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Uniform plane waves are the simplest (nontrivial) solutions of the Maxwell equa-
tions in the frequency domain. The components of the field phasors and their spatial 
variation along a fixed axis are described using a Cartesian coordinate system. In the 
simplest case, the medium of propagation is a linear and homogeneous material that 
extends to infinity in all directions. The mathematical apparatus needed here is quite 
elementary.

Plane waves in air (approximated as vacuum) and isotropic dielectric materials 
are sufficiently simple to be taught in an undergraduate course using the approach 
of separation of variables. Plane waves in uniaxial dielectric materials are typically 
introduced in a first-year graduate course. Plane waves in bianisotropic materials are 
taught, if at all, in a specialized graduate course—with a convenient approach pro-
vided by the three-dimensional spatial Fourier transform.

Scattering of an incident electromagnetic field occurs at the planar boundary of 
two half-spaces occupied by dissimilar linear and homogeneous materials. If the 
incident field is a plane wave, analytical treatment of the reflected and refracted 
plane waves does not require additional skills beyond the ability to satisfy standard 
boundary conditions, in exactly the same way as in the undergraduate electromagnet-
ics course. The representation of each plane wave—whether incident, reflected, or 
refracted—involves just one material and is obtained after pretending that this mate-
rial fills all space.

An electromagnetic surface wave, in sharp contrast, is a creature of two materials. 
The surface wave straddles the planar interface of two half-spaces each occupied by a 
different material; remove the interface by making the two partnering materials identi-
cal, and the surface wave vanishes. Moreover, there is no guarantee that, at a specific 
frequency, a chosen pair of partnering materials will necessarily support the existence 
of a surface wave. Thus, a surface wave is far more delicate than a plane wave.

Electromagnetic plane waves have been known in one form or another for several 
millenniums, but the history of electromagnetic surface waves spans slightly more 
than a century. Initial progress was sporadic and slow, but the discovery of optical 
means of launching surface plasmon-polariton waves reported in 1959 led to a quick-
ened pace during the 1970s. At optical frequencies, a surface plasmon-polariton wave 
is guided by the interface of a metal and a dielectric material (which could be air). 
Thousands of research papers are published every year on applications of this type of 
surface wave nowadays, many of the authors having only a beginner’s knowledge of 
electromagnetics.

Inevitably, attention began to be paid during the last four decades to other types 
of electromagnetic surface waves as well. The complexity of partnering materials has 
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increased from isotropic to anisotropic and even to bianisotropic in one sense, and 
from homogeneous to periodically nonhomogeneous (in the direction normal to the 
interface) in another sense. These new types of surface waves have not had the vogue 
experienced by surface plasmon-polariton waves yet, but the spectacular growth of 
nanotechnologies during the last two decades promises a very bright future for all 
types of surface waves.

The attraction of surface waves stems from most of the energy of a surface wave 
being confined to the close vicinity of the interface of the two partnering materials. 
Any change in the composition of either partnering material in that vicinity could 
alter—even eliminate—the surface wave. Conversely, by engineering the composition 
close to the interface, a surface wave can be allowed to propagate. At optical frequen-
cies, the close vicinity is often less than a few micrometers. Nanotechnologies allow 
engineering of composition with a precision of a few nanometers, enabling hitherto 
unrealizable geometries for field confinement.

From a modern perspective, it does not matter if a partnering material is homo-
geneous, isotropic, and dielectric or if it is bianisotropic and periodically nonho-
mogeneous in the direction normal to the interface. A 4 × 4 matrix formalism can 
be devised to solve a dispersion equation and then determine the field phasors on 
each side of the interface. The same formalism can be used to analyze and design a 
practical prism-coupled configuration for launching a surface wave, and an extension 
allows treatment of the practical grating-coupled configuration as well. In this way, 
simple and complex surface plasmon-polariton waves, Zenneck waves, Fano waves, 
Dyakonov waves, Tamm waves, and Dyakonov-Tamm waves can all be treated in a 
unified fashion.

Bianisotropic materials offer a far richer palette of electromagnetic phenomenons 
than the simpler dielectric ones. A permittivity dyadic, a permeability dyadic, and two 
magnetoelectric dyadics are needed to characterize a linear bianisotropic material, 
whereas a linear dielectric material requires just the permittivity dyadic. Attention 
has been focused in this book only on electromagnetic surface waves guided by the 
interface of two materials both of which can be described using only permittivity 
dyadics. The research literature on electromagnetic surface waves involving bianiso-
tropic materials is presently scant, but we expect it to grow in the next two decades to 
incorporate significant quantums of theoretical and experimental results.

One aim of this monograph is to expose the mathematical unity of diverse surface-
wave phenomenons. The other aim is to familiarize researchers with the characteris-
tics of these phenomenons when the partnering materials are dielectric (isotropic or 
anisotropic) and periodically nonhomogeneous. Researchers have found during the 
past 5 years that periodic nonhomogeneity is the cause of the existence of multiple 
surface-wave modes at a specified frequency and propagating in a particular direc-
tion in the interface plane—but with different phase speed, attenuation rate, and field 
profiles. This multiplicity will surely enhance applications of surface waves in optical 
sensing, imaging, communication, and harvesting of solar energy.

This monograph was written to collate and organize research results that have 
become available chiefly during the last decade—in order to inspire further theoreti-
cal research, galvanize extensive experimental efforts, and seed application-oriented 
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research. Accordingly, the monograph is directed chiefly toward doctoral students 
and post-doctoral scholars. Familiarity with the frequency-domain Maxwell equations 
and matrix manipulations is assumed. Some knowledge of dyadics would be helpful, 
although the basics provided in an appendix ought to suffice.

We express our deep gratitude to Muhammad Faryad (Pennsylvania State 
University) for tireless assistance with calculations, diagrams, and graphs. His cheer-
ful, positive, and helpful attitude exceeded the norms of collegiality. We also thank 
him for reading a draft version and suggesting changes.

We thank Jeremy W. Galusha and Michael H. Bartl (University of Utah) for an 
image of a natural diamond-based photonic crystal on a scanning electron micro-
scope, Yi-Jun Jen (National Taipei University of Technology) for a cross-sectional 
image of a sculptured nematic thin film on a scanning electron microscope, Sandia 
National Laboratory for an image on a scanning electron microscope of a photonic 
crystal called a woodpile, and Osamu Takayama (Institut de Ciències Fotòniques, 
Barcelona) for two photographs related to the first observation of a Dyakonov wave 
in a laboratory.

AL thanks Andreas Otto (Universität Düsseldorf) and H. Angus Macleod 
(University of Arizona) for discussions on the history of optical means to excite sim-
ple surface plasmon-polariton waves. Also, AL thanks his doctoral students Stephen 
E. Swiontek and Drew P. Pulsifer for photographs of equipment, cross-sectional 
images of sculptured thin films on scanning electron microscopes, and graphs. JAP 
and TGM join AL in thanking both Stephen and Drew for reading a draft version and 
suggesting changes.

AL is grateful to the Trustees of the Pennsylvania State University for granting a 
sabbatical leave of absence in Fall 2012, the Charles Godfrey Binder Endowment at 
the same university for ongoing support of his research activities, and the US National 
Science Foundation for supporting his research on surface multiplasmonics during the 
last 2 years.

At Elsevier, Lisa Tickner, Tracey Miller, and Erin Hill-Parks in succession herded 
the three academic cats that we are. Largely as a result of their frequent prodding, we 
wrote fewer papers during the last 2 years—but we still managed to push the publica-
tion deadline by a month. A longer delay would have helped us reduce errors in the 
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1 Surface Waves

1.1 Introduction

The planar interface of two dissimilar materials plays a vital role in many optical
phenomenons. In elementary optics, for instance, the material interface appears to be
responsible for reflection and refraction: light approaches the interface along a straight
path, and then abruptly breaks up into two parts, both of which continue along straight
paths in two different directions. Of course, the entirety of the refracting material
is involved in what is actually seen, but that realization requires understanding of a
conceptual framework based on the fundamental laws of electromagnetism.

One can, however, discern a more gradual change at the interface when total internal
reflection occurs. Thus Isaac Newton realized that the incident wave, which seems not
to enter the refracting material, actually penetrates that material with an amplitude that
decays exponentially with distance from the interface on the microscopic scale [1]. The
penetrating wave, known as an evanescent wave, was once mainly a theoretical curios-
ity. In recent years, however, evanescent waves have been used in newly developing
technologies such as near-field spectroscopy [2].

Another phenomenon, the electromagnetic surface wave, is even more intimately
tied to the interface. Such a wave travels in a direction parallel to the interface but,
on either side of the interface, its amplitude is minuscule after a certain distance from
the interface. This localization is a propitious quality that is exploited, for example,
in some extremely sensitive bio/chemical sensors [3,4]. The electromagnetic surface
wave is the focus of this book.

The study of electromagnetic surface waves began in the first decade of the 20th
century. Yet, nearly a century later, a single type of wave, the surface-plasmon-polariton
(SPP) wave, dominates the technoscientific scene, at least at optical frequencies. The
concentration on the SPP wave has resulted in wonderful technological developments
with the creation of extremely sensitive chemical sensors and biochemical sensors,
and improvements in this mature technology continue to this day. Even in this highly
developed application, the two partnering materials which meet at the interface may be
simple: one is a typical metal—a plasmonic material at optical frequencies—and the
other is a homogeneous, isotropic, dielectric material. The SPP wave then is labeled as
simple, and its electric and magnetic fields have simple spatial profiles, as discussed in
Chapter 2.

Electromagnetic Surface Waves. http://dx.doi.org/10.1016/B978-0-12-397024-4.00001-3
© 2013 Elsevier Inc. All rights reserved.
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2 Electromagnetic Surface Waves

However, we now know that, in partnership with a plasmonic material, a more
complex polarizable material can also support the propagation of SPP waves. The
surface waves guided by such interfaces can have some technoscientifically interest-
ing properties which easily could be exploited in the near future; very significantly,
multiple SPP-wave modes for a specified range of directions of propagation and for a
specified range of angular frequencies are possible. The electric and magnetic fields
of some of these SPP-wave modes have complicated spatial profiles, as discussed in
Chapter 6.

Furthermore, while the interface of a plasmonic material and a polarizable material
supports an SPP wave, a variety of other types of surface waves can be supported by
the interface of two polarizable materials. Since polarizable materials such as dielectric
materials are less dissipative, in general, than plasmonic materials such as metals, the
advantage of these materials for long-range propagation of surface waves is apparent.
Yet, as we shall see, surface waves guided by the interface of two dielectric materials
can exhibit other intriguing properties.

Research on electromagnetic surface waves of new types progressed at a slow rate
for a few decades, but is now advancing at an accelerated rate. What is responsible for
this activity? As always, electromagnetics is a fertile playground for the theorist. After
years of research, exploring surface-wave propagation under many different possible
conditions, a solid theoretical foundation has been established which supports current
work. As with research on simple SPP-wave propagation, theory has led the way in the
discovery of new types of electromagnetic surface waves.

The contribution of modern nanotechnology to the development of research on elec-
tromagnetic surface waves is significant. Although nature provides ample materials and
situations that motivate explorations purely out of scientific curiosity, there is nothing
like the prospects of new and useful devices to spur on a frenzy of research activity.
Recent developments in nanotechnology provide a host of new possibilities. A variety
of materials with desirable complexities have been developed. In particular, materials
with an engineered nanoscale structure have provided a platform for investigation and
produced some of the most interesting results. While it was not possible to contem-
plate such materials when the notion of surface waves supported only by dielectric
materials emerged, their production is now nearly routine. With the current ability to
design and fabricate a vast variety of materials, it is possible to foresee some interesting
applications; many more uses will surely take us by surprise.

1.2 A Brief History

The notion of an electromagnetic surface wave made a significant appearance in 1907
when Zenneck [5] authored a theoretical paper exploring the possibility of a wave
guided by the interface of the atmosphere and either earth or a large body of water. His
focus was on radio waves, a region of the electromagnetic spectrum far from the optical
regime in which we are particularly interested when nanomaterials are to be used to
guide surface waves. Nonetheless, the principles involved are the same, owing to the
scale invariance of the Maxwell postulates. Although the Zenneck wave, as it is now



Surface Waves 3

called [6], was further investigated, also theoretically, by such notables as Sommerfeld
[7] and Bouwkamp [8], its practical existence remains controversial [9,10].

During the late 1940s, certain electronic phenomenons observed in metals exposed
to electric fields were resolved in terms of plasma oscillations [11,12]. Antecedent
literature exists [13], and the electronic-plasma oscillations were also related to the
oscillations of ionic plasmas in vacuum tubes [14]. The quantum of plasma oscilla-
tions is a quasiparticle dubbed the plasmon [15]. A few years later, the energy losses of
electrons impinging on a metal film were explained in terms of electronic-plasma oscil-
lations occurring at the film’s surfaces [16]. Naturally, the quantum of these oscillations
came to be called the surface plasmon (SP).

A train of SPs traveling along a metal/vacuum interface can be treated classically as
an SP wave. When vacuum is replaced by a dielectric material, the quasiparticles are
called surface plasmon-polaritons, each with a plasmonic component in the metal and
a polaritonic component in the dielectric material. Just as a plasmon is the quantum of
plasma oscillations, a polariton is the quantum of polarization [17] in dielectric matter
[18]. At a frequency where the imaginary part of the permittivity of the metal is small
enough in magnitude to be ignored in comparison to the real part, the SPP wave is
called a Fano wave [19].

SPP waves cannot be excited by shining light directly at either a dielectric film
lying atop a metal film or a metal film lying atop a dielectric film. In 1959, T. Turbadar
published a seminal paper [20] showing that the reflectance of a parallel-polarized plane
wave from a thin aluminum film deposited on a glass prism exhibited a sharp dip as the
angle of incidence exceeded the critical angle for a glass/air interface. A proper choice of
the thickness of the metal film could transform the reflectance low into a reflectance null
even [21]. No relation to the excitation of an SP wave was drawn by Turbadar, but was
provided in 1968 by Otto [22] and separately by Kretschmann and Raether [23]. Thus
emerged the Turbadar-Otto and the Turbadar-Kretschmann-Raether configurations as
practical methods to excite SPP waves optically using evanescent waves generated by
total internal reflection. When an SPP wave is excited in this manner, energy is absorbed
from the evanescent wave, thereby resulting in a reduction in the intensity of reflected
light, a process known as attenuated total reflection or frustrated total reflection [24].
SPP waves can also be excited using a surface-relief grating, a waveguide, or even an
optical fiber [4]. Indeed, as early as 1902, Wood [25,26] had observed dark lines in the
pattern of light reflected from a surface-relief grating of metal, which we now attribute
to the excitation of SPP waves. No matter the method, the phenomenon of a light wave
coupling to an SPP wave is known as surface-plasmon resonance (SPR).

From the 1970s, there has been a continual development of instruments exploiting
SPR. At first, metal films and films adhering to the surface of the metal were explored. In
the early 1980s, Nylander et al. [27] were among the first to develop sensing using atten-
uated total reflection. The Swedish company Phamacia Biosensors AB1 was formed
in 1984 in order to commercially produce an SPR instrument. Today there is a wide
choice of SPR instruments, chiefly SPR sensors, available from many companies [3,4].

1This company was renamed Biacore AB in 1996 and was acquired by GE Healthcare in 2006.
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Over the last three decades, the propagation of SPP waves guided by the interface of
a metal and more complex dielectric materials has been investigated. At first, the focus
was on a purely theoretical understanding of SPP waves guided by metal/anisotropic-
dielectric interfaces. With the growing interest in liquid crystals during the 1980s, a
few researchers [28–31] investigated the use of SPR for characterizing liquid crystals.
Furthermore, in some spectral regimes, the metal may be replaced by an alloy [32] or
a semiconductor [33].

Opposite signs of the real parts of the permittivity scalars of the two isotropic
partnering materials—and analogous conditions if one or both partnering materials
are anisotropic—are essential to SPP-wave propagation. However, the interface of two
homogeneous dielectric materials of which at least one is anisotropic may support
surface-wave propagation of another type, even though the real parts of all components
of the permittivity dyadics of both materials are positive. Although research began in the
1970s [34], interest in surface waves guided by the interface of two dielectric materials
began to take off after Dyakonov in 1988 [35] explored the propagation of a surface
wave guided by the interface of a uniaxial dielectric material and an isotropic dielectric
material. Since then, the scope of the term Dyakonov wave has expanded to include
surface waves guided by the interface of two homogeneous dielectric materials, at least
one of which is anisotropic [36]; even bianisotropic partnering materials are admissible
[37–39].2 Due to the complicated nature of the field expressions in an anisotropic
material, theoretical research on Dyakonov waves guided by the interface of various
homogeneous dielectric materials under different conditions continues to this day. The
narrow range of directions for Dyakonov-wave propagation makes experimental work
difficult, so much so that the first observation of a Dyakonov wave was made only in
2009 [41], more than two decades after its theoretical introduction.

The recent explosion of nanotechnology has opened a whole new realm of pos-
sibilities for both SPP waves and Dyakonov waves within the past 10 years. Now,
materials can be designed and manufactured with specific anisotropic nature as well
as nonhomogeneities. For example, columnar thin films (CTFs) [42], formed by phys-
ical vapor deposition (PVD) of a bulk material after conversion to a collimated vapor,
comprise straight nanowires or columns. CTFs are effectively homogeneous under opti-
cal illumination. By changing either the evaporated material or deposition conditions,
the anisotropy of the generally biaxial CTF can be engineered. If the substrate upon
which the film is deposited is rocked and/or rotated during the deposition process, the
nanowires can be sculptured into various shapes to create sculptured thin films (STFs)
[42]. Under the right conditions, it is possible to create a nonhomogeneous material
with optical properties that vary continuously along the direction perpendicular to a
planar interface. By the turn of the new millennium, understanding and characterization
of CTFs and STFs was sufficiently advanced to allow consideration of these materials
for designing interfaces to support surface-wave propagation.

2Parenthetically, SPP waves guided by the planar interface of a metal and a dielectric material which moves
at constant velocity relative to the metal have also been considered [40]. In effect, the planar interface here
is of a metal and a bianisotropic material.
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Beginning in 2007 [43–45], theoretical research has characterized the properties
of SPP and Dyakonov waves supported by metal/CTF and CTF/isotropic-dielectric
material interfaces, respectively. The theory for surface-wave propagation guided by
interfaces formed with CTFs is not fundamentally different from that describing prop-
agation guided by interfaces formed with naturally occurring biaxial crystals. How-
ever, the optical properties of CTFs are selectable over a continuous range, thereby
making possible the design of interfaces for surface-wave propagation. Additionally,
CTFs—and STFs in general—are porous materials, a property which has potential for
technological exploitation [42].

The controllable nonhomogeneity and anisotropy of STFs is creating new avenues of
surface-wave research and development which are inaccessible with crystalline mate-
rials. A search, in 2007 [46], for surface waves guided by the interface of an isotropic,
homogeneous, dielectric material and an STF that is periodically nonhomogeneous in
the direction normal to the interface gave positive results. The theoretically discovered
wave was named a Dyakonov-Tamm wave. The first part of the name of this wave is
appropriate because the surface wave is an extension of the Dyakonov wave, which is
guided by the interface of two dielectric materials of which at least one is anisotropic.
Furthermore, due to the periodicity of the STF, the new surface wave is an optical
analog of the electron wave guided by the surface of a metal proposed by Tamm in
1932 [47], thereby making Tamm an appropriate modifier.

The first Dyakonov-Tamm wave investigated is guided by the interface of an iso-
tropic, homogeneous, dielectric material and a chiral STF, which is composed of
nanohelices oriented perpendicular to the interface. Since then, calculations have shown
that an isotropic, homogeneous, dielectric material partnered with either (i) an STF
having a periodically nonhomogeneous morphology [48] or (ii) a periodically layered
material [49] can also support surface-wave propagation. Furthermore, calculations
[50–53] for an interface of two chiral STFs with different orientations and/or consti-
tutions also predict the possibility of Dyakonov-Tamm waves. Periodically ordered
liquid crystals could be employed for surface-wave propagation, as well. STFs and
liquid crystals each have certain advantages with respect to various applications. Liq-
uid crystals may be controlled dynamically with an applied electric field or respond to
physical conditions such as temperature and pressure, while PVD allows for an almost
unlimited variety of unidirectional nonhomogeneity when fabricating STFs.

The interface of a periodically nonhomogeneous dielectric material and a metal
supports SPP waves with a very interesting property. In 2008, calculations for both the
interface of a metal and a periodically nonhomogeneous sculptured nematic thin film
(SNTF) [54,55] and the interface of a metal and a chiral STF [56] showed that multiple
SPP-wave modes can be guided by a single interface along a specific direction. All of
the SPP-wave modes for a single interface have different field profiles, attenuation rates,
and phase speeds, but all of them have the same frequency. In 2009, experiments verified
the existence of multiple SPP-wave modes guided by both a metal/SNTF interface [57]
and a metal/chiral-STF interface [58,59].

Other periodically nonhomogeneous, dielectric materials have also received theo-
retical attention. Rugate filters [60], which are constructed with isotropic materials and
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are mostly designed to possess a sinusoidally varying refractive index, reject light in
a narrow frequency band and are routinely manufactured. Interfaces of rugate filters
with both homogeneous dielectric materials [61] and other rugate filters [62] in various
configurations, all support multiple surface waves called Tamm waves. The interface
of a rugate filter and a metal can guide several SPP waves [63]; if the imaginary part
of the permittivity scalar of the metal can be ignored, those SPP waves may be called
Fano waves [61].

The Reusch pile is a stack of layers of an anisotropic dielectric material with an
incremental rotation from one layer to the next about an axis normal to the layers
[64,65]. The interface of a Reusch pile and an isotropic dielectric material supports
a single Dyakonov-Tamm wave mode [49], similarly to an interface of an isotropic
dielectric material and a chiral STF with a continuously rotating permittivity dyadic.

The chiral STF, the periodically nonhomogeneous SNTF, the rugate filter, and the
Reusch pile may be considered as examples of one-dimensional (1-D) photonic crystals.
A few researchers have pursued the possibility of surface-wave propagation at interfaces
formed with 2-D [66] and 3-D [67] photonic crystals. These materials lie well within
the current technical reach of modern nanotechnology.

Homogeneous materials that support the propagation of plane waves with nega-
tive phase velocity (NPV) have been a very popular research topic in recent years
[68], and have not escaped the scrutiny of investigation for surface-wave propagation
[69,70]. Although realization of composite NPV materials which can be considered
homogeneous and exhibit low dissipation in the optical frequency range awaits fur-
ther development [71–73], theoretical work predicts that interfaces incorporating an
NPV material will support the propagation of surface waves with some interesting
characteristics [74–76].

1.3 Simple SPP Wave

We start a more technical look at surface-wave propagation with the simple SPP wave,
these days a technologically important wave, as a foundation for further discussion. The
qualifier simple, here, implies several properties of the partnering materials forming the
interface which guides the SPP wave. When the materials are isotropic, homogeneous,
linear, non-magnetic, and achiral [17], the characteristics of the SPP wave are quite
simple and straightforward.

1.3.1 Canonical Boundary-Value Problem

Let the interface of the two partnering materials, for purposes of this discussion, be the
plane z = 0, with a metal filling the half-space z < 0, and a dielectric material filling
the half-space z > 0. This is the geometry of what may be called the canonical problem
of SPP-wave propagation. Parenthetically, the material occupying the half-space z < 0
is most commonly, but not necessarily, a metal.
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A fundamental property of a surface wave is its localization to the interface. Thus,
it must be guided along some direction which is parallel to the interface and have an
amplitude which decreases with distance far away from the interface. Such a wave may
seem quite distinct from a plane wave, an eigenmodal solution of the frequency-domain
Maxwell postulates in a bulk material, which extends indefinitely in all directions with
electric and magnetic field phasors described as [17]

E(r) = E exp (ik • r)

H (r) = H exp (ik • r)

}
, (1.1)

where E and H are amplitude vectors with complex-valued components; k is the wave
vector which can also have complex-valued components; r = xux + yuy + zuz is the
position vector with ux , uy , and uz being the Cartesian unit vectors; and an exp (−iωt)

dependence on time t is implicit with i = √−1 and ω as the angular frequency.
However, the required surface-wave characteristics may be achieved with a slight

modification of the plane wave described by Eq. (1.1); thus,

E(r) =
{

Emet exp (ikmet
• r), z < 0,

Ediel exp (ikdiel
• r), z > 0,

(1.2)

and

H (r) =
{

Hmet exp (ikmet
• r), z < 0,

Hdiel exp (ikdiel
• r), z > 0,

(1.3)

with the subscripts met and diel denoting the metal and the dielectric material, respec-
tively. If the component of the wave vector perpendicular to the interface is complex
valued with a non-zero imaginary part, the amplitude of the wave either decays or
grows with distance from the interface. Of course, we must check that, in making a
component of the wave vector complex valued, we obtain a legitimate result which
satisfies the Maxwell curl postulates; i.e.

kmet × Emet = ωμ0Hmet

kmet ×Hmet = −ωεmetEmet

}
, z < 0, (1.4)

and

kdiel × Ediel = ωμ0Hdiel

kdiel ×Hdiel = −ωεdielEdiel

}
, z > 0, (1.5)

where εmet and εdiel are the permittivity scalars of the metal and the dielectric material,
respectively, and are functions of the angular frequency ω. Typically, Re{εmet} < 0,
Re{εdiel} > 0, and Im {εdiel} = 0 are assumed for analysis of SPP-wave propagation.
The permeability of free space (i.e. vacuum) is denoted by μ0 = 4π × 10−7 H m−1,
and the permittivity of free space by ε0 = 8.854× 10−12 F m−1.

Although the component of the wave vector along the direction of propagation
parallel to the plane z = 0 may be complex valued, it must have a non-zero real part in
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Figure 1.1 Typical variation of the amplitude of the electric field phasor of an SPP wave as a
function of distance from the interface z = 0, when both partnering materials are homogeneous,
isotropic, non-magnetic, and achiral.

order to describe propagation. Thus, we write the wave vector in the metal side of the
interface as3

kmet = quprop − αmetuz, (1.6)

and the wave vector in the dielectric side of the interface as

kdiel = quprop + αdieluz, (1.7)

where q, αmet, and αdiel are complex valued. The unit vectors uprop and uz are parallel
to the propagation direction and normal to the interface, respectively; uprop

• uz = 0.
Both the real and imaginary parts of q are positive, so that the direction of propagation
is also the direction of attenuation. The phase speed of the SPP wave is denoted by
vp = ω/Re{q}.

The wave is localized to the interface and decays as z → ±∞, provided the twin
conditions

Im {αmet} > 0
Im {αdiel} > 0

}
(1.8)

are satisfied. Figure 1.1 illustrates a typical exponentially decaying behavior of SPP
field magnitudes on both sides of the interface z = 0. Although the spatial profile of the

3In Chapters 1, 2, and 6, the half-space z < 0 in the canonical boundary-value problem for SPP-wave
propagation is occupied by a metal, and the spatial dependence of the field phasors is taken to be
exp[i(quprop − αmetuz)

• r ] with Im {αmet} > 0. In Chapters 4, 5, and 7, sometimes the half-space
z < 0 in the canonical boundary-value problem for surface-wave propagation is occupied by an isotropic
homogeneous dielectric material. In consonance with Chapter 3, we then adopt the spatial dependence
exp[i(quprop + αBuz)

• r ] with Im {αB} < 0. Both representations are identical, as can be ascertained by

setting αmet = −αB .
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electromagnetic field depends on the angular frequency and the partnering materials,
typically in the visible regime [77],

i. the penetration depth �met = 1/Im {αmet} into the metal is ∼25 nm,
ii. the penetration depth�diel = 1/Im {αdiel} into the dielectric material is ∼250 nm,

iii. the propagation length �prop = 1/Im {q} of the SPP wave in the direction parallel
to uprop is less than 400 µm, and

iv. the SPP wavelength 2π/Re{q} ∼ 500 nm in the same direction.

Although the wave vectors in the two half-spaces are different, their components
parallel to the unit vector uprop are the same. This is a necessary condition in order to
satisfy the standard boundary conditions simultaneously everywhere along the interface
[17,78]. Substitution of Eqs. (1.2), (1.3), (1.6), and (1.7) into Eqs. (1.4) and (1.5) leads
to the constraint

q2 = k2
0(εdiel/ε0)− α2

diel = k2
0(εmet/ε0)− α2

met (1.9)

on the two wave vectors, where k0 = ω
√
ε0μ0 = 2π/λ0 is the wavenumber in free

space and λ0 is the wavelength in free space.
After splitting the description of the surface wave into two parts, one each for the two

half-spaces, we must ensure that the components of the electric and magnetic fields
parallel to the interface are continuous across the interface [17,78]. Enforcement of
these continuity conditions leads to the requirement

αdielεmet = −αmetεdiel; (1.10)

furthermore, the SPP wave must be p polarized, i.e. the magnetic field phasor is orthog-
onal to both uprop and uz , whereas the electric field phasor lies wholly in the plane
formed by uprop and uz . Of course, this characteristic is displayed only if the partnering
dielectric material is both homogeneous and linear. If that material is either nonhomo-
geneous in the direction perpendicular to the interface [63] or is nonlinear [79], both
s-polarized and p-polarized SPP waves are possible. The electric field phasor of an
s-polarized wave is orthogonal to both uprop and uz , whereas its magnetic field phasor
lies wholly in the plane formed by uprop and uz .

What are the implications of the analysis so far? In order to extract the essence of
the simple SPP wave, let us temporarily neglect the imaginary part of the permittivity
of the dielectric material, it being typically very small compared to the real part, and
let us also ignore Im {εmet} for simplicity. Then, Eq. (1.10) yields

Im {αdiel}
Im {αmet} = −

εdiel

εmet
, (1.11)

and in conjunction with Eq. (1.8), requires that the permittivity scalars of the two
partnering materials have opposite signs. Metals are traditionally used as one of the two
partnering materials to form the interface for SPP-wave propagation since commonly
Re{εmet}< 0 at optical frequencies; that requirement can be fulfilled in different spectral
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regimes by semiconductors as well [32,33]. In contrast, generally εdiel ≈ Re{εdiel} > 0
in the same frequency range. Furthermore, due to Eq. (1.9), purely real permittivity
scalars lead to the conclusion that q > k0

√
εdiel/ε0. Thus, the SPP wavelength 2π/q

is less than the wavelength 2π/k0
√
εdiel/ε0 of a plane wave in the partnering dielectric

material in the bulk, and as a consequence the phase speed of the SPP is also less than
the phase speed of the plane wave in the partnering dielectric material in the bulk. The
foregoing conclusions do not have to be modified significantly if the magnitudes of the
imaginary parts are not ignored.

So far, our discussion has been rather abstract: propagation of a surface wave guided
by the interface of two semi-infinite materials, with an unknown agent exciting the
surface wave. The solution of this canonical problem is vital to the understanding of
surface-wave propagation, but the canonical problem is unimplementable in practice.

1.3.2 Practical Configurations

In practice, only materials of finite extent may be used, and the SPP wave must be excited
in some manner. The mismatch in wavelength of the SPP wave and the plane wave in
the bulk dielectric partnering material prevents excitation of the SPP wave by direct
coupling to a beam of light. Therefore, four practical configurations have been devised
to excite SPP waves: two types of prism-coupled configuration, as well as grating-
coupled and waveguide-coupled configurations. Although all four configurations are
equivalent to each other for the excitation of SPP waves, each is suitable for different
applications; furthermore, when careful interpretation of experimental or calculated
data from any of the configurations is needed, resort must be made to the solution of
the canonical problem.

1.3.2.1 Prism-Coupled Configurations

Two configurations, known as the Turbadar-Kretschmann-Raether [23] and Turbadar-
Otto [22] configurations, use the evanescent wave generated by total internal reflection
to excite the SPP wave. An evanescent wave, like the SPP wave, has a wavenumber
greater than that of a plane wave in the partnering dielectric material in the bulk.

Turbadar-Kretschmann-Raether configuration. This configuration, by far the more
popular of the two prism-coupled configurations, employs a prism made of a refractive
index nprism that exceeds the refractive index ndiel = √εdiel/ε0 (assumed real and
positive) of the partnering dielectric material. A thin metal film is supposed to be
deposited on (or otherwise placed in intimate contact with) the base of the prism with
the partnering dielectric material forming an interface on the opposite side of the metal
film, as shown in Figure 1.2a. When a beam of light strikes the prism/metal interface at
an angle θinc greater than the critical angle for total internal reflection from an interface
of the prism and the partnering dielectric material, an evanescent wave is formed which
is able to pass through the suitably thin metal film and into the partnering dielectric
material. At a certain value of θinc, the component of the evanescent wave’s wave vector
parallel to the interface is close in magnitude to the real part of q that satisfies Eqs. (1.9)
and (1.10), and the SPP wave is excited.
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Figure 1.2 Schematics of (a) Turbadar-Kretschmann-Raether and (b) Turbadar-Otto configura-
tions for exciting an SPP wave using a prism.

Figure 1.3 Semi-circular and triangular prisms.

Figure 1.3 is a photograph of semi-circular and triangular prisms made of borosilicate
glass, which has a refractive index of 1.51509 at λ0 = 632.8 nm. Containing about
10% boric oxide, this type of crown glass is resistant to chemical and environmental
damage, besides exhibiting very low dispersion over the visible spectral regime. In
practice, the base of the prism is put in contact with a borosilicate-glass slide on which
the metal film is deposited. A very thin layer of an index-matching liquid is used to
stick the slide to the prism, thereby eliminating a discontinuity-causing layer of air
between the slide and the prism.
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Figure 1.4 Angle of incidence θinc in the Turbadar-Kretschmann-Raether configuration with
semi-circular and triangular prisms.

Triangular prisms are used more commonly than semi-circular prisms. This is
because the cross-section of a semi-circular prism is not a complete semi-circle but
must be reduced by the thickness of the slide on which the metal film is deposited. The
reduction involves an extra manufacturing step. Although the measurement of the angle
θinc is greatly simplified, as shown in Figure 1.4, only slides of a specific thickness must
be used. No such limitation on the slide thickness exists with a triangular prism, but
θinc has to be inferred—after measuring the angle θair shown in Figure 1.4—by using
the formula

θinc = αc − sin−1
(

sin θair

nprism

)
, (1.12)

where αc is the corner angle of the triangular prism and nprism is the refractive index
of the prism material.

Turbadar-Otto configuration. This configuration is similar to the Turbadar-
Kretschmann-Raether configuration with the positions of the metal and partnering
dielectric material reversed, as shown in Figure 1.2b. Light striking the interface of the
prism and the partnering dielectric material at an angle greater than the critical angle
for these two materials creates an evanescent wave. If the partnering dielectric material
is sufficiently thin, then the evanescent wave may reach that material’s interface with
the metal with a significant amplitude. Just as for the Turbadar-Kretschmann-Raether
configuration, at a certain angle of incidence θinc at the interface of the prism and the
partnering dielectric material, the component of the wave vector parallel to the inter-
face of the evanescent wave is close in magnitude to the real part of q that satisfies
Eqs. (1.9) and (1.10), and the SPP wave is excited. In order for the Turbadar-Otto con-
figuration to work efficiently, the thickness of the partnering dielectric material must
be∼200 nm, which is quite a low value. This requirement has limited the popularity of
the Turbadar-Otto configuration for many applications, particularly for sensing chem-
icals and biochemicals when the partnering dielectric material is a liquid containing
the analyte. The Turbadar-Kretschmann-Raether configuration—with a thin metal film
rather than a thin dielectric film—is much more convenient for those applications.
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1.3.2.2 Grating-Coupled Configuration

It is also possible to use a surface-relief grating for exciting SPP waves [3], thereby
avoiding the use of a prism. Both partnering materials are of finite thickness but their
interface is now the undulating surface z = g(x, y) instead of the plane z = 0. The
undulating surface can be singly periodic with g(x, y) ≡ g(x) = g(x ± Lx ), say,
where Lx is the period along the x axis, as schematically illustrated in Figure 1.5.
Alternatively, the surface z = g(x, y) can be doubly periodic with g(x, y) = g(x ±
Lx , y) = g(x, y ± L y), where Lx and L y are the periods along the x and y axes,
respectively.

Suppose that a p-polarized plane wave is incident on a doubly periodic grating from,
say, free space on the other side of the partnering dielectric material, the wave vector
of the incident plane wave having the projection k0(ux cosψ + uy sinψ) sin θinc in the
xy plane. The field phasor excited in the metal can be written for z � maxx,y g(x, y)
as the sum of Floquet harmonics [80]—also called Bloch waves [81]—whose spatial
variations are stated as

exp
(

ik(m,n,±)met
• r
)
, (1.13)

where

k(m,n,±)met = κ(m,n) ∓ α(m,n)met uz, (1.14)

κ(m,n) = k(m)x ux + k(n)y uy, (1.15)

k(m)x = k0 sin θinc cosψ + m(2π/Lx ), m ∈ {0,±1,±2, ...}, (1.16)
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Figure 1.5 Schematic of the grating-coupled configuration for exciting an SPP wave. The
surface-relief grating shown is singly periodic.
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k(n)y = k0 sin θinc sinψ + n(2π/L y), n ∈ {0,±1,±2, ...}, (1.17)

k(m,n,±)met
• k(m,n,±)met = k2

0εmet/ε0. (1.18)

Likewise, for z � minx,y g(x, y) in the partnering dielectric material, the field phasor
is the sum of Floquet harmonics with spatial variations

exp (ik(m,n,±)diel
• r), (1.19)

where

k(m,n,±)diel = κ(m,n) ± α(m,n)diel uz (1.20)

and

k(m,n,±)diel
• k(m,n,±)diel = k2

0(εdiel/ε0). (1.21)

For a singly periodic grating, the index n ∈ {0}.
Provided the incidence conditions are such that (i) the magnitude of κ(m̃,ñ) for some

(m̃, ñ) is close to the real part of q that satisfies Eqs. (1.9) and (1.10), and (ii) both α(m̃,ñ)met

and α(m̃,ñ)diel have positive imaginary parts, an SPP wave supported by the periodically
undulating interface z = g(x, y)will be excited by the incident p-polarized plane wave.
This form of coupling is especially suited for enhanced harvesting of solar energy in
photovoltaic cells [82–84].

Instead of a simple grating, a compound grating may be used [85]. Each period of a
compound grating comprises two or more simple gratings, each several periods long.
A compound grating can help excite SPP waves over a range of free-space wavelengths
and for several different incidence conditions. However, the excitation of a specific SPP
wave may be less efficient with compound grating than with a simple grating [85,86].

1.3.2.3 Waveguide-Coupled Configurations

For applications in integrated optics, excitation of SPP waves is attempted using a
waveguide-coupled configuration called end-fire configuration. The plane x = 0 sep-
arates a waveguide (x < 0) whose axis is the x axis from the metal/dielectric struc-
ture (x > 0), as shown in Figure 1.6a. The cross-sectional dimensions of both the
waveguide—often a parallel-plate waveguide but can have another cross section—and
the metal/dielectric structure must be sufficiently large for the fields to decay sig-
nificantly before reaching the outer limits of the waveguide and the metal/dielectric
structure far from the central axis. A normal mode of the waveguide is excited with an
axial variation exp (iκwgx) such that κwg is close to the solution q of Eqs. (1.9) and
(1.10); of course, the magnetic field phasor of the waveguide mode must be oriented
substantially along the y axis. This widely used configuration was devised by Stegeman
et al. [87] in 1983.

In a different waveguide-coupled configuration, a thin metal overlayer is placed on
part of a dielectric waveguide and the dielectric partnering material is put on top of the
overlayer, as shown in Figure 1.6b. An SPP wave is excited when the normal mode in the
bulk of the dielectric waveguide is phase-matched to the SPP wave. This configuration
is attractive in some sensor systems because of its ruggedness and small size [3].
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Figure 1.6 Schematics of two waveguide-coupled configurations for exciting an SPP wave.

1.4 Dielectric Materials

The simple SPP wave, as we have seen in Section 1.3, is guided by the interface of two
isotropic, homogeneous materials, of which one is dielectric. The use of more complex
materials not only expands the range of possibilities for SPP waves, but allows for the
propagation of other types of surface waves.

1.4.1 Solid Crystals

Nature provides us with many anisotropic dielectric materials in the form of crystals,
and these were the first materials considered to form interfaces supporting Dyakonov
waves. A crystal is identified as belonging to one of seven systems [88].

A crystal that belongs to the cubic system is characterized just like an isotropic
dielectric material by the constitutive relations

D(r) = εE(r)

B(r) = μ0 H(r)

}
, (1.22)

containing the permittivity scalar ε. Although this quantity is complex valued in gen-
eral, it is real valued in the absence of dissipation (which is often assumed in crystal
optics). Furthermore, ε is a function of the angular frequency ω. Here, D is the electric
displacement phasor and B is the magnetic displacement phasor.

In order to accommodate the directional properties of anisotropic dielectric crystals,
constitutive relations of the form

D(r) = ε • E(r)

B(r) = μ0 H(r)

}
(1.23)



16 Electromagnetic Surface Waves

are required, with the permittivity 3 × 3 dyadic ε being a function of ω.4 For a uni-
axial crystal—which belongs to either the tetragonal, or the trigonal or the hexagonal
system—the permittivity dyadic has the form [17,88]

ε = ε11(u1u1 + u2u2)+ ε33u3u3, (1.24)

where u1, u2, and u3 is a right-handed triad of three mutually orthogonal unit vectors:
u1 × u2 = u3 et cyclicum. For biaxial dielectric crystals, the form of ε depends upon
the crystal system [17,88]:

ε = ε11u1u1 + ε22u2u2 + ε33u3u3 (1.25)

for an orthorhombic crystal,

ε = ε11u1u1 + ε22u2u2 + ε33u3u3 + ε12(u1u2 + u2u1) (1.26)

for a monoclinic crystal, and

ε = ε11u1u1 + ε22u2u2 + ε33u3u3

+ ε12(u1u2 + u2u1)+ ε13(u1u3 + u3u1)+ ε23(u2u3 + u3u2) (1.27)

for a triclinic crystal. More general forms of ε arise when, for example, gyrotropic
effects are taken into account [17]. Furthermore, in the most general case of dielectric
anisotropy, the dyadic ε is specified by nine complex-valued components; i.e.

ε =
3∑
�=1

3∑
m=1

ε�mu�um . (1.28)

1.4.2 Particulate Composite Materials

Crystals are homogeneous continuums at macroscopic length scales, i.e. over distances
much larger than the dimensions of the unit cell. The degree of anisotropy of naturally
occurring crystals tends to be quite small, while practical applications in many instances
will require a larger degree of anisotropy. Materials with a larger degree of anisotropy
can be obtained as particulate composite materials containing electrically small par-
ticles [89]. Electrically small particles are required to have linear dimensions much
smaller than the wavelength(s) inside both the host material and the bulk material of
which the component particles are made [90,91], thereby ensuring that resonances do
not arise within the component particles [92]. Such a particulate composite material
can be considered as an effectively homogeneous material with a permittivity dyadic
ε that can be predicted using homogenization theories [73,93].

1.4.3 Nanoengineered Materials

Several types of surface waves treated in this book require materials that can be con-
sidered as periodically nonhomogeneous continuums at subwavelength scales. Such

4See Appendix A for a functional introduction to dyadics.
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materials are not readily found in nature, but nanotechnology provides a means for
fabricating material continuums with high anisotropy and periodic nonhomogeneity.
By adjusting the composition and structure of materials on the nanoscale, it is possible
to manipulate both anisotropy and periodicity in a controlled manner, thus allowing
for the design of materials with specific properties for particular uses. Even though
nanostructured materials are composed of discrete entities at the nanoscale, they appear
at optical frequencies as continuously varying materials. Let us look at some of the
available nanostructured materials, which are currently driving innovative work on
surface-wave propagation, and their properties.

1.4.3.1 Columnar Thin Films

When a well-collimated vapor is directed toward a planar substrate at a suitable temper-
ature and pressure in a low-pressure chamber, the evaporated material self-aggregates
into parallel columns, or nanowires, thereby producing a CTF [42, Chapter 7], as shown
in Figures 1.7 and 1.8. With this PVD process, it is currently possible, in low-pressure
chambers commonly used for academic research, to obtain nanowires tilted at an angle
χ ∈ [20◦, 90◦] to the substrate plane by proper selection of the acute angle χv between
the average direction of the vapor and the substrate plane. Lower values of χ are
expected to be achievable through lower values of χv in low-pressure chambers with
a larger working volume. In general, χ > χv except when χv = 90◦, in which case
χ = 90◦. Empirically determined relationships between the tilt angle χ and the vapor
flux angle χv are available for a few materials [94], but these relationships are most
likely dependent on the particular apparatus used to produce the CTF. The nanowire
diameter is roughly between 10 and 100 nm, depending on the deposited material and
conditions. With structural features at such a small length scale, the CTF appears as a
homogeneous continuum at optical frequencies. The thickness of the CTF is limited to
about 10 µm with commonly used inorganic materials. At greater thickness, the colum-
nar morphology begins to deteriorate. Polymeric materials may be grown several times
thicker but the columnar diameter is also proportionally larger [95].

χ

χv

Substrate 

Growing columns

Vapor flux

x

z

Figure 1.7 Schematic of the growth of a CTF. When a well-collimated vapor is incident on the
substrate at an average angle χv ∈ (0◦, 90◦] with respect to the substrate plane, nanowires grow
tilted at an angle χ � χv such that χ ∈ (0◦, 90◦]. The xz plane is the morphologically significant
plane of the CTF.
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(a)

(b)

Figure 1.8 Cross-sectional images of two CTFs on a scanning electron microscope. The CTFs
were fabricated by evaporating (a) magnesium fluoride and (b) chalcogenide glass of nominal
composition Ge28Sb12Se60.

Columnar growth is inherently anisotropic. If the vapor is taken to travel in the xz
plane and the substrate plane is the xy plane, the cross-sectional dimensions of the
nanowires along the x and the y axes are different. Thus, it is appropriate to model a
CTF as an orthorhombic dielectric continuum with

ε
CTF
= S

y
(χ) • (εauzuz + εbux ux + εcuyuy)

• S−1
y
(χ) (1.29)

as its permittivity dyadic. The real symmetric dyadic

S
y
(χ) = uyuy + (ux ux + uzuz) cosχ + (uzux − ux uz) sin χ (1.30)

in Eq. (1.29) captures the tilt of the nanowires with respect to the substrate plane in the
morphologically significant xz plane. The three principal permittivity scalars of a CTF
are denoted by εa, εb, and εc.

Accordingly, a CTF is a birefringent material [17]: along any fixed direction, two
different plane waves with different phase speeds, attenuation rates, and polarization
states can travel in this material. With the assumption of negligible dissipation (i.e.
εa,b,c are real and positive), as shown in Appendix B, the two optic ray axes (also
called the crystallographic axes) of a CTF are parallel to the vectors

a± = S
y
(χ) •

{
ux

√
εb − εc

εb − εa
± uz

√
εc − εa

εb − εa

}
, (1.31)

and the two optic axes are parallel to the vectors

b± = S
y
(χ) •

{
±ux

√
(εb − εc)εa

(εb − εa)εc
+ uz

√
(εc − εa)εb

(εb − εc)εc

}
, (1.32)

where it has been assumed that either εb > εc > εa or εb < εc < εa . Both optic ray
axes and both optic axes lie in the xz plane, which is the morphologically significant
plane of the CTF. The two plane waves have the same phase speed if they are traveling
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along an optic axis, but both have the same rate of flow of energy if they are traveling
along an optic ray axis.

Decreasing χv from 90◦ increases the porosity and exacerbates anisotropy. Thus,
the choice of χv during fabrication crucially affects the optical response characteristics
of a CTF. The ability to choose constitutive parameters εa,b,c and χ over a continuous
range should allow a greater degree of flexibility in designing interfaces for surface-
wave propagation. This is especially attractive, since CTFs may be fabricated from a
wide variety of materials with different bulk properties [96].

The porosity of CTFs may be of use in practical applications of surface waves—
for example, in optical sensing. The optical properties of a CTF can be altered by
embedding a material in the porous structure [97,98].

1.4.3.2 Sculptured Thin Films

Rocking and/or rotating the substrate during PVD results in curved nanowires and
thereby a sculptured thin film (STF) is fabricated [42, Chapter 1]. Like CTFs, an STF
is a porous material. At a given distance z from the substrate, the STF has a local
orthorhombic anisotropy. With smooth, continuous motion of the substrate, the per-
mittivity dyadic of the STF likewise varies smoothly with distance from the substrate.
Conversely, the orientation of the substrate relative to the oncoming vapor can be
changed abruptly during deposition of the film to create a discontinuous change in the
permittivity dyadic. Thus, in addition to partnering an STF with a second STF made
by evaporating another material to form an interface for surface-wave propagation, it
is also possible to create a constitutive change within an STF by abruptly changing the
motion of the substrate during deposition to create an internal interface [53].

Rocking the substrate about the y axis produces nanowires which can be described by
a curve in the xz plane [99]. A film thus produced is referred to as a sculptured nematic
thin film (SNTF). Computer-controlled rocking during deposition can produce nearly
an unlimited number of nanowire shapes. Some common shapes of nanowires are
chevronic, sigmoid, and slanted sigmoid. A cross-sectional image on a scanning elec-
tron microscope (SEM) of an SNTF with chevronic morphology is shown in Figure 1.9.

The permittivity dyadic of an SNTF is a straightforward modification of Eq. (1.29);
thus,

ε
SNTF

(z) = S
y
[χ(z)] • [εa(z)uzuz+εb(z)ux ux+εc(z)uyuy] • S−1

y
[χ(z)], (1.33)

where χ(z) and εa,b,c(z) depend on χv(z). If χv(z) is piecewise constant, the SNTF
is piecewise homogeneous. If χv(z) is periodic, so is ε

SNTF
(z) [57]. Nonhomogeneity

along the z axis can also be effected by changing the material to be evaporated.
Rotating the substrate about an axis perpendicular to the substrate plane produces

a chiral STF [100], which is composed of helical nanowires oriented perpendicular to
the substrate plane [101]. In addition to choice of material, two geometrical parameters
define the chiral STF: the tilt angle and the pitch. As shown in Figure 1.10, the tilt angle
χ is the angle between a tangent to the helical nanowire and the substrate plane and is
determined by the vapor flux angle χv , which is kept fixed during deposition. The pitch,
designated by 2, is the repeat distance along the z axis. Together, the deposition rate,



20 Electromagnetic Surface Waves

Figure 1.9 Cross-sectional image of an SNTF of chevronic morphology. The SNTF was fabri-
cated by evaporating chalcogenide glass of nominal composition Ge28Sb12Se60.

x

y

z

2Ω

χ

(a) (b)

Figure 1.10 (a) The tilt angle and the pitch of a helix. (b) Cross-sectional image of a chiral STF
on a scanning electron microscope. The chiral STF was fabricated by evaporating chalcogenide
glass of nominal composition Ge28Sb12Se60.

the rotation rate of the substrate, and the vapor flux angle determine the pitch of the
chiral STF. Incidentally, the sense of rotation of the substrate determines whether the
chiral STF is right handed or left handed. Figure 1.10 also shows the cross-sectional
image of a chiral STF on a scanning electron microscope.

On any xy plane, the chiral STF is locally orthorhombic. The principal values of the
permittivity dyadic ε

chiral STF
(z) remain the same for all z, but the principal axes of that
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dyadic rotate smoothly about the z axis with changing z. Accordingly, the permittivity
dyadic of a chiral STF is given by [42, Chapter 7]

ε
chiral STF

(z) = S
z
(z) • S

y
(χ) • (εau zu z+εbu x u x+εcu yu y)

• S−1
y
(χ) • S−1

z
(z),

(1.34)

where χ is a fixed angle just the same as for a CTF in Section 1.4.3.1 and the real
symmetric dyadic

S
z
(z) = u zu z + (u x u x + u yu y) cos

(
h
π z



)
+ (u yu x − u x u y) sin

(
h
π z



)

(1.35)

indicates rotation about the z axis with period 2. The structural handedness parameter
h appearing in the definition of the rotation dyadic S

z
(z) is equal to either+1 for right

handedness or −1 for left handedness. Setting h = 0 reduces a chiral STF to a CTF.
The structural handedness of the chiral STF is crucial for circular-polarization filters
[102,103].

Rocking and rotation of the substrate can be done concurrently or sequentially [104].
The evaporating material can also be changed during deposition. Multiple materials
can be simultaneously deposited [105]. Thus, the permittivity dyadic of a general STF
may be expressed as

ε
STF
(z) = S(z) • [εa(z)u zu z + εb(z)u x u x + εc(z)u yu y] • S−1(z), (1.36)

where S(z) is a real symmetric dyadic with all three eigenvalues positive. If the STF is
periodically nonhomogeneous along the z axis with period 2, the constraint

ε
STF
(z ± 2) = ε

STF
(z) (1.37)

is satisfied.

1.4.3.3 Photonic Crystals

Photonic crystals are manufactured periodic assemblies of discrete nanostructured
components which are usually composed of differing isotropic dielectric materials
[106,107]. They must be periodic at least in one direction [108]. If a photonic crystal is
periodic in more than one direction, there is no reason for those directions to be mutu-
ally orthogonal, although the first conceptualization of a three-dimensional photonic
crystal did have orthorhombic symmetry [109]. The propagation of light through pho-
tonic crystals is analogous to the motion of electrons through natural crystals, with the
periodicity of the crystal affecting the relationship between the angular frequency and
the wavenumber. Just as a natural crystal may exhibit band gaps—which are ranges of
angular frequencies wherein electrons are unable to travel freely through the crystal—a
photonic crystal may exhibit band gaps wherein the propagation of light is forbidden.

A one-dimensional photonic crystal usually consists of layers of dielectric materials
which can be simply deposited sequentially. They are, thus, the most easily constructed
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photonic crystals, and have been fabricated and studied extensively from the mid-20th
century. Current technology routinely employs these photonic crystals as mirrors and
spectral filters in optical devices such as lasers and spectrometers [110].

The quarter-wave stack is an example of one-dimensional photonic crystals. It
usually comprises alternating layers of two different isotropic dielectric materials, the
product of the refractive index and the thickness of each layer being a quarter of the
wavelength in free space [60]. Reflections from the layers interfere constructively,
and with a sufficient number of unit cells, the quarter-wave stack acts as a mirror.
Bragg mirrors—sometimes called distributed Bragg reflectors—are similar devices.
Chiral STFs—and chiral liquid crystals (Section 1.4.4)—can also be considered as
one-dimensional photonic crystals.

The construction of higher-dimensional photonic crystals, such as those illustrated
in Figures 1.11 and 1.12, can be much more difficult, but researchers have shown great
ingenuity in devising fabrication methods. These methods, many born from the micro-
electronics industry [111], form a vast field of study and detailed description is beyond
the scope of this book. Among the wide variety of methods used to construct higher-
dimensional photonic crystals are: layer-by-layer construction using lithographic and
etching techniques [112], ion-beam milling [113], micromanipulation of microspheres
[114], self-assembly of microspheres [115], interference lithography [116] (also known
as holographic lithography), and hybrid techniques [117]. Researchers have expended
significant effort in creating photonic crystals with large and complete band gaps, a

Figure 1.11 SEM image of a photonic crystal called the woodpile, made of silicon. Courtesy:
Sandia National Laboratory.
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Figure 1.12 SEM image of a diamond-based photonic crystal found in scales of the beetle
Lamprocyphus augustus. Courtesy: Jeremy W. Galusha and Michael H. Bartl, University of Utah.

complete band gap being one that exists for all directions of propagation. Many dif-
ferent structures and combinations of materials have been considered. In some cases,
swapping the roles of the constituent dielectric materials can dramatically improve
performance. For instance, a face-centered cubic lattice of electrically small dielectric
spheres in air does not have a complete band gap. This is the structure of opals. A com-
plete band gap is exhibited, however, by a face-centered cubic lattice of electrically
small air spheres in a dielectric material, this being the inverse-opal structure [118].

1.4.3.4 Rugate Filters

Whereas the unit cells of one-dimensional photonic crystals usually comprise two hom-
ogeneous layers, a rugate filter is commonly conceptualized as being made of an
isotropic dielectric material whose refractive index nrug varies sinusoidally along one
direction [60]; thus,

nrug(z) =
√
εrug(z)

ε0
=
(

nb + na

2

)
+
(

nb − na

2

)
sin
(π z



)
, (1.38)

where 2 is the period, Re{nrug(z)} > 0 and dissipation is sufficiently small to be
ignored. The high-reflectance spectral regime (i.e. the band gap) of a rugate filter is
narrower than of a quarter-wave stack, which is often advantageous in some situations.
Another advantage of rugate filters is that reflection bands at integer divisors of the
central free-space wavelength of the band gap are greatly suppressed.

Because of its simplicity, the rugate filter has been extensively investigated and
refined [119,120]. Several fabrication techniques—including PVD methods such as
thermal evaporation [121] and reactive sputtering [122], chemical vapor deposition
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[123], and electrochemical etching [124]—have been devised for rugate filters. Peri-
odically nonhomogeneous SNTFs [54,125] can be considered akin to rugate
filters.

1.4.4 Liquid Crystals

The study of liquid crystals is a vast field [126,127]. It is only possible to cover here
some essentials necessary for the understanding of surface-wave propagation.

The molecules of a liquid crystal do not exhibit positional order in three-dimensional
space, but some orientational order is still exhibited. Depending on the temperature and
pressure, the orientational order can be short range or long range. In the optical regime,
a liquid crystal can be considered as a material continuum, not unlike STFs. Indeed,
many types of liquid crystals have optical properties similar to STFs.

Nematic liquid crystals are composed of aciculate molecules which are randomly
positioned but their time-averaged orientations have a net average. The permittivity
dyadic of a nematic liquid crystal is similar to that of a CTF, except that εc = εa �= εb

and χ = 0◦ in Eq. (1.29). Thus, these types of liquid crystals are uniaxial dielec-
tric continuums, although biaxial analogs (εc �= εa �= εb) have also been fabricated
[128,129].

The molecules of a smectic liquid crystal are arranged in parallel layers, and thus
have positional order along one direction. The long axes of the molecules are oriented
perpendicular to the layers in smectic-A liquid crystals, but at an angle to that direction
in smectic-C liquid crystals. With the assumption of the layers being parallel to the
plane z = 0, Eq. (1.29) is applicable with the tilt angle χ = 90◦ for smectic-A liquid
crystals and χ ∈ (0◦, 90◦) for smectic-C liquid crystals. Smectic liquid crystals may
be either uniaxial (εc = εa �= εb) or biaxial (εc �= εa �= εb).

Liquid crystals also exist in chiral phases, in which the molecules are inclined at a
particular angle with respect to a direction known as the director, but twist azimuthally
as a function of distance along the director. Both chiral nematic and chiral smectic liquid
crystals exist, the permittivity dyadic being given by Eq. (1.34) with the z axis being
the director. Chiral nematic liquid crystals are also called cholesteric liquid crystals
(CLCs).

Although the molecules of liquid crystals are usually aciculate [126,127], some liq-
uid crystals have molecules of other shapes, e.g. disks [130,131] and bananas [132]. As
the orientational order depends on temperature, the anisotropy of liquid crystals changes
with temperature. Some liquid crystals can even be isotropic when the temperature is
in a certain range.

There are some particularly notable differences between STFs and liquid crystals.
As the molecules of a liquid crystal can respond to various external stimuli such as
temperature, pressure, and electric field, liquid crystals are easily tunable. In contrast,
STFs made of non-polymeric materials are essentially unaltered by such external stim-
uli. On the other hand, it is possible to change the deposition conditions for STFs so
that constitutive parameters become accessible in wide ranges. Various methods can be
used to change the structural period of chiral liquid crystals, but the degree of control
over this parameter is much less than for chiral STFs.
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1.4.5 Reusch Piles

A cholesteric liquid crystal comprises aciculate molecules dispersed on a stack of
closely spaced parallel planes. The molecules lying on a specific plane have an average
orientation. This orientation progressively changes from plane to plane, the ensemble
of orientations describing a helix in the thickness direction. The helix can be either
left handed or right handed. When circularly polarized light of free-space wavelength
in a certain spectral regime falls normally on a CLC of sufficiently large thickness,
the reflectance is high if the handednesses of the CLC and the incident light are the
same, but is low otherwise. The spectral regime is called the circular Bragg regime
and the phenomenon is called the circular Bragg phenomenon [126,127]. This phe-
nomenon, which is also displayed by chiral STFs, can also be seen for obliquely incident
light [42].

Remarkably, two decades prior to the discovery of CLCs in cholesteryl benzoate
[133,134], a coarse version of the cholesteric structure had been deduced by Reusch
[64], who had been inspired by mica. The Reusch pile, as this cholesteric structure
is called, is a stack of layers of an anisotropic dielectric material with an incremental
rotation from one layer to the next about an axis normal to the layers.

Suppose a Reusch pile comprises N�yr layers, each of thickness d�yr . The permit-
tivity dyadic of the �th layer occupying the region (� − 1)d�yr < z < �d�yr in the
Reusch pile is given by

ε
Reusch

(z) = S
�
• S

y
(χ) • (εau zu z + εbu x u x + εcu yu y)

• S−1
y
(χ) • S−1

�
,

(�− 1)d�yr < z < �d�yr , � ∈ [1, N�yr ]. (1.39)

The dyadic

S
�
= (u x u x + u yu y) cos[h(�− 1)π/Q]
+ (u yu x − u x u y) sin[h(�− 1)π/Q] + u zu z, (1.40)

which indicates rotation of the �th layer about the z axis by an angle h(� − 1)π/Q
with respect to the layer labeled � = 1, is clearly a spatially uniform version of the
continuous dyadic S

z
(z) of Eq. (1.35). The parameter Q > 1 is an integer, and the

number of structural periods in the Reusch pile is the largest integer less than or equal
to N�yr/2Q. As Q → ∞ while 2Qd�yr remains fixed, the permittivity dyadic of a
Reusch pile approaches that of a chiral STF.

A Reusch pile with Q = 2 does not discriminate between normally incident left-
circularly polarized and right-circularly polarized light. Being periodically nonhomo-
geneous along the z axis, such a Reusch pile functions like a Bragg mirror but it does
not exhibit the circular Bragg phenomenon [65]. Therefore, Reusch piles with Q = 2
are called equichiral.

A Reusch pile with Q > 2 is not structurally chiral like CLCs and chiral STFs.
Instead, it is ambichiral [65]. It can preferentially reflect normally incident left-circularly
polarized light in certain spectral regimes, but reflect normally incident right-circularly
polarized light in other spectral regimes. Thus, several circular Bragg regimes are pos-
sible, of which only one survives in the limit Q →∞ [65,135].
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1.5 Negative-Phase-Velocity Materials

In an isotropic, achiral, homogeneous material characterized by the constitutive relations

D(r) = εE(r)

B(r) = μH(r)

}
, (1.41)

where both the permittivity scalar ε and the permeability scalar μ are functions of the
angular frequency ω, electromagnetic plane waves can be either uniform or nonuni-
form [78, Chapter 2]. When the planes of constant phase coincide with the planes of
constant amplitude, the plane wave is classified as uniform; otherwise, it is classified
as nonuniform.

Ordinarily, the condition

Re{ε}Im {μ} + Re{μ}Im {ε} > 0 (1.42)

holds, indicating that the direction of energy flow and attenuation, as quantitated through
the time-averaged Poynting vector, of a uniform plane wave is the same as the direction
of the phase velocity of a uniform plane wave. If, however, the condition [136]

Re{ε}Im {μ} + Re{μ}Im {ε} < 0 (1.43)

is true, the two directions are opposed to each other. While the opposition of the time-
averaged Poynting vector and the phase velocity had been sporadically investigated
during the 20th century [137,138], the actual fabrication of a specimen displaying a
direct consequence of Eq. (1.43) emerged only in 2001 [139].5 Many strange prop-
erties are associated with the NPV condition, including negative refraction (but not
reversal of the law of Ibn Sahl [42, p. 126]), reversal of both the Doppler effect and
Cerenkov radiation, and negative radiation pressure. However, nonuniform plane waves
in isotropic, non-magnetic materials such as silver [140,141] can also exhibit nega-
tive phase velocity. Anisotropic dielectric materials [142] and bianisotropic materials
[143,144] can also allow the propagation of plane waves with negative phase velocity.

Naturally occurring materials which support uniform plane waves with negative
phase velocity are not readily available [145]. But nowadays, composite materials
exhibiting the NPV characteristic at microwave frequencies are being routinely made
[139,146,147]. These composite materials consisted of arrays of straight wires and
split-ring resonators. In the microwave regime, the components of these materials were
much smaller than the wavelength(s) in the component materials, thus making the com-
posite materials appear as homogeneous continuums. Extension to optical frequencies
has also occurred, but there are substantial dissipative losses associated with propaga-
tion at these frequencies [71,72].

Although the physical realization of negative phase velocity remains in doubt in
some quarters [148], the consensus in the research community is that the rapid pace
of development in nanotechnology shall lead to materials that exhibit negative phase
velocity with low loss at optical frequencies. With this anticipation, researchers have
produced many theoretical results relevant to surface-wave propagation.
5Materials satisfying Eq. (1.43) are often—and infelicitously—called left-handed materials, even though
they are achiral [17].
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1.6 Bianisotropic Materials

The constitutive relations of a linear bianisotropic material are as follows:

D(r) = ε(r) • E(r)+ ξ(r) • H(r)

B(r) = ζ (r) • E(r)+ μ(r) • H(r)

}
. (1.44)

The dielectric properties of the material are captured by the permittivity dyadic ε(r),
the magnetic properties by the permeability dyadicμ(r), and the magnetoelectric prop-
erties jointly by the dyadics ξ(r) and ζ (r). All four constitutive dyadics are functions
of the angular frequency ω. If the bianisotropic material were to be homogeneous, the
constitutive dyadics would be independent of the position r .

1.7 Taxonomy of Electromagnetic Surface Waves

As researchers tackle surface-wave propagation involving more and more complex
and even exotic partnering materials, the types of surface waves have increased in
number. Let us try to bring order to this large collection of surface waves by presenting
a taxonomy of electromagnetic surface waves. Only the broad classes of surface waves
are named in this section, while particular species of surface waves are denoted by the
partnering materials forming the interface. The chief characteristics of each type of
surface waves are also described. Table 1.1 lists the types and chief characteristics.

The range of directions along which a surface wave of a certain species may propa-
gate in the interface plane is known as the angular existence domain (AED). As AEDs
are generally symmetric with respect to certain rotations about the axis normal to the
interface plane, two conventions for specifying AEDs are possible. The AED may refer
to either (i) a single continuous interval of directions of propagation in the interface
plane or (ii) the union of all intervals of directions of propagation in the interface plane.
We adopt the former convention, as the narrowness of the individual continuous range
of directions of propagation is the primary interest of the experimentalist and a thorny
issue that must be dealt with if Dyakonov waves are to be exploited. Accordingly, for a
given interface, there may be more than one AED, in which case the total AED refers
to the union of the individual AEDs.

1.7.1 SPP Waves

An SPP wave is one that propagates guided by the interface of a metal and a dielectric
material. In the optical regime the metal is isotropic with a permittivity which has a
negative real part, whereas the dielectric material is isotropic with a permittivity which
has a positive real part, both partnering materials being linear and homogeneous. A
semiconductor may replace the metal, but application is then restricted to the far-
infrared regime wherein the permittivity has a negative real part. With both materials
linear and isotropic, the SPP wave can propagate along any direction parallel to the
interface, the SPP wave has to be p polarized, and only one SPP-wave mode exists at a
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Table 1.1 Types of surface waves and their characterization.

Name Partnering Partnering Number of Characteristics
material 1 material 2 modes

SPP wave metal Homogeneous, 1 • 360◦ total AED
isotropic dielectric • Excitable only by p-polarized plane waves

• Not excitable by direct illumination
• Commonly applied for biochemical sensing

Homogeneous, 1 • Large total AED � 360◦
anisotropic dielectric • Excitable by s- and p-polarized plane waves

Periodically �1 • Excitable by s- and p-polarized plane waves
nonhomogeneous, • Very high phase speed possible
isotropic • Excitable by direct illumination
dielectric

Periodically �1 • Excitable by s- and p-polarized plane waves
nonhomogeneous, • Very high phase speed possible
anisotropic • Excitable by direct illumination
dielectric

Dyakonov Homogeneous, Homogeneous, 1 • Small total AED
wave anisotropic dielectric isotropic dielectric • Experimentally demonstrated

Homogeneous, 1 • Small total AED
anisotropic dielectric

Homogeneous, 1 •Moderate total AED
dielectric-magnetic

Homogeneous, �1 • Large total AED
NPV material • Tightly bound to the interface

(continued)
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Table 1.1 Continued.

Name Partnering Partnering Number of Characteristics
material 1 material 2 modes

Tamm Periodically Homogeneous, �1 • 360◦ total AED
wave nonhomogeneous, isotropic dielectric • Excitable by s- and p-polarized plane waves

isotropic • Experimentally demonstrated
dielectric

Periodically �1 • 360◦ total AED
nonhomogeneous, • Excitable by s- and p-polarized plane waves
isotropic • Very high phase speed possible
dielectric

Dyakonov– Periodically Homogeneous, �1 •Moderate to large total AED
Tamm nonhomogeneous, isotropic dielectric
wave anisotropic

dielectric

Periodically �1 • Large total AED
nonhomogeneous,
anisotropic dielectric

Homogeneous, Periodically Not yet studied
anisotropic nonhomogeneous,
dielectric isotropic dielectric
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given frequency. The phase speed of an SPP wave is less than the speed c0 = 1/
√
ε0μ0

of light in free space, with the assumption that the partnering dielectric material is
nondissipative and its refractive index exceeds unity.

Replacement of the isotropic dielectric material with an anisotropic dielectric
material—specified by a permittivity dyadic all of whose eigenvalues have positive
real parts and all of whose eigenvectors have Cartesian components with zero imag-
inary parts—produces some modifications in the characteristics of SPP waves [149].
Thus, the phase speed, the rate of attenuation in the direction of propagation, and the
decay rate away from the interface depend on the direction in which the SPP wave is
propagating. Although the total AED is generally large, it may be less than 360◦ [45].
When the isotropic partnering dielectric material is replaced by an anisotropic part-
nering dielectric material, the SPP wave may not be classified simply as p polarized
[150] because the field phasors on the dielectric side of the interface contain at least one
extraordinary component [78], Section 6.2]; also, an SPP wave may then be excited by
either an s- or a p-polarized incident plane wave in the prism-coupled configurations.

An isotropic dielectric material which is periodically nonhomogeneous normal to
the interface may also be partnered with a metal to support SPP-wave propagation.
In this case, the interface may support multiple SPP-wave modes for propagation
along any particular direction in the xy plane. These modes are either s polarized or
p polarized, and require excitation by a plane wave of the same polarization state.
In special circumstances, an SPP-wave mode may even have an arbitrary polariza-
tion state [151,152]. Researchers have focused on various manufactured periodically
nonhomogeneous dielectric materials, including rugate filters [61,153] and periodi-
cally multilayered materials [154–156]. SPP waves with phase speeds exceeding c0
are possible [157–159] and have been experimentally observed [160].

Much research activity has dealt with SPP waves guided by the interface of a metal
and a dielectric material which is both anisotropic and whose constitutive properties
vary periodically in the direction normal to the interface. Such interfaces may guide
multiple SPP-wave modes along a specific direction in the xy plane. SPP-wave modes
guided by the interface of a metal and either a periodically nonhomogeneous SNTF
[54,57] or a chiral STF [56,58] have been characterized. With identical forms for the
permittivity dyadics, analogous liquid crystals could replace the STFs. A polarization
state cannot be assigned to these SPP waves [55,161].

