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Preface

Patent information retrieval is an economically important activity. Today’s economy
is becoming increasingly knowledge based and intellectual property in the form of
patents plays a vital role in this growth. According to the WIPO IP Statistics Data
Center, between 2004 and 2014, the number of patent applications filed worldwide
grew by more than 70 %. With the exception of 2009, the year immediately after
the economic collapse, every year has shown an increase in the number of filed
applications. The number of granted patents worldwide continues to increase, even
in 2009, reaching in 2014 1,176,600 grants versus only 625,100 grants in 2004
(an 88 % increase). The substantial increase in patents granted is due, in part, to
efforts by patent offices to reduce backlogs as well as the significant growth in the
number of patents granted by China and, to a lesser extent in more recent years, by
the Republic of Korea. According to these statistics, the total number of patents in
force worldwide at the end of 2014 was approximately 10.2 million (WIPO Report
2015). A prior art search might have to cover as many as 100 million patents. By
combining data from Ocean Tomo’s Intangible Asset Market Value Survey and
Standard and Poor’s 1200 Index, we can estimate that the global value of patents
exceeds US$12 trillion in 2015. In the United States alone, a 2012 study by the
Commerce Department found that ‘intellectual property intensive industries support
at least 40 million jobs and contribute more than US$5 trillion to, or 34.8 percent
of, US gross domestic product’.

A patent is a contract between inventors and the state. The inventors must teach
the community how to perform the invention and use the techniques they have
invented in return for a limited monopoly that gives them a predefined time to exploit
the invention and realise its value. Patents are used for many reasons, e.g. to protect
inventions, to create value and to monitor competitive activities in a field. Much
knowledge is distilled through patents, which is never published elsewhere. Thus
patents form an important knowledge resource—e.g. much technical information
represented in patents is not represented in scientific literature—and are at the same
time important legal documents. In fact, a study done by one of the editors of this
volume found that in the chemical domain 95 % of patented substances did not
appear in non-patent literature references. In the context of today’s drive towards

v



vi Preface

open innovation, particularly in the European Union and its framework programmes,
it seems that patent search should take a more visible role, speeding up knowledge
discovery for tackling societal changes.

In the past 15 or 20 years, search technology in general and Web search engines
in particular have made tremendous advances. Yet still, we see a considerable
gap between the technologies emerging from research labs and in use by major
Internet search engines and the systems in day-to-day use by the patent search
communities. This gap is unlikely to ever completely disappear, simply for the
reasons of corporate practice, whereby only proven systems make their way, through
a relatively complicated adoption procedure, to the regular processes of professional
searchers. Nevertheless, we have observed in the last 5 years an increasingly active
drive towards adoption of the search technology state of the art in several major
players in the field.

In 2010, just before the publication of the first edition of this book, a study
commissioned by the US Federal National Institute of Standards and Technology
(NIST) estimated that since 1991, when the Text Retrieval Conference (TREC)
evaluation campaign began, the available information retrieval and search systems
have improved 40 % or more in their ability to find relevant documents. And
yet the technologies underlying the patent search system were largely unaffected
by these changes. Patent searchers generally used the same technology as in the
1980s. Boolean specification of searches and set-based retrieval are still common.
Nevertheless, tools have improved over the years, as have the requirements and
expectations of the users. Semantic search (under its various interpretations) is
now on practically every provider’s table. And yet there had not been the kind of
revolution in patent search which Google had represented for Web search. Perhaps
there will never be a revolution, and we should indeed expect gradual transition to
systems that are first well tested in other domains.

This first edition of this book, which appeared in 2011, was part of the
development of a joint understanding between IR researchers and IP specialists,
understanding that resulted from a series of symposia organised by the Information
Retrieval Facility (IRF) in Vienna, Austria, between 2007 and 2011. Its origins lie in
the idea of producing post-proceedings for the first IRF symposium. That idea was
not fully followed up, in part because of pressure to produce more practical, action-
oriented work, and in part because many of the participants felt their approaches
were at too early a stage for formal publication. In the course of the following
years, it became apparent there really was a demand to produce a volume which
was accessible to both the patent search community and the information retrieval
research community, to provide a collected and organised introduction to the work
and views of the two sides of the emerging patent search research and innovation
community and to provide a coherent and organised view of what has been achieved
and, perhaps even more significantly, of what remains to be achieved.

A secondary result of the efforts invested by the IRF was an uptake in the
academic community of the patent search problem. While the IRF stopped operating
in 2011, research continued across the world, with the term ‘patent search’ being
indelibly added to the Call for Papers of major conferences in the field. Since
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that time, a number of PhD theses have been written on the topic by outstanding
young researchers. We found that a second edition of the book was indeed needed
to showcase these as well as the other research advances of the past half-decade.

At the same time, this second edition revisits some of the original chapters from
the first edition, as it maintains the original objective to allow the IR researchers
to better understand why the patent domain has different needs and what it means
in practice. Furthermore, it is our hope that these two books will also be a valuable
resource for IP professionals in learning about current approaches of IR in the patent
domain. It has often been difficult to reconcile the focus on useful technological
innovation from the IP community, with the demands for scientific rigour, and to
proceed on the basis of sound empirical evidence, which is such an important feature
of IR (in contrast to some other areas of computer science).

Moreover, patent search is an inherently multilingual and multinational topic:
the novelty of a patent may be dismissed by finding a document describing the
same idea in any language anywhere in the world. Patents are complex legal
documents, even less accessible than the scientific literature. These are just some
of the characteristics of the patent system which make it an important challenge for
the search, information retrieval and information access communities.

Even more than the first edition, the second edition of the book has had a
lengthy and difficult gestation: the list of authors has been revised many times as a
result of changes in institutional, occupational and private circumstances. Although
we, the editors, do feel we have succeeded in producing a volume which will
provide important perspectives of the issues affecting patent search research and
innovation at the time of writing, as well as a useful, brief introduction to the
outlook and literature of the community accessible to its members, regardless of
their background, there will always be some areas that are not covered, mostly
because there is, at this time, insufficient research on the topic. Most importantly
here are the applications of new statistical semantics methods on the patent domain.
While these are extremely popular methods in current research, there exist only
inconclusive studies on their application in the patent field.

On the other hand, we are very happy to have managed to include in this edition
something we had missed in the previous one: a chapter on NTCIR, the first of the
evaluation campaigns to focus seriously on patents.

Several of the chapters have been written jointly by intellectual property and
information retrieval experts. Members of both communities with a background
opposite to the primary author have reviewed the chapters. It has not always
been easy to reconcile their differing viewpoints: we must thank them for taking
the time to resolve their differences and for taking the opportunity to exchange
their knowledge across fields and disciplinary mindsets and to engage in a mutual
discourse that will hopefully foster understanding in the future.

Finally, we would like to thank the IRF for making the first edition possible and
triggering much research in the area; the publisher, Springer, and in particular Ralf
Gerstner, for the patience with which he accepted the numerous delays; as well as
the external reviewers who read each chapter and provided the authors with valuable
advice.
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The editors are very grateful to the following persons, who agreed to review the
manuscripts of the two editions of this book:

Stephen Adams, Linda Andersson, Leif Azzopardi, Geetha Basappa, John
M. Barnard, Shariq Bashir, Helmut Berger, Katrien Beuls, Ted Briscoe, Ben
Carterette, Suleyman Cetintas, Chen Chaomei, Paul Clough, Bruce Croft, Szabolcs
Csepregi, Barrou Diallo, Ramona Enache, Nicola Ferro, Árpád Figyelmesi, Karl A.
Froeschl, Norbert Fuhr, Eric Gaussier, Julio Gonzalo, Jacques Guyot, Allan Han-
bury, Christopher G. Harris, Ilkka Havukkala, Bruce Hedin, Peter Johnson, Cornelis
H.A. Koster, Mounia Lalmas, Aldo Lipani, Patrice Lopez, Teresa Loughbrough,
Ilya Markov, Marie-Francine Moens, Anastasia Moumtzidou, Roland Mörzinger,
Henning Müller, Masaaki Nagata, Iadh Ounis, Doug Oard, Florina Piroi, Keith
van Rijsbergen, Patrick Ruch, Georg Thallinger, Philip Tetlow, Henk Thomas, Ingo
Thon, Steve Tomlinson, Suzan Verberne, Ellen M. Voorhees, Jianqiang Wang, Peter
Willett and Christa Womser-Hacker
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Chapter 1
Introduction to Patent Searching

Practical Experience and Requirements
for Searching the Patent Space

Doreen Alberts, Cynthia Barcelon Yang, Denise Fobare-DePonio,
Ken Koubek, Suzanne Robins, Matthew Rodgers, Edlyn Simmons,
and Dominic DeMarco

Abstract This chapter introduces patent search in a way that should be accessible
and useful to both researchers in information retrieval and other areas of computer
science and professionals seeking to broaden their knowledge of patent search. It
gives an overview of the process of patent search, including the different forms
of patent search. It goes on to describe the differences among different domains
of patent search (engineering, chemicals, gene sequences and so on) and the tools
currently used by searchers in each domain. It concludes with an overview of open
issues.
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4 D. Alberts et al.

1.1 Introduction

Patents are legal documents issued by a government that grants a set of rights of
exclusivity and protection to the owner of an invention. The right of exclusivity
allows the patent owner to exclude others from making, using, selling, offering
for sale or importing the patented invention during the patent term, typically
20 years from the earliest filing date, and in the country or countries where
patent protection exists. This temporary ‘monopoly’ provides the patentee with a
competitive advantage. Patent owners can also derive value from their inventions
by licensing them to others who have the entrepreneurial capacity and innovative
ability to develop, manufacture and market their inventions. In exchange for this
right of exclusivity, the patentee is obligated to disclose to the public details of
the invention and related technical or scientific background information and state-
of-the-art basis for the invention. Thus, patents typically contain more details and
are more exhaustive than scientific papers. According to a United States Patent
and Trademark Office (USPTO) study [1] published in the ‘Eighth Technology
Assessment and Forecast Report’, patents provide a significant amount of unique
and valuable technological information that is largely not available elsewhere.

First, it is important to consider the typical patent life cycle and become familiar
with a few terms. Patents are granted by patenting authorities or central offices
that are usually part of the national governments in hundreds of countries around
the world. The process by which patenting authorities and inventors negotiate
towards the terms of a patent is called patent examination and is also referred
to as patent prosecution. Patent examiners, who are employed by a national or
regional patenting authority, conduct patent examination. During examination, the
patent examiner will search for prior art, or public disclosures of the features of
the invention, that were available prior to the filing of the patent application. The
examiner may also initially reject the patent application based on the similarity of
the prior art uncovered during the search or provided by the inventor. An inventor
may represent himself or herself to prosecute the patent application. Alternatively,
the inventor may hire a patent attorney or patent agent, generically referred to as
patent practitioners, to prosecute the application on the inventor’s behalf.

After a patent application undergoes examination and is deemed to satisfy the
requirements for a patent set forth by the governing laws of the patenting authority,
once it is granted by the patenting authority and is valid, the patent may be used to
enforce the right to exclude others from making, using, selling and distributing the
patented invention. After a patent is granted, the patent owner is usually required
to pay maintenance fees to the granting patenting authority at certain intervals for
the patent to remain enforceable. At this stage, and provided that all maintenance
fees are paid, the patent is considered ‘in force’, ‘active’ or ‘live’. The patent may
be asserted in a lawsuit against parties who are allegedly making, using, selling or
distributing the invention within the jurisdiction or country of the patenting authority
that granted the patent, or the patent may be licensed for use by another party in
exchange for a licensing fee. The patent may be enforced for the duration of its
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patent term—the limited period of time granted for the patent. Once the patent
expires, the invention then belongs to the public or is ‘in the public domain’ and
can be made, used, sold or distributed by anyone. A company that is aggressive in
enforcing their patents may frequently seek licensing agreements or file suit against
others who are allegedly practicing the invention protected by their patents and
likewise may frequently engage in patent litigation.

There are many business and legal decisions that may need to be made throughout
the patent life cycle. Even prior to having an invention, a company or individual may
have the need to evaluate what has already been patented in their industry in order to
know what areas of their industry to focus their innovating energy and resources on.
A company may already be involved in research and development for a technology
or product and may need to know how they should design around the boundaries
already protected by other in-force patents. When approaching a large product
rollout, a company may need to conduct one last check to be sure the features of the
product can be made, used, sold or distributed without infringing upon other in-force
patents. Business decisions relating to product rollouts or product designs can have
major financial implications. Prior to filing or even drafting a patent application,
an inventor and their patent practitioner may want to gauge the success which
the hypothetical patent application may have when it is sent to be examined by a
patenting authority. In the preceding stages of either protecting a company’s patent
portfolio or in seeking licensing agreements, the company may seek evidence of
the company’s already patented technology being made, used, sold or distributed
by others. In the event that a company is sued by another for patent infringement,
the defendant may attempt to find prior art that precedes the plaintiff’s patents to
demonstrate that the patents are invalid and unenforceable.

All of these business and legal needs bring us to the focus of this chapter and
this book—they all require patent searching. While the term ‘patent searching’ can
mean ‘the act of searching patent information’ or ‘searching for patents’, the phrase
is more commonly used to describe searching and filtering a body of information
in light of and guided by an intellectual property-related determination. This is
the definition you should carry forward with you as you read this book. The business
and legal needs above represent a variety of intellectual property determinations, or
drivers that render the need for patent searching.

The body of information invoked in our definition of patent searching can
comprise any collection of published information, whether patents, peer-reviewed
papers, press releases, conference proceedings, industry standards definitions,
product literature, product packaging, textbooks, drawings, diagrams or anything
that can adequately describe the subject matter at hand. The body of literature to
be searched may change in scope and volume depending on the need for the patent
search.

With more than one million patents applied for worldwide each year, the amount
of information available to researchers and the opportunity to derive business value
and market innovative new products from detailed inventions is huge. However,
patent documents present several peculiarities and challenges to effective searching,
analysis and management:
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• They are written by patentees, who typically use their own lexicon in describing
their inventive details.

• They often include different data types, typically drawings, mathematical formu-
las, biosequence listings or chemical structures which require specific techniques
for effective search and analysis.

• In addition to the standard metadata (e.g. title, abstract, publication date,
applicants, inventors), patent offices typically assign some classification coding
to assist in managing their examination workload and in searching patents,
but these classification codes are not consistently applied or harmonised across
different patenting offices.

This chapter describes the practical experiences in and requirements for effective
searching, analysis, monitoring and overall management of patent information,
from the perspective of professional patent information users. It is not meant to be
exhaustive, but rather to provide an overview of the key aspects and requirements for
effective patent information search and analysis. The subject matter is subdivided
into three general areas:

• Overview and requirements of different types and sources of information and
types of searches, depending on the purpose of the retrieval, such as patentability
or potential infringement

• Description and requirements based on information management approaches,
such as metadata or bibliographic data indexing, taxonomy, controlled vocab-
ulary, value-added indexing and classification schemes

• Considerations in and requirements for searching specialised invention technolo-
gies, such as chemical structures, biosequences or device/engineering drawings

The ultimate purpose is that this practical view along with the description of key
requirements for effective retrieval of patent information would contribute towards
advancement of emerging retrieval technologies to support the user in patent search,
analysis and information management processes.

1.2 Information Types

For the purposes of patent searching and our discussions in this book, searchable
information can be thought of in a few major buckets. Bear in mind that ‘searchable’
more accurately means ‘accessible’, whether by actually searching an electronic
database or by manually retrieving and reviewing technical journals in a library.
We can group the basic buckets of searchable information by the extent to which
each one is readily searchable. For convenience, we can call this ‘searchability’.
The basic buckets are:

• Patent literature
• Technical journal-grade literature
• Everything else (press releases, conference proceedings, industry standards

definitions, product literature, product packaging, textbooks, drawings, diagrams,
etc.)
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Table 1.1 Searchability governed by the level of organisation of the literature

Level of format Level of
Overall level of organisation uniformity Accessibility consolidation Searchability

Patent literature High High High High
Technical journal-grade
literature

– – – –

Academic journal-grade
literature/dissertations

Medium Medium Medium Low

Industry journal-grade
literature

Low Low Low Low

Everything else – – – –
Market information Medium Medium Medium Medium
Financial information Medium Medium Medium Medium
Legal Medium Medium Medium Medium
Press releases/news Medium low Low Medium Low
Product literature/ Low Very low Very low Very low
manuals

Patent literature refers to both granted patents and published patent applications.
Both are available for searching at many of the world’s patenting authorities.
Technical journal-grade literature refers to organised papers written with a focus on
a specific topic and usually published by a well-known periodic industry journal.
Everything else refers to the catchall bucket of any other type of disclosure
of technical information that could exist. The types of searchable information
have been broken down into these categories simply due to the distinct levels of
organisation that can be seen in each one.

The ‘searchability’ of each bucket is governed by the level of organisation of
the literature in each bucket, the level of format uniformity between individual
documents, the accessibility of the literature in each bucket and how consolidated
the various avenues to search the literature in each bucket have become (Table 1.1).

Patent literature is one of the most highly concentrated collections of technical
information available in the world. It enjoys a high level of organisation due to
the various patent classification systems used globally. In addition, many patents
are marked as being member of patent families linking patents for the same
invention but accepted in different jurisdictions or countries.1 The level of format
uniformity between individual documents is extremely consistent compared to other
types of literature. Even comparing two patent documents that originated from
two different patenting authorities, the format and arrangement is highly similar

1See http://www.epo.org/patents/patent-information/about/families.html (Accessed 15 Dec 2010).

http://www.epo.org/patents/patent-information/about/families.html
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between documents. For example, patents always contain extensive bibliographic
information, a title and abstract, a set of claims specifying the claimed scope of
the invention and background information. This enables electronic patent data to be
arranged in quite a number of discrete data fields that can be searched individually
or strategically together. Patent data is both very accessible and consolidated since
much of it is either freely available via portals provided by patenting authorities
or by commercially available search engines that serve as ‘meta-’ search engines
enabling the user to search globally through one interface. Commercial search
engines have brought a high level of consolidation to patent data and much of it
can be accessed using very few separate channels.

Technical journal-grade literature has benefited from some organisation and
some uniformity. Some very common value-added collections like EI Compendex
by Elsevier leverage classification and theme-based organisational schemes. The
level of uniformity between documents is mostly consistent; however the data fields
that journal-grade literature documents have in common are significantly fewer than
patent documents. This yields fewer and less sophisticated options to search the
data. Journal-grade literature is graded as moderately accessible since, while a large
amount of literature has been aggregated in collections like Compendex, a world
of un-digitised and un-abstracted literature still exists in manual, paper collections.
Journal-grade literature suffers significantly from the fact that literature aggregators
like Elsevier and Dialog that supply journal title collections in ‘files’ limit the
transparency the user has in knowing what is actually being searched and what the
overlap is between data files and collections from other providers. A searcher’s
efficiency drops significantly when the exact scope of the information being
searched is unknown. For this reason, the level of consolidation of journal-grade
literature is low since an effective search requires a far greater number of unique
access points than patent literature to be effective.

All other forms of literature are scattered across all reaches of resources and
locations. Collections such as press releases and conference proceedings are con-
solidated individually, but under most circumstances need to be searched separately
from all other sources. Product literature and product catalogs are perhaps the least
searchable of all valuable literature resources.

1.3 Information Sources

What sources to search is dictated by what type of search is required, the legal and
financial implications of the search, how much time to complete it in and how much
one is willing to pay to get the information needed. The sayings ‘You get what you
pay for’ and ‘Buyer beware’ are important to keep in mind when choosing sources.
Fee-based sources are not always complete just as free sources are not always
erroneous and incomplete. It depends on the searcher’s comfort level. Searching
both types of sources would give a sense of how complete the search is. But how
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does one know if he/she has done as thorough a search as one can? One criterion is
when the same answers are retrieved from different sources, regardless of the cost.

The following are issues patent searchers generally consider when reviewing
whether to use services that are fee-based, or services that are free at the point of
use:

• Patenting authorities offer free searching; however coverage is limited to the
authority’s specific country or jurisdiction only. When looking for legal and
prosecution history, these sites are invaluable.

• Fee-based search services tend to cover multiple databases and are more
comprehensive.

• Customisations, such as linking to other sources, are available from fee-based
services.

• Precision searching and advanced search and analysis features tend to be
available more often from fee-based sources.

• Fee-based sources tend to have reliable servers.
• Users of fee-based sources have input in the product updates and development

with respect to timeliness, comprehensiveness and user interface.

Also note that sources differ in:

• Quality, comprehensiveness and types of content
• Time coverage
• Indexing
• Timeliness
• Ability to search a number of databases at the same time and remove duplicates

to get unique answers
• Cost
• Post-search analysis features

Finding relevant information has been compared to finding a needle in the
haystack. No one can argue that there is not enough information out there. It is
important to be able to search the whole document in addition to indexed fields,
which is an issue in some services. Further, the freshness and coverage of the data
need to be considered.

1.4 Patent Search Types

This section discusses the attributes of state of the art, patentability, validity,
freedom to operate and due diligence searches. Common elements that need to be
identified for all of these searches are: the purpose, time coverage and the most
relevant sources to search.

Before proceeding further, it is important to state upfront the basic assumptions
and principles of the patent searching process: no search is 100 % complete. For
patentability type of searches (see Table 1.2), the goal is to conduct a better search
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than the patent examiner. For other patent search types, the goal is to be as complete
as the resources and time allow.

When conducting a patent search, three factors will affect the results—cost,
quality and time:

Cost
• Fee-based sources vs. free sources
• Complexity of the search
• Technical expertise and proficiency of the searcher

Quality
• Technical expertise and proficiency of the searcher (whether employed in-house

or outsourced)
• Database content and integrity, indexing quality

Time
• Searching is an iterative process; allocating enough time to discuss the search

request with the requestor is important.
• Exhaustive search and analysis—the chance of missing a relevant publication is

less for a 20 h search vs. a 2 h search.

A brief introduction to the major search types is worthwhile to understand
generally when the major collections of information should be searched. The table
below summarises the main search types, their purposes and literature collections
that are appropriate (but not always practical to search) for each one. As you gain
exposure to the field, you will see that the names associated with some search
types can be either interchangeable or distinctly different depending on whom you
consult. For example, state-of-the-art searches and evidence-of-use searches are
closely related, as are prefiling patentability and patentability or novelty searches.
Sometimes these terms are used interchangeably. Also bear in mind that the
table below is a summary. There are many caveats associated with the criteria of
applicable information for each search type that depend upon the governing laws
of each patenting authority. There are also arguably many additional search types.
These are only the most common.

1.4.1 State-of-the-Art Patent Search (Evidence of Use Search)

The purpose of the state-of-the-art search is to gain a comprehensive overview of
a product or technology. Ideally, this search is done before any R&D investment is
made. In some companies, results from this search impact the selection and funding
of a new project. This search is also useful when looking for a technology to license.
This comprehensive search typically includes patent and non-patent literature
sources. The interview process is critical in order to develop the appropriate search
strategy, which tends to be broad. The data set retrieved can be large. The searcher
needs to have a good understanding of what the requestor is looking for to enable a
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quick review of the answers for relevancy. Another way to digest the result is to sort
references using ‘patent’ as a document type. It is fairly easy to rank by assignees,
inventors and patent classification codes. From the tabular list, one will be able to
identify competitors, technology experts and technology fields. When the patent
search results are analysed using graphics and charts to visualise results, this type of
report is called a patent landscape analysis [2]. It is a graphical representation of how
patent publications are related. There are a number of products [3] that specialise in
patent landscape analysis, each with its own strengths and weaknesses. Using these
tools, a more elegant analysis is possible. For example, by looking at the level of
patenting activity by classification codes over time, one may get an insight into the
maturity of the field as well as patenting trends identifying technology decay and
rise. Just like any type of data analysis, the conclusion is only as good as the data set
used. It is advisable to be cautious when drawing conclusions derived from patent
landscape analysis. To be comprehensive, multiple sources should be searched. This
introduces additional issues to consider in merging the results: (1) standardisation of
data fields to integrate the appropriate values from similar data fields, (2) duplicate
removal and (3) one record per patent family representation to avoid skewing the
analysis results.

1.4.2 Patentability (Novelty)

The purpose of a patentability search is to find all relevant prior art that may
impact the likelihood of getting a patent granted. Issues such as novelty, non-
obviousness and utility criteria need to be addressed. This type of search is typically
conducted before writing the patent application, as the search results may change
the scope of the claim or if needed lead to a ‘draft around’. Since the coverage
should include ‘everything made available to the public, in writing, by public use, or
otherwise’ [4], it is not enough just to rely on patent publications, books and refereed
journal articles. Other atypical sources need to be searched as well: press releases,
brochures, white paper, websites, conference materials, theses and dissertations,
technical disclosures and defensive filings. For a typical patentability search, the
searcher uses the following techniques:

• Keyword search
• Classification code (IPC, ECLA, F-terms) search
• Forward and backward citation of relevant documents
• Inventor or author search of relevant documents
• Patent assignee search
• Chemical structure, sequence or mechanical drawing search, depending on the

nature of the request. Detailed descriptions of these specialised data types can be
found in Sect. 1.7 and in Chap. 15 by Downs, Holliday, and Willett in this book.

http://dx.doi.org/10.1007/978-3-662-53817-3_15
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1.4.3 Freedom to Operate (Infringement, Right to Use,
Clearance)

The purpose of a freedom-to-operate search is to make sure that one does not
infringe upon anyone else’s patent that is still in force. The focus of this search is
on any granted patent that covers the invention and patent applications that may be
granted on the same invention. For patent applications, the search should include
data from file wrapper and prosecution history. This type of search is country
specific, so local agencies should be consulted to confirm the status of the patent.
In addition, close attention to the patent claims is prudent since they may change
from country to country. Although results may technically be limited to the last
20 years, it is wiser to limit results to the last 25 years [5]. When conducting a
freedom-to-operate search, the scope of the claim is the key. It is best not to limit
the search to patents on the product itself but also look at the processes needed to
manufacture it, including everything from raw materials to packaging designs. For
a typical freedom-to-operate search, the following attributes are also searched:

• Ownership/patent assignee
• Patent family
• File history
• Legal status (e.g. patent term extension)
• Maintenance fee payments

1.4.4 Validity (Invalidity, Enforcement Readiness)

The purpose of a validity search is to determine if a patent already granted for
an invention is valid. It is also a measure of the strength of a patent. All sources
mentioned in the patentability search (Sect. 1.4.2) are searched. However, the time
frame of the search can be limited to those results published before the filing date
and a number of years after the filing date. As a rule of thumb, 5 years after the
filing date is a good start; however this is subjective, so it would be wise to seek a
legal counsel. The immediate availability of information can be troublesome when
identifying publication dates. Publishers like ACS and Springer offer ASAP and
Online First articles, respectively. These are edited submissions that are published
online ahead of print. Another potential problem is tracking Internet page changes
and the time stamp for any modification on the Web page. A bigger issue is if the
Web page has been removed altogether.

For patent publications, the focus is on the validity of each claim and not
necessarily on the general purpose of the patent. Keep in mind that if the search is
based on a patent application, the claims may change from the time the application is
submitted to the time the patent is granted. If the search covers patents in more than
one country, the claims may be different from country to country. When starting with
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a specific patent, in addition to the sources mentioned in the patentability search, the
searcher also needs to consider:

• Non-Latin language publications
• File history (found in, e.g. US Patent Application Information Retrieval (PAIR),

European Patent Office (EPO) register, and non-published patent office files)
• Examiner search history
• Documents cited by examiner and inventors
• Examiner’s reason for allowance

1.4.5 Patent Portfolio Analysis (Due Diligence, Patent
Landscape Search)

The purpose of a due diligence search is to assess if a company’s patents are robust
enough to exclude competitors and market the invention with the least probability
of an infringement lawsuit. A due diligence search can be useful for companies
looking to buy or partner with a company and for companies who are looking to sell
patents. A thorough due diligence search is expensive and will require a lot of time
searching for and analysing data. The question is not how much it will cost to do
a due diligence search, but ‘What is the cost of not doing a complete due diligence
search?’. A due diligence search is a validity search plus freedom-to-operate search
plus an analysis of the company’s patent portfolio. The purpose of the deal and the
results/findings from the due diligence search may guide investors in assigning a
fair price to the desired product or technology. The buyer should not be the only
party conducting a due diligence search. It is a good strategic move for the seller to
conduct due diligence on its product or technology to ensure that the asking price is
competitive.

1.5 Practical Considerations in the Searching Process

No matter what type of search is requested, it is important for the patent searcher
to really understand why the search is being requested. As mentioned earlier,
searching is an iterative process [6]. Sometimes the requestor is not asking the
correct question, so the interview process is critical. The searcher’s knowledge of
information resources that are available and past searches can be useful in defining
the scope of the search. A searcher needs to be proficient in searching different
information sources [7, 8] as well as possess technical or scientific background
specific to the subject matter at hand. For example, having a degree in science
is an advantage in the pharmaceutical industry, but even with that, some level of
specialisation may be required. ‘You can teach a chemist how to conduct a structure
search in less time than it takes to teach a non-chemist’ [9].
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The remainder of this introductory chapter will focus on the nuances and
searching strategies associated with patent literature. As discussed, patent literature
is highly organised and highly consolidated and has very high consistency between
documents. The major benefits that these characteristics bring to the ‘searchability’
of patent literature are that a highly systematic methodology can be used. Searchers
of patent literature have a number of valuable tools at their disposal: citation search-
ing, bibliographic data searching, classification searching and full-text searching.

Before the influx of Web-based applications and search tools, a searcher only
needed to be proficient in using command lines to search STN, Dialog and Questel
Orbit databases. This is not the case anymore. Stand-alone products are getting more
and more popular and a searcher has to learn how to search each product well.
Internet searching opens a whole new world of information. Occasional users and
accidental searchers prefer the Internet. When they are asked why, the most popular
answer is ‘I always get an answer when I search the Internet’. The answer set might
be full of false hits, but they prefer that to getting no answers. But then, how many
of us have found an important document serendipitously on the Internet? Since it
is free, the Internet should be searched first to gauge how much information is out
there. Some results may be full-text documents, which may provide the searcher
with better keywords to use.

Selection of search tools will depend on:

• Types of subject matter inventions

– Chemical structures
– Biosequence data
– Device/mechanical/electrical drawings

Section 1.7 describes in more detail these subject matter inventions and
requirements for searching these specialised invention technologies.

• Search techniques desired or most appropriate

– Boolean logic
– Natural language processing or semantic technologies
– Similarity
– Proximity
– Linking to full-text documents, external and internal depositories
– Left and right word truncation
– Case sensitivity when searching for acronyms
– Keyword and synonym selection
– Search term weighing
– Search guidance on the fly
– Controlled vocabulary or value-added indexing
– Chemical structure based on textual description
– Foreign words and characters such as Greek alphabet and mathematical

symbols
– Search limits by sentence, section, etc.
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– Multilanguage search query or translation to English from non-Latin lan-
guages (e.g. Japanese, Chinese, Korean)

• Post-search analysis features

– Relevancy ranking
– Sorting features
– Subject relatedness
– Citation mapping (citing and cited)
– Concept mapping

• Alerting features by:

– Keywords
– Structures (biologics and small molecules)
– Legal status
– Classification codes

1.6 Information Retrieval Approaches to Patent Searching

This section describes the various methods for patent information retrieval that
have traditionally been employed to achieve high recall and precision: full-text
searching, bibliographic data indexing, use of taxonomy/controlled vocabulary and
classification schemes and value-added indexing.

1.6.1 Classification Searching

Classification codes [10, 11] are created and maintained by each patenting authority
for the purposes of organising patent and applications according to their technical
application, structural features, intended use or the resulting product produced by a
process. The major classification systems in use worldwide include the International
Patent Classification (IPC) system, the European Classification (ECLA) system, the
United States Patent Classification (USPC) system, and the Japanese File Index
and F-Term (FI/F-Term) classification system. Many other patenting authorities
maintain their own classification systems; however these four are the systems
predominantly used when publishing and classifying patent data. The USA and
Japan are singled out because the patent examiners in these countries rely heavily
on their own classification codes to classify patents. Examiners in these countries
classify their patent documents in IPC and sometimes ECLA classification areas as
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a secondary measure and not as precise as their native classification areas. Due to the
staggering volume of patent data produced by these countries, a global classification
search is not complete without a search specifically within the US and Japanese
classification systems in addition to IPC and ECLA.

1.6.1.1 International Patent Classification

The International Patent Classification (IPC) [12] system was established under the
1971 treaty and has replaced national classifications or supplements them over the
years since. The schedule of classes under the IPC is a true taxonomy, dividing all
areas of technology into eight sections (A–H), the sections subdivided by notations
for class, subclass, group and subgroup. The classification system was originally
updated at 5-year intervals, retaining the existing hierarchy. With the eighth edition
of the IPC, a reclassification system was established so that all patents in a database
use the same version. One of the IPC codes assigned to the athletic shoe in Fig. 1.1
has the following definition:

SECTION A — HUMAN NECESSITIES

A43 FOOTWEAR
A43B characteristic features of footwear; parts of footwear
A43B 13/00 Soles; Sole and heel units
A43B 13/14 � characterized by the constructive form

1.6.1.2 United States National Classification

The USA has continued to use its national system as the primary classification
for patents [13]. The system consists of three-digit class definitions, arranged
numerically without any attempt to relate the numerical class code to its place in
the sequence, creating new classes as new technologies emerge. Each class code is
followed by a hierarchy of numerical subclasses, for example, class 36/129 for the
athletic shoe in Fig. 1.1:



18 D. Alberts et al.

Fig. 1.1 First page of US 7,594,345 B2, assigned to Nike, Inc., published 29 September 2009

CLASS 36 BOOTS, SHOES, AND LEGGINS

83 BOOTS AND SHOES
113 � Occupational or athletic shoe (e.g., roof climbing, gardening, etc.)
114 �� Athletic shoe or attachment therefore
129 ��� For track
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1.6.1.3 European Patent Classification (ECLA)

The European Patent Office created a more precise variant of the IPC, assigning it
to all of the patents in the examiner search files [14]. ECLA codes do not appear on
printed patents, but they are added to some databases. The ECLA code assigned to
the athletic shoe in Fig. 1.1 has the definition shown below, a narrower definition
than the IPC code shown above:

SECTION A—HUMAN NECESSITIES

A43 FOOTWEAR
A43B characteristic features of footwear; parts of footwear
A43B 13/00 Soles; Sole and heel units
A43B 13/22 � soles made slip-preventing or wear-resisting, e.g., by

impregnation or spreading a wear-resisting layer
A43B 13/22B �� Profiled soles
A43B 13/22B2 ��� the profile being made in the foot facing surface

1.6.1.4 Japanese File Index Classification

FI terms are a system of refinements to the IPC, applied by the Japanese Patent
Office (JPO) to Japanese patent documents [15]. The JPO also applies supplemen-
tary indexing terms, called F-terms, in addition to IPC and FI classifications, to
assist in searching Japanese patent documents.

1.6.2 Full-Text Searching

Another significant benefit of patent data, in contrast to journal-grade literature, is
the wide availability of full document text among the major patenting authorities
[16, 17]. Other forms of organised literature are often only abstracted. While for a
number of years the bulk of full-text patent data was confined to the major seven
patenting authorities (Europe, World Intellectual Property Organization, Germany,
France, Great Britain, the USA and Japan), many more patenting authorities are
beginning to make their full-text patent data available. As well, several of the
commercial data aggregators are translating the patent information from dozens of
less conventional patenting authorities and making the data available within their
search systems alongside the major seven.
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The text of patents differs in significant ways from the text of other forms of
scholarly publications. The objective of patents is to obtain the patent owner’s
right to exclude others from practicing an invention described in the claims section
of the patent specification, and the patent laws and regulations of the country
or patenting authority in which the patent application is filed largely control the
language and formatting of the text. Customary phrases and sentence structure
known as ‘patentese’ are used in patent documents and are seldom used in other
types of documents. There is no editorial process comparable to peer review before
patent documents are published. The specification of a patent application is usually
published 18 months after the first filing of an application covering the claimed
invention, without any changes from the document filed by the applicant. The
patent application undergoes examination to determine whether the claims define a
patentable invention. Deficiencies in meeting the legal requirements for a patentable
invention will prevent grant of patent rights and the publication of a granted patent,
but pre-grant publication occurs whether the specification is well written or not.

The technical disclosure of a patent specification is provided in an abstract,
claims and the main body of the specification, which is often divided into sections:

• The background of the invention: a summary of the problem to be solved, ways
it has been handled in the past and relevant prior publications.

• A brief summary of the invention: a short description of the invention being
claimed, often a restatement of the claims.

• A detailed description of the invention: a full description of all aspects of the
invention, with definitions of the terms used and specific examples of ways in
which the invention may be carried out. The description may be a few paragraphs
or thousands of pages long. It may refer to defined terms and images in drawing
pages or to chemical structures.

Because the patent claims define the owner’s right to exclude others from
practicing an invention, patentees attempt to define their inventions in the broadest
language possible. To expand the scope of a patent, the claims and accompanying
disclosure often use generic language in place of simple terms. Shoes will be
described as ‘footwear’, house paint as ‘exterior finish’, pills as ‘unitary dosage
forms’ and computer as ‘a system having a storage for storing data, an output
device to display information, a terminal for entering information and a component
that modifies the input data and controls flow of data between different parts’.
Any terminology that defines the invention unambiguously is acceptable, and new
technologies often require new terminology. Patent attorneys and agents often create
new terminology to describe their clients’ inventions under the rule that ‘the patentee
is his own lexicographer’. A full-text search must include any and all terms and
phrases that may have been used to describe the technology of interest.

Patent claims are listed in the form of single sentences, with the leading phrase, ‘I
claim’, implied or preceding the numbered list of claims. The precise wording and
punctuation of the claims are essential to the understanding of the scope of legal
protection, as is the meaning of each term defined in the specification. Claims may
be ‘independent’, where all limitations of the claim are stated, or ‘dependent’, where
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limitations are carried over from an earlier claim. The entire text of independent
claims is implied, but not stated in their dependent claims, so attempting to search
the claim text using proximity operators often misses important references. An
example of an independent claim and one of its dependent claims of the exemplary
patent shown in Fig. 1.1 is presented below. Note that claim 3 must be read as
including the entire description given in claim 1, with the added feature that the sole
of the shoe is comprised of a polyamide. The word ‘comprising’ is understood as
meaning ‘including, but not limited to’.

I claim:

1. An article of athletic footwear comprising an upper for receiving the foot
of a wearer and a sole structure attached to the upper, the sole structure
having a heel portion, the sole structure including a rigid or semi-rigid ground
contacting surface, wherein a plurality of distinct ribs is located longitudinally
in the heel portion and each of the distinct ribs extends in a substantially
parallel direction, wherein the heel portion is cup-shaped so that the back
portion of the heel portion extends upwards from a bottom portion of the
ground contacting surface and wraps around the backside of the heel, wherein
at least a portion of the plurality of ribs curve around the back portion of the
heel portion; wherein the plurality of ribs comprises a slippery material.
3. The article of footwear of claim 1 wherein the ground-contacting surface
comprises a polyamide.

(Sample independent and dependent claim language: US 7,594,345 B2,
assigned to Nike, Inc., published 29 September 2009. Article of footwear
having sole with ribbed structure.)

Patent documents are written in the language of the patent issuing authority,
and a multinational database will contain documents written in many languages
and alphabets. In addition to countries that specify a single language, for example,
English in the USA and Japanese in Japan, there are some countries and interna-
tional patenting authorities that allow the applicant to file a patent specification in
one of several languages: the Patent Cooperation Treaty (PCT) allows applicants to
file applications in any of ten languages as of 2010, including Japanese, Chinese,
Korean, Russian and Arabic, as well as languages written in the Latin alphabet.
Databases of PCT applications provide English language abstracts, and many other
databases also add English language abstracts to the native language text records or
substitute an English language abstract for the patent text, but a search in English
misses potentially relevant documents in other languages. The growing availability
of machine translations helps to overcome the language barrier in databases that
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provide them, but the grammar and choice of words given by a machine translation
engine often differ from those intended by the patentee.

Patents cover all technologies and even methods of doing business, and each
area of technology has its own terminology in every language, often giving words
a different meaning from their ordinary dictionary definition. The English word
‘furnish’, for example, is used in the papermaking industry to indicate the materials
of which paper is made. Unless a search is limited to the technological context
of the subject matter being searched, the results will not be sufficiently precise.
Better precision can be achieved by searching text terms in combination with patent
classification codes or other indications of context.

Searching full-text patent data requires a careful strategy and being constantly
mindful of how a technology can be described from a scientist’s or engineer’s
perspective versus how a technology can be described in the language of patent
practitioners. The following key measures must be taken when leveraging the full-
text data available in patent literature:

• Exhaustive usage of synonyms
• Effective use of Boolean operators, proximity operators and truncation operators
• Appropriate clustering of concepts into discrete search queries
• Combining saved search queries appropriately
• Appropriate usage of broad-to-narrow and narrow-to-broad search query pro-

gression
• Iterative modification of previously stored search queries in light of newly

acquired phrases and terminology

What are the pros and cons of full-text searching?

• Pros:

– Easy to perform, no search training required
– Allows for serendipity in searching

• Cons:

– Optical character resolution (OCR) errors for those patents from coun-
tries/time ranges that aren’t created from original digital records

– High recall, therefore relevancy ranking is needed
– When searching for numbers—numeric versus text
– Less precision: no control on which portion of the document the keyword

appears as long as it is present in any part of the document

1.6.3 Citation Searching

Patents originating from the vast majority of patenting authorities are issued with
a list of other documents that were cited during the prosecution of the patent
application either by the patent examiner or the patent practitioner or inventor.
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Since the migration of patent information into electronic form, a patent searcher
not only has immediate access to documents cited by patents but also immediate
access to documents that cite each patent. The processes of searching both of these
sets of documents are referred to as ‘backward citation searching’ and ‘forward
citation searching’: backward referring to the documents a patent cites and forward
referring to the documents citing the patent under review. Citation searching is a
patent searcher’s most powerful tool in quickly generating a highly concentrated
collection of relevant search results at the beginning of a search. Search engine
providers are making citation searching easier and easier. A common search strategy
in beginning a search is to conduct a highly targeted search of only very relevant
patent documents and then citation searching the most closely related documents
for others of interest. Searchers can ‘follow their nose’ through multiple generations
of patent citations, both forward and backward, to rapidly collect highly relevant
documents [18].

1.6.4 Bibliographic Data Indexing and Searching

The first page of a patent document includes bibliographic data relating to the
filing details and ownership of the patent and includes additional data fields
relating to the handling of the application within the patent office. References
cited by the patent examiner may appear either on the cover page of the patent
or in a search report appended to the patent publication. Databases index these
metadata fields to facilitate searching. Bibliographic information is the focus of due
diligence searching and some technical and competitive intelligence studies. Even
in full-text searches, combining keywords with bibliographic data, especially patent
classification codes, can increase precision and limit search results to a desired range
of filing or publication dates.

• Title
Patent documents are required to have a descriptive title. Although patent

regulations state that the title should reflect the claims, most original titles are
relatively short and only hint at the novel features of the patent. Commercial
databases may provide enhanced titles; in the case of the Derwent World Patents
Index (DWPI), the title is an English language mini-abstract of the patent.

• Patentee (applicant, assignee)
The patentee is the owner of the patent rights, either the company or institution

that sponsored the research leading to the patent or the individual inventor
or inventors. Patent databases normally index the patent owner or assignee
named on the patent document at the time of publication. Some databases
apply standardised or normalised versions of the patentee name as an aid to
searching or apply company coding that attempts to track corporate divisions
and ownership changes over time. Some databases supplement records with the
name of organisations to which patent rights were reassigned after publication,
obtaining the data from other patent office databases.
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• Inventor
The inventor or joint inventors are named on a patent document. Unlike the

authors of journal articles, only individuals who contributed to the conception of
the invention should be included.

• Patent publication number
The serial number assigned by a patent office to the patent publication.

• Publication date
The date on which the patent issuing authority published either the patent

document or an announcement of the patent document in an official gazette. The
publication date of most granted patents is the date when exclusive rights begin.

• Application number
The serial number assigned to a patent application when it is filed at the patent

office.
• Application date

The date on which the patent application corresponding to the published
document was filed at the patent office.

• Designated states
Patent Cooperation Treaty applications and regional patenting authorities list

the names or ISO country codes of the states for which the patent application is
effective.

• Priority applications
The Paris Convention for the Protection of Industrial Property, the World

Trade Organization and other treaties allow patent applicants to file applications
on a single invention in member countries within a year of a first patent filing
by claiming priority based on the application filed in the first country. The
application numbers of the applications claimed for priority are shown as priority
application numbers in the records on the later patent applications.

• Patent family members
Patents based on the same priority applications form a patent family of patent

publications from multiple countries covering aspects of the same invention.
Some databases combine all family members in a single record and apply
indexing to a single patent document, known as ‘the basic patent’.

• Priority dates
The filing dates of the applications claimed for priority.

• Patent classification codes
The national and/or international classification codes assigned to the patent

at the time of publication are printed on the patent specification at the time of
publication. Some patent databases enhance the classification data by adding
classification codes assigned by patent offices during post-publication reclassi-
fication procedures.

• Cited references
Patent examiners perform a search of the prior art to determine whether patent

claims are new and inventive as defined by the patent law. Prior publications that
teach or suggest aspects of the claimed invention are provided to the applicant
for discussion and possible amendment of the application and are listed on the



1 Introduction to Patent Searching 25

patent document if it is eventually published. In addition to the cited references,
some patent databases obtain information about later citations of the patent and
add the citing patents to the record.

• Additional search fields
Patent offices print the names of the patent applicant’s legal representative and

the patent examiner on the patent document, and these are included in the records
of some, but not all, patent databases. Changes in the legal status of a patent or
published application are included in some databases, in many cases obtaining
the data from the European Patent Office’s INPADOC legal status file.

1.6.4.1 Important Preliminary Considerations of Searching Bibliographic
Data

Searching bibliographic data includes the ability to research prolific corporate
entities and inventors who are known to have patented frequently in a given
technology. However, searching for companies and inventors is not quite as simple
as typing in the company or inventor name into a field. A number of precautions
need to be taken into account when searching for specific names:

• Patent ownership can change frequently. A search for a company name may yield
only older patents originally assigned to the company and not newer patents
reassigned to them after issuance.

• Company subsidiaries change frequently. Individual business units are bought
and sold regularly. Further, searching only for a parent company name may not
necessarily capture all company subsidiaries.

• Company suffixes (e.g. Co., Inc.) vary wildly and must be accounted for.
• Inventor names are commonly spelled in a wide variety of fashions, with and

without suffixes, with or without initials, or completely misspelt altogether.
• Patents are very often not printed with assignment data upon issuance such that

the owner files assignment data after printing.
• Correspondence address information can sometimes be used to approximate the

ownership of patents.

What are the pros and cons of bibliometric data and abstract searching?

• Pros:

– Errors in documents can be detected during database creation.
– Keyword synonyms and thesaurus available.
– Specific data fields like classification codes can be searched.

• Cons:

– Indexing errors can be introduced during database creation.
– Keywords that appear in non-indexed fields will not be searchable.
– Time lag from published date to database entry.
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1.6.5 Taxonomy, Controlled Vocabulary and Other
Value-Added Indexing

In the days before full-text searching was available, patent searchers were forced
to rely on patent classification and controlled indexing systems for both manual
and online searches. The codes or terms were normally arranged hierarchically,
permitting the searcher to use the narrowest appropriate term or the term at the latest
position of a taxonomy, allowing the searcher to assemble a collection of documents,
which would be reviewed for relevance, fully expecting that the limited number of
indexing concepts would yield a great many irrelevant documents.

Patent classification systems were created for manual searching of printed patent
collections. Patent offices designed numeric or alphanumeric schemes that assigned
codes to all known technologies and marked each patent with one or more of the
appropriate class codes. Class codes were updated periodically, creating a taxonomy
by subdividing the classes to create collections of patents that were small enough
that a searcher could review them. The schedules of class definitions formed a
controlled vocabulary of generic terminology for each category of technology, and
knowledgeable indexers and patent search specialists were able to select the nearest
class definition for an invention of interest. Using the proper class code, one would
be able to limit a search for a shoe sole such as the one in Fig. 1.1 without knowing
whether the patentee called it a shoe sole, a ground-contacting surface, une semelle
or eine Schuhsohle, and without retrieving patents on fishing gear.

Subject-based databases, such as Chemical Abstracts, and commercial patent
databases, such as IFI CLAIMS, created systems of controlled indexing terms,
applying the terms to indexing records in place of the actual terminology used by
the patentee. The controlled indexing terms are collected in thesauri or vocabulary
listings, which may be organised into a taxonomy in which broader, narrower or
related terms are listed for each of the controlled indexing terms. A searcher can use
the controlled terms from the thesaurus without having to create an exhaustive list
of synonyms.

Chemical formulae lend themselves particularly well to controlled indexing, as
there are a finite number of elements, and the empirical formulae of molecules
disclosed in a document can be organised in a standardised alphanumeric fashion,
for example, the Hill system created for the Chemical Abstracts Formula Index. The
molecular structures of chemical substances can also be indexed into systematic
hierarchical systems, substituting a controlled indexing name or registry number for
whatever name is used by the author or patentee in a document.

1.6.5.1 Chemical Substance Registries

A more precise system for retrieving information about chemical substances than
a molecular formula or substance name is a registry system that gives a unique
identifier to each indexed substance. An indexer reads a patent or other publications,
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recognises each substance from a name or chemical structure drawing and assigns
an existing registry number or creates a new one, allowing searchers to find all
references to that substance in the database by searching for the chemical structure
or name in a registry database and then using the registry numbers to search in the
corresponding bibliographic database.

The largest chemical substance registry is the Chemical Abstracts Service (CAS)
Registry [19], which covers both patents and non-patent literature from around
the world. It assigns a registry number to each unique substance exemplified in a
publication or claimed in a patent. The Derwent Chemistry Resource (DCR) covers
compounds claimed or exemplified in international patents indexed in the Derwent
World Patents Index (DWPI) [20]. The IFI CLAIMS Compound Vocabulary [21]
has compounds mentioned in five or more US patent publications. Because their
indexing policies and database coverage differ, the number of compounds listed
in the various registries and the number of patents associated with them are very
different.

For example, the non-steroidal anti-inflammatory drug diclofenac, and its salts,
has 299 registry numbers in the CAS Registry file, 24 registry numbers in the Der-
went Chemistry Resource and 3 registry numbers in the IFI Compound Vocabulary.
Figure 1.2 illustrates the CAS Registry record for the acid form of diclofenac with its
chemical structure diagram, a list of names that have appeared in the literature and
the number of bibliographic records in the database indexed to this registry number.
Searching the registry number 15307-86-5 in the Chemical Abstracts databases
on STN (see Fig. 1.3) will retrieve all documents that disclose the acid form of
diclofenac, regardless of the name used by the author of the original document, but
it will not retrieve documents that disclose only the sodium salt of diclofenac, the
active ingredient in Voltaren Gel.

1.6.5.2 Derwent Multipunch and Manual Codes

The Derwent World Patents Index was designed during the 1960s to facilitate in-
house searches for English language abstracts of chemical patents. The abstracts
were printed on two types of cards: IBM cards for sorting by use of a code

HO2C

Cl

Cl

NH

CH2

6291 REFERENCES IN FILE CA (1907 TO DATE)

212 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

6325 REFERENCES IN FILE CAPLUS (1907 TO DATE)

Fig. 1.2 Chemical Abstracts Service Registry database (CAS): structure record for diclofenac
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Chemical Abstracts Service Registry Database 
Structure Record for Diclofenac

L1   ANSWER 1 OF 1  REGISTRY  COPYRIGHT 2010 ACS on STN 

RN   15307-86-5  REGISTRY

CN   Benzeneacetic acid, 2-[(2,6-dichlorophenyl)amino]- (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN   Acetic acid, [o-(2,6-dichloroanilino)phenyl]- (8CI)

OTHER NAMES:

CN   2-(2,6-Dichloroanilino)phenylacetic acid

CN   2-(2,6-Dichlorophenylamino)phenylacetic acid

CN   2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid

CN   2-[2-(2,6-Dichlorophenylamino)phenyl]acetic acid

CN   Dichlofenac

CN   Diclac

CN   Diclofenac

CN   Diclofenac acid

CN   Diclofenamic acid

CN   Diclomelan

CN   Dicloreuma

CN   N-(2,6-Dichlorophenyl)-o-aminophenylacetic acid

CN   Pennsaid

CN   Transfenac

CN   Voltaflan

CN   [o-(2,6-Dichloroanilino)phenyl]acetic acid

DR   76595-40-9, 87180-41-4

MF   C14 H11 Cl2 N O2

HO2C

Cl

Cl

NH

CH2

6291 REFERENCES IN FILE CA (1907 TO DATE)

212 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

6325 REFERENCES IN FILE CAPLUS (1907 TO DATE)

Fig. 1.3 15307-86-5 in the Chemical Abstracts databases on STN

represented by the positions of holes punched in the card and Manual Code cards
for searching by hand in filing cabinets.

The multipunch code was originally represented by 720 card positions, each
position dedicated to a specific type of bibliographic data, chemical structure
fragment or other technical features of an indexed patent. All of the codes relating
to inventive features of the indexed patent were punched, and the searcher reviewed
the abstracts of patents with all of the appropriate codes directly on the cards after
they had passed through the sorter. After digital computers replaced card sorters,
the code was reformatted into alphanumeric symbols, and the code continues to be
used. The chemical fragmentation section of the code is discussed in Sect. 1.7.

The Manual Code is a patent classification system, organising technologies into
a hierarchy that takes both structure and function into account. When it was used as
a manual search tool, a searcher would identify a single code that best matched the
inventive feature he or she wished to search and would visually scan through all of
the abstracts in that section of the file drawer. Since the transition to computerised
searching, Manual Codes have become a valuable tool for limiting retrieval in
searches based on full-text and keyword searches, specifying a required feature and
eliminating all records covering features occurring higher in the hierarchy.
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1.7 Specialised Invention Technologies: Considerations
and Requirements

While keywords and text terms are commonly employed in searching patents,
certain subject matter inventions claimed in patents warrant specialised techniques
for precise and high recall retrieval of relevant art. These include:

• Chemical structures
• Biosequences and biotechnology topics
• Device/engineering drawings

This section describes considerations and requirements for effective retrieval of
these specialised invention technologies.

1.7.1 Chemical Structure Searching

Searching for chemical compounds poses many challenges. There is a wide
variability in nomenclature; the search may be directed to a species or a genus that
encompasses many possible species, and the chemical compound(s) of interest may
be disclosed in a Markush structure.

Even exact compounds can be difficult to search, and a professional searcher
does not rely on chemical nomenclature for comprehensive retrieval. For example,
something as simple as ethanol can be described as: ethanol, ethyl alcohol, grain
alcohol, pure alcohol, hydroxyethane, drinking alcohol, ethyl hydrate and absolute
alcohol.

Ethanol could be also depicted structurally, instead of mentioned by name, as
shown in Fig. 1.4.

Exact compounds can also be described generically. For example, ethanol is a
‘hydroxy alkane’. Structurally, ethanol is also one of the compounds encompassed
by either of the following two generics.

A search request may be a generic query, as shown in Fig. 1.5, that defines many
possible compounds, in which case the goal is to retrieve records that relate to any
of the compounds defined by the genus. This is called a Markush search [22]. The
term ‘Markush’ originated from the generic claims filed by Dr. Eugene A. Markush,
which was granted as US 1,506,316 in 1924. A Markush is essentially a way to
claim many compounds in a single patent claim and the term is used to describe

OH Et OH CH3

C
H2

OH

Fig. 1.4 Different chemical structural representations of ethanol
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Wherein:

G1-OH

G1 = C1-C6 alkyl, aryl, or heteroaryl.

Wherein: Ak = any C1-C3 alkyl chain; and

R = OH, halogen, alkyoxy.

Ak-R

Fig. 1.5 Examples of genus representations of ethanol

Fig. 1.6 An example of a Markush Claim from US 7,659,407

any generic structure that encompasses multiple species. An example of a Markush
claim is shown in Fig. 1.6.

A typical patentability search request might be ‘find patents, patent applications,
and literature references that claim or disclose compounds defined by the following
generic’ (as shown in Fig. 1.7), in which case the patent (US 7,659,407) above
should be retrieved with the correct search query and appropriately indexed retrieval
system.
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N
NHy

R
O

R R = anything

Hy = anyheteroaryl

Leave all positions open to possible
substitution but do not allow for
ring fusion.

Fig. 1.7 A typical chemical structure query

Chemical structures represent molecules composed of atoms linked together
by chemical bonds. There are groupings that occur in many molecules—rings of
atoms, patterns of atoms and bonds that chemists refer to as ‘functional groups’.
Database producers created indexing systems that fragment the molecules into their
component rings and functional groups and assign an alphanumeric code to each of
the resulting substructures. Indexers evaluate each chemical structure in a patent
and add all of the applicable codes to the database record. Some systems have
been able to partially automate this process. These fragmentation codes allow a
searcher to look for either specific molecules or Markush structures with alternative
substructures, using Boolean logic rather than resource-intensive structure searching
algorithms. Because Markush structures often contain a great many alternative
fragments, the systems include codes for fragments that are either required or
optional in embodiments of the structure and a set of negation codes for fragments
that can never be present in an embodiment.

There are different types of systems [23] available for searching chemical struc-
tures in the patent and non-patent published literature. Topological search systems
are used to match graphical structures created by a searcher with specific compounds
or Markush structures contained in a database. An indexer adds chemical structure
indexing to the search system based on the indexer’s understanding of the patent or
literature document. Special software is used by the searcher to create the structure
query. Chemical fragmentation code search systems, such as Derwent fragmentation
codes and IFI CLAIMS chemical vocabulary codes, match alphanumeric codes from
strategies created by a searcher with codes added to a database record by indexers.

As computing systems advanced, connection tables were created that index how
these atoms and groups of atoms are interlinked together to allow more precise
retrieval. For example, graphical searches in several structure searchable databases
hosted by STN can be an exact search (EXA), which is used to retrieve substances
that exactly match the query; a family search (FAM), which is used to retrieve
substances that exactly match the query plus multicomponent substances such as
salts; a closed substructure search (CSS), which will retrieve substances that match
the query without substitution allowed; or a substructure search (SSS), which will
retrieve substances that match the query with any substitution allowed. To conduct
a search using a structure query, a searcher first creates the chemical structure query
using software, such as STN Express.
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Fig. 1.8 Generic chemical
structure search query for
diclofenac

N

X

X

O

O

R

R

H

H

X = any halogen

R = anything

The two phenyl rings may be further substituted but not fused.

1.7.1.1 Diclofenac Chemical Structure Search Strategy

An example is described here for conducting a chemical structure-based search of
diclofenac as a gel formulation in a freedom-to-operate assessment. There are two
concepts to consider: the compound diclofenac and gel formulation. Figure 1.8
exemplifies the chemical structure search strategy on how one might conduct a
freedom-to-operate search for diclofenac. The second concept, gel formulations,
could be searched using full-text searching, classification schemes and other value-
added indexing described earlier in Sect. 1.6.

The compound diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid)
is marketed under several trade names, such as Voltaren and Cataflam. Trade names,
chemical names and synonyms would need to be identified and incorporated into the
search. There are many ways to identify these names, such as reading the compound
records found in Chemical Abstracts Registry File, Derwent World Patent Index, IFI
CLAIMS, Medline, Embase, and other free Internet sources. The compound registry
numbers of diclofenac applied by the database indexers would also be searched. An
initial keyword search for diclofenac in various databases could help identify some
of the value-added indexing and classifications available.

Searching for the exact compound alone is not sufficient for a freedom-to-operate
search since the search must also retrieve patents with broad claims that encompass
diclofenac, so a generic search query is needed. An example of a generic query that
encompasses diclofenac is shown in Fig. 1.8.

This generic query can be executed using the STN International system as
depicted in Fig. 1.9.

This query could be searched in any of the structure searchable databases [24]
hosted on STN such as registry, Derwent DCR, Beilstein and Marpat. Care must
be taken when creating a search query since designations of bond types, match
level, element count and connectivity can greatly alter the results. The above query
searched as a substructure search (SSS) on STN would allow for substitution
everywhere except at node 16, require the two rings to be isolated and allow for
retrieval of records in the Marpat database with broad claim language such as ‘aryl’
for the phenyl rings and ‘electron withdrawing group’ for the halogens.
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chain nodes :

7  8  9  16  17  18  19  

ring nodes :

1  2  3  4  5  6  10  11  12  13  14  15  

chain bonds :

1-8  5-7  6-9  9-10  11-16  16-17  17-18  17-19  

ring bonds :

1-2  1-6  2-3  3-4 4-5  5-6  10-11  10-15  11-12  12-13  13-14  14-15  

exact/norm bonds :

6-9  9-10  17-18  17-19  

exact bonds :

1-8  5-7  11-16  16-17  

normalized bonds :

1-2  1-6  2-3  3-4  4-5  5-6  10-11  10-15  11-12  12-13  13-14  14-15  

isolated ring systems :

containing 1 : 10 : 

Connectivity :

16:2 E exact RC ring/chain  

Match level :

1:CLASS  2:CLASS  3:CLASS  4:CLASS  5:CLASS  6:CLASS  7:Any  8:Any  9:CLASS  10:CLASS

11:CLASS  12:CLASS  13:CLASS  14:CLASS  15:CLASS  16:CLASS  17:CLASS  18:CLASS  

19:CLASS  

Fig. 1.9 STN Express generic (genus) structure query for diclofenac

A searchable query for the above genus can also be executed using the Markush
DARC system, as shown in Fig. 1.10.

The above query searched in Questel’s Merged Markush System (MMS) [25]
would allow for substitution everywhere except at node 14, require the two rings to
be isolated and allow for retrieval of records that relate to compounds defined by the
above generic either specifically or generically.

Chemical fragmentation code strategies should encompass the specific com-
pound, as well as a generic representation. Figure 1.11 outlines a Derwent chemical
fragmentation code strategy for diclofenac to be searched in the World Patent
Index (DWPI) database [20]. Figure 1.12 illustrates the IFICDB [26] chemical
fragmentation code search for diclofenac. The list of negation codes has been
shortened due to space limitation.

Results from each of the above structure and chemical fragmentation code
searches would be combined with the strategy for gel formulations, limited to
patents or published patent applications, limited by country as requested and then
limited by date to capture patents that are still in force.
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Fig. 1.10 Questel’s MMS Markush Darc structure query for diclofenac

The above sample search strategy is not meant to be exhaustive, but rather to
illustrate some of the common approaches taken when conducting a freedom-to-
operate search that includes a chemical compound. Each type of search and each
type of search system provides value. It is up to the searcher to determine which
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=>S (G100(P)H141(P)H602(P)H608(P)J171(P)M414(P)M532)/M0,M2,M3 \>_line1

=>S _line1(P)(M121(P)M143)/M2,M3 \>_line2

=>S _line2(P)(M280(P)M311(P)M321(P)M342(P)M391(P)(M370 OR M372))/M2,M3 \>_line3

=>S _line3(P)(G011(P)G014(P)H102(P)H642(P)J011)/M2,M3 \>_line4

=>S (_line1(P)M900/M0) OR (_line2(P)M901/M2,M3) OR (_line3(P)M902/M2,M3) \>_line5

=>S _line5 OR _line4 \>_line6

=>S _line6(NOTP)(H2 OR H3 OR H4 OR H5 OR H7 OR H8 OR H9 OR J2 OR J3 OR J4)/M2,M3 

\>_line7

=>S _line7(NOTP)(J5 OR J6 OR J9 OR K0)/M2,M3 \>_line8

Fig. 1.11 Derwent chemical fragmentation code strategy in WPI for diclofenac

S 30035/FG (L) 30047/FG (L) 30295/FG (L) 32742/FG (L) 34194/FG (L) 34701/FG (L) (10 or 20 or 

30)/RL

S L1 (NOTL) 30037/FG (NOTL) 30040/FG (NOTL) 30039/FG (NOTL) 30038/FG

S L2 (NOTL) 34205/FG (NOTL) 30027/FG (NOTL) 34246/FG (NOTL) 31080/FG

[ 26 more lines of negation codes]

Fig. 1.12 IFICDB chemical fragmentation code strategy for diclofenac

type of searches and which search systems to use for any given search. Whenever
possible, multiple databases and systems should be used since each system provides
unique features, different coverage and different indexing policies. It is also not
uncommon for a chemical search to retrieve a wide range of records depending on
the databases and systems used. For example, 50 patent family and literature records
might be retrieved from searching a structure query in various databases, while 1000
or more patent family records might be retrieved using fragmentation codes. The
professional searcher must understand the details of how each of the systems works
in order to explain and analyse these results properly.

In spite of recent advances in chemical structure searching, there are still many
areas that could be improved. For example, it would be useful for analysis purposes
to be able to search and retrieve records with compounds of interest that are
specifically claimed versus compounds that are only disclosed in the specifications,
or to search and retrieve records with compounds of interest that are only claimed
generically. It should be noted also that the indexing conducted by database
producers is applied to the basic member of a family and not to each subsequent
family member added to a database record. Claim coverage can change from one
document to another, so it would be helpful to have every family member indexed.
And finally, chemical concentrations or percentages are currently not indexed,
and often the novelty of an invention is not a particular compound but rather its
concentration in a formulation.

In conclusion, some minimum requirements for an effective chemical structure
retrieval system are nomenclature searching that includes generic descriptions, the
ability to search by chemical structure and Markush searching. To be effective, the
database must also provide details of its indexing policies and any changes over
time.
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1.7.2 Biosequences/Biotechnology Searching

As with other domain searches for patent and scientific literature, a professional
patent searcher in biotechnology must be able to perform comprehensive text
word searches and utilise controlled vocabulary terminology, classification schemes,
sequence code match (SCM) techniques and algorithms for finding biosequence
homology (similarity attributed to descent from a common ancestor [27]).

One of the difficulties for a biotechnology patent searcher is locating and
compiling comprehensive data from many sources. Such information can be
provided in different (non-) textual formats (articles, biological sequences, patent
documents, tables summarising and comparing biological data, images of biological
samples, graphics representing experiments, etc.) and scattered among many types
of publications and databases or published directly through the Internet [28].

1.7.2.1 Nomenclature Challenge

Similar to chemical substance nomenclature, locating a gene or a protein name is
a challenge due to various nomenclature systems, aliases and sources needed to be
consulted. Genes can have several names, synonyms and redundant gene symbols.
As an example, the human gene GBJ2 has several names and aliases/synonyms:

Gene symbol: GBJ2
Gene name: gap junction protein, beta 2, 26 kDa
Previous gene symbols: DFNB1, DFNA3
Previous gene names: gap junction protein, beta 2, 26 kD; connexin 26, gap

junction protein, beta 2, 26 kDa
Gene aliases: CX26, NSRD1

Professional searchers must consider if they need to include genetic alleles
(phenotypic gene variation, e.g. green vs. blue eyes), if the request is for a specific
species’ gene (mouse vs. human gene) and mutated gene names. The names of
protein and peptides have similar nomenclature issues. Protein receptors and their
ligands can have similar names that can result in false hit retrieval. Recombinant
proteins will also have different names and designated abbreviations. Determining
a comprehensive search hedge (a collection of search terms) of nucleic or protein
names is important for intellectual property searches necessary to compliment a
comprehensive biosequence search.
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1.7.2.2 Biosequence Searching Considerations

Patent sequence information found in both commercial and public databases is
not comprehensive [29]. A sequence of interest may or may not be disclosed
in patent documents, necessitating the need for additional text word searches in
combination with a biosequence search. Database inclusion of the sequences from a
patent document is determined by the producer’s indexing policies. A professional
searcher will need to be aware of each system’s indexing policies and limitations:

• Does the search system have a biosequence length limitation? Nucleic sequences
are often long.

• Are all the sequences found in a patent publication indexed or are only the
claimed sequences included in the database?

• What year did the publisher start including biosequences in their database?
• How are short biosequences indexed? Are the short sequences (<9 nucleic or

amino acid units) included in the database as a sequence or is it necessary to
search the biomolecule as a chemical structure?

• Mega sequence (containing many different sequences or a single extremely long
sequence) patent documents may or may not be indexed in databases.

Biosequences are searched as either sequence code match (SCM) or as a
homology search. In code match searches, the search system aligns the query search
sequence codes against a database of sequences by the code of each nucleic/amino
acid unit (e.g. see Fig. 1.13).

On the STN system, biosequences can be searched as an exact sequence
search, matching the same code motifs and length. However, deoxyribonucleic acid
(DNA) and proteins can tolerate changes in molecular structure without necessarily
manifesting any biological significant consequences [30]. Other sequence search
options should be utilised for both nucleic and amino acid molecules in order to
introduce variability and retrieve biological functionally similar molecules. SCM
allows subsequence search for the query sequence embedded in a larger nucleic
or amino acid sequence. Amino acid sequences can also be searched as sequence
family search. A family exact or family subsequence search will match the exact
amino acid code or a functionally similar amino acid code. An example of a
family group is the hydrophilic basic amino acids: arginine, histidine and lysine.
Additional variability is introduced in the search query by utilising additional
characters in the search string to represent uncommon or ambiguous amino acids
or nucleic acids. Pattern search variability includes a defined set of nucleic/amino

Fig. 1.13 Code match search
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Table 1.3 Types of biosequence searches

Search type Nucleic sequence Amino acid sequence

Exact sequence X X
Subsequence X X
Family exact or family subsequence – X
Motif or pattern sequence X X

acids that can replace a select motif, allow a range of nucleic/amino acid residues
in unknown region (gaps), cause negation of defined nucleic/amino acids or allow
the professional searcher to designate a number or a range of nucleic/amino acids or
gaps to repeat within the larger sequence [31]. Biosequence search types are listed
in Table 1.3.

Homology biosequence searches are utilised to discover nucleic and amino acid
sequences that are biologically related or have a similar sequence composition.
Several algorithms exist with different sensitivity levels and processing speed, and
the two that professional searchers use are FASTA and Basic Local Alignment
Search Tool (BLAST) available in both commercial and publically available Web
databases. Both algorithms work based upon the calculation of homology between
a query sequence and retrieved sequences; hence, both tools retrieve homologous
sequences, which might be biologically related to the query sequence [32]. However,
sequence patent claims are often written as fragments of specific sequences,
which are based on % identity and/or length of certain amino acid regions [32].
GenomeQuest’s GenePAST/Fragment search is based on GenomeQuest proprietary
algorithm, which is defined as ‘The GenePAST percent identity’ that finds the best
fit between the query sequence and the subject sequence and expresses the alignment
as an exact percentage [33].

1.7.2.3 GBJ2 Biosequence Search Strategy

An example is described here on a sequence freedom-to-operate assessment based
upon the genetic sequence of gap juncture protein beta 2 (GBJ2) and the protein for
therapeutic use. GBJ2 may have a genetic component in hereditary deafness. The
search can be accomplished by utilising nucleotide sequence and amino acid homol-
ogous sequence searches. The professional searcher should consider additional
search types, such as full-text, classification and value-added indexing searches for
comprehension. There are publically available gene and protein database to assist
the searcher in locating the gene and protein biosequences, names and synonyms, if
necessary. Databases on National Center of Biotechnology Information, European
Bioinformatics Institute, DNA Data Bank of Japan, The Jackson Laboratory and
other Web-based sites are helpful in locating data and information on genes and
proteins for search preparation.
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Execution of biosequence homology searches would ideally be completed
on publically available Web sites and commercial databases. However, in many
industrial companies, transmitting sequence data over the Internet is prohibited,
so commercial databases are searched. Prior to the search, the professional will
need to determine the relevant percent identity of similarity and the sequence length
that is appropriate. BLAST and FASTA algorithms were designed for biological
researchers and their needs, not for patent searchers, and should be considered when
analysing the retrieval. If the biosequence is less than 30 residues in length, BLAST
options need to be adjusted to retrieve the best hits, along with other sequence search
strategies.

Homology sequence search is not comprehensive for a freedom-to-operate
request. The search may need to cover genetic variants, chemically modified
sequences, mutations and claims that discuss similar biological function but without
a disclosed sequence. As with other patent searching, the biosequence search should
include keyword or text-based, enhanced indexing, full-text and classification
strategies. The above strategy is not meant to represent a comprehensive search but
rather to illustrate factors to consider in constructing a search strategy.

Biosequence searching has improved in comprehensiveness of available data.
However, there is a demand to include more sequence data from the whole
patent document. It is not unusual to find the sequence of interest in a patent
diagram. Comprehensive sequence data from every patent family member, not
just the basic patent, is desirable from all database producers. USGENE includes
sequence information from all the US patent family members and has increased
patent biosequence data availability generated from the US Patent Office. Finally,
searchers and patent analysts require additional similarity algorithms, which have
the capability to search biosequences and deliver similarity scores in alignment with
how claims are crafted.

In conclusion, biosequence databases contain incomplete information and neces-
sitate searching biosequences found in patent and scientific literature in both
commercial and, if allowed, publicly available sources and systems. Complementing
biosequence search with text-based search strategies is important for comprehensive
retrieval and intellectual property analysis. In addition, a professional searcher needs
to have an understanding and working knowledge of the indexing policies and
limitations of each database.

1.7.3 Searching Device/Engineering Drawings

The retrieval of patent information within the disciplines of engineering, and
more specifically the mechanical/electrical fields of engineering, is a case study
in the application of the ‘No Free Lunch’ theory [34]. The application of this
premise to patent information retrieval is very clearly visible in the methodologies
a professional patent searcher uses in locating art of relevance. From an initial
keyword-based search limited to abstracts to full classification searches to multi-
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generational citation analysis to combining focused keywords with classification
ranges, all of the algorithms used by a searcher are performed to search and retrieve
more efficiently.

What is most overwhelming to an outsider used to the relative ease of locating
information based upon words is the volume of references that are traditionally
reviewed by a patent searcher within the engineering disciplines. For a single,
relatively simple project, a mechanical patent searcher may manually review
upwards of 5000 patent documents to locate a mere ten of particular relevance
(manual review denotes a physical eyeballing of all figures, not a title-based review
of the document). And why is this? Because traditional search engines and the
algorithms employed are very inefficient in the engineering arts, which are heavily
dependent upon drawings to clearly convey a concept.

While a physical picture may clearly show a car bumper, the text of a patent may
describe a safety device for the protection of people or objects, said safety device
utilising multiple materials, said multiple materials comprising a rigid material and
one or more less rigid materials, said rigid material selected from plastics and foam
and said less rigid materials selected from plastics and foam. The picture may be
recognised by a patent searcher in less than 3/10 of a second as external to motor
vehicle, while the text could be parsed dozens of times for some hint as to whether
they intended a bumper, an internal padded vehicle component, a helmet or even
shin guards for a soccer player.

The single biggest issue that causes this inefficiency and must always be noted
with regard to search and retrieval of engineering drawings is that while ‘a picture
may speak a thousand words’, it also does so in such a direct and succinct
manner. In contrast, the mundane and simple can easily be transformed into the
obtuse and unclear by a quality wordsmith or lexicographer (typically the patent
attorney/agent). Therefore, to avoid the dependency upon words, a searcher of patent
information in the mechanical/electrical engineering disciplines learns to rely upon
additional tools or algorithms for the location of relevant documents combined with
rapid vetting via image analysis. These other algorithms are classification schemes
described in Sect. 1.6.1, classification limited by keywords and citation analysis.
Then, using a circular flow path to emphasise the iterative process of searching,
multiple iterations will be performed to locate the documents of relevance.

An additional important means for removing the dependency upon words within
the mechanical and electrical engineering disciplines is the formulation of specific
search strategies. Most inventions or improvements lend themselves to a formulaic
combination of features: (A) specific field of technology, (B) problem to be solved
and (C) solution to be applied.

An ideal reference will encompass A, B and C. Of almost equal relevance will be
the subcombinations of A, B and C (A and B, A and C, B and C). This is particularly
true when setting up a search strategy or field of search. For example, when C
(solution to be applied) is best represented by a picture or figure, a search strategy
must be set up to search for all documents with A (technology field) and B (problem
to be solved). Those with C will inherently be included and only by manual review
will C be recognised and identified.
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Going further down the thought pattern, often multiple features (e.g. B and C)
are poorly defined by anything other than a picture. Then a professional searcher
must manually review all references within A (the field of technology) and examine
the figures to identify those of interest to B and/or C. This is also the ideal time to
apply our first mentioned means (classification, classification limited by keywords
and citations) to avoid the dependency upon words, and these are further detailed
below.

How Is Classification Used: Using the example above regarding a car bumper,
the US classification schedule has a class (293) labelled ‘vehicle fenders’. With this
class 293, a range of subclasses in an outline format running from 102 to 155 is
labelled ‘buffer or bumper type’. What this means is that all patents classified in
class 293/subclass 102 to class 293/subclass 155 are primarily focused upon vehicle
fenders and specifically on buffer or bumpers (approximately 7000 documents).
And more specifically, subclass 120 depends on the broad subclass 102 and is
titled ‘composite bumper’ which very closely reads upon the plastic and foam
combination of rigid and less rigid materials. Thus, a review of the documents in
class 293/subclass 120 will put over 700 documents of high relevance in front of a
professional patent searcher without using a single keyword limitation.

How Is Classification Limited by Keywords Used: Again using the bumper sam-
ple, the International Patent Classification (IPC) for bumpers, which corresponds to
the abovementioned US Classification Range 293/102–155, is B60R19/02–19/50.
More specifically, subclasses 19/03 reads on composite bumpers, 19/18 reads on
impact absorbing and 19/22 expressly reads upon a ‘bumper containing cellular
material, e.g. solid foam’. While subclass 19/22 should probably be reviewed in
its entirety, the other two subclasses (19/03 and 19/18) will not be as relevant to
the inventive concept. Instead, those two subclasses are searched using the Boolean
operator ‘AND’ along with the term ‘foam’ to garner a higher precision search [e.g.
(B60R19/03 OR B60R19/18) AND ‘foam’]. This allows the classification scheme
to weed out the soccer shin guards and helmets, which may use the same terms as
this bumper invention.

How Is Citation Analysis Used: When a patent of relevance is located, it does
not stand on an island by itself. Like the vast majority of advances in science and
development, a patent is a baby step forward. By reviewing the art cited within
the prosecution history of the patent (back citing), one can see the baby steps that
preceded a particular improvement. Likewise, by reviewing all patents prosecuted
after the patent of relevance (forward citing), one can see the baby steps that
proceeded from a particular improvement. Performing this operation in a sideways
manner (a forward cite followed by a back cite or a backward cite followed by a
forward cite), one can locate parallel art to the patent of relevance.

How Are Iterations Used: An initial keyword-based search should be performed
to learn about proper classification areas. Classification areas must be reviewed
to learn new terms within the art. Forward and backward citation must be per-
formed to learn both new terms within the art and new classification areas. Broad
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Table 1.4 An example of the search process for device/engineering drawings

References manually
Step Action reviewed

1 Simple keyword search limited to titles or abstracts 300

2 Class/subclasses combined with focused keywords 700

3 Forward and backward citation searches 500

4 Medium complexity keyword search 1000

5 Class/subclasses combined with looser keywords 300

6 Class/subclasses in their entirety 500

7 Highly complex keyword search 500

8 Additional forward and backward citation searches 500

9 Class/subclass ranges combined with focused keywords 500

10 Final forward and backward citation searches 200

Total 5000

classifications combined with keywords must be performed to locate art that may
not have been properly placed in a subclass. Further keyword searching should be
performed to locate art outside the proper classification areas entirely.

It is important to note that all algorithms must be tried. Only after doing so
will the most efficient algorithm be identified (similar to the identification of
mathematical benchmarks by Wolpert and Macready [34]). At that point, additional
resources may be assigned to the more efficient algorithms. Additionally, algorithms
outside the basics identified above may be pursued depending upon the technology
and nature of the information to be retrieved. These could encompass inventor
searches, assignee searches (owner of the patent) and geographic searches (e.g.
looking for pachinko machines should probably focus on Japan).

With these basic algorithms for identifying relevant documents summarised, it
must be noted with large and bold letters that image retrieval is the key. While
one may start with general algorithms and carefully make algorithms more efficient
through iterations, one can only identify the information of relevance through the
use of rapid image retrieval.

A simplified example of the search process that would take a professional patent
searcher 6–8 h (this is using an engine with no image retrieval delays—e.g. a patent
office in-house system) is shown in Table 1.4.

1.8 Conclusion

Patent search, analysis and monitoring are business critical, yet very time-
consuming tasks that are performed primarily by manual means. A proper search
methodology will include usage of the major search mechanisms outlined above,
will be well planned in advance, will exhaustively leverage the information
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collections appropriate for the search and will use a constantly iterative approach.
In this chapter, we have attempted to describe the practical experiences in and
requirements for effective searching, analysis, monitoring and overall management
of patent information, from the perspective of patent information professionals.
While databases and tools have long been supporting this process, advanced
technologies are emerging to address age-old issues such as database quality as
well as tackle new challenges [35]. These new challenges include:

• Traditionally neglected issue of multilingualism and increasing volume of patent
applications

• Wider variety of users from different backgrounds with various interests ranging
from scientific and legal to business

• Expansion of patent information use to explore new technical and business
opportunities in addition to the traditional IP protection approaches

We hope that this chapter has contributed towards an understanding of the current
searching practices, systems and tools that would help in the further development
of emerging retrieval technologies to assist the user in patent search, analysis and
information management processes.

While new technology tools may greatly advance the patent search, analysis
and monitoring processes, it is important to be reminded that tools simply assist
and cannot replace the human mind. A good patent searcher is knowledgeable
not only about the intricacies of different types of patent searching but also
the changing requirements of international patent laws, technical innovations and
current developments in the different types of information sources available. The
central role of the patent searcher continues to be essential in balancing the search
requirements for recall and precision and for insightful analysis of the results.

The following chapters will investigate many of the topics addressed in this
introduction in addition to many more to provide a comprehensive cross section
of the many challenges patent information retrieval faces today.
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Chapter 2
An Introduction to Contemporary Search
Technology

Mihai Lupu, Florina Piroi, and Veronika Stefanov

Abstract This chapter is the counterpart of the preceding chapter. It gives an
overview of some of the most important terms and concepts used in search
technology and information retrieval (IR) today. We hope it can be useful to readers
who are not researchers in these areas. After a short dip into the history of the field,
we start with a high level overview of the different types of search, then move on
to the gap between user requirements and how search systems can be evaluated
and finally narrow it down to the main evaluation methodology used today. This
is followed by a step-by-step guide to the architectural components of a generic
fulltext document search system and its design implications. We then describe how
the underlying models define to a large extent what the system can and cannot do.
This chapter concludes with a short introduction to semantic search and an outlook
to the challenges in patent IR, the main subject of this book.

2.1 Search Technologies and Information Retrieval

We have called this chapter ‘Introduction to Contemporary Search Technology’
rather than, for example, ‘Introduction to Information Retrieval’ because the subject
of information retrieval as a whole is very broad and some of it is of little or no
interest to those involved with practical patent search.

Information retrieval might be defined as the science and technology of searching
for and accessing information in documents, or in parts of documents. This
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definition by Manning et al. [32] can be useful to see the core as well as the whole
area:

Information Retrieval is finding material (usually documents) of an unstructured nature
(usually text) that satisfies an information need from within large collections (usually stored
on computers).

It is a classic scientific endeavour, with both theoretical and experimental (or
perhaps better empirical) branches, and a well-established scientific paradigm
subscribed to by many in the field, whether in the universities or the industry. The
scientific aspect has always (since the 1940s or 1950s) been closely related to (or
perhaps even generated by) a practical engineering aspect which seeks to deliver
operational systems, and of course these operational systems have very wide use and
implications through, for example, well-known Internet search engines like Google
and Microsoft’s Bing.

In other areas, there is a well-recognised terminological distinction between the
scientific and technological aspects: for example, between physics (science) and
mechanical or electrical engineering (technology). As is all too often the case in
computing, information retrieval is unfortunately a portmanteau term for both the
scientific and engineering aspects.

This is not to say that the practical patent searcher might not find the science of
information retrieval useful. Over the years, theoretical considerations, supported by
many empirical studies in IR, have led to surprising results about which technologies
are the most effective for search, and these of course should help practitioners reflect
on and improve their practice. Information retrieval owes its origins to nineteenth-
century library science (e.g. see Schrettinger [49]), but was inspired and transformed
by the development of computerised ‘mechanised’ information systems after World
War II, and perhaps especially by Vannevar Bush’s prescient Memex article [9].
The first use we can find of the name information retrieval is by Mooers in 1950
[34] who was, incidentally, an early and vocal critic of the use of Boolean Logic
(as opposed to ranking) in search technology systems [35]. Boolean retrieval, of
course, despite this, remains the mainstay of practical patent search. In fact, the
early systems would invariably be described today as searching metadata: typically
the data they searched was author, title, some index terms or keywords, and perhaps
an abstract: it was only in the 1960s or even 1970s that it became commonplace
to analyse and index (and therefore make searchable) the fulltext of the document.
As a consequence, in practice the field is principally driven by experimental work.
Prime amongst this was the work by Cleverdon and others at the Cranfield Institute
of Technology in England in the 1960s [12, 13], which continues to be influential
(see also Chaps. 3 and 4 in this volume, on CLEF-IP and NTCIR, respectively, or
Carterette in the previous edition of this volume [11]).

