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Preface

The preparation of the second edition of An Introduction to Atmospheric Radiation
began when I moved to UCLA in September 1997. I was to teach a number of courses
associated with atmospheric radiation and remote sensing, and I needed updated
teaching material. Moreover, in the 20 years since the publication of the first edi-
tion, global climate research had yielded a wealth of information in the atmospheric
radiation field, principally in conjunction with the global warming resulting from
greenhouse gases, the effects of aerosols and clouds on climate and climate change,
and the need for global observational data to support and perfect weather and climate
modeling by means of remote sensing. It was also with a sense of duty and com-
mitment to the atmospheric radiation field that I resolved to complete a volume that
reflected the current state of the field, including the latest advances.

The second edition has been extensively revised to address the fundamental study,
physical understanding, and quantitative analysis of the interactions of solar and
terrestrial radiation with molecules, aerosols, and cloud particles in planetary atmo-
spheres through the theory of radiative transfer and radiometric observations made
from the ground, the air, and space.

The second edition contains about 70% new material. However, to the greatest
extent possible, I have followed the structure of the chapters developed for the first
edition, based on which substantial revisions and additions were made. New subjects
include, but are not limited to, the correlated k-distribution method for infrared radi-
ative transfer, light scattering by ice crystals and nonspherical aerosols, and a number
of advanced topics in radiative transfer not covered by the plane-parallel assumption,
presented in Chapters 4, 5, and 6, respectively.

The subject of remote sensing is a major discipline in itself and also relates to many
other fields. However, in Chapter 7, I have confined the discussion of the application
of fundamental radiative transfer principles to the development of remote sensing
methodologies for the inference of atmospheric and surface parameters.

An understanding of the earth’s climate and climate change must begin with a
comprehensive understanding of the radiative processes in the earth–atmosphere sys-
tem. In Chapter 8, I have based presentation of the role of radiation in climate on heat
balance considerations, and present it in the context of simplified one-dimensional
and global climate models.

xiii



xiv Preface

I am indebted to Jennifer Kibbe, Melissa Licker, and Yoshihide Takano for assis-
tance in the preparation of the manuscript in terms of typing, editing, and computer
graphics. It would not have been possible to complete the second edition within the
timetable set by myself and Academic Press without their dedicated contributions.
This is particularly so in view of my other academic commitments, including my
responsibilities as chair of the department. I have also had the great fortune of work-
ing with a number of bright and talented graduate students who complemented my
strength in research and produced many of the results that are presented in the text.

A number of colleagues have kindly offered helpful comments and suggestions
on various chapters. I am particularly grateful to Ute Böttger, Thomas Charlock,
Annmarie Eldering, Frank Evans, Qiang Fu, Nori Fukuta, Michael Mishchenko, Steve
S. C. Ou, Irina Sokolik, Ping Yang, and Charlie Zender. Some of them have used a
draft of Chapters 1–4 in teaching atmospheric radiation classes.

I thank Richard Goody, who has written two texts on the subject of atmospheric
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parallel to this text, for their continuous encouragement of my pursuit of academic
and research excellence. Finally, I thank James Holton, an editor of the International
Geophysics Series, and Frank Cynar, Senior Publishing Editor of Physical Sciences
at Academic Press, for their encouragement and support of this project. During the
preparation of the second edition, my research programs have benefitted from the
continuous support of the National Science Foundation, NASA, the Department of
Energy, and the Air Force Office of Scientific Research.
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Chapter 1 Fundamentals of Radiation for
Atmospheric Applications

This text is intended for the study, understanding, and quantitative analysis of atmo-
spheric radiation, a field in which the interactions of solar and terrestrial radiation
with molecules, aerosols, and cloud particles in planetary atmospheres, as well as
with the surface, are studied through the theory of radiative transfer and radiometric
observations made from the ground, the air, and space. The field is closely associated
with the investigation of atmospheric greenhouse effects resulting from external ra-
diative perturbations in climate systems and the development of methodologies for
inferring atmospheric and surface parameters by means of remote sensing. In the
following, we begin with a discussion of various concepts, definitions, and units that
are pertinent to the field of atmospheric radiation.

1.1 Concepts, Definitions, and Units

1.1.1 Electromagnetic Spectrum

The most important process responsible for energy transfer in the atmosphere is
electromagnetic radiation. Electromagnetic radiation travels in wave form, and all
electromagnetic waves travel at the same speed, the speed of light. This is 2.99793 ±
1 × 108 m sec−1 in a vacuum and very nearly the same speed in air. Visible light,
gamma rays, x-rays, ultraviolet light, infrared radiation, microwaves, television sig-
nals, and radio waves constitute the electromagnetic spectrum.

The retina of the human eye is sensitive to electromagnetic waves with frequencies
between 4.3 × 1014 vibrations per second (usually written as cycles per second and
abbreviated cps) and 7.5 × 1014 cps. Hence, this band of frequencies is called the
visible region of the electromagnetic spectrum. The eye, however, does not respond
to frequencies of electromagnetic waves higher than 7.5 × 1014 cps. Such waves,
lying beyond the violet edge of the spectrum, are called ultraviolet light. The human
eye also does not respond to electromagnetic waves with frequencies lower than
4.3 × 1014 cps. These waves, having frequencies lower than the lowest frequency of
visible light at the red end of the spectrum and higher than about 3 × 1012 cps, are
called infrared light or infrared radiation. Just beyond the infrared portion of the

1



2 1 Fundamentals of Radiation for Atmospheric Applications

spectrum are microwaves, which cover the frequencies from about 3 × 1010 cps to
3 × 1012 cps. The most significant spectral regions associated with radiative energy
transfer in planetary atmospheres lie between ultraviolet light and microwaves.

The x-ray region of the electromagnetic spectrum consists of waves with frequen-
cies ranging from about 3 × 1016 cps to 3 × 1018 cps, and is adjacent to the ultraviolet
region in the spectrum. The gamma-ray region of the spectrum has the highest fre-
quencies of all, ranging upward from about 3 × 1019 cps. Radio waves have the lowest
frequencies in the spectrum, extending downward from about 3 × 105 cps.

Electromagnetic waves are often described in terms of their wavelength rather
than their frequency. The following general formula connects frequency ν̃ and wave-
length λ:

λ = c/ν̃, (1.1.1)

where c represents the speed of light in a vacuum. It is conventional to use microm-
eters (μm; 1 μm = 10−4 cm) to denote the wavelengths of radiation from the sun.
Other units, known as nanometers (nm; 1 nm = 10−7 cm = 10−3 μm) and angstroms
(Å; 1 Å = 10−4 μm), have also been frequently used, particularly for ultraviolet
radiation. Equation (1.1.1) is valid for any type of wave and is not restricted to elec-
tromagnetic waves. It is customary to use wavenumber ν to describe the characteristics
of infrared radiation. It is defined by

ν = ν̃/c = 1/λ. (1.1.2)

Thus, a 10 micrometer (μm) wavelength is equal to a 1000 cm−1 wavenumber. In the
microwave region, however, a frequency unit called gigahertz (GHz) is commonly
used. One GHz is equal to 109 cycles per second. It follows that 1 cm is equivalent to
30 GHz. Figure 1.1 shows the complete electromagnetic spectrum along with each
region’s corresponding frequency, wavenumber, and wavelength.

1.1.2 Solid Angle

The analysis of a radiation field often requires the consideration of the amount of
radiant energy confined to an element of solid angle. A solid angle is defined as the
ratio of the area σ of a spherical surface intercepted at the core to the square of the
radius, r , as indicated in Fig. 1.2. It can be written as

� = σ/r2. (1.1.3)

Units of solid angle are expressed in terms of the steradian (sr). For a sphere whose
surface area is 4πr2, its solid angle is 4π sr.

To obtain a differential elemental solid angle, we construct a sphere whose central
point is denoted as O . Assuming a line through point O moving in space and inter-
secting an arbitrary surface located at a distance r from point O , then as is evident
from Fig. 1.3, the differential area in polar coordinates is given by

dσ = (rdθ )(r sin θ dφ). (1.1.4)
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Name of
  region

Wavelength
      (μm)

Frequency
     (GHz)

Wavenumber
     (cm-1)

Gamma
   rays

X rays

Ultraviolet

10-5 3 x 1010 109

10-2 3 x107 106

3 x 10-1 106 0.33  x 105

Visible

Infrared

Microwaves

Spacecraft

Television & FM

Shortwave

       AM
Radio waves

1

103

3 x 102

104

104 (1cm) 3 x 101 1

10

106 3 x 10-1 10-2

107 3 x 10-2 10-3

108 3 x 10-3 10-4

109 3 x 10-4 10-5

Violet 0.4μm

Purple

Blue
Green

Yellow

Orange
Red 0.7μm

Figure 1.1 The electromagnetic spectrum in terms of wavelength in μm, frequency in GHz, and
wavenumber in cm−1.

Ω

σ

r

Figure 1.2 Definition of a solid angle �, where σ denotes the area and r is the distance.
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Y

X

Z

r sin θ dφ

r dθr sin θ

dφ

dθ r

dσ

dA

dΩ θ θ

dφ

Figure 1.3 Illustration of a differential solid angle and its representation in polar coordinates. Also
shown for demonstrative purposes is a pencil of radiation through an element of area d A in directions
confined to an element of solid angle d�. Other notations are defined in the text.

Hence, the differential solid angle is

d� = dσ/r2 = sin θ dθ dφ, (1.1.5)

where θ and φ denote the zenith and azimuthal angles, respectively, in polar coordi-
nates.

1.1.3 Basic Radiometric Quantities

Consider the differential amount of radiant energy d Eλ in a time interval dt and
in a specified wavelength interval, λ to λ+ dλ, which crosses an element of area
d A depicted in Fig. 1.3, in directions confined to a differential solid angle, which is
oriented at an angle θ to the normal of d A. This energy is expressed in terms of the
specific intensity Iλ by

d Eλ = Iλ cos θ d A d� dλ dt, (1.1.6)

where cos θ d A denotes the effective area at which the energy is being intercepted.
Equation (1.1.6) defines the monochromatic intensity (or radiance) in a general way
as follows:

Iλ = d Eλ

cos θ d� dλ dt d A
. (1.1.7)
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Thus, the intensity is in units of energy per area per time per wavelength and per
steradian. It is evident that the intensity implies a directionality in the radiation stream.
Commonly, the intensity is said to be confined in a pencil of radiation.

The monochromatic flux density or the monochromatic irradiance of radiant energy
is defined by the normal component of Iλ integrated over the entire hemispheric solid
angle and may be written as

Fλ =
∫
�

Iλ cos θ d�. (1.1.8)

In polar coordinates, we write

Fλ =
∫ 2π

0

∫ π/2

0
Iλ (θ, φ) cos θ sin θ dθ dφ. (1.1.9)

For isotropic radiation (i.e., if the intensity is independent of the direction), the
monochromatic flux density is then

Fλ = π Iλ. (1.1.10)

The total flux density of radiant energy, or irradiance, for all wavelengths (energy per
area per time), can be obtained by integrating the monochromatic flux density over
the entire electromagnetic spectrum:

F =
∫ ∞

0
Fλ dλ. (1.1.11)

Moreover, the total flux f , or radiant power W (energy per time), is defined by

f =
∫

A
F d A. (1.1.12)

The monochromatic flux density in the frequency domain may be written in the
form

Fν̃ = d F

d ν̃
. (1.1.13)

From the relationship between wavelength and frequency denoted in Eq. (1.1.1), we
have

Fν̃ = −(λ2/c)Fλ. (1.1.14)

Likewise, the intensity in wavelength and frequency domains is connected by

Iν̃ = −(λ2/c)Iλ. (1.1.15)

A similar relation between the monochromatic flux density, or intensity, in wavenum-
ber and wavelength (or frequency) domains may be expressed by means of Eq. (1.1.2).

When the flux density or the irradiance is from an emitting surface, the quantity is
called the emittance. When expressed in terms of wavelength, it is referred to as the
monochromatic emittance. The intensity or the radiance is also called the brightness
or luminance (photometric brightness). The total flux from an emitting surface is
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Table 1.1

Symbols, Dimensions, and Units of Various Radiometric Quantities

Symbol Quantity Dimensiona Unitb

E Energy M L2T −2 Joule (J)

f Flux (luminosity) M L2T −3 Joule per second (J sec−1, W)

F Flux density (irradiance)
Emittance

MT −3 Joule per second per square meter
(W m−2)

I Intensity (radiance)
Brightness (luminance)

MT −3 Joule per second per square meter
per steradian (W m−2 sr−1)

aM is mass, L is length, and T is time.
b1 watt (W) = 1 J sec−1.

often called luminosity. The basic radiometric quantities are summarized in Table 1.1,
along with their symbols, dimensions, and units.

1.1.4 Concepts of Scattering and Absorption

Most of the light that reaches our eyes comes not directly from its source but indirectly
through the process of scattering. We see diffusely scattered sunlight when we look
at clouds or at the sky. Land and water surfaces and the objects surrounding us are
visible through the light that they scatter. An electric lamp does not send us light
directly from the luminous filament but usually glows with the light that has been
scattered by the glass bulb. Unless we look directly at a light source, such as the sun,
a flame, or an incandescent filament with a clear bulb, we see light that has been
scattered. In the atmosphere, we see many colorful examples of scattering generated
by molecules, aerosols, and clouds containing water droplets and ice crystals. Blue
sky, white clouds, and magnificent rainbows and halos, to name a few, are all optical
phenomena produced by scattering. Scattering is a fundamental physical process
associated with light and its interaction with matter. It occurs at all wavelengths
throughout the entire electromagnetic spectrum.

Scattering is a physical process by which a particle in the path of an electromag-
netic wave continuously abstracts energy from the incident wave and reradiates that
energy in all directions. Therefore, the particle may be thought of as a point source
of the scattered energy. In the atmosphere, the particles responsible for scattering
range in size from gas molecules (∼10−4 μm) to aerosols (∼1 μm), water droplets
(∼10 μm), ice crystals (∼100 μm), and large raindrops and hail particles (∼1 cm).
The effect of particle size on scattering is inferred by a physical term called the size
parameter. For a spherical particle, it is defined as the ratio of the particle circumfer-
ence to the incident wavelength, λ; i.e., x = 2πa/λ, where a is the particle radius. If
x � 1, the scattering is called Rayleigh scattering. An excellent example of this case
is the scattering of visible light (0.4–0.7 μm) by atmospheric molecules, leading to
the explanation of blue sky and sky polarization to be discussed in Chapter 3. For
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Figure 1.4 Demonstrative angular patterns of the scattered intensity from spherical aerosols of three
sizes illuminated by the visible light of 0.5 μm: (a) 10−4 μm, (b) 0.1 μm, and (c) 1 μm. The forward
scattering pattern for the 1 μm aerosol is extremely large and is scaled for presentation purposes.

particles whose sizes are comparable to or larger than the wavelength, i.e., x � 1,
the scattering is customarily referred to as Lorenz–Mie scattering. The mathematical
theory of Lorenz–Mie scattering for spherical particles will be presented in Chapter 5.
Figure 1.4 illustrates the scattering patterns of spherical aerosols of size 10−4, 0.1, and
1 μm illuminated by a visible light of 0.5 μm. A small particle tends to scatter light
equally in the forward and backward directions. When the particle becomes larger,
the scattered energy becomes increasingly concentrated in the forward direction with
increasingly complex scattering features. Because of the spherical symmetry with
respect to the incoming light beam, the scattering patterns for other planes are the
same as the ones presented in Fig. 1.4. The scattering of sunlight by spherical cloud
droplets and raindrops produces the magnificent rainbows and glory that we see in our
daily life.

In situ observations and electronic microscopic photography have shown that
aerosols in the atmosphere, such as minerals, soot, and even oceanic particles, exhibit
a wide variety of shapes ranging from quasi-spherical to highly irregular geometric
figures with internal structure. The shape and size of ice crystals are governed by
temperature and supersaturation, but they generally have a basic hexagonal structure.
In the atmosphere, if ice crystal growth involves collision and coalescence, the crys-
tal’s shape can be extremely complex. Recent observations based on aircraft optical
probes and replicator techniques for widespread midlatitude, tropical, arctic, and con-
trail cirrus show that these clouds are largely composed of ice crystals in the shape
of bullet rosettes, solid and hollow columns, plates, and aggregates, and ice crystals
with irregular surfaces with sizes ranging from a few micrometers to thousands of
micrometers. The scattering of sunlight by some of the defined ice crystals produces
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Figure 1.5 Multiple scattering process involving first (P), second (Q), and third (R) order scattering
in the direction denoted by d.

fascinating optical phenomena including 22◦ and 46◦ halos, sundogs, and numerous
arcs and bright spots. Light scattering by nonspherical and inhomogeneous particles,
a contemporary research subject, will be covered in Chapter 5, which presents a
combination of geometric ray-tracing and numerical solution approaches.

In atmospheric scattering, it is generally assumed that the light scattered by
molecules and particulates has the same frequency (or wavelength) as the incident
light. It is noted, however, that high-energy laser light can produce phenomena such as
Raman scattering in shift frequencies, which can be employed for the remote sensing
of water vapor. Atmospheric molecules and particulates are separated widely enough
so that each particle scatters light in exactly the same way as if all other particles did
not exist. This is referred to as independent scattering. The assumption of indepen-
dent scattering greatly simplifies the problem of light scattering by a collection of
particles, because it allows the use of energy quantity instead of electric field in the
analysis of the propagation of electromagnetic waves in planetary atmospheres.

In a scattering volume, which contains many particles, each particle is exposed
to, and also scatters, the light that has already been scattered by other particles.
To demonstrate this concept we refer to Fig. 1.5. A particle at position P removes
the incident light by scattering just once, i.e., single scattering, in all directions.
Meanwhile, a portion of this scattered light reaches the particle at position Q, where
it is scattered again in all directions. This is called secondary scattering. Likewise,
a subsequent third-order scattering involving the particle at position R takes place.
Scattering more than once is called multiple scattering. It is apparent from Fig. 1.5
that some of the incident light that has been first scattered away from direction d
may reappear in this direction by means of multiple scattering. Multiple scattering is
an important process for the transfer of radiant energy in the atmosphere, especially
when aerosols and clouds are involved. Chapter 6 deals with the theory of multiple
scattering in planetary atmospheres.
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Scattering is often accompanied by absorption. Grass looks green because it scat-
ters green light while it absorbs red and blue light. The absorbed energy is converted
into some other form, and it is no longer present as red or blue light. In molecular
atmospheres, there is very little absorption of energy in the visible spectrum. Clouds
also absorb very little visible light. Both scattering and absorption remove energy from
a beam of light traversing the medium. The beam of light is attenuated, and we call
this attenuation extinction. Thus, extinction is a result of scattering plus absorption.
In a nonabsorbing medium, scattering is the sole process of extinction.

In the field of light scattering and radiative transfer, it is customary to use a term
called cross section, analogous to the geometrical area of a particle, to denote the
amount of energy removed from the original beam by the particle. When the cross
section is associated with a particle dimension, its units are denoted in terms of
area (cm2). Thus, the extinction cross section, in units of area, is the sum of the
scattering and absorption cross sections. However, when the cross section is in ref-
erence to unit mass, its units are given in area per mass (cm2 g−1). In this case, the
term mass extinction cross section is used in radiative transfer. The mass extinction
cross section is, therefore, the sum of the mass absorption and mass scattering cross
sections. Furthermore, when the extinction cross section is multiplied by the particle
number density (cm−3), or when the mass extinction cross section is multiplied by
the density (g cm−3), the quantity is referred to as the extinction coefficient, whose
units are given in terms of length (cm−1). In the field of infrared radiative transfer,
the mass absorption cross section is simply referred to as the absorption coefficient.

The absorption of energy by particles and molecules leads to emission. The con-
cept of emission is associated with blackbody radiation and will be discussed in the
following section. In addition, a number of minor atmospheric constituents exhibit
complicated absorption line structures in the infrared region. Section 1.3 and Chapter 4
will provide discussions of the fundamentals of line formation and the transfer of in-
frared radiation in the atmosphere. A fundamental understanding of the scattering
and absorption processes in the atmosphere is imperative for the study of the radia-
tion budget and climate of planetary atmospheres and for the exploration of remote
sounding techniques to infer atmospheric composition and structure.

1.2 Blackbody Radiation Laws

The laws of blackbody radiation are basic to an understanding of the absorption and
emission processes. A blackbody is a basic concept in physics and can be visualized
by considering a cavity with a small entrance hole, as shown in Fig. 1.6. Most of
the radiant flux entering this hole from the outside will be trapped within the cavity,
regardless of the material and surface characteristics of the wall. Repeated internal
reflections occur until all the fluxes are absorbed by the wall. The probability that
any of the entering flux will escape back through the hole is so small that the interior
appears dark. The term blackbody is used for a configuration of material where ab-
sorption is complete. Emission by a blackbody is the converse of absorption. The flux
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Figure 1.6 A blackbody radiation cavity to illustrate that absorption is complete.

emitted by any small area of the wall is repeatedly reflected and at each encounter
with the wall, the flux is weakened by absorption and strengthened by new emission.
After numerous encounters, emission and absorption reach an equilibrium condition
with respect to the wall temperature. In the following, we present four fundamental
laws that govern blackbody radiation, beginning with Planck’s law.

1.2.1 Planck’s Law

In his pursuit of a theoretical explanation for cavity radiation, Planck (1901) assumed
that the atoms that make up the wall behave like tiny electromagnetic oscillators,
each with a characteristic frequency of oscillation. The oscillators emit energy into
the cavity and absorb energy from it. In his analysis, Planck was led to make two
assumptions about the atomic oscillators. First, Planck postulated that an oscillator
can only have energy given by

E = nhν̃, (1.2.1)

where ν̃ is the oscillator frequency, h is Planck’s constant, and n is called the quantum
number and can take on only integral values. Equation (1.2.1) asserts that the oscillator
energy is quantized. Although later developments revealed that the correct formula
for a harmonic oscillator is E = (n + 1/2)hν̃ [see Eq. (1.3.7)], the change introduces
no difference to Planck’s conclusions. Secondly, Planck postulated that the oscillators
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do not radiate energy continuously, but only in jumps, or in quanta. These quanta of
energy are emitted when an oscillator changes from one to another of its quantized
energy states. Hence, if the quantum number changes by one unit, the amount of
radiated energy is given by

	E = 	nhν̃ = hν̃. (1.2.2)

Determination of the emitted energy requires knowing the total number of oscil-
lators with frequency ν̃ for all possible states in accord with Boltzmann statistics,
as presented in Appendix A. Following the two preceding postulations and normal-
ization of the average emitted energy per oscillator, the Planck function in units of
energy/area/time/sr/frequency is given by

Bν̃(T ) = 2hν̃3

c2(ehν̃/K T − 1)
, (1.2.3)

where K is Boltzmann’s constant, c is the velocity of light, and T is the absolute
temperature. The Planck and Boltzmann constants have been determined through
experimentation and are h = 6.626 × 10−34 J sec and K = 1.3806 × 10−23 J deg−1.

The Planck function relates the emitted monochromatic intensity to the frequency
and the temperature of the emitting substance. By utilizing the relation between
frequency and wavelength shown in Eq. (1.1.15), Eq. (1.2.3) can be rewritten as
follows:

Bλ(T ) = 2hc2

λ5(ehc/KλT − 1)
= C1λ

−5

π (eC2/λT − 1)
, (1.2.4)

where C1 = 2πhc2 and C2 = hc/K are known as the first and second radiation con-
stants, respectively. Figure 1.7 shows curves of Bλ(T ) versus wavelength for a number
of emitting temperatures. It is evident that the blackbody radiant intensity increases
with temperature and that the wavelength of the maximum intensity decreases with
increasing temperature. The Planck function behaves very differently when λ → ∞,
referred to as the Rayleigh–Jeans distribution, and when λ → 0, referred to as the
Wien distribution.

1.2.2 Stefan–Boltzmann Law

The total radiant intensity of a blackbody can be derived by integrating the Planck
function over the entire wavelength domain from 0 to ∞. Hence,

B(T ) =
∫ ∞

0
Bλ(T ) dλ =

∫ ∞

0

2hc2λ−5

(ehc/KλT − 1)
dλ. (1.2.5)

On introducing a new variable x = hc/kλT , Eq. (1.2.5) becomes

B(T ) = 2k4T 4

h3c2

∫ ∞

0

x3dx

(ex − 1)
. (1.2.6)
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Figure 1.7 Blackbody intensity (Planck function) as a function of wavelength for a number of emitting
temperatures.

The integral term in Eq. (1.2.6) is equal to π4/15. Thus, defining

b = 2π4 K 4/(15c2h3), (1.2.7)

we then have

B(T ) = bT 4. (1.2.8)

Since blackbody radiation is isotropic, the flux density emitted by a blackbody is
therefore [see Eq. (1.1.10)]

F = πB(T ) = σT 4, (1.2.9)

where σ is the Stefan–Boltzmann constant and is equal to 5.67 × 10−8 J m−2

sec−1 deg−4. Equation (1.2.9) states that the flux density emitted by a blackbody
is proportional to the fourth power of the absolute temperature. This is the Stefan–
Boltzmann law, fundamental to the analysis of broadband infrared radiative transfer.

1.2.3 Wien’s Displacement Law

Wien’s displacement law states that the wavelength of the maximum intensity of
blackbody radiation is inversely proportional to the temperature. By differentiating
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the Planck function with respect to wavelength, and by setting the result equal to
zero, i.e.,

∂Bλ(T )

∂λ
= 0, (1.2.10)

we obtain the wavelength of the maximum (Exercise 1.4)

λm = a/T, (1.2.11)

where a = 2.897 × 10−3 m deg. From this relationship, we can determine the tem-
perature of a blackbody from the measurement of the maximum monochromatic
intensity. The dependence of the position of the maximum intensity on temperature
is evident from the blackbody curves displayed in Fig. 1.7.

1.2.4 Kirchhoff’s Law

The preceding three fundamental laws are concerned with the radiant intensity emitted
by a blackbody, which is dependent on the emitting wavelength and the temperature
of the medium. A medium may absorb radiation of a particular wavelength, and at the
same time also emit radiation of the same wavelength. The rate at which emission takes
place is a function of temperature and wavelength. This is the fundamental property of
a medium under the condition of thermodynamic equilibrium. The physical statement
regarding absorption and emission was first proposed by Kirchhoff (1860).

To understand the physical meaning of Kirchhoff’s law, we consider a perfectly
insulated enclosure having black walls. Assume that this system has reached the state
of thermodynamic equilibrium characterized by uniform temperature and isotropic
radiation. Because the walls are black, radiation emitted by the system to the walls is
absorbed. Moreover, because there is an equilibrium, the same amount of radiation
absorbed by the walls is also emitted. Since the blackbody absorbs the maximum
possible radiation, it has to emit that same amount of radiation. If it emitted more,
equilibrium would not be possible, and this would violate the second law of ther-
modynamics. Radiation within the system is referred to as blackbody radiation as
noted earlier, and the amount of radiant intensity is a function of temperature and
wavelength.

On the basis of the preceding discussion, the emissivity of a given wavelength, ελ
(defined as the ratio of the emitting intensity to the Planck function), of a medium is
equal to the absorptivity, Aλ (defined as the ratio of the absorbed intensity to the Planck
function), of that medium under thermodynamic equilibrium. Hence, we may write

ελ = Aλ. (1.2.12)

A medium with an absorptivity Aλ absorbs only Aλ times the blackbody radiant
intensity Bλ(T ) and therefore emits ελ times the blackbody radiant intensity. For a
blackbody, absorption is a maximum and so is emission. Thus, we have

Aλ = ελ = 1 (1.2.13)
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for all wavelengths. A gray body is characterized by incomplete absorption and emis-
sion and may be described by

Aλ = ελ < 1. (1.2.14)

Kirchhoff’s law requires the condition of thermodynamic equilibrium, such that
uniform temperature and isotropic radiation are achieved. Obviously, the radiation
field of the earth’s atmosphere as a whole is not isotropic and its temperatures are
not uniform. However, in a localized volume below about 60–70 km, to a good
approximation, it may be considered to be isotropic with a uniform temperature in
which energy transitions are governed by molecular collisions. It is in the context of
this local thermodynamic equilibrium (LTE) that Kirchhoff’s law is applicable to the
atmosphere. Departure from the LTE conditions will be discussed in Section 1.3.3.

1.3 Absorption Line Formation and Line Shape

1.3.1 Line Formation

Inspection of high-resolution spectroscopy reveals that the emission spectra of certain
gases are composed of a large number of individual and characteristic spectral lines.
In the previous section, we indicated that Planck successfully explained the nature of
radiation from heated solid objects of which the cavity radiator formed the prototype.
Such radiation generates continuous spectra, as opposed to line spectra. Planck’s
quantization ideas, properly extended, however, lead to an understanding of line
spectra as well. In the following, we use the simplest hydrogen model to discuss
emission and absorption line formation.

1.3.1.1 BOHR’S MODEL

Investigation of the hydrogen spectrum led Bohr (1913) to postulate that the circular
orbits of the electrons were quantized; that is, their angular momentum could have
only integral multiples of a basic value. Bohr assumed that the hydrogen atom exists,
like Planck’s oscillators, in certain stationary states in which it does not radiate.
Radiation occurs only when the atom makes a transition from one state with energy
Ek to a state with lower energy E j . Thus, we write

Ek − E j = hν̃, (1.3.1)

where hν̃ represents the quantum of energy carried away by the photon, which is
emitted from the atom during the transition. The lowest energy state is called the
ground state of the atom. When an electron of an atom absorbs energy due to a
collision and jumps into a larger orbit, the atom is said to be in an excited state. Then,
according to Eq. (1.3.1), a sudden transition will take place, and the atom emits a
photon of energy and collapses to a lower energy state. This is illustrated in Fig. 1.8
for a hydrogen atom. Also shown in this figure is the absorption of a photon by a
stationary hydrogen atom.
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Figure 1.8 Illustration of emission and absorption for a hydrogen atom that is composed of one
proton and one electron. The radius of the circular orbit r is given by n2 × 0.53 Å, where n is the quantum
number, and 1 Å = 10−8 cm.

Bohr further postulated that the angular momentum L can take on only discrete
values by

L = n(h/2π ), n = 1, 2, 3 . . . . (1.3.2)

With this selection rule, Bohr showed from the equation of motion for an electron
that the total energy state of the system is given by

En = − me4

8ε2
0h2

1

n2
= − RH hc

n2
, n = 1, 2, 3 . . . , (1.3.3)

where m is the mass of the electron, e is the charge carried by the electron, ε0 is the
permittivity constant given by 8.85 × 10−12 coul/volt/m, with 1 volt = 1 joule/coul,
and RH is the Rydberg constant for hydrogen with a value of 1.097 × 105 cm−1. It
follows from Eq. (1.3.1) that the wavenumber of emission or absorption lines in the
hydrogen spectrum is

ν = RH

(
1

j2
− 1

k2

)
, (1.3.4)



16 1 Fundamentals of Radiation for Atmospheric Applications

0

−1.0

−2.0

−3.0

−4.0

−5.0

−6.0

−7.0

−8.0

−9.0

−10.0

−11.0

−12.0

−13.0

−14.0

E
ne

rg
y 

(e
V

)

Paschen
  series

Balmer
 series

Lyman series
1

2

3
4
5
6

8

n

Figure 1.9 Energy level diagram for a hydrogen atom showing the quantum number n for each level
and some of the transitions that appear in the spectrum. An infinite number of levels is crowded in between
the levels marked n = 6 and n = ∞.

where j and k are integers defining, respectively, the lower and higher energy states.
Figure 1.9 shows the energy diagram for hydrogen. In the field of spectroscopy, energy
is usually given in units of electron volts (eV) or in units of wavenumber (cm−1). An
electron volt is the energy acquired by an electron accelerated through a potential
difference of one volt, and is equivalent to 1.602 × 10−19 J. Exercise 1.11 requires
the derivation of Eq. (1.3.3) based on the definitions of kinetic and potential energies
of the system.

Each quantum jump between fixed energy levels results in the emission or absorp-
tion of a characteristic frequency or wavelength. These quanta appear in the spectrum
as emission or absorption lines. For the simple hydrogen atom described previously
the line spectrum is relatively simple, whereas the spectra of water vapor, carbon
dioxide, and ozone molecules are considerably more complex.

1.3.1.2 VIBRATIONAL AND ROTATIONAL TRANSITIONS

In the preceding discussion, we used the electronic transitions of the hydrogen
atom to illustrate emission and absorption. It is now helpful to introduce the ways
in which a molecule can store various energies. Any moving particle has kinetic
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energy as a result of its motion in space. This is known as translational energy. The
average translational kinetic energy of a single molecule in the x , y, and z directions is
found to be equal to K T/2, where K is the Boltzmann constant and T is the absolute
temperature. A molecule, composed of atoms, can rotate, or revolve, about an axis
through its center of gravity and, therefore, has rotational energy. The atoms of the
molecule are bounded by certain forces like springs such that the individual atoms
can vibrate about their equilibrium positions relative to one another. The molecule,
therefore, will also have vibrational energy. These three molecular energy types
are based on a rather mechanical model of the molecule that ignores the detailed
structure of the molecule in terms of nuclei and electrons. It is possible, however,
for the energy of a molecule to change as a result of a change in the energy state of
the electrons of which it is composed, as demonstrated by Bohr’s model. Thus, the
molecule has electronic energy. The last three energy types are quantized and take
only discrete values. The absorption and emission of radiation takes place when the
atoms or molecules undergo transitions from one energy state to another. In general,
these transitions are governed by selection rules.

In radiative transitions, the molecule must couple with an electromagnetic field
so that energy exchanges can take place. This coupling is generally provided by the
electric dipole moment of the molecule. If the effective centers of the positive and
negative charges of the molecule have nonzero separation, then the dipole moment
exists. Radiatively active gases in the infrared, such as H2O and O3, have perma-
nent electric dipole moments due to their asymmetrical charge distributions. Linear
molecules such as N2 and O2, however, are inactive in the infrared because of their
symmetrical charge distributions. However, they have weak magnetic dipole moments
that allow radiative activities to take place in the ultraviolet and, to a lesser extent, in
the visible region.

Rotational energy changes are relatively small, with a minimum on the order of
1 cm−1 (see the conversion to energy in Exercise 1.12). For this reason, pure rotational
lines occur in the microwave and far-infrared spectra. Many of the rotational energy
levels above the lowest level are populated at terrestrial temperatures. Changes in
vibrational energy are generally greater than 600 cm−1, which is much larger than
the minimum changes in rotational energy. Thus, vibrational transitions never occur
alone but are coupled with simultaneous rotational transitions. This coupling gives
rise to a group of lines known as the vibrational–rotational band in the intermediate
infrared spectrum. An electronic transition typically involves a few electron volts
(∼104 cm−1) of energy. Because a high-energy photon is required for the transition,
absorption and emission usually occur in the ultraviolet or visible spectrum. Atoms
can produce line spectra associated with electronic energy. Molecules, however, can
have two additional types of energy, leading to complex band systems.

In Subsection 1.3.1.1, we discussed the physical meaning of stationary states for
a hydrogen atom. Schrödinger (1926) first introduced the idea of stationary states
corresponding to standing matter waves and used this idea as the foundation of wave
mechanics. In quantum mechanics, to determine the energy states produced by vibra-
tional and rotational transitions, a term referred to as the Hamiltonian operator, H,
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was introduced as a convenient operator by replacing variables in the classical ex-
pression for the energy, E, of a system composed of the atomic nuclei and electrons
that form a molecule. Schrödinger’s equation can be written in terms of the first-
order differential equation involving the wave function and the Hamiltonian operator,
as shown in Appendix B. The Hamiltonian may be linearly separated into a time-
dependent term and a time-independent term. The stationary states of the molecules
can be deduced from the time-independent term, giving discrete eigenvalues (energy
levels), En , and eigenfunctions, ϕn . Transitions between energy levels result in the
absorption and emission of photons with frequency ν̃ following Planck’s relation. The
time-dependent term may be treated as a perturbation from which the rate of change
of the probability that a stationary state is occupied can be evaluated.

The Hamiltonian operator for the harmonic-oscillator rigid rotator is separable for
vibrational and rotational motions so that energies may be added for a combined state.
For the rotational states, the kinetic energy of a rigid rotating dipole is equal to one-
half the product of angular momentum, L , and angular velocity, ω, i.e., Lω/2, where
L = Iω and I is the moment of inertia. From the solution of the time-independent
Schrödinger equation, the quantum restrictions on angular momentum are given by

L = h

2π
[J (J + 1)]1/2, (1.3.5)

where J is the rotational quantum number (an integer). Thus, the quantized rotational
energy can be written as

EJ = BhcJ (J + 1), (1.3.6)

where B = h/8π2 I c is the rotational constant. This expression is valid for a rigid
rotating dipole assuming spherical tops or linear molecules. For asymmetric tops,
an additional term is required. The selection rule for radiation transition is gov-
erned by 	J = ±1, applicable to the harmonic-oscillator rigid-rotator model. From
Planck’s relation in Eq. (1.3.1), the spectral line location can be derived and is given by
ν = 2B J ′ (cm−1), where J ′ can be any quantum number. Because of the selection
rule, the separation in wavenumber of adjacent lines is simply 2B (cm−1), as shown
in Fig. 1.10a. As noted above, because of the small energy of a rotational transition,
pure rotational spectra occur only in the far infrared and microwave regions.

For vibrational states, the quantized energy levels for a harmonic vibration are
given by

Eυ = hν̃k(υk + 1/2), (1.3.7)

where υk is the vibrational quantum number (an integer) and subscript k denotes the
normal modes. For triatomic molecules such as H2O and O3, there are three normal
modes, referred to as fundamentals. For linear molecules such as CO2 and NO2, there
are four fundamentals, but two orthogonal bending modes are degenerate and so only
three fundamentals exist (see Fig. 3.3). The term degenerate is used to denote states
with the same energy but with different sets of quantum numbers.
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Figure 1.10 (a) Rotational transition following the selection rule 	J = +1 and equally spaced
spectral lines in wavenumber. (b) Simultaneous vibrational and rotational transitions where 	J = −1
produces the P-branch and 	J = +1 generates the R-branch. 	J = 0 shows the Q-branch that overlaps
with the vibrational wavenumber, but see text for discussion.
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Molecular vibration produces an oscillating electric dipole moment that is suf-
ficient for both vibrational and rotational transitions. Thus, both transitions occur
simultaneously and the resulting energy level is the sum of the separate transition en-
ergies. Because the energy of the vibrational transition is much larger than that of the
rotational transition as noted earlier, and since many rotational levels are active, the
spectrum of the combined transitions is an array of rotational lines grouped around
the vibrational wavenumber, as illustrated in Fig. 1.10b. From Eqs. (1.3.6) and (1.3.7),
the sum of the rotational and vibrational energies is

Eυ,J = BhcJ (J + 1) + hν̃k(υk + 1/2). (1.3.8)

In simple cases, the selection rule is 	υk = ±1, except that 	υk = −1 cannot be
applied to υk = 0. Consider the transitions (υ ′

k, J ′) ← (υ ′′
k, J ′′), and let υ ′′

k = 0, the
ground state, and υ ′

k = 1, the first excited state. J ′ and J ′′ denote the higher and lower
rotational states, respectively, as shown in Fig. 1.10b. The selection rules in this case
are 	υk = 1 (fundamental) and 	J = ±1. Most of the molecules are in the ground
state but are distributed over numerous levels of J ′′. Thus, any molecules advancing
to the level υ ′ can go either to the next higher rotational level, for 	J = +1, or to the
next lower level, for	J = −1, with about equal probability. Using Planck’s relation,
we find that the spectral wavenumber of the line is given by

ν = νk

{
+2B J ′, J ′ = 1, 2 . . . , 	J = +1,

−2B(J ′ + 1), J ′ = 0, 1, . . . , 	J = −1,
(1.3.9)

where J ′ is the rotational quantum number in the excited vibrational state υ ′. Because
many closely spaced rotational energy levels are involved, numerous transitions gen-
erate a band of rotational lines grouped on each side of the vibrational wavenumber,
νk , with spacing of 2B cm−1, as for a pure rotational spectrum. Several of the simulta-
neous transitions available to diatomic molecules and linear triatomic molecules (e.g.,
CO2) in normal modes k = 1(υ1) and k = 3(υ3) fundamentals are shown schemat-
ically in Fig. 1.10b. The group with lower energy (	J = −1) and hence the lower
wavenumber portion of the band, is called the P-branch. The higher wavenumber
part is referred to as the R-branch, corresponding to 	J = +1. The rotational level
spacings in the υ ′ level are somewhat smaller than those in the υ ′′ level because of the
increased moment of inertia in higher vibrational levels. The lengths of the arrows
do not increase by a constant amount from the left to the right and the wavenumber
spacing of the lines decreases slightly. The branches P and R are called parallel
branches because the dipole moment oscillates parallel to the internuclear axis (see
Fig. 3.3). For such vibrational modes the transition 	J = 0 is forbidden. In quan-
tum mechanics, it is customary to refer to transitions as forbidden (or unfavorable)
and allowed. For the vibrational mode k = 2(υ2) of linear triatomic and the three
modes of bent triatomic molecules (see Fig. 3.3), the change of dipole moment has
a component perpendicular to an internuclear axis. The rotational selection rule is
now 	J = 0,±1, which produces a Q-branch that corresponds to 	J = 0, known
as the perpendicular branch. This branch occurs at the vibrational frequency itself. In
simple cases, it appears as a broad unresolved line. But if the moment of inertia differs
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in the υ ′ and υ ′′ levels, the Q-branch may be seen as a group of very closely spaced
lines.

The vibrational and rotational transitions discussed above are for the harmonic-
oscillator rigid rotator in which the selection rules are given by 	J = ±1 and
	v = ±1. Because of the anharmonicity of the oscillator, the transition υ = 1 ← 0
differs from the transition υ = 2 ← 1. The upper-state band 2 ← 1 does not have
the same frequency as the ground-state band 1 ← 0. Moreover, anharmonicity also
changes the selection rules from those for a harmonic oscillator in which all integral
changes of the quantum numbers are allowed. For example, 	υ = 2 gives the first
overtone band with twice the frequency of the normal (fundamental) mode. Simultane-
ous changes in two different vibrational quantum numbers give rise to combination and
difference bands with frequencies that are the sum or difference of the normal-mode
frequencies. They normally have smaller transition probabilities than fundamentals.

1.3.2 Line Broadening

Monochromatic emission is practically never observed. Energy levels during energy
transitions are normally changed slightly due to both external influences on atoms and
molecules, and the loss of energy in emission. As a consequence, radiation emitted
during repeated energy transitions is nonmonochromatic, and spectral lines of finite
widths are observed. The broadening of spectral lines is caused by: (1) the damping
of oscillator vibrations resulting from the loss of energy in emission (the broadening
of lines in this case is considered to be normal); (2) the perturbations due to reciprocal
collisions between the absorbing molecules and between the absorbing and nonab-
sorbing molecules; and (3) the Doppler effect resulting from the difference in thermal
velocities of atoms and molecules. The broadening of lines due to the loss of energy
in emission (natural broadening) is practically negligible as compared to that caused
by collisions and the Doppler effect. In the upper atmosphere, we find a combination
of collision and Doppler broadenings, whereas in the lower atmosphere, below about
20 km, collision broadening prevails because of the pressure effect.

1.3.2.1 PRESSURE BROADENING

The shape of spectral lines due to collisions, referred to as pressure broadening,
is given by the Lorentz profile (Lorentz, 1906). It is expressed by the formula

kν = S

π

α

(ν − ν0)2 + α2
= S f (ν − ν0), (1.3.10)

where kν denotes the absorption coefficient, ν0 is the wavenumber of an ideal,
monochromatic line, α is the half-width of the line at the half-maximum and is a
function of pressure and to a lesser degree of the temperature, f (ν− ν0) represents
the shape factor of a spectral line, and the line strength or line intensity S is defined by∫ ∞

−∞
kνdν = S. (1.3.11)

In this case, we say the absorption coefficient is normalized. Figure 1.11 illustrates
the Lorentz profile.
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Figure 1.11 Demonstrative Lorentz and Doppler line shapes for the same intensities and line widths.

The Lorentz shape of absorption lines is fundamental to the theory of infrared
radiative transfer in the atmosphere and thus, we should give a brief explanation of
how the formula denoted in Eq. (1.3.10) is derived. An isolated molecule emits or
absorbs an almost purely harmonic wave given by

f (t) = A cos 2πν0ct, (1.3.12a)

where c is the velocity of light and A is an arbitrary amplitude. During the period
−t/2 to t/2, the distribution of amplitude g(ν) of the wave in the discrete wavenumber
domain may be obtained from the Fourier cosine transform as follows:

g(ν) =
√

2

π

∫ t

0
(A cos 2πν0ct ′) cos 2πνct ′dt ′

= A

(2π )3/2c

[
sinπ(ν0 + ν)ct

ν0 + ν
+ sinπ(ν0 − ν)ct

ν0 − ν

]
. (1.3.12b)

Generally, the widths of absorption lines are much smaller than ν0, so that the first
term in Eq. (1.3.12b) may be neglected when it is compared to the second.

The only deviation from purely harmonic behavior would be produced by the
damping due to the loss of energy in emission. In the infrared, the spectroscopic effect
of this damping is extremely small. However, if a radiating molecule collides with
another molecule, it alters the radiating harmonic wave train due to the intermolecular
forces, and the frequency of the emitting molecules would be temporarily shifted by
an appreciable amount. Since the collision may be considered to be instantaneous, we
may assume that the principal effect of the collision is to destroy the phase coherence
of the emitted wave train. That is to say, after the collision the molecule starts emitting
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at another phase and these new phases are now randomly distributed. From general
statistical principles, the time between collisions is distributed according to Poisson’s
law that the probability a collision occurs between t and t + dt is e−t/t0 , where t0 is
the mean time between collisions. All the initial phases of the wave trains must be
averaged. Thus, the absorption coefficient will be given by

kν = A′
∫ ∞

0
[g(ν)]2e−t/t0 dt, (1.3.13)

where [g(ν)]2 is the distribution of intensity, and A′ is a certain constant. Further, by
letting 1/t0 = 2παc(α in cm−1) and using Eq. (1.3.11), we find that Eq. (1.3.13) be-
comes equivalent to Eq. (1.3.10). Here, 2παc is the number of collisions per molecule
per unit time. [Exercise 1.14 requires the derivation of Eq. (1.3.10) from Eq. (1.3.13).]
The Lorentz line shape also can be derived from the classical theory of absorption
and dispersion as shown in Appendix D.

From the kinetic theory of gases, the dependence of the half-width α on pressure
and temperature is given by

α = α0(p/p0)(T0/T )n, (1.3.14)

whereα0 is the width at the standard pressure, p0(1013mb), and temperature,T0(273K).
The index n ranges from 1/2 to 1, depending on the type of molecule. When n = 1/2,
it is known as the classical value. Under the reference condition, α0 ranges from
about 0.01 to 0.1 cm−1 for most radiatively active gases in the earth’s atmosphere and
depends on the spectral line. For the CO2 molecule, it is fairly constant with a value
of about 0.07 cm−1 (see Section 4.2.1 for further discussion).

1.3.2.2 DOPPLER BROADENING

Assuming that there is no collision broadening in a highly rarefied gas, a molecule
in a given quantum state radiates at wavenumber ν0. If this molecule has a velocity
component in the line of sight (the line joining the molecule and the observer), and if
v � c, the velocity of light, the wavenumber

ν = ν0(1 ± v/c). (1.3.15)

Note that because of the conventional use of notation the wavenumber ν and the
velocity v appear indistinguishable. Let the probability that the velocity component
lies between v and v + dv be p(v) dv. From the kinetic theory, if the translational
states are in thermodynamic equilibrium, p(v) is given by the Maxwell–Boltzmann
distribution so that

p(v) dv = (m/2πK T )1/2 exp(−mv2/2K T ) dv, (1.3.16)

where m is the mass of the molecule, K is the Boltzmann constant, and T is the
absolute temperature.

To obtain the Doppler distribution, we insert the expression of ν in Eq. (1.3.15)
into Eq. (1.3.16), and perform normalization to an integrated line intensity S defined
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in Eq. (1.3.11). After these operations, we find the absorption coefficient in the
form

kν = S

αD
√
π

exp

[
−
(
ν − ν0

αD

)2
]
, (1.3.17)

where

αD = ν0(2K T/mc2)1/2, (1.3.18)

is a measure of the Doppler width of the line. The half-width at the half-maximum is
αD

√
ln2. The Doppler half-width is proportional to the square root of the temperature.

A graphical representation of the Doppler line shape is also shown in Fig. 1.11.
Since the absorption coefficient of a Doppler line is dependent on exp[−(ν − ν0)2],
it is more intense at the line center and much weaker in the wings than the Lorentz
shape. This implies that when a line is fully absorbed at the center, any addition of
absorption will occur in the wings and will be caused by collision effects rather than
Doppler effects.

1.3.2.3 VOIGT PROFILE

In the altitude region extending from about 20 to 50 km, effective line shapes are
determined by both collision- and Doppler-broadening processes. We must add the
Doppler shift component to the pressure-broadened lines at wavenumbers ν ′ − ν0

in order to combine the two effects. The Doppler line redistributes the Lorentz line
at wavenumber ν ′ to ν. The line shapes for pressure and Doppler broadening may
then be expressed by f (ν ′ − ν0) and fD(ν − ν ′), respectively. To account for all
possible thermal velocities, a convolution of the Lorentz and Doppler line shapes can
be performed to obtain

fυ(ν − ν0) =
∫ ∞

−∞
f (ν ′ − ν0) fD(ν − ν ′) dν ′

= 1

π3/2

α

αD

∫ ∞

−∞

1

(ν ′ − ν0)2 + α2
exp

[−(ν − ν ′)2

α2
D

]
dν ′. (1.3.19a)

This line shape is referred to as the Voigt profile.
To simplify the representation of the Voigt profile, we let t = (ν − ν ′)/αD ,

y = α/αD , and x = (ν − ν0)/αD . Thus, we have

fυ(ν − ν0) = 1

αD
√
π

K (x, y), (1.3.19b)

where the Voigt function is defined by

K (x, y) = y

π

∫ ∞

−∞

1

y2 + (x − t)2
e−t2

dt. (1.3.20)
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Many attempts have been made to simplify the computation of the Voigt function.
Closed-form approximations can be developed. The Voigt profile satisfies the require-
ment of normalization such that∫ ∞

−∞
fυ(ν − ν0)d(ν − ν0) = 1. (1.3.21)

Exercise 1.17 requires the derivation of Eq. (1.3.19b) and the proofs that in the limits
of α → 0 and αD → 0, the Voigt profile reduces to the Doppler and Lorentz shapes,
respectively.

One final note is in order. The line strength of a specific molecule that undergoes
a transition from an upper energy state i to a lower energy state j is proportional to
the square of the transition probability defined by

Ri j =
∫
ψ∗

i Mψ j dV, (1.3.22)

where M is the matrix of the dipole moment related to the time-dependent Hamiltonian,
V is the volume, ψi, j are wave functions of the upper and lower energy states that
can be determined from Schrödinger’s equation, and ψ∗ is the conjugate of ψ . The
line strength for absorption also depends on the ratio of the population, n j , of the
lower energy state of the transition to the total population of the absorbing gas, n. At
thermodynamic equilibrium, this ratio is defined by the Boltzmann factor in the form

n j/n = g j e
−E j /K T

/∑
i

gi e
−Ei/K T , (1.3.23)

where the integer g j is called degenerate or statistical weight, which is the number
of distinct states having energy E j . The denominator on the right side of Eq. (1.3.23)
is the partition function, which can be determined for both vibrational and rotational
states.

1.3.3 Breakdown of Thermodynamic Equilibrium

In Section 1.2.4, we pointed out that in thermodynamic equilibrium, the source func-
tion is given by the Planck function, which depends only on temperature, frequency,
and the velocity of light, and that within a small constant-temperature enclosure in
which nothing changes, an element of matter absorbs and emits according to Planck’s
and Kirchhoff’s laws. However, as was first pointed out by Einstein, emission is also af-
fected by the incident radiation field, referred to as induced emission. In the following,
we wish to address the extent to which the source function and absorption coefficient
can be changed from their equilibrium values by the action of incident radiation. Since
the discussion now involves departure from the equilibrium state, the thermodynamic
arguments cannot be followed. We must now use a microscopic statistical model to
understand the condition under which Kirchhoff’s law cannot be applied.

Thermodynamic equilibrium can be defined in terms of Boltzmann’s law for the
distribution of molecules between two states. Consider a simple case where emission
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Figure 1.12 Radiative and collisional transitions connecting two energy states E1 and E2 where ni

are the numbers of molecules at the level Ei per unit volume; gi are the statistical weights; b21 denotes the
probability of transition by collisions per unit of time from the upper level E2 to the lower level E1 and b12

from E1 to E2; C12, C21, and A21 are the Einstein coefficients associated with emission and absorption;
and uν̃ denotes the radiant energy density.

(or absorption) occurs through transitions between the energy levels E1 and E2 of
a two-level energy system, as shown in Fig. 1.12. Let n1 and n2 be the numbers
of molecules at these levels per unit volume; and g1 and g2 denote the statistical
weights, defined in Eq. (1.3.23). In accordance with Boltzmann’s law, the distribution
of molecules between two states is defined by

n2

n1
= g2

g1
exp

(
− E2 − E1

K T

)
= g2

g1
e−hν̃/K T , (1.3.24)

where ν̃ is the emitting frequency from Planck’s relation denoted in Eq. (1.3.1). Un-
der complete equilibrium, Eq. (1.3.24) is obeyed for all energy states throughout the
medium. It is known that collisions acting alone will bring about a Boltzmann distribu-
tion and consequently a Planck source function. However, in a collisionless medium,
radiation can bring about almost any population of energy levels through absorption
and induced emission involving a radiating molecule and a photon (C coefficients),
as shown in Fig. 1.12. Radiative transitions can also take place spontaneously without
the presence of a photon or a colliding molecule (A coefficients). This occurs from
the upper level to the lower level. Including both collision and radiation processes,
one can show from the balance of transitions between two energy levels that the state
population ratio is given by

n2

n1
= g2

g1

η + u ν̃
η exp(hν̃/K T ) + 8πhν̃3/c3 + u ν̃

, (1.3.25)

where u ν̃ is the energy density and the coefficient that governs the relative importance
of collision and radiation is defined by

η = b12 (collision)

C12 (radiation)
. (1.3.26)
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Exercise 1.18 requires the derivation of Eq. (1.3.25). The population of energy levels
and the resulting source functions will be governed by the conflict between radia-
tive and collisional effects. The rate of collisional adjustment of state populations is
determined by a relaxation time proportional to the pressure. Radiative adjustment
is determined by the natural lifetime of the excited states with respect to radiative
transitions and is dependent on specific molecules but independent of the state of the
medium. When the collision events are much larger than the radiative transitions, then
η � 1 and Eq. (1.3.25) reduces to Eq. (1.3.24). In this case, LTE should occur and
Planck’s law will be valid. On the other hand, if η � 1, then a different source func-
tion would be required. In the earth’s atmosphere, pressure varies rapidly with height
and since collisional processes are dependent on pressure, there will be a sharply de-
fined relaxation level below which Planck’s law (LTE) is valid for transitions between
energy levels but above which a different source function will be required (non-LTE).
This level occurs at about 60–70 km in the earth’s atmosphere.

1.4 Introduction to Radiative Transfer

1.4.1 The Equation of Radiative Transfer

A pencil of radiation traversing a medium will be weakened by its interaction with
matter. If the intensity of radiation Iλ becomes Iλ + d Iλ after traversing a thickness
ds in the direction of its propagation, then

d Iλ = −kλρ Iλ ds, (1.4.1)

where ρ is the density of the material, and kλ denotes the mass extinction cross section
(in units of area per mass) for radiation of wavelength λ. As discussed in Section 1.1.4,
the mass extinction cross section is the sum of the mass absorption and scattering cross
sections. Thus, the reduction in intensity is due to absorption by the material as well
as to scattering by the material.

On the other hand, the radiation’s intensity may be strengthened by emission from
the material plus multiple scattering from all other directions into the pencil under
consideration at the same wavelength (see Fig. 1.13). We define the source function
coefficient jλ such that the increase in intensity due to emission and multiple scattering
is given by

d Iλ = jλρ ds, (1.4.2)

where the source function coefficient jλ has the same physical meaning as the mass
extinction cross section. Upon combining Eqs. (1.4.1) and (1.4.2), we obtain

d Iλ = −kλρ Iλ ds + jλρ ds. (1.4.3)

Moreover, it is convenient to define the source function Jλ such that

Jλ ≡ jλ/kλ. (1.4.4)
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Figure 1.13 Depletion of the radiant intensity in traversing an extinction medium.

In this manner, the source function has units of radiant intensity. It follows that
Eq. (1.4.3) may be rearranged to yield

d Iλ
kλρ ds

= −Iλ + Jλ. (1.4.5)

This is the general radiative transfer equation without any coordinate system imposed,
which is fundamental to the discussion of any radiative transfer process.

1.4.2 Beer–Bouguer–Lambert Law

Consider a direct light beam from the sun, which covers the wavelengths from about
0.2 to 5μm. Emission contributions from the earth–atmosphere system can be gener-
ally neglected, as discussed in Section 1.2. Moreover, if the diffuse radiation produced
by multiple scattering can be neglected, then Eq. (1.4.5) reduces to the following form:

d Iλ
kλρ ds

= −Iλ. (1.4.6)

Let the incident intensity at s = 0 be Iλ(0). Then the emergent intensity at a distance
s away shown in Fig. 1.13 can be obtained by integrating Eq. (1.4.6) and is given by

Iλ(s1) = Iλ(0) exp

(
−
∫ s1

0
kλρ ds

)
. (1.4.7)

Assuming that the medium is homogeneous, so that kλ is independent of the distance
s, and defining the path length

u =
∫ s1

0
ρ ds, (1.4.8)

Eq. (1.4.7) can be expressed by

Iλ(s1) = Iλ(0)e−kλu . (1.4.9)
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This is known as Beer’s law or Bouguer’s law or Lambert’s law, referred to here as the
Beer–Bouguer–Lambert law, which states that the decrease in the radiant intensity
traversing a homogeneous extinction medium is in accord with the simple exponential
function whose argument is the product of the mass extinction cross section and the
path length. Since this law involves no directional dependence, it is applicable not
only to the intensity quantity but also to the flux density and the flux.

From Eq. (1.4.9), we can define the monochromatic transmissivity Tλ as follows:

Tλ = Iλ(s1)/Iλ(0) = e−kλu . (1.4.10)

Moreover, for a nonscattering medium, the monochromatic absorptivity, representing
the fractional part of the incident radiation that is absorbed by the medium, is given
by

Aλ = 1 − Tλ = 1 − e−kλu . (1.4.11)

Equations (1.4.10) and (1.4.11) are normally expressed in the wavenumber domain
in conjunction with the application of infrared radiation transfer. Finally, if there is a
scattering contribution from the medium, certain portions of the incident radiation may
reflect back to the incident direction. In this case, we may define the monochromatic
reflectivity Rλ, which is the ratio of the reflected (backscattered) intensity to the
incident intensity. On the basis of the conservation of energy, we must have

Tλ + Aλ + Rλ = 1 (1.4.12)

for the transfer of radiation through a scattering and absorbing medium.

1.4.3 Schwarzschild’s Equation and Its Solution

Consider a nonscattering medium that is in local thermodynamic equilibrium. A beam
of intensity Iλ passing through it will undergo the absorption and emission processes
simultaneously. This is the case for the transfer of thermal infrared radiation emitted
from the earth and the atmosphere. The source function, as defined in Eq. (1.4.4), is
given by the Planck function and can be expressed by

Jλ = Bλ(T ). (1.4.13)

Hence, the equation of radiative transfer can now be written as

d Iλ
kλρ ds

= −Iλ + Bλ(T ), (1.4.14)

where kλ is now the absorption coefficient. The first term in the right-hand side of
Eq. (1.4.14) denotes the reduction of the radiant intensity due to absorption, whereas
the second term represents the increase in the radiant intensity arising from blackbody
emission of the material. To seek a solution for Schwarzschild’s equation, we define
the monochromatic optical thickness of the medium between points s and s1 as shown
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Figure 1.14 Configuration of the optical thickness τλ defined in Eq. (1.4.15).

in Fig. 1.14 in the form

τλ(s1, s) =
∫ s1

s
kλρ ds ′. (1.4.15)

By noting that

dτλ(s1, s) = −kλρ ds, (1.4.16)

Eq. (1.4.14) becomes

− d Iλ(s)

dτλ(s1, s)
= −Iλ(s) + Bλ[T (s)]. (1.4.17)

Upon multiplying Eq. (1.4.17) by a factor e−τλ(s1,s), and integrating the thickness ds
from 0 to s1, we obtain

−
∫ s1

0
d[Iλ(s)e−τλ(s1,s)] =

∫ s1

0
Bλ[T (s)]e−τλ(s1,s)dτλ(s1, s). (1.4.18)

Consequently, we have

Iλ(s1) = Iλ(0)e−τλ(s1,0) +
∫ s1

0
Bλ[T (s)]e−τλ(s1,s)kλρ ds. (1.4.19)

The first term in Eq. (1.4.19) is essentially equivalent to Eq. (1.4.7), representing
the absorption attentuation of the radiant intensity by the medium. The second term
denotes the emission contribution from the medium along the path from 0 to s1. If the
temperature and density of the medium and the associated absorption coefficient along
the path of the beam are known, Eq. (1.4.19) can be integrated numerically to yield the
intensity at the point s1. Applications of Eq. (1.4.19) to infrared radiative transfer and
to the remote sounding of atmospheric temperature profiles and compositions from
orbiting meteorological satellites will be discussed in Chapters 4 and 7, respectively.

In the discussion of the absorption and emission lines in the spectra of sun and
stars, Schwarzschild (1914) presented Eq. (1.4.14) within the context of Kirchhoff’s
law and derived an integral solution for the condition without scattering. It is thus
referred to as Schwarzschild’s equation.
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Figure 1.15 Geometry for plane-parallel atmospheres where θ and φ denote the zenith and azimuthal
angles, respectively, and s represents the position vector.

1.4.4 The Equation of Radiative Transfer for Plane-Parallel Atmospheres

For many atmospheric radiative transfer applications, it is physically appropriate to
consider that the atmosphere in localized portions is plane-parallel such that variations
in the intensity and atmospheric parameters (temperature and gaseous profiles) are
permitted only in the vertical direction (i.e., height and pressure). In this case, it
is convenient to measure linear distances normal to the plane of stratification (see
Fig. 1.15). If z denotes this distance, then the general equation of radiative transfer
defined in Eq. (1.4.5) becomes

cos θ
d I (z; θ, φ)

kρ dz
= −I (z; θ, φ) + J (z; θ, φ), (1.4.20)

where θ denotes the inclination to the upward normal, and φ the azimuthal angle in
reference to the x axis. Here, we have omitted the subscript λ on various radiative
quantities.

Introducing the normal optical thickness (or depth)

τ =
∫ ∞

z
kρ dz′ (1.4.21)

measured downward from the outer boundary, we have

μ
d I (τ ;μ, φ)

dτ
= I (τ ;μ, φ) − J (τ ;μ, φ), (1.4.22)

where μ = cos θ . This is the basic equation for the problem of multiple scattering in
plane-parallel atmospheres.
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Figure 1.16 Upward (μ) and downward (−μ) intensities at a given level τ and at top (τ = 0) and
bottom (τ = τ∗) levels in a finite, plane-parallel atmosphere.

Following the same procedure as that described in Section 1.4.3, Eq. (1.4.22) can
be solved to give the upward and downward intensities for a finite atmosphere that is
bounded on two sides at τ = 0 and τ = τ∗ as illustrated in Fig. 1.16. To obtain the
upward intensity (μ > 0) at level τ , we multiply Eq. (1.4.22) by a factor e−τ/μ and
perform integration from τ to τ = τ∗. This leads to

I (τ ;μ, φ) = I (τ∗;μ, φ)e−(τ∗−τ )/μ +
∫ τ∗

τ

J (τ ′;μ, φ)e−(τ ′−τ )/μ dτ ′

μ
(1 ≥ μ > 0).

(1.4.23)

To derive the downward intensity (μ < 0) at level τ , a factor eτ/μ is used and μ is
replaced by −μ. After carrying out integration from τ = 0 to τ , we obtain

I (τ ; −μ, φ) = I (0; −μ, φ)e−τ/μ +
∫ τ

0
J (τ ′; −μ, φ)e−(τ−τ ′)/μ dτ ′

μ
(1 ≥ μ > 0).

(1.4.24)

In Eqs. (1.4.23) and (1.4.24), I (τ∗;μ, φ) and I (0; −μ, φ) represent the inward source
intensities at the bottom and top surfaces, respectively, as shown in Fig. 1.16.

For applications to planetary atmospheres, it is desirable to measure the emergent
outward intensities at the top and bottom of the atmosphere in conjunction with the
remote sensing of atmospheric compositions and radiation balance studies. Upon
setting τ = 0 in Eq. (1.4.23), we have

I (0;μ, φ) = I (τ∗;μ, φ)e−τ∗/μ +
∫ τ∗

0
J (τ ′;μ, φ)e−τ ′/μ dτ ′

μ
, (1.4.25)

where the first and second terms represent, respectively, the bottom surface contri-
bution (attenuated to the top) and the internal atmospheric contribution. On the other
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hand, if we set τ = τ∗ in Eq. (1.4.24), we obtain

I (τ∗; −μ, φ) = I (0; −μ, φ)e−τ∗/μ +
∫ τ∗

0
J (τ ′; −μ, φ)e−(τ∗−τ ′)/μ dτ ′

μ
, (1.4.26)

where, again, the first and second terms represent the top surface contribution (atten-
uated to the bottom) and the internal atmospheric contribution, respectively. Detailed
applications of the preceding equations associated with infrared radiation transfer and
multiple scattering will be discussed in Chapters 4 and 6.

1.4.5 Radiative Transfer Equations for Three-Dimensional
Inhomogeneous Media

In several atmospheric conditions, the plane-parallel assumption may not be valid.
These include the transfer of radiation in the atmosphere where spherical geometry
must be accounted for, and in clouds with finite dimension and/or inhomogeneity in
the horizontal direction. The latter has been a subject of contemporary research and
development in conjunction with studies of clouds in climate and remote sensing.
Although this topic will be further elaborated upon in Chapter 6, here we provide
some introductory notes consistent with the preceding presentation. We begin with the
general equation of radiative transfer discussed in Section 1.4.1. Letting the extinction
coefficient be βe = kλρ and omitting the subscript λ for simplicity, we write

− d I

βe ds
= I − J. (1.4.27)

The differential operator can be defined in time and space as follows:

d

ds
= 1

c

∂

∂t
+ Ω · ∇, (1.4.28)

where c is the velocity of light, Ω is a unit vector specifying the direction of scatter-
ing through a position vector s, and t is time. Under the condition that radiation is
independent of time (steady state), such as the illumination from the sun, Eq. (1.4.27)
can be expressed by

− 1

βe(s)
(Ω · ∇)I (s,Ω) = I (s,Ω) − J (s,Ω), (1.4.29a)

where the source function, J , can be produced by the single scattering of the direct
solar beam, multiple scattering of the diffuse intensity, and emission of the medium.

In Cartesian coordinates (x, y, z), we have

Ω · ∇ = �x
∂

∂x
+�y

∂

∂y
+�z

∂

∂z
, (1.4.29b)

where the directional cosines are given by

�x = ∂x

∂s
= sin θ cosφ = (1 − μ2)1/2 cos φ, (1.4.30a)
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�y = ∂y

∂s
= sin θ sinφ = (1 − μ2)1/2 sin φ, (1.4.30b)

�z = ∂z

∂s
= cos θ = μ, (1.4.30c)

where θ and φ are the zenith and azimuthal angles defined previously, and |s| = s =
(x2 + y2 + z2)1/2. In general, analytic solutions for Eq. (1.4.29a) do not exist and it
must be solved numerically. In cases where the medium is homogeneous with respect
to its single-scattering properties including the extinction coefficient, Eq. (1.4.29a)
reduces to a first-order partial differential equation from which simplified solutions
can be derived. Interested readers should refer to Chapter 6 for further details.

Exercises

1.1 What is the meaning of isotropic radiation? Show that for isotropic radiation,
the monochromatic flux density is Fλ = π Iλ.

1.2 A meteorological satellite circles the earth at a height h above the earth’s surface.
Let the radius of the earth be ae and show that the solid angle under which the
earth is seen by the satellite sensor is 2π [1 − (2aeh + h2)1/2/(ae + h)].

1.3 Express the Planck function in the wavelength and wavenumber domains based
on the Planck function in the frequency domain.

1.4 From Eq. (1.2.10), show that Eq. (1.2.11) is true.

1.5 Show that the maximum intensity of the Planck function is proportional to the
fifth power of the temperature.

1.6 An infrared scanning radiometer aboard a meteorological satellite measures the
outgoing radiation emitted from the earth’s surface in the 10μm window region.
Assuming that the effect of the atmosphere between the satellite and the surface
can be neglected, what would be the temperature of the surface if the observed
radiance at 10 μm is 9.8 W m−2 μm−1 sr−1?

1.7 A black land surface with a temperature of 15◦C emits radiation at all frequencies.
What would be the emitted radiances at 0.7 μm, 1000 cm−1, and 31.4 GHz?
Use appropriate Planck functions in the calculations.

1.8 Assuming the average normal body temperature is 98◦F, what would be the
emittance of the body? If it is not a blackbody but absorbs only 90% of the
incoming radiation averaged over all wavelengths, what would be the emit-
tance in this case? Also, at which wavelength does the body emit the maximum
energy?

1.9 (a) The photosphere of the sun has a temperature of about 5800 K. Assuming it
is a blackbody, compute the percentage of its emitting intensity at wavelengths
longer than 5 μm. (b) The earth–atmosphere system has an equilibrium temper-
ature of about 255 K. Assume it can be considered a blackbody and compute
the percentage of its emitting intensity at wavelengths shorter than 5 μm.
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1.10 Show that when λ → ∞, the Planck intensity is directly proportional to the
temperature, referred to as the Rayleigh–Jeans distribution. When λ → 0, de-
rive the expression referred to as the Wien distribution. Plot the Planck intensity
for the temperatures of the sun and the earth–atmosphere system and compare
these two approximations with the exact values.

1.11 (a) From Newton’s second law of motion and Coulomb’s law, find the kinetic
energy of an electron in a hydrogen atom moving with a velocity v in a circular
orbit of radius r centered on its nucleus. Express r in terms of the quantum
number n using the selection rule for the angular momentum mvr. Then find the
potential energy of the proton–electron system. By combining the kinetic and
potential energy, derive Eq. (1.3.3). (b) Considering only the transitions between
the ground state (n = 1) and the excited states and letting the highest quantum
number be 6, compute the wavelengths of hydrogen emission lines.

1.12 In spectroscopy, the wavenumber ν in cm−1 is not only used to specify a spectral
location, but also as a measure of energy itself. From the energy equation,
compute 1 cm−1 of energy of terms of 1 joule per molecule.

1.13 (a) Derive Eq. (1.3.9) from Eq. (1.3.8). (b) For the Q-branch, show that the line
spacing is proportional to the difference of the rotational constants in the ground
and excited states.

1.14 Derive Eq. (1.3.10) from Eq. (1.3.13).

1.15 Prove that the line intensity S = ∫∞
−∞ kν dν for Lorentz, Doppler, and Voigt

absorption lines.

1.16 Calculate and plot the shape factor of the Lorentz and Doppler profiles for ozone
whose half-width is assumed to be 0.1 cm−1 in the wavenumber domain at the
standard temperature and pressure.

1.17 Derive Eq. (1.3.19b) from Eq. (1.3.19a). In the limits of α → 0 and αD → 0,
show that the Voigt profile reduces to the Doppler and Lorentz shapes,
respectively.

1.18 (a) From Eq. (1.3.24) for collision, derive an expression for b12/b21 from n2/n1.
(b) For radiation, show that C21/C12 = g1/g2 and A21/C12 = g1/g2 · 8πhν̃3/c3,
where u ν̃ is the energy density defined in Appendix A. (c) Then, based on the
balance of transitions between two energy levels (Fig. 1.12), show that the state
population ratio for the general case is given by Eq. (1.3.25).

1.19 A He–Ne laser beam at 0.6328 μm with an output power of 5 mW (10−3 W)
is passing through an artificial cloud layer 10 m in thickness and is directed at
30◦ from the normal to the layer. Neglecting the effect of multiple scattering,
calculate the extinction coefficients (per length) if the measured powers are
1.57576 and 0.01554 mW. Also calculate the normal optical depths in these
cases.

1.20 The contrast of an object against its surroundings is defined by

C ≡ (B − B0)/B0,
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where B represents the brightness of the object. B = B0 when x → ∞, and
B = 0 when x = 0, where x denotes the distance between the object and the
observer. For the normal eye, the threshold contrast has a value of ±0.02. As-
suming that the extinction coefficient βe is independent of the wavelength in
the visible, show that the visual range or visibility is given by x = 3.912/βe. If
extinction coefficients for a clear atmosphere containing a background aerosol
and for a dense fog are 0.08 and 100 km−1, respectively, what would be the
visibilities in these cases?

1.21 In reference to Fig. 1.13, if the reflectivity at both s = 0 and s = s1 is Rλ, what
would be the value of Iλ(s1)? Consider sequentially the transmission at s = 0,
the absorption in the medium, and the transmission at s = s1.

1.22 By differentiation with respect to the optical thickness τ , show that Eqs. (1.4.23)
and (1.4.24) reduce to Eq. (1.4.22), the equation of transfer for plane-parallel
atmospheres. Use the following Leibnitz’s rule for differentiation of integrals:

d

dy

∫ φ2(y)

φ1(y)
F(x, y) dx =

∫ φ2(y)

φ1(y)

∂F

∂y
dx − F(φ1, y)

dφ1

dy
+ F(φ2, y)

dφ2

dy
.

1.23 Consider an isothermal nonscattering atmosphere with a temperature T and let
the surface temperature of such an atmosphere be Ts . Derive an expression for
the emergent flux density at the top of an atmosphere whose optical depth is
τ∗ by using Eq. (1.4.25) and show that it can be expressed by the exponential
integral of third order given by

E3(τ∗) =
∫ 1

0
e−τ∗/μμdμ.
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Chapter 2 Solar Radiation at the Top
of the Atmosphere

2.1 The Sun as an Energy Source

Once upon a time about 4.6 billion years ago, the sun condensed out of the center
of a thin, hot, spinning disk of interstellar material, according to a theory proposed
by Laplace (1796). The sun is a typical second-generation G2 star in the cosmic
hierarchy. Among the billions of stars in the universe, the sun is about average in
mass but below average in size. The sun has one unique feature in that it is 300,000
times closer to the earth than the next nearest star. With a mean distance of about 1.5 ×
108 km between the earth and the sun, virtually all of the energy that the earth receives
and that sets the earth’s atmosphere and oceans in motion comes from the sun.

The sun is a gaseous sphere with a visible radius of about 6.96 × 105 km and a mass
of approximately 1.99 × 1030 kg. Its main ingredients are primordial hydrogen (H)
and helium (He), plus a small amount of heavier elements including oxygen (O),
carbon (C), nitrogen (N), neon (Ne), iron (Fe), silicon (Si), magnesium (Mg), sul-
fur (S), and calcium (Ca). Hydrogen makes up roughly 90% of the mass, and the
remaining 10% or so is helium. The temperature of the sun decreases from a central
value of about 5 × 106 K to about 5800 K at the surface. The density within the sun
falls off very rapidly with increasing distance from the center. The central density is
about 150 g cm−3, and at the surface, it is about 10−7 g cm−3. The average density
is about 1.4 g cm−3. Approximately 90% of the sun’s mass is contained in the inner
half of its radius.

Solar energy is believed to be generated by the steady conversion of four hydrogen
atoms to one helium atom in fusion reactions, which take place in the deep interior
of the sun with temperatures up to many millions of degrees, as shown in Fig. 2.1.
The amount of energy released in nuclear fusion causes a reduction of the sun’s mass.
According to Einstein’s law relating mass and energy, E = mc2, and converting the
energy radiated by the sun, we find that almost 5 million tons of mass per second
are radiated by the sun in the form of electromagnetic energy. In a billion years, it is
believed that the sun will radiate into space about 1026 kg, which is less than one part
in 104 of its total mass. Thus, only an insignificant fraction of the sun’s substance has
been lost by electromagnetic radiation. It is estimated that only 5% of the sun’s total
mass has been converted from hydrogen to helium in its lifetime thus far.

37
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Figure 2.1 A cross section of the sun illustrating the solar interior and atmosphere. The solar interior
includes the core with a temperature of about 1.5 × 107 K, the radiation zone, and the convective zone.
The solar atmosphere includes the photosphere, the chromosphere, and the corona. The former two layers
are exaggerated for illustration purposes.

As a result of the extremely high temperatures in the deep interior of the sun, colli-
sions between atoms are sufficiently violent to eject many electrons from their orbits.
Only the tightly bound inner electrons of heavy atoms will be retained. The energy
emitted by nuclear fusion in the form of photons can pass through the inner part of the
sun without being absorbed by the electrons. However, closer to the sun’s surface, the
temperature decreases and the heavier atoms such as iron begin to recapture their outer
electrons. These outer electrons are bound to the nucleus by relatively small forces
and can be easily separated from the nucleus by the absorption of photons. It follows
that the flow of photons coming from the interior is blocked by the appearance of the
absorbing atoms. The blocking of these photons will cause the temperature to drop
sharply at some depth below the surface. Thus, the outer region of the sun consists
of a layer of relatively cool gas resting on top of a hotter interior. As a consequence,
the gas at the bottom of the cool outer layer is heated by the hot gas in the interior.
It undergoes expansion and rises toward the surface. Once it reaches the surface, the
hot gas loses its heat to space, cools, and descends into the interior. The entire outer
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Table 2.1

Magnitude and Variability of the Solar Sources of Terrestrial Energya

Energy Solar cycle change Terrestrial deposition
Source (W m−2) (W m−2) altitude

Solar radiation
Total irradiance 1366 1.3 Surface, troposphere
UV 2000–3000 Å 15.4 0.16 0–50 km
UV 0–2000 Å 0.1 0.02 50–500 km

Particles
Solar protons 0.002 30–90 km
Galactic cosmic rays 0.000007 0–90 km
Solar wind 0.0003 About 500 km

aData taken from National Research Council (1994).

layer breaks up into ascending columns of heated gas and descending columns of
cooler gas. The region in which this large-scale upward and downward movement of
gases occurs is called the zone of convection (Fig. 2.1), which extends from a depth
of about 150,000 km to the surface of the sun. Below this depth, it is believed that
energy is transported within the sun by means of electromagnetic radiation, i.e., by
the flow of photons. Near the surface, however, because of the substantial blocking
of radiant energy by the absorption of heavier elements, energy is transferred partly
by convection and partly by electromagnetic radiation. Above the surface, energy
transport is again by means of electromagnetic radiation. The sun provides electro-
magnetic, particle, and plasma energy to the earth as summarized in Table 2.1. It is
clear that electromagnetic radiation characterized by wavelengths from gamma rays
to radio waves (see Fig. 1.1) is by far the largest solar energy source for the earth and
the most important for its weather and climate processes.

2.1.1 The Structure of the Sun

The visible region of the sun is called the photosphere, where most of the electro-
magnetic energy reaching the earth originates. Although the sun is a gaseous body,
the photosphere is referred to as the surface of the sun. The photosphere is marked
by relatively bright granules about 1500 km in diameter, which are separated by dark
regions and variable features called sunspots. The bright granules are fairly uniformly
distributed over the solar disk and are believed to be associated with ascending hot
gases in the uppermost layer of the zone of convection discussed previously.

The photosphere is a comparatively thin layer about 500 km thick that constitutes
the source of the sun’s visible radiation, as illustrated in Fig. 2.1. The temperature
in this layer varies from 8000 K in the lower layer to 4000 K in the upper layer.
Matching the theoretical Planck curve versus wavelength (see Fig. 2.9) with the
measured spectral radiant energy emitted by the sun, the best agreement was found
for a temperature of approximately 5800 K. This temperature is an average over the
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temperature range of the photosphere. The effective temperature of the photosphere
may also be obtained by measuring the luminosity of the sun. On the basis of the
Stefan–Boltzmann Law, and with the knowledge that the sun’s radius assumes a
sharply defined surface, the effective temperature also yields a value close to 5800 K.
Radiation emitted from the photosphere is essentially continuous and will be discussed
further in Section 2.3.1.

The region above the photosphere is called the solar atmosphere. It is characterized
by tenuous and transparent solar gases. The solar atmosphere is divided into two
regions called the chromosphere and the corona (see Fig. 2.1). The chromosphere
lies above the photosphere to a height of approximately 2000 km. Its temperature
increases from a minimum of about 4000 K and stays between 4000 and 6000 K up
to about 2000 km. Above this height, the temperature rises drastically, reaching about
105–106 K. The temperature structure of the solar atmosphere is shown in Fig. 2.2, in
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Figure 2.2 The temperature structure of the solar atmosphere and the regions where absorption lines
are formed. Data constructed from the results published in Lean (1987) and Livingston et al. (1988).
The symbols I and II denote a neutral atom and a singly ionized atom, respectively, and TR refers to the
transition region.
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which the regions of formation of different absorption lines discussed below are also
displayed. The layer with a minimum temperature of 4000 K extends to a few thousand
kilometers, consisting of relatively cool gases lying over the hotter gases. These
cool gases absorb continuous radiation emitted from the photosphere at wavelengths
characteristic of the atoms in the sun, and generate the solar absorption spectrum. As
was discussed in Section 1.3.1, when an atom absorbs radiant energy, it is excited to a
new energy level. The excited atom then makes a transition to a lower excited state or
to the ground state, during which a quantum of energy is emitted. Consequently, the
emission spectrum of the chromosphere is formed. Since the absorption spectrum is
produced by the initial transition of atoms from a low-energy to a high-energy state,
while the emission spectrum results from the subsequent transition of the same atoms
in the reverse direction, it is clear that the lines in the sun’s emission spectrum are the
same as those in its absorption spectrum. When the photosphere is eclipsed by the
moon or by instrument, line emissions, mostly from hydrogen, helium, and calcium,
can be observed. Because a bright line emission spectrum flashes into view briefly at
the beginning and the end of a total eclipse, it is called the flash spectrum. The Hα
line at 6563 Å is one of the strongest absorption lines in the solar spectrum. Because
of the large amount of energy emitted in this line, the chromosphere becomes visible
and has a characteristic reddish appearance during an eclipse.

Above the chromosphere lies the region of the solar atmosphere called the corona.
The corona layer extends out from the edge of the solar disk many millions of
kilometers. It is visible as a faint white halo during total eclipses. Figure 2.3 il-
lustrates the solar corona during the total eclipses of March 1970 and July 1991. It is
generally believed that the corona has no outer boundary. A stream of gas called solar
wind (see Table 2.1) flows out of the corona and into the solar system continuously.
An instrument called a coronagraph has been used in the past to study both the chro-
mosphere and the corona in the absence of a natural eclipse. Strong emission lines of
hydrogen and helium originating within the chromosphere disappear with increasing
altitude and are replaced by the continuous spectrum of white light characteristic of
the corona. The spectrum of the corona contains a number of weak emission lines,
of which the most intense is the green line of ionized iron. The generation of this
emission line requires an enormous amount of energy, and it is believed that the
temperature in large regions of the corona is close to 106 K.

2.1.2 Solar Surface Activity: Sunspots

Several observable features of the sun are particularly interesting and important be-
cause of their transient nature. The best known and most frequently observed of these
variable features are sunspots, which are relatively dark regions on the photosphere—
the surface of the sun. Sunspots have an average size of about 10,000 km but range
from barely visible to areas that cover more than 150,000 km on the sun’s surface.
The spots usually occur in pairs, or in complex groups, which follow a leader spot in
the direction of the sun’s rotation. Small sunspots persist for several days or a week,
while the largest spots may last for several weeks, long enough for these spots to



Figure 2.3 The top picture is the total solar eclipse of July 11, 1991, photographed from Mauna Loa,
Hawaii. The bottom picture is the solar corona during the total eclipse of March 7, 1970. Features are
visible at a distance of about 4.5 solar radii or 3 million kilometers (courtesy of Rhodes College and High
Altitude Observatory, Boulder, Colorado).
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reappear during the course of the sun’s 27-day rotation. Sunspots are almost entirely
confined to the zone of latitude between 40◦ and the equator, and they never appear
near the poles. Just after their minimum occurrence, spots first appear near latitude
27◦ in both hemispheres. As the cycle proceeds, they drift toward the equator and
disappear close to latitude 8◦.

Sunspots are cooler regions with an average temperature of about 4000 K, com-
pared to an average temperature of 6000 K for the photosphere. Because of their rel-
atively low temperature, sunspots appear black. Sunspot activity has been observed
with the aid of high-power telescopes. The number of sunspots that appear on the
solar disk averaged over a period of time is highly variable. There are periods of time
when spots are relatively numerous, whereas a few years later spots occur hardly at
all. These periods are called sunspot maxima and sunspot minima, respectively. The
periodic change in the sunspot number is referred to as the sunspot cycle. For more
than 200 years, the number of spots appearing every day and the position of these spots
on the face of the sun have been recorded continuously. The average length of time
between sunspot maxima is about 11 years; the so-called 11-year cycle. Figure 2.4
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Figure 2.4 Variability of the sunspot number as function of year. Results from 1730 to 1870 are taken
from Eddy (1977); those after 1860 are from Lean and Rind (1998).
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depicts the variation in the number of sunspots since about 1730. The number ranges
from a few to a maximum of about 150. In the years of sunspot maxima, the sun’s
surface is violently disturbed, and outbursts of particles and radiation are commonly
observed. During sunspot minima periods, however, outbursts are much less frequent.

It is believed that sunspots are associated with the very strong magnetic fields that
exist in their interiors. Magnetic field measurements show that pairs of sunspots often
have opposite magnetic polarities. For a given sunspot cycle, the polarity of the leader
spot is always the same for a given hemisphere. With each new sunspot cycle, the
polarities reverse. The cycle of sunspot maxima having the same polarity is referred
to as the 22-year cycle. Sunspot activity has been found to have a profound influence
on many geophysical phenomena and atmospheric processes.

Sunspots are not the only source of solar variability. When a sunspot is near to
the limb, it can be seen to be surrounded by networks of enhanced emission, called
faculae, which appear before and disappear after the sunspots. Although faculae have
less magnetic flux than sunspots, they extend over considerably more of the sun’s
disk and persist longer. When the sun is viewed by monochromatic light from a single
element such as the hydrogen Hα line, the sunspots are visible but are surrounded by
bright areas, known as plages. These prominent outburst features also occur at high
latitudes, but are usually observed in the vicinity of large, complex sunspot groups.
They are known as solar flares and are associated with great increases of hydrogen
Lyman α at 1216 Å and other ultraviolet radiation. The burst of radiation and energy
particles from a large flare may produce interference with radio communications and
cause substantial variations in the earth’s magnetic field.

The sun’s other transient features are the prominences produced by photospheric
eruptions. They extend into the chromosphere and can be observed on the limb of
the sun. A typical prominence may be 30,000 km high and 200,000 km long with a
temperature of about 5000 K. Because prominences are cooler than the photosphere,
they may be seen in Hα light as dark filaments on a bright background. Disturbances
in the corona are closely related to the sunspot cycle and changes in sunspot number,
based on solar radio emission observations. Outbursts are accompanied by large
increases in the far-ultraviolet and x-ray emission from the sun.

All of the preceding variabilities are associated with magnetic activity. Variations
in the magnetic field are produced by the interactions among the convective motion,
the solar rotation, and the general magnetic field of the sun. Sunspots contain the
strongest magnetic fields. As noted earlier, the polarity in sunspot pairs reverses in
successive sunspot cycles.

2.2 The Earth’s Orbit about the Sun and Solar Insolation

2.2.1 Orbital Geometry

The earth is one of the nine planets in the solar system. The four planets closest
to the sun (i.e., Mercury, Venus, Earth, and Mars), are referred to as the terrestrial
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Figure 2.5 The earth–sun geometry. P denotes the perihelion, A the aphelion, AE the autumnal
equinox, VE the vernal equinox, WS the winter solstice, and SS the summer solstice, n is normal to the
ecliptic plane, a is parallel to the earth’s axis, δ is the declination of the sun, ε the oblique angle of the
earth’s axis, ω the longitude of the perihelion relative to the vernal equinox, ν the true anomaly of the earth
at a given time, λ the true longitude of the earth, O the center of the ellipse, OA (or OP = a) the semimajor
axis, OB (= b) the semiminor axis, S the position of the sun, E the position of the earth, and ES (= r ) the
distance between the earth and the sun.

planets, and the remaining planets (i.e., Jupiter, Saturn, Uranus, Neptune, and Pluto),
are called the major planets. All of the planets revolve around the sun in the same
direction, and with the exception of Uranus, they also rotate in the same direction
about their axes. In addition, all the planetary orbits except Mercury and Pluto lie in
almost the same plane.

Once every 24 hours the earth makes a steady rotation eastward around the axis of
its poles. This rotation is the cause of the most obvious of all time periods, involving
the alternation of day and night, which comes about as the sun shines on the different
parts of the earth exposed to it. At the same time, the orbital motion of the earth, with
a mass of 6 × 1024 kg, in an ellipse with the sun at one focus, takes approximately
365 days to complete. The distance between the earth and the sun varies. The earth’s
orbit about the sun and the earth’s rotation about its axis, which is tilted as shown
in Fig. 2.5, are the most important factors determining the amount of solar radiant
energy reaching the earth, and hence, the climate and climatic changes of the earth–
atmosphere system. Because of the rotation of the earth about its axis, the earth
assumes the shape of an oblate spheroid, having equatorial and polar radii of 6378.17
and 6356.79 km, respectively.

The position of the sun is defined by the solar zenith angle, which is determined
from other known angles. In reference to Fig. 2.6 let P be the point of observation
and OZ the zenith through this point. Assume that the sun is in the direction of OS or
PS and let D be the point directly under the sun. Then the plane of OZ and OS will
intersect the surface of the earth in a great circle. The angle ZOS, measured by the arc
PD of this circle, is equal to the sun’s zenith distance θ0. In the spherical triangle NPD,
the arc ND is equal to 90◦ minus the solar inclination δ, which is the angular distance
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Figure 2.6 Relationship of the solar zenith angle θ0 to the latitude ϕ, the solar inclination angle δ,
and the hour angle h. P and D are the point of observation and the point directly under the sun, respectively
(see text for further explanation).

of the sun north (positive) or south (negative) of the equator. The arc NP is equal to
90◦ minus the latitude φ of the observation point. The angle h is the hour angle,
or the angle through which the earth must turn to bring the meridian of P directly
under the sun, and is given by h = 2π t/	t�, where	t� = 86,400 sec. From spherical
trigonometry, the cosine of the solar zenith angle as given in Fig. 2.6 and Appendix C is

cos θ0 = sinϕ sin δ + cosϕ cos δ cos h. (2.2.1)

At the poles, ϕ = ±π/2, so that cos θ0 = sin δ or θ0 = π/2 − δ. The solar eleva-
tion angle (π/2 − θ0) is equal to the declination of the sun. During the 6 months of
daylight, the sun simply circles around the horizon and never rises more than about
23.5◦. At solar noon at any latitude, the hour angle h = 0. Thus, cos θ0 = cos(ϕ − δ)
or θ0 = ϕ − δ. Except at the poles, θ0 = π/2 at sunrise and sunset. From Eq. (2.2.1),
the half-day, H (i.e., from sunrise to noon or from noon to sunset), is defined by

cos H = −tanϕ tan δ. (2.2.2)

If ϕ = 0 (equator) or δ = 0 (equinoxes), then cos H = 0. The length of the solar day
is 12 hours. The latitude of the polar night (H = 0) is determined by ϕ = 90◦ −|δ|
in the winter hemisphere. The solar inclination is a function of the day of the year
only and is independent of the location of the observation point. It varies from 23◦27′

on June 21 to −23◦27′ on December 22. The hour angle is zero at solar noon and
increases by 15◦ for every hour before or after solar noon.

The plane of the earth’s orbit is called the plane of the ecliptic, as shown in Fig. 2.5.
The position of the sun is located at one of the foci of an ellipse. Let a and b denote
the semimajor and semiminor axes of the ellipse. The eccentricity of the earth’s orbit



2.2 The Earth’s Orbit about the Sun and Solar Insolation 47

is defined as the ratio of the distance between the two foci to the major axis of the
ellipse and is given by

e = (a2 − b2)1/2/a. (2.2.3)

The tilt of the earth’s axis with respect to normal to the ecliptic plane is defined by the
oblique angle ε. The longitude of the perihelion, i.e., the closest point of the earth to
the sun, relative to the vernal equinox, is defined by the angle ω. For a given time, the
position of the earth is defined by the true anomaly ν in reference to the perihelion.

From the geometry shown in Fig. 2.5, the declination of the sun can be expressed
in terms of the oblique angle of the earth’s axis, the longitude of the perihelion relative
to the vernal equinox, and the true anomaly of the earth at a given time. Also, letting
the true longitude of the earth, counted counterclockwise from the vernal equinox, be
λ, from three-dimensional geometry one can derive the following relationships:

sin δ = sin ε sin(ν + ω) = sin ε sin λ. (2.2.4)

Having defined the relevant geometric parameters, we shall now introduce the
three basic laws governing the motion of the planet. The planet’s orbital ellipse can
be described by Kepler’s first law (the law of orbits), in which the distance is related
to the true anomaly and eccentricity in the form

r = a(1 − e2)

1 + e cos ν
. (2.2.5)

This equation can be derived from the geometry of an ellipse (Exercise 2.2). To
compute the solar flux over a certain time period, Kepler’s second law (the law of
areas) is required. This law is a statement of the conservation of angular momentum
that the radius vector, drawn from the sun to the planet, sweeps out equal areas in
equal times (Exercise 2.3). Letting T̃ denote the tropical year (i.e., the time between
successive arrivals of the sun at the vernal equinox), which is equal to 365.2422 mean
solar days, and noting that the area of an ellipse is πab, we have

r2 dν

dt
= 2πa2

T̃
(1 − e2)1/2. (2.2.6)

In order to compute solar insolation, which will be defined in Subsection 2.2.3, the
mean distance between the earth and the sun must be defined. From Kepler’s second
law, we may define a mean distance based on the conservation of angular momentum
such that

r2
0 = 1

2π

∫ 2π

0
r2dν = a2(1 − e2)1/2 ∼= a2. (2.2.7)

Kepler’s third law (the law of periods) states that

a3/T̃ 2 = k, (2.2.8)

where T̃ is the planet’s period of revolution around the sun, and k has the same value
for all planets. This law is a consequence of the balance between the gravitational
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and centrifugal forces governing a planet in orbit. The semimajor axis of the earth’s
orbit is invariant. Because the factor (1 − e2)1/2 is very close to 1, the mean distance
between the earth and the sun may be set as the invariant semimajor axis (i.e., r0 = a).

Solar insolation as a function of latitude and the time of year, which will be defined
in Eq. (2.2.21), requires the values of (a/r )2 and δ, which in turn are computed from
the eccentricity e, the oblique angle ε, and the longitude of the perihelion relative to the
vernal equinox ω. Based on celestial mechanics, the secular variations in these three
parameters are associated with the perturbations that other principal planets exert
on the earth’s orbit. Milankovitch (1941) has provided mathematical expressions
for the computation of solar insolation including orbital parameters. Berger (1978)
developed simplified trigonometric expansions for the efficient computation of the
aforementioned three parameters. Figure 2.7 shows their values for the past 200,000
years. The eccentricity varies from about 0.01 to 0.04 with a mean value of about
0.017 and has a characteristic period of about 100,000 years. The oblique angle varies
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Figure 2.7 The eccentricity e, the obliquity of the ecliptic ε, and the longitude of the perihelion ω of
the earth as functions of year before the present.
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Table 2.2

Coefficients for the Calculation of the Sun–Earth Distance and the Declination Angle

n an bn cn dn

0 1.000110 0 0.006918 0
1 0.034221 0.001280 −0.399912 0.070257
2 0.000719 0.000077 −0.006758 0.000907
3 −0.002697 0.000148

from about 22◦ to 24.5◦ with a dominant period of about 41,000 years. The longitude
of the perihelion has a periodicity of about 21,000 years due to the advance of the
perihelion by about 25 minutes each year, referred to as the periodic precession index.

The sun–earth distance can be approximated with an accuracy of about 10−4 as
follows: (a

r

)2
=

2∑
n=0

(an cos nt + bn sin nt), (2.2.9)

where t = 2πd/365, with d = 0 for January 1 and d = 364 for December 31. Also,
the declination angle can be evaluated from

δ =
3∑

n=0

(cn cos nt + dn sin nt), (2.2.10)

with an accuracy of 0.0006 radians. The coefficients an , bn , cn , and dn are listed in
Table 2.2.

The most distinguishable feature of climatic change is the seasons. The revolution
of the earth about the sun and the tilt of the earth’s axis cause this seasonal variation. At
the time of the summer solstice, which occurs about June 22, the sun appears directly
overhead at noon at latitude 23.5◦N, called the Tropic of Cancer. The elevation of
the sun above the horizon and the length of the day reach their maximum values in
the northern hemisphere at the summer solstice, and everywhere north of the Arctic
Circle (latitude 66.5◦N), the sun remains above the horizon all day. In the southern
hemisphere on the June solstice, the sun’s elevation is at a minimum, the days are
shortest, and everywhere south of the Antarctic Circle (latitude 66.5◦S), the sun does
not rise above the horizon. This is the beginning of the northern hemisphere summer,
whereas the southern hemisphere summer begins with the winter solstice on about
December 22. Having reached the southernmost point in its annual migration, the
sun then stands directly overhead at noon at latitude 23.5◦S, called the Tropic of
Capricorn. Both the elevation of the sun above the horizon and the length of the day
are then at their minimum values in the northern hemisphere and their maximum
values in the southern hemisphere, and the sun does not rise within the Arctic Circle
or set within the Antarctic Circle. At the vernal (spring) and autumnal equinoxes,
the days and nights everywhere are equal (12 hours), and the sun appears directly
overhead on the equator at noon. The sun crosses the equator from north to south at
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the autumnal equinox, and from south to north at the vernal equinox. The distances
between the centers of the sun and the earth vary between the extreme values of
147 × 106 km at about winter solstice, and 153 × 106 km at about summer solstice.
The mean distance is about 150 × 106 km, as noted earlier in Section 2.1.

2.2.2 Definition of the Solar Constant

The distribution of electromagnetic radiation emitted by the sun as a function of the
wavelength incident on the top of the earth’s atmosphere is called the solar spectrum.
The solar constant S is a quantity denoting the amount of total solar energy (i.e.,
covering the entire solar spectrum) reaching the top of the atmosphere. It is defined
as the flux of solar energy (energy per unit time) across a surface of unit area normal
to the solar beam at the mean distance between the sun and the earth.

The sun emits energy at the rate of 6.2 × 107 W m−2. On the basis of the energy
conservation principle and if there is no intervening medium present, the energy
emitted from the sun must remain the same at some distance away. Thus,

F∗
�4πa2

� = S4πr2
0 , (2.2.11)

where F∗
� denotes the solar emittance, a� the radius of the sun, and r0 the mean

distance between the sun and the earth. Hence, the solar constant may be expressed by

S = F∗
�(a�/r0)2. (2.2.12a)

Since the sun may be considered as an isotropic emitter, the solar intensity (or bright-
ness) I is then given by F∗

�/π [see Eq. (1.1.10)]. Thus, Eq. (2.2.12a) can be rewritten
in the form

S = I ·πa2
�/r2

0 = I ·�, (2.2.12b)

where the solid angle � is the angle from which the earth sees the sun. The intensity,
i.e., the energy contained within the solid angle, is invariant: it is the same at the
position of the sun as it is at the position of the earth. If the intensity varies within
the solid angle, then we must use Eq. (1.1.9) to obtain the flux density. A number of
exercises at the end of the chapter require the use of the intensity concept.

The total energy intercepted by the earth whose radius is ae is given by Sπa2
e . If

this energy is spread uniformly over the full surface of the earth, then the amount
received per unit area and unit time at the top of the atmosphere is given by

Q̄s = Sπa2
e

/(
4πa2

e

) = S/4. (2.2.13)

To estimate the equilibrium temperature T� of the sun, we use the blackbody assump-
tion. From the Stefan–Boltzmann law, i.e., F∗

� = σT 4
�, we find

T 4
� = (r0/a�)2(S/σ ). (2.2.14)

Inserting values of S, σ , r0, and a� into Eq. (2.2.14), we obtain an equilibrium
temperature of about 5800 K for the sun. Thus, once the solar constant is measured,
the effective temperature of the sun can be computed.
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2.2.3 Distribution of Solar Insolation

Solar insolation is defined as the flux of solar radiation per unit of horizontal area
for a given locality. It depends primarily on the solar zenith angle and to some extent
on the variable distance of the earth from the sun. The flux density at the top of the
atmosphere may be expressed by

F = F� cos θ0, (2.2.15)

where F� represents the solar flux density at the top of the atmosphere when the
instantaneous distance between the earth and sun is r , and θ0 denotes the solar zenith
angle. The definition of the solar constant is S = F�(r/r0)2. Thus, we have

F(t) = S(r0/r )2 cos θ0, (2.2.16)

where S is the solar constant corresponding to the mean earth–sun distance r0 defined
previously. If we define the solar heating received at the top of the atmosphere per
unit area as Q, then the solar flux density may be written as

F = dQ

dt
. (2.2.17)

Thus, the insolation for a given period of time is

Q =
∫

t
F(t) dt. (2.2.18)

The total solar energy received by a unit of area per one day may be calculated by
integrating total insolation over the daylight hours. Upon substituting Eq. (2.2.16)
into (2.2.18) and noting that variation of the distance r in one day can be neglected,
we can define the daily insolation as follows:

Q ∼= S
(r0

r

)2
∫ sunset

sunrise
cos θ0(t) dt. (2.2.19)

Inserting Eq. (2.2.1) into Eq. (2.2.19) and denoting the angular velocity of the earth
ω by dh/dt (= 2π rad/day), we obtain

Q = S
(r0

r

)2
∫ H

−H
(sinϕ sin δ + cosϕ cos δ cos h)

dh

ω
, (2.2.20)

where H represents a half-day, i.e., from sunrise or sunset to solar noon. After per-
forming this simple integration, daily solar insolation is given by

Q ∼= S

π

(a

r

)2
(sinϕ sin δH + cosϕ cos δ sin H ), (2.2.21)

where we have set r0 = a as shown in Eq. (2.2.7), and H in the first term on the right-
hand side is expressed in units of radians (180◦ = π rad). Note that the factor (a/r )2

never departs from unity by more than 3.5%. It ranges from 1.0344 on January 3 to
0.9674 on July 5. The computations of (a/r ) and δ have been discussed previously.
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Figure 2.8 Daily mean solar insolation (Q/24 hr) as a function of latitude and day of year in units of
W m−2 based on a solar constant of 1366 W m−2. The shaded areas denote zero insolation. The position of
vernal equinox (VE), summer solstice (SS), autumnal equinox (AE), and winter solstice (WS) are indicated
with solid vertical lines. Solar declination is shown with a dashed line.

Daily solar insolation is shown in Fig. 2.8. The distribution of solar insolation
is independent of longitude and is slightly asymmetric between the northern and
southern hemispheres. The sun is closest to the earth in January (winter in the north-
ern hemisphere), so that the maximum solar insolation received in the southern hemi-
sphere is greater than that received in the northern hemisphere. At the equinoxes,
solar insolation is at a maximum at the equator and is zero at the poles. At the
summer solstice of the northern hemisphere, daily insolation reaches a maximum
at the North Pole because of the 24-hour-long solar day. At the winter solstice, the
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sun does not rise above the horizon north of about 66.5◦, where solar insolation
is zero.

The calculation of seasonal and annual insolations is rather involved and will not
be detailed here. However, in the domain of the true longitude of the earth as shown
in Fig. 2.5, the year can be divided into astronomical spring (0 − π/2), summer
(π/2 − π ), autumn (π − 3π/2), and winter (3π/2 − 2π). Seasonal solar insolation
can be evaluated using these divisions. Because of the cosine property of the true
longitude of the earth, λ, solar insolation is the same for spring and summer, and for
autumn and winter. Consequently, it suffices to consider the summer half-year (spring
plus summer) and winter half-year (autumn plus winter) for the calculation of seasonal
solar insolation. Considering the total solar insolation for the winter (π , 2π ) half-year
and expressing this insolation in terms of that for the summer (0, π ) half-year, and
performing a lengthy algebraic analysis, we find

Qs,w = ST̃

2π (1 − e2)1/2
[S̃(ϕ, ε) ± sinϕ sin ε], (2.2.22)

where the insolation function is defined by

S̃(ϕ, ε) = sinϕ sin ε

2π

∫ 2π

0
(H − tan H ) sin λ dλ, (2.2.23)

and the positive and negative signs are for the summer and winter solar insolations,
respectively (see Exercise 2.15 for the reason for this difference). The half-day defined
in Eq. (2.2.2) is given by

cos H = − tanϕ sin ε sin λ

(1 − sin2 ε sin2 λ)1/2
, (2.2.24)

where the definition of the declination angle defined in Eq. (2.2.4) is used. The annual
insolation for a given latitude is the sum of the summer and winter insolations and is
given by

Qa = ST̃ S̃(ϕ, ε)

π (1 − e2)1/2
. (2.2.25)

Because the insolation function is the same for the northern and southern hemispheres,
i.e., S̃(ϕ, ε) = S̃(−ϕ,−ε), annual solar insolation is the same for corresponding lat-
itudes in each hemisphere.

Finally, annual global solar insolation can be evaluated by using the instantaneous
solar insolation for the entire earth, which is given by S(a/r )2πa2

e . Distributing this
energy over the surface area of the earth, 4πa2

e , the mean solar insolation for one day
is given by 	t�(a/r )2S/4. We can perform an integration over a year via Kepler’s
second law to obtain

Qat =
∫ T̃

0

S	t�
4

(a

r

)2 dt

	t�
= S

4
T̃ (1 − e2)−1/2 ∼= S

4
T̃ (1 + e2/2). (2.2.26)
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The annual global insolation is proportional to (1 + e2/2), but is independent of the
declination of the sun δ and the true anomaly ν.

2.3 Solar Spectrum and Solar Constant Determination

2.3.1 Solar Spectrum

The solar spectrum covers wavelengths ranging from gamma rays to radio waves,
as shown in Fig. 1.1. Because of the nonquantized electronic transitions, most solar
energy is carried by the continuum, i.e., radiation is continuous rather than selective.
The single most important contributor is hydrogen, both in its neutral state and as
negative ions. A radiation transition from one level to another is characterized by
an absorption or an emission line whose frequency is governed by Planck’s relation.
However, in the ionization process the atom (or molecules) may absorb more than
the minimum energy required to remove the electron. This additional energy may
be thought of as supplying kinetic energy to the freed electron and is not quantized.
As a consequence, absorption is not selective but rather continuous. The ionization
continuum occurs on the high-frequency (shorter wavelength) side of the ionization
frequency. Neutral hydrogen has ionization continua associated with lines, some of
which were defined in Fig. 1.9. Metallic atoms also contribute to the continuum in the
ultraviolet spectrum. The continuum absorption in the visible and infrared spectrum,
however, is produced by negative hydrogen ions.

Electromagnetic radiation emerging from within the sun is continuously emitted
and absorbed by atoms. As shown in Fig. 2.2, the radiative temperature first drops
off to a minimum value of about 4500 K just above the photosphere, and then levels
off and slowly rises in the chromosphere, followed by a rapid rise in the transition
region to several million degrees in the corona. At each temperature, probabilities of
the electronic transition exist that any atom will achieve a particular excited state,
leading to the formation of absorption lines at different levels in the solar atmosphere.
The core of a line forms at the temperature where the maximum transition probabili-
ties of an electron moving from one orbital level to another occur (see Fig. 1.8). The
wings of a line form at different temperature levels because of the required transition
probabilities. Each absorption line has a preferred formation region in the solar atmo-
sphere. Those lines that absorb very little radiation are known as weak lines, which
can form in narrow layers of the solar atmosphere. Some of the absorption lines in
the solar atmosphere were displayed in Fig. 2.2.

In view of the preceding discussion, the solar spectrum consists of a continuous
emission with a superimposed line structure. The visible and infrared spectrum of the
photosphere shows absorption lines, known as the Fraunhofer spectrum. The strongest
of these lines are produced by H, Mg, Fe, Ca, and Si, as well as singly ionized Ca and
Mg. Most of the lines shorter than 1850 Å produced from the photosphere exhibit
in emission. Light from the chromosphere and the corona has emission lines at all
observed wavelengths.
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Figure 2.9 Solar irradiance for a 50 cm−1 spectral interval at the top of the atmosphere based on the
results presented in the MODTRAN 3.7 program. Also shown is the Planck flux with a temperature of
5800 K accounting for the mean distance between the earth and the sun.

Figure 2.9 shows the spectral solar irradiance observation at the top of the atmos-
phere averaged over a 50 cm−1 spectral interval as a function of wavelength up to
5μm, based on the results presented in the MODTRAN 3.7 program (Anderson et al.,
1995). Although the total solar irradiance derived from this program is 1373 W m−2,
the spectral solar irradiance curve presented here is scaled with respect to the recently
proposed solar constant of 1366 W m−2 (see Section 2.3.3 for further discussion). A
50 cm−1 spectral average has been performed to smooth out the rapid fluctuations pro-
duced by the absorption/emission line structure. However, some variabilities can still
be seen, particularly in the ultraviolet spectrum. Also shown is the Planck curve with
an emitting temperature of 5800 K, taking into account the mean distance between the
sun and the earth. This temperature appears to fit closely with the visible and infrared
spectrum characteristic of radiation emitted from the photosphere. For atmospheric
applications, it is critically important to have reliable spectral solar irradiances for
use in radiative transfer models. Table 2.3 gives tabulated data from 0.2 to 5 μm with
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Table 2.3

Distribution of Solar Spectral Irradiance Sλ from 0.2 to 100 μm in Terms of the Accumulated Energy and
Percentage Based on the Values Listed in the MODTRAN 3.7 Programa

λ Sλ S0−λ S0−λ λ Sλ S0−λ S0−λ
(μm) (W m−2 μm−1) (W m−2) (%) (μm) (W m−2 μm−1) (W m−2) (%)

0.20 2.0832E+01 2.08317E+00 0.15250 3.8 1.0564E+01 1.35239E+03 99.00390
0.30 5.4765E+02 5.68479E+01 4.16163 3.9 9.6162E+00 1.35335E+03 99.07430
0.40 1.4042E+03 1.97272E+02 14.44155 4.0 8.6980E+00 1.35422E+03 99.13797
0.50 1.9619E+03 3.93464E+02 28.80410 4.1 7.9180E+00 1.35502E+03 99.19593
0.60 1.7632E+03 5.69780E+02 41.71153 4.2 7.2072E+00 1.35574E+03 99.24870
0.70 1.4300E+03 7.12778E+02 52.17994 4.3 6.5062E+00 1.35639E+03 99.29633
0.80 1.1257E+03 8.25347E+02 60.42075 4.4 5.7954E+00 1.35697E+03 99.33875
0.90 8.8835E+02 9.14182E+02 66.92404 4.5 5.2622E+00 1.35749E+03 99.37727
1.00 7.2943E+02 9.87125E+02 72.26392 4.6 4.8180E+00 1.35798E+03 99.41255
1.10 5.8743E+02 1.04587E+03 76.56425 4.7 4.4724E+00 1.35842E+03 99.44529
1.20 4.8921E+02 1.09479E+03 80.14558 4.8 4.1565E+00 1.35884E+03 99.47573
1.30 4.0851E+02 1.13564E+03 83.13614 4.9 3.8504E+00 1.35922E+03 99.50391
1.40 3.4450E+02 1.17009E+03 85.65813 5.0 3.5740E+00 1.35958E+03 99.53008
1.50 2.9066E+02 1.19916E+03 87.78592 6.0 1.8385E+00 1.36303E+03 99.78240
1.60 2.4644E+02 1.22380E+03 89.58999 7.0 1.0108E+00 1.36404E+03 99.85639
1.70 2.0453E+02 1.24425E+03 91.08726 8.0 5.9672E−01 1.36464E+03 99.90007
1.80 1.6829E+02 1.26108E+03 92.31927 9.0 3.7458E−01 1.36501E+03 99.92751
1.90 1.3725E+02 1.27481E+03 93.32404 10.0 2.4702E−01 1.36526E+03 99.94559
2.00 1.1624E+02 1.28643E+03 94.17501 11.0 1.6932E−01 1.36543E+03 99.95798
2.10 9.7416E+01 1.29617E+03 94.88816 12.0 1.2005E−01 1.36555E+03 99.96677
2.20 8.2132E+01 1.30439E+03 95.48942 13.0 8.7276E−02 1.36563E+03 99.97315
2.30 6.9594E+01 1.31134E+03 95.99889 14.0 6.5062E−02 1.36570E+03 99.97792
2.40 5.9198E+01 1.31726E+03 96.43226 15.0 4.9463E−02 1.36575E+03 99.98154
2.50 5.1023E+01 1.32237E+03 96.80577 16.0 3.8307E−02 1.36579E+03 99.98434
2.60 4.4280E+01 1.32679E+03 97.12994 17.0 3.0112E−02 1.36582E+03 99.98655
2.70 3.8672E+01 1.33066E+03 97.41305 18.0 2.3991E−02 1.36584E+03 99.98831
2.80 3.3815E+01 1.33404E+03 97.66058 19.0 1.9351E−02 1.36586E+03 99.98973
2.90 2.9589E+01 1.33700E+03 97.87720 20.0 1.5797E−02 1.36588E+03 99.99088
3.00 2.6133E+01 1.33962E+03 98.06850 30.0 3.4388E−03 1.36598E+03 99.99860
3.10 2.3093E+01 1.34193E+03 98.23756 40.0 1.0465E−03 1.36599E+03 99.99937
3.20 2.0476E+01 1.34397E+03 98.38746 50.0 4.2098E−04 1.36600E+03 99.99968
3.30 1.8186E+01 1.34579E+03 98.52059 60.0 2.0151E−04 1.36600E+03 99.99983
3.40 1.6191E+01 1.34741E+03 98.63913 70.0 1.0860E−04 1.36600E+03 99.99991
3.50 1.4562E+01 1.34887E+03 98.74574 80.0 6.3779E−05 1.36600E+03 99.99995
3.60 1.3032E+01 1.35017E+03 98.84114 90.0 3.9985E−05 1.36600E+03 99.99998
3.70 1.1670E+01 1.35134E+03 98.92657 100.0 2.6459E−05 1.36600E+03 100.0000

aThe solar constant is taken to be 1366 W m−2.

a 0.1-μm spectral interval. From 5 to 100 μm, solar irradiance accounts for about
6 W m−2. Based on these values, about 50% of the total solar irradiance lies in wave-
lengths longer than the visible, about 40% in the visible region, and about 10% in
wavelengths shorter than the visible. Note that from 3.5 to 5 μm, the emitted thermal
infrared radiation from the earth and the atmosphere system becomes significant.

According to solar flux observations, the ultraviolet region (<0.4μm) of the
solar spectrum deviates greatly from the visible and infrared regions in terms of
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Figure 2.10 Observed irradiance outside the earth’s atmosphere in the ultraviolet region (data taken
from Brasseur and Simon, 1981) and comparison with the Planck curves for temperatures ranging from
4500 K to 6000 K.

the equivalent blackbody temperature of the sun. Figure 2.10 illustrates a detailed
observed solar spectrum from about 1000 to 3000 Å, along with blackbody temper-
atures of 4500, 5000, 5500, and 6000 K. In the interval 2100–3000 Å, the equivalent
blackbody temperature of the sun lies somewhat above 5000 K. It falls gradually
to a minimum level of about 4700 K at about 1400 Å. From there toward shorter
wavelengths, a larger amount of energy flux is observed at the Lyman α emission
line of 1216 Å associated with the transition of the first excited and ground states of
hydrogen atoms. The ultraviolet portion of the solar spectrum below 3000 Å contains
a relatively small amount of energy. However, because the ozone and the molecular
and atomic oxygen and nitrogen in the upper atmosphere absorb all this energy, it
represents the prime source of the energy in the atmosphere above 10 km.

2.3.2 Determination of the Solar Constant: Ground-Based Method

For historical reasons, we shall first introduce the ground-based method for the deter-
mination of the solar constant. Ground-based observations of solar irradiance for the
purpose of determining the solar constant require three primary instruments. These
are the pyrheliometer, the pyranometer, and the spectrobolometer. The pyrheliometer
is used to measure the direct, plus some diffuse, solar radiation, while the pyranome-
ter, utilizing a suitable shield to block the direct solar radiation from striking the
instrument, measures only the diffuse solar radiation for arriving at a pyrheliometer
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correction. The amount of direct sunlight can then be calculated by subtracting the
flux density measured by the pyranometer from that measured by the pyrheliometer.
The spectrobolometer is a combination of a spectrograph and a coelostat. A coelostat
is a mirror that follows the sun and focuses its rays continuously on the entrance slit
of the spectrograph, which disperses the solar radiation into different wavelengths
by means of a prism or diffraction grating. In the Smithsonian solar constant mea-
surements, about 40 standard wavelengths between 0.34 and 2.5 μm are measured
nearly simultaneously from the record of the spectrograph. The instrument for these
measurements is called a bologram. There are two techniques of measuring the solar
constant from the ground-based radiometer, called the long and short methods of the
Smithsonian Institution. The long method is more fundamental and establishes the
basis for the short method. The long method uses the Beer–Bouguer–Lambert law
and is introduced in the following.

Consider an atmosphere consisting of plane-parallel layers. At a given position of
the sun, which is denoted by the solar zenith angle θ0, the effective path length of the
air mass is u sec θ0, where

u =
∫ z∞

z1

ρdz. (2.3.1)

In this equation z1 is the height of the station and z∞ denotes the top of the atmosphere.
On the basis of the Beer–Bouguer–Lambert law, the irradiance F of the direct solar
radiation of wavelength λ observed at the surface level is given by

Fλ = Fλ0 exp(−kλu sec θ0) = Fλ0T m
λ , (2.3.2)

where Fλ0 is the monochromatic solar irradiance at the top of the atmosphere, kλ
denotes the monochromatic mass extinction cross section, Tλ is the monochromatic
transmissivity defined in Eq. (1.4.10), and m (= sec θ0) represents the ratio of the air
mass between the sun and the observer to the air mass with respect to the local zenith
distance. Upon taking the logarithm, we find

ln Fλ = ln Fλ0 + m ln Tλ. (2.3.3)

Observations of Fλ may be made for several zenith angles during a single day.
If the atmospheric properties do not change during the observation period, then the
transmissivity Tλ is constant. A plot of ln Fλ versus m shown in Fig. 2.11 may be
extrapolated to the zero point, which represents the top of the atmosphere (m = 0).
This is referred to as the Langley plot. If observations of the monochromatic irradiance
are carried out for wavelengths covering the entire solar spectrum, then we have

F� =
∫ ∞

0
Fλ0dλ ≈

N∑
i=1

Fλi 0	λi , (2.3.4)

where N is the total number of the monochromatic irradiances measured. The irradi-
ance F� corresponds to the actual distance between the earth and the sun, r. By using



2.3 Solar Spectrum and Solar Constant Determination 59

2 4 6

ln Fλ0

ln Fλ

m = sec θ0

Figure 2.11 Hypothetical observed monochromatic solar irradiances Fλ as a function of the effective
path length from which the solar irradiance at the top of the atmosphere can be graphically determined,
referred to as the Langley plot.

the mean distance r0 = a, the solar constant is defined by

S = F�(r/a)2. (2.3.5)

The foregoing outlines the theoretical procedures of the Smithsonian long method
for the determination of the solar constant. However, the atmosphere is essentially
opaque for wavelengths shorter and longer than about 0.34 μm and 2.5 μm, re-
spectively. Consequently, flux density observations cannot be made in these regions.
Therefore, empirical corrections are needed for the omitted ranges, which account
for about 8% of the solar flux.

There are other sources of error inherent in the Smithsonian long method caused by
(1) empirical corrections for the absorption of ultraviolet by ozone, and the absorption
of infrared by water vapor and carbon dioxide in the wings of the solar spectrum;
(2) an unknown amount of diffuse radiation entering the aperture of the observing
instrument; (3) variations of kλ and the possible effects of aerosols during a series of
measurements; and (4) measurement errors. Therefore, in spite of careful evaluation
and observation, a certain amount of error is inevitable.

Employing the Smithsonian long method, each determination requires about 2
to 3 hours of observation time, plus twice that much time for the data reduction.
In addition, there is no assurance that atmospheric properties and solar conditions
will remain unchanged during the observation period. Because of this uncertainty
and the burdensome, time-consuming work involved, a short method was devised to
determine the solar constant.

In the short method, the diffuse component of solar radiation (the sky brightness) is
measured for a given locality over a long period of time, so that a mean diffuse intensity



60 2 Solar Radiation at the Top of the Atmosphere

can be determined. Thus, a pyranometer reading of diffuse solar radiation will differ
from the mean by an amount ε, called the pyranometer excess. In reference to Section
1.1.4 and Fig. 3.9, the attenuation of solar radiation on a clear day is due to scattering
by molecules and aerosol particles, and absorption by various gases, primarily water
vapor. If total precipitable water is given by w, an empirical relationship between the
attenuation of direct solar irradiance and scattering and absorption effects may be ex-
pressed in the form Fλ = w + qλε, where qλ is a constant empirically determined for
each wavelength for a given locality. With qλ known, the spectral value of the solar irra-
diance can be found from the observed precipitable water and a pyranometer reading.

On the basis of a long series of previous observations of Fλ, m, and Tλ at a given
location where the solar constant measurement has been made, a graph of Fλ versus
air mass m can be constructed for a set value of Tλ. Thus, for a particular measurement
of Fλ with a known air mass m, the corresponding transmissivity Tλ can be found from
the graph. Once Tλ has been determined, solar irradiance at the top of the atmosphere
F0λ can be evaluated through Eq. (2.3.2). After this point, evaluation of the solar
constant proceeds in the same manner as in the long method. In the short method,
the required measurements include a bologram of the sun, an observation of sky
brightness by the pyranometer, and air mass determined by the position of the sun
from a theodolite. These three measurements take only about 10 to 15 minutes. From
the thousands of observations at various locations around the world during a period
of more than half a century, the best value of the solar constant determined by the
Smithsonian methods is 1353 W m−2.

The presence of aerosols in the atmosphere imposes limitations on the accuracy of
ground-based radiometric measurements of the solar constant (see, e.g., Reagan et al.,
1986). To minimize atmospheric effects, a number of measurements have also been
made in the upper atmosphere and outer space. These have included observations
made from balloons floating in the 27- to 35-km altitude range, jet aircraft at about
12 km, the X-15 rocket aircraft at 82 km, and the Mars Mariner VI and VII spacecrafts
entirely outside the atmosphere. The solar constant derived from these experiments
varies. Based on a series of measurements from high-altitude platforms, a standard
solar constant of 1353 (±21) W m−2 was issued in 1976 by the National Aeronautics
and Space Administration (Thekaekara, 1976).

2.3.3 Satellite Measurements of the Solar Constant

Measurements of incoming solar irradiance have been routinely made from satellite
platforms since the mid-1970s. However, the high-accuracy, high-stability satellite-
borne radiometer was only developed and incorporated in the Nimbus 7 satellite in
1978. This radiometer was an electrically calibrated cavity radiometer. The basic
concept of blackbody cavity radiation was shown in Fig. 1.6. Radiometers of this
design for use in satellites had a black painted cavity that absorbed nearly all the
solar radiation impinging on it. The absorbed radiation raised the temperature of the
cavity so that a radiant power could be measured corresponding to the increase in
temperature. Such a cavity can also be heated by an electrical element in a manner
equivalent to the incident sunlight. Because the input electrical power can be measured
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accurately, the temperature response of the radiometer can be calibrated, and it is thus
referred to as the self-calibrating radiometer.

Solar constant data have been derived from total solar irradiance measurements
made by self-calibrating radiometers aboard a number of satellites since 1978. These
include the Nimbus 7 Earth Radiation Budget (ERB) mission in 1978; the Solar
Maximum Mission (SMM) Active Cavity Radiometer Irradiance Monitor 1 (ACRIM I)
in 1980; the Earth Radiation Budget Experiment (ERBE) on board the NASA Earth
Radiation Budget Satellite (ERBS, 1984), NOAA 9 (1984), and NOAA 10 (1986);
and the ACRIM II measurements on board the Upper Atmosphere Research Satellite
(UARS, 1991). Figure 2.12 shows the daily measurements of the solar constant from
these satellites from 1979 to 1996. The solid lines are 81-day running means of the
daily data. The absolute radiance scale of the ACRIM II data has been adjusted to
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Figure 2.12 Solar activity variations from 1978 to 1996 illustrated by (a) the sunspot number and
(b) changes in total solar irradiance. The results were obtained from the ERB radiometer on the Nimbus-7
satellite, ACRIM I on the Solar Maximum Mission (SMM) satellite, ACRIM II on the UARS, and the ERBE
program (NOAA-9 and ERBS). The solid lines are 81-day running means of the daily data. Total solar
irradiance increases during times of maximum solar activity relative to its levels in the intervening activity
minimum. The differences in absolute irradiance levels among various measurements are of instrumental
origin (data taken from Lean and Rind, 1998).
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match the results of ACRIM I. The differences in absolute irradiance levels among
various measurements depicted in this figure are attributed to the instrument sensi-
tivity changes related to temperature or aspect drifts. In particular, ERB and ERBS
data differed by about 10 watts per square meter. The top panel shows the sunspot
numbers over the same period. It is quite clear that the data displayed in Fig. 2.12
provide irrefutable evidence of the 11-year solar constant cycle. When solar activity
is high, as indicated by the sunspot number, the total and UV radiative outputs from
the sun increase. Dark sunspots on the solar disk reduce total radiative output be-
cause their emission is less than that of the surrounding disk. However, after sunspots
develop, magnetic regions involving faculae and plages where emission is enhanced
also increase. These regions are evident as complexes of bright emission. The sun’s
irradiance fluctuates because radiation sources are not homogeneously distributed
on its disk. Magnetic fields erupting from the solar convection zone (Section 2.1)
into the overlying solar atmosphere generate active regions and complexes in which
the local radiation is altered relative to the background solar disk. Magnetic activity
erupts, evolves, and decays at different rates throughout the 11-year cycle, generating
sunspots, plages, and faculae that modulate total and spectral solar radiative outputs.
Finally, it should be noted that our knowledge of the 11-year irradiance cycle is im-
perfect because of uncertainties arising from the limited duration of space-borne solar
monitoring that barely exceeds one 11-year cycle, as well as instrumental uncertainties
that cause variable signals in individual satellite solar radiometers.

A number of analyses of the mean total solar irradiance have been reported. Based
on the analysis of the solar irradiance measurements taken by the cavity sensor in a
number of the satellites depicted in Fig. 2.12, a mean value for the solar constant of
1366 W m−2 with a measurement uncertainty of ±3 W m−2 has been suggested (Lean
and Rind, 1998). The solar constant value is critical in the interpretation of measured
solar absorption and heating rates in the atmosphere.

Exercises

2.1 Compute the solar elevation angle at solar noon at the poles, 60◦ N(S), 30◦ N(S),
and the equator. Also compute the length of the day (in terms of hours) at the
equator and at 45◦ N at the equinox and solstice.

2.2 From the geometry of an ellipse and the equation defining it, derive Kepler’s
first law denoted in Eq. (2.2.5).

2.3 Based on the conservation of angular momentum that the radius vector drawn
from the sun to the planet sweeps out equal areas in equal time, derive Kepler’s
second law denoted in Eq. (2.2.6).

2.4 (a) Derive Kepler’s third law by equating Newton’s law of universal gravitation
and the centrifugal force required to keep the planet in a circular orbit. (b) Given
that the NOAA polar satellites orbit at about 850 km above the earth’s surface,
what would be the period of these satellites? (c) Geostationary satellites have
the same angular velocity as the earth. What would be the required height for
these satellites?
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2.5 Given the solar constant of 1366 W m−2, the mean earth–sun distance of
150 × 106 km, and the sun’s radius of 0.70 × 106 km, calculate the equilibrium
temperature of the sun.

2.6 If the average output of the sun is 6.2 × 107 W m−2, and the radius of the earth
is 6.37 × 103 km, what is the total amount of energy intercepted by the earth in
one day?

2.7 Compute the fraction of the sun’s emittance intercepted by the earth.

2.8 Consider a circular cloud whose diameter is 2 km and assume that it is an
infinitely thin blackbody with a temperature of 10◦C. How much energy does it
emit toward the earth? How much energy from this cloud is detected on a square
centimeter of the earth’s surface when the center of the cloud is 1 km directly
over the receiving surface?

2.9 Assume that r̄ is the mean albedo of the earth (albedo is defined as the ratio of the
amount of flux reflected to space to the incoming solar flux), and that the earth–
atmosphere system is in equilibrium. Show that the equilibrium temperature of
the earth–atmosphere system Te = [(1 − r )S/4σ ]1/4.

2.10 The following table gives the distances of various planets from the sun and
their albedos. Employing the result in Exercise 2.9, compute the equilibrium
temperatures of these planets.

Distance from sun Albedo
Planet (relative to earth) (%)

Mercury 0.39 6
Venus 0.72 78
Earth 1.00 30
Mars 1.52 17
Jupiter 5.20 45

2.11 The height of earth-synchronous (geostationary) orbiting satellites, such as
GOES satellites, is about 35,000 km. Using the solid angle derived in Exercise
1.2, calculate the equilibrium temperature of such a satellite in the earth–satellite
system, assuming an effective equilibrium temperature of 255 K for the earth
and assuming that the satellite is a blackbody.

2.12 Show that the change in the earth’s equilibrium temperature Te in terms of the
earth–sun distance r is given by δTe/Te = δr/2r . The distance between the earth
and the sun varies by about 3.3% with a maximum and minimum on January 3
and July 5, respectively. Compute the seasonal change in the earth’s equilibrium
temperature.

2.13 Calculate the daily insolation at the top of the atmosphere at (a) the south pole
at the winter solstice; and (b) the equator at the vernal equinox. Use the mean
earth–sun distance in your calculations and check your values with those shown
in Fig. 2.8.
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2.14 Prove that annual insolation is the same for corresponding latitudes in the two
hemispheres [you may use the results in Eqs. (2.2.23) and (2.2.24) for analysis].

2.15 Show that the difference between the length of summer and that of winter is
given by T̃ 4e sinω/π . In carrying out this exercise, first define the length us-
ing the astronomical season definition and then utilize Kepler’s expressions by
approximation.

2.16 Reproduce the daily solar insolation graph presented in Fig. 2.8 using Eqs.
(2.2.21), (2.2.9), and (2.2.10).

2.17 Compute and plot the solar irradiance at the top of the earth’s atmosphere emitted
from temperatures of 5000, 5500, and 6000 K. Compare your results with those
presented in Figs. 2.9 and 2.10.

2.18 On a clear day, measurements of the direct solar flux density F at the earth’s
surface in the 1.5- to 1.6-μm wavelength interval give the following values:

Zenith angle (degree): 40◦ 50◦ 60◦ 70◦
F (W m−2): 13.95 12.55 10.46 7.67

Find the solar flux density at the top of the atmosphere and the transmissivity
of the atmosphere for normal incidence [see Eq. (1.4.10)] in this wavelength
interval.
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Chapter 3 Absorption and Scattering of Solar
Radiation in the Atmosphere

3.1 Composition and Structure of the Earth’s Atmosphere

It is now generally accepted that the terrestrial planets were formed by the accretion of
solid materials that condensed from the solar nebula about 4.5 billion years ago (BY).
The earth’s present atmosphere is believed to be a secondary atmosphere that was
generated from volatile compounds contained within the solid planetesimals from
which the earth formed. Any primary atmosphere that was captured must have been
lost because the cosmic abundances, the composition of most stars including the sun,
which contains about 90% H and 10% He by mass, had been significantly depleted.
The heavy bombardment of the earth ended about 3.8 BY ago and life was probably
extant by 3.5 BY, at which time the atmosphere might have contained CH4 and NH3.
The post-heavy bombardment atmosphere was probably dominated by CO2 and N2

with traces of CO and H2O, but lacking free O2, referred to as a weakly reduced atmo-
sphere, associated with volcanic activities. Liquid water is believed to have existed
on the earth’s surface. A large amount of CO2 or other greenhouse gases is likely to
have evolved to compensate for the faint young sun at about 3.5–3.8 BY. It has been
suggested that the biota played an integral role in controlling atmospheric CO2. As a
consequence of photosynthesis and organic carbon burial, atmospheric O2 levels rose
naturally. The major increase appears to have occurred between about 1.9 and 2.2 BY.
The level of free O2 is also believed to be associated with the formation of the ozone
layer that provided an effective screen for ultraviolet solar radiation. In the following,
we define the region of the earth’s atmosphere and discuss its present composition.

3.1.1 Thermal Structure

To describe the interaction of the earth’s atmosphere with solar radiation, we must first
understand the atmosphere’s composition and structure. For the purpose of defining
the region of the atmosphere associated with the absorption and scattering of sun-
light, we first present the vertical temperature profile for the standard atmosphere,
which is shown in Fig. 3.1. This profile represents typical conditions in the mid-
latitude regions. According to the standard nomenclature defined by the International
Union of Geodesy and Geophysics (IUGG) in 1960, the vertical profile is divided into

65
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Figure 3.1 Vertical temperature profile after the U.S. Standard Atmosphere and definitions of atmo-
spheric nomenclature.

four distinct layers as displayed in Fig. 3.1. These are the troposphere, stratosphere,
mesophere, and thermosphere. The tops of these layers are called the tropopause,
stratopause, mesopause, and thermopause, respectively.

The troposphere is characterized by a decrease in temperature with respect to
height from a mean surface temperature of about 288 K to a temperature of about
220 K with a typical lapse rate of 6.5 K km−1. The temperature structure in this layer
is a consequence of the radiative balance and the convective transport of energy from
the surface to the atmosphere. Virtually all water vapor, clouds, and precipitation are
confined in this layer. The stratosphere is characterized by an isothermal layer from the
tropopause to about 20 km, above which the temperature increases to the stratopause
with a temperature of about 270 K. Ozone occurs chiefly in the stratosphere. In
addition, thin layers of aerosol are observed to persist for a long period of time within
certain altitude ranges of the stratosphere. The state of the stratosphere is primarily
determined by the absorption of solar fluxes by ozone and through the emission
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of infrared fluxes by carbon dioxide. Like the troposphere, the temperatures in the
mesosphere decrease with height from about 50 to 85 km. Above this height and
extending upward to an altitude of several hundred kilometers lies the thermosphere
where temperatures range from 500 K to as high as 2000 K, depending on the level
of solar activity. The outermost region of the atmosphere above the thermosphere is
called the exosphere.

Atmospheric nomenclature is customarily derived from its thermal state, as just
defined. However, there is practically no physical distinction between the stratosphere
and the mesosphere. In recent years, the atmosphere has been defined by the following
terms: lower atmosphere (troposphere), middle atmosphere (stratosphere and meso-
sphere), and upper atmosphere (above 80 km). Moreover, the lowest 1 km or so of
the atmosphere differs from the remaining troposphere in that interactions with the
surface are strong and significant. This is referred to as the planetary boundary layer.

3.1.2 Chemical Composition

The earth’s atmosphere is presently composed of two groups of gases, one with nearly
permanent concentrations and another with variable concentrations. The atmosphere
also contains various kinds of aerosols, clouds and precipitation, which are highly
variable in space and time. Table 3.1 lists the chemical formulas and volume ratio
for the concentrations of permanent and variable gases. Nitrogen, oxygen, and argon
account for more than 99.96% of the atmosphere by volume. The permanent gases
have virtually constant volume ratios up to an altitude of about 60 km.

Although listed as a permanent constituent, the carbon dioxide concentration has
been increasing by about 0.4% per year as a result of the combustion of fossil fuels,

Table 3.1

The Composition of the Atmospherea

Permanent constituents Variable constituents

Constituent % by volume Constituent % by volume

Nitrogen (N2) 78.084 Water vapor (H2O) 0–0.04
Oxygen (O2) 20.948 Ozone (O3) 0–12 × 10−4

Argon (Ar) 0.934 Sulfur dioxide (SO2)b 0.001 × 10−4

Carbon dioxide (CO2) 0.036 Nitrogen dioxide (NO2)b 0.001 × 10−4

Neon (Ne) 18.18 × 10−4 Ammonia (NH3)b 0.004 × 10−4

Helium (He) 5.24 × 10−4 Nitric oxide (NO)b 0.0005 × 10−4

Krypton (Kr) 1.14 × 10−4 Hydrogen sulfide (H2S)b 0.00005 × 10−4

Xenon (Xe) 0.089 × 10−4 Nitric acid vapor (HNO3) Trace
Hydrogen (H2) 0.5 × 10−4 Chlorofluorocarbons Trace
Methane (CH4) 1.7 × 10−4 (CFCl3, CF2Cl2
Nitrous oxide (N2O)b 0.3 × 10−4 CH3CCl3, CCl4, etc.)
Carbon monoxide (CO)b 0.08 × 10−4

aAfter the U.S. Standard Atmosphere (1976) with modifications.
bConcentration near the earth’s surface.
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absorption and release by the oceans, and photosynthesis. In addition, a number
of measurement series indicate that the atmospheric methane concentration, with a
present value of ∼1.7 parts per million by volume (ppmv), has increased by 1–2%
per year and that it may have been increasing for a long period of time. The most
likely cause of the increase in the CH4 concentration is the greater biogenic emis-
sions associated with a rising human population. Rice paddies seem to be another
prime source of CH4. There is no direct evidence of an increase in carbon monoxide
concentration. However, deforestation, biomass burning, and modification of CH4

sources could lead to changes in the atmospheric CO concentration. There is also
some evidence of an increase in nitrous oxide. A possible global increase of ∼0.2%
per year in N2O has been suggested. This increase is attributed to the combustion of
fossil fuels and, in part, to fertilizer denitrification.

The amounts of variable gases listed in Table 3.1 are small, but they are extremely
important in the radiation budget of the atmosphere. Water vapor is the major radia-
tive and dynamic element in the earth’s atmosphere. The H2O concentration varies
significantly with both space and time. The spatial distribution of tropospheric H2O
is determined by the local hydrological cycle via evaporation, condensation, and pre-
cipitation, and by large-scale transport processes. Specific humidity decreases rapidly
with pressure, almost following an exponential function. Specific humidity also de-
creases with latitude. More than 50% of water vapor is concentrated below ∼850 mb,
while more than 90% is confined to the layers below ∼500 mb. The variability of the
H2O concentration shows a bimodal distribution with a maximum in the subtropics
of both hemispheres below ∼700 mb. The variability is very small in the equato-
rial region and poleward of ∼60◦. The stratospheric H2O concentration is relatively
small, with a value of ∼3–4 ppmv in the lower stratosphere. It has been suggested
that H2O in the lower stratosphere is controlled by the temperature of the tropical
tropopause, and by the formation and dissipation of cirrus anvils due to outflow from
cumulonimbus.

The ozone concentration also varies significantly with space and time, but ozone
occurs principally at altitudes from∼15 to 30 km, an area referred to as the ozone layer.
The maximum ozone concentration occurs at ∼20–25 km, depending on latitude and
season. Atmospheric ozone is continually created and destroyed by photochemical
processes associated with solar ultraviolet radiation. The absorption of deadly solar
ultraviolet radiation by the ozone layer is essential to life on earth. Many photo-
chemical reactions associated with O3 involve H2O, CH4, and CO. Total ozone varies
significantly in terms of latitude and season, with the maximum occurring during the
polar night.

Nitrogen oxides (NOx= NO, NO2) appear to be important in the determination of
both tropospheric and stratospheric O3 concentrations. Atmospheric NOx are emitted
by transportation and combustion processes at the surface and by high-flying aircraft
in the upper troposphere and lower stratosphere. In the stratosphere, the major source
of NOx is the dissociation of N2O by excited oxygen atoms. In the lower atmosphere,
the major source of NOx appears to be the anthropogenic combustion of fossil fuels
and biomass burning.
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Chlorofluorocarbons are also recognized as presenting a potential threat to the
ozone layer. Large amounts of these chemicals are produced by industry and are
used in solvents, refrigerants, and spray-can propellants. Chlorofluorocarbons include
CFCl3 (CFC-11), CF2Cl2 (CFC-12), CF3Cl (CFC-13), CF3CCl3 (CFC-113), CF4CCl2
(CFC-114), CF2ClCF3 (CFC-115), CHF2Cl (CFC-22), CH3Cl, and CCl4.

Sulfur dioxide in the stratosphere is largely produced by volcanic eruptions. SO2

and other sulfur-based gases are believed to be the primary precursors of stratospheric
aerosols. Emissions of SO2 from the surface may be important in the formation of
tropospheric aerosols as well and, hence, related to the production of acid rain through
cloud and precipitation processes. Figure 3.2 shows representative vertical profiles of
the gases listed in Table 3.1 for mean midlatitude conditions.

The atmosphere continuously contains aerosol particles ranging in size from∼10−3

to ∼20 μm. These aerosols are known to be produced by natural processes as well
as by human activity. Natural aerosols include volcanic dust, smoke from forest fires,
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Figure 3.2 Representative vertical profiles of mixing ratios of selected species for midlatitude
conditions.



70 3 Absorption and Scattering of Solar Radiation in the Atmosphere

particles from sea spray, windblown dust, and small particles produced by the chem-
ical reactions of natural gases. Primary man-made aerosols include particles directly
emitted during combustion processes and particles formed from gases emitted during
combustion. The atmospheric aerosol concentration varies with locality; the largest
concentrations generally occur in urban and desert areas. In normal conditions, the
background aerosol concentration has a visibility of ∼20–50 km. Aerosol concen-
trations generally decrease rapidly with height in the troposphere. Some aerosols are
effective condensation and ice nuclei upon which cloud particles may form. For the
hygroscopic type, the size of the aerosol depends on relative humidity. Thin layers
of aerosols are observed to persist for a long period of time in some altitudes of the
stratosphere, as noted previously.

Clouds are global in nature and regularly cover more than 50% of the sky. There
are various types of clouds. Cirrus in the tropics and stratus in the Arctic and near
the coastal areas are climatologically persistent. The microphysical composition of
clouds in terms of particle size distribution and cloud thickness varies significantly
with cloud type. Clouds can also generate precipitation, a discrete event generally
associated with midlatitude weather disturbances and tropical cumulus convection.

3.2 Atmospheric Absorption

Understanding the atmospheric absorption produced by the various molecules listed
in Table 3.1 requires an understanding of their molecular structure. Consider first
the diatomic structure (N2, O2, CO). Its two nuclei can only move toward and away
from each other during vibration. Thus, diatomic molecules have but one vibrational
mode, known as symmetric stretch and denoted by ν1. Because of symmetrical charge
distributions, N2 and O2 molecules lack a permanent dipole moment that could acquire
oscillating momentum during vibration. As a result, they have little radiative activity
in the visible and infrared regions (see also Subsection 1.3.1.2).

For triatomic molecules with a linear symmetrical configuration (CO2, N2O), there
are three vibrational modes: ν1 for symmetric stretch, ν2 for bending motion, and ν3

for antisymmetric stretch, as shown in Fig. 3.3. As a result of their linear symmetry,
the CO2 molecules have no permanent electric dipole moment. Because of vibrational
symmetry, the symmetric stretch mode, ν1, is radiatively inactive at its fundamental,
although it has been identified in the Raman spectrum near 7.5 μm. The bending
mode, ν2, consists of ν2a and ν2b vibrations at the same frequency, referred to as
degenerate, as noted in Subsection 1.3.1.2. The triatomic structure for H2O and O3

molecules forms an isosceles triangle that is obtuse, referred to as the asymmetric
top (bent triatomic) configuration. This molecular shape has three fundamental vi-
bration modes, as shown in Fig. 3.3 (Herzberg, 1945). Not shown in the figure is the
CH4 molecule, which has a spherical top configuration, no permanent electric dipole
moment, and four fundamental vibration modes.

The rotation of a rigid body is defined by its center of gravity with respect to
three orthogonal axes. The axes of rotational freedom of linear and asymmetric top
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Vibration Modes

CO2, N2O

Symmetric Bending Antisymmetric

ν1 ν2 ν3

H2O, O3

Rotation

Linear Triatomic: CO2, N2O Asymmetric Top (bent triatomic): H2O, O3

c.g. c.g.