1.7.2 Dyakonov Waves

A Dyakonov wave is a surface wave whose propagation is guided by the interface of two
homogeneous dielectric materials, at least one of which is anisotropic. The partnering
materials may even be identical (and anisotropic), but they must be differently oriented
so that all eigenvectors of their permittivity dyadic do not coincide.

As dielectric materials are generally less dissipative than metals, Dyakonov waves
should have much larger propagation distances than SPP waves. When dissipation is
small enough to be ignored, the propagation distances of Dyakonov waves are infinite
in theory. Unfortunately, Dyakonov waves are notorious for having a very small AED
[36], often only a very small fraction of a degree.
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After Dyakonov’s report on surface-wave propagation guided by the interface of
an isotropic dielectric material and a nondissipative uniaxial dielectric material whose
optic axis is parallel to the interface [35], surface waves were theoretically shown to
be possible even for other orientations of the uniaxial dielectric material’s optic axis
[162]. Other combinations of dielectric materials supporting Dyakonov waves include
isotropic/biaxial [162,163], uniaxial/uniaxial [164,165], and biaxial/biaxial [166,167]
ones. The first experimental observation [41] of Dyakonov waves was made for the
isotropic/biaxial combination.

Because of the complexity of dealing with anisotropic materials, many studies
on Dyakonov waves are limited to specific orientations of these materials. Suitable
anisotropic materials may be naturally occurring crystals [36,166], but recent research
has focused on manufactured materials because of their controllable properties. For
example, CTFs are well suited for examining Dyakonov-wave propagation [43] because
χ and εa,b,c in Eq. (1.29) can almost be tailored to order during fabrication. Some
researchers have looked at photonic crystals [168] as a means of obtaining strong
anisotropy in order to alleviate the problem of the small AED of Dyakonov waves
observed with naturally occurring materials.

One strategy to increase the AED of Dyakonov waves is to incorporate magnetic
properties into one or both partnering materials [69,70,169,170]. So far, theoretical
studies show only a modest increase in the AED by the use of simple dielectric-
magnetic materials [169]. However, the use of an isotropic NPV material can produce
AEDs on the order of tens of degrees and Dyakonov waves that are tightly bound to
the interface, and may even yield multiple Dyakonov-wave modes for propagation in
a specified direction in the xy plane [69,170]. If NPV materials become a practical
reality in the optical regime, they might offer considerable advantages over traditional
materials for making interfaces for Dyakonov-wave propagation. One issue that must
not be overlooked, though, is that a large degree of dissipation is a common trait of
NPV materials [171].

Theoretical researchers have also examined the impact of gyrotropy [78, Chapter 7]
on Dyakonov-wave propagation [38,170,172]. Surface-wave propagation guided by
the interfaces of two bianisotropic materials has also been considered [37–39], but
none of these efforts deals with practical implementation.

1.7.3 Tamm Waves

In 1932, Tamm theoretically determined the influence of the surface on electron states
near the boundary of a finite material [47]. An understanding of the optical analog, a
surface wave guided by the interface of two isotropic dielectric materials, at least one
of which is periodically nonhomogeneous in the direction normal to the interface, has
a long history [173]. The existence of this type of surface wave, called a Tamm wave,
has been experimentally validated [174–176] and even exploited for optical biosensing
[177]. The periodically nonhomogeneous dielectric material can be piecewise homo-
geneous [173–175,177–179], or it can be continuously nonhomogeneous such as a
rugate filter [62,180]. As both partnering materials are isotropic, the total AED is 360◦.
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With proper selection of the two partnering materials, several Tamm-wave modes can
be obtained for a given interface, some s polarized and the others p polarized [62,180].

Usually, the ratio of c0 to the phase speed of a Tamm wave is higher than the
smallest refractive index in both partnering materials. But sometimes the phase speed
of a Tamm wave can transcend that restriction, provided that both partnering materials
are periodically nonhomogeneous [62].

The theoretical incorporation of NPV materials for exciting Tamm waves has been
carried out [179,181], but it cannot currently be implemented advantageously due to
high losses in NPV materials [171].

1.7.4 Dyakonov-Tamm Waves

Dyakonov-Tamm waves are at the top of the scale in terms of the complexity of mate-
rials used to support surface-wave propagation. Combining aspects of both Dyakonov
waves and Tamm waves, a Dyakonov-Tamm wave is guided by the interface of two
dielectric materials, of which at least one is both anisotropic and periodically nonho-
mogeneous in the direction normal to the interface. As with Tamm waves, the periodic
nonhomogeneity may be either piecewise homogeneous or continuous. Research on
Dyakonov-Tamm waves has focused mainly on the use of STFs as the periodically
nonhomogeneous material [46,48,50,51,53,182]. Since liquid crystals can also have
similar permittivity dyadics, they can be used to support Dyakonov-Tamm waves as
well. The guidance of Dyakonov-Tamm waves by the interface of an isotropic dielectric
material and a Reusch pile has also been theoretically established [49].

Early research [46,48] indicated that the interface of a homogeneous isotropic dielec-
tric material and a periodically nonhomogeneous anisotropic dielectric material sup-
ports only a single Dyakonov-Tamm wave, but that conclusion was later revised [182]
to admit a multiplicity of Dyakonov-Tamm-wave modes by such interfaces. The spatial
profiles of the fields are complicated enough that a polarization state cannot be assigned
even in the homogeneous, isotropic partnering material. The total AED can be quite
large, on the order of tens of degrees [46] typically, and can even be the maximum 360◦
possible [48]. The large total AED, however, seems to come at the price of a reduced
range of allowable values of the refractive index of the isotropic partnering material,
compared to Dyakonov waves.

When two periodically varying anisotropic dielectric materials are partnered, the
interface may support multiple Dyakonov-Tamm-wave modes in some [50–52,183]
but not all [53] cases.

1.7.5 Emerging Types of Surface Waves

In this chapter, and in much of this book, certain assumptions regarding constitutive
parameters have been made. All materials are passive [17, Section 1.7.2.2], and an
exp(−iωt) dependence on time is implicit. A metal is a non-magnetic material charac-
terized by only a permittivity scalar whose real part is negative and whose imaginary
part is positive. All three eigenvalues of the permittivity dyadic of a purely dielectric
material have positive real parts and either zero or positive imaginary parts.
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An isotropic achiral NPV material is characterized by a permittivity scalar and a
permeability scalar. The imaginary parts of these constitutive parameters are either
zero or positive, as the NPV material is passive. Either the permittivity scalar or the
permeability scalar or both must have a negative real part, in accordance with Eq. (1.43).

The boundary between one type of surface wave and another may not always be
clear, when materials of other types are considered. For example, suppose that a surface
wave is supported by the interface of an isotropic dielectric material and an anisotropic
dielectric material whose permittivity dyadic has some eigenvalues with positive real
parts and others with negative real parts [184,185]. Should this surface wave be called
a Dyakonov wave, since one partnering material is anisotropic dielectric? Or, should it
be called an SPP wave because either one (or even two, but not all three) of the eigen-
values of the permittivity dyadic of the anisotropic partnering material has a negative
real part? Such and other taxonomic ambiguities will arise in research and are to be
welcomed rather than dreaded.

The taxonomy of surface waves in this book is based mainly on the linear dielectric
(and metallic) properties of the partnering materials. The classification of surface waves
becomes more complicated on considering other relevant constitutive properties. In
addition to magnetic properties captured by a permeability scalar or dyadic, what about
gyrotropy [172,186], nonlinearity [66,187], and electro-optic properties [49,188,189]?
Already, researchers have theoretically examined surface-wave propagation guided by
interfaces formed with materials having these properties. As nanotechnology develops
to encompass and reliably deliver a wider range of complex materials, the boundaries
between the various types of surface waves enumerated in this book are bound to
become fuzzier, and new types of surface waves will be named.

1.8 Applications

1.8.1 SPP Waves

Out of the various types of surface waves named in Section 1.7, the SPP wave is the
only one which is being widely used in practical applications. As the characteristics of
this wave are acutely sensitive to the permittivity of the partnering dielectric material,
SPR is the basis for some extremely sensitive chemical and biochemical sensors, which
can detect changes in the refractive index of an isotropic partnering material as low as
3×10−7 [4]. Although some initial uses for the sensing of gases and the characterization
of thin films appeared in the 1980s, the real strength of SPR-based techniques is in the
sensing of biologically relevant molecules.

The SPP wave, being confined to a very narrow region about the interface, is very
sensitive to the immediate interfacial environment. Analyte molecules which find their
way close to the interface alter the refractive index of the partnering dielectric material,
and thus change the phase speed—among other characteristics—of the SPP wave. As
a result, the conditions of the coupling of external light to the SPP wave are altered.

A prism-coupled configuration is very suitable for sensing analytes, with the
Turbadar-Kretschmann-Raether configuration being far more convenient than the
Turbadar-Otto configuration. In the angular interrogation approach, the free-space
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wavelength of the light source is fixed, and the angle at which the external light couples
maximally to the SPP wave shifts due to the presence of the analyte in the partnering
dielectric material. In the frequency interrogation approach, a light source of variable
free-space wavelength is oriented at a fixed angle, but the wavelength which maximally
couples to the SPP wave shifts. A significant drop in the intensity of the reflected light
indicates coupling as the SPP wave is excited [3] and dissipates energy [55]. The angle
of incidence must be greater than the critical angle for the interface of the prism material
and the partnering dielectric material (which could be infiltrated by the analyte).

It is possible to sense a very wide range of chemical and biochemical species by
exploiting SPR. Researchers have optimized protocols for sensing almost everything
from quite small molecules of biological provenance to viruses and bacteria to pes-
ticides and toxins to explosives [4]. Even a method of performing immunoassays on
whole blood, an optically complex material, has been developed [190]. SPR sensors are
deployed for such diverse uses as monitoring pollutants in the environment, pathological
analyses in medical laboratories, purity and compositional analyses in the pharmaceu-
tical industry, and basic research in analytical chemistry.

SPR sensors have some advantages over other types of sensors. They do not require
markers to be attached to the analyte molecules, unlike fluorescence sensors, for which
reason they are referred to as label-free sensors. SPR sensors are miniature and can be
spatially multiplexed for sensing multiple analytes simultaneously and rapidly [191].
In addition to simple detection of molecules, SPR sensors are able to monitor reaction
kinetics in real time [192].

Although most SPR sensors use a prism-coupled configuration, the grating-coupled
configuration has also been investigated for sensing [193], because of their compact-
ness. Grating-coupled sensors can be fabricated on silicon substrates, which allows easy
integration with electronic circuitry in integrated sensors. Moreover, arrays of multiple
grating-coupled SPR sensors are inexpensive to fabricate as they can be nano-imprinted
[111]. A big disadvantage, however, is noise that comes about from the traversal of
light through the analyte before and after interaction with the two partnering materials.
Avenues for improvements continue to be explored [194,195].

Research on employing SPP waves for microscopy began nearly as early as research
on SPR sensors, the earliest two demonstrations of SPP microscopy occurring in 1987
[196] and 1988 [197]. Subsequently, several techniques to take advantage of SPP waves
were developed for various types of microscopic imaging. Some techniques allow
observation of the intensity of the SPP wave itself [198] as it is guided by a patterned
two-dimensional interface, which is useful [199] in the development of various planar
structures toward the realization of plasmonic circuits. Optical elements to manipulate
SPP waves are being designed and fabricated [200] for eventual use in two-dimensional
microscopes. Many researchers have focused on three-dimensional SPR microscopes
with subwavelength resolution [201]. Some researchers favor a scanning technique
[202], while others are pursuing wide-field microscopy to obtain the image all at once
[203]. In either case, a significant advantage of SPR microscopy is that, because of the
extreme sensitivity of the SPP wave to changes in the region close to the interface, it is
capable of obtaining images of objects with very low contrast, without the use of dyes
or markers. SPR microscopy is, thus, very useful for monitoring living organisms with
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lateral resolution less than a micrometer and resolution along the z axis (i.e. the line of
sight) on the order of nanometers. It is also common to combine SPR microscopy with
fluorescence techniques [204] to advantage.

For the last three decades, research to bring down the cost of photovoltaic solar cells
has gained a huge momentum and many techniques to increase the efficiency of light
harvesting by solar cells have been investigated. Among other methods [205,206], the
use of plasmonic structures to enhance the absorption of light by these solar cells is
being intensively studied. An earlier idea of periodic texturing of the metallic backing
layer of a thin-film solar cell to help excite SPP waves [207,208] has been revived
during the last 5 years [84,209,210].

Applications of SPP waves are on the horizon in the area of communications
[211,212]. Optical fibers have revolutionized communications in the past few decades
with higher bandwidth and higher transmission rates than afforded by electrical cur-
rents along wires. Plasmonics—that is, the use of SPP waves for transmitting signals
and signal processing—promises to bring the advantages realized with optical fibers to
the nanoscale and more. While optical fibers offer high speed, miniaturization is lim-
ited by diffraction to half a wavelength, which is large in comparison to the nanoscale
devices of today. Plasmonic waveguides of much smaller dimensions are capable of
carrying signals between components on a chip, as well as between chips [213]. Recent
research may soon make active plasmonic devices [214] and on-chip sources of SPP
waves [215] practical. A transition to photonic/plasmonic communication technology
may be possible in the not-too-distant future.

Plasmonics is currently a very popular research topic. Many researchers envision
SPP waves guided by subwavelength-scale structures as a means of creating dense,
high-speed circuitry. Some proposed structures [216] maximize the field intensity in the
dielectric material and minimize the intensity in the metal, thereby reducing dissipation.
Perhaps, surface waves guided by dielectric/dielectric interfaces may reduce dissipation
even more, thereby promoting long-range communications.

1.8.2 Other Surface Waves

The technological exploitation of surface waves other than SPP waves in the optical
regime is in its infancy. Tamm waves, which were observed more than three decades
ago [174], have only recently been exploited for optical biosensing [177]. The first
experimental observation of Dyakonov waves occurred just a few years ago [41]. The
Dyakonov-Tamm wave [46] has yet to be observed experimentally.

Although reports of practical applications of non-SPP surface waves are scant, excit-
ing proposals for potential uses abound. The introduction of a commercial SPR sensor,
in 1990, occurred over 30 years after the discovery [20] of optical means to excite
SPP waves. Forecasting scientific and technological development is always risky, but
it seems that applications of non-SPP waves are poised to appear soon in abundance,
especially considering the current rapid progress in nanotechnology [217,218].

Generally, Dyakonov, Tamm, and Dyakonov-Tamm waves are guided by interfaces
formed with dielectric materials only. The dielectric materials of interest here typ-
ically exhibit dissipation many orders of magnitude smaller than that exhibited by
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metals. Thus, these waves have much less attenuation—ergo, much longer propagation
distances—than SPP waves. This suggests possible applications in communications.
Many of the non-SPP surface waves also have a much higher sensitivity to the direc-
tion of propagation and/or the dielectric properties of an isotropic partnering material
than the more robust SPP wave. Perhaps the next generation of sensors could use these
properties for greater sensitivity.

As both partnering materials needed to guide a Dyakonov wave, a Tamm wave, or
a Dyakonov-Tamm wave are only slightly dissipative at most, direct exploitation of
these waves for harvesting solar energy is highly unlikely. In contrast, as SPP-wave
propagation requires one partnering material to be metallic, SPP waves are currently
very attractive for solar-cell research.

1.8.3 STFs for Optical Sensing

STFs may be used to support the propagation of many types of surface waves, and
their use could lead to several sensing modalities. Furthermore, STFs may be used in
conjunction with nanostructured materials which possess exotic macroscopic optical
properties. Infiltrating a material into the STF voids may offer an easy way to extend the
range of STF properties, and thereby create new materials for surface-wave propagation.

SPR-based sensing of biomolecules requires the use of recognition molecules bound
to the metal surface, to which analyte molecules in turn bind. The voids within STFs
may offer a stable environment for recognition molecules, and at the same time protect
the metal surface for use in the field. In dirty environments, STFs might filter out
large particulate matter from the immediate vicinity of the interface, allowing more
reliable detection. The different rates at which various analytes diffuse into the voids
and different orientations which they take may make differentiation between more
than one analyte possible. Multiple modes for some types of surface waves may both
enhance the ability to distinguish between several analytes with a single interface, and
make error-free sensing a reality.



2 Surface-Plasmon-Polariton Waves I

2.1 Introduction

For those researchers who focus on surface waves, the emergence of surface waves of
many new types during the past few decades has been both exciting and stimulating.
The uninitiated, however, may feel disoriented amidst the vast array of phenomenons
tabulated in Table 1.1. As it may be difficult to see the forest for the trees, let us take a
detailed look at the simple surface-plasmon-polariton waves supported by the interface
of two homogeneous and isotropic materials, each characterized by a permittivity scalar.
Let us also note here that the study and application of simple SPP waves does not need
much help from nanotechnology, and, indeed, flourished for decades without it.

Surface waves of different types have several common features in their descriptions,
analyses, and excitation strategies. So, in this chapter, we lay down a foundation, a
landmark if you will, from which one might navigate to the general theory of surface-
wave propagation in Chapter 3.

Let us begin this chapter with the canonical problem of an SPP wave guided by the
interface of two semi-infinitely thick materials. As the partnering materials are taken to
be isotropic, homogeneous, linear, non-magnetic, and achiral [17], the characteristics
of the SPP wave are quite simple and straightforward. We label these SPP waves as
simple SPP waves, regardless of the method adopted for their excitation.

A look at practical methods of exciting simple SPP waves guided by interfaces of
materials of finite thickness follows. This chapter closes with a discussion of SPP waves
when one of the two partnering materials is a nonlinear dielectric material.

2.2 Canonical Boundary-Value Problem

The canonical boundary-value problem is the propagation of an SPP wave guided by
the planar interface formed by two materials filling adjoining half-spaces. There are a
few reasons for studying such a clearly unphysical situation, which can only be studied
theoretically. With semi-infinitely thick partnering materials, there is only one interface.
The interpretation of a localized wave traveling parallel to the interface and straddling
that interface is quite clear; it is a surface wave.

Let us consider an interface formed by two materials with finite thickness, a nec-
essary condition in experiment and application. There are necessarily at least three
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interfaces: the interface of the two materials of interest, and the interface of each mate-
rial with the outside world. What is the effect of the two additional surfaces? That
depends on the exact circumstances. If the materials are sufficiently thick, the outer
surfaces may have no noticeable affect on the surface wave. For moderate thicknesses,
the surface wave may retain its essential characteristics with only a slight perturbation.
When the materials are even thinner, waveguide modes with energy spread over one or
both partnering materials are possible. It is not always easy to distinguish a true surface
wave from a waveguide mode, either in theory or experiment.

The solution of the canonical problem can serve as a guide, either for the interpreta-
tion of both theoretical and experimental results or to direct the design of an interface
for a particular application.

2.2.1 Geometry

Let the half-space z < 0 be filled with a material having permittivity εmet, and the
half-space z > 0 be filled with a material having permittivity εdiel. Both materials are
non-magnetic and achiral [17]. Furthermore, both εdiel and εmet are implicit functions of
the angular frequencyω, it being assumed that all fields have an exp (−iωt) dependence
on time t . As in Section 1.3.1, the subscripts diel and met stand for dielectric and metal,
respectively, but that distinction is not necessary until Section 2.2.9.

With the interface of the two materials as the plane z = 0 and both partnering mate-
rials being isotropic, a surface wave may travel in any direction in the xy plane. There
is no loss of generality in orienting one of the axes along the direction of propagation.
But subsequent chapters consider anisotropic materials and then, especially in exper-
imental settings, a more general orientation of the x and y axes may be useful. Thus,
with an eye to the future, let us assume that the surface wave is propagating at an angle
ψ relative to the x axis. In addition to uz , two more unit vectors, both parallel to the
interface, are useful:

uprop = ux cosψ + uy sinψ (2.1)

is along the propagation direction, while

us = −ux sinψ + uy cosψ (2.2)

is perpendicular to both uprop and uz . These three unit vectors form a right-handed
triad:

uprop × us = uz, uz × uprop = us, us × uz = uprop. (2.3)

Figure 2.1 is a schematic of the canonical problem.

2.2.2 Field Representation

With the geometry established, the next step is to represent the fields in each half-
space. In the Cartesian coordinate system, plane waves are the simplest solutions of the
Maxwell postulates [17]. The electric and magnetic fields of a plane wave are written as

Ẽ(r, t) = Re{E exp[i(k • r − ωt)]}
H̃(r, t) = Re{H exp[i(k • r − ωt)]}

}
, (2.4)
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Figure 2.1 Schematic of the canonical boundary-value problem for the propagation of a surface
wave guided by the planar interface of two dissimilar materials with permittivities εmet and εdiel.

where E and H are amplitude vectors with complex-valued components and k is the
wave vector which can also have complex-valued components. The quantities

E(r) = E exp (ik • r)

H(r) = H exp (ik • r)

}
(2.5)

are phasors corresponding to the electric and magnetic fields of a plane wave.
In the two half-spaces of Figure 2.1, these phasors are given by

E(r) =
{

Emet exp (ikmet
• r), z < 0,

Ediel exp (ikdiel
• r), z > 0,

(2.6)

and

H(r) =
{

Hmet exp (ikmet
• r), z < 0,

Hdiel exp (ikdiel
• r), z > 0.

(2.7)

Substitution of Eqs. (2.4) in the four source-free Maxwell postulates yields

kmet × Emet = ωμ0Hmet

kmet ×Hmet = −ωεmetEmet

kmet
• Emet = 0

kmet
•Hmet = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, z < 0, (2.8)

and

kdiel × Ediel = ωμ0Hdiel

kdiel ×Hdiel = −ωεdielEdiel

kdiel
• Ediel = 0

kdiel
•Hdiel = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, z > 0. (2.9)



40 Electromagnetic Surface Waves

In order for the fields to represent a surface wave bound to the interface z = 0, the
z-directed components of the wave vectors kmet and kdiel must be complex-valued with
non-zero imaginary parts. Thus, we express the wave vectors as

kmet = quprop − αmetuz
kdiel = quprop + αdieluz

}
, (2.10)

where q, αmet, and αdiel are complex-valued in general. In anticipation of satisfying the
standard boundary conditions

ux
• E(x, y, 0− ) = ux

• E(x, y, 0+ )
uy
• E(x, y, 0− ) = uy

• E(x, y, 0+ )
ux
• H(x, y, 0− ) = ux

• H(x, y, 0+ )
uy
• H(x, y, 0− ) = uy

• H(x, y, 0+ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.11)

which can be conveniently recast as

uprop
• E(x, y, 0− ) = uprop

• E(x, y, 0+ )
us
• E(x, y, 0− ) = us

• E(x, y, 0+ )
uprop

• H(x, y, 0− ) = uprop
• H(x, y, 0+ )

us
• H(x, y, 0− ) = us

• H(x, y, 0+ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

at the interface z = 0, the wave vectors for both half-spaces have the same component
quprop parallel to the interface. Finally, in order to describe a surface wave whose fields
decreases in amplitude with increasing distance from the interface z = 0, the following
conditions must be satisfied:

Im{αmet} > 0
Im{αdiel} > 0

}
. (2.13)

Eliminating Hmet from Eqs. (2.8)1,2 and Hdiel from Eqs. (2.9)1,2, we obtain

(kmet
• Emet)kmet − (kmet

• kmet)Emet = −k2
0(εmet/ε0)Emet

(kdiel
• Ediel)kdiel − (kdiel

• kdiel)Ediel = −k2
0(εdiel/ε0)Ediel

}
, (2.14)

where the free-space wavenumber k0 = ω√ε0μ0. The first terms on the left sides are
zero by virtue of Eqs. (2.8)3 and (2.9)3, thereby yielding

kmet
• kmet = k2

0εmet/ε0

kdiel
• kdiel = k2

0εdiel/ε0

}
. (2.15)

Substituting the expressions for kmet and kdiel from Eqs. (2.10) in Eqs. (2.15), we
finally get

αmet =
√

k2
0(εmet/ε0)− q2

αdiel =
√

k2
0(εdiel/ε0)− q2

⎫⎬
⎭. (2.16)

The square roots in Eqs. (2.16) must be taken so that Eqs. (2.13) are satisfied.
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2.2.3 Linear Polarization States

It is possible to decompose the fields into two linear polarization states. A linear polar-
ization state is one for which Re{E} × Im{E} = 0, and likewise for H [78]. Thus, for
a linear polarization state, a unique direction in three-dimensional real space may be
associated with the complex-valued vector E , and likewise for H. A convenient choice
of decomposition is:

• one polarization state with E parallel to us (s-polarization state), and
• the other polarization state with H parallel to us (p-polarization state).

Clearly, for the two linear polarization states, E and H satisfy the Maxwell divergence
postulates represented in Eqs. (2.8)3,4 and (2.9)3,4.

After choosing an amplitude for E in the case of the s-polarized component, and
an amplitude for H in the case of the p-polarized component, the Maxwell curl pos-
tulates represented in Eqs. (2.8) and (2.9) then provide the corresponding H and E ,
respectively. The net result may be expressed as the amplitude vectors

Emet = bsus + bp

(
αmetuprop + quz

k0nmet

)

Hmet =
nmet

η0

[
bs

(
αmetuprop + quz

k0nmet

)
− bpus

]

⎫⎪⎪⎬
⎪⎪⎭

(2.17)

and

Ediel = csus + cp

(−αdieluprop + quz

k0ndiel

)

Hdiel =
ndiel

η0

[
cs

(−αdieluprop + quz

k0ndiel

)
− cpus

]

⎫⎪⎪⎬
⎪⎪⎭
. (2.18)

Here, bs and cs are the amplitudes of the s-polarized component of the electric field
phasor, and bp and cp are the amplitudes of the p-polarized component of the same
phasor; the intrinsic impedance of free space is denoted by

η0 =
√
μ0/ε0; (2.19)

and the refractive indexes

nmet = √εmet/ε0

ndiel = √εdiel/ε0

}
(2.20)

have non-negative imaginary parts for passive materials.

2.2.4 Boundary Conditions

Equations (2.17) and (2.18) represent valid solutions of the Maxwell postulates on both
sides of the interface z = 0 but additional conditions must be satisfied to completely
determine the characteristics of the surface wave. The imposition of these conditions
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affects both the wave vectors and the complex amplitudes of the field phasors in both
materials.

The fields of the surface wave must decay as z → ±∞; hence, the wave vectors
defined in Eqs. (2.10) must satisfy Eqs. (2.13). Care must be taken in the remainder
of the canonical problem to assure that the imaginary parts of both αmet and αdiel are
of the correct signs, in order to obtain a wave which decays with distance from the
interface.

The boundary conditions at the interface are stated as Eqs. (2.12). Of these four
conditions, Eqs. (2.12) 1,2 on the continuity of the components of E parallel to the
interface z = 0 require that

bs = cs (2.21)

and

bp
αmet

nmet
= −cp

αdiel

ndiel
, (2.22)

and Eqs. (2.12)3,4 on H require that

bsαmet = −csαdiel (2.23)

and

bpnmet = cpndiel. (2.24)

Equations (2.21) and (2.23) together require that

αmet = −αdiel, (2.25)

while Eqs. (2.22) and (2.24) yield the condition

αdielεmet = −αmetεdiel. (2.26)

2.2.5 Amplitude Vectors

By virtue of Eqs. (2.16), Eq. (2.25) demands that εmet = εdiel, i.e. the materials on
either side of the interface z = 0 are electromagnetically indistinguishable from each
other at the angular frequency of interest. As the latter equation is a condition of the
s-polarized surface wave only, we must set

bs = cs = 0, (2.27)

thereby concluding that the surface wave cannot have s-polarized components in either
partnering material.

Thus, we see that the surface wave guided by the interface of two linear, homo-
geneous, isotropic, non-magnetic, achiral materials must be p polarized, with

cp = bp
nmet

ndiel
(2.28)
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following from Eqs. (2.22) and (2.26). Equation (2.26) is the dispersion equation of
the surface wave whose amplitude vectors are

Emet = bp

(
αmetuprop + quz

k0nmet

)

Ediel = bp
nmet

ndiel

(−αdieluprop + quz

k0ndiel

)

Hmet = Hdiel = −bp
nmet

η0
us

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.29)

2.2.6 Time-Averaged Poynting Vector

The instantaneous Poynting vector is defined as the cross-product Ẽ(r, t) × H̃(r , t).
When the fields are time-harmonic, i.e.

Ẽ(r , t) = Re{E(r) exp (−iωt)}
H̃ (r , t) = Re{H (r) exp (−iωt)}

}
, (2.30)

the time-averaged Poynting vector is given by

P(r) = (1/2)Re{E(r)× H∗(r)}. (2.31)

The asterisk denotes the complex conjugate.
From the expressions obtained in Section 2.2.5, the time-averaged Poynting vector

of a simple SPP wave turns out be as follows:

P(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|bp|2
2ωμ0

Re

{(
n∗met

nmet

)
(quprop − αmetuz)

}

× exp
[
−2Im{q}uprop

• r
]

exp[2Im{αmet}z], z < 0,

|bp|2
2ωμ0

|nmet|2Re

{(
1

ndiel

)2

(quprop + αdieluz)

}

× exp[−2Im{q}uprop
• r ] exp[−2Im{αdiel}z], z > 0.

(2.32)

2.2.7 Wavenumbers

Equations (2.16) and (2.26) yield the simple expressions

αmet = k0εmet√
ε0(εmet + εdiel)

(2.33)

and

αdiel = k0εdiel√
ε0(εmet + εdiel)

, (2.34)
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in which the signs of the square roots must be chosen to satisfy the restrictions (2.13)
that are appropriate for a surface wave. Using either Eqs. (2.16)1 and (2.33) or Eqs.
(2.16)2 and (2.34), we get

q2 = k2
0

[
εmetεdiel

ε0(εmet + εdiel)

]
(2.35)

as the square of the SPP wavenumber. Both the real and the imaginary parts of q must
be of the same sign. The positive sign indicates an SPP wave traveling parallel to uprop;
the negative sign indicates propagation parallel to −uprop.

2.2.8 Phase Speed and Characteristic Lengths

The foregoing quantities may be used to calculate other quantities which give insight
into the surface wave’s characteristics. Two quantities characterizing the propagation
of the surface wave are related to the wavenumber q of the surface wave. The first is
the phase speed of the surface wave given by

vp = ω

Re{q} . (2.36)

Sometimes, this phase speed is normalized by the phase speed of a plane wave in the
material occupying the half-space z > 0, and the following relative phase speed is
defined:

vrel = k0
Re{ndiel}

Re{q} . (2.37)

The second is the propagation length, i.e. the distance along the direction of propagation
over which the field amplitudes of the surface wave decrease by a factor of exp (−1).
This propagation length is given by

�prop = 1

Im{q} , (2.38)

by virtue of Eqs. (2.6), (2.7), and (2.10). According to Eq. (2.32), the time-averaged
Poynting vector decreases by the same factor over half that distance.

The decay of the surface wave along the direction perpendicular to the interface
z = 0 is described by two decay rates: Im{αmet} and Im{αdiel}. A decay rate has the
dimension of inverse length. Thus, two penetration depths are defined as

�met = 1

Im{αmet} (2.39)

and

�diel = 1

Im{αdiel} , (2.40)

which represent distances—along the direction perpendicular to the interface in the two
partnering materials—over which the fields decrease by a factor of exp (−1). Again,
Eq. (2.32) indicates that the time-averaged Poynting vector decreases twice as rapidly
as the fields normal to the interface.



Surface-Plasmon-Polariton Waves I 45

2.2.9 Characteristics of Simple SPP Waves

At this juncture, let the material in the half-space z < 0 be a metal, while the other half-
space be occupied by a dielectric material—in other words, we specialize the remainder
of the analysis to a simple SPP wave.

Typically, Im{εdiel} is usually small enough in comparison to Re{εdiel} that the former
can be ignored. If we also ignore Im{εmet} for the moment, Eq. (2.26) implies that either
(i) εmet < 0 and εdiel > 0 or (ii) εmet > 0 and εdiel < 0. The first choice is the one made
conventionally, and then the subscripts diel and met do stand for dielectric and metal,
respectively.

In real metals, Im{εmet} is substantial and cannot be ignored. The existence of this
non-zero imaginary part has two particularly noteworthy consequences for the SPP
wave: (i) the SPP wavenumber q is accordingly complex valued and the propagation
length is finite; and (ii) αmet and αdiel accordingly have non-zero real parts which cause
oscillations with distance from the interface.

With k2
0εdiel/ε0 purely real valued, the relation

Re{αdiel} Im{αdiel} = −Re{q} Im{q} (2.41)

follows from Eq. (2.16)2. For a surface wave, both Re{q} and Im{q}must be of the same
sign, as noted in Section 2.2.7. Hence, Re{αdiel} and Im{αdiel} have to be of opposite
signs; accordingly,

Re{αdiel} < 0 (2.42)

by virtue of Eq. (2.13)2.
As Im{εmet} cannot usually be ignored in favor of Re{εmet}, Eq. (2.16)1 yields

Re{αmet} Im{αmet} = (1/2)k2
0 Im{εmet/ε0} − Re{q} Im{q}. (2.43)

Furthermore, Im{αmet} > 0 because of Eq. (2.13)1 and Im{εmet} > 0 for a passive
material. Therefore,

Re{αmet}

⎧⎪⎨
⎪⎩

>0, k2
0 Im{εmet/ε0} > 2Re{q} Im{q},

=0, k2
0 Im{εmet/ε0} = 2Re{q} Im{q},

<0, k2
0 Im{εmet/ε0} < 2Re{q} Im{q},

(2.44)

so that the signs of Re{αmet} and Im{αmet} may or may not be the same, and it is
even possible that Re{αmet} = 0. All three possibilities are exemplified numerically in
Table 2.1.

The dependencies of q, αdiel, and αmet on ndiel are illustrated in Figure 2.2 for fixed
nmet. In the limit ndiel → ∞, we get q → k0nmet, αdiel → −k0ndiel, and αmet → 0,
according to Eqs. (2.33)–(2.35). The graphs in Figure 2.2 are in consonance with these
limits. Most importantly, the almost linear variation of Re{q}/k0 with respect to ndiel
for small values of ndiel is the feature that is commonly exploited for optical biosensing.

A metal is often used for SPP-wave applications at an operating angular frequency
ω below that metal’s plasma frequency, because then Re{εmet} < 0 and numerous
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Table 2.1 Numerical illustrations of the three possibilities delineated in Eq. (2.44).

εdiel/ε0 εmet/ε0 q/k0 αdiel/k0 αmet/k0

4 −15+ 6i 2.267+ 0.135i −0.279+ 1.095i 0.595+ 4.525i
−7.0405+ 2.5991i 2.697+ 0.482i −0.693+ 1.876i 3.752i
−3+ i 1.572+ 2.544i −3.108+ 1.287i −2.009+ 1.742i

dielectric materials can be used as that metal’s partner. The metals used most commonly
are aluminum, copper, gold, and silver. In the visible regime [77,219], silver performs
better than the other metals, insofar as it has the least damping. Damping in the case
of gold is less when the free-space wavelength λ0 � 500 nm in the visible regime and
into the near-infrared regime [219,220]. Copper could be considered for λ0 � 600 nm
[219], except for problems with rapid oxidation. At the other end of the spectrum,
aluminum has suitably low damping in the blue and ultraviolet regimes for λ0 �
200 nm. Palladium [221], platinum [222], alkali metals [223], and metallic alloys [224]
have been considered for special applications. Semiconductors [225] can also be used,
but their use is restricted to the far-infrared regime. Finally, graphene has emerged
recently as a plasmonic material [226] but is unlikely to outperform gold for SPP-wave
applications [227].

Table 2.2 shows the phase speeds and characteristic lengths of SPP waves guided by
interfaces formed with various isotropic materials. The table indicates that the penetra-
tion depth into the metal is not a strong function of the refractive index of the partnering
dielectric material, with �met ≈ 25 nm. However, vrel,�prop, and �diel, all depend
strongly on the refractive index of the partnering dielectric material.

Figure 2.3a and b shows the spatial variations of the magnitudes of the non-zero
Cartesian components1 of the electric and magnetic field phasors of an SPP wave
along the z axis. The variations are smooth, following the same pattern as illustrated
schematically in Figure 1.1. The field phasors decay more rapidly in the metal than in
the partnering dielectric material. In both partnering materials, Figure 2.3c confirms
that the time-averaged Poynting vector decays twice as fast as the field phasors do. The
maximum magnitudes of the field phasors and the time-averaged Poynting vector are
at the interface z = 0.

2.2.10 Fano Wave

As mentioned in Section 2.2.9, Im{εdiel} is usually small enough in comparison to
Re{εdiel} that the former can be ignored. Suppose that Im{εmet} is also set equal to zero.
When both εdiel > 0 and εmet < 0 are purely real, Eqs. (2.33) and (2.34) require

εmet + εdiel < 0 (2.45)

1The Cartesian components of a vector a are denoted by ax = ux
• a, ay = uy

• a, and az = ux
• a; thus,

a = ax ux + ayuy + azuz .
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Figure 2.2 Normalized wavenumbers (a) q/k0, (b) αdiel/k0, and (c) αmet/k0 as functions of
real-valued ndiel when the metal is aluminum (nmet = 0.75+ 3.9i) and λ0 = 633 nm.

in order to ensure that Eqs. (2.13) are satisfied. Furthermore, as q must be real because
the permittivities of both partnering materials do not have imaginary parts, Eq. (2.35)
then requires

εmetεdiel < 0. (2.46)
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Table 2.2 Phase speeds and characteristic lengths of SPP waves at λ0 = 633 nm calculated for
a selection of partnering materials. The refractive indexes for metals come from measurements
on thin films.

Metal nmet Dielectric ndiel vvvrel �prop �met �diel
material (µm) (nm) (nm)

Aluminum 0.75+ 3.9i Water 1.33 0.54 3.09 24.4 319
Quartz 1.54 0.39 1.88 23.8 161
Diamond 2.41 0.14 0.34 20.9 59.0

Copper 0.27+ 3.4i Water 1.33 0.52 4.95 27.3 180
Quartz 1.54 0.38 2.91 26.5 130
Diamond 2.41 0.12 0.39 21.2 42.9

Gold 0.18+ 3.4i Water 1.33 0.52 7.35 27.3 179
Quartz 1.54 0.38 4.31 26.4 129
Diamond 2.41 0.12 0.57 21.0 42.1

Silver 0.056+ 4.3i Water 1.33 0.54 52.3 22.3 233
Quartz 1.54 0.39 31.9 21.9 171
Diamond 2.41 0.14 5.8 19.4 61.8

Therefore,−εmet > εdiel for surface-wave propagation to occur. The SPP wave then is
called a Fano wave [19].

2.2.11 Zenneck Wave

The Zenneck wave is related to the SPP wave in the following manner. Suppose the
metal of permittivity εmet involved in the metal/dielectric interface of Figure 2.1 were to
be replaced by a lossy dielectric material with permittivity ε	d. Whereas Re{εmet} < 0,
Re{ε	d} > 0. Then, a surface wave guided by the interface is not an SPP wave but a
Zenneck wave.

The existence of the Zenneck wave remains controversial at microwave frequencies
[9,10]. At optical frequencies, the Zenneck wave has never been observed. Never-
theless, a brief description is provided in Appendix C.

2.3 Optical Excitation of Simple SPP Waves

The observation of loss of energy of electrons after impinging on a thin metal film
resulted in the prediction of surface plasmons [16]. Although an electron beam directed
at the interface of a metal and a partnering dielectric material may excite an SPP
wave, this method of excitation is inconvenient for practical applications. The complex
apparatus needed and the necessity of working at a very low pressure make excita-
tion by electron bombardment almost always cumbersome—and next to impossible in



Surface-Plasmon-Polariton Waves I 49

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

z m

E
x,

z
V

m

Ex

Ez

(a)

1.0 0.5 0.0 0.5 1.0
0.000

0.001

0.002

0.003

0.004

0.005

z

H
y

A
m

(b)

—1.0 —0.5 0.0 0.5 1.0

—0.002

—0.001

0.000

0.001

0.002

0.003

0.004

z m

P
x,

z
W

m
22

Px

Pz

(c)

μ

μ

( ) mμ( )

( )

Figure 2.3 Spatial variations with z of the non-zero Cartesian components of (a) E(0, 0, z),
(b) H(0, 0, z), and (c) P(0, 0, z) of an SPP wave guided by the planar interface z = 0 of a
half-space filled with aluminum and a half-space filled with water. The free-space wavelength
λ0 = 633 nm, the angleψ = 0 so that uprop = ux and us = uy , nmet = 0.75+3.9i , and ndiel =
1.33. Calculations were made with bp = k0nmet/αmet so that ux

• E(0, 0, 0) = 1 V m−1.

some cases exemplified by biochemical sensors which use liquid partnering dielectric
materials.

The modern sensor exploiting the SPP-wave phenomenon owes its ubiquity to the
development of much simpler optical means of SPP-wave excitation. The fundamen-
tal problem of optical excitation is the matching of the component of a wave vector
parallel to the interface of the exciting optical beam with the SPP wavenumber q.
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From Eq. (2.35), it follows that Re{q} is greater than the wavenumber k0ndiel of a
plane wave traveling in the bulk partnering dielectric material (assumed to be lossless).
There are two general approaches to optical excitation of SPP waves: either the use of
an evanescent wave or the use of a wave traveling in a waveguide, both of which have a
wavenumber exceeding k0ndiel. Regardless of the method of excitation, the SPP waves
considered in the remainder of this chapter have simple field profiles, and are therefore
simple SPP waves.

2.3.1 Turbadar-Kretschmann-Raether Configuration

The most popular method of SPP-wave excitation employing an evanescent wave is
accomplished with the Turbadar-Kretschmann-Raether configuration [20,21,23], often
called the Kretschmann configuration. This arrangement—consisting of a prism with
a refractive index greater than that of the partnering dielectric material, a thin metal
film, and the partnering dielectric material—is shown schematically in Figure 2.4.
Figure 2.5 is a photograph of an automated arrangement. A collimated beam of almost
monochromatic light is directed through one of the two slanted faces of the prism. This
beam bends inside the prism to impinge on the metal film. If the metal film is sufficiently
thin, the field amplitude at the other face of the metal film is significant. If the angle of
incidence θinc inside the prism at the prism/metal interface is greater than the critical
angle θcr = sin−1 (ndiel/nprism) for total internal reflection at an interface of the prism
material and the partnering dielectric material, where nprism is the refractive index of
the prism material, light enters the partnering dielectric material as an evanescent wave.
Since the Maxwell postulates require continuity of the components of the electric and
magnetic fields parallel to an interface, the component of the wave vector parallel to
the metal/dielectric interface must remain constant as light travels from the prism to the
metal to the partnering dielectric material. The component of the wave vector parallel
to the metal/dielectric interface is denoted by

κ = nprismk0 sin θinc. (2.47)

prism reflected

dielectric

metal

incident
beam beam

SPP wave

x,y

z

inc

air

air

θ

Figure 2.4 Schematic of the Turbadar-Kretschmann-Raether configuration.
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Figure 2.5 Automated implementation of Turbadar-Kretschmann-Raether configuration. A
stepper motor rotates the two arms of an inverted V synchronously. Light from a laser diode
and a linear polarizer mounted on the right arm is incident on one slanted face of a stationary
prism affixed to the vertex of the inverted V. The intensity of the light exiting the other slanted
face of the prism is measured by a silicon photodetector mounted on the left arm. The bottom
face of a glass slide is affixed to the base of the prism by an index-matching liquid. The top face
of the glass slide has a metal film deposited on it. A layer of the partnering dielectric material
is deposited on top of the metal film.

With a sufficiently large value of nprism and θinc � θcr, an SPP wave is excited when

κ ≈ Re{q}. (2.48)

The excitation of the SPP wave by the collimated optical beam is known as surface
plasmon resonance (SPR).

Resonance can be achieved by satisfying Eq. (2.48) in either of two ways: either the
angle of incidence θinc or the angular frequency of light may be varied. The variation of
angle of incidence to achieve resonance is known as angular interrogation, while the
variation of frequency is known as frequency interrogation. At first glance, both κ and q
depend linearly on k0, as evidenced by Eqs. (2.35) and (2.47), and the two dependencies
cancel. However, metals are highly dispersive in the optical regime—which means that
εmet depends strongly on the angular frequency ω. Both εprism = n2

prismε0 and εdiel
also depend on ω, if not strongly then weakly in the relevant spectral regime. The
dependencies of the permittivities make frequency interrogation possible.

Generally, monitoring the light reflected from the prism/metal interface and emerg-
ing from the second slanted face of the prism allows for SPR-based sensing. In con-
ventional prism-coupled sensing, the intensity of the light is monitored as a function of
either the angle of incidence or the free-space wavelength of light. A prominent dip in
the reflectance indicates SPR, as the energy needed to excite the SPP wave is absorbed
from the incident light. It is also possible to monitor the phase of the light reflected
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from the prism/metal interface. As with mechanical systems, a sudden phase shift in
the oscillation of the system relative to the exciting force occurs as the system passes
through resonance.

2.3.1.1 Boundary-Value Problem

The response of the Turbadar-Kretschmann-Raether configuration can be calculated by
solving a boundary-value problem. As the prism is thick compared to the decay length
of the SPP wave perpendicular to the prism/metal interface, the prism material can be
considered to be semi-infinite. With a thin layer of a material as the partnering dielectric
material, the finite thickness of the layer must be taken into account [228]. When a very
thick layer of a dielectric material serves as the partnering dielectric material, it may
be considered of semi-infinite extent as well.

Several methods exist for solving the boundary-value problem. In Chapter 3, a
straightforward method based on 4×4 matrixes is developed, for use when the materials
are not isotropic and/or homogeneous. Let us use in this chapter a recursive method
similar to that developed by Parratt [229] to study the effect that layers of materials
on the surface of a bulk material have on X-rays. Much of current research in surface
waves involves multiple layers made of different materials. A recursive approach is
particularly convenient for these configurations, since it is a simple matter to develop
a computer program which uses the same formula as it steps through each layer.

Figure 2.6 schematically illustrates a stack of N planar layers of different materials.
The 	th layer is made of an isotropic dielectric material with refractive index n	 and
extends from z	−1 to z	 = z	−1 + d	, 	 ∈ {1, 2, 3, . . . , N }, z0 = 0. A plane wave is
incident on the stack from the half-space z < 0 at an angle θinc to the z axis. The field

Figure 2.6 Schematic showing up-going and down-going waves in each layer of a stack of planar
layers of different materials.
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within the 	th layer comprises, in general, an up-going wave originating from the
(	 − 1)th layer and a down-going wave originating from the (	 + 1)th layer. The up-
going wave propagates in the +z direction, whereas the down-going wave propagates
in the −z direction.

For convenience, let us label the half-space z < 0 by 	 = 0 and denote the refractive
index of the isotropic, homogeneous dielectric material occupying that half-space by n0.
For application to the Turbadar-Kretschmann-Raether configuration, n0 = nprism. Like-
wise, the label 	 = N+1 and the refractive index nN+1 belong to the half-space z > zN .

2.3.1.2 p-Polarized Incident Plane Wave

Let us consider a p-polarized incident plane wave first. Its electric and magnetic field
phasors are written as

E inc(r) = ap(−uprop cos θinc + uz sin θinc)

× exp{ik0n0[ uprop
• r sin θinc + z cos θinc]}

H inc(r) = −ap
n0
η0

us exp{ik0n0[ uprop
• r sin θinc + z cos θinc]}

⎫⎪⎬
⎪⎭
,

z > 0, (2.49)

where ap is the incidence amplitude—which is supposed to be known.
The field phasors of the reflected plane wave are given by

E ref(r) = rp(uprop cos θinc + uz sin θinc)

× exp{ik0n0[ uprop
• r sin θinc − z cos θinc]}

H ref(r) = −r p
n0
η0

us exp{ik0n0[ uprop
• r sin θinc − z cos θinc]}

⎫⎪⎬
⎪⎭
,

z < 0, (2.50)

where rp is the unknown reflection amplitude. The field phasors of the transmitted
plane wave are given by

E tr(r) = tp(−uprop cos θtr + uz sin θtr)

× exp{ik0nN+1[ uprop
• r sin θtr + (z − zN ) cos θtr]}

H tr(r) = −tp
nN+1
η0

us exp{ik0nN+1[ uprop
• r sin θtr + (z − zN ) cos θtr]}

⎫⎪⎬
⎪⎭
,

z > zN ,

(2.51)

where tp is the unknown transmission amplitude and

sin θtr = n0

nN+1
sin θinc, (2.52)

by virtue of the satisfaction of phase-matching conditions commonly known as Snel’s
laws.2 It is possible that θtr is a complex angle, depending on the value of the ratio
n0/nN+1.

2The name of the Dutch scientist Willebrord van Snel van Royen is often wrongly spelled as Snell in the
English-language optics literature. Snel found the law of refraction in 1621, after Thomas Harriot (1601) but
before René Descartes (1637). However, the law of refraction had been discovered six centuries earlier, by
Ibn Sahl [230, p. 478].
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The reflection and the transmission coefficients of the stack of N layers for
p-polarized incidence are defined as

rpp = rp/ap

tpp = tp/ap

}
. (2.53)

The corresponding linear reflectance and transmittance are

Rpp = |rpp|2

Tpp = nN+1

n0

Re {cos θtr}
cos θinc

|tpp|2

⎫⎬
⎭, (2.54)

while the linear absorptance of the stack for p-polarized incidence is

A p = 1− (
Rpp + Tpp

)
. (2.55)

The principle of conservation of energy requires that Ap ∈ [0, 1], if all N +1 materials
are assumed to be passive.

The electric and magnetic field phasors in the 	th layer may be decomposed as

E(r) = Eup
	 (r)+ Edn

	 (r)

H (r) = Hup
	 (r)+ Hdn

	 (r)

}
, z	−1 < z < z	, 	 ∈ [1, N ], (2.56)

where

Eup
	 (r) = a(	)p

(−α	uprop + κuz

k0n	

)
exp{i[κuprop

• r + α	(z − z	−1)]}

Edn
	 (r) = b(	)p

(
α	uprop + κuz

k0n	

)
exp{i[κuprop

• r − α	(z − z	−1)]}

⎫⎪⎪⎬
⎪⎪⎭

(2.57)

and

Hup
	 (r) = −a(	)p

n	
η0

us exp{i[κuprop
• r + α	(z − z	−1)]}

Hdn
	 (r) = −b(	)p

n	
η0

us exp{i[κuprop
• r − α	(z − z	−1)]}

⎫⎪⎬
⎪⎭
. (2.58)

In these equations, the coefficients a(	)p and b(	)p have yet to be determined,

κ = n0k0 sin θinc, (2.59)

and the imaginary part of

α	 =
√
(k0n	)2 − κ2 (2.60)

is restricted to be non-negative:

Im {α	} � 0. (2.61)
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In order to develop a compact algorithm, let us extend Eqs. (2.56)–(2.61) to the two
half-spaces with the stipulations

a(0)p = ap, b(0)p = rp

a(N+1)
p = tp, b(N+1)

p = 0

}
. (2.62)

Let us also expunge the exponential factors exp (±iα0z−1) from Eqs. (2.57) and (2.58)
for 	 = 0.

Across the interface z = z	−1, the following boundary conditions must hold:

uprop
•
[
Eup
	−1(x, y, z	−1 − )+ Edn

	−1(x, y, z	−1 − )
]

= uprop
•
[
Eup
	 (x, y, z	−1 + )+ Edn

	 (x, y, z	−1 + )
]

us
•
[
Hup
	−1(x, y, z	−1 − )+ Hdn

	−1(x, y, z	−1 − )
]

= us
•
[
H up
	 (x, y, z	−1 + )+ Hdn

	 (x, y, z	−1 + )
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, 	 ∈ [1, N + 1].

(2.63)

With the shorthand notations

r (	)p =
b(	)p

a(	)p

, υ	 = α	

k0n	
, β	 =

{
1, 	 = 0
exp

(
iα	d	

)
, 	 ∈ [1, N ] , (2.64)

Eqs. (2.63) yield

a(	−1)
p

a(	)p

= β	−1
υ	

υ	−1

r (	)p − 1

r (	−1)
p − β2

	−1

a(	−1)
p

a(	)p

= β	−1
n	

n	−1

r (	)p + 1

r (	−1)
p + β2

	−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, 	 ∈ [1, N + 1]. (2.65)

Equating the right sides of Eqs. (2.65)1 and (2.65)2, we obtain the recursion relation

r (	−1)
p = β2

	−1

r (	)p

(
1+ γ (	)p

)
+
(

1− γ (	)p

)

r (	)p

(
1− γ (	)p

)
+
(

1+ γ (	)p

) , 	 ∈ [1, N + 1] , (2.66)

where

γ (	)p =
υ	

υ	−1

n	−1

n	
. (2.67)

In order to exploit the recursion relation (2.66), let us recall from Eqs. (2.62) that

r (N+1)
p ≡ 0 (2.68)

which leads to

r (N )p = β2
N

1− γ (N+1)
p

1+ γ (N+1)
p

. (2.69)
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Thereafter, r (N−1)
p , r (N−2)

p , etc. can be calculated in succession, the series ending with

rp = r (0)p =
r (1)p

(
1+ γ (1)p

)
+
(

1− γ (1)p

)

r (1)p

(
1− γ (1)p

)
+
(

1+ γ (1)p

) . (2.70)

Finally, the transmission coefficient t p can be found by using either Eq. (2.65)1 or
(2.65)2. For instance, the latter can be applied as

a(	)p =
a(	−1)

p

β	−1

n	−1

n	

r (	−1)
p + β2

	−1

r (	)p + 1
(2.71)

to calculate a(1)p from a(0)p = ap, a(2)p from a(1)p , and so on, until tp = a(N+1)
p is

calculated from a(N )p .

2.3.1.3 s-Polarized Incident Plane Wave

The electric and magnetic field phasors of an s-polarized incident plane wave are
written as

E inc(r) = asus exp{ik0n0[uprop
• r sin θinc + z cos θinc]}

H inc(r) = as
n0
η0
(−uprop cos θinc + uz sin θinc)

× exp{ik0n0[uprop
• r sin θinc + z cos θinc]}

⎫⎪⎬
⎪⎭
,

z < 0, (2.72)

while those of the reflected and transmitted plane waves, respectively, are

E ref(r) = rsus exp{ik0n0[uprop
• r sin θinc − z cos θinc]}

H ref(r) = rs
n0
η0
(uprop cos θinc + uz sin θinc)

× exp{ik0n0[uprop
• r sin θinc − z cos θinc]}

⎫⎪⎬
⎪⎭
,

z < 0, (2.73)

and

E tr(r) = tsus exp{ik0nN+1[uprop
• r sin θtr + (z − zN ) cos θtr]}

H tr(r) = ts
nN+1
η0
(−uprop cos θtr + uz sin θtr)

× exp{ik0nN+1[uprop
• r sin θtr + (z − zN ) cos θtr]}

⎫⎪⎬
⎪⎭
,

z > zN . (2.74)

Here, rs and ts are unknown reflection and transmission amplitudes to be calculated in
terms of the incidence amplitude as .

The reflection and the transmission coefficients of the stack for s-polarized incidence
are defined as

rss = rs/as

tss = ts/as

}
, (2.75)



Surface-Plasmon-Polariton Waves I 57

respectively. The corresponding linear reflectance and transmittance are

Rss = |rss|2

Tss = nN+1

n0

Re {cos θtr}
cos θinc

|tss|2

⎫⎬
⎭. (2.76)

The linear absorptance of the stack for s-polarized incidence is given by

As = 1− (Rss + Tss). (2.77)

If all N+1 materials are taken to be passive, then As ∈
[
0, 1

]
by virtue of the principle

of conservation of energy.
Equations (2.56) apply for s-polarized incidence, but with

Eup
	 (r) = a(	)s us exp{i[κuprop

• r + α	(z − z	−1)]}
Edn
	 (r) = a(	)s r (	)s us exp{i[κuprop

• r − α	(z − z	−1)]}

⎫⎬
⎭ (2.78)

and

Hup
	 (r) = a(	)s

n	
η0

(−α	uprop + κuz

k0n	

)
exp{i[κuprop

• r + α	(z − z	−1)]}

Hdn
	 (r) = a(	)s r (	)s

n	
η0

(
α	uprop + κuz

k0n	

)
exp{i[κuprop

• r − α	(z − z	−1)]}

⎫⎪⎪⎬
⎪⎪⎭
.

(2.79)

As in Section 2.3.1.2, Eqs. (2.56), (2.78), and (2.79) are extended to 	 ∈ {0, N + 1}
with the stipulations

a(0)s = as, r (0)s = rs

a(N+1)
s = ts, r (N+1)

s = 0

}
, (2.80)

and the exponential factors exp
(±iα0z−1

)
are expunged for 	 = 0.

Application of the boundary conditions

us
•
[
Eup
	−1(x, y, z	−1 − )+ Edn

	−1(x, y, z	−1 − )
]

= us
•
[
Eup
	 (x, y, z	−1 + )+ Edn

	 (x, y, z	−1 + )
]

uprop
•
[
H up
	−1(x, y, z	−1 − )+ H dn

	−1(x, y, z	−1 − )
]

= uprop
•
[
H up
	 (x, y, z	−1 + )+ Hdn

	 (x, y, z	−1 + )
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, 	 ∈ [1, N + 1

]
,

(2.81)

yields the twin relations
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a(	−1)
s

a(	)s

= β	−1
r (	)s + 1

r (	−1)
s + β2

	−1

a(	−1)
s

a(	)s

= β	−1γ
(	)
s

r (	)s − 1

r (	−1)
s − β2

	−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (2.82)

with

γ (	)s =
υ	

υ	−1

n	
n	−1

. (2.83)

The recursion relation

r (	−1)
s = β2

	−1

r (	)s

(
1+ γ (	)s

)
+
(

1− γ (	)s

)

r (	)s

(
1− γ (	)s

)
+
(

1+ γ (	)s

) , 	 ∈ [1, N + 1
]
, (2.84)

follows from Eqs. (2.82). Starting from

r (N+1)
s ≡ 0, r (N )s = β2

N
1− γ (N+1)

s

1+ γ (N+1)
s

, (2.85)

we can calculate r (N−1)
s , r (N−2)

s , etc., in succession to finally get rs = r (0)s . Thereafter,
the recursion relation

a(	)s =
a(	−1)

s

β	−1

r (	−1)
s + β2

	−1

r (	)s + 1
(2.86)

can be used to calculate a(1)s from a(0)s = as , a(2)s from a(1)s , and so on, until ts = a(N+1)
s

is calculated from a(N )s .

2.3.1.4 Illustrative Results

The boundary-value problem for the Turbadar-Kretschmann-Raether configuration
requires N = 1 when the partnering dielectric material is very thick. Suppose that
the region z > dmet is filled with water (n2 = ndiel = 1.33); the region z < 0
is filled with rutile (n0 = nprism = 2.6), a material often used to make prisms;
the metal film 0 < z < dmet is made by physical vapor deposition of aluminum
(n1 = nmet = 0.75+ 3.9i). The free-space wavelength λ0 = 633 nm.

For the specific choice of materials, θcr = sin−1 (ndiel/nprism) = 30.766◦. Accord-
ing to Eq. (2.35), q/k0 = 1.4041 + 0.0326i . Then, Eqs. (2.47) and (2.48) allow us
to predict the occurrence of SPR at θinc ≈ sin−1 (Re {q} /k0nprism) = 32.685◦, which
indeed exceeds θcr.

When θinc > θcr, the magnitude of sin θtr exceeds unity and cos θtr is purely imagi-
nary; hence,

Tpp = 0, Ap = 1− Rpp
Tss = 0, As = 1− Rss

}
(2.87)
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Figure 2.7 Calculated linear reflectances Rpp and Rss as functions of the angle of incidence θinc
at λ0 = 633 nm for the Turbadar-Kretschmann-Raether configuration wherein rutile and water
occupy half-spaces separated by a thin film of aluminum of thickness dmet.

for θinc > θcr. Plots of Rpp and Rss as functions of θinc > θcr, whether obtained
experimentally or theoretically, therefore are valuable in determining the excitation of
SPP waves.

The linear reflectances Rpp and Rss are plotted in Figure 2.7 as functions of the
angle of incidence θinc, for dmet ∈ {10, 20, 30, 40} nm. Each plot of Rpp as a function
of θinc contains a sharp rise as θinc approaches θcr, the rise being followed by a strong
dip that indicates the excitation of the SPP wave. The minimum of the dip occurs at
an angle of incidence θSPR

inc . The strong dip in Rpp indicates a very high value of Ap,
according to Eq. (2.87), the peak absorptance occurring at θSPR

inc , the resonance angle at
which the most efficient excitation of the SPP wave occurs. Clearly, θSPR

inc is very close
to the predicted value 32.685◦.

The presence of the prism/metal interface has a small effect, and θSPR
inc varies slightly

with the thickness dmet of the metal film. The width and the depth of the dip, which
affect the resolution of SPR-based sensing, are also influenced by dmet. The choice of
this thickness is important when optimizing SPR sensors.

A similar dip is not present in the plots of Rss as a function of θinc in Figure 2.7. This
illustrates that an s-polarized incident plane wave cannot excite an SPP wave guided
by the planar interface of a metal and a homogeneous, isotropic, dielectric material.

2.3.1.5 SPR-Based Prism-Coupled Sensing

According to Figure 2.2a, Re {q} /k0 varies almost linearly with respect to ndiel for
small values of ndiel > 1 and fixed nmet. Making use of Eqs. (2.47) and (2.48), one can
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Figure 2.8 (a) Linear reflectance measured as a function of the angle of incidence θinc at λ0 =
635 nm in the Turbadar–Kretschmann–Raether configuration of Figure 2.5. The prism was made
of dense flint glass (nprism = 1.78471), the∼ 30-nm-thick metal film of aluminum was deposited
on a substrate made of dense flint glass, the dielectric partnering material was either air or water,
and the incident light was p polarized. The two plots should not be compared for magnitude, as
different gain settings on the silicon photodetector were used for air and water. (b) Aluminum
thin film deposited on the substrate used for the experiment.

predict that the product nprism sin θSPR
inc must also vary almost linearly with respect to

ndiel for small values of ndiel > 1 and fixed nmet. With nprism also fixed, the variation
of θSPR

inc with small changes in ndiel would have to be almost linear as well. This feature
is commonly exploited for optical biosensing in the Turbadar-Kretschmann-Raether
configuration.

Figure 2.8a presents two plots of the reflectance at λ0 = 635 nm with respect to
θinc, measured using p-polarized incident light and a prism made of dense flint glass
(nprism = 1.78471) in the apparatus depicted in Figure 2.5. The measured reflectance is
the intensity of light leaving the second slanted face of the prism divided by the intensity
of light incident on the first slanted face of the prism. With a∼ 30 nm-thick aluminum
film as the metallic partnering material and air as the dielectric partnering material, the
measured reflectance has a dip at θinc = 36.01◦. With water as the dielectric partner,
the reflectance dip shifts to θinc = 52.07◦. The ratio (sin 52.07◦)/(sin 36.01◦) equals
1.3416, which is very close to the ratio of the refractive index of water to that of air.

2.3.1.6 Fiber-Optic Coupling

Although the Turbadar-Kretschmann-Raether configuration can be used to make chemi-
cal sensors which are extremely sensitive to changes in refractive index of the partnering
dielectric material [4], it suffers from some disadvantages. Generally, the configura-
tion is bulky and complicated, qualities not very amenable for use in the field. Also,
a sensor based on this configuration requires a significant volume of the analyte to be
present. Many researchers have pursued the use of optical fibers as a solution to these
problems. Geometries and sensing modalities differ, but the various schemes involve
evaporating a thin metal film on an exposed portion of the core of an optical fiber.
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The core, with a high refractive index, then acts like the high-refractive-index prism of
the Turbadar-Kretschmann-Raether configuration.

The metal film can be applied to the fiber core in a variety of ways. One method
[231,232] is to simply remove the fiber cladding and evaporate a uniform metallic
film around the cylindrical core. Other researchers [233,234] taper a section of the
fiber before depositing the metal film which extends the spectral regime of operation.
In some cases, the metal film is only deposited on one side. Another method is to polish
a flat on the core and deposit the metal film on the flat. This is known as the side-polish
method. Cylindrically asymmetric schemes, such as of the side-polished fiber, have the
disadvantage of being polarization sensitive, whereas cylindrically symmetric schemes
are polarization insensitive. Prism coupling not only couples the exciting light beam to
the SPP wave but also couples the SPP wave to an outgoing re-radiated wave. The use
of an optical fiber cleaved at a steep angle reduces re-radiation (or loading), while
capable of exciting an SPP wave in a small microstructure [235].

Fiber-optic coupling also offers some versatility in sensing based on the excitation
of SPP waves. With light propagating in a narrow range of angles relative to the axis of
the optical fiber, white light may be used. After insertion at one end of the optical fiber,
light that passes the portion of the optical fiber that interfaces with the deposited metal
and has a wavelength that satisfies the coupling condition to excite the SPP wave will be
absorbed, thereby producing a dip in the output spectrum. The other end of the optical
fiber can therefore be coupled to a spectrograph for analysis. For remote sensing, some
researchers [231] have deposited a mirror surface at one end of the optical fiber. Thus,
with splitters, the insertion of light and the sensing after interaction with the SPP wave
can be done at one end of the optical fiber. In addition, the light passes the interface
twice and increases the absorption of light. Monochromatic light may also be used to
excite the SPP wave. The frequency can be scanned to look for the spectral location of
the resonance [236]. A sensor may use just a single wavelength, with the intensity of
output light indicating a shift toward or away from resonance [232].

Although there are many advantages to fiber-optic coupling, there are some
disadvantages as well. Fiber-optic coupling is noisier than the Turbadar-Kretschmann-
Raether configuration [237]. Sensors with a fixed wavelength source can only detect
SPP waves over a limited range of refractive index of the partnering dielectric material,
but this limited range can be shifted by the application of a thin layer of dielectric
material between the fiber core and the metal film [232,236].

2.3.2 Turbadar-Otto Configuration

A schematic diagram of the Turbadar-Otto configuration [22] is shown in Figure 2.9.
This is a less frequently used configuration than the Turbadar-Kretschmann-Raether
configuration. As in that configuration, a collimated beam of almost monochromatic
light is directed through one of the two slanted faces of a prism in the Turbadar-
Otto configuration, but the partnering materials are reversed. A layer of the partnering
dielectric material is interposed between the prism and a thick metal film.

If the angle of incidence θinc inside the prism at the prism/dielectric interface is
greater than the critical angle θcr = sin−1 (ndiel/nprism) for total internal reflection,
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Figure 2.9 Schematic of the Turbadar-Otto configuration.

an evanescent wave is created in the partnering dielectric material. If this material is
present as a sufficiently thin layer, the evanescent wave reaches the metal/dielectric
interface with a significant amplitude. When

nprismk0 sin θinc ≈ Re {q}, (2.88)

the resonance condition (2.48) is satisfied and the SPP wave is excited—if the incident
light is p polarized.

The thickness of the layer of the partnering dielectric material must be quite small
in order for the evanescent wave to arrive at the metal with sufficient amplitude. Typi-
cally, in the optical regime, this thickness is at most a few hundred nanometers. Whereas
fabrication of this layer is straightforward using a variety of techniques [111], main-
taining such a small spacing and keeping it free of contamination for liquid dielectric
materials—which is the type of dielectric material most common in SPP sensors—is
quite difficult. Accordingly, the Turbadar-Otto configuration is not very popular for
optical sensing applications.

Reflection from the Turbadar-Otto configuration may be theoretically treated in
the same way as the Turbadar-Kretschmann-Raether configuration—i.e. by using the
algorithms provided in Sections 2.3.1.2 and 2.3.1.3. However, N = 2 is needed with
both partnering materials of finite thickness.

As an example, suppose that the region z < 0 is filled with rutile (n0 = nprism = 2.6);
the region 0 < z < ddiel is occupied by a material of refractive index n1 = ndiel = 1.33,
which was chosen to afford comparison with Figure 2.7; the region ddiel < z < ddiel+
dmet is a thin film of aluminum (n2 = nmet = 0.75+3.9i); and the region z > ddiel+dmet
is occupied by rutile (n3 = 2.6) also. If the metal film is sufficiently thick, the region
labeled N + 1 = 3 can be occupied by any material because a thick layer of a metal is
a very effective electromagnetic isolator. The free-space wavelength λ0 = 633 nm.

As in Section 2.3.1.4, θcr = 30.766◦, q/k0 = 1.4041 + 0.0326i , and SPR can be
predicted to occur at θinc ≈ 32.685◦. The linear reflectances Rpp and Rss are plotted
in Figure 2.10 as functions of θinc for dmet = 70 and ddiel ∈ {100, 200, 300, 400} nm.
Each plot of Rpp as a function of θinc contains a strong dip that indicates the excitation
of a p-polarized SPP wave, the minimum of the dip occuring at an angle of incidence
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Figure 2.10 Calculated linear reflectances Rpp and Rss as functions of the angle of incidence
θinc at λ0 = 633 nm of a rutile/dielectric-material/aluminum/rutile system in the Turbadar-Otto
configuration, for ddiel ∈ {100, 200, 300, 400} and dmet = 70 nm. The dielectric material is of
refractive index n1 = ndiel = 1.33.

θSPR
inc that is very close to the predicted value 32.685◦. Let us note that after the thickness

of the partnering dielectric material increases beyond some threshold, θSPR
inc does not

alter. Moreover, the dip narrows as ddiel increases.
No dip is present in the plots of Rss against θinc in Figure 2.10 that indicates the

excitation of an s-polarized SPP wave. The non-SPP dips in these plots can be attributed
to interference effects across the layer of the partnering dielectric material.

2.3.3 Sarid Configuration

As a metal is one of the partnering materials forming the interface, the propagation
length of an SPP wave is short—typically on the order of a few micrometers, according
to Table 2.2. This short range limits the usefulness of SPP waves for many applica-
tions. However, if one is willing to consider guiding the SPP wave with two parallel
metal/dielectric interfaces in close proximity, the propagation length can be radically
enhanced [238].

The Sarid configuration also requires the use of a prism as do the two configurations
originated by Turbadar [20,21]. The prism abuts a layer of a dielectric material which,
in turn, is in contact with a metal film. The other face of the metal film is in contact with
another layer of a dielectric material. Often, the first dielectric layer is called the cover
and the the second dielectric layer is called the substrate. The substrate is sufficiently
thick to be considered as occupying a half-space. Figure 2.11 presents a schematic of
the Sarid configuration.

When the metal film is very thick, an SPP wave may be guided by the cover/metal
interface. For moderate thickness of the metal film, two SPP waves may be guided
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Figure 2.11 Schematics of the Sarid configuration when the cover and the substrate are made of
identical materials. (a) Two distinct SPP waves can be excited if the metal film is sufficiently thick.
(b) As the metal film becomes thinner, the two SPP waves hybridize to form an LRSPP wave.

separately, one by the cover/metal interface and the other by the metal/substrate inter-
face [239]. As the metal film is made even thinner, the fields of these two SPP waves
begin to overlap, and eventually it is no longer possible to consider the two SPP waves as
separate entities. The two waves then hybridize into different waves that also propagate
parallel to uprop.

Often, both the cover and the substrate are made of the same dielectric material.
When the metal film is sufficiently thin, the profile of the electric field of one hybrid
wave is symmetric about the center of the metal film, whereas the same profile of the
other hybrid wave is anti-symmetric. The symmetric SPP wave penetrates very far into
the dielectric materials, and only a smaller fraction of its energy resides in the metal
film. Since a metal is highly dissipative while dissipation is negligibly small in both
the cover and the substrate, the propagation length of the symmetric SPP wave is large.
In fact, the propagation length of the symmetric SPP wave is not only large compared
to that of the anti-symmetric SPP wave, but is large compared to an SPP wave guided
by a single interface of the same metal and dielectric material. This type of SPP wave
is now known as a long-range SPP (LRSPP) wave, while the anti-symmetric wave is
known as a short-range SPP (SRSPP) wave. The propagation lengths of LRSPP waves
can be as large as a few hundred micrometers [239].