It is worth noting that patent search has been an application of interest from the
earliest days of information retrieval, although in the early literature it is sometimes
difficult to distinguish between computerised information retrieval and the use of
older mechanical sorting and selection devices, like card sorters.

A complete survey of search technology, let alone information retrieval as a
whole, goes beyond the scope of this chapter (or the whole volume). There are
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now a wide range of textbook introductions to the subject ([10, 32], etc.), although
generally they focus on Web search.

By way of introduction to the rest of the chapter, a couple of points are worth
making, which might surprise patent searchers.

First, it is the accepted wisdom of the information retrieval research community,
based on a significant body of experimental evidence accumulated over many years,
that ranked retrieval systems are more effective than Boolean or other structured
query systems. That is, systems experiments almost always show that familiar set-
based Boolean retrieval systems are less effective than systems, which present the
searcher with a list of potentially relevant documents ordered, with the most likely
to be relevant first, then the next most likely to be relevant and so on towards
progressively less relevant documents. We will return to this later in the chapter.
This has been extensively documented in an independent study on the economic
effects of retrieval evaluation benchmarks performed by the National Institute of
Standards and Technology [44].

Second, a recent insight has been that retrieval from very large (Web scale,
petabyte scale) collections of documents may be different in kind from retrieval
from smaller-scale collections. The reasons for this remain unknown at the present
time, but may be the result of the pervasive nature of phenomena matching Zipf’s
law (see [4] for more).

At the same time, the IR academic community has also in recent years put more
distinct emphasis on domain-specific search [31] and on ‘slow search’ [51, 52] as
a counterweight to the millisecond, high-precision retrieval characteristic of Web
search.

As noted above, experimental work is the hallmark of IR research. Therefore,
rather than diving into the technology, in the next section we give a brief introduction
to IR evaluation, as a central element in any experimental procedure.

2.2 Finding a Search Technology that Works for You

There are many ways of looking at the variety of IR systems: from an information
theory perspective, a historical perspective, a systems engineering perspective and
an IR researcher’s or a librarian’s perspective. We begin with the final purpose for
which such systems are designed: searching and finding what you are looking for.

Which techniques and tools are useful greatly varies with the type of search task.
In fact, searching can take many different forms. One way of structuring them could
be according to the following types [36, 45]:

Known-item search: The user is searching for an information object which is
already known to them. Also known as direct search.

Exploratory search: The user is seeking to learn about a topic but does not know
in advance what may be important.

Browsing: The goal is unclear; the user is not sure whether or how the require-
ments can be met.

Exhaustive search: The user is trying to learn everything about a particular topic.
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Only the first type, known-item search, is fully supported by classic search
systems. The information need is well defined and can be expressed by the user
(subject terms are known, maybe also the author, document type, creation date, etc.),
and the correct answer may be found with no or very few iterations.

In an exploratory search, the user cannot provide an exact query at the beginning
and so will be confronted with a large amount of potentially interesting results. The
approach will be very iterative, with the user needing to review the results of every
step to refine the query, gradually learning about the topic. Supporting functionality
such as aggregation and visualisation of search results as well as automated query
rewriting can support the user.

Browsing can take advantage of links inherent to the document collection, such
as weblinks or citations. If users have a fairly good idea of what they are looking for,
following link pathways allows them to refine their perception of their information
need.

Exhaustive search enjoys only very limited support from any existing IR system.
The requirements on both the users (in terms of background knowledge) and the
system performance are high. Nevertheless, exhaustive searching is an everyday
requirement in many domains (law, patents, medicine, intelligence).

2.2.1 Can You Choose the Best IR System?

How can you choose an IR system for your tasks? How do you test and compare?
The first thing most people probably do is to give a system some test queries and
look at the results. But how can you judge whether these documents are the best
matches in the whole collection? The sad answer is that the only way to really
know would be to look at all documents in the whole collection and check. For any
meaningful IR situation, this is not feasible (if the collection is small and you know
all the documents in it, you don’t need a retrieval system. . . ).

One way of looking at it could be to assume that if many people use many
systems over a long time, certain trends might become apparent. They might stop
using less useful systems and switch to the systems that save them time and effort,
meaning that users actually vote with their feet (or computer mice).1 But is the most
widely used system also the best for you? How do users choose?

Professional users have to choose from tools they might buy, and this can be done
with trial licences or calls for bids to system vendors. They also often don’t have
a real choice (lack of information, prohibitive switching costs from vendor lock-
in, licensing, knowledge/training investment, etc.). As criteria for selecting patent

1This seems to have happened in the late 1990s between Web search engines. Those that viewed
Web sites as plain text documents were replaced by search engines that used the links between
sites to choose those that were most likely more useful to more people. The quality of the search
results using link analysis was so much better that people switched.
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search tools, for example, the data coverage, document delivery, import and export
functions and the company behind the tool are equally important if not more than
the pure retrieval effectiveness [19].

For some systems, it is possible to infer user satisfaction metrics from secondary
values. Ad revenues, e-commerce deals or measures of returning users can be
meaningful for Web-based applications, whereas enterprise search solutions try to
measure productivity gains.

Professional users know their use cases intimately. They can focus on just their
own needs and ignore all other issues, which in turn allows them to select tools for
their work.

2.2.2 User Knows Best: User-Centred Evaluation

The final overall test of a system is the usefulness to its users. User-centred
evaluations can be and are being done, but they are expensive and difficult to do
correctly for a number of reasons [22, 24]:

1. A large, representative sample of actual users is needed.
2. Each system must be equally well developed and must have a user interface.
3. Each participant must be equally well trained on each system.
4. The learning effect must be controlled for (the fact that a user that tests a system

learns about that system and adapts to it).

Because of these issues, real user-centred evaluation is rare, which has led to a
certain unfortunate lack of communication and feedback between IR researchers and
those who might potentially use their search systems. Some specific ways forward
for patent search are explored in Trippe and Ruthven’s chapter in this volume
(Chap. 5).

In a more general context, the usability of a system is a compound of three
aspects: its effectiveness, its efficiency and user satisfaction [23]. The last element
is the one that attempts to quantify user preferences and perspectives on the system
and therefore the one that cannot be scaled up or generalised. The efficiency is on
the other hand the most easily quantifiable: it is primarily about how fast the system
is, how many (computational) resources it uses and how many requests it is able to
handle in any given unit of time. Finally, effectiveness—the ability of the system
to provide documents according to a specified relevance criteria—is the component
most commonly evaluated (because it can be done in a ‘laboratory’ environment)
and the one we will focus on now.
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2.2.3 Laboratory Tests: The Cranfield Model

Already in the early days of computer-based IR, researchers devised testing methods
that can be likened to laboratory tests in other scientific areas. They ignore a large
amount of the ‘noise’ and ambiguities of the real use cases and allow for empirical,
reproducible tests that yield quantitative results on large amounts of data. The so-
called Cranfield tests, named after the place where they were conducted in the
1960s, led to the main evaluation methodology still used today. The remainder of
this section discusses evaluation methodologies within the Cranfield paradigm in
more detail.

For such an evaluation, the following items are needed:

• A suitable collection of documents
• Some (representative) queries on this collection
• For every query, a list of documents from the collection (ideally a complete list)

that are relevant (the relevance judgements)

Given this information, automated tests can be run to compare the actual results
with the target results and quantify the differences.

For the particular case of IR in the patent domain, the first requirement, a suitable
collection of documents, is the easiest to fulfil. In the last 5 years the amount of
patent documents freely available has increased dramatically, thanks to either direct
distribution (e.g. USPTO via Google) or public APIs (e.g. Open Patent Service at
the EPO). While access to other national publications is still problematic, there
exist sufficient documents in most languages to make testing meaningful. However,
the second and especially the third requirement are the real hurdles to large-scale
testing.

How are the relevance judgements produced? The gold standard is manually
judged results, for which a large number of highly skilled and motivated judges are
needed. Ideally, all relevant documents are collected beforehand for all test queries.
Apart from the fact that for many queries there simply is no ‘right’ answer, research
has also shown that human judges tend to disagree in what they find relevant [48].

Additionally, new test queries have to be found for every laboratory comparison
of two or more systems to ensure fair conditions as well as to avoid over-
optimisation of the systems to the training set. It is not surprising that many
approaches have been developed over the last decades that are able to create
relevance judgements automatically from the collection and the queries. These
values are tainted with uncertainty, but are still useful for many types of evaluation,
which otherwise could not be performed at all. Chapters 3 and 4 describe how in
the area of patent information retrieval evaluation, the citations contained in the
documents can be used to obtain usable relevance judgements. While it is well
known that the citations do not represent a complete list of relevant documents to any
particular document, studies of the evaluation procedures have shown that, even in
the presence of such incomplete judgements, the results are reliable when deciding
which of two or more systems is likely to perform best in the future [14].
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2.2.3.1 Evaluation Conferences

The Cranfield paradigm forms the basis for a number of long-standing evaluation
conferences, where the organisers provide the data, queries and relevance judge-
ments. The efforts of TREC,2 CLEF,3 NTCIR,4 and FIRE5 have improved the
situation of IR evaluation greatly by providing researchers not only with urgently
needed data and frameworks but also with a community of comparable research
[40]. Within this volume one can read more about activities focused on patent
search in Chaps. 3 and 4, describing relevant evaluation campaigns at CLEF and
NTCIR, while in the first edition of this book, readers learn about TREC [30] and
the general aspects of IR evaluation [11]. Attempts to foster the direct interaction
between creators of retrieval systems and patent information professionals, such as
the PatOlympics6 organised in 2010 and 2011, are interesting events for both parties,
but are difficult to organise at either scientific conferences or commercial gatherings.

2.2.4 Quantifying the Difference: IR Measures

Assuming that the three requirements have been taken care of and the experiments
have been conducted, how should the difference between the actual results and the
target results then be analysed? It helps to know the goals of the system to be able to
select substantive values. The Cranfield tests established desirable characteristics of
an IR system—precision and recall—which are at the heart of every IR evaluation.

2.2.4.1 Precision and Recall

Precision looks at how many ‘wrong’ documents were caught together with the
right ones, while recall looks at how many ‘right’ documents were missed. Both are
numbers between 0 and 1 (often expressed as percentages), where 1 is best.

Precision D number of relevant items retrieved

number of items retrieved
(2.1)

Recall D number of relevant items retrieved

number of relevant items
(2.2)

2Text REtrieval Conference (TREC), http://trec.nist.gov/.
3Conference and Labs of the Evaluation Forum (CLEF), http://www.clef-initiative.eu/.
4NII Test Collection for IR Systems (NTCIR) Project, http://research.nii.ac.jp/ntcir/index-en.html.
5Forum for Information Retrieval Evaluation (FIRE), http://www.isical.ac.in/~clia/.
6PatOlympics Interactive Patent Retrieval Competition, http://www.ir-facility.org/events/irf-
symposium/irf-symposium-2011/patolympics.

http://trec.nist.gov/
http://www.clef-initiative.eu/
http://research.nii.ac.jp/ntcir/index-en.html
http://www.isical.ac.in/~clia/
http://www.ir-facility.org/events/irf-symposium/irf-symposium-2011/patolympics
http://www.ir-facility.org/events/irf-symposium/irf-symposium-2011/patolympics
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Table 2.1 Precision is 0.67;
recall is 0.5

Relevant documents Retrieved documents

A A

B B

C E

D

Fig. 2.1 Illustrating Table 2.1: Recall compares the overlap (A, B) to the whole dark area
(A,B,C,D), precision compares the overlap to the whole white area (A, B, E)

A precision of 0.8 means that for every four correct documents in the result list
there is a mistaken one that is not relevant to the query. A recall of 0.8 on the other
hand tells you that the result list contains only 80 % of all the documents that should
have been retrieved (see also Table 2.1 and Fig. 2.1 for another example).

You can view them as measures of false positives (also known as type I error
or ˛ error) and false negatives (also known as type II error or ˇ error). They only
make sense together, as it is trivial to increase just one of them,7 and they are usually
contradictory in the sense that tools that increase precision tend to negatively affect
recall and vice versa. This is best observed if we plot a so-called precision–recall
curve as in Fig. 2.2. As the size of the retrieved set of documents increases, recall
tends to increase and precision to decrease.

For most systems, it is generally unknown which levels of recall and precision
they can achieve. For commercial search tools, no published evaluations exist. For
the academic systems that are submitted to evaluation conferences, the results must
be taken with caution. It lies in the nature of the Cranfield paradigm that the absolute
values of the evaluation measures are not meaningful by themselves. They can only

7How do you reach a ‘perfect’ recall of 1.0? Putthewholecollectionintheresultset.

How do you achieve a very high precision? Limittheresultsettojustafewdocuments.
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Fig. 2.2 Synthetic example
of a precision–recall curve

be used to compare different runs on the same test setup. Unfortunately this also
means that the results obtained at an evaluation conference in a year cannot be
directly compared to the previous year, although all the major evaluation campaigns
have maximising reproducibility as a goal [7, 8].

2.2.4.2 Beyond Precision and Recall

Recall and precision work on sets and have no notion of ranking [50]. Since ranked
result lists are a common feature of search systems and the quality of the ranking
greatly influences the quality of the result for the users, derived measures had to be
found. The precision–recall curve was one of the first to address this, as the ranking
is in fact implicit behind the two axes of the plot. How to best calculate this curve
was a matter of significant discussion since the 1960s and a well-documented report
of these earlier efforts can be found in Chap. 7 of Van Rijsbergen’s seminal book on
information retrieval [54].

The precision–recall curve, while it is still being used every now and then, does
not meet one of the initial desiderata for IR evaluation metrics: to be a single number
(in order to make comparisons between systems univocal). However, if one has two
curves and desires a single value to meaningfully compare them, one can use the
area under each curve as a measure.

Nowadays, a commonly used measure is the mean average precision (MAP).
The precision value is different depending on how far down the result list you look.
Average precision (AP) is the average of all precision values at the point where
each relevant document is found in the ranked list. MAP is the mean of the average
precisions for a group of queries, since the values can depend heavily on the queries.
MAP is an approximation of the area under the precision–recall curve [32].

Additionally, since many use cases favour recall over precision or vice versa,
metrics matching these requirements can be used. For a stronger focus on precision,
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metrics that only look at a smaller amount of documents at the top of the list are
useful, whereas for recall-oriented cases, it can help to measure the precision at a
given level of recall, which would indicate how many wrong documents the user
will encounter before the desired recall is reached. Chapter 3 of the first edition of
this book contains examples of more advanced measures.

Interested readers taking a look at the proceedings of IR conferences and eval-
uation workshops will find advanced charts and tables comparing these measures
[29, 43]. It is usually not intuitively understandable what the results ‘mean’ for
every day search tasks. Compared to the types of tasks outlined above, the Cranfield
type evaluations do not represent iterative or complex searches. It is possible to
evaluate individual supporting methodologies such as query rewriting methods by
comparing the results of the original query to the modified one, but anything that
resembles users extracting information from one result and applying it to the next
query while using information from a third source cannot be represented in this
model, although there have been recent attempts to overcome this problem [6]. In
fact, new evaluation metrics are constantly proposed and a valid question is then
what makes a good metric? The answer is threefold:

1. Appropriateness to the task: as stated before, some tasks require focus on
precision, while others on recall; the new metric must strike the right balance
for the task.

2. Metric stability: the decisions to prefer a system versus another made on two
similar test collections must, with high likelihood, coincide.

3. Ability to distinguish: the metric must be able to quantify all the differences in
two ranked lists. A (negative) example of this is indeed precision and recall: they
are not able to distinguish different rankings of the same set of documents.

2.2.5 System Characteristics

Apart from the result list, other characteristics of an IR system can be measured in
a straightforward way [32], as for example:

• Latency of showing results (as function of index size) in seconds
• Collection size (and how it is distributed over topics in megabytes or documents)
• Timeliness of the data in the collection: what is the latest date at which the index

is guaranteed to match the current version of a document

For users, the query interface and query languages are very important, but their
features cannot be captured so easily:

• Expressiveness of the query language (languages can only be ‘measured’ in terms
of feature checklists).

• Performance (speed) when using complex queries (as opposed to retrieval latency
due to index size).
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2.3 System Components and Architecture

If you wanted to build your own IR system, how would you do it? As different as
they might appear on the outside, most systems follow a similar overall architecture.

Contrary to how it is displayed in movies and on TV, or how simple desktop file
search tools work, IR systems do not start to scan all documents when you submit a
query. Instead, most of the work is performed before, at index time (‘offline’), and
only some tasks are performed live at query time (‘online’). Depending on the use
case, it makes sense to do more or less offline. Such design decisions make or break
a successful IR system.

In general, a system will have the following components:

1. Indexing
2. Querying
3. Result presentation

This section gives an overview of the main steps, the purpose and the challenges
of each part, as summarised in Fig. 2.3.

Before starting indexing, it is necessary to identify the documents that shall
be retrievable through the systems (either now or in the future), obtain them and
prepare them for indexing. This process in itself may be considerably complex,
as evidenced, for example, by the current competitive landscape in patent data
provision services. Instead, we shall briefly focus now on the final step, the
‘preparation’ for indexing.

Indexing based on the terms in a document collection requires a working
definition of ‘term’. Tokenisation is the process of splitting text into individual words
or terms. The straightforward approach of splitting at spaces and punctuation marks
can lead to problems with numbers, URLs, acronyms and the like, so more advanced
rules with exceptions, word lists and thesauri can greatly improve the performance
of the final system. Tokenisation is language specific and benefits from linguistic
knowledge: in many Asian languages, no spaces are used to separate words, which
requires advanced methods of word segmentation; German or Dutch compound
nouns also require a compound splitter.

For languages with inflection, stemming or lemmatisation is often the next step.
Stemming removes suffixes from the terms, reducing them to their core or stem
in a mechanical way (e.g. in English, removing the -ing suffix from all words).
Lemmatisation performs a similar function but taking into account even more details
about the language. Unlike stemming, which often results in simply truncated
words, lemmatisation results in the dictionary form of the term (i.e. the lemma).
Both of these processes are language specific, and while they lose a significant
amount of information that is contained in the endings (distinctions between plural
and singular, verb and noun, past and present), it makes querying easier, as the user
does not have to enumerate all possibly matching variations in the query string.



58 M. Lupu et al.

Fig. 2.3 Overview of the components of a search system, cf. [3, 32]

When the size of the index is an issue, terms that occur in practically all
documents and many sentences, such as most non-content-bearing parts of speech
(prepositions, articles, conjunctions, etc.), called stop words, can be removed from
the index, as on their own they do not add any discriminative information that
could improve the results, while making up a large portion of the size of the index.
However, it should be noted that in modern IR systems, where storage is no longer
an issue, stop words are often maintained because they play an essential role when
searching for phrases, or, as we will see later in this chapter, in defining the proper
context for semantic search.

Further processing of the word list might include checking and treating spelling,
OCR or transcription errors [25].

Finally, individual words may be compounded back together in situations where
their meaning together significantly diverges from the sum of their individual
meanings. As explained at length in Chap. 9 later in this book, patent texts often
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use so-called multi-word units or multi-word terms (e.g. central processing unit).
Nevertheless, the extent to which this phase helps or damages index performance is
still debated.

2.3.1 Indexing

The process of indexing means preparing a second, separate representation of
the documents that is optimised for retrieval. If we assume that the user will be
searching with terms as queries and will want to get all the documents that contain
these terms, it would be useful to have a list of the terms and for each term a
list of the documents where it occurs. This simple list is the so-called inverted
index, also known as postings list. It is the most basic index and at the same
time the fundamental component for every modern search engine. A conceptual,
bidirectional mapping between terms and documents is known as term-document
matrix, but in practice it is never the case that a full term-document matrix is ever
stored or used directly. The term-document matrix, as the simplest inverted index,
loses the order of the terms in the document, so if the users are to be able to search
for multi-words or phrases, or use positions of the terms with wildcards, the index
will have to store this information also [3].

The basic index can only give the information that is stored in it, so if the result
presentation should contain a snippet of the document with a highlighted search
term, this has to be taken into account and the necessary data stored in the index.
For ranked result lists, the information that is needed for the weighting of terms and
documents also has to be included in the index. See Sect. 2.4.2.1 for examples.

2.3.1.1 Fulltext, Metadata, and Other Information

Considerable amounts of content are actually of a semi-structured nature. It
contains unstructured parts such as text or images, which have to be prepared to
become searchable, as well as structured content such as dates and other document
metadata which lend themselves much easier to searching (e.g. retrieve all PDF
documents created between February 7 and 10). Should these values be searchable
together, also be prepared at the indexing step. The same is true for any additional
enhanced search methods, for example, semantic information extraction of events
and relationships. Whenever fulltext and metadata are used together, they share
between themselves the functions of filtering and ranking. For instance, we may
retrieve all documents published between certain dates and rank them on their
fulltext similarity to the query. Or, we may rank on publication date and filter on
the fulltext similarity being above a certain threshold. Rarely is it the case that a
ranking function is combining fulltext and metadata, and there are good reasons for
this absence: first, it is semantically ambiguous how the two should be combined in
a meaningful way; and second, it removes control options from the user.
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2.3.1.2 System Characteristics and Engineering Decisions

Other important distinguishing features of indexers are the indexing speed (in
documents or kilobyte per second), the resulting index size (compared to the original
documents) and whether the index can be updated when there are changes in the
collection or whether it has to be completely recreated from scratch. Querying speed
depends on how easily the index can be accessed. The index can be a single large
file, a collection of files or a database, and stored on one machine or distributed.
Complete books have been written on the engineering aspects of IR, and the topic
is vastly beyond of the scope of this chapter, but we refer the interested reader to
the slightly old but still very relevant book by Croft, Metzler and Strohman, Search
Engines: Information Retrieval in Practice [15].

2.3.2 Querying

The querying component of an IR system consists of a query parser and whatever
tools necessary to match the user’s query to what is contained in the index. A free
text query is treated similarly to the documents in the indexing step: it goes through
the same preprocessing steps as the documents to be indexed, as described at
the beginning of this section. ‘Did you mean . . . ’ suggestions can be created by
performing a spellcheck on the query or by comparing it to a list of frequent queries.

Users are generally not able to construct perfect queries. They might get close
for known-item searches, but for all other types of search, they simply cannot know
beforehand. The search system can support them with automated query rewriting.
Users often come across concepts that can be expressed in many different ways,
where they cannot know which one will lead them to the desired results. On the
other hand, many words have more than one meaning, which is clarified based on
the context of a sentence or paragraph, but remains ambiguous when used in a query.

A thesaurus can be used to improve the situation by automatically adding
synonyms to the query. But since the terms in the original query often lack context,
this will typically lead to much less precise queries, as terms from unrelated domains
are added to the query.

Since not even the most advanced algorithm will know more about the domain
context of the query than the user, another method is to perform an initial search and
then ask the user directly for feedback to the retrieved documents. The user marks
a few of the top retrieved documents as (non-)relevant, which makes it possible to
automatically modify the query in a way that finds more relevant documents, much
the same way that users would modify their queries to include and exclude items
after seeing the first results. This type of relevance feedback has been used since the
1960s and is known to be effective [42, 50].
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Sometimes user feedback is not available, so in the 1990s, pseudo-feedback was
invented. It assumes that the top documents retrieved initially are close enough to
the intended result, so that related terms can be taken from these documents to
create a second, improved query. The modified query contains related terms and
synonyms to the original query terms. The result of the second query is presented to
the user. This approach fundamentally depends on the quality of the initial query. As
it automatically learns from the top results, it intensifies the effects of the query: a
good one will be followed by more good results, and a terrible one will be followed
by even worse results. Pseudo relevance feedback is therefore to be used when there
is a fair expectation that the system will respond with a high precision, and this is
not shown to be the case for patent search.

After the documents have been retrieved, they have to be scored by whichever
model the IR system uses (see Sect. 2.4.2 for ranking models). If the result list is
constructed from different sources, they may have to be merged into one uniform
result with one overall ranking before being presented to the user (see Chap. 8 on
federated search for additional details in this situation).

2.3.3 Result Presentation

The most common presentation mode is still the linear result list. It can be sorted and
filtered (by the available metadata of the documents, such as date, size, file type). If
the underlying model does not support ranking, sorting the documents, for example,
chronologically can be useful.

The requirements for the presentation of results depend heavily on the domain.
Web search engines have evolved to provide snippets from the pages as well as
summaries, direct links to parts of the pages found, maps or images, as this saves
searcher’s time. Patent or legal searches value depth of knowledge more than time
and will not be satisfied with snippets or summaries alone and need easy access to
the full document, with highlighting of query terms or other indications of why this
document is in the result list.

Result snippets and summaries can be static (independent of the query) or
dynamic. The static ones can be created and stored at indexing time, whereas
creating dynamic summaries at query time may require access to the full document
or elaborate calculations and can be a costly operation. They can help to explain
why the document was retrieved for the particular query.

There are many quite sophisticated summarisation approaches in the area
of natural language processing. A simpler method is to show the search term
surrounded by the words that precede and follow it in the text, which is called
keyword in context or KWIC. The context can be a fixed window or adjusted to
sentence boundaries with linguistic methods [32, Chap. 8.7].
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For document collections with metadata that can be seen as a network, such as
academic publications, a visualisation of the network graph can be useful (e.g. MS
academic search uses people who have published together), whereas geographic
metadata can be visualised on maps.8

Other options include word clouds that show words that occur together (in a
document, in a group of documents, in the search results) and words that occur
more often larger.9

For browsing or explorative searches, faceted search can be very useful to get an
overview over a large result set. Facets are attributes of the documents, either given
as metadata or computed on the fly with clustering or classification algorithms. They
are well known from the user interfaces of online stores (where you can filter the
thousands of available shoes by colour, size, manufacturer, material, etc.) and act as
a kind of drill down into ‘regions’ of the result set. They are a convenient alternative
to complex search forms with multiple fields because they can be used on demand
after the query returns and only until the result set is small enough for browsing.

2.4 IR Models

So far, we spoke about the way documents are transformed from their original state
(potentially paper) into data structures which allow us to identify, with extreme effi-
ciency, which documents contain which words. We have also summarily presented
how users’ information need, equally expressed through words, is matched against
those structures. Finally, we dedicated a few words to how the results are presented.
Throughout this exposition, there was an implied assumption about what we want
to do: we want to match terms from the query to the documents. It seems beyond
discussion that this is in fact what we are supposed to be doing. Yet the science of IR
is about questioning the obvious and, in the process, creating models for relevance.
Ultimately, we will still rely on words—there is simply nothing else to rely on. Even
in the case of images, the state of the art on patent images fundamentally has to rely
on the words describing them. This section is therefore a compendiary view on the
science behind IR.

2.4.1 Boolean IR

The simplest way to consider relevance is to assume that if a document contains
a word, then it is relevant to the concept denoted by that word. Otherwise, it is
not relevant. The Boolean model is therefore clear and precise: a document either

8For example, Freepatentsonline shows inventors’ addresses on a map at http://www.
freepatentsonline.com/maps.
9http://www.wordle.net.

http://www.freepatentsonline.com/maps
http://www.freepatentsonline.com/maps
http://www.wordle.net
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matches or it does not match the query. The user is in control and has transparency
over what is retrieved. The search terms are linked with Boolean operators: AND,
OR and NOT. Using AND greatly increases precision and lowers recall, whereas
OR quickly lowers precision and increases recall.

Boolean systems are generally good for expert users with a clear understanding
of their needs and the collection, as it requires a lot of skills to come up with a
manageable number of hits. In this model, all terms are weighted equally, so it can
be quite challenging to find the sweet spot between a huge result set with too many
documents and an (almost) empty result set.

In extended versions, term proximity operators and wildcards can be used.
Boolean operations are set operations on a set of documents, which implies that
the results cannot be ranked. In practice, using some of the document metadata to
display the documents in an order (e.g., chronologically) can work very well for
many applications.

Boolean systems have dominated commercial tools for decades. In the 1990s,
Turtle [53] first showed that free text queries performed better than expert Boolean
queries on a legal document collection.

2.4.2 Ranked IR

Boolean retrieval is arguably an extremely coarse model of the user’s information
need. While it is indeed desirable to have a set of relevant documents distinct from
all other non-relevant documents, user studies have shown beyond doubt that no
such set exists: different users consider different sets. As early as the late 1960s,
Rees and Schultz [38] had reported that users agreed more with each other when
asked questions of the form ‘Which of these two documents is more relevant to the
query?’ than when asked to provide absolute judgements (e.g., ‘Is this document
relevant to the query?’). So, while for practical purposes it may be desirable to
have clear-cut sets, this is simply not how the world is. Consequently, almost
all contemporary search technologies are based on ranked retrieval, and it is the
accepted wisdom amongst the IR community that ranked retrieval is almost always
more effective than Boolean retrieval.

Ranked retrieval needs a scoring formula that can provide a numeric value of
how likely a document is useful to the searcher, of how well it matches the query.
This property makes it possible to ‘narrow’ or ‘broaden’ a search.

Before diving in into the specifics of some of the ‘classic’ IR models, let us note
that the problem of IR is related to machine learning: based on a set of features
(i.e. words in documents and query), classify a document as being of the class
‘relevant’ or ‘not relevant’. Yet the field of IR has developed in parallel to that of
machine learning, and the science of IR combines statistics with linguistics and
rarely uses generic machine learning techniques. But rarely does not mean never,
and in fact there is a sub-branch of IR called ‘learning to rank’ that has obtained
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very good results in the last decade [27]. Nowadays, with the resurgence in neural
networks research, it is generally expected that we shall see accelerated progress in
information retrieval as well [28].

Models in which word order is fundamentally disregarded are known as ‘bag of
words’ models. Most of the models we consider now are such models. However,
this does not entirely exclude the usage of word order in queries: it is more an issue
of efficiency.

2.4.2.1 Vector Space Model

A vector is a geometric object representing a direction and a length. In a two-
dimensional space, it is an arrow drawn on a sheet of paper. In a three-dimensional
space, you can visualise it as a ruler pointed at any direction around you. To describe
this ruler mathematically, we must fix a coordinate system (perhaps along the walls
and floor of the room, if we are in a rectangular room) and consider the end we
are holding to be the origin—the centre of the room. Then, our ruler is completely
described by three values, denoting the displacement of its other end with respect
to the end we are holding, along the three directions. The result is a list of numeric
values, one per dimension. The three-dimensional vector .2; 3; �1/ represents the
direction ‘two steps to the right along the x-axis, three steps ahead along the y-axis,
and 1 step down along the z-axis’ (Fig. 2.4). Any list of numbers, no matter how

Fig. 2.4 A vector in three-dimensional space: (2, 3, �1)
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long, can be viewed as a vector. The corresponding space has as many dimensions
as there are values in the vector, which might be unimaginable to humans, but
mathematically it works just the same.

The vector space model uses vectors to represent documents and queries.
The dimensions of the vectors correspond to the distinguishing features of the
documents, so if terms are what will be used for querying, then the vectors will have
as many dimensions as there are unique terms in the collection. A document’s vector
will contain a non-zero value at the slot of a term if the term occurs in the document
and zero if not [47]. These very large vectors are also very sparse, meaning that most
of their values are zero, a property which can be exploited in the implementation to
improve the data model.

In order to use such a system to score a document’s relevance to a query, the
query is treated as a small document, and a vector is created for it at query time. The
similarity between the query and a document is then assumed to correspond to some
property of the angle—typically the cosine—between their vectors. This approach
is very useful for ranking the search results because it can represent a continuous
degree of similarity. The cosine, for example, is 1 for equal documents and 0 for
documents that have nothing in common.

This technique works for all kinds of data that can be represented as vectors
(images, music, network graphs, molecule structures) and is useful also for classifi-
cation and clustering.

Term Weighting: tf.idf

For this model to work, some numbers have to be inserted. Which values should be
used for the non-zero values in the term vectors? Zeros and ones, or how often the
term occurs in the document? Should they be normalised in any way?

Typically, tf.idf or one of the many values derived from it is used. Tf.idf, the ratio
of term frequency to document frequency, reflects the searcher trying to find terms
that are rare overall (discriminative) but frequent in the requested document.

term frequency

document frequency
D tf

df
D tf:idf (2.3)

The document frequency (df) of a term is the number of documents in the
collection in which the term occurs. Each term has one df for the whole collection.
The term frequency (tf) of a term is given the number of times a term occurs in a
document. A term therefore has one tf per document in the collection. The formula
above is just an exemplification. In reality, the formulas tend to be slightly more
complex, but the idea remains the same: directly proportional to the tf (importance
of term in the document) and inversely proportional with df (commonality of term
in collection): if a term is rare throughout the whole collection, its df and tf are
small and the tf.idf for all documents is similar. If it is rare overall but frequent in
a single document, its df is still small, but the tf for that document is large, making
the tf.idf larger.
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All similarity depends on the keywords, so this approach is sensitive to vocabu-
lary differences and the preprocessing of the documents (see Sects. 2.3.1 and 2.3.2).
It assumes that the frequencies are independent and disregards the order of the
terms in the documents. It can be extended with phrase search, wildcards and
(quasi-) Boolean operators though.

Other Vector Operations

As mentioned in the section about querying above, using the terms that occur
in the documents directly for searching means a lot of noise and ambiguities
caused by synonyms,10 and polysems11 are introduced. Latent semantic indexing
[17] is a strategy that uses matrix computation methods to resolve some of the
problems caused by synonyms. A (computationally expensive) multistep process
on the term-document matrix (i.e. the set of document vectors) finds a much
smaller approximation to the original matrix that replaces the terms with ‘concepts’,
grouping terms with similar semantics [18]. The method was patented in 1988
(US Patent 4,839,853, [16]). Latent semantic indexing is a statistical approach to
detecting semantic information in unstructured text. Section 2.5 contains more on
semantic methods in general.

2.4.2.2 Probabilistic Models

Probabilistic methods are based on the idea that it is possible to estimate the
probability of a term appearing in a relevant document if you have some known
relevant and non-relevant documents. Probabilistic IR is somewhat similar to the
approach taken with the vector space model, in that they are generally based on the
bag of words approach, but based on the sound foundation of probability theory.
The documents can be ranked by their probability of being relevant to the query:

Probability.document is relevant to the queryjdocument; query/

Probabilistic Relevance Framework

One of the fundamental ways of thinking probabilistically about information
retrieval is the Probabilistic Relevance Framework [41]. It is the so-called classical
probabilistic model because it has its roots Maron and Kuhns [33] in the early 1960s
and later in that of Van Rijsbergen [54] and Spark Jones [21]. Its most conspicuous
advocate is however Robertson [39].

10Several words for one meaning.
11One word with several meanings.
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As discussed above in this chapter, documents and queries are transformed to
some common representation and then compared. This comparison, while it may,
mathematically, be very precise (e.g. comparing two vectors is well defined and for
any distance function we will have a deterministic output), is in reality unavoidably
subjected to the uncertainty of language. Mathematically, the only way we can
quantify and work with uncertainty are probabilities.

The Probabilistic Relevance Framework (PRF) ranks the documents by the
estimated probability that a hidden random variable R takes one of the two values
(some authors use 1/0, others r/Nr or even l/Nl to denote relevance and not relevance).
Estimating this probability for information retrieval consists of fundamentally two
steps:

1. Finding measurable statistics that we consider indicative of relevance (e.g. term
frequency, collection frequency)

2. Combining these statistics to estimate the probability of a document’s relevance
to the query

The affability of the PRF derives from the probability ranking principle, first pub-
licly formulated by Robertson [39], but credited by him to private communication
with W. Cooper of the University of California at Berkeley, and first hinted at by
Maron and Kuhns:

If a reference retrieval system’s response to each request is a ranking of the documents in
the collections in order of decreasing probability of usefulness to the user who submitted
the request, where the probabilities are estimated as accurately as possible on the basis
of whatever data has been made available to the system for this purpose, then overall
effectiveness of the system to its users will be the best that is obtained on the basis of
this data.

The methods developed as a consequence of this principle, while often restricted
to statistics that come out of the text, are not bound to this limitation. As the principle
states, we can base this calculation on ‘whatever data has been made available to the
system’. In the Web domain this freedom has been used to combine, for instance,
Roberston’s BM25 Relevance Status Value with PageRank [41], thereby defining
relevance as a combination of topical relevance and importance in a network.

The Probabilistic Relevance Framework, as extensively described most recently
by Robertson and Zaragoza [41], assumes that the term frequency of individual
words is generated by the composition of two Poisson distributions: one for the
occurrence of the term and one of the term being elite or not (where by elite,
Roberston denotes those terms that bear the meaning of documents). However, as
the two Poisson distributions are in practice impossible to estimate accurately, the
weight of each term t in a document d is approximated by

wt D log
jDj � dft C 0:5

dft C 0:5
� tft;d

k1 C tft;d
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Since BM25 does not use the cosine similarity (there are no vectors), a length
normalisation is directly applied on the term frequency component. Thus, a score
is computed for each document d and query q as follows:

S.q; d/ D
X

t2Td\Tq

.k3 C 1/tft;q

k3 C tft;q

.k1 C 1/tft;d

k1 C tft;d

log
jDj C 0:5

dft C 0:5
(2.4)

where

tft;d D tft;d

B
B D .1 � b/ C b

Ld

avgdl

where tft;q and tft;d are the term frequency of a term in the query and the document,
Tq and Td are the set of unique terms in the query and the document, jDj is the total
number of documents in the collection, Ld is the length of document d (i.e. number
of tokens) and avgdl is the average length of a document in the collection. This
scoring method is widely known as BM25.

Language Modelling

In addition to the Probabilistic Relevance Framework mentioned above, language
modelling [37] and divergence from randomness [1] are also part of the probabilistic
category of models. Amongst them, language modelling has received most of the
attention of the community.

The original model introduced by Ponte and Croft in 1998 [37] (although similar
ideas were developed in parallel by other researchers) is commonly known as the
document likelihood model because it calculates the likelihood that the document
before us is generated from a model constructed based on the query. Conceptually,
the idea is that the user has a knowledge model in mind, from which it randomly
outputs a set of keywords (the query), and the task of the system is to calculate the
probability that the same knowledge model would have resulted in the set of words
that the document consists of. We can then rank the documents in decreasing order
of this likelihood. Subsequent iterations of this have turned it around (i.e. computing
a query likelihood based on a document of the model) or otherwise extended the
probabilistic reasoning.

While they are conceptually different (most notably with respect to the proba-
bility spaces in which they operate), there is a strong relationship between the PRF
and language modelling [26]. Language modelling methods are very sensitive to
parameter tuning. As Zhai [56] pointed out:

This may be the reason why language models have not yet been able to outperform well-
tuned full-fledged traditional methods consistently and convincingly in TREC evaluation.
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This is probably why, when Lucene,12 in its 6th version released in 2015, changed
its scoring function, it went for PRF’s BM25 rather than language modelling as
the default scoring method. Nevertheless, it has been repeatedly shown that, under
careful optimisation, language modelling is the current state of the art.

2.5 Semantic Search

Semantic technology is the subject of many hopes, as it can allow search systems
to take (some of) the meaning of the words into account, as opposed to ‘just
counting’ them. If applicable to the domain and done successfully, it can be expected
to improve recall while keeping precision at least constant if not also increasing
precision [32]. The requirements are a suitable information representation and the
ability to perform natural language processing.

There are two interpretations of ‘semantic’ that are confusingly used in search
technologies:

• Statistical: considering the context of occurrence of terms in documents,
grounded in Wittgenstein’s Philosophical Investigations [55] about the meaning
of words.

• Explicit: taking advantage of manually created knowledge resources

In terms of statistical semantics, we have already mentioned latent semantic
analysis. Later we have random indexing [46] and, most recently, a variety of
neural network approaches. All of them are essentially grounded in Wittgenstein’s
observation that the meaning is defined by usage. For instance, the following three
sentences ‘He drives a car’,‘He drives a truck’ and‘He drives a bus’ should lead
us to believe that car, truck and bus are semantically related. As humans we would
acknowledge that yes these are things that can be driven, but that is irrelevant for
the computer: the simple fact that they appear in similar contexts is important.

In the other category, knowledge bases (ontologies, thesauri and taxonomies) rep-
resent concepts and relationships—usually within a subject area—that a community
can agree on. They are used to classify, structure, define or represent, and have the
additional value of aiding cross-language interoperability and are often created for
company-specific data. They can be used in semantic search for query expansion,
searching by concepts instead of terms, as well as broadening or narrowing a search.

Controlled vocabulary/glossary: A list of terms and definitions. Used to reduce
the variability of terminology use.

Taxonomy: A knowledge hierarchy where items are connected to each other by
parent–child, part-of or instance-of relationships. Classification hierarchies like
the International Patent Classification (IPC) are a kind of taxonomy.

12http://lucene.apache.org.

http://lucene.apache.org
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Thesaurus: A network of terms connected by hierarchical, equivalence or asso-
ciative relationships. Synonym dictionaries used by patent searchers are a kind
of thesaurus.

Ontology: A taxonomy with multiple, precisely defined links between the items
that represents knowledge as a set of concepts and their relationships. Different
kinds of ontologies are suitable for different purposes (reasoning on the data,
fuzzy search, etc.)

Information extraction is the identification of facts from unstructured text, so
that knowledge bases can be built with little or no human effort. It depends
in part on named entity recognition which uses lists of known multi-words (as
found in dictionaries, thesauri, ontologies, taxonomies) to recognise entities such as
places, organisations, persons and events in text documents [50]. Relation extraction
finds the relationships between entities (person [works at] organisation). These
feats can be accomplished with pattern-based, with statistical (as described in
Sect. 2.4.2.1 above for latent semantic indexing), or with hybrid methods. State-of-
the-art systems have some ability to deal with previously unseen terms, and named
entity recognition has proved itself ready for deployment in industrial settings,
like business intelligence. Given the prevalence in patents of complex and newly
coined and variant technical terminology, company names and so on, named entity
recognition is likely to have an important place in future patent search systems.

2.6 Outlook

To summarise the preceding sections, the key characteristics of information retrieval
are:

• Unstructured information, mostly semi-structured data
• No right answers (except for known-item search)
• Separation of indexing and query time processing: offline (crawl/index time) vs

online (query time) processing
• Strong empirical method, reproducibility and evaluation required

What this means for applications such as patent search is the subject of the rest
of this book. As outlined in [5], there are indications that iterative search is coming
into focus, as newer methodologies such as faceted search or clustering features
are becoming more common. However, while progress has been made in the past 5
years, iterative search and its effectiveness evaluation remain on the TODO list of
the research community as well as on that of the industry.

A survey conducted in 2010 [2, 20] compared the features offered by open-
source IR systems (from the more academic to industry-strength systems) to the
features that are important to patent searchers. While options of the query languages
(which depend on the underlying IR models and their extensions) such as wildcards,
field operators or proximity search are well covered, requirements related to the
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iterative and explorative nature of the search process (which would require greater
changes to the whole system) were found to be not covered at all. Functionalities
such as combining multiple queries or results, keyword highlighting in the results or
grouping the documents by non-explicit metadata like patent families are missing
and have to be implemented outside of the core applications.
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Part II
Evaluating Patent Retrieval

As was noted in the previous chapter, information retrieval (IR) as a scientific
subject is characterised by a strongly empirical approach, backed up by a rigorous
approach to experimental methodology.

A key question for anyone selecting systems to search patents is whether one
system or another is better for their purpose. A core value of information retrieval
as an academic subject is that “improvements” in systems must be rigorously tested,
to determine whether they actually deliver better results than previous systems. This
has led to the development of thorough empirical methods in information retrieval,
which have influenced commercial practice of well-known search companies, like
Google, as well as academic practice in formal international evaluation campaigns,
like NTCIR, TREC and CLEF.

Compared to the first edition of the book, this part contains one completely
new chapter, two significantly updated chapters and one reproduced chapter. It will
begin with two chapters dedicated to patent evaluation campaigns, followed by two
chapters discussing complementary issues from the perspective of patent searchers
and from the perspective of related domains, notably legal search.

The first, contributed by a wide set of authors spanning three continents, gives
an overview of the patent-related evaluation campaigns organised in the context of
NTCIR in Japan. It will cover not only the retrieval part but also the other issues that
NTCIR addressed over the years, such as translation, classification and text mining.
The reader will find here the most up-to-date information about academic work in
the area of East Asian languages for the patent domain.

The next chapter describes the CLEF-IP evaluation campaign, which took place
in Europe until 2013, focusing specifically on the evaluation efforts of the last 3
years, after the publication of the first edition of this book. During those 3 years,
the CLEF-IP team expanded significantly into other tasks than prior art: passage
retrieval, chemical structure identification and flow chart retrieval.

An important assumption in IR evaluation is that we are trying to measure the
effectiveness of the search system (indexer, query processor etc.) Independently
of the data being searched. In practice, for most operational trials (as Trippe and
Ruthven call them) of commercial patent search services, one cannot distinguish
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the issues in the quality of the search system from issues in the quality of the
underlying data feeds. This issue, which goes beyond the scope of this volume,
perhaps deserves more thought in the patent search community. On one hand, the
IR scientists need to adapt their evaluation measures and methods, or to create
new ones, for the issues specific to this domain. On the other, professional patent
searchers, as well as commercial vendors, must make their processes more easily
subjected to an objective, scientific evaluation.

Finally, this part concludes with a revised chapter by Tomlinson and Hedin
taking a look at efforts done to understand search in a similar domain: e-Discovery.
Based on the TREC Legal Track, we see that contemporary search technologies
can outperform Boolean models, but also learn of the many pitfalls of evaluating
systems expected to return a large number of documents. The authors discuss ways
to estimate recall, precision and the F1 measure based on a manageable amount of
human evaluation and point out the extreme effects that human assessment error can
have on these estimations.



Chapter 3
Patent-Related Tasks at NTCIR

Mihai Lupu, Atsushi Fujii, Douglas W. Oard, Makoto Iwayama,
and Noriko Kando

Abstract The NII Testbeds and Community for Information access Research
(NTCIR) has been the first benchmarking campaign that created a test collection
specifically for patent retrieval, in 2001/2002. Over the course of just over a decade,
organisers and participants at NTCIR patent-related challenges have addressed
the problem of mono- and multilingual patent search and automated translation.
In doing so, the only available East Asian language patent test collections have
been created and made publicly available for research purposes. This chapter
provides a reference summary of the efforts undertaken in NTCIR, helping the
reader understand the challenges addressed, the datasets created and the solutions
observed.

3.1 Introduction

The current NTCIR Conference, an event occurring every 18 months attracting
researchers interested in the evaluation of information access technologies from
Japan, Asia and the world, started as the NTCIR Workshop in 1999, co-sponsored
by the National Center for Science Information Systems (NACSIS), the former
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organisation of the National Institute of Informatics (NII) and the Japan Society
for the Promotion of Science. Its goals, as stated in the first edition, are:

• To encourage research in information retrieval (IR), cross-lingual information
retrieval and related areas by providing a large-scale Japanese test collection and
a common evaluation setting that allows cross-system comparison

• To provide a forum for research groups interested in comparing results and
exchanging research ideas and opinions in an informal atmosphere

• To improve the quality of the test collections based on feedback from participants
• To investigate methods for constructing a large-scale test collection and corpus

including Japanese text and evaluation methods

Hereafter, the notation NTCIR-X is used to refer to the Xth running of NTCIR
workshop.

In NTCIR-1 and NTCIR-2, academic research abstracts and newspaper articles
were used to produce test collections. In NTCIR-3, the use of Web pages and patents
was introduced. The use of patents in information retrieval research dates back to at
least the 1970s, with 76 US patents [3] being used to evaluate the effectiveness of
local feedback techniques.

Since then, a number of research papers on the processing of patents have
been published, but they have been relatively infrequent in the field of information
processing. In spite of its importance to science, engineering and industry, it was
not until the NTCIR initiated a patent retrieval task that patent processing became a
focus of interest for the information retrieval (IR) and natural language processing
(NLP) research communities. The problem was partially that, unlike Web searching,
for which researchers are also users, researchers had difficulty formulating problems
and requirements related to the business of real-world patents (see Chap. 1 for details
of the patent business).

In pursuing their research interests, researchers are often tempted to propose a
fully automated system that does not allow for user involvement. Conversely, in
practical situations, a user might wish to adapt the system to a particular working
environment. To maintain a reasonable balance between these objectives, the
organisers of the patent-related tasks have had occasional round-table conferences
with patent attorneys, examiners and searchers, as well as researchers and engineers.
This chapter is devoted to these pioneering efforts of the NTCIR to define new
models for the use of patents in academic research fields.

The remainder of this chapter is organised as follows. Section 3.2 is a brief
history of the patent-related tasks at the NTCIR. Section 3.3 describes the available
test collections, while Sect. 3.4 provides details of experiments and subsequent
observations. Each of these latter two sections is subdivided into four subsections:
retrieval, classification, text mining and machine translation. Finally, Sect. 3.5
provides a short summary.
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3.2 History of the Patent-Related Tasks at the NTCIR

3.2.1 Preliminaries

In 2000, the Workshop on Patent Retrieval was colocated with the ACM SIGIR
conference on Research and Development in Information Retrieval [30]. The
purpose of this workshop was to provide a forum for researchers and practitioners
associated with patent retrieval to exchange their knowledge and experiences from
different perspectives, which included operational systems, research issues and
evaluation methodologies. The outcome of this workshop motivated researchers
involved in the NTCIR to foster research and development in patent retrieval by
means of a large, practical test collection.

3.2.2 NTCIR-3 (2001–2002)

As the first trial for patent retrieval, a technology survey task was performed, in
which patents related to a specific technology, such as ‘blue light-emitting diode’,
could be searched for [26]. Because patent retrieval was a new research area for
the NTCIR community at that time, developing a completely new task was too
ambitious. Instead, the target collection was changed to a manageable number of
patent documents while maintaining the retrieval task itself. Each search topic was
a newspaper clipping related to a specific technology, and the document collection
comprised unexamined Japanese patent applications over a 2-year period.

3.2.3 NTCIR-4 (2003–2004)

NTCIR-3 demonstrated the feasibility of using existing IR techniques via its tech-
nology survey task. In NTCIR-4, therefore, a patent-specific task was performed,
namely, invalidity search, in which prior art related to a patent application was
searched for [11]. Apart from academic research, invalidity searches are performed
by examiners in government patent offices and investigators in the intellectual
property divisions of private companies. Each search topic was a claim in a patent
application that had been rejected by the Japan Patent Office (JPO). The document
collection was extended to unexamined patent applications over 5 years because,
compared with the technology survey task, an invalidity search usually requires a
larger number of documents for investigative purposes. For each topic, the citations
provided by JPO examiners and prior art patents found by human experts were
used as relevant documents. In preparation for NTCIR-4, the organisers arranged
a tutorial on patent retrieval by an ex-patent examiner and searcher to guide
participants in the new task.
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In addition, a patent map generation task was performed. This called for inter-
patent analysis to organise patent documents in specific technology fields. However,
because systematic evaluation is inherently difficult, and although human experts
subjectively assessed the patent maps generated by automatic methods, a reusable
test collection and a systematic evaluation method for patent map generation have
yet to be established.

3.2.4 NTCIR-5 (2004–2005)

In NTCIR-5, three patent-related tasks were performed [13]. First, as in NTCIR-4,
an invalidity search was performed, but using only citations provided by JPO
examiners as the relevant documents. The size of the document collection was
increased to comprise unexamined Japanese patent applications over 10 years. By
this stage, the size of the document collection was no longer problematic for most
of the active participants in the NTCIR.

Second, because patent documents are lengthy, it is useful to point out significant
fragments (‘passages’) in a relevant patent. Therefore, passage retrieval was also
performed. Each search topic involved a relevant patent for the accompanying
invalidity search, and the target for each topic was the set of all passages in the
topic patent. The relevant passages were those that provided grounds for judging
whether the patent was relevant.

Finally, patent classification was also performed [27]. The target documents were
patent applications submitted to the JPO over 2 years, and the correct classification
codes were determined according to a multidimensional classification system called
‘F-term’ [45]. The patents, already classified into technological fields, were further
classified in terms of one or more viewpoints, such as ‘purpose’, ‘function’ and
‘effect’.

3.2.5 NTCIR-6 (2006–2007)

In NTCIR-6, both invalidity search [15] and F-term classification [29] were again
performed. In the invalidity search, patent documents published over a 10-year
period by the JPO and the US Patent and Trademark Office (USPTO) were
independently used as target document collections. Having explored patent retrieval
issues for 7 years, the organisers determined that the patent retrieval task could be
concluded. Figure 3.1 shows a summary of the patent retrieval tasks from NTCIR-3
to NTCIR-6. In Fig. 3.1, only the major datasets are shown. In addition to the 10
years’ worth of data in the JPO and USPTO collections being a representative
dataset for the patent retrieval task, it appeared to have great potential for the
exploration of other patent-related research fields.
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NTCIR-3 NTCIR-4 NTCIR-5 NTCIR-6
Task Technology

survey
Invalidity search

Documents JPO unexamined application USPTO
grant

2 years 5 years 10 years
Relevance By expert searcher Cited
judgment Citation patent

Cross-lingual patent retrieval
Related task Patent Passage

map retrieval
generation F-term classification

Fig. 3.1 Overview of the patent retrieval tasks at NTCIR

3.2.6 NTCIR-7 and NTCIR-8 (2007–2010)

In NTCIR-7, the organisers for the patent retrieval task determined to address other
issues in patent processing, namely, machine translation (MT) and text mining. For
each of these tasks, a number of researchers related to the topic were invited to join
the organising team.

For the patent MT task in NTCIR-7 [16], the 10 years of data in the JPO and
USPTO patent collections, which had progressively been enhanced from NTCIR-
3 to NTCIR-6, were used to produce a Japanese–English (J–E) parallel corpus
for training purposes. After extracting patent families, each of which is a set of
patent documents for the same inventions usually in more than one language, pairs
of sentences in J–E were identified automatically. Whereas NTCIR-7 involved
approximately 1.8 million J–E sentence pairs, the number expanded to approx-
imately 3.2 million in NTCIR-8 [17], with an additional 5 years of JPO and
USPTO patent documents. This is one of the largest bilingual sentence-aligned
corpora available to the public. In preparation for NTCIR-7, the organisers invited
prospective participants to a hands-on MT tutorial aimed at guiding them in the new
task.

The patent mining tasks in NTCIR-7 [38] and NTCIR-8 [40] were aimed
at summarising and visualising patents and research papers in multidimensional
technical trend maps, which resembled the patent map generation task in NTCIR-4.
However, here, the evaluation and analysis were more systematic and thorough.
The tasks involved categorising research abstracts based on the International Patent
Classification (IPC) so that they could be associated with patents. The 10 years of
data in the JPO and USPTO patent collections were used to train a classifier that
could assign one or more IPC codes to a given document.
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3.2.7 NTCIR-9 and NTCIR-10 (2010–2013)

In NTCIR-9 [20] and NTCIR-10 [21], the patent MT task was the only patent-
related task. Although the J–E bilingual corpus was the same as in NTCIR-8,
patent documents in Chinese were also used for training and testing purposes. These
comprised approximately one million English–Chinese sentence pairs. The partici-
pation of world-leading research groups made possible exhaustive comparisons of
different systems under different conditions. One remarkable finding was that the
evaluation results for statistical MT were comparable with or even better than that
for commercial rule-based MT systems, under particular conditions.

3.2.8 Summary

Although the patent-related activity at the NTCIR has ended after 13 years, the large
collection of patent documents in Japanese and English has been made available to
the public. Currently, the Chinese–English sentence pairs are also available, but for
a fee. Figure 3.2 shows a summary of the MT and text mining tasks from NTCIR-7
to NTCIR-10. As in Fig. 3.1, Fig. 3.2 shows only the major datasets. Details of all
the datasets and evaluations are presented in subsequent sections.

The organisers of the patent retrieval tasks also organised the ACL 2003 Work-
shop on Patent Corpus Processing and edited a special issue on patent processing in
Information Processing & Management [14]. All of these activities have contributed
to establishing research trends in the IR and NLP communities and increasing the
number of publications related to patent processing (including this chapter). A list of
publications related to patent information processing is maintained, with occasional
updating, at the following URL: http://www.cl.cs.titech.ac.jp/~fujii/pat_proc_pub.
html.

Fig. 3.2 Overview of the
machine translation and text
mining tasks at NTCIR

NTCIR-7 NTCIR-8 NTCIR-9 NTCIR-10
Task Machine translation

Document JPO application & USPTO grant
Chinese

Sentence 1M E-C
pair 1.8M J-E 3.2M J-E

NTCIR-7 NTCIR-8
Task Text mining

Purpose IPC-based classification
Technical trend map

Document Scientific abstract creation

JPO application & USPTO grant

http://www.cl.cs.titech.ac.jp/~fujii/pat_proc_pub.html
http://www.cl.cs.titech.ac.jp/~fujii/pat_proc_pub.html
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3.3 Data Collections and Tools

3.3.1 Retrieval

The patent retrieval task was executed between NTCIR-3 (2001) and NTCIR-6
(2007), thus spanning four editions of NTCIR.

The first test collection consists of approximately 700;000 full-text unexamined
(at that time) patent applications from the Japan Patent Office (JPO) as well as
approximately 1.7 mil. Japanese patent abstracts and their translations in English.
Thirty-one topics have been created for this first evaluation exercise, based on
newspaper articles. Each topic was available in traditional and simplified Chinese,
Korean, Japanese and English.

The following year, a new collection was released, complementing the existing
dataset with more full-text Japanese patent applications as well as more English
abstracts, but removing the Japanese version of the abstract subset [12]. The set
of topics was also increased to 101 and selected in a different way. The 2001 topics
were taken from newspaper articles, but for 2003 each topic is a claim extracted from
Japanese patent applications. For 34 of the 101 (the so-called main topics), manual
assessments are available. They were created by a total of 12 experts, members of
the Japan Intellectual Property Association (JIPA). For the remaining 67 topics (the
so-called additional topics), only the citations recorded in the search reports from
the Japan Patent Office are used.

For NTCIR-5 the collection was further increased to 3.5 mil English abstracts
of Japanese patents and the corresponding 3.5 million Japanese full-text patent
applications, covering 10 years of patent data from the JPO (Japan Patent Office).
The full-text Japanese subset includes the entire text provided by the JPO except
diagrams. In addition to the 34 main topics from NTCIR-4, that year’s test collection
includes 1189 new topics, of a similar nature (i.e. a claim from an existing
application), and is evaluated based on the existing search reports (i.e. the same
as the 67 additional topics from the previous year). All topics were originally in
Japanese, but manual translations to English are provided by the organisers.

In addition to document retrieval, NTCIR-5 introduced a passage retrieval task,
where the participants are asked to identify relevant paragraphs in 356 of the 378
documents relevant to the 34 main topics mentioned above. The 22 documents
excluded passages consisting of images or diagrams—not retrievable by text search
engines. The task benefits from a clear determination of passages in documents,
given by the nature of their format, as well as from the exhaustive relevance
evaluation at passage level done in the previous year by the 12 human assessors.
The design of the task models an invalidity search [13]. The organisers provided 41
topics, of which 7 were used for training (dry-run) and the remaining 34 for testing.

Finally, NTCIR-6, the last year when a patent retrieval collection was made
available, maintained the set from the previous iteration and added 1.3 million
English full-text granted patents from the USPTO (United States Patent and
Trademark Office). NTCIR-6 adds 1685 new Japanese topics to the already existing
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set of 1243 topics, all consisting of the first claim of a Japanese patent application.
Additionally, it adds a completely new set of 3221 English topics, each consisting
of one claim from a USPTO patent.

For all topics in these test collections, NTCIR provides graded relevance
judgements, with three or four levels of relevance.

3.3.2 Classification

In two of its editions (2005, 2007), NTCIR also organised a patent classification task
in parallel to the retrieval task mentioned above. The data collection is of course the
same, and only the task definition changes, as well as the topics.

As a Japanese-led evaluation effort, NTCIR created patent classification tasks
against the classifications used at the Japan Patent Office (JPO), namely, the F-terms
(file forming terms). The reader may of course be aware that JPO also uses a file
index (FI) classification, which is an extension of the IPC (International Patent
Classification). Efforts on classifying against the IPC have been reported as early
as 2003 [6] and have been evaluated extensively in the CLEF-IP track discussed in
Chap. 4. Unlike the FI, F-terms are less dependent on the IPC. As indicated on the
JPO website, ‘F-terms re-classify or further segment each specific technical field of
IPC from a variety of viewpoints (i.e. objective, application, structure, material,
manufacturing process, processing and operation method, control method, etc.).
Combining F-terms with IPC effectively narrows down relevant documents in prior
art search’. The essential difference compared to the IPC is that F-terms, in addition
to a five-digit theme code which could essentially be compared to the IPC subclasses
or groups (there are about 1800 theme codes), add a four-character term code which
is composed of a two-character viewpoint symbol and a two-digit numerical code.
Optionally, an additional one-character extension code can be added to the F-term.
Table 3.1 shows a small subset of the F-term information for Theme 2H050 (optical
fibre cores).

In NTCIR-5 there are 2008 patent applications to be classified according to
theme and 500 to be classified according to the F-term. The task follows closely
the behaviour of patent experts in performing their classification according to the
JPO practice: first a theme classification, assigning the application in one of the
technology themes defined by the JPO (e.g. 2H050 in Table 3.1), and then a more
refined classification within each theme, indicated by a term code (e.g. AB02, BB22
in Table 3.1).

NTCIR-6 continued the experiments on classification by asking participants to
classify 21;606 patent applications, but only against the F-terms (i.e. provided the
themes for each application).
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3.3.3 Text Mining

After the initial classification tasks of NTCIR-5 and NTCIR-6, NTCIR-7 and
NTCIR-8 expanded the scope from classification alone to classification plus (in
NTCIR-8) extraction, and the combination was referred to collectively as the ‘patent
mining’ task. In contrast to the original classification task in which the objective
was to assign theme and F-term codes to patents, the classification task in patent
mining is to classify a set of abstracts from research papers according to the IPC.
The abstracts to be classified are English and Japanese abstracts of papers presented
at conferences in Japan between 1988 and 1999. These abstracts had been originally
used for retrieval experiments in the first two editions of NTCIR: NTCIR-1 provided
about 300;000 abstracts published between 1988 and 1997, of which over 150;000

are in both languages, while NTCIR-2 provided about 530;000 abstracts from 1997
to 1999 and extended summaries of grant reports for the entire period (1988–1999).
In this second collection, about 400;000 of the abstracts and extended summaries
are in Japanese and the rest in English.

NTCIR-7 provides 1956 topics chosen from among the research articles (divided
evenly between English and Japanese). For each of them, a set of IPCs is used
as ground truth. For 1050 topics, the IPCs are highly relevant, while for the rest
they are relevant but not highly relevant. Expertise in patent laws was used to
identify potentially correct IPC codes for each topic in an efficient manner. In
Japanese patent law, an applicant is not granted a patent for an invention available
to the public. However, Article 30 permits a 6-month grace period during which an
invention will not lose its novelty if the disclosure was made by an inventor through
publication for a designated association. Patent applications filed by means of this
exception must indicate the name of the publication and when the invention claimed
was disclosed.

From the 10 years’ worth of JPO documents, more than 9000 applications
via Article 30 were collected automatically and then associated manually with
the corresponding research abstract. The manual verification step was necessary
because details of the disclosure contain only the name of the journal or proceedings
and the date of publication, but the authors and titles of the paper are not available.
In summary, for each topic, the IPC codes assigned with the corresponding research
abstract were used as the correct answers, with the average number of correct IPC
codes per topic being 2.3.

The same patent mining classification task as NTCIR-7 was repeated at NTCIR-8
using the same test collection. In addition, the NTCIR-8 patent mining task also
added an extraction subtask called technical map creation. This is a very ambitious
task, as it requires the participants to extract ‘technology’, ‘effect’, ‘attribute’ and
‘value’ entities from the plain text of the patents and research articles in Japanese
and English. A total of 2000 documents were manually analysed and annotated (500
for each of the four types of documents). Half are provided as training data, 10 %
for the ‘dry run’ and the remaining 40 % for the test itself.
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3.3.4 Machine Translation

Starting from 2008, NTCIR introduced a machine translation benchmark, based
on the existing sets of patent data. For NTCIR-7 the training data consists of 1.8
million Japanese–English sentence pairs, while the test set consists of 1381. The
gold standard for intrinsic measurement of translation accuracy is inherent in the
paired sentences, and participants could use either language as the source language
and the other as the target language. Additionally, a set of 124 search topics from
the previous year (i.e. claims from Japanese patent applications) were provided to
participants, together with manual translations of those topics into English. Cross-
lingual retrieval results obtained with English queries are then used as a basis
for extrinsic evaluation by assessing the effect of different automated translation
techniques on the mean average precision (MAP) for the retrieval of Japanese
patents.

For NTCIR-8 the collection was expanded with patent applications from JPO and
granted patents from USPTO up to and including 2007, reaching over five million
Japanese and over two million English documents. Consequently, the training set
increased to 3.2 million Japanese–English sentence pairs extracted from the 1993 to
2005 subcollections of JPO and USPTO patent documents. The test data is different
compared to the previous year: 1251 Japanese–English and 1119 English–Japanese
aligned sentence pairs are provided to participants, to make sure that the analysis can
identify any difference in performance due to the original language of the sentences.
As in the previous year, evaluation is done both intrinsically based on the BLUE
score and extrinsically using 91 of the NTCIR-6 topics.

Chinese was added to the machine translation collection of NTCIR-9, though the
training data was initially only available to registered participants. Currently, the
Chinese–English sentence pairs are also available, but for a fee. About one million
Chinese–English sentence pairs were made available for training, and participants
had to provide translations for 2000 Chinese sentences. For the English–Japanese
and Japanese–English subtasks, the training data for NTCIR-9 remained the same
as in the previous edition, and for each of the direction, the test data consisted of
2000 sentences to be translated.

3.4 Experiments and Observations

Now that we have an overview of all the available patent-related data generated
and made available in the context of NTCIR events between 2000 and 2014, we
can look at some of the results obtained over the years. In each of the following
sections, we first review the ground truth creation and then summarise the results.
This is intended to put into context those results and to allow the reader a critical
perspective on the observations.
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3.4.1 Retrieval

For retrieval experiments, we further need to subdivide the analysis in three
categories: monolingual document retrieval, monolingual passage retrieval and
cross-lingual document retrieval.

3.4.1.1 Monolingual

When discussing the results of the retrieval tasks, it is worth making a distinction
between the experiments of NTCIR-3 and those that came afterwards. Such a
distinction is necessary because of the different nature of the retrieval tasks.
NTCIR-3 considered patent retrieval from the perspective of a technically savvy
user who is not necessarily a patent examiner. To model that, the trigger for
the request for information is a newspaper article, and the expected results are
related patents that may provide additional information about the item described
in the article. For NTCIR-4, NTCIR-5 and NTCIR-6, the user modelled is a patent
examiner tasked with identifying other patents that may invalidate a specific claim
of a given patent application.

News Article-Based Task

This particular task and its corresponding topics are quite different from everything
else that happened afterwards in evaluation campaigns that focused on patent
documents, with the exception perhaps of the TREC Chemical Retrieval track [35],
which also had a ‘technology survey’ task focusing on the type of information
requests specific to a technical user who is not necessarily a patent examiner.

An example topic can be found in the final report of the NTCIR-3 patent
retrieval task [26], but it essentially contains a title, the headline and the text of the
article that triggered the request for information; a description and narrative in their
traditional TREC meaning, as well as a set of concepts pertinent to the topic; and a
‘supplement’ with more information about what should be considered relevant.

The top performing system focused on reweighting the terms based on their
statistics in the different collections (patents vs newspaper articles). The insight is
based on the observation that the nature of the texts is significantly different and
therefore the weighting of the terms should take into account the frequency of terms
in the two collections. The authors called this ‘term distillation’ [25], but essentially
it is the explicit combination of a weight based on the domain of the query (i.e.
articles) and that of the target document (i.e. patents). The issue of terminology has
been later revisited and confirmed by Nanba et al. [39], Mahdabi et al. [36] and
Andersson et al. [1], so it appears to be a reasonable conclusion to draw from the
first benchmark on patent retrieval.
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At the other end of the spectrum, the lowest results were obtained by a method
based on random indexing [44]. This low performance of statistical semantics on
patent retrieval had been also reproduced for latent semantic indexing by Moldovan
et al. in 2005 [37], by Aono in NTCIR-6 in 2007 [2] and by a more recent revisiting
of random indexing [34], albeit each using different collections. This is not to say
that statistical semantics do not have a word to say in the problem of patent retrieval,
but rather that perhaps their direct application to the problem needs to be more
nuanced.

For the rest of the spectrum, the relatively small set of topics, and the large
variance in the intermediary steps taken by each participant (tokenisers, stemmers,
filters of various kinds), makes it risky to draw any conclusions. The organisers of
NTCIR-3 observed this and made their own study, keeping everything fixed except
the retrieval model [28]. The conclusion they draw is that the methods which are
known to perform best on other tasks also perform best on this particular test case
(e.g. BM25, among all the probabilistic models tried in the study). In particular,
the methods that perform best are those that control for document length. This is
of course reminiscent of the discussions in the early years of TREC [22], when
it was observed that different methods would perform significantly differently on
subcollections that differed in their average document length or in their document
length distribution.

For the patent data, the length aspect was revisited in more detail by one of the
participants, Fujita [18], who reapplied the analysis performed in the early TREC
test collections. The study complemented the one done 2 years before by the task
organisers [28] by also considering language modelling in addition to the different
variants of the TF*IDF. After having observed no correlation between relevance
and document length in terms of words, Fujita also considered document length in
terms of claims—a very patent-specific approach—under the assumption that it is
actually the number of claims that models the multiple topicality present in longer
newspaper articles, but this showed similar results: no correlation with relevance,
a tendency of TF*IDF methods to retrieve longer documents and a tendency of
LM methods to retrieve shorter documents. In the end the author concludes that
simply using a higher document length penalty in the TF*IDF model (i.e. a higher
b parameter in BM25) is enough to obtain good performance, but reasonably stops
short of claiming that language modelling will not perform better if more efforts are
directed towards it.

Patent Application Claim-Based Tasks

Starting with NTCIR-4, the patent retrieval tasks moved away from the general,
technology survey model of information need, towards the specific model of a patent
examiner [11]. This is referred to here as invalidity search and corresponds to the
prior art task organised later in CLEF-IP [42] or TREC-CHEM [35].

It is particularly instructional to look at participants’ systems over the three
evaluation campaigns. Among them, the teams from Hitachi (HTC) and the one
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from the Graduate School of Library at the University of Tsukuba (AFLAB)
submitted runs in all 3 years.

HTC observed that the number of stop words did not have a significant effect
in 2004 and therefore that number reduced significantly (from approximately 3000
to only 30) in later years. Their experiments also show that using only the claim as
input to the search system is not recommended because it does not contain sufficient
information. Not only are the claims in general rather information sparse, but the use
of only the first claim may, in hindsight, also be problematic.

The best method from the HTC group was the one that used all of their filters:
stop words, special weights for measurement terms, TF calculated based on the
entire query document, addition of terms from abstract and the entire document
to the query, co-occurrence-based term weighting and, finally, filtering or score
adjustment using theme codes. These observations are consistent across the different
query sets.

The group at NTT DATA (RDNDC runs in Table 3.2) also obtained consistently
good results in the 2 years it participated in the track. The characteristic feature
of their system was query expansion with keywords from the ‘detailed description
of the invention’. They show that this provides more useful keywords compared
to a standard query term expansion based on Local Context Analysis (LCA) [49].
In both NTCIR-4 and NTCIR-5, the team put an impressive amount of effort into
manual morphosyntactic rules to both extract the components of the invention from
the claim (241 patterns) and identify the sentences in the detailed description of the
invention that correspond to the previously identified components of the invention
(104 patterns). While the first appear to be reasonably feasible due to the nature of
the genre in the patent claims, the second are, as the authors point out, a ‘challenging
problem’. They therefore provide an alternative which removes the general rules and
replaces them with a greedy approach: find those sentences which contain the most
terms of the component of the invention, in the same order.

RDNDC runs also use IPC information. In NTCIR-4 this was used to reweight
terms based on their frequency in different IPC classes, while in NTCIR-5 the
RDNDC team used the IPC information as a basis for re-ranking: after their
ranking systems provided initial results, the retrieved patents having at least one IPC
class in common with the query patent application received a multiplicative boost.
According to their experiments, this added 2.5–5 % to the mean average precision
for all their runs.

The team at the University of Tsukuba (runs denoted by IFLAB or AFLAB in
NTCIR reports) also used a module to split the claim into its constituent components
as a first step. In 2004, they compared a simple punctuation-based method with
a more complex set of morphosyntactic patterns based on rhetorical structure
theory initially introduced by Shinmori and colleagues [46, 47] the year before in
NTCIR-3. They found that the simpler method worked just as well, thanks to the
regularity of the rules of proper patent claim editing, and in subsequent years they
continued only with this simpler method.

Perhaps the most interesting thing to observe in the experiments performed at
the University of Tsukuba is that the effect of the IPC differed across the years.
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In NTCIR-4 the use of the IPC (as a hard filter) was apparently detrimental to the
precision of the results (5.9 % and 3.5 % reduction in the rigid ‘highly relevant’ and
the relaxed ‘relevant’ evaluation, respectively); in NTCIR-5 the same approach to
the use of IPC codes showed an apparent improvement (8 % and 7.5 % on the rigid
and relaxed evaluations, respectively). This difference might be explained by the
nature of the ground truth in the 2 years: in NTCIR-4 it was (partially) manually
created, while in NTCIR-5 it was completely automatic (based on citations). If we
further imagine that search patterns at a patent office often rely on metadata (IPC or
related classifications), we could reasonably hypothesise that there is a bias towards
patents in the same class in the ground truth. This is not a problem of NTCIR (nor
is it certain to be a problem at all), but rather an issue that has to be considered in
all evaluation campaigns using the citations.

Finally another system that was consistently among the top performers in terms
of MAP was the one created at RICOH Ltd [24]. In their first year of participation,
they considered whether it is sufficient to index only the abstract and claims of the
patent collection. Their experiments showed that in fact the information present in
the entire patent is needed for better relevance estimation. This confirms the findings
of the other systems presented above and complements them because if the others
had considered this additional information on the query side, RICOH experiments
consider it on the target document side.

In the following year, RICOH experiments also confirmed that the use of IPC
codes as filters, either on the query side (as usual filters on the retrieved documents)
or on the target documents side (as a form of pseudo-relevance feedback), improves
the precision of the results. Echoing the University of Tsukuba results, they observe
that this improvement is clearly visible for NTCIR-5, but arguable for NTCIR-4.
Additionally, RICOH conducted experiments with the use of synonyms for query
expansion. Synonyms were generated based on an English–Japanese dictionary (by
collecting all terms which appeared in the definition of English terms containing
one of the query terms to collect ‘term siblings’ from the dictionary). This yielded
only marginal improvements, in marked contrast to all of the methods discussed
above, which had also considered query expansion and had observed more marked
improvements. The difference here is probably in the fact that the others had selected
query expansion terms on a query-by-query basis (or just reweighted them), while in
this case the synonym set was created a priori and used consistently for all queries.
It is easy to imagine why this might be less effective: if we were to take an example
in English, consider the synonyms on the term ‘bank’: ‘depository’, ‘exchequer’, or
‘beach’, ‘shore’, or ‘chair’, ‘seat’.

All the experiments mentioned so far were Japanese monolingual. While topics
were always available in Japanese and English, and some documents existed in
English as well (i.e. for the PAJ subcollection), the focus of NTCIR-4 and NTCIR-5
had been on Japanese monolingual retrieval. In NTCIR-6 the organisers introduced
a separate task for English monolingual patent retrieval, with its own set of topics
and its own target document collection (from the USPTO). Five teams participated
in this English retrieval subtask at NTCIR-6. Table 3.3 shows the top results for each
participant.
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Table 3.3 Best performing
results for each of the
participants in the NTCIR-6
English retrieval subtask

Run ID Strict Run ID Relaxed

AFLAB2 0:04 AFLAB2 0:08

hcu1 0:03 NTNU 0:07

KLE1 0:03 KLE1 0:07

NTNU 0:02 JSPAT2 0:06

JSPAT0 0:01 hcu1 0:02

The best performing system integrated content and citation information in
scoring. Fujii compares no citation information with PageRank and with a domain-
specific method and observes the most improvement with the domain-specific
method. This is the first system that explicitly uses patent citations in ranking, and
the use of this kind of information has been proven beneficial both at CLEF-IP in
the system built by Lopez and Romary [33] and in TREC-CHEM in the system built
by the group at Geneva University Hospitals [19].

Overall, the results from the English retrieval subtask are hard to qualify. The val-
ues are certainly lower, but they are a different task, so a direct comparison cannot be
made. Based on the participants’ report, it seems that there was some unfamiliarity
with the nature of the USPTO documents. For instance, if, as we have seen, most
of the systems had used IPC codes to improve their precision when searching JPO
patents, this was no longer as useful because the USPTO, at the time, primarily used
a very different classification scheme and only assigned one IPC code to each patent.
Another example is the APP-DATE field, which does not necessarily have the same
meaning as the FDATE field of the Japanese applications. The experiments done at
Pohang University of Science and Technology (POSTECH) [31] had shown that the
use of the APP-DATE field actually reduced precision, and this, in principle, should
never happen if it had the meaning that the team had expected it to have.

3.4.1.2 Passage Retrieval

In NTCIR-3 it was observed that patents are significantly longer documents than
newspaper articles, and, apart from the implications of this in the document scoring
methods, it was also decided to have a subtask on retrieving passages as opposed
to full documents. NTCIR-4 first defined such a subtask, but it was not evaluated
that year, so NTCIR-5 considered it again. This time, participants were given
both topics and relevant documents, and the passage retrieval task consisted of
retrieving relevant passages from the known relevant documents. Therefore, there
were 41 topics (7 for the dry-run and 34 for the formal run of NTCIR-4) and 378
relevant documents. For each of the relevant documents, participants had to rank its
paragraphs in order of their expected utility as a basis for judging the relevance of
the document. A new evaluation metric was defined—the Combinational Relevance
Score (CRS)—proportional to the rank at which the list of paragraphs contains at
least one relevant paragraph (or set of paragraphs, if the evaluators considered a set
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Table 3.4 Passage retrieval evaluation results in NTCIR-5

Document relevance: strict Document relevance: relaxed

174 documents 356 documents

MAP, passage relevance MAP, passage relevance

Run CRS Strict Relaxed Run CRS Strict Relaxed

IFLAB4 12.34 0.47 0.45 IFLAB4 10.91 0.49 0.46

IFLAB5 13.06 0.51 0.47 IFLAB5 11.23 0.49 0.46

RDNDCP503 13.07 0.47 0.45 JSPAT1 11.67 0.49 0.46

RDNDCP507 13.07 0.47 0.46 HTC1 11.70 0.50 0.47

HTC1 13.24 0.50 0.47 RDNDCP503 12.10 0.43 0.42

JSPAT1 13.25 0.52 0.48 RDNDCP505 12.13 0.44 0.44

HTC2 14.41 0.48 0.46 HTC5 12.14 0.51 0.48

BASE 16.32 0.34 0.35 BASE 16.23 0.37 0.37

instead of just one). Table 3.4 shows the results of the runs, for each document and
paragraph relevance category (strict or relaxed). Here, the mean average precision
(MAP) is calculated on the ranking of the paragraphs within a target document.

Most participants’ runs were essentially the same as for document retrieval,
with the difference that instead of indexed documents, they indexed passages as
documents. IPC codes were no longer used because they were irrelevant given that
the re-ranking was taking place inside a target document known to be relevant to
the query. Only HTC substantially changed their indexing scheme and moved from
a term-based index to a character n-gram index. The motivation for this was the
relatively small amount of text in a passage and the resulting desire to have a more
flexible matching scheme. Unfortunately, a direct comparison with a term-based
index was not made, and it is consequently difficult to estimate the benefit of this
approach.

3.4.1.3 Cross-Lingual

NTCIR had organised cross-lingual evaluation tracks before and continued to
organise one in parallel to the patent retrieval track [32]. The organisers of the early
patent retrieval tracks had encouraged participants to use the multilingual collections
that were provided in their experiments. Some did use those collections to enhance
system performance on a monolingual retrieval task [9, 10], and others did provide
a few cross-lingual runs for the sole purpose of exploring and evaluating cross-
lingual systems. Nevertheless, the number of cross-lingual runs was considerably
smaller than that of monolingual runs: NTCIR-3 had some cross-lingual runs (3 of
8 participants submitted such runs), NTCIR-4 had only one cross-lingual run of the
111 runs submitted, and NTCIR-5 had none.

In NTCIR-3 IFLAB [8] created a query translation engine based on both a
commercial dictionary and language and translation models built on the available
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corpora. In particular, their translation engine kept the word order of the source
language because it had been previously observed [7] that between English and
Japanese technical terms use the same word order about 95 % of the time.

The groups at the University of California, Berkeley [4], and the Swedish
Institute of Computer Science (SICS) [44], while not having Japanese-speaking
members, attempted the task of cross-lingual retrieval. Berkeley used external
dictionaries (Babelfish) to translate the queries for both English-to-Chinese and
English-to-Japanese retrieval. The innovative part was that when the dictionary
did not find a translation, the team submitted the query to a Chinese or Japanese
search engine and took, from the top 200 documents, the Chinese or Japanese terms
surrounding the English terms, weighting them by the distance to the English terms.
This amounts to a cross-lingual pseudo-relevance feedback.

The SICS team used random indexing [43] to construct a bilingual thesaurus,
which they then used to generate cross-lingual queries. The approach was purely
statistical and, in the absence of a manual check on the results of the bilingual
thesaurus generation process, the results were significantly poorer than those using
existing dictionaries.

In NTCIR-4, RICOH [24] performed English-to-Japanese cross-lingual retrieval.
They did query translations and search on a multilingual database. Their officially
submitted English-to-Japanese run (LATIN5) obtained a P@10 score comparable
to their English-to-English run (0.16 and 0.17, respectively), but P@10 scores on
different collections cannot be directly compared and their English-to-Japanese
results were significantly lower than those of their Japanese-to-Japanese run (0.20).
Given that queries were available in both English and Japanese, they were able
to compare the performance of the query translator with the results obtained in
retrieval. They showed that these two elements do not necessarily correlate: the
query translation (from English to Japanese) closest to the original Japanese query
did not obtain the best result in terms of P@10.

3.4.2 Classification

As mentioned in Sect. 3.3.2, the initial patent classification tasks at NTCIR
addressed two classification problems: first, a classification of patents against the
set of themes (technology areas) present in the F-terms; and second, a classification
against the set of term codes (i.e. viewpoint + 2-digit code) known as F-terms. The
first one can be seen as a coarse classification based exclusively on topicality, while
the second one a refinement of the first, aiming to identify different aspects within
the same technical domain. Theme classification was only evaluated in 2005 at
NTCIR-5 (Table 3.5); in the following NTCIR, the focus was exclusively on the
more challenging F-term classification (Table 3.6).

From Tables 3.5 and 3.6, we can see that the simplest vector similarity methods
(vector space model, �2) are not up to par with typical machine learning methods
(K-nearest neighbour, Naive Bayes, support vector machine). We should note that
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Table 3.5 Results of theme
classification tasks

NTCIR-5

Runid Model MAP R-Precision F-measure

BOLA1 K-NN 0.69 0.59 0.27

JSPAT2 Naive Bayes 0.66 0.56 0.53

WGLAB9 K-NN 0.62 0.53 0.07

FXDM3 VSM 0.49 0.39 0.38

what is denoted here by �2 (run NUT05 [23] in NTCIR-6) is actually similar to
a typical vector space model (VSM) but with a change in the weighting function,
reminiscent of information content studies.

For this study, it is particularly of interest to look at K-nearest neighbour
(K-NN) methods, since they have obtained both very good and very poor results
in experiments in both years. As usual, it is not straightforward to compare two
systems, even if they use the same method, because there are numerous components
or steps that can change. Nevertheless, we can see that the differences between
BOLA1 and WGLAB9 in NTCIR-5 are: (1) the information sources from the
document (i.e. PAJ, ‘technological field’, ‘purpose’ or ‘method’); and (2) the
similarity function (cosine similarity for a vector space based on BM11 versus a
similarity function based on structural similarity between documents). More subtle
is the difference observed between RDNDC14 and NICT01 in NTCIR-6. Both
systems used K-NN on top of a vector space built on BM25, with terms extracted
using the same NLP tool (ChaSen) and from the same parts of the document
(abstract and claims). Yet their results are significantly different (a drop of 30–40 %
in scores). The difference probably lies in the fact that RDNDC14 only used the first
claim, as opposed to the entire set of claims used in NICT01, and the latter weighted
the score of each F-term by a constant determined using experiments.