N2, O2, CO

Linear Diatomic:  N2, O2, CO

Figure 3.3 Vibrational modes of diatomic and triatomic atmospheric molecules and the axes of
rotational freedom for linear and asymmetric top molecules.

molecules are displayed in Fig. 3.3. A diatomic and a linear triatomic molecule have
two equal moments of inertia and two degrees of rotational freedom. Asymmetric
top molecules have three unequal moments and three degrees of rotational freedom.
Molecular structures of greater complexity have additional degrees of freedom.

As discussed in Section 2.3.1, electrons can be removed from an orbit if a charac-
teristic amount of energy is available. This amount with respect to the ground level is
called the ionization potential. For atoms and molecules with more than one electron,
the ionization potential usually refers to the most loosely bound electron, the one
that requires the least energy for removal. Likewise, a certain amount of energy can
dissociate or separate the atoms and is referred to as the dissociation potential.

Electronic energy is closely related to vibrational energy because both derive from
the elastic valence bonds that bind the atoms into a molecular entity. The sign and
magnitude of the force between two atoms in a molecule depend on two factors: the
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Figure 3.4 Illustrative potential energy curves for two electronic states of a diatomic molecule. The
horizontal lines in the potential well represent vibrational energy levels.

distance between the two nuclei and their electronic configuration. It is customary
to represent the dependence of this force on the internuclear distance as a potential
curve, with potential energy as the ordinate and distance as the abscissa, as shown in
Fig. 3.4 in which two possible potential curves are displayed schematically. These two
curves are representative of the ground and excited states of a diatomic molecule. At
large distances the two atoms of a molecule exert no significant attractive or repulsive
force on one another. As the atoms approach one another in the ground state of the
molecule, they begin to exert attractive force, as shown by the decrease in potential
energy. The ground electronic state of the molecule exhibits maximum stability at the
minimum in the potential curve that represents a stable bound configuration of the
molecule. As the distance becomes smaller, the atoms begin to repel one another so
that potential energy increases.

When a high-energy photon is absorbed, the electron configuration changes to one
that has potential energy even when the nuclei are at equilibrium distance. This is
a transition to an excited state whose potential energy is represented by the upper
curve. The energy gain due to the transition is given by the difference between the
two minima. Also shown are the vibrational levels denoted by the horizontal lines in
the potential well.

As noted earlier and as shown in Fig. 3.4, the absorption of a photon of appro-
priate energy can lead to the excitation of a molecule from one electronic state to
another. If the excited state is unstable, two possibilities may take place: the molecule
may decompose into its constituent atoms and photoionization may also occur. At
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atmospheric temperatures, most molecules are in the ground vibrational state. Possi-
ble transitions are denoted by the vertical lines labeled 1 and 2 in Fig. 3.4. Transition 1
leads from the ground state to a state that is not quantized, denoted by the dissociation
level, which has more energy than the quantized level. Thus, a continuum of wave-
lengths near the energy associated with transition 1 are possible. The spectrum should
then consist of a smooth continuum at short wavelengths above the dissociation limit.
Transition 2, on the other hand, requires absorption into a specific vibrational level
of the upper electronic state. It is quantized at the energy level defined by transition
2. The spectra corresponding to these transitions are then shown at discrete wave-
lengths. Many absorption processes associated with diatomic molecules are largely
a combination of electronic and vibrational transitions that occur in the ultraviolet
(UV), visible, and near infrared (IR) regions. As noted in Subsection 1.3.1.2, it is
customary to refer to transitions as forbidden and allowed. However, even highly
forbidden transitions occur under certain conditions.

As discussed in Section 1.1.4, the strength of absorption is customarily represent-
ed by cross section σa in units of cm2. Also frequently used is the absorption coeffi-
cient k in units of (cm atm)−1. The two are related through the Loschmidt’s number,
N0(= 2.687 × 1019 particles cm−3 at standard temperature of 273 K and standard
pressure of 1013 mb), and the fact that k = σa · N0.

3.2.1 Absorption in the Ultraviolet

3.2.1.1 MOLECULAR NITROGEN

The UV absorption spectrum of the most abundant gas in the atmosphere consists
of a band system from about 1450 to 1120 Å, referred to as the Lyman–Birge–
Hopfield bands, associated with the forbidden ground-state transition. Dissociation
and ionization continua have been observed below 800 Å. From about 1000 to 850 Å,
the nitrogen spectrum consists of various sharp bands whose absorption coefficients
are highly variable. Absorption of N2 in the solar spectrum is generally considered to
be insignificant. The photodissociation of N2 in the atmosphere plays a minor role in
atmospheric chemistry below 100 km.

3.2.1.2 MOLECULAR OXYGEN

The UV absorption spectrum of O2 begins with the weak Herzberg band between
2600 and 2000 Å, due primarily to the forbidden ground-state transition and disso-
ciation continuum, which lead to the formation of two oxygen atoms in the ground
3P state. Absorption by this band system is weak and of little importance in the ab-
sorption of solar radiation because of overlap with the much stronger O3 bands in
this spectral region. It is, however, considered to be of significance in the formation
of ozone. Adjacent to the Herzberg continuum are the Schumann–Runge bands pro-
duced by ground-state transitions that occupy the spectral region from 2000 to 1750
Å. At 1750 Å, the bands converge to a stronger dissociation continuum in which one
of the oxygen atoms is formed in the excited 1D state. Referred to as the Schumann–
Runge continuum, this extends to about 1300 Å and represents the most important
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Figure 3.5 Absorption cross section of ozone and molecular oxygen in the ultraviolet spectral region.
Data taken from Brasseur and Solomon (1986), Vigroux (1953), and Griggs (1968).

absorption spectrum of O2. At shorter wavelengths some diffuse bands occur, which
have not yet been identified. These are interspersed with a series of windows allow-
ing some wavelengths to penetrate deeply into the atmosphere. Of particular interest
is the Lyman α line located at 1216 Å (see the solar spectrum in Fig. 2.9), which
happens to lie in one of the windows. Between 850 and 1100 Å are a series of dis-
tinct Rydberg bands, associated with transitions between excited states, known as the
Hopfield bands. Below about 1026 Å, O2 absorption is in the form of an ionization
continuum. The spectral distribution of the absorption cross section of O2 is shown in
Fig. 3.5.

Because of the absorption of solar UV radiation, some of the oxygen and nitrogen
molecules in the upper atmosphere undergo photochemical dissociation into atomic
oxygen and nitrogen. Atomic nitrogen exhibits an absorption spectrum from about
10 to about 1000 Å. Although atomic nitrogen probably is not abundant enough to
be a significant absorber in the upper atmosphere, it may play an important role in
the absorption of UV radiation in the thermosphere. Atomic oxygen also shows an
absorption continuum in the region of 10 to 1000 Å. Because of the absorption of
solar UV radiation, a portion of molecular and atomic oxygen and nitrogen becomes
ionized. The ionized layers in the upper atmosphere are formed mainly as a result of
these processes.
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3.2.1.3 OZONE

The absorption of ozone in the solar spectral region is due to electronic transitions.
The strongest ozone bands are the Hartley bands, which cover the region from 2000
to 3000 Å and are centered at 2553 Å. The absorption of solar flux in these ozone
bands takes place primarily in the upper stratosphere and in the mesosphere. The weak
bands between 3000 and 3600 Å have more structure and are called the Huggins bands.
Ozone also shows weak absorption bands in the visible and near-IR regions from about
4400 to 11,800 Å. These bands are referred to as Chappuis bands. The absorption
coefficients in these bands are slightly dependent upon temperature. They have been
measured by a number of earlier researchers (Inn and Tanaka, 1953; Vigroux, 1953)
and more recently by Molina and Molina (1986) and Anderson and Mauersberger
(1992). Absorption cross sections of the preceding three O3 bands are also displayed
in Fig. 3.5.

3.2.1.4 OTHER MINOR GASES

The NO2 molecule absorbs solar flux in the UV as well as in the visible section of
the wavelength range between 0.2 and 0.7μm. Accurate absorption cross sections are
required for the retrieval of aerosols and ozone using ground-based sunphotometer
measurements (see Section 7.2.1). The UV absorption cross sections of NO, N2O,
H2O, CO2, and other trace gases listed in Table 3.1 have been measured by numerous
researchers and they are important in the discussion of atmospheric chemistry and
ionization in the middle and upper atmospheres. However, either because they occur
in too small quantities or because they are dissociated at high levels, these gases
absorb relatively little energy in the UV and are overshadowed by the absorption of
O2 and O3. The most important absorption bands in the UV particularly associated
with photochemical processes are listed in Table 3.2.

3.2.1.5 ABSORPTION OF SOLAR RADIATION

In reference to Section 1.4.2, consider an atmosphere that is plane-parallel and
nonscattering. We may define a normal absorption optical depth for a monochromatic

Table 3.2

Important Absorption Spectral Regions Associated with Photochemistry in the Atmosphere

Wavelength range (Å) Absorber Principal location

1000–1750 O2 Schumann–Runge continuum Thermosphere
O2 1216 Lyman α line Mesosphere

1750–2000 O2 Schumann–Runge bands Mesosphere
2000–2420 O2 Herzberg continum; O3 Hartley band Stratosphere
2420–3100 O3 Hartley band; O(1D) formation Stratosphere
3100–4000 O3 Huggins bands; O(3P) formation Stratosphere/

troposphere
4000–8500 O3 Chappuis bands Troposphere
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wavelength and for a given absorber as follows:

τ (z) =
∫ ∞

z
n(z)σadz, (3.2.1)

where σa is the absorption cross section (cm2), and n is the number density (cm−3)
for a specific absorber. The attenuation of solar flux that enters the atmosphere at a
solar zenith angle of θ0 is given by

Fact(z) = F�e−τ (z)/μ0 , (3.2.2a)

where μ0 = cos θ0 and F� is the solar irradiance at the top of the atmosphere. The
flux here is in reference to the direct solar beam without accounting for the cosine
dependence [see Eq. (1.1.8)] and is referred to as actinic flux associated with photo-
dissociation, defined by

Fact(z) =
∫ 2π

0

∫ 1

−1
I (z;μ, φ) dμ dφ, (3.2.2b)

with units of photons cm−2 sec−1. This definition can be applied to both direct and
diffuse beams.

The solar energy absorbed per time and volume along the direction of the so-
lar beam, referred to as the volume absorption rate (photons cm−3 sec−1), can be
expressed by

q(z) = d Fact(z)

dz/μ0
= F�n(z)σae−τ (z)/μ0

= J (z)n(z), (3.2.3a)

where the monochromatic photodissociation coefficient, J (z)(sec−1), is defined by

J (z) = σa Fact(z). (3.2.3b)

To gain a physical insight into solar attenuation, consider an atmosphere containing
a concentration of an absorber that varies exponentially with altitude according to a
scale height, H (Exercise 3.1), in the form

n(z) = n0e−z/H , (3.2.4)

where n0 is the value of n at some arbitrary level at which z is taken to be zero. On
substituting Eq. (3.2.4) into Eqs. (3.2.3a) and (3.2.1), we obtain

q(z) = F�σan0 exp

(
− z

H
− 1

μ0
σan0 He−z/H

)
. (3.2.5a)

We may define a level, z0, at which the normal absorption optical depth is equal to 1
such that

τ (z0) = 1, i.e., σa Hn0 = ez0/H . (3.2.5b)
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Figure 3.6 Normalized rate of energy deposition as a function of normalized height for a number of
solar zenith angles (see text for the definition of r and z1).

By carrying out some straightforward analyses, we find

r (z1) = q(z)

q[z0(μ0 = 1)]
= exp

(
1 − z1 − 1

μ0
e−z1

)
, (3.2.6)

where z1 = (z − z0)/H (Exercise 3.2).
The function r (z1) is illustrated in Fig. 3.6 for a number of solar zenith angles θ0.

This function displays a well-defined layered structure, referred to as the Chapman
layer (Chapman, 1931). The small value of q(z) at the top level is associated with
the extremely small value of n(z) due to exponential falloff and a constant J (z) value
at the top of the atmosphere. Deep down in the atmosphere n(z) increases but J (z)
declines more rapidly, again leading to a small value of q(z), as shown in Eq. (3.2.3a).
The rate of energy deposition is also related to the solar zenith angle. When the sun
is low, the maximum deposition level moves higher because of the increase in the
effective optical depth. As demonstrated in Eq. (3.2.5b), the optical depth of unity is
the level at which maximum energy deposition occurs.

The preceding discussion of the Chapman layer is limited to one particular con-
centration. In practice, however, the combined effects of several absorbing gases must
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be accounted for. Thus, the total absorption optical depth for a given wavelength is

τ (z, λ) =
∑

i

∫ ∞

z
ni (z)σa(ni , λ) dz, (3.2.7a)

and the photodissociation coefficient defined in Eq. (3.2.3b) for a spectral interval
can be written as

Ji (z) =
∫
	λ

σa(ni , λ)F�(λ)e−τ (z,λ)/μ0 dλ. (3.2.7b)

When the solar zenith angle is larger than about 75◦, as in the case of sunrise or
sunset, the effect of the earth’s curvature must be accounted for in the calculation of
the effective optical depth. In this case a more complicated function should replace
1/μ0 (Exercise 3.3).

To illustrate the relative absorption effects of oxygen and nitrogen molecules,
Fig. 3.7 shows the reduction of solar flux when it penetrates the atmosphere. The curve
represents the altitude where the optical depth is unity. Alternately, we can express
Fact = F�e−1, referred to as the e-folding transfer. The EUV (extreme ultraviolet)
fluxes are absorbed at high altitudes, resulting in the dissociation and ionization of
the major constituents in the thermosphere and leading to the formation of the layers
of the ionosphere. At longer wavelengths, from 1750 to about 2400 Å, the solar flux
penetrates deeper into the atmosphere and is chiefly absorbed by O2 in the Schumann–
Runge band and Herzberg continuum (Table 3.2), leading to the production of O and

0 500 1000 1500 2000 2500 3000

50

100

150

Wavelength (A)

H
ei

gh
t (

km
)

o

Lyman α

N2, O2, N, O

O2

O3

0

Figure 3.7 Depth of penetration of solar UV radiation in the earth’s atmosphere for μ0 = 1 and an
averaged ozone profile. The line indicates the height where the optical depth is equal to 1 (data taken from
Herzberg, 1965).
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O3. Maximum ozone absorption occurs at about 50 km, associated with absorption
in the Hartley band in the wavelength range 2400–3100 Å. Above 3100 Å, the atmo-
sphere is relatively transparent except for Rayleigh scattering and scattering produced
by aerosols and clouds.

3.2.2 Photochemical Processes and the Formation of Ozone Layers

Because of the absorption spectrum of various molecules and atoms in the solar UV
region, a great variety of photochemical processes take place in the upper and middle
atmospheres. Those involving various forms of oxygen are critical in determining
the amount of ozone in the stratosphere. The classical photochemistry of the middle
atmosphere concerning the ozone problem was first postulated by Chapman (1930),
who described the following five basic reactions.

Ozone is basically formed by the three-body collision

O + O2 + M
K12−→ O3 + M, (3.2.8a)

where M is any third atom or molecule, and K12 is the rate coefficient involving
O and O2. Atomic oxygen is produced when the oxygen molecule is dissociated by
a quantum of solar energy

O2 + hν̃(λ < 2420 Å)
J2−→ O + O, (3.2.8b)

where J2 is the dissociating quanta per molecule absorbed by O2. Ozone is destroyed
by photodissociation,

O3 + hν̃(λ < 11, 000 Å)
J3−→ O + O2, (3.2.8c)

as well as by collision with oxygen atoms,

O3 + O
K13−→ 2O2, (3.2.8d)

where J3 is the dissociating quanta per molecule absorbed by O3, and K13 denotes
the rate coefficient involving O3 and O. At the same time, oxygen atoms generated
by reactions (3.2.8b) and (3.2.8c) may undergo a three-body collision,

O + O + M
K11−→ O2 + M, (3.2.8e)

with K11 denoting the rate coefficient involving O and O. Normally, the reaction
denoted in (3.2.8e) may be neglected below 50 to 60 km.

The preceding five reactions take place simultaneously. If an equilibrium state is
reached, the number of ozone molecules formed exactly equals the number destroyed
in unit volume and time. To evaluate the equilibrium amount of ozone, let [O], [O2],
[O3], and [M] be the number densities, respectively, for O, O2, and O3, and air
molecules. Based on the observed concentrations of oxygen species, almost all oxygen
below 70 km is in the form of O2, which is fairly constant with a value of about 21%.
Thus, below 70 km, [O2] may be treated as an independent variable. It follows that the
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photochemical processes given by Eqs. (3.2.8a)–(3.2.8c) may be expressed in terms
of the rate of change of the number density of O and O3 in the forms:

∂[O]

∂t
= −K12[O][O2][M] + 2J2[O2] − K13[O][O3]

+J3[O3] − 2K11[O][O][M], (3.2.9a)

∂[O3]

∂t
= K12[O][O2][M] − K13[O][O3] − J3[O3], (3.2.9b)

with the photodissociation coefficients given by

J2(z) =
∫ λ1

0
σa(O2, λ)F�(λ)e−τ (z,λ)/μ0 dλ, (3.2.10a)

J3(z) =
∫ λ2

0
σa(O3, λ)F�(λ)e−τ (z,λ)/μ0 dλ, (3.2.10b)

where λ1 = 0.2420μm and λ2 = 1.1μm.
On adding Eqs. (3.2.9a) and (3.2.9b), we find

∂

∂t
([O] + [O3]) = 2J2[O2] − 2K13[O][O3]. (3.2.11a)

Below 75 km, K13[O][O3]� K12[O][O2][M], so that Eq. (3.2.9b) may be simplified
to give

∂[O3]

∂t
∼= −J3[O3] + K12[O][O2][M]. (3.2.11b)

Under the assumption of photochemical equilibrium, ∂[O]/∂t = ∂[O3]/∂t = 0. Thus,
from Eqs. (3.2.11a) and (3.2.11b), the solution for ozone is given by

[O3]eqb
∼=
(

J2 K12

J3 K13
[M]

)1/2

[O2]. (3.2.12)

At low levels, [O3] is small since J2 is small. At high levels, [O3] is also small because
[O2] and [M] are both small. [O3] has a maximum in the stratosphere. Exercise 3.4
requires the calculation of [O3] using Eq. (3.2.12).

Figure 3.8 depicts the equilibrium ozone concentration determined from the clas-
sical theory. In the same diagram, the observational range of ozone number densities
(shaded area) is also shown. It is evident that the classical theory overestimates the
ozone number densities at almost all heights. The total ozone in an atmospheric col-
umn based on theoretical calculations exceeds the observed values by as much as a
factor of three or four. Obviously, additional loss mechanisms are required to explain
the observed data.

In the early 1970s, two independent theoretical analyses suggested that ozone can
be destroyed by minute concentrations of chemical species associated with human
activities. These species are chlorine atoms in the chlorine molecule and nitrogen
atoms in the nitrogen molecule. The importance of chlorine was established by Molina
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Figure 3.8 Observational range in ozone number densities and theoretical calculations for equilibrium
ozone number densities (data from Leovy, 1969, 20–80 km; Logan et al., 1978, 0–50 km).

and Rowland (1974) from their study of the chlorofluorocarbons (CFCs) produced by
refrigerants and spray-can propellants. Ozone reduction from the effect of nitrogen
oxides was first reported by Crutzen (1970) and that from the exhaust of a fleet of
supersonic transports was documented by Johnston (1971).

The catalytic destruction reactions of ozone have been found to be

O3 + hν̃ −→ O + O2, (3.2.13a)

O + XO −→ X + O2, (3.2.13b)

X + O3 −→ XO + O2, (3.2.13c)

net 2O3 + hν̃ −→ 3O2,

where X may be nitric oxide (NO), chlorine (Cl), hydroxyl radical (OH), or atomic
hydrogen (H). The possible sources of NO and OH are the following reactions:

O3 + hν̃(λ < 3100 Å) −→ O(1D) + O2, (3.2.14a)

O(1D) + M −→ O + M, (3.2.14b)

O(1D) + N2O −→ 2NO, (3.2.14c)

O(1D) + H2O −→ 2OH, (3.2.14d)
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where O(1D) denotes the excited atomic oxygen in the 1D state, which is essential
to these reactions. It is clear that the high concentration of ozone from Chapman’s
theoretical prediction is due to the neglect of these additional loss mechanisms and
possibly others. If we introduce reactions involving (3.2.13a)–(3.2.14d), the calculated
equilibrium ozone concentration labeled as the modified theory appears to closely
match the observed values (Logan et al., 1978).

Ozone is a natural trace ingredient of the atmosphere that occurs at an average
concentration of about 3 parts per million by volume. Its concentration varies with
season and latitude and is modulated by radiative and dynamic processes in the middle
atmosphere. High intensities of UV radiation shorter than 3200 Å, which are harmful
to nearly all forms of life, are largely (∼99%) screened out by ozone. It has been
postulated that surface life on earth did not evolve until after the ozone layer was
formed. The effect of small increases in the intensity of ultraviolet radiation due to
the reduction of ozone by human activities has been a subject of extensive scientific
research.

More recently, there has been continuous concern with the question of whether the
ozone layer in the stratosphere is actually thinning globally because of the increased
use of CFCs. A decrease in Antarctic ozone during the austral spring, just after the
end of the Antarctic polar night, has been discovered. Data from the British Antarctic
Survey collected at the Halley Bay station indicate a 40% total ozone decrease during
the month of October between 1977 and 1984 (Farman et al., 1985). This decrease
has been confirmed by data derived from the Total Ozone Mapping Spectrometer
and the Solar Backscatter Ultraviolet Spectrometer on board Nimbus 7. The largest
percentage decrease corresponds roughly to the polar vortex, covering approximately
the entire area of the Antarctic continent. It has been suggested that the so-called
ozone hole is the precursor of a major decrease in the ozone layer worldwide caused
by the addition of CFCs to the atmosphere. It has also been noted that the ozone hole
appears to have a dynamic origin and is related to the rather special meteorological
conditions prevalent over Antarctica each October. The cold polar vortex traps the air
parcels for weeks, during which time polar stratospheric clouds are formed. These
clouds may facilitate certain chemical reactions that favor the destruction of ozone
(Toon and Turco, 1991).

3.2.3 Absorption in the Visible and Near Infrared

3.2.3.1 MOLECULAR OXYGEN AND OZONE

Molecular oxygen has absorption bands in the visible and near-IR. The ground
electronic state of O2 is designated by X and two excited states by a and b. The
a←X and b←X transitions coupled with vibrational–rotational transitions produce
weak absorption lines in the near-IR and visible, respectively. These are referred to as
infrared bands and red bands. The most important red bands are the A band centered
at 0.762 μm (0←0), the B band at 0.688 μm (1←0), and the γ band at 0.628 μm
(2←0). See Fig. 3.4 for the meaning of b←X (ground state electronic transition)
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and 0←0 (vibrational transition). Because the positions of these three bands are near
the peak of the solar spectrum, absorption of the solar flux due to O2 in the visible
is important in the middle and upper atmospheres and could affect the solar flux
available at the surface and in the troposphere. Line-by-line information for O2 is
available and a precise computation of the band absorption can be performed. The
oxygen A band has been utilized for the remote sensing of the level of cloud pressure
from space. Absorption of O3 in the visible and near-IR, the Chappuis band, was
discussed in Subsection 3.2.1.3.

3.2.3.2 WATER VAPOR

The water vapor molecule has an asymmetric top (bent triatomic) configuration
with the oxygen atom in the middle and a bond angle of 104.45◦, as shown in Fig. 3.3.
The distance between the oxygen and hydrogen atoms is 0.958 Å. It has three rota-
tional constants. The hydrogen atom has two isotopic forms, 1H and 2D, with relative
abundances of 99.9851 and 0.0149%, respectively. The isotopic forms of water va-
por that are important in infrared radiative transfer are HH16O, HH18O, HD16O, and
HD18O. Each of these molecules has a different vapor pressure, and their abundances
are a function of the hydrological cycle. The H2O molecule has three fundamental
vibration modes (Fig. 3.3). The bending vibration, ν2, has the lowest wavenumber;
both ν1 and ν3 have wavenumbers about twice the wavenumber for ν2. The ν2 fun-
damental band of H2O is centered at 6.25 μm and is important in thermal infrared
radiation transfer and remote sensing applications (Section 4.2.1). The ν1 and ν3 fun-
damentals of H2O produce bands centered at 3657.05 cm−1 (2.74μm, 100←000) and
3755.93 cm−1 (2.66 μm, 001←000), respectively. These two bands are close to one
another and combine to form a strong band in the solar spectrum, referred to as the
2.7 μm band. The three integers represent the three vibrational quantum numbers
υ1υ2υ3. The ground state is designated by 000. As described in Subsection 1.3.1.2,
the transition from the ground state to the first excited state 001 or 100 is referred
to as the fundamental. The 2ν2 band is centered at 3161.60 cm−1 (3.2 μm band,
020←000) in the tail of the solar spectrum. In addition, the solar spectrum contains
a large number of overtone and combination bands, which arise from ground state
transitions. In the near-IR region, these bands absorb a significant amount of solar
flux in the lower atmosphere. They are centered at 0.94, 1.1, 1.38, and 1.87 μm, and
are commonly identified in groups by the Greek letters (ρ, σ, τ ), φ,�, andω, respec-
tively. Although the overtone and combination bands centered at 0.72 and 0.82 μm
are relatively weak, their contribution to the solar heating of the atmosphere appears
to be not insignificant. There are also a number of H2O lines in the visible region
associated with overtone and combination transitions. However, their contributions
to absorption and the heating rate appear to be quite small.

3.2.3.3 CARBON DIOXIDE

The CO2 molecule has a linear symmetrical configuration, with the carbon atom in
the middle and an oxygen atom on each side, as shown in Fig. 3.3. The length of the
C–O bond in the fundamental vibration is 1.1632 Å and it has one rotational constant.
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The natural isotopes of the carbon atom are 12C and 13C with relative abundances
of 98.892 and 1.108%, respectively. For the oxygen atom, the isotopes are 16O
(99.758%), 17O (0.0373%), and 18O (0.2039%). Thus, several CO2 isotopes are
present in the atmosphere. The most significant of these for the radiation problem
are 12C16O16O, 13C16O16O, and 12C16O18O.

As a result of its symmetrical arrangement, the CO2 molecule has no permanent
dipole moment and no permitted rotation band. The symmetrical stretch mode, ν1,
is radiatively inactive at its fundamental. The bending mode, ν2, produces the most
important band in the thermal infrared: the 15 μm CO2 band. This subject will be
discussed further in Section 4.2.1. Because of asymmetric stretching vibration, the
ν3 fundamental transition has a wavenumber centered at 2349.16 cm−1 (the 4.3 μm
band) for 12C16O16O. In addition, the combination band ν1 + ν3 − 2ν2 is centered at
2429.37 cm−1 and occurs when the ν3 transition originates at the vibrational level
ν = 2 or higher. Because of parallel vibration, the Q branch corresponding to	J = 0
does not appear. There are also a number of bands for the isotopes. The 4.3 μm
CO2 band is in the tail of the solar spectrum and its effect on solar absorption is
insignificant. This band has been used in connection with the 15 μm band for the
nighttime detection of atmospheric temperatures (see Section 7.4.3). Carbon diox-
ide exhibits a number of rather weak overtone and combination bands in the solar
region: 2.0, 1.6, and 1.4 μm. The stronger 2.7 μm band of CO2 overlaps with the
2.7 μm band of H2O and contributes to the absorption of solar flux in the lower
stratosphere.

3.2.3.4 OTHER MINOR GASES

The N2O molecule is linear and asymmetric (NNO). The three fundamentals are
ν1 (1284.91 cm−1), ν2 (558.77 cm−1), and ν3 (2223.76 cm−1). The ν3 band (4.5 μm)
is in the solar region, but is insignificant in solar absorption. There are also four over-
tone and combination bands: 4.06, 3.90, 2.97, and 2.87 μm. The CO molecule has
fundamental (2.34μm) and first-overtone (4.67μm) bands in the solar spectrum. The
CH4 molecule is a spherical top with four independent (ν1, ν2, ν3, ν4) fundamentals.
The ν3 fundamental occurs at 3018.92 cm−1 (3.31 μm). Other overtone and combi-
nation bands are located at 3.83, 3.53, 3.26, 2.37, 2.30, 2.20, and 1.66 μm. The NO2

molecule absorbs solar flux in the wavelength range 0.2–0.7 μm, as pointed out in
Subsection 3.2.1.4. Absorption of solar radiation by the transitional molecules, O2 ·
O2 and O2 · N2, has also been reported (Solomon et al., 1998). A summary of the
preceding absorption bands is given in Table 3.3.

3.2.3.5 TRANSFER OF DIRECT SOLAR FLUX IN THE ATMOSPHERE

The monochromatic downward solar flux density, following the discussion in
Section 1.4.2, may be written as

Fλ(z) = μ0 F�(λ) exp

(
−kλu(z)

μ0

)
, (3.2.15)
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Table 3.3

Solar Absorption Bands of Atmospheric Gases

Species Band (μm) 	ν (cm−1) Major transitions

3.2, 2.7 2500–4500 020, 001, 100
1.87 4800–6200 110, 011
1.38 6400–7600 021, 200, 101
1.1 8200–9400 111

H2O 0.94 10,100–11,300 121, 201, 003
0.82 11,700–12,700 211
0.72 13,400–14,600 221, 202, 301

Visible 15,000–22,600 500, 203

4.3 2000–2400 0001
2.7 3400–3850 1001

CO2 2.0 4700–5200 2001
1.6 6100–6450 3001
1.4 6850–7000 0003

4.74 2000–2300 101
3.3 3000–3100 003

O3 Visible 10,600–22,600 —
UV 29,000–50,000 —

1.58 6300–6350 a←X (0←1)
1.27 7700–8050 a←X (0←0)
1.06 9350–9400 a←X (1←0)

O2 0.76(A) 12,850–13,200 b←X (0←0)
0.69(B) 14,300–14,600 b←X (1←0)
0.63(γ ) 14,750–15,900 b←X (2←0)

O2 · O2 Visible 7600–30,000 —
O2 · N2 1.26 7600–8300 —

4.5 2100–2300 0001
N2O 4.06, 3.9 2100–2800 1200, 2000

2.97, 2.87 3300–3500 0201, 1001

3.83, 3.53
3.31, 3.26 2500–3200 0002, 0101, 0200

CH4 2.37, 2.30
2.20 4000–4600 1001, 0011, 0110
1.66 5850–6100 0020

CO 4.67 2000–2300 1
2.34 4150–4350 2

NO2 Visible 14,400–50,000 —

where kλu represents the optical depth with kλ the absorption coefficient (cm2 g−1).
It is customary to use the path length (g cm−2) to denote the amount of absorber,
particularly for water vapor, in the form

u(z) =
∫ z∞

z
ρa(z′) dz′, (3.2.16)

whereρa denotes the density of the absorbing gas. The flux density here is a hemispheric
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quantity weighted by the cosine of the solar zenith angle. It is this flux density that is
related to the solar heating rate defined in Section 3.5.

Because of the structure of absorption lines, it is important to define the spectral
absorptance, also referred to as absorptivity or absorption, in the form

Aλ̄(u/μ0) =
∫
	λ

(
1 − e−kλu/μ0

) dλ

	λ
, (3.2.17)

where 	λ denotes the spectral interval. If the solar flux variation is small in this
interval, the downward spectral flux density may be expressed by

Fλ̄(z) ∼= μ0 F�(λ̄)[1 − Aλ̄(u/μ0)]. (3.2.18)

Computation of the spectral absorptance is the key to the evaluation of the downward
solar flux in the atmosphere, which can be done by line-by-line techniques or sim-
plified methodologies such as the correlated k-distribution method to be introduced
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Figure 3.9 Solar irradiance curve for a 50 cm−1 spectral interval at the top of the atmosphere (see
Fig. 2.9) and at the surface for a solar zenith angle of 60◦ in an atmosphere without aerosols or clouds.
Absorption and scattering regions are indicated. See also Table 3.3 for the absorption of N2O, CH4, CO,
and NO2.
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in Section 4.5. Exercise 3.6 requires the evaluation of spectral absorptance in the
limit of strong line approximation using the Lorentz line shape. The total amount of
water vapor can be estimated by this approximation using the 0.94μm band, which is
the foundation for the determination of precipitable water from sunphotometers (see
Section 7.2).

Figure 3.9 shows the depletion of solar flux in a clear atmosphere. The top curve
is an observed solar irradiance with a spectral resolution of 50 cm−1 at the top of
the earth’s atmosphere as depicted in Fig 2.9. The depletion of solar irradiance in
the UV region (<0.4 μm) is chiefly due to the absorption of molecular oxygen and
ozone discussed previously. In the visible, the depletion of solar flux is caused by the
absorption produced by oxygen red bands, the ozone Chappuis band, and some water
vapor weak bands; but the chief attenuation is associated with Rayleigh scattering
to be discussed in Section 3.3. In the near-IR, the prime absorber is water vapor
with contributions from carbon dioxide in the 2.7 μm band. Other minor absorbers
such as N2O, CO, and CH4 also contribute to the depletion of solar flux but are less
significant. It is evident that water vapor is the most important absorber in the solar
near-IR spectrum, which contains about 50% of solar energy.

3.3 Atmospheric Scattering

3.3.1 Rayleigh Scattering

The simplest and in some ways the most important example of a physical law of
light scattering with various applications is that discovered by Rayleigh (1871). His
findings led to the explanation of the blue color of the sky. In this section we formulate
the scattering of unpolarized sunlight by air molecules and describe its important
application to the atmosphere.

3.3.1.1 THEORETICAL DEVELOPMENT

Consider a small homogeneous, isotropic, spherical particle whose radius is much
smaller than the wavelength of the incident radiation. The incident radiation produces
a homogeneous electric field E0, called the applied field. Since the particle is very
small, the applied field generates a dipole configuration on it. The electric field of the
particle, caused by the electric dipole, modifies the applied field inside and near the
particle. Let E be the combined field, i.e., the applied field plus the particle’s own
field, and further, let p0 be the induced dipole moment. Then we apply the electrostatic
formula to give

p0 = αE0. (3.3.1)

This equation defines the polarizability α of a small particle. The dimensions of E0

and p0 are in units of charge per area and charge times length, respectively, and α

has the dimension of volume. In general, α is a tensor, because the vectors p0 and E0

may not align along the three mutually perpendicular directions. In the very common
case where these two vectors coincide, α is a scalar.
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The applied field E0 generates oscillation of an electric dipole in a fixed direction.
The oscillating dipole, in turn, produces a plane-polarized electromagnetic wave, the
scattered wave. To evaluate the scattered electric field in regions that are far away from
the dipole, we let r denote the distance between the dipole and the observation point,
γ the angle between the scattered dipole moment p and the direction of observation,
and c the velocity of light. According to the classical electromagnetic solution given
by Hertz (1889), the scattered electric field is proportional to the acceleration of the
scattered dipole moment and sin γ , but is inversely proportional to the distance r .
Thus, we have

E = 1

c2

1

r

∂2p
∂t2

sin γ. (3.3.2)

In an oscillating periodic field, the scattered dipole moment may be written in terms
of the induced dipole moment as

p = p0e−ik(r−ct). (3.3.3)

Note that k is the wavenumber, and kc = ω is the circular frequency. By combining
Eqs. (3.3.1) and (3.3.3), Eq. (3.3.2) yields

E = −E0
e−ik(r−ct)

r
k2α sin γ. (3.3.4)

Now we consider the scattering of sunlight by air molecules. Let the plane defined
by the directions of incident and scattered waves be the reference plane (plane of
scattering). Since any electric vector may be arbitrarily decomposed into orthogonal
components, we may choose the two components perpendicular (Er ) and parallel (El)
to the plane of scattering. The sunlight is characterized by the same electric field in
the r and l directions and by a random phase relation between these two components,
and is referred to as natural or unpolarized light (see Section 6.6 for a more advanced
discussion of the representation of polarized light). In this case, we may consider sep-
arately the scattering of the two electric field components E0r and E0l by molecules
assumed to be homogeneous, isotropic, spherical particles. Based on Eq. (3.3.4),
we have

Er = −E0r
e−ik(r−ct)

r
k2α sin γ1, (3.3.5a)

El = −E0l
e−ik(r−ct)

r
k2α sin γ2. (3.3.5b)

Referring to Fig. 3.10, we see that γ1 = π/2 and γ2 = π/2 −�, where� is defined as
the scattering angle, which is the angle between the incident and scattered waves. Note
that γ1 is always equal to 90◦ because the scattered dipole moment (or the scattered
electric field) in the r direction is normal to the scattering plane defined previously.

In matrix form, we may write[
Er

El

]
= −e−ik(r−ct)

r
k2α

[
1 0
0 cos�

] [
E0r

E0l

]
. (3.3.6)
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Figure 3.10 Scattering by a dipole. The incident electric field, a vector, can be arbitrarily decomposed
into a parallel (l) and a perpendicular (r ) component, where each undergoes the scattering by the dipole.
We may select the component that is always perpendicular to the scattering plane that is defined by the
incident and scattering beams (i.e., γ1 = 90◦). All the notations are defined in the text.

A complete description of the intensity of a light beam and its polarized state will
be given in Section 6.6 in which the Stokes parameters are introduced. For the sake
of the continuity of the present discussion, however, we may define the intensity
components (per solid angle) of the incident and scattered radiation in the forms
I0 = C |E0|2 and I = C |E |2, where C is a certain proportionality factor such that
C /r2 implies a solid angle. It follows that Eqs. (3.3.5) and (3.3.6) can be expressed
in the form of intensities as

Ir = I0r k4α2/r2, (3.3.7a)

Il = I0l k4α2 cos2 �/r2, (3.3.7b)

where Ir and Il are polarized intensity components perpendicular and parallel to
the plane containing the incident and scattered waves, i.e., the plane of scattering.
The total scattered intensity of the unpolarized sunlight incident on a molecule in the
direction of � is then

I = Ir + Il = (I0r + I0l cos2 �)k4α2/r2. (3.3.8)

But for unpolarized sunlight, I0r = I0l = I0/2, and by noting that k = 2π/λ, we
obtain

I = I0

r2
α2

(
2π

λ

)4 1 + cos2 �

2
. (3.3.9)

This is the original formula derived by Rayleigh, and we call the scattering of sun-
light by molecules Rayleigh scattering. By this formula, the intensity of unpolarized
sunlight scattered by a molecule is proportional to the incident intensity I0 and is
inversely proportional to the square of the distance between the molecule and the
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point of observation. In addition to these two factors, the scattered intensity also de-
pends on the polarizability, the wavelength of the incident wave, and the scattering
angle. The dependence of these three parameters on the scattering of sunlight by
molecules introduces a number of significant physical features.

3.3.1.2 PHASE FUNCTION, SCATTERING CROSS SECTION, AND POLARIZABILITY

On the basis of Eqs. (3.3.7) and (3.3.9), the intensity scattered by a molecule
depends on the polarization characteristics of the incident light. For vertically (r )
polarized incident light, the scattered intensity is independent of the direction of the
scattering plane. In this case then, the scattering is isotropic. On the other hand,
for horizontally (l) polarized incident light, the scattered intensity is a function of
cos2 �. When the incident light is unpolarized, such as sunlight, the scattered intensity
depends on (1 + cos2 �). The angular scattering patterns in space for the three types
of incident polarization are illustrated in Fig. 3.11. We see that the scattering of
unpolarized sunlight by molecules (Rayleigh scattering) has maxima in the forward
(0◦) and backward (180◦) directions, whereas it shows minima in the side directions
(90◦ and 270◦). Light scattered by particles or molecules is not confined only to
the plane of incidence, but is visible in all azimuthal directions. Because of the
spherical symmetry assumed for molecules, scattering patterns are symmetrical in
three-dimensional space, as demonstrated in Fig. 3.11.

To describe the angular distribution of scattered energy in conjunction with mul-
tiple scattering and radiative transfer analyses and applications for planetary atmo-
spheres, we find it necessary to define a nondimensional parameter called the phase
function, P(cos�), such that∫ 2π

0

∫ π

0

P(cos�)

4π
sin� d� dφ = 1. (3.3.10)

By this definition, the phase function is said to be normalized to unity. Upon per-
forming simple integrations, the phase function of Rayleigh scattering for incident
unpolarized sunlight is given by

P(cos�) = 3

4
(1 + cos2 �). (3.3.11)

Employing the definition of the phase function, Eq. (3.3.9) may be rewritten in the
form

I (�) = I0

r2
α2 128π5

3λ4

P(�)

4π
. (3.3.12)

It follows that the angular distribution of the scattered intensity is directly proportional
to the phase function.

The scattered flux f (or power, in units of energy per time) can be evaluated by
integrating the scattered flux density (I	�) over the appropriate area a distance r
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Figure 3.11 Polar diagram of the scattered intensity for Rayleigh molecules: (1) polarized incident
light with the electric vector perpendicular to the scattering plane, (2) polarized incident light with the
electric vector on the scattering plane, and (3) unpolarized incident light.

away from the scatterer. Thus,

f =
∫
�

(I	�)r2 d�, (3.3.13a)

where r2d� represents the area according to the definition of the solid angle. Insert-
ing the expressions for scattered intensity and the differential solid angle defined in
Eqs. (3.3.12) and (1.1.5), respectively, into Eq. (3.3.13a) and carrying out integrations
over the solid angle of a sphere, we obtain the equivalent isotropically scattered flux
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in the form

f = F0α
2128π5/(3λ4), (3.3.13b)

where the incident flux density F0 is equal to I0	�. Moreover, we may define the
scattering cross section per one molecule as

σs = f/F0 = α2128π5/(3λ4). (3.3.14)

The scattering cross section (in units of area) represents the amount of incident energy
that is removed from the original direction because of a single scattering event such
that the energy is redistributed isotropically on the area of a sphere whose center is the
scatterer and whose radius is r . In terms of the scattering cross section, the scattered
intensity can be expressed by

I (�) = I0
σs

r2

P(�)

4π
. (3.3.15)

This is the general expression for scattered intensity, which is valid not only for
molecules but also for particles whose size is larger than the incident wavelength, as
will be discussed in Section 5.2.

The polarizability α, which was used in the preceding equations, can be derived
from the principle of the dispersion of electromagnetic waves and is given by

α = 3

4πNs

(
m2 − 1

m2 + 2

)
, (3.3.16)

where Ns is the total number of molecules per unit volume and m is the nondimensional
refractive index of molecules. This equation is called the Lorentz–Lorenz formula,
and its derivation is given in Appendix D. The refractive index is an optical parameter
associated with the velocity change of electromagnetic waves in a medium with
respect to a vacuum. Its definition and physical meanings are also given in Appendix D.
Normally, the refractive indices of atmospheric particles and molecules are composed
of a real part mr and an imaginary part mi corresponding, respectively, to the scattering
and absorption properties of particles and molecules. In the solar visible spectrum,
the imaginary parts of the refractive indices of air molecules are so insignificantly
small that absorption of solar radiation by air molecules may be neglected in the
scattering discussion. The real parts of the refractive indices of air molecules in the
solar spectrum are very close to 1, but they depend on the wavelength (or frequency)
of the incident radiation as illustrated in Appendix D. Because of this dependence,
white light may be dispersed into component colors by molecules that function like
prisms. The real part of the refractive index derived in Appendix D [(Eq. D.17)] may
be approximately fitted by

(mr − 1) × 108 = 6432.8 + 2,949,810

146 − λ−2
+ 25,540

41 − λ−2
, (3.3.17)
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where λ is in units of micrometers. Since mr is close to 1, for all practical purposes,
Eq. (3.3.16) may be approximated by

α ≈ 1

4πNs

(
m2

r − 1
)
. (3.3.18)

Thus, the scattering cross section defined in Eq. (3.3.14) becomes

σs = 8π3
(
m2

r − 1
)2

3λ4 N 2
s

f (δ). (3.3.19)

A correction factor f (δ) is added in Eq. (3.3.19) to take into consideration the
anisotropic property of molecules, where f (δ)= (6 + 3δ)/(6 − 7δ) with the anisotropic
factor δ of 0.035. Anisotropy implies that the refractive index of molecules varies along
the x, y, and z directions, and thus is a vector, not a scalar. Hence, the polarizability
α is a tensor, as noted previously.

The optical depth of the entire molecular atmosphere at a given wavelength may
be calculated from the scattering cross section in the form

τ (λ) = σs(λ)
∫ z∞

0
N (z) dz, (3.3.20)

where N (z) denotes the number density of molecules as a function of height, and
z∞ is the top of the atmosphere. The optical depth represents the attenuation power
of molecules with respect to a specific wavelength of the incident light. Exercises
3.7–3.11 require the calculation of a number of parameters based on Rayleigh scat-
tering results.

3.3.1.3 BLUE SKY AND SKY POLARIZATION

Returning to Eq. (3.3.12), we see that the scattered intensity depends on the wave-
length of incident light and the index of refraction of air molecules contained in the
polarizability term. According to the analyses given in Appendix D and Eq. (3.3.17),
the index of refraction also depends slightly on the wavelength. However, the depen-
dence of the refractive index on the wavelength is relatively insignificant in calculating
the scattered intensity as compared to the explicit wavelength term. Thus, the intensity
scattered by air molecules in a specific direction may be symbolically expressed in
the form

Iλ ∼ 1/λ4. (3.3.21)

The inverse dependence of the scattered intensity on the wavelength to the fourth
power is a direct consequence of the theory of Rayleigh scattering and is the foundation
for the explanation of blue sky.

In reference to the observed solar energy spectrum displayed in Fig. 3.9, a large
portion of solar energy is contained between the blue and red regions of the visible
spectrum. Blue light (λ ≈ 0.425 μm) has a shorter wavelength than red light (λ ≈
0.650μm). Consequently, according to Eq. (3.3.21) blue light scatters about 5.5 times
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more intensity than red light. It is apparent that the λ−4 law causes more blue light to
be scattered than red, green, and yellow, and so the sky, when viewed away from the
sun’s disk, appears blue. Moreover, since molecular density decreases drastically with
height, it is anticipated that the sky should gradually darken to become completely
black in outer space in directions away from the sun. And the sun itself should
appear whiter and brighter with increasing height. As the sun approaches the horizon
(at sunset or sunrise), sunlight travels through more air molecules, and therefore more
and more blue light and light with shorter wavelengths are scattered out of the beam of
light, and the luminous sun shows a deeper red color than at its zenith. However, since
violet light (∼0.405μm) has a shorter wavelength than blue, a reasonable question is,
why doesn’t the sky appear violet? This is because the energy contained in the violet
spectrum is much less than that contained in the blue spectrum, and also because the
human eye has a much lower response to the violet color.

Another important phenomenon explained by the Rayleigh scattering theory is sky
polarization. For many atmospheric remote sensing applications utilizing polariza-
tion, a parameter called the degree of linear polarization has been used (Subsection
7.3.5.2). In the case of Rayleigh scattering it is given by

L P(�) = − Il − Ir

Il + Ir
= −cos2 �− 1

cos2 �+ 1
= sin2 �

cos2 �+ 1
. (3.3.22)

In the forward and backward directions the scattered light remains completely un-
polarized, whereas at the 90◦ scattering angle, the scattered light becomes completely
polarized. In other directions, the scattered light is partially polarized with the per-
centage of polarization ranging from 0 to 100%. Interested readers may wish to refer
to Section 6.6 for further details on this subject.

The theory of Rayleigh scattering developed in Section 3.3.1 is based on the as-
sumption that molecules are homogeneous and isotropic spheres. However, molecules
are in general anisotropic, whereby their polarizability, as defined in Eq. (3.3.16),
varies along three axes and, hence, is a tensor instead of a scalar. The anisotropic
effect of molecules reduces the degree of linear polarization defined in Eq. (3.3.22)
by only a small percentage. At the 90◦ scattering angle, the degree of linear polar-
ization for dry air is about 0.94. Further, the theory of Rayleigh scattering developed
previously considers only single (or primary) scattering, i.e., where scattering occurs
only once. But in the earth’s atmosphere, which contains a large number of molecules
and aerosol particles, light may undergo an infinite number of scattering events. In
addition, the earth’s surface also reflects light that reaches it. Multiple scattering pro-
cesses involving the atmosphere and the surface become complicated and require
a more advanced treatment of radiative transfer theory, which will be discussed in
Chapter 6.

The theory of Rayleigh scattering predicts neutral points, i.e., points of zero po-
larization, only at the exact forward and backward directions. However, owing to
multiple scattering of molecules and particulates, and reflection of the surface, there
normally exist a number of neutral points in cloudless atmospheres. The first obser-
vations of neutral points and partially polarized sky light were made by Arago in
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1809. He discovered the existence of a neutral point at a position in the sky about
25◦ above the antisolar direction (the direction exactly opposite that of the sun). The
other two neutral points, which normally occur in the sunlit sky 25◦ above and 20◦

below the sun, were discovered by Babinet in 1840 and by Brewster in 1842, respec-
tively. These three neutral points were named to honor these three discoverers. The
neutral points in the sky vary and depend on the turbidity (an indication of the amount
of aerosol loadings in the atmosphere), the sun’s elevation angle, and the reflection
characteristics of the surface at which observations are made.

Figure 3.12 illustrates the distribution of the degree of polarization and neutral
points for a pristine, clear atmosphere (January 20, 1977) and for an atmospheric
condition under the El Chichon volcanic cloud (July 27, 1982) observed at the Mauna
Loa Observatory from a polarimeter developed by Coulson (1983). The observations
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Figure 3.12 Illustration of neutral points in the distribution of the degree of polarization through the
plane of the sun’s vertical at a wavelength of 0.7 μm observed at the Mauna Loa Observatory for a clear
atmospheric condition on January 20, 1977 (solid line), and for an atmosphere under the volcanic cloud
on July 27, 1982 (dashed line). The azimuthal angles φ = 0◦ and φ = 180◦ are on the sun’s vertical plane.
The sun’s elevation angles ε0 for these two cases are indicated in the graph, as are the positions of Arago
and Babinet (data taken from Coulson, 1983).
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were made on the sun’s vertical plane, referred to as the principal plane in radiative
transfer, using a wavelength of 0.7μm. The solar elevation angle, ε0 (90◦− solar zenith
angle θ0), differed slightly on these two dates, but the observed polarization patterns
suffice to demonstrate their substantial variabilities in clear and turbid atmospheres.
The clear Rayleigh atmosphere produced a maximum polarization of about 80%, 60%
more than that generated in the volcanic cloud condition. The neutral points in the
Rayleigh scattering atmosphere occurred at the positions close to the sun (forward
direction) and about 20◦ above the sun, the Babinet point, which was about 50◦

above the sun when a significant aerosol loading was present. In this case, the Arago
point was also shown at about 20◦ above the horizon at the opposite position of the
sun. Because of the sun’s position, the Brewster point was not observed. The neutral
points’ positions are dependent on the aerosol optical depth and composition. Thus,
a systematic observation of these points could be a valuable approach for inferring
aerosol optical properties and perhaps composition information.

3.3.2 Light Scattering by Particulates: Approximations

In Section 1.1.4, we defined the size parameter, x = 2πa/λ, where a is the particle
radius. Rayleigh scattering is concerned with scattering events when x � 1. When
x � 1, scattering events are often called Lorenz–Mie scattering. Lorenz (1890) and
Mie (1908) independently derived the solution for the interaction of a plane wave with
an isotropic homogenous sphere. The mathematical theory of Lorenz–Mie scattering
begins with Maxwell’s equations and will be detailed in Chapter 5, along with some
new developments in research on light scattering by nonspherical ice crystals and
aerosols. In this section, however, we shall present a brief discussion of Lorenz–
Mie scattering and two elementary approximations: geometric optics and anomalous
diffraction.

3.3.2.1 LORENZ–MIE SCATTERING

The intensity scattered by a particle as a function of direction, as presented in
Eq. (3.3.15), is given by

I (�) = I0�eff
P(�)

4π
= I0

(σs

r2

) P(�)

4π
, (3.3.23)

where I0 is the incident intensity, P is the phase function normalized according to
Eq. (3.3.10), �eff is the effective solid angle upon which scattering occurs, r is the
distance between the particle and the observer, σs is the scattering cross section, and
4π is the solid angle for the entire spherical space. The scattering cross section can
be derived from the Lorenz–Mie theory of light scattering by spheres and is given by
the following expansion:

σs/πa2 = Qs = c1x4
(
1 + c2x2 + c3x4 + · · · ), (3.3.24)
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where a is the radius, x = 2πa/λ, Qs is referred to as the scattering efficiency, and
the coefficients in the case of nonabsorbing particles are given by

c1 = 8

3

(
m2 − 1

m2 + 2

)2

, c2 = 6

5

(
m2 − 1

m2 + 2

)
,

c3 = 3

175

m6 + 41m4 − 28m2 + 284

(m2 + 2)2
+ 1

900

(
m2 + 2

2m2 + 2

)2 [
15 + (2m2 + 3)2

]
.

The leading term is the dipole mode contribution associated with Rayleigh scattering.
Note that for light scattering by spheres, we may replace the total number of molecules
per volume Ns by 1/V where V = 4πa3/3. For molecules, a ∼ 10−4 μm, so that
x ∼ 10−3 in the visible. Thus, the higher order terms can be neglected and the scattered
intensity is proportional to λ−4. For aerosols and cloud particles, a �10−1 μm, and
x �1 in the visible. In this case, the scattered intensity is less wavelength dependent
and is primarily dependent on particle size. As a result, clouds and nonabsorbing
aerosols in the atmosphere generally appear white. In a cloudy atmosphere, the sky
appears blue diluted with white scattered light, resulting in a less pure blue sky than
would have been expected from pure Rayleigh scattering.

On the basis of Eq. (3.3.23), the scattered intensity is dependent on the phase func-
tion, which can be computed from the Lorenz–Mie theory for spheres. Figure 3.13
shows typical examples of the phase function for polydispersed cloud droplets
(∼10 μm) and aerosols (∼1 μm) illuminated by a visible light. Also shown is the
phase function for Rayleigh scattering. The mean size parameters in these cases are
about 100, 10, and 10−3, respectively. The scattering by cloud droplets is characterized
by a strong forward diffraction; a minimum at ∼100◦ scattering angle; a peak at ∼138◦

scattering angle, the well-known rainbow feature; and a peak in the backscattering
direction associated with the glory pattern. The diffraction pattern and the rainbow
feature will be discussed further later; the explanation of the glory pattern requires
more advanced discussion and will be presented in Chapter 5. The scattering of typi-
cal aerosols also displays a forward diffraction maximum and a maximum pattern in
the 150◦–170◦ scattering region (see also Fig. 1.4).

3.3.2.2 GEOMETRIC OPTICS

The principles of geometric optics are the asymptotic approximations of the fun-
damental electromagnetic theory and are valid for light-scattering computations in-
volving a particle whose dimension is much larger than the wavelength, i.e., x � 1.
In this case, a light beam can be thought of as consisting of a bundle of separate par-
allel rays that hit the particles, which is referred to as the localization principle. Each
ray will then undergo reflection and refraction and will pursue its own path along a
straight line outside and inside the scatterer with propagation directions determined
by the Snell law, as shown in Fig. 3.14a. In the context of geometric optics, the total
electric field is assumed to consist of the diffracted rays and the reflected and refracted
rays, as illustrated in Fig. 3.14b, using a sphere as an example. The diffracted rays
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Figure 3.13 Normalized phase functions for cloud droplets (∼10 μm), aerosols (∼1 μm), and
molecules (∼10−4 μm) illuminated by a visible wavelength of 0.5 μm, computed from the Lorenz–Mie
theory.

pass around the scatterer. The rays impinging on the scatterer undergo local reflection
and refraction, referred to as Fresnelian interaction. The energy that is carried by the
diffracted and the Fresnelian rays is assumed to be the same as the energy that is
intercepted by the particle cross section projected along the incident direction.

In reference to Fig. 3.14a, let v1 and v2 be the velocities of propagation of plane
waves in the two media such that v1 > v2. Also, let θi and θt be the angles corre-
sponding to the incident and refracted waves. Thus, we have

sin θi/ sin θt = v1/v2 = m, (3.3.25)

where m is the index of refraction for the second medium with respect to the first.
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Figure 3.14 (a) Reflection and refraction of a plane wave from air to water/ice surface. (b) Represen-
tation of light rays scattered by a sphere based on the geometric optics principle: 0, exterior diffraction; 1,
external reflection; 2, two refractions; 3, one internal reflection; and 4, two internal reflections.

For the purpose of this discussion, we shall assume that there is no absorption in the
medium. This is the Snell law relating the incident and refracted angles through the
index of refraction. Exercises 3.12 and 3.13 require the derivation of the minimum
deviations of light rays that produce rainbows from spherical water droplets and
halos from hexagonal ice crystals. Moreover, white sunlight is decomposed into
component colors after the rays undergo geometric reflection and refraction through
water droplets and ice crystals.

The diffraction component in geometric optics can be determined from Babinet’s
principle. This principle states that the diffraction pattern in the far field, referred to
as Fraunhofer diffraction, from a circular aperture is the same as that from an opaque
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disk or sphere of the same radius. Based on this principle and geometric consideration,
the scattered intensity is proportional to

Ip = x4

4

[
2J1(x sin�)

x sin�

]2

, (3.3.26)

where J1 is the first-order Bessel function and� is the scattering angle. Exercise 3.14
requires the calculation of maxima and minima of the diffraction pattern that can be
used to explain an optical phenomenon known as the corona.

One final note is in order here. If a particle of any shape is much larger than the
incident wavelength, the total energy removed is based on geometric reflection and
refraction, giving an effective cross-section area equal to the geometric area A. In
addition, according to Babinet’s principle, diffraction takes place through a hole in
this area, giving a cross-section area also equal to A. The total removal of incident
energy is therefore twice the geometric area. Thus, the extinction cross section is
given by

σe = 2A, or Qe = σe/A = 2, (3.3.27)

where Qe is called the extinction efficiency. This is referred to as the optical theorem of
extinction. If a particle is nonabsorbing, then we have Qe = Qs , where the extinction
and scattering efficiencies are the same.

3.3.2.3 ANOMALOUS DIFFRACTION THEORY

Consider large optically soft particles such that x � 1 and |m − 1| � 1. The
second condition implies that rays are negligibly deviated as they cross the soft particle
boundary and are negligibly reflected because the refractive indices inside and outside
the particle are similar. In this case, the extinction is largely caused by absorption of
the light beam passing through the particle, as well as by the interference of light
passing through the particle and passing around the particle. This is the physical
foundation for the anomalous diffraction theory originally developed by van de Hulst
(1957). In reference to Fig. 3.15, let the plane wave be incident on a spherical particle
with a radius a and a refractive index m → 1. The wave front on the forward side
of the particle can be divided into two types: one within the geometric shadow area
denoted by A = πa2, and one outside this area denoted by B. The incident rays can
undergo diffraction and pass around the particle. The rays can also hit the particle
and undergo reflection and refraction. Since m → 1, we may assume that the rays
enter into the particle and pass through it, as illustrated in Fig. 3.15. However, these
rays will have phase lags due to the presence of the particle. The phase lag for the
ray indicated in the figure is 2a sinα(m − 1) · 2π/λ. If we define the phase shift
parameter

ρ = 2x(m − 1), (3.3.28)

the phase lag can then be expressed by ρ sinα.
Consider a screen that collects the field. The resultant wave on the screen is the

sum of the incident and scattered fields. If the incident field is assumed to be unity,
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Figure 3.15 Geometry of anomalous diffraction through a sphere with a radius a and an index of
refraction m → 1.πa2 denotes the geometric cross-section area of the sphere and dA denotes the differential
cross-section area.

then in the forward direction (� = 0), the change in the electric field is proportional to

A =
∫ ∫ (

1 − e−iρ sinα
)

dx dy. (3.3.29a)

The differential area can be replaced by an area in the polar coordinate such that
dx dy = a cosα d(a cosα) dφ. Thus, we have

A =
∫ 2π

0

∫ π/2

0

(
1 − e−iρ sinα

)
a2 sinα d sinα dφ = 2πa2 K (iρ), (3.3.29b)

where

K (iρ) = 1

2
+ e−iρ

iρ
+ e−iρ − 1

(iρ)2
. (3.3.30)

The extinction cross section σe is proportional to the differential change in the scat-
tered intensity I . Since I ∼ |E |2, as shown in Eq. (3.3.6), d I ∼ 2d|E |. Thus, we have
σe = 2Re(A). It follows that the extinction efficiency is given by

Qe = σe/πa2 = 4Re[K (iρ)] = 2 − 4

ρ
sin ρ + 4

ρ2
(1 − cos ρ), (3.3.31)

where Re denotes the real part of the function. Exercise 3.15 requires calculations
of Qe.

We may also determine the absorption efficiency by the following procedure. The
ray path as shown in Fig. 3.15 is l = 2a sinα. The absorption coefficient ki = mi 2π/λ,
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where mi is the imaginary part of the refractive index. Thus, the absorption path length
associated with the electric field is lki . The attenuation of the intensity of the ray is
then exp(−2lki ) and the absorption cross section for all possible rays is

σa =
∫ ∫ (

1 − e−2lki
)

dx dy. (3.3.32)

Following the procedure just illustrated, the absorption efficiency is given by

Qa = σa/πa2 = 1 + 2

b
e−b + 2

b2
(e−b − 1), (3.3.33)

where b = 4xmi and x = 2πa/λ. The approximation based on the anomalous diffrac-
tion theory (ADT) is useful for the calculation of the extinction and absorption coeffi-
cients when m → 1. It can also be applied to nonspherical particles such as spheroids
and hexagons. Since refractions and reflections of rays are neglected in this approxi-
mation, its accuracy must be examined carefully when applied to the scattering of ice
crystals (m ∼ 1.31) and aerosols (m ∼ 1.5). Finally, it should be noted that the ADT
approximation cannot produce the phase function pattern.

3.4 Multiple Scattering and Absorption in Planetary Atmospheres

3.4.1 Fundamentals of Radiative Transfer

In Section 1.1.4, we pointed out that scattering is often coupled with absorption. In the
following we formulate the fundamental equation governing the transfer of diffuse
solar radiation in plane-parallel atmospheres. The term diffuse is associated with mul-
tiple scattering processes and is differentiated from direct solar radiation. In reference
to Fig. 3.16 and considering a differential thickness 	z, the differential change of
diffuse intensity emergent from below the layer is due to the following processes: (1)
reduction from the extinction attenuation; (2) increase from the single scattering of
the unscattered direct solar flux from the direction (−μ0, φ0) to (μ, φ); (3) increase
from multiple scattering of the diffuse intensity from directions (μ′, φ′) to (μ, φ);
and (4) increase from emission within the layer in the direction (μ, φ). Consider a
small volume containing a spectrum of molecules and/or particulates and denote the
extinction, scattering, and absorption coefficients (in units of per length) as βe, βs,
and βa , respectively, defined by

βe,s,a =
∫
	z
σe,s,a(z)n(z) dz/	z, (3.4.1)

where the symbol σ denotes the cross section and n is the number density. More-
over, let the phase function corresponding to a volume of particulates be P . Thus,
P(μ, φ;μ′, φ′) denotes the redirection of the incoming intensity defined by (μ′, φ′)
to the outgoing intensity defined by (μ, φ). Also note that the differential length
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Figure 3.16 Transfer of diffuse solar intensity from below in plane-parallel layers: (1) attenuation by
extinction; (2) single scattering of the unscattered solar flux; (3) multiple scattering; and (4) emission from
the layer. All the radiative parameters are defined with reference to a small volume containing a spectrum
of molecules and/or particulates. The notations are defined in the text.

	s = 	z/μ. Based on the preceding definitions, we may write (neglecting the wave-
length index)

	I (z;μ, φ)

	z/μ
= −βe I (z;μ, φ) + βs F�e−τ/μ · P(μ, φ; −μ0, φ0)/4π

+βs

∫ 2π

0

∫ 1

−1
I (z, μ′, φ′) · P(μ, φ;μ′, φ′)/4πdμ′dφ′ + βa B[T (z)].

(3.4.2)

All the terms are self-explanatory. However, it is noted that integration of the multiple
scattering term is performed for diffuse intensity over the 4π solid angle and that
radiative equilibrium is assumed such that emission is equal to absorption based on
Kirchhoff’s and Planck’s laws (Section 1.2).

Further, we may define the single-scattering albedo as the ratio of the scattering
coefficient to the extinction coefficient in the form

ω̃ = βs

βe
or 1 − ω̃ = βa

βe
. (3.4.3)

The optical depth is defined by

τ =
∫ ∞

z
βe dz′. (3.4.4)
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Using the optical depth, Eq. (3.4.2) can be rewritten as follows:

μ
d I (τ ;μ, φ)

dτ
= I (τ ;μ, φ) − J (τ ;μ, φ), (3.4.5)

where the source function is given by [see also Eq. (1.4.22)]

J (τ ;μ, φ) = ω̃

4π

∫ 2π

0

∫ 1

−1
I (τ ;μ′, φ′)P(μ, φ;μ′, φ′)dμ′dφ′

+ ω̃

4π
F� P(μ, φ; −μ0, φ0)e−τ/μ0 + (1 − ω̃)B[T (τ )]. (3.4.6)

The fundamental parameters that drive the transfer of diffuse intensity are the ex-
tinction coefficient (or the optical depth), the single-scattering albedo, and the phase
function. It suffices to assume that these parameters are independent of τ (or z) in
the present discussion. Interested readers should refer to Chapter 6 for an in-depth
explanation of radiative transfer processes. For discussion of solar radiative transfer,
the flux emitted from the earth and the atmosphere with an equilibrium temperature
of ∼255 K is negligible in comparison to that emitted from the sun for λ ≤ 3.5 μm.
For some solar radiative transfer problems, we may then omit the last term in the
source function.

The phase function represents the angular distribution of the scattered energy as a
function of the scattering angle and has been presented for molecules, aerosols, and
cloud particles in Fig. 3.13. From spherical geometry, the scattering angle is related
to the incoming and outgoing directions in the form

cos� = μμ′ + (1 − μ2)1/2(1 − μ′2)1/2 cos (φ′ − φ). (3.4.7)

We may express the phase function in terms of a known mathematical function for
the purpose of solving Eq. (3.4.5), the first-order differential integral equation. The
Legendre polynomials (Appendix E), by virtue of their unique mathematical prop-
erties, have been used extensively in the analysis of radiative transfer problems. In
terms of Legendre polynomials P�, the phase function may be written in the form

P(cos�) =
N∑
�=0

ω̃�P�(cos�), (3.4.8)

where the expansion coefficient, based on the orthogonal property, is given by

ω̃� = 2�+ 1

2

∫ 1

−1
P(cos�)P�(cos�) d cos�, � = 0, 1 . . . ., N . (3.4.9a)

When � = 0, ω̃0 = 1, representing the normalization of the phase function denoted
in Eq. (3.3.10). When � = 1, we have

g = ω̃1

3
= 1

2

∫ 1

−1
P(cos�) cos� d cos�. (3.4.9b)

This term is referred to as the asymmetry factor, which is the first moment of the phase
function and an important parameter in radiative transfer. For isotropic scattering, g is
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zero, as it is for Rayleigh scattering (Exercise 3.16). The asymmetry factor increases
as the diffraction peak of the phase function sharpens and can be negative if the phase
function peaks in backward directions (90–180◦). For Lorenz–Mie type particles,
whose phase function has a generally sharp peak at the 0◦ scattering angle (Fig. 3.13),
the asymmetry factor denotes the relative strength of forward scattering.

3.4.2 Approximations of Radiative Transfer

We shall present two useful approximations: one for remote sensing applications, and
the other for radiation parameterization for use in climate studies.

3.4.2.1 SINGLE-SCATTERING APPROXIMATION

In a domain where the optical depth is small (e.g., τ < 0.1), a large portion of
scattering events is dominated by single scattering of the direct solar beam. This occurs
in optically thin cirrus and aerosol atmospheres. In this case, the most important term
in the source function is

J (τ ;μ, φ) ∼= ω̃

4π
F� P(μ, φ; −μ0, φ0)e−τ/μ0 . (3.4.10)

Consider a black surface such that the reflected upward intensity I (τ∗;μ, φ) = 0,
where τ∗ is the total atmospheric optical depth. From Eq. (1.4.23), the upward intensity
at the top of the atmosphere is

I (0;μ, φ) =
∫ τ∗

0
J (τ ′;μ, φ)e−τ ′/μ dτ ′

μ

= μ0 F�
π

ω̃

4(μ+ μ0)
P(μ, φ; −μ0, φ0)

{
1 − exp

[
−τ∗

(
1

μ
+ 1

μ0

)]}
.

(3.4.11a)

Moreover, for a small τ∗, we have

R(μ, φ;μ0, φ0) = π I (0;μ, φ)

μ0 F�
= τ∗

ω̃

4μμ0
P(μ, φ; −μ0, φ0). (3.4.11b)

The term R is a nondimensional quantity, referred to as the bidirectional reflectance.
This equation establishes the foundation for the retrieval of the optical depth of
aerosols from satellites. It is clear that under the condition of optically thin atmosphere,
the optical depth is directly proportional to the bidirectional reflectance that can be
determined from satellite radiometric measurements, but is inversely proportional to
the phase function. The latter dependence becomes an important issue in satellite
remote sensing using reflected sunlight, a subject that will be discussed further in
Section 7.3.1.
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3.4.2.2 DIFFUSION APPROXIMATION

Consider a diffusion domain where the directional dependence of multiple scat-
tering events is largely lost. In this case, it is appropriate to consider the transfer of
hemispheric upward and downward flux densities defined by [see also Eq. (1.1.9)]

F↑↓(τ ) =
∫ 2π

0

∫ ±1

0
I (τ ;μ, φ)μ dμ dφ, (3.4.12)

where the notations ↑ and ↓ correspond to + and −, respectively. We may formulate
the transfer problem based on the physical reasoning that the differential changes
of the upward and downward flux densities must be related to these fluxes as well as
to the direct downward flux from the sun. Thus, we write,

d F↑

dτ
= γ1 F↑ − γ2 F↓ − γ3 ω̃F�e−τ/μ0 , (3.4.13a)

d F↓

dτ
= γ2 F↑ − γ1 F↓ + (1 − γ3) ω̃F�e−τ/μ0 , (3.4.13b)

where γ1, γ2, and γ3 are appropriate weighting coefficients related to multiple scatter-
ing events. The two flux equations were first formulated by Schuster (1905), although
in a slightly different format. These equations can be derived from the well-known
two-stream and Eddington approximations in which the three coefficients can be
determined (see Chapter 6). Solutions for the upward and downward fluxes can be
derived by setting Fdif = F↓ − F↑, and Fsum = F↓ + F↑. In this manner we can
show that (Exercises 3.17 and 3.18)

d2 Fdif

dτ 2
= k2 Fdif + χe−τ/μ0 , (3.4.14)

where k2 = γ 2
1 − γ 2

2 are the eigenvalues and χ is a certain coefficient. Equation
(3.4.14) is referred to as the diffusion equation for radiative transfer. The general
solution for this second-order nonhomogeneous differential equation is given by

Fdif = c1e−kτ + c2e+kτ + χ(1/μ2
0 − k2)e−τ/μ0 , (3.4.15)

where c1,2 are certain coefficients. Likewise, we can also derive a solution for Fsum

which, together with Fdif, can be used to determine the analytic solutions for upward
and downward flux densities. Interested readers should consult Section 6.5.2 for an
advanced discussion of this topic.

Many general circulation and climate models utilize the two-stream or Eddington’s
approximation in the parameterization of radiative transfer because analytic solutions
can be derived to achieve efficient computation that is critical for model simula-
tions. In the following, the subject of atmospheric absorption in multiple scattering
atmospheres that leads to the production of solar heating rates is further discussed.
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3.5 Atmospheric Solar Heating Rates

The absorption of solar radiation by various gases is important because of its gen-
eration of heating in the atmosphere, which is also affected by multiple scattering
processes. Consider a plane-parallel absorbing and scattering atmosphere illuminated
by the solar spectral irradiance F� so that the downward flux density normal to the
top of the atmosphere is given by μ0 F�. Let the differential thickness within the
atmosphere be 	z, and let the spectral downward and upward flux densities centered
at wavelength λ be denoted by F↓ and F↑, respectively. We have omitted the wave-
length dependence for simplicity of presentation. The net flux density (downward) at
a given height z is then defined by

F(z) = F↓(z) − F↑(z). (3.5.1a)

In reference to Fig. 3.17, because of absorption, the net flux density decreases from
the upper levels to the progressively lower levels. The loss of net flux density, i.e., the

Local Zenith

θ0

F

μ0F

0

p −Δp

p

p
*

0

z

z + Δz  (u +Δu)

(u)

(0)

8 (u1)

F  (z)

F  (z +Δz) F (z +Δz)

F (z)

ρ, Cp

z

Figure 3.17 Divergence of the net flux density in z, p, and u coordinates. All the notations are defined
in the text.
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net flux density divergence for the differential layer is, therefore,

	F(z) = F(z) − F(z +	z). (3.5.1b)

On the basis of the energy conservation principle, the absorbed radiant energy must
be used to heat the layer. Thus, the heating experienced by a layer of air due to
radiation transfer may be expressed in terms of the rate of temperature change. It is
conventionally given by

	F(z) = −ρC p	z
∂T

∂t
, (3.5.2)

where ρ is the air density in the layer, C p is the specific heat at constant pressure, and
t is the time. The heating rate for a differential layer 	z is, therefore,

∂T

∂t
= − 1

ρC p

	F(z)

	z
= g

C p

	F(p)

	p
= − q

C p

	F(u)

	u
, (3.5.3)

where we have also expressed the heating rate in terms of pressure and path-length
coordinates using the hydrostatic equation dp = −ρg dz, and the definition of path
length for a specific gas where q is the mixing ratio, g is the gravitational acceleration,
and g/C p is the well-known dry adiabatic lapse rate. If we divide the solar spectrum
into N intervals and carry out the heating rate calculations for each spectral interval
i, then the total heating rate due to solar radiation may be written in the form(

∂T

∂t

)
s

=
N∑

i=1

(
∂T

∂t

)
i

. (3.5.4)

Computation of the solar flux and heating rate in the atmosphere covering the
entire solar spectrum is quite involved. In a clear atmosphere, we must include both
absorption by various absorbing gases, chiefly H2O, O3, O2, and CO2, and scattering
by molecules and aerosols, as well as reflection from the surface. The solar spectrum
must be divided into a number of suitably grouped subspectral intervals in which a
monochromatic radiative transfer program, such as the adding or discrete-ordinates
method for inhomogeneous atmospheres discussed in Chapter 6, can be employed
for the calculation of spectral fluxes and heating rates. The single-scattering prop-
erties of each subdivided interval for input into the radiative transfer model must
include simultaneous contributions from the scattering and absorption of aerosols
(and cloud particles), Rayleigh scattering, and gaseous absorption. For efficient spec-
tral integration, we may employ the correlated k-distribution method introduced in
Section 4.3.

In Fig. 3.18, we show typical solar heating rates and net flux profiles as functions
of the cosine of the solar zenith angle μ0 using the standard atmospheric profiles for
H2O, O3, and other trace gases (see Fig. 3.2), along with a surface albedo of 0.1, as
inputs of a radiative transfer model. The instantaneous solar heating rate profile is
divided into two different levels to highlight the contributions from H2O and O3. The
solar heating rate decreases as μ0 decreases because the incoming solar irradiance
available to the atmosphere is directly proportional to μ0. Below about 10 km, the
solar heating rate is primarily produced by water vapor with the heating rate ranging
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Figure 3.18 Solar heating rates and net fluxes as functions of height with and without the contribution
of aerosols for a number of the cosines of solar zenith angles. The solar heating rates are instantaneous
values and are separated in two regions to highlight the contributions from water vapor and ozone in
the troposphere and stratosphere, respectively. A typical background aerosol profile with a visible optical
depth of 0.15 is used to illustrate the effect of aerosols on the solar flux and heating rate. These results
and those presented in Fig. 3.19 are computed from a line-by-line equivalent radiative transfer model that
includes the contributions of gaseous absorption, multiple scattering, and the absorption of aerosol and
cloud particles (Liou et al., 1998).

from 0.5 to 2 K day−1 near the surface when the contribution from aerosols is not
accounted for. The solar heating rate decreases rapidly with increasing altitude in
phase with the exponential decrease of water vapor and reaches a minimum at about
15 km. Above 20 km, increased solar heating is produced primarily by the absorption
of ozone. Solar net flux decreases significantly below about 10 km. When a standard
aerosol profile with an optical depth of 0.15 at the 0.5 μm wavelength is added, the
solar heating rate increases in the lower atmosphere because of the absorption of
aerosols in the visible and near infrared. The effect of aerosols on the absorption of



110 3 Absorption and Scattering of Solar Radiation in the Atmosphere

20

30

40

50

60
0 10 20 30

(a) (b)

Clear

Cs

St

μ
0 = 0.5μ

0 = 0.5

0

10

Solar Heating Rate ( K day−1)

0

10

20

30

40

50

60

0 200 400 600

Net Flux ( W m−2 )

0 1 2 3 30

Cs

St

H
ei

gh
t (

K
m

)

Figure 3.19 Comparison of (a) solar heating rates and (b) net fluxes in clear, cirrus (Cs), and stratus
(St) cloudy conditions for a μ0 of 0.5. The positions of these clouds are indicated in the diagram. The
optical depths for Cs and St are 0.7 and 10, respectively, while the mean particle sizes are 42 and 8 μm,
respectively.

solar fluxes depends on their chemical composition, particle size distribution, and
vertical profile and is a subject of ongoing research.

The effects of clouds on solar heating and net flux profiles are investigated using
typical single-layer cirrostratus (Cs) and stratus (St) clouds whose locations are shown
in Fig. 3.19. We use a cosine of the solar zenith angle of 0.5 in this demonstration. The
visible optical depths for Cs and St are 0.7 and 10, respectively, while the mean ice
crystal maximum dimension and water droplet radius are 42 and 8 μm, respectively.
In the case of low stratus, substantial instantaneous heating occurs at the cloud top
with a value of about 22 K day−1. Because of the reflection from clouds, ozone
heating also increases. This increase appears to depend on the factors associated with
cloud position and optical depth. In the overcast low stratus condition, net solar flux
available at the surface is only about 187 W m−2, in comparison to about 435 and
376 W m−2 in clear and cirrus cloud conditions, respectively.
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Exercises

3.1 The scale height H is defined by dp/p = −dz/H . From the hydrostatic equation
and the equation of state, show that H = K T/Mg, where K is the Boltzmann
constant, M is the molecular weight of air, and g is gravity. Since the molecular
translational energy is 1/2 K T , the scale height is then twice the distance through
which atoms/molecules that have the equipartition of translational energy can
rise in the vertical direction against the force of gravity.

3.2 Compute and display graphically r (z1) as a function of z1, as defined in
Eq. (3.2.6) for μ0 = 1, 0.5, and 0.2. Compare your results with those presented
in Fig. 3.6 and explain the meaning of the Chapman layer.

3.3 In reference to the spherical atmosphere depicted in Fig. 3.20, derive the
Chapman function Ch(x, θ0). Compare this function with 1/μ0 and determine

Zenith

Solar Beam
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P ' (   , p)8
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Figure 3.20 Spherical geometry for the evaluation of the Chapman function: θ0 = solar zenith angle,
re = earth’s radius, rA = AE, h = P O, h′ = P ′O ′, s(p′) = the path length from point p′ to A. The
objective is to compute the absorption at point P, which is at a height h above the earth’s surface, based on
the actual path length s(p′).
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the limit of the solar zenith angle under which 1/μ0 is a good approximation of
the exponential attenuation calculation.

3.4 Given the values of K12 = 5.6 × 10−46(300/T )2.36m6 sec−1 and K13 = 2.0 ×
10−17exp(−2280/T ) m3 sec−1, and the J2 and J3 values in the following ta-
ble, compute the equilibrium ozone concentration as a function of height and
compare your results with those presented in Fig. 3.8. Use the standard atmo-
spheric temperature and molecular number density profiles (Appendix G) in
your calculations.

Height (km) 30 35 40 45 50

J2(sec−1) × 10−10 0.61 2.13 4.56 7.93 11.30
J3(sec−1) × 10−3 0.62 1.09 2.03 4.31 6.29

3.5 The principal photochemical reactions involving oxygen in the thermosphere
are found to be

O2 + hν̃(λ < 1751 Å)
J2−→ O + O,

O + O + M
K11−→ O2 + M,

O + O
K ′

11−→ O2 + hν̃.

Express these photochemical processes in terms of the rate of change of the
number density of O and O2. Derive the number density of O under the photo-
chemical equilibrium condition.

3.6 For very strong Lorentz lines (see Section 1.3.2), the half-width is much smaller
than the spread of the line such that α� (ν − ν0). Under this condition and
using a single line, show that the spectral absorptivity is proportional to the
square root of the path length. In your analysis, define the relevant parameters
in the wavenumber domain and use the following integration:∫ ∞

0

(
e−a2/x2 − e−b2/x2)

dx = √
π (b − a).

3.7 The number of molecules per cubic centimeter of air at sea level in standard
atmospheric conditions is about 2.55 × 1019 cm−3. Calculate the scattering cross
section of molecules at the 0.3, 0.5, and 0.7 μm wavelengths.

3.8 The number density profile as a function of height is given by the following table:

Height (km) 0 2 4 6 8 10 12 14 16

N (×1018 cm−3) 25.5 20.9 17.0 13.7 10.9 8.60 6.49 4.74 3.46

Calculate the optical depth of a clear atmosphere at the wavelengths shown in
Exercise 3.7.
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3.9 For all practical purposes, we find that the refractive index mr and the molecular
density ρ are related by

(mr − 1)gas = const × ρ.

At sea level, the refractive index of air is about 1.000292 for a wavelength
of 0.3 μm. Find the refractive indices at the heights given in Exercise 3.8.
Note that the density (g cm−3) is related to the number density N (cm−3) by
ρ = (M/N0)N , where M is the molecular weight of air (28.97 g mol−1),
and N0 is Avogadro’s number (6.02295 ×1023 mol−1). Because the refractive
index varies with the density of the atmosphere, light rays bend according to
the atmospheric density profile and produce a number of atmospheric optical
phenomena known as looming, sinking, and superior and inferior mirages.

3.10 An unpolarized ruby laser operated at 0.7 μm is projected vertically into a clear
sky to investigate the density of the atmosphere. A detector located 10 km from
the base of the laser is used to receive the flux density scattered from the laser
beam by air molecules. Assuming that the laser output has a uniform distribution
of flux density F0 across the beam (i.e., I0 = F0/π sr), and neglecting the effects
of multiple scattering, find the scattered flux density at 6 and 10 km received
by a detector whose field of view in a plane is 0.05 rad. Use the scattering cross
section and molecular density profile obtained from Exercises 3.7 and 3.8.

3.11 (a) The radar backscattering coefficient (in units of per length) for a volume of
identical cloud droplets is defined as

βπ = Ncσπ = Ncσs P(π),

where Nc is the droplet number density, σπ the backscattering cross section,
and P(π) the phase function at backscatter. Employing the Rayleigh scattering
cross section and phase function, and noting that Nc = 1/V , where the volume
of a spherical drop with a radius a is V = 4πa3/3, show that

βπ = 64π5

λ4
Nca6

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2 .
(b) Assuming that the number density and the radius of cloud droplets are
100 cm−3 and 20 μm, respectively, calculate βπ for the following two radar
wavelengths with the corresponding refractive indices for water:

λ(cm) 10 3.21
m 3.99–1.47i 7.14–2.89i

where i = √−1. Compute βπ again using only the real part of the refractive
indices, and show the differences between the two computations.

3.12 From the geometry of a sphere with respect to the incident ray, show that the
incident angle θi at which the minimum deviation occurs is given by

cos2 θi = (m2 − 1)/(p2 − 1), p ≥ 2,
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where (p − 1) denotes the number of reflection. The refractive index m for
water is 1.33 in the visible. Compute the positions defined as the scattering
angles for the first and second rainbows.

3.13 From the geometry of a hexagonal plate with respect to the incident ray, show
that the angle of refraction at minimum deviation can be determined from

sin

[
1

2
(θ ′ + A)

]
= m sin

A

2
,

where A denotes the prism angle and the refractive index of ice in the visible
is 1.31. For A = 60◦, 90◦, and 120◦, compute the positions of halos.

3.14 From Eq. (3.3.26), compute and plot the diffraction pattern as a function of
y = x sin θ . What would be the position of the strongest corona produced by
uniform-sized aerosols with a radius of 1 μm? Use a wavelength of 0.5 μm in
your calculation.

3.15 (a) Compute the extinction coefficient as a function of the phase shift parameter,
defined in Eqs. (3.3.31) and (3.3.28). (b) Estimate the aerosol particle size under
which more blue light is available to an observer than red light based on the first
maximum and minimum in the extinction curve assuming a refractive index of
1.5 for aerosols. This is related to an optical phenomenon referred to as once in a
blue moon. Why is it so rare? Interested readers may also wish to refer to Figs. 5.1
and 5.7 for additional information on aerosol size distribution and extinction.

3.16 Show that for isotropic and Rayleigh scattering cases, the asymmetry factor is
zero.

3.17 Consider the cases of pure scattering, referred to as conservative scattering,
such that ω̃ = 1. Define the net flux associated with the diffuse beam as follows:

F(τ ) =
∫ 2π

0

∫ 1

−1
I (τ, μ, φ)μ dμ dφ.

Show from Eq. (3.4.13) that

d F(τ )

dτ
= F�e−τ/μ0 ,

and that

F(τ ) + μ0 F�e−τ/μ0 = constant.

This is the so-called flux integral. In a pure scattering atmosphere, the total flux
(direct plus diffuse solar beam) is conserved.

3.18 From the flux equations given in Eqs. (3.4.13a) and (3.4.13b), derive Eq. (3.4.14).

Suggested Reading

Brasseur, G., and Solomon, S. (1986). Aeronomy of the Middle Atmosphere, 2nd
ed. D. Reidel, Dordrecht. Chapter 4 presents a comprehensive discussion of the
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absorption of solar ultraviolet radiation pertaining to photochemical processes in
the stratosphere and mesosphere.

Goody, R. M. (1995). Principles of Atmospheric Physics and Chemistry. Oxford
University Press, New York. Chapters 4 and 5 contain concise discussions of the
transfer of solar radiation and ozone formation.

Goody, R. M., and Yung, Y. L. (1989). Atmospheric Radiation. Theoretical Basis,
2nd ed. Oxford University Press, New York. Chapter 5 contains useful data on the
absorption of solar radiation by various gases in the solar spectrum.

Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history,
Rev. Geophys. 37, 275–316. An authoritative and updated review of photochemical
processes involving ozone formation and catalytic depletion in the earth’s atmo-
sphere.

van de Hulst, H. C. (1957). Light Scattering by Small Particles. Wiley, New York.
A classic discussion of the principles of light scattering by molecules and small
particles. See Chapters 3 and 12 in conjunction with the discussion in this chapter.



Chapter 4 Thermal Infrared Radiation Transfer
in the Atmosphere

4.1 The Thermal Infrared Spectrum and the Greenhouse Effect

Based on data gathered from satellite radiation budget experiments, the earth–
atmosphere system reflects about 30% of the incoming solar radiation at the top
of the atmosphere and absorbs the remaining part (see Section 8.2 for further dis-
cussion). Absorption and scattering of solar radiation take place in the atmosphere,
processes that were discussed in Chapter 3. A large portion of the incoming solar
radiation is absorbed by the earth’s surface, consisting of approximately 70% ocean
and 30% land. Over a climatological period of time, say, over a year or longer, the
global equilibrium temperature of the earth–atmosphere system remains relatively
constant. Consequently, radiant energy emitted from the sun that is absorbed in the
earth–atmosphere system must be re-emitted to space so that an equilibrium energy
state can be maintained. Just as the sun emits electromagnetic radiation covering all
frequencies, so do the earth and the atmosphere, and this emitted radiation is referred
to as thermal infrared radiation.

On the basis of the conservation of absorbed solar and emitted thermal infrared
energies, and denoting the global albedo of the earth–atmosphere system by r̄ , the
Stefan-Boltzmann law for emission gives us the following balanced equation:

S · πa2
e (1 − r̄ ) = σT 4

e · 4πa2
e , (4.1.1a)

where ae is the earth’s radius, S is the solar constant, representing the energy available
at the top of the atmosphere, and Te denotes the equilibrium temperature of the earth–
atmosphere system. The factor of 4 accounts for the difference between the absorption
and emission areas. Thus, we obtain

Te = [S(1 − r̄ )/4σ ]1/4. (4.1.1b)

As discussed in Section 2.3.3, the solar constant derived from recent satellite obser-
vations is 1366 W m−2. Inserting the solar constant and global albedo values into the
balanced equation, we find Te ∼ 255 K. The temperature profile as shown in Fig. 3.1
ranges from about 200 to 300 K.

From Planck’s and Wien’s displacement laws discussed in Chapter 1, the emitted
Planck intensity (or radiance) from the earth and the atmosphere is smaller than that

116
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Figure 4.1 Theoretical Planck radiance curves for a number of the earth’s atmospheric temperatures
as a function of wavenumber and wavelength. Also shown is a thermal infrared emission spectrum observed
from the Nimbus 4 satellite based on an infrared interferometer spectrometer.

of solar radiation, whereas the wavelength for the intensity peak of the earth’s ra-
diation field is longer than that of solar radiation. The energy emitted from the
earth–atmosphere system is also referred to as thermal IR or terrestrial radiation.
The spectral distribution of radiance emitted by a blackbody source at various tem-
peratures in the earth’s atmosphere in terms of wavenumber as well as wavelength
is displayed in Fig. 4.1, where a measured atmospheric emission spectrum obtained
from the infrared interferometer spectrometer (IRIS) instrument on board the Nimbus
4 satellite is also shown. The envelope of the emission spectrum is very close to the
spectrum emitted from a blackbody with a temperature of about 290 K, which is about
the temperature of the surface. It is evident that a large portion of thermal infrared
energy is trapped by various gases in the atmosphere.

Among these gases, carbon dioxide, water vapor, and ozone are the most impor-
tant absorbers. Some minor constituents, such as carbon monoxide, nitrous oxide,
methane, and nitric oxide, which are not identified in Fig. 4.1, are relatively minor
absorbers insofar as the heat budget of the earth–atmosphere system is concerned.
Carbon dioxide absorbs a significant amount of thermal infrared radiation in the 15
μm band from about 600 to 800 cm−1. This spectral region also corresponds to the
maximum intensity of the Planck function in the wavenumber domain. Water va-
por absorbs thermal infrared in the 6.3 μm band from about 1200 to 2000 cm−1

and in the rotational band (<500 cm−1). Except for ozone, which has an absorption
band in the 9.6 μm region, the atmosphere is relatively transparent from 800 to 1200
cm−1. This region is referred to as the atmospheric window. As discussed in Section
3.1.2, the distribution of carbon dioxide is fairly uniform over the global space, al-
though there has been observational evidence indicating a continuous global increase
over the past century as a result of the increase in combustion of fossil fuels. This
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leads to the question of possible changes in the earth’s climate due to the increas-
ing concentration of carbon dioxide (Section 8.4.1). Unlike carbon dioxide, however,
water vapor and ozone are highly variable with respect to both time and geographical
location.

In a clear atmosphere without clouds or aerosols, a large portion (about 50%) of
solar energy transmits through the atmosphere and is absorbed by the earth’s surface
(see Fig. 3.9). In contrast, energy emitted from the earth is largely absorbed by carbon
dioxide, water vapor, ozone, and other trace gases in the atmosphere as shown in
Fig. 4.1. The trapping of thermal infrared radiation by atmospheric gases is typical
of the atmosphere and is therefore called the atmospheric effect. It is also referred to
as the greenhouse effect because of the similar way in which the glass covering of a
greenhouse transmits solar radiation but absorbs emitted thermal infrared radiation.
The climatological surface temperature is about 288 K. We may express the surface
temperature in terms of the equilibrium temperature in the form

Ts = Te + γ H, (4.1.2)

where γ is the lapse rate and H is defined as the effective height of the greenhouse
effect. Based on the standard lapse rate of 6.5 K km−1, H is about 5 km.

A final note is in order. Solar radiation is also called shortwave radiation because
solar energy is concentrated in shorter wavelengths with its peak at about 0.5 μm.
Thermal infrared radiation emitted from the earth and the atmosphere is also referred
to as outgoing longwave radiation (OLR) because its maximum energy is in the
longer wavelengths at about 10 μm. The solar and infrared spectra are separated into
two spectral ranges above and below about 5 μm, and the overlap between them is
relatively small. This distinction makes it possible to treat the two types of radiative
transfer and source functions separately and thereby simplify the complexity of the
radiative transfer problem.

Following a discussion of the general characteristics of the vibrational–rotational
spectra of water vapor, carbon dioxide, ozone and other minor gases, we present
the fundamental theory of infrared radiative transfer and the line-by-line method for
the numerical calculations involved. Next, we introduce approximate methods for
infrared radiative transfer calculation, including the correlated k-distribution, band
model, and broadband emissivity techniques. The subject of infrared radiative transfer
in cloudy atmospheres is also further discussed. Finally, typical results of infrared
heating and cooling rate profiles in both clear and cloudy atmospheres are presented.

4.2 Absorption and Emission in the Atmosphere

4.2.1 Absorption in the Thermal Infrared

4.2.1.1 WATER VAPOR

Following the discussion in the subsection on water vapor in Section 3.2.3, the
pure H2O rotational band ranges from 0 to 1000 cm−1. This band is important in
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the generation of tropospheric cooling. The ν2 fundamental band at 1594.78 cm−1

(6.25 μm) is the most important vibrational–rotational band of water vapor. The
two other fundamental bands, ν1 and ν3, are found to be close to one another and
are centered at 2.7 μm. The H2O isotopes HH18O, HH17O, and HD16O have been
identified in both the rotational and ν2 bands.

The region from 800 to 1200 cm−1, the thermal infrared window, contains the
moderately strong 9.6 μm band of ozone discussed later. Apart from the ozone band,
absorption is continuous and is primarily due to the water vapor species. The atten-
uation due to the water vapor continuum in the 10 μm window remains a theoretical
mystery. It has been suggested that the continuum results from the accumulated ab-
sorption of the distant wings of water vapor lines, principally in the far-infrared part
of the spectrum. This absorption is caused by the collision broadening between ab-
sorbing molecules (H2O–H2O) and between absorbing and nonabsorbing molecules
(H2O–N2). There is some evidence that contributions to continuous absorption may be
caused by water dimer [(H2O·H2O)]. Absorption by water dimer depends significantly
on water vapor pressure and temperature. Although accurate and well-controlled mea-
surements are required in order to account for the water vapor continuum in real at-
mospheric situations, limited experimental measurements have been used to develop
empirical parameterizations.

4.2.1.2 CARBON DIOXIDE

As discussed in Subsection 3.2.3.3, the bending mode, ν2, is degenerate and con-
sists of ν2a and ν2b vibrations at the same frequency. The CO2 15 μm band represents
this particular vibration. Owing to perpendicular vibration, the ν2 fundamental tran-
sition is coupled with rotational transitions corresponding to changes in the quantum
number 	J = −1, 0, + 1. The spectral lines produced by these changes are referred
to as the P, Q, and R branches, respectively, as noted in Section 1.3.1. For the P and
R branches, the lines have wavenumbers lower and greater, respectively, than those
of the line center. In the case of the Q branch, the lines are clustered near the center
of the 15 μm band.

Because of the two vibrational modes, ν2a and ν2b, a π/2 phase difference is
produced between them. The central carbon atom will perform a rotary motion about
the symmetry axis and generate a component of angular momentum along this axis.
This momentum is quantized with a quantum number l that is less than or equal to
ν2. This quantum number is added as a superscript to ν2 in the designation of the
vibrational level, e.g., 0110, 0200, 0220. The 2ν2 level of the carbon dioxide molecule
lies very close to the ν1 level, causing a resonance referred to as Fermi resonance.
Because of the selection rules on the vibrational angular momentum, only the level
0200 can combine with ν1.

Besides the ν2 fundamental band, numerous combination bands have been detected
in the 15 μm region. Simultaneous transitions in two of the vibration modes are
possible, resulting in weak combination (or difference) frequencies. There are also
numerous hot bands in the 15μm CO2 band. These bands are produced by transitions
between excited levels and are significant in cooling-rate calculations in the middle
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Figure 4.2 The most important vibrational transitions that produce the 15μm CO2 band, including the
ν2 fundamental, the hot bands, and the combination bands (data taken from Lopez-Puertas et al., 1986). The
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The isotopes include 16O12C16O, 16O13C16O, and 16O12C18O.

atmosphere. A summary diagram of the 15 μm CO2 energy transitions is presented
in Fig. 4.2.

There are several overtone and combination bands of carbon dioxide in the IR. At
atmospheric temperatures, most of the molecular population is in the vibrational level
with quantum number υ = 0. When transitions take place between nonadjacent levels
(	υ = 2, 3, 4), weaker overtone frequencies are produced. Two moderately strong
bands appear in the solar spectrum and are centered at 1063.8 and 961.0 cm−1. Both
are parallel bands and have been used for the development of the CO2 laser emission
at about 10.6 μm. The bands near 5 μm consist of the 3ν2 band at 5.2 μm and several
combination bands at 4.8 μm.

4.2.1.3 OZONE

The ozone molecule has an asymmetric top configuration similar to the water vapor
molecule, but with a different apical angle, giving it a relatively strong rotational
spectrum. The three isotopes, 16O3,

16O18O16O, and 16O16O18O, have fundamental
bands in the 9.6 and 14.27 μm regions. The ν1 and ν3 fundamental vibration modes
are centered at 1110 and 1043 cm−1 and constitute the well-known 9.6 μm ozone
band. The ν2 fundamental band, centered at 705 cm−1 (14.27 μm), is well-masked
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by the strong CO2 15 μm band and appears to be less significant in atmospheric
radiative transfer. There is also a relatively strong band of ozone at 4.75 μm that is
produced by overtone and combination transitions. The electronic bands of ozone
were discussed in Section 3.2.1.

4.2.1.4 METHANE

The methane molecule has a spherical top configuration. It has no permanent
electric dipole moment and, hence, no pure rotational spectrum. There are four fun-
damental vibration modes. Of these, only ν3 and ν4, centered at 3020.3 and 1306.2
cm−1, are active in the infrared spectrum. The ν4 fundamental band of CH4 is im-
portant in the climatic greenhouse effect. The inactive ν1 and ν2 fundamental bands
are centered at 2914.2 and 1526 cm−1. Methane also possesses a rich spectrum of
overtone and combination bands that have been identified in the solar spectrum.

4.2.1.5 NITROUS OXIDE

The nitrous oxide molecule has a linear and asymmetric structure, with the con-
figuration NNO. Similar to carbon dioxide, it has a single rotational constant and a
detectable rotational spectrum. Numerous bands produced by the fundamental, over-
tone, and combination frequencies exist in the infrared. The three fundamental fre-
quencies are centered at 1285.6 cm−1(ν1), 588.8 cm−1 (ν2), and 2223.5 cm−1(ν3). The
ν1 fundamental band of nitrous oxide overlaps the ν4 fundamental band of methane.

4.2.1.6 CHLOROFLUOROCARBONS

The methyl chloride (CH3Cl) molecule has two bands of interest to atmospheric
infrared radiative transfer: the ν3 band at 732 cm−1 and the ν2 band at 1350 cm−1. In
the ν8 region, which is centered at 1161 cm−1 and has a band at 1095 cm−1, Q branch
features have been found for dichlorodifluoromethane (CF2Cl2). For the trichloro-
fluoromethane (CFCl3) molecule, the ν1 and ν4 fundamental transitions are active
and centered at 848 and 1085 cm−1, respectively. The methylchloroform (CH3CC13)
molecule has a narrow Q branch associated with the ν2 fundamental band at 1348.5
cm−1. The carbon tetrachloride (CCl4) molecule has an active band in the ν3 region
near 796 cm−1. Absorption of these anthropogenic trace gases is primarily located in
the window region. Thus, their potential increase can make the atmospheric window
“dirty” and may lead to significant greenhouse effects.

All the preceding absorbing gases are identified in the infrared spectrum presented
in Fig. 4.3, obtained from a scanning high-resolution interferometer sounder (S-HIS;
see also Fig. 4.12), an instrument that measures the emitted thermal radiation between
3.3 and 18μm from the NASA high-flying ER-2 aircraft at about 20 km. The spectral
resolution of this interferometer varies but is on the order of 0.01 cm−1. The spectrum
is presented in terms of the brightness temperature (see Section 7.5.1 for the conversion
of radiance to brightness temperature). Note that in addition to the absorption of the
4.3 μm CO2 band (Section 3.2.3) in the solar spectral region of 3.3 to 5.0 μm, the
absorption of nitrogen species is also identified.
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Figure 4.3 Observed infrared spectrum displaying all the absorption gases and their spectral location.
This spectrum was obtained from the scanning high-resolution interferometer sounder (S-HIS), which
measured the emitted thermal radiation between 3.3 and 18 μm, onboard the NASA ER-2 aircraft over the
Gulf of Mexico southeast of Louisiana on April 1, 2001 (courtesy of Allen Huang and Dave Tobin of the
University of Wisconsin).

4.2.2 Fundamentals of Thermal Infrared Radiative Transfer

Consider an absorbing and emitting medium. A pencil of radiation traversing this
medium will be weakened by the interaction with matter through absorption. At the
same time, this radiation may be strengthened by thermal emission from the medium
(see Section 1.4.3). This pencil of radiation is usually represented by its intensity
(or radiance), Iν , in the field of radiative transfer. The general equation for radiative
transfer in an absorbing and emitting medium can be written in terms of the differential
change in the intensity in the form

− 1

kνρa

d Iν
ds

= Iν − Jν, (4.2.1)

where kν denotes the absorption coefficient, ρa is the density of absorbing gases, s
is the slant path, and Jν is the source function. For applications concerning the radi-
ation budget of the planet, it suffices to consider the intensity as being independent
of time. Moreover, it is commonly assumed that, in localized portions, the atmo-
sphere is in thermodynamic equilibrium, as well as being plane-parallel. The first
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assumption allows us to use the Planck intensity for the source function by virtue of
Kirchhoff’s law. The plane-parallel assumption implies that variations in the intensity
and atmospheric parameters (temperature and gaseous profiles) are permitted only
in the vertical direction (e.g., height or pressure). Under this assumption, absorption
and emission processes would be symmetrical with respect to the azimuthal angle. It
follows that the intensity is a function of the vertical position and zenith angle. Under
these conditions, the basic equation that governs thermal IR radiation in the height
coordinate may be written in the form

−μ
d Iν(z, μ)

kνρadz
= Iν(z, μ) − Bν(z), (4.2.2)

where the Planck intensity Bν(z) = Bν(T (z)).
Because of the height dependence of both the gaseous density and absorption

coefficient, it is convenient to define the normal optical depth, or simply optical
depth, in the form

τ =
∫ z∞

z
kν(z′)ρa(z′)dz′ =

∫ p

0
kν(p′)q(p′)

dp′

g
, (4.2.3)

where z∞ denotes the height at the top of the atmosphere (TOA), q = ρa/ρ, the
gaseous mixing ratio, and ρ is the air density. We have introduced the pressure co-
ordinate p, using the hydrostatic equation. Figure 4.4 shows the coordinate systems
in optical depth, height, and pressure. The differential optical depth can be readily
obtained from Eq. (4.2.3) with the form dτ = −kν(z)ρa(z)dz = kν(p)q(p)dp/g. In
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Figure 4.4 Coordinate systems in τ, z, u, T, and p for IR radiative transfer in plane-parallel atmo-
spheres. u is the path length for absorbing gases defined from the surface upward. The total path length
is denoted by u1. T∞ and z∞ are temperature and height, respectively, at TOA. The surface temperature
Ts = T (τ∗). The surface pressure is denoted by ps .
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terms of the τ coordinate, Eq. (4.2.2) may be rewritten as follows:

μ
d Iν(τ, μ)

dτ
= Iν(τ, μ) − Bν(τ ). (4.2.4)

For the upward intensity, the zenith angle 0 ≤ θ ≤ π/2; that is, 0 ≤ μ ≤ 1. However,
for the downward intensity, π/2 ≤ θ ≤ π . In this case, we may set μ = −μ for
convenience in radiative transfer analyses.

Equation (4.2.4) represents a first-order differential equation. In order to solve both
upward and downward components for an atmosphere with a total optical depth of
τ∗, two boundary conditions are required. Under the plane-parallel assumption, these
conditions are isotropic emissions from both the surface and TOA. In general, the
earth’s surface may be considered as a blackbody in the infrared, so that Iν(τ∗, μ) =
Bν(T (τ∗)). In addition, we may allow for a possible source of downward emission at
TOA and write Iν(0,−μ) = Bν(TOA). Normally, however, Bν(TOA) ∼= 0. Subject to
the preceding boundary conditions, the formal solutions for upward and downward
intensities are given by

I ↑
ν (τ, μ) = Bν(τ∗)e−(τ∗−τ )/μ +

∫ τ∗

τ

Bν(τ ′)e−(τ ′−τ )/μ dτ ′

μ
, (4.2.5a)

I ↓
ν (τ,−μ) =

∫ τ

0
Bν(τ ′)e−(τ−τ ′)/μ dτ ′

μ
. (4.2.5b)

We shall now define the monochromatic transmittance (also referred to as the trans-
mission function) so that the exponential attenuation may be expressed by

Tν(τ/μ) = e−τ/μ. (4.2.6a)

The differential form is

dTν(τ/μ)

dτ
= −1

μ
e−τ/μ. (4.2.6b)

The formal solutions for the intensities can then be expressed by

I ↑
ν (τ, μ) = Bν(τ∗)Tν[(τ∗ − τ )/μ] −

∫ τ∗

τ

Bν(τ ′)
d

dτ ′ Tν[(τ ′ − τ )/μ] dτ ′, (4.2.7a)

I ↓
ν (τ,−μ) =

∫ τ

0
Bν(τ ′)

d

dτ ′ Tν[(τ − τ ′)/μ] dτ ′. (4.2.7b)

Equation (4.2.7a) can be applied to remote sensing from space if we set τ (TOA) = 0.
For atmospheric heating rate calculations, the required quantities are the upward

and downward flux densities (simply referred to as fluxes hereafter), which are the
sum of the directional intensities from the upper and lower hemispheres, respectively.
In accordance with the plane-parallel assumption, we have

F↑↓
ν (τ ) = 2π

∫ 1

0
I ↑↓
ν (τ, ±μ)μ dμ. (4.2.8)
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On noting the angular integration and in order to obtain the fluxes, we may define a
physical parameter, referred to as slab or diffuse transmittance, in the form

T f
ν (τ ) = 2

∫ 1

0
Tν(τ/μ)μ dμ. (4.2.9)

With the aid of this definition, the expressions for fluxes may now be written in the
form

F↑
ν (τ ) = πBν(τ∗)T f

ν (τ∗ − τ ) −
∫ τ∗

τ

πBν(τ ′)
d

dτ ′ T f
ν (τ ′ − τ ) dτ ′, (4.2.10a)

F↓
ν (τ ) =

∫ τ

0
πBν(τ ′)

d

dτ ′ T f
ν (τ − τ ′) dτ ′. (4.2.10b)

The upward flux at a given level comes from two sources: the surface emission
that is attenuated to that level and the emission contributions from the atmospheric
layers characterized by Planck fluxes multiplied by the weighting function, dT f

ν /dτ .
Likewise, the downward flux at a given level is produced by the contributions from
the atmospheric layers.

Finally, to account for the contributions from all wavenumbers in the thermal IR
spectrum, an integration of the monochromatic flux with respect to wavenumber must
be performed. Since τ is a function of the wavenumber, we use the height coordinate
and write

F↑↓(z) =
∫ ∞

0
F↑↓
ν (z) dν. (4.2.11)

At this point, the transfer of thermal IR radiation in plane-parallel atmospheres (with-
out clouds) is formally solved. Conditional to the definition of diffuse transmittance,
the computation of atmospheric fluxes involves solving the integrations over the
wavenumber and along the optical depth.

4.2.3 Line-By-Line (LBL) Integration

Absorption line parameters for various gases can be computed from fundamental
quantum mechanics theory. Laboratory data are also available for a limited number
of spectral intervals. Based on theory and measurements, line parameters have been
compiled over the range 0 to 17,900 cm−1 (Rothman et al., 1998). Data for more
than 1 million lines have been presented. The absorption line parameters are listed in
data form in terms of line position (in cm−1), line intensity [in cm−1/(mol cm−2) at
296 K], air-broadened half-width (in cm−1/atm at 296 K), and lower-state energy (in
cm−1). The molecular species include H2O, CO2, O3, N2O, CO, CH4, and O2.

For a given wavenumber and species, contributions to transmittance arise from the
absorption coefficients for N lines. The optical depth is then

τ =
N∑

j=1

τ j =
∫

u

N∑
j=1

kν, j (u) du, (4.2.12)
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where j(= 1, 2, . . . , N ) is the index of the absorption coefficient for the j th line.
Thus, the absorption coefficient can be expressed in terms of line strength and line
shape in the form

kν(p, T ) =
N∑

j=1

Sj (T ) fν, j (p, T ). (4.2.13)

In order to resolve individual lines, the absorption coefficient must be computed
at wavenumber intervals that are smaller than the line half-width. In the upper strato-
sphere, absorption and emission processes are dominated by CO2 and O3. Broadening
of the absorption lines is primarily due to the Doppler effect. The Doppler half-width
in the 15μm CO2 and 9.6μm O3 bands is ∼0.0005–0.001 cm−1. The spectral interval
in these two bands covers about 400 cm−1. Thus, the absorption must be calculated
at more than half a million points if individual lines are to be resolved.

In the troposphere, absorption due to H2O predominates. H2O lines cover essen-
tially the entire infrared spectrum with a spectral region of about 15,000 cm−1. These
lines are broadened by collisions, and their half-widths are >0.01 cm−1. Computa-
tions must be performed at about 1 million points to resolve H2O lines. For each point,
there are numerous lines and atmospheric conditions that must be considered for appli-
cations to atmospheric radiative transfer. The computer time required for line-by-line
calculations, even with the availability of a supercomputer, is formidable. This is
especially true for flux calculations in which an integration over all absorption bands
is necessary.

In the case of Lorentz line shapes, it is important to cut off the contribution of
significant lines at computational points in a line-by-line program. The far wings of
a pressure-broadened absorption line in the infrared have been suggested to be sub-
Lorentzian. Two approaches have been used to compute the far wing contribution.
The first approach is to multiply the Lorentz profile by an empirical function χ , such
that χ = 1 at the line center and χ = 0 at some distance from the center. The second
is to use the Lorentz profile for all wavenumbers but to cut the lines off at some
distance from the line center. The lines can be cut off at a constant distance from the
center or they can be cut off at a distance varying with the half-width; that is, the
cutoff wavenumber νc = βα, with β a constant. Numerical computations show that
absorption is affected only slightly by cutting a line off at a wavenumber of about 200
times the Lorentz half-width from the center.

In infrared radiative transfer calculations, it is advantageous to define the radiative
parameters in a small spectral interval such that variation of the Planck function can
be neglected. In terms of the basic parameters in the intensity and flux equations, we
may define the spectral transmittance as

Tν̄(u) =
∫
	ν

e−τ dν

	ν
=
∫
	ν

exp

(
−
∫

u

∑
j

kν, j (u)du

)
dν

	ν
. (4.2.14)

Thus, in order to calculate the spectral transmittance Tν̄(u) exactly, adequate and
reliable summations must be performed to cover the absorption lines, the spectral
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interval, and the nonhomogeneous path. Moreover, the absorption coefficient is a
function of the line strength, which is in turn a function of temperature and the
half-width, which is itself a function of pressure and temperature. Exact line-by-line
calculations for the spectral transmittance are very tedious and require a significant
amount of computer time. All the infrared radiative transfer theories that have been
developed are essentially intended to simplify and economize the computation of the
spectral transmittance by circumventing the integration over the spectral interval and
nonhomogeneous path length.

For flux calculations, the diffuse transmittance defined in Eq. (4.2.9) is required.
In general, a four-point Gaussian quadrature will give accurate results for integration
over the cosine of the zenith angle μ. For many atmospheric applications, it suffices
to use

T f
ν̄ (u) ∼= Tν̄(u/μ̄), (4.2.15)

where 1/μ̄, the inverse of the mean emergent angle, is referred to as the diffusivity
factor. Based on numerical computations for thermal IR radiative transfer, a good
approximation for 1/μ̄ ranges from 1.66 to 2. The diffusivity of 1.66 was originally
proposed by Elsasser (1942) and has been found to be a reliable approximation for
the computation of radiative fluxes and heating rates in clear atmospheres. Finally, it
should be noted that the notation T is being used in this text as transmittance defined
by a wavenumber subscript in infrared radiative transfer discussion, and as the trans-
mission function defined by incoming and outgoing directions in the presentation of
multiple scattering processes. It is also being used as temperature throughout the text.

4.3 Correlated K -Distribution Method for Infrared
Radiative Transfer

4.3.1 Fundamentals

The k-distribution method for the computation of infrared radiative transfer is based
on the grouping of gaseous spectral transmittances according to the absorption co-
efficient kν . In a homogeneous atmosphere, spectral transmittance is independent of
the ordering of k for a given spectral interval. Hence, wavenumber integration may be
replaced by an integration over the k space. If the normalized probability distribution
function for kν in the interval	ν is given by f (k) and its minimum and maximum val-
ues are kmin and kmax, respectively, then the spectral transmittance may be expressed by

Tν̄(u) =
∫
	ν

e−kνu dν

	ν
=
∫ ∞

0
e−ku f (k) dk, (4.3.1a)

where we have set kmin → 0 and kmax → ∞, for mathematical convenience, and∫ ∞

0
f (k)dk = 1. (4.3.1b)
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From Eq. (4.3.1a), the probability distribution function is the inverse Laplace trans-
form, L−1, of the spectral transmittance such that

f (k) = L−1(Tν̄(u)). (4.3.2)

If the spectral transmittance can be expressed in terms of an analytic exponential func-
tion and if the inverse Laplace transform can be performed, then an analytic expression
can be derived for the probability distribution function (Exercises 4.3 and 4.4).

Moreover, a cumulative probability function may be defined in the form

g(k) =
∫ k

0
f (k) dk, (4.3.3)

where g(0) = 0, g(k → ∞) = 1, and dg(k) = f (k) dk. By definition, g(k) is a mono-
tonically increasing and smooth function in k space. By using the g function, the
spectral transmittance can be written

Tν̄(u) =
∫ 1

0
e−k(g)udg ∼=

M∑
j=1

e−k(g j )u	g j . (4.3.4)

From Eq. (4.3.3), since g(k) is a smooth function in k space, the inverse will also be
true here; that is, k(g) is a smooth function in g space. Consequently, the integration
in g space, which replaces the tedious wavenumber integration, can be evaluated by
a finite sum of exponential terms, as shown in Eq. (4.3.4).

Figure 4.5a shows kν as a function of ν in a portion of the H2O rotational band at
a pressure of 600 mb and a temperature of 260 K. Figure 4.5b shows the probability
distribution f (k) as a function of k for this band [see the following for an evaluation of
f (k)]. In Fig. 4.5c, the cumulative probability function g(k) is shown as a function of k.
We may then compute k(g) as a function of g from Eq. (4.3.3). This curve is illustrated
in Fig. 4.5d. Since g is a smooth monotonic function, a few quadrature points will
suffice to achieve a high degree of accuracy in the transmittance computation. The
physical foundation for the k distribution is quite simple, but it offers an advantage
in the computation of infrared flux transfer. The idea of scrambling and ranking
absorption lines was described in Ambartzumian’s (1936) work on the equilibrium
temperature of stellar atmospheres. Arking and Grossman (1972) used this method
to discuss the line shape effect on the temperature of planetary atmospheres.

4.3.2 Application to Nonhomogeneous Atmospheres

The preceding theory of the k-distribution method assumes that the absorption coef-
ficient is constant so that ν-integration can be replaced by g-integration. However, as
pointed out in Section 4.2.3, the absorption coefficient varies greatly with pressure
and temperature in terms of its half-width and line strength. Thus, in order to apply
the k-distribution method to realistic atmospheres, variation in the absorption coeffi-
cient in the vertical must be accounted for. Basically, we must determine whether the
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Figure 4.5 (a) Absorption coefficient kν in units of (cm atm)−1 as a function of wavenumber with a
resolution of 0.01 cm−1 in the H2O rotational band with p = 600 mb and T = 260 K. (b) The probability
function f (k) of the absorption coefficient. (c) The cumulative probability function for f (k) shown in (b),
plotted as a function of k. (d) Same as (c), except that values of the absorption coefficient are expressed as
a function of g.

following two integrations are equivalent:

Tν̄(u) =
∫
	ν

exp

(
−
∫

u
kν du

)
dν

	ν
≡?
∫ 1

0
exp

[
−
∫

u
k(g) du

]
dg. (4.3.5)

Because the line profile varies significantly from one pressure (temperature) level
to another, the rearrangement of all the lines so that the ν- and g-integrations are
the same is not obvious. The method that assumes the two are equivalent is referred
to as the correlated k-distribution (CKD) method. In the following, we examine the
conditions under which the CKD method may be considered to be exact.

Consider first a single line of any shape in a spectral interval 	ν. Let this interval
be from −	ν/2 to +	ν/2. At the line center, ν(kmax) = 0 and at the end of the line
|ν(kmin)| = 	ν/2, as shown in Fig. 4.6a. The cumulative probability function defined
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in Eq. (4.3.3) is given by

g(k) = 2

	ν

∫ k

kmin

∣∣∣∣dνdk

∣∣∣∣
k=k ′

dk ′ = 2

	ν
ν(k) − 1. (4.3.6a)

It follows that (2/	ν) dν = dg. That is, for a single line, we can replace the integration
over the ν-domain with an integration over the g-domain in Eq. (4.3.5). Consider
now a group of n lines that occur periodically (or regularly) in a spectral interval 	ν
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(Fig. 4.6b). Let the line spacing be δ. Then we have

g(k) = 2

δ

∫ k

kmin

∣∣∣∣dνdk

∣∣∣∣
k=k ′

dk ′ = 2

δ
ν(k) − 1. (4.3.6b)

Thus, (2/δ) dν = dg. Again, the integration over the ν-domain can be replaced by an
integration over the g-domain. Calculations of the spectral transmittance would be
the same in the two approaches. For reference purposes, Fig. 4.6c shows a group of
absorption lines assuming the Lorentz shape in a 10 cm−1 spectral interval within the
1.38 μm H2O band.

Next, if the absorption coefficient and/or the path length is small, referred to as the
weak-line limit, we have from Eq. (4.3.5), regardless of the line shape, the following:

Tν̄(weak) ∼=
∫
	ν

[
1 −

∫
u

kν du

]
dν

	ν
= 1 −

∫
u

k∗ du, (4.3.7a)

where k∗ =∑ Sj/	ν and is independent of wavenumber. The last expression is ob-
tained by employing the definition of the absorption coefficient given in Eq. (4.2.13).
Since k∗ is small, we may rewrite Eq. (4.3.7a) in the form

Tν̄(weak) = exp

(
−
∫

u
k∗ du

)
. (4.3.7b)

Under the weak-line limit, the spectral transmittance may be expressed explicitly by
an exponential function without integration over ν. This is referred to as the gray
approximation. In this case, replacement of dν/	ν by dg can readily be made, since
k∗ is independent of ν.

Now consider a group of lines. The absorption coefficient at a given wavenumber
is contributed from all the lines and using the Lorentz profile, we have

kν(p, T ) =
∑

j

S j (T )

π

α j (p, T )

(ν − ν0)2 + α2
j (p, T )

, (4.3.8)

where the line strength is a function of temperature and the half-width is a function
of both pressure and temperature [see Eq. (1.3.14)]. At the line center, ν = ν0, kν ∼
1/α j (p, T ) ∼ 1/p. However, in the far wing, |ν − ν0| � α, and kν ∼ α j (p, T ) ∼ p.
Under normal atmospheric conditions, the half-widths of Lorentzian lines are small
in comparison to the mean line spacing. This is particularly true for most water
vapor lines. Near the line centers, absorption becomes saturated so that the transfer
of radiation through the wing regions becomes predominant. This is the condition for
the strong-line limit. In this case, we may write

kν(p, T ) ∼=
∑

j

S j (T )

π

α j (p, T )

(ν − ν0)2
= k∗

ν f ∗(p, T ), (4.3.9)

where

k∗
ν = 1/π (ν − ν0)2, f ∗(p, T ) =

∑
j

S j (T )α j (p, T ).
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The condition in which the dependent variable ν may be separated from the absorption
coefficient is referred to as the scaling approximation. Substituting Eq. (4.3.9) into
Eq. (4.3.5) leads to

Tν̄(strong) ∼=
∫
	ν

e−k∗
ν ũ dν

	ν
≡
∫ 1

0
e−k∗

ν (g)ũdg, (4.3.10)

as in the homogeneous case, where

ũ =
∫

u
f ∗(p, T ) du.

In essence, the scaling approximation allows the transformation of a nonhomogeneous
path into a homogeneous path.

On the basis of the preceding discussion, the CKD method is exact for a single line
and periodic lines, as well as in the limits of weak-line and strong-line approximations.
The CKD method is an extension of the k-distribution to nonhomogeneous paths,
the idea of which appeared in a technical report (Lacis et al., 1979). In this method,
the vertical nonhomogeneity of the atmosphere is accounted for by assuming a simple
correlation of k-distributions at different temperatures and pressures such that the
spectral transmittance can be expressed by

Tν̄(u) ∼=
∫ 1

0
exp

[
−
∑

i

ki (g)	ui

]
dg. (4.3.10)

Because the CKD approach allows the use of k-distributions at each altitude, an appro-
priate Voigt profile can also be accounted for throughout the atmosphere. Moreover, it
can also be used for absorption bands in both solar and thermal infrared spectra and, at
the same time, the results from this method can be directly incorporated into multiple-
scattering processes associated with cloud and aerosol particles. Goody et al. (1989),
Lacis and Oinas (1991), and Fu and Liou (1992) have undertaken proof of the validity
of CKD and have tested its accuracy under a variety of atmospheric conditions. For
flux calculations, errors due to the assumptions in CKD with respect to LBL results
are generally on the order of 1%. Thus, the CKD method is a powerful technique for
use in radiative transfer parameterizations in dynamic and climate models especially
when multiple scattering of cloud and aerosol particles must be accounted for in flux
and heating rate calculations. The accuracy of CKD will be further elaborated upon in
Section 4.7. In the following, we discuss a simple numerical procedure for the sorting
of absorption lines.

4.3.3 Numerical Procedures and Pertinent Results

Consider a spectral interval 	ν that contains numerous absorption lines. We may
divide this interval into a subset of 	νi (i = 1, 2 . . . , N ) such that they are less
than the line’s half-width. In this case, the probability distribution function may be
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written as

f (k) = 1

	ν

dν

dk
= 1

	ν

∑
j

∣∣∣∣	ν j

	k

∣∣∣∣ (4.3.11)

for a specific k, and f (k) is 0 if the maximum of a line k j (max) is smaller than k.
The cumulative probability function is then

g(k) = 1

	ν

∑
j

∫ k

0

∣∣∣∣	ν j

	k ′

∣∣∣∣ dk ′

= 1

	ν

∑
j

∫ k

0
	ν j (k) = n(0, k)

N
, (4.3.12)

where the total number of lines (computational points) N = 	ν/δ, with δ the mean
line spacing defined by

δ =
N∑

j=1

ν j/N , (4.3.13)

and n(0, k) denotes the number of lines (computational points) that contribute to k
cumulatively.

For illustration purposes, let us consider three lines as displayed in Fig. 4.7. We
may divide the absorption coefficient into 10 intervals. As shown, n(0,	k) = 4, n(0,
2	k) = 4 + 6 = 10, and so on. The total number N = n(0, 9	k) = 35. From Eq.
(4.3.12), we have g(0) = 0, g(	k) = 4/35, g(2	k) = 10/35, . . . , and g(9	k) = 1.
The absorption coefficient k(g) can now be expressed in the g-domain, as shown in
Fig. 4.7, and is a monotonically increasing function. It follows that the computation
of spectral transmittance may now be performed over the g-domain, with a relatively
small number of computational points, instead of the ν-domain, which consists of
highly fluctuating curves. Exercise 4.1 requires the analysis and computation of the g
function and spectral transmittance for a group of water vapor lines in a 10 cm−1

spectral interval.
The foregoing procedure can be used to compute g functions for a given pressure

and temperature, i.e., g(k, p, T ) = n(0, k; p, T )/N . The effect of pressure and tem-
perature on the absorption coefficient in the g-domain is shown in Fig. 4.8 using a
spectral interval of 540–670 cm−1 in the 15 μm CO2 band. For a given g, the ab-
sorption coefficient increases with increasing pressure and temperature. The pressure
effect occurs through its dependence on the half-width, whereas the temperature effect
is associated with both line strength and half-width. In numerical calculations of IR
heating rates, it would be advantageous and practical to develop efficient parameteri-
zations to account for the dependence of pressure and temperature on the absorption
coefficient in the g-domain.
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Figure 4.7 Illustration of the mapping of the absorption coefficient from the ν-domain to the
g-domain. (a) Absorption coefficients of three lines in the ν-domain and division of the k-space into
10 equal intervals. The numbers are the data points in each interval with a total number of 35. (b) By
definition, g( j	k) = n(0, j	k)/N , j = 0, 1, . . . , 9. Thus, the data points in the ν-domain are transformed
to the g-domain, where g is a monotonic increasing function.
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Figure 4.8 The absorption coefficient in (cm atm)−1 as a function of the cumulative probability g
for the CO2 540–670 cm−1 spectral region (a) for a temperature of 250 K with three pressures and (b) for
a pressure of 100 mb with three temperatures.

4.3.4 Line Overlap Consideration

Examination of the line displacement reveals that H2O rotational lines and a portion
of 15 μm CO2 lines overlap significantly. Thus, an appropriate treatment must be
undertaken to evaluate the spectral transmittance that contains the two gases. Let the
mixing ratios for CO2 and H2O be qc and q, respectively. Their respective optical
depths are, therefore, given by

τ1 = qc

∫
k1(ν, p, T )ρ dz, (4.3.14a)

τ2 =
∫

k2(ν, p, T )qρ dz, (4.3.14b)

where ρ is the air density and qc is a constant. The monochromatic transmittance for
the two gases, by definition, can be written in the form

Tν(q, qc) = e−(τ1+τ2) = Tν(qc)Tν(q). (4.3.15)

Consider a small spectral interval such that 	ν ≤ 5 cm−1. The H2O and CO2 lines
may be treated as statistically independent so that∫

	ν

[Tν(q) − Tν̄(q)][Tν(qc) − Tν̄(qc)]
dν

	ν
= 0. (4.3.16)

In this case, the spectral transmittance for the two gases is separable, leading to

Tν̄(q, qc) = Tν̄(qc)Tν̄(q) =
∫
	ν

e−τ1
dν

	ν
·
∫
	ν

e−τ2
dν

	ν
. (4.3.17a)
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We may then apply the CKD method to each gas to obtain

Tν̄(q, qc) ∼=
∫ 1

0

∫ 1

0
exp

{
−
∫

[k(g1)qc + k(g2)q]ρ dz

}
dg1 dg2. (4.3.17b)

The spectral transmittance now consists of two integrations. If M and N calculations
are required for CO2 and H2O separately, then the total number of calculations would
be M × N , substantially increasing the computational requirement.

In the following, we wish to find a simplified approach to evaluate the spectral
transmittance involving two overlap gases. We shall first consider the homogeneous
condition such that the spectral transmittance defined in Eq. (4.3.17a) can be expressed
by the definition of the k-distribution in the form

Tν̄(q, qc) =
∫ ∞

0
e−k1u1 f1(k1)dk1 ·

∫ ∞

0
e−k2u2 f2(k2) dk2, (4.3.17c)

where the path lengths u1 = qcu and u2 = qu = u1q/qc, with u being the path length
for air. With the definitions of u1 and u2, the two individual spectral transmittances
can then be written as

Tν̄(qc) = T1(u1) =
∫ ∞

0
e−k1u1 f1(k1) dk1, (4.3.18a)

Tν̄(q) = T2(u2) =
∫ ∞

0
e−k2u2 f2(k2) dk2. (4.3.18b)

Letting k2 = k ′′qc/q in Eq. (4.3.18b), we then have

T2(u1) =
∫ ∞

0
e−k ′′u1 f ∗

2 (k ′′) dk ′′, (4.3.18c)

where the probability distribution function

f ∗
2 (k ′′) = qc

q
f2

(
qc

q
k ′′
)

= L−1(T2(u1)). (4.3.19a)

From Eq. (4.3.18a), by letting k1 = k ′ for convenience of presentation, we also have

f1(k ′) = L−1(T1(u1)). (4.3.19b)

It follows that Eq. (4.3.17c) can be rewritten in the form

Tν̄(q, qc) =
∫ ∞

0
e−k ′u1 f1(k ′) dk ′ ·

∫ ∞

0
e−k ′′u1 f ∗

2 (k ′′) dk ′′

=
∫ ∞

0

∫ ∞

0
e−(k ′+k ′′)u1 f1(k ′) f ∗

2 (k ′′) dk ′ dk ′′. (4.3.20a)

We may define k = k ′ + k ′′. By replacing k ′ with k − k ′′, interchanging the double
integrals and their limits, and employing the convolution theorem of the Laplace
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transform given by

f (k) = L−1(Tν̄(q, qc)) =
∫ k

0
f1(k − k ′′) f ∗

2 (k ′′) dk ′′, (4.3.20b)

we can prove that

Tν̄(q, qc) =
∫ ∞

0
e−ku1 f (k) dk =

∫ 1

0
e−k(g)u1 dg. (4.3.20c)

Because the mixing ratio for carbon dioxide qc is constant, we may apply the correlated
condition for an inhomogeneous path to Eq. (4.3.20c) to obtain

Tν̄(q, qc) ∼=
∫ 1

0
exp

[
−qc

∫
k(g, T, p, q)ρ dz

]
dg, (4.3.21a)

where the cumulative probability function is given by

g(k, p, T, q) =
∫ k

0
f (k, p, T, q) dk. (4.3.21b)

The CKD for a single-mixture gas requires the same correlated assumptions as those
for an individual gas, except that an additional variable, q, is needed. To facilitate
the computation of k(g, p, T, q), efficient parameterization can be developed for a
number of pressure, temperature, and H2O mixing ratios.

4.4 Band Models

Band models are traditional approaches that simplify the computation of the spectral
transmittance. The atmosphere is assumed to be homogeneous so that analytical
expressions may be developed. We first define spectral absorptance in the form

Aν̄(u) = 1 − Tν̄ = 1

	ν

∫
	ν

(1 − e−kνu) dν. (4.4.1)

The quantity Aν̄	ν is referred to as the equivalent width W (u). It is the width of an
infinitely strong line of rectangular shape, which would be the same as the actual ab-
sorption of a single line (Fig. 4.9). The concept of equivalent width plays an important
role in the development of band models.

4.4.1 A Single Line

Using a single Lorentz line, introducing two new variables, x = Su/2πα and
tan y/2 = (ν − ν0)/α, and extending the wavenumber integration from −∞ to ∞,
the spectral absorptance can be shown to be

Aν̄ = α

	ν

∫ π

−π
{1 − exp[−x(1 + cos y)]} d(tan y/2). (4.4.2)
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Figure 4.9 The definition of equivalent width, W = Aν	ν, where Aν represents the spectral absorp-
tance for a spectral interval 	ν. It is the width of an infinitely strong line of rectangular shape that is the
same as the absorption of a single line.

Performing integration by parts and carrying out further trigonometric manipulations
yield

Aν̄ = αxe−x

	ν

∫ π

−π
(e−x cos y − cos ye−x cos y) dy. (4.4.3)

The integral representation of the Bessel function is given by

Jn(x) = i−n

π

∫ π

0
eix cos θ cos nθ dθ, (4.4.4a)

and the modified Bessel function of the first kind of order n is

In(x) = i−n Jn(i x), (4.4.4b)

where i = √−1. Thus, in terms of the modified Bessel function, equivalent width is
given by

W = Aν̄	ν = 2παL(x) = 2παxe−x [I0(x) + I1(x)], (4.4.5)

where L(x) is known as the Ladenburg and Reiche function.
In the case of weak-line absorption, either kν or u is small, so that kνu � 1. Spectral

absorptance is approximately given by

Aν̄
∼= 1

	ν

∫ ∞

−∞
kνu dν = Su

	ν
, (4.4.6)

based on the definition of line intensity, regardless of the line shape. Absorptance,
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under the limits of weak-line approximations, is directly proportional to the path
length and is called the region of linear absorption. On the other hand, if Su/πα � 1,
absorptance approaches 1 in the line center region. We may omit the half-width α in
the denominator of the Lorentz profile so that

Aν̄(u) = 1

	ν

∫ ∞

−∞

[
1 − exp

( −Sαu

π (ν − ν0)2

)]
dν. (4.4.7a)

Using the known integration formula (Exercise 3.6), we find

Aν̄(u) = 2
√

Sαu/	ν. (4.4.7b)

Absorptance is, therefore, proportional to the square root of the path length and is
in the region of the so-called square root absorption. Approximations for the weak-
and strong-line limits can also be derived directly from Eq. (4.4.5) (Exercise 4.2).
Summarizing the preceding discussion, the equivalent width for a spectral line can
be written as follows:

W = Aν̄(u)	ν =
{

Su, weak-line,
2
√

Sαu, strong-line.
(4.4.8)

These two limits are useful in the development of approximations for use in infrared
radiative transfer calculations.

4.4.2 Regular Band Model

Inspection of the Q-branch of the 15 μm CO2 band indicates that a single line may
repeat itself periodically (or regularly) as shown in Fig. 4.6b. This configuration led
Elsasser (1938) to the development of the regular band model. In this case, the ab-
sorption coefficient at a wavenumber displacement ν from the center of one particular
line is then

kν =
∞∑

i=−∞

Sα/π

(ν − iδ)2 + α2
, (4.4.9)

where δ is the line spacing. From the Mittag–Leffler theorem (Whittaker and Watson,
1940), we can prove that this infinite sum can be expressed in terms of periodic and
hyperbolic functions as follows:

kν = S

δ

sinh β

cosh β − cos γ
, (4.4.10)

where β = 2πα/δ and γ = 2πν/δ. By transforming the variables, the spectral trans-
mittance may be expressed by

Tν̄(u) = 1

δ

∫ δ/2

−δ/2
e−kνudν = 1

2π

∫ π

−π
e−kν (γ )udγ. (4.4.11a)
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The differential value is

dTν̄(u)

du
= − 1

2π

∫ π

−π
e−kνukνdγ. (4.4.11b)

To derive an analytical expression, we define

cos ρ = 1 − cosh β cos γ

cosh β − cos γ
. (4.4.12a)

It follows from Eq. (4.4.10) that

dρ = − sinh β

cosh β − cos γ
dγ = −kν

δ

S
dγ. (4.4.12b)

Substituting Eqs. (4.4.10) and (4.4.12b) into Eq. (4.4.11b) leads to

dTν̄
du

= − S

2πδ

∫ π

−π
exp

(
− Su

δ

cosh β − cos ρ

sinh β

)
dρ. (4.4.13a)

We then define a new variable y = Su/(δ sinh β) to obtain

dTν̄
dy

= − sinh β

2π

∫ π

−π
exp(−y cosh β − y cos ρ) dρ (4.4.13b)

= −sinh βe−y cosh β J0(iy).

Since Tν̄ = 0 when u (or y) → ∞, we have

Tν̄ =
∫ Tν̄

0
dTν̄ = sinh β

∫ ∞

y
e−y cosh β J0(iy) dy

=
∫ ∞

z
e−z coth β J0(i z/ sinh β) dz, (4.4.14)

where z = y sinh β. This is the Elsasser transmittance that can be evaluated numer-
ically. Further approximations and simplifications also can be made to this model.
Since α � δ and β → 0, we find

coth β ≈ 1

β
+ β

3
, csch β ≈ 1

β
− β

6
, (4.4.15a)

and

J0(i z csch β) ≈ ez csch β
/√

2π z csch β (4.4.15b)

≈ exp

[
z

(
1

β
− β

6

)]/√
2π z/β.

With these approximations, Eq. (4.4.14) becomes

Tν̄ = 1√
2π

∫ ∞

z

√
β/z e−zβ/2dz. (4.4.16)
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Finally, we set x2 = zβ/2; the absorptance can now be expressed by

Aν̄ = 1 − 2√
π

∫ ∞

x
e−x2

dx . (4.4.17a)

By noting that (2/
√
π )
∫∞

0 e−x2
dx = 1, we have

Aν̄ = 2√
π

∫ x

0
e−x2

dx = erf (x) = erf

(√
π Sαu

δ

)
. (4.4.17b)

Values of erf(x) can be obtained from standard mathematical tables. This is referred
to as the Elsasser model. For small values of x, Aν̄ = 2x/

√
π = 2

√
Sαu/δ. This is

the region of square root absorption denoted in Eq. (4.4.7b).

4.4.3 Statistical Band Model

On inspection of the water vapor rotational band, the only common feature over a 25
cm−1 range is the apparent random line positions (Goody, 1952, 1964). Hence, the
absorption of a band with certain random properties should be considered. Let 	ν
be a spectral interval consisting of n lines of mean distance δ, so that 	ν = nδ. Let
p(Si ) be the probability that the i th line has an intensity Si , and let p be normalized
such that ∫ ∞

0
p(Si ) d Si = 1, i = 1, . . . , n. (4.4.18)

We may assume that any line has an equal probability of being anywhere in the
interval 	ν. The mean transmittance is found by averaging the transmittance over all
line positions and intensities. Hence,

Tν̄ = 1

(	ν)n

∫
	ν

dν1 · · ·
∫
	ν

dνn

×
∫ ∞

0
p(S1)e−k1u d S1 · · ·

∫ ∞

0
p(Sn)e−knu d Sn, (4.4.19a)

where kn denotes the absorption coefficient for the nth line. Since all the integrals are
alike, we have

Tν̄ =
[

1

	ν

∫
dν
∫ ∞

0
p(S)e−ku d S

]n

=
[

1 − 1

	ν

∫
dν
∫ ∞

0
p(S)(1 − e−ku) d S

]n

. (4.4.19b)

The average equivalent width for n absorption lines may be defined by

W̄ =
∫ ∞

0
p(S)

∫
	ν

(1 − e−ku) dν d S. (4.4.20)
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Noting that 	ν = nδ, the spectral transmittance may then be written in terms of the
averaged equivalent width in the form

Tν̄(u) =
[

1 − 1

n

(
W̄

δ

)]n

. (4.4.21a)

Since limn→∞(1 − x/n)n → e−x , we have

Tν̄(u) = e−W̄/δ. (4.4.21b)

Let the lines be of different intensities, and consider a Poisson distribution for the
probability of their intensities in the form

p(S) = 1

S̄
e−S/S̄, S̄ =

∫ ∞

0
Sp(S) d S, (4.4.22)

where S̄ is defined as the mean line intensity. We note that p(S) is normalized to
1, as is required. Inserting this probability function into Eq. (4.4.20) for the average
equivalent width, and writing kν = S fν with fν the line-shape factor, we find

W̄ =
∫
	ν

S̄ fνu

1 + S̄ fνu
dν. (4.4.23)

Using the Lorentz line shape for fν and performing the wavenumber integration in
the domain (−∞,∞), without introducing significant errors for the integral confined
in the 	ν interval, the spectral transmittance for randomly distributed Lorentz lines
is given by

Tν̄(u) = exp

[
− S̄

δ
u

(
1 + S̄

απ
u

)−1/2
]
. (4.4.24)

Thus the spectral transmittance for the random model can be expressed as a function
of two parameters, S̄/δ and S̄/απ , apart from the path length u. This is referred to as
the Goody random model. For a given spectral interval	ν, these two parameters may
be derived by fitting the random model with line-by-line data. For the computation
of fluxes in the atmosphere, the device of the spectral interval must ensure that the
Planck flux does not vary significantly.

On the basis of the preceding discussion, the average equivalent width for the
random model is

W̄ = S̄u

(
1 + S̄u

απ

)−1/2

. (4.4.25a)

The average equivalent width for n individual lines with equivalent widths of Wi is
simply

W̄ =
n∑

j=1

W j

n
. (4.4.25b)
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The spectral transmittance given in Eq. (4.4.24) is general and should be valid under
the limits of weak- and strong-line approximations. Thus, for weak-line approxima-
tions where S̄u/απ � 1, we have

W̄

δ
≈ S̄

δ
u. (4.4.26)

However, by using the equivalent width for a spectral line denoted by the subscript j
under the limits of weak-line approximations, we have

W̄ = 1

n

n∑
j=1

W j (weak) ≈ 1

n

n∑
j=1

Sj u. (4.4.27)

From Eqs. (4.4.26) and (4.4.27), we obtain

S̄

δ
=

n∑
j=1

Sj

	ν
= aν̄ , (4.4.28)

where aν̄ is so defined. Following the same procedure under the limits of strong-line
approximations, we find

√
πα S̄

δ
= 2

n∑
j=1

√
Sjα j

	ν
= b∗

ν̄ . (4.4.29)

If we define bν̄ = πα/δ, then b∗
ν̄ = √

aν̄bν̄ . It follows that

bν̄ =
(

2
n∑

j=1

√
Sjα j

)2/(
	ν

n∑
j=1

Sj

)
. (4.4.30)

Thus, the spectral transmittance may be written in the form

Tν̄(u) = exp[−aν̄u(1 + uaν̄/bν̄)−1/2]. (4.4.31)

The band parameters aν̄ and bν̄ are functions of two variables:
∑

j S j and
∑

j

√
Sjα j .

These variables can be computed from line-by-line data.
The spectral transmittance for the random model depends on two parameters,

aν̄ and aν̄/bν̄ . Examination of these parameters reveals that a further simplification
may be obtained by defining a parameter referred to as the generalized absorption
coefficient, �ν̄ , such that aν̄ = a�ν̄ and aν̄/bν̄ = b�ν̄ , where the coefficients a and b are
certain constants. Thus, a one-parameter representation of the spectral transmittance
for the random model may be expressed by

Tν̄(u) = exp[−a�ν̄u(1 + b�ν̄u)−1/2]. (4.4.32)

The generalized absorption coefficient was originally developed by Elsasser (1942).
Under the limits of strong- and weak-line approximations, we have

Tν̄(u) ∼=
{

exp(−a�ν̄u), weak-line,
exp(−c�∗

ν̄u∗), strong-line,
(4.4.33)
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where c = a/
√

b, �∗
ν̄ = √

�ν̄ , and u∗ = √
u. The transmittance is now expressed by a

simple exponential function in terms of the generalized absorption coefficient, which
can be obtained from the band parameters using statistical fitting procedures.

The random model just described utilizes the probability distribution function
given in Eq. (4.4.22). In many cases, it has been found that this exponential in-
tensity distribution substantially underestimates the number of low-intensity lines
(Malkmus, 1967). The line intensity is governed by the Boltzmann factor in the form
S ∼ exp(−hcE/K T ), where E is the lower energy level. Thus, d E/d S is propor-
tional to S−1. The probability distribution function p(S) must be proportional to
dn/d S, where n is the number density of energy levels. However, dn/d E is approx-
imately constant since, in many cases, the energy levels are approximately equally
spaced. It follows that p(S) ∼ (d E/d S)(dn/d E) ∼ d E/d S ∼ S−1. Thus, the S−1

dependence remains a dominating influence on the probability distribution function.
For this reason, it is necessary to use a normalized probability distribution function
for line intensity in the form

p(S) ∼ 1

S
e−s/s̄ . (4.4.34a)

Using the normalized form of the probability distribution function, we can derive,
after lengthy mathematical manipulations, the following spectral transmittance:

Tν̄(u) = exp
{− cν̄

[
(1 + dν̄u)1/2 − 1

]}
, (4.4.34b)

where the two parameters are defined by the line data as follows:

cν̄ = 2

(∑
j

√
α j S j

)2/(
	ν
∑

j

S j

)
,

dν̄ =
(∑

j

S j

)2/(∑
j

√
α j S j

)2

. (4.4.34c)

This is referred to as the Malkmus random model. In terms of line parameters, we can
prove that cν̄ = πα/2δ, and dν̄ = 4S̄/πα (Exercise 4.8).

