = μ0

4π

∫

Cond k

∫

Cond j

d L̄ j · d L̄k

R

We conclude in this case that, for constant R, inductance becomes

M jk(θ) = ε2

�I/�T
cos θ

3.7 a. New north and south poles are formed for each new extracted part.
b. All in the same direction.
c. Randomly
d. A small current loop.
e. See Figs. 7.7 and 8.14.
f. Only on the surface.
g. By external influence, e.g. a current-carrying coil that aligns the magnetic

dipoles.
h. Let the magnet interact with a current loop. At a long distance the magnet

may be modelled as an exact dipole and the equivalent current can be deter-
mined through the measurement of the force. By treating the magnet as a
coil, see Fig. 7.7, its self inductance can be determined and thus the stored
magnetic energy.
Compare with Exercise (8.22).

3.8 1. Rotate the loop
2. Translate the loop
3. Rotate the battery circuit
4. Translate the battery circuit
5. Vary the current in the battery circuit

3.9 a. The induction law

ε j =
∑

k

d

dt
(ik M jk)

becomes

ε2 = I
d

dt
M12



270 Appendix D: Solutions to Exercises

R Velocities
v1 and v2 denote 
the motion of the 
electrons

v1
v2

b. The force is magnetic with the motion of the conduction electrons
horizontally.
The inductive force is centripetal and generates no current along the loop.

c. The magnetic force, formula (2.11), is

f̄m2 = μ0q1q2

4π R2

⎡
⎣(− v̄1 · v̄2︸ ︷︷ ︸

=0

)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂︸ ︷︷ ︸
=0

)v̄2

⎤
⎦

Consider the neighbouring elements 1 and 2 marked in the figure.
The first and third term vanish and a force in the direction of v̄1 occurs.
On the other hand, if v̄2 is oppositely directed, a force opposite to v̄1
occurs, i.e. a current is induced in loop 2 oppositely directed to the cur-
rent in loop 1.

d. The same result occurs as in Exercise c since the relative motion is the
same.

e. The relativity principle of Galilei means that motion is relative; it has to be
related to some other motion. Einstein applied this principle as the basis
for the special theory of relativity. He extended the principle, showing its
validity also for electromagnetic phenomena as this example indicates.
However, instead of the battery connected loop, Einstein preferred a per-
manent magnet, see Chap. 9.

3.10 a. For force on object 2 the distance vector is R̄ = r̄2 − r̄1.

f̄m2 = ∇2Um

∇2
v̄1 · v̄2

R
= 1

R
∇2(v̄1 · v̄2) − 1

R2 (v̄1 · v̄2)R̂

∇2
(R̂ · v̄1)(R̂ · v̄2)

R
= ∇2

(R̄ · v̄1)(R̄ · v̄2)

R3

= −3
R̂(R̄ · v̄1)(R̄ · v̄2)

R4 + (R̄ · v̄1)∇2(R̄ · v̄2)

R3

+ (R̄ · v̄2)∇2(R̄ · v̄1)

R3
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For constant velocity

∇2(R̄ · v̄1) = v̄1

∇2(R̄ · v̄2) = v̄2

so that force becomes

f̄m2 = μ0

4π
q1q2

[
1 + k

2

(
− 1

R2 (v̄1 · v̄2)R̂

)

+ 1 − k

2

(
−3

R̂(R̄ · v̄1)(R̄ · v̄2)

R4 + (R̄ · v̄1)v̄2

R3 + (R̄ · v̄2)v̄1

R3

)]

= μ0q1q2

4π R2

[
1 + k

2
(−v̄1 · v̄2)R̂ + 1 − k

2
(−3(R̂ · v̄1)(R̂ · v̄2)R̂

+ (R̂ · v̄1)v̄2 + (R̂ · v̄2)v̄1)

]

b. None of the alternatives agree with formula (2.11)/(2.13), indicating that
the magnetic energy between free charges is still an unsolved problem.

D.4 Macroscopic Systems of Unbound Charges

4.2 Force between a point charge q and an infinitesimal charge element q ′ of the
plate is

d F̄ = 1

4πε0

qq ′

R2 R̂ = 1

4πε0

qq ′

R3 R̄

= 1

4πε0

qσdy′dz′

[(x − x ′)2 + (y − y′)2 + (z − z′)2]3/2

× [(x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ]

so that total force becomes

F̄ = 1

4πε0

∞∫

−∞

∞∫

−∞

qσdy′dz′

[(x − x ′)2 + (y − y′)2 + (z − z′)2]3/2

× [(x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ]
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The y and z components vanish since these form odd functions:

F̄ = 1

4πε0
qσd

∞∫

−∞

∞∫

−∞

dy′dz′

[d2 + (y − y′)2 + (z − z′)2]3/2 x̂

where d = x − x ′.
Put t = y′ − y and u = z′ − z so that the integral becomes

F̄ = 1

4πε0
qσd

∞∫

−∞

∞∫

−∞

dtdu

[d2 + t2 + u2]3/2 x̂ = 1

4πε0
qσd2

∞∫

−∞

du

d2 + u2 x̂

= 1

4πε0
qσd2

π

d
x̂ = qσ

2ε0
x̂

*4.3 Capacitance is defined as

C = Q

��

where Q = λL with L as the common length of the cylinders.
Voltage is obtained from

W = Ue = q��

To determine the capacitance, the work required to bring a charge against the
electric force from one to the other shell is determined, see figure.

λ

a

b

-λq

The interaction between the point charge and the cylindrical shell is first
explored after which the work is calculated with methods developed in
Sect. 4.1.5.
Consider a thin shell in cross-section as in the figure below. The force on a
point charge located on the x axis should be determined. By symmetry it is
noted that the force is directed radially from the shell, i.e. along the x axis in
this case.
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αθ

σ

y

xr

r’
R 

q

λ’

The cylindrical shell is considered as consisting of infinitesimally thin wires
as indicated in the figure. The contribution from one such wire is given by
formula (4.6):

lim
L→∞ F̄ = λ′q

2πε0 R
R̂

Denote with σ the surface charge density of the shell. Since charge per length
of the infinitesimal wire is λ′ ⇔ σ r ′dθ it is obtained

d Fx = q
σ r ′dθ R cos α

2πε0 R2

It is concluded from the figure that

R cos α = r − r ′ cos θ

and that
R2 = r ′2 + r2 − 2rr ′ cos θ

so that

d Fx = q
σ r ′dθ(r − r ′ cos θ)

2πε0(r ′2 + r2 − 2rr ′ cos θ)

This is now to be integrated over the full circle. The integral may be found in a
handbook (e.g. Mathematical Handbook 15.49 1st ed.) and the result depends
on whether r is greater or less than r ′, i.e. if the point charge is placed inside
or outside the shell.

1. r < r ′

Fx = q
σ

2πε0

1

r ′ 2
π∫

0

r − r ′ cos θ

1 + r2

r ′2 − 2 r
r ′ cos θ

dθ

= 2q
σ

2πε0

1

r ′

[
rπ

1 − r2

r ′2
− r ′π r

r ′

1 − r2

r ′2

]
= 0
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2. r > r ′

Fx = q
σ

2πε0

r ′

r2 2

π∫

0

r − r ′ cos θ

1 + r ′2
r2 − 2 r ′

r cos θ
dθ

= 2q
σ

2πε0

r ′

r2

[
rπ

1 − r ′2
r2

− r ′π r ′
r

1 − r ′2
r2

]

= q
σ

ε0

r ′

r
= q

λ

2πε0r

since the total charge on the complete cylindrical shell is Q = λL =
σ2πr ′L .
Thus, inside the shell no force occurs on the point charge while outside the
force if appears that all charge is collected on a wire in the center of the
cylinder. Compare this result with that of a sphere, Sect. 4.1.4.
Thus, the outer shell has no influence on the point charge. Therefore, the work
to bring the charge q from the inner to the outer shell is

W =
b∫

a

F̄ · ds̄ = qλ

2πε0

b∫

a

1

r
= q Q/L

2πε0
ln

b

a

The voltage between the shells becomes

�� = Q/L

2πε0
ln

b

a

and capacitance

C = Q

��
= 2πε0L

ln b
a

4.4 Capacitance is defined as

C = Q

��

where Q = λL with L as the common length of the cylinders. The voltage is
obtained by determining the work needed to bring a plus charge from the neg-
atively charged left cylinder to the positive right cylinder. This work equals
the electric energy added to the system.

W = Ue = q��
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q

F

x = d x

λ-λ

The electric force on the point charge, which has to be overcome during
the process, occurs through interactions with both the left and the right
cylinder:

W =
d∫

0

F̄ · ds̄ =
d−a∫

a

qλ

2πε0

(
1

x
+ 1

d − x

)
x̂ · ds̄

according to formula (4.6) and Exercise (4.3). The work becomes

W = qλ

2πε0

[
ln

d − a

a
− ln

a

d − a

]
= qλ

πε0
ln

d − a

a

and the voltage

�� = Q

Lπε0
ln

d − a

a

and capacitance

C = Q

��
= Lπε0

ln d−a
a

4.5 Consider means as springs, torsional wire, balance, etc.

4.6 Infinitesimal force between two current elements is

d F̄
′
m = μ0 I I ′

4π R2

[
−R̂(d L̄ ′ · d L̄) + d L̄(d L̄ ′ · R̂) + d L̄ ′(d L̄ · R̂)

]

R̄ = r̄ ′ − r̄ = dx̂ + y′ ŷ − y ŷ

d L̄ = dy ŷ

d L̄ ′ = dy′ ŷ
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y

I '  dL'

I dL

R

θ

x = d x

The constant μ0 I I ′/(4π) is temporarily ignored. Term 3 gives

d f̄3 = dydy′ ŷ(ŷ · R̂)

R2 = dydy′ ŷ cos θ

R2

cos θ = y′ − y

R

d f̄3 = dydy′ ŷ y′ − y

R3 = y′ − y

[d2 + (y′ − y)2]3/2 dydy′ ŷ

Term 2 gives the same contribution as term 3. Term 1 gives

d f̄1 = −dydy′

R2 R̂

R̂ = x̂ cos(θ − π

2
) − ŷ sin(θ − π

2
) = x̂

d

R
− ŷ

y − y′

R

d f̄1 = −dydy′

R3 (dx̂ − (y − y′)ŷ) = −dydy′ dx̂ − (y − y′)ŷ

[d2 + (y − y′)2]3/2

Total force becomes

F̄
′
m = −

T1∫

0

T2∫

0

dy′dy
dx̂ + (y − y′)ŷ

[d2 + (y − y′)2]3/2

where T1 is the length of the left conductor.
Put t = y − y′ so that dy′ = −dt

F̄
′
m =

T1∫

0

y−T2∫

y

dtdy
dx̂ + t ŷ

[d2 + t2]3/2

=
T1∫

0

dy

[
t

d[d2 + t2]1/2 x̂ − 1

[d2 + t2]1/2 ŷ

]y−T2

y
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=
T1∫

0

dy

[(
y − T2

d[d2 + (y − T2)2]1/2 − y

d[d2 + y2]1/2

)
x̂

−
(

1

[d2 + (y − T2)2]1/2 − 1

[d2 + y2]1/2

)
ŷ

]

= 1

d
[(d2 + (y − T2)

2)1/2 − [d2 + y2]1/2]T1
0 x̂

− [[ln(t + (t2 + d2)1/2)]T1−T2−T2
− [ln(y + (y2 + d2)1/2)]T1

0 ]ŷ

a. For equal lengths T1 = T2 = T the y component vanishes. The force becomes

F̄
′
m = 1

d
((d2 + (T1 − T2)

2)1/2 − (d2 + T 2
2 )1/2 − (d2 + T 2

1 )1/2 + d)x̂

= 1

d
(2d − 2(d2 + T 2)1/2)x̂

and if T � d, i.e. for long conductors

F̄
′
m = −2T

d
x̂

Returning the ignored constant gives then

F̄
′
m = −μ0 I I ′

2πd
T x̂

as it should.
b. For different lengths the x component will equal that obtained in Exercise a:

F̄
′
mx = μ0 I I ′

4πd
((d2 + (T1 − T2)

2)1/2 − (d2 + T 2
2 )1/2 − ((d2 + T 2

1 )1/2 + d)x̂

The y component becomes

F̄
′
my = −μ0 I I ′

4π
[[ln(t + (t2 + d2)1/2)]T1−T2−T2

− [ln(y + (y2 + d2))1/2]T1
0 ]ŷ

= −μ0 I I ′

4π

(
ln

T1 − T2 + ((T1 − T2)
2 + d2)1/2

−T2 + (T 2
2 + d2)1/2

− ln
T1 + (T 2

1 + d2)1/2

d

)
ŷ

4.7 The force is given by formula (4.45)

d F̄ = I d L̄ × ŷ
μ0 K

2
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Since the conductor is straight, formula (4.46) may be used:

F̄ = I L̄ × ŷ
μ0 K

2
= −I L

μ0 K

2
sin 45◦ x̂

where I is positive if directed parallel to L̄ , as in the figure.

x

d

45°

z
K y

I L

4.8 Formula (4.44b) may be used:

F̄ = qv̄ × μ0

2
(K̄ × n̂)

The total force is the sum of the force from the left and right plates:

x

z
y

v

q

KK

1. Between the plates

F̄l = qv̄ × μ0

2
K (ẑ × x̂) = qv̄ × μ0

2
K ŷ

F̄r = qv̄ × μ0

2
K (−ẑ × −x̂) = qv̄ × μ0

2
K ŷ

F̄tot = F̄l + F̄r = qv̄ × μ0 K ŷ
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2. Outside the plates
a. Positive x

F̄l = qv̄ × μ0

2
K (ẑ × x̂) = qv̄ × μ0

2
K ŷ

F̄r = qv̄ × μ0

2
K (−ẑ × x̂) = −qv̄ × μ0

2
K ŷ

F̄tot = F̄l + F̄r = 0

b. Negative x

F̄l = qv̄ × μ0

2
K (ẑ × −x̂) = −qv̄ × μ0

2
K ŷ

F̄r = qv̄ × μ0

2
K (−ẑ × −x̂) = qv̄ × μ0

2
K ŷ

F̄tot = F̄l + F̄r = 0

4.9 The inductance may be obtained using the definition of energy, formula (3.19).
The interaction energy for a system with two conductors is

Um = M12 I1 I2

a. Using formula (4.49) for the interaction energy between two parallel large
current-carrying plates

Um = −μ0

2
XYZK1 K2 = −μ0

2
XYZ

I1

Y

I2

Y

the mutual inductance becomes

M12 = −μ0

2

X Z

Y

b. For oppositely directed currents the energy and the inductance change sign:

M12 = μ0

2

X Z

Y

In a direct application of Neumann’s formula (3.30)

M jk = μ0

4π

∫

k

∫

j

d L̄ j · d L̄k

R

the current directions are included in the length elements d L̄ so that induc-
tance becomes sign sensitive. The currents are then given in magnitude.
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Alternatively, it is customary that in some obvious cases, as in Sect. 4.2.5.2,
the inductance is given in magnitude and the sign of the energy is regulated
by the sign of the currents.