3.4.3 Text Mining

The first attempt to do text mining (in the general sense) had actually been at
NTCIR-4 with the patent map generation task. Its purpose was to generate a
patent map driven by a specific theme (e.g. automobiles), in an automatic or semi-
automatic way. The desired map is a two-dimensional plot generated by considering
pairs of relevant concepts. For one topic this might mean that on one axis different
‘problems to be solved’ are to be placed and on the second axis the ‘solutions’
are expected. For another topic the axes might be ‘form of product’ and ‘date of
publication’. The cells were then to indicate patent numbers connecting the two
concepts, in the context of that topic. From the outset, this was a difficult task, both
for the organisers and the participants. It requires a much deeper understanding of
the content of the patent than relevance evaluation and a sufficiently large set of
topically relevant documents for each topic.
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The organisers selected six topics from NTCIR-3, each having at least 100
relevant documents, and the participants had to define the axes on their own
and populate the matrix correspondingly. This required experience in a large
number of domains related to information access, which resulted in only two teams
participating, each consisting of several institutions.

The task can be treated in two steps: identification of meaningful concepts and
population of the cells with patents connecting the two concepts. One team focused
on clustering, using, among other methods, latent semantic analysis. The other team
focused on claim analysis, using morphosyntactic patterns. In hindsight, we may
argue that a combination of the two methods would potentially bring even better
results.

The organisers created reference patent maps which were used to guide the
assessors in their evaluation, but given the nature of the task, there was only a
qualitative assessment of the results, not a quantitative one. Participants received
their evaluation as statements of the assessors, for five of the six topics. It was
observed that in the absence of an ontology, it becomes extremely difficult to
populate the axes meaningfully. Both participants received positive and negative
comments on the different topics, and probably the lesson learned is that, while the
task is quite challenging, current tools may assist a user who has to create such a
map manually.

In NTCIR-7, the long-term goal was the automatic production of technical trend
maps. These resemble the patent maps described above but with the source of the
maps not being restricted to patents. As a first step in this research, the task was to
classify research papers according to their IPCs to enable technical or technological
trends in academia and industry to be summarised together in a single map. One
challenge was the need for cross-genre classification involving research papers and
patents.

Another challenge was cross-lingual classification. To train a classifier that
can assign one or more IPC codes to an input document, the JPO and USPTO
patent collections were used. Each document was a research abstract in Japanese
or English, resulting in four combinations of languages for the training and test
documents. Table 3.7 shows the mean average precision for different runs and
combinations of languages [38]. In Table 3.7, ‘J-to-J’ and ‘E-to-E’ indicate that both
the test and training documents were in the same language, while ‘J-to-E’ indicates a
cross-lingual classification for which the training documents were in English. There
were no submissions to an ‘E-to-J’ classification.

Table 3.7 shows that the MAP of the top run for J-to-E closely matched those for
E-to-E (and for J-to-J). All of these runs used variations of the K-nearest neighbour
method. The MAP for each of the top systems was fairly high compared with that for
ad hoc retrieval, which makes sense because the use of multiple training examples
made the task more like relevance feedback than ad hoc retrieval.

The MAP of the top J-to-E run, xrce_j2e (0.44), was higher than those of E-to-E
runs by the same group, such as xrce_e2j2e (0.42). This system [5] used a language
modelling information retrieval approach, calculating the similarity between an
input document qs and a particular training document dt as the probability P.qsjdt/
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Table 3.7 Evaluation for the IPC-based classification of research abstracts

J-to-J E-to-E J-to-E

RunID MAP RunID MAP RunID MAP

HTC13 0.44 NEUN1_S1 0.49 xrce_j2e 0.44

HTC11 0.44 NEUN1_S2 0.47 AINLP05 0.11

HTC12 0.44 NEUN1_S3 0.45 AINLP06 0.10

HTC07 0.44 xrce_e2j2e 0.42 AINLP02 0.09

HTC01 0.43 xrce_en_lm 0.42 AINLP03 0.09

HTC06 0.43 xrce_en_filter 0.42

HTC05 0.43 xrce_en_pp 0.41

HTC08 0.43 nttcs2 0.35

HTC10 0.43 nttcs1 0.34

HTC03 0.43 KECIR 0.29

HTC02 0.43 rali2 0.14

HTC09 0.42 ICL07 0.14

HTC04 0.42 rali1 0.14

nttcs4 0.40 ICL07_2 0.13

HCU1 0.39 BRKLYPM-EN-02 0.13

HCU2 0.39 AINLP04 0.10

HTC14 0.39 BRKLYPM-EN-04 0.10

nttcs3 0.36 AINLP01 0.10

nttcs2 0.34 BRKLYPM-EN-03 0.09

nttcs1 0.33 PI-5b 0.04

KECIR 0.27

HCU3 0.14

nut1-1 0.07

nut2-1 0.04

that qs would be generated from dt. For the cross-lingual runs, the NTCIR-1
bilingual document collection was used to estimate the probability that a source-
language word ws would be translated into a target-language word wt. The resultant
probability P.wtjws/ was summed over ws and wt to calculate P.qsjdt/. Therefore,
using more than one ws and wt led to an effect similar to query expansion, which
presumably accounts for xrce_j2e outperforming the corresponding monolingual
runs.

To compare the MAP of the paper-to-patent cross-genre runs with that of
a patent-to-patent classification, one of the organisers who submitted HCU1 in
Table 3.7 performed a classification of JPO patent applications, obtaining a MAP
of 0.37, which was comparable to that of HCU1 for J-to-J runs (0.39).

The IPC-based classification was also performed in NTCIR-8, with a variable
granularity for the IPC codes (e.g. subclass, main group and subgroup) being
used for evaluation purposes. As expected, the MAP was generally higher for the
coarse-grained classes. As in NTCIR-7, there were no E-to-J submissions, but three
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J-to-E runs were submitted by one participating group, which also submitted E-to-E
runs [48]. Although it is not clear how this group matched an input document in
Japanese to documents in English, their presentation slide at the NTCIR-8 meeting
suggested the use of Google language tools.1 Comparing the runs for this group, the
MAPs for J-to-E runs were slightly higher than those for E-to-E runs, irrespective
of the granularity of the IPC codes.

In NTCIR-8, the creation of technical trend maps was also undertaken. The
purpose was to extract fundamental technologies and their effects from the research
abstracts or patent documents in question. The effect of a technology is represented
by an attribute and its value. These were the definitions of the elements to be
extracted [40]:

• TECHNOLOGY: algorithms, tools, materials and data used in each study or
invention.

• EFFECT: pairs of ATTRIBUTE and VALUE tags.
• ATTRIBUTE and VALUE: effects of a technology that can be expressed by a

pair comprising an attribute and a value.

The following is an example sentence annotated with the above tag set:

Through <TECHNOLOGY>closed-loop feedback control
</TECHNOLOGY>, the system could<EFFECT><VALUE>
minimize</VALUE> the <ATTRIBUTE>power loss
</ATTRIBUTE></EFFECT>.

Although the input documents were not actually organised as a map, the extracted
elements could be of help in determining appropriate axes for a map. The submitted
runs were evaluated by recall, precision and F-measure on an element-by-element
basis for different combinations of document types (research abstract or patent) and
languages (Japanese or English).

The general trends presented in the evaluation results were as follows. First, the
precision was higher than the recall, irrespective of the document type, language
or element type. This suggests that it was difficult to identify exhaustively the
various technical terms and expressions used to describe technologies. Moreover,
because recall and precision were calculated on an element-by-element basis, the
recall becomes zero if even a single word in an element is mislabelled. Second,
the evaluation results for the patents were higher than that for the research abstracts,
which suggests that technical terms and expressions in patents are more standardised
than those in research papers. Finally, the evaluation results for documents in
Japanese were higher than those for documents in English. However, this tendency
could be caused by differences between participating systems, because no group
submitted runs involving both languages.

1http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings8/NTCIR/03-NTCIR8-PATMN-
TeodoroD_slides.pdf

http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings8/NTCIR/03-NTCIR8-PATMN-TeodoroD_slides.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings8/NTCIR/03-NTCIR8-PATMN-TeodoroD_slides.pdf
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Table 3.8 Evaluation for the technical trend map creation (R, recall; P, precision; and F,
F-measure)

Japanese English

Research Patent Research Patent

RunID R P F R P F R P F R P F

TRL7 0.18 0.57 0.28 0.41 0.52 0.46 – – – – – –

HCU 0.16 0.49 0.24 0.43 0.55 0.48 – – – – – –

NUSME-3 – – – – – – 0.11 0.38 0.16 0.17 0.37 0.24

Table 3.8 shows the evaluation for the groups that achieved the best F-measure in
any configuration. The complete evaluation is available in the overview paper [40].
In Table 3.8, all the groups formulated the extraction task in terms of ‘BIO’
chunking, which labels each token in a sentence as being the beginning (B), inside
(I) or outside (O) of the span of interest. Whereas TRL and NUSME used CRF
(conditional random field) models to perform sequential labelling, HCU used an
SVM (support vector machine) to classify individual words according to the BIO
labels. The general trends described above can also be observed in Table 3.8. In
addition, HCU [41] identified typical causes of errors, as follows:

• Specific function words, such as ‘by’ and ‘of’, may occur inside or outside an
element.

• Technologies can be expressed by a long noun phrase, such as ‘a device equipped
with functions A, B, . . . and Z’, especially in patents.

• The order of an attribute and its value can vary depending on the grammatical
construction, such as in ‘high recognition rate’ and ‘the recognition rate becomes
high’.

These individual errors are ultimately caused by the target-element structure not
necessarily being a simple sequence of content words.

3.4.4 Machine Translation

While NTCIR started as an evaluation series for information retrieval, it quickly
expanded to incorporate other tasks that were also related to the broader topic
of information access. Part of this broader information access focus is machine
translation (MT), which is both a research topic on its own (and as such is evaluated
intrinsically) and a tool for other information access systems (e.g. cross-lingual IR,
and as such is evaluated extrinsically). The following two sections cover these two
approaches to evaluation.
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3.4.4.1 Intrinsic Evaluation

In NTCIR-7, all reference translations used for intrinsic evaluation of machine
translation are influenced by rule-based MT systems. This includes both the S600
set of 600 Japanese sentences (three translators, each used rule-based MT systems)
and the S300 set of 300 Japanese sentences (three translators, one of whom used a
rule-based MT system). Participating systems were compared using BLUE scores.
Additionally, human translators evaluated 100 sentences of each participant and
assessed them for adequacy (essentially, how much of the original information is
present in the translation?) and fluency, each with a score between 1 (not good) and
5 (good).

In the following year, BLUE was again used as a metric for intrinsic evaluation,
and an additional effort was made to invite participants to propose new evaluation
metrics. However, this approach resulted in only one participant, and it was not
continued in subsequent years. Instead, the following 2 years disposed with the
BLUE metric and used only adequacy and acceptability (i.e. to what extent can the
meaning be understood by a human user?). Table 3.9 shows the BLEU scores from
2008 and 2010, while Table 3.10 shows the adequacy scores from 2008, 2011 and
2013. Comparing the two sets of results, there is one thing that stands out: while
statistical machine translation systems (SMTs) clearly outperform the rule-based
or example-based systems (RBMTs or EBMTs), in terms of the BLUE scores, the
opposite is the case for manual evaluations of adequacy.

Only in NTCIR-9 and NTCIR-10 did one SMT system manage to outperform
RBMTs. This system (NTT) also obtained good scores in the automatic evaluation.
Nevertheless, we do not go into the details of the machine translation methods here,
but rather refer the reader to Chap. 16, which addresses this technology at length.
Direct comparison between the numbers obtained in each year is not recommended,
because the sets to be translated are different, but the organisers of NTCIR-10 also
asked participants to translate the test set of the previous year and in their track
report [21] present these results, showing that the vast majority of participants had
managed to increase the performance of their systems.

3.4.4.2 Extrinsic Evaluation

All cross-lingual retrieval evaluations are, in essence, extrinsic evaluation of some
form of translation technology, but in the NTCIR patent MT tasks, the MT
technology was foregrounded and thus the role of cross-lingual IR as extrinsic
evaluation of MT was foregrounded.

The NTCIR-7 patent MT task included an extrinsic evaluation of patent transla-
tion that the organisers called cross-language patent retrieval (CLPR). The key idea
was to view the purpose of machine translation (MT) as being to support ranked
retrieval of existing patents to identify previously awarded patents that invalidate
some claim in a new patent application. The specific design of the task was:
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• The first claim for each of 124 rejected patent applications was obtained from the
Japan Patent Office (JPO) and manually translated into English.

• This English claim was translated by MT into Japanese by each participating
team.

• A standard patent retrieval system was used to search the patent collection with
the MT-generated Japanese claim as a bag-of-words query.

• Each patent (in Japanese) that was cited in the decision document rejecting the
application was treated as a relevant document, and all other documents were
treated as not relevant.

• Mean average precision was reported as an evaluation measure.

The NTCIR-8 patent MT task included an extrinsic evaluation of patent trans-
lation using the same CLPR design, this time with 91 rather than 124 claims.
In NTCIR-7, the claims were selected to be relatively easy (monolingual average
precision (AP) between 0.3 and 0.9); in NTCIR-8 the claims were selected to be
relatively hard (monolingual AP below 0.4).

The NTCIR-10 patent MT task included an extrinsic evaluation of patent
translation that the organisers call the patent examination evaluation (PEE). The
key idea is to view the purpose of MT as being to support making a decision on
whether to grant a new patent based on an understanding of whether some other
(existing) patent invalidates the claims of the new patent application. The specific
design of the task is:

• Some number of rejected patent applications to the JPO are selected.
• Bilingual volunteers from the Nippon Intellectual Property Translation Associa-

tion served as the assessors.
• For each rejected patent, the assessor is given:

– The decision document (in Japanese) that identifies specific facts found in
some specific prior patent that led (perhaps in part) to the rejection of the
patent application

– The translated patent (translated by MT from Japanese to English) in which
those specific facts were found

• The assessor is asked to determine (on a graded scale) whether the degree to
which those specific facts could have been ascertained from the translated patent.

• A second version of PEE, in which the prior patent is first manually translated
by hand from Japanese to Chinese and then by machine from Chinese to English
was also run.

It is worth noting that the CLEF-2010 and CLEF-2011 Intellectual Property
lab (CLEF-IP, see also Chap. 4) has produced a test collection that could be (but
has not yet been) used for extrinsic evaluation of Patent MT. That test collection
includes a patent application as a query document and citations from various sources
as relevance judgements. The query document is available in a single language
(English, French or German), but the EPO granted patents contain two fields (title
and claims) in all three languages. These could be suppressed for experimental
purposes (although that is not done at CLEF).
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3.5 Summary

NTCIR has been a pioneer in creating test collections for patent retrieval. The
NTCIR-3 retrieval task, based on information needs extracted from newspaper
articles, was not repeated either in NTCIR or in CLEF-IP, primarily due to the cost
of assessment. Another common observation with CLEF-IP was the rather reduced
interest or ability of teams to provide cross-lingual systems. For monolingual
retrieval task, query expansion was one of the features that appears to consistently
improve results (see the RDNDC runs in both NTCIR-4 and NTCIR-5, as well
as the HTC runs in NTCIR-4, NTCIR-5 and NTCIR-6). For machine translation,
intrinsic evaluation based on BLEU shows equal results between rule-based and
statistical MT systems (see the NTT run in NTCIR-7 and the EIWA-1 run in
NTCIR-8). Classification seems to depend less on the algorithm itself (K-NN, Naive
Bayes, SVM, have obtained comparable results in NTCIR-5 and NTCIR-6) but,
unsurprisingly, depend more on the features used, though no clear trend can be
observed. Finally, text mining is a difficult task to both address and evaluate. A
qualitative evaluation performed in NTCIR-4 on six topics from NTCIR-3 provides
a starting point, on which further efforts can be built.

References

1. Andersson L, Lupu M, Palotti JRM, Piroi F, Hanbury A, Rauber A (2014) Insight to hyponymy
lexical relation extraction in the patent genre versus other text genres. In: Proceedings of
IPaMin@KONVENS

2. Aono M (2007) Leveraging category-based LSI for patent retrieval. In: Proceedings of
NTCIR-6

3. Attar R, Fraenkel AS (1977) Local feedback in full-text retrieval systems. J Assoc Comput
Mach 24:397–417

4. Chen A, Gey F (2002) Experiments on cross-language and patent retrieval at NTCIR-3
workshop. In: Proceedings of NTCIR-3

5. Clinchant S, Renders JM (2008) XRCE’s participation to patent mining task at NTCIR-7. In:
Proceedings of NTCIR-7

6. Fall C, Torcsvari A, Benzineb K, Karetka G (2003) Automated categorization in the interna-
tional patent classification. ACM SIGIR Forum 37(1):10–25

7. Ferber G (1989) English-Japanese, Japanese-English dictionary of computer and data-
processing terms. MIT Press, Cambridge

8. Fujii A, Ishikawa T (2002) Patent retrieval experiments at ULIS. In: Proceedings of NTCIR-3
9. Fujii A, Ishikawa T (2004) Document structure analysis in associative patent retrieval. In:

Proceedings of NTCIR-4
10. Fujii A, Ishikawa T (2005) Document structure analysis for the NTCIR-5 patent retrieval task.

In: Proceedings of NTCIR-5
11. Fujii A, Iwayama M, Kando N (2004) Overview of patent retrieval task at NTCIR-4. In:

Proceedings of NTCIR-4
12. Fujii A, Iwayama M, Kando N (2004) Test collections for patent-to-patent retrieval and patent

map generation in NTCIR-4 workshop. In: Proceedings of the 4th international conference on
language resources and evaluation, pp 1643–1646



110 M. Lupu et al.

13. Fujii A, Iwayama M, Kando N (2005) Overview of patent retrieval task at NTCIR-5. In:
Proceedings of NTCIR

14. Fujii A, Iwayama M, Kando N (2007) Introduction to the special issue on patent processing.
Inf Process Manag 43(5):1149–1153

15. Fujii A, Iwayama M, Kando N (2007) Overview of the patent retrieval task at the NTCIR-6
workshop. In: Proceedings of NTCIR-6

16. Fujii A, Utiyama M, Yamamoto M, Utsuro T (2008) Overview of the patent translation task at
the NTCIR-7 workshop. In: Proceedings of NTCIR-7

17. Fujii A, Utiyama M, Yamamoto M, Utsuro T, Ehara T, Echizen-ya H, Shimohata S (2010)
Overview of the patent translation task at the NTCIR-8 workshop. In: Proceedings of NTCIR-8

18. Fujita S (2005) Revisiting document length hypotheses: a comparative study of Japanese
newspaper and patent retrieval. ACM Trans Asian Lang Inf Process 4(2):207–235

19. Gobeill J, Gaudinat A, Ruch P, Pasche E, Teodoro D, Vishnyakova D (2010) BiTeM site report
for TREC Chemistry 2010: impact of citations feedback for patent prior art search and chemical
compounds expansion for ad hoc retrieval. In: Proceedings of TREC

20. Goto I, Lu B, Chow KP, Sumita E, Tsou BK (2011) Overview of the patent machine translation
task at the NTCIR-9 workshop. In: Proceedings of NTCIR-9

21. Goto I, Chow KP, Lu B, Sumita E, Tsou BK (2013) Overview of the patent machine translation
task at the NTCIR-10 workshop. In: Proceedings of NTCIR-10

22. Harman D (1993) Overview of the second text retrieval conference (TREC-2). In: Proceedings
of TREC

23. Hashimoto K, Yukawa T (2007) Term weighting classification system using the chi-square
statistic for the classification subtask at NTCIR-6 patent retrieval task. In: Proceedings of
NTCIR-6

24. Itoh H (2004) NTCIR-4 patent retrieval experiments at RICOH. In: Proceedings of NTCIR-4
25. Itoh H, Mano H, Ogawa Y (2003) Term distillation in patent retrieval. In: Proceedings of the

ACL workshop on patent corpus processing
26. Iwayama M, Fujii A, Kando N, Takano A (2003) Overview of patent retrieval task at NTCIR-3.

In: Proceedings of ACL workshop on patent process processing
27. Iwayama M, Fujii A, Kando N (2005) Overview of classification subtask at NTCIR-5 patent

retrieval task. In: Proceedings of NTCIR-5
28. Iwayama M, Fujii A, Kando N, Marukawa Y (2006) Evaluating patent retrieval in the third

NTCIR workshop. Inf Process Manag 42(1):207–221
29. Iwayama M, Fujii A, Kando N (2007) Overview of classification subtask at NTCIR-6 patent

retrieval task. In: Proceedings of NTCIR-6
30. Kando N, Leong MK (2000) Workshop on patent retrieval SIGIR 2000 workshop report. ACM

SIGIR Forum 34(1):28–30
31. Kim J, Lee Y, Na SH, Lee JH (2007) POSTECH at NTCIR-6 English patent retrieval subtask.

In: Proceedings of NTCIR-6
32. Kishida K, Chen KH, Lee S, Chen HH, Kando N, Kuriyama K, Myaeng SH, Eguchi K (2004)

Cross-lingual information retrieval (CLIR) task at the NTCIR workshop 3. ACM SIGIR Forum
38(1):17–20

33. Lopez P, Romary L (2010) PATATRAS: retrieval model combination and regression models
for prior art search. In: Peters C, Di Nunzio G, Kurimo M, Mandl T, Mostefa D, Peñas A,
Roda G (eds) Multilingual information access evaluation I. Text retrieval experiments. Lecture
Notes in Computer Science, vol 6241. Springer, Berlin

34. Lupu M (2014) On the usability of random indexing in patent retrieval. In: Proceedings of
ICCS

35. Lupu M, Jiashu Z, Huang J, Gurulingappa H, Filipov I, Tait J (2011) Overview of the TREC
2011 chemical IR track. In: Proceedings of TREC

36. Mahdabi P, Andersson L, Keikha M, Crestani F (2012) Automatic refinement of patent queries
using concept importance predictors. In: Proceedings of the 35th international ACM SIGIR
conference on research and development in information retrieval, pp 505–514



3 Patent-Related Tasks at NTCIR 111

37. Moldovan A, Bot RI, Wanka G (2005) Latent semantic indexing for patent documents. Int J
Appl Math Comput Sci 15(4):551–560

38. Nanba H, Fujii A, Iwayama M, Hashimoto T (2008) Overview of the patent mining task at the
NTCIR-7 workshop. In: Proceedings of NTCIR-7

39. Nanba H, Kamaya H, Takezawa T, Okumura M, Shinmori A, Tanigawa H (2009) Automatic
translation of scholarly terms into patent terms. In: Proceeding of the 2nd international
workshop on patent information retrieval, pp 21–24

40. Nanba H, Fujii A, Iwayama M, Hashimoto T (2010) Overview of the patent retrieval task at
the NTCIR-8 workshop. In: Proceedings of NTCIR-8

41. Nanba H, Kondo T, Takezawa T (2010) Hiroshima City University at NTCIR-8 patent mining
task. In: Proceedings of NTCIR-7

42. Piroi F, Tait J (2010) CLEF-IP 2010: Retrieval experiments in the intellectual property domain.
In: Proceedings of CLEF

43. Sahlgren M (2005) An introduction to random indexing. Technical report, SICS, Swedish
Institute of Computer Science

44. Sahlgren M, Hansen P, Karlgren J (2002) English-Japanese cross-lingual query expansion
using random indexing of aligned bilingual text data. In: Proceedings of NTCIR

45. Schellner I (2002) Japanese File Index classification and F-terms. World Patent Inf 24:197–201
46. Shinmori A, Okumura M, Marukawa Y, Iwayama M (2002) Rhetorical structure analysis of

Japanese patent claims using cue phrases. In: Proceedings of NTCIR-3
47. Shinmori A, Okumura M, Marukawa Y, Iwayama M (2003) Patent claim processing for

readability - structure analysis and term explanation. In: Proceedings of the ACL workshop on
patent corpus processing

48. Teodoro D, Pasche E, Vishnyakova D, Gobeill J, Ruch P, Lovis C (2010) Automatic IPC
encoding and novelty tracking for effective patent mining. In: Proceedings of NTCIR-8

49. Xu J, Croft WB (1996) Query expansion using local and global document analysis. In:
Proceedings of the 19th annual international ACM SIGIR conference on research and
development in information retrieval, pp 4–11



Chapter 4
Evaluating Information Retrieval Systems
on European Patent Data: The CLEF-IP
Campaign

Florina Piroi and Allan Hanbury

Abstract Although not always evident, patents have an economic and legal impact
on our everyday life. The increase of digitally available patent data has triggered
a growing interest in the use of information retrieval solutions in the intellectual
property (IP) domain. The CLEF-IP benchmarking activity took place from 2009
to 2013 as part of the Conference and Labs of the Evaluation Forum (CLEF). It
encouraged and facilitated research in multilingual and multimodal patent retrieval
by providing a clean and comprehensive data set for experimentation and realistic
retrieval tasks. We describe in this chapter the collection of patents used in the
evaluation campaign and the motivation behind the campaign’s tasks. We describe
each of the seven types of tasks that were organised. We explain how the topics and
judgements for each of the tasks were created, as well as the measures involved in
assessing the experiments submitted. All the data used in our evaluation activities
can be downloaded from the CLEF-IP website under a Creative Commons licence.

4.1 Introduction

The patent system is designed to encourage disclosure of new technologies by
granting exclusive rights on the use of inventions to their inventors, for a limited
period of time [33]. An important requirement for a patent to be granted is that
the described technology should be novel: there is no earlier patent, publication or
public communication of a similar idea. To ensure the novelty of an invention, patent
offices as well as other intellectual property (IP) service providers perform thorough
searches called ‘prior art searches’ or ‘validity searches’. The number of patents in
a company’s patent portfolio affects the company market value. Therefore, well
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performed prior art searches that lead to solid, difficult-to-challenge patents are of
high importance.

Patent data was of interest for information retrieval (IR) researchers as early as
in 1977 when a ‘technology survey’-like search was done on a set of 76 US patents
[4]. Two decades later, an ‘invalidity search’ was performed on 60,000 US patents
[30]. More recently, research on IR methods for the IP domain has significantly
intensified due, not least, to the availability of patent data in digital formats.
Workshops, conferences and evaluation tracks were organised in an effort to bring
IR and IP communities into discussion (see [13, 17, 22, 42]). The National Institute
of Informatics (NII), Japan, initiated a series of workshops and evaluations using
patent data as part of the NTCIR (NII Testbeds and Community for Information
access Research) Project,1 focusing on Japanese and Chinese patents and their
translations into English. In 2009, two further evaluation activities using patent
data were launched, with the purpose of providing large, clean data sets for
experimentation: TREC-CHEM and CLEF-IP. TREC-CHEM ran from 2009 to
2011 and was organised as a chemical IR track in TREC (Text Retrieval Conference,
[43]), addressing challenges in chemical and patent IR [24, 26]. The collection
corpus was restricted to chemical patent documents and chemical journal articles,
all in English. The CLEF-IP campaign used European patent data.

In patent search, a novelty breaking document may be published in any language.
When an IP expert undertakes a patent search, this search is, therefore, inherently
cross-lingual, especially when it should be exhaustive. The CLEF-IP effort encour-
aged research on multilingual patent retrieval by providing a data set that contains
patents in three European languages, patents published by the European Patent
Office (EPO). CLEF-IP grew out of the desire to promote research work involving
European languages beyond English and to encourage academic use of a large clean
collection of patents being made available to researchers.

This chapter continues with a brief description of the patenting process. The pur-
pose of Sect. 4.2 is to spell out in context the patent-related terminology that is used
in subsequent sections. Section 4.3 describes the origins of the CLEF-IP collection
and how it evolved over the years. It also gives an overview of all the CLEF-IP tasks
running in the 5 years that the campaign was organised. Sections 4.4.1–4.4.7 detail
the design of each task type in CLEF-IP. They explain how the topics of the tasks
were selected, how the relevance judgements were obtained and which metrics were
used to assess the efficiency of the runs submitted by task participants. Section 4.5
summarises the methods employed by the participants to solve the posed tasks and
shows evaluation results for each of the tasks.

1NTCIR (NII Testbeds and Community for Information access Research) Project http://research.
nii.ac.jp/ntcir/index-en.html.

http://research.nii.ac.jp/ntcir/index-en.html
http://research.nii.ac.jp/ntcir/index-en.html
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Fig. 4.1 Main steps of the patent granting process

4.2 Patent Background for Information Retrieval

This section aims to define some common terminology used in the patent domain,
terminology that helps the IR research community understand the various types
of documents that constitute a patent and the relationships between them.2 We
summarise here the patenting process and, with it, explain some patent terminology
which is relevant for understanding our choice of tasks, topics and relevance
assessments in CLEF-IP.

4.2.1 The Patent Granting Process

The essence of the patent concept can be defined as follows: A patent is an exclusive
legal right for the use and exploitation of an invention in exchange for its public
disclosure. The holder of a patent may prevent third parties from exploiting their
invention in the countries where the patent is deemed valid. The exclusive rights a
patent holder has are usually time limited to a period of 20 years. Figure 4.1 shows
the main steps in obtaining a patent certificate. We observe in the patenting process
three main phases, which we describe in the following:

Pre-application Phase: A person having developed an invention for which exclu-
sive rights are aimed for will first write down a document describing the invention’s

2For extensive introductions to the patent domain and terminology, see previous chapters in this
book, or introductory chapters in [2] and [15].
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background and a detailed description. He or she also lists a set of claims that
specify the extent of the protection sought for the invention. The claims part of
this document is a legal text; therefore it is usual to get the help of a patent attorney
to draft it. This leads to the document having a mixture of writing styles, with the
description of the invention being written in a narrative, technical style, while the
claims are written in a legal style (also called ‘attornish’ or ‘patentese’).

Before registering this document with a patent office, the inventor (herself or
with the help of an IP professional) does a preliminary ‘technology survey’ on
various existing patent databases, in the area of the invention. The results of this pre-
application phase search possibly trigger a change in the invention’s specifications.

Examination Phase: The document with the invention description and claims
prepared in the previous phase is filed at a patent office and becomes thus a ‘patent
application document.’ It receives an alphanumerical code that uniquely identifies it
among other patent applications. The date of the filing is known as the ‘application
date’ and is an important attribute of the patent.

When a patent application is filed at a patent office, the application is given to
patent professionals for examination. Patent offices follow different patent laws,
depending on their jurisdictions, but there is a set of worldwide common criteria
that have to be fulfilled by any application before a patent can be granted [11]:

• Novelty: the invention should not be previously known.
• Inventive step: the invention should not be obvious for experts in the technolog-

ical area of the invention.
• Realisable: the invention can be manufactured by experts in the area.

The novelty check for an invention is done by performing a thorough search
on patent and non-patent data collections available to the patent expert examining
the application with the aim to find relevant documents. On a regular basis, patent
examiners search more than one patent database, and quite often they have to
look at documents written in a different language than the language of the patent
application. The novelty search is, thus, the most time consuming and expensive
part of the application examination. The result of a novelty search (also known as
a ‘prior art search’) is a list of relevant documents stored into a ‘search report’; the
relevant documents are called patent citations.3 The citations listed in the search
reports have different degrees of relevancy to the application patent, which, in the
context of this chapter, we label as follows:

• Less relevant: citations that describe prior work but do not destroy the novelty
of the application

• Relevant: citations that, in combination with other citations in the same report,
destroy the novelty of an application

• Highly relevant: citations which, taken alone, make a patent application not
novel.

3Note the different meaning of the word ‘citation’ compared to academic publications.
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Granting and Opposition Phases: After the search report is created, a series of
official communications between the applicant and the patent office takes place.
As an output of these communications, claims are usually modified in order not to
infringe on existing patents. Quite often, patent applications are withdrawn.

When the patent office takes the decision to grant a patent, a ‘granted patent
document’ (also known as ‘patent certificate’) is published. From this point on, for
a certain amount of time (9 months at the European Patent Office, EPO), oppositions
to a granted patent may be filed to the patent office.

Before the publication of the granted patent, an important procedural step
at the EPO—especially for the research on multilingual patent retrieval—is the
requirement to provide a translation of the claims in all three official EPO languages
(English, German and French) [8].

4.2.2 Patent Administrative Data

During the patenting process, a large number of documents are usually created, both
by the patent office and by the applicant or her attorney. The patent application doc-
ument, the granted patent document, communications to and from the patent office,
application document amendments, registration of fee payments and designating
the states where the patent is valid are all examples of information that belong to the
patent itself.

The general understanding of the patent concept is that, through its claims, it bars
other parties from exploiting the invention described in the respective granted patent.
However, if we view patents as the complete set of documents generated during
the patenting process, we immediately notice that patent data has a substantial
administrative side. The administrative data includes, for example, application dates,
addresses of the inventors and/or patent assignees, priority references, legal status
and so on. Two components of the administrative side of patent documents are of
importance to the CLEF-IP tasks, as we will see in the following sections: the patent
classification system and the patent families.

Patent Clustering by Technological Areas: Patent classification systems are
designed to categorise the patent documents by technological areas and subareas,
using the technical features of the disclosed inventions. Several patent classification
systems are in use, systems created both by patent offices and by private companies.
The most well known are the International Patent Classification System (IPC)
[16], the United States Patent Classification (USPC) [44], the F-term Japanese
Classification System [40] or the Derwent Classification System [7]. Since January
2013, the EPO and the USPTO (US Patents and Trademarks Office) use a joint
classification system: the Cooperative Patent Classification (CPC) System [5].

In the early days of the patent system, patent classification systems were designed
as a shelf-location tool for paper files [1]. Even today, these systems are manually
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maintained by experts and represent a ubiquitous resource for augmenting the query
terms of patent retrieval environments.

Patent Clustering by Families: In the current global economy, often enough
after filing an initial patent application, inventors will pursue legal protection for
their invention in additional countries of interest for them. Following the general
patenting process, they will file subsequent applications at each patent office in
the countries of interest referring to the original filing as the ‘priority claim’. Even
though these applications may somewhat differ in content, depending on the patent
laws in force at the various patent offices, it is obvious that, worldwide, patent con-
tent is often replicated. To assist patent practitioners with minimising the necessary
documents they might need to inspect, several methods to group ‘parallel’ patent
documents were devised. The group of patent documents worldwide pertaining to
the same invention is called a ‘patent family’.

There is no single definition of what a patent family is. Moreover, each provider
of patent data constructs the patent families differently. For example, the EPO uses
three types of patent family, while the World Intellectual Property Organization
(WIPO) additionally defines three further types [14]. Nevertheless, as with the
patent classification systems, the patent families are widely used when dealing with
patent data.

4.3 A Collection of European Patent Documents

One of our aims when embarking on the CLEF-IP endeavour was to create a test
collection to experiment with patent data, a collection that faithfully mirrors the
features and challenges of the data used in the daily work of a patent professional.
Recall that, in IR, test collections are data sets that are used to measure effectiveness
of information retrieval algorithms and systems. They generally contain a set of
information needs (topics or queries), a collection of documents where the answers
to the information needs are to be found and relevance judgements for the given
information needs [37, 39]. In this section, we describe the collection of documents
that were used in the CLEF-IP evaluation campaigns. The information needs and
relevance judgements are described in the subsequent sections for each of the
retrieval tasks that were run.

The CLEF-IP document collection uses actual patent documents from the Euro-
pean Patent Office, EPO, and from the World Intellectual Property Organization,
WIPO. These documents contain most of the information that is actively used by
patent practitioners in their daily work with patent data.

The bulk of the collection’s corpus is made up of patent documents stored as
XML files. These are mainly patent application and granted patent documents,
additional search report documents and amendments to the patents. Letters of
communication between patent offices and applicants, payment of fees, etc., are
not part of the CLEF-IP data.
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Table 4.1 Number of documents in the CLEF-IP collection

Year #patents #XML documents Source Application years

2009 � 1 mil. � 1:9 mil. EPO 1985–2000

2010 � 1:5 mil. � 2:6 mil. EPO Up to 2001

2011–2013 � 1:5 mil. � 3:5 mil. EPO, some WIPO Up to 2001

Since its first release in 2009, consecutive additions were made to the CLEF-IP
test collection, so that it currently contains almost 1.5 million patents stored into
approximately 3.5 million XML documents (Table 4.1) and uses about 75GB of hard
disk space. These patents are an extract from the larger MAREC4 collection, which
contains documents representing over 19 million patents published at the European
Patent Office (EPO), the United States Patent and Trademark Office (USPTO),
World Intellectual property Organization (WIPO) and Japan Patent Office (JPO),
stored in a common normalised XML format. The XML patent documents in the
CLEF-IP collection have XML elements to hold the patent document’s abstract,
description and claim fields, as well bibliographic information of the administrative
data associated with a patent (application and publication dates and references,
patent family identifiers, classification symbols, inventors, postal addresses of the
inventors, the invention title in three languages, etc.).

The patent documents in the CLEF-IP collection correspond to patent application
documents published by the EPO prior to 2002. The patent documents which were
published later by the EPO (2002–2009 as available in MAREC) were used to form
a topic pool out of which we extract subjects for the CLEF-IP tasks [10]. The size
of the topic pool was of approximately 800,000 patent documents.

A high percentage of the patent documents published by the EPO (and included
in the CLEF-IP collection) refer to applications internationally filed under the Patent
Cooperation Treaty [31], also known as ‘EuroPCTs’. In these cases, the EPO does
not republish the whole patent application, but only bibliographic entries linking
to the original application published by the WIPO. Using text-based methods to
retrieve such documents is problematic, and therefore for these patent documents
we added their WIPO equivalent to the CLEF-IP collection (Table 4.1). In this way,
the collection became both larger and more realistic.

One of the most important features of the CLEF-IP corpus is its multilingualism.
Patent applications to the EPO are written in one of the three official EPO languages
(German, English, French), with the additional requirement that, once the decision
to grant a patent is made, the claims section of the patent document must be sub-
mitted in all these three languages (Rule 71(3) of the European Patent Convention,
Implementing Regulations [8]). Figure 4.2 shows parts of the claims section of the
EP 252457 granted patent document where claims are printed in French, German
and English. The rest of this patent document is written in French, which we call

4The MAtrixware REsearch Collection. http://ifs.tuwien.ac.at/imp/marec.

http://ifs.tuwien.ac.at/imp/marec
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Fig. 4.2 Patent claims translated from French (top left) to German (top right) and English (bottom)

Table 4.2 Document distributions in the latest CLEF-IP collection

3.5 million documents

67 % English

14 % WIPO documents 74 % applications 22 % German

86 % EPO documents 26 % granted patents 6 % French

5 % unknown

the main language of the document. So CLEF-IP contains both documents with text
in one of the three EPO languages (German, French, English) only and documents
with content in all three languages (i.e. the granted patent documents).

Table 4.2 shows the percentage distribution of the collection documents by their
office of provenance (EPO, WIPO), type of document (application vs. granted
patent) and their main document language. There are many more application
documents in the collection than granted patents. This shows that very often patents
are not pursued after they were examined by an expert at the patent office. Although
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the English language is overrepresented in the CLEF-IP collection (see Table 4.2),
not least due to the EuroPCT applications written in their large majority in English,
the collection entails large amounts of content that is in German and French, making
the collection suitable for carrying out multilingual retrieval experiments.

According to the specifics of each organised task, further chunks of data were
added to the core CLEF-IP patent collection. In the descriptions of the tasks below,
each of these additions will be made clear.

4.4 The CLEF-IP Tasks

In providing a collection of patent data suitable for carrying out retrieval experi-
ments, we aimed not only to investigate current IR methods applied to patent search
but also to encourage further research in the domain of patent retrieval. Therefore we
set on probing the quality of the results the current IR methods give when faced with
an information need like the one represented by the patent novelty search, that is,
finding the relevant documents for a given patent application. Then we diversified
the types of tasks offered to the campaign participants from dealing with textual
content only to involvement of image analysis in the IR processes proposed. The
tasks organised in the CLEF-IP campaign refer to aspects of patent novelty searches.

Each CLEF-IP evaluation cycle contained a task where, for a given patent
application document, we question its validity by searching for documents that are
relevant to its described invention (CLEF-IP 2009–2011) or invalidate its claims
(CLEF-IP 2012–2013); see Sects. 4.4.1 and 4.4.2. These two tasks are known as the
prior art candidates search task (PAC) and the passage retrieval starting from claims
search task (PSG). As the CLEF-IP collection has only textual content, the PAC and
PSG tasks were, therefore, using and referring only to the available text in patent
documents. Patent classification was another CLEF-IP task that, based on the text
in patent documents, asked the systems to give back the correct IPC classification
symbols to be attached to the document (Sect. 4.4.3).

The technical nature of the patent content makes patent images a necessary
component of patents. During a novelty search a patent expert scans hundreds of
documents. An experienced IP professional is able to expeditiously dismiss non-
relevant documents by quick glances at images in patent documents. Thus we
decided to include images in the CLEF-IP campaigns by offering an image-based
prior art candidates search task (IMG-PAC, 2011, Sect. 4.4.4) where, in addition
to the text of a patent application, the images in the application document were
also provided. In the same year, 2011, a patent image classification task was
also organised (IMG-CLS). Here, images occurring in patents had to be classified
into flowcharts, gene sequences, programme listings, abstract drawing, etc. (see
Sect. 4.4.5). The task did not restrict how IR systems were to treat the data; we were
particularly interested in methods that used both the textual and visual information
to search for prior art.
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Table 4.3 CLEF-IP tasks, number of topics in the main topic sets and year of their organisation

Number of topics 2009 2010 2011 2012 2013

Prior art candidates (PAC) 10,000 2000 3973

Passage retrieval (PSG) 105 149

Patent classification (CLS) 2000 3000

Image-based retrieval (IMG-PAC) 211

Image classification (IMG-CLS) 1000

Flowchart/structure recognition 100 747

Chemical structure recognition 865

The patent image-based retrieval turned out to be a challenging task as it was of
a multimodal nature, using a large amount of data and full patent retrieval [33]. The
next logical step in such cases is to break the problem into smaller, easier-to-solve
tasks. One such smaller problem in our case is extracting the information from the
patent image files so as to store it in some previously defined textual format. In
2012, then, two further patent image-related tasks were designed, with the aim to
make the content of the images available to textual searches. The types of images in
these tasks were flowcharts and chemical structure images (Sects. 4.4.6 and 4.4.7).

Table 4.3 gives an overview of the tasks and their year of running. The table also
shows the number of topics provided in the main topic sets for each of the tasks.
In the following we will detail the design of each CLEF-IP task, the data used to
extract topics and relevance judgements for the topics.

4.4.1 The ‘Prior Art Candidates’ Search Task

The goal of this task is to find documents in the CLEF-IP collection that may
constitute prior art for a given patent application (called the ‘topic patent’). This
is one of the most common scenarios in the daily work of a patent expert at a patent
office.

4.4.1.1 Choosing Patents as Task Topics

The PAC task was organised from 2009 to 2011; its topics were complete patent
documents, including the bibliographic data, which could be processed and used
in query creation. Bibliographic data in the CLEF-IP documents contains, among
others, also the name and address of the applicant, IPC classification symbols
already attached to the patent application and the title of the invention in the three
EPO official languages.

The prior art search task organised in 2009 used as topics artificially created
patent documents—a virtual ‘patent application file’—that was a combination of the
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abstract, claims, etc., extracted from the latest published patent document available
related to an invention [38]. The main reason for this decision was that later
publications of a patent’s documents usually did not have the problem of missing
textual content, like no abstract, or no description fields. The second reason for
creating a virtual application using the latest patent document publication (usually
a granted patent document) was that such a document had content in more than one
official EPO language. Most importantly, the claims of the document given as topic
were always available in all three languages of the EPO (claims, in connection with
the description of an invention, ultimately support the legal decision that a patent
document constitutes prior art for another).

The design of the 2009 prior art search task diverged, however, from the actual
novelty searches that patent practitioners perform in their work. The discrepancy
was the different relationship between the virtual patent application file and the
patent citations used as relevance assessments. We have seen in the description of
the patent life cycle (Sect. 4.2) that the search report listing the patent citations is
created with respect to the patent application document and not the granted patent
which was the basis for the task topics in 2009. The granted patent documents differ
in the textual content from the patent application document. The difference does not,
however, render patent citations as irrelevant when put in the context of the granted
patent document. Nonetheless, the relevance relation between a patent’s citations
and the granted patent document is of a lesser intensity than the relation between
the patent citations and the application document.

Topic Selection Criteria: In 2009, from the topic pool of patent documents,
we selected documents that (1) had a corresponding granted patent document,
(2) contained a full text description, (3) had at least three citations in their
search report, and (4) had at least one citation that was highly relevant. From
2010 onwards, the prior art search task topics were patent application docu-
ments. The criteria used to select topic documents out of the topic pool were
extended from those used in 2009 [38, Sect. 2.2] by additionally considering
the document length and the availability of patent citation documents with a
different document language than the application document language [34]. The
task’s formulation did not change with these modifications (‘find documents
in the collection that may invalidate a patent document’) [32, 33]. Figure 4.3
shows an extract of the list of topics given to the participants. The topics are
stored in an XML-like fashion where the topic identifier (<num> tag) is the
identifier of the EPO patent application file, the narrative (<narr> tag) states

Fig. 4.3 Excerpt from the
file with the list of topics in
CLEF-IP PAC tasks
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Fig. 4.4 Excerpt from an XML topic file in CLEF-IP PAC tasks

Table 4.4 Number of topics
in the CLEF-IP PAC task

2009 2010 2011

Topics in the main set 10,000 2000 3973

Topic subsets 500, 1000, 5000 500 �

what the retrieval system’s task is and a link is included to the actual XML
file where the patent application content is stored (<file> tag). Figure 4.4
shows an excerpt of the XML file referred to in the topic. Table 4.4 shows
the number of topics for the years where this task was organised. In 2009 and
2010, participants were allowed to submit results for smaller subsets of the
main topic set.

Topic Document Languages: In 2009, the main set of topics did not put restric-
tions on the document’s language, neither during the topic creation nor on how
IR systems should treat documents of differing language. Instead, three additional
language-specific tasks were created, where the topics in each of the three sets
were documents in only one of the three EPO official languages. In 2010, we
did not impose restrictions on the document language when selecting the topics,
which resulted in the obvious fact that the document language distribution in the
topic set followed the document language distribution in the collection corpus. A
consequence of this ‘natural’ language distribution was that methods using distinct
algorithms for the different languages to process, index and search the documents
were not easy to qualitatively assess with respect to their language-specific methods.
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We compensated for this in the following years, where each third of the topic set
contained documents written in one of the official EPO languages.

4.4.1.2 Relevance Assessments and Metrics

Any IR evaluation faces the question of how to best obtain the ground truth to which
the retrieval results should be compared. Most of the evaluation efforts (TREC,
CLEF) use some form of pooling of the results and manually assess them by
volunteer work [3, 41, 46]. This is time-consuming work and, in the case of patent
relevance assessment, volunteers are difficult to find as costly expert knowledge
is required [38]. At the same time, because of their strict regulations in logging
their work, patent experts at patent offices do provide partial relevance assessments
in the form of patent citations in the search reports. These relevance assessments
are of high quality and, furthermore, at the EPO, the patent citations have level of
relevance degrees assigned to them (see Sect. 4.2, Examination phase).

The drawback in using search reports as the source of relevance assessments is
that the number of relevant documents for any given patent application document is
minuscule when compared with the number of documents in the CLEF-IP corpus:
on average six relevant documents. Extracting relevance assessments from patent
search reports follows the general lines described in [10]. To increase the number of
relevant documents, we made use of the patent families by creating an extended list
of citations which includes the patent citations of the topic application document,
the patent citations of the topic document’s family members and the family members
of the patent citation documents. After filtering out the patent citations that are not
part of the CLEF-IP data corpus, we reached an increase in the number of relevant
documents by a factor of seven [38]. All these operations were done automatically
by means of data- processing queries, and the relevance judgements were lists of
relevant documents for each of the patent application files in the topics.

The measures reported for the prior art search tasks between 2009 and 2011 are
precision and recall at different cut-off values, MAP, NDCG [19] and PRES [28].

4.4.2 The ‘Passage Retrieval Starting from Claims’ Task

Looking more closely at a search report created by the EPO, we immediately
observe that besides the list of patent citations relevant to a patent application,
it details which parts of a citation document (lines, columns, figures, etc.; see
Fig. 4.5) are pertinent to which claims of the patent application. This leads us, in
2012–2013, to change the task formulation from ‘find relevant documents’ to ‘find
relevant documents and mark in them the passages of interest to a given set of patent
application claims’. The task was thus transformed to a passage retrieval task which
we abbreviated with PSG. At the same time, although the basis for topic creation
remained the same—actual patent application documents from the topic pool—the
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Fig. 4.5 Extract from a search report

Fig. 4.6 Excerpt from the list of topics for the CLEF-IP 2012 PSG task

topics are now (sub)sets of claims in the patent application document, instead of the
patent application document itself [35, 36].

4.4.2.1 Topic Design

With the change of task formulation in 2012, we were prompted to change the
topic and relevance assessments, too. The topics, although still having references
to full XML files, are now sets of patent claims expressed as a sequence of XPaths.
Figure 4.6 shows an example of how the PSG task topics were formulated. Each
topic has a unique topic id (<tid> tags), a reference to the XML file containing
the topic’s patent application (<tfile> tags) and the list of patent claim XPaths
(<tclaims> tags). Participants were permitted to use the topic’s application patent
document for query generation.

The criteria used to choose topics from the pool of topic documents are similar
to those in choosing the PAC 2011 topics (see Sect. 4.4.1). In addition, we also
examined the search reports for these documents and singled out those which
provided more details in the list of citations. Examining the search reports and
the therein cited documents had to be done by humans; therefore, the number of
topics that could be extracted together with their relevance assessments was small
when compared to the number of topics in the PAC tasks: 105 topics in 2012 and
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149 topics in 2013. The language of the documents in both topic sets was evenly
distributed between the three EPO official languages.

4.4.2.2 Relevance Assessments and Metrics

The relevance assessments for the topics in the PSG tasks contain not just a list of
relevant document identifiers but also listings of XPaths identifying particular pieces
of text in the citation files. The use of XPaths to express the topics was only natural
considering that the CLEF-IP corpus is, ultimately, a collection of XML files.

The relevance assessments for the PAC tasks described in the previous section
were obtained automatically. The amount of automation we could use to create
the relevance assessments of the PSG task in 2012 and 2013 was, however, very
limited. The bottleneck here is the manual work in comparing original patent
documents in PDF format with the XML content. There is currently no tool that
could automatically highlight a portion of text in a PDF file by referencing it with
irregular expressions of the type ‘column 4, line 24, column 5 line 10’ and identify
the XPath(s) that would identify those highlighted sentences in the corresponding
XML files.

The relevance assessments of the PSG task had two levels: document and
passage (XPath) level. Submissions from the participants, similarly to the relevance
assessment files, had to contain, for each relevant document retrieved, also a list
of passages in that document considered as relevant to the topic. The evaluation at
the document level measured a system’s performance in retrieving whole relevant
documents, while the evaluation at the passage level targeted measuring the
system ranking quality of the passages in the relevant patent documents [35]. At
the document level, we maintained the computation of MAP, recall and PRES
measures. To measure the effectiveness of passage retrieval we compute, for each
retrieved document, MAP and precision scores involving only the XPaths. We
denoted these measures with MAP(D) and precision(D) and averaged them over
the set of topics. These two measures have similarities with the ‘relevant in context’
metrics of the INEX campaign [21], but taking into account sequences of XPaths
instead of sequences of characters [35, Sect. 2.1].

4.4.3 The ‘Patent Classification’ Task

When a patent application is filed and sent to the examination division of a patent
office, the application is initially assigned one or more patent classification symbols
(see Sect. 4.2.2), according to the technological area to which the invention belongs.
This classification operation ensures that the application document will be sent to the
patent expert with the highest qualifications in the invention’s technological areas.

Patent classification experiments are now and again performed in particular set-
ups [9, 23], but one formally organised exercise that evaluated classifiers for patents
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on one patent data set was coordinated in the frame of the NTCIR workshop series.
Iwayama et al. [18] give an account of the patent classification task of the NTCIR-6
workshop. The task used Japanese patent documents and required their classification
according to the Japanese file index and F-term classification systems.

Within CLEF-IP we have set up a similar patent classification task, where we
used the CLEF-IP corpus of European patents for training and asked participants to
assign IPC subclass symbols to patent documents. The IPC system is hierarchically
organised into sections, classes, subclasses, groups and subgroups.

The best performing system reached classification scores where one may argue
that the limits of automated classifiers are reached, and better results cannot
be obtained without human intervention [12]. The same task was repeated in
CLEF-IP 2011, with an additional classification subtask where the sought for
classification symbol was deeper in the IPC hierarchy, at the group and subgroup
levels when the subclass classification symbol was known. This proved to be a
more difficult problem to solve and it was concluded that the finer-grained IPC
classification symbols were too difficult to distinguish by an automated classifier.

4.4.3.1 Topic Selection, Relevance Assessments and Metrics

The topics for these classification tasks (abbreviated with CLS) were randomly
selected patent documents from the topic pool where it was required that the
documents have non-empty abstract, description and claims text fields. A further
constraint was that the documents were selected to be as equally distributed as
possible with respect to the IPC subclass symbols. In the 2010 CLS task, there were
no selection restrictions imposed on the document language or number of citations
the patent document had. We added this restriction in 2011, where each third of the
3000 topics in the CLS task had a different EPO document language. There were
2000 topics in the 2010 classification task.

Before releasing the topics to the participants, the information about their IPC
classification was removed from the XML’s bibliographic part. These classification
codes formed the relevance assessments for this task.

The measures we have computed to assess the quality of the submissions were
precision, recall and F1 at one classification code and at five classification codes (a
patent may be classified into more than one IPC class).

4.4.4 The ‘Image-Based Patent Retrieval’ Task

In the previous tasks, the information to be processed by participants was text based.
Recognising that images play an important role in examining patents, we organised
in 2011 a pilot task, abbreviated with IMG-PAC, where the topics for document
retrieval were images in patents.
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Fig. 4.7 Three examples of patent images in the IMG-PAC task

4.4.4.1 Document Collection

The CLEF-IP collection described in Sect. 4.3 contains only textual data. In the
MAREC collection of patent documents, which was the base to extract the CLEF-
IP collection, about half of the patent documents contain image tags (i.e. XML
references to images). These documents have, on average, ten references to images.
However, the storage requirements for the patent images in the CLEF-IP collection
(over 1TB) were higher than the resources available for organising an image-based
retrieval task using the whole collection as target data.5 Therefore, we created a
smaller test collection for this task, choosing patent technical areas where the patent
examiners often rely on visual image comparison to filter out the non-relevant
documents. The patent documents in this smaller collection were patents with the
following three IPC classification symbols assigned to them:

• A43B: characteristic features of footwear, parts of footwear
• A61B: diagnosis, surgery, identification
• H01L: semiconductor devices, electric solid state devices not otherwise provided

for

The target data contained over 47,000 XML patent files and 290,000 images stored
as black and white tiff files, totalling to 5.4GB. Figure 4.7 gives an example of patent
image files occurring in these classes.

4.4.4.2 Topic Selection, Relevance Assessments and Metrics

The methodology to select topics for this task is the same as the one used in selecting
topics for the PAC task (Sect. 4.4.1) with additional restrictions that there should be
at least three images attached to the patent application document chosen as topic
and that it is assigned one of the three IPC classification symbols.

5The patent images are part of neither CLEF-IP nor MAREC collections, they are a separate
collection of image documents whose file names are referenced in MAREC files via image XML
tags.
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There were 211 topics consisting of the patent text and complete set of images
attached to the patent.

The relevance assessments were obtained in the same way as those for the PAC
task, but filtered to contain only those documents in the target data. The metrics
calculated were MAP, precision and recall at cut-offs 1 (one document found)
and 5 (five relevant documents retrieved).

4.4.5 The ‘Patent Image Classification’ Task

The patent image classification task was the second task in CLEF-IP that used patent
images. Here the participants were given patent images to be classified into one
(or more) of the following nine types: abstract drawing, graph, flowchart, gene
sequence, programme listing, symbol, chemical structure, table and mathematics.
Figure 4.8 gives some examples of images to be classified.

Compared to other image classification tasks (e.g. the photo annotation tasks at
ImageCLEF [20]), the images in this classification task did not come with any kind
of textual comments. The image classification in this task had to be done purely by
visual content analysis.

For each of the nine image classes mentioned above, we have provided between
300 and 6000 training images. No other data was allowed to be used for training.
The image test set contained 1000 black and white tiff files. The task was to train an

Fig. 4.8 Examples of patent images to classify in the IMG-CLS task. From left to right, top down
the image classes are abstract diagram, graph, flowchart, mathematical formula, symbol, chemical
structure, gene sequence, table and programme listing
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image classifier on the provided training data and test the resulting classifier on the
test set [35].

Both the training data and the relevance assessments for these topics were done
manually by the task organisers. The measures used to assess the classifier’s quality
were the equal error rate (EER), the area under curve (AUC) of a ROC curve and
the true positive rate (TPR) per class averaged over all classes. The evaluation
computations were done with a custom-written octave6 script.

4.4.6 The ‘Flowchart Recognition’ Task

The aim of this task, organised, in 2012 and 2013, was to make the content of the
patent images containing flowcharts available to textual search. The participants
in the task were asked to extract the information in the images and return it in a
predefined textual format.

4.4.6.1 Topic Selection

In the flowchart structure recognition task, the topics were actual patent images
representing flowcharts. The images were selected from the set of images in the
flowchart class that were used in the 2011 patent image classification task.

In 2012, we provided a training set of 50 flowcharts together with their text
representation. The test set contained 100 flowcharts. In 2013, the training set
contained the 150 flowcharts used in the 2012 task, while the test set contained
747 flowcharts.

4.4.6.2 Relevance Assessments and Metrics

The textual encoding of flowchart images is a list of graph nodes and graph edges
(flowcharts can be interpreted as graphs in the mathematical sense as nodes and
edges between nodes). In Fig. 4.9 we can see an example of a flowchart image and
its textual representation. In the textual representation of a flowchart, MT stands
for meta information about the flowchart (like number of nodes, edges, title), lines
starting with NO describe the nodes of the graph, lines starting with DE describe
directed edges, while lines starting with UE describe uni-directed edges in the
graph. Lines beginning with CO denote comments that are not to be automatically
processed.

For the 2012 topics, the relevance assessments were manually created for both
training and test data [35]. The quality of the information extracted from the images

6Gnu Octave http://www.gnu.org/software/octave.

http://www.gnu.org/software/octave
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Fig. 4.9 A flowchart image and its textual representation

was assessed using a distance metric based on the notion of most common subgraph
[45] and using an in-house implementation of the McGregor algorithm [29]. The
same approach was used in 2013, where, in addition, we had planned to experiment
with further evaluation measures, described in [27].

4.4.7 The ‘Chemical Structure Recognition’ Task

Chemical molecular diagrams are the basis for a large number of patents granted
in the pharmaceutical domain, for example. No wonder, then, that being able to
extract such diagrams from documents and to recognise them to the extent necessary
to automatically compare them for similarity or identity to other diagrams is a
potentially very powerful approach to identifying relevant claims [35]. Currently,
patent experts visually inspect such diagrams. Within CLEF-IP the chemical
structure recognition task has been organised in 2012 only and was divided into
two parts: segmentation and recognition.
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4.4.7.1 Topic Selection, Relevance Assessments and Metrics

For the chemical compound structure recognition, the topics were scanned patent
pages, one page per image file. The first subtask required participating systems to
segment the images in order to isolate the images representing chemical diagrams.
Once the images containing the chemical compounds are cut out of the scanned
patent pages, we asked, in the second subtask, for their textual representation in
MOL (from molecule) file format (see also Fig. 4.10).

For the segmentation part of the task, a set of 30 patents was selected, and
their pages rendered as monochrome multi-page TIFF images. The pages were
manually selected by the task organisers. The relevance judgements for this subtask
consisted of the coordinates of the minimal image bounding box size (middle part
in Fig. 4.10). Submissions, submitted in CSV files, were assessed using the number
of true positive, false positive and false negative matches and then by computing the
precision, recall and F1 measures [35].

The second subtask was recognising the chemical diagrams and storing them
as MOL files for comparison with the ground truth. The topic set contained 865
diagram images such as those in the middle area of Fig. 4.10, fully representable as
MOL files (the automatic set). The participant submissions using this topic set were
evaluated automatically using the open source chemistry toolbox, OpenBabel [35].
The metrics reported for this set were the percentage of correctly matched chemical
diagrams.

A second topic set for the chemical diagram recognition subtask has 95 images,
the manual set, which contained irregularities in their diagrammatic representation.
These diagrams cannot be represented as MOL files without abusing in some
way the MOL representations, so these images were visually assessed using the
MarvinView tool from ChemAxon.7

4.5 Summary of the Task Submissions and Evaluation
Results

The format of the submitted experiments varied depending on the specific task. For
the CLEF-IP main tasks PAC and PSG, a submission (or run) consisted of a single
text file with at most 1000 documents per topic. The format of the submissions
followed the standard format used for the TREC submissions, which is a list of
tuples containing at least the topic identifier, the retrieved document, the rank of
the retrieved document and the score given by the retrieval system to the retrieved
document. The submissions to the passage retrieval starting from claims task (2012,
2013) had an additional entry indicating the XPaths to the relevant passages in the

7MarvinView: A generic 2D/3D molecule renderer, http://www.chemaxon.com/products/marvin/
marvinview/.

http://www.chemaxon.com/products/marvin/marvinview/
http://www.chemaxon.com/products/marvin/marvinview/
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retrieved documents. The same TREC submission format was used for the patent
image-based prior art search task (2011) and a TREC-style submission format was
used for the classification tasks. A submission to the flowchart task consisted of a
set of text files, one per topic flowchart, with a custom textual graph representation
of the chart [36] (see Sect. 4.4.6). Submissions to the chemical structure recognition
task were CSV files, for the image segmentation part of the task, and MOL files [6],
for the representation of the molecular structures in the identified image segments
[35].

Generally, participants in the CLEF-IP tracks have used off-the-shelf retrieval
and classification engines (Indri/Lemur or Terrier engines, commonly available k-
nearest neighbour algorithm implementations, support vector machines, SVM or
Winnow-like classifiers), choosing to tune these systems to obtain good results. The
better results, however, were obtained by those systems that put more effort into
understanding and exploiting the patent-specific data, like citations or classification
symbols. Participants in the image-related tasks used mainly in-house developed
systems with different components handling the character recognition, image
segmentations or edge and node segmentation modules.

In the tasks involving textual retrieval, several experiments were done by the task
participants to determine which parts of the (topic) patent documents contribute
most to improving the retrieval results. These include selecting certain file parts
to index, building separate indexes per language or boosting query terms extracted
from certain parts of the topic files. Given that each patent document could contain
fields in up to three languages, some participants chose to build separate indexes per
language, while others generated one mixed-language index or used text fields only
in one language discarding information given in the other languages. The granularity
of the index varied, too, as some participants chose to concatenate all text fields
into one index, while others indexed different fields separately. In addition, several
special indexes like phrase or passage indexes, concept indexes and IPC indexes
were used.

As CLEF-IP topics in the textual retrieval tasks are whole patent documents
(with thousands of words), many participants found it necessary to apply some
kind of term selection in order to limit the number of terms in the query. Various
experiments were done to determine the impact of the number of selected query
terms on the result quality.

The bibliographic data that was exploited the most is the IPC information which
was used either as a post-processing filter or as part of the query. The patent citation
information stored in the document set of the collection was exploited less in the
first year, with more groups using this metadata in the following years. Other very
patent-specific information, like priority, applicant and inventor information, were
only rarely used.

To give an idea of the score ranges achieved by retrieval systems participating
in the prior art tasks, we show in Fig. 4.11 box plot summaries of the submitted
run scores for mean average precision, MAP, and passage mean average precision,



136 F. Piroi and A. Hanbury

Fig. 4.11 Summary of MAP scores in the PAC and PSG CLEF-IP tasks. (a) MAP scores for the
PAC tasks. (b) MAP(D) scores for the PSG tasks

Fig. 4.12 Text- and image-based patent classification tasks summary of scores. (a) CLS tasks F1

scores. (b) EER, AUC and TPR scores for the IMG-CLS task

MAP(D), for each year where these tasks were run.8 The numbers just above the
years show the number of runs submitted and evaluated in the respective year.

Not all participants focused on the multilingual nature of the CLEF-IP document
collection. In most cases, data in only one specific language was used or several
monolingual retrieval systems were implemented, merging their results at the
end. Few participants made use of machine translations to obtain query terms in
additional languages and apply them on the previously created collection indexes.

The classification of patent documents and patent images proved to be an easier
challenge than finding prior art using IR methods. This is reflected in the scores
obtained by the participants’ submissions shown in Fig. 4.12. Figure 4.12a sum-
marises the F1 scores obtained by the experiments submitted to the two CLS tasks,

8Note that the scores between years cannot be directly compared, as each lab year came with a new
set of test topics.
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in 2010 and 2011. Submissions to the classification task were created either using
text classifiers only or by text retrieval systems returning the IPC codes as results
or by combining classification and text retrieval. The low equal error rate values
and the high area under a ROC curve values in Fig. 4.12b show a good performance
of the image classification systems in the 2011 image classification task (this task
was organised only in 2011). Here, participating systems classified images using
local binary patterns and optical character recognition, then, applying support vector
machines and result fusion. Another solution consisted of representing images as
Fisher vectors and using a linear classifier.

In the image recognition tasks, participants used in-house developed software
solutions with components for optical character recognition, edge and junction
detection, box shape detection and classification. Images were analysed and vec-
torised components extracted, which were later fed into a rule-based system to
create textual content representations. Figure 4.13 shows the summary of the graph
similarity scores for each run submitted to the flowchart recognition task in 2012.
For the set of test flowcharts in this task, content detection and graph structure
detection are handled well by the participating systems, with many graphs being
correctly detected.

Similar scores were obtained for the submissions to the chemical structure
recognition task, with over 80 % recall levels for diagram recognition and over 70 %
recall levels for chemical diagram segmentation (see [35] for the exact score values).

Table 4.5 gives the list of the participating teams’ institutions and marks their
year of participation. The table also shows the number of tasks organised in each
year as well as the total number of runs received in the respective year. All data can

Fig. 4.13 Flowchart recognition task, 2012: summary of ‘most common subgraph’ metric scores
for each run
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Table 4.5 Participating teams and year of participation

Team institution 2009 2010 2011 2012 2013

BiTeM, Service of Medical Informatics, Geneva
University Hospitals

CH x x x

Centrum Wiskunde & Informatica - Interactive
Information Access

NL x

Chemical Biology Laboratory, SAIC-Frederick
Inc.

US x

Chemnitz University of Technology, Department
of Computer Science

DE x x

Computer Vision Centre, Universitat Autonoma de
Barcelona

ES x

Dublin City Univ., School of Computing UK x x

Geneva University Centre, Universitaire
d’Informatique, SimpleShift

CH x x

Georgetown University, Department of Computer
Science

US x

Glasgow Univ., IR Group Keith UK x

Hewlett-Packard Labs, Russia RU x

Humboldt Univ., Dept. of German Language and
Linguistics

DE x x x

Industrial Property Documentation Department,
JSI Jouve

FR x

Innovandio S.A. CL x

Inria FR x x x

SIEL, International Institute of Information
Technology

IN x

Joanneum Research Forschungsgesellschaft mbH,
Inst. f. Information and Communication
Technologies

AT x x

LCI – Institut National des Sciences Appliquées de
Lyon

FR x

Radboud University Nijmegen NL x x x

Santiago de Compostela University, Dept.
Electronica y Computacion

ES x

Spinque B.V. NL x x

Swedish Institute of Computer Science SE x

Technical Univ. Darmstadt, Dept. of CS,
Ubiquitous Knowledge Processing Lab

DE x

Technical Univ. Valencia, Natural Language
Engineering

ES x

UNED - E.T.S.I. Informatica, Dpto. Lenguajes y
Sistemas Informaticos, Madrid

ES x

Universitas Indonesia, Information Retrieval
Group

ID x

University ‘Alexandru Ioan Cuza’, Iaşi RO x x

University of Birmingham UK x

(continued)
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Table 4.5 (continued)

Team institution 2009 2010 2011 2012 2013

University of Hildesheim, Information Science DE x x x x

University of Lugano CH x x

University of Macedonia, Department of Applied
Informatics, Thessaloniki

GR x x

University of Montreal CA

University of Neuchâtel, Computer Science CH x

University of Tampere - Info Studies & Interactive
Media

FI x

University of Wolverhampton, School of
Technology

UK x

Vienna University of Technology, Inst. f. Software
Technology and Interactive Systems

AT x x x

Vienna University of Technology, Inst. for
Computer-Aided Automation

AT x

WISEnut Ltd. KR x

Xerox Research Centre Europe FR x

Total teams 16 13 12 13 4
Number of runs 70 52 77 51 19
Number of (optional) tasks 1 2 4 3 2

be downloaded from the CLEF-IP website.9 For detailed descriptions of the systems
that participated in the CLEF-IP tasks, we direct the reader to the workshop notes
available on the CLEF initiative website10 and to the CLEF-IP website.

4.6 Conclusions

At the end of the CLEF-IP evaluation campaign, it is clear to us that successful
information retrieval in the patent domain involves at least well thought-out adjust-
ments to the currently used retrieval and text mining systems to take into account the
specificities of the patent domain. In general, retrieval results do not come close to
the expectations of patent experts. Even though the CLEF-IP campaign is no longer
running, there is a huge potential to use the data and realistic patent search tasks
resulting from the CLEF-IP campaign to develop innovative solutions in the patent
information retrieval domain.

9CLEF-IP: Retrieval in the intellectual property domain. http://ifs.tuwien.ac.at/~clef-ip/.
10The CLEF Initiative (Conference and Labs of the Evaluation Forum, formerly known as Cross-
Language Evaluation Forum). http://www.clef-initiative.eu/.

http://ifs.tuwien.ac.at/~clef-ip/
http://www.clef-initiative.eu/
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The CLEF-IP tasks described in this chapter are mainly focused on text-oriented
information retrieval, with aspects of information extraction from patent images
addressed in the flowchart and chemical structure recognition tasks. There remains
however extensive work to be done on improving the use of non-textual patent
data in patent search. Another important aspect of patent retrieval, which was not
addressed by the CLEF-IP campaign, is that information search is session based:
the final list of relevant documents is the result of several search queries, possibly
building on each other. Both these research directions need sustained support from
the IP community.

Nevertheless, along with the TREC-CHEM campaign [25] and the patent-
oriented campaigns organised in the frame of the NTCIR project, the CLEF-IP
campaign actively contributed to raising the interest of the IR community in
exploring a body of knowledge that has such a high impact in the economic world.
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Chapter 5
Evaluating Real Patent Retrieval Effectiveness

Anthony Trippe and Ian Ruthven

Abstract In this chapter we consider the nature of information retrieval evaluation
for patent searching. We outline the challenges involved in conducting patent
searches and the commercial risks inherent in patent searching. We highlight some
of the main challenges of reconciling how we evaluate retrieval systems in the
laboratory and the needs of patent searchers, concluding with suggestions for the
development of more informative evaluation procedures for patent searching.

5.1 Introduction

Patent searching is a highly interactive and complex process often requiring multiple
searches, diverse search strategies and careful search management [1]. There are
different end-user requirements for different types of patent search, and simple
performance-based measures of retrieval system functions are often inadequate in
expressing the degree to which an information retrieval (IR) system might help
conduct a successful search.

A particular characteristic of patent searching is the importance of the risk to
which a company is exposed if a patent search is poorly conducted. Inadequate tools
increase the likelihood of a poor search and increase the level of risk if a company
proceeds on the basis of the search.

The claim from most IR evaluations is that measures of recall and precision,
implicitly, calculate which system(s) are more likely to reduce this risk by perform-
ing more effective retrievals. Therefore, it is argued, we can be more confident about
performing a good search with a system that has performed well in system trials. In
this chapter we argue that this argument is naïve when considering real operational
use.
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Specifically we consider why recall and precision may give misleading inter-
pretations on system performance, why we need to distinguish the characteristics
of different types of patent search and where IR performance variability arises. A
core theme in the chapter is the notion of risk: what risks are involved in patent
searches, how these connect to measurements of recall and precision and how
measurements of recall and precision may misinform rather than enlighten us as
to system performance. We conclude with a discussion on how we might increase
our confidence in IR system performance as measured in operational environments.

5.2 Types of Patent Search

Patent searches go by a variety of different names. Listing the most popular ones,
you hear terms like: state of the art, prior art, patentability, validity, invalidity,
clearance, freedom to operate, novelty and landscape (see Chap. 1). While there
may be a large number of terms used to describe patent searches in essence, they
boil down to four major categories upon which we shall concentrate in this chapter:
state of the art, freedom to operate, patentability and validity.

Patent searchers traditionally use these types of descriptions to talk about the
searches they perform for various clients whether they are from the legal department
or the corporate strategy group. Before formally defining these types of search, it
might be useful to think of these various types of searches in terms of the amount of
risk they represent to the enterprise. Later we shall compare them to one another on
precision and recall scales.

5.2.1 Patent Searches and Risk

We define risk as the amount of money that has already been invested in an
innovation by an organisation pursuing a technological solution to a problem. As
the amount of money invested by the enterprise increases, the importance of making
good decisions about whether to continue funding the innovation and pushing it
towards commercialisation also increases. With additional funding comes additional
risk since the amount of money required to move from one step to the next in taking
an innovation to market gets almost exponentially larger.

The pharmaceutical industry provides a perfect example of this concept of
increased investment and risk. Early stage projects are expensive in terms of the
time spent by the scientific teams in creating new drug entities and having those
tested. These are sunk costs and are part of starting a pharmaceutical company in
the first place. As new drug entities are discovered, however, decisions need to be
made on whether they will be brought forward into what is first called a preclinical
phase and then a succession of three human clinical trials. Each subsequent stage
in this process becomes more expensive than the next as more people are involved

http://dx.doi.org/10.1007/978-3-662-53817-3_1
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in the trials, additional dosing schemes are employed and longer time periods are
involved. As a company approaches a phase III clinical trial, the amount of money
that will be invested is counted in the hundreds of millions of dollars and pale in
comparison to the money that was spent generating a new drug entity and entering
it into preclinical trials.

Since there is increased risk from substantially increased investment as a new
drug entity moves from one stage to the next in the drug discovery process,
companies have adopted a mantra referred to as ‘failing faster’. The idea being that
if they can find mechanisms for discovering earlier in the process that a new drug
entity is going to fail, then the company can save themselves a tremendous amount
of money by learning as quickly as possible that this is the likely outcome. They cut
down on later risk by identifying failure points earlier in the process before larger
investments are made.

Analogies can be made to the world of patent searching from this example,
and many companies follow a similar mantra that if they can discover potential
legal impediments to future production earlier in the process, then they will save
themselves money by changing course based on this knowledge. We can analyse
the four major types of patent search by the risk involved.

State of the Art: This type of search is conducted in order to determine the
prevailing technical knowledge in a particular subject area. A practitioner might
be entering a new technical area and is interested in learning about the work that
has already been done in this space. It is not uncommon for users to be interested in
non-patent as well as patent documents in this case since the end goal is to have
a thorough understanding of what the current knowledge is in a technical area
of interest. People interested in technical or competitive intelligence will also be
interested in these types of searches, and when they begin to analyse the details
of the results they get, they will sometimes refer to these as landscaping studies.
The sort of details a user can glean from these results are shifts in technology over
time, interest in technology subcategories by company and who the subject matter
experts in the field might be. State-of-the-art searches are typically done at the very
beginning of projects before any investment has been made, and investigators are
trying to determine if an innovation is worth pursuing for a number of reasons. The
risk associated with these searches is low and this will have an impact, as we will
see later on the corresponding need for precision and recall.

Patentability: This type of search is usually done in the legal context of determin-
ing if a new invention is eligible for patent protection and determining how broadly
the claims for the new invention can be written. This type of search can cover both
patent and non-patent literature and is typically looking for references that were
published before the filing date of the invention in question. In the United States,
inventors have up to a year from the first public disclosure of an invention to file
a patent, so some searchers will go back an additional year with their searching to
make sure they have found the best references. This is the type of search that will
be done by an examiner to determine if they should allow a patent application to be
granted.
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Even though an examiner will do this search, it is important for the applicants
to also conduct one since they will often have the time and resources to be more
thorough than the examiner can be. It is also important since knowing the boundaries
of the known references will help the attorneys drafting the claims to ask for the
broadest coverage possible. Without knowing the scope of the known references, it
is difficult for the attorney to know how broadly they can write the claims and still
expect the examiner to grant a patent.

Patentability searches are done once an inventor has an idea and they have either
reduced it to practice or they have a pretty good idea on how they are going to reduce
the idea to practice during the preparation of the patent application. Investment has
increased since the inventor has spent time discovering the idea and may have used
additional time and money reducing it to practice. The total money spent, most of
which is fixed costs, is still fairly low and thus the risk involved in this situation
while higher than the stage when the state-of-the-art search was done is still low.

Freedom to Operate: Possibly the most specific type of patent search this
particular one is country specific and only applies to in-force granted patents and
their claims. A company will ask for a legal opinion on whether a product they are
planning on shipping will infringe any existing patents before they launch. There is
nothing offensive about this type of search since the interested party is not going
to assert patents against anyone else; they are simply looking to make sure that
they are not going to be infringing someone else’s patents. A searcher in this case
needs to identify the critical components of the product in question and search
country-specific claims of in-force patents to see if any of them cover the product
components in question. In most cases a great deal of money has gone into a product
launch or can be involved with a successful product which is generating a great deal
of revenue, so it is important for companies to know that they will be reasonably
safe from future litigation before they make an even larger investment.

Some companies do freedom-to-operate searches reasonably early in the pro-
duction cycle and follow up with them frequently to make sure the situation hasn’t
changed as they get closer and closer to market. These companies are following
the ‘fail faster’ philosophy that was mentioned earlier since they recognise that it
is better to know about potential legal issues before they make larger investments
and involve higher risks. Other companies wait until the trucks are about to leave
the warehouses and then conduct a freedom-to-operate search as a last item of their
checklist before they go to market. At this point a great deal of time, money and
effort has gone into the innovation and the amount of investment and risk is pretty
high. On more than one occasion, companies have trucks filled with product that
has been left in a warehouse because a last-minute freedom-to-operate search has
come back with an in-force patent that could be used against the company later.
Regardless of when these searches are applied, the risk is much higher than at the
patentability stage and should be considered medium to high.

Validity: Validity search comprises the largest and most comprehensive of all
patent searches. These searches are almost always associated with large sums of
money and critical business decisions and as such need to be as comprehensive as
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possible. This search shares similar characteristics to the patentability search but is
normally far more comprehensive since there is typically much more at stake when
this sort of search is being initiated.

The object of the search is to identify prior art references which will allow a
granted patent to be made invalid during a re-examination before the particular
patent office of interest or during a court proceeding. Sometimes a company will also
initiate validity challenges for patents that they are thinking of acquiring especially
if they believe these patents will later be used in some type of litigation or another.
On the flip side of this, a company who is provided with a cease and desist notice
will often want to make the patents in question go away by finding invalidating
prior art and then entering into re-examination. The prior art references in question
can come from the patent or non-patent literature, must be available in the public
domain and have to have been published prior to the priority filing date of the patent
in question. In the United States there is a 1-year grace period on patent filings, so
some searchers will look back an additional year when they search so they can be
sure to avoid this type of situation.

Validity searches are conducted when an organisation has received a cease and
desist order or is about to spend a significant sum of money on a purchase of one
sort or another and due diligence needs to be performed in order to justify the
transaction. Investment in this case either in the form of production costs and lost
sales or in money to be spent on an acquisition is very high, and the corresponding
risk to the groups making the investment is also extremely high. Since large sums
of money are involved and the risk involved is so high, companies are willing to
increase the resources made available to conduct these types of searches.

Summarising the searches on our risk continuum, we have state of the art
followed by patentability, then freedom to operate and finally validity.

The amount of risk involved will have an impact on the resources that are made
available to do the searching, and in turn this will have an impact on the precision
and recall that will be expected in these searches. While risk is not the sole qualifier
for precision and recall, there are cases where you have high risk but you do not need
high recall per se; it is still useful to keep this in mind as we look at the requirements
for these searches.

5.2.2 Risk and Recall

Looking at recall and thinking about a continuum, we come across an example
where higher risk does not require higher recall. In the case of our highest risk
search, validity, we also find that total recall is not necessarily required. In this type
of search, it is only necessary to find one reference which predates the filing of the
patent application in question that describes the invention. In practice most searchers
will not stop when they find a single reference and will seek to be as comprehensive
as possible, but strictly speaking it is not a requirement. Since there is a high risk,
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searchers will often seek higher recall to make sure there are contingencies in place
and not rely on a single reference. These considerations put validity on the low-to-
medium scale with regard to recall.

With patentability, the recall question will depend on who is doing the searching.
In the case of an examiner, the recall will be the lowest of all the searches we are
discussing since they will stop once they find a single reference which will enable
them to disallow a claim. They can also take two references and combine them
to disallow a claim, so they will stop if they find that combination. Patentability
searches done by corporate searchers, however, are usually higher in recall since
they are helping assist the attorney in deciding how broadly they can write their
claims based on how much prior art is out there and how closely (we will do
precision next) it matches the invention to be patented. Since the risk is still
reasonably low, however, they will not attempt to achieve higher recall since they
will reach a point of diminishing returns and making an investment to achieve it
would not be economical.

State-of-the-art searches involve low risk, but you would like to achieve a
reasonably high recall since the inventor is exploring an unknown area and they
will spend time landscaping the area to increase their understanding. Economically
speaking, recall is sacrificed due to the small investment being made at this point,
and the bar for diminishing returns is pushed even lower since the expectation is
that more comprehensive searching will be done once an actual invention has been
discovered and when a product cycle starts.

For recall the top search is freedom to operate where a single missed patent can
come back and be used for a cease and desist action. It is very important to find
any and all patents that cover the elements of product to be brought forward to an
attorney so they can make a determination as to whether the product will infringe
on the patent in question. In order to conduct business, not just one patent can be
found that an invention may infringe upon, but all of them need to be located in
order to ensure that the company will not face future legal issues. These searches
are referred to as freedom to operate for this exact reason.

So, looking again at our continuum and comparing recall, this time we have
validity and patentability at the lower end of the scale, state of the art in the
middle and freedom to operate at the high end. Recall does not correlate with risk
necessarily in this comparison with the possible exception of freedom-to-operate
searches.

5.2.3 Risk and Precision

Precision maps almost completely to our assessment of risk. State-of-the-art
searches are sometimes called ‘quick and dirty’ since there is not much time invested
in doing them and the results often have a large number of false positives contained
in them. Also by its very nature, this search is exploratory and as such a high degree
of precision is not required.
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Patentability searches are typically more precise but by their nature are used to
explore the boundaries of the prior art so that broader claims can be written to cover
more aspects of an invention if warranted, so precision is important to cut down
on the records that will need to be looked at but not essential. A number of false
positives are expected and are part of the process.

Freedom-to-operate and validity searches both require a high degree of precision
since very specific documents are required in each of these cases. With freedom to
operate, the aspects of the produce must be covered in the claims of in-force patents
from the countries of interest. The product must also use all elements of the claimed
invention in order to infringe. Finding patents that meet this criterion is a tall order
and requires high precision. Similarly, in a validity search, a precise search of the
patent and non-patent literature is required to locate references which describe the
exact invention covered in a later patent claim either by itself or in combination with
another reference.

On the precision continuum, we have state of the art at the low end, followed by
patentability and finally freedom to operate and validity.

Looking at each search by its characteristics, we can say state of the art is low risk
with low precision and medium recall. Patentability is low risk with low recall and
precision. Freedom to operate is high risk requiring both high recall and precision
and validity having the highest risk and requiring high precision but able to get by
with lower recall.

Looking at searches in this fashion, it is apparent that freedom-to-operate
searches offer the most difficult challenge for IR researchers. The risks involved are
also very high, so the expectations will be large and the reluctance to move away
from established methods will be severe. Validity is also a difficult task since the
risks are so high and the precision requirements so large. State of the art is where
most systems work currently and do not necessarily provide much reward for the
effort since they are low risk and are conducted with little in the way of investment.
Patentability seems to be the sweet spot for IR research since it offers a reasonable
challenge with a good opportunity for return since it is conducted during a stage
where resources will be spent to address the issue.

Having outlined the challenges to the patent searcher in conducting a successful
search, we now discuss some of the challenges IR researchers face in defining
appropriate evaluation measures.