4.4.4 Application to Nonhomogeneous Atmospheres

In band models, it is assumed that the absorption coefficient is independent of tem-
perature and pressure. To incorporate these effects in the calculation of spectral trans-
mittance, we should first define the optical depth by

τ =
∫

u
kν(p, T ) du. (4.4.35)

The primary objective of approximate solutions for nonhomogeneous path lengths
is to transform the transfer problem to that of a homogeneous path defined by a
reference pressure, pr , and a reference temperature, Tr , so that analytical exponential
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functions can be employed for spectral transmittance calculations. In the limit of
strong-line approximations denoted in Eq. (4.3.9), the wavenumber-dependent term
can be factored out. Moreover, the half-width can be written as

α(p, T ) = α(pr , Tr )

(
p

pr

)(
Tr

T

)n

. (4.4.36)

Thus, to a good approximation, we can prove that

kν(p, T ) ∼= kν(pr , Tr )

(
p

pr

)(
Tr

T

)n

, (4.4.37a)

where we have set∑
j

S j (T )α j (pr , Tr )

(ν − ν0 j )2

/∑
j

S j (Tr )α j (pr , Tr )

(ν − ν0 j )2
≈ 1. (4.4.37b)

The case in which the wavenumber, pressure, and temperature are decoupled is re-
ferred to as the one-parameter scaling approximation. It is particularly useful for
application to the rotational band of water vapor (Chou and Arking, 1980).

From Eq. (4.4.37a), we may define a scaled path length such that

τ = kν(pr , Tr )ũ, (4.4.38a)

where

ũ =
∫

u

(
p

pr

)(
Tr

T

)n

du. (4.4.38b)

It follows that by replacing u with ũ, the spectral transmittance may be evaluated by
using the absorption coefficient at a reference temperature and pressure. The scaling
approximation for flux and cooling-rate calculations using n = 1/2 was originally
proposed by Elsasser and Culbertson (1960).

Further, we may also search for an adjusted absorption coefficient such that

τ =
∫

u
kν(p, T ) du = kν( p̃, T̃ )u. (4.4.39a)

Using the Lorentz line profile, we have

kν( p̃, T̃ ) =
∑

j

S̃ j f̃ ν j =
∑

j

S̃ j

π

α̃ j

(ν − ν0 j )2 + α̃2
j

. (4.4.39b)

Two adjusted parameters, S̃ and α̃, are required to satisfy Eq. (4.4.39a). This is referred
to as the two-parameter approximation.

In reference to Eq. (4.4.1), the average equivalent width of a nonhomogeneous
path is

W̄ = Aν̄(u)	ν =
∫
	ν

[
1 − exp

(
−
∫

u

∑
j

S j fν j du

)]
dν. (4.4.40a)
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In the weak-line limit, we have

W̄ ∼=
∫
	ν

∫
u

∑
j

S j fν j du dν =
∫

u

∑
j

S j du, (4.4.40b)

regardless of the line shape. Moreover, using the Lorentz profile, the average equiv-
alent width given in Eq. (4.4.40a) may be written in the form

W̄ =
∫
	ν

[
1 − exp

(
−
∫

u

∑
j

S j

π

α j

(ν − ν0 j )2 + α2
j

du

)]
dν. (4.4.40c)

In the strong-line limit, absorption near the line-center region is nearly saturated. The
average equivalent width in this case is not very sensitive to the absorption coefficient.
Hence, we may select any half-width, say α′, to replace α in the denominator of Eq.
(4.4.40c). To find the α′ that also satisfies the weak-line limit, we must have

W̄ ∼=
∫
	ν

∫
u

∑
j

S j

π

α j

(ν − ν0 j )2 + α̃2
j

du dν ∼=
∫

u

∑
j

α j

α̃ j
S j du, (4.4.40d)

where	ν is set from −∞ to ∞ for mathematical convenience, and α̃ is the specific α′

that fulfills the requirements of both the strong- and weak-line limits. Since α j/α̃ j
∼=

p/ p̃, combining Eqs. (4.4.40d) and (4.4.40b) gives

p̃ =
∫

u
pS̄ du

/∫
u

S̄ du, (4.4.41)

where S̄ is the mean line intensity. The effect of pressure on absorption is evident
through the line half-width. The preceding scaling serves to adjust the pressure vari-
ation along the path.

Furthermore, from the equivalent width given in Eqs. (4.4.40a) and (4.4.40b), we
may select an adjusted S̃ j such that∫

u

∑
j

S j du = u
∑

j

S̃ j . (4.4.42)

This defines the scaled mean line intensity, regardless of the line shape, in the form

˜̄S =
∫

S̄ du/u. (4.4.43a)

The effect of temperature on absorption is exerted through its dependence on the line
strength. This part of scaling is to account for the nonisothermal path. Alternatively,
we may select a reference S̄, say S̄r , and adjust the path length u such that

ũ =
∫

u

S̄

S̄r
du. (4.4.43b)

Equations (4.4.41) and (4.4.43) constitute the so-called Curtis–Godson (CG) approx-
imation for nonhomogeneous atmospheres, independently proposed by Curtis (1952)



4.4 Band Models 147

and Godson (1953). Its validity has been checked by Walshaw and Rodgers (1963),
who performed extensive cooling-rate calculations using a line-by-line integration
program. Errors introduced by the CG approximation are less than a few percent for
the H2O rotational and 15 μm CO2 bands. The CG approximation, however, is less
satisfactory for the 9.6 μm O3 band.

van de Hulst (1945) innovated a more general technique for application to a non-
homogeneous atmosphere and demonstrated that the Voigt profile can be readily in-
corporated in this technique. Consider the cosine transformation of the optical depth
in the form

g̃(t) =
∫ ∞

−∞
τ (ν) cos νt dν =

∫
u

g(t) du, (4.4.44a)

where

τ (ν) = 1

π

∫ ∞

0
g̃(t) cos νt dt, (4.4.44b)

g(t) =
∫ ∞

−∞
kν cos νt dν. (4.4.44c)

On substituting the expressions of the absorption coefficient for Lorentz, Doppler,
and Voigt line shapes, we find

g(t) =
⎧⎨⎩

S exp(−αt), Lorentz
S exp(−α2

Dt2/4), Doppler
S exp[−(αt + α2

Dt2/4)], Voigt.
(4.4.45)

By using the Voigt profile and defining the scaled path length ũ and the scaled line
widths, α̃ and α̃D , we obtain

g̃(t) =
∫

u
S exp

[
−
(
αt + α2

Dt2

4

)]
du ≡ Sr ũ exp

[
−
(
α̃t + α̃2

Dt2

4

)]
. (4.4.46)

If we take the first two terms in the expansion and match tn in the expansion for n = 0
and 1, we have

ũ =
∫

u

(
S

Sr

)
du, (4.4.47a)

α̃ = 1

ũ

∫
u
α

(
S

Sr

)
du. (4.4.47b)

The Doppler width, αD , is a function of temperature only. Thus, if the temperature
does not vary significantly along the nonhomogeneous path, we may set α̃D = αD .
Equations (4.4.47a) and (4.4.47b) are equivalent to the Curtis–Godson relations.
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4.5 Broadband Approaches to Flux Computations

4.5.1 Broadband Emissivity

The essence of the broadband emissivity approach for the calculation of infrared
fluxes and heating rates is to use temperature directly in terms of the Stefan–Boltzmann
law instead of the Planck function. The early development of broadband emissivity
methods was based on the concept of the radiation chart from which the flux inte-
gration may be carried out by using graphs and tables (Elsasser, 1942; Möller, 1943;
Yamamoto, 1952).

Based on Eq. (4.2.10), the total upward and downward fluxes in the u coordinate
may be written

F↑(u) =
∫ ∞

0
πBν(Ts)T f

ν (u)dν +
∫ ∞

0

∫ u

0
πBν(u′)

dT f
ν (u − u′)

du′ du′ dν, (4.5.1a)

F↓(u) =
∫ ∞

0

∫ u

u1

πBν(u′)
dT f

ν (u′ − u)

du′ du′ dν. (4.5.1b)

In order to express the upward and downward fluxes in terms of broadband emissivity,
we may define isothermal broadband flux emissivity in the form

ε f (u, T ) =
∫ ∞

0
πBν(T )

[
1 − T f

ν (u)
] dν

σT 4
. (4.5.2)

Consider a plane-parallel atmosphere divided into a number of layers such that each
of them may be thought of as an isothermal layer. We may then write

F↑(u) ∼= σT 4
s [1 − ε f (u, Ts)] −

∫ u

0
σT 4(u′)

dε f (u − u′, T (u′))
du′ du′, (4.5.3a)

F↓(u) ∼=
∫ u1

u
σT 4(u′)

dε f (u′ − u, T (u′))
du′ du′. (4.5.3b)

Computations of fluxes and cooling rates that use the broadband emissivity definition
in Eqs. (4.5.3a,b) have been performed by numerous researchers.

In numerical calculations, Eq. (4.5.2) for broadband flux emissivity is expressed
in terms of a finite sum over spectral bands, 	νi , for three principal absorbers: CO2,
H2O and O3. Let u1(= uw), u2(= uc), and u3(= u0) denote the path lengths for H2O,
CO2 and O3, respectively. Then we may write

ε f (u j , T ) =
∑

i

πBν̄,i (T )
[
1 − T f

ν̄,i (u j )
]	νi

σT 4
, j = 1, 2, 3. (4.5.4)

As a good approximation, we may replace the diffuse spectral transmittance by the
spectral transmittance, Tν̄(u/μ̄), using the diffusivity factor 1/μ̄ = 1.66. The spectral
transmittance can be generated from data via detailed line-by-line computations or
band models for a homogeneous path. Figure 4.10 shows the broadband flux emissiv-
ities for water vapor and carbon dioxide as functions of the path length for a number
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Figure 4.10 Broadband flux emissivity for (a) water vapor and (b) carbon dioxide covering the
entire thermal infrared spectrum as a function of path length and temperature. Note that 1 g cm−2 =
2.24 × 104/M cm atm, where M is the molecular weight of an individual gas.
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of temperatures. For water vapor, the effect of temperature on emissivity is relatively
small. For carbon dioxide, however, the temperature dependence of larger path lengths
appears quite pronounced.

The total emission of an isothermal atmosphere is the sum of individual emissions
due to various gases. However, the overlap of the H2O rotational and 15 μm CO2

absorption lines is significant. Thus, it is necessary to make a proper correction to
circumvent the overestimation of H2O and CO2 emissions. The emissivity for the
overlap region can be expressed exactly by

ε f (uw, uc, T ) =
∫ ∞

0
πBν(T )[1 − Tν(ūw, ūc)]

dν

σT 4
, (4.5.5)

where ūw = uw/μ̄ and ūc = uc/μ̄. From the definition of monochromatic transmit-
tance, its value for two absorbing gases is the product of the individual value for each
absorbing gas. It follows that

Tν(ūw, ūc) = Tν(ūw)Tν(ūc). (4.5.6)

With this relation, which is valid only for monochromatic radiation, we may express
the emissivity of the overlap region in terms of the individual emissivities in the form

ε f (uw, uc, T ) = ε f (uw, T ) + ε f (uc, T ) −	ε f (uw, uc, T ), (4.5.7)

where the correction term is

	ε f (uw, uc, T ) =
∫ ∞

0
πBν(T )[1 − Tν(ūw)][1 − Tν(ūc)]

dν

σT 4

∼=
∑

i

πBν̄,i (T )
∫
	νi

[1 − Tν(ūw)[1 − Tν(ūc)]
dν

σT 4
. (4.5.8)

If the variation in either Tν(ūw) or Tν(ūc) is smaller than their products, we may carry
out a wavenumber integration over either one to obtain

	ε f (uw, uc, T ) ∼=
∑

i

πBν̄,i (T )[1 − Tν̄,i (ūw)][1 − Tν̄,i (ūc)]
	νi

σT 4
. (4.5.9)

This appears to be a good approximation and has been used to evaluate the H2O–CO2

overlap in the context of the broadband emissivity for flux computations. The compu-
tation of broadband flux emissivities for H2O, CO2, and O3 has been correctly carried
out by Staley and Jurica (1970, 1972) using the generalized absorption coefficients
presented by Elsasser and Culbertson (1960). A review of various methods that can
be used to construct the broadband emissivity for flux and heating rate calculations
has been presented by Chou et al. (1991).

4.5.2 Newtonian Cooling Approximation

The general circulation of the middle atmosphere from ∼15 to 90 km is driven by
differential vertical and horizontal radiative heating. Absorption of solar insolation in
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this region is primarily generated by O3 and O2. This absorption is largely balanced
by radiative cooling throughout much of the stratosphere and parts of the mesosphere
produced principally by emission and absorption of thermal IR radiation due to CO2

and O3. For middle atmosphere applications, the shape and overlap of absorption
lines, the variation in line intensity with temperature, and departures from LTE at
high altitudes must be taken into account in the computations.

Many attempts have been made to develop accurate yet efficient methods to com-
pute IR cooling rates in the middle atmosphere in connection with dynamic mod-
els. The most important aspect of radiative cooling from the viewpoint of dynamic
circulation is its variation with changes in temperature. In the following, we intro-
duce a method that is based on the cooling-to-space approximation widely used by
modelers.

Consider the upward and downward fluxes given in Eqs. (4.2.10a) and (4.2.10b)
for a spectral interval in which the variation in Planck fluxes can be neglected. In the
height coordinate, we may write

F↑
ν̄ (z) = πBν̄(0)T f

ν̄ (z) +
∫ z

0
πBν̄(z′)

d

dz′ T f
ν̄ (z − z′) dz′, (4.5.10a)

F↓
ν̄ (z) =

∫ z

z∞
πBν̄(z′)

d

dz′ T f
ν̄ (z′ − z) dz′, (4.5.10b)

where z∞ denotes the height at TOA and z = 0 denotes the surface. The net flux at a
given level is then

Fν̄(z) = F↑
ν̄ (z) − F↓

ν̄ (z) = πBν̄(0)T f
ν̄ (z)

+
∫ z∞

0
πBν̄(z′)

d

dz′ T f
ν̄ (|z − z′|) dz′. (4.5.11)

The cooling rate for a spectral interval is then given by(
∂T

∂t

)
ν̄

= − 1

ρC p

d Fν̄(z)

dz
= − 1

ρC p(
πBν̄(0)

d

dz
T f
ν̄ (z) +

∫ z∞

0
πBν̄(z′)

d

dz′
d

dz
T f
ν̄ (|z − z′|) dz′

)
. (4.5.12)

Consider an atmosphere with an isothermal temperature profile such that local
cooling rates are produced solely from the emission of a local layer. Under this
condition we have(

∂T

∂t

)
space

= − 1

ρC p
πBν̄(z)

d

dz
T f
ν̄ (z∞ − z). (4.5.13)

This is referred to as the cooling-to-space approximation in which the cooling rate is
dependent on the local temperature but is independent of the temperatures of other
levels. Although it is imperfect, this approximation gives reliable results under a
number of conditions (Rodgers and Walshaw, 1966). The cooling rate may be ex-
pressed in terms of a cooling-to-space term that depends only on the temperature
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at that level and a term representing the exchange of radiation between that level and
all other levels. This latter term is a function of the entire temperature profile. Thus,
we may write

Q =
(
∂T

∂t

)
ir

=
(
∂T

∂t

)
space

+
(
∂T

∂t

)
layer exchange

. (4.5.14)

Based on the preceding consideration, we may construct a simplified method
for the calculation of cooling rates in terms of temperature perturbations. Let T0(z)
denote the standard temperature and Q0 its cooling rate profile. The deviation from
this cooling profile is primarily related to temperature variation 	T , particularly in
a CO2 atmosphere where the CO2 mixing ratio is constant. Thus, we may write in
finite-difference form:

	Q

	T
= Q(T0 +	T ) − Q(T0 −	T )

2	T
= a0(z), (4.5.15)

where the term a0 is called the Newtonian cooling coefficient, which, when multiplied
by 	T , gives the cooling rate deviation from a standard value Q0. The preceding
discussion provides the foundation for the Newtonian cooling approximation for
the calculation of cooling rates in middle atmospheres, where the cooling-to-space
approximation is most appropriate. The cooling rate may then be expressed by

Q(z) = Q0(z) +	Q(z) = Q0(z) + a0(z)[T (z) − T0(z)].

The Newtonian cooling coefficient can be parameterized from the results computed
by a line-by-line program, as illustrated in Dickinson (1973). Shown in Fig. 4.11 are
the cooling-rate profiles produced by different types of CO2, including the funda-
mental and all the first and second hot bands for 12C16O2 and other isotopic bands. It
is evident that the hot bands are important contributors to cooling between 50 and
70 km.

4.6 Infrared Radiative Transfer in Cloudy Atmospheres

4.6.1 Fundamentals

In the thermal infrared, scattering, as well as emission and absorption, takes place
within clouds. The basic IR radiative transfer equation for gaseous absorption and
emission developed previously must, therefore, be modified to account for scattering
processes.

Consider a plane-parallel cloud layer, and let the scattering coefficient for cloud
particles be βs and the absorption coefficient for cloud particles plus water vapor
within the cloud be βa . According to Kirchhoff’s law, absorption is coupled with
emission so that LTE is maintained. The source function in this case is the Planck
function, Bν . Let the source function associated with scattering be Jν . The radiative
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Figure 4.11 Infrared cooling rate given by different types of CO2 bands for 12C16O2, including the
fundamental, all the first and second hot bands, and all the fundamental bands of other isotopes (after
Dickinson, 1973), based on the line data available at that time.

transfer equation may then be written as

μ
d Iν
dz

= − βa(Iν − Bν) − βs(Iν − Jν)

= −βe(Iν − Sν),
(4.6.1)

where the extinction coefficient βe = βs + βa , and the source function involving
absorption and scattering processes is

Sν = (βa Bν + βs Jν)/βe. (4.6.2a)

It is an average of the two separate source functions, weighted by their respective
absorption and scattering coefficients. The extinction coefficient is the inverse of the
mean free path of a photon before scattering or absorption. Using the definition of the
single-scattering albedo, ω̃ν = βs/βe, in which a free path will end with a scattering
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event, the source function may be expressed by

Sν = (1 − ω̃ν)Bν + ω̃ν Jν . (4.6.2b)

The source function for scattering is associated with multiple scattering processes. In
the thermal infrared, it suffices to take the azimuth-independent component:

Jν = 1

2

∫ 1

−1
P(μ,μ′)Iν(τ, μ′) dμ′, (4.6.3a)

where the azimuth-independent phase function is defined by (see Section 3.4.1)

P(μ,μ′) = 1

2π

∫ 2π

0
P(cos�) dφ′. (4.6.3b)

If the cloud as a whole is a blackbody, it would behave just like the earth’s surface.
In this case, radiation from below and above the cloud would not be able to penetrate
the cloud. The emitted radiance at the cloud top or bottom is given by the Planck
function. Most clouds that are composed of water droplets are black clouds, whereas
clouds that are composed of ice crystals are generally non-black.

Shown in Fig. 4.12 is an infrared spectrum covering a spectral region from 9.1 to
17 μm for clear and various cloudy conditions measured from a high-spectral reso-
lution infrared spectrometer aboard a high-flying ER-2 aircraft at about 20 km (see
also Fig. 4.3). Strong absorption features are shown by ozone at 9.6 μm (1040 cm−1)
and by carbon dioxide at 15μm (667 cm−1), with weak lines of water vapor scattered
in the 10–12 μm (1000–830 cm−1) window of the spectrum. Except for thin cirrus
containing small ice particles, clouds composed of water droplets such as low clouds
or clouds containing large ice crystals behave like blackbodies or near blackbodies
with little variations in the window. Thin cirrus, which are occasionally subvisual,
contain small ice crystals with maximum dimensions ranging from about 5 to 20μm.
These clouds have features in the 10 μm window associated with the absorption co-
efficients of ice crystals that can be used for their identification. Infrared radiative
transfer through thin cirrus in the window region must account for scattering pro-
cesses in order to allow interpretation of the observed spectrum. In the following, we
introduce approximations that can be employed to understand the transfer of infrared
radiation in cloudy atmospheres.

4.6.2 Exchange of Infrared Radiation between Cloud and Surface

During the night, clouds play a critical role in modulating the surface temperature
through thermal infrared radiation. To demonstrate this, we consider a configuration
involving a surface with a temperature Ts . It is not a perfect blackbody but rather has an
average emissivity εs . A cloud with a base temperature Tc and an average emissivity εc

moves over the surface (e.g., snow). For simplicity, the effects of water vapor above and
below the cloud are neglected in this discussion. Further, let the flux density emitted
from the cloud and the surface be Fc and Fs , respectively, as shown in Fig. 4.13.
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Figure 4.12 Spectra of brightness temperature observed from a high spectral resolution infrared
spectrometer from the high-flying ER-2 aircraft over a domain, 37.1◦–37.4◦ N, 95.0◦–95.3◦ W, on April
21, 1996, indicating wavelength-dependent window brightness temperature changes according to various
cloud types. The type of cloud indicated for each spectrum is identified from the Cloud Lidar System
aboard the ER-2 (data taken from Smith et al., 1998).

At the surface, contribution to the upward surface flux is produced by the emission
from the surface plus the reflection of the flux emitted from the cloud base. Thus,

F↑
s = εsσT 4

s + (1 − εs)F↓
c . (4.6.4a)

At the cloud base, contribution to the downward cloud flux is the sum of the emission
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Figure 4.13 A simple configuration of a cloud moving over a surface. The surface temperature is
modified by the presence of the cloud.

from the cloud and the reflection of the flux emitted from the surface. It follows that

F↓
c = εcσT 4

c + (1 − εc)F↑
s . (4.6.4b)

In formulating the preceding equations, we have used the Stefan–Boltzmann and
Kirchhoff laws. The solutions are

F↑
s = [(1 − εs)εcσT 4

c + εsσT 4
s ]/[1 − (1 − εs)(1 − εc)], (4.6.5a)

F↓
c = [(1 − εc)εsσT 4

s + εcσT 4
c ]/[1 − (1 − εc)(1 − εs)]. (4.6.5b)

Since the effects of water vapor between the cloud and the surface are neglected, the
net flux in this case is then given by

	Fn = F↑
s − F↓

c = εcεs

1 − (1 − εc)(1 − εs)
σ
(
T 4

s − T 4
c

)
. (4.6.6a)

If both the cloud and the surface are blackbodies, we can then define the cloud forcing
as

	F = 	Fn −	Fclear = σ
(
T 4

s − T 4
c

)− σT 4
s = −σT 4

c . (4.6.6b)

Let the surface temperature increase due to the presence of the cloud be 	T and
assume that only infrared radiative processes take place in regulating the surface
temperature. From the definition of the local heating rate, we should then have

	T = 	t

(
− 1

ρC p

	F

	z

)
. (4.6.7)
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The increase of the surface temperature 	T is dependent on the time period 	t that
the cloud remains over the snow surface and the net flux divergence 	F/	z.

4.6.3 Two/Four-Stream Approximation

Combining Eqs. (4.6.1)–(4.6.3b) and using optical depth coordinates, the basic equa-
tion for the transfer of IR radiation in a scattering atmosphere may be written in the
form

μ
d I (τ, μ)

dτ
= I (τ, μ) − S(τ, μ), (4.6.8a)

where we have omitted the wavenumber subscript for simplicity of presentation. The
source function defined in Eq. (4.6.2a) is given by

S(τ, μ) = ω̃

2

∫ 1

−1
P(μ,μ′)I (τ, μ′)dμ′ + (1 − ω̃)B(τ ). (4.6.8b)

Equation (4.6.8a) can be solved exactly by means of the discrete-ordinates or adding
methods for radiative transfer presented in Chapter 6. However, we introduce here a
useful and accurate approximation utilizing the two-stream approximation discussed
in Section 3.4.

The phase function can be expanded in Legendre polynomials P� based on the
addition theorem for spherical harmonics, as shown in Appendix E. The azimuth-
independent phase function defined in Eq. (4.6.3b) is given by

P(μ,μ′) =
N∑
�=0

ω̃�P�(μ)P�(μ
′). (4.6.9a)

In the context of the two-stream approximation, the upward and downward intensi-
ties are I (τ,+μ1) = I ↑(τ ) and I (τ,−μ1) = I ↓(τ ), where μ1 = 1/

√
3 based on the

Gaussian quadrature. Moreover, the phase function in the limit of the two-stream
approximation is given by

P(μ1,±μ′
1) = 1 ± 3gμ1μ

′
1 = 1 ± g. (4.6.9b)

Thus, the integration in Eq. (4.6.8b) may be replaced by∫ 1

−1
P(μ,μ′)I (τ, μ′)dμ′ = (1 − g)I ↓(τ ) + (1 + g)I ↑(τ ). (4.6.9c)

By expressing Eq. (4.6.8a) in terms of the upward and downward intensities, we have

d I ↑(τ )

dτ
= γ1 I ↑(τ ) − γ2 I ↓(τ ) − γ3 B(τ ), (4.6.10a)

d I ↓(τ )

dτ
= γ2 I ↑(τ ) − γ1 I ↓(τ ) + γ3 B(τ ), (4.6.10b)
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where

γ1 = [1 − ω̃(1 + g)/2]/μ1, γ2 = ω̃(1 − g)/2μ1, γ3 = (1 − ω̃)/μ1. (4.6.10c)

Furthermore, we may parameterize the Planck function for a predivided layer in terms
of the exponential function in the form

B(τ ) = B0ebτ/τ1 , (4.6.11)

where b = ln (B1/B0) with B0 = B(0) and B1 = B(τ1) being the Planck functions
for temperatures at the top and bottom of the layer, respectively, and τ1 is the optical
depth of this layer. The parameterization is exact at the layer’s boundaries.

The solutions for the preceding two first order differential equations subject to the
inhomogeneous term defined in Eq. (4.6.11) can be derived in a straightforward but
involved manner. They are given by

I ↑(τ ) = K e−k(τ1−τ ) + H a e−kτ + Z+ebτ/τ1 , (4.6.12a)

I ↓(τ ) = K a e−k(τ1−τ ) + H e−kτ + Z−ebτ/τ1 , (4.6.12b)

where the eigenvalue of the solution and the similarity parameter are, respectively,
defined by

k = (γ 2
1 − γ 2

2

)1/2
, a = γ1 − k

γ2
= γ2

γ1 + k
. (4.6.12c)

The particular solution terms are

Z± = B0γ3(γ1 + γ2 ± b/τ1)

k2 − (b/τ1)2
. (4.6.12d)

The unknown coefficients K and H are to be determined from the radiation boundary
conditions at the top and bottom of the layer. The preceding analysis constitutes the
two-stream approximation for infrared radiative transfer in which we have retained
the angular term 1/μ1 in Eq. (4.6.10c).

Now, we return to Eqs. (4.6.8a,b) and solve the upward and downward intensities
based on the integral technique illustrated in Eqs. (1.4.23) and (1.4.24). We have

I (0, μ) = I (τ1, μ)e−τ1/μ +
∫ τ1

0
S(τ ′, μ)e−τ ′/μ dτ ′

μ
, (4.6.13a)

I (τ1,−μ) = I (0,−μ)e−τ1/μ +
∫ τ1

0
S(τ ′,−μ)e−(τ1 − τ ′)/μ dτ ′

μ
. (4.6.13b)

Analytic solutions are possible if specific forms for the source function terms are
available. On substituting Eqs. (4.6.12a, b) into (4.6.8b) for the upward and downward
intensities, respectively, and employing the two-term approximation for the integral
term denoted in Eq. (4.6.9b), we obtain

S(τ, μ1) = K v e−k(τ1−τ ) + H u e−kτ + Z+
∗ ebτ/τ1 , (4.6.14a)

S(τ,−μ1) = K u e−k(τ1−τ ) + H v e−kτ + Z−
∗ ebτ/τ1 , (4.6.14b)
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where

v = (1 − μ1k), u = a(1 + μ1k),

Z±
∗ = B0(1 − ω̃)

[
1 + ω̃(γ1 + γ2 ± gb/τ1)

μ1(k2 − b2/τ 2
1 )

]
. (4.6.14c)

Substitution of Eqs. (4.6.14a,b) into Eqs. (4.6.13a, b) yields

I ↑(0, μ) = I (τ1, μ)e−τ1/μ + K v
(1 − μk)

(e−kτ1 − e−τ1/μ)

+ Hu

(1 + μk)
[1 − e−τ1(k+1/μ)] + Z+

∗
(1 − bμ/τ1)

(
B0 − B1e−τ1/μ

)
, (4.6.15a)

I ↓(τ1,−μ) = I (0,−μ)e−τ1/μ + K u

(1 + μk)
[1 − e−τ1(k+1/μ)]

+ Hv(
1 − μk

) (e−kτ1 − e−τ1/μ) + Z−
∗

(1 + bμ/τ1)

(
B1 − B0e−τ1/μ

)
. (4.6.15b)

By employing the two-stream approximation for the source function, we have demon-
strated that the upward and downward intensities can be solved analytically. More-
over, for flux calculations, we may select two-stream in the upward direction and
two-stream in the downward direction based on the double Gaussian quadrature such
that the discrete directionsμ = 0.2113248 and 0.7886752, and the weight a = 0.5 for
both directions. This constitutes the four-stream approximation in which the upward
and downward fluxes are given by

F↑(τ ) =
∫ 1

0
I (τ, μ)μdμ ∼=

2∑
i=1

I ↑(τ, μi )μi ai , (4.6.16a)

F↓(τ ) =
∫ −1

0
I (τ, μ)μdμ ∼=

2∑
i=1

I ↓(τ,−μi )μi ai . (4.6.16b)

The methodology that combines the two-stream technique for the source function
and the four-stream method for flux calculations is referred to as the two/four-stream
approximation for radiative transfer. For infrared flux calculations, it suffices to use the
diffusivity factor 1/μ̄ of 1.66 to represent the inverse of the mean emergent angle ofμ1

that appears in the preceding equations. The use of 2 for 1/μ̄ has also been suggested,
which is more consistent with the four-stream approximation such that

∑
μi/2 = μ̄.

However, in the context of the two/four-stream approximation, the use of 1.66 and 2 for
1/μ̄ for flux calculations is similar. Further, to improve the representation of the phase
function for the scattering of cloud particles based on a single parameter, namely the
asymmetry factor, we may apply the delta-function adjustment based on the similarity
principle for radiative transfer, introduced in Section 6.5.3, to adjust the optical depth,
single-scattering albedo, and asymmetry factor. The delta two/four-stream approach
has been shown to be an accurate and efficient means for the calculation of infrared
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fluxes in cloudy conditions (Fu et al., 1997; Toon et al., 1989). Its accuracy, however,
is less satisfactory for the calculation of solar flux transfer because of the strong
anisotropic nature of the scattering phase function for cloud particles (see Section
6.5.4 for further discussion). In the following, we present some pertinent results for
infrared cooling rates in typical clear and cloudy conditions and discuss the accuracy
of the delta two/four-stream approximation.

4.7 Atmospheric Infrared Cooling Rates

Because the atmosphere loses radiative energy to space through thermal infrared
emission, it is normally cooled by such processes. Thus, we speak of the infrared
cooling rate (or negative heating rate) in the discussion of radiative transfer. Analogous
to the solar heating rate defined in Eq. (3.5.3), we may define the infrared cooling
rate in the form (

∂T

∂t

)
ir

= − 1

ρC p

d F(z)

dz
, (4.7.1)

where the net infrared flux at a given height is defined by

F(z) = F↑(z) − F↓(z), (4.7.2)

and the upward and downward infrared fluxes covering the entire thermal infrared
spectrum have been defined in Eq. (4.2.11). In what follows, we present a number
of representative infrared cooling rate profiles computed from the line-by-line (LBL)
method and the correlated k-distribution (CKD) method.

Figures 4.14a, 4.14c, and 4.14e show the heating rate profiles computed using LBL
integration for H2O (0–2200 cm−1), CO2 (540–800 cm−1), and O3 (980–1100 cm−1),
respectively. Cooling rates produced by water vapor lines are seen in the troposphere
and the middle atmosphere. A significant variability is shown for the four atmospheric
humidity and temperature profiles used in the calculations. The maximum and mini-
mum patterns located at about 50 km are related to the temperature inversion (see
Fig. 3.1). In the lower atmosphere, cooling rates range from 1 to 2 K day−1, and are
primarily produced by the rotational band of water vapor. Carbon dioxide generates
significant cooling rates in the middle atmosphere where the temperature profile is
an important factor in determining flux exchanges. At about 50 km, a cooling rate of
about 10 K day−1 is seen. The ozone cooling rate profile is governed by the ozone
concentration, which has a maximum located at about 20–25 km, resulting in a small
amount of positive heating.

Figures 4.14b, 4.14d, and 4.14f show the corresponding error profiles for the results
computed using CKD. From the LBL results, it is clear that infrared cooling rates in
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Figure 4.14 Heating rate profiles computed from LBL and the error profiles produced by CKD for the
H2O (a and b), CO2 (c and d), and O3 (e and f) bands in the infrared spectrum for the midlatitude summer
(MLS), subarctic winter (SAW), tropical (TRO), and U.S. Standard (STA) atmospheres (data taken from
Fu and Liou, 1992).
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the troposphere are primarily produced by H2O. In the stratosphere, H2O, CO2, and
O3 contribute ∼15%, 70%, and 15% of the total cooling in the vicinity of the 50–km
region, respectively. For H2O, errors in the heating rates calculated by CKD are less
than ∼0.01 K day−1 in the troposphere and stratosphere, and less than ∼0.24 K day−1

above the stratopause, as shown in Fig. 4.14. The relatively large errors above the
stratopause may be explained by the fact that at lower pressure regions the atmosphere
is thinner and more transparent and as a result, distant layers would affect cooling
more significantly. As shown in Fig. 4.14, errors in the CO2 cooling rates produced
by CKD in the troposphere and lower stratosphere are ∼0.01 K day−1, while the
errors above 30 km are less than ∼0.1 K day−1. For O3, the heating rates computed
from CKD are also in excellent agreement with those from LBL. The differences are
less than ∼0.1 K day−1. CKD yields the most accurate results in the subarctic winter
atmosphere due to the O3 9.6-μm band. This can be explained by the larger amount
of ozone in the subarctic winter atmosphere, which leads to stronger absorption and
a more opaque atmosphere.

In Fig. 4.15, we display infrared cooling rate profiles for clear sky employing the
midlatitude summer atmosphere, representing a relatively moist condition, and the
subarctic winter atmosphere, representing a dry condition. The vertical resolution
used in the calculation was 0.25 km. Calculations were made from a line-by-line
equivalent multiple scattering program. Substantial differences are shown for these
two profiles. For the former, cooling rates are on the order of 2 K day−1, with the
largest cooling of about 3 K day−1 near the surface produced by the rotational band
of water vapor and continuous absorption principally in the 10 μm window. For the
latter, cooling rates are only on the order of about 1 K day−1. When clouds are present,
significant cooling/heating takes place in the cloud region. In the low cloud condition,
cloud top cooling reaches 35 K day−1, generated from the flux exchange between the
air above the cloud and the optically black cloud. Because the low cloud base (1 km)
is close to the surface, cloud base heating is extremely small. In the middle cloud
condition, however, a large cooling rate of about 60 K day−1 occurs at the cloud
top coupled with a heating rate of about 16 K day−1, resulting from the trapping of
longwave flux emitted from the warmer surface and lower atmospheres. Because of
a lower ice-water content in the case of high clouds, smaller cloud top cooling and
cloud bottom warming, each with a value of about 4 K day−1, are shown. These results
clearly reveal the importance of clouds in the generation of cooling/heating rates that
are directly related to their dynamic and physical processes in the atmosphere.

Finally, we present an example of infrared flux measurements from aircraft along
with their theoretical interpretation. Measurement of the atmospheric heating/cooling
rate from an aircraft platform is a difficult task. It requires calibrated broadband flux
radiometers to perform upward and downward flux measurements during the course
of aircraft operation. It is particularly difficult for the measurement of solar flux owing
to the geometry of the sun with respect to the radiometer on the aircraft. Moreover,
the heating/cooling rate is a result of net flux divergence, which is the difference of
two close values. Because of the inherent uncertainty in radiometric instrumentation,
heating/cooling rates derived from flux measurements usually contain substantial
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Figure 4.16 Downward infrared fluxes obtained from the measurements of unmanned aerospace
vehicle (UAV) and from theoretical results for a spectral region covering 4–30 μm with and without
including the solar radiation contribution (based on an interim report K. N. Liou submitted to P. Crowley
and J. Vitko of the Department of Energy, June 1995).

uncertainty. In the following, we present downward infrared fluxes derived from
radiometers on board an unmanned aerospace vehicle that was flown on a number
of days and locations as indicated in Fig. 4.16. Downward infrared fluxes increase
with decreasing altitude, signifying the emission contribution from the atmosphere.
Theoretical results are computed by using the correlated k-distribution method along
with observed temperature and moisture profiles collected from nearby soundings.
There is a general agreement between the computed and measured downward infrared
flux profiles, particularly when the contribution of solar flux is accounted for in the
theoretical calculation. In Table 2.3, we show that there are about 11 W m−2 of solar
energy contained in the wavelengths greater than 4μm. This energy has been ignored
in thermal infrared radiative transfer calculations when comparisons with radiometric
measurements are made. Deviation in the lower atmosphere in the case of Edwards
Air Force Base is due to uncertainty of the moisture profile data available from distant
sounding.

In summary, to cross check theoretical heating/cooling calculations from the line-
by-line or the correlated k-distribution models, we must have reliable and verifiable
flux measurements from aircraft, an area that requires further advances in spaceborne
radiometric technology.
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Exercises

4.1 Table 4.1 lists the line-by-line data from HITRAN 96 (Rothman et al., 1998) for
a 10 cm−1 interval in the 1.38 μm H2O band. (a) Using the Lorentz line shape,
plot the absorption coefficient kν as a function of wavenumber in this interval.
(b) Divide kν in the logarithmic scale into 50 equal intervals and compute the
total cumulative number n(0, k) of kν in progressive intervals. (c) The cumulative
probability function is defined by g(k) = n(0, k)/N , where N is the total number
such that g(0) = 0 and g(50	logk) = 1. Plot k(g) in the g-domain.

Table 4.1

HITRAN 96 Line Data for a 10 cm−1 Interval
in the 1.38 μm Band for p = 1013 mb and

T = 296 K

ν0 (cm−1) S [cm−1/(atm cm)] α(cm−1)

7280.31512 4.194E-03 0.0704
7280.47400 8.872E-04 0.0846
7281.08200 3.764E-02 0.0994
7281.72912 4.033E-03 0.0602
7282.70531 5.673E-04 0.0752
7283.01859 1.132E-02 0.0680
7283.73107 1.710E-02 0.0710
7284.71668 2.401E-03 0.0702
7285.04497 4.275E-04 0.0866
7286.05083 4.732E-03 0.0683
7287.00300 6.990E-03 0.0886
7287.28900 2.285E-02 0.1020
7287.50218 2.877E-04 0.0685
7288.09091 6.882E-02 0.1002
7290.10832 3.226E-02 0.0872

Table 4.2

The Quadrature Points and Weights for
Integrals in the g-Domain (0,1)

Quadrature points Quadrature weights

3.20770E-02 8.13791E-02
1.60926E-01 1.71362E-01
3.61656E-01 2.22259E-01
5.88344E-01 2.22259E-01
7.89074E-01 1.71362E-01
9.17923E-01 8.13791E-02
9.53472E-01 8.69637E-03
9.66501E-01 1.63036E-02
9.83500E-01 1.63036E-02
9.96528E-01 8.69637E-03
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(d) Compute the spectral transmittance from the line-by-line approach em-
ploying an interval of 0.01 cm−1 and from the k-distribution method using
quadrature points and weights listed in Table 4.2. Use the path length u from
10−5 to 10 (g cm−2). Compare the two results. Note that 1 (g cm−2) is 2.24 ×
104/M (atm cm), where M is the molecular weight of the gas.

4.2 (a) Show that the equivalent width of a single Lorentz line is given by W =
2παL(x), where L(x) is the Ladenberg and Reiche function, and x = su/2πα.
(b) From the property of the Bessel function, show that the equivalent width is
proportional to u and

√
u, respectively, in the limits of weak- and strong-line

approximations.

4.3 Given the absorption coefficient expressed in the Elsasser regular band model
[Eq. (4.4.10)], derive the probability function f (k) for this case.

4.4 (a) From the Malkmus model defined in Eq. (4.4.34b), show that the probability
distribution function can be derived from the inverse Laplace transform given
by

f (k) = 1

2
√
π

cν̄d1/2
ν̄ k−3/2 exp

(
cν̄ − k/dν̄ − c2

ν̄dν̄/4k
)
.

(b) Show that the cumulative probability function is given by

g(k) = 1

2
e2cν̄erfc

[(cν̄
2

)1/2
(

1

y
+ y

)]
+1

2
erfc

[(cν̄
2

)1/2
(

1

y
− y

)]
,

where y = [2k/(cν̄dν̄)]1/2. The notation erfc is the complementary error function
given by erfc(x) = 1− erf(x), and the error function is defined by

erf(x) = 2√
π

∫ x

0
e−x2

dx .

(c) From (b), show that dg(k)/dk = f (k).
(d) Derive the inverse Laplace transform of the spectral transmittance under the
limits of weak- and strong-line approximations defined in Eq. (4.4.33).

4.5 Consider a simplified Voigt profile by combining a rectangular Doppler core
(with a value of C) with Lorentzian wings as follows:

fυ(ν) =
{

C, |ν| ≤ ν0,

α/πν2, |ν| > ν0.

Derive the equivalent width for Goody’s random model.

4.6 The half-width of a Lorentz line is proportional to pressure and can be expressed
by α ∼= αr (p/pr ), where αr is the half-width at the reference pressure pr . Show
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that the optical depth may be expressed by

Tν = e−τ =
[(
ν2 + α2

1

)/(
ν2 + α2

2

)]λ
,

where α1 and α2 are two integration limits and λ = Spr q/(2πgαr ), with q the
mixing ratio and g the gravitational acceleration.

4.7 (a) With the strong-line approximation limit S̄u/α � 1, show that

Tν̄(u) = exp(−
√
π S̄αu/δ).

This is referred to as the square root approximation for the random model.
(b) Based on this approximation, show that the precipitable water in cloudy
atmospheres may be determined from

PW = (c/m)
[

ln(Fν̄/F0,ν̄)
]2
,

where c is a constant related to the band and known atmospheric parameters,
m denotes the air mass, which is related to pressure, and Fν̄ and F0,ν̄ represent
the observed solar flux in the 0.94 μm band at the ground and at the top of
the atmosphere, respectively. This is the principle of the sunphotometer for the
measurement of precipitable water.

4.8 Using the probability function

P(S) = C

S
e−s/s̃,

where C is a normalization factor, show that the average equivalent width is
given by

W̄ = cν̃
[
(1 + dν̄u)1/2 − 1

]
,

where cν̄ = πα/2δ and dν̄ = 4S̄/πα. In the derivation, use the following inte-
gration formulas: ∫ ∞

0
e−ax 1 − e−x

x
dx = ln(1 + 1/a),∫

ln(x2 + b) dx = x ln(x2 + b) − 2x + 2
√

b tan−1(x/
√

b).

Based on the procedure outlined in Section 4.4.3, determine the coefficients cν̄
and dν̄ from the line-by-line data.

4.9 From the definition of the Voigt profile, derive Eq. (4.4.45). In the derivation,
set cos νt = cos [(ν − ν ′) + ν ′]t.

4.10 The spectral transmittance defined in Eq. (4.3.20a) can be written in the form

Tν̄(q, qc) =
∫ ∞

0
f ∗
2 (k ′′)dk ′′

∫ ∞

k ′′
e−ku1 f1(k − k ′′) dk.
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By changing the order of integrals such that the resulting areas of the integrations
remain the same, derive Eq. (4.3.20c) via the convolution theorem of the Laplace
transform given in Eq. (4.3.20b).

4.11 Derive Eqs. (4.6.12a,b) from Eqs. (4.6.10a,b). This is the two-stream approxi-
mation for thermal infrared radiation transfer.
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Chapter 5 Light Scattering by Atmospheric
Particulates

5.1 Morphology of Atmospheric Particulates

The earth’s atmosphere contains various types of particulates ranging from aerosols,
water droplets, and ice crystals to raindrops, snowflakes, and hailstones. They are pro-
duced by a number of physical and dynamic processes, which govern their formation
and growth in the atmosphere. In association with the discussion of the fundamen-
tals of light scattering and absorption by particulates, we present in the following
an overview of the morphology of pertinent atmospheric particulates, with a specific
emphasis on aerosols and cloud particles.

In Section 3.1.2, we briefly discussed the sources of aerosol particles in the at-
mosphere. Aerosols of natural origin include dust from arid and semiarid regions,
particles from sea spray over the oceans, volcanic debris, smoke from forest fires,
extraterrestrial or interplanetary dust, and small particles produced by the chemical
reactions of natural gases. Man-made aerosols are produced by particles directly
emitted during combustion processes and particles formed from emitted gases.

Aerosols are usually classified in terms of their location and type. The continen-
tal type is subdivided into clear (rural, forest), average, desert (background, windy),
and urban/industrial conditions. The aerosol components involved in this type are
water-soluble particles, dustlike particles, soot, and minerals. The maritime type is
grouped into clear, mineral, and polluted conditions, involving sea salt, mineral, sul-
fate, and soot particles. The polar type is subdivided into polluted, clear Arctic, and
clear Antarctic conditions, which contain soot, mineral, sea salt, and sulfate par-
ticles. Because of the diversity of aerosol types in various regions, it appears that
they must be governed in part by the transport process associated with atmospheric
circulation.

The dustlike substances are mineral dust formed in nondesert locations and are rep-
resentative of soil conditions. Water-soluble substances refer to the parts of aerosols
that are soluble in water and consist of a mixture of sulfate, nitrate, and organic com-
pounds, the mixing ratio of which varies with the source. The term “soot” represents
all carbonaceous materials that are a product either of direct particle emission into the
atmosphere by combustion processes or of the transformation of combustion-related
gases to particles. Sulfate particles are products of the oxidation of sulfur-bearing gases

169
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that are generated both naturally and anthropogenically. Natural sulfate is produced
mostly by biogenic sources, whereas its anthropogenic counterpart stems primar-
ily from coal and oil burning, smelting, petroleum refining, and transportation. The
diverse tropospheric aerosol types have been conveniently grouped into five basic
categories: dustlike soil, soot, sulfate, sea salt, and organic aerosols.

The size distributions of atmospheric aerosols are complex, but they have fre-
quently been divided into two size classes, representing two primary formation mech-
anisms. Particles with diameters larger than about 1 μm are produced by the breakup
and suspension of bulk materials by the wind (e.g., sea salt and soil dust). Fine
particles smaller than 1 μm are usually formed by combustion or chemical conver-
sions of the gaseous precursors into liquid or solid products. The size spectrum of
aerosols in the atmosphere has been the subject of extensive research in the past four
decades, and a detailed discussion is beyond the scope of this text. However, for the
purpose of illustration, Fig. 5.1 depicts well-known measured size distributions of
natural aerosols in reference to the logarithmic scale (Junge, 1963). Aerosols with
radii smaller than 0.1 μm are collectively referred to as Aitken nuclei. For radii be-
tween 0.1 and 1.0 μm, the aerosols are referred to as large nuclei. Aerosols with
radii larger than 1.0 μm are called grant nuclei. It is clear that the majority of at-
mospheric aerosols have sizes on the order of 0.1 μm, but aerosols as large as 10
to 20 μm have also been observed. To facilitate the remote sensing of aerosols,
a number of analytic expressions have been developed to represent their size dis-
tributions. These include the Junge power law (Fig. 5.1 and Section 7.2.1), the
gamma distribution [Eq. (5.3.44)], the log-normal distribution [Eq. (5.3.45)], and their
modifications.

The radiative properties of atmospheric aerosols are critically dependent on their
refractive indices as functions of wavelength. Both the real and imaginary parts of
aerosols have been measured in the laboratory and tabulated in terms of dustlike,
water-soluble, soot, oceanic, sulfate, mineral, and water substances covering a spec-
trum of wavelengths (e.g., d’Almeida et al., 1991). In the solar visible region, absorp-
tion due to oceanic and sulfate particles is relatively small. A large absorption occurs
for mineral, dustlike, and water-soluble particles, and particularly for soot. In a wet
environment, aerosols interact with the ambient water vapor, the process of which
affects their size, shape, and chemical composition, and consequently their optical
properties. The humidity effects on aerosol size, shape, and composition are intricate
and are directly related to the formation of water droplets.

Electron microscopic photographs of aerosols show a great variety of shapes rang-
ing from quasi-spherical to highly irregular geometries. Solid aerosols are gener-
ally irregular. Figure 5.2 displays an example of microsized dust particles from the
Sahara desert collected in Israel. The shape of aerosols also depends on the rela-
tive humidity. Many spherical aerosols have internal inclusions and/or attachments
(see Fig. 5.28). A large number of submicrometer particles from combustion and
biomass burnings are in the form of clusters and aggregates. Some aerosols are
effective condensation and ice nuclei upon which cloud particles are formed in the
atmosphere.
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Figure 5.1 Size distribution of natural aerosols. Curves 1, 2, and 5 were measurements at
Frankfurt/Main. Curve 1 represents ion counts converted to nuclei numbers. Curve 2 denotes data from
impactors, and curve 5 is the average sedimentation data. Curves 3 and 4 were simultaneous measurements
at Zugspitze, 3 km above sea level. The figures in parentheses are the number of individual measurements
(data taken from Junge, 1963).

Clouds, which are composed of water droplets and/or ice crystals, are conven-
tionally classified in terms of their position and appearance in the atmosphere. In
midlatitudes, clouds with base heights of about ∼6 km are defined as high clouds and
are commonly referred to as cirrus clouds. The group of low clouds with base heights
below ∼2 km include stratus and cumulus. In between high and low clouds are a group
called middle clouds consisting of altocumulus and altostratus. Clouds with significant
vertical developments such as those occurring in the tropics are named cumulonimbus.
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Figure 5.2 Microsized dust particles from the Sahara desert collected in Israel in 1998. Note that the
scales for upper and lower diagrams are 1 and 10 μm, respectively (courtesy of Yoram Kaufman).

The microphysical state of a cloud is determined by the dispersion of particle sizes
and their phase (ice or liquid). Based on extensive aircraft observations, low clouds and
some middle clouds, because of temperature stratification, are generally composed
of spherical water droplets with sizes ranging from ∼1 μm to 20 μm. A typical
water droplet is on the order of 5μm. Some middle clouds with temperatures warmer
than about −20◦C contain supercooled water droplets that coexist with ice particles.
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Small water droplets are spherical in nature because of the requirement of surface
pressure to hold the water molecules together. However, collision and coalescence
of a fortunate larger water droplet (on the order of 20 μm) with other water droplets
can produce millimeter- and centimeter-sized raindrops, as is evident from our daily
experience. The falling raindrops in a dynamic flow field deviate from the spherical
shape and have been investigated by Pruppacher and Pitter (1971) and Wang (1982).
The latter author has developed mathematical expressions to define the shape of
falling graupel, hailstones, and some deformed raindrops. The nonsphericity of these
hydrometeors is important in the development of radar backscattering techniques for
the quantitative detection of precipitation and thunderstorms based on light scattering
theory.

Ice crystals in the atmosphere are primarily present in cirrus clouds, as well as
in the top portion of some middle clouds. The formation, maintenance, and dissi-
pation of cirrus clouds are principally associated with large-scale synoptic features
and disturbances. In the tropics, they are related to deep-cumulus outflows. The ice
crystal shapes depend on temperature and relative humidity as well as whether they
undergo collision and coalescence processes in the clouds. Weickmann (1948) ob-
served that at humidities approaching water saturation, ice crystals in cirrus castel-
latus, cirrocumulus, and cirrus generating cells have prismatic skeleton shapes that
occur in hollow and cluster crystals, referred to as bullet rosettes. Between ice and
water saturation, ice crystals grow in the form of prisms in cirrus filosus and cir-
rus densus. In cirrostratus, where relative humidities are close to ice saturation,
ice crystals are primarily individual with full crystals such as columns, prisms, and
plates.

In midlatitude cirrus, where substantial aircraft observations have been conducted,
ice crystal shapes are generally classified as a function of temperature (Heymsfield
and Platt, 1984; Heymsfield and Iaquinta, 2000). Hollow columns and hexagonal
plates are the most abundant types near the cloud top for most cirrus clouds. Spatial
ice crystals such as bullet rosettes are the predominant forms above about −40◦C,
while hollow or solid columns prevail below about −50◦C. In between these temper-
atures, convective cirrus contain predominantly spatial crystal forms, whereas stable
cirrus are primarily composed of hollow columns. Figure 5.3 illustrates a spectrum of
ice crystal sizes and shapes as a function of height in a typical midlatitude cirrus. It is
evident that at the cloud top, pristine and small columns and plates are predominant.
At the cloud bottom, however, irregular bullet rosettes and aggregates are produced,
presumably due to the collision and coalescence associated with vertical mixing and
gravitational pulling. Because ice crystal size and shape vary greatly with time and
space, a presentation of representative values for the purpose of remote sensing and
climate applications is a difficult task. Nevertheless, typical ice-crystal size distri-
butions for midlatitude cirrus clouds have been developed on the basis of a number
of intensive field observations of cirrus clouds from aircraft platforms, including the
First ISCCP Regional Experiments in 1986 and 1991, the European cirrus experi-
ment in 1989, and the Subsonic Aircraft: Contrail and Cloud Effect Special Study
in 1996. These distributions are shown in Fig. 5.4. Displayed are five representative
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Figure 5.3 Ice crystal size and shape as a function of height and relative humidity captured by a
replicator balloon sounding system in Marshall, Colorado, on November 10, 1994. The relative humidity
was measured by cryogenic hygrometer (dashed line) and Vaisala RS80 instruments (solid line and dots).
Also shown is temperature as a function of height (courtesy of Andrew Heymsfield of the National Center
for Atmospheric Research).

size distributions spanning a mean effective ice crystal size range from 10 to 124 μm
defined by

De =
∫ L max

L min

V n(L) dL

/∫ L max

L min

A n(L) dL, (5.1.1)

where V is the volume of an ice crystal, L is the maximum dimension, and A is the geo-
metric projected area of an ice crystal on a surface perpendicular to the incident beam.
For the purpose of calculating De, we have assumed V ≈ L D 2 and A ≈ L D, where
D is the ice-crystal width. From available replicator and optical probe observations,
the majority of ice-crystal shapes are aggregate, bullet rosettes, hollow columns, and
plates, as displayed in Fig. 5.3.

Observations of ice-crystal size and shape distributions have been extremely lim-
ited for tropical cirrus. During the Central Equatorial Pacific Experiment conducted
in 1993, aircraft microphysical measurements were carried out by a two-dimensional
optical probe (30–300 μm) and a video ice particle sampler (<30 μm). Based on
available measurements, ice-crystal sizes in the tropics range from about 10 μm to
2000 μm with four predominant shapes: bullet rosettes, aggregates, hollow columns,
and plates, similar to those occurring in midlatitudes. Smaller ice-crystal sizes gen-
erally occur in cloud-top (colder temperature) conditions, whereas larger ice-crystal
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Figure 5.4 Representative ice-crystal size distributions for midlatitude cirrus clouds covering a range
of mean effective ice-crystal sizes from 10 μm (Contrail), 24 μm (Cold), 42 μm (Cs), 75 μm (Thick), to
124 μm (Uncinus) (data from Heymsfield and Platt, 1984; First ISCCP Regional Experiment, 1991; Liou
et al., 1998).

sizes are associated with warmer temperatures and/or the developing stage of clouds
associated with convection (Rolland et al., 2000).

Ice-crystal shape and size data in arctic cirrus and stratiform clouds associated
with frontal systems was collected during the First ISCCP Regional Experiment
Arctic Cloud Experiment. Ice crystals with sizes larger than 40 μm were collected,
and inspection of their shapes shows a combination of pristine and irregular types,
including solid and hollow columns, prisms, plates, aggregates, and branched particles
(Korolev et al., 1999). The extensive collection of ice particles at a surface station in
the Antarctic illustrated the prevalence of long needle ice-crystal types (Grenfell and
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Table 5.1

Sizes and Size Parameters for Atmospheric Particulates in Visible, Infrared, and Microwave Wavelengths

Size parameters (2πa/λ)

Type Size (a) λν (0.5 μm) λir (10μm) λm (1 cm)

Aerosol (S∗/NS†) <∼ 1 μm 1.26 × 101 6.3 × 10−1 6.3 × 10−4

Water droplet (S) ∼10 μm 1.26 × 102 6.3 × 100 6.3 × 10−3

Ice crystal (NS) ∼102 μm 1.26 × 103 6.3 × 101 6.3 × 10−2

Raindrop (NS) ∼1 mm 1.26 × 104 6.3 × 102 6.3 × 10−1

Snowflake (hailstone) (NS) ∼1 cm 1.26 × 105 6.3 × 103 6.3 × 100

∗Spherical; †nonspherical.

Warren, 1999). Clearly, then, ice crystals vary substantially in size and shape from
the tropics to midlatitudes to the polar regions.

In Table 5.1, we summarize typical sizes of atmospheric particulates in terms of an
equivalent radius (for nonspherical particles) and size parameters (Section 1.1.4) with
respect to representative wavelengths in the solar, infrared, and microwave regions.
Except in the microwave region, all the particle sizes are comparable to or larger than
solar and infrared wavelengths. In these cases, the dipole mode of the electric field,
which leads to the development of the Rayleigh scattering theory (Section 3.3.1), is
not applicable.

In Section 3.3.2, we briefly introduced the Lorenz–Mie theory, the geometric
optics approach, and the anomalous diffraction theory of light scattering by particles.
This chapter is a continuation of the discussion of atmospheric scattering. We first
present a complete description of the Lorenz–Mie theory of light scattering by spheres,
which is applicable to spherical aerosols and cloud droplets. Next, we introduce the
fundamentals of the geometric optics approach in terms of diffraction and geometric
reflection and refraction. Finally, we present contemporary developments in the study
of light scattering by nonspherical ice crystals and aerosols.

5.2 Lorenz–Mie Theory of Light Scattering by Spherical Particles

5.2.1 Electromagnetic Wave Equation and Solution

We shall first introduce the fundamental Maxwell equations for the electromagnetic
field. The state of excitation that is established in space by the presence of electric
charges is said to constitute an electromagnetic field. It is represented by two vectors
E and B, called the electric vector and magnetic induction, respectively. It is necessary
to introduce a second set of vectors involving the electric current density j, the electric
displacement D, and the magnetic vector H to describe the effects of the electromag-
netic field on material objects. At every point where the physical properties of the
medium are continuous in its neighborhood, the space and time derivatives of these
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five vectors can be related by Maxwell’s equations as follows:

∇ × H = 1

c

∂D
∂t

+ 4π

c
j, (5.2.1)

∇ × E = −1

c

∂B
∂t
, (5.2.2)

∇ · D = 4πρ, (5.2.3)

∇ · B = 0, (5.2.4)

where t denotes time, c the velocity of light, and ρ the density of charge. Equation
(5.2.3) may be regarded as a defining equation for the electric charge density ρ, and
Eq. (5.2.4) implies that no free magnetic poles exist.

From Eq. (5.2.1), since ∇ · ∇ × H = 0, a dot-product operation leads to

∇ · j = − 1

4π
∇ · ∂D

∂t
. (5.2.5)

Hence, differentiating Eq. (5.2.3) with respect to t leads to

∂ρ

∂t
+ ∇ · j = 0. (5.2.6)

This is the equation of continuity in an electromagnetic field.
To allow a unique determination of the field vectors from a given distribution

of current and charges, the preceding equations must be supplemented by relation-
ships describing the behavior of substances under the influence of the field. These
relationships are given by

j = σE, (5.2.7)

D = εE, (5.2.8)

B = μH, (5.2.9)

where σ is the specific conductivity, ε the permittivity, and μ the magnetic perme-
ability.

We shall now confine our attention to the field where there are no charges (ρ = 0)
and current (|j| = 0), and to the medium which is homogeneous so that ε and μ are
constants. Thus, the Maxwell equations reduce to

∇ × H = ε

c

∂E
∂t
, (5.2.10)

∇ × E = −μ

c

∂H
∂t

, (5.2.11)

∇ · E = 0, (5.2.12)

∇ · H = 0. (5.2.13)

Equations (5.2.10)–(5.2.13) will be used in the following to derive the electromagnetic
wave equation. Note that Eqs. (5.2.12) and (5.2.13) can be obtained directly from Eqs.
(5.2.10) and (5.2.11) by carrying out the dot operation.
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We shall consider a plane electromagnetic wave in a periodic field with a circular
frequency ω so that we may write

E → Ee iωt , (5.2.14)

H → He iωt . (5.2.15)

On the basis of these transformations, Eqs. (5.2.10) and (5.2.11) become

∇ × H = ikm2E, (5.2.16)

∇ × E = −ikH, (5.2.17)

where k = 2π/λ(= ω/c) is the wavenumber denoting the propagation constant in
vacuum, λ is the wavelength in vacuum, m = √

ε is the complex refractive index of
the medium at the frequency ω, and μ ≈ 1 is the permeability of air. Note that the
wavenumber k used in this chapter differs from the wavenumber ν (cm−1) defined in
Section 1.1 by a factor of 2π .

We then perform the curl operation of Eq. (5.2.17) to obtain

∇ × ∇ × E = −ik∇ × H. (5.2.18)

Moreover, by noting that ∇ · ∇ × E = 0 and that ∇ · E = 0, we get

∇2E = −k2m2E. (5.2.19)

In a similar way, from Eqs. (5.2.16) and (5.2.13), we derive the following relationship:

∇2H = −k2m2H. (5.2.20)

Equations (5.2.19) and (5.2.20) reveal that the electric vector and magnetic induction
in a homogeneous medium satisfy the vector wave equation in the form

∇2A + k2m2A = 0, (5.2.21)

where A can be either E or H.
Now, if ψ satisfies the scalar wave equation

∇2ψ + k2m2ψ = 0, (5.2.22)

vectors Mψ and Nψ in spherical coordinates (r, θ, φ) defined by

Mψ = ∇ × [ar (rψ)] =
(

ar
∂

∂r
+ aθ

1

r

∂

∂θ
+ aφ

1

r sin θ

∂

∂φ

)
× [ar (rψ)]

= aθ
1

r sin θ

∂(rψ)

∂φ
− aφ

1

r

∂(rψ)

∂θ
, (5.2.23)

mkNψ = ∇ × Mψ

= ar r

[
∂2(rψ)

∂r2
+ m 2k 2(rψ)

]
+ aθ

1

r

∂2(rψ)

∂r∂θ
+ aφ

1

r sin θ

∂2(rψ)

∂r∂φ

(5.2.24)
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satisfy the vector wave equation defined in Eq. (5.2.21) subject to Eq. (5.2.22). The
terms ar , aθ , and aφ are unit vectors in spherical coordinates. To obtain Eq. (5.2.24),
we used Eq. (5.2.29), which is defined in the following.

Assuming that u and v are two independent solutions of the scalar wave equation
defined in Eq. (5.2.22), then the electric and magnetic field vectors expressed by

E = Mv + iNu, (5.2.25)

H = m(−Mu + iNv) (5.2.26)

satisfy Eqs. (5.2.16) and (5.2.17). Employing Eqs. (5.2.23) and (5.2.24), E and H can
be written explicitly as follows:

E = ar
i

mk

[
∂2(ru)

∂r2
+ m 2k 2(ru)

]
+ aθ

[
1

r sin θ

∂(rv)

∂φ
+ i

mkr

∂2(ru)

∂r ∂θ

]
+ aφ

[
−1

r

∂(rv)

∂θ
+ 1

mkr sin θ

∂2(ru)

∂r ∂φ

]
, (5.2.27)

H = ar
i

k

[
∂2(rv)

∂r2
+ m 2k 2(rv)

]
+ aθ

[
− m

r sin θ

∂(ru)

∂φ
+ i

kr

∂2(rv)

∂r ∂θ

]
+ aφ

[
m

r

∂(ru)

∂θ
+ i

kr sin θ

∂2(rv)

∂r ∂φ

]
. (5.2.28)

The scalar wave equation defined in Eq. (5.2.22) may be written in spherical
coordinates in the form

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin θ

∂2ψ

∂φ2
+ k2m2ψ = 0.

(5.2.29)

This equation is separable by defining

ψ(r, θ, φ) = R(r )�(θ )�(φ). (5.2.30)

Upon substituting Eq. (5.2.30) into Eq. (5.2.29) and dividing the entire equation by
ψ(r, θ, φ), we obtain

1

r2

1

R

∂

∂r

(
r2 ∂R

∂r

)
+ 1

r2 sin θ

1

�

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

r2 sin2 θ

1

�

∂2�

∂φ2
+ k2m2 = 0. (5.2.31)

We then multiply Eq. (5.2.31) by r2 sin2 θ to obtain[
sin2 θ

1

R

∂

∂r

(
r2 ∂R

∂r

)
+ sin θ

1

�

∂

∂θ

(
sin θ

∂�

∂θ

)
+ k2m2r2 sin2 θ

]
+ 1

�

∂2�

∂φ2
= 0. (5.2.32)
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Since the first three terms in this equation consist of the variables r and θ , but not φ,
the only possibility that Eq. (5.2.32) can be valid is when

1

�

d 2�

dφ2
= const = −�2, (5.2.33)

where we set the constant equal to −�2 (� denotes an integer) for mathematical
convenience. In view of Eqs. (5.2.32) and (5.2.33), it is also clear that

sin2 θ
1

R

∂

∂r

(
r2 ∂R

∂r

)
+ sin θ

1

�

∂

∂θ

(
sin θ

∂�

∂θ

)
+ k 2m 2r2 sin2 θ − �2 = 0.

(5.2.34)
On dividing Eq. (5.2.34) by sin2 θ , we obtain

1

R

∂

∂r

(
r2 ∂R

∂r

)
+ k 2m 2r2 + 1

sin θ

1

�

∂

∂θ

(
sin θ

∂�

∂θ

)
− �2

sin2 θ
= 0. (5.2.35)

Thus, we must have

1

R

d

dr

(
r2 dR

dr

)
+ k 2m 2r2 = const = n(n + 1), (5.2.36)

1

sin θ

1

�

d

dθ

(
sin θ

d�

dθ

)
− �2

sin2 θ
= const = −n(n + 1) (5.2.37)

in order to satisfy Eq. (5.2.35), where n is an integer. The selection of the constant
here is also for mathematical convenience. Rearranging Eqs. (5.2.33), (5.2.36), and
(5.2.37) leads to

d2(rR)

dr2 +
[

k 2m 2 − n(n + 1)

r2

]
(rR) = 0, (5.2.38)

1

sin θ

d

dθ

(
sin θ

d�

dθ

)
+
[

n(n + 1) − �2

sin2 θ

]
� = 0, (5.2.39)

d 2�

dφ2
+ �2� = 0. (5.2.40)

The single-value solution for Eq. (5.2.40) is given by

� = a� cos �φ + b� sin �φ, (5.2.41)

where a� and b� are arbitrary constants. Equation (5.2.39) is the well-known equation
for spherical harmonics. For convenience we introduce a new variable μ = cos θ
so that

d

dμ

[
(1 − μ2)

d�

dμ

]
+
[

n(n + 1) − �2

1 − μ2

]
� = 0. (5.2.42)

The solutions of Eq. (5.2.42) can be expressed by the associated Legendre polynomials
(spherical harmonics of the first kind) in the form

� = P �
n (μ) = P �

n (cos θ ). (5.2.43)
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Finally, in order to solve the remaining equation (5.2.38), we set

kmr = ρ, R = (1/
√
ρ)Z (ρ), (5.2.44)

to obtain

d 2 Z

dρ2
+ 1

ρ

dZ

dρ
+
[

1 −
(
n + 1/2

)2
ρ2

]
Z = 0. (5.2.45)

The solution of this equation can be expressed by the general cylindrical function of
order n + 1/2 and is given by

Z = Zn+1/2 (ρ). (5.2.46)

Thus, the solution of Eq. (5.2.38) is then

R = 1√
kmr

Zn+1/2 (kmr). (5.2.47)

Upon combining Eqs. (5.2.41), (5.2.43), and (5.2.47), the elementary wave functions
at all points on the surface of a sphere can be expressed by

ψ(r, θ, φ) = 1√
kmr

Zn+1/2 (kmr)P�
n (cos θ )(a� cos �φ + b� sin �φ). (5.2.48)

Each cylindrical function denoted in Eq. (5.2.47) may be expressed as a linear
combination of two cylindrical functions of standard type, i.e., the Bessel function
Jn+1/2 and the Neumann function Nn+1/2 . We define

ψn(ρ) =
√
πρ/2Jn+1/2 (ρ), χn(ρ) = −

√
πρ/2Nn+1/2 (ρ). (5.2.49)

The functionsψn are regular in every finite domain of the ρ plane including the origin,
whereas the functions χn have singularities at the origin ρ = 0 at which they become
infinite. Thus, we may use ψn , but not χn , to represent the wave inside the sphere. On
utilizing the definitions in Eq. (5.2.49), Eq. (5.2.47) can be rewritten in the form

r R = cnψn(kmr) + dnχn(kmr), (5.2.50)

where cn and dn are arbitrary constants. Equation (5.2.50) now represents the general
solution of Eq. (5.2.38). It follows that the general solution of the scalar wave equation
(5.2.29) can then be expressed by

rψ(r, θ, φ) =
∞∑

n=0

n∑
�=−n

P �
n (cos θ )[cn ψn(kmr)

+ dn χn(kmr)](a� cos �φ + b� sin �φ). (5.2.51)

Note that the electric and magnetic field vectors of electromagnetic waves can be
subsequently derived from Eqs. (5.2.27) and (5.2.28).
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Moreover, when cn = 1 and dn = i , we have

ψn(ρ) + iχn(ρ) =
√
πρ/2H (2)

n+1/2
(ρ) = ξn(ρ), (5.2.52)

where H (2)
n+1/2

is the half-integral-order Hankel function of the second kind, which has
the property of vanishing at infinity in the complex plane. This function is therefore
suitable for the representation of the scattered wave.

5.2.2 Formal Scattering Solution

Having solved the vector wave equation, we can now discuss the scattering of a plane
wave by a homogeneous sphere. For simplicity, we shall assume that outside the
medium is vacuum (m = 1), that the material of the sphere has an index of refraction m,
and that the incident radiation is linearly polarized. We select the origin of a rectangular
system of coordinates at the center of the sphere, with the positive z axis along the
direction of propagation of the incident wave. If the amplitude of the incident wave
is normalized to unity, the incident electric and magnetic field vectors are given by

Ei = ax e−ikz, Hi = aye−ikz, (5.2.53)

where ax and ay are unit vectors along the x and y axes, respectively.
The components of any vector, say a, in the Cartesian system (x,y,z) may be

transformed to the spherical polar coordinates (r,θ ,φ) in the forms

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (5.2.54)

Based on the geometric relationship shown in Fig. 5.5, we find

ar = ax sin θ cosφ + ay sin θ sinφ + az cos θ,

aθ = ax cos θ cosφ + ay cos θ sinφ − az sin θ,

aφ = −ax sinφ + ay cosφ, (5.2.55)

where ax , ay , and az are unit vectors in Cartesian coordinates, while ar , aθ , and aφ
are unit vectors in spherical coordinates.

In view of the preceding analysis, the electric and magnetic field vectors of the
incident wave may be written in the forms

E i
r = e−ikr cos θ sin θ cosφ,

E i
θ = e−ikr cos θ cos θ cosφ,

E i
φ = −e−ikr cos θ sinφ. (5.2.56)

H i
r = e−ikr cos θ sin θ sinφ,

H i
θ = e−ikr cos θ cos θ sinφ,

H i
φ = e−ikr cos θ cosφ. (5.2.57)
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X

Z

Y

θ

φE

H

S

φ

ax

ay

az ar

ar

aθ

aθ

aφ

ay

 ax

Figure 5.5 Transformation of rectangular to spherical coordinates. S is the Poynting vector; a is an
arbitrary unit vector; θ and φ are zenith and azimuthal angles; and E and H are electric and magnetic
vectors placed on the X and Y axes, respectively.

On the basis of Bauer’s formula (Watson, 1944), the first factor on the right-hand side
of this equation may be expressed in the following differentiable series of Legendre
polynomials:

e−ikr cos θ =
∞∑

n=0

(−i)n(2n + 1)
ψn(kr )

kr
Pn(cos θ ), (5.2.58)

where ψn is defined in Eq. (5.2.49). Moreover, we have the following mathematical
identities:

e−ikr cos θ sin θ = 1

ikr

∂

∂θ
(e−ikr cos θ ), (5.2.59)

∂

∂θ
Pn(cos θ ) = −P1

n (cos θ ), P1
0 (cos θ ) = 0. (5.2.60)

Equation (5.2.60) relates the Legendre polynomial Pn to the associated Legendre
polynomial P1

n .
To determine the potentials u and v, we require only one of the components in

Eq. (5.2.27). The first of them is (m = 1)

E i
r = e−ikr cos θ sin θ cosφ = i

k

[
∂2(rui )

∂r2
+ k 2(rui )

]
. (5.2.61)
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In view of Eqs. (5.2.58)–(5.2.60), we have

e−ikr cos θ sin θ cosφ = 1

(kr)2

∞∑
n=1

(−i)n−1(2n + 1)ψn(kr)P1
n (cos θ ) cosφ.

(5.2.62)
Accordingly, we take a trial solution in Eq. (5.2.61) by using an expanding series of
a similar form:

rui = 1

k

∞∑
n=1

αnψn(kr)P1
n (cos θ ) cosφ. (5.2.63)

Upon substituting Eqs. (5.2.62) and (5.2.63) into Eq. (5.2.61) and comparing coeffi-
cients, we obtain

αn

[
k 2ψn(kr) + ∂2ψn(kr)

∂r2

]
= (−i)n(2n + 1)

ψn(kr)

r2
. (5.2.64)

In Eq. (5.2.50), since χn(kr) become infinite at the origin through which the incident
wave must pass, we may let cn = 1 and dn = 0. It follows that

ψn(kr) = rR (5.2.65)

is a solution of Eq. (5.2.38) (with m = 1),

d 2ψn

dr2 +
(

k 2 − α

r 2

)
ψn = 0, (5.2.66)

provided that α = n(n + 1). Comparing Eq. (5.2.66) to (5.2.64), we find

αn = (−i)n 2n + 1

n(n + 1)
. (5.2.67)

Utilizing similar procedures, vi can be derived from Eq. (5.2.28). Thus, for incident
waves outside the sphere, we have

rui = 1

k

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
ψn(kr)P1

n (cos θ ) cosφ,

rvi = 1

k

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
ψn(kr)P1

n (cos θ ) sinφ. (5.2.68)

In order to match ui and vi with those of the internal and scattered waves whose
potentials have been derived in Eq. (5.2.51), the latter must be expressed in a series of
a similar form but with arbitrary coefficients. For internal waves, because the function
χn(kmr) becomes infinite at the origin, only the function ψn(kmr) may be used. Thus,
for internal waves we have

ru t = 1

mk

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
cnψn(kmr)P1

n (cos θ ) cosφ,

rv t = 1

mk

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
dnψn(kmr)P1

n (cos θ ) sinφ. (5.2.69)



5.2 Lorenz–Mie Theory of Light Scattering by Spherical Particles 185

For scattered waves, these two functions must vanish at infinity. The Hankel functions
expressed in Eq. (5.2.52) possess precisely this property. Thus, for scattered waves
we have

rus = 1

k

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
anξn(kr)P1

n (cos θ ) cosφ,

rvs = 1

k

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
bnξn(kr)P1

n (cos θ ) sinφ. (5.2.70)

The coefficients an , bn , cn , and dn must be determined from the boundary conditions at
the surface of the sphere; that is, the tangential components of E and H are continuous
across the spherical surface r = a such that

E i
θ + E s

θ = E t
θ , Hi

θ + H s
θ = H t

θ ,

E i
φ + E s

φ = E t
φ, Hi

φ + H s
φ = H t

φ. (5.2.71)

In view of Eqs. (5.2.27), (5.2.28), and (5.2.68)–(5.2.70), apart from common factors
and differentiations with respect to θ andφ, which are the same for the wave inside and
outside the sphere, both of the field components Eθ and Eφ contain the expressions
v and ∂(ru)/m∂r . It is also clear that the components Hθ and Hφ contain mu and
∂(rv)/∂r . Equation (5.2.71) implies that these four expressions must be continuous
at r = a. Consequently,

∂

∂r

[
r (ui + us)

] = 1

m

∂

∂r
(ru t ), ui + us = mut ,

∂

∂r

[
r (vi + vs)

] = ∂

∂r
(rvt ), vi + vs = vt . (5.2.72)

From Eq. (5.2.72) we have

m[ψ ′
n(ka) − anξ

′
n(ka)] = cnψ

′
n(kma),

[ψ ′
n(ka) − bnξ

′
n(ka)] = dnψ

′
n(kma),

[ψn(ka) − anξn(ka)] = cnψn(kma),

m[ψn(ka) − bnξn(ka)] = dnψn(kma), (5.2.73)

where the prime denotes differentiation with respect to the argument. On eliminating
cn and dn , we obtain the coefficients for the scattered waves in the forms

an = ψ ′
n(y)ψn(x) − mψn(y)ψ ′

n(x)

ψ ′
n(y)ξn(x) − mψn(y)ξ ′

n(x)
,

bn = mψ ′
n(y)ψn(x) − ψn(y)ψ ′

n(x)

mψ ′
n(y)ξn(x) − ψn(y)ξ ′

n(x)
, (5.2.74)

where x = ka, and y = mx. The solutions for cn and dn contain the same respective
denominators as those of an and bn but with m[ψ ′

n(x)ξn(x) − ψn(x)ξ ′
n(x)] as a com-

mon numerator. At this point, solution of the scattering of electromagnetic waves by a
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sphere with a radius of a and an index of refraction of m is complete. The electric and
magnetic field vectors expressed in Eqs. (5.2.27) and (5.2.28) at any point inside or out-
side the sphere are now expressed in terms of the known mathematical functions given
by Eqs. (5.2.68)–(5.2.70). For the sake of simplicity, we have assumed up to this point
that the suspending medium is a vacuum. We may now let the outside medium and the
sphere have refractive indices m2 (real part) and m1 (maybe complex), respectively.
By replacing m by m1/m2 and the wavenumber k by m2k (vacuum), the results given
in Eq. (5.2.74) can be generalized to cases where a sphere is suspended in a medium.

5.2.3 The Far-Field Solution and Extinction Parameters

In the following, consider the scattered field at very large distances from the sphere.
It is noted that for practical applications, light scattering observations are normally
made in the far-field zone. In the far field, the Hankel functions denoted in Eq. (5.2.52)
reduce to the form

ξn(kr) ≈ i n+1e−ikr, kr � 1. (5.2.75)

With this simplification, Eq. (5.2.70) becomes

rus ≈ − ie−ikr cosφ

k

∞∑
n=1

2n + 1

n(n + 1)
an P1

n (cos θ ),

rvs ≈ − ie−ikr sinφ

k

∞∑
n=1

2n + 1

n(n + 1)
bn P1

n (cos θ ). (5.2.76)

The three components of the electric and magnetic field vectors in Eqs. (5.2.27) and
(5.2.28) are given by

Es
r = Hs

r ≈ 0,

Es
θ = Hs

φ ≈ −i

kr
e−ikr cosφ

∞∑
n=1

2n + 1

n(n + 1)

[
an

dP1
n(cos θ )

dθ
+ bn

P1
n (cos θ)

sin θ

]
,

Es
φ = Hs

θ ≈ i

kr
e−ikr sinφ

∞∑
n=1

2n + 1

n(n + 1)

[
an

P1
n (cos θ )

sin θ
+ bn

dP1
n(cos θ )

dθ

]
.

(5.2.77)

We find that the radial components Es
r and H s

r may be neglected in the far-field zone.
To simplify Eq. (5.2.77), we define two scattering functions in the forms

S1(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
[anπn(cos θ ) + bnτn(cos θ)],

S2(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
[bnπn(cos θ ) + anτn(cos θ)], (5.2.78)
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where

πn(cos θ ) = 1

sin θ
P1

n (cos θ ),

τn(cos θ ) = d

dθ
P1

n (cos θ ). (5.2.79)

Thus, we may write

Es
θ = i

kr
e−ikr cosφS2(θ ),

−Es
φ = i

kr
e−ikr sinφS1(θ ). (5.2.80)

These fields represent an outgoing spherical wave where amplitude and the state
of polarization are functions of the scattering angle θ . It is convenient to define the
perpendicular and parallel components of the electric field as Er and El , respectively.
In reference to Fig. 5.6, the scattered perpendicular and parallel electric fields are
given by

Es
r = −Es

φ, Es
l = Es

θ . (5.2.81)

Also, the normalized incident electric vector [see Eq. (5.2.53)] may be decomposed
into perpendicular and parallel components as follows:

Ei
r = e−ikz sinφ, E i

l = e−ikz cosφ. (5.2.82)

X

Y

Z

θ

φ

Er
i

Er
s

E i
El

i
H i

El
s

Eθ

Eφ

Figure 5.6 Decomposition of the incident (i) and scattered (s) electric vectors into perpendicular (r )
and parallel (l) components in Cartesian (x, y, z) and spherical (r, θ , φ) coordinates.
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Equation (5.2.80) can then be expressed by[
Es

l
Es

r

]
= e−ikr + ikz

ikr

[
S2(θ ) 0

0 S1(θ )

] [
E i

l
E i

r

]
, (5.2.83)

representing the fundamental equation for the study of a light beam scattered by
spheres including polarization.

The scattered intensity components in the far-field zone can now be written in
terms of the incident intensity components in the form

I s
l = Ii

l

i2

k2r2
, I s

r = I i
r

i1

k2r2
, (5.2.84)

where

i1(θ) = |S1(θ )|2, i2(θ) = |S2(θ )|2, (5.2.85)

referred to as the intensity functions for the perpendicular and parallel components,
respectively. Each of these components of scattered light can be thought of as ema-
nating from that component of the incident light beam polarized in the same direc-
tion. The computational problem involved in Lorenz–Mie scattering is to evaluate
i1 and i2 as functions of the scattering angle, index of refraction, and particle size
parameter.

In the far-field zone, we wish to evaluate the reduction of the incident energy due
to the absorption and scattering of light by a sphere. For this purpose we may consider
incident light polarized linearly in the perpendicular direction. Based on Eq. (5.2.83),
the scattered electric field is given by

Es
r = e−ikr + ikz

ikr
S1(θ )Ei

r . (5.2.86)

Further, we consider a point (x, y, z) in the forward direction, i.e., θ ≈ 0. In the far
field, since x(y) � z, we have

r = (x2 + y2 + z2
)1/2 ≈ z + x2 + y2

2z
. (5.2.87)

Superimposing incident and scattered electric fields in the forward direction yields

Ei
r + Es

r ≈ Ei
r

[
1 + S1(0)

ikz
e−ik(x2 + y2)/2z

]
. (5.2.88)

The far-field combined flux density in the forward direction is then proportional to∣∣Ei
r + Es

r

∣∣2 ≈ ∣∣Ei
r

∣∣2 {1 + 2

kz
Re

[
S1(0)

i
e−ik(x2 + y2)/2z

]}
, (5.2.89)

where Re[ ] represents the real part of the argument.
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We may now integrate the combined flux density over the cross-section area of a
sphere whose radius is a to obtain the total power of the combined image as follows:

1∣∣Ei
r

∣∣2
∫ ∫ ∣∣Ei

r + Es
r

∣∣2 dx dy = πa2 + σe, (5.2.90)

where the first term on the right-hand side of Eq. (5.2.90) represents the cross-section
area of the sphere. The physical interpretation of the second term, σe, is that the total
light received in the forward direction is reduced by the presence of the sphere, and
that the amount of this reduction is as if an area equivalent to σe of the object had
been covered up. The double integral over dx dy from which σe is defined contains
two Fresnel integrals. If the limits are assumed to extend to infinity, we obtain∫ ∞

−∞

∫ ∞

−∞
e−ik(x2 + y2)/2zdx dy = 2π z

ik
. (5.2.91)

It follows that the extinction cross section is given by

σe = (4π/k2)Re[S(0)]. (5.2.92)

In the forward direction, we have

S1(0) = S2(0) = S(0) = 1

2

∞∑
n=1

(2n + 1)(an + bn). (5.2.93)

There is only one S(0) because of the symmetry of the forward scattering in which the
extinction is independent of the state of polarization of the incident light. It should be
noted that Eq. (5.2.92) is valid only when the sphere is isotropic and homogeneous.
Furthermore, the extinction efficiency of a sphere with a radius of r = a is defined by

Qe = σe

πa2
= 2

x2

∞∑
n=1

(2n + 1)Re(an + bn), (5.2.94)

where x = ka is the size parameter defined in Section 1.1.4.
To derive the scattering cross section, we use Eq. (5.2.80). The flux density of the

scattered light in an arbitrary direction is given by

F(θ, φ) = F0

k2r2

[
i2(θ) cos2 φ + i1(θ ) sin2 φ

]
(5.2.95)

with F0 representing the incident flux density. The total flux (or power) of the scattered
light is, therefore,

f =
∫ 2π

0

∫ π

0
F(θ, φ)r2 sin θ dθ dφ, (5.2.96)

where sin θ dθ dφ is the differential solid angle d�, and r2 d� denotes the differential
area. The scattering cross section is then given by

σs = f

F0
= π

k2

∫ π

0
[i1(θ ) + i2(θ )] sin θ dθ. (5.2.97)
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As in the extinction case, we may define the scattering efficiency of a sphere as

Qs = σs

πa2
= 1

x2

∫ π

0
[i1(θ ) + i2(θ )] sin θ dθ. (5.2.98)

We note the following orthogonal and recurrence properties of the associated Legendre
polynomials (see Appendix E):∫ π

0

(
dP1

n

dθ

dP1
m

dθ
+ 1

sin2 θ
P1

n P1
m

)
sin θ dθ =

⎧⎨⎩
0, if n �= m
2n(n + 1)

2n + 1

(n + 1)!

(n − 1)!
, if n = m,

(5.2.99)
and ∫ π

0

(
P1

n

sin θ

dP1
m

dθ
+ P1

m

sin θ

dP1
n

dθ

)
sin θ dθ = [P1

n (θ )P1
m(θ)

]π
0 = 0. (5.2.100)

The scattering efficiency can be evaluated with the help of these two equations to
yield

Qs = 2

x2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2). (5.2.101)

Finally, based on the energy conservation principle, the absorption cross section and
efficiency of a sphere can be evaluated from the following relationships:

σa = σe − σs,

Qa = Qe − Qs . (5.2.102)

For an absorbing sphere, it is convenient to define the index of refraction as m =
mr − imi , with mr and mi representing the real and imaginary parts of the refractive
index, respectively.

Figure 5.7 shows the scattering efficiency factor Qs as a function of the size
parameter x for a real index of refraction of 1.5 and several values of the imaginary
part. For mi = 0, i.e., a perfect reflector, there is no absorption. In this case, Qs (= Qe)
shows a series of major maxima and minima and ripples. The major maxima and
minima are due to interference of light diffracted and transmitted by the sphere,
whereas the ripple arises from edge rays that are grazing and traveling around the
sphere, spewing off energy in all directions. Qs (or Qe) increases rapidly when the
size parameter reaches about 5 and approaches an asymptotic value of 2. This implies
that a large particle removes from the incident beam exactly twice the amount of
light that it can intercept. The light removed from the incident light beam includes
the diffracted component, which passes by the particle, plus the light scattered by
reflection and refraction within the particle, which will be discussed in the following
section. Both the ripples and the major maxima and minima damp out as absorption
within the particle increases.
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Figure 5.7 Efficiency factor for scattering, Qs , as a function of the size parameter x = 2πa/λ. The
real part of the refractive index used is mr = 1.5, with results shown for four values of the imaginary part mi .

5.2.4 Scattering Phase Matrix for Spherical Particles

To describe the complete polarization properties of electromagnetic waves, a set
of four quantities referred to as the Stokes parameters, first introduced by Stokes
(1852), has been defined. Because the intensity is proportional to the absolute square
of the electric field, we may define, upon neglecting a constant of proportionality, the
following four parameters:

I = El E∗
l + Er E∗

r , (5.2.103a)

Q = El E∗
l − Er E∗

r , (5.2.103b)

U = El E∗
r + Er E∗

l , (5.2.103c)

V = −i(El E∗
r − Er E∗

l ), (5.2.103d)

where an asterisk denotes the complex conjugate value and i = √−1. I, Q,U , and V
are real quantities that satisfy I 2 = Q2 + U 2 + V 2. Further discussion of the Stokes
parameters is presented in Section 6.6.1, which deals with multiple scattering of
polarized light.

We may express the incident and scattered electric vectors given by Eq. (5.2.83)
in terms of their intensity components. Letting the subscript 0 denote the incident
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component, we can show that ⎡⎢⎢⎣
I
Q
U
V

⎤⎥⎥⎦ = F
k2r2

⎡⎢⎢⎣
I0

Q0

U0

V0

⎤⎥⎥⎦ , (5.2.104)

where the matrix

F =

⎡⎢⎢⎢⎣
1
2 (M2 + M1) 1

2 (M2 − M1) 0 0
1
2 (M2 − M1) 1

2 (M2 + M1) 0 0

0 0 S21 −D21

0 0 D21 S21

⎤⎥⎥⎥⎦ , (5.2.105)

and its components are defined by

M1,2 = S1,2(θ)S∗
1,2(θ ),

S21 = [S1(θ )S∗
2 (θ ) + S2(θ )S∗

1 (θ )]/2,

−D21 = [S1(θ )S∗
2 (θ ) − S2(θ )S∗

1 (θ )]i/2. (5.2.106)

The matrix F is called the transformation matrix of the light scattering of a single
sphere.

In conjunction with the transformation matrix, we may define a parameter referred
to as the scattering phase matrix such that

F(θ)

k2r2
= CP(θ ). (5.2.107)

The coefficient C can be determined from normalization of the first matrix element
in the form ∫ 2π

0

∫ π

0

P11(θ )

4π
sin θ dθ dφ = 1. (5.2.108)

It follows that from Eqs. (5.2.107) and (5.2.108), we obtain

C = 1

2k2r2

∫ π

0

1

2
[M1(θ ) + M2(θ)] sin θ dθ = 1

4k2r2

∫ π

0
[i1(θ ) + i2(θ )] sin θ dθ.

(5.2.109)
Moreover, from the scattering cross section defined in Eq. (5.2.97), we obtain the
coefficient in the form

C = σs/(4πr2). (5.2.110)

Thus,

P11

4π
= 1

2k2σs
(i1 + i2) = 1

2

(
P1

4π
+ P2

4π

)
, (5.2.111a)

P12

4π
= 1

2k2σs
(i2 − i1) = 1

2

(
P2

4π
− P1

4π

)
, (5.2.111b)
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P33

4π
= 1

2k2σs
(i3 + i4), (5.2.111c)

− P34

4π
= i

2k2σs
(i4 − i3), (5.2.111d)

where

i j = Sj S∗
j = |Sj |2, j = 1, 2, (5.2.112a)

i3 = S2S∗
1 , i4 = S1S∗

2 . (5.2.112b)

The scattering phase matrix for a single homogeneous sphere is then

P =

⎡⎢⎢⎣
P11 P12 0 0
P12 P11 0 0
0 0 P33 −P34

0 0 P34 P33

⎤⎥⎥⎦ . (5.2.113)

In general, if no assumption is made about the shape and position of the scatterer,
the scattering phase matrix consists of 16 nonzero elements (see Section 5.4.3). For a
single sphere, the independent elements reduce to only four. Graphs of P11 (the phase
function), P12, P33, and P34 as functions of the scattering angle for a real part of the
refractive index of 1.5 and a size parameter of 60, are shown in Fig. 5.8. The phase
functions of a Lorenz–Mie particle are characterized by strong forward scattering,
while large backscattering is noticeable as well. These scattering patterns consist of
rapid fluctuation due to interference effects, depending on the size parameter. It is
clear that the scattering behavior of a Lorenz–Mie particle differs significantly from
that of a Rayleigh molecule (Section 3.3.1). Since a spherical particle is symmetrical
with respect to the incident light, its scattering pattern is symmetrical in the intervals
(0◦, 180◦) and (180◦, 360◦). Thus, we may present the Lorenz–Mie scattering phase
function in a polar diagram similar to those displayed in Fig. 1.4. The element P33 has
the same behavior as the phase function P11, but P12 and P34 show negative values
resulting from the differences in the two intensity functions.

The preceding discussion has been concerned with the scattering of electromag-
netic waves by a single homogeneous sphere. We shall now extend the discussion
to a sample of cloud or aerosol particles so that practical equations for the calcu-
lation of extinction parameters and phase functions can be derived. In what fol-
lows, particles are assumed to be sufficiently far from each other and that the dis-
tance between them is much greater than the incident wavelength. In this case, the
scattering by one particle can be treated independently without reference to that of
other particles. Consequently, intensities scattered by a sample of particles may be
added without regard to the phase of the scattered waves. This particular scattering
phenomenon is referred to as independent scattering (see also Section 1.1.4). It is
in the context of the independent scattering concept that we present the following
discussion.
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Figure 5.8 Scattering phase matrix elements P11, P12, P33, and P34 as functions of the scattering
angle for a refractive index mr = 1.5 and a size parameter x = 60, computed from the Lorenz–Mie theory.

Consider a sample of cloud particles whose size spectrum can be described by
n(a) (in units of cm−3 μm−1). Assuming that the size range of particles is from a1 to
a2, the total number of particles is then given by

N =
∫ a2

a1

n(a) da. (5.2.114)
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In connection with the particle size distribution, the extinction and scattering coeffi-
cients (in units of per length) are defined, respectively, as follows:

βe =
∫ a2

a1

σe(a)n(a) da, (5.2.115)

βs =
∫ a2

a1

σs(a)n(a) da. (5.2.116)

Finally, the single-scattering albedo for a sample of particles is defined by

ω̃ = βs/βe, (5.2.117)

which represents the percentage of a light beam that undergoes the scattering event.
The remaining part of this section defines the scattering phase matrix for a sample of
spherical particles.

Since the scattering phase matrix is a nondimensional physical parameter denoting
the scattered intensity and polarization state for a sample of particles in the radius
range (a1, a2), it is independent of the particle size distribution n(a). Hence, we may
rearrange Eq. (5.2.111a) and perform particle size integration to obtain

P11

4π

∫ a2

a1

σsn(a)da = 1

2k2

∫ a2

a1

[i1(a) + i2(a)]n(a) da. (5.2.118)

From Eq. (5.2.115), we find

P11

4π
= 1

2k2βs

∫ a2

a1

[i1(a) + i2(a)]n(a) da. (5.2.119)

Similarly, we have

P12

4π
= 1

2k2βs

∫ a2

a1

[i2(a) − i1(a)]n(a) da, (5.2.120)

P33

4π
= 1

2k2βs

∫ a2

a1

[i3(a) + i4(a)]n(a) da, (5.2.121)

− P34

4π
= i

2k2βs

∫ a2

a1

[i4(a) − i3(a)]n(a) da. (5.2.122)

Note here that the intensity functions i j ( j = 1, 2, 3, 4) are functions of the particle
radius a, the index of refraction m, the incident wavelength λ, and the scattering
angle θ .

5.3 Geometric Optics

The laws of geometric optics may be used to compute the angular distribution of
scattered light when a plane electromagnetic wave is incident on a particle much larger
than the wavelength of the incident light. This approach is based on the assumption
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that the light may be thought of as consisting of separate localized rays that travel along
straight-line paths; it is an asymptotic approach that becomes increasingly accurate
in the limit as the size-to-wavelength ratio approaches infinity. Processes involving
geometric optics include rays externally reflected by the particle and rays refracted
into the particle; the latter rays may be absorbed in the particle or they may emerge
from it after possibly suffering several internal reflections. Hence, the total energy
scattered and absorbed by the particle is equal to that impinging on the cross section
of the particle in reference to the incident beam.

Particles much larger than the incident wavelength also scatter light by means
of diffraction, a process by which energy is removed from the light wave passing
by the particle. The diffraction is concentrated in a narrow lobe in the forward
direction, and like geometrical reflection and refraction, it contains an amount of
energy equal to that incident on the cross section of the particle. In the far field,
the diffracted component of the scattered light may be approximated by the Fraun-
hofer diffraction theory. The diffraction pattern depends only upon the shape of the
cross section of the particle. The geometric configuration of different contributions
to the light scattered by a large sphere was illustrated in Fig. 3.14. In the follow-
ing, we provide the theoretical foundations of the treatment of geometric optics and
diffraction.

5.3.1 Diffraction

The theoretical development of diffraction begins with Babinet’s principle, which
states that the diffraction pattern in the far field, i.e., Fraunhofer diffraction, from a
circular aperture is the same as that from an opaque disk or sphere of the same radius.
Let the z axis be in the direction of propagation of the incident light, and let the wave
disturbance be sought at a distance P from the geometric aperture A. In reference
to Fig. 5.9, the distances from point P to point O ′(x, y) on the aperture area and to
the origin O are denoted as r and r0, respectively. Thus, the phase difference of the
disturbance at P for waves passing through points O and O ′ is given by (see Fig. 5.9)

δ = k(r − r0) = k(x cosφ + y sinφ) sin θ, (5.3.1)

where k = 2π/λ, and λ is the wavelength.
In the far field, the light-wave disturbance at P can be derived from the Fraunhofer

diffraction theory (Born and Wolf, 1975) and is given by

u p = − iu0

rλ

∫ ∫
A

e−ikr dx dy, (5.3.2)

where u0 represents the disturbance in the original wave at point 0 on the plane wave
front whose wavelength is λ. Using Eq. (5.3.1), we obtain

up = − iu0

rλ
e−ikr0

∫ ∫
A

exp[−ik(x cosφ + y sinφ) sin θ ] dx dy. (5.3.3)
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Figure 5.9 Diffraction of plane waves by a circular aperture with a geometrical area A evaluated at
position P . The geometrical relationships between the phase difference and the coordinate systems are
also shown. All the notations are defined in the text.

For a circular aperture, we may transfer rectangular coordinates to polar coordinates
(ρ,ψ) such that x = ρ cosψ and y = ρ sinψ . Thus,

up = − iu0

rλ
e−ikr0

∫ a

0

∫ 2π

0
exp[−ikρ cos(ψ − φ) sin θ ] ρ dρ dψ. (5.3.4)

First, we note that the zero-order Bessel function is defined by

J0(y) = 1

2π

∫ 2π

0
eiy cosαdα. (5.3.5)

It follows that

up = − iu0

rλ
e−ikr0 2π

∫ a

0
J0(kρ sin θ ) ρ dρ. (5.3.6)

Second, we also note a well-known recurrence relationship involving Bessel functions
given by

d

dy
[y J1(y)] = y J0(y), (5.3.7)



198 5 Light Scattering by Atmospheric Particulates

from which we have ∫ y

0
y′ J0(y′)dy′ = y J1(y). (5.3.8)

Thus, from Eqs. (5.3.6) and (5.3.8), we obtain

u p = − iu0

rλ
e−ikr0 A

2J1(x sin θ )

x sin θ
, (5.3.9)

where the geometric shadow area A = πa2 and the size parameter x = ka. Hence,
the scattered intensity in terms of the incident intensity I0 = |u0|2 is given by

Ip = |u p|2 = I0
i p

k2r2
, (5.3.10)

where the angular intensity function for diffraction analogous to the Lorenz–Mie
theory for a single sphere is defined by

i p = x4

4

[
2J1(x sin θ )

x sin θ

]2

. (5.3.11)

It is clear that diffraction depends only on the particle size parameter and is indepen-
dent of the index of refraction.

Figure 5.10 shows a plot of D2 = [2J1(y)/y]2 versus y. It has a principal maximum
of 1 at y = 0 (i.e., θ = 0) and oscillates with gradually diminishing amplitude as y

y

D
 2

Figure 5.10 The relative diffraction pattern (see text for the definition) as a function of the parameter
y = x sin θ .
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increases. When J1(y) = 0, D2 = 0, giving the minima of the diffraction pattern. The
positions of the maxima are defined by values of y that satisfy

d

dy
[J1(y)/y] = 0. (5.3.12)

Table 5.2 lists these maxima and minima. The minima, or dark rings, can be approx-
imated by

y = ka sin θ = (n + 0.22)π, n = 1, 2, . . . , (5.3.13)

or

sin θ = (n + 0.22)λ/(2a). (5.3.14)

The first maximum at y = 0 usually is obscured by the finite size of the source. Thus,
the first observable maximum diffraction ring is for y = 5.136.

The diffraction theory for a single sphere developed above can be used to explain the
optical phenomenon known as a corona. A corona is associated with the illumination
frequently observed near the sun, the moon, or other luminous objects when they are
seen through a mist or thin cloud. They are usually observed in the form of circles, or
near circles, concentric with the luminous body. A corona is usually very bright and of
a white or bluish-white color with a reddish or brownish tinge. The colors are diluted
with a great deal of white light. As many as four corona rings have been recorded,
though only the first ring has been frequently observed around the sun and the moon. A
corona may be produced by thin clouds when such clouds are composed of particles of
almost equal size, a condition called monodisperse. Applying the preceding diffraction
theory, one may evaluate the angular positions of the corona if the wavelength of the
visible sunlight and the mean particle size are known. Based on Eq. (5.3.14), it is
evident that red color, having the longer wavelength in the visible, must be seen in
the outer ring of the corona with blue and green colors inside the ring. Also note that
the angular width of the corona depends on the diameter of the particles involved.

Table 5.2

The First Few Maxima and Minima of the
Diffraction Pattern

y D2 Max or min

0 1 Max
3.832 0 Min
5.136 0.0175 Max
7.016 0 Min
8.417 0.0042 Max

10.174 0 Min
11.620 0.0016 Max
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5.3.2 Geometric Reflection and Refraction

When a plane wave impinges on a boundary separating two homogeneous media of
different optical properties, it is split into two waves: a transmitted wave entering
into the second medium and a reflected wave propagating back into the first medium.
From the part of the wave that hits the surface plane, we may isolate a narrow beam
that is much smaller than the surface. Such a beam is commonly called a ray as in
geometric optics. Let v1 and v2 be the velocities of propagation in the two media
(v1 > v2), and let θi and θt be the angles corresponding to the incident and refracted
waves. Referring to Fig. 5.11, we find (see also the subsection on geometric optics in
Section 3.3.2.)

sin θi/ sin θt = v1/v2 = m, (5.3.15)

where m is the index of refraction for the second medium with respect to the first
medium. This is Snell’s law, which relates the incident and refracted angles through
the index of refraction.

Let Ei be the electric vector of the incident field. As shown in Fig. 5.11, the
components of the incident electric field vector perpendicular (r) and parallel (l) to the
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Figure 5.11 Illustration of the reflection and refraction of a plane wave. The choice of the positive
directions for the parallel components (l) of the electric vectors is indicated in the diagram. The perpen-
dicular components are at right angles into the plane of reference. v1t and v2t denote the distance in media
1 and 2, respectively, and other notations are defined in the text. See also Fig. 3.14a.
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plane containing the incident and refracted fields mapped in rectangular coordinates
are given by

Ei
x = −Ei

l cos θi ,

Ei
y = Ei

r ,

Ei
z = Ei

l sin θi . (5.3.16)

From the Maxwell equations, the relationship between the electric and magnetic
vectors can be shown to be H = √

ε a × E, or E = −√
1/ε a × H, where a is a unit

vector in the direction of propagation. Thus, the components of the magnetic vector
are as follows (μ ≈ 1, m = √

ε):

Hi
x = −Ei

r cos θi m1,

Hi
y = −Ei

l m1,

Hi
z = Ei

r sin θi m1, (5.3.17)

where m1 is the refractive index of the first medium with respect to vacuum.
Likewise, if Et and Er denote the transmitted (refracted) and reflected electric

vectors, respectively, we find the following relationships:

Et
x = −Et

l cos θt , H t
x = −Et

r cos θt m2,

Et
y = Et

r , H t
y = −Et

l m2,

Et
z = Et

l sin θt , H t
z = Et

r sin θt m2, (5.3.18)

Er
x = −Er

l cos θr , Hr
x = −Er

r cos θr m1,

Er
y = Er

r , Hr
y = −Er

l m1,

Er
z = Er

l sin θr , Hr
z = Er

r sin θr m1, (5.3.19)

where m2 is the refractive index of the second medium with respect to vacuum, and
θr = 180◦ − θi .

The boundary conditions require that the tangential components of E and H be
continuous. Hence, we must have

Ei
x + Er

x = Et
x , Hi

x + Hr
x = H t

x ,

Ei
y + Er

y = Et
y, Hi

y + Hr
y = H t

y . (5.3.20)

On substituting all the electric and magnetic components into Eq. (5.3.20), we obtain
the following four relationships:

cos θi
(
Ei

l − Er
l

) = cos θt E t
l , (5.3.21a)

Ei
r + Er

r = Et
r , (5.3.21b)
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m1 cos θi
(
Ei

r − Er
r

) = m2 cos θt E t
r , (5.3.21c)

m1
(
Ei

l + Er
l

) = m2 Et
l . (5.3.21d)

On the basis of these equations, solutions of the electric components of the reflected
and transmitted waves in terms of the incident wave are given by

Er
l = Rl Ei

l , Et
l = Tl Ei

l , Er
r = Rr Ei

r , Et
r = Tr Ei

r , (5.3.22)

where the amplitude coefficients are

Rr = cos θi − m cos θt

cos θi + m cos θt
, Rl = m cos θi − cos θt

m cos θi + cos θt
, (5.3.23a)

Tr = 2 cos θi

cos θi + m cos θt
, Tl = 2 cos θi

m cos θi + cos θt
, (5.3.23b)

with m = m2/m1, the refractive index of the second medium with respect to the
first medium. Equations (5.3.23a) and (5.3.23b) are referred to as Fresnel formulas
(Fresnel, 1823). When absorption is involved, the amplitude coefficients become much
more complicated, but they can be derived by means of a straightforward mathematical
analysis (see Exercise 5.8). Interested readers may wish to refer to Section 5.4.1 for
further discussion.

From the Poynting vector, S = (c/4π ) E × H, and the relation between E and H
denoted previously, we find that the flux density |S| = (c/4π )

√
ε|E|2(μ = 1). Thus,

the amount of energy incident, reflected, and transmitted on a unit area of the boundary
per unit time is

Fi = |Si | cos θi = (c/4π)m1|Ei |2 cos θi , (5.3.24a)

Fr = |Sr | cos θr = (c/4π )m1|Er |2 cos θr , (5.3.24b)

Ft = |St | cos θt = (c/4π)m2|Et |2 cos θt . (5.3.24c)

Therefore, the reflected and transmitted portions of the energy in two polariza-
tion components, with respect to the incident energy, are proportional to R2

r,l and
T 2

r,lm cos θt/ cos θi , respectively. It can be proven that R2
r,l + T 2

r,lm cos θt/ cos θi = 1,
in fulfillment of the energy conservation principle. It follows that the transmitted
(or refracted) parts of the energy can be written simply as (1 − R2

r,l).
Consider now a large sphere and let p = 0 for the external reflection, p = 1 for

two refractions, and p ≥ 2 for internal reflections. We may define the amplitude
coefficients as follows:

ε1 = Rr for p = 0,

ε1 = (1 − R2
r )1/2(−Rr )p−1(1 − R2

r )1/2 for p ≥ 1, (5.3.25)

where −Rr denotes the amplitude coefficient for an internal reflection. These defini-
tions also apply to the index l(2) of the other polarization component.

Next, we discuss the effect of curvature on the reflected and refracted intensity. We
consider a finite pencil of light characterized by dθi and dφ, withφ being the azimuthal
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angle. Let I0 denote the incident intensity of the light pencil plane-polarized in one
of the two main directions. The flux of energy contained in this pencil is, therefore,
I0a2 cos θi sin θi dθi dφ, where a is the radius of the sphere. This flux of energy is
divided by successive reflection and refraction. The emergent pencil spreads into a
solid angle, sin θdθdφ, at a large distance, r, from the sphere. As a result, the scattered
intensity is given by

Ir = ε2
1 I0a2 cos θi sin θi dθi dφ

r2 sin θdθdφ
. (5.3.26)

The pencil of light emergent from the sphere is characterized by a small range dθ
around the scattering angle θ . In reference to Fig. 5.12, the total deviation from the
original direction is

θ ′ = 2(θi − θt ) + 2(p − 1)(π/2 − θt ). (5.3.27a)

The scattering angle defined in the interval (0, π ) may be expressed by

θ ′ = 2πn − qθ, (5.3.27b)

where n is an integer and q = +1 or −1. Hence,

dθ

dθi
=
∣∣∣∣dθ ′

dθi

∣∣∣∣ = 2 − 2p
cos θi

m cos θt
. (5.3.28)

Moreover, we define the divergence factor due to the curvature effect in the form

D = cos θi sin θi

sin θdθ/dθi
. (5.3.29)

Thus, from Eq. (5.3.26), which is also valid for index l, we obtain

Ir,l = I0

k2r2
x2ε2

1,2 D. (5.3.30)

In comparison with the Lorenz-Mie scattering theory, we find

i1,2 = x2ε2
1,2 D. (5.3.31)

The rainbow is probably the best-known phenomenon of atmospheric optics. It has
inspired art and mythology in all peoples and has been a challenge for mathematical
physicists. We see a rainbow in the sky usually on summer afternoons after a rain
shower is over. Rainbows are produced by the geometric reflections of the sun’s rays
within raindrops. The sun’s rays undergo minimum deviation within the drops and
generate the maximum intensity at a specific angle that is much stronger than that at
neighboring angles.

To evaluate the angles at which rainbows are formed, we return to the equation
denoting the total deviation from the original direction. The minimum deviation of
a bundle of rays may be found by differentiating Eq. (5.3.27a) with respect to the
incident angle and setting the result equal to zero. Thus,

dθ ′

dθi
= 0 = 2

(
1 − p

dθt

dθi

)
. (5.3.32)
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Figure 5.12 (a) Geometrical reflection and refraction by a sphere and the definition of the deviation
angle θ ′. The incident and refracted angles are denoted by θi and θt , respectively. (b) Refraction and
reflection of light rays with the plane wave front denoted by AB. The heavy line represents the ray that
undergoes minimum deviation, referred to as the Descartes ray. The line A′B′ denotes the outgoing wave
front near the Descartes ray. The line ACB′′ denotes the outgoing wave front outside the sphere. The
attached diagram shows the phase difference at the wave front A′B′, as described in the text (data provided
by Yoshihide Takano of the University of California, Los Angeles.)

Furthermore, differentiating Snell’s law leads to

dθt

dθi
= cos θi

m cos θt
. (5.3.33a)

It follows that

p cos θi = m cos θt . (5.3.33b)
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On eliminating the refracted angle θt from Eq. (5.3.33b) and Snell’s equation, we
obtain the incident angle at which the minimum deviation takes place as follows:

cos2 θi = (m2 − 1)/(p2 − 1), p ≥ 2. (5.3.34)

Once the refractive index has been given, we may evaluate the incident angle corre-
sponding to the minimum deviation for a given p. The refracted angle and the scattering
angle may also be subsequently calculated from Snell’s law and Eqs. (5.3.27a) and
(5.3.27b), respectively.

Table 5.3 lists the incident and scattering angles for rainbows with various indices
of refraction. Other than rainbows, minimum deviation can also occur at θ = 180◦,
known as glory. The condition for producing a glory associated with the p = 2 rays
is that the refractive index must be between

√
2 and 2. Since the refractive index

for water drops is about 1.33, glory cannot be produced by means of geometric ray-
tracing. The fact that glory is often observed in clouds reveals one of the greatest
discrepancies between geometric optics and the Lorenz–Mie theory. It has been sug-
gested that the glory phenomenon is produced by the backscattering from edge rays
apparently connected with surface waves generated on a sphere. Primary (p = 2)
and secondary (p = 3) rainbows frequently are observed in the atmosphere. Because
of variation of the index of refraction of water with respect to the incident visible
wavelengths, various color sequences are produced. Exercise 5.7 requires the calcu-
lation of the color position for primary and secondary rainbows. When rainbows are
very pronounced, supernumerary rainbows often become visible. They are produced
by interference phenomena accompanying refraction of the light in the raindrop and
cannot be explained by the geometric ray-tracing approach.

The preceding analysis only defines the angles at which rainbows can be pro-
duced. However, geometric optics cannot define rainbow intensity. It is evident from
Eq. (5.3.30) that when minimum deviations occur, the intensity approaches infinity.
The geometric optics approximation assumes that the wave fronts near any point are
sufficiently characterized by their normals and local radii of curvature. Such an ap-
proximation breaks down near the rainbow. The next highest approximation can be

Table 5.3

Incident (θi ) and Scattering (θ ) Angles for the Glory and Rainbows

Glory Rainbow Rainbow Rainbow Rainbow
for p = 2 for p = 2 for p = 3 for p = 4 for p = 5

m θi θ θi θ θi θ θi θ θi θ

1.10 — — 75◦ 84◦ 81◦ 139◦ 83◦ 170◦ 85◦ 119◦
1.33 — — 60 137 72 130 77 43 80 42
1.45 87◦ 180◦ 53 152 68 102 74 4 78 92
1.50 83 180 50 157 67 93 73 9 77 109
1.54 79 180 47 161 66 86 72 19 76 121
1.75 60 180 34 173 59 58 68 60 73 175
2.00 33 180 0 180 52 35 63 94 69 140



206 5 Light Scattering by Atmospheric Particulates

obtained by using a cubic wave front, which leads to the Airy theory. It should be
noted, however, that the intensity results derived from geometric optics are accurate
in the vicinity of the rainbow angles, and with appropriate extrapolations, intensity
patterns at the rainbow angles may be approximated. We shall demonstrate this later
when comparing the ray optics and Lorenz–Mie approaches.

In the following, we introduce the Airy theory for rainbows. Since a raindrop is
assumed to be spherical, it suffices to use only a single plane containing the center
of the drop and the luminous object, and to trace rays incident on one quadrant of
the intersection circle. In reference to Fig. 5.12b, let AB be the wave front of parallel
incident rays above the ray that passes through the center of the drop, referred to as
the axial ray, and consider rays that undergo only one internal reflection. The heavy
line denotes the course of the ray of minimum deviation, referred to as the Descartes
ray, for a water drop having an index of refraction of 4/3. Because deviations of the
incident rays that are between the Descartes and axial rays are greater than that of the
Descartes ray, their exits must lie between those two specific rays. Likewise, the rays
that are located between the Descartes and edge rays must also have more deviations
than the Descartes ray. As a consequence, they emerge from the drop beyond the
Descartes ray and eventually come between this ray and the axial ray. The internally
reflected light rays are therefore diffuse and weakened, except near the direction of
minimum deviation, and are confined to the region between this direction and the
axial ray. The wave front is now described by ACB′′.

The outgoing wave front near the Descartes ray is in the form of A′B′. Through te-
dious geometric analysis and numerous approximations (e.g., see Humphreys, 1954),
it can be shown that the wave front in Cartesian coordinates is related by the cubic
equation in the form

y = hx3/(3a2), (5.3.35a)

where a is the radius of the drop and

h = (p2 + 2p)2

(p + 1)2(m2 − 1)

[
(p + 1)2 − m2

m2 − 1

]1/2

. (5.3.35b)

Equation (5.3.35b) represents a curve closely coincident with the portion of the wave
front by which rainbows are produced.

To evaluate the intensity and its variation with angular distance from the ray of
minimum deviation, we consider the diagram depicted in Fig. 5.12b, and let O be the
point of inflection of the outgoing cubic wave front near a drop. Let θ0 and θ be the
deviation angles for the Descartes ray and the neighboring rays, respectively, and let
P be a distant point in the direction θ−θ0 from the Descartes ray. We find that the
phase difference of the disturbance at P for waves passing through points O and M
is given by

δ = k[x sin(θ − θ0) − y cos(θ − θ0)]

= k

[
x sin(θ − θ0) − h

3a2
x3 cos(θ − θ0)

]
, (5.3.36)
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where k = 2π/λ. The amplitude of the wave disturbance up is then proportional to
the integration of all the possible vibrations due to phase differences along the x axis
as

up ∼
∫ ∞

−∞
exp

{
−ik

[
x sin(θ − θ0) − h

3a2
x3 cos(θ − θ0)

]}
dx . (5.3.37a)

It suffices to use the cosine representation, and if we let

(2h/3a2λ)x3 cos(θ − θ0) = t3/2, (2x/λ) sin(θ − θ0) = zt/2, (5.3.38a)

the amplitude is now given by

up ∼ 2

[
3a2λ

4h cos(θ − θ0)

]1/3

f (z). (5.3.37b)

The intensity I = u2
p, where the rainbow integral due to Airy is defined by

f (z) =
∫ ∞

0
cos

π

2
(zt − t3)dt. (5.3.38a)

From Eq. (5.3.38a), we obtain

z3 = 48a2

hλ2

sin3(θ − θ0)

cos(θ − θ0)
, (5.3.38b)

which, for small values of θ − θ0, is proportional to (θ − θ0)3. Thus, for a small
departure from the Descartes ray, we have

z ≈
(

48a2

hλ2

)1/3

(θ − θ0). (5.3.38c)

Table 5.4 lists maximum and minimum values of z and f 2(z) for a given wavelength
and drops of a definite size. Note that the first maximum (main rainbow) does not
coincide with z = 0, the geometric position of the primary rainbow (θ = 138.0◦).
Also note that the absolute intensity derived from the Airy theory may be obtained
by comparing the result from the geometric optics method with the value of f 2(z) for
large z.

The validity of the Airy theory for rainbows was investigated by van de Hulst
(1957), who indicated that it is an accurate approach when x ≥ 5000 and the deviation
from the rainbow angle |ε| ≤ 0.5◦. Nussenzveig (1979, and the reference papers
therein) presented a more advanced mathematical analysis based on the asymptotic
behavior of the exact Lorenz–Mie solution for the physical explanation of rainbows
and glory. The two scattering functions denoted in Eq. (5.2.78) can be expressed in
the form

S j (x, θ ) = S j,0(x, θ ) +
N∑

p=1

S j,p(x, θ ) + remainder, j = 1, 2, (5.3.39a)



208 5 Light Scattering by Atmospheric Particulates

Table 5.4

Maxima and Minima of the Rainbow Integral

Maxima Minima

Number z f 2(z) Number z

1 1.0845 1.005 1 2.4955
2 3.4669 0.615 2 4.3631
3 5.1446 0.510 3 5.8922
4 6.5782 0.450 4 7.2436
5 7.8685 0.412 5 8.4788
6 9.0599 0.384 6 9.6300
7 10.1774 0.362 7 10.7161
8 11.2364 0.345 8 11.7496
9 12.2475 0.330 9 12.7395

10 13.2185 0.318 10 13.6924

where the first term on the right-hand side of Eq. (5.3.39a) is associated with the
direct reflection from the surface of a sphere, and the second term is associated with
transmission after (p − 1) internal reflections at the surface. Equation (5.3.39a) is
referred to as the Debye expansion. The terms in this equation can be transformed
in a complex domain based on the Poisson sum formula, referred to as the Watson
transformation, in the form

∞∑
�=0

ϕ(�, r) =
∞∑

m=−∞
(−1)m

∫ ∞

0
ϕ(�, r) exp(2imπ�)d�, (5.3.39b)

where ϕ is a certain function,� = �+ 1/2, � is the order of expansion in the scattering
functions, and r is a position vector. In this manner, the real rays are mapped into a
complex domain, allowing the expression of the scattering functions Sj ( j = 1, 2) in
terms of the Fresnel coefficients (geometric optics) and the Airy integral, which is
called the complex angular momentum theory of the rainbow. This theory can be used
to generate the intensity peaks produced in rainbow angles, including polarization,
associated with internal reflections.

In the preceding discussion, we pointed out that because of its limitations, the
principle of geometric optics cannot be utilized to explain the formation of the glory
feature, which is often observed on mountaintops and from aircraft, because of the
required backscattering geometry. Following the complex angular momentum theory,
the tangential rays may be thought of as composing complex angular momentum that
can tunnel into the regions not accessible to geometric ray-tracing as forms of surface
waves on the edge of a sphere. These rays can then undergo critical refraction to
the inside at a point, total reflection at a suitable point inside, and refraction to the
outside at an opposite symmetric point. Subsequently, these rays travel as surface
waves in the backscattering direction to the observer, giving rise to the glory phe-
nomenon. It turns out that the glory is produced by the ray path undergoing two
shortcuts associated with the p = 2 Debye term in Eq. (5.3.39b).
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5.3.3 Geometric Optics, Lorenz–Mie Theory, and Representative Results

In order to compare the scattering results derived from the geometric optics approx-
imation with those from the Lorenz–Mie theory, we define the gain G relative to an
isotropic scatterer. This gain is defined as the ratio of the scattered intensity to the
intensity that would be found in any direction if the particle scattered the incoming
energy isotropically. Thus, the average gain over the entire solid angle is 1 such that

1

4π

∫
4π

G1,2(θ )d� = 1. (5.3.40)

Isotropic scattering implies that the incident energy I0πa2 to a sphere with radius a
is uniformly distributed over its surface 4πr2. Consequently,

I1,2(θ ) = I0πa2

4πr2
G1,2(θ ). (5.3.41)

From Eq. (5.2.84), we have

G1,2 = 4i1,2/x . (5.3.42a)

In a similar manner, the gain due to diffraction can be written as follows:

G f = 4i p/x, (5.3.42b)

where ip is given in Eq. (5.3.11). The gain due to diffraction is the same for the
perpendicular and parallel components.

The total gain caused by diffraction and geometric reflection and refraction can
now be expressed by

Gt
1,2 = G f +

N∑
p=0

G p
1,2, (5.3.43)

where the geometric reflection and refraction are represented by the index p, including
external reflection (p = 0), refraction (p = 1), and internal reflection (p ≥ 2).

The foregoing discussion neglects the different contributions to the scattered in-
tensity caused by the phase interferences produced by various ray components. In the
case of large particles, phase interferences give rise to rapidly oscillating intensities
as a function of the scattering angle as shown in Fig 5.8. However, if particles are ran-
domly located and separated by distances much larger than the incident wavelength,
a condition referred to as polydisperse, the intensities from separate particles may
be added without regard to the phase because the numerous maxima and minima are
then lost in the integration over particle size. Hence, it is reasonable to neglect the
phase altogether in adding the intensities for diffraction, reflection, and refraction for
a sample of large particles of various sizes.

Figure 5.13 compares phase function P11 and the degree of linear polarization
computed from the Lorenz–Mie theory to the corresponding results from the geo-
metric optics approach for typical refractive indices of 1.33 and 1.50, representing
water drops and aerosols, respectively, in the visible spectrum. The degree of linear
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Figure 5.13 Comparison of geometric optics and the Lorenz–Mie theory for phase function P11 and
degree of linear polarization. Two refractive indices are shown along with three size distributions. The
vertical scale applies to the lowermost curves. The other curves are successively displaced upward by
factors of 102 and shifts of 0.6 for the phase function and the degree of linear polarization, respectively
(after Liou and Hansen, 1971).
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polarization is defined by −Q/I from Eq. (5.2.104); for incident unpolarized sun-
light (see Section 6.6.1 for further discussion), it is given by −P12/P11. Lorenz–Mie
calculations were made for size parameters of 25, 100, and 400. The droplet size
distribution employed in the Lorenz–Mie and diffraction calculations to smooth out
rapid oscillating patterns is a gamma function given by

n(x) = Cx6 exp(−6x/xm), (5.3.44)

where C is an arbitrary constant and xm is the modal parameter. There is close agree-
ment between geometric optics and the Lorenz–Mie theory when the size parameter is
as large as 400. An exception is the glory feature for mr = 1.33, which, as discussed
earlier, does not occur in geometric optics results. Most of the discrepancies and their
variations with the size parameter can be qualitatively understood in terms of the
increasing inapplicability of the localization principle for decreasing size parameters.
This causes the light in the individual features to be blurred over a wider range of
angles than predicted by geometric optics. The secondary rainbow is quite smooth
at xm = 100 and is lost at xm = 25, while the primary rainbow is still visible. The
number of rainbows visible in the intensity pattern thus gives some indication of the
particle size. The rainbow, in addition to being smoothed out, tends to move away
from its geometric optics location as the size parameter decreases. For Lorenz–Mie
scattering with xm = 400, the small secondary peaks on the less steep side of the
rainbows are supernumerary bows, which are caused by interference phenomena and
hence are not rendered by geometric optics, which neglects phase interference effects.
There is also a small but noticeable discrepancy in the diffraction peak. The higher
value for Lorenz–Mie scattering could be produced by surface waves that scatter in
the forward direction. The lower figure compares the degree of linear polarization,
which contains much stronger imprints of most of the features occurring in the scat-
tered light, such as rainbows, supernumerary bows, the glory, and external reflections,
all of which produce positive polarization.

In Fig. 5.14, we illustrate comparisons of theoretical and experimental scatter-
ing phase function and polarization patterns. These scattering patterns are derived
from measurements of a dense water cloud in a cold chamber, utilizing a He–Ne
(0.6328 μm) laser light. The curves depicted in this figure comprise five successive
nephelometer scans (10◦–175◦) that were each normalized at 10◦ scattering angles
and then averaged, with the standard deviations of the averages shown as vertical
bars. The measured cloud droplet size, using a continuous-impactor–replicator de-
vice, displayed a modal diameter of 2 μm and a maximum diameter of 10 μm.
This size spectrum was fitted with a zeroth order log-normal distribution in the
form

n(a) = exp
[
− (log a − log am)2/

(
2σ 2

o

)]/√
2πσ0a, (5.3.45)

where am (= 2 μm) denotes the modal diameter, and σ0 (= 0.275) is the geometric
mean standard deviation. Lorenz–Mie scattering calculations were performed em-
ploying this size distribution and the results were compared to the measured data.
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Figure 5.14 Comparison of the normalized phase function components P1 and P2 [see Eq. (5.2.111a)
for the definitions] and the degree of linear polarization from water cloud experiments and Lorenz–Mie
scattering theory, using the same cloud droplet size distribution (after Sassen and Liou, 1979).

The close agreement between the theory and measurements is illustrated in Fig. 5.14.
Because of the relatively small size of cloud droplets (the modal size parameter xm ≈
20), both theory and measurements reveal that the secondary cloudbow is absent,
and the primary cloudbow reaches a maximum at about 146◦. Close agreement is
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also found for the linear polarization pattern, especially in the vicinity of the primary
cloudbow where large positive polarization values are shown.

Lorenz–Mie scattering calculations can now routinely be carried out for any size
parameters based on more efficient formulations and vector structures of computers
(see, e.g., Wiscombe, 1980). In the following, we present some representative re-
sults for phase functions, linear polarizations, average extinction cross sections, and
single-scattering albedos for water clouds computed from the Lorenz–Mie theory. Us-
ing the droplet size distribution denoted in Eq. (5.3.44), the phase functions and the
degree of linear polarization patterns for the 0.63, 1.6, 3.7, and 10 μm wavelengths,
typical of the image channels, e.g., the Advanced Very High Resolution Radiometer
(AVHRR) onboard NOAA satellites, are presented in Fig. 5.15. At 0.63 μm the fea-
ture shown at a scattering angle of about 140◦ is the well-known primary rainbow that
arises from rays undergoing one internal reflection in the cloud droplets. This cloud-
bow decreases in strength at 1.6 μm because of higher absorption and the smaller
size parameters involved. At 0.63 μm, the minor maximum located at about 120◦ is
the secondary rainbow, which is produced by rays undergoing two internal reflections.
The maximum that occurs at about 180◦ for 0.63μm is the glory pattern. The glory fea-
ture moves toward smaller scattering angles at 1.6μm. At 3.7 and 10μm, the rainbow
and glory features vanish because of the significant absorption by cloud droplets. Also
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Figure 5.15 Phase function (a) and degree of linear polarization (b) for incident wavelengths of 0.63,
1.6, 3.7, and 10 μm involving the droplet size distribution representative of cumulus and stratus clouds.
For the phase function, the vertical scale applies to the lowest curve, while the upper curves are displayed
upward by a factor of 10. The symbol × denotes the diffraction peak for the 0.63 μm wavelength.
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noted is the reduction of the Fraunhofer diffraction peak when the size parameter is
decreased. The polarization patterns for 0.63 μm contain many strong imprints of
scattered light in the directions of the rainbow and glory angles. The positions of the
primary rainbows for 1.6 and 3.7 μm shift to larger scattering angles because of the
effect of the refractive index and size parameter. For the 10μm wavelength, scattering
is primarily associated with external reflection, which produces a maximum positive
polarization at about 90◦ scattering angle.

Figure 5.16 displays the average extinction cross section, single-scattering albedo,
and asymmetry factor for typical cumulus clouds with a droplet size distribution

0.0

1.0

0.8

0.6

0.4

0.2

1.2

1.0

S
in

gl
e-

S
ca

tte
rin

g 
A

lb
ed

o 
 

0.0

0.5

1.0

1.5

10−1 100 101 102

β e
/β

e(
0.

5
μm

)

10−1 100 101 102

0.8

0.0

0.6

0.4

0.2

Wavelength (μm)

A
sy

m
m

et
ry

 F
ac

to
r 

 

10−1 100 101 102

Figure 5.16 Normalized extinction coefficient [βe(0.5 μm) = 41.8 km−1], single-scattering albedo,
and asymmetry factor for the droplet size distribution of typical low cumulus and stratus clouds, covering
the wavelengths from 0.3 to 100 μm.
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similar to the gamma function denoted in Eq. (5.3.44). The average extinction cross
section is normalized with respect to its value at 0.5 μm. In the visible wavelengths,
the average size parameter is sufficiently large that the extinction efficiency is ap-
proximately equal to 2, based on the optical theorem described previously. Extinction
efficiency varies with the size parameter and refractive index. The single-scattering
albedo generally resembles the maximum and minimum patterns in the imaginary
refractive index for water. Three large minima occur at about 3, 6, and 10 μm. For
wavelengths longer than 10 μm, the size parameter effect becomes more important.
The asymmetry factor remains about the same, with values of about 0.82–0.86, for
wavelengths up to about 10 μm, with exceptions at about 3 and 6 μm; at these wave-
lengths, diffraction predominates and produces strong forward scattering. Because
of the reduction of the size parameter, the asymmetry factor decreases drastically for
wavelengths longer than 10 μm.

5.4 Light Scattering by Ice Crystals: A Unified Theory

The scattering of light by spheres can be solved by the exact Lorenz-Mie theory
presented in Section 5.2, and computations can be performed for the size parameters
that are practical for atmospheric applications. However, an exact solution for the
scattering of light by nonspherical ice crystals covering all sizes and shapes that
occur in the earth’s atmosphere, as displayed in Section 5.1, does not exist in practical
terms. It is unlikely that one specific method can be employed to resolve all of the
scattering problems associated with nonspherical ice crystals. In the following, we
present a unified theory for light scattering by ice crystals by means of a combination
of the geometric optics and finite-difference time domain methods.

5.4.1 Geometric Optics for Ice Crystals

As discussed in Section 5.3, the principles of geometric optics are the asymptotic
approximations of the fundamental electromagnetic theory, valid for light scattering
computations involving a target whose dimension is much larger than the incident
wavelength. The geometric optics method has been employed to identify the opti-
cal phenomena occurring in the atmosphere, such as halos, arcs, and rainbows. In
addition, it is currently the only practical approach for the solution of light scat-
tering by large nonspherical particles. In this section, we present the conventional
and improved approaches, the methodology dealing with absorption in the context
of geometric ray tracing, and the numerical implementation of the Monte Carlo
method.

5.4.1.1 CONVENTIONAL APPROACH

When the size of an ice crystal is much larger than the incident wavelength, we may
consider a light beam as consisting of a bundle of separate parallel rays that undergo
reflection and refraction outside and inside the ice crystal with propagation directions
determined by the Snell law at the surface. The total field is assumed to consist of the
diffracted rays and the reflected and refracted rays. The diffracted rays pass around
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the ice crystal, while the rays impinging on the ice crystal undergo local reflection
and refraction, referred to as Fresnelian interaction. The energy that is carried by
the diffraction and the Fresnelian rays is assumed to be the same as the energy that
is intercepted by the ice crystal cross section projected along the incident direction.
The intensity of the scattered light within the small scattering-angle interval 	θ in
the scattering direction θ in the far field can be computed from the summation of
the intensity contributed by each individual ray emerging from the direction between
θ +	θ/2 and θ −	θ/2. It is usually assumed that the interference is smoothed out
when the particles are randomly oriented. In this case, the extinction efficiency (the
ratio of the extinction cross section to the average projected area of the particle) of
the scatterer is 2. On the basis of Babinet’s principle, diffraction by a scatterer may be
regarded as that by an opening on an opaque screen perpendicular to the incident light,
which has the same geometric shape as the projected cross section of the scatterer.
The Fraunhofer diffraction approach can then be employed to compute the diffraction
component for hexagonal ice particles (Cai and Liou, 1982).

In the geometric ray-tracing method, the directions of the rays are determined first.
In reference to Fig. 5.17, these rays can be defined by the following unit vectors:

er
p = xp − 2(xp · np)np, p = 1, 2, 3, . . . , (5.4.1a)

ei

e1
r

e2
t

e3
t

incident ray

transmitted ray

reflected ray

E&M theory improved

Y

X

conventional

transmitted ray
Z

Figure 5.17 Geometry of ray tracing involving an ice crystal in three-dimensional space. Conventional
and improved methods are also indicated in the diagram. The vector e is a directional cosine associated
with incident, reflected, and transmitted rays.
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et
p = 1

m p

{
xp − (xp · np)np − [m2

p − 1 + (xp · np)2
]1/2

np

}
, p = 1, 2, 3, . . . ,

(5.4.1b)

xp =
⎧⎨⎩

ei p = 1,
et

1, p = 2,
er

p−1, p ≥ 3,
(5.4.1c)

where the superindices i, r, and t denote incident, reflected, and transmitted rays;
m p = m for p = 1 and m p = 1/m for p > 1, with m being the refractive index;
and np denotes a unit vector normal to the surface. When m2

p < 1 − (xp · np)2, total
reflection occurs so that the refracted ray does not exist. The electric fields for two
polarization components associated with the rays can be computed from the Fres-
nel formulas [see Eq. (5.3.23)]. By summing the energy of the rays that emerge in
a given direction within a preset small scattering-angle interval, the phase function
can be obtained for this part of the scattering process. Let the normalized phase
functions for the parts of reflection and refraction, and diffraction be Pr

11 and Pd
11, re-

spectively. The normalized phase function is then P11 = (1 − fd )Pr
11 + fd Pd

11, where
fd = 1/[2ω̃(1 − fδ)] is the delta transmission associated with the 0◦ refraction pro-
duced by two parallel prismatic faces, and ω̃ is the single-scattering albedo, which
can be determined from the absorption of individual rays and the constant extinction
efficiency.

5.4.1.2 IMPROVED GEOMETRIC OPTICS APPROACH

The laws of geometric optics are applicable to light scattering by a particle whose
size is much larger than the incident wavelength so that rays can be localized. In
addition to the requirement of the localization principle, the conventional geometric
ray-tracing technique assumes that the energy attenuated by the scatterer may be
decomposed into equal extinction from diffraction and Fresnel rays. Moreover, the
Fraunhofer diffraction formulation used in geometric ray-tracing does not account for
the vector property of the electromagnetic field. Finally, direct calculations of the far
field by ray-tracing will produce a discontinuous distribution of the scattered energy,
such as the delta transmission noted by Takano and Liou (1989a).

To circumvent a number of shortcomings in the conventional geometric optics
approach, an improved method has been developed (Yang and Liou, 1995, 1996a).
The concept is simple in that the energies determined from geometric ray-tracing
at the particle surface are collected and mapped to the far field based on the exact
internal geometric ray-tracing. This differs from the conventional approach, which
collects energies produced by geometric reflections and refractions directly at the far
field through a prescribed solid angle.

The tangential components of the electric and magnetic fields on a surface S that
encloses the scatterer can be used to determine the equivalent electric and magnetic
currents for the computation of the scattered far field on the basis of the electromag-
netic equivalence theorem (Schelkunoff, 1943). In this theorem, the electromagnetic
field detected by an observer outside the surface would be the same as if the scatterer
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were removed and replaced by the equivalent electric and magnetic currents given by

J = ns × H, (5.4.2a)

M = E × ns, (5.4.2b)

where ns is the outward unit vector normal to the surface. For the far-field region, we
have

Es(r) = eikr

ikr

k2

4π

(
r
r

)∫ ∫
S

[
M(r′) +

(r
r

)
× J(r′)

]
exp

(
−ikr · r′

r

)
d2r′,

(5.4.3)
where r/r denotes the scattering direction, r is the reference position vector, r′ is
the position vector of the source point, k is the wavenumber, and i = √−1. The
far-field solution can also be determined by a volume integral involving the internal
field.

By means of geometric ray-tracing, the electric field on the surface of a particle
can be evaluated after the successive application of Fresnel reflection and refraction
coefficients parallel and perpendicular to a defined reference plane at the point of
interaction taking into account the path length in the three-dimensional geometry. If
an ice crystal shape is of great complexity, as with an aggregate, the surface can be
defined as a cubic box so that the computation of the electric field can be conducted
on a regularly shaped surface. The electric field of the illuminated and shadowed sides
can be defined as follows:

E(r) =
{

Ea(r) + Eb(r), r ∈ illuminated side,
Eb(r), r ∈ shadowed side,

(5.4.4a)

where

Ea(r) = Ei (r) + Er
1(r), (5.4.4b)

Eb(r) =
∞∑

p=2

Et
p(r). (5.4.4c)

In these equations, Ei is the incident electric field, Er
1 is the electric field for external

reflection, and E t
p are the electric fields produced by two refractions and internal

reflections (p ≥ 2). Because the transverse electromagnetic wave condition is implied
in ray-tracing, the magnetic field for each reflection and refraction can be obtained
from

Hr,t
p (r) = er,t

p × Er,t
p (r), for r ∈ outside the particle. (5.4.5)

In practice, the mapping of the near field solution to the far field can be done in
its entirety for Ea in Eq. (5.4.4b). However, for Eb in Eq. (5.4.4c), the mapping is
done ray by ray and the results will include the diffraction pattern. Full account of
phase interferences is taken in this mapping process in the determination of the phase
function.
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In accord with the conservation principle for electromagnetic energy concerning
the Poynting vector (Jackson, 1975), the extinction and absorption cross sections of
the particle can be derived as follows:

σe = Im

{
k

|Ei |2
∫ ∫ ∫

V
(ε − 1)E(r′) · E∗

i (r′)d3r′
}
, (5.4.6a)

σa = k

|Ei |2
∫ ∫ ∫

V
εi E(r′) · E∗(r′)d3r′, (5.4.6b)

where the asterisk denotes the complex conjugate, εi is the imaginary part of the
permittivity, and V is the particle volume.

Finally, when the ray-tracing technique is applied to obtain the surface field, one
must properly account for the area elements from which the externally reflected and
transmitted localized waves make a contribution to the surface field. If the cross
section of the incident localized wave is 	σi , the area of the particle surface for
external reflection is

	σ r
1 = −	σi (ni · ei )−1. (5.4.7a)

For the transmitted rays, the area is given by

	σ t
p = −	σi (n1 · et

1)
[
(n1 · ei )(np · et

p)
]−1

, p = 2, 3, 4, . . . , (5.4.7b)

where all unit vectors have been defined in Eqs. (5.4.la)–(5.4.lc). The radius of the
cross section of a ray should be on the order of k−1 so that the phase change over
the ray cross section is not significant and permits taking proper account of the phase
interference of the localized waves by using the phase information at the centers of
the rays. Because the phase variation over the ray cross section can be neglected, the
numerical results are not sensitive to the shape of the ray cross sections. We may use
a circular shape in the calculations.

5.4.1.3 ABSORPTION EFFECTS IN GEOMETRIC OPTICS

The geometric optics approach that has been used in the past generally assumes
that the effect of absorption within the particle on the propagating direction of a ray
can be neglected so that the refracted angle and the ray path length can be com-
puted from Snell’s law and the geometry of the particle. This approach is correct
if absorption is weak, as in the case of ice and water at most solar wavelengths.
For strong absorption cases, rays refracted inside the particle are almost totally ab-
sorbed, so that the geometric optics method can also be used to compute diffraction
and external reflection as long as the particle size is much larger than the incident
wavelength. Although the preceding argument is physically correct in the limits of
weak and strong absorption, we shall consider the general absorption effect in the
context of geometric optics based on the fundamental electromagnetic wave the-
ory. Note that the effect of the complex refractive index on geometric optics has
been formulated only for the Fresnel coefficients (Stratton, 1941; Born and Wolf,
1975).
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Figure 5.18 Geometric ray-tracing in a medium with absorption. The planes of constant amplitude
of the refracted wave are parallel to the interface, whereas the direction of the phase propagation for the
inhomogeneous wave inside the medium is determined via Snell’s law.

Consider the propagation of the incident wave from air into ice (Fig. 5.18).
The wave vectors associated with the incident and reflected waves are real because
these waves, which are outside the ice medium, must have the same properties. How-
ever, the wave vector of the refracted wave is complex; this is referred to as the
inhomogeneity effect. These wave vectors can be presented by

ki = k ei , kr = k er , kt = kt et + ikα eα, (5.4.8)

where ei , er , et , and eα are unit vectors; the subscripts i, r, and t denote the incident,
reflected, and refracted waves respectively; k = 2π/λ, in which λ is the wavelength
in air; and kt and kα are two real parameters that determine the complex wave vector
of the refracted wave. For nonabsorptive cases, kα is zero. The corresponding electric
vectors can be expressed by

Ei (r, t) = Ai exp[i(kr · ei − ωt)], (5.4.9a)

Er (r, t) = Ar exp[i(kr · er − ωt)], (5.4.9b)

Et (r, t) = At exp[i(kt r · et + ikαr · eα − ωt)], (5.4.9c)

where Ai , Ar , and At are the amplitudes and ω is the circular frequency. Further, we
define the following parameters:

Nr = kt

k
, Ñi = kα

k
. (5.4.10)
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At the interface of the two media, at which the position vector is denoted as rs , the
phases of the wave vibration must be the same for the incident, reflected, and refracted
waves. Thus, from Eqs. (5.4.8) and (5.4.10), we obtain

ei · rs = er · rs = Nr (et · rs) + i Ñi (eα · rs). (5.4.11)

Because the wave vectors for the incident and reflected waves are real, we must
have

ei · rs = er · rs = Nr (et · rs), eα · rs = 0. (5.4.12)

Based on the geometry defined by Eq. (5.4.12), a generalized form of the Snell law
can be derived and is given by

sin θi = sin θr , sin θt = sin θi

Nr
, (5.4.13)

where θi , θr , and θt denote the incident, reflected, and refracted angles, respectively
(Fig. 5.18). The vector eα in Eq. (5.4.12) is normal to the interface of the two media.
It follows that the planes of constant amplitude of the refracted wave are parallel to
the interface. To determine Nr and Ni , we use the electric field of the refracted wave,
which must satisfy the wave equation in the form

∇2Et (r, t) − (mr + imi )2

c2

∂2Et (r, t)

∂t2
= 0, (5.4.14)

where c is the speed of light in vacuum and mr and mi are the real and imaginary
parts of the refractive index, respectively. Substituting Eq. (5.4.9c) into Eq. (5.4.14)
and using Eq. (5.4.10) lead to

N 2
r − Ñ 2

i = m2
r − m2

i , Nr Ñi cos θt = mr mi . (5.4.15)

Let Ni = Ñi cos θt . Then, from Eqs. (5.4.13) and (5.4.15), we obtain

Nr =
√

2

2

{
m2

r − m2
i + sin2 θi +

[(
m2

r − m2
i − sin2 θi

)2 + 4m2
r m2

i

]1/2}1/2
,

(5.4.16a)

Ni = mr mi

Nr
. (5.4.16b)

These two parameters are referred to as the adjusted real and imaginary refractive
indices.

After determining Nr and Ni , the refracted wave given in Eq. (5.4.9c) can be
rewritten in the form

Et (r, t) = At exp(−k Nila) exp
[
i(k Nr et · r − ωt)

]
, (5.4.17)
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where la = (eα · r)/ cos θt is the distance of the propagation of the refracted wave
along the direction et . It is clear that the direction of the phase propagation for the
inhomogeneous wave inside the medium is determined by Nr via Snell’s law, whereas
the attenuation of the wave amplitude during the wave propagation is determined by
Ni . Consequently, the refracted wave can be traced precisely. The Fresnel reflection
and refraction coefficients defined in Eq. (5.3.23) in terms of the adjusted real and
imaginary refractive indices can then be written as follows:

Rl = Nr cos θi − cos θt

Nr cos θi + cos θt
, Tl = 2 cos θi

Nr cos θi + cos θt
, (5.4.18a)

Rr = cos θi − Nr cos θt

cos θi + Nr cos θt
, Tr = 2 cos θi

cos θi + Nr cos θt
, (5.4.18b)

where the subscripts l and r denote the parallel and perpendicular polarized compo-
nents, respectively.