Since the initial investigation into LRSPP waves by Sarid [238], many researchers
have developed schemes to increase the propagation length to as much as a few centime-
ters [216]. One method [240,241] is to choose materials with different refractive indexes
for the cover and the substrate. This structure, theoretically, can guide LRSPP waves
with propagation lengths up to three orders of magnitude larger than waves guided by
the Sarid configuration with identical materials for the cover and the substrate.
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Figure 2.12 Calculated linear reflectances Rpp and Rss as functions of the angle of incidence
θinc at λ0 = 633 nm of a rutile/cover/aluminum/substrate system in the Sarid configuration, for
d1 = ddiel ∈ {100, 200, 300, 400} and d2 = dmet = 60 nm. The cover (n1 = ndiel = 1.33) and
the substrate (n3 = ndiel = 1.33) have the same refractive index.

The algorithms provided in Sections 2.3.1.2 and 2.3.1.3 can be used to compute Rpp
and Rss as functions of θinc. Since the substrate is very thick, it can be assumed to be
semi-infinitely thick for calculations, and N = 2 then suffices.

As an example, suppose that the region z < 0 is filled with rutile (n0 = nprism = 2.6),
and the region d1 < z < d1+ d2 is a thin film of aluminum (n2 = nmet = 0.75+ 3.9i)
of thickness dmet = d2. The cover 0 < z < d1 = ddiel and the substrate z > d1+d2 are
occupied by a material of refractive index n1 = n3 = ndiel = 1.33, which was chosen to
afford comparison with Figures 2.7 and 2.10. The free-space wavelength λ0 = 633 nm.
Plots of Rpp and Rss as functions of θinc in Figure 2.12 clearly show the excitation of
a p-polarized SPP wave at an angle of incidence slightly greater than θcr = 30.766◦.

Calculations have shown that placing an intermediate thin dielectric layer between
the metal film and the cover and another intermediate thin dielectric layer between the
metal films and the substrate may also increase the propagation length by several orders
of magnitude [242,243]. In addition, by using intermediate layers, large propagation
lengths may be obtained with thicker metal films. This may be significant since reduc-
ing the thickness of the metal film to obtain larger propagation lengths in the Sarid
configuration is met with the technological limit of economically fabricating uniform
films thinner than about 15 nm. More recently, researchers have considered sandwich-
ing the metal thin film between periodically layered dielectric materials [155,244].
Both s-polarized and p-polarized SPP waves are possible with this approach.

Although the LRSPP wave has attracted much attention, the SRSPP mode also may
be used to advantage [245]. One problem with biochemical sensing is that changes in the
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refractive index of the bulk solution containing the analyte, due to changes in the tem-
perature and the concentrations of non-analyte components, can interfere with the signal
from the analyte which binds to the recognition molecule on the surface of the sensor.
Since the SRSPP wave is more closely bound to the guiding interface, it is less affected
by changes in the bulk solution. Monitoring both the SRSPP and LRSPP waves allows
separation of artifacts from the sensing of the analyte, thereby reducing sensing errors.

Finally, it should be mentioned that another method of LRSPP propagation has
received some attention, namely, the hybrid SPP waveguide [246,247]. As originally
proposed [246], this configuration consisted of a dielectric cylinder above a metal.
However, more practical planar geometries [247] are now being considered along with
efficient means of coupling to dielectric waveguides [248].

2.3.4 Grating-Coupled Configuration

Total internal reflection, exploited in both the Turbadar-Kretschmann-Raether and the
Turbadar-Otto configurations, provides one method of producing an evanescent wave
with a component κ of the wave vector parallel to the interface that is greater in mag-
nitude than the wavenumber k0ndiel of a plane wave traveling in the bulk dielectric
material. Surface-relief gratings also can produce waves that satisfy that requirement,
and researchers have explored, experimentally [249] and theoretically [250–252], the
use of these gratings to excite SPP waves. The use of surface-relief gratings for the exci-
tation of SPP waves is particularly attractive for harvesting solar energy using thin-film
silicon solar cells whose metallic back-surface reflectors are periodically corrugated
[207–209].

The prediction of SPP-wave excitation in the grating-coupled configuration requires
the solution of a boundary-value problem that is more complicated than those encoun-
tered for the Turbadar-Kretschmann-Raether, Turbadar-Otto, and Sarid configurations.
The solution can be attempted by a variety of numerical techniques, such as the extin-
ction boundary condition method [81,253], the method of covariant spatial transfor-
mation [254,255], and the rigorous coupled-wave approach (RCWA) [250,256–258,
153,259]. Although all three numerical techniques work well when the partnering
dielectric material is isotropic and homogeneous, the RCWA is especially well suited
for extension to periodically nonhomogeneous and/or bianisotropic materials, as pre-
sented in Section 3.8.5.

Figure 2.13 shows a schematic of the grating-coupled configuration. For simplicity,
the half-spaces z < 0 and z > d1 + d2 are occupied by air which is approximated by
free space (i.e. vacuum). For every x ∈ (−∞,∞), the region 0 < z < d = d1+g(x) is
occupied by an isotropic, homogeneous, dielectric material of permittivity εdiel, while
the partnering metal occupies the region d1+g(x) < z < d1+d2. The grating function

g(x) = g(x ± Lx ) (2.89)

has a period Lx along the x axis; the magnitude of its minimum value gmin < 0 is
less than d1, and its maximum value gmax > 0 is less than d2. Thus, the xz plane
is the grating plane because it completely captures the cross-sectional shape of the
grating, and the surface-relief grating is singly periodic, with a trough-to-crest height



Surface-Plasmon-Polariton Waves I 67

metal

dielectric
x

z

d1

d2

inc

Incident light

0

+1

z = d1+ g(x)

Lx

0

+1

—1

—1

—2

—2

SPP wave

Transmitted light

Reflected lightθ

Figure 2.13 Schematic of the boundary-value problem for the grating-coupled configuration to
excite an SPP wave guided by the periodically corrugated interface z = d1 + g(x) of a metal
and an isotropic, homogeneous, dielectric material. The propagation plane and the grating plane
are the xz plane. The reflected field phasors comprise specular components (identified by 0) and
nonspecular components (identified by±1, etc.), and the transmitted field phasors may also have
specular and nonspecular components. The trough-to-crest height of the periodically corrugated
interface is typically a small fraction of the free-space wavelength, whereas the period is on the
same order as the free-space wavelength.

Lg = gmax− gmin that is typically a small fraction of λ0. Typically also, the period Lx

is on the order of λ0 but does not exceed it [207,208].
The surface-relief grating may be either simple or compound. A simple surface-relief

grating [260] is exemplified by a sinusoidal grating: g(x) = (Lg/2) sin (2πx/Lx ).
A sawtooth grating furnishes another example. Each period of a compound grating
comprises two or more simple gratings, each several periods long. A compound grating
can help excite SPP waves over a range of free-space wavelengths and for several
different incidence conditions [85,86].

If the grating is doubly periodic, i.e. it is periodically corrugated along both the x
and the y axes, the procedure provided in Section 3.8.5 should be followed for analysis.
The same procedure is useful when the half-spaces z < 0 and z > d1+ d2 are taken to
be occupied by different isotropic, homogeneous, and dielectric materials.

2.3.4.1 Incident Plane Wave

Let the incident plane wave be assumed to propagate in the xz plane at an angle θinc
relative to the z axis in the vacuous half-space z < 0. Thus the plane of propagation of
the incident plane wave and the grating plane are the same.

The incident field phasors are written in terms of a Fourier series with respect to x as

E inc(r) =
∞∑

n=−∞

(
a(n)s s(n) + a(n)p p(n)

inc

)
exp

[
i
(
κ(n)x + α(n)z

)]

H inc(r) = η−1
0

∞∑
n=−∞

(
a(n)s p(n)

inc
− a(n)p s(n)

)
exp

[
i
(
κ(n)x + α(n)z

)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z < 0,

(2.90)



68 Electromagnetic Surface Waves

where the amplitudes

a(n)s = a(0)s δn0

a(n)p = a(0)p δn0

}
(2.91)

involve the Kronecker delta

δnn′ =
{

1, n = n′,
0, n �= n′. (2.92)

The other quantities appearing in Eqs. (2.90) are as follows:

κ(n) = k0 sin θinc + n
(
2π/Lx

)

α(n) = +
√

k2
0 −

(
κ(n)

)2

s(n) = uy

p(n)
inc
= −α(n)ux+κ(n)uz

k0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (2.93)

Each term in this representation is a linear Floquet harmonic, the qualifier linear
indicating that the fields are expressed in terms of s- and p-polarization states. If the
incident plane wave is s polarized, then a(0)p = 0; if it is p polarized, then a(0)s = 0.
Alternatively, one can employ circular Floquet harmonics and circular polarization
states, as shown in Section 3.7.4, but these entities are not very useful because all
materials involved here are isotropic and achiral [17].

2.3.4.2 Reflected and Transmitted Field Phasors

The reflected field phasors are written as

E ref(r) =
∞∑

n=−∞

(
r (n)s s(n) + r (n)p p(n)

ref

)
exp

[
i
(
κ(n)x − α(n)z

)]

H ref(r) = η−1
0

∞∑
n=−∞

(
r (n)s p(n)

ref
− r (n)p s(n)

)
exp

[
i
(
κ(n)x − α(n)z

)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z < 0,

(2.94)

where

p(n)
ref
= α(n)ux + κ(n)uz

k0
, (2.95)

while r (n)s and r (n)p are unknown reflection amplitudes. Similarly to the incident field
phasors, the transmitted field phasors are written as

E tr(r) =
∞∑

n=−∞

(
t(n)s s(n) + t(n)p p(n)inc

)
exp

{
i
[
κ(n)x + α(n)(z − d1 − d2)

]}

H tr(r) = η−1
0

∞∑
n=−∞

(
t (n)s p(n)inc − t(n)p s(n)

)
exp

{
i
[
κ(n)x + α(n)(z − d1 − d2)

]}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

z > d1 + d2, (2.96)

where t (n)s and t (n)p are unknown transmission amplitudes.
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The specular terms in the sums on the right sides of Eqs. (2.94) and (2.96) are the
ones for which n = 0. The remaining terms in these sums are nonspecular terms which
arise due to the periodic nature of the function g(x). If this function does not vary with
x , then g(x) = 0 and all nonspecular terms can be discarded.

2.3.4.3 Linear Reflectances and Transmittances

As the plane of propagation of the incident plane wave is the same as the grating plane,
no depolarization can occur on reflection and transmission, which means that

r (n)s = r (n)ss a(0)s , t (n)s = t (n)ss a(0)s

r (n)p = r (n)pp a(0)p , t (n)p = t (n)pp a(0)p

}
, (2.97)

where r (n)ss and r (n)pp are reflection coefficients, and t(n)ss and t (n)pp are transmission
coefficients. Linear reflectances and transmittances of order n ∈ (−∞,∞) are
defined as

R(n)ss = |r (n)ss |2, T (n)ss = Re
{
α(n)

}
α(0)

|t (n)ss |2

R(n)pp = |r (n)pp |2, T (n)pp = Re
{
α(n)

}
α(0)

|t (n)pp |2

⎫⎬
⎭. (2.98)

Absorptances for s- and p-polarized incidences are calculated as

As = 1−
∞∑

n=−∞

(
R(n)ss + T (n)ss

)

Ap = 1−
∞∑

n=−∞

(
R(n)pp + T (n)pp

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (2.99)

Neither of the two linear absorptances can be negative nor can they exceed unity, by
virtue of the principle of conservation of energy, provided that both partnering materials
are passive.

2.3.4.4 Rigorous Coupled-Wave Approach

The RCWA requires that all field phasors as well as the permittivity in the region
0 � z � d1 + d2 be expressed as Fourier series with respect to x .

The constitutive relations of the two partnering materials are jointly written as

D(r) = ε(x, z)E(r)

B(r) = μ0 H(r)

}
, z ∈ (0, d1 + d2

)
, (2.100)

where

ε(x, z) =

⎧⎪⎨
⎪⎩

εdiel, z ∈ (0, d1 + gmin
]
,

εdiel +
(
εmet − εdiel

)U [
z − g(x)

]
, z ∈ (d1 + gmin, d1 + gmax

)
,

εmet, z ∈ [d1 + gmax , d1 + d2
)
,

(2.101)
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and

U(σ ) =
{

1, σ � 0
0, σ < 0

(2.102)

is the unit step function. Accordingly, we get the Fourier series

ε(x, z) =
∞∑

n=−∞
ε(n)(z) exp (i2πnx/Lx ), z ∈ (0, d1 + d2), (2.103)

where

ε(n)(z) =
{
(εmet − εdiel)ϒ

(n)(z), z ∈ (d1 + gmin, d1 + gmax),

0, z /∈ (d1 + gmin, d1 + gmax),
, (2.104)

except that

ε(0)(z) =

⎧⎪⎨
⎪⎩

εdiel, z ∈ (0, d1 + gmin],
εdiel + (εmet − εdiel)ϒ

(0)(z), z ∈ (d1 + gmin, d1 + gmax ),

εmet, z ∈ [d1 + gmax , d1 + d2),

(2.105)

and

ϒ(n)(z) = 1

Lx

∫ Lx

0
U[z − g(x)] exp (−i2πnx/Lx )dx . (2.106)

The field phasors in the region occupied by either partnering material are expressed
as Fourier series with respect to x too, just like the reflected and transmitted field
phasors; thus,

E(r) =
∞∑

n=−∞
[e(n)(z) exp (iκ(n)x)]

H(r) =
∞∑

n=−∞
[h(n)(z) exp (iκ(n)x)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z ∈ (0, d1 + d2), (2.107)

where the vector functions e(n)(z) = e(n)x ux + e(n)y uy + e(n)z uz , and h(n)(z) = h(n)x ux +
h(n)y uy + h(n)z uz remain to be determined for all n.

Substitution of Eqs. (2.100), (2.103), and (2.107) into the source-free frequency-
domain Maxwell curl postulates

∇ × E(r) = iωμ0 H(r)

∇ × H(r) = −iωε(x, z)E(r)

}
(2.108)
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results in a system of four ordinary differential equations

d
dz e(n)x (z)− iκ(n)e(n)z = iωμ0h(n)y (z)
d
dz e(n)y (z) = −iωμ0h(n)x (z)

d
dz h(n)x (z)− iκ(n)h(n)z = −iω

∞∑
m=−∞

ε(n−m)(z)e(m)y (z)

d
dz h(n)y (z) = iω

∞∑
m=−∞

ε(n−m)(z)e(m)x (z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, n ∈ (−∞,∞),

(2.109)

and two algebraic equations

κ(n)e(n)y = ωμ0h(n)z (z)

κ(n)h(n)y (z) = −ω
∞∑

m=−∞
ε(n−m)(z)e(m)z (z)

⎫⎪⎪⎬
⎪⎪⎭
, n ∈ (−∞,∞), (2.110)

for all z ∈ (0, d1 + d2
)
.

The sums in Eqs. (2.109) and (2.110) contain an infinite number of terms. Moreover,
the equations themselves are infinite in number. This infinite set of equations cannot
be implemented in practice. As with any Fourier series, an approximation is obtained
by truncating the series. Therefore, we restrict the index n ∈ [−Nt , Nt ] in Eq. (2.107),
and define (2Nt + 1)-column vectors3

[
ĕσ (z)

] =
[
e(−Nt )
σ (z), e(−Nt+1)

σ (z), . . . , e(Nt−1)
σ (z), e(Nt )

σ (z)
]T
, (2.111)

and
[
h̆σ (z)

]
=
[
h(−Nt )
σ (z), h(−Nt+1)

σ (z), . . . , h(Nt−1)
σ (z), h(Nt )

σ (z)
]T
, (2.112)

where σ ∈ {x, y, z}. Furthermore, after the introduction of (2Nt + 1) × (2Nt + 1)
matrixes

[
K̆
]
= diag

[
κ(−Nt ), κ(−Nt+1), . . . , κ(Nt−1), κ(Nt )

]
, (2.113)

and

[
ε̆(z)

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε(0)(z) ε(−1)(z) ε(−2)(z) . . . ε(−2Nt+1)(z) ε(−2Nt )(z)

ε(1)(z) ε(0)(z) ε(−1)(z) . . . ε(−2Nt+2)(z) ε(−2Nt+1)(z)

· · · · · · · · · · · · · · · · · ·
ε(2Nt−1)(z) ε(2Nt−2)(z) ε(2Nt−3)(z) · · · ε(0)(z) ε(−1)(z)

ε(2Nt )(z) ε(2Nt−1)(z) ε(2Nt−2)(z) · · · ε(1)(z) ε(0)(z)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(2.114)

3The symbol˘ identifies quantities associated with the RCWA.
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Equations (2.110) yield

[
h̆z(z)

] = (ωμ0)
−1[ K̆

]
• [ĕy(z)] (2.115)

and

[
ĕz(z)

] = −ω−1[ε̆(z)]−1 •
[

K̆
]
•
[
h̆ y(z)

]
. (2.116)

With Eqs. (2.115) and (2.116), e(n)z (z) and h(n)z (z) can be eliminated from Eqs.
(2.109) ∀ n ∈ (−∞,∞), thereby obtaining the matrix ordinary differential equation

d

dz

[
f̆ (z)

] = i
[

P̆(z)
]
•
[

f̆ (z)
]
, z ∈ (0, d1 + d2), (2.117)

where the 4(2Nt + 1)-column vector

[
f̆ (z)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

[
ĕx (z)

]
[
ĕy(z)

]
[
h̆x (z)

]
[
h̆ y(z)

]

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.118)

and the 4(2Nt + 1)× 4(2Nt + 1) matrix

[
P̆(z)

]
= ω

⎡
⎢⎢⎢⎢⎢⎣

[
0̆
] [

0̆
] [

0̆
]

μ0
[

Ĭ
]

[
0̆
] [

0̆
] −μ0

[
Ĭ
] [

0̆
]

[
0̆
] −[ ε̆(z) ] [

0̆
] [

0̆
]

[
ε̆(z)

] [
0̆
] [

0̆
] [

0̆
]

⎤
⎥⎥⎥⎥⎥⎦

+ 1

ω

⎡
⎢⎢⎢⎢⎢⎢⎣

[
0̆
] [

0̆
] [

0̆
] −[ K̆

]
•
[
ε̆(z)

]−1 •
[

K̆
]

[
0̆
] [

0̆
] [

0̆
] [

0̆
]

[
0̆
]
μ−1

0

[
K̆
]
•
[

K̆
] [

0̆
] [

0̆
]

[
0̆
] [

0̆
] [

0̆
] [

0̆
]

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.119)

All submatrixes in the definition of
[

P̆(z)
]

are (2Nt + 1)× (2Nt + 1) in dimension,

with
[

0̆
]

as the null matrix and
[

Ĭ
]

the identity matrix.
The boundary values

[
f̆ (0− )] and

[
f̆ (d1 + d2 + )

]
of
[

f̆ (z)
]
, which are needed

to implement the boundary conditions in solving Eq. (2.117), can be assembled using
Eqs. (2.90), (2.94), and (2.96). If the phasor amplitudes for the s-polarized and
p-polarized components of the incident, reflected, and transmitted fields are collected
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into 2(2Nt + 1)-column vectors as
[

Ă
] =

[
a(−Nt )

s , a(−Nt+1)
s , . . . , a(Nt−1)

s , a(Nt )
s , a(−Nt )

p , a(−Nt+1)
p , . . . ,

a(Nt−1)
p , a(Nt )

p

]T
, (2.120)

[
R̆
] =

[
r (−Nt )

s , r (−Nt+1)
s , . . . , r (Nt−1)

s , r (Nt )
s , r (−Nt )

p , r (−Nt+1)
p , . . . ,

r (Nt−1)
p , r (Nt )

p

]T
, (2.121)

and
[
T̆
] =

[
t (−Nt )
s , t (−Nt+1)

s , . . . , t (Nt−1)
s , t (Nt )

s , t (−Nt )
p , t (−Nt+1)

p ,

. . . , t (Nt−1)
p , t (Nt )

p

]T
, (2.122)

then,

[
f̆ (0− )

]
=

⎡
⎢⎢⎢⎢⎢⎣

[
0̆
] −k−1

0

[
ᾰ
] [

0̆
]

k−1
0

[
ᾰ
]

[
Ĭ
] [

0̆
] [

Ĭ
] [

0̆
]

−η−1
0 k−1

0

[
ᾰ
] [

0̆
]

η−1
0 k−1

0

[
ᾰ
] [

0̆
]

[
0̆
] −η−1

0

[
Ĭ
] [

0̆
] −η−1

0

[
Ĭ
]

⎤
⎥⎥⎥⎥⎥⎦
•

[ [
Ă
]

[
R̆
]
]
,

(2.123)

and

[
f̆ (d1 + d2 + )

] =

⎡
⎢⎢⎢⎢⎢⎣

[
0̆
] −k−1

0

[
ᾰ
]

[
Ĭ
] [

0̆
]

−η−1
0 k−1

0

[
ᾰ
] [

0̆
]

[
0̆
] −η−1

0

[
Ĭ
]

⎤
⎥⎥⎥⎥⎥⎦
•
[
T̆
]
, (2.124)

where the (2Nt + 1)× (2Nt + 1) matrix
[
ᾰ
] = diag

[
α(−Nt ), α(−Nt+1), . . . , α(Nt−1), α(Nt )

]
. (2.125)

For convenience, the boundary values
[

f̆ (0 −)] and
[

f̆ (d1 + d2 +)
]

are recast
compactly as

[
f̆ (0− )

]
=
⎡
⎣
[
Y̆

inc

e

] [
Y̆

ref

e

]
[
Y̆

inc

h

] [
Y̆

ref

h

]
⎤
⎦ •

[ [
Ă
]

[
R̆
]
]
, (2.126)

and

[
f̆ (d1 + d2 + )

]
=
⎡
⎣
[
Y̆

tr

e

]
[
Y̆

tr

h

]
⎤
⎦ •

[
T̆
]
. (2.127)



74 Electromagnetic Surface Waves

The 2(2Nt + 1) × 2(2Nt + 1) matrixes appearing in Eq. (2.126) can be synthesized
from Eq. (2.123) by inspection; thus,

[
Y̆

inc

e

]
=
[ [

0̆
] −k−1

0

[
ᾰ
]

[
Ĭ
] [

0̆
]

]
,

[
Y̆

inc

h

]
= −η−1

0

[
k−1

0

[
ᾰ
] [

0̆
]

[
0̆
] [

Ĭ
]
]

(2.128)

and

[
Y̆

ref

e

]
=
[ [

0̆
]

k−1
0

[
ᾰ
]

[
Ĭ
] [

0̆
]

]
,

[
Y̆

ref

h

]
= η−1

0

[
k−1

0

[
ᾰ
] [

0̆
]

[
0̆
] −[ Ĭ

]
]
. (2.129)

Since the half-space z > d1 + d2 is occupied by the same medium—i.e. air—as the
half-space z < 0 in the present case,

[
Y̆

tr

e

]
=
[
Y̆

inc

e

]
,

[
Y̆

tr

h

]
=
[
Y̆

inc

h

]
. (2.130)

As a solution of Eq. (2.117) in closed form is infeasible, we proceed from here
with an approximate numerical method. The region 0 � z � d1 + gmin is divided
into Ndiel subregions, the region d1 + gmin � z � d1 + gmax into Ng subregions,
and the region d1 + gmax � z � d2 into Nmet subregions. Thus, the total number of
subregions is Ns = Ndiel+ Ng + Nmet, the 	th subregion being bounded by the planes
z = z	−1 and z = z	, 	 ∈ [1, Ns ], where z0 = 0 and zNs = d1 + d2. Often, but
not always, Ndiel = 1 and/or Nmet = 1 suffice. An electrically thick region requires
a larger number of subregions for stable computations of the exponentials of matrixes
with complex-valued elements.

In the 	th subregion, the approximation

[
P̆(z)

] ≈ [
P̆
](	) ≡

[
P̆

(
z	 + z	−1

2

)]
, z ∈ (z	, z	−1) (2.131)

is made. This approximation is called the piecewise-uniform approximation, and it
permits the solution

[
f̆ (z	)

] = [
W̆

](	) • [ f̆ (z	−1)
]
, 	 ∈ [1, Ns

]
, (2.132)

where
[

W̆
](	) = exp

{
i
(
z	 − z	−1

)[
P̆
](	)}

, 	 ∈ [1, Ns
]
. (2.133)

Repeated use of Eq. (2.132) yields

[
f̆ (d1 + d2 − )

] = [
W̆

](Ns ) •
[

W̆
](Ns−1) • · · · • [ W̆

](2) • [ W̆
](1) • [ f̆ (0+ )].

(2.134)

As the boundary conditions
[

f̆ (0− )] = [
f̆ (0+ )], [

f̆ (d1 + d2 − )
] = [

f̆ (d1 + d2 + )
]
, (2.135)
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must be satisfied, Eq. (2.134) can be rewritten as

[
f̆ (d1 + d2 + )

] = [
W̆

](Ns ) •
[

W̆
](Ns−1) • · · · • [ W̆

](2) • [ W̆
](1) • [ f̆ (0− )].

(2.136)

Equations (2.126), (2.127), and (2.136) lead to the algebraic equation

⎡
⎣
[
Y̆

tr

e

]
[
Y̆

tr

h

]
⎤
⎦ •

[
T̆
] = [

W̆
](Ns ) •

[
W̆

](Ns−1) • · · ·

•
[

W̆
](2) • [ W̆

](1) •
⎡
⎣
[
Y̆

inc

e

] [
Y̆

ref

e

]
[
Y̆

inc

h

] [
Y̆

ref

h

]
⎤
⎦ •

⎡
⎣
[

Ă
]

[
R̆
]
⎤
⎦, (2.137)

which may be solved for
[
R̆
]

and
[
T̆
]

using standard matrix techniques [261].

2.3.4.5 Stable RCWA Algorithm

Numerical problems bedevil straightforward attempts to solve Eq. (2.137) on a digital
computer, particularly when either the metal is very thick and/or the incidence is highly
oblique. A stable algorithm has been devised to overcome these problems [251,252,

256–258], based on the assumption that
[

P̆
](	)

is diagonalizable [262] for all 	 ∈
[1, Ns]. The matrix

[
P̆
](	) is indeed diagonalizable if the 	th subregion lies either in

the region 0 � z � d1 + gmin or in the region d1 + gmax � z � d2. Let us also assume
that it is also diagonalizable if the 	th subregion lies in the region d1 + gmin � z �
d1 + gmax. Then,

[
P̆
](	) = [

V̆
](	) • [ Ğ

](	) • ([ V̆
](	))−1

, 	 ∈ [1, Ns
]
, (2.138)

where the diagonal matrix
[

Ğ
](	) contains the eigenvalues of

[
P̆
](	)

either in decreas-

ing order or in increasing order of the magnitude of the imaginary part, and
[

V̆
](	)

is

a square matrix comprising the eigenvectors of
[

P̆
](	)

as its columns, arranged so that

each eigenvector is in the same position as the corresponding eigenvalue in
[
Ğ
](	)

.

Accordingly, Eq. (2.133) is recast as

[
W̆

](	) = [
V̆
](	) • exp

{
i(z	 − z	−1)

[
Ğ
](	)} •

([
V̆
](	))−1

. (2.139)

We now define the column vector
[
T̆
](	) and the auxiliary transmission matrix

[
Z̆
](	)

for the 	th subregion through the relationship

[
f̆ (z	)

] = [
Z̆
](	) • [T̆ ](	), 	 ∈ [0, Ns]. (2.140)
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Although both
[
T̆
](	)

and
[

Z̆
](	)

are not known in general at this stage, we choose to set

[
T̆
](Ns ) = [

T̆
]
,

[
Z̆
](Ns ) =

⎡
⎣
[
Y̆

tr

e

]
[
Y̆

tr

h

]
⎤
⎦, (2.141)

consistently with Eq. (2.127). Use of Eqs. (2.139) and (2.140) in Eq. (2.132) yields

[
Z̆
](	−1) •

[
T̆
](	−1) = [

V̆
](	)

•

⎡
⎢⎢⎣

exp

{
−i(z	 − z	−1)

[
Ğ

upper

](	)} [
ŏ
]

[
ŏ
]

exp

{
−i(z	 − z	−1)

[
Ğ

lower

](	)}

⎤
⎥⎥⎦

•
([

V̆
](	))−1

•
[

Z̆
](	) • [T̆ ](	), 	 ∈ [1, Ns], (2.142)

wherein the 4(2Nt + 1) × 4(2Nt + 1) matrix
[

Ğ
](	)

has been partitioned into the
following four 2(2Nt + 1) × 2(2Nt + 1) matrixes: two null matrixes

[
ŏ
]
, an upper

diagonal matrix
[
Ğ

upper

](	)
, and a lower diagonal matrix

[
Ğ

lower

](	)
.

With the extra degree of freedom afforded by the two sets of created unknowns,[
Z̆
](	) and

[
T̆
](	), we impose the relationship

[
T̆
](	−1) = exp

{
−i(z	 − z	−1)

[
Ğ

upper

](	)}
•
[

X̆
upper

](	)
•
[
T̆
](	)
, (2.143)

where the square matrix
[

X̆
upper

](	)
and its partner

[
X̆

lower

](	)
are defined through

⎡
⎢⎣
[

X̆
upper

](	)
[

X̆
lower

](	)

⎤
⎥⎦ =

([
V̆
](	))−1

•
[

Z̆
](	)
. (2.144)

Now, substitution of Eq. (2.143) in (2.142) leads to the relation

[
Z̆
](	−1) = [

V̆
](	) •

⎡
⎣

[
1̆
]

[
Ŭ
](	)

⎤
⎦, 	 ∈ [1, Ns

]
, (2.145)

where
[

1̆
]

is the 2(2Nt + 1)× 2(2Nt + 1) identity matrix and

[
Ŭ
](	) = exp

{
−i(z	 − z	−1)

[
Ğ

lower

](	)}
•
[

X̆
lower

](	)
•
([

X̆
upper

](	))−1

• exp

{
i(z	 − z	−1)

[
Ğ

upper

](	)}
, 	 ∈ [1, Ns

]
. (2.146)
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Iteration of Eq. (2.145), with the use of Eq. (2.144), yields
[

Z̆
](0)

, which, after parti-

tioning, may be written as

[
Z̆
](0) =

⎡
⎢⎣
[

Z̆
upper

](0)
[

Z̆
lower

](0)

⎤
⎥⎦. (2.147)

Setting the right side of Eq. (2.140) with 	 = 0 equal to the right side of Eq. (2.126)
gives

⎡
⎢⎣
[

Z̆
upper

](0)
[

Z̆
lower

](0)

⎤
⎥⎦ •

[
T̆
](0) =

⎡
⎣
[
Y̆

inc

e

] [
Y̆

ref

e

]
[
Y̆

inc

h

] [
Y̆

ref

h

]
⎤
⎦ •

[ [
Ă
]

[
R̆
]
]
, (2.148)

which may be rearranged to yield
⎡
⎣
[
T̆
](0)

[
R̆
]

⎤
⎦ =

⎡
⎢⎣
[

Z̆
upper

](0) −
[
Y̆

ref

e

]

[
Z̆

lower

](0) −
[
Y̆

ref

h

]

⎤
⎥⎦ •

⎡
⎣
[
Y̆

inc

e

]
[
Y̆

inc

h

]
⎤
⎦ •

[
Ă
]
. (2.149)

Equation (2.149) delivers
[
R̆
]
. After

[
T̆
](0)

is known,
[
T̆
] = [

T̆
](Ns ) is found by

reversing the sense of iterations in Eq. (2.143).
Moreover, with

[
f̆ (z0)

]
=
[

f̆ (0− )
]

now known by virtue of Eq. (2.126),
[

f̆
(
z	
)]

can be calculated for all 	 ∈ [1, Ns] by repeated use of Eq. (2.132). With
[

f̆
(
z	
)]

known,
[
h̆z

(
z	
)]

can be obtained from Eq. (2.115) and
[
ĕz

(
z	
)]

likewise from
Eq. (2.116). After the further use of Eqs. (2.107), E(r) and H (r) can be mapped
in the region 0 � z � d1 + d2.

The sufficiency of Nt requires convergence tests. As Nt increases, one must test that
the reflectances R(n)sp , etc., and the transmittances T (n)sp , etc., converge within satisfactory
tolerance limits (say, 0.1%). The principle of conservation of energy also must be
satisfied simultaneously.

2.3.4.6 Excitation of an SPP Wave

In order to investigate the excitation of an SPP wave in the grating-coupled configuration
at a specified value of the free-space wavelength, the linear absorptances Ap and As

must be plotted as functions of the angle of incidence θinc. Such plots will contain many
peaks. Each peak has to survive two tests before it can be considered indicative of the
excitation of an SPP wave.

First, the angular location of a certain absorptance peak must remain about the same
regardless of the average thickness d1 of the partnering dielectric material above a
threshold, when the average thickness d2 of the partnering metal is similar in magnitude
to an adequate value of dmet in the Turbadar-Kretschmann-Raether configuration. Then,
if at that angular location, a value of n ∈ {0,±1,±2, . . .} can be found such that

κ(n) ≈ ±Re {q} , (2.150)
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where q2 is given by Eq. (2.35), an SPP wave is excited as a Floquet harmonic of
order n. Furthermore, if κ(n) ≈ Re {q}, the SPP wave propagates along the +x axis; if
κ(n) ≈ −Re {q}, the SPP wave propagates along the −x axis. Such an SPP wave will
always be p polarized, as no As-peaks will pass the twin tests—the partnering dielectric
material being homogeneous. At least one value of n will enable the satisfaction of
Eq. (2.150). But, that equation can possibly be satisfied by more than one value of n;
thus, two or more A p-peaks can indicate the excitation of the same SPP wave.

2.3.4.7 Illustrative Results

The left panel in Figure 2.14 shows the computed values of A p plotted against the
angle of incidence θinc of an air/dielectric/aluminum/air system in the grating-coupled
configuration. The dielectric material has a refractive index the same as water and
the metal is aluminum in the thin-film form, in order to facilitate comparison with
the numerical results for other configurations in this chapter. The dielectric material’s
average thickness d1 ∈ {1015, 1215} nm, whereas the thin-film aluminum’s average
thickness d2 = 45 nm. The free-space wavelength λ0 = 633 nm, and the grating
function is sinusoidal with a period Lx = 633 nm and trough-to-crest height of 30 nm.

As noted in Section 2.3.1.4, the solution of the canonical boundary-value problem
yields q/k0 = 1.4041 + 0.0326i as the normalized SPP wavenumber for the chosen
partnering materials. The left panel in Figure 2.14 contains an Ap-peak at θinc = 25.9◦
for both values of d1. When θinc = 25.9◦, Eq. (2.93)1 yields κ(1)/k0 = 1.4368, which
is close enough to Re {q} /k0 = 1.4041 to let us conclude that a p-polarized SPP wave
is excited as a Floquet harmonic of order n = 1, when the incident plane wave is p
polarized.

If the grating were to be removed by setting g(x) ≡ 0 ∀x , the plots of Ap against
θinc would not contain any peak that would survive the twin tests mentioned in Section
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Figure 2.14 Calculated linear absorptance A p as a function of the angle of incidence θinc at
λ0 = 633 nm. Left: air/dielectric/aluminum/air system in the grating-coupled configuration, for
d1 = 1015 nm (red solid line) or 1215 nm (blue dashed line), and d2 = 45 nm. The grating
function g(x) = Lg sin

(
2πx/Lx

)
with Lg = 30 nm and Lx = λ0. Right: same as left, except

that d1 = 1000 nm (red solid line) or 1200 nm (blue dashed line), d2 = 30 nm, g(x) ≡ 0 ∀x , and
the air above and below the partnering materials has been replaced by rutile. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this
book.)
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2.3.4.6, and no SPP wave would be excited. In that case, the half-space z < 0 would
have to be filled with a dielectric material of refractive index greater than that of the
partnering dielectric material, in order to have the right conditions to excite an SPP
wave. The resulting system would be in a modified Turbadar-Kretschmann-Raether
configuration [228], wherein the thickness of the partnering dielectric material is large
but finite.

For the right panel of Figure 2.14, the metal/dielectric interface is planar and both
half-spaces z < 0 and z > d1+d2 are occupied by rutile (nrutile = 2.6). This panel con-
tains an A p-peak at θinc � 33.4◦ for two large values of d1 and a sufficiently large value
of d2, the metal/dielectric interface being flat. The angle of incidence predicted for SPR
by the solution of the canonical problem is sin−1

[
Re {q} /nrutilek0

] = 32.685◦, which
is very close to the angular location of the Ap-peak in the right panel of Figure 2.14.

2.3.5 Waveguide-Coupled Configuration

The confinement of SPP waves to subwavelength dimensions offers hope for minia-
turized optical circuitry with much higher densities of components and devices than
currently available with electronic and optical circuitry. Integration of SPP waveguides
with current planar electronic and optical technology has attracted the attention of
many researchers. Waveguide-coupled configurations allow for miniaturization, and
many schemes are possible to implement waveguide coupling.

The end-fire configuration depicted in Figure 1.6a was devised [87] to couple photo-
nic waveguides to plasmonic waveguides. In this configuration, a parallel plate or a
rectangular waveguide feeds a metal/dielectric structure. Analytical treatment of the
involved boundary-value problem is difficult unless drastic assumptions are made [263],
and numerical methods such as the finite-difference time-domain (FDTD) method [264]
must be used for analysis.

A popular approach is to place rectangular dielectric and plasmonic waveguides
parallel to each other on an integrated circuit, as shown in Figure 1.6b. Often, the two
waveguides are separated by a small gap. This type of coupling, known as directional
coupling, can be implemented in either a horizontal [265–268] or vertical [269,270]
format. Much of the effort has been directed at exciting LRSPP waves [269,266–268],
with reported efficiencies as high as 99% [268].

2.4 Nonlinear Dielectric Materials

New characteristics and potential practical applications of SPP waves emerge when
an optically nonlinear material [271] is chosen as the partnering dielectric material.
Theoretical research began in the 1970s and this area became vibrant in the following
decade [272–276]. Much of the current work is aimed more at issues related to practical
applications of the phenomenons.

Although many investigations have been and are focused on nonlinear anisotropic
materials, nonlinear isotropic materials have also been considered as partnering mate-
rials. Such materials, exemplified by carbon disulfide [277] and polydiacetylene [278],
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exhibit an intensity-dependent refractive index: the refractive index nID varies from a
base value no proportionally to the square of the magnitude of the electric
phasor [279], i.e.

nID = no + δn|E(r)|2, (2.151)

where δn is the proportionality constant. Such a material can be classified as positive
nonlinear (δn > 0) or negative nonlinear (δn < 0).

Some properties of the SPP wave do not change upon introducing a partnering
dielectric material with an intensity-dependent refractive index. A single interface
of a metal and a nonlinear, isotropic, dielectric material can guide SPP waves that
can only be p polarized [274], whether δn = 0 or not. However—unlike the case
for a metal/dielectric interface formed with a linear, isotropic dielectric partnering
material—theoretical investigations [272] show that two branches of SPP waves may
be observed when scanning in the Turbadar-Kretschmann-Raether configuration using
angular interrogation when a nonlinear dielectric material is employed. SPR may occur
at a higher angle of incidence with δn > 0, when the angle of incidence is increased
from low to high values rather than high to low. The reverse is true when δn < 0; then
scanning the angle of incidence from low to high values may result in a lower value
of Re {q} than scanning from high to low. The occurrence of this optical hysteresis
[280] is dependent on initial conditions [272]. Bistability and switching have also been
extensively studied [281,282].

In the Sarid configuration, the use of nonlinear dielectric materials [273,274] results
in two interesting phenomenons. First, with positive nonlinear dielectric materials on
both sides of a thin metal film, s-polarized SPP waves are theoretically possible [274].
However, achievement of the required change in the refractive index of the nonlinear
material induced by light intensity is challenging from a practical perspective. Perhaps
ongoing or future developments with nanoengineered materials may change this assess-
ment. Second, when both dielectric materials bounding the metal film are nonlinear,
additional propagation modes appear above minimum power thresholds.



3 General Theory of Surface-Wave
Propagation

3.1 Introduction

Chapter 2 was chiefly devoted to the propagation of the surface-plasmon-polariton
wave guided by the planar interface of a metal and a homogeneous, isotropic, and
dielectric material. The important features of this SPP wave emerge from solving a
canonical boundary-value problem, although practical implementation requires the
use of a prism-coupled configuration, a grating-coupled configuration, or a waveguide-
coupled configuration.

If the partnering dielectric material were to be anisotropic and periodically non-
homogeneous normal to the metal/dielectric interface, multiple SPP-wave modes may
be guided by that interface along a specified direction, all of the same frequency.
Isotropy of the partnering dielectric material eliminates the dependence on the direc-
tion of propagation but not the multiplicity of SPP-wave modes. If both partnering
materials were to be homogeneous dielectric materials, their planar interface may guide
Dyakonov waves, provided that at least one of the two materials is anisotropic. Periodic
nonhomogeneity normal to the interface in one or both partnering materials introduces
the possibilities of Tamm waves and Dyakonov-Tamm waves. All of these surface
waves are classified in Table 1.1.

Underlying all of these diverse surface-wave phenomenons is the same canonical
boundary-value problem. The formulation of this problem admits not only metals and
dielectric materials but also the more general bianisotropic materials.

3.2 Bianisotropic Materials

An isotropic medium has electromagnetic properties which are the same in all direc-
tions. However, the notion of isotropy, as encountered in elementary treatments of
electromagnetics, is an abstraction which requires qualification when applied to real
materials. For examples, liquids and random composite materials may be isotropic on a
statistical basis, while cubic crystals are isotropic when viewed at macroscopic length-
scales. Electromagnetically isotropic materials are characterized simply by scalar con-
stitutive parameters which relate the field phasors D and B to the field phasors E and H .

Electromagnetic Surface Waves. http://dx.doi.org/10.1016/B978-0-12-397024-4.00003-7
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Often, naturally occurring materials and artificially constructed materials are more
accurately described as anisotropic rather than isotropic. Anisotropic mediums exhibit
directionally dependent electromagnetic properties, such that D and E are not aligned
or B and H are not aligned. Instead of scalar constitutive parameters, constitutive
dyadics are needed to relate D to E and B to H in anisotropic materials.

Bianisotropy [17] is the natural generalization of anisotropy. In the electromagnetic
description of a bianisotropic material, both D and H are anisotropically coupled to
both E and B. Hence, in general, a linear bianisotropic material is characterized by
four constitutive dyadics. Though seldom described in standard textbooks, bianisotropy
is commonplace. Suppose a certain material is characterized as isotropic dielectric by
an observer in an inertial reference frame �. The same material generally exhibits
bianisotropic properties when viewed by an observer in another reference frame that
translates at uniform velocity with respect to�. Aside from relativistic scenarios, bian-
isotropic effects are observed at low frequencies and temperatures in a host of naturally
occurring minerals [283,284]. Furthermore, the phenomenon of bianisotropy looks set
to play an increasingly important role in the rapidly burgeoning fields relating to com-
plex composite materials. In particular, bianisotropic materials readily emerge from the
process of homogenization of a composite of two or more constituent materials [17].

Moreover, the concepts of anisotropy and bianisotropy emerge when an external
agency affects the optical response characteristics of an isotropic dielectric mate-
rial. For instance, doped semiconductors are isotropic dielectric materials, but become
gyrotropic uniaxial dielectric materials under the action of a quasistatic magnetic field
[285]. Strain induced either piezoelectrically [286] or by electrostriction [287] can
be used to significantly alter the optical response characteristics of a material [288].
The electro-optic effect [271] can be applied to turn an isotropic dielectric material
into an anisotropic one [289]. Such effects are important for modulating surface-wave
propagation in practical applications [172,290,291].

3.2.1 Maxwell Postulates

The basic description of electromagnetic anisotropy and bianisotropy is constructed in
terms of the four macroscopic electromagnetic fields Ẽ(r , t), D̃(r , t), B̃(r , t), and
H̃(r , t). These are piecewise differentiable vector functions of position r and time t
which arise as spatial averages of microscopic fields and bound sources. The fields
Ẽ(r , t) and B̃(r , t) are directly measurable quantities which produce the Lorentz force
[292]. Accordingly, Ẽ(r , t) and B̃(r , t) are viewed as the primitive fields. The fields
D̃(r , t) and H̃(r, t) develop within a material in response to the primitive fields; hence,
they are considered as induction fields. Conventionally, Ẽ(r , t) and D̃(r, t) are called
the electric field and the dielectric displacement, respectively. The conventional terms
for B̃(r , t) and H̃(r , t), namely the magnetic induction and magnetic field, respectively,
are confusing and are avoided in this book.

In order to distinguish matter from vacuum or free space, two macroscopic fields
are defined. One is called polarization

P̃(r , t) = D̃(r , t)− ε0 Ẽ(r , t), (3.1)
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while the other is called magnetization

M̃(r , t) = μ−1
0 B̃(r , t)− H̃ (r , t). (3.2)

Polarization must not be confused with the term polarization state, which is an essential
attribute of an electromagnetic plane wave [17].

The physical principles governing the behavior of Ẽ(r , t), D̃(r , t), B̃(r, t), and
H̃ (r , t) are encapsulated by the Maxwell curl postulates

∇ × H̃(r , t)− ∂

∂t
D̃(r , t) = J̃ e(r , t)

∇ × Ẽ(r , t)+ ∂

∂t
B̃(r , t) = 0

⎫⎪⎬
⎪⎭

(3.3)

and divergence postulates

∇ • D̃(r , t) = ρ̃e(r , t)
∇ • B̃(r , t) = 0

}
. (3.4)

The terms on the right sides of Eqs. (3.3) and (3.4) represent sources of fields: J̃ e(r , t) and
ρ̃e(r , t) are the externally impressed electric current and electric charge densities,
respectively. In consonance with the macroscopic viewpoint, the source terms are also
piecewise differentiable and satisfy the continuity relation

∇ • J̃ e(r, t)+ ∂

∂t
ρ̃e(r , t) = 0. (3.5)

Under the presumption of source continuity, there is no need to explicitly consider the
Maxwell divergence postulates (3.4).

Time-domain problems are notoriously difficult to solve when a physical material is
involved. A widely used technique to circumvent various analytical difficulties (often
without loss of essential physics) is to introduce the temporal Fourier transforms via

Z(r, ω) =
∫ ∞
−∞

Z̃(r , t) exp (iωt)dt, (3.6)

where ω is the angular frequency and i = √−1. Whereas Z̃(r , t) is a field, Z(r , ω) is
the corresponding field phasor. The frequency-domain Maxwell curl postulates emerge
from Eqs. (3.3) accordingly as

∇ × H(r , ω)+ iωD(r, ω) = J e(r , ω)

∇ × E(r , ω)− iωB(r , ω) = 0

}
. (3.7)

3.2.2 Linear Constitutive Relations

The constitutive relations of a linear, nonhomogeneous, and bianisotropic material are
as follows:

D(r , ω) = ε(r , ω) • E(r , ω)+ ξ(r , ω) • H(r , ω)

B(r , ω) = ζ (r , ω) • E(r , ω)+ μ(r , ω) • H(r , ω)

}
. (3.8)
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The dielectric properties of the material are captured by the permittivity dyadic ε(r , ω),
the magnetic properties by the permeability dyadic μ(r , ω), and the magnetoelectric
properties jointly by the dyadics ξ(r , ω) and ζ (r , ω). If the material were to be homo-
geneous, the constitutive dyadics would be independent of the position r .

Each of these four dyadics can be represented as a 3 × 3 matrix in a Cartesian
coordinate system; thus,

ε(r , ω) ≡
⎡
⎣
εxx (r, ω) εxy(r , ω) εxz(r , ω)
εyx (r, ω) εyy(r , ω) εyz(r , ω)
εzx (r , ω) εzy(r , ω) εzz(r , ω)

⎤
⎦, (3.9)

etc. The physical properties of a linear material are reflected in the structure of the
constitutive dyadics as well as in their mutual relationships. Detailed descriptions of all
constitutive dyadics are available elsewhere [17,293]. Most importantly in the present
context, a material is non-dissipative (i.e. lossless) at a certain angular frequency, if all
three conditions

ε(r , ω) = ε†(r , ω)
ζ (r , ω) = ξ†(r , ω)

μ(r , ω) = μ†(r , ω)

⎫⎪⎬
⎪⎭

(3.10)

hold true, where ξ† is the conjugate transpose of ξ , etc.

Explicit mention of the dependence on the angular frequency ω is not made in the
rest of the book for notational compactness.

3.2.3 Periodic Nonhomogeneity

In the context of surface-wave propagation in this book, bianisotropic materials with
periodic nonhomogeneity along the z axis are of particular interest. Their frequency-
domain constitutive relations are written as

D(r) = ε(z) • E(r)+ ξ(z) • H(r)

B(r) = ζ (z) • E(r)+ μ(z) • H(r)

}
, (3.11)

where

ε(z ± 2	) = ε(z), ξ(z ± 2	) = ξ(z), ζ (z ± 2	) = ζ (z),
μ(z ± 2	) = μ(z), (3.12)

and 2	 is the period.

3.2.4 Homogeneous Bianisotropic Materials

The constitutive dyadics of a homogeneous bianisotropic material are independent of
the position r , and so the constitutive relations may be stated simply as

D(r) = ε • E(r)+ ξ • H(r)

B(r) = ζ • E(r)+ μ • H(r)

}
. (3.13)
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3.3 Propagation in a Homogeneous Bianisotropic Material

Suppose a wave propagates in a homogeneous bianisotropic material described by
Eqs. (3.13). The spatial variation in the xy plane of the wave is described by

exp
[
iq(x cosψ + y sinψ)

]
, (3.14)

where q is a complex-valued wavenumber and the angle ψ ∈ [0◦, 360◦). But, the
spatial variation along the z axis is yet to be determined. Equations (3.7) are applicable
with J e(r) = 0 everywhere.

For all z ∈ (−∞,∞), then the field phasors may be written as

E(r) = e(z) exp
[
iq(x cosψ + y sinψ)

]

H(r) = h(z) exp
[
iq(x cosψ + y sinψ)

]
}
, (3.15)

where

e(z) = ex (z)ux + ey(z)uy + ez(z)uz
h(z) = hx (z)ux + hy(z)uy + hz(z)uz

}
(3.16)

are auxiliary phasors.

3.3.1 Matrix Ordinary Differential Equation

Substitution of Eqs. (3.13) and (3.15) in (3.7) with J e(r) = 0 everywhere yields the
four ordinary differential equations

d

dz
ex (z) = iω

[
ζyx ex (z)+ ζyyey(z)+

(
ζyz + q

ω
cosψ

)
ez(z)

+ μyx hx (z)+ μyyhy(z)+ μyzhz(z)
]

d

dz
ey(z) = −iω

[
ζxx ex (z)+ ζxyey(z)+

(
ζxz − q

ω
sinψ

)
ez(z)

+ μxx hx (z)+ μxyhy(z)+ μxzhz(z)
]

d

dz
hx (z) = −iω

[
εyx ex (z)+ εyyey(z)+ εyzez(z)

+ ξyx hx (z)+ ξyyhy(z)+
(
ξyz − q

ω
cosψ

)
hz(z)

]

d

dz
hy(z) = iω

[
εxx ex (z)+ εxyey(z)+ εxzez(z)

+ ξxx hx (z)+ ξxyhy(z)+
(
ξxz + q

ω
sinψ

)
hz(z)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

and the two algebraic equations

εzzez(z)+ ξzzhz(z) = −εzx ex (z)− εzyey(z)

−
(
ξzx − q

ω
sinψ

)
hx (z)−

(
ξzy + q

ω
cosψ

)
hy(z)

ζzzez(z)+ μzzhz(z) = −
(
ζzx + q

ω
sinψ

)
ex (z)−

(
ζzy − q

ω
cosψ

)
ey(z)

−μzx hx (z)− μzyhy(z)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

(3.18)
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With the assumption that

εzzμzz �= ξzzζzz, (3.19)

the solution of the two algebraic equations may be stated as

ez(z) = νee
zx ex (z)+ νee

zy ey(z)+ νeh
zx hx (z)+ νeh

zy hy(z)

hz(z) = νhe
zx ex (z)+ νhe

zy ey(z)+ νhh
zx hx (z)+ νhh

zy hy(z)

}
, (3.20)

where

νee
zx = −

μzzεzx − ξzz
[
ζzx +

(
q/ω
)

sinψ
]

εzzμzz − ξzzζzz

νee
zy = −

μzzεzy − ξzz
[
ζzy −

(
q/ω
)

cosψ
]

εzzμzz − ξzzζzz

νeh
zx =

ξzzμzx − μzz
[
ξzx −

(
q/ω
)

sinψ
]

εzzμzz − ξzzζzz

νeh
zy =

ξzzμzy − μzz
[
ξzy +

(
q/ω
)

cosψ
]

εzzμzz − ξzzζzz

νhe
zx =

ζzzεzx − εzz
[
ζzx +

(
q/ω
)

sinψ
]

εzzμzz − ξzzζzz

νhe
zy =

ζzzεzy − εzz
[
ζzy −

(
q/ω
)

cosψ
]

εzzμzz − ξzzζzz

νhh
zx = −

εzzμzx − ζzz
[
ξzx −

(
q/ω
)

sinψ
]

εzzμzz − ξzzζzz

νhh
zy = −

εzzμzy − ζzz
[
ξzy +

(
q/ω
)

cosψ
]

εzzμzz − ξzzζzz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.21)

Substitution of Eqs. (3.20) in (3.17) yields the 4 × 4 matrix ordinary differential
equation

d

dz

[
f (z)
] = i

[
P
]
•
[

f (z)
]
, (3.22)

where the column 4-vector

[
f (z)
] =

⎡
⎢⎢⎣

ex (z)
ey(z)
hx (z)
hy(z)

⎤
⎥⎥⎦ (3.23)
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and the matrix

[
P
] = ω

⎡
⎢⎢⎣

ζyx ζyy μyx μyy

−ζxx −ζxy −μxx −μxy

−εyx −εyy −ξyx −ξyy

εxx εxy ξxx ξxy

⎤
⎥⎥⎦

+ω

⎡
⎢⎢⎢⎢⎣

ζyz + q

ω
cosψ 0 0 0

0 ζxz − q

ω
sinψ 0 0

0 0 εyz 0
0 0 0 εxz

⎤
⎥⎥⎥⎥⎦
• [ J

] •

⎡
⎢⎢⎣

νee
zx 0 0 0
0 νee

zy 0 0
0 0 νeh

zx 0
0 0 0 νeh

zy

⎤
⎥⎥⎦

+ω

⎡
⎢⎢⎢⎢⎣

μyz 0 0 0
0 μxz 0 0

0 0 ξyz − q

ω
cosψ 0

0 0 0 ξxz + q

ω
sinψ

⎤
⎥⎥⎥⎥⎦
• [ J

] •

⎡
⎢⎢⎣

νhe
zx 0 0 0
0 νhe

zy 0 0
0 0 νhh

zx 0
0 0 0 νhh

zy

⎤
⎥⎥⎦(3.24)

employs the shorthand notation

[
J
] =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦. (3.25)

As the matrix
[

P
]

on the right side of Eq. (3.22) is independent of z, the solution
of this equation is [262, Section 2.5][

f (z)
] = exp

{
i
[

P
]
z
}
•
[

f (0)
]
, (3.26)

where

exp
{

i
[

P
]
z
} =

∞∑
m=0

im

m!
[

P
]m

zm . (3.27)

Instead of computing it as a sum, the exponential of a matrix can be computed in
Mathematica™ using the command MatrixExp, and in Matlab™ with expm. More gen-
erally than Eq. (3.26), the solution of Eq. (3.22) can be stated as[

f (z)
] = exp

{
i
[

P
] (

z − u
)}

•
[

f (u)
]
. (3.28)

Yet another way to handle the right side of Eq. (3.26) conveniently is to invoke the
very slightly restrictive assumption of the 4× 4 matrix

[
P
]

having four linearly inde-
pendent eigenvectors. This assumption allows

[
P
]

to be diagonalized [294, Section
7.15]. Suppose the mth,m ∈ [1, 4], eigenvalue of

[
P
]

is denoted by the scalar gm ,
and the corresponding eigenvector is the column 4-vector

[
v
](m) =

⎡
⎢⎢⎣
v1m

v2m

v3m

v4m

⎤
⎥⎥⎦. (3.29)
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Then,

[
P
] = [ V

]
•
[

G
]
•
[

V
]−1

, (3.30)

where

[
V
] =

⎡
⎢⎢⎣
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

⎤
⎥⎥⎦,

[
G
] =

⎡
⎢⎢⎣

g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4

⎤
⎥⎥⎦. (3.31)

The normalization

|v1m |2 + |v2m |2 = 1, m ∈ [1, 4] , (3.32)

is assumed to have been undertaken in order to force the magnitude of the electric
field phasor associated with every eigenvector to be close to unity, thereby facilitating
comparison of the spatial profiles of the fields associated with different eigenvectors.

By virtue of the definition of the exponential of a matrix, and in view of Eq. (3.30),
it follows that

exp
{

i
[

P
]
z
} = [ V

]
• exp

{
i
[

G
]
z
}
•
[

V
]−1 ; (3.33)

hence,

[
f (z)
] = [ V

]
• exp

{
i
[

G
]
z
}
•
[

V
]−1 •

[
f (0)
]
. (3.34)

Furthermore, as the exponential of a diagonal matrix is itself a diagonal matrix, i.e.

exp
{

i
[

G
]
z
} =

⎡
⎢⎢⎣

exp (ig1z) 0 0 0
0 exp (ig2z) 0 0
0 0 exp (ig3z) 0
0 0 0 exp (ig4z)

⎤
⎥⎥⎦, (3.35)

the right side of Eq. (3.34) is very tractable for analysis as well as computation.

3.3.2 Eigenmodes

Knowledge of
[

V
]

and
[

G
]

allows the formulation of an eigenmodal representation
of field phasors. Thus, the mth eigenmode may be expressed as

E (m)(r) =
[
v1m ux + v2m uy +

(
νee

zx v1m + νee
zy v2m + νeh

zx v3m + νeh
zy v4m

)
uz

]

× exp
[
iq(x cosψ + y sinψ)

]
exp (igm z)

H (m)(r) =
[
v3m ux + v4m uy +

(
νhe

zx v1m + νhe
zy v2m + νhh

zx v3m + νhh
zy v4m

)
uz

]

× exp
[
iq(x cosψ + y sinψ)

]
exp (igm z)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(3.36)
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so that the complete representation of the phasors defined via Eqs. (3.15) is as follows:

E(r) =
4∑

m=1

Cm E (m)(r)

H(r) =
4∑

m=1

Cm H (m)(r)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3.37)

Comparison of this representation with Eq. (3.34) yields the identity

⎡
⎢⎢⎣

C1
C2
C3
C4

⎤
⎥⎥⎦ =

[
V
]−1 •

[
f (0)
]
. (3.38)

Associated with each eigenmode is the time-averaged Poynting vector

P(m)(r) = (1/2)Re
{

E (m)(r)× [H (m)(r)
]∗}

, m ∈ [1, 4] . (3.39)

This expression follows from Eq. (2.31). The z-directed component of the time-averaged
Poynting vector

P(m)z (r) = uz
• P(m)(r) (3.40)

= (1/2)Re
{
v1mv

∗
4m − v2mv

∗
3m

}

× exp
{−2

[
Im {q} (x cosψ + y sinψ)+ Im {gm} z

]}
,

m ∈ [1, 4], (3.41)

is needed in order to classify the eigenmodes into

i. those which transport energy along the +z axis and
ii. those which transport energy along the −z axis.

Eigenmodes which transport energy along the +z axis are accorded the labels m = 1
and m = 2; thus,

P(m)z (r) > 0, m ∈ [1, 2]. (3.42)

Eigenmodes labeled m ∈ [3, 4] obey the constraints

P (m)z (r) < 0, m ∈ [3, 4], (3.43)

and transport energy along the−z axis. This classification of four eigenmodes into two
eigenmodes of each type represents an assumption rather than a proved fact.

Eigenmodes labeled m ∈ [1, 2] should also satisfy the constraint

Im {gm} � 0, m ∈ [1, 2], (3.44)



90 Electromagnetic Surface Waves

the inequality indicating the decay of fields in a passive material as z→∞; likewise,

Im {gm} � 0, m ∈ [3, 4], (3.45)

the inequality indicating the decay of fields in a passive material as z → −∞. The
conditions (3.44) and (3.45) are consistent with the conditions (3.42) and (3.43).

Consistently with these labels,
[

f (z)
]

can be partitioned as
[

f (z)
] = [ f +(z)

]+ [ f −(z)
]
, (3.46)

where

[
f +(z)

] =

⎡
⎢⎢⎣
v11 v12
v21 v22
v31 v32
v41 v42

⎤
⎥⎥⎦ •
[

exp (ig1z) 0
0 exp (ig2z)

]
•
[

C1
C2

]
(3.47)

represents fields transporting energy along the +z axis and decaying as z→∞, and

[
f −(z)

] =

⎡
⎢⎢⎣
v13 v14
v23 v24
v33 v34
v43 v44

⎤
⎥⎥⎦ •
[

exp (ig3z) 0
0 exp (ig4z)

]
•
[

C3
C4

]
(3.48)

represents fields transporting energy along the −z axis and decaying as z→−∞.

3.4 Propagation in a Periodically Nonhomogeneous
Bianisotropic Material

Suppose a wave propagates in a periodically nonhomogeneous bianisotropic mate-
rial described in Section 3.2.3 with its spatial variation in the xy plane described by
exp
[
iq(x cosψ + y sinψ)

]
. Most of the developments in Section 3.3 can be adapted

to delineate the characteristics of this wave.

3.4.1 Matrix Ordinary Differential Equation

Equations (3.15)–(3.21) still apply but the elements of the constitutive dyadics are now
functions of z. Accordingly, the matrix ordinary differential equation

d

dz

[
f (z)
] = i

[
P(z)

]
•
[

f (z)
]

(3.49)

emerges. The matrix
[

P(z)
]

is defined by Eq. (3.24), but with εxy replaced by εxy(z),
etc.

The solution of Eq. (3.49) is not as straightforward as of Eq. (3.22), because
[

P(z)
]

is a periodic function of z:
[

P(z ± 2	)
] = [ P(z)

]
. (3.50)
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As shown in Appendix D, application of the Floquet theory indicates that the solution
of Eq. (3.49) must be of the form

[
f (z)
] = [ F(z)

]
• exp

{
i
[

A
]
z
}
•
[

f (0)
]
, (3.51)

where

[
F(z ± 2	)

] = [ F(z)
]

(3.52)

is a periodic matrix with
[

F(0)
] = [ I

]
, the identity matrix, and the matrix

[
A
]

is
independent of z. Unfortunately, this theory does not deliver actual expressions for[

F(z)
]

and
[

A
]
.

Even without resorting to Floquet theory, the solution of Eq. (3.49) has to lead to
the relation

[
f (2	)

] =
[

Q
]
•
[

f (0)
]
, (3.53)

where the matrix
[

Q
]

can be computed by the piecewise-uniform-approximation

method, introduced in Section 2.3.4.4. Thereby, the continuous variation of the matrix[
P(z)

]
in a certain region is replaced by a set of stepwise variations, in each step of

finite length the matrix being assumed to be constant. After choosing an integer N > 1,
the following quantities are defined for all integers n ∈ (−∞,−1] ∪ [1,∞):

[
W
](n) =

⎧⎪⎪⎨
⎪⎪⎩

exp

{
i(zn − zn−1)

[
P

(
zn + zn−1

2

)]}
, n > 0,

exp

{
i(zn − zn+1)

[
P

(
zn + zn+1

2

)]}
, n < 0,

(3.54)

where

zn = 2	
n

N
, n ∈ (−∞,∞). (3.55)

Thus, each period is divided into N subregions, each of thickness 2	/N . The matrix[
W
](n) approximately describes propagation from the plane z = zn−1 to the plane

z = zn for n > 0, but from the plane z = zn+1 to the plane z = zn for n < 0. The
piecewise-uniform-approximation method therefore delivers

[
Q
] ∼= [W

](N ) • [W
](N−1) • · · · • [W

](2) • [W
](1)

. (3.56)

The integer N should be neither too large nor too small. If it is too small, the continuous
variations of

[
P(z)

]
would not be captured well by the set of stepwise variations. If

N is too large, the computation of
[

Q
]

would take too much time. Therefore, the

convergence of
[

Q
]

with increasing N must be examined for a satisfactory choice.
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Comparison of Eqs. (3.51) and (3.53) yields the identity[
Q
]
= exp

{
i2	

[
A
]}
. (3.57)

Both
[

Q
]

and
[

A
]

share the same eigenvectors, and their eigenvalues are also related

as follows. Let

[
v
](m) =

⎡
⎢⎢⎣
v1m

v2m

v3m

v4m

⎤
⎥⎥⎦ (3.58)

be the eigenvector corresponding to the mth eigenvalue σm,m ∈ [1, 4], of
[

Q
]
; then,

the corresponding eigenvalue αm of
[

A
]

is given by

αm = −i
ln σm

2	
, m ∈ [1, 4] . (3.59)

Energy analysis is facilitated if the eigenvectors defined by Eq. (3.58) are normalized
to obey Eq. (3.32).

In contrast to Section 3.3.1, the eigenvectors
[
v
](m)

,m ∈ [1, 4], defined in Eq. (3.58)

are the eigenvectors of
[

Q
]

and
[

A
]

but not of
[

P(z)
]
. Therefore, although a matrix[

V
]

comprising these eigenvectors can be defined just as in Eqs. (3.31), it is not useful.
If
[

f (0)
]

is expressed in terms of the eigenvectors
[
v
](m)

of Eq. (3.58) as

[
f (0)
] =

4∑
m=1

Cm
[
v
](m)

, (3.60)

where Cm,m ∈ [1, 4], are unknown coefficients, then [295]

[
f (z)
] =

4∑
m=1

Cm
[
t
](m)

(z) (3.61)

with
[

t
](m)

(z) ∼= exp

{
i
(
z − zn

) [
P

(
zn+1 + zn

2

)]}
•
[

W
](n) • [W

](n−1) • · · ·
•
[

W
](2) • [W

](1) • [ v ](m) , z ∈ [zn, zn+1
]
, n ∈ [1,∞),

(3.62)[
t
](m)

(z) ∼= exp
{

i z
[

P
( z1

2

)]}
•
[
v
](m)

, z ∈ [0, z1
]
, (3.63)

[
t
](m)

(z) ∼= exp
{

i z
[

P
( z−1

2

)]}
•
[
v
](m)

, z ∈ [z−1, 0
]
, (3.64)

and
[

t
](m)

(z) ∼= exp

{
i
(
z − zn

) [
P

(
zn−1 + zn

2

)]}
•
[

W
](n) • [W

](n+1) • · · ·
•
[

W
](−2) •

[
W
](−1) •

[
v
](m)

, z ∈ [zn−1, zn
]
, n ∈ (−∞,−1]. (3.65)
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3.4.2 Eigenmodes

An eigenmodal representation of field phasors now follows as

E(r) =
4∑

m=1

Cm E (m)(r)

H(r) =
4∑

m=1

Cm H (m)(r)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3.66)

In this representation, the eigenmodes are given by

E (m)(r) = {t1m(z)ux + t2m(z)uy +
[
νee

zx (z)t1m(z)

+ νee
zy (z)t2m(z)+ νeh

zx (z)t3m(z)+ νeh
zy (z)t4m(z)

]
uz

}

× exp
[
iq(x cosψ + y sinψ)

]

H (m)(r) = {t3m(z)ux + t4m(z)uy +
[
νhe

zx (z)t1m(z)

+ νhe
zy (z)t2m(z)+ νhh

zx (z)t3m(z)+ νhh
zy (z)t4m(z)

]
uz

}

× exp
[
iq(x cosψ + y sinψ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.67)

wherein

[
t
](m)

(z) =

⎡
⎢⎢⎣

t1m(z)
t2m(z)
t3m(z)
t4m(z)

⎤
⎥⎥⎦ (3.68)

has been used.
Equation (3.39) remains valid to obtain the time-averaged Poynting vector associated

with each eigenmode, but its z-directed component is not simply analogous to the right

side of Eq. (3.41) because the eigenvectors
[
v
](m)

defined in Section 3.3.1 are different
in character from those defined in Section 3.4.1.

Classification of the eigenmodes may require the assumption of dissipation in the
periodically nonhomogeneous bianisotropic material. The assumption is not onerous,
because, by virtue of the principle of causality, all passive materials must be dissipative.
Occasionally it can be expedient to neglect dissipation and exploit Eqs. (3.10) for simpli-
fied analyses, especially if attention is confined to a narrow range of angular frequencies
wherein dissipation is very small over the length-scales of interest. Nevertheless, that
tiny dissipation must not be ignored for the classification of eigenmodes [295,296].

With the supposition that all four eigenvalues of
[

A
]

have imaginary parts,
eigenmodes that decay as z→∞ are accorded the labels m = 1 and m = 2; thus,

Im {αm} > 0, m ∈ [1, 2]. (3.69)

The labels m = 3 and m = 4 are reserved for eigenmodes that decay as z → −∞ so
that

Im {αm} < 0, m ∈ [3, 4]. (3.70)
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Consistently with these labels,
[

f (z)
]

can be partitioned into

[
f +(z)

] =

⎡
⎢⎢⎣

t11(z) t12(z)
t21(z) t22(z)
t31(z) t32(z)
t41(z) t42(z)

⎤
⎥⎥⎦ •
[

C1
C2

]
(3.71)

and

[
f −(z)

] =

⎡
⎢⎢⎣

t13(z) t14(z)
t23(z) t24(z)
t33(z) t34(z)
t43(z) t44(z)

⎤
⎥⎥⎦ •
[

C3
C4

]
. (3.72)

3.5 Canonical Boundary-Value Problem

The canonical boundary-value problem of surface-wave propagation can now be for-
mulated quite simply to determine the relevant dispersion equation. The formulation
presented in this section applies to SPP waves, Fano waves, Zenneck waves, Dyakonov
waves, Tamm waves, and Dyakonov-Tamm waves.

3.5.1 Dispersion Equation

Let a bianisotropic material of type A occupy the half-space z > 0 and a different
bianisotropic material, of type B, occupy the half-space z < 0, as shown in Figure 3.1.
The constitutive relations are stated as

D(r) =
{
εA(z) • E(r)+ ξA(z) • H(r), z > 0

εB(z) • E(r)+ ξB(z) • H(r), z < 0

B(r) =
{
ζA(z) • E(r)+ μA(z) • H(r), z > 0

ζB(z) • E(r)+ μB(z) • H(r), z < 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (3.73)

Surface wave
x,y

z

(a) (b) (c)

Surface wave

z

Surface wave
x,y

z

x,y

Figure 3.1 Schematics of the canonical boundary-value problem for surface-wave propagation
guided by the planar interface of two dissimilar materials A and B. (a) Both materials are
periodically nonhomogeneous in the direction normal to the interface. (b) Only one is periodically
nonhomogeneous, and the other is homogeneous. (c) Both materials are homogeneous.
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where

εA(z ± 2	A) = εA(z), ξA(z ± 2	A) = ξA(z)

ζA(z ± 2	A) = ζA(z), μA(z ± 2	A) = μA(z)

⎫⎬
⎭ (3.74)

and

εB(z ± 2	B) = εB(z), ξB(z ± 2	B) = ξB(z)

ζB(z ± 2	B) = ζB(z), μB(z ± 2	B) = μB(z)

⎫⎬
⎭. (3.75)

The surface wave propagates in the xy plane in a direction at an angleψ ∈ [0◦, 360◦)
with respect to the x axis. Then, the unit vector in the direction of propagation is given by

uprop = ux cosψ + uy sinψ (3.76)

and, as in Sections 3.3 and 3.4, the field phasors of the surface wave vary in the xy
plane as

exp
(

iquprop
• r
)
= exp

[
iq(x cosψ + y sinψ)

]
, (3.77)

where q is a complex-valued wavenumber. The phase speed of the surface wave is

vp = ω/Re {q} (3.78)

and the propagation length is

�prop = 1/Im {q} . (3.79)

The propagation length is defined as the distance parallel to uprop over which the mag-
nitude of the electric (or magnetic) field phasor decays by a factor of exp (−1). The
attenuation rate in the direction of propagation is the reciprocal of �prop.