5.3 Limitations of IR Evaluation

As in other domains, the evaluation of the retrieval components of patent search
systems focuses primarily on laboratory-style evaluation, and these evaluations
are heavily shaped by the classical models of IR laboratory evaluation. As noted
in Carterette and Voorhees (see Chap. 3 of the first edition article “Overview of

http://dx.doi.org/10.1007/978-3-662-53817-3_3
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Information Retrieval Evaluation) early influential laboratory evaluations included
studies such as the Cranfield I and II experiments, SMART evaluation and the
in-depth evaluation and failure analysis of the Medlars search service [2] using
small document collections. The experience gained from these studies has been
incorporated into the creation of modern test collections where collection size has
grown considerably since these early studies. The most widely used test collections
come from the Text Retrieval Evaluation Conference (TREC) initiative [3], the
Cross-Language Evaluation Forum (CLEF)1 (which are discussed in separate
chapters in this volume) and NTCIR.2 The oft-stated values of test collection
evaluations are the tightly controlled nature of the evaluation, the statistical rigour
with which the evaluation test results can be analysed and the repeatable nature of
the evaluation tests.

The value of IP systems in operational use, however, is influenced by more than
the quality of the retrieval system itself and, as has been repeatedly demonstrated in
operational tests in other domains, the contextual factors surrounding the use of a
system (such as organisational concerns, training and experience of the searcher
and time available to search) can strongly influence the end results of a search
[4, 5]. This gap between real-life practice and laboratory rigour raises three
important questions, which we shall examine in the remainder of this section.

1. Are laboratory evaluation measures misleading? Recall and precision are the
standard measures for evaluating IR system performance. Although there are
many ways in which we can use recall and precision to obtain evaluation
measures, there are arguments for why they are poor measurements for end-user
evaluations unless they are contextualised by other information. In Sect. 3.1 we
examine some of these arguments and why they raise concerns for determining
the confidence we can place in laboratory evaluation performance figures.

2. Are the results of laboratory evaluations sufficiently good at predicting real-life
performance? That is, can the results obtained from a laboratory test of an IR
system inform us of the potential value of a system in operational environments?
In Sect. 3.2 we survey some recent work, which indicates a weak correlation
between the performance evaluations of systems without user involvement and
evaluations of systems operated by end users.

3. Are laboratory evaluations sufficient? Real-life evaluations incorporate factors
that are usually eliminated from laboratory evaluations, such as the expertise of
the searchers themselves. In Sect. 3.3 we examine some of these factors and
outline their importance in reliably measuring system effectiveness.

1http://clef.iei.pi.cnr.it
2http://research.nii.ac.jp/ntcir

http://clef.iei.pi.cnr.it/
http://research.nii.ac.jp/ntcir
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5.3.1 The Potentially Misleading Effects of Recall
and Precision

Patent search evaluation, similar to other retrieval problems, focuses primarily
on recall and precision as measures of system effectiveness. These are long-held
measures of retrieval quality and their tight hold on evaluation comes from their
intuitive nature: how much of the useful information has my search retrieved (recall)
and how much of the information that I have retrieved is useful (precision)? There
is also a useful probabilistic interpretation of recall and precision: recall estimating
the probability that a relevant document will be retrieved in response to a query and
precision estimating the probability that a retrieved document will be relevant [6].

Most test collections are constructed using a generally accepted model referred
to as the Cranfield model deriving from the Cranfield II tests [7]. A test collection
that adheres to the Cranfield model will consist of a set of searchable objects, a
set of information requests (or occasionally statements of information problems)
and a list of which objects in the collection should be considered relevant for
each information request. To ensure fair comparison between systems, a number
of important assumptions are made. These include the assumptions that:

1. The topics are independent of each other.
2. All objects are assessed for relevance.
3. The judgements are representative of the target user population.
4. Each object is equally important in satisfying the user’s information need.
5. The gathering of relevance assessment is independent of any evaluation that will

use the assessments.
6. The relevance of one information object is independent of the relevance of any

other object.

These assumptions are intended to ensure a fair and accurate comparison between
estimates of system performance. The status of these assumptions has shifted over
the decades of evaluation research since the original Cranfield model. Assumption
1 is generally adhered to in order to increase the diversity of the test. Assumption 3
is an attempt to ensure external validity of the experiment, i.e. that the results can
be generalised to requests beyond those investigated within the test. The level to
which this assumption matches most test collections is seriously under-investigated.
Assumption 5 attempts to control the internal validity of the study: the assessments
used to evaluate the system are not created by the people who designed the study,
and therefore it is hoped that bias will not be introduced into the collection.
Assumption 4 is a simplification of real search behaviour and many new test
collections have graded relevance assessments to allow for more detailed measures
of system effectiveness. However, the grades of relevance used often simply reflect
amount of relevant material contained within objects rather than quality of relevant
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material. Assumption 6 is present in most test collections3 although it is patently
false—a system that retrieves duplicates or near-duplicate documents in favour of
new and different relevant documents would not be seen as a better system by most
users.

Assumption 2 is the assumption that has gathered most attention within the IR
evaluation literature, particularly with the rise in test collection size. The early
test collections contained small numbers of documents—the Cranfield collection
contained only 1400 documents—and it was feasible for exhaustive relevance
judgements to be made on the collection. For most collections this is not feasible: it
has been estimated that it would take more than 9 months to judge an average size
TREC collection for a single topic [7]. Not only is this expensive both in terms of
time and resources, but over a protracted time period the criteria an assessor will
use to judge a document for relevance could change, resulting in inconsistencies in
the relevance assessments and therefore in the evaluation results. Indeed, Swanson
[8] expressed this as one of his postulates of impotence—statements of what IR
cannot achieve—namely, that it is never possible to verify if all relevant documents
have been discovered for a request, as one can never examine all documents
without unlimited resources while using a strict and static set of criteria for judging
relevance. This is, of course, a real challenge for searches such as freedom-to-
operate searches where the retrieval of all relevant documents is exactly what is
required.

The reason that Assumption 2 has gathered so much attention is that exhaustive
relevance assessment offers some guarantee that all relevant items have been
identified, even if they do not linguistically match the user’s query. That is,
exhaustive assessments allow the identification of documents that conceptually
match the query even if they do not match the user’s choice of keywords.4 Such
assessments also allow for deep failure analyses of searches to ascertain why some
search topics are more difficult for retrieval systems than others [9]. Such analyses
are necessary, particularly with the current trend towards heavy averaging and
aggregation of test results over large numbers of topics and collections. Several
authors have argued against such approaches, particularly on the grounds that such
tests are attempting to prove system hypotheses rather than disproving them. That
is, experimenters are trying to prove a system works well rather than attempting to
uncover when it will perform poorly. Such tests do not ‘provide deep insights unless
there is some degree of risk in the predictions’ [10].

The current model for test collection—the pooling approach—is dependent on
queries to create document assessment pools. Pooling compensates for exhaustive
assessment by the inclusion of diverse systems and manual searching (see Sect. 2.2
of the first edition article “Overview of Information Retrieval Evaluation” of
Carterette and Voorhees). The hope is that if we take sufficient care in sampling

3With the possible exception of INEX which does consider the relative relevance of sub-document
units which may have overlapping content.
4Exhaustive query assessments also mean that we can assess the quality of the original query itself.
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the documents to be assessed for relevance, we do not need to exhaustively assess
the whole collection. The system-centred evaluation approach, therefore, argues that
if we are sufficiently careful in selecting which documents are assessed and we
evaluate on sufficiently large numbers of information requests, then we do not need
to assess all documents in a collection.

The nature of test collection construction and the consequences of Assumption
2 are also important if we consider searching in operational environments. Test
collection test results inform us of how well one system performs against another
over a set of requests. Many studies have shown that the performance of any system
across a set of requests is highly variable: systems will perform well for some
requests and poorly for another. What IR tests cannot predict is how well a system
will perform for a given request. This means, in operational environments, that the
searcher must decide how well the system is performing for any given request. In
many search situations, such variability might not matter; in patent searching it is
more difficult to accept that some requests will be handled well and others not.

Blair and Maron [6] in one of most famous IR evaluation studies demonstrated
that even experienced searchers can radically underestimate the proportion of
relevant material obtained from an interactive search and that the quality of the
searcher’s queries can affect the perception of system performance. Although we
can form intuitions about whether a system is returning relevant material, we cannot
assess, simply based on the retrieved results, how much relevant material has been
returned or how much remains to be retrieved. Blair and Maron in [6], and later [10],
proposed four main reasons for the findings from their study:

1. Users often cannot predict which words are good at retrieving relevant mate-
rial. In spite of detailed knowledge about the material with which they were
involved, the searchers in their study could not identify useful search terms to
retrieve important subsections of the database. However, they could consistently
recognise useful information when it was presented to them. Common problems
with querying included lack of knowledge of synonyms used in the unretrieved
relevant material, poor handling of spelling mistakes relating to important terms
and other oft-seen dilemmas in creating search requests.

2. The large size of the document collection meant that attempts to control
precision—and hence make the result sets manageable—reduced the recall of
searches. However, this results in the elimination of important relevant material
from the search results.

3. Searchers can mistake document retrieval for data retrieval. That is, they describe
the data they want to retrieve rather than the content of the documents they want
to retrieve.

4. Overestimations of recall in laboratory tests give a false sense of security. In [10]
Blair pointed out that poor laboratory tests can artificially inflate recall estimates.
As noted above, test collection creators compensate for lack of exhaustive
assessment by increasing the diversity of systems used to supply documents for
assessments. The hope is that such diversity will lead to representative relevant
documents being found. If the diversity is weak, then the recall figures can
be artificially inflated because the relevant documents may be easier to find.
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Knowledge that one is using a good system can also give the searcher the
perception that they are finding more of the relevant documents than they actually
are.

What Blair showed was that, even by submitting variations of query terms
adjusted through trial and error, as in a typical search session, the likelihood of
a searcher finding a substantial proportion of relevant documents can be low, a
finding that has been verified across a number of studies [10]. An explanation for this
limitation is that the intellectual content of a document is difficult to represent auto-
matically: a document can be about a topic without ever mentioning key terms or
phrases that a user may expect to appear. In addition, the query terms chosen by the
user may not discriminate between relevant and non-relevant documents, especially
as the collection size grows [11]. A user searching for documents on a new subject
may not select terms that are representative of the subject they are searching and that
discriminate such documents from the non-relevant documents which share similar
vocabulary. Consequently, not all potentially relevant documents will be retrieved
through keyword matching techniques alone.

In a real search situation, a search can only estimate what is hidden (the
unretrieved relevant documents) by what they have already found and by the quality
of their attempts to find these documents. In [12] Blair argues that the latter is
difficult to measure and searchers are often forced into intuitive reasoning about
search strategies. One process known as ‘anchoring’ is of particular interest in
searching. Anchoring is a psychological process in which people estimate unknown
values (the quality of queries in our case) by starting from an initial value which
‘may be suggested by a formulation of the problem’. If a particular query is seen
as good, either because it retrieves relevant documents or the searcher believes it to
consist of good indexing terms, then they will retain and modify the query, rather
than attempt new queries, ones which may be better at retrieving different types of
relevant material.

Blair and Maron’s final point is also an important one for real search situations
where the effort involved in conducting a search must be balanced against the
cost of conducting a search: finding a number of relevant documents is not a sole
indicator of good retrieval performance, as the proportion of relevant documents
missed is not known unless it is quantified through other means. Swanson refers to
this as the ‘fallacy of abundance’—discovering a (substantial) number of documents
about a request creates an illusion that little remains hidden [8]. Good precision, in
particular, can give the false impression that the system has good recall.

There are two issues relevant for patent retrieval. Firstly, the degree to which
recall and precision as measured in laboratory tests are actually informative of
the likely performance in real situations. In the most challenging patent searches,
simple measures of recall and precision may have little predictive power because
what reduces company risk is not simply the ability to find relevant material but
to have performed a comprehensive search. Very few system evaluations tackle
the issue of how dependent system performance is on the initial request or how
variable the system’s performance is. Therefore, the end user’s own expertise and
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judgement play a large role in the system’s overall performance. Secondly, and as a
consequence of the above discussion, we need to investigate the end user’s abilities
to make judgements about recall and precision in operational environments. Blair
and Maron’s studies indicated potential pitfalls about making such decisions in real-
life settings, particularly when cost and time must be balanced against effort. As we
will discuss in Sect. 4, there are ways in which we can estimate the skill of the
person operating the system.

5.3.2 Predicting Performance from Laboratory Tests

One of the core claims for test collections, as noted, for example, in Sanderson
and Zobel [13], is that the relative performance of systems from a test collection
evaluation tells us something about how the systems will perform in operational
settings. This is trivially true in extreme cases; a system that continually retrieves
the wrong documents in a controlled test collection evaluation is unlikely to perform
well in an operational setting. The test collection approach, typically but not always,
concentrates on single retrieval runs. Some authors, such as Spärck Jones [14], have
argued that this is not an issue; systems that perform well on one retrieval run will
perform well in most retrieval situations and performance on single retrieval runs
gives us an indication of how well a system will perform iteratively. However,
single-run evaluation limits our ability to evaluate the effect of known aspects of
how humans assess relevance, in particular dynamic effects such as the development
of relevance criteria across a search [15] or the effect of the order of assessment [16].

However, the general claim that single-run retrievals are good estimates of overall
system performance has not been convincingly demonstrated so far, partly due to
the few comparisons in operational settings and partly due to the impact that user
adaptation and interfaces have on the level of retrieval effectiveness of a complete
system. What has been investigated is the degree to which laboratory tests and user
tests align. This is not the same as tests in operational environments where many
contextual factors will intervene.

Hersh et al. [17], who were one of the first authors to try direct comparisons
between test collection and interactive experiments, show that results from a test
collection do not necessarily follow to the interactive case because the interactive
aspects of a system can interfere with the results. Their investigation also raises the
question of what are meaningful differences between retrieval results: how much
better does one system have to be over another in a test collection evaluation for us
to be convinced that it is indeed a better system and are these differences the ones
that are observable to users of the systems? Since Hersh and Turpin’s paper, there
have been a large number of attempts to shed light on the second question. The
evidence is distinctly mixed. Kelly et al. [18], for example, showed that end users
could distinguish or detect differences in retrieval performance but within tightly
controlled environments where the users were forced to interact in specific ways.
Hersh and Turpin’s later results and Smith and Kantor’s very robust study indicated,
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however, that users can compensate for the performance of poor systems [19] and,
to a degree, undo the effect of good systems by raising their threshold for relevance
[20].

Harter [21], for example, criticised the standard test collection model of evalu-
ation because it ignored the variation in why relevance assessments are made for
specific information requests. Relevance assessments in operational settings are
heavily contextualised by the situation in which the assessments were made, and
this context includes the person making the assessment.

Spärck Jones, in a later paper, also mentioned the importance of context and notes
(of TREC in particular) ‘context is not embraced, but reluctantly and minimally
acknowledged, like an awkward and difficult child. This applies even where explicit
attempts have been made to include users (real or surrogate)’ [22]. Limited attempts
to incorporate context within test collection environments have been attempted,
notably in the TREC Hard and CiQA tracks, but these have typically related to the
contextual information within the query rather than contextual factors which might
affect the operational use of a system.

5.3.3 Are Laboratory Evaluations Sufficient?

Few evaluation measures and not those typically associated with test collections
would take into account other factors that are important to users such as the validity
of information, the ability of a searcher to understand the information retrieved, the
source of the information or the searcher’s prior knowledge about a search topic
[23]. Many studies (such as [24, 25]) have shown that, even for expert searchers,
their confidence or prior knowledge in a search topic can affect their assessments
of a document’s relevance: they will mark different documents as relevant, and
different numbers of documents, independently of how those documents were
retrieved. Voorhees, in a tightly controlled study, estimated the difference in opinion
between assessors as around 35 %; Ruthven et al. [24, 25] indicated that differences
also occur with individual assessors depending on their prior relationship to the
search topic. Further, as noted above in Sect. 3.1, a searcher’s behaviour can
strengthen the performance of a poor system or weaken the performance of a good
system.

The question then arises as to what degree measures such as recall and precision
obtained from laboratory studies actually help predict how good a patent search
might be? If relevance assessments change depending on who is doing the assess-
ment, then how much confidence can we have in evaluation measures based on
relevance: if a different patent searcher conducted the same search, would we have
different results? In operational environments, especially for searches with high
risk, patent searchers can interact with each other to minimise the possible negative
effects of individual variation in relevance judgements and search strategies.

However, as noted in Sect. 3.1, this places the emphasis for success onto the
searcher and away from the system. A good set of evaluation measures would
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recognise and reward systems that offer support for end users in making challenging
search decisions. The patent searches outlined in Sect. 2 are not simple searches;
they are active processes where the end user must engage in a process of sense-
making—understanding and interacting within information in complex ways to
make a decision or recommendation. What makes a good IR system for this type
of search behaviour is the ability of the system to make better sense of the search
results and have more confidence in the accuracy of the outcome. This cannot be
measured simply by performance evaluation but requires evaluating the process of
searching. So how can we estimate the value of an IR system in helping successfully
conduct a patent search?

In Sect. 4 we try to address this final question, building on the discussion in the
previous sections, by outlining how we can gauge levels of trust in various parts of
the IR process.

5.4 Evaluating Real Patent Retrieval Effectiveness

Any evaluation measure, implicitly or explicitly, carries a definition of success. This
definition of what it means to succeed in an evaluation carries with it, in turn, the
definition of what we see as the task of IR systems. In this chapter, we argue that the
role of IR systems is to reduce overall risk; partly this is associated with measures
of recall and precision (although simple measures may be too blunt), but the highly
intellectual and interactive role of the patent search system (as a whole) needs to be
incorporated into the evaluation.

One way of viewing IR evaluation is as a series of evaluation layers, each with
distinct methodologies, metrics and questions. Lower evaluation levels comprise
highly constrained, specific investigations on single system features; higher levels
contain broader multifaceted investigations on the searcher and system. At the
lower levels, for example, evaluations are typically on the algorithmic properties
of system components and are run as performance tests conducted without human
involvement. Higher levels will examine the interactive nature of the system to
consider the degree to which the whole system supports an end user’s information
search. Appropriate metrics here will include both measures of the search products
and the process of searching [26]. Product metrics, those that measure the end
results of searching, may include aspects such as the number of relevant documents
found, search satisfaction or time taken to complete a search. Process measures,
on the other hand, consider how these products arose within a search and could
include factors such as the ease of completing a search, the user understanding of
the interface functionality, their increase in confidence in using the system and the
use of system features.

As noted in Sect. 3, there are major differences between algorithmic evaluations
and operational trials:

1. The effectiveness of a real patent search is dependent on the use of multiple
systems and the searchers’ ability to use them. Sections 3.2 and 3.3 outlined
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some of the reasons why IR evaluations may not give us good predictions of how
well a system performs in operational tests.

2. IR evaluation is based on generalisations. As noted in Sect. 3.1, IR evaluations
tell us which systems are better for an average request. However, their perfor-
mance across topics is very variable.

3. Individual estimates of recall and precision are affected by individual variation
in how a searcher assesses relevance and what is returned by the system. It is far
easier to reason about what is returned by a system than to reason about what is
not returned.

Patent searching is a complex form of searching and one that involves multiple
searches, collaboration with other people and heavy use of instinct and experience.
So what types of evaluation are useful in understanding the success of an IR system
for different types of patent searching? Arguably the success of any IR system is
how well it supports the user in an information task, and measuring this will involve
a number of different measures, some of which will be product based and some will
be process based. However, as noted in Sect. 3, the ultimate purpose of IR tools
within the IP process is to reduce risk by helping end users discover the required
information or, alternatively, be reassured that certain information does not exist.
Current laboratory evaluation measures do not help assess the degree to which an IR
system has helped reduce this risk. Due to the variability in IR system performance,
a user cannot guarantee any minimum level of performance for an individual search
request. Nor can system designers assert, concretely, what level of confidence they
should have in individual system components reducing risk because, as noted in
Sect. 3, risk and recall/precision are not linearly related.

What we can try to develop are evaluation approaches that help estimate the
confidence we should have in different system components. That is, how might we
estimate what levels of trust we can have in parts of the retrieval process? If we have
low levels of trust, then the end user needs to do additional work to compensate for
lack of system performance.

5.4.1 Product-Based Measures for Evaluating Real Retrieval
Effectiveness

Product measures are common in IR. Recall and precision can be used flexibly to
give different estimates of system performance and different estimates are useful
for different purposes. For a state-of-the-art search, reasonable recall is required and
low precision perhaps tolerated, but debatably diversity of results is more important.
Systems that artificially boost recall at the expense of missing important sections of
the recall base could give the false impression that higher recall has been achieved.
Systems may also be rewarded for retrieving some types of documents over others.
In landscaping studies, it may be more useful for a searcher to have overview
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documents than narrowly focused documents. Calculating recall and precision over
different document sets could be useful here.

For validity searches very precise results are required. Unlike state-of-the-art
searches where we know there is material to be found but not sure what form it
may take, in validity searches the question is whether the material is there to be
found. In such a case, a useful evaluation metric may be final user confidence in
the results of their search. A system that has a very high degree of topic variability
(some queries are very successful, others very unsuccessful) offers little confidence
in the performance on a new search. In such a situation, the searcher may have to
expend more resources, time and cognitive, to complete the search but with little
guidance from the system as to how effective the search has been.

Product-based metrics often focus on different systems with the same request;
what they often fail to do is determine the variability of different requests on the
same system. A useful product-based metric, particularly in light of the discussion
in Sect. 3.1, is how variable a system performance is to the query formulation. High
variation, particularly for best match systems, offers little confidence in the overall
system performance and, again, increases the effort the searcher must expend on the
search.

5.4.2 Process-Based Measure for Evaluating Real Retrieval
Effectiveness

Process-based measures are useful for identifying the factors that lead to success and
involve analysing the stages that lead to the end products of a search. In particular,
for complex tasks where searchers may spend long periods of time on each search,
process metrics are useful for identifying which search decisions are critical and
which decisions need different types of system support.

Process measures are often difficult to develop and are subject to variation
within the user population. However, process models can be used to (a) understand
the processes of searching and (b) analyse success factors within each stage. An
example of the latter is the University of Tampere’s Query Performance Analyser
[27], a tool for assessing how good a searcher is at the task of creating search
requests. Such tools can help identify the relative contribution of the person
conducting the search but also the contribution of the system to a successful
outcome. Such knowledge could increase our confidence in the results of a search
(in the case of high user and system abilities) or estimate what level of doubt we
should retain after conducting a search. Understanding the process of searching
within a professional domain like patent searching can also uncover the major
sources of variation within patent searches and move towards correcting the sources
of variation. Many disciplines use such process models to increase confidence in the
overall process of completing tasks.
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For high-risk tasks, such as freedom to operate, which requires both high
recall and high precision, we could ask how individual searchers balance these
requirements by the choice of search strategies and whether some strategies are
more effective than others. Thus we can hope to move towards a more formal
evaluation strategy for patent searching.

5.5 Conclusion

This chapter considers evaluating real retrieval effectiveness: retrieval effectiveness
within an operational setting rather than in a controlled laboratory setting common
to most IR evaluations. Deciding what to measure in evaluation is a crucial decision.
It is worth reiterating the general point that any evaluation approach tends to
distort what it tries to evaluate. Evaluation as an activity highlights some aspects
of the phenomenon being studied and ignores others. As Hersh and Turpin [20]
demonstrated, employing simple relevance metrics in user evaluations can give
misleading results because simple metrics may ignore the factors that influence
decisions. In this chapter, we have argued that retrieval system evaluation needs
to provide a richer and more realistic account of the role of systems in reducing
risk.

Each domain has its own challenges and presents new challenges to IR. IR
researchers typically look at precision and recall simultaneously and measure their
methods by how techniques stack up against both elements. When it comes to patent
searching, it might be more productive to separate these functions so that they can be
maximised independently. It has been demonstrated that risk, precision and recall do
not follow the same linear path when discussing the various types of patent searches.
Since this is the case, it might be more productive to begin with creating methods
that produce high recall exclusive of precision. Once this is accomplished, the results
can be ranked using different methods to improve precision and manage the way the
results are shared with the searcher. It will likely be the case that different methods
will be used to provide higher recall than those that can be employed to share records
with higher precision. Instead of expecting a single method to do both, it would
be useful to the patent-searching community if the process was done stepwise to
maximise the value to the user.

It is received wisdom in the IR community that the variation between search
requests is the greatest source of variation in retrieval system performance, and such
variation is greater than the variation between end users. However, such claims are
based on relatively artificial settings, and we still have relatively little empirical
evidence on what components of a retrieval system are actually useful and the
relative contributions of searcher and search system to overall success in patent
searching.

We have, albeit briefly, suggested some evaluation directions that may help iden-
tify fruitful research directions in patent search evaluation. There are considerable
challenges, particularly around issues of confidentiality, to be tackled, but if we
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are to move towards better evaluation procedures, then we need to be able to ask
basic questions about the processes and decisions involved in operational patent
environments.
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Chapter 6
Measuring Effectiveness in the TREC Legal
Track

Stephen Tomlinson and Bruce Hedin

Abstract In this chapter, we report our experiences from attempting to measure
the effectiveness of large electronic discovery (e-Discovery) result sets in the
Text Retrieval Conference (TREC) Legal Track campaigns of 2006–2011. For
effectiveness measures, we have focused on recall, precision and F1. We state the
estimators that we have used for these measures, and we outline both the rank-
based and set-based approaches to sampling that we have taken. We share our
experiences with the sampling error in the resulting estimates for the absolute
effectiveness on individual topics, relative effectiveness on individual topics, mean
effectiveness across topics and relative effectiveness across topics. Finally, we
discuss our experiences with assessor error, which we have found has often had
a larger impact than sampling error.

6.1 Introduction

In this chapter, we report our experiences with measuring the effectiveness of
approaches to electronic discovery (e-Discovery) search in the legal domain. While
the conditions and objectives of search in the legal domain are in many ways distinct
from those that hold in the patent domain, evaluations of the effectiveness of search
in the two domains nevertheless have many challenges in common. In particular,
high recall is demanded in both of these domains, but the relevant documents may
be a tiny fraction of the collection, making it difficult for sampling-based approaches
to estimate the measures accurately.
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Table 6.1 Overview of the referenced TREC Legal Track tasks

Task jDj Topics Type Max jSj Runs Judged estRel.D/high

2007 ad hoc 6;910;192 43 Rank 25;000 68 488–1000 77;467

2008 ad hoc 6;910;192 26 Rank 100;000 64 493–900 658;399

2009 batch 6;910;192 10 Rank 1;500;000 10 1250–2500 1;046;833

2010 learning 685;592 8 Rank 685;592 20 2720–2720 67;938

2011 learning 685;592 3 Rank 685;592 28 5545–5871 20;017

2008 interactive 6;910;192 3 Set 6;910;192 5 2500–6500 786;862

2009 interactive 569;034 7 Set 569;034 4 2729–3975 26;839

2010 interactive 455;449 4 Set 455;449 6 5779–7120 20;176

Our experience comes from our involvement with the Legal Track of the Text
Retrieval Conference (TREC), which started in 2006 [3] with the goal of creating
standard tests for electronic discovery (e-Discovery) requests. Recall is a primary
concern in e-Discovery, as there is a legal obligation to return, to an extent
commensurate with a reasonable good faith effort, all evidence relevant to the
request. Precision is also important, however, in order to reduce cost and prevent
the unnecessary release of information. Effective e-Discovery continues to be a
challenging problem [2, 15, 17].

The TREC Legal Track continued in 2007 [24], 2008 [16], 2009 [13], 2010 [8]
and 2011 [11], each year running between one and three tasks. In this chapter, we
refer to just eight of these tasks, listed in Table 6.1. Herein, we briefly summarise the
details of these tasks that are necessary to understand the measurement approaches.
More details on the TREC Legal Track are readily available in the online track
overview papers [3, 8, 11, 13, 16, 24] and track Web site [25].

For each task, there was a document set D to search. One can see which collection
was used for each task based on the size of the collection (jDj) listed in Table 6.1,
as follows:

• 6,910,192: The IIT CDIP (Illinois Institute of Technology Complex Document
Information Processing) collection [14], which consisted of 6,910,192 docu-
ments released by seven US tobacco companies.

• 569,034: The TREC 2009 Enron collection [13], which consisted of 569,034
e-mail messages (with attachments) from the mailboxes of approximately 150
employees of Enron Corporation.

• 455,449: The TREC 2010 De-duplication of EDRM Enron Email Data Set v2 [8],
which consisted of 455,449 distinct e-mail messages (with attachments). This
collection was a substantial revision of the Enron collection used in 2009.

• 685,592: The same TREC 2010 De-duplication of EDRM Enron Email Data Set
v2 as just mentioned except that the e-mail attachments were treated as separate
documents, increasing the effective number of documents to 685,592.
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For each task, there was a set of test topics. Each topic consisted of a multi-
paragraph background complaint and a one-sentence request for documents to
produce. For example, for topic #74, the (fictitious) complaint alleged infringement
of a patent of a product for ventilating smoke, and the one-sentence request was
‘All scientific studies expressly referencing health effects tied to indoor air quality’.
The number of test topics for a task ranged from 3 to 43; the final number for each
task (excluding those discarded because of incomplete assessment) is in the ‘Topics’
column of Table 6.1.

We refer to five of the eight tasks (2007 ad hoc, 2008 ad hoc, 2009 batch,
2010 learning, 2011 learning) as rank-based tasks, as per the ‘Type’ column of
Table 6.1. In these tasks, the test systems were typically automated systems, and
they were required to specify a ranking of the documents for each topic based
on the system’s opinion of their probability of relevance to the request. In the
‘ad hoc’ and ‘learning (2011)’ tasks, the topics were new ones that the systems
were seeing for the first time, whereas in the ‘batch’ and ‘learning (2010)’ tasks,
the topics typically were reused from previous years and the systems could use
past judgements of relevant and non-relevant documents to train batch filtering
techniques. The 2011 learning task supported learning by allowing participants to
choose their own training documents in sets of 100. For various bandwidth reasons,
the rank-based tasks before 2010 had a maximum submission depth (e.g. 100,000
documents per topic in the 2008 ad hoc task, much less than the collection size of
6,910,192) as listed in the ‘Max jSj’ column of Table 6.1.

We refer to the other three of the eight tasks (2008–2010 interactive) as set-based
tasks (as per the ‘Type’ column of Table 6.1). In these tasks, the test submissions
were typically produced by an interactive (human-in-the-loop) process, and for each
topic included just the documents that were considered relevant to the request,
without specifying a ranking of the documents. In part because there were fewer
test topics, there was no limit on the submission size (besides jDj, the size of the
collection itself).

The remaining columns of Table 6.1 are as follows. The ‘Runs’ column specifies
the largest number of submissions received for any topic of the task; note that for
the set-based (interactive) tasks, participants were not required to submit results for
every topic, unlike for most of the rank-based tasks. The ‘Judged’ column specifies
the smallest and largest number of documents judged for any topic of the task. The
‘estRel.D/high’ column specifies the largest estimated number of relevant documents
for any topic of the task (based on the methodology discussed in Sect. 6.3).

We see that the number of relevant documents for a topic (sometimes more than
one million) could far exceed the number of documents that we could judge for a
topic (at most a few thousand). In the following sections, we describe the approaches
we took to estimating the effectiveness measures and reflect upon how well the
approaches met the various task goals. We also attempt to identify what evaluation
challenges remain.
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6.2 Effectiveness Measures

To gauge the effectiveness of a result set for a test topic, we focused on the well-
known recall, precision and F1 measures [16, 26].

If we had complete knowledge of which documents were relevant and non-
relevant for a topic, we could calculate the recall, precision and F1 of a result set
by using the following definitions:

D The set of documents in the collection
S The subset of D whose effectiveness we wish to measure
Rel.S/ The set of relevant documents in S
Non.S/ The set of non-relevant documents in S
Recall.S/ The recall of S:

Recall.S/ D jRel.S/j
jRel.D/j (6.1)

Prec.S/ The precision of S:

Prec.S/ D jRel.S/j
jRel.S/j C jNon.S/j (6.2)

F1.S/ The F1 of S:

F1.S/ D 2 � Prec.S/ � Recall.S/

Prec.S/ C Recall.S/
(6.3)

Note: F1.S/ is 0 if either Prec.S/ or Recall.S/ is 0.

For ranked result sets, we can likewise gauge effectiveness at any particular cutoff
depth K (remembering to pad the set with assumed non-relevant documents if the set
contained fewer than K documents in order to not overstate Precision@K or F1@K;
this padding approach is analogous to the standard trec_eval utility definition
of ‘precision at document cutoff �’ which is simply ‘r/�’ where r is the number of
relevant documents retrieved before the cutoff [4]). In the 2008 and 2009 rank-based
tasks, the submissions were required to specify the depth K for each topic at which
the system believed the F1 measure would be maximised, allowing both set-based
and rank-based evaluations. In 2010 and 2011, the learning task more generally
required each submission to specify its estimated probability of relevance for every
document for each topic, from which one can infer not just what depth K the system
would consider optimal for F1, but what cutoff it would consider optimal for any
other set-based measure [8, 11].
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6.3 Estimators

In practice, we did not have the resources to judge all of the documents for each
topic (almost seven million documents in some of our tasks). The traditional TREC
approach is simply to judge a pool of the top-ranked documents from various
systems [12], but it was apparent from sampling experiments in 2006 [3, 21] that,
for most of our topics, the number of relevant documents far exceeded the number
that could be judged. Other TREC tracks had also been encountering issues with
traditional TREC pooling [5].

In 2007, we started to use a deeper sampling approach to estimate the measures.
It was based in part on the approach used to estimate ‘inferred average precision’
(infAP) [32] in the TREC 2006 terabyte track [6]. Our main extension was to sample
different parts of the collection with different probabilities (we defer our discussion
of the sampling approaches to Sect. 6.4). Other researchers independently made a
similar extension [1].

The estimators we have used for recall, precision and F1 are defined as follows:

d A document in D
p.d/ The inclusion probability of d

(i.e. the probability of selecting document d for judging, described
in Sect. 6.4)

JudgedRel.S/ The set of documents in S which were judged relevant
JudgedNon.S/ The set of documents in S which were judged non-relevant
estRel.S/ The estimated number of relevant documents in S:

estRel.S/ D
X

d2JudgedRel.S/

1

p.d/
(6.4)

Note: estRel.S/ is 0 if jJudgedRel.S/j D 0.
estNon.S/ The estimated number of non-relevant documents in S:

estNon.S/ D
X

d2JudgedNon.S/

1

p.d/
(6.5)

Note: estNon.S/ is 0 if jJudgedNon.S/j D 0.
estRecall.S/ The estimated recall of S:

estRecall.S/ D estRel.S/

estRel.D/
(6.6)

estPrec.S/ The estimated precision of S:

estPrec.S/ D estRel.S/

estRel.S/ C estNon.S/
(6.7)
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Note: estPrec.S/ is undefined if .estRel.S/ C estNon.S// D 0.
estF1.S/ The estimated F1 of S:

estF1.S/ D 2 � estPrec.S/ � estRecall.S/

estPrec.S/ C estRecall.S/
(6.8)

Note: estF1.S/ is 0 if either estPrec.S/ or estRecall.S/ is 0.

The estRel.S/ and estNon.S/ formulas for estimating the number of relevant and
non-relevant documents (respectively) use the Horvitz–Thompson estimator, which
is unbiased [20]. (We do not claim, however, that our estimators for recall, precision
and F1 are statistically unbiased, because they involve ratios of estimators.)

We also have looked at alternative estimators that correct for obvious overesti-
mates; for example, if estRel.S/ is greater than jSj � jJudgedNon.S/j, then it must
be an overestimate, and so reducing the estimate to jSj � jJudgedNon.S/j must
reduce the error. We actually have used such alternative estimators in our rank-based
tasks, and the formulas are stated in the 2007 track overview [24]. However, these
alternative estimators bias the estimates low on average because only overestimates
are improved; underestimates are left unchanged. In our experience, the alternative
estimators have made little material difference, so we just present the simpler
estimators in this chapter.

Another aspect to be accounted for that we have encountered in running our
evaluations concerns what we have termed ‘grey’ documents, which are documents
that were drawn by sampling for assessment, but on which the assessor could not
render a relevance judgement. This could occur for any of a number of reasons,
such as that a technical issue prevented a legible display of the document image,
or the document was longer than 300 pages (which was more than we required an
assessor to review for one document) or the document was in a language other than
English. When reporting results, we have reported for each submission S an estimate
of what percentage of S was grey documents; typically this percentage has been less
than 2 %, though we have seen as high as 13 % from an approach that favoured
long documents [24]. The estimators we have given here for recall and precision
essentially behave as if the grey documents had been omitted from both the full
collection D and result set S.

6.3.1 Graded Relevance

In some tasks, starting with the 2008 ad hoc task, the assessors were asked to
distinguish ‘highly relevant’ documents from ‘other relevant’ documents [16]. Hav-
ing such ‘graded’ relevance assessments might seem to call for new measures and
estimators, as the definitions we have given assume ‘binary’ relevance assessments
(a document is either relevant or it is not). We have avoided this complication by
simply reporting separate results based on two different sets of binary relevance
assessments, one in which just ‘highly relevant’ documents are counted as relevant
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and the other in which ‘all relevant’ documents are counted as relevant. In this
chapter, when we have given examples of numbers of relevant documents or the
scores attained, we have always included all relevant documents.

6.4 Sampling Approaches

This section describes how we chose the p.d/ values (i.e. sampled the collection) in
the various tasks.

As pointed out in related work on estimation approaches [1], the choice of p.d/

does not affect the expected values of the estimators, but it can affect the variance
and hence the accuracy of the estimates. Generally, we have chosen the p.d/ values
based on the submissions received (as described below) in hopes of minimising the
estimation error for the submissions. Future result sets can also be scored using the
estimators (i.e. our test collections are reusable in principle) though the error bar
for non-participating runs may be wider as the p.d/ values may not be as suitable
for them. One can get an indication of how reusable a test collection may be in
practice by conducting a ‘system omission’ study [33], i.e. a study in which one
simulates how the estimated scores would have changed if one of the participating
systems had not been included. A recent system omission study for the TREC
2010 interactive task topic regarding privilege classification found that the error
bars for the omitted system’s estimated precision noticeably widened, but not for its
estimated recall [27].

6.4.1 Rank-Based Sampling

As a concrete example of rank-based sampling, this section focuses on the 2008 ad
hoc task.

As shown in Table 6.1, the rank-based 2008 ad hoc task had 26 test topics.
Although the collection contained almost seven million documents, for space and
bandwidth reasons, we allowed participants to submit only their top-ranked 100,000
documents for each topic, hoping that would be enough to include all of the relevant
documents. The ten participating groups submitted a total of 64 experimental runs.

For each topic, we created a pool P from all of the submitted documents. (The
pool sizes ranged from 9 to 24 % of the collection.) For each d 2 P, we defined
hiRank.d/ to be the highest rank (where 1 is highest, 2 is second highest, etc.) at
which any of the 64 systems ranked the document. Then we set p.d/ as follows:

If .hiRank.d/ � 5/ Then p.d/ D 1:0 (6.9)

Else p.d/ D min

�
1:0;

��
5

100000

�
C

�
C

hiRank .d/

���
(6.10)
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The value C was chosen so that the sum of the p.d/ values (for all d 2 P) was the
number of documents that could be judged (typically 500 documents were judged
for each topic).

This p.d/ formula was intended to support (almost) equally accurate estimates
regardless of the chosen depth K. One can see that at any depth K > 5, the smallest
p.d/ involved would be at least C=K, the same as if doing simple random sampling
of at least C documents from the set of K documents. Unfortunately, for our 26 test
topics, the C values turned out to range from just 1.7 to 4.4, which was lower than
we had hoped. We discuss the implications for sampling error further in Sect. 6.5.

For documents d that were not in the pool, p.d/ was 0. (Actually, we did
draw a small random sample from the documents outside of the pool for separate
analysis, which we discuss later in Sect. 6.6, but we did not use these for estimation
because this sampling was deemed too coarse to be sufficiently accurate.) Hence our
estimators actually were just estimating recall from the pool P. For estimating recall,
this approach essentially follows the traditional TREC approach of assuming all
unpooled documents are non-relevant. For estimation of precision and F1, however,
for future result sets that might contain documents outside of the pool, our estimators
behave not as if the unpooled documents were non-relevant, but as if the unpooled
documents had been omitted from the result set.

6.4.2 Set-Based Sampling

As a concrete example of set-based sampling, this section focuses on the 2008
interactive task.

As shown in Table 6.1, the set-based 2008 interactive task had three test topics.
Participants submitted just the set of documents that they considered relevant for
a topic, without ranking the documents. There was no limit on the size of the
submission set for a topic (other than the number of documents in the collection,
6,910,912). At most five submissions were received for any topic.

To assign the p.d/ values, the full collection D was stratified. To use topic #103
as a concrete example, which received five submissions (one of which was actually
a composite submission formed by pooling the results of 64 ad hoc submissions for
the topic), 32 strata (from 25) were created as follows. The first stratum consisted
of documents included in all five submissions (the ‘All-R’ stratum, or ‘RRRRR’).
The next stratum consisted of documents included in submissions 1–4 but not
submission 5 (the ‘RRRRN’ stratum). The next stratum consisted of documents
included in submissions 1–3 and 5 but not submission 4 (the ‘RRRNR’ stratum)
and so on. The final stratum (stratum #32) included all of the documents that were
not in any submission (the ‘All-N’ stratum, or ‘NNNNN’).

Within a particular stratum Ss, ns documents were chosen to be judged (using
simple random sampling without replacement). Typically ns was chosen propor-
tionally to jSsj (the number of documents in the stratum), except that larger strata,
particularly the ‘All-N’ stratum, were sampled somewhat less densely than their
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full-population size would dictate, in order to ensure that we were able also to
sample a sufficient number of documents from the smaller strata. For the purposes
of the estimator formulas, for d 2 Ss, p.d/ was ns=jSsj. As a concrete example, for
topic #103, there were 6500 judgements, and most strata had p.d/ close to 0.008
(1 in 125), but the ‘All-N’ stratum, which was 83 % of the collection, was only
assigned 25 % of the samples (ns=1625); hence its documents’ p.d/ was just 0.00028
(approximately 1 in 3500).

The 2008 interactive task also introduced the practice of assigning multiple
assessors to a topic. The documents to judge were allocated randomly to the
available assessors; typically each assessor was responsible for a bin of 500
documents. If a bin was not completely assessed by the track’s assessment deadline,
it was discarded, and the ns and hence p.d/ values of affected strata were reduced
accordingly before the judgements were released.

6.5 Sampling Error Analysis

In this section, we discuss our experiences with sampling error, (i.e. the limitations
on accuracy resulting from judging just a sample of a population instead of the
full population). In Sects. 6.5.1 and 6.5.2, the sampling error arises from not having
judged every document for a topic. In Sects. 6.5.3 and 6.5.4, the sampling error
arises from having a limited number of test topics.

6.5.1 Absolute Effectiveness on One Topic

For the stratified sampling approach described in Sect. 6.4.2, we have developed
confidence interval formulas for estRecall.S/, estPrec.S/ and estF1.S/; these run
into several pages and are available in the 2008 track overview [16]. The formu-
las were developed in part by consulting textbook approaches [19, 20]. Recent
work [30] suggests that these confidence intervals may be wider than they need to
be (which we look at further below). However, we believe the formulas in the 2008
track overview are still serviceable and these formulas are used for the examples
and results summarised in this section.

We should emphasise that all of the confidence intervals in this chapter are
just accounting for the uncertainty arising from sampling error. We are not in this
chapter attempting to construct confidence intervals that account for any other type
of uncertainty, such as the uncertainty of whether the assessor was correct in his
or her judgement of the relevance or non-relevance of each sampled document.
(We investigate the impact of assessor errors separately in Sect. 6.6.)

Here, we just review some examples of the confidence intervals to give an idea
of what widths were attained. Table 6.2 shows example confidence intervals for
one submission for each topic of the 2008 interactive task, in descending order
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Table 6.2 Confidence intervals of some 2008 interactive task submissions

jJudged.D/j jSj estRecall.S/ estPrec.S/ estF1.S/

6500 608,807 0.624 (0.579, 0.668) 0.810 (0.795, 0.824) 0.705 (0.676, 0.734)

4500 546,126 0.314 (0.266, 0.362) 0.328 (0.301, 0.355) 0.321 (0.293, 0.349)

2500 689,548 0.345 (0.111, 0.580) 0.023 (0.014, 0.032) 0.043 (0.026, 0.060)

by the number of judgements for the topic: 6500 judgements for topic #103, 4500
judgements for topic #102 and 2500 judgements for topic #104. For example, the
first row shows that, for a submission S of 608,807 documents, the estimated recall
was 0.624, with 95 % confidence interval of (0.579, 0.668).

Of course, examples cannot show the full picture, and it would be incorrect to
suggest that the only factor in confidence interval size is the number of judgements.
The overall yield of a topic (i.e. jRel.D/j=jDj), for example, can also have a
significant impact on the width of confidence intervals. For samples of similar size,
higher-yielding topics will generally result in higher numbers of positive (relevant)
instances being included in the sample (both positive instances retrieved by the
system being evaluated and positive instances not retrieved by the system), thus
enabling narrower confidence intervals for the estimate of the recall achieved by the
system. In the 3 years in which the interactive task was run (2008–2010), a total
of 56 submissions were received for the various topics featured. Of the 56, a total
of 41 achieved an estimated recall of 0.10 or higher. For those 41 submissions, the
mean width of the confidence interval associated with the recall estimate was 0.15.
Of those 41 submissions, 20 were for topics found to have yields of 0.02 or greater;
the mean width of the confidence intervals associated with those 20 recall estimates
was 0.084. For the 21 submissions for topics found to have yields less than 0.02, on
the other hand, the mean width of the confidence intervals associated with the recall
estimates was 0.213.

Moreover, of all the strata into which the test collection is partitioned, the one that
poses the greatest sampling challenge is the All-N stratum (the stratum containing
documents no team identified as relevant). It is a challenge because the density of
relevant material in this stratum is generally very low, making it hard to obtain, via
sampling, precise estimates of the true density in the stratum; and this challenge
generally becomes more acute as the overall yield of a topic gets lower. As a result,
the lower the yield of a topic, the greater the sampling error contributed from the
All-N stratum, and so the greater the width of the confidence intervals associated
with our estimates of the full-population yield and of recall. (Note that, for the
topics reported in Table 6.2, the estimated yield (i.e. estRel.D/=jDj) of the topic
with 6500 judgements was 0.114 of the full collection; the estimated yield for the
topic with 4500 judgements was 0.081; and the estimated yield for the topic with
2500 judgements was 0.007.)



6 Measuring Effectiveness in the TREC Legal Track 173

Table 6.3 Mean width of
confidence intervals—track
overview vs. beta-binomial
with half prior

Yield Overview BetaBin-Half

� 0:02 0:091 0:082

< 0:02 0:208 0:192

While we have not listed examples here from the same topic, the confidence inter-
vals for the submissions were often narrow enough to not overlap the confidence
intervals of any of the other submissions. For example, for the five submissions for
topic #103, none of the confidence intervals for recall had any overlap of each other.

We noted above that consideration has been given to alternative methods for
calculating confidence intervals for recall [30]. It is worth noting here that the
key observations made in this section hold also for those alternative methods. For
example, when the alternative method found to be most promising, the half prior
beta-binomial posterior method [30], is applied to the 2008 TREC data, we again
find that we can obtain meaningfully narrow confidence intervals with reasonably
sized samples of judgements (e.g. 4500 judgements). Table 6.3 reports, for all 2008
and 2009 interactive task submissions that achieved recall of at least 0.10 (as gauged
by the point estimate), the mean widths of the 95 % confidence intervals that result
from the method used in the track overview and from the half-prior beta-binomial
posterior method. Since, for a fixed sample size, yield is a significant driver of
confidence interval width, the table distinguishes results for topics with an estimated
yield greater than or equal to 0.02 from results for topics with an estimated yield less
than 0.02.

For the alternative methods, it also remains true that, for any given sample size,
the yield of relevant material is the chief driver of the width of the confidence
interval associated with the recall estimate, and it remains true that, when using
a stratified sampling approach, the sampling error contributed by the All-N stratum
typically poses the greatest challenge to obtaining narrow confidence intervals for
recall.

For the rank-based approach described in Sect. 6.4.1, for which typically there
were just 500 judgements per topic, we have not to date computed confidence
intervals for individual topic estimates, but it seems apparent from the low C values
mentioned in Sect. 6.4.1 that the sampling error would be large in some cases. A
large sampling error on individual topics does not imply that the test data is not
useful, however, as discussed in the following sections.

6.5.2 Relative Effectiveness on One Topic

While one of our goals was to provide reasonable estimates of the absolute values
of the metrics, for comparing particular experimental approaches, it can sometimes
suffice to just estimate the difference in scores of the approaches. Sometimes the
difference can be estimated much more accurately than the confidence intervals for
the absolute values may suggest.
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For example, suppose set S1 is estimated to have a recall of 0.62 with confidence
interval (0.58, 0.66) and set S2 is estimated to have a recall of 0.64 with confidence
interval (0.60, 0.68). One might conclude that the recalls of S1 and S2 are not
statistically distinguishable because their confidence intervals overlap. However, if
one noticed that S2 was a superset of S1 and that there were relevant documents in
S2 that were not in S1, then one would know that the recall of S2 must be greater
than that of S1 despite the overlap in the confidence intervals.

Strict subsets and supersets can arise in practice when comparing sets that result
from Boolean queries. In particular, the ad hoc tasks of the TREC Legal Track
included a reference Boolean negotiation for each test topic in which typically the
requesting party would argue for broadening the query and the responding party
would argue for narrowing the query.

In general, one can also analyse differences of sets that overlap without one con-
taining the other. (To date, however, we have not attempted to develop confidence
interval formulas for such differences in scores, leaving this as future work.)

6.5.3 Mean Effectiveness Across Topics

Sometimes there is interest in the average effectiveness of an approach. For example,
in the 2008 ad hoc task, for each of the 26 test topics, there was (as just mentioned)
a reference Boolean negotiation, and the Boolean query initially proposed by
the responding party was found to average just 4 % recall, while the Boolean
counterproposal by the requesting party was found to average 43 % recall, and the
resulting consensus query was found to average 33 % recall. These average scores
give us a feel for the typical negotiation in that it seems that the respondent’s initial
proposal was typically a very narrow query compared to the requester’s rejoinder or
resulting consensus.

Assuming that the topics are independent, one can compute approximate 95 %
confidence intervals for means by adding plus or minus twice the standard error of
the mean [9]. For example, the approximate confidence interval for the 33 % average
recall of the consensus negotiated query over the 26 test topics of the 2008 ad hoc
task was 21 % and 45 %. The noisier the individual topic estimates, the higher the
variance will tend to be, increasing the width of the confidence interval. Increasing
the number of test topics will usually reduce the width of the interval.

Given a fixed assessment budget, there is a trade-off between how many topics
can be assessed and how many judgements can be made per topic. In our case, for
the interactive tasks, it would not have been practical to create a lot of topics because
few participants would have time to perform an intensive interactive approach for
all of them, so we focused on making the evaluation for the small number of topics
as accurate as possible. For our ad hoc tasks of 2007 and 2008, in which the
participating systems were typically automated, we followed the traditional TREC
practice of creating enough topics to support averaging, albeit at the expense of
accuracy on individual topics. In the 2009 batch task, we reduced the number of
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topics, and while the primary reason was the bandwidth limitations of dealing with
the increase in the allowed result set size, we also hoped that this trade-off point
would allow better failure analysis on individual topics (as discussed further in
the next section). The ‘Million Query Track’ at TREC [1] has explored the other
extreme, creating more than a thousand test queries but judging only 40 or so
documents for each, to investigate the feasibility of studies suggesting that ‘assessor
effort would be better spent building test collections with more topics, each assessed
in less detail’ [18].

6.5.4 Relative Effectiveness Across Topics

Just as one can compute approximate confidence intervals for mean scores, one
can compute approximate confidence intervals for the mean difference in score
between two approaches. The method given in the previous section, when applied
to differences, is approximately the same as the popular paired t-test, which tends
to be fairly accurate even if the differences are not normally distributed because
of the Central Limit Theorem [9]. When zero is not in the confidence interval, the
difference in the mean score is considered to be ‘statistically significant’.

For the 2007 ad hoc task (of 43 test topics), one study [22] compared 14 pairs of
experimental approaches, thresholding relevance-ranked sets at depth B (the number
of matches of the reference Boolean query); it found that 3 of the 14 differences in
estimated recall@B, and 7 of the 14 differences in estimated precision@B, were
statistically significant. For the 2008 ad hoc task (of 26 test topics), a follow-up
study [23] compared 15 pairs of experimental approaches; it found that 3 of the
15 differences in estimated recall@B, and 3 of the 15 differences in F1@K, were
statistically significant. These results indicate that the test collections for these tasks
do sometimes support the discerning of statistically significant mean differences.

What is often more insightful than comparing mean scores across topics is to look
at how often one approach substantially outscores another. Analysing the largest
differences can often lead to a better understanding of when one approach will
outperform another. Such an investigation can also be interpreted as conducting
‘failure analysis’ for the lower-scoring approach.

For example, in the 2007 ad hoc task, a study [22] compared the effectiveness of
the reference Boolean query to a relevance-ranked vector query. The ‘vector query’
consisted of the same keywords as the reference Boolean query, but the Boolean
operators and other structures of the query (such as word proximity criteria) were
replaced with a simple Boolean-OR of the keywords. The retrieval set of the vector
query was relevance ranked and thresholded to B (the number of matches of the
reference Boolean query). The finding of this experiment was that the Boolean
query had the higher estimated recall@B for 26 of the test topics, while the vector
query scored higher on just 16 of the topics, and there was 1 tie. Why was the
Boolean query often more successful? The largest difference was on topic #58,
regarding ‘health problems caused by HPF [high-phosphate fertilisers]’, for which
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the estimated recall@B of the Boolean query was 94 % while for the vector query it
was just 8 %. Despite the potentially large sampling errors, it seemed clear from
looking at some of the hundreds of judgements for the topic that the Boolean
query was more successful for this topic because it required a term beginning with
‘phosphat’ to be in the document, whereas the vector approach favoured a lot of
non-relevant documents that did not mention the key ‘phosphat’ concept as it was
only 1 of 22 terms in the vector form of the query.1 Finding good examples of when
approaches differ may lead to a better understanding of when to use one approach
or the other, or to the development of generally better approaches.

6.6 Assessor Error Analysis

In this section, we discuss our experiences with assessor error. In the first subsection,
we summarise our formative experiences with assessor error through the tasks
of 2009, by which time it was apparent that assessor error is a serious issue to
address in order to accurately estimate recall, arguably even more important than
sampling error. (Another recent study has also found that assessor error, which it
calls ‘measurement error’, is a ‘larger problem’ than sampling error [27].) In the
subsequent subsection, we summarise the attempts of the Legal Track to address the
issue of assessor error in 2010 and 2011.

6.6.1 Formative Experiences with Assessor Error

The interactive tasks of 2008 and 2009 included an adjudication phase in which
the participants could appeal any judgement by the first-line assessor to the ‘Topic
Authority’ for the topic (whose judgement the initial assessor was attempting to
replicate); the Topic Authority then rendered a final relevance judgement on all
documents so appealed. For nine of the ten test topics (all three from 2008 and
six of seven from 2009), the estimated number of relevant documents (estRel.D/)
was lower after the adjudication phase, indicating that the initial assessors typically

1The reference Boolean query for this topic was
‘Phosphat! w/75 (caus! OR relat! OR assoc! OR derive! OR correlat!) w/75 (health OR disorder!
OR toxic! OR “chronic fatigue” OR dysfunction! OR irregular OR memor! OR immun! OR
myopath! OR liver! OR kidney! OR heart! OR depress! OR loss OR lost)’.

The corresponding ‘vector query’ was
‘Phosphat! OR caus! OR relat! OR assoc! OR derive! OR correlat! OR health OR disorder!
OR toxic! OR chronic OR fatigue OR dysfunction! OR irregular OR memor! OR immun! OR
myopath! OR liver! OR kidney! OR heart! OR depress! OR loss OR lost’.

‘w/75’ means ‘within 75 words of’.
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generated a lot of false positives. For example, for topic #103 in 2008, estRel.D/

was 914,528 before adjudication and 786,862 after adjudication, a drop of 127,666
in a collection of 6,910,192 documents, suggesting that the net false positive rate
was approximately 2 % of the collection.

We also found evidence of false positives in the ad hoc tasks of 2007 and 2008,
even though they did not have an appeal process. As mentioned in Sect. 6.4.1,
for these tasks we drew a random sample from the documents that no system
submitted. Of these, we found that approximately 1 % were judged relevant. When
we personally reviewed some of these relevant judgements, almost all of them
looked non-relevant to us (and we think that the original assessors would agree
with us in retrospect, though we regret that we did not reserve time with them to ask
about particular judgements). This result suggests that there was a net false positive
rate of approximately 1 % for unsubmitted documents.

A standout example of the impact of a small net false positive rate was observed
in topic #51 of the 2009 batch task. For this task, there was a set of training
judgements from a previous use of the topic, for which estRel.D/ was 95. But
with the new judgements for the topic in 2009, estRel.D/ was 26,404. Most of the
difference in these estimates came from just three relevant judgements in 2009,
whose weights were approximately 8000 each (from 1=p.d/) as the highest that any
system ranked them was more than 700,000 from the top. Our own review of these
three documents suggests that they were false positives. We suspect that the original
estimate of 95 was reasonably accurate, which would imply that relevant documents
were just 0.001 % of the collection for this topic. Hence a net false positive rate of
even 0.1 % would lead to a huge overestimate of the number of relevant documents,
and hence the recall of good result sets would be dramatically underestimated.

In the 2009 interactive task, we found dramatic changes in the scoring of the
result sets after the appeals. (The appeals typically corrected both false positives
and false negatives.) In particular, for four of the seven topics, some participant’s
(estimated) F1 score increased by more than 0.50 after the appeals; for example, on
topic #201, the F1 of submission W increased from 0.07 to 0.84 after the appeals,
and on topic #204, the F1 of submission H increased from 0.17 to 0.80 after the
appeals.

Furthermore, the appeals in the 2009 interactive task did not just change the
absolute scores. For four of the seven topics, there were changes in the rankings
of the result sets (based on F1) after the appeals. One dramatic example of a re-
ranking was on topic #205, for which the (estimated) F1 of submission C was higher
than that of submission E before appeals (0.46 vs. 0.25), but lower after appeals
(0.43 vs. 0.61), with both differences being statistically significant based on the lack
of overlap in the confidence intervals. (As previously mentioned, the confidence
intervals in this chapter only account for sampling error, not assessor error.)

While past studies have typically found only minor differences in system
rankings from assessor differences [29], an exception has been noted in the past
for runs involving manual relevance feedback [12, 28]. Of course, many of the
interactive task submissions were constructed with human assessing as part of the
process, so our finding of the appeals affecting interactive submission rankings
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appears to be consistent with past findings. (A simulation-based study has suggested
more generally that false positives tend to cause larger differences in system
rankings than false negatives [7].)

The results of the appeals process followed in the interactive task prompted much
discussion among task organisers and participants on the question of whether the
changes in assessment that resulted from the appeals process represented corrections
of true human error on the part of the first-pass assessors or simply reflected
reasonable differences of opinion between the first-pass assessor and the adjudicator
as to how the topic should be interpreted. This question was examined more
closely in a follow-up study by two track organisers using data from the 2009
interactive task [10]. The study looked at a sample of documents from the 2009
exercise for which the assessments had been changed via the appeals process. The
study classified the documents as ‘clearly responsive’ (i.e. documents for which
no reasonable argument could be made that the document was not within the
scope of the governing document request), ‘clearly non-responsive’ (i.e. documents
for which no reasonable argument could be made that the document was within
the scope of the governing document request) or ‘arguable’ (i.e. documents for
which reasonable arguments could be made both for and against the document’s
responsiveness to the governing document request). The study found that nearly
90 % of the documents the assessments of which were reversed via the appeals
process were cases in which the document was either clearly responsive or clearly
non-responsive and the first-pass assessor had simply erred. Another 5 % of the
documents were cases in which the document was either clearly responsive or
clearly non-responsive and the adjudicator (the ‘Topic Authority’) had erred in
changing the original assessment. Only 5 % of the documents were cases in which
the document’s responsiveness was arguable. The findings of this study provide
support for the viability of a ‘gold standard’ for measuring the effectiveness
of retrieval systems, but the findings also highlight the importance of an error
identification and correction mechanism if such a gold standard is to be realised.
While it is important to take measures to ensure that assessors are aligned in
the interpretation of a given topic, it is also important to have a mechanism for
identifying and correcting simple human error.

Through the tasks of 2009, it seemed clear from our experience, whether from
the perspective of absolute scores or relative scores, that when a small number of
judgements can substantially impact the scores, an evaluation needs to build into
its process a way to deal with assessor error. Our experience with allowing the
participants to appeal seemed to have been beneficial for several of the test topics,
but for some topics there were relatively few appeals which we suspect was not
because those topics had a lower error rate but because appealing requires a lot
of effort that not all participants are willing to undertake. (Another concern raised
by a recent study is that ‘there is some evidence to support the hypothesis that
appeals disproportionately benefit participating systems’ [27].) One suggestion was
to automatically appeal a sample of all of the judgements for estimating the impact
of appeals [31].
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6.6.2 Later Attempts to Address Assessor Error

The 2010 interactive task attempted to address assessor error issues in the following
ways. The first-pass assessments were done entirely by professional document-
review services in 2010 (in contrast with 2008 and 2009 in which a lot of the
first-pass assessments were done by volunteer law students). A 10 % sample of the
first-pass assessments were assessed twice. Some non-appealed assessments were
included in the set to be re-adjudicated (unlike in previous years); in selecting
non-appealed assessments for adjudication, priority was given to cases of dual-
assessment conflict and to cases of a relevant assessment assigned to a document
from the All-N stratum (as such assessments have a large impact on recall esti-
mates). Finally, in submitting their appeals, participants were not asked to provide
grounds for the changes in assessment they were requesting; the adjudicators
reviewed the appealed documents blindly, with no knowledge either of the original
assessment or of the reason why it had been appealed or otherwise included in the
adjudication set.

Fully understanding the effects of these changes will require further study. With
regard to twice-assessed documents, we can say that, while overall there was a fairly
high rate of agreement between the two assessments assigned to a given document
(about 91 %), the rate of overlap when one or the other of the two assessments was
relevant was rather low (about 50 %); assessors tended to disagree more frequently
when they came to documents that were in the neighbourhood of relevance (with
the ‘neighbourhood’ defined as the subset of documents that at least one of the
assessors had found relevant). With regard to the adjudication of non-appealed
twice-assessed documents, we found that the adjudicator overturned a primary
assessment about 50 % of the time when the secondary assessment was in conflict
with it, but only about 8 % of the time when the secondary assessment was not in
conflict with it. Dual assessment, identification of cases of conflicting assessment,
followed by adjudication of those cases, appears to be a reasonably effective method
of identifying and correcting erroneous assessments; it does, however, require the
capacity for conducting a dual assessment of a sample and then having the conflicts
(or a sample of them) adjudicated. With regard to the adjudication of non-appealed
relevant assessments assigned to documents from the All-N stratum, we did find that
adjudication resulted in a change in assessment (to not relevant) for some of these
[6 out of 30 (20 %)]. With regard to not providing adjudicators with documentation
of the grounds for an appeal, we did see a lower rate of overturned assessment (i.e.
successful appeal) than we saw in previous iterations of the task (less than 40 % in
2010 compared to more than 70 % in previous years). This result raises the question
of whether the 2010 adjudicators, asked to review large samples of documents
(over 1000 documents for each topic), without the aid of documentation pointing
to the salient features of the documents, may have missed aspects of documents that
would have caused them to overturn an initial assessment with greater frequency.
It may be that the benefits of asking participants to provide documentation of the
grounds for their appeals (allowing the adjudicator to focus quickly on the salient
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features of a document, thus making for a more efficient and less burdensome
adjudication process) outweigh the benefits of a blind adjudication process (a less
burdensome appeals process for participants and the avoidance of possibly biasing
the adjudicator). Of course, it may also be that the 2010 participants simply appealed
a greater number of assessments for which the case for an overturn was not strong.
These are questions that merit further study.

The 2010 learning task used volunteer assessors (primarily law students). It
gathered three assessments for each document and used the majority opinion for
evaluation. (There were no appeals in this task.)

In 2011, the interactive task was merged with the learning task. Participants
were not allowed to appeal judgements, but there were two assessments for each
document (from professional document-review services), and disagreements were
automatically adjudicated by the Topic Authority. Unfortunately, the stratification
on which the sampling was based just defined two strata for each topic, which led
to some wide confidence intervals for F1 (e.g. [0.10, 0.59]) irrespective of how well
the potential assessor error was addressed.

Overall, we believe these approaches were at least somewhat successful at
reducing the impact of potential assessor error, albeit at the expense of multiple
assessing. How to find the right balance between effectiveness and expense remains
a challenge.

6.7 Conclusion and Future Work

Our aim in this chapter was to summarise our approaches, look back upon how
well the various task goals were achieved and identify what challenges remain.
In the set-based tasks, we found that our resulting confidence intervals for recall,
precision and F1 were at least sometimes sufficient to distinguish differences
between experimental approaches. In the rank-based tasks, we found that the
estimation approaches were at least sometimes sufficient to identify statistically
significant mean differences and conduct failure analysis. How to sample more
efficiently and best quantify the estimated scores, including differences in scores,
remain as challenges, particularly so in the case of low-yielding topics (which may
be the typical circumstance in patent information retrieval). We have also found a
lot of evidence that assessor error is an issue that cannot be ignored. How to best
reduce these errors, or account for them in the confidence intervals, again remains a
challenge.
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Part III
High Recall Search

One of the problems of patent search is that a single relevant missed patent or other
documents can invalidate an otherwise sound patent. This is why patent searchers
often say they require 100 % recall (the highest level possible): that is, they require
the search system to guarantee to return absolutely all relevant documents, no matter
where (USPTO, Web, film archives), in what form (XML, PDF, paper) or in what
language (English, French, German, Indonesian, Welsh). In practice, no real system
delivers 100 % recall all the time, and often searchers actually do not want 100 %
recall—they will get too many redundant relevant documents. What they really want
is a balance between precision (the proportion of relevant to irrelevant documents
in the results list) and recall, which gives a strong guarantee that highly relevant
documents are returned high in the results list. If no highly relevant documents are
returned, there is a high probability there really are no relevant documents.

As we have seen in the introductory chapters, a patent search task always involves
a phrasing such as ‘find all documents which : : : ’. From the evaluation part, we
know that technically this is easily done: returning to the user the entire collection
being searched on will inevitably also contain all relevant documents within that
collection. The patent search task, in addition to the explicit requirement of finding
all relevant documents, has a series of implicit requirements: ‘find only the relevant
documents’ and ‘find them in a reasonable time span’. Therefore, when we talk
about high recall search, we must always keep in mind that at the same time we are
talking about high precision search. However, what exactly ‘high’ means in either
of those contexts is still ambiguous. Perhaps a better term would be ‘satisfactory for
the task at hand’, but that would not be very marketable.

The challenge for patent information retrieval here is to find mechanisms that
will give patent searchers search result sets that they can effectively use for the task
at hand. The current part is completely complementary to its namesake part of the
first edition: four new chapters complement the five of the first edition.

The part starts with a very fundamental question: ‘Can we really find all the
relevant documents’? The problem is very fundamental: given an indexing system,
is it possible that some documents become inaccessible because of the way the
system works? Or, more generally, how fair is a system in its representation of the
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documents indexed and how does this fairness impact the expected success rate of
our queries? This was addressed in the first edition by Bache, and now the issue is
further investigated, with a focus on the different retrieval models, by Bashir and
Rauber.

The next chapter, by Salampasis, describes the research and the practice of
federated search: searching in multiple data repositories at the same time and
collating the results into a coherent answer to the user’s information need. While
both Bashir and Rauber, as well as Salampasis, focus on so-called bag-of-words
models of retrieval (i.e. where terms are considered independent of each other),
it has long been the experience of patent searchers that the actual meaning of
an invention comes from the combination of common terms. In the first edition,
Parapatics and Dittenbach had presented methods to improve the processing of
claims. Now, in Chap. 9, Andersson and her colleagues go into considerably more
details of natural language processing and show how meaning can be extracted from
the text of one patent.

Finally, the part concludes with the description of a new visualisation for
interconnected data items such as patents. The chapter by Kay and his colleagues
complements the one by Koch from the previous edition, while maintaining the
drive to move away from the list of documents towards a more intuitive graphical
display, which can operate with very large sets of documents.

http://dx.doi.org/10.1007/978-3-662-53817-3_9


Chapter 7
Retrieval Models Versus Retrievability

Shariq Bashir and Andreas Rauber

Abstract Retrievability is an important measure in information retrieval (IR) that
can be used to analyse retrieval models and document collections. Rather than
just focusing on a set of few documents that are given in the form of relevance
judgements, retrievability examines what is retrieved, how frequently it is retrieved
and how much effort is needed to retrieve it. Such a measure is of particular interest
within the recall-oriented retrieval systems (e.g. patent or legal retrieval), because in
this context a document needs to be retrieved before it can be judged for relevance.
If a retrieval model makes some patents hard to find, patent searchers could miss
relevant documents just because of the bias of the retrieval model. In this chapter
we explain the concept of retrievability in information retrieval. We also explain
how it can be estimated and how it can be used for analysing a retrieval bias
of retrieval models. We also show how retrievability relates to effectiveness by
analysing the relationship between retrievability and effectiveness measures and
how the retrievability measure can be used to improve effectiveness.

7.1 Introduction

Access to information from the Web and Internet is playing an important part in a
society relying increasingly on information looked up ad hoc from an ever-growing
pool of information in databases and the Web in general. Information retrieval (IR)
systems are essential components of this process. IR systems deal with the storage
(indexing), organisation, management and retrieval of information [7, 10, 23].
Besides indexing, one important factor that shapes the access to information is
the role of the retrieval strategy (or model) [35]. It acts as a middleware between
the users’ required information and the users’ effort to access the information. The
main role of a retrieval model is to first discriminate between relevant and irrelevant
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information and then to display the relevant results to the users. Additionally,
such models determine the order of results by relevance. Users should be able to
view the most relevant information at the top ranked positions. In the last few
years, a large number of retrieval models have been proposed for various kinds
of retrieval tasks. One of the main problems is therefore how to choose the right
model for a given retrieval task. It is a tedious task and falls under the research
domain of evaluation of retrieval models [17, 31, 39, 40]. Historically, research on
the evaluation of retrieval models has always focused on either the effectiveness
or the efficiency (speed/memory). These are still the most common two measures
that are determining the quality of retrieval models. The main limitation of these
measures is that they focus only on a few documents that are the (most) relevant
ones being returned at the top of a ranked list. This constitutes the primary criterion
in most standard retrieval tasks (Web retrieval, question answering [38], opinion
retrieval [27], etc.). With evaluation measures such as recall and Fˇ, aspects of the
completeness of information are being brought into consideration. As a complement
to these, a so-called higher-order evaluation has been proposed based on the
accessibility (retrievability, how easily the information can be accessed). Instead
of analysing how well the system performs in terms of speed or effectiveness, the
retrievability measure provides an indication of how easily the information within
the collection can be reached or accessed with a given retrieval model [5]. This
offers a higher and more abstract level for understanding the influence of the given
IR systems or retrieval models. Such models are affecting the access to all relevant
information in the collection, not just the set of information that is given in the
form of judged relevant documents by a group of few people. This is particularly
important for recall-oriented retrieval domains like patent or legal retrieval, where it
is necessary to ensure that everything relevant has been found, and furthermore, the
non-existence of a document has to be proven (e.g. a document which invalidates
a new patent application that does not exist) [1, 22]. Moreover, retrievability
specifically examines whether the lack of access to information actually impedes
one’s ability to access the required information within the collection.

7.2 Analogy of Retrievability in Information Retrieval

The approach for analysing the effectiveness of retrieval models in terms of
retrievability has been translated from logistics and transportation planning [5].
Hansen [16] draws the definition of accessibility in transportation planning as
follows:

a measurement of the spatial distribution of activities about a point adjusted for the ability
and the desire of people or firms to overcome spatial separation. More specifically, the
formulation states that the accessibility at point 1 to a particular type of activity at area 2
(say employment) is directly proportional to the size of the activity at area 2 (number of
jobs) and inversely proportional to some function of the distance separating point 1 from
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area 2. The total accessibility to employment at point 1 is the summation of the accessibility
to each of the individual areas around point 1. Therefore, as more and more jobs are located
nearer to point 1, the accessibility to employment at point 1 will increase.

Based on this definition, accessibility (or just access) refers to the effort of
completing different activities of daily life from given opportunities (buses, trains,
cars, metro, paths, roads and airports) of a transportation system [11, 15, 16, 20].
This approach is different to the study of efficiency of transportation systems, where
the focus of analysis is based on certain positions or procedures, for example,
the travel time between particular (important) locations. While being related to
efficiency, accessibility considers access in a more general sense. It provides a high-
level view on an evaluation of transportation systems.

Azzopardi and Vinay [4] draw the analogy of accessibility between transporta-
tion planning and IR systems as follows: in the context of transportation planning,
accessibility is the idea that models the opportunities (train, car, metro, bus) of the
transportation systems with the objective of completing daily life activities (to reach
a location, e.g. going to office, dining, shopping at a supermarket). Completing a
particular activity is subject to a certain associated cost function such as travelling
distance, number of stops, changes of buses, trains, etc. Similarly, in the context
of information retrieval, accessibility (retrievability) is the idea that models the
searching or retrieving of a particular information. This is subject to a cost function
based on the simplicity in using the system for retrieval of certain information and
the amount of retrieved documents to examine for reaching the desired information.
Here, documents replace locations, and queries replace the opportunities for the
completion of a particular activity. However, in IR there is no concept of physical
space; therefore, there is no constraint on the user’s current location (i.e. at a
particular document). The IR system models a stop or a location in such a way
that every possible opportunity can be available (i.e. the universe of all possible
queries), and users can select any route desired (he/she can query the IR system
with any type of search terms) at any time regardless of the locations. While this
makes every document in the collection potentially equally retrievable, the choice of
selecting a suitable opportunity (in the form of a query) to reach a particular location
where the user wants to travel (retrieving the desired information) and the bias in
the ranking methodology of IR systems affect just how documents are retrievable in
the information space with the given IR system.

Based on the analogy described above, the accessibility of a document, therefore,
depends upon the following three factors:

1. User’s ability to formulate his/her need in the form of a suitable query
2. The bias of the retrieval model
3. The user’s willingness to go through and down the ranked result list of the query

In the context of this research, we are considering the accessibility of documents
as a retrieval task where documents are accessed by querying the IR system.
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7.3 Analysing Retrievability of Retrieval Systems

Web coverage and documents’ retrievability are two well-known measures for
discovering IR systems’ accessibility. The body of literature on Web coverage-based
measures contains a range of possible biases [19, 25, 37], for example, if one website
has more coverage than another, whether sites in a particular geographical location
are favoured over others [37] or whether search engines are biased given a particular
topic. These studies are usually motivated by the view that search engines may be
providing biased content, and these measures are aiming at providing guidelines
for regulation. As opposed to the Web coverage-based measures, retrievability
focuses on the individual document retrievability scores, which can also be used
for analysing the accessibility of IR systems.

Estimating Retrievability: Given a collection D, an IR system accepts a user
query q and returns a ranked list of documents, which are deemed to be relevant to
q. We can consider the retrievability of a document based on two system-dependent
factors: (a) how likely the documents are returned to the user with respect to the
collection D and (b) the effectiveness of the ranking strategy (retrieval model) of the
IR system. In order to derive an estimate of this quantity, [5] used query set-based
sampling for approximating the retrievability (retrieval bias) [9]. Q query set could
either be a historical sample of queries or an artificially simulated substitute similar
to users’ queries. Then, each q 2 Q is issued to the IR system, and the retrieved
documents along with their positions in the ranked list are recorded. Intuitively,
retrievability of a document d is high when:

1. There are many probable queries in Q, which can be expressed in order to
retrieve d.

2. When retrieved, the rank r of the document d is lower than a rank cutoff
(threshold) c. This is the point at which the user would stop examining the ranked
list. This is a user-dependent factor and reflects a particular retrieval scenario in
order to obtain a more accurate estimate of this measure. For instance, in Web-
search scenarios, a low c would be more accurate as users are unlikely to go
beyond the first page of the results, while in the context of recall-oriented retrieval
settings (for instance, legal or patent retrieval), a high c would be more accurate.

Thus based on the Q, r and c, we formulate the following measure for the
retrievability of d

r.d/ D
X

q2Q

p.q/ � Of .kdq; c/ (7.1)

f .kdq; c/ is a generalised utility/cost function, where kdq is the rank of d in the result
list of query q and c denotes the maximum rank that a user is willing to proceed
down in the ranked list. The function Of .kdq; c/ returns a value of 1, if kdq � c, and
0 otherwise. p.q/ denotes the likeliness that a user actually issues query q. This
probability is hard to determine explicitly and is set to 1, i.e. to give all queries
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equal probabilities [5]. More complex heuristics integrating the length of the query,
the specificity of the vocabulary, etc., may be considered. Defined in this way, the
retrievability of a document is essentially a cumulative score that is proportional to
the number of times the document can be retrieved within that cutoff c over the set
Q. This fulfils our aim, in that the value of r.d/ will be high when there are a large
number of highly probable queries that can retrieve the document d at the rank less
than c and the value of r.d/ will be low when only a few queries retrieve the doc-
ument. Furthermore, if a document is never returned at the top ranked c positions,
possibly because it is difficult to retrieve by the system, then the r.d/ is zero.

This r.d/ function is an intuitive way to show the relative bias between both
sets of retrieval models and sets of documents. For example, if system A returns
r.d1/ D 30 and system B returns r.d1/ D 1, then relatively, system A will retrieve
document d1 30 times more than system B. This gives a more concise view of the
relation of system A to system B with respect to document d1. Alternatively, if for
system A r.d1/ D 30 and r.d2/ D 1, then system A favours and retrieves d1 30

times more than it does d2.
The cumulative measure of the retrievability score of a document on the basis

of the binary f .kdq; c/ function ignores the ranking position of a document in a
ranked result list, i.e. how accessible the document is in the ranking. A gravity-
based measure can be used for this purpose by setting the function to reflect the
effort of going further down in the ranked result list, and it is defined as

Of .kdq; ˇ/ D 1

.kdq/ˇ
(7.2)

The rank cutoff factor is changed to ˇ, which is a dampening factor that adjusts
how accessible the document is in the ranking. In our experiments we calculate the
retrievability score of documents only on the basis of cumulative measure.

Retrievability inequality can be further analysed using the Lorenz Curve [14]. In
economics and social sciences, a Lorenz Curve is used to visualise the inequality
of wealth in a population. This is performed by first sorting the individuals in
the population in ascending order of their wealth and then plotting a cumulative
wealth distribution. If wealth was distributed equally in the population, then we
would expect this cumulative distribution to be linear. The extent to which a given
distribution deviates from the equality is reflected by the amount of skewness in
the distribution. Azzopardi and Vinay [5] used a similar idea in the context of a
population of documents, where the wealth of documents is represented by r.d/

function. The more skewed the plot, the greater the amount of inequality, or bias
within the population. The Gini coefficient [14] G is used to summarise the amount
of retrieval bias in the Lorenz Curve and provides a bird’s-eye view. It is computed
as follows:

G D
PjDj

iD1.2 � i � jDj � 1/ � r.di/

.jDj � 1/
PjDj

jD1 r.dj/
(7.3)
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D represents the set of documents in the collection. If G D 0, then no bias is
present because all documents are equally retrievable. If G D 1, then only one
document is retrievable and all other documents have r.d/ D 0. By comparing the
Gini coefficients of different retrieval methods, we can analyse the retrieval bias
imposed by the underlying retrieval systems on a given document collection.

7.4 Applications of Retrievability Analysis

Retrievability analysis can be used for a range of applications, such as:

• Media regulator or watchdog: The retrievability measure can act as a watch-
dog. It can be used to determine whether a retrieval system favours documents of
certain news providers over others [3]. It can also be used to investigate what parts
of the collection are favoured over others and whether they have any particular
biases that the users should be aware of.

• Bias detection for IR practitioner/researcher: The retrievability measure can
provide help to the IR practitioner/researcher for detecting any untoward bias
detrimental to the effectiveness of retrieval models. It can further examine the
influence of different retrieval models on a particular collection to understand
more precisely the benefits and limitations of different models.

• Automatic ranking retrieval models: One important area of IR research is to
evaluate the effectiveness of retrieval models using test collections [17, 31, 39,
40]. A test collection consists of a set of documents, a set of queries and relevance
judgements (i.e. a list that describes which documents are relevant to which
query topic). While documents and queries are relatively easy to gather, creating
relevance judgements requires significant effort and resources. In recent years
there has been increased research interest in methods for automatically ranking
retrieval models without human-generated relevance judgements [8, 12, 17, 18,
26, 30–33, 36, 39–41]. One important aspect of the retrievability measure is that
it can be analysed without relevance judgement, and this provides an attractive
alternative for producing the automatic ranks of retrieval models.

• E-Gov site administration: Ensuring that online contents are accessible is very
important in the area of e-Government, because citizens of a democratic country
have a right to information [28]. If such information is non-accessible to the
public, this can jeopardise the integrity of the government. Currently, there exists
no quantitative measure or methodology that can be employed for ensuring
access to relevant content. The retrievability measure can be used for this task
in order to determine whether a sufficient amount of access is accorded to the
information housed within the e-Government websites.

• Search engine optimisation: The retrievability measure can be used to detect
any favouritism in the search engine so that the content can be optimised to
increase the chance of retrieval.
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7.5 What Retrievability Cannot Examine

We cannot use retrievability for examining the following factors:

1. Retrievability cannot predict the search effectiveness of professional users (e.g.
patent examiners). An experienced user can easily bypass the retrieval bias
by recalling the most relevant terms of his/her information need and applying
bitwise AND operator between query terms. A long bitwise AND query decreases
the size of the query’s result list (i.e. total number of retrieved documents), and
the user can easily access his/her required information from a small number of
top ranked documents.

2. On the basis of retrievability scores, low-retrievability scores documents are
more difficult to find than high-retrievability scores documents. However, it is
wrong to say that low-retrievability scores documents are unlikely to be found
by any type of query. As we explained earlier, along with the users’ ability to
formulate the queries and the retrieval bias of retrieval models, a third factor
affecting the retrievability of documents is the difference between the size of
the query result list and the users’ ability or willingness to proceed down in the
ranked result list. This difference is controlled with the help of a rank cutoff
factor. If this difference is large, this means that the users will go through only
a small portion of the total number of retrieved documents, and from this we
can expect a large retrievability inequality between the documents of collection.
On the other hand, if this difference is small or the sizes of query result lists are
less than the rank cutoff factor, then the users will go through a large portion
of the retrieved documents and thus there will be less retrievability inequality
between the documents of collection. Ideally, queries used for retrievability
analysis should have large result list sizes, because this allows us to precisely
understand the role of the retrieval bias of retrieval models in the retrievability;
however, this ignores many specific, focused queries.

7.6 Retrievability Experiments

In this section, we examine the retrieval bias of different retrieval models for
different collections. The collections that we use for experiments contain patent
and news documents. For these collections, we first determine the retrievability
of documents with different retrieval models, and then we analyse to what extent
these retrieval models are differing in terms of retrieval bias that they imposed
on the documents of collections. The overall retrievability of documents provides
an indication of how easily the documents are accessible with different retrieval
models. The overall retrievability inequality between the documents of collection
shows the retrieval bias of retrieval model.
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Table 7.1 The properties of
document collections used for
the retrieval bias analysis

Dataset Total docs. Seed docs. Rank cutoff factors

TREC-CRT 1.2 million 34,205 50, 100, 250

ChemAppPat 36,998 36,998 5, 10, 15, 20, 25

DentPat 27,988 27,988 5, 10, 15, 20, 25

ATNews 47,693 47,693 5, 10, 15, 20, 25

Seed docs: This is the set of documents that are used for query
generation and retrievability analysis

7.6.1 Document Collections

We use the following four collections (Table 7.1) for retrieval bias analysis. Table 7.1
presents the basic properties of these collections. Seed documents represent the set
of those documents that are used for query generation and retrievability analysis.

• TREC 2009 Chemical Retrieval Track Collection (TREC-CRT): This dataset
consists of 1.2 million patent documents from the TREC Chemical Retrieval
Track (2009) (TREC-CRT)1 [21]. Due to the large size of the collection,
determining the retrievability for all documents in the collection requires large
processing time and resources. Therefore, to complete the experiments in a
reasonable time, a subset of 34,205 documents (judged documents) for which
the relevance assessments are available as part of TREC-CRT serves as seed
for query generation and retrievability analysis. As compared to the other three
collections, the documents in this collection are very long. The distributions of
document length and vocabulary size are also highly skewed (see Fig. 7.1). For
this collection, retrieval bias is analysed with five rank cutoff factors, c = 50,
c = 100, c = 150, c = 200 and c = 250.