4.10 a. The mutual inductance is obtained from Neumann’s formula (3.30)

dL2

x1 x2

dL1

Z = T

r

z

x

M12 = μ0

4π

∫

Cond 1

∫

Cond 2

d L̄1 · d L̄2

r

where

d L̄1 = dz1 ẑ

d L̄2 = dz2 ẑ

r =
√

(x2 − x1)2 + (z2 − z1)2

so that mutual inductance becomes

M12 = μ0

4π

T∫

0

T∫

0

dz1dz2√
(x2 − x1)2 + (z2 − z1)2

Change variables t = z2 − z1 so that

M12 = −μ0

4π

T∫

0

z2−T∫

z2

dtdz2√
(x2 − x1)2 + t2

= −μ0

4π

T∫

0

[
sinh−1 t

|x2 − x1|
]z2−T

z2

dz2
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= μ0

4π
2

T∫

0

sinh−1 z2

|x2 − x1|dz2

= μ0

2π

[
T sinh−1 T

|x2 − x1| −
√

T 2 + (x2 − x1)2 + |x2 − x1|
]

When distance tends to infinity the inductance tends to zero as it should.
Note also that M12 = M21.

b. Force is obtained from formulas (3.19) and (3.23)

F̄1→2 = I1 I2
d

dx2
M12

= μ0

2π
I1 I2

(
T

1

(T 2 + (x2 − x1)2)1/2

(
− T

(x2 − x1)

)

− (x2 − x1)

(T 2 + (x2 − x1)2)1/2 + 1

)
x̂

= −μ0

2π
I1 I2

(
T 2 + d2

(T 2 + d2)1/2d
− 1

)
x̂

= −μ0

2π
I1 I2

(
(T 2 + d2)1/2 − d

d

)
x̂

in accordance with Exercise (4.6).
c. The induction voltage is obtained from formula (3.32)

ε j = d

dt
(ik M jk)

For this case (using also formula 3.14)

ε2 = M21
d

dt
i1 = M12ωI0 cos ωt

and

ε1 = M12
d

dt
i2 = M12ωI0 cos ωt

d. According to Exercise (4.6), there is no contribution from terms no. 2 and
3 in formula (2.11). The conductor sides perpendicular to the straight con-
ductor don’t contribute to the force. The distal parallel sides may be placed
far away to give negligible contribution. Thus, the two long parallel con-
ductors of equal length is in this respect equivalent to a closed conductor,
as was pointed out in Exercise (2.10).
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4.11 The plate may be considered as consisting of parallel infinitesimal wires. Its
self inductance is therefore the sum of the mutual inductances between a pair
of wires plus the self inductance of each wire.
From Exercise (4.10)

M12 = μ0

2π

[
T sinh−1 T

|x2 − x1| −
√

T 2 + (x2 − x1)2 + |x2 − x1|
]

≈ μ0

2π
T

(
ln

2T

x2 − x1
− 1

)

since T � X . In analogy with Sect. 4.2.5.3, the integral is formulated as
follows. The interaction energy between two wires is

dUm = M12
I1

X

I2

X
dx1dx2

so that total inductance, i.e. self inductance, becomes

Mtot = 1

X2

μ0

2π
T

X∫

0

X∫

0

[
ln

∣∣∣∣ 2T

x2 − x1

∣∣∣∣ − 1

]
dx1dx2 = μ0

2π
T

(
ln

2T

X
+ 1

2

)

*4.12 a. The result for the force between two current loops may here be used by con-
sidering the coil as a collection of current loops. The total force is obtained
by summing the individual contributions. The mutual inductance between
two loops is given by (4.60):

M = − 2μ0ab

[(a + b)2 + d2]1/2

[(
1 − 2

k2

)
F + 2

k2 E

]

where d is the distance in the z direction between the loops. F and E are
elliptic functions defined as

F
(

k,
π

2

)
=

π/2∫

0

dα[
1 − k2 sin2 α

]1/2

E
(

k,
π

2

)
=

π/2∫

0

[
1 − k2 sin2 α

]1/2
dα

and

k2 = 4ab

(a + b)2 + d2
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In an infinitesimal loop of the coil the current is d I2 = N/ l I2dz2.
Total mutual inductance between the loop and the coil becomes (see
Sect. 4.2.5.3):

M12 =
l/2∫

−l/2

− N

l

2μ0ab

[(a + b)2 + (z2 − z1)2]1/2

[(
1 − 2

k2

)
F + 2

k2 E

]
dz2

where
k2 = 4ab

(a + b)2 + (z2 − z1)2

In this case the radius of the loop a is much greater than the coil radius b
so that k becomes small. The elliptic functions are

F(k, π/2) = π

2

[
1 +

(
1

2

)2

k2 +
(

1 · 3

2 · 4

)2

k4 + · · ·
]

E(k, π/2) = π

2

[
1 −

(
1

2

)2

k2 −
(

1 · 3

2 · 4

)2 k4

3
− · · ·

]

so that

M12 =
l/2∫

−l/2

N

l

2μ0ab

[(a + b)2 + (z2 − z1)2]1/2

πk2

16
dz2

= μ0
Nπa2b2

2l

l/2∫

−l/2

dz2

[(a + b)2 + (z2 − z1)2]3/2

b. The force on the loop is obtained by differentiating M12 with respect to
z1. The integration in the next step then gives back the integrand up to the
sign, i.e.

F̄2→1 = μ0 I1 I2
Nπa2b2

2l

d

dz1

l/2∫

−l/2

dz2

[(a + b)2 + (z2 − z1)2]3/2 ẑ

= −μ0 I1 I2
Nπa2b2

2l

(
1[

(a + b)2 + ( l
2 − z1)2

]3/2

− 1[
(a + b)2 + (− l

2 − z1)2
]3/2

)
ẑ
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which for negative z1 (as in the figure) and for the same current direction
is a positive force, as it should be.

c. The induction voltage is obtained equivalently to Exercise (4.10c). If the
current varies in object 2 the induced voltage becomes

ε1 = M12
d

dt
i2 = M12ωI0 cos ωt

4.13 a. Utilizing formula (4.56), equivalent to formula (4.60), mutual inductance
becomes

M12 = −2μ0ab

π/2∫

0

(1 − 2 sin2 α)dα

[(a + b)2 + d2 − 4ab sin2 α]1/2

which may be written

M12 = − N

l
2μ0ab

π/2∫

0

(1 − 2 sin2 α)

×
l/2∫

−l/2

1

[(a + b)2 − 4ab sin2 α + (z2 − z1)2]1/2
dz2dα

= − N

l
2μ0ab

π/2∫

0

(1 − 2 sin2 α)

×
[

sinh−1 l/2 − z1(
(a + b)2 − 4ab sin2 α

)1/2

− sinh−1 −l/2 − z1(
(a + b)2 − 4ab sin2 α

)1/2

]
dα

Since l → ∞, z1 may be neglected and the mutual inductance becomes

M12 = − N

l
4μ0ab

π/2∫

0

(1 − 2 sin2 α)

×
[

sinh−1 l/2(
(a + b)2 − 4ab sin2 α

)1/2

]
dα

≈ − N

l
4μ0ab

π/2∫

0

(1 − 2 sin2 α) ln

(
l(

(a + b)2 − 4ab sin2 α
)1/2

)
dα
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= − N

l
4μ0ab

π/2∫

0

(1 − 2 sin2 α) ln
l[

(a + b)2
(

1 − 4ab sin2 α
(a+b)2

)]1/2 dα

= N

l
2μ0ab

π/2∫

0

(1 − 2 sin2 α) ln

(
1 − 4ab sin2 α

(a + b)2

)
dα

≈ − N

l
8μ0

a2b2

(a + b)2

π/2∫

0

(1 − 2 sin2 α) sin2 αdα

since a  b.
The integral is picked from a handbook so that

M12 ≈ − N

l
8μ0

a2b2

(a + b)2

(
π

4
− 3π

8

)
= N

l
μ0

a2b2

(a + b)2 π ≈ N

l
μ0πa2

independent of where the loop is placed inside the long coil.
b. The interaction energy becomes

Um = I1 I2 M12 = N

l
μ0 I2πa2 I1 = N

l
μ0 I2m

where m = I1πa2 is called the dipole moment of the loop, which will be
discussed in more detail in Chap. 7.

c. In Exercise a, the case when the surface normal of the loop is parallel to the
axis of the coil was treated. How is the mutual inductance affected if the
surface normal forms an angle θ to the coil axis? The coil axis is chosen
as the z axis and the direction of the loop is taken into account by forming
a vector of the dipole moment:

m̄ = I1πa2n̂

where n̂ is the direction of the loop’s surface normal. According to the basic
definition of inductance, formula (3.30), it is concluded that the scalar prod-
uct between the infinitesimal elements results in an additional factor which
is cos θ , independent of the object’s position so that

d L̄1 · d L̄2 = ab cos(φ2 − φ1) cos θdφ1dφ2

Since cos θ is a constant, nothing is changed in the calculation apart from
this factor so that energy becomes

Um = nμ0 I2m cos θ = N

l
μ0 I2m̄ · ẑ
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d. The force vanishes since the energy is independent of translational coordi-
nates. However, a torque occurs as

τ = dUm

dθ
= − N

l
μ0 I2m sin θ

which turns the loop until the angle is 0 or π .
Stable equilibrium occurs for θ = 0. For θ = π the currents of the loop and the
coil are oppositely directed resulting in a repulsive force. As a consequence,
unstable equilibrium is attained since the slightest disturbance will turn the
loop. On the other hand, for θ = 0, a disturbance will be counteracted since
the currents then attract.
Note that the magnetic energy is maximized.

4.14 a. The inductance of a coil is

Mtot = − N 24μ0a2

l

(
−π

4
+ 2a

3l
+ O

(a

l

)2 + · · ·
)

= μ0nπa2
(

N − 8a

3π
n + · · ·

)

L1 = μ0nπa2
(

N1 − 8a

3π
n + · · ·

)

L2 = μ0nπa2
(

N2 − 8a

3π
n + · · ·

)

L1 + L2 = μ0nπa2
(

N1 + N2 − 16a

3π
n + · · ·

)

Total inductance is

L = μ0nπa2
(

N1 + N2 − 8a

3π
n + · · ·

)

so that L = L1 + L2 only in lowest order.
b. In lowest order there is no interaction between the coils, i.e. the mutual

inductance vanishes. In higher order there is an interaction so that mutual
inductance is finite. See also Exercise (6.3).

4.15 a. The following integral has to be solved:

l∫

0

l∫

0

[2 − ln 8a + ln(z j − zk)]dz j dzk

l∫

0

ln(z j − zk)dz j = (l − zk) ln(l − zk) − l + zk ln zk
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l∫

0

[(l − zk) ln(l − zk) − l + zk ln zk] dzk = l2
(

ln l − 1

2

)
− l2

so that

l∫

0

l∫

0

[2 − ln 8a + ln(z j − zk)]dz j dzk = (2 − ln 8a)l2 + l2
(

ln l − 3

2

)

Mtot = −μ0 N 2a

l2 l2
(

1

2
− ln

8a

l

)

*4.16 a. The force on conductor 2 is given by (3.23)

F̄ = ∇Um = d

dz2
Um ẑ = I1 I2

d

dz2
M12 ẑ

The exact form of the inductance is given by (4.60)

M12 = − 2μ0ab

[(a + b)2 + d2]1/2

[(
1 − 2

k2

)
F + 2

k2 E

]

where

k2 = 4ab

(a + b)2 + d2

d = z2 − z1 and a = b.
Since a � d and k2 → 1 the force is given by (4.82)

lim
k2→1

F
(

k,
π

2

)
= 1

2
ln

16

1 − k2

and
lim

k2→1
E
(

k,
π

2

)
= 1

Thus, inductance becomes

M12 = −μ0a(2 − F) = −μ0a

(
2 − 1

2
ln

16

1 − k2

)

so that

d M12

dz2
= d M12

dk2

dk2

dz2
= − μ0a

(z2 − z1)
= − μ0 L

2π(z2 − z1)
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where L is the circumference of the loops. Force becomes

F̄1→2 = −I1 I2
μ0 L

2π(z2 − z1)
ẑ

which is equivalent to the result for straight conductors, formula (2.3).
b. The force between single loops are usually small and hard to measure. If

instead short coils are used, the current is multiplied by a factor N , the num-
ber of turns. Since the current appears quadratically the force is magnified
with the product of number of turns from each coil. Two identical coils
with 100 turns each will then give a force magnification of a factor 10,000.
However, the force formula must then be corrected since the different loops
interact at different positions, see figure.

z4

z3

z2

z1

z

j

i

t

t

d

The force between two infinitesimal loops of each conductor is

d F̄i→ j = −ẑ
μ0L

2π(z j − zi )
Ki dzi K j dz j

where K is current per length in z direction so that

Ki = Ni Ii

z2 − z1

and

K j = N j I j

z4 − z3

The total force becomes

F̄i→ j = −ẑ
μ0 L Ki K j

2π(z2 − z1)(z4 − z3)

z4∫

z3

z2∫

z1

dzi dz j

z j − zi

= −ẑ
μ0 L Ni Ii N j I j

2π

2(d + t) ln(d + t) − (d + 2t) ln(d + 2t) − d ln d

t2

where t = z2 − z1 = z4 − z3 and d = z3 − z2
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For d � t force becomes

F̄i→ j = −ẑ
μ0 L Ni Ii N j I j

2π(d + t)

so that the coils act as two straight conductors each with current N I magni-
fying force a factor N 2.
With this apparatus it is quite feasible to perform a precision measurement
of μ0.

4.17 Maximal voltage is induced when the motion is perpendicular to the surface
normal of the plate, as is seen from formula (4.46):

F̄ = I L̄ × μ0

2
(K̄ × n̂)

The voltage is then given by (4.87). Using the length of the two wings as
100 m and a speed of 250 m/s the induced voltage becomes

ε2 = μ0 K

2
Lv ≈ 2π · 10−7 × 80 × 50 × 250 V = 0.6 V

v

K

4.18 The exact formula (4.75) is:

Mtot = − N 24μ0a2

l

×
π/2∫

0

[
(1 − 2 sin2 α)

(
sinh−1 l

2a cos α
−

(
1 + 4a2

l2 cos2 α

)1/2

+ 2a

l
cos α

)]
dα

where terms up to order ( a
l )2 are kept.
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Mutual inductance becomes

Mtot = − N 24μ0a2

l

π/2∫

0

[
(1 − 2 sin2 α)

×
(

ln
l

a cos α
+ 1

4

a2

l2 cos2 α − (1 + 2
a2

l2 cos2 α) + 2a

l
cos α

)]
dα

= − N 24μ0a2

l

[(
1 − ln

l

a

) π/2∫

0

(2 sin2 α − 1)dα

+
π/2∫

0

(2 sin2 α − 1) ln(cos α)dα − 2a

l

π/2∫

0

(2 sin2 α − 1) cos αdα

]

+ N 2μ0a4

l3 7

π/2∫

0

cos2 α(1 − 2 sin2 α)dα

The last term is

N 2μ0a4

l3 7

π/2∫

0

cos2 α(1 − 2 sin2 α)dα

= 7N 2μ0a4

l3

[
α

2
+ sin 2α

4
− 2

(
α

8
− sin 4α

32

)]π/2

0
= 7N 2μ0a4π

8l3

so that

Mtot = − N 24μ0a2

l

(
−π

4
+ 2a

3l
+ O

(a

l

)2 + · · ·
)

= μ0 N 2πa2

l

(
1 − 8a

3πl
+ 7

8

a2

l2 + O
(a

l

)3 + · · ·
)

where the two first terms are obtained from formula (4.80).
It is seen that if a/ l is approximately 10 % there is about 10 % contribution
in second order and about 1 % in third order.