5.4.1.4 MONTE CARLO METHOD FOR RAY TRACING

Use of the Monte Carlo method in connection with geometric ray-tracing was
first developed by Wendling et al. (1979) for hexagonal ice columns and plates.
Takano and Liou (1995) further innovated a hit-and-miss Monte Carlo method to
trace photons in complex ice crystals, including the contributions of absorption and
polarization.

Let a bundle of parallel rays, representing a flow of photons, be incident on a
crystal from a direction denoted by a set of two angles with respect to the crys-
tal’s principal axis. Consider a plane normal to this bundle of incident rays and
the geometric shadow of a crystal projected onto this plane. Further, let a rectan-
gle (defined by X and Y) enclose this geometric shadow such that the center of this
rectangle coincides with the center of the crystal. One of the sides, X, is parallel
to the geometric shadow of the crystal’s principal axis. A point (xi , yi ), is selected
inside this rectangle using random numbers, RN, whose range is from 0 to 1 such
that

xi = X

(
RN − 1

2

)
, (5.4.19a)

yi = Y

(
RN − 1

2

)
. (5.4.19b)

In this manner, xi is from −X/2 to X/2, whereas yi is from −Y/2 to Y/2. If the
point is inside the geometric shadow, it is regarded as an incident point on the crystal.
Otherwise, it is disregarded. If there are more than two crystal planes for a photon, the
point closer to the light source is regarded as the incident point. The coordinates of an
incident point (xi , yi ) can be transformed into the coordinates (x, y, z) with respect to
the body-framed coordinate system using the method described by Takano and Asano
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(1983) for efficient geometric ray-tracing procedures. Once the incident coordinates
are determined, the photons are traced with a hit-and-miss Monte Carlo method. The
Fresnel reflection coefficients, Rl and Rr , are first calculated and compared with a
random number, RN. If (|Rl |2 + |Rr |2)/2 is greater than RN, the photon is reflected.
Otherwise, it is transmitted. When a photon traverses a particle, it can be absorbed.
One can account for absorption by means of a stochastic procedure. When a photon
enters a crystal, an absorption path length, la , is generated with a random number
such that

RN = exp(−2k Nila), i.e., la = −ln

(
RN

2k Ni

)
. (5.4.20)

The random number represents the probability of the transmission of a photon. The
absorption path length, la , denotes the distance traversed by a photon in the crystal be-
fore the photon is absorbed. An actual path length, l, between an incident point and the
next internal incident point can then be calculated on the basis of Snell’s law and the
specific ice-crystal geometry. The transmission is then given by T = exp(−2k Nil).
If T ≤ RN ≤ 1, then the photons associated with these RNs are absorbed. Simi-
larly, if l is greater than la , then the photon is absorbed. Otherwise, it is transmitted
without absorption. This procedure is repeated whenever photons travel inside the
crystal.

After a photon is transmitted out of the crystal or reflected externally, it can reenter
the crystal depending on the crystal’s shape. In this case, a new incident direction
can be calculated using the direction cosine of the scattered beam. The new incident
coordinates can also be determined from the new incident direction and the coordinates
of an emergent point of the photon on the crystal surface. The foregoing procedure is
repeated until the photon escapes from the crystal. When a photon reenters the crystal,
the scattering angle and the scattering matrix are computed with respect to the original
incident direction. In the conventional method, the number of scattered photons per
unit solid angle, 2π sin θ	θ , is counted as the phase function. The single-scattering
albedo is obtained from the ratio of the number of scattered photons to the number
of incident photons. The Monte Carlo method allows us to treat complicated ice
crystals effectively and can be employed in connection with the improved geometric
ray-tracing approach.

The surfaces of ice crystals may not be exactly smooth, particularly if they undergo
collision processes. Also, a careful examination of some polycrystalline ice crystals
reveals rough structures on the surfaces. Halo and arc patterns that are absent from
some cirrus clouds could be caused by deviations of the ice-crystal surfaces from
defined hexagonal structures. Incorporation of some aspects of ice crystal surface
roughness in geometric ray-tracing can be made by following the idea developed by
Cox and Munk (1954) for wavy sea surfaces. A rough surface may be thought of
as consisting of a number of small facets that are locally planar and randomly tilted
from the flat surface. We may use a two-dimensional Gaussian probability function
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to define the surface tilt as follows:

p(zx , zy) = 1

πσ 2
exp

(
− z2

x + z2
y

σ 2

)
, (5.4.21a)

with

zx = ∂z

∂x
= tan θ cosφ, (5.4.21b)

zy = ∂z

∂y
= tan θ sinφ, (5.4.21c)

where zx and zy are the slopes defined for a facet of rough surface along two orthogonal
directions, θ and φ are the local polar angles defining the position of the tilt of the
surface facet, and σ is a parameter controlling the degree of roughness. In general,
surface roughness of ice particles has the effect of smoothing out the scattering maxima
that occur in the phase function.

5.4.2 Introduction to the Finite-Difference Time Domain Method

To circumvent the inherent shortcomings in the geometric optics approach due to the
requirement of localization of light rays, we introduce a specific numerical method
referred to as the finite-difference time domain (FDTD) method for light scattering by
small ice crystals. Details of this method will be elaborated on in the discussion of light
scattering by nonspherical aerosols in Section 5.5.1. For the continuity of this pre-
sentation, however, we shall address the physical fundamentals of the methodology.

The FDTD technique is a direct implementation of the Maxwell curl equations to
solve the temporal variation of electromagnetic waves within a finite space containing
the scatterer. The three-dimensional scatterer must be discretized into a number of
suitably selected rectangular cells, referred to as grid meshes, in which the optical
properties are defined. Discretizations are subsequently carried out for the Maxwell
curl equations by using the finite difference approximation in both time and space. The
propagation and scattering of the excited wave in the time domain can be simulated
from the discretized equations by a method of time-marching iterations.

In numerical computations, scattering of the electromagnetic wave by a particle
must be confined to finite space. In the application of the FDTD technique, therefore,
it is necessary to impose artificial boundaries so that the simulated field within the
truncated region would be the same as that in the unbounded case. Implementation of
an efficient absorbing boundary condition to suppress spurious reflections is an im-
portant aspect of the FDTD method associated with numerical stability and computer
time and memory requirements.

The solution of the finite difference analog of the Maxwell curl equations is in the
time domain. To obtain the frequency response of the scattering particle, we require an
appropriate transformation. The discrete Fourier transform technique can be employed
to obtain the frequency spectrum of the time-dependent signals if a Gaussian pulse
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is used as an initial excitation. Correct selection of the pulse is required to avoid
numerical aliasing and dispersion.

Finally, mapping of the near-field results to the far field must be performed to
derive the scattering and polarization properties of the particle. A surface integration
or a volume integration technique can be employed to obtain the far-field solution.
Numerical calculations of the FDTD method pose some fundamental problems, in-
cluding the staircasing effect in approximating the particle shape and the absorbing
boundary condition used to truncate the computational domain. In Section 5.5.1, we
will demonstrate that the FDTD approach can be applied to size parameters smaller
than about 20 with adequate accuracy.

5.4.3 Scattering Phase Matrix for Nonspherical Ice Particles

Consider a particle of arbitrary shape and size. The scattered electric field at a distance
r from the particle must be related to the two components of the incident electric field(
Ei

l , Ei
r

)
. In the far field, the two-by-two amplitude matrix that transforms the incident

electric vector into the scattered electric vector may be written in the form[
Es

l
Es

r

]
= exp(−ikr + ikz)

ikr

[
S2 S3

S4 S1

] [
Ei

l
Ei

r

]
, (5.4.22)

where z is the vertical direction in the Cartesian coordinates and Sj ( j = 1 ,2 ,3, 4)
are the amplitude functions. For spherical particles, S3 = S4 = 0, as shown in Eq.
(5.2.83).

In terms of the Stokes parameters defined in Eq. (5.2.103), we find⎡⎢⎢⎣
I
Q
U
V

⎤⎥⎥⎦ = F
k2r2

⎡⎢⎢⎣
I0

Q0

U0

V0

⎤⎥⎥⎦, (5.4.23)

where the subscript 0 denotes the incident beam and the transformation matrix is
given by

F =

⎡⎢⎢⎢⎣
1
2 (M2 + M3 + M4 + M1) 1

2 (M2 − M3 + M4 − M1) S23 + S41 −D23 − D41
1
2 (M2 + M3 − M4 − M1) 1

2 (M2 − M3 − M4 + M1) S23 − S41 −D23 + D41

S24 + S31 S24 − S31 S21 + S34 −D21 + D34

D24 + D31 D24 − D31 D21 + D34 S21 − S34

⎤⎥⎥⎥⎦.
(5.4.24)

Expressions for the matrix elements in terms of the electric fields can be derived from
the definition of the Stokes parameters and are given by

Mk = |Sk |2, (5.4.25a)

Skj = Sjk = (Sj S∗
k + Sk S∗

j

)
/2, (5.4.25b)

−Dkj = D jk = (Sj S∗
k − Sk S∗

j

)
i/2, j, k = 1, 2, 3, 4. (5.4.25c)
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The preceding matrix elements are real numbers. In radiative transfer, it is conven-
tional to define the scattering phase matrix, P, such that its first element is normalized
to unity as follows: ∫ 2π

0

∫ π

0

P11(θ )

4π
sin θ dθ dφ = 1, (5.4.26)

where θ and φ denote the scattering and azimuthal angles, respectively.
Next, we define the scattering cross section, which represents the amount of inci-

dent flux that is removed from the original direction as a result of a single-scattering
event such that this flux is distributed isotropically throughout the area of a sphere
whose radius is R and whose center is the scatterer. The scattering cross section is
related to the first element of the scattering phase matrix in the form

σs = 1

k2

∫ 2π

0

∫ π

0

(
1

2

4∑
k=1

Mk

)
sin θ dθ dφ. (5.4.27)

Using Eq. (5.4.27), the scattering phase matrix may be defined in terms of the trans-
formation matrix as follows:

P
4π

= 1

σsk2
F. (5.4.28)

The Stokes parameters can then be expressed in the form⎡⎢⎢⎣
I
Q
U
V

⎤⎥⎥⎦ = �eff
P

4π

⎡⎢⎢⎣
I0

Q0

U0

V0

⎤⎥⎥⎦ , (5.4.29)

where �eff = σs/r2, denoting the effective solid angle associated with scattering. If
no assumption is made about the shape and position of the scatterer, the scattering
phase matrix consists of 16 nonzero elements:

P =

⎡⎢⎢⎣
P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

⎤⎥⎥⎦ . (5.4.30)

The preceding discussion is concerned with the scattering of light by a nonspherical
particle. For a group of nonspherical particles, its scattering property is determined by
the orientation and size of individual particles with respect to the incident light beam.
For continuity of the present discussion, we shall consider a sample of nonspherical
particles of the same size randomly oriented in space. The scattering phase matrix
can then be expressed by

P(θ) = 1

2πσs

∫ 2π

0

∫ π/2

0
P′(α′, γ ′)σ ′

s(α′, γ ′) sinα′dα′dγ ′, (5.4.31a)

where α′ and γ ′ are the orientation angles of a nonspherical particle with respect to
the incident light beam (see Fig. 6.17 and Section 6.7.1 for further discussion), and
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P′ denotes the scattering phase matrix for a single particle. In this case, the scattering
phase matrix is a function of the scattering angle only. Further, the scattering cross
section defined in Eq. (5.4.27) for randomly oriented nonspherical particles can be
written in the form

σs = 1

2π

∫ 2π

0

∫ π/2

0
σ ′

s(α′, γ ′) sinα′dα′dγ ′. (5.4.31b)

Again, σ ′
s denotes the scattering cross section for a single particle. For a symmetric

hexagonal crystal, the azimuthal orientation angle γ ′ ranges from 0 to π/6 and an
analytic expression can be obtained in this case (Exercise 5.14).

If the scatterers are randomly oriented in space such that every scatterer has a
plane of symmetry, the law of reciprocity can be applied (Perrin, 1942; van de Hulst,
1957). Thus, we can reverse the directions of the incident and scattered polarized
beams, and achieve the same results. It follows that the amplitude functions (S3, S4)
in Eq. (5.4.23a) must be equivalent to (−S3,−S4). Consequently, the following six
relationships between the phase matrix elements are valid: P12 = P21, P13 = −P31,
P14 = P41, P23 = −P32, P24 = P42, and P34 = −P43 (Exercise 5.15). Moreover, con-
sider an incident light beam described by negative ellipticity and orientation angles
(see Section 6.6.1) and whose Stokes parameters are (I0, Q0, −U0, −V0). The scat-
tered beam from an isotropic medium composed of randomly oriented scatterers must
have the same form for the Stokes parameters: (I , Q, −U, −V ). The (I, Q) com-
ponents by definition are invariant to the change in the incident Stokes parameters
from (U, V ) to (−U,−V ). Using Eq. (5.4.29), four relationships can be derived such
that P13 = P14 = P23 = P24 = 0, and P31 = P32 = P41 = P42 = 0. It follows that the
scattering phase matrix reduces to six independent elements in the form

P =

⎡⎢⎢⎣
P11 P12 0 0
P12 P22 0 0
0 0 P33 P34

0 0 −P34 P44

⎤⎥⎥⎦ . (5.4.32)

For spherical scatterers, S3 = S4 = 0. Thus, P22 = P11 and P44 = P33. Consequently,
there are only four independent scattering phase matrix elements (Section 5.2.4).

Consider now a spectrum of nonspherical particles randomly oriented in space with
a size distribution given by n(L), where L is the major axis of a nonspherical particle.
In the case of ice particles or aerosols, we use a parameter referred to as the aspect ratio
L/2a,where 2a denotes the width, to define the particle size. We may employ a mean
effective size in a manner defined in Eq. (5.1.1) in association with light scattering
calculations. The scattering phase matrix associated with a suitable volume, which
contains a spectrum of nonspherical particles defined by a size distribution n(L), can
be obtained from

P(θ ) =
∫ L2

L1

P(θ, L)σs(L)n(L)dL

/∫ L2

L1

σs(L)n(L)dL, (5.4.33a)

where L1 and L2 are the lower and upper limits of the particle length, and the scattering
cross section for a spectrum of nonspherical particles of different sizes and shapes is
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given by

σs =
∫ L2

L1

σs(L)n(L) dL/N , (5.4.33b)

where

N =
∫ L2

L1

n(L) dL (5.4.33c)

is the total number of nonspherical particles. A similar definition can be derived for
the extinction cross section. It follows that a single-scattering albedo for a spectrum
of nonspherical particles is given by ω̃ = σs/σe.

As stated previously, the condition under which the scattering phase matrix is
composed of six independent elements is that the nonspherical particles are randomly
oriented in space in such a manner that every one of them has a plane of symmetry
based on which the law of reciprocity can be applied: that the incident and scattered
beams are reversible. In Section 5.1, we illustrated examples of typical ice-crystal sizes
and shapes. Assuming that they are randomly oriented in space, it is very difficult, if
not impossible, to prove that every one of these ice crystals has a plane of symmetry
that would obey the law of reciprocity. Nevertheless, numerical calculations for light
scattering by ice crystals carried out by Takano and Liou (1989a, 1995) based on the
geometric ray-tracing approach show that the scattering phase matrix elements P13,
P14, P23, P24, P31, P32, P41, and P42 are practically zeros and that P12 = P21 and
P34 = −P43. Light scattering and radiative transfer dealing with the possibility of ice
crystals oriented horizontally in the atmosphere are discussed further in Section 6.7.1.
In the following, we present the essence of the unified theory for light scattering by
ice crystals, comparison to available measurements, and some representative single-
scattering results.

5.4.4 Presentation of a Unified Theory for Light Scattering by Ice Crystals

5.4.4.1 THE ESSENCE OF THE UNIFIED THEORY

In recognition of the inherent limitations of each methodology for light scattering
calculations, it is unlikely that one specific method can be satisfactorily employed
to resolve the intricate scattering problems involving nonspherical ice crystals of all
size parameters and shapes. However, by unifying the geometric optics and FDTD
methods described earlier, calculations of light scattering and absorption by ice crys-
tals covering all sizes and shapes that commonly occur in the atmosphere can be
performed with adequate precision. This approach is referred to as the unified theory
for light scattering by ice crystals (Liou et al., 2000). In Fig. 5.19, we demonstrate
this theory in terms of the extinction efficiency as a function of size parameter for ran-
domly oriented columns of a uniform size. The length-to-width ratio for the column
is 6 and the incident wavelength used is 0.63 μm. The FDTD results are presented
for size parameters from 1 to 30 for comparison purposes. The results computed
from the improved geometric optics method cover size parameters from 1 to 1000.
Significant deviations between these two methods occur when the size parameter is
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Figure 5.19 Presentation of a unified theory for light scattering by ice crystals using the extinction
efficiency as a function of size parameter as an example. The solid line represents results computed from
the improved geometric optics method, while the dots are results computed from the finite-difference
time domain method. The dashed line represents the conventional extinction efficiency of 2 based on the
principle of geometric optics. The presentations use a wavelength of 0.63 μm and randomly oriented ice
columns of a uniform size identified in the figure.

smaller than about 15. This comparison highlights the increasing inapplicability of
the localization principle inherent in geometric ray-tracing for the calculation of the
electric field at the surface of a scatterer with a small size parameter. Based on the
optical theorem noted previously, the extinction efficiency is equal to 2 regardless of
the size parameter in the conventional geometric optics method. A series of system-
atic comparisons has been carried out for the phase function, single-scattering albedo,
and extinction cross section computed by the improved geometric optics and FDTD
methods for solid and hollow columns, plates, bullet rosettes, and aggregates. The
improved geometric optics method was shown to produce acceptable accuracy for the
single-scattering parameters for these ice crystal shapes with size parameters on the
order of 15–20. Also, in these calculations, the peaks in the 22◦ and 46◦ halos gen-
erated by the geometric ray-tracing were found to be substantially smaller when the
size parameter is smaller than about 60. Some of the cirrus clouds that do not produce
the well-known halos and arcs could involve small ice crystals and/or the deviation
of large ice crystals from the hexagonal geometries caused by the growth process.

The unified theory for light scattering by ice crystals is a powerful tool for the
calculation of the phase function and other optical parameters. Figure 5.20 displays
various commonly observed ice-crystal habits generated by computer and their as-
sociated phase functions. Eleven ice-crystal types are shown, including solid and
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Figure 5.20 Eleven ice-crystal habits commonly occurring in cirrus clouds generated by computer
program, along with their associated phase function patterns for the 0.63 μm wavelength. The solid lines
are results computed from the geometric ray-tracing method; the dashed lines in the upper panel are results
generated from the finite-difference time domain technique for which the size parameters are indicated
in the diagrams. Also shown for comparison are phase functions for a spheroid and a sphere (after Liou
et al., 2000).

hollow columns, single and double plates and a plate with attachments, a bullet
rosette with four branches, an aggregate composed of eight columns, a snowflake,
a dendrite, and an ice particle with rough surfaces defined by a two-dimensional
Gaussian probability function. Also displayed are an ice sphere and an ice spheroid
whose phase functions are computed by the exact theory. The phase function for the
sphere shows a maximum at the rainbow angle of about 138◦ and a broad minimum
at the side-scattering directions 60–120◦, whereas the spheroid displays a maximum
pattern in this scattering-angle range. Both phase functions deviate significantly from
those of ice particles. The patterns for the snowflake, the dendrite, and the plate
with attachments were produced by a fractal shape-generation program. The phase
function patterns for the hexagonally based ice crystals, such as solid column, single
and double plates, bullet rosette, and column aggregate, all display a strong 22◦ halo
peak (two refractions through a 60◦ prism angle), a halo peak at 46◦ (two refractions
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through a 90◦ prism angle), and a maximum at about 160◦ (one and two internal
reflections). The backscattering peak for these ice crystals is produced by external
and internal reflections. The bullet also exhibits a peak at about 7◦. For plates with
small attachments and snowflakes, the 22◦ and 46◦ halo peaks are also produced from
geometric ray tracing. In the case of the hollow column, the 46◦, 160◦, and backscat-
tering maxima are absent because of the lack of scattering material. The 22◦ and 160◦

maxima vanish for simple and complicated dendrites, but the backscattering is still
strong because of internal reflection contributions. The results for small ice crystals
computed from the FDTD method are illustrated in the top four panels overlying those
computed from geometric ray tracing. Phase function differences between large and
small ice crystals are clearly illustrated in the graphs.

5.4.4.2 THEORY VERSUS MEASUREMENT AND REPRESENTATIVE RESULTS

Measurements of the scattering and polarization patterns of ice crystals have been
performed in cold chambers (e.g., Sassen and Liou, 1979; Volkovitsky et al., 1980).
Desirable ice crystal sizes and shapes, however, are difficult to generate and sustain
for a period of time long enough to perform light-scattering experiments. Barkey
et al. (1999) conducted an experimental light-scattering program using hexagonal
ice-like crystals measured in the analog manner so that optical experiments could be
performed over a relatively long period of time for complex-shaped particles. The
experiment consisted of a polarized laser beam at λ = 0.63 μm and an array of 36
highly sensitive photodiode detectors arranged between the scattering angles of 2.8◦

and 177.2◦ mounted in a linear array on a half-dome, which could be rotated to vary
the azimuthal angle. After careful calibration and signal acquisition, this system was
first used to measure the phase functions of a glass sphere and a glass fiber configured
to scatter light like an infinite cylinder. The experimental results closely match those
computed from the Lorenz–Mie theory. Subsequently, sodium fluoride (NaF crystal),
which has an index of refraction (1.33) close to that of ice in the visible, was adopted
for the light scattering experiment. The NaF crystal could be machined to a desirable
shape with a size on the order of a millimeter. It was mounted on top of a small pedestal,
and its orientation position was controlled by a rotator. Angular integrations in the
experiment could follow the computational procedures that are carried out in theory.

Figure 5.21a shows a comparison between measurements and theory for an aggre-
gate that was assembled from NaF columns with small glass-fiber attachments glued
onto small holes. To simulate random orientation, a 1◦ increment was used for all
possible orientation angles. Results derived from the measurements and theory are
shown to be in general agreement. Several discrepancies should be noted. Particu-
larly, the experimental results are lower than the theory in backscattering directions,
which are dominated by internal reflections. This difference could be caused by ab-
sorption by the small glass fibers and glues that connect the columns. Comparison
results for a rough-surface plate are shown in Fig. 5.21b. All eight sides were sanded
with small scratches evenly distributed across the crystal surface. Between the 25◦

and 180◦ scattering angles, the measurements closely follow the theoretical results.
For scattering angles less than 20◦, however, the experimental results are higher. The
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Figure 5.21 Phase functions for (a) randomly oriented aggregate and (b) rough surface plate crystals
made from NaF whose index of refraction is 1.33 in the visible. The experiment used a polarized laser
beam at 0.63μm as the light source and controlled the positions of the detector and the crystal by automatic
mechanical devices (Barkey et al., 1999). The theoretical results were derived from the geometric-ray-
tracing/Monte-Carlo method.

scanning electron photomicrographs reveal features on the roughened crystal surface
on the order of 0.5–1 μm. More light could have been scattered through them as
compared to the defined cross-sectional area used in diffraction calculations.

The electrodynamic levitation technique has also been used to suspend and grow
an individual ice crystal for light-scattering experiments (Bacon et al., 1998). The
apparatus consists of an electrodynamic balance with an internally mounted thermal
diffusion chamber, a laser beam, a 1024-element linear photodiode array, and two
cameras to provide top and side views of the ice crystal. Shown in Fig. 5.22 are
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Figure 5.23 (a) Phase function and (b) degree of linear polarization for a typical cirrostratus with a
mean effective ice crystal size of 42μm composed of 50% bullet rosettes/aggregates, 30% hollow columns,
and 20% plates, a shape model based on replicator and optical probe measurements. Four remote sensing
wavelengths are displayed. For size parameters less than 15, the finite-difference time domain method is
employed in the calculations. In the phase function, the vertical scale is applied to the lowest curve, while
the upper curves are displayed upward by a factor of 10. The symbol × denotes the diffraction peak for
the 0.63 μm wavelength.

the experimental results for two ice-crystal sizes and shapes defined by the de-
picted photos. Theoretical results computed from conventional geometric ray-tracing,
which does not account for phase interferences, show discrete maxima associated
with the halo pattern. The improved geometric optics method generates closely
matched patterns, with the exception of some deviations in the 55◦ scattering an-
gle region in the top diagram. Differences between the theoretical and experimental
results can be attributed to the uncertainty of the measurement of the ice-crystal size
(∼ 4 μm) and of the computation of the near field based on the geometric ray-tracing
approximation.

In Fig. 5.23 we illustrate the phase function and degree of linear polarization
for a representative cirrostratus ice crystal size distribution (Section 5.1) having a
mean effective ice-crystal size of 42 μm. Based on replicator and optical probe mea-
surements, a cirrus cloud model composed of 50% bullet rosettes/aggregates, 30%
hollow columns, and 20% plates is used in this presentation. Four remote sensing
wavelengths of 0.63, 1.6, 3.7 and 10 μm are employed in the calculations. As pointed
out in Section 5.3.3, these wavelengths are typical of the image channels on meteo-
rological satellites. The scattering and polarization results for other remote-sensing
wavelengths, 0.86 μm and 10.9 and 11 μm, are similar to those for 0.63 and 10 μm,
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respectively. In the phase function, the 0.63 and 1.6 μm wavelengths display a peak
at the 22◦ halo position because of the basic hexagonal structure of the rosettes,
columns, and plates used in the calculations. Because of ice absorption, all the fea-
tures associated with hexagonal ice crystals vanish at 3.7 and 10 μm, except for the
forward diffraction peak. The linear polarization patterns for single scattering show
a number of maxima features at the 0.63 and 1.6 μm wavelengths: a slight negative
polarization at the 22◦ peak, a positive polarization at the 46◦ peak, and a strong neg-
ative polarization close to the backscattering angle. From about 60◦ to 140◦, about
10% polarization is observed. The case of 10 μm exhibits a maximum at about 90◦

produced principally by external reflection and limited internal reflections of the light
beam.

The spectral single-scattering parameters for ice crystals in terms of the asym-
metry factor, single-scattering albedo, and extinction coefficient covering the spectral
intervals of 0.2–5 μm and 8–13 μm are presented in Fig. 5.24 using the same cirrus
cloud model shown in Fig. 5.23. Three mean effective ice-crystal sizes ranging from
10 μm (contrail cirrus), to 42 μm (typical cirrostratus), to 124 μm (cirrus uncinus),
were selected for this illustration. The extinction coefficient is normalized in reference
to the value at 0.5 μm. In the visible and near IR wavelengths, the average size
parameter is sufficiently large that the extinction efficiency is approximately equal to
2 on the basis of the optical theorem, except in the vicinity of about 3 μm where a
significant dispersion of the real part of the refractive index mr for ice occurs (see also
Fig. D.1). The single-scattering albedo pattern mimics the variability of the imaginary
refractive index for ice (Liou, 1992, Fig. 5.1) with a large minimum located at about
3 μm. The single-scattering albedo decreases as the mean effective size increases,
with an exception in the vicinity of about 2.85 μm, referred to as the Christiansen
effect. This effect occurs when the real part of the refractive index approaches 1, while
the corresponding imaginary part is substantially large, resulting in the domination
of absorption. At the wavelength of about 10.9 μm, mr for ice is close to 1.08,
which is the smallest in the window region. However, mi increases in the window
wavelengths, the combination of which leads to a smaller value for extinction for the
smallest size parameter of 10 μm. We also notice that the single-scattering albedo
displays a significant drop at 10.9μm. Because of this unique property of ice crystals,
inference of their size appears feasible by using the window wavelengths that exist in
present and future satellite systems (see Section 7.4.5, the subsection on information
content in the IR line spectrum, for additional discussion).

5.5 Light Scattering by Nonspherical Aerosols

In Section 5.1, we showed that atmospheric aerosols exhibit various shapes with a
typical size less than about 1 μm. The Lorenz–Mie theory of light scattering by
spheres presented in Section 5.2 cannot be applied to nonspherical aerosol particles,
nor can the geometric optics approach introduced in Section 5.3 be used for scattering
and absorption calculations for aerosols because of their small size parameters. Many
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Figure 5.24 Normalized extinction coefficient (in reference to the value at 0.5μm), single-scattering
albedo, and asymmetry factor as functions of wavelength for three ice-crystal size distributions with mean
effective sizes of 10, 42, and 124 μm and the shape model defined in Fig. 5.23. The extinction coefficient
values at λ = 0.5μm are 0.3036, 0.2082, and 1.979 km−1 for De = 10, 42, and 124 μm, respectively. The
spectral intervals covered are from 0.2 to 5 μm in the solar spectrum, and from 8 to 13 μm in the thermal
infrared window.
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approaches have been developed for the calculation of light scattering by nonspherical
particles because of the need for precise scattering information in optics, geophysics,
remote sensing, astrophysics, engineering, medicine, and biology. In the following
sections, we introduce two contemporary methods that have been developed for the
calculation of light scattering and absorption by nonspherical aerosols.

5.5.1 Finite-Difference Time Domain Method

The finite-difference time domain (FDTD) technique has been shown to be an efficient
computational method of solving for the interaction of electromagnetic waves with
scatterers, particularly those with complicated geometry and inhomogeneous com-
position. In this method, the space containing a scattering particle is discretized by
using a grid mesh, and the existence of the particle is represented by assigning suitable
electromagnetic constants in terms of permittivity, permeability, and conductivity to
the grid points (Fig. 5.25). Because it is not necessary to impose the electromagnetic
boundary conditions at the particle surface, the FDTD approach with appropriate and
minor modifications can be applied to the solution of light scattering by various small
nonspherical and inhomogeneous particles, such as irregular ice crystals and aerosols
with inclusions.

The FDTD method was developed and pioneered by Yee (1966), but it did not re-
ceive significant recognition until high-quality absorbing boundary conditions were
developed in the 1980s. Through the persistent efforts of a number of electrical en-
gineers and computational physicists (e.g., Taflove, 1995), several advantages of the
FDTD method have now become widely recognized. In recent years, the FDTD tech-
nique has been used to solve for the interaction between targets and electromagnetic

artificial boundary

initial wave

scatterer

Figure 5.25 A conceptual diagram for the computation of the near field for the scattering of a
nonspherical particle illuminated by plane waves by means of the finite-difference time domain (FDTD)
method.
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waves involving such problems as antenna scattering, numerical modeling of mi-
crostrip structures, and electromagnetic absorption by human tissues. Application of
this method to the solution of the scattering and polarization properties of atmospheric
nonspherical particles has also been carried out by Yang and Liou (1996b, 2000).

As described in Section 5.4.2, the FDTD technique uses Maxwell’s time-dependent
curl equations, denoted in Eqs. (5.2.10) and (5.2.11), to solve for the temporal variation
of electromagnetic waves within a finite space that contains the scattering object. In
this case, we write

∇ × H(r, t) = ε(r)

c

∂E(r, t)

∂t
, (5.5.1a)

∇ × E(r, t) = −1

c

∂H(r, t)

∂t
, (5.5.1b)

where ε is the permittivity of the dielectric medium, usually a complex variable,
and c is the speed of light in vacuum. In Eq. (5.5.1b), the permeability, μ, has been
assumed to be unity because cloud and aerosol particles in the atmosphere and many
other scattering targets are mostly nonferromagnetic materials. We should select a
harmonic time-dependent factor of exp(−iωt) for the electromagnetic wave in the
frequency domain so as to have a positive imaginary part of the refractive index. Thus,
we have

ε = εr + iεi , (5.5.2a)

εr = m2
r − m2

i , εi = 2mr mi , (5.5.2b)

where i = √−1 and mr and mi are the real and imaginary parts of the refractive
index, respectively. When the medium is absorptive, i.e., mi is nonzero, a complex
calculation is required for Eq. (5.5.1a). To circumvent the complex operation, it is
desirable to have an equivalent expression for Eq. (5.5.1a) in which the complex
permittivity can be avoided. We may introduce an effective real permittivity, ε′, and
conductivity, σ , and rewrite the first Maxwell curl equation in a source-dependent
form as follows:

∇ × H(r, t) = ε′

c

∂E(r, t)

∂t
+ 4π

c
J(r, t), (5.5.3a)

where the second term on the right-hand side of the equation is due to the contribution
of the effective electric current given by

J(r, t) = σE(r, t). (5.5.3b)

Transforming Eqs. (5.5.1a) and (5.5.3a) to the equivalent equations in the frequency
domain yields

∇ × H(r) = −ikεE(r), (5.5.4)

∇ × H(r) = −ik(ε′ + i4πσ/kc)E(r), (5.5.5)
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where k = ω/c is the wavenumber of the electromagnetic wave in free space. From a
comparison of Eqs. (5.5.4) and (5.5.5), it is clear that the two equations are equivalent
if the following conditions hold: εr = ε′ and εi = 4πσ/kc. It follows that Eq. (5.5.1a)
can be rewritten as follows:

∇ × H(r, t) = εr

c

[
∂E(r, t)

∂t
+ τE(r, t)

]
, (5.5.6)

where τ = kcεi/εr . At this point we can use Eqs. (5.5.1b) and (5.5.6) to construct
the finite-difference analog of the Maxwell curl equations, which involves only real
calculations. First, we require discretizing the equation in the time domain. To do
this, we rewrite Eq. (5.5.6) in the form

∂[exp(τ t)E(r, t)]

∂t
= exp(τ t)

c

εr
∇ × H(r, t). (5.5.7)

Integrating Eq. (5.5.7) over the time interval of [n	t, (n + 1)	t], we obtain

exp[τ (n + 1)	t]En+1(r) − exp(τn 	t)En(r)

=
∫ (n+1)	t

n	t
exp(τ t)

c

εr
∇ × H(r, t)dt

≈ 	t exp[τ (n + 1/2)	t]
c

εr
∇ × Hn+1/2 (r). (5.5.8)

If follows that

En+1(r) = exp(−τ	t)En(r) + exp(−τ	t/2)
c	t

εr
∇ × Hn+1/2 (r). (5.5.9)

Likewise, for the magnetic field we have

Hn+1/2 (r) = Hn−1/2 (r) − c	t∇ × En(r). (5.5.10)

In the foregoing equations the superscript n denotes that the associated field is eval-
uated at the time step t = n	t .

The space containing the scattering particle must be discretized by a number of
grid cells. We may use cubic cells in the 3D case and evaluate the components
of the electric and magnetic fields of a cell at the staggered locations as shown in
Fig. 5.26. The advantage of such staggered positions is that the electromagnetic
boundary conditions are guaranteed at the interfaces of the cells, so that the tangential
components of the E field and the normal components of the H field are continuous
at the interfaces. A spatial location in the discretized space is denoted by the indices
(I, J, K ) = (I	x, J	y, K	z), and any variable as a function of space and time is
defined as

Fn(I, J, K ) = F(I	x, J	y, K	z, n	t), (5.5.11)

in which 	x , 	y, and 	z are the cell dimensions along the x , y, and z axes, respec-
tively. The permittivity must be homogeneous within each cell. For a given cell with
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Figure 5.26 Locations of various field components on a cubic cell. The E field is tangential to the sur-
face, whereas the H field is normal to the surface. The notations I , J , and K are indices assigned to the cell.

its center located at a lattice index (I , J , K ), the mean permittivity can be evaluated
on the basis of the Maxwell–Garnett rule via

ε̄(I, J, K ) − 1

ε̄(I, J, K ) + 2
= 1

	x	y	z

∫ ∫ ∫
cell(I,J,K )

ε(x, y, z) − 1

ε(x, y, z) + 2
dxdydz. (5.5.12)

Using the mean permittivity produces smaller staircasing errors than those produced
by a sharp step-by-step approximation of nonspherical geometry.

The general forms of the finite-difference analogs of Eqs. (5.5.1) and (5.5.6) can
then be expressed for each Cartesian component. In practice, the truncation errors of
the finite-difference analog of Maxwell’s curl equations are of second order in both
time and space. The time-marching iteration can be applied directly by employing
initial values for the E and H fields. The values of 	x , 	y, 	z, and 	t cannot be
specified arbitrarily but must satisfy the Courant–Friedrichs–Levy condition such that

c	t ≤ 1√
1/	x2 + 1/	y2 + 1/	z2

. (5.5.13)
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Moreover, the spatial increments must also be smaller than about 1/20 of the incident
wavelength so that the phase variation of the waves is negligible over the distance of
the cell dimensions.

The numerical implementation of the FDTD technique requires the imposition of
an appropriate absorbing boundary condition, which is critical for the stability of the
numerical computations and the reliability of the results. In addition, the white space
between the boundary and the scatterer required by a specific boundary condition is an
important factor in determining the required computational effort. Many techniques
have been developed for the imposition of absorbing boundary conditions in the
application of the FDTD technique to electromagnetic scattering problems. A recent
advancement in this area is a novel numerical technique, referred to as the perfectly
matched layer (PML) boundary condition, developed by Berenger (1994). Calculation
of the absorption of the outgoing wave by the PML method is based on the absorption
by a medium located at the outermost layers in the computational domain backed by
a perfectly conducting surface. The conventional technique based on an absorbing
medium is to specifically define the wave impedance of the medium so that it matches
that of the free space. Such a simple matching approach produces substantial nonzero
reflections when a scattered wave impinges on the absorbing medium obliquely. To
overcome the disadvantage of the conventional method, the absorbing medium can be
selected such that the wave decay due to absorption is imposed on the field components
parallel to their boundary layers. To achieve this goal, each Cartesian component of
the electromagnetic field is split into two parts as follows:

(Ex , Ey, Ez) = [
(Ex2 + Ex3), (Ey1 + Ey3), (Ez1 + Ez2)

]
,

(Hx , Hy, Hz) = [
(Hx2 + Hx3), (Hy1 + Hy3), (Hz1 + Hz2)

]
, (5.5.14)

where the subscript 1, 2, or 3 denotes the component of the electric (or magnetic)
field that is associated with the spatial differential of the magnetic (or electric) field
component along the x, y, and z directions, respectively. With the split field com-
ponents, discretized scalar equations that govern the propagation of electromagnetic
waves can be replaced by a set of 12 equations for numerical computations. Numerical
experiments have shown that the spurious reflection produced by the PML bound-
ary conditions is much smaller than that generated by other analytical absorption
boundary conditions derived from the wave equation.

The values of the near field computed by the preceding FDTD algorithm are
in the time domain. A transformation of the time-dependent field values to their
corresponding counterparts in the frequency domain is required to obtain the single-
scattering properties. The transformation algorithm depends on the kind of initial wave
that is used. We may select an incident pulse (e.g., Gaussian) as the initial excitation in
the computation. The width of the pulse can be properly selected to avoid numerical
dispersion caused by the finite-difference approximation. In this manner, an incident
pulse with respect to a fixed shape and size of the particle can provide the results for
a number of size parameters simultaneously. Further, the frequency of the simulated
field can be obtained by the discrete Fourier transform. Let f be a component of the
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field and its value at the time step n be fn . Then, the time variation of f can be written
as

f (t) =
N∑

n=0

fnδ(t − n	t), (5.5.15)

where δ is the Dirac delta function and the maximum time step N is chosen such that
the field in the time domain is reduced to a small value. The corresponding spectrum
in the frequency domain is given by

F(k) =
∫ ∞

−∞

[
N∑

n=0

fnδ(t − n	t)

]
exp(ikct) dt =

N∑
n=0

fn exp(ikcn	t), (5.5.16)

where k is the wavenumber in vacuum. To avoid aliasing and numerical dispersion and
to obtain a correct frequency spectrum, one must band the maximum wavenumber
or the minimum wavelength for the region within which the frequency response of
the scattering is evaluated. In any finite-difference equation, it is required that the
wavelength of a simulated wave be larger than the grid size. Finally, the field values
in the frequency domain obtained by this procedure must be normalized by the Fourier
transform of the incident wave at the center of the grid mesh so that the frequency
response of the scattering particle will return to a unit incident harmonic wave.

In order to compute the scattering and absorption quantities, we must transform
the near field determined from the FDTD algorithm and the discrete Fourier transform
technique to the far field. We may follow an approach that uses a volume integration
method for nonconducting scatterers. In the far field (or radiation zone), kr → ∞, the
scattered far field for the electric vector may be written in terms of a volume integral
as follows:

Es(r) = k2 exp(ikr )

4πr

∫ ∫ ∫
V

[ε(r′) − 1]
{
E(r′) − n[n · E(r′)]

}
exp(−ikn · r′) d3r′.

(5.5.17)

To compute the scattering phase matrix, the scattered field given by Eq. (5.5.17)
must be expressed in terms of the amplitude matrix. Because the scattered field is a
transverse wave with respect to the scattering direction, it can be decomposed into
the components parallel and perpendicular to the scattering plane in the form

Es(r) = αEs,α(r) + βEs,β(r), (5.5.18)

where α and β are the unit vectors parallel and perpendicular to the scattering plane,
respectively, and satisfy n = β × α. Expressing Eq. (5.5.18) in matrix form yields(

Es,α(r)
Es,β(r)

)
= k2 exp(ikr )

4πr

∫ ∫ ∫
V

[ε(r′) − 1]

(
α · E(r′)
β · E(r′)

)
exp(−ikn · r′) d3r′

= exp(ikr )

r
S
(

Eo,α

Eo,β

)
, (5.5.19)
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where S is a 2 × 2 amplitude scattering matrix and Eo,α and Eo,β are the incident
E-field components defined with respect to the scattering plane. In the FDTD method,
the incident wave is defined with respect to the incident coordinate system given by
Eo,x and Eo,y . Based on the geometry implied by Eq. (5.5.18), we have(

Eo,α

Eo,β

)
=
(
β · x −β · y
β · y β · x

)(
Eo,y

Eo,x

)
, (5.5.20)

where x and y are the unit vectors along the x and y axes, respectively. To obtain the
scattering properties of the particle with complete polarization information, we can
select two incident cases: (a) Eo,x = 1 and Eo,y = 0; and (b) Eo,x = 0 and Eo,y = 1.
We can then define the following quantities:(

Fα,x
Fβ,x

)
= k2

4π

∫ ∫ ∫
V

[ε(r′) − 1]

(
α · E(r′)
β · E(r′)

)
exp(−ikn · r′)d3r′

∣∣∣∣
Eo,x =1, Eo,y=0

,

(5.5.21a)(
Fα,y
Fβ,y

)
= k2

4π

∫ ∫ ∫
V

[ε(r′) − 1]

(
α · E(r′)
β · E(r′)

)
exp(−ikn · r′)d3r′

∣∣∣∣
Eo,x =0, Eo,y=1

.

(5.5.21b)

Using Eqs. (5.5.19)–(5.5.21b) along with some algebraic manipulations, it can be
proven that the amplitude matrix is given by(

S2 S3

S4 S1

)
=
(

Fα,y Fα,x
Fβ,y Fβ,x

)(
β · x β · y

−β · y β · x

)
. (5.5.22)

The scattering phase matrix can subsequently be defined following the procedure
outlined in Section 5.4.3. For nonspherical aerosols oriented randomly in space, the
scattering phase matrix has a block-diagonal structure with eight nonzero elements
of which only six are independent (Section 5.4.1). Finally, the expressions for ex-
tinction and absorption cross sections have been given in Eqs. (5.4.6a) and (5.4.6b),
respectively.

Accuracy of the FDTD method can be checked with the exact solutions for infinite
circulars and spheres. In general, when the size of the grid cells is on the order of
1/20 of the incident wavelength, its solutions are in excellent agreement with their
corresponding analytical counterparts. Improvement of the accuracy can be achieved
by decreasing the ratio of the grid size to the incident wavelength, but only at the
expense of increasing the computational effort required. Based on comprehensive
numerical experiments, the FDTD method can achieve reliable results for nonspheri-
cal aerosol size parameters smaller than about 15–20 (Yang and Liou, 2000). In what
follows, we present a number of representative scattering results for nonspherical
aerosols.

As illustrated in Section 5.1, aerosols in the atmosphere exhibit a variety of
shapes ranging from quasispheres to highly irregular geometries. In addition, aerosols
usually appear as a mixed product of different compositions involving dustlike,
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Figure 5.27 Scattering phase matrix elements for two types of randomly oriented dust aerosols.
The size parameter used is 5 and the real and imaginary parts of the refractive index are 1.53 and 0.008,
respectively, for a wavelength of 0.5 μm (data taken from Yang and Liou, 2000).

water-soluble, soot, oceanic, sulfate, mineral, water, and organic materials. To under-
stand the scattering characteristics of aerosols, various representative aerosol geome-
tries and inhomogeneous compositions are defined for light-scattering computations
based on the FDTD method.

The left panels of Fig. 5.27 illustrate the phase function and the degree of linear
polarization at λ = 0.5μm for two randomly oriented dustlike aerosol shapes, one
with 10 faces and the other with six, constructed by a computer graphics program. The
size parameters of these irregular aerosols are specified in terms of the dimensions of
their peripheral spheres. Although the two polyhedrons have the same size parameters,
the particle with 10 faces scatters more energy in the forward direction than its 6-face
counterpart, because the volume of the former is larger. However, the reverse is true
for backscattering. Note that the ratio of the extinction cross sections for these two
aerosol shapes is 3.92. Dustlike aerosols are absorptive in the visible wavelength as
indicated by the single-scattering albedos of 0.9656 and 0.9626 for the two polyhedral
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geometries with 10 and 6 faces, respectively. The other panels of Fig. 5.27 show the
remaining scattering phase matrix elements associated with the polarization state of
the scattered wave. It is evident that the structure of aerosol geometry has a substantial
impact on the polarization configuration.

Black carbon or soot aerosols generated from the incomplete combustion of fossil
fuel and biomass burning can serve as condensation nuclei or become outside attach-
ments to water droplets, a possibility relevant to cloud absorption. To illustrate the
applicability of the FDTD method to light scattering by these types of aerosols, we
present in Fig. 5.28 the phase functions and the degrees of linear polarization for
four aerosol models defined in the diagram. The prime and double prime denote
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Figure 5.28 Phase functions and degrees of linear polarization for five aerosol geometric configu-
rations using a wavelength of 0.5 μm. In (a), the size parameter for the largest water aerosol is 5, while
the dust and spherical inclusions (or attachments) are 3 and 2, respectively. In (b), the inclusions are 10-
and 6-face dust particles. The refractive indices used in the FDTD calculations are (1.335, 1.0 × 10−9) for
water, (1.53, 7.8 × 10−3) for mineral dusts, and (1.75, 0.45) for soot. Results for spheres computed from
the Lorenz-Mie theory are shown in (b) for comparison purposes (data taken from Yang and Liou, 2000).
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that the associated parameters are for mineral/dustlike and soot components, respec-
tively, whereas the corresponding unprimed parameters are for water parts of the com-
pounded particles. Polyhedral particles and sphere clusters produce smoother angular
scattering patterns in comparison to the cases involving spheres with inclusions and/or
attachments. In the case of the latter, the spherical parts of the compounded aerosols
dominate the scattering properties. It is clear that the phase functions and polarization
patterns of polyhedral and cluster aerosols are substantially different from those of
homogeneous spheres, also shown in the diagram.

5.5.2 T-Matrix Method

The T-matrix method for light-scattering calculations is based on the expansion of the
incident and scattered fields in vector spherical wave functions and relating these ex-
pansions by means of a T-matrix for computing electromagnetic scattering by single,
homogeneous nonspherical particles. The T-matrix approach was initially introduced
by Waterman (1971) and has been shown to be an efficient method for scattering cal-
culations involving rotationally-symmetric nonspherical particles, such as spheroids,
cylinders, two-sphere clusters, and Chebyshev particles (Mishchenko et al., 2000).
This method has been used for the analysis of light scattering by nonspherical aerosols,
particularly with respect to the investigation of deviations of single-scattering results
from those computed from the spherical assumption.

The essence of the T-matrix method begins with the expansion of the incident and
scattered fields involving the scattering of a plane electromagnetic wave by a single
particle in the forms

Ei (R) =
∞∑

n=1

n∑
m=−n

[
amnM∗

mn(kR) + bmnN∗
mn(kR)

]
, (5.5.23a)

Es(R) =
∞∑

n=1

n∑
m=−n

[pmnMmn(kR) + qmnNmn(kR)] , (5.5.23b)

where Mmn and Nmn are certain vector spherical wave functions involving spherical
Hankel functions; M∗

mn and N∗
mn are defined by similar functions, except spheri-

cal Hankel functions are replaced by spherical Bessel functions; amn and bmn are
expansion coefficients of the plane incident wave; and pmn and qmn are expansion
coefficients of the scattered wave. Because of the linearity of Maxwell’s equations and
boundary conditions, the relationship between the scattered and incident coefficients
must be linear and can be expressed by a T-matrix as follows:

pmn =
∞∑
�=1

�∑
k=−�

[
T 11

mnk� ak� + T 12
mnk� bk�

]
, (5.5.24a)

qmn =
∞∑
�=1

�∑
k=−�

[
T 21

mnk� ak� + T 22
mnk� bk�

]
. (5.5.24b)
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In matrix form, we write[
p
q

]
= T

[
a
b

]
=
[

T11 T12

T21 T22

] [
a
b

]
. (5.5.25)

Equation (5.5.25) forms the foundation of the T-matrix approach. If the T-matrix
for a given scatterer is known, the scattered field defined in Eq. (5.5.23b) can then
be evaluated. Consequently, the amplitude matrix defined in Eq. (5.4.23a) can be
obtained. The T-matrix depends only on the physical and geometric characteristics
of the scattering particle, including the refractive index, size, shape, and orientation
with respect to the incident light beam.

The general approach to determining the T-matrix is to find the field scattered by
an object bounded by a closed surface in terms of an integral equation that involves
the unknown surface field on the exterior of this surface. The determination of the
internal field must then be defined by

Eint (R) =
∞∑

n=1

n∑
m=−n

[
cmnM∗

mn(mkR) + dmnN∗
mn(mkR)

]
, (5.5.26)

where m is the refractive index of the particle relative to that of the surrounding
medium, and cmn and dmn are unknown coefficients. By using boundary conditions
at the surface of the scatterer that require the continuity of the tangential components
of the electric and magnetic fields, we obtain the following matrix equation:[

a
b

]
=
[

Q11 Q12

Q21 Q22

] [
c
d

]
. (5.5.27)

The elements of the Q matrix are surface integrals of products of the vector spherical
wave functions that depend only on the particle’s size, shape, and refractive index.
Thus, by inverting this matrix equation, the unknown expansion coefficients of the
internal field, c and d, are expressed in terms of the known expansion coefficients of the
incident field, a and b. Moreover, from the boundary condition and the relationships
among the incident, scattered, and surface fields, one can show that[

p
q

]
= −

[
Q∗11 Q∗12

Q∗21 Q∗22

] [
c
d

]
, (5.5.28)

where the Q* elements are also given by integrals over the particle’s surface and
depend only on the particle’s characteristics. A comparison between Eqs. (5.5.25)
and (5.5.28) leads to the solution of the T-matrix as follows:

T = −Q∗Q−1. (5.5.29)

The preceding procedure for computing the T-matrix for single homogeneous scat-
terers in reference to the particle’s coordinates is referred to as the extended boundary
condition method (EBCM). The EBCM technique has been shown to have numerical
stability problems in calculations for particles with very large real and/or imaginary
parts of the refractive index, large size parameters (>20), and/or extreme geometries
such as spheroids with large axial ratios. More efficient approaches that overcome the
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Figure 5.29 T-matrix computations of the phase function versus the scattering angle for monodisperse
and polydisperse spheres and randomly oriented spheroids with a refractive index of 1.53 + 0.008i . The
wavelength is 0.443 μm. (a) Results for monodisperse spheres with a radius of 1.163 μm and surface-
equivalent prolate spheroids with aspect ratios a/b, increasing from 1.4 to 2.2. (b) Similar computations
but for a log-normal size distribution with a mean effective radius of 1.163 μm and an effective variance
of 0.168 (data provided by Michael Mishchenko of the NASA Goddard Institute for Space Studies).

numerical instability problem in computing the T-matrix for highly elongated parti-
cles have also been developed. With computer coding improvements, the T-matrix
method can be applied to symmetric homogeneous nonspherical particles with size
parameters as large as 180. Interested readers may wish to refer to Mishchenko et al.
(2000) for details.

Examples of T-matrix computations of the phase function as a function of the
scattering angle for randomly oriented monodisperse and polydisperse spheroids and
spheres are presented in Fig. 5.29. Panel (a) displays results for spheres with a radius
of 1.163μm and surface-equivalent prolate spheroids with aspect ratios ranging from
1.4 to 2.2. Panel (b) shows similar computations, but for a log-normal size distribution
with an effective radius of 1.163 μm, illustrating the deviation in the phase function
of nonsphericity from the spherical assumption.

Finally, comparisons of the phase functions of spheres computed from the Lorenz–
Mie theory, of spheroids computed from the T-matrix approach, and of convex and
concave particles computed from the FDTD method are presented in Fig. 5.30. These
shapes are used to resemble aerosols with a refractive index of 1.38 + i3.9 × 10−9

and a maximum size parameter of 10 with three aspect ratios. For a/b = 1
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Figure 5.30 Comparison of the phase functions of oceanic aerosol particles with various shapes. For
the spherical case, i.e., a/b = 1, the power law size distribution is employed to smooth out the resonant
fluctuations. The maximum size parameter used is 10.

(a is the semimajor axis and b is the semiminor axis), the phase functions of nonspher-
ical particles are substantially smaller than those of spheres in the scattering angular
region 120◦–180◦; in particular, the differences in the results for spherical and non-
spherical particles are pronounced in the backscattering direction. For a/b = 2 and
a/b = 1/2, we also see substantial differences between smooth spheroids and irreg-
ular convex and concave particles. Since the phase function is the critical parameter
that is required in the satellite retrieval of aerosol optical depth (Section 7.3.3), selec-
tion of a proper and reliable value for each aerosol type must be undertaken to ensure
the accuracy and precision of the retrieval.

5.5.3 Note on Light-Scattering Measurements for Nonspherical Aerosols

Development of integrating nephelometers for measurement of the scattering cross
section of aerosols has been a subject of considerable research in the past (Heintzenberg
and Charlson, 1996). The successful development of this instrument is significant
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because if an accurate and reliable extinction cross section can be determined, the
absorption cross section and hence the single-scattering albedo can be obtained to
assess the climatic radiation forcing produced by aerosols.

Measurements of light scattering by aerosols as a function of wavelength and/or
angular distribution for sizing purposes based on Lorenz–Mie results have been an
interdisciplinary research subject, particularly related to instrument technology. How-
ever, angular scattering measurements of nonspherical aerosols, including polariza-
tion, have been extremely limited. The optical technique generally uses a laser beam
and a sample of known aerosol types generated in the laboratory. Early laser scattering
experiments with measurements of the scattering phase matrix have been reported by
Holland and Gagne (1970) for randomly oriented microsized quartz crystals with flat
platelike shapes. More recently, laboratory measurements of the scattering and po-
larization properties of aerosol particles have been presented by Volten et al. (1999).
In angular scattering experiments, a He–Ne laser beam with a wavelength of 0.633
μm is usually used as a light source, which passes through a linear polarizer and
travels through the electro-optic modulator, which can be rotated about its long axis.
The light scattered in a particular direction passes through a quarter-wave plate and
an analyzer and is then recorded by a photomultiplier detector. In this manner, the
four-by-four scattering phase matrix can be measured. The sample aerosols are dis-
turbed by air motion such that random orientation is anticipated. Thus, there are only
six independent matrix elements. The scattering angular range covered is generally
limited by the detector size with typical values ranging from 5◦ to 175◦ (see also
Sections 5.4.4 and 5.3.3). The reliability of the experimental setup can be tested by
employing spherical particles for which the measured data can be checked against
results computed from the Lorenz–Mie theory.

An example of the scattering phase matrix elements for three types of mineral
aerosols, feldspar, red clay, and quartz, with mean sizes 3.0, 5.1, and 9.7 μm, respec-
tively, is shown in Fig. 5.31. Except for quartz, the refractive indices are basically
unknown. The phase function (P11) is normalized to 1 at the scattering angle of 30◦ in
this presentation because of the lack of measured data from the scattering angle ranges
0–5◦ and 175–180◦. The phase functions for these three aerosol types are extremely
similar. The degree of linear polarization (−P12/P11) shows that the smallest parti-
cles have the largest maximum value. Close to the backscattering direction, negative
polarization is seen. The remaining elements display different patterns for red clay
than for the two other aerosol types, presumably because of its absorption property.
A precise determination of the composition, size, and shape of aerosols based on
scattering and polarization measurements, particularly from space, is critically im-
portant in order to reduce the uncertainties of the role aerosols play in global climate
change.

As a result of the difficulty in manufacturing micrometer-sized aerosol particles
with known optical properties and obtaining precise orientation information to com-
pare to theoretical results, the microwave analog technique has been employed for
light-scattering measurements involving particles with small size parameters. This
technique usually involves incident microwave radiation from a transmitting antenna
that passes a polarizer and is scattered by the object. The scattered radiation then
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Figure 5.31 Measured scattering matrix elements versus scattering angle in a laboratory setting using
a laser beam with λ = 0.633 μm. The solid, dotted, and dash-dotted lines correspond to the results for
feldspar, red clay, and quartz, respectively (data taken from Hovenier, 2000).

goes through the other polarizer and is measured by a receiving antenna. The method
allows wide coverage of scattering angles, including the exact forward direction, as
well as a greater degree of control of the object’s size, shape, and orientation than con-
ventional optical measurements. Figure 5.32 illustrates an example of phase function
comparison between the theoretical results computed from the FDTD method and the
experimental data derived from a microwave analog experiment. The measurements
involved randomly oriented convex and concave particles with a refractive index of
m = 1.5 + i0.005 and size parameters ranging from 5.9 to 17.8. In the FDTD calcu-
lation, a mixture of 50% convex and 50% concave particle shape was used. The phase
function for this combination of particle shape appears to match the experimental
results. Also shown for comparison is the phase function for the equivalent volume
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Figure 5.32 Phase function measured by the microwave analog technique (Zerull, 1976) and com-
puted from the FDTD method for randomly oriented convex and concave particles with a refractive index
m = 1.5 + i0.005 and a size parameter range from 5.9 to 17.8.

sphere computed from the Lorenz–Mie theory. Large deviations are evident between
spherical and nonspherical particles, particularly in side scattering directions and the
directions associated with the sun–satellite geometry.

Exercises

5.1 Based on the definitions of Mψ and Nψ in Eqs. (5.2.23) and (5.2.24), show that

∇ × Nψ = mkMψ,

and prove that

∇2Nψ + k2m2Nψ = 0, ∇2Mψ + k2m2Mψ = 0.
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5.2 From the radial component of the magnetic vector

Hi
r = eik cos θ sin θ sinφ = i

k

[
∂2(rvi )

∂r2
+ k2(rvi )

]
,

show that

rvi = 1

k

∞∑
n=1

(−i)n 2n + 1

n(n + 1)
ψn(kr )P1

n (cos θ ) sinφ.

5.3 The electric and magnetic field vectors in a homogeneous medium satisfy the
following vector wave equation:

∇2A + k2m2A = 0.

If ψ satisfies the scalar wave equation

∇2ψ + k2m2ψ = 0,

(a) show that vectors Mψ and Nψ in cylindrical coordinates (r, φ, z) defined by

Mψ = ∇ × (azψ), mkNψ = ∇ × Mψ

satisfy the vector wave equation, where az is a unit vector in the z direction.
(b) Also prove that

E = Mv + iNu, H = m(−Mu + iNv)

satisfy the Maxwell equations, where u and v are solutions of the scalar wave
equation. Write out the expressions for E and H in terms of u and v.

5.4 The scalar wave equation in cylindrical coordinates is given by

1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2
+ ∂2ψ

∂z2
+ m2k2ψ = 0.

Utilizing the method of separation of variables, show that the solution can be
written as

ψn(r, φ, z) = eiωt Zn( jr )einφe−ihz,

where h is an arbitrary constant, n is an integer, j = (m2k2 − h2)1/2, and Zn is
any Bessel function of order n.

5.5 Derive the explicit form of the transformation matrix F associated with the
Stokes parameters in terms of Sj ( j = 1, 2, 3, 4), defined in Eq. (5.4.22).

5.6 Using the Fresnel formulas, show explicitly that the transmitted and reflected
portions of the energy for the two polarization components are conserved. Also
compute the incident angle θi at which Rl = 0. This angle is called the polarizing
or Brewster angle, under which the electric vector of the reflected light has no
component in the plane of incidence.

5.7 The refractive indices of water at the wavelengths of red (0.656 μm) and vio-
let (0.405 μm) light are 1.332 and 1.344, respectively. (a) Describe the color
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sequence of the corona. Find the radius of cloud particles that produce a sec-
ondary white corona with a 10◦ angular radius about the sun. (b) Describe the
mechanism of cloudbow formation. Find the scattering angles for the primary
and secondary cloudbows at these two wavelengths. (c) Find the angular radii
of the rings of the halos formed by prism angles of 60 and 90◦. What will be the
widths of the rings?

5.8 When absorption is involved, the refractive index m = mr − imi . Prove that the
Fresnel reflection coefficients are given by

|Rr |2 = (cos θi − u)2 + v2

(cos θi + u)2 + v2
,

|Rl |2 =
[(

m2
r − m2

i

)
cos θi − u

]2 + (2mr mi cos θi − v)2[(
m2

r − m2
i

)
cos θi + u

]2 + (2mr mi cos θi + v)2
,

u2 = 1

2

{
m2

r − m2
i − sin2 θi + [(m2

r − m2
i − sin2 θi

)2 + 4m2
r m2

i

]1/2}
,

v2 = 1

2

{− (m2
r − m2

i − sin2 θi
)+ [(m2

r − m2
i − sin2 θi

)2 + 4m2
r m2

i

]1/2}
.

To derive these equations, let m cos θt = u + iv in Eq. (5.3.23) and use the law
of refraction sin θi = m sin θt .

5.9 From the definition of the Stokes parameters in Eq. (5.2.103), show that the
scattering phase matrix for Rayleigh scattering [Eq. (3.3.6)] is given by

P = 3

2

⎡⎢⎢⎣
1
2 (1 + cos2 �) − 1

2 sin2 � 0 0
− 1

2 sin2 � 1
2 (1 + cos2 �) 0 0

0 0 cos� 0
0 0 0 cos�

⎤⎥⎥⎦ .
5.10 Consider a group of ice plates randomly oriented horizontally. (a) Show that

the incident angle of a geometric ray θi is related to the elevation angle εi

and azimuthal angle φi by cos θi = cos εi cosφi . (b) Prove that the general Snell
law can be expressed by mr sin εt = sin εi , and mr (cos εt/ cos εi ) sinφt = sinφi ,
where (εt , φt ) are corresponding refracted angles and mr is the real index of
refraction. (c) Find the angular distance between the sun and two bright spots on
its plane, referred to as sundogs, using a sun’s elevation angle of 30◦. Sketch a
diagram of sundogs showing the angular and azimuthal distances and the width
of red and violet colors.

5.11 The projection of a hexagonal column onto a horizontal plane is given by a
rectangle. Based on the Fraunhofer diffraction theory presented in Eq. (5.3.3),
show that the diffraction pattern for this aperture is proportional to

sin2(ak sin θ cosφ)

(ak sin θ cosφ)2
· sin2[(L/2)k sin θ sinφ]

[(L/2)k sin θ sinφ]2
,
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where L is the length of the column, a is the half-width, and other notations are
as defined in Eq. (5.3.3).

5.12 From the vector equation for geometric ray-tracing, show the individual compo-
nents for external reflection, two refractions, and one internal reflection based
on the directional cosine in polar coordinates.

5.13 Derive the adjusted real and imaginary refractive indices given in Eqs. (5.4.16
a,b) from Eqs. (5.4.9c), (5.4.13), and (5.4.14).

5.14 Show that the extinction cross section for a sample of randomly oriented hexago-
nal ice crystals of the same size is equal to half of the surface area of a hexagonal
cylinder. In carrying out this exercise, first derive the following expression for
the geometric cross section area of an arbitrarily oriented hexagon:

G(α, β) = 3
√

3a2 sinα/2 + 2aL cosα cos (π/6 − β),

whereα andβ are orientation angles of a hexagon, L is the length, and 2a denotes
the width.

5.15 Consider a sample of randomly oriented ice particles each of which has a plane
of symmetry and to which the law of reciprocity is applicable. (a) Derive the six
relationships for the scattering phase matrix elements by changing the signs of
(S3, S4), in Eq. (5.4.22a). (b) Derive the additional four relationships by changing
the signs of (U, V) in Eq. (5.4.29). (c) Prove that Eq. (5.4.32) is true.
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Chapter 6 Principles of Radiative Transfer in
Planetary Atmospheres

6.1 Introduction

6.1.1 A Brief History of Radiative Transfer

The subject of radiative transfer covers a variety of fields, including astrophysics,
applied physics and optics, planetary sciences, atmospheric sciences, and meteorol-
ogy, as well as various engineering disciplines. The notation that we use generally
follows that developed by astrophysicists who pioneered the field at the beginning
of the 20th century. The work of Schuster (1905) on the investigation of the trans-
fer of radiation through a foggy atmosphere appears to be the first paper discussing
the importance of multiple scattering. Schuster included the contribution of both
the upward and downward light beams in the formulation, as cited in Section 3.4.2.
This is the origin of the two-stream approximation for radiative transfer (Section
6.5.2). The two-beam concept was also employed by Schwarzschild (1906) to ex-
plain the limb darkening of the sun by substituting the two-beam solution into an
integral equation. In this manner, a continuous distribution of radiation fields could
be determined (see Section 4.6.3). In his effort to understand the physical struc-
ture of the interior of a star, Eddington (1916) developed an expansion of intensity
using two-term Legendre polynominals, leading to the so-called Eddington’s approx-
imation for radiative transfer (Section 6.5.2). Furthermore, Schwarzschild (1914)
introduced the concept that a medium could experience emission as well as absorp-
tion in the context of thermodynamic equilibrium, a subject concerning the transfer
of thermal infrared radiation in molecular atmospheres assuming scattering can be
neglected (Section 1.4.4). These pioneering papers in radiative transfer appear in
a book volume in which Schwarzschild’s two papers were translated into English
(Menzel, 1966).

Prior to 1950, the subject of radiative transfer was studied principally by astrophysi-
cists, although it was also an important research area in applied physics and nuclear
engineering associated with neutron transport. In his landmark book, Chandrasekhar
(1950) presented the subject of radiative transfer in plane-parallel atmospheres as a
branch of mathematical physics and developed numerous solution methods and tech-
niques, including the consideration of polarization. The principle of radiative transfer

257
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has also been extensively employed by planetary scientists, particularly in association
with the remote sensing of planetary atmospheres by means of spectroscopy and po-
larimetry (Chamberlain and Hunten, 1987). In the first edition of this text, we intro-
duced the subject of radiative transfer with reference to approximation methods and
their application to the remote sensing of atmospheric composition and structure.

The underlying principles of radiative transfer have been firmly established in the
papers and books cited earlier. However, new avenues, such as the analytic solution for
the four-stream approximation, the delta-function adjustment for the phase function,
and the efficient incorporation of line absorption in multiple scattering atmospheres,
have been explored in recent years. In addition, radiative transfer in clouds consisting
of nonspherical and spatially oriented ice crystals that occur in the upper troposphere,
and radiative transfer in clouds that are finite and inhomogeneous in nature are both
contemporary research subjects.

In Sections 1.1.4, 1.4.4, and 1.4.5, we introduced the concept of multiple scattering
and presented the basic equations for radiative transfer. We also derived the source
function in terms of the phase function and single-scattering albedo in Section 3.4.1.
Following these discussions, we should first discuss here the fundamentals and exact
solutions for radiative transfer, including the discrete-ordinates method, the principles
of invariance, and the adding method. We will prove that the last two are, in principle,
equivalent, and point out that the discrete-ordinates and adding methods are similar in
terms of numerical calculations. Subsequently, we present various approximations for
radiative transfer and the subject of radiative transfer including polarization. Finally,
we discuss a number of advanced topics not covered by the plane-parallel assumption.
In what follows, we present a number of fundamental equations for the plane-parallel
condition and define the associated physical terms.

6.1.2 Basic Equations for the Plane-Parallel Condition

On the basis of Eqs. (3.4.5) and (3.4.6), the basic scalar equation for the transfer of
radiation in plane-parallel atmospheres can be written in the form

μ
d I (τ,Ω)

dτ
= I (τ,Ω) − ω̃

4π

∫
4π

I (τ,Ω′)P(Ω,Ω′) d�′

− ω̃

4π
F� P(Ω,−Ω0)e−τ/μ0 + (1 − ω̃)B[T (τ )], (6.1.1)

where Ω = (μ, φ) and d� = dμ dφ (other notations are defined in Section 3.4.1).
As shown in Section 3.4.1, the phase function may be numerically expanded in

Legendre polynomials with a finite number of terms, N . And, in view of the definition
of the scattering angle in Eq. (3.4.7), the phase function may be expressed by

P(μ, φ;μ′, φ′) =
N∑
�=0

ω̃�P�[μμ
′ + (1 − μ2)1/2(1 − μ′2)1/2 cos(φ′ − φ)].

(6.1.2)
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In

Local Zenith

θ' θ

Out

π - Θ

φ' φ

Δφ

Figure 6.1 Relation of scattering (�), zenith (θ, θ ′), and azimuthal angles (φ, φ′) in a spherical
atmosphere. In the discussion of multiple scattering of a light beam, the notation � is usually used to
denote the scattering angle, while θ is used for the emergent angles. Note that in Chapter 5 dealing with
single-scattering processes, θ is employed as the scattering angle.

The geometric relationship of the scattering, zenith, and azimuthal angles is shown
in Fig. 6.1. The Legendre polynomials for the argument shown in Eq. (6.1.2) can
be expanded by the addition theorem for spherical harmonics (see Appendix E) to
give

P(μ, φ;μ′, φ′) =
N∑

m=0

N∑
�=m

ω̃m
� Pm

� (μ)Pm
� (μ′) cos m(φ′ − φ), (6.1.3a)

where

ω̃m
� = (2 − δ0,m)ω̃�

(�− m)!

(�+ m)!
(� = m, . . . , N , 0 ≤ m ≤ N ), (6.1.3b)

δ0,m =
{

1 if m = 0,
0 otherwise,

(6.1.3c)

and Pm
� denote the associated Legendre polynomials.

In view of the phase function expansion, we may also expand the intensity in the
form

I (τ ;μ, φ) =
N∑

m=0

I m(τ, μ) cos m(φ0 − φ). (6.1.4)

On inserting Eqs. (6.1.3a) and (6.1.4) into Eq. (6.1.1) and noting the orthogonality of
the associated Legendre polynomials, Eq. (6.1.1) splits up into (N + 1) independent
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equations:

μ
d I m(τ, μ)

dτ
= I m(τ, μ) − (1 + δ0,m)

ω̃

4

N∑
�=m

ω̃m
� Pm

� (μ)
∫ 1

−1
Pm
� (μ′)I m(τ, μ′) dμ′

− ω̃

4π

N∑
�=m

ω̃m
� Pm

� (μ)Pm
� (−μ0)F�e−τ/μ0

+ δ0,m(1 − ω̃)B[T (τ )] (m = 0, 1, . . . , N ). (6.1.5)

Each equation may be solved independently for I m . Consequently, from Eq. (6.1.4),
I may be determined.

For m = 0, the intensity expressed in Eq. (6.1.4) corresponds to the azimuthal-
independent case. We shall omit the superscript 0 for simplicity and rewrite
Eq. (6.1.5) to yield

μ
d I (τ, μ)

dτ
= I (τ, μ) − ω̃

2

N∑
�=0

ω̃�P�(μ)
∫ 1

−1
P�(μ

′)I (τ, μ′) dμ′

− ω̃

4π

N∑
�=0

ω̃�P�(μ)P�(−μ0)F�e−τ/μ0 + (1 − ω̃)B[T (τ )]. (6.1.6)

For scattering atmospheres, the diffuse upward and downward solar flux densities are
given, respectively, by

F↑
dif(τ ) =

∫ 2π

0

∫ 1

0
I (τ ;μ, φ)μ dμ dφ, μ ≥ 0, (6.1.7a)

F↓
dif(τ ) =

∫ 2π

0

∫ −1

0
I (τ ;μ, φ)μ dμ dφ, μ ≤ 0. (6.1.7b)

Thus, by noting that ∫ 2π

0
cos m(φ0 − φ) dφ = 0, m �= 0, (6.1.8)

in Eq. (6.1.4), we obtain the upward and downward solar flux densities as follows:

F↑↓
dif (τ ) = 2π

∫ ±1

0
I (τ, μ)μ dμ. (6.1.9)

Consequently, for calculations of solar fluxes in the atmosphere, the azimuthal de-
pendence of the intensity expansion can be neglected, and Eq. (6.1.6) is sufficient for
radiation studies.

Moreover, for azimuthal independent cases, we may define the phase function

P(μ,μ′) = 1

2π

∫ 2π

0
P(μ, φ;μ′, φ′) dφ′. (6.1.10)
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In view of the phase function expansion represented by Eq. (6.1.3a), we have

P(μ,μ′) =
N∑
�=0

ω̃�P�(μ)P�(μ
′). (6.1.11)

By virtue of this equation, the azimuthally independent transfer equation for diffuse
radiation expressed in Eq. (6.1.6) can be rewritten as follows:

μ
dI (τ, μ)

dτ
= I (τ, μ) − ω̃

2

∫ 1

−1
I (τ, μ′)P(μ,μ′) dμ′

− ω̃

4π
F� P(μ,−μ0)e−τ/μ0 + (1 − ω̃)B[T (τ )]. (6.1.12)

We use the positive and negativeμ’s to denote the upward and downward light beams,
as is evident in Eqs. (6.1.7a) and (6.1.7b). Hence the μ0’s that denote the direct solar
radiation component are negative values. However, a positive μ0 has been used for
convenience, and −μ0 represents the fact that the direct solar radiation is downward.
For the transfer of terrestrial infrared radiation in scattering atmospheres that are in
local thermodynamic equilibrium, the direct solar term involving F� does not appear
(Section 4.6).

For solar radiation, the equation of radiative transfer, however, only describes
the diffuse component, i.e., light beams scattered more than once, and so we must
include the direct component to account for the downward radiation. This is given by
the simple Beer–Bouguer–Lambert law for extinction in the form

F↓
dir(τ ) = μ0 F�e−τ/μ0 . (6.1.13)

The total upward and downward flux densities at a given τ are, respectively,

F↑(τ ) = F↑
dif(τ ) = 2π

∫ 1

0
I (τ, μ)μ dμ, (6.1.14a)

F↓(τ ) = F↓
dif(τ ) + F↓

dir(τ ) = 2π
∫ −1

0
I (τ, μ)μ dμ+ μ0 F�e−τ/μ0 . (6.1.14b)

The net flux density for a given level is, therefore,

F(τ ) = F↓(τ ) − F↑(τ ). (6.1.14c)

(See also Section 3.5 for a discussion of solar net flux and heating rate.) In the
presentation of multiple scattering in planetary atmospheres, the thermal infrared
emission term will be omitted.

6.2 Discrete-Ordinates Method for Radiative Transfer

The discrete-ordinates method for radiative transfer was elegantly developed by
Chandrasekhar (1950) for application to the transfer of radiation in planetary atmo-
spheres. Liou (1973a) demonstrated that the discrete-ordinates method is a useful and
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powerful method for the computation of radiation fields in aerosol and cloudy atmo-
spheres. The method involves the discretization of the basic radiative transfer equation
and the solution of a set of first-order differential equations. With the advance in nu-
merical techniques for solving differential equations, the discrete-ordinates method
has been found to be efficient and accurate for calculations of scattered intensities
and fluxes. In presenting the fundamentals of this method, we first discuss the case
involving isotropic scattering, including the law of diffuse reflection for semi-infinite
atmospheres. That is followed by the general solution for anisotropic scattering. Fi-
nally, we present the application of the discrete-ordinates method for radiative transfer
to nonhomogeneous atmospheres.

6.2.1 General Solution for Isotropic Scattering

For simplicity in introducing the discrete-ordinates method for radiative transfer,
we shall first assume isotropic scattering, i.e., the scattering phase function P(μ, φ;
μ′, φ′) = 1. In this case, the azimuthally independent intensity may be defined by

I (τ, μ) = 1

2π

∫ 2π

0
I (τ ;μ, φ) dφ. (6.2.1)

By neglecting the emission term, the equation of transfer given in Eq. (6.1.12) becomes

μ
d I (τ, μ)

dτ
= I (τ, μ) − ω̃

2

∫ 1

−1
I (τ, μ′) dμ′ − ω̃F�

4π
e−τ/μ0 . (6.2.2)

Now replacing the integral by a summation, according to Gauss’s formula (see Section
6.5.2 for definition) and setting Ii = I (τ, μi ), we obtain

μi
d Ii

dτ
= Ii − ω̃

2

∑
j

I j a j − ω̃F�
4π

e−τ/μ0 , i = −n, . . . , n, (6.2.3)

where � j denotes summation from −n to n, i.e., 2n terms.
The solution of Eq. (6.2.3) may be derived by seeking first the general solution

for the homogeneous part of the differential equation and then adding a particular
solution. For the homogeneous part of the differential equation, we set

Ii = gi e
−kτ , (6.2.4)

where gi and k are constants. Substituting Eq. (6.2.4) into the homogeneous part of
Eq. (6.2.3), we find

gi (1 + μi k) = ω̃

2

∑
j

a j g j . (6.2.5)

This implies that gi must be in the following form with a constant L:

gi = L/(1 + μi k). (6.2.6)
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With the expression of gi given by Eq. (6.2.6), we obtain the characteristic equation
for the determination of the eigenvalue k as follows:

1 = ω̃

2

∑
j

a j

1 + μ j k
= ω̃

n∑
j=1

a j

1 − μ2
j k

2
. (6.2.7)

For ω̃ < 1, Eq. (6.2.7) admits 2n distinct nonzero eigenvalues, which occur in pairs
as ± k j ( j = 1, . . . , n). Thus, the general solution for the homogeneous part is

Ii =
∑

j

L j

1 + μi k j
e−k j τ . (6.2.8)

For a particular solution, we assume the following form:

Ii = ω̃F�
4π

hi e
−τ/μ0 , (6.2.9)

where hi are constants. Inserting Eq. (6.2.9) into Eq. (6.2.3) leads to

hi (1 + μi/μ0) = ω̃

2

∑
j

a j h j + 1. (6.2.10)

Hence, the constants hi must be in the form

hi = γ /(1 + μi/μ0), (6.2.11)

where γ can be determined from Eq. (6.2.10) with the form

γ = 1

/[
1 − ω̃

n∑
j=1

a j

/(
1 − μ2

j

/
μ2

0

)]
. (6.2.12)

Adding the general and particular solutions, we obtain

Ii =
∑

j

L j

1 + μi k j
e−k j τ + ω̃F�γ

4π (1 + μi/μ0)
e−τ/μ0 , i = −n, . . . , n. (6.2.13)

The unknown coefficients of proportionality L j are determined from the boundary
conditions imposed.

The next step is to introduce Chandrasekhar’s H function to replace the constant γ .
Consider the function

T (z) = 1 − ω̃z

2

∑
j

a j

z + μ j
= 1 − ω̃z2

n∑
j=1

a j

z2 − μ2
j

, (6.2.14)

which is a polynomial of degree 2n in z. We then compare this equation with the
characteristic equation (6.2.7) and find that z = ±1/k j for T (z) = 0. Thus, we must
have

n∏
j=1

(
z2 − μ2

j

)
T (z) = const

n∏
j=1

(
1 − k2

j z
2
)
, (6.2.15)
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since the two polynomials of degree 2n have the same zeros. For z = 0, we find that

const =
n∏

j=1

(− μ2
j

)
.

Thus,

T (z) = (−1)nμ2
1 . . . μ

2
n

n∏
j=1

(
1 − k2

j z
2
)/ n∏

j=1

(
z2 − μ2

j

)
. (6.2.16)

The H function is defined by

H (μ) = 1

μ1 . . . μn

∏n
j=1(μ+ μ j )∏n
j=1(1 + k jμ)

. (6.2.17)

In terms of the H function, we have

γ = 1/T (μ0) = H (μ0)H (−μ0). (6.2.18)

It follows that the complete solution to the isotropic, nonconservative radiative transfer
equation in the nth approximation can now be expressed by

Ii =
∑

j

L j

1 + μi k j
e−k j τ + ω̃F� H (μ0)H (−μ0)

4π (1 + μi/μ0)
e−τ/μ0 . (6.2.19)

Figure 6.2 illustrates a distribution of eigenvalues for isotropic scattering with
a single-scattering albedo ω̃ = 0.95 using four discrete streams. The characteristic
equation denoted in Eq. (6.2.7) can be written in the form

f (k) = 1 − ω̃

n∑
j=1

a j

1 − μ2
j k

2
. (6.2.20)

For ω̃ �= 0, f (k j ) → ±∞, as k j → μ−1
j . In this figure, the same intervals between

each μ−1
j were divided so that lines across the zeros can be clearly identified. The

eigenvalues occur in pairs and there exists one, and only one, eigenvalue in each
interval that can be mathematically proven. The eigenvalue in the discrete-ordinates
method for radiative transfer may be physically interpreted as an effective extinction
coefficient that, when multiplied by the normal optical depth, represents an effective
optical path length in each discrete stream.

For conservative scattering, ω̃ = 1, we note that the characteristic equation (6.2.7)
admits two zero eigenvalues, namely, k2 = 0. Based on the relation

n∑
j=−n

a jμ
�
j =

∫ 1

−1
μ� dμ = 2δ�/(2�+ 1), δ� =

{
1 even,

0 odd,

we can show that

Ii = b(τ + μi + Q) (6.2.21)
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f(k)

2

1

0

−1

−2

−k k−μ−1 −μ−1
21 −μ−1

3
−μ−1

4   μ−1
4

  μ−1
3   μ−1

2   μ−1
1

Figure 6.2 A typical distribution of eigenvalues (intercepts on the k-axis) for isotropic scattering with
a single-scattering albedo of 0.95 for equal intervals between each μ−1

j ( j = ±1,±2,±3,±4).

satisfies the homogeneous part of the differential equation, where b and Q are two
arbitrary constants of integration. Thus, the complete solution to the isotropic radiative
transfer equation in the nth approximation may be written as follows:

Ii =
n−1∑

j=−(n−1)

L j

1 + μi k j
e−k j τ + (τ + μi )L−n + Ln + F� H (μ0)H (−μ0)

4π (1 + μi/μ0)
e−τ/μ0 .

(6.2.22)

6.2.2 The Law of Diffuse Reflection for Semi-infinite Isotropic
Scattering Atmospheres

Let us consider that there is no diffuse downward and upward radiation at the top
(τ = 0) and bottom (τ = τ1) of a semi-infinite atmosphere so that

I (0,−μi ) = 0, I (τ1,+μi ) = 0. (6.2.23)

Inserting the second boundary condition into the solution for the isotropic radiative
transfer equation in the nth approximation denoted in Eq. (6.2.19), we obtain

I (τ1,+μi ) = 0 =
−1∑

j=−n

L j

1 − μi k j
ek j τ1 , i = 1, . . . , n. (6.2.24)
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In order to satisfy the boundary condition for a semi-infinite atmosphere, we must
have L j = 0 ( j = −n, . . . ,−1). Thus,

I (τ, μi ) =
n∑

j=1

L j

1 + μi k j
e−k j τ + ω̃F� H (μ0)H (−μ0)

4π (1 + μi/μ0)
e−τ/μ0 . (6.2.25)

For convenience of analysis, we define

S(μ) =
n∑

j=1

L j

1 − k jμ
+ ω̃F� H (μ0)H (−μ0)

4π (1 − μ/μ0)
. (6.2.26)

Thus,

S(μi ) = I (0,−μi ) = 0, i = 1, . . . , n, (6.2.27)

and the reflected intensity

I (0, μ) = S(−μ). (6.2.28)

Moreover, we consider the function

(1 − μ/μ0)
n∏

j=1

(1 − k jμ)S(μ), (6.2.29)

which is a polynomial of degree n inμ and vanishes forμ = μi , i = 1, . . . , n. Hence,
this function must be equal to

∏n
j=1(μ− μ j ) apart from a constant value. We may

write

(1 − μ/μ0)
n∏

j=1

(1 − k jμ)S(μ) = const· (−1)n

μ1 . . . μn

n∏
j=1

(μ− μ j ). (6.2.30)

Upon employing the definition of the H function defined in Eq. (6.2.17), we obtain

S(μ) = const · H (−μ)/(1 − μ/μ0). (6.2.31)

To obtain the value of the constant, we note that

lim
μ→μ0

(1 − μ/μ0)S(μ) = const · H (−μ0). (6.2.32)

But from Eq. (6.2.26), we have

lim
μ→μ0

(1 − μ/μ0)S(μ) = 1

4π
ω̃F� H (μ0)H (−μ0). (6.2.33)

Comparing Eq. (6.2.32) and Eq. (6.2.33), we find that

const = 1

4π
ω̃F� H (μ0), (6.2.34)

and

S(μ) = ω̃F� H (μ0)H (−μ)

4π(1 − μ/μ0)
. (6.2.35)
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The reflected intensity for a semi-infinite, isotropic scattering atmosphere is then
given by

I (0, μ) = S(−μ) = 1

4π
ω̃F�

μ0

μ+ μ0
H (μ0)H (μ). (6.2.36)

Thus, the diffuse reflection can be expressed in terms of the H function. This simple
expression has been used to interpret the absorption line formation in cloudy atmo-
spheres of other planets. Exercise 6.1 illustrates the applicability of the law of diffuse
reflection.

6.2.3 General Solution for Anisotropic Scattering

To solve the general radiative transfer equation defined in Eq. (6.1.5), we first seek the
solution for the homogeneous part of the differential equation and then add a particular
solution for the inhomogeneous part. After some mathematical manipulation, the
equation can be presented in the form

I m(τ, μi ) =
∑

j

Lm
j ϕ

m
j (μi )e

−km
j τ + Zm(μi )e

−τ/μ0 , (6.2.37)

where the eigenfunction derived from the associated homogeneous system is

ϕm
j (μi ) = 1

1 + μi km
j

N∑
�=0

ω̃m
� ξ

m
� Pm

� (μi ), (6.2.38)

and the Z function is

Zm(μi ) = 1

4π
ω̃F� Pm

m (−μ0)
H m(μ0)H m(−μ0)

1 + μi/μ0

N∑
�=0

ω̃m
� ξ

m
�

(
1

μ0

)
Pm
� (μi ). (6.2.39)

The ξ function has the recursion form

ξm
�+1 = − 2�+ 1 − ω̃�

k(�− m + 1)
ξm
� − �+ m

�− m + 1
ξm
�−1. (6.2.40)

Finally, the eigenvalues km
j can be determined from the characteristic equation de-

scribed by

1 = ω̃

2

∑
j

a j

1 + μ j k

[
N∑

λ=m

ω̃m
λ ξ

m
λ (k)Pm

λ (μ j )Pm
m (μ j )

]
. (6.2.41)

Equation (6.2.41) is of order n in k2 and admits, in general, 2n distinct nonvanishing
eigenvalues that must occur in pairs. For strong anisotropic scattering having a sharp
phase function, a number of eigenvalues are normally contained in the interval (0,μ−1

n )
in which the eigenvalue pattern is highly unsymmetric and differs substantially from
that displayed in Fig. 6.2.
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The unknown coefficients Lm
j must be determined from the radiation boundary

conditions. For simple boundary conditions given by Eq. (6.2.23), and in view of the
intensity expansion in Eq. (6.1.4), we have

I m(0,−μi ) = 0

I m(τ1, μi ) = 0

}
for i = 1, . . . , n and m = 0, . . . , N . (6.2.42)

We may then determine Lm
j m times independently with the final result given by

Eq. (6.1.4). At this point, the analytic solution for Eq. (6.1.5) is complete.
The solution expressed in Eq. (6.2.37) is valid only for nonconservative scattering

because when ω̃ = 1, k2 = 0 will satisfy the characteristic equation for m = 0, and
ξ 0
� (k) becomes indefinite. Thus, a different solution must be derived. Since there is

no absorption for conservative scattering, the flux of radiation normal to the plane of
stratification is constant. It can be shown that the transfer equation admits a solution
of the form, for m = 0,

I 0(τ, μi ) =
n−1∑

j=−(n−1)

L0
jϕ

0
j (μi )e

−k0
j τ + [(1 − ω̃1/3)τ + μi ]L0

−n + L0
n + Z0(μi )

−τ/μ0 .

(6.2.43)

A mathematical procedure has been developed to compute the eigenvalues km
j

from a recurrence characteristic equation (Chandrasekhar, 1950). The eigenvectors
ϕm

j (μi ) may be expressed in terms of known functions, which contain the eigenvalues,
while the particular solution is related to the known H function. The characteristic
equation for the eigenvalues derived by Chandrasekhar is, however, mathematically
as well as numerically ambiguous. The method is unstable for highly peaked phase
functions, as pointed out by Liou (1973a), who discovered that the solution of the
characteristic equation may be formulated as an algebraic eigenvalue problem. Fur-
ther, Asano (1975) has shown that the degree of the characteristic equation for the
eigenvalues can be reduced by a factor of 2 because the solution for the eigenvalues
may be obtained by solving a characteristic polynomial of degree n for k2. Both of
these authors have expanded the matrix in polynomial form to solve the characteristic
equation for the eigenvalues corresponding to the associated homogeneous system of
the differential equations. However, the expansion in polynomial form is not a stable
numerical scheme for obtaining eigenvalues. To solve the algebraic eigenvalue prob-
lem, a well-developed numerical subroutine found in the IMSL User’s Manual (1987)
can be used to compute the eigenvalues and eigenvectors of a real general matrix in
connection with the discrete-ordinates method. Stamnes and Dale (1981) have shown
that azimuthally dependent scattered intensities can be computed accurately using
numerical methods.

In the discrete-ordinates method for radiative transfer, analytical solutions for dif-
fuse intensity are explicitly given for any optical depth. Thus, the internal radiation
field can be evaluated without additional computational effort. Moreover, analytic
two- and four-stream approximations can be developed from this method for flux cal-
culations. In the following, we present a matrix formulation of the discrete-ordinates
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method. We shall do so by considering the azimuth-independent component in the
diffuse intensity component. On replacing the integral with a summation and omitting
the emission term, Eq. (6.1.12) may be written in the form

μi
d I (τ, μi )

dτ
= I (τ, μi ) − ω̃

2

n∑
j=−n

I (τ, μ j )P(μi , μ j )a j

− ω̃

4π
F� P(μi ,−μ0)e−τ/μ0 , i = −n, . . . , n, (6.2.44)

where we may select the quadrature weights and points that satisfy a− j = a j (� j a j =
2) and μ− j = −μ j . To simplify this equation, we may define

ci, j = ω̃

2
a j P(μi , μ j ) = ω̃

2
a j

N∑
�=0

ω̃�P�(μi )P�(μ j ), j = −n, . . .− 0, . . . , n,

(6.2.45)

and

I (τ,−μ0) = e−τ/μ0 F�/2π, (6.2.46)

where we set a−0 = 1 and the notation −0 is used to be consistent with the definition
μ−0 = −μ0. On the basis of the definition of Legendre polynomials, we have

ci,− j = c−i, j , c−i,− j = ci, j , i �= −0. (6.2.47)

Moreover, we define

bi, j =
{

ci, j/μi , i �= j
(ci, j − 1)/μi , i = j.

(6.2.48)

It follows that bi, j = −b−i,− j , and bi,− j = −b−i, j . Using the preceding definitions,
Eq. (6.2.44) becomes

d I (τ, μi )

dτ
=
∑

j

bi, j I (τ, μ j ). (6.2.49)

We may separate the upward and downward intensities in the forms

d I (τ, μi )

dτ
=

n∑
j=1

bi, j I (τ, μi ) +
n∑

j=0

bi,− j I (τ,−μ j ), (6.2.50a)

d I (τ,−μi )

dτ
=

n∑
j=1

b−i, j I (τ, μ j ) +
n∑

j=0

b−i,− j I (τ,−μ j ). (6.2.50b)

In terms of a matrix representation for the homogeneous part, we write

d

dτ

[
I+

I−

]
=
[

b+ b−

−b− −b+

] [
I+

I−

]
, (6.2.51)
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where

I± =

⎡⎢⎢⎢⎣
I (τ,±μ1)

I (τ,±μ2)
...

I (τ,±μn)

⎤⎥⎥⎥⎦ , (6.2.52)

and b± denotes the elements associated with bi, j and bi,− j . Since Eq. (6.2.51) is a
first-order differential equation, we may seek a solution in the form

I± = ϕ±e−kτ . (6.2.53)

Substituting Eq. (6.2.53) into Eq. (6.2.51) leads to[
b+ b−

−b− −b+

] [
ϕ+

ϕ−

]
= −k

[
ϕ+

ϕ−

]
. (6.2.54)

Equation (6.2.54) may be solved as a standard eigenvalue problem. In the discrete-
ordinates method for radiative transfer, the eigenvalues associated with the differential
equations are all real and occur in pairs (±k), as pointed out previously. This property
can also be understood from the symmetry of the b matrix. Thus, the rank of the
matrix may be reduced by a factor of 2. To accomplish this reduction, we rewrite
Eq. (6.2.54) in the forms

b+ϕ+ + b−ϕ− = −kϕ+, (6.2.55a)

b−ϕ+ + b+ϕ− = kϕ−. (6.2.55b)

Adding and subtracting these two equations yields

(b+ − b−)(b+ + b−)(ϕ+ + ϕ−) = k2(ϕ+ + ϕ−). (6.2.56)

It follows that the eigenvectors of the original system, ϕ±, can now be obtained from
the reduced system, (ϕ+ + ϕ−), in terms of the eigenvalue k2.

As discussed by Chandrasekhar (1950), the Gaussian quadrature formula for the
complete angular range, −1 < μ < 1, is efficient and accurate for the discretization
of the basic radiative transfer equation. However, the Gaussian quadrature can also be
applied separately to the half-ranges, −1 < μ < 0 and 0 < μ < 1, which are referred
to as double-Gauss quadrature. The division appears to offer numerical advantages
when upward and downward radiation streams are treated separately.

6.2.4 Application to Nonhomogeneous Atmospheres

One of the fundamental difficulties in radiative transfer involves accounting for the
nonhomogeneous nature of the atmosphere, which cannot be represented by a single
single-scattering albedo ω̃ and a phase function P . The radiative transfer equation
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for diffuse intensity must be modified to include variations in ω̃ and P with optical
depth.

The discrete-ordinates method for radiative transfer can be applied to nonhomo-
geneous atmospheres by numerical means (Liou, 1975). In the following analy-
sis, consider the azimuthally independent transfer equation for diffuse radiation as
follows:

μ
d I (τ, μ)

dτ
= I (τ, μ) − ω̃(τ )

2

∫ 1

−1
I (τ, μ′)P(τ ;μ,μ′) dμ′

− ω̃(τ )

4π
P(τ ;μ,−μ0)F�e−τ/μ0 . (6.2.57)

Since ω̃ and P are functions of optical depth, analytic solutions for this equation are
generally not possible. We may, however, devise a numerical procedure to compute
the diffuse intensity in nonhomogeneous atmospheres.

As illustrated in Fig. 6.3, the atmosphere may be divided into N homogeneous
layers, each of which is characterized by a single-scattering albedo, a phase function,
and an extinction coefficient (or optical depth). The solution for the azimuthally
independent diffuse intensity (m = 0), as given in Eq. (6.2.37), may be written for
each individual layer � in the form

I (�)(τ, μi ) =
∑

j

L (�)
j ϕ

(�)
j (μi )e

−k(�)
j τ + Z (�)(μi )e

−τ/μ0 , � = 1, 2, . . . , N .

(6.2.58)

At the top of the atmosphere (TOA) (τ = 0), there is no downward diffuse flux, so
that

I (1)(0,−μi ) = 0. (6.2.59)

Within the atmosphere, the upward and downward intensities must be continuous at
the interface of each predivided layer. Thus, we have

I (�)(τ�, μi ) = I (�+1)(τ�, μi ), (6.2.60)

where τ� denotes the optical depth from TOA to the bottom of the � layer. At the
bottom of the atmosphere, surface reflectance must be accounted for. The reflection
of sunlight at the surface depends significantly on the latter’s optical property with
respect to the incident wavelength. For example, reflectance from vegetation and
soil is highly wavelength-dependent. Also, surface reflectance patterns are generally
anisotropic. For the computation of solar fluxes in the atmosphere, however, it is
appropriate to use a Lambertian surface. Let the surface albedo be rs . Then the upward
diffuse intensities that are reflected from the surface may be expressed by

I (N )(τN ,+μi ) = rs

π

[
F↓(τn) + μ0 F�e−τN /μ0

]
, (6.2.61)
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F

θ0

Local Zenith

rs

� τ�, ϖ�, P�

τ1  , ϖ1  , P11

Figure 6.3 A nonhomogeneous atmosphere is divided into � homogeneous layers with respect to the
single-scattering albedo ω̄, phase function P, and optical depth τ . F� denotes the solar flux at the top of
the atmosphere, θ0 is the solar zenith angle, and rs is the surface albedo.

where the downward diffuse flux reaching the surface is

F↓(τN ) = 2π
n∑

i=1

I (N )(τN ,−μi ) aiμi . (6.2.62)

Matching the required boundary and continuity conditions for the diffuse intensi-
ties, we obtain the following set of equations for the determination of the unknown
coefficients: ∑

j

L (1)
j ϕ

(1)
j (−μi ) = −Z (1)(−μi ), i = 1, . . . , n, (6.2.63a)
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∑
j

[
L (�)

j γ
(�)
j (μi ) + L (�+1)

j δ
(�+1)
j (μi )

]
= −(�)η(�+1)(μi ),

i = −n, . . . ,−1, 1, . . . , n, � = 1, 2, . . . , N − 1, (6.2.63b)∑
j

L (N )
j β

(N )
j (+μi ) = −ε(N )(+μi ), i = 1, . . . , n, (6.2.63c)

where

γ
(�)
j (μi ) = ϕ

(�)
j (μi )e

−k(�)
j τ� , (6.2.64a)

δ
(�+1)
j (μi ) = −ϕ(�+1)

j (μi )e
−k(�+1)

j τ� , (6.2.64b)

(�)η(�+1)(μi ) = [
Z (�)(μi ) − Z (�+1)(μi )

]
e−τ�/μ0 , (6.2.64c)

β
(N )
j (+μi ) =

[
ϕ

(N )
j (+μi ) − 2rs

n∑
i=1

ϕ
(N )
j (−μi )aiμi

]
e−k(N )

j τN , (6.2.64d)

ε(N )(+μi ) =
[

Z (N )(+μi ) − 2rs

n∑
i=1

Z (N )(−μi )aiμi − rs

π
μ0 F�

]
e−τN /μ0 .

(6.2.64e)

Thus, we have N × 2n equations for the determination of N × 2n unknown coef-
ficients, L(�)

j . Equations (6.2.63a)–(6.2.63e) may be expressed in terms of a matrix
representation in the form

ϕL = χ. (6.2.65a)

where

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L (1)
−n
...

L (1)
n

L (2)
−n
...

L (2)
n
...

L (N )
−n
...

L (N )
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, −χ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z (1)(−μn)
...

Z (1)(−μ1)
(1)η(2)(−μn)

...
(1)η(2)(+μn)

...

ε(N )(+μ1)
...

ε(N )(+μn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.2.65b)



274 6 Principles of Radiative Transfer in Planetary Atmospheres

and

ϕ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ
(1)
−n(−μn) · · · ϕ(1)

n (−μn) 0 · · · 0 0 · · · 0
...

...
...

...
...

...

ϕ
(1)
−n(−μ1) · · · ϕ(1)

n (−μ1) 0 · · · 0 0 · · · 0

γ
(1)
−n (−μn) · · · γ (1)

n (−μn) δ
(2)
−n(−μn) · · · δ(2)

n (−μn) 0 · · · 0
...

...
...

...
...

...

γ
(1)
−n (μn) · · · γ (1)

n (μn) δ
(2)
−n(μn) · · · δ(2)

n (μn) 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0 β
(N )
−n (μ1) · · · β (N )

n (μ1)
...

...
...

...
...

...

0 · · · 0 0 · · · 0 β
(N )
−n (μn) · · · β (N )

n (μn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.2.65c)

Azimuthally dependent components can be formulated in a likely manner to obtain
the angular intensity pattern. At this point, however, the discrete-ordinates method
for radiative transfer has not been applied to cases involving polarization.

6.3 Principles of Invariance

6.3.1 Definitions of Scattering Parameters

The principles-of-invariance method for radiative transfer seeks certain physical state-
ments and mathematical formulations regarding the fields of reflection and trans-
mission of light beams. In this method, the radiation field is not derived directly from
the transfer equation, as in the case of the discrete-ordinates method.

To introduce the principles of invariance and other multiple-scattering problems,
it is necessary to define and clarify a number of parameters that have been used
in the literature. We find it convenient to express the solutions to multiple-scattering
problems in terms of the reflection function R and transmission function T in the forms

Ir (0; μ, φ) = 1

π

∫ 2π

0

∫ 1

0
R(μ, φ;μ′, φ′)I�(−μ′, φ′)μ′dμ′dφ′, (6.3.1a)

It (τ1; −μ, φ) = 1

π

∫ 2π

0

∫ 1

0
T (μ, φ;μ′, φ′)I�(−μ′, φ′)μ′dμ′dφ′, (6.3.1b)

where I�(−μ, φ) represents the intensity of sunlight incident on the top of the scat-
tering layer. It suffices for most practical problems to approximate the intensity as
monodirectional in the form

I�(−μ, φ) = δ(μ− μ0)δ(φ − φ0)F�, (6.3.2)
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where δ is the Dirac delta function, and F� denotes the solar flux density in the
direction of the incident beam. Thus, from Eqs. (6.3.1a) and (6.3.1b), we have the
definitions of the reflection and transmission functions in the forms

R(μ, φ;μ0, φ0) = π Ir (0;μ, φ)/(μ0 F�), (6.3.3a)

T (μ, φ;μ0, φ0) = π It (τ1; −μ, φ)/(μ0 F�). (6.3.3b)

Note here that It (τ1; −μ, φ) represents the diffusely transmitted intensity, which does
not include the directly transmitted solar intensity F�e−τ1/μ0 . The direct component
represents the attenuation of the incident solar beam that penetrates to the level τ1. In
the case where polarization is considered, in which the four Stokes parameters are re-
quired, R and T are composed of four rows and four columns and are referred to as re-
flection and transmission matrices. The reflection and transmission functions also have
been referred to as reflection and transmission coefficients by Ambartzumian (1958)
and Sobolev (1975). In satellite remote sensing, a parameter called bidirectional
reflectance, which is analogous to the reflection function, is frequently used
(Section 7.3.1).

On the basis of Eqs. (6.3.3a) and (6.3.3b), we may define the reflection r (also
called the local or planetary albedo) and transmission (diffuse) t associated with
reflected (upward) and transmitted (downward) flux densities in the forms

r (μ0) = F↑
dif (0)

μ0 F�
= 1

π

∫ 2π

0

∫ 1

0
R(μ, φ;μ0, φ0) μ dμ dφ, (6.3.4a)

t(μ0) = F↓
dif (τ1)

μ0 F�
= 1

π

∫ 2π

0

∫ 1

0
T (μ, φ;μ0, φ0) μ dμ dφ. (6.3.4b)

Note that the direct transmission is simply e−τ1/μ0 . In a similar manner, absorption
of the atmosphere, bounded by the optical depths of 0 and τ1, can be obtained from
the net flux density divergence that includes the direct transmission component at
levels of 0 and τ1 and normalizes by μ0 F�. To find the flux of energy reflected by the
planet, we consider on the sphere a ring with radius a′ and width da′, where a′ is the
projected distance from the center of the disk, as shown in Fig. 6.4. Hence the flux
of energy reflected by this ring is given by r (μ0)F�2πa′ da′. But a′ = a sin θ0, and
da′ = a cos θ0 dθ0. Thus, we may write this flux of energy as 2πa2 F�r (μ0)μ0 dμ0.

The flux of energy reflected by the entire planet is then given by

f ↑(0) = 2πa2 F�
∫ 1

0
r (μ0) μ0 dμ0. (6.3.5a)

The spherical (or global) albedo, which represents the ratio of the flux of energy
reflected by the entire planet to the incident energy, is then given by

r̄ = f ↑(0)

πa2 F�
= 2

∫ 1

0
r (μ0) μ0 dμ0. (6.3.5b)
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Local Zenith

a
a'

θ0

Figure 6.4 Geometry for the definition of the spherical albedo, where a is the radius of the earth and
θ0 is the solar zenith angle.

Likewise, the global diffuse transmission is

t̄ = f ↓(τ1)

πa2 F�
= 2

∫ 1

0
t(μ0) μ0 dμ0 (6.3.5c)

and the global direct transmission is simply 2
∫ 1

0 e−τ1/μ0μ0 dμ0.

Chandrasekhar (1950) expressed the resulting laws of diffuse reflection and trans-
mission for a finite atmosphere with an optical depth τ1 in terms of the scattering
function S and the transmission function Tc (diffuse), which differ from the parameters
defined in Eqs. (6.3.1a) and (6.3.1b), in the forms

Ir (0;μ, φ) = 1

4πμ

∫ 2π

0

∫ 1

0
S(μ, φ;μ′, φ′)I�(−μ′, φ′) dμ′dφ′, (6.3.6a)

It (τ1; −μ, φ) = 1

4πμ

∫ 2π

0

∫ 1

0
Tc(μ, φ;μ′, φ′)I�(−μ′, φ′) dμ′dφ′,

(6.3.6b)

where Tc is used to differentiate from T defined previously. On substituting Eq. (6.3.2)
into Eqs. (6.3.6a) and (6.3.6b), we obtain the definitions of Chandrasekhar’s scattering
and transmission functions as follows:

S(μ, φ;μ0, φ0) = 4μμ0π Ir (0;μ, φ)/(μ0 F�), (6.3.7a)

Tc(μ, φ;μ0, φ0) = 4μμ0π It (τ1; −μ, φ)/(μ0 F�). (6.3.7b)

The introduction of the factor μ into the intensity parameters gives the required
symmetry of S and Tc in the pair of variables (μ, φ) and (μ0, φ0) such that

S(μ, φ;μ0, φ0) = S(μ0, φ0;μ, φ), (6.3.8a)

Tc(μ, φ;μ0, φ0) = Tc(μ0, φ0;μ, φ). (6.3.8b)
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6.3.2 Principles of Invariance for Semi-infinite Atmospheres

Consider a flux of parallel solar radiation F� in a direction defined by (−μ0, φ0)
(−μ0 denotes that the light beam is downward), incident on the outer boundary
of a semiinfinite, plane-parallel atmosphere. The principles of invariance originally
introduced by Ambartzumian (1942, 1958) stated that the diffuse reflected intensity
from such an atmosphere cannot be changed if a plane layer of finite optical depth
having the same optical properties as those of the original atmosphere is added.
Let the optical depth of the added layer be 	τ , which is so small that (	τ )2 can
be neglected when it is compared with 	τ itself. For simplicity in presenting the
principles of invariance, we shall neglect the azimuthal dependence of the diffuse
reflected intensity and define the reflection function in terms of the diffuse reflected
intensity at the top of a semi-infinite atmosphere I (0, μ) in the form [see Eq. 6.3.3a)]

R(μ,μ0) = π I (0, μ)/(μ0 F�). (6.3.9)

In reference to Fig. 6.5, the reduction or increase of the reflection function, after
the addition of an infinitesimal layer, can be defined by the following principles:

1. The differential attenuation of the reflection function in passing through 	τ

downward, based on the first term on the right-hand side of Eq. (3.4.2) (	τ = βe	z),
is given by

	R′
1 = −R(μ,μ0)	τ/μ0. (6.3.10)

The reflection function at τ = 0 is now (R +	R′
1), which is again attenuated in

passing through 	τ upward. Thus,

	R′′
1 = − [R(μ,μ0) +	R′

1

]
	τ/μ. (6.3.11)

{ μ' μ' μ'' μ'

P(μ, −μ0) P(−μ', −μ0) P(μ, μ') P(−μ', μ'')

Δτ

τ = 0

μ0 μ0 μ0 μ0 μ0 μμμ μ μ

R(μ, μ') R(μ', μ0) R(μ'', μ0) R(μ, μ')

I(0, μ)I(0, μ'')I(0, μ')I(0, μ)

τ = τ1
(1) (2) (3) (4) (5)

Figure 6.5 The principles of invariance for a semi-infinite, plane-parallel atmosphere. Theμ and −μ
denote the upward and downward directions, respectively. The black dots show that scattering events take
place in which the phase function is required. The directional representation in the argument is such that
the emergent angle is stated first and is then followed by the incident angle. A similar rule governs the
argument of the reflection function.
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The total attenuation is therefore

	R1 = 	R′
1 +	R′′

1 = −R(μ,μ0)

[
	τ

(
1

μ
+ 1

μ0

)
− 	τ 2

μμ0

]

≈ −R(μ,μ0)	τ

(
1

μ
+ 1

μ0

)
. (6.3.12)

2. However, 	τ may scatter directly in the direction μ a part of the solar flux F�
that is incident on it. Based on the second term on the right-hand side of Eq. (3.4.2),
we find the additional reflection as follows:

	R2 = π

μ0 F�

ω̃

4π
F� P(μ,−μ0)	τ/μ = ω̃

4
P(μ,−μ0)	τ/(μμ0). (6.3.13)

3. In addition, 	τ may scatter a part of the solar flux in the direction μ′ onto the
boundary τ = 0. The diffuse light beam then undergoes reflection from this surface,
and this additional reflection, analogous to the third term on the right-hand side of
Eq. (3.4.2), is given by

	R3 = π

μ0 F�

ω̃

4π

∫ 2π

0
dφ′

∫ 1

0
I (0, μ)P(−μ′,−μ0) dμ′	τ

μ′

= ω̃

2

	τ

μ0

∫ 1

0
R(μ,μ′)P(−μ′,−μ0) dμ′. (6.3.14)

4. Moreover, 	τ , after attenuating a fraction of the light beam diffusely reflected
from the boundary τ = 0 in the directionμ′, may scatter a part of it in the directionμ.
This incremental reflection is given by

	R4 = π

μ0 F�

ω̃

4π

∫ 2π

0
dφ′

∫ 1

0
P(μ,μ′)I (0, μ′) dμ′ 	τ

μ

= ω̃

2

	τ

μ

∫ 1

0
P(μ,μ′)R(μ′, μ0) dμ′. (6.3.15)

5. Finally, the unscattered component of the solar flux F�, which is reflected from
the boundary τ = 0 in the direction μ′′, is scattered by 	τ back to τ = 0 in the
different directionμ′, and again is reflected from the surface τ = 0 in the directionμ.
This additional contribution may be expressed by

	R5 = π

μ0 F�

ω̃

4π

∫ 2π

0
dφ′

∫ 1

0

I (0, μ)

F�
dμ′

×
[∫ 2π

0
dφ′′

∫ 1

0
P(−μ′, μ′′) I (0, μ′′) dμ′′

]
	τ

μ′

= ω̃	τ

∫ 1

0
R(μ,μ′) dμ′

[∫ 1

0
P(−μ′, μ′′)R(μ′′, μ0) dμ′′

]
. (6.3.16)
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On the basis of the principles of invariance stated above, we must have

	R1 +	R2 +	R3 +	R4 +	R5 = 0. (6.3.17)

It follows that

R(μ,μ0)

(
1

μ
+ 1

μ0

)
= ω̃

4μμ0

{
P(μ,−μ0) + 2μ

∫ 1

0
R(μ,μ′)P(−μ′,−μ0) dμ′

+ 2μ0

∫ 1

0
P(μ,μ′)R(μ′, μ0) dμ′ + 4μμ0

∫ 1

0
R(μ,μ′) dμ′

×
[∫ 1

0
P(−μ′, μ′′)R(μ′′, μ0) dμ′′

]}
. (6.3.18)

For a simple case of isotropic scattering, Eq. (6.3.18) becomes

R(μ,μ0)(μ+ μ0) = ω̃

4

[
1 + 2μ

∫ 1

0
R(μ,μ′) dμ′ + 2μ0

∫ 1

0
R(μ′, μ0) dμ′

+ 4μμ0

∫ 1

0
R(μ′, μ0) dμ′

∫ 1

0
R(μ,μ′′) dμ′′

]
= ω̃

4

[
1 + 2μ

∫ 1

0
R(μ,μ′) dμ′

] [
1 + 2μ0

∫ 1

0
R(μ′, μ0) dμ′

]
.

(6.3.19)

Inspection of Eq. (6.3.19) reveals that if it is satisfied by the function R(μ,μ0), it
must also be satisfied by the function R(μ0, μ). And since this equation can have only
one solution, we must have

R(μ,μ0) ≡ R(μ0, μ). (6.3.20)

With this relationship, which is stated here without a rigorous mathematical proof,
we may define

H (μ) = 1 + 2μ
∫ 1

0
R(μ,μ′) dμ′, (6.3.21)

such that

R(μ,μ0) = ω̃

4

H (μ)H (μ0)

μ+ μ0
. (6.3.22)

In reference to Section 6.2.2, we find that this expression is exactly the same as that
in Eq. (6.2.36). It is indeed the exact solution for the semi-infinite isotropic scattering
atmosphere. To examine the H function, we insert Eq. (6.3.22) into Eq. (6.3.21) to
obtain

H (μ) = 1 + ω̃

2
μH (μ)

∫ 1

0

H (μ′) dμ′

μ+ μ′ . (6.3.23)
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It is now clear that the solution of Eq. (6.3.19) is reduced to solving the H function. To
do so, we may select an approximate value and then carry out appropriate iterations.
We first seek the mean value of H in the form

H0 =
∫ 1

0
H (μ) dμ. (6.3.24)

From Eq. (6.3.23), we have∫ 1

0
H (μ) dμ = 1 + ω̃

2

∫ 1

0

∫ 1

0

H (μ)H (μ′)μ
μ+ μ′ dμ dμ′. (6.3.25)

On interchanging μ with μ′, Eq. (6.3.25) remains the same. Thus, we may write∫ 1

0
H (μ) dμ = 1 + ω̃

4

∫ 1

0

∫ 1

0

H (μ)H (μ′)μ
μ+ μ′ dμ dμ′

+ ω̃

4

∫ 1

0

∫ 1

0

H (μ)H (μ′)μ′

μ+ μ′ dμ dμ′

= 1 + ω̃

4

∫ 1

0
H (μ) dμ

∫ 1

0
H (μ′) dμ′. (6.3.26)

Consequently, we obtain

H0 = 1 + ω̃

4
H 2

0 . (6.3.27a)

This gives the solution of H0 in the form

H0 ≡
∫ 1

0
H (μ) dμ = 2

ω̃

(
1 − √

1 − ω̃
)
, (6.3.27b)

where the positive root is found to be unrealistic because the albedo value becomes
greater than unity (Exercise 6.2). To find H (μ) in Eq. (6.3.23), we may insert this
zero-order approximation into the right-hand side of this equation to obtain a first
approximation. The iterative procedure can be continued until a desirable degree of
accuracy is achieved.

6.3.3 Principles of Invariance for Finite Atmospheres

In the last section, we described the principles of invariance for a semi-infinite atmo-
sphere in which only the reflection function is involved. We now introduce the general
principles of invariance for a finite atmosphere developed by Chandrasekhar (1950).
Consistent with our previous discussions, we shall neglect the azimuthal dependence
of the scattering parameters and use the reflection and transmission functions defined
in Eqs. (6.3.3a) and (6.3.3b), instead of Chandrasekahr’s scattering and transmission
functions defined in Eqs. (6.3.7a) and (6.3.7b). We note, however, the relationships

S(μ,μ0) = 4μμ0 R(μ,μ0), (6.3.28a)

Tc(μ,μ0) = 4μμ0T (μ,μ0). (6.3.28b)
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Figure 6.6 The four principles of invariance for a finite atmosphere (see text for explanation).

In reference to Fig. 6.6, we find the following four principles governing the reflec-
tion and transmission of a light beam:

1. The reflected (upward) intensity at level τ is caused by the reflection of the
attenuated incident solar flux density F�e−τ/μ0 , and the downward diffuse intensity
incident on the surface τ from the finite optical depth (τ1 − τ ) below [see Eqs. (6.3.1a)
and (6.3.1b)]. Thus, we have

I (τ, μ) = (μ0 F�/π )e−τ/μ0 R(τ1 − τ ;μ,μ0)

+ 2
∫ 1

0
R(τ1 − τ ;μ,μ′)I (τ,−μ′) μ′dμ′. (6.3.29)

2. The diffusely transmitted (downward) intensity at level τ is due to the trans-
mission of the incident solar flux density by the optical depth τ above, and the
reflection of the upward diffuse intensity incident on the surface τ from below. Thus,
we find

I (τ,−μ) = (μ0 F�/π )T (τ ;μ,μ0) + 2
∫ 1

0
R(τ ;μ,μ′)I (τ, μ′) μ′dμ′. (6.3.30)
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3. The reflected (upward) intensity at the top of the finite atmosphere (τ = 0) is a
result of the reflection by the optical depth τ of the atmosphere plus the transmission
of the upward diffuse and direct intensities incident on the surface τ from below.
Thus, we have

I (0, μ) = (μ0 F�/π )R(τ ;μ,μ0) + 2
∫ 1

0
T (τ ;μ,μ′)I (τ, μ′) μ′dμ′ + e−τ/μ I (τ, μ).

(6.3.31)

4. The diffusely transmitted (downward) intensity at the bottom of the finite atmo-
sphere (τ = τ1) is equivalent to the transmission of the attenuated incident solar flux
density plus the transmission of the downward diffuse and direct intensities incident
on the surface τ from above. Thus, we find

I (τ1,−μ) = (μ0 F�/π )e−τ/μ0 T (τ1 − τ ;μ,μ0)

+ 2
∫ 1

0
T (τ1 − τ ;μ,μ′)I (τ1,−μ′) μ′dμ′ + e−(τ1−τ )/μ I (τ,−μ).

(6.3.32)

In order to obtain the reflection and transmission functions of a finite atmosphere
with an optical depth of τ1, we first differentiate Eqs. (6.3.29)–(6.3.32) with respect
to τ and evaluate the values at τ = 0 and τ1, where the boundary conditions stated in
Eq. (6.2.23) can be applied. After differentiation with respect to τ , we set τ = 0 and
τ = τ1 for principles 1 and 4 and for principles 2 and 3, respectively, to obtain the
equations

d I (τ, μ)

dτ

∣∣∣∣
τ=0

= (μ0 F�/π )

[
−∂R(τ1;μ,μ0)

∂τ1
− 1

μ0
R(τ1;μ,μ0)

]

+ 2
∫ 1

0
μ′dμ′ R(τ1;μ,μ′)

d I (τ,−μ′)
dτ

∣∣∣∣
τ=0

, (6.3.33)

d I (τ,−μ)

dτ

∣∣∣∣
τ=τ1

= (μ0 F�/π )
∂T (τ1;μ,μ0)

∂τ1

+ 2
∫ 1

0
μ′dμ′ R(τ1;μ,μ′)

d I (τ, μ′)
dτ

∣∣∣∣
τ=τ1

, (6.3.34)

d I (0, μ)

dτ

∣∣∣∣
τ=τ1

= 0 = (μ0 F�/π )
∂R(τ1;μ,μ0)

∂τ1

+ 2
∫ 1

0
μ′dμ′ T (τ1;μ,μ′)

d I (τ, μ′)
dτ

∣∣∣∣
τ=τ1

+ e−τ1/μ
d I (τ, μ)

dτ

∣∣∣∣
τ=τ1

,

(6.3.35)
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d I (τ1,−μ)

dτ

∣∣∣∣
τ=0

= 0 = (μ0 F�/π )

[
−∂T (τ1;μ,μ0)

∂τ1
− 1

μ0
T (τ1;μ,μ0)

]

+ 2
∫ 1

0
μ′dμ′T (τ1;μ,μ′)

d I (τ,−μ′)
dτ

∣∣∣∣
τ=0

+ e−τ1/μ
d I (τ,−μ)

dτ

∣∣∣∣
τ=0

. (6.3.36)

To eliminate the derivatives of the intensity, we utilize the azimuthally independent
transfer equation [Eq. (6.1.12)] to obtain

μ
d I (τ, μ)

dτ

∣∣∣∣
τ=0

= (μ0 F�/π )R(τ1;μ,μ0) − ω̃

2

∫ 1

0
P(μ,μ′′)I (0, μ′′) dμ′′

− ω̃

4π
F� P(μ,−μ0), (6.3.37)

−μd I (τ,−μ)

dτ

∣∣∣∣
τ=0

= 0 − ω̃

2

∫ 1

0
P(−μ,μ′′)I (0, μ′′) dμ′′ − ω̃

4π
F� P(−μ,−μ0),

(6.3.38)

μ
d I (τ, μ)

dτ

∣∣∣∣
τ=τ1

= 0 − ω̃

2

∫ 1

0
P(μ,−μ′′)I (τ1,−μ′′) dμ′′

− ω̃

4π
F� P(μ,−μ0)e−τ1/μ0 , (6.3.39)

−μd I (τ,−μ)

dτ

∣∣∣∣
τ=τ1

= (μ0 F�/π )T (τ1;μ,μ0) − ω̃

2

∫ 1

0
P(−μ,−μ′′)I (τ1,−μ′′) dμ′′

− ω̃

4π
F� P(−μ,−μ0)e−τ1/μ0 . (6.3.40)

In these four equations, we note that μ ≥ 0. We also note that π I (0, μ) = μ0 F� ·
R(τ1;μ,μ0), and π I (τ1,−μ) = μ0 F�T (τ1;μ,μ0). Upon substituting Eqs. (6.3.37)
and (6.3.38), (6.3.39) and (6.3.40), (6.3.39) and (6.3.38), and (6.3.38) into Eqs.
(6.3.33)–(6.3.36), respectively, and rearranging the terms, we obtain

∂R(τ1;μ,μ0)

∂τ1
= −

(
1

μ
+ 1

μ0

)
R(τ1;μ,μ0) + ω̃

4μμ0
P(μ,−μ0)

+ ω̃

2μ

∫ 1

0
P(μ,μ′′)R(τ1;μ′′, μ0) dμ′′

+ ω̃

2μ0

∫ 1

0
R(τ1;μ,μ′)P(−μ′,−μ0) dμ′

+ ω̃

∫ 1

0
R(τ1;μ,μ′) dμ′

[∫ 1

0
P(−μ′, μ′′)R(τ1;μ′′, μ0) dμ′′

]
,

(6.3.41)
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∂T (τ1;μ,μ0)

∂τ1
= − 1

μ
T (τ1;μ,μ0) + ω̃

4μμ0
e−τ1/μ0 P(μ,−μ0)

+ ω̃

2μ

∫ 1

0
P(−μ,−μ′′)T (τ1;μ′′, μ0) dμ′′

+ ω̃

2μ0
e−τ1/μ0

∫ 1

0
R(τ1;μ,μ′)P(μ′,−μ0) dμ′

+ ω̃

∫ 1

0
R(τ1;μ,μ′) dμ′

[∫ 1

0
P(μ′,−μ′′)T (τ1;μ′′, μ0) dμ′′

]
,

(6.3.42)

∂R(τ1;μ,μ0)

∂τ1
= ω̃

4μμ0
exp

[
−τ
(

1

μ
+ 1

μ0

)]
P(μ,−μ0)

+ ω̃

2μ
e−τ1/μ

∫ 1

0
P(μ,−μ′′)T (τ1;μ′′, μ0) dμ′′

+ ω̃

2μ0
e−τ1/μ0

∫ 1

0
T (τ1;μ,μ′)P(μ′,−μ0) dμ′

+ ω̃

∫ 1

0
T (τ1;μ,μ′) dμ′

[∫ 1

0
P(μ′,−μ′′)T (τ1;μ′′, μ0) dμ′′

]
,

(6.3.43)
∂T (τ1;μ,μ0)

∂τ1
= − 1

μ0
T (τ1;μ,μ0) + ω̃

4μμ0
e−τ1/μP(−μ,−μ0)

+ ω̃

2μ
e−τ1/μ

∫ 1

0
P(−μ,μ′′)R(τ1;μ′′, μ0) dμ′′

+ ω̃

2μ0

∫ 1

0
T (τ1;μ,μ′)P(−μ′,−μ0) dμ′

+ ω̃

∫ 1

0
T (τ1;μ,μ′) dμ′

[∫ 1

0
P(−μ′, μ′′)R(τ1;μ′′, μ0) dμ′′

]
.

(6.3.44)

Equations (6.3.41)–(6.3.44) represent four nonlinear integral equations that govern
the complete radiation field at τ = 0 and τ = τ1 in plane-parallel atmospheres. In
the preceding analysis, we neglected the azimuthal dependence on the reflection,
transmission, and phase-function terms in the derivation of the four integral equations.
However, it is simple to includeφ andφ′ terms in these four integral equations. Further,
we note that as τ1 → ∞, ∂R/∂τ1 → 0, and Eq. (6.3.41) reduces to Eq. (6.3.18) that
was derived for a semi-infinite atmosphere. Equations (6.3.41) and (6.3.44) may be
obtained by adding a thin layer (	τ � 1) to the top of a finite atmosphere following
the principles outlined in Section 6.3.2. In addition, by adding a thin layer to the bottom
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of a finite atmosphere, Eqs. (6.3.42) and (6.3.43) may be derived. The addition of thin
layers to a finite atmosphere is referred to as invariant imbedding (Bellman et al.,
1963), which is equivalent to the principles of invariance (Exercise 6.3).

6.3.4 The X and Y Functions

In Section 6.3.2, we showed that the reflection function of a semi-infinite atmosphere
for isotropic scattering is given by the H function. In the following, we wish to
demonstrate that the reflection and transmission functions of a finite atmosphere for
isotropic scattering are governed by the X and Y functions. In the case of isotropic
scattering, Eqs. (6.3.41)–(6.3.44) become

∂R(τ1;μ,μ0)

∂τ1
+
(

1

μ
+ 1

μ0

)
R(τ1;μ,μ0)

= ω̃

4μμ0

[
1 + 2μ0

∫ 1

0
R(τ1;μ′′, μ0) dμ′′ + 2μ

∫ 1

0
R(τ1;μ,μ′) dμ′

+ 4μμ0

∫ 1

0
R(τ1;μ,μ′)

∫ 1

0
R(τ1;μ′′, μ0) dμ′′

]
, (6.3.45)

∂R(τ1;μ,μ0)

∂τ1
= ω̃

4μμ0

[
exp

{
−τ1

(
1

μ
+ 1

μ0

)}
+ 2μ0e−τ1/μ

∫ 1

0
T (τ1;μ′′, μ0)dμ′′

+ 2μe−τ1/μ0

∫ 1

0
T (τ1;μ,μ′) dμ′

+ 4μμ0

∫ 1

0
T (τ1;μ,μ′) dμ′

∫ 1

0
T (τ1;μ′′, μ0) dμ′′

]
, (6.3.46)

∂T (τ1;μ,μ0)

∂τ1
+ 1

μ
T (τ1;μ,μ0) = ω̃

4μμ0

[
e−τ1/μ0 + 2μ0

∫ 1

0
T (τ1;μ′′, μ0) dμ′′

+ 2μe−τ1/μ0

∫ 1

0
R(τ1;μ,μ′) dμ′

+ 4μμ0

∫ 1

0
R(τ1;μ,μ′) dμ′

∫ 1

0
T (τ1;μ′′, μ0) dμ′′

]
, (6.3.47)

∂T (τ1;μ,μ0)

∂τ1
+ 1

μ0
T (τ1;μ,μ0) = ω̃

4μμ0

[
e−τ1/μ0 + 2μ

∫ 1

0
T (τ1;μ,μ′) dμ′

+ 2μ0e−τ1/μ0

∫ 1

0
R(τ1;μ′′, μ0) dμ′′

+ 4μμ0

∫ 1

0
T (τ1;μ,μ′) dμ′

∫ 1

0
R(τ1;μ′′, μ0) dμ′′

]
. (6.3.48)
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From Eqs. (6.3.45)–(6.3.48), the integral terms may be expressed in terms of
Chandrasekhar’s X and Y functions in the forms

X (μ) = 1 + 2μ
∫ 1

0
R(τ1;μ,μ′) dμ′, (6.3.49)

Y (μ) = e−τ1/μ + 2μ
∫ 1

0
T (τ1;μ,μ′) dμ′. (6.3.50)

It follows that Eqs. (6.3.45)–(6.3.48) may be rewritten as follows:

∂R(τ1;μ,μ0)

∂τ1
+
(

1

μ
+ 1

μ0

)
R(τ1;μ,μ0) = ω̃

4μμ0
X (μ)X (μ0), (6.3.51)

∂R(τ1;μ,μ0)

∂τ1
= ω̃

4μμ0
Y (μ)Y (μ0), (6.3.52)

∂T (τ1;μ,μ0)

∂τ1
+ 1

μ
T (τ1;μ,μ0) = ω̃

4μμ0
X (μ)Y (μ0), (6.3.53)

∂T (τ1;μ,μ0)

∂τ1
+ 1

μ0
T (τ1;μ,μ0) = ω̃

4μμ0
X (μ0)Y (μ). (6.3.54)

By eliminating ∂R/∂τ1 from Eqs. (6.3.51) and (6.3.52), we obtain(
1

μ
+ 1

μ0

)
R(τ1;μ,μ0) = ω̃

4μμ0
[X (μ)X (μ0) − Y (μ)Y (μ0)], (6.3.55)

and by eliminating ∂T/∂τ1 from Eqs. (6.3.53) and (6.3.54), we have(
1

μ
− 1

μ0

)
T (τ1;μ,μ0) = ω̃

4μμ0
[X (μ)Y (μ0) − X (μ0)Y (μ)]. (6.3.56)

Inserting Eqs. (6.3.55) and (6.3.56) into Eqs. (6.3.49) and (6.3.50), we find

X (μ) = 1 + μ

∫ 1

0

�(μ′)
μ+ μ′ [X (μ)X (μ′) − Y (μ)Y (μ′)] dμ′, (6.3.57)

Y (μ) = e−τ1/μ + μ

∫ 1

0

�(μ′)
μ′ − μ

[X (μ)Y (μ′) − X (μ′)Y (μ)] dμ′, (6.3.58)

where the characteristic function�(μ′) = ω̃/2. Thus, the exact solutions of the reflec-
tion and transmission functions are now governed by the X and Y functions, solutions
of the two nonlinear integral equations. For a semi-infinite atmosphere Y (μ) = 0 and
the X function defined in Eqs. (6.3.49) and (6.3.57) is equivalent to the H function
introduced in Eqs. (6.3.21) and (6.3.23). The characteristic function �(μ′) differs
from problem to problem and has a simple algebraic form for the Rayleigh scatter-
ing phase function. For a more general case involving Lorenz–Mie scattering phase
functions, however, the analytic characteristic functions�(μ′) appear to be extremely
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complicated and have not been derived for practical applications. The iteration pro-
cedure may be used to solve the preceding nonlinear integral equations for the X
and Y functions. Extensive tables of these two functions for conservative and non-
conservative isotropic scattering, as well as anisotropic phase functions, with as many
as three terms, have been constructed.

6.3.5 Inclusion of Surface Reflection

For planetary applications, surface reflection plays an important role in reflected and
transmitted sunlight. In this section, we introduce the inclusion of surface reflection in
the scattered intensity and flux density equations. The ground is considered to reflect
according to Lambert’s law, with a reflectivity (or surface albedo) of rs . Under this
condition, the diffuse upward intensity is

I (τ1;μ, φ) = Is = const. (6.3.59)

Let I ∗(0;μ, φ) represent the reflected intensity including the contribution of surface
reflection, and in reference to Fig. 6.7a, we find

I ∗(0;μ, φ) = I (0;μ, φ) + 1

π

∫ 2π

0

∫ 1

0
T (μ, φ;μ′, φ′)Isμ

′dμ′dφ′ + Ise−τ1/μ.

(6.3.60)

The last two terms represent, respectively, the diffuse and direct transmission of the
upward isotropic intensity Is .

Equation (6.3.60) can be rewritten in terms of the reflection function and the direct
and diffuse transmission defined in Section 6.3.1 in the form

I ∗(0;μ, φ) = μ0 F� R(μ, φ;μ0, φ0) + Isγ (μ), (6.3.61)

where

γ (μ) = e−τ1/μ + t(μ), (6.3.62)

and the diffuse transmission t(μ) is defined in Eq. (6.3.4b). The principle of reciprocity
involving T (μ, φ;μ′, φ′) = T (μ′, φ′;μ, φ) is used to obtain t(μ).

The upward isotropic intensity from the surface also will be reflected by the atmo-
sphere and will contribute to the downward intensity by an additional amount (see
Fig. 6.7b)

I R
s (−μ) = 1

π

∫ 2π

0

∫ 1

0
R(μ, φ;μ′, φ′)Isμ

′ dμ′ dφ′ = Isr (μ), (6.3.63)

where again the principle of reciprocity, R(μ, φ;μ′, φ′) = R(μ′, φ′;μ, φ), is used.
Thus, the total transmitted intensity, including the ground contribution, is given by

I ∗(τ1; −μ, φ) = I (τ1; −μ, φ) + I R
s (−μ)

= μ0 F�T (μ, φ;μ0, φ0) + Isr (μ). (6.3.64)
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(μ,φ)

τ1
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(a) Upward diffuse intensity

(b) Reflection of upward isotropic intensity

(c) Downward flux density                    Upward flux density

R

Figure 6.7 Scattering configuration for the inclusion of surface reflection: (a) upward diffuse intensity;
(b) reflection of upward isotropic intensity; and (c) downward flux density and upward flux density.

We now require an equation to determine Is . Since the upward flux density must be
equal to the downward flux density multiplied by the surface albedo rs , we have

π Is = rs × downward flux density. (6.3.65)

The downward flux density includes three components, as shown in Fig. 6.7c:

1. Direct transmission component:

μ0 F�e−τ1/μ0 .

2. Diffuse transmission component:∫ 2π

0

∫ 1

0
I (τ1; −μ, φ)μ dμ dφ =

∫ 2π

0

∫ 1

0
(μ0 F�/π )T (μ, φ;μ0, φ0)μ dμ dφ

= μ0 F�t(μ0).
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3. The component of Is reflected by the atmosphere:∫ 2π

0

∫ 1

0
I R
s (−μ)μ dμ dφ = π Isr̄ .

From Eq. (6.3.65), we have the following equality at τ = τ1:

π Is = rs
[
μ0 F�e−τ1/μ0 + μ0 F�t(μ0) + π Isr̄

]
. (6.3.66)

We then rearrange these terms to yield

Is = rs

1 − rsr̄

μ0 F�
π

γ (μ0). (6.3.67)

It follows from Eqs. (6.3.61) and (6.3.64) that the reflected and transmitted intensities,
including the ground reflection, are, respectively, given by

I ∗(0;μ, φ) = I (0;μ, φ) + rs

1 − rsr̄

μ0 F�
π

γ (μ)γ (μ0), (6.3.68a)

I ∗(τ1;μ, φ) = I (τ1; −μ, φ) + rs

1 − rsr̄

μ0 F�
π

γ (μ0)r (μ). (6.3.68b)

To obtain the reflected and transmitted flux densities, we may perform an integra-
tion of the intensity over the solid angle according to Eqs. (6.1.7a) and (6.1.7b) to
yield

F∗(0) = F(0) + rs

1 − rsr̄
μ0 F�γ (μ0)γ̄ , (6.3.69a)

F∗(τ1) = F(τ1) + rs

1 − rsr̄
μ0 F�γ (μ0)r̄ , (6.3.69b)

where

γ̄ = t̄ + 2
∫ 1

0
e−τ1/μ0μ0 dμ0, (6.3.70)

and t̄ and r̄ are defined in Eqs. (6.3.5b) and (6.3.5c). Further, by dividing μ0 F� and
adding e−τ1/μ0 to both sides in Eq. (6.3.69b), the preceding two equations become

r∗(μ0) = r (μ0) + f (μ0)γ̄ , (6.3.71a)

γ ∗(μ0) = γ (μ0) + f (μ0)r̄ , (6.3.71b)

where

f (μ0) = rs

1 − rsr̄
γ (μ0). (6.3.72)

Exercise 6.4 requires the derivation of Eqs. (6.3.71a) and (6.3.71b) by means of the
ray-tracing technique.
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6.4 Adding Method for Radiative Transfer

The principle of the adding method for radiative transfer was stated by Stokes (1862)
in a problem dealing with reflection and transmission by glass plates. Peebles and
Plesset (1951) developed the adding theory for application to gamma-ray transfer.
van de Hulst (1980) presented a set of adding equations for multiple scattering that
is now commonly used. Hansen (1971) applied the adding/doubling method to the
interpretation of intensity and polarization of sunlight reflected from clouds. Takano
and Liou (1989b) modified the adding method for radiative transfer by including
polarization for application to randomly and horizontally oriented ice crystals. The
exact adding/doubling method and its approximations appear to be a powerful tool
for multiple scattering calculations, particularly with reference to remote-sensing
applications from the ground, the air, and space.

6.4.1 Definitions of Physical Parameters

To introduce the adding principle for radiative transfer, we shall first define the reflec-
tion function R and the transmission function T . Consider a light beam incident from
above, as shown in Fig. 6.8. The reflected and transmitted intensities of this beam
may be expressed in terms of the incident intensity in the forms

Iout,top(μ, φ) = 1

π

∫ 2π

0

∫ 1

0
R(μ, φ; μ′, φ′)Iin,top(μ′, φ′)μ′ dμ′ dφ′, (6.4.1a)

Iout,bottom(μ, φ) = 1

π

∫ 2π

0

∫ 1

0
T (μ, φ; μ′, φ′)Iin,top(μ′φ′)μ′ dμ′ dφ′. (6.4.1b)

Radiation from above

Radiation from below

Iout,top(μ,φ)Iin,top(μ',φ')

Iout, bottom (μ,φ) Iout, bottom (μ,φ) Iin, bottom (μ',φ')

Iout,top(μ,φ)

T(μ,φ; μ',φ')

R(μ,φ; μ',φ')

R*(μ,φ; μ',φ')

T*(μ,φ; μ',φ')

Figure 6.8 Configurations for radiation incident from above and below, and the definitions of the
reflection and transmission functions for the adding method.
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Likewise, if the light beam is incident from below (Fig. 6.8) we may write

Iout,bottom(μ, φ) = 1

π

∫ 2π

0

∫ 1

0
R∗(μ, φ; μ′, φ′)Iin,bottom(μ′, φ′)μ′ dμ′ dφ′, (6.4.2a)

Iout,top(μ, φ) = 1

π

∫ 2π

0

∫ 1

0
T ∗(μ, φ; μ′, φ′)Iin,bottom(μ′, φ′)μ′ dμ′ dφ′. (6.4.2b)

Equations (6.4.2a) and (6.4.2b) define R∗ and T ∗, respectively, where the superscript∗

denotes that the light beam comes from below.
Consider now the transfer of monochromatic solar radiation. The incident solar

intensity, in the present notation, may be written in the form

Iin,top(−μ0, φ0) = δ(μ′ − μ0)δ(φ′ − φ0)F�, (6.4.3)

where δ is the Dirac delta function. Using Eq. (6.4.3), the reflection and transmission
functions defined in Eqs. (6.4.1a) and (6.4.1b) are given by

R(μ, φ; μ0, φ0) = π Iout,top(μ, φ)/μ0 F�, (6.4.4a)

T (μ, φ; μ0, φ0) = π Iout,bottom(μ, φ)/μ0 F�. (6.4.4b)

Under the single-scattering approximation and neglecting the emission contribu-
tion, the source function defined in Eq. (6.1.1) may be written in the form [see also
Eq. (3.4.10)]

J (τ ;μ, φ) = ω̃

4π
F� P(μ, φ; −μ0, φ0)e−τ/μ0 . (6.4.5)

Assuming that there are no diffuse intensities from the top and bottom of the layer
with an optical depth 	τ , then the radiation boundary conditions are as follows:

Iin,top(μ, φ) = 0,

Iin,bottom(μ, φ) = 0. (6.4.6)

Subject to these boundary conditions, the reflected and transmitted diffuse intensities
due to single scattering can be derived directly from the basic radiative transfer equa-
tion. Thus, the solutions for the reflection and transmission functions for an optical
depth 	τ are given by

R(μ, φ; μ0, φ0) = ω̃

4(μ+ μ0)
P(μ, φ; −μ0, φ0)

{
1 − exp

[
−	τ

(
1

μ
+ 1

μ0

)]}
,

(6.4.7a)

T (μ, φ; μ0, φ0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω̃

4(μ− μ0)
P(−μ, φ; −μ0, φ0)(e−	τ/μ − e−	τ/μ0 ), μ �= μ0

ω̃	τ

4μ2
0

P(−μ, φ; −μ0, φ0)e−	τ/μ0 , μ = μ0.

(6.4.7b)
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Consider a layer in which	τ is very small (e.g.,	τ ≈ 10−8). Equations (6.4.7a) and
(6.4.7b) may then be further simplified to give

R(μ, φ; μ0, φ0) = ω̃	τ

4μμ0
P(μ, φ; −μ0, φ0), (6.4.8a)

T (μ, φ; μ0, φ0) = ω̃	τ

4μμ0
P(−μ, φ; −μ0, φ0). (6.4.8b)

Equations (6.4.7a) and (6.4.8a) were presented in the first subsection of Section 3.4.2.
For a thin homogeneous layer, the reflection and transmission functions are the same
regardless of whether the light beam comes from above or below. Thus, R∗ = R
and T ∗ = T . However, when we proceed with the adding of layers, the reflection
and transmission functions for combined layers will depend on the direction of the
incoming light beam.