• USPTO Patent Collections (ChemAppPat, DentPat): These collections were
downloaded from the freely available US Patent and Trademark Office website.2

We collect all patents that are listed under the United States Patent Classification
(USPC) classes 433 (dentistry) and 422 (chemical apparatus and process
disinfecting, deodorising, preserving or sterilising). These collections consist
of 64;986 documents, with 36;998 documents in USPC Class 422 and 27;988

documents in USPC Class 433. The USPC Class 433 documents are called
with DentPat Collection, and the USPC Class 422 documents are called with
ChemAppPat Collection. Similar to the TREC-CRT collection, the documents
in this collection are long; however, the distributions of document length and
vocabulary size are less skewed than the TREC-CRT collection (see Figs. 7.2
and 7.3). For both collections, the retrieval bias is analysed with the rank cutoff
factors c = 5, c = 10, c = 15, c = 20 and c = 25. Also, these collections are more

1Available at http://www.ir-facility.org/research/evaluation/trec-chem-09.
2Available at http://www.uspto.gov/.

http://www.ir-facility.org/research/evaluation/trec-chem-09
http://www.uspto.gov/
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Fig. 7.1 Document vocabulary size and length distribution on the TREC-CRT collection

 100

 200

 300

 400

 500

 600

 700

 1  6000  12000  18000  24000  30000  36000

V
oc

ab
ul

ar
y 

S
iz

e

Docs. Ordered by Increasing Vocabulary

Vocabulary Size

 1000

 10000

 1  6000  12000  18000  24000  30000  36000

D
oc

 L
en

gt
h

Docs. Ordered by Increasing Doc Length

Document Length

Fig. 7.2 Document vocabulary size and length distribution on the ChemAppPat collection

topically focused, consisting of only two highly similar USPC classes. It is
typical for a domain-specific document collection.

• Austrian News Dataset (ATNews): Our final collection consists of 47,693
Austrian news documents.3 We call this collection ATNews Collection. As
compared to the above three collections, the documents in this collection are
mostly short; however, the distributions of document length and vocabulary size
are highly skewed similar to the TREC-CRT collection (see Fig. 7.4). For this
collection we use the rank cutoff factors c = 5, c = 10, c = 15, c = 20 and c = 25
for the retrieval bias analysis.

3http://www.ifs.tuwien.ac.at/~andi/tmp/STANDARD.tgz.

http://www.ifs.tuwien.ac.at/~andi/tmp/STANDARD.tgz
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Fig. 7.3 Document vocabulary size and length distribution on the DentPat collection
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Fig. 7.4 Document vocabulary size and length distribution on the ATNews collection

7.6.2 Retrieval Models

Four standard IR models and four different variations of language models with term
smoothing [42] are used for the retrieval bias analysis. These are standard TFIDF,
NormTFIDF, the OKAPI retrieval model BM25 [29], SMART [34], Jelinek–
Mercer language model JM, Dirichlet (Bayesian) language model DirS, absolute
discounting language model and TwoStage language model.

7.6.3 Query Generation for Retrievability Analysis

We consider all sections (title, abstract, claims, description, background summary)
of patent documents for both retrieval and query generation. Stop words are removed
prior to indexing and words stemming is performed with the Porter stemming
algorithm. Additionally, we do not use all those terms of the collection that have
a document frequency greater than 25 % of the total collection size as they are too
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generic. Next, queries for retrievability analysis are generated with the combinations
of those terms that appear more than one time in the document. For these terms,
all three-term and four-term combinations are used in the form of Boolean AND
queries for creating the exhaustive set of queries Q, and duplicate queries are
removed from Q.

As we explained earlier, a third factor along with the user ability to formulate
the query and the retrieval bias of retrieval model that affects the retrievability of
documents is the difference between the result list size of the query and how deeply
the user would check/read the retrieved documents of the query. In retrievability
measurement this difference is controlled with a rank cutoff factor. The high
difference implies that the user would go through only a small portion of the
retrieved documents, and thus we can expect that the retrievability of documents
will highly depend upon the retrieval bias of the retrieval model. Less retrieval bias
would make a large number of documents highly retrievable at top ranked positions.
On the other hand, if this difference is small, or the size of query result lists becomes
less than the rank cutoff factor, then the user would go through a large portion
of documents and thus the bias of retrieval models will play a lesser part in the
retrievability of documents.

Therefore, in order to precisely analyse the effect of the retrieval model’s retrieval
bias on the retrievability, the size of query result lists should not be too close to the
user’s rank cutoff.

Under this principle, for the TREC-CRT collection, we remove all those queries
from the Q that retrieve less than 100 documents. Similarly for the ChemAppPat,
DentPat and ATNews collections, we remove all those queries from the Q that
retrieve less than 45 documents. Next, all these queries are used for the document
retrieval against the complete collection as Boolean AND queries with subsequent
ranking according to the chosen retrieval models to determine the retrievability
scores of documents. Table 7.2 shows the general characteristics of Q for the
different collections. Figures 7.5, 7.6, 7.7 and 7.8 show the distributions of the total
number of queries per document relative to the vocabulary size of documents. The
TREC-CRT and ATNews collections have large differences between the documents’
vocabulary size, and thus for these collections this distribution is highly skewed.
The ChemAppPat and DentPat collections have fewer differences between the
documents’ vocabulary size; thus for these collections the distribution of queries
is less skewed.

Table 7.2 Properties of Q that are used for the retrieval bias analysis

Characteristics TREC-CRT ChemAppPat DentPat ATNews

jQj 130.8 million 108.1 million 110.4 million 57.2 million

Minimum query result list size 100 45 45 45

Avg query result list size 1943 149 154 80

Avg # of queries/document 1,790,604 437,969 606,879 135,395
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Table 7.3 Gini coefficient
scores representing the
retrieval bias of different
retrieval models on various
rank cutoff factors for the
TREC-CRT collection

r.d/

Retrieval model c D 50 c D 100 c D 250

TFIDF 0.95 0.91 0.81

NormTFIDF 0.70 0.62 0.51

BM25 0.57 0.52 0.44

SMART 0.96 0.93 0.87

DirS 0.63 0.57 0.50

JM 0.68 0.62 0.51

AbsDis 0.66 0.60 0.50

TwoStage 0.64 0.56 0.46

As rank cutoff factor increases, bias steadily
decreases indicating that the low retrieval bias is
experienced when considering the long ranked
lists

Table 7.4 Gini coefficient
scores representing the
retrieval bias of different
retrieval models on various
rank cutoff factors for the
ChemAppPat collection

r.d/

Retrieval model c D 5 c D 10 c D 15 c D 20 c D 25

TFIDF 0:65 0:56 0:52 0:49 0:48

NormTFIDF 0:48 0:42 0:39 0:38 0:37

BM25 0:39 0:38 0:37 0:37 0:37

SMART 0:93 0:88 0:84 0:81 0:77

DirS 0:43 0:39 0:38 0:37 0:37

JM 0:41 0:37 0:36 0:36 0:36

AbsDis 0:40 0:38 0:38 0:38 0:38

TwoStage 0:47 0:42 0:39 0:38 0:38

As rank cutoff factor increases, bias steadily decreases indicat-
ing that the low retrieval bias is experienced when considering
the long ranked lists

7.6.4 Retrieval Bias Analysis

Tables 7.3, 7.4, 7.5 and 7.6 list the retrievability inequality providing Gini coef-
ficients for a range of rank cutoff factors for the different collections. Note that
a high bias is experienced when limiting oneself to short result lists of 5 or 50
documents. The Gini coefficient tends to decrease slowly for all query sets and
for all retrieval models as the rank cutoff factor increases. This indicates that the
retrievability inequality within the collection is mitigated by the willingness of the
user to search deeper down into the result list. If a user examines only a small portion
of the result list, then he/she will face a greater degree of retrieval bias.

Overall, BM25 on all collections exhibits lower retrieval bias than all other
retrieval models. The four language modelling approaches DirS, TwoStage, JM and
AbsDis also exhibit lower retrieval bias than TFIDF, SMART and NormTFIDF.
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Table 7.5 Gini coefficient
scores representing the
retrieval bias of different
retrieval models on various
rank cutoff factors for the
DentPat collection

r.d/

Retrieval model c D 5 c D 10 c D 15 c D 20 c D 25

TFIDF 0:65 0:58 0:53 0:50 0:48

NormTFIDF 0:51 0:44 0:41 0:40 0:39

BM25 0:41 0:39 0:38 0:38 0:38

SMART 0:93 0:89 0:85 0:81 0:78

DirS 0:46 0:42 0:40 0:39 0:38

JM 0:43 0:40 0:38 0:37 0:37

AbsDis 0:42 0:40 0:39 0:39 0:39

TwoStage 0:49 0:44 0:41 0:40 0:39

As rank cutoff factor increases, bias steadily decreases indicat-
ing that the low retrieval bias is experienced when considering
the long ranked lists

Table 7.6 Gini coefficient
scores representing the
retrieval bias of different
retrieval models on various
rank cutoff factors for the
ATNews collection

r.d/

Retrieval model c D 5 c D 10 c D 15 c D 20 c D 25

TFIDF 0:95 0:92 0:90 0:88 0:87

NormTFIDF 0:54 0:53 0:54 0:56 0:57

BM25 0:52 0:52 0:53 0:55 0:57

SMART 0:87 0:83 0:79 0:76 0:73

DirS 0:77 0:73 0:72 0:70 0:69

JM 0:53 0:52 0:53 0:55 0:56

AbsDis 0:56 0:57 0:59 0:60 0:61

TwoStage 0:78 0:75 0:73 0:71 0:70

As rank cutoff factor increases, bias steadily decreases indicat-
ing that the low retrieval bias is experienced when considering
the long ranked lists

7.7 Relationship Between Retrievability and Effectiveness

The retrievability measure has been used in a number of different contexts (see [5]
for more details and [2, 6] for examples of its usage in practice). However, there
has been little work on analysing the relationship between retrievability and more
standard IR effectiveness measures. One important aspect of the retrievability
measure is that it can be analysed or estimated without the availability of explicit
ground truth (relevance judgements). It provides an attractive alternative for the
automatic ranking of retrieval models. Additionally, it can also be used for tuning a
retrieval model’s effectiveness by varying its parameter values or retrieval features
over retrievability so that they can perform well for a given collection. However, this
is possible only if there is a significant positive correlation between the retrieval bias
(i.e. the summarised retrievability of all documents) and effectiveness measures.
This is because high or low retrieval bias of retrieval models does not imply that
the retrieval models will also perform well on the effectiveness measures. For
instance—given the definition of retrievability—a retrieval model that ranks the
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documents by randomly selecting from the document collection would provide a
better retrievability to all documents. This would result in a low retrieval bias, but
very poor effectiveness for finding the relevant documents. Conversely, a retrieval
model that only ranks the set of known relevant documents at the top ranked
positions, regardless of given queries, would provide a high inequality among
documents (poor retrievability and high retrieval bias) but better effectiveness for
a set of known topics. This indicates that neither extreme is desirable. However,
to what extent we need to trade off between the retrievability and the effectiveness
depends upon the correlation between them. In the following experiments, we rank
all retrieval models on both measures independently and test to what extent the two
rankings agree with each other, i.e. to what extent the low retrieval bias of a retrieval
model leads to high effectiveness.

7.7.1 Effectiveness Analysis

We select the prior art (PA) task of the TREC-CRT collection for analysing the
effectiveness of retrieval models. The PA task consisted of 1000 topic queries that
are the full-text patent documents (i.e. consisting of at least claims and abstract or
description) taken from both the European Patent Office (EPO) and the US Patent
Office (USPTO). The goal of searching a patent database for the prior art search
task is to find all previously published related patents on a given topic [13, 21, 24].
It is a common task for patent examiners and attorneys to decide whether a new
patent application is novel or contains technical conflicts with some already patented
invention. They collect all related patents and report them in a search report. We use
these reports as relevance judgements. Next, we apply a standard approach for query
generation in the patent retrieval domain. From each topic, we select only the claim
section being the most representative piece of text, as it describes the scope of the
invention. In order to build prior art queries from the claim sections, we first sort
all the terms in the claim sections on the basis of their increasing term frequencies.
Next, we select the top 30 terms that have the highest frequencies and use these
terms in the form of a long query for searching the relevant documents. Note
that more complex query generation approaches may be used. Yet, as our primary
motivation is to analyse the relationship between effectiveness and retrievability,
this standard baseline is sufficient.

We performed effectiveness analysis with Precision@30 (P@30), Recall@100
(R@100), mean average precision (MAP) and b-pref.4

4http://trec.nist.gov/pubs/trec16/appendices/measures.pdf.

http://trec.nist.gov/pubs/trec16/appendices/measures.pdf
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7.7.2 Retrieval Models

The retrieval models that we use for retrieval bias analysis include standard retrieval
models (NormTFIDF, BM25, TFIDF and SMART), language modelling-based
retrieval models (DirS, JM, AbsDis and TwoStage) and low-level retrieval features
of IR.

We use the following low-level features in experiments:

• Document length (jdj)
• Document vocabulary size (jTdj)
• The sum of absolute query term frequencies within the document [Eq. (7.4)]

tf .d; q/ D
X

t2q

tft;d (7.4)

where tft;d is the term frequency of document (d).
• The sum of normalised query term frequencies relative to document length

[Eq. (7.5)],

ntf .d; q/ D
X

t2q

tft;d=jdj (7.5)

where jdj is the length of d
• The sum of document frequency of query terms [Eq. (7.6)]

sdf .d; q/ D
X

t2q

dft=jDj (7.6)

• The sum of probability of query’s terms occurring in the collection [Eq. (7.7)]

scf .d; q/ D
X

t2q

cft=
X

d2D

jdj (7.7)

where cft is the collection frequency of t in D.

7.7.3 Relationship Between Two Measures on the Basis of
Retrieval Model Ranks

So far, we examined the retrieval bias of different retrieval models. Our results show
that the retrieval models differ substantially in terms of the retrieval biases that they
impose on the population of documents. However, the question still remains: What
is the relationship between minimising the retrieval bias and maximising a retrieval
model’s effectiveness? In a TREC-style definition of effectiveness, it is important to
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Table 7.7 Gini coefficient
scores representing the
retrieval bias of different
retrieval models on the
TREC-CRT collection

Retrieval
model

Rank cutoff factors
c D 50 c D 100 c D 250

Standard retrieval models and language models

TFIDF 0.95 0.91 0.81

NormTFIDF 0.70 0.62 0.51

BM25 0.57 0.52 0.44

SMART 0.96 0.93 0.87

DirS 0.63 0.57 0.50

JM 0.68 0.62 0.51

AbsDis 0.66 0.60 0.50

TwoStage 0.64 0.56 0.46

Low-level retrieval functions

tf(d,q) 0.95 0.92 0.83

ntf(d,q) 0.71 0.63 0.51

sdf(d,q) 0.85 0.85 0.83

jdj 0.80 0.74 0.61

jTdj 0.99 0.99 0.99

scf(d,q) 0.85 0.85 0.83

ensure that all relevant documents of topic queries have high retrievability scores.
But given the recall-oriented retrieval domains such as patents, legal or government
administration, it is necessary to ensure that all documents are highly retrievable. In
this section, we will now specifically examine to what extent the low or high retrieval
bias of retrieval models correlates with their effectiveness. That is, if a retrieval
model has less retrieval bias than other models, then does it also mean that it is more
effective than the other models? If this holds true, then the retrievability will provide
a valuable alternative for the automatic ranking of retrieval models in the case when
there are no resources to relevance judgements available for a given collection. In
order to examine these premises, we perform the following experiment.

In this experiment, we compare the relationship between the two measures on the
basis of retrieval model ranks. Hereby we want to examine to what extent the low
retrieval bias of retrieval models leads to high effectiveness. In order to analyse this,
we test and rank all retrieval models independently on both measures. Table 7.7
shows the retrieval bias (measured as Gini coefficient) at different cut-off levels.
Table 7.8 shows the retrieval bias and effectiveness scores and Table 7.9 shows
retrieval model ranks on both measures and the relationship between them. Although
the relationship between two rank lists is not perfect, it can be observed from the
results that the best retrieval models are consistently ranked in at least the top
half of the ranking. This indicates a systematic relationship between retrievability
and effectiveness measures. When comparing only the standard and the language
modelling-based retrieval models on the basis of these rankings, then BM25 and
the four language modelling approaches (JM, DirS, AbsDis and TwoStage) have
higher effectiveness than other models possibly due to their lower retrieval bias.
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Table 7.8 Retrieval bias (Gini coefficient) and effectiveness scores of different retrieval models
on TREC-CRT collection

Retrieval bias and effectiveness scores

Retrieval model G@100 R@100 P@30 MAP b-pref

BM25 0:52 0:156 0:101 0:049 0:428

TwoStage 0:56 0:174 0:110 0:055 0:474

DirS 0:57 0:177 0:110 0:055 0:470

AbsDis 0:60 0:170 0:108 0:052 0:440

JM 0:62 0:184 0:113 0:058 0:483

NormTFIDF 0:62 0:082 0:045 0:023 0:320

ntf(d,q) 0:63 0:107 0:061 0:028 0:470

jdj 0:74 0:001 0:000 0:000 0:256

sdf(d,q) 0:85 0:042 0:027 0:010 0:414

scf(d,q) 0:85 0:002 0:001 0:000 0:237

TFIDF 0:91 0:008 0:003 0:003 0:115

tf(d,q) 0:92 0:016 0:008 0:004 0:428

SMART 0:93 0:074 0:044 0:021 0:276

jTdj 0:99 0:001 0:000 0:000 0:245

Retrieval models are ordered by increasing Gini coefficient scores

Table 7.9 Relationship between retrieval bias and effectiveness on TREC-CRT collection

Correlation analysis (Ranks)

Retrieval model G@100 R@100 P@30 MAP b-pref

BM25 1 5 5 5 6

TwoStage 2 3 2 2 2

DirS 3 2 3 3 3

AbsDis 4 4 4 4 5

JM 5 1 1 1 1

NormTFIDF 6 7 7 7 9

ntf(d,q) 7 6 6 6 4

jdj 8 13 13 12 11

sdf(d,q) 9 9 9 9 8

scf(d,q) 10 12 12 13 13

TFIDF 11 11 11 11 14

tf(d,q) 12 10 10 10 7

SMART 13 8 8 8 10

jTdj 14 14 14 14 12

Correlation with G@100 0:79 0:80 0:81 0:72

Retrieval models are ordered by increasing Gini coefficient ranks. Last column shows correlation of
effectiveness measures with retrieval bias. We calculate correlation using Pearson product-moment
correlation coefficient
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NormTFIDF has lower retrieval bias than TFIDF and SMART, plus it has higher
effectiveness. However, NormTFIDF has a higher retrieval bias than BM25, JM,
DirS, AbsDis and TwoStage and also lower effectiveness than these models. If we
focus only on the low-level retrieval features in the bottom half of the table, then
ntf(d,q) has the lowest retrieval of these, while also having the highest effectiveness.
The main reason behind the systematic relationship between a high retrieval bias
and a low effectiveness may be the level of retrievability inequality between the
documents. When relevant documents show low retrievability, then these are less
likely to retrieve at top ranked positions due to the presence of highly retrievable
documents. This high level of retrievability inequality between documents decreases
the overall effectiveness of retrieval models.

7.7.4 Improving Effectiveness of Retrieval Models by Tuning
Parameters Using Retrieval Bias

Commonly retrieval models are tuned with the help of parameter values. These
parameters either control the query term normalisation relative to document length
or smooth the document relevance scores in case of unseen query terms. In this
experiment we tune the parameter values of different retrieval models over specified
ranges and examine their sensitivity and change with both measures (effectiveness
and retrieval bias). Four language modelling approaches with term smoothing (JM,
DirS, AbsDis, TwoStage) along with BM25 are used for this purpose. In case of
BM25, JM and TwoStage, the parameters b and � are varied from 0:1 to 1:0 in steps
of 0:1, while the parameter � in case of DirS is varied from 500 to 10000 in steps
of 1000. Figures 7.9, 7.10, 7.11, 7.12 and 7.13 are showing the effect of parameter
values on both measures. We can observe that all those parameter value settings
that exhibit high retrieval bias do not correspond to the maximum effectiveness.
The maximum effectiveness is gained only when the parameter values result in low
retrieval bias. Along with the parameter values that exhibit low retrieval bias and
high effectiveness, there exist also some parameter values that—while achieving
low retrieval bias—also hurt the effectiveness by a small fraction. This decrease in
effectiveness occurs due to the relevance bias on long documents, while the tuned
retrieval models aim at providing equal access to all documents. These findings
again indicate the presence of a strong relationship between the Gini coefficient and
P@30, R@100, MAP and b-pref, representing the effectiveness of retrieval models.
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Fig. 7.9 Graphical relationship between the retrieval bias and the effectiveness across various
parameter (b) values of BM25
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Fig. 7.11 Graphical relationship between the retrieval bias and the effectiveness across various
parameter (ı) values of AbsDis
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7.8 Conclusion

Retrievability measures to what extent a retrieval model provides theoretically
equal access to all documents, i.e. returns all documents with equal likelihood if
all possible queries are posed against a specific document collection. The studies
presented in this chapter reveal that at least for recall-oriented application domains,
where users are willing to proceed down to 50, 100 or 250 items in a ranked search
result list, there is a high correlation with the effectiveness of retrieval models.
This indicates that retrieval models may be tuned using retrievability as a guiding
measure, rather than more conventional approaches of tuning through effectiveness
measures. The comparisons clearly show for all retrieval models that there is a very
strong relationship between a low retrievability bias and the effectiveness measures.
Nonetheless, the assumption that the setting with the lowest retrievability bias
always leads to a top effectiveness value cannot be confirmed in all cases. While
the parameter settings can be tuned this way and often a good result is obtained,
sometimes the results can also turn out slightly below average.
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Chapter 8
Federated Patent Search

Michail Salampasis

Abstract Federated search, also known as distributed information retrieval (DIR),
is a technique for searching multiple text collections simultaneously. This chapter
presents the basic components of a typical federated search system and the main
technical challenges in each component during its operation. We briefly review the
methods and techniques of federated search and how these can be applied in the
patent domain. We discuss the problems that usually are ignored in DIR research,
but they should be practically addressed in real federated patent search systems. We
also present PerFedPat, an interactive patent search system based on the federated
search approach. PerFedPat provides core services to search, using a federated
method, multiple online patent resources, thus providing parallel access to multiple
patent sources. PerFedPat hides complexity from the end user who uses a common
single query tool for querying all patent datasets at the same time. The second
innovative feature of PerFedPat is that it has a pluggable and extensible architecture,
and therefore it enables the use of multiple search tools that are integrated in
PerFedPat. We present an example of such a tool, the IPC suggestion tool, which
uses a federated search technique (specifically source selection) that exploits
topically organised patents (using their intellectually assigned classifications codes)
to support patent searches by automated IPC suggestion. This tool shows how DIR
techniques can be applied beyond the typical scenario of implementing a federated
search system.

8.1 Introduction

Patent search is an economically important problem, central to the R&D operations
of many industries. Patents are important technical and legal documents which
nowadays are published electronically using a strict technical form and structure.
Also, the world of patents is a rapidly expanding one, with more patents filed
each year in all languages, in various patent offices around the world [1]. Large
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maintenance efforts are necessary to collect, process and iteratively update large—
centrally maintained—patent datasets based on the worldwide collection of patents
and provide, as much as possible, a unified single point of (search engine-like)
search. Several types of patent search exist (e.g. finding technical information,
finding prior art, state of the art or patent landscape searching), each having the
need to use various search tools and user interfaces (UIs) [2]. Also, depending on
the type of patent search, various information sources may have to be considered,
not only patent datasets but also other scientific data published elsewhere, current
business and financial news, for tasks such as to raise technology awareness,
discover business opportunities for an invention, etc.

A patent search professional often carries out search tasks for which high recall
is important. Additionally, she/he would like to be able to reason about how the
results have been produced, the effect of any query reformulation action in getting
a new set of results or how the results of a set of query submission actions can be
easily and accurately reproduced on a different occasion (the latter is particularly
important if the patent searcher is required to prove the sufficiency of the search
in court at a later stage). Classification schemes and metadata are heavily used
because it is widely recognised that once the work of assigning patent documents
into classification schemes is done, the search can be more efficient and language
independent [3, 4].

Additionally, the complexity of the tasks which need to be performed by patent
searchers usually includes not only retrieval but also information analysis, and
generally requires association, pipelining and possibly integration of information
as well as synchronisation and coordination of multiple and potentially concurrent
search views produced from different datasets, search tools and user interfaces
[5]. Many facets of search technology (e.g. exploratory search, aggregated search,
federated search, task-based search, information retrieval (IR) over query sessions,
cognitive IR approaches, human computer IR) aim to at least partially address some
of these demands [6].

The main objective of this chapter is to present and analyse the main issues
and challenges for understanding and developing integrated patent search sys-
tems based on the federated search paradigm. Federated search, also known as
distributed information retrieval (DIR),1 is a technique for searching multiple
collections/information resources simultaneously [7]. Each resource which is part
of the federation must provide a function (accessible over a URL, a Web service or
any other remote procedure call method) for searching and retrieving results from its

1Many times these two terms (i.e. federated search and DIR) are used interchangeably in the
relevant literature. However, this chapter implicitly suggests that there is a difference on how
the two terms should be used. DIR should refer to the core theory and algorithms of this area
and emphasises the fact that physical distribution of collections is not a prerequisite. On the
other hand, the term ‘federated search’ should be used when referring to actual implementation
of search systems, encompassing practical issues such as wrapper development and maintenance
and duplicate removal, and emphasises on the simultaneous search of multiple searchable, remote
and physically distributed resources [7].
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own index. The searcher can manually select the resources she/he wants to search,
or all available resources can be the target of a federated search. However, when
applying DIR techniques, usually queries are submitted to a subset of available
remote resources which are most likely to return relevant answers. Particularly
when many resources are available, automatic resource selection is necessary and it
is based on creating pre-processed representations of the existing resources. The
results returned for each query by selected resources are usually merged into a
single list which is presented to the searcher. Using this process federated search
systems offer users the capability of simultaneously searching multiple online
remote information sources through a single point of search.

From a user perspective, the defining feature of federated search is that the
user interacts solely with the federated search system, without any requirement
to know the intricacies of the underlying information sources, the query syntax
and the methods which are internally used to index or retrieve documents. In
effect, a federated search system functions as an intermediary between the user
and multiple information resources. In the end, the experience of using a DIR
system can be rather similar to that of using any other centralised IR system, as the
DIR system in principle acts as a complete interface to the underlying information
sources providing to its users a holistic, unified view of the available retrieval space
comprising of the federated resources.

DIR and federated search have been explored for about 20 years now mainly as a
research field and various applications have been presented [8], but the usefulness of
DIR is also challenged [9]. One recent application of DIR methods is the aggregated
or vertical Web search [10]. Also many enterprise search applications rely on
forms of DIR [9]. Additionally, it is known that big Web search companies use
DIR techniques in maintaining distributed indexes mainly for scalability reasons
[11]. Federated search as a topic is also closely related to searching in peer-to-
peer networks [12] and meta-search engines [13]. To understand the design and
application space of DIR and federated search, one must understand that both can
be selected as the basis for developing a search tool or solution either by inevitability
or driven by an effort to engineer a more efficient or sometimes effective solution.

For example, DIR has been explored in the last decade mostly as a potential
response to technical challenges such as the prohibitive size and exploding rate
of growth of the Web which make it impossible to be indexed completely [14].
Big commercial search engines use programs called crawlers (or spiders) to locate
and download documents when creating their indexes. Unfortunately, for a number
of different reasons (e.g. pages are not linked and therefore cannot be discovered,
robot exclusion commands, download process is too slow, dynamic pages with
content generated on the fly might be ignored), search engines cannot easily crawl
documents located in what is collectively known as the hidden or invisible Web [15].
Studies have indicated that the size of the invisible Web may be 2–50 times the size
of the Web reachable by search engines.

Also there are many online authoritative resources (Web sites), which are
not reachable by search engines, offering their own search capabilities. Even
publicly available, up-to-date and authoritative government information is often not



216 M. Salampasis

indexable by search engines [16]. A good example is PubMed2 which is a very large
biomedical library which contains more than 25 million articles published since
the 1950s. There are many similar resources which are not indexable by search
engines, providing their own access to information such as yellow and white pages,
patents, legal information, national statistics, news, catalogues to national libraries
and scientific articles. As the main focus of this article is patent search, we should
mention this is true also in the patent domain as nearly all authoritative public online
patent resources (e.g. EPO’s Espacenet,3 WIPO’s PatentScope4) are not crawlable
and therefore not publicly accessible using general-purpose Web search engines.

One good argument for using federated search is that we can provide increased
coverage by searching a potentially large number of patent search engines which are
wrapped in a federated patent search system. One key advantage, when compared
with existing ‘crawler-based’ centralised patent search systems, is that a federated
search system does not need to maintain its own dataset and index. As a result,
federated searches are inherently as current as the individual information sources, as
these are searched in real time. In other words, instead of expending the tremendous
effort and resources required to download, process and index patent documents,
something which may not be possible or very expensive in terms of time and costs,
federated search techniques directly pass the query to the search interface of existing
resource collections and effectively merge their results.

The previous two paragraphs presented cases where it is deemed necessary or
inevitable to apply federated search because the effort to maintain a centralised
patent search service is very large. A case where DIR methods, at least in patent
search, can be a choice for improving efficiency and effectiveness is when it is
applied in a way resembling more the cluster-based approaches to information
retrieval [17]. In these approaches improvements can be explained by the cluster
hypothesis and by source selection: relevant documents will tend to be at the same
source, and only sources with several relevant documents will be selected. The
general expectation is that if the correct sub-collections are selected, then it will
be easier for relevant documents to be retrieved from the smaller set of available
documents and more effective searches can be performed. Later in this article (in
Sect. 4) we will present such a DIR technique motivated by the previous argument.
The search tool based on this technique topically organises patent collections based
on their International Patent Classification (IPC) codes to cluster, distribute and
index patents through hundreds or thousands of sub-collections. The final aim is
to improve prior art search by utilising source selection DIR methods to select the
most promising sub-collections/IPCs to make a focused (filtered) search or when
trying to understand a technical domain of a patent under examination.

The second motivation for considering federated search in the patent domain is
that it encourages and better supports a paradigm of using integrated search systems

2http://www.ncbi.nlm.nih.gov/pubmed
3https://www.epo.org/searching/free/espacenet.html
4https://patentscope.wipo.int/search/en/search.jsf

http://www.ncbi.nlm.nih.gov/pubmed
https://www.epo.org/searching/free/espacenet.html
https://patentscope.wipo.int/search/en/search.jsf
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for patent search [18]. In this point it should be made clear that in the previous
sentence the term ‘integrated’ is used to define search systems integrating multiple
search tools that can be used (in parallel or in a pipeline) from the professional
searcher during a potentially lengthy search session. Some of these tools may
serve, for example, the need of retrieving information from distributed datasets as
it happens in federated search, expand and suggest a query, but other tools may
operate at runtime to deliver to the searcher’s desktop (workbench) multiple views
of search results produced using various methods beyond the typical single merged
ranked list (e.g. faceted search, clusters of documents). As a result our definition
of integrated patent search systems primarily describes a rich information-seeking
environment for different types of searches, utilising multiple search tools and
exploiting a diverse set of IR and natural language processing (NLP) technologies.

The rest of this chapter is structured as follows. In Sect. 2 we present the main
technical challenges of federated search which normally have to be addressed when
developing federated search solutions in every domain. In Sect. 3 we discuss how
these solutions can be applied in the patent domain in particular and some issues
that have to be considered when applying federated search techniques in the patent
domain. We also present a federated patent search system (namely PerFedPat5)
which searches online public patent resources and other patent datasets and also
integrates a set of different search tools for patent search. In Sect. 4 we present
another approach to apply DIR methods in the patent domain which is the use of
resource selection to patents which are topically organised based on their IPC. In
Sect. 5 we critically discuss the main challenges and benefits that federated search
offers in patent retrieval. Section 6 wraps up the chapter by attempting to draw
some conclusions about the applicability and potential value of federated search in
the development of next-generation patent search systems.

8.2 Technical Challenges in Federated Search

If the federated search process is decomposed, it can be perceived as three separate
but interleaved sub-processes (Fig. 8.1): source representation, in which surrogates
of the available remote collections are created; source selection, in which a subset
of the available information resources is chosen to process the query; and results
merging, in which the separate results are combined into a single merged result list
which is returned to the user.

In this section we briefly present each one of these sub-processes providing
references to related work. More complete reviews of federated search and DIR
methods and applications can be found at [1, 8].

5PerFedPat stands for personalised federated patent search. The term ‘federated’ is used because
it applies federated search techniques. Personalised because it supports the parallel use of multiple
search views and tools that can be used to personalise the searcher’s workbench and search tactics.
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Fig. 8.1 The retrieval process in federated search

8.2.1 Source Representation and Collection Size Estimation

The source representation phase [19] takes place before the user submits a query to
the federated search system. During this phase, surrogates of the available remote
collections are created. The aim of this stage is to provide the DIR system with
the best possible approximation about the contents of the federated information
resources. Information which is required to create an accurate representation of
the resources typically is their thematic topicality (i.e. news, engineering, medical,
sports, etc.) and the number of documents that are contained in a collection (the size
of the collection). Other information utilised in the subsequent resource selection
phase are the terms that appear in it (i.e. the vocabulary of the resource), the number
of documents that contain each term and potentially the number of times each term
appears in each document.

After source representation the federated search system possesses a represen-
tation set for each resource. The representation can be generated manually by
providing a short description of the documents found and indexed in each resource.
However, manually created representations cannot capture many terms that occur in
a large collection. Therefore in practice, collection representation sets are usually
generated automatically, and their comprehensiveness depends on the level of
cooperation in the federated search environment. Uncooperative environments are
those where federated collections do not provide any information about their
contents and collection statistics to the federated search system. On the contrary,
in cooperative environments the lexicon of the collections is provided to the central
broker; therefore complete and accurate information can be used for the phase of
collection selection [20].

However, in a typical federated search system, the remote collections are
uncooperative, external to the ‘owner’ of the federated search system; therefore the
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collections need to be sampled to establish a representation [21]. This technique is
known as query-based sampling [19] or query probing [22].

Also very typically source representation is done in advance before the user
submits the query. However, when the remote resource is extremely dynamic, there
are source representation methodologies which can create representations ‘on the
fly’, during query time [23].

Besides an estimation of the terms that appear in the remote search engines,
the actual number of documents that are available and indexed in each resource is
also important. This is reasonable if we consider that source selection algorithms
must take into consideration the size of the remote collections in order to determine
the number of relevant documents that should be merged from each resource that
will be selected in the resource selection phase. A first methodology was based
on a simple capture-recapture approach [24]. A second, more economical and
yet sufficiently accurate methodology is called sample-resample [25]. Using this
method queries are sent to the remote resource to estimate the document frequency
of a term in a collection and with some simple calculations calculate the size of
the remote collection taking into account the document frequency of a term in the
representation of a collection (sample) and the size of the sample.

In the federated patent search system which is presented in Sect. 3.1, no source
representation method is used because the number of federated resources is small
and the users manually select which subset to search. However, the IPC suggestion
tool which is presented in Sect. 4 uses source representations that are produced
for every patent classification at various levels in the IPC hierarchy using every
available patent member of this classification code.

8.2.2 Automatic Resource Selection

There are a number of source selection approaches including CORI [26], gGlOSS
[27] and others [28] that consider document collections as document surrogates,
consisting of the concatenation of the collection’s documents (the so-called
big-document approach). These methods characterise different collections using
collection-wide statistics like term frequencies. These statistics, which are used to
select or rank the available collections’ relevance to a query, are usually assumed
to be available from cooperative search providers. Alternatively, statistics can be
approximated by sampling uncooperative providers with a set of queries as briefly
discussed in the previous paragraph and extensively reported in [19].

The collection retrieval inference network (CORI) algorithm is probably the
most widely used source selection algorithm from those following the big-document
approach. The algorithm creates a hyper-document for each sub-collection, contain-
ing documents that are members of the sub-collection. When a query Q is submitted,
the sub-collections are ranked based on the belief p(QjCi) that the collection Ci can
satisfy the information need of the query Q. The belief p(rkjCi) that a term rk—part
of the query Q— is observed given collection Ci is estimated based on calculations
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using the number of documents in collection Ci that contain term rk, the number of
collections that contain term rk, the number of terms in Ci, the average number of
documents between all remote resources and the number of available collections.
The overall belief p(QjCi) in collection Ci for query Q is estimated as the average
of the individual beliefs of the query terms p(rkjCi).

The decision-theoretic framework (DTF) presented by Fuhr [29] is one of the
first attempts to approach the problem of source selection from a theoretical point
of view. The decision-theoretic framework produces a ranking of collections with
the goal of minimising the occurring costs, under the assumption that retrieving
irrelevant documents is more expensive than retrieving relevant ones. It is likely that
DTF can provide a solid basis for source selection when developing industry-level
federated search systems.

In more recent years, there has been a shift of focus in research on source
selection, from estimating the relevancy of each remote collection to explicitly
estimating the number of relevant documents in each resource. These methods are
called small-document approaches to resource selection [30], and they rank and
select sources based on the ranking of their documents in a centralised sample
index. ReDDE [25] focuses at exactly that purpose. It is based on utilising a
centralised sample index, comprised of all the documents that are sampled in the
query-sampling phase, and ranks the collections based on the number of documents
that appear in the top ranks when querying the centralised sample index. Its
performance has been shown to be similar to CORI at testbeds with collections
of similar size and better when the sizes vary significantly. Two similar approaches
named CRCS(l) and CRCS(e) were presented by Shokouhi [31], assigning different
weights to the returned documents depending on their rank, in a linear or exponential
fashion. Other methods see source selection as a voting method where the available
collections are candidates and the documents that are retrieved from the set of
sampled documents—retrieved from the centralised sample index—are voters [32].
Different voting mechanisms can be used (e.g. BordaFuse, ReciRank, Compsum)
mainly inspired by data fusion techniques.

There is a major difference between CORI (big-document approach) and the
source selection algorithms that utilise the centralised index (small-document
approaches). CORI builds a hyper-document for each sub-collection, while the other
collection selection methods are based on the retrieval of individual documents from
the centralised sample index. Due to its main characteristic, CORI has been repeat-
edly reported in the literature [33] not performing consistently well in environments
containing a mix of ‘small’ and ‘very large’ document collections. However, in
the patent domain where similar inventions contain to a large extent very different
terminology [34], in some settings the idea of building hyper-documents centred
around a specific technical concept such as IPCs may be very well suited. The
homogenous collections containing patent documents of the same IPC as the hyper-
documents in CORI should normally encompass a strong discriminating power,
something very useful for effective and robust resource selection. This is the reason
why CORI is used in the IPC suggestion search tool which is discussed in Sect. 4
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and has been proven to perform consistently better than small-document approaches
that we tested.

8.2.3 Results Merging

Merging the result lists from remote resources is a complex problem not only
because of the variety of retrieval engines that may be used by the individual
collections but also because of the diversity of collection statistics.

In environments where the remote collections return not only ranked lists of
documents but also relevancy scores, raw score merging [26] merges the results as
they are returned from the remote collections in a descending order. However, this
approach does not produce good results because of the problem of different statistics
which eventually makes the scores from different remote resources incomparable.
For example, in a collection that is mainly about sports, a document containing the
term ‘computer’ will rank very high if that term appears in the query, while the same
document would rank lower in a computer science-related collection. The weighted
scores merging algorithm overcomes the above issue by assigning each document a
score which is based both on the relevancy of the document itself and the relevancy
of the collection where it belongs. This way, high-scoring documents from low-
scoring collections (as in the above example) rank lower than highly relevant scores
from highly relevant collections.

The CORI results merging algorithm is a weighted scores merging algorithm and
has proved effective [35]. The final score of each document coming from different
remote resources is calculated using two simple equations [26] that are used to
normalise the collection and document scores to a range of 0–1.

Another set of results merging algorithms (e.g. SSL [36], MRRM [37], SAFE
[38]) makes use of a centralised index, comprised of all the sampled documents
from the remote collections. The algorithm takes advantage of the common returned
documents and their corresponding relevancy scores between the centralised index
and the remote collections to estimate a linear regression model between the two
scores. In case when a collection does not return scores and only ranked lists,
factitious scores are calculated and assigned to the documents in a linear fashion.

The PerFedPat system presented in Sect. 4 uses an alternative approach for results
merging because it is based on ezDL. The search agent collects all answers from
the federated resources/services that have been searched, merges duplicates and re-
ranks them using an index which is created on the fly in the server’s memory.

8.2.4 Federated Patent Search

There is an abundance of systems today to search for patents [39, 40]. Some of them
are free and have become available from patent offices and intellectual property (IP)
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organisations in the last 10 years (e.g. Espacenet and Patentscope), as the growth of
the Internet and the development of search technologies facilitated the provision
of powerful Web-based search systems of patent databases. Other systems are
free—but developed by search technology providers (e.g. Google Patents6)— or are
based on subscription and are provided from other independent producers. All Web-
based patent search systems allow searches using the simple ‘search box’ paradigm.
Other free or commercial systems may have better capabilities, for example, for
structural searching in particular fields, for term proximity operations or to leverage
domain semantics [41], but essentially they all operate on the same centralised index
paradigm. According to this paradigm, patent documents need to be periodically
crawled or otherwise collected; afterwards they are analysed and eventually become
part of the system’s centralised index.

Contrary to this paradigm, federated search can be applied in the patent domain
by searching the patent resources which provide an interface (accessible over a
URL or a Web service) for searching their indexed documents. Practically speaking
a federated patent search system implements a DIR scenario which allows the
simultaneous search of multiple searchable, remote and physically distributed patent
resources. In the previous section, we reviewed the main technical challenges
for this. Additionally, some other issues that must be particularly considered
when applying DIR to patent search are wrapper development and maintenance,
overlapping indexes, elimination of duplicates and multilingualism.

Wrappers are essential for federated search systems because they make possible
the interaction with remote resources. One wrapper for each federated resource
must exist for a federated system to be operational. The most important issue when
developing a wrapper is firstly how to connect to the collection and how to map
the internal structure of the query from the federated search system to the remote
resources. Sometimes the mapping may not be complete, for example, the federated
search system may support proximity operator and some of the federated resources
will not. The end user should be aware about which capabilities of a federated search
system are supported from a remote resource and which are not, but generally
speaking the federated search systems can provide visual cues and other support
about this task. Another problem in wrappers is extracting records from the search
result pages returned for remote resources. Several problems may occur during this
process such as the change in the structure of a search result or how to extract
multiple search results ‘pages’. Of course if a Web service is available and results
can be obtained in XML format, these problems can be minimised.

The problem of duplicate documents will most likely exist in a federated patent
search system as most patent resources index, to some extent, a great amount of
same patent documents. A federated patent search system should be able to identify
such redundancy within a single resource but also amongst different federated
resources. In federated Web search, it is easy to eliminate duplicate documents by
aggregating results that point to the same URL, but in the patent domain some other

6https://www.google.gr/

https://www.google.gr/
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features should be used that will identify such redundancies (e.g. same publication
number, identifying patent families).

Duplicate documents have as a consequence overlapping indexes. This is a
scenario that in most DIR algorithms for resource selection or results merging needs
to be addressed because most of them make the assumption of completely disjointed
federated resources. On the other side, the fact of a patent document returned by
more than one resource can be used in the merging process to rank these documents
higher. Several combination and ‘voting’ methods (e.g. CombMNZ, CombSum)
from data fusion have been proposed in several DIR settings [36, 42].

Finally, as it is very common in information retrieval research, most methods
focus on the environments where all documents in collections are in the same
language. The same holds for most methods in DIR. However, patent resources
usually contain documents in different languages. Therefore, it is important to
extend monolingual DIR techniques for multilingual environments as it is presented
here [43].

8.3 A Federated Patent Search System

PerFedPat7 is an interactive patent search system that follows a federated search
approach. PerFedPat provides core services and operations for being able to search,
using a federated method, multiple online patent resources (currently Espacenet,
Google patents, Patentscope and the MAREC8 collection), thus providing unified
single-point access to multiple patent sources while hiding complexity from the end
user who uses a common query tool for querying all patent datasets at the same
time. Wrappers are used which convert the PerFedPat internal query model into
the queries that each remote system can process. ‘Translated’ queries are routed to
remote search systems and their returned results are internally re-ranked and merged
as a single list presented to the patent searcher. PerFedPat is developed upon ezDL
[44]; therefore, in addition to the patent resources which are provided in PerFedPat,
there are other resources already provided by ezDL, most of them offering access to
online bibliographic search services (e.g. ACM DL, DBLP, Springer, PubMed) for
non-patent literature.

The second idea that PerFedPat supports is integrating multiple search tools and
methods for professional search [42]. Currently the search tools which are integrated
are (a) an International Patent Classification (IPC) selection tool, (b) a tool for
faceted navigation of the results retrieved based on existing metadata in patents, (c) a
tool producing clustered views of patent search results and (d) a machine translation

7System can be downloaded from this address: www.perfepat.eu
8MAREC is a static collection of over 19 million patent applications and granted patents in a
unified file format normalized from EP, WO, US and JP sources, spanning a range from 1976 to
June 2008. http://www.ifs.tuwien.ac.at/imp/marec.shtml

http://www.perfepat.eu/
http://www.ifs.tuwien.ac.at/imp/marec.shtml
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(MT) tool for translating queries for cross-lingual information retrieval. The rest of
this section explains the architecture and the features available in PerFedPat.

8.3.1 PerFedPat Overview

The two basic ideas of PerFedPat are (a) federated meta-search in information
sources and (b) better strategic support and a richer information-seeking environ-
ment for users by integrating multiple search tools and UIs.

There are four patent search systems (and two classification search systems)
supported now, but inclusion of more is easy and depends on the development of
appropriate wrappers. PerFedPat not only searches multiple datasets in parallel,
but it also offers more sophisticated services such as removing duplicates, merging
and re-ranking the results [45]. There are also additional features like filtering or
grouping and sorting the results according to existing features or patent metadata
(e.g. per patent resource, per year, IPC, inventors, etc). Using the grouping function,
a searcher can very quickly get an overview of the full set of results returned from
the different federated patent systems. The basic objective is to improve the accuracy
and relevance of individual searches as well as reduce the amount of time required
to search the multiple resources which are available. For some tasks, for example,
prior art patent search, these are key objectives.

Although PerFedPat relies on existing patent search systems to execute the core
retrieval task, from an architectural point of view, PerFedPat is innovative using
the federated search approach and goes beyond the state of the art in patent search
systems in terms of scale, heterogeneity as well as extensibility as it is based on
a service-oriented, message-centric architecture able to integrate data sources into
new, more useful ways. From that perspective the PerFedPat system is the first open
architecture data aggregator for patent information, and its contribution is to show
that the sum of the utilities provided by each patent resource and search tool could
be really bigger than the single utilities and many possibilities lie in an integrated
approach for patent data delivery and intelligent processing and presentation.

The resource and the tools that a developer of a patent search solution will
decide to integrate into a patent search system or that the searcher will decide to
use do not only have to do with existing IR/NLP technologies or the integrated
tools respectively, but they have to do more with the primary target group of a
patent search application or the context in which a patent search is conducted
and the professional searcher’s behaviour. Furthermore, it is also very important
to understand a search process and how exactly a specific tool can attain a specific
objective of this process and therefore increase its efficiency. We will discuss this
idea further in Sect. 4 when we present the IPC suggestion tool integrated in
PerFedPat.
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8.3.2 PerFedPat Architecture

PerFedPat follows the client-server component-based architecture. The server pro-
vides a large part of the core functionality such as the meta-search facility, user
authorisation, a knowledge base (repository) about previously retrieved documents
as well as wrappers that connect to external services. The system architecture
makes extensive separation of components to keep interdependencies to a minimum
and make the system more stable and pluggable. Within the backend individual
processes operating as ‘software agents’ handle specific parts of the functionality.
Software agents are autonomous software components that communicate with their
peers, by exchanging messages in an agent communication language [46]. The
directory is a special agent that keeps a list of agents and the services they provide.
Upon start, each agent registers with the directory and announces the services it
provides.

In PerFedPat we have implemented wrapper agents for the Espacenet, Google
Patents, Patentscope and MAREC patent resources. There are two different types of
wrappers. When interfaces (APIs) exist (e.g. in the case of MAREC in PerFedPat),
in which full control and access are possible, then it is very easy to write a wrapper
which sends a query or other requests and receives back information from the fully
controlled search system, usually in XML or other structural format (e.g. JSON). In
case of Web-based systems which are completely external to PerFedPat (e.g. Google
Patents, Patentscope), an analysis of the search result Web page is required and is
programmed in the wrapper and conducted in the backend. Usually this is facilitated
by Web page analysis tools using the XPath language, a query language for selecting
nodes from an HTML/XML document. Also, multiple sections (‘pages’) from
search results can be obtained; by default PerFedPat retrieves 100–200 results from
each patent resource.

The desktop client, like the backend, is separated into multiple independent
components/agents called ‘tools’ (Fig. 8.2). A tool comprises a set of logically
connected functionalities. Each tool has one or more tool views, interactive display
components that can be placed somewhere on the desktop/workbench. A configura-
tion of available tools and the specific layout of their tool views on the desktop is
called a perspective. Users can modify existing predefined perspectives as well as
create their own custom perspectives and load them later when needed.

8.3.2.1 Core Tools and Their Extension

The PerFedPat desktop client already has many built-in tools and functionalities
inherited directly from ezDL. We extended the functionality of some of the existing
tools and we also added new tools specifically designed and implemented to address
the needs of patent search. We will briefly describe these tools in this section, and in
the next one we will describe more analytically how the tools can be used together
to support a search process during an information-seeking episode.
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Fig. 8.2 PerFedPat workbench overview with some core and patent search tools open. The search
tools in area E are discussed in Sect. 3.3.2

The query tool offers a variety of query forms for different purposes. In
PerFedPat we extended this tool to address the need for more advanced fielded
search which is necessary in patent search. Each patent resource from the four
available supports a different set of fields in the fielded search it implements locally.
Fields that are supported from all or from most of the patent federated resources
are implemented in the advanced search view in PerFedPat (coloured circle area
A in Fig. 8.2). The queries that users enter are expressed in a grammar specific to
PerFedPat that is flexible and allows simple free text queries like ‘term1 term2’ as
well as more complex ones like ‘term1 AND (term2 NEAR/2 term3)’. Wildcards
and phrases are also supported by the internal query tool. Fields can be combined,
so more complex queries can be constructed. A query is internally represented in a
tree structure, and before it is transmitted to the patent resource wrappers, the query
is translated into the languages selected by the searcher in the query translation tool.
Obviously in each wrapper, the query which is received in the internal tree structure
is transformed to the form that each patent resource is able to process. Note that
each patent resource is marked with a number of symbols (area B in Fig. 8.2) which
show to the user which capabilities of the internal query structure are supported in
the remote patent resource. When full support is not available, queries are partially
translated in a way to include the capabilities which are supported. To be able to
validate this process more easily, we have also implemented in PerFedPat a URL
logger tool which shows the final query which is transmitted for execution to the
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remote patent resource. In this way the federated search process becomes more
transparent for the end users and the designers of an application.

Other ‘standard’ tools include:

• The library choice for selecting information sources.
• The query history which lists past queries for reuse and allows grouping by date

and filtering.
• The tray tool can be used to temporarily collect relevant documents within a

search session.
• The results tool which shows the merged and re-ranked results returned from the

patent resources. Results can be grouped, sorted, filtered and exported (C).
• The details view tool (D) shows additional details on individual documents,

such as thumbnails or short summaries where available, or additional metadata
not included in the surrogate that is shown in the result list. A detail link can
be provided to retrieve the full text of a patent document if available. Since
patents can be very long documents, we have extended this tool to provide quick
reference links to parts of the patent (e.g. claims, description, citations, etc). Also
we build some shortcuts to link the classification codes of a patent shown in the
details or results view directly to online services presenting the classification
hierarchy.

8.3.3 Integration of Patent Search Tools in PerFedPat

Despite the tremendous success of IR technologies in the domain of Web search,
there is significant scepticism from professional searchers and a very conservative
attitude towards adopting search methods, tools and technologies beyond the ones
which dominate their domain [3]. A typical example is patent search where
professional search experts typically use the Boolean search syntax and complex
intellectual classification schemes [47]. However, despite the overall scepticism,
search technologies are being used increasingly in the workplace as a result of
the explosion of content becoming electronically available, and those who deal
with patents in their professional life are becoming more knowledgeable about
new search technologies and tools. Of course adopting new search tools that will
gradually change the landscape of patent search will be a long-term process. To
achieve this, careful consideration is needed when designing a patent search system
about the tools which will add functionality to ease the use of the core retrieval
system but with the least invasive way in changing the traditional approaches of
Boolean search.

In that context, it is important to understand a search process and how a
specific tool can attain a specific objective of this process and therefore increase
its efficiency. For example, Lupu and Hanbury in a recent review of patent
retrieval [2] present a typical prior art search use case, analysed in terms of
different sub-processes and performed by a patent examiner (pp. 15) to model and
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better understand prior art search. The IPC selection tool which we present next
was designed and integrated in PerFedPat to support the specific sub-process of
identifying relevant IPC codes in a typical prior art search.

In the rest of this section, based on the context provided by the discussion
above and leaving aside the core patent resources, we discuss tools that have been
integrated into PerFedPat to experiment and to set the ground for improving patent
search in PerFedPat.

8.3.3.1 The IPC Suggestion Tool

The IPC suggestion tool aims, given a query, to select a number of IPC codes, at
different levels of the classification hierarchy if requested, which include patents
related to this query. The algorithm and the method which we used to implement
this tool are based on DIR techniques for collection selection which we extended
for patent search and are discussed in Sect. 4. The essence of the method is that
it identifies relevant IPC codes not by searching the textual description of IPC
classes, groups, subgroups, etc., but by using an indirect method. First it retrieves
patents, and then by using the IPC codes of the retrieved patents builds a probability
estimation of the relevance of the allocated IPC codes to the query.

8.3.3.2 The Cluster Explorer and the Entities Explorer Tools

The entities explorer tool supports an exploratory strategy for patent search that
exploits the metadata already available in patents in addition to the results of
clustering and entity mining that can be performed at query time. The results
(metadata, clusters and entities grouped in categories) can complement the ranked
lists of patents produced from the core patent search engine with information useful
for the user (e.g. providing a concise overview of the search results) which are
further exploited in a faceted and session-based interaction scheme that allows the
users to focus their searches gradually and to change between search methods as
their information need is better defined and their understanding of the technical
topic evolves in response to found information.

The cluster explorer tool provides patent searchers with an overview of the
results shown in the results tool. It aims at grouping the results into topics (called
clusters), with predictive names (labels), aiding the user to locate quickly one or
more documents (patents in our case) that otherwise would be difficult to find,
especially if they are low ranked. In our setting, we use a variation of the suffix tree
clustering (STC) algorithm that derives hierarchically organised labels and is able to
favour occurrences in a specific part of the result (e.g. in the title). The last feature
is very useful for clustering the results of a patent search, because the invention title
usually is the most descriptive part of a patent.

The algorithms and the methods of these two PerFedPat tools are reported in
detail in [48, 49]. Currently the two tools work with the MAREC patent resource
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only, but it is straightforward to support any patent resource in PerFedPat federation
as both tools attain their functionality fully at query time only (i.e. no preprocessing
or indexing is necessary). Also, the faceted search tool currently uses static metadata
which already exist in patent documents (e.g. inventor, countries of designation,
years, etc). However, in patent search more kinds of entities can be supported, e.g.
companies, countries, product types, drugs, diseases, etc. The tool can be configured
to extract dynamically these entities, but for the moment some language resources
are required which are not fully implemented in the current version.

8.3.3.3 The Machine Translation Tool

Cross-language information retrieval (CLIR) is a subfield of information retrieval
dealing with retrieving information written in a language different from the language
of the user’s query. For example, a user may give her query in English but wants to
retrieve relevant documents written in Chinese. Multilingual IR (MLIR) addresses
the problem of multilingual access to text databases and can be seen as an extension
of the general information retrieval (IR) problem corresponding to paraphrase.
It aims for retrieval of documents in several languages from a query. Machine
translation (MT) is an essential tool for CLIR and MLIR (if the translation quality
is high), and the challenge of accessing patent documents written in different
languages from all around the world using MT methods has been addressed in
several evaluation campaigns (e.g. [50, 51]).

The machine translation tool uses third-party MT services (in the current version
Microsoft Bing & Patentscope) in order to translate queries into different languages
so that some types of CLIR and MLIR can be conducted in PerFedPat. Depending on
the languages which are selected from the information searcher to use from the MT
tool and the availability of patent documents in different languages in PerFePat’s
federated patent resources, the MT tool in PerFedPat can assist the information
searcher to retrieve documents in several languages from a query posed in one
language.

8.4 Source Selection for IPC Suggestion

In Sect. 1 we argued that federated search and DIR can be driven either by some
degree of inevitability (e.g. because of the deep Web issue and the difficulty or
impossibility for a centralised solution) or driven by an effort to engineer a more
efficient or sometimes effective solution. The previous section presented PerFedPat,
an example of the former. The work which is presented in this section is an example
of the latter. This work views the automated selection of International Patent
Classification (IPC) codes as a collection selection problem—from the domain of
DIR—that can be addressed using existing DIR methods which we extend and
adapt for the patent domain [45]. Generally, many research efforts in the patent
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search domain exploit the intellectually assigned classifications codes that are used
to categorise patents and to facilitate patent searches, e.g. [52, 53]. In our method,
manually assigned IPC codes of patent documents are used to cluster, distribute and
index patents through hundreds or thousands of sub-collections.

In that sense, this work is not a typical federated search study, since the focus is
more on logically clustering the patents rather than accessing physically distributed
resources. The method creates clusters of patents based on their manually assigned
IPC codes and uses different collection selection algorithms to select relevant
IPCs during a patent search. As we mentioned before, this task supports the very
fundamental step in professional patent search (sub-process 3 in the use case
presented by Lupu and Hanbury [2]) which is ‘defining a text query, potentially
by Boolean operators and specific field filters’. In prior art search probably the most
important filter is based on the IPC (CPC now) classification [54, 55]. Selecting
the most promising/relevant IPC codes depends of course on the prior knowledge
of a patent professional in the technical area under examination, but sometimes the
area of a patent application may not be easily distinguishable or usually a patent
uses various technical concepts represented by multiple IPC codes. To identify all
these relevant IPC codes could be a difficult, error-prone and time-consuming task,
especially for a not very knowledgeable patent professional in some technical area.

The IPC suggestion tool, which is part of PerFedPat, supports this step auto-
matically; that is, given a query, it selects the most appropriate IPC codes and
passes these IPC codes to PerFedPat’s query tool. The query tool then initiates a
filtered search based on the automatically selected IPC codes. This process naturally
resembles the way patent professionals conduct various types of patent search.
Also, the patent searcher may use the tool not only to produce IPC-based filters
automatically to narrow his/her search but also as a classification search which
will be used as a starting point to identify and closely examine technical concepts
as these are expressed in IPC codes and to which a patent could be related and
should be examined more vigorously. This ground understanding step also helps in
formulating better queries, usually including noun phrases from the IPC codes that
were deemed relevant. Of course, the patent searcher has the flexibility to add the
IPC codes that they assume relevant in addition to the ones suggested by the IPC
suggestion tool.

It should be pointed out that the work which is presented in this section (choice)
is different from the typical federated search (inevitability) which was presented
in Sect. 3, because it assumes a cooperative environment. We can assume such
environment because unlike environments with an unknown and rapidly growing
number of not directly accessible documents (i.e. the deep Web), the patent domain
contains a certain number of documents and a single point of authority can be
established as it happens in a cooperative environment. Assuming a cooperative
environment, query-based sampling and source representation before the source
selection are not necessary.
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8.4.1 Topically Organised Patents

All patents have manually assigned IPC codes [56]. IPC is an internationally
accepted standard taxonomy for classifying, sorting, organising, disseminating
and searching patents. It is officially administered by the World Intellectual
Property Organization (WIPO). The IPC provides a hierarchical system of language-
independent symbols for the classification of patents according to the different
areas of technology to which they pertain. IPC has currently about 71,000 nodes
which are organised into a five-level hierarchical system which is also extended in
greater levels of granularity. IPC codes are assigned to patent documents manually
by technical specialists.

Patents can be classified by a number of different classification schemes.
European Classification (ECLA) and US Patent Classification System (USPTO)
were the most known classification schemes used by EPO and USPTO, respectively.
Recently, EPO and USPTO signed a joint agreement to develop a common
classification scheme known as Cooperative Patent Classification (CPC).

Although IPC codes are used to topically cluster patents into sub-collections,
something which is a prominent prerequisite for DIR, there are some important
differences which motivated us to re-examine and adapt existing DIR techniques
as they are applied in patent search and in the context provided by our specific
objectives. First, IPC codes are assigned by humans in a very detailed and
purposeful assignment process, something which is very different by the creation of
sub-collections using automated clustering algorithms or the naive division method
by chronological or source order, a division method which has been extensively used
in past DIR research.

Before we describe the IPC suggestion method further, we should explain more
the IPC scheme, which determines how DIR sub-collections can be artificially
created. Top-level IPC codes consist of eight sections which are human neces-
sities, performing operations, chemistry, textiles, fixed constructions, mechanical
engineering, physics and electricity. A section is divided into classes, which are
subdivided into subclasses. Each subclass is divided into main groups, which are
further subdivided into subgroups. In total, the current IPC has 8 sections, 129
classes, 632 subclasses, 7530 main groups and approximately 64,000 subgroups.

Table 8.1 shows a part of IPC. Section symbols use uppercase letters A through
H. A class symbol consists of a section symbol followed by two-digit numbers like
F01, F02, etc. A subclass symbol is a class symbol followed by an uppercase letter
like F01B. A main group symbol consists of a subclass symbol followed by one- to
three-digit numbers, then a slash and finally by 00 such as F01B7/00. A subgroup
symbol replaces the last 00 in a main group symbol with two-digit numbers except
for 00 such as F01B7/02. Each IPC node is attached with a noun phrase description
that specifies some technical fields relevant to that IPC code. Note that a subgroup
may have more refined subgroups (i.e. defining sixth, seventh level, etc., at the IPC
hierarchy). Hierarchies amongst subgroups (i.e. below level 5) are indicated not by
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Table 8.1 An example of a section from the IPC classification

Division Title IPC code

Section Mechanical engineering : : : F
Class Machines or engines in general F01
Subclass Machines or engines with two or more pistons F01B
Main group Reciprocating within same cylinder or : : : F01B7/00
Subgroup .with oppositely reciprocating pistons F01B7/02
Subgroup ..acting on the same main shaft F01B7/04

subgroup symbols but by the number of dot symbols preceding the node descriptions
as shown in Table 8.1.

The taxonomy and set of classes, subclasses, groups, etc., are dynamic. The
patent office tries to keep membership to groups down to a maximum by making
new subgroups, etc. However, new patent applications/inventions require the con-
tinual update of the IPC taxonomy. Since 2010, the IPC is revised once a year.
Sometimes existing subclasses/groups/subgroups are subdivided into new subsets.
Sometimes a set of subclasses of a class are merged together and then subdivided
again in a different manner. After new subclasses are formed, the patents involved
may or may not be assigned to the new subclasses. The changes are related to a
small part of the IPC hierarchy and therefore they are negligible.

8.4.2 Multilayer Collection Selection

We exploit the aforementioned hierarchical organisation of the IPC classification
scheme and the ideas of (a) considering topically organised patents using IPC as
a DIR system where IPC codes act as sub-collection identifiers with parent-child
relations and (b) creating a more effective and reliable source selection method
relying upon a weighted sum of multiple estimates, to propose a new multilayer
collection selection method [57]. The new method in addition to utilising the topical
relevance of collections/IPCs9 at a particular level of interest exploits the topical
relevance of their ancestors in the IPC hierarchy and aggregates those multiple
estimations of relevance to a single estimation. For example, assume that the patent
expert is interested in distilling the most relevant IPC codes at level 5 (i.e. subgroup
level) for a prior art search. The proposed methodology will combine the relevance
of collections at level 5 (the level of interest) and level 4 (the ancestral level to the
one of interest) in order to produce the final ranking. The method can be applied

9In this section we utilize the terms ‘collection’ and ‘IPC code’ interchangeably, that is, when
we are referring to a collection, we are implicitly referring to all the patents that have the same
IPC code for a particular level (i.e. all the patents that belong to the F01 class are part of the F01
collection at level 2).
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in any domain where documents are organised in accordance to a hierarchical
classification scheme, but we focus here on the patent domain. In addition, because
the method will exploit for each level the relevance of its ancestor level, recursively
and overall the multilayer method exploits multiple levels of hierarchy (e.g. levels
4, 3, 2, 1 in the aforementioned example). However, exploitation of a higher level of
the hierarchy (e.g. level 1 in IPC) where very few classes exist may not be useful.

The algorithm functions in the following manner. Given a query document P and
a target level i (e.g. if retrieval of IPCs at the level of subgroup is required, then the
target level is 5), the algorithm produces a ranking Ri.P/ D ˚

Ci
1; Ci

2; : : : ; Ci
m

�
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scores using a source selection algorithm and this can be formulated as
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Then given that the level of interest of the patent expert is i, the second phase of
the algorithm is to re-rank Ri(P) by utilising the other estimates that will be produced
from the ancestor level. So the second produced ranking is at the ancestral level
i�1 of the hierarchical classification scheme. We symbolise this ranking as Ri�1(P),
where Ci�1

j is the collection retrieved at rank j at level i�1 and n is the total number
of collections retrieved at this level. The ranking and relevance scores are produced
by applying any standard source selection algorithm at collections of this level and
can be formulated as
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In the experiments described in this chapter, we use the CORI collection selection
algorithm as it has been shown to be more effective than other collection selection
algorithms, such as BordaFuse, ReciRank and ReDEE that were tested before [45].

After the calculation of Ri�1(P), a re-ranking process is launched at the target
level Ri(P), by calculating a weighted sum, which includes the Ri(P) ranking, but
it also takes into account the Ri�1(P) ranking in the following manner: for each
collection Ci�1

j in Ri�1(P) previously retrieved, we locate its children in the IPC

hierarchy—Children
�
Ci�1

j

�
D

n
Ci

j; where Ci
j is a child of Ci�1

j

o
. Subsequently,

to re-rank Ri(P) we locate the Children
�

Ci�1
j

�
for all Ci�1

j that belong to Ri�1(P),

and we re-rank Ri(P) by recalculating the final relevance score of collection Ci
j at

the level of interest i as follows:
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where Score(Ci
j) is the relevance score of collection Ci

j using any source selection

algorithm (as previously mentioned, CORI in this case), Score
�

Ci�1
j

�
is the

relevance score of collection Ci�1
j (the ancestral collection of Ci

j) using CORI and a
is the mixturing parameter that determines the weight that each level will have.

Overall the multilayer method uses a normalisation procedure and re-ranking
process which takes into account the source selection results produced from DIR
methods at several classification levels. Of course, as it has been already mentioned,
the proposed method can recursively utilise multiple evidence in all levels of the
classification scheme, but in this chapter, we focus on level 3 (subclass), level
4 (main group) and level 5 (subgroup). From a conceptual point of view, score
aggregations like the one used in our method have been proposed for other forms of
structured retrieval (e.g. XML retrieval and hierarchical classification). Structured
documents containing multiple metadata can be considered as having an internal
hierarchical structure.

The multilayer method has been experimentally tested in a series of ad hoc
experiments [45, 58] but also evaluated in user-based experiments. The results of
the method as a classification search mechanism were very encouraging but also the
retrieval results when using the selected IPC as the target resources for DIR search
were very effective as the DIR approach we proposed was very competitive in the
patentability/novelty search task organised in CLEF-IP 2012 and CLEF-IP 2013
labs. Also it is important to mention the DIR methods we applied performed similar
to or better than our centralised approaches.

The multilayer method has been evaluated in a user-centred study of a Web-
based system that can automatically suggest classification codes with the aim to
assist patent examiners on the task of patent classification [59]. The aim of the study
was twofold. Firstly, we obtained a better understanding of the search tactics patent
examiners apply when they do classification search. Secondly, we examined the
effect of searching at different levels of the classification scheme on classification
search performance. The results have shown that the multilayer classification search
method performed better when compared to a widely used classification search
system (classification search provided from the EPO’s Espacenet service).

8.5 Discussion

The difficulty of patent search becomes apparent if we consider the volume of the
technical (potentially multilingual) literature which is increasing rapidly and the
different resources that need to searched. But the difficulty is not just the volume of
information which possibly comes in different languages. If we consider more the
cognitive approaches to search and the various aspects of the different patent search
tasks (task types and task stage, level of knowledge, complexity and difficulty of the
task, experience and ability of the searcher), the aim of designing a patent search
system which can provide strategic support becomes a demanding challenge.
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For example, a search for prior art should retrieve the best available prior art
documents and must be done efficiently. Another task is when confronting the
claims of a patent. Criteria for selecting which patent resources to search and which
technical tools to use must be established. But it is not only where and what to
search. A strategy for carrying out the search has to be also established [60]. But not
only that, we know from different studies of search models that the search strategy,
the current state of searcher’s knowledge, the process and the criteria should be
continuously revised and updated [61–63]. For example, we know that users at the
beginning of their tasks are less likely to start their initial queries by introducing all
the search terms [64].

Users working within this complex information workplace should have at their
disposal multiple patent resources but also search tools and interfaces. This view
expresses a user-centred and highly interactive approach to information seeking.
Federated search, for a number of reasons, can become an important technology
to develop information-seeking environments that can satisfy the aforementioned
requirements. The first is because it is the technological solution which can
combine effectively results from multiple patent resources which are developed
independent from each other. This feature is very important in the highly dynamic
world of innovation and patents where increased coverage and searching many
datasets—sometimes in different languages—can be crucial. The cost of crawling
and maintaining (updating) a centralised index of all patents produced worldwide
is tremendous. This cost can be substantially reduced using federated patent search
systems.

Another important benefit when using a federated patent search system is that it
can provide a single point of search and a unified interface for searching multiple
resources. The same query can be formulated once and be submitted to many patent
resources. Using federated search multiple results will be retrieved, duplicates can
be removed, efficient merging into a single list can be produced, and grouping and
filtering of the single merged list are possible. This can be a tremendous time saver
for general-purpose prior art search, whether the end user is a patent examiner,
patent attorney, commercial patent searcher, patent liaison or IP librarian.

The second important idea that federated search can deliver is that it provides the
general framework to integrate multiple search tools. In that way different search
tools can become part of a federated search system exploiting several existing
IR and natural language processing (NLP) technologies (e.g. query expansion,
cluster/classification recommendation, faceted search, query translation). Most
definitions found in the information retrieval (IR) literature converge to use the
term ‘integrated’ to define search systems that simultaneously access a number
of different data sources providing a single point of search. This view is much
more compatible with a more ‘traditional’ federated search view that focuses on
the simultaneous search of multiple resources. In this article we wish to expand the
design space of federated search by adding the term ‘integrated’ to define federated
search system designs where not only multiple remote resources are searched in
parallel, but also multiple search tools can be used (in parallel or in a pipeline).



236 M. Salampasis

PerFedPat is based on the above principles and has this key objective: integrate
a set of patent resources and search tools to enable effective support of the different
stages and users during the patent search process. The tools in PerFedPat are used in
isolation to support basic actions (e.g. the query tool to construct a query). However,
they can be used also ‘in parallel’ or in a pipeline with other tools to support higher-
level search activities such as tactics, stratagems and strategies [65].

It is also important to point out that the open architecture of PerFedPat allows
its straightforward extension and customisation. New patent resources can be added
if they support an API but also if they are searchable over the Web. There are also
abstract wrappers for Solr-based search systems and tools exist for resources without
proper APIs. It is not only possible, but it is straightforward to integrate new services
or extend the functionality of existing tools. Adding a new service is usually done
by implementing a new agent.

8.6 Conclusions

Professional search in the patent domain usually needs both an analytical and an
exploratory type of search which is characterised more often, in comparison to
fact finding and question answering Web search, by recall-oriented information
needs and sometimes by uncertainty and evolution or change of the information
need. Additionally, the complexity of the tasks which need to be performed by
professional searchers, which usually include not only retrieval but also information
analysis and monitoring tasks, requires association, pipelining and possibly inte-
gration of information as well as synchronisation and coordination of multiple and
potentially concurrent search views produced from different datasets, search tools
and UIs.

Federated search can become an important technology for developing patent
search systems that could potentially play a useful role in some particular settings,
when crawling and maintenance of a centralised index are not possible. But this
is not the only benefit that federated search can deliver for patent searching. The
PerFedPat system was also inspired by the design idea of providing an integrated
patent search system which will be able to provide a rich information-seeking
experience for different types of patent searches, potentially exploiting different
search tools.

We believe that PerFedPat demonstrates the feasibility and the applicability
of federated search for patent searching. PerFedPat provides core services and
operations for being able to search multiple online patent resources (currently
Espacenet, Google patents, Patentscope and the MAREC collection), thus providing
a unified single-point access to multiple patent sources while hiding complexity
from the end user. More patent resources can easily be made part of the PerFedPat
federation to increase coverage or for reasons of specialised searches that some
patent systems may provide.
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Federated search represents a new approach for patent retrieval. The effective-
ness, efficiency and usability of this approach need to be systematically evaluated
before we can draw a final conclusion. We have recently conducted a survey
amongst patent professionals that indicated a promising degree of acceptance of
the usefulness of a federated search system like PerFedPat. Of course further
experimental work and use of federated search systems are needed to determine
the extent to which such systems actually match professional searchers’ needs and
requirements and also the needs of the people that work in R&D and they need to
do prior art search and easily search multiple datasets and patent resources.

In conclusion we feel that federated search and systems such as PerFedPat
represent a promising approach for patent retrieval and therefore could play an
important role in the development of next-generation patent search systems.
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Chapter 9
The Portability of Three Types of Text Mining
Techniques into the Patent Text Genre

Linda Andersson, Allan Hanbury, and Andreas Rauber

Abstract In this book chapter, we examined the portability of several different
well-known text mining techniques on patent text. We test the techniques by
addressing three different relation extraction applications: acronym extraction,
hyponymy extraction and factoid entity relation extraction. These applications
require different types of natural language processing tools, from simple regular
expression matching (acronym extraction), to part of speech and phrase chunking
(hyponymy extraction), to a full-blown dependency parser (factoid extraction).
With the relation extraction applications presented in this chapter, we want to
elucidate the requirements needed of general natural language processing tools
when deployed on patent text for a specific extraction task. On the other hand, we
also present language technology methods which are already portable to the patent
genre with no or only moderate adaptations to the text genre.

9.1 Introduction

Patent text mining involves all kinds of applications from general terminology
extraction [47] to text summarisation [15]. The common denominator is that they
all aim to support the intellectual property (IP) community in searching and
analysing patent data. Several researchers have made attempts to deploy text mining
techniques on patent documents, but most of the previous text mining experiments
have been limited in terms of domain expertise and adaptability [40]. Furthermore,
in view of the potential end tools, i.e. being support tools for patent experts,
regardless of their technical fields of specialisation [29], the text mining techniques
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and also the natural language processing (NLP) tools used in the pipeline are
required to handle all types of vocabularies as well as syntactic constructions and
not just for a specific subdomain as in [12, 16, 26, 67].

Tseng et al. [67] presented several text mining feasibility studies on a smaller
set of patent documents (92 documents). They deployed several well-known text
mining techniques such as text segmentation, summary extraction, feature selection,
term association, cluster generation, topic identification and information mapping.
Their aim was to show that it is possible to use text mining techniques to assist in the
patent analysis process. They kept the usage of the NLP tools to a minimum in these
experiments, since they wanted to avoid a decrease in performance of the final text
mining applications caused by errors introduced by the NLP. On the other hand, by
avoiding the usage of NLP tools, they also limited themselves in terms of outcome
and possible applications. Contrary to Tseng et al., we focus on the portability of text
mining techniques to the patent domain by investigating each technique’s portability
level and not just the outcome of the experiments themselves. We will reuse already
well-known text mining techniques with minimal or no relabelling effort at all, in
order to avoid extensive retraining.

The objective of this chapter is to demonstrate the issues involved in the porta-
bility to the patent domain of the following relation extraction (RE) applications:

• General pattern matching algorithms commonly used in computational linguis-
tics to extract acronyms (RE 1)

• General lexico-syntactic pattern (LSP) algorithms used to extract hyponymy
relationships (RE 2) [31]

• Factoid extraction using dependency parsing information, where the task is to
identify the subject of a quantity (i.e. the aim here is to create RDF triples
consisting of the main semantic subject governing the temperature quantity, e.g.
medium washing solution in the sentence: The medium washing solution boils at
90 ıC) (RE 3)

We show that RE 1 and 2 techniques are already portable into the patent domain
with very few, if any, adaptations. Meanwhile, for RE 3 significantly more work is
required in terms of establishing in-domain training data for NLP tools. The gap
between source (news text) and target data (patent text) for NLP tools needs to be
recognised by the industry and the research communities, as well as the funding
agencies. The only large domain-specific corpus that exists today, openly available
to researchers, is the GENIA corpus of biomedical text. The patent genre, however,
covers many more technology domains, for which no in-domain training data is
freely available.

The rest of this chapter is organised as follows: In Sect. 9.2 we give an extensive
introduction into the disciplines associated with NLP as well as into the patent
text mining field. In Sect. 9.3 we present our three case studies and in Sect. 9.4 we
discuss results and future work.
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9.2 Theoretical Background

Text mining, like data mining or knowledge discovery, is a process to discover
implicit knowledge and potentially useful patterns from large text collection.
Many text mining applications require some kind of language technologies. The
generic term language technology (LT) is associated with computational linguistics,
corpus linguistics, speech technologies and NLP. For all of these disciplines and
subdisciplines, it is important to use a well-thought through pre-processing pipeline,
composed of cleaning and normalising text.

9.2.1 Pre-processing

This section is a brief summary, which only describes the central issues regarding
the normalisation process of raw text. The first two main transformation steps
are token detection and sentence detection [28]. There are two types of tokens:
one addresses the rhetorical structure of a sentence (e.g. commas, punctuations,
digits, etc.), while the other token type (words and letter strings) will undergo
linguistic analysis. Removal of digit sequences, commas and punctuations needs
to be carefully thought through, since it can have consequences on succeeding
processes. For instance, commas can function as clause binders (e.g. While she was
cooking, her friend arrived) and numeration binders (e.g. : : :mixtures of saturated
hydrocarbon compounds, alicyclic hydrocarbons, aromatic hydrocarbons, etc.).
Commas can also be part of a chemical compound (e.g. 2,5-bis-amidinophenyl
furan-bis-0-4-fluorophenyl). For the RE 2 and RE 3 applications, the commas
related to numeration or part of a chemical compound are important to detect in
order to extract the sought information.

Also the definition of what a token should be (i.e. a non-empty string of
characters) will affect the performance of the text mining application [2]. For
example, digits can be considered as non-tokens along with ASCII characters like
punctuation marks or spaces. Digits removal on patent text will destroy chemical
compounds (e.g. furan-bis-0-4-fluorophenyl) which describe a significant type of
substance.

Another tokenisation problem is the question whether the hyphen should qualify
as a token separator or not. This is particularly important for automatic query
formulation of patent topics [49]. Considering the hyphen as a token separator yields
higher recall values while not using it as a separator gives higher precision values in
ad hoc IR [2].

On the sentence level, there are also other non-letter characters which need
special attention. The sentence detector will be affected by the decisions made
during the tokenisation process design. For example, before sentence detection, the
ambiguity of the period sign needs to be resolved.
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Fig. 9.1 Sentence example 2, period ambiguity [41, p. 2]

Figure 9.1 shows a case where the period markers have several functions: digits
marker for decimals ($21.75), abbreviation markers (L.F.) and full stop. The period
marker in Co. functions both as an abbreviation marker and as a sentence boundary
marker (a full stop). There are several techniques which can be used to disambiguate
period markers, for example, a pre-defined lexicon or a set of regular expressions
[28, 41]. Both methods have their limitations: the lexicon is limited by its coverage,
while regular expression tends to over-generate positive instances. In order to
correctly detect periods marking sentence boundaries, we first need to distinguish
them from periods, which are part of abbreviations. This is important in the patent
discourse, since abbreviations—especially acronyms—are frequently occurring in
patent text. As a consequence, acronym detection is not only a target application
in itself, but it will also in the future contribute to the performance of the sentence
detection process for patent text.

To summarise, the pre-processing of the raw text conducted before applying
linguistic analyses is essential and the decisions made during pre-process will have
consequences for the succeeding analyses.

9.2.2 Training Data for Natural Language Processing

Until the mid-1980s, most of the NLP tools produced were based upon handwritten
rules. With increasingly available computer power and storage, a shift was made
to using machine learning (ML) algorithms. However, it was the introduction of
digitised annotated text corpora that made the shift possible, since the discriminative
learning algorithms (the majority of NLP tools) require linguistic annotation (i.e.
labelled data) to learn the sought-after entities [9]. Even methods associated with
the recent trend in deep learning , which learn from unlabelled data [22], still require
ground truth (i.e. labelled data) for evaluation.

There are several important corpus projects which made the shift from rule-based
methods to ML methods possible for the English language: the Brown Corpus,1 the
Lancaster-Oslo/Bergen Corpus (LOB),2 the British National Corpus (BNC)3 and
the Penn Treebank (PTB) [51]. The PTB corpus is manually corrected and contains
part of speech (PoS) tags, phrase chunks and constituent information (see Fig. 9.2).

1http://clu.uni.no/icame/brown/bcm.html.
2http://clu.uni.no/icame/lob/lob-dir.html.
3http://www.natcorp.ox.ac.uk/.

http://clu.uni.no/icame/brown/bcm.html
http://clu.uni.no/icame/lob/lob-dir.html
http://www.natcorp.ox.ac.uk/
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Fig. 9.2 Constituent information

It is a corpus without noise (e.g. OCR errors, abbreviation variations) specifically
designed to train NLP tools [51].

For domain-specific text, there exist only two large domain-specific corpora with
linguistic annotation (accessible to the research community): the GENIA4 corpus
and the PennBioIE5 collection. GENIA consists of 2000 MEDLINE abstracts
sampled from MeSH terms human, blood cells and transcription factor. The corpus
has approximately 400,000 words and more than 100,000 annotations for biological
terms. The PennBioIE was created as a resource to train ML algorithms for
information extraction (IE) and IR [46]. The corpus consists of 1414 MEDLINE
abstracts on cancer and on the CYP protein family. It contains approximately
327,000 annotated words.

The increase in computer processing power made it possible in the 1990s to
shift from rule-based methods to discriminative learning algorithms. Now another
shift is emerging, going from supervised learning to unsupervised learning (learning
from unlabelled data) with the deep learning methods. However, the bottleneck for
domain-specific text genres still remains: we still need a ground truth in order to
evaluate our new methods regardless of how we learned the sought entities.

9.2.3 Part of Speech (PoS)-Tagger, Chunker and Parser

We will discuss three core types of NLP tools—PoS-tagger, phrase chunker and
parser—required in order to perform many text mining applications, e.g. named
entity recognition (NER), natural language understanding (NLU), relation extrac-
tion (RE) and question and answering (Q&A).

A PoS-tagger assigns each word in a sentence a PoS-tag [35]. No internal
relations between the words of a sentence are given.

4http://www.geniaproject.org/.
5https://catalog.ldc.upenn.edu/LDC2008T21.

http://www.geniaproject.org/
https://catalog.ldc.upenn.edu/LDC2008T21
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Fig. 9.3 General dependency parser

Fig. 9.4 A sentence represented in a phrase structure grammar tree

Chunking involves two main functions: (1) identification of proper chunks
(phrases) and (2) assigning grammatical classes to identified chunks such as verb
phrase (VP), noun phrase (NP), preposition phrase (PP), adjective phrase (JJ), etc.
Phrases could be nested within larger phrases and are part of larger units such as
sub-clauses, clauses and sentences. In order to train a chunker, phrase boundaries of
a sentence need to be given (see Fig. 9.2).

The best performing supervised method for chunking achieves recall of 95.62 %,
precision at 95.93 % and an F1 score at 95.77 % on the Computational Language
Learning (CoNLL) 2000 data set6 [45]. In [22] a method using neural network
was proposed for learning chunks from mostly unlabelled data but recognising
sentence structures. The method achieved an F1 score at 90.33 % on the CoNLL
2000 data set.

Parsers assign different types of syntactic relations between words in a sentence
[17, 35] as seen in Figs. 9.3 and 9.4. Parsers require a PoS-tagger, phrase chunker
and constituent information. There are three main syntactic ideas used in parsing:
dependency, grammatical syntactic relation and subcategorisation.

A dependency parser refers to the notion that the syntactic structure of a sentence
consists of binary asymmetrical relations between the words of the sentence
[17, 24, 35]. Here, valency is a central concept referring to semantic predicate
argument structures for different classes of words, especially verbs, but also nouns
and adjectives. The idea is that a sentence is organised as a whole, whose constituent
elements are words, and between the words and their neighbours, the arcs show

6The CoNLL 2000 data set consists of a subset of the PTB http://www.cnts.ua.ac.be/conll2000/
chunking/.