D.5 Conductors and Resistive Effects

5.1 Capacitance is defined as

C = Q

��

where Q = λL and L is the common length of the cylinders. The voltage is
obtained from the concept of work

W = Ue = q��



Appendix D: Solutions to Exercises 291

q
F

L

d

λ-λ

To determine capacitance the work required to bring a point charge against the
electric force from one to the other cylinder has to be calculated, see figure.
Since the cylinders are conductors all excess charge will be collected on its
surface, equivalent to a charged shell. This exercise is therefore equivalent to
Exercise (4.4) with the sole difference that the radii of the two cylinders are
different. Thus the work becomes

W = qλ

2πε0

d−b∫

a

1

r
+ 1

d − r
dr = qλ

2πε0
[ln r − ln |d − r |]d−b

a

= qλ

2πε0
[ln(d − b) − ln b − ln a + ln(d − a)]

= qλ

2πε0
ln

(d − b)(d − a)

ba

and voltage

�� = λ

2πε0
ln

(d − b)(d − a)

ba

and the capacitance per meter

C/L = Q/L

��
= 2πε0

ln (d−b)(d−a)
ba

5.2 This exercise is equivalent to Exercise (4.3) with the sole difference that the
outer conductor has a thickness. Let λ denote charge per meter. The work to
bring a point charge q from the inner to the outer conductor becomes

W = qλ

2πε0

b∫

a

1

r
dr = qλ

2πε0
ln

b

a
= q��

The voltage is

�� = λ

2πε0
ln

b

a
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and the capacitance per meter

C/L = Q/L

��
= 2πε0

ln b
a

c a

b

λ

-λ

5.3 Charge is collected on the surface of the spheres. The work needed to bring a
point charge from one to the other object has to be determined. According to
Sect. 4.1.5.2 there is no force on a charge inside a sphere so that work becomes

W = q Q

4πε0

d−b∫

a

(
1

r2 + 1

(d − r)2

)
dr = q Q

4πε0

[
−1

r
+ 1

d − r

]d−b

a

= q Q

4πε0

(
1

a
− 1

d − b
+ 1

b
− 1

d − a

)
= q��

and capacitance

C = Q

��
= 4πε0

(
1

a
− 1

d − b
+ 1

b
− 1

d − a

)−1

5.4 a. The effective distance between the plates is halved. Since the charge on the
plates is unchanged, voltage is halved.

b. The effective area is halved, but the charge on this effective area is half of the
original so that the surface charge density is unchanged. Since the distance
between the plates is unchanged, the voltage is unchanged.
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*5.5

d t = x2 – x1

x = 0

x

a. The capacitance C = Q/�� where the voltage �� is defined from the work
W needed to bring a point charge from one to the other plate:

W = q Q

Aε0
(d − t) ⇒ �� = W

q
= Q

Aε0
(d − t) ⇒ C = Aε0

(d − t)

b. The upper and lower coordinates of the metal plate are denoted by x2 and x1
respectively, so that

C1 = ε0 A

x1
, C2 = ε0 A

(d − x2)

C = C1C2

C1 + C2
= ε0 A

1
x1(d−x2)

1
x1

+ 1
(d−x2)

= ε0 A
1

d + (x1 − x2)
= ε0 A

(d − t)

c. Consider a series coupling of two charged capacitors. The charge is distributed
equally as in the figure. The partial voltages are summed to total voltage:

Q

C
= Q

C1
+ Q

C2
⇒ 1

C
= 1

C1
+ 1

C2
⇒ C = C1C2

C1 + C2

Q -Q Q -Q

C1 C2

*5.6 a. Because of the low speed.
b. The terminal speed is achieved when gravity balances the air resistance:

mg = +Gv + Bv2

Bv2 + Gv − mg = 0

v2 + G

B
v − mg

B
= 0
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(
v + G

2B

)2

= mg

B
+

(
G

2B

)2

v = ±
√

mg

B
+

(
G

2B

)2

− G

2B

so that heavier objects fall quicker than lighter.
d. Since at that high altitude the air resistance is lower due to the lower density.

5.7 a. For a homogeneous conductor J = I
S and the conductivity σ = l

RS . Using
Joule’s law (5.15), the heat power becomes

Pf r

V
= J 2

σ
= I 2/S2

l/RS
= I 2 R

V
⇒ Pf r = I 2 R

b. Ohm’s law (5.5):

�� = RI = l

σ S
JS ⇒ J = σ

��

l
⇒ J̄ = −σ∇�

The minus sign in the last formula reflects the fact that ∇� is oppositely
directed to the current direction.

5.8 These three properties of the metal originate from the practically free conduc-
tion electrons. These are responsible for making the metal an equally good
heat conductor as current carrier.
In addition, due to the conduction electrons the metal is shiny and, if well-
polished, works as a mirror. To understand the mirror, one has to take into
account the vision sense in the discussion. When something is registered by
the vision, it basically means that an electric interaction has caused an action
potential in the eye. Usually, the eye interacts with the electric dipole vibrations
of the objects, e.g. a flower. Including the mirror in the dynamics a three objects
dynamics arise. Firstly, the dipole vibrations is picked up by the mirror whose
conduction electrons manage to exactly reproduce the charge vibration pattern
of the flower. When the eye is directed towards the mirror, it interacts with the
vibrating conduction electrons and registers an image identical to the real
object.
The mirror is certainly a miracle and reveals in this way some of the basic
mysteries of nature.
A mirror image may also be produced by water and glass surfaces, although
these do not contain any conduction electrons. In these cases it is their mobile
electric dipoles that mimic the charge vibration of the object.
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5.9 The continuity equation

∇ · J̄ + dρ

dt
= 0

may be written
nq∇ · v̄ + n

dq

dt
= 0

Consider the problem in one dimension

q
dv

dt

dt

dx
+ dq

dt
= 0

so that
q

dv

dt
+ dx

dt

dq

dt
= 0

where dx/dt = v. In vector form:

d

dt
(qv̄) = 0

5.10 a. The flux density T , i.e. flux per surface, becomes:

T̄ = v̄ρ

where ρ is mass density and v is velocity of a mass element. Without any
feed or drain, i.e. no sources or losses, the flux is conserved leading to a
continuity equation:

∇ · T̄ + dρ

dt
= 0

b. Consider an element of the flux with mass m. Equivalent to Exercise (5.9),
we obtain d

dt
(mv̄) = 0

i.e. Newton’s force law.

5.11 The bulb interacts with the mirror whose conduction electrons are put in vibra-
tion. After the bulb has ceased the electron vibrations in the mirror continue a
while given by the relaxation time. Table D.1 provides necessary input data.

a. According to formula (5.10) this time is

tr = m

q2n
σ

where

n = N/V = N

M/ρ
= NV NA

Mmol/ρ

and NV is the number of valence electrons.
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Table D.1

Electron mass m = 9.1 × 10−31 kg

Electron charge q = 1.6 × 10−19 C

Number of valence electrons NV = 1

Atomic number Z = 41

Density ρ = 7830 kg/m3

Avogadro’s number NA = 6.0 × 1023

Molar mass Mmol = atomic number Z in grams.

n = 6.0 × 1023

41 × 10−3/7.83 × 103 = 1.15 × 1029m−3

Resistivity

ρr = m

q2ntR
= 9.1 × 10−31

(1.6 × 10−19)21.15 × 1029 × 0.13
�m = 2.4 × 10−21�m

b. This low resistivity appears for superconductors, a state at an extremely low
temperature. In the rewarded experiment the temperature was as low as 0.8 K.

5.12 The force is twice that of formula (4.44b)

F̄ = qv̄ × μ0 K ẑ

where z is along the coil axis. The force is accordingly centripetal pointing
toward the coil axis:

mv2

r
= qvμ0 K

The velocity is obtained from the high voltage of the electron tube:

q�� = mv2

2

Putting these two equations together the charge to mass ratio becomes:

q

m
= 2��

(μ0r K )2
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5.13 a. The equations of motion in the two cases are:

− mg + Gv = m
dv

dt
⇒ v f = mg

G

− mg − Gv + q
��

d
= m

dv

dt
⇒ vr = q ��

d − mg

G

where formula (4.22) has been used in the second case and d is the distance
between the plates.

b. Summing the two velocities

v f + vr = q��

dG
⇒ q = (v f + vr )

dG

��
= (v f + vr )

d6πηa

��

The radius a is obtained from v f , the known density of the oil ρ and the
viscosity of air η:

v f = mg

G
=

4
3πa3ρg

6πηa
= 2ρg

9η
a2 ⇒ a =

√
9ηv f

2ρg

The charge becomes

q = (v f + vr )
d6πη

��

√
9ηv f

2ρg

5.14 a. Formula (3.1):

Ue = q1q2

4πε0r
= − (1.6 × 10−19)2

4π × 8.9 × 10−12 · 0.5 × 10−10 J = −4.6 × 10−18J

The energy is negative since the two charges have opposite signs.
b. The centripetal force is electric:

mev2

r
= q1q2

4πε0r2 ⇒ v =
√

q1q2

4πε0rme

=
√

(1.6 × 10−19)2

4π × 8.9 × 10−12 × 0.5 × 10−10 × 9.1 × 10−31 m/s

= 5.1 × 105 m/s
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D.6 Electric Circuits

6.1 Let the capacitor in the figure be charged to the battery voltage. Then disconnect
the circuit with the switch so that the capacitor is discharged through the resistor.

-q
q

CΔΦ

R

The potential law at discharge becomes

q

C
− R(−dq

dt
) = 0 ⇒ q = Ae− t

RC

where q is the charge on the capacitor. Since the current is positive but q
decreases there is a minus sign in front of dq/dt . The current through the
resistor becomes

i = −dq

dt
= A

RC
e− t

RC

The constant A is determined by the initial condition

i(t = 0) = ��

R
⇒ A = C��

so that
i(t) = ��

R
e− t

RC

To measure this current, utilize an AC squared formed voltage source and
connect an oscilloscope over the resistor. Alternatively, use a large capacitor
with capacitance of about 1 F and measure current directly using an ordinary
ampere meter.

6.2 When voltage switches to zero the current decreases in the circuit. The coil
responds by generating an induction current in the same direction, clockwise.
Applying the potential law clockwise gives

L

(
−di

dt

)
− Ri = 0

There is a minus sign in front of the time derivative since current decreases in
the circuit but the induction voltage is positive clockwise. The solution becomes

i = i0e−t R/L
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where i0 is determined from the initial condition

i0 = i(t = 0) = ��

R

so that
i = ��

R
e−t R/L

6.3 a. The voltage over both inductors becomes

�� = ��1 + ��2 = L1
d I

dt
+ M12

d I

dt
+ L2

d I

dt
+ M12

d I

dt
= L

d I

dt
⇒ L = L1 + L2 + 2M12

b. The total inductance is defined from

�� = L
d

dt
(I1 + I2)

Further condition is
[

�� = L1
d I1
dt + M12

d I2
dt

�� = L2
d I2
dt + M21

d I1
dt

]

⇒

⎡
⎢⎢⎢⎣

�� = L1
d I1
dt + M12

(
��−M21

d I1
dt

L2

)

�� = L2
d I2
dt + M21

(
��−M12

d I2
dt

L1

)
⎤
⎥⎥⎥⎦

⇒
[

��(L2 − M12) = L2L1
d I1
dt − M12 M21

d I1
dt

��(L1 − M12) = L2L1
d I2
dt − M12 M21

d I2
dt

]

Summing these two equations gives

�� = L1L2 − M2

L1 + L2 − 2M

d

dt
(I1 + I2)

where M = M12 = M21
The total inductance then becomes

L = L1L2 − M2

L1 + L2 − 2M

c. The magnetic energy for a system consisting of two inductors is
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Um = 1

2
L1 I 2

1 + 1

2
L2 I 2

2 + M12 I1 I2

For constant current the magnetic energy of the system is positive and also
a maximized extreme value.
Denoting the ratio I1/I2 = r energy becomes

Um = 1

2
L1r2 I 2

2 + 1

2
L2 I 2

2 + M12r I 2
2 ≥ 0

Using

dUm/dr = 0 ⇒ L1r + M12 = 0 ⇒ r = −M12/L1

we obtain
1

2

M2
12

L1
+ 1

2
L2 − M2

12

L1
≥ 0 ⇒ √

L1L2 ≥ |M12|

which is equivalent to what should be shown.
*6.4 a.

�� = ��0e jωs t

P = i · �� = ��0

Z
sin(ωs t − ϕ) · ��0 sin ωs t

where ϕ is defined in (6.23b).
b.

P = (��0)
2

Z
sin(ωs t − ϕ) sin ωs t

= (��0)
2

Z
(sin ωs t cos ϕ − cos ωs t sin ϕ) sin ωs t

The average power is obtained by integrating over a time period and then
dividing by a time period. The integral over the time dependent factor of
the first term gives a factor 1/2 and that of the second term vanishes:

〈P〉 = (��0)
2

Z

cos ϕ

2

c. The phase shift ϕ = 0
d.

tan ϕ = ωs L − 1
ωsC

R
= 0 ⇒ ωs = 1√

LC
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6.5 a.

��c = ��0e jωs t

ic = ��0

Z
e j (ωs t−ϕ)

b. Zc = Ze jϕ follows directly from Exercise a.
c.

Z =
√(

1

ωsC
− Lωs

)2

+ R2

tan ϕ = ωs L − 1
ωsC

R

Since the circuit is purely resistive for ϕ = 0 the projection on the real axis
becomes the resistance.
The imaginary part of Zc is therefore

I m Zc = ωs L − 1

ωsC

Thus, the complex impedance may be written

Zc = R + j

(
ωs L − 1

ωsC

)

ωsL –
1

ωsC

Zc

Im

R Re

φ

6.6 a. The initial charge on the plates is

Qi = Ci�φ = ε0 A

d
�φ

Final charge on the plates is
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Q f = C f �φ = ε0 A

d + s
�φ

The amount of charge that has passed through the resistor is �Q = Q f −Qi

b. The movable plate is affected by the longitudinal sound wave making the
distance between the plates to change.

6.7 Denote the displacement by x , the mass by m, the friction coefficient by λ and
the spring constant by k. With the x axis directed upwards, the equation of
motion becomes (the buoyancy force of Archimedes is neglected)

m
d2x

dt2 = −λ
dx

dt
− kx − Fg

where Fg is the gravitational force. This may be written

−Fg − λ
dx

dt
− kx − m

d2x

dt2 = 0

Setting i = dq/dt , Eq. (6.8) is

�� − R
dq

dt
− q

C
− L

d2q

dt2 = 0

Identification gives the following interpretation:

x ⇔ q
Fg ⇔ −��

λ ⇔ R
k ⇔ 1/C

m ⇔ L

Note the equivalence between inertial mass and inductance.