In the half-space z > 0, the fields must decay as z → ∞. Therefore, in this half-
space,

E(r) =
2∑

m=1

CA
m

{
tA1m(z)ux + tA2m(z)uy +

[
νee,A

zx (z)tA1m(z)

+ νee,A
zy (z)tA2m(z)+ νeh,A

zx (z)tA3m(z)+ νeh,A
zy (z)tA4m(z)

]
uz

}

× exp
[
iq(x cosψ + y sinψ)

]

H (r) =
2∑

m=1

CA
m

{
tA3m(z)ux + tA4m(z)uy +

[
νhe,A

zx (z)tA1m(z)

+ νhe,A
zy (z)tA2m(z)+ νhh,A

zx (z)tA3m(z)+ νhh,A
zy (z)tA4m(z)

]
uz

}

× exp
[
iq(x cosψ + y sinψ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.80)
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follow from Eqs. (3.66), (3.67), and (3.69), with the superscript A indicating that the
constitutive dyadics for material A must be used. Accordingly, the boundary value

[
f (0+)] =

⎡
⎢⎢⎢⎢⎣

vA
11 vA

12

vA
21 vA

22

vA
31 vA

32

vA
41 vA

42

⎤
⎥⎥⎥⎥⎦
•
[

CA
1

CA
2

]
(3.81)

emerges. Since the fields must decay as z→−∞ in the half-space z < 0, Eqs. (3.66),
(3.67), and (3.70) yield

E(r) =
4∑

m=3

CB
m

{
tB1m(z)ux + tB2m(z)uy +

[
νee,B

zx (z)tB1m(z)

+ νee,B
zy (z)tB2m(z)+ νeh,B

zx (z)tB3m(z)+ νeh,B
zy (z)tB4m(z)

]
uz

}

× exp
[
iq(x cosψ + y sinψ)

]

H(r) =
4∑

m=3

CB
m

{
tB3m(z)ux + tB4m(z)uy +

[
νhe,B

zx (z)tB1m(z)

+ νhe,B
zy (z)tB2m(z)+ νhh,B

zx (z)tB3m(z)+ νhh,B
zy (z)tB4m(z)

]
uz

}

× exp
[
iq(x cosψ + y sinψ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.82)

for that half-space, with the superscript B indicating that the constitutive dyadics for
material B must be used. These equations yield the boundary value

[
f (0−)] =

⎡
⎢⎢⎢⎢⎣

vB
13 vB

14

vB
23 vB

24

vB
33 vB

34

vB
43 vB

44

⎤
⎥⎥⎥⎥⎦
•

[
CB

3

CB
4

]
. (3.83)

The 4× 2 matrixes appearing on the right sides of Eqs. (3.81) and (3.83) comprise

two eigenvectors of the matrixes
[

Q
]A

and
[

Q
]B

, respectively, which are defined

via Eqs. (3.56). If either or both materials are homogeneous, then the eigenvectors of

the matrixes
[

P
]A

and
[

P
]B

, defined via Eq. (3.24), must be used as appropriate.
The tangential components of the electric and magnetic field phasors must be con-

tinuous across the interface z = 0, yielding the boundary condition
[

f (0−)] = [ f (0+)] , (3.84)

which can be rearranged as

[
Y
]
•

⎡
⎢⎢⎢⎢⎣

CA
1

CA
2

CB
3

CB
4

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦, (3.85)
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with the 4× 4 matrix

[
Y (q)

] =

⎡
⎢⎢⎢⎢⎣

vA
11(q) vA

12(q) −vB
13(q) −vB

14(q)

vA
21(q) vA

22(q) −vB
23(q) −vB

24(q)

vA
31(q) vA

32(q) −vB
33(q) −vB

34(q)

vA
41(q) vA

42(q) −vB
43(q) −vB

44(q)

⎤
⎥⎥⎥⎥⎦

(3.86)

written explicitly as a function of q.
For a non-trivial solution,

[
Y (q)

]
must be singular, so that

det
{[

Y (q)
]} = 0 (3.87)

is the dispersion equation of the surface wave. This equation has to be solved in order
to determine the wavenumber q. Not only will the solutions of Eq. (3.87) depend on
the constitutive dyadics of the materials A and B as well as on the angular frequency
ω, but also—in general—on the direction of propagation in the xy plane as delineated
by the angle ψ .

3.5.2 Computational Matters

The most convenient way to solve the dispersion equation (3.87) is to use the Newton-
Raphson technique [261, Section 4.5]. Since the function

ϒ(q) = det
{[

Y (q)
]}

(3.88)

is not known analytically, its derivative with respect to q may be estimated using the
central difference formula by

�(q) = ϒ
(
q + δqq

)−ϒ (q − δqq
)

2δqq
, (3.89)

where the magnitude of the real number δq1. Then, the Newton-Raphson algorithm

q ← q − ϒ(q)
�(q)

(3.90)

can be numerically implemented with an initial guess for the solution of Eq. (3.87).
A map of ϒ(q) versus q helps greatly in finding initial guesses.

Equation (3.88) generally works well even when only real-valued solutions of
Eq. (3.87) are sought. However, sometimes, it may be convenient to use

ϒ(q) = ∣∣det
{[

Y (q)
]}∣∣ , (3.91)

in order to determine real-valued solutions.
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Let the solutions of Eq. (3.87) be denoted as q1, q2, etc. The field phasors associated
with a specific solution can be found after replacing q by the numerical value of that
solution in Eq. (3.85). Now, the matrix equation

⎡
⎢⎢⎢⎢⎣

vA
11(q�) vA

12(q�) −vB
13(q�) −vB

14(q�)

vA
21(q�) vA

22(q�) −vB
23(q�) −vB

24(q�)

vA
31(q�) vA

32(q�) −vB
33(q�) −vB

34(q�)

vA
41(q�) vA

42(q�) −vB
43(q�) −vB

44(q�)

⎤
⎥⎥⎥⎥⎦
•

⎡
⎢⎢⎢⎢⎣

CA
1 (q�)

CA
2 (q�)

CB
3 (q�)

CB
4 (q�)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦, � ∈ {1, 2, . . .} ,

(3.92)

contains only three linearly independent algebraic equations, which means that only
three of the four coefficients in the column vector on the left side of Eq. (3.92) can be
determined. Therefore, CA

1 (q�) should be set equal to unity, and the remaining three
coefficients then determined by the solution of any three of the four algebraic equations
in Eq. (3.92). If that procedure proves infructuous because it ends up involving an
indeterminate ratio, the procedure should be repeated with CA

2 (q�), instead of CA
1 (q�),

set equal to unity. The spatial profiles of the field phasors associated with a surface
wave with wavenumber q� then follows from Eqs. (3.80) and (3.82), and the spatial
profile of the time-averaged Poynting vector

P(r) = (1/2)Re
{

E(r)× H∗(r)
}

(3.93)

can be ascertained thereafter.

3.6 Modified Canonical Boundary-Value Problem

Whereas the materials A and B are in contact in Section 3.5.1, a modification of the
canonical boundary-value problem [182,297,298] involves the interposition of a slab
of a third material—or, even, vacuum—between the half-spaces filled with A and B.
Depending on the separation d between the two half-spaces, the modified structure
can guide several different types of waves: (i) each of the two interfaces can guide
surface waves independently of the other, (ii) the two interfaces guide coupled waves,
and (iii) the interposing slab guides bulk modes or waveguide modes [299].

Suppose that the material A occupies the region z > d and the material B fills
the region z < 0. The constitutive relations (3.73) then have to be stated in a slightly
modified form as

D(r) =
{
εA(z − d) • E(r)+ ξA(z − d) • H(r), z > d

εB(z) • E(r)+ ξB(z) • H(r), z < 0

B(r) =
{
ζA(z − d) • E(r)+ μA(z − d) • H(r), z > d

ζB(z) • E(r)+ μB(z) • H(r), z < 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (3.94)
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Accordingly, Eqs. (3.80) must be changed to

E(r) =
2∑

m=1

CA
m

{
tA1m(z − d)ux + tA2m(z − d)uy +

[
νee,A

zx (z − d)tA1m(z − d)

+ νee,A
zy (z − d)tA2m(z − d)+ νeh,A

zx (z − d)tA3m(z − d)

+ νeh,A
zy (z − d)tA4m(z − d)

]
uz

}
exp
[
iq(x cosψ + y sinψ)

]

H (r) =
2∑

m=1

CA
m

{
tA3m(z − d)ux + tA4m(z − d)uy +

[
νhe,A

zx (z − d)tA1m(z − d)

+ νhe,A
zy (z − d)tA2m(z − d)+ νhh,A

zx (z − d)tA3m(z − d)

+ νhh,A
zy (z − d)tA4m(z − d)

]
uz

}
exp
[
iq(x cosψ + y sinψ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.95)

for z � d, so that one of the two needed boundary values is

[
f (d +)] =

⎡
⎢⎢⎢⎢⎣

vA
11 vA

12

vA
21 vA

22

vA
31 vA

32

vA
41 vA

42

⎤
⎥⎥⎥⎥⎦
•

[
CA

1

CA
2

]
. (3.96)

As Eqs. (3.82) still hold for z � 0, the other boundary value
[

f (0−)] is still given by
Eq. (3.83).

In order to connect
[

f (d +)] and
[

f (0−)], the material occupying the region
0 < z < d has to be specified. Suppose that this region is occupied by a cascade
of slabs of three homogeneous materials—labeled I, I I, and I I I , and of thicknesses
dI , dI I , and dI I I —as shown in Figure 3.2. The applicable constitutive relations can

x,y

z

I

III

dI

dII

dIII

dI

dII

dIII

dI

dII

dIII
d

(a) (b) (c)

x,y

z

I
II
III d

x,y

z

I
II
III dII

Figure 3.2 Schematics of the modified canonical boundary-value problem for wave propagation
guided by two dissimilar materials A and B separated by a cascade of three slabs of homogeneous
materials I, I I, and I I I . (a) Both materials A and B are periodically nonhomogeneous in the
direction normal to the interface. (b) A is periodically nonhomogeneous but B is homogeneous.
(c) Both A and B are homogeneous.
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be stated as

D(r) =

⎧⎪⎨
⎪⎩

ε I • E(r)+ ξ I • H(r), 0 < z < dI

ε I I • E(r)+ ξ I I • H(r), dI < z < dI + dI I

ε I I I • E(r)+ ξ I I I • H(r), dI + dI I < z < dI + dI I + dI I I

B(r) =

⎧⎪⎨
⎪⎩

ζ I • E(r)+ μI • H(r), 0 < z < dI

ζ I I • E(r)+ μI I • H(r), dI < z < dI + dI I

ζ I I I • E(r)+ μI I I • H(r), dI + dI I < z < dI + dI I + dI I I

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.97)

with d = dI + dI I + dI I I . Then, the application of Eq. (3.28) to each of the three slabs
in succession yields

[
f (dI−)

] = exp
{

i
[

P
]I

dI

}
•
[

f (0+)]
[

f (dI + dI I−)
] = exp

{
i
[

P
]I I

dI I

}
•
[

f (dI+)
]

[
f (dI + dI I + dI I I−)

] = exp
{

i
[

P
]I I I

dI I I

}
•
[

f (dI + dI I+)
]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (3.98)

As the tangential components of the electric and magnetic field phasors must be con-
tinuous across both bimaterial surfaces within the region 0 < z < d, the foregoing
equations lead to

[
f (d−)] = exp

{
i
[

P
]I I I

dI I I

}
• exp

{
i
[

P
]I I

dI I

}

• exp
{

i
[

P
]I

dI

}
•
[

f (0+)] . (3.99)

Finally, enforcement of the boundary conditions across the interfaces z = 0 and z = d
yields⎡

⎢⎢⎢⎢⎣

vA
11 vA

12

vA
21 vA

22

vA
31 vA

32

vA
41 vA

42

⎤
⎥⎥⎥⎥⎦
•

[
CA

1

CA
2

]
= exp

{
i
[

P
]I I I

dI I I

}
• exp

{
i
[

P
]I I

dI I

}

• exp
{

i
[

P
]I

dI

}
•

⎡
⎢⎢⎢⎢⎣

vB
13 vB

14

vB
23 vB

24

vB
33 vB

34

vB
43 vB

44

⎤
⎥⎥⎥⎥⎦
•

[
CB

3

CB
4

]
.

(3.100)

This equation can be rearranged as

[
Y
]
•

⎡
⎢⎢⎢⎢⎣

CA
1

CA
2

CB
3

CB
4

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦, (3.101)
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but now the matrix
[

Y
]

is different from the right side of Eq. (3.86). The dispersion
equation

det
{[

Y (q)
]} = 0 (3.102)

can then be solved numerically, using the Newton-Raphson technique described in
Section 3.5.2.

3.7 Prism-Coupled Configuration

Canonical boundary-value problems are the playthings of theorists. Although the solu-
tions of these problems are essential for understanding the characteristics of surface
waves, exploitation of surface waves is done in a practical setting in which device
dimensions cannot be infinite. The most common practical configuration for exciting
SPP waves is the Turbadar-Kretschmann-Raether configuration of Figure 1.2a., the
Turbadar-Otto configuration of Figure 1.2b. running a somewhat distant second. Both
of these prism-coupled configurations can be theoretically treated in the same way, as
also the prism-coupled configuration—shown in Figure 3.3—that can be used for the
first reported observation [41] of a Dyakonov wave.

The essential part of the boundary-value problem for the prism-coupled configura-
tion is depicted in Figure 3.4. The half-space z < 0 is occupied by a homogeneous,
isotropic, dielectric material described by the refractive index n1. Dissipation in this
material is considered to be negligible so that n1 is real valued and positive. The region
0 < z < dA is filled with a nonhomogeneous bianisotropic material with constitutive
relations

D(r) = εA(z) • E(r)+ ξA(z) • H(r)

B(r) = ζA(z) • E(r)+ μA(z) • H(r)

}
, 0 < z < dA, (3.103)

prism reflected

anisotropic
dielectric

isotropic dielectric

incident
beam beam

Dyakonov wave
x,y

z

θ inc

air

air

Figure 3.3 Schematic of the prism-coupled configuration used by Takayama et al. [41] for the
first experimental observation of a Dyakonov wave.
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x, y

z

d

d

inc

tr

Incident light Reflected light

Transmitted light

x, y

z

d

d

inc

tr

Incident light Reflected light

Transmitted light

x, y

z

d

d

inc

tr

Incident light Reflected light

Transmitted light

x, y

z

d

d

θθ

θ

θ

θ

θ

θ

θ

inc

tr

Incident light Reflected light

Transmitted light

Figure 3.4 Schematics of the boundary-value problem for the prism-coupled configuration to
excite surface waves guided by two dissimilar materials A and B. (a) Both A and B are periodi-
cally nonhomogeneous in the direction normal to the interface. (b, c) Either A or B is periodically
nonhomogeneous, but the other partnering material is homogeneous. (d) Both A and B are homo-
geneous. Whereas the angle θinc ∈ [0◦, 90◦), the angle θtr may be either real or complex valued.

and the region dA < z < dA+dB is occupied by a material with constitutive relations

D(r) = εB(z) • E(r)+ ξB(z) • H(r)

B(r) = ζB(z) • E(r)+ μB(z) • H(r)

}
, dA < z < dA + dB. (3.104)

Finally, the half-space z > d = dA + dB is occupied by a homogeneous, isotropic,
dielectric material whose refractive index n2 is assumed to be real valued and positive.
All constitutive parameters generally depend on the angular frequencyω of the incident
plane wave.

3.7.1 Incident, Reflected, and Transmitted Plane Waves

An arbitrarily polarized plane wave, propagating in the half-space z < 0 at an angle
θinc ∈ [0◦, 90◦) to the z axis and at an angle ψ ∈ [0◦, 360◦) to the x axis in the xy
plane, is incident on the plane z = 0. The field phasors associated with the incident
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plane wave are represented as

E inc( r ) =
(

ass + ap p
inc

)
exp{i[κ(x cosψ + y sinψ)+ k0n1z cos θinc]}

H inc( r ) = n1η
−1
0

(
as p

inc
− aps

)
exp{i[κ(x cosψ + y sinψ)

+ k0n1z cos θinc]}

⎫⎪⎪⎬
⎪⎪⎭
,

z < 0, (3.105)

where η0 = √μ0/ε0 is the intrinsic impedance of free space; the amplitudes of the
s- and the p-polarized components of the incident plane wave, denoted by as and ap,
respectively, are assumed to be known; and

κ = k0n1 sin θinc
s = −ux sinψ + uy cosψ
p

inc
= −( ux cosψ + uy sinψ) cos θinc + uz sin θinc

⎫⎬
⎭ . (3.106)

The reflected field phasors are expressed as

E ref( r ) = (rs s + rp p
ref
) exp{i[κ(x cosψ + y sinψ)− k0n1z cos θinc]}

H ref( r ) = n1η
−1
0

(
rs p

ref
− rp s

)
exp{i[κ(x cosψ + y sinψ)

−k0n1z cos θinc]}

⎫⎪⎬
⎪⎭
,

z < 0, (3.107)

and the transmitted field phasors as

E tr( r ) =
(

ts s + tp p
tr

)
exp{i[κ(x cosψ + y sinψ)+ k0n2(z − d) cos θtr]}

H tr( r ) = n2η
−1
0

(
ts p

tr
− tp s

)
exp{i[κ(x cosψ + y sinψ)

+ k0n2(z − d) cos θtr]}

⎫⎪⎪⎬
⎪⎪⎭
,

z > d = dA + dB, (3.108)

where

sin θtr = (n1/n2) sin θinc

cos θtr = +
√

1− sin θ2
tr

p
ref
= ( ux cosψ + uy sinψ) cos θinc + uz sin θinc

p
tr
= −( ux cosψ + uy sinψ) cos θtr + uz sin θtr

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3.109)

The reflection amplitudes rs and r p, as well as the transmission amplitudes ts and tp,
have to be determined by the solution of a boundary-value problem. As sin θtr can
exceed unity, by virtue of the satisfaction of phase-matching conditions, cos θtr can be
complex valued—in which case, the transmitted wave is evanescent.



104 Electromagnetic Surface Waves

3.7.2 Solution of Boundary-Value Problem

In line with Eqs. (3.15), the field phasors defined in Eqs. (3.105), (3.107), and (3.108)
are of the form

E( r ) = e(z) exp[iκ(x cosψ + y sinψ)]
H( r ) = h(z) exp[iκ(x cosψ + y sinψ)]

}
, (3.110)

for all z ∈ (−∞,∞). Then the column vector
[

f (z)
]

of Eq. (3.23) can again be used
profitably.

Indeed,
[

f (z)
]

satisfies the matrix ordinary differential equations

d

dz

[
f (z)
] = i

[
P(z)

]A •
[

f (z)
]
, 0 < z < dA, (3.111)

and

d

dz

[
f (z)
] = i

[
P(z)

]B •
[

f (z)
]
, dA < z < dA + dB. (3.112)

The matrix
[

P(z)
]A is defined by Eq. (3.24), but with q replaced by κ and εxy replaced

by εAxy(z), etc. A similar replacement procedure yields the matrix
[

P(z)
]B

.
The solutions of Eqs. (3.111) and (3.112) must deliver the relations

[
f (dA−)

] = [M
]A •

[
f (0+)]

[
f (d−)] = [M

]B •
[

f (dA+)
]

⎫⎬
⎭ . (3.113)

Computation of the 4 × 4 matrixes
[

M
]A

and
[

M
]B

in these relations may require
the use of the piecewise-uniform-approximation method.

Let the region 0 � z � dA be divided into NA subregions, the nth subregion being

zn−1 � z � zn, n ∈ [1, NA]. In each subregion, either
[

P(z)
]A is uniform or can be

approximated as being uniform. Then,

[
M
]A ∼= [W

](NA) •
[

W
](NA−1) • · · · [W

](2) • [W
](1)

, (3.114)

where

[
W
](n) = exp

{
i
(
zn − zn−1

) [
P

(
zn + zn−1

2

)]A}
, n ∈ [1, NA]. (3.115)

The calculation of
[

M
]A is very simple if material A is homogeneous, because then

NA = 1 suffices. Similarly, if the region dA � z � dA + dB is divided into NB
subregions, the nth subregion being zn−1 � z � zn, n ∈ [1, NB], and either

[
P(z)

]B
is uniform or can be approximated as being uniform in each of these subregions, then

[
M
]B ∼= [W

](NB) •
[

W
](NB−1) • · · · [W

](2) • [W
](1)

, (3.116)
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where now

[
W
](n) = exp

{
i
(
zn − zn−1

) [
P

(
zn + zn−1

2

)]B}
, n ∈ [1, NB]. (3.117)

Just NB = 1 is needed if material B is homogeneous.
Equations (3.114) and (3.116) indicate that there is no requirement in the present

formulation that materials A and/or B be periodically nonhomogeneous along the
z axis. Either material can be homogeneous, piecewise homogeneous, periodically
nonhomogeneous, or nonhomogeneous in some other fashion—in that direction.

Equations (3.105) and (3.107) yield the boundary value

[
f (0−)] = [ K

]
inc

•

⎡
⎢⎢⎣

as
ap

rs
r p

⎤
⎥⎥⎦ (3.118)

and Eqs. (3.108) deliver the boundary value

[
f (d+)] = [ K

]
tr
•

⎡
⎢⎢⎣

ts
tp
0
0

⎤
⎥⎥⎦ (3.119)

with

[
K
]

inc
=

⎡
⎢⎢⎢⎢⎢⎣

− sinψ − cosψ cos θinc − sinψ cosψ cos θinc

cosψ − sinψ cos θinc cosψ sinψ cos θinc

−
(

n1
η0

)
cosψ cos θinc

(
n1
η0

)
sinψ

(
n1
η0

)
cosψ cos θinc

(
n1
η0

)
sinψ

−
(

n1
η0

)
sinψ cos θinc −

(
n1
η0

)
cosψ

(
n1
η0

)
sinψ cos θinc −

(
n1
η0

)
cosψ

⎤
⎥⎥⎥⎥⎥⎦

(3.120)

and

[
K
]

tr
=

⎡
⎢⎢⎢⎢⎢⎣

− sinψ − cosψ cos θtr − sinψ cosψ cos θtr

cosψ − sinψ cos θtr cosψ sinψ cos θtr

−
(

n2
η0

)
cosψ cos θtr

(
n2
η0

)
sinψ

(
n2
η0

)
cosψ cos θtr

(
n2
η0

)
sinψ

−
(

n2
η0

)
sinψ cos θtr −

(
n2
η0

)
cosψ

(
n2
η0

)
sinψ cos θtr −

(
n2
η0

)
cosψ

⎤
⎥⎥⎥⎥⎥⎦
.

(3.121)

The standard boundary conditions of electromagnetics require that

[
f (0−)] = [ f (0+)] , [ f (dA−)

] = [ f (dA+)
]
,
[

f (d−)] = [ f (d+)],
(3.122)
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thereby yielding the matrix equation
⎡
⎢⎢⎣

ts
tp

0
0

⎤
⎥⎥⎦ =

[
K
]−1

tr
•
[

M
]B •

[
M
]A •

[
K
]

inc
•

⎡
⎢⎢⎣

as
ap

rs

r p

⎤
⎥⎥⎦. (3.123)

This step completes the formulation of the boundary-value problem.

3.7.3 Linear Reflectances and Transmittances

The solution of Eq. (3.123) yields the linear reflection and transmission coefficients
that appear as the elements of the 2× 2 matrixes in the following relations:

[
rs
rp

]
=
[

rss rsp
rps rpp

]
•
[

as
ap

]

[
ts
tp

]
=
[

tss tsp
tps tpp

]
•
[

as
ap

]

⎫⎪⎪⎬
⎪⎪⎭
. (3.124)

Co-polarized coefficients have both subscripts identical, but cross-polarized coeffi-
cients do not. The square of the magnitude of a linear reflection coefficient equals the
corresponding linear reflectance; thus,

Rsp = |rsp|2 (3.125)

is the linear reflectance corresponding to the linear reflection coefficient rsp, and so on.
Linear transmittances are defined as

Tsp = n2

n1

Re {cos θtr}
cos θinc

|tsp|2, (3.126)

etc.
The principle of conservation of energy mandates the constraints

Rss + Rps + Tss + Tps � 1

Rpp + Rsp + Tpp + Tsp � 1

}
, (3.127)

the inequalities turning to equalities only in the lack of dissipation in the regions
occupied by materials A and B.

The variations with θinc of the linear absorptances

As = 1− (Rss + Rps + Tss + Tps)

Ap = 1− (Rpp + Rsp + Tpp + Tsp)

}
(3.128)

for fixed k0 andψ need to be studied in order to identify the excitation of surface waves
guided by the interface z = dA of materials A and B. Features that do not change
with increase of dA and dB beyond certain thresholds are likely to indicate surface-
wave propagation, and should be correlated with the solutions q of the corresponding
canonical problem treated in Section 3.5.1. The thickness of a partnering material that
is periodically nonhomogeneous should be increased in increments of a period, for the
identification of surface waves.
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3.7.4 Circular Reflectances and Transmittances

Instead of s- and p-polarized components, the arbitrarily polarized incident plane
wave can be decomposed into left- and right-circularly polarized components. Thus,
Eqs. (3.105) may be replaced by

E inc( r ) =
(

aL
is−pinc√

2
− aR

is+pinc√
2

)
exp{i[κ(x cosψ + y sinψ)

+ k0n1z cos θinc]}
H inc( r ) = −in1η

−1
0

(
aL

is−pinc√
2
+ aR

is+pinc√
2

)
exp{i[κ(x cosψ + y sinψ)

+ k0n1z cos θinc]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

z < 0, (3.129)

where aL = −
(
ias + ap

)
/
√

2 and aR =
(
ias − ap

)
/
√

2 are the amplitudes of the
left- and right-circularly polarized components, respectively. Likewise, Eqs. (3.107)
and (3.108) may be rewritten as

E ref( r ) =
(
−rL

is−pref√
2
+ rR

is+pref√
2

)
exp{i[κ(x cosψ + y sinψ)

− k0n1z cos θinc]}
H ref( r ) = in1η

−1
0

(
rL

is−p
ref√

2
+ rR

is+p
ref√

2

)
exp{i[κ(x cosψ + y sinψ)

− k0n1z cos θinc]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

z < 0, (3.130)

and

E tr( r ) =
(

tL
is−ptr√

2
− tR

is+ptr√
2

)
exp{i[κ(x cosψ + y sinψ)

+ k0n2(z − d) cos θtr]}
H tr( r ) = −in2η

−1
0

(
tL

is−ptr√
2
+ tR

is+ptr√
2

)
exp{i[κ(x cosψ + y sinψ)

+ k0n2(z − d) cos θtr]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

z > d = dA + dB, (3.131)

where the amplitudes rL =
(
irs + rp

)
/
√

2, rR = −
(
irs − rp

)
/
√

2, tL = −
(
i ts + tp

)
/√

2, and tR =
(
i ts − tp

)
/
√

2 belong to circularly polarized components.
Circular reflection and transmission coefficients appear as the elements of the 2×2

matrixes in the following relations:
[

rL
rR

]
=
[

rLL rLR
rRL rRR

]
•
[

aL
aR

]

[
tL

tR

]
=
[

tLL tLR
tRL tRR

]
•
[

aL

aR

]

⎫⎪⎪⎬
⎪⎪⎭
. (3.132)

Again, co-polarized coefficients have both subscripts identical, but cross-polarized
coefficients do not. The relationships between the linear and circular coefficients are
as follows:
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rss = − (rLL + rRR)− (rLR + rRL)

2

rsp = i
(rLL − rRR)+ (rLR − rRL)

2

rps = −i
(rLL − rRR)− (rLR − rRL)

2

rpp = − (rLL + rRR)+ (rLR + rRL)

2

tss = (tLL + tRR)− (tLR + tRL)

2

tsp = −i
(tLL − tRR)+ (tLR − tRL)

2

tps = i
(tLL − tRR)− (tLR − tRL)

2

tpp = (tLL + tRR)+ (tLR + tRL)

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

rLL = − (rss + rpp)+ i(rsp − rps)

2

rLR = (rss − rpp)− i(rsp + rps)

2

rRL = (rss − rpp)+ i(rsp + rps)

2

rRR = − (rss + rpp)− i(rsp − rps)

2

tLL = (tss + tpp)+ i(tsp − tps)

2

tLR = − (tss − tpp)− i(tsp + tps)

2

tRL = − (tss − tpp)+ i(tsp + tps)

2

tRR = (tss + tpp)− i(tsp − tps)

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.133)

Circular reflectances are defined as

RLR = |rLR|2, (3.134)

etc., and circular transmittances as

TLR = n2

n1

Re {cos θtr}
cos θinc

|tLR|2, (3.135)

etc. The principle of conservation of energy requires satisfaction of the constraints

RLL + RRL + TLL + TRL � 1

RRR + RLR + TRR + TLR � 1

}
, (3.136)

the inequalities turning to equalities only in the absence of dissipation.
The variations with θinc of the circular absorptances

AL = 1− (RLL + RRL + TLL + TRL
)

AR = 1− (RRR + RLR + TRR + TLR
)
}

(3.137)

for fixed k0 and ψ need to be studied in order to identify the excitation of surface
waves guided by the interface z = dA of materials A and B. Certain features may
not change with increase of dA and dB beyond certain thresholds and are likely
to indicate surface-wave propagation; the thickness of a partnering material that is
periodically nonhomogeneous should be increased in increments of a period, in order
to identify surface waves. These features should be correlated with the solutions q of
the corresponding canonical boundary-value problem treated in Section 3.5.1.

3.8 Grating-Coupled Configuration

The geometry of the grating-coupled configuration is almost the same as of the prism-
coupled configuration depicted in Figure 3.4, except that the plane z = dA is replaced
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by the periodically undulating surface z = dA + g(x, y), where g(x, y) is the grating
function.

The half-space z < 0 is occupied by a homogeneous, isotropic, dielectric material
described by the refractive index n1, which is real valued and positive. The region
0 < z < dA+ g(x, y) is filled with a nonhomogeneous bianisotropic material with the
constitutive relations stated in Eqs. (3.103), and the region dA+g(x, y) < z < dA+dB
is occupied by a material with constitutive relations stated in Eqs. (3.104). Either
of these two materials can be homogeneous, piecewise homogeneous, periodically
nonhomogeneous, or nonhomogeneous in some other fashion along the z axis. Finally,
the half-space z > d = dA + dB is occupied by a homogeneous, isotropic, dielectric
material whose refractive index n2 is assumed to be real valued and positive.

As shown in Figure 3.5, the undulating surface z = dA + g(x, y) can be singly
periodic with

g(x, y) ≡ g(x) = g(x ± Lx ), (3.138)

say, where Lx is the period along the x axis. Alternatively, the undulating surface can
be doubly periodic with

g(x, y) = g(x ± Lx , y) = g(x, y ± L y), (3.139)

where Lx and L y are the periods along the x and y axes, respectively. In either case,
the restrictions

g(x, y) < dB
g(x, y) > −dA

}
, ∀x ∈ (−∞,∞), ∀y ∈ (−∞,∞), (3.140)

must hold. If the maximum value of g(x, y) is denoted by gmax > 0 and the
minimum value by gmin < 0, the trough-to-crest height of the surface-relief grating is
Lg = gmax − gmin. Typically, Lg is a small fraction of the free-space wavelength.

x

z

d

d

θinc

Incident light

0

+1

z = d + g(x)

0

+1

-1

-1

-2

-2

Reflected light

Transmitted light

surface wave Lx

Figure 3.5 Schematic of the boundary-value problem for the grating-coupled configuration
to excite surface waves guided by the periodically corrugated interface z = dA + g(x) of
two dissimilar materials A and B. The reflected field phasors comprise specular components
(identified by 0) and nonspecular components (identified by ±1, etc.), and the transmitted field
phasors may also have specular and nonspecular components. The trough-to-crest height of the
periodically corrugated surface is typically a small fraction of the free-space wavelength.
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The surface-relief grating may be a simple one, exemplified by a sinusoidal grating
[260], or it can be a compound surface-relief grating, each period of which comprises
several periods each of two or more simple surface-relief gratings [85]. A compound
grating can help excite SPP waves over a range of free-space wavelengths and for
several different incidence conditions. A compound grating can also help excite all
SPP waves predicted by the solution of the corresponding canonical boundary-value
problem [86].

3.8.1 Incident Plane Wave

An arbitrarily polarized plane wave, propagating in the half-space z < 0 at an angle
θinc ∈ [0◦, 90◦) to the z axis and at an angle ψ ∈ [0◦, 360◦) to the x axis in the xy
plane, is incident on the plane z = 0. The field phasors associated with the incident
plane wave are represented by Eqs. (3.105). In view of the periodic undulations of the
interface of materials A and B, it is better to write the field phasors equivalently as a
sum of linear Floquet harmonics as

E inc( r ) =
∑
m∈Z

∑
n∈Z

{(
a(m,n)s s(m,n) + a(m,n)p p(m,n)

inc

)

exp
[
i
(
κ(m,n) + α(m,n)1 uz

)
• r
]}

H inc( r ) = n1η
−1
0

∑
m∈Z

∑
n∈Z

{(
a(m,n)s p(m,n)

inc
− a(m,n)p s(m,n)

)

exp
[
i
(
κ(m,n) + α(m,n)1 uz

)
• r
]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z < 0, (3.141)

where Z = {0,±1,±2, . . .} is the set of all signed integers and zero, the amplitudes

a(m,n)s = a(0,0)s δm0δn0

a(m,n)p = a(0,0)p δm0δn0

}
(3.142)

involve the Kronecker delta (2.92), and

κ(m,n) = k(m)x ux + k(n)y uy

k(m)x = k0n1 sin θinc cosψ + m(2π/Lx )

k(n)y = k0n1 sin θinc sinψ + n(2π/L y)

k(m,n)xy = +√κ(m,n) • κ(m,n)

α
(m,n)
1 = +

√(
k0n1

)2 − κ(m,n) • κ(m,n)

s(m,n) = − k(n)y

k(m,n)xy
ux + k(m)x

k(m,n)xy
uy

p(m,n)
inc
= −

(
k(m)x

k(m,n)xy
ux + k(n)y

k(m,n)xy
uy

)
α
(m,n)
1

k0n1
+ k(m,n)xy

k0n1
uz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.143)
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Each index pair (m, n) on the right sides of Eqs. (3.141) identifies a Floquet har-
monic. The quantity α(m,n)1 is either positive real or positive imaginary, depending upon

whether k0n1 is greater or less than k(m,n)xy . If α(m,n)1 is positive real, then the Floquet
harmonic is a plane wave that can transport energy as z→∞, provided that all space
were to be filled with the material of refractive index n1. If α(m,n)1 is positive imaginary,
then the Floquet harmonic is an evanescent wave.

3.8.2 Reflected and Transmitted Field Phasors

Equations (3.107) and (3.108) are inadequate to represent the reflected and the trans-
mitted field phasors. These phasors must also be written in terms of linear Floquet
harmonics. Thus, the reflected field phasors are

E ref( r ) =
∑
m∈Z

∑
n∈Z

{(
r (m,n)s s(m,n) + r (m,n)p p(m,n)

ref

)

exp
[
i
(
κ(m,n) − α(m,n)1 uz

)
• r
]}

H ref( r ) = n1η
−1
0

∑
m∈Z

∑
n∈Z

{(
r (m,n)s p(m,n)

ref
− r (m,n)p s(m,n)

)

exp
[
i
(
κ(m,n) − α(m,n)1 uz

)
• r
]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z < 0, (3.144)

where the reflection amplitudes r (m,n)s and r (m,n)p are unknown for all m ∈ Z and n ∈ Z,
and

p (m,n)
ref
=
(

k(m)x

k(m,n)xy

ux +
k(n)y

k(m,n)xy

uy

)
α
(m,n)
1

k0n1
+ k(m,n)xy

k0n1
uz . (3.145)

If α(m,n)1 is positive real, then the corresponding Floquet harmonic in Eqs. (3.144) is a
plane wave that transports energy as z→−∞; if not, then the Floquet harmonic is an
evanescent wave.

The transmitted field phasors are given by

E tr( r ) =
∑
m∈Z

∑
n∈Z

{(
t (m,n)s s(m,n) + t (m,n)p p(m,n)

tr

)

exp
[
i
(
κ(m,n) + α(m,n)2 uz

)
•
(
r − duz

)]}

H tr( r ) = n2η
−1
0

∑
m∈Z

∑
n∈Z

{(
t (m,n)s p(m,n)

tr
− t (m,n)p s(m,n)

)

exp
[
i
(
κ(m,n) + α(m,n)2 uz

)
•
(
r − duz

)]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z > d = dA + dB, (3.146)

where the transmission amplitudes t(m,n)s and t (m,n)p are also unknown for all m ∈ Z and
n ∈ Z, and

α
(m,n)
2 = +

√(
k0n2

)2 − κ(m,n) • κ(m,n)

p(m,n)
tr
= −

(
k(m)x

k(m,n)xy
ux + k(n)y

k(m,n)xy
uy

)
α
(m,n)
2

k0n2
+ k(m,n)xy

k0n2
uz

⎫⎪⎬
⎪⎭
. (3.147)
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The quantityα(m,n)2 is either positive real or positive imaginary, depending upon whether

k0n2 is greater or less than k(m,n)xy . If α(m,n)2 is positive real, then the corresponding
Floquet harmonic in Eqs. (3.146) is a plane wave that transports energy as z →∞; if
not, then the Floquet harmonic is an evanescent wave.

The specular terms in sums on the right sides of Eqs. (3.144) and (3.146) are the
ones for which m = n = 0. The remaining terms in these sums are nonspecular terms
which arise due to the periodic nature of the function g(x, y). If this function does not
vary with x , then m ∈ {0}. Likewise, n ∈ {0} if g(x, y) is invariant with respect to y.
In the simplest possible case, g(x, y) = 0 and all nonspecular terms can be discarded.

Equations (3.141), (3.144), and (3.146) may be considered as Fourier series of
E inc(r) exp[−ik0n1 sin θinc(x cosψ + y sinψ)], etc., with respect to x and y. These
representations constitute an essential feature of the rigorous coupled-wave approach
(RCWA) employed in Section 3.8.5 to determine the reflection and transmission
amplitudes.

3.8.3 Linear Reflectances and Transmittances

Reflection and transmission coefficients of order (m, n) are defined as the elements in
the 2× 2 matrixes appearing in the following relations:

[
r (m,n)s

r (m,n)p

]
=
[

r (m,n)ss r (m,n)sp

r (m,n)ps r (m,n)pp

]
•

[
a(0,0)s

a(0,0)p

]

[
t (m,n)s

t (m,n)p

]
=
[

t (m,n)ss t (m,n)sp

t (m,n)ps t (m,n)pp

]
•

[
a(0,0)s

a(0,0)p

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3.148)

Only the coefficients of order (0, 0) are classified as specular, whereas all other coef-
ficients are nonspecular.

Linear reflectances are defined as

R(m,n)sp =
Re
{
α
(m,n)
1

}

α
(0,0)
1

|r (m,n)sp |2, (3.149)

etc., and linear transmittances as

T (m,n)sp =
Re
{
α
(m,n)
2

}

α
(0,0)
1

|t (m,n)sp |2, (3.150)

etc. Again, the adjective specular may be attached only to reflectances and transmit-
tances of order (0, 0), all others being of the nonspecular kind.

The principle of conservation of energy mandates that the linear absorptances

As = 1−
∑
m∈Z

∑
n∈Z

(
R(m,n)ss + R(m,n)ps + T (m,n)ss + T (m,n)ps

)

A p = 1−
∑
m∈Z

∑
n∈Z

(
R(m,n)pp + R(m,n)sp + T (m,n)pp + T (m,n)sp

)

⎫⎪⎪⎬
⎪⎪⎭

(3.151)

can neither be negative nor exceed unity, both materials A and B being passive
[17, Section 1.7.2.2].
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3.8.4 Circular Reflectances and Transmittances

As in Section 3.7.4, the incident, reflected, and transmitted field phasors can be repre-
sented using circularly polarized Floquet harmonics instead of the linearly polarized
ones.

The counterparts of Eqs. (3.141) are

E inc(r) =
∑
m∈Z

∑
n∈Z

{(
a(m,n)L

is(m,n) − p(m,n)
inc√

2
− a(m,n)R

is(m,n) + p(m,n)
inc√

2

)

exp
[
i
(
κ(m,n) + α(m,n)1 uz

)
• r
]}

H inc(r) = −in1η
−1
0

∑
m∈Z

∑
n∈Z

{(
a(m,n)L

is(m,n) − p(m,n)
inc√

2
+ a(m,n)R

is(m,n) + p(m,n)
inc√

2

)

exp
[
i
(
κ(m,n) + α(m,n)1 uz

)
• r
]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z < 0. (3.152)

The reflected field phasors must be written as

E ref(r) =
∑
m∈Z

∑
n∈Z

{(
−r (m,n)L

is(m,n) − p(m,n)
ref√

2
+ r (m,n)R

is(m,n) + p(m,n)
ref√

2

)

exp
[
i
(
κ(m,n) − α(m,n)1 uz

)
• r
]}

H ref(r) = in1η
−1
0

∑
m∈Z

∑
n∈Z

{(
r (m,n)L

is(m,n) − p(m,n)
ref√

2
+ r (m,n)R

is(m,n) + p(m,n)
ref√

2

)

exp
[
i
(
κ(m,n) − α(m,n)1 uz

)
• r
]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z < 0, (3.153)

and the transmitted field phasors as

E tr(r) =
∑
m∈Z

∑
n∈Z

{(
t (m,n)L

is(m,n) − p(m,n)
tr√

2
− t (m,n)R

is(m,n) + p(m,n)
tr√

2

)

exp
[
i
(
κ(m,n) + α(m,n)2 uz

)
•
(
r − duz

)]}

H tr(r) = −in2η
−1
0

∑
m∈Z

∑
n∈Z

{(
t (m,n)L

is(m,n) − p(m,n)
tr√

2
+ t (m,n)R

is(m,n) + p(m,n)
tr√

2

)

exp
[
i
(
κ(m,n) + α(m,n)2 uz

)
•
(
r − duz

)]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z > d = dA + dB. (3.154)
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The amplitudes of the circularly polarized components are related to those of the linearly
polarized components as follows:

a(m,n)L = −
(

ia(m,n)s + a(m,n)p

)
/
√

2, a(m,n)R =
(

ia(m,n)s − a(m,n)p

)
/
√

2

r (m,n)L =
(

ir (m,n)s + r (m,n)p

)
/
√

2, r (m,n)R = −
(

ir (m,n)s − r (m,n)p

)
/
√

2

t (m,n)L = −
(

i t (m,n)s + t(m,n)p

)
/
√

2, t (m,n)R =
(

i t (m,n)s − t (m,n)p

)
/
√

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(3.155)

Circular reflection coefficients
(

r (m,n)LR , etc.
)

and transmission coefficients
(

t (m,n)LR , etc.
)

of order (m, n) appear in 2× 2 matrixes in the following relations:
[

r (m,n)L

r (m,n)R

]
=
[

r (m,n)LL r (m,n)LR

r (m,n)RL r (m,n)RR

][
a(0,0)L

a(0,0)R

]

[
t (m,n)L

t (m,n)R

]
=
[

t (m,n)LL t (m,n)LR

t (m,n)RL t (m,n)RR

][
a(0,0)L

a(0,0)R

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (3.156)

Again, co-polarized coefficients have both subscripts identical, but cross-polarized
coefficients do not. Specular coefficients carry the superscript (0, 0), but nonspecular
coefficients do not. Equations (3.133) can be used to relate the linear and
circular coefficients for each index pair (m, n).

Circular reflectances are defined as

R(m,n)LR =
Re
{
α
(m,n)
1

}

α
(0,0)
1

|r (m,n)LR |2, (3.157)

etc., and circular transmittances as

T (m,n)LR =
Re
{
α
(m,n)
2

}

α
(0,0)
1

|t (m,n)LR |2, (3.158)

etc. Both circular absorptances

AL = 1−
∑
m∈Z

∑
n∈Z

(
R(m,n)LL + R(m,n)RL + T (m,n)LL + T (m,n)RL

)

AR = 1−
∑
m∈Z

∑
n∈Z

(
R(m,n)RR + R(m,n)LR + T (m,n)RR + T (m,n)LR

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.159)

can neither be negative nor exceed unity, provided that both materials A and B are
passive. If dissipation in both materials is negligible, then AL = AR = 0.

3.8.5 Rigorous Coupled-Wave Approach

The calculation of the amplitudes of the Floquet harmonics in the representations of the
reflected and transmitted field phasors is based on the periodicity of the grating function
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g(x, y). This procedure is called the rigorous coupled-wave approach [256,300–302],
which requires that all field phasors as well as all constitutive scalars and constitutive
dyadics be expressed as Fourier series with respect to both x and y.

The constitutive relations of the two partnering materials are jointly written as

D(r) = ε(x, y, z) • E(r)+ ξ(x, y, z) • H(r)

B(r) = ζ (x, y, z) • E(r)+ μ(x, y, z) • H(r)

}
, z ∈ (0, d), (3.160)

where

ε(x, y, z) =
⎧⎨
⎩
εA, z ∈ (0, dA + gmin],
εA + (εB − εA)U[z − g(x, y)], z ∈ (dA + gmin, dA + gmax),

εB, z ∈ [dA + gmax, dA + dB),
(3.161)

etc., and U(σ ) is the unit step function defined by Eq. (2.102). Accordingly, we get the
Fourier series

ε(x, y, z) =
∑
m∈Z

∑
n∈Z

ε(m,n)(z) exp

[
i2π

(
m

x

Lx
+ n

y

L y

)]
, z ∈ (0, d),

(3.162)

where

ε(m,n)(z) =
{(
εB − εA)ϒ(m,n)(z), z ∈ (dA + gmin, dA + gmax),

0, z /∈ (dA + gmin, dA + gmax),
, (3.163)

except that

ε(0,0)(z) =
⎧⎨
⎩
εA, z ∈ (0, dA + gmin],
εA + (εB − εA)ϒ(0,0)(z), z ∈ (dA + gmin, dA + gmax),

εB, z ∈ [dA + gmax, dA + dB),
(3.164)

and

ϒ(m,n)(z) = 1

Lx

1

L y

∫ Lx

0

∫ L y

0
U[z − g(x, y)] exp

[
−i2π

(
m

x

Lx
+ n

y

L y

)]
dx dy.

(3.165)

The Fourier series of the other three constitutive dyadics in Eqs. (3.160) are similar to
that of ε(x, y, z).

The field phasors in the region occupied by either material A or material B are
expressed in terms of Fourier series too, just like the reflected and transmitted field
phasors; thus,

E(r) =
∑
m∈Z

∑
n∈Z

{
e(m,n)(z) exp

[
iκ(m,n) • r

]}

H(r) =
∑
m∈Z

∑
n∈Z

{
h(m,n)(z) exp

[
iκ(m,n) • r

]}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, z ∈ (0, d), (3.166)
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where the vector functions e(m,n)(z) and h(m,n)(z) remain to be determined for all index
pairs (m, n).

The numbers of terms in the sums on the right sides of Eqs. (3.141), (3.144), (3.146),
(3.152), (3.153), (3.154), (3.162), and (3.166) are infinite. For computational purposes,
the number of terms in a series must be finite. Accordingly, we restrict the index m ∈
[−Mt ,Mt ] and the index n ∈ [−Nt , Nt ] in these equations, with Mt � 0 and Nt � 0
being sufficiently large. Then every field phasor and every constitutive dyadic is repre-
sented by a series containing (2Mt+1)(2Nt+1) terms. Thus, for example, Eqs. (3.144)
are rewritten as

E ref(r) =
Mt∑

m=−Mt

Nt∑
n=−Nt

{(
r (m,n)s s(m,n) + r (m,n)p p(m,n)

ref

)

× exp
[
i
(
κ(m,n) − α(m,n)1 uz

)
• r
]}

H ref(r) = n1η
−1
0

Mt∑
m=−Mt

Nt∑
n=−Nt

{(
r (m,n)s p(m,n)

ref
− r (m,n)p s(m,n)

)

× exp
[
i
(
κ(m,n) − α(m,n)1 uz

)
• r
]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

z < 0. (3.167)

Furthermore, a superindex

τ = m(2Nt + 1)+ n, m ∈ [−Mt ,Mt ], n ∈ [−Nt , Nt ] (3.168)

is defined for convenience; τ ∈ [−τt , τt ], where τt = 2Mt Nt + Mt + Nt . Then,
Eqs. (3.167) can be recast as

E ref(r) =
τt∑

τ=−τt

{(
r (τ )s s(τ ) + r (τ )p p(τ )

ref

)
exp
[
i
(
κ(τ) − α(τ)1 uz

)
• r
]}

H ref(r) = n1η
−1
0

τt∑
τ=−τt

{(
r (τ )s p(τ )

ref
− r (τ )p s(τ )

)
exp
[
i
(
κ(τ) − α(τ)1 uz

)
• r
]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

z < 0, (3.169)

wherein the superscript(τ ) stands for(m,n).
For use in the region z ∈ [0, d], the column (2τt + 1)-vectors1

[
ĕσ (z)

] = [ĕ(−τt )
σ (z), ĕ(−τt+1)

σ (z), . . . , ĕ(τt−1)
σ (z), ĕ(τt )

σ (z)
]T
, σ ∈ {x, y, z}

(3.170)

and

[
h̆σ (z)

] = [h̆(−τt )
σ (z), h̆(−τt+1)

σ (z), . . . , h̆(τt−1)
σ (z), h̆(τt )

σ (z)
]T
, σ ∈ {x, y, z}

(3.171)

1The symbol ˘ identifies quantities associated with the RCWA.
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are defined, with

ĕ(τ )σ (z) = e(m,n)σ (z), h̆(τ )σ (z) = h(m,n)σ (z). (3.172)

Along with these column vectors, (2τt + 1)× (2τt + 1) constitutive matrixes such as

[
ε̆

xz
(z)
]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε̆
(−τt ,−τt )
xz (z) ε̆

(−τt ,−τt+1)
xz (z) . . . ε̆

(−τt ,τt−1)
xz (z) ε̆

(−τt ,τt )
xz (z)

ε̆
(−τt+1,−τt )
xz (z) ε̆(−τt+1,−τt+1)

xz (z) . . . ε̆
(−τt+1,τt−1)
xz (z) ε̆

(−τt+1,τt )
xz (z)

. . . . . . . . . . . . . . .

ε̆
(τt−1,−τt )
xz (z) ε̆

(τt−1,−τt+1)
xz (z) . . . ε̆

(τt−1,τt−1)
xz (z) ε̆

(τt−1,τt )
xz (z)

ε̆
(τt ,−τt )
xz (z) ε̆

(τt ,−τt+1)
xz (z) . . . ε̆

(τt ,τt−1)
xz (z) ε̆

(τt ,τt )
xz (z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.173)

with

ε̆(τ ,τ
′)

xz (z) = ε(m−m′,n−n′)
xz (z) (3.174)

and

τ ′ = m′(2Nt + 1)+ n′, m′ ∈ [−Mt ,Mt ], n′ ∈ [−Nt , Nt ] (3.175)

are defined. Finally, the (2τt + 1)× (2τt + 1) Fourier-wavenumber matrixes

[
K̆

x

]
= diag

[
k̆(−τt )

x , k̆(−τt+1)
x , . . . , k̆(τt−1)

x , k̆(τt )
x

]
(3.176)

and

[
K̆

y

]
= diag

[
k̆(−τt )

y , k̆(−τt+1)
y , . . . , k̆(τt−1)

y , k̆(τt )
y

]
(3.177)

are set up with

k̆(τ )x = k(m)x , k̆(τ )y = k(n)y . (3.178)

Next, Eqs. (3.160)–(3.166) are substituted in Eqs. (3.7) with J e(r) = 0 everywhere,
and the orthogonality properties of the functions

exp

[
i2π

(
m

x

Lx
+ n

y

L y

)]
(3.179)
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on the rectangular region
{|x | � Lx/2, |y| � L y/2

}
are exploited to obtain the four

matrix ordinary differential equations

d

dz

[
ĕx (z)

] = i
[

K̆
x

]
•
[
ĕz(z)

]+ iω

{[
ζ̆

yx

]
•
[
ĕx (z)

]+
[
ζ̆

yy

]
•
[
ĕy(z)

]

+
[
ζ̆

yz

]
•
[
ĕz(z)

]+
[
μ̆

yx

]
•
[
h̆x (z)

]

+
[
μ̆

yy

]
•
[
h̆ y(z)

]
+
[
μ̆

yz

]
•
[
h̆z(z)

]}

d

dz

[
ĕy(z)

] = i
[

K̆
y

]
•
[
ĕz(z)

]− iω

{[
ζ̆

xx

]
•
[
ĕx (z)

]+
[
ζ̆

xy

]
•
[
ĕy(z)

]

+
[
ζ̆

xz

]
•
[
ĕz(z)

]+
[
μ̆

xx

]
•
[
h̆x (z)

]

+
[
μ̆

xy

]
•
[
h̆ y(z)

]
+
[
μ̆

xz

]
•
[
h̆z(z)

]}

d

dz

[
h̆x (z)

]
= i
[

K̆
x

]
•
[
h̆z(z)

]
− iω

{[
ε̆

yx

]
•
[
ĕx (z)

]+
[
ε̆

yy

]
•
[
ĕy(z)

]

+
[
ε̆

yz

]
•
[
ĕz(z)

]+
[
ξ̆

yx

]
•
[
h̆x (z)

]

+
[
ξ̆

yy

]
•
[
h̆ y(z)

]
+
[
x̆ i

yz

]
•
[
h̆z(z)

]}

d

dz

[
h̆ y(z)

]
= i
[

K̆
y

]
•
[
h̆z(z)

]
+ iω

{[
ε̆

xx

]
•
[
ĕx (z)

]+
[
ε̆

xy

]
•
[
ĕy(z)

]

+
[
ε̆

xz

]
•
[
ĕz(z)

]+
[
ξ̆

xx

]
•
[
h̆x (z)

]

+
[
ξ̆

xy

]
•
[
h̆ y(z)

]
+
[
ξ̆

xz

]
•
[
h̆z(z)

]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.180)

and the two algebraic equations

[
K̆

x

]
•
[
ĕy

]−
[

K̆
y

]
•
[
ĕx

] = ω
{[
ζ̆

zx

]
•
[
ĕx (z)

]+
[
ζ̆

zy

]
•
[
ĕy(z)

]

+
[
ζ̆

zz

]
•
[
ĕz(z)

]+
[
μ̆

zx

]
•
[
h̆x (z)

]

+
[
μ̆

zy

]
•
[
h̆ y(z)

]
+
[
μ̆

zz

]
•
[
h̆z(z)

]}

[
K̆

x

]
•
[
h̆ y

]
−
[

K̆
y

]
•
[
h̆x

]
= −ω

{[
ε̆

zx

]
•
[
ĕx (z)

]+
[
ε̆

zy

]
•
[
ĕy(z)

]

+
[
ε̆

zz

]
•
[
ĕz(z)

]+
[
ξ̆

zx

]
•
[
h̆x (z)

]

+
[
ξ̆

zy

]
•
[
h̆ y(z)

]
+
[
ξ̆

zz

]
•
[
h̆z(z)

]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.181)



General Theory of Surface-Wave Propagation 119

With the assumption that the column vectors
[
ĕz(z)

]
and

[
h̆z(z)

]
can be eliminated

by solving Eqs. (3.181), Eqs. (3.180) are compactly written as a single matrix ordinary
differential equation

d

dz

[
f̆ (z)
]
= i
[

P̆(z)
]
•
[

f̆ (z)
]
, z ∈ (0, d), (3.182)

where the column 4(2τt + 1)-vector

[
f̆ (z)
]
=

⎡
⎢⎢⎢⎢⎢⎣

[
ĕx (z)

]
[
ĕy(z)

]
[
h̆x (z)

]
[
h̆ y(z)

]

⎤
⎥⎥⎥⎥⎥⎦
, (3.183)

but the 4(2τt+1)×4(2τt+1)matrix
[

P̆(z)
]

is too cumbersome for reproduction here.

The boundary values of
[

f̆ (z)
]

follow from the expansions of the incident, reflected,

and transmitted field phasors. In the matrix notation used for RCWA, the boundary value

[
f̆ (0−)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
s̆

x

] [
p̆inc

x

] [
s̆

x

] [
p̆ref

x

]

[
s̆

y

] [
p̆inc

y

] [
s̆

y

] [
p̆ref

y

]

n1η
−1
0

[
p̆inc

x

]
−n1η

−1
0

[
s̆

x

]
n1η
−1
0

[
p̆ref

x

]
−n1η

−1
0

[
s̆

x

]

n1η
−1
0

[
p̆inc

y

]
−n1η

−1
0

[
s̆

y

]
n1η
−1
0

[
p̆ref

y

]
−n1η

−1
0

[
s̆

y

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•

⎡
⎣
[

Ă
]

[
R̆
]
⎤
⎦, (3.184)

where the column 2(2τt + 1)-vector

[
Ă
]
=
[
a(−τt )

s , a(−τt+1)
s , . . . , a(τt−1)

s , a(τt )
s , a(−τt )

p , a(−τt+1)
p , . . . , a(τt−1)

p , a(τt )
p

]T

(3.185)

comprises known quantities, but the column 2(2τt + 1)-vector

[
R̆
]
=
[
r (−τt )

s , r (−τt+1)
s , . . . , r (τt−1)

s , r (τt )
s , r (−τt )

p , r (−τt+1)
p , . . . , r (τt−1)

p , r (τt )
p

]T

(3.186)
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contains the unknown reflection amplitudes. In addition, the following six diagonal
(2τt + 1)× (2τt + 1) matrixes enter Eq. (3.184):

[
s̆

x

]
=

⎡
⎢⎢⎢⎢⎣

ux
• s(−τt ) 0 . . . 0 0
0 ux

• s(−τt+1) . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . ux
• s(τt−1) 0

0 0 . . . 0 ux
• s(τt )

⎤
⎥⎥⎥⎥⎦
, (3.187)

[
s̆

y

]
=

⎡
⎢⎢⎢⎢⎣

uy
• s(−τt ) 0 . . . 0 0
0 uy

• s(−τt+1) . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . uy
• s(τt−1) 0

0 0 . . . 0 uy
• s(τt )

⎤
⎥⎥⎥⎥⎦
, (3.188)

[
p̆inc

x

]
=

⎡
⎢⎢⎢⎢⎢⎣

ux
• p(−τt )

inc
0 . . . 0 0

0 ux
• p(−τt+1)

inc
. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . ux
• p(τt−1)

inc
0

0 0 . . . 0 ux
• p(τt )

inc

⎤
⎥⎥⎥⎥⎥⎦
, (3.189)

[
p̆inc

y

]
=

⎡
⎢⎢⎢⎢⎢⎣

uy
• p(−τt )

inc
0 . . . 0 0

0 uy
• p(−τt+1)

inc
. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . uy
• p(τt−1)

inc
0

0 0 . . . 0 uy
• p(τt )

inc

⎤
⎥⎥⎥⎥⎥⎦
, (3.190)

[
p̆ref

x

]
=

⎡
⎢⎢⎢⎢⎢⎣

ux
• p(−τt )

ref
0 . . . 0 0

0 ux
• p(−τt+1)

ref
. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . ux
• p(τt−1)

ref
0

0 0 . . . 0 ux
• p(τt )

ref

⎤
⎥⎥⎥⎥⎥⎦
, (3.191)

[
p̆ref

y

]
=

⎡
⎢⎢⎢⎢⎢⎣

uy
• p(−τt )

ref
0 . . . 0 0

0 uy
• p(−τt+1)

ref
. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . uy
• p(τt−1)

ref
0

0 0 . . . 0 uy
• p(τt )

ref

⎤
⎥⎥⎥⎥⎥⎦
. (3.192)

The other boundary value

[
f̆ (d+)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
s̆

x

] [
p̆tr

x

]

[
s̆

y

] [
p̆tr

y

]

n2η
−1
0

[
p̆tr

x

]
−n2η

−1
0

[
s̆

x

]

n2η
−1
0

[
p̆tr

y

]
−n2η

−1
0

[
s̆

y

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•
[
T̆
]

(3.193)
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contains the column 2(2τt + 1)-vector

[
T̆
]
=
[
t (−τt )
s , t (−τt+1)

s , . . . , t (τt−1)
s , t (τt )

s , t (−τt )
p , t (−τt+1)

p , . . . , t (τt−1)
p , t (τt )

p

]T

(3.194)

comprising the unknown transmission amplitudes and employs the diagonal matrixes

[
p̆tr

x

]
=

⎡
⎢⎢⎢⎢⎢⎣

ux
• p(−τt )

tr
0 . . . 0 0

0 ux
• p(−τt+1)

tr
. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . ux
• p(τt−1)

tr
0

0 0 . . . 0 ux
• p(τt )

tr

⎤
⎥⎥⎥⎥⎥⎦

(3.195)

and

[
p̆tr

y

]
=

⎡
⎢⎢⎢⎢⎢⎣

uy
• p(−τt )

tr
0 . . . 0 0

0 uy
• p(−τt+1)

tr
. . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . uy
• p(τt−1)

tr
0

0 0 . . . 0 uy
• p(τt )

tr

⎤
⎥⎥⎥⎥⎥⎦
. (3.196)

For convenience, the boundary values
[

f̆ (0−)
]

and
[

f̆ (d+)
]

are recast compactly
as

[
f̆ (0−)

]
=
⎡
⎣
[
Y̆

inc

e

] [
Y̆

ref

e

]
[
Y̆

inc

h

] [
Y̆

ref

h

]
⎤
⎦ •

⎡
⎣
[

Ă
]

[
R̆
]
⎤
⎦ (3.197)

and

[
f̆ (d+)

]
=
⎡
⎣
[
Y̆

tr

e

]
[
Y̆

tr

h

]
⎤
⎦ •
[
T̆
]
. (3.198)

The 2(2τt +1)×2(2τt +1)matrixes
[
Y̆

inc

e

]
, etc., can be synthesized from Eqs. (3.184)

and (3.193) by inspection; for instance,

[
Y̆

inc

e

]
=
⎡
⎢⎣

[
s̆

x

] [
p̆inc

x

]

[
s̆

y

] [
p̆inc

y

]
⎤
⎥⎦ ,

[
Y̆

inc

h

]
= n1η

−1
0

⎡
⎢⎣

[
p̆inc

x

]
−
[
s̆

x

]
[

p̆inc

y

]
−
[
s̆

y

]
⎤
⎥⎦. (3.199)

As in Section 3.7.2, the piecewise-uniform-approximation method is very suitable to
solve Eq. (3.182) numerically. Let the region 0 � z � d be divided into Ns subregions,
the �th subregion being bounded by the planes z = z�−1 and z = z�, � ∈ [1, Ns],
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where z0 = 0 and zNs = d. In the �th subregion, the matrix
[

P̆(z)
]

is approximated

by the uniform matrix

[
P̆
](�) =

[
P̆

(
z� + z�−1

2

)]
, � ∈ [1, Ns]. (3.200)

Then, provided that every subregion is sufficiently thin,

[
f̆ (d−)

]
�
[
W̆
](Ns ) •

[
W̆
](Ns−1)

• . . . •
[
W̆
](2)

•
[
W̆
](1)

•
[

f̆ (0+)
]
,

(3.201)

where
[
W̆
](�) = exp

{
i(z� − z�−1)

[
P̆
](�)}

, � ∈ [1, Ns ]. (3.202)

The usual boundary conditions being
[

f̆ (0−)
]
=
[

f̆ (0+)
]
,

[
f̆ (d−)

]
=
[

f̆ (d+)
]
, (3.203)

Equations (3.197), (3.198), and (3.201) lead to the algebraic equation
⎡
⎣
[
Y̆

tr

e

]
[
Y̆

tr

h

]
⎤
⎦ •
[
T̆
]
=
[
W̆
](Ns ) •

[
W̆
](Ns−1)

• . . .

•
[
W̆
](2)

•
[
W̆
](1)

•

⎡
⎣
[
Y̆

inc

e

] [
Y̆

ref

e

]
[
Y̆

inc

h

] [
Y̆

ref

h

]
⎤
⎦ •

⎡
⎣
[

Ă
]

[
R̆
]
⎤
⎦, (3.204)

which may be solved for
[

R̆
]

and
[
T̆
]

using standard matrix techniques [261].

3.8.6 Stable RCWA Algorithm

The application of a standard matrix-inversion technique such as the Gauss elimination
technique [261] to solve Eq. (3.204) is prone to numerical problems, particularly when
either d is electrically large and/or the incidence is highly oblique. As stated in Section
2.3.4.5, a stable algorithm is available to overcome these problems. It requires that[

P̆
](�)

be diagonalizable for all � ∈ [1, Ns]. Then,

[
P̆
](�) =

[
V̆
](�)

•
[
Ğ
](�)

•
([

V̆
](�))−1

, � ∈ [1, Ns], (3.205)

where the diagonal matrix
[
Ğ
](�)

contains the eigenvalues of
[

P̆
](�)

in decreasing order

of the magnitude of the imaginary part, and
[

V̆
](�)

is a square matrix comprising the



General Theory of Surface-Wave Propagation 123

eigenvectors of
[

P̆
](�)

as its columns, arranged so that each eigenvector is in the same

position as the corresponding eigenvalue in
[
Ğ
](�)

. Accordingly, Eq. (3.182) yields

[
f̆ (z�−1)

]
=
[
V̆
](�)

• exp

{
−i(z� − z�−1)

[
Ğ
](�)}

•
([

V̆
](�))−1

•
[

f̆ (z�)
]
.

(3.206)

A set of auxiliary column 2(2τt + 1)-vectors
[
T̆
](�)

and auxiliary transmission

matrixes
[

Z̆
](�)

of size 4(2τt+1)×2(2τt+1) are postulated to satisfy the relations [258]

[
f̆ (z�)

]
=
[

Z̆
](�)

•
[
T̆
](�)

, � ∈ [0, Ns ], (3.207)

where

[
T̆
](Ns ) =

[
T̆
]
,

[
Z̆
](Ns ) =

⎡
⎣
[
Y̆

tr

e

]
[
Y̆

tr

h

]
⎤
⎦. (3.208)

Equation (3.207) is then substituted in Eq. (3.206) to obtain the relation
[

Z̆
](�−1)

•
[
T̆
](�−1) =

[
V̆
](�)

•

⎡
⎢⎢⎣

exp

{
−i(z� − z�−1)

[
Ğ

upper

](�)} [
ŏ
]

[
ŏ
]

exp

{
−i(z� − z�−1)

[
Ğ

lower

](�)}

⎤
⎥⎥⎦

•
([

V̆
](�))−1

•
[

Z̆
](�)

•
[
T̆
](�)

, � ∈ [1, Ns], (3.209)

where
[

ŏ
]

is the 2(2τt + 1) × 2(2τt + 1) null matrix. The 2(2τt + 1) × 2(2τt + 1)

matrixes
[
Ğ

upper

](�)
and

[
Ğ

lower

](�)
are the upper and lower diagonal submatrixes of

the 4(2τt + 1)× 4(2τt + 1) matrix
[
Ğ
](�)

, respectively.

Next, the 2(2τt+1)×2(2τt+1)matrixes
[

X̆
upper

](�)
and
[

X̆
lower

](�)
are defined via

⎡
⎢⎣
[

X̆
upper

](�)
[

X̆
lower

](�)

⎤
⎥⎦ =

([
V̆
](�))−1

•
[

Z̆
](�)

. (3.210)

Furthermore, the recurrence relation
[
T̆
](�−1) = exp

{
−i(z� − z�−1)

[
Ğ

upper

](�)}
•
[

X̆
upper

](�)
•
[
T̆
](�)

(3.211)
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is postulated. Now, substitution of Eq. (3.211) in Eq. (3.209) leads to the relation

[
Z̆
](�−1) =

[
V̆
](�)

•

⎡
⎣
[

1̆
]

[
Ŭ
](�)
⎤
⎦, � ∈ [1, Ns], (3.212)

where
[

1̆
]

is the 2(2τt + 1)× 2(2τt + 1) identity matrix and

[
Ŭ
](�) = exp

{
−i(z� − z�−1)

[
Ğ

lower

](�)}
•
[

X̆
lower

](�)
•
([

X̆
upper

](�))−1

• exp

{
i(z� − z�−1)

[
Ğ

upper

](�)}
, � ∈ [1, Ns]. (3.213)

After using Eqs. (3.210) and (3.212) repeatedly,
[

Z̆
](�)

is found in terms of
[

Z̆
](Ns )

∀� ∈ [0, Ns − 1].
After it is found,

[
Z̆
](0)

is partitioned as

[
Z̆
](0) =

⎡
⎢⎣
[

Z̆
upper

](0)
[

Z̆
lower

](0)

⎤
⎥⎦. (3.214)

From Eqs. (3.197) and (3.207), and after enforcing the boundary condition
[

f̆ (0−)
]
=

[
f̆ (0+)

]
,
[

R̆
]

and
[
T̆
](0)

are found as follows:

⎡
⎣
[
T̆
](0)
[

R̆
]
⎤
⎦ =

⎡
⎢⎣
[

Z̆
upper

](0) −
[
Y̆

ref

e

]
[

Z̆
lower

](0) −
[
Y̆

ref

h

]

⎤
⎥⎦
−1

•

⎡
⎣
[
Y̆

inc

e

]
[
Y̆

inc

h

]
⎤
⎦ •
[

Ă
]
. (3.215)

After
[
T̆
](0)

is known,
[
T̆
](�)

is found for all � ∈ [1, Ns] by reversing the sense

of iterations in Eq. (3.211). Thus the stable RCWA algorithm yields both
[
T̆
]
=

[
T̆
](Ns )

and
[

R̆
]
.

With
[

f̆ (z0)
]
=
[

f̆ (0−)
]

now known using Eq. (3.197),
[

f̆
(
z�
)]

can be calcu-

lated for all � ∈ [1, Ns] by repeated use of Eq. (3.206). Next, with
[

f̆
(
z�
)]

known,[
h̆z

(
z�
)]

and
[
ĕz

(
z�
)]

can be obtained from Eqs. (3.181). After the further use of

Eqs. (3.166), the field phasors E(r) and H(r) can be mapped in the region 0 � z � d.
The sufficiency of Mt and Nt requires convergence tests. Increasing either or both

of them in unit increments, one must test that the reflectances R(m,n)sp , etc., and the

transmittances T (m,n)sp , etc., converge within satisfactory tolerance limits (say, 0.1%).
The principle of conservation of energy also must be satisfied simultaneously.
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3.8.7 Excitation of a Surface Wave

In order to investigate the excitation of a surface wave in the grating-coupled configura-
tion at a specified value of the free-space wavelength, some measurable intensity must
be plotted as a function of the angle of incidence. This plot would contain many peaks
and troughs. Some of these features would be found at about the same value of θinc,
provided that average thicknesses dA and dB exceed certain thresholds. As mentioned
in Sections 3.7.3 and 3.7.4, the thickness of a partnering material that is periodically
nonhomogeneous should be increased in increments of a period, for the purpose of
identifying surface waves.