6.4.2 Adding Equations

In reference to Fig. 6.9, consider two layers, one on top of the other. Let the reflection
and total (direct and diffuse) transmission functions be denoted by R1 and T̃1 for
the first layer and R2 and T̃2 for the second layer. We further define D̃ and U for
the combined total transmission and reflection functions between layers 1 and 2.
In principle, the light beam may undergo an infinite number of scattering events.
Accounting for multiple reflections of the light beam in the two layers, as shown in
Fig. 6.9, the combined reflection and transmission functions are given by

R12 = R1 + T̃ ∗
1 R2T̃1 + T̃ ∗

1 R2 R∗
1 R2T̃1 + T̃ ∗

1 R2 R∗
1 R2 R∗

1 R2T̃1 + . . .

= R1 + T̃ ∗
1 R2

[
1 + R∗

1 R2 + (R∗
1 R2
)2 + . . .

]
T̃1

= R1 + T̃ ∗
1 R2

(
1 − R∗

1 R2
)−1

T̃1, (6.4.9a)

T̃12 = T̃2T̃1 + T̃2 R∗
1 R2T̃1 + T̃2 R∗

1 R2 R∗
1 R2T̃1 + . . .

= T̃2

[
1 + R∗

1 R2 + (R∗
1 R2
)2 + . . .

]
T̃1

= T̃2
(
1 − R∗

1 R2
)−1

T̃1. (6.4.9b)