D.7 Electric and Magnetic Dipoles

7.2 a. The torque is given by formula (7.5)

τ̄ = − p̄ × ∇�

and the electric potential from the point charge is

� = q

4πε0r
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The torque becomes

τ̄ = q

4πε0r2 p̄ × r̂

7.3 a. The force on the dipole is given by formula (7.10)

F̄ = q

4πε0

(
−3

p̄ · r̂

r3 r̂ + p̄

r3

)

where r̄ is directed towards the dipole. The first term vanishes and the
second term becomes

F̄ = q

4πε0

pẑ

x3 =
(

1.6 × 10−19

4π × 8.85 × 10−12

6.2 × 10−30

(10−6)3

)
ẑN

= 8.9 × 10−21 ẑN

The torque is (see Exercise 7.2)

τ̄ = q

4πε0r2 p̄ × r̂ = qp

4πε0x2 (ẑ × −x̂) = − qp

4πε0x2 ŷ

b. In the discrete case, the dipole moment is

p̄ =
∑

i

r̄i qi

H+

105°

H+

x

y

r1

r2

O2-

The coordinate system is chosen with origin in the oxygen atom

p̄ =
∑

i

r̄i qi = q(r̄1 + r̄2) = q(x1 x̂ + y1 ŷ + x2 x̂ + y2 ŷ) = 2qx x̂

since x1 = x2 = x and y1 = −y2. The coordinates become

x = p

2q
⇒ y1 = x tan 52.5◦ = p

2q
tan 52.5◦ = 2.5 × 10−11 m

The distance between the hydrogen ions is 2y1.
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However, this calculation should be considered just as an estimate since
molecules are described by quantum mechanics, see Exercise (7.19). The
real distance is three times larger than calculated here.

7.4 In the electric case, the dipole moment is

p̄ =
∫

V ′
ρ(r̄ ′)r̄ ′dV ′

A coordinate transformation gives

p̄ =
∫

V ′
ρ(r̄ ′)(r̄ ′ + ā)dV ′ =

∫

V ′
ρ(r̄ ′)r̄ ′dV ′ + ā

∫

V ′
ρ(r̄ ′)dV ′ =

∫

V ′
ρ(r̄ ′)r̄ ′dV ′

In the magnetic case the dipole moment is

m̄ = 1

2

∫

V ′
(r̄ ′ × J̄ (r̄ ′))dV

′ → 1

2

∫

V ′
((r̄ ′ + ā) × J̄ (r̄ ′))dV

′

= 1

2

∫

V ′
(r̄ ′ × J̄ (r̄ ′))dV

′ + 1

2

∫

V ′
(ā × J̄ (r̄ ′))dV

′

The second term∫

V ′
(ā × J̄ (r̄ ′))dV

′ = ā ×
∫

V ′
J̄ (r ′)dV ′ = 0

for closed currents.

7.5 a. Dipole moment is given by formula (7.22)

p̄ =
∑

i

r̄i qi = q1r̄1 + q2r̄2 + q3r̄3 + q4r̄4

= qh ŷ + q(hx̂ + h ŷ) − qhx̂ = 2qh ŷ

y

x

h

q1 q4

q3
q

2

b. For coordinate origin in the center of the system

p̄ =
∑

i

r̄i qi = q1r̄1 + q2r̄2 + q3r̄3 + q4r̄4
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= −q

(
−h

2
x̂ − h

2
ŷ

)
+ q

(
−h

2
x̂ + h

2
ŷ

)

+ q

(
h

2
x̂ + h

2
ŷ

)
− q

(
h

2
x̂ − h

2
ŷ

)
= 2qh ŷ

c. The quadrupole moment in this two-dimensional example has four
elements:

Qxx =
∑

n

(3x2 − (x2 + y2 + z2))qn

Qyy =
∑

n

(3y2 − (x2 + y2 + z2))qn

Qxy =
∑

n

(3xyqn) = Qyx

With a coordinate system as in task a the elements are

Qxx = 2h2e

Qyy = −4h2e

Qxy = −3h2e

where e is the electron charge.
With a coordinate system as in task b all elements vanish. Thus, the quadrupole
moment is not coordinate independent.

7.6 The dipole moment in the continuous case is given by formula (7.23).

x

z

+

–

Denote the upper half by u and the lower half by l.

p̄ =
∫

V

ρ(r̄)r̄dV =
∫

u

ρr̄dV +
∫

l

−ρr̄dV

∫

u

r̄dV =
∫ ∫ ∫

rr̂dV



306 Appendix D: Solutions to Exercises

=
2π∫

0

π/2∫

0

a∫

0

r3 sin θ(sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ)drdθdφ

=
2π∫

0

π/2∫

0

a∫

0

r3 sin θ cos θ ẑdrdθdφ ẑ = a4

4
2π

[
−1

4
cos 2θ

]π/2

0
ẑ = πa4

4
ẑ

∫

l

r̄dV =
∫ ∫ ∫

rr̂dV

=
2π∫

0

π∫

π/2

a∫

0

r3 sin θ(sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ)drdθdφ

= a4

4
2π

[
−1

4
cos 2θ

]π

π/2
ẑ = −πa4

4
ẑ

⇒ p̄ = ρ
πa4

2
ẑ = 3q

2πa3

πa4

2
ẑ = 3qa

4
ẑ

7.7 An idealized dipole consists of two oppositely charged point charges, as in
the figure.

r1

+q

-q

l

r2

Formula (7.22) gives

p̄ =
∑

i

r̄i qi = q1r̄1 + q2r̄2 = q(r̄1 − r̄2) = ql̄

which is formula (7.1).

7.8 The magnetic dipole moment, (7.39), is

m̄ = 1

2

∫

V

(r̄ × J̄ )dV

For a circuit with a homogeneous current distribution the current density is
replaced by current according to the formula IdL̄ = J̄ dV, see Exercise (2.24).
The dipole moment becomes

m̄ = 1

2
I

∫

Loop

r̄ × d L̄
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r
I

y

x

a

Side 1 b Side 3

Side 2 dL

Side 4

If the coordinate system is chosen according to the figure, the contributions
from sides 1 and 4 vanish since r̄//d L̄

m̄ = 1

2
I

∫

Loop

r̄ × d L̄ = I

2

(∫

2

rdx sin θ2 +
∫

3

−rdy sin θ3

)
(−ẑ)

= I

2

( a∫

0

rdx
b

r
−

0∫

b

rdy
a

r

)
(−ẑ) = −I abẑ

where θ2 (θ3) is the angle between r and d L for side 2 (3).
For a circuit with fixed surface normal, its dipole moment is generally its
current times its surface, see formula (7.31).

7.9 The torque may be determined in two ways:

1. Formula (7.32) gives

τ =
∣∣∣∣dU

dθ

∣∣∣∣
where the energy is given by (7.36)

U = μ0
I1

2Y
I2 An̂2 · ŷ = μ0

I1

2Y
I2 A cos θ

for this specific case where θ is the angle between the y axis and the surface
normal of the loop.
The direction of the torque is obtained by considering the magnetic forces
on the sides of the loop. Since parallel currents attract, the torque will act
such as the surface normal becomes parallel to the y axis, i.e. the torque
is directed along negative z:

τ̄ = −μ0
I1

2Y
I2 A sin θ ẑ

2. Alternatively, formula (7.30) may be used:
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τ̄ = μ0

2
m̄ × (K̄ × n̂) = −μ0

2
mK sin θ ẑ

The force on the loop is given by formula (7.28):

d F̄ = I d L̄ × ŷ
μ0 K

2

so that the forces on parallel sides are equal in magnitude but oppositely
directed so that the total force vanishes. Alternatively, the force may be
obtained by taking the gradient of the energy determined above. The same
result is obtained since the energy is independent of position, depending
only on orientation.

7.10 The problem with the system discussed in the previous exercise and in
Sect. 7.2.2 is that the large plate is not realizable. A similar system made
up of a closed circuit has to replace the large plate. One possibility is to put
together four small plates with a square cross section and with the loop placed
inside, illustrated in the figure.

1

z

x

2
K

K

K

K

n1

m^

a. The torque is given by (7.30):

τ̄ = μ0

2
m̄ × (K̄ × n̂)

b. The induction voltage is

ε2 = d

dt
(I1 M12)

where according to formula (7.36)

I1 M12 = μ0 AK cos θ

2

where A is the surface of the loop. Since θ is the angle between the y axis
and the surface normal of the loop we obtain

I1 M12 = μ0 Ā · (K̄ × n̂)

2
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Since K̄ × n̂ is equal for all plates the contribution to torque and induc-
tion voltage is equal from all plates. In this way, a motor and a generator
respectively may be realized.
Note that when the loop is oriented as in the figure no torque appears.
The square cross section may be generalized to any number of sides, includ-
ing an infinite number corresponding to a coil with a circular cross section.
Figure 2.13 shows an example of a generator or motor construction.

7.11 a. There is no difference since the angle between the y axis and the dipole
moment of the loop varies equivalently in the two cases.

b. The induction voltage is (see Exercise 7.10)

ε2 = d

dt
(I1 M12)

and

I1 M12 = μ0 Ā · (K̄ × n̂)

2
= μ0 K Ā · ŷ

2
= 0

since the surface normal in this case is perpendicular to the y axis. The
time derivative vanishes and no voltage is induced.

7.12 Using the notation as in Exercises (7.8–7.11), the energy for an interaction
between a current loop and a large current-carrying plate is

Up = μ0 K

2
m̄ · ŷ

The interaction energy between a current loop and a current-carrying ideal
coil, with the loop placed inside the coil, is given by formula (4.89 in Exercise
4.13)

Uc = μ0nIcẑ · m̄

where n is the density of turns for the coil, Ic the current in its conductor and
z its axis. The total current of the coil is N Ic so that its linear current density
is Kc = N Ic/ l, where l is the length of the coil (along its axis) and N is the
number of turns. The energy becomes

Uc = μ0 Kcẑ · m̄

so in the latter case the energy is twice that of the former case if current density
is equal. Therefore, the same energy appears if two large plates interact with
the loop.

7.13 In this exercise mass is denoted by μ and angular momentum by L (not to be
confused with self inductance).

a. The general definition of magnetic dipole moment is
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m̄ = 1

2

∫

V

(r̄ × J̄ )dV

For a discrete system each charge is treated individually. The volume con-
taining one charge is denoted by dV . From formula (2.5)

J̄ dV = qv̄

The integral for the dipole moment may then be replaced by the sum

m̄ = 1

2

∑
i

r̄i × qi v̄i

b. The angular momentum for a particle is defined as

L̄ = r̄ × μi v̄

which gives the desired formula directly.

7.14 a. Start from formula (7.25):

Um = − μ0

4πd3 [m̄1 · m̄2 − 3(m̄1 · d̂)(m̄2 · d̂)]

Magnetic moment

m̄ = 1

2

∫

V

(r̄ × J̄ )dV

J̄ = ρv̄

v̄ = ω̄ × r̄ = ωr ẑ × r̂ = ωr(cos θ r̂ − sin θ θ̂) × r̂ = ωr sin θφ̂

r̄ × J̄ = ρωr2 sin θ r̂ × φ̂ = −ρωr2 sin θ θ̂

m̄ = − 1
2ρω

a∫
0

π∫
0

2π∫
0

r4 sin2 θ(cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ)dφdθdr

= 2
15ρωa5 ẑ

where a is the radius of the sphere and r, θ, φ are spherical coordinates.
The energy becomes

Um = − μ0

4π(x2 − x1)3

(
2

15
ρ1ω1a5

1
2

15
ρ2ω2a5

2

)

The magnetic force on object 2 becomes
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F̄m2 = d

dx2
Um x̂ = 3μ0

225πd4 ρ1ω1a5
1ρ2ω2a5

2 x̂

b. The total force is
F̄tot2 = F̄el2 + F̄m2

where the electric force is

F̄el2 = 1

4πε0d2 ρ1ρ2
4

3
πa3

1
4

3
πa3

2 x̂

c. If the rotation is oppositely directed for the two objects, the magnetic
force becomes attractive. The force action ceases when the magnetic and
the electric force balance each other. Put a1 = a2 = a.

F̄el2 = F̄m2 ⇒
3μ0

225πd4 ρ2ω2a10 = 16

36πε0d2 ρ2π2a6

ω2 = 100

3μ0ε0

d2π2

a4

ω = 10π√
3

d

a2 c

The smallest possible distance between the objects is 2a and at this distance
a speed greater than light speed is needed in order to reach balance. This
speed is not possible to reach, see Chap. 9.

d. The magnetic force for charges in parallel motion is given by formula
(2.17):

F̄m2 = −μ0qvqvx̂

4πd2

The two magnetic forces are both attractive while the electric force is
repulsive. It follows that at balance the translational speed v is given by

v2 = c2 − 3

100d2π2 a4ω2

As an example let the distance d = 2a and denote the speed at the equator
of the sphere vmax so that vmax = ωa:

v2 = c2 − 3

π2400
v2

max

Putting the maximal rotational speed to c, we note that the rotation has
very little affect on the translational speed v at balance. Hence, the self
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rotation contributes far less to the magnetic force than the translational
motion.
Nevertheless, the self rotation makes it possible to reach balance theo-
retically since then the speed need not be exactly c. This is interesting
philosophically since at this speed the interactions cease and time stands
still. See Chap. 9.

e. As is further discussed in Chap. 9, magnetism is a motional consequence
arising since interactions take time. As such, similar effects ought to appear
in case of gravitation, which is also included in the theory of general
relativity (so-called ‘Lense-Thirring frame dragging’). Hence, a rotating
vehicle should, if the result from Exercise d is taken over to gravitation,
reduce the gravitational force. However, the effect is much too small to
neutralize the force.

*7.15 a. Start from the energy (7.25)

Um = − μ0

4π R3 [m̄1 · m̄2 − 3(m̄1 · R̂)(m̄2 · R̂)]
= − μ0

4π R3 [m1m2 cos(θ1 − θ2) − 3m1m2 cos θ1 cos θ2]

which should be maximized w.r.t. θ2:

− m1m2 sin(θ1 − θ2) − 3m1m2 cos θ1 sin θ2 = 0

− m1m2(sin θ1 cos θ2 − cos θ1 sin θ2) − 3m1m2 cos θ1 sin θ2 = 0

− tan θ1 cot θ2 − 2 = 0
tan θ2 = − 1

2 tan θ1

*7.16 a. Force is given by the gradient of energy

U = k

R3 [ p̄1 · p̄2 − 3( p̄1 · R̂)( p̄2 · R̂)]

where k = 1
4πε0

in the electric case and k = −μ0
4π

in the magnetic case
and p is electric or magnetic dipole moment, see figure.

y

x

R

r1 r2

p2p
1

Force on object 2 becomes
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F̄1→2 = ±k∇2

(
1

R3 [ p̄1 · p̄2 − 3( p̄1 · R̂)( p̄2 · R̂)]
)

where the plus sign is valid for magnetic interaction and the minus sign
for electric.