For SPP waves, peaks in the plots of an absorptance versus angle of incidence should
be examined, as explained in Section 2.3.4.6 and illustrated in Section 2.3.4.7. Even if
both partnering materials are commonly assumed to be lossless in the spectral regime
of interest, the incorporation of weak dissipation in calculations is a good strategy, as
exemplified recently for the identification of Tamm waves [180].

Suppose that the value of θinc of a certain absorptance peak does not change signif-
icantly when the average thicknesses of both partnering materials are increased above
some thresholds, the angleψ being fixed. If an index pair (m, n) can be found such that

k(m,n)xy ≈ Re {q} , (3.216)

where q is a solution of Eq. (3.87) for the corresponding canonical boundary-value
problem, a surface wave is excited as a Floquet harmonic of order (m, n).
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4 Dyakonov Waves

4.1 Introduction

Whereas Chapter 2 is devoted to surface-wave propagation guided by the interface of an
isotropic homogeneous dielectric material and an isotropic homogeneous metal, in this
chapter both partnering materials are homogeneous dielectric with at least one being
anisotropic. Although either or both partnering materials can even be homogeneous
bianisotropic materials [37,38] and the problem of surface-wave propagation can be
theoretically treated using the general methods presented in Chapter 3, a restriction to
anisotropic dielectric materials in this chapter is appropriate in light of the current state
of practical materials science.

The transition from isotropic dielectric materials to anisotropic dielectric materials
is associated with the emergence of new phenomenons and a generally richer palette
of optical response characteristics. For example, isotropic dielectric materials are uni-
refringent, but their anisotropic counterparts are birefringent. In a unirefringent mate-
rial, the four elements of the diagonal matrix [G] of Eq. (3.31)2 obey the restrictions
g1 = g2, g3 = g4, and g1 = −g3; furthermore, these elements do not depend on the
angle ψ of Eq. (3.15). In a birefringent material, g1 �= g2 and/or g3 �= g4 at the very
least.

The surface wave guided by the interface of two homogeneous dielectric materials, of
which at least one is anisotropic, is called a Dyakonov wave. The following rule applies:
whereas such an interface may support the propagation of Dyakonov waves, the pro-
pagation of a Dyakonov wave is never supported if both partnering dielectric materials
are isotropic. Thus, the topic of Dyakonov waves is inextricably linked to anisotropy.

Both the theory and practicality of Dyakonov waves, in the context of relatively
simple anisotropic dielectric materials and beyond, are considered in this chapter. We
are exclusively concerned with partnering materials which are homogeneous at macro-
scopic length scales, and our focus is largely on materials which exhibit negligible
dissipation.

In a seminal short paper published in 1988, D’yakonov1 presented a theoretical
description of a surface wave guided by the interface of an isotropic dielectric material
and a uniaxial dielectric material [35]. In contrast to the case for SPP waves, both

1The name D’yakonov was published in a Russian-language journal as well as in its English-language
translational journal. It is nowadays commonly written as Dyakonov in English.

Electromagnetic Surface Waves. http://dx.doi.org/10.1016/B978-0-12-397024-4.00004-9
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-397024-4.00004-9
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partnering materials involved were assumed to be lossless, both were characterized by
positive-definite permittivity dyadics, and the uniaxiality of one of them was essential.
All eigenvalues of a positive-definite dyadic are real and positive.

Although there were earlier studies in which surface waves guided by the inter-
face of anisotropic/isotropic dielectric materials had been described [34,303], surface
waves of this type (as well as their generalizations) have become known as Dyakonov
waves. Since these surface waves are guided by the interface of two dielectric materials
whose principal permittivity scalars are typically weakly sensitive to frequency, in the
optical regime at least, these waves are sometimes referred to as being dispersionless
[164,304,305].

4.2 Interface of an Anisotropic Material and an
Isotropic Material

4.2.1 Interface of a Uniaxial Material and an Isotropic Material

4.2.1.1 Optic Axis in Interface Plane

The simplest interface for the propagation of a Dyakonov wave, at least from a mathe-
matical perspective, is that of an isotropic dielectric material and a uniaxial dielec-
tric material, with both materials assumed to be lossless. The characteristics of the
Dyakonov wave can be obtained after the application of the general formulation of
the canonical boundary-value problem given in Section 3.5. Although the theory of the
canonical boundary-value problem for Dyakonov-wave propagation is covered in that
section for even the most general of cases, it is illuminating to consider here in greater
detail the simplest Dyakonov wave for analytical progress before having to resort to
numerical techniques.

Following the notation of Section 3.5, let us take material A which occupies the
half-space z > 0 to be a uniaxial dielectric material characterized by the permittivity
dyadic

εA = εAs I +
(
εAt − εAs

)
ucuc, (4.1)

with the unit vector uc pointing in the direction of the optic axis of material A.2 Let us
further simplify matters by assuming that the optic axis of material A is aligned parallel
to the plane of the interface. Without further loss of generality, the coordinate axes can
be oriented such that uc = ux . Material B which occupies the half-space z < 0 is taken
to be an isotropic dielectric material characterized by the permittivity dyadic

εB = εB I . (4.2)

2The optic axis of a uniaxial dielectric material coincides with its optic ray axis, as discussed in Appendix B.
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Figure 4.1 Schematic of the canonical boundary-value problem for the propagation of a
Dyakonov wave guided by the planar interface of two dissimilar dielectric materials with
permittivity dyadics εA and εB. The direction of propagation in the interface plane is denoted
by uprop.

Let us consider the surface wave which propagates in the xy plane (i.e. parallel to the
interface) at an angleψ ∈ [0◦, 360◦

)
with respect to the x axis, as shown in Figure 4.1.

The spatial variation of the field phasors along the direction of propagation

uprop = ux cosψ + uysinψ (4.3)

has the form

exp (iquprop
• r). (4.4)

The wavenumber q is taken to be real valued for Dyakonov waves. Complex-valued
wavenumbers may exist even though both partnering materials are taken to have negli-
gible dissipation, and the associated surface waves would then have to be called leaky
Dyakonov waves. But, as a leaky Dyakonov wave is of little value for optical applica-
tions, it is ignored in the remainder of this chapter.
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The field phasors in the half-space z > 0 are given by Eqs. (3.80), which may be
restated here as

e(z) =
2∑

m=1

CA
m

{
vA

1mux + vA
2muy

+
[
νeh,A

zx vA
3m + νeh,A

zy vA
4m

]
uz

}
exp

(
iαA

m z
)

h(z) =
2∑

m=1

CA
m

{
vA

3mux + vA
4muy

+
[
νhe,A

zx vA
1m + νhe,A

zy vA
2m

]
uz

}
exp

(
iαA

m z
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, z > 0, (4.5)

wherein explicit expressions for vA
1m , etc., and νeh,A

zx , etc., can be found by following
the methodology of Chapter 3. It suffices to mention here that the wavenumbers

αA
1 =

√
ω2μ0εAs − q2 (4.6)

and

αA
2 =

√√√√ω2μ0ε
A
t − q2

(
sin2ψ + ε

A
t

εAs
cos2 ψ

)
, (4.7)

respectively, of the two eigenmodes in Eqs. (4.5) are akin to the ordinary and extra-
ordinary waves in a uniaxial dielectric material [78] and must obey the restrictions

Im
{
αA

m

}
> 0, m ∈ [1, 2]. (4.8)

Of course, the coefficients CA
1 and CA

2 are not known. Let us also note that although the
symbol gA

m could have been used in place ofαA
m in accordance with Section 3.3, because

the uniaxial material is homogeneous, we elected to use the latter for consistency
with those types of surface waves that require at least one partnering material to be
periodically nonhomogeneous normal to the interface.

A similar treatment of the field phasors in the half-space z < 0 shows that they are
linear combinations of s- and p-polarized eigenmodes. Thus, with unknown coefficients
CB

s and CB
p , we have3

e(z) = CB
s us + CB

p

(−αBuprop + quz

k0nB

)
exp

(
iαBz

)

h(z) = nB
η0

[
CB

s

(−αBuprop + quz

k0nB

)
− CB

p us

]
exp

(
iαBz

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z < 0, (4.9)

3In Chapters 1, 2, and 6, the half-space z < 0 in the canonical boundary-value problem for SPP-
wave propagation is occupied by a metal, and the spatial dependence of the field phasors is taken to be
exp [i(quprop − αmetuz)

• r ] with Im {αmet} > 0. In Chapters 4, 5, and 7, sometimes the half-space
z < 0 in the canonical boundary-value problem for surface-wave propagation is occupied by an isotropic
homogeneous dielectric material. In consonance with Chapter 3, we then adopt the spatial dependence
exp [i(quprop + αBuz)

• r ] with Im{αB} < 0. Both representations are identical, as can be ascertained by

setting αmet = −αB .
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where us = −ux sinψ + uy cosψ, nB =√εB/ε0, and the wavenumber

αB =
√
ω2μ0εB − q2 (4.10)

satisfies the condition

Im
{
αB} < 0. (4.11)

After following the procedure presented in Section 3.5.1, the dispersion equation
(3.87) for the present problem reduces to

αA
1

(
αB − αA

1

)[
εAs αA

2 α
B − εB

(
αA

1

)2
]

cos2 ψ

+ω2μ0ε
A
s

(
αB − αA

2

)(
εAs αB − εBαA

1

)
sin2 ψ = 0. (4.12)

When combined with Eqs. (4.6), (4.7), and (4.10), the dispersion equation simplifies to
(

Im
{
αA

1

}
− Im {αB}

)(
Im
{
αA

2

}
− Im {αB}

)(
εBIm

{
αA

1

}
+ εAs Im

{
αA

2

})

= ω2μ0

(
εAt − εB

)(
εB − εAs

)
Im
{
αA

1

}
. (4.13)

For extracting solutions q of Eq. (4.13) consistently with the inequalities (4.8) and
(4.11), only two possibilities emerge: either the inequalities

εAs < εB < εAt (4.14)

or the inequalities

εAs > εB > εAt (4.15)

must be satisfied. However, satisfaction of the inequalities (4.15) results only in null
solutions [35]. Consequently, the inequalities (4.14) must hold in order for Dyakonov
waves to exist. Accordingly, only when material A is a positive uniaxial material can
a Dyakonov wave be guided by the chosen interface. Positive uniaxiality requires that
εAt > εAs , whereas negative uniaxiality requires that εAt < εAs , as stated in Appendix B.

The inequalities (4.8) and (4.11) are generally satisfied only for a relatively small
range of propagation directions, as specified by ψmin < ψ < ψmax. The limits on ψ
are determined by the zeros of αA

2 and αB . When

q2 < ω2μ0ε
B, (4.16)

which corresponds to ψ < ψmin, then αB is real valued and the fields are not localized
to the interface on the isotropic side (z < 0). Similarly, when

q2

(
sin2 ψ + ε

A
t

εAs
cos2ψ

)
< ω2μ0ε

A
t , (4.17)

then αB is real valued and the fields are not localized to the interface on the uniaxial side
(z > 0). As ψ ∈ (ψmin, ψmax) decreases towards ψmin, the Dyakonov wave becomes
less tightly confined to the vicinity of the interface and its mean power density shifts
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away from the interface in the −z direction. Likewise, as ψ ∈ (ψmin, ψmax) increases
towardsψmax, the Dyakonov wave again becomes less tightly confined to the vicinity of
interface, and its mean power density shifts away from the interface in the+z direction.
Thus, the Dyakonov wave disappears asψ approaches either of its limiting valuesψmin
and ψmax from inside its angular existence domain (AED) (ψmin, ψmax).

Explicit expressions can be derived for the limits on propagation directions for
Dyakonov waves guided by the interface of an isotropic dielectric material and a uni-
axial dielectric material with its optic axis aligned parallel to the interface plane. The
transition points αB = 0 and αA

2 = 0 give rise to [35]:

ψmin = sin−1
(
ϒ

2

{
1−	ϒ +

[(
1−	ϒ)2 + 4	

]1/2
})1/2

(4.18)

and

ψmax = sin−1

(
ϒ
(
1+	)3

(
1+	)2 (

1+	ϒ)−	2
(
1− ϒ)2

)1/2

, (4.19)

respectively, with the scalar parameters

ϒ = εB − εAs
εAt − εAs

, 	 = εAt
εAs
− 1. (4.20)

The width of the AED is the difference ψmax − ψmin. This quantity is plotted in
Figure 4.2 as a function of the relative permittivity εB/ε0 for three strongly anisotropic
uniaxial dielectric materials. For all three uniaxial dielectric materials, the width of the
AED is less than 1◦ and it rapidly vanishes in the limits εB → εAs and εB → εAt .
Also, the AED is wider for uniaxial dielectric materials which exhibit a greater degree
of positive uniaxiality, as gauged by the scalar parameter	 defined in Eq. (4.20)2; the
larger the value of 	 > 0, the larger is the degree of positive uniaxiality.

The angle (ψmax + ψmin)/2 denoting the average direction allowed for Dyakonov-
wave propagation is also plotted in Figure 4.2 as a function of the relative permittivity
εB/ε0. This angle tends to 0◦ as εB → εAs + and tends to 90◦ as εB → εAt −.

From Eqs. (4.18) and (4.19), it follows that if Dyakonov-wave propagation is sup-
ported for the angular rangeψmin < ψ < ψmax, then it is also supported for the angular
ranges (180◦−ψmax) < ψ < (180◦−ψmin), (180◦+ψmin) < ψ < (180◦+ψmax), and
−ψmax < ψ < −ψmin. Figure 4.3 illustrates all the directions for which a Dyakonov
wave can be guided by the planar interface of calomel (a strongly uniaxial material
with εAt = 7.02ε0 and εAs = 3.88ε0) and an isotropic dielectric material. In order to
maximize the width of the AED, for this figure a value of εBwas chosen which lies
midway between εAs and εAt .

Solutions q of the dispersion equation (4.12)—equivalently, (4.13)—are plotted
againstψ ∈ (ψmin, ψmax)in Figure 4.4 for Dyakonov waves guided by the planar inter-
face of calomel and an isotropic dielectric material with permittivity εB = 4.5ε0. A
modest increase in q of about 1% is observed as the propagation angle ψ increases
from ψmin to ψmax.
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Figure 4.2 (Top) The width ψmax − ψmin and (bottom) the central angle (ψmax + ψmin)/2
of the AED as functions of the relative permittivity εB/ε0 of the isotropic partnering material
when the uniaxial dielectric partnering material is one of E7 liquid crystal

(
εAt = 2.98ε0 and

εAs = 2.31ε0
)
, or YVO4

(
εAt = 4.91ε0 and εAs = 3.97ε0

)
, or rutile

(
εAt = 8.70ε0 and εAs =

7.02ε0
)
. The optic axis of the uniaxial dielectric partnering material is aligned parallel to the

x axis.

Figure 4.5 presents the variations of the magnitudes of the Cartesian components of
e(z), h(z), and P(x, y, z) in relation to z/λ0 whenψ = (ψmax+ψmin)/2, for the same
combination of constitutive parameters as used for Figure 4.4. Most strikingly, neither
do the maximum magnitudes of the field components generally occur precisely at the
interface z = 0, nor is the energy flux associated with the Dyakonov wave centered
precisely at z = 0. Instead the energy flux is somewhat skewed towards the half-space
z < 0 occupied by the partnering isotropic material.

Before proceeding to more complicated cases, let us summarize the key properties
of Dyakonov waves in the simplest possible case we have been considering, namely that
involving the planar interface of a positive uniaxial dielectric material and an isotropic
dielectric material with the optic axis of the uniaxial material aligned parallel to the
interface plane:
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Figure 4.3 Ranges (shaded red) of angle ψ for which a Dyakonov wave is guided by the planar

interface of calomel
(
εAt = 7.02ε0 and εAs = 3.88ε0

)
and an isotropic dielectric material with

permittivity εB = 4.5ε0. The angular ranges are ψmin < ψ < ψmax, (180◦ − ψmax) < ψ <

(180◦ − ψmin), (180◦ + ψmin) < ψ < (180◦ + ψmax), and −ψmax < ψ < −ψmin, where
ψmin = 31.88◦ and ψmax = 36.06◦. The optic axis of calomel is aligned parallel to the x axis.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this book.)
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Figure 4.4 Solutions q with respect to ψ for Dyakonov waves guided by the planar interface of
calomel

(
εAt = 7.02ε0 and εAs = 3.88ε0

)
and an isotropic dielectric material with permittivity

εB = 4.5ε0, when the optic axis of calomel is aligned parallel to the x axis.

i. Dyakonov-wave propagation is possible only if the inequalities (4.14) are satisfied.
ii. Generally, Dyakonov waves are restricted to very small AEDs.

iii. The AED depends upon both the permittivity scalar of the isotropic partnering
material and the permittivity dyadic of the uniaxial partnering material.

iv. The AED increases as the difference εAt − εAs increases.
v. Typically, Dyakonov waves are neither tightly confined to the vicinity of the inter-

face (unlike the simple SPP waves in Chapter 2) nor do the maximums of their field
magnitudes occur precisely at the interface.

vi. In the half-space occupied by the uniaxial dielectric material, the Dyakonov wave
is a linear combination of ordinary and extraordinary components. In the half-
space occupied by the isotropic dielectric material, the Dyakonov wave is a linear
combination of s- and p-polarized components.
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Figure 4.5 Variations with z/λ0 of the magnitudes of the Cartesian components of (a) e(z),
(b) h(z), and (c) P(x, y, z) of a Dyakonov wave guided by the interface of calomel (εAt = 7.02ε0
and εAs = 3.88ε0) and an isotropic dielectric material with permittivity εB = 4.5ε0, when
ψ = (ψmax + ψmin

)
/2 = 33.97◦. The components parallel to ux , uy , and uz are represented

by red solid, blue dashed, and black chain-dashed lines, respectively. The data were computed
by setting CB

s = 1 V m−1 in Eq. (4.9). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this book.)

Analogous characteristics characterize Dyakonov waves in more complex cases, descri-
bed in the remainder of this Chapter.

4.2.1.2 Optic Axis not in Interface Plane

Let us now suppose that the optic axis specified in Eq. (4.1) is no longer parallel
to the interface plane. Instead, the unit vector uc is inclined at angle φ ∈ (0◦, 90◦]
with respect to the interface plane. In this case the inequalities (4.14) must still be
satisfied for Dyakonov-wave propagation but closed-form expressions for the limits on
ψ describing the AED are not available.

Tipping of the optical axis away from the interface plane has several notable con-
sequences for Dyakonov-wave propagation [162]. First, αA

2 acquires a non-zero real
part. Accordingly, the field phasors of the Dyakonov wave oscillate as well as decay
as distance from the interface increases in the +z direction; however, the z-directed
component of the time-averaged Poynting vector remains null-valued [165]. Second,
the width of the AED decreases continuously as φ increases, becoming null-valued in
the limit φ → 90◦. Third, the Dyakonov wave becomes steadily less localized to the
vicinity of the interface as φ increases, becoming completely delocalized—and hence
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ceasing to exist as a surface wave—as φ→ 90◦. Thus, when the optic axis lies parallel
to the interface plane (i.e. φ = 0◦), the AED is the widest and the Dyakonov wave is
most strongly bound to the interface.

4.2.2 Interface of a Biaxial Material and an Isotropic Material

4.2.2.1 Optic Ray Axes in Interface Plane

Generalizing further, let us suppose next that the material A occupying the half-space
z > 0 is a biaxial dielectric material with permittivity dyadic

εA = εA1 u1u1 + εA2 u2u2 + εA3 u3u 3, (4.21)

where the unit vectors u1, u2, and u3 are arbitrary but form a right-handed triad:

u1 × u2 = u3, u3 × u1 = u2, u2 × u3 = u1. (4.22)

Without loss of generality, let us assume that

εA1 > εA2 > εA3 . (4.23)

The material B occupying the half-space z < 0 remains an isotropic dielectric material
described by Eq. (4.2).

It is helpful to recast εA in terms of the optic ray axes aligned with the unit vectors

aA+ = u1

√
εA1 − εA2
εA1 − εA3

+ u3

√
εA2 − εA3
εA1 − εA3

aA− = u1

√
εA1 − εA2
εA1 − εA3

− u3

√
εA2 − εA3
εA1 − εA3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (4.24)

as

εA = εA2 I + ε
A
1 − εA3

2

(
aA+aA− + aA−aA+

)
. (4.25)

Now let us restrict attention to the case where the optic ray axes lie parallel to the inter-
face plane, i.e. the xy plane. A surface wave may be guided provided the inequalities

εA2 < εB < εA1 (4.26)

are satisfied [162].
If the coordinate axes are oriented such that u1 = ux and u3 = uy , then the optic

ray axes aA± are directed symmetrically about the coordinate axes in the xy plane and
the direction of propagation relative to the x axis is restricted to the angular range
ψmin < ψ < ψmax, where the limits are [163]

ψmin = sin−1

{
ν

ν1

[
1+ ν(ν1 − ν)2

(1+ ν1)(ν2 − ν)+ ν(ν1 − ν)
]−1

}1/2

(4.27)
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and

ψmax = sin−1
[
ν

ν1
+ 1

2ν1(1+ ν)2
(
(1+ ν1)(ν2 − ν)+ 2ν(1+ ν)(ν1 − ν)

−{(1+ ν1)(ν2 − ν)[(1+ ν1)(ν2 − ν)+ 4ν(1+ ν)(ν1 − ν)]}1/2
)]1/2

,

(4.28)

with the scalar parameters

ν = εA3
εB
− 1, ν1 = εA3

εA1
− 1, ν2 = εA3

εA2
− 1. (4.29)

The biaxial/isotropic interface can provide slightly larger AEDs as well as a slightly
greater degree of localization to the vicinity of the interface, than a uniaxial/isotropic
interface, provided that the degrees of anisotropy of material A are approximately
the same for both interfaces—i.e. the ratio εA1 /εA3 is comparable in magnitude to the
ratio εAt /εAs of Section 4.2.1.1 [162]. Furthermore, Dyakonov-wave propagation is
supported by both positive and negative biaxial dielectric materials [305]. Given the
inequalities (4.23), the material A is positive biaxial if

εA1 − εA2
εA1 − εA3

∈
(

1

2
, 1

)
, (4.30)

but it is negative biaxial if

εA1 − εA2
εA1 − εA3

∈
(

0,
1

2

)
. (4.31)

In contrast, if material A is uniaxial, then it will only support Dyakonov-wave propa-
gation provided that εA1 > εA2 = εA3 .

Finally, if Dyakonov waves can propagate in the angular range ψmin < ψ < ψmax
withψmin and ψmax specified in Eqs. (4.27) and (4.28), respectively, then they can also
propagate in the angular ranges (180◦−ψmax) < ψ < (180◦−ψmin), (180◦+ψmin) <

ψ < (180◦ + ψmax), and −ψmax < ψ < −ψmin.

4.2.2.2 Optic Ray Axes not in Interface Plane

Let us next suppose that at least one of the optic ray axes of the biaxial dielectric
material A is not parallel to the interface plane. The consequences for Dyakonov waves
of tipping the optical axes away from orientations parallel to the interface are similar
to those described in Section 4.2.1.2 for the case when material A is uniaxial. That
is, the inequalities (4.26) must still be satisfied for Dyakonov-wave propagation but
closed-form expressions for the limits on ψ describing the AED are not available. The
width of the AED decreases continuously and the Dyakonov wave becomes steadily
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less localized to the vicinity of the interface, as at least one of the two optic ray axes
becomes more obliquely inclined to the interface plane [162]. Thus, when both optic
ray axes of material A are oriented parallel to the interface, both the width of the AED
and the degree of localization of the Dyakonov wave to the vicinity of the interface are
the greatest.

4.3 Interface of Two Anisotropic Materials

4.3.1 Interface of Two Uniaxial Materials

4.3.1.1 Optic Axes in Interface Plane

The simplest anisotropic/anisotropic interface for Dyakonov-wave propagation may
be envisaged as follows [306]: Take material A to be a uniaxial dielectric material
characterized by the permittivity dyadic

εA = εs I + (εt − εs)u
A
c uA

c . (4.32)

Material B is the same uniaxial dielectric material as A but oriented differently. Thus,
its permittivity dyadic has the form

εB = εs I + (εt − εs)u
B
c uB

c . (4.33)

Furthermore, the optic axes of both materials are taken to lie parallel to the interface
plane. For convenience, let us orient our Cartesian coordinate axes such that they bisect
the angles between the unit vectors uA

c and uB
c ; i.e.

uA
c = ux cos� + uy sin�

uB
c = ux cos� − uy sin�

}
(4.34)

with 2� being the angle by which the orientation of material B is twisted relative to
the orientation of material A.

The field phasors in the half-space z > 0 are given by

e(z) =
2∑

m=1
CA

m

{
vA

1mux + vA
2muy

+
[
νeh,A

zx vA
3m + νeh,A

zy vA
4m

]
uz

}
exp

(
iαA

m z
)

h(z) =
2∑

m=1
CA

m

{
vA

3mux + vA
4muy

+
[
νhe,A

zx vA
1m + νhe,A

zy vA
2m

]
uz

}
exp

(
iαA

m z
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, z > 0, (4.35)

wherein the wavenumbers

αA
1 =

√
ω2μ0εs − q2 (4.36)
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and

αA
2 =

√
ω2μ0εt − q2

(
sin2 ψ + εt

εs
cos2 ψ

)
, (4.37)

obey the restrictions

Im
{
αA

m

}
> 0, m ∈ [1, 2]. (4.38)

The field phasors in the half-space z < 0 are given by

e(z) =
4∑

m=3
CB

m

{
vB

1mux + vB
2muy

+
[
νeh,B

zx vB
3m + νeh,B

zy vB
4m

]
uz

}
exp

(
iαB

m z
)

h(z) =
4∑

m=3
CB

m

{
vB

3mux + vB
4muy

+
[
νhe,B

zx vB
1m + νhe,B

zy vB
2m

]
uz

}
exp

(
iαB

m z
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, z < 0, (4.39)

wherein

αB
3 = −αA

1

αB
4 = −αA

2

}
. (4.40)

Explicit expressions for vA
1m , etc., νeh,A

zx , etc., vB
1m , etc., and νeh,B

zx , etc., can be found
by following the methodology of Chapter 3. The coefficients CA

1 ,CA
2 ,CB

3 , and CB
4

are not known. Enforcement of the standard boundary conditions across the interface
z = 0 yields the dispersion equation for Dyakonov-wave propagation.

As in Sections 4.2.1.1 and 4.2.1.2, propagation of Dyakonov waves is only possible
here for positive uniaxial materials (εt > εs). Furthermore, this propagation is restricted
to certain directional ranges ψmin < ψ < ψmax which are centered on the bisectors of
the optic axes. Thus, in general, there are four allowed directional ranges of propagation
as follows:

• Two angular ranges are centered about the bisectors of the acute angles between the
unit vectors uA

c and uB
c . These two are identical in width and the directions allowed

therein are diametrically opposite.
• Two angular ranges are centered about the bisectors of the obtuse angles between

the unit vectors uA
c and uB

c . Both ranges have the same width and are diametrically
opposite in directions.

The widths of all four angular ranges depend upon the anisotropy parameter

	 = εt

εs
− 1 > 0. (4.41)
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Explicit expressions for the limits of the AED are not available for general values of
	, but they can be derived for 	� 1 and 	� 1.

Naturally occurring positive uniaxial crystals are often characterized by 	� 1. In
this case, the common width of the two AEDs centered about the bisector of the acute
angle between the optic axes is [306]

ψmax − ψmin = 2	2cos2� sin�, (4.42)

and the common width of the two AEDs centered about the bisector of the obtuse angle
between the optic axes is

ψmax − ψmin = 2	2sin2� cos�. (4.43)

Equations (4.42) and (4.43) indicate that Dyakonov-wave propagation is possible for
� ∈ (0◦, 90◦) provided that 	 > 0.

Rutile is an example of a mineral characterized by 	� 1, with εs = 7.02ε0 and
εt = 8.70ε0; an illustration of the four angular ranges of propagation for rutile with
� = 60◦ is provided in Figure 4.6. The width of the AEDs centered about the bisector
of the acute angle between the optic axes is substantially larger than the width of the
AEDs centered about the bisector of the obtuse angle between the same axes; i.e.
2.46◦ as opposed to 1.42◦. Furthermore, the AEDs in the anisotropic/anisotropic case
are substantially larger than for the anisotropic/isotropic interface case illustrated in
Figure 4.2.

ucuc

5 0 5

5

0

5

x

y

Figure 4.6 Ranges (shaded red) of angle ψ for which a Dyakonov wave is guided by the planar
interface of two uniaxial dielectric materials. Both materials are rutile, characterized by the
permittivity parameters εs = 7.02ε0 and εt = 8.70ε0. The optic axes for both materials are
parallel to the interface plane: uA

c = ux cos 60◦+uy sin 60◦ and uB
c = ux cos 60◦−uy sin 60◦.

The optic axes are represented by dashed lines. The width of the AEDs centered about the bisector
of the acute angle between the optic axes is 2.46◦, while that of the AEDs centered about the
bisector of the obtuse angle between the optic axes is 1.42◦. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this book.)
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The case of 	� 1 appears achievable using engineered materials, at least in prin-
ciple. The common width of the two AEDs centered about the bisector of the acute
angles between the optic axes is [306]

ψmax − ψmin = 180◦ − 2

(
� + 1√

	

)
, (4.44)

and the common width of the two AEDs centered about the bisector of the obtuse
angles between the optic axes is

ψmax − ψmin = 2

(
� − 1√

	

)
. (4.45)

Dyakonov-wave propagation is forbidden in the remaining angular space which con-
sists of four separate ranges, each of width 2/

√
	 and centered about a line perpen-

dicular to an optic axis. An illustration of the four angular ranges of propagation for
εs = 1.2ε0, εt = 15ε0, and � = 60◦ is provided in Figure 4.7. As in Figure 4.6, the
width of the AEDs centered about the bisector of the acute angle between the optic
axes is substantially larger than the width of the AEDs centered about the bisector of
the obtuse angle between the optic axes; i.e. 86.21◦ as opposed to 26.21◦.

By restricting attention to propagation along directions parallel to the bisectors of
the angles between the optic axes of the materials A and B, further analytical progress
can be made. For this specialization, the phase speed of the Dyakonov wave is lower
than the phase speed of the extraordinary plane wave traveling in the same direction in
the bulk of either of the two partnering materials [164]. In addition, the phase speed
decreases as the degree of uniaxiality of the two partnering materials increases.

Figure 4.8 shows the solutions q in relation to the half-twist angle � for Dyakonov
waves guided by a planar calomel/calomel interface. Among naturally occurring
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Figure 4.7 Same as Figure 4.6 except that εs = 1.2ε0 and εt = 15ε0. The width of the AEDs
corresponding to the bisector of the acute angle between the optic axes is 86.21◦, while that of
the AEDs corresponding to the bisector of the obtuse angle between the optic axes is 26.21◦.
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Figure 4.8 Solutions q in relation to the half-twist angle � for Dyakonov waves guided by a
planar calomel/calomel interface, when the optic axes on both sides of the interface are parallel
to the xy plane, and the direction of propagation is along the x axis. No solution exists at� = 0◦
and in its neighborhood.

uniaxial crystals, calomel is distinguished by a high degree of positive uniaxiality
(	 = 0.81). No solution exists for � = 0◦, because the physical interface of the
partnering materials then vanishes. No solution exists for� ∈ (0◦, �min

]
either, where

�min > 0◦. As � increases over the range �min < � � 90◦, the phase speed of the
Dyakonov wave decreases to its minimum value at � = 90◦.

Magnitudes of the Cartesian components of e(z) are plotted in Figure 4.9 as functions
of z/λ0 for � ∈ {10◦, 80◦}. The z-directed component of the electric field phasor is
the strongest component for both values of �. The x- and the z-directed components
are more tightly bound to the interface than the y-directed component, with the 3-dB
widths of their peaks at z = 0 along the z axis on the order of λ0 for � = 10◦. The
widths of the peaks of these components decrease by a factor on the order of 1/4 as �
increases from 10◦ to 80◦. In addition, the peak of the x-directed component grows in
amplitude relative to that of the z-directed component. On the other hand, the peak of
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Figure 4.9 Variations with z/λ0 of the magnitudes of the Cartesian components of e(z) for
the calomel/calomel interface of Figure 4.8. The components parallel to ux , uy , and uz are
represented by red solid, blue dashed, and black chain-dashed lines, respectively. The data were
computed by setting CA

1 = 1 V m−1 in Eq. (4.35). (a) � = 10◦ and (b) � = 80◦. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this book.)
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the y-directed component is much broader (∼λ0 for � = 10◦) and increases in width
as� increases. Also, the amplitude of the peak of the y-directed component decreases
relative to those of the other two components as � increases.

4.3.1.2 Optic Axes not in Interface Plane

Next, let us turn to the case wherein materials A and B continue to be the uniaxial
dielectric materials characterized by the permittivity dyadics (4.32) and (4.33), but
now their optic axes are tilted by an angle χ relative to the xy plane as follows:

uA
c =

(
ux cos� + uy sin�

)
cosχ + uz sin χ

uB
c =

(
ux cos� − uy sin�

)
cosχ + uz sin χ

}
. (4.46)

Again focusing on the phase speed for propagation along the x axis in the xy plane,
numerical studies reveal the effect of varying χ [165]. In Figure 4.10, solutions q are
plotted against the half-twist angle � for several values of χ for a calomel/calomel
interface. No solution exists for � ∈ [0◦, �min]. As the tilt angle χ increases from
0◦, �min increases, so that range of the half-twist angle � allowing Dyakonov-wave
propagation shrinks. For the particular example illustrated in the figure, Dyakonov
waves cannot exist for χ slightly greater than 20◦. Additionally, the phase speed of the
Dyakonov wave decreases as χ increases.

Figure 4.11 shows the magnitudes of the Cartesian components of e(z) as functions
of z/λ0 for � ∈ {25◦, 55◦}, when χ = 15◦ in Figure 4.10. At this value of χ , Figure
4.10 indicates that Dyakonov waves can exist only over the approximate range � ∈
[15◦, 64◦]. The peaks in the y-directed component are much stronger for χ = 15◦
than for χ = 0◦ in Figure 4.9. The z-directed component of e(z) weakens, while its
x-directed component strengthens slightly, as� increases from 25◦ to 55◦. The widths

Figure 4.10 Solutions q against the half-twist angle � for Dyakonov waves guided by a planar
calomel/calomel interface, when the optic axes on both sides are inclined at an angle χ with
respect to the xy plane.
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Figure 4.11 Variations with z/λ0 of the magnitudes of the Cartesian components of e(z) for the
calomel/calomel interface of Figure 4.10. The optic axes on both sides are inclined at an angle
χ = 15◦ with respect to the xy plane. The components parallel to ux , uy , and uz are represented
by red solid, blue dashed, and black chain-dashed lines, respectively. The data were computed
by setting CA

1 = 1 V m−1 in Eq. (4.35). (a) � = 25◦ and (b) � = 55◦.

of the peaks of all three Cartesian components are of comparable magnitude and similar
to the width of the peaks of the y-directed component for χ = 0◦ in Figure 4.9.

4.3.2 Interface of Two Biaxial Materials

4.3.2.1 Optic Ray Axes in Interface Plane

The simplest biaxial/biaxial interface for Dyakonov-wave propagation may be envis-
aged as follows. Suppose that the half-space z > 0 is occupied by a biaxial dielectric
material. Both of its optic ray axes lie in the xy plane, separated by an angle 2δ. Thus,
the permittivity dyadic of material A may be expressed as

εA = εα I + εβ
(

aA+aA− + aA−aA+
)
, (4.47)

where

aA− = R(2δ) • aA+ , (4.48)

the dyadic

R(θ) = cos θ(ux ux + uyuy)+ sin θ(uyux − ux uy) (4.49)

represents a counterclockwise rotation about the z axis by θ in the xy plane, and
aA+ • uz = 0. The half-space z < 0 is occupied by the same biaxial dielectric material
but oriented differently. The optic ray axes of material B are twisted about the z axis
by an angle 2� in the xy plane relative to those of material A. Thus, the permittivity
dyadic of material B may be expressed as

εB = εα I + εβ
(

aB+aB− + aB−aB+
)
, (4.50)
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with

aB+ = R(2�) • aA+
aB− = R(2�) • aA−

}
. (4.51)

The plethora of parameters in Eqs. (4.47) and (4.50) has restricted investigation so
far only to the special case of propagation along the direction parallel to the bisector
of the twist angle, i.e. uprop = R(� + δ) • aA+ [166,167]. The changes that arise
for Dyakonov-wave propagation as one moves from the uniaxial/uniaxial interface
to the biaxial/biaxial interface mirror those associated with the transition from the
uniaxial/isotropic interface to the biaxial/isotropic interface described in Section 4.2.
Thus, Dyakonov waves are supported by both positively and negatively biaxial materials
and the phase speed of Dyakonov waves tends to be lower than it is for the case of the
uniaxial/uniaxial interface (δ = 0◦). In addition, the range of half-twist angles for which
Dyakonov waves can exist is here restricted to� ∈ (0◦, �max), where�max � 90◦−δ
[167]. This�-range is larger for materials which exhibit lower birefringence, as defined
in Appendix B, and have a smaller angle 2δ between their optic ray axes.

Figure 4.12 presents the relative wavenumbers q/k0 of Dyakonov waves against the
half-twist angle� for a variety of mineral/mineral interfaces [166,167]. Hemimorphite
has mid-range positive biaxiality (δ = 21.6◦) but a small birefringence (�n = 0.022,
as defined in Appendix B), and Dyakonov-wave propagation is possible for � ∈[
0◦, 67.5◦

]
. Crocoite has comparable positive biaxiality (δ = 23.7◦) to hemimorphite,

but its birefringence is more than an order of magnitude greater at 0.35. The�-range for
crocoite is smaller by about 10◦ compared to that of hemimorphite. Tellurite is barely
positively biaxial (δ = 44.7◦), and its�-range is even smaller than crocoite’s. Witherite
is highly negatively biaxial (δ = 85.2◦) and moderately birefringent (�n = 0.148), but
allows Dyakonov-wave propagation in the chosen configuration of just� ∈ [0◦, 3.4◦].
Finally, cerussite has a similar negative biaxiality (δ = 84.9◦) to that of witherite, but
as its birefringence (�n = 0.273) is twice as much, the�-range is marginally smaller.

Clearly therefore, the AED is larger for positive biaxiality than for negative biaxiality
and reduces as δ→ 90◦. Furthermore, the AED decreases if the birefringence increases
without change of biaxiality.

4.3.2.2 Optic Ray Axes not in Interface Plane

Some general relations are available for Dyakonov waves guided by biaxial/biaxial
interfaces for certain orientations of the optic ray axes which do not lie in the interface
plane [38]. These emerge from analyses wherein bianisotropic partnering materials
are considered [37,39]. However, the practicality of such bianisotropic schemes for
exciting Dyakonov waves has yet to be demonstrated.

4.4 Nanostructured Materials

Nature provides us with a wealth of anisotropic dielectric crystals which can be used
to guide Dyakonov waves. However, from the viewpoint of potential applications, it
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Figure 4.12 Solutions q against the half-twist angle � for Dyakonov waves guided by a pla-
nar interface of two materials described by Eqs. (4.47) and (4.50). Both partnering materials
are (a) hemimorphite (εα = 2.6147ε0, εβ = 0.0358ε0, and δ = 21.6◦), (b) crocoite (εα =
5.6169ε0, εβ = 0.8697ε0, and δ = 23.7◦), (c) tellurite (εα = 4.7524ε0, εβ = 0.7612ε0,
and δ = 44.7◦), (d) witherite (εα = 2.809ε0, εβ = 0.2372ε0, and δ = 85.2◦), or (e) cerussite
(εα = 4.3015ε0, εβ = 0.5295ε0, and δ = 84.9◦).

may be more useful to use instead engineered materials which possess structures of
nanometer dimensions. By exploiting such nanostructured materials, the degree and
nature of the anisotropy may be tailored to order, to a considerable extent. Three type
of such nanostructured materials—namely, liquid crystals, columnar thin films, and
photonic crystals—are highly relevant.

4.4.1 Liquid Crystals

As described in Section 1.4.4, nematic and smectic liquid crystals function optically
as uniaxial and biaxial dielectric materials, respectively. Typically, liquid crystals are
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strongly anisotropic with respect to their optical properties and can therefore support
relatively large AEDs for Dyakonov-wave propagation. For example, the E7 liquid
crystal mixture, a commercially available mixture of 4-pentyl-4′-cyanobiphenyl and
triphenyl, is nematic at room temperature [307]; i.e. it is a uniaxial dielectric material
at room temperature. For the planar interface of an isotropic dielectric material and the
E7 liquid crystal mixture, the AED can be as high as 0.94◦, as illustrated in Figure 4.2.

The use of liquid crystals offers the potential for controlling the AED for Dyakonov-
wave propagation, as well as the location and confinement of the Dyakonov wave
relative to the interface, by means of temperature, pressure, and the application of qua-
sistatic electric fields. These possibilities are ripe for both theoretical and experimental
research, now that Dyakonov waves have been observed in a laboratory [41].

Our attention here is focused on liquid crystals which are not structurally chiral.
As chiral liquid crystals are nonhomogeneous, they support Dyakonov-Tamm waves
rather than Dyakonov waves. Dyakonov-Tamm waves are discussed in Chapter 7.

4.4.2 Columnar Thin Films

The vapor deposition of a material which is an isotropic dielectric material in bulk form
can yield a columnar thin film that may be viewed as a biaxial dielectric continuum
from the macroscopic standpoint, as outlined in Section 1.4.3.1. CTFs are attractive
for Dyakonov-wave propagation because not only can their anisotropy be tailored
during the manufacturing stage, but they can also be modified post-manufacturing
by infiltrating the void regions in between the constituent nanowires of a CTF with
an appropriate fluid [97,308]. Indeed, the prospect of a fluid infiltrating a CTF and
thereby influencing Dyakonov-wave propagation opens up the possibility of harnessing
this mechanism for optical sensors. However, the relatively small AEDs for Dyakonov
waves are likely to be a major obstacle for such applications.

For the planar interface of a CTF and an isotropic dielectric material, numerical
studies [43] have revealed that the width of the AED decreases as the vapor flux angle
χv , shown in Figure 1.7, increases toward 90◦; the tilt angle χ of the nanowires with
respect to the substrate plane in Eq. (1.29) also increases toward 90◦ in this limit. This
is not surprising, since the three principal permittivity scalars of the CTF come closer to
each other in magnitude as χv approaches 90◦ [94]. Furthermore, the permittivity of the
isotropic dielectric material required for Dyakonov-wave propagation in a particular
direction increases as χv (and χ ) increases [43].

4.4.3 Photonic Crystals

Photonic crystals, as described in Section 1.4.3.3, present another method of artificially
achieving dielectric anisotropy. Provided that the dimensions of the unit cell are much
smaller than the electromagnetic wavelengths involved, these nanostructured materials
may be regarded as being effectively homogeneous and characterized accordingly in
terms of homogeneous permittivity dyadics. By carefully selecting the unit cell’s shape
and dimensions, anisotropy may be tailored to order.

The planar interface of a 2D photonic crystal (which functions as a biaxial dielectric
continuum at sufficiently long wavelengths) and an isotropic dielectric material has been
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demonstrated theoretically to be capable of supporting Dyakonov-wave propagation
[168]. The tunability and the potentially high degree of positive uniaxiality of such a
photonic crystal are attractive attributes for practical applications.

4.5 Electro-Optic Materials

Along with the potential of liquid crystals and CTFs to control the propagation of
Dyakonov waves, an alternative method of control is offered by electro-optic materials
[188,189]. These are materials whose optical properties are sensitive to an applied DC
(or quasistatic) electric field [271].

As an example, let us consider the planar interface of an anisotropic dielectric
material A which displays the Pockels effect and an isotropic dielectric material B.
The Pockels effect is a linear electro-optic effect, whereby the application of a DC
electric field EDC modifies the inverse permittivity dyadic of the material in question.
The modification is described by means of as many as 18 electro-optic coefficients.
These coefficients—written traditionally as rJ K (J ∈ [1, 6] and K ∈ [1, 3]), following
the abbreviated notation for representing symmetric second-order tensors [286]—may
or may not be independent of each other, depending upon the point group symmetry
of the material they characterize [271].

While the permittivity dyadic of material B is simply given by Eq. (4.2), the inverse
permittivity dyadic of material A has the general form

(
εA
)−1 =

3∑
J=1

(
εA0

J

)−1
u J u J +

3∑
J=1

3∑
K=1

δJ K rA
J K

(
uK

• EDC
)

u J uK

+
(

3∑
K=1

rA
4K uK

)
• EDC (u2u3 + u3u2

)

+
(

3∑
K=1

rA
5K uK

)
• EDC (u1u3 + u3u1

)

+
(

3∑
K=1

rA
6K uK

)
• EDC (u1u2 + u2u1

)
, (4.52)

where εA0
1 , εA0

2 , and εA0
3 are the eigenvalues of the permittivity dyadic of material A

when the DC electric field is absent; the unit vectors

u1 = −
(
ux cosφA + uy sin φA) cos θA + uz sin θA

u2 = ux sin φA − uy cosφA

u3 =
(
ux cosφA + uy sin φA) sin θA + uz cos θA

⎫⎪⎬
⎪⎭
,

θA ∈ [0◦, 180◦], φA ∈ [0◦, 360◦) (4.53)

are the eigenvectors of the permittivity dyadic of material A when the DC electric field
is absent; rA

J K are the electro-optic coefficients; and δJ K is the Kronecker delta. Valid
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up to first order in the components of the DC electric field (a common approximation
in electro-optics [309]), an approximation of the permittivity dyadic may be expressed
as [310]

εA ≈
3∑

J=1

εA0
J u J u J − ε−1

0

3∑
J=1

3∑
K=1

δJ K ε
A0
J εA0

K rA
J K

(
uK

• EDC
)

u J uK

− ε−1
0 εA0

2 εA0
3

3∑
K=1

r4K uK
• EDC(u2u3 + u3u2)

− ε−1
0 εA0

1 εA0
3

3∑
K=1

r5K uK
• EDC(u1u3 + u3u1)

− ε−1
0 εA0

1 εA0
2

3∑
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r6K uK
• EDC(u1u2 + u2u1), (4.54)

under the assumption that

ε−1
0
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K

∣∣∣
}{

max
J∈[1,6]

∣∣∣∣∣
3∑

K=1

rJ K uK
• EDC

∣∣∣∣∣

}
� 1. (4.55)

The material A is clearly anisotropic in the absence of an applied DC electric field,
provided that εA0

1 , εA0
2 , and εA0

3 are not all the same. However, the material can be
isotropic in the absence of an applied DC electric field but become anisotropic when
the DC field is switched on [289].

For the specific case where material A is potassium niobate, numerical studies
have demonstrated that the application of a DC electric field can significantly affect
the directions along which Dyakonov waves may propagate [188]. Furthermore, an
exhaustive search of the parameter space revealed that the Pockels effect could be
harnessed to expand the AED to approximately 1.4◦ in this case [189].

Higher-order electro-optic effects, such as the Kerr effect which is a quadratic
electro-optic effect, may also be exploited to control the propagation of Dyakonov
waves [187].

4.6 Magnetic Analogs

The description of Dyakonov waves so far in this chapter has focused on two partnering
materials which have different dielectric symmetries but are not magnetic. Since the
Maxwell postulates are form-invariant under the duality transformation which inter-
changes the electric and magnetic fields [17,292], it follows that the propagation of
Dyakonov waves may also be supported by two partnering materials which have dif-
ferent magnetic symmetries. While materials with anisotropic dielectric properties are
commonly encountered at optical frequencies, materials with anisotropic magnetic
properties are more commonly found at microwave and radio frequencies. However,
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recent research has shown that artificial magnetism can be realized at optical frequencies
by judicious dispersals of metallic nanoparticles in a dielectric host material [311–313].

For example, suppose that material A is a magnetically anisotropic material specified
by the permeability dyadic [172]

μA = μα I + (μβ − μα)uzuz + iμg(uyux − ux uy), (4.56)

where the gyrotropic permeability parameter μg owes its existence to the presence of
an applied quasistatic magnetic field [17,314]. Let material B be the same as material A
but with an orientational change which reverses the direction of the gyration vector, i.e.

μB = μα I + (μβ − μα)uzuz − iμg(u yux − ux uy). (4.57)

Furthermore, it is assumed that the dissipation is negligibly small (i.e. μα,μβ , and
μg are purely real), μα > 0, μβ > 0, and the permittivity of both partnering mate-
rials equals ε0. Then, Dyakonov-wave propagation guided by the planar interface of
materials A and B may arise provided that the conditions [172]

μα > μβ, μg �= 0 (4.58)

are satisfied.
In principle, magneto-optic effects could be exploited to control Dyakonov waves,

in a similar manner to that described for the electro-optic effect in Section 4.5. But, in
practice, magneto-optic effects may not be as useful as electro-optic effects, because
the change in optical properties induced by an applied quasistatic magnetic field for
a magneto-optic material is commonly much smaller than that induced by an applied
quasistatic electric field for an electro-optic material, for typically encountered field
strengths. Theory, however, indicates that the influence of an applied quasistatic mag-
netic field on Dyakonov-wave propagation may be intensified if one of the two part-
nering materials were a nonlinear dielectric material [186].

The magnetic properties of the two partnering materials can have a significant bear-
ing on the propagation of a Dyakonov wave even when the permeabilities of both
materials are isotropic. For example, suppose that material A is a uniaxial dielectric
material characterized by the permittivity dyadic (4.1) with its optic axis lying parallel to
the z = 0 plane (i.e. uc

• uz = 0), while material B is an isotropic dielectric-magnetic
material with permittivity and permeability dyadics

εB = εB I , μB = μB I (4.59)

such that εB �= ε0 and μB �= μ0. Furthermore, let εB > 0 and μB > 0. Numerical
studies have revealed that the corresponding AEDs for Dyakonov-wave propagation
guided by the planar interface of these two partnering materials may be greater for
μB �= μ0 than for μB = μ0 [169].

4.7 More Exotic Materials

The introduction of magnetic properties can lead to larger AEDs for Dyakonov waves.
These AEDs may be further enlarged by the use of engineered composite materials
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which support the propagation of plane waves with negative phase velocity. A succinct
introduction to these materials is available in Section 1.5, whereas Ref. 68 is recom-
mended for an in-depth treatment.

For example, as in Section 4.6, consider the interface of a uniaxial dielectric material
A specified by the permittivity dyadic (4.1) with its optic axis lying parallel to the z = 0
plane (i.e. uc

• uz = 0) and an isotropic dielectric-magnetic material B specified by
the permittivity and permeability dyadics of the form given in Eq. (4.59). Here, how-
ever, material B is taken to be a lossless material which supports NPV propagation; i.e.
εB < 0 and μB < 0. A numerical study has revealed that the NPV characteristic of
material B results in considerably larger AEDs for Dyakonov waves, as well as a greater
degree of localization to the planar interface of materials A and B, than would be the
case if material B did not support NPV propagation [69]. Furthermore, Dyakonov-
wave propagation arises when material A is negatively uniaxial—as opposed to the
cases described in Section 4.2 which involved positive uniaxial materials—and mul-
tiple Dyakonov-wave modes may be excited at a given frequency along a specified
direction of propagation. However, the neglect of dissipation in this numerical study
[69]—as well as in related numerical studies involving NPV materials partnered with
biaxial dielectric materials [70] and gyrotropic materials [170]—is a major limitation,
since engineered composite materials that support NPV propagation are notoriously
dissipative in practice [71,72].

Parenthetically, let us note that because an isotropic dielectric-magnetic material
that supports NPV propagation typically possesses either (i) a negative-valued per-
mittivity in the lossless case or (ii) a permittivity whose real part is negative-valued
in the dissipative case, a semantic issue arises here as to whether the surface waves
discussed here are classified as SPP waves or Dyakonov waves. We have opted for
the latter classification but a convincing case can be put forth even for the former
classification.

Further possibilities for Dyakonov-wave propagation are presented if one (or both)
of the partnering materials is an indefinite dielectric-magnetic material. Such a material
is specified by a permittivity dyadic and/or a permeability dyadic whose eigenvalues are
not all of the same sign, for the lossless case. Clearly, indefinite materials are anisotropic.
They may be realized as engineered composite materials and they may support the
propagation of plane waves with NPV [315]. Conditions for the excitation of surface
waves guided by the interface of an indefinite dielectric-magnetic material and an
isotropic dielectric-magnetic material have been established for various cases, including
that where the isotropic dielectric-magnetic material supports NPV propagation [316].

Dyakonov waves are often thought of as experiencing little attenuation, since they are
typically guided by the planar interface of dielectric materials which exhibit negligible
dissipation. However, a notable exception exists when a partnering material is an NPV
material.

A further exception is furnished by piezoelectric materials. Let us consider the
Dyakonov wave that is guided by the planar interface of two materials, at least one
of which possesses piezoelectric properties [286]. If the chosen optical frequency is
less than typical phonon frequencies (say, 1012–1013 Hz), then attenuation can arise
due to coupling with elastodynamic waves in the bulk piezoelectric material(s). This
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attenuation is directly proportional to the maximum phase speed of all elastodynamic
waves allowed to propagate in the bulk material and inversely proportional to the phase
speed of the Dyakonov wave [317].

4.8 Experimental Observation

The first experimental observation of Dyakonov waves was reported by Takayama et al.
[41] in 2009, some 21 years after the seminal theoretical description of these surface
waves [35]. The 21-year delay is indicative of the challenging nature of the practicalities
that experimentalists must wrestle with in order to observe these elusive waves.

4.8.1 Prism-Coupled Configuration

The prism-coupled configuration of Figure 3.3 was used by Takayama et al. [41] for
their experimental study. Monochromatic light of known polarization state and intensity
is incident on one slanted face of a prism of refractive index nprism. The intensity of
light exiting the other slanted face of the prism is measured. Attached to the base of the
prism is a layer of the partnering isotropic material followed by a layer of the partnering
anisotropic material. As the angle of incidence θinc increases from 0◦, no transmission
occurs across the two partnering materials. A sharp dip in the measured intensity of
light exiting the second slanted face of the prism with respect to θinc is indicative of
the launch of a Dyakonov wave.

The underlying boundary-value problem is shown in Figure 3.4d. The half-space
z < 0 is occupied by an isotropic dielectric material of refractive index nprism and the
half-space z > dA + dB by air (nair = 1). The isotropic partnering material in the
region 0 < z < dA has a permittivity εA, while the anisotropic partnering material in
the region dA < z < dA + dB has a permittivity dyadic εB .

Suppose that εA = 4.5ε0 and εB = (3.97I + 0.94ux ux )ε0. Then, according
to the curves in Figure 4.2 for YVO4, Dyakonov-wave propagation is possible for
ψ ∈ [51.4501◦, 51.8848◦]. For ψ = 51.6674◦, the solution of the dispersion equa-
tion (4.12) (with superscripts A and B interchanged) of the canonical boundary-value
problem is q/k0 = 3.212521.

In the prism-coupled configuration, let nprism = 3.58. Furthermore, a tiny ima-
ginary part is added to εA in order to obtain non-zero absorptances; thus, εA = 4.5(
1+ 2× 10−4i

)
ε0. Plots of absorptances Ap and As of incident s- and p-polarized

light, respectively, against θinc in Figure 4.13 show ultranarrow peaks at θinc � 63.8126◦,
and nprism sin 63.8126◦ = 3.21253 in close conformity with the solution predicted by
Eq. (4.12).

4.8.2 First Observation of Dyakonov Waves

Figure 4.13 underscores the difficulty of observing Dyakonov waves, putting the exper-
imental accomplishment of Takayama et al. [41] in the proper perspective.

The partnering anisotropic material chosen for their experiment was a biaxial dielec-
tric material—namely, potassium titanyl phosphate (KTP) specified by a permittivity
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Figure 4.13 Calculated absorptances (a) As and (b) Ap as functions of the angle of incidence
θinc for the boundary-value problem of Figure 3.4d underlying the excitation of a Dyakonov
wave guided by the interface of layers of an isotropic material and an anisotropic material, both
homogeneous. The refractive index of the material of incidence and reflection is 3.58, the 50-nm
thick layer of the isotropic partnering material labeled A has a permittivity 4.5(1+2×10−4i)ε0,
and the 100-nm thick layer of the anisotropic partnering material labeled B is YVO4 with
permittivity (3.97I + 0.94ux ux )ε0. The material of transmission is air.

dyadic with eigenvalues 3.104ε0, 3.1371ε0, and 3.4775ε0 at a free-space wavelength
of 632.8 nm. The partnering isotropic material chosen was an index-matching liquid
whose permittivity is intermediate in value between the two largest eigenvalues of the
permittivity dyadic of the partnering biaxial dielectric material, in conformity with
the condition (4.26) to be satisfied for Dyakonov-wave propagation. The orientation
of the biaxial dielectric material was such that its optic ray axes were parallel to the
interface plane. The calculated width of the AED was 0.13◦.

Shown in Figure 4.14, the experimental setup allowed the angle of incidence to be
controlled with a resolution of±0.0001◦, the orientation angle of the biaxial dielectric
material relative to the incident beam of light to be controlled with a resolution of
±0.01◦, and the angular beam width was approximately 0.05◦. Although the intensity of
a leaky waveguide mode dominated that of the Dyakonov wave, as shown in Figure 4.15,
the observed direction of propagation of the Dyakonov wave agreed well with the
theoretical estimate. The width of the observed dip in the reflectance as a function of
the angle of incidence, which provided the identifying signature of the Dyakonov wave,
was approximately 0.0001◦. This width is three orders of magnitude smaller than the
corresponding width for typical SPP waves; see Figure 2.7.

In order to observe Dyakonov waves, tolerances in the alignments of various optical
components, including the symmetry axes of the anisotropic material(s), are very strin-
gent. While this may pose an impediment to certain practical applications of Dyakonov
waves, it may also present opportunities for others. For example, in the experimental
study of Takayama et al. [41], a change in the refractive index of the isotropic dielectric
partnering material of 0.005 resulted in a shift in the propagation angle of the Dyakonov
wave by 3◦. This sensitivity of 600◦/RIU bodes very well for optical sensing applica-
tions. Indeed, this figure compares very favorably to optical sensors that exploit SPP
waves [4]. For example, with an SPP-wave-based sensor using a nonporous aluminum
thin film, a sensitivity of approximately 79◦/RIU has been reported at a wavelength of
653 nm [318].
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Figure 4.14 Experimental setup used by Takayama et al. [41] to observe a Dyakonov wave.
Courtesy: Osamu Takayama, Institut de Ciències Fotòniques, Barcelona, Spain.

Figure 4.15 Experimental observation on a CCD camera of a Dyakonov wave by Takayama
et al. [41]. Courtesy: Osamu Takayama, Institut de Ciències Fotòniques, Barcelona, Spain.
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4.9 Outlook

As a consequence of the small widths of the AEDs for Dyakonov waves, together
with the attendant difficulties associated with their observation, Dyakonov waves have
received relatively little attention in research circles and beyond, as compared with
the much more conspicuous SPP waves. However, there are methods by which the
AEDs may be enlarged—by means of electro-optic, magnetic, magneto-optic, and
nonlinear effects, and by the use of exotic materials which support NPV propagation,
for examples.

The very fact that Dyakonov waves are highly sensitive to the optical environment
needed for their existence offers attractive opportunities for optical sensing applica-
tions. As dissipation in both partnering materials is negligibly small, Dyakonov waves
are not expected to play a significant role in the present-day push for the harvesting of
solar energy.
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5 Tamm Waves

5.1 Introduction

Chapters 2 and 4 provide descriptions of surface-wave propagation when both part-
nering materials are homogeneous. This is the first chapter in this book wherein at
least one of the two partnering materials is periodically nonhomogeneous normal to
the interface guiding surface waves. Both partnering materials are isotropic dielectric,
and the specific type of surface waves are called Tamm waves.

Igor Yevgenyevich Tamm did not discover or predict this class of surface waves,
but these waves are named after him because he pointed out that electron states at the
surface of a material of finite extent are different from the electron states inside the
same material [47]. The optical analog of a surface electron state is a surface wave
guided by the interface of two dissimilar materials, at least one of which is periodically
nonhomogeneous in the direction normal to the interface. The simplest case is when
both partnering materials are isotropic dielectric.

Investigations of Tamm waves have been carried out now for several decades [173],
and the existence of s-polarized Tamm waves has been experimentally validated
[174–176]. Optical biosensing with two s-polarized Tamm-wave modes has been exper-
imentally demonstrated in the prism-coupled configuration [177].

Most often, the periodically nonhomogeneous dielectric material has been taken as
piecewise homogeneous [173,175,176,178,179], i.e. it is a periodically multilayered
material. But the periodic nonhomogeneity can be continuous as well, such as exhib-
ited by a rugate filter [62,180]. Since both partnering materials are isotropic, the total
angular existence domain is 360◦, i.e. Tamm waves can propagate along any direction
in the interface plane. With proper selection of the two partnering materials, numerous
Tamm-wave modes can be obtained for a given interface, some s polarized and the
others p polarized [62,180].

5.2 Canonical Boundary-Value Problem

The canonical boundary-value problem of Tamm-wave propagation can be formulated
in the same way as in Section 3.5 to determine the relevant dispersion equation. Let a
periodically nonhomogeneous material labeled A occupy the half-space z > 0, while a
homogeneous material labeled B occupies the half-space z < 0, as shown in Figure 5.1.

Electromagnetic Surface Waves. http://dx.doi.org/10.1016/B978-0-12-397024-4.00005-0
© 2013 Elsevier Inc. All rights reserved.
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Tamm wave x, y

z

Figure 5.1 Schematic of the canonical boundary-value problem for Tamm-wave propagation
guided by the planar interface of two isotropic dielectric materials A and B. Whereas material
A is periodically nonhomogeneous along the z axis, material B is homogeneous.

Both materials are isotropic, dielectric, non-magnetic, and achiral [17]. The permittivity
of material A varies periodically so that

εA(z + 2�A) = εA(z), z > 0, (5.1)

with 2�A as the period, whereas the permittivity εB of material B does not depend on z.
The canonical boundary-value problem can be formulated exactly as done in

Section 3.5 leading to the dispersion equation (3.87) involving the determinant of a
4 × 4 matrix

[
Y (q)

]
. However, as both partnering materials are isotropic, that 4 × 4

matrix can be partitioned into two 2×2 null matrixes, and two 2×2 non-null matrixes.
The singularity of one of the 2 × 2 non-null matrixes indicates the propagation of an
s-polarized Tamm wave, whereas the singularity of the other 2 × 2 non-null matrix
indicates the propagation of a p-polarized Tamm wave. Accordingly, the two types of
Tamm waves can be analyzed separately [62].

5.2.1 s-Polarized Tamm Wave

Without any loss of generality, we can choose uprop = ux . Then, for all z ∈ (−∞,∞),
the field phasors of an s-polarized Tamm wave may be written as

E(r) = ey(z) uy exp (iqx)

H (r) =
[
hx (z) ux + q

ωμ0
ey(z) uz

]
exp (iqx)

⎫⎬
⎭. (5.2)

The column 2-vector

[ f
s
(z)] =

[
ey(z)
hx (z)

]
(5.3)

obeys the 2× 2 matrix ordinary differential equation

d
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[ f

s
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i
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]
• [ f

s
(z)], z > 0,

i
[

PB
s

]
• [ f

s
(z)], z < 0,

, (5.4)
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where the matrixes

[
PA

s
(z)

]
=
[

0 −ωμ0
q2

ωμ0
− ωεA(z) 0

]
(5.5)

and

[
PB

s

]
=
[

0 −ωμ0
q2

ωμ0
− ωεB 0

]
. (5.6)

As in Section 3.4.1, application of the piecewise-uniform-approximation method to

Eq. (5.4) for z > 0 determines the matrix
[

QA
s

]
that appears in the relation

[
f

s
(2�A)

]
=
[

QA
s

]
• [ f

s
(0+)] ≡

[
QA

s11 QA
s12

QA
s21 QA

s22

]
• [ f

s
(0+)] (5.7)

to characterize the optical response of one period of the periodically nonhomogeneous

partnering material. The determinant of
[

QA
s

]
equals unity, which means that either of

its two eigenvalues is the reciprocal of the other eigenvalue. Let the eigenvalue denoted
by σA

s be the one that satisfies the inequality

Re
{

ln σA
s

}
< 0. (5.8)

This eigenvalue represents decay as z →∞. In contrast, the eigenvalue 1/σA
s repre-

sents decay as z → −∞. Accordingly, with the proviso that the electromagnetic field
must decay as z→∞, we get

[ f
s
(0+)] = CA

s

[
1

σA
s −QA

s11
QA

s12

]
, (5.9)

where CA
s is an unknown coefficient.

Equation (5.4) can be solved analytically for z < 0 because the matrix
[

PB
s

]
does

not depend on z. Thus,1

[ f
s
(z)] = CB

s

[
1

− αB
ωμ0

]
exp (iαBz), z � 0, (5.10)

1In Chapters 1, 2, and 6, the half-space z < 0 in the canonical boundary-value problem for SPP-wave propa-
gation is occupied by a metal, and the spatial dependence of the field phasors is taken to be exp[i(quprop −
αmetuz)

• r ] with Im {αmet} > 0. In Chapters 4, 5, and 7, sometimes the half-space z < 0 in the canonical
boundary-value problem for surface-wave propagation is occupied by an isotropic homogeneous dielectric
material. In consonance with Chapter 3, we then adopt the spatial dependence exp[i(quprop + αBuz)

• r ]
with Im {αB} < 0. Both representations are identical, as can be ascertained by setting αmet = −αB .
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where the coefficient CB
s is unknown and the wavenumber

αB =
√
ω2μ0εB − q2 (5.11)

obeys the inequality

Im{αB} < 0. (5.12)

Enforcement of the boundary condition [ f
s
(0+)] = [ f

s
(0−)] yields the matrix

equation
⎡
⎣

1 −1
σA

s −QA
s11

QA
s12

αB
ωμ0

⎤
⎦ •

[
CA

s

CB
s

]
=
[

0
0

]
, (5.13)

which is analogous to Eq. (3.85). A non-trivial solution exists provided the 2 × 2
matrix on the left side of Eq. (5.13) is singular. Therefore, the dispersion equation for
s-polarized Tamm waves is

QA
s12 α

B + ωμ0

(
σA

s − QA
s11

)
= 0. (5.14)

Concurrently, the unknown coefficients obey the relationship

CA
s = CB

s (5.15)

for an s-polarized Tamm wave.
The right sides of both Eqs. (5.5) and (5.6) depend quadratically on q. Therefore,

if q is a solution of the dispersion equation (5.14), then −q also is. The two solutions
indicate s-polarized Tamm waves propagating in opposite directions along the x axis.

5.2.2 p-Polarized Tamm Wave

The procedure to obtain the dispersion equation for p-polarized Tamm waves is similar
to the one provided in Section 5.2.1. For all z ∈ (−∞,∞), the field phasors of a
p-polarized Tamm wave may be written as

E(r) = [ex (z) ux + ez(z) uz] exp (iqx)

H (r) = hy(z) uy exp (iqx)

}
, (5.16)

where

ez(z) =
{− q

ωεA(z)hy(z), z > 0,

− q
ωεB hy(z), z < 0,

. (5.17)

The column 2-vector

[ f
p
(z)] =

[
ex (z)
hy(z)

]
(5.18)
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obeys the 2× 2 matrix ordinary differential equation

d

dz
[ f

p
(z)] =

⎧⎨
⎩

i
[

PA
p
(z)

]
• [ f

p
(z)], z > 0,

i
[

PB
p

]
• [ f

p
(z)], z < 0,

. (5.19)

The matrixes involved in this equation for the two half-spaces are given by

[
PA

p
(z)

]
=
[

0 ωμ0 − q2

ωεA(z)
ωεA(z) 0

]
(5.20)

and

[
PB

s

]
=
[

0 ωμ0 − q2

ωεB
ωεB 0

]
. (5.21)

As in Section 5.2.1, the matrix

[
QA

p

]
appearing in the relation

[
f

p
(2�A)

]
=
[

QA
p

]
• [ f

p
(0+)] ≡

[
QA

p11 QA
p12

QA
p21 QA

p22

]
• [ f

p
(0+)] (5.22)

can be obtained by the application of a numerical procedure. Just like
[

QA
s

]
,

[
QA

p

]

also has a determinant equal to unity. Provided the eigenvalue σA
p of

[
QA

p

]
obeys the

inequality

Re
{

ln σA
p

}
< 0, (5.23)

it represents decay as z→∞; the other eigenvalue 1/σA
p represents decay as z→−∞.

Thus, with σA
p being that solution of the quadratic equation

(
QA

p11 − σA
p

)(
QA

p22 − σA
p

)
− QA

p12 QA
p21 = 0, (5.24)

which satisfies the inequality (5.23), we set

[ f
p
(0+)] = CA

p

⎡
⎣ 1
σA

p −QA
p11

QA
p12

⎤
⎦, (5.25)

where CA
p is an unknown coefficient.
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The solution of Eq. (5.19) for z < 0 is given by

[ f
p
(z)] = −CB

p

⎡
⎣

αB
k0nB

nB
η0

⎤
⎦ exp (iαBz), z � 0, (5.26)

where the coefficient CB
p is unknown and the wavenumberαB is specified by Eqs. (5.11)

and (5.12).
The continuity of [ f (z)] across the interface plane z = 0 yields the matrix equation

⎡
⎢⎣

1 αB
k0nB

σA
p −QA

p11

QA
p12

nB
η0

⎤
⎥⎦ •

[
CA

p

CB
p

]
=
[

0
0

]
, (5.27)

whence emerges the dispersion equation

ωεB QA
p12 − αB (σA

p − QA
p11

)
= 0 (5.28)

for p-polarized Tamm waves. For a p-polarized Tamm wave, the unknown coefficients
obey the relation

CA
p = −

αB

k0nB CB
p . (5.29)

If q is a solution of the dispersion equation (5.28), then−q also is. The two solutions
indicate p-polarized Tamm waves propagating in opposite directions along the x axis.

5.2.3 Illustrative Numerical Results

5.2.3.1 Interface of a Homogeneous Dielectric Material and a Periodic
Multilayer

Suppose that the periodically nonhomogeneous partnering dielectric material is perio-
dically multilayered, the unit cell comprising a layer of thickness dA

1 and refractive
index nA

1 and another layer of thickness dA
2 = 2�A−dA

1 and refractive index nA
2 ; i.e.

εA(z) =
{(

nA
1

)2
ε0, z ∈ (0, dA

1

)
,

(
nA

2

)2
ε0, z ∈ (dA

1 , 2�A) ,
(5.30)

in the unit cell nearest to the interface plane z = 0. The refractive index of the homo-
geneous partnering dielectric material is denoted by

nB =
√
εB/ε0. (5.31)

Tamm waves guided by this configuration have been theoretically studied by many
researchers—see, e.g. Refs. 173,178 and 319.
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Figure 5.2 Solutions q of the dispersion equations (5.14) and (5.28) plotted against nB for Tamm
waves localized to the interface of (i) a periodically multilayered material described by Eq. (5.30)
with nA

1 = 1.45, dA
1 = 487 nm, nA

2 = 2.32, and dA
2 = 779 nm, and (ii) a homogeneous

dielectric material of refractive index nB ∈ [1, 1.5], when the free-space wavelength λ0 =
633 nm. If q is a solution, then −q also is. The red solid lines indicate s-polarized Tamm waves
and the black dashed lines are for p-polarized Tamm waves. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this book.)