Likewise, the expressions U and D̃ may be written as

U = R2T̃1 + R2 R∗
1 R2T̃1 + R2 R∗

1 R2 R∗
1 R2T̃1 + . . .

= R2

[
1 + R∗

1 R2 + (R∗
1 R2
)2 + . . .

]
T̃1

= R2
(
1 − R∗

1 R2
)−1

T̃1, (6.4.10a)
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R1R2R1R2T1T1

R2T1 R2R1R2T1 R2R1R2R1R2T1

T1R2R1R2T1T1R2T1R1

R12

T12

U

D

τ = 0

τ1

τ2

τ = τ1 + τ2

μ0F

* * *

* **

**

T2R1R2T1
* ~~T2T1

~ ~ T2R1R2R1R2T1** ~~
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~~ ~

~~~ ~
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~

~

Figure 6.9 Configuration of the adding method. The two layers of optical depths τ1 and τ2 are
rendered, for convenient illustration, as though they were physically separated (see text for the definitions
of R, R∗, T̃ , and T̃ ∗).

D̃ = T̃1 + R∗
1 R2T̃1 + R∗

1 R2 R∗
1 R2T̃1 + . . .

=
[
1 + R∗

1 R2 + (R∗
1 R2
)2 + . . .

]
T̃1

= (
1 − R∗

1 R2
)−1

T̃1. (6.4.10b)

In Eqs. (6.4.9a) and (6.4.9b), the infinite series can be replaced by a single inverse
function. We may define an operator in the form

S = R∗
1 R2
(
1 − R∗

1 R2
)−1

, (6.4.11a)

so that (
1 − R∗

1 R2
)−1 = 1 + S. (6.4.11b)

From the preceding adding equations, we have

R12 = R1 + T̃ ∗
1 U, (6.4.12a)

T̃12 = T̃2 D̃, (6.4.12b)

U = R2 D̃. (6.4.12c)
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We shall now separate the diffuse and direct components of the total transmission
function defined by

T̃ = T + e−τ/μ′
, (6.4.13)

where μ′ = μ0 when transmission is associated with the incident solar beam, and
μ′ = μ when it is associated with the emergent light beam in the direction μ. Using
Eq. (6.4.13), we may separate the direct and diffuse components in Eqs. (6.4.10b)
and (6.4.12b) to obtain

D̃ = D + e−τ1/μ0 = (1 + S)
(
T1 + e−τ1/μ0

)
= (1 + S)T1 + Se−τ1/μ0 + e−τ1/μ0 , (6.4.14a)

T̃12 = (
T2 + e−τ2/μ

)
(D + e−τ1/μ0 )

= e−τ2/μD + T2e−τ1/μ0 + T2 D + exp

[
−
(
τ1

μ0
+ τ2

μ

)]
δ(μ− μ0), (6.4.14b)

where D, T1, and T2 denote the diffuse components only, and a delta function has
been added to the exponential term to signify that the direct transmission function is
a function of μ0 only.

On the basis of the preceding analysis, a set of iterative equations for the compu-
tation of diffuse transmission and reflection involving the two layers may be written
in the form

Q = R∗
1 R2, (6.4.15a)

S = Q(1 − Q)−1, (6.4.15b)

D = T1 + ST1 + Se−τ1/μ0 , (6.4.15c)

U = R2 D + R2e−τ1/μ0 , (6.4.15d)

R12 = R1 + e−τ1/μU + T ∗
1 U, (6.4.15e)

T12 = e−τ2/μD + T2e−τ1/μ0 + T2 D. (6.4.15f)

The direct transmission function for the combined layer is given by exp[−(τ1 + τ2)/
μ0]. In these equations, the product of the two functions implies an integration over
the appropriate solid angle so that all possible multiple-scattering contributions can
be accounted for, as in the following example:

R∗
1 R2 = 1

π

∫ 2π

0

∫ 1

0
R∗

1 (μ, φ; μ′, φ′)R2(μ′, φ′; μ0, φ0)μ′ dμ′ dφ′. (6.4.16)

In numerical computations, we may set τ1 = τ2. This is referred to as the doubling
method. We may start with an optical depth 	τ on the order of 10−8 and use Eqs.
(6.4.8a) and (6.4.8b) to compute the reflection and transmission functions. Equations
(6.4.15a)–(6.4.15f) are subsequently employed to compute the reflection and trans-
mission functions for an optical depth of 2	τ . For the initial layers, R∗

1,2 = R1,2 and
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T ∗
1,2 = T1,2. Using the adding equations, the computations may be repeated until a

desirable optical depth is achieved.
For a light beam incident from below, R∗

12 and T ∗
12 may be computed from a scheme

analogous to Eq. (6.4.15). Let the incident direction be μ′; then the adding equations
may be written in the forms (Exercise 6.5)

Q = R2 R∗
1 , (6.4.17a)

S = Q(1 − Q)−1, (6.4.17b)

U = T ∗
2 + ST ∗

2 + Se−τ2/μ
′
, (6.4.17c)

D = R∗
1U + R∗

1e−τ2/μ
′
, (6.4.17d)

R∗
12 = R∗

2 + e−τ2/μD + T2 D, (6.4.17e)

T ∗
12 = e−τ1/μU + T ∗

1 e−τ2/μ
′ + T ∗

1 U. (6.4.17f)

When polarization and azimuth dependence are neglected, the transmission function
is the same regardless of whether the light beam is from above or below so that
T ∗(μ,μ′) = T (μ′, μ). This relation can be derived based on the Helmholtz principle
of reciprocity in which the light beam may reverse its direction (Hovenier, 1969).

For practical applications, we may begin with the computations of reflection and
transmission functions given in Eqs. (6.4.8a) and (6.4.8b). The phase function must
be expressed as a function of the incoming and outgoing directions via Eq. (6.1.3a)
in the form

P(μ, φ; μ′, φ′) = P0(μ,μ′) + 2
N∑

m=1

Pm(μ,μ′) cos m(φ′ − φ), (6.4.18)

where Pm(μ,μ′)(m = 0, 1, . . . N ) denotes the Fourier expansion coefficients. The
number of terms required in the expansion depends on the sharpness of the forward
diffraction peak in phase function (see Fig. 3.13).

The preceding adding equations for radiative transfer have been written in scalar
forms involving diffuse intensity. However, these equations can be applied to the case
that takes polarization into account in which the light beam is characterized by the
Stokes parameters and the phase function is replaced by the phase matrix. The phase
matrix must be expressed with respect to the local meridian plane in a manner defined
in Section 6.6. Finally, it should be noted that the numerical techniques referred to as
matrix formulation, matrix operator, or star product are esssentially the same as the
adding method, so far as the principle and actual computations are concerned.

6.4.3 Equivalence of the Adding Method and the Principles of Invariance

In reference to the principles of invariance for finite atmospheres defined in Eqs.
(6.3.29)–(6.3.32) of Section 6.3.3, we replace τ by τ1 and τ1 − τ by τ2 and define the
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dimensionless upward and downward internal intensities as follows:

U (μ,μ0) = π I (τ1, μ)

μ0 F�
, (6.4.19a)

D(μ,μ0) = π I (τ1,−μ)

μ0 F�
. (6.4.19b)

The four principles of invariance may be expressed in terms of the reflection and
transmission functions as follows:

U (μ,μ0) = R2(μ,μ0)e−τ1/μ0

+ 2
∫ 1

0
R2(μ,μ′)D(μ′, μ0)μ′dμ′, (6.4.20)

D(μ,μ0) = T1(μ,μ0) + 2
∫ 1

0
R1(μ,μ′′)U (μ′′, μ0)μ′′dμ′′, (6.4.21a)

R12(μ,μ0) = R1(μ,μ0) + e−τ1/μ0U (μ,μ0)

+ 2
∫ 1

0
T ∗

1 (μ,μ′)U (μ′, μ0)μ′dμ′, (6.4.22)

T12(μ,μ′
0) = T2(μ,μ0)e−τ1/μ0 + e−τ2/μD(μ,μ0)

+ 2
∫ 1

0
T2(μ,μ′)D(μ′, μ0)μ′dμ′. (6.4.23)

The geometric configuration involving the basic variables is illustrated in Fig. 6.10.
Although the preceding equations are written for azimuthally independent cases, these
equations may be modified for general radiative transfer involving azimuthal terms

R12

T12

R1,T1

R2,T2

0

τ1 + τ2

U
D

τ1 

τ2

Figure 6.10 Geometric configuration for the reflection and transmission functions defined in Eqs.
(6.4.19)–(6.4.23) based on the principles of invariance for a finite atmosphere. For illustration purposes,
we have defined τ = τ1 and τ1 − τ = τ2 in Eqs. (6.3.29)–(6.3.32).
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and polarization effects by replacing μ with (μ, φ) and the diffuse intensity with the
Stokes parameters. Substituting Eq. (6.4.20) into Eq. (6.4.21a) leads to

D(μ,μ0) = T1(μ,μ0) + S12(μ,μ0)e−τ1/μ0

+ 2
∫ 1

0
S12(μ,μ′′)D(μ′′, μ0)μ′′dμ′′, (6.4.21b)

where

S12(μ,μ′′) = 2
∫ 1

0
R∗

1 (μ,μ′)R2(μ′, μ′′)μ′dμ′. (6.4.24)

In Eqs. (6.4.22) and (6.4.24), the superscript ∗ denotes that radiation comes from
below. Equation (6.4.21a) can be rewritten as follows:

2
∫ 1

0

[
δ(μ− μ′′) − S12(μ,μ′′)

]
D(μ′′, μ0)μ′′dμ′′

= T1(μ,μ0) + S12(μ,μ0)e−τ1/μ0 . (6.4.21c)

In terms of the integral operator defined in Eq. (6.4.16), and noting again that
(1 − R∗

1 R2)−1 = 1 + S and S12 = R∗
1 R2, Eqs. (6.4.21c), (6.4.20), (6.4.22) and (6.4.23)

can then be expressed by

D = T1 + ST1 + Se−τ1/μ0 , (6.4.25a)

U = R2 D + R2e−τ1/μ0 , (6.4.25b)

R12 = R1 + e−τ1/μU + T ∗
1 U, (6.4.25c)

T12 = e−τ2/μD + T2e−τ1/μ0 + T2 D. (6.4.25d)

Equations (6.4.25a)–(6.4.25d) are exactly the same as Eqs. (6.4.15c)–(6.4.15f). We
have, therefore, proved that the adding method for radiative transfer is “equivalent” to
the principles of invariance for the case involving radiation from above. The principles
of invariance can also be formulated for the case involving radiation from below, and
the resulting equations would be “equivalent” to the adding equations presented in
Eqs. (6.4.17c)–(6.4.17f).

6.4.4 Extension to Nonhomogeneous Atmospheres for Internal Fields

As demonstrated in the preceding sections, the adding principle is an efficient method
for determining the radiation fields at the top and bottom of the atmosphere. To obtain
the internal radiation fields, we may employ the following numerical procedures:

1. We may divide the atmosphere into N homogeneous layers, each of which is
characterized by a single-scattering albedo, phase function, and optical depth. Let
R� and T�(� = 1, 2, . . . , N ) denote the reflection and transmission functions for each
homogeneous layer. Since homogeneous layers are considered, we have R∗

� = R� and
T ∗
� = T�.R� and T� may be obtained from the doubling method described previously.
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R1,T1

R2,T2

Rl,Tl

Rl+1,Tl +1

l

l +1

1

2

U

D

N

N+1 R
N+1, T

N+1 = 0

RN , TN

Rl +1, N+1,Tl +1, N+1

R1,l ,T1,l

Figure 6.11 Illustrating diagram for the computation of internal intensities based on the adding
principle for radiative transfer. The symbols U and D are defined in Eqs. (6.4.26a) and (6.4.26b).

The surface is considered to be a layer whose reflection function is RN+1 and whose
transmission function is TN+1 = 0. If the surface is approximated as a Lambertian
reflector, then RN+1 is the surface albedo rs .

2. As shown in Fig. 6.11, the layers are added one at a time from TOA downward
to obtain R1,� and T1,� for � from 2 to (N + 1), and R∗

1,�, and T ∗
1,� for � from 2 to N .

For example, R1,� is the reflection function for composite layers 1 through �, with the
lower part of the atmosphere and surface absent.

3. The layers are then added one at a time from the surface upward to obtain
R�+1,N+1 and T�+1,N+1 for � from (N − 1) to 1.

4. We now consider the composite layers (1, �) and (�+ 1, N + 1) and use the
adding equations for the internal intensities noted in Eqs. (6.4.15c,d) to obtain

D = T1,� + ST1,� + S exp(−τ1,�/μ0), (6.4.26a)

U = R�+1,N+1 D + R�+1,N+1 exp(−τ1,�/μ0), (6.4.26b)



6.4 Adding Method for Radiative Transfer 299

where

S = Q(1 − Q)−1, (6.4.27a)

Q = R∗
1,�R�+1,N+1, (6.4.27b)

and τ1,� is the optical depth from TOA to the bottom of the layer.

To obtain the upward and downward fluxes at the interface between the � and
�+ 1 layers, angular integrations can be performed. It is necessary to consider only
the azimuth-independent condition, so that

F↑ = μ0 F�

(
2
∫ 1

0
U (μ,μ0)μ dμ

)
, (6.4.28a)

F↓
dif = μ0 F�

(
2
∫ 1

0
D(μ,μ0)μ dμ

)
. (6.4.28b)

The downward direct solar flux is

F↓
dir = μ0 F� exp(−τ1,�/μ0). (6.4.29)

Thus, the net flux is

F = (F↓
dif + F↓

dir

)− F↑. (6.4.30)

The heating rate can then be evaluated from the divergence of the net fluxes, as
discussed in Section 3.5.

6.4.5 Similarity between the Adding and Discrete-Ordinates Methods

The adding equation can also be derived from an approach referred to as the in-
teraction principle, which is based on a conservation relationship between the ra-
diation emerging from a layer and the radiation incident to the boundary and emit-
ted within the layer. For the present discussion, the emission contribution will be
omitted.

Consider the geometric configuration illustrated in Fig. 6.9. Let the incoming and
outgoing diffuse intensities at the top be I −(0) and I +(0), respectively. Similarly, the
incoming and outgoing diffuse intensities at the level τ = τ1 are denoted by I +(τ1)
and I −(τ1), respectively. The + or − sign signifies that the intensity is upward or
downward, respectively. The interaction principle states that the outgoing intensities
I +(0) and I −(τ1) are related to the incoming intensities I −(0) and I +(τ1) via a linear
conservation principle such that

I +(0) = R1 I −(0) + T̃ ∗
1 I +(τ1), (6.4.31a)

I −(τ1) = T̃1 I −(0) + R∗
1 I +(τ1), (6.4.31b)
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where the notations R, R∗, T̃ , and T̃ ∗ have been defined in Section 6.4.2. In matrix
form, we write [

I +(0)
I −(τ1)

]
=
[

R1 T̃ ∗
1

T̃1 R∗
1

] [
I −(0)
I +(τ1)

]
. (6.4.32a)

Application of the interaction principle to the layer bounded by τ1 and τ = τ1 + τ2,
as defined in Fig. 6.9, leads to[

I +(τ1)
I −(τ )

]
=
[

R2 T̃ ∗
2

T̃2 R∗
2

] [
I −(τ1)
I +(τ )

]
. (6.4.32b)

On eliminating the upward and downward diffuse intensities at the τ1 level, I ±(τ1),
we can prove that[

I +(0)
I −(τ )

]
=
[

R1 + T̃ ∗
1 R2

(
1 − R∗

1 R2
)−1

T̃1 T̃ ∗
1

(
1 − R2 R∗

1

)−1
T̃ ∗

2

T̃2
(
1 − R∗

1 R2
)−1

T̃1 R∗
2 + T̃2 R∗

1

(
1 − R2 R∗

1

)−1
T̃ ∗

2

][
I −(0)
I +(τ )

]
.

(6.4.33a)

The interaction principle is general and can be applied to the combined layer,
τ = τ1 + τ2, so that [

I +(0)
I −(τ )

]
=
[

R12 T̃ ∗
12

T̃12 R∗
12

] [
I −(0)
I +(τ )

]
. (6.4.33b)

It follows that Eqs. (6.4.33a) and (6.4.33b) must be identical, leading to the following
relationships:

R12 = R1 + T̃ ∗
1 R2

(
1 − R∗

1 R2
)−1

T̃1, (6.4.34a)

T̃12 = T̃2
(
1 − R∗

1 R2
)−1

T̃1, (6.4.34b)

R∗
12 = R∗

2 + T̃2 R∗
1

(
1 − R2 R∗

1

)−1
T̃ ∗

2 , (6.4.35a)

T̃ ∗
12 = T̃ ∗

1

(
1 − R2 R∗

1

)−1
T̃ ∗

2 . (6.4.35b)

The first two equations are exactly the same as those derived from the geometric ray-
tracing technique for the light beam incident from above, denoted in Eqs. (6.4.9a) and
(6.4.9b). We may also apply this technique to the light beam incident from below to
obtain Eqs. (6.4.17e) and (6.4.17f) (Exercise 6.5). Equations (6.4.34a) and (6.4.34b)
contain a term (1 − R∗

1 R2)−1, which is associated with the inversion of a matrix.
Moreover, the term R∗

1 R2, as defined in Eq. (6.4.16), can be expressed by summation
according to Gaussian quadratures in the form

R∗
1 R2(μi , μ0) = 1

2

n∑
j=−n

R∗
1 (μi , μ j )R2(μ j , μ0)μ j a j , i = −n, n. (6.4.36)

The discrete-ordinates method for radiative transfer presented in Section 6.2 di-
rectly solves the basic integrodifferential equation by means of discretization of the
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integral in terms of Gauss’s formula. In line with the present discussion, we shall con-
sider a homogeneous layer with an optical depth τ1. We may begin with the upward
and downward components of the diffuse intensity, as presented in Eq. (6.2.51), in
matrix form as follows:

d

dτ

[
I +(τ )
I −(τ )

]
=
[

b+ b−

−b−−b+

] [
I +(τ )
I −(τ )

]
. (6.4.37)

The solutions of the reflected intensity at the top, I +(0), and the transmitted intensity
at the bottom, I −(τ1), require the imposition of boundary conditions. For the sake of
discussion, we may employ the vacuum boundary conditions such that there are no
upward and downward diffuse intensities at the bottom and top layers, respectively.
In this case, we have I +(τ1) = I −(0) = 0. The discrete-ordinates method, as pre-
sented in Eq. (6.4.37), consists of a differential operator and, hence, must be solved
mathematically. The adding method that is derived from the interaction principle, as
presented in Eqs. (6.4.33a) and (6.4.33b), however, entails calculations of the reflec-
tion and transmission functions in a direct way. Nevertheless, the two methods are
similar to the extent that both are related to a 2 × 2 matrix, representing upward and
downward radiation components.

Moreover, in the discrete-ordinates method, the solution of the diffuse intensity
can be written as

I (τ, μi ) =
n∑

j=−n

L jϕ j (μi )e
−k j τ + Z (μi )e

−τ/μ0 , i = −n, n. (6.4.38)

Equation (6.4.38) is similar to Eq. (6.2.58), except without the layer index. The
unknown coefficients L j must be determined from boundary conditions. We may
follow the approach presented in Section 6.2.4 and write

L = ϕ−1χ, (6.4.39)

where L is a 2n column vector, ϕ is a 2n × 2n matrix involving eigenvectors and
eigenvalues, and χ is a 2n column vector associated with the direct solar flux. When
n = 1 and 2, the system of equations reduces to 2 and 4, referred to as the two-stream
and four-stream approximations, respectively (Sections 6.5.2 and 6.5.4). Once L j are
determined, diffuse intensity can be computed at the top and bottom of a layer, as
well as within the layer. For comparison with the adding method, we shall use the
reflection function R12 defined by π I +(0, μi )/μ0 F�. Thus, we have

R12 = (π/μ0 F�)

[
n∑

j=−n

L jϕ j (μi ) + Z (μi )

]
, (6.4.40a)

where L j values are computed from the inversion of a matrix given by Eq. (6.4.39).
On the other hand, using Eq. (6.4.36), the reflection function derived from the adding
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method can be expressed by

R12 = R1 + T̃ ∗
1 R2

[
1 − 1

2

n∑
j=−n

R∗
1 (μi , μ j )R2(μ j , μ0)μ j a j

]−1

T̃1. (6.4.40b)

It is not possible to match each term in Eqs. (6.4.40a) and (6.4.40b). However, to the
extent that both involve summation over discrete streams and inversion of matrices,
it appears appropriate to conclude that the adding and discrete-ordinates methods are
similar in terms of numerical computation.

6.5 Approximations for Radiative Transfer

6.5.1 Successive-Orders-of-Scattering Approximation

In Section 6.4.1, we showed that under the single-scattering approximation and subject
to the condition that there are no diffuse intensities from the top and bottom of the
layer with an optical depth τ1, the reflection and transmission functions are directly
proportional to the phase function. Rewriting Eqs. (6.4.7a) and (6.4.7b) in terms of
reflected and transmitted intensities, we have

I1(0;μ, φ) = ω̃μ0 F�
4π (μ+ μ0)

P(μ, φ; −μ0, φ0)

{
1 − exp

[
−τ1

(
1

μ
+ 1

μ0

)]}
,

(6.5.1a)

I1(τ1; −μ, φ) =

⎧⎪⎪⎨⎪⎪⎩
ω̃μ0 F�

4π (μ− μ0)
P(−μ, φ; −μ0, φ0)(e−τ1/μ − e−τ1/μ0 ), μ �= μ0

ω̃τ1 F�
4πμ0

P(−μ0, φ0; −μ0, φ0)e−τ1/μ0 , μ = μ0.

(6.5.1b)

These two equations are fundamental in building the successive-orders-of-scattering
(SOS) approximation, in which the intensity is computed individually for photons
scattered once, twice, three times, and so forth. The total intensity is then obtained as
the sum over all orders. Hence, for reflected and diffuse transmitted intensities, we
may write, respectively,

I (τ ;μ, φ) =
∞∑

n=1

In(τ ;μ, φ), (6.5.2a)

I (τ ; −μ, φ) =
∞∑

n=1

In(τ ; −μ, φ), (6.5.2b)

where n denotes the order of scattering.
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Subject to the boundary conditions denoted in Eq. (6.4.6), the formal solution of
the equations of transfer for upward and downward intensities is given by

I (τ ;μ, φ) =
∫ τ1

τ

J (τ ′;μ, φ) exp[−(τ ′ − τ )/μ]
dτ ′

μ
, (6.5.3a)

I (τ ; −μ, φ) =
∫ τ

0
J (τ ′; −μ, φ) exp[−(τ − τ ′)/μ]

dτ ′

μ
, (6.5.3b)

where τ1 is the total optical depth. The source function for the first-order scattering is
given by Eq. (6.4.5). Inserting this expression into the above formal solutions of the
equation of transfer and integrating over the appropriate optical depths, the intensity
due to photons scattered once may be obtained. It follows that the source functions
and intensities may be derived successively by means of the following recursion
relationships:

Jn+1(τ ;μ, φ) = ω̃

4π

∫ 2π

0

∫ 1

−1
P(μ, φ; μ′, φ′)In(τ ;μ′, φ′) dμ′ dφ′, (6.5.4a)

In(τ ;μ, φ) =
∫ τ1

τ

Jn(τ ′;μ, φ) exp[−(τ ′ − τ )/μ]
dτ ′

μ
, n ≥ 1, (6.5.4b)

In(τ ; −μ, φ) =
∫ τ

0
Jn(τ ′; −μ, φ) exp[−(τ − τ ′)/μ]

dτ ′

μ
, n ≥ 1, (6.5.4c)

where the zero-order intensity is given by the Dirac δ function [see also Eq. (6.4.3)]

I�(τ ;μ′, φ′) = F�e−τ/μ0δ(μ′ − μ0)δ(φ′ − φ0). (6.5.5)

Note that J1 can be determined from Eq. (6.5.4a) and is given in Eq. (6.4.5). I1

can be evaluated from Eqs. (6.5.4b) and (6.5.4c) and is given in Eqs. (6.5.1a) and
(6.5.1b). Numerical techniques may be devised to carry out the integrations for a finite
interval of τ in Eq. (6.5.4) to obtain the intensity distribution. Exercise 6.7 requires
the derivation of the reflected intensity due to second-order scattering (n = 2).

The SOS method just outlined is an integral solution approach that can be directly
applied to specific geometry without the requirement of solving the basic radiative
transfer equation in differential form. In addition, the inhomogeneous structure of the
medium can be incorporated in the calculation in a straightforward manner in terms of
integration along the line path. However, it is well known, based on the experience of
plane-parallel radiative-transfer calculations, that this method requires considerable
computational effort to converge the intensity solution, especially for an optically
thick medium.

6.5.2 Two-Stream and Eddington’s Approximations

In Sections 3.4.2 and 4.6.3, we introduced the two-stream approximation for radia-
tive transfer and pointed out the potential applicability of this approximation to the
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parameterization of radiative transfer for use in climate models. In this section, we
present the details of this method.

In order to solve Eq. (6.1.6) analytically, the integral must be replaced by a sum-
mation over a finite number of quadrature points. In numerical integrations, Gauss’s
formula has been found to be superior to other formulas for quadratures in the interval
(−1, 1). For any function f (μ), Gauss’s formula is expressed by∫ 1

−1
f (μ)dμ ≈

n∑
j=−n

a j f (μ j ), (6.5.6a)

where the weights are

a j = 1

P ′
2n(μ j )

∫ 1

−1

P2n(μ)

μ− μ j
dμ, (6.5.6b)

μ j are the zeros of the even-order Legendre polynomials P2n(μ), and the prime
denotes the differentiation with respect to μ j . Also,

a− j = a j , u− j = −μ j ,

n∑
j=−n

a j = 2. (6.5.6c)

Table 6.1 lists the Gaussian points and weights for the first four approximations.
Employing Gauss’s formula, Eq. (6.1.6) can be written as

μi
d I (τ, μi )

dτ
= I (τ, μi ) − ω̃

2

N∑
�=0

ω̃�P�(μi )
n∑

j=−n

a j P�(μ j )I (τ, μ j )

− ω̃

4π
F�

[
N∑
�=0

(−1)�ω̃�P�(μi )P�(μ0)

]
e−τ/μ0 , i = −n, n, (6.5.7)

where μi (−n, n) represent the directions of the radiation streams. In the two-stream
approximation, we take two radiation streams, i.e., j = −1 and 1, and N = 1. Note

Table 6.1

Gaussian Points and Weights

n 2n ±μn an

1 2 μ1 = 0.5773503 a1 = 1

2 4 μ1 = 0.3399810 a1 = 0.6521452
μ2 = 0.8611363 a2 = 0.3478548

3 6 μ1 = 0.2386192 a1 = 0.4679139
μ2 = 0.6612094 a2 = 0.3607616
μ3 = 0.9324695 a3 = 0.1713245

4 8 μ1 = 0.1834346 a1 = 0.3626838
μ2 = 0.5255324 a2 = 0.3137066
μ3 = 0.7966665 a3 = 0.2223810
μ4 = 0.9602899 a4 = 0.1012285
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that μ1 = 1/
√

3 and a1 = a−1 = 1. After rearranging terms and denoting I ↑ =
I (τ, μ1) and I ↓ = I (τ,−μ1), we obtain two simultaneous equations as follows:

μ1
d I ↑

dτ
= I ↑ − ω̃(1 − b)I ↑ − ω̃bI ↓ − S−e−τ/μ0 , (6.5.8a)

−μ1
d I ↓

dτ
= I ↓ − ω̃(1 − b)I ↓ − ω̃bI ↑ − S+e−τ/μ0 , (6.5.8b)

where

g = ω̃1

3
= 1

2

∫ 1

−1
P(cos�) cos� d cos� = 〈cos�〉, (6.5.9a)

b = 1 − g

2
= 1

2

∫ 1

−1
P(cos�)

1 − cos�

2
d cos�, (6.5.9b)

S± = F�ω̃
4π

(1 ± 3gμ1μ0). (6.5.9c)

The asymmetry factor g was introduced in Section 3.4.1. It is the first moment of the
phase function. Note that the zero moment of the phase function is simply equal to
ω̃0(=1). For isotropic scattering, g is zero as it is for Rayleigh scattering. The asymme-
try factor increases as the diffraction peak of the phase function becomes increasingly
sharp. Conceivably, the asymmetry factor may be negative if the phase function is
peaked in backward directions (90–180◦). For Lorenz–Mie particles, whose phase
function has a general sharp peak at a 0◦ scattering angle, the asymmetry factor de-
notes the relative strength of forward scattering. The parameters b and (1 − b) can
be interpreted as the integrated fractions of energy backscattered and forward scat-
tered, respectively. Thus, the multiple scattering contribution in the context of the
two-stream approximation is represented by the upward and downward intensities
weighed by the appropriate fraction of the forward or backward phase function, as
illustrated in Eq. (6.5.8). The upward intensity is strengthened by its coupling with
the forward fraction (0–90◦) of the phase function plus the downward intensity that
appears in backward fractions (90–180◦) of the phase function. A similar argument
applies to the downward intensity.

Equations (6.5.8a) and (6.5.8b) represent two first-order inhomogeneous differ-
ential equations. For the solutions, we first let M = I ↑ + I ↓ and N = I ↑ − I ↓ and
note that (1 − 2b) = g. Subsequently, by subtracting and adding, these two equations
become

μ1
d M

dτ
= (1 − ω̃g)N − (S− − S+)e−τ/μ0 , (6.5.10a)

μ1
d N

dτ
= (1 − ω̃)M − (S− + S+)e−τ/μ0 . (6.5.10b)
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Further, by differentiating both equations with respect to τ , we obtain

μ1
d2 M

dτ 2
= (1 − ω̃g)

d N

dτ
+ (S− − S+)

μ0
e−τ/μ0 , (6.5.11a)

μ1
d2 N

dτ 2
= (1 − ω̃)

d M

dτ
+ (S− + S+)

μ0
e−τ/μ0 . (6.5.11b)

Upon inserting Eqs. (6.5.10b) and (6.5.10a) into Eqs. (6.5.11a) and (6.5.11b), respec-
tively, we find

d2 M

dτ 2
= k2 M + Z1e−τ/μ0 , (6.5.12a)

d2 N

dτ 2
= k2 N + Z2e−τ/μ0 , (6.5.12b)

where the eigenvalue is given by

k2 = (1 − ω̃)(1 − ω̃g)/μ2
1, (6.5.13)

and

Z1 = − (1 − ω̃g)(S− + S+)

μ2
1

+ S− − S+

μ1μ0
, (6.5.14a)

Z2 = − (1 − ω̃)(S− − S+)

μ2
1

+ S− + S+

μ1μ0
. (6.5.14b)

Equations (6.5.12a,b) represent a set of second-order differential equations, which can
be solved by first seeking the homogeneous part and then adding a particular solution.
In seeking the homogeneous solution, the homogeneous parts of Eq. (6.5.10) need to
be satisfied so that there are only two unknown constants involved. Straightforward
analyses yield the solutions

I ↑ = I (τ, μ1) = K vekτ + Hue−kτ + εe−τ/μ0 , (6.5.15a)

I ↓ = I (τ,−μ1) = K uekτ + Hve−kτ + γ e−τ/μ0 , (6.5.15b)

where

v = (1 + a)/2, u = (1 − a)/2, (6.5.16a)

a2 = (1 − ω̃)/(1 − ω̃g), (6.5.16b)

ε = (α + β)/2, γ = (α − β)/2, (6.5.16c)

α = Z1μ
2
0/
(
1 − μ2

0k2
)
, β = Z2μ

2
0/
(
1 − μ2

0k2
)
. (6.5.16d)

The constants K and H are to be determined from the diffuse radiation boundary con-
ditions at the top and bottom of the scattering layer. Assuming no diffuse components
from the top and bottom, we have

K = −(εve−τ1/μ0 − γ ue−kτ1 )/(v2ekτ1 − u2e−kτ1 ), (6.5.17a)

H = −(εue−τ1/μ0 − γ ve−kτ1 )/(v2ekτ1 − u2e−kτ1 ). (6.5.17b)
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Once the upward and downward intensities have been evaluated, the upward and
downward diffuse flux densities are simply given by

F↑(τ ) = 2πμ1 I ↑, F↓(τ ) = 2πμ1 I ↓. (6.5.18)

The preceding analyses constitute the two-stream approximation for radiative transfer.
The form of Eq. (6.5.8), without the direct solar source term, was first presented

by Schuster (1905). The terms ±k in Eq. (6.5.13) are the eigenvalues for the solu-
tion of the differential equations, and u and v represent the eigenfunctions, which
are defined by the similarity parameter a in Eq. (6.5.16b) (see Section 6.5.3 for
discussion on the similarity principle in radiative transfer). For conservative scat-
tering, ω̃ = 1. Simpler solutions can be derived from Eqs. (6.5.8a) and (6.5.8b)
with one of the eigenvalues, k = 0 (Exercise 6.8). In practice, however, we may
set ω̃ = 0.999999 in Eqs. (6.5.16a)–(6.5.16d) and obtain the results for conservative
scattering.

To introduce Eddington’s approximation for radiative transfer, we begin with the
general approach of decomposing the equation of radiative transfer using the property
of Legendre polynomials. In line with the Legendre polynomial expansion for the
phase function denoted in Eq. (6.1.11), the scattered intensity may be expanded in
terms of Legendre polynomials such that

I (τ, μ) =
N∑
�=0

I�(τ )P�(μ). (6.5.19)

Using the orthogonal and recurrence properties of Legendre polynomials and omitting
the emission term, Eq. (6.1.12) may be decomposed in N harmonics in the form

�

2�− 1

d I�−1

dτ
+ �+ 1

2�+ 3

d I�+1

dτ

= I�

(
1 − ω̃ω̃�

2�+ 1

)
− ω̃

4π
ω̃�P�(−μ0)F�e−τ/μ0 ,

� = 0, 1, 2, . . . , N . (6.5.20)

The method of solving the basic radiative transfer equation using the aforementioned
procedure is referred to as the spherical harmonics method (Kourganoff, 1952).

Eddington’s approximation uses an approach similar to that of the two-stream
approximation and was originally used for studies of radiative equilibrium in stellar
atmospheres (Eddington, 1916). Letting N = 1, the phase function and intensity
expressions may be written as follows:

P(μ,μ′) = 1 + 3gμμ′,

I (τ, μ) = I0(τ ) + I1(τ )μ, −1 ≤ μ ≤ 1. (6.5.21)



308 6 Principles of Radiative Transfer in Planetary Atmospheres

Consequently, Eq. (6.5.20) reduces to a set of two simultaneous equations in the form

d I1

dτ
= 3(1 − ω̃)I0 − 3ω̃

4π
F�e−τ/μ0 , (6.5.22a)

d I0

dτ
= (1 − ω̃g)I1 + 3ω̃

4π
gμ0 F�e−τ/μ0 . (6.5.22b)

Differentiating Eq. (6.5.22b) with respect to τ and substituting the expression for
d I1/dτ from Eq. (6.5.22a) leads to

d2 I0

dτ 2
= k2 I0 − χe−τ/μ0 , (6.5.23)

where χ = 3ω̃F�(1 + g − ω̃g)/4π , and the eigenvalues k2 are exactly the same as
they are for the two-stream approximation defined in Eq. (6.5.13). Equation (6.5.23)
represents a well-known diffusion equation for radiative transfer. This diffusion ap-
proximation is particularly applicable to the radiation field in the deep domain of an
optically thick layer (see Subsection 3.4.2.2).

Straightforward analysis yields the following solution for the diffusion equation:

I0 = K ekτ + He−kτ +�e−τ/μ0 , (6.5.24a)

where

� = 3ω̃

4π
F� [1 + g(1 − ω̃)]

/(
k2 − 1/μ2

0

)
.

Following a similar procedure, the solution for the second harmonic, I1, is given by

I1 = aK ekτ − aHe−kτ − ξe−τ/μ0 , (6.5.24b)

where a2 = 3(1 − ω̃)/(1 − ω̃g), defined in the two-stream approximation [Eq.
(6.5.16b)], and

ξ = 3ω̃

4π

F�
μ0

[
1 + 3g(1 − ω̃)μ2

0

] /(
k2 − 1/μ2

0

)
. (6.5.24c)

The integration constants, K and H , are to be determined from proper boundary
conditions. Finally, the upward and downward fluxes are given by

F↑(τ )

F↓(τ )

}
= 2π

∫ ±1

0
(I0 + μI1)μ dμ =

{
π
(
I0 + 2

3 I1
)

π
(
I0 − 2

3 I1
)
.

(6.5.25)

In the following, we shall present the general two-stream equations. Using the
radiative transfer equations denoted in Eq. (6.1.6) and the upward and downward
diffuse fluxes defined in Eqs. (6.1.7a,b) and omitting the emission contribution, we
may write the following equations:

1

2π

d F↑(τ )

dτ
=
∫ 1

0
I (τ, μ) dμ− ω̃

2

∫ 1

0

∫ 1

−1
I (τ, μ)P(μ,μ′) dμ′ dμ

− ω̃

4π
F�e−τ/μ0

∫ 1

0
P(μ,−μ0) dμ, (6.5.26a)
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1

2π

d F↓(τ )

dτ
= −

∫ 1

0
I (τ,−μ) dμ+ ω̃

2

∫ 1

0

∫ 1

−1
I (τ, μ′)P(−μ,μ′) dμ′ dμ

+ ω̃

4π
F�e−τ/μ0

∫ 1

0
P(−μ,−μ0) dμ. (6.5.26b)

Thus, the generalized two-stream approximation may be expressed by

d F↑(τ )

dτ
= γ1 F↑(τ ) − γ2 F↓(τ ) − γ3ω̃F�e−τ/μ0 , (6.5.27a)

d F↓(τ )

dτ
= γ2 F↑(τ ) − γ1 F↓(τ ) + (1 − γ3)ω̃F�e−τ/μ0 . (6.5.27b)

The differential changes in the upward and downward diffuse fluxes are directly
related to the upward and downward diffuse fluxes, as well as the downward direct
flux. The coefficients γi (i = 1, 2, 3) depend on the manner in which the intensity and
phase function are approximated in Eq. (6.5.26). In the two-stream approximation,
there are only upward and downward intensities in the directions μ1 and −μ1 given
by the Gauss quadrature formula, while the phase function is expanded in two terms
in Legendre polynomials. In Eddington’s approximation, both the intensity and phase
functions are expanded in two polynomial terms. The coefficients γi can be directly
derived from Eqs. (6.5.8a,b) and (6.5.22a,b) and are given in Table 6.2.

In Eqs. (6.5.26a,b), we let the last integral involving the phase function be

q = 1

2

∫ 1

0
P(μ,−μ0) dμ. (6.5.28a)

Since the phase function is normalized to unity, we have

1

2

∫ 1

0
P(−μ,−μ0) dμ = 1 − q. (6.5.28b)

Equations (6.5.28a) and (6.5.28b) can be evaluated exactly by numerical means. We
may take γ3 = q in the two-stream approximation. This constitutes the modified two-
stream approximation proposed by Liou (1973b) and Meador and Weaver (1980).
The two-stream approximation yields negative albedo values for a thin atmosphere
when γ3 < 0 (i.e., g > μ1/μ0). This also occurs in Eddington’s approximation when
g > 0.67/μ0. These negative albedo values can be avoided by using q , the full phase
function integration for the direct solar beam, denoted in Eq. (6.5.28b). The accuracy
of the two-stream approximation has been discussed in Liou (1973a). The overall
accuracy of the two-stream and Eddington’s approximations can be improved by

Table 6.2

Coefficients in Two-Stream Approximations

Method γ1 γ2 γ3

Two-stream [1 − ω̃(1 + g)/2]/μ1 ω̃(1 − g)/2μ1 (1 − 3gμ1μ0)/2

Eddington’s [7 − (4 + 3g)ω̃]/4 −[1 − (4 − 3g)ω̃]/4 (2 − 3gμ0)/4
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incorporating the δ-function adjustment for forward scattering and will be discussed
in Section 6.5.3.

The solutions for the equations of the generalized two-stream approximation ex-
pressed in Eqs. (6.5.27a) and (6.5.27b) are as follows:

F↑ = vK ekτ + u He−kτ + εe−τ/μ0 , (6.5.29a)

F↓ = uK ekτ + vHe−kτ + γ e−τ/μ0 , (6.5.29b)

where K and H are unknown coefficients to be determined from the boundary con-
ditions, and

k2 = γ2
1 − γ2

2, (6.5.30a)

v = 1

2
[1 + (γ1 − γ2)/k], u = 1

2
[1 − (γ1 − γ2)/k], (6.5.30b)

ε = [γ3(1/μ0 − γ1) − γ2(1 − γ3)] μ2
0ω̃F�, (6.5.30c)

γ = −[(1 − γ3)(1/μ0 + γ1) + γ2γ3]μ2
0ω̃F�. (6.5.30d)

6.5.3 Delta-Function Adjustment and Similarity Principle

The two-stream and Eddington methods for radiative transfer are good approximations
for optically thick layers, but they produce inaccurate results for thin layers and when
significant absorption is involved. The basic problem is that scattering by atmospheric
particulates is highly peaked in the forward direction. This is especially evident for
cloud particles, for which the forward-scattered energy within ∼5◦ scattering angles
produced by diffraction is five to six orders of magnitude greater than it is in the side
and backward directions (see, e.g., Figs 5.15 and 5.23). The highly peaked diffraction
pattern is typical for atmospheric particulates. It is clear that a two-term expansion in
the phase function is far from adequate.

To incorporate the forward peak contribution in multiple scattering, we may con-
sider an adjusted absorption and scattering atmosphere, such that the fraction of
scattered energy residing in the forward peak, f , is removed from the scattering pa-
rameters: optical depth, τ ; single-scattering albedo, ω̃; and asymmetry factor g. We
use primes to represent the adjusted radiative parameters, as shown in Fig. 6.12. The
optical (extinction) depth is the sum of the scattering (τs) and absorption (τa) opti-
cal depths. The forward peak is produced by diffraction without the contribution of
absorption. Thus, the adjusted scattering and absorption optical depths must be

τ ′
s = (1 − f )τs, (6.5.31a)

τ ′
a = τa . (6.5.31b)

The total adjusted optical depth is

τ ′ = τ ′
s + τ ′

a = (1 − f )τs + τa = τ (1 − f ω̃), (6.5.32)
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similarity

Without forward peakWith forward peak

τ, ω, g~ τ', ω', g'
~

Figure 6.12 Similarity principle for radiative transfer. The prime system represents adjusted radiative
parameters such that the forward diffraction peak in scattering processes is removed.

and the adjusted single-scattering albedo is then

ω̃′ = τ ′
s

τ ′ = (1 − f )τs

(1 − f ω̃)τ
= (1 − f )ω̃

1 − f ω̃
. (6.5.33)

Moreover, we multiply the asymmetry factor by the scattering optical depth to get the
similarity equation

τ ′
s g′ = τs g − τs f, or g′ = g − f

1 − f
, (6.5.34)

where we note that the asymmetry factor in the forward peak is equal to unity. In the
diffusion domain, the solution for diffuse intensity is given by exponential functions
with eigenvalues defined in Eq. (6.5.13). We may set the intensity solution in the
adjusted atmosphere so that it is equivalent to that in the real atmosphere in the
form

kτ = k ′τ ′. (6.5.35)

From Eqs. (6.5.32)–(6.5.35), the similarity relations for radiative transfer can be
expressed in the forms

τ

τ ′ = k ′

k
= 1 − ω̃′

1 − ω̃
= ω̃′(1 − g′)

ω̃(1 − g)
. (6.5.36a)

Using the expression for the eigenvalue defined in Eq. (6.5.13), we also find the
relation for the similarity parameter defined in Eq. (6.5.16b) as follows:

a =
(

1 − ω̃

1 − ω̃g

)1/2

=
(

1 − ω̃′

1 − ω̃′g′

)1/2

. (6.5.36b)
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The similarity principle can also be derived from the basic radiative transfer equa-
tion. We may begin with the following equation in the form

μ
d I (τ, μ)

dτ
= I (τ, μ) − ω̃

2

∫ 1

−1
I (τ, μ′)P(μ,μ′) dμ′. (6.5.37)

From Eq. (6.1.11), the phase function in the limit of the two-stream and Eddington’s
approximations is given by P(μ,μ′) = 1 + 3gμμ′. However, the phase functions
involving cloud and aerosol particles are highly peaked in the forward direction, and
two-term expansions do not adequately account for the strong forward scattering.
Let the fraction of the energy scattered in the forward direction (� = 0◦) be denoted
by f . The normalized phase function may be expressed in terms of this value as
follows:

P(μ,μ′) = 2 f δ(μ− μ′) + (1 − f )(1 + 3g′μμ′), (6.5.38)

where μ = μ′ when � = 0, δ is the delta function, and g′ denotes the adjusted
asymmetry factor. The phase function so defined is normalized to unity, and the
asymmetry factor is given by

g = f + (1 − f )g′. (6.5.39)

The second moment of the phase function is ω̃2/5 = f . Thus, the scaled asymmetry
factor can be expressed by

g′ = g − ω̃2/5

1 − ω̃2/5
. (6.5.40)

Substituting Eq. (6.5.38) into Eq. (6.5.37) leads to

μ
d I (τ, μ)

dτ
= I (τ, μ)(1 − ω̃ f ) − ω̃(1 − f )

2

∫ 1

−1
(1 + 3g′μμ′)I (τ, μ′) dμ′. (6.5.41)

Consequently, if we redefine the optical depth, single-scattering albedo, and phase
function such that

τ ′ = (1 − ω̃ f )τ, (6.5.42a)

ω̃′ = (1 − f )ω̃

1 − ω̃ f
, (6.5.42b)

P ′(μ,μ′) = 1 + 3g′μμ′, (6.5.42c)

Eq. (6.5.41) then becomes

μ
d I (τ ′, μ)

dτ ′ = I (τ ′, μ) − ω̃′

2

∫ 1

−1
I (τ ′, μ′)P ′(μ,μ′) dμ′. (6.5.43)

Equation (6.5.43) is exactly the same as Eq. (6.5.37), except that g, τ , and ω̃ have
been replaced by g′, τ ′, and ω̃′. By redefining the asymmetry factor, optical depth,
and single-scattering albedo, the forward-scattering nature of the phase function is
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approximately accounted for in the basic radiative transfer equation. In essence, we
have incorporated the second moment of the phase function expansion in the formu-
lation of the radiative transfer equation. The “equivalence” between Eqs. (6.5.43) and
(6.5.37) represents the similarity principle stated previously.

The phase functions for aerosol and cloud particles require involved scattering
calculations. For many applications to radiative transfer in planetary atmospheres, an
analytic expression for the phase function in terms of the asymmetry factor has been
proposed (Henyey and Greenstein, 1941):

PHG(cos�) = (1 − g2)/
(
1 + g2 − 2g cos�

)3/2

=
N∑
�=0

(2�+ 1)g�P�(cos�). (6.5.44)

This is referred to as the Henyey–Greenstein phase function, which is adequate for
scattering patterns that are not strongly peaked in the forward direction. Using this
expression, the second moment of the phase function is given by ω̃2/5 = f = g2.
Thus, in the limit of the Henyey–Greenstein approximation, the forward fraction
of the scattered light is now expressed in terms of the asymmetry factor (Joseph
et al., 1976). Subsequently, the adjusted asymmetry factor, optical depth, and single-
scattering albedo can now be expressed by

g′ = g

1 + g
, τ ′ = (1 − ω̃g2)τ, ω̃′ = (1 − g2)ω̃

1 − ω̃g2
. (6.5.45)

The similarity principle for radiative transfer was first stated by Sobolev (1975)
for isotropic scattering. The general similarity relationships have been presented by
van de Hulst (1980). The two-stream approximations are popular because they enable
the derivation of the analytic solutions for upward and downward fluxes, leading to
efficient numerical computations. The incorporation of the delta-function adjustment
to account for the strong forward scattering of large size parameters in the context
of two-stream approximations has led to a significant improvement in the accuracy
of radiative flux calculations. As pointed out previously, the δ adjustment provides
a third term closure through the second moment of the phase function expansion.
The δ-two-stream and δ-Eddington approximations have the same accuracy. Relative
errors of 15–20% could result for some values of optical depths, solar zenith angles,
and single-scattering albedos.

6.5.4 Four-Stream Approximation

The four-stream approximation, as first derived in Liou (1974), is based on the gen-
eral solution for the discrete-ordinates method for radiative transfer. In order to be
able to understand the merit of the four-stream approximation, it is necessary to have
some background in solving a set of differential equations based on Chandrasekhar’s
(1950) formulations. In particular, it is noted that the search for eigenvalues from
the recurrence equation developed in the solution is both mathematically ambiguous
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and numerically troublesome (Section 6.2.3). More recently, a systematic develop-
ment of the solution for this approximation has been presented by Liou et al. (1988).
Specifically, this solution involves the computation of solar radiative fluxes using
a relatively simple, convenient, and accurate method. Knowledge of the discrete-
ordinates method for radiative transfer is desirable but not necessary. In addition, a
wide range of accuracy checks for this approximation has been developed, including
the δ-adjustment to account for the forward diffraction peak based on the generalized
similarity principle for radiative transfer. In the following, we present the key equa-
tions for the four-stream approximation for readers who may wish to use this method
for numerical calculations.

Consider two radiative streams in the upper and lower hemispheres (i.e., let
n = 2). At the same time, expand the scattering phase function into four terms (i.e.,
N = 3) in line with the four radiative streams. On the basis of Eqs. (6.2.50a) and
(6.2.50b), four first-order differential equations can then be written explicitly in matrix
form:

d

dτ

⎡⎢⎢⎢⎣
I2

I1

I−1

I−2

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
b2,−2 b2,−1 b2,1 b2,2

b1,−2 b1,−1 b1,1 b1,2

−b1,2 −b1,1 −b1,−1 −b1,−2

−b2,2 −b2,1 −b2,−1 −b2,−2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

I2

I1

I−1

I−2

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
b2,−0

b1,−0

b−1,−0

b−2,−0

⎤⎥⎥⎥⎦ I�,

(6.5.46)

where the terms bi, j (i = ±1, 2; j = −0,±1, 2) are defined in Eq. (6.2.48). The four-
by-four matrix represents the contribution of multiple scattering. Thus, the derivative
of the diffuse intensity at a specific quadrature angle is the weighted sum of the
multiple-scattered intensity from all four quadrature angles. The last term represents
the contribution of the unscattered component of the direct solar flux at position τ .

After a lengthy and laborious derivation, the solution for Eq. (6.5.46) is given by

⎡⎢⎢⎢⎣
I2

I1

I−1

I−2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ϕ+

2 e2 ϕ+
1 e1 ϕ−

1 e3 ϕ−
2 e4

�+
2 e2 �+

1 e1 �−
1 e3 �−

2 e4

�−
2 e2 �−

1 e1 �+
1 e3 �+

2 e4

ϕ−
2 e2 ϕ−

1 e1 ϕ+
1 e3 ϕ+

2 e4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

G2

G1

G−1

G−2

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
Z+

2

Z+
1

Z−
1

Z−
2

⎤⎥⎥⎥⎦ e− f0τ , (6.5.47)

where f0(solar) = 1/μ0, f0(thermal) = −1/τ1 ln(B1/B0), B0 and B1 are Planck func-
tions evaluated at the top and bottom of the layer (Section 4.6.3), respectively, and
the other terms except G±1,2 are defined as follows:

e1 = e−k1τ , e2 = e−k2τ , (6.5.48a)

e3 = e−k1(τ1−τ ), e4 = e−k2(τ1−τ ), (6.5.48b)

Z±
1,2 = 1

2
(η1,2 ± η′

1,2), (6.5.48c)
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ϕ±
1,2 = 1

2

(
1 ± b−

11 − A1,2b−
21

a− k1,2

)
, (6.5.48d)

�±
1,2 = 1

2

(
A1,2 ± A1,2b−

22 − b−
12

a− k1,2

)
, (6.5.48e)

where the parameters k1,2, A1,2, η1,2, η
′
1,2, b−

11, b−
21, b−

22, b−
12, a−, and other related

terms can be computed in successive order from the following equations:

bi (solar) = ω̃

4π
F�

3∑
�=0

ω̃�P�(μi )P�(−μ0)/μi ,

bi (thermal) = (1 − ω̃)B0/μi , i = −2,−1, 1, 2,

ci, j = ω̃

2
a j

3∑
�=0

ω̃�P�(μi )P�(μ j ), i, j = −2,−1, 1, 2,

bi, j =
{

ci, j/μi , i �= j

(ci, j − 1)/μi , i = j,
b±

22 = b2,2 ± b2,−2, b±
21 = b2,1 ± b2,−1,

b±
12 = b1,2 ± b1,−2, b±

11 = b1,1 ± b1,−1,

b±
2 = b2 ± b−2, b±

1 = b1 ± b−1,

a22 = b+
22b−

22 + b+
12b−

21, a21 = b−
22b+

21 + b−
21b+

11,

a12 = b−
12b+

22 + b−
11b+

12, a11 = b−
12b+

21 + b−
11b+

11,

d2 = b−
22b−

2 + b−
21b−

1 + b+
2 f0, d1 = b−

12b−
2 + b−

11b−
1 + b+

1 f0,

a′
22 = b−

22b+
22 + b−

12b+
21, a′

21 = b+
22b−

21 + b+
21b−

11,

a′
12 = b+

12b−
22 + b+

11b−
12, a′

11 = b+
12b−

21 + b+
11b−

11,

d ′
2 = b+

22b+
2 + b+

21b+
1 + b−

2 f0, d ′
1 = b+

12b+
2 + b+

11b+
1 + b−

1 f0,

b = a22 + a11, c = a21a12 − a11a22,

a− = b−
22b−

11 − b−
12b−

21, A1,2 = (k2
1,2 − a22

)
/a21,

k1 =
[
(b + √

b2 + 4c)/2
]1/2

, k2 =
[
(b − √

b2 + 4c)/2
]1/2

,

η1 = (d1 f 2
0 + a12d2 − a22d1

)
/ f ′, η2 = (d2 f 2

0 + a21d1 − a11d2
)
/ f ′,

η′
1 = (d ′

1 f 2
0 + a′

12d ′
2 − a′

22d ′
1

)
/ f ′, η′

2 = (d ′
2 f 2

0 + a′
21d ′

1 − a′
11d ′

2

)
/ f ′,

f ′ = f 4
0 − b f 2

0 − c.

(6.5.49)

The coefficients Gi (i = ±1, 2) are to be determined from radiation boundary condi-
tions. If we consider a homogeneous cloud layer characterized by an optical depth τ1

and assume that there is no diffuse radiation from the top and bottom of this layer,
then the boundary conditions are

I−1,−2(τ = 0) = 0

I1,2(τ = τ1) = 0

}
. (6.5.50)



316 6 Principles of Radiative Transfer in Planetary Atmospheres

The boundary conditions can be modified to include nonzero diffuse radiation; Gi

can be obtained by an inversion of a four-by-four matrix in Eq. (6.5.47). We note
that the only difference in the four-stream formulation between infrared and solar
wavelengths is the definition of f0 and bi (i = ±1, 2). Finally, the upward and total
(diffuse plus direct) downward fluxes at a given level τ are given by

F↑(τ ) = 2π (a1μ1 I1 + a2μ2 I2), (6.5.51a)

F↓(τ ) = 2π (a1μ1 I−1 + a2μ2 I−2) + μ0 F�e−τ/μ0 . (6.5.51b)

We may also apply the four-stream solutions to nonhomogeneous atmospheres in the
manner presented in Section 6.2.4.

The regular Gauss quadratures and weights in the four-stream approximation are
μ1 = 0.3399810,μ2 = 0.8611363, a1 = 0.6521452, and a2 = 0.3478548, as defined
in Table 6.1. When the isotropic surface reflection is included in this approximation
or when it is applied to thermal infrared radiative transfer involving isothermal emis-
sion, double Gauss quadratures and weights (μ1 = 0.2113248, μ2 = 0.7886752, and
a1 = a2 = 0.5) offer some advantage in flux calculations because

∑
i aiμi = 0.5 in

this case. In the case of conservative scattering, ω̃ = 1, ϕ±
2 = �±

2 = 0.5, the 4 × 4
matrix becomes 0 in Eq. (6.5.47). The solution for this equation does not exist. We
may undertake direct formulation and solution from Eq. (6.4.46) by setting ω̃ = 1.
However, we may also use ω̃ = 0.999999 in numerical calculations and obtain the
results for conservative scattering. In the case ω̃ = 0, the multiple-scattering term
vanishes.

We may incorporate a δ-function adjustment to account for the forward diffraction
peak in the context of the four-stream approximation. In reference to Eq. (6.5.44), the
normalized phase function expansion can be expressed by incorporating the δ-forward
adjustment in the form

Pδ(cos�) = 2 f δ(cos�− 1) + (1 − f )
N∑
�=0

ω̃′
�P�(cos�), (6.5.52a)

where ω̃′
� is the adjusted coefficient in the phase function expansion. The forward peak

coefficient f in the four-stream approximation can be evaluated by demanding that the
next highest order coefficient in the prime expansion, ω̃′

4, vanish. Setting P(cos�) =
Pδ(cos�) and utilizing the orthogonal property of Legendre polynomials, we find

ω̃′
� = [ω̃� − f (2�+ 1)]/(1 − f ). (6.5.52b)

Letting ω̃′
4 = 0, we obtain f = ω̃4/9. Based on Eq. (6.5.52b), ω̃′

�(� = 0, 1, 2, 3)
can be evaluated from the expansion coefficients of the phase function, ω̃�(� =
0, 1, 2, 3, 4).

The adjusted phase function from Eq. (6.5.52a) is then given by

P ′(cos�) =
N∑
�=0

ω̃′
�P�(cos�). (6.5.52c)
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This equation, together with Eqs. (6.5.42a,b), constitutes the generalized similarity
principle for radiative transfer. That is, the removal of the forward diffraction peak
in scattering processes using adjusted single-scattering parameters is “equivalent” to
actual scattering processes.

6.6 Radiative Transfer Including Polarization

6.6.1 Representation of a Light Beam

Electromagnetic waves are characterized by certain polarization configurations that
are described by the vibration of the electric vector and by the phase difference
between the two components of this vector. These components are commonly denoted
by El and Er , the electric fields parallel (l) and perpendicular (r ) to a reference plane
(defined in Section 5.2.3). This reference plane is commonly described as the plane
containing the incident and scattered directions and is referred to as the scattering
plane.

Electric fields are complex, oscillating functions and may be expressed by

El = al exp[−i(ξ + δl)], (6.6.1a)

Er = ar exp[−i(ξ + δr )], (6.6.1b)

where al and ar are amplitudes, δl and δr are phases, ξ = kz − ωt, k = 2π/λ, ω is
the circular frequency, and i = √−1. From these two equations, we can show that
the electric fields are defined by the equation of an ellipse (Exercise 6.12).

An electromagnetic wave can be represented by the amplitudes of its two electric
components and their phase difference. Based on the Stokes parameters defined in
Section 5.2.4, we have

I = El E∗
l + Er E∗

r = a2
l + a2

r , (6.6.2a)

Q = El E∗
l − Er E∗

r = a2
l − a2

r , (6.6.2b)

U = El E∗
r + Er E∗

l = 2alar cos δ, (6.6.2c)

V = i(Er E∗
l − El E∗

r ) = 2alar sin δ, (6.6.2d)

where the superscript ∗ denotes the complex conjugate and the phase difference
δ = δr − δl .

The Stokes parameters can be expressed in terms of the geometry defining an
ellipse. Let β denote an angle whose tangent is the ratio of the axes of the ellipse
traced by the endpoint of the electric vector, as displayed in Fig. 6.13. If the semimajor
and -minor axes of the ellipse are given by a and b, respectively, then tan β = ±b/a.
Also, let χ be the orientation angle between the major axis of the ellipse and the l
direction. When the plane waves are time harmonics, we may express the electric
field vectors along the l and r directions in terms of amplitude and phase using the
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b
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r

x

a

l
O

χ

β

Figure 6.13 Geometric representation of elliptical polarization of a light beam in which the direction
of propagation is into the paper, a and b are the lengths of the semimajor and –minor axes, respectively;
χ is the orientation angle between the Ol and Ox axes; and β is the ellipticity angle whose tangent is the
ratio of the ellipse traced by the endpoint of the electric vector, i.e., tan β = ± b/a, where + and − stand
for the right- and left-handed polarization, respectively.

cosine representation in the forms

El = al cos(ξ + δl), (6.6.3a)

Er = ar cos(ξ + δr ). (6.6.3b)

Let x and y denote the directions along the major and minor axes, respectively. Then
the electric fields in the x–y plane may be written(

Ex

Ey

)
=
(

cosχ sinχ
− sinχ cosχ

)(
El

Er

)
, (6.6.3c)

where Ex and Ey may also be expressed in terms of amplitudes (a, b) and an arbitrary
phase δ0 using cosine and sine representations such that they satisfy the elliptical
equation in the forms

Ex = a cos(ξ + δ0), (6.6.3d)

Ey = ±b cos(ξ + δ0). (6.6.3e)

After eliminating the propagation constant and all the phases using Eqs. (6.6.3a)–
(6.6.3e), the Stokes parameters can be written in terms of the total intensity, and the
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Figure 6.14 Polarization representation of the Stokes parameters (I , Q, U , V ) on a Poincaré sphere.
The angles β and χ are defined in Fig. 6.13. When β is positive (negative), the polarization configuration
is referred to as right- (left-) handed polarization.

ellipticity and orientation angles in the forms (Exercise 6.13)

I = Il + Ir , (6.6.4a)

Q = Il − Ir = I cos 2β cos 2χ, (6.6.4b)

U = I cos 2β sin 2χ, (6.6.4c)

V = I sin 2β. (6.6.4d)

It is noted that I and V are independent of the orientation angle χ. Equation (6.6.4)
may be represented in Cartesian coordinates on a sphere called the Poincaré sphere,
shown in Fig. 6.14. The radius of the sphere is given by I , and the zenithal and az-
imuthal angles are given by π/2 − 2β and 2χ , respectively. Thus, Q, U, and V denote
the lengths in the x , y, and z directions, respectively. On this sphere, the northern
and southern hemispheres represent right-handed and left-handed elliptic polariza-
tions, respectively. The north and south poles denote right-handed and left-handed
circular polarizations, respectively, and points on the equatorial plane represent linear
polarization. For a simple wave, we have I 2 = Q2 + U 2 + V 2.

In representing the wave vibration using Eq. (6.6.2) we have assumed a constant
amplitude and phase. However, the actual light beam consists of many simple waves
in very rapid succession. Within a very short duration (on the order of, say, 1 second),
millions of simple waves are collected by a detector. Consequently, measurable
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intensities are associated with the superimposition of many millions of simple waves
with independent phases. Let the operator 〈 〉 denote the time average for a time
interval (t1, t2). Then the Stokes parameters of the entire beam of light for this time
interval may be expressed by

I = 〈a2
l

〉+ 〈a2
r

〉 = Il + Ir ,

Q = 〈a2
l

〉− 〈a2
r

〉 = Il − Ir ,

U = 〈2alar cos δ〉,
V = 〈2alar sin δ〉.

(6.6.5)

In this case, we can prove that I 2 ≥ Q2 + U 2 + V 2. A light beam is generally char-
acterized by partial elliptical polarization. If the phase differences between the two
electric components are 0◦ or an integer order of 180◦ (i.e., β = 0), the light beam is
linearly polarized (V = 0). If, on the other hand, the amplitudes of the two electric
components are the same and their phase differences are an odd integer order of 90◦,
then the light beam is circularly polarized (Q = U = 0). When the ellipticity angle
β is positive or negative, the circular polarization is said to be right- or left-handed.
The degree of polarization of a light beam is defined by

PO = (Q2 + U 2 + V 2)
1/2/I. (6.6.6a)

If the ellipticity is not considered, we may define the degree of linear polarization in
the form [see also Eq. (3.3.22)]

L P = −Q/I = −(Il − Ir )/(Il + Ir ). (6.6.6b)

From the measurement perspective, we may represent the Stokes parameters in
terms of detectable variables. Referring to Fig. 6.15, we introduce a retardation ε

in the r direction with respect to the l direction and consider the component of the
electric field vector in the direction making an angle � with the positive l direction.

-

I :

Q :

U :

V :

Polarizer

Compensator

El

Er

ψ

ε

-

-

+

Figure 6.15 Representation of the electric field in terms of the retardation ε and the polarization
angle �.
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Thus, for a simple wave at time t , the electric field may be represented in the form

E(t ;�, ε) = El cos� + Er e−iε sin�

= al cos�e−iξ + ar e−i(δ+ε)−iξ sin�. (6.6.7)

The average intensity measured at a time interval (t1, t2) is then given by

I (�, ε) = 〈E(t ;�, ε)E∗(t ;�, ε)〉

= 〈
a2

l

〉
cos2 � + 〈a2

r

〉
sin2 � + 1

2
〈2alar cos δ〉 sin 2� cos ε

− 1

2
〈2alar sin δ〉 sin 2� sin ε. (6.6.8a)

By making use of Eq. (6.6.5) and noting that Il cos2� + Ir sin2 � = (I + Q cos 2�)/2,
we obtain

I (�, ε) = 1

2
[I + Q cos 2� + (U cos ε − V sin ε) sin 2�]. (6.6.8b)

On the basis of Eq. (6.6.8b), the Stokes parameters may be expressed by the retardation
and polarization angles as follows:

I = I (0◦, 0) + I (90◦, 0),

Q = I (0◦, 0) − I (90◦, 0),

U = I (45◦, 0) − I (135◦, 0),

V = −[I (45◦, π/2) − I (135◦, π/2)].

(6.6.9)

Thus, the Stokes parameters of a light beam can be measured by a combination of a
number of polarizers and a compensator (e.g., a quarter-wave plate) as illustrated in
Fig. 6.15.

We may now define natural light. It is the light whose intensity remains unchanged
and is unaffected by the retardation of one of the orthogonal components relative to
the other when resolved in any direction in the transverse plane. That is to say, for
natural light it is required that I (�, ε) = I/2. The intensity is then independent of �
and ε. Thus, the necessary and sufficient condition that light be natural is Q = U =
V = 0. Under this condition, the percentage of the degree of polarization defined in
Eq. (6.6.6a) for natural light is zero. As a consequence, natural light is also referred
to as unpolarized light. Light emitted from the sun is unpolarized. However, after
interacting with molecules and particles through scattering events, the unpolarized
sunlight generally becomes partially polarized. Natural light characterized by Q =
U = V = 0 can be shown to be equivalent to a mixture of any two independent
oppositely polarized streams of half the intensity (Exercise 6.15).

In the atmosphere, light is generally partially polarized, and its Stokes parame-
ters (I, Q,U, V ) may be decomposed into two independent groups characterized by
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natural light and elliptically polarized light as follows:⎡⎢⎢⎢⎣
I

Q

U

V

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
I − (Q2 + U 2 + V 2)1/2

0

0

0

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
(Q2 + U 2 + V 2)1/2

Q

U

V

⎤⎥⎥⎥⎦ . (6.6.10)

Moreover, from Eq. (6.6.4), the plane of polarization can be determined by tan 2χ =
U/Q, and the ellipticity by sin 2β = V/(Q2 + U 2 + V 2)1/2.

6.6.2 Formulation

On inserting Eq. (6.6.3c) into the Stokes parameters defined on the x–y coordinate
and after some straightforward analysis, we have⎡⎢⎢⎢⎣

I

Q

U

V

⎤⎥⎥⎥⎦
x−y

= L(χ )

⎡⎢⎢⎢⎣
I

Q

U

V

⎤⎥⎥⎥⎦ , (6.6.11)

where the transformation matrix for the Stokes parameters is given by

L(χ ) =

⎡⎢⎢⎢⎣
1 0 0 0

0 cos 2χ sin 2χ 0

0 − sin 2χ cos 2χ 0

0 0 0 1

⎤⎥⎥⎥⎦ . (6.6.12)

From Eqs. (6.6.11) and (6.6.12), it is clear that I and V are invariant in the transfor-
mation process. We also note that L(χ1)L(χ2) = L(χ1 + χ2), and the inverse matrix
L−1(χ ) = L(−χ) (Exercise 6.16).

Having the transformation matrix defined, we can now formulate the transfer
equation to include polarization. In Section 6.1, the transfer equation for plane-parallel
atmospheres was presented for diffuse intensity, without taking into account the effect
of polarization. In order to describe the radiation field completely at each point in
space, we replace the scalar intensity I by the vector intensity I = (I , Q, U , V ). The
four Stokes parameters give, respectively, the intensity, the degree of polarization,
the plane of polarization, and the ellipticity of the light waves, as functions of the
incoming and outgoing directions.

The transfer equation given in Eq. (1.4.22) may now be written in vector form as
follows:

μ
dI(τ ;μ, φ)

dτ
= I(τ ;μ, φ) − J(τ ;μ, φ), (6.6.13)

where the source function is a vector consisting of four elements. To obtain the expres-
sion for the vector source function, consider a differential increment dJ(τ ;μ,φ;μ′, φ′),
produced by multiple scattering involving a pencil of radiation of solid angle d�′ in



6.6 Radiative Transfer Including Polarization 323

Z
(μ, φ)

(μ', φ')

φ ' −
 φ

θ

θ'

P2

P1

Θ

i1

i2

O

Figure 6.16 Scattering plane OP1P2 with respect to the meridian planes OP1 Z and OP2Z (see text
for the definitions of the angles).

the direction (μ′, φ′). The diffuse intensity vector I(τ ; μ′, φ′), which generates the
source term, is in reference to the meridian plane O P1 Z , as shown in Fig. 6.16. How-
ever, the phase matrix derived from the scattering theory [e.g., see Eq. (5.2.113)] is
in reference to the plane of scattering O P1 P2 that contains the incident and scattered
beams. Thus, we must first transform I(τ ; μ′, φ′) to the plane of scattering in order to
obtain the proper source function. We may first transform I(τ ;μ′, φ′) to the plane of
scattering by applying the transformation matrix L(−i1), where i1 denotes the angle
between the meridian plane O P1 Z and the plane of scattering O P1 P2, and the minus
sign signifies that the rotation of the plane is counterclockwise. Thus, the contribution
to the source function with reference to the plane of scattering at P2 is given by

ω̃P(�)L(−i1)I(τ ;μ′, φ′) d�′/4π. (6.6.14)

To transform this vector to the scattering direction (μ, φ), i.e., the meridian plane
O P2 Z , we must again apply the transformation matrix L(π − i2) through the angle
(π − i2) clockwise, where i2 denotes the angle between the meridian plane O P2 Z and
the plane of scattering O P1 P2. It follows that the desired differential source function
due to the diffuse component is

dJ(τ ;μ, φ;μ′, φ′) = ω̃L(π − i2)P(�)L(−i1)I(τ ;μ′, φ′) d�′/4π. (6.6.15)

Thus, by performing the integration over all directions (μ′, φ′), we obtain the source
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function vector for multiple scattering as follows:

J(τ ; μ, φ;μ′, φ′) = ω̃

4π

∫ 2π

0

∫ 1

−1
Z(μ, φ; μ′, φ′)I(τ ; μ′, φ′) dμ′dφ′, (6.6.16)

where the phase matrix is defined by

Z(μ, φ;μ′, φ′) = L(π − i2)P(�)L(−i1). (6.6.17)

Note that we differentiate Z and P by using the terms phase matrix and scattering phase
matrix, respectively. From the spherical trigonometry, as illustrated in Appendix C,
the angles i1 and i2 can be expressed by

cos i1 = −μ+ μ′ cos�

±(1 − cos2 �)1/2(1 − μ′2)1/2
, (6.6.18)

cos i2 = −μ′ + μ cos�

±(1 − cos2 �)1/2(1 − μ2)1/2
, (6.6.19)

where the plus sign is to be used when π < φ − φ′ < 2π and the minus sign is to be
used when 0 < φ − φ′ < π . Also note that cos� has been defined in Eq. (3.4.7).

Following the same procedures, the direct component of the source function asso-
ciated with the point source I�(−μ, φ) = δ(μ− μ0)δ(φ − φ0)F� is given by

J(τ ;μ, φ) = ω̃

4π
Z(μ, φ; −μ0, φ0)F�e−τ/μ0 . (6.6.20)

Thus, the equation of transfer of sunlight including polarization can be written as
follows:

μ
dI(τ ;μ, φ)

dτ
= I(τ ;μ, φ) − ω̃

4π

∫ 2π

0

∫ 1

−1
Z(μ, φ; μ′, φ′)I(τ ; μ′, φ′) dμ′dφ′

− ω̃

4π
Z(μ, φ; −μ0, φ0)F�e−τ/μ0 . (6.6.21)

Comparing Eq. (6.6.21) with Eq. (6.1.1) without the emission component, we see that
the scalar intensity is now replaced by a vector intensity consisting of four elements.
In the preceding formulation, we have assumed that an optical depth can be defined
for the medium. This applies to spherical particles that are randomly located with the
scattering phase matrix P given by Eq. (5.2.113), and to nonspherical particles that are
randomly oriented in space with the scattering phase matrix P given by Eq. (5.4.31).
In these cases, we may replace the phase function with the four-by-four scattering
phase matrix to account for the full polarization effect and employ the adding method
presented in Section 6.4 to proceed with numerical calculations.

The phase matrix Z obeys a number of unique properties associated with the
symmetry principle of light beams. For the preceding cases, a light beam can reverse
its direction with final results being the same such that

Z(−μ,−φ; −μ′,−φ′) = Z(μ, φ;μ′, φ′). (6.6.22)

Other relationships have been developed by Hovenier (1969). These relationships
can be employed to optimize numerical computations involving multiple scattering
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processes in planetary atmospheres. Finally, it should be pointed out that a new
formulation is required for nonspherical particles having a specific orientation
(Section 6.7.1).

6.7 Advanced Topics in Radiative Transfer

6.7.1 Horizontally Oriented Ice Particles

The scattering of a light beam by a nonspherical particle depends on the directions
of the incoming and outgoing radiation, and on the orientation of the particle with
respect to the incoming beam. To formulate the transfer of solar radiation in a medium
composed of horizontally oriented nonspherical particles, we begin by assuming that
such a medium is plane-parallel so that the intensity varies only in the z direction.
In reference to Fig. 6.17, we select a fixed coordinate system xyz such that the z
axis is in the zenith direction. Also, we let x ′y′z′ represent a coordinate system in
reference to the incoming light beam, which is placed on the z′ axis. Angles φ′, φ, γ ′,
and γ are azimuthal angles corresponding to θ ′, θ, α′, and α, denoted in the figure,
and � is the scattering angle. The scattering parameters for a nonspherical particle,
including the phase function, and the extinction and scattering cross sections may be
expressed with respect to either of these two coordinate systems. Thus, we may write

X

Y

Z

X'

Y'

Z'
Orientation

Scattering Beam

Incident Beam

Zenith

θ

θ'

α

α'

X Y Z

X' Y' Z'

}

}(cosΘ,         )

 − Θπ

θ' φ'(  , )
θ φ(  ,   )
α γ(  ,   )

α' γ '(   , )

φ - φ'

Figure 6.17 Geometry of single scattering involving a nonspherical particle. The coordinate system
(x′, y′, z′) is in reference to the incident light beam, while (x, y, z) is fixed in space. The angles (θ , θ ′) are
zenith angles associated with the incident and scattered beams with respect to the (x, y, z) coordinates,
while (φ,φ′) are corresponding azimuthal angles. The angles (α, α′) are zenith angles with respect to
the orientation of the particle, while (γ , γ ′) are corresponding azimuthal angles. These angles can be
transferred to the (x′, y′, z′) coordinates in terms of a set of angles, (�, φ − φ′) and (α′, γ ′), for the analysis
of radiative transfer involving horizontally oriented ice crystals.
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symbolically

P(α, γ ;μ′, φ′;μ, φ) = P(α′, γ ′; cos�,φ − φ′),

σe,s(α, γ ;μ′, φ′) = σe,s(α′, γ ′).
(6.7.1)

Here we note that the phase function depends on the directions of the incident and
scattered beams as well as on the orientation of the nonspherical particle. The ex-
tinction and scattering cross sections, however, depend only on the direction of the
incident beam and the orientation of the particle.

For a sample of nonspherical particles randomly oriented in space, average single-
scattering properties may be expressed in the forms

P(cos�,φ−φ′) = 1

2πσs

∫ 2π

0

∫ π/2

0
P(α′, γ ′; cos�,φ−φ′)σs(α′, γ ′) sinα′ dα′dγ ′,

σe,s = 1

2π

∫ 2π

0

∫ π/2

0
σe,s(α′, γ ′) sinα′dα′dγ ′. (6.7.2)

It is clear that the extinction and scattering cross sections for randomly oriented
nonspherical particles are independent of direction. Moreover, since cos� can be
expressed in terms of μ, φ, and μ′, φ′, as defined in Eq. (3.4.7), the source function
in this case has the same form as that defined in Eq. (3.4.6). If all of the nonspherical
particles have rotational symmetry (e.g., circular cylinders), then the phase function
is independent of the azimuthal angle φ − φ′. Consequently, multiple scattering of
the diffuse intensity in randomly oriented, symmetrical nonspherical particles can
be formulated by following conventional procedures such as those presented for the
adding method.

The spatial orientation of hexagonal and irregular ice crystals in cirrus clouds is a
significant factor in the discussion of the transfer of radiation in the atmosphere. The
fact that numerous halos and arcs have been observed demonstrates that specific ori-
entation of ice particles must exist in some cirrus. Based on laboratory experiments,
cylinders with a diameter-to-length ratio of less than 1 tend to fall with their long axes
horizontally oriented. Observations of columnar and plate crystals in cirrus clouds
have shown that these particles fall with their major axes parallel to the ground. The
orientation of ice particles in cirrus clouds has been observed by numerous lidar mea-
surements based on the depolarization technique in the backscattering direction (see
Section 7.6.2). The depolarization ratio of the backscattered return from horizontally
oriented plates is close to zero, but this ratio increases significantly as the lidar scans
a few degrees off the vertical. Specific orientation occurs when the ice particles have
relatively large sizes and defined shapes, such as columns and plates. However, if the
ice crystals are irregular, such as aggregates, preferred orientation is unlikely to occur.
Furthermore, smaller ice crystals in cirrus clouds where substantial turbulence occurs
tend to orient in three-dimensional space. Finally, it has been noted that ice particle
orientation and alignment are closely modulated by the electric field in clouds.

In the case of horizontally oriented ice crystals, their single-scattering parameters
are dependent on the direction of the incident light beam. Thus, the conventional
formulation for the multiple-scattering problem requires modification. The basic
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equation for the transfer of solar radiation in an optically anisotropic medium has
been discussed and formulated in the first edition of this text. More recently, Takano
and Liou (1989b) have used realistic scattering parameters and the Stokes vector for
horizontally oriented ice crystals in association with the adding method for radiative
transfer. Takano and Liou (1993) have further presented the theoretical formulation
and numerical calculations involving the transfer of polarized thermal infrared radia-
tion in optically anisotropic media with a specific application to horizontally oriented
ice particles. In the following, we present a unified theoretical formulation that is
applicable to both solar and thermal infrared radiative transfer, including polarization
for horizontally oriented ice crystals.

In the case of ice particles randomly oriented in a horizontal plane, we have
α = π/2 from Eq. (6.7.1). Thus, the phase function and cross sections are dependent
only on the incident angle and may be symbolically written in the forms

P(μ′, φ′;μ, φ) = 2

π

∫ π/2

0
P(π/2, γ ;μ′, φ′;μ, φ) dγ, (6.7.3a)

σe,s(μ) = 1

π2

∫ 2π

0

∫ π/2

0
σe,s(π/2, γ ;μ, φ) dγ dφ. (6.7.3b)

With the preceding understanding of the incident direction of a light beam with
respect to particle geometry, we may define a differential normal optical depth such
that d τ̃ = −β̃e dz, where the vertical extinction coefficient β̃e = βe(μ = 1) and z is
the distance. The general equation governing the transfer of the Stokes vector may be
expressed in the form

μ
dI(τ̃ ;μ, φ)

d τ̃
= k(μ)I(τ̃ ;μ, φ) − J(τ̃ ;μ, φ), (6.7.4a)

where I = (I, Q,U, V ) and the actual extinction coefficient normalized by the vertical
extinction coefficient is defined by

k(μ) = βe(μ)/β̃e. (6.7.4b)

For horizontally oriented particles the extinction coefficient is dependent on both the
energy characteristics of the incident beam and its state of polarization, referred to as
dichroism of the scattering medium. This generally occurs when the light beam passes
through a cloud of aligned nonspherical particles associated with an electric and/or
magnetic field, as noted previously. Because of dichroism, the extinction coefficients
corresponding to the Stokes vector are represented by the 4 × 4 extinction matrix.
For nonspherical particles randomly oriented in a plane, the extinction matrix may be
written in the form (Martin, 1974; Mishchenko, 1991)

βe =

⎡⎢⎢⎢⎣
βe βpol 0 0

βpol βe 0 0

0 0 βe βcpol

0 0 −βcpol βe

⎤⎥⎥⎥⎦ , (6.7.5)

where βpol and βcpol are polarized and cross-polarized components, respectively, of
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the extinction coefficients with respect to the incident Stokes vector. For all practical
purposes, we may use the scalar βe for applications to ice-crystal cases.

The source function in the basic radiative transfer equation may be written as
follows:

J(τ̃ ;μ, φ) = 1

4π

∫ 2π

0

∫ 1

−1
k(μ′)ω̃(μ′)Z(μ, φ; μ′, φ′)I(τ̃ , μ′, φ′) dμ′dφ′

+ 1

4π
k(−μ0)ω̃(−μ0)Z(μ, φ; −μ0, φ0)F� exp[−k(−μ0)τ̃ /μ0]

+ k(μ)[1 − ω̃(μ)]B(T )Ie, (6.7.6a)

where the single-scattering albedo is defined by

ω̃(μ) = βs(μ)/βe(μ), (6.7.6b)

whereβs is the scattering coefficient matrix, which has a form similar to the extinction
coefficient matrix, F� represents the Stokes vector for the incident solar irradiance,
B(T ) is the Planck intensity at temperature T , and Ie = (I, Qe, 0, 0), with −Qe the
linear polarization component associated with emission. The phase matrix,

Z(μ, φ;μ′, φ′) = L(π − i2)P(μ, φ;μ′, φ′)L(i1), (6.7.7)

is duplicated here for the continuity of discussion [see also Eq. (6.6.17)], and the
transformation matrix is given in Eq. (6.6.12). In general, the scattering phase matrix P
consists of 16 elements as defined in Eq. (5.4.30). In Eq. (6.7.6a), the second and third
terms on the right-hand side represent the contributions from direct solar radiation
and thermal emission from a medium having a temperature T that is azimuthally
independent. Also note that kω̃ = βs/β̃e. For wavelengths shorter than about 3.7μm,
thermal emission within the earth–atmosphere system can be neglected in comparison
to radiation from the sun. For wavelengths longer than 5 μm, the reverse is true.
Between 3.7 and 5μm, the relative importance of thermal emission and solar reflection
for a cloud layer depends largely on the position of the sun and the cloud temperature.
We have stated these important constraints in various parts of this text. If the particles
are randomly oriented in space in such a manner that each one of them has a plane
of symmetry and the law of reciprocity may be applied, the scattering phase matrix
P consists of only six independent elements as shown in Eq. (5.4.32). In this case,
k(μ) = 1 and βs, βe, ω̃ are independent of μ.

We may approach the radiative transfer problem involving ice particles randomly
oriented in a horizontal plane using the adding method introduced in Section 6.4.2. The
phase function and single-scattering parameters are now dependent on the direction
of the incident beam. From Eqs. (6.7.4a) and (6.7.6a), we may omit the multiple-
scattering term and define the reflection and transmission functions based on single-
scattering and optically thin approximations, as shown in Eqs. (6.4.8a,b). However,
in the case of solar radiation, we need to use the normal optical depth 	τ̃ and the
single-scattering albedo, which is a function of the cosine of the solar zenith angle, i.e.,
ω̃(μ0). We must also distinguish between the reflection and transmission functions for
radiation from above and below, since the phase functions for horizontally oriented
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ice particles differ in these two configurations. The adding equations will be the
same, except that the optical depth is replaced by k(μ0)τ̃a,b, where k is the scalar
ratio of the vertical extinction coefficient to the actual extinction coefficient [see
Eq. (6.7.4b)].

Figure 6.18 shows an example of the bidirectional reflectances for horizontally
oriented (2D) and randomly oriented (3D) columns using a representative cirrostratus
ice crystal size distribution with an optical depth of 1 in the plane defined by the zenith
(θ ) and relative azimuthal (φ − φ0) angles. The wavelength and the cosine of the solar
zenith angle used are 0.63 μm and 0.5, respectively. Note that the domain for the
reflectances is from 60◦ to 180◦ scattering angles, which does not cover the commonly
observed halos located at 22◦ and 46◦. In the 3D case, the maximum at θ ≈ 80◦

and close to the principal plane φ − φ0 = 0◦, is related to the limb brightening.
Otherwise, the reflectance variations are relatively small in the linear scale. In the
case of 2D columns, we see numerous reflection maxima. The chief ones are: (1)
the subsun located at θ ≈ 60◦ in the principal plane produced by external reflections;
(2) the lower tangent arc located at θ ≈ 80◦ in the principal plane generated by two
refractions; and (3) the antisolar peak located at θ ≈ 60◦ and φ − φ0 = 180◦ caused
by internal reflections. Much larger anisotropy occurs in this case as compared with
the 3D case. In realistic cirrus clouds, we would anticipate that some of the large and
defined ice particles are horizontally oriented. In Section 7.3.5, we demonstrate that
the reflected polarization of sunlight contains information regarding ice crystal shape
and orientation.

6.7.2 Three-Dimensional Nonhomogeneous Clouds

From satellite cloud pictures, as well as our day-to-day experience, we see that a
portion of the clouds and cloud systems that cover the earth either are finite in ex-
tent or occur in the form of cloud bands. This is especially evident in the tropics
and the midlatitudes in the summertime. One generally common feature is the pres-
ence of cumulus clouds whose horizontal dimensions are on the same order as their
vertical dimensions. Satellite mapping of the optical depth in the midlatitude and
tropical regions has illustrated that cirrus clouds are frequently finite in nature and
display substantial horizontal variabilities. Vertical inhomogeneity of the ice crystal
size distribution and ice water content is also demonstrated in the replicator sounding
observations (see Fig. 5.3) and the time series of backscattering coefficients derived
from lidar returns. Thus, the potential effects of cloud geometry and inhomogeneity
on the transfer of radiation must be studied to understand their impact on the ra-
diative properties of the atmosphere, as well as to accurately interpret radiometric
measurements from the ground, the air, and space.

Following the discussion presented in Section 1.4.5, the basic steady-state radiative
transfer diffuse intensity, I , can be expressed in the form

− 1

βe(s)
(Ω · ∇)I (s, Ω) = I (s, Ω) − J (s, Ω), (6.7.8)



8
58
07
57
06
56
05
55
04
54
03
53
02
52
01
51
05
0

8
58
07
57
06
56
05
55
04
54
03
53
02
52
01
51
05
0

Broad peak around 
antisolar point

Broad peak 
around subsun

Lower 
tangent

arc

2D columns 

Zenith Angle, θ 

0
20

40
60

80

0

180

120

60

Azimuthal Angle

φ − φ0

3D columns 

Antisolar
peak

Limb
brightening

0
20

40
60

80

Zenith Angle, θ 
180

120

60

Azimuthal Angle

φ − φ0

0
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The cosine of the solar zenith angle and the optical depth used are 0.5 and 1, respectively. For the 2D
column case, three peak features are marked in the diagram.
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where s is the position vector; Ω is a unit vector representing the angular direction
of scattering through the position vector; βe is the extinction coefficient for cloud
particles, which is a function of the position vector; and the source function, which
is produced by the single scattering of the direct solar irradiance, multiple scattering
of the diffuse intensity, and emission of the cloud, can be written as follows:

J (s, Ω) = ω̃(s)

4π

∫
4π

I (s, Ω′)P(s; Ω, Ω′) d�′

+ ω̃(s)

4π
P(s; Ω, Ω0)F� exp

[
−
∫ s0

0
βe(s′) ds′

]
+ [1 − ω̃(s)]B[T (s)],

(6.7.9)

where ω̃ = βs/βe is the single-scatterng albedo with βs the scattering coefficient; the
phase function P is defined by the position of the light beam and the incoming and
outgoing solid angles Ω′(Ω0) and Ω, respectively; F� is the incident solar irradiance;
s0 is defined as a spatial coordinate in the direction of the incident solar radiation;
and B(T ) is the Planck function of temperature T . Solutions for I in Eqs. (6.7.8)
and (6.7.9) in multidimensional space must be carried out numerically subject to the
coordinate system imposed.

We shall consider the Cartesian coordinate system in which three-dimensional flux
densities may be defined by

F±xi (x, y, z) =
∫

2π
I (x, y, z;�)�xi d�, (6.7.10)

where x1 = x, x2 = y, x3 = z, �x = (1 − μ2)1/2 cosφ,�y = (1 − μ2)1/2 sinφ, and
�z = μ. There are six flux components corresponding to three coordinates. Angular
integrations over the upward and downward hemispheres are the same as in the
plane–parallel case, i.e., (2π, 0) for φ and (±1, 0) for μ. The angular integrations in
the x-direction are (π/2,−π/2) and (−1, 1), and (3π/2, π/2) and (−1, 1). In the y-
direction, the angular integrations are (π , 0) and (−1, 1), and (2π, π) and (−1, 1). The
local rate of change of temperature is produced by the 3D radiative flux divergence
in the form

∂T

∂t
(x, y, z) = − 1

ρC p
∇ · F, (6.7.11a)

where

F = iFx + jFy + kFz, (6.7.11b)

with (i, j, k) the unit vectors and Fx , Fy , and Fz the net flux densities in the x , y, and
z directions, respectively.

A final note is in order. The conventional definition of the absorbed flux in a
cloud layer from both the measurement and calculation perspectives is given by the
divergence of net fluxes at the cloud top (zt ) and bottom (zb) in the form

Fabs = [F↓(zt ) − F↑(zt )
]− [F↓(zb) − F↑(zb)

]
. (6.7.12a)
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Dividing by the downward solar flux at the cloud top, F↓(zt ), we obtain the relative
percentage as follows:

a = 1 − r − t, (6.7.12b)

with the absorptance a = Fabs/F↓(zt ), the reflectance r = F↑(zt )/F↓(zt ), and the
net transmittance t = [F↓(zb) − F↑(zb)]/F↓(zt ), where the upward flux at the cloud
base is related to the contribution from the surface and the atmosphere below the
cloud. The preceding definition of cloud absorption is correct if the horizontal extent
of the cloud system is sufficiently large, such as those associated with large-scale
frontal activities. However, for a cloud whose horizontal scale is comparable to or
less than its vertical scale, such as tropical cumulus towers, the absorption definition
based on the fluxes at the cloud top and bottom requires modification.

From a theoretical perspective, and if Cartesian coordinates are imposed, the side
fluxes must be included in the discussion of cloud absorption. The problem is fur-
ther complicated because the flux is a function of position (x, y, z) and appropriate
domain averages are needed to obtain absorption in the cloud as a unit. Let the areas
corresponding to the x, y, and z directions be Ax , Ay , and Az , respectively. Based on
the energy conservation principle, we must have∫

Az

F�μ0 dxdy +
∫

Ax

F�
(
1 − μ2

0

)1/2
cosφ0 dydz +

∫
Ay

F�
(
1 − μ2

0

)1/2
sinφ0 dxdz

=
∫

Az

(
F↑

z + F↓
z

)
dxdy +

∫
Ax

(
F→

x + F←
x

)
dydz

+
∫

Ay

(
F→

y + F←
y

)
dxdz +

∫
V

fa dxdydz, (6.7.13)

where V is the volume and fa is the absorbed flux per volume. Averaging over the
respective areas and volume, we obtain

F�
[
μ0 Az + (1 − μ2

0

)1/2
cosφ0 Ax + (1 − μ2

0

)1/2
sinφ0 Ay

]
= (F̄↑

z + F̄↓
z

)
Az + (F̄→

x + F̄←
x

)
Ax + (F̄→

y + F̄←
y

)
Ay + f̄a V, (6.7.14)

where the flux notations are self-explanatory.

6.7.2.1 MONTE CARLO METHOD

The Monte Carlo method involves releasing photons from a source and tracing
them through a medium that is divided into a suitable number of cubic cells. The ab-
sorption and scattering of photons can be considered stochastic processes in which the
scattering phase function may be thought of as a transformation probability function
that redistributes the photons in different directions. The single-scattering properties
within the predivided cubic cells are prescribed. The Monte Carlo program then com-
putes the free path length of a single photon from its initial entry point through these
cells.
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Consider a nonhomgeneous finite cloud and let the incident energy be hν̃. Let l
denote the path length that a photon travels in the cloud before the first scattering, and
let RN be a random number in the interval (0, 1) generated by computer. The mean
path length l0 between scattering must be inversely proportional to the scattering
coefficient βs (in units of per length) associated with the cloud particles. Using the
Poisson distribution, we have

RN = e−l/ l0 , l = l0 ln(1/RN). (6.7.15a)

When the photon encounters scattering, its new direction in terms of the scattering
and azimuthal angles may be determined by∫ �

0
P(cos�) sin� d� = RN ·

∫ π

0
P(cos�) sin� d�

φ = 2π · RN

⎫⎬⎭ , (6.7.15b)

where P is the phase function and it converts the incident direction (μ′, φ′) to the scat-
tered direction (μ, φ) via the definition of the scattering angle. With the new direction,
a new path length for the next scattering is then determined from Eq. (6.7.15a) and
this procedure continues until the photon is either absorbed in the cloud or escapes
through a cloud boundary.

Analogous to the definition of the scattering path length, l0, we may define the
absorption and extinction path lengths as n0 and m0, respectively. Thus, we have
m0/n0 = 1 − ω̃, and the mean number of scattering events, which is an integer, is
given by

N0 ≥ n0

m0
= 1

1 − ω̃
. (6.7.15c)

In the extreme case involving conservative scattering, ω̃ = 1, there will be infinite
numbers of scattering events and the computation continues until the photon departs
the cloud. In the other extreme case when ω̃ = 0, scattering does not occur and the
photon is absorbed immediately. The number of scattering events before absorption
is also determined from the Poisson distribution and is given by

N = N0 ln(1/RN). (6.7.15d)

The Monte Carlo program contains codes that sample the relevant behavior of each
photon as a function of depth in the cloud. It will keep a record of the number and
direction of photons that cross a predivided plane in a cloud. The intensity may be
collected within preset solid angles from which the flux density can be evaluated.

In principle, the Monte Carlo method may be applied to the transfer of radiation
in a medium with any geometric configuration (see, e.g., Marchuk et al., 1980).
The calculation involves technical input/output operations. The results computed
from the Monte Carlo method are subject to statistical fluctuations, which decrease
in magnitude as the square root of the number of photons used in the calculation
increases. Hence, enormous amounts of computer time may be required in order
to achieve reliable accuracy. The Monte Carlo method has long been employed to
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simulate the transfer of solar radiation in planetary atmospheres (Plass and Kattawar,
1968). Applications to three-dimensional (3D) cloud problems have also been made
by many researchers (e.g., Cahalan et al., 1994).

6.7.2.2 SUCCESSIVE-ORDERS-OF-SCATTERING (SOS) APPROACH

In Section 6.5.1, we pointed out that the SOS approach can be directly applied
to specific geometry without the requirement of solving the basic radiative transfer
equation in differential form. In addition, the nonhomogeneous structure of a medium
can be incorporated in the calculation in a straightforward manner in terms of integra-
tion along the line path. To begin this method, we perform the line integration along
the spatial coordinates in Eq. (6.7.8) to obtain

I (s, �) = I (0, �) exp[−τ (s)�] +
∫ s

0
βe(s ′)J (s ′, �) exp{−[τ (s) − τ (s ′)]�} ds ′,

(6.7.16a)
where I (0, �) is the incident diffuse intensity at position s = 0. The effective optical
depth τ (s), or τ (s ′), or τ (s0) is defined by

τ (s)� =
∫ s

0
βe(s ′) ds ′. (6.7.16b)

For simplicity of presentation, we shall assume that there is no diffuse downward,
upward, or inward intensity at the top, base, and sides of a finite cloud layer so that
I (0, �) = 0. Moreover, using the index n to denote each order-of-scattering event,
we can write

In(s, �) =
∫ s

0
βe(s ′)Jn(s ′, �) exp{−[τ (s) − τ (s ′)]�} ds ′, n ≥ 1. (6.7.17)

Based on the SOS principle, the source function defined in Eq. (6.7.9) can be decom-
posed into the forms

J1(s, �) = ω̃(s)

4π
P(s;�,−�0)F� exp[−τ (s)�0 ], (6.7.18a)

Jn(s, �) = ω̃(s)

4π

∫
4π

In−1(s, �′)P(s;�,�′) d�′, n ≥ 2. (6.7.18b)

Equations (6.7.17) and (6.7.18) are iterative equations in which the intensity and
source function for each order of scattering can be computed successively, beginning
with n = 1. The total diffuse intensity is then

I (s, �) =
M∑

n=1

In(s, �), (6.7.19)

where the index M represents the order-of-scattering events such that |IM − IM−1|/
IM−1 < ε, a prescribed small number depending on the accuracy requirement.

The SOS method has been employed by a number of researchers for applications to
radiative transfer concerning specific geometry. Liou et al. (1990a) used the method
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to study the transmission of thermal infrared radiation for a target–detector system.
Weinman (1976) applied it to compute the backscattering return in a collimated li-
dar system. Herman et al. (1994) utilized the general principle of the SOS approach
to calculate the radiation field in spherical atmospheres. However, the method has
not been widely applied to radiative transfer in plane-parallel atmospheres, primarily
because of the substantial computer time requirement to achieve the solution conver-
gence for optically thick media. Liou and Rao (1996) employed the SOS method to
investigate the effects of cloud geometry and nonhomogeneity on the reflection and
transmission of sunlight with verifications based on the plane-parallel adding method
and the Monte Carlo method for 3D cloud fields.

For 3D nonhomogeneous radiative transfer problems, we may define normalized
scattered intensities in terms of the conventional reflection function (bidirectional
reflectance) and transmission function in the forms

R(x, y, 0;μ,μ0,	φ) = π I (x, y, 0;μ,μ0,	φ)/μ0 F�, (6.7.20a)

T (x, y, zc;μ,μ0,	φ) = π I (x, y, zc;μ,μ0,	φ)/μ0 F�, (6.7.20b)

where zc is the cloud-base height and the cloud-top height is set at z = 0. Normalized
side intensities can also be defined in a similar manner. For fluxes, we define the
reflectance and transmittance in the forms

r (x, y, 0; μ0) = F↑
z (x, y, 0;μ0)/μ0 F�, (6.7.21a)

t(x, y, zc; μ0) = F↓
z (x, y, zc;μ0)/μ0 F�. (6.7.21b)

Figure 6.19 shows the difference patterns for reflection and transmission func-
tions (upper two diagrams) and reflectance and transmittance (lower two diagrams)
defined in Eqs. (6.7.20)–(6.7.21) as functions of latitude and longitude for a visible
wavelength. The 3D extinction coeffcient field for a finite cirrus cloud field with
a horizontal dimension of 20 km × 30 km and a vertical thickness of 3.5 km was
constructed from the optical depth retrieved from AVHRR and the ice crystal size
distribution determined from point vertical replicator sounding. The single-scattering
albedo and phase function were assumed to be the same for the cloud domain. The
differences are between results from 3D nonhomogeneous and pixel-by-pixel plane-
parallel models. For the reflection and transmission functions, the emergent angles
used were 30◦ and 150◦, respectively, and the results are presented in the principal
plane (	φ = 0). The relatively large positive differences are associated with the low
sun angle (θ0 = 71◦), at which a significant amount of solar flux is available to two
cloud sides in addition to the cloud top, as well as with the specific emergent angles
used in the calculation. For other incoming and outgoing directions, differences can
be either positive or negative, revealing the complexity of the intensity field associated
with 3D nonhomogeneous clouds. Because of the larger horizontal dimension (com-
pared to the vertical) used in the calculation, the absolute differences of reflectance
and transmittance associated with fluxes are relatively small.
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Figure 6.19 Differences of the reflection function, transmission function, reflectance, and trans-
mittance distributions computed from a 3D inhomogeneous (3DIH) model with those computed from a
pixel-by-pixel (PBP) plane-parallel model for the 0.63-μm wavelength. The geometrical parameters are
given in the figure. The 3D extinction coefficient field was constructed on the basis of the optical depth
retrieved from satellite radiometers and the point vertical ice crystal profile determined from a balloon
sounding (after Liou and Rao, 1996).
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6.7.2.3 DELTA FOUR-TERM (DIFFUSION) APPROXIMATION

In Section 6.5.2, we presented the two-stream approximation that is particularly
useful for applications to broadband flux calculations. In the following, we describe a
similar approximation for 3D radiative transfer. Referring to Eqs. (6.7.8) and (6.7.9),
the phase function and diffuse intensity may be expressed in terms of the spherical
harmonics expansion as follows:

P(s, Ω, Ω′) =
N∑
�=0

�∑
m=−�

ω̃�Y
m
� (Ω)Y m∗

� (Ω′), (6.7.22a)

I (s, Ω) =
N∑
�=0

�∑
m=−�

I m
� (s)Y m

� (Ω), (6.7.22b)

where ω̃� are certain coefficients, and N denotes the number of terms in the spherical
harmonics expansion defined by

Y m
� (θ, φ) = (−1)(m+|m|)/2

(
(�− |m|)!
(�+ |m|)!

)
P |m|
� (cos θ )eimφ, (6.7.23a)

where Pm
� is the associated Legendre polynomial defined in Appendix E, |m| is

the absolute value of m, and i = √−1. The complex conjugates of the spherical
harmonics are given by

Y m∗
� (θ, φ) = Y −m

� (θ, φ)/(−1)m . (6.7.23b)

The spherical harmonics are normalized such that

1

4π

∫ 2π

0

∫ 1

−1
Y m
� (μ, φ)Y β∗

α (μ, φ) dμ dφ = δα� δ
β
m

/
(2�+ 1), (6.7.23c)

where δα� and δβm are Kronecker delta functions.
To decompose Eq. (6.7.9) in accordance with spherical harmonics, we may insert

Eqs. (6.7.22a,b) into Eqs. (6.7.8) and (6.7.9) to obtain

1

βe(s)
(Ω · ∇)

N∑
�=0

�∑
m=−�

I m
� (s)Y m

� (Ω) = −
N∑
�=0

�∑
m=−�

γ� I m
� (s)Y m

� (Ω)

+ ω̃(s)

4π

N∑
�=0

�∑
m=−�

ω̃�Y
m
� (Ω)Y m∗

� (Ω0)F�e−τs

+ [1 − ω̃(s)]B[T (s)], (6.7.24)

where γ� = 1 − ω̃ω̃�/(2�+ 1). Subsequently, we perform the following successive
integrations:∫

4π
Eq. (6.7.24) × Y β∗

α (Ω) d�, α = 0, 1, . . . , N ;β = −α, . . . , α. (6.7.25)
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We find that

− 1

βe(s)

N∑
�=0

�∑
m=−�

∫
4π

(Ω · ∇)Y m
� (Ω)Y β∗

α (Ω)I m
� (s) d�

= −γα I βα (s)
4π

2α + 1
+ ω̃(s)ω̃�

2α + 1
Y β∗
α (Ω0)F�e−τs + 4[1 − ω̃(s)]πB[T (s)]. (6.7.26)

The left-hand side of this equation may be decomposed by using the recursion
relationships in each coordinate system (Ou and Liou, 1982; Evans, 1993).

For application to the finite homogeneous cloud problem, we may make a first-
order approximation (i.e., N = 1). Using Cartesian coordinates and the definition of
spherical harmonics and their recursion relationships, we obtain the following four
partial differential equations:

∂ I 0
1

∂z
+ 1√

2

(
∂

∂x
− i

∂

∂y

)
I −1
1 − 1√

2

(
∂

∂x
+ i

∂

∂y

)
I 1
1

= −βe I 0
0 (1 − ω̃) + ω̃

4π
βe F�e−τs , (6.7.27a)

βe(1 − ω̃g)I −1
1 = − 1

3
√

2

(
∂

∂x
+ i

∂

∂y

)
I 0
0

+ 3√
2

ω̃g

4π

(
1 − μ2

0

)1/2
(cosφ0 + i sinφ0)F�e−τs , (6.7.27b)

βe(1 − ω̃g)I 0
1 = −1

3

∂ I 0
0

∂z
+ 3ω̃g

4π
μ0 F�e−τs , (6.7.27c)

βe(1 − ω̃g)I 1
1 = 1

3
√

2

(
∂

∂x
− i

∂

∂y

)
I 0
0

− 1√
2

3ω̃g

4π

(
1 − μ2

0

)1/2
(cosφ0 − i sinφ0)F�e−τs . (6.7.27d)

On substituting Eqs. (6.7.27b–d) into Eq. (6.7.27a), the following 3D nonhomoge-
neous diffusion equation may be derived:

∇ · (∇I 0
0 /βt

)− 3αt I 0
0 = −Ft + Ω0 · ∇(Ft g/βt ), (6.7.28a)

where

βt = βe(1 − ω̃g), (6.7.28b)

αt = βe(1 − ω̃), (6.7.28c)

Ft =
{

3βe F�e−τs/4π solar
3βe(1 − ω̃)B(T ) IR.

(6.7.28d)
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In these equations, all the variables are functions of the coordinates (x , y, z). In the
case when the single-scattering parameters βe, ω̃, and g are independent of (x , y, z), a
general diffusion equation in radiative transfer can be obtained (Exercise 6.17) from
which an analytic solution for the diffuse intensity can be derived (Liou, 1992).

Equation (6.7.28a) represents a second-order nonhomogeneous partial differential
equation, which must be solved numerically. From the spherical harmonics expansion
for diffuse intensity denoted in Eq. (6.7.22b), we have

I (x, y, z; Ω) = I 0
0 + I −1

1 Y −1
1 (Ω) + I 0

1 Y 0
1 (Ω) + I 1

1 Y 1
1 (Ω). (6.7.29a)

Substituting Eqs. (6.7.27b–d) into Eq. (6.7.29a), we obtain

I (x, y, z; Ω) = I 0
0 − 3

2h

3∑
j=1

∂I 0
0

∂x j
�x j + 9q

2h
(Ω · Ω0)e−τs , (6.7.29b)

where x1 = x, x2 = y, x3 = z, h = 3(1 − ω̃g)/2, q = ω̃gF�/12π,�z = μ, �x =
(1 − μ2)1/2 cosφ, and �y = (1 − μ2)1/2 sinφ. For thermal infrared, the last term
vanishes. To increase computational accuracy, we may apply the similarity principle
for radiative transfer introduced in Section 6.5.3 for each computational point such
that β ′

e = βe(1 − ω̃f ), ω̃′ = ω̃(1 − f )(1 − ω̃f ), and g′ = (g − f )/(1 − f ). The frac-
tional energy in the diffraction peak of the phase function f can be taken to be ω̃2/5,
where ω̃2 is the second moment in the phase function expansion.

Contrail cirrus are a typical example of finite clouds. Observations from lidar
backscattering and depolarization demonstrate that these clouds are also highly non-
homogeneous (see Section 8.3.3 for a discussion of contrail cirrus). At this point, a 3D
extinction coefficient field for cirrus derived directly from observations is not avail-
able. Figure 6.20 illustrates a hypothetical extinction coefficient field constructed in
the x–z plane. For radiative transfer calculations, the extinction coefficients are as-
sumed to be the same in the y-direction. The solar and emergent angles used are 10◦

and 40◦, respectively, with a relative azimuthal angle of 140◦. The reflectance pattern
is presented in the x–y plane at the cloud top. Maximum values close to the edge are
shown because of the position of the sun and larger extinction coefficients. Similar
patterns are displayed along the y direction. By using a mean extinction coefficient
in the x–z plane, the reflectance pattern now corresponds to a homogeneous cloud.
Except near the left edge, associated with the finite geometry, the pattern is uniform.
This example demonstrates the significance and intricacy of the finite and nonhomo-
geneous cloud structure with respect to its radiative properties (see also Fig. 6.19).

6.7.3 Spherical Atmospheres

When calculating the transfer of solar radiation involving low sun, such as in twilight,
or when the limb extinction technique is used to infer ozone, aerosols, and trace gases
(Section 7.2.3), the effect of spherical geometry must be accounted for. In reference to
Fig. 6.21, the spatial operator in conventional spherical coordinates (the SO system)
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Figure 6.20 The top panel illustrates an extinction coefficient field mimicking a contrail in the x–z
plane. The lower panel displays the bidirectional reflectances for (a) inhomogeneous and (b) homogeneous
(mean extinction value) contrail fields in the x–y plane. The solar and emergent angles and the azimuthal
difference used in the calculations are 10◦, 40◦, and 140◦, respectively.

may be written in the form

Ω · ∇ = �r
∂

∂r
+�Z0

∂

r∂Z0
+�A0

∂

r sin Z0∂A0
, (6.7.30)

where the directional cosines may be derived by a transformation from those in polar
coordinates and are given by⎡⎢⎣ �r

�Z0

�A0

⎤⎥⎦ =

⎡⎢⎣sin Z0 cos A0 sin Z0 sin A0 cos Z0

cos Z0 cos A0 cos Z0 sin A0 − sin Z0

− sin A0 cos A0 0

⎤⎥⎦
⎡⎢⎣sin Z cos A

sin Z sin A

cos Z

⎤⎥⎦ , (6.7.31)

where Z0 and Z are the zenith angles and A0 − A denotes the azimuthal difference
in the SO system.

However, the system of equations for radiative transfer in plane-parallel atmo-
spheres that has been developed is in reference to the local zenith (see Fig. 6.1). Thus,
we must transform the SO system of coordinates to those in the PO system with re-
spect to the local zenith, as defined in Fig. 6.21. In this system, the scattered intensity
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Figure 6.21 Spherical coordinate systems with respect to the sun and the center of the earth (SO), and
with respect to the zenith and the center of the earth (PO), which can be compared with the plane-parallel
system. The former involves the zenith angles Z0 and Z and the azimuthal angle difference �A, while the
latter involves the zenith angles θ0 (= π − Z0) and θ and the azimuthal angle difference �φ. The point
P is the location where scattering takes place, O is the center of the sphere, r (OP) is the radius, θ0 is the
solar zenith angle associated with the solid angle �0, and θ is the emergent angle associated with the solid
angle �.

is a function of four variables: θ, θ0,	φ, and r . The spatial operator can, therefore,
be written as follows:

Ω · ∇ = �r
∂ I

∂r
+�θ

∂ I

∂θ
+�θ0

∂ I

∂θ0
+�	φ

∂ I

∂	φ
. (6.7.32)

Determination of the directional consines in this coordinate system is quite involved.
After considering a number of geometric relationships for the angles on the sphere as
shown in Fig. 6.21, we find (Exercise 6.18)

�r = dr

ds
= cos θ = μ, (6.7.33a)

�θ = dθ

ds
= − sin θ

r
, (6.7.33b)
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�θ0 = dθ0

ds
= − sin θ cos	φ

r
, (6.7.33c)

�	φ = d	φ

ds
= sin θ cos θ0 sin	φ

r sin θ0
, (6.7.33d)

where ds is an arbitrary differential distance in space with respect to the local zenith
direction r . It follows that the radiative transfer equation for spherical atmospheres
with reference to the local zenith may be written in the form

μ
∂ I

∂r
+ (1 − μ2

) ∂ I

r∂μ
+ (1 − μ2

)1/2
(1 − μ0)1/2 cos	φ

∂ I

r∂μ0

+
(
1 − μ2

)1/2
μ0 sin	φ(

1 − μ2
0

)1/2

∂ I

r∂	φ
= −βe(r )[I (r ;μ,μ0,	φ) − J (r ;μ,μ0,	φ)],

(6.7.34)

where the source function is defined in Eq. (6.7.9) and we note that the extinction
coefficient βe and the single-scattering albedo ω̃ are functions of position only and
are not dependent on the incoming and outgoing directions.

We may decompose Eq. (6.7.34) in a manner similar to that developed in Sec-
tion 6.7.2. For this purpose, we may expand the diffuse intensity in the form

I (r ; μ, φ; μ0, φ0) =
N∑

m=0

Im(r ;μ,μ0) cos m	φ. (6.7.35a)

The expansion of the phase function was introduced in Section 6.1 and is given by

P(r ;μ, φ;μ′, φ′) =
N∑

m=0

N∑
�=m

ω̃m
� (r )Pm

� (μ)Pm
� (μ′) cos m	φ. (6.7.35b)

Performing the integration
∫ 2π

0 [Eq. (6.7.34)] d	φ leads to

μ
∂ I0

∂r
+ (1 − μ2)

r

∂ I0

∂μ
= −βe(I0 − J0)

− 1

2

[
(1 − μ2)1/2

(
1 − μ2

0

)1/2

r

∂ I1

∂μ0
− (1 − μ2)1/2μ0(

1 − μ2
0

)1/2
r

I1

]
, (6.7.36)

where the azimuthally averaged source function is given by

J0 =
∫ 2π

0
J d	φ = ω̃

2

∫ 1

−1
P0(μ,μ′)I0(r ;μ,μ′) dμ′

+ ω̃

4π
P0(μ,−μ0)F� exp[−τCh(r, μ0)] + (1 − ω̃)B(T ), (6.7.37)

where Ch denotes the Chapman function (see Exercise 3.3), and the single-scattering
properties (βe, ω̃, and P0) as well as the temperature field can be functions of position.
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Equation (6.7.36) contains two variables: I0 and I1. The solution requires one addi-
tional equation for I1. Consequently, the intensity will be a function of 	φ, the az-
imuthal difference of the incoming and outgoing beams, even in the case of isotropic
scattering, i.e., P(μ, φ;μ′, φ′) = 1.

It appears that Lenoble and Sekera (1961) were the first to present the basic ra-
diative transfer equation in spherical atmospheres with reference to the local zenith.
Chandrasekhar (1950) briefly discussed radiative transfer problems with spherical
symmetry, stating “And when, further, no radiation from the outside is incident, the
intensity and the source function will be functions only of the distance r and the
inclination θ to the radius vector.” This is the situation when the source function
is given by the emission in Eq. (6.7.37) without the direct solar radiation term. In
this case the last two terms in Eq. (6.7.36) can be omitted, leading to Eq. (133) in
Chandrasekhar’s Section 14. Dahlback and Stamnes (1991) also presented correct
equations for radiative transfer in spherical atmospheres with applications to the cal-
culation of atmospheric photodissociation and heating rates in middle atmospheres in
which the I1 terms were neglected. The importance of azimuthal dependence in the
case of spherical atmospheres, even with isotropic scattering, has been pointed out in
Herman et al. (1995).

To complete the solution for Eq. (6.7.36), we may carry out an approach similar
to that presented in Section 6.7.2 by truncating the intensity expansion to the I1 term.
By performing the integration

∫ 2π
0 [Eq. (6.7.34)] cos	φ d	φ and by setting I2 = 0,

we obtain

μ
∂ I1

∂r
+ (1 − μ2)

r

∂ I1

∂μ
= −βe(I1 − J1) − 1

2

(1 − μ2)1/2
(
1 − μ2

0

)1/2

r

∂ I0

∂μ0
, (6.7.38)

where

J1 =
∫ 2π

0
J cos	φ d	φ = ω̃

2

∫ 1

−1
P1(μ,μ′)I1(r ;μ,μ′) dμ′

+ ω̃

4π
P1(μ,−μ0)F� exp[−τCh(r, μ0)], (6.7.39)

where P1 is the first Fourier component of the phase function (m = 1). In principle,
Eqs. (6.7.36) and (6.7.38) can be used to solve for I0 and I1 simultaneously. The
theoretical subject of radiative transfer in spherical atmospheres appears not to have
been fully explored at this point.

Exercises

6.1 A satellite radiometer measures the solar radiation reflected from a semi-infinite,
isotropic-scattering atmosphere composed of particulates and gases near the
vicinity of an absorption line whose line shape is given by the Lorentz profile
and whose absorption coefficient can be written as

kν = S

π

α

(ν − ν0)2 + α2
.
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Assuming that the particulates are nonabsorbing and that the scattering optical
depth is equal to the gaseous absorption optical depth at the line center, calculate
the reflected intensity as a function of wavenumber ν using the two-stream
approximation. Do the problem by formulating (a) the single-scattering albedo
as a function of ν; and (b) the reflected intensity in terms of the two-stream
approximation.

6.2 For a semi-infinite, isotropic-scattering atmosphere, show that the planetary
albedo

r (μ0) = 1 − H (μ0)
√

1 − ω̃

and the spherical albedo

r̄ = 1 − 2
√

1 − ω̃

∫ 1

0
H (μ0)μ0 dμ0.

Using the first approximation for the H function and assuming single-scattering
albedos of 0.4 and 0.8, compute the planetary albedo for μ0 of 1 and 0.5 and the
spherical albedo.

6.3 An optically thin layer 	τ is added to a finite atmosphere with an optical depth
of τ1, and all the possible transmissions of the incident beam due to the addition
of the thin layer are displayed in Fig. 6.22. Formulate Eq. (6.3.44) using the
principles of invariance discussed in Section 6.3.2. The method is also referred
to as invariant imbedding. In this diagram, the dotted lines represent direct
transmission.

μ0 μ0μ0μ0μ0

μ' μ'μ'' μ''

μ μμμμ

Δτ

τ1

Figure 6.22

6.4 Consider a cloud layer having a total global transmission of γ̄ and a global
reflection (spherical albedo) of r̄ above a Lambertian surface with an albedo of
rs . Assuming no atmosphere between the cloud and surface, derive Eqs. (6.3.69a)
and (6.3.69b) by means of geometric ray-tracing for multiple reflections between
the cloud and the surface.
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6.5 Based on the geometric configuration shown in Fig. 6.9, derive the adding equa-
tions [Eqs. (6.4.17a)–(6.4.17f)] for a light beam incident from below the layer
defined by μ′.

6.6 Neglecting the ground reflection effect, use the single-scattering approximation
to compute and plot the reflected intensity (reflection) at the top of nonabsorbing
molecular atmospheres whose optical depths are assumed to be 0.1 and 1 for
μ0 = 0.8.

6.7 Derive an analytical expression for the diffuse reflection at the top of the at-
mosphere using the second-order scattering approximation (neglect the surface
reflection). Carry out the analysis for μ �= μ′ and μ = μ′.

6.8 Derive the two-stream solution for conservative scattering and calculate the
reflection and transmission, assuming an asymmetry factor of 0.75 for optical
depths of 0.25, 1, 4, and 16. Plot the results as functions of the cosine of the
solar zenith angle μ0.

6.9 Derive the one-dimensional diffuse equation for radiative transfer denoted in
Eq. (6.5.23) from Eqs. (6.5.22a) and (6.5.22b), and solve for I1 using the radiation
boundary condition defined in Eq. (6.2.23).

6.10 By employing the orthogonality property of the Legendre polynomials and the
recurrence formula

μP�(μ) = �+ 1

2�+ 1
P�+1 + �

2�+ 1
P�−1,

show that Eq. (6.1.6) without the emission term can be reduced to the set of
first-order differential equations given in Eq. (6.5.20), based on the intensity
expansion given in Eq. (6.5.19). For simple cases of � = 0,1, Eq. (6.5.20) leads
to Eqs. (6.5.22a,b).

6.11 Formulate the transfer of thermal infrared radiation in a scattering atmosphere
having an isothermal temperature T in local thermodynamic equilibrium, assum-
ing the intensity is azimuthally independent. By means of the discrete-ordinates
method for radiative transfer and assuming isotropic scattering, show that the
scattered intensity is given by

I (τ, μi ) =
n∑

α=−n

Lα

1 + μi kα
e−kατ + Bν(T ),

where Lα are unknown constants of proportionality, μi denote the discrete
streams, kα are the eigenvalues, and Bν represents the Planck function.

6.12 From Eqs. (6.6.1a) and (6.6.1b), show that an electromagnetic wave is defined
by the equation of an ellipse. The wave is said to be elliptically polarized. If
the phase difference between the two electric vectors δ = δr − δl is of the order
of π , show that the vibration of the wave is governed by two lines, referred to
as linearly polarized. If, on the other hand, it is of the order of π/2 and if the



346 6 Principles of Radiative Transfer in Planetary Atmospheres

amplitudes al = ar , show that the vibration of the wave is governed by a circle
where the waves are referred to as circularly polarized.

6.13 From Eqs. (6.6.3a)–(6.6.3e) derive the Stokes parameters in terms of the ellip-
ticity and orientation angles given by Eqs. (6.6.4a)–(6.6.4d).

6.14 Any time-average quantity may be represented by the summation of individual
components, e.g., 〈x〉 =∑N

n=1 tn xn . Using this principle, show that I 2 ≥ Q2 +
U 2 + V 2 based on the relationships given in Eq. (6.6.5). In doing this exercise,
let N = 2 for simplicity.

6.15 (a) Show that elliptically polarized light can be decomposed into a circularly
polarized part and a linearly polarized part. Then rotate the linearly polarized
beam through the angle χ and show that χ , which makes the intensity
maximum (or minimum) in the direction y (see Fig. 6.13), is given by
tan 2χ = U/Q.

(b) Assuming a light beam with 50% linear polarization in the r direction and
another independent light beam also with 50% right-handed circular po-
larization: (1) What would be the Stokes parameters for the mixture and
the resulting total intensity and percentage polarization? (2) What would
be the measured intensity if a polarizer having a plane of polarization along
the r direction is used? And (3) sketch a diagram to denote the resultant
polarization.

(c) With reference to (b), decompose the partially polarized light beam into
natural light and 100% elliptically polarized light and compute the plane of
polarization χ and ellipticity angle β for the polarized component.

(d) Natural light is equivalent to any two independent oppositely polarized
beams of half the intensity. By virtue of this principle, evaluate the Stokes
parameters for these two polarized beams based on the results obtained
from (c).

(e) Upon combining the polarized beams derived from (c) and (d), what
would be the Stokes parameters corresponding to two independent polarized
beams?

6.16 Derive Eq. (6.6.11) from Eq. (6.6.3c) and prove that L(χ1)L(χ2) = L(χ1 + χ2)
and L−1(χ ) = L(−χ).

6.17 Assuming that the single-scattering parameters βe, ω̃, and g are independent of
the coordinate system in Eqs. (6.7.27a)–(6.7.27d), derive the general diffusion
equation for radiative transfer. Compare the final result with Eq. (6.5.23).

6.18 On the basis of the geometric configuration shown in Fig. 6.21 and the trigono-
metric relationships among various angles depicted in this figure, derive Eqs.
(6.7.33a)–(6.7.33d).

6.19 Prove that

1

4π

∫ 2π

0

∫ 1

−1
P(μ, φ; μ′, φ′)μ dμdφ = μ′g,
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where g is the asymmetry factor defined in Eq. (6.5.9a). In carrying out this
exercise, expand the phase function in the form presented in Eq. (6.1.3a) and
use the orthogonal property of the Legendre polynomial.
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Chapter 7 Application of Radiative Transfer
Principles to Remote Sensing

7.1 Introduction

Remote sensing is differentiated from in situ measurements whereby specific obser-
vations are made within the medium. Remote sensing involves the interpretation and
inversion of radiometric measurements of electromagnetic radiation measured some
distance away, where the radiation is characterized by a specific wavelength that is
sensitive to some physical aspect of the medium. The interpretation and inversion
require the use of fundamental light scattering and radiative transfer theories. The
physical principle of remote sensing can be understood from the simple configuration
illustrated in Fig. 7.1. Basically, an electromagnetic signal is recorded by a detector
after it interacts with a target containing molecules, particulates, and/or surfaces. If
T and S denote the target and signal, respectively, then we may write symbolically

S = F(T ),

where F represents a function, not necessarily linear. This function governs the pro-
cesses involving the transfer of electromagnetic radiation. The inverse of the preceding
relation gives

T = F−1(S ),

where F−1 represents a function of F . Generally, if a functional relationship can
be established, one may carry out the inversion directly. However, because of the
complexity of F , its inverse cannot be performed in a straightforward manner. In
those cases where a specific functional form does not exist, one may search the
desired parameters of the target that would best fit the measured signals.

The fundamental obstacle in all remote sensing inversion problems is the unique-
ness of the solution. The nonuniqueness arises because the medium under investiga-
tion may be composed of a number of unknown parameters, a combination of which
may lead to the same radiation signature. In addition to this physical problem, there
are also mathematical problems associated with the existence and stability of the
solution, and the manner in which the solution is constructed.

There are two basic types of remote sensing: active and passive. Active remote
sensing employs a radiation source generated by artificial means such as the lasers

348
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S = F(T )

T = F
_1(S)

Electromagnetic radiation

Inversion

SignalTarget

Figure 7.1 Principle of remote sensing. The symbols T and S denote target and signal, respectively,
F represents a function which is generally nonlinear and cannot be represented by analytic equations, and
F−1 is the inverse of this complicated function.

used in lidar or the microwaves used in radar. The radiant energy source correspond-
ing to a specific wavelength is sent to the atmosphere. Some of the energy is scattered
back to the detector and recorded. From the recorded scattered energy, one analyzes
the composition and structure of the atmosphere with which the radiant energy has
interacted. Active remote sensing is normally concerned with backscattering; i.e., the
transmitter and detector are collocated. In recent years, significant developments in
lidar systems based on differential absorption and depolarization techniques and in
millimeter (mm)-wave radar have been made in conjunction with the detection of
aerosols, clouds, water vapor, and trace gases. Deployment of lidar and mm-wave
radar on space platforms is being continuously explored in ongoing research and
development programs.

Passive remote sensing utilizes the natural radiation sources of the sun or the
earth–atmosphere system. For example, spectral solar radiation interacts with a cloud
and leaves a scattered signature, which may be used for its identification. Similarly,
spectral thermal infrared or microwave radiation emitted from the earth–atmosphere
system may be utilized to understand its thermodynamic state and composition. In
reference to Fig. 1.1 regarding the electromagnetic spectrum, all wavelengths are pos-
sible from the emitting medium. However, for atmospheric applications, the ultraviolet
(UV), visible, infrared (IR), and microwave spectra are most important.

Passive remote sensing allows the global inference of atmospheric and surface tem-
peratures, composition profiles, surface properties, and radiative budget components
from orbiting meteorological satellites. The first meteorological satellite experiment
was an array of hemispheric sensors flown on the Explorer 7 satellite launched in
1959 to measure the radiation balance of the earth–atmosphere system. Shortly after,
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a five-channel scanning radiometer was carried on board TIROS 2. The scanning
radiometer has provided the general characteristics of sounding instrumentation for
research and operational satellites over the past four decades. In April 1969, two
spectrometers providing spatial infrared measurements for the determination of the
vertical profiles of temperature, water vapor, and ozone were flown on the Nimbus
3 satellite. On board was another instrument for measuring reflected UV radiation,
which allowed the determination of the global ozone concentration. Also on board
was an infrared radiation interferometer spectrometer (IRIS) for measurement of the
emitted infrared spectrum. The concept of using the detailed emission spectrum for
remote sensing and climate studies has been revisited only recently. The launch of
Nimbus 5 in December 1972 marked the first use of microwave techniques for the
remote sensing of atmospheric temperature and total water content. These are the key
milestones of atmospheric sounding from orbiting meteorological satellites.

In this chapter, we first discuss the information content of transmitted and reflected
sunlight. Following a description of the principle of temperature and gaseous profile
determination from thermal infrared emission, the use of microwave emissions for
atmospheric studies is introduced. These sections emphasize the application of radia-
tive transfer principles to the remote sensing of atmospheric temperature, aerosols,
ozone, water vapor, clouds, and precipitation from satellites. The principle of active
remote sensing utilizing backscattered energy is subsequently presented with an em-
phasis on the propagation of laser energy in the atmosphere. Determination of the
radiation budget of the earth–atmosphere system from satellites for use in radiation
and climate studies will be discussed in Chapter 8.

7.2 Remote Sensing Using Transmitted Sunlight

The remote sensing of aerosols and ozone from ground-based radiometers utilizes the
direct beam of solar radiation transmitted through the cloudless atmosphere. Specific
wavelengths in the UV and visible spectra are normally selected to optimize the effects
of aerosols and ozone for retrieval purposes. Considering the geometry illustrated in
Fig. 7.2 and following the Beer–Bouguer–Lambert law presented in Section 1.4.2,
the solar intensity of a given wavelength measured at the ground at a given time of
the year can be written in the form

Î (λ) =
(

r0

r

)2

I�(λ) exp[−τ (λ)m(θ0)], (7.2.1)

where r and r0 are the actual and mean sun-earth distances, respectively (Section
2.2.1); I� denotes the known solar intensity at the top of the atmosphere corresponding
to r0; the air mass factor m(θ0) = 1/ cos θ0, where θ0 is the solar zenith angle involving
the latitude, the solar declination angle, and the hour angle defined in Eq. (2.2.1); and
the total optical depth is the sum of the individual values contributed from aerosols (A),
Rayleigh molecules (R), ozone (3) and nitrogen dioxide (2), respectively, as follows:

τ (λ) = τA(λ) + τR(λ) + τ3(λ) + τ2(λ). (7.2.2)
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Figure 7.2 Geometry of a ground-based radiometer for the measurement of a direct solar beam. The
solar zenith angle is defined by θ0, the optical depth is denoted by τ , and the solar intensity and measured
intensity are given by I� and Î , respectively. A sunphotometer can have a number of different filters to
record direct solar radiation in component wavelengths.

The optical depths of Rayleigh molecules and NO2 for a given wavelength (Section
3.3.1) are generally assumed to be known quantities in the determination of aerosol
and ozone properties.

7.2.1 Determination of Aerosol Optical Depth and Size Distribution

In Section 5.1, we reviewed the origin of atmospheric aerosols. Aerosols not only
scatter, but can also absorb incoming sunlight. Various kinds of aerosols can have a
significant effect on the radiative balance of the earth–atmosphere system and hence
on the earth’s climate because of their global presence. Increasing concerns that
aerosols in general and man-made pollution in particular have caused worldwide
weather disturbances have prompted intensified observation of the concentrations
and physical and chemical characteristics of aerosols from the ground and space.
Determination of the optical properties of aerosols and their size distribution around
the globe has been a significant contemporary research effort of late.

Observational methods to determine the dust loading of the atmosphere were
developed during the 1920s by Linke and Ångström. In essence, aerosol total optical
depth, sometimes also referred to as turbidity, is derived from direct spectral solar
intensity measured on the ground. Wavelengths in the visible spectrum are normally
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employed because absorption due to water vapor can be neglected and the effect of
ozone absorption is small.

From Eqs. (7.2.1) and (7.2.2), aerosol optical depth is given by

τA(λ) = 1

m(θ0)
[lnI ∗(λ) − ln Î (λ)] − [τR(λ) + τ3(λ) + τ2(λ)], (7.2.3a)

where we define I ∗ = I�(r0/r )2. This term can be evaluated from the known solar
spectral data or can be directly evaluated from the Langley plot (Section 2.3.2). In the
determination of aerosol optical depth, the optical depths associated with NO2 and
O3 molecules are usually computed from the following parameterizations:

τR(λ) = (a + bH )λ−(c+dλ+e/λ) p/ps,

τ2(λ) = k2(λ) C(NO2), (7.2.3b)

τ3(λ) = k3(λ) C(O3),

where the empirical coefficients for Rayleigh scattering are a = 0.00864, b =
6.5 × 10−6, c = 3.916, d = 0.074, and e = 0.050; H is the radiometer height in kilo-
meters; p is atmospheric pressure at the radiometer; ps is 1013.25 mb; k2 and k3 are
absorption coefficients for NO2 and O3, respectively; and C denotes the concentra-
tion notation and C(NO2) ∼= 4 × 1015 cm−2. Table 7.1 lists the pertinent values of
six typical wavelengths used for aerosol measurements (Russell et al., 1993). Ozone
concentration is determined using other methods (see Section 7.2.2). Further, some
diffuse light that enters the radiometer can be taken into account by empirical ad-
justments. Thus, once these optical depths have been evaluated and the position of
the sun is known, a measurement of the direct solar intensity can be used to infer the
aerosol optical depth. In the following, we wish to show that in addition to the optical
depth, the aerosol size distribution can also be retrieved. We shall first demonstrate
the principle of using two wavelengths for this purpose.

The aerosol optical depth corresponding to the entire atmospheric column can be
expressed in terms of the extinction coefficient in the form

τA(λ) =
∫ z∞

0
βe(λ, z) dz. (7.2.4)

Let the height-dependent aerosol size distribution be defined by n(z, a)(cm−3μm−1).

Table 7.1

Useful Scattering or Absorption Coefficients for a Number of Solar Wavelengths for Molecules,
O3, and NO2

λ(μm) 0.382 0.451 0.526 0.778 0.861 1.060

kR 0.4407 0.2198 0.1175 0.0240 0.0159 0.00069
k3 (atm – cm−1) — 0.004 0.061 0.009 — —

k2 (cm2) 5.39 × 10−19 4.66 × 10−19 1.74 × 10−19 — — —
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Then the extinction coefficient (cm−1) is given in the form [Eq. (5.2.115)]

βe(λ, z ) =
∫ a2

a1

σe(a, λ)n(z, a) da, (7.2.5)

where σe represents the extinction cross section (cm2) for an individual particle. The
size distribution of aerosols in the atmosphere has been a subject of extensive research
in the past four decades, as pointed out in Section 5.1. For the purpose of discussing
retrieval, the aerosol size distribution can best be defined by the Junge distribution
displayed in Fig. 5.1 in the form

n(z, a) = C(z, a)a−(ν∗+1), (7.2.6)

where C is a scaling factor directly proportional to the aerosol concentration and is,
therefore, a function of height z in the atmosphere, andν∗ represents a shaping constant
which is normally found to lie in the range 2 ≤ ν∗ < 4. As shown in Fig. 5.1, the size
distribution of aerosols typically covers the range from about 0.01 to about 10 μm.

Using the Junge size distribution, the aerosol optical depth is given by

τA(λ) = kλ(−ν∗+2), (7.2.7)

where k is a certain constant (see Exercise 7.1). When ν∗ = 3.3, k is known as
the Ångström turbidity coefficient. If the aerosol optical depth is measured at two
wavelengths, then we have

ẑ = τA(λ1)

τA(λ2)
=
(
λ1

λ2

)(−ν∗+2)

= y(−ν∗+2). (7.2.8a)

Thus, the shaping factor can be inferred from

ν∗ = 2 − ln ẑ/ ln y. (7.2.8b)

We may also retrieve the aerosol size distribution directly if a number of aerosol
optical depths are measured with a multispectral instrument known as a sunphotometer
(Fig. 7.2). A sunphotometer tracks the sun and measures the intensity of a solar beam
in several spectral channels. For the retrieval of aerosol size distribution, we shall use
Eqs. (7.2.4)–(7.2.6) and define the column aerosol size distribution in the form

nc(a) =
∫ z∞

0
n(a, z) dz = f (a)h(a), (7.2.9.a)

where we have separated nc(a) into slowly and rapidly varying functions represented
by f (a) and h(a) = a−(ν∗+1), respectively (King et al., 1978). Thus, we have

τA(λ) =
∫ a2

a1

f (a)[h(a)πa2 Qe(m, a/λ)] da. (7.2.9.b)

In Eq. (7.2.9b), we have expressed, based on the Lorenz–Mie theory, the extinction
cross section in terms of the extinction efficiency Qe, which is a function of the
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aerosol radius, wavelength, and complex refractive index. In the retrieval, the refrac-
tive index for aerosols must first be assigned. The objective of the retrieval is now to
determine f (a).

To simplify the introduction of the inversion method we let g = τA(λ) and Kλ(a) =
πa2 Qe(m, a/λ)h(a). Thus, we have

gλ =
∫ a2

a1

f (a)Kλ(a) da. (7.2.10)

This is the well-known Fredholm equation of the first kind in which Kλ(a), the
weighting function, is the kernel, and f (a) is the function to be recovered from a set
of gλ. In practice, because only finite values of gλ are available, the solution for f (a)
is mathematically ill-conditioned, even if the weighting function and the measured
data are without errors.

Weighting functions based on Lorenz–Mie calculations involving seven sunphoto-
meter wavelengths for a typical Junge aerosol size distribution are illustrated in
Fig. 7.3. The peaks of the weighting functions shift from larger to smaller radius
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Figure 7.3 Weighting function as a function of aerosol radius for seven sunphotometer wavelengths.
The calculations use the Junge size distribution depicted in Fig. 5.1 with ν∗ = 3 and an index of refraction
of 1.45. The second peak above the maximum for each weighting function is associated with the extinction
efficiency curve computed from the Lorenz–Mie spherical particles (see Fig. 5.7 for mi = 0).
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corresponding to the increase in wavelength. The weighting functions cover a range
of aerosol radii from about 0.01 to 1 μm. In the following, we introduce the direct
linear inversion method, which has been frequently used for the retrieval of aerosol
size distribution.

7.2.1.1 DIRECT LINEAR INVERSION

Consider the following Fredholm equation of the first kind:

gi =
∫ a2

a1

f (a)Ki (a) da, i = 1, 2, . . . , M, (7.2.11)

where the index i (replacing λ) denotes a discrete set of M observations. Thus, a set
of M integral equations is to be used to recover the unknown function f (a) given the
known kernels Ki (a). It is clear that the solution is an ill-posed problem, because the
unknown profile is a continuous function of particle radius and because only a finite
number of observations are available.

It is convenient to express f (a) in a series such that

f (a) =
N∑

j=1

f j W j (a), (7.2.12)

where f j are unknown coefficients and W j are the known representation functions,
which can be orthogonal functions, such as polynomials or Fourier series. Substituting
Eq. (7.2.12) into Eq. (7.2.11) we obtain

gi =
N∑

j=1

Ai j f j , i = 1, 2, . . . , M, (7.2.13a)

where

Ai j =
∫ a2

a1

W j (a)Ki (a) da. (7.2.13b)

To find f j ( j = 1, . . . , N ), we require the observations gi (i = 1, . . . , M) and the
general condition that M ≥ N .

For convenience of analysis, we can use vectors and matrices to represent the
fundamental parameters. The observations and unknown coefficients are denoted by
the following column vectors:

g =

⎡⎢⎢⎢⎣
g1

g2
...

gM

⎤⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎣
f1

f2
...
fN

⎤⎥⎥⎥⎦ . (7.2.14a)
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A matrix consisting of M rows and N columns is defined by

A =

⎡⎢⎢⎢⎣
A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
AM1 AM2 · · · AM N

⎤⎥⎥⎥⎦ . (7.2.14b)

A is said to be an (M × N ) matrix and can also be written as ‖Ai j‖. Thus, Eq. (7.2.13a)
can be expressed in matrix form:

g = Af. (7.2.15)

The inverse of a matrix is denoted by A−1. In general, the inverse exists only when A
is a square (N × N ) and the determinant of the array set (A) is not zero (nonsingular).
Inversion of a matrix usually requires a computer. If M = N , then we can obtain f
from direct inversion as follows:

f = A−1g. (7.2.16)

Exercise 7.2 requires the direct inversion of a known mathematical function.
If M > N , i.e., the number of observations is more than the terms for the repre-

sentation function, Eq. (7.2.15) cannot be inverted directly because there are more
equations than unknowns, leading to the problem that the system is overdetermined.
In practical terms, the matrix A cannot be inverted. The conventional approach to
such a problem is to use the method of least squares. The difference between the left-
and right-hand sides of Eq. (7.2.13a) can be written in the form

εi = gi −
N∑

j=1

Ai j f j , i = 1, 2, . . . , M. (7.2.17)

The least squares solution minimizes the quantity

M∑
i=1

εi
2 =

M∑
i=1

(
N∑

j=1

Ai j f j − gi

)2

(7.2.18a)

by setting the partial derivatives of this term with respect to fk(k = 1, 2, . . . , N ) equal
to zero so that

∂

∂ fk

[∑
i

(
N∑

j=1

Ai j f j − gi

)2]
= 0. (7.2.18b)

Performing the operation leads to∑
i

(
N∑

j=1

Ai j f j − gi

)
Aik = 0. (7.2.18c)

In matrix form, we have

ATAf = ATg, (7.2.19)



7.2 Remote Sensing Using Transmitted Sunlight 357

where AT is the transpose of A, i.e., an (N × M) matrix. It follows that

f = (ATA)−1ATg. (7.2.20)

This is the least squares solution which requires the inverse of a symmetric and square
matrix. Many studies have pointed out that the solution derived from Eq. (7.2.20) is
unstable because it is under constraint.

7.2.1.2 CONSTRAINED LINEAR INVERSION

In addition to the instability due to the governing mathematical function itself,
instability can also be traced to the following sources of error: (a) errors produced
by the numerical quadrature used for the calculation of Ai j in Eq. (7.2.13b); and (b)
numerical round-off errors. Further, radiometers have inherent instrument noise and
thus the observed intensities probably generate errors in a random fashion. All of the
preceding errors make direct inversion from the integral transfer equation impractical.
In practice, the true gi are never known and the measured data can be expressed in
terms of its deviation from the true value as follows:

ĝi = gi + εi . (7.2.21)

From Eq. (7.2.17), it is clear that to within the measurement error, the solution f j is
not unique. The ambiguity in the solution can be removed by imposing an additional
condition that would allow one of the possible sets of fi to be selected.

Consider now a function that utilizes a least squares method with quadratic con-
straints in the form ∑

i

ε2
i + γ

N∑
j=1

( f j − f̄ )2, (7.2.22)

whereγ is an arbitrary smoothing coefficient that determines how strongly the solution
f j is constrained to be near the mean f̄ , i.e., the constraint is given by the variance
of f j . We may select a solution such that the measurement error is minimized while
the solution is constrained to be close to the mean f̄ such that

∂

∂ fk

[∑
i

(
N∑

j=1

Ai j f j − ĝi

)2

+ γ

N∑
j=1

( f j − f̄ )2

]
= 0. (7.2.23)

This leads to ∑
i

(
N∑

j=1

Ai j f j − ĝi

)
Aik + γ ( fk − f̄ ) = 0. (7.2.24)

In matrix form, we have

ATAf − ATĝ + γHf = 0, (7.2.25)
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where H is an (N × N ) matrix given by

H =

⎡⎢⎢⎢⎣
1 − N−1 −N−1 · · · −N−1

−N−1 1 − N−1 · · · −N−1

...
...

...
−N−1 −N−1 · · · 1 − N−1

⎤⎥⎥⎥⎦ . (7.2.26)

Note that f̄ = N−1∑N
k=1 fk . The solution is given by

f = (ATA + γH)−1ATĝ. (7.2.27)

This is the equation for constrained linear inversion derived by Phillips (1962) and
Twomey (1963). The quadrature constraint for smoothing can also be imposed on
the first differences, i.e.,

∑
( f j−1 − f j )2, or the second differences, i.e.,

∑
( f j−1 −

2 f j + f j+1)2, and so on (Exercise 7.3). In Exercise 7.4, interested readers may
wish to carry out a numerical exercise for the retrieval of aerosol size distribution based
on the direct inversion technique.

If there is a considerable amount of background data available from direct methods,
it can be advantageous to construct an appropriate set of base functions to approximate
the unknown function f . Let the mean of all past data be f̄. Then we may find a
constrained solution that would minimize the mean square departure from this mean.
From Eq. (7.2.25), we can write

ATAf − ATĝ + γ (f − f̄ ) = 0. (7.2.28)

The solution is then

f = (ATA + γ 1)−1(ATĝ + γ f̄ ), (7.2.29)

where 1 is an (N × N ) identity matrix. This inversion will yield an improved measure
of the solution if there is a reasonable basis for selecting f̄.

7.2.2 Determination of Total Ozone Concentration

A classic example of utilizing measured transmitted sunlight as a means of inferring
composition information is the method proposed by Dobson (1957) for the estimate
of total ozone concentration from a ground-based instrument. Basically, this method
uses the Beer–Bouguer–Lambert law defined by Eq. (7.2.1) for the transfer of UV
radiation to retrieve ozone concentration.

For application to ozone retrieval, it is convenient to rewrite Eqs. (7.2.1) and (7.2.2)
in the form

Î (λ) = I�(λ) exp

[
−
∑

i

τi (λ)mi (θ0)

]
, (7.2.30)

so that

log10
Î (λ)

I�(λ)
= −[τ ∗

3 (λ) sec Z + τ ∗
A(λ)m(θ0) + τ ∗

R(λ)m(θ0)], (7.2.31)
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where all the values with ∗ should be multiplied by log10 e. The solar zenith angle
Z is in reference to the height of about 20 km corresponding to the maximum
ozone concentration. The factor (r0/r )2 can be removed by a subtraction opera-
tion described later. Further, we define the total ozone concentration in the vertical
column as

� =
∫ z∞

0
ρ3(z) dz.

Let the absorption coefficient be denoted by k(λ). We may select a pair of wavelengths
(λ1, λ2) in the Hartley–Huggins ozone absorption bands described in Section 3.2
such that k(λ1) > k(λ2). Thus,

log10
Î (λi )

I�(λi )
= −k∗(λi )� sec Z − τ ∗

A(λi )m − τ ∗
R(λi )m, i = 1, 2. (7.2.32)

Subtraction and rearrangement operations lead to

N = log10
Î (λ1)

Î (λ2)
− log10

I�(λ1)

I�(λ2)
= −� sec Z	k − m	τA − m	τR, (7.2.33)

where 	k = k∗(λ1) − k∗(λ2) and 	τA,R = τ ∗
A,R(λ1) − τ ∗

A,R(λ2). Two pairs of wave-
lengths have been selected to minimize the aerosol effect because 	τA is the most
uncertain term due to aerosol scattering. In the standard procedure developed by
the World Meteorological Organization (WMO), these pairs are (0.3055, 0.3254 μm)
and (0.3176, 0.3398 μm). An instrument using these pairs is referred to as a
Dobson spectrometer (Dobson, 1957). Applying these two pairs to Eq. (7.2.33), we
have

� = N (1) − N (2)

a sec Z
− b, (7.2.34a)

where the parameterized coefficients a and b are determined from known ozone
absorption coefficients and the Rayleigh scattering theory in the forms

a = 	k(2) −	k(1) ∼= 1.388 (atm−1cm−1),

b ∼= 0.009ps . (7.2.34b)

The superscripts (1) and (2) denote the two pairs of wavelengths and ps is the surface
pressure in units of atmospheres.

Total ozone concentration has traditionally been measured in milli atm-cm, called
Dobson units (DU). A DU is a vertical thickness of atmosphere in thousandths of
a centimeter that is occupied by O3 when concentrated into a uniform layer of pure
gas at the standard temperature and pressure. The total column ozone concentration
normally ranges from 200 to 400 DU.

Total ozone has been measured by the Dobson spectrometer at some 80 ground
stations around the world. As discussed in Section 3.2.2, observations by Farman et al.
(1985) using this instrument first detected the springtime (November of the Northern
Hemisphere) lowering of ozone, beginning in about 1976.
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Figure 7.4 The geometry for limb extinction measurements, which are made from the satellite by
scanning the sun’s disk as the sun rises and sets relative to the motion of the satellite. In the retrieval of the
atmospheric gaseous and aerosol profiles, the atmosphere is divided into many layers, in which hi is the
tangent height of the i th layer and 	xi j corresponds to the horizontal distance.

7.2.3 Limb Extinction Technique

Analogous to ground-based sunphotometer measurements of transmitted sunlight,
measurements can also be made from space by scanning the sun’s disk as the sun
rises and sets relative to the motion of the spacecraft, referred to as solar occultation.
In reference to the geometry depicted in Fig. 7.4, let the intensity measured at the
center of the scan be denoted by I�, and the intensity determined from a scan at a
lower altitude hi be I (hi ). The transmittance in this case is given by

T (λ) = I (λ, hi )/I�(λ) = exp[−τ (λ, hi )], (7.2.35)

where the optical depth along the horizontal tangent path, shown in Fig. 7.4, is defined
by the tangent height hi as follows:

τ (λ, hi ) = − ln

[
I (λ, hi )

I�(λ)

]
=
∫ ∞

−∞
βe(λ, x) dx, (7.2.36a)

where the extinction coefficient is generally contributed by the extinction (scattering
and absorption) of aerosols, Rayleigh molecules, O3, and NO2, as noted in Eqs. (7.2.2)
and (7.2.4), in the form

βe(λ, x) = βe,A(λ, x) + βe,R(λ, x) + βe,3(λ, x) + βe,2(λ, x). (7.2.36b)

The basic principle of the solar occultation technique is to take measurements at
several wavelengths, similar to the sunphotometer, and at as many altitudes as possible
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to obtain the profiles of aerosols and other trace gases. We may divide the atmosphere
into an appropriate number of layers (e.g., 80) so that Eq. (7.2.36a) can be expressed
in finite difference form such that

τ (λ, hi ) = 2
∑

j

βe(λ, z j )	xi j , (7.2.36c)

where 	xi j is the path length in the j th layer represented by z j associated with the
direct solar beam passing through the tangent height hi . The geometrical factor 	xi j

can be devised as the weighting function for inverting the extinction coefficient profile
from the optical depth measurements [see Eq. (7.2.13a)].

The limb extinction technique is specifically useful for the determination of aerosols
and other minor gases in the stratosphere. It was explored by the Stratospheric Aerosol
Measurement (SAM) experiment aboard the Nimbus 7 satellite in 1978. Subsequently,
the Stratospheric Aerosol and Gas Experiment I (SAGE I) and SAGE II were con-
ducted in 1979 and 1984, respectively. SAGE II contains seven channels centered at
0.385, 0.448, 0.453, 0.525, 0.6, 0.94, and 1.02 μm. The 0.94 and 0.6 μm channels
were used to infer the water vapor and ozone amounts, while the difference between
0.448 and 0.453 μm was used to determine the NO2 concentration. In this manner,
aerosol extinction coefficient profiles can be derived from the seven measurements,
following the constrained linear inversion method introduced in Subsection 7.2.1.2.
Pioneering work in the solar occultation technique for stratospheric aerosol studies
has been reported by McCormick et al. (1979).

The solar occultation technique is extremely sensitive to the presence of high-
level clouds. As a by-product, the data from SAGE have been used to derive the
frequency of occurrence of cirrus clouds based on the extinction values measured
(Woodbury and McCormick, 1986). The cirrus results derived from SAGE have com-
plemented those from other satellite remote sensing methods, particularly in view
of the fact that it is difficult to determine thin cirrus with optical depths less than
about 0.5 based on reflected sunlight and/or emitted infrared radiation from nadir-
looking radiometers (see Sections 7.3.5 and 7.4.5 for discussions of the remote sensing
of clouds).

7.3 Remote Sensing Using Reflected Sunlight

7.3.1 Satellite–Sun Geometry and Theoretical Foundation

In reference to Fig. 6.1, the sunlight (denoted as In) reflected from a position-vector
on the earth and the atmosphere is detected by a satellite (denoted as Out). The po-
sition of the sun is defined by the solar zenith angle θ0, while the satellite position
is defined by the emergent zenith angle θ . The relative positions of the sun and the
satellite are given by the azimuthal angle difference 	φ. From spherical geome-
try (Appendix C and Fig. 6.1), the angle between the incoming and outgoing light
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beams counterclockwise from the incoming beam, known as the scattering angle �,
is defined by

cos� = cos θ cos θ0 + sin θ sin θ0 cos	φ

= μμ0 + (1 − μ2)1/2
(
1 − μ2

0

)1/2
cos	φ, (7.3.1)

where we set μ = cos θ and μ0 = cos θ0.
Any radiometer on board a satellite will have a finite field-of-view on a horizontal

plane that collects radiation from the earth and the atmosphere, referred to as resolu-
tion, which is dependent on the specific instrument designed and its scan angle. The
orbit of a satellite is determined by the earth’s gravitational attraction force and the
centrifugal acceleration of the satellite and is governed by Kepler’s laws discussed in
Section 2.2. Nearly all the present meteorological satellites are in one of two orbits:
sunsynchronous or geostationary.

The earth makes one complete resolution about the sun (2π radian) in one tropical
year (365.2422 days). Thus, the right ascension of the sun changes at an average
rate of about 1◦day−1. If the inclination of the satellite is correctly chosen, the right
ascension of its ascending node can be made to precess at the same rate. An orbit
that is synchronized with the sun is called a sunsynchronous orbit or polar orbit. The
point at which a satellite crosses the earth’s equatorial plane from south to north is
known as the ascending node; the point passed as it crosses the plane from north
to south is known as the descending node. The point directly beneath the satel-
lite is called the subsatellite point or nadir. For a satellite with a height of about
870 km, its inclination angle needs to be about 99◦ for its orbit to be sunsynchronous.
This is the nominal height of the National Oceanic and Atmospheric Administration
(NOAA) polar-orbiting weather satellites, which orbit the earth in a period of about
100 minutes and cross the equator at the same local standard time (LST) every day,
as illustrated in Fig. 7.5a. Morning satellites ascend (or descend) between 06 and
12 h LST and descend (or ascend) between 18 and 24 h LST. Afternoon satellites
ascend (or descend) between 12 and 18 h LST, and descend (or ascend) between 00
and 06 h LST.

The space–time coverage of a polar orbiting satellite depends on its orbit and the
scanning geometry of its instruments. The poles or near poles are observed on every
orbit and the instruments view every point on the earth at least twice per day. Most
meteorological satellite instruments are designed such that the area viewed on one
orbit touches or overlaps the area viewed on previous and successive orbits. The data
is produced in the form of scan lines, each divided into elements or samples known
as pixels or scan spots. Each pixel has a unique time associated with it and is defined
by its latitude and longitude. The size of a pixel is controlled by the field-of-view of
the instrument and its scan pattern.

If a satellite is moved farther from the earth, it would experience a weaker grav-
itational field and the centrifugal acceleration required to keep the satellite in orbit
would be smaller. The rotation period of the satellite would also become longer. It is
possible to select a distance at which the rotation period is exactly equal to the 1 day
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Figure 7.5 (a) Polar and (b) geostationary orbits for NOAA satellites. The polar orbit rotates 1◦ per
day to make it synchronous with the sun. The geostationary satellite stays continuously above one spot on
Earth.

rotation period of the earth in such a manner that the satellite moves in a counterclock-
wise fashion. This orbit is called a geosynchronous or geostationary orbit. To achieve
this distance, the satellite must be about 36,000 km above the earth’s surface (see
Exercise 2.4). Geostationary satellites remain essentially stationary above a point on
the equator and are classified by the longitude of their subsatellite points (Fig. 7.5b).
They view a fixed area comprising about 42% of the globe at the same time so that
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any point in this area can be observed as frequently as their instruments will allow.
However, because each point has a fixed geometric relationship to the satellite, it is
viewed at only one set of zenith and azimuthal angles. Presently, five geostationary
satellites orbit the earth to gather weather data, including two operated by the United
States, one by the European Space Agency (METEOSAT), one by Japan (GMS),
and one by India (INSAT). The current U.S. system consists of two Geostationary
Operational Environmental Satellites (GOES).

In Section 1.4.4, we introduced the basic equation of radiative transfer for plane-
parallel atmospheres. In conjunction with satellite applications, we shall rewrite this
equation for diffuse intensity as

μ
d I (τ ;μ, φ)

dτ
= I (τ ;μ, φ) − J (τ ;μ, φ), (7.3.2a)

where the source function, representing the scattering contributions by the direct solar
beam and by multiple scattering of the diffuse beam, is given by (Section 6.1)

J (τ ;μ, φ) = ω̃

4π

∫ 2π

0

∫ 1

−1
I (τ ;μ′, φ′)P(μ, φ;μ′, φ′) dμ′dφ′

+ ω̃

4π
F� P(μ, φ; −μ0, φ0)e−τ/μ0 , (7.3.2b)

where P is the phase function, which represents the angular distribution of scattered
energy as a function of direction and is an important parameter associated with satel-
lite remote sensing of aerosols and clouds, F� is the direct solar irradiance at the top
of the atmosphere (TOA), and the single-scattering albedo ω̃ is defined as the ratio
of the scattering cross section σs to the extinction cross section σe. The phase func-
tion, single-scattering albedo, and extinction cross section are the three fundamental
parameters in radiative transfer.

To seek a solution for Eq. (7.3.2a), we shall separate the atmosphere and the
surface and assume that there are no diffuse intensities from the top and bottom of the
atmosphere. Under this condition, the reflected intensity at TOA can be expressed in
terms of the integral equation as follows:

I (0;μ, φ) =
∫ τ

0
J (τ ′;μ, φ)e−τ ′/μ dτ ′

μ
. (7.3.3)

Moreover, we may seek a solution by using the single-scattering approximation to
obtain the nondimensional bidirectional reflectance introduced in Section 3.4.2 or
bidirectional reflection distribution function (BRDF) defined by

R(μ, φ;μ0, φ0) = π I (0;μ, φ)

μ0 F�

= ω̃

4(μ+ μ0)
P(μ, φ; −μ0, φ0)

{
1 − exp

[
− τ

(
1

μ
+ 1

μ0

)]}
.

(7.3.4a)
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If we consider an atmosphere such that its optical depth is extremely small, then
Eq. (7.3.4a) can be further simplified in the form

R(μ, φ;μ0, φ0) = ω̃τ

4μμ0
P(μ, φ; −μ0, φ0). (7.3.4b)

Under the optically thin and single-scattering approximations, it is clear that the BRDF
at TOA is directly proportional to the phase function and optical depth.

Consider now an underlying surface and account for multiple reflections between
the atmosphere and the surface. For simplicity of presentation, let the surface be
Lambertian with an albedo rs (isotropic reflection, although it is not required in the
formulation). The BRDF for the combined atmosphere and surface system is the
summation of all the light beams emergent at TOA, as shown in Fig. 7.6. Thus,
we have

R = Ra + T̃ars T̃ ∗
a + T̃ars R∗

ars T̃ ∗
a + · · ·

= Ra + T̃ars T̃ ∗
a /(1 − R∗

ars), (7.3.5)

where Ra denotes the BRDF from the atmosphere only and the second term represents
the surface contribution. In this equation, R∗

a is the BRDF of the atmosphere for
radiation from below, and for practical purposes, R∗

a ≈ Ra . The term T̃a(μ0) is the
total transmission function (direct plus diffuse) from the sun to the surface, while
T̃ ∗

a (μ) is the total transmission function from the surface to the satellite. These terms
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~

TarsRarsTa
~ ~
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Figure 7.6 Contribution of the bidirectional reflectance from the atmosphere–surface system. The
term Ra is the bidirectional reflectance from the atmosphere only, and rs is the surface albedo, which can
be directionally dependent. See also Fig. 6.9.
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can be computed from the theory of radiative transfer such as the adding principle
introduced in Section 6.4. Within the limits of single-scattering and optically thin
approximations, however, we have the diffuse transmission function

Tdif(μ, φ;μ0, φ0) = ω̃

4(μ− μ0)
P(−μ, φ; −μ0, φ0)

(
e−τ/μ − e−τ/μ0

)
∼= ω̃τ

4μμ0
P(−μ, φ; −μ0, φ0), μ �= μ0. (7.3.6)

The direct transmission function is simply Tdir = exp(−τ/μ0). Equation (7.3.5) serves
as the fundamental radiative transfer equation for the determination of aerosols and
ozone in the atmosphere on the one hand, and for the inference of surface properties
on the other.

7.3.2 Satellite Remote Sensing of Ozone

The basic principle involved in the estimation of ozone concentration utilizing re-
flected sunlight is to select a pair of wavelengths in the Hartley–Huggins ozone ab-
sorption band. The selection process is similar to that for the Dobson ozone spectro-
meter described in Section 7.2.2. Wavelengths near the long-wavelength end of the
band at which absorption is relatively weak are chosen so that most of the pho-
tons reaching the satellite instrument have passed through the ozone layer and back-
scattered from within the troposphere. The two wavelengths are separated by about
200 Å so that the scattering effect is about the same at each wavelength, while
absorption for one of these wavelengths is stronger than the other. A pair such as
(3125, 3312 Å), for example, has been selected in the Nimbus 4 satellite experiment.

The backscattering radiance in the ozone band at the point of a satellite with a
nadir-looking instrument depends on the attenuation of the direct solar flux through the
ozone layer, the reflecting power of the atmosphere and the associated surface, and the
attenuation of the diffusely reflected photons to the point of the satellite. If Z denotes
the solar zenith angle at the level of maximum ozone concentration (about 20 km)
at the subsatellite point, then the total attenuation path of the backscattered photons
through the ozone layer is proportional to 1 + sec Z . Let F� and I be the incident solar
irradiance and the measured backscattered intensity at TOA, respectively. Following
the procedure described in Eq. (7.2.33), we then define

N̂ (λ1, λ2) = log10
F�(λ1)

Î (λ1)
− log10

F�(λ2)

Î (λ2)
. (7.3.7)

Determination of the total ozone concentration can be made by comparing the ob-
served N̂ with values precomputed for a series of different standard ozone profiles
by means of the searching method.

The computational method for the transfer of solar radiation in a scattering and
absorbing atmosphere for ozone studies usually follows Eq. (7.3.5). Writing this
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equation in terms of scattered intensity we have

Î (�,μ0, rs) = I (�,μ0, 0) + rs T (�,μ0)

1 − rsr̄ (�)
, (7.3.8)

where T (�,μ0) = μ0 F�T̃a(μ = 1)T̃a(μ0)/π,μ0 = cos Z , r̄ is a mean atmospheric
reflection, and � denotes the total ozone concentration. The first term is the at-
mospheric contribution alone, while the second is produced by interaction with the
underlying surface. In this equation, all the relevant parameters in the radiative terms
are included in parentheses. Note that since the ozone instrument is normally looking
in the nadir direction, the azimuthal dependence can be neglected.

The three basic procedures for the determination of total ozone concentration from
the observed N̂ are as follows: (a) A set of tables containing the computed quanti-
ties I (�,μ0, 0), T (�,μ0), and r̄ (�) for different values of μ0 and � are prepared
a priori. (b) The effective surface albedo is determined by utilizing the radiometric
measurement at a wavelength outside the ozone absorption band, say λ3(3800 Å). At
this wavelength, the ozone dependence drops out of all the terms in Eq. (7.3.8), and
a measurement of Î 3(μ0, rs) permits the direct calculation of the surface albedo with
the formula

rs(λ3) = Î 3(μ0, rs) − I3(μ0, 0)

T (μ0) + r̄ [ Î 3(μ0, rs) − I3(μ0, 0)]
. (7.3.9)

The assumption is made that rs is independent of wavelength so that it can be used
for the pair of wavelengths (λ1, λ2). However, an empirical adjustment may also be
performed from known surface albedo measurements. (c) With the surface albedo
known, computations are then carried out to generate N (λ1, λ2) versus total ozone
concentration �. Best estimates of � from the observed intensities via N̂ can then
be made by an optimized search method. The matching and search method has been
used by Mateer et al. (1971) to estimate total ozone concentration from the Nimbus
4 satellite measurements of backscattered intensities. Dave (1978) further discussed
the effect of atmospheric aerosols on the estimate of total ozone concentration.

As a result of environmental concerns and potential health hazards, ozone con-
centration has been monitored by satellites since the beginning of the sounding era.
The Backscatter Ultraviolet Spectrometer (BUV) on board Nimbus 4 operated for
seven years, from 1970 to 1977. The Total Ozone Mapping Spectrometer (TOMS) on
Nimbus 7 produced daily global maps of total ozone at 50–150 km resolution in 1978.
The Solar Backscatter Ultraviolet Radiometer (SBUV) on the NOAA satellites has
provided daily ozone data over the globe on a routine basis since 1980.

7.3.3 Satellite Remote Sensing of Aerosols

The retrieval of aerosol optical and microphysical properties from satellite measure-
ments of reflected sunlight is a difficult task because of the relatively small influence
of aerosols. Aerosol retrieval is further complicated by the variability of the under-
lying surfaces. In reference to Section 7.2.1, the basic aerosol parameters include
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optical depth, size distribution, and the refractive index, which is wavelength de-
pendent. The last parameter is related to the composition of the aerosol. Given the
measured reflected intensities at some appropriate wavelengths that are sensitive
to aerosol properties, we wish to determine the pertinent parameters. The simplest
situation would be a black surface that makes no contribution to the scattered in-
tensity. In this case, we can use Eq. (7.3.4b) so that the aerosol optical depth is
determined by

τ = R̂(μ, φ;μ0, φ0)

P(μ, φ;μ0, φ0)

4μμ0

ω̃
. (7.3.10)

In addition to the measured bidirectional reflectance R̂ and the sun–satellite geometry,
we also need the information of phase function P and single-scattering albedo ω̃. Be-
cause the aerosol size distribution and the refractive indices are generally unknown a
priori, P and ω̃must be assumed or parameterized from other information. In this man-
ner, a measured R̂ will yield an optical depth for the atmosphere. Since the Rayleigh
scattering of the atmosphere is known, aerosol optical depth can subsequently be
determined. The oceans are close to black in the visible (∼6% albedo on average) and
near-infrared wavelengths. Thus, retrieval of aerosol optical depth from satellites has
had some success over the oceans. The remote sensing of aerosols over land, however,
despite its importance, is a subject still requiring research and development.

Since 1979, the Advanced Very High Resolution Radiometer (AVHRR) aboard
NOAA satellites has been used to study aerosols. It consists of five nominal chan-
nels centered at 0.63, 0.86, 3.7, 10.9, and 12 μm, with a horizontal resolution of
about 1 km × 1 km. The 0.63 μm channel has been extensively employed to map
aerosol optical depth over the oceans. With the addition of the 0.86 μm channel, the
size parameter of a Junge distribution can be estimated. The 0.86 μm channel data
has also been used to provide an estimate of the combination of ω̃P occurring in
Eq. (7.3.10).

A number of other instruments have also been designed to study aerosols and
clouds from space. Under NASA’s earth science programs, specifically the Earth Ob-
serving System (EOS) Program, a series of polar-orbiting and low-inclination satel-
lites have been and continue to be in orbit for long-term global observations of the
atmosphere, land surface, biosphere, solid earth, and oceans. Two of the EOS instru-
ments are particularly pertinent to the study of aerosols. The Moderate–Resolution
Imaging Spectrometer (MODIS) (King et al., 1992) is designed to make 0.25–1 km
resolution observations in 36 visible and infrared bands. Many of the visible and
near-infrared channels have been used for the mapping of aerosol optical depth and
size. The Multi-Angle Imaging SpectroRadiometer (MISR) provides multiangle ob-
servations. MISR produces images at nine fixed angles in the along-track direction
with one at the nadir, and four both fore and aft out to ± 70.5◦. Four spectral bands
centered at 0.443, 0.555, 0.670, and 0.805 μm are available with ground resolution
between about 240 m and 2 km (Diner et al., 1998). This instrument appears to
be useful for studying the scattering phase function of spherical and nonspherical
aerosols.
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7.3.4 Satellite Remote Sensing of Land Surfaces

The land surface of the earth is highly complex involving a combination of vegetations,
soils, sand, rocks, water, and ice. A precise determination of the vegetation and surface
properties is critical to the present and future management of earth’s resources, as
well as to the understanding of the role that land surfaces play in the climate system.
The remote sensing of vegetation and surface properties by satellites is a subject that
is of interest to numerous disciplines, including meteorology, hydrology, geography,
geology, biology, ecology, and electrical engineering. Most of the research areas
involve the analysis of satellite images and are beyond the scope of this text. However,
we shall discuss the fundamentals associated with the determination of surface albedo
and present an important application of the AVHRR /NOAA data for the inference of
vegetation.

The surface reflectivity or albedo determines the solar flux available at the surface
and is the essential parameter in the discussion of climate over land. The surface
albedo is dependent on the type of surface. For water surfaces, the albedo ranges
from about 6 to 9%, except for cases involving the low solar angle that is associated
with the high latitudes of the winter hemisphere. The albedo can range from 10 to
40% for various land surfaces. For example, deserts and sand dunes have albedos of
about 30–40%, whereas those for meadows and forests are about 10%. The albedos of
snow and ice are greater than 40%. Moreover, the albedos of some vegetation surfaces
vary greatly with solar wavelength as noted below.

In reference to Eq. (7.3.5), if we select a wavelength in the visible spectrum
(0.4–0.7 μm) such that the product of the surface albedo rs and the atmospheric
BRDF (generally less than 0.1) is much smaller than 1, then we can express the
surface albedo in the form

rs
∼= a R̂ − b, (7.3.11)

where a = 1/T̃a T̃ ∗
a and b = Ra/T̃a T̃ ∗

a . The coefficients a and b are the so-called
atmospheric correction terms involving the scattering contributions of aerosols and
molecules, which can be empirically determined for specific applications. Thus, a
measurement of BRDF R̂ at TOA determined by the sun–satellite geometry will
provide a surface albedo value. A surface albedo so determined is averaged over the
pixels of the satellite instrument and is normally assumed to be independent of the
incoming and outgoing directions. In reality, the surface reflection function can be
extremely complex, especially over vegetation areas.

An important characteristic of the reflection by vegetation surfaces is the sharp
transition in the reflection at a wavelength of about 0.7 μm. The presence of chloro-
phyll in vegetation leads to strong absorption at wavelengths shorter than 0.7 μm.
Figure 7.7 shows the reflectance as a function of wavelength for dry and wet bare
soil and vegetation cover (Li et al., 2002). In view of these spectral properties, we
may select two AVHRR wavelengths (λ1 = 0.63 μm and λ2 = 0.86 μm) and define
a term called the normalized difference vegetation index (NDVI), in the form

NDVI = I (λ2) − I (λ1)

I (λ2) + I (λ1)
. (7.3.12)
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Figure 7.7 Illustration of the step function transition in the surface spectral albedo of two types of
vegetation at 0.7 μm, compared to the continuous spectral albedo for soil surfaces. These results were de-
rived from measurements made in the Southern Great Plains of Oklahoma surrounding the Central Facility
of the Department of Energy’s Atmospheric Radiation Measurement site (data taken from Li et al., 2002).

It is an index of biospheric activity indicating the amount of live vegetation in the
field-of-view of the satellite sensor. The NDVI field has been routinely processed
from the NOAA /AVHRR data for research and operational purposes.

7.3.5 Cloud Optical Depth and Particle Size

Clouds cover more than 50% of the planet earth and are the most important regulators
of the radiation budget of the earth–atmosphere system. The transfer of radiation
through cloud layers depends on particle concentration, size distribution and shape,
and cloud thickness and geometry. Information about cloud composition and structure
is of vital importance to the understanding of the radiation balance and energetics of
the earth–atmosphere system.

Because of the number of variables involved and the associated problem of mul-
tiple scattering by particulates, determination of the highly varying cloud variables
by remote sensing is a difficult task. With the availability of high-speed computers
and efficient numerical methods for the solution of the radiative transfer equation,
advanced techniques for the inference of cloud composition using the reflected inten-
sity and polarization of sunlight have been developed. Analogous to the inference of
total ozone concentration, the method involved is an ad hoc direct matching between
the observed and computed intensity and/or polarization. In this section, we describe
the information content of the reflected intensity and polarization of sunlight from
water and ice clouds.



7.3 Remote Sensing Using Reflected Sunlight 371

7.3.5.1 BIDIRECTIONAL REFLECTANCE

The remote sensing of clouds from space using reflected sunlight requires a funda-
mental understanding of the radiative properties of water and ice clouds. Determination
of these properties must begin with knowledge of the complex refractive index of wa-
ter and ice as a function of wavelength. The real refractive indices of water exhibit
substantial deviations from those of ice at wavelengths greater than about 10 μm.
The imaginary refractive index of ice is much more complex, with values ranging
from about 10−6 at 0.9 μm to about 0.75 at 3 μm. Ice exhibits relatively strong ab-
sorption at about 1.6 μm, where water shows a minimum. The imaginary refractive
indices for ice and water vary rapidly in the solar and IR spectra. There are signif-
icant variations in the absorption properties of ice and water in the near-IR solar
spectrum.

In Section 3.2.3, we discussed the absorption bands in the solar spectrum. In the
near-IR region, the absorption of solar radiation is primarily due to water vapor.
Absorption by water vapor is strong in the band centers and falls off sharply away
from these centers. Absorption by ice and water, on the other hand, is more constant
across each band, being less intense than water vapor in the band centers and more
intense away from the centers. Moreover, the maximum absorption due to ice and
water does not coincide exactly with the water-vapor band centers. There are regions
in the near-IR where water vapor absorption dominates, whereas in other regions,
ice and water absorption is more important. The reflection of sunlight from clouds
depends on the optical depth and some measure of the particle size within the cloud.
Figure 7.8 illustrates the spectral bidirectional reflectance and absorptance for three
mean effective ice crystal sizes [see Eq. (7.3.15a) for definition]. The calculation
uses a solar zenith angle of 30◦, an emergent angle of 0◦, an ice water path (IWP)
of 1 g m−2, and a spectral interval of 50 cm−1 containing 30 cumulative probability
functions (g’s) covering the spectrum from 0.2 to 5 μm, based on the correlated
k-distribution method for infrared radiative transfer introduced in Section 4.3. From
the absorption spectrum, the H2O absorption bands located at 3.2, 2.7, 1.87, 1.38,
1.1, 0.94, 0.82, and 0.72 μm are evident, as are the 4.3 μm CO2 and O3 UV bands.
The bidirectional reflectances have maxima in between the H2O absorption bands.
Small ice crystals reflect more solar radiation. Sufficient ice crystal size information
is clearly demonstrated in the near-IR spectrum. The spectral features are similar for
clouds containing water droplets.

Variation of the reflectance in the near-IR region could provide a means for the
inference of some of the physical properties of clouds. This possibility has been
suggested by Hansen and Pollack (1970), who have interpreted spectral near-IR re-
flectances of clouds measured from aircraft. Suggestions of the inference of the optical
depth and mean radius from spectral reflectance measurements have also been made
by Twomey and Seton (1980). The preceding suggestions are based on the principle
of radiative transfer that the reflection of clouds at a wavelength with little absorption
(such as in the visible spectrum) is primarily a function of their optical depth, whereas
in a near-IR wavelength at which the absorption of water vapor in the clouds is small,
their reflection is largely dependent on particle size.
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Figure 7.8 Spectral bidirectional reflectance and absorptance as functions of wavelength for cirrus
clouds with mean effective ice crystal sizes of 10, 42, and 124 μm . Absorption bands due to ozone, water
vapor, and carbon dioxide are identified. The spectral features are similar for water clouds.

Before we present some pertinent radiative transfer calculations and observed
data, we must define the particle size that can be inferred from reflected sunlight.
A brief review of the droplet size distribution in water clouds, including stratus,
nimbostratus, altostratus, and various types of cumulus, has been presented by Liou
(1992). A determination of the detailed droplet size spectrum from space, employing
currently available instruments, has yet to be developed and verified. Nevertheless,
we may define a mean effective size to represent the actual size distribution taking
into account the scattering property of spherical droplets such that they scatter an
amount of light proportional to their cross sectional area as follows:

ae =
∫

a · πa2n(a) da
/∫

πa2n(a) da. (7.3.13a)

The mean effective radius differs from the simple mean radius in that the droplet
cross section is included as a weighting factor. As shown by many radiative transfer
calculations, the reflected and transmitted sunlight is primarily dependent on this
parameter regardless of the detailed distribution of droplet sizes (Hansen and Travis,
1974). In the following, we wish to relate this mean parameter to the amount of
vertically integrated liquid water in the cloud, referred to as the liquid water path
(LWP, g cm−2), and optical depth.
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From the definition of liquid water content (LWC, g cm−3) for spherical droplets,
we have

LWC = 4π

3
ρl

∫
a3n(a) da, (7.3.13b)

where ρl is the density of water. Thus, LWP = LWC ·	z. The optical depth is defined
by [see also Eq. (7.2.9b)]

τ = 	z ·
∫

Qeπa2n(a) da, (7.3.13c)

where Qe is the efficiency factor for extinction, a function of the droplet radius,
wavelength, and refractive index. For wavelengths in the visible, Qe

∼= 2 for cloud
droplets. Thus, combining the preceding three equations, we obtain

ae
∼= 3

2ρl
LWP/τ, (7.3.13d)

which relates the optical depth, LWP, and droplet size. The relation is significant.
Consider two clouds having the same LWP. The cloud that contains a smaller droplet
would have a larger optical depth and therefore would reflect more sunlight. Anthro-
pogenic pollution sources can affect droplet size, referred to as the indirect aerosol
effect (see Exercise 7.5 and Section 8.4.4 for further discussion).

In conjunction with the retrieval of the optical depth and mean effective droplet
radius of water clouds from the NASA EOS/Terra satellite using the MODIS in-
strument discussed in Section 7.3.3, King et al. (1997) performed radiative transfer
calculations for a wide variety of solar zenith angles and observational zenith and
azimuthal angles at a number of selected wavelengths in the visible and near-IR.
Shown in Fig. 7.9 are bidirectional reflection function (BRDF or reflectance) cor-
relations at 0.664/1.62 μm and 0.664/2.142 μm. These wavelengths were selected
because they are outside the water vapor and oxygen absorption bands and, at the same
time, have substantially different water droplet absorption properties. The minimum
value of the reflectance at each wavelength corresponds to the underlying ocean re-
flectance in the absence of an atmosphere. The dashed curves represent the reflectances
for specified values of cloud optical depth, whereas the solid lines denote those for
specified values of droplet mean effective radius. As evidenced by these results at a
nonabsorbing wavelength (0.664 μm), cloud optical depth is largely determined by
reflectance with little dependence on droplet radius. The reflectance at 2.142/1.621
μm, in contrast, is largely sensitive to the mean effective radius, with the largest val-
ues occurring for small droplet sizes. The data points superimposed on the theoretical
curves represent over 400 measurements obtained from the MODIS Airborne Simu-
lator (MAS) instrument, which is a 50-band scanning spectrometer that was mounted
in the NASA ER-2 aircraft during an experiment that was carried out over marine
stratocumulus clouds in the vicinity of the Azores approximately 1000 km southwest
of Lisbon on 22 June, 1992. Simultaneous determination of cloud optical depth and
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Figure 7.9 Theoretical relationship between the reflectance at 0.664 and (a) 1.621 μm and
(b) 2.142 μm for various values of optical depth at 0.664 μm and effective droplet radius, for the specific
geometry denoted in the diagram. Data from over 400 measurements obtained with the MAS that was
aboard the NASA ER-2 aircraft are superimposed. These observations were obtained when the aircraft
flew above marine stratocumulus clouds during a stratus cloud experiment on June 22,1992 (data taken
from King et al., 1997).
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mean effective droplet radius can be performed by maximizing the probability that the
measured reflectances Rm(μ0, μ,	φ) have the functional form Rc(τ, ae;μ0, μ,	φ),
such that

χ2 =
3∑

i=1

[
ln Ri

m(μ0, μ,	φ) − ln Ri
c(τ, ae;μ0, μ,	φ)

]2
, (7.3.14)

where the summation extends over the three wavelengths. Validation of this retrieval
algorithm is critical because of the nonuniqueness of the solutions determined from
the statistical optimization method, and is a subject of continuing research.

Analogous to the retrieval of water cloud optical depth and effective radius, one
can also apply the reflectance correlation technique to clouds containing ice crystals
(Rolland and Liou, 1998; Ou et al., 1999). Ice crystals are much more complicated
than spherical water droplets with respect to their scattering and radiative properties,
as presented in Sections 5.4 and 6.7.1. We have defined the mean effective ice crystal
size in Eq. (5.1.1) to represent the ice crystal size distribution, and it is duplicated
here for the continuity of the present discussion on remote sensing:

De =
∫

V n(L) dL

/∫
A n(L) dL, (7.3.15a)

where L is the maximum dimension of an ice crystal, V is the volume, A is the
geometric projected area of an ice crystal on a surface perpendicular to the incident
light beam, and n(L) is the ice-crystal size distribution. In this manner, the shape of
irregular ice crystals is accounted for. Further, the ice water content (IWC) for a given
ice crystal size distribution is defined by

IWC =
∫

Vρi n(L) dL, (7.3.15b)

where ρi is the density of ice. The volume of a hexagonal ice crystal is given by
3
√

3LD2/8, with D the ice crystal width. Moreover, for randomly oriented ice crystals
in the limits of geometric optics, the extinction cross section is 3D(

√
3D/4 + L)/2

(Takano and Liou, 1989a). With these relationships and following the principle intro-
duced for water droplets, we may also relate visible optical depth and mean effective
ice crystal size as follows:

τ ∼= IWP(c + b/De), (7.3.15c)

where IWP = IWC·	z denotes ice water path, and c ∼= −6.656 × 10−3 and b ∼= 3.686
for ice columns. Below we present the inference of the optical depth and ice crystal
mean effective size based on reflected solar radiation.

Radiative transfer calculations using the MAS channels of 0.681, 1.617, and
2.139 μm were performed for the six ice-crystal size distributions with mean ef-
fective ice-crystal size ranging from 24 to 124 μm, and for two water-droplet size
distributions with mean effective radii of 4 and 8 μm (Fig. 7.10). The results are
displayed in two-dimensional reflectance diagrams in terms of 0.681–1.617 μm and
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Figure 7.10 Correlation between the reflectances at 0.681/1.617 μm and at 0.681/2.139 μm. Radia-
tive transfer calculations were performed for the six ice-crystal size distributions with mean effective sizes
ranging from 24 to 124 μm, and for two water clouds with mean effective radii of 4 and 8 μm. The optical
depth ranges from 0.5 to 64. Overlapped with the curves are the MAS data obtained from FIRE-II-IFO on
5 December 1991, over the northern Gulf of Mexico and eastern Oklahoma. Frames (a) and (b) are cases
over water, and frames (c) and (d) are cases over land.
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0.681–2.139 μm for optical depths ranging from 0.5 to 64. For both cirrus and wa-
ter clouds, the 0.681 μm reflectance mainly depends on the optical depth, whereas
the 1.617 and 2.139 μm reflectances are primarily functions of the mean effective
particle size. A clear distinction is seen between the correlations for water clouds
(mean effective radius <8 μm) and for cirrus clouds (mean effective size >20 μm).
It is possible that the correlations for larger water-droplet mean effective radius and
smaller ice-crystal mean effective size may overlap. However, based on the statis-
tics of aircraft observations compiled by Liou (1992), the mean droplet radius for
various water clouds is within the 3.5–5.0 μm range and the spectrum of ice-crystal
size distribution is generally between 20 and 2000 μm. Thus, it is expected that the
probability of occurrence of the correlation overlap for water and ice clouds is very
small. Even if the water droplets and ice crystals are about the same size, they can
be distinguished by inferring the cloud phase and cloud temperature from separate
means.

Also shown in Fig. 7.10 are the MAS data obtained from FIRE-II-IFO on 5
December 1991. The top and bottom diagrams correspond to the cases over wa-
ter and land surfaces, respectively. The case over water was taken at 1636 UTC,
5 December 1991, when the ER-2 aircraft was flying over the northern part of the
Gulf of Mexico near the southern coastal region of Louisiana. The case over land was
taken at 1923 UTC on the same date, when ER-2 was flying over eastern Oklahoma.
In the calculations, the effective surface albedos used were determined from the MAS
reflectances over clear pixels. The data points indicate that the detected cirrus clouds
appear to contain small ice particles with optical depths less than about 6. Larger
optical depths indicate the possibility of cirrus overlying low clouds. For each data
point, an optical depth and a mean effective ice-crystal size can be determined based
on Eq. (7.3.14).

7.3.5.2 POLARIZATION

In Sections 5.3 and 5.4, we presented the single-scattering characteristics of spher-
ical droplets and various types of ice crystals. Polarization of the sunlight reflected
from clouds appears to show a strong imprint of the cloud thermodynamic phase
(spherical water droplets and nonspherical ice crystals) as well as ice crystal shape.

Perhaps the most intriguing results in connection with the use of polarization data
for the determination of particle size and optical characteristics have been found in
the study of the cloud deck of Venus. Although Venus is the nearest planet, it is the
most mysterious as it is surrounded by a veil of clouds. Polarization observations
of Venus have been made by the French astronomer Lyot (1929) using visible light.
Hansen and Hovenier (1974) have performed an extensive investigation of the particle
shape, size, and refractive index of the Venus cloud deck by comparing the observed
linear polarization with comprehensive multiple scattering computations, including
Lorenz–Mie particles and Rayleigh molecules. Shown in Fig. 7.11 are observations
and theoretical computations of the linear polarization of visible sunlight reflected
by Venus. After varying the size parameter and refractive index, the best fit to the
observed data is given by the dashed-dot curve. The maximum at the phase angle
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Figure 7.11 Observations (◦, ×,+,	) of the polarization of sunlight reflected by Venus as a func-
tion of the phase angle (180◦ −�) in the visual wavelength region and theoretical computations for
λ = 0.55μm. α denotes the mean radius, β is an effective dispersion of the size distribution, and mr is the
refractive index (after Hansen and Hovenier, 1974).

of about 20◦ (scattering angle 160◦) is the primary rainbow, the product of light
rays undergoing one internal reflection, which nonspherical particles do not show,
as illustrated in Sections 5.3 and 5.4. Based on this study, it was concluded that the
Venus cloud layer was composed of spherical particles having a mean radius of about
1.05 μm and an effective dispersion of 0.07. The refractive index of the particles is
about 1.44 at a wavelength of 0.55 μm with a normal dispersion.

Photometric interpretations may also be carried out to understand the physical,
optical, and chemical properties of clouds and/or hazes of other planets. Mariner
spacecraft studies of Mars reveal that clouds of H2O ice as well as possible CO2 ice
haze are present in the Martian atmosphere. Photometric and scattering techniques
can provide significant data for understanding the physical and chemical composition
of NH3 clouds in the Jovian atmosphere and the nature of Saturn’s rings. Particles that
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occur in Mars, Jupiter, and Saturn are likely to be nonspherical. As a consequence of
their nonsphericity and the associated orientation problems, reliable single-scattering
information must be developed to allow multiple scattering calculations for the pur-
poses of interpretation of observed data.

Further, Takano and Liou (1989b) and Liou and Takano (1994) have used the
single-scattering results for hexagonal plates and columns, and later a combination of
regular and irregular ice particles, as shown in the upper panel of Fig. 7.12, to interpret
the measured linear polarization pattern of sunlight reflected from optically thick
cirrus clouds presented by Coffeen (1979). More recently, polarization of sunlight
reflected from cirrus clouds has been reported by Chepfer et al. (1998) during the
European Cloud Radiation Experiment 1994 campaign based on airborne polarimeter
measurements from the Polarization and Directionality of the Earth’s Reflectances
(POLDER) instrument. Two channels in this instrument at 0.443 and 0.864 μm were
used for polarization measurements. The lower panel of Fig. 7.12 shows the observed
polarization defined by PO = (Q2 + U 2 + V 2)1/2 for two cirrus cloud episodes. In
the left and right diagrams, the scattering angle ranges are 75◦ to 165◦ and 90◦ to
180◦, respectively, with the respective solar zenith angles depicted in the diagrams.
After extensive trial- and-error analyses, we find that the results employing an optical
depth of about 3 match the observed data in the left diagram most closely. Radiative
transfer calculations are subsequently performed using randomly oriented hollow
columns, plates, and irregular ice particles. The plate case (L/2a = 8/80 μm) appears
to fit the observations in all scattering angle ranges, as displayed in the left diagram,
except in the backscattering range in which the irregular ice particle case fits better.
The polarization data presented in the right lower panel illustrates a peak at about
104◦ (subsun feature) associated with the horizontal orientation of ice plates and
columns. To provide adequate interpretation, all 16 phase matrix elements are needed
in radiative transfer calculations. Following the approach presented in Section 6.7.1
for polarized radiative transfer in horizontally oriented ice particles, 0.1% of hollow
Parry columns (horizontal random orientation in a fixed direction) was added to
a combination of 60% rough-surface ice particles, 30% hollow columns, and 10%
plates randomly oriented in three-dimensional space to provide the best interpretation
of the observed data.

7.3.5.3 REFLECTED LINE SPECTRUM

The signature of high-level cirrus appears in the bidirectional reflectance associated
with a number of water-vapor absorption bands, as shown in Fig. 7.8, particularly those
containing small ice crystals. Among these, the 1.38 μm band appears to be most
useful for the detection of thin cirrus, because of the combination of the moderate
strength of this absorption band and the amount of solar energy residing within the
band (Gao and Kaufman, 1995). The spectral lines of sunlight reflected from other
planets have been observed and utilized to determine the composition of planetary
atmospheres (Goody and Yung, 1989). Such observations have not been made from
satellites for the earth, however. Based on the computational results from a line-
by-line equivalent radiative transfer program, we study the information content of
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Figure 7.12 The upper panel shows linear polarization of sunlight reflected from cirrus clouds mea-
sured at 2.22μm (Coffeen, 1979). The lower pannel displays full polarization observed from the polarimeter
at 0.864 μm on board the POLDER in the scattering-angle domain (Chepfer et al.,1998). The theoretical
results are computed for hollow columns, plates, and ice particles with rough surfaces using the best fit
optical depth of 3. The lower left panel illustrates comparisons between observed values with theoretical
results using 3D randomly oriented plates, rough-surface ice particles, and hollow columns. The lower
right panel shows a best interpretation of the observed data, particularly for subsun peak at about the 104◦
scattering angle, using a combination of 0.1% hollow Parry columns and other 3D randomly oriented ice
crystals indicated in the diagram.
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bidirectional reflectances in the 1.38 μm H2O band covering 6600–7500 cm−1. The
calculations employ two ice-crystal size distributions having mean effective ice crystal
sizes of 42 and 124 μm with a shape composition of 50% aggregates/bullet rosettes,
30% hollow columns, and 20% plates.

Figure 7.13 shows the results for clear and cirrus cloudy conditions in which the
midlatitude summer atmosphere water vapor profile is used. The cirrus cloud base is
placed at 8 km with an optical depth of 1. The line structure of water vapor absorption
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Figure 7.13 The upper diagram shows the bidirectional reflectance in the 1.38 μm water vapor
band as a function of wavenumber from 6600 to 7500 cm−1 for clear and cirrus cloudy atmospheres. A
cirrostratus located at 8 km with a thickness of 2 km in the midlatitude summer atmosphere is used in the
calculation. The surface albedo and the solar and emergent angles used are 0.1 and 60◦ and 0◦, respectively.
The lower diagram presents the bidirectional reflectance in the rearranged wavenumber domain according
to the order of the clear reflectance values, a monotonic increasing curve, for a number of optical depths.
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exhibits significant fluctuations. At about 7100–7400 cm−1, reflectances in clear con-
ditions are extremely small because of strong water vapor absorption. Multiple scat-
tering due to ice crystals contributes to the strength of reflectances in the line-wing
regions. It is difficult to examine the full information content of cirrus clouds because
of the complexity of the line structure. For this reason, we order the bidirectional
line spectra for the clear condition according to their magnitudes in such a manner
that a monotonic increasing function is displayed in the rearranged wavenumber do-
main. Subsequently, the bidirectional line spectra for cirrus cloudy conditions are also
ordered in accord with this rearranged wavenumber domain. Low values represent re-
flectances associated with line centers, whereas high values correspond to line wings.

In the lower panel, the largest reflectance in the line wing corresponding to the
surface albedo used is about 0.1 for the clear case. For the small optical depth of
0.1, reflectance increases in the center of the water vapor absorption lines produced
by the scattering contribution of ice crystals. The pronounced scattering events that
occur at an optical depth of 1 are due to the fact that the scattering and absorption
coefficients for ice do not align with the absorption coefficients for water vapor.
Sufficient information with respect to the cloud height and ice crystal size, in addition
to the optical depth, appears to be present in the rearranged spectrum.

Because of the relative strength of water vapor lines in the 1.38 μm band, it
appears that some aspect of the vertical profile of cirrus clouds may be inferred from
the spectral bidirectional reflectance measurements. Consider a mixture of ice crystals
and water vapor in a predivided layer, 	z. The single-scattering albedo for this layer
may be expressed by

ω̃(v) = σs

σe + k(v)
∼= ω̃c

1 + 2k(ν)/πD2
e

, (7.3.16a)

where σe and σs are the extinction and scattering cross sections for ice particles;
k(v) is the absorption coefficient in units of cross section; and ω̃c = σs/σe is the
single-scattering albedo for ice particles where the optical theorem is used to obtain
σe

∼= 2 · π (De/2)2. We may also employ the parameterization equation developed for
optical depth denoted in Eq. (7.3.15c) in the form

	τ (ν) ∼= [IWC(c + b/De) + ρw k(ν)] ·	z, (7.3.16b)

where ρw denotes the number density for water vapor. In these two equations all
variables are dependent on the predivided layer.

Consider further an optically thin layer such that the reflectance (reflection func-
tion) and transmittance (transmission function) are given in Eqs. (6.4.8a) and (6.4.8b).
The spectral reflectance can then be written as follows:

R(v) = 1

4μμ0

Pω̃c(De)

1 + 2k(ν)/πD2
e

[IWC(c + b/De) + ρw k(ν)] ·	z. (7.3.17a)

A similar expression can also be written for the transmittance (direct + diffuse). For
the retrieval of IWC and De from the reflectance measurements to be feasible, the
term Pω̃c must be expressed in terms of De. We may now consider a single two-layer
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system such that the combined reflectance via Eq. (6.4.9a) is defined by

R12(ν) = R1(ν) + T̃ ∗
1 (ν)R2(ν)T̃1(ν)

1 − R∗
1 (v)R2(ν)

. (7.3.17b)

For an optically thin layer, the reflectance and transmittance for radiation from
above and below may be assumed to be the same, i.e., T̃ ∗

1 = T̃1 and R∗
1 = R1.

Equation (7.3.17b) contains four unknowns: De(1, 2) and IWC(1, 2). Thus, four
or more spectral reflectance measurements may be selected to perform retrievals. Di-
rect inversion is obviously not feasible, but a numerical solution could be developed.
The adding method for reflectance may be extended to a number of layers such that a
vertical profile for De and IWC may be inferred from a set of carefully selected spec-
tral measurements. The preceding analysis suffices to point out the rich information
inherent in the water vapor line spectra reflected from cloudy atmospheres, a subject
that has not been explored for the remote sensing of cloud vertical structure.

In Section 3.2.3, we discussed the characteristics of the oxygen absorption bands.
The oxygen A-band is produced by the transitions of ground electronic states ac-
companied by vibrational–rotational transitions and is centered at 13,121 cm−1 (red
band). The optical depths of the A-band are determined by molecular oxygen (or air)
density and therefore are known quantities. The absorption of solar irradiance by the
oxygen A-band is similar to but not exactly the same as the 1.38 μm water vapor
bands. The A-band radiometer sees the earth’s atmosphere principally in the upper
troposphere and low stratosphere and, can therefore, be used to infer the position of
high-level cirrus clouds, a research area of considerable interest.

7.4 Remote Sensing Using Emitted Infrared Radiation

7.4.1 Theoretical Foundation

We shall first present the theoretical foundation of infrared remote sensing in the
context of satellite applications. In a nonscattering atmosphere that is in local thermo-
dynamic equilibrium, the basic equation that governs the transfer of emitted thermal
infrared (IR) radiance at a given wavenumber, ν, can be described by

μ
d Iν(τ, μ)

dτ
= Iν(τ, μ) − Bν(τ ), (7.4.1)

where μ = cos θ , θ is the emergent angle, Bν is the Planck function, and the optical
depth is defined by

τ =
∫ z∞

z
kν(z′)ρa(z′) dz′, (7.4.2)

with ρa the density of the absorbing gases and kν the absorption coefficient. In thermal
IR radiative transfer, radiance in the wavenumber domain is used instead of intensity
for reflected and transmitted sunlight in the wavelength domain.



384 7 Application of Radiative Transfer Principles to Remote Sensing

From the basic equation, the solution for upward radiance is given by the following
integral equation:

Iν(τ, μ) = Iν(τ∗)e−(τ∗−τ )/μ +
∫ τ∗

τ

Bν(τ ′)e−(τ ′−τ )/μ dτ ′

μ
, (7.4.3)

where τ∗ is the optical depth at the surface and Iν(τ∗) denotes the emitted surface
radiance generally assumed to be isotropic. The first term on the right-hand side
represents the surface emission contribution attenuated to the level τ , while the second
term denotes the emission contribution of the atmosphere between τ and τ∗.

For application to satellite remote sensing, it suffices to assume that the satellite
instrument observes in a narrow cone in the local vertical so that everywhere within
the cone the cosine of the emergent angle μ ∼= 1, referred to as the upwelling direc-
tion. The emitted radiance at the surface Iν(τ∗) = εν Bν(Ts), where εν is the surface
emissivity and Ts is the surface temperature. The emissivities of most of the earth’s
surfaces in the thermal IR region are close to 1. Thus, for all practical purposes, we
may use the Planck function for the emitted radiance at the surface.

Moreover, in remote sensing the exponential terms are generally expressed in
terms of the transmittance and weighting function defined in the following. The
monochromatic transmittance is defined by

Tν(τ ) = e−τ , (7.4.4)

and the weighting function by

∂Tν(τ )

∂τ
= −e−τ . (7.4.5)

It follows that at the top of the atmosphere (TOA), we have

Iν(0) = Bν(Ts)Tν(τ∗) +
∫ 0

τ∗
Bν(τ )

∂Tν(τ )

∂τ
dτ. (7.4.6)

For application to atmospheric remote sensing, the height or pressure coordinate
is usually employed. Height and pressure are related via the hydrostatic equation,
dp = −ρgdz, where ρ is the air density and g is the gravitational acceleration. The
mixing ratio for a specific gas with density ρa is defined as q = ρa/ρ. Thus, we can
rewrite Eq. (7.4.6) in the pressure coordinates as follows:

Iν(0) = Bν(Ts)Tν(ps) +
∫ 0

ps

Bν[T (p)]
∂Tν(p)

∂p
dp, (7.4.7)

where ps denotes the surface pressure.
An instrument can distinguish only a finite band width �(ν̄, ν), where � denotes

the instrumental response (or slit) function and ν̄ is the mean wavenumber. The
measured radiance from a spectrometer over a wavenumber interval (ν1, ν2) in the
normalization form is given by

Iν̄ =
∫ ν2

ν1

Iν�(ν̄, ν) dν

/∫ ν2

ν1

�(ν̄, ν) dν. (7.4.8)
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The effective spectral interval for the response function is usually small enough that
the variation of the Planck function is insignificant. We can then replace its value
by Bν̄(T ) without introducing noticeable errors. It follows that by carrying out the
wavenumber integration over Eq. (7.4.7), we obtain

Iν̄(0) = Bν̄(Ts)Tν̄(ps) +
∫ 0

ps

Bν̄[T (p)]
∂Tν̄(p)

∂p
dp, (7.4.9)