∇2

(
1

R3 [ p̄1 · p̄2 − 3( p̄1 · R̂)( p̄2 · R̂)]
)

= ∇2

(
1

R3 p̄1 · p̄2 − 3

R5
( p̄1 · R̄)( p̄2 · R̄)

)

= −3
1

R4 ( p̄1 · p̄2)R̂ + 15

R6 ( p̄1 · R̄)( p̄2 · R̄)R̂ − 3

R5
∇2( p̄1 · R̄)( p̄2 · R̄)

The third term contains

∇2( p̄1 · R̄)( p̄2 · R̄) = ( p̄2 · R̄)∇2( p̄1 · R̄) + ( p̄1 · R̄)∇2( p̄2 · R̄)

The gradient of the scalar product is

∇2( p̄2 · R̄) = p̄2

so that
∇2( p̄1 · R̄)( p̄2 · R̄) = ( p̄2 · R̄) p̄1 + ( p̄1 · R̄) p̄2

and

∇2

(
1

R3 [ p̄1 · p̄2 − 3( p̄1 · R̂)( p̄2 · R̂)]
)

= −3
1

R4 (( p̄1 · p̄2)R̂ − 5( p̄1 · R̂)( p̄2 · ˆ̄R)R̂ + ( p̄2 · R̂) p̄1 + ( p̄1 · R̂) p̄2)

The force becomes

F̄1→2 = ∓3k
1

R4 (( p̄1 · p̄2 −5( p̄1 · R̂)( p̄2 · R̂))R̂+( p̄2 · R̂) p̄1+( p̄1 · R̂) p̄2)

where the minus sign is valid for the magnetic force and the plus sign for
the electric.
The torque may be determined through the derivative of the energy w.r.t.
to the turning angle. Alternatively, it is obtained as follows:
The torque in the electric case is given by formula (7.5):

τ̄ = − p̄ × ∇�

with the potential given by formula (7.11):

�dipol = p̄ · r̂

4πε0r2
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The torque on dipole 2 becomes

τ̄ = − p̄2 × ∇
(

p̄1 · R̂

4πε0 R2

)

where the distance vector is directed towards dipole 2. The gradient may
be taken from formula (7.13) so that using formulas (7.14) and (7.15) we
obtain

τ̄ = − 1

4πε0 R3 [ p̄2 × p̄1 − 3( p̄1 · R̂)( p̄2 × R̂)]

The magnetic torque becomes

τ̄ = μ0

4π R3 [ p̄2 × p̄1 − 3( p̄1 · R̂)( p̄2 × R̂)]

b. The torque on dipole 2 is

τ̄ = − 1

4πε0 R3 [ p̄2 × p̄1 − 3( p̄1 · R̂)( p̄2 × R̂)]

In this example

p̄1 = pẑ, p̄2 = p√
2
(x̂ + ẑ) R̂ = x̂

The second term vanishes since p̄1 · R̂ = 0.

p̄2 × p̄1 =
(

p√
2
, 0,

p√
2

)
× (0, 0, p) = −(0,

p2

√
2
, 0)

which gives the torque

τ̄ = 1

4πε0x3

p2

√
2

ŷ

The force on dipole 2 is

F̄1→2 = 3

4πε0

1

R4 (( p̄1 · p̄2−5( p̄1 · R̂)( p̄2 · R̂))R̂+( p̄2 · R̂) p̄1+( p̄1 · R̂) p̄2)

where p1 is perpendicular to R so that the second and the fourth terms
vanish.

F̄1→2 = 3

4πε0

1

R4 (( p̄1 · p̄2)R̂ + ( p̄2 · R̂) p̄1)
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= 3p2

4πε0x4 (cos 45◦ x̂ + cos 45◦ ẑ) = 3p2

4
√

2πε0x4
(x̂ + ẑ)

7.17 a. Magnetic energy is given by formula (7.25):

Um = − μ0

4π R3 [m̄1 · m̄2 − 3(m̄1 · R̂)(m̄2 · R̂)]

The dipole moment for the loop is

m̄1 = I Aẑ

where the z axis is vertically upwards. Using the result in Exercise (7.14)
the dipole moment for the rotating sphere is

m̄2 = ± 2

15
ρωa5 ẑ

For parallel dipoles the energy becomes

U = μ0

2π R3 m1m2 = μ0

15π R3 I Aρωa5

and for anti-parallel dipoles

U = − μ0

15π R3 I Aρωa5

Stable equilibrium appears for the largest magnetic energy, i.e. for parallel
dipoles.
In quantum mechanical spin resonance the two states alternate where the
latter case, i.e. anti-parallel dipoles, is a so-called excited state.

b. The dipole moments are

m̄1 = I1 A1n̂1, m̄2 = I2 A2n̂2

Parallel:
U = μ0

2π R3 m1m2 = μ0

2π R3 I1 A1 I2 A2

Anti-parallel:

U = − μ0

2π R3 m1m2

Perpendicular:
U = 0
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since one dipole moment is perpendicular to the distance vector and the
dipoles are perpendicular to each other.

7.18 a. Let the dipoles be placed on the x axis. The figure shows orientation and
location of the planets’ dipole moments with α = 35.0◦ and β = 12.7◦.

z

β

α

R = 605 · 109 m

x

p2

p1

The magnetic force was determined in Exercise (7.16):

F̄1→2 = 3μ0

4π

1

R4 (( p̄1 · p̄2 − 5( p̄1 · R̂)( p̄2 · R̂))R̂

+ ( p̄2 · R̂) p̄1 + ( p̄1 · R̂) p̄2)

The angle between the dipole moments is φ = α − β + 180◦ and the
magnetic force becomes

F̄1→2 = 3μ0

4π

1

R4 ((p1 p2 cos(α + 180◦ − β) − 5p1(cos(90◦ + α))p2(cos(90◦ − β)))R̂

+ p2(cos(90◦ − β)) p̄1 + p1 cos(90◦ + α) p̄2)

= 3μ0

4π

p1 p2

R4 [(cos 202.3◦ − 5 cos 122.5◦ cos 77.3◦)R̂ + cos 77.3◦ p̂1 + cos 122.5◦ p̂2]

= 3μ0

4π

p1 p2

R4 [(cos 202.3◦ − 5 cos 122.5◦ cos 77.3◦)x̂

+ cos 77.3◦(−x̂ cos 35◦ − ẑ sin 35◦) + cos 122.5◦(x̂ sin 12.7◦ + ẑ cos 12.7◦)]

= 3 × 10−7 13.2 × 1049

6054 × 1036 (−0.335x̂ − 0.180x̂ − 0.126ẑ − 0.118x̂ − 0.524ẑ)

= −2.96 × 10−4(0.633x̂ + 0.650ẑ)N

The gravitational force is

Fgr = G
M1 M2

R2 = 6.67×10−11 5.97 × 1.90 × 1051

6052 × 1018 N = 2.07×1018 N

i.e. 22 orders of magnitude larger than the magnetic force.
b. The earth is approximately a magnetic dipole, as such originating from

a spherical or approximately a circular current distribution, whose source
presumably is the inner part of the planet consisting of a significant amount
of iron. Due to an external magnetic influence, presumably from the sun,
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a displacement of the conduction electrons in the iron occurs, caused by
the rotation of the earth. This rotation also causes the displaced charges to
move in circles and thereby give rise to geomagnetism. This model of the
geomagnetism is the conventional one and is called the dynamo model.

c. Nobody knows for certain but a well-educated guess could be that Venus
doesn’t contain metal. A special condition with Venus is that it rotates in
the opposite direction relative to other planets, indicating a unique origin.

d. Magnetic torque on object 2 is

τ̄ = μ0

4π R3 [ p̄2 × p̄1 − 3( p̄1 · R̂)( p̄2 × R̂)]

Let the magnetic cell of the crane be object 2. For perpendicular moments
and with distance vector R in parallel to the geomagnetic moment, we
obtain

τ = − μ0

2π R3 p2 p1 = −2 × 10−7 × 10−13 × 8.8 × 1022/6.39 × 106 = 2.8 × 10−4 Nm

directed perpendicular to the moment of the crane’s cell.

D.8 Material Properties

8.1 a. Energy is given by

Ue = 1

2
C(��)2

Using index 0 for quantities without material and index m with material
and relating to formulas (8.1) and (8.2) we obtain

Ue0

Uem
= C0(��0)

2

Cm(��m)2 = C0(��0)
2

κeC0(��0/κe)2 = κe

b. Since the material acts so that the voltmeter effectively sees less charge,
the charge will increase to maintain the voltage. Accordingly, the voltage
is unchanged and the capacitance increases.

8.2 a. Placing the material at an arbitrary position gives three series coupled
capacitors:
C(s), C(t) and C(d − t − s).



318 Appendix D: Solutions to Exercises

s t

d

d-t-s

The capacitance over the length s + t becomes (compare Exercise 5.5)

C(s + t) = ε0 A
κe

κes + t

Total capacitance becomes

C(d) = C(t + s)C(d − t − s)

C(t + s) + C(d − t − s)
= ε0 A κe

κes+t ε0 A 1
d−s−t

ε0 A κe
κes+t + ε0 A 1

d−s−t

= ε0 A κe
κes+t

1
d−s−t

κe(d−s−t)+κes+t
(κes+t)(d−s−t)

= ε0 A
κe

κe(d − t) + t

independent of position s.
b. Yes, it follows directly from Exercise (5.5).

8.3

F1 + F2

F2

F1

+

+

–

–

+

–

Plus pole's attraction larger 
than repulsion of minus pole

The attraction of the minus pole is 
larger than the repulsion of the 
plus pole due to the distance 
dependence of force
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8.4 a. Total interaction energy is (see Sect. 7.2)

U = 1

2

∫

V

P̄ · ∇�dV

corrected with a factor 1/2 since the polarisation is induced, see Sect. 8.2.2.
The polarisation is given by formula (8.26) and the potential by (8.25).
With the left end of the cylinder at z = b and the right end at z = c the
energy becomes

U = 1

2
ε0

(
1

κe
− 1

)(
λ

2πε0

)2 c∫

b

a∫

0

2π∫

0

1

(d − z)2 ρdφdρdz

= 1

2
ε0

(
1

κe
− 1

)(
λ

2πε0

)2

πa2
(

1

d − b − L
− 1

d − b

)

where a is the radius of the cylinder and L = c−b is its length. The force
on the cylinder becomes

F̄ = − d

db
U ẑ = −1

2
ε0

(
1

κe
− 1

)(
λ

2πε0

)2

πa2
(

1

(d − b − L)2 − 1

(d − b)2

)
ẑ

which is an attractive force
8.5 a.

q q L

r

0 L d z

+Q

b. A coordinate axis pointing radially out from the sphere is introduced, see
figure. Using formulas (4.17) and (3.4), the potential outside the sphere
along the axis of the cylinder may then be written

� f = Q

4πε0r

so that

∇� f = − Q

4πε0r2 r̂ = Q

4πε0(d − z)2 ẑ
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to the left of the sphere. The polarisation direction becomes approximately
parallel to the cylinder axis so that formula (8.20) may be used:

P̄ = ε0∇� f

(
1

κe
− 1

)
= ε0

(
1

κe
− 1

)
Q

4πε0(d − z)2 ẑ

=
(

1

κe
− 1

)
Q

4πd2
(
1 − z

d

)2 ẑ ≈
(

1

κe
− 1

)
Q

4πd2 (1 + 2
z

d
)ẑ

Total dipole moment becomes

p̄ =
∫

V

P̄dV =
∫

V

(
1

κe
− 1

)
Q

4πd2 (1 + 2
z

d
)ẑdV = πa2

(
1

κe
− 1

)
Q

4πd2 [z + 2

d

z2

2
]L
0 ẑ

= πa2
(

1

κe
− 1

)
Q

4πd2 (L + L2

d
)ẑ

c. The surface charge density on the plates is

σb = P̄ · n̂

σb(z = L) =
(

1

κe
− 1

)
Q

4πd2 (1 + 2
L

d
)

σb(z = 0) = −
(

1

κe
− 1

)
Q

4πd2

and on the mantle
σb(ρ = a) = 0

Note that the surface normal is negative at z = 0.
The volume density of charge becomes

ρb = −∇ · P̄ = −d Pz

dz
= −

(
1

κe
− 1

)
Q

2πd3

The total amount of charge vanishes.
d. Since the interaction takes place at a long distance, the cylinder may be

regarded as a dipole and the sphere as a point charge. Treating the cylinder
as a point-like dipole placed at z = 0 and using formula (7.7), the energy
becomes

U = 1

2
p̄ · ∇� = −1

2

Q

4πε0d2 r̂ · p̄ = 1

2

Q

4πε0d2 ẑ · p̄

corrected by a factor 1/2 as in Exercise (8.4). Using formula (7.10), the
force on the dipole (the cylinder) becomes
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F̄ = 1

2

Q

4πε0
(−3

p̄ · ẑ

d3 ẑ + p̄

d3 ) = 1

2

Qπa2

4πε0d3

(
−2

(
1

κe
− 1

)
Q

4πd2 (L + L2

d
)

)
ẑ

= −1

2

Q2a2 L

8πε0d5

(
1

κe
− 1

)(
1 + L

d

)
ẑ

which is a positive force, as expected.

8.6 a. The polarisation is given by formula (8.33)

P̄ = −3ε0
κe − 1

κe + 2
∇� f = 3σ

κe − 1

κe + 2
ẑ

where ẑ is directed from the plus plate to the minus plate. The dipole
moment becomes

p̄ =
∫

V

P̄dV =
∫

V

3σ
κe − 1

κe + 2
dV ẑ = 4πa3σ

κe − 1

κe + 2
ẑ

b. There is no net charge inside the volume since ρb = −∇ · P̄ and the polar-
isation is homogeneous. On the surface of the sphere the charge density is

σb = P̄ · n̂ = 3σ
κe − 1

κe + 2
ẑ · n̂

c.

z

Na+

x

θ

p 
Electret

The objects are considered as a point charge and a dipole. The force on the
point charge, i.e. the sodium ion, is given by formula (7.10) with opposite
direction, see Exercise (7.2).