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
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dependency connections, where the main verb plays the most important role (see
Fig. 9.3). Furthermore, there are generally two basic constraints: a single-head
constraint (i.e. each node has at most one head) and a no-cycles constraint, which
implies a rooted tree structure.

A syntactic parser also makes use of constituent information, but the focus is
word pair relationships. For instance, the link grammar (LG) parser is a syntactic
parser of English based on the original theory of English syntax [32, 64]. The first
formalisation of constituent information was Chomsky’s phrase structure grammar,
which is how sentences are represented in the PTB corpus. In NLP a context-free
grammar (CFG) is the formalism used to model with constituent information [35].
CFG algorithms form the basis of all approaches to create a hierarchical phrase
structure [17] (see Fig. 9.4).

The subcategorisation group consists of parsers that are lexicon driven, such as
the combinatory categorial grammar (CCG) parser.

The common denominator for NLP tools (for English) is that they are trained on
the same part of the PTB corpus and test on another part of the corpus.

9.2.4 The Limitation of NLP in Out-of-Domain Text

Research involving IR and NLP shows that shallow linguistic methods such as stop
word removal or stemming (see Chap. 2) yield significant improvements in terms
of recall and precision, while deeper linguistic analyses such as parsing or word
sense disambiguation could even decrease performance [14, 25]. Only in-domain-
specific IR, in bioinformatics, have deeper linguistic methods improved the retrieval
performance [14].

Behind the usage of an NLP application is the assumption that the source data
(on which the application was trained) and target data (on which it is applied) have
the same feature distribution [69]. Too many unseen events, i.e. words or syntactic
constructions only occurring in the target data, will decrease the performance of an
NLP application drastically. Therefore, extensive work is generally associated with
the domain adaptation of NLP applications, since it involves manual annotation of
training data and creation of a ground truth for evaluation. The GENIA7 project is
an example of the amount of resources required in order to adapt NLP applications
to a specific text genre such as biomedical and medical [21, 39]. As reported in
Sect. 9.2.3, all data-driven PoS-taggers, chunkers and parsers need to be trained
on manual (e.g. PTB) or semi-manual (e.g. BNC) established corpora. The limited
access to linguistically annotated domain-specific corpora and the assumption that
robust and broad coverage NLP applications should be able to parse any type of
text without a decrease in performance have contributed to the off-the-shelf usage
of NLP applications in any type of text genre [18]. Obviously, the idea of using

7http://www.nactem.ac.uk/genia/.

http://www.nactem.ac.uk/genia/
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robust and broad coverage NLP has great software engineering advantages, but it
is reasonable to assume that a domain-adapted NLP application could yield better
results than a domain-independent application [11, 70].

Blitzer [9] concluded that the lack of appropriate training data for a PoS-
tagger reduces the overall performance of a text mining application. He examined
how a PoS-tagger in a pipelined process for a parser decreased and increased in
performance due to differences in source and target data. For a discriminative linear
classifier, the domain differences between the source and target data can more than
double the error rate [9]. Tsuruoka et al. also demonstrated that PoS-tagger accuracy
fluctuated depending upon the composition of the training data [68]. Their aim was
to build a robust PoS-tagger for the biomedical text domain; therefore, they first
trained and tested the tagger on different parts of existing corpora. For instance,
when a PoS-tagger only trained on Wall Street Journal (WSJ) data encounters out-
of-domain data, the drop in tagging accuracy is from 97.05 to 85.19 %. As the
PoS-tagger is an important stage in an NLP pipeline, an increase in error rate here
will have severe consequences for succeeding applications using this information.
This should be put in the perspective that discriminative PoS-tagger and phrase
chunker have been seen as state-of-the-art applications for more than a decade.
Furthermore, at the Computational Language Learning (CoNLL) 2007 track8 for
domain adaptation of parsers, the results showed that a smaller amount of training
data matching the test data, with just an additionally small amount of non-matching
training data, outperformed parsers trained on a larger amount of training data not
matching the test data [54].

For new IE tasks, we are confronted with plenty of label data and linguistic
observations from the source domains, which do not always correspond with the
linguistic characteristics of the target domains. Several studies have addressed
this issue and tried to close the gap between existing training data and domain-
specific training data. In order to cope with the lack of labelled data for target
domains, algorithms such as Structural Correspondence Learning (SCL) [9] have
been introduced. Structural learning methods have been successfully applied in
domain adaptations of both PoS-taggers and parsers. The objective of the SCL is to
match common features (consisting of token triples) between source and target data,
which can map general English words to domain-specific words [9]. For instance,
the word signal in the phrase normal signal transduction in the GENIA corpus is
a noun, but according to the WSJ,9 the word will be classified as an adjective. By
modelling its features, the word signal is revealed to behave similar to words such
as investment and buyout. Consequently, the SCL algorithm reclassifies it as a noun.

A similar idea was later exploited by Collobert et al. [22], where a deep learning
method is combined with backpropagation in order to add new instances and correct
instances in the look-up tables based upon the semantic characteristic of a token,
which was observed in the training data consisting of a large amount of unlabelled

8CoNLL 2007 data set is composed of WSJ and part of the GENIA corpus.
9Part of the PTB corpus.
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data. Collobert et al. [22] deployed the deep learning method for four different NLP
applications: PoS-tagging, chunking, NER and semantic role labelling (SRL). They
reported performance matching the existing state-of-the-art techniques for PoS-
tagging (accuracy of 97.29 % benchmark 97.24 %) and for chunking (F1 score at
94.34 % benchmark at 94.29 %).

All of these emerging techniques look promising, since we can, in the learning
step, reduce the need of labelled data. To our knowledge, there exists no ground truth
or labelled training data covering all the technical fields of the patent text genre.

9.2.5 Reuse of NLP Tools in Patents

Due to the lack of suitable training data for NLP tools targeting the entire patent
text genre, the patent text mining studies reported in the literature have used off-the-
shelf NLP tools, conducted minor rule-based modifications targeting specific errors
[3] or just experimented on a subset of the patent text genre [5, 26, 44, 74].

We can divide the NLP tools usage in patent text mining studies into two main
categories: in order to improve the tool itself [3, 16] or in order to improve an end
application [4, 5, 25, 26, 53, 77]. Many end-application experiments, from prior art
search to terminology extraction, have tried to address different patent text mining
problems by applying linguistic knowledge and using broad-coverage NLP tools
[5, 40, 50, 53, 77]. In the end-application studies, NLP tools have either been given
a moderate domain adaption [4] or just been used as off-the-shelf modules [50].
Mahdabi et al. [50] used the Stanford PoS-tagger as an off-the-shelf module in
order to extract noun phrases (NPs) for query expansion and query generation. In
their experiments, only linguistically correct sequences were accepted as input to
the query formulation module, which made the method less flexible and several NPs
were overlooked due to PoS-tagger errors. Andersson et al. [4] modified the Stanford
PoS-tagger and the NP base chunker [60], correcting observed errors associated with
noun phrases boundaries, in order to harvest hyponymy relations in medical, patent
and mathematical text.

Studies conducted within the PatExpert project have methodically investigated
the decrease in performance when using general NLP applications on patent text
[11–13, 16, 26]. Burga [16] reported a parser trained on a part of the CoNLL
2007 test collection significantly dropped in performance when tested on patent text
compared to when tested on another part of the CoNLL 2007 test collection. Many
of the errors made by the parser were caused by errors made by the PoS-tagger used.
This observation was also reported in Sect. 9.2.4: if PoS-taggers are not adapted to
the text domain, all succeeding linguistic analyses (chunking and parsing) will be
affected by the errors made by the PoS-tagger [9].

In the PHASAR patent retrieval system [43], a domain-adapted parser (AEGIR)
is integrated into the pipeline. The AEGIR parser is an extension of CFG formalism,
adapted to parse robust for IR. The PHASAR system has integrated linguistic
notation into the search mechanism itself, uses linguistic information and displays
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linguistic knowledge to the searcher. The searchers are allowed to specify different
semi-syntactic relations (e.g. [aspirin SUBJ cause]), between search terms. .

D’hondt [25] used dependency triples in different patent classification experi-
ments (see also Chap. 11 in this volume). As a single feature the dependency triples
did not improve over unigrams (baseline), due to the complexity found in NPs and
the limitations of the parser. The phrase sparseness and complexity of NP found in
patent text give a plausible explanation as to why the performance decreases when
only the dependency triples in the CLEF-IP 2011 prior art search task were used.

To conclude, even if projects or studies started off using NLP applications as
off-the-shelf-modules, in the end most researchers concluded that to some extent
domain adaptation is required.

9.2.6 The Characteristics of the Patent Genre

We briefly discuss the bibliographic data that is assigned to each patent document
and how this information can be used in text mining applications, in order to enrich
the end applications. However, most of this section will be an in-depth discussion on
the linguistic characteristic of the patent text in terms of rhetorical structure, syntax
and terminology usage, since the aim of this section is to give the reader an insight
to the challenges text mining techniques are confronted with when used on patent
text.

All patents contain a rich set of metadata such as citation (citing prior art),
assignee (person or company), inventor (persons), address, language information,
filing country, patent family information and classification schemas. Details about
all of these were discussed at large in the first chapter of this volume.

The classification schemas disambiguate otherwise ambiguous words and
phrases, as well as concepts when deployed in different technical fields [1, 37].
For example, the technical term ferromagnetic tag can be part of an emergency
braking system for trains or a part of an alarm device to prevent shoplifting [1,
p. 15]. The classification schema makes it possible for the searcher to select and
distinguish which deployment of ferromagnetic tag she is interested in.

9.2.6.1 The Linguistic Characteristics of Patent Text

Rhetorically, a patent document consists of four main sections (i.e. title, abstract,
description and claim), each with a different communication function. The title and
abstract are generally kept short in order to give a brief summary. The description is
the target section when assessing the patentability of a new patent, while the claim
section assists in determining a prior art patent relevancy as a reference [34].

As text genre, the patent domain is associated with several interesting charac-
teristics: huge differences in length, strictly formalised document structure (both
semantic and syntactic), extensive use of acronyms and domain terminology. The
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use of neologisms is also very high compared to other genres [57]. Furthermore,
previous studies have observed that patent writers intentionally try to use entirely
different word combinations, not only synonyms but also paraphrasing [7, 30].
Patent writers tend to become their own lexicographer and thereby increase the level
of unseen events. In the patent genre, both standard and non-standard acronyms are
used [30]. Also the diachronic nature of the patent terms (e.g., LP record, water
closet) could be regarded as instances of obsolescence and therefore considered
sparse events [30]. The diachronic aspect of the patent text genre contributes not
only to sparse events but also to changes in terminology, where one term refers to a
technical concept during a certain time period and thereafter switches to represent
another.

In addition to the above-mentioned issues, the morphological variation increases
in patents due to the high number of chemical formulae and morphological variation
of foreign spelling, e.g. sulfur–sulphur and aluminum–aluminium. However, the
morphological variation differs within the patent collection itself, as Oostdijk et
al. [56] observed by measuring the Hapax legomena.10 Consequently, in technical
text associated with chemical substances such as biomedicine, chemistry, etc.,
chemical compounds need to be identified and normalised. Meanwhile, text from the
computer and telecommunication industries requires that acronyms and algorithms
(mathematical formulae and program code) are identified and normalised. The
mentioned problems can be categorised as unseen event issues, which NLP tools
in general have difficulties handling and the common method to sort out unseen
event issues is to increase the lexical coverage.

On the other hand, in a comparative linguistic study, Verberne et al. [73] observed
that in terms of individual token coverage, there is no significant difference between
general English vocabulary and the English vocabulary used in patent claims. In
order to get a general idea of the lexical coverage, Verberne et al. compared the
COBUILD corpus with a patent corpus of 10,000 documents using the CLEX
lexicon (160,568 English terms) as the lexicon. For COBUILD, the token coverage
of CLEX was 92 % and for the patent corpus the token coverage was 95.9 %.
Verberne et al. concluded that since there is no significant difference between
general English and the English used in patent claims on single token coverage,
the (new) technical terminology is more likely introduced on multi-word level in
terms of complex NPs. Complex NPs contribute to more syntactically complex
sentence construction. In [72], patent claim sentences were compared with sentences
of general English language resources. They observed that the sentences of patent
claims, even when allowing semicolon and colon as sentence boundary identifier,
were generally longer than the sentences found in the BNC. The patent sentences
had a median of 22 tokens and an average length of 53 tokens and BNC had an
average length of 20 tokens; this finding was based upon a sample set consisting
of 581k sentences. Also Ferraro [26] reported it is not unusual with sentences in
the claim section to consist of 250 tokens. In [77] the average token length per

10Token occurring only once in an entire collection.
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sentence was compared for several corpora: BNC had 19.7; Brown, 21.3; WSJ, 22.4;
Wikipedia (English part), 24.3; and a patent collection, 32.4. The patent collection
was composed of 561,676 English patents filed at the European Patent Office (EPO)
between 1998 and 2008.

The diachronic nature [30] and the vocabulary diversity existing within part of
the patent text genre [56] make the genre text more difficult to sample out data
in order to establish a training set for text mining applications. What works for one
field and time period perhaps does not work for others. Moreover, given the richness
and diversity found in the patent genre, where general words are reused in different
constellations within different technical fields in order to represent entirely different
concepts, simply increasing the lexical coverage will not solve the problem, since
token coverage is only part of the problem, for instance, cell battery versus body
cell or bus slot card versus double vehicle bus: all of these terms consist of common
words, but in each specific combination, an entirely different meaning is given, due
to the position and relation each word takes in the different NPs.

To summarise, the patent text documents and sentences are more lengthy
compared to general news text, but on average there is no significant difference
in the vocabulary usage on the word level except for technical fields using chemical
formulae, DNA sequence, etc. [56]. The linguistic theoretical explanation for these
reported observations would be that technical terms (in English) are multi-word
units (MWU) and represented syntactically as complex NPs [16, 57, 73].

9.2.6.2 Linguistic Characteristics of Domain Terminology and Its Effect
on General NLP Applications

The majority of entities in technical English dictionaries consist of terms with
more than one word [23, 36, 61]. The technical multi-word phrases consist of NPs
containing common adjectives, nouns and occasionally prepositions (e.g. ‘of’). One
of the major mechanisms of word formation is the morphological composite, which
allows the formation of compound nouns out of two nouns (e.g. floppy disk, air
flow) [48]. In technical text, the noun compounding strategy is often deployed in
order to expand the working vocabulary, without the need of formulating an entirely
new word for a new concept [23, 57, 61]. The noun compounds could either be an
orthographical unit (e.g. bookcase) combined with hyphenation (e.g. mother-in-law)
or a multi-word unit (MWU) (e.g. central processing unit). NPs in patent text are,
to a larger extent, composed of MWUs, which make them both longer and more
complex than NPs found in a general text genre [16, 77]. Ziering [77] observed
that MWUs were predominantly representing technical concepts in a large patent
collection (500K), and when including MWU patterns for a terminology extraction
application, higher precision was achieved compared to patterns based upon single
tokens.

However, the noun compounding strategy causes not only unseen events on
the morphological level (words) with new orthographical units, it also generates
a diversity of syntactic structures among NPs (e.g. verb participles being used as
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nouns and adjectives, e.g. the film coating and coated film), which is problematic
for NLP tools [16, 25]. Despite the presence of noun compounds, many NLP
applications have chosen to overlook them due to their complexity and flexible
nature [6], even though it is well known that any text mining application that
extracts knowledge from technical text cannot ignore the complexity of NPs [8]. The
complexity of the NPs increases in patent text due to the high density of technical
terminology in terms of MWUs. Among the MWUs we sometimes refer to multi-
word terms (MWTs), which are phrases characterised by a very strong bond between
the words that form them [3, 16, 25]. A MWT generally represents a domain-specific
concept, e.g. bus slot card, while MWUs include more general phrases such as the
green house and the method of coating. Ultimately, it is the MWTs that are most
important and most efforts go in the direction of identifying such terms as opposed
to the more generic MWUs [23]. For IR and IE applications, MWTs should in fact
be considered terms in the traditional sense (i.e. denoting a specific meaning).

To identify the core technical concept in a complex NP is tricky, since the head
noun could consist of a noun compound as in backup compiler disk. (Should it be
[[backup compiler] disk] or [backup [compiler disk]] or [backup compiler disk]?)
Burga et al. [16] reported long chains of nouns in patent text, which make the
process of head noun identification complex and recursive. This is cumbersome,
especially for a dependency parser, since it needs to define what words in an NP
have modifying functions and what noun should be considered the NP’s head noun.
Noun compound identification has been targeted as a research area for text mining
application, since the beginning of the 1980s [23, 36]. However, most of the noun
compound identification methods make use of corpus statistic information to create
lexicons, which limited their portability to other text genres [8, 57], since each
domain-specific text genre has its own usage of a concept [23].

Building blocks of the domain concepts are often common general English
words, which are present in almost any text genre, but it is the specific combination
that defines the domain-specific concept [23]. Take the concept bus in bus slot card
and in double vehicle bus: it has a pathway container function and a transporting
function—transporting data or humans between point X and point Y. As seen in
Fig. 9.5, the Stanford CoreNLP11 generates incorrect readings for all three technical
terms bus slot card, blood cell count and infrared radiation drying. The main noun
compound in bus slot card is slot card and bus is a so-called left expansion (L-Exp)
modifier [61]. Instead, the tool identifies two equivalent noun compounds, i.e. bus
card and slot card. For the term blood cell count, we have a reverse situation: the
word count is a right expansion (R-Exp) to the noun compound blood cell. Again,
the CoreNLP tool generates two different noun compounds: blood count and blood
cell. The issue is related to the grammar the tool is based upon, i.e. a dependency
grammar. According to the dependency grammar, a phrase can only have a single
word as a main head (as mentioned in Sect. 9.2.3); therefore when a technical term
consists of a noun compound nested in a larger NP, the linguistic analysis fails to
recognise the correct internal relations between words.

11http://nlp.stanford.edu:8080/corenlp/.

http://nlp.stanford.edu:8080/corenlp/
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Fig. 9.5 Example of CoreNLP output

For the last example, infrared radiation drying, the term radiation is an additional
pre-modifier referred to as lexical insertion (Ins) to the concept drying. The reading
will be [[infrared] [radiation] drying], since infrared and radiation are independent
L-Exp pre-modifiers to drying. However, the entire NP collapsed due to an incorrect
assigned PoS-tag to drying. The tagger assigned the wrong tag to the head noun,
i.e. drying should be NN (noun) not VBG (present participle). Both Andersson [3]
and Burga [16] observed this type of error many times in patent text. Participles
were especially erroneously identified when acting as adjectives or nouns. A
linguistic theoretical explanation to the issue with participles is the fact that most
productive word formation of English is affixation, i.e. adding prefixes or suffixes
to a root lexeme. The suffixes ‘-ing’ and ‘-ed’ are especially problematic for NLP
applications because when they are added to verbs, the new formed word can be
a noun, adjective or still a verb. In PTB the participles are generally observed as
part of a verb phrase. Consequently, an NP-driven text genre such as the patent text
genre, with its high density of technical terminology, will be harmed the most when
using general NLP tools in the pipeline [4, 13, 25].

To conclude, MWT identification is important for patent text mining applications
compared to other applications on general text. Only part of the information is given
by words’ single semantic meaning in a complex NP; the other part is given by the
internal relationship between a complex NP’s elements [8]. To only extract unigrams
for patent IE applications would not capture the entire concept [77]. Thus, complex
NPs cannot be overlooked by NLP tools in technical text genres such as patent text
since they represent the informative content of a domain-specific text.
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9.3 Relation Extraction Applications in the Patent Domain

We have so far given an introduction to text normalisation, different NLP techniques
as well as linguistic characteristics of patent text. In this section we present three
different RE tasks conducted on patent text. Each case study requires different types
of NLP techniques in the pre-processing steps. For each case study, we give a brief
summary to the state-of-the-art technologies.

We use the classification schema ISI-OST-INPI12 to visualise the fluctuation in
distribution of possible entities in different technical fields within the patent text
genre. As mentioned in Sect. 9.2.6.1, the patent text genre is heterogeneous and is
composed of a smaller set of subtext genres, which have their own unique linguistic
characteristic. As a consequence, the method used for extraction will be unevenly
distributed throughout the collection, since the portability depends upon the special
linguistic characteristic of the text belonging to a specific technical field. The
ISI-OST-INPI classification schema was presented as an alternative classification
schema for the IPC, where the 630 subclasses were compressed into 35 scientific
related categories [62].

9.3.1 First Case Study: Acronym RE

Acronyms are a result of a highly productive type of term variation, which triggers
the need for an acronym dictionary in order to establish association between
acronyms and their expanded forms [55]. The major challenges for acronym
detection and extraction are term variation (e.g. spelling, morphological, syntactic)
and semantic variation (e.g. polysemy, synonymy and homonymy). In technical text,
acronyms are for the most part representing a technical concept of some kind, e.g.
flavin adenine dinucleotide (FAD).

Acronyms are a type of abbreviation made up of the initial letter or letters of other
words [76]. Key differences between acronyms and other abbreviations include the
lack of symbols such as apostrophe (e.g. can’t) and period (e.g. etc.). Unlike other
abbreviations, acronyms are usually introduced in text with its extended form as a
MWT, when used for the first time in a discourse. However, acronyms are more
ambiguous compared to their corresponding extended forms. Yeats [76] reported
that for the acronym CIA the Acronym Finder Web site has 27 definitions ranging
from Central Intelligence Agency to chemiluminescence immunoassay. In the local
context, the non-uniqueness does not pose a problem, but ambiguity is likely to
be an issue if acronyms are extracted from a large heterogeneous collection, such as

12A classification scheme established by Fraunhofer ISI, Observatoire des Science et Techniques
(OST) and the French patent office. http://www.wipo.int/export/sites/www/ipstats/en/statistics/
patents/pdf/wipo_ipc_technology.pdf.

http://www.wipo.int/export/sites/www/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf
http://www.wipo.int/export/sites/www/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf
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patent data. Acronyms that consist of a smaller set of characters are more ambiguous
and language dependent, unless they refer to very well-known entities such as UN
or USA.

For language technology, abbreviation detection is especially useful for text
mining applications [27, 58, 76]. Exploiting acronyms in IR systems increases
the number of relevant documents retrieved [75]. However, manually maintaining
terminology resources and updating them by integrating neologisms is very dif-
ficult, if not based on a continuously systematic extraction of terminology from
literature [58].

There exist several methods to address acronym detection and extraction, which
can be categorised into two main groups: heuristic and/or rule based [63, 75] and ML
based [19]. The first category uses predefined heuristic rules. One well-known rule-
based method explores the parenthetical hypotheses, i.e. parenthetical expressions
appearing in a text are identified (e.g. ROM (read-only memory) or alternatively
read-only memory (ROM)) [63]. The initial experiment with this algorithm reported
99 % precision and 84 % recall on the Medstract test collection [59]. The second
category obtains such rules by applying ML techniques. Chang [19] applied
logistic regression to calculate the likelihood of expanded forms from acronym
candidates. In order to learn the possible candidates, they enumerated all possible
expanded forms for each candidate with the longest common sequence (LCS) [33]
formalisation. Their method achieved 80 % precision and 83 % in recall on the
Medstract test collection. In one patent study [40], it was observed that when
conducting semantic annotation on patent data, acronyms were especially difficult
to handle. They therefore deployed the parenthetical extraction method combined
with ML in order to extract acronyms from the collection and thereby improve the
end application.

9.3.1.1 The Experiment for Acronym RE

The research questions we would like to examine with this experiment are:

• To what extent can we use a well-known method to correctly identify acronyms
in patent text?

• Are the detected acronyms a type of technical term or not?
• Can technical term assessments and correctness of acronym extractions be

conducted by using crowdsourcing techniques in the future or do the tasks require
domain expertise?

• Is it possible to use the ISO-OST-IPNI schema to disambiguate an extracted
acronym in order to get only one extended form per acronym and science field?

• Does the distribution pattern of extraction differ between scientific fields accord-
ing to ISO-OST-IPNI?

In this experiment we reused the method introduced by Schwartz and Hearst [63],
which is based upon detection of parentheses. We combined the parentheses method
with the LCS used in [33]. We modified LCS using a skipgram of one and a small
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stop word list consisting of the conjunction ‘and’ and patterns of digit sequences.
We chose not to remove prepositions since they could in fact be part of a technical
concept, e.g. out of band.

We created a Perl script using the Lingua::Sentence for sentence detection, which
is based on code by Koehn and Schroeder [42] for Europarl. We did not add any
modification (e.g. allowing sentence split on ‘:’ or ‘;’), since we wanted to reuse it as
an off-the-shelf module. The acronym extraction script was run on the English part
of the CLEF-IP 2011 test collection. We extracted 978,001 instances, only excluding
all acronyms composed of one letter since they frequently coincide with variables
or being part of a formula.

We divided the manual assessment into two main parts consisting of 1000 (�2)
and 5000 randomly sampled instances. For the two smaller sample sets, we asked
the assessors to evaluate if each extraction was correct according to the snippet
of 20 tokens presented along with the extracted short form of an acronym and
its extended form and if they consider the concept to be a domain-specific term.
Due to duplication in the sample set, the total number of the assessments does
not add up to the original sample set as seen in Table 9.1. The two smaller sets
were assessed by different groups of assessors: For the first sample set (779), we
compared assessments of two experts, a linguist and a domain expert (third year
student with major in biology). For the second sample set (903 instances), we used
a linguist and a non-expert. The aim of comparing different groups of assessors is
to examine if technical term assessments and correctness of acronym extractions
could be conducted by using crowdsourcing techniques in the future. In Table 9.1
we present the agreement between the two different assessment groups. For the
larger set (5000 instances), we only compared assessments of the linguist and the
non-expert and only for correctly detected and extracted acronyms (see Table 9.2).
To assess if an acronym was referring to a domain-specific term or not was found to
be too time-consuming and difficult.

For assessing the correctness of the extractions for both groups regardless of the
sample set, the disagreement quota is less than 1.5 % as seen in Tables 9.1 and 9.2.
For assessing if an acronym and its extended form are a technical term, the overall

Table 9.1 Assessment of acronym detection and technical terms for different sample sets

Total
Sample Assessor number of
sets Type of assessment comparison Agreement Disagreement extractions

Small Technical term Domain expert
vs. linguist

683 94
779

Number of correctly
identified acronyms

770 9

Technical term Non-expert vs.
linguist

795 108
903

Number of correctly
identified acronyms

896 7
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Table 9.2 Assessment of acronym detection for the large sample set between linguist and non-
expert

Assessment Linguist Non-expert

Number of correctly identified acronyms 4865 4396

Number of incorrectly identified acronyms 33 4

Disagreement 25

Agreement 4375

Table 9.3 Individual assessments

Type of assessment Domain expert Linguist Non expert

Number of technical terms 725 4303 834

Number of non-technical terms 45 421 51

Number of uncertainty: acronym also a technical term 9 174 18

% uncertainty level: acronym also a technical term (%) 5.8 8.6 5.6

Number of correctly identified acronyms 776 4865 899

Number of incorrectly identified acronyms 3 33 4

Accuracy (%) 99.6 99.3 99.6

disagreement quota was higher. The linguist and the domain expert disagreed on
12 % of the instances, while the linguist and the non-expert disagreed on 11.9 % of
the instances. Table 9.3 shows the assessment for each assessor independently of
each other.

As seen in Table 9.3, the acronym identification algorithm generates very few
false positive instances, and the accuracy quotas for all assessors are over 99 %,
similar to the result in [63] for the Medstract test collection. Even if the uncertainty
level for assessing if an acronym is a technical term or not is small regardless
of expertise and sample set, this task needs further investigation. We asked the
assessors what they found most problematic when it came to judging if an extracted
instance was referring to a technical concept or not. Chemical compounds and
medical terms were the easiest part to assess, while the technical terms related to
computer science were more difficult to assess such as FIFO (first in, first out)
and LC (line card). Also different measurements, such as angle of arrival (AoA),
a measurement for determining the direction of propagation of a radio-frequency
wave incident on an antenna array, were harder to recognise. The linguist used
Wikipedia in order to solve uncertainty for 166 instances, some of them being
very particular such as out of band and very large-scale integration. The most
difficult ones were those composed of common general terms such as roller compact
concrete.

So far we have demonstrated that it is possible to extract acronyms using a
well-known acronym detection technique on patent text without any modification.
Furthermore, the result shows that it is possible to use crowdsourcing for acronym
evaluation. Meanwhile, assessing if an acronym and its extended form refer to a
technical concept or not is a much more difficult task and requires more studies.
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Table 9.4 Top five acronyms having more than one extended form in a specific category

ISI-OST-INPI category Median Mean Variance Stddev Max

Pharmaceuticals 2 5:45 276:95 16:64 884

Biotechnology 2 4:87 142:36 11:93 432

Measurement 1 4:72 139:82 11:82 444

Telecommunications 1 4:44 113:56 10:66 234

Organic fine chemistry 1 4:25 197:04 14:04 774

Analysis of biological materials 1 4:13 87:25 9:34 343

Table 9.5 Acronym extraction distribution by group ISI-OST-INPI by percentage of the total
amount of extracted acronyms

Number of category
ISI-OST-INPI categories % of each category by the %

Pharmaceuticals 8 1

Measurement, biotechnology 7 2

Computer technology, telecommunications,
analysis of biological materials

5 3

Digital communication, organic fine chemistry,
audio-visual technology

4 3

Medical technology, Basic materials chemistry,
other special machines, chemical engineering,
optics, macromolecular chemistry polymers

4 3

Surface technology coating, textile-and-paper
machines, control, electrical machinery
apparatus energy, materials metallurgy,
transport, semiconductors,
engines–pumps–turbines, basic communication
processes, environmental technology, food
chemistry

2 11

IT methods for management, mechanical
elements, machine tools, other consumer
goods, civil engineering, handling, furniture
games, thermal processes and apparatus

1 8

Microstructural and nanotechnology 0.2 1

To answer the question, ‘is it possible to use the ISO-OST-IPNI schema to
disambiguate each extracted acronym in order to get only one extended form per
acronym and per scientific field?’, we computed the average number of extended
forms for each acronym in a specific scientific field. Table 9.4 shows the top five
categories with the highest average for acronyms. It is clear that using the ISI-OST-
INPI schema in order to disambiguate acronyms as well as establishing a browsable
index list of acronyms belonging to a specific scientific field is doable for most
acronyms, since the median is between 1 and 2 even for the top five scientific fields
with the highest average. For a very small number of acronyms, as seen in column
Max, an extra context filter or a more granulated schema needs to be used.

Table 9.5 answers the last question regarding distribution pattern between
different scientific fields. Most of the acronym extractions belong only to one
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category, where the pharmaceuticals has the highest amount (8 % of the total amount
978,001).

To conclude, the simple method presented in this case study is fully portable
to the patent genre, and when combined with a classification schema, it can
easily be transferred into an end application such as a search aid. Moreover,
crowdsourcing techniques can be used to assess the correctness of the extracted
acronyms. Meanwhile, assessing if the extractions represent technical terms is more
problematic.

9.3.2 Second Case Study: Hyponymy RE

A hyponymy relation is essentially an is–a relationship, where a concept (the
hyponym) can be identified to be an instance of or a kind of another concept
(the hypernym). Different techniques for hyponymy relation extraction have been
explored—many of them depending on pre-encoded knowledge such as domain
ontologies and machine-readable dictionaries [20]. In order to avoid the need of pre-
existing domain knowledge and remain independent of the sublanguage, one option
is to use generic LSPs (lexico-syntactic patterns) for hyponymy relation extraction.
Hearst [31] proposed a method to extract hyponymy relations based on six LSPs
(see Table 9.6).

There are several issues related to extracting relations from raw texts using an
LSP method. For instance, the LSP examples 2, 5 and 6 in Table 9.6 are not clear
cases of hyponymy lexical relations, as in ‘domestic pets such as cats and dogs’,
since in LSP 2 Germany, France and Italy are members of the European community
and in LSP 6 France, England and Spain are countries in Europe, i.e. a part of the
geographic continent called Europe. But with a wider semantic definition of the
hyponym property, we can include both ‘part of’ and ‘member of’ in the definition:

Table 9.6 Sentence examples to each LSP

Example sentences LSP

1 : : :work such author as Herrick, Goldsmith and
Shakespeare suchNPasNP; � .orjand/NP

2 . . . trail behind other European community members, such
as Germany, France and Italy

3 Bruises, wounds, broken bones or other injuries NP; NP � ;orotherNP

4 Temples, treasuries and other important civic buildings NP; NP � ;andotherNP

5 All common-law countries, including Canada and England NP;includingNP; � orjandNP

6 : : : most European countries, especially France, England
and Spain

NP;especiallyNP; � orjandNP
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. . . an expression A is a hyponym of an expression B iff the meaning of B is part of the
meaning of A and A is subordinated of B. In addition to the meaning of B, the meaning
of A must contain further specifications, rendering the meaning of A, the hyponym, more
specific than the meaning of B. If A is a hyponym of B, B is called a hypernym of A. [48,
p. 83]

Hearst used LSP 1 to extract candidate relations from Grolier’s American
Academic Encyclopaedia (8,6M words); 7067 sentences were extracted and 152
relations fit the restriction, i.e. to contain an unmodified noun (or with just one
modifier). The assessment was conducted by looking up if the relation was found
in WordNet. For 226 unique words, 180 words existed in the WordNet hierarchy
and 61 out of 106 relations already existed in the WordNet. A common approach to
evaluate hyponymy relation extractions is to use an existing ontology as a ground
truth [20]. When no such resources exist within the text genre of interest, a ground
truth needs be created.

Lefever et al. [47] created a hypernym relation ground truth for technical text
using linguists. This type of labelling tasks is both time-consuming and costly,
feasible only for small samples. The annotators were asked to manually iden-
tify domain-specific terms, NEs, synonymy and hyponymy relationships between
identified terms and NEs. The annotation task requires both linguistic knowledge
and some domain-specific knowledge. The data consisted of technical reports
from a dredging company and news articles from the financial domain. The
text data were enriched with PoS-tagging and lemmas produced by the LeTs
Pre-processing Toolkit [71]. For the hyponymy lexical relation extractions, three
different techniques were used: (1) Hearst’s LSPs, (2) a distribution model using
context cluster and (3) a morphosyntactic model. The morphosyntactic model is
based on the head-modifier principle (i.e. low molecular weight chitin/chitosan is
a type of chitin/chitosan). Lefever [47] concluded that the LSP method and the
morphosyntactic approaches achieved good performance on the technical text and
could therefore be portable to other text domain and user-specific text data.

Nanba [52] used an LSP method for hyponymy relation extractions on patent
data, with the aim to be used as an automatic query expansion method for prior
art search. For English, 3,898,000 instances were extracted from USPTO patent
documents. For Japanese, 7,031,149 instances were identified in Japanese patent
documents. The alignment between the language pair was conducted via citation
analysis; 2635 pairs of English–Japanese hyponymy relations were manually
evaluated. The best method obtained recall of 79.4 % and precision of 77.5 %.

9.3.2.1 The Experiment for Hyponymy RE

The research questions we would like to examine in this experiment are:

• To what extent can we use a well-known method to correctly identify hyponymy
relations in patent text?

• Is there a difference in the number of possible extractions between a balanced
corpus (Brown) and a domain-specific corpus (patent)?
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• Is it possible to use the ISO-OST-IPNI schema to link hypernyms and hyponyms
to a specific scientific field?

• Does the distribution pattern of extraction differ between scientific fields accord-
ing to ISO-OST-IPNI?

This case study is divided into two experiments: a pre-study (study 1) and a larger
study (study 2). In the pre-study we only reuse LSP 1 in order to examine if there
is a difference between genres, i.e. news text and patent text. In the larger study,
we use all six LSPs in order to create a real-world application and address the
ontology population, for in neither of the studies was it feasible to use WordNet
as an evaluation tool, since WordNet is mostly composed of unmodified nouns or
nouns with a single modifier.

For the pre-study, the patent collection consisted of the CLEF-IP 2010 topic
documents. In order to compare the effectiveness of using LSP for hyponymy
relation extraction, we used the same LSP method to extract instances from the
Brown collection. The NPs were extracted based upon a pre-established list of
acceptable syntactic patterns of NPs. For the patent sample set, we had to include
all topics instead of only randomly sampling out 500, since there were too few
sentences matching LSP 1. All documents were submitted to the Stanford PoS-
tagger [66]. For the pre-study experiment, we used the PoS-tagger as an off-the-shelf
module and let the tagger make the sentence splitting decision. The manual
evaluation consisted of examining the extracted instances and reference sentences
from each collection. The assessment task was based upon the relation and the
completeness of the extracted instances (Table 9.7).

The Brown Corpus, which was only a quarter of the patent sample, generated
more sentences matching the LSP 1. Sixteen instances of the Brown Corpus and
three of the patent corpus could not be assessed due to anaphoric reference (e.g.
sentence 1 in Table 9.8).

There were several language phenomena causing the extractions to be incom-
plete, such as anaphoric and ellipsis function. In sentence 2 (Table 9.8), the
hypernym consists of an embedded NP with prepositional ‘of’ construction mod-
ifying or complementing the preceding head noun. If we include the entire NP, i.e.
the treatment of diseases, the hyponym and hypernym extraction would become
incorrect since cancer, autoimmune diseases and infectious diseases are diseases
and not the treatment. In order to make a correct extraction regarding NPs with
‘of’ construction, the head noun needs to be identified. In example 4, we have a

Table 9.7 Result of
hyponym and hypernym
extraction

Patent collection Brown corpus

No. of files 2005 500

Number of sentences 55 79

Relation suggestion 201 265

Correct instances 90 156

Not found instances 5 28

Ambiguous instances 3 16
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Table 9.8 Example sentences for hypernym and hyponym extraction

Collection No. Sentence

Brown 1 With power plants such as these, vertical take-off and landing combat
aircraft could be built

Patent 2 The novel conjugate molecules are provided for the manufacture of a
medicament for gene therapy, apoptosis or for the treatment of diseases
such as cancer, autoimmune diseases or infectious diseases

Brown 3 In rare cases, diseases such as encephalitis or a pituitary tumour may
damage the appestat permanently, destroying nearly all sense of satiety

Patent 4 The guide components which form the channel are fastened on the end side
by recognised connecting methods such as ultrasonic welding, laser
welding or adhesive

deverbal13 noun as the head word in the NP ultrasonic welding, which the PoS-
tagger misassigns as VBN instead of NN. Consequently, the entire extraction was
incomplete. The incorrect tagging of deverbal nouns is a typical error made by a
general PoS-tagger, as we mentioned in Sect. 9.2.5.

For the second study, with the aim to build a real-world application composed
of ontologies for each scientific field in the ISO-OST-IPNI schema, we deployed
eight correction rules [3] in order to extract more complete relations from the patent
collection. To add more flexibility to the extraction method, we also integrated the
NP base chunker [60] in the NLP pipeline. The second experiment is a summary of a
larger experiment conducted on different text genres, presented elsewhere [4]. Here
we only report on the experiment conducted on the patent text. The entire CLEF-
IP 2011 test collection was used in this experiment and three pipeline extraction
methods were deployed:

1. No rules (NoRules) used to modify the NLP pipeline analysis.
2. Three rules (SimpleRules) deployed, which addressed observed errors among

sentence matching the LSP patterns. The rules address different types of
conjunction and commas issues. Rule (1) NP [cat and dogs] changed to two NPs
[cat] and [dog], (2) [cat or dogs] changed two NPs [cat] or [dog], (3) numerous
listing with commas.

3. Domain rules (DomainRules) are a combination of the simple rules above and
the rules presented in [3, 4] addressing noun boundary modifications.

Table 9.9 shows the number of extractions made by the methods.
For the manual evaluation only a small set was randomly sampled out: 100

instances modified by each method. Since we wanted to compare the methods on
the same set of sentences in order to evaluate the performance of the modifications,
especially the noun boundary modifications, we selected only sentences represented
in all methods.

13Deverbals are nouns that are derived from verbs or verb phrases.
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Table 9.9 Number of
instances extracted from each
method

Extraction methods Number of instances

Domain rules 92;702

Simple rules 135;550

No rules 135;946

Table 9.10 Correctly identified positive relations and NP boundaries in relation to sample and for
the most domain relation ‘A kind of’

DomainRules SimpleRules NoRules

Hyper ok Hypo ok Hyper ok Hypo ok Hyper ok Hypo ok

A kind of relation 82% 92% 79 % 90 % 76 % 76 %

All relations 79 % 91% 80% 90 % 77 % 90 %

The highest values per row and category (hyper/hypo) are in bold

We created an evaluation tool, which shows the original sentence and five
definitions of relations between hypernym and hyponym pair:

1. Hyponym is a kind of hypernym.
2. Hyponym is a part of hypernym.
3. Hyponym is a member of hypernym.
4. Hyponym is in another relation with hypernym.
5. Hyponym has no relation to hypernym.

Each method was evaluated by a trained linguist based upon the type of
relation and accuracy of completeness, i.e. correctly identified NP boundaries (see
Table 9.10).

Table 9.10 shows for each method the accuracy for the most dominant relation
a Kind Of and all relations. The preferred method for the a kind of is the
DomainRules method. For all kind of relations, the preferred method is the
DomainRules for hyponyms, while the SimpleRules is the preferred method for
hypernyms. All in all, when collapsing all methods, 7,785,144 unique extraction
hyponymy instances were made from the collection.

Table 9.11 examines the question regarding distribution extraction patterns
between different scientific fields. As seen there, most of the extracted instances
belong to only one category, the pharmaceuticals (i.e. 8 % of the total amount of
7,785,144 extraction instances). The distribution pattern is similar to the acronym
extraction, since they follow the main collection distribution, i.e. there is a larger
set of patents in pharmaceuticals than in microstructural and nanotechnology. For
the field of pharmaceuticals, we extracted 895,970 instances, which is enough for
further post-processing in order to clean the set. Meanwhile only 5179 extracted
instances were made in the field of microstructural and nanotechnology, which will
limit further post-processing to clean the set from noise.

To answer the question, ‘is it possible to use the ISO-OST-IPNI schema to link
hypernym and hyponyms to a specific scientific field?’, we examined the average
occurrence of a hyponymy pair for each scientific field. A hypernym can have
different hyponyms depending upon the scientific context in which it occurs, e.g.
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Table 9.11 Hyponymy pair extraction distribution by group ISI-OST-INPI by percentage of the
total amount of extracted pair

ISI-OST-INPI categories % of each category Number of category by the %

Pharmaceuticals 12 1

Biotechnology 10 2

Organic fine chemistry, measurement 7 2

Computer technology, basic materials
chemistry, analysis of biological
materials, medical technology

5 4

Macromolecular chemistry polymers,
chemical engineering

4 2

Telecommunications, other special
machines, audio-visual technology

3 3

Optics, surface technology coating,
electrical machinery apparatus energy,
textile-and-paper machines, digital
communication, materials metallurgy,
semiconductors, food chemistry, control

2 9

IT methods for management, handling,
other consumer goods, environmental
technology, transport, civil engineering,
mechanical elements, machine tools,
engines–pumps–turbines, furniture
games, basic communication processes

1 11

Thermal processes and apparatus 0.5 1

Microstructural and nanotechnology 0.1 1

URI element is a hypernym to host name domain in the digital communication
and computer technology domains, but in telecommunication it can also refer to a
standard key telephone. A hyponymy pair occurs on average in 2.2 scientific fields.
The median was 2, variance 1.79 and stddev 1.34, which indicate that a large set of
pairs only occur in one field, but a smaller set will occur in several, the maximum
being 34 scientific fields.

Since a hypernym, as well as a hyponym, can have different children (hyponyms)
or parents (hypernyms) depending on scientific fields, we also wanted to detect the
number of hyponyms for each hypernym within a scientific field, as well as for the
entire collection. We computed the average occurrence for a hyponym governed
by the same hypernym (Table 9.12). We thereafter computed the average number
of hypernyms that govern a specific hyponym. Note, we only present the top five
categories.

On average each hyponym is governed by one hypernym regardless if within a
specific category or for the entire collection. Meanwhile each hypernym governs on
average four to five hyponyms.

To summarise, we confirm that the LSP patterns method for hyponymy relation
extraction is portable into the patent domain as seen in studies 1 and 2. However,
in order to capture the entire concept of a relation domain, adaptation of NLP tools
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Table 9.12 Top five categories and entire collection of multiple hypernym and hyponym pairs

ISI-OST-INPI Median Mean Variance Stddev Max

Hypernyms for each hyponym per ISI-OST-INPI

Biotechnology 1 1:4 0:37 0:61 7

Medical technology 1 1:4 0:33 0:58 6

Computer technology 1 1:4 0:36 0:6 7

Pharmaceuticals 1 1:4 0:36 0:6 7

Telecommunications 1 1:39 0:36 0:6 6

ENTIRE COLLECTION 1 1:37 0:35 0:35 7

Hyponyms for each hypernym per ISI-OST-INPI

Pharmaceuticals 3 5:03 192:87 13:87 1710

Organic fine chemistry 3 5:02 204:63 14:31 2974

Biotechnology 3 4:7 175:89 12:53 1113

Macromolecular chemistry polymers 3 4:67 175:54 13:25 2284

Basic materials chemistry 3 4:48 123:99 11:14 1953

ENTIRE COLLECTION 2 4:26 280:62 16:75 5660

used in the pipeline is required, which was observed in study 1 and confirmed by
study 2. Especially, adaptation addressing deverbal nouns errors made by the NLP
tools makes it possible to extract more correct entities. For most hyponymy relation
pairs, we can use ISI-OST-INPI schema in order to establish ontologies composed
of relation and concept existing in a specific scientific field.

9.3.3 Case Study Three: Factoid RE

As discussed at length in the first chapter of this volume, the patent information
needs could be of different kinds: prior art search, searching a specific part of a
chemical compound or substance. Therefore, different types of search tools need
to be developed [29]. One specific type of query could be to search for quantity
relations. In this third case study, we are interested to identify NPs answering
questions such as the following: What has the temperature of N degrees? What
is exposed to a method or a process that is carried out at the temperature of N
degrees?

In order to extract this kind of factoid information, we first need to define what
should be seen as the main subject heading: the main syntactic subject or the
main semantic subject of a sentence. In general linguistics, syntax and semantics
are studied separately, but they are connected since syntax also carries semantic
meaning and semantics govern what can be expressed. On the syntactic level, we
find similarity in sentences in Table 9.13: all of them take a subject (e.g. the child,
the key, the door) and some have a direct object (e.g. the door, the sliced banana).
Intuitively, we can detect some common notion of the prototype semantic roles—the
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Table 9.13 Example of diathesis alternations of the verbs open and eat, 1–4 from [48, p. 112]
(Example 19a-d) and 5 and 6 taken from [35] (Example 22.10a-b)

No. Sentence examples

1 The doorTheme opens

2 This keyInstrument opens the doorTheme

3 The childAgent opened the doorPatient

4 The childAgent opened the doorPatient with her own keyinstrument

5 The childAgent ate the sliced bananaPatient with a forkinstrument

6 *The forkInstrument ate the sliced bananapatient

subject takes the role of Agent for the child, the Instrument, i.e. the key. The objects
are exposed to what the subjects are doing, which make them the Patient of the
Agent, or the Theme of the verb [35, 48].

In computational semantics, the meanings of phrases and sentences are assumed
to be systematically modelled from the semantic representation and of the syntactic
constituents [35]. One of the base assumptions of most computational approaches is
that the interpretation of the sentence is captured by the sentence predicate [35, 48].
The main reason for using semantic roles referring to the semantic role labelling
(SRL) task in a system is to infer shallow meaning of representations, which is not
captured by the surface level (string of words) or even by a parse tree [35]. The
question is if these roles encoded in tens of thousands of verbs can be consistently
categorised into a small number of abstract roles. Consider the diathesis alternations
of the verbs open and eat in Table 9.13); they can be intransitive as well as transitive
depending upon the context.14

The sentences in Table 9.13 represent different surface structures of the usage of
opening and eating, where the agent opens something or eats something, the patient
or theme (the direct object) becomes open or eaten and an instrument is used to
make something opened or eaten. However, why is it that the key can open a door,
while the fork cannot eat a banana? Syntactically, a fork can eat a banana. Here
is where semantics and syntax differ. The reason for this is the set of constraints
each verb assigns its arguments. The verb eat requires an agent having the semantic
primitives of being animate, volitional, sentient, etc., and the direct object needs to
be edible [35]. Meanwhile, the verb open puts constraint on the direct object that it
must be something that can be opened by something regardless if it is an animate
entity or an inanimate entity.

Given the fact that patent sentences have a complex syntactic structure, it is
difficult to generate the tree structure of a sentence, as well as to identify the
preferred semantic entity, as seen in Table 9.14. The main syntactic subject in the
sentence is process, but does it have the boiling point of 300 ıC? It is more plausible
that the process will expose something to or contain something of 300 ıC. The

14Transitivity is a weak linguistic theory which means a verb can shift depending on the local
context, i.e. the sense it has or the functionality it has in a specific sentence.
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Table 9.14 Domain-specific example sentences for subject heading identification

Sentence example

Process, according to claim 1 characterized in that use, is made of a solution in a solvent
having a boiling point under atmospheric pressure of at most <quantity
type=temperature>300 ıC</quantity>

Question What entity has a boiling point of 300 ıC?

Candidate answer 1 Process

Candidate answer 2 Solution in a solvent having

process exposes a solution, which is modified by a solvent since it is an embedded
NP (i.e. in a solvent is the post-modifier to the NP a solution). Thereby, solvent has
a boiling point of 300 ıC, since solvent requires a certain temperature in order to be
dissolved into a solution. The entire sub-clause starting with a solution in a solvent
having a boiling point under atmospheric pressure of at most 300 ıC is the direct
object of the pronoun that use (which refers back to the process15). Consequently,
the complexity increases due to the syntactic construction found in patent sentences.

A neat solution to this Q&A task would be to use shallow semantic relations
combined with categorisation of sentences. We would then be able to construct
triples using agent, patient and instrument relations. However, there are very few
systems that support generic SRL and those that exist are trained on general corpora
or biomedical text (e.g. the Boxer system [10]). Furthermore, are the universal roles
domain independent and language independent? Uematsu [70] observed domain-
oriented semantic structure is a valuable asset for representing information needs.
The general linguistic-oriented semantic structure (e.g. FramNet16) or general NLP
tools could well function as intermediate layers but need to be enriched with
domain-specific information. Moreover, the presumption is that the performance of
the NLP tools does not decrease when applied on domain-specific text [70]. There
are four main methods, used for relation extraction and SRL [26, 35]:

1. LSP: needs only small amounts of linguistic information but is limited in
coverage. To secure coverage, the sample needs to cover many types of patterns.

2. Purely syntactic patterns: more generic than LSP but require a robust and high-
accuracy parser.

3. Co-occurrence, mutual information and conditional random fields: only statistics
based but require a large amount of data and potentially also access to pre-
annotated corpus.

4. Parsed tree (dependency or syntactic) combined with supervised learning, mostly
for SRL.

Let us now return to some patent text examples. We are reusing sentences
containing the word cell, which were extracted in the hyponymy RE case study.

15To identify the relation between a noun and a pronoun requires anaphoric resolution.
16https://framenet.icsi.berkeley.edu/fndrupal/.

https://framenet.icsi.berkeley.edu/fndrupal/
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Table 9.15 Context example of the word cell in patent text

No Sentence Word sense

1 As used herein, a ‘biological sample’ refers to a sample of
tissue or fluid isolated from an individual, including but
not limited to bone marrow; plasma; serum; spinal fluid;
lymph fluid; the external sections of the skin; respiratory,
intestinal and genitourinary tracts; tears; saliva; milk;
blood cells; tumours; and organs and also includes sample
of in vivo cell culture constituents, including but not
limited to medium resulting from the growth of cells in cell
culture medium, putatively virally infected cells,
recombinant cells and cell components

An enclosed cavity in an
organism

2 CIU 30 includes a microcontroller 32, RF transceiver
apparatus 34 for communication with the IPDLs and a
power source 36, such as a rechargeable battery cell,
possibly with an associated DCDC converter

A unit in a device for
converting chemical or solar
energy into electricity

3 The outer segments 164,168 form the gate terminals or
other terminals of the corresponding six transistors Q1-Q6
116-136 of the SRAM memory cell 100

Memory unit of computer

In Table 9.15, the word cell occurs in very different contexts: in sentence 1 as in
blood cell, vivo cell culture constituents, cell culture medium, putatively virally
infected cells, recombinant cells and cell components; in sentence 2 as battery
cell and in sentence 3 as memory cell. We can conclude that cell is most likely
polysemous but not homonymous. The latter would imply that cell has the entire
different disconnected word senses.17 In all instances of cell, it still has the semantic
primitives of being an enclosed cavity of some sort.

Not all concepts in a language are represented as single orthographical units;
therefore, in order to know the context of a concept (represented by a phrase or a
word), you first need to know the level of abstraction it has in a specific text domain
in order to understand its meaning. Consequently, before we look into distributional
semantics for SRL for domain-specific text genres, in order to reduce the amount
of annotation labour otherwise required for a supervised learning method, we need
first to have a robust method to identify domain-specific terms in different technical
fields, i.e. ‘memory cell’, ‘blood cell’, ‘battery cell’.

As we alluded to in Sect. 9.3.3, there exist no broad-coverage parsers that can
handle patent sentences with the accuracy required for an SRL task. However, there
have been a few studies within the patent text mining community similar to our last
case study [38, 44, 65, 77]. Kim and Choi [38] extracted problem and solution key
phrases from US patent documents based on an LSP method, which was combined
with ML in order to identify more instances. The problem key phrase is defined as
the description of a problem that the invention will help to solve and the solution

17A homograph (homonym) is one of a group of words that share the same spelling (pronunciation)
but have disconnected word senses, e.g. a river bank, a savings bank and a bank of switches.
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key phrase is defined as the invention itself. They used this method to generate
technology time trends maps, and in a later study they used the same method in an
IR setting. Tiwana and Horwitz [65] also focused on extracting factoid information
addressing the problem and the solution of patents, but they used a more statistical
approach in order to identify the concepts. Krishnan [44] extracted causal relations
between diseases and treatment using LSPs from a collection consisting of medical
patent. Ziering [77] used a bootstrapping technique based on LSPs in order to
identify and label entities with the categories substance and disease.

To summarise, there are several interesting factoid RE studies targeting the patent
domain. However, the complexity of the factoid extractions increases due to the
linguistic characteristic of the patent domain, as well as the difficulties in obtaining
a large amount of training data for ML algorithms. For instance, just the annotation
task would require both domain expertise and linguistic expertise. Consequently, the
patent factoid RE studies have been forced to fall back on more simple methods, i.e.
using LSP methods instead of using more flexible method parsers in combination
with supervised learning.

9.3.3.1 The Experiment for Factoid RE

In this case study, we explore relations between the main subject heading (sought
factoid information) and temperature quantity (e.g. The liquid has a temperature
over 60 ıC, What has the temperature over 60 ıC). The research questions we would
like to examine with this experiment are:

1. Is it possible to use a general parser to extract the sought factoid information?

a. If not, what other methods can we explore in order to extract the sought factoid
information?

As mentioned in Sects. 9.2.6.2 and 9.3.3, the issue with the subject heading
involves anaphoric resolution; identification of NPs, MWUs and clause boundaries;
as well as identification of syntactic relations and the semantic relations in a
sentence. For this task it is desirable to use a dependency parser in the pipeline,
since it helps with identification of the main subject and main verb, as well
as labelling each relation between all words in a sentence. We started out with
experimenting with the Stanford dependency parser [24], parsing and inspecting
sentence examples. The parser generates PoS, constituent information as well as
two types of dependency relations (basic and collapsed) (see Table 9.16).

In order to parse the sentence, we removed the post-modifier clause according to
any one of claims 6 to 9. In Table 9.16, there are two factoid entities which a human
eye can spot. However, the question is which one to select. Obviously, the entity ‘a
melting point’ is syntactically more connected to the quantity temperature, since it
directly governs the quantity and belongs to the same NP. The syntactic subject of
the sentence a tilidine mesylate is also the semantic subject and governs the entire
NP melting point of 61 ıC. The entity 61 ıC represents the melting point of the



9 The Portability of Three Types of Text Mining Techniques into the Patent. . . 271

Table 9.16 Example of parsed patent sentence using the Stanford parser (for relation explanations,
see http://universaldependencies.org/u/dep/nsubj.html)

Original
sentence

A tilidine mesylate according to any one of claims 6 to 9 having a
melting point of about <quantity type=temperature>61 ıC</quantity> as
determined by DSC

Paraphrased
sentence

A tilidine mesylate having a melting point of about 61 ıC

PoS-
tagging

A/DT tilidine/NNP mesylate/NNP having/VBG a/DT melting/JJ point/NN
of/IN about/RB 61/CD C./NNS

Constituent
information

ROOT (S (NP (NP (DT A) (NNP tilidine) (NNP mesylate)) (VP (VBG having)
(NP (NP (DT a) (JJ melting) (NN point)) (PP (IN of (NP (QP (RB about) (CD
61)) (NNS C.))))))))

Ty
pe

d
de

pe
nd

en
ci

es
,c

ol
la

ps
ed

det(Mesylate-3, A-1) ‘A’ is governed by ‘mesylate’

nn(Mesylate-3, tilidine-2) ‘Tilidine’ is governed by ‘mesylate’ (the
relation is a noun compound modifier)

root(ROOT-0, mesylate-3) ‘Mesylate’ is governed by the root

partmod(Mesylate-3, having-4) ‘having’ is governed by ‘mesylate’ (i.e.
being the main verb)

det(point-7, a-5) ‘a’ is governed by ‘point’

amod(point-7, melting-6) ‘melting’ is governed by ‘point’ (the
relation is an adjective modifier)

dobj(having-4, point-7) ‘point’ is governed by ‘having’ (the
relationship is direct object)

quantmod(61-10, about-9) ‘about’ is governed by ‘61-10’

num(C.-11, 61-10) ‘61’ is governed by ‘C’

prep_of(point-7, C.-11) ‘C’ is governed by point

factoid entity tilidine mesylate. In order to use only parsed information without any
external information (e.g. gazetteers, pre-defined LSP patterns or semantic lexicon),
all dependencies are required for this task.

When using all the above information, we can construct an RDF triple of [subject,
a tilidine mesylate; predicate, having; object, a melting point of 61ıC]. The verb
is transformed into the RDF predicate. However, almost every dependency relation
given by the parser is required only if dependency relations are to be used. Moreover,
using the dependency relation for this RE application requires absolute accuracy and
consistency of the parser. When parsing the full example sentence (original sentence
in Table 9.16) and not just the paraphrased version, the parser generates incorrect
analysis as seen in Table 9.17.

The parser generates two ambiguous analyses, which make the desired RDF
triple incorrect: [subject, any one of claims 6 to 9; predicate, having; object, a
melting point of 61 ıC]. This is caused by the parser having the problem of handling
the clause post-modifier of NPs. Moreover, a second RDF triple is generated
[subject, any one of claims 6 to 9; predicate, having; object, DSC]. Even though
the sentence in Table 9.16 is of a simple syntactic structure compared to other claim
sentences, the factoid RE scenario cannot be fulfilled, due to errors made by the

http://universaldependencies.org/u/dep/nsubj.html
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Table 9.17 Dependency relation from Stanford parser

Typed dependencies, collapsed Analysis

det(tilidine-2, A-1) Could be considered correct, due to contact

nsubj(mesylate-3, tilidine-2) Relation clause syntactic subject, correct

root(ROOT-0, mesylate-3) Correct

prepcaccordingto(mesylate-3, to-5) Correct

det(one-7, any-6) Correct

pobj(mesylate-3, one-7 Correct

back to prepcaccordingto(mesylate-3, to-5) Could be considered correct due to context

prepof .one � 7; claims � 9/ Correct

num(claims-9, 6-10) Correct

dep(claims-9, to-11 Correct

num(claims-9, 9-12) Correct

partmod(one-7, having-13) Not correct
det(point-16, a-14 Correct

amod(point-16, melting-15) Correct

dobj(having-13, point-16 Correct

advmod(C-21, about-18) Correct

num(C-21, 61-19) Correct

nn(C � 21 ıC-20) Correct

prepof (point-16, C-21) Correct

advmod(determined-23, as-22) Correct

amod(point-16, determined-23) Correct

agent(having-13, DSC-25 Not correct

parser of the internal structure of the continuous NP “a tilidine mesylate according
to any one of claims 6 to 9”. In order to meet the requirement of the case study, we
examined another more feasible method for the factoid RE. We explored two generic
LSPs based upon observation made on a subset of the collection (Table 9.18).

To not over-generate subject headings, we added two head constraints to the
LSPs: First, the LSP verb governs the LSP preposition, stating that a preposition
subject heading cannot be extracted after a verb subject heading has been found.
Second, we limited the subject heading extraction to three per quantity. In order
to extract the relation, we used the Stanford PoS-tagger and the BaseNP chunker
[51]. We reused the domain modification of the NLP pipeline presented in [3]. For
the experiment we used 1022 claim sentences, which were already automatically
annotated with the quantity temperature. Our task was to extract and identify the
sought factoid information for each temperature quantity. We used 101 sentences as
observation set and 921 claims were saved for testing. For 662 claim sentences in the
test set, the LSP method generated one or more extraction (a coverage of 71.9 %).
For the manual evaluation 100 claim sentences were randomly selected from the
662. From the 100 sample sentences, we had to exclude 16 since they were false
positives given from the quantity annotation process, i.e. identifying a sequence in
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Table 9.18 Generic LSP for identifying subject heading for temperature

Pattern 1 NP, VP {verbs}, NP{noun, multi-word unit}*({set of key phrases})*,
QUANITITY

Verbs is | are_ | has_ | have_ | having_ | cooling_VBG | carried |
according_VBG | moulding | comprise

Example sentence A process according to any one of claims 20 to 28 wherein the said process
is carried out at temperature range is <quantity type=temperature>between
�5 ıC and 100 ıC.</quantity>

Masked pattern The pattern NP said process),VP{is carried out}, key phrase{at the
temperature range is}, QUANTITY

RDF triples [subject, process; predicate, is carried out; object, at temperature range is
between �5 ıC and 100 ıC.]

RDF triples [subject, temperature range; predicate, is; object, between �5 ıC and
100 ıC.]

Pattern 2 NP, PP{set of prepositions},(key phrase)*, QUANTITY

Example sentence (. . . ) in the presence of a suitable coupling agent, in the presence of a
suitable base, in a suitable solvent at a temperature in the range <quantity
type=temperature>�10 ıC to 30 ıC.</quantity>

RDF triple [subject, a suitable solvent; predicate, at; object, a temperature in range
between �10 and 30 ıC.]

Table 9.19 Manual evaluation of factoid RE

Measurement Value (%) Computations

Precision 74 True positive/(true positive+false positive)

Recall 97 True positive/(true positive+false negative)

Specificity 38 True negative/(true negative+false positive)

Accuracy 76 True positive+true negative/(true positive +true negative+false
positive+false negative)

a chemical compound as Fahrenheit (e.g. [theta]H, (CH2)2–3F,(CH2)2–3-p[iota]).
We also had to remove 33 sentences due to the repetitiveness of the sample data,
i.e. the sample set was not sampled based upon unique text but rather on found
quantities. The repetitiveness was also observed in the observation set. All in all we
ended up with 51 unique sentences for the manual evaluation (Table 9.19).

As seen in Table 9.19, the LSP method finds almost all sought factoid infor-
mation, but there is a significant drop in precision. The LSP method overidentifies
instances, i.e. generates too many false positives.

During the assessment process, we observed that even for a trained computational
linguist with knowledge of the patent domain, it was a cumbersome task. There were
several instances of uncertainty regarding what should be seen as the main subject
heading of quantity. In the first part of Fig. 9.6 (black), we see that the method
extracted two subject headings for the quantity 135 ıC: one governs the other
subject heading, i.e. an intrinsic viscosity (NP2, green) is governed by an ultra-
high-molecular-weight ethylene polymer or copolymer resin (NP1, red). Which one
is correct? We decided to regard both as correct since NP2 is the direct object of
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Fig. 9.6 Factoid example using LSP method and Stanford CoreNLP analysis

NP1 and NP2 is a nsubj18 of the clause determined at 135 ıC as seen in basic
dependencies19 (grey) in Fig. 9.6. However, it is clear that the intrinsic viscosity
does not have the temperature of 135 ıC, since it is a measurement of the resistance
of a solution or fluid. As mentioned in Sect. 9.3.3, syntactic notation and semantic
interpretation do not always correspond with each other.

In this last experiment, we first explored the possibility to use a dependency
parser in order to identify factoid entities. Due to the low performance of the
parser when used on patent data, we concluded that this was not feasible without
extensive work to simplify the sentences and to modify the NLP tools used in
the pipeline. Consequently, the SRL methods depending on parsing information
from the Stanford parser are not portable to the patent domain without extensive
modification. Therefore, we shifted focus to another method in order to answer
research question 1.a. We created a set of LSPs which targeted the factoid
information. The LSP method is less flexible in comparison with a method using
dependency information and generates many false positives. However, we achieved
a coverage of 71.9 % and, in manual evaluation of 51 sentences, a recall of 97 % and
precision of 74 %.

To summarise, with the suggested LSP method, we showed that it is possible
to extract the sought factoid information, although we are only able to identify
the most plausible NPs as subject headings candidates for a specific temperature
quantity entity. We cannot yet identify the main subject heading. For the SRL task,
we can conclude we have a partly portable solution for the task, but we hope when
combining distributional semantics with the suggested LSP method, we will be able
to select the main subject heading of a temperature quantity.

18A nominal subject is a nominal which is the syntactic subject and the proto-agent of a clause.
http://universaldependencies.org/u/dep/nsubj.html.
19In order to be able to parse and also for visualisation reasons, we simplified the sentence and
shortened it.

http://universaldependencies.org/u/dep/nsubj.html
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9.4 Conclusion and Future Work

We presented the portability of different language technologies in order to show
what is portable and what needs to be modified in order to handle a complex
NP-driven text genre such as the patent genre. We have presented the portability
of three text mining applications addressing different relation extraction: acronym
identification, hyponymy relation extraction and factoid information extraction.
Each application requires different levels of linguistic analyses. The method used
for acronym extraction was only based on regular expressions, while the other
two methods (factoid and hyponymy) were based on LSPs requiring at least a
PoS-tagger and an NP chunker. In the second case study, we observed that in
order to improve the hyponymy extractions, the NLP tools used in the pipeline
required small adaptations targeting noun phrases. The adaptations consisted of
post correction of deverbal nouns, which were incorrectly given verb PoS-tags by
the tagger. For the third case study, we observed it would have been useful to use
a dependency parser, but due to the low performance of the parser when used on
patent text, we had to fall back to use a simpler method based on observed LSP
patterns. The main contributions of our three different case studies are:

• The method addressing acronym extraction presented in this case study is
portable to the patent genre without any adaptation, and when combined with the
ISI-OST-INPI, it can easily be transferred into a search aid application suggestion
acronym within a specific technical field. Moreover, crowdsourcing techniques
can be used to assess the correction of the extractions. Meanwhile, to assess if an
extraction represents a technical term is more problematic.

• The LSP method to target hyponymy relationships is portable to the patent
domain with minor adaptations of the general NLP tools used in the pipeline.
The hyponymy relation extraction application, when combined with the ISI-OST-
INPI, could be turned into a browsable search aid.

• For the factoid RE application, it would have been preferable to use a dependency
parser, since that task involves identification of NPs, MWUs, clause boundaries
and syntactic and semantic subject and object as well as anaphoric resolution.
But as we have shown, the reusability of the general dependency parser is very
limited in the patent genre. With the suggested LSP method, we showed that it
is possible to extract the sought factoid information, although we are only able
to identify the most plausible NPs as subject headings candidates for a specific
temperature quantity entity. Despite the limitation of our suggested method, we
achieved encouraging results in terms of recall and coverage. Moreover, since the
assessment task was very time-consuming, we hope that our suggested method
can be used as a support method in order to establish a larger set of training data
for a machine learning approach.

Today, it is not possible to conduct large-scale experiments with supervised or
unsupervised methods for NLP tools targeting the patent domain, since there exists
no labelled data, for either training or evaluation, covering all the technical fields of
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the patent text genre. Given these facts, the indirect evaluation (assessed by the end
tools performance) of NLP applications reported in the patent text mining literature
could be limited in its conclusions regarding the NLP applications’ achievement
over pure statistical methods, since the NLP applications do not reflect the target
domain. In fact as mentioned in Sect. 9.2.4, only deeper linguistic methods have
improved domain-specific retrieval performance when conducted on biomedical
text. Biomedical text is today the only accessible and existing domain-specific
training data for NLP tools.

To summarise, in this chapter, our aim was to show that for some end applications
we need to start the process to establish more domain-specific training data covering
more scientific areas than the field of biomedicine. With rather small effort, focusing
on handling complex noun phrases and detection of acronym relations, we can
contribute to improve the NLP pipeline performance on patent text. The hyponymy
and the acronym extraction can be used as intermediate steps in order to reduce the
cost and the time effort associated with domain-specific annotations. The factoid
case study is an example of an end application which would benefit from having
NLP tools trained on patent text.
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Chapter 10
Visual Analysis of Patent Data Through Global
Maps and Overlays

Luciano Kay, Alan L. Porter, Jan Youtie, Nils Newman, and Ismael Ràfols

Abstract Visual analytics has been increasingly used to help to better grasp the
complexity and evolution of scientific and technological activities over time, across
science and technological areas and in organisations. This chapter presents general
insights into some important fields of expertise such as mapping, network analysis
and visual analytics applied to patent information retrieval and analysis. We also
present a new global patent map and overlay technique and illustrative examples
of its application. The concluding remarks offer considerations for future patent
analysis and visualisation.

10.1 Introduction

Visual analytics has been increasingly used to help to better grasp the com-
plexity and evolution of scientific and technological activities over time, across
science and technological areas and in organisations. New and diverse analysis
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and mapping methods, increasing computing power and new software and layout
algorithms enable this and support patent analysis aimed at understanding a range
of innovation-related phenomena.

This chapter presents general insights into some important fields of expertise
such as mapping, network analysis and visual analytics applied to patent infor-
mation retrieval and analysis. We discuss broader aspects and issues of patent
mapping, including the development of global maps and overlays in the context of
information retrieval, exploration and analysis for patent corpora, and their similar-
ities/differences to similar approaches applied to scientific literature. The need for
development of tools to benchmark and capture temporal change of organisational
innovation activities, or patterns of technological change, also motivates this work.

We also present the new global patent map and overlay technique we recently
developed [1]. Our visualisation approach is a logical extension of experience
acquired with science overlay maps [2] and opens up new avenues for understanding
patent landscapes, which as we will see markedly differ from scientific landscapes.
To illustrate the kind of analytical support offered by this approach, we discuss the
core structure of our global patent map and apply patent overlay maps to benchmark
the nanotechnology-related patenting activities of companies. We conclude this
chapter by offering some remarks and considerations for future patent analysis and
visualisation.

10.2 Patent Information Retrieval and Analysis

Patent analysis plays key roles in competitive technical intelligence (CTI) [3].
The multipart technological innovation CTI ‘puzzle’ comprises both empirical
information and expert analysis to inform empirical search, refining and inter-
pretation. Patents provide an important piece of empirical information in the
form of compilations of large numbers of records for ‘landscaping’, i.e. a macro
perspective—our focus here—as well as in-depth treatment of a small number of
patent documents for micro-perspective analyses [4]. Other complementary empir-
ical information comprise research publication search compilations/reviews and
roadmaps and business-related content (e.g. trade publications, policy documents,
popular press treatment).

One implication of such an ‘innovation systems’ perspective [5, 6] is to see
potential value in ways to combine multiple information types. We generally seek
innovation indicators [7]. Patent mapping provides a visual component to enrich
various innovation system analyses [8, 9]. In particular, we think patent mapping
can complement science overlay mapping to enrich understanding of research
and development (R&D) activities, particularly for engagement of subareas and
maturation patterns [10]. Leydesdorff et al. [11] have devised patent overlay maps
and Leydesdorff et al. [12] illustrate their potential in exploring innovation dynamics
in areas such as photovoltaic technologies, both over geographical regions and over
topical regions.
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The macro-patent analyses that patent overlay mapping serves seek to discern
patent activity patterns with implications for innovation. These can inform corporate
investment decisions via intelligence about key competitors’ perceived trajectories.
Chen [13], for example, shows patent ‘landscape’ maps created by Boyack [14]
changing over time. These aid CTI in tracking competitor interest evolution.
Alternatively, analyses can contribute to policy discourse by profiling national
positions and potential. Of course, patents are an imperfect lens on innovation—they
reflect invention, and that unevenly, as patent practices vary greatly by industrial
sector and country (cf. [15]).

The unit of analysis is a collection of patent information relating to a target
topic. That collection typically contains patent abstract records, not full-text patent
documents. Those would be gathered via a search strategy applied to one or more
databases (e.g. Derwent World Patent Index, EPO PATSTAT). The use of diverse text
data sources (sometimes with varying language usage, technical terms or machine-
translated documents) implies that a well-crafted search is essential, and it must
address one or more research questions. In the private sector CTI realm, those
questions tend to focus on either a key competitor or a few of them and their intents
regarding a certain technology or application area. In public sector or academic
treatments, focus is more apt to be on an emerging technology, cast broadly.

The search strategy can be conducted using Boolean term searching (combining
key terms, often delimited by proximity conditions). Or, the search can rely
on patent classification specifications such as International Patent Classifications
(IPCs). Often a combination search query is most effective. Search quality is
essential and criteria centre on how best to address the driving research questions.
In general, macro-scale profiling leans towards inclusive search, thereby providing
the option of further analyses by refining to subsets of the data retrieved.

Once patent abstract data are retrieved, the analyst faces notable challenges in
‘getting the data right’. We have found it fruitful to engage domain experts to
review initial search set patterns, particularly top terms and phrases, to spot flaws
or gaps, and suggest ways to improve our search queries. For instance, in recent
work on nano-enabled drug delivery (NEDD) we removed some 5 % of the search
set concerning agriculture [16]. The next stage entailed data cleaning. This can
vary enormously in scale of effort, contingent on the sensitivities in addressing
the driving analytical questions. For broad patent landscaping, we want to get a
representative sample. For massive searches, this implies tradeoffs in scope—e.g.
maybe reducing the search time frame. For the NEDD analysis, with the purpose of
visualising patenting distribution over patent categories, we set aside search terms
concerning cancer to reduce distortion in not specifying other target diseases.

Analysts can use diverse forms of patent analysis with a varying degree of
complexity. These range from the generation of lists of patent records and co-
occurrence matrices (lately made simpler thanks to text mining software) to more
complex clustering and mapping of patent data. Lists can filter patent records
by given criteria or fields, and matrices help to find relationships resulting from,
for example, co-occurrence of keywords in patent titles and abstracts. Document
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clustering allows identifying topics in patent literature and patent mapping provides
windows on the pattern of invention. Geo-mapping of inventors and/or patent
assignees can illuminate areas of strength (e.g. for national comparisons). Geo-
mapping of patent authority activity, particularly when staged over time periods,
may elucidate relative market potential. And, patent overlay mapping applications
as presented here contribute insight into component technologies, as well as market
sectors being engaged.

Citation analyses deserve mention as well. One may gain useful technology
transfer insights by considering the patents (and/or literature) cited by a target patent
set and the patents that cite such a target set. The latter are especially affected by
patent time lags. With regard to the patent mapping we present later in this chapter,
one needs to know the IPC of the cited (or citing) patents. That requires additional
layers of search and retrieval.

10.3 Visual Analytics and Overlays

The visualisation of knowledge or technological landscapes has been a prominent
part of publication and patent analyses since their origins [17, 18]. Only in the
last decades, however, improvements in computational power and algorithms have
allowed the creation of large maps covering a full database, the so-called global
maps of science and technology (see overviews by [2, 19]). This in part has led to a
proliferation of global maps ([20–25]; e.g. see [26, 27]).

Science maps or scientograms are the visualisation of the relations among
areas of science using network analysis algorithms. Visualisation procedures for
science maps have generally been used to explore and visually identify scientific
frontiers, grasp the extent and evolution of scientific domains and analyse the
frontiers of scientific research change [28]. Science mapping efforts have also been
used to inspire cross-disciplinary discussion to find ways to communicate scientific
progress.1

A patent map, on the other hand, is a symbolic representation of technological
fields that are associated with relevant themes. Technological fields are positioned
in the map so that similar fields are situated nearby and dissimilar components are
situated at a distance. Their construction uses similar algorithms to those used to
visualise the relations among scientific disciplines. Patent maps help to explore
and visually identify areas of technology development concentration, and they
can illuminate increasing or diminishing patenting activity over time. In this way,
patent maps can inform R&D management, competitive intelligence and policy
decision-making. A key characteristic of patent maps is the ability to graphically
represent ‘technological distance’ or the extent to which a set of patents reflects
different types of technologies [29]. Technological distance, often proxied by patent

1See, for example, the Mapping Science website at http://www.scimaps.org/

http://www.scimaps.org/
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categories, with patents in a given patent category being considered more similar to
one another than to those in other patent categories [30, 31], provides a measure of
interrelatedness and potential innovation opportunities.

Science and technology maps complement other methodological approaches to
data analysis. They can help to interpret and find meaning in complex data by
transforming abstract and intangible datasets into something visible and concrete
[13]. Scholars have pursued diverse approaches to scientific publication and patent
record-level analysis to create global maps of science and technology. These serve
to characterise the proximity and dependency of scientific areas (e.g. [19, 32]) and
technological areas (e.g. preliminary work in Boyack and Klavans [33] and related
approaches by Schoen et al. [9] and Leydesdorff et al. [11]. Notwithstanding the
range of classification and visualisation algorithms, the resulting global maps have
been generally ‘stable’, at least in terms of their main disciplinary or technological
areas and their relationships. Still, the comparison of results of diverse approaches is
important to test the robustness of patterns observed. Without significant consensus
on the shape and relative position of science and technological categories, global
maps are meaningless as stable landscapes needed to compare, for example,
organisational or technological subsets.

The relative structural stability of global maps suggested their use as a base
map over which to compare the technological distribution of specific organisations,
in the same way that we may compare the distribution of different plant species
or multinationals over the world map. This led to the idea of ‘overlays’ (or a
process of ‘layering’ or ‘stacking’) by which global maps can be combined with
additional layers that visually represent subsets of scientific publication and patent
data. Overlays help to understand the particular scientific and technological thrusts
and areas of concentration of R&D actors [2]. For example, a company’s patent
portfolio can be ‘overlaid’ on the base map. This process provides a visual tool
to interpret the multidimensional relationships among the patent categories in the
company’s patent portfolio.

10.4 Visualising Innovation Pathways and Technology
Development Concentrations

Our research has recently involved the creation of a new global patent map and
overlay technique [1]. Our patent map is constructed from a similarity matrix
based on citing-to-cited patents—i.e. a matrix that reflects similarities among IPC
categories in how patents cite each other. The similarity measures are calculated
from correlation functions among fields according to citations among patent
categories. This multidimensional matrix is projected onto a two-dimensional space,
which becomes our ‘base map’. A user can then ‘overlay’ subsets of patent data—
representing different types of technological fields, organisations or geographical
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regions—on top of the base map to understand the particular technological thrusts
and areas of concentration of these entities.

While there have been other patent maps that use IPC categories (e.g. see [12,
17]), they share two main weaknesses, which our approach addresses. The first is
the reliance on analysing patents at a given IPC level; 3-digit (class) and 4-digit
(subclass) are the most commonly used levels. Patents are not equally distributed
across IPC three-digit or IPC four-digit categories, however, so one experiences
the problem of not being able to distinguish fields in classes that attract a huge
number of patents—such as Medical or Veterinary Sciences (A61)—by staying
within the confines of the existing IPC administrative structure. The second is
assuming that patents in a given section of the IPC system are alike. For example,
even though Medical or Veterinary Sciences (A61) and Hats (A42B) are both
in Section A ‘Human Necessities’, they are not really that similar. ‘Medical or
Veterinary Sciences’ is actually more similar to Organic Chemistry (C07), even
though Organic Chemistry falls in Section C ‘Chemistry, Metallurgy’. The approach
presented in this chapter compensates for these issues by (1) disaggregating IPC
categories and (2) reforming them based on citing-to-cited reference patterns. In
addition, we remove some patent categories with fewer than 1000 patents to enable
better ability to distinguish patterns in those categories with a higher propensity for
patenting.

Our global patent map is based on citing-to-cited relationships among IPCs
of European Patent Office (EPO) patents from 2000 to 2006. This period was
chosen because of its stability with respect to IPC 7 categories. IPC 7, at the time
we conducted this study, represented the longest period of stable classification.
Future work would involve comparing patent overlay maps based on IPC 7 and
future classification systems such as IPC 8 or Cooperative Patent Classification
(CPC) systems, but first, the project team needed to make sure it could produce
a mapping process with a stable set of categories. The dataset containing IPC
relationships, extracted from the PATSTAT database version available in the fall of
2010, represents more than 760,000 patent records in more than 400 IPC categories.
This data range begins with patent EP0968708 (which was published in January
2000) and ends with patent EP1737233 (published in December 2006).

A key part of our methodology involves disaggregating, then folding IPC
categories up into the next highest level of aggregation to create relatively similar
sized categories. This solution comprises three rules:

1. For IPC categories with large population, use the smallest subgroup level.
2. For small population IPC categories, aggregate up to general group level,

subclass or class.
3. Establish a floor cut-off and drop very small aggregated populations.

As a result, IPC categories with instance counts greater than 1000 in the data
set were kept in their original state. Those categories with instance counts less than
1000 were folded up to the next highest level until the count exceeded 1000 or the
class level was reached. During the folding, any other IPC categories with counts
exceeding 1000 in the same branch were left out of the folding count. If at the class
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Table 10.1 Data pre-processing to group IPC categories, selected examplesa

Original IPC in data set Catchwords Original record count

A61B Diagnosis, surgery, identification 25,808
Authors’ process splits this out into:

A61B 5/00 Measuring for diagnostic purposes 1415
A61B 17/00 Surgical instruments, devices or methods,

e.g. tourniquets
1493

A61B 19/00 Instruments, implements or accessories for
surgery or diagnosis not covered by any of
the groups

1444

And a remainder:

A61Bb 21,456
aEach IPC with an instance count greater than 1000 was kept in its original state
bEach IPC with an instance count less than 1000 was folded up to the next highest level until the
count exceeded 1000 or the class level was reached

level (i.e. three-digit), the population was less than 1000, the IPC code was dropped
for being too small to map. Table 10.1 illustrates this approach for the four-digit IPC
class A61K.

This pre-processing yields IPC categories at the class (three-digit), subclass
(four-digit), main group (five-digit) and subgroup (seven- and eight-digit) levels,
with levels that ensure broadly similar numbers (i.e. within two orders of magnitude)
of patents across categories. The next step involves extracting from PATSTAT the
patents cited by the target records. The IPCs of those patents are mapped to the
466 IPC categories. Some of the patents cited by those in our IPC 7 data set were
published under previous categorisation systems; however, this spillover does not
lead to any problems from a categorisation standpoint because IPC integrates prior
categorisations into more recent versions. The result of this data collection allows
the creation of a table containing, in each row, sets of patent number, IPC number,
cited patent number and cited IPC number.

The final data processing steps involve generating a cosine similarity matrix
among citing IPC categories (using conventional cosine similarity normalised by
the square root of the squared sum) and then factor analysis of the IPC categories
(following the method used in global science maps by Leydesdorff and Rafols [24].
A factor analysis of the citing-to-cited matrix among IPC categories is then used to
consolidate the 466 categories into 35 ‘macro-patent categories’. We tested different
factor solutions ranging from 10 to 40 categories. The 35-factor solution had the
greatest face validity, allowing a convenient classification of the IPC categories
and easier interpretation. These 35 factors form the basis for colour-coding the
466 categories that are represented in visualisations. The visualisations also require
converting IPC codes to succinct text labels, which we did by shortening lengthy
IPC definitions. These IPC category labels were then used as a basis for creating
descriptors for each factor as shown in the maps.
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Fig. 10.1 Full patent map of 466 technological categories and 35 technological areas. Lines
represent relationships between technological categories (the darker the line, the shorter the
technological distance between categories)

The full map of patents shows all 466 categories in a Kamada-Kawai layout
(using the software Pajek2) that represents technological distances and groups of
technologies in each of the 35 factors or technological areas shown with the same
colour (Fig. 10.1). Label and colour-related settings were adjusted to produce a
reasonably clear map and facilitate its examination. The map suggests three broad
dimensions of patenting interrelationships based on the overall position of techno-
logical areas. The left side of the map represents bio-related patents, including food,
medicine and biology. The lower right part of the map includes semiconductor,
electronics and information and communications technologies (ICT). The upper
right portion of the map is primarily comprised of automotive and metal-mechanic-
related technology groups.