Both complex and purely real solutions q of the dispersion equations (5.14) and
(5.28) may exist, even when dissipation is negligible in both partnering materials.
A solution with a positive imaginary part represents a leaky surface wave, which may
be called a leaky Tamm wave. Unless Im{q} is minute, a leaky Tamm wave is of little
value for applications [174], and is therefore ignored in the remainder of this chapter.

Figure 5.2 shows the solutions q of the dispersion equations (5.14) and (5.28)
for λ0 = 633 nm, when nA

1 = 1.45, dA
1 = 487 nm, nA

2 = 2.32, and dA
2 = 779 nm,

whereas nB ∈ [1, 1.5]. The selected refractive indexes are commonplace in the optical
regime, and the selected thicknesses are on the order of the free-space wavelength.
Only real-valued solutions are presented—which means that the Tamm waves thereby
indicated can propagate indefinitely. That, of course, cannot be strictly true because
dissipation can be very small but not absent in any passive material; nevertheless, the
propagation length 	prop of a Tamm wave can be very large, extending into the range
of several millimeters [174].

According to Figure 5.2, a Tamm wave can be guided by the interface of a period-
ically multilayered, isotropic, dielectric material, and free space. This is an essential
difference between Tamm waves and SPP waves, with the latter requiring that one
partnering material be a metal. Another difference, as indicated in Figure 5.2, is that
Tamm waves can be either s or p polarized, while the simple SPP waves in Chapter
2 are exclusively p polarized. The preponderance of s-polarized Tamm waves over
p-polarized Tamm waves indicated by the figure helps explain why only s-polarized
Tamm waves have been experimentally observed thus far [174–177].

Yet another difference is that, while only one simple SPP wave can propagate at
a specified frequency for a particular choice of partnering materials, it is possible
for a single interface to guide multiple Tamm-wave modes at a fixed frequency. The
propagation of two s-polarized Tamm-wave modes has been experimentally confirmed
and even exploited for biosensing [177]. The different Tamm-wave modes certainly
differ in phase speed and spatial profiles of the associated electromagnetic field phasors.
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The multiplicity has to be a consequence of the periodic nonhomogeneity of one of
the partnering materials, and can become more pronounced when the unit cell of the
partnering material A is made of more than two layers which are, of course, thinner.
A unit cell comprising numerous ultrathin layers of dissimilar materials is, in effect,
continuously nonhomogeneous.

Two solutions exist in Figure 5.2 for limited ranges of nB. Therefore, once a periodic
multilayer has been chosen as one of the two partnering materials, the homogeneous
partner must be carefully selected for experimental work on Tamm-wave propagation.

Parenthetically, were εB < 0, Tamm waves would transmute into Fano waves. The
periodic nonhomogeneity of εA(z) then would enable the emergence of multiple Fano-
wave modes [61]. If, in addition, Im{εB} > 0, multiple SPP-wave modes would arise,
as discussed in Chapter 6.

5.2.3.2 Interface of a Homogeneous Dielectric Material and a Rugate Filter

Solutions of the dispersion equations (5.14) and (5.28) for Tamm waves guided by
the interface of a semi-infinite rugate filter and a homogeneous dielectric material are
plotted against nB in Figure 5.3. The rugate filter is described by

εA(z) = ε0

[
nA

avg +
	nA

2
sin

( π z

�A
)]2

, (5.32)

and thus has a continuous variation of the refractive index along the z axis. The number
of solutions decreases as nB increases toward the maximum value nA

avg+	nA/2 of the

refractive index nA(z) =√
εA(z)/ε0 in the rugate filter. Thus, only two solutions—one

p polarized and the other s polarized—exist for the highest value of nB in Figure 5.3,
although eight solutions exist for the lowest value of nB . The multiplicity of solutions
is just like that of SPP waves guided by the interface of a metal and a rugate filter in
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Figure 5.3 Solutions q of the dispersion equations (5.14) and (5.28) plotted against nB for
Tamm waves localized to the planar interface of (i) a rugate filter described by Eq. (5.32) with
nA

avg = 1.885,	nA = 0.87, and�A = λ0, and (ii) a homogeneous dielectric material of refrac-

tive index nB ∈ (0, 2.32], when the free-space wavelength λ0 = 633 nm. No solution was found
for nB > 2.207. If q is a solution, then−q also is. The red solid lines indicate s-polarized Tamm
waves and the black dashed lines are for p-polarized Tamm waves [61,62]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this book.)
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Table 5.1 Normalized wavenumbers q/k0 of Tamm waves obtained from Figure 5.3 for

nB = 1.515. If q is a solution of the dispersion equation (5.14) or (5.28), then −q also is.

Polarization state q/k0 q/k0 q/k0 q/k0

s-pol 1.5560 1.7735 1.9966 2.2144
p-pol 1.5496 1.7553 1.9822 2.2034

Section 6.4.1, the periodic nonhomogeneity of the rugate filter being responsible for
multiplicity in both cases. However, whereas those SPP waves are much more likely
to be p polarized than s polarized [63], the polarization states of Tamm waves here are
almost equally—but not always equally—split between s and p.

The phase speed vp = ω/q of a Tamm wave is smaller than the phase speed
in the homogeneous partnering material, because q > k0nB. Furthermore, as

k0

(
nA

avg −	nA/2
)
< q < k0

(
nA

avg +	nA/2
)

, the phase speed of the Tamm wave

lies between the minimum and the maximum values of the phase speed 1/
√
μ0εA(z)

in the rugate filter. Exploration of the q-range beyond k0

(
nA

avg +	nA/2
)

failed to

turn up solutions [62].
For a fixed value of nB , the different Tamm-wave modes possible have distinct

phase speeds. They also have different spatial variations of the components of the elec-
tromagnetic field. For instance, eight different Tamm-wave modes can be identified
for nB = 1.515 from Figure 5.3. All eight wavenumbers q of Tamm waves propa-
gating along the +x axis are cataloged in Table 5.1, whereas the negatives of these
wavenumbers hold valid for Tamm waves propagating along the −x axis. Figure 5.4
shows the spatial profiles of the fields of three of the eight Tamm-wave modes propa-
gating along the+x axis. Inside the homogeneous partnering material B, the non-zero
field components decay exponentially as z → −∞, the variation being of the type

exp

[
z
√

q2 − (
k0nB)2

]
with q > k0nB . Thus, the higher the magnitude of q (i.e. the

lower the phase speed) at fixed nB , the more tightly bound is the Tamm wave to the
plane z = 0−.

In contrast, the spatial variations have to be far more complicated inside the partner-
ing periodically nonhomogeneous material A (z > 0). According to the Floquet theory
presented in Appendix D, the z-dependence of each non-zero component of a field pha-
sor is the product of two factors. One of these factors decays exponentially as z→ ∞,
but the other factor is faithfully reproduced unit cell by unit cell. Hence, in Figure 5.4,
the average of a non-zero component over the �th unit cell z ∈ [2(� − 1)�A, 2��A]
is higher than the average over the (� + 1)th unit cell z ∈ [2��A, 2(� + 1)�A], � ∈
{1, 2, ...}, but the variations inside two adjacent unit cells look quite similar in form.
Moreover, the maximum field strength of a Tamm wave does not necessarily lie at the
plane z = 0+. Thus, in Figure 5.4, the maximum magnitudes inside the rugate filter lie at
z � 1.4�A in the plots in the top and middle rows, and at z = 0.5�A in the bottom row.

Whereas the decay rate−Im{αB} is meaningful because material B is homogeneous,
the somewhat analogous decay rates −Re

{
ln σA

s

}
/2�A and −Re

{
ln σA

p

}
/2�A are
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Figure 5.4 Variations with z of the magnitudes of the non-zero Cartesian components of (left)
e(z) and (right) h(z), for three of the eight Tamm-wave modes possible for propagation along
the +x axis, when nB = 1.515 and all other parameters are the same as for Figure 5.3 (i.e.
λ0 = 633 nm, nA

avg = 1.885,	nA = 0.87, and �A = λ0). The components parallel to ux , uy ,
and uz are represented by red solid, blue dashed, and black chain-dashed lines, respectively.

The data were computed by setting CA
p = −(αB/k0nB)CB

p = 1 V m−1 for p-polarized

Tamm-wave modes and CA
s = CB

s = 1 V m−1 for s-polarized Tamm-wave modes. (top)
p-polarization state and q/k0 = 1.5496, (middle) s-polarization state and q/k0 = 1.5560, and
(bottom) s-polarization state and q/k0 = 2.2144 [62]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this book.)

of little use because material A is periodically nonhomogeneous. Instead, the decay
constants [50]

βA
s = exp

[
Re

{
ln σA

s

}]

βA
p = exp

[
Re
{

ln σA
p

}]
}
, (5.33)
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indicate decay over one period of material A and therefore appropriately quantify the
degree of localization of Tamm-wave modes to the plane z = 0+ inside that material.
The restrictions (5.8) and (5.23) imply that

βA
s ∈ (0, 1), βA

p ∈ (0, 1). (5.34)

The smaller the decay constant is, the more tightly is the Tamm wave bound to the
interface. For the Tamm-wave modes in Figure 5.4, βA

p = 0.2362 (top row), whereas

βA
s = 0.1956 (middle row) and βA

s = 0.0006 (bottom row). These decay constants
quantitate the weaker localization of the p-polarized Tamm-wave mode in comparison
to the stronger localization of the two s-polarized Tamm-wave modes in the figure.

The abundance of solutions in Figure 5.3 in relation to their paucity in Figure 5.2 is
remarkable, all the more so because the period, the maximum refractive index, and the
minimum refractive index of the nonhomogeneous partnering material are identical in
both cases. This observation suggests that experimental observation and exploitation
of Tamm waves would be facilitated if εA(z) varies somewhat rapidly and significantly
in the neighborhood of the interface z = 0.

The period 2�A must not be so large in comparison to λ0 that the rugate filter
becomes virtually homogeneous close to the interface; otherwise, Tamm-wave propa-
gation would not be supported. If 2�A/λ0 is very small, the number of Tamm-wave
modes can be very small, even zero [62].

According to Section 2.2, neither Eq. (5.14) nor Eq. (5.28) can have a solution if
	nA = 0—because then both partnering materials are homogeneous with permittiv-
ities that are positive and real valued. A minimum value of 	nA may be necessary
for Tamm-wave propagation. As 	nA increases, the number of solutions increases,
the decay constants become smaller to indicate greater localization to the interface,
solutions with higher phase speed vp = ω/q appear, and the phase-speed distribution
generally widens [62].

5.3 Practical Configurations

5.3.1 Prism-Coupled Configuration

Being quite straightforward to implement, the prism-coupled configuration has been
employed for experiments with Tamm waves [174–177]. Materials A and B are taken
to be of finite thicknesses dA and dB , respectively. The layer of material B is in contact
with a prism of refractive index nprism > 1, whereas the layer of material A is in
contact with air (nair = 1). The experimental situation is similar to the one depicted in
Figure 3.3 for Dyakonov waves. The situation wherein the roles of materials A and B
are reversed has also been experimentally implemented [176].

For analytical purposes, a linearly polarized plane wave is taken to be incident on
the interface of the prism and material B at an angle θinc with respect to the z axis, as
shown in Figure 5.5. The plane wave transmitted into air has a wave vector inclined to
the z axis at an angle θtr , which may be complex valued. The mathematical technique
described in Section 3.7 is straightforward to apply for analysis and prediction. The
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Figure 5.5 Schematic of the prism-coupled configuration to excite Tamm waves.

angle of incidence is varied from 0◦ toward 90◦, and the reflectance into the prism is
computed as a function of that angle. Even though both partnering materials for Tamm-
wave propagation are supposed to have negligible dissipation, nB must be endowed
with a small positive imaginary part [180] so that some reflectance dips for θinc >

sin−1 (1/nprism) indicate the excitation of Tamm waves, as is illustrated for simple SPP
waves in Section 2.3.1.4. The reflectance dips for θinc > sin−1 (1/nprism) also manifest
themselves as absorptance peaks.

5.3.1.1 Interface of a Homogeneous Dielectric Material
and a Periodic Multilayer

Figure 5.6 presents the absorptances As and A p calculated as functions of θinc when
material A is the periodic multilayer used for Figure 5.2, nB = 1.35(1 + 10−4i),
nprism = 2.6, dA = 6�A, dB = 200 nm, and λ0 = 633 nm. According to Figure 5.2,
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Figure 5.6 Calculated linear absorptances As and Ap as functions of the angle of incidence θinc
in the prism-coupled configuration of Figure 5.5, when material A is the periodic multilayer
described by Eq. (5.30) with nA

1 = 1.45, dA
1 = 487 nm, nA

2 = 2.32, and dA
2 = 2�A − dA

1 =
779 nm; the refractive index of the homogeneous partnering material B is nB = 1.35(1 +
10−4i); while the thicknesses are dA = 6�A and dB = 200 nm. The free-space wavelength is
λ0 = 633 nm. The prism material is rutile (nprism = 2.6). The letter T identifies the absorptance
peaks that represent the excitation of Tamm waves.
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when nB = 1.35, an s-polarized Tamm wave should exist with wavenumber
q = 1.3844k0. Therefore, in the prism-coupled configuration, an s-polarized Tamm
wave should be excited at θinc ≈ sin−1 (1.3844/nprism) = 32.17◦. An As-peak at
θinc = 31.80◦ in Figure 5.6 is close enough to that prediction that it can be associ-
ated with the excitation of an s-polarized Tamm wave. Likewise, a p-polarized Tamm
wave with wavenumber q = 1.3944k0 is indicated by Figure 5.2, and the consequent
prediction θinc ≈ 32.43◦ is very close to θinc = 32.47◦ for an Ap-peak in Figure 5.6.

In the canonical boundary-value problem, a wave that is evanescent as z → ∞ is
present in the partnering material occupying the half-space z > 0, while a wave that
evanesces as z → −∞ is present in the partnering material occupying the half-space
z < 0. In contrast, due to the finite thickness of each partnering material in the prism-
coupled configuration, both types of waves are present in each partnering material. Their
interaction is responsible for the difference between the angle of incidence predicted
by the canonical boundary-value problem for a specific Tamm-wave mode and the one
gleaned for it from an absorptance plot for the prism-coupled configuration.

Although the absorptance peaks are prominent in Figure 5.6, the peak absorptances
are minuscule because dissipation is either assumed to be absent or very small in the
partnering dielectric materials. Significantly larger imaginary parts of εA(z) and/or
εB would enhance the peak absorptances, as experiments suggest [175,176]. But the
propagation length	prop would be decreased thereby, reducing the potential of Tamm
waves for long-range communication. A comparison with the magnitudes of absorp-
tance peaks in Section 6.6 is however sufficient to confirm that, unlike SPP waves,
Tamm waves do not have direct relevance for the harvesting of solar energy.

5.3.1.2 Interface of a Homogeneous Dielectric Material
and a Rugate Filter

When material A is the rugate filter described by Eq. (5.32) with nA
avg = 1.885,	nA =

0.87, and�A = λ0, and material B has a refractive index nB = 1.515, whereas nprism =
2.6 and λ0 = 633 nm remain unchanged from Section 5.3.1.1, the angles of incidence
in the prism-coupled configuration predicted for the excitation of Tamm-wave modes
using the solutions q of the canonical boundary-value problem are provided in Table 5.2.
Figure 5.7 contains plots of the absorptances As and Ap with respect to θinc when
dA = 6�A and dB = 150 nm in the prism-coupled configuration. Peaks of Ap and As

occur in Figure 5.7 at values of θinc that are very close to the predictions in Table 5.2.

Table 5.2 Predictions of the angles of incidence to excite s- and p-polarized Tamm waves in the
prism-coupled configuration with nprism = 2.6. These predictions follow from the normalized
wavenumbers q/k0 provided in Table 5.1 for Tamm waves propagating along the+x axis in the
canonical boundary-value problem.

Polarization state θ inc (◦) θ inc (◦) θ inc (◦) θ inc (◦)

s-pol 36.76 43.01 50.17 58.40
p-pol 36.58 42.46 49.67 57.94
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Figure 5.7 Calculated linear absorptances As and Ap as functions of the angle of incidence θinc
in the prism-coupled configuration of Figure 5.5, when material A is the rugate filter described
by Eq. (5.32) with nA

avg = 1.885,	nA = 0.87, and�A = λ0; the refractive index of the homo-

geneous partnering material B is nB = 1.515(1+10−4i); while the thicknesses are dA = 8�A
and dB = 50 nm. The free-space wavelength is λ0 = 633 nm. The prism material is rutile
(nprism = 2.6). The letter T identifies the absorptance peaks that represent the excitation of
Tamm waves.

5.3.2 Grating-Coupled Configuration

Although not yet experimentally confirmed, theory shows that Tamm waves can be
excited in the grating-coupled configuration [180]. The general framework provided
in Section 3.8 can be used for calculations; however, the following description of the
periodically corrugated boundary between materials A and B is clearer than the one in
that section for the illustrative numerical results provided here.

As shown in Figure 5.8, the half-spaces z < 0 and z > d3 are occupied by air (nair =
1), the region 0 � z � d1 is occupied by material A of permittivity εA(z), and the
region d2 � z < d3 by material B of permittivity εB. The region d1 < z < d2 contains
a periodically undulating interface with period Lx along the x axis. The permittivity

Tamm wave

Incident light 

z

x
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z = d1z = d2
z = d3

0

+1

-1
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0

+1
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θinc Reflected light 

Transmitted light 

air

air

Figure 5.8 Schematic of the grating-coupled configuration to excite Tamm waves. The incident
plane wave propagates in the xz plane, so that the method of Section 3.8 can be applied with
ψ = 0◦ and n ∈ {0}.
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εg(x, z) = εg(x ± Lx , z) is expressed in the reference unit cell 0 < x < Lx of this
region as

εg(x, z) =
{
εB − [εB − εA(z)] U [d2 − z − w(x)], x ∈ (0, L1),

εA(z), x ∈ (L1, Lx ),
, (5.35)

with U(σ ) as the unit step function defined by Eq. (2.102) and

w(x) = (d2 − d1) sin

(
πx

L1

)
, L1 ∈ (0, Lx ). (5.36)

Thus the grating is singly periodic and the grating plane is the xz plane. Although the
function w(x) is a sinusoid in Eq. (5.36), other suitable functions can also be used as
long as they are subject to the restrictions mentioned in Section 3.8.

A linearly polarized plane wave, propagating in the half-space z < 0 at an angle
θinc ∈ [0◦, 90◦) to the z axis and at an angle ψ = 0◦ to the x axis in the xy plane, is
incident on the plane z = 0. The field phasors of the incident plane wave are described
by Eqs. (3.141) with n ∈ {0} and n1 = nair. Linear absorptances As and A p defined in
Eqs. (3.151) can be calculated after using the RCWA described in Section 3.8.5.

5.3.2.1 Interface of a Homogeneous Dielectric Material
and a Periodic Multilayer

Let us begin with material A being the periodic multilayer described by Eq. (5.30) with
nA

1 = 1.45, dA
1 = 487 nm, nA

2 = 2.32, and dA
2 = 2�A − dA

1 = 779 nm. Material
B has a refractive index nB = 1.35(1 + 10−4i). Figure 5.9 contains plots of As and
Ap as functions of the angle of incidence θinc at λ0 = 633 nm. These plots contain
several peaks. The angular locations of several peaks shift significantly as d2 and/or
d3 − d2 increase, and the spatial field profiles change significantly as well. Therefore,
these absorptance peaks cannot represent surface waves.
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Figure 5.9 Calculated linear absorptances As and A p as functions of the angle of incidence
θinc at λ0 = 633 nm, for the grating-coupled configuration of Figure 5.8. Material A is the
periodic multilayer described by Eq. (5.30) with nA

1 = 1.45, dA
1 = 487 nm, nA

2 = 2.32, and

dA
2 = 779 nm, so that�A = 633 nm. Material B has a refractive index nB = 1.35(1+ 10−4i).

The grating is described via Eqs. (5.35) and (5.36), with d3 − d2 = 100 nm, d2 − d1 = 50 nm,
d2 = 6�A, Lx = �A, and L1 = 0.5Lx . The letter T identifies the absorptance peaks that
represent the excitation of Tamm waves.
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Table 5.3 Relative wavenumbers k(m,n)xy /k0 of linear Floquet harmonics of order (m, n),m ∈
[−2, 2] and n = 0, at the As -peaks marked by T in Figure 5.9. Boldface entries signify Tamm
waves.

θ inc (◦) k(m,0)
xy /k0

m =−2 m =−1 m = 0 m = 1 m = 2

22.58 −1.6160 −0.6160 0.3840 1.3840 2.3840
38.02 −1.3841 −0.3841 0.6159 1.6159 2.6159

Table 5.4 Relative wavenumbers k(m,n)xy /k0 of linear Floquet harmonics of order (m, n),m ∈
[−2, 2] and n = 0, at the Ap-peaks marked by T in Figure 5.9. Boldface entries signify Tamm
waves.

θ inc (◦) k(m,0)
xy /k0

m =−2 m =−1 m = 0 m = 1 m = 2

22.11 −1.6236 −0.6236 0.3764 1.3764 2.3764
38.58 −1.3764 −0.3764 0.6236 1.6236 2.6236

However, the angular locations of two As-peaks do not shift significantly as d2 and/or
d3 − d2 increase beyond certain thresholds.2 The field phasors are also bound tightly
to the interface of materials A and B. For these two peaks—located at θinc = 22.58◦
and θinc = 38.02◦—the wavenumbers k(m,n)xy defined in Eq. (3.1.43)4 are provided in
Table 5.3 for m ∈ [−2, 2] and n = 0. The relative wavenumber q/k0 = 1.3844 of
the sole s-polarized Tamm wave from Figure 5.2 for nB = 1.35 is close enough to
k(1,0)xy /k0 = 1.3840 for θinc = 22.58◦ that we can conclude that the Tamm wave is
excited as a linear Floquet harmonic of order (1, 0). Likewise, q/k0 = −1.3944 is
also close enough to k(−2,0)

xy /k0 = −1.3841 for θinc = 38.02◦ to indicate the Tamm
wave is excited as a linear Floquet harmonic of order (−2, 0) in the grating-coupled
configuration. Thus, as the angle of incidence θinc rises from 0◦ toward 90◦, the same
s-polarized Tamm-wave mode is excited twice, the first time as a linear Floquet har-
monic of order (1, 0) propagating along the +x axis, and the next as a linear Floquet
harmonic of order (−2, 0) propagating along the −x axis.

With the assistance of Table 5.4, we can also see that, as the angle of incidence
θinc increases from 0◦ toward 90◦, a p-polarized Tamm-wave mode is excited twice,
first at θinc = 22.11◦ as a linear Floquet harmonic of order (1, 0) propagating along
the +x axis, and then at θinc = 38.58◦ as a linear Floquet harmonic of order (−2, 0)
propagating along the −x axis. The phase speed vp is the same in both instances.

2The ratio d2/2�A should be increased in increments of unity, for the identification of Tamm waves. It
would then be convenient to always choose d2 as an integral multiple of 2�A.
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5.3.2.2 Interface of a Homogeneous Dielectric Material and a Rugate Filter

Next, let material A be changed to the rugate filter described by

εA(z) = ε0

{
nA

avg +
	nA

2
sin

[
π [d2 − z)

�A

]}2

(5.37)

with nA
avg = 1.885,	nA = 0.87, and�A = 633 nm, and the refractive index of mate-

rial B be set equal to nB = 1.515(1+ 10−4i). Figure 5.10 contains plots of As and Ap

as functions of the angle of incidence θinc at λ0 = 633 nm. These plots contain several
peaks, of which four As-peaks and four Ap-peaks indicate the excitation of Tamm-
wave modes—because (i) their angular locations do not change significantly after the
thickness d3 − d2 and/or the integer d2/2�A increase beyond certain thresholds, and
(ii) the field phasors are also bound well to the interface of materials A and B [180].

The wavenumbers k(m,n)xy ,m ∈ [−2, 2] and n = 0, defined in Eq. (3.143)4 are
provided in Table 5.5 for the four As-peaks and in Table 5.6 for the four Ap-peaks
identified by T in Figure 5.10. Comparison with the solutions q of the dispersion
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Figure 5.10 Calculated linear absorptances As and A p as functions of the angle of incidence
θinc at λ0 = 633 nm, for the grating-coupled configuration of Figure 5.8. Material A is the rugate
filter described by Eq. (5.37) with nA

avg = 1.885,	nA = 0.87, and �A = λ0. Material B has

a refractive index nB = 1.515(1+ 10−4i). The grating is described via Eqs. (5.35) and (5.36),
with d3−d2 = �A, d2−d1 = 50 nm, d1 = 8�A, Lx = 0.75�A, and L1 = 0.5Lx . The letter
T identifies the absorptance peaks that represent the excitation of Tamm waves [180].

Table 5.5 Relative wavenumbers k(m,n)xy /k0 of linear Floquet harmonics of order (m, n),m ∈
[−2, 2] and n = 0, at the As -peaks marked by T in Figure 5.10. Boldface entries signify Tamm
waves.

θ inc (◦) k(m,0)
xy /k0

m =−2 m =−1 m = 0 m = 1 m = 2

12.26 −2.45432 −1.12099 0.21235 1.54568 2.87901
25.59 −2.23474 −0.90141 0.43193 1.76526 3.09860
41.33 −2.00627 −0.67294 0.66040 1.99373 3.32706
64.33 −1.76536 −0.43203 0.90130 2.23464 3.56797
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equations (5.14) and (5.28) provided in Table 5.5 lets us conclude that all eight Tamm-
wave modes are excited as linear Floquet harmonics of order (1, 0) and propagate along
the +x axis in the grating-coupled configuration.

5.3.3 Prospects for Optical Sensing

The reflectance dips in Figures 2.7 and 2.8 indicative of the excitation of a simple SPP
wave are a few degrees wide on the θinc axis. The absorptance peaks in Figures 5.6
and 5.7 indicating the excitation of a Tamm wave in the prism-coupled configuration
are less wide and should therefore lead to a finer sensing modality. In the grating-
coupled configuration, the absorptance peaks for Tamm waves are less than a tenth of
a degree in width, as exemplified by the magnified plots of absorptance in Figure 5.11,
suggesting possibilities for even finer sensing.

Moreover, while Im{q} is negligibly small for Tamm waves, it is significant for
simple SPP waves. The much longer propagation length of a Tamm wave should be an
advantage over a simple SPP wave for optical sensing because the surface wave can
then be affected by a larger amount of the analyte. The possibility of simultaneously
employing two or more Tamm-wave modes of the same frequency should also be
advantageous toward error-free sensing [177].

But, as the analyte must be put in the half-space z < 0 close to the plane z = 0
in Figure 5.8 for the grating-coupled configuration, a big disadvantage is noise that
comes about from the traversal of light through the analyte before and after interaction

Table 5.6 Relative wavenumbers k(m,n)xy /k0 of linear Floquet harmonics of order (m, n),m ∈
[−2, 2] and n = 0, at the Ap-peaks marked by T in Figure 5.10. Boldface entries signify Tamm
waves.

θ inc (◦) k(m,0)
xy /k0

m =−2 m =−1 m = 0 m = 1 m = 2

11.98 −2.45910 −1.12576 0.20757 1.54090 2.87424
24.37 −2.25404 −0.92071 0.41263 1.74596 3.07929
40.13 −2.02214 −0.68881 0.64452 1.97886 3.31119
60.39 −1.79726 −0.46393 0.86941 2.20274 3.53608
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Figure 5.11 Two magnified portions of the absorptance plots of Figure 5.10. The letter T iden-
tifies the absorptance peaks that represent the excitation of Tamm waves.
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with the two partnering materials. However that noise does not show up in the prism-
coupled configuration, and a very minute amount of an analyte should be detect-
able by exploiting Tamm waves [177].

5.4 Interface of Two Periodically Nonhomogeneous
Dielectric Materials

Tamm-wave propagation can also be guided by the interface of two periodically non-
homogeneous materials, as can be seen by solving the underlying canonical boundary-
value problem. For example, let us consider the interface of two rugate filters jointly
specified by the refractive-index profile [62]

n(z) =
⎧⎨
⎩

nA(z) = nA
avg + 	nA

2 sin
(
τA + π z

�A

)
, z > 0,

nB(z) = nB
avg + 	nB

2 sin
(
τB + π z

�B

)
, z < 0,

(5.38)

for all z ∈ (−∞,∞), where nA
avg and nB

avg are the mean refractive indexes, whereas

	nA and 	nB are the amplitudes, 2�A and 2�B are the periods, and τA and τB are
the phases of the refractive-index modulation in the two half-spaces z > 0 and z < 0.

The boundary-value problem can be solved either by following the methodology of
Section 3.5 or by suitably adapting Sections 5.2.1 and 5.2.2. The latter is shown next.

5.4.1 s-Polarized Tamm Wave

All equations pertaining solely to material A in Section 5.2.1 still apply. However, the
column 2-vector [ f

s
(z)] in material B now obeys the 2×2 matrix ordinary differential

equation

d

dz
[ f

s
(z)] = i

[
PB

s
(z)

]
• [ f

s
(z)], z < 0, (5.39)

where the matrix
[

PB
s
(z)

]
=
[

0 −ωμ0
q2

ωμ0
− ωεB(z) 0

]
(5.40)

employs εB(z) = ε0[nB(z)]2.
Application of the piecewise-uniform-approximation method to Eq. (5.40) for z < 0

determines the matrix
[

QB
s

]
that appears in the relation

[
f

s
(−2�B)

]
=
[

QB
s

]
• [ f

s
(0−)] ≡

[
QB

s11 QB
s12

QB
s21 QB

s22

]
• [ f

s
(0−)]. (5.41)

As the electromagnetic field must decay as z→−∞, we get

[ f
s
(0−)] = CB

s

[
1

σB
s −QB

s11
QB

s12

]
, (5.42)
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where σB
s is that solution of the quadratic equation

(
QB

s11 − σB
s

)(
QB

s22 − σB
s

)
− QB

s12 QB
s21 = 0 (5.43)

which satisfies the inequality

Re
{
ln σB

s

}
< 0. (5.44)

A decay constant βB
s = exp

[
Re

{
ln σB

s

}] ∈ (0, 1) is appropriate to denote the decay
of fields over one period of material B.

Enforcement of the boundary condition [ f
s
(0+)] = [ f

s
(0−)] yields the matrix

equation
[

1 −1
σA

s −QA
s11

QA
s12

−σB
s −QB

s11
QB

s12

]
•
[

CA
s

CB
s

]
=
[

0
0

]
, (5.45)

leading to the dispersion equation
(
σA

s − QA
s11

)
QB

s12 =
(
σB

s − QB
s11

)
QA

s12 (5.46)

for s-polarized Tamm waves. Equation (5.15) is still satisfied by CA
s and CB

s for an
s-polarized Tamm wave.

5.4.2 p-Polarized Tamm Wave

The 2× 2 matrix ordinary differential equation

d

dz
[ f

p
(z)] = i

[
PB

p
(z)

]
• [ f

p
(z)], z < 0, (5.47)

with

[
PB

p
(z)

]
=
⎡
⎣ 0 ωμ0 − q2

ωεB(z)
ωεB(z) 0

⎤
⎦ (5.48)

has to be solved numerically in order to determine the matrix

[
QB

p

]
that appears in the

relation
[

f
p
(−2�B)

]
=
[

QB
p

]
• [ f

p
(0−)] ≡

[
QB

p11 QB
p12

QB
p21 QB

p22

]
• [ f

p
(0−)]. (5.49)

Next, the two eigenvalues σB
p and 1/σB

p of

[
QB

p

]
are obtained by solving a quadratic

equation. The eigenvalue σB
p is subject to the restriction

Re
{

ln σB
p

}
< 0 (5.50)

and a decay constant βB
p = exp

[
Re

{
ln σB

p

}]
∈ (0, 1) is defined.
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Then, the equality of

[ f
p
(0−)] = CB

p

⎡
⎣

1
σB

p −QB
p11

QB
p12

⎤
⎦ (5.51)

and [ f
p
(0+)] given by Eq. (5.25) yields the dispersion equation

(
σA

p − QA
p11

)
QB

p12 =
(
σB

p − QB
p11

)
QA

p12 (5.52)

for p-polarized Tamm waves. The coefficients CA
p and CB

p of a p-polarized Tamm
wave still satisfy Eq. (5.29).

5.4.3 Illustrative Numerical Results

Table 5.7 presents the wavenumbers q of all seven Tamm waves obtained for the inter-
face of two rugate filters A (

nA
avg = 1.885,	nA = 0.87, τA = 0◦, and�A = λ0

)
and

B (
nB

avg = 1.6,	nB = 0.6, τB = 90◦, and �B = 0.5λ0
)

that differ in all parameters
of the refractive-index profile, when λ0 = 633 nm. Four of these Tamm waves are
s polarized, while the remaining three are p polarized.

The spatial profiles of the electromagnetic field of one of the p-polarized Tamm
waves are given in Figure 5.12. The decay constants for this Tamm wave are βA

p =
0.5906 andβB

p = 0.1001, thereby indicating stronger localization to the interface z = 0
in the half-space z < 0 than in the half-space z > 0.

The interface created by an abrupt phase defect in a rugate filter can also guide
Tamm waves. Suppose that nA

avg = nB
avg,	nA = 	nB , and �A = �B , but τA 	= τB .

Then, the entire space can be considered to be occupied by a single rugate filter which
has a phase defect τA − τB at the plane z = 0, provided that |τA − τB| /∈ {0◦, 360◦}.

The solutions of the dispersion equations for Tamm waves bound to the phase-
defect plane z = 0 are shown in Figure 5.13, when nA

avg = nB
avg = 1.885,	nA =

	nB = 0.87,�A = �B = λ0 = 633 nm, and τA = 0◦ but τB ∈ (0◦, 360◦) is
variable. Although a phase defect does exist despite the continuity of n(z) across the
plane z = 0 when τB = 180◦, no solutions of the dispersion equations signifying
Tamm-wave propagation exist.

Table 5.7 Normalized wavenumbers q/k0 of Tamm waves guided by the interface of two rugate

filters A (
nA

avg = 1.885,	nA = 0.87, τA = 0◦, and �A = λ0
)

and B (nB
avg = 1.6,	nB =

0.6, τB = 90◦, and �B = 0.5λ0) that differ in all parameters of the refractive-index profile
(5.38), when λ0 = 633 nm [62]. If q is a solution of the dispersion equation (5.46) or (5.52),
then −q also is.

Polarization state q/k0 q/k0 q/k0 q/k0

s-pol 1.6178 1.8013 2.0021 2.2147
p-pol 1.6101 – 1.9927 2.2045
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Figure 5.12 Variations with z of the magnitudes of the non-zero Cartesian components of (left)
e(z) and (right) h(z), for a p-polarized Tamm wave propagating along the +x axis, guided by
the interface of two rugate filters described in Table 5.7. The components parallel to ux , uy ,
and uz are represented by red solid, blue dashed, and black chain-dashed lines, respectively.
The distance z is differently scaled for the two half-spaces. The data were computed by setting
CA

p = CB
p = 1 V m−1 and q/k0 = 1.6101 [62]. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this book.)
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Figure 5.13 Solutions q of the dispersion equations (5.46) and (5.52) in relation to τB for Tamm
waves localized to the phase-defect interface z = 0 in a rugate filter described by Eq. (5.38) with
nA

avg = nB
avg = 1.885,	nA = 	nB = 0.87, �A = �B = λ0 = 633 nm, and τA = 0◦. The

red solid lines indicate s-polarized Tamm waves and the black dashed lines are for p-polarized
Tamm waves [62]. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this book.)

Clearly, multiple Tamm-wave modes can be guided by a phase defect in a rugate
filter. For τB /∈ {0◦, 180◦}, up to 13 solutions of Eqs. (5.46) and (5.52) are possible with
q > k0

(
nA

avg −	nA/2
)
, almost always equally divided between the s- and p-polari-

zation states. As τB increases from 0◦, the number of solutions increases episodically.
All branches of s-polarized solutions are paired with branches of p-polarized solutions.

Four unpaired branches of p-polarized solutions also exist in Figure 5.13. One
branch satisfies the inequality q > k0

(
nA

avg − 	nA/2
)
, but the other three unpaired

branches do not. Solutions on these three branches are special because q/k0 is less
than the minimum value of the refractive index of the rugate filter on either side of the
phase-defect interface, and the corresponding surface waves may be called high-phase-
speed Tamm waves. Such solutions cannot exist if one of the regions on either side of
the phase defect is replaced by a homogeneous dielectric material.

Despite the fact that no solution of Eqs. (5.46) and (5.52) exists for τB = 0◦
(or 360◦), some solution branches, but not all, appear to wrap about τB = 360◦ in
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Figure 5.14 Variations with z of the magnitudes of the non-zero Cartesian components of
(left) e(z) and (right) h(z), for Tamm waves localized to the phase-defect interface z = 0 in a
rugate filter described by Eq. (5.38) with nA

avg = nB
avg = 1.885,	nA = 	nB = 0.87, �A =

�B = λ0 = 633 nm, and τA = 0◦. The components parallel to ux , uy , and uz are represented
by red solid, blue dashed, and black chain-dashed lines, respectively. The data were computed by
setting CA

p = CB
p = 1 V m−1 for p-polarized Tamm waves and CA

s = CB
s = 1 V m−1 for s-

polarized Tamm waves. (top) p-polarization state, τB = 8◦, and q/k0 = 1.6155; (middle)
s-polarization state, τB = 8◦, and q/k0 = 1.8007; and (bottom) p-polarization state,
τB = 174◦, and q/k0 = 1.5718 [62]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this book.)

Figure 5.13. The branches that appear to wrap around have solutions with decay constant
βA

p,s = βB
p,s much smaller than unity for τB in the neighborhood of 0◦ and 360◦.

Branches of solutions with decay constant close to unity for τB in the neighborhood
of 0◦ do not show the wrapping characteristic.

Spatial profiles of the electromagnetic field phasors are shown in Figure 5.14 for
two p-polarized Tamm waves at τB = 8◦ and 174◦, and one s-polarized Tamm wave
at τB = 8◦. The decay constant at τB = 8◦ for the p-polarized Tamm wave is
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Figure 5.15 Variations with z of the magnitudes of the non-zero Cartesian components of (left)
e(z) and (right) h(z), for a high-phase-speed Tamm wave localized to the phase-defect interface
z = 0 in a rugate filter described by Eq. (5.38) with nA

avg = nB
avg = 1.885,	nA = 	nB =

0.87, �A = �B = λ0 = 633 nm, τA = 0◦, and τB = 30◦. The components parallel to ux , uy ,
and uz are represented by red solid, blue dashed, and black chain-dashed lines, respectively. The

data were computed by setting CA
p = CB

p = 1 V m−1. The normalized wavenumber q/k0 =
1.3611 is less than the minimum refractive index in the rugate filter [62]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this book.)

βA
p = 0.2821, and that for the s-polarized Tamm wave is βA

s = 0.0221. The decay

constant at τB = 174◦ for the p-polarized Tamm wave is βA
p = 0.3240. Of these

three Tamm waves, the s-polarized wave is most strongly localized to the phase-defect
interface because its decay constant is the least.

Figure 5.15 shows the spatial profiles of the electromagnetic field phasors for a
high-phase-speed Tamm wave, when τB = 30◦. The Tamm wave is p polarized. The
value of q/k0 is less than the minimum value of the refractive index on either side of
the phase-defect interface. The decay constant βA

p = 0.7765 is quite large, indicating
weak localization to the phase-defect interface.

An abrupt change of either the mean refractive index or the amplitude of the sinu-
soidal variation of the refractive index also creates an interface that can guide multiple
Tamm-wave modes with different phase speed, polarization state, and degree of local-
ization [62].

5.5 Outlook

In contrast to the very narrow AEDs of Dyakonov waves, Tamm waves have the max-
imum possible total AED: a full 360◦. Therefore, Tamm waves were experimentally
observed much earlier and more easily [174–176] than Dyakonov waves. Easier obser-
vation also led to application to optical biosensing with two s-polarized Tamm-wave
modes in the prism-coupled configuration [177].

However, the full potential of Tamm waves for optical sensing is very far from
being realized and the best is still to come. Appropriate nonhomogeneous partnering
materials can be made of porous materials which can be infiltrated by a fluid containing
the analyte(s) to be sensed [124]. Both p- and s-polarized Tamm-wave modes can



Tamm Waves 181

be excited. Tamm-wave modes of both linear polarization states appear to be more
numerous when the periodically nonhomogeneous partnering material is continuously
nonhomogeneous as opposed to comprising a few homogeneous layers in its unit cell.
Therefore, numerous channels become available for more reliable sensing of a single
analyte, as well as for simultaneous sensing of multiple analytes.
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6 Surface-Plasmon-Polariton
Waves II

6.1 Introduction

The practical application of simple SPP waves guided by the interface of a metal and
a homogeneous isotropic dielectric material in chemical sensors has flourished during
the past two decades [3,4]. To a lesser extent, simple SPP waves have been pursued
for microscopy. Recently, the excitation of SPP waves, guided by an interface of a
metallic surface-relief grating and a periodically nonhomogeneous semiconductor, has
been examined to enhance the absorption of light by thin-film solar cells [84]. As other
unidirectionally nonhomogeneous dielectric materials are investigated for deployment
as a partnering material for a suitable metal for the propagation of SPP waves, other
applications may be identified and developed.

This chapter is focused on SPP-wave propagation guided by a planar interface of a
metal and a dielectric material that may be anisotropic and/or periodically nonhomoge-
neous. The chapter commences with SPP waves guided by the interface of a metal and
a multilayered isotropic dielectric material. Next, the use of homogeneous anisotropic
dielectric materials of various types is considered, with emphasis on columnar thin
films. Then, multiple SPP-wave modes guided by a single interface of a metal and a
periodically nonhomogeneous dielectric material are discussed. With sculptured thin
films and liquid crystals, nanotechnology offers a large palette of possibilities. The final
section of this chapter examines the employment of chiral STFs for SPR sensors.

6.2 Interface of a Metal and an Isotropic
Dielectric Multilayer

The investigation of SPP waves guided by the interface of a metal and multilayered
dielectric materials arose out of both a necessity in applications wherein the partnering
dielectric material is inherently multilayered and a desire to improve the propagation
length for communications as well as chemical sensing. An early study dealt with
the application of a voltage for the alignment of a liquid crystal on the surface of an
aligning layer atop a thick metallic layer [28,29]. In this study, the partnering dielectric
material was layered in two ways. The liquid crystal and the aligning layer are two

Electromagnetic Surface Waves. http://dx.doi.org/10.1016/B978-0-12-397024-4.00006-2
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dielectric materials of different thickness. Additionally, the orientation of the liquid
crystal changes with distance from the aligning layer, necessitating the use of the
piecewise-uniform-approximation method introduced in Section 2.3.4.4 for analysis.

A limitation of SPP waves in some applications is the small propagation length due
to the dissipative nature of the metal. The Sarid configuration of Figure 2.11, commonly
adopted to launch LRSPP waves, can be modified to yield even greater propagation
lengths by inserting thin intermediate layers of dielectric materials between the metal
film and the substrate and/or between the metal film and the cover. The arrangement of
materials and layer thicknesses on the two sides of the metal film can be either asym-
metric [320] or symmetric [242,243]. The insertion of these dielectric layers engenders
multiple SPP-wave modes, the number of which depends on the thickness of the inter-
mediate layers. SPP-wave modes of even symmetry about the the mid-plane of the
metal film are particularly long ranged, with extremely long propagation lengths as the
intermediate layers reach a critical thickness [239]. Intermediate layers may facilitate
the excitation of LRSPP waves even with a thick metallic film. In addition to allevi-
ating manufacturing problems when employing thin films of a metal to obtain longer
propagation lengths, the use of thicker metal films may allow the propagation of both
electrical and optical signals with the same structure. Normalized admittance diagrams
[244] are useful for the design of dielectric multilayers for SPP-wave propagation.

The quite recent exploitation of SPR [321–323] for characterizing lipid membranes
has provided impetus to research on SPP waves guided by metal/multilayer interfaces.
Beyond improving the sensitivity of SPR sensors of biomolecules, these SPP waves
can be excited with both s- and p-polarized light. Thus, the SPP waves can be either
s polarized or p polarized. Because the electric field of a p-polarized SPP wave is
oriented perpendicular to the electric field of an s-polarized SPP wave, it becomes
possible to determine the anisotropic optical parameters of the biomolecules.

When many layers of dissimilar dielectric materials are arranged in a periodic fash-
ion, the resultant structure is a periodic multilayer that is often called a one-dimensional
photonic crystal. Light within a certain range of frequencies called the band gap cannot
propagate as a freely traveling wave inside the photonic crystal in certain ranges of
directions. When propagation is disallowed in all directions, the band gap is said to be
a complete band gap.

Suppose that a one-dimensional photonic crystal occupies a half-space. Inside this
photonic crystal, light may propagate as an evanescent wave which decays with dis-
tance away from the boundary. Several researchers have investigated, both theoretically
[154,155,157] and experimentally [160], the properties of SPP waves, guided by the
interface of a metal and a periodic multilayer, which propagate with frequencies within
the band gap and are even excited by normally incident light without the use of either
a prism or a grating. Such SPP-wave modes have been called surface plasmon-Bragg
modes and Tamm plasmon polariton (waves). The phase speeds of these SPP-wave
modes can be very high, much larger than c0 [157]. Furthermore, some of these SPP-
wave modes may be excited by s-polarized light and others by p-polarized light. In
addition, SPP-wave modes with lower phase speeds are also guided by the same inter-
face, the phase speed of such a surface wave being lower than of any plane wave in any
material within the periodic multilayer [154]. When the periodic multilayer is replaced
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by a rugate filter, theory indicates that SPP-wave modes with phase speeds ranging
from very small to very high are still possible [159].

6.3 Interface of a Metal and a Homogeneous
Anisotropic Dielectric Material

The nonhomogeneity of an isotropic dielectric multilayer imparts interesting charac-
teristics to SPP waves—including very high phase speeds and excitation by s-polarized
light. Propagation occurs in any direction in the interface plane and without any depen-
dence on that direction. Thus, the total AED is the maximum it can be: 360◦.

Dependence on the direction of propagation shows up when a homogeneous aniso-
tropic dielectric material is partnered with a metal. Early investigations [324,325] of
SPP waves guided by the interface of a metal and an anisotropic dielectric material elu-
cidated basic characteristics. Present-day researchers continue to show an interest in
the use of anisotropic dielectric materials, because ongoing developments in nanotech-
nology provide various means of engineering the anisotropy and later manipulating it
by the application of an external stimulus.

6.3.1 General Considerations

In order to solve the canonical boundary-value problem, the starting part of the frame-
work of Section 2.2 is still useful. The field phasors are given by

E(r) =
{

Emet exp (ikmet
• r), z < 0,

Ediel exp (ikdiel
• r), z > 0,

(6.1)

and

H(r) =
{

Hmet exp (ikmet
• r), z < 0,

Hdiel exp (ikdiel
• r), z > 0,

. (6.2)

Equations (2.8) still apply to Emet and Hmet in the half-space z � 0 occupied by the
metal, but Eqs. (2.9) for the half-space z � 0 require modification to

kdiel × Ediel = ωμ0Hdiel

kdiel ×Hdiel = −ωεdiel
• Ediel

kdiel
• ε

diel
• Ediel = 0

kdiel
• Hdiel = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z > 0, (6.3)

in which the permittivity of the partnering dielectric material is not a scalar but the
dyadic ε

diel
[17]. In the most general case, ε

diel
has nine complex-valued compo-

nents as described in Eqs. (1.28), all functions of the angular frequency ω. Anisotropic
dielectric materials may or may not be gyrotropic. If an anisotropic dielectric material
is not gyrotropic, it can belong to either a uniaxial or a biaxial class, as discussed in
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Section 1.4.1. In almost all research reported on SPP waves guided by a metal/dielectric
interface with a partnering biaxial dielectric material, the biaxiality is of the orthorhom-
bic system defined through Eq. (1.25).

The amplitude vectors of the field phasors in the metal are written as

Emet = bsus + bp

(
αmetuprop + quz

k0nmet

)

Hmet =
nmet

η0

[
bs

(
αmetuprop + quz

k0nmet

)
− bpus

]

⎫⎪⎪⎬
⎪⎪⎭
, (6.4)

with unknown coefficients bp and bs referring to the p- and s-polarization states, respec-
tively. Completion of the analysis requires a representation for the amplitude vectors
Ediel and Hdiel stemming from Eqs. (6.3), followed by the imposition of boundary con-
ditions (2.11). Alternatively, the 4× 4-matrix approach of Section 3.5 can be adopted.

The incorporation of an anisotropic dielectric material to partner a metal vastly
expands the complexity of SPP waves. Even so, with the results of several studies
[31,149,326] carried out during the last two decades, a few general comments can be
made before delving into specific situations. Unlike the simple SPP waves in Chapter 2,
the SPP wave on the metal side of the interface is, in general, composed of both s- and
p-polarized components when the partnering dielectric material is anisotropic. As a
result, the SPP wave may be excited, in general, with either s- or p-polarized incident
light. Both the relative proportions of s- and p-polarized components in the metal and
the efficiency with which the SPP wave can be excited by s- and p-polarized incident
light depend on the permittivity dyadic ε

diel
.

The SPP wave on the dielectric side of the interface also has two components. In the
case of a uniaxial dielectric material, we can speak of one component being an ordinary
and the other component being an extraordinary wave; more generally for any biaxial
dielectric material, both components are distinct extraordinary waves [17,78]. As these
components depend on uprop, so too do the characteristics of the SPP wave. Unlike the
interface of a metal and an isotropic dielectric material, the interface of a metal and an
anisotropic dielectric material may not guide SPP waves in all directions parallel to the
interface plane and the total AED is often less than 360◦. Reorientation of the anisotropic
dielectric material—which can be described mathematically through a transformation
of the type ε

diel
→ S • ε

diel
• S−1 with the dyadic S representing a rotation about a

fixed axis—can drastically alter the characteristics of SPP-wave propagation.

6.3.2 Columnar Thin Films

Ongoing developments in thin-film technology over the last century [42,327] have made
significant control possible over the permittivity dyadic of biaxial dielectric materials
with large birefringence. The permittivity dyadic of a columnar thin film, as described
in Section 1.4.3.1, is influenced by the selection of the material to be evaporated and the
vapor flux angle χv during fabrication. Once the evaporant material has been chosen,
the choice of χv affects the orientations of the optic ray axes a+ and a−, the biaxiality
δ, and the birefringence �n of the CTF. These nanoengineered materials, thus, make
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it possible to engineer interfaces supporting SPP waves with a considerable diversity
of attributes.

Although the permittivity dyadics of CTFs have not been widely related to the vapor
flux angle, experimental data are available on CTFs grown by the evaporation of a few
materials. In particular, CTFs fabricated of oxides of tantalum, titanium, and zirconium
have been characterized [94,328]. Thus, with the dyadic S

y
(χ) defined in Eq. (1.30),

the eigenvalues of the permittivity dyadic

ε
CTF
= S

y
(χ) • (εauzuz + εbux ux + εcuyuy)

• S−1
y
(χ) (6.5)

may be conveniently characterized in terms of simple quartic functions of the normal-
ized vapor flux angle χnorm

v = 2χv/π as

εa = ε0

[
na0 + na1χ

norm
v + na2

(
χnorm
v

)2
]2

εb = ε0

[
nb0 + nb1χ

norm
v + nb2

(
χnorm
v

)2
]2

εc = ε0

[
nc0 + nc1χ

norm
v + nc2

(
χnorm
v

)2
]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (6.6)

and the tilt angle χ of the CTF as

χ = tan−1 (a tan χv). (6.7)

The 10 constants n j
 and a for CTFs of each of the three evaporated materials,
as reported by Hodgkinson et al. [94], are provided in Table 6.1. A word of caution:
The data in this table are applicable to CTFs produced by one particular experimental

Table 6.1 Empirical constants to be used in Eqs. (6.6) and (6.7) for CTFs of three evaporated
materials [94]. The data hold at λ0 = 633 nm.

Tantalum oxide Titanium oxide Zirconium oxide

na0 1.1961 1.0443 1.2394
na1 1.5439 2.7394 1.2912
na2 −0.7719 −1.3697 −0.6456

nb0 1.4600 1.6765 1.4676
nb1 1.0400 1.5649 0.9428
nb2 −0.5200 −0.7825 −0.4714

nc0 1.3532 1.3586 1.3861
nc1 1.2296 2.1109 0.9979
nc2 −0.6148 −1.0554 −0.4990

a 3.1056 2.8818 3.5587
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Figure 6.1 The principal relative permittivity scalars εa, εb , and εc of CTFs fabricated by evap-
orating three different materials. The data were calculated using Eqs. (6.6) and Table 6.1 for
χv ∈ [7◦, 90◦]. (a) Tantalum oxide, (b) titanium oxide, and (c) zirconium oxide.

apparatus, but may have to be modified for CTFs produced by other researchers on
different apparatuses.

In order to illustrate the variation of the permittivity dyadic of a CTF with χv ,
Figure 6.1 shows the values of the principal permittivity scalars εa, εb, and εc deter-
mined using Eqs. (6.6) and Table 6.1 as functions of χv ∈ [7◦, 90◦]. This range of χv
is roughly the widest obtainable with current technology and corresponds to the range
[20◦, 90◦] of the tilt angle χ .

Instead of the quartic equations (6.6), higher-order polynomial equations can be
devised from experimental data. For instance, the principal permittivity scalars εa, εb,
and εc of silicon-oxide CTFs have been represented as sextic functions of χnorm

v [57].
More complicated functionalities have also been devised for silicon-oxide CTFs and
magnesium-fluoride CTFs [329]. All such functionalities strongly depend on the appa-
ratus being used for fabrication.

6.3.3 Metal/CTF Interface

Calculations for the interface of bulk aluminum and a titanium-oxide CTF indicate that
SPP-wave propagation is possible, in general, in four limited ranges of directions along
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the interface plane [44,45]. Recalling that uprop = ux cosψ + uy sinψ and that the
morphologically significant plane of the CTF described by Eq. (6.5) is the xz plane,
we can see that propagation characteristics must not change if ψ were to be replaced
by −ψ . For each angle ψ ∈ [0, ψmax], ψmax � 90◦, the SPP wavenumber q does not
change if ψ were to be replaced by 180◦ −ψ . Thus, there is a fourfold symmetry [45].
The value ofψmax depends on χv . When χv = 90◦, the generally biaxial CTF becomes
uniaxial with its sole optic ray axis aligned parallel to the z axis. SPP-wave propagation
then occurs in all directions (i.e.ψmax = 90◦), as symmetry demands. At some smaller
value of χv , the AED begins to shrink, and ψmax generally decreases as χv decreases.

When ψ = 0◦, the dispersion equation for SPP-wave propagation is [44]

q2εmet + qαmet(εa − εb) sin χ cosχ

−(αmetαdiel + ω2μ0εmet)(εa cos2 χ + εb sin2 χ) = 0. (6.8)

The sole SPP wave has to be p polarized and is entirely unaffected by εc.
Figure 6.2 shows the variation of Re{q}/k0 with ψ of SPP-wave modes guided by

the planar interface of bulk aluminum (nmet = 1.38+7.61i) and a titanium-oxide CTF
described by Eqs. (6.6) and Table 6.1 for χv ∈ {7.2◦, 20◦, 60◦, 90◦} and λ0 = 633 nm
[45]. In general, the phase speed vp = ω/Re{q} increases as χv decreases, but the
maximum phase speed does not exceed c0.

As the phase speed vp increases, so does the propagation length�prop = 1/Im{q} of
the SPP wave; furthermore,�prop can increase by as much as two orders of magnitude
as ψ → ψmax. These characteristics are evident in Figure 6.3. The increase in �prop
is consistent with a concurrent weakening of the localization of the SPP wave to the
interface on the CTF side. With a large fraction of the volume over which the wave has
significant amplitude occurring in the partnering dielectric material wherein dissipation
is negligible, increased propagation lengths are to be expected. In contrast, the strong
localization on the metal side of the interface is completely insensitive to ψ .

Figure 6.2 Dependence of Re{q}/k0 on the propagation angle ψ in the xy plane of SPP-
wave modes guided by the planar interface of bulk aluminum (nmet = 1.38 + 7.61i) and a
titanium-oxide CTF described by Eqs. (6.6) and Table 6.1 for χv ∈ {7.2◦, 20◦, 60◦, 90◦} and
λ0 = 633 nm [45].
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Figure 6.3 Dependence of �prop on the propagation angle ψ in the xy plane of SPP-wave
modes guided by the planar interface of bulk aluminum (nmet = 1.38 + 7.61i) and a
titanium-oxide CTF described by Eqs. (6.6) and Table 6.1 for χv ∈ {7.2◦, 20◦, 60◦, 90◦} and
λ0 = 633 nm [45].

6.4 Interface of a Metal and a Continuously and
Periodically Nonhomogeneous Dielectric Material

Nanotechnology can quite easily produce dielectric materials whose constitutive prop-
erties change continuously along one direction [111] for specific optical applications.
Some, such as rugate filters with sinusoidally varying refractive index [60], have been
around for several decades. Others, such as STFs [42], have been conceptualized and
developed in the last two decades or so. In either case, investigations of SPP-wave prop-
agation guided by the interface of a metal and a dielectric material whose permittivity
varies continuously and periodically in the direction normal to the interface plane con-
stitute a recent development [332]. The most remarkable result of these investigations
is the discovery [54,56] of multiple SPP-wave modes guided by a single interface at
a single frequency in a specific direction in the interface plane, with ramifications for
improved error-free sensing, harvesting of solar energy, and communications. Each of
the multiple SPP-wave modes has a distinct phase speed, propagation length, local-
ization characterstics, and field profile. If the partnering dielectric material is also
anisotropic, the SPP wave on the metal side of the interface has, in general, both s- and
p-polarized components.

Detailed investigations on SPP-wave propagation have been reported for three types
of continuously nonhomogeneous periodic dielectric materials as partnering dielectric
materials: rugate filters [63,153,159,333], SNTFs [54,55,259,334], and chiral STFs
[56,161,228,335,336]. Multiple SPP-wave modes guided by metal/SNTF interfaces
and metal/chiral-STF interfaces were discovered theoretically at nearly the same time.
Since both SNTFs and chiral STFs are anisotropic as well as periodically nonhomoge-
neous materials, it was uncertain whether anisotropy or periodicity was responsible for
the existence of multiple SPP-wave modes. Perhaps, anisotropy and periodicity were
together responsible.
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Shortly after the experimental validations of multiple SPP-wave modes guided by
metal/SNTF interfaces [57] and metal/chiral-STF interfaces [58,59], calculations for
metal/rugate-filter interfaces—in the canonical [63], Turbadar-Kretschmann-Raether
[333], and grating-coupled configurations [86,153]—showed that they too support
multiple SPP-wave modes. The question was settled: periodicity of the partnering
dielectric material in the direction normal to the interface alone engenders multiplicity
of SPP-wave modes.

As experimental investigations have verified the existence of multiple SPP-wave
modes at a single frequency [57–59], development of practical applications is likely to
occur in the not-too-distant future. Moreover, as some liquid crystals have continuously
varying permittivity dyadics of the same form as chiral STFs [337], metal/liquid-crystal
interfaces could also support the propagation of multiple SPP-wave modes. While STFs
afford much greater flexibility in the spatial variation of the permittivity dyadic, liquid
crystals make sensitivity to an external stimulus such as voltage or pressure an enticing
possibility for application.

6.4.1 Metal/Rugate-Filter Interface

A rugate filter [60,119] is commonly conceptualized as being made of an isotropic
dielectric material with a refractive index that varies periodically in one direction. The
periodic variation in the permittivity of a rugate filter may take on a variety of forms,
but is commonly taken to be sinusoidal.

6.4.1.1 Canonical Boundary-Value Problem

The canonical boundary-value problem of SPP-wave propagation can be formulated
in the same way as in Section 3.5 to determine the relevant dispersion equation. Let
a periodically nonhomogeneous dielectric material labeled A occupy the half-space
z > 0, while a homogeneous metal labeled B occupies the half-space z < 0, as shown
in Figure 6.4. The permittivity of material A varies periodically so that

εA(z + 2A) = εA(z), z > 0, (6.9)

SPP wave x, y

z

Figure 6.4 Schematic of the canonical boundary-value problem for SPP-wave propagation
guided by the planar interface of a periodically nonhomogeneous dielectric material A and a
metal B. Material A can be isotropic or anisotropic and is periodically nonhomogeneous along
the z axis.
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with 2A as the period, whereas the permittivity εB of the metal B does not depend
on z.

As material A throughout Section 6.4.1 is a rugate filter with a sinusoidally varying
refractive index, its permittivity is given by

εA(z) = ε0

[
nA

avg +
�nA

2
sin
( π z

A
)]2

, z > 0, (6.10)

whereas the refractive index of the metal B is denoted by nB =√εB/ε0. Field analysis
can be approached as described in Section 3.5 for propagation parallel to uprop. Much
more easily, because both the rugate filter and the metal are isotropic, the SPP wave can
be taken to propagate along the x axis without loss of generality, and the procedures
of Section 5.2 can be adapted. Either way, some SPP-wave modes will turn out to be
p polarized and the remainder will be s polarized.

With nA
avg,�nA, nB , and λ0 held fixed, the various SPP-wave modes can be tracked

in relation to A and organized into branches [63,159]. Figure 6.5 shows the real
and imaginary parts of several but not all SPP wavenumbers q as functions of A/λ0
organized into 19 branches, for the planar interface of bulk aluminum (nB = 1.38 +
7.61i) and a rugate filter described by Eq. (6.10) with nA

avg = 1.885 and �nA = 0.87,

Figure 6.5 Several solutions q of the canonical boundary-value problem as functions ofA/λ0
for propagation guided by the planar interface of bulk aluminum and a rugate filter described
by Eq. (6.10); nA

avg = 1.885,�nA = 0.87, nB = 1.38 + 7.61i , and λ0 = 633 nm [63,159].
These solutions are organized into 19 branches. Some solutions are not shown for clarity [159].
If q represents an SPP wave propagating in the uprop direction, −q represents an SPP wave
propagating in the −uprop direction.
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when λ0 = 633 nm. The branches labeled s1–s10 represent s-polarized SPP waves
and the branches labeled p1–p9 represent p-polarized SPP waves. A few of these
branches extend into the high-phase-speed regime Re{q}/k0 < 1.0 (i.e. vp > c0)
[159], but the extensions are not shown in the figure for clarity.

None of the s branches intersects with a p branch, which indicates that only lin-
early polarized SPP waves can be guided by metal/rugate-filter interfaces. As A/λ0
increases, the branches come closer to each other. At some very high value ofA/λ0,
only one solution should exist, since the rugate filter would then be essentially homoge-
neous over the region in which the fields of the SPP wave have significant magnitudes
[63]. Extending the calculations to very large values of A, however, leads to com-
putational difficulties—which are absent when sin (π z/A) is replaced by zero in
Eq. (6.10).

Although the degree of localization varies for different SPP-wave modes, calcula-
tions show that the wave on the rugate-filter side of the interface is confined to a few
periods of the rugate filter. This is good news for practical implementations because
the thickness of the rugate filter is necessarily limited in practice. Figure 6.6 shows the
field profiles for two different solutions on the branch labeled p8 in Figure 6.5, one at
/λ0 = 0.1 and the other at /λ0 = 1. Likewise, Figure 6.7 shows the field profiles
for two different solutions—one at /λ0 = 1 and the other at /λ0 = 1.5—on the
branch labeled s2. In both figures, localization to the interface on the rugate-filter side
is weaker at the lower value than at the higher value of /λ0.

Two types of field profiles appear to exist, as exemplified in Figures 6.6 and 6.7. For
both types, the fields decrease monotonically with distance from the interface inside
the metal, just as for the simple SPP wave guided by the interface of a metal and a
homogeneous isotropic dielectric material. One type also has a monotonic decrease of
the field magnitudes on the rugate-filter side with distance from the interface, exactly
like the simple SPP wave. However, the other type has an oscillatory decrease on
the rugate-filter side. Both types of field profiles are consistent with Floquet theory.
Profiles of the time-average Poynting vector also available in Figures 6.6 and 6.7 provide
corroboration. The different spatial profiles of different SPP-wave modes offer promise
for multi-analyte SPR sensing without spatial multiplexing.

The lowest refractive index in the rugate filter equals nA
avg − �nA/2. Therefore,

three different regimes of the phase speed can be delineated:

i. low-phase-speed regime vp < (nA
avg −�nA/2)−1c0,

ii. intermediate-phase-speed regime (nA
avg −�nA/2)−1c0 < vp < c0, and

iii. high-phase-speed regime vp > c0.

Most SPP wavenumbers in Figure 6.5 lie in the low-phase-speed regime, but others
lie in the intermediate-phase-speed regime. Still others lie in the high-phase-speed
regime [159]—just like SPP waves guided by the interface of a metal and a Bragg
mirror whose unit cell comprises two homogeneous dielectric layers of quarter-wave
thickness [155,157,160].

The high-phase-speed SPP waves can be either p or s polarized, and can be excited
by direct illumination of a metal-backed rugate filter of finite thickness. SPP waves
with extremely high phase speeds have been found [159], but these do not propagate
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Figure 6.6 Variations with z of the magnitudes of the Cartesian components of e(z) and h(z)
of two p-polarized SPP waves lying on branch p8 in Figure 6.5, when uprop = ux . Also shown
are the variations of Cartesian components of the time-averaged Poynting vector P(x, y, z)with
z on the line {x = 0, y = 0}. The components parallel to ux , uy , and uz are represented by
red solid, blue dashed, and black chain-dashed lines, respectively. The data were computed by
setting nA

avg = 1.885,�nA = 0.87, nB = 1.38 + 7.61i (bulk aluminum), λ0 = 633 nm,

and bp/nB = 1 V m−1. (Left) /λ0 = 0.1 and q/k0 = 2.00943 + 0.04468i , and (right)
/λ0 = 1.0 and q/k0 = 2.21456+ 0.00246i [63]. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this book.)

in the interface plane because Re{q} ≈ 0. Hence, these SPP waves are useless for
communications.

Just as the excitation of multiple low-phase-speed SPP waves at a fixed frequency is
promising for optical sensing applications [338], the excitation of multiple SPP waves in
the intermediate- and the high-phase-speed regimes is likely to be similarly useful. This
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Figure 6.7 Variations with z of the magnitudes of the Cartesian components of e(z) and h(z)
of two s-polarized SPP waves lying on branch s2 in Figure 6.5, when uprop = ux . Also shown
are the variations of Cartesian components of the time-averaged Poynting vector P(x, y, z)with
z on the line {x = 0, y = 0}. The components parallel to ux , uy , and uz are represented by
red solid, blue dashed, and black chain-dashed lines, respectively. The data were computed by
setting nA

avg = 1.885,�nA = 0.87, nB = 1.38 + 7.61i (bulk aluminum), λ0 = 633 nm, and

bs = 1 V m−1. (left) /λ0 = 1.0 and q/k0 = 1.4864 + 0.0013203i , and (right) /λ0 = 1.5
and q/k0 = 1.7873+0.0007801i [63]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this book.)

would require the rugate filter to have sufficient porosity to be infiltrated by the analytes
to be sensed. Neither the prism-coupled configuration nor the periodic corrugation of
the metal/rugate-filter interface would be necessary, leading to greater integration of
chemical sensors based on SPP waves in optical circuits. For harvesting solar energy, if
the rugate filter is made of an appropriate semiconductor, the excitation of high-phase-
speed SPP waves is expected to enhance absorption of the solar flux and therefore the
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generation of electron-hole pairs, as has already been noted for low-phase-speed SPP
waves [84,207,208].

6.4.1.2 Turbadar-Kretschmann-Raether Configuration

An SPP wave is excited in the Turbadar-Kretschmann-Raether configuration of
Figure 2.4, when light incident on the prism/metal interface excites evanescent waves
in the thin metal film and its partnering dielectric material (presently a rugate filter)
of finite thickness. The prism in the Turbadar-Kretschmann-Raether configuration is
extremely thick compared to both the free-space wavelength of light and the thickness
of the metal film, and can therefore be modeled as a semi-infinite medium.

The essence of this prism-coupled configuration is shown in Figure 6.8. Both the
rugate filter (material A) and the metal (material B) are of finite thicknesses dA and dB ,
respectively. The metal film is also in contact with a prism of refractive index nprism > 1,
whereas the rugate filter A is also in contact with air (nair = 1). For theoretical analysis,
a linearly polarized plane wave is taken to be incident on the interface of the prism
and material B at an angle θinc with respect to the z axis. The plane wave transmitted
into air has a wave vector inclined to the z axis at an angle θtr, which may be complex
valued. As all materials are isotropic, the wave vector of the incident plane wave may
be taken to lie wholly in the xz plane so that uprop = ux .

The expression for the permittivity of the rugate filter is modified from
Eq. (6.10) to

εA(z) = ε0

{
nA

avg +
�nA

2
sin

[
π(z − dB)
A

]}2

, z ∈ (dB, dA + dB), (6.11)

whereas nB still denotes the refractive index of the metal. The refractive index of the
prism should be larger than the maximum refractive index of the rugate filter (i.e.
nprism > nA

avg + �nA/2), both materials being assumed to be nondissipative. For

x, y

z

d

d

θinc

θtr

Incident light Reflected light

Transmitted light

SPP wave

prism

air

Figure 6.8 Schematic of the Turbadar-Kretschmann-Raether configuration to excite multiple
SPP-wave modes guided by the planar interface of a periodically nonhomogeneous dielectric
material A and a metal B. Material A can be isotropic or anisotropic, and is periodically non-
homogeneous along the z axis. For analytical simplicity, air in the half-space z > dA + dB can
be replaced by the prism material, provided that the layer of material A has a sufficiently large
number of periods (i.e. it is sufficiently thick).
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theoretical studies, it is convenient to always choose dA to be an integral multiple of
2A; that choice is implicit throughout this chapter.

The mathematical technique described in Section 3.7 is straightforward to apply for
analysis and prediction. As the integer dA/2A increases, the boundary-value problem
may yield solutions that violate the principle of conservation of energy due to the limited
precision available on digital computers. The emergence of these erroneous solutions
can often be circumvented by adapting the RCWA algorithm of Sections 2.3.4.5 and
3.8.6 for the rugate filter [333].

In order to investigate the excitation of SPP waves, the angle of incidence θinc has to
be varied from 0◦ toward 90◦, and the linear absorptances Ap and As of Eqs. (3.128)
are computed as functions of that angle. When a linear absorptance is plotted against
θinc, several peaks may be evident. An absorptance peak whose location on the θinc axis
does not vary significantly with respect to dA/2A and dB beyond some thresholds
for both thicknesses very likely indicates the excitation of an SPP wave. Confirmation
is provided by the solution of the underlying canonical boundary-value problem.

Although in an actual experiment the material that the light encounters on exiting the
rugate filter would be air, this material is often replaced, for simplicity of calculation,
with the same material that the prism is composed of. Then, θtr = θinc is definitely
a real angle. In spite of this replacement, the essential characteristics of SPP-wave
propagation are captured. For direct comparison with experimental results, however
the exit region should be taken to be occupied by air.