F̄ = − q

4πε0

(
−3

p̄ · x̂

x3 x̂ + p̄

x3

)

= − q

4πε0x3

(
− 3

(
4πa3σ

κe − 1

κe + 2

)
( p̂ · x̂)x̂ + 4πa3σ

κe − 1

κe + 2
p̂

)

= − q

ε0x3 a3σ
κe − 1

κe + 2
(−3( p̂ · x̂)x̂ + p̂) = q

ε0x3 a3σ
κe − 1

κe + 2
(3 cos θ x̂ − p̂)

Using formula (7.5) and Exercise (7.2), the torque becomes

τ̄ = q

4πε0x2 p̄ × x̂ = q

ε0x2 a3σ
κe − 1

κe + 2
p̂ × x̂ = q

ε0x2 a3σ
κe − 1

κe + 2
p sin θ ŷ
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8.7

I

z1 z2 z3 z4

Introducing four free coordinates as in the figure, formula (8.40) becomes

Um = 1

2
I 2[κmμ0n2S(z3 − z2) + μ0n2S(z4 − z3)]

= 1

2
I 2[κmμ0n2S(z3 − z2) + μ0n2S(d + z2 − z3)]

where d is the length of the coil. Denoting the coil as object 2 and the material
as object 1 the force on the coil becomes

F̄1→2 = ∇2Um = d

dz2
Um ẑ = −1

2
I 2(κm − 1)μ0n2Sẑ

and the force on the material

F̄2→1 = ∇3Um = d

dz3
Um ẑ = 1

2
I 2(κm − 1)μ0n2Sẑ

8.8 Formula (8.45) is

1

2
(r̄ × J̄ ) = M̄(r̄)

∇r × (r̄ × J̄ ) = ( J̄ · ∇)r̄ − (r̄ · ∇) J̄ + r̄(∇ · J̄ ) − J̄ (∇ · r̄) = ( J̄ · ∇)r̄ − (r̄ · ∇) J̄︸ ︷︷ ︸
=0

−3 J̄

Express in terms of coordinates

( J̄ · ∇)r̄ =
(

Jx
d

dx
+ Jy

d

dy
+ Jz

d

dz

)
(x, y, z) = (Jx , Jy, Jz) = J̄

The second term −(r̄ · ∇) J̄ = 0 since the position vector r̄ = 0. Thus

1

2
∇r × (r̄ × J̄ ) = 1

2
(−2 J̄ )

so that
J̄ = −∇ × M̄



Appendix D: Solutions to Exercises 323

8.9 The energy is given by formula (8.66), modified for actual conditions

Uint = μ0

2π2(x2 − x1)6 (κm − 1)
(
N I f S f

)2
V

The force on the material is

F̄2→1 = d

dx1
Uint x̂ = 6μ0

2π2(x2 − x1)7 (κm − 1)
(
N I f S f

)2
V x̂

= (κm − 1)
12 × 10−7

π0.27 106 × 9 × 10−4π · 0.25 × 10−4 × 0.03N x̂

= (κm − 1)6.3 × 10−5 N x̂

8.10 Horizontal force may be measured by means of a torsional balance as in
Exercise (2.5). Sources of error concern mainly the calibration of the wire,
i.e. the determination of the torsional constant.
Using balances of different kinds, the force may be determined vertically by
comparing with the object’s weight. The calibration is also in this case the
main error source. Using a spring balance the calibration aims at determin-
ing the spring constant. Other types of balances are calibrated using e.g. a
reference weight which in turn has to be determined somehow.

8.11 a. According to Exercise (8.9) the force between a material and an external
influence is in the dipole approximation

F2→1 = (κm − 1)
3μ0

π2(x2 − x1)7

(
N I f S f

)2
V

so that the following table can be constructed

Material κm

Para Small and greater than one
Ferro Large and greater than one
Dia Just below one
Super Close to zero

b. In the particle model of a microcosm the motion of the atomic elec-
trons are described by closed orbits around the atomic nucleus, so-called
orbital motion, and rotation around its own axis, so-called spin. In addi-
tion to these motional types, the conduction electrons exhibit an almost
free motion which is affected by the slightest influence.

c. Orbital motion and spin shall be considered as closed and with main-
tained current, equivalent to a current loop driven by a battery. When
interacting with an external influence, magnetic energy should then be
maximized. Therefore, the dipoles of the material align parallel to the
dipole moment of the external influence and an attractive force occur.
Compare formula (7.25).



324 Appendix D: Solutions to Exercises

The third type of motion, the free motion of conduction electrons, is not
maintained but is a pure inductive effect. Basically it is caused by Weber’s
acceleration dependent force, formula (2.22), however mostly discussed
in terms of Faraday-Henry’s induction law (3.33). Thus, when an external
influence with constant current approaches the material, the material
responds with an oppositely directed current and the two objects repel.

d. If the resistance vanishes, the conduction electrons may move completely
freely leading to maximal diamagnetism.

e. The principle of the magnet break is based on the repelling force dia-
magnetism gives rise to.

f. In the water molecule the dipole moments from the closed electron
motions, i.e. the orbital and spin moments, are cancelled. Since the
water molecule is a permanent electric dipole it follows that the elec-
trons posses a certain freedom to move. As in metal this freedom causes
diamagnetism. According to Table (9.2), the diamagnetism of water is
stronger than for e.g. copper.

8.12 a. This is due to internal interactions between the dipoles of the material.
b. The material responds with a dipole moment in a different direction

than that of the external influence. This effect is formalised by letting
the material constants become a matrix in three dimensions:

κ =
⎛
⎝ κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

⎞
⎠

so that an influence in e.g. x direction might give a response in the y
or/and z direction.

c. In the electric case, the voltage over the material is measured in different
directions. In the magnetic case the magnetization in different directions
may be measured using e.g. a Hall sensor, see Exercise (8.14).

8.13 The torque on dipole 2 caused by dipole 1 is obtained from Exercise (7.16):

τ̄ = − 1

4πε0 R3 [ p̄2 × p̄1 − 3( p̄1 · R̂)( p̄2 × R̂)]

= 3

4πε0 R3 ( p̄1 · R̂)( p̄2 × R̂)

since the dipoles are parallel.
The distance vector R is directed towards the middle dipole.

1. The torque from the lower right and upper left becomes

τ = 3p2

4πε0 R3 (cos(θ + 45◦) sin(θ + 45◦) + cos(−θ + 135◦) sin(−θ + 135◦))

= 3p2

4πε0 R3 (cos(θ + 45◦) sin(θ + 45◦) − cos(θ − 135◦) sin(θ − 135◦))
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= 3p2

4πε0 R3 (cos(θ + 45◦) sin(θ + 45◦) − cos(θ + 45◦) sin(θ + 45◦)) = 0

2. The torque from the upper right and lower left becomes

τ = 3p2

4πε0 R3 (cos(θ + 135◦) sin(θ + 135◦) + cos(−θ + 45◦) sin(−θ + 45◦))

= 3p2

4πε0 R3 (cos(θ + 135◦) sin(θ + 135◦) − cos(θ − 45◦) sin(θ − 45◦))

= 3p2

4πε0 R3 (cos(θ + 135◦) sin(θ + 135◦) − cos(θ + 135◦) sin(θ + 135◦)) = 0

*8.14 The force between a straight current and two parallel large current-carrying
plates is twice that of formula (4.46)

F̄ = IH L̄ × μ0(K̄ × n̂)

where L is directed along the Hall current. The vectors are perpendicular so
that

F̄ = −IH Lμ0 K n̂

KIH
K

l

The magnetic force on a single electron is

f̄e = nevAd Lμ0 K n̂ = evμ0 K n̂

where e is electron charge with a positive sign. The force along the Hall
element becomes

feH = evμ0 K cos θ

where θ is the angle between the surface normals of the Hall element’s front
side and the cross section of the coil. This force is balanced by an electric
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force. Using formula (4.22), voltage is defined from

e�� = levμ0 K cos θ

�� = lvμ0 K cos θ

*8.15 a.

Hall element ΔΦH
Osc. y entrance

R Osc. x entrance∼ AC

If

b. For ferromagnetic materials a bound current Ib is induced in the same
direction as the inducing current I f . The Hall sensor is therefore influenced
by a current corresponding to the sum of these two currents. Using the result
obtained in Exercise (8.14) we obtain

��H = lvμ0 K = lvμ0(K f + Kb) = lvμ0

(
N I f

ls
+ Ib

lm

)

ls is the length of the coil and lm is the length of the material.
The relation between bound and free (inducing) current is obtained from
formula (8.59 ). For ls = lm we obtain

Kb = (κm − 1)K f

where the currents in formula (8.59) have been replaced by current densi-
ties.
The Hall voltage becomes

��H = lvμ0(K f + (κm − 1)K f ) = lvμ0κm K f

c. The slope of the curve is lvμ0κm

At the maximum value of I f in the figure, the slope is lvμ0 because then
the permeability κm = 1. The reason is that at this state the material
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is saturated, i.e. all its dipoles are maximally aligned meaning that the
material cannot respond any further.

d. Using formula (8.53), the remanent magnetization Mr is given by

��0 = lvμ0 K r
b = lvμ0 Mr

where ��0 is the Hall voltage at I f = 0.

8.16 a. Let CR = αC0, where CD = κeC0. Since the two capacitors possess
equal charge we obtain

C0��0 = CR��R

��0

κe
= CR

κeC0
��R

so that
��D = α

κe
��R

For the Sawyer-Tower circuit the source voltage is

��S = ��D + ��R

Since CD  CR the source voltage is approximately

��S ≈ ��D

so that if the oscilloscope channels are fed by ��R versus ��S it
displays a curve with the slope κe/α.

b. The axes of the hysteresis curve become, see figure

σ f = CR��R

A
= ε0

CR

C0

��R

d
= ε0α

��R

d

and
σb + σ f

ε0
= ��D

d

so that the slope of the hysteresis curve is ε0κe.
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(σb +σf )/ε0

σf

Slope of curve isκe ε0 Virgin curve

Remanent
polarisation Pr/ε0

The remanent polarisation is obtained when ��S = 0. From formula
(8.19) P = σb so that

Pr = ε0
��D(��R = 0)

d

i.e. the crossing with the horizontal axis gives Pr . However, it is cus-
tomary that κe � 1 so that

σb = σ f

(
1

κe
− 1

)
≈ −σ f

i.e. P r is then also given by the crossing on the vertical axis.
c. Ferroelectric (as ferromagnetic) materials are non-linear, i.e. the dielec-

tric constant varies with the strength of the external influence. Consider
first a linear material. The interaction energy between the material and
the external influence is given by

Ue = 1

2

∫

V

P̄ · ∇� f dV

where V is the volume of the material and the factor 1/2 has been
introduced since the dipoles are induced. Formula (8.24) gives

P̄ = −ε0(κe − 1)∇�D

so that
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Ue = −1

2
ε0

∫

V

(κe − 1)∇�D · ∇� f dV

Assuming the two gradients to be parallel we obtain

Ue = −1

2
ε0

∫

V

(κe − 1)∇�D · ∇� f dV = −1

2
ε0

∫

V

(κe − 1)
σb + σ f

ε0

σ f

ε0
dV

= −1

2
ε0

∫

V

(κe − 1)
σ f

κeε0

σ f

ε0
dV = −1

2
ε0

∫

V

σ f

ε0

σ f

ε0
dV + 1

2
ε0

∫

V

σ f

κeε0

σ f

ε0
dV

which is thus the interaction energy. Term no. 2 corresponds to the energy in
the material due to the external influence. This is now expressed as a volume
density:

wmat = 1

2
ε0

σ f

κeε0

σ f

ε0
= 1

2

σb + σ f

ε0
σ f

Consider next a general material, i.e. a non-linear material. The total work
done on the material is obtained in the general case by summing small steps
of the change of the external influence. This means that the work done over
one cycle may be written

wmat = 1

ε0

∮

Curve

(σb + σ f )d(σ f )

where the factor 1/2 has been removed since it is a result of the integration
process for linear materials.
The integral corresponds to the surface enclosed by the hysteresis curve.
Since the curve is closed no energy has been stored in the material. The
work done has been converted to heat.

8.17 a. According to Exercise (6.5) the impedance for the capacitor is

ZC = 1

jωC
= 1

jωκc
e C0

= 1

jω(κR + jκI )C0
= − jκR + κI

ω(κ2
R + κ2

I )C0

The resistive impedance is the real part of the impedance

R = Re ZC = − κI

ω(κ2
R + κ2

I )C0

b. The source is current in the isolator, due to free charges and dipole
vibrations.

c. The heat power is RI 2 = ��2/R
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*8.18 a. 1. Formula (8.24) relates polarisation to potential for air as surrounding
and for objects without form (large plate).

P̄ = −ε0(κe − 1)∇� (8.24)

2. Formula (8.33) is valid for polarisation of a dielectric sphere in air
with a homogeneous influence.

P̄ = −3ε0
κe − 1

κe + 2
∇� f (8.33)

3. Formula (8.37) modifies (8.24) for a surrounding with arbitrary
dielectric constant κw

P̄ = ε0∇�w

(
κw

κp
− 1

)
(8.37)

First, formula (8.37) is reformulated to be equivalent to (8.24), i.e.
the potential is given inside the material. Using formula (8.36)

∇�p = κw

κp
∇�w (8.36)

Formula (8.37) is rewritten as

P̄ = ε0
κp

κw
∇�p

(
κw

κp
− 1

)
= −ε0

(
κp

κw
− 1

)
∇�p

Thus, this formula is obtained by making the following replacement in
formula (8.24):

κe → κp

κw

which is now done in formula (8.33):

P̄ = −3ε0
κp/κw − 1

κp/κw + 2
∇�w = −3ε0

κp − κw

κp + 2κw
∇�w

valid for objects with spherical form.
Note the index w for the electric potential indicating that the potential
is given in the surrounding medium.

b. Since the polarisation P corresponds to dipole moment per volume, the
dipole moment for a homogeneous sphere under homogeneous influence
becomes
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p̄ = P̄
4

3
πa3 = −4πε0a3 κp − κw

κp + 2κw
∇�w

which is Clausius-Mossottis’ formula.

8.19 Let the index w denote the surrounding medium of the sphere which is air
and water respectively. The index p denotes the material of the sphere.
To determine force calculate first energy, given by formula (7.2) corrected
by a factor 1/2

U = 1

2

∫

v

P̄ · ∇�wdV

The polarisation is taken from Exercise (8.18):

P̄ = −3ε0
κp − κw

κp + 2κw
∇�w

and �w is the electric potential generated by the wire in the surrounding
medium, given by formula (8.25):

�w = λ

2πε0κw
ln |x | + constant

The energy becomes

U = −1

2
3ε0

κp − κw

κp + 2κw

(
λ

2πε0κw

)2 ∫

V

1

x2 dV

For a small sphere with radius a the energy is

U = −1

2
3ε0

κp − κw

κp + 2κw

(
λ

2πε0κw

)2 1

x2
4

3
πa3 = − 1

2πε0

κp − κw

κp + 2κw

(
λ

κw

)2 1

x2 a3

so that the force on the sphere becomes

F̄ = −∇U = − 1

πε0

κp − κw

κp + 2κw

(
λ

κw

)2 1

x3 a3 x̂

giving a repulsive force if κw > κp, e.g. if the sphere is plastic and the
surrounding is water.

8.20 a. The polarisation is given by

P̄p = −3ε0
κp − κw

κp + 2κw
∇�w
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where the index p refers to ‘particle’, i.e. the foreign object. The source
of the potential is approximated to a dipole. Using formula (7.11)

�w = p̄ f · r̂

4πκwε0r2

where index f stands for ‘fish’. The gradient of the potential is

∇�w = 1

4πκwε0
·
[

p̄ f ×
(

∇ × r̂

r2

)
+ (

p̄ f · ∇) r̂

r2

]

where the first term vanishes and the second term gives (compare formula
7.10)

∇�w = 1

4πκwε0

(
−3

p̄ f · r̂

r3 r̂ + p̄ f

r3

)

so that the general formula for the polarisation becomes

P̄p = − 3

4πκw

κp − κw

κp + 2κw

(
−3

p̄ f · r̂

r3 r̂ + p̄ f

r3

)

In this specific case the distance vector is perpendicular to the dipole
moment of the fish

P̄p = − 3

4πκw

κp − κw

κp + 2κw

p̄ f

r3

b. The interaction energy between two dipoles is given by formula (7.16),
corrected by a factor of 1/2:

U = 1

2

1

4πε0r3 [ p̄1 · p̄2 − 3( p̄1 · r̂)( p̄2 · r̂)]

Since the foreign object is considered as small its dipole moment becomes

p̄p = P̄pV = − a3

κw

κp − κw

κp + 2κw

p̄ f

r3

Since both dipole moments are perpendicular to the distance vector, the
energy is

U = −1

2

p2
f

4πε0κwr6

a3

κw

κp − κw

κp + 2κw

taking into account that the surrounding is water.
The force on the foreign object is
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F̄ = −∇U = r̂
1

2

d

dr

p2
f

4πε0r6

a3

κ2
w

κp − κw

κp + 2κw
= −1

2

3p2
f

2πε0r7

a3

κ2
w

κp − κw

κp + 2κw
r̂

which is a repulsive force for κw > κp.
c. The potential on the body of the fish caused by the foreign object is given

by formula (7.11)

� = p̄p · r̂

4πε0r2
1

= pp cos θ

4πε0(x2
1 + y2

1 )

where θ = 90◦ − arctan 5
80 , x1 = 0.05 and y1 = 0.80 m.