To illustrate and test the application of patent map overlays, two corporate
data sets of nanotechnology patent applications have been created for Samsung
and DuPont, using data from the Georgia Tech Global Nanotechnology databases
in the same time period (2000–2006). The visual examination of maps shows
nanotechnology development foci that vary across companies (even for those in
similar industry sectors) and different patenting activity levels for the studied period.
The two overlays presented herein appear diversified and encompass a number
of technological areas. The patent overlay created for Samsung, for example,
shows activity concentrated on semiconductors and optics, with a notable level

2This software is free for non-commercial use: http://pajek.imfm.si

http://pajek.imfm.si/
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Fig. 10.2 Patent overlays applied to company benchmarking. (a) Samsung. (b) DuPont. The size
of nodes is proportional to the number of patent applications in the corresponding technology group

of patenting activity across other areas as well (Fig. 10.2a). The company also
has some prominent activity on technological areas broadly defined as Catalysis
& Separation, Photolithography, and Chemistry & Polymers. DuPont, on the other
hand, focuses on drugs, medicine and chemistry, chemistry and polymers as well as
biologics (Fig. 10.2b). According to our overlays, this company has a portfolio of
patent applications that is even more diversified, but it is also less active in terms of
patenting activity, than Samsung.
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10.5 Visualisations and Decision-Making Support

Visualisations can support R&D management, competitive intelligence and policy
decision-making. Three main aspects of patent maps reveal the level of support
they can offer: (1) map structures, (2) patterns of interconnection and (3) patent
concentration.

The first aspect is connected with map structures, patent classifications and
the challenge of relying on them for patent mapping. As technology changes,
technology-oriented applications may draw from patents in different hierarchical
categories and subsequently lead to further diversity in patents that cite patents
in these categories. This requires making a distinction between hierarchy and
similarity. A closer look at our global patent map shows that the structure of the map
reflects technological relationships across the hierarchical administrative boundaries
of the subject matter specifications in the IPC scheme. While counts of IPC sections
(i.e. the first letter of IPC codes, A, B, C, D, E, F, G, H) are commonly used
as a measure of technological distance in patents, the 35 technological areas that
are derived from cross-citations in our patent map often span multiple sections.
For instance, the vehicles area includes six different sections, and the heating
and cooling, construction and metals areas include five different sections. Textiles,
lighting, semiconductors and chem and polymers include four different sections.
Only medical devices, food, recording, computing and radio communication areas
encompass a single section. This is strong evidence that the IPC on its own is
not an appropriate framework to investigate technological diversity without taking
technological distance into account. It is also a factor to consider in the analysis and
definition of emerging technological fields and markets.

The degree of interconnectedness among technological categories adds another
level of support to decision-making. Patent documents that reference other patents in
similar technological areas have been suggested to offer incremental opportunities to
advance an area, whereas patent documents that refer across diverse categories may
offer the potential for radical innovation [34]. For instance, an interesting feature
of our global patent map is the high level of interconnectedness of most of the 35
technological areas. This can be observed not only in many connections among
technology groups within each technological area, as shown by the densest areas of
the map, but also across them. Some exceptions are areas such as food, drugs and
med chem, biologics, TV imaging and comm. cosm and med chem as well as radio
and comm that form more uniform clusters of technology groups (i.e. they appear as
clusters of nodes of the same colour) (Fig. 10.1). Another notable feature is the short
distance among technologies in a handful of groups such as drugs and med chem
and biologics, as shown by denser areas and darker lines in the left-hand side of
the maps. The sparse areas of the map are those associated with technological areas
that comprise fewer technological categories, including electric power, lighting and
recording.

Finally, the concentration of patenting activity in the innovation landscape—
or global map—is another aspect of visual analysis that can support strategic
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decision-making. Overlays created with patent data subsets allow this kind of analy-
sis. Broader technology groups and more specific categories can be compared across
organisations, and over time, to distinguish areas of R&D concentration and to iden-
tify trends, respectively. Areas of increasing activity can represent areas of market
opportunity or be a signal of competitive threats when the analysis refers to specific
companies and the purpose is to detect new entrants. Areas where technology
development concentrates might anticipate emerging technological areas or niches.
The complement, empty areas or ‘white spaces’ represent undeveloped areas. Our
patent map, for example, uses categorisations to disaggregate some of the patent
groupings into more fine-grained analysable components than other approaches.
This more disaggregated clustering enables differentiation of the patent portfolios
of, say, a company engaged in cosmetics patenting from one engaged in drug
development and from yet another engaged in medical instrument development. Not
shown here, but the maps can be blown up to allow closer examination of more fine-
grained patterns.

Awareness of the conceptual heterogeneity of nodes or elements in the map
raises the issue of whether the maps show ‘similarity’ among categories as we
have assumed or other properties such as co-occurrence and complementarity.
For example, patents of metals and automobiles are related not because these
categories are similar but because automobiles are often made of metals. Also,
plastics and metals may co-occur simply because they are materials that are
used in similar products such as buckets and automobiles, not because they are
similar. Moreover, unlike maps of science, where there has been a pre-established
conventional understanding of disciplines, it is not straightforward how groups of
technologies can be interpreted. This problem is compounded by the heterogeneous
nature of the patent classes. Classes such as ‘turbines and engines’ include ‘turbines’
(F01D), ‘jet propulsion’ (F02K), ‘aircraft equipment’ (B64D) and ‘airplanes and
helicopters’ (B64D). Elements from distinct branches of the IPC co-occur in maps,
but rather than being similar, they likely co-occur because they are embedded and/or
complementary. This difficulty that patent maps face is not simply a problem of
classification, but a conundrum due to the multiple meanings and scales that the
technology concept may take [35]. These issues suggest that the interpretation of
patent maps should be ontologically flexible and one should take into account that
both the elements and the relations may have different meanings.

A visual analytic study based on our base map and overlays would involve (1)
creating a patent data set, (2) processing the data set to obtain overlay data by IPC-
based category, (3) creating overlays and (4) analysing data and overlays to support
decision-making. Users can draw on diverse data sources to create patent data sets
for their analysis (e.g. we use EPO’s PATSTAT). To process data sets, we have
developed a mapping kit which includes source files that represent the structure
of the base maps and thesaurus files that represent scientific publication and IPC-
based category definitions and enable creation of overlay maps using software such
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as VantagePoint and Pajek.3 The analysis typically involves comparing areas of
concentration over time and across different entities such as companies, countries or
technological fields. Overlays offer a general perspective that can be enriched with
data tables with more detailed information on patenting activity.

10.6 Concluding Remarks

This chapter discusses broader aspects and issues of patent mapping in the context
of information retrieval, exploration and analysis for patent corpora and their
differences to similar approaches applied to scientific literature. The chapter also
discusses visual analytics and diverse methods for mapping—including a new global
patent map and overlay technique developed by the authors—that enable ‘visual
thinking’ [13] and a better understanding of technology development concentrations
and R&D profiles of companies or countries. To exemplify the kind of analytical
support offered by global and overlay maps, we illustrate the application of
the patent overlay maps we developed to benchmark the nanotechnology-related
patenting activities of companies and reveal the areas of concentration of their
patenting activities.

Patent analyses play key roles in competitive technical intelligence as they
combine multiple information types to offer innovation indicators to support
decision-making. Patent mapping provides a visual component to enrich various
innovation system analyses and complements science overlay mapping to enrich
our understanding of R&D activities. Patent overlay maps serve to discern patent
activity patterns with implications for innovation. These can inform corporate
investment decisions via intelligence about key competitors’ perceived trajectories,
for example. Alternatively, analyses can contribute to policy discourse by profiling
national positions and potential. Patent analysis involves data search and retrieval
and a number of processes for data clean-up and refinement to obtain subsets
that ultimately contribute insight into specific technologies or market sectors being
engaged.

The visualisation of knowledge or technological landscapes has been a prominent
part of publication and patent analyses since their origins, but recent improvements
in computational power and algorithms have allowed the creation of diverse
global maps of science and technology. Both science and patent maps draw on
network analysis algorithms and visualisation procedures that help to explore and
visually identify areas of activity, interrelationships and the overall structure of
scientific and technological activities. Science and technology maps complement
other methodological approaches to data analysis and can help to interpret and find

3This mapping kit is available upon request to the authors. VantagePoint is a commercial software
for text mining: https://www.thevantagepoint.com. The purpose of the kit, however, is to make this
mapping technique available for use with other software as well.

https://www.thevantagepoint.com/
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meaning in complex data by transforming abstract and intangible data sets into
something visible and concrete. In patent maps, in particular, a key characteristic
in being able to visualise innovative opportunities is the ability to graphically
represent ‘technological distance’ or the extent to which a set of patents reflects
different types of technologies. Scholars have pursued diverse approaches to
scientific publication and patent record-level analysis to create global maps of
science and technology. Consensus on the shape and relative position of science and
technological categories are important to make global maps meaningful to compare,
for example, organisational or technological patent data subsets.

Our patent mapping approach offers distinctive visualisation capabilities. In
contrast to prior IPC-based global patent maps, our approach recombines IPC
categories to reflect a finer distribution of patents. Thus, it enables improved
differentiation ability in categories with a large amount of patenting activity. It also
facilitates replication by helping to trace back individual categories to verify results
and make improvements. One of the most interesting findings of our work is that
IPC categories that are close to one another in the patent map are not necessarily
in the same hierarchical IPC branch, which suggests that technological distance
is not always well proxied by relying on the IPC administrative structure. The
introduction of the Cooperative Patent Classification (CPC) scheme is likely to
affect our category definitions or the process by which we come up with specific
definitions. Still the overall dimensions of the map would be supported and only
some of the topical areas in the margins would change.

Visualisations are valuable tools for competitive R&D and policy decision-
making support. Potential applications of patent overlay maps include organisa-
tional and regional/country benchmarking (e.g. for the examination of competitive
positions), exploration of potential collaborations and general analysis of tech-
nological changes over time. Patent maps may also reveal relatively unexplored
technological areas that are more central to other technologies or highlight denser
areas with more technological interdependency that might form platforms for the
emergence of future technology applications. Ongoing work we undertake seeks to
overcome some issues found in the development of the original patent overlay maps.
The coverage of the technology classification scheme we developed is among the
most important issues we address. While the data source may cover a wide range of
IPC categories, new technologies and categories resulting naturally from innovation
processes require constant updates to maintain good coverage and be able to support
decision-making in emerging areas as well.
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Part IV
Special Topics in Patent Retrieval

The last part, and the largest of all the parts of this or the previous edition, covers a
fairly large spectrum of research in the patent field, from classification to translation,
via image processing.

We start with an update of patent classification at subgroup level. It had been
shown before, in the previous editions’ chapters on classification but also here
in the report on the CLEF-IP evaluation exercise, that classification works very
satisfactorily at the subclass level of the IPC (e.g. A61K) but degrades rapidly when
going further to group (e.g. A61K 6/00) and subgroup (e.g. A61K 6/007). D’hondt
and her colleagues show us a method to improve the situation.

The following three chapters cover different aspects of image processing and
what one can do with the thus extracted information. We start in Chap. 12 with
the problem of image classification: given an image, can we detect automatically
whether it is a chemical compound, a table, a mathematical formula, a drawing or
any other of the typical types of images found in patents? The answer provided
by Csurka et al. is an almost perfect ‘yes’. Then we look at two particular types of
images. First, Rossinyol describes their automated system for flowchart recognition,
comprising both structural recognition of the links between a flowchart’s boxes
and optical character recognition of the text within the boxes. Then Filippov and
his colleagues demonstrate how given an image of a chemical compound, we can
transform it to its IUPAC representation. Of course, not all chemical formulas
can be transformed, especially since there is no commonly agreed representation
of Markush structures, but the system they demonstrate was the best performing
system in the TREC-CHEM and CLEF-IP evaluation campaigns.

Once we have the representation of the chemical structure, Barnard and col-
leagues extend the chapter published by Holliday and Willet in the last edition and
give an overview of the challenges presented by this field and a summary of the
approaches to these challenges, including Markush structures.

Finally, we were very happy to be able to include in this edition a chapter
on patent translation. As it has been repeatedly mentioned throughout this book,
patent search is an inherent multilingual process, where even native speakers of
the dominating language, English, cannot escape the need to understand documents

http://dx.doi.org/10.1007/978-3-662-53817-3_12
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written in other languages. The chapter written by Tinsley describes their statistical
translation system built specifically for patent data. This work is particularly
interesting because it is one of the few examples where academic research (in
this case supported by the European Commission under its ICT Policy Support
Programme) has resulted in a solid start-up, which has managed to find its place
in the highly competitive patent translation market.



Chapter 11
Patent Classification on Subgroup Level Using
Balanced Winnow

Eva D’hondt, Suzan Verberne, Nelleke Oostdijk, and Lou Boves

Abstract In the past decade research into automated patent classification has
mainly focused on the higher levels of International Patent Classification (IPC) hier-
archy. The patent community has expressed a need for more precise classification
to better aid current pre-classification and retrieval efforts (Benzineb and Guyot,
Current challenges in patent information retrieval. Springer, New York, pp 239–
261, 2011). In this chapter we investigate the three main difficulties associated
with automated classification on the lowest level in the IPC, i.e. subgroup level.
In an effort to improve classification accuracy on this level, we (1) compare flat
classification with a two-step hierarchical system which models the IPC hierarchy
and (2) examine the impact of combining unigrams with PoS-filtered skipgrams on
both the subclass and subgroup levels. We present experiments on English patent
abstracts from the well-known WIPO-alpha benchmark data set, as well as from
the more realistic CLEF-IP 2010 data set. We find that the flat and hierarchical
classification approaches achieve similar performance on a small data set but that
the latter is much more feasible under real-life conditions. Additionally, we find that
combining unigram and skipgram features leads to similar and highly significant
improvements in classification performance (over unigram-only features) on both
the subclass and subgroup levels, but only if sufficient training data is available.

11.1 Introduction

In the last decades, patents have gained an enormous economic importance.
Patent filing rates increase every year, and patent attorneys and examiners of the
various patent offices are straining to deal with the large number of applications
submitted every day. In this situation, automating (part of) the process by which
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incoming applications are processed has great economic value [17]. Automatic
patent classification, that is, automatically assigning relevant category labels from
the International Patent Classification (IPC) taxonomy (see below) to an incoming
document, may be an invaluable asset in both the pre-classification and examination
phases of the patent granting process.

During the pre-classification stage, a patent application is examined by a
person who has a general knowledge about all technological fields and—most
importantly—has expert knowledge of the patent classification system. This expert
then routes the application to the department(s) that specialises in the technical fields
relevant to the invention described in the application [28]. At the European Patent
Office (EPO), there have been attempts to automate this process [17], but due to low
accuracy scores, pre-classification is currently limited to the higher (more abstract)
levels of the IPC taxonomy.

In the examination phase, a patent examiner will perform a high-precision,
interactive search to find documents that describe inventions similar to the one
described in the application, in a bid to determine the existence of prior art for
this invention. Prior art queries usually consist of field-specific terminology with
specialised (low-level) IPC labels as query terms. In this phase, a fine-grained,
consistent and high-quality patent classification is indispensable [27]. The research
presented in this chapter aims to implement, improve and evaluate automated
classification on lower (more specific) levels in the taxonomy, thus allowing for
more specific suggestions during the pre-classification and examination processes.

In most patent offices, incoming patents are categorised and indexed using the
International Patent Classification (IPC) system, a complex hierarchical category
structure which covers all areas of technology. The IPC is a manually constructed
taxonomy, which has been updated and refined over the last 30 years and is used
in the patent offices of over 90 countries. It currently comprises five levels, of
increasingly fine granularity: sections, classes, subclasses, groups and subgroups.
The latest instantiation of the IPC (IPC-2015.01) comprises eight sections, about
130 classes, about 640 subclasses, around 7400 main groups and approximately
64,000 subgroups.

Most of the previous research on automatic patent classification has focused
on classification at the higher levels in the IPC hierarchy, i.e. class and subclass
levels. State-of-the-art classification results are around 62 % F1@51 on the subclass
level [22, 23]. With about 130 and about 640 different categories, respectively,
classification at the class and subclass levels is challenging, but computationally
feasible for most classification algorithms.

The more detailed group and subgroup levels are generally deemed extremely
difficult to classify properly for three reasons:

First, the categories on the lower levels generally show a large amount of overlap
[31], and only part of the information in the document is potentially useful in
distinguishing a category from related categories. Let us illustrate this with an

1‘F1@5’ denotes the F1 score evaluated at rank 5.
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example: subclass A47C comprises chairs, sofas, beds, and subclass A47J holds
kitchen equipment. On subgroup level, the differences between categories are more
subtle; they correspond to a small difference in the implementation or use of the
invention, e.g. subgroup A47C 17/12 covers sofas changeable to beds by tilting
or extending the armrests, while subgroup A47C 17/14 holds sofas changeable to
beds by removing parts only. Consequently, the overlap of textual features between
categories is likely to be much larger on the lowest level than on higher levels in the
hierarchy.

The issue of overlapping categories is further complicated by the peculiar
language use in patents. To increase the scope of legal protection, patent attorneys
use obfuscating language to describe the inventions, so that a mundane object like
a pump becomes a fluid transportation device. The abundance of vague terms in the
patent corpora makes it extra hard to distinguish between categories that already
have a high overlap. In previous research, D’hondt et al. [7] found that adding more
precise (phrasal) features such as skipgrams2 to unigram (word) features improves
classification at the IPC class level. It is not known if skipgrams would also capture
the supposedly more subtle differences on the lower levels in the hierarchy.

Second, the large number of categories on lower levels in the IPC results in
a computationally expensive classification task with severe scalability issues [1].
A common approach to deal with a large number of categories in a multi-level
taxonomy, which are characterised by fine-grained distinctions, is a hierarchical
classification method (as opposed to flat classification) [9]. Hierarchical classifiers
can consist of one integrated classifier that is trained with knowledge of the structure
of a taxonomy [2] or a set of classifiers that predict category labels in individual
nodes of a (predefined) taxonomy [26]. Integrated and distributed hierarchical
classifiers can be implemented in many different ways. In this chapter we will
use the most common architecture of a distributed classifier: the ‘local classifier
per parent node approach’ proposed by Silla and Freitas [26]. In this architecture
each parent node in the category hierarchy corresponds with a multi-class classifier,
which is trained to distinguish between the child nodes. The training material for
a classifier is selected through the ‘siblings’ policy: when training a classifier to
distinguish one daughter, e.g. subclass ‘A01B’ from all other daughters (subclasses)
in the same ‘world’, i.e. class ‘A01’, all examples of ‘A01B’ are selected as positive
training material, while the examples with labels ‘A01L’, ‘A01D’, . . . serve as
negative training material.

In the test phase, it is common to use a top-down class-prediction approach: when
a document is classified by a hierarchical system, the output of the classifier at the
parent nodes influences the classification conducted at the child nodes at the next
level of the hierarchy. The classification process can be accelerated substantially if

2‘Skipgrams’ are sequences of N words in a text, in which up to M intervening words may
be deleted. Thus, a 2-skip-2-gram is a sequence of two words (bigram) that are no more
than two words apart in a text. For example, from the example sentence ‘I like to drive.’, the
following set of 2-skip-2-grams can be generated: I_like, I_to, I_drive, like_to,
like_drive, to_drive.
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the procedure at the next lower level is limited to the daughters of the categories
that had the highest probability of being correct at the higher levels. When applied
to the group and subgroup levels in patent classification, where on average a
group comprises 12 subgroups, reducing the classifiers on lower levels to the most
promising mother nodes simplifies the classification procedure substantially, when
compared to the 64,000 subgroups that a flat classifier must distinguish.

Another advantage of a hierarchical classifier may be that, given the different
training sets and the differences in overlap between categories, classifiers on lower
levels might be able to select different and more focused features than classifiers
that operate on a higher level of a taxonomy. Consider a system that needs to
distinguish between ‘clothes’ and ‘gardening tools’ on a higher level and—within
the ‘clothes’ category—between ‘bikinis’ and ‘swimming trunks’ on the lower level.
Terms such as ‘water’, ‘cover’ and ‘texture’ will be informative features for the high-
level classifier, but less so for the low-level classifier. We would expect the latter
classifier to select more features that focus on the (smaller) differences between the
categories, such as ‘man’ versus ‘woman’, ‘top’, etc.

A drawback of top-down hierarchical classifier systems is that they are suscep-
tible to the propagation of error problem [18]: an erroneous hard decision at an
upper level will propagate down the hierarchy, making it impossible to arrive at the
correct low-level category label. Several solutions have been proposed to counter the
error propagation, of which the most common is to backtrack when the classification
scores on lower levels become too low. However, as is well known from syntactic
parsing, backtracking mechanisms quickly become unwieldy. As a consequence it is
claimed that single-level (flat) methods are more efficient than hierarchical methods,
but that hierarchical methods are generally more accurate [4].

The third reason classification on group and subgroup levels is generally deemed
too difficult is that the relative sparseness in the number of documents per category
creates training difficulties [11]. Most data sets available for research in text classi-
fication have a certain degree of skewness of their distribution. In the patent domain,
where technological categories move with different evolutionary speed—which
entails shifts in the number of applications per category over time [8]—we found
that a small proportion of the categories comprise the bulk of the documents [7]. The
impact of the skewness of the distribution of documents over categories on a specific
classification task is difficult to predict and may depend on the type of classifier that
is being used.

We hypothesise that the scalability issues mentioned by Benzineb and Guyot [1]
and the large degree of overlap between subgroups mentioned by Widodo [31] can
both be addressed by using hierarchical, rather than flat, classifiers. In this chapter
we examine the impact of flat and hierarchical approaches on the classification of
abstracts of patent applications on the deepest (subgroup) level in the IPC hierarchy.
In addition, we investigate the impact of different text representations (unigrams
versus skipgrams) on the classification performance. By performing experiments
on two data sets of different sizes, we will also address the issues caused by the
skewness of the distributions in data sets that are available for scientific research.
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In concrete terms, this chapter attempts to answer two fundamental questions:

1. How do flat and hierarchical classification methods compare in classifying on the
subgroup level with the WIPO-alpha set? For both methods we use the Balanced
Winnow classification algorithm. Following Chen and Chang [4], we simplify
the five-level hierarchical classification problem in the IPC hierarchy to a two-
level problem: subclass and subgroup. To avoid the problem of the propagation
of error, we do not make a selection of top-n categories on the subclass level, but
we will consider all possible branches in the classification tree. As proposed by
Dumais and Chen [9], we convert classification scores to posterior probabilities
for class membership. The posteriors from the subclass and subgroup levels are
then combined to obtain class membership probabilities at the subgroup level.

2. Can we improve the classification on subgroup level by adding phrasal features to
unigram features? Since previous research [7] indicated that phrasal features are
only effective given a large amount of training data, we conducted this analysis
not only on the (relatively small) WIPO-alpha corpus but also on the larger
CLEF-IP 2010 corpus.

By virtue of the fact that we perform experiments on two data sets of different
sizes, we will be able to shed light on the interaction between, and the relative
importance of, the three problems with patent classification mentioned in the
literature: too large a number of categories, sparseness of documents per category
and high similarity between categories.

11.2 Related Work

For a detailed overview of the literature concerning the impact of different text
representations on patent classification, we refer the reader to [7]. Here, we will
focus on the use of flat or hierarchical classifiers.

An extensive overview of the various methods used for hierarchical classification
in multiple application domains can be found in [26]. In this section we will limit
ourselves to approaches to text classification in the patent domain.

As mentioned in the introduction, methods for hierarchical text classification fall
into two subgroups: (1) methods that consist of one integrated classifier that uses
the (hierarchical) relations between the categories as additional information next to
textual content and (2) a multi-level approach with different sets of classifiers on
different levels in a taxonomy. In Sects. 11.2.1 and 11.2.2, we discuss literature
about applying both types of methods to classification in the patent domain.
In Sect. 11.2.3 we describe an approach for combining classification scores in
hierarchical classification, which has not yet been used in the patent domain before.
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11.2.1 Training One Classifier with Information
from the Hierarchy

Cai and Hofmann [2] propose a hierarchical classification method based on support
vector machines (SVM). Their method does not perform classification in two or
more steps, but encodes the hierarchical information in the description of categories
and then performs flat classification. Cai and Hofmann [2] do this by extending the
multi-class SVM algorithm with the possibility of representing each category with
an attribute vector instead of a single category label. They encode the hierarchical
relationships between the categories as attributes for the categories. They compare
their hierarchical implementation of SVM to standard (flat) SVM in classification on
the main group level for the WIPO-alpha collection. They find that their hierarchical
approach gives similar accuracy to the standard SVM approach, but with the
hierarchical approach the incorrectly assigned categories are closer to the correct
categories in the taxonomy than with the standard approach.

Wang et al. [30] combine a top-down hierarchical classifier (as will be presented
in Sect. 11.2.2) with a meta-classifier to arrive at more balanced rankings on the
lowest level in a hierarchy. The meta-classifier takes meta-samples as features.
These samples are feature vectors that encode information on the ‘path’ through
the hierarchy to arrive at a low-level category, rather than the textual content of that
category. They collect such information as the scores of the related base classifiers,
the number of nodes on a path, the average scores of nodes along a path, etc., in a
sparse vector. Wang et al. [30] evaluate their method on the [18] data set and find
that it achieves a similar accuracy as flat classification systems.

11.2.2 Two-Step Classification

In the NTCIR-6 track, a special task was devoted to the two-level classification
taxonomy used in the Japan Patent Office. The category set in the first level is an
extension of IPC, in the form of a set of thematic categories. For example, the theme
2C088 is about ‘pinball game machines’ [18]. The categories on the second level
denote the ‘viewpoint’ of the invention. Examples of viewpoints are purpose, means,
function and effect. Each theme has a set of viewpoints and each viewpoint may
consist of several elements, which are organised in a tree structure. For example, the
theme 2C088 has a viewpoint AA ‘machine detail’, which has the element AA01
‘vertical pinball machines’ [18]. The viewpoints with their elements are encoded
as so-called F-terms in the patent. Li et al. [18] compared flat classification of
F-terms using SVM to hierarchical classification using a variant of SVM called
H-SVM [3]. They find that their method for hierarchical classification performed
much worse than what they could achieve with flat classification. They suggest that
the hierarchical relations among the classes are too complicated for the H-SVM
algorithm.
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Another branch of hierarchical classification systems explicitly exploits the
hierarchical properties of the IPC taxonomy, either through user interaction or by
combining classification output on different levels to predict labels on subgroup
level.

The myClass classification tool [13] is a neural network implementation of the
Balanced Winnow algorithm and achieved the highest accuracy in the CLEF-IP
2010 classification task (on subclass level) [22]. This tool uses a semi-automatic3

method for classification on subgroup level [12]. A user is asked to select the
correct labels from classification output on an intermediate level, such as subclass
or main group. In a second step, the tool outputs subgroup labels within the selected
(intermediate) categories.

Tikk et al. [28] propose a taxonomy-driven architecture for text classification
called HITEC. They model the tree structure of the class hierarchy as a neural
network. The categorisation of an incoming document is performed from the top
of the hierarchy downwards. Going from top to bottom in the hierarchy, each
level is followed by a so-called authorisation layer. The classifier determines the
classification score of the document for all active category nodes at each level. Based
on this score, the authorisation layer decides which categories on the next level are
activated. In doing so, the authors use a novel relaxed greedy algorithm: Rather
than activating only the category with the highest relevance score at each level, the
system allows multiple categories to be active if their label scores are above a given
threshold and within a given margin of variation from the highest label score. By
thus widening the search, the authors expect to counter the propagation of error.
However, the classification scores from the higher levels are not taken into account
in calculating the classification scores for the lower levels. Consequently, the final
rankings are based solely on the similarities between the test documents and the
category models on the lowest levels, which might suffer from the fact that very
few training documents are available for a large proportion of the categories. Tikk
et al. [28] evaluate their method on the WIPO-alpha set. They classify documents
on three levels: class, subclass and main group. They obtain excellent results with
53.25 % accuracy at the subclass level, which is 12 percentage points higher than
the best-scoring setting reported in the reference paper by Fall and Benzineb [11].
On the main group level, Tikk et al. [28] achieve an accuracy of 36.89 %.

Chen and Chang [4] extend the work done by Tikk et al. [28] and were—to
our knowledge—the first to classify on subgroup level. They develop a three-phase
classification method which combines flat SVM classifiers at two different levels of
the IPC hierarchy, namely, subclass and subgroup level, with a KNN classifier on the
subgroup level. Their method takes four parameters k1–k4. In the first phase, a test
document is classified on subclass level and a predetermined number of category
labels are returned (variable k1). These subclass categories are then pooled together

3In its latest version myClass offers fully automatic classification on subgroup level [14]. However,
as myClass is proprietary software, a detailed technical description of its current implementation
has not been published.
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to form a large ‘world’ in which a classifier is trained, this time on subgroup level.
In the second phase, a predetermined number of category labels on subgroup level
are returned (variable k2). The classifier that is needed for the first step can be built
beforehand, but the classifier for the second step is variable and must be learned
dynamically after the top-k1 subclasses have been identified. In the third phase of
the algorithm by Chen and Chang [4], each subgroup from the top-k2 of subgroups is
split in k3 clusters of documents using k-means clustering. Then, cosine similarity is
calculated between the test document and the mean of each cluster. A KNN classifier
with k D k4 is used to choose the most similar subgroup for the test document, i.e.
the subgroup category with the most occurrences in the k4 most similar document
clusters.

In a pretest phase, Chen and Chang [4] examine ‘almost all combinations’
(p. 11) of the parameters k1–k4 to determine the optimal combination with the
highest accuracy. For this pretest, they use a subset of 400 documents from the
test data. Their best-scoring setting (k1 D 11, k2 D 37, k3 D 5, k4 D 169)
achieves a 36.07 % accuracy at the subgroup level.4 Since they did not use a held-
out development set for parameter tuning, these results can be considered an upper
bound for classification performance with their three-phase method. For the sake
of comparison, Chen and Chang [4] also re-implemented the HITEC classifier by
Tikk et al. [28] and, using this system, they achieve 30.2 % for the same test set on
subgroup level.

11.2.3 Combining the Classification Scores on Different Levels
in the Hierarchy

As we saw in the previous two subsections, none of the approaches in previous
work on hierarchical patent classification combines the scores of classifiers on
different levels. The common approach is to let the output of the high-level classifier
determine which classifiers on lower levels are activated [28], or what training
material should be selected to train a classifier on the lower level [4]. In both
cases, individual category scores do not have a direct impact on lower levels in
the hierarchical classifier.

If we look outside the patent domain, however, we can find methods that combine
classifier scores from different levels in a hierarchy. An example of this in a text
classification task is [9], who performs Web page classification on a small two-level
corpus of (summarised) Web pages, which consists of 13 categories on the first
level and 150 categories on the second level. In order to be able to combine scores
from different classifiers, they first derive posterior probabilities from SVM output
scores. They then proceed to compare the impact of (1) thresholding on higher levels
in the hierarchy (effectively minimising the number of categories to be examined

4They also report the accuracy of their algorithm without the third step (k1 D 11; k2 D 1): 20.2 %.
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at the lower level) with (2) combining higher- and lower-level probabilities through
multiplication and then thresholding on the final probabilities. Both methods achieve
similar final rankings (of the top N results). Dumais and Chen [9] also compare
the hierarchical systems with a flat (baseline) classification system. They find that
hierarchical methods significantly outperform that baseline system.

11.3 Data Selection and Processing

11.3.1 Data Selection

In this section we describe the two patent corpora used for the experiments presented
in Sects. 11.5 and 11.6. The WIPO-alpha data set is a well-known benchmark
for patent classification, which was first made available by the World Intellectual
Property Organization (WIPO) in 2002. Although it is a clean and often-used
data set, it is fairly small compared to present standards. We therefore opted to
run a second series of experiments on the CLEF-IP 2010 data set, which is more
representative of a real-life patent corpus.

11.3.1.1 WIPO-Alpha Data Set

The English WIPO-alpha collection5 consists of 75,250 patent documents (46,324
for training and 28,926 for testing) with their IPC category labels on subgroup
level.6 The documents were published between 1998 and 2002 and are labelled with
the 7th version of the IPC.

From each patent document, we extracted the abstract section, using the infor-
mation in the XML source. Since some subgroups have little to no training data, we
used the same data selection criteria as [4]7: we only selected subgroups that have
a minimum of seven training documents. This selection step resulted in a corpus of
22,113 documents (12,883 for training and 9230 for testing). The corpus statistics
after document selection in Table 11.1 show that there is a large variation in the
number of documents (abstracts) in the different categories, both on subclass level
and subgroup level. Moreover, 628 of the 1140 categories on subgroup level contain
fewer than ten documents. Having only seven documents as positive examples for
training a classifier is on—or below—the lower bound of what is needed to construct

5The collection can be downloaded at http://www.wipo.int/classifications/ipc/en/ITsupport/
Categorization/dataset/index.html.
6Since IPC labels are hierarchical, i.e. contain information on parent nodes in the label, we can
easily extract subclass labels from the subgroup labels.
7Unlike [4], we used the official training/test split as determined by the EPO. Our category selection
was based on frequency counts over the training set only.

http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/index.html
http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/index.html
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Table 11.1 Corpus statistics on the WIPO-alpha corpus after sample selection

# of cat av. # doc in cat (stdev) av. # daughters (stdev)

Subclass 339 38.00 (53.19) 3.36a (4.36)

Subgroup 1140 11.30 (7.18) n.a.
a128 subclasses only have one subgroup daughter in the training set

a useful category model. But even with this lenient criterion, we were forced to
discard more than 70 % of the documents in the WIPO-alpha collection.

All documents in the WIPO-alpha collection come with one primary (subgroup)
category label (determining the field of application in which the invention is novel)
and may have several secondary categories. In the following experiments, we only
take the primary category labels into account, thus rendering the WIPO-alpha
experiments into a mono-label, multi-class hierarchical classification problem.

11.3.1.2 CLEF-IP 2010 Data Set

The CLEF-IP 2010 data set8 is a subset of the MAREC corpus9 and was released
as part of the CLEF-IP 2010 classification and prior art retrieval tracks. It features
2.6 million patent documents from the European Patent Office (EPO). These three
million documents with content in English, German and French pertain to over one
million patents,10 from 1976 to 2002.

As with the WIPO-alpha corpus, we first extracted all abstracts from the patent
documents and then applied data selection on the corpus. We used more stringent
selection criteria than for the WIPO-alpha set: only subgroups with a minimum
of 50 documents were included in the corpus subset. This cut-off was arbitrarily
chosen to avoid data sparseness in the subgroup categories on the one hand, while
on the other hand minimising the number of one-daughter subclass worlds. The
resulting subset was then divided into training/test corpora with the same ratio as
the WIPO-alpha split (60/40), with the additional criterion that all subgroups in the
training set must contain at least 20 documents. This resulted in a corpus subset of
991,805 documents and a training and test set of 595,080 and 396,725 documents,
respectively. Statistics on the CLEF-IP corpus after sample selection are given in
Table 11.2. It shows that in the fairly large CLEF-IP data set, the distribution is
very skewed. When making the train/test split, we tried to minimise the number
of categories that might suffer from data sparseness. We therefore chose a split
where only 493 of the 19,411 subgroup categories contain fewer than 30 training

8Available at http://www.ifs.tuwien.ac.at/~clef-ip/download/2010/index.shtml#data.
9Available at http://www.ifs.tuwien.ac.at/imp/marec.shtml.
10Unlike the WIPO-alpha data set, the CLEF-IP data set contains documents that refer to the same
patent but in various stages of the granting process. Consequently, some of the extracted abstracts
may be similar to each other.

http://www.ifs.tuwien.ac.at/~clef-ip/download/2010/index.shtml#data
http://www.ifs.tuwien.ac.at/imp/marec.shtml
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Table 11.2 Corpus statistics on the CLEF-IP 2010 subset corpus after sample selection

# of cat av. # doc in cat (stdev) av. # daughters (stdev)

Subclass 575 8028.4 (20,512.2) 33.8a (63.4)

Subgroup 19;441 237.5 (434.8) n.a.
a39 subclasses only have one subgroup daughter in the CLEF-IP 2010 subset

documents. For the CLEF-IP corpus, it also holds that fairly lenient data selection
criteria in designing a classification experiment result in discarding almost 70 % of
the documents. Please note the size difference between the two corpora: even after
data selection there is—on average—six times more data available for a category on
subgroup level in the CLEF-IP 2010 corpus than there is for a subclass category in
the WIPO-alpha corpus.

Patent documents in the CLEF-IP 2010 data set may contain multiple labels
and—unlike the WIPO-alpha set—have no information on primary versus sec-
ondary labels. We therefore included all labels, rendering the CLEF-IP experiments
a multi-label, multi-category classification task. In consequence, the similarity
between categories on both levels is likely to be higher since categories may share
some training documents as positive examples during training.

11.3.2 Text Preprocessing and Feature Generation

While the WIPO-alpha corpus is a fairly clean text corpus and requires little
preprocessing effort, the CLEF-IP 2010 corpus contains several data conversion
errors which were solved using regular expressions.

After removing all XML markup from the extracted abstracts, we ran a Perl script
to divide the running text into sentences, by splitting on end-of-sentence punctuation
such as question marks and full stops. In order to minimise incorrect splitting of
the technical texts that contain many acronyms and abbreviations, the Perl script
was supplied with a list of common English abbreviations and a list containing
abbreviations and acronyms that occur frequently in technical texts,11 derived from
the Specialist lexicon.12

The sentences in the WIPO-alpha and the CLEF-IP corpora were then further
processed to generate lemmatised unigrams and skipgrams. In previous research [6,
7], we found that classification accuracy (on class level) is more improved by adding
skipgrams which are filtered for specific parts of speech than by adding bigrams or
dependency triples generated by a parser.

11Both the splitter and abbreviation file can be downloaded from https://sites.google.com/site/
ekldhondt/downloads.
12The lexicon can be downloaded at http://lexsrv3.nlm.nih.gov/Specialist/Summary/lexicon.html.

https://sites.google.com/site/ekldhondt/downloads
https://sites.google.com/site/ekldhondt/downloads
http://lexsrv3.nlm.nih.gov/Specialist/Summary/lexicon.html.
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To generate unigram and skipgram features, the preprocessed sentences were
tagged using an in-house PoS tagger [29].13 The tagger’s statistical language models
have been trained on the annotated subset of the British National Corpus. We opted
for this particular tagger because it is highly customisable to new lexicons and word
frequencies, which is essential when dealing with the patent domain: the language
usage in patent documents can differ greatly from that in other genres. For example,
the past participle said is often used to modify nouns as in ‘for said claim’. While
this usage is very rare and archaic in general English, it is a very typical modifier in
patent language. Consequently, a PoS tagger must be updated to account for these
differences in language use. To this end we adapted the tagger with word frequency
information and associated PoS tags from the AEGIR lexicon.14 We did not retrain
the N-gram language model of the tagger, since no PoS-tagged patent texts are
available for that purpose. The words in the tagged output were also lemmatised
using the AEGIR lexicon.

From the tagged output, we then generated two text representations using the
filtering and lemmatisation procedure described in [6]: PoS-filtered words (only
allowing nouns, verbs and adjectives) and PoS-filtered 2-skip-2-grams (only allow-
ing combinations of nouns, verbs and/or adjectives). In the experiments described
in this chapter, unigrams will refer to the PoS-filtered words only, while unigrams
C skipgrams will refer to the combination of PoS-filtered words and PoS-filtered
2-skip-2-grams.

11.4 Classification Algorithms

In this section we first describe the training algorithm of the classifiers in both
the flat and hierarchical classification approaches. Section 11.4.2 describes our
approach to hierarchical classification on subgroup level in the IPC hierarchy.

11.4.1 Balanced Winnow Algorithm

We opted to use the Balanced Winnow classification algorithm implementation in
the Linguistic Classification System (LCS), because it has been shown in previous
work to be very fast and effective for large-scale text classification problems and to
yield state-of-the-art results on text classification problems with many categories [6,
7, 16].

13Tokenisation was performed by the tagger.
14The AEGIR lexicon is part of the AEGIR parser, a hybrid dependency parser that is designed to
parse technical texts, with a focus on patent text. For more information, see [20].
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Preceding the actual training, there is a two-step term selection phase in which
the most informative terms are selected for each category. In the first step (global
term selection), selection is based on global frequency information, i.e. a term must
appear in at least three documents in the training set and at least twice in those
documents. In the second step (local term selection), we used the LTC algorithm
[25] to calculate TF-IDF scores for the features per category. We then selected the
top 1000 most informative features per category and aggregated them into the initial
category models (a.k.a. class profiles).

(Balanced) Winnow is a mistake-driven learning algorithm, akin to the per-
ceptron algorithm. The effect of learning during training is determined by four
parameters: a promotion parameter ˛, a demotion parameter ˇ and two threshold
parameters �C and ��, which determine a threshold ‘beam’.

In Balanced Winnow, each feature is given two weights (wC and w�), the
sum of which is the Winnow weight. The terms are initialised with their winnow
weights set to their TF-IDF scores. During training the weights wC and w� are only
updated when a mistake occurs in classifying the training documents. The algorithm
distinguishes two types of mistakes: (1) true label is not found and (2) wrong label is
assigned. In the former case, the weights wC of the active features are promoted by
multiplying them with ˛, while the weights w� of the active features are demoted
by multiplying them with ˇ (thus increasing the final Winnow weights of the active
features). In case of error (2), the weights wC of the active features are demoted by
multiplying them with ˇ, and the weights w� are promoted by multiplication with
˛. The ‘beam’ determined by the � parameters delineates an area where correct
labelling is still considered a type 1 error, which leads to more weight updates.

In the test phase, when classifying a document d, the term vector representing
d is checked against each category model, a.k.a. class profile, in the classifier and
assigned a Winnow score for that category. This score is the sum of the Winnow
scores for the individual terms in the term vector. In Sect. 11.4.3, we describe how
we tuned the Winnow parameters.

11.4.2 Hierarchical Classifiers

11.4.2.1 System Architecture of the Hierarchical Classifiers

Following [4], our hierarchical approach to classification operates in a downward
two-level hierarchy: On the first level, there is one classifier trained on a corpus-wide
training set, annotated with IPC subclass information. In the case of the WIPO-alpha
data set, this classifier distinguishes between 339 different (subclass) categories;
for the CLEF-IP 2010 data set, it distinguishes between 575 different (subclass)
categories. Hereafter we will refer to these classifiers as the subclass classifiers.



312 E. D’hondt et al.

Fig. 11.1 Structure of a hierarchical classifier

Fig. 11.2 Structure of a flat classifier

On the second level, for each subclass category a separate classifier is trained,
which differentiates between the subgroup daughters in that subclass world.15 A
subgroup classifier is trained only on the training data available in a particular
subclass world and yields classification scores for the different subgroup categories
in that world. As was shown in Tables 11.1 and 11.2, the number of daughters
in different subclass worlds can vary greatly. In our system the patent documents
are always assigned a label on subgroup level; we do not assign labels on the
intermediate group level. Figures 11.1 and 11.2 illustrate the architectures of a
hierarchical and flat classifier, respectively. Each box in Fig. 11.1 refers to an
individual flat classifier.

11.4.2.2 Normalisation and Converting Scores to Probabilities

During the test phase, a vector representing a test document is first scored by the
subclass classifier and then by each of the subgroup classifiers. To arrive at a final
ranking of subgroup labels, the scores of the classifiers on the two levels must be
combined in a way that takes into account the differences in scoring ranges between
the various classifiers.

We achieve this by transforming the Winnow scores of each document for each
category into an estimate of the posterior probability that the document belongs in
a given category. For that purpose, we used the sigmoid transformation proposed
by Platt [24]. In the case of the subclass classifier for the WIPO-alpha set, each

15Please note that subclass worlds are the default context for training subgroup classifiers. In
Sect. 11.5 we will also report additional experiments where subgroup categories were trained in
larger contexts, i.e. class and section worlds.
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document obtains 339 Winnow scores for as many subclasses, only one of which is
correct. This leads to a substantial imbalance in the data for the logistic regression
(for each relevant ‘1’ score, there are 338 ‘0’ scores) which we accounted for by the
error weighting in [15] which we integrated in the implementation for finding the
sigmoid proposed in [19].

Although the transformation of Winnow scores to probabilities by means of a
continuously non-decreasing function cannot alter the rank order of the subclasses,
it can increase or shrink the distance between the values assigned to subclasses.
This becomes relevant when combining the probability scores derived from the
subclass classifier with the probability scores from the different subgroup classifiers
to achieve a final ranking on subgroup level.

To avoid a bias caused by the differences in score ranges between the subclass
and the various subgroup classifiers—the subclass classifier scores generally span a
wider range than those given by the subgroup classifiers—we decided to normalise
the Winnow scores before transforming them to posterior probabilities. This was
done using Batch Normalisation: for each classifier we calculated a linear function
through which the Winnow scores for the training documents were mapped into
the range Œ0:0; 10:0�. These linear functions were calculated by running a fivefold
cross-validation over the training data available for that classifier and then mapping
the complete set of scores into a range of 0 to 10 with the (original) maximum and
minimum Winnow score in the complete set as anchor values.

A second bias that we wished to avoid is caused by the difference in the amount
of training data on the two different levels: from Tables 11.1 and 11.2, it can be seen
that the average number of documents available for training subclass classifiers is
much larger than the number of documents for training subgroup classifiers. From
this we can conjecture that the subclass classifier and the corresponding sigmoid
function trained on subclass data are potentially better (in)formed than the individual
classifiers and the corresponding sigmoids for the different subclass worlds. This
hypothesis was confirmed by an analysis of the score distributions for categories on
subgroup level. As mentioned above, Winnow scores from the subgroup classifiers
are generally not widespread, and we found that—even after normalisation—the
scores of relevant and irrelevant categories were quite similar. Consequently, the
sigmoids fitted on this data may not yield accurate transformations from Winnow
scores to posterior probabilities. We experimented with different definitions of
the ‘worlds’ for training subgroup classifiers in which more training data was
available, but we did not find significant improvements in the eventual classification
performance.

We therefore decided to fine-tune the balance between the subclass and subgroup
probability estimates to arrive at an optimal final ranking on subgroup level. We
assigned weights by raising the subclass probabilities to power � and the subgroup
probabilities to power ı, respectively. For both data sets, we performed full-grid
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Table 11.3 Winnow
parameters for hierarchical
and flat classifiers for the
WIPO-alpha data set,
determined after fivefold
cross-validation tuning

Subclass (hierar) Subgroup (hierar) Subgroup (flat)

˛ 1:06 1:03 1:06

ˇ 0:91 0:98 0:91

�C 2:0 2:0 2:0

�� 1:0 1:0 1:0

Table 11.4 Winnow
parameters for hierarchical
and flat classifiers for the
CLEF-IP 2010 data set,
determined after fivefold
cross-validation tuning

Subclass (hierar) Subgroup (hierar) Subgroup (flat)

˛ 1:02 1:02 –

ˇ 0:98 0:98 –

�C 2:0 2:0 –

�� 0:5 0:5 –

searches16 on subsets from the cross-validation folds in the training procedure.
Interestingly, similar patterns emerged for both the WIPO-alpha and the CLEF-IP
data sets: To reach optimal ranking, the subclass probabilities should be raised to a
relatively high power, while the subgroup probabilities should be raised to a very
low power.17 We arrived at the optimal balance by raising the subclass probabilities
to the power of 1.5 (� ) and the subgroup probabilities to the power of 0.2 (ı).

11.4.3 Tuning

The classification parameters for the subclass classifiers, the subgroup classifiers
and the flat classifiers were determined individually by tuning through fivefold
cross-validation on a subset of the training data. All subgroup classifiers use the
same parameters. These are the parameters that yielded the best overall results in an
oracle experiment with fivefold cross-validation.18 The resulting parameter settings
are in Tables 11.3 and 11.4. With the exception of ��, the parameters for the subclass
and subgroup classifiers in both corpora are very similar.

Note that we do not report any parameters for a flat subgroup classifier on
the CLEF-IP 2010 data set: as mentioned in the introduction, the complexity
of a 19,441-category (multi-label) classification problem causes severe scalability

16� 2 f0:5; 1:0; 1:5; 2:0; 2:5; 3:0; 3:5; 4:0g, ı 2 f0.1,0.2,0.3,0.4,0.5g. For the WIPO-alpha
hierarchical classifier, we optimised on success@rnk1. In the case of the (multi-label) CLEF-IP
classifier, we optimised on the F1 accuracy score.
17By raising them to a high power, subclass probabilities ‘shrink’, i.e. result in lower probabilities
which increases the distance between the high-scoring and intermediate labels. For the subgroup
classifiers on the other hand, intermediate probabilities (from 0.6 onwards) are transformed into
extremely high scores (between 0.9 and 1.0).
18In an oracle setting, documents are only tested against subgroup classifiers from the relevant
subclass world(s).
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issues [1]. Even on a server with two Intel© Xeon© E5-2660 Processors with 256
GB memory, we were not able to complete this classification task.

11.5 Flat Versus Hierarchical Classification Methods

In this section we investigate which classification approach is best suited to classify
documents on the subgroup level of the IPC. Since we were not able to construct a
flat classifier on subgroup level for the CLEF-IP 2010 data set, our analysis will be
limited to the WIPO-alpha data set. In this section we will only consider unigram
features; the relative merit of the different text representations will be discussed in
Sect. 11.6. For the sake of comparison, we have included the most recently reported
results, i.e. from [4], who also performed a subgroup classification on the WIPO-
alpha set. It should, however, be noted that our train/test split differs slightly from
theirs, which makes direct comparison impossible.

Table 11.5 summarises the success@rank scores for the odd numbers of the
top 11 ranks of both the flat and hierarchical classifiers on the official test set of
the WIPO-alpha corpus. The scores are calculated over the final rankings of 1140
subgroup category labels.

The results show that the flat and hierarchical classifiers achieve similar accuracy.
We determined the significance of the differences from the confidence intervals:
given the sample size, i.e. number of documents in the test set, the 95 % confidence
interval for the success@rnk1 is ˙0.95 % for both the flat and the hierarchical
classifiers. We find that only from rank 9 onwards, the results do no longer fall
in each other’s confidence intervals, i.e. the differences are significant.

Our two-step classifier outperforms the two-step classifier of [4] by a large
margin. With their additional third step, they reach a higher performance (36.1 %).
However, since this result was obtained with a system that was tuned on the test set
(see Sect. 11.2), it cannot be claimed that their three-phase method performs better
than our two-step method. We will return to this finding in the discussion.

Unlike [9], we find similar performance for the flat and hierarchical
approaches—at least until rank 9—while we had expected the hierarchical approach
to outperform its flat counterpart: both approaches suffer from the same problem
with sparse training material on subgroup level, but the flat classifier has a more

Table 11.5 Classification results of hierarchical and flat classifiers on subgroup level for WIPO-
alpha test set using only unigram features

success@rnk 1 3 5 7 9 11

Hierarchical classification (%) 31.5 46.8 54.5 59.5 63.1 65.8

Flat classification (%) 31.8 46.6 53.9 57.9 61.0 63.6

Chen and Chang, two-step classification (%) 20.2

Chen and Chang, with additional 3rd step (%) 36.1
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Table 11.6 success@rnk scores for subclass and subgroup classifiers in the hierarchical classifier
on the WIPO-alpha set

success@rnk 1 3 5 7 9 11

Subclass classifier (%) 50.7 70.0 76.9 80.5 82.7 84.3

Chen and Chang subclass classifiera (%) 43.3 67.5 76.0 81.5 85.8 88.5
aPlease note that these results are reported over a different test set (400 documents) and
consequently are indicative for but not directly comparable to the other reported scores

Table 11.7 success@rnk1 scores for oracle runs on the WIPO-alpha set

Oracle runs success@rnk1 Chance level

All subgroup categories 58:3 % 26.9 %a

Subgroup categories with 1 sister 87:0 % 50:0 %

Subgroup categories with 2 sisters 68:6 % 33:3 %

Subgroup categories with �3 sisters 56:3 % 25:0 %
aWe calculated the micro-averaged chance level (in an oracle setting) by summing up the chance
level of all documents (in the relevant subclass world) and then averaging over the number of
documents

complex classification task (1140 vs. 11 categories on average for the subgroup
classifiers in the hierarchical approach).

In the remainder of this section, we analyse the performance of the hierarchical
classifier by analysing the performance of its individual components. First, we
consider the subclass classifier on the first level in the hierarchy. This classifier
achieved 50.7 % success@rnk1, which is similar to the state-of-the-art classification
results on subclass level reported by Tikk et al. [28] and better than the subclass
classifier of [4] (Table 11.6).

The 339 individual subgroup classifiers are trained on significantly less data than
the subclass classifier on the first level. We evaluated these subgroup classifiers
in ‘oracle runs’, i.e. runs in which the documents were only tested against
subgroup models within the correct subclass world, effectively assuming a perfect
classification on the first level in the hierarchy. The results of these experiments are
given in Table 11.7. Please note that the last three lines show the performance of
different sets of subgroup classifiers, grouped according to the number of daughters
present in the subclass world.

In general, the subgroup classifiers seem to be of good quality and perform quite
well (in an oracle setting). So given the good performance in smaller, contained
worlds, how do we account for the relatively low accuracy (see Table 11.5) when
the subgroup classifiers are used in the hierarchical setting where a document is
scored by all subgroup classifiers?

First, there is the well-known problem of propagation of error: Table 11.6 shows
that for 50 % of the test documents, the highest scoring subclass category is the
correct one. For an additional 20 % of the test documents, the correct subclass
category can be found at rank 2 or 3, while the correct labels of the remaining
30 % lie scattered at lower ranks. Given the difficulties in fitting sigmoids to



11 Patent Classification on Subgroup Level Using Balanced Winnow 317

Table 11.8 Corpus statistics for subclass, class and section worlds in the WIPO-alpha training set
after sample selection

av. size (stdev) av. # daughters # of categories with one

# of cat in # doc (stdev) subgroup daughter

Subclass 339 38.00 (53.19) 3.36 (4.36) 128

Class 107 120.40 (179.48) 10.65 (15.08) 18

Section 8 1610.38 (945.85) 142.5 (77.8588) 0

subgroup classifier output (reported in Sect. 11.4.2.2), the probability estimates on
the subgroup level may not be sufficiently powerful to repair the ‘errors’ made by
the subclass classifiers.

Second, there are reasons for doubting whether classification at the subgroup
level is at all feasible: Eisinger et al. [10] point out that in quite some cases
patent documents should have additional labels on the subgroup level and that
the labels that have been manually assigned by the patent examiners are to some
extent arbitrary. Given the inconsistencies in the manually assigned labels on a level
with fine-grained distinctions between categories, it is extremely unlikely that an
automatic system can reproduce the manual labels with 100 % accuracy.

Third, our manner of training may have introduced an overlap between the class
profiles19: the analysis of the class profiles of the subgroup categories in the flat and
hierarchical classifiers shows that class profiles in the flat classifier generally contain
more terms and, more specifically, they contain more ‘negative terms’. Terms with
high negative Winnow weights characterise those unigram features that describe the
rest of the corpus, not the category itself. They are especially useful in countering
the positive weights of features that occur in many documents. Since the subgroup
classifiers are trained in isolation, i.e. each in their own (small) subclass world with
no information on the rest of the corpus, the models often do not contain enough
negative terms to distinguish between categories in the testing phase.

The smaller number of negative terms (compared to positive terms) in the
subgroup profiles for the hierarchical classifier indicates the lack of negative training
material for the subgroup categories in the subclass worlds. Given the high number
of single-daughter worlds (see Table 11.1), this is not surprising. We therefore
hypothesised that training in larger contexts is better for optimal performance
in a hierarchical system. To examine this hypothesis, we performed additional
experiments in which subgroup classifiers were trained in larger ‘worlds’, i.e. the
classifiers for individual subgroup categories were trained against all other subgroup
categories in the same class (C) or section (S) in the IPC hierarchy. Table 11.8 shows
corpus statistics on these larger worlds.

Although the different data selection criteria result in larger class profiles (with
a higher ratio of negative terms compared to positive terms), Table 11.9 only shows

19Class profiles are the category models which comprise the most relevant terms for each category
with their corresponding Winnow weights.
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Table 11.9 Classification results for WIPO-alpha test set after different training data selection

success@rnk 1 3 5 7 9 11

Trained on SC world (%) 31.5 46.8 54.5 59.5 63.1 65.8

Trained on C world (%) 32.0 47.4 55.1 60.0 63.3 66.1

Trained on S world (%) 32.1 48.4 55.9 60.5 63.8 66.4

The first row is the same as the first row of Table 11.5

marginal and non-significant improvements between the different runs. Analysis of
the class profiles of the categories trained in the class and section worlds shows that
the added terms tend to have low Winnow weights and have relatively little impact
on classification performance.

So, even with more negative training data, the hierarchical classifier does not
rise above the performance level of the flat classifier. We must conclude that the
overlap between the categories on the lowest levels and the small number of training
documents in many ‘worlds’ are an insurmountable problem in the WIPO-alpha
training/test set.

It might be argued that the classification at subgroup level should not be
approached by means of a classifier that relies on some kind of training, simply
because of the lack of sufficient amounts of training data. Chen and Chang [4]
obtained a substantial improvement on the subgroup level by using a KNN classifier.
We conducted a large number of experiments in which we used the features
selected for the Winnow classifier in two different KNN classifiers, TiMBL [5] and
sklearn [21]. However, we were not able to obtain a better classification accuracy
than with the Balanced Winnow algorithm.

As mentioned above, the WIPO-alpha set is hardly representative of a real-life
task. The CLEF-IP 2010 corpus is much larger, both in the number of documents
and in the number of categories that must be distinguished on subclass and subgroup
levels. While flat classification on such a set is not feasible for our classification
algorithm, we expect that the hierarchical approach, which is much more scalable,
will yield similar results (as a hypothetical flat one), since that was the case for the
WIPO-alpha corpus. Furthermore, the larger amount of data opens possibilities to
examine the impact of more precise text representations, which might help to solve
the problem of the high overlap between the subgroup categories.

11.6 The Impact of Phrasal Features

In this section we examine the impact of different text representations on classifica-
tion accuracy for different levels of the IPC hierarchy. For this series of experiments,
we used the CLEF-IP 2010 corpus in addition to the WIPO-alpha data set, since
the data sparseness in the WIPO-alpha corpus is especially problematic for the
inherently sparse skipgram features. Furthermore, the CLEF-IP 2010 corpus is
much more representative for the patent classification task than the WIPO-alpha
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benchmark, both in terms of the number of documents and the number of categories
available.

Our goal is twofold: (1) We will examine the (relative) improvements of adding
skipgrams for the subclass and subgroup classifiers. Our hypothesis is that on the
subgroup level, in which the categories tend to overlap more, the more precise
distinctions provided by the phrasal features will have a larger impact than on the
subclass level. (2) We will compare the effects of adding features for both the CLEF-
IP 2010 and the WIPO-alpha set in order to obtain a better understanding of how
much training material is needed for phrasal features to be effective. It should be
noted that in this section we use a different evaluation measure than in the previous
section: up to now we have reported success@rnk for the sake of comparison
with [4]. Since the CLEF-IP 2010 set is a multi-label set with a varying number
of relevant categories per document, this measure is no longer adequate. We will
therefore report our results using the well-known precision, recall and F1-measures.
Relevant output rankings from classification experiments discussed in the previous
section have been (re-)evaluated using these metrics.20

As is shown in Table 11.2, our train/test split for the CLEF-IP 2010 corpus
consists of 595,080 and 396,725 documents, respectively, with 575 categories on
subclass level and 19,441 on subgroup level. Unlike the WIPO-alpha documents,
each document in the CLEF-IP 2010 set may have multiple relevant category labels.
In the case of multi-label classification, the LCS can return a varying number of
categories per document. This is determined by three parameters: (1) a threshold that
puts a lower bound on the classification score (in this case probability) for a class to
be selected, (2) the maximum number of classes selected per document (‘maxranks’)
and (3) the minimum number of classes selected per document (‘minranks’). Setting
minranks D 1 assures that each document is assigned at least one category, even if
all categories have a score or probability below the threshold. We used the cross-
validation folds to determine the optimal evaluation configuration, which resulted
in the following setting: minranks D 1, threshold D 0:8 and maxranks D 8 and 20
for the subclass and subgroup classifiers, respectively.

First we study the impact of adding skipgrams on subclass level. Table 11.10
shows the precision, recall and F1 scores for the CLEF-IP 2010 test set (left-hand
side) and WIPO-alpha data set (right-hand side), respectively. Please note that these
scores cannot be directly compared as they are (a) based on different data sets with
a different number of categories to be distinguished and (b) a substantially different
classification problem: classifying the WIPO-alpha set is a mono-label classification
task, while the CLEF-IP 2010 set is multi-label. The scores should rather be seen as
an indication of the difficulty of classifying on a certain level in the IPC hierarchy.

For both the WIPO-alpha and CLEF-IP 2010 test sets, we can see an improve-
ment of classification performance on subclass level when skipgrams are added.

20Since we defined the classification task on the WIPO-alpha set as a mono-label task where
the classifier must return one label, the reported (micro-averaged) scores will always yield equal
precision and recall scores.
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Table 11.10 Classification results of unigrams-only and unigrams+skipgrams classifiers on sub-
class level for the CLEF-IP 2010 corpus and the WIPO-alpha corpus

CLEF-IP WIPO-alpha
P R F1 P D R D F1

Unigrams (%) 63:9 62:3 63:1 50:7

Unigrams C skipgrams (%) 66:6 67:3 66:9 51:9

Table 11.11 Classification results of unigrams-only and unigrams+skipgrams hierarchical classi-
fiers on subgroup level for the CLEF-IP 2010 corpus and the WIPO-alpha corpus

CLEF-IP WIPO-alpha
P R F1 P D R D F1

Unigrams (%) 45:1 27:7 34:3 31:5

Unigrams C skipgrams (%) 52:7 30:3 38:4 32:5

We determined the significance of the differences between the unigrams and
unigrams+skipgrams using the confidence intervals: Given the sample sizes, i.e. the
number of documents in the respective test sets, the 95 % confidence interval for
the F1 values is ˙0.15 % and ˙1.02 % for the CLEF-IP 2010 and the WIPO-alpha
subclass classifiers, respectively. From this we can conclude that adding skipgrams
leads to a significant improvement in the CLEF-IP 2010 set, but not in the WIPO-
alpha set. As there is much more training material per category available in the
CLEF-IP 2010 data set, compared to WIPO-alpha data set, the inherently sparse
skipgram features attain high enough frequencies to aid in the classification process.

Table 11.11 shows the results for the subgroup rankings of the hierarchical
classifiers, also for the CLEF-IP 2010 and WIPO-alpha test sets.

Here too we find a significant improvement for the combined run for the CLEF-IP
2010 set, but not for the WIPO-alpha set (with confidence intervals of ˙0.15 % and
˙0.95 % for the F1 scores of the CLEF-IP 2010 and WIPO-alpha set, respectively).

If we compare the (relative) improvements in F1 scores of the combined runs
with the unigram runs for both the CLEF-IP subclass and subgroup classifiers,
we find a similar improvement (around 4 percentage points) on both levels. We
can therefore conclude that combining unigrams and skipgrams is beneficial for
classification performance on any level in the IPC hierarchy. However, our initial
hypothesis that skipgrams would have a larger impact on lower—and supposedly
more overlapping—levels in the hierarchy is not confirmed. Close analysis of the
class profiles does reveal that on average skipgrams occur at higher ranks in the
subgroup class profiles than in the subclass class profiles. It seems that these
features fill up the feature space when the unigram features are not sufficiently
discriminative. Therefore, the hypothesis that skipgrams are more important on
subgroup than on subclass level cannot be rejected either. It may be that even the
CLEF-IP corpus is too small to allow for a decisive test.

As regards the second research question, the relative improvements between the
classification results for the CLEF-IP 2010 and the WIPO-alpha sets clearly confirm
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our hypothesis that adding phrasal features is only effective when enough training
data is available. For the CLEF-IP set, the skipgrams lead to a highly significant
improvement on subgroup level, despite the fact that there is much less training
material available than on subclass level. This suggests that an average number of
142 training documents per category are enough training data to see an impact of
skipgram features, despite the skewed distribution of the number of documents per
category.

11.7 Conclusion

In this chapter we examined the feasibility of performing classification on subgroup
level of the IPC taxonomy. This task is generally considered extremely difficult
because of three problems reported in the literature: (a) The overlap between
categories is too large, and differences are too subtle to be captured adequately.
(b) The number of categories is exceedingly large, which leads to scalability issues.
(c) The data sparseness (in the number of documents per category) at the lowest
level is too severe to build adequate classification models.

In our research we focused on two main questions which address these difficul-
ties: (1) Can we circumvent the problems of overlap and the number of categories
by using a hierarchical approach to classification on subgroup level and how does it
compare to a flat classification approach? (2) Can we improve the classification on
subgroup level by adding phrasal features, namely, skipgrams, to unigram features
and how does the impact correlate with the granularity of the different levels in
the IPC hierarchy? We performed classification experiments on the WIPO-alpha
benchmark set, as well as on the much larger and more realistic CLEF-IP 2010 data
set.

Our hierarchical approach consisted of a two-step top-down classification system
with a subclass classifier on the top level and a set of subgroup classifiers—each
trained within a subclass world—on the lower tier. The scores of the individual
classifiers were converted to probabilities, which were then combined in a weighted
scheme. To minimise the propagation of error and effectively allow high-scoring
subgroup categories to move up in the final ranking, we did not define any cut-off
thresholds on the subclass level during the testing process.

Regarding the first research question, we found that the flat and hierarchical
approaches achieve similar accuracy scores on the WIPO-alpha set (31.5 % and
31.8 % success@rnk1, respectively). This shows that when it becomes infeasible
to train a flat (text) classifier because the number of categories that must be
distinguished is too large, a hierarchical classifier might be a good alternative for
classification on the lowest level(s) of a taxonomy. Using a hierarchical approach,
we were able to transform a 19,441-category problem into smaller, manageable sub-
problems and perform subgroup classification for a 900K corpus with encouraging
accuracy.
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Regarding the second research question, we were able to replicate the improve-
ments of combining unigrams with skipgrams which were previously observed in
[6, 7]. We did not observe a difference in the effect size of adding skipgrams to
unigrams between the different IPC levels.

The difference in size between the two WIPO-alpha and CLEF-IP corpora gave
us insight into the problems caused by data sparseness on subgroup level. Our best-
scoring approach (hierarchical approach with unigram+skipgram features) achieved
32.5 % F1 accuracy for subgroup classification on the WIPO-alpha set (mono-label)
and 38.4 % on the CLEF-IP 2010 set (multi-label). Since skipgrams are inherently
sparse, a sufficiently large amount of training data must be available before phrasal
features attain high enough frequencies to aid in the classification process. We found
that—for classification on subgroup level in the CLEF-IP 2010 set—an average
of 142 documents per category was enough to see a significant impact of adding
skipgram features. We conjecture that with less training material available, case-
based methods such as KNN might be preferred for classification on the lowest
levels of the IPC taxonomy, even if our attempts to use KNN-based subgroup
classifiers in WIPO-alpha data set were not successful.

An interesting pattern that we observed in both the WIPO-alpha and CLEF-IP
hierarchical classifiers was the low weight given to the subgroup probabilities in
the weighting of the probability estimates to reach optimal ranking. The fact that
this occurs independent of the amount of training data available—as described in
Sect. 11.3.1.2 we took care to avoid data sparseness problems when selecting a
subset from the CLEF-IP data set—seems a strong indication that no matter how
much training material is available, (model-based) classification on the subgroup
level is a hazardous undertaking. We suspect, however, that the small numbers
of documents in some subgroups are less of a problem than the reliability and
completeness of the manually assigned labels, which serve both for supervising the
training and as a reference in the evaluation of the classifier output.

As a final recommendation for future work in the patent classification field, we
would like to promote the use of the CLEF-IP sets as future benchmarks: while we
found that the WIPO-alpha set is a clean and usable data set, the CLEF-IP data set
presents a more realistic task,21 both in the number of categories and in the amount
of training data available. Especially the latter is of great importance for further
research focusing on (sub)group levels.

Acknowledgements This chapter is dedicated to the memory of Kees Koster, who was a major
influence on this research.

21An even more realistic data set, called DOCDB, is hosted at the EPO but is not freely available.
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Chapter 12
Document Image Classification, with a Specific
View on Applications of Patent Images

Gabriela Csurka

Abstract The main focus of this chapter is document image classification and
retrieval, where we analyse and compare different parameters for the run-length
histogram and Fisher vector-based image representations. We do an exhaustive
experimental study using different document image data sets, including the MARG
benchmarks, two data sets built on customer data and the images from the patent
image classification task of the CLEF-IP 2011. The aim of the study is to give
guidelines on how to best choose the parameters such that the same features perform
well on different tasks. As an example of such need, we describe the image-
based patent retrieval tasks of CLEF-IP 2011, where we used the same image
representation to predict the image type and retrieve relevant patents.

12.1 Introduction

Before a patent can be granted, patent offices perform thorough searches to ensure that no
previous similar disclosures were made. In the intellectual property terminology, such kind
of searches are called prior art searches [. . . ] Often, patent applications contain images that
clarify details about the invention they describe. Images in patents may be drawn by hand,
by computer, or both, may contain text, and are generally black-and-white (i.e. not even
monochrome). Depending on the technological area of a patent, images may be technical
drawings of a mechanical component, or an electric component, flowcharts if the patent
describes, for example, a workflow, chemical structures, tables, etc. When a patent expert
browses through a list of search results given by a search engine, he or she can very quickly
dismiss irrelevant patents to the patent application by just glancing at the images in the
retrieved patents. The number of documents to be looked at in more detail is thus greatly
reduced. [28]

From this citation we can see that images are essential components of a patent
as they illustrate key aspects of the invention. However, not every image in a patent
has the same importance. Indeed, for patents related to chemistry or to pharmaceutic
inventions, images containing chemical structures or gene sequences are the most
important, while searching for similar drawings containing electronic circuits can
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help patent experts in physics and electricity. If a patent expert is looking for prior
art given a query patent and the system retrieves patents based on visual similarities
between all images of the query patent and in the patent database, the system might
return non-relevant patents based on visual similarity between flowcharts or tables.
This would not necessarily help the prior art search process. On the contrary, if only
images of a certain type are considered, the retrieval can be significantly improved
as shown in [9], where the retrieval accuracy when searching for the most similar
drawings between patent images was much higher than the accuracy obtained when
considering similarities between all images. However, this requires first to identify
the image type (such as drawing, flowchart, etc.) to be considered.

In general manual annotation of the patent images according to their type is
either non-existent or poor with many errors; therefore there is a clear need to be
able to predict the image type automatically. Hence, the main focus of this paper
is to consider patent image classification according to image types as the ones
identified and used in the patent image classification task of CLEF-IP 2011 [28],
namely, abstract drawing, graph, flowchart, gene sequence, program listing, sym-
bol, chemical structure, table and mathematics. On the other hand, as similar image
search (retrieval) is another important aspect of patent-based applications such as
prior art search, in the chapter we also address image similarities and image-based
retrieval. For both tasks, we consider mainly two popular image representations, the
Fisher vector (FV) [25, 27] and the run-length (RL) histograms [6, 12, 16, 20], and
compare different parameter configurations for them in order to come up with useful
guidelines related to their choice independently of the targeted problem.

As patent images can be seen as particular document images, instead of limiting
our study to patent images, we will address the problem in a more generic way, by
questioning what is a good representation in general for document images. First,
in Sect. 12.2 we briefly revise the most popular document image representations.
Then, after describing in Sect. 12.3 the data sets considered for the study and
the experimental setup, Sects. 12.4.1 and 12.4.2 will be devoted to an exhaustive
parameter comparison for run-length and Fisher vector image representations,
respectively, and in Sect. 12.4.3 we discuss different combinations of RL and FV.
In Sect. 12.5, we describe the image-based patent retrieval tasks of CLEF-IP 2011,
where we used the same image representation to predict the image type and retrieve
relevant patents. Finally, we conclude the chapter in Sect. 12.6.

12.2 Document Image Representation

In the last few years, different image representations were proposed to deal with
document image classification and retrieval that do not rely on OCR, i.e. seeing a
document page as an image. To mention a few (see for more examples [7, 12, 20]),
Cullen et al. [10] propose feature sets including densities of interest points,
histogram of the size and density of connected components, vertical projection
histograms, etc. In [18] a multi-scale density decomposition of the page is used
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to produce fixed-length descriptors constructed efficiently from integral images.
The feature vectors proposed in [33] are based on text versus non-text percentage,
column structure, content area and connected component densities. Bagdanov and
Worring [3] propose a representation based on density changes obtained with
different morphological operations. In [32] document images are described as a
list of salient Viola–Jones-based features. However, these features contain relatively
limited information, and while they might perform well on a specific data set and
task for which they were designed, they are not generic enough to be able to
handle various document class types, data sets and tasks. As early natural image
representations, such as colour histograms, were significantly outperformed and
replaced by the successful introduction of the bag-of-visual words (BOV) image
representation [8, 34], the run-length histograms have shown to be more generic
and hence better suited for document image representation1 [6, 12, 16, 20].

In this work, therefore, we focus on one hand on the run-length histograms, and
on the other hand we consider as alternative the Fisher vector [25, 27] which is the
most successful extension of BOV image representation. In the following sections,
we briefly describe how these features are extracted from a document image and
which are their main parameters that have to be considered in particular when we
build the corresponding image signatures.

12.2.1 Run-Length Histogram-Based Document Image
Representation

The main idea of the run-length (RL) features is to encode sequences of pixels
having the same value and going in the same direction (e.g. vertical, horizontal
or diagonal). The ‘run-length’ is the length of those sequences (see as examples the
green rectangles in Fig. 12.1). While we can consider sequences of similar greyscale
or even colour values, considering only two levels has been proved to be sufficient
to characterise document images [12, 16]. Therefore, when needed, we first binarise
the document images and we consider only runs of black and white pixels. In the
case of colour images, the luminance channel is binarised.

To do the binarisation, we do a simple thresholding at 0.5 (where image pixel
intensities are represented between 0 and 1). More complex binarisation techniques
exist (e.g. see methods that participated in the DIBCO [29] and HDIBCO [29]
contests); however, testing the effect of different binarisation techniques is out of
the scope of this chapter.

1Note that since the chapter was written, with the recent success of the deep convolutional neural
networks (CNNs), new, richer representations have been proposed for natural images and applied
also to document images [17, 19]. The comparison of those representations with FV and RL will
be the subject of future work.
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Fig. 12.1 Left: Examples of pixel runs. A vertical black run of length 7 (top) and a horizontal
white run of length 16 (bottom). Detail from a small region on the bottom-left corner. Right: a tree
layer spatial pyramid (Image courtesy of A. Gordo, from [12])

On the binarised images, a number of black pixel and white pixel runs are
collected into histograms. To build these histograms, with the aim of being less
sensitive to noises and small variations, we consider logarithmic quantisation of the
lengths as suggested in [12, 16]:

Œ1�; Œ2�; Œ3 � 4�; Œ5 � 8�; Œ9 � 16�; : : : ; Œ� .2q C 1/�:

Dealing with binary images, this yields two histograms of length Q D q C 2

per direction, one for the white pixels and one for the black pixels. We compute
these runs in four directions, horizontal, vertical, diagonal and anti-diagonal, and
concatenate the obtained histograms. An image (or image region) is then represented
by this 4 � 2 � Q-dimensional feature called run-length (RL) histogram.

These histograms can be computed either on the whole image or on image
regions. In order to better capture information about the page layout, we use a spatial
pyramid [22] with several layers such that at each level the image is divided into
n � n regions and the histograms computed on these regions are concatenated. For
example, in the case of a three-layer pyramid 1 � 1; 2 � 2 and 4 � 4 illustrated in
Fig. 12.1 (right), we concatenate in total the RLs of 21 regions to obtain the final
image signature.

Finally, to be independent from the image size (number of pixel in the image),
we L1 normalise the signature followed by a component-wise power normalisation2

with ˛ D 0:5 as in [16]. Note that a vector with positive elements having L1 norm
equal to 1 after power normalisation will have L2 norm equal to 1.

2The component-wise power normalisation [27] of a vector is such that each element z is replaced
by sign.z/jzj˛ .
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Fig. 12.2 Illustration of the FV image representation pipeline

12.2.2 The Fisher Vector-Based Image Representation

The Fisher vector [25] extends the bag-of-visual words (BOV) image representation
by going beyond simple counting (0-order statistics) as they encode higher-order
statistics about the distribution of local descriptors assigned to visual words (see
also Fig. 12.2 illustrating the pipeline). Similar to the BOV, the FV depends on an
intermediate representation: the visual vocabulary [8, 34]. The visual vocabulary
can be seen as a probability density function (pdf) which models the emission of the
low-level descriptors in the image. In our case we consider the Gaussian mixture
model (GMM) to represent this density.

The Fisher vector characterises the set of low-level features (in our case SIFT
features [23]), XI D fxtgT

tD1 extracted from an image I by deriving in which direction
the parameters of the GMM model should be modified to best fit this particular
feature set. Assuming independence, this can be written as

G�.I/ D 1

T

TX

tD1

r� log

(
NX

nD1

wnN .xtj�n; ˙n/

)
(12.1)

where wn, �n and ˙n denote the weight, mean vector and covariance matrix of
the Gaussian n, respectively, and N is the number of Gaussians in the mixture. To
compare two images I and J, a natural kernel on these gradients is the Fisher kernel
K.I; J/ D G�.I/>F�1

� G�.J/, where F� is the Fisher information matrix. As F�1
� is

symmetric and positive definite, it has a Cholesky decomposition L>
� L� and K.I; J/

can be rewritten as a dot product between normalised vectors �� where

��.I/ D L�G�.I/ (12.2)

to which we refer as the Fisher vector (FV) of the image I.
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Fig. 12.3 Example images from four MARG classes (left) and from the customer data sets IH1
(middle) and NIT (right). The images from customer data sets were intentionally blurred to keep
the actual content of the documents confidential. Nevertheless, we can see the visual variability of
the documents within these data sets

Following [25, 27] where the covariance matrices in the GMM are assumed to be
diagonal and using a diagonal closed-form approximation of F�, we have

��d
n
.I/ D 1
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TX
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t � �d
n

	d
n

�
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(12.4)

where �n.xt/ D wnN .xtj�n ;˙n/PN
jD1 wjN .xt j�j;˙j/

and 	d
n are the elements of the diagonal ˙n. The

final gradient vector ��.I/ is the concatenation of all ��d
n
.I/ and �	d

n
.I/, where

we ignore the gradients with respect to the weights. This vector is hence 2ND
dimensional, where D is the dimension of the low-level features xt.

As proposed in [27], we further apply on ��.I/ a component-wise power
normalisation [27], followed by L2 normalisation. Finally, similar to the run-length
features, to better take into account the document layout, we also consider similar
spatial pyramids [22] as in the case of RLs, i.e. dividing the image into several
regions at multiple layers and concatenating the region FVs.

12.3 Data Sets and the Experimental Setup

We used the following document image data sets3 in our experiments (see examples
in Figs. 12.3, 12.4 and statistics in Table 12.1):

3We also considered the NIST forms data set [36], with 20 different classes of tax forms, but as
the results on this data set were often of 100 % accuracy, these results were not interesting from a
parameter comparison study point of view.
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Fig. 12.4 Examples from different classes in the CLEF-IP data set

Table 12.1 A summary of the data set statistics

The data set Nb. imgs Img. size Nb. classes Example classes

MARG 1553 8.4 9 typeA, typeB, etc.

IH1 11;252 3–4M 14 Invoices, contracts, ID cards, etc.

NIT 885 5.6M 19 Invoices, mails, tables, maps, etc.

CLEF-IP 38;081 1.5K–4.5M 9 Drawing, graph, flowchart, etc.

MARG is the Medical Article Records Ground truth (MARG) data set [35] that
consists of 1553 documents, each document corresponding to the first pages of
medical journals, and their size is of 8.4M. The data set is divided into nine different
layout types. Surprisingly the number of columns that varied from 1 to 3 within the
classes is considered not relevant to distinguish between classes, which makes the
data set challenging as the ‘visual’ similarity is strongly influenced by the number
of columns. The criterion of the ground truth labelling is only the relative position
of the title, authors, affiliation, abstract and the text (see for more details http://marg.
nlm.nih.gov/gtdefinition.asp).

IH1 is the data set used in [12] that contains 11,252 scanned documents from
14 different document types (categories) such as invoices, contracts, IDs, coupons,
etc. The images were obtained by scanning paper documents and their size varies
according to the size of the original paper document, most of them however having
around 3–4M pixels.

NIT is another in-house data set of 885 multipage documents with a total of
1809 pages of 5.6M pixels, but we only considered the first page to represent
the document.4 The categories represent as, in IH1, document types, including
invoices, mails, tables, maps, etc., but these documents were not scanned but
captured in the print flow and converted to images by the print driver (using the

4We did experiments with multiple pages where we averaged the signatures, the similarity scores
or classification scores, but using only the first page was most often close to best performance.

http://marg.nlm.nih.gov/gtdefinition.asp
http://marg.nlm.nih.gov/gtdefinition.asp
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page description languages). Within this data set, the amount of elements per class
varies a lot, with several classes having only a few examples, while other classes
containing a large percentage of all documents. We have a second data set similar to
NIT but independent from what we call XRCE as the documents were captured
in our own print flow. This data set containing mainly scientific articles, patent
applications, reports, tables, mails, etc., was used to tune the parameters for some
of our parametric models such as SVM and metric learning that were applied after
to all the other data sets.

CLEF-IP contains the training image set from the patent image classification
task of the CLEF-IP 2011 [9]. The aim of the task in the challenge was to categorise
patent images into nine predefined categories such as abstract drawing, graph,
flowchart, gene sequence, program listing, symbol, chemical structure, table and
mathematics (see examples in Fig. 12.4). The data set contains between 300 and
6000 labelled images for each class, in total 38,081 images with their resolution
varying from 1500 pixels to more than 4.5M pixels.

12.3.1 The Experimental Setup and Evaluation Methods

We randomly split these data sets into train (50 %) and test (50 %) sets five times
and the same splits are kept along all experiments, allowing a comparison between
different features, algorithms and parameter settings.

The aim of our experiments is mainly to compare different image representations
and to design best practices on how to choose the parameters for these repre-
sentations, preferably, independently of the task. Indeed, while the choice of the
best parameters can be very dependent on the task, with the increasing amount of
data, it can be more convenient sometimes to have these features precomputed and
prestored that allow using the same representations in various applications such as
retrieval, clustering or categorisation. Also, as we already mentioned, for image-
type-dependent patent search where the images are first classified, it can be practical
to use the same features both for the class prediction and for similar image search.

Our intent therefore is to find feature configurations that perform relatively well
across tasks and if possible across data sets. Hence, we evaluate each representation
both in a retrieval framework and using different classifiers (SVM, KNN, NCM),
and we study the behaviour of different parameter configurations. Note that the
nearest class mean (NCM) classifier [24] that predicts the class label of a document
image based on the closest class mean evaluates implicitly (in a certain sense) the
ability of these features to perform clustering. Indeed, NCM, averaging the examples
from each class, performs well when these instances can be easily grouped together.
Hence a feature configuration yielding better NCM accuracies is more suitable for
clustering purposes than one that fails to do it. Further advantages of the NCM are
that it is a multi-class classifier and that there is no parameter to be tuned.

When using SVM we used fixed overall data sets and configurations, which
means obviously that the SVM results are suboptimal (in some cases 1–3 % below
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compared to fine-tuned parameters). But in some sense this makes the comparison
between parametric and non-parametric methods such as NCM fairer. Also the focus
of the chapter is on the parameters of the image representation, and fine-tuning the
parameters of different classifiers or testing more complex classification methods
is out of the scope of the chapter. To choose the fixed parameter set for the SVM,
we tested all configurations and a large set of parameters on the XRCE data set
and considered the setting that performed in general best. As we used one-versus-
all linear classifiers with stochastic gradient descend (SGD) [5] shown to be highly
competitive when applied on FVs [2], the selected parameters were as follows. We
used hinge loss with a fixed learning rate � D 1e�5 for RL features and � D 1e�4

for FV. To handle the data set bias, we weighted the positives by a factor of 
 D 5,
and to optimise the classifier we updated the gradient by passing Ni D 100 times
randomly through the whole training set. Similarly, for the same reasons, in the case
of the KNN classifier, we used a fixed k D 4 as it performed best on XRCE, but
again the results are suboptimal. k D 4 might vary along different data sets and
configurations.