where, when the instrumental response function is accounted for, the spectral trans-
mittance is defined by

Tν̄(p) =
∫ v2

v1

�(ν̄, ν) exp

[
− 1

g

∫ p

0
kν(p′)q(p′) dp′

]
dν

/∫ ν2

ν1

�(ν̄, ν) dν.

(7.4.10)

Equation (7.4.9) is fundamental to remote sensing of the atmosphere and the sur-
face from orbiting meteorological satellites. The upwelling radiance is a result of
the product of the Planck function, the spectral transmittance, and the weighting
function. The temperature information is included in the Planck function, while the
density profiles of relevant absorbing gases are involved in the transmittance. Ob-
served radiances will thus be directly or indirectly associated with the temperature
and gaseous profiles. Extracting the relevant information about the atmospheric state
and composition from observed IR radiances is the essence of remote sensing from
space.

We shall now review the potential information content in the thermal IR spectrum
(Fig. 4.3). There are four regions over which water vapor, ozone, and carbon dioxide
exhibit a significant absorption spectrum. Carbon dioxide absorbs IR radiation in the
15 μm band from about 600 to 800 cm−1. In addition, carbon dioxide also absorbs
radiation in the 4.3 μm region that overlaps with solar radiation. Absorption due
to ozone is primarily confined to the 9.6 μm band. Water vapor exhibits absorption
lines over the entire infrared spectrum. The most pronounced absorption occurs in the
6.3μm vibrational–rotational band and in the pure rotational band with wavenumbers
less than about 500 cm−1. From about 800 to 1200 cm−1, referred to as the atmospheric
window, absorption due to atmospheric gases shows a minimum, except in the 9.6μm
ozone band. There are also absorption bands for various greenhouse gases that can
be used for their determination by remote sensing: the CH4 7.6 μm band, the N2O
7.9 μm band, and some CFC lines in the window.

7.4.2 Surface Temperature Determination

If observations are taken in the window region where the effect of the atmosphere
is at a minimum, the upwelling radiance at TOA must be closely associated with
emission from the surface. Replacing ν̄ by i for convenience of discussion, we may
define a mean temperature for the atmosphere, Ta , and simplify Eq. (7.4.9) in the
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form

Ii
∼= Bi (Ts)Ti + Bi (Ta) (1 − Ti ), (7.4.11)

where we let Ti = Ti (ps).
We now introduce the split-window technique for the determination of surface

temperature that uses observations at two channels to eliminate the term involving
Ta and solve for Ts . The value of Ta generally varies by less than 1 K in the window
region from about 10.5 to 12.5 μm, in which variability of the surface emissivity
is insignificant. The atmospheric transmittance in the window region is primarily
produced by the continuous absorption of water vapor and to a good approximation
is given by

Ti
∼= e−ki u = 1 − ki u, (7.4.12)

where ki is the absorption coefficient of water vapor for a spectral band in the window
and u is the water vapor path length.

Applying the window equation to two channels, we have

I1 = B1(Tb1) = B1(Ts)T1 + B1(Ta) (1 − T1), (7.4.13)

I2 = B2(Tb2) = B2(Ts)T2 + B2(Ta) (1 − T2), (7.4.14)

where we have also expressed the observed radiances I1 and I2 in terms of the bright-
ness temperatures Tb1 and Tb2. The objective of the split-window technique is to
eliminate Ta , and to do so, we may expand the Planck function of temperature T by
means of the Taylor series with respect to Ta in the form

Bi (T ) = Bi (Ta) + ∂Bi

∂T
(T − Ta). (7.4.15)

Applying Eq. (7.4.15) to the two channels with i = 1, 2 and eliminating (T − Ta)
yields

B2(T ) = B2(Ta) + ∂B2

∂T

/
∂B1

∂T
[B1(T ) − B1(Ta)]. (7.4.16)

Further, by replacing T by Tb2 and Ts in Eq. (7.4.16) and utilizing Eq. (7.4.14), after
some analysis we obtain the following:

B1(Tb2) = B1(Ts)T2 + B1(Ta)(1 − T2). (7.4.17)

By eliminating B1(Ta) from Eqs. (7.4.17) and (7.4.13), we obtain the split-window
equation in the form

B1(Ts) = B1(Tb1) + η[B1(Tb1) − B1(Tb2)], (7.4.18)

where

η = 1 − T1

T1 − T2

∼= k1

k2 − k1
. (7.4.19)
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In practice, the Planck function is replaced by the brightness temperature. Since a
local linear relation can be established between the two, particularly in a small spectral
interval in the window region, we may write

Ts
∼= Tb1 + η(Tb1 − Tb2). (7.4.20)

Sea surface temperatures (SSTs) have been routinely inferred from the opera-
tional NOAA satellites using one of the instruments aboard, the AVHRR discussed in
Section 7.3.3. The 10.9 and 12.0 μm channels have been used to determine surface
temperature, particularly over oceans. At night, the 3.7 μm channel has also been
added to increase the accuracy of retrieval. Based on the split-window technique,
surface temperature may be expressed by a general form of regression as follows:

SST = aTb1 + b(Tb1 − Tb2) − c, (7.4.21)

where a, b, and c are empirical coefficents derived from in situ observations obtained
from drifting buoys (McClain et al., 1985), and Tb1 and Tb2 are the brightness tem-
peratures involving a combination of AVHRR 10.9, 12.0, and 3.7 μm channels. The
satellite-derived temperatures correspond to the temperature of a surface (skin tem-
perature), whereas the buoy measurements are associated with a layer of water some
meters deep. The regression approach of the multichannel technique is used partly
to adjust (or tune) the satellite skin temperatures to the in situ bulk temperatures and
partly to account for the water vapor absorption in the window, particularly in the
moist tropical region. Since 1970, global SSTs have been operationally produced
and archived. An important part of SST retrieval is the detection and elimination
of clouds. Several threshold methods are employed for these purposes based on the
bidirectional reflectance of the solar channel in daytime and the emission charac-
teristics of IR channels with respect to the sea surface uniformity in nighttime. The
split-window technique has also been used for the determination of surface temper-
ature over land in conjunction with land–atmosphere interaction studies. (Brutsaert
et al., 1993).

7.4.3 Remote Sensing of Temperature Profiles

Inference of atmospheric temperature profiles from satellite observations of thermal
infrared emission was first suggested by King (1956). In his pioneering paper, King
pointed out that the angular radiance (intensity) distribution is the Laplace transform
of the Planck intensity distribution as a function of optical depth, and illustrated the
feasibility of deriving the temperature profile from satellite intensity scan measure-
ments.

Kaplan (1959) advanced the sounding concept by demonstrating that vertical res-
olution of the temperature field can be inferred from the spectral distribution of
atmospheric emission. Kaplan pointed out that observations in the wings of a spectral
band sense deeper into the atmosphere, whereas observations in the band center see
only the very top layer of the atmosphere since the radiation mean free path is small.
Thus, by properly selecting a set of different sounding wavenumbers, the observed
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radiances can be used to make an interpretation leading to the vertical temperature
distribution in the atmosphere. This principle is demonstrated in the following.

From Eq. (7.4.9), it is clear that the temperature of the underlying surface must be
determined if surface emission represents a significant contribution to the observed
radiance. For the following discussion, we may drop the surface term, i.e., assume
Tν̄(ps) = 0, and write the forward radiative transfer equation in the form

Iν̄ =
∫ 0

ps

Bν̄[T (p)]
∂Tν̄(p)

∂p
dp. (7.4.22)

The fundamental problem in temperature profile retrieval is how to solve for the func-
tion Bν̄[T (p)], given a set of observed radiances corresponding to different wavenum-
bers and the known weighting functions. Since the Planck function is a function of
wavenumber, we must first eliminate this dependence in the retrieval. The Planck
function is smooth and in a small spectral interval it can be approximated in a linear
form as follows:

Bν̄(T ) = cν̄ Bν̄r (T ) + dν̄ , (7.4.23)

where ν̄r denotes a fixed reference wavenumber and cν̄ and dν̄ are fitting coefficients.
It follows that Eq. (7.4.22) can be expressed by

gν̄ =
∫ 0

ps

f (p)K ν̄(p) dp, (7.4.24a)

where we let

gν̄ = (Iν̄ − dν̄)/cν̄ , f (p) = Bν̄r [T (p)], K ν̄(p) = ∂Tν̄(p)/∂p. (7.4.24b)

Equation (7.4.24a), similar to Eq. (7.2.10), is the well-known Fredholm equation of
the first kind; K ν̄(p) is the weighting function; and f (p) is the function to be recovered
from a set of gν̄ .

To determine atmospheric temperatures from measurements of thermal emission,
the source of emission must be a relatively abundant gas of known and uniform
distribution. Otherwise, its uncertainty will make the determination of temperature
from the measurements ambiguous. There are two gases in the earth–atmosphere
system that occur in uniform abundance at altitudes below about 100 km, and which
also show emission bands in the spectral regions that are convenient for measurement.
As discussed in Section 4.2, carbon dioxide, a minor constituent with a relative volume
abundance of about 365 ppm at the present time, exhibits vibrational–rotational lines.
In addition, oxygen, a major constituent with a relative volume abundance of 0.21,
also satisfies the requirement of a uniform mixing ratio and has a microwave spin-
rotational band. The microwave spectrum will be discussed in the next section.

Shown in Fig. 7.14 is a spectrum of outgoing radiance in terms of blackbody
temperature in the vicinity of the 15 μm band observed by the Infrared Interfero-
meter Spectrometer (IRIS) on board the Nimbus 4 satellite. The equivalent blackbody
temperature generally decreases when approaching the band center. This decrease is
associated with the decrease of tropospheric temperature as altitude increases. Near
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Figure 7.14 Outgoing radiance in terms of blackbody temperature in the vicinity of 15 μm CO2

band observed by the IRIS on Nimbus 4. The arrows denote the spectral regions sampled by the VTPR
instrument (see also Fig. 4.1).

about 690 cm−1, the temperature shows a minimum, which is related to the colder
tropopause. Decreasing the wavenumber beyond 690 cm−1, however, increases the
temperature. This is due to the increase in temperature in the stratosphere, since the
observations near the band center see only the very top layers of the atmosphere. On
the basis of the sounding principle discussed above, we can select a set of sounding
wavenumbers such that temperature profiles in the troposphere and lower stratosphere
can be largely covered. The arrows in Fig. 7.14 indicate an example of such a selection.

The selection of appropriate sounding wavenumbers for temperature retrieval re-
quires an understanding of the behavior of weighting functions. In practice, an ideal
weighting function would be a delta function. Weighting functions can be constructed
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using known line-by-line absorption data and a program for transmittance calcula-
tions via Eq. (7.4.10). As discussed in Section 1.3, the absorption coefficient in the
troposphere is slightly dependent on temperature, which can introduce complications
in the retrieval of temperature profiles. However, the temperature dependence of trans-
mittances can be accounted for in the retrieval process by building a set of values cor-
responding to a number of standard atmospheric profiles from which a search can be
carried out to obtain the best estimated transmittances for a given temperature profile.

The computation of spectral transmittances through an inhomogeneous atmosphere
for satellite remote sensing applications first requires a line-by-line integration effort,
prior to the development of simplified or parameterized programs to speed up the
computational requirement. In Section 4.2.3, we outlined the procedure for line-by-
line calculations in which line shape, strength, and position, along with pressure and
temperature dependence, are properly taken into account.

Sounding of the atmospheric temperature for meteorological purposes utilizes the
15μm and 4.3 μm CO2 bands. The latter is used at nighttime to enhance temperature
retrieval. As discussed in Section 4.2, the 15μm CO2 band consists of a number of
bands produced by vibrational transitions including the ν2 fundamentals, combination
bands, hot bands, and bands associated with isotopes, with strong Q-branch rotational
lines located at the center of the band and P- and R-branch lines almost equally spaced
on each side of the band center.

An example of the weighting function and transmittance profiles is shown in
Fig. 7.15 for a set of Vertical Temperature Profile Radiometers (VTPR) on the
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Figure 7.15 The weighting function and transmittance for the NOAA 2 Vertical Temperature Profile
Radiometer (VTPR).
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NOAA 2 satellite, the first satellite experiment to measure atmospheric temperatures
for operational meteorological use. The VTPR consists of 6 channels in the 15μm
CO2 band, with the nominal center wavenumbers of 668.5, 677.5, 695.0, 708.8,
725.0, and 745.0 cm−1 for channels 1–6, respectively. The weighting function curves
represent the part of the atmosphere where the upwelling radiance arises. Each peak
denotes the maximum contribution to the upwelling radiance. Clearly, radiance is
contributed mostly from progressively lower levels as the wavenumber moves from
the center to the wing of the band. It is also apparent that the weighting functions
overlap somewhat, allowing finite radiance data to define the temperature profile
adequately. Operational and practical temperature profile retrievals do not follow the
direct inversion methods discussed in Section 7.2.1, but rather employ the nonlinear
iteration and physical–statistical methods outlined in the following.

7.4.3.1 NONLINEAR ITERATION METHOD

The difficulty in reconstructing a temperature profile from radiance observations
is due to the fact that the Fredholm equation with fixed limits may not always have a
solution for an arbitrary function. Because the radiances are derived from measure-
ments that are only approximate, the reduction of the inversion problem to a linear
system is mathematically improper and a nonlinear approach to the forward radiative
transfer equation appears necessary. Recalling Eq. (7.4.9), we write

Ii = Bi (Ts)Ti (ps) +
∫ 0

ps

Bi [T (p)]
∂Ti (p)

∂ ln p
d ln p, (7.4.25a)

where i denotes the number of spectral channels and the weighting function is ex-
pressed in logarithmic scale of the pressure. The Planck function in the wavenumber
domain may be rewritten in the form

Bi (T ) = aν3
i

/(
ebνi/T − 1

)
, (7.4.25b)

with a = 2hc2 and b = hc/K . In reference to the weighting function illustrated in
Fig. 7.15, we note that for a given wavenumber, the integrand reaches a maximum at
different pressure levels. From the mean value theorem, the observed radiance can be
approximated by

Î i − Bi (Ts)Ti (ps) ∼= Bi [T (pi )]

[
∂Ti (p)

∂ ln p

]
pi

	i ln p, (7.4.26)

where pi denotes the pressure level at which the maximum weighting function is
located, and 	i ln p is the pressure difference at the i th level and is defined as the
effective width of the weighting function. Let the guessed temperature at the pi level
be T ∗(pi ). Then, the expected radiance is given by

I ∗
i − Bi (Ts)T ∗

i (ps) = Bi [T
s(pi )]

[
∂T ∗

i (p)

∂ ln p

]
pi

	i ln p. (7.4.27)
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On dividing Eq. (7.4.26) by Eq. (7.4.27) and noting that the dependence of the Planck
function is much larger than that of the weighting function, we obtain

Î i − Bi (Ts)Ti (ps)

I ∗
i − Bi (Ts)T ∗

i (ps)
∼= Bi [T (pi )]

Bi [T ∗(pi )]
. (7.4.28)

When the surface contribution to the upwelling radiance is small or dominant,
Eq. (7.4.28) may be approximated by

Î i

I ∗
i

∼= Bi [T (pi )]

Bi [T ∗(pi )]
. (7.4.29)

This is referred to as the relaxation equation (Chahine, 1970; Smith, 1970). We may
now devise iterative procedures to retrieve the temperature profile T (n)(pi ) at level pi

where n is the order of iterations as follows:

(a) Make an initial guess for T (n)(pi ), n = 0.
(b) Substitute T (n)(pi ) into Eq. (7.4.25a) and use an accurate quadrature formula to

compute the expected upwelling radiance I (n)
i for each sounding channel.

(c) Compare the computed radiance values I (n)
i with the measured data Î i . If the

residuals R(n)
i = | Î i − I n

i |/ Î i are less than a preset small value (e.g., 10−4) for
each sounding channel, then T (n)(pi ) is a solution. If not, continue the iteration.

(d) Apply the relaxation equation (7.4.29) M times to generate a new guess for
the temperature values T (n+1)(pi ) at the selected i pressure level, i.e., force the
temperature profile to match the observed radiances. From Eqs. (7.4.29) and
(7.4.25b), we have

T (n+1)(pi ) = bνi/ln
{
1 − [1 − exp(bνi/T (n)(pi ))]I (n)

i / Î i
}
, i = 1, 2, . . . , M.

(e) Carry out the interpolation between the temperature value at each given level pi

to obtain the desired profile (it suffices to use linear interpolation in the retrieval).
(f) Finally, go back to step (b) and repeat until the residuals are less than a preset

criterion.

The relaxation method could, in principle, fail to converge or converge to the wrong
solution. The former will be obvious and the solution can be rejected. The latter
requires numerical experiments to demonstrate whether the method has converged to
a correct solution. Exercise 7.6 is an example of using the relaxation method to derive
a temperature profile.

7.4.3.2 MINIMUM VARIANCE METHOD: HYBRID RETRIEVAL

In many remote sensing problems, the errors encountered are statistical. Hence,
it is desirable to take into account the statistical nature of the measurement errors
and available information when considering the inversion problem. In the statistical
approach, it is customary to assume that the deviation of predicted (or estimated)
parameters (in the present case the temperature) from the climatological mean can be
expressed as a linear combination of the deviation of measured data (in this case the
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radiance). Under this assumption, we have

T̂ j − T̄ j =
M∑

i= j

D ji ( Î i − Ī i ), j = 1, 2, . . . , N , (7.4.30)

where j denotes the atmospheric level, T̂ j is the predicted value of Tj , which repre-
sents the “true” temperature, Î i is the observed radiance, ‖D ji‖ represents a certain
predictor matrix, and the climatological means of Tj and Ii (the “true” radiance) are
defined by a statistical ensemble, denoted by x , of available temperature profiles and
radiances in the forms

T̄ j = 1

X

X∑
x=1

Tjx , Īi = 1

X

X∑
x=1

Ii x . (7.4.31)

In matrix from, Eq. (7.4.30) can be written

T̂ − T̄ = D
(
Î − Ī

)
. (7.4.32)

Thus, once D is known the predicted temperature vector can be determined from the
observed radiance vector.

We wish to find a linear predictor which will give the minimum square deviation
of the predictor profile from the true profile defined by

X∑
x=1

(Tjx − T̂ j x )2 =
X∑

x=1

[(
Tjx − T̄ j

)− (T̂ j x − T̄ j
)]2

, j = 1, 2, . . . , N .

(7.4.33)
Using Eq. (7.4.30) and searching the minimum with respect to the linear predictor
yield

∂

∂D jk

{
X∑

x=1

[(
Tj x − T̄ j

)−
M∑

i= j

D ji
(
Î i x − Ī i

)]2
}

= 0,

j = 1, 2, . . . , N , k = 1, 2, . . . , M. (7.4.34)

It follows that
X∑

x=1

(Tjx − T̄ j )( Î kx − Ī k) −
M∑

i=1

D ji

X∑
x=1

( Î i x − Ī i )( Î kx − Ī k) = 0. (7.4.35a)

In matrix form, we write

X∑
x=1

(Tx − T̄)(Îx − Ī)T − D
X∑

x=1

(Îx − Ī)(Îx − Ī)T = 0, (7.4.35b)

where T is an N × 1 matrix, I is an M × 1 matrix, and D is an N × M matrix. Further,
let the experimental random error vector due to system noise of a radiometer be ε.
Thus, the observed radiance vector is then

Î = I + ε, (7.4.36)
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where I is the “true” radiance vector mentioned earlier. Substituting Eq. (7.4.36) into
Eq. (7.4.35b) and noting that the measurement error vector is uncorrelated with the
temperature and radiance vectors, we have

X∑
x=1

(Tx − T)(Ix − I)T − D
X∑

x=1

[
(Ix − I)(Ix − I)T + εεT

] = 0. (7.4.37)

Define the covariance matrix for any two variables as follows:

C(Tx , Ix ) = 1

X

X∑
x=1

Tx IT
x . (7.4.38)

Thus, the predictor matrix can be expressed in terms of the covariance matrix in the
form

D = C(	Tx ,	Ix )[C(	Ix ,	Ix ) + C(εx, εx)]−1, (7.4.39)

where C(εx, εx) represents the noise covariance matrix, and

	Tx = Tx − T̄, 	Ix = Ix − Ī. (7.4.40)

The covariance matrix can be constructed empirically by collecting coincidences
of radiances derived from satellites and temperatures obtained from radiosondes or
rocket soundings. Normally, the D matrix is built to give a dimension N × M such
that N > M . In this manner, more temperature values can be inferred from a limited
set of radiance observations. The D matrix is thus determined entirely from avail-
able data sets and information concerning the weighting function is not required.
Although the statistical method does not require a good first-guess profile, acquiring
a representative data set is crucial to its success. This data set must be large enough
to ensure that the retrieval matrix is stable, must be collected for each satellite, and
must be updated frequently to cover different seasons and latitudinal zones. The most
advantageous aspect of the statistical method is the computational efficiency afforded
by Eq. (7.4.32), which is important for operational purposes.

The minimum variance method utilizes the same approach as the statistical method
but does not require a large data set and uses weighting functions similar to phys-
ical retrievals. Consider the basic forward radiative transfer equation denoted in
Eq. (7.4.22) and write it in the form

Ii =
∫ 0

ps

Bi [T (p)]Ki (p) dp, i = 1, 2, . . . , M. (7.4.41)

Let the climatological (or standard) temperature profile be T̄ (p) and let the radiance
corresponding to this profile be Ī . Expanding the Planck function linearly with respect
to this temperature, we have

Ii − Ī i =
∫ 0

ps

∂Bi [T (p)]

∂p
Ki (p) dp[T (p) − T̄ (p)]. (7.4.42)
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Using the quadrature summation for the integration and employing the notation
defined in Eq. (7.4.40), we have

	Ii = Ai j	Tj , (7.4.43a)

where

Ai j =
N∑

j=1

{
∂Bi [T (p)]

∂p
Ki (p)

}
p j

	p j . (7.4.43b)

In matrix form, we have

ΔI = A ΔT. (7.4.44)

Substituting Eq. (7.4.44), which correlates the temperature deviation with the ra-
diance deviation via a matrix A, into the predictor matrix derived in Eq. (7.4.39),
we have

D = CTAT(ACT AT + Cε

)−1
, (7.4.45a)

CT = 1

X

X∑
x=1

	Tx	TT
x , (7.4.45b)

Cε = 1

X

X∑
x=1

εxε
T
x . (7.4.45c)

Equations (7.4.32) and (7.4.45a)–(7.4.45c) constitute the so-called minimum variance
method. The components in the predictor matrix can be determined separately; A
can be calculated from the transmittances; CT can be determined from a sample of
radiosonde soundings; and Cε can be obtained from instrument calibration in the
laboratory. In this manner, a large data set of collocated radiosonde and satellite
soundings is no longer required.

Although operational retrievals of temperature profiles have been routinely per-
formed over the past 25-plus years, the techniques and procedures used have un-
dergone constant refinement and improvement. This is a result of the complicated
nature of the problem, in which consistent and accurate performance is difficult to
achieve. It is particularly so when clouds are involved. Radiances from operational
satellites, NOAA and GOES, are converted into temperature soundings through an
involved algorithm in which retrieval, such as use of the minimum variance method,
is only a small part of the process. The NOAA satellites have three sounders: the
High Resolution Infrared Radiation Sounder 2 (HIRS/2), the Microwave Sounding
Unit (MSU), and the Stratospheric Sounding Unit (SSU). Together they are referred
to as the TIROS N Operational Vertical Sounder (TOVS). The TOVS data have been
routinely processed to obtain temperature and humidity soundings in connection with
numerical weather prediction.
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HIRS  
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Figure 7.16 Configuration for the adjacent pixels (∼20 km) in a partly cloudy condition for the
removal of cloud contribution in the temperature retrieval algorithm using HIRS channels. η1 and η2

denote cloud covers in the two pixels. The picture displays AVHRR visible images (∼1 km).

7.4.3.3 CLOUD REMOVAL

In many temperature retrieval cases, the major problem is due to the presence of
clouds in the field of view (FOV) of the sounding radiometers. It is, therefore, critically
important to remove the cloud effect prior to the temperature retrieval. Consider a
pair of adjacent pixels (scan spots), as shown in Fig. 7.16, and let the radiances for
the i th channel over clear and cloudy areas be I clr

i and I cld
i , respectively. Then, the

radiances for pixels 1 and 2 are given by

Î i1 = (1 − η1)I clr
i1 + η1 I cld

i1 ,

Î i2 = (1 − η2)I clr
i2 + η2 I cld

i2 , (7.4.46)

where η1 and η2 are the effective cloud covers, the product of cloud cover and emis-
sivity, for the respective pixels. If the optical properties of the clouds in the adjacent
pixels are the same for the sounding channels, and the temperature fields in the ad-
jacent pixels are also the same, then I clr

i1 = I clr
i2 = I clr

i , and I cld
i1 = I cld

i2 = I cld
i . Thus,

we obtain

N ∗ = η1

η2
= I clr

i − Î i1

I clr
i − Î i2

. (7.4.47)
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If we know in advance the N ∗, which is independent of channels, we can then
determine the clear column radiance from the following equation:

I clr
i = Î i1 − Î i2 N ∗

1 − N ∗ . (7.4.48)

The preceding outlines the essence of the N ∗ method for the removal of cloud con-
tribution in the FOV of the radiometer. It is subject to the following restrictions: (a)
the assumption that adjacent clouds are of the same height, temperature, and optical
properties; (b) the effective cloud covers η1 and η2 must be different; otherwise,
N ∗ = 1, and the solution for I clr

i is singularity; and (c) additional information is
required to determine I clr

i from the value of N ∗.
The conventional approach is to use an independent channel, say M , in the mi-

crowave to determine N ∗ such that

N ∗ = I clr
M − Î M1

I clr
M − Î M2

. (7.4.49)

However, microwave measurements are usually subject to errors caused by poor reso-
lution, contamination by precipitating clouds, and uncertainty in the estimated surface
emissivity. As shown in McMillan and Dean (1982), many empirical procedures and
threshold tests are required for the processing of TOVS soundings from NOAA satel-
lites to detect and correct for clouds in connection with temperature retrieval.

Figure 7.17 shows an example of the temperature retrieval accuracy from TOVS
data with respect to radiosonde soundings during the entire global weather experiment
year in 1979 in terms of root-mean-square differences (Smith, 1991). The collocation
and time differences between the two data sources are within about 200 km and
±3 hours. The error differences were due primarily to the poor vertical resolution of
the TOVS compared to that of the radiosondes. In clear and partly cloudy conditions,
error differences are 2–3 K and they increase in overcast cloud conditions. The reduced
accuracy of overcast retrievals is due to the limited number of tropospheric microwave
sounding channels and their poor vertical resolution, which result in ineffective cloud
removal (see Section 7.5.3 for microwave temperature retrievals).

Many analyses appear to indicate that poor vertical resolution can be the pri-
mary source of error that limits the use of current satellite soundings for weather
analysis/forecast operations. More advanced sounding instruments that have been de-
veloped are the Advanced Infrared Radiation Sounder (AIRS) (Chahine et al., 1984),
which will be on board the NASA EOS/Aqua satellite, and the High spectral resolu-
tion Interferometer Sounder (HIS), cited in Section 4.2, which is being planned for
both the geostationary and polar platforms. The former is a grating spectrometer; the
latter is a Michelson interferometer covering a spectral region from about 3.5 to about
19 μm with high spectral resolution (λ/	λ > 2000) (Smith et al., 1995). The goal
of future atmospheric infrared sounder observations is to provide an overall accuracy
of about 1 K with a vertical resolution of 1 km in temperature retrieval. Clearly, the
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Figure 7.17 Root-mean-square differences between TOVS and radiosonde soundings during the
entire global weather experiment year in 1979. The collocation and time differences for the two data sets
are generally within 200 km and 3 hours. The number of cases employed in the retrieval for clear, partly
cloudy, and overcast conditions are indicated in the diagram (data taken from Smith, 1991).

search for efficient and physically based retrieval programs employing a finite num-
ber of spectral channels to achieve this goal is still a subject of ongoing research and
development.

7.4.4 Remote Sensing of Water Vapor and Trace Gas Profiles

7.4.4.1 WATER VAPOR FROM THE 6.3 μm VIBRATIONAL–ROTATIONAL BAND

Recalling Eq. (7.4.9) and performing integration by parts on the integral term, we
find

Iν̄ = Bν̄[T (0)] −
∫ 0

ps

Tν̄(p)
∂Bν̄(p)

∂p
dp, (7.4.50)

where T (0) denotes the temperature at the top of the atmosphere and the spectral
transmittance

Tν̄(p) =
∫
	ν

exp

[
−
∫ p

0
kν(p) du(p)

]
dν

	ν
. (7.4.51)

We have used the path length u(g cm−2) to denote the integration in the transmittance.
If the temperature profile has been retrieved from the 15 and 4.3 μm CO2 bands,

then the remaining unknown is the transmittance. Further, if we select wavenumbers
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in the 6.3 μm vibrational–rotational band of water vapor at which the absorption
lines are given, then the only unknown is the path-length profile. The basic radiative
transfer equation for the inference of gaseous profiles is more complicated than that
for temperature retrieval. There is no clear-cut mathematical analysis that can be
followed to invert the gaseous density profile. Nevertheless, one may devise numerical
procedures for the determination of water vapor path-length profiles (Smith, 1991).
The determination of water vapor parameters from satellite remote sensing, which
would provide the required data for an understanding of the global hydrological cycle
of the earth’s atmosphere, is a critical task. Yet the accuracy of retrieval from passive
sounders has been limited, partly because of the highly varying humidity field and
the small amounts of water substance in the upper troposphere.

In principle, the concentration of greenhouse gases, O3, N2O, CH4, and CFCs, can
be inferred from nadir-looking spectrometers. Ozone exhibits vibrational–rotational
lines in the 9.6 μm band. However, because of the structure of the O3 concentration,
having its maximum located in the stratosphere, the nadir-looking radiometers based
on thermal emission have not been designed for retrieval purposes. Instead, reflected
sunlight has been used for monitoring the total ozone concentration. N2O and CH4

have line structures in the 7.9 and 7.6 μm regions, as do other minor gases, and
because of the relatively small mixing ratios, remote sensing of their concentrations
utilizes the limb scanning technique.

7.4.4.2 LIMB SCANNING TECHNIQUE

A collimated radiometer or spectrometer, viewing horizontally, recovers radiation
from the atmosphere over a layer that is relatively narrow in height, referred to as
limb radiation. The general approach for obtaining profiles of trace constituents from
limb measurements is known as limb sounding. A series of satellite experiments have
used this method to retrieve the trace constituent profiles in the middle atmosphere,
specifically the stratosphere.

The geometry of limb viewing is illustrated in Fig. 7.18. A radiometer that receives
radiation emitted by the atmosphere along a ray path is identified by the tangent
height closest to the surface. The atmosphere can be scanned by sweeping the view
direction vertically or horizontally. There are a number of advantageous features of
limb scanning for atmospheric probes: (a) Emission originates in the few kilometers
immediately above the tangent point because of the rapid decrease of atmospheric
density and pressure. Thus, a high inherent vertical resolution may be obtained. (b)
All radiation received comes solely from the atmosphere. Variation of a changing
underlying surface, which occurs when a nadir-viewing instrument is utilized, is not
present. (c) A large degree of opacity is involved along a horizontal path. Hence,
the limb technique is particularly useful for the determination of minor gases in the
middle atmosphere. (d) The viewing direction from the satellite can be oriented in
any azimuthal direction relative to the satellite motion and covers a large area. One
disadvantage of this method is the interference of high clouds along the ray path,
which act as bodies of infinite opacity and can produce considerable uncertainty in
the emitted radiation. In addition, the sharp vertical weighting function, related to a
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Figure 7.18 The geometry of limb viewing (see also Fig. 7.4). The long-path emission and absorption
without the interference from the underlying surface are particularly useful for the inference of minor gases
in the middle atmosphere.

horizontal region stretching 200 km or more along the ray path, leads to problems
of interpretation of large changes in the atmospheric state over this distance. For
these reasons, the limb scanning technique has been shown to be most useful for the
inference of composition and structure of the stratosphere and mesosphere.

In reference to the limb viewing geometry shown in Fig. 7.18, the solution of
the fundamental radiative transfer equation for a nonscattering atmosphere in local
thermodynamic equilibrium can be expressed by

Iν̄(h) =
∫ ∞

−∞
Bν̄[T (x)]

∂Tν̄(h, x)

∂x
dx, (7.4.52)

where x is the distance coordinate along the ray path with the origin at the tangent
point. The principle of the temperature and gaseous profile inversion problems is
similar to that discussed in the previous sections. However, because of the spherical
geometry involved, it is necessary to change from variable x to z in order to obtain
the temperature and gaseous profiles as functions of height in the atmosphere. Thus,
the limb viewing radiance may be written in the form

Iν̄(h) =
∫ ∞

0
Bν̄[T (z)]K ν̄(h, z) dz, (7.4.53)
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Figure 7.19 Limb viewing weighting function for the ideal case of an instrument with an infinitesimal
vertical field of view for the spectral band 585–705 cm−1 covering most of the 15 μm band of CO2 (after
Gille and House, 1971).

where K ν̄ represents the weighting function, which is a function of the geometrical
factors and the spectral band model used with respect to height z. Figure 7.19 shows the
limb viewing weighting function for a hypothetical instrument with an infinitesimal
vertical field-of-view for a wide spectral band 585–705 cm−1 covering most of the
15μm CO2 band. For tangent heights above 25 km, the major part of the contribution
comes from within about 3 km of the tangent height. Below 25 km, the weighting
function takes on the broader shape of the nadir-viewing weighting functions, although
a spike still remains at that tangent point. In principle, inversion of limb radiance
measurements may be carried out utilizing the same techniques as in nadir-looking
radiance observations.

The most significant application of the limb scanning radiometer has been in the
determination of the temperature structure and minor gaseous concentrations of the
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middle atmosphere, where nadir-looking radiometers have considerable difficulty
deriving sufficient information for their recovery. Pioneering work on the retrieval
of temperatures from limb measurements has been carried out by Gille and House
(1971). Three infrared limb sounders have flown on the Nimbus satellites, beginning
on Nimbus 6, for temperature, water vapor, and other trace gas studies. More recently,
the NASA Upper Atmosphere Research Satellite (UARS) was launched in September,
1991, which included the Cryogenic Limb Array Etalon Spectrometer for atmospheric
infrared emission measurements. In addition to measurements of the radiation emitted
by the Q branch of CO2 as a function of relative altitude for temperature retrievals,
this spectrometer also measured the emission lines of O3, CH4, N2O, and other trace
gases associated with ozone destruction (Gille et al., 1996).

In the stratosphere, the geostrophic approximation, in which the geostrophic wind
is related to the horizontal gradient of the thickness, may be applicable to a good
approximation. The horizontal equation of motion is given by(

dv
dt

)
H

= g∇H p − f k × v, (7.4.54a)

where ∇H p = ∇pz is the pressure gradient force, k is the unit vector in the vertical
direction, and f is the Coriolis parameter. The balance between the pressure gradient
force and the Coriolis force gives the geostrophic wind velocity:

vg = −(g/ f )∇p z × k. (7.4.54b)

Let vg1 and vg2 correspond to heights z1 and z2, respectively, such that z2 > z1. Then,
the variation of the geostrophic wind velocity is

	vg = vg2 − vg1 = −(g/ f )∇p(	z) × k. (7.4.54c)

From the hydrostatic equation dp = −ρg dz, where ρ is the air density, and the eq-
uation of state p = ρRT , we obtain

	z =
∫ z2

z1

dz = z2 − z1 = − R

g

∫ p2

p1

T (p)
dp

p
, (7.4.54d)

where R is the gas constant. Consequently, if temperatures are known between p1 and
p2, then from Eqs. (7.4.54c) and (7.4.54d), the vertical change in the geostrophic wind
between two pressure surfaces can be estimated. If the geostrophic wind at pressure
level p1 is known, an estimate of the geostrophic wind at pressure p2 can then be
derived.

The limb scanning radiometer is capable of determining the vertical temperature
from about 10 to 1 mb. The temperature data from satellites can then provide the
required wind data essential to the understanding of stratospheric dynamics.
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7.4.5 Infrared Remote Sensing of Clouds

7.4.5.1 CARBON DIOXIDE SLICING TECHNIQUE FOR CLOUD TOP

PRESSURE AND EMISSIVITY

Consider a FOV consisting of a cloud layer located at a pressure level pc with a
temperature Tc. Let the fraction of cloud cover be η and the cloud emissivity be εν .
For purposes of illustration, we shall consider monochromatic radiative transfer such
that the transmittance multiplication follows exponential operations. The radiance
observed at the satellite can be written in the form

Î ν = (1 − ηεν)

[
Bν(Ts)Tν(ps, pc) +

∫ pc

ps

Bν(p)
∂Tν(p, pc)

∂p
dp

]
Tν(pc, 0)

+ ηεν Bν(Tc)Tν(pc, 0) +
∫ 0

pc

Bν(p)
∂Tν(p, 0)

∂p
dp, (7.4.55)

where we have sliced the atmosphere above and below the cloud and defined the
monochromatic transmittance in the form

Tν(p1, p2) = exp

(
− 1

g

∫ p2

p1

kν(p)q(p) dp

)
. (7.4.56a)

The four terms in Eq. (7.4.55) are the radiation emitted from the surface, the contri-
bution from the atmosphere below the cloud, the cloud contribution, and the contri-
bution from the atmosphere above the cloud; all at TOA. Based on the definition of
monochromatic transmittance, we have

Tν(ps, pc) × Tν(pc, 0) = Tν(ps, 0), Tν(p, pc) × Tν(pc, 0) = Tν(p, 0),
(7.4.56b)

and so on.
For a clear FOV, ηεν = 0 and the satellite measured radiance is

I clr
ν = Bν(Ts)Tν(ps, 0) +

∫ 0

ps

Bν(p)
∂Tν(p, 0)

∂p
dp. (7.4.57)

Subtracting the clear FOV radiance from the cloudy FOV radiance leads to the fol-
lowing result:

Î ν − I clr
ν = −ηεν Bν(Ts)Tν(ps, pc)

−ηεν
∫ pc

ps

Bν(p)
∂Tν(p, 0)

∂p
dp + ηεν Bν(Tc)Tν(pc, 0). (7.4.58a)

This is the cloud signal in the satellite measured radiances for wavenumber ν; it is
the radiance difference of the cloudy FOV from the neighboring clear FOVs. After
performing integration by parts, we obtain

Î ν − I clr
ν = ηεν

∫ pc

ps

Tν(p, 0)
∂Bν(p)

∂p
dp. (7.4.58b)
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Strictly speaking, this equation is valid only under the assumption of monochromatic
radiation in which the transmittance multiplication follows the exponential rule. We
may now apply this equation to two spectral bands in the 15 μm CO2 band, denoted
by 1 and 2. It follows that

Î 1 − I clr
1

Î 2 − I clr
2

=
∫ pc

ps
T1(p, 0)

∂B1(p)

∂p
dp∫ pc

ps
T2(p, 0)

∂B2(p)

∂p
dp

, (7.4.59)

where we have set ε1
∼= ε2, a good approximation for wavenumbers close enough

together in the 15 μm CO2 band. The idea of employing the ratio of the cloud signal
for two CO2 channels viewing the same FOV to determine the cloud top pressure
appears to have been developed by Smith and Platt (1978).

The left side of Eq. (7.4.59) is determined from the satellite-observed radiances
in a given FOV, as well as from the clear-air radiances that can be inferred from
analyses of satellite clear radiance observations. The temperature profile is supposed
to be retrieved from the channels in the 4.3 and 15 μm CO2 bands. It follows that the
cloud-top pressure pc, or height, can be inferred numerically. This is the essence of the
CO2 slicing method. Once the cloud-top pressure has been determined, an effective
emissivity ηε can be evaluated from the infrared window channel. In the window (let
the wavenumber index be 3), we can write

Î 3 = ηε3 B3(Tc) + (1 − ηε3)I clr
3 , (7.4.60a)

where B3(Tc) is the blackbody cloud radiance in the window, which can be determined
once the cloud height is given. Thus, the effective emissivity is

ηε3 = Î 3 − I clr
3

B3(Tc) − I clr
3

. (7.4.60b)

The CO2 slicing method is most applicable to high-level cirrus clouds because of
the nature of the weighting functions in the 15μm CO2 band. Wylie et al. (1994) used
this method to determine cirrus cloud statistics from NOAA’s polar-orbiting High-
Resolution Infrared Radiation Sounder (HIRS) multispectral data in terms of cloud
cover, height, and effective emissivity. Many processing procedures are required to
produce a global map of cloud parameters. Displayed in Fig. 7.20 is the geographical
distribution of cirrus clouds in the Northern Hemisphere summer (June, July, August)
and winter (December, January, February) (referred to as boreal summer and win-
ter) seasons during a 4-year period, June 1989 through May 1993. The intertropical
convergence zone (ITCZ) is a region of more frequent cirrus, shown in the darker
bands in the tropics, as are the midlatitude storm belts. The ITCZ moves north in the
summer season. The subtropical high-pressure systems are evident in the region of
less frequent cirrus cover. Over the Indonesian region, the ITCZ expands in coverage
from winter to summer, whereas in the central Pacific Ocean, it shows extension in
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both hemispheres during the winter months (of the Northern Hemisphere). In the
Southern Hemisphere, the eastern Pacific Ocean off South America and the eastern
Atlantic Ocean off Africa remain relatively free of cirrus clouds throughout the year.
Finally, the North American cirrus cloud cover shows little seasonal change. Perhaps
the most significant results of the cirrus cloud study based on the CO2 slicing method
are the ubiquitous cirrus occurrence in the tropics (more than 70%), and a noticeable
increase in cirrus cover during the 4-year period.

7.4.5.2 EMITTED RADIANCE FOR CLOUD COVER

Many attempts have been made to classify the global distribution of clouds based
on the emitted IR radiation in the 10 μm window (plus the reflected visible radia-
tion during daytime). In general, the cloud tops are colder than the surfaces and so
the emitted cloud radiances are smaller than the emitted clear radiances. Thus, it is
practical to set various types of thresholds to distinguish between clear and cloudy
conditions and to obtain cloud cover information. The classification of cloudy pixels
by measured radiances is a complex decision-making process based on computer
codes. The best example is the International Satellite Cloud Climatology Program
(ISCCP), which is a project of the World Meteorological Organization developed in
the 1980s (Schiffer and Rossow, 1983; Rossow and Schiffer, 1999). Its goal is to
collect global visible and 11-μm data from polar and geostationary satellites and to
process them into a cloud climatology.

An accurate global cloud climatology is essential to the development of physically
based climate models; it can serve both as a source of input data for models that
prescribe cloudiness and as a means of validating models that predict cloud formation.
The ISCCP cloud products have also been used by researchers to understand the
relationship of large-scale cloud patterns and dynamic processes in the atmosphere
and the oceans. Zonally averaged cloud cover for January, July, and annual conditions
derived from ISCCP are illustrated in Fig. 7.21. The equatorial maximum associated
with the ITCZ lies between 0 and 10◦N in July and 0 and 10◦S in January. The minima,
associated with subtropical anticyclones and desert areas, occur in both hemispheres
at about 15◦ in the winter and at about 25◦ in the summer. The cloud amount tends to
decrease poleward of 60◦S in both January and July, but increases in January poleward
of 60◦N. The most cloudy latitude band is 60–70◦S and in July, the area of cloudiness
at 80–90◦N is largely associated with Arctic stratus.

7.4.5.3 RETRIEVAL OF CIRRUS CLOUD OPTICAL DEPTH AND TEMPERATURE

As shown in Subsection 7.4.5.1 and presented in Section 5.1, cirrus clouds are glob-
ally distributed and have a high percentage of coverage. They are primarily present
in the upper troposphere and lower stratosphere and are exclusively composed of
nonspherical ice crystals. These clouds are normally transparent in the thermal IR
wavelengths, particularly in the 3.7 and 10 μm windows, and consequently cannot
be treated as blackbodies in radiative transfer in conjunction with remote sensing
applications. In Section 7.3.5, we discussed the principles for the detection and de-
termination of cirrus cloud optical depth and mean effective ice crystal size from
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Figure 7.21 Meridional profiles of zonally averaged cloud amount for January, July, and annual
conditions based on results derived from the International Satellite Cloud Climatology Program (ISCCP)
data over a period from 1983 to 1994 (data available from William Rossow of the ISCCP office).

reflected sunlight. In the following, we introduce the principle of the retrieval of
cirrus cloud parameters utilizing IR techniques.

Consider the upwelling radiance I at TOA in cirrus cloudy atmospheres. It is con-
tributed by the radiance emitted from the cloud and the radiance transmitted through
the cloud from the atmosphere and surface below. By selecting two appropriate win-
dow wavelengths, we have

Ii = (1 − εi )Iai + εi Bi (Tc), i = 1, 2, (7.4.61)

where Iai are the upwelling radiances reaching the cloud base for the two wavelengths;
εi are the cloud IR emissivities; Tc is the mean effective cloud temperature; and Bi are
the Planck radiances. The objective of retrieval is to infer ε and Tc from two radiance
measurements. However, there are a number of unknown variables involved in this
basic equation that require parameterization.

From radiative transfer calculations of IR wavelengths, it is appropriate to approx-
imate cloud emissivity in terms of visible optical depth τ in the form

εi
∼= 1 − e−ki τ , (7.4.62)

where ki represents the effective extinction coefficient. Thus, ε1 and ε2 can be cor-
related by introducing the ratio k2/k1, which is a function of the ice-crystal size
distribution that needs to be prescribed prior to the retrieval exercise. The Planck
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functions of two wavelengths can also be correlated by polynomials as follows:

B1(Tc) =
3∑

n=0

an[B2(Tc)]n, (7.4.63)

where an are fitting coefficients. Furthermore, values of the upwelling radiances
reaching the cloud base must also be known. This can be accomplished by searching
the clear pixels close to the cloud. With all the preceding considerations, radiance
measurements in two wavelengths can be used to determine two variables: cloud
visible optical depth and temperature, which may be related to ice crystal size.

The two channel IR technique requires that the optical properties of cirrus vary
substantially between the two wavelengths. Huang and Liou (1984) developed a
method to infer cirrus cloud optical depth and temperature based on AVHRR 3.7
and 10.9 μm channels. Inoue (1985) used the AVHRR radiance difference between
11 and 12 μm to determine the IR emissivity of cirrus clouds by assuming an im-
plicit mean particle size. Liou et al. (1990b) used 6.5 and 11 μm radiometers to infer
the temperature and optical depth of tropical cirrus. Cloud microphysics observa-
tions have shown that ice-crystal size distribution is correlated with cloud tempera-
ture. It is feasible, therefore, to estimate the mean effective ice crystal size once the
cloud temperature is determined from satellite data (Ou et al., 1995). Application
of the 3.7 μm channel to daytime data requires the removal of the solar reflection
component. A combination of the emitted 10 μm radiance and the reflected vis-
ible intensity has also been used to infer cirrus optical depth and temperature by
means of a correlation between the IR emissivity and visible optical depth (Minnis
et al., 1993).

Independent validation of any remote-sensing algorithm for a variety of atmo-
spheric conditions is essential to ensure its success. In the case of clouds, validation
of retrieved ice-crystal size, which is an integrated value in the vertical, requires
in situ aircraft measurements that must be collocated and coincident with the ra-
diometric pixel observations. In recent years, airborne optical probes and replicator
systems have been well developed for the collection of ice particles. Since aircraft ob-
servations are generally limited in time and space, especially in the vertical direction,
validation of satellite-retrieved cloud particle sizing is a subject requiring consider-
able research and development. Cloud optical depth is a product of cloud thickness
and the extinction coefficient. Cloud thickness can be inferred precisely from lidar
backscattering for single cirrus and/or from radiosondes. The extinction coefficient
requires light-scattering calculations involving ice-crystal size distributions. A con-
sistent and reliable validation program for the remote sensing of clouds is evidently
an involved and challenging task.

7.4.5.4 INFORMATION CONTENT IN INFRARED LINE SPECTRUM

In the analysis of the satellite Infrared Radiation Interferometer Spectrometer
(IRIS) data, Prabhakara et al. (1993) have illustrated that thin cirrus in the trop-
ics can be identified in the 8–12 μm window region. The IRIS instrument was on
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board Nimbus 3 (Conrath et al., 1970) and 4 (Kunde et al., 1974) and for the first
time provided the infrared emission of the atmosphere from about 400 to 1600 cm−1

with a 5 cm−1 spectral resolution (see also Section 4.1). Although the interferometer
spectrometer experiment was not followed in the United States satellite program,
three Fourier spectrometers in the spectral range 400–1600 cm−1 were included in
the European METEOR satellites in the late 1970s. In the analysis of the emis-
sion spectra measured in clear and cirrus cloudy atmospheres, Spänkuch and Döhler
(1985) have found that the presence of cirrus clouds significantly reduces the up-
welling radiances in the entire spectral region, except in the center of the CO2 15 μm
band.

Smith et al. (1995) have developed a high spectral resolution infrared spectrome-
ter, referred to as HIS, intended for satellite applications. This instrument was cited
in Section 7.4.3 in the discussion of temperature retrievals. Sufficient information
about cirrus clouds appears in the HIS spectrum. More recently, Smith et al. (1998)
have displayed an interesting spectrum for a case involving a cold cirrus that was
particularly evident in the 800–1000 cm−1 window region, which was presented in
Fig. 4.12. As discussed in Section 4.6.1, clouds composed of water droplets such as
low clouds or thin clouds containing large ice crystals behave as blackbodies or near
blackbodies with little variation in the 10μm window. However, thin cirrus, which are
frequently subvisual, contain small ice crystals with maximum dimensions ranging
from about 5 to 20 μm. These clouds have features in the 10 μm window associated
with the absorption coefficients of ice crystals that can be used for their identifica-
tion, as revealed in the extinction and single-scattering albedo spectra illustrated in
Fig. 5.24. The development of verifiable schemes for the retrieval of the composi-
tion and structure of thin cirrus based on the IR line spectrum would be a subject of
practical importance for climate studies.

7.4.6 Remote Sensing of Infrared Cooling Rate and Surface Flux

Infrared flux exchanges in the atmosphere and the atmospheric cooling produced
by these exchanges are significant energy sources in the dynamic and thermody-
namic processes of the atmosphere. In the troposphere under clear conditions, IR
cooling is associated with absorption and emission of water vapor molecules. In
particular, this cooling is primarily produced by the H2O rotational band and H2O
continuum (near the surface). In the middle atmosphere, cooling is largely produced
by the CO2 15 μm band and, to a lesser degree, by the O3 9.6 μm band, as ex-
plained in Section 4.5. The input data for IR calculations in clear atmospheres are
basically temperature and water vapor profiles. For middle-atmosphere applications,
other absorbing gaseous profiles are also needed. If these profiles can be reliably
determined from the radiance data derived from satellite measurements, IR fluxes
and cooling rates can be computed using radiative transfer methodology. Radia-
tion algorithms for cooling rate calculations usually require very large amounts of
computer time, and substantial discrepancies occur between different algorithms,
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even with the same input data. Direct measurement of IR fluxes and cooling rates
from space could have, therefore, important advantages. In the following, we present
the general principles for the determination of cooling-rate profiles and surface IR
fluxes.

Consider the IR cooling rate defined in Eq. (4.7.1) and rewrite this equation in the
form

d F(z)

dz
= −ρC pT

•
(z), (7.4.64)

where T
• = (∂T/∂t)ir, denoting the cooling rate for a spectral band 	ν, ρ is the air

density, and C p is the specific heat at constant pressure. There is no obvious relation-
ship between atmospheric cooling rates and radiances at TOA. However, a direct link
between the two must exist in view of the fact that both are related to temperature
and specific gaseous profiles. As demonstrated in Section 7.4.3, the retrieval of the
profile of any physical parameter requires a set of weighting functions that adequately
cover the atmosphere. Thus, we may consider the following weighting function in
the z-coordinate:

K j (z) = ρC pTj [ξ (z)/μ], (7.4.65)

where the transmittance for a spectral subband (or channel) 	ν j corresponding to an
absorber path length ξ (z) is defined by

Tj (ξ/μ) =
∫
	ν j

e−kνξ/μ
dν

	νj
=
∫ 1

0
e−k(g)ξ/μdg. (7.4.66)

The correlated k-distribution method (Section 4.3) can be used to determine the ab-
sorption coefficients. It should be noted that the spectral band is related to the spectral
subband by 	ν =∑ j 	ν j .

A convolution of the cooling-rate profile and weighting function defined in
Eq. (7.4.65) leads to∫ z∞

0
T
•
(z)K j (z) dz = −

∫ z∞

0
Tj [ξ (z)/μ]

d F(z)

dz
dz. (7.4.67)

In reference to Eqs. (4.2.10a,b), the spectral upward and downward fluxes in the
optical-depth (or height) domain may be written in the path-length domain in the
forms

F↑(ξ ) = πB(ξ∗)T f (ξ∗ − ξ ) −
∫ ξ∗

ξ

πB(ξ ′)
d

dξ ′ T f (ξ ′ − ξ ) dξ ′, (7.4.68a)

F↓(ξ ) =
∫ ξ

0
πB(ξ ′)

d

dξ ′ T f (ξ − ξ ′) dξ ′, (7.4.68b)

where ξ is the absorber path length in which ξ = 0 at TOA and ξ = ξ∗ at the sur-
face, and the spectral interval subscript is omitted for simplicity of presentation.
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The spectral diffuse transmittance is defined in Eq. (4.2.9) and can be written in the
form

T f (ξ ) = 2
∫ 1

0
T (ξ/μ)μ dμ, (7.4.68c)

where T (ξ/μ) is the spectral transmittance. The net flux divergence is then given
by

d F(ξ )

dξ
= d

dξ
[F↑(ξ ) − F↓(ξ )]

= 2πB(ξ∗)
∫ 1

0

∂

∂ξ
T [(ξ∗ − ξ )/μ]μ dμ

−2π
∫ 1

0
μdμ

{∫ ξ∗

ξ

B(ξ ′)
∂

∂ξ

( d

dξ ′ T [(ξ ′ − ξ )/μ]
)

dξ ′

−B(ξ )
d

dξ ′ T [(ξ ′ − ξ )/μ]
∣∣∣
ξ ′=ξ

}
−2π

∫ 1

0
μdμ

{∫ ξ

0
B(ξ ′)

∂

∂ξ

( d

dξ ′ T [(ξ − ξ ′)/μ]
)

dξ ′

+B(ξ )
d

dξ ′ T [(ξ − ξ ′)/μ]
∣∣∣
ξ ′=ξ

}
. (7.4.69a)

The spectral transmittance defined in the g-domain as shown in Eq. (7.4.66) is a linear
operator involving the exponential function. For the purpose of this analysis, it suffices
to let T (ξ/μ) = exp(−kξ/μ). Thus, using this expression the net flux divergence after
differential operations can then be expressed by

d F(ξ )

dξ
= 2πk B(ξ∗)

∫ 1

0
e−k(ξ∗−ξ )/μ dμ+ 2πk2

∫ ξ∗

ξ

B(ξ ′)
∫ 1

0
e−k(ξ ′−ξ )/μ dμ

μ
dξ ′

+ 2πk2
∫ ξ

0
B(ξ ′)

∫ 1

0
e−k(ξ−ξ ′)/μ dμ

μ
dξ ′ − 4πk B(ξ ). (7.4.69b)

The spectral subband (channel) transmittance associated with the kernel function may
also be written in a simple exponential function, Tj (ξ/μ) = exp(−k jξ/μ). It follows
that ∫ ξ∗

0
Tj (ξ/μ)

d F(ξ )

dξ
dξ =

∫ ξ∗

0
e−k j ξ/μ

d F(ξ )

dξ
dξ. (7.4.70)

On substituting Eq. (7.4.69b) into Eq. (7.4.70), we first find that the first term on
the right-hand side of Eq. (7.4.69b) approaches zero, when we set ξ∗ → ∞. Second,
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the fourth term

ϑ4 = −4πk
∫ ξ∗

0
B(ξ )e−k j ξ/μ dξ = −4πχ j I j (μ), (7.4.71a)

based on the definition of the emergent channel radiance, where the coefficient χ j =
(k/k j )μ. Here, we have omitted the surface term in this remote sounding application,
although it could be included in the analysis. The solutions for the second and third
terms require intricate mathematical analyses involving the interchange of the order
of integrations and the use of the mean value theorem (Liou and Xue, 1988). The final
results are, respectively,

ϑ2 = 2πχ j ln(1 − 1/χ j )[μ̄I (μ̄) − χ j I j (μ)], (7.4.71b)

ϑ3 = 2πχ2
j ln(1 + 1/χ j )I j (μ), (7.4.71c)

where the beam-flux parameter determined from the mean value theorem using the
isothermal atmosphere approximation is given by

μ̄ = [1 + χ j ln(1 − 1/χ j )]/ ln(1 − 1/χ j ). (7.4.71d)

In practice, the spectral and channel transmittances in the g-space may be written
in summation form as follows:

T (ξ/μ) =
∑

m

e−kmξ /μ	gm, (7.4.72a)

Tj (ξ/μ) =
∑

n

e−knξ /μ	gn. (7.4.72b)

Since the summation operators are linear, we may carry out the preceding analyses
employing Eqs. (7.4.72a,b) with the final results involving two double summations
for all the terms in Eq. (7.4.70). Consequently, we may write∫ ξ∗

0
Tj (ξ/μ)

d F(ξ )

dξ
dξ = I (μ̄)α + I j (μ)β, (7.4.73a)

where I (μ̄) is the radiance for the spectral band at a mean angle cos−1 μ̄, I j (μ) is the
channel radiance at an emergent angle, cos−1 μ, andα andβ are coefficients associated
with the absorption coefficients that can be determined exactly from numerical means.
The value of μ̄ varies from about 0.5 to 0.6. In this manner, the net flux divergence is
transformed into spectral and channel radiances via a convolution with the channel
transmittance.

Combining Eqs. (7.4.67) and (7.4.73a), we obtain the basic Fredholm equation of
the first kind for the remote sounding of cooling rate profiles from space:

I (μ̄)α + I j (μ)β = −
∫ z∞

0
T
•
(z)K j (z) dz. (7.4.73b)

Two sets of measurements are needed to drive the spectral cooling rate profiles:
spectral radiance I (μ̄) and channel radiance I j (μ), which can both be measured at
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Figure 7.22 Normalized weighting functions for atmospheric cooling rate retrieval in the H2O rota-
tional band (20–800 cm−1). The weighting functions presented here are products of air density and channel
transmittances for a 20 cm−1 interval using standard atmospheric temperature and water vapor profiles
(data taken from Liou, 1992).

an emergent angle, cos−1 μ̄. We must now examine the required weighting func-
tions. A number of weighting functions based on Eq. (7.4.65) have been calculated
in the H2O rotational band for a 20 cm−1 interval using a line-by-line program.
Illustrated in Fig. 7.22 are seven weighting functions whose peaks are spaced within
∼2 km in height. The four uppermost and three lowermost channels could be used
to retrieve cooling rates for spectral intervals of 20–500 cm−1 and 500–800 cm−1,
respectively. The preceding theory would be ideal for the retrieval of the cooling rate
produced by CO2 in the middle atmosphere, since clouds would have little effect on
the upwelling radiances at TOA. However, appropriate weighing functions must be
determined in the stratosphere and lower mesosphere for practical applications.

The determination of surface radiative fluxes from available satellite radiance data
has been a subject of considerable interest in recent years in view of the important
role that surface–atmosphere interactions play in climate (Section 8.2.5). A direct
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observational study of surface IR fluxes could be conducted using the following
approach. Based on the definition of cooling rate in Eq. (7.4.64), we may perform an
integration of this equation from the surface to TOA to obtain

F(0) = F(z∞) +
∫ z∞

0
ρC pT

•
(z) dz. (7.4.74)

The broadband IR flux at TOA, F(z∞), has been routinely derived from satellite
measurements (Section 8.2.2). Thus, if the cooling rate profile T

•
(z) is retrievable

from radiance observations, we may estimate the surface radiative flux F(0) based
solely on measurements from space. Furthermore, we note that if the contributions due
to O3, CO2, and H2O–CO2 overlap are omitted, the total cooling would be accurate
within ∼4 % depending on the temperature profile. Thus, to a good approximation,
total atmospheric cooling may be obtained by measuring the cooling profile produced
by water vapor.

The history of infrared sounding from space, as discussed in this section, has been
characterized by the slow evolution of retrieval methodologies and of the selection
of sounding channels. To be successful in cooling-rate retrieval, many additional as-
pects of practical issues such as cloud problems and infrared technology will need to
be examined. The HIS data presented in Subsection 7.4.5.4 could be useful for the
exploration of IR cooling rate retrieval, particularly if the spectrum coverage is ex-
tended to the rotational band of water vapor. The HIS instrument is capable of scanning
from space and could provide the needed spectral radiances for conversion to fluxes.

7.5 Remote Sensing Using Emitted Microwave Radiation

7.5.1 Microwave Spectrum and Microwave Radiative Transfer

In the microwave region, only water vapor and molecular oxygen exhibit significant
absorption lines. It is customary to use the frequency unit GHz in the discussion
of microwave radiative transfer. Note that 1 GHz = 109 cycles/sec, and 1 cm =
30 GHz. Below 40 GHz only the weakly absorbing pressure-broadened 22.235 GHz
water vapor line is dominant. This resonance absorption line arises from transitions
between nuclear spin rotational states. At about 31.4 GHz, air is relatively transparent,
which is the window between the resonance water vapor line. The oxygen molecule
has a magnetic dipole moment arising from the combined spins of two impaired
electrons in its electronic ground state. Changes in the orientation of the electronic
spin relative to the orientation of the molecular rotation produce a strong band of
magnetic dipole transitions near 60 GHz and a single transition at 118.75 GHz. For
frequencies greater than 120 GHz, water vapor absorption again becomes dominant
because of the strongly absorbing line at 183 GHz. Figure 7.23 illustrates vertical
atmospheric transmittance as a function of frequency and wavelength for a standard
atmosphere, clearly identifying the aforementioned absorption lines.
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Figure 7.23 Demonstrative atmospheric transmittances (total, H2O, and O2) as a function of fre-
quency and wavelength in the microwave region.

In view of the size of water droplets (∼10 μm) and ice crystals (∼100 μm) in
the atmosphere, their effects on the scattering of microwaves (∼1 cm) are generally
small. Thus, we may, as a good approximation, neglect the scattering contribution
in the discussion of microwave radiative transfer. In reference to Section 7.4.1, the
solution of the radiative transfer equation for a nonscattering atmosphere in local
thermodynamic equilibrium is given by

Iν̃(0) = Iν̃(ps)Tν̃(ps, 0) +
∫ 0

ps

Bν̃[T (p)]
∂Tν̃(p, 0)

∂p
dp, (7.5.1)

where ν̃ denotes the frequency, Iν̃(ps) represents the radiance contribution from the
surface, and the transmittance, Tν̃(p, 0), is expressed with respect to TOA. Emissivity
in the microwave region is normally less than unity, so there is a significant reflection
contribution from the surface. The radiance emitted from the surface is given by

Iν̃(ps) = εν̃ Bν̃(Ts) + (1 − εν̃)
∫ ps

0
Bν̃[T (p)]

∂Tν̃(ps, p)

∂p
dp, (7.5.2)

where the first term on the right-hand side denotes the surface emission contribution
and the second term represents the emission contribution from the entire atmosphere
to the surface that is reflected back to the atmosphere at the same frequency. The
transmittance, Tν̃(ps, p), is now expressed with respect to the surface.
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Inserting the lower boundary condition defined in Eq. (7.5.2), the upwelling radi-
ance can now be expressed as

Iν̃ = εν̃ Bν̃(Ts)Tν̃(ps, 0) + (1 − εν̃)Tν̃(ps, 0)
∫ ps

0
Bν̃[T (p)]

∂Tν̃(ps, p)

∂p
dp

+
∫ 0

ps

Bν̃[T (p)]
∂Tν̃(p, 0)

∂p
dp. (7.5.3)

The Planck function in the frequency domain is given by

Bν̃(T ) = 2hν̃3
/[

c2
(
ehν̃/K T − 1

)]
. (7.5.4a)

In the microwave region, hν̃/K T � 1, the Planck function can be approximated by

Bν̃(T ) ∼= (2K ν̃2/c2)T . (7.5.4b)

Thus, Planck radiance is linearly proportional to temperature, referred to as the
Rayleigh–Jeans law discussed in Section 1.2. Analogous to the above approxima-
tion, we can define an equivalent brightness temperature TB such that

Iν̃ = (2K ν̃2/c2)TB(ν̃). (7.5.5)

Substituting Eqs. (7.5.4b) and (7.5.5) into Eq. (7.5.3), the solution of microwave
radiative transfer may now be written in terms of temperature as follows:

TB(ν̃) = εν̃Ts Tν̃(ps, 0) + (1 − εν̃)Tν̃(ps, 0)
∫ ps

0
T (p)

∂Tν̃(ps, p)

∂p
dp

+
∫ 0

ps

T (p)
∂Tν̃(p, 0)

∂p
dp. (7.5.6)

The contribution of each term to the brightness temperature at TOA is illustrated
in Fig. 7.24. The first, second, and third terms represent the surface emission con-
tribution, the reflection contribution from the surface into the atmosphere, and the
atmospheric emission contribution, respectively.

The transmittance used for satellite remote sensing is generally expressed with
respect to TOA; i.e., Tν̃(p) = Tν̃(p, 0). Thus, for computational purposes, it is de-
sirable to express Tν̃(ps, p) in terms of Tν̃(p, 0). For monochromatic frequencies,
transmittance is an exponential function of optical depth [see Eq. (7.4.4)]. Hence, we
can write

Tν̃(ps, p) = exp

[
− 1

g

∫ ps

p
kν̃(p′)q(p′) dp′

]
= exp

[
− 1

g

∫ ps

0
kν̃(p′)q(p′) dp′ + 1

g

∫ p

0
kν̃(p′)q(p′) dp′

]
= Tν̃(ps, 0)/Tν̃(p, 0), (7.5.7)
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Figure 7.24 Contributions of brightness temperature at the top of a clear atmosphere, represented by
the terms in Eq. (7.5.6), including surface emission and reflection, and atmospheric contributions.

where Tν̃(ps, 0), the transmittance of the entire atmosphere, is a constant value. Thus,

∂Tν̃(ps, p)

∂p
= − Tν̃(ps, 0)

[Tν̃(p, 0)]2

∂Tν̃(p, 0)

∂p
. (7.5.8)

Inserting Eq. (7.5.8) into Eq. (7.5.6), rearranging terms, and letting Tν̃(p, 0) = Tν̃(p),
we have

TB(ν̃) = εν̃Ts Tν̃(ps) +
∫ 0

ps

Jν̃(p)
∂Tν̃(p)

∂p
dp, (7.5.9)

where the atmospheric source term is given by

Jν̃(p) = {1 + (1 − εν̃)[Tν̃(ps)/Tν̃(p)]2
}
T (p). (7.5.10)

In microwave sounding, transmittances are computed by including the antenna gain
characteristics.

The use of microwaves for atmospheric sounding from a satellite platform differs
from that of IR techniques in the consideration of surface emissivity. The surface
emissivity appearing in the first term of Eq. (7.5.6) has a substantial effect on the
brightness temperature value. In the microwave spectrum, emissivity values of the
earth’s surface vary over a considerable range, from about 0.4 to 1.0. Over land,
emissivity depends on the moisture content of the soil. The wetting of a soil surface
results in a rapid decrease in emissivity. The emissivity of dry soil is on the order
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Figure 7.25 Emissivities of calm and rough ocean surfaces for a number of microwave frequen-
cies. The solid and dashed curves represent the horizontal ε‖ and vertical ε⊥ polarization components,
respectively (data taken from Huang and Liou, 1983).

of 0.95 to 0.97, whereas for wet bare soil it is about 0.80 to 0.90, depending on the
frequency. The emissivity of the sea surface typically ranges between 0.4 and 0.6,
depending upon such variables as salinity, sea ice, surface roughness, and sea foam. In
addition, there is a frequency dependence with higher frequencies displaying higher
emissivity values.

Emission from the oceans is polarized. For a calm ocean surface, we can apply
the Fresnel reflection formula (Section 5.3.2) to compute the vertical and horizontal
emissivity components using the real and imaginary refractive indices for pure water.
Shown in Fig. 7.25 are the vertically (ε⊥) and horizontally (ε‖) polarized emissivities
of calm ocean surfaces for 19.35, 37, and 85.5 GHz. These emissivities increase with
increasing frequency. The results for rough sea were derived from empirical fitting
to a limited set of observations and are applicable to 37 and 85.5 GHz. Substantial
differences between the two components are shown for large emergent angles.

Equation (7.5.1) does not include the scattering and polarization properties of pre-
cipitating particles. We may approach the fundamental microwave radiative transfer
by incorporating the multiple scattering and emission terms, as presented in Chap-
ter 6. Emission from a homogeneous earth surface is either isotropic (unpolarized
land), or zenith-angle dependent (polarized ocean). Further, under the plane-parallel
and horizontally homogeneous assumption, the transfer of microwave radiation can
be treated as azimuthally independent. In this case, the analysis of the vertically and
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horizontally polarized brightness temperatures is independent of the circular polar-
ization and requires only the P11, P12, P21, and P22 elements in the scattering phase
matrix (see Section 6.6 for definition). Microwave radiative transfer involving finite
and inhomogeneous clouds and precipitation can be solved following the methodol-
ogy presented in Section 6.7.

7.5.2 Rainfall Rate and Water Vapor Determination
from Microwave Emission

One of the important applications of microwave radiative transfer has been the de-
termination of atmospheric liquid water and water vapor amounts, since microwaves
see through heavy clouds and precipitation, which are largely opaque in the infrared
wavelengths.

Based on Lorenz–Mie scattering calculations for spheres, the radiative properties
of clouds and precipitation in the microwave spectrum have the following features:
(a) ice particles essentially do not absorb microwave radiation but only scatter it; (b)
water and rain droplets absorb and scatter with absorption dominating; (c) scattering
and absorption of ice and water both increase with frequency. With respect to the
scattering and absorption properties of ice and water, the microwave spectrum can
be divided into three regions. Below about 22 GHz, absorption is the main process
for microwave radiative transfer. Although scattering also occurs, it is of secondary
significance. Around 60 GHz, scattering is more important than absorption. Between
20 and 60 GHz, both scattering and absorption processes are important. The scat-
tering and absorption of ice and water particles depend on their sizes relative to the
microwave frequency. For frequencies in the 22 and 31 GHz regions (longer wave-
lengths), the scattering of ice crystals is negligible so that ice clouds are transparent
to these microwave frequencies, making them ideal for the detection of rainfall rates.

In order to derive the liquid water and water vapor amounts, it is necessary to
develop parameterization equations in which the liquid water content and water vapor
amount are explicitly defined. In reference to Eq. (7.5.6), we perform integration by
parts on the two integral terms to obtain

TB(ν̃) =
[

T (0) −
∫ 0

ps

Tν̃(p)
∂T (p)

∂p
dp

]
− (1 − εν̃)T 2

ν̃ (ps)

×
[

T (0) + 1

Tν̃(ps)

∫ ps

0
Tν̃(ps)

∂T (p)

∂p
dp

]
, (7.5.11a)

where, for simplicity, we use one pressure variable in the argument of the transmittance.
Moreover, we define

xν̃ = T (0)

Ts
− 1

Ts

∫ 0

ps

Tν̃(p)
∂T (p)

∂p
dp

= 1 + 1

Ts

∫ 0

ps

[1 − Tν̃(p)]
∂T (p)

∂p
dp, (7.5.11b)
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yν̃ = T (0)

Ts
+ 1 − 1

Tν̃(ps)Ts

∫ ps

0
Tν̃(p)

∂T (p)

∂p
dp

= 1

Tν̃(ps)
+ T (0)

Ts

[
1 − 1

Tν̃(ps)

]
− 1

Tν̃(ps)Ts

∫ ps

0
[1 − Tν̃(p)]

∂T (p)

∂p
dp.

(7.5.11c)

Hence, Eq. (7.5.11a) can be rewritten as follows:

TB(ν̃) = Ts
[
xν̃ − yν̃T 2

ν̃ (ps)(1 − εν̃)
]
. (7.5.12)

Upon inspection of the microwave spectrum, we find that below about 40 GHz,
the transmittance Tν̃(ps) ≈ 1, so that xν̃ ≈ yν̃ ≈ 1. As a result of this simplification,
the brightness temperature can be approximated by

TB(ν̃) ∼= Ts
[
1 − T 2

ν̃ (ps)(1 − εν̃)
]
. (7.5.13a)

The transmittance for frequencies lower than 40 GHz is mainly due to the absorption
of water vapor and liquid water. It may be expressed by

Tν̃(ps) = Tν̃(vapor) Tν̃(liquid). (7.5.13b)

For frequencies lower than about 40 GHz, the transmittance of liquid water can be
approximated by

Tν̃(liquid) ∼= exp(−Q/Q0) ≈ 1 − Q/Q0(ν̃), (7.5.13c)

where Q is the liquid water path (g cm−2) and Q0(ν̃) is a constant that depends on
the frequency and cloud temperature. In a similar manner, if we select a frequency at
about 22 GHz, the water vapor transmittance can be approximated by

Tν̃(vapor) ≈ 1 − W/W0(ν̃), (7.5.13d)

where W is the total water vapor path length (g cm−2) and, again, W0(ν̃) is a constant.
Inserting these two expressions in Eq. (7.5.13a), and neglecting second-order terms
involving Q and W , we obtain

TB(ν̃) ∼= εν̃Ts + 2(1 − εν̃)Ts(Q/Q0 + W/W0). (7.5.14)

Assuming that the surface temperature Ts and the surface emissivity εν̃ are known
parameters, two brightness temperature observations at about 40 and 22 GHz can be
used to determine Q and W as follows:

Q = q0 + q1TB(ν̃1) + q2TB(ν̃2),

W = w0 + w1TB(ν̃1) + w2TB(ν̃2), (7.5.15)

where wi and qi are coefficients related to the frequencies chosen, the surface tem-
perature, the emissivity, and the empirical parameters Q0 and W0. They are normally
determined statistically from a sample of known brightness temperatures and the
liquid water and water vapor amounts in known atmospheric profiles.
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The rainfall rate is related to raindrop size distribution, which can be measured
at the surface. Based on measurements, Marshall and Palmer (1948) have suggested
that droplet size distribution can be fitted by an appropriate negative exponential form
given by

n(D) = n0e−�D, (7.5.16a)

where the raindrop diameter D = 2a, a is the radius, and n(D)d D represents the
number of droplets per unit volume with the diameter between D and D + d D in
units of cm. The slope factor�was found to depend only on the rainfall rate R, which
is measured in terms of mm hr−1 and is given by

� = 41R−0.21. (7.5.16b)

In Eq. (7.5.16a), the intercept parameter n0 = 0.08 cm−4. Thus, once the rainfall
rate is given, a Marshall and Palmer size distribution is determined. The liquid water
path (LWP, g cm−2) is the product of LWC and cloud thickness, 	z, defined in
Eq. (7.3.13b). Using the Marshall and Palmer size distribution, we can show that

LWP = k R−0.84, (7.5.16c)

with k a certain coefficient. Thus, LWP is directly related to the rainfall rate.
In the case of pure absorption and emission, the LWP (or Q) is directly connected

to the brightness temperature via Eq. (7.5.15). Using the relationship between LWP
and the rainfall rate, we have

TB(ν̃) ∼= b + cR0.84, (7.5.17)

where b and c are empirical coefficients to be determined from known atmospheric
and surface conditions. The preceding analysis did not account for the scattering con-
tribution of cloud particles, which can be important if their sizes are comparable to or
larger than the emission wavelength. In this case, a full radiative transfer solution in-
cluding scattering contributions should be developed in conjunction with the retrieval
of rainfall rates.

The inference of water content and total water vapor amount from Nimbus E Mi-
crowave Spectrometer (NEMS) data at 22.235 and 31.4 GHz channels on Nimbus
5 (1972) over the oceans was first reported by Staelin et al. (1976) and Grody
(1976). The coefficients were obtained by a multidimensional regression analysis
based upon computed brightness temperatures with known atmospheric tempera-
ture and water vapor profiles derived from radiosondes. Computations including the
contribution of clouds and precipitation to the brightness temperature did not in-
clude the scattering contribution due to clouds and rain drops. These authors have
demonstrated the feasibility of mapping the large-scale features of liquid water
and total water vapor patterns from the water vapor (22.235 GHz) and window
(31.4 GHz) channel data. Liou and Duff (1979) attempted to derive the liquid water
content from Nimbus 6 (1975) Scanning Microwave Spectrometer (SCAMS) data
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Figure 7.26 Brightness temperature as a function of rainfall rate over the ocean and land for three
frequencies (data taken from Spencer et al., 1989).

over land utilizing Eq. (7.5.15). Effects of the scattering and absorption properties of
hydrometeors in an inhomogeneous absorbing gaseous atmosphere were included in
the calculations along with an empirical means to determine the surface emissivity
characteristics.

The mapping of rainfall rates over the oceans using microwave technology from
satellites was first proposed by Wilheit and Chang (1977). Effects of the scattering and
polarization of precipitation and clouds on the brightness temperatures of microwave
window frequencies (19, 37, and 85 GHz) have been reported in Huang and Liou
(1983), Mugnai and Smith (1988), and Gasiewski (1993). Shown in Fig. 7.26 is an
example of the brightness temperature, TB , as a function of rainfall rate for three
frequencies, 18, 37, and 85.6 GHz, over land and the ocean (Spencer et al., 1989).
Over land, TB decreases with the rainfall rate, an effect that is exacerbated at higher
frequencies. Over the ocean, because of lower surface emissivity, TB initially increases
with the rainfall rate.
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7.5.3 Temperature Retrieval from Microwave Sounders

The basic concept of inferring atmospheric temperatures from satellite observations
of thermal microwave emission in the oxygen spectrum was first developed by Meeks
and Lilley (1963), who presented microwave weighting functions for retrieval pur-
poses. The prime advantage of microwave over infrared sounders is that the longer
wavelength microwaves are much less influenced by clouds and precipitation. Con-
sequently, microwave sounders can be more effectively utilized when clouds are
present.

The first application of microwave techniques for temperature profile determina-
tion from an orbiting satellite was the Nimbus 5 Microwave Spectrometer experiment
which was designed to evaluate passive microwave techniques for use on operational
meteorological satellites. It consisted of three channels centered at frequencies 53.65,
54.90, and 58.80 GHz in the oxygen band (Water et al., 1975). An operational ver-
sion of the SCAMS, the Microwave Sounding Unit (MSU), was placed on the NOAA
series beginning in 1978. It consists of four channels: 50.30, 53.74, 54.96, and 57.95
GHz. The high stability of the MSU instruments has been used to monitor global
temperature trends. The approach to recovering temperature profiles using the mi-
crowave sounder has generally followed the statistical inversion principle discussed in
Subsection 7.4.3.2. Basically, the predictor D matrix is derived from a priori atmo-
spheric data provided by radiosonde observations.

A more advanced instrument, called the Special Sensor Microwave/Temperature
(SSM/T) sounder, was developed as part of the Defense Meteorological Satellite
Program (DMSP) aboard the Air Force Block 5D satellite system, first launched in
June 1979, and subsequently in 1983, 1987, and 1991. This microwave sensor contains
seven channels at 50.5, 53.2, 54.35, 54.9, 58.4, 58.825, and 59.4 GHz. Because of the
surface reflectivity effect, the weighting function K ν̃(p) is defined by

TB(ν̃) = εν̃TsTν̃(ps) +
∫ 0

ps

T (p)K ν̃(p) dp. (7.5.18a)

From Eq. (7.5.6), we have

K ν̃(p) = 1 + (1 − εν̃)

[
Tν̃(ps)

Tν̃(p)

]2
∂Tν̃(p)

∂p
. (7.5.18b)

Displayed in Fig. 7.27a are the weighting functions of seven SSM/T channels for
an incident (emergent) angle of 0◦. Absorption due to molecular oxygen and water
vapor, along with antenna gain characteristics, were included in the transmittance
calculations. Channel 1 is a window channel that responds strongly to the earth’s
surface characteristics, dense clouds, and rain. It is used to correct the other channels
for these background effects. The weighting function peaks of channels 1 to 4 are
below about 10 km, and therefore, dense clouds and precipitation would have some
effect on the temperature retrieval.

As a result of the surface emissivity’s effect on the brightness temperature, it
is desirable to remove it in the statistical method of temperature retrieval so that
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Figure 7.27 (a) Weighting functions at nadir position over land for seven SSM/T channels; (b)
weighting functions at nadir viewing over land for 12 AMSU channels (data taken from Grody, 1993).

the predictor matrix D can be constructed over all surface conditions (Rigone and
Stogryn, 1977). For simplicity of analysis, we define

Td (ν̃) =
∫ ps

0
T (p)

∂Tν̃(p)

∂p
dp,

Tu(ν̃) =
∫ 0

ps

T (p)
∂Tν̃(p)

∂p
dp, (7.5.19a)

so that Eq. (7.5.6) can be written in the form

TB(ν̃) = εν̃Ts Tν̃(ps)[1 − Td (ν̃)/Ts] + Ta(ν̃), (7.5.19b)

where

Ta(ν̃) = Tu(ν̃) + Td (ν̃)Tν̃(ps). (7.5.19c)

The second term on the right-hand side of Eq. (7.5.19b) denotes the contribution
to the brightness temperature caused solely by the atmosphere while the surface
effects are confined in the first term. The channel in the wing whose weighting
function peaks at the surface is used to remove the surface contribution for other
channels. Based on Eq. (7.5.19b), we may define the contribution to the bright-
ness temperature caused primarily by the atmosphere for channels 2 to 7 in the
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form

Ta(ν̃ j ) = TB(ν̃ j ) − [TB(ν̃1) − Ta(ν̃1)]a(ν̃ j ), j = 2, 3, . . . , 7, (7.5.20)

where

a(ν j ) = εν̃ j Ts Tν̃ j (ps)[1 − Td (ν̃ j )/Ts]

εν̃1 Ts Tν̃1 (ps)[1 − Td (ν̃1)/Ts]
, and a(ν̃1) = 1.

The statistical method described in Subsection 7.4.3.2 assumes a correlation be-
tween the atmospheric temperature and measured data, Ta in the present case, defined
by Eq. (7.5.20). It follows that

(T̂i − T̄i ) =
∑

j

Di j (T̂a j − T̄a j )

=
∑

j

Di j [T̂B j − (T̂B1 − T̂a1)a j − T̄a j ]

=
∑
j �=1

Di j T̂B j − T̄B1

∑
j

Di j a j +
∑

j

Di j (T̂a1a j − T̄a j ). (7.5.21)

Note that TB1 is not defined in Eq. (7.5.20), and so the first term contains j = 2, . . . , 7.
In matrix notation, we have

T̂ = D′T̂B + R, (7.5.22)

where

R = T̄ + T̂a1Da − DT̄a, (7.5.23)

and D′ is a matrix whose first column is −Da and whose remaining columns are the
columns of D. The retrieval technique contains elements that are dependent mainly on
the atmosphere. Thus, it should be valid over land, water, or mixed surface conditions.
D and R can be determined from a large number of upper air soundings for a wide
range of meteorological conditions that have been achieved over the years, while the
brightness temperatures can be calculated for a given atmospheric condition.

Microwave temperature retrieval can be affected by the surface emissivity, as
pointed out previously. At the frequencies around 50 GHz, the emissivity over land
can vary between about 1 for dry or vegetated land to less than 0.8 for snow cover, bare
wet land, rivers, and lakes. The emissivity for oceans varies because of wind-induced
foam and surface roughness (see Fig. 7.25). Within the field of view of the microwave
instrument, about 25–100 km resolution, the effect of emissivity is relatively small
and can be taken into account by empirical approaches as shown above. The effects
of nonprecipitating clouds on temperature retrieval are also small. Over the ocean,
clouds can either increase or decrease the brightness temperature, depending on their
position and LWC. Over high-emissivity land surfaces, clouds normally reduce the
brightness temperature, with a maximum effect produced by high clouds having
substantial liquid water. Effects due to precipitation are much more pronounced, as
illustrated in Liou et al. (1981).
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Figure 7.28 Differences between SSM/T retrieval results and the radiosondes stratified according to
cloud conditions for November 14–17, 1983, in terms of temperature rms (data taken from Grody, 1993).

Figure 7.28 illustrates an example of the temperature retrieval accuracy based on
the SSM/T sounder. The retrieved profiles in terms of the root-mean-square (rms) error
are shown relative to radiosonde observations that were collected within a maximum
time difference of 3 hours and a 1◦ latitude–longitude window between November 14
and 17, 1983, for midlatitudes (30–60◦N) at pressure levels down to 20 mb (Grody,
1993). Results are shown separately for clear, partly cloudy, and completely cloudy
conditions. The rms errors are generally within 2–3 K for pressure levels between
700 and 20 mb, independent of cloud cover. The largest temperature errors occur at
pressure levels at which the weighting functions are inadequate and there is no strong
correlation between level temperatures and the weighted temperatures sensed by the
microwave instrument.

The latest generation of microwave sounders for research and development are the
Advanced Microwave Sounding Unit (AMSU) with 12 oxygen channels, flown aboard
the NOAA polar-orbiting satellites (1998), and the Air Force SSM/IS instrument.
Figure 7.27b displays the weighting functions for the 12 oxygen channels at nadir
over land. AMSU also contains channels near the 183 and 22 GHz H2O lines for
water vapor soundings and window channels at 31, 90, and 157 GHz for the inference
of precipitation and surface parameters.
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7.6 Remote Sensing Using Laser and Microwave Energy

During the 1960s, the advent of the laser as a source of energy opened up a number
of possibilities for new remote sensing techniques of probing the atmosphere. Laser
energy at optical frequencies is highly monochromatic and coherent. With the develop-
ment of Q-switching techniques, very short pulses of high power could be generated.
The recognition of the applicability of high power pulsed laser energy by a number of
atmospheric scientists (Schotland, 1969; Collis, 1969) has prompted the development
of backscattering lidar techniques for the detection of the composition and structure of
clouds, aerosols, and minor gases in the atmosphere. The word lidar, which originally
stood for Light Detection And Ranging, is an acronym analogous to radar that utilizes
an energy source in the microwave region. In a sense, lidar can best be described as a
laser radar. Since the development of laser radar, which employs the same backscatter-
ing principle as microwave radar, advanced techniques for atmospheric probes have
proved fruitful. These include the use of multiple wavelength lidars for determining
the composition of minor gases by means of differential absorption techniques, the
use of Doppler techniques for determining the motion of particulates and molecules,
the use of depolarization techniques for inferring the water and ice content in clouds,
and the use of the Raman scattering technique, in which a weak scattering occurs at a
shifted wavelength for water vapor measurements. In line with the discussions of the
theory of light scattering and radiative transfer introduced in Chapters 5 and 6, we
first present the basic lidar (or radar) equation that is fundamental to all backscattering
techniques and then discuss two useful techniques involving the use of absorption and
depolarization properties for atmospheric studies. That is followed by a discussion of
the use of millimeter (mm)-wave radars for cloud study.

7.6.1 Backscattering Equation: Theoretical Foundation

From the light-scattering theory developed in Sections 3.3 and 5.2, the scattered
intensity for a single particle or molecule can be expressed as [see Eqs. (5.2.84) and
(5.2.111a,b), also Eq. (3.3.15)]

I s
‖,⊥ = I i

‖,⊥
σs

r2

P2,1(�)

4π
, (7.6.1)

where the subscripts ‖ (2) and ⊥ (1) denote the light beam parallel and perpendicular
to the scattering plane, respectively, r is the distance at which scattering takes place,
σs is the scattering cross section, and P(�) is the phase function. For the convenience
of the following discussion, we shall neglect the subscripts on the flux density and
phase function. The backscattered (� = π ) flux density due to a single particle from
Eq. (7.6.1) can be expressed by

Fs(π ) = Fi σs P(π )

r2 4π
. (7.6.2)

For backscattering applications, it is necessary to define the backscattering cross
section σπ as the area that, when multiplied by the incident flux density, gives the
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total power radiated by an isotropic source such that it radiates the same power in the
backward direction as the scatterer. Thus,

Fiσπ = Fs(π ) 4πr2, (7.6.3)

where 4πr2 represents the surface area of a sphere. It follows that the backscattering
cross section is given by

σπ = σs P(π). (7.6.4)

Let Pt denote the transmitted power so that the incident flux density can be expressed
by

Fi = Pt/At , (7.6.5)
where At is the cross-sectional area at distance r . If Ar is the collecting aperture, then
the backscattered power received is given by

Pr0 = Fs(π )Ar = Pt

At

σs P(π)

4πr2
Ar . (7.6.6a)

In reference to the (volume) scattering coefficient given by Eq. (5.2.116), we may
define an average scattering cross section as σ̄s = βs/N , where N denotes the particle
number density. Hence, after the particle-size distribution integration, the average
backscattered power is given by

P̄r0 = Pt
Ar

r2

P(π )

4π

σ̄s

At
. (7.6.6b)

Let the pulse length transmitted by a lidar (or radar) system be 	h, as shown in
Fig. 7.29. For a given instant of time, the lidar receiver collects the scattered energy
from half of the pulse length, so that the bottom pulse will undergo roundtrip backscat-
tering and return simultaneously as the top pulse. The total number of particles within
the effective scattering volume is, therefore, N At	h/2. Upon utilizing the definition
of the volume scattering coefficient, the backscattered power is now given by

P̄r0 = Pt
Ar P(π )

r2 4π
βs
	h

2
. (7.6.6c)

During the backscattering event, the energy pulse also undergoes attenuation. On
the basis of the Beer–Bouguer–Lambert law introduced in Section 1.4.2, the actual
backscattered power at the point of the receiver is

P̄r = P̄r0 exp

{
− 2

∫ r

0
βe(r ′) dr ′

}
, (7.6.7a)

where 2 represents the roundtrip attenuation effect, r = 0 is the position corresponding
to P̄r0, and βe is the (volume) extinction coefficient including both scattering and
absorption effects. If we insert Eq. (7.6.6c) into Eq. (7.6.7a), the backscattered power
observed by the receiver can now be written in the form

P̄r (r ) = Pt
Ar P(π )

r2 4π
βs
	h

2
exp

{
− 2

∫ r

0
βe(r ′) dr ′

}
. (7.6.7b)
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Figure 7.29 The backscattering geometry of a pulsed lidar system where r0 denotes a reference range,
	h is the pulse length, and Ar is the receiver aperture. The effective length under which the pulsed laser
light returns to the receiver is 	h/2.

In this development, we have neglected the energy gains corresponding to the trans-
mitter and receiver. For lidar or radar applications, it is customary to use the volume
backscattering coefficient similar to that given in Eq. (7.6.4), i.e.,βπ = P(π )βs . Thus,
we rewrite Eq. (7.6.7b) to obtain

P̄r (r ) = Pt C Arβπ (r )	h

8πr2
exp

{
− 2

∫ r

0
βe(r ′) dr ′

}
, (7.6.7c)

where we have added a known instrument factor C to the equation. This is the basic li-
dar (or radar) equation, where the collecting aperture Ar , the transmitted power Pt , and
the pulse 	h are known parameters and the range r is a function of time t . However,
there are two unknown parameters,βπ andβe, which relate to the optical properties and
concentration of particles and/or molecules. It is not possible to investigate the infor-
mation content of the return power in absolute terms unless the volume backscattering
coefficient, βπ , and the volume extinction coefficient, βe, are uniquely correlated.
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For Rayleigh scattering, the phase function for unpolarized light in the backscatter-
ing direction from Eq. (3.3.11) is P R(π ) = 3(1 + cos2 π )/4 = 1.5. Thus,βR

π = 1.5βR
e .

It is clear that the ratio of backscattering to the extinction coefficient for Rayleigh
molecules is a constant of 1.5 and is not subject to fluctuations. For a single Lorenz–
Mie spherical particle, however, the phase function depends on the size parameter
2πa/λ and is characterized by strong forward scattering (see, e.g., Fig. 5.8). The
backscattering phase function P(π ) as a function of the size parameter fluctuates
greatly and is normally less than unity. For a sample of polydispersed spheres, the
fluctuations tend to average out (see Figs. 5.13 and 5.15), and useful approximate
values can be determined for the term. For water clouds, it has been found that for
many cases βπ ≈ 0.625βe, a reasonable approximation also applicable to spherical
aerosols. In general, it has been assumed that βπ ∼= aβb

e , where a and b are certain
coefficients to be determined from light-scattering calculations.

The inversion of lidar backscattering data to obtain the volume extinction coeffi-
cient profile is the subject of continued research in the lidar field. It begins with the
definition of the signal variable defined by

S(r ) = ln[r2 P̄r (r )]. (7.6.8a)

In differential form, we have
dS(r )

dr
= 1

βπ

dβπ
dr

− 2βe(r ). (7.6.8b)

Having the relation between βπ and βe established, techniques can be developed to
infer βe(r ) from S(r ), subject to the definition of a reference range a priori. The
volume extinction coefficients can in turn be related to the sizes and concentrations
of aerosols and cloud particles. In the following, we present two specific techniques
for the detection of gaseous profiles and for cloud and aerosol studies.

7.6.2 Lidar Differential Absorption and Depolarization Techniques

7.6.2.1 DIFFERENTIAL ABSORPTION TECHNIQUE

The differential absorption lidar (DIAL) uses the gas absorption properties in two
wavelengths and requires a tunable laser to produce the peak of an absorption line
of the gas of interest and a second wavelength in a low-absorption region. In clear
atmospheres, the extinction coefficient for a given wavelength is contributed by the
extinction due to aerosols and the absorption caused by the pertinent gas. Thus, we
can write

βe(λ) = βe,A(λ) + ρak(λ), (7.6.9)

where ρa is the gas density and k(λ) is the absorption coefficient. We may select two
wavelengths at which the optical properties of aerosols are about the same. Further,
we can perform a logarithmic operation on Eq. (7.6.7c) to obtain the normalized
backscattered power as follows:

ln[P̄r (r )/Pt ]i = ln

[
C Arβπ (r )	h

8πr2

]
i

− 2
∫ r

0
βe(λi ) dr, i = 1, 2. (7.6.10)
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Since λ1 is close to λ2, the scattering and extinction properties of aerosols are about
the same so that βπ (λ1) ∼= βπ (λ2) and βe,A(λ1) ∼= βe,A(λ2). We can then carry out the
subtraction operation to obtain

ln P̂1,2
∼= −2

∫ r

0
ρa(r )[k(λ1) − k(λ2)] dr, (7.6.11a)

where

P̂1,2 = [P̄r (r )/Pt ]1/[P̄r (r )/Pt ]2. (7.6.11b)

Thus, once the absorption coefficients are known, the backscattered measurements
at λ1 and λ2 can provide the gas density profile. Recent technology has produced
lasers that can be accurately tuned to the absorption lines of various gases such as
H2O, NO2, SO2, and O3. This has led to the development of DIAL systems for the
measurement of their profiles in the atmosphere. The capability of the DIAL system
has been presented in a summary paper by Browell (1994).

7.6.2.2 PRINCIPLE OF DEPOLARIZATION

In the preceding discussion, we neglected polarization information in the devel-
opment of the lidar equation. In reference to Eq. (7.6.6a), the transmitted power Pt

can be generated to be vertically (Pt,⊥) or horizontally (Pt,‖) polarized, while the de-
tector can be devised so that both polarization components (P̄r,‖, P̄r,⊥) are measured.
This provides additional information about particle characteristics and is referred to
as the depolarization technique. The principle of depolarization associated with a
laser beam that is backscattered by cloud particles can be described by the laws of
geometric optics. These laws follow the physical principle that the size of a particle
is much larger than the incident wavelength so that light beams can be localized as
geometric rays. Each ray that hits the particle will undergo reflection and refraction
and will pursue its own specific path along a straight line according to Snell’s law at
the particle surface (Sections 5.3 and 5.4).

We shall use the geometric optics principle and apply it to the scattering of spher-
ical droplets and hexagonal ice crystals, as shown in Fig. 7.30. Backscattering from a
symmetrical sphere can arise from a number of possibilities: the edge rays; a central
ray that undergoes external reflection; and two refractions, with the first making the
maximum contribution (see Section 5.3). Because no additional reference plane is
formed for the 180◦ backscattered rays, the light beam would retain the polarization
state of the incident energy. However, the backscattered energy from a nonspherical
particle can be produced by internal reflections that rotate the initial vibration plane
of the electric vector and produce depolarization. Shown in Fig. 7.30 are two types of
ice crystals: solid column and plate. For these ice crystals to produce backscattering,
light rays must undergo internal reflections more than twice, except for normal inci-
dence. In the case of normal incidence, a laser beam transmitting through a plate will
retain its polarization state because of symmetry. The incident skew rays that produce
backscattering undergo internal reflections that transform the electric vectors from
the original reference plane to the planes that contain the incident and refracted rays.
Consider a vertically polarized incident laser beam. A cross-polarization component
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Figure 7.30 Principle of backscattering depolarization from a spherical water droplet, a hexagonal
plate, and a solid column. The incident laser beam is vertically polarized. The backscattered beam from a
sphere retains the polarization state because of its geometrical symmetry. The backscattered beams from
nonspherical particles produce a cross-polarization component for light rays that are not perpendicular to
the major axis of the ice particle.

can be produced after the internal reflections. The ratio of this component to the com-
ponent that retains the same polarization as the incident light beam is referred to as
the backscattering depolarization ratio defined by

δ = P̄r,‖/P̄r,⊥. (7.6.12)

The theoretical foundation of depolarization from nonspherical ice crystals was
first discussed by Liou and Lahore (1974). Sassen (1976, 1991) presented the de-
polarization ratio for various types of ice crystals and water droplets derived from
laboratory and field studies. For water droplets, this ratio is close to zero, as is pre-
dicted from the theory. For ice crystals, the depolarization ratio varies from 50 to 70%,
depending on their shape and size. This provides a powerful means of distinguishing
between water and ice clouds in the atmosphere. The backscattering depolarization
technique can also be used to probe the orientation properties of ice particles. In
the case of a vertically pointing lidar involving horizontally oriented plate crystals,
the depolarization ratio would be zero because of the symmetry of the two parallel
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crystal surfaces with respect to the laser beam. Lidar experiments have shown that the
backscattering depolarization ratio in this case is close to zero, whereas it increases
significantly as the lidar scans a few degrees off the vertical (Platt et al., 1978).

An example of backscattering depolarization studies of cirrus clouds is illustrated
in Fig. 7.31. Sassen and Hsueh (1998) and Freudenthaler et al. (1996) presented the
depolarization ratios determined from high-resolution 0.532/1.06 μm polarization
lidar for contrail cirrus. The former authors showed that the lidar depolarization
ratio in persisting contrails ranged from about 0.3 to 0.7; the latter authors observed

Figure 7.31 Depolarization ratios determined from high resolution polarization lidar for contrail
cirrus (Sassen and Hsueh, 1998, case; Freudenthaler et al.,1996, temperature) and computed from a unified
theory for light scattering by ice crystals (Section 5.4) with shapes ranging from single and double plates,
solid and hollow columns, dendrites, bullet rosettes, aggregates, and irregular surface, the sizes of which
span from a few micrometers to the geometric optics limit (after Liou et al., 2000).
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this ratio from 0.1 to 0.5 for contrails with temperatures ranging from −60 to −50◦C,
depending on the stage of their growth. For purposes of interpretation, displayed in this
figure are backscattering depolarization ratios for various ice crystal sizes and shapes
computed from the unified theory for light scattering by ice crystals described in
Section 5.4. The vertical bars indicate the results for ice crystals of a few micrometers
to the geometric optics region. The depolarization ratio generally becomes larger for
larger ice particles and reaches a maximum of about 0.6 for size parameters in the
geometric optics limit.

One complication in the backscattering and depolarization experiments has been
the effect of multiple scattering. Through multiple scattering events, the incident elec-
tric vector is transferred from the initial reference plane to the plane of scattering, and
therefore, partial depolarization is produced, even for clouds consisting of spherical
water droplets. The relative significance of multiple scattering in backscattering exper-
iments involving clouds is generally associated with the field of view of the detector.
Multiple backscattering from cloud particles has been a subject of extensive research
since the 1970s. The most recent reference on this subject is Wandinger (1998).

7.6.3 Millimeter-Wave Radar for Cloud Study

The conventional meteorological radars typically operate at centimeter (cm) wave-
lengths (e.g., 10 cm and 3.21 cm radars) to circumvent problems in the interpretation
of backscattering signals from precipitating clouds that contain large raindrops and
snowflakes on the order of millimeter (mm) to cm sizes. Nonprecipitating clouds
generally consist of particles that are much smaller than mm sizes and do not produce
significant radar backscattering signals for their detection. Radar meteorology is a
well-developed discipline and will not be covered in this text. However, the techni-
cal development of mm-wave radar and its application to cloud studies is a subject
of contemporary research. In particular, when mm-wave radar data are combined
with lidar measurements, comprehensive cloud structure and composition can be
inferred.

The selection of wavelength for a radar operated in the earth’s atmosphere is
restricted to those spectral regions where absorption by atmospheric gases is smaller.
In reference to Fig. 7.23, the windows of H2O and O2 absorption are located at 35 GHz
(8.6 mm, Ka-band), 94 GHz (3.2 mm, W -band), 140 GHz (2.14 mm, F-band), and
220 GHz (1.36 mm, G-band). The first mm-wave radar designed for meteorological
use was a 35 GHz system for cloud deck monitoring. It was subsequently equipped
with Doppler and polarization capabilities and employed for the observation of clouds.
A 94 GHz system with a shorter wavelength was further shown to provide effective
observations of the liquid/ice water content of clouds (Lhermittee, 1990). Millimeter-
wave radars have two distinct advantages over cm-wave radars in that very narrow
beams can be produced with small antenna size and the gain from Rayleigh scattering
can reduce the need for high-power transmitters. In recent years, both 35 and 94 GHz
radars have been well developed for the detection of nonprecipitating clouds.

Since cloud particles are normally much smaller than mm wavelengths, the
Rayleigh scattering theory presented in Section 3.3.1 may be followed. The scattering
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cross section for a cloud particle may be expressed by

σs = 128π2

3λ4

(
3

4πNc

)2∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2, (7.6.13a)

where the number density of spherical particles Nc = 1/V and the volume V =
4πa3/3. Letting K = (m2 − 1)/(m2 + 2), we have

σs = 128π2

3λ4
a6|K |2. (7.6.13b)

Referring to Eq. (7.6.4), noting the Rayleigh backscattering phase function
P R(π ) = 1.5, and using the diameter D = 2a for a cloud particle, the backscattering
cross section (in units of cm2) can then be written in the form

σπ = σs · P R(π ) = π5

λ4
|K |2 D6. (7.6.14)

Let the cloud particle size distribution be n(D). The backscattering coefficient (in
units of cm−1) is then

βπ = π5

λ4
|K |2 Z , (7.6.15)

where the radar reflectivity factor

Z =
∫

D6n(D) d D. (7.6.16)

The average return power without accounting for attenuation can now be written in
the form

P̄r (r ) = C

r2
|K |2 Z , (7.6.17)

where C is a constant associated with the radar characteristics. Measurements of P̄r (r )
versus r allow the calculation of Z , which in turn can be related to the cloud properties.

The radar reflectivity factor defined in Eq. (7.6.16) is related to the particle diameter
to the sixth power. As discussed in Section 7.3.5, the liquid (or ice) water content
(LWC/IWC) is associated with the particle radius to the third power. Thus, one may
correlate the radar reflectivity factor with the cloud LWC/IWC. The 35 GHz cloud
radar has been developed specifically for the determination of the vertical profile of
IWC in high-level cirrus clouds (Mace et al., 1998). Moreover, with the Doppler
technique, some information about the ice-crystal size based on the fall velocity may
also be inferred. The development of a combination of the reflectivity and Doppler
spectrum technique for the simultaneous retrieval of the vertical profile of IWC and
ice-crystal size in cirrus is still in its embryonic stage. In Fig. 7.32, we demonstrate
a time series of the retrieved IWC and ice crystal size in terms of De, defined in
Eq. (5.1.1), as functions of height for a cirrus cloud case observed in Oklahoma
on April 18, 1997, based on the backscattering return of a 35 GHz Doppler radar.
The cloud top heights were nearly constant between about 10 to 11 km, but the
cloud base heights varied significantly. The retrieved IWC and De ranged from 0
to 0.6 g m−3 and 0 to 170 μm, respectively. Substantial variabilities in both the
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Figure 7.32 Time series of the ice water content (IWC, top panel) and mean effective ice crystal size
(De , lower panel), determined from the backscattering return of a 35 GHz Doppler radar, as functions of
height for a cirrus cloud case observed in Oklahoma on April 18, 1997 (data provided by Gerald Mace of
the University of Utah).

vertical and horizontal directions are clearly displayed. It is evident that the successful
development of mm-wave cloud radar will revolutionize our understanding of the
structure of inhomogeneous clouds, particularly for high-level cirrus.

Exercises

7.1 (a) Derive Eq. (7.2.7) from Eqs. (7.2.5) and (7.2.6) and show that

k = π (2π )ν
∗−2
∫ z∞

0
C(z) dz

∫ x2

x1

Qe(x) dx

xν∗−1
,

where the extinction efficiency Qe is expressed in terms of the size parameter x .
(b) Direct solar radiation measurements are made with a multiple wavelength
radiometer. The aerosol optical depths derived from the observations are 0.17
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and 0.1 at 0.63 and 0.86 μm, respectively. Assuming a Junge size distribution
and a constant k, what would be the shaping factor ν∗?

7.2 Consider the following Fredholm equation of the first kind:

g(k) =
∫ 1

0
e−kx f (x) dx,

where the kernel is given by a simple exponential function. Let the unknown
function be given in the form

f (x) = x + 4x
(

x − 1

2

)2
.

(a) Derive an analytical expression for g(k) and compute g(ki ) for ki in the interval
(0, 10) using 	ki = 0.5 (i = 1, 2, . . . , 20).
(b) Write the integral equation in summation form as

g(ki ) =
20∑
j=1

f (x j )e
−ki x j	x j , i = 1, 2, . . . , 20.

Letting	xi = 0.05, compute g(ki ) again and compare with those computed from
the exact integration.
(c) Let

Ai j = e−ki x j	x j .

Compute ||Ai j ||, which is a 20 × 20 matrix. Use the direct linear inversion method
to recover f (x j ). Compare the retrieval results with the exact values.

7.3 Prove Eq. (7.2.25) from Eq. (7.2.23) by assuming M = N = 2. Using the first,
second, and third differences, derive the H matrices similar to that shown in
Eq. (7.2.26).

7.4 A seven-channel sunphotometer is used to measure aerosol optical depth fol-
lowing the procedure discussed in Section 7.2.1. The measured optical depths
corresponding to the wavelengths depicted in Fig. 7.3 are τ1(0.382μm) =
0.645, τ2(0.451μm) = 0.562, τ3(0.501μm) = 0.513, τ4(0.526μm) = 0.491,
τ5(0.778μm) = 0.338, τ6(0.861μm) = 0.306, and τ7(1.060μm) = 0.249. Using
the weighting functions given in this figure, determine the aerosol size distribution
from the following procedures:
(a) Use Eq. (7.2.12) and expand f (a) in a seven-term Legendre polynomial de-
fined by

Pj (a) = 1

2 j j!

d j

da j
(a2 − 1) j .

(b) Then, from Eq. (7.2.13b), compute

Ai j =
∫ a2

a1

Pj (a)Ki (a)da, i = 1, 2, . . . , 7,

where a1 = 0.01 μm and a2 = 1 μm. Use the data presented in Table 7.2 and a
quadrature integration method in the computation.
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Table 7.2

Weighting Functions as Functions of Aerosol Radius for Seven Sunphotometer Wavelengths

Weighting functions
Radius
(μm) 1 2 3 4 5 6 7

0.0100 4.4328 2.2811 1.4978 1.2327 0.2575 0.1717 0.0747
0.0176 13.7007 7.0492 4.6281 3.8086 0.7953 0.5302 0.2307
0.0260 29.9713 15.4296 10.1313 8.3375 1.7407 1.1602 0.5049
0.0308 42.0547 21.6767 14.2381 11.7184 2.4469 1.6309 0.7097
0.0466 93.8568 49.0855 32.3937 26.7002 5.5989 3.7324 1.6241
0.0509 110.4079 58.2449 38.5510 31.8052 6.6892 4.4599 1.9409
0.0690 177.1635 100.1537 68.0051 56.5812 12.2394 8.1761 3.5645
0.0766 198.6910 117.1921 81.0726 67.8926 15.0261 10.0546 4.3907
0.0878 222.1855 138.4621 99.1376 84.1119 19.5691 13.1463 5.7637
0.0989 244.8080 153.7768 113.6846 97.9175 24.3999 16.4917 7.2761
0.1013 251.0553 156.6501 116.4091 100.5890 25.5108 17.2721 7.6341
0.1107 278.9088 167.4753 125.3450 109.3831 29.8075 20.3415 9.0670
0.1273 309.0414 193.7464 139.8560 121.7655 37.3108 25.9747 11.8390
0.1306 307.8837 200.0057 143.3598 124.3373 38.7264 27.0920 12.4191
0.1496 287.9718 221.6949 168.0708 143.8293 45.9078 33.1677 15.8485
0.1586 288.5376 218.4273 176.9670 154.0849 48.6430 35.7095 17.4849
0.1668 293.5934 212.1231 179.6682 160.7122 50.7921 37.7829 18.9532
0.1759 292.5142 206.8395 177.1622 162.9790 52.8937 39.7875 20.5186
0.2157 246.2814 203.6015 169.9123 151.7108 63.7010 46.7642 26.1580
0.2357 221.1176 182.9026 167.6034 155.3636 70.7781 51.2328 28.1459
0.2469 201.5677 177.9200 159.1576 152.3555 73.4846 54.2184 29.1279
0.2549 192.6196 176.6381 152.7078 147.4533 74.3904 56.3492 29.8385
0.2600 189.4106 175.0724 149.2663 143.8085 74.4998 57.5937 30.3113
0.2777 172.3674 159.3578 143.7655 133.2944 72.8265 60.4652 32.1875
0.2871 156.2557 148.8443 142.3785 130.9186 71.3910 60.8324 33.3749
0.2917 148.8346 144.4151 140.8010 130.4095 70.7245 60.7327 34.0098
0.3075 133.4110 135.7173 129.9356 127.2397 69.2935 59.4388 36.2900
0.3245 119.9005 126.8022 116.7393 116.6808 69.6569 57.5826 38.5157
0.3372 101.8229 113.8690 111.0767 107.9117 70.6203 56.6867 39.6402
0.3521 87.9238 100.7208 107.1272 101.2790 70.9368 56.5918 40.1344
0.3882 60.6246 81.6000 83.1148 87.1008 64.9331 57.9546 38.6334
0.4093 52.7835 65.6209 76.3747 74.6244 61.1072 56.2177 37.5694
0.4263 43.3359 61.1699 69.2994 69.8766 59.7750 53.5649 37.2795
0.4441 32.8936 52.4110 58.1053 64.5868 59.1438 50.8691 37.5811
0.4628 32.5212 41.2741 50.9002 54.4527 56.9318 49.1611 38.1275
0.4953 21.5198 34.6967 41.5344 45.1617 49.9987 48.1017 37.6474
0.5085 23.7100 28.7729 35.4682 42.3528 47.6895 46.9398 36.7315
0.5286 19.8040 23.0721 30.7868 34.1439 45.7240 43.9804 35.0077
0.5419 17.9112 23.8040 30.2158 29.7947 44.8635 41.7830 33.9158
0.5681 19.3692 17.9502 22.3759 27.5200 41.0542 38.4228 32.4880
0.6218 19.5171 14.4908 16.2054 16.9793 32.4441 34.4953 31.2234
0.6679 19.6098 13.9251 13.7338 12.4354 27.7156 28.0536 27.4974
0.7033 17.9602 13.5937 10.6527 12.3184 22.3268 25.8595 25.1727
0.7363 16.7441 13.8903 11.4802 9.7987 20.5210 23.0045 24.2301
0.7768 14.0616 13.6846 10.5095 10.2743 16.2295 18.3615 21.8955

Continues
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Continued

Weighting functions
Radius
(μm) 1 2 3 4 5 6 7

0.8101 13.0399 13.0259 11.3784 9.3696 13.0756 16.8683 19.2823
0.8485 9.7714 12.8928 11.9151 10.2819 12.1259 14.3272 17.4424
0.8695 8.8943 12.0394 11.2795 9.7739 10.3275 12.3727 16.9763
0.8917 7.7516 11.1963 10.6176 10.8465 8.5943 10.8745 16.0946
0.9151 7.2615 10.1764 11.0882 10.3081 7.7314 10.4032 14.5823
0.9396 6.5278 9.2237 10.6382 9.5603 7.9324 9.8656 12.9847
0.9523 6.7532 9.3616 9.8044 10.1288 7.3905 9.0824 12.3006
0.9784 6.3343 7.9969 9.5029 9.6135 6.1033 7.4553 11.3872
0.9918 6.2839 7.4044 9.1160 9.3268 5.5344 6.7934 11.1889
1.0055 6.2318 7.1540 8.9166 8.7280 5.2022 6.3777 11.0159

(c) Based on Eq. (7.2.27), compute f ( j = 1, 2, . . . 7) by using the H derived
for the second difference obtained from Exercise 7.3. The aerosol radii cor-
responding to the peaks of the weighting function are, respectively, a1 =
0.127, a2 = 0.150, a3 = 0.167, a4 = 0.176, a5 = 0.260, a6 = 0.287, and a7 =
0.352 for wavelengths ranging from 0.382 to 1.060 μm. Use γ = 10−3 and 10−6

in the inversion exercise.
(d) Compute the column aerosol size distribution from Eq. (7.2.9a) by assuming
ν∗ = 3 and compare your results with those displayed in Fig. 5.1.

7.5 Observations from satellite visible imagery have shown that ships can influ-
ence the composition and radiative properties of shallow clouds (stratus and
stratocumulus) over the oceans via their stack effluents. It is hypothesized
that the additional aerosols serve as effective condensation nuclei upon which
small water droplets form. This is referred to as the indirect aerosol effect
in climate studies. Consider Eqs. (7.3.13b) and (7.3.13c) and use a mean ef-
fective radius ā in the integrand. Define the total number density of wa-
ter droplets as N = ∫ n(a) da(# cm−3). What would be the increase in op-
tical depth if N increases by a factor of 2? Remote sensing of the optical
depths and droplet sizes of disturbed and pristine stratiform clouds over the
oceans is a subject of considerable importance for the study of aerosol–cloud
interactions.

7.6 Given the temperature profile and transmittances for the six VTPR channels
(669.0, 676.7, 694.7, 708.7, 723.6, and 746.7 cm−1) in Table 7.3:
(a) Compute and plot the weighting function 	Ti (p)/	 lnp as a function of the
pressure on a logarithmic scale. What is the physical meaning of the weighting
function?
(b) Assuming that the calculated radiances are the values observed from the
NOAA 4 VTPR instrument, recover the temperature profile from these radiances
utilizing the relaxation method outlined in Subsection 7.4.3.1. Use a linear



440 7 Application of Radiative Transfer Principles to Remote Sensing

Table 7.3

Atmospheric Profiles and Transmission Functions for VTPR Channels

Transmittances
Pressure Temperature

mb (K) 1 2 3 4 5 6

0.8 270.7 .9198 .9817 .9890 .9922 .9931 .9968
1.4 265.0 .8846 .9733 .9837 .9891 .9906 .9953
2.1 256.4 .8429 .9637 .9777 .9861 .9879 .9940
3.1 248.3 .7979 .9508 .9704 .9817 .9848 .9925
4.4 241.9 .7520 .9344 .9612 .9783 .9810 .9906
5.9 238.2 .7061 .9139 .9497 .9732 .9763 .9885

10.3 232.7 .6094 .8591 .9188 .9597 .9645 .9828
13.1 228.8 .5562 .8239 .8980 .9506 .9570 .9790
16.5 226.3 .5001 .7831 .8740 .9403 .9485 .9747
20.4 222.5 .4423 .7369 .8470 .9290 .9392 .9701
24.9 221.1 .3840 .6853 .8168 .9167 .9290 .9652
30.2 219.5 .3266 .6291 .7831 .9033 .9180 .9600
36.1 219.0 .2716 .5691 .7458 .8887 .9065 .9546
42.9 218.5 .2203 .5064 .7051 .8728 .8945 .9489
50.5 217.9 .1738 .4424 .6609 .8555 .8821 .9431
59.1 217.4 .1329 .3785 .6136 .8366 .8695 .9370
68.6 216.8 .0980 .3160 .5638 .8162 .8567 .9307
79.2 217.3 .0693 .2563 .5119 .7941 .8437 .9241
90.9 218.0 .0468 .2008 .4584 .7699 .8304 .9173

103.8 218.8 .0299 .1510 .4043 .7436 .8163 .9101
117.9 219.7 .0179 .1080 .3508 .7152 .8029 .9026
133.3 220.7 .0100 .0727 .2988 .6847 .7884 .8946
150.2 221.7 .0052 .0456 .2496 .6520 .7731 .8861
168.5 222.6 .0024 .0264 .2042 .6175 .7570 .8771
188.4 223.6 .0010 .0139 .1634 .5812 .7397 .8674
209.9 225.2 .0004 .0066 .1275 .5431 .7212 .8569
233.1 227.5 .0001 .0028 .0968 .5033 .7011 .8454
258.0 229.7 .0000 .0011 .0711 .4615 .6792 .8325
284.8 230.2 .0000 .0004 .0508 .4195 .6561 .8187
313.6 231.8 .0000 .0001 .0354 .3782 .6321 .8043
344.3 232.8 .0000 .0000 .0237 .3365 .6064 .7883
377.2 234.2 .0000 .0000 .0151 .2940 .5782 .7701
412.2 235.5 .0000 .0000 .0090 .2514 .5475 .7493
449.5 236.9 .0000 .0000 .0050 .2099 .5142 .7253
489.2 241.6 .0000 .0000 .0026 .1706 .4785 .6992
531.2 245.4 .0000 .0000 .0012 .1343 .4402 .6687
575.8 249.0 .0000 .0000 .0005 .1017 .3993 .6326
623.1 252.8 .0000 .0000 .0002 .0740 .3565 .5917
673.0 256.8 .0000 .0000 .0000 .0516 .3127 .5467
725.7 260.5 .0000 .0000 .0000 .0346 .2689 .4983
781.3 263.9 .0000 .0000 .0000 .0221 .2261 .4476
839.9 267.5 .0000 .0000 .0000 .0134 .1852 .3952
901.5 272.1 .0000 .0000 .0000 .0076 .1456 .3371
966.3 277.0 .0000 .0000 .0000 .0039 .1064 .2682

1019.8 279.5 .0000 .0000 .0000 .0019 .0770 .2099
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interpolation between the recovered temperatures and use the true temperatures
for the surface and the top layer. Plot the retrieved temperature profile on a loga-
rithmic scale and compare it with the true temperature profile.
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Chapter 8 Radiation and Climate

8.1 Introduction

Climate is usually defined as the average state of the atmosphere observed as weather
in terms of the mean and its statistical deviations that measure the variability over
a period of time. Thus, we may speak of the climate of a season, a year, or longer
periods. We frequently use the terms climatological temperature, precipitation, and
other atmospheric parameters (e.g., data averaged over a 30-year period) to represent
the mean atmospheric state. Changes in climate involve interactions of the atmosphere
with other parts of the climate system, including the oceans, ice, snow, and land,
associated with natural variability and/or anthropogenic perturbations.

Natural variability includes changes in the solar constant associated with sunspot
activities (Section 2.3), changes in the solar insolation distribution caused by the
earth’s orbit around the sun (Section 2.2), and changes in atmospheric composition
due to volcanic eruptions (Section 8.4.4). These are referred to as external forcings,
which may also occur as a result of human activities, such as increases in greenhouse
gases (Sections 4.1 and 8.4) and anthropogenic aerosols (Section 8.6.3).

An understanding of the earth’s climate and climate change must begin with a
comprehensive understanding of the radiation emitted from the sun and the absorption
of solar energy by the atmosphere and the surface, as well as of the emission of thermal
infrared energy from the earth–atmosphere system, as presented in Chapters 2, 3, and
4, respectively. In Chapters 5 and 6, we detailed the scattering and absorption processes
involving molecules, aerosols, and cloud particles. The atmospheric and surface data
required for global weather and climate studies must be primarily gathered from
satellites by means of remote sensing, the principles of which were discussed in
Chapter 7.

Radiation equilibrium at the top of the atmosphere represents the fundamental
mode of the climate system. The incoming solar energy that is absorbed by the
earth–atmosphere system must be balanced by an equal amount of emitted thermal
infrared energy so as to achieve climate equilibrium. Otherwise, the equilibrium
temperature of the earth planet, the brightness as viewed from space, would un-
dergo a continuous change until the energy balance was restored. In Section 4.1, we
showed that the equilibrium temperature of the earth–atmosphere system, based on
the Stefan–Boltzmann law, is given by Te = [S(1 − r̄ )/4σ ]1/4, where S is the solar
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constant, representing the energy available from the sun, and r̄ is the global albedo,
representing the internal reflecting power of the earth–atmosphere system. For the
present climate condition, Te is about 255 K. As a result of the greenhouse effect
of the earth’s atmosphere and its convective nature, the present surface temperature
is about 288 K. Thus, the surface temperature is 33 K warmer than the equilibrium
temperature.

Global radiation budgets have been observed from space since the beginning of
the meteorological satellite era. In Section 8.2, we present a description of the manner
in which the radiation budget is derived. The climate system is also affected by the
internal heating and cooling of the atmosphere, as well as by the surface radiative
budget, which are subsequently discussed.

The physical understanding of climate processes and the prediction of future cli-
mate and climate change require numerical models that encompass all relevant climate
system components, including the atmosphere, the oceans, land, ice, and snow, as well
as their interactions and feedbacks. It is essential that the numerical models for climate
studies be based upon well-established physical principles since we do not have future
data to check and verify these models, which must be built solely on our knowledge of
the present historical climate conditions. In what follows, we first present the role of
radiation in two simplified climate models. One-dimensional radiative–convective
climate models have been widely employed in the past to explain vertical tempera-
ture perturbations due to external radiative forcings such as the increase in greenhouse
gases and the indirect role of clouds. The foundation of these models and some sig-
nificant perturbation studies are presented in Sections 8.3 and 8.4. In Section 8.5,
we present one-dimensional energy-balance models, which include surface temper-
ature variation in the latitude and which have been used primarily to evaluate the
effect of solar constant and solar insolation variations on climate, particularly in re-
gard to the question of the advance and retreat of polar ice in the geological time
scale.

To quantify the response of the climate system to changes in external forcings
and to perfect the prediction of future climate and climate change, we must rely on
global climate models that account for all of the essential interactions and feedbacks
among the climate system components. Models and their components are based on
the physical laws represented by mathematical equations that govern atmospheric
and oceanic dynamics and physics. In Section 8.6, we first provide some introduc-
tory notes concerning the general circulation model, particularly in reference to the
transfer of radiation in the earth–atmosphere system. We then discuss cloud radiative
forcing induced by the representation of cloud cover and cloud microphysics in typical
global climate models within the context of greenhouse warming. Subsequently, we
present examples of the direct climate radiative forcings induced by anthropogenic
aerosols and contrails. Finally, we point out that radiation and cloud interactions and
feedbacks are relevant and important processes in the numerical simulation of inter-
annual and decadal time-scale variability, and present an example associated with the
El Niño–Southern Oscillation simulated from a global climate model that couples the
atmosphere and the oceans.
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8.2 Radiation Budget of the Earth–Atmosphere System

8.2.1 Observational Considerations

The earth radiation budget (ERB) at the top of the atmosphere (TOA) has been
derived from satellite observations since the beginning of the meteorological satellite
era. The first-generation ERB instruments included black and white hemispheric
sensors using thermistor detectors to measure the sensor temperature on board the
first U.S. meteorological satellite, Explorer 6, launched February 17, 1959 (Suomi,
1958). This first generation also included a five-channel scanning radiometer on
board the TIROS satellite series. Each of the channels had a narrow instantaneous
field of view, and the measurements were radiances (per solid angle) rather than flux
densities.

In the second generation of satellite missions during the 1960s and 1970s, polar,
sun-synchronous orbits provided the opportunity for daily global coverage of the earth.
In addition, the duration of spacecraft measurements was extended to several years.
Flat, nonscanning radiometers were installed on several research and Environmental
Science Service Administration operational satellites and, later, medium and wide
field-of-view radiometers were also deployed on the NOAA satellites. Medium- and
high-resolution infrared radiometers were used on Nimbus satellites for the detection
of shortwave (solar) and longwave (IR) radiation. Nimbus 2 and 3 contained five-
channel medium-resolution scanning radiometers and provided the first observations
of the ERB for the entire globe. The aperture of the radiometers was about 2.5◦,
resulting in a spatial resolution of about 50 km near nadir and about 110 km at an angle
of 40◦. Spectral band passes for these radiometers were 0.3–4 μm for shortwave and
5–50 μm for longwave. The computation of outgoing flux densities from measured
radiances required conversion of measured filtered radiances to radiances covering the
entire solar and thermal IR spectra, integration over all angles of measurements using
bidirectional models, and estimation of the average flux density over a 24-hour period.
NOAA polar-orbiting satellites performed scanning measurements in the visible and
IR window regions. The transformation of these narrow spectral interval data to
broadband estimates of flux densities required several assumptions and models. The
narrowband scanning radiometers had a spatial resolution of about 4 km at nadir.
Valuable data sets have been constructed from the narrowband measurements of ERB
components.

The third generation of satellite observational systems led to the development of
ERB instruments that measured direct solar irradiance, reflected shortwave radiation,
and emitted longwave radiation. The Nimbus 6 and 7 satellites contained wide field-
of-view and scanning radiometers that provided valuable observations of the ERB.
The scanning measurements observed the directional and bidirectional reflecting and
emitting properties of the earth–atmosphere system over both time and space and
were important in developing directional models for the conversion of radiances to
flux densities. The longest record of solar constant measurements was made available
by Nimbus 7 observations.
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The sun-synchronous, polar-orbiting satellites observed each location at about the
same local time. As a consequence, the observations were insufficient to provide a
more detailed quantitative estimate of the temporal and spatial sampling errors. Stud-
ies of the ERB using data from the geostationary satellites were especially useful
because they provided a regular sample of the atmospheric diurnal cycle. This en-
abled a wide range of spatial and temporal radiation variations to be investigated.
Observations from GOES and METEOSAT satellites have been used in numerous
studies of the ERB. Radiometers on board geostationary satellites were confined to
narrow bands and had spatial resolutions that varied from about 0.5 to 10 km at nadir.
The processing of observed data from geosynchronous altitudes required assump-
tions similar to those used to interpret the measurements from NOAA polar-orbiting
satellites.

In order to provide comprehensive data sets for studying the diurnal and annual
cycles of the ERB, as well as the role of clouds in the ERB, the fourth generation of
satellite observation systems, referred to as the Earth Radiation Budget Experiment
(ERBE), was launched in the 1980s. The experiment consisted of scanning and non-
scanning radiometers on three satellites. The NASA Earth Radiation Budget Satellite
(ERBS) performed a 57◦ inclination orbital precession around the earth once every
2 months. The other two satellites were NOAA 9 and NOAA 10 operational meteo-
rological satellites.

8.2.1.1 BLACK AND WHITE SENSORS BASED ON RADIATIVE EQUILIBRIUM

For historical reasons, we shall first discuss the use of a matched pair of spherical
black and white sensors, the so-called Wisconsin sensors originally designed by Suomi
(1958), which used thermistor detectors to measure the sensor temperature. In a short
time after exposure to various radiative components involving the direct solar flux,
shortwave flux reflected by the earth and atmosphere, and longwave flux emitted by the
earth and atmosphere, each sensor achieves a radiative equilibrium. The absorptivity
of the black sensor, Ab,was assumed to be the same for both shortwave and longwave
radiation. However, the absorptivity of the white sensor for shortwave and longwave
radiation was assumed to be different, denoted by As

w and Al
w, respectively.

Let the temperatures measured by the black and white sensors be Tb and Tw,

respectively. On the basis of the Stefan–Boltzmann and Kirchhoff laws (Section 1.2),
radiative equilibrium equations for both sensors may be expressed by

4πa2 Ab σT 4
b = πa2 Ab(F� + F ′

s + F ′
ir ), (8.2.1)

and

4πa2 Al
w σT 4

w = πa2
[
As

w(F� + F ′
s ) + Al

w F ′
ir

]
. (8.2.2)

These two equations show that the emitted energy per unit time is equal to the absorbed
energy per unit time, where 4πa2 andπa2 represent the emission and absorption areas,
respectively, of the two spherical sensors, each with radius a. The flux densities of
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the reflected shortwave and longwave radiation for spherical sensors are defined by

F ′
s =

∫ �

0
Isd�, F ′

ir =
∫ �

0
Iir d�, (8.2.3)

where � is the solid angle by which the sensor sees the earth, Is and Iir are the
radiant intensities reflected and emitted from the earth, respectively, and F� denotes
the direct solar irradiance.

Upon solving the sum of the shortwave flux densities and the longwave flux density,
we obtain

F� + F ′
s = [4σ Al

w

/(
Al

w − As
w

)] (
T 4

b − T 4
w

)
, (8.2.4)

and

F ′
ir = [4σ/(Al

w − As
w

)] (
Al

wT 4
b − As

wT 4
w

)
. (8.2.5)

The direct solar irradiance, F�, can be evaluated from the solar constant, which is
specified prior to the experiment.

In order to derive the reflected solar flux density and the emitted thermal infrared
flux density in terms of the measured values expressed in Eq. (8.2.3), the following
evaluation procedures are required. According to the definition of the flux density and
the isotropic radiation assumption discussed in Section 1.1, the reflected solar flux
density is given by

Fs =
∫ 2π

0

∫ π/2

0
Is(θ, φ) cos θ sin θ dθ dφ = π Is, (8.2.6a)

where θ and φ are the zenith and azimuthal angles, respectively. Thus, the planetary
albedo, r, can be expressed by

r = π Is/(F� cos θ0), (8.2.6b)

where the denominator represents the solar flux density available at TOA normal to
the plane-parallel stratification. On the basis of Eqs. (8.2.3) and (8.2.6b), we have

F ′
s = F�

π

∫ �

0
r cos θ0 d� . (8.2.7)

Assuming cos θ0 does not vary significantly over the viewing area of the satellite, it
can be removed from the integral. Moreover, we define the average planetary albedo
of the viewing area as follows:

r̄ = 1

�

∫ �

0
r d�. (8.2.8)

It follows that

r̄ = πF ′
s/(F� cos θ0 �) . (8.2.9)
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In a similar manner, under the assumption of isotropic radiation, the emitted ther-
mal infrared flux density is given by

Fir = π Iir = σT 4
e , (8.2.10)

where Te denotes the equivalent blackbody temperature of the earth–atmosphere
system. Upon defining the average equivalent blackbody temperature of the viewing
area in the form

T 4
e = 1

�

∫ �

0
T 4

e d�, (8.2.11)

we obtain

T 4
e = πF ′

ir/(σ�). (8.2.12)

The solid angle through which the sensor sees the earth is given by (see Exercise 1.2)

� = 2π

[
1 − (2aeh + h2)1/2

ae + h

]
. (8.2.13)

Hence, the average planetary albedo r̄ and equivalent blackbody temperature Te can be
evaluated from the black and white sensors through F ′

s and F ′
ir . The average reflected

solar flux density and emitted thermal infrared flux density, respectively, as functions
of location and time may now be expressed by

F̄s = r̄ F� cos θ0 (8.2.14)

and

F̄ ir = σT 4
e . (8.2.15)

In the following, we discuss the averaging process with respect to time and space.

8.2.1.2 SCANNING RADIOMETER AND ANGULAR MODELS

As discussed previously, the radiometric measurements determined from satellite
platforms are radiances. The conversion of radiances (per solid angle) to flux densities
is a major undertaking in satellite radiation budget analyses.

The daily average reflected flux density of solar radiation is defined by

Fs(ϕ, λ) =
∫

day
Fs[ϕ, λ; θ0(t)] dt/	t

=
∫

day
dt
∫ 2π

0

∫ π/2

0
Is[ϕ, λ; θ, φ; θ0(t)] cos θ sin θ dθ dφ/	t, (8.2.16)

where ϕ and λ denote the latitude and longitude, respectively, and 	t is the time
interval. For a given location (ϕ, λ), the broadband scanning radiometer measures
the scattered radiance or intensity (energy/area/time/solid angle), which depends on
the zenithal and azimuthal angles of the outgoing radiation as well as the position
of the sun in terms of the solar zenith angle θ0.
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Since the scanning radiometer detects the reflected solar radiance only at a given
scan angle, certain empirical adjustments are required in order to evaluate the daily
reflected flux. The empirical anisotropic scattering function is defined as

X (θ, φ; θ0) = Fs(θ0)/[π Is(θ, φ; θ0)]. (8.2.17)

Prior to satellite experiments, the X function may be determined based on the radiative
transfer theory as well as on aircraft and balloon observations for selected localities.
With the assumption that values are independent of the locality, the daily average
reflected solar flux can be evaluated by

Fs(ϕ, λ) =
∫

day
X [θ, φ; θ0(t)]π Is[ϕ, λ; θ, φ; θ0(t)] dt/	t. (8.2.18)

It follows that the daily planetary albedo can now be defined by

r (ϕ, λ) = Fs(ϕ, λ)/Q(ϕ), (8.2.19)

where the daily average solar insolation discussed in Section 2.2.3 is given by

Q(ϕ) =
∫

day
F� cos θ0(t) dt/	t. (8.2.20)

Similarly, an empirical function for the emitted infrared radiation may be defined.
Because the outgoing infrared radiation is independent of both the azimuthal angle
and the sun’s position, the empirical function may be written in the form

X (θ) = Fir/[π Iir (θ )]. (8.2.21)

Again, this function is to be obtained prior to satellite experiments. Thus, the daily
average thermal infrared flux density can be evaluated by

Fir (ϕ, λ) =
∫

day
Fir (ϕ, λ; t) dt/	t

= 2π
∫

day
dt
∫ π/2

0
Iir (ϕ, λ; θ ; t) cos θ sin θ dθ/	t

=
∫

day
X (θ )π Iir (ϕ, λ; θ ; t) dt/	t. (8.2.22)

Note that radiances measured by the scanning radiometer normally are corrected to
the nadir angle (θ = 0◦).

We may now define the radiation balance equation using Eqs. (8.2.19), (8.2.20),
and (8.2.22). For a given locality with latitude ϕ and longitude λ, the net daily flux
density may be expressed by

R(ϕ, λ) = Q(ϕ)[1 − r (ϕ, λ)] − Fir (ϕ, λ). (8.2.23)

To derive the zonally averaged quantities, we perform the integration over the longi-
tudinal direction to give

R(ϕ) = Q(ϕ)[1 − r (ϕ)] − Fir (ϕ), (8.2.24)
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where the operator

R(ϕ) =
∫
λ

R(ϕ, λ) dλ/	λ.

Moreover, the global value may be evaluated by carrying out the integration over the
latitudinal direction as follows:

R̄ = Q̄(1 − r̄ ) − F̄ ir , (8.2.25)

where the operator

X̄ =
∫
ϕ

∫
λ

X dλ dϕ/(	λ	ϕ),

and X can be R, Q, or Fir . Finally, time averaging can also be carried out to obtain
the monthly and annual radiation budget values.

8.2.2 Radiation Budget Viewed from Space

The ERB is usually presented in terms of the emitted longwave (or IR) flux, Fir ,

referred to as outgoing longwave radiation (OLR); the planetary albedo (or, simply,
albedo), r, defined as the ratio of the reflected solar flux to the incident flux at TOA;
and the net radiative flux, defined by

F = (1 − r )Q − Fir , (8.2.26)

where we have used flux instead of flux density and replaced the notation R by F .
The first term on the right-hand side of Eq. (8.2.26) represents the absorbed solar
flux within the earth–atmosphere system. The globally and annually averaged albedo
and OLR have been derived by a number of researchers from various data sources. In
the following, we present a number of radiation budget results derived from satellite
broadband radiation measurements.

Global distributions of OLR, albedo, and net flux averaged for the mean annual and
seasonal conditions have been presented in numerous publications. Shown in Fig. 8.1
are maps of the mean annual condition. The albedos reveal a distinct land–ocean con-
trast equatorward of 30◦N and 30◦S, as well as high convective clouds, in particular
Asian monsoons, where high albedo and low emission are evident. Poleward of 30◦N
and 30◦S, the radiation budgets are relatively uniform zonally, especially in the South-
ern Hemisphere. At low latitudes, regions of relative energy gains and losses are evi-
dent for a given zone. Distinct variations are shown in the net fluxes in the tropical and
subtropical zones where the deserts of Africa and Arabia appear as negative or small
positive anomalies. The convective regions near Asia show large positive anomalies.
In general, the albedos are negatively correlated with OLR, principally because of
the presence of clouds. The exception is over desert regions, where cloud cover is
at a minimum and the surface is relatively bright and warm. A net radiative gain is
evident throughout almost the entire zone between ∼40◦N and ∼40◦S and is flanked
by radiation sinks that generally deepen toward the poles. The radiation budgets of
the earth and the atmosphere are largely regulated by clouds and temperature fields.
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Figure 8.1 Global maps of (a) mean annual planetary albedo, (b) outgoing longwave radiation
(W m−2), and (c) net radiative flux (W m−2), in a Hammer equal-area projection (data taken from Hartmann,
1994). In these diagrams, heavier shaded areas denote albedos larger than 0.4, longwave fluxes smaller
than 230 W m−2, and negative net radiative fluxes.
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Figure 8.2 Zonally averaged components of the annual mean absorbed solar flux, emitted thermal
infrared flux (or OLR), and net radiative flux at the top of the atmosphere, derived from satellite broadband
radiation measurements. These patterns were originally presented by Vonder Haar and Suomi (1971),
Stephens et al. (1981), and more recently by Hartmann (1994).

In Fig. 8.2 we present the latitudinal distribution of annual solar, thermal infrared,
and net radiative fluxes at TOA. The annual net radiative flux pattern is approximately
symmetric between the Northern and Southern Hemispheres, with a maximum oc-
curring at the equator. This maximum is a result of a minimum of OLR due to the
towering cumulus clouds associated with the intertropical convergence zone and the
large amount of solar flux absorbed in the equatorial regions, as shown in the figure.
In the polar regions, large negative net fluxes are due to the high albedo of snow and
ice. The net radiative flux pattern is also associated in part with the variation of the
mean solar zenith angle with latitude. The results clearly show that there are gains of
radiative energy in the tropics and subtropical regions but losses in the polar regions,
a pattern that is essential to the production of general circulation in the atmosphere.

8.2.3 Cloud Radiative Forcing Derived from ERB Data

Clouds regularly occupy at least 50% of the sky on a global scale and are the most
important regulators of the ERB. The presence of clouds greatly increases the percent-
age of solar flux that is reflected back to space. This effect, known as the solar albedo
effect, reduces the solar flux available to the earth–atmosphere system and results
in a cooling of the system. On the other hand, clouds reduce the thermal radiation
emitted to space by absorbing the IR flux from the earth’s surface and the atmosphere
below the cloud layer, and by emitting thermal radiation at normally colder cloud-top
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temperatures. This effect, known as the IR greenhouse effect, increases the radiation
budget, which, in general, results in a warming of the earth–atmosphere system. Thus,
the net radiation available to the earth–atmosphere system, as well as the differential
heating of the system, is strongly regulated by clouds in terms of their horizontal
extent, vertical position, thermodynamic phase, liquid/ice content, and particle size
distribution.

Many attempts have been made to diagnose cloud effects from the ERB data
inferred from satellites. In reference to Eq. (8.2.26) and considering the specific
effect of cloud cover η, partial differentiation leads to

∂F

∂η
= −Q

∂r

∂η
− ∂Fir

∂η
= ∂Fs

∂η
− ∂Fir

∂η
. (8.2.27a)

Or, we may write

∂F

∂η
= ∂F

∂Fir

∂Fir

∂η
= −∂Fir

∂η

(
Q

∂r

∂Fir
+ 1

)
. (8.2.27b)

The first and second terms on the right-hand side of these equations represent the
effect of cloud cover on absorbed solar and emitted IR fluxes. To estimate these terms
the method of regression on the observed data at a given grid point may be used. Since
albedo increases with increasing cloud cover, ∂r/∂η is always positive. In contrast,
IR flux decreases with increasing cloud cover so that ∂Fir/∂η is negative. It follows
that if ∂F/∂η is positive, the IR greenhouse effect is greater than the solar albedo
effect, whereas the reverse is true if ∂F/∂η is negative.

Extracting the effects of clouds from ERB data requires identifying the ERB in
clear-sky conditions. Consider a region that is partially covered by clouds. This region
consists of an overcast region (cloudy) with a fractional area of coverage of η and a
clear-sky region with a fractional area of coverage of 1 − η. Let F be the observed
OLR, absorbed solar flux, or net flux over the region. Then, we may write

F = (1 − η)Fcl + ηFov, (8.2.28a)

where Fcl and Fov are the clear-sky and cloud fluxes, respectively. The effects of
clouds on F may be evaluated from

C = Fcl − F = η(Fcl − Fov). (8.2.28b)

The term C is referred to as cloud radiative forcing. A separation of solar and IR
effects from Eq. (8.2.28a) leads to

Cir = Fcl
ir − Fir , (8.2.29a)

Cs = Q(r cl − r ), (8.2.29b)

where Fcl
ir and r cl are clear-sky OLR and albedo, respectively.

Clouds are almost always more reflective than the oceans and land, except in ice
and snow conditions. Thus, when clouds are present, more solar flux is reflected back
to space than with clear sky. Cloud solar forcing, Cs, which is the difference between
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Figure 8.3 Global cloud radiative forcing in units of W m−2 as a function of months estimated from
Earth Radiation Budget Experiment (ERBE) data (data taken from Harrison et al., 1990).

the clear-sky and cloudy-sky reflected solar fluxes, gives a quantitative estimate of
cloud effects on solar radiation. On the other hand, less thermal IR flux is emitted to
space from a cloudy region than from clear sky. Cloud IR forcing, Cir , which is the
difference between the clear-sky and cloudy-sky emitted IR fluxes, is a measure of
cloud effects on thermal IR radiation.

Estimates of the global distribution of cloud radiative forcing have been obtained
from ERBE, which includes three satellites in different orbits: ERBS, NOAA 9, and
NOAA 10. Figure 8.3 shows seasonal global cloud radiative forcing values based
on data gathered from the scanning radiometers on board ERBS and NOAA 9. The
global annual Cs and Cir are −48 and 31 W m−2, respectively, resulting in net cloud
radiative forcing of −17 W m−2. April has the smallest net cloud radiative forcing
value, whereas January has the largest. Although the variation of this forcing between
hemispheres not shown in this figure is significant during winter and summer months,
the seasonal effect of cloud radiative forcing is generally small. On a global scale for
all seasons, the albedo effect from clouds is more dominant than the greenhouse effect.

Cloud radiative forcing has significant regional characteristics. For a given region,
cancellation of cloud solar and IR forcing, derived from ERB components at TOA,
does not imply a negligible role of clouds in the regional climate. The vertical gradients
of radiative heating and cooling produced by clouds presented in the next section,
which are critical in weather and climate processes, are not accounted for in the
preceding discussion of cloud radiative forcing.
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8.2.4 Radiative Heating/Cooling Rates of the Atmosphere

Vertical profiles of the radiative heating and cooling rates of the atmosphere can, in
principle, be determined from space based on spectral radiometric observations, as
demonstrated in Section 7.4.6, a subject requiring considerable research and develop-
ment. At this point, however, climatological radiative heating rates in the atmosphere
must be computed from a radiative transfer program based on information about the
composition and structure of the earth’s atmosphere (Section 3.1). The solar input and
surface albedo field are also needed in computing solar heating rates in the atmosphere.

In Sections 3.2 and 4.2, we discussed the absorption of solar and thermal infrared
radiation in detail. Absorption of sunlight is chiefly produced by H2O, covering the
entire near-IR region, and O3, covering the UV and visible regions. Absorption contri-
butions also come from O2 and other minor gases, including CH4, NO2, N2O, O2 · O2,
O2 · N2, and CO2. In the thermal infrared region, absorption by H2O essentially covers
the entire spectrum. CO2 and O3 exhibit significant absorption in the 15 μm and 9.6
μm regions. H2O, CO2, and O3 are radiatively active gases of primary importance to
the earth’s atmosphere. CH4 and N2O also show strong absorption bands in the 7–8
μm region.

Aerosols both absorb and scatter sunlight. The significance of absorption relative
to scattering is determined by the particular aerosol’s chemical composition and
particle size distribution. Aerosols are usually considered to be important for their
influence on solar radiation. Water droplets and ice crystals are relatively transparent
in visible light, but absorb near-infrared radiation in the solar spectrum. Clouds have a
profound influence on both solar and terrestrial radiation because of their large global
coverage. Moreover, there are numerous types of surfaces, which vary significantly
in their reflecting properties with respect to incoming solar flux.

In the first edition of this text, comprehensive radiative budget studies reported by
Freeman and Liou (1979) were presented. In that study, the discrete-ordinates method
for radiative transfer was used in conjunction with the exponential fitting of the band
transmittance in carrying out spectral radiative budget calculations. It was pointed
out that the radiative transfer method used for global calculations must be an efficient
but accurate one in which the spectral dependence of radiation must be covered; the
absorption, scattering, and emission of molecules and particulates should be treated
adequately; and at the same time, the inhomogeneity of the atmosphere should be
properly taken into account. Many simplified radiative transfer methodologies have
been developed since the publication of the first edition. In particular, the innovation
of the delta four-stream and delta two/four-stream approximations for radiative trans-
fer in inhomogeneous atmospheres (Sections 6.5.3, 6.5.4, and 4.6.3) offers efficient
and accurate calculations of atmospheric flux distributions. The development of the
correlated k-distribution method (Section 4.3.2) for sorting absorption lines in in-
homogeneous atmospheres allows the effective incorporation of gaseous absorption
in multiple scattering calculations. Moreover, novel theories for the calculation of
scattering and absorption properties of nonspherical ice crystals have been developed
specifically for application to radiative transfer in cirrus clouds.
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In what follows, we present meridional cross sections of atmospheric solar, IR,
and net radiative heating rates based on the radiative transfer model developed by Fu
and Liou (1993), which has been significantly improved by the NASA/Langley group
working on the retrieval of radiative fluxes using satellite data (Charlock and Alberta,
1996). In brief, the model employs the delta-four-stream method for radiative trans-
fer in inhomogeneous atmospheres containing Rayleigh molecules, absorbing gases,
aerosols, and cloud particles. The solar and IR spectra are divided into a number of in-
tervals according to the location of absorption bands based on which the incorporation
of nongray gaseous absorption in multiple scattering atmospheres is accomplished
by following the correlated k-distribution method. The single-scattering properties
of spherical aerosols and water droplets and nonspherical ice crystals are determined
from the light-scattering theories presented in various sections in Chapter 5.

The bulk of the input data required for global radiation computations are the atmo-
spheric profiles, the geometric and physical properties of clouds, the global fractional
cloudiness for each cloud type, the earth’s surface albedo, the duration of sunlight, and
the zenith angle of the sun. The atmospheric profile includes the vertical profiles of
pressure, molecular and aerosol densities, water vapor, ozone, and other trace gases.
The atmospheric profiles used in the present radiative budget calculations are based on
mean annual atmospheric conditions involving water vapor, ozone, pressure, and tem-
perature profiles.

Clouds are divided into high, middle, and low cloud types. The fractional cloud
cover for each cloud type as a function of the latitude follows those provided by
the ISCCP project (Section 7.4.5). The atmospheric aerosol model used is a light
background concentration providing about 25 km surface visibility (d’Almeida et al.,
1991). For scattering calculations, all cloud (except cirrus) and aerosol particles are
assumed to be spherical. The high cirrus are considered to be composed exclusively of
nonspherical ice crystals randomly oriented in space. The radiative transfer program
for clouds is driven by liquid/ice water path and mean effective particle radius/size,
which are prescribed for each cloud type based on available observations (Liou, 1992).
Within the IR spectrum, all clouds except cirrus are considered to be blackbodies.

The surface albedo of the earth is also an important parameter that determines the
amount of the transmitted solar flux reaching the surface and reflecting back into the
atmosphere to be absorbed or scattered, or to escape back into space as a component of
the earth’s global albedo. Values of the zonally averaged surface albedo are taken from
data presented in Henderson-Sellers and Wilson (1983). The duration of sunlight and
the solar zenith angle are important parameters in determining the radiation balance
of the earth–atmosphere system. The solar zenith angle can be computed from the
angles associated with the latitude, the declination of the sun, and the hour angle
of the sun, as discussed in Section 2.3.1. The annual meridional cross sections of
reflected solar and emitted IR fluxes at TOA were first compared to and matched
those observed from satellites, as displayed in Fig. 8.2.

The differential solar heating of equatorial and polar regions provides the ultimate
energy source for the general circulation of the atmosphere and the oceans and is also
responsible for causing the climatic extremes between tropical and polar latitudes.
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Figure 8.4 Annual meridional cross sections of the solar heating rate (K day−1) of the atmosphere
computed from a radiative transfer program using climatological temperature, cloud, gaseous, and surface
albedo data. The input solar flux is 342 W m−2. The contour line is 0.1 K day−1.

Every portion of the earth in sunlit sky receives energy from the sun and is warmed
to a greater or lesser degree. The primary factors that determine the degree of solar
warming received by a particular region on average are the cloud cover, the water
vapor and ozone contents of the atmosphere, the surface albedo, and the presence of
aerosols in greater or lesser concentrations, as well as the latitude, which is related to
the range of solar zenith angles experienced by the area.

The annual meridional cross sections of the solar heating rate are illustrated in
Fig. 8.4. Maximum solar heating of about 0.5 K day−1 is observed at an altitude
of about 4 to 5 km in the tropical and subtropical regions, using the solar flux of
342 W m−2 as input (solar constant of 1366 W m−2). Broad, flat minima occur in the
upper troposphere and lower stratosphere, followed by increasing solar heating in the
stratosphere due exclusively to the presence of ozone. Atmospheric solar heating is
primarily produced by the absorption of water vapor in the troposphere and of ozone
in the stratosphere.

While the radiation from the sun warms the earth’s atmosphere everywhere, the role
of terrestrial IR radiation is more complex. In the main, thermal IR radiation serves
to cool the atmosphere, radiating away to space an amount of energy equivalent to
the solar input, maintaining the radiative balance. Under certain conditions, however,
thermal IR radiation adds to the warming of the atmosphere at particular levels and
locations.

The annual meridional cross sections of thermal infrared cooling rates are shown
in Fig. 8.5. The maximum cooling takes place in the stratosphere, due exclusively
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Figure 8.5 Annual meridional cross sections of the thermal infrared (IR) cooling rate (K day−1) of
the atmosphere computed from a radiative transfer program using climatological temperature, cloud, and
gaseous data. The contour line is 0.5 K day−1.

to carbon dioxide and ozone. Indeed, almost all cooling above the tropopause is
produced by these two gases since above about 10 km the water vapor concentration
decreases drastically to a negligible amount with respect to radiative transfer. Ozone
is also responsible for the region of thermal heating found above the tropopause
in tropical and subtropical latitudes. This heating is associated with the increase in
ozone concentration with height to about 23 km, resulting in a convergence of flux
into the region, where the heating is augmented by a similar region of heating due to
carbon dioxide at the tropical tropopause, as well as by the higher temperatures found
both above and below the tropopause. The effect of water vapor is to cool the clear
atmosphere everywhere since there is an increase of flux with height as the water
vapor concentration decreases. A secondary maximum of cooling occurs in tropical
latitudes within the troposphere, associated with the large vertical gradients of water
vapor and temperature. The effects of clouds, which tend to increase the cooling above
their tops and decrease the cooling below their bases, also are evident in this region.
Near the surface, large water vapor density and temperature gradients lead to another
maximum of cooling in the tropics. This cooling is offset somewhat by the increase
in warming below the cloud bases.

The net radiation budget was computed by summing the heating and cooling rates
at each latitude and atmospheric layer. The net heating cross sections are presented
in Fig. 8.6. Radiative cooling dominates solar heating almost everywhere. In the
upper stratosphere, above 25 km, intense cooling due to ozone and carbon dioxide
completely overshadows the solar heating by ozone. The high degree of cooling is
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Figure 8.6 Annual meridional cross sections of the net radiative heating/cooling rate (K day−1) of
the atmosphere. The contour line is 0.5 K day−1.

due, in part, to the effect of colder cloud tops. At the tropical tropopause, near 18
km, there is a small longwave heating that occurs in the region of minimum solar
heating to produce a net heating. Below this region of heating is a region of maxi-
mum cooling associated with large vertical gradients of water vapor and temperature.
Cooling produced by longwave radiation outweighs solar heating at every latitude,
due primarily to water vapor, and thus has a maximum in the tropics. The presence of
clouds tends to moderate the cooling in the lower atmosphere by reducing the cooling
below their bases and by producing strong solar heating at their tops. The ubiquitous
net radiative cooling in the earth’s atmosphere is compensated for by other forms of
energy in the atmosphere and by the transport of heat from the surface, as discussed in
Section 8.5.1.

8.2.5 Radiation Budget at the Surface

Based on radiative equilibrium, the net radiative flux at the surface can be expressed
by

F(0) = F↓
s (0)(1 − rs) − [εsσT 4

s − εs F↓
ir (0)

]
, (8.2.30)

where F↓
s (0) denotes the solar flux reaching the surface, rs is the surface albedo, εs

is the surface emissivity, which in thermodynamic equilibrium is equal to absorptiv-
ity, Ts is the surface temperature, and F↓

ir (0) denotes the downward thermal infrared
flux emitted from the atmosphere to the surface. The first and second terms on the



8.3 Radiative and Convective Atmospheres 459

right-hand side of Eq. (8.2.30) represent the net solar (shortwave) and infrared
(longwave) fluxes at the surface, respectively. These fluxes cannot be determined
directly from satellites.

The study of the surface radiation budget (SRB) is an important subject related to
climate modeling and parameterization. It is an integral part of the energy budget at
the surface, which will be discussed further in Section 8.5.1. Reliable SRB values in
various temporal and spatial scales are required to evaluate the sensible and latent heat
fluxes from the surface to the atmosphere, a critical part of the global hydrological
and energy cycles. The SRB distribution over the globe is usually determined from
a radiative transfer program using appropriate input cloud data that has been derived
from satellites as well as other relevant profile data, including water vapor, ozone,
aerosols, etc. Thus, the accuracy of SRB fields is dependent on the input data, partic-
ularly that regarding clouds, and on the radiation code employed in the calculations.
The importance of the SRB in climate studies has been noted by Pinker et al. (1995).

As an example, we present in the following a mean annual net radiative flux
distribution at the earth’s surface (Fig. 8.7) estimated by Budyko (1986) based on
some direct surface observations over land and the ocean. The radiation flux decreases
with latitude from values of 160–180 W m−2 near the equator to values of about 20–
40 W m−2 poleward of 60◦ latitude. Most of the globe shows that the net surface
radiation is downward. That is, the surface gains radiative energy because of the
domination of the net downward solar flux. However, over the polar regions in winter,
a net radiation loss can exist at the surface when the solar flux tends to be very small
or zero. In general, the net radiative fluxes are higher over the oceans than over
the continents at the same latitude. The highest values shown are on the order of
180 W m−2 and occur in the tropical regions over the oceans in agreement with the
distribution of the total solar radiation absorbed by the atmosphere and the oceans.
Secondary equatorial maxima are found over the continents. The lowest values in
the tropics occur over the deserts, because of high values of the surface albedo, low
values of cloudiness and humidity, and high surface temperatures.

8.3 Radiative and Convective Atmospheres

8.3.1 Radiative Equilibrium

8.3.1.1 A GLOBAL MODEL

The simplest climate model for the earth–atmosphere system is to consider the
earth and the atmosphere as a whole and to evaluate the global radiative equilibrium
temperature from the balance of incoming solar and outgoing thermal infrared fluxes.
Let the global albedo be r̄ , the solar constant be S, and the radius of the earth
be ae. Over a climatological time period, there should be a balance between the
energy absorbed and the energy emitted so that a radiative equilibrium temperature
is maintained. Thus we should have

πa2
e (1 − r̄ )S = 4πa2

eσT 4
e , (8.3.1)
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Figure 8.7 Global distribution of the mean radiation flux (W m−2) at the earth’s surface based on a number of direct surface observations over land and the
ocean. The mean annual ice boundary is also shown by heavy lines (data taken from Budyko, 1986).
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(1 −   ) σT 4Q Q r

A (SOL)

σTa
4∋ ∋

  ∋(IR ) Ta

TQ (1 − r − A) σTa
4∋ σT 4

Figure 8.8 A two-layer radiative equilibrium model involving the surface and the atmosphere with
temperatures denoted by T and Ta , respectively. The notations Ā and ε̄ denote the absorptivity and thermal
infrared emissivity, respectively, and r̄ is the reflectivity. The solar input is defined by Q.

where πa2
e represents the cross sectional area of the earth–atmosphere system that

intercepts the incoming solar flux, and the spherical area 4πa2
e denotes emission in

all directions. It follows that the equilibrium temperature of the system is

Te = [(1 − r̄ )S/4σ ]1/4. (8.3.2)

With this simple equation, we may study the effect of changes in the global albedo
and/or the solar constant on the equilibrium temperature of the entire system. However,
the surface temperature, which is a fundamental parameter in climate studies, cannot
be directly related to either the solar constant or the global albedo change. Information
about the surface temperature must be related to the transparency and opacity of the
atmosphere with respect to solar and thermal infrared radiation, respectively.

To include surface temperature and the radiative properties of the atmosphere in
the simplest radiative equilibrium model, we may construct a two-layer model. Let the
mean solar absorptivity and the thermal infrared emissivity of the earth’s atmosphere
be Ā and ε̄, respectively, and assume that the earth’s surface is a blackbody with a
temperature of T . In reference to Fig. 8.8, the energy balance equations at TOA and
the surface may be written in the forms

Q(1 − r̄ ) − ε̄σT 4
a − (1 − ε̄)σT 4 = 0, (8.3.3)

Q(1 − r̄ − Ā) + ε̄σT 4
a − σT 4 = 0. (8.3.4)

Solutions for the surface and atmospheric temperatures are

T 4 = Q[2(1 − r̄ ) − Ā]/[σ (2 − ε̄)], (8.3.5)

T 4
a = Q[ Ā + ε̄(1 − r̄ − Ā]/[σ ε̄(2 − ε̄)]. (8.3.6)
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These equations are highly nonlinear with many coupling terms. Thus, it is difficult
to carry out sensitivity analyses concerning the effect of the radiative parameters on
temperature values. However, if the absorptivity and emissivity of the atmosphere are
assumed to be constants, the effect of solar constant changes on equilibrium surface
and atmospheric temperatures may be studied.

8.3.1.2 A VERTICAL MODEL

Assuming that the atmosphere is motionless, the local time rate of change of
temperature for a given atmospheric layer is associated with the net flux divergence
in the form

ρC p

(
∂T

∂t

)
RAD

= − ∂

∂z
(Fs − Fir ), (8.3.7)

where ρ is the air density, C p is the specific heat at constant pressure, and Fs and
Fir denote the net solar and thermal infrared fluxes. Under steady-state conditions
∂T/∂t = 0. Also, at TOA we require that Fs(z∞) = Fir (z∞); that is, the absorbed
solar flux must be balanced by the thermal IR flux emitted by the surface and the
atmosphere. With this boundary condition, an integration from z to z∞ over Eq. (8.3.7)
yields

Fs(z) = Fir (z). (8.3.8)

This equation represents the steady-state global radiative equilibrium condition. The
broadband thermal IR flux may be expressed in terms of an integral form as follows
(see Section 4.5):

Fir (z) =
∫ z∞

0
σT 4(z′)K (|z − z′|) dz′

= σT 4
s [1 − ε f (z, T )] −

∫ z∞

0
σT 4(z′)

dε f (|z − z′|, T (z′))
dz′ dz′, (8.3.9)

where K is a general kernel function associated with the weighting function, and ε f

is the broadband flux emissivity.
In a nongray atmosphere the radiative equilibrium temperature is determined by

the balance between solar and thermal IR heating rates. The solar and IR heating rate
profiles were illustrated in Sections 3.5 and 4.7. Radiative equilibrium calculations
require information about the solar zenith angle, the length of the solar day, and the
solar constant, as well as atmospheric composition and the earth’s surface albedo.

To obtain the vertical temperature profile under radiative equilibrium, we may
carry out an iterative and time-marching procedure as follows:

T (n+1)(z) = T (n)(z) +
(
∂T

∂t

)(n)

RAD

	t, (8.3.10)

where n is the time step of the integration and 	t is the time interval. A numerical
differencing scheme and an initial guess of the temperature are needed. Radiative
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equilibrium is reached when the temperatures at the (n + 1) and n time steps differ
by a small preset value. Specifically, radiative equilibrium at the surface and at TOA
must be satisfied.

The time-marching method, which involves considerable computational effort,
will give the evolution of the temperature as a function of time under the radiative
equilibrium condition. However, if one is primarily interested in the temperature
profile in the equilibrium state, the simplification given in Eq. (8.3.8) may be used.
The solar flux must be balanced by the thermal IR flux. Thus, we write

Fs(z) = Fir (z) =
∫ z∞

0
σT 4(z′)K (|z − z′|) dz′. (8.3.11)

The kernel function K in Eq. (8.3.9) depends largely on atmospheric gaseous profiles,
principally those for H2O, CO2, and O3, as well as on the distribution of cloud fields.
As a good approximation, the kernel function may be considered to be independent
of temperature. Thus, once the solar net flux profile has been given, the temperature
profile may be determined from the following procedure.

The atmosphere can be divided into N finite vertical layers, so that Eq. (8.3.11)
may be expressed in a finite difference form:

Fs(zi ) =
N∑

j=1

σT 4(z j )K (|zi − z j |)	z j , i = 1, 2, . . . , N . (8.3.12)

In compact matrix form, we have

Fs = K · σT4, (8.3.13)

where Fs and σT4 are N column vectors and K is an N × N matrix. Inverting the
matrix leads to

σT4 = K−1Fs, (8.3.14)

where K−1 denotes the inverse of the kernel function matrix.
Figure 8.9 shows the atmospheric temperature profiles under radiative equilib-

rium with and without cloud contributions. Without the contribution of clouds, the
surface temperature under radiative equilibrium is ∼340 K and the temperature in
the tropopause is ∼215 K. In cloudy conditions, the temperature in the troposphere
decreases significantly because of the reflection of solar flux by clouds. In particular,
a ∼30 K reduction in surface temperature is seen. The temperature profile for average
cloudiness, shown in Fig. 8.9, is obtained by accounting for clear and cloudy areas. It
is evident that the radiative equilibrium temperature is much too warm near the surface
and too cold in the tropopause. On a mean annual basis, the earth–atmosphere system
is in radiative equilibrium at TOA. However, it is clearly not in radiative equilibrium
within the atmosphere or at the surface. In terms of the one-dimensional globally
averaged condition, the only mechanism that can bring the system into thermody-
namic equilibrium is the vertical transport of heat by means of eddies. The convective
nature of the earth–atmosphere system is, thus, fundamental to weather and climate
processes, as well as to their numerical modeling.
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Figure 8.9 Vertical distributions of radiative and radiative–convective equilibrium temperatures in
clear (a) and average cloud (b) conditions, simulated from a one-dimensional radiative–convective climate
model.

8.3.2 Radiative and Convective Equilibrium

8.3.2.1 HEAT BUDGET OF THE EARTH–ATMOSPHERE SYSTEM

The source of energy that drives the earth’s climate comes from the electromagnetic
radiation emitted from the sun. The solar constant, that is, the solar irradiance (or
flux) corresponding to the mean distance between the earth and the sun available on a
1 square meter area facing the sun at TOA, is about 1366 W m−2 (Lean and Rind,
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Figure 8.10 The heat balance of the earth and the atmosphere system. The solar (SOL) constant used
is 1366 W m−2 so that the incoming solar flux for climatological energy balance is 342 W m−2 (round
off the decimal point), while the global albedo is taken to be 30%. The “atmosphere” referred to in the
graph contains molecules, aerosols, and clouds. The atmospheric thermal infrared (IR) flux is emitted both
upward and downward. The upward IR flux from the surface is computed by using a climatological surface
temperature of 288 K. At the top of the atmosphere, the energy is balanced by radiative flux exchange.
At the surface, however, upward sensible and latent heat fluxes must be introduced to maintain energy
balance. Absorption of the solar flux is obtained from the divergence of net solar fluxes at the top and the
surface. The width of the shaded area with an arrow is approximately proportional to the flux value.

1998). The cross-section area at which the earth intercepts the solar flux is πa2
e , but

the area of the spherical earth is 4πa2
e , where ae denotes the earth’s radius. Thus, the

effective average solar flux incident to a level surface at TOA is one-quarter of the solar
constant, i.e., 342 W m−2 (round off the decimal point). Moreover, based on satellite
radiometric observations and analyses, the best estimate of the global albedo is about
30% (Jacobowitz et al., 1984). This albedo is a result of multiple scattering processes
involving molecules, aerosols, clouds, and the underlying surface, as illustrated in
Fig. 8.10. Interactions between multiple scattering and absorption processes in the
atmosphere and surface reflection determine the amount of solar flux reflected back
to space. As a result of this global albedo, about 239 W m−2 is available on average
to warm the atmosphere and the surface.

To maintain global radiative equilibrium at TOA so that an equilibrium temperature
can be defined, the earth–atmosphere system itself must radiate the same amount
of energy, i.e., 239 W m−2, back to space. Because the equilibrium temperature
of the earth–atmosphere system is about 255 K, the emitted thermal radiation is
in the infrared portion of the electromagnetic spectrum. The thermal infrared (or
longwave) radiation is emitted from the surface as well as the atmosphere, as shown
in Fig. 8.10. The 239 W m−2 outgoing infrared flux is the sum of the emitted surface
flux attenuated to TOA plus the emission and absorption contributions within the
atmosphere including clouds. The equilibrium temperature of the earth–atmosphere
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system of 255 K is much colder than the climatological surface temperature of 288 K,
which emits 390 W m−2 of infrared flux. As pointed out in Section 4.1, based on the
standard lapse rate of 6.5 K km−1, the effective scale height of the greenhouse effect
of the earth’s atmosphere is about 5 km.

To determine the remaining surface radiative components involving solar flux,
downward infrared flux, and absorbed solar flux within the atmosphere, we use the
standard atmospheric temperature and composition profiles, including all the trace
gases listed in Table 3.3, and globally averaged cloud and background aerosol infor-
mation noted above as inputs to a line-by-line radiative transfer model. The solar flux
reaching the surface is about 189 W m−2, while the reflected solar flux is 28 W m−2,
based on a globally averaged surface albedo of 15%. It follows that the absorbed solar
flux at the surface is 161 W m−2. On the other hand, the emitted downward infrared
flux from the atmosphere reaching the surface is 324 W m−2, leading to a net loss
of thermal infrared flux by the earth’s surface of 66 W m−2. The net radiative energy
gain at the surface due to the absorption of solar flux and the emission of thermal
infrared flux is about 95 W m−2. This gain is countered by the transport of sensible
and latent heat fluxes out of the surface in order to maintain an overall heat balance.
The absorbed solar flux within the atmosphere is about 78 W m−2, which is obtained
from the divergence of net solar fluxes at TOA and the surface.

The average annual ratio of sensible to latent heat loss at the surface, the so-called
Bowen ratio, has a global value of about 0.27. Thus, the latent and sensible heat
fluxes are 69 W m−2 and 26 W m−2, respectively. As illustrated in Fig. 8.6, the
atmosphere experiences a net radiative cooling that must be balanced by the latent
heat of condensation released in precipitation processes and by the convection and
conduction of sensible heat from the underlying surface. If there were no latent and
sensible heat transfer, the earth’s surface would have a temperature much higher than
the observed value of 288 K.

8.3.2.2 CONVECTIVE ADJUSTMENT

The incoming solar flux at the top of the atmosphere must be balanced by the
reflected solar and emitted infrared fluxes over a climatological time scale, since the
only energy exchange with space is by means of radiative processes. At the surface,
however, equilibrium must be achieved by the balance between net radiative fluxes and
convective fluxes of sensible and latent heat, as explained in the previous subsection.
Vertical fluxes of sensible and latent heat are governed by the motions involving
various scales. In the molecular boundary layer, about 1 mm adjacent to the surface,
the principal mechanisms for the transport of sensible and latent heat fluxes are
conduction and diffusion. In the layer immediately above that, and within about a
few tens of meters of the surface, defined as the surface layer, sensible and latent heat
fluxes are transferred upward by means of eddies. Based on the theory of turbulence,
the surface layer is characterized by strong vertical wind shear, with wind speed
proportional to the logarithm of height. Above this layer, up to about 1 km, is the mixed
layer, where convectively driven thermals assume the primary role of transporting the
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vertical sensible and latent heat fluxes. From the mixed layer to the tropopause, the
upward transport of sensible and latent heat is governed by deep cumulus convection,
as well as by synoptic and planetary-scale circulations. In this region, essentially
all conversion of latent to sensible heat takes place via irreversible condensation
processes. The preceding scales of vertical motion associated with the transport of
sensible and latent heat are generally classified as convection.

The simplest way to account for convection in a global model for climate studies
is the convective adjustment scheme based on the concept of static stability, first
introduced by Manabe and Wetherald (1967). To present this scheme, we shall begin
with the first law of thermodynamics in the form

C p
dT

dt
+ g

dz

dt
+ L

dq

dt
= Q R, (8.3.15a)

where L is the latent heat per unit mass, q is the specific humidity, and Q R represents
radiative heat exchange. Consider this law in the context of one-dimensional space.
The local rate of temperature change may be expressed in terms of static stability and
radiative flux divergence in the form

ρC p
∂T

∂t
= ρC pw(γ − γc) + ρQ R, (8.3.15b)

where the vertical velocity w = dz/dt, the atmospheric lapse rate γ = −∂T/∂z, and

γc = γd + L

C p

dq

dz
. (8.3.16)

The dry adiabatic lapse rate, γd = g/C p, while the last term in Eq. (8.3.16) represents
a modification of the dry adiabatic lapse rate due to the saturation specific humidity
gradient. Since specific humidity generally decreases with height, it has a negative
value. The value of γc depends on the atmospheric humidity profile and varies from
the tropics to the polar regions.

The local rate of temperature change, as shown in Eq. (8.3.15b), depends on the
convective nature of the atmosphere, which is governed by atmospheric stability and
the radiative flux exchange in the atmosphere. For the latter, let the radiative flux
divergence in the vertical, ρQ R, be denoted by −∂F/∂z. For atmospheric stability,
the divergence of the convective flux may be written as

−∂Fv

∂z
= ρC pw(γ − γc). (8.3.17)

If γ ≤ γc, there will be no transport of convective flux. We may separate convective
and radiative contributions to temperature perturbations as follows:

ρC p
∂T

∂t
= ρC p

[(
∂T

∂t

)
CON

+
(
∂T

∂t

)
RAD

]
= −∂Fv

∂z
− ∂F

∂z
. (8.3.18)
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Since a large portion of solar flux is absorbed at the surface, the air immediately above
it is mostly unstable. In a one-dimensional context, the vertical transport of sensible
and latent heat fluxes from the surface to the atmosphere is principally due to eddy
motion.

In the convective adjustment scheme, the atmosphere is divided into layers that
include nonconvection, convection without contact with the surface, and convection
in contact with the surface. For a nonconvective layer, there would be no variation in
the vertical eddy flux, so that

−∂Fv

∂z
= ρC p

(
∂T

∂t

)
CON

= 0, (8.3.19)

resulting in no adjustment. In a convective layer that is not in contact with the surface,
the vertical temperature profile is numerically adjusted by using a critical lapse rate,γc,

under the condition that the total potential energy is conserved within the layer. That is,∫ zt

zb

ρC p

(
∂T

∂t

)
CON

dz = −
∫ zt

zb

∂Fv

∂z
dz = Fv(zb) − Fv(zt ) = 0, (8.3.20)

where zt and zb denote the top and bottom heights, respectively, of the unstable layer.
This implies that convection develops when the atmospheric lapse rate exceeds the
critical lapse rate. Convection then transports heat upward until the critical lapse rate
is established, resulting in a redistribution of temperature with the total energy con-
served. When a convective layer is in contact with the surface, the heat flux from the
surface must be considered. Thus,∫ zt

0
ρC p

(
∂T

∂t

)
CON

dz = −
∫ zt

0

∂Fv

∂z
dz = Fv(0) − Fv(zt ) = F(0), (8.3.21)

where F(0) is the net radiative flux at the surface.
On the basis of Eqs. (8.3.19)–(8.3.21), an iterative procedure may be constructed for

the computation of (∂T/∂t). This procedure begins at the surface and progressively
scans the layers above it until all layers of the supercritical lapse rate have been
eliminated. This process is repeated at each time step. Atmospheric temperatures are
first constructed based on the balance between the radiative heating and cooling rates.
Then the surface temperature is calculated from the balance of the solar and IR net
fluxes at the surface. Since solar fluxes heat the surface, there will be net upward
fluxes, which are distributed in the layer above the surface according to Eq. (8.3.21).
Adjusting the temperature in steps upward and using Eq. (8.3.20) whenever the layer
is convectively unstable eliminates all the supercritical lapse rates. For applications
to one-dimensional climate models, the critical lapse rate, γc, is usually assumed to
be 6.5 K km−1 for the globally averaged condition. This number is based on the fact
that the climatological atmospheric temperature profile in the troposphere has a lapse
rate close to this value.

Manabe and Wetherald (1967) performed the first sensitivity experiment of the
radiative–convective model described above to examine radiative forcings of car-
bon dioxide and solar input. Figure 8.9b shows the effects of clouds on the vertical
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distribution of equilibrium temperature. With average cloudiness, this profile is close
to the standard atmospheric profile. Temperatures without the inclusion of clouds are
much higher than those with clouds; a difference of as much as 20 K is shown for the
surface temperature. The temperature difference decreases with height.

8.4 Radiation in One-Dimensional Climate Models

8.4.1 Carbon Dioxide Greenhouse Effects

One of the major concerns in climate studies has been the impact on the earth’s surface
temperature of the steady increase in atmospheric carbon dioxide content produced
by the rapid burning of fossil fuels. Since the beginning of the Industrial Revolution
more than a century ago, carbon has been removed from the earth in the form of coal,
petroleum, and natural gas. In burning processes, carbon dioxide is formed through
the oxidation reaction, C + O2 → CO2. Of all the CO2 that has been produced, about
half is believed to remain in the atmosphere, while the other half has dissolved in the
oceans or been absorbed by the earth’s biomass, primarily the forests.

As discussed in Section 3.2.3, CO2 is virtually transparent to solar radiation. How-
ever, it is a strong absorber in the 15 μm band (∼12–18 μm) of the thermal IR
spectrum, as described in Section 4.2.1. The 15 μm band consists of the ν2 funda-
mental, the combination bands, the hot bands, and the P, Q, and R branches of the
rotational transitions (Fig. 4.2). An increase in atmospheric CO2 content can cause the
additional trapping of the outgoing thermal IR radiation emitted from the surface and
lower atmosphere, thereby enhancing the greenhouse effect. Arrhenius (1896) was the
first to recognize the potential effect of increased CO2 concentration on the earth’s heat
budget and hence, atmospheric temperature. He estimated that an increase in the CO2

concentration by a factor of 2.5 to 3 would result in a globally averaged temperature
increase of 8–9◦C, an estimate that was not too far from that produced by sophisticated
computer models. In the following, we shall first discuss the carbon cycle.

Variations in CO2 over different geographical areas are relatively small because the
variability in the sources and sinks of CO2 is small at the earth’s surface. Atmospheric
CO2 is removed from and released into the atmosphere through a number of natural
processes. A considerable amount of CO2 dissolves annually into the oceans and re-
turns to the atmosphere by a reverse process. A significant component of atmospheric
CO2 consumption appears to be photosynthesis, via the reaction CO2 + H2O +
hν̃ � CH2O + O2. The sedimentary layer of the earth’s crust, the lithosphere, con-
tains a considerable amount of carbon from which CO2 is formed through oxidation
processes. These CO2 cycles appear to introduce little change in the total amount of
CO2 in the atmosphere.

Measurements of atmospheric CO2 have been made at the South Pole since 1957
and at Mauna Loa, Hawaii, since 1958. The mean monthly concentration record
from Mauna Loa, displayed in Fig. 8.11a, has been frequently employed to illus-
trate a steady increase in the atmospheric CO2 concentration due largely to human
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Figure 8.11 (a) Concentration of atmospheric CO2 at Mauna Loa Observatory, Hawaii, expressed
as a mole fraction in parts per million of dry air for the period 1958–2000 (courtesy of Pieter Tans,
Environmental Research Laboratory, National Oceanic and Atmospheric Administration). (b) Atmospheric
CO2 concentration for the past 250 years as indicated by measurements in air trapped in ice core from
Antarctica determined by Neftel et al. (1985) and extended to the present using the Mauna Loa record
displayed in (a).
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activities, in particular fossil fuel combustion, as well as land-use conversion. The
rate of increase varies from 1958 to the present time, but an average of 0.4% per year
is a good estimate. The atmospheric CO2 concentration records prior to 1957 pri-
marily come from ice-core measurements taken in Antarctica (Fig. 8.11b). Over the
past 1000 years, CO2 concentrations were relatively constant with a value of about
280 parts per million by volume (ppmv) and varied within about ±10 ppmv. The
significant increase in CO2 concentration since the onset of industrialization in about
1860 closely follows the increase in CO2 emissions from fossil fuels.

Evaluation of the carbon budget of the atmosphere–ocean–land system is an on-
going, complex research program because of the many uncertainties in the various
carbon processes and their lifetimes, particularly those processes involving the ter-
restrial biosphere. CO2 is removed from the atmosphere by numerous processes that
operate on different time scales, and is then transferred to a number of reservoirs.
The fastest process is its uptake into vegetation and the surface layer of the oceans,
which takes place over a few years. Transfer of CO2 to soils and to the deep ocean
operates on the century time scale. It has been estimated that within about 30 years,
about 40–60% of the CO2 currently released to the atmosphere will be removed.
The average annual anthropogenic carbon budget has been estimated including emis-
sion of CO2 from fossil fuel combustion and cement production of about 5.5 GtC/yr
(1 Gt = 1012 kg), and the net emissions from changes in land use of about 1.6 GtC/yr.
Storage in the atmosphere is about 3.3 GtC/yr, while ocean uptake of CO2 is about
2.0 GtC/yr. Other reservoirs include uptake by forest regrowth, nitrogen fertilization,
CO2 fertilization and climate effects, which account for about 1.8 GtC/yr. Future rates
of CO2 increase in the atmosphere are uncertain because the rates of release and the
rates at which CO2 will be taken up by the ocean and the land biota are not known
with great precision. However, projections of the future increase of CO2 have been
made by carbon cycle and climate models based on scenarios concerning the use of
fossil energy sources. For example, most climate modelers employ business-as-usual
scenarios for future greenhouse gas amounts.

Extensive numerical experiments using a one-dimensional climate model have
been performed to investigate the effects of an increase in CO2 on temperature, be-
ginning with the pioneering work of Manabe and Wetherald (1967). These equilibrium
experiments were generally performed by doubling a fixed CO2 concentration (e.g.,
from 300 to 600 ppmv). Various feedbacks involving moisture that are associated
with CO2 doubling have been investigated by Hansen et al. (1981) using a one-
dimensional model. Based on a fixed relative humidity, a lapse rate of 6.5 K km−1,
and a prescribed cloud altitude, the equilibrium surface temperature, Ts, increases.
This is because rising temperatures in the atmosphere and at the surface increase the
water vapor concentration in the atmosphere, which in turn traps more thermal IR
radiation and, to a lesser degree, absorbs more solar radiation. The feedback due to
increasing water vapor through higher temperatures is positive. If, however, a moist
adiabatic lapse rate is used instead of a fixed lapse rate, Ts is less sensitive to radiative
perturbations as more moisture is added to the atmosphere because of the decreasing
lapse rate. Subsequently, the temperature differences between the top of the convective
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region and the surface are reduced, and 	Ts decreases. Thus, the feedback due to the
use of a moist adiabatic lapse rate is negative. The surface temperature change, 	Ts,

is sensitive to the assumption of fixed versus varying cloud altitude. The assumption
that clouds move to a higher altitude as temperature increases results in a greater
	Ts than for the case in which cloud altitude is assumed fixed. Clouds that move
aloft enhance the trapping of thermal IR emission from the surface by water vapor
and exert a positive feedback. However, hypothetical black clouds were used in the
early one-dimensional climate models, and thus cloud radiative properties were not
properly accounted for.

The exchange of latent and sensible heat and radiative fluxes through the planetary
boundary layer provides an important source of ocean–atmospheric interaction and
hence plays a significant role in climate perturbations. Through hydrological cycle
feedbacks, surface warming due to doubled CO2 may be divided into three processes.
The first two processes involve direct surface and atmospheric heating due to the
greenhouse effect of doubled CO2. The third process is related to the interactions
among the ocean surface temperature, the hydrological cycle, and the tropospheric
convective adjustment. Surface warming due to the first two processes enhances the
evaporation of water vapor into the troposphere, which indirectly amplifies surface
warming via the latent heat release within the troposphere and increases the tropo-
spheric absolute humidity that, in turn, increases downward IR emission to the surface.
Based on one-dimensional model calculations, the third process is most significant in
the feedback process (Ramanathan, 1981). Overall, the one-dimensional models show
a surface temperature increase of about 2–3◦C in the doubling of CO2 concentration
experiments.

8.4.2 Ozone and Other Greenhouse Gases

8.4.2.1 OZONE

As presented in Section 3.2.2, ozone is produced primarily in the middle and upper
stratosphere by three-body collisions involving molecular oxygen, O2, its atomic form,
O, and a third body. Atomic oxygen is produced by the photolysis of O2 due to the
absorption of solar fluxes with wavelengths shorter than 2423 Å. The destruction of
O3 is mainly due to the catalytic effects of various free radical species, including
nitrogen oxides, chlorine oxides, and hydrogen oxides. The excited atomic oxygen
in the 1D state, produced by the photodissociation of ozone from solar wavelengths
shorter than 3100 Å, is essential for the production of these radicals. Ozone absorbs
solar radiation in the UV Hartley and Huggins bands and in the visible Chappuis
band, as discussed in Section 3.2.1. The majority of the heating at altitudes above
∼45 km is due to absorption in the Hartley band, while the heating below ∼30 km
is due to absorption in the Chappuis band. In the infrared, O3 exhibits a number
of vibrational–rotational bands. The 9.6 μm band is most important because of its
location in the window region.

The total column ozone concentrations have been decreasing over much of the
globe at a rate of about 4–5% per decade at midlatitude in both hemispheres, accord-
ing to ground-based and satellite observations. As indicated in Section 3.2.2, a deep



8.4 Radiation in One-Dimensional Climate Models 473

ozone hole has developed over Antarctica since the mid-1970s, with a decrease of
as much as 50% or more during austral spring. This ozone hole is caused by hetero-
geneous chemical reactions between chlorine species derived from CFCs and polar
stratospheric ice clouds. In addition, the average stratospheric ozone depletion over
the past decade appears to be associated with the injection of sulfur dioxide from
the Mt. Pinatubo volcanic eruption in 1991. A reduction in stratospheric O3 could
lower the temperature in the region in which it occurs because of the reduction of
UV absorption. At the same time, however, two competing effects on tropospheric
and surface temperatures are produced. First, more solar UV and visible fluxes could
reach the troposphere and surface, leading to a warming effect. On the other hand, the