A fish of this kind, e.g. the elephant nose fish, is able to sense a potential
change of about 1µV.

8.21 In the electric case the external influence appears on the vertical axis. Accord-
ing to Exercise (8.16), the slope of the curve is κeε0. The transition to meta-
material occurs at σ f = σ f 0. At stronger external influence, the addition of
bound charge increases faster than that of free charge. Remember the two
charges have opposite sign.

(σb +σf )/ε0

σf

σf 0

In the magnetic case the external influence appears on the horizontal axis.
The slope of the curve is κmμ0. The transition to meta-material appears
at K f = K f 0. At stronger external influence the addition of bound current
increases quicker than that of the free current. The two currents are oppositely
directed.

µ0(Kf +Kb )

Kf 0
Kf

Note that these phenomena are only hypothetical and have not been observed.

8.22 The bar magnet may be considered as a current-carrying coil. Since the bar is
homogeneously magnetized currents flow only on the surface. The problem
is therefore equivalent to Exercise (4.12) replacing the coil with this bar
magnet.
In Exercise (4.12), the force on the loop is
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F̄2→1 = −μ0 I1 I2
Nπa2b2

2l

⎛
⎜⎝ 1[

(a + b)2 + ( l
2 − z1

)2
]3/2

− 1[
(a + b)2 + (− l

2 − z1)2
]3/2

)
ẑ

For same current directions the force will be directed towards the center of
the coil.
The magnetization of the bar M is given by formula (8.53)

K̄ = M̄ × n̂

The current density K̄ = N I2/ l φ̂ so that magnetization M̄ = N I2/ l ẑ since
n̂ = ρ̂.
The force is

F̄2→1 = −M̄μ0 I1
πa2b2

2

⎛
⎜⎝ 1[

(a + b)2 + ( l
2 − z1

)2
]3/2

− 1[
(a + b)2 + (− l

2 − z1)2
]3/2

)

and magnetization becomes

M̄ = −F̄2→1

⎡
⎢⎣μ0 I1

πa2b2

2

⎛
⎜⎝ 1[

(a + b)2 + ( l
2 − z1

)2
]3/2 − 1[

(a + b)2 + (− l
2 − z1)2

]3/2

⎞
⎟⎠
⎤
⎥⎦

−1

where positive current is directed along φ̂.

D.10 Field Theory

10.1 Formula (8.74) gives the magnetization

M̄ = (κm − 1)
m f

4π R3 [(2 cos2 θ f − sin2 θ f )ŷ + 3 sin θ f cos θ f x̂]

Using (10.19)

μ0 M̄ = (κm − 1)
μ0

4π

∫

V f

J̄ f × R̄

R3 dV f
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and (10.20)

H̄ = 1

4π

∫

V f

J̄ f × R̄

R3 dV f

gives
μ0 M̄ = μ0(κm − 1)H̄

so that

H̄ = m f

4π R3 [(2 cos2 θ f − sin2 θ f )ŷ + 3 sin θ f cos θ f x̂]

= I f A

4π R3 [(2 cos2 θ f − sin2 θ f )ŷ + 3 sin θ f cos θ f x̂]

where A is the loop area.

10.2 Using formula (8.89), the interaction energy between inducing system and
bound charge is

Ue = 1

4πε0

1

2

∫

Vb

∫

V f

ρb(r̄b)ρ f (r̄ f )

R
dV f dVb

where the factor 1/2 is introduced since the bound charge is induced. The
distance vector is

R̄ = r̄b − r̄ f

Using formula (8.19), i.e. ρb = −∇ · P̄ , we obtain

Ue = 1

4πε0

1

2

∫

V f

∫

Vb

−∇b · P̄ρ f (r̄ f )

R
dVbdV f

where the integration order has been interchanged. Integration by parts over
Vb gives

∫

Vb

−∇b · P̄ρ f (r̄ f )

R
dVb = −

[
P̄ρ f

R

]Sb

−
∫

Vb

P̄
ρ f

R2 R̂dVb = −
∫

Vb

P̄
ρ f

R2 R̂dVb

where the first term in the second step vanishes since there is no free charge
on the border of Vb. Using formula (10.36), the energy becomes

Ue = − 1

4πε0

1

2

∫

V f

∫

Vb

P̄
ρ f

R2 R̂dVbdV f = −1

2
Ē ·

∫

Vb

P̄dVb = −1

2

D̄

ε0
·
∫

Vb

P̄dVb
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*10.3 a. Integrate (10.59) over a volume and use the divergence theorem

∫

V

∇ · ĒdV = 1

ε0

∫

V

ρdV ⇒
∮

S

Ē · dā = 1

ε0

∫

V

ρdV

b. Integrate (10.62) over a surface and use Stokes’ theorem

∫

S

∇ × B̄ · dā = μ0

∫

S

J̄ · dā ⇒
∮

C

B̄ · dl̄ =μ0

∫

S

J̄ · dā

c. Integrate (10.60) over a volume and use the divergence theorem

∫

V

∇ · B̄ = 0 ⇒
∮

S

B̄ · dā = 0

*10.4 a. Large plate
By reasons of symmetry the electric field is parallel to the surface normal
of the plate, see figure.

E

Integration 
surface S

σ

E

∮

S

Ē · dā = E2S

where the edges of the plate has been disregarded since the plate is large.
Thus,

E2S = Q

ε0
⇒ E = σ

2ε0



Appendix D: Solutions to Exercises 337

b. Long cylinder
By reasons of symmetry the electric field is radially directed as in the
figure. The cylinder plates are disregarded since the cylinder is long. We
thus obtain

Integration surface S

E

E

Lρλ

∮

S

Ē · dā = E S = E L2πρ

so that

E L2πρ = Q

ε0
⇒ E = λ

2πε0ρ

c. Sphere
The electric field is directed radially from the sphere as in the figure. Thus

∮

S

Ē · dā = E S = E4πr2

so that

E4πr2 = Q

ε0
⇒ E = Q

4πε0r2

Integration surface S
E

E

rQ
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*10.5 a. Straight long current
Formula (10.2)

B̄ = κm
μ0

4π

∫

V f

J̄ f × R̄

R3 dV f = μ0

4π
I
∫

V f

d L̄ × R̄

R3

shows that the magnetic field B is perpendicular to the distance vector
and current direction. Hence, it forms circles around a straight current.
Apply formula (10.86): ∮

C

B̄ · dl̄ = μ0 I

A circle is formed around the current where the magnetic field is constant:

∮

C

B̄ · dl̄ = B2πρ

B2πρ = μ0 I ⇒ B = μ0 I

2πρ

Integration  curve C

Current I into the plane

B

ρ

b. Large current-carrying plate
The plate is considered as consisting of infinitesimal parallel straight
conductors.

B

B

Current I into 
the plane

Vertical components are cancelled.
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L

J

K

Integration  curve  C

∮

C

B̄ · dl̄ = B2L

B2L = μ0 K L ⇒ B = μ0 K

2

Note that the field above the plate is oppositely directed to that below the
plate.

c. Long current-carrying coil
The figure shows a cross section of a coil along its axis.

B

B

Current I out of 
the plane

B

B

Current I into 
the plane

Referring to the figure, it is seen that for a long coil with close windings the
vertical components are cancelled. Furthermore, the upper row generates
a field oppositely directed to that generated from the lower row. The
field outside the coil is cancelled since for close windings, the field is
independent of distance. The following integration path C is introduced:

B

B
Integration
curve C

B

B

L

∮

C

B̄ · dl̄ = BL
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since only the upper side contributes to the integral. Thus

BL = μ0 N I ⇒ B = μ0 N I

L

where N is the number of windings crossing the surface enclosed by C .

*10.6 a. Magnetic hysteresis is discussed in Exercise (8.15):

��H = lvμ0(K f + Kb)

= lvμ0(K f + (κm − 1)K f )

= lvμ0κm K f = lvB

where the result from Exercise (10.5c) for an ideal coil has been used.
Hence, the y axis becomes

��H

lv
= μ0(K f + Kb) = B

while for the x axis:

K f = B

μ0κm
= H

so that the slope of the curve is μ0κm
b. Electric hysteresis is discussed in Exercise (8.16).

Electric field is

E = σ

ε0
= σb + σ f

ε0
= σ f

κeε0

corresponding to the x axis.
Electric displacement is

D = ε0κe E = σ f

corresponding to the y axis.
The slope is ε0κe

c. Using the result from Exercise (8.16c), we have obtained

wmat =
∮

Curve

E d D

for isotropic materials.
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10.7 The electric field is directed along the surface normal of the charged plate.
The surface normal is directed from medium 1 to 2.
The continuity condition is

(Ē2 − Ē1) · n̂ = σ

ε0

which gives

2E = σ

ε0
⇒ E = σ

2ε0

10.8 a. The interaction energy between a small magnetic dipole with moment
m̄2 = m2 ẑ and a sphere homogeneously magnetized in the z direction is
given by formula (8.79)

Uint = μ0

2π z3 m2

(
4

3
πa3 M

)
z ≥ a

Uint = μ0
2

3
m2 M z ≤ a

in case the dipole is located on the z axis. According to formula (10.12),
the magnetic energy is also

Uint = m̄2 · B̄

so that

B̄ = μ0

2π z3

(
4

3
πa3 M

)
ẑ z ≥ a

B̄ = μ0
2

3
Mẑ z ≤ a

b. The magnetic field intensity is given by formula (10.19):

H̄ = B̄

μ0
− M̄

which gives

H̄ = 1

2π z3

(
4

3
πa3 M

)
ẑ z ≥ a

H̄ = −1

3
Mẑ z ≤ a

since M = 0 outside the sphere.
c. The continuity condition for the normal component of H̄ is derived from

(10.56):
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(B̄2 − B̄1) · n̂ = 0 ⇔ (H̄2 + M̄2 − (H̄1 + M̄1)) · n̂ = 0

so that
(H̄2 − H̄1) · n̂ = −(M̄2 − M̄1) · n̂

For z = a the left-hand side becomes

(H̄2 − H̄1) · n̂ = 2

3
M −

(
−1

3
M

)
= M

and the right-hand side becomes

−(M̄2 − M̄1) · n̂ = −(0 − M) = M

d. Outside the sphere the source to H̄ is the bound net current on the surface
of the sphere. Inside the sphere the source is the net current flowing on
the inner surface of a cavity, oppositely directed to the currents on the
sphere’s outer surface. See Sect. 8.2.2.3, especially Fig. 8.18.

10.9 a. The electric potential from the sphere is given by formula (8.31):

�b = Pa2

2ε0

1∫

−1

tdt

(z2 + a2 − 2zat)1/2

=
[

2(−2zat − 2(z2 + a2))

3(2za)2 (z2 + a2 − 2zat)1/2
]1

−1

= 2(−2za − 2(z2 + a2))

3(2za)2 (z2 + a2 − 2za)1/2

−
[

2(2za − 2(z2 + a2))

3(2za)2 (z2 + a2 + 2za)1/2
]

= 2(−2za − 2(z2 + a2))

3(2za)2 ((z − a)2)1/2 −
[

2(2za − 2(z2 + a2))

3(2za)2 ((z + a)2)1/2
]

= 2(−2za − 2(z2 + a2))

3(2za)2
|z − a| −

[
2(2za − 2(z2 + a2))

3(2za)2
|z + a|

]

which gives two cases:

1. z ≤ a

�b = Pa2

2ε0

[
2(−2za − 2(z2 + a2))

3(2za)2 (a − z) −
[

2(2za − 2(z2 + a2))

3(2za)2 (a + z)

]]

= Pa2

2ε0

[
2(−2za − 2(z2 + a2))

3(2za)2 (a − z) +
[−2(2za − 2(z2 + a2))

3(2za)2 (a + z)

]]

= Pa2

2ε0

[ −8za2

3(2za)2 + 8z(z2 + a2)

3(2za)2

]
= Pa2

2ε0

2

3

z

a2 = Pz

3ε0

Ē = −∇� = −∇�b = − P

3ε0
ẑ
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2. z ≥ a

�b = Pa2

2ε0

[
2(−2za − 2(z2 + a2))

3(2za)2 (z − a) −
[

2(2za − 2(z2 + a2))

3(2za)2 (a + z)

]]

= Pa2

2ε0

[
2(−2za − 2(z2 + a2))

3(2za)2 (z − a) +
[−4za + 4(z2 + a2)

3(2za)2 (z + a)

]]

= Pa2

2ε0

[−8z2a + 8a(z2 + a2)

12z2a2

]
= Pa2

2ε0

8a3

12z2a2 = Pa3

3ε0z2

Ē = −∇� = −∇�b = 2Pa3

3ε0z3 ẑ

b. Formula (10.16)
D̄ = P̄ + ε0 Ē

gives

1. z ≤ a

D̄ = P̄ + ε0

(
− P

3ε0
ẑ

)
= 2

3
Pẑ

2. z ≥ a

D̄ = ε0

(
2Pa3

3ε0z3

)
ẑ = 2Pa3

3z3 ẑ

c. The boundary condition is defined by formula (10.54)

(Ē2 − Ē1) · n̂ = σ

ε0
= σb

ε0

which gives
(D̄2 − P̄2 − (D̄1 − P̄1)) · n̂ = σb

(D̄2 − D̄1)) · n̂ = σb − P̄1 · n̂ = 0

so that at z = a the normal component of D is continuous in accordance
with Exercise b.

d. Using (10.59)

∇ · Ē(r̄) = ρ(r̄)

ε0
= ρb + ρ f

ε0

and (10.16) we obtain

∇ ·
(

D̄ − P̄

ε0

)
= ρb + ρ f

ε0

∇ · D̄ = ∇ · P̄ + ρb + ρ f = ρ f
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where formula (8.19), i.e. ∇ · P̄ = −ρb, has been used.
In analogy with the magnetic case, Exercise (10.9), a D-field occurs due
to a net charge on the outer surface of the sphere as well as on the inner
surface of a cavity inside the sphere.