Figure 6.9 shows typical results for absorptance Ap as a function of θinc for the
interface of an aluminum thin film (nB = 0.75+ 3.9i) and a rugate filter described by
Eq. (6.11) with nA

avg = 1.885,�nA = 0.87, and A = 1.5λ0, when λ0 = 633 nm.
The prism material is zinc selenide (nprism = 2.58), which is taken to occupy both
half-spaces z < 0 and z > dA + dB . The thickness dB = 30 nm of the metal film is
typical. Data are presented for two different thicknesses of the rugate filter. The angular
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Figure 6.9 Calculated linear absorptance Ap at λ0 = 633 nm as a function of the angle of
incidence θinc for the Turbadar-Kretschmann-Raether configuration incorporating (i) a rugate
filter described by Eq. (6.11) with nA

avg = 1.885,�nA = 0.87, A = 1.5λ0, and dA =
2Nper

A and (ii) an aluminum thin film with nB = 0.75+ 3.9i and dB = 30 nm, encased by
the half-spaces z < 0 and z > dA+dB occupied by zinc selenide (nprism = 2.58). Red solid line
is for Nper = 3 and blue dashed line is for Nper = 4 [333]. The letter S identifies the absorptance
peaks that represent the excitation of SPP waves. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this book.)
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Table 6.2 Values of θinc and κ/k0 = nprism sin θinc for
those absorptance peaks in Figure 6.9 that do not shift
when the thickness of the rugate filter is changed [333].

θ inc (deg) κ/k0

33.23 1.4138
37.20 1.5599
42.41 1.7400
48.01 1.9176
53.86 2.0836
59.66 2.2266
61.01 2.2567

Table 6.3 Normalized SPP wavenumbers q/k0 of p-polarized SPP-wave modes obtained by
solving the canonical boundary-value problem for the metal/rugate-filter interface with same
partnering materials as in Figure 6.9 [333]. If q represents an SPP wave propagating in the uprop
direction, −q represents an SPP wave propagating in the −uprop direction.

Polarization state q/k0 q/k0 q/k0

1.4125+ 0.0004i 1.5600+ 0.0008i 1.7401+ 0.0013i
p-pol 1.9175+ 0.0015i 2.0836+ 0.0018i 2.2302+ 0.0173i

2.2498+ 0.0079i

locations of seven peaks in this figure are not affected by the rugate filter having either
three or four periods, suggesting that only these peaks represent excitation of SPP-wave
modes rather than waveguide modes [299] which must depend on dA.

Table 6.2 lists the angle of incidence θinc for each of these seven absorptance
peaks and the corresponding wavenumber κ = k0nprism sin θinc. Table 6.3 lists the
SPP wavenumbers q obtained from the solution of the underlying canonical boundary-
value problem for p-polarized SPP-wave modes guided by the interface of the chosen
rugate filter and the aluminum thin film. The close agreement of κ and Re{q} in these
two tables confirms that the seven absorptance peaks identified in Figure 6.9 do indeed
indicate the excitation of seven distinct SPP-wave modes.

The counterpart of Figure 6.9 for the excitation of s-polarized SPP-wave modes is
Figure 6.10, wherein the absorptance As is plotted against θinc. The angular locations
of five peaks in this figure are not affected by the number of periods of the rugate
filter, which indicates that these peaks represent excitation of SPP-wave modes. The
values of θinc and the corresponding wavenumber κ = k0nprism sin θinc are listed in
Table 6.4. Table 6.5 lists the SPP wavenumbers q obtained from the solution of the
underlying canonical boundary-value problem for s-polarized SPP-wave modes guided
by the interface of the chosen rugate filter and the aluminum thin film. Again, the close
agreement of κ and Re{q} in these two tables confirms that the five absorptance peaks
identified in Figure 6.10 do indeed indicate the excitation of five distinct s-polarized
SPP-wave modes.
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Figure 6.10 Same as Figure 6.9, except As is plotted instead of Ap . Although the absorptance
peak at θinc � 35◦ appears to be independent of the number of periods Nper of the rugate filter,
this peak shifts significantly when Nper increases beyond 4; therefore, it does not represent the
excitation of an SPP-wave mode [333].

Table 6.4 Values of θinc and κ/k0 = nprism sin θinc for
those absorptance peaks in Figure 6.10 that do not shift
when the thickness of the rugate filter is changed [333].

θ inc (deg) κ/k0

38.97 1.6226
44.01 1.7925
49.22 1.9536
54.63 2.1038
60.66 2.2491

Table 6.5 Normalized SPP wavenumbers q/k0 of s-polarized SPP-wave modes obtained by
solving the canonical boundary-value problem for the metal/rugate-filter interface with the same
partnering materials as in Figure 6.10 [333]. If q represents an SPP-wave mode propagating in
the uprop direction,−q represents the same SPP-wave mode propagating in the−uprop direction.

Polarization state q/k0 q/k0 q/k0

s-pol 1.6226+ 0.0010i 1.7924+ 0.0008i 1.9534+ 0.0004i
2.1038+ 0.0001i 2.2490+ 1.0136× 10−5i

Thus, all 12 SPP-wave modes found from examining the absorptance peaks in
Figures 6.9 and 6.10 for the Turbadar-Kretschmann-Raether configuration could have
been predicted after solving the canonical boundary-value problem. Nevertheless, some
SPP-wave modes are so weakly bound to the metal/rugate-filter interface that it is not
possible to observe them as absorptance peaks when the number of periods of the
rugate filter is not large [159]. Thick rugate filters are, however, impractical. Further-
more, almost all SPP-wave modes are excited with maximal energy when the metal
film is approximately equal to the skin depth [k0Im{nB}]−1 of the metal [333]. This
thickness of the metal film would also be sufficient to minimize the coupling of any
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Figure 6.11 Variations with z of the non-zero Cartesian components of the time-averaged
Poynting vector in (left) the metal film and (right) the rugate filter for three absorptance peaks in
Figure 6.9 identified with the excitation of p-polarized SPP-wave modes at (top) θinc = 32.23◦,
(middle) θinc = 42.42◦, and (bottom) θinc = 59.66◦, when ψ = 0◦ and λ0 = 633 nm. The
components parallel to ux and uz are represented by red solid and black chain-dashed lines,
respectively. The amplitude of the incident electric field is 1 V m−1 [333]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this book.)

SPP-wave modes guided solely by the metal/prism interface with the ones guided solely
by the metal/rugate-filter interface [297,333].

Different SPP-wave modes have different field profiles in the canonical problem, as
evidenced by Figures 6.6 and 6.7. The same is true in any prism-coupled configuration.
As an example, Figures 6.11 and 6.12 show the variations of the the non-zero Cartesian
components of the time-averaged Poynting vector as functions of distance from the
metal/rugate-filter interface on either side of the interface for three p-polarized and
two s-polarized SPP-wave modes, respectively. In the bottom half of Figure 6.12, the
rise in magnitude of both Px and Pz as z approaches the metal/prism interface z = 0
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Figure 6.12 Variations with z of the non-zero Cartesian components of the time-averaged Poynt-
ing vector in (left) the metal film and (right) the rugate filter for two absorptance peaks in
Figure 6.10 identified with the excitation of s-polarized SPP-wave modes at (top) θinc = 49.22◦,
and (bottom) θinc = 60.66◦, when ψ = 0◦ and λ0 = 633 nm. The components parallel to ux
and uz are represented by red solid and black chain-dashed lines, respectively. The magnitude
of the incident electric field is 1 V m−1 [333]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this book.)

indicates coupling between SPP-wave modes guided independently by the metal/prism
and the metal/rugate-filter interfaces. But the coupling is weak because the metal film
is 30-nm thick whereas the skin depth in the metal is 24.91 nm [333].

6.4.1.3 Grating-Coupled Configuration

As discussed in Section 1.3.2.2, surface-relief gratings are sometimes used for exciting
SPP waves [3,4], thereby avoiding the use of a prism. The partnering dielectric mate-
rial has been reported to be homogeneous in experimental situations so far. But very
recently, this configuration has been successfully employed with a periodic multilayer
in that role, for the excitation of multiple p- and s-polarized SPP-wave modes over the
entire visible regime [339].

As shown in Figure 6.13, the half-spaces z < 0 and z > d3 are occupied by air
(nair = 1), the region 0 < z � d1 is occupied by a dielectric material A of permittivity
εA(z), and the region d2 � z < d3 by a metal B of permittivity εB . The region
d1 < z < d2 contains a periodically undulating interface with period Lx along the x
axis. The permittivity ε

g
(x, z) = ε

g
(x ± Lx , z) in the reference unit cell 0 < x < Lx
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Figure 6.13 Schematic of the grating-coupled configuration to excite SPP-wave propagation
guided by the periodically corrugated interface of a periodically nonhomogeneous dielectric
material A and a metal B. Material A can be isotropic or anisotropic, and is periodically non-
homogeneous along the z axis. The incident plane wave propagates in the xz plane, so that the
method of Section 3.8 can be applied with ψ = 0◦ and n ∈ {0}.

of this region is expressed as

ε
g
(x, z) =

{
εB I − [εB I − εA(z)]U[d2 − z − w(x)], x ∈ (0, L1),

εA(z), x ∈ (L1, Lx ),
(6.12)

with I as the identity dyadic, U(σ ) as the unit step function, and

w(x) = (d2 − d1) sin

(
πx

L1

)
, L1 ∈ (0, Lx ). (6.13)

Functions other than the sinusoid can be used for w(x), subject to the restrictions
mentioned in Section 3.8. Thus the grating depicted in Figure 6.13 is singly periodic
and the grating plane is the xz plane. The ratio d1/2A is taken to be an integer
throughout this chapter, unless otherwise specified.

A linearly polarized plane wave, propagating in the half-space z < 0 at an angle
θinc ∈ [0◦, 90◦) to the z axis and at an angle ψ = 0◦ to the x axis in the xy plane, is
taken to be incident on the plane z = 0. The field phasors of the incident plane wave
are described by Eqs. (3.141) with n ∈ {0} and n1 = nair. Linear absorptances Ap
and As defined in Eqs. (3.151) can be calculated after using the RCWA described in
Section 3.8.5.

Illustrative numerical results are presented in Figure 6.14 at λ0 = 633 nm for the
periodically corrugated interface of bulk aluminum (nB = 1.38+ 7.61i) and a rugate
filter described by

εA(z) = ε0 I

{
nA

avg +
�nA

2
sin

[
π(d2 − z)

A

]}2

, (6.14)

with nA
avg = 1.885,�nA = 0.87, and A = λ0 [153]. Calculated linear absorptances

Ap and As are plotted as functions of θinc, for three values of the thickness of the rugate
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Figure 6.14 Calculated linear absorptances Ap and As as functions of the angle of incidence
θinc, when ψ = 0◦ and λ0 = 633 nm, for the grating-coupled configuration of Figure 6.13.
Material A is the rugate filter described by Eq. (6.14) with nA

avg = 1.885,�nA = 0.87, and

A = λ0. Material B is bulk aluminum with refractive index nB = 1.38 + 7.61i . The grating
is described via Eqs. (6.12) and (6.13), with d3 − d2 = 30 nm, d2 − d1 = 50 nm, L1 = 0.5Lx ,
and Lx = A. Three values of d1 are used: 4A (blue chain-dashed lines), 5A (red dashed
lines), and 6A (black solid lines). The letter S identifies the absorptance peaks that represent
the excitation of SPP waves. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this book.)

filter above the grating: d1 ∈ {4A, 5A, 6A}. Although numerous absorptance
peaks are evident, most do not represent the excitation of an SPP wave, since they shift
to different values of θinc as the integer d1/2A varies. Any peak which represents the
excitation of an SPP wave does not shift significantly on the θinc axis as the integer
d1/2A increases beyond a threshold, and is identified by the letter S in the figure.

The wavenumbers k(m,0)xy /k0 of linear Floquet harmonics of order (m, 0), at the
absorptance peaks marked by S in Figure 6.14, are tabulated in Table 6.6 for m ∈
[−2, 2]. Table 6.7 lists the SPP wavenumbers q obtained from the solution of the
underlying canonical boundary-value problem for SPP-wave modes guided by the
interface of the chosen rugate filter and bulk aluminum.

The Ap-peak at θinc = 37.7◦ in Figure 6.14 has k(1,0)x /k0 = 1.6115, according to
Table 6.6. This number is quite close to Re{q}/k0 = 1.61782 in Table 6.7. Hence, this
Ap-peak represents the excitation of a p-polarized SPP wave as a Floquet harmonic of
order n = 1. Every peak identified by S in Figure 6.14 is able to satisfy a similar test,
thereby indicating that every SPP-wave mode is excited as a linear Floquet harmonic
in the grating-coupled configuration.
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Table 6.6 Relative wavenumbers k(m,n)xy /k0 of linear Floquet harmonics of order (m, n),m ∈
[−2, 2] and n = 0, at the absorptance peaks marked by S in Figure 6.14. Boldface entries signify
SPP waves [153].

θ inc (deg) k(m,0)
xy /k0

m =−2 m =−1 m = 0 m = 1 m = 2

16.3 −1.7210 −0.7210 0.2790 1.2790 2.2790
21.0 −1.6416 −0.6416 0.3584 1.3584 2.3584
28.4 −1.5244 −0.5244 0.4756 1.4756 2.4756
31.6 −1.4760 −0.4760 0.5240 1.5240 2.5240
37.7 −1.3885 −0.3885 0.6115 1.6115 2.6115

Table 6.7 Normalized SPP wavenumbers q/k0 of SPP-wave modes obtained by solving the
underlying canonical boundary-value problem for the metal/rugate-filter interface withe same
partnering materials as in Figure 6.14 [153]. If q represents an SPP-wave mode propagating in
the uprop direction,−q represents the same SPP-wave mode propagating in the−uprop direction.

Polarization state q/k0 q/k0 q/k0

p-pol 1.36479+ 0.00169i 1.61782+ 0.00548i 1.87437+ 0.00998i
2.06995+ 0.01526i 2.21456+ 0.00246i

s-pol 1.48639+ 0.00132i 1.7324+ 0.0014i

Indeed, it is the panoply of linear Floquet harmonics that facilitates the excitation
of multiple SPP-wave modes in the grating-coupled configuration. This abundance
is manifested, in some cases, by the excitation of a single SPP-wave mode by light
incident at two different angles θinc, but the angle of incidence for which the linear
Floquet harmonic is of a lower order leads to the more efficient excitation. An example
is furnished by Figure 6.14. The As-peak at θinc = 28.4◦ represents the excitation
of an SPP-wave mode as the linear Floquet harmonic of order (1, 0) because k(1,0)xy =
1.4756k0 (Table 6.6) is then close to Re{q} = 1.48639 (Table 6.7), while the As-peak at
θinc = 31.6◦ represents the excitation of the same SPP-wave mode as the linear Floquet
harmonic of order (−2, 0) because k(−2,0)

xy = −1.4760k0 (Table 6.6) is then close to
Re{q} = −1.48639 (Table 6.7). Although the field profiles for the two absorptance
peaks are scaled mirror images of each other, the excitation of the s-polarized SPP-
wave mode at θinc = 31.6◦ is less efficient—i.e. it has a lower As-peak—than the
excitation of the same mode at θinc = 28.4◦ [153].

The number of available SPP-wave modes actually excitable in the grating-coupled
configuration depends crucially on the grating period Lx . For that reason, a compound
surface-relief grating can help excite many more SPP-wave modes than a single simple
surface-relief grating [86]. Each period of a compound grating comprises two or more
simple gratings, each several periods long.
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Finally, a comparison of absorptance peaks leads to two useful conclusions: (i) Ap-
peaks are wider than As-peaks on the θinc axis, and (ii) SPP-wave modes with higher
phase speeds have narrower absorptance peaks.

6.4.2 Metal/SNTF Interface

The morphology of an SNTF [42] is engineered during PVD simply by rocking the
substrate in order to change χv dynamically. By varying the way in which the substrate
is rocked, a seemingly endless variety of SNTFs, some unidirectionally periodic but not
others, could be fabricated. An example of simple SNTFs with periodic nonhomogene-
ity along the thickness direction (i.e. the z axis) is the one with chevronic morphology
shown in Figure 1.9. Maintenance of a fixed orientation of the substrate for half of the
temporal period and the opposite orientation for the remainder of the temporal period
during fabrication results in a periodic variation of the tilt angle χ between two values,
one of which is the negative of the other. Continuous rocking of the substrate would
make χ vary smoothly.

Thus, χ becomes χ(z) for SNTFs, and it is also appropriate to consider the vapor
flux angle as a function of z. Since the permittivity of a CTF depends on the vapor flux
angle, as discussed in Section 6.3.2, the permittivity of an SNTF is a straightforward
modification of Eq. (6.5); thus,

ε
SNTF

(z) = S
y
[χ(z)] • [εa(z)uzuz + εb(z)ux ux + εc(z)uyuy] • S−1

y
[χ(z)],

(6.15)

where χ(z) and εa,b,c(z) must depend on χv(z).
Experimental data onχ(z), εa(z), εb(z), and εc(z) of SNTFs do not exist. Therefore,

although expressions such as Eqs. (6.6) and (6.7) characterize the permittivity of CTFs,
it may be assumed for initial studies that such relationships are reasonable estimates of
the local permittivity of an SNTF. Recent evidence with optical filters now indicates
that a refined optical characterization of SNTFs should be a new research avenue [340].

Calculations have been performed to determine the characteristics of SPP-wave
propagation guided by the interface of a metal and a periodically nonhomogeneous
SNTF for: the canonical boundary-value problem [334], the Turbadar-Kretschmann-
Raether configuration [54,55], and the grating-coupled configuration [259]. All of these
theoretical reports used

εa(z) = ε0

{
na0 + na1χ

norm
v (z)+ na2

[
χnorm
v (z)

]2}2

εb(z) = ε0

{
nb0 + nb1χ

norm
v (z)+ nb2

[
χnorm
v (z)

]2}2

εc(z) = ε0

{
nc0 + nc1χ

norm
v (z)+ nc2

[
χnorm
v (z)

]2}2

χ(z) = tan−1[a tan χv(z)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (6.16)

withχnorm
v (z) = 2χv(z)/π and Table 6.1 providing the parameters n j
 and a for SNTFs

made from three different oxides. Moreover, only SNTFs resulting from a sinusoidal
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Figure 6.15 Cross-sectional image of an SNTF on a scanning electron microscope. This SNTF
was fabricated by evaporating silicon oxide with a sinusoidal variation of the vapor flux angle.
Courtesy: Yi-Jun Jen, National Taipei University of Technology.

variation of χv(z) were considered. In particular,

χv(z) = χ̃v + δv sin
(π z



)
, (6.17)

where χ̃v is the average value, δv is the modulation amplitude, and 2 is the period.
Without loss of generality, the SNTF was oriented so that its morphologically significant
plane is the xz plane.

The sole experimental investigation reported was conducted on the interface of an
aluminum thin film and a silicon-oxide SNTF in the Turbadar-Kretschmann-Raether
configuration [57]. The dynamically varying vapor flux angle followed Eq. (6.17).
Figure 6.15 shows an SEM image of an SNTF of the type used.

6.4.2.1 Canonical Boundary-Value Problem

The formulation and solution of the canonical boundary-value problem [334] for the
metal/SNTF interface follows the 4 × 4-matrix methodology of Section 3.5, with
uprop = ux cosψ + uy sinψ . However, when the SPP wave propagates along the
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Figure 6.16 Solutions q of the canonical boundary-value problem as functions of ψ for SPP-

wave propagation at λ0 = 633 nm guided by the interface of bulk aluminum (nB = 1.38+7.61i)
and a periodically nonhomogeneous titanium-oxide SNTF. The SNTF is described by Eqs. (6.16)
and (6.18), along with data from Table 6.1, A = 200 nm, χ̃A

v = 45◦, and δAv = 30◦ [334].
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x axis, two autonomous 2×2-matrix methodologies for p- and s-polarized SPP waves
can be devised from the 4× 4-matrix methodology.

In the configuration shown in Figure 6.4, let material A be an SNTF and material
B a metal. Calculations for the interface of bulk aluminum (nB = 1.38+ 7.61i) and a
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Figure 6.17 Variations with z of the magnitudes of the Cartesian components of e(z) and h(z) of
a p-polarized SPP-wave mode guided by the planar interface z = 0 of a metal and a periodically
nonhomogeneous titanium-oxide SNTF, when ψ = 0◦ so that uprop = ux . Also shown are the
variations of Cartesian components of the time-averaged Poynting vector P(x, y, z) with z on
the line {x = 0, y = 0}. The components parallel to ux , uy , and uz are represented by red solid,
blue dashed, and black chain-dashed lines, respectively. Plots in the left column are for variations
on the metal side of the interface, whereas those on the right are for variations on the SNTF side
of the interface. The metal is bulk aluminum (nB = 1.38 + 7.61i). The SNTF is described by
Eqs. (6.16) and (6.18), along with data from Table 6.1,A = 200 nm, χ̃A

v = 45◦, and δAv = 30◦.
The data were computed by setting bp/nB = 1 V m−1 and q/k0 = 2.455 + 0.04208i [334].
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this book.)
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titanium-oxide SNTF revealed three different SPP-wave modes [334] at λ0 = 633 nm.
The SNTF was described by

εA(z) = S
y
[χA(z)] •[εAa (z)uzuz + εAb (z)ux ux

+ εAc (z)uyuy

]
• S−1

y
[χA(z)]

χA
v (z) = χ̃A

v + δAv sin
(
π z
A

)

⎫⎪⎪⎬
⎪⎪⎭
, z > 0, (6.18)

and Eqs. (6.16) were used to express εAa,b,c(z) and χA(z) in terms of χA
v (z), along

with A = 200 nm, χ̃A
v = 45◦, and δAv = 30◦. Of course, the SNTF is periodically

nonhomogeneous along the z axis.
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Figure 6.18 Same as Figure 6.17, except that an s-polarized SPP-wave mode is represented with

bs = 1 V m−1 and q/k0 = 2.080+ 0.003538i [334].
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Figure 6.16 shows the real and imaginary parts of the SPP wavenumber q as a func-
tion of ψ ∈ [0◦, 90◦]. There is fourfold symmetry, so that the same SPP wavenumbers
exist for ±ψ and 180◦ ± ψ . For 0◦ � ψ � 36◦ there are three SPP-wave modes,
while for 36◦ � ψ � 90◦ only two SPP-wave modes exist. Thus, SPP-wave propaga-
tion occurs in all possible directions parallel to the interface plane and the AED is the
maximum possible. The imaginary part of the wavenumber determines the propagation
length �prop according to Eq. (2.38). Information on �prop cannot be obtained from
calculations for the prism-coupled and grating-coupled configurations.

Spatial profiles of the fields and the time-averaged Poynting vector for the three
modes when ψ = 0◦ are available in Figures 6.17–6.19. Clearly, the SPP-wave modes
in Figures 6.17 and 6.19 are p polarized, whereas the mode in Figure 6.18 is s polarized.
While the fields of one SPP-wave mode have maximum magnitudes at the plane z = 0+
on the SNTF side of the interface, the fields of the two other SPP-wave modes have
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Figure 6.19 Same as Figure 6.17, except that q/k0 = 1.868+ 0.007267i [334].
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maximum magnitudes at different distances into the SNTF. These characteristics are
the same as in Section 6.4.1 for the interface of a metal and a rugate filter. The different
spatial profiles of different SPP-wave modes are very promising for multi-analyte SPR
sensing without spatial multiplexing.
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Figure 6.20 Variations with z of the magnitudes of the Cartesian components of e(z) and
h(z) of an SPP-wave mode guided by the planar interface z = 0 of a metal and a peri-
odically nonhomogeneous titanium-oxide SNTF, when ψ = 75◦. Also shown are the vari-
ations of Cartesian components of the time-averaged Poynting vector P(x, y, z) with z on
the line {x = 0, y = 0}. The components parallel to uprop, us , and uz are represented by red
solid, blue dashed, and black chain-dashed lines, respectively. The metal is bulk aluminum
(nB = 1.38 + 7.61i). The SNTF is described by Eqs. (6.16) and (6.18), along with data from
Table 6.1, A = 200 nm, χ̃A

v = 45◦, and δAv = 30◦. The data were computed by setting
bp/nB = 1 V m−1, bs = 0.1919− 0.0429i V m−1, and q/k0 = 2.459+ 0.04247i [334]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this book.)
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Figure 6.21 Same as Figure 6.20, except that q/k0 = 2.066+ 0.003861i [334].

Distinct polarization states cannot be defined for SPP-wave modes when ψ ∈
(0◦, 90◦]. This can be deduced from the spatial profiles shown in Figures 6.20
and 6.21 for the two possible modes when ψ = 75◦. However, while the fields of
one SPP-wave mode have maximum magnitudes on the SNTF side of the interface
right at the interface itself, the fields of the other SPP-wave mode have maximum mag-
nitudes quite deep into the SNTF. Again, this difference is important for multi-analyte
SPR sensing.

Even more SPP-wave modes are possible [297] when a thin metal film is inserted
between two identical SNTFs which are periodically nonhomogeneous and semi-
infinitely thick. Such problems can be theoretically treated using the methodology
of Section 3.6. If the metal film is much thicker than the skin depth in the metal, SPP-
wave modes exist on each metal/SNTF interface independently and their number is
the same as for a single metal/SNTF interface. When the metal film is made thinner,
however, the number of SPP-wave modes increases as the two metal/SNTF interfaces
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begin to interact with each other. In addition to an increase in the number of modes,
the phase speeds of the SPP-wave modes decrease as the metal film is made thinner. If,
additionally, one of the two SNTFs is rotated about the z axis with respect to the other
SNTF, the number of SPP-wave modes can be affected further [298].

6.4.2.2 Turbadar-Kretschmann-Raether Configuration

Theoretical analysis and results. As the SNTF is anisotropic, calculations for the
Turbadar-Kretschmann-Raether configuration of Figure 6.8 must generally follow the
full 4×4-matrix methodology of Section 3.7, even if the incident plane wave is linearly
polarized [55]. Instead of Eqs. (6.18),

εA(z) = S
y

[
χA(z − dB)

]
•
[
εAa (z − dB)uzuz

+ εAb (z − dB)ux ux + εAc (z − dB)uyuy

]
• S−1

y

[
χA(z − dB)

]

χA
v (z) = χ̃A

v + δAv sin
(
π z
A

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z ∈ (dB, dA + dB),

(6.19)

must be used for the periodically nonhomogeneous SNTF.
An exception is possible only for propagation parallel to the morphologically sig-

nificant plane of the SNTF, when the treatment for an incident p-polarized plane wave
can be completely separated from that for an incident s-polarized plane wave, and two
autonomous systems involving 2× 2 matrixes can be independently solved [54].

Linear absorptances Ap and As have been calculated for the interfaces of aluminum
and periodically nonhomogeneous SNTFs for four different SNTFs [54,55,57]. Exper-
imental results have been reported for one of these four metal/SNTF interfaces [57].
All investigations are in accord with the main finding from Section 6.4.2.1: more than
one SPP-wave modes can be guided by a single metal/SNTF interface.

Figures 6.22 and 6.23 show plots of the linear absorptances Ap and As as functions
of the angle of incidence θinc, when ψ = 0◦ and λ0 = 633 nm. Material A is a
titanium-oxide SNTF described by Eqs. (6.16) and (6.19), along with data from Table
6.1,A = 200 nm, χ̃A

v = δAv = 30◦, and dA = 4A. Material B is bulk aluminum of
thickness dB ∈ {1, 5, 10, 20, 30, 40} nm. The prism material is zinc selenide (nprism =
2.58), which is taken to occupy both half-spaces z < 0 and z > dA + dB.

Three SPP-wave modes are evident in Figures 6.22 and 6.23 as two Ap-peaks at
θinc � 37◦ and θinc � 66◦, and one As-peak at θinc � 50◦. Calculations with higher
values of the integer dA/2A did not appreciably change the locations of these peaks
on the θinc axis [55], thereby discounting the possibilities of the excitation of waveguide
modes [299]. Furthermore, for each peak the wavenumber k0nprism sin θinc turned out
to be very close to the real part of the SPP wavenumber q emerging from the solution
of the underlying canonical boundary-value problem.

The two SPP-wave modes in Figure 6.22 are excitable with incident p-polarized
light, while the sole SPP-wave mode in Figure 6.23 is excitable with incident s-polarized
light. The efficiency of excitation, as gauged by the maximum absorptance, varies with
the thickness dB of the metal film. The optimum value of dB depends on the choice
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Figure 6.22 Calculated linear absorptance A p as a function of the angle of incidence θinc and

ψ = 0◦, at λ0 = 633 nm, when bulk aluminum (nB = 1.38 + 7.61i) and a periodically
nonhomogeneous titanium-oxide SNTF are incorporated in the Turbadar-Kretschmann-Raether
configuration of Figure 6.8. Materials A and B are encased by the half-spaces z < 0 and
z > dA + dB occupied by zinc selenide (nprism = 2.58). The SNTF is described by Eqs.

(6.16) and (6.19), along with data from Table 6.1, A = 200 nm, and χ̃A
v = δAv = 30◦.

Whereas dA = 4A, dB is variable. (left) dB = 1 nm (red solid line), dB = 5 nm (green
irregularly dashed line), and dB = 10 nm (blue dashed line); (right) dB = 20 nm (red solid
line), dB = 30 nm (green irregularly dashed line line), and dB = 40 nm (blue dashed line) [54].
The letter S identifies the absorptance peaks that represent the excitation of SPP waves. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this book.)
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Figure 6.23 Same as Figure 6.22, except that the linear absorptance As is plotted [54].

of the material evaporated to fabricate the SNTF as well as on the substrate rocking
dynamics. In the two figures, the optimum thickness is in the vicinity of 10 nm.

Just as in Section 6.4.1 for the interface of a metal and a rugate filter, two types of
field profiles exist: those with a monotonic decrease in the fields with distance from
the interface on the SNTF side of the interface, and ones with an oscillatory decrease
with distance. Figure 6.24 shows an example of an oscillatory profile for an SNTF
incorporated in the Turbadar-Kretschmann-Raether configuration. Additionally, the
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Figure 6.24 Variations with z of uprop
• P(x, y, z) on the line {x = 0, y = 0} in a periodically

nonhomogeneous titanium-oxide SNTF, which partners a layer of bulk aluminum in the Turbadar-
Kretschmann-Raether configuration of Figure 6.8. Both materials are encased by the half-spaces
z < 0 and z > dA + dB occupied by zinc selenide (nprism = 2.58). All parameters are the

same as in Figure 6.22, except that ψ = 30◦, θinc = 47.78◦, dB = 10 nm, χ̃A
v = 45◦, and

dA ∈ {4A, 6A, 8A}. The incident plane wave is p polarized and its electric field has an
amplitude of 1 V m−1. The blue dash-dotted line is for dA = 4A, the green dash-dot-dotted
line for dA = 6A, and the red dotted line for dA = 8A [55]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this book.)

identical nature of the curves for the three different thicknesses of the SNTF in this
figure precludes an attribution to a waveguide mode.

Experimental observations. The existence of multiple SPP-wave modes guided by
the interface of a metal and a periodically nonhomogeneous SNTF was demonstrated
experimentally in 2009 [57], using the Turbadar-Kretschmann-Raether configuration.
Two SNTFs were fabricated of silicon oxide and both were described using Eqs. (6.19).
Sixth-order polynomial expressions were devised to connect the principal permittivity
scalars of the SNTFs to the vapor flux angle. The substrates were rocked so that χ̃A

v =
25◦, δAv = 20◦, and A = 310 nm. One SNTF was three periods in thickness, the
other four. The three-period SNTF was deposited on top of a 30-nm thick aluminum
film, while the four-period SNTF was deposited on top of a 34-nm thick aluminum
film. The aluminum thin films had been deposited on slides of borosilicate glass BK-7.
During these depositions in a low-pressure chamber, the base pressure was 3 µTorr.

A 45◦-90◦-45◦ prism made of borosilicate glass BK-7 glass was used when the
Turbadar-Kretschmann-Raether configuration was implemented. The slide was affixed
to the hypotenuse of the prism with an index-matching liquid. Figure 6.25a shows the
measured linear absorptances A p and As at λ0 = 632.8 nm as functions of θinc, for the
sample with the three-period SNTF. These measurements were made with the wave
vector of the incident light oriented wholly in the morphologically significant plane of
the SNTF so that ψ = 0◦. Three peaks in the absorptance plots were identified as indi-
cating the excitation of SPP-wave modes, because their locations on the θinc axis were
almost the same as that of the peaks for the sample with the four-period SNTF: two
p-polarized modes, one at θinc = 50.1◦ and another at θinc = 72.7◦, and one s-polarized
mode at θinc = 57.0◦. Other absorptance peaks most likely represent waveguide
modes.
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Figure 6.25 Experimental and simulated linear absorptances Ap and As for the interface of
an aluminum thin film and a three-period SNTF of silicon oxide in the Turbadar-Kretschmann-
Raether configuration. The letter p identifies a p-polarized SPP-wave mode, the letter s an
s-polarized SPP-wave mode [57]. (a) Experimental and (b) Simulated.

Simulations were performed using the methodology of Section 3.7, but there was a
discrepancy between theory and experiment for the Ap-peak observed experimentally
at θinc = 72.7◦. The replacement of the first 30 nm of the SNTF by an isotropic
homogeneous dielectric layer with a refractive index of

√
1.4—in order to simulate

the early-stage growth of an STF—eliminated the discrepancy. The simulated linear
absorptances, shown in Figure 6.25b as functions of θinc, agree reasonably well with
their experimental counterparts.

6.4.2.3 Grating-Coupled Configuration

The grating-coupled configuration is described in Section 6.4.1.3 and illustrated in
Figure 6.13. It was adapted for material A being a periodically nonhomogeneous SNTF
by setting

εA(z) = A
z
(γA)• S

y

[
χA(d2 − z)

]
•
[
εAa (d2 − z)uzuz

+ εAb (d2 − z)ux ux + εAc (d2 − z)uyuy

]
• S−1

y

[
χA(d2 − z)

]
• A−1

z
(γA)

χA
v (z) = χ̃A

v + δAv sin
( π z

A
)

A
z
(γ ) = uzuz + (ux ux + uyuy) cos γ + (uyux − ux uy) sin γ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (6.20)

and using Eqs. (6.16) along with data from Table 6.1 [259]. The angle γA is the angle
between the morphologically significant plane of the SNTF and the grating plane (i.e.
the xz plane).

Calculations have been reported for ψ = 0◦ and various values of γA [259]. A
twofold symmetry exists with respect to this angle: results for γA and−γA are identi-
cal. Both p- and s-polarized SPP-wave modes are excited by incident p- and s-polarized
plane waves, respectively, when the morphologically significant plane, the grating
plane, and the plane of incidence are the same, i.e. γA = 0◦. For γA ∈ (0◦, 90◦],
a distinct polarization state cannot be assigned to an SPP-wave mode, because the



216 Electromagnetic Surface Waves

relative magnitudes and phases of the Cartesian components of e(z) are not uniform in
material A.

For γA = 75◦ and the same titanium-oxide SNTF as in Section 6.4.2.1, the SPP
wavenumbers of the two allowed SPP-wave modes are q = (2.0664+ 0.0039i)k0 and
q = (2.4588+ 0.0425i)k0, according to Figure 6.16.

As an example, the linear absorptances Ap and As for L1 = 0.5Lx , Lx = 286 nm,
and γA = 75◦ in the grating-coupled configuration of Figure 6.13 are presented in
Figure 6.26 as functions of the angle of incidence θinc. Independent of the value of d1
and the polarization state of the incident plane wave, an absorptance peak is present
at θinc � 9.2◦. This peak represents the excitation of an SPP-wave mode as a linear
Floquet harmonic of order (−1, 0) because k(−1,0)

xy /k0 = −2.0534 is very close to
−Re(2.0664 + 0.0039i). Confirmation is provided by the field profiles. This SPP-
wave mode transports energy mainly along the −ux direction, which is reasonable
because this mode is excited in the grating-coupled configuration as a linear Floquet
harmonic of negative order. A notable characteristic of this SPP-wave mode is that it
can be excited by a plane wave of either polarization state; however, the excitation is
more efficient if the incident plane wave is s polarized [259].

At θ � 15.5◦ in Figure 6.26, a peak is present regardless of the value of d1 (above a
threshold) in the plots of Ap, but not of As . This A p-peak represents the excitation of an

Figure 6.26 Calculated linear absorptances A p and As as functions of the angle of incidence
θinc, when ψ = 0◦ and λ0 = 633 nm, for the grating-coupled configuration of Figure 6.13.
Material A is a titanium-oxide SNTF described by Eqs. (6.16) and (6.20), along with data from
Table 6.1, A = 200 nm, χ̃A

v = 45◦, δAv = 30◦, and γA = 75◦. Material B is bulk aluminum
with refractive index nB = 1.38 + 7.61i . The grating is described via Eqs. (6.12) and (6.13),
with d3 − d2 = 30 nm, d2 − d1 = 20 nm, L1 = 0.5Lx , and Lx = 286 nm [259]. The letter S
identifies the absorptance peaks that represent the excitation of SPP waves.
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SPP-wave mode as a linear Floquet harmonic of order (1, 0)because k(1,0)xy /k0 = 2.4805
is very close to Re(2.4588+0.0425i). Contrary to the SPP wave excited at θinc = 9.2◦,
the absence of the peak in the curves of As shows that this SPP-wave mode is excited
only by a p-polarized incident plane wave.

The Ap- and As-peaks at θinc = 9.2◦ are narrower than the Ap-peak at θinc = 15.5◦,
thereby supporting the conclusion that the absorptance peak representing the excitation
of an SPP wave with smaller phase speed is broader.

6.4.3 Metal/Chiral-STF Interface

Chiral STFs are fabricated by PVD. Vapor is directed in a low-pressure chamber at a
fixed angle relative to the surface of a substrate while the substrate is rotated steadily
about an axis perpendicular to its surface [42]. Unlike SNTFs but like CTFs, the vapor
flux angle χv is constant and χ is not a function of z for chiral STFs. The periodic
nonhomogeneity of a chiral STF comes from its helical morphology, as depicted in
Figure 6.27. Furthermore, a chiral STF possesses structural handedness, as it is either
left handed or right handed.

Therefore, the permittivity of a chiral STF is written as

ε
chiral STF

(z) = S
z
(z) • S

y
(χ) • (εauzuz+ εbux ux + εcuyuy)

• S−1
y
(χ) • S−1

z
(z),

(6.21)

where

S
z
(z) = uzuz + (ux ux + uyu y) cos

(
h
π z



)
+ (uyux − ux uy) sin

(
h
π z



)
(6.22)

indicates rotation about the z axis with period 2. The structural handedness parameter
h is equal to either +1 for right handedness or −1 for left handedness.

Figure 6.27 Cross-sectional image of a chiral STF on a scanning electron microscope. This
chiral STF was fabricated by evaporating lanthanum fluoride.
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Experimental data on χ, εa, εb, and εc of chiral STFs in relation to χv do not exist
for any material. Empirical relations that characterize the permittivity of a CTF relative
to the vapor flux angle are expected to be more suitable for chiral STFs than for
SNTFs because the substrate is not rocked during the fabrication of chiral STFs [99].
Nevertheless, a refined optical characterization of chiral STFs ought to be undertaken
by specialist researchers.

Theoretical research at the present time is limited to chiral STFs made of the same
small set of materials described in Section 6.3.2, for which CTFs have been empirically
characterized. Equations (6.6) and (6.7) along with the Table 6.1 provided the principal
permittivity scalars εa,b,c and the tilt angle χ for calculations in order to determine
the characteristics of SPP-wave propagation guided by a metal/chiral-STF interface
[56,161,336]. These calculations have revealed the existence of multiple SPP-wave
modes with widely differing characteristics. The canonical boundary-value problem
was solved and the Turbadar-Kretschmann-Raether configuration was also investigated.

The first experimental confirmation of the theoretically predicted multiple SPP-wave
modes [56] came in 2009 [58] from measurement of the reflectance of a magnesium-
fluoride chiral STF backed by an aluminum thin film in the Turbadar-Kretschmann-
Raether configuration with the prism illuminated by p-polarized light. Further
experimental evidence was provided a couple of years later [341] by a similar exper-
iment involving a silicon-oxide chiral STF and a silver thin film. In the meantime,
illumination by both p- and s-polarized light was experimentally demonstrated to be
effective in exciting multiple SPP-wave modes guided by the interface of a magnesium-
fluoride chiral STF and a gold thin film in the Turbadar-Kretschmann-Raether confi-
guration [59].

6.4.3.1 Canonical Configuration

The formulation and solution of the canonical boundary-value problem [56] for the
metal/chiral-STF interface follows the 4 × 4-matrix methodology of Section 3.5.
Regardless of the angle ψ in uprop = ux cosψ + uy sinψ , further simplification is
not possible and a definite polarization state cannot be assigned to any SPP-wave mode
found—because the relative magnitudes and phases of the Cartesian components of
e(z) are not uniform in the chiral STF.

As shown in Figure 6.4, material A is the chiral STF and material B is the metal.
The chiral STF is described by

εA(z) = SA
z
(z) • S

y
(χA) •

(
εAa uzuz + εAb ux ux

+ εAc uyuy

)
•
[

SA
z
(z) • S

y
(χA)

]−1

SA
z
(z) = uzuz + (ux ux + uyuy) cos

(
hA π z

A
)

+ (uyux − ux uy) sin
(

hA π z

A
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, z > 0. (6.23)

The refractive index of the metal in the half-space z < 0 is denoted by nB .
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Figure 6.28 Solutions q of the canonical boundary-value problem as functions of A for SPP-

wave propagation guided by the planar interface of bulk aluminum (nB = 1.38 + 7.61i) and
a titanium-oxide chiral STF, when ψ = 0◦ and λ0 = 633 nm. The chiral STF is described
by Eqs. (6.6), (6.7), and (6.23), data from Table 6.1, and χA

v = 20◦ [56]. The solutions are
organized in five branches labeled 1–5, and do not depend on the structural handedness para-
meter hA ∈ {−1, 1}.

Equations (6.6) and (6.7) were used along with the Table 6.1 to theoretically show
that the interface of bulk aluminum (nB = 1.38 + 7.61i) and a titanium-oxide chiral
STF can guide as many as five SPP-wave modes at λ0 = 633 nm, depending on the
ratio A/λ0 [56,161,336]. The solutions of the canonical boundary-value problem
are organized in five branches in Figure 6.28. As the ratio A/λ0 increases beyond a
certain value, the number of SPP-wave modes decreases—just as for the metal/rugate-
filter interface in Section 6.4.1.1—and will eventually reduce to just unity. Only the
branch labeled 5 should survive as A/λ0 →∞.

The data in Figure 6.28 are reinterpreted in terms of the phase speed vp and the prop-
agation length �prop in Figure 6.29. The phase speed is clearly a decreasing function
of A for all SPP-wave modes. Computational difficulties prevented exploration of
the intermediate-phase-speed regime—wherein c0 exceeds vp by a small margin—and
the high-phase-speed regime (vp > c0). Not only does the range of propagation length
�prop exceed two orders of magnitude, but the values of �prop for some SPP-wave
modes are quite large on an absolute scale. The largest value of of �prop on branch 1
is about 3 mm.

The field phasors of any SPP-wave mode decay in the metal with distance from the
interface, because the condition (2.13)1 in exp (−iαmetz) ensures exponential decay as
z→−∞. The typical penetration depth�met into the metal is a few tens of nanometers,
and it depends very weakly through q on the specific SPP-wave mode as well as
the constitution of the chiral STF. The field phasors have both s- and p-polarized
components, in accordance with Eqs. (6.4), because the partnering dielectric material
is anisotropic. The relative magnitudes of the Cartesian components of the field phasors
do depend on the constitutive properties of the chiral STF and vary from mode to
mode.

In contrast, the manner of the decay with distance from the interface on the chiral-
STF side of the interface of an SPP-wave mode depends not only on the chiral STF
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Figure 6.29 Same as Figure 6.28, except that the phase speed vp and propagation length�prop

are plotted as functions of A.

but also strongly on the specific mode. The variations with z of |e(z)| and P(0, 0, z)
depicted in Figure 6.30 for modes on branches labeled 1, 2, and 3 in Figure 6.28 for
A = 657 nm and χA

v = 20◦ clearly show differences in field profiles. Some SPP-
wave modes have the highest magnitude of the electric field close to the interface, while
other modes—such as the one on branch 3 in Figure 6.28—display peak magnitudes at
some distance from the interface into the chiral STF. Furthermore, if decay constants

βA
1 = exp

(−2AIm
{
αA

1

}) ∈ (0, 1)

βA
2 = exp

(−2AIm
{
αA

2

}) ∈ (0, 1)

}
(6.24)

are defined for the half-space z > 0 in line with Eqs. (5.33), they will vary from mode
to mode. The smaller the value of a decay constant, the more tightly is the associated
electromagnetic field bound to the interface.

The field profile for a specific branch can also vary considerably from one value of
A to another. Figure 6.31 shows the profiles for the SPP-wave mode forA = 131 nm
on branch 2 in Figure 6.28. In comparison to Figure 6.30b forA = 657 nm, the decay
constants are larger and the fields decay much more slowly as z/A→∞. Even when
the fields were examined with respect to z and not z/A, the SPP-wave mode in Figure
6.31 would be far more tightly bound to the metal/chiral-STF interface than the one in
Figure 6.30b.

The direction of propagation in the interface plane can also have a dramatic influence
on SPP-wave propagation. This influence can be gauged by choosing different values
of ψ in uprop = ux cosψ + uy sinψ [336]. Alternatively, one can keep ψ = 0◦ fixed,

but replace εA(z) by A−1
z
(γA) • εA(z) • A

z
(γA) with A

z
(·) defined in Eq. (6.20)3.

Thus, the metal/chiral-STF interface offers several modalities for control of SPP-
wave propagation, a capability likely to attract the attention of those designing practical
SPP-wave devices.
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Figure 6.30 Variations with z of the magnitudes of the Cartesian components of e(z)of SPP-wave

modes guided by the planar interface of bulk aluminum (nB = 1.38 + 7.61i) and a titanium-
oxide chiral STF, when ψ = 0◦, λ0 = 633 nm, and bs = 1 V m−1. The chiral STF is described
by Eqs. (6.6), (6.7), and (6.23), data from Table 6.1, A = 657 nm, χA

v = 20◦, and hA = 1
[56]. Also shown are the variations of Cartesian components of the time-averaged Poynting
vector P(x, y, z) with z on the line {x = 0, y = 0}. The components parallel to ux , uy , and uz
are represented by red solid, blue dashed, and black chain-dashed lines, respectively. The three
modes lie on branches labeled 1, 2, and 3 in Figure 6.28, and the respective SPP wavenumbers are
q = (1.9246+ 0.0047753i)k0, q = (1.8199+ 0.01238i)k0, and q = (1.6824+ 0.002560i)k0.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this book.)

6.4.3.2 Turbadar-Kretschmann-Raether Configuration

Theoretical analysis and results. In order to incorporate a chiral STF as material A in
the Turbadar-Kretschmann-Raether configuration of Figure 6.8,
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Figure 6.31 Same as Figure 6.30, except that A = 131 nm and only the mode on the branch
labeled 2 is considered. The SPP wavenumber is q = (1.2154+ 0.003075i)k0.
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(6.25)

must be used. The refractive index of the metal in the region 0 < z < dB is denoted
by nB.

The excitation of an SPP-wave mode in the Turbadar-Kretschmann-Raether config-
uration is manifested in terms of a well-defined peak in the plots of linear absorptances
Ap and As as functions of the angle of incidence θinc, provided that the thicknesses of
both partnering materials exceed threshold values. This has been theoretically demon-
strated for multiple SPP-wave modes guided by the planar interface of an aluminum
thin film and a titanium-oxide chiral STF [336]. Some SPP-wave modes obtained
by solving the underlying canonical boundary-value problem of Section 6.4.3.1 are
evident with chiral STFs only two periods thick, while others require the chiral STF to
be thicker. Still others do not show up in the Turbadar-Kretschmann-Raether configu-
ration at all, because they are so loosely bound on the chiral-STF side to the interface
as to require very thick chiral STFs.
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Excitation of SPP-wave modes is evident with both s- and p-polarized incident
light [56,336]. However, excitation with incident p-polarized light seems to be more
efficient. Furthermore, the efficiency of excitation via incident s-polarized light in
comparison to incident p-polarized light can be strongly influenced by the number of
periods in the chiral STF. All three factors χA

v ,
A, andψ affect the shape and location

of the absorptance peaks on the θinc axis, though χA
v has the greatest influence by far.

The largest number of SPP-wave modes occur at intermediate values of χA
v . This is

reasonable, because a chiral STF shall be (i) mostly air if deposited at a very low value
of χv and (ii) dense and almost homogeneous like a CTF if deposited at a very high
value of χv .

Illustrative plots of Ap and As against θinc are shown in Figures 6.32 and 6.33
for a range of values of χA

v , when the number of periods of the chiral STF is either
two or three. Thereby, the problem of distinguishing between SPP-wave modes and
waveguide modes is clearly highlighted. Comparison of an absorptance plot with a two-
period chiral STF against the one for a three-period chiral STF shows that the majority
of absorptance peaks shift when the number of periods changes. Only those peaks
which do not shift significantly represent SPP-wave modes; the other peaks represent
waveguide modes.

In Figures 6.32 and 6.33, the absorptance peaks indicating the excitation of SPP-
wave modes on branches 1, 2, and 3 are indicated with blue S, red S, and black S,
respectively. The mode on branch 3 appears only when χA

v = 60◦. Close examination
of the plots forχA

v = 5◦ reveals that peaks in the curves of both Ap and As at θ = 22.6◦
remain stationary as the number of periods of the chiral STF is changed from two to
three. This SPP-wave mode is excitable with both s- and p-polarized incident light.

Experimental observations. The existence of multiple SPP-wave modes guided by
the interface of a metal and a chiral STF was demonstrated experimentally in 2009
[58], using the Turbadar-Kretschmann-Raether configuration. Two chiral STFs were
fabricated of magnesium fluoride, both with period 2A ∼ 425 nm. During deposition
in a low-pressure chamber with 2.1 µTorr base pressure, the vapor flux angleχA

v = 15◦
was kept fixed. One chiral STF was three periods in thickness, the other four. Each was
deposited on top of a 25-nm thick aluminum film, which itself had been deposited on
a slide of borosilicate glass BK-7.

When the Turbadar-Kretschmann-Raether configuration was implemented, a 45◦-
90◦-45◦ prism made of borosilicate glass BK-7 was used. The slide was affixed to the
hypotenuse of the prism with an index-matching liquid. Light from a 633-nm He-Ne
laser was first filtered to eliminate the s-polarized component and then directed toward
one slanted face of the prism. Although the incident light was only p polarized, the
reflectance was measured without regard to the polarization state of the light reflected
through the other slanted face of the prism.

Figure 6.34 shows the experimental curves of reflectance in relation to θinc [58]
when this interface is illuminated by p-polarized light. As the transmittance across the
metal-coated chiral STF was definitely absent for θinc � 45◦, absorptance peaks would
be manifested as reflectance dips. The reflectance dips in Figure 6.34 at θinc∼54◦ and
∼64◦, marked by S, indicate the excitation of SPP-wave modes, because their locations
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Figure 6.32 Calculated linear absorptances A p (blue solid lines) and As (red dashed lines),
when ψ = 0◦ and λ0 = 633 nm, as functions of the angle of incidence θinc for the Turbadar-
Kretschmann-Raether configuration incorporating (i) a titanium-oxide chiral STF described
by Eqs. (6.6), (6.7), and (6.25), data from Table 6.1, A = 150 nm, hA = 1, dA =
2Nper

A, χA
v ∈ {5◦, 15◦, 25◦}, and Nper ∈ 2, 3, and (ii) an aluminum thin film with

nB = 0.75 + 3.9i and dB = 15 nm, encased by the half-spaces z < 0 and z > dA + dB
occupied by rutile (nprism = 2.6). The blue letter S identifies the absorptance peaks that repre-
sent the excitation of SPP-wave modes on branch 1, the red letter S is for SPP-wave modes on
branch 2, and the black letter S is the SPP-wave modes on branch 3 [336]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this
book.)

are the same whether the chiral STF has three periods or four. The other reflectance
dips shift with the number of periods and, therefore, represent waveguide modes.

Later experimental measurements for the interface of a gold thin film and a
magnesium-fluoride chiral STF provided evidence for four distinct SPP-wave modes, of
which two were excited by incident s-polarized light and two by p-polarized light [59].
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Figure 6.33 Same as Figure 6.32, except χA
v ∈ {35◦, 45◦, 60◦} [336].

6.4.3.3 Grating-Coupled Configuration

The grating-coupled configuration described in Section 6.4.1.3 and illustrated in Figure
6.13 can be adapted for material A being a chiral STF by setting

εA(z) = SA
z

(
d2 − z −A γ

A

π

)
• S

y
(χA) •

(
εAa uzuz + εAb ux ux

+ εAc uyuy

)
•

[
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z

(
d2 − z −A γ

A

π

)
•S

y
(χA)

]−1

SA
z
(z) = uzuz + (ux ux + uyuy) cos

(
hA π z

A
)

+ (uyux − ux uy) sin
(

hA π z

A
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,

(6.26)
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Figure 6.34 Measured linear reflectance as a function of θinc for the interface of an aluminum
thin film and a chiral STF in the Turbadar-Kretschmann-Raether configuration. The chiral STF
has either three or four periods. The incident light was only p polarized, but the reflected light
was not broken up into its linear-polarization components before measuring the reflectance.
Measurements were made at λ0 = 633 nm. The letter S identifies an SPP-wave mode [58].

and using Eqs. (6.6) and (6.7) along with data from Table 6.1. The angle γA denotes
a twist about the z axis with respect to the grating plane (i.e. the xz plane).

Theoretical results obtainable for a periodically corrugated metal/chiral-STF in the
grating-coupled configuration are expected to be consistent with those for the canonical
boundary-value problem of Section 6.4.3.1 and the prism-coupled configuration of
Section 6.4.3.2.

6.5 Optical Sensing

Exploiting only interfaces between homogeneous isotropic dielectric materials and
metals, the practical application of SPP-wave-based optical sensors has blossomed in
the past two decades [3,4]. The previous sections in this chapter have demonstrated
the degree of control over SPP-wave propagation that CTFs and STFs allow—not
to mention the multiplicity of SPP-wave modes guided by interfaces formed with
periodically nonhomogeneous STFs. At least three attributes make CTFs and STFs
attractive for SPP-wave-based optical sensing:

i. control of permittivity,
ii. control of porosity, and

iii. multiplicity of SPP-wave modes in the case of periodic STFs.

The flexibility offered by CTFs and STFs and the possibility of multiple SPP-wave
modes will spur new research for optical sensing.

The ability to change the permittivity dyadic of a CTF simply by reorienting the vapor
in relation to the substrate in any PVD technique is evident from Section 6.3.2. However,
the permittivity dyadics of CTFs of only a handful of materials have been related to the
vapor flux angle—that too, at just one or two values of the free-space wavelength. CTFs
produced by evaporating other materials await optical characterization. The permittivity
dyadics of SNTFs, chiral STFs, and other STFs have not been measured yet.

Were it not for another property of CTFs and STFs—namely, porosity—the ability
to design and fabricate these films with a particular permittivity dyadic would not be
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of much use for optical sensing [342,343]. In order for an analyte to affect SPP-wave
propagation, and thus be sensed, it must be able to migrate close to the metal/dielectric
interface. Unlike many other solid materials, thin films have the porosity which will
allow infiltration by analytes. Commercial SPR detectors use a very thin layer of recog-
nition molecules attached to the metal surface in order to bind specific analytes for
sensing. It might be possible to embed the recognition molecules into the protective
environment of the pores of CTFs and STFs, while simultaneously protecting the metal
film from environmental degradation. The porosity, like the permittivity dyadic, can be
set simply by choosing the vapor flux angle appropriately.

The porosity of a CTF or an STF is significant in two ways. First, it determines
the amount of analyte that might be infused into the thin film. This determines the
degree to which the characteristics of SPP-wave propagation are changed and thus
the sensitivity of the sensor. Second, the diffusion of analytes would also be affected
by porosity. This might allow the differentiation of various chemical species because
of different diffusion rates. Additionally, it may allow a peek into the kinetics of a
chemical reaction.

Periodically nonhomogeneous STFs, enabling the propagation of multiple SPP-
wave modes, may provide a way to detect multiple analytes simultaneously. With each
SPP-wave mode having a distinct SPP wavenumber and field profile, the effect of each
analyte on each SPP-wave mode would be different. For the sensing of a single analyte,
multiple SPP-wave modes would provide multiple channels for more reliable sensing.

The path toward the exploitation of the multiple SPP-wave modes for optical sensing
has been opened by the development of a theoretical model for CTFs and chiral STFs
[98,338]. Very recently, a proof-of-concept experiment has also been performed [344].
The sensing configuration chosen in these studies is the Turbadar-Kretschmann-Raether
configuration, but the Turbadar-Otto configuration may be useful in some situations.
Both of these configurations employ a prism. Grating-coupled sensors exploiting mul-
tiple SPP-wave modes remain to be investigated.

6.5.1 Metal/CTF Interface

6.5.1.1 Nominal Model of a CTF

Theoretical analysis requires a model to connect the nanostructure to the continuum.
In a nominal model of CTFs [42, Section 6.4] described in Appendix E, the columns
of a CTF are modeled as strings of identical, highly elongated, and electrically small
ellipsoids, as shown in Figure 6.35. Each inclusion is described by the shape dyadic
U = unun + γτuτuτ + γbubub, where the unit vectors un = −ux sin χ + uz cosχ,
uτ = ux cosχ + uz sin χ , and ub = −uy are defined in terms of the tilt angle χ ∈
(0◦, 90◦]. Since the morphology is highly aciculate, the shape parameters γb � 1 and
γτ 
 1.

Let the ellipsoidal particles be made of an isotropic dielectric material of refractive
index ns . Let vs ∈ (0, 1) be the volume fraction occupied by the ellipsoidal particles,
while the void region is filled with air (or vacuum). Thus, the porosity of the CTF equals
1− vs .
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Figure 6.35 The columns of a CTF are represented as a set of elongated ellipsoidal particles,
strung together end-to-end. The columns grow tilted at angle χ , along the direction of the unit
vector uτ = ux cosχ + uz sin χ , due to a vapor flux incident at an angle χv � χ .

Knowledge of the nanoscale parameters ns , vs, γb, and γτ is not easy to get for a CTF
for at least three reasons, as discussed in Appendix E.2. One reason is the variability
that exists due to differences in deposition conditions, so that the bulk material that is
evaporated may be quite different from the material that is actually deposited as a thin
film. In other words, the columns of a CTF comprise a material that can be different
from the material that was evaporated to fabricate the CTF. Therefore, ns cannot be
presumed known. Second, the porosity is often inaccurately determined. Third, even
when γτ > 10 is fixed, γb cannot be measured as it is a notional quantity in a nominal
model rather than a physical quantity.

Provided that the three principal permittivity scalars εa, εb, and εc of an uninfiltrated
CTF have been measured by suitable optical experiments [94,345,346] and γτ > 10
has been fixed [347], an inverse Bruggeman formalism can be used to determine ns, vs ,
and γb [308], as discussed in Appendix E.2. The angle χ can be measured from SEM
images of the uninfiltrated CTF.

Finally, when the CTF is uniformly infiltrated by a fluid of refractive index n f 
, the
value of εa, εb, and εc of the infiltrated CTF can be predicted using ns, vs , and γb in a
forward Bruggeman formalism [98]. The details are provided in Appendix E.3.

The calculated data in Table 6.8 for a titanium-oxide CTF shows that the porosity
1− vs decreases and the cross section of the columns tends towards the circular shape,
as the vapor flux angle increases. Both of these trends are in accord with numerous
observations [42,327]. The refractive index ns of the material also decreases toward

Table 6.8 The dimensionless quantities ns , vs , and γb computed using the inverse Bruggeman
formalism for a titanium-oxide CTF described by Eqs. (6.5)–(6.7), along with data from Table
6.1 and χv ∈ {15◦, 30◦, 60◦, 90◦}. The values of ns should hold at λ0 = 633 nm [98].

χv (deg) ns vs γ b

15 3.2510 0.3614 2.2793
30 3.0517 0.5039 1.8381
60 2.9105 0.6956 1.4054
90 2.8828 0.7859 1.0020
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the refractive index (i.e. 2.58) of rutile. That ns exceeds the bulk refractive index of the
material evaporated to fabricate the CTF must be carefully noted.

All three principal permittivity scalars of a CTF increase roughly linearly with the
refractive index n f 
 of the infiltrating fluid [98]. A more rapid change of values with
n f 
 is observed for lower values of χv , which is consistent with the greater porosity of
CTFs fabricated at lower values of χv.

6.5.1.2 Canonical Boundary-Value Problem

SPP-wave propagation guided by the interface of bulk aluminum and a titanium-oxide
CTF has been studied in detail, when the CTF is infiltrated by a liquid of refractive index
n f 
 ∈ [1, 1.5] [98]. The real part of the SPP wavenumber q increases approximately
linearly as n f 
 increases, and it also increases as χv increases. Similarly, Im{q} also
increases as both n f 
 and χv increase. Clearly then, both vp and �prop are decreasing
functions of both n f 
 and χv . Not only that but the depth of penetration into the CTF
is also a decreasing function of both n f 
 and χv.

6.5.1.3 Turbadar-Kretschmann-Raether Configuration

Although the results of the canonical boundary-value problem give an indication of how
SPP-wave propagation is affected by infiltrating a CTF with a fluid, a real appreciation of
the performance of a metal/CTF interface as an SPR sensor comes from an examination
of absorptance as a function of the angle of incidence θinc in the Turbadar-Kretschmann-
Raether configuration illustrated in Figure 6.8.

This prism-coupled configuration is very popular for optical sensing [3,4]. The
mathematical technique described in Section 3.7 is straightforward to apply for analysis
and prediction. Care must be taken to ensure during modeling and analysis that not only
are the pores of the CTF in the region dB < z < dA + dB occupied by the infiltrant
fluid, but the half-space z > dA + dB is occupied by the same fluid as well.

Whenψ = 0◦, only incident p-polarized light can launch an SPP wave guided by the
metal/CTF interface. Calculations for the interface of bulk aluminum and a titanium-
oxide CTF in the Turbadar-Kretschmann-Raether configuration yield the value θSPR

inc
of the angle of incidence of the A p-peak which is insensitive to dA beyond a certain
threshold. Optical sensing is based on the detection of the shift of the resonance angle
θSPR

inc with n f 
. Calculations have shown that the SPR sensing is very sensitive in a
practical situation when both n f 
 and χA

v are small [98].
A sensitivity measure can be devised as

ρ =
θSPR

inc (n f 
)− θSPR
inc

(
nstd

f 


)

n f 
 − nstd
f 


, (6.27)

where the notation θSPR
inc (n f 
) indicates the dependence of θSPR

inc on n f 
, and nstd
f 
 is the

refractive index of a standard fluid. Figure 6.36 shows plots of ρ as a function of n f 
 at
λ0 = 633 nm, when the prism is made of rutile, the 10-nm thick metal film (material
B) is assumed to have the refractive index of bulk aluminum, the 1000-nm thick CTF
(material A) is made of titanium oxide with χA

v ∈ {15◦, 30◦, 60◦, 90◦}. Except for a
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Figure 6.36 Calculated sensitivity ρ (in deg/RIU) as a function of n f 
 at λ0 = 633 nm, for an
aluminum film and a titanium-oxide CTF in the Turbadar-Kretschmann-Raether configuration.
The prism is made of rutile (nprism = 2.6); the aluminum film has a thickness dB = 10 nm and

refractive index nB = 1.38+ 7.61i ; and the CTF described by Eqs. (6.5), (6.6), and (6.7), with
data from Table 6.1, has a thickness dA = 1000 nm. The half-space z > dA + dB is occupied
by the infiltrant fluid. Air is used as the standard: nstd

f 
 = 1. Data are presented for χA
v = 15◦

(red thick solid line), χA
v = 30◦ (green dashed line), χA

v = 60◦ (blue chain-dashed line), and
χA
v = 90◦ (black thin solid line) [98]. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this book.)

bump in the plot for χA
v = 90◦ at large values of n f 
, the sensitivity decreases with

increasing χA
v , and increases with increasing n f 
.

The values of ρ in Figure 6.36 are less than what may be obtained using a con-
ventional SPR sensor with the thin metal film in direct contact with a solution of the
analyte. As an example, ρ = 79 deg/RIU has been obtained with an aluminum film at
λ0 = 653 nm [318]. This is to be expected since vs = 0 in effect for a conventional
SPR sensor, whereas vs > 0 when a CTF is used.

The refractive-index sensitivity defined as

ρRI = dθSPR
inc (n f 
)

dn f 

(6.28)

is useful when small fluctuations in the concentration of an analyte have to be sensed.
Figure 6.37 shows the refractive-index sensitivity for the same aluminum/CTF interface
as in Figure 6.36. For n f 
 ∈ (1, 1.15), this figure indicates that an SPR sensor employ-
ing a metal/CTF interface shall be most sensitive to changes in n f 
 when χA

v is small.
For larger values of n f 
, plots of the refractive-index sensitivities appear to slowly
converge as n f 
 increases for χA

v ∈ {15◦, 30◦, 60◦}. In contrast, the refractive-index
sensitivity for χA

v = 90◦ decreases abruptly as n f 
 increases beyond 1.4.
The sensitivities should be expected to decrease as χA

v increases because, as has
been quantified in Table 6.8, the porosity 1−vs decreases. Furthermore, the sensitivities
should be expected to decrease as n f 
 comes closer to ns , because the spatial variations
of the dielectric properties inside an infiltrated thin film would be weaker than when it
was not infiltrated. Although Figures 6.36 and 6.37 indicate that the interaction of the
CTF and the infiltrant is complicated, these simple expectations are borne out in part
by data in both figures.
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Figure 6.37 Same as Figure 6.36, except the calculated refractive-index sensitivity ρRI is
plotted [98].

6.5.2 Metal/SNTF Interface

As discussed in Section 6.4.2, experimental data on χ(z), εa(z), εb(z), and εc(z) in
relation toχv(z) do not exist for any SNTF, and the appropriation of data from Table 6.1
for use in Eqs. (6.16) is, at best, an initial approximation for uninfiltrated SNTFs.

Furthermore, εa(z), εb(z), and εc(z) have not been measured for any particular
SNTF. Although the procedure involving the inverse and the forward Bruggeman for-
malisms has been successfully used for infiltrated CTFs, conceptual difficulties are
insurmountable for the same procedure when applied to infiltrated SNTFs.

6.5.3 Metal/Chiral-STF Interface

6.5.3.1 Theoretical Analysis and Results

The use of a metal/chiral-STF bilayer in the Turbadar-Kretschmann-Raether config-
uration can be theoretically investigated following the procedure outlined in Section
6.4.3.2 with the modifications described in Section 6.5.1 to incorporate infiltration by
a fluid. Now, multiple SPP-wave modes can be exploited for optical sensing—which
is, of course, very attractive.

Calculations for the combination of the metal and the chiral STF similar to the one
chosen for illustrative results in Section 6.4.3.1 show that, although details vary from
one SPP-wave mode to the next, all available SPP-wave modes could be used in SPR
sensors [338]. The sensitivity and the refractive-index sensitivity calculated as functions
of n f 
 for two SPP-wave modes are shown in Figures 6.38 and 6.39, respectively. Both
sensitivities are similar in magnitude and trend to those in Figures 6.36 and 6.37 when
a CTF is used as the partnering dielectric material.

Of course, the use of a chiral STF offers multiple SPR shifts in contrast to a single
SPR shift afforded by the use of a CTF. Moreover, with judicious choices of geometric
and constitutive parameters, the circular Bragg phenomenon exhibited by chiral STFs
offers yet another sensing mode which could be employed in parallel with SPR sensing
[343].
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Figure 6.38 Calculated sensitivity ρ (in deg/RIU) as a function of n f 
 at λ0 = 633 nm, for an
aluminum film and a titanium-oxide chiral STF in the Turbadar-Kretschmann-Raether configu-
ration. The prism is made of zinc selenide (nprism = 2.58); the aluminum film has a thickness

dB = 15 nm and refractive index nB = 1.38 + 7.61i ; and the chiral STF described by Eqs.
(6.6), (6.7), and (6.23), and data from Table 6.1, has a thickness dA = 4A nm, and half-period
A = 328.33 nm. The half-space z > dA + dB is occupied by the infiltrant fluid. Air is used
as the standard: nstd

f 
 = 1. The chosen SPP-wave mode lies on either (left) branch 1 or (right)

branch 2, when n f 
 = 1. Data are presented for χA
v = 15◦ (red solid line) and χA

v = 30◦ (green

dashed line), and are the same whether the chiral STF is structurally right handed (hA = 1) or
left handed (hA = −1) [338]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this book.)
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Figure 6.39 Same as Figure 6.38, except the calculated refractive-index sensitivity ρRI is plotted
[338].

6.5.3.2 Experimental Observations

Experimental verification that the multiple SPP-wave modes guided by the interface
of a metal and a periodically nonhomogeneous dielectric material offer multiple chan-
nels for optical sensing became available recently. A 30-nm thick aluminum film was
partnered with a three-period-thick chiral STF of lanthanum fluoride in the Turbadar-
Kretschmann-Raether configuration. A prism made of dense flint glass was used in the
apparatus depicted in Figure 2.5. A laser diode (λ0 = 635 nm) was used as the light
source. Light incident on a slanted face of the prism was p polarized. The intensity
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Figure 6.40 Linear reflectance measured as a function of the angle of incidence θinc at λ0 =
635 nm in the Turbadar-Kretschmann-Raether configuration of Figure 2.5. The incident light
was p polarized. The prism was made of dense flint glass (nprism = 1.78471), the∼30-nm thick
metal film of aluminum was deposited on a substrate made of dense flint glass, and the dielectric
partnering material was a lanthanum-fluoride chiral STF infiltrated either by water (red solid
line) or a sucrose solution of refractive index 1.34 (blue dashed line). The two SPP-wave modes
are identified by 1 and 2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this book.)

of light leaving the second slanted face of the prism was measured and divided by the
intensity of light incident on the first slanted face of the prism to obtain the reflectance.
Transmittance being measured to be negligibly small over the θinc-range of interest, a
sharp dip in reflectance plotted as a function of θinc implied an Ap-peak.

Figure 6.40 shows the measured reflectance as a function of θinc. The infiltrant fluid
is either water or a sucrose solution. Two reflectance dips, both identified as indicative
of the excitation of two different SPP-wave modes, shift on the θinc axis when water
of refractive index 1.33 is replaced by sucrose solution of refractive index 1.34 [344].
Thus, a multiple SPP-wave-based optical sensor with a single metal/dielectric interface
has been demonstrated and confirms theoretical predictions [338,343] of the viability
of such sensors.

6.6 Harvesting of Solar Energy

Whereas prism-coupled configurations are widely used for optical sensing, the grating-
coupled configuration has been known for at least three decades to be useful in enhanc-
ing the absorptance of light in thin-film solar cells [207,208].