greenhouse effect, due to the trapping of IR fluxes by O3, could be reduced and, in
turn, cooling could result. The competition of these two effects determines whether
the troposphere is warmed or cooled due to the decrease in O3.

Based on one-dimensional climate models, a reduction in the concentration of
O3 would lead to a decrease in atmospheric and surface temperatures. Temperature
perturbations due to other radiative forcings, such as a doubling of CO2, may lead to
changes in the reaction rates involving ozone. This in turn affects the ozone concentra-
tion. Increases in the CO2 concentration reduce stratospheric temperatures, resulting
in an increase in the total ozone due to a slowing down of the ozone loss reaction rate.
The uncertainty involved in these chemical reaction rates, however, is very large.

Contrary to stratospheric ozone, tropospheric ozone, about 10% of the total column
ozone, has increased in the Northern Hemisphere over the past three decades. This
increase has been closely associated with gaseous exchanges between the surface
and the atmosphere, regional gaseous emissions, and aerosol and cloud processes.
For example, anthropogenic sources of hydrocarbons, methane, nitrous oxide, and
carbon monoxide enhance the formation of tropospheric ozone. Also, cumulus con-
vection and precipitation, as well as heterogeneous chemical processes occurring
within clouds, have a profound effect on tropospheric chemistry involving ozone. In
the upper troposphere, the injection of nitric oxide from aircraft can produce excess
ozone. The greenhouse effect of the increased tropospheric ozone, associated with its
IR emission at the 9.6 μm band, appears to be rather important (see Fig. 8.12).

8.4.2.2 METHANE

As described in Section 4.2.1, methane exhibits an absorption band at ∼1400 cm−1

(7.6 μm) and is a greenhouse gas. Atmospheric CH4 has been increasing since the
beginning of the 19th century. The current levels of methane are about 1.7–1.8 ppmv
and are the highest that have been observed, including in the ice-core records that go
back to 1850. The primary natural source of CH4 appears to be microbial decay of
organic matter under anoxic conditions in wetlands. Anthropogenic sources include
rice production, termites, bacterial decay in landfills, leakages from the use of fossil
fuels and natural gas, and biomass burning, the sum of which may be twice as great
as that from natural sources. The atmospheric concentration of CH4 is controlled by
its reaction with hydroxyl radicals in the troposphere via the reaction CH4 + OH →
H2O + CH3. This reaction is largely the result of water vapor in the troposphere. The
CH4 growth rate has declined in recent years, probably in part because of the increase
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Figure 8.12 Estimated climatic radiative forcings between 1850 and 2000 produced by CO2, CH4,
CFCs, O3, and N2O. Indirect effects associated with CH4 and CFCs, as well as uncertainties, are also
displayed (data taken from Hansen et al., 2000).

in chemical emissions such as CO that affect the production of OH, the primary sink
for CH4.

Based on one-dimensional climate models, a doubling of CH4 from 1.7 to 3.4
ppmv would lead to an increase in the surface temperature of ∼0.2–0.4◦C (Wang
et al., 1986). Moreover, changes in the CH4 concentration may affect the global O3

distribution through reactions with OH and other trace gases. An increase in CH4 may
lead to an increase in O3 and H2O via the net reaction CH4+ 4O2 → CH2O + H2O +
2O3, if enough NO is present (Crutzen, 1983). The process is a positive feedback to
the radiative forcing involving CH4.

8.4.2.3 NITROUS OXIDE

N2O exhibits complex IR absorption bands located at 7.9 μm that overlap with
the CH4 bands. The mixing ratio of N2O is ∼0.3 ppmv and it has a long atmospheric
lifetime of ∼120 years. The principal atmospheric source of N2O is denitrification
in natural and agricultural biomass. The oceans are also a significant source of N2O.
Measurements indicate a global increase in the N2O concentration at a rate of ∼0.2%
per year, attributable to the increase in fossil fuel combustion and fertilizer denitrifica-
tion. Based on a one-dimensional radiative–convective model, the surface temperature
is estimated to increase by ∼0.3 to 0.4◦C as a result of a doubling of N2O from 0.3 to
0.6 ppmv (Wang et al., 1986). Dissociation of N2O by excited oxygen atoms, O(1D),
is the major source of nitrogen oxides (NOx = NO, NO2) [see Eqs. (3.2.13)–(3.2.14)].
NOx are important in determining the distribution of both tropospheric and strato-
spheric O3. At ∼25 km, the net effect of NOx additions to the stratosphere will be to
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lower the O3 concentration. However, below ∼25 km in the stratosphere, NOx protect
ozone from destruction (Crutzen, 1983).

8.4.2.4 HALOCARBONS

As discussed in Section 4.2.1, chlorofluorocarbons (CFCs) are important green-
house gases because of their absorption in the 10 μm window region. CFCs comprise
a family of compounds containing chlorine and fluorine in various combinations.
Their sources are generally manufactured. Most of them are chemically inert and
have long atmospheric lifetimes on the order of 100 years. The most prevalent CFCs
are CFC-11 (CFCl3) and CFC-12 (CF2Cl2). Chlorine can be released in the form of
Clx , via, e.g., CFCl3 + hν̃ → CFCl2+ Cl, which can erode the ozone layer via the
catalytic destruction reactions described in Eqs. (3.2.13)–(3.2.14). The growth rate
of atmospheric CFCs produced by refrigerants and spray-can propellants noted in the
1970s, particularly CFC-11 and CFC-12, has been reduced as a result of production
restrictions imposed by the Montreal Protocol and its Amendments (IPCC, 1996).
Most CFCs will be phased out if production agreements are followed.

The direct climatic effects of CFCs and other bromocarbons are exerted through
their absorption of IR radiation in the atmospheric 10 μm window (Ramanathan
et al., 1987). The indirect effects are associated with the destruction of ozone by the
chlorine and bromine released through photodissociation. There is an overall negative
feedback due to this indirect radiative forcing, as noted in Subsection 8.4.2.1.

Finally, we note that carbon monoxide does not exhibit a significant IR absorption
band. However, it is a climatically important gas because of its chemical reactions
involving O3, CO2, and CH4 in the troposphere. The anthropogenic component of
CO production is associated with transportation, industrial fossil fuel combustion,
deforestation, and biomass burning, as well as modification of CH4 source via the
principal reaction CO + OH → CO2+ H. This reaction leads to the reduction of
OH concentrations, which, in turn, affects the lifetimes of a number of other gases,
principally CH4 and SO2.

Figure 8.12 summarizes the radiative forcings of the principal greenhouse gases,
including direct and indirect effects, as estimated by Hansen et al. (2000). Direct
radiative forcing is defined as the gain or loss of radiative flux in the earth–atmosphere
system produced by the addition or reduction of a specific greenhouse gas in the
system. Indirect radiative forcing is that generated by the increase or decrease of one
greenhouse gas (e.g., O3) caused by the addition of another greenhouse gas (e.g., CH4).
Climatic radiative forcing by CO2 is the largest, with a value of about 1.4 W m−2,
produced by the increase from the preindustrial concentration of about 278 ppmv to
the current level of about 365 ppmv. Forcing by CH4, including the indirect effects
via O3 and H2O, is half as large as that of CO2. The total forcing by all non-CO2

greenhouse gases combined is comparable to that of CO2.

8.4.3 Radiation Feedback Consideration

In Section 8.4.1, we discussed various feedbacks involving water vapor that are as-
sociated with greenhouse perturbations. The H2O concentration varies substantially
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with space and time. In the troposphere it is determined by the local hydrological
cycle of evaporation, condensation, and precipitation, and by large-scale transport
processes. From the analysis of measured H2O concentrations across the globe, the
mean annual relative humidity, RH, as a function of height, is fairly constant, i.e.,

RH(z) = q(z)

qs(z)
∼= const, (8.4.1)

where q is the specific humidity and qs is its saturation value. The saturation of specific
humidity can be expressed in terms of the saturation vapor pressure as follows:

qs = εes

p
, (8.4.2)

where the ratio of the molecular weight of water vapor to that of dry air, ε, is 0.622,
and p is the air pressure. Based on the conservation of the Gibbs function during
phase changes, the differential changes of the saturation vapor pressure with respect
to temperature are governed by the Clausius–Clapeyron equation in the form

des

dT
= L

Rv

es

T 2
, or d ln es =

(
L

RvT

)
d ln T, (8.4.3)

where L is the latent heat involving vapor and water, and Rv is the gas constant for
water vapor. By integration and empirical fitting, we have

es(mb) = 6.11 exp

[
a(T − To)

T − b

]
, (8.4.4)

where To = 273.16 K; a = 21.874 and b = 7.66 if T ≤ 273.16 K; and a = 17.269
and b = 35.86 if T > 273.16 K.

As a result of the increasing greenhouse gases discussed above, both surface and
tropospheric temperatures increase. It follows that the amount of tropospheric water
vapor in saturated air increases. Consequently, since the relative humidity in the
troposphere is fairly constant, the amount of absolute water vapor increases there and
traps more IR flux emitted from the surface and lower atmosphere through rotational
and vibrational line spectra. This leads to a further increase in the surface temperature,
a positive feedback mentioned in Section 8.4.1. The degree and extent of this positive
feedback must be determined from appropriate climate models.

One final note is in order regarding the surface temperature, Ts, and emitted IR
flux at the top of the atmosphere, Fir (z∞). Although their relationship is complex
from the perspective of radiative transfer and convection in the atmosphere, to the
extent that the temperature profiles have more or less the same shape at all latitudes,
and that the IR fluxes are dependent on temperature at all levels, we may, to a good
approximation, relate these two in a linear form as follows:

Fir (z∞) ∼= a + bTs, (8.4.5)

where the empirical coefficients a ∼= 216 W m−2 and b = 1.58 W m−2 C−1 are
determined from the analysis of climatological records of zonal surface temperature,
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cloud cover, and satellite-observed IR fluxes (see Section 8.5.2 for further discussion).
If we use the climatological mean annual surface temperature of 15◦C, we obtain an
IR flux of 239.7 W m−2. This value is about the same as Q(1 − r ), if we use a solar
constant of 1366 W m−2 (i.e., Q ∼= 342 W m−2) and a global albedo of 30%. Thus,
Eq. (8.4.5) satisfies the requirement of radiative equilibrium at TOA. It also accounts
for the convective nature of the lower atmosphere, since the surface temperature in
this equation represents the value corresponding to radiative–convective equilibrium.

From Eq. (8.4.5), we may study the sensitivity of surface temperature with respect
to IR flux. By differentiation, we have

	Ts

	Fir
= 1

b
∼= 0.63◦C/(W m−2). (8.4.6)

Radiative forcing calculations for the doubling of the CO2 concentration from 300 to
600 ppmv reveal an increase in Fir of about 4 W m−2, which translates to an increase
in the surface temperature of about 2.52◦C.

8.4.4 Aerosols and Radiation

In Section 5.1, we discussed in some detail the size, shape, and type of atmospheric
aerosols produced by both natural and anthropogenic processes. Aerosol particles
in the atmosphere can affect the radiation balance of the earth–atmosphere system
by reflecting sunlight back into space, by absorbing sunlight, and by absorbing and
emitting IR radiation. Aerosols are usually considered to be important for their influ-
ence on solar radiation in which the significance of scattering relative to absorption is
determined by the aerosols’ chemical composition and particle size distribution and
shape. However, if the size of aerosol particles is comparable to the thermal infrared
wavelength, particularly in the 10 μm window region, they can function to trap the
infrared radiation and produce the greenhouse effect. All the recent radiative forc-
ing studies involving aerosols essentially focus on their impact on solar radiation,
referred to as the direct effect. In Section 5.4, we presented extinction coefficients,
single-scattering albedos, asymmetry factors, and phase functions for representative
aerosol particles. Aerosols can also act as condensation and/or ice nuclei, which can
modify the optical properties, amount, and evolution of clouds, referred to as the
indirect effect. Climatic perturbations caused by this effect are largely unknown at
this point and are a subject of contemporary research and development.

For climatic forcing investigations, aerosols are classified according to their lo-
cation in the troposphere and the stratosphere. Stratospheric aerosols are usually
associated with volcanic eruptions. Volcanic dust and particles formed via photo-
chemical reactions involving sulfur dioxide are generally smaller than 1 μm with
small absorption in the visible. Consequently, their effects are primarily associated
with the reflection of sunlight leading to cooling of the surface. The radiative effects of
aerosols on the temperature of a planet depend not only on their optical depth, visible
absorptance, and average size, but also on the variation of these properties with time.
Aerosol particles resulting from volcanic activity can reach the stratosphere, where
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Figure 8.13 Estimated chronology of annual average global aerosol loading by volcanic activity from
1850 to 2000. Major volcanic episodes are indicated in the diagram (data taken from Study of Man’s Impact
on Climate, 1971; Sato et al., 1993).

they are transported by general circulation around the globe over many months or
years and can cause anomalous weather.

Figure 8.13 displays the chronological series of major volcanic eruptions and the
estimated annual average global aerosol loading dating back to 1850. The period from
1850 to 1920 was characterized by frequent eruptions of climatic importance. From
1920 to about 1960 was a period of reduced aerosol loading. Since 1960, volcanic
aerosol loading has increased. The most recent episode of Mt. Pinatubo’s volcanic
eruption in 1991 initiated weather disturbances on a major global scale for about a
year. The solar occultation technique (see Section 7.2.3) has been employed to infer
the extinction properties for Mt. Pinatubo aerosols in the stratosphere. Sato et al.
(1993) estimated the visible optical depth of volcanic aerosols and showed that the
global mean value associated with the Mt. Pinatubo eruption is about 0.1, which could
produce a negative radiative forcing of about −3 to −4 W m−2. Volcanic activity could
be important in interpreting some of the interdecadal variation in surface temperature.

Tropospheric aerosols are produced by both natural and anthropogenic processes.
Tropospheric aerosols undergo chemical and physical transformation, particularly in
clouds, and are removed primarily by precipitation. They have typical residence times
of a few days. As a result of their short lifetime, aerosols in the lower troposphere
are distributed inhomogeneously with a maximum concentration close to their source
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regions, such as deserts, and industrial and biomass combustion areas. Most aerosols
with anthropogenic sources are found in the lower troposphere, below about 2 km.
Radiative forcing by anthropogenic aerosols has been recognized as an important
contributor to climate change. Anthropogenic sulfate aerosols have been shown to
have a direct negative forcing because of their solar reflecting properties. Carbona-
ceous aerosols are also mainly anthropogenic and are composed of two components:
black carbon and organic carbon. Organic carbon from anthropogenic activities is
similar to sulfate aerosols in terms of its scattering properties. However, black carbon
absorbs significant solar radiation and increases the amount of radiation absorbed by
the atmosphere. The presence of black carbon in aerosols may lead to a net heating
of the atmosphere. Because of the regional character of sulfate and carbonaceous
aerosols, a global model is required to investigate their overall radiative and climatic
impact. This subject will be further elaborated upon in Section 8.6.3.

As presented here, the possible response of the global mean temperature field to an
increase in aerosol concentrations is far more difficult to estimate than in the cases of
changes in CO2 concentration and the solar constant for the following reasons. First,
the optical properties of various aerosol species in terms of the real and imaginary
parts of the refractive index, with respect to wavelength, have not been quantified com-
pletely. Second, unlike the increase of CO2, which appears to be uniform around the
globe, increases in atmospheric aerosols are likely to be regional. Third, there are ques-
tions concerning particle shape and particle size distribution as a function of altitude.

Despite all of these uncertainties, one-dimensional radiative-convective climate
models have been used to clarify our understanding of how the perturbation caused
by a specific aerosol might influence the radiation field of the earth–atmosphere
system and its temperature structure. Charlock and Sellers (1980) have carried out a
comprehensive study of the effects of aerosols on temperature perturbation using a
one-dimensional climate model. Aerosol optical depth and single-scattering albedo
in the visible are used as the two basic parameters in the perturbation studies. The
former parameter is an indicator of the attenuation power of aerosols, while the latter
represents their relative strength of scattering and absorption. For aerosols with weak
absorption, surface temperature decreases as the optical depth increases because of the
domination of backscattering. For aerosols with strong absorption, however, warming
could occur as the optical depth increases.

Hansen et al. (1978) investigated temperature perturbation due to the increase
of volcanic dust caused by the explosive eruption of Mount Agung in Indonesia
in 1963 based on a one-dimensional climate model. Results showed that after the
Agung eruption, average tropospheric temperatures decreased by a few tenths of a
degree within a time scale on the order of about 1 year, in agreement with those
observed. This cooling effect is caused by the highly reflective properties of the
sulfuric acid composition in volcanic aerosols, which block out solar radiation. As a
consequence, their addition tends to decrease the amount of solar flux absorbed by
the earth–atmosphere system. Hansen et al. (1992) conducted a similar simulation
involving the eruption of Mt. Pinatubo in 1991 and showed surface cooling for about
a year. The potential global atmospheric and climatic consequences of nuclear war



480 8 Radiation and Climate

have also been investigated using the one-dimensional models that were developed to
study the effects of volcanic eruption (Turco et al., 1983). Significant hemispherical
attenuation of solar radiation and subfreezing land temperatures may result from
the fine dust particles produced by high-yield nuclear surface bursts and the smoke
from city and forest fires ignited by airbursts, a concept referred to as nuclear winter
theory.

Perhaps the most significant and uncertain role that aerosols play in climate is
through their interactions with clouds, the indirect effect. Some aerosols are effective
cloud condensation nuclei, which can affect the droplet size distribution and, hence,
the radiative properties of clouds and precipitation processes. In addition, the incur-
sion of stratospheric aerosols into the upper troposphere is also a potential source
of alteration in the radiative properties of cirrus clouds. Reducing the uncertainty
introduced by the indirect aerosol effects on radiative forcing is an important task in
climate studies that requires the successful combination of satellite observations and
chemical transport modeling.

8.4.5 Cloud Radiative Forcing

Numerical experiments using one-dimensional climate models have been carried out
to aid in the understanding of the role clouds play in climate. The effects of high,
middle, and low clouds on the equilibrium temperature assuming 100% cloud cover
are shown in Fig. 8.14. Nonblack high clouds often produce a warming effect in the
troposphere and low stratosphere due to the combined effects of the transmission of
solar fluxes and emission of IR fluxes from the clouds. Middle and low clouds produce
a significant cooling in the atmosphere and at the surface due to significant reflection
by the clouds. The degree of the warming and cooling that results depends on the
radiative properties and positions of the clouds used in the model calculations.

In the calculations, representative low and middle clouds (assumed to be black)
have solar albedos of 76.9 and 82.5%, respectively, while high clouds have a so-
lar albedo of 10.5% with a nonblack emissivity of 47.5%. Because optically thin
high clouds are largely composed of ice crystals, whereas optically thick middle and
low clouds primarily contain water droplets, it appears appropriate to suggest that
ice clouds are greenhouse elements and that the presence of water clouds would exert
a significant solar albedo effect. Clouds thus exert two competing effects on the radi-
ation field of the earth–atmosphere system. On the one hand, they reflect a significant
portion of the incoming solar flux, and on the other, they trap the outgoing thermal
IR fluxes emitted from the atmosphere below the clouds and from the surface. The
competition between the solar albedo and IR greenhouse effects determines whether
the surface will undergo cooling or warming.

8.4.5.1 CLOUD POSITION AND COVER

The first issue concerning the role of clouds in greenhouse perturbations is the
possible variation in cloud position and cover. If a formation of high clouds were
to rise higher in the atmosphere, there would be a positive feedback because of
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the enhanced downward IR flux. A positive feedback would also be evident if high
cloud cover increased because of greenhouse perturbations. The reverse would be
true if middle and low cloud covers increased as a result of greenhouse warming.
The prediction of cloud cover and position based on physical principles is a difficult
task and its success, even with comprehensive climate models, is limited at this point.
This difficulty is also associated with our limited ability to determine cloud cover
and cloud position from observations. Because of the uncertainties and limitations of
the remote sensing of clouds from satellite radiometers, at this point we do not have
sufficient cloud data to correlate with the greenhouse warming that has occurred so
far. Section 8.6.2 provides further discussion of this subject.

8.4.5.2 CLOUD MICROPHYSICS

The second factor that determines the role clouds play in global climate and green-
house warming is related to cloud microphysics in terms of their liquid/ice water
content and particle size. Some evidence exists, based on aircraft observations, that
an increase in temperature leads to an increase in cloud liquid water content (LWC)
(Feigelson, 1981; Matveev, 1984). The temperature dependence of ice water con-
tent (IWC) is also evident from aircraft measurements of midlatitude cirrus clouds
(Heymsfield and Platt, 1984). Shown in Fig. 8.15 is LWC/IWC as a function of
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Figure 8.15 Observed and model computed liquid water content (LWC) and ice water content (IWC)
as functions of temperature. The observed LWC and IWC data are based on statistical averages of aircraft
measurements presented by Matveev (1984) and Heymsfield and Platt (1984), respectively. Theoretical
results are derived from diffusion and accretion models.

temperature from 10◦C to −60◦C, a range covering the terrestrial atmosphere. Al-
though observed values show large standard deviations, Fig. 8.15 nevertheless reveals
the temperature-dependent trend in terms of the mean value, as denoted by the dashed
lines. Theoretical results based on diffusion and accretion processes are also illustrated
in the diagram for comparison purposes. Based on both the fundamental cloud physics
principle and available observations, then, it is clear that as temperature increases, the
LWC/IWC of clouds increases as well. On the basis of aircraft microphysics mea-
surements, Heymsfield and Platt (1984) illustrated that there is a distinct correlation
between ice-crystal size distribution and temperature. Ice crystals are smaller (larger)
at colder (warmer) temperatures. In particular, the colder cloud top primarily contains
pristine ice crystals, whereas the warmer cloud bottom is composed of larger irregular
ice particles (see Fig. 5.3).
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One-dimensional model studies show that if the temperature increases in the re-
gion of low clouds, which are composed entirely of water droplets, these clouds will
reflect more solar radiation because of greater LWC (the solar albedo effect), leading
to a negative feedback (Charlock, 1982; Somerville and Remer, 1984). For high cirrus
clouds containing primarily nonspherical ice crystals, a one-dimensional radiative–
convective model study illustrates, however, that the balance of solar albedo versus
greenhouse effects depends not only on the IWC, but also on the ice crystal size (Ou
and Liou, 1995).

The radiative properties of clouds are functions of both the vertical water content
and the size spectrum of cloud particles. Because cloud particles scatter an amount of
light in proportion to their cross-sectional area, we may define a physical parameter,
referred to as the mean effective radius, ae, in the case of spherical water droplets, or
the mean effective size, De, in the case of nonspherical ice crystals [Eqs. (7.3.13a)
and (7.3.15a)]. From the analysis presented in Section 7.3.5, the visible optical depth
is then given by [Eqs. (7.3.13d) and (7.3.15c)]

τ (water) ∼= 3

2ρl
LWP/ae,

τ (ice) ∼= IWP(c + b/De), (8.4.7)

where LWP (IWP) = LWC (IWC) ·	z, with	z the cloud thickness. Thus, the optical
depth of a cloud is a function of both the LWP (IWP) and mean effective radius (size).
For the same LWP or IWP, clouds containing smaller particles would have larger
optical depths.

Figure 8.16 shows the cloud albedo covering the solar spectrum (0.2–5 μm) as
a function of LWP/IWP and ae/De computed from a multiple scattering program
(Liou et al., 1998) involving representative spherical water droplets for water clouds
and representative hexagonal ice crystals for ice clouds. For a given ae/De, cloud
albedo increases with increasing LWP/IWP. But for a given LWP/IWP, a cloud with a
smaller ae/De reflects more solar radiation because of its larger effective optical depth
as noted above. The relationship between cloud albedo and ae/De is fundamental to
the discussion of the indirect aerosol effect in cloud and climate studies.

8.4.5.3 AEROSOLS/CLOUDS AND PRECIPITATION

Cloud cover and LWC are potentially related to precipitation, which is produced
by the autoconversion of cloud droplets, where the time constant is proportional to the
droplet size distribution. Variations in cloud particle size would affect cloud albedo,
but variations in precipitation would affect the washout of cloud condensation nuclei
(CCN), a type of aerosol particle, and thus could alter the formation of the cloud
particle size spectrum.

Both theory and experiments indicate that the cloud droplet concentration is ap-
proximately proportional to the level of CCN, and that the size of the droplets decreases
as the CCN in clouds increase. Over land, numerous observations have indicated that
pollution increases the number of CCN leading to more small cloud droplets per unit
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Figure 8.16 Broadband solar albedo of water and ice clouds as a function of the liquid water path
(LWP)/ice water path (IWP) and the mean effective water droplet radius (ae)/ice crystal size (De). The
range of these values covers representative water and ice cloud conditions.

volume (Twomey et al., 1984). This effect has also been observed from the ship stack
effluents that modify the radiative properties of shallow stratus clouds over the oceans
(Coakley et al., 1987).

The major source of CCN over the oceans is non-sea-salt sulfate, which is produced
from the emission of dimethylsulfide (DMS) by marine organisms. The highest rate
of DMS emission into the atmosphere is associated with the warmest, most saline,
and most intensely illuminated regions of the oceans (Charlson et al., 1987). An
increase in the surface temperature associated with greenhouse warming could cause
an increase in DMS emission and, hence, in CCN. The consequence of smaller cloud
droplets as a result of the additional production of CCN could lead to brighter clouds,
an indirect solar albedo effect that is the functional opposite of greenhouse warming.

A one-dimensional cloud-precipitation-climate model has been developed by Liou
and Ou (1989) to investigate the potential link between the perturbed cloud particle
size distribution produced by greenhouse effects and climate perturbations. If the
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perturbed mean cloud particle radii produced by greenhouse effects or air pollution
are smaller than the climatological mean value, precipitation could decrease, leading
to increases in cloud LWC. Thus, the solar albedo effect would outweigh the infrared
greenhouse effect. A reduction of the mean droplet radius by 0.5 μm could cool the
atmosphere to such a degree as to offset the warming produced by CO2 doubling.
Leaitch et al. (1992) observed a reduction in droplet radii of about 1 μm in eastern
North America as a result of anthropogenic pollution.

A number of model studies have shown that more precipitation could be triggered
by the warmer temperature fields produced by greenhouse warming. Precipitation is
considered to be the primary mechanism for the removal of atmospheric aerosols,
including CCN. Thus, the increase in precipitation could cause a reduction in the
number of CCN. The low concentration of efficient CCN could, in turn, lead to larger
cloud droplets and a reduction of the cloud albedo. It follows that this could provide
a possible mechanism for a positive feedback to greenhouse warming. The potential
positive feedback associated with particle size in cloud-climate feedback problems
was first noted by Liou and Ou (1989) and Albrecht (1989).

The role of clouds in climate and climatic perturbations due to external radia-
tive forcing is indeed intricate and multidimensional. The results derived from one-
dimensional models shed some light on the potential interaction and feedback involv-
ing cloud height, cloud LWC, and cloud particle size associated with temperature
increases produced by greenhouse warming. However, one-dimensional models do
not account for horizontal variations in cloud parameters. In view of the fact that clouds
are three-dimensional in nature, their role in climate and global climate change must
be resolved from models that can simulate both vertical and horizontal cloud structure
and composition based on fundamental physical principles. Further discussion of the
role of clouds and radiation in climate is presented in Section 8.6.2.

8.5 Radiation in Energy Balance Climate Models

In the previous section dealing with the earth’s radiation budget, we noted that, on
average, there is a radiation excess in the tropical region and a radiation deficit in
the middle and high latitudes (Fig. 8.2). Significant temperature and water vapor
gradients also occur in the atmosphere near the surface. Thus, there must be poleward
as well as upward energy transfers in order to produce an overall energy balance.
Energy exchanges at TOA are solely due to radiative processes. However, within the
earth-atmosphere system, these exchanges involve a number of mechanisms of which
radiative energy transfer is only one component.

8.5.1 Energy Budget of the Atmosphere and the Surface

8.5.1.1 ATMOSPHERE AND OCEANS

Based on the energy conservation principle, the zonal mean rate of energy storage
per unit area in the atmosphere must be the residual of the net surface flux, the net
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area for the atmosphere and the oceans, respectively.

TOA radiative flux F(z∞), and the divergence of atmospheric transport of heat Fa ,
given by

Sa = [Fv(0) + F(0)] − Fa − F(z∞), (8.5.1)

where Fv(0) denotes the surface vertical flux associated with the transport of sensible
(Fh) and latent heat (LFe) fluxes [see Eq. (8.5.5)]. The atmospheric transport term
also consists of two terms involving sensible (F T

a ) and latent heat (LFq
a ) components.

Equation (8.5.1) is the basic energy balance equation for an atmospheric column in
which the total heat storage rate is balanced by the surface input minus the sum of
the divergence of the poleward transport of heat and the net radiative flux at TOA, as
displayed in Fig. 8.17. The net radiative flux is the difference between the absorbed
solar flux Fs and the emitted IR flux Fir .
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At the surface, the energy balance is governed by the rate of energy storage, the
net surface flux, and the divergence of the transport of sensible heat below the earth’s
surface. The heat capacity of the continental surface is generally very small, as in the
cases of snow and ice. Thus, on a large scale, the principal heat exchange must occur
between the atmosphere and the oceans. Analogous to Eq. (8.5.1) for atmospheric
storage, the zonal mean rate of energy storage per unit area for the oceans may be
expressed by

So = − [Fv(0) + F(0)] − Fo, (8.5.2)

where the first term represents the net surface flux between the radiative and turbulent
fluxes and Fo is the divergence of the oceanic transport of sensible heat. The zonal
mean rate of energy storage per unit area in the atmosphere varies with the seasons
from 10 to 20 W m−2, but the annual mean value is about zero. For the oceans,
seasonal variations can be as large as 100 W m−2.

The divergence of the atmospheric transport of sensible and latent heat is shown in
Fig. 8.18a. Positive and negative values represent the divergence and convergence of
heat, respectively. The atmospheric latent heat component has a minimum between
about 10◦N and 10◦S because of excess precipitation in the tropical convective zone.
Minima between about 40◦ and 60◦ in both hemispheres are a result of the surplus
precipitation produced by cyclonic storm activity. Maxima patterns are evident in
the subtropics between about 20◦ and 30◦ in both hemispheres, where evaporation
rates are highest. In the northern subtropics evaporation is less pronounced because of
the presence of large desert areas. The atmospheric sensible heat component shows
a large maximum in the tropics associated with higher temperatures and Hadley
circulation. Small maxima at 40◦N and S are related to the transport of heat by eddies
and mean meridional circulation. On an annual basis, about 20 W m−2 of sensible
and latent heat is lost between 40◦S and 40◦N, while about 50 to 70 W m−2 is gained
poleward of 60◦. In the middle and high latitudes, sensible and latent heat is largely
transported by transient eddies. The mean circulation contribution to heat transport
is most pronounced in the tropics. For annual mean conditions, the divergence of the
oceanic transport of sensible heat may be estimated from Eq. (8.5.1) as a residual, if
the atmospheric heat storage, the atmospheric divergence of sensible and latent heat,
and the net radiative flux at TOA are given. About 40 W m−2 of heat is transported by
ocean currents out of the tropics, and about 25 W m−2 of heat is transported by ocean
currents into latitudes poleward of 40◦. Since there are no oceans south of about 70◦S,
the energy convergence of heat in the oceans should disappear there. Finally, the sum
of the divergence of atmospheric and oceanic transports of heat must be balanced by
the net radiative flux at TOA on an annual basis (see also Fig. 8.2).

To obtain the total horizontal flux (energy/time) for the entire atmosphere for each
component displayed in Fig. 8.18a, we may perform an integration of the horizontal
flux Fh over the latitudinal cross section to obtain

fa = 2πae cosϕ
∫ z∞

0
Fh dz, (8.5.3a)
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Figure 8.18 (a) Divergence of atmospheric transports of sensible and latent heat, and oceanic trans-
ports of sensible heat. Also shown is the net radiative flux density at TOA. (b) Meridional profiles of the
poleward transports of sensible and latent heat in the atmosphere, and of sensible heat in the oceans. Also
shown is the net radiative flux. All the terms are in units of 1015 W (data taken from Oort and Peixóto,
1983).
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where ae is the radius of the earth and ϕ is the latitude. Figure 8.18b shows the
meridional profiles of the poleward transports of sensible and latent heat in the atmo-
sphere, the poleward transport of sensible heat in the oceans, and the net radiative flux
(energy/time) at TOA. The oceanic transports dominate in low latitudes with maxi-
mum poleward transports of about 3 × 1015 W near 25◦N and about −3.5 × 1015 W
near 20◦S. Latent heat is transported both toward the equator and toward the poles
from about 20◦N and S, where the evaporation maxima are located. The transports
of sensible heat in the atmosphere show double maxima at about 10◦ and 50◦ in both
hemispheres with values of about 2 × 1015 W. In lower latitudes between 20◦N and
20◦S, the atmospheric transports of sensible and latent heat largely cancel each other
out. As a result, the total atmospheric transport of energy is more important in the
middle and high latitudes.

8.5.1.2 SURFACE ENERGY BUDGET

The net surface flux defined in Eq. (8.5.1) consists of the vertical flux and the net
radiative flux, which can be divided into its solar and IR components. A large fraction
of the solar flux at TOA is transmitted through the clear atmosphere, as is evident
in Fig. 3.9. In cloudy conditions, the solar flux available at the surface is largely
dependent on the solar zenith angle and cloud optical depth, which is a function of
cloud liquid/ice water content and particle size distribution, as illustrated in Fig. 3.19.
In reference to Eq. (8.2.30), let the absorbed portion of the solar flux be denoted by

Fs(0) = F↓
s (0)(1 − rs). (8.5.3b)

The net IR flux at the surface is the difference between the upward IR flux emitted
by the surface and the downward IR flux from the atmosphere reaching the surface
F↓

ir (0). We may then let the net emitted IR flux be denoted by

Fir (0) = εsσT 4
s − εs F↓

ir (0). (8.5.4)

The vertical transport of energy from the surface to the atmosphere consists of the flux
of sensible heat from the surface Fh and the evaporative water loss from the surface
Fe. Thus, we write

Fv(0) = LFe + Fh, (8.5.5)

where L is the coefficient for the latent heat of evaporation.
On the basis of the energy conservation principle, the net flux of energy absorbed

by the surface must equal the rate at which the surface is storing energy Ss, so that

Ss = Fs(0) − Fir (0) − Fv(0)

= F↓
s (0)(1 − rs) − εsσT 4

s + εs F↓
ir (0) − LFe − Fh . (8.5.6)

Over the oceans, we have Ss = So + Fo, from Eq. (8.5.2). Over land and on a mi-
croscopic scale, Ss may be expressed in terms of the rate of heat conduction into
the underlying surface. Equation (8.5.6) represents the basic surface energy equation.
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Figure 8.19 Latitudinal distributions of estimated mean annual net solar flux, net IR flux, and total
turbulent flux at the earth’s surface (data taken from Ou et al., 1989; Budyko, 1982; Sellers, 1965).

Local variations such as the melting of snow and ice have not been considered here.
The assumption that Ss = 0 has been frequently used in weather prediction and cli-
mate models because of its simplicity. This assumption is approximately correct for
land surfaces, averaged over 24 hours, but would lead to large errors in determining
surface temperature over a diurnal cycle. If Ss = 0, surface temperature can be di-
rectly computed from Eq. (8.5.6), provided that all the radiative and turbulent fluxes
are known.

The surface albedo is dependent on the type of surface, as well as on the solar
zenith angle and the wavelength. For water surfaces, the albedo generally ranges
from 6 to 9%. The albedo varies significantly over land surfaces with values ranging
from 10 to 40%. The albedos of snow and ice are usually greater than about 40%.
The dependence of vegetation albedo on solar wavelength is significant (see Fig.
7.7). The thermal IR emissivities of water and land surfaces are normally between
90 and 95%. It is usually assumed that the earth’s surfaces are approximately black
in infrared radiative transfer calculations. Exceptions include snow and some sand
surfaces whose emissivities are wavelength dependent and could be less than 90%.
The transport of sensible heat and water vapor from surfaces is governed by turbulent
motion and is generally expressed by the vertical gradients of temperature and specific
humidity near the surface based on the mixing length theory (Brutsaert, 1982).

Latitudinal distributions of annual net solar and IR fluxes and the total turbulent
flux at the earth’s surface are displayed in Fig. 8.19. The annual net surface solar
flux decreases poleward, resulting in a slight hemispheric asymmetry. Latitudinal
distributions of annual net surface IR flux show double maxima at about 35◦ in both
hemispheres; these maxima are associated with subtropical highs. The minimum
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pattern in the tropics is due to the large downward IR fluxes produced by the extensive
cloud cover in the ITCZ. This pattern is similar to the dip that occurs in the emitted IR
flux at TOA. Estimates of the vertical turbulent fluxes of sensible and latent heat can
be made by using available climatological data, as shown in Fig. 8.19. The surface
turbulent flux decreases from about 100–150 W m−2 in the tropics to near zero at
the poles. There is a large amount of uncertainty in the estimate of vertical flux
in the tropics. A large fraction of the vertical transport takes place through cumulus
convection, which occurs in only about 3–4% of the total tropical area. For this reason,
it is very difficult to quantify vertical transport based on data obtained from a limited
number of observational points. On an annual basis, the sum of the turbulent flux and
the net IR flux at the surface is approximately equal to the solar flux absorbed by the
surface.

8.5.2 Radiative Forcing in Energy Balance Climate Models

The zonal mean rates of energy storage per unit area in the atmosphere and the
oceans may be related to the local time rate of change of surface temperature, as a
first approximation, in the form

Sa + So = c(ϕ)
∂T

∂t
, (8.5.7)

where the surface temperature is denoted by T in this section, c is referred to as the
thermal inertia coefficient, and ϕ is the latitude. On eliminating the net surface flux
from Eqs. (8.5.1) and (8.5.2) and letting the total atmospheric and oceanic transports
of energy be

R = Fa + Fo, (8.5.8)

we have

−c(x)
∂T (t, x)

∂t
= −[Fs(t, x) − Fir (t, x)] + R(t, x), (8.5.9)

where x = sinϕ. This is the basic equation for the one-dimensional energy balance
climate model. To seek a solution for surface temperature, it is necessary to relate both
the infrared and horizontal fluxes to surface temperature and to express the absorbed
solar flux as a function of surface albedo.

We may approach the determination of the equilibrium surface temperature using
the steady-state condition to obtain

Fs(x) = Fir (x) + R(x). (8.5.10)

In an infinitesimal latitude belt under equilibrium, the absorbed solar flux must be
balanced by the emitted infrared flux and the net horizontal flux divergence, including
sensible and latent heat transports by atmospheric motions and sensible heat transports
by ocean currents (see Fig. 8.18). In the following, we present two approaches for the
evaluation of surface temperature associated with solar constant perturbations.
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8.5.2.1 LINEAR HEATING APPROACH

On the basis of the monthly mean values of radiation flux density at the top of the
atmosphere for 260 stations, Budyko (1969) developed an empirical formula relating
the outgoing infrared flux density, the surface temperature, and the fractional cloud
cover in the form

Fir (x) = a1 + b1T (x) − [a2 + b2T (x)]η, (8.5.11)

where, for simplicity, the surface temperature Ts is set as T , as noted above, η is the
fractional cloud cover, and a1, b1, a2, and b2 are empirical constants. The influence of
the deviation of cloudiness from its mean global value on the temperature is normally
neglected because of the intricate relation of clouds with the radiation field and surface
albedo. With a fractional cloud cover η of 0.5, Eq. (8.5.11) may be rewritten in the
form

Fir (x) = a + bT (x), (8.5.12)

where the coefficients a and b are defined in Eq. (8.4.5). As pointed out in Section
8.4.3, the physical explanation of the linear relation between the outgoing infrared flux
and the surface temperature is that, since the temperature profiles have more or less
the same shape at all latitudes, infrared cooling, which depends on the temperature at
all levels, may be expressed in terms of the surface temperature.

The incoming solar flux density may be expressed by

Fs(x) = Qs(x)[1 − r (x)] = Qs(x)A(x), (8.5.13)

where Q = S/4, S is the solar constant, r is the planetary albedo, which is allowed
to vary in terms of temperature, A is the solar flux absorbed by the earth–atmosphere
system, and s(x) is the normalized mean annual distribution of insolation at each
latitude. Qs(x) can be obtained from the values presented in Fig. 2.8.

Moreover, to relate the surface temperature distribution and the horizontal heat
transfer in the atmosphere and hydrosphere, Budyko derived a simple linear equation
by comparing the observed mean latitudinal values of R(x) with the difference of
the annual mean temperature at a given latitude and the global mean temperature T̄ ,
given by

R(x) = c[T (x) − T̄ ], (8.5.14)

with the empirical constant c ∼= 3.75 W m−2 C−1.
Substituting Eqs. (8.5.12)–(8.5.13) into Eq. (8.5.10) leads to

Qs(x)A(x) − [a + bT (x)] = c[T (x) − T̄ ]. (8.5.15a)

The surface temperature is then given by

T (x) = Qs(x)A(x) − a + cT̄

c + b
. (8.5.15b)
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Furthermore, over a climatological time scale, the earth–atmosphere system as a
whole should be in radiative equilibrium so that

Q Ā − (a + bT̄ ) = 0, (8.5.16)

where the global surface temperature, global absorptivity, and global albedo are de-
fined by

T̄ =
∫ 1

0
T (x) dx, Ā = 1 − r̄ =

∫ 1

0
s(x)A(x) dx . (8.5.17a)

Consequently,

T̄ = (Q Ā − a)/b. (8.5.17b)

At this point, the latitudinally dependent surface temperature may be computed as
a function of x for given s(x) and A(x). The planetary albedo is usually defined by
a simple step function depending on whether or not an ice sheet exists. By letting
xi represent the sine of latitude ϕi of the ice line, the absorptivity or albedo can be
expressed by (Budyko, 1969; Sellers, 1969)

A(x, xi ) = 1 − r (x, xi ) =
{

A1, x > xi

A2, x < xi . (8.5.18)

Exercise 8.5 requires computation of the temperature as a function of x .
To study the model’s sensitivity to solar constant perturbations, a linear analysis

of the global surface temperature, solar constant, and global albedo may be carried
out by setting T̄ = T̄ 0 +	T̄ , Q = Q0 +	Q, and r̄ = r̄0 +	r̄ , where T̄ 0, Q0, and
r̄0 denote the mean values for the present climate condition. It follows that

T (x) = 1

c + b

{
Q0s(x)[1 − r (x)]

(
1 + 	Q

Q0

)
− a + cT̄ 0

+ cQ0

b

[
	Q

Q0
(1 − r̄0 −	r̄ ) −	r̄

]}
. (8.5.19)

Thus, the effects of a change in the solar constant on the earth’s mean annual surface
temperature can be investigated in a manner that includes the coupling effect of
the changing global albedo, an indication of the change in a glaciated area. In his
original work, Budyko expressed 	r̄ in terms of an empirical function in the form
0.3 l(x, x̄i )s∗(xi ), where x̄i (= 0.95) represents the present ice-line position, l is the
ratio of the change in the ice-covered area to the total area of the northern hemisphere,
and s∗ is the ratio of the mean solar flux in the zone of the additional ice area to the
mean solar flux for the entire hemisphere.
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Figure 8.20 Dependence of the global surface temperature and the latitude of glaciation on changes
in the solar constant (data taken from Budyko, 1969). If this change is reduced by about 1.6%, the ice
line reaches a latitude of about 50◦N and advances southward to the equator without any further reduction
in the solar constant. This is referred to as Budyko’s theory of the runaway ice-covered earth, due to
the ice–albedo feedback. Additional theoretical calculations show that a substantial decrease in the solar
constant on the order of 10% is required to cause an ice-covered earth.

Using Eq. (8.5.19), calculations can be carried out to investigate the position of
the ice line for different values of 	Q/Q0. Shown in Fig. 8.20 are the latitude ϕs ,
corresponding to the ice-line position, and the global temperature T̄ as functions
of 	Q/Q0. In these calculations, the mean value for the solar constant used was
1353 W m−2, and the global albedo was set at 0.33. Based on climatological data,
the ice-line temperature T (xi ) was assumed to be −10◦C. The step functions for
absorptivity were A1 = 0.38, A2 = 0.68, and A12 = 0.5 at the ice line. With a 1%
decrease in the incoming solar flux, the global surface temperature is reduced by about
5◦C. Further, a 1.5% decrease in the incoming solar flux reduces the global surface
temperature by about 9◦C. The response to these decreases in temperature is a south-
ward advance of glaciation by about 18◦ of latitude, corresponding to the advance
of quarternary glaciation. Based on these calculations, when 	Q/Q0 is reduced by
about 1.6%, the ice line reaches a latitude of about 50◦N, at which point the global
surface temperature decreases to several tens of degrees below zero. As a result, the
ice sheet begins to advance continuously southward to the equator with no further
reduction in the solar flux required. Note that with a constant global mean albedo
(i.e., 	r̄ = 0), a 1% decrease in 	Q/Q0 lowers the global surface temperature by
only 1.2–1.5◦C. The significance of the ice–albedo coupling effect is quite appar-
ent. The preceding process describes Budyko’s theory of the runaway ice-covered
earth, which is based on the ice–albedo feedback. A decrease in the solar constant
produces surface cooling, which leads to an increase in the ice-covered area. In
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turn, the surface albedo increases, resulting in a reduction in the absorption of solar
flux.

8.5.2.2 DIFFUSION APPROACH

A more rigorous approach to parameterizing horizontal heat transport can be con-
structed by utilizing the diffusion concept in a large-scale sense. From Eq. (8.5.8),
we have

R = L Fq
a + F T

a + Fo = Fs − Fir . (8.5.20)

The three large-scale transport terms may be expressed by a linear function of surface
temperature differences in terms of a second-order equation in 	T .

The second-order equation in 	T for horizontal heat transport is, in essence, the
diffusion approximation (Held and Suarez, 1974; North, 1975; Ghil, 1976). A thermal
diffusion form for horizontal heat transport, −D∇2T , was adopted with D being an
empirical coefficient to be determined by fitting the present climate. Thus, all the
transport processes are parameterized with a single coefficient, analogous to an eddy
diffusion approach to dispersion by macroturbulence in the entire geofluid system.
Using the spherical coordinates for the Laplace operator [see Eq. (5.2.29)] in the
context of a one-dimensional latitudinal variation, we have

−D∇2T = −D

a2
e sin θ

d

dθ

(
sin θ

dT

dθ

)
= −D

a2
e

d

dx
(1 − x2)

d

dx
T (x), (8.5.21)

where the polar angle θ = 90◦ − ϕ and ae is the radius of the earth. Letting D′ =
D/a2

e , we find from Eq. (8.5.10) that

D′ d

dx
(1 − x2)

d

dx
T (x) = Fir (x) − Qs(x)A(x, xi ). (8.5.22)

Since Fir and T are linearly related through Eq. (8.5.12), we may rewrite Eq. (8.5.22)
in the form [

d

dx
(1 − x2)

d

dx
− 1

D′′

]
F(x) = Q

D′′ s(x)A(x, xi ), (8.5.23)

with D′′ = D′/b, and we let Fir = F for the convenience of presentation. We must
now specify the ice-sheet edge xi . It is generally assumed that if T (x)< Ti , ice will be
present, whereas if T (x) > Ti , there will be no ice. In terms of infrared flux, we may
set F(xi ) = Fi . As noted previously, the ice-line temperature Ti is normally assumed
to be −10◦C.

For a mean annual model with symmetric hemispheres, the boundary condition
must be that there is no heat flux transport at the poles or across the equator, i.e.,
∇F(x) or ∇T (x) = 0 at x = 1 and 0, respectively. Thus,

(1 − x2)1/2 d

dx
F(x)

∣∣∣∣∣
x=0

= (1 − x2)1/2 d

dx
F(x)

∣∣∣∣∣
x=1

= 0. (8.5.24)
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To obtain a solution we may expand F(x) in terms of the Legendre polynomials in
the form

F(x) =
∑

n=even

Fn Pn(x), (8.5.25)

where only even terms are used because F(x) is an even function of x in the mean
annual case, i.e., symmetric between two hemispheres, and Fn represent the unknown
coefficients to be determined. Since the Legendre polynomials are the eigenfunctions
of the spherical diffusion equation, defined in Eq. (5.2.42) (for � = 0), we have

d

dx
(1 − x2)

d

dx
Pn(x) = −n(n + 1)Pn(x). (8.5.26)

Moreover, (1 − x2)1/2d Pn(x)/dx = 0 for x = 0, and 1 when n = even. It follows
that the imposed boundary conditions described in Eq. (8.5.24) are satisfied by the
expansion.

Substituting Eq. (8.5.25) into Eq. (8.5.23) and utilizing the orthogonal property of
Pn (see Appendix E), we find

Fn = Q Hn(xi )/[1 + n(n + 1)D′′], (8.5.27a)

where

Hn(xi ) = (2n + 1)
∫ 1

0
s(x)A(x, xi )Pn(x) dx, (8.5.27b)

which can be evaluated from the known values for s(x) and A(x, xi ). The final step
in completing the solution is to determine the diffusion transport coefficient D′′. This
can be done empirically by varying D′′ in Eq. (8.5.27a) to satisfy the present climate
conditions, i.e., x̄i = 0.95, F(x̄i ) = Fi , and Q = Q(x̄i ) = Q0. The solution can then
be used to investigate the ice-line position as a function of Q. Using Eqs. (8.5.25)
and (8.5.27a) and letting x = xi , we obtain

Q(xi ) = Fi

[ ∑
n=even

Hn(xi )Pn(xi )

1 + n(n + 1)D′′

]−1

. (8.5.28)

The normalized mean annual distribution of insolation s(x) can be fitted by
Legendre polynomial expansions. With a degree of accuracy of about 2%, it is given
by

s(x) =
∑

n=even

sn Pn(x) ≈ 1 + s2 P2(x), (8.5.29)

where s2 = 0.482. Based on observed data, the absorptivity of ice-free latitudes may
also be fitted by Legendre polynomial expansions in the form

A2(x, xs) = d0 + d2 P2(x), x < xs, (8.5.30)

with d0 = 0.697 and d2 = −0.0779. The absorptivity over ice or snow with 50%
cloud cover is assumed to be 0.38 as defined previously.
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The results derived from the preceding diffusion model show the multiple branch
nature of the solution. A southward advance of glaciation requires a decrease in the
solar constant of about 8 to 9% (North, 1975). After the ice line reaches ∼45–50◦N,
its southward advance continues even though the incoming solar flux increases. This
result is basically in agreement with Budyko’s theory, although the decrease in the
solar constant that is needed to produce an ice-covered earth is substantially greater.
Finally, it is noted that the diffusion models with nonlinear coefficients, such that D
is proportional to dT/dx , produce virtually the same results and conclusions (Held
and Suarez, 1974; North et al., 1981).

The simple climate models just described are not in reasonable agreement with the
nearly isothermal surface temperatures observed within 30◦ of the equator, as argued
by Lindzen and Farrell (1977). To introduce tropical transport, referred to as Hadley
cell transport, into simple climate models, they introduced an empirical adjustment
to include a heat-flux term. This heat flux approached zero for latitudes greater than
a prescribed latitude ϕh(∼ 25◦N). For Budyko’s linear heating model, Qs(x)A(x, xi )
was replaced by its average over the region 0 ≤ ϕ ≤ ϕh . Lindzen and Farrell’s model
showed that at 25◦ latitude, identified as the Hadley stability ledge, a reduction in
the solar constant did not significantly alter the ice-line position. It was not until
the solar constant reduction reached about 15 to 20% that the glaciation advanced
continuously southward. From 25◦ to about 60◦, identified as the moderately strong
stability region, a southward advance of glaciation was related to the decrease of the
solar constant. This model illustrated that the reduction in the solar constant necessary
for an ice-covered earth is much greater than Budyko’s predicted value of 1.6%.

8.5.3 Solar Insolation Perturbation

A number of external factors have been proposed as the major causes of the earth’s cli-
matic variations during the Pleistocene period, about 600,000 years ago. This period
is the first epoch of the Quaternary period in the Cenozoic era, characterized by the
spreading and recession of continental ice sheets and by the appearance of the modern
human. Variations in the output of the sun, seasonal and latitudinal distributions of
incoming solar radiation due to the earth’s orbital changes, the volcanic dust content
of the atmosphere, and the distribution of carbon dioxide between the atmosphere
and the oceans have all been hypothesized to have caused the fluctuations of the great
ice sheets that were characteristic of this period. The orbital theory of climate change
originally described by Milankovitch (1941) appears to receive considerable support
based on climatological and geological records. In Section 2.2, we detailed the vari-
ation in solar insolation as a function of the earth’s orbital parameters: eccentricity,
oblique angle, and the longitude of the perihelion (precession).

Based on measurements of the oxygen isotopic composition of planktonic forami-
nifera from deep-sea sediment cores taken in the southern Indian Ocean, Hays et al.
(1976) have reconstructed the climatic record of the earth up to ∼500,000 years
ago. Summer sea-surface temperatures at the core site have been estimated based
on statistical analyses of radiolarian assemblages. Spectral analyses of paleoclimatic
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Figure 8.21 Variation in eccentricity and surface temperature over the past 500,000 years. Dashed
line in the center shows variations in the estimated sea surface temperature Ts . Solid line denotes the orbital
eccentricity. Upper and lower curves are the 23,000- and 40,000-year frequency components extracted from
Ts based on a statistical filter method (data taken from Hays et al., 1976).

time series indicate significant peaks in the frequencies at which the earth’s orbital
parameters are known to vary. These observations are of fundamental importance to
our understanding of climatic sensitivity. Figure 8.21 shows that the principal periods
of climatic variation (∼100,000, 42,000, and 23,000 years) correspond to periods
of orbital changes in eccentricity (∼105,000 years), obliquity (∼41,000 years) and
precession (∼23,000 and 19,000 years).

Down-core variations in δ18O reflect changes in oceanic isotopic composition,
which are considered to be caused primarily by the waxing and waning of the great
Pleistocene ice sheets. Measurements of the ratio of 18O and 16O have been reported
with respect to an international standard as δ18O in parts per thousand. Employing
observations of δ18O in five deep-sea cores, Imbrie et al. (1984) have developed a
geological time series for the past 780,000 years to evaluate the orbital theory of
the Pleistocene ice ages and found that the orbital and isotopic signals are strikingly
coherent in the 41,000- and 22,000-year components.

One-dimensional energy balance climate models have been used in an attempt to
explain glacial cycles in terms of solar insolation changes associated with the earth’s
orbit. The fractional changes of mean annual global insolation are approximately
given by 	e2/2, as defined in Eq. (2.2.26). Since the eccentricity is less than about
0.07, the resulting changes in solar insolation are less than ∼0.2%, which corre-
sponds to a change of about 0.4◦C in the global mean surface temperature based on
a one-dimensional energy balance model (North et al., 1981). This change in surface
temperature is an order of magnitude smaller than the changes reported by Hays et al.
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(1976), cited earlier. It has been speculated that the glacial maximum of 18,000 years
ago was due to a variation in the declination of the sun from about 22.2◦ to its present
value of 23.45◦. This change resulted in less insolation at the poles and more at the
equator. Based on the annual energy balance model, this obliquity change causes only
a 1–2◦ equatorward shift in the ice line, much smaller than the approximately 15◦

shift reconstructed by the CLIMAP Project Members (1976).
The small responses of the annual energy-balance climate model to orbital param-

eters have led to the suggestion that seasonal variations must be incorporated in the
model to produce more accurate orbital solar forcings. Suarez and Held (1979) have
developed a seasonal energy balance model to investigate orbital forcings. Signifi-
cant discrepancies, however, exist between the model’s present climate and the actual
record. Moreover, the response of the surface temperature to orbital parameters in the
model is fairly linear and cannot be used to explain the strong surface-temperature
variations that are present in the spectral analyses of the paleoclimatic record over
the last 100,000 years. Although physical factors such as oceanic heat transports,
variations in cloudiness, and atmospheric transports of sensible and latent heat could
be accounted for more comprehensively in one- or two-dimensional energy-balance
climate models, it is not evident that such simplified models, with their inherent lim-
itations, would be physically adequate to successfully reproduce the paleoclimatic
record. However, through the use of global climate models, some success has been
achieved in understanding how past glacial climates were maintained and in esti-
mating the relative significance of the known feedback mechanisms involving the
changes in ice sheets, land albedo, and atmospheric CO2 in forcing the temperature
changes that existed 18,000 years ago (Broccoli and Manabe, 1987). Simulations of
paleoclimate records require an efficient physically based global model that couples
the atmosphere and the oceans, as well as a computer that is capable of carrying out
long-term calculations.

8.6 Radiation in Global Climate Models

8.6.1 An Introduction to General Circulation Modeling

Radiative processes directly influence the dynamics and thermodynamics of the atmo-
sphere through the generation of radiative heating/cooling rates, as well as through net
radiative fluxes available at the surface. In Fig. 8.2 we showed the radiation balance
at the top of the atmosphere in terms of the zonally averaged patterns for the absorbed
solar and emitted infrared fluxes observed from satellites. As illustrated in Fig. 8.2,
there is a gain of radiative energy between 40◦N and 40◦S, whereas there are losses
in the polar regions. This pattern is largely caused by the sharp decrease in insolation
during the winter season and the high surface albedo in the polar regions. In addition,
we note that the outgoing infrared flux is only slightly latitudinally dependent, owing
to the larger amount of atmospheric water vapor and the higher and colder clouds in the
tropics.
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This pattern of radiative energy excess and deficit generates the equator-to-pole
temperature gradient and, subsequently, produces a growing store of zonal mean
available potential energy. In the equatorial region, warm air expands upward and
creates a poleward pressure gradient force at the upper altitudes, where air flows
poleward from the equator. In the upper levels, air cools and sinks in the subtropical
high-pressure belts located at about 30◦ and returns to the equator at the surface.
Kinetic energy is generated as a result of the work done by the horizontal pressure
gradient force. This thermally driven circulation between the equator and subtropics
is referred to as the Hadley cell. As a result of the earth’s rotation, air flowing toward
the equator at the surface is deflected to the west and creates easterly trade winds.
In the upper level of the Hadley cell, the Coriolis deflection of poleward-moving air
generates westerly winds.

Similar thermally driven circulation is found in the polar regions. Cold air shrinks
downward, producing an equator-directed pressure gradient force and motion in the
lower altitudes. The sinking motion over the poles results in airflow in the upper level
toward the pole and into the low-pressure belts located at about 60◦. Thus, a Hadley
circulation develops between the poles and the subpolar low-pressure regions. Here,
the effect of the Coriolis force is the same; easterly winds are produced at the surface,
while westerly winds are generated aloft. In the Hadley circulation, the atmosphere
may be regarded as an engine that absorbs net heat from a high-temperature reservoir
and releases this heat to a low-temperature reservoir. The temperature differences
generate the available potential energy, which in turn is partly converted to kinetic
energy to overcome the effect of friction.

Poleward zonal thermal winds at the upper altitudes become unstable in the middle
latitudes, an effect referred to as baroclinic instability (Charney, 1947). A reverse
circulation is generated in which warm air sinks in the subtropical highs and cold
air rises in the subpolar lows in such a manner that westerly winds prevail at all
levels. The meridional circulation in this region cannot be explained by the direct
heating and cooling effects, as in the Hadley circulation, and cannot generate kinetic
energy. The maintenance of westerlies in the middle latitudes is explained by the
continuous transfer of angular momentum from the tropics, influenced by large-scale
wave disturbances. The baroclinic waves transport heat poleward and intensify until
heat transport is balanced by the radiation deficit in the polar regions.

The general circulation of the atmosphere described above is governed by a set
of physical and mathematical equations defining the horizontal velocity fields, the
first law of thermodynamics, the requirement of air-flow continuity, the large-scale
hydrostatic balance, and the thermodynamic state. This system of equations consists
of six unknowns: the two horizontal velocity components, the large-scale vertical
velocity, density, pressure, and temperature. Additional equations can be introduced
to include moisture variation based on the conservation of water vapor, and liquid
and ice water content. This system of equations constitutes the so-called general
circulation model (GCM).

To describe a GCM, representation in the vertical direction must be introduced.
There are several alternative ways of treating the vertical coordinate in numerical
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models. Because of the hydrostatic nature of large-scale motion, the height coordi-
nate can be converted to the pressure coordinate to simplify the continuity equation
and the density variation that occurs in other equations. However, the pressure co-
ordinate encounters difficulties over a mountain, since a particular constant-pressure
surface may intersect this mountain at certain times but not others. For this reason, the
σ -coordinate system, introduced by Phillips (1957), has been used to remove the diffi-
culty in the representation of lower-boundary conditions. The term σ = p/ps , where
ps is the surface pressure; σ = 0 when p = 0; and σ = 1 when p = ps . The surface
pressure in the σ -coordinate follows the terrain height at a given point in time and
hence becomes a variable. While the σ -coordinate removes the problem in the rep-
resentation of the lower-boundary conditions, it generates another problem in the
computation of the pressure gradient force term, which is a small quantity but splits
into two terms with large values. Numerical methods have been developed to circum-
vent this problem by interpolating between σ and p coordinates. Since the observed
data are normally available in the p-coordinate, numerical interpolations are also
required for the data corresponding to the initial field. For verification purposes,
transformation of the predicted variables in the σ -coordinate from the model to the
p-coordinate is required.

Appropriate numerical methods and initial conditions are required to solve the
velocity components, temperature, humidity variables, and a term referred to as the
geopotential height, the product of the height and gravitational acceleration, as func-
tions of time and space, defined in spherical coordinates, based on a set of nonlinear
partial differential equations. The evolution of the atmospheric flow patterns may be
determined by integrating the prediction equations beginning at some initial time.
Because of the nature of the nonlinearity in these partial and ordinary differential
equations, analytic solutions are not practical, and numerical methods for their solu-
tion must be used. In the design of numerical methods, appropriate time and spatial
differencing schemes are required to ensure computational stability. In the finite-
difference approach, any dependent variable is approximated in terms of its values
at discrete points in space and time (Arakawa, 1966). An alternative approach is the
spectral method, which represents the flow field in space as a finite series of smooth
and orthogonal functions. The prediction equations are then expressed in terms of the
expansion coefficients, which are dependent on time.

An initial condition consisting of three-dimensional distributions of dependent
variables is required to perform the numerical integration of a prediction model. Ini-
tial conditions for weather prediction are based on global observations at a specific
time from which interpolations of the atmospheric variables are performed to model
grid points by means of the objective analysis. Because of the initial imbalance of
pressure and wind fields due to the presence of gravity waves, the initial data must
be adjusted by numerical methods in order to eliminate meteorological noise. The
prediction of large-scale geopotential height fields for a time period of about 5 days
is largely influenced by the initial conditions and the data initialization procedure.
Observational uncertainty in the initial state grows during model prediction because
of the random turbulent nature of atmospheric motion. There is an inherent time limit
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Figure 8.22 Observed (a) zonal mean wind (m s−1) and (b) temperature (K) in height (pressure)–
latitude cross section for December, January, and February. Negative regions of winds are shaded (data
taken from Newell et al., 1974).

of about a few weeks for predictability of the atmospheric state by means of a nu-
merical integration of atmospheric models (Lorenz, 1969). This predictability limit
is associated with the limited ability of atmospheric models to predict the day-to-day
evolution of the atmosphere in a deterministic sense. It is feasible, however, for mod-
els to predict the statistical properties of the atmosphere. Models may be “tuned” to
the mean or equilibrium state of the atmosphere, that is, the present climate, in terms
of general circulation, temperature, radiative balance, cloud, and other pertinent pat-
terns, and are referred to as climate models. Figure 8.22 displays the zonal mean wind
and temperature for climatological winter conditions. Climatological radiation bud-
gets were presented in Section 8.2.2, while cloud-cover climatology was illustrated in
Fig. 7.21.
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Through the process of tuning the model, all the relevant coefficients and/or compu-
tational schemes are adjusted to present climate conditions. When climate is perturbed
by external forcings, such as the increase of greenhouse gases, model coefficients
(e.g., drag coefficient) and computation schemes (e.g., cloud-cover formation) may
no longer be representative of the perturbed climate. Thus, it is critically important to
understand the physical processes involved in the model and to incorporate physical
feedbacks into the model.

The oceans cover about 70% of the earth’s surface. Through their fluid motion and
high heat capacity, as well as their ecosystems, the oceans play an essential role in
shaping the earth’s climate and its variability. Wind stress at the ocean surface drives
the large-scale circulation in the upper levels of the oceans. Evaporation from the ocean
surface provides the water vapor needed for cloud formation and the resulting latent
heat release. Ocean circulation redistributes heat and fresh water around the globe.
The oceans store heat and absorb solar visible radiation at the surface, contributing
substantially to the variability of climate on many time scales. The ocean thermohaline
circulation also allows water from the surface to be carried into the deep ocean and may
sequester heat away from the atmosphere for periods of thousands of years. The oceans
absorb CO2 and other trace gases as well as aerosol particles and exchange them with
the atmosphere, thereby altering ocean circulation and climate variability. It is clear
that the modeling of climate and climate change must include an adequate description
of oceanic processes and the coupling between the oceans and the atmosphere.

Figure 8.23 presents a schematic description of the principal components of the
physical and mathematical definitions and feedbacks of a GCM for climate studies,
including the contribution from the oceans, with reference to the transfer of solar
and IR radiation in the atmosphere and their exchange with the earth’s surface. In the
following, we present the relative significance of radiative processes in global climate
models, particularly those concerning the roles of clouds and aerosols.

8.6.2 Cloud Radiative Forcing in Global Climate Models

In Sections 8.2.3 and 8.4.5, we pointed out the importance of clouds in climate from
the perspective of the radiation budget of the earth–atmosphere system as well as
their role in greenhouse warming perturbations. The estimates of warming due to
doubled CO2 produced by a number of numerical simulations of GCMs have shown
surface temperature increases from about 1.3 to 5.4 K. Much of the difference in
results has been attributed to the representation of clouds in the models. Early GCMs
that were used for predicting climate change included fixed cloud covers estimated
from climatology. Variations in clouds that may be forced by a climate perturbation
and any feedback due to these cloud variabilities cannot be simulated in a fixed cloud
experiment. Moreover, the variability of the stimulated present climate condition
and the effect of the diurnal cycle may also be affected in this type of experiment.
Interactive cloud parameterizations developed for climate models involve the direct
use of relative humidity for the formation of cloud cover and the incorporation of a
prognostic cloud water variable. The latter scheme allows the interaction and feedback
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Figure 8.23 Principal components of the physical and mathematical definitions and interactions of a
general circulation model (GCM) for climate simulations, particularly in reference to radiative transfer in
the earth-atmosphere system. See also Fig. 8.17.

of the radiative properties of clouds to be made dependent on the predicted cloud
water path, a more physically based approach to understanding the role of clouds and
radiation in climate and climate change. In the following, we present representative
cloud simulations in GCMs with a particular emphasis on cloud radiative forcing.

8.6.2.1 INTERNAL RADIATIVE FORCING

Clouds are produced by upward motion and the hydrological cycle and are highly
interactive with the dynamic system. Atmospheric and surface temperatures as well
as humidity are affected by the presence of clouds. As illustrated in Section 8.2.3,
cloud radiative forcing information has been extracted from ERB data. The degree
of cloud radiative forcing is determined by internal interactions and feedbacks and
represents a measure of the instantaneous impact of clouds on radiative fluxes and
heating rates. Thus, cloud radiative forcing is a useful diagnostic parameter for climate
models.

The cloud radiative forcing discussed previously is in reference to the radiative
fluxes at TOA. It is important, however, to recognize that, in principle, there are an
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infinite number of cloud profiles in the atmosphere that can give a consistent ERB,
and that the general circulation of the atmosphere is not directly related to the ERB but
to radiative heating within the atmosphere. A realistic definition and understanding
of cloud radiative forcing must begin with a consideration of radiative heating fields.
Analogous to the definitions of ERB cloud radiative forcing, cloud radiative forcing
with respect to internal solar and IR radiative heating can be defined as follows:

C
•

s,ir =
(
∂T

∂t

)
s,ir

−
(
∂T

∂t

)cl

s,ir

. (8.6.1)

The presence of clouds produces strong IR cooling at cloud tops and significant
heating at cloud bases, while the intensity of these cooling/heating configurations is
dependent on the position and optical depth of the clouds (Section 4.7).

Internal cloud radiative forcing can be best understood from a zonally averaged
profile. Figure 8.24 shows the latitudinal distribution of zonal mean cloud radiative
forcing computed from the difference between atmospheric (including clouds) and
clear-sky heating rates for a perpetual January simulation based on a climate model
(Randall et al., 1989). Zonally averaged solar radiative forcing is rather small: a
0.4 K day−1 warming in the upper tropical troposphere and weak negative values at
low levels in the tropics and the Northern Hemisphere, in association with a reduction
of gaseous absorption in the shadows of upper-level clouds. On the other hand, IR
radiative forcing shows pronounced features, including a strong cooling associated
with low-level cloud tops in the midlatitudes, a maximum warming of about 2 K day−1

at the 7 km level in the tropics, and a maximum cooling aloft of about 1 K day−1

at 16 km. The latter two features constitute a radiative dipole pattern that signifies
the existence of optically thick convective anvil clouds. Anvils destabilize the upper
troposphere because of cloud-top cooling, while warming in the middle troposphere
tends to suppress shallow convection. The cloud-induced radiative destabilization of
deep convection suggests that cloud IR radiative forcing has a positive feedback to the
processes that generate high clouds. Owing to the domination of IR radiative cooling,
the pattern of cloud net radiative forcing resembles that of the IR component.

8.6.2.2 GREENHOUSE WARMING AND CLOUD COVER FEEDBACK

Global cloud cover has been routinely mapped from satellite visible and IR ra-
diometers. In particular, the ISCCP program has produced useful cloud climatology
for climate studies (Section 7.4.5). No discernible changes in global cloud cover have
been reported during the past 20 years. Cloud cover can exert a large influence on
climate, as shown by the results of one-dimensional radiative–convective models. The
presence of clouds reduces the solar flux available to the earth and the atmosphere
for absorption, known as the solar albedo effect, but at the same time it enhances the
trapping of the outgoing IR fluxes, the greenhouse effect. Cloud-cover sensitivity ex-
periments using global climate models have been performed by numerous researchers
to understand the impact of clouds on the greenhouse warming produced by the in-
crease of carbon dioxide. As an example, we show cloud-cover feedback processes
in a climate model based on comprehensive numerical experiments carried out by
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(data taken from Randall et al., 1989).
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Wetherald and Manabe (1988). In order to facilitate the interpretation and analysis of
the results from numerical experiments, a simple scheme for the computation of cloud
cover was used in these experiments. At each grid point, clouds were placed in the
layer where the relative humidity exceeded 99%; otherwise, no clouds were predicted.
This simple scheme gives a global integral of total cloud amount approximately equal
to 50%. Clouds may occur in a single (thin) layer or in multiple contiguous vertical
layers (thick). The radiative properties of these clouds were prescribed. Two exper-
iments were carried out: one prescribed the cloud cover, while the other predicted
the distribution of cloud cover. The latter experiment incorporated the interaction
between cloud cover and radiative transfer in the atmosphere in a simple way.

In response to the increase in CO2 concentration, cloud cover increases around
the tropopause but decreases in the upper troposphere as shown in Fig. 8.25. The
increase of high-level clouds reduces the outgoing IR flux from the top of the model
atmosphere. At most latitudes a substantial reduction in cloud cover in the upper tro-
posphere increases the available solar flux in the lower atmosphere and hence reduces
the solar albedo effect. The change in the distribution of high clouds also increases
the heating associated with the absorption of solar flux. The latitudinal profiles of the
cloud-induced changes in the outgoing IR fluxes show a positive feedback to the
increase in CO2 concentration. The increase in the net incoming solar flux coupled
with the reduction of the outgoing IR flux, due to the change in cloud cover, leads to
a significant positive feedback to greenhouse warming.

The cloud-cover feedback associated with radiative forcing depends on the per-
formance of a model with respect to the formation of clouds, which, in turn, is a
function of such factors as the vertical layer, numerical method, parameterization of
moist convection and cloud formation, and the radiative properties of clouds. A cloud-
cover feedback study can, therefore, be viewed as a study of the possible mechanisms
involved in a model setting rather than a quantitative assessment of the influence of
cloud cover on the sensitivity of climate. To reduce a large amount of the uncertainty
in the estimate of climate sensitivity, improvements must be made in the treatment
of cloud feedback processes in climate models. A model must be capable of repro-
ducing the horizontal distributions of cloud cover and radiative fluxes that have been
derived from satellite observations, such as the results from ISCCP and ERB. More-
over, as demonstrated from one-dimensional climate models, cloud LWC and mean
effective particle size, two parameters that are dependent on temperature and other
relevant variables, have significant feedbacks to greenhouse perturbations, a subject
of discussion in the following subsection.

8.6.2.3 GREENHOUSE WARMING AND CLOUD LIQUID/ICE WATER

CONTENT FEEDBACK

Effects of the representation of clouds determined from different parameterization
schemes on climate and climate perturbations have been investigated by Senior and
Mitchell (1993), utilizing a low-resolution version of a GCM. This model included
a prognostic cloud water variable and incorporated interactive cloud optical proper-
ties. The model also incorporated parameterization approaches for the production of
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Figure 8.25 Height-latitude cross section for (a) CO2-induced change of zonal mean cloud amount
(%); and (b) zonal mean cloud amount (%) obtained from a GCM experiment (data taken from Wetherald
and Manabe, 1988).

precipitation from water and ice clouds in which the empirical coefficients in the pa-
rameterization equations were taken from microphysics measurements (Heymsfield
and Donner, 1990). In addition, cloud radiative properties as a function of liquid/ice
water path were expressed in terms of reflectivity, transmissivity, and absorptivity us-
ing the values presented by Liou and Wittman (1979). Effects of cloud particle size,
which was not a prognostic variable in the model, on the cloud radiative properties
were not accounted for, however.

The sensitivity of cloud representations in the model to a doubling of atmo-
spheric CO2 was investigated over perpetual summer (June, July, August) and winter
(December, January, February) conditions for a 10-year period after reaching equi-
librium. Figure 8.26 shows the height-latitude cross section of equilibrium changes
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of temperature based on two cloud formation schemes. One employed the prognostic
cloud formation coupled with the interactive radiative properties described above. The
other used the relative humidity (RH) scheme in which the fractional amount of layer
clouds is predicted from a quadratic dependence on RH. Cloud amount increased
from zero at an assigned threshold level to full cover at saturation. Similar to the
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experiment performed by Wetherald and Manabe (1988) described in the preceding
subsection, the global mean total cloud cover was around 50%, while the radiative
properties of high, middle, and low clouds determined from the RH scheme were
fixed. The two experiments produced a large warming in the upper tropical tropo-
sphere, an amplification of the surface warming in high latitudes in winter, and a
substantial stratospheric cooling of up to 5◦C, in agreement with most model simula-
tions incorporating enhanced CO2. However, the prognostic cloud formation model
with interactive cloud optical properties differed from the RH scheme in both the
magnitude and distribution of the warming. The maximum warming of the upper
troposphere was reduced from 8 K in the RH model to 3 K in the interactive cloud
formation scheme. There was also a large reduction in the lower-level midlatitude
warming from over 6 K to 2 K between the two cloud schemes. The pattern was
similar in the summer simulation. The global mean annual change in surface tem-
perature was reduced from 5.4 K in the RH model to 1.9 K in the interactive cloud
formation scheme. When the interactive cloud formation was included, the resultant
reduction in warming was due to a negative feedback produced from the change in
cloud thermodynamic phase from ice to water and the associated prevalence of the
solar albedo effect.

8.6.2.4 CLOUD PARTICLE SIZE FEEDBACK

Studies of the effects of possible changes in cloud particle size associated with air
pollution and/or global warming using global climate models are still at an embry-
onic stage. In Eq. (8.4.7), we showed that cloud particle size directly affects cloud
optical depth and hence, cloud albedo. Modeling of the formation of water-droplet
and ice-crystal size spectra and the associated precipitation process based on physical
principles is an involved and intricate computational task, considered to be a lux-
ury for global climate models under present computer power limitations. However,
parameterization approaches have been used to incorporate cloud particle size in cli-
mate models based on an assumed aerosol size distribution and large-scale variables.
Uncertainty in the radiative forcing produced by the aerosol-cloud indirect effect esti-
mated from climate models is so large that the confidence level in these estimates has
been noted to be extremely low (IPCC, 1996; Hansen et al., 2000). Reduction of this
uncertainty requires a long-term global observational program for simultaneous mea-
surements of aerosol and cloud particle sizes, coupled with independent validation.

8.6.3 Direct Radiative Forcing: Aerosols and Contrails

The subject of cloud radiative forcing is concerned with the effects of clouds on the
radiation field of the earth–atmosphere system indirectly induced by external forcings
such as the increase in anthropogenic greenhouse gases and/or particulates, which has
been referred to as the indirect effect. However, two particle types of anthropogenic
origin can directly exert a radiative forcing effect in climate systems through their
scattering and absorption processes: aerosols generated in the planetary boundary
layer and contrails produced in the upper troposphere and lower stratosphere.
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8.6.3.1 AEROSOLS

In Section 8.4.4, we discussed the interaction of aerosols with solar radiation
and pointed out that the radiative forcing produced by anthropogenic tropospheric
aerosols has been recognized as a significant contributor to climate change. Two
types of aerosols have been identified to be of specific importance in climate studies:
sulfate and carbonaceous aerosols. The latter aerosols result from biomass burning
as well as from fossil fuel production.

A number of GCM experiments have been conducted to investigate the impact of
sulfate and carbonaceous aerosols on climate radiative forcing. For this purpose, a
GCM must be coupled with an atmospheric chemical transport model, which is used
to compute aerosol concentration in a separate manner. The computation of aerosol
concentration for radiative transfer requires its inventory from available observations
as an initial condition, including the estimation of carbonaceous aerosols produced
from biomass burning, black and organic carbons generated from fossil fuel emissions,
and sulfur emission. The radiative properties of aerosols are a function of their size
distribution and refractive index, which is determined by their chemical composition.
The chemical state and size of an aerosol are also dependent on RH. To model the
RH dependence, the fundamental Köhler equation associated with diffusion growth
can be used, but a size distribution must be assumed.

In the following, we present a GCM experiment conducted by Penner et al. (1998)
to illustrate the relative significance of various aerosol types in the context of climate
radiative forcing. In the experiment, these authors assumed that sulfate was present
as (NH4)2SO4 in sulfate aerosols, that smoke particles were made up of a variety of
water-soluble salts and other elements, that biomass aerosols behaved similarly to
an aerosol having 30% of (NH4)2SO4 by mass, and that black and organic carbon
particles were hydrophobic. Having determined the size distribution and chemical
composition as a function of RH, single-scattering and absorption calculations for the
aforementioned aerosol types assumed to be spherical in shape can then be carried
out by using the Lorenz–Mie theory detailed in Section 5.2. A chemical transport
model was employed to calculate aerosol concentrations every 6 hours. The results
were then incorporated into the GCM to compute the radiative forcings at both TOA
and the surface, defined as the difference between the net solar flux with and without
the contributions by anthropogenic aerosols. In the course of model integration, the
cloud distribution remained unchanged in both experiments, implying that the indirect
forcing via cloud formation was not accounted for.

Figure 8.27 illustrates the global annual average radiative forcing at TOA for
various aerosol types determined from the coupled GCM and chemical transport
model. For the aerosols produced from biomass burning, two negative forcing values
are presented because of the assumed size distributions. Negative forcing implies that
more solar flux is reflected back to space, thereby reducing the absorption by aerosols
in the earth–atmosphere system. The computed annual average forcings produced by
fossil fuel black carbon (BC) alone and a combination of fossil/urban BC and organic
carbon (OC) are 0.2 and 0.16 W m−2, respectively. These forcings are primarily
associated with emissions in North America, Europe, and Asia. The positive forcings
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size distributions, OC denotes organic carbon, BC denotes black carbon, and sulfate (<90%) represents
the case where the particle size and optical properties remain fixed at RH = 90% if RH > 90% (data taken
from Penner et al., 1998).

are produced by the domination of absorption due to BC. In the case of sulfate, a larger
negative forcing of −0.81 W m−2 is shown because of the negligible absorption of
(NH4)2SO4 and water in the solar spectrum. When the RH dependence was capped
at 90%, the forcing decreased by 50% because of the aerosol size effect.

On the basis of the preceding discussion, it is clear that direct climate forcing by
anthropogenic aerosols in the troposphere is subject to a large degree of uncertainty in
view of the numerous assumptions involved in the calculation of the spectral single-
scattering and absorption properties of various aerosol types, as well as the treatment
of aerosol transport, which is regional in character. At present, we do not know the
precise sign of the current trend of aerosol forcing because such information would re-
quire knowledge of the trends of different aerosol compositions. Direct aerosol forcing
largely depends on the aerosol’s single-scattering albedo, and hence, on the amount
of absorbing constituents. Indirect aerosol forcing depends on the effectiveness of
aerosols in forming cloud particles and the consequence of cloud and precipitation
processes, a subject of great complexity and uncertainty. In summary, climate forc-
ing by anthropogenic aerosols may present the largest source of uncertainty about
future climate change, the solution of which must rely on accurate long-term global
observations of aerosol size and composition with appropriate validation.
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8.6.3.2 CONTRAILS

The upper level ice crystal clouds produced by jet aircraft are known as contrails,
or condensation trails as noted by Appleman (1953). Contrails are visible line clouds
resulting from water vapor emissions that form behind aircraft flying in sufficiently
cold air. It has been suggested that water droplets can form on the soot and sulfuric
acid particles emitted from aircraft and/or background particles, and can then freeze
to become ice particles. Persistent contrails often develop into more extensive contrail
cirrus, particularly in ice-supersaturated air masses, in which the ice supersaturation
is generally too small to allow cirrus clouds to form naturally. Contrails may enhance
the extension of the natural cirrus cover in adjacent areas where RH is too low for the
spontaneous nucleation of ice crystals, an indirect effect that has not been quantified
at this point. Contrails can affect the atmospheric moisture budget by scavenging large
cloud particles from the upper troposphere and by seeding clouds at lower altitudes.

In an analysis of cirrus cloud cover in Salt Lake City based on surface observations,
Liou et al. (1990c) found that a substantial increase in cirrus clouds occurred in about
1965, coinciding with a sharp increase in domestic jet fuel consumption in the mid-
1960s. Increased cirrus cloudiness has also been detected in climate data from stations
in the midwestern and northwestern United States that are located beneath the major
upper-tropospheric flight paths. A comprehensive analysis of jet aircraft contrails over
the United States and Europe using satellite infrared imagery has been carried out
(see, e.g., Minnis et al., 1998; IPCC, 1999). Figure 8.28 displays a high-resolution IR
image from NOAA 14, showing a variety of contrails in forms of spreading, diffusion,
and thinning, associated with patchy cirrus.

The growing concern over the impact of increasing jet aircraft activities on the en-
vironment and climate led the Intergovernmental Panel on Climate Change to produce
a report on the subject of aviation and global atmosphere (IPCC, 1999). Discussions of
the issues related to contrails, cirrus clouds, and climate radiative forcing are detailed
in Chapter 3 of the report. It has been estimated that aircraft line-shaped contrails
cover about 0.1% of the earth’s surface on an annually averaged basis, but with much
higher values in local regions. Projections of contrail cover have also been made based
on the rate of growth in aviation fuel consumption.

Radiative forcing of contrails depends not only on their cover, but also on their
ice-crystal size distribution and shape. The ice-crystal images collected by the optical
probe and replicator system from aircraft platforms during a number of field exper-
iments show that contrails predominantly consist of bullet rosettes, columns, and
plates with sizes ranging from about 1 μm to about 100 μm. The solar albedo and
thermal emission of contrails computed from radiative transfer models reveal their
significant dependence on both mean effective ice-crystal size and shape. Despite
a large degree of uncertainty regarding the cover and ice-crystal size and shape of
contrails, estimations of their globally and annually averaged radiative forcing have
been made (IPCC, 1999). For subsonic aircraft emissions in 1992, a positive radiative
forcing of 0.02 W m−2 with an uncertainty of more than a factor of 2 was estimated.
It is much smaller than those produced by tropospheric aerosols. Nevertheless, the
future projection of air traffic shows that the direct climatic effects of contrails could
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Figure 8.28 High-resolution thermal infrared image over the Great Lakes area of the United States
from the NOAA-14 satellite at 2050 UTC October 2000, showing a number of north–south oriented contrails
associated with patchy cirrus (courtesy of Patrick Minnis of the NASA Langley Research Center).

be on the same order as some tropospheric aerosol types. Moreover, it is noted that
contrails have a significant regional character.

Perhaps the most significant contrail impact on climate is through their indirect
effect on cirrus cloud formation. To reduce substantial uncertainties in contrail-cirrus
radiative forcing estimations, a long-term observation program is needed to separate
the cirrus clouds that are generated through contrails and other substances emitted
from aircraft from those that occur naturally. The radiative and climatic impact of
cirrus clouds have been articulated in a number of review articles (Liou, 1986; Sassen,
1997; and IPCC, 1999). The subject of the remote sensing of cirrus clouds from
satellites was presented in Section 7.3.5.

8.6.4 Radiation in El Niño–Southern Oscillation

The importance of clouds and their radiative properties in shaping climate and very
long-term climate trends, such as those due to increasing greenhouse gases and
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aerosols, has long been well known. However, their impact on interannual to decadal
time-scale variability is not as generally recognized. In the following, we present an
example of the impact of clouds and their radiative effects on a simulation of the
El Niño–Southern Oscillation (ENSO) based on a global climate model coupling the
atmosphere and the oceans developed at the University of California, Los Angeles
(UCLA).

El Niño is a climatic feature associated with the interannual oceanic warming of
the eastern tropical Pacific off the coasts of Peru and Ecuador. In 1982–83, El Niño
was linked to the disastrous droughts on the continents of southeastern Asia and
Australia, unusual weather patterns over North and South America, and the weaken-
ing of monsoons over India. The Southern Oscillation involves a seesaw effect in the
surface pressure across the tropical Pacific Ocean. Bjerknes (1969) discovered that
continual Southern Oscillation is both the cause and the consequence of continually
changing sea surface temperature (SST) patterns and that El Niño, associated with
warm SSTs of the eastern tropical Pacific, is but one phase of a cycle. Analogous to the
seasonal cycle representing an oscillation between winter and summer, the Southern
Oscillation is a fluctuation between El Niño and a complementary state referred to
as La Niña. While the seasonal cycle is forced by the variability of solar insolation
associated with the earth’s obliquity, the Southern Oscillation corresponds to a natu-
ral mode of interannual oscillation of the coupled ocean and atmosphere between the
El Niño and La Niña states associated with SST anomalies. It is clear that the suc-
cessful simulation and prediction of ENSO requires a global climate model that
incorporates dynamic and physical couplings of the atmosphere and the oceans.

The UCLA coupled atmosphere–ocean general circulation model that was used to
study the effect of clouds and their radiative properties on SST simulations consisted
of an atmospheric GCM (AGCM) and an oceanic GCM (OGCM) that were coupled
in the following way. The surface wind stress and heat flux were calculated hourly by
the AGCM and its daily averages were transferred to the OGCM. At the same time,
the SST was calculated hourly by the OGCM and its value at the time of coupling
was passed to the AGCM. The AGCM had a horizontal resolution of 4◦ latitude by 5◦

longitude and 15 layers in the vertical. The OGCM domain was from 30◦S to 50◦N
and from 130◦E to 70◦W with 27 vertical layers, had a constant depth at 4150 m,
and covered a longitudinal resolution of 1◦ with varying latitudinal resolution. Figure
8.29a displays the climatological SST patterns simulated by the UCLA coupled model
with the incorporation of the formation of stratus clouds over the Peruvian coast areas
and of a larger high cloud emissivity (Yu and Mechoso, 1999). The interannual SST
variabilities in terms of the amplitude, frequency, and the associated atmospheric and
oceanic structures closely resemble those of the observed ENSO episodes. However,
without the inclusion of proper representations of stratus clouds and high-cloud emis-
sivity, the simulated SSTs are much lower (Fig. 8.29b) than those displayed in Fig.
8.29a, and their variabilities are about four times weaker. The inclusion of appropriate
high-cloud emissivity produces a warmer upper troposphere, leading to a reduction of
the temperature gradient below high clouds and the subsequent reduction of cumulus
activity and surface evaporation in the tropical Pacific region. The introduction of
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Figure 8.29 Climatological SST (◦C) patterns simulated by the UCLA coupled atmosphere–ocean
general circulation model: (a) a version with a suitable incorporation of high-cloud emissivity and the
formation of low-level Peruvian stratus clouds, and (b) an earlier version without a specific inclusion of
these two cloud effects. The shaded area in (a) shows the SST higher than 28◦C including the Indian ocean
(data provided by Jin-Yi Yu of the University of California, Los Angeles).

the low-level Peruvian stratus clouds decreases the amount of solar flux reaching the
surface and, hence, the surface temperature locally, allowing a better simulation of
the SST pattern in the central equatorial Pacific.

In light of the foregoing discussion, it appears evident that the interaction and
feedback of clouds and their radiative properties are important physical processes
governing the interannual SST variability. Further numerical experiments employing
internally consistent and physically based cloud formation and radiative transfer pa-
rameterizations are required to explore the issues concerning the role of cloud and
radiation processes in the context of interannual and decadal time-scale variabilities,
particularly when these variabilities are coupled with greenhouse warming.

Exercises

8.1 Assume that the atmosphere acts as a single isothermal layer with a temperature
Ta that transmits solar radiation but absorbs all thermal infrared radiation. Show
that the global surface temperature T = (2Ta)1/4. Let the global albedo be 30%,
and the solar constant be 1366 W m−2. What is the global surface temperature?
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8.2 The mean global surface temperature is only about 15◦C. The mean global ab-
sorptivity of solar radiation by the atmosphere is about 0.2. Use the global albedo
and solar constant given in Exercise 8.1 and compute the mean global emissivity
and temperature of the atmosphere. Repeat the calculation if the solar constant
decreases by 1%.

8.3 Let the global reflectivities of the atmosphere and the surface be r̄ and rs, respec-
tively. Consider the multiple reflection between the surface and the atmosphere
and show that the global albedo of the earth–atmosphere system is given by

r̄ + (1 − Ā − r̄ )2rs/(1 − rsr̄ ).

8.4 In Eq. (8.4.5), express the IR flux based on the Stefan–Boltzmann law and use
a constant emissivity for the earth–atmosphere system. What would be the sen-
sitivity of surface temperature to this IR flux and why is this sensitivity much
smaller than that presented in Eq. (8.4.6)?

8.5 (a) The normalized mean annual distribution of insolation is approximately given
by Eq. (8.5.29), and the albedo is given by the step function

r (x, xi ) =
{

0.62, x > 0.95

0.32, x < 0.95.

Compute and plot the latitudinal surface temperature as a function of x from
Eq. (8.5.15b).

(b) Also compute the temperature at the ice line assuming an albedo of 0.5. Show
that the solution of the ice-line position xi is quadratic. Plot xi as a function
of Q/Q0 from 0.97 to 1.2.

8.6 (a) Derive Eq. (8.5.19) by means of a linear perturbation analysis.
(b) Show that the area covering the earth poleward of latitude ϕ is given by

2πa2
e (1 − x), where ae is the radius.

(c) Let 	r̄ = 0.3s∗(x)�(x, x̄i ), where � is the ratio of the change in the ice-
covered area to the total area of the Northern Hemisphere, and

s∗(x) =
∫ 0.95

xi

s(x) dx .

Show that the solution of xi is given by a fourth-order polynomial equation.
Compute and plot xi as a function of 	Q/Q0.

8.7 From Eq. (8.5.27a), we find

F0 = Q H0(xi ), F2 = Q H2(xi )/(6D′′ + 1).

Based on the two-mode approximation, we also have from Eq. (8.5.25)

F(x) = F0 + F2 P2(x).

By fitting the present climate conditions, i.e., x̄i = 0.95, 4Q0 = 1366 W m−2,
find the empirical coefficient D′′.
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Figure 8.30 Graphic representation of the temperature iteration in the convective adjustment scheme.
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8.8 Based on Eqs. (8.3.19)–(8.3.21) and in reference to Fig. 8.30, we may construct
an iterative procedure for the computation of a temperature profile by employing
the following convective adjustment scheme:

(a) First, compute T (0)
k , the temperature for each atmospheric layer, for k =

2, 3, 4, . . . , N by using

T (0)
k = T χ

k +
(
∂T

∂t

)χ
	t, (8.E.1)

where the superscript (n)(n = 0, 1, 2, . . .) denotes the iterative step during the
χ th time step, and Tk is the temperature at the kth layer. The subscript k = 1
denotes the surface, and k = N is the top level. The meanings of superscript
(n) and subscript k are graphically displayed in Fig. 8.30.

(b) Second, calculate the radiative equilibrium temperature for the surface
(k = 1) by using

T (0)
1 =

(
Fs,1 + Fχ

ir,1

σ

)1/4

, (8.E.2)

where Fs,1 and Fχ

ir,1 are the net solar flux and downward longwave flux
at the surface, respectively, and σ is the Stefan–Boltzmann constant. To a
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good approximation, the net solar flux in the atmosphere may be computed
independently of the temperature.

(c) Third, compute the critical temperature difference for each layer as follows:

LRCk = (zk − zk−1)γc, (8.E.3)

where zk is the altitude of the kth level and γc is the critical lapse rate.
(d) Fourth, calculate T (1)

1 and T (1)
2 such that they satisfy the energy balance:

C p

g
	p2

(
T (1)

2 − T (0)
2

) = σ	t
[(

T (0)
1

)4 − (T (1)
1

)4]
, (8.E.4a)

T (1)
2 = T (1)

1 − LRC2, (8.E.4b)

where 	p2 = p1 − p2. The term on the right-hand side of Eq. (8.E.4a) rep-
resents the net upward radiative flux. After eliminating T (1)

1 in Eqs. (8.E.4a)
and (8.E.4b), T (1)

2 can be solved from the following equations employing an
iterative procedure (e.g., Newton’s method) as follows:

σ	t
(
T (1)

2 + LRC2
)4 + C p

g
	p2T (1)

2 − C p

g
	p2T (0)

2 − σ	t
(
T (0)

1

)4 = 0.

(8.E.5)

(e) Fifth, if T (1)
2 − T (0)

3 > LRC3, that is, if the layer is unstable, T (2)
1 , T (2)

2 , and
T (1)

3 can be simultaneously computed so that they satisfy the following rela-
tionships:

C p

g

[
	p2

(
T (2)

2 − T (1)
2

)+	p3
(
T (1)

3 − T (0)
3

)] = σ	t
[(

T (1)
1

)4 − (T (2)
1

)4]
,

(8.E.6a)

T (1)
3 = T (2)

2 − LRC3, (8.E.6b)

T (2)
1 = T (2)

2 + LRC2, (8.E.6c)

where 	p3 = p2 − p3. These equations can also be solved by an iterative
method. If T (1)

2 − T (0)
3 ≤ LRC3, the layer is stable. We can then determine

T (2)
2 and T (1)

3 by setting

T (2)
2 = T (1)

2 , T (1)
3 = T (0)

3 . (8.E.7)

(f) Sixth, for levels k = 3, 4, 5, . . . , N , it is necessary to find T (1)
k+1 and T (2)

k . If

T (1)
k − T (0)

k+1 > LRCk+1, we may use

C p

g

[
	pk+1

(
T (1)

k+1 − T (0)
k+1

)+	pk
(
T (2)

k − T (1)
k

)] = 0, (8.E.8a)

and

T (2)
k − T (1)

k+1 = LRCk+1, k ≥ 3. (8.E.8b)
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Table 8.1

Radiative Heating Rate, Temperature, and Air Density Profiles

Height (km) Temperature (K) Solar (K day−1) IR (K day−1) Air density (g m−3)

0.2 303.7 0.74 −2.07 1.20 × 103

0.7 295.3 0.43 −1.10 1.13 × 103

1.1 287.3 0.42 −0.77 1.09 × 103

1.6 278.8 1.04 −3.09 1.05 × 103

2.4 269.8 0.92 −2.29 0.95 × 103

3.5 259.2 0.93 −1.95 8.6 × 102

4.8 246.9 0.69 −1.52 7.4 × 102

6.3 234.3 0.50 −1.41 6.3 × 102

8.1 224.4 0.31 −0.89 5.0 × 102

10.4 222.9 0.21 −0.01 3.8 × 102

13.9 216.4 0.23 −0.30 2.3 × 102

19.8 219.4 0.80 −0.85 8.9 × 101

27.3 227.1 1.49 −1.29 2.9 × 101

35.2 234.1 3.41 −4.52 8.5 × 100

43.2 255.3 9.41 −10.15 3.0 × 100

52.1 268.5 10.84 −7.89 1.0 × 100

61.0 239.8 3.26 −4.62 0.9 × 100

Substituting Eq. (8.E.8b) into Eq. (8.E.8a) and solving for T (2)
k leads to

T (2)
k = 	pk+1

(
T (0)

k+1 + LRCk+1
)+	pk T (1)

k

	pk +	pk+1
. (8.E.8c)

T (1)
k+1 can then be solved by substituting T (2)

k back into Eq. (8.E.8b). If

T (1)
k − T (0)

k+1 < LRCk+1, we set

T (2)
k = T (1)

k , T (1)
k+1 = T (0)

k+1. (8.E.9)

(g) Seventh, replace T (2)
k by T (0)

k for k = 1, 2, 3 . . . , N .
(h) Finally, repeat steps (d) through (g) until all layers of the supercritical lapse

rate are eliminated.

Letting the critical lapse rate be 6.5 K km−1, compute the temperature profile
corresponding to the radiative heating profile listed in Table 8.1. In the calcula-
tions, let the net solar and IR fluxes at the surface be 159.1 and 386.9 W m−2,
respectively, and the surface air density be 1.221 × 103 g m−3.

Suggested Reading

Budyko, M. I. (1982). The Earth’s Climate: Past and Future. Academic Press, New
York. Chapter 3 provides a discussion of the energy balance of the earth’s surface
and some results from energy balance models.



Suggested Reading 521

Hartmann, D. L. (1994). Global Physical Climatology. Academic Press, New York.
Chapters 10, 11, and 12 present concise discussions of climate models and natural
and anthropogenic climate changes.

IPCC (1996). Climate Change 1995: The Science of Climate Change. J. T. Houghton,
L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.).
Cambridge University Press, Cambridge, U.K. Chapter 2 gives a comprehensive
discussion of radiative forcing due to various greenhouse gases and aerosols.

Liou, K. N. (1992). Radiation and Cloud Processes in the Atmosphere. Theory, Ob-
servation, and Modeling. Oxford University Press, New York. Chapters 6 and 7
provide basic discussions of radiation budgets and climatic perturbations due to
greenhouse gases, aerosols, and clouds.
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Appendix A: Derivation
of the Planck Function

In accordance with Boltzmann statistics, if N0 denotes the number of oscillators
in any given energy state, then the number N in a state having energy higher by an
amount ε is given by

N = N0e−ε/K T , (A.1)

where K is Boltzmann’s constant and T is the absolute temperature. On the basis of
Planck’s first postulation, an oscillator cannot have just any energy, but rather only
energies given by Eq. (1.2.1). Thus, the possible values of E must be 0, hν̃, 2hν̃, and
so on. If the number of oscillators with zero energy is N0, then by virtue of Eq. (A.1),
the number with energy hν̃ is N0e−hν/K T , the number with energy 2hν̃ is N0e−2hν̃/K T ,
and so on. The total number of oscillators with frequency ν̃ for all states is therefore

N = N0 + N0e−hν̃/K T + N0e−2hν̃/K T + · · ·
= N0[1 + e−hν̃/K T + (e−hν̃/K T )2 + · · ·]
∼= N0/(1 − e−hν̃/K T ). (A.2)

The total energy of these oscillators may be obtained by multiplying each term in
Eq. (A.2) by the appropriate energy level:

E = 0 · N0 + hν̃ · N0e−hν̃/K T + 2hν̃ · N0e−2hν̃/K T + 3hν̃ · N0e−3hν̃/K T + · · ·
= hν̃N0e−hν̃/K T [1 + 2e−hν̃/K T + 3(e−hν̃/K T )2 + · · ·]
∼= hν̃N0e−hν̃/K T /(1 − e−hν̃/K T )2. (A.3)

The average energy per oscillator is then given by

E

N
= N0hν̃e−hν̃/K T /(1 − e−hν̃/K T )2

N0/(1 − e−hν̃/K T )
= hν̃/(ehν̃/K T − 1). (A.4)

According to Planck’s second postulation, the quanta of energy are emitted only when
an oscillator changes from one to another of its quantized energy states. The average
emitted energy of a group of oscillators is, therefore, given by Eq. (A.4), which is the
factor appearing in Planck’s formula.
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524 Appendix A Derivation of the Planck Function

To obtain the Planck function, we let u ν̃ denote the monochromatic energy density,
i.e., the energy per unit volume per unit frequency interval in a cavity with temperature
T . With this definition, we write

u ν̃ = Ahν̃/(ehν̃/K T − 1), (A.5)

where A is a constant to be determined. In accordance with the principle of equi-
partition of energy, the energy density in a cavity is given by the classical Rayleigh–
Jeans formula:

u ν̃ = (8πν̃2/c3)K T . (A.6)

This formula is valid when the temperature T is high and the frequency ν̃ is small. By
letting hν̃/K T → 0 in Eq. (A.5), we find A = 8πν̃2/c3. Thus, the monochromatic
energy density is

u ν̃ = 8πhν̃3

c3(ehν̃/K T − 1)
. (A.7)

For blackbody radiation, the emitted photons travel in all directions (4π solid angle)
at the speed of light c. Thus, the emitted intensity (or radiance) in a cavity with a
temperature T in units of energy/area/time/sr/frequency may be expressed by

Bν̃(T ) = u ν̃c/4π. (A.8)

On substituting Eq. (A.7) into (A.8), we obtain the Planck function in the form

Bν̃(T ) = 2hν̃3

c2(ehν̃/K T − 1)
, (A.9)

as stated in Eq. (1.2.3).



Appendix B: The Schrödinger
Wave Equation

According to wave mechanics, the behavior of a corpuscle is described by the
Schrödinger wave equation in the form

h

2π i

∂ψ

∂t
= h2

8π2m
∇2ψ − E pψ, (B.1)

where ψ denotes the wave function, m is the mass, E p is the potential energy of the
corpuscle, which is a function of position only, and ∇2 = ∂2/∂2x + ∂2/∂2 y + ∂2/∂2z.
The quantum-mechanical Hamiltonian operator is defined as

H = − h2

8π2m
∇2 + E p. (B.2)

Thus, we have

h

2π i

∂ψ

∂t
= −Hψ. (B.3)

We may express the wave function as the product of two variables such that

ψ(q, t) = ϕ(q)φ(t), (B.4)

where q represents the particle position or coordinate. It follows that

h

2π i
ϕ(q)

dφ(t)

dt
= −φ(t)Hϕ(q). (B.5a)

Dividing both sides by ϕ(q) φ(t) yields

h

2π i

1

φ(t)

dφ(t)

dt
= − 1

ϕ(q)
Hϕ(q) = −E . (B.5b)

The left-hand side is a function of t only, but the right-hand side is a function
of position q only. It follows that each must be equal to the same constant, which
has the dimension of energy. This constant is identified with the total energy of the
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particle and is denoted by −E . Thus, we obtain two equations from Eq. (B.5b) as
follows:

h2

8π2m
∇2ϕ + (E − E p)ϕ = 0, (B.6)

dφ

dt
= −2π i

h
Eφ. (B.7)

The solution of the time-dependent equation upon ignoring a constant of integration is

φ = exp(−2π i Et/h). (B.8)

Thus, the wave function from Eq. (B.4) is given by

ψ(q,t) = ϕ(q) exp(−2π i Et/h), (B.9)

where the amplitude of the wave function ϕ is soluble from Eq. (B.6) only for cer-
tain specific values of E , referred to as the eigenvalues. A particular function that
satisfies Eq. (B.6) is called the eigenfunction of the problem. The eigenfunctions and
eigenvalues depend on the form of the potential energy function E p of the corpuscle.

For a hydrogen atom in which one electron moves under the Coulomb attraction
of the nucleus, the potential energy is given by

E p = −e2/r, (B.10)

where e is the charge of the electron and r is the distance between the electron and
the nucleus. Equation (B.6) can then be solved and the eigenvalues of this case are
defined by

En = −RH hc/n2, (B.11)

where RH = 1.097 × 105 cm−1 is the Rydberg constant. See also Eq. (1.3.3).



Appendix C: Spherical Geometry

In reference to Fig. C.1, we define

CD = CO tan θ ′, OD = CO sec θ ′,

CE = CO tan θ, OE = CO sec θ, (C.1)

where CD and CE are the tangent lines of the arcs CA and CB, respectively. For the
triangle 	CDE, we find

DE2 = CD2 + CE2 − 2CE CD cos DCE. (C.2)

For the triangle 	ODE, we have

DE2 = OD2 + OE2 − 2OD OE cos DOE. (C.3)

Upon substituting Eq. (C.1) into Eqs. (C.2) and (C.3), we obtain

DE2 = CO2[tan2 θ ′ + tan2 θ − 2 tan θ ′ tan θ cos(φ − φ′)], (C.4)

DE2 = CO2[sec2 θ ′ + sec2 θ − 2 sec θ ′ sec θ cos�]. (C.5)

E

C

θ' θ

φ - φ'

D

 Θ

φ' φ

O

A
B

Tangent to CA arc Tangent to CB arc

Figure C.1 Relationship between the scattering angle, zenith angle, and azimuthal angle in spherical
coordinates.
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It follows that

tan2 θ ′ + tan2 θ − 2 tan θ ′ tan θ cos(φ − φ′)

= sec2 θ ′ + sec2 θ − 2 sec θ ′ sec θ cos�. (C.6)

But sec2 θ − tan2 θ = 1, so Eq. (C.6) becomes

2 − 2 sec θ ′ sec θ cos� = −2 tan θ ′ tan θ cos(φ − φ′). (C.7)

Thus, we have

cos� = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)

= μμ′ + (1 − μ2)1/2(1 − μ′2)1/2 cos(φ − φ′), (C.8)

where μ = cos θ and μ′ = cos θ ′.



Appendix D: Complex Index of Refraction,
Dispersion of Light, and Lorentz–Lorenz
Formula

Within a dielectric, positive and negative charges are impelled to move in opposite
directions by an applied electric field. As a result, electric dipoles are generated. The
product of charges and the separation distance of positive and negative charges is
called the dipole moment, which, when divided by the unit volume, is referred to
as polarization P. The displacement vector D (charge per area) within a dielectric is
defined by

D = εE = E + 4πP, (D.1)

where ε is the permittivity of the medium. Thus,

ε = 1 + 4πP · E/E2. (D.2)

The velocity of light in terms of ε and the permeability μ is given by

c =
√

1

με
. (D.3)

The permeability μ in air or water is nearly equal to the permeability μ0 in vacuum,
i.e., μ ≈ μ0. The index of refraction is defined as the ratio of the velocity of light in
vacuum to that in the medium and may be expressed by

m = c0

c
≈ √

ε =
√

1 + 4πP · E
E2

. (D.4)

But the polarization vector for N dipoles is [see Eq. (3.3.1)]

P = NαE. (D.5)

Inserting Eq. (D.5) into Eq. (D.4) leads to

m2 = 1 + 4πNα. (D.6)

Now, we have to find the polarizibility in terms of frequency. On the basis of the
definition of a polarization vector, we have

P = Ner, (D.7)
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where e is the charge of an electron, and r represents the vector distance. Combining
Eqs. (D.5) and (D.7), we find

αE = er. (D.8)

Further, from the Lorentz force equation, the force generated by the electric and
magnetic fields is given by

F = e[E + (μ/c)v × H], (D.9)

where v denotes the velocity of an electron, which is very small compared to the
velocity of light. Hence, the force produced by the magnetic field may be neglected.
The force in the vibrating system in terms of the displacement r is due to (1) the
acceleration of the electron; (2) the damping force, which carries away energy when
the vibrating electrons emit electromagnetic waves, and which is proportional to
the velocity of the electrons; and (3) the restoring force of the vibration, which is
proportional to the distance r . From Newton’s second law, we find

F
me

= eE
me

= d2r
dt2

+ γ
dr
dt

+ ξr, (D.10)

where γ and ξ are the damping and restoring coefficients, respectively, and me is the
mass of the electron. In scalar form, we write

d2r

dt2
+ γ

dr

dt
+ ξr = eE

me
. (D.11)

The homogeneous solution of this second-order differential equation is given by

r = r0e−iωt = r0e−i2πν̃t . (D.12)

Substituting Eq. (D.12) into Eq. (D.11), we obtain

[(ξ − 4π2ν̃2) − i2πν̃γ ]r = eE/me. (D.13)

The natural (or resonant) frequency is defined by ν̃0 = √
ξ/2π . Thus, we find

α = er

E
= e2

me

1

4π2
(
ν̃2

0 − ν̃2
)− i2πγ ν̃

= e2

me

[
ν̃2

0 − ν̃2

4π2
(
ν̃2

0 − ν̃2
)2 + γ 2ν̃2

+ i

2π

γ ν̃

4π2
(
ν̃2

0 − ν̃2
)2 + γ 2ν̃2

]
. (D.14)

Let the real and imaginary parts of the index of refraction be mr and mi , respec-
tively, so that the index of refraction is defined by

m = mr + imi . (D.15)
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From Eq. (D.6), we can then show that

m2
r − m2

i = 1 + 4πNe2

me

ν̃2
0 − ν̃2

4π2
(
ν̃2

0 − ν̃2
)2 + γ 2ν̃2

, (D.16a)

2mr mi = 2Ne2

me

γ ν̃

4π2
(
ν̃2

0 − ν̃2
)2 + γ 2ν̃2

. (D.16b)

For air, mr ≈ 1 and mi � (mr − 1). Also, in the neighborhood of the resonant fre-
quency (ν̃2 − ν̃2

0 ) = (ν̃0 + ν̃) · (ν̃ − ν̃0) ∼= 2ν̃0(ν̃ − ν̃0). Further, the half-width of the
natural broadening depends on the damping and is given in the form αN = γ /4π ,
while the line strength S is πNe2/(mec). Thus, we obtain the real part

mr − 1 = − Ne2

4πmeν̃0

ν̃ − ν̃0

(ν̃ − ν̃0)2 + α2
N

, (D.17)

and the absorption coefficient (Born and Wolf, 1975)

kν̃ = 4πν̃0mi

c
= S

π

αN

(ν̃ − ν̃0)2 + α2
N

. (D.18)

Equation (D.18) is the Lorentz profile discussed in Section 1.3.
Shown in Fig. D.1 is the dependence of (mr − 1) and kν̃ on the frequency. The value

of (mr − 1) increases as the frequency increases when (ν̃0 − αN ) > ν̃. This mode is

 −6    −5   −4 −3   −2 −1       0          1     2      3       4      5       6

kν∼αN
mr −1

(ν−ν0) /αN
∼ ∼

Figure D.1 Real and imaginary parts of the complex index of refraction as functions of the frequency.
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referred to as normal dispersion under which light is dispersed by a prism into its
component colors. For the region (ν̃0 + αN ) > ν̃ > (ν̃0 − αN ), (mr − 1) decreases
with increasing frequency and is called anomalous dispersion. For the range ν̃ >

(ν̃0 + αN), normal dispersion takes place again, but (mr − 1) is smaller than unity.
In this appendix we also wish to prove Eq. (3.3.16). We consider a dielectric placed

between the plates of a parallel-plate condenser without the end effect. Moreover, we
consider an individual molecule constituting this dielectric and draw a sphere with
radius a about this molecule. The molecule is, therefore, affected by the fields caused
by (1) the charges of the surfaces of the condenser plates; (2) the surface charge
on the dielectric facing the condenser plates; (3) the surface charge on the spherical
boundary of radius a; and (4) the charges of molecules (other than the one under
consideration) contained within the sphere. For items (1) and (2), the electric field
produced by these charges is

E1 + E2 = (E + 4πP) − 4πP = E. (D.19)

For item (3), the electric field, which is produced by the polarization charge presented
on the inside of the sphere, is given by

d E3 = 4π P cos θ d A

4πa2
, (D.20)

where P cos θ represents the component of the polarization vector in the direction of
the electric field vector, and the differential area d A = a2 sin θ dθ dφ × cos θ . Thus,

E3 =
∫ 2π

0

∫ π

0

4π P cos θ

4πa2
a2 sin θ cos θ dθ dφ = 4π P

3
. (D.21)

For item (4), it turns out that E4 = 0. Thus, the effective electric field is

E′ = E + 4πP/3. (D.22)

However, from Eq. (D.5), we have

P = αNE′ = αN (E + 4πP/3). (D.23)

It follows that

P = αNE/(1 − 4παN/3). (D.24)

Thus, from the definition of the index of refraction in Eq. (D.4), we find

m2 = 1 + 4παN/(1 − 4παN/3). (D.25)

Rearranging the terms, we obtain the Lorentz–Lorenz formula in the form

α = 3

4πN

m2 − 1

m2 + 2
. (D.26)



Appendix E: Properties of the Legendre
Polynomials and Addition Theorem

As indicated in Eqs. (5.2.42) and (5.2.43), the solution of the second-order differ-
ential equation

(1 − μ2)
d2 y

dμ2
− 2μ

dy

dμ
+
[
�(�+ 1) − m2

1 − μ2

]
y = 0 (E.1)

is given by

y(μ) = Pm
� (μ) = (1 − μ2)m/2

2��!

dm+�

dμm+� (μ2 − 1), (E.2)

whereμ = cos θ . When m = 0, P0
� (μ) = P�(μ) are the Legendre polynomials. From

Eq. (E.2) we have

Pm
� (μ) = (1 − μ2)m/2 dm P�(μ)

dμm
. (E.3)

The associated Legendre polynomials satisfy the orthogonal properties

∫ 1

−1
Pm
� (μ)Pm

k (μ) dμ =
⎧⎨⎩

0, � �= k,

2

2�+ 1

(�+ m)!

(�− m)!
, � = k,

(E.4)

∫ 1

−1
Pm
� (μ)Pn

� (μ)
dμ

1 − μ2
=
⎧⎨⎩

0, m �= n,

1

m

(�+ m)!

(�− m)!
, m = n.

(E.5)

Some useful recurrence relations in conjunction with light scattering and radiative
transfer are

d Pm
�

dθ
= −

√
1 − μ2

d Pm
�

dμ
= 1

2

[
(�− m + 1)(�+ m)Pm

� − Pm+1
�

]
, (E.6)

(2�+ 1)μPm
� = (�+ m)Pm

�−1 + (�− m + 1)Pm
�+1, (E.7)

(2�+ 1)(1 − μ2)1/2 Pm
� = (Pm+1

�+1 − Pm+1
�−1

)
. (E.8)
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A number of low-order associated Legendre and Legendre polynomials are

P1
1 (μ) = (1 − μ2)1/2, P1

2 (μ) = 3μ(1 − μ2)1/2,

P1
3 (μ) = 3

2 (5μ2 − 1)(1 − μ2)1/2, P2
2 (μ) = 3(1 − μ2),

P2
3 (μ) = 15μ(1 − μ2), P3

3 (μ) = 15(1 − μ2)3/2, (E.9)

P0(μ) = 1, P1(μ) = μ,

P2(μ) = 1
2 (3μ2 − 1), P3(μ) = 1

2 (5μ3 − 3μ),

P4(μ) = 1
8 (35μ4 − 30μ2 + 3). (E.10)

Below we present the addition theorem for the Legendre polynomials. Let g (μ, φ)
be an arbitrary function on the surface of a sphere where this function and all of its
first and second derivatives are continuous. Then g (μ, φ) may be represented by an
absolutely convergent series of surface harmonics as follows:

g (μ, φ) =
∞∑
�=0

[
a�0 P�(μ) +

�∑
m=1

(a�m cos mφ + b�m sin mφ)Pm
� (μ)

]
. (E.11)

The coefficients can be determined by

a�0 = 2�+ 1

4π

∫ 2π

0

∫ 1

−1
g (μ, φ)P�(μ) dμ dφ, (E.12)

a�m = (2�+ 1)(�− m)!

2π (�+ m)!

∫ 2π

0

∫ 1

−1
g (μ, φ)Pm

� (μ) cos mφ dμ dφ, (E.13)

b�m = (2�+ 1)(�− m)!

2π (�+ m)!

∫ 2π

0

∫ 1

−1
g (μ, φ)Pm

� (μ) sin mφ dμ dφ. (E.14)

We note that

∫ 1

−1
Pm
� (μ)Pm

k (μ) dμ =
⎧⎨⎩

0, � �= k
2(�+ m)!

(2�+ 1)(�− m)!
, � = k,

(E.15)

∫ 2π

0
cos mφ cos nφ dφ =

{
0, m �= n
π, m = n,

(E.16)

and also that P�(1) = 1, and Pm
� (1) = 0. Thus, we write

[g (μ, φ)]μ=1 =
∞∑
�=0

a�0 = 1

4π

∞∑
�=0

(2�+ 1)
∫ 2π

0

∫ 1

−1
g (μ, φ)P�(μ) dμ dφ. (E.17)
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We may now define the surface harmonic function in the form

Y�(μ, φ) =
�∑

m=0

(a�m cos mφ + b�m sin mφ)Pm
� (μ). (E.18)

Let Y�(μ, φ) of order � be g (μ, φ), and by virtue of Eq. (E.17), we find

[Y�(μ, φ)]μ=1 = 2�+ 1

4π

∫ 2π

0

∫ 1

−1
Y�(μ, φ)P�(μ) dμ dφ. (E.19)

From the scattering geometry, we have

cos� = μμ′ + (1 − μ2)1/2(1 − μ′2)1/2 cos(φ − φ′). (E.20)

Thus, we may let

P�(cos�) =
�∑

m=0

(cm cos mφ + dm sin mφ)Pm
� (μ)

= c0

2
P�(μ) +

�∑
m=1

(cm cos mφ + dm sin mφ)Pm
� (μ). (E.21)

Using the orthogonal properties denoted in Eqs. (E.15) and (E.16), we find∫ 2π

0

∫ 1

−1
P�(cos�)Pm

� (μ) cos mφ dμ dφ = 2π (�+ m)!

(2�+ 1)(�− m)!
cm . (E.22)

By letting Pm
� (μ) cos mφ = Y�(μ, φ), and using Eq. (E.19), Eq. (E.22) becomes∫ 2π

0

∫ 1

−1
P�(cos�)

[
Pm
� (μ) cos mφ

]
dμ dφ = 4π

2�+ 1

[
Pm
� (μ) cos mφ

]
cos�= 1

= 4π

2�+ 1
Pm
� (μ′) cos mφ′. (E.23)

Note that cos� = 1 and � = 0, so we have μ = μ′, and φ = φ′. It follows from
Eq. (E.21) that

cm = 2(�− m)!

(�+ m)!
Pm
� (μ′) cos mφ′. (E.24)

In a similar manner, we find

dm = 2(�− m)!

(�+ m)!
Pm
� (μ′) sin mφ′. (E.25)

Thus, from Eqs. (E.24), (E.25), and (E.21), we obtain

P�(cos�) = P�(μ)P�(μ
′) + 2

�∑
m=1

(�− m)!

(�+ m)!
Pm
� (μ)Pm

� (μ′) cos m(φ′ − φ). (E.26)



Appendix F: Some Useful Constants

Acceleration of gravity (at sea level and
45◦ latitude)

g = 9.80616 m sec−2

Angular velocity of rotation of the earth ω = 7.27221 × 10−5 rad sec−1

Avogadro’s number N0 = 6.02297 × 1023 molecule mol−1

Boltzmann’s constant K = 1.38062 × 10−23 J K−1

Density of air at standard pressure and
temperature

ρ = 1.273 × 10−3 g cm−3 = 1.273 kg m−3

Density of ice (0◦C) ρi = 0.917 g cm−3 = 0.917 × 103 kg m−3

Density of liquid water (4◦C) ρ� = 1 g cm−3 = 1 × 103 kg m−3

Electron charge e = 1.60219 × 10−19 C (coulomb, mks)
Gravitational constant G = 6.673 × 10−11 N m2 kg−2

Latent heat of condensation at 0◦C Lc = 2.5 × 106 J kg−1

Loschmidt’s number (at standard temperature
and pressure)

n0 = 2.68719 × 1025 molecule m−3

Mass of an electron me = 9.10956 × 10−31 kg
Mass of the earth Me = 5.988 × 1024 kg
Mean distance between the earth and the sun r0 = 1.49598 × 1011 m
Mean radius of the earth ae = 6.37120 × 106 m
Mean radius of the sun (visible disk) as = 6.96000 × 108 m
Molecular weight of dry air M = 28.97 g mol−1

Permeability of vacuum μ0 = 12.56637 × 10−7 kg m C−2 (mks)
= 1 Gaussian unit (cgs)

Permittivity of vacuum ε0 = 8.85419 × 10−12 C kg−1 m−3 sec2 (mks)
= 1 Gaussian unit (cgs)

Planck’s constant h = 6.62620 × 10−34 J sec
Saturation vapor pressure (0◦C) e0 = 6.1078 mb = 0.61078 k Pa
Solar constant S ∼= 1366 W m−2 (J sec−1 m−2)
Specific heat of air at constant pressure C p = 10.04 × 102 m2 sec−2 K−1

Specific heat of air at constant volume Cv = 7.17 × 102 m2 sec−2 K−1

Standard pressure p0 = 1013.25 mb = 101.325 k Pa
Standard temperature T0 = 273.16 K
Stefan-Boltzmann constant σ = 5.66961 × 10−8 J m−2 sec−1 K−4

Universal gas constant R∗ = 8.31432 J mol−1 K−1

Velocity of light c = 2.99792458 × 108 m sec−1

Wien’s displacement constant α = 0.2897 × 10−2 m K
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Appendix G: Standard Atmospheric
Profilesa

Altitude Pressure Temperature Density Water Vapor Ozone
(km) (mb) (K) (g m−3) (g m−3) (g m−3)

0 1.013 × 103 288.1 1.225 × 103 5.9 × 100 5.4 × 10−5

1 8.986 × 102 281.6 1.111 × 103 4.2 × 100 5.4 × 10−5

2 7.950 × 102 275.1 1.007 × 103 2.9 × 100 5.4 × 10−5

3 7.012 × 102 268.7 9.093 × 102 1.8 × 100 5.0 × 10−5

4 6.166 × 102 262.2 8.193 × 102 1.1 × 100 4.6 × 10−5

5 5.405 × 102 255.7 7.364 × 102 6.4 × 10−1 4.5 × 10−5

6 4.722 × 102 249.2 6.601 × 102 3.8 × 10−1 4.5 × 10−5

7 4.111 × 102 242.7 5.900 × 102 2.1 × 10−1 4.8 × 10−5

8 3.565 × 102 236.2 5.258 × 102 1.2 × 10−1 5.2 × 10−5

9 3.080 × 102 229.7 4.671 × 102 4.6 × 10−2 7.1 × 10−5

10 2.650 × 102 223.2 4.135 × 102 1.8 × 10−2 9.0 × 10−5

11 2.270 × 102 216.8 3.648 × 102 8.2 × 10−3 1.3 × 10−4

12 1.940 × 102 216.6 3.119 × 102 3.7 × 10−3 1.6 × 10−4

13 1.658 × 102 216.6 2.666 × 102 1.8 × 10−3 1.7 × 10−4

14 1.417 × 102 216.6 2.279 × 102 8.4 × 10−4 1.9 × 10−4

15 1.211 × 102 216.6 1.948 × 102 7.2 × 10−4 2.1 × 10−4

16 1.035 × 102 216.6 1.665 × 102 6.1 × 10−4 2.3 × 10−4

17 8.850 × 101 216.6 1.423 × 102 5.2 × 10−4 2.8 × 10−4

18 7.565 × 101 216.6 1.216 × 102 4.4 × 10−4 3.2 × 10−4

19 6.467 × 101 216.6 1.040 × 102 4.4 × 10−4 3.5 × 10−4

20 5.529 × 101 216.6 8.891 × 101 4.4 × 10−4 3.8 × 10−4

21 4.729 × 101 217.6 7.572 × 101 4.8 × 10−4 3.8 × 10−4

22 4.047 × 101 218.6 6.451 × 101 5.2 × 10−4 3.9 × 10−4

23 3.467 × 101 219.6 5.500 × 101 5.7 × 10−4 3.8 × 10−4

24 2.972 × 101 220.6 4.694 × 101 6.1 × 10−4 3.6 × 10−4

25 2.549 × 101 221.6 4.008 × 101 6.6 × 10−4 3.4 × 10−4

30 1.197 × 101 226.5 1.841 × 101 3.8 × 10−4 2.0 × 10−4

35 5.746 × 100 236.5 8.463 × 100 1.6 × 10−4 1.1 × 10−4

40 2.871 × 100 250.4 3.996 × 100 6.7 × 10−5 4.9 × 10−5

45 1.491 × 100 264.2 1.966 × 100 3.2 × 10−5 1.7 × 10−5

50 7.978 × 10−1 270.6 1.027 × 100 1.2 × 10−5 4.0 × 10−6

75 5.520 × 10−2 219.7 8.754 × 10−2 1.5 × 10−7 8.6 × 10−8

100 3.008 × 10−4 210.0 4.989 × 10−4 1.0 × 10−9 4.3 × 10−11

aSource: U.S. Standard Atmosphere, 1976.
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Appendix H: Answers to Selected Exercises

Chapter 1

1.3 Bν(T ) = 2hν3c2/(ehcν/K T − 1)

1.4 Show that (5 − x) = 5 · e−x , where x = hc/(KλT ), and find x

1.5 Insert λm = α/T into the Planck function

1.6 ∼300 K

1.7 7.52 ×10−23 J sec−1 m−2 sr−1/μm; 81.2 × 10−3 J sec−1 m−2 sr−1/(cm−1);

8.57 × 10−17 J sec−1 m−2 sr−1/Hz

1.8 5.22 × 102 J sec−1 m−2; 4.96 × 102 J sec−1 m−2; 9.36 μm

1.9 Both cases are about 0.4%

1.11 (b) n = 1, 2; λ12 = 1216 Å

1.12 1 J = 5.0345 × 1022 cm−1

1.13 Use Planck’s relation, 	E = hνc

1.14 Note:
∫

eax cos bx dx = eax (a cos bx + b sin bx)

a2 + b2

1.15 Note:
∫ ∞

−∞

dx

1 + x2
= π ;

∫ ∞

−∞
e−x2

dx = √
π

1.17 (a) lim
x,y→∞K (x, y) = 1

π

y

x2 + y2
;

(b) Define a delta function f (x − t) = 1

π

y

y2 + (x − t)2

1.18 (a) n1b12 = n2b21; (b) n1C12u ν̃ = n2(C21u ν̃ + A21);

(c) n1(b12 + C12u ν̃) = n2(b21 + C21u ν̃ + A21)

1.19 βλ = 0.1, 0.5 m−1; τ = 1, 5

1.20 x(aerosol) = 48.9 km, x(dense fog) = 0.039 km

1.21 Iλ(s) = Iλ(0)(1 − Rλ)2 Tλ/
(
1 − R2

λT 2
λ

)
1.23 Fν(τ = 0) = πBν(Ts)2E3(τ∗) + πBν(T )[1 − 2E3(τ∗)]
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Chapter 2

2.1 At the poles, ε = δ; at 60◦, ε = 30◦ + δ; at 45◦N and equinox, 2H = 12 hr;

at 45◦N and at the solstice, 2H = 15.44 hr

2.2 Use the equation for an ellipse involving the radius, the true anomaly, and

eccentricity

2.4 (b) 102 min; (c) 35,865 km

2.5 5754 K

2.6 1.52991 × 1022 J

2.7 4.51 × 10−10

2.8 (a) 1.14 × 109 J sec−1; (b) 1.82 × 10−2 J sec−1

2.10 T(Venus) = 225.8 K

2.11 70.85 K (use the solid angle from Ex. 1.2)

2.12 4.2 K

2.13 (a) 556.60 W m−2; (b) 434.81 W m−2 (daily mean)

2.14 Note: sin(−ϕ) = − sinϕ; sin(−ε) = − sin ε

2.15 Note: e << 1 and (1 − x)−2 = 1 + 2x − · · ·
2.17 Note: Solar irradiance at TOA, Fλ = �Bλ(T ), where � is a solid angle

2.18 F0λ = 22.31 W m−2, Tλ = 0.68465

Chapter 3

3.1 Note that the Boltzmann constant K = MR, where M is the molecular weight

and R is the gas constant for air.

3.3 (a) Use Beer’s law for the change of solar flux due to absorption from the outer

edge of the atmosphere to the point P and (b) take an exponential variation of

the density in the vicinity of the point P .

3.5 [O]2 = J2[O2]/(K11[M] + K ′
11)

3.6 Aν̄(u/μ0) = 2
√

Suα/μ0

3.7 σs(0.7μm) = 1.71 × 10−27 cm2

3.8 τ (0.5μm) ∼= 0.15

3.9 At z = 10 km; ρ = 0.414 × 10−3 g cm−3, (mr − 1) × 10−3 = 0.099

3.10 F ∼= F0l · 1.37 × 10−11 (at 10 km)

3.11 For λ = 10 cm; βπ ∼= 9.76 × 10−10 km−1, 8.66 × 10−10 km−1

3.12 The total deviation from the original direction is θ ′ = 2(θi − θt ) + 2(p − 1) ·
(π/2 − θt ), where p = 1 denotes two refractions and p ≥ 2 denotes internal
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reflections. The first rainbow (p = 2) is located at the 137◦ scattering

angle.

3.13 The deviation from the original ray is θ ′ = (θi − θt ) + (θ ′
i − θ ′

t ). Note that θ ′
i =

θt , θ
′
t = θt and θt = A/2. The 22◦ and 46◦ halos are defined by A = 60◦ and

90◦, respectively.

3.14 At about 24.1◦ from the sun

3.15 An aerosol particle size of about 0.45 to 0.48μm (use blue and red light in the

calculations).

3.17 Note that for ω̃ = 1, k = 0 and γ1 = γ2

3.18 χ = −[(γ1 − γ2)(1 − 2γ3) + 1/μ0]ω̃ F�

Chapter 4

4.2 x → 0, L(x) ∼= x ; x → ∞, L(x) ∼= 2
√

x/2π (prove)

4.3 f (k) = 1

k

1

π

(
2kδ

S
coth β − k2δ2

S2
− 1

)−1/2

4.4 (d) f (k) = L−1(e−au) = δ(k − a);

f (k) = L−1(exp[−(au)1/2]) = 1
2

(
a

π

)1/2

k−3/2 exp(−a/4k)

4.5
W

δ
= 2

π
(bν̄ y)1/2 tan−1

(
δ

πν0
(bν̄ y)1/2

)
+ 2ν0Cy

1 + ν0Cy(δ/ν0)
, y = aν̄u

4.6 Note: du = q dp/g

4.7 Tν̄ = Fν̄/F0,ν̄

4.8 To obtain cν̄ and dν̄ , use strong- and weak-line approximations

4.9 Note:
∫ ∞

0
e−a2x2

cos bx dx =
√
π

2a
e−b2/4a2

;
∫ ∞

0

cos ax

1 + x2
dx = π

2
e−a

4.10 Note:
∫ ∞

0

∫ ∞

k ′′
→
∫ ∞

0

∫ k

0
4.11 Let M = I ↑ + I ↓, and N = I ↑ − I ↓

Chapter 5

5.1 Perform mk ∇ × Nψ = ∇ × ∇ × Mψ

5.2 Take a trial solution: rvi = 1

k

∞∑
n=1

βn ψn(kr ) P1
n (cos θ) sinφ, and determine βn

5.3 (a) Note: ∇ × ∇ψ = 0 and ∇ · ∇ × A = 0;

(b) Mψ = ∇ × (azψ) = 1

r

∂ψ

∂φ
ar − ∂ψ

∂r
aφ

5.4 Let ψ(r, φ, z) = e−iωt R(r )�(φ)Z (z)



Appendix H Answers to Selected Exercises 541

5.5 See Eq. (5.4.24)

5.6 θi = cos−1
√

1/(1 + m2)

5.7 (a) Red outside and violet inside, a ∼= 3.5μm;

(b) Primary cloudbow, 137.78◦ (red) and 139.49◦ (violet);

(c) 22◦ halo (A = 60◦), 	θ = 0.76◦; 46◦ halo (A = 90◦), 	θ = 2.17◦

5.8 Let m cos θt = u + iv in Eq. (5.3.23a)

5.9 See also Eq. (5.2.113)

5.10 (c) φi = A/2, φi = (A + θ ′
h)/2, where θ ′

h is the minimum deviation angle pro-

jected on the horizontal plane, and sin θ ′/2 = cos εi sin θ ′
h/2 (prove) where εi

is the elevation angle; θ (red) = 24.54◦

5.14 The average cross section of randomly oriented hexagonal crystals is given by

G = 6

π

∫ π/6

0

∫ π/2

0
G(α, β) cosα dα dβ

Chapter 6

6.1 ω̃(ν̃) = (1 + x2)/(2 + x2), where x = (ν − ν0)/α, R(μ,μ0)

= ω̃

4(μ+ μ0)
× (1 + √

3μ)(1 + √
3μ0)

[1 + μ
√

3(1−ω̃)][1 + μ0

√
3(1−ω̃)]

6.2 r (μ0) = F↑(μ0)/μ0 F�; ω̃ = 0.8, r (μ0 = 1) = 0.32, r̄ = 0.35

6.3 Follow the procedures outlined in Section 6.3.2

6.4 Note: 1 + x + x2 + · · · = 1/(1 − x)

6.6 Let F� = π and φ0 = 0◦.For τ = 0.1, I (μ = 1, φ = 0◦) = 0.028

6.7 I2(0, μ, φ)

= μ0 F�ω̃2

4

∫ 2π

0

∫ 1

−1
P(μ, φ;μ′φ′)P(μ′, φ′,−μ0, φ0)g(μ,μ0, μ

′) dμ′ dφ′,

where g(μ,μ0, μ
′) = 1

4(μ0 + μ′)

[
μ0

μ0 + μ

{
1 − exp

[
−τ1

(
1

μ0
+ 1

μ

)]}
+ μ′

μ− μ′

{
exp

[
−τ1

(
1

μ0
+ 1

μ′

)]
− exp

[
−τ1

(
1

μ0
+ 1

μ

)]}]
, μ �= μ′

6.8 I ↑(0, μ1) = 1

2

{
μ0

μ1

[
2S− − 2b

μ0

μ1
(S+ + S−)

]
+ Kμ1

2b
+ H

}
, where

K = −2μ0

μ1

[(
S− − bμ0

μ1

)
e−τ1/μ0 + S+ + bμ0

μ1
(S+ + S−)

]/(
τ1 + μ1

b

)
,
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H = 2μ0

μ1

[
S+ + bμ0

μ1
(S+ + S−)

]
+ Kμ1

2b

6.12 (El/al)2 + (Er/ar )2 − 2(El/al)(Er/ar ) cos δ = sin2 δ

6.15 (b) Let I0 = 1,
[
2 − 1

2 0 1
2

]
, I = 2, P = 1

2
√

2
%, Ir = 5

4 ; (c)χ = 0◦, β = 22.5◦;

(d) 1
4 [(4 − √

2) (2
√

2 − 1) 0 (2
√

2 − 1)], 1
4 [(4 − √

2) (1 − 2
√

2) 0 (1 − 2
√

2)];

(e) 1
4 [(4 + √

2) (2
√

2 − 3) 0 (1 + 2
√

2)] for right-hand polarization

6.17 ∇2 I 0
0 − k2β2

e I 0
0 = −χβ2

e e−τs ; where χ = 3ω̃F�(1 + g − ω̃g)/4π

Chapter 7

7.1 (b) ν∗ = 3.13

7.2 (a) g(k) = −12

k2
e−k +

(
24

k2
− 8

k
+ 2

)[
1

k2
−
(

1

k
+ 1

k2

)
e−k

]
, i = 10, k = 5,

g(k) = 0.0490; (b) i = 10, k = 5, g(k) = 0.0489

7.3

Second difference, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

· · ·
1 −4 5 −2

0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7.5 τ ∼ LWC2/3 N 1/3

Chapter 8

8.1 302 K

8.2 ε̄ = 0.88, Ta = 250 K; ε̄ = 0.9, Ta = 249 K

8.3 Note: 1 + y + y2 + · · · = 1/(1 − y)

8.4 ∂Ts/∂Fir = Ts/4Fir

8.5 T (xi = 0.95) ∼= −7◦C ; x = [a − b/(Q/Q0)]1/2, where a ∼= 1.71646 and

b ∼= 0.81396

8.6 (c) x4
i − ax3

i − bx2
i + cxi − d + [e + f (�Q/Q0)]/(1 + �Q/Q0) = 0,

where a, b, c, d, e, and f are certain coefficients

8.7 F2(6D′′ + 1) = Q H2(xi ), find D′′
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Absorbed solar flux, 75–76, 86, 108–110, 449–451
Absorptance, see also Absorption

band, 137–139
cloud, 332
solar, see Absorbed solar flux
spectral, 75

Absorption, 9, 17, 27, 73–75; see also Absorptance
by aerosols, 59–60, 244–245, 511
atmosphere, 70
by atmospheric gases, 85–86, 122
by atomic oxygen, 57
by carbon dioxide, 83–84, 119–120, 148, 454,

469
by carbon monoxide, 84, 475
by chlorofluorocarbons, 121, 475
by clouds, 331–332
effects in geometric optics, 219–222
by ice, 371–372
by methane, 85, 121, 473
in microwave, 414–415
by molecular nitrogen, 57, 73
by molecular oxygen, 57, 73–74, 82, 414, 423,

454
in near infrared, 82–84, 371–372
by nitrous oxide, 84, 121, 474
by ozone, 57, 59, 75, 82, 108, 120, 359, 366,

454, 472
rate, volume, 76
of solar radiation, 75
in ultraviolet, 73
in visible, 82–84
by water, 371–372
by water vapor, 59, 83, 108, 118, 148, 371, 398,

414, 454, 476
Absorption coefficient

definition, 9, 126
Doppler profile, 23
Lorentz profile, 21, 23
Voigt profile, 24

Absorption line

formation, 14–21
intensity, see Line intensity
profiles, 36
shape, 21–22, 147, 166

Absorption spectrum of molecules
CFCs, 121
CH4, 85, 121
CO, 85
CO2, 83, 119
H2O, 83, 118
N2, 73
N2O, 84, 121
NO2, 84
O2, 73, 82, 414
O2·O2, 85
O2·N2, 85
O3, 75, 82, 120

Absorptivity, 13, 293, 461; see also Absorption;
Absorptance

Actinic flux, 76
Active Cavity Radiometer Irradiance Monitor, 61
Adding method for radiative transfer, 290–295

equivalence to principles of invariance, 295–297
extension to nonhomogeneous atmospheres,

297–299
interaction principle, 299
similarity to discrete-ordinates method,

299–302
Addition theory for Legendre polynomials, see

Legendre polynomials
Advanced Infrared Radiation Sounder, see

Sounder
Advanced Microwave Sounding Unit, see

Sounder; Microwave
Advanced Very High Resolution Radiometer, see

Radiometer
Aerosols

absorption by, 59–60
constrained linear inversion for, 357–358
direct linear inversion for, 355–357

557
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Aerosols (continued )
direct radiative forcing, 479, 510–512
dust, 172
in global climate model, 511
indirect effect, 439, 477, 480, 510, 513
light scattering by, see Scattering
limb extinction technique for, 360
in one-dimensional model, 479
optical depth, 350–352, 368
satellite remote sensing of, 367–368
size distribution, 171, 211
volcanic, 478

Aggregates, 7, 230
scattering characteristics of, 230, 232

Agung, Moment, 478–479
Air

anisotropic factor for, 93
composition, 67
refractive index of, 92

Aircraft measurement for flux, 164
Air Force Block 5D Satellite System,

see Satellite
Air mass, 58
Air pollution, see Aerosols
AIRS, see Advanced Infrared Radiation Sounder
Airy theory for rainbows, 206–207
Albedo

definition, 63
effect, see Solar albedo effect
local (or planetary), 275
in radiation budget, 446, 449
spherical (or global), 275
surface (or reflectivity), 287, 369, 490

Allowed transition, 20
Altocumulus, 171; see also Clouds
Altostratus, 171; see also Clouds
Ammonia, 67, 378
AMSU, see Advanced Microwave Sounding Unit
A
◦
ngström turbidity coefficient, 351

Angular momentum, 15, 18, 35, 119
conservation of, 47; see also Kepler laws

Anharmonic oscillator, 21
Anisotropy

in radiative transfer, 325–329
in Rayleigh scattering, 93

Anomalous diffraction theory, 100–102
Anomalous dispersion, 532
Antisolar point, 329
Aphelion, 45
Applied field, 87
Approximations

in light scattering, see also Scattering

anomalous diffraction, 100–102
geometric optics, 97–100, 195–209
Rayleigh scattering, 87–96

in radiative transfer, see also Radiative
transfer

Eddington, 303
four-stream, 157, 305
single scattering, 105
successive-orders-of-scattering, 302
two-stream, 106, 157

Arago point, 95
Arctic stratus, 175; see also Clouds
Argon, 67
Aspect ratio

of aerosols, 248–249
Associate Legendre polynomial, see Legendre

polynomial
Asymmetry factor

definition, 104, 305, 312; see also Phase
function

for ice clouds, 236
for water clouds, 214

Asymmetric top, 70–71
Atmosphere, energy budget of, see Heat budget
Atmospheric composition, 67
Atmospheric effect, see Greenhouse effect
Atmospheric heating/cooling rates, see Heating

rate; Cooling rate
Atmospheric particulates, size parameter, 176
Atmospheric window, 117, 386; see also Thermal

infrared window
Attenuation, see Extinction
Autumnal equinox, 49–50
AVHRR, see Advanced Very High Resolution

Radiometer
Avogadro number, 113
Azimuthal angle, definition of, 4

Babinet
point, 95
principle, 99, 196, 216

Backscatter Ultraviolet Spectrometer, see
Spectrometer

Backscattering, see also Lidar; Radar
cross section, 428, 435
depolarization ratio, 432
depolarization technique, 431

cirrus clouds, 433
equation, 428–429, 435
multiple scattering, effect of, 434
Rayleigh, 430, 435
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Balloon, 60
Band

fundamental, 83, 120
hot, 120
overtone and combination, 83, 120
P-, Q-, and R- branches, 120

Band models, 137–144
application to nonhomogeneous atmospheres,

144–147
Elsasser regular model, 139
Goody random model, 141
Malkmus random model, 144
single line, 137

Baroclinic instability, 500
Bauer formula, 183
Beer–Bouguer–Lambert law, 28, 29, 58,

350, 428
Bessel function, 100, 138, 181, 197
Bidirectional reflectance, 105, 275, 364, 371
Bidirectional reflection distribution function, 364;

see also Bidirectional reflectance
Blackbody, 9–10, 11, 13, 156
Blackbody radiation, 9–14, 36; see also

Kirchhoff’s law; Planck’s Law; Stefan–
Boltzmann law; Wien displacement law

Black surface, 368
Blue sky, see Rayleigh scattering
Bohr’s model, 14–17
Bologram, 58, 60
Boltzmann

constant, 11, 17, 23
distribution, 26
factor, 25
law, 25–26
Maxwell–Boltzmann distribution, 23
statistics, 523

Boundary condition
in energy balance models, 495
in light scattering, 241
in radiative equilibrium, 462
for radiative transfer, 265, 268, 271,

291, 315
for three-dimensional clouds, 331

Bouguer’s law, see Beer’s law
Bowen ratio, 466
BRDF, see Bidirectional reflection distribution

function
Breakdown of thermodynamic equilibrium,

25–27
Brewster

angle, 253
point, 95

Brightness, 5
Brightness temperature, equivalent, 121, 155, 416
Broadband emissivity, 148; see also Emissivity
Budyko’s theory of ice-covered earth, see Ice-

covered earth
Bullet rosettes, 173–174, 230

scattering characteristics, 230
BUV, see Backscatter Ultraviolet Spectrometer

Carbon cycle, 471
Carbon dioxide

1.4 μm band, 84
1.6 μm band, 84
2.0 μm band, 84
2.7 μm band, 84
4.3 μm band, 84
5 μm band, 120
10.6 μm band, 120
15 μm band, 84, 119–120
broadband emissivity, 149
concentration, 470
Fermi resonance, 119
fundamental band, 119
greenhouse effect, 469–472
hot bands, 119, 153
isotope, 120, 153
overtone and combination band, 119
P-, Q-, and R-branches, 120
remote sensing of temperature, 388–391
slicing technique for clouds, 403–405

Carbon monoxide, 67, 84, 475
Carbon tetrachloride, 67, 121
Cartesian coordinate, see Coordinate
Cavity radiation, 9–10
CCl4, see Carbon tetrachloride
CCN, see Cloud condensation nuclei
Central Equatorial Pacific Experiment, 174
Centrifugal force, 48, 62, 362
CFC, see Chlorofluorocarbon
CFCl3, see Trichlorofluoromethane
CF2Cl2, see Dichlorodifluoromethane
CH3CCl3, see Methylchloroform
CH4, see Methane
Chandrasekhar

H function, 264–267
method of discrete ordinates, 261
X and Y functions, 286

Chapman
function, 111, 342
layer, 77
theory of ozone formation, 79–80
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Chappuis band, 75
Chebyshev particles

T –matrix method for, 246
Chemical composition

of the earth’s atmosphere, 67
of the sun, 37

Chlorine, 81
Chlorofluorocarbon, 67, 69

absorption band, 121
climatic effect, 475
ozone depletion, 82; see also Ozone

Christiansen effect, 235
Chromosphere, 40–41, 54; see also Sun
Circular polarization, see polarization
Cirrocumulus, 173
Cirrostratus, 173
Cirrus cloud

climatic effect of, 514
climatology, 405
contrail, 513–514
cooling rate, 163
heating rate, 110
infrared line spectrum of, 155
morphology of, 173–175
radiative property of, 484
remote sensing by

bidirectional reflectance, 376
lidar, 431–433
limb extinction technique, 361
polarization, 380
radar (mm-wave), 436

single-scattering properties of, 234–236
Cl, see Chlorine
Clausius-clapeyron equation, 476
CLIMAP, 499
Climate models

energy balance, 491
radiative forcing in, 492–497

global, 499
cloud radiative forcing, 503

cloud cover, 505–507
cloud liquid /ice water content,

507–510
internal forcing, 505

El Niño-Southern Oscillation, 514–516
general circulation model, 499–503

one-dimensional, 469
aerosols, 479
carbon dioxide, 471
cloud radiative forcing, 480
halocarbons, 475
methane, 473

nitrous oxide, 474
ozone, 472

orbital theory of climate change, 497–498
Clouds

absorption, 331–332
bidirectional reflectance, 371
carbon dioxide slicing technique, 403
global cloud cover, 407
greenhouse effect, 452, 480, 507
ice water content, 375, 483
ice water path, 375, 483
infrared remote sensing of, 403
Jupiter, 378
liquid water content, 373, 483
liquid water path, 373, 483
Mars, 378
mean effective droplet radius, 372, 483
mean effective ice crystal size, 174, 375, 483
millimeter-wave radar, 436
optical depth, 373, 375, 483
polarization, 377
radiative forcing, 451, 480, 504, 513
radiative properties in microwave spectrum, 419
radiative transfer in, see Radiative transfer
reflected line spectrum, 381–383
remote sensing of, 370–383, 403–409; see also

Remote sensing
removal in temperature retrieval, 396
Saturn, 378
solar albedo effect of, 451, 480, 510
three-dimensional nonhomogeneous, 332
types, 171
Venus cloud deck, 377

Cloud condensation nuclei, 483–485
Cloud radiative forcing, 451–453, 480–485; see

also Clouds
Coelostat, 58
Collision broadening, see Pressure broadening
Column, hexagonal, 7, 173–174, 230

scattering characteristics of, 230
Column vector, 355
Combination bands, definition of, 21
Complex angular momentum theory

of glory, 208
of rainbows, 208

Complex index of refraction, 529; see also
Refractive index

Conductivity, 177
Conservative scattering, 114, 264; see also

Scattering
Constrained linear inversion, 357
Continuum absorption, 119



Index 561

Contrails
direct radiative forcing, 513
radiative transfer, 339
size distribution, 175

Convection, 467
Convective adjustment scheme, 467, 518
Convolution, 24, 136, 410
Cooling rate, see also Heating rate

carbon dioxide, 161
in clear atmosphere, 161, 163
in clouds, 163
meridional cross section, 257
ozone, 161
remote sensing of, 409–413
water vapor, 161

Cooling-to-space approximation, 151; see also
Newtonian cooling

Coordinate
Cartesian, 33
cylindrical, 253
height, 31, 107, 123, 501
optical depth, 31, 123
path length, 123
polar, 4, 31
pressure, 107, 123, 501
spherical, 178, 495
sigma, 501

Coriolis force, 500
Corona, see also Sun

in geometric optics, 199, 254
photograph of, 42
in solar atmosphere, 40–41

Coronagraph, 41
Correlated k-distribution method, see also Infrared

radiative transfer; k-distribution method
compared with line-by-line, 161
fundamentals, 129–132
overlap, 137
periodic lines, 130
single line, 130
strong line, 131
weak line, 131

Cosine transform, see Fourier cosine transform
Coulomb’s law, 35
Covariance matrix, 394
Critical lapse rate, see Lapse rate
Cross section, 9

absorption, 9
extinction, 9
geometric, for ice crystals, 255
mass extinction, 9
scattering, 9

Cryogenic Limb Array Etalon Spectrometer, 402
Cumulative probability function, 128, 133;

see also k-distribution; Correlated
k-distribution

Cumulonimbus, 171
Curtis-Godson approximation, 146; see also

Infrared radiative transfer
Cylindrical coordinate, see Coordinate
Cylindrical function, 181

Debye expansion, 208
Declination of the sun, 46–47, 54
Defense Meteorological Satellite Program, see

Satellite
Degenerate, 18, 25, 70
Delta Eddington’s approximation, 312
Delta four-stream approximation, 316; see also

Discrete–ordinates
Delta function adjustment, 312, 316; see also

Similarity principle
Delta two-stream approximation, 312
Depolarization ratio, 432
Depolarization technique, 431; see also

Backscattering; Lidar
cirrus clouds, 432–433

Descartes ray, 206; see also Airy theory; Rainbow
DIAL, see Lidar
Diatomic molecule, 20, 71
Dichlorodifluoromethane, 67, 121
Dichroism, 327
Dielectric medium, 238
Difference bands, 21
Differential absorption lidar, 430
Differential absorption technique, 430–431
Diffraction, see also Fraunhofer diffraction

by circular aperture, 99, 196
by rectangular aperture, 254

Diffuse transmittance, 125
Diffusion approximation

in climate models, 495
for radiative transfer, 106

Diffusion equation, see also Radiative transfer
for one-dimensional radiative transfer, 106,

308
for three-dimensional radiative transfer, 338

Diffusivity factor, 127
Dimethylsulfate, 484
Dipole moment, 87–89
Direct aerosol effect, 477; see also Aerosols
Direct linear inversion method, 355–358
Directional cosine, 33–34, 340
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Discrete-ordinates method, see also Radiative
transfer

application to nonhomogeneous atmospheres,
270–274

general solution for anisotropic scattering,
267–268

general solution for isotropic scattering,
262–264

law of diffuse reflection, 265–267
similarity to adding method, 299–302

Dispersion of light, 92, 529–532
anomalous, 532
normal, 532

Dissociation potential, 71
Divergence of net flux, 108
DMSP, see Defense Meteorological Satellite

Program
Dobson

spectrometer, 359
units, 359

Doppler
broadening, 23–24
effect, 21
equivalent width, 166
line intensity, 35
line shape, 24, 147
profile, 35
techniques, 435

Double–Gauss quadrature, 270, 316
Doubling method, 294; see also Adding

method
Droplet size distribution

effect in climate, 510
gamma, 211
log-normal, 211

Duration of sunlight, see Solar zenith angle
Dust particles, 172

Earth’s atmosphere
aerosols, 69; see also Aerosols
chemical composition of, 67–69
clouds, 70; see also Clouds
exosphere, 67
lower atmosphere, 67
mesosphere, 66
middle atmosphere, 67
ozone layer, 68; see also Ozone
planetary boundary layer, 67
stratosphere, 66
thermosphere, 66
troposphere, 66

upper atmosphere, 67
vertical temperature profile, 66

Earth’s orbit, 44–50
eccentricity, 46–48
longitude of the perihelion, 47–49
oblique angle, 47–48
periodic precession index, 49
plane of the ecliptic, 46
true anomaly, 47
true longitude of the earth, 47

Earth Observing System Program, 368
Earth radiation budget, 444–451; see also

Radiation budget
Earth Radiation Budget Experiment, see

Satellite
Earth Radiation Budget Satellite, see Satellite
Earth–sun

distance, 45, 47, 49
geometry, 44–50

Eccentricity, 46–48
Eddies, 466, 487
Eddington’s approximation, 106, 307–309; see

also Radiative transfer
Effective solid angle, see Solid angle
E-folding transfer, 78
Eigenfunction, 18, 267
Eigenvalue

discrete–ordinates, 265, 267, 270
Eddington’s approximation, 308
four-stream approximation, 314
in quantum mechanics, 18
two-stream approximation, 306

Einstein coefficients, 26
El Chichon, volcano, 95
Electric

dipole moment, 17
field, 87, 182, 317
vector, 176, 238, 317

Electromagnetic
equivalence theorem, 217
spectrum, 1–3
wave, 2, 8, 317

Electronic
energy, 17, 72
transition, 36

Elevation angle, solar, 46, 95
Elliptical polarization, see Polarization
El Niño-Southern Oscillation, 515
Elsasser

band model, 139–141
chart, 148

Emission, 9, 17, 21, 27, 150
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Emissivity
broadband, 148–150
definition, 13
in microwave radiative transfer, 415
oceans, 418
thermal infrared, 461

Emittance, 5
Energy balance climate models, 491–497

radiative forcing, 494, 497
Energy budget

atmosphere and oceans, 485–487
global, 465
surface, 489

Energy conservation principle, 50, 116
Energy density, 26, 524
ENSO, see El Niño-Southern Oscillation
EOS, see Earth Observing System Program
Equation of state, 402
Equation of transfer

for direct solar beam, 28
general, 28
for plane-parallel atmosphere, 31, 103, 258
for spherical atmosphere, 342
for three-dimensional medium, 33

Equilibrium temperature
earth–atmosphere system, 63
sun, 50, 63

Equinox, 45
Equivalent width

average, 141–143, 167
definition, 137
nonhomogeneous path, 145
strong-line approximation, 139, 143, 146
weak-line approximation, 139, 143, 146

ERB, see Earth Radiation Budget
ERBE, see Earth Radiation Budget

Experiment
ERBS, see Earth Radiation Budget Satellite
Error function, 141, 166
Excited state, 14
Excited vibrational state, 20
Exosphere, 67
Explorer 6, 444
Exponential integral of third order, 36
Extended boundary condition method, see

T-Matrix method
External forcings, 442
External reflection, 99, 202, 216
Extinction, 9

coefficient, 9, 428
cross section, 9, 27, 189
efficiency, 100, 189

matrix, 327
optical theorem for, 100

Faculae, 44, 62
Far field

scattered electric field in, 186–188, 225
transformation from near field, 242

Far-infrared spectra, 17
FDTD, see Finite-difference time domain

method
Feedback in climate

cloud cover, 505
droplet size distribution, 510
hydrological cycle, 472
ice-albedo, 494
liquid/ice water content, 507
water vapor, 476

Fermi resonance, 119
Finite cloud, in radiative transfer, see Clouds;

Radiative transfer
Finite-difference time domain method, see also

Scattering
accuracy of, 243
Courant–Friedrichs–Levy condition, 240
Fourier transform in, 241–242
introduction, 224
for light scattering by aerosols, see Scattering
for light scattering by ice crystals,

see Scattering
Maxwell’s equations in, 238–239
Maxwell–Garnett rule, 240
perfectly matched layer boundary condition,

241
scattering phase matrix in, 243
in unified theory for light scattering, 228–231

FIRE, see First ISCCP Regional Experiment
First ISCCP Regional Experiment, 173
Flux density, see also Flux (in Chapter 4)

blackbody, 12
definition, 5, 51, 59; see also Irradiance

Flux, see also Absorbed solar flux
broadband, 148
downward infrared, 465
infrared, 449, 465
net, 107, 109–110, 449
outgoing longwave radiation, 449
Planck, see Planck flux
reflected solar, 449
solar, 50, 51, 59, 86, 465, 453
upward and downward, 106, 125, 148,

151, 159
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Forbidden transition, 20
Forward diffraction peak

in Eddington’s approximation, 310
in four-stream approximation, 316
in ray tracing, 217
in two-stream approximation, 310

Fossil fuel, 469
Fourier

cosine transform, 22, 147
transformation, 241–242

Four-stream approximation, 159, 313–316; see
also Radiative transfer; Delta four-stream
approximation

Fraunhofer
diffraction, 99, 196, 254; see also Diffraction
spectrum, 54

Fredholm equation of first kind, 354, 388; see also
Linear inversion

Frequency
definition, 1
microwave, 2, 415, 434

Fresnel’s coefficient, see also Geometric optics
formula, 202
with absorption, 222, 254

Fresnelian interaction, 98, 216
Fundamentals, 18, 20

CFC, 121
CH4, 121
CO2, 84, 119
H2O, 83, 119
N2O, 121
O3, 120

G function, see cumulative probability function
Gain, 209; see also Diffraction; Geometric optics
Gamma

function, 211
ray, 2

Gaseous profile, information content of, 398–399;
see also Remote Sensing

Gauss’s formula, 262, 304
quadrature, 159, 304
weight, 159, 304

GCM, see General Circulation Model
General circulation of the atmosphere, 500, 502
General Circulation Model, 499–503
Generalized absorption coefficient, 143; see also

Transmittance; Absorptance
Geometric optics, 97, 195; see also Scattering

absorption effects, 219–222
conventional approach, 215–217

diffraction in, 196; see also Diffraction
Fresnel’s coefficient, 202, 222, 254
hexagonal ice crystal, 216
for ice crystals, 215; see also Ice crystals
improved approach, 217–219
Monte Carlo method, 222–224
principle of, 97, 196, 215–216
reflection, 97, 200
refraction, 97, 200
for spherical water droplets, 202–205

Geopotential height, 501
Geostationary orbit, 363
Geostrophic wind, 402
Geosynchronous orbit, see Geostationary orbit
Gibbs function, 476
Gigahertz, 2
Global albedo, see Albedo
Global climate models, 499–516

aerosol radiative forcing in, 511
carbon dioxide radiative forcing in, 507
cloud radiative forcing in, 503

cloud cover feedback, 505; see also Feedback
cloud liquid/ice water content feedback, 507;

see also Feedback
cloud particle size, see Indirect effect
internal forcing, 504

direct radiative forcing
aerosols, 511
contrails, 513

El Niño-Southern Oscillation, 575
general circulation model, 499

Global energy budget, see Energy budget
Global radiative budget, 450; see also Radiative

budget
Glory, 205

complex angular momentum theory of, 208
in phase function for water droplets, 211

GMS, see Satellite
GOES, see Satellite
Goody random model, see Band models
Graupel, 173
Gray

approximation, 131
body, 14

Greenhouse
effect, 118
carbon dioxide, 469–472, 507–510
gases, 119–121

radiative forcings, 474
Ground state, 14, 20

transitions, 14–16, 83
bands, 83
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H, see Hydrogen atom
H2, see Hydrogen
H function, 264–267, 279–280
Hadley cell, 500
Hailstone, 173
Half–day, 46, 51, 53
Half–width

air–broadened, 23
definition, 21
scaled, 147
temperature dependence, 23

Halo, 8, 229–235
Halocarbons, 475
Hamiltonian operator, 17–18, 25, 525
Hankel function, second kind,

182, 185
Harmonic

–oscillator rigid–rotator model, 18
spherical, 307, 337, 347
vibration, 18

Hartley band, 75, 359
He, see Helium
Heat budget, 464; see also Energy budget
Heating rate

aerosols, 109
clouds, 110
definition, 108
meridional cross section, 456
ozone, 109
solar, see Solar heating rate
water vapor, 109

Height–coordinate, see Coordinate
Helium, 67
Helmholtz principle of reciprocity, 295
Henyey-Greenstein phase function, 313; see also

Phase function
Hertz

frequency unit, 2
potential, 88

Herzberg band, 73, 75
High cloud, 171; see also Cirrus cloud
High Resolution Infrared Radiation Sounder 2, see

Sounder
High spectral resolution Interferometer Sounder,

see Sounder
HIRS/2, see High Resolution Infrared Radiation

Sounder 2
HIS, see High spectral resolution Interferometer

Sounder
HITRAN, 165; see also Line-by-line program
HNO3, see Nitric acid vapor
H2O, HDO, HHO, see Water vapor

Hollow column, 7, 173
light scattering by, 230, 234

Hopfield band, 74
Horizontal orientation, see Ice crystals
Hot band, 119, 153; see also Carbon dioxide
Hour angle, 46
Huggins band, 75, 359
Hydrogen, 67
Hydrogen atom

Balmer series, 16
emission lines, 35
energy levels, 16
Lyman series, 16
in ozone chemistry, 81
Paschen series, 16
in solar spectrum, 54

Hydrogen sulfide, 67
Hydrological cycle, 472
Hydrostatic equation, 123, 384, 402
Hydroxyl radical, 81

Ice albedo feedback, see Feedback
Ice covered earth, theory of, 494
Ice crystals

absorptance, 372
in Arctic, 175
finite–difference time domain, 224, 230
geometric optics, 215
habit (morphology), 7
horizontal orientation, 325; see also Radiative

transfer
light scattering by, see Scattering
mean effective size, 174, 375
in midlatitude, 173
radiative properties of, 330, 336, 340, 372
random orientation, 325
refractive index, 371
size distribution, 174–175
in tropics, 174
unified theory for light scattering by, 228

Ice particles, see Ice crystals
Ice water content

definition, 375
temperature dependence, 482

Ice water path, 375, 484
Imaginary refractive index, see Refractive index
Independent scattering, 8, 193; see also Scattering
Index of refraction, see Refractive index
Indirect aerosol effect, see Aerosols
Induced emission, 25–26
Infrared band model, see Band model
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Infrared cooling rate, see Cooling rate
Infrared Interferometer Spectrometer, see

Spectrometer
Infrared light, 1
Infrared radiation, 1, 116, 383

observed from satellite, 383, 449
transfer of, see Infrared radiative transfer

Infrared radiative transfer
band models, see Band models
in clouds, 152–155
k-distribution, see Correlated k-distribution

method
line–by–line, 125
in nonhomogeneous atmosphere, 144
one–parameter (scaling) approximation, 145
remote sensing based on, see Remote sensing
two/four–stream approximation, 157
two–parameter approximation, 145

Infrared spectrum, 54, 59
INSAT, see Satellite
Insolation, see Solar insolation
Integral equation

Fredholm, see Fredholm equation of the first
kind

method, 32, 158
surface, 218
volume, 219

Integrodifferential equation, 300
Intensity

definition, 4, 27
diffuse, see Diffuse intensity
downward, 32
emergent, 28
Planck, see Planck intensity
reflected, 275, 281–284, 287–289, 364
solar, 50
transmitted, 275, 281–284, 287–289
upward, 32, 105

Intensity function, in Lorenz-Mie theory, 188
Interaction principle, 299; see also Adding

method
Internal reflection, 99, 202, 217
International Satellite Cloud Climatology

Program, 406
Intertropical convergence zone, 404–405, 451
Invariant imbedding, 285, 344; see also Principles

of invariance
Inverse problem, 348; see also Remote sensing
Ionization potential, 71
Ionized atoms and molecules, 54, 74
Ionosphere, 74, 78
IR flux, see Flux

IR greenhouse effect, see Greenhouse effect
IRIS, see Infrared Interferometer Spectrometer
Irradiance, 5; see also Solar irradiance
ISCCP, see International Satellite Cloud

Climatology Program
Isothermal broadband emissivity, 148
Isotope, 83–84, 120
Isotropic

radiation, 34
scattering, 104, 262

ITCZ, see Intertropical Convergence Zone
IWC, see Ice water content
IWP, see Ice water path

Jet fuel consumption, 513
Junge size distribution, 171; see also Size

distribution
Jupiter, 45, 378

k-distribution, see also Correlated k-distribution
definition, 127
numerical method for calculating, 132–134

Kernel function, 354; see also Weighting function
Kepler

first law (the law of orbits), 47, 62
second law (the law of areas), 47, 53
third law (the law of periods), 47, 62

Kinetic energy, 17, 35, 500
Kirchhoff’s law, 13–14, 25, 30; see also

Blackbody radiation
Krypton, 67

Ladenburg and Reiche function, 138, 166
Lambert law, 29
Lambertian surface, 287
Land surfaces

albedo (reflectivity), 369
normalized difference vegetation index,

369
remote sensing of, 369–370

La Niña, 515
Langley plot, 58–59
Laplace

inverse transform, 128, 166
theory for star, 37
transform, 128

Lapse rate,
adiabatic, 108, 467
critical, 468, 519
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Laser radar, see Lidar
Latent heat, 467, 486, 489
LBL, see Line-by-line
Leibnitz’s rule, 36
Legendre polynomial, 533–535

addition theorem, 533
in energy balance model, 496
in light scattering, 180
in radiative transfer, 104, 259, 307, 337, 342

Length of summer and winter, 64
Levitation technique, electrodynamic, 232
Lidar, 427–434

backscattering cross section, 428
backscattering equation, 429
depolarization technique, 431
differential absorption

lidar, 430
technique, 430

Light scattering, see Scattering
Limb

extinction technique, 360–361
scanning technique, 399–403

Line, see Absorption line
Line broadening, 21–25
Line intensity, 25, 35

definition, 21
mean, 142
probability function for, 141, 144
scaled mean, 146

Line-by-line integration, see also Infrared
radiative transfer

HITRAN, 165
numerical computation, 125, 160

Line overlap, see Overlap
Line shape, see Absorption coefficient
Line of sight, 23
Line strength, see Line intensity
Linear absorption, 139; see also Equivalent width
Linear heating approach in climate model, 492
Linear diatomic molecule, 71
Linear inversion

constrained method, 357
direct, 355
statistical method, 393, 425

Linear molecule, 18
Linear polarization, see Polarization
Linear triatomic molecule, 20, 71
Liquid water content

climatic effect of, 507; see also Feedback in
climate

cloud, see Clouds
Liquid water path, see Clouds

Localization principle, 97, 196
Local thermodynamic equilibrium, 14, 27

breakdown, 25
Longitude of the perihelion, 47–49
Longwave radiation, see Infrared radiation;

Infrared radiative transfer
Lorentz–Lorenz formula, 92

derivation of, 529–532
Lorentz

broadening, 21
equivalent width, 137; see also Equivalent width
line, 22
line half-width, 21
line intensity, 25; see also Line intensity
line shape, 22–23, 529; see also Absorption

coefficient
line wing, 24
profile, 21–23, 35

Lorenz–Mie scattering, 176–215
backscattering, 430
electromagnetic wave equation and solution,

176
experimental results, 212, 231
extinction parameters, 186
far field solution, 186
formal scattering solution, 182
scattering phase matrix for spherical particles,

191
Loschmidt number, 73
Low cloud, 171
Lower atmosphere, 87
Lower tangent arc, 329
LTE, see Local thermodynamic equilibrium
Luminance, 5
Luminosity, 6
LWC, see Liquid water content
LWP, see Liquid water path
Lyman–α line, 57, 74–75, 78
Lyman–Birge–Hopfield band, 71

Magnetic
dipole moment, 17, 414
field, 44, 62
induction, 176
vector, 176

Major planets, 45
Malkmus model, 144; see also Band models
Mariner VI and VII, 60
Mars, 45, 378
Marshall and Palmer size distribution, see Size

distribution



568 Index

Mass absorption cross section, see Absorption
coefficient

Mass extinction cross section, see Extinction cross
section; Extinction coefficient

Matrix
formulation, 295
inverse of, 356
transpose of, 357

Matrix operator, 295
Maxwell–Boltzmann distribution, 23; see also

Boltzmann distribution
Maxwell’s equations

for electromagnetic field, 177
– Garnett mixing rule, 240
time dependent, 238

Mean distance between earth and sun, 37, 47, 50
Mean effective

radius, 372; see also Water droplets
size, 375; see also Ice crystals

Mean free path, 333
Mean line spacing, 131, 141
Mean value theorem, 391, 412
Mercury, 45
Mesopause, 66
Mesosphere, 66
METEOR, see Satellite
METEOSAT, see Satellite
Methane

absorption, 121
climatic effect, 473
concentration, 67
remote sensing, 402

Methylchloroform, 67, 121
Microwave, 2

Advanced Microwave Sounding Unit, 426
analog method in light scattering, 250
ice, scattering and absorption, 419
mm-wave, 434; see also Millimeter-wave radar
Nimbus E Microwave Spectrometer,

421, 423
radiative properties of clouds, 419
radiative transfer, 414–419
rainfall rates, 421–422
spectrum, 415
Scanning Microwave Spectrometer, 421, 423
Special Sensor Microwave/Temperature

sounder, 423, 426
temperature profile retrieval, 423–426
water, scattering and absorption, 419
water vapor, 419–420

Microwave Sounding Unit, see Sounder
Middle atmosphere, 67

Middle cloud, 171
Mie Scattering, see Lorenz–Mie scattering
Milankovitch theory of climate change, see

Orbital theory of climate change
Millimeter-wave radar, 349, 434
Minimum variance method in temperature

retrieval, 392–395
MISR, see Multi-Angle Imaging

SpectroRadiometer
Mittag–Leffler theorem, 139
Mixing ratio, 69
Modal parameter, 211
Moderate-Resolution Imaging Spectrometer, see

Spectrometer
Modified statistical band model, see Band model
MODIS, see Moderate-Resolution Imaging

Spectrometer
MODIS Airborne Simulator, 373
MODTRAN, 55–56
Molecular density, 113
Molecular vibration, 20
Möller chart, 148
Moment of inertia, 18
Monochromatic

absorptivity, 29
emission, 21
emittance, 5
flux density, 5, 34
intensity (radiance), 4, 11, 13
irradiance, 5
reflectivity, 29
transmissivity, 29
transmittance (transmission function), 124

Monodispersion, 199
Monsoon, 515
Monte Carlo method

for ray tracing, 222
for 3-D nonhomogeneous clouds, 332

MSU, see Microwave Sounding Unit
Multi-Angle Imaging SpectroRadiometer, see

Radiometer
Multiple reflection, 365; see also Adding method

for radiative transfer
Multiple scattering, see Adding method; Discrete-

ordinates method; Infrared radiative transfer;
Radiative transfer; Scattering; Solar radiative
transfer; Source function

Natural broadening, 21, 531
Natural light, 88, 321
NDVI, see Normalized difference vegetation index
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Near field, in light scattering, 218
Near infrared, 82
NEMS, see Nimbus E Microwave

Spectrometer
Neon, 67
Nephelometer, 213, 231, 249
Neutral point, 94; see also Rayleigh scattering
Newmann function, 181
Newtonian cooling

approximation, 150
coefficient, 152

Newton’s law
second law, 35
universal gravitation, 62

NH3, see Ammonia
Nimbus, see Satellite
Nimbus E Microwave Spectrometer, see

Microwave
Nitric acid vapor, 67
Nitric oxide, 67
Nitrogen dioxide, 67

absorption, 85, 352
Nitrogen molecule

absorption by, 73
concentration of, 67
Lyman–Birge–Hopfield bands, 73

Nitrous oxide, 67
absorption, 85
climatic effect, 474
remote sensing, 402

NO, see Nitric oxide
NO2, see Nitrogen dioxide
N2O, see Nitrous oxide
NOAA, see Satellite
Nongray atmosphere, 462
Nonhomogenous atmosphere, 144, 270, 297
Nonhomogeneous path length

in band model, 144
Nonlinear iteration method, 391; see also Remote

sensing
Non–local thermodynamic equilibrium, 25
Normal dispersion, 532
Normalized difference vegetation index, 369; see

also Land surfaces
Nuclear winter theory, 480

O2, see Oxygen molecule
O3, see Ozone
Oblique angle, 47
Obliquity, 48
Ocean–atmosphere interaction, 503, 515

OH, see Hydroxyl radical
OLR, see Outgoing longwave radiation; Infrared

radiation
Once in a blue moon, 114
One-parameter approximation, 145
Optical depth

absorption, 123, 144–145, 310
of aerosols, 350, 365; see also Aerosols
of clouds, 373, 375, 483; see also Clouds
cosine transform for, 147
definition, 30
extinction, 103, 310
in line–by–line computation, 125
normal optical depth, 31, 123
scattering, 93, 310

Optical probe, for ice crystals, 174
Optical theorem of extinction, 100; see also

Extinction
Optimization method, 375
Orbit

geostationary, 363
geometry, 44–50
polar, 363

Orbital theory of climate change, 497–499
Order–of–scattering, see Successive-orders–of–

scattering approximation
Oscillating electric dipole moment, 20
Outgoing longwave radiation, see Infrared

radiation; Flux
Overlap

broadband emissivity, 150
H2O-CO2, 135, 150
k-distribution, 135; see also Correlated

k-distribution
Overtone band, 21
Oxidation, 469
Oxygen molecule

atomic 1D state, 73, 81
concentration, 67
electronic transition, 82
Herzberg band, 73
Hopfield bands, 74
infrared bands, 82
microwave, 414
red bands, 82
Schumann–Runge bands, 73
Schumann–Runge continuum, 73
vibrational transition, 82

Ozone
9.6 μm band, 120
absorption, 75, 82, 120; see also Absorption

spectrum of molecules
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Ozone (continued )
Chappuis band, 75
concentration, 67
Dobson spectrometer, 359
Hartley band, 75, 359
heating rate, 109; see also Heating rate
hole, 82
Huggins band, 75, 359
layer, 68
overtone and combination bands, 85
photochemistry, 79
remote sensing of, 358, 366
rotational band, 120

Parallel, in electric field, 88, 187, 317
Parallel branch, 20
Parry column, 379
Particle size distribution, see Size distribution
Partition function, 25
Path length

definition, 28
scaled, see Scaled path length

P-branch, 20
Perfectly matched layer method, 241; see also

Finite-difference time domain method
Perihelion, 47
Periodic band model, see Elsasser band model
Permeability, magnetic, 177
Permittivity, 15, 177, 238
Perpendicular, in electric field, 88, 187, 317
Perpendicular branch, 20
Phase, of electromagnetic wave, 317
Phase function

aerosols, 244–251
azimuthal independent, 260
definition, 90, 103
Eddington’s approximation, 307
expansion in spherical harmonics, 337
forward peak, 310
Fourier expansion, 295
Henyey–Greenstein, 313
horizontally oriented particle, 325
ice crystals, 230–234
Legendre polynomial expansion, 104, 259
Lorenz–Mie scattering, 194, 210, 213
measurement, 212, 232–233, 251–252
normalization, 90
Rayleigh scattering, 90
in remote sensing, 367
spheroid, 248
water droplets, 212–213

Phase matrix, 324, 328; see also Scattering phase
matrix

Photochemical equilibrium, 80
Photodissociation coefficient, 76, 79, 80
Photosphere, 34, 39–41, 54; see also Sun
Photosynthesis, 469
Plages, 44, 62
Planck

constant, 10–11
curve, 39, 55
flux, 55
function, 11, 13, 29, 34

derivation of, A1–A2
intensity, 35
law, 10–11, 27; see also Blackbody

radiation
relation, 18, 20, 26, 54
source function, 26

Plane of ecliptic, 46
Plane-parallel atmospheres, 31

multiple scattering in, 33, 258
Plane of stratification, 31
Planetary albedo, 275; see also Albedo
Planetary boundary layer, 67
Plate, 7, 173

light scattering by, 230, 234
Poincaré sphere, 319; see also Polarization
Poisson distribution

collision, 23
line intensity, 142
Monte Carlo method, 333

Polar
night, 46
orbit, 363
stratospheric clouds, 82
vortex, 82

Polarizability, 92, 532
Polarization, see also Stokes parameter; Polarized

light
circular, 319
degree of, definition, 320
degree of linear, 94, 320

aerosol, 245
ice cloud, 380
ice crystal, 234
molecule, 94–95
Venus, 378
water droplet, 210–213

elliptical, 317–319
linear, 319
measurement of, 95, 212, 380
in Poincaré sphere, 319
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representation of, 317
sky, 93

Polarization and Directionality of the Earth’s
Reflectances instrument, 379

Polarized light, see Polarization
POLDER, see Polarization and Directionality of

the Earth’s Reflectances instrument
Polydisperse, 209
Poynting vector, 202
Potential

curve, 72
energy, 35, 72, 468, 500

Power, 5, 428
Precession, 49, 497
Precipitation, 173; see also Rainfall rate
Predictability, 502
Predictor matrix, 394
Pressure

coordinate, see Coordinate
effect in line shape, see Pressure

broadening
Pressure broadening, 21–23, 24
Primitive atmosphere, earth’s, 65
Principles of invariance

equivalence to adding method, 295–297
for finite atmospheres, 280–285
for semi-infinite atmospheres, 277–280
inclusion of surface reflection, 287–290
invariant imbedding, 285, 344

Principle of reciprocity, 227, 287; see also
Helmholtz principle of reciprocity

Probability, see also Poisson distribution; Monte
Carlo method

band models, 141, 144
geometric ray–tracing, 222
k–distribution method, 127
line shape, 23

Prominences, 44
Pyranometer, 57–58, 60
Pyranometer excess, 60
Pyrheliometer, 57–58

Q-branch, 20–21, 35
15 μm CO2 band, 119
in parallel and perpendicular bands, 20

Quantum numbers, 10, 35
Planck relation, 10–11
rotational, 17–21
vibrational, 17–21
for vibrational angular momentum, 119

Quaternary glaciation, 497

Radar
backscattering equation, 429
millimeter-wave, 434
reflectivity factor, 435

Radiance, see also Intensity
conversion to flux densities, 447
definition, 4
observation, 117; 120
at TOA, 384
upwelling spectral, 384

Radiant energy density, 26
Radiation

in energy-balance climate models, 485–499
in global climate models, 499–516
in one-dimensional climate models, 485–499

Radiation balance equation, 462
Radiation budget, see also Satellite

angular model, 447
black and white sensors, 445
cloud radiative forcing, 451
conversion of radiance to flux density, 447
meridional cross sections of heating/cooling

rates, 454–458
radiation balance equation, 458
radiative equilibrium, 459

global model, 459
vertical model, 462

scanning radiometer, 447
surface, 458–460
viewed from space, 449
zonally averaged, 451

Radiation constant, first and second, 11
Radiative–convective, see also Climate model

equilibrium, 464–469
model, 468

Radiative equilibrium
of earth–atmosphere system, 465
global, 464
temperature, see Temperature

Radiative forcing, see Aerosols; Clouds; Contrail;
Greenhouse gases

Radiative heating, see Heating rate; Cooling rate
Radiative transfer, see also Adding method;

Discrete-ordinates method; Eddington’s
approximation; Four-stream approximation;
Infrared radiative transfer; Polarization;
Similarity principle; Single-scattering
approximation; Two-stream approximation

in clouds, 154–156, 329–336, 377–378,
381–383; see also Clouds

in clear atmospheres, 93–96; see also Rayleigh
scattering
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Radiative transfer (continued )
history of, 257–258
in ice crystals, 325–329; see also Ice crystals
in spherical atmospheres, 339–343

Radiative transition, 26
Radio waves, 2
Radiometer, 60, 362

Advanced Very High Resolution, 213, 368, 387
limb scanning, 399
Multi-Angle Imaging Spectro-, 368
resolution, 362
self-calibrating, 61
Solar Backscatter Ultraviolet, 367
Vertical Temperature Profile, 389

Radiometric quantity, 4–6
Rainbow, 99, 114

Airy theory, see Airy theory for rainbows
angles, 205
complex angular momentum theory, 208
Descartes ray, 206
geometric optics, 203–205
integral, 207
polarization of, 210, 212, 213
primary, 205, 211–213
secondary, 205, 211
supernumerary, 205, 211

Raindrop size distribution, see Size distribution
Rainfall rate, see Microwave
Raman

scattering, 8, 427
spectrum, 70

Random model, see Band model
Random orientation, see Ice crystals
Ray tracing, see Geometric optics; Monte Carlo

method
Rayleigh–Jeans distribution (law), 11, 35, 416
Rayleigh scattering

backscattering, 113, 430
blue sky, 6, 93
phase function, 91–92
polarizability, 92
scattering cross section, 92
sky polarization, 95
theoretical development of, 87–90

R-branch, 20
Reciprocity, in light scattering, 227
Reflectance, see Bidirectional reflectance
Reflected intensity, see Intensity
Reflected line spectrum, 379–383
Reflection, see also Geometric optics

definition of, 275
function, 274, 277, 291
matrix, 275

Reflection coefficients
Fresnel, 202
including absorption, 222, 254

Reflectivity, 29; see also Albedo
Refraction, see Geometric optics
Refractive index

aerosol, 248–249
complex, 238
ice, 371
molecule, 92, 113
water, 371

Regular band model, see Band models
Relative humidity, 476
Relaxation

equation, 392; see also Remote sensing
method, 392

Remote Sensing, see also Satellite
active, 348
of aerosols, see also Aerosols

ground-based, 351
satellite, 367

of clouds, see also Clouds
global cloud cover, 407
mean effective size, 373, 375
optical depth, 370, 375
particle shape, 380
using polarization, 377
using reflectance, 371
using reflected line spectrum, 379
top pressure, 403

of cooling rate profile, 409
introduction, 348–350
of land surfaces, 369
using laser, 427
using limb technique

solar, 360
thermal emission, 399

of methane, 398
using mm-wave radar, 434
of nitrous oxide, 398
of ozone, see also Ozone

ground-based, 358
satellite, 366

passive, 348
of rainfall rate, 419
of surface

albedo, 369
radiative flux, 409
temperature, 385, 387
vegetation, 369

of temperature profile, 389, 423
of trace gases, 399
of water vapor, 398, 419
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Representation of light beam, 317
Retrieval, see Remote sensing
Rigid rotating dipole, 18
Rotational

axes, 71
band, 20
energy, 17, 20
quantum number, 18, 20; see also

Quantum number
transition, 16–21, 36

Row vector, 355
Runaway ice-covered earth, see Ice-Albedo

feedback; Budyko’s theory
Rydberg

bands, 74
constant, 15, 526

SAGE, see Stratospheric Aerosol and Gas
Experiment

Satellite, see also Remote sensing
Air Force Block 5D satellite system, 423
Defense Meterological Satellite Program, 423,

426
Earth Radiation Budget Experiment, 61,

445
Earth Radiation Budget Satellite, 61, 445
EOS/Aqua, 397
EOS/Terra, 368, 373
Explorer 6, 444
geosynchronous (geostationary) orbit, 62, 63,

363
GMS, 364
GOES, 61, 364, 395, 445
INSAT, 364
METEOR, 409
METEOSAT, 364, 445
Nimbus, 60–61, 367, 395, 402, 421, 423, 444
NOAA, 61, 367–370, 387, 391, 395, 397, 404,

408, 426, 444– 445, 453
polar, 62, 363
remote sensing of aerosols, see Aerosols
remote sensing of land surfaces, see Land

surfaces
remote sensing of ozone, see Ozone
satellite-sun geometry, 361
sun-synchronous (polar) orbit, 62–63, 363
TIROS, 395, 444
Upper Atmosphere Research Satellite,

61, 402
Saturn, 45, 378
SBUV, see Solar Backscatter Ultraviolet

Radiometer

Scaling approximation, see One-parameter
approximation

SCAMS, see Scanning Microwave Spectrometer
Scanning Microwave Spectrometer, see

Microwave; Spectrometer
Scattering

aerosols, 243–246, 249, 252
angle, 88, 323, 527

in light scattering (θ ), 259
in radiative transfer (�), 259

conservative, 114, 264
efficiency, 97, 190
finite-difference time domain, 224
geometric optics approach, see Geometric optics
ice crystals, 7–8, 215–216, 224–225, 230
independent, 8, 193
isotropic, 104, 262
measurements, 249–252
molecule, see Rayleigh scattering
multiple, 8, 27, 103, 434
phase matrix, see Scattering phase matrix
plane of, 88, 323, 527
Raman, 8, 427
Rayleigh, see Rayleigh scattering
secondary, 8
T -Matrix method, 246
transformation matrix, 192
unified theory for light scattering, 228
water, in microwave, see Microwave
water droplets, 202–208, 211–215

Scattering coefficient, 195, 428
Scattering cross section, 9, 27, 92
Scattering function

Chandrasekhar, 276
in Lorenz–Mie theory, 186

Scattering phase function, see Phase function
Scattering phase matrix

for aerosols, 194, 244–245
for anisotropic media, 328
definition, 192
elements, 193, 227
Fourier expansion, 295
for ice crystals, 227, 328
for randomly oriented particles, 227
with respect to meridian plane, 323
spherical particles, 193–194
for water droplets, 193

Schrödinger wave equation, 17–18, 25, 525–526
Schumann–Runge,

band, 73, 75
continuum, 73, 75

Schuster equation, 106
Schwarzschild’s equation, 29–30
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Sea surface temperature, see also Remote sensing
in climate, 515–516
remote sensing of, 385–387

Season, 49–50
Second law of thermodynamics, 13
Selection rule, 19–20
Self-calibrating radiometer, see Radiometer
Sensible heat, 467, 486, 489
Separation of variable method

in Lorenz–Mie scattering, 179
in Schrödinger wave equation, 525

Shortwave radiation, see Solar radiation
Sigma (σ )–coordinate, see Coordinate
Similarity

parameter, 311
principle, 310–313; see also Radiative transfer
relation, 311

Single-scattering albedo
co-albedo, 103
definition, 103, 195, 328
for ice clouds, 236
for water clouds, 214

Single-scattering approximation, 105, 302, 364
Single line model, see Band models
Size distribution; see also Aerosols

gamma, 211
Junge, 171
log normal, 211
Marshall and Palmer (raindrop), 421
power law, 171

Size parameter, 6, 97, 229
Slab transmittance, see Diffuse transmittance
Smithsonian methods for solar constant, 58–60
Snell’s law, 99, 200, 215, 221
Snowflake, scattering property of, 230
SO2, see Sulfur dioxide
Solar albedo effect, 451, 477, 480
Solar atmosphere, 40–41, 54
Solar Backscatter Ultraviolet Radiometer, see

Radiometer
Solar constant, 50

climatic impact, see Ice-covered earth
determination of

ground-based, 57–60
satellite, 60–62

Solar convection zone, 39, 62
Solar disk, 62
Solar elevation angle, 46, 62
Solar energy, 37–39
Solar flare, 44
Solar flux, 47, 76

density, 51, 84

Solar heating rate, see Heating rate
Solar inclination, 45–46
Solar insolation, 51–54

perturbation, see Orbital theory of climate
change

Solar intensity, 50
Solar irradiance, 60–61
Solar occultation, 360; see also Limb extinction

technique
Solar radiation

absorbed at the ground, 489–490
absorption of, 75
depth of penetration, 78
diffuse, 57
direct beams, 57, 84
in photodissociation, 76

Solar radiative transfer, see Radiative transfer
Solar spectrum, 50, 54–57
Solar wind, 41
Solar zenith angle, 45–46
Solid angle

definition, 2
effective, for scattering, 92, 192, 226

Solstice, 45
Soot, 169, 245
Sounder

Advanced Infrared Radiation, 397
Advanced Microwave Sounding Unit, 426
High Resolution Infrared Radiation, 395, 397,

404
High spectral resolution Interferometer, 122,

155, 397, 409, 414
Microwave Sounding Unit, 395, 423
Special Sensor Microwave/Temperature, see

Microwave
Stratospheric Sounding Unit, 395
TIROS N Operational Vertical, 395, 397

Source function
in anisotropic medium, 328
breakdown, 27
definition, 27
multiple scattering, 27, 104
including polarization, 324
scattering and emission, 25, 157
single–scattering approximation, 105
in spherical atmosphere, 342
thermal infrared radiation, 29
thermodynamic equilibrium, 25
in three-dimensional radiative transfer, 331

Southern Oscillation, 515
Special Sensor Microwave/Temperature Sounder,

see Sounder; Microwave
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Specific humidity, 68
Spectral transmittance, see Transmittance
Spectral wavenumber, 20
Spectrobolometer, 57
Spectrograph, 58
Spectrometer

Backscatter Ultraviolet, 367
Cryogenic Limb Array Etalon, 402
Dobson, 359
Infrared Interferometer, 117, 388
Moderate-Resolution Imaging, 368, 373
Nimbus E Microwave, see Microwave
Scanning Microwave, see Microwave
Total ozone mapping, 367

Spectroscopy, 35
Spherical particles, see Aerosols; Water droplets
Spherical atmospheres, see Radiative transfer
Spherical coordinate, see Coordinate
Spherical geometry, 111, 527
Spherical harmonics method for radiative transfer,

307, 337, 347
Spherical wave function, 246
Spheroids, 248
Split-window technique, 386; see also Remote

sensing; Surface temperature
Spontaneous emission, 26
Square root

absorption, 139, 141; see also Equivalent
width; Strong line approximation

approximation, 167
SSM/T, see Special Sensor

Microwave/Temperature Sounder
SST, see Sea Surface Temperature
SSU, see Stratospheric Sounding Unit
Standard atmospheric profile, 66, 537
Star product, 295
Stationary state, 14
Statistical band model, 141–144; see also Band

models
Statistical method for inversion, 393, 425
Statistical weight, 25, 26
Stefan–Boltzmann

constant, 12
law, 11–12, 148, 156; see also Blackbody

radiation
Stokes parameters (vector), 191, 225–226,

319–322
Stratopause, 66
Stratosphere, 66
Stratospheric Aerosol and Gas Experiment, 361
Stratospheric Aerosol Measurement experiment,

361

Stratospheric Sounding Unit, see Sounder
Strong line approximation (limit), see also

Equivalent width
in correlated k–distribution, 131
Elsasser model, 141
random model, 143
single line, 139
in two–parameter scaling, 146

Subsun, 329, 379
Successive-orders-of-scattering approximation,

302–303
for nonhomogeneous clouds, 334

Sulfur dioxide, 67, 69, 475, 511
Summer solstice, 49
Sun

absorption spectrum, 41
chromosphere, 40–41, 54
corona , 40–41, 54
declination, 46–47, 54
emission spectrum, 41
faculae, 44, 62
flash spectrum, 41
granules, 39
photosphere, 34, 39–41, 54
plages, 44, 62
prominences, 44
solar atmosphere, 40–41, 54
solar constant, 50; see also Solar constant
solar elevation angle, 46, 62
solar flares, 44
solar inclination angle, 45–46
solar insolation, 51–54
solar spectrum, 50, 54–57
solar wind, 41
solar zenith angle, 45–46
surface, 39
-synchronous orbit, 363
transition region, 54
visible radius, 37
zone of convection, 39, 62

Sundog, 8, 254
Sunphotometer, 351
Sunspot, 39, 41–44, 62; see also Sun

cycle, 43–44, 62
magnetic field, 44, 62
number, 43–44, 62

Supernumerary rainbow, see Rainbows
Surface

albedo, see Albedo
emissivity

infrared, 154, 458, 489
microwave, 415
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Surface (continued )
energy budget, 489
radiation budget, 458
temperature, see Temperature;

Remote sensing
wave, 205, 208

Taylor series expansion, 386
Temperature

climatology, 66
equilibrium, of earth–atmosphere

system, 63, 116, 461
profile, retrieval of, see Remote sensing

of temperature
standard, 66
surface, 66, 465, 476, 489, 491–495
under radiative–convective equilibrium, 464
under radiative equilibrium, 464
zonal mean, 502

Terrestrial planets, 44
Terrestrial radiation, see Infrared radiation
Theodolite, 60
Thermal inertia coefficient, 491
Thermal infrared radiation, see Infrared radiation
Thermodynamic equilibrium, 13, 14, 25,
Thermosphere, 66
Three–body collision, 79
TIROS, see Satellite
TIROS N Operational Vertical Sounder, see

Sounder
T -Matrix method for light scattering, 246–248

extended boundary condition method, 247
TOM, see Total Ozone Mapping Spectrometer
Total Ozone Mapping Spectrometer, see

Spectrometer
Total reflection, 217, 253
TOVS, see TIROS N Operational Vertical Sounder
Transformation matrix

in light scattering, 192
for Stokes parameters, 322

Transition probability, 21, 25, 54
Transitions, 16–21, 26, 54, 119
Translational energy, 17
Transmission, 275

delta function, in ray–tracing, 217
function, 274, 291; see also

Monochromatic transmittance
global diffuse, 276
global direct, 276
matrix, 275

Transmissivity, 29, 60, 64; see also Transmittance
Transmittance, spectral

definition, 126
diffuse, 127
Elsasser model, 139
Goody model, 141
k-distribution, 127–129, 132, 135–137, 167; see

also k-distribution; Correlated
k-distribution

line–by–line, 126
Malkmus model, 144
overlap, 135
strong line approximation, 139, 143
weak line approximation, 139, 143

Transmitted intensity, see Intensity
Transverse wave, 342
Triatomic molecule, 18
Trichlorofluromethane, 67, 121
Tropic

of Cancer, 49
of Capricorn, 49

Tropical cirrus, 174, 406; see also Cirrus cloud
Tropical year, 47
Tropopause, 66
Troposphere, 66
True anomaly, 47, 54
True longitude of earth, 47
Turbidity, 95, 351
Two-parameter approximation, 145; see also Band

models
Two-stream approximation, 304–307; see also

Radiative transfer
accuracy, 313
delta–function adjustment, 310–313
in discrete–ordinates method, 269
generalized, 106
in infrared radiative transfer, 157–159

UARS, see Upper Atmospheric Research
Satellite

Ultraviolet, see also Ozone
absorption in, 73
light, 1
radiation, 1
spectrum, 56–57, 59

Uncinus, 175
Unified theory for light scattering, 228–239; see

also Scattering
Unit vectors, 179, 182, 216, 220, 331
Unpolarized light, see natural light
Upper atmosphere, 67
Upper Atmosphere Research Satellite, see

Satellite
Upwelling radiance, see Radiance
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U.S. Standard Atmosphere, see Standard
atmospheric profile

UV, see Ultraviolet

van de Hulst approximation, 147
Venus cloud deck, 377
Vernal equinox, 49–50
Vertical Temperature Profile Radiometer, see

Radiometer
Vibrational

angular momentum, 18
energy, 17
modes, 70
partition function, 25
quantum number, 18
– rotational band, 17, 36
transition, 16–21, 36
wavenumber, 19–20

Visibility, 36
Visible

absorption in, 82
radius, sun’s, see Sun
region, 1
spectrum, 54

Visual range, 36
Voigt

function, 24–25
line intensity, 35
profile, 24–25, 35, 147

Volcanic dust, 478
Volume absorption rate, 76
VTPR, see Vertical Temperature Profile

Radiometer

Water dimer, 119; see also Water vapor
Water droplet

absorption, 371
mean effective radius, 392
refractive index, 371
scattering, see Scattering

Water vapor
absorption spectrum, 122
broadband emissivity, 149
combination and overtone band, 83
concentration, 68
continuum absorption, 119
cooling rate, see Cooling rate
distribution, 68
fundamental band, 83
greenhouse feedback, 475–477

heating rate, see Heating rate
isotope, 83
microwave, absorption in, 415
molecular structure, 83
remote sensing of, see Remote sensing
rotational band, 118
vibrational-rotational band, 119
2.7 μm band, 83
3.2 μm band, 83
6.25 μm band, 83
10 μm window, 119
ω,ψ, φ, τ, σ, ρ, bands, 83

Watson transformation, 208
Wave

equation, 178, 525
front, cubic, 206
functions, 25
mechanics, 17, 525
plane, 197

Wavelength, definition, 2
Wavenumber

definition, 2
in electromagnetic wave, 178

Weak line approximation (limit), see also
Equivalent width

in correlated k-distribution, 131
random model, 143
single line, 139
in two-parameter scaling, 146

Weighting function, 354, 384–391, 423
Wien distribution, 11, 35
Wien’s displacement law, 12–13; see also

Blackbody radiation
Window, thermal infrared, see Atmospheric

window
Winter solstice, 49
Wisconsin sensors, 445

Xenon, 67
X-15 rocket, 60
X-ray region, 2
X and Y functions, Chandrasekhar’s, 286

Yamamoto chart, 148

Z function, Liou’s, 306, 314
Zenith angle, definition of, 4
Zonal wind, 502
Zone of convection, 39, 62
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