10.10 The time varying electric field is a further source to the magnetic field accord-
ing to formula (10.77):

∇ × B̄ = μ0 J̄ + μ0ε0
d Ē

dt

Apply the integral formula (10.96, Exercise 10.3), modified for a time varying
electric field

∮

C

B̄ · dl̄ = μ0

∫

S

J̄ · dā +
∫

S

μ0ε0
d Ē

dt
· dā

Utilizing (10.16), i.e. P̄ = D̄ − ε0 Ē , to include dipoles, the integral formula
becomes ∮

C

B̄ · dl̄ = μ0

∫

S

J̄ · dā +
∫

S

μ0
d(D̄ − P̄)

dt
· dā

In this case the source is only dipole vibrations

∮

C

B̄ · dl̄ = −
∫

S

μ0
d P̄

dt
· dā

As in Exercise (10.5) an integration path is formed around the plate so that

B2L = −μ0
d P

dt
Lb

where L is the length of the integration path (plate edges neglected) and b
is the thickness of the plate. Thus

B = −μ0b

2
ωP0 cos ωt

10.11 With the z axis along the cylinder axis and using cylindrical coordinates, the
electric field between the conductors is given by formula (10.5)

Ē = λ

2πε0ρ
ρ̂ = Q

2πε0ρL
ρ̂ = C��

2πε0ρL
ρ̂ = ��

ρ ln b
a

ρ̂
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Magnetic field is given by (10.7)

B̄ = μ0 I

2πρ
φ̂ = μ0��

2πρR
φ̂

Poynting vector becomes

S̄ = Ē × H̄ = ��

ρ ln b
a

��

2πρR
ρ̂ × φ̂ = (��)2

R2π ln b
a

1

ρ2 ẑ

Outside the fields vanish.

b. Inside the conductors the electric field is in the z direction and the mag-
netic field in the φ direction. The Poynting vector is then directed along
ρ and the power corresponds to heat.

c. Total power transfer through a cross sectional area A between the con-
ductors is

P =
∫

A

S̄ · dā = (��)2

R2π ln b
a

b∫

a

2π∫

0

1

ρ2 ρdφdρ = (��)2

R

equivalent to the circuit theoretical result.

10.12 a. With the z axis along the cylinder axis and using cylindrical coordinates,
the electric field between the plates is

Ē = ��(t)

d
ẑ

The magnetic field is obtained from the generalization of formula (10.96):

∮

C

B̄ · dl̄ = ε0μ0

∫

S

d Ē

dt
· dā

since there is no current between the plates. Choosing an integration path
with radius ρ and coaxial with z axis we obtain that

B2πρ = ε0μ0
d E

dt
πρ2 ⇒ B̄ = ε0μ0

2

d E

dt
ρφ̂

Poynting vector becomes

S̄ = Ē × H̄ = ��(t)

d2

ε0

2

d��(t)

dt
ρρ̂ = 1

4
ε0ρ

d

dt
E2ρ̂
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Total power flow through the mantle of the cylinder

P(ρ = a) =
∫

Mantle

S̄ · dā =1

4
ε0a

d

dt
E22πadρ̂ · ρ̂ = ε0πa2d

2

d

dt
E2

b. Formula (10.25b) gives the field energy density in free space

dU

dV
= 1

2
ε0 E2 ⇒ U = ε0πa2d

2
E2

whose time derivative equals the previous result.

D.11 Antenna Theory

11.2 a. Minimum

cos

(
dω

2c
cos θ

)
= 0

dω

2c
cos θ = (2n + 1)

π

2
where n = 0, 1, 2, . . .

d cos θ = (2n + 1)

2

c

f

Maximum
In the same manner

cos

(
dω

2c
cos θ

)
= 1

d cos θ = n
c

f

b. For destructive interference

d cos θ = (2n + 1)

2

c

f

cos θ = (2n + 1)

2d

c

f
(2n + 1)

2d

c

f
> 1

d <
c

2 f
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11.3 At maximum force the following condition holds:

cos

(
dω

2c
cos θ + β

2

)
= 1

dω

2c
cos θ + β

2
= 0

a.

dω

2c
cos θ = 0

θ = π

2

b.

dω

2c
cos θ − π

4
= 0

cos θ = +π

4

2c

d2π f
= 1

θ = 0

c.

dω

2c
cos θ + π

4
= 0

cos θ = −π

4

2c

d2π f
= −1

θ = π

11.4 Let the incoming interaction be directed horizontally and the mirror surface
along the z axis as in the figure.

d

z

α

α
γ θ



348 Appendix D: Solutions to Exercises

The mirror is modelled as two oscillators being activated with a phase shift β.
Formula (11.35) is then used to find the direction of the outgoing plane wave.
The phase shift β in (11.35) is

β = ω�t = ω
d sin α

c

which is introduced in (11.35):

Fθ = q I jωl

4πε0c2

e− j ω
c r

r
2 cos θ cos

(
dω

2c
cos θ − β

2

)

= q I jωl

4πε0c2

e− j ω
c r

r
2 cos θ cos

(
dω

2c
cos θ − ω

d sin α

2c

)

which has maximum when

dω

2c
cos θ − ω

d sin α

2c
= 0

sin γ = sin α

γ = α

which is the ‘reflection law’.
b. Note that the factor of formula (11.35) used here, i.e.

Array Factor = cos

(
dω

2c
cos θ − β

2

)

is an array property and therefore independent on the particular individual
antennas. The reflection law is therefore valid for any type of surface. In
particular, it is well known that a water surface also obeys the reflection law
although the individual antenna elements are radically different in these two
cases. In case of the mirror, the conduction electrons act as antenna elements
whereas in case of water it is the molecular water dipoles.

11.5 This problem is equivalent to the reflection case in Exercise (11.4). The acti-
vated oscillators at the surface of the material are now interacting on the other
side of the surface. The reason for the change of direction of the lines of max-
imum force is that the speed of the force mediation differs in the two media.
Denoting speed in the media of incoming force as c0 and the speed in the
transmitted media as c, the array factor becomes

Array f actor = cos

(
dω

2c
cos θ − ω

d sin α

2c0

)
= cos

(
dω

2c
sin γ − ωd

2c0
sin α

)

which has maximum when
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dω

2c
sin γ − ωd

2c0
sin α = 0

so that
c sin α = c0 sin γ

which is Snell’s ‘refraction law’.

Why is then the mediation speed different in different media? This may
qualitatively be understood by understanding that materials are built up of
parallel layers of surfaces consisting of arrays of dipoles. The force mediation
is a matter of transmitting the dipole vibrations from layer to layer whose speed
is clearly dependent on the particular material structure.

11.6 The vibrating dipole at the surface align with the force in medium 2, F2. Along
the dipole axis, there is no force mediation, see formula (11.31). If the dipole
axis is oriented such that it points in the direction of the reflection, i.e. force
F2 forms an angle α with the surface normal, then the reflection vanishes.
This happens when

α + γ = 90◦

The refraction law, Exercise (11.5), becomes

c sin α = c0 sin γ = c0 sin(90◦ − α) = c0 cos α

so that the Brewster angle αB is given by

tan αB = c0

c

11.7 The reflection appears between close layers of the atmosphere which have
almost identical structure. The mediation speeds in two neighbouring layers
are therefore almost the same.
When the incident angle equals the Brewster angle, one component of force
will vanish. This then appears at

tan αB = c0

c
≈ 1

αB = 45◦

Therefore, the angle β in the figure is 90◦, so that the spider has maximum
navigation aid directly above herself, practical of course.

11.8 From Exercise (11.7) c sin α = c0 sin γ which gives

n2

n1
= c1

c2

Let medium 1 be a vacuum denoted by index 0 and medium 2 is arbitrary:
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n

n0
= c0

c

From Sect. 9.1, the speed of light in vacuum was obtained as

c0 = 1√
ε0μ0

When electromagnetic phenomena appear in a material the formulas change by

ε0 → ε0κe

μ0 → μ0κm

which may be concluded from formulas (8.2) and (8.38) as well as (10.22)
and (10.23). Speed of light is then in general

c = 1√
ε0κeμ0κm

so that the refractive index is

n = √
κeκm

11.10 To obtain a plane wave to be directed to the other side of the surface normal,
i.e. negative transmission angel γ , the upper oscillator in the figure of Exercise
(11.5) has to start oscillate before the lower one. This means the effect of the
influence has to occur before its cause.

11.11 The electric field is defined as

Ē(r̄ , t) = −∇�(r̄ , t) − d Ā(r̄ , t)

dt

The vector potential is

Ā = I
μ0

4π

∮

C1

d L̄

R

One moving charge is then associated with a vector potential

Ā = I
μ0

4π

d L̄

R
= μ0

4π R
qv̄

Electric force on another charge Q is, neglecting the first term of (10.8),

F̄ = QĒ(r̄ , t) = −Q
d Ā(r̄ , t)

dt
= −Q

μ0

4π R
q

dv̄

dt
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which is Weber’s inductive force (3.34).

11.12 The real Poynting vector is

S̄real = Ēreal × H̄real

where

Ēreal = Re (ĒR + j Ē I )(cos ωt + j sin ωt) = ĒR cos ωt − Ē I sin ωt

and

H̄real = Re (H̄R + j H̄I )(cos ωt + j sin ωt) = H̄R cos ωt − H̄I sin ωt

Time average of function f (t) over time T is

〈 f (t)〉 =
T∫

0

f (t)

T
dt = 1

T

T∫

0

f (t)dt

The real Poynting vector becomes

S̄real = (ĒR × H̄R) cos2 ωt + (Ē I × H̄I ) sin2 ωt

− [(ĒR × H̄I ) + (Ē I × H̄R)] sin ωt cos ωt

When taking time averages, the last two terms vanish and the first two give

〈
S̄real

〉 = 1

2
[(ĒR × H̄R) + (Ē I × H̄I )]

Consider now the following expression in phasor form

Ē × H̄∗ = (ĒR + j Ē I )e
jωt × (H̄R − j H̄I )e

− jωt

= (ĒR × H̄R) + (Ē I × H̄I )

+ j[(Ē I × H̄R) − (ĒR × H̄I )]

so that 〈
S̄real

〉 = 1

2
Re(Ē × H̄∗)

11.13 Electric field is given by (11.35)

Eθ = I jωl

4πε0c2

e− j ω
c r

r
2 cos θ cos

(
dω

2c
cos θ + β

2

)
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and the Poynting vector by (11.42)

〈
S̄
〉 = 1

2
Ē × H̄∗ = 1

2
Ē × B̄∗

μ0
= |Eθ |2

2μ0c
r̂

= 1

2μ0c

(
I0ωl

4πε0c2r
2 cos θ cos

(
dω

2c
cos θ + β

2

))2

r̂

11.14 The antenna radiates as in the figure. The reflected power is equivalent to a
power emission from an antenna placed at the real antenna’s mirror image. The
question is then what the relative phase is. The electric field vector is directed
perpendicular to the power direction. To fit boundary condition (10.55) at the
surface of the metal, the electric field vector of the reflected power has to
have a horizontal component that cancels the incident horizontal field. The
orientation of the mirror dipole is therefore anti-parallel to the real antenna,
i.e. they oscillate in opposite phase.

d

d

E E

The Poynting vector is obtained from Exercise (11.13):

〈
S̄
〉 = 1

2μ0c

(
I0ωl

4πε0c2r
2 cos θ cos

(
2dω

2c
cos θ + β

2

))2

r̂

= 1

2μ0c

(
I0ωl

4πε0c2r
2 cos θ cos

(
2dω

2c
cos θ + π

2

))2

r̂

= 1

2μ0c

(
I0ωl

4πε0c2r
2 cos θ sin

(
dω

c
cos θ

))2

r̂



Appendix E
General Magnetic Force Formula

In Sect. 2.2, the magnetic force formula was heuristically formulated based on mea-
surements. In this appendix a systematic approach is presented. The objective is
to find a single force formula describing both parallel and perpendicular relative
motional direction. To this end, a general vector expression in each case is devel-
oped. Due to the basic property of vector formulas each of these expressions must
then be valid for both cases. Thus, by requiring compatibility between the two for-
mulas, a final concise formula will be obtained.

To summarize, it has been obtained for the two cases

f̄m|| = −μ0 I1d L1

4π R2 q2v2(a cos θ ŷ + sin θ x̂) (2.7)

f̄m⊥ = μ0 I1d L1

4π R2 q2v2(sin θ ŷ + b cos θ x̂) (2.10)

as the force acting on charge q2.
Since the force should be written in terms of the charges, the current element is

rewritten as I1d L1 = q1v1. The force must be expressed vectorially independent of
coordinate system so the only usable vectors are v1, v2 and R. For the moment the
factor (μ0q1q2)/(4π R2) is left out and formula (2.7) may be written as

f̄m|| = −v1v2(a cos θ ŷ + sin θ x̂) (E.1)

and formula (2.10)
f̄m⊥ = v1v2(sin θ ŷ + b cos θ x̂) (E.2)

Generally, (E.1) may be expressed, with notations as in Fig. 2.8,

f̄m|| = Av̄2(v̄1 · R̂) + Bv̄1(v̄2 · R̂)︸ ︷︷ ︸
y component

+ Cv̄1 × (v̄2 × R̂) + Dv̄2 × (v̄1 × R̂)︸ ︷︷ ︸
x component

(E.3)
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where the first two terms correspond to the y component and the last two to the x
component.

From formula (E.2) it is similarly obtained that, utilizing the definitions of Fig. 2.9,

f̄m⊥ = Ev̄1(v̄2 · R̂) + Fv̄2 × (v̄1 × R̂)︸ ︷︷ ︸
y component

+ Gv̄2(v̄1 · R̂) + Hv̄1 × (v̄2 × R̂)︸ ︷︷ ︸
x component

(E.4)

where the first two terms correspond to the y component and the last two to the x
component.

The factors A-H are constants determined by the following criteria:

1. Consistency between (E.1) and (E.3) as well as between (E.2) and (E.4)
2. Compatibility between (E.3) and (E.4)

Expanding the cross products in formulas (E.3) and (E.4) gives

f̄m|| = Av̄2(v̄1 · R̂) + Bv̄1(v̄2 · R̂) + Cv̄2(v̄1 · R̂) − C R̂(v̄1 · v̄2)

+ Dv̄1(v̄2 · R̂) − DR̂(v̄1 · v̄2) (E.5)

f̄m⊥ = Ev̄1(v̄2 · R̂) + Fv̄1(v̄2 · R̂) − F R̂(v̄1 · v̄2) + Gv̄2(v̄1 · R̂)

+ Hv̄2(v̄1 · R̂) − H R̂(v̄1 · v̄2) (E.6)

and the following conditions for the constants may be identified:
Criteria no. 1 gives:

A + B = a
C + D = 1
E + F = 1
G + H = b

By comparing vectors in formulas (E.5) and (E.6) criteria no. 2 gives:

B + D = E + F
A + C = G + H
−D − C = −F − H

which gives a = b and the following table:

A + B = a
C + D = 1
E + F = 1
G + H = a
B + D = 1
A + C = a
F + H = 1

(E.7)
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These conditions are now applied to formulas (E.5) and (E.6) to give the result
for general motion, including the temporarily neglected factor,

f̄m2 = μ0q1q2

4π R2 [(−v̄1 · v̄2)R̂ + (v̄2 · R̂)v̄1 + a(v̄1 · R̂)v̄2] (E.8)

Exercises

E1. Show that the criteria (E.7) give formula (E.8).
E2. Criteria (E.7) consist of seven equations whereas there are nine unknowns. How

is it then possible that only one unknown remains in formula (E.8)?

Answer: The twelve terms in (E.5) and (E.6) are not linearly independent.
For example, it is necessary to know only the sum A + C , not each constant
independently.
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