The electric current produced is directly proportional to the energy absorbed from
the light incident on the solar cell. Therefore, to maximize the electrical output of a solar
cell, the absorptance of light over the spectral regime of the solar flux (roughly, λ0 ∈
[400, 1100] nm) needs to be maximized. A semiconductor such as silicon functions as
the partnering dielectric material. This material is in intimate contact with a metallic
back-reflector. One way to increase the absorptance is to periodically corrugate the
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Figure 6.41 Calculated linear absorptances as functions of the angle of incidence θinc, whenψ =
0◦ and λ0 = 827 nm, for the grating-coupled configuration of Figure 6.13. Material A is a rugate
filter made of a-Si1−bCb:H described by Eq. (6.14) with nA

avg = 3.16+0.0008i ,�nA = 0.2nA
avg,

and A = 300 nm. Material B is bulk aluminum with refractive index nB = 2.74 + 8.31i .
The grating is described via Eqs. (6.12) and (6.13), with L1 = 0.5Lx , d3 − d2 = 30 nm, and
d1 = 8A. (left) A p when Lx = 244.5 nm; (right) As when Lx = 282 nm. The red solid
line is for metal/rugate-filter interface being planar (d2 = d1), and the black dashed line is for
that interface being periodically corrugated with d2 − d1 = 20 nm. The letter S identifies the
absorptance peaks that represent the excitation of SPP waves. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this book.)

metallic back-reflector of the solar cell—just as in the grating-coupled configuration.
This periodic corrugation may lead to the excitation of an SPP wave and thereby
increase the absorptance of light [206].

However, direct sunlight is almost completely unpolarized [348, p. 377], i.e. at any
given instant of time, it has components of both linear polarization states in almost
equal proportions. If the semiconductor is homogeneous, only one SPP wave at a given
wavelength can be excited. As only p-polarized light would be effective in exciting
SPP waves, this strategy cannot enhance the absorptance of one half of the incident
sunlight.

If the semiconductor were to be periodically nonhomogeneous normal to the mean
plane of the periodic corrugation of the metal/semiconductor interface, multiple SPP-
wave modes of both p- and s-polarization states could be excited at every wavelength in
the solar spectrum. Figure 6.41 shows the absorptances Ap and As as functions of θinc,
incident on a finitely thick isotropic semiconductor backed by a finitely thick metallic
film, the metal/semiconductor interface being either planar or periodically corrugated.

When the metal/semiconductor interface is planar, no SPP wave can be excited. This
is because κ(m,n)xy ≡ κ(0,0)xy for all m ∈ (−∞,∞) and n ∈ (−∞,∞), and no angle of
incidence θinc ∈ [0◦, 90◦) can then satisfy Eq. (3.216).

Periodic corrugation of the metal/semiconductor interface leads to enhancement of
absorptance of light of either polarization state, and the absorptance increases signifi-
cantly if multiple SPP-wave modes are excited as compared to the situation when no
SPP wave-modes are excited [84]. The enhancement in absorptance for both the p- and
s-polarized components of the incident sunlight is an important advantage over con-
ventional plasmonic solar cells in which no s-polarized SPP-wave modes are excited



Surface-Plasmon-Polariton Waves II 235

[206–208]. However, careful optimization of the grating is necessary to obtain high
absorptance of unpolarized light over a broad range of free-space wavelengths [349].

6.7 Outlook

Multiple SPP-wave modes—all at the same frequency and propagating in the same
direction in the interface plane, but with distinct phase speeds, propagation lengths,
and field profiles—can be guided by the interface of a metal and a dielectric mate-
rial that is periodically nonhomogeneous in the direction normal to the interface.
This phenomenon—now dubbed surface multiplasmonics [350]—was theoretically
predicted and subsequently confirmed by experimentation. A proof-of-concept exper-
iment has demonstrated the availability of multiple channels for more reliable sensing
of a single analyte, and for simultaneous sensing of multiple analytes. Surface multi-
plasmonics is also expected to be highly useful for boosting the quantum efficiencies
of tandem solar cells. A tandem solar cell is a cascade of multiple p-i-n solar cells,
each comprising a layer of a doped semiconductor of the p type, a layer of an intrinsic
semiconductor, and a layer of a doped semiconductor of the n type. Absorption of light
for conversion to electricity occurs only in the intrinsic semiconductor layers when the
solar cell is made of amorphous silicon. Thus, broad avenues have opened up for both
theoretical and experimental research along with significant applications.
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7 Dyakonov-Tamm Waves

7.1 Introduction

Having considered in detail Dyakonov waves in Chapter 4 and Tamm waves in
Chapter 5, let us now turn to what is essentially an amalgamation of these two types of
surface waves: Dyakonov-Tamm waves. By definition, at least one of the two partnering
materials is required to be both anisotropic and periodically nonhomogeneous. Periodic
nonhomogeneity of an anisotropic partnering material distinguishes Dyakonov–Tamm
waves from Dyakonov waves.

Dyakonov-Tamm waves offer two distinct advantages over Dyakonov waves for
optical applications: First, Dyakonov-Tamm-wave propagation has a much larger AED
than Dyakonov waves. Second, more than one Dyakonov-Tamm-wave mode may be
guided by a particular interface in a specific direction in the interface plane, whereas
only one Dyakonov-wave mode is supported at a given interface as shown in Chapter 4.
However, more than one Dyakonov-wave mode may be possible if one of the partnering
materials supports NPV [69,170].

Development of the theory of Dyakonov-Tamm waves (like that of Dyakonov waves)
has preceded experimental research. Indeed, the term Dyakonov-Tamm wave was coined
in 2007 when the existence of such a surface wave guided by the interface of a chiral
sculptured thin film and a homogeneous isotropic dielectric material was predicted
[46]. While this work provided a rigorous basis for Dyakonov-Tamm waves, other
approaches to surface waves in the context of anisotropic periodically nonhomogeneous
materials had also been reported [351–353]. Experimental studies of Dyakonov-Tamm
waves are only now being undertaken, but no definitive results have emerged yet.

In this chapter we focus on the excitation and propagation of Dyakonov-Tamm
waves for certain relatively simple cases that have been reported in the recent literature.
A selection of illustrative numerical results is provided. The theoretical treatment of
the general case for Dyakonov-Tamm waves, wherein the two partnering materials
are both bianisotropic and periodically nonhomogeneous normal to their interface, is
comprehensively covered in Chapter 3.

7.2 Canonical Boundary-Value Problem

As in the preceding three chapters, the canonical boundary-value problem introduced in
Section 3.5 underlies the description of Dyakonov-Tamm waves. Given the complexity

Electromagnetic Surface Waves. http://dx.doi.org/10.1016/B978-0-12-397024-4.00007-4
© 2013 Elsevier Inc. All rights reserved.
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of the partnering materials involved, it is reasonable to distinguish the case when one
partnering material is homogeneous from the other when neither of the two is.

7.2.1 Interface of a Homogeneous Isotropic Material and a Periodically
Nonhomogeneous Anisotropic Material

Suppose that material A, occupying the half-space z > 0, is a periodically nonhomo-
geneous, anisotropic dielectric material while material B, occupying the half-space
z < 0, is a homogeneous, isotropic dielectric material, as illustrated schematically
in Figure 7.1. Various forms of material A may be considered. It may be continuously
nonhomogeneous like a chiral STF or it may be piecewise homogeneous such as a
Reusch pile. Even with a given form of material A, different implementations may be
considered. As examples, SNTFs and chiral STFs have permittivity dyadics identical in
form to some nematic liquid crystals and cholesteric liquid crystals, respectively. In the
following sections, we consider three particular types of periodically nonhomogeneous
dielectric materials which have been studied in some detail: chiral STFs, SNTFs, and
Reusch piles.

7.2.1.1 Interface of an Isotropic Dielectric Material and a Chiral
Sculptured Thin Film

Let material A be a chiral sculptured thin film specified by the permittivity dyadic

εA(z) = SA
z

(
z +�A γA

π

)
• S

y
(χA) •

(
εAa uzuz + εAb ux ux

+ εAc uyuy

)
•
[

SA
z

(
z +�A γA

π

)
• S

y
(χA)

]−1

SA
z
(z) = uzuz + (ux ux + uyuy) cos

(
hA π z

�A

)

+(uyux − ux uy) sin
(

hA π z
�A

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, z > 0,

(7.1)

Dyakonov—Tamm wave
x, y

z

Figure 7.1 Schematic of the canonical boundary-value problem for Dyakonov-Tamm waves
guided by the planar interface of a periodically nonhomogeneous anisotropic material A and a
homogeneous isotropic material B.
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wherein the dyadic S
y

is defined by Eq. (1.30), hA ∈ {−1, 1} is the structural handedness

parameter, 2�A is the period, and the angle hAγA > 0◦ denotes the orientation of the
chiral STF about the z axis. The permittivity of the homogeneous partnering dielectric
material B is denoted by εB and its refractive index by nB =√εB/ε0.

As material B is isotropic, either one can keep γA = 0◦ fixed and vary ψ ∈
[0◦, 360◦), or one can keep ψ = 0◦ fixed and vary γA ∈ [0◦, 360◦). Either scheme is
fine to determine the AED of Dyakonov-Tamm propagation for the chosen interface,
the AED being the range of the variable angle over which solutions of the dispersion
equation (3.87) can be found.

Suppose that the Dyakonov-Tamm wave is taken to propagate parallel to the x axis;
i.e. ψ = 0◦ and uprop = ux . As in Section 4.2.1.1, we can then write1

e(z) = CB
s uy + CB

p

(−αBux+quz
k0nB

)
exp

(
iαBz

)

h(z) = nB
η0

[
CB

s

(−αBux+quz
k0nB

)
− CB

p uy

]
exp

(
iαBz

)

⎫⎪⎬
⎪⎭
, z < 0, (7.2)

where CB
s and CB

p are amplitudes of the s- and p-polarized field components, respec-
tively; the wavenumber q > 0 is purely real for unattenuated propagation in the inter-
face plane; and the wavenumber

αB =
√
ω2μ0εB − q2 (7.3)

has to obey the inequality Im
{
αB} < 0 for attenuation as z→−∞. Accordingly,

[
f (0−)] =

⎡
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0 − αB

k0nB
1 0

− αB

ωμ0
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0 −nB
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⎤
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•

[
CB

s

CB
p

]
. (7.4)

The procedure to express the field phasors in the region z > 0 provided in
Section 3.5.1 yields Eq. (3.80) with ψ = 0◦. Therefrom the boundary value

1In Chapters 1, 2, and 6, the half-space z < 0 in the canonical boundary-value problem for SPP-
wave propagation is occupied by a metal, and the spatial dependence of the field phasors is taken to
be exp[i(quprop − αmetuz)

• r ] with Im{αmet} > 0. In Chapters 4, 5, and 7, sometimes the half-space
z < 0 in the canonical boundary-value problem for surface-wave propagation is occupied by an isotropic
homogeneous dielectric material. In consonance with Chapter 3, we then adopt the spatial dependence
exp[i(quprop + αBuz)

• r ] with Im{αB} < 0. Both representations are identical, as can be ascertained by

setting αmet = −αB .
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Figure 7.2 Solutions q of the canonical boundary-value problem illustrated in Figure 7.1 as
functions of γA, when ψ = 0◦ and λ0 = 633 nm. The Dyakonov-Tamm waves are guided
by the planar interface of a homogeneous isotropic dielectric material of refractive index
nB ∈ {1.631, 1.635, 1.64, 1.645, 1.65}, and a titanium-oxide chiral STF described by Eqs. (6.6),
(6.7), and (7.1), data from Table 6.1, hA = 1, �A = 197 nm, and χA

v = 7.2◦. If q is a solution
for γA, then it is also a solution for γA + 180◦ [46].

[
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•
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]
(7.5)

emerges with unknown coefficients CA
1 and CA

2 . Finally, imposition of the boundary
condition (3.84) leads to the dispersion equation (3.87) from which the wavenumber q
for Dyakonov-Tamm-wave propagation may be numerically determined.

Figure 7.2 presents the solutions q of the dispersion equation for γA ∈ [−20◦, 100◦]
and nB ∈ {1.631, 1.635, 1.64, 1.645, 1.65} at λ0 = 633 nm, when material A is a
titanium-oxide chiral STF described by Eqs. (6.6), (6.7), and (7.1), data from Table 6.1,
hA = 1, �A = 197 nm, and χA

v = 7.2◦. The chosen values for nB roughly span the
range for which the dispersion equation (3.87) has at least one solution for this particular
example [46]. Twofold symmetry exists with respect to γA: for any γA for which a
solution q can be found, the same solution holds at γA + 180◦.

As the dispersion equation for Dyakonov-Tamm-wave propagation does not admit a
solution for every γA∈[−90◦, 90◦], each curve in Figure 7.2 is drawn over the contin-
uous γA-range over which a solution exists. Every curve is smooth with a maximum at
some γA∈(35◦, 40◦), and the widest ranges of q arise for mid-range values of nB. The
widest γA-range for Dyakonov-Tamm-wave propagation for the example considered
in Figure 7.2 is approximately 98◦, which arises for nB = 1.64. Clearly, the AEDs
for Dyakonov-Tamm waves are much larger in comparison to those in Figure 4.2 for
Dyakonov waves, when the anisotropic partnering materials in two cases have principal
permittivity scalars, and birefringences of comparable magnitudes.

Close examination of Figure 7.2 shows that the phase speed vp = ω/q of a
Dyakonov-Tamm wave is lower than the phase speed ω/k0nB in the bulk isotropic
partnering material. As nB � 1 is commonplace for optical materials, high-phase-
speed Dyakonov-Tamm waves (vp � c0) shall be difficult to observe experimentally.
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For a specific choice of the chiral STF A and the homogeneous dielectric material
B, Figure 7.2 indicates that at most one Dyakonov-Tamm-wave mode can propagate
along a given direction in the interface plane at a specific frequency. This attribute is
similar to that for Dyakonov-wave propagation as exemplified by Figure 4.4, but is
in contrast to multiple Tamm-wave modes indicated in Figures 5.2 and 5.3. However,
multiple Dyakonov-Tamm-wave modes are possible, as may be gathered from Figure
7.6 in Section 7.2.1.2.

The decay constants

βA
1 = exp

(−2�AIm
{
αA

1

}) ∈ (0, 1)

βA
2 = exp

(−2�AIm
{
αA

2

}) ∈ (0, 1)

}
(7.6)

indicate the decay of the two components of the Dyakonov-Tamm wave over one period
of the chiral STF, and thus provide a measure of how tightly the Dyakonov-Tamm wave
is bound to the plane z = 0+ for z > 0. The smaller a decay constant is, the stronger is
the field associated with it bound to the interface. Likewise, the decay rate −Im

{
αB}

indicates the degree of localization to the plane z = 0− for z < 0. The larger that a
decay rate is, the more strongly is its associated field bound to the interface.

All three quantities are plotted in Figure 7.3 against γA for the same parameters
as in Figure 7.2. Note that αA

1 , α
A
2 , and αB turned out to be purely imaginary for this

particular example. The Dyakonov-Tamm waves are bound most strongly to both sides
of the interface for γA ∈ [35◦, 40◦], i.e. in the central part of the γA-range in which
propagation is allowed. Regardless of the specific value of γA, in the chiral STF the

Figure 7.3 Same as Figure 7.2, except that the decay constants βA
1 and βA

2 and the normalized

decay rate −Im{αB}/k0 are plotted [46].
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components of field phasors associated with αA
1 are much more strongly bound to the

plane z = 0+ than the components associated with αA
2 .

The surface waves are bound very strongly to the interface for mid-range values
of nB, according to Figure 7.3. Delocalization occurs on the chiral-STF side (z > 0)
of the interface at low values of nB , but on the isotropic-material side (z < 0) of the
interface for high values of nB .

The spatial profiles of the field phasors e(z) and h(z), as well as the time-averaged
Poynting vector P(x, y, z) in the vicinity of the interface z = 0, are provided in
Figure 7.4 as functions of z for nB = 1.64 and γA = 40◦. The spatial profiles have
a decaying periodic characteristic in material A in consonance with Floquet theory,
but exhibit an exponential decay in material B because of Eq. (7.2). Also, the surface
wave is considerably more tightly bound to the interface in the region occupied by the
periodically nonhomogeneous partnering material than it is in the region occupied by
the homogeneous partnering material. Also, the spatial profiles show that no polariza-
tion state can be assigned to a Dyakonov-Tamm wave, because the relative magnitudes
and phases of the Cartesian components of e(z) are not uniform in the anisotropic
partnering material.
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Figure 7.4 Magnitudes of the Cartesian components of e(z), h(z), and P(x, y, z) plotted against
z/�A for a Dyakonov-Tamm wave guided by the interface z = 0 of a chiral STF labeled A
and a homogeneous dielectric material (nB = 1.64), when λ0 = 633 nm. All parameters of the
chiral STF are specified in Figure 7.2, except that γA = 40◦. The components parallel to ux , uy ,
and uz are represented by red solid, blue dashed, and black chain-dashed lines, respectively. The

data were computed by setting CB
s = 1 V m−1. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this book.)
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Figure 7.5 Same as Figure 7.2 but for χA
v = 25◦ and nB ∈ {1.947, 1.95, 1.955, 1.958} [46].

Qualitatively similar phase speeds, decay rates, and decay constants are obtained
for other values of vapor flux angle χA

v . For example, in Figure 7.5 the solutions q
of the dispersion equation are presented for the same set of partnering materials as for
Figure 7.2 except that χA

v = 25◦. Although the dependencies on γA and nB in both
figures are qualitatively similar, the phase speeds are lower for the higher value of χA

v .
Furthermore, the nB-range for χA

v = 25◦ is roughly half the width as that for χA
v =

7.2◦; the AED forχA
v = 25◦ is slightly less than that forχA

v = 7.2◦; and the maximums
of q with respect to γA occur at smaller values of γA forχA

v = 25◦ than forχA
v = 7.2◦.

Additionally, Im
{
αA

1

}
, Im

{
αA

2

}
, and−Im

{
αB} are typically smaller for χA

v = 25◦
than for χA

v = 7.2◦, indicating the fields of a Dyakonov-Tamm wave are more weakly
bound for the larger value of vapor flux angle used to fabricate the chiral STF.

Calculations at λ0 = 533 and 733 nm, based on the same constitutive and geo-
metric parameters as used for Figures 7.2–7.4, yield qualitatively similar results to the
results for λ0 = 633 nm [46]. Two general conclusions have been drawn: as the ratio
λ0/�

A increases, the phase speed of the Dyakonov-Tamm wave tends to increase and
it becomes less strongly bound to the interface.

Finally, a reversal in the structural handedness parameter hA of the chiral STF, along
with a concomitant reversal of the direction of the angle γA, results in no change to
the numerical results presented in this section.

7.2.1.2 Interface of an Isotropic Dielectric Material and a Sculptured
Nematic Thin Film

Suppose next that the chiral STF in Section 7.2.1.1 is replaced by a periodically non-
homogeneous SNTF described by
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, (7.7)

whose provenance is discussed at some length in Section 6.4.2.
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Figure 7.6 Solutions q of the canonical boundary-value problem as functions of γA for
Dyakonov-Tamm-wave propagation at λ0 = 633 nm guided by the interface of an isotropic
dielectric material (nB = 1.8) and a periodically nonhomogeneous titanium-oxide SNTF. The
SNTF is described by Eqs. (6.16) and (7.7), along with data from Table 6.1, �A = 197 nm,
χ̃A
v = 19.1◦, and δAv = 16.2◦. The solutions are organized in two branches [182].

Because the angle γA plays the same role as in Eq. (7.1), one can setψ = 0◦ so that
uprop = ux . The formulation and solution of the canonical boundary-value problem
[48,182] for the isotropic-dielectric/SNTF interface follows the 4× 4-matrix method-
ology of Section 3.5. Just as in Section 7.2.1.1 for the isotropic-dielectric/chiral-STF
interface, no polarization state can be assigned to a Dyakonov-Tamm wave guided by the
isotropic-dielectric/SNTF interface, except when sin γA = 0; then, two autonomous
2 × 2-matrix methodologies for p- and s-polarized Dyakonov-Tamm waves can be
devised from the 4× 4-matrix methodology.

A fourfold symmetry exists for Dyakonov-Tamm waves guided by the isotropic-
dielectric/SNTF interface. All results obtained for γA ∈ [0◦, 90◦] also hold for −γA
and 180◦ ± γA [182].

Figure 7.6 provides solutions q of the dispersion equation (3.87) in relation to γA for
Dyakonov-Tamm-wave propagation guided by the interface of an isotropic dielectric
material (nB = 1.8) and a periodically nonhomogeneous SNTF made of titanium oxide
and described by Eqs. (6.16) and (7.7), along with data from Table 6.1,�A = 197 nm,
χ̃A
v = 19.1◦, and δAv = 16.2◦. The solutions are organized into two branches. Two

Dyakonov-Tamm waves are supported for γA ∈ [0◦, 11◦], one for γA ∈ [11◦, 67◦],
but none for γA ∈ [67◦, 90◦]. This figure demonstrates that multiple Dyakonov-Tamm-
wave modes can exist.
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Figure 7.7 Same as Figure 7.6, except that decay constants βA
1 and βA

2 are plotted [182].
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The decay constants βA
1 and βA

2 are plotted in Figure 7.7 as functions of γA for
both solution branches in Figure 7.6. On both branches, the decay constants become
quite small when γA approaches 0◦. Hence, both Dyakonov-Tamm waves are quite
strongly bound to the interface on the SNTF side when γA is small. However, the decay
constant βA

1 increases markedly as γA increases, which indicates that the Dyakonov-
Tamm wave is more weakly bound to the interface on the SNTF side as γA increases
toward its maximum value on the specific branch.

7.2.1.3 Interface of an Isotropic Dielectric Material and an
Electro-Optic Reusch Pile

Due to the incorporation of periodic nonhomogeneity into material A, Dyakonov-
Tamm-wave propagation exhibits a much wider AED than Dyakonov-wave propagation.
However, the ranges of values of nB necessary for the existence of Dyakonov-Tamm
waves in the examples presented in Sections 7.2.1.1 and 7.2.1.2 are small.

One way to widen the nB-range (as well as the AED) in a controllable manner is to
use an electro-optic material as material A. Instead of a periodically nonhomogeneous
STF, suppose that material A is the electro-optic version of a Reusch pile introduced
in Section 1.4.5. This is an attractive proposition because a Reusch pile has many
parameters—including the tilt angle with respect to the xy plane, number of homo-
geneous layers per period, and the thickness of each layer—which may be chosen to
tailor the characteristics of Dyakonov-Tamm waves to specific applications. Further-
more, a Reusch pile made from an electro-optic material may be readily envisioned
to allow the characteristics to be fine-tuned dynamically through an applied DC (or
quasistatic) electric field [271]. The fabrication of an electro-optic Reusch pile seems a
more practicable prospect than the fabrication of an electro-optic chiral STF or SNTF.

Instead of Eq. (1.39), the permittivity dyadic of the �th layer occupying the region
(�− 1)d�yr < z < �d�yr in the electro-optic Reusch pile is given by

εA(z) = A
�
• S

y
(χA) • εA

EO
• S−1

y
(χA) • A−1

�
,

(�− 1)d�yr < z < �d�yr , � ∈ [1,∞), (7.8)

wherein

A
�
= (ux ux + uyuy) cos

[
hA(�− 1)π

Q
+ γA

]

+ (u yux − ux uy) sin

[
hA(�− 1)π

Q
+ γA

]
+ uzuz (7.9)

allows for an offset angle γA in the same way as in Sections 7.2.1.1 and 7.2.1.2 and
the structural handedness parameter hA ∈ {−1, 1}. The parameter Q > 1 is an integer,
and the permittivity dyadic of a Reusch pile approaches that of a chiral STF as Q →∞
while Qd�yr remains fixed. The permittivity dyadic εA

EO
in Eq. (7.8) has the electro-

optic form presented in Eq. (4.54).
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Figure 7.8 Midpoint γA
m and the width �γA of the AED for Dyakonov-Tamm waves as

functions of the refractive index nB of material B, when material A is an ambichiral and
electro-optic Reusch pile consisting of layers of orthorhombic potassium niobate. Whereas
χA = 20◦, hA = 1, Q = 3, d�yr = 50 nm, and EDC = 108uz V m−1, the constitutive param-

eters of potassium niobate entering Eqs. (4.54) and (7.8) are [354]: εA0
1 = 4.70326ε0, εA0

2 =
5.19886ε0, εA0

3 = 5.42604ε0, r13 = 34 × 10−12 V m−1, r23 = 6 × 10−12 V m−1, r33 =
63.4 × 10−12 V m−1, r42 = 450 × 10−12 V m−1, and r51 = 120 × 10−12 V m−1, with all
other electro-optic coefficients being null-valued [49].

Care must be exercised in choosing the thickness of each layer of the Reusch pile.
If d�yr is too large in comparison to λ0 then any surface waves which are excited will
effectively be of the Dyakonov type, because the fields will decay to insignificant values
within the first layer of the Reusch pile. If d�yr is too small in comparison to λ0 then
again any surface waves which are excited will be of the Dyakonov type as the Reusch
pile will then be effectively homogeneous.

The angle γA plays the same role as in Eq. (7.1). Hence, one can set ψ = 0◦ so that
uprop = ux . The formulation and solution of the canonical boundary-value problem
[49] for the interface of isotropic dielectric material and the electro-optic Reusch pile
follows the 4× 4-matrix methodology of Section 3.5.

Let γA
m denote the midpoint of the γA-range which supports Dyakonov-Tamm-wave

propagation while �γA denotes the width of this range. In Figure 7.8, γA
m and �γA

are plotted against nB , when λ0 = 633 nm. The electro-optic Reusch pile is supposed
to be made of potassium niobate, χA = 20◦, hA = 1, Q = 3, d�yr = 50 nm,
and a DC field EDC = 108uz V m−1 is supposed to be applied. The width of the
nB-range that permits the propagation of Dyakonov-Tamm waves is just 0.00066, but
the width of the AED is definitely much larger than for Dyakonov waves. Indeed, the
maximum of �γA in Figure 7.8 is approximately 80◦ which occurs at nB = 2.3089.

The range of values of nB that supports the propagation of Dyakonov-Tamm waves
and the maximum value of �γA change only by small amounts if the calculations of
Figure 7.8 are repeated for EDC = 0. If, however, these calculations are repeated for
larger magnitudes of EDC than 108 V m−1 then the range of values of nB that supports
Dyakonov-Tamm waves increases dramatically. This may be observed in Figure 7.9
wherein γA

m and �γA are plotted against nB for EDC = 109uz V m−1, with all other
parameters being the same as for Figure 7.8. The nB-range for Dyakonov-Tamm-wave
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Figure 7.9 Same as Figure 7.8 except that EDC = 109uz V m−1 [49].

Figure 7.10 Solutions q of the canonical boundary-value problem illustrated in Figure 7.1 as
functions of γA, when ψ = 0◦ and λ0 = 633 nm. The Dyakonov-Tamm waves are guided
by the planar interface of a homogeneous isotropic dielectric material of refractive index nB ∈
{2.4, 2.42, 2.44, 2.48} and an electro-optic Reusch pile which is the same as for Figure 7.8 except
that EDC = 109uz V m−1 [49].

propagation is approximately two orders larger in magnitude than in Figure 7.8. In
addition, γA

m varies over∼7◦ in Figure 7.9 but over only∼0.4◦ in Figure 7.8. There is
also a modest increase in the width of the AED.

The wavenumbers q of the Dyakonov-Tamm waves represented in Figure 7.9
are plotted against γA in Figure 7.10 for nB ∈ {2.4, 2.42, 2.44, 2.48} and EDC =
109uz V m−1. Clearly, the phase speed of the Dyakonov-Tamm wave decreases as
the refractive index nB increases. For each value of nB, q has a maximum value when
γ B � 65◦ and has local minimum values at the two ends of the AED. For the nB-range
depicted, the range of q is widest for nB = 2.44. This value of nB also delivers the
largest value of �γA. Qualitatively similar results are obtained when the DC electric
field is of lower magnitude.

The magnitude of EDC in Figures 7.9 and 7.10 corresponds to voltages compa-
rable to the half-wave voltages of electro-optic materials. The half-wave voltage is
the voltage required to bring about a 180◦ phase change in transmitted light [309].
Also, characteristic atomic electric field strengths are much larger than 109 Vm−1
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[271]. Although electric breakdown is a possibility, its likelihood may be reduced by
reducing the duration that the DC electric field is switched on.

7.2.2 Interface of Two Periodically Nonhomogeneous and Anisotropic
Materials

More generally for Dyakonov-Tamm-wave propagation than in Section 7.2.1, both
materials A and B are periodically nonhomogeneous along the z axis, and one of them is
anisotropic. In the most general case, both materials are periodically nonhomogeneous
and ansiotropic, as illustrated schematically in Figure 7.11. In this section, two examples
are considered.

7.2.2.1 Interface of Two Sculptured Nematic Thin Films

Suppose that two SNTFs occupy the half-spaces z > 0 and z < 0. The applicable
permittivity dyadics then are

εA(z) = A
z
(γA) • S

y

[
χA(z)

]
•
[
εAa (z)uzuz

+ εAb (z)ux ux + εAc (z)uyuy

]
• S−1

y

[
χA(z)

]
• A−1

z
(γA)

χA
v (z) = χ̃A

v + δAv sin
(
π z
�A + τA

)

⎫⎪⎪⎬
⎪⎪⎭
, z > 0,

(7.10)

and

εB(z) = A
z
(γB) • S

y

[
χB(z)

]
•
[
εBa (z)uzuz

+ εBb (z)ux ux + εBc (z)uyuy

]
• S−1

y

[
χB(z)

]
• A−1

z
(γB)

χB
v (z) = χ̃B

v + δBv sin
(
π z
�B − τB

)

⎫⎪⎪⎬
⎪⎪⎭
, z < 0,

(7.11)

Dyakonov—Tamm wave
x, y

z

Figure 7.11 Schematic of the canonical boundary-value problem for Dyakonov-Tamm waves
guided by the planar interface of two periodically nonhomogeneous and anisotropic materials A
and B.
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where A
z
(γ ) is defined in Eq. (7.7)3, γA and γB are two angular offsets from the xz

plane for the morphologically significant planes, and τA and τB are two phase angles
for the rocking needed to fabricate SNTFs.

Since the angles γA and γB are independent of each other, there is no loss in
generality taking the direction of Dyakonov-Tamm-wave propagation to be along the
x axis, in keeping with Section 7.2.1. Then, ψ = 0◦ and uprop = ux . The procedure to
express the field phasors in the region z � 0 provided in Section 3.5.1 yields Eq. (3.80).
Therefrom the boundary value

[
f (0+)] =

⎡
⎢⎢⎢⎢⎣

vA
11 vA

12

vA
21 vA

22

vA
31 vA

32

vA
41 vA

42

⎤
⎥⎥⎥⎥⎦
•

[
CA

1

CA
2

]
(7.12)

emerges with unknown coefficients CA
1 and CA

2 . The same procedure for the half-space
z � 0 gives Eq. (3.82), which provides the boundary value

[
f (0−)] =

⎡
⎢⎢⎢⎢⎣

vB
13 vB

14

vB
23 vB

24

vB
33 vB

34

vB
43 vB

44

⎤
⎥⎥⎥⎥⎦
•

[
CB

3

CB
4

]
(7.13)

with unknown coefficients CB
3 and CB

4 . Finally, imposition of the boundary condi-
tion (3.84) leads to the dispersion equation (3.87) from which the wavenumber q for
Dyakonov-Tamm-wave propagation may be numerically determined.

Equations (7.10) and (7.11) contain a large number of parameters to describe the
two partnering SNTFs. Although a comprehensive program to investigate surface waves
guided by the interface of two distinct SNTFs has yet to be undertaken, some progress
can be made by examining the interface of two identical SNTFs that differ only in
the orientations of their morphologically significant planes and the phase angles for
substrate rocking. This pair of SNTFs can be fabricated as follows: During the PVD
process, the substrate is rocked back and forth sinusoidally about an axis parallel to the
plane z = 0, in consonance with Eq. (7.11)2. When the switch to Eq. (7.10)2 has to be
implemented, the sinusoidal rocking is halted, the vapor flux is switched off, and the
substrate is rotated by an angle γA − γB about a suiTable axis parallel to z axis. Then
the vapor flux is switched back on at an angle which is changed by τA + τB and the
sinusoidal rocking motion is resumed.

Figure 7.12 presents solutions q of the dispersion equation (3.87) at λ0 = 633 nm
[183]. Both SNTFs are made of titanium oxide and are described by Eqs. (6.16),
(7.10), and (7.11), along with data from Table 6.1, �A = �B = 200 nm, χ̃A

v =
χ̃B
v = 45◦, δAv = δBv = 30◦, τA = 0◦, and τB = 180◦. Twofold symmetry exists

for Dyakonov-Tamm-wave propagation in relation to the angle γA: for every γA ∈
[0◦, 180◦], the propagation characteristics are the same as for γA+180◦, provided that
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(a) (b)

(c) (d)

Figure 7.12 Four sets of solutions q of the canonical boundary-value problem illustrated in
Figure 7.11 as functions of γA, when ψ = 0◦ and λ0 = 633 nm and γB ∈ {0◦, 30◦, 60◦, 90◦}.
The Dyakonov-Tamm waves are guided by the interface of two periodically nonhomoge-
neous titanium-oxide SNTFs described by Eqs. (6.16), (7.10), and (7.11), along with data
from Table 6.1, �A = �B = 200 nm, χ̃A

v = χ̃B
v = 45◦, δAv = δBv = 30◦, τA = 0◦,

and τB = 180◦ [183]. (a) First set, (b) second set, (c) third set, and (d) fourth set.
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γ B is fixed. Analogous twofold symmetry also exists with respect to γB . Furthermore,
solutions for

{
γA, γB} are equivalent to those for {180◦ − γA, 180◦ − γB}.

The dispersion relation (3.87) yields four sets of solutions (i.e. sets of values of
wavenumber q) for γA ∈ [0◦, 180◦] when γB is held fixed in the range [0◦, 90◦].
Figure 7.12 contains a representative selection of results wherein γA ∈ [0◦, 180◦] and
γ B ∈ {0◦, 30◦, 60◦, 90◦}. Solutions do not exist in the first and the third sets for all
combinations

{
γA, γB} considered, but that is not true for the second and fourth sets.

Thus, multiple Dyakonov-Tamm-wave modes are possible for any direction.
The solution sets are organized in Figure 7.12 in increasing magnitudes of q and

therefore decreasing magnitudes of vp. The phase speeds of all Dyakonov-Tamm-wave
modes in this figure are less than c0.

The extent to which a Dyakonov-Tamm-wave mode is bound in material A to the
plane z = 0+ is determined by the decay constants βA

1 and βA
2 defined in Eqs. (7.6).

Likewise, the decay constants

βB
3 = exp

(
2�BIm

{
αB

3

}) ∈ (0, 1)

βB
4 = exp

(
2�BIm

{
αB

4

}) ∈ (0, 1)

}
(7.14)

determine the extent to which the Dyakonov-Tamm-wave mode is bound in material
B to the plane z = 0−. Smaller decay constants imply stronger binding.

Figure 7.13 presents all four decay constants for the four sets of solutions for
Dyakonov-Tamm-wave propagation identified in Figure 7.12. For the first set of solu-
tions, the decay constants vary between 0.7 and 0.99, and indicate that the Dyakonov-
Tamm-wave modes are loosely bound to the interface in both partnering materials.
Stronger binding is indicated for the second set of solutions, because the decay con-
stants range from 0.1 to 0.45. The variation in the decay constants for the third set of
solutions is considerable, ranging from almost 0 to 0.9. The decay constants range from
almost 0 to 0.12 for the fourth set of solutions, indicating thereby that the Dyakonov-
Tamm-wave modes in this set of solutions are the most tightly bound to the interface.
The Dyakonov-Tamm-wave modes in the fourth set also have the smallest phase speeds.

Spatial profiles of the fields confirm the conclusions offered by the decay constants.
For instance, plots of the magnitudes of the Cartesian components of the field phasors
e(z) and h(z), as well as the time-averaged Poynting vector P(x, y, z), in the vicinity of
the interface z = 0 are provided in Figure 7.14 as functions of z for a Dyakonov-Tamm-
wave mode belonging to the first set in Figure 7.12. All three quantities decay more
rapidly in the half-space z > 0 than in the half-space z < 0. Indeed, the magnitudes in
the half-space z < 0 are significant even at distances greater than 30 periods from the
interface. These observations are consistent with the relative magnitudes of the decay
constants available from Figure 7.13: βA

1 = 0.94 and βA
2 = 0.74 for z > 0, while

βB
3 = 0.99 and βB

4 = 0.84 for z < 0. Asymmetry of the spatial profiles and the decay
constants with respect to the interface z = 0 stems from the asymmetric arrangement,
about the propagation direction, of the morphologically significant planes of the SNTF
on each side of z = 0.

The spatial profiles of e(z), h(z), and P(x, y, z) for a solution from the second
set are presented in Figure 7.15. Clearly, the Dyakonov-Tamm-wave mode is largely
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(a) (b)

(c) (d)

Figure 7.13 Same as Figure 7.12, except that the decay constants βA
1 , βA

2 , β
B
3 , and βB

4 are
plotted [183]. (a) First set, (b) second set, (c) third set, and (d) fourth set.
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Figure 7.14 Magnitudes of the Cartesian components of e(z), h(z), and P(x, y, z) plotted
against z/�A for a Dyakonov-Tamm-wave mode guided by the interface z = 0 of two SNTFs,
when ψ = 0◦ and λ0 = 633 nm. All parameters of the two SNTFs are specified in Figure 7.12,
except that γA = 30◦ and γB = 60◦. The wavenumber q = 1.3522k0 belongs to the first set
of solutions in Figures 7.12 and 7.13. The components parallel to ux , uy , and uz are represented
by red solid, blue dashed, and black chain-dashed lines, respectively. The data were computed
by setting CA

1 = 1 V m−1 [183]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this book.)

confined within one period on either side of the interface. The spatial profiles for
z < 0 approximately mirror those for z > 0, but a small degree of asymmetry is
apparent because the morphologically significant planes of the two SNTFs are oriented
asymmetrically with respect to the direction of propagation.

7.2.2.2 Interface of Two Chiral Sculptured Thin Films

In a similar vein to the SNTF/SNTF interface of Section 7.2.2.1, multiple Dyakonov-
Tamm-wave modes may be guided by the interface of two chiral STFs. A variety
of different configurations have been contemplated: the chiral STFs occupying the
half-spaces z > 0 and z < 0 could be dissimilar in (i) orientation about the helical
axis [50,51], (ii) structural handedness [52], (iii) period, (iv) vapor flux angle [355],
(v) material, or (vi) or any combination of (i)–(v) [53]. As is true for the SNTF/SNTF
interface in Section 7.2.2.1, the multiple Dyakonov-Tamm-wave modes guided by any
chiral-STF/chiral-STF interface differ in phase speed, spatial profiles, and the degree
of binding to the interface.

A noTable difference between Dyakonov-Tamm-wave modes guided by the chiral-
STF/chiral-STF interface as compared with the SNTF/SNTF interface concerns the
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Figure 7.15 Same as Figure 7.14 but for the wavenumber q = 2.02646k0 belonging to the
second set of solutions in Figures 7.12 and Figure 7.13 [183].

localization to the interface. If one compares data for the SNTF/SNTF interface pre-
sented in Section 7.2.2.1 [183] with the data for a comparable chiral-STF/chiral-STF
interface [50,51], then one finds that the most tightly bound Dyakonov-Tamm-wave
modes are confined to within one period on either side of the SNTF/SNTF interface,
whereas the Dyakonov-Tamm-wave modes are at best confined within two periods on
either side of the chiral-STF/chiral-STF interface. This difference may be attributed
to the different morphological dimensionality of the two types of STFs—chiral STFs
have a three-dimensional morphology, but the morphology of SNTFs is essentially
two-dimensional.

7.3 Practical Configurations

The canonical boundary-value problem exemplified in Section 7.2 is appropriate for
determining possible wavenumbers for Dyakonov-Tamm waves. However, it is unim-
plemenTable because both partnering materials occupy half-spaces. In practical con-
figurations, both materials have to be finite in extent in the direction normal to their
planar interface.

7.3.1 Prism-Coupled Configuration

Being quite straightforward to implement, the prism-coupled configuration of
Figure 5.5 has been employed for experiments with Tamm waves [174–177]. Whereas
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Figure 7.16 Schematic of the prism-coupled configuration for Dyakonov-Tamm waves guided
by the planar interface of a periodically nonhomogeneous and anisotropic material A and a
homogeneous isotropic material B.

material A is isotropic and periodically nonhomogeneous, material B is isotropic
and homogeneous. If material A is made anisotropic, as depicted in Figure 7.16, the
prism-coupled configuration can provide the simplest experimental method to excite
Dyakonov-Tamm waves.

The thicknesses of materials A and B are dA and dB, respectively. The layer of
material B is in contact with a prism of refractive index nprism > 1, whereas the layer
of material A is in contact with air (nair = 1). For analytical purposes, a linearly
polarized plane wave is taken to be incident on the interface of the prism and material
B at an angle θinc ∈ [0◦, 90◦) with respect to the z axis, as shown in Figure 7.16, and
at an angle ψ ∈ [0◦, 360◦) to the x axis in the xy plane. The plane wave transmitted
into air has a wave vector that is inclined at an angle θtr to the z axis and at the angle
ψ ∈ [0◦, 360◦) to the x axis in the xy plane. The angle θtr could be complex valued.
The theory underpinning this prism-coupled excitation of surface waves is presented
in detail in Section 3.7.

Whileψ is kept constant, θinc is varied from 0◦ towards 90◦, and the reflectance back
into the prism is computed as a function of that angle. Even though both partnering
materials for Dyakonov-Tamm-wave propagation are supposed to have negligible dis-
sipation, nB must be endowed with a small positive imaginary part [356] so that some
reflectance dips for θinc > sin−1 (1/nprism) indicate the excitation of Dyakonov-Tamm
waves, as is illustrated for Tamm waves in Section 5.3.1. The reflectance dips for
θinc > sin−1 (1/nprism) also manifest themselves as absorptance peaks.

The correspondence between the prism-coupled configuration and the underlying
canonical boundary-value problem is illustrated in Figure 7.17. For this figure, material
A is a titanium-oxide SNTF described by

εA(z)= S
y

[
χA(z − dB)

]
•
[
εAa (z − dB)uzuz

+ εAb (z − dB)ux ux + εAc (z − dB)uyuy

]
• S−1

y

[
χA(z − dB)

]

χA
v (z)= χ̃A

v + δAv sin
(
π z
�A

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, z > dB, (7.15)
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(a)

(b)

Figure 7.17 Density plots of linear absorptances (a) As and (b) A p as functions of θinc and ψ
in the prism-coupled configuration of Figure 7.16, when λ0 = 633 nm. Material A of thickness
dA = 6�A is a periodically nonhomogeneous titanium-oxide SNTF described by Eqs. (6.16)
and (7.15), along with data from Table 6.1, �A = 197 nm, χ̃A

v = 19.1◦, and δAv = 16.2◦.
The refractive index of the homogeneous partnering material B is nB = 1.8 (1 + 10−4i) and
its thickness dB = 75 nm. The prism material is zinc selenide (nprism = 2.58) [356]. The black

overlaid curves represent values of sin−1 (q/k0nprism) obtained for eachψ from solutions of the
underlying canonical boundary-value problem; comparison with Figure 7.6 is recommended.
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along with Eqs. (6.16), data from Table 6.1, �A = 197 nm, χ̃A
v = 19.1◦, and δAv =

16.2◦, whereas the homogeneous material B has refractive index nB = 1.8 (1+10−4i).
With the region z < 0 filled with a medium of refractive index the same as zinc
selenide and the half-space z > dA + dB filled with air, the absorptances As and
Ap at λ0 = 633 nm were calculated as functions of θinc and ψ for sufficiently large
thicknesses of both partnering materials [356]. Density plots of As and A p with respect
to both angles are provided in Figure 7.17.

The thickness of a partnering material that is periodically nonhomogeneous should
be increased in increments of a period, for the identification of surface waves. Absorp-
tance peaks whose angular locations do not depend upon the thicknesses of either
material A or material B, beyond certain threshold thicknesses, indicate the possi-
ble excitation of Dyakonov-Tamm-wave modes. In contrast, absorptance peaks whose
angular locations depend upon the thicknesses of the partnering materials are attributed
to waveguide modes. A narrow band of high absorptance is evident in
Figure 7.17, starting at {θinc = 45.5◦, ψ = 0◦} and ending at {θinc = 48.6◦, ψ = 90◦}.
The high-absorptance band is widest at ψ = 0◦ and decreases in width as ψ increases.

Overlaid on the density plots are two black curves which represent the locus of
sin−1 (q/k0nprism) as a function of ψ obtained by solving the underlying canonical
boundary-value problem discussed in Section 7.2.1.2. Each curve represents a branch
of solutions. Both branches lie entirely within the high-absorptance band. One branch
extends over ψ ∈ [0◦, 66◦] while the other extends over ψ ∈ [0◦, 11◦]. As the sepa-
ration in terms of θinc for the two branches over ψ ∈ [0◦, 11◦] is very small, separate
high-absorptance bands, corresponding to the two solutions to the canonical boundary-
value problem, cannot be discerned in the density plots.

Since solutions of the canonical boundary-value problem exist only forψ ∈ [0◦, 66◦],
it may be inferred that the high-absorptance bands forψ ∈ [66◦, 90◦] do not indicate the
excitation of Dyakonov-Tamm waves. But Dyakonov-Tamm-wave excitation definitely
arises for ψ ∈ [0◦, 66◦], for incident plane waves of both s- and p-polarization states.

7.3.2 Grating-Coupled Configuration

Grating coupling provides another practical configuration for the excitation of
Dyakonov-Tamm waves. The general theory describing this configuration is available in
Section 3.8.

7.4 Outlook

Two canonical boundary-value problems have been solved to investigate the character-
istics of Dyakonov-Tamm waves. Only one of the two partnering materials is anisotropic
and periodically nonhomogeneous in one canonical boundary-value problem, while
both partnering materials are anisotropic and periodically nonhomogeneous in the other
one. Nevertheless, a comprehensive understanding has not yet been developed due to
the plethora of constitutive parameters involved when both partnering materials can be
bianisotropic and periodically nonhomogeneous in the direction normal to the interface
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plane. Neither has practical configurations required to excite these surface waves been
extensively investigated.

With one partnering material both isotropic and homogeneous, experimental obser-
vation of Dyakonov-Tamm waves is not significantly more arduous than that of Tamm
waves—which had been observed a few decades ago. Implementation of the prism-
coupled configurations is straightforward and the AEDs of Dyakonov-Tamm waves are
much more favorable toward experimental observation than those of Dyakonov waves.

The prism-coupled configurations can be exploited for optical sensing and may
eventually lead to the development of Dyakonov-Tamm-wave sensors. Application for
optical sensing is a significant incentive for researchers to bestow attention on these
surface waves.



Appendix A

Dyadics

A brief introduction to dyadics and their properties is provided in this Appendix. For
further details about dyadics, especially in the context of electromagnetics, the reader
is referred elsewhere [78,357].

A dyad is composed of two vectors:

d = a b. (A.1)

While d • p = a(b • p) and p • d = (p • a)b are vectors, d × p = a(b × p) and
p × d = (p × a)b are dyads. The transpose of a dyad a b is the dyad ba. Sometimes,
dyads are called bivectors. Some authors prefer to write the dyad a b as b ⊗ a.

A dyadic is a linear mapping from one n-vector to another. For 3-vectors, the map-
ping can be straightforwardly described in terms of Cartesian vectors. Thus, a 3 × 3
dyadic M is a linear mapping from a Cartesian 3-vector p to Cartesian 3-vector q:

q = M • p. (A.2)

The identity dyadic I is such that p • I = I • p = p; likewise, the null dyadic 0 is
defined so that p • 0 = 0 • p equals the null vector 0.

A dyadic is not necessarily a dyad. The general representation of a dyadic is as a
sum of dyads; i.e.

M =
∑

�=1,2,...

d
�
=

∑
�=1,2,...

M�u�v�, (A.3)

where M� are some scalar coefficients, while u� and v� are vectors of unit magnitude.
All vectors can be written using matrix notation. Thus, the vector a = ux ax +

uyay + uzaz in a Cartesian coordinate system is equivalent to the column 3-vector

a ≡
⎡
⎣

ax
ay

az

⎤
⎦ (A.4)

and the dyad d = a b is equivalent to the 3× 3 matrix

d ≡
⎡
⎣

ax bx ax by ax bz

aybx ayby aybz

azbx azby azbz

⎤
⎦. (A.5)
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Hence, dyadics in electromagnetics can be written as 3×3 matrixes. The identity dyadic
I is equivalent to the 3×3 identity matrix, and the null dyadic 0 to the 3×3 null matrix.
The usual algebra of matrixes can thus be used for dyadics as well.

The trace of a dyadic is the sum of the diagonal elements in its matrix representation.
Likewise, the determinant of a dyadic is the same as the determinant of its equivalent
matrix. A dyadic can be transposed in the same way as a matrix. If it is nonsingular, a
dyadic can be inverted.

The anti-symmetric dyadic

a × I = I × a (A.6)

= ax (uzuy − uyuz)+ ay(ux uz − uzux )+ az(uyux − ux uy) (A.7)

≡
⎡
⎣

0 −az ay
az 0 −ax

−ay ax 0

⎤
⎦ (A.8)

is often useful to denote gyrotropic electromagnetic properties that are characteristic
of ferrites and plasmas. The simplest anti-symmetric dyadic is u × I , where u is any
vector of unit magnitude. The trace of any anti-symmetric dyadic is zero.

Even vector differential operators can be thought of as dyadics. Thus, the curl
operator is written as ∇ × I and the divergence operator as ∇ • I , with

∇ = ux
∂

∂x
+ uy

∂

∂ y
+ uz

∂

∂z
(A.9)

written as a vector in a Cartesian coordinate system.



Appendix B

Biaxial Permittivity Dyadic

Two different ways are commonly used to express the permittivity dyadic ε of a homo-
geneous biaxial dielectric material. The more transparent way is

ε = ε1u1u1 + ε2u2u2 + ε3u3u3, (B.1)

where the unit vectors u1, u2, and u3 are the eigenvectors of ε while the principal
permittivity scalars ε1, ε2, and ε3 are the corresponding eigenvalues of ε. The three
eigenvectors form a right-handed triad:

u1 × u2 = u3, u3 × u1 = u2, u2 × u3 = u1. (B.2)

In the remainder of this Appendix, dissipation is ignored and all three eigenvalues are
assumed to be real valued and positive.

For a biaxial material, all three eigenvalues of ε are distinct. Without loss of gener-
ality, let us assume that

ε1 > ε2 > ε3 > 0. (B.3)

From these quantities, the three principal refractive indexes of the biaxial dielectric
material can be obtained as

n1 =
√
ε1/ε0, n2 =

√
ε2/ε0, n3 =

√
ε3/ε0. (B.4)

The birefringence of the material is defined as

�n = n1 − n3. (B.5)

The biaxiality of the material is defined in terms of the angle

δ = cos−1
√
ε1 − ε2

ε1 − ε3
. (B.6)

Positive biaxiality requires that δ ∈ (0◦, 45◦), which implies that

ε1 − ε2

ε1 − ε3
∈
(

1

2
, 1

)
. (B.7)
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Negative biaxiality requires that δ ∈ (45◦, 90◦), which implies that

ε1 − ε2

ε1 − ε3
∈
(

0,
1

2

)
. (B.8)

When ε2 is the average of ε1 and ε3, then δ = 45◦ and the material is neither positive
biaxial nor negative biaxial.

Equation (B.1) can be rewritten as

ε = ε2 I + ε1 − ε3

2
(a+a− + a−a+), (B.9)

which is the other common way of expressing ε. Here the unit vectors

a+ = u1

√
ε1 − ε2

ε1 − ε3
+ u3

√
ε2 − ε3

ε1 − ε3
(B.10)

and

a− = u1

√
ε1 − ε2

ε1 − ε3
− u3

√
ε2 − ε3

ε1 − ε3
(B.11)

are parallel to the two optic ray axes of the biaxial dielectric material. The relationship

a+ • a− = cos (2δ) (B.12)

is often useful. When the material is neither positive biaxial nor negative biaxial, then
the two optic ray axes are mutually orthogonal.

The inverse of the permittivity dyadic can be expressed as

ε−1 = 1

ε2
I +

1
ε3
− 1

ε1

2
(b+b− + b−b+). (B.13)

The unit vectors

b+ = u1

√
(ε1 − ε2)ε3

(ε1 − ε3)ε2
+ u3

√
(ε2 − ε3)ε1

(ε1 − ε3)ε2
(B.14)

and

b− = −u1

√
(ε1 − ε2)ε3

(ε1 − ε3)ε2
+ u3

√
(ε2 − ε3)ε1

(ε1 − ε3)ε2
(B.15)

are parallel to the two optic axes of the biaxial dielectric material.
A biaxial dielectric material becomes uniaxial, if two of the eigenvalues of its per-

mittivity dyadic are equal and different from the third eigenvalue. Positive uniaxiality
requires that δ = 0◦, which implies that ε1 > ε2 = ε3. Negative uniaxiality requires
that δ = 90◦; hence, ε1 = ε2 > ε3. Regardless of the type of uniaxiality, a+ and
a− are either co-parallel or anti-parallel, so that a uniaxial dielectric material has just
one optic ray axis. Furthermore, there is just one optic axis because b+ and b− are
either co-parallel or anti-parallel. Finally, the sole optic ray axis of a uniaxial dielectric
material coincides with its sole optic axis.



Appendix C

Zenneck Wave

Analytical treatments of the simple SPP wave and the Zenneck wave [6] are identical.
Similarly to the canonical boundary-value problem for the simple SPP wave described
in Section 2.2, let the half-space z < 0 be filled with a homogeneous, isotropic, dielec-
tric material of permittivity ε�d, and the half-space z > 0 be filled with another homoge-
neous, isotropic, dielectric material of permittivity εdiel. Whereas ε�d is complex valued
with Re{ε�d} > 0 and Im{ε�d} > 0, εdiel > 0 is purely real. Unlike the situation for
an SPP wave, the material with relative permittivity ε�d is not a metal but a dissipative
dielectric material.

The fields of a Zenneck wave are p polarized, just as those of a simple SPP wave. In
the two half-spaces, the electric and magnetic phasors of a Zenneck wave are given by

E(r) =
⎧⎨
⎩

(
α�duprop+quz

k0n�d

)
exp[i(quprop − α�duz)

• r ], z < 0,

cp

(−αdieluprop+quz
k0ndiel

)
exp[i(quprop + αdieluz)

• r ], z > 0,
(C.1)

and

H (r) =
{− n�d

η0
(uz × uprop) exp[i(quprop − α�duz)

• r ], z < 0,

−cp
ndiel
η0
(uz × uprop) exp[i(quprop + αdieluz)

• r ], z > 0,
, (C.2)

where the unit vector uprop = ux cosψ + uy sinψ is parallel to the direction of prop-
agation in the xy plane, the refractive index ndiel = √εdiel/ε0 > 0, the refractive
index n�d = √ε�d/ε0 has a non-negative imaginary part, and cp is a coefficient to be
determined.

The variations of the field phasors along the z axis in the two partnering materials
are described through the complex-valued wavenumbers

α�d =
√
ω2μ0ε�d − q2

αdiel =
√
ω2μ0εdiel − q2

}
(C.3)

that must satisfy the appropriate restrictions

Im{α�d} > 0

Im{αdiel} > 0

}
(C.4)

for a surface wave.
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Application of the standard boundary conditions (2.12) yields

α�dndiel = −cpαdieln�d
n�d = cpndiel

}
. (C.5)

Hence, the coefficient

cp = n�d/ndiel (C.6)

is the ratio of the two refractive indexes and the dispersion equation

αdielε�d = −α�dεdiel (C.7)

for the Zenneck wave has the same form as the dispersion equation (2.26) of the simple
SPP wave. Analysis also shows that

Re{αdiel} < 0, (C.8)

which is the same as Eq. (2.42) for the simple SPP wave. But the restriction

Re{α�d} > 0 (C.9)

on the Zenneck wave is not the same as Eq. (2.44) for the simple SPP wave.
The similarities and differences between the Zenneck wave and the simple SPP

wave are numerically exemplified by a comparison of the last columns of Tables 2.1
and C.1.

Table C.1 Wavenumbers of Zenneck waves, for comparison with Table 2.1.

εdiel/ε0 ε�d/ε0 q/k0 αdiel/k0 α�d/k0

4 15+ 6i 1.800+ 0.067i −0.886+ 0.137i 3.526+ 0.817i
7.0405+ 2.5991i 1.624+ 0.100i −1.180+ 0.137i 2.166+ 0.525i
3+ i 1.332+ 0.120i −1.500+ 0.107i 1.152+ 0.295i



Appendix D

Floquet Theory

Floquet theory [358] deals with first-order matrix ordinary differential equations of the
kind

[ f (z)]′ = i
[

P(z)
]
• [ f (z)], (D.1)

where the prime denotes differentiation with respect to the argument, [ f (z)] is a column
vector with n components and the n × n matrix

[
P(z)

]
is a piecewise continuous

function of z with period 2�, i.e.
[

P(z + 2�)
] = [ P(z)

]
. (D.2)

The n × n matrix
[
�(z)

]
, defined by the functional relationship

[ f (z)] = [�(z)] • [ f (0)], (D.3)

is called the matrizant. It satisfies the matrix ordinary differential equation
[
�(z)

]′ = i
[

P(z)
]
•
[
�(z)

]
, (D.4)

with initial value
[
�(0)

] = [ I
]
, the identity matrix.

By virtue of a change of the independent variable, then [262, Chapter 5]
[
�(z + 2�)

]′ = i
[

P(z + 2�)
]
•
[
�(z + 2�)

]

= i
[

P(z)
]
•
[
�(z + 2�)

]
. (D.5)

Hence,
[
�(z + 2�)

]
is also a matrizant, but with initial value

[
�(2�)

]
. Therefore,

[
�(z + 2�)

] = [�(z)] • [�(2�)]. (D.6)

As a constant matrix
[

A
]

can be defined such that
[
�(2�)

] = exp
{

i2�
[

A
]}

,
Eq. (D.6) may be rewritten as

[
�(z + 2�)

] = [�(z)] • exp
{

i2�
[

A
]}
. (D.7)

Equation (D.7) suggests the ansatz
[
�(z)

] = [F(z)
]
• exp

{
i
[

A
]

z
}
, (D.8)
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where the n × n matrix
[

F(z)
]

is not known; accordingly,

[
�(z + 2�)

] = [F(z + 2�)
]
• exp

{
i
[

A
]

z
}
• exp

{
i2�

[
A
]}
. (D.9)

If the periodicity constraint
[

F(z + 2�)
] = [F(z)

]
(D.10)

is imposed, Eq. (D.9) simplifies to
[
�(z + 2�)

] = [F(z)] • exp
{

i
[

A
]

z
}
• exp

{
i2�

[
A
]}

= [�(z)] • exp
{

i2�
[

A
]}
, (D.11)

which is the same as Eq. (D.7).
Thus, Floquet theory yields the solution of Eq. (D.1) as

[ f (z)] = [F(z)
]
• exp

{
i
[

A
]

z
}
• [ f (0)], (D.12)

where the matrix
[

F(z)
]

has an initial value

[
F(0)

] = [ I
]

(D.13)

and is also a periodic function of z. Unfortunately, this theory does not deliver actual
expressions for

[
F(z)

]
and

[
A
]
.



Appendix E

Forward and Inverse Bruggeman Formalisms

Suppose that identical spherical particles made of a certain linear material are randomly
dispersed in a linear host material. Let the particle radius be less than a tenth of the
minimum wavelength in the two materials. Then the particle is electrically small [89]
and the particulate composite material can be considered as an effectively homogeneous
material.

The mathematical procedure to predict the effective constitutive dyadics of the
composite material from the constitutive dyadics of its constituent materials is called
homogenization [89]. Many homogenization formalisms exist, of which the Bruggeman
formalism is perhaps the most widely used. This formalism has been extended to the
homogenization of bianisotropic ellipsoidal particles dispersed in a bianisotropic host
material [17,359], and has been applied for CTFs [308] as well as chiral STFs [347].

E.1 Forward Bruggeman Formalism for CTFs

Each column of a CTF may be regarded as a set of elongated ellipsoidal particles strung
together end-to-end, as shown in Figure 1.1. All particles have the same orientation
and shape. The surface of each ellipsoidal particle is parameterized as

r surf(θ, φ) = RsurfU • [(ux cosφ + uy sin φ) sin θ + uz cos θ ], (E.1)

θ and φ are spherical polar coordinates in a coordinate system located at the centroid
of the particle and Rsurf > 0 is a measure of the particle’s linear dimensions. The shape
dyadic

U = unun + γτuτuτ + γbubub (E.2)

has positive eigenvalues and unit determinant. The unit vectors

un = −ux sin χ + uz cosχ
uτ = ux cosχ + uz sin χ
ub = −uy

⎫⎬
⎭ (E.3)

are defined in terms of the tilt angle χ ∈ (0◦, 90◦] of the columns. Since the columnar
morphology is highly aciculate, the shape parameters γb � 1 and γτ � 1, but these
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v

uΤu n

u bsubstrate

vapor flux

CTF

Figure 1.1 The columns of a CTF are represented as a set of elongated ellipsoidal particles,
strung together end-to-end. The columns grow tilted at angle χ , along the direction of the unit
vector uτ , due to a vapor flux incident at an angle χv ≤ χ on a substrate. When implementing
the Bruggeman formalism, the air (approximated by vacuum) between the columns is modeled
as an Apollonian distribution [360] of electrically small spheres.

parameters need not be restricted thus for the application of the forward Bruggeman
formalism for other composite materials.

As discussed in Section 1.4.3.1, at length scales far greater than the nanoscale, a
CTF is effectively a dielectric continuum which may be characterized by the frequency-
domain constitutive relation [42,327]

D = ε
CTF

• E, (E.4)

where the permittivity dyadic

ε
CTF
= S

y
(χ) • (εauzuz + εbux ux + εcuyuy)

• S−1
y
(χ) (E.5)

contains the dyadic

S
y
(χ) = uyuy + (ux ux + uzuz) cosχ + (uzux − ux uz) sin χ. (E.6)

Let the ellipsoidal particles be made of an isotropic dielectric material of refractive
index ns . Let vs ∈ (0, 1) be the volume fraction occupied by the ellipsoidal particles,
while the void region is filled with air (or vacuum). Thus, the porosity of the CTF equals
1− vs .

The dyadic

b(εa, εb, εc) = vsa
s
+ (1− vs)a f

(E.7)

is the volume-fraction-weighted sum of the two polarizability density dyadics

a
s
=
[
n2

s ε0 I − (εauzuz + εbux ux + εcuyuy)
]

•
{

I + iωD
s
•
[
n2

s ε0 I − (εauzuz + εbux ux + εcuyuy)
]}−1

(E.8)

and

a
f
= [ε0 I − (εauzuz + εbux ux + εcuyuy)

]

•
{

I + iωD
f
•
[
ε0 I − (εauzuz + εbux ux + εcuyuy)

]}−1
. (E.9)
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Here, a
s

is the polarizability density dyadic which characterizes the deposited material,
whereas a

f
characterizes the void region. The depolarization dyadics

D
s
= 1

iω

2

π

∫ π/2

φ=0
dφ
∫ π/2

θ=0
dθ

⎡
⎢⎣sin θ

cos2 θ
γ 2
τ

ux ux + sin2 θ
(

cos2 φ uzuz + sin2 φ

γ 2
b

uyuy

)

εb
cos2 θ
γ 2
τ
+ sin2 θ

(
εa cos2 φ + εc

sin2 φ

γ 2
b

)
⎤
⎥⎦ (E.10)

and

D
f
= 1

iω

2

π

∫ π/2

φ=0
dφ
∫ π/2

θ=0
dθ

[
sin θ

cos2 θ ux ux + sin2 θ
(
cos2 φ uzuz + sin2 φ uyu y

)

εb cos2 θ + sin2 θ
(
εa cos2 φ + εc sin2 φ

)
]

(E.11)

usually have to be evaluated using numerical techniques such as Gauss-Legendre
quadrature [261].

The forward Bruggeman formalism requires solution of the equation

b(εa, εb, εc) = 0. (E.12)

In other words, the volume-fraction-weighted sum of a
s

and a
f

must be zero [361].
The quantities ns, vs, γb, and γτ are assumed to be known. As the unknowns εa, εb, and
εc appear in the definitions of the depolarization dyadics D

s
and D

f
[362], Eq. (E.12)

has to be solved using an indirect numerical technique. The Jacobi iterative technique
[261] has been successfully applied to numerically solve Eq. (E.12) [363].

E.2 Inverse Bruggeman Formalism for CTFs

Knowledge of the nanoscale parameters ns, vs, γb, and γτ is not easy to get for a CTF
for at least three reasons. One reason is the variability that exists due to differences in
deposition conditions [364,365]. For instance, the bulk material that is evaporated may
be quite different from the material that is actually deposited as a thin film. Therefore,
while the refractive index of the bulk material is easily known prior to evaporation,
the refractive index ns of the deposited material may well be different, depending on,
whether the deposition occurred in an oxidizing or reducing atmosphere, whether trace
amounts of water vapor were present, and the temperature. Second, direct determination
of porosity (1− vs) through a gas-adsorption technique [366–368], although accurate,
is very time-consuming. Therefore, porosity is usually measured indirectly through
measurement of mass density, which has its own sources of inaccuracy [364]. Third,
even when γτ > 10 is fixed, γb cannot be measured as it is a notional quantity rather
than a physical quantity.
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Provided that εa, εb, and εc of a CTF have been measured by suitable optical experi-
ments [94,345,346] and γτ > 10 has been fixed [347], an inverse homogenization pro-
cedure [369] can yield ns, vs , and γb [308]. For that purpose, the left side of Eq. (E.7)
is interpreted as

b ≡ bx (ns, vs, γb)ux ux + by(ns, vs, γb)uyuy + bz(ns, vs, γb)uzuz (E.13)

and the three equations

bx (ns, vs, γb) = 0
by(ns, vs, γb) = 0
bz(ns, vs, γb) = 0

⎫⎬
⎭ (E.14)

have to be solved with εa, εb, and εc being known.
Solutions of Eqs. (E.14) may be computed using a modified Newton-Raphson tech-

nique [261,370]. In this recursive technique, the estimated solutions at step k+1, namely{
n(k+1)

s , v
(k+1)
s , γ

(k+1)
b

}
, are derived from those at step k, namely

{
n(k)s , v

(k)
s , γ

(k)
b

}
,

as follows:

n(k+1)
s = n(k)s −

bx

(
n(k)s ,v

(k)
s ,γ

(k)
b

)

∂
∂ns

bx

(
n(k)s ,v

(k)
s ,γ

(k)
b

)

v
(k+1)
s = v(k)s −

by

(
n(k+1)

s ,v
(k)
s ,γ

(k)
b

)

∂
∂vs

by

(
n(k+1)

s ,v
(k)
s ,γ

(k)
b

)

γ
(k+1)
b = γ (k)b −

bz

(
n(k+1)

s ,v
(k+1)
s ,γ

(k)
b

)

∂
∂γb

bz

(
n(k+1)

s ,v
(k+1)
s ,γ

(k)
b

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (E.15)

In order for the scheme (E.15) to converge, it is crucial that the initial estimate{
n(0)s , v

(0)
s , γ

(0)
b

}
be sufficiently close to the true solution. A suitable initial estimate

may be found by exploiting the forward Bruggeman formalism as follows [308]:
Let εA,B,C denote estimates of the CTF permittivity parameters εa,b,c, computed

using the forward Bruggeman formalism for physically reasonable ranges of the param-
eters ns, vs , and γb—namely, ns ∈

(
nL

s , nU
s

)
, vs ∈

(
vL

s , v
U
s

)
, and γb ∈

(
γ L

b , γ
U
b

)
.

Then:

i. Fix ns =
(
nL

s + nU
s

)
/2 and γb =

(
γ L

b + γU
b

)
/2. For all values of vs ∈(

vL
s , v

U
s

)
, identify the value v�s for which the quantity

� =
√
(εa − εA)2 + (εb − εB)2 + (εc − εC )2 (E.16)

is minimized.
ii. Fix vs = v�s and γb = (γ L

b + γU
b )/2. For all values of ns ∈ (nL

s , nU
s ), identify

the value n�s for which � is minimized.
iii. Fix vs = v�s and ns = n�s . For all values of γb ∈

(
γ L

b , γ
U
b

)
, identify the value γ �b

for which � is minimized.
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Steps (i)–(iii) are repeated, using n�s and γ �b as the fixed values of ns and γb in step

(i), and γ �b as the fixed value of γb in step (ii), until � becomes sufficiently small.

Numerical experiments [308] indicate that n�s, v
�
s , and γ �b are suitable initial estimates

for the modified Newton-Raphson technique when � decreases to less than 0.01.

E.3 Forward Bruggeman Formalism
for Fluid-Infiltrated CTFs

Suppose that {ns, vs, γb} have been determined for a CTF. It is then completely infil-
trated with a fluid of refractive index n f . The permittivity dyadic of the fluid-infiltrated
CTF shall be

ε f 
CTF
= S

y
(χ) •

(
ε f 

a uzuz + ε f 
b ux ux + ε f 

c uyuy

)
• S−1

y
(χ), (E.17)

instead of ε
CTF

defined in Eq. (E.5).
In order to predict ε f 

a , ε
f 

b , and ε f 
c , the forward Bruggeman formalism can again

be employed to yield the dyadic equation

vsa f 
s
+ (1− vs)a

f 

= 0, (E.18)

where the polarizability density dyadics

a f 
s
=
[
n2

s ε0 I −
(
ε f 

a uzuz + ε f 
b ux ux + ε f 

c uyuy

)]

•
{

I + iωD f 
s
•
[
n2

s ε0 I −
(
ε f 

a uzuz + ε f 
b ux ux + ε f 

c uyuy

)]}−1

(E.19)

and

a f 

=
[
n2

f ε0 I −
(
ε f 

a uzuz + ε f 
b ux ux + ε f 

c uyuy

)]

•
{

I + iωD f 

•
[
n2

f ε0 I −
(
ε f 

a uzuz + ε f 
b ux ux + ε f 

c uyuy

)]}−1
.

(E.20)

The depolarization dyadics are given by

D f 
s
= 1

iω

2

π

∫ π/2

φ=0
dφ
∫ π/2

θ=0
dθ

×
⎡
⎢⎣sin θ

cos2 θ
γ 2
τ

ux ux + sin2 θ
(

cos2 φ uzuz + sin2 φ

γ 2
b

uyuy

)

ε
f 

b
cos2 θ
γ 2
τ
+ sin2 θ

(
ε

f 
a cos2 φ + ε f 

c
sin2 φ

γ 2
b

)
⎤
⎥⎦ (E.21)



272 Electromagnetic Surface Waves

and

D f 

= 1

iω

2

π

∫ π/2

φ=0
dφ
∫ π/2

θ=0
dθ

×
⎡
⎣sin θ

cos2 θ ux ux + sin2 θ
(
cos2 φ uzuz + sin2 φ uyuy

)

ε
f 

b cos2 θ + sin2 θ
(
ε

f 
a cos2 φ + ε f 

c sin2 φ
)

⎤
⎦. (E.22)

The Jacobi iterative technique [261] has been applied to numerically solve Eq. (E.18)
for ε f 

a , ε
f 

b , and ε f 
c [98,347].

E.4 Cautionary Remarks

No homogenization formalism should ever be viewed as the truth. Each has at least one
underlying assumption that all particles are electrically small [89,91]. Each formalism
has inherent limitations. For instance, both the forward [371–373] and the inverse [374]
Bruggeman formalisms should be applied for metal/dielectric composite materials with
great caution, because they can yield spurious results. Each formalism should yield
reasonable conclusions, e.g. if the relative permittivities of both constituent materials
of a composite material are doubled, then the relative permittivity of the homogenized
composite material is also doubled [375]. Finally, there can be significant disparities
between the predictions of a homogenization formalism and experimentally gathered
data, because homogenization formalisms are theories of averages and do not yield
standard deviations [376].
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