To evaluate the classification tasks using any of the above-mentioned classifiers
(NCM, KNN and SVM), we show only the overall prediction accuracy (OA), i.e. the
ratio of correctly predicted document images, but similar behaviour was observed
when we considered the average of the per class accuracies.5

To perform document ranking for the retrieval, we use each test document as
query and the aim is to retrieve all documents with the same class label in the
training set. As for the similarity between documents, we consider the dot product
between features (which is equivalent with the cosine similarity as our features are
L2 normalised). To assess the retrieval performance, we use mean average precision
(MAP), but we also consider top retrieval accuracy by assessing it by precision
at 5 (P5) as several classes in these data sets have only few representatives. We
also consider the precision at 1 (P1) because this is equivalent with the overall
classification accuracy of a KNN classifier using k=1 and hence allows us to
compare the results with our actual KNN results for which we used k D 4.

12.4 Experimental Results

In this section we first do an exhaustive parameter study for run-lengths (in
Sect. 12.4.1) and for Fisher vectors (in Sect. 12.4.2) analysing the behaviour of the
parameter configurations considering the previously mentioned tasks and data sets.
Then, in Sect. 12.4.3 we discuss about possibilities how to merge RL with FV.

5Or when the behaviour was different such as for NIT, the reason was that this data set contains
several classes with only few instances, meaning that changing the prediction for any of those rare
documents may yield a significant change in the accuracy of the corresponding class.



334 G. Csurka

Table 12.2 Comparative retrieval (left) and classification (right) results where we vary the
parameters of the RL features. We show best results in red (averaged over five splits) with
the corresponding configuration in blue (below the accuracy), best parameter frequencies and
performance variations per feature type

12.4.1 Test Different Parameters for RL

To build different run-length (RL) features, we mainly varied the image resolution
(S), the number of layers6 (L) used in the spatial pyramid and the number of
quantisation bins (Q). When we resize an image, we keep the aspect ratio and
we define a maximum resolution. We experimented with target resolutions of 50K,
100K, 250K, 500K and 1M pixels and denoted them by S1, S2, S3, S4 and S5,
respectively. In addition, the case where we do not rescale any of the images will be
denoted by S0. However, images having less pixels are not upscaled; only images
above the target size are downscaled.

In Table 12.2, we show retrieval performances (RET) assessed with P1, P5 and
MAP as well as overall the accuracy of class prediction (OA) for KNN, NCM and
SVM classification (CLS). As we mentioned, the experiments were performed on
five different splits; hence in the table we show the mean over the splits and its
variation. For each data set and task, in addition to the best average, we show, below
the best average, the parameter sets that allowed to obtain these results.

In addition, for each parameter type, e.g. the number of layer L, we alternatively
fix the other parameters, here S and Q, and evaluate the best performing value.
We do this for all (S,Q) pairs and retain the corresponding variation. Then, for
each value of the selected parameter type, in this example each Li, we compute the
percentage of time it performed the best. In Table 12.2 we show for each parameter
type the value (e.g. Li) that was found the most often as best performing. In the

6Note that we used 2 � 2 split of the image at the second layer, 4 � 4 at the third, 6 � 6 at the
fourth and 8 � 8 at the fifth. Ln means that we concatenated the features of the regions from all the
n layers.
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parenthesis following the parameter found, we show two numbers. The first one
is the percentage of time that the parameter was at the top, and the second value
shows the average variance of the results for that parameter type (L). This variation
was considered by fixing S and Q and evaluating the variance of the results when
we varied L and then averaging overall (S,Q) pairs. These statistics (frequencies
and the variance) were computed by cumulating the results along all the five splits.
Note that if this average variance is low, it means that varying that parameter has
relatively low effect on the obtained accuracy, while high average variance means
that it is very important to correctly set the given parameter. For example, when
we evaluate MARG with P5 accuracy, we find that L5 performed the best 92 % of
the time considering all (S,Q) pairs and all splits, and the average variation along L
when fixing (S,Q) was about 6 %. This means that setting the number of layers is
more important than the choice of the number of quantisation bin, as Q11 was best
only 44 % of times and the average variation of Q when fixing (L,S) was only 0.7 %.

When we analyse the values in Table 12.2, we can deduce the following:

– Quantisation intervals. First of all, we can clearly see that concerning the
number of quantisation intervals, Q11 is almost always the best option. This
shows that considering more quantisation values is a good choice. On the other
hand, the standard deviation and frequency values are relatively low, which
means that the difference in values obtained using fewer quantisation intervals
(Q7 to Q10) is relatively small, especially when we have best configurations
selected for the other parameters (see examples7 in Fig. 12.5).

– Number of pyramid layers. We observe that for certain data sets such as MARG
or NIT, considering multiple layers (L4 or L5) is essential. This is not surprising
as the MARG classes are strongly related to the text layout that is much better
captured with multiple layers. For other data sets, the best layer configuration
seems to be task and evaluation measure dependent (see examples in Fig. 12.6).
Indeed, for IH1 and CLEF-IP, top retrieval results and KNN classification

7All illustrations plot results from the experiments done on the first split.
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perform much better using only a single layer, while MAP, NCM and SVM
results are always better with multiple layers (except the MAP for IH1). The
main reason is that in the former case, the decision depends only on a few ‘most
similar’ documents; hence it is sufficient to have a few similar documents for
most instances in the data set. According to high P5 and KNN values, this seems
to be the case for all data sets.

On the contrary, the NCM classifier considers class centroids (i.e. averaging
overall examples within a class). Therefore for each test example, the presence of a
few similar instances is not any more sufficient, but the similarity to most documents
within the class becomes necessary. The MAP evaluates how well all instances of a
class can be retrieved using an exemplary from the class, which requires again the
within-class similarities to be higher than the similarities between instances from
other classes. As the NCM and MAP results show, these requirements seem to be
better satisfied when we consider multiple layers.

– Image size. Finally, when we try to observe the effect of image resizing, it is
difficult to draw any interesting conclusions. Best performing image sizes seem
to vary along the data sets, tasks and evaluation measures. In a sense, this is not
completely surprising, as on one hand the original image sizes vary along data
sets. Furthermore, while the size of the RL does not depend on the image size,
the distribution of black and white pixel runs within bins is highly correlated
with the considered image size. Nevertheless, it seems that S0 appears often as
best performing or yields close to best performance, as we can see in Fig. 12.7.
The advantage of keeping the original size is to preserve the details present in
the image as they were captured, but on the other hand, smoothing can have
the benefit of better generalisation. Moreover, for very high-resolution images
(which is often the case for document images representing text), the cost of
building the RL vectors from the original images is significantly higher than
computing them on S3 or S4, especially if we use multilayer pyramids.
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We now analyse the performances related to different tasks and methods:
– Retrieval. We can see that retrieval at top and KNN performs extremely well in

general for all data sets, while MAP performs rather poorly. As was discussed
above, the good performance obtained with P5 and KNN is because for most
documents we can find documents from the same class for which the similarity is
high when using well-designed RL features. As P1 is higher than KNN (except
for NIT), it shows that using only a single example to classify the documents
performs better than using k D 4. On the other hand, the poor MAP performance
shows that there is a large within-class variation and it is difficult to retrieve
all relevant documents using a single example. Indeed, for example, in the
case of MARG, a one-column document from a class allows to retrieve easily
the other one-column documents from the same class but has difficulties to
rank higher the two-column documents from the same class than many of the
one-column documents from other classes. However, preliminary results have
shown that metric learning approaches specifically designed to support KNN
classification [11, 38] or ranking [4] can significantly improve the MAP in most
cases.

– SVM. The discriminative linear classifier (SVM) even with a set of fixed
parameter set (� D 1e � 5, 
 D 5, Ni D 100) with yields much better
classification accuracy than NCM, showing that in the corresponding feature
space, nevertheless the classes are linearly separable. In the case of IH1 and
CLEF-IP, the SVM results are better than nearest neighbour search, but for
MARG and NIT they remain below the KNN with k D 1. Note that IH1 and
CLEF-IP are much larger data sets than MARG and NIT, allowing the SVM to
better learn the discriminative classifiers. Moreover, the poor SVM results for
NIT are not surprising as several classes have very few examples to properly
learn the linear classifier in these high-dimensional spaces.

– NCM. Concerning the NCM classification, we made some tentatives to improve
the NCM by replacing it with NCMC [24], but the number of optimal centroid
per class varies a lot from one class to another, and fixing the same number of
centroids (e.g. 2 or 3) does not allow us to significantly improve the classification
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Table 12.3 Comparison of the NCM results without projection (W D I), with PCA projections
and with metric learning

performance (except for MARG, where we have clear subclasses according to the
number of columns). KNN with k D 1 (P1) is higher than with k D 4 (except
for CLEF-IP) and the SVM result shows rather good linear separability. This
suggests that the documents within a class are not necessarily grouped around a
few centroids but that they are rather scattered in the feature space.

Another way to improve the NCM classification performance is by using metric
learning as proposed in [24], where the distances between the class means and the
documents are computed in the space projected by a transformation matrix learned
on the training set by maximising the log-likelihood of the correct NCM predictions
in the projective space (using a mini-batch stochastic gradient descend (SGD) with
a fixed learning rate � D 1 and using 200 random batches of the size equal to the
number of classes). Similar to SVM, again we trained the NCM metric learning
approach with the parameters below obtained as best on the XRCE data set. This
means that the results are suboptimal and we could improve the results further by
tuning them on each tested data set, which could be another option that is out of the
scope of this chapter.

Concerning the learned projected space, we experimented with different target
dimensions D such as 16, 32, 64 and 128 and in Table 12.3 we show the best results
obtained with the corresponding parameters. In addition, we also present the results
when the projection was made using the D first principal directions8 of the PCA.
In this set of experiments, we only varied the number of layers in the pyramid,
did no image rescaling (S0) and used Q D 11 quantisation bins. We can see that
while using PCA the results remain almost the same as without, the metric learning
allows us to significantly improve the NCM performance in all cases. This time the
NCN performance is close to the KNN and SVM performances and could be further
improved if we fine-tune the parameters on the tested data set.

Note that the projected features are much smaller than the original features,
especially for the multilayer pyramid where for Q11 and L5 we go from 10,648 to
128 dimensions, which can be interesting in case we want to store the features. We
also experimented KNN and SVM with the PCA-reduced features and we observed
that, similar to the NCM results, we were able to keep similar performances in
all cases in spite of the strong dimension reduction. While similar observation was
made in [12], Gordo et al. [16] propose a compression and binarisation through PCA
embedding that significantly outperforms the results obtained with simple PCA.

8Note that we initialise the metric learning with PCA.
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12.4.2 Test Different Parameters for FV

Similar to the previous section, we tested different parameter configurations for
the Fisher vectors (FV) built on local SIFT descriptors. To build the FV in natural
images, first local patches (windows of size NxN) are extracted densely at multiple
scales and SIFT descriptors are computed on each of them. For N we consider the
values 24, 32, 48 and 64 and denote them by W1, W2, W3 and W4, respectively.

In the case of document images, especially when the images are of similar
resolution, extracting features at multiple scales might have less importance;
therefore in the first set of experiments, we focus on extracting features only at a
single scale. Also, as the resolution of most original images is very large and the
considered local patches are relatively small, we first resize the images9 to have a
maximum of 250K pixels (S3). Then on each local window, we compute the usual
128-dimensional SIFT features [23] and reduce them to 48, 64 and 96 dimensions
using PCA. We denote the corresponding low-level features by F1, F2 and F3. While
we can also build FV with the original SIFT features, we do not report results on it
as we observed that reducing the dimensionality not only significantly decreases the
size of the FV, but in general the accuracy is also improved.

In a given projected feature space, e.g. corresponding to W3 and F2, we build
a set of visual vocabularies using Gaussian mixture model (GMM) with diagonal
covariance matrices, where we vary the number of visual words by considering
2.gC3/ Gaussians where g D 1 : : : 7. We denote the corresponding vocabularies by
G1, : : :, G7, where e.g. G1 corresponds to 16 Gaussians and G5 to 256 Gaussians.
Note that both the PCA projection matrices and the GMM were built using the
features extracted on the XRCE data set and then applied to all the other data
sets. This means that for a given parameter setting (W, F, G), the documents are
represented exactly in the same feature space (FV) independently of the data set on
which the experiments are done.10

In this first set of experiments, as we do not use any spatial pyramid, we have
only three varying parameters for the FV: the size of the local window (W), the
dimension of the PCA-reduced SIFT features (F) and the number of Gaussians
used in the visual vocabulary (G). Retrieval (P@1, P@5 and MAP) and overall
(OA) classification (with KNN, NCM and SVM) accuracies with the best parameter
settings, winning frequencies and variances are shown in Table 12.4. From these
results we can conclude the following:

– Feature size: Best results are obtained in general with F1 (SIFT reduced to 48
dimensions) or, when it is not the case (e.g. NCM applied to NIT or SVM applied
to CLEF-IP), the low-average variances suggest that the corresponding results
obtained with F1 are not very different.

9When using FV with natural images, we often resize the images first, often to 100K pixels [25, 27].
10At the end of this section, to show the influence of the visual model, we provide a few results
with the visual vocabulary built on the same data set on which the experiments were performed.
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Table 12.4 Comparative retrieval (left) and classification (right) results where we vary the size
of the local window (W), the dimension of the PCA-reduced SIFT features (F) and the number of
Gaussians used in the visual vocabulary (G) to build the FVs. We show best results in red (averaged
over five splits) with the corresponding configuration in blue (below the accuracy), best parameter
frequencies and performance variations per feature type

– Vocabulary size: The number of Gaussians seems to be dependent both on the
data set and on the tasks. In the case of retrieval, best results are obtained with
smaller vocabulary sizes, and hence much smaller image signatures, most often
G1 (except top retrieval on NIT). On the other hand, NCM and SVM seem to
require much larger vocabularies, which is not surprising especially concerning
SVM. We observe that, while extreme values (G1 or G7) yield often best or
worse results, using values between 64 (G3) and 256 (G5) seems to be a good
compromise between size and accuracy (see also Fig. 12.8, top row).

– Window size: W3 (patches of size 48�48) seems to be often the best performing
or a good compromise compared to the other cases. Indeed, W1 performs
in general poorly, showing that a too small window (containing rather less
information about the page) is not a good idea. While W4 can perform best for
certain tasks (e.g. retrieval on Bytel), it can be worse on another task (NCM on
Bytel), as shown in Fig. 12.8, bottom row. The variances are also high, showing
the importance of setting this parameter properly.

Note nevertheless that the ideal size of the window is strongly correlated with
the processed image size. If we increase the image size, we need larger windows
to capture the same amount of information. Decreasing the image while keeping
the same window size allows to increase the amount of information per window.
Another possibility to ensure we capture the information at the right scale is to
extract the features at multiple scales. Therefore we vary both the image size and
the number of scales at which the features are extracting, while fixing the window
size to 48 � 48 (W3).

As we observed that S1 (50K) performs in general poorly, we consider the
following image sizes: 100K (S2), 250K (S3) and 500K (S4) pixels. Note that we
do not consider S0 and S5 (1M pixels) as they lead not only to extremely large
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Fig. 12.8 Example plots comparing different vocabulary sizes (top) and window sizes (bottom)

amount of windows (increasing significantly the computational cost), but also the
information captured within such a window is extremely poor in content (many of
them containing only white pixels). As we have seen that W1 with S3 (containing
much less information than W3) performed poorly, we expect even worse results
when using W3 with S0 or S5. To get similar or possibly better results, one might
consider much larger windows to compute the SIFT features.

To handle the feature extraction at multiple scales, we further downscale the
image (e.g. S3) by a scale factor of

p
2 and extract SIFT again from windows of

size 48�48. The amount of information in these windows extracted from the image
downscaled by

p
2 corresponds to the (smoothed) information extracted from S3

with a window W3 upscaled by
p

2. We repeat this process until which we reach the
number of desired scales. We experimented with one, three, five and seven scales,
denoting them by M1, M3, M5 and M7. Note that in the case of the configuration
(S3, W3, M5), this means that the images of size S3 were 5 times downscaled byp

2 and at each scale the SIFT features were extracted on windows of size 48 � 48.
These features are PCA reduced to a dimension of 48 (F1) and all cumulated to form
the feature set XI that generates the FV corresponding to the image.

The results with a varying number of scales (M), image resolutions (S) and
vocabulary sizes (G) are shown in Table 12.5. From these results, we can conclude
the following:
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Table 12.5 Comparative FV results on different data sets and tasks. We show best results in red
and best parameter settings in blue using different evaluation measures

– Number of scales. Concerning the number of scales (M), extracting features at
multiple levels definitely helps. While there is no clear winner between M3, M5
and M7, as the plots in Fig. 12.9 top row show, they have similar performances
and in general all outperform M1. This suggests that while it is important to
consider multiple scales, considering three or five scales is in general sufficient.

– Vocabulary size. The behaviour of the visual vocabulary size remains similar to
our previous set of experiments where we varied the window size (W) and the
feature dimension (F). Again, while extreme values (G1 or G7) are often best
or worst, G3, G4 and G5 are often close to best or even winning in the case of
MARG where G5 performs best on all tasks.

– Image size. S3 (250K pixels) is the best performing in most cases with MARG
and IH1, showing that the configuration (S3,W3) is suitable for them. Concerning
NIT and CLEF-IP, there is no clear winner (see also Fig. 12.9, bottom rows). For
nearest neighbour search-based methods (P1,P5, KNN) and SVM when using
window size of W3, it seems better to keep higher resolution (S4) while retrieval
and NCM classification on CLEF-IP works better with low resolution (S2).

Finally, we test the spatial pyramid with several layers for the FV features. There
we consider the number of maximum layers in the pyramid in function of the visual
vocabulary—as FV features being already very large for vocabulary sizes above
64 - to obtain the final signature size they are multiplied by the number of regions in
the pyramid. We show in Table 12.6 the maximum number of layers we consider for
each vocabulary size in our experiments. We also show the number of corresponding
regions and the size of the final signature (after the concatenation of the FVs for all
the regions).

We can see that these signatures are very large and in general not sparse and we
did all our experiments with non-compressed FVs. Note nevertheless that there are
several methods in the literature [14, 26, 31, 37] that propose to efficiently binarise
and/or compress the Fisher vectors while keeping them highly competitive. It could
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Table 12.6 A summary of the feature sizes

G G1 G2 G3 G4 G5 G6 G7

L 5 5 4 3 3 2 2

Nb reg 121 121 57 21 21 5 5

FD 185; 856 371; 712 350; 208 258; 048 516; 096 245; 760 491; 520

be interesting, but testing the effect of methods in the case of different configurations
was out of the scope of the chapter.

In Table 12.7 and Fig. 12.10, we show results when we vary the image size, the
number of pyramid layers and the number of Gaussians and fix the other parameters
to W3, F1 and M5. Analyzing the results suggests that while the best configuration
varies a lot, in general we get best results with relatively few layers or even a single
one and often only with few Gaussians.

Spatial Pyramid: If we analyse these results in more detail, we can see that only
NCM and SVM on MARG performed best with five and four layers, respectively.
In general, it seems that NCM was the one that took the most advantage from more
than two layers. In the case of SVM, what is beneficial is large signatures (which
is not surprising), but using fewer layers with larger vocabularies seems to perform
better than smaller vocabularies with more layers. This is somewhat in contrast to
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Table 12.7 Comparative FV results on different data sets and tasks. We show best results (red)
versus results using fixed parameter settings (blue) where we used (S3, L2, G4) for MARG and
IH1, (S4, L2, G4) in the case of NIT and (S4, L1, G4) for CLEF-IP. We also show the parameter
setting that provided the best results
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what we observed for RL and the results in [21] concerning spatial pyramids with
FVs on natural images.

In Table 12.7 we also show results (in blue) for each data set given a fixed
configuration found as reasonably close to best results on most tasks. These
configurations are (S3, L2, G4) for MARG and IH1, (S4, L2, G4) in the case of
NIT and (S4, L1, G4) for CLEF-IP, where we have in addition (W3, F1, M5) for all
data sets. We can see that in most cases these fixed values are indeed good choices,
except for CLEF-IP for which it is less obvious to find a good set of configurations,
especially concerning the image size that performs well on all tasks (as shown also
in Fig. 12.9, bottom row). This is probably due to the fact that in this data set the
size of the images is extremely variable. The best compromise we found was S4, G4
without spatial pyramid (L1); however, the drop in accuracy is more important than
for the other data sets.

Finally, to show the influence of the visual model, we rerun to the last set of
experiments, but instead of using the visual models built on the XRCE data set, for
each data set we trained its own model with the SIFT features extracted from the
training images of the tested data set. The results in Table 12.8 show on one hand
that we do not have a clear winner between the two models. On the other hand,
while the best configuration per data set and task varies, the best scores obtained
are often close. This shows somewhat that the data on which the vocabulary is built
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Table 12.8 FV results when the visual models were built on SIFT features extracted from the
images of the tested data set (red) and compared with the visual model on XRCE (blue). We also
show the parameter setting that provided the best results for the results obtained with the visual
models trained on the data set itself

Table 12.9 Results with late fusion of RL and FV features on different data sets and tasks

has relatively little influence on the results the moment we use the images that have
similar content, which is the case for document images.

12.4.3 Combine RL with FV

The most natural way to combine RL and FV is early or late fusion. As we use dot
product for retrieval, the dot product of the concatenated features (early fusion) is
equivalent to the sum of the dot products (late fusion). Similarly, the NCM centroids
of the concatenated features are the concatenation of the RL and FV centroids, and
therefore late and early fusions are again equivalent.

To test the late fusion of RL with FV, we consider the configuration (S0, L5,
Q11) for RL and the fixed parameter settings leading to the values in blue in
Table 12.7 for FV. The results obtained are shown in Table 12.9. We can see that
even with a simple equally weighted late fusion, in general (except for NIT) we
obtain significant improvements both on retrieval and classification.

We would like to mention here another possible combination of the RL and FV
where the main idea is to consider the RL features as low-level features (replacing
the SIFT) such that on each local window we build an RL histogram. Then the visual
vocabulary (GMM) and the FV are built with these local RL features directly or as
some PCA-reduced forms of them. Note also that if we use small image patches,
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the number of quantisation of the runs (Q) can be reduced as anyway a run cannot
be longer than the patch size. We intend in the future to explore if such FVs on RL
perform better than the global RL features and also if combining all three signatures
can further improve the accuracy.

12.5 Image-Based Patent Retrieval

We would like first to recall briefly our participation in the image-based patent
retrieval tasks at CLEF-IP 2011 [28]. A more detailed description especially
concerning the text representation and retrieval can be found in [9]. The aim of
the challenge was to rank patents as relevant or non-relevant ones given a query
patent while using both visual and textual information. There were 211 query
patents provided and the collection to search in contained 23,444 patents having
an application date previous to 2002. The number of images varied a lot, from few
images to several hundred of images per patent. In total we had 4004 images in
the query patents and 291,566 images in the collection. As image representation we
used the FV with the configuration (S3, W2, F2, G5 and L1) where the models (PCA
and GMM) were trained on CLEF-IP, i.e. the training set of the image classification
task of CLEF-IP 2011 [28]. The similarity between images was given by the dot
product of two Fisher vectors.

We tested two main strategies. In the first case, we considered the average
distance between all pairs of images given two patents with the corresponding set
of images (MEAN). In the second case we considered only the maximum of all
similarities computed between pairs of images (MAX).

We also considered to integrate in the system our automatic image-type classifier
(using the same FV features) that was trained on the CLEF-IP data set and we
used it to predicted the image type. Using the predicted scores, we considered
the similarities between class means (averaging the images predicted to belong
to a given class) and took the average or the maximum according to the strategy
considered.

Finally, as in the considered patent classes (A43B patents related to footwear,
A61B patents concerning diagnoses and surgery and H01L patents proposing new
semiconductor and electric solid state devices) the drawings were the most relevant
images, we discarded all images not predicted as drawings and computed the mean
or max similarities between the images predicted as drawings. Note that for other
patent classes, considering images containing chemical structures or gene sequences
would be more appropriate.

The results detailed in [9] are recalled in Table 12.10. They show that the max
strategy is better than considering average similarities. Considering class means
instead of global mean improves the MEAN strategy, but has no effect on the max
strategy. Finally, considering only drawings performed the best for both strategies.

While all these retrieval accuracies are very low, we want to make a few remarks.
First, the task was really challenging as relevant prior art patents do not necessarily
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Table 12.10 Image-based
patent retrieval: overview of
the performances of our
different approaches

Model/strategy MEAN MAX

Classifier ID MAP P@10 ID MAP P@10

Not used I1 0.56 0.20 I2 1.84 0.75

Class means I3 0.80 0.40 I4 1.84 0.70

Only drawings I5 1.09 0.62 I6 3.51 1.85

The performances are all shown in percentages
Bold values denotes best values

contain images similar to relevant images in the query patent. Second, even with this
poor image-based ranking and simple late fusion, we were able to improve the text-
only-based patent ranking especially with the I5 strategy (see details in [9]). Third,
we can use more complex fusion methods to merge visual and textual retrieval (e.g.
see the graph-based methods described in [1]).

On one hand the image-type classification can also be improved in several ways.
On the other hand we can select a better feature configuration for FV combined with
RL features as above or even using some new, deep convolutional neural networks
(CNNs)-based representations such as in [17, 19].

Second, the strategies to consider and combine features from the set of images
in [9] were rather simple. Instead, we can see the set of patent images as a multipage
document and use the methods proposed in [12, 13, 30] to handle classification and
retrieval with multipage documents.

For example, the bag-of-pages model of [13] considers PCA-reduced RL features
for each page and builds an FV for the document, i.e. when computing FV with
Eq. (12.4), the features xt correspond to the RL features computed for the pages in
the document page. Similarly, we can build an FV with the RL features built on the
patent images and represent the patent containing these images with the obtained
FV. Then two patents are compared with the dot product of these FVs.

In [12] the bag of classemes was proposed and has been shown to outperform
the bag of pages. In this case the xt features are the image-type classification scores
concatenated into a single vector (called classeme) and the FV is built on top of these
vectors. Note, nevertheless, that while in [12] the bag of classemes outperforms the
bag of pages, the addressed problem is different, i.e. document classification. In
addition, all pages have the same class label, the one inherited from the document. In
our case, in a patent we have different image types and therefore we could describe
by a bag of classemes the distribution of different types of images within a patent.
While this can be a useful information for the patent expert, it does not necessarily
improve, for example, patent prior art search.

Finally, we can also improve the image-type classification by combining the
visual information with information from text. Text can come from the patent, if
we can access the image caption and/or the paragraphs where the image is referred
to. The extracted text can be represented by a bag of words that can be used to
train classifiers which learn implicitly which words are relevant to discriminate
image types. The textual and visual classifiers can be merged after at the score
level (late fusion). Alternatively, we can consider embedding both the visual and
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textual features in the same subspace using CCA and train a classifier in the
embedded space as in [15]. Note that text information can also be extracted from
the document image using OCR. In the case of patent images, using a bag of
‘n-grams of characters’ on the text extracted from the image content could be
more appropriate than a bag of words to describe, for example, gene sequences,
mathematical formulas and chemical structures.

12.6 Conclusion

In this chapter we made an exhaustive experimental study on run-length (RL)
histogram and Fisher vector (FV)-based representations for document image clas-
sification and retrieval. We compared different parameter configurations for both
features using several data sets, methods and evaluation methods. We designed
suitable configurations for both features, and while they might be suboptimal for
individual tasks, features designed with the proposed configurations are reasonable
in case one might want to solve different tasks with the same features. Finally, we
discussed the usage of patent images in prior art search as such an example.
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Chapter 13
Flowchart Recognition in Patent Information
Retrieval

Marçal Rusiñol and Josep Lladós

Abstract In this chapter, we will analyse the current technologies available that
deal with graphical information in patent retrieval applications and, in particu-
lar, with the problem of recognising and understanding information carried by
flowcharts. We will review some of the state-of-the-art techniques that have arisen
from the graphics recognition community and their application in the intellectual
property domain. We will present an overview of the different steps that compound
a flowchart recognition system, looking also at the achievements and remaining
challenges in such a domain.

13.1 Introduction

A patent can be defined as a legal title protecting a technical invention for a limited
period. Patent documents consist of three parts mainly [10]. First, a front page
presenting general information about the patent, such as the title, the summary of the
invention, the name of the inventors, etc. Second, the technical description, which
details the technical problem the invention solves as well as the state of the art and
the novelty of the invention. Finally, a claims section that defines the intellectual
property (IP) protection rights, i.e. a clear description of what is legally protected.
In each of these parts, drawings can be (and are often) used to provide an accurate
detailed description of intermediate parts of the invention.

Since patent documents include both technical and legal information, conducting
a patent search is of extreme importance for several purposes [11]. The technical
part of patents, as in the case of scientific publications, defines the state of the art
for a given problem and can be used to find out what already exists and to check the
novelty of a given invention. Concerning the legal aspects, they can also be used in
order to assess the freedom to operate, i.e. make sure we are not infringing someone
else’s IP rights, or to check whether someone might be infringing our own IP rights.
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However, performing searches in the patent’s content might not be a straightforward
task.

First of all, there is the scale factor. Just in 2013, 265,900 European patent filings
were made at the European Patent Office (EPO),1 representing a 2:8 % growth
with respect to the last year. And as of today, nearly 80 million patent documents
worldwide are available through the publicly available patent database Espacenet.2

Conducting efficient and effective searches in such large-scale and ever-growing
scenarios is by itself a difficult problem.

Secondly, we have the semantic problem. Patents being written in an ‘unstruc-
tured’ manner in natural language entail the same problematics of any textual search
from the information retrieval (IR) field. When searching for a patent, the user has
to select a list of keywords that define the invention he/she is looking for. Finding
keyword synonyms, avoiding the use of homonyms and using Boolean operators to
regroup the terms in order to cast a good query are of critical importance [10].

Finally, it is worth to mention that not all the information in a patent document is
conveyed by textual elements. Drawings in patents play an important role since in
many patent filings the technical details are depicted rather than being explicitly
written in textual format. Drawings can be of different nature, including line
drawings, figures, diagrams, flowcharts, plots, etc. As pointed by many authors,
e.g. Bhatti and Hanbury in [2], Hanbury et al. in [15] and Lupu et al. in [26],
the inspection of visual information conveyed by such drawings is becoming
overwhelmingly important in order to assess the novelty of a submitted patent.
However, nowadays most of the patent search applications fail to exploit non-textual
information [1, 23].

It is worth to note the efforts made within the CLEF initiative concerning
the problem of dealing with non-textual information in the IP domain. Until
2011, the CLEF-IP track served as a benchmarking activity on prior art retrieval
focusing only on textual patent documents. However, in 2011 two image-based
tasks were added [30]: one devoted to find patent documents relevant to a given
patent document which contained images and another aimed at categorising patent
images into predefined categories of images (such as graphs, flowcharts, drawings,
etc.). In CLEF-IP 2012 [31], a new image-based task was proposed: the flowchart
recognition task dealing with the interpretation of flowchart line drawing images.
The participants were asked to extract as much structural information as possible
from these images and return it in a predefined textual format for further processing
for the purpose of patent search. Three different institutions participated in such
a task [29, 34, 42]. We will overview such approaches and put them in context
throughout the rest of this chapter. We will analyse the current technologies available
that deal with graphical information in the patent retrieval application. We will
review some of the state-of-the-art techniques arisen from the graphics recognition
community and their application in the IP domain. Specifically, we will focus on the
problem of recognising and understanding information carried by flowcharts.

1http://www.epo.org/about-us/annual-reports-statistics.html.
2http://www.epo.org/searching/free/espacenet.html.

http://www.epo.org/about-us/annual-reports-statistics.html
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The rest of the chapter is organised as follows. In Sect. 13.2 we will overview
the state of the art within the graphics recognition field and its applications to the
IP domain. In Sect. 13.3 we will present an overview of the different steps that
compound a flowchart recognition system. Finally, in Sects. 13.4 and 13.5 we will
present the remaining challenges and our concluding remarks, respectively.

13.2 Graphics Recognition: From Visual Similarity
to Interpretation

The use of non-textual information is pervasive in the whole IP domain. We
can see in Fig. 13.1 some examples of graphical entities found in IP documents
such as trademark registrations, design applications or drawings in patents such
as flowcharts, molecules, mechanical drawings or electronic diagrams. The man-
agement of such graphical entities in the prior art search is of crucial importance
since they depict either directly what the owner wants to protect, as in the case of
trademarks or designs, or essential details of the invention under patent protection.

The graphics recognition community has been proposing methods for describing
and recognising symbolic information for many years [18], and many symbol
recognition proposals have a direct application in the IP domain. We can cite,
for example, some works dealing with trademark description [19, 32], molecule
recognition [13, 36], symbol recognition in mechanical drawings [6] or electronic
diagrams [52]. However, most of the symbol recognition techniques present an
important drawback. The symbols to recognise have to be isolated so that the
descriptors represent them globally. Globally describing graphical information
might be already suitable for recognising trademarks of molecule depictions, but
is not usually desirable when dealing with graphical entities formed by a compound
of symbols and their relationships among them [33], as in the case of electronic
diagrams, mechanical drawings or flowcharts.

However, in general, most of the published approaches dealing with patent image
retrieval globally describe graphical information and then follow either a content-
based image retrieval (CBIR) paradigm [21] or a classification paradigm [8, 28]. In
such paradigms the retrieval or recognition is thus performed in terms of a similarity
measure between the query image and the images in the corpus. For example,
in [17], patent drawings are represented using attributed graphs and the retrieval
task is then casted as a graph similarity computation. Methods like [7, 46, 47]
and [40] base the image description on histograms encoding the centroid positions
at different levels. Such descriptors can be understood as a special case of a quad-
tree [37] encoding of the image under analysis. The retrieval part just relies on the
Euclidean distance between the query and corpus descriptors. In [43], the PATSEEK
framework is presented in which patent drawings are described by means of edge
orientation autocorrelograms [27].
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Fig. 13.1 Examples of drawings in the IP domain
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Fig. 13.2 Example of two visually similar flowcharts

Nonetheless, the CBIR paradigm might not be the most suitable tool to provide
an image search in the intellectual property domain. In order to assess whether
an invention is new or has already been submitted, the patent professional should
look for images that depict the same concept [47] instead of images that look
visually similar to the query. That is, image retrieval methods should be able to
bridge the semantic gap between the visual appearance of the images and the
semantic meaning they convey [26]. But in the specific case of flowchart images,
this problem is still ill-defined. Take, for instance, the two flowcharts depicted in
Fig. 13.2. It is obvious that the two flowcharts are visually similar, and one could
argue that since they are formed by the same subset of symbols and share the same
interconnection between them, it is reasonable to consider them as relevant hits in
a retrieval scenario. On the other hand, the two flowcharts represent completely
different procedures and carry different information, so it is fair to consider them
non-relevant one to the other. Since flowcharts carry an important semantic meaning,
it would be beneficial to ‘translate’ such graphical information into a structured
format that will allow to browse the contained information, that is, to automatically
understand and interpret flowcharts.

Early works such as [4] and [22] were already focused on the recognition of line
drawings for further automatic process. This research line continued until the mid-
1990s [3, 50] when most of the research efforts were refocused on the treatment of
online sketched drawings [41, 51], although some recent research in those lines can
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still be found [45]. To our best knowledge, no commercial patent retrieval system
uses graphical interpretation techniques for the retrieval of non-textual information
in patent documents. The only efforts in that direction come from the Image Mining
for Patent Exploration (IMPEx) Project;3 its main objective is the extraction of
semantic information from patent images.

13.3 Flowchart Recognition Architecture

Most of the state-of-the-art flowchart recognition architectures follow more or
less the same architectures and the same steps. We will overview in this section
such steps and the different approaches that have been used in the literature. The
first stage is devoted to separate the flowchart image into two different layers,
one containing the textual information and the other one containing the graphical
elements. Subsequently, graphical elements are separated into two different groups:
the symbolic elements (rectangles, circles, ellipses, etc.) and the connectors between
them. Afterwards, proper recognition modules are applied in order to recognise
which graphical primitives appear at each location and to transcribe the text within
the image into electronic format by means of optical character recognition (OCR)
techniques. Finally, a structural and syntactic validation step is applied in order
to correct the recognition errors by including context-dependent information and
eventually producing a structured output describing the flowchart’s contents.

Let us overview in the following each of these individual steps. We will finally
summarise how the performance of the flowchart recognition systems was evaluated
in the context of the CLEF-IP 2012 flowchart recognition task.

13.3.1 Text/Graphics Separation

Textual terms appearing within flowcharts cannot be directly recognised following
classical OCR approaches that assume a regular layout organised in columns,
paragraphs and lines.

The text/graphics separation process aims at segmenting the document into two
layers: a layer which contains text characters and annotations and a layer containing
graphical objects.

Although there exists a wide taxonomy of text/graphics separation methods [16,
24, 44], the most commonly used are the ones relying on morphological operations
and the ones based on connected component analysis.

First, the text/graphics separation methods based on morphological operators
assume that the text is what remains after applying iterative openings to the

3http://www.joanneum.at/?id=3922.

http://www.joanneum.at/?id=3922
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original image with structuring elements designed to eliminate rectilinear objects.
The method proposed by Wahl et al. [48] is one of the first methods based on
morphological filtering. It uses run-length smoothing algorithm (RLSA) to detect
vertical and horizontal text strings. RLSA can be seen as morphological closing
(or opening) operations with vertical and horizontal structuring elements of length
according to the text size and graphical lines width. The method of Lu [25] uses
RLSA too. The main improvement of this work is that it allows to detect slanted
lines by performing a stretching operation at different angles. The main drawback
of these approaches is that they tend to wrongly label text as graphics.

On the other hand, the methods based on connected component analysis are the
most commonly used. A pioneer and well-known work was proposed by Fletcher
and Kasturi [14]. The basic idea is to segment text based on basic perceptual
grouping properties. Thus, simple heuristics on font size, inter-character, word and
line spacing and alignment are used. The method requires many thresholds, but the
good point is that they are extracted from the image object properties and are not
manually set a priori. The main steps of this method are:

1. Connected component generation
2. Filtering of connected components based on area and size
3. Connected component grouping in terms of area and size to cluster those that are

likely to belong to the same font size and so are candidates to be in the same
string

4. Hough transform applied to the centroids of connected components (text strings
are supposed to have a rectilinear arrangement)

5. Logical grouping of strings into words and phrases. This step intends to capture
those components kept aside by the Hough step, but that fall into the potential
text area (in terms of interline spacing, inter-character gaps, etc.). For example, a
period at the end of a string or an accent

6. Text string separation

This method combines simplicity with good performance and scalability to
different text properties. This is probably the reason that most of the methods
are based on the Fletcher and Kasturi one, with small variations and adaptations
to different contexts. The weakness of this method is that it does not cope with
text touching graphics. Tombre et al. [44] proposed an improved approach able to
separate text touching to graphical parts. In addition they introduced some more
heuristics allowing to improve the performance.

The method from Tombre et al. [44] was used in the context of flowchart
recognition in [34, 35]. We can see an example of the results produced by the
text/graphics separation step in Fig. 13.3.
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Fig. 13.3 Example of the text/graphics separation module. (a) Original image, (b) graphical layer,
(c) textual layer, (d) undetermined layer (empty in this example)
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13.3.2 Node and Edge Segmentation

After having separated the text appearing in the flowchart with the graphical entities,
most approaches apply a segmentation method in order to separate the nodes
(symbols from the flowcharts) rather than the edges (the connectors that define
the flow). Here again, a connected component analysis on the graphical layer of
the flowchart image drives this segmentation procedure [34, 42]. Closed regions in
the flowchart image usually correspond to the nodes of the flowchart. After having
determined which regions of the flowchart correspond to nodes, the remaining
foreground pixels are attributed as being edges. We can see an example of the node
and edge segmentation in Fig. 13.4.

However, this procedure presents two drawbacks. The first is nodes that because
of some degradation or some design choice are not fully connected and are likely to
be labelled as background zone and be completely missed. This problem is usually
tackled by having a pre-processing step that ‘closes’ the small gaps between co-
linear line segments [29, 42]. The second problem is somehow more fundamental.
Closed regions in flowcharts do not always correspond to nodes.

Edges linking two non-consecutive nodes in the flow are likely to form loops in
the flowchart that will be labelled as a connected component. We can see an example
in Fig. 13.5. This case is a clear example of what is known as the Sayre paradox [39]:

In order to achieve good recognition results, the objects should be previously segmented,
but to get reliable segmentation, the objects should be previously recognized.

That is, before running the node recognition module, we need to segment
nodes from the background, but to really have a good segmentation without loops
appearing as nodes, we need to already define what is a node and what is not.
This problem is addressed by casting some heuristics on the shape of the connected
components to assess whether the connected component is really a node from the
flowchart or corresponds to a loop. For instance, in [35], convexity and vertical
symmetry measurements are used in order to discriminate between loops and nodes,
since nodes tend to be vertically symmetric and tend also to be convex shapes.

13.3.3 Text and Symbol Recognition

After having completely segmented the different regions from the flowchart image
comes the proper recognition stage, both for text and for graphical entities.

OCR, being one of the first problems addressed from the pattern recognition
field, is considered nowadays an almost solved problem when applied to documents
under certain conditions. However, as we have stated before, applying an OCR
directly to a flowchart image is likely to fail, since the layout of a flowchart does
not follow the same rules as text being printed in a book. But if we feed to an OCR
engine the text bounding boxes arisen from the text/graphics separation stage, the
results should be acceptable enough. Nowadays, commercial OCR engines such as
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Fig. 13.4 Example of the node and edge segmentation modules. (a) Original image, (b) node
layer, (c) edge layer
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Fig. 13.5 Example of the connected component labelling, labelling loops as foreground nodes.
(a) Original input, (b) Components identified

ABBYY FineReader,4 Tesseract5 and Omnipage6 are the ones most often used in
any document image task. OCR accuracies can be boosted if we provide the OCR
engine a context-dependent lexicon and language model as suggested in [42].

Concerning the recognition of the flowchart’s symbols (c.f. Fig. 13.6), in prin-
ciple any shape descriptor [54] could be used in order to accurately classify the
symbols. In [34], Hu geometric moment invariants [53] and the BSM descriptor [9]
were used. In both runs submitted to the CLEF-IP 2012 flowchart recognition
task from Thean et al. [42] and Mörzinger et al. [29], ad hoc symbol descriptors
based on shape symmetry were proposed. From the result analysis of the flowchart
recognition task [31, 35], we can see better recognition accuracies were reached
when using hand-crafted descriptors for the specific purpose of node recognition
than when using generic shape descriptors from the literature.

It is also worth to mention that in [42], a shape normalisation step was proposed
in order to deal with the different styles that the same symbol can present (c.f. Figs. 3
and 4 in [42]). A set of squeezing operations result in a shape simplification that
helped to improve the node recognition accuracy.

4http://finereader.abbyy.com/.
5http://code.google.com/p/tesseract-ocr/.
6http://www.nuance.com/for-individuals/by-product/omnipage/index.htm.

http://finereader.abbyy.com/
http://code.google.com/p/tesseract-ocr/
http://www.nuance.com/for-individuals/by-product/omnipage/index.htm
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Fig. 13.6 Example of different node types

13.3.4 Structured Output

Once we have identified all the elements of a flowchart, we have to infer from the
different relationships among elements which is the structure of the flowchart. More
specifically, we have to assess which nodes are connected by an edge. This can
be done by simply pairwisely selecting all the detected nodes and subsequently
analysing whether any element of the edge layer provokes that those two disjoint
nodes merge into a single element. If this happens, then the two nodes are linked
through this edge in the delivered graph structure [35].

Subsequently, a structured output of the interpretation of the flowchart has to
be provided. Because of the nature of flowcharts, having a graph data structure
representation seems to be the most suitable. We can see in Fig. 13.7 an example
of the structured output format expected in the CLEF-IP 2012 task [31].

13.3.5 Structural and Syntactic Validation

Flowcharts are composed by a set of node symbols together with their connectors
and the textual content. However, they also follow a quite strict diagrammatic
notation defined by a set of rules that have to be followed so that the flowchart
makes sense. None of the CLEF-IP 2012 flowchart recognition task participants
used this context knowledge that can yield a strong boost in performance. Graph
grammars have been used through the years in order to define a set of rules that two-
dimensional signals (i.e. electronic diagrams, flowcharts, architectural drawings,
etc.) have to follow in order to be valid [4, 38].

In [20], Lemaitre et al. based their online flowchart recognition system on a
structural description with the addition of syntactic knowledge using a grammatical
description. We strongly believe that successful flowchart recognition systems
should integrate such syntactic definitions in order to reach the desired recognition
performances.
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Fig. 13.7 An example of input image with its corresponding textual information (extracted
from [31])

13.3.6 Performance Evaluation of Flowchart Recognition
in CLEF-IP 2012

The flowchart recognition task from the CLEF-IP 2012 campaign was evaluated at
three different levels: namely, how well the flowchart structure has been recognised
(structural level), how well the nodes and the edge types have been recognised
(recognition level) and a third level that evaluated the text label transcription
(transcription level).

In order to assess the methods’ performance at structural level, a graph metric
distance between the topic flowchart Ft and the submitted flowchart Fs is defined in
terms of the most common subgraph, mcs.Ft; Fs/ [5, 49]. Formally, it was computed
as follows:

d.Ft; Fs/ D 1 � jmcs.Ft; Fs/j
jFtj C jFsj � jmcs.Ft; Fs/j ; (13.1)

where jFij denotes the size of the graph computed as the number of nodes plus the
number of edges.
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The most common subgraph measure can be interpreted as follows. When
comparing a recognised flowchart Fs and the ground truth expected output Ft,
the maximum common subgraph mcs.Ft; Fs/ measures how well the participant’s
output matches the expected graph. If the participant’s method output is perfect, the
maximum common subgraph is the flowchart itself and thus mcs.Ft; Fs/ D jFtj D
jFsj and d.Ft; Fs/ D 0. If the output is missing a node or some edges, the common
structure shared between the output and the ground truth will be smaller than Ft,
and consequently since jmcs.Ft; Fs/j < jFtj, the final distance d.Ft; Fs/ > 0 will
increase as long as we keep missing elements. The same applies if we deliver an
output with extra elements than the ground truth.

The ability to recognise the nodes and the edge types of the different submitted
runs was evaluated by the accuracy of the classification, whereas the performance
of the textual transcription was measured with a normalised edit distance between
the automatically transcribed text and the yielded automatic transcription from the
methods.

Although such measures helped to assess which method performs the best at
extracting the structure and the contents of the flowchart, it is still unclear if such
indicators will exactly correlate with the user experience in a retrieval scenario.

13.4 Challenges

Although the recognition of flowcharts has been a present problem for many years
in the graphics recognition domain, there are still some challenges that need to
be addressed in order to perform patent searches that take into account graphical
information. Let us briefly overview which are to our understanding the remaining
problems.

– The Sayre paradox has to be properly addressed in the flowchart recognition
architecture. The whole flowchart recognition relies on an initial segmentation
step between nodes, edges, text and background that is far from being perfect. An
incorrect segmentation ruins the subsequent recognition steps. It would be thus
desirable to have some methods that perform the segmentation and recognition
in a single step, as in the case of symbol spotting [33].

– A syntactic analysis of flowcharts [20] is a must in order to reach acceptable
recognition performances. Syntactic rules should not only serve as a final
validation tool, but should drive the whole recognition framework.

– The inclusion of flowcharts in patent searches does not end with the flowchart
recognition step. Once flowchart images have been ‘translated’ to a structured
format, we would still need a retrieval framework that allows the user to cast
queries and to retrieve relevant information stored in graphical format. It is still
unclear how such a retrieval system should be designed. Would the user cast their
queries using keywords or providing a flowchart sample?
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– The combination of graphical search with textual/semantic information
should be paramount. An effective patent search cannot be just focused on the
graphical information, but should be supported by other information queues
encoded as metadata in the patent applications. Ideas from different works such
as [7, 12] that cast queries covering several granularity levels of information
should be adopted in the particular scenario of patent search through flowchart
information.

– The evaluation of flowchart recognition for the final purpose of information
retrieval is also still ill-defined. Which flowcharts can be considered as relevant
given a query? Is the fact of missing an edge or misrecognising a node paramount
to the final retrieval performance?

13.5 Conclusions

In this chapter we have analysed the current technologies available to deal with
graphical information in patent retrieval applications and, in particular, with the
problem of recognising and understanding information carried by flowcharts. An
overview of the different steps that compound a flowchart recognition system has
been presented.

Although initiatives such the CLEF-IP 2012 flowchart recognition task mark an
important milestone to assess the performance of state-of-the-art methods and track
the progress in this specific domain, we have seen that there are still many important
challenges yet to be addressed in order to include graphical information in the patent
information retrieval framework.

We strongly believe that the use of syntactic knowledge, together with the
definition of the retrieval mechanisms dealing with graphical information other
than CBIR, is paramount in order to achieve a useful patent graphical information
retrieval.
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Chapter 14
Modern Approaches to Chemical Image
Recognition

Igor V. Filippov, Mihai Lupu, and Alan P. Sexton

Abstract Millions of existing patent documents and journal articles dealing with
chemistry describe chemical structures by way of structure images (so-called
Kekulé structures). While being human-readable, these structure images cannot be
interpreted by a computer and are unusable in the context of most chemoinfor-
matics applications: structure and substructure searches, chemo-biological property
calculations, etc. There are currently many formats available for storing structural
information in a computer-readable format, but the conversion of millions of
images by hand is a cumbersome and time-consuming process. Therefore there
is a need for an automatic tool for converting images into structures. One of the
first such tools was presented at ICDAR in 1993 (OROCS). We would like to
present modern developments in optical structure recognition which build upon
the ideas developed earlier and add modern enhancements to the process of
automatic extraction of structure images from the surrounding text and graphics
and conversion of the extracted images into a molecular format. We describe in
detail two top performing chemical OCR applications—one open source and one
academic software package. The performance here was judged by TREC-CHEM
2011 and CLEF 2012 challenges.

14.1 Introduction

The problem of extraction and identification of chemical structure depictions in
texts such as patent documents or journal articles is distinctly different from the
better-known tasks of optical character recognition or object detection. A chemical
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structure image contains much more information than a character in an alphabet—
there are only a few dozen characters in most alphabets but millions of known
chemical structures. It is easy to correct a misrecognised character when the options
are limited to a hundred or so possibilities, but a misrecognised chemical structure
might still be a valid molecule. Making the matter even more complicated, there are
many ways to draw the same molecule, often in such a way that only a trained
chemist is able to recognise identical chemicals. For this reason, widely used
techniques such as wavelet transforms or neural networks, used, for example, in
face recognition, are not applicable here.

Attempts at automatic optical structure recognition go back as far as the late
1980s. Notable among them are OROCS [1], Kekulé [2] and a program from
the University of Santiago de Chile (unnamed) [3]. More recent efforts include
CLiDE [4], ChemReader [5] and ChemOCR [6, 7].

In this chapter, we will focus on OSRA1 and MolRec—two systems developed at
VIF Innovations and the University of Birmingham, respectively. These are two top
performing software tools as was judged by TREC-CHEM 2011 chemical image
recognition challenge.

We start by introducing the two packages in the next section, then we describe the
processing workflow for chemical image recognition followed by evaluation results.
The penultimate section demonstrates advancements which build upon the existing
work to go beyond single molecule recognition. We conclude with a brief summary
of the progress made in the field in the recent years.

14.2 OSRA and MolRec

The Optical Structure Recognition Application (OSRA) was started in early 2007 as
the first open-source project dealing with chemical structure information extraction.
According to our own [8] and third-party benchmarks [5], OSRA is very competitive
in recognition rates compared to other commercial and academic packages. The
last few years have seen a surge of interest in the subject [5, 8–10] and we believe
that the open-source approach allows for faster innovative development (everybody
can participate) and better scientific verifiability (the source code is available for
examination).

MolRec [10] was shown to provide a very high recognition rate for molecular
diagrams. Its focus on high recognition performance is counterbalanced by the fact
that it provides no modules for identifying and extracting molecular diagrams from
a document that contains them. MolRec’s approach is characterised by:

1. An early lifting of the raster diagram into a spatial graph of symbolic components
2. A rule-based system applied to the spatial graph to extract the semantic content

of the diagram

1http://osra.sourceforge.net.

http://osra.sourceforge.net
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14.3 Overview of the Processing Workflow

A chemical structure image typically consists of the following elements:

• Regular single, double and triple bonds
• Atomic labels
• Charges
• Dash, wedge and wavy bonds
• Circle bonds (aromatic rings)

Regular bonds are either single or two or three parallel straight lines. Atomic labels
could be single characters, ‘O’, ‘N’ and ‘H’; multi-characters for a single atom,
‘Br’ and ‘Cl’; or abbreviations for frequently occurring groups, ‘superatoms’, ‘Ac’,
‘COOH’, etc. A charge can be one or more plus or minus signs next to the atomic
label, or a number with a plus or minus sign—e.g. ‘3+’. Wedge and dashed bonds
represent bonds that are directed ‘out of’ or ‘into’ the page to convey 3D information
about a non-flat chemical structure. Circular bonds are sometimes used to denote an
aromatic ring. An example is presented in Fig. 14.1.
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Fig. 14.1 A demonstration of molecular elements: A, single bond; B and C, double and triple
bonds; D, atomic label; E, wedge bond; F, dash bond; G, wavy bond; H, circular bond in aromatic
ring; I, charge
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There exists a general workflow shared by many images to chemical structure
tools mentioned in the previous section. The overall approach changed surprisingly
little from the algorithm pioneered by IBM OROCS project in 1993 [1]. It consists
of the following steps:

1. Greyscale and binarisation
2. Anisotropic smoothing and thinning
3. Page segmentation
4. Vectorisation and bond/node detection
5. Atomic label and charge recognition
6. Rule-based recognition of the spatial graph, including:

• Circle bond recognition (for old-style aromatic rings)
• Double and triple bond detection
• Special bond detection: wedge and dash bonds
• Bridge bond detection
• Compilation of the connection table
• Confidence estimate

Each of these steps will be described in the following sections on the examples of
OSRA and MolRec.

14.3.1 Initial Processing: Binarisation, Thinning and
Anisotropic Smoothing

The following approach to image pre-processing is undertaken within OSRA. A
greyscale image is obtained by converting a colour vector .R; G; B/ into a grey-level
vector .Gr; Gr; Gr/ where Gr D min.R; G; B/. Note that this is different from the
more common greyscale conversion methods where grey-level intensity is a linear
combination of red, green and blue intensities. This is important because atomic
labels in molecular images are often colour-coded: red for oxygen, blue for nitrogen
and so on. Most commonly used greyscale conversion schemes would make light
blue or yellow characters hard to detect after the binarisation (conversion to black
and white) is performed based on some thresholding method.

Because in general we do not know the resolution at which an image was
generated, four different resolutions (or scales) are typically used by default on
non-PDF files—the first three are 72, 150 and 300 dpi and the fourth resolution is
determined dynamically in the range of 500–1200 dpi. The scale affects the limits on
the maximum character size as well as the parameters for thinning and anisotropic
smoothing. Trying the processing at different scales allows for a certain degree of
independence from the scan resolution that was used when the document in question
was scanned (or produced by some other means). The best version (out of 4) is
automatically selected based on ‘confidence estimate’ fitness function.

To detect the need for a smoothing procedure at higher resolutions, a quantity we
call a noise factor is calculated. The noise factor is defined here as the ratio of the
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number of linear pixel segments (vertical or horizontal) with a length of 2 pixels to
the number of line segments with a length of 3 pixels. If the noise factor is between
0:5 and 1:0, an anisotropic smoothing procedure is performed. Noise removal and
anisotropic scaling are achieved using the GREYCstoration anisotropic smoothing
library.2 Anisotropic scaling is a procedure similar to anisotropic smoothing with
the addition of modifying the overall size of the image.

A thinning function is required to normalise all lines to be one pixel wide. Image
thinning is done rapidly by the subroutine from the article ‘Efficient Binary Image
Thinning Using Neighborhood Maps’ by Cychosz [11].

MolRec takes a simple approach to the initial stages of image preprocessing
and carries out a standard greyscaling followed by binarisation (using Otsu’s
method [12]). Unlike other systems, it delays thinning of lines to a later phase and
carries out connected component analysis and character recognition first.

14.3.2 Page Segmentation (OSRA Only)

To separate the image of a single molecule from the surrounding text and graphics,
which may include other chemical images, OSRA uses a variation of the DBSCAN
clustering approach combined with a heuristic to determine the threshold distance
between the image components which need to be kept together. This threshold
distance is estimated based on an empirical relationship between the size ratio of the
connected components and their distance from each other. The Chebyshev distance
is employed as the metric for the clustering of connected components.

Separators (connected components with a ratio of height to width above 100
or below 0.01 and size above 300 pixels—typically long lines) are identified and
deleted. This allows the removal of linear vertical or horizontal separators early
in the process and simplifies further page analysis. Table frames are also removed
based on a similar procedure—a table is identified as a connected component which
has an aspect ratio between 0.1 and 10, of which at least 300 pixels are lying on the
surrounding rectangle.

For each pair of segments, the area ratio rAB is an integer computed as rAB D
Œ

max.SA;SB/

min.SA;SB/
�, where SA and SB are the sizes (number of pixels) of the A and B

segments, respectively. We define a feature matrix f as an integer matrix of size
< maxarearatio; maxdistance > which contains the counts of the pairs of segments
with a specific area ratio lying at a specific distance from each other, that is, fij is
equal to the number of pairs of segments A; B for which i D rAB and j D dAB.

A crucial point to be addressed in order for the algorithm to be as widely
applicable as possible is the ability to distinguish between two different scenarios—
whether we have an image of a page with multiple text blocks and/or drawings
or a single-structure drawing. In the former case, it is possible to apply statistical

2http://www.greyc.ensicaen.fr/~dtschump/greycstoration/.

http://www.greyc.ensicaen.fr/~dtschump/greycstoration/
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analysis to determine a threshold value for the distance which separates fragments
that ‘belong together’ and which should be treated as parts of the same chemical
structure, from the segments that have no logical connection to the current structure
depiction and will only complicate further processing. In the latter case such
statistical analysis is likely to be impossible due to the low number of elements
present in the image and an overzealous algorithm might erroneously discard vital
pieces of information. The following step helps in making such a distinction—it
should be noted that the procedure is purely empirical but seems to work remarkably
well in practice for both PDF documents and single-structure images:

For each row of the feature matrix f , the number of cells containing zeros
( fij D 0) is counted, then the entropy of the row is computed as

E D �p log p;

where p D � z
maxdistance�2

,

z D
j<maxdistanceX

jD2

nij

and nij D 1 if fij D 0 or 0 otherwise.
By empirical observation we have found that the row with the maximum entropy

usually lies above 6 for pages with text and/or multiple graphics and is 3 or lower
when only a single-structure image is present. Therefore a threshold value of 4 was
chosen to distinguish between the two types of images.

If it is determined that the page contains text as well as graphics, it is advanta-
geous to remove text blocks before processing the chemical structure images. To
do so, first the characteristic distance between the text characters is determined by
taking the first row of the matrix fij and locating the first local minimum (d) which
occurs after the first local maximum (m): f1m�1 < f1m, f1mC1 < f1m, and f1d�1 > f1d,
f1dC1 > f1d, d > m.

All segments within distance d from each other are then grouped together. If such
a group contains more than the threshold number of connected segments (8 in our
case), and the fill ratio (number of pixels divided by the area of the rectangle that
a segment occupies) and the aspect ratio (width/height) are above preset thresholds
(0.2 and 10, respectively), the group of segments is deemed to be a text block and
removed from further processing.

All remaining segments are then grouped according to their pairwise distance—
the threshold is chosen to be twice the value of d found in the previous step; or, for a
single image page, an arbitrary high number—100 pixels. Each group of segments—
a perspective chemical structure depiction—is subjected to the following filtering
criteria: the fill ratio has to be below 0.2, the aspect ratio between 0.1 and 10, both
height and width should exceed a characteristic single character height and width,
and at least one of the dimensions, either height or width, should exceed double
the font height (or width). A characteristic font height and width are set to be 22
and 21 pixels, respectively, at a resolution of 150 dpi and scaled with the resolution
accordingly.
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14.3.3 Vectorisation

Vectorisation is a method of converting a raster image (image which consists of
individual pixels) into a vector image, which is based on line segments. OSRA is
using the Potrace library3 for vectorisation. Atoms are recognised as the control
points of Bezier curves where any one of the following conditions is met:

• The control point is classified as a corner by the Potrace algorithm.
• The vector from the control point to the next represents a change of direction

with a normal component of at least 2 pixels as compared to the vector from the
last atom to this control point.

• The distance from the last atom to the next control point is less than the distance
from the last atom to the current control point. This situation occurs when a
Bezier curve is turning around a tip of the bond line. Remember that each bond
could be circumscribed by Bezier curves from two sides.

The vectors connecting the found atoms are recognised as bonds. Note the usage of
normal component measures instead of angles between pairs of vectors.

MolRec performs vectorisation after character recognition, which is described
in the next section; however, we describe this step here in keeping with the
generic workflow. After character recognition, MolRec applies thinning [13] to
the remaining connected components, and, after some cleaning to remove thinning
artefacts, the results are vectorised using the Douglas-Peucker algorithm [14]. The
resulting polylines are then split at connection points to produce sets of vectorised
line segments. This may appear to be a retrograde step as it decomposes already
connected bond structures into sets of simple bonds, but it is important for the later
rule-based approach as it allows a relatively small number of rules to cover, in a very
general fashion, a much larger number of cases than would otherwise be possible.

Each line segment is then classified as normal, bold or triangular (for stereoscopic
bonds) by using the vectorised line segments as a guide to walk the original
raster image, finding the largest circle that will fit with the corresponding raster
version. If the circle is of an approximately constant diameter, then the line segment
corresponds to a normal or bold line with the circle diameter discriminating the two
cases. If the circle grows or shrinks as the segment is traversed, then a triangular (i.e.
wedge bond) has been located and the direction of growth determines the direction
of the bond.

Finally, arrow heads on dative bonds are detected using simple template matching
on the ends of each line segment.

3http://potrace.sourceforge.net/.

http://potrace.sourceforge.net/
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14.3.4 Atomic Label Recognition

GOCR4 and OCRAD5 are used by OSRA to test all connected sets of Bezier curves
smaller in size than a maximum character height and width, or two characters
aligned horizontally or vertically. The priority is given to GOCR method, and for
labels not recognised by GOCR alone, OCRAD algorithm is applied. Recognised
characters are then assembled to build atomic labels. Optionally, Tesseract6 and
Cuneiform7 libraries can also be used for OCR processing; however, in our
experiments their use did not result in an increase in recognition.

For MolRec, character recognition is carried out on all connected components
individually using a k-nearest neighbour classifier on a set of features including
some geometric moments, grid-based densities and an aspect ratio [15]. Characters
that are suitable are formed into words or atom or molecular names via a set of rules
based on their spatial relationships. There remain the circles of aromatic rings that
can be confused by the classifier with the letter ‘O’ and some short lines that can
be confused with the uppercase ‘I’ or lower case ‘l’. If spatial relationships cannot
resolve such cases (e.g. by the components in question being positioned inside a
suitable string of other characters), a final decision on their classification is deferred
until further knowledge becomes available.

For both tools all recognised characters are filtered out from the set of connected
components that form the image and further processing is applied to the remaining
diagram.

14.3.5 Rule-Based Recognition of the Spatial Graph

MolRec defines a set of rules to combine spatial combinations of normal and
bold line segments, characters, triangles and arrowheads into an internal semantic
representation of molecular diagrams. The rules use not just spatial co-location but
also concepts such as parallelism and chain connectedness. They also incorporate
an amount of fuzziness in all these concepts to cope not just with scanning and
digitisation artefacts but also with the fact that many diagrams are produced with
software that draws the diagrams with a significant level of imprecision.

For example, the rule condition for detecting double planar bonds, in informal
terms, is: A set of two line segments whose lengths are both greater than the
minimum simple bond length, whose widths are both less than the minimum bold
bond width, which are approximately parallel and within a maximum parallel
bond separation distance of each other and to which no other line segment is also

4http://sourceforge.net/projects/jocr/.
5http://www.gnu.org/software/ocrad/ocrad.html.
6http://code.google.com/p/tesseract-ocr/.
7https://launchpad.net/cuneiform-linux.

http://sourceforge.net/projects/jocr/
http://www.gnu.org/software/ocrad/ocrad.html
http://code.google.com/p/tesseract-ocr/
https://launchpad.net/cuneiform-linux
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approximately parallel and within the maximum parallel bond separation of either
of the target line segments. All elements in such conditions are rigorously defined
in [10]. Following recognition of such a case, actions are taken to cut such bonds if
necessary (if it corresponds to a double bond connected to a single or triple bond)
and replace the occurrence of the line segments with the resulting recognised bond
type.

As the rule engine processes the spatial graph, more and more of the diagram is
recognised and combinations of raster-oriented primitive components are replaced
by semantic level molecular diagram elements. Finally, when the whole diagram
has been recognised, superatoms are expanded using a dictionary extracted from
existing molecular diagram databases and a MOL file [16] is generated by walking
the semantic graph.

A similar procedure is also performed by OSRA and is described below.

14.3.5.1 Circle Bond Recognition

If a circle of sufficiently large diameter is found inside of a ring, the ring is flagged
as aromatic. Additional conditions include the ring atoms being sufficiently close to
the circle (not more than half of the average bond length away) and angles between
the ring bonds and the vectors to the centre of the circle being less than 90ı. The
current implementation fails when the inner circle touches the ring bonds.

14.3.5.2 Average Bond Length and Double/Triple Bond Detection

The average bond length is estimated in the following way: a sorted list of all the
bond lengths is created, and the ‘average’ bond length is taken to be the value at
the 75th percentile by rank within this list. Choosing the 75th percentile instead
of the more common 50th (the median) eliminates the bias towards smaller bond
lengths which is very common during the initial stages of processing, while also
discarding longer than usual bonds which might appear in some structure depictions.
The average bond length is re-evaluated several times throughout the processing of
the image as more structural elements are being identified. Similar mechanisms are
used for measuring the distance within the bond pairs comprising double bonds
and average bond thickness. The double and triple bonds are then identified as bond
pairs (triples) which (a) are parallel to each other, (b) are within the double bond pair
distance of each other and (c) are within each other’s ‘shadow’—that is, the bonds of
the bond pair are not separated too far along the line parallel to them (see Fig. 14.2).

Fig. 14.2 Double bond recognition: b, distance between the two prospective segments of a double
bond, c, distance along the direction of the bond
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14.3.5.3 Dashed and Wedge Bonds

For dashed and wedge bonds, OSRA considers all connected components and
subjects them to the following selection criteria. Dashed bonds are three or more
‘blobs’ of any shape as long as they are (1) small enough, (2) positioned within
the average bond length from start to finish and (3) a straight line that can be
drawn through their geometric centres. Wedge bonds are recognised by testing for a
significant thickness increase or decrease along the bond.

14.3.5.4 Bridge Bonds

Bridge bonds are bonds which visibly intersect on the structure diagram but are not
actually connected at the point of intersection. To detect a bridge bond versus an
actual connection between four bonds, we use the following algorithm: if an atom is
connected to four pairwise colinear single bonds (none of which is a terminal bond)
and this atom node removal does not result in

• Difference in the number of fragments
• Difference in the number of rotatable bonds
• Decrease in the number of five- and six-membered rings by 2

the atom is removed and the intersection is presumed to be a bridge bond
intersection.

14.3.5.5 Confidence Estimate

To find the best structure resolution among several possible choices (four, according
to the number of different resolution scales attempted in the beginning of the
processing), OSRA uses a ‘confidence function’. It is a linear function of various
simple chemical descriptors such as the number of carbon atoms, number of
nitrogen atoms, number of rings, number of aromatic rings, etc. The coefficients are
chosen in such a way that the confidence is usually higher for realistic molecules
which allows distinguishing between alternative ‘guesses’ of the same structure.

14.3.5.6 Compilation of the Connection Table

OSRA uses the OpenBabel [17] chemoinformatics library for conversion into
SMILES or SDF. A molecular object is constructed based on the connectivity
information along with the stereo- and aromaticity flags. Fragments based on
superatoms are added at this stage as well. The superatom dictionary can be
modified by a user at runtime without recompilation.
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14.4 Benchmarking Evaluations

Now that we have described in detail how two systems perform chemical optical
structure recognition, the expected question is: How well do they work? Recently,
two public evaluation exercises focusing on such aspects have taken place, first
at TREC8 and then at CLEF.9 Their objective was to create the necessary test
collections to understand precisely how well algorithms and methods such as those
presented in the previous section work. In the following we shall describe briefly
how the evaluation exercises were conceived and the obtained results.

14.4.1 TREC Chemical Track

In 2011, the TREC Chemical Track [18] decided to introduce a chemical structure
recognition task (the Image2Structure task), motivated by the fact that in the
previous years, the retrieval on text alone had already stabilised. For this a set of
topics was defined.

14.4.1.1 Topics

Two sets each containing 1000 images and the corresponding MOL10 files were
selected to act as training and evaluation sets from the USPTO file collection. The
following criteria were used in the selection process:

• No polymers (brackets in the molecule description), charges or isotopes—judged
by the presence of text lines starting with ‘M’ but not ‘M END’ in the ctab block
of the MOL file.

• No multi-fragment MOL files; only one molecule per file is allowed.
• Allow only ‘organic’ elements—C, N, O, S, F, Cl, Br, I, P and H.
• Check that ctab records for all atoms correspond to the formal charge of 0 and

that the isotope type is unspecified (default).
• Check that there are no stereobonds with stereo orientation specifically set to

‘undefined’.
• Check that the number of heavy (non-hydrogen) atoms is greater than 6 and the

molecular weight is lower than 1000 a.u.
• Check that InChI (International Chemical Identifier)11 can be created for the

selected molecules.

8http://trec.nist.gov.
9http://clef-initiative.eu.
10http://en.wikipedia.org/wiki/Chemical_table_file.
11http://en.wikipedia.org/wiki/InChI.

http://trec.nist.gov
http://clef-initiative.eu
http://en.wikipedia.org/wiki/Chemical_table_file
http://en.wikipedia.org/wiki/InChI
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These criteria allowed the organisers to focus on small organic molecules for which
a reasonably widely accepted and well-defined chemoinformatics identity measure
exists—namely, InChI and InChI key. Those are also the types of molecules believed
to be of the most interest to the chemical and pharmaceutical industry. Training sets
of images and MOL files and the evaluation set of images only have been made
available to the participants.

14.4.1.2 Evaluation

Participants of the Image2Structure task have been asked to submit the results
of their runs in the form of SD files. The SD file format is analogous to MOL
with the exception that it allows for multiple molecules to be stored in a single
file. This difference between the ground truth MOL format and the requested SD
format was deliberate to allow for the possibility that recognition software may
erroneously generate several output molecules for a single molecule input image.
There are many free and commercial software utilities which allow interconversion
between alternative formats, such as SMILES12 and SDF. The runs were evaluated
based on a recall measure by matching of the standard InChI keys computed from
the original MOL file and the SD file representing recognition software output.
Chemical identity is often a subject of ongoing debates among chemists about what
constitutes a unique molecule. InChI—IUPAC International Chemical Identifier—
is a text representation of a molecule which was designed to compute normalised,
canonical text string from the original molecule representation. InChI takes into
account certain forms of tautomerism, stereochemistry, etc. InChI key is a hashed
version of InChI. Standard InChIs and InChI keys, while not completely free of
their share of issues, are widely used as unique chemical identifiers by chemists
worldwide. Therefore standard InChI keys have been selected for Image2Structure
evaluation as a relatively controversy-free chemical identity measure.

14.4.1.3 Results

The Image2Structure task received 11 runs from five participants. Overall, results
were very good, with all participants recognising over 60 % of the given structure
images. Table 14.1 shows the best results obtained by each system.

12http://en.wikipedia.org/wiki/Smiles.

http://en.wikipedia.org/wiki/Smiles
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Table 14.1 Participants in the Image2Structure task

Participating group Run name(s) identifier Maximum recall

University of Birmingham UoB (MolRec) 0:95

SAIC-Frederick/NIH OSRA 0:86

GGA Software GGA 0:77

University of Michigan ChemReader 0:69

Fraunhofer SCAI ChemOCR 0:66

14.4.2 CLEF-IP Chemical Image Recognition Task

The benchmark in TREC-CHEM was followed in 2012 by a very similar one at
CLEF-IP [19]. The focus was still on recognition of chemical structures from patent
images, but there were also two novel elements: First, participants were invited
to also segment full pages of patent documents to identify where the chemical
representations are. Second, some of the images provided for the recognition part
were more complex and assessed manually.

14.4.2.1 Segmentation

For this subtask, 30 patents were selected, rendered to 300dpi monochrome mul-
tipage TIFF images, and all chemical molecular diagrams were manually clipped
from the images using a custom-built tool. This clipping tool recorded the minimal
bounding box size and coordinates of each diagram clipped, and the results were
recorded in a ground truth comma separated value (CSV) file. The participants
were asked to produce their own results CSV file containing this bounding box clip
information for each diagram that their systems could identify.

Another tool was written to automatically compare the participants’ results file
with the ground truth file. This identified matches at various tolerance levels, where
a match is awarded if every side of a participant’s bounding box is within the
tolerance number of pixels of the corresponding side of a ground truth bounding
box. Evaluation results were calculated for each of a range of tolerances starting
at 0 pixels and increasing to the maximum number of pixels that still disallowed
any single participant bounding boxes from matching more than one ground truth
bounding box. This maximum limit in practice was 55 pixels, or just under 0.5 cm.

The number of true-positive, false-positive and false-negative matches was
counted for each tolerance setting, and from that the precision, recall and F1-
measure were calculated.
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14.4.2.2 Recognition

A diagram recognition task requires the participants to take a set of diagrams,
analyse them to some recognised format and submit their recognised format files
for evaluation. In order to evaluate the results, these submitted format files must
be compared to a ground truth set of format files. Therein lies a difficult problem
with respect to the chemical diagram recognition task for patent documents.
Currently, the most complete standard format for chemical diagrams is the MOL file
format. This format captures quite well fully specified chemical diagram molecules.
However, it has become standard in patent documents to describe whole families or
classes of molecules using diagrams that extend standard molecule diagrams with
graphical representations of varying structures, called Markush structures. Markush
structures cannot be represented in MOL files.

Given the standard nature of MOL files, there have been a significant number of
research and commercial projects to recognise diagrams with all the features that
can be represented by MOL files. However, without standard extensions to MOL
files to cope with Markush structures, there has been relatively little effort expended
in recognising such extended diagrams. With the intention of fostering such efforts,
the recognition task for CLEF-IP 2012 was designed to expose participants to a
relatively small number of the simpler of these extended structures, while also
providing a large number of cases fully covered by the current MOL file standard.

A total of 865 diagram images, called the automatic set, were selected. The
diagrams in this set were fully representable in standard MOL files. Evaluation
of this set was carried out by automatically comparing the participants’ submitted
MOL files with the ground truth MOL files using the open-source chemistry
toolbox, OpenBabel. The key tool in this set is the InChI (International Chemical
Identifier) representation. OpenBabel was chosen among other tools offering similar
functionality because it is free and available to everyone. The number of correctly
matched diagrams (and the percentage correctly matched) was reported for each
participant.

A manual set of 95 images were chosen which contain some amount of
variability in their structure and which can only be represented in MOL files by
some abuse of the MOL file standard. These cannot be automatically evaluated
as the OpenBabel system cannot deal with the resulting structures. However, such
MOL files can still be rendered to an image format using the MarvinView tool from
ChemAxon. Thus it was possible to carry out the evaluation of this set by manual
visual comparison of the original image, the MarvinView generated image of the
ground truth MOL file for the image and the MarvinView generated image of the
participant’s submitted MOL file. To this end a bespoke Web application was written
to enable the organisers and participants to verify the manual visual evaluation.

It was less than satisfactory to have to carry out the evaluation of this latter set
manually and even more so that we had to exclude from the set structures that
appear in patent files but which cannot be rendered from (abused) MOL files using
MarvinView. This points strongly to a need in the community to develop either an
extension or an alternative to MOL files that can fully support common Markush
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Table 14.2 OSRA page
segmentation results

Tolerance Precision Recall F1

0 0:70803 0:68622 0:69696

10 0:79311 0:76868 0:78070

20 0:82071 0:79543 0:80787

40 0:86696 0:84025 0:85340

55 0:88694 0:85962 0:87307

structures together with the necessary ancillary tools for manipulating, comparing
and rendering such structures to images.

14.4.2.3 Segmentation Results

CLEF-IP 2012 results for chemical image segmentation task for OSRA are pre-
sented in Table 14.2. The ground truth data was manually collected for this task.
Tolerance is measured in pixels and signifies how far the borders of the found
bounding box were allowed to deviate from the ground truth. OSRA was the only
participating tool with the capability to perform page segmentation to search for
molecular structures.

14.4.2.4 Structure Recognition

Table 14.3 shows the structure recognition results obtained by the two participating
teams. The values shown are the recall percentages based on InChI keys for
structures.

Both saic (using their OSRA tool) and uob (using their MolRec tool) submitted
result sets (1 and 4, respectively) for the diagram recognition subtask.

Clearly, both groups, unsurprisingly, found the diagrams with varying elements
significantly more challenging than the more standard fixed diagrams.

OSRA has further been tested on additional test collections, outside of CLEF-IP.
In Table 14.4 we present the structure recognition results based on several publicly
available data sets of chemical structure images.

14.5 Beyond Molecules: Chemical Reactions

One way to expand the described approaches beyond the single molecule recogni-
tion is to develop a method for recognising chemical reaction images. A database
of chemical reactions has many potential uses. It can be used in the development
of retrosynthetic analysis software, synthetic availability prediction, bioisostere
discovery and many others. Manually constructing such a database is a painstaking
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Table 14.3 Results obtained by the two groups participating in the recognition task

Automatic set Manual set Total

#Structures Recalled % #Structures Recalled % #Structures Recalled %

saic 865 761 88 95 38 40 960 799 83

uob1 865 832 96 95 44 46 960 876 91

uob2 865 821 95 95 56 59 960 877 91

uob3 865 821 95 95 44 46 960 865 90

uob4 865 832 96 95 54 57 960 886 92

Table 14.4 Structure
recognition results

Set Total Imago-2.0 (%) OSRA 2.0.0 (%)

Image2Structure 1000 90:2 91:9

CLEF 2012 865 67:0 96:5

JPO 450 40:4 62:6

USPTO 5719 86:9 88:0

Maybridge UoB 5740 63:5 86:4

process prone to errors. Existing freely available data sets which do allow bulk
downloads may have several thousands of reactions,13 while the total number of
published reactions may number in tens of millions.14Patent documents represent
a rich data set which is by definition unencumbered by licensing issues. An ability
to extract chemical information from patents and other documents can therefore
be valuable not only to academic organisations but also to commercial entities. A
very promising approach to extract chemical reactions by text analytics methods
has been presented recently [20]; however, until now there was no automatic way to
data-mine reactions depicted as images.

At the most fundamental level, an image of a chemical reaction is a collection
of molecules, arrows and plus signs. Most real-life images are more complicated
though because they combine multi-step reactions (perhaps more than one per page)
with text and other graphics. It might not always be a trivial task to determine
for each reaction step where the reactants and products are located on the page.
A multi-step reaction might follow a ‘tail-to-head’ pathway, snaking around the
page (see Fig. 14.3), or it might be arranged in a text-flow manner: left to right
and top to bottom with possible line breaks between the arrow heads and the
corresponding products (Fig. 14.4). OSRA can handle such arrangements, even with
multiple multi-step reactions on a page, though it might get confused by chemical
structures from different reactions which are accidentally aligned horizontally.

Recognition of graphical primitives such as arrows and plus signs has been
extensively studied [21]. OSRA followed a simplified approach: first convert a
symbol image to polar coordinates with respect to its centre of mass, then build

13http://www.ebi.ac.uk/rhea/.
14http://www.cas.org/content/reactions.

http://www.ebi.ac.uk/rhea/
http://www.cas.org/content/reactions
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Fig. 14.3 ‘Snaking’ reaction

a histogram of pixel population density for binarised segments from 0 to 360ı. The
resulting histogram is amenable to simple heuristic rules for robust detection of
arrows and relatively large plus signs.

While tail-to-head, ‘snaking’ reactions are easy to assemble—arrows always
point from reagents to products (and in case of a reversible reaction, there could
be two arrows going the opposite way)—care must be taken to correctly identify
products corresponding to the left-most arrow in a ‘text-flow’ arrangement. The
plus signs between the products or between the reagents might also be placed on a
line break, as seen with the last two structures in Fig. 14.4.

Finally the reagents, products and agents (small molecules depicted above or
below the reaction arrow) are assembled together from single-step reactions into
an array of multi-step reactions. The underlying assumption is that every multi-
step reaction represents a single path from the initial reagents to the final products
without branching or loops. This assumption does not always hold true, but the
exceptions are rare enough to warrant such simplification.

For testing and experimentation, we used a data set based on USPTO patent
images and Complex Work Unit CDX files kindly shared by A. Heifets. Table 14.5
shows the recall results of running OSRA on four complete PDF files from USPTO.
Computation of the recall rates has been performed using RInChI software.15A

15http://www-rinchi.ch.cam.ac.uk/.

http://www-rinchi.ch.cam.ac.uk/
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Fig. 14.4 Text-flow reaction NH2
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CACTVS16 script was used to convert CDX files to RXN format. Structures with
unresolved superatoms have been filtered out from the ground truth. Overall we
observed the average recall to be about 30–40 %, but we should point out that
the ground truth files need more attention—they are often incomplete (reaction
present on the page is absent from the GT) and sometimes incorrect. Other than

16http://xemistry.com.

http://xemistry.com
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Table 14.5 Accuracy
estimates

Document Recall Total

US06509464 28 71

US06423728 17 70

US06495549 33 69

US06492381 28 55

the problematic GT, the main source of errors for the reaction recognition algorithm
itself seems to be reactions that are split by a page break between pages or, for
multi-column documents, reactions that start at the bottom of one column and
continue at the top of the next column. Also, as we mentioned before, sometimes
the system wrongly combines structures which belong to different reactions, which
was observed for a two-column document with separate reactions in both columns.
The most urgent of the above is the lack of reliable ground truth data without
which accuracy estimates are highly uncertain. Problems with page breaks and
column breaks should be fairly easy to resolve in the future releases. With that
said we expect the reaction recognition to be dominated by the accuracy rate of the
underlying chemical structure recognition algorithm. If, for example, the accuracy
of single-structure recognition process stands at 88 % (a reasonable estimate for
OSRA processing of USPTO images), the accuracy for a reaction involving four
structures, e.g. two reagents and two products, can hardly be expected to exceed
60 % (0:884 � 0:60).

While the measured recall rate is on the low end, it should be noted that due to
the problems with existing ground truth sets, the reported recall rate might actually
be undervalued; however, considering the fact that there are tens of millions of
documents which potentially contain chemical reaction information, extracting even
a half of that information can constitute a valuable resource.

To the best of our knowledge, OSRA is the first software tool with the ability to
recognise and reconstruct chemical reactions from full document images. Since it is
a free and open-source tool, we hope its release will encourage the development in
this area of chemoinformatics and document recognition.

On the other hand, MolRec demonstrates unsurpassed individual molecular
diagram recognition and we hope that its lessons will motivate and inspire higher
accuracy in other molecular diagram recognition systems.

14.6 Summary

Transforming raster images of chemical molecules, or, even more interestingly,
chemical reactions, is a significant challenge for the patent domain. The tools we
showed in this chapter, as well as those tested in the TREC Chemical Track and
CLEF-IP, have shown that good performance can be achieved on sets of fairly
clean data, but when more complex elements are present, the effectiveness drops
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considerably. The problem is further exacerbated by the presence of Markush
structures, which have no commonly agreed textual representation to use as a target
result format. However, that is not a problem that can be solved with optical structure
recognition tools.

The progress that has been achieved in the field over the last few years is
remarkable. The recognition rates in the upper 90 % (on reasonably good quality,
but still real-world data) have been unheard of in the chemical image recognition
before. Not only that, we now also have freely available validation sets of images
with ground truth data for thousands of molecules, as well as a fast, automatic way
to verify the results in a way that is relevant to the true target end users—chemists—
and not only to the image recognition professionals. There are still significant
challenges remaining and the problem in general is far from solved. Some of the
future directions of research are better OCR of atomic labels, especially in cases of
poor image quality when bond lines intersect the label characters, ability to handle
multiple attachment points for superatoms and better filtering of nonsensical or
non-chemical results. The groundwork laid by recognising small organic molecules
and reactions can serve as a starting point for a variety of other image processing
techniques such as polymer image recognition.17
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Chapter 15
Representation and Searching of Chemical
Structure Information in Patents

Geoff M. Downs, John D. Holliday, and Peter Willett

Abstract This chapter describes the techniques that are used to represent and to
search for molecular structures in chemical patents. There are two types of structure:
specific structures that describe individual molecules and generic structures that
describe sets of structurally related molecules. Methods for representing and
searching specific structures have been well established for many years, and the
techniques are also applicable, albeit with substantial modification, to the processing
of generic structures.

15.1 Introduction

Patents are a key information resource for all types of industry, but this is particularly
the case in the pharmaceutical and agrochemical industries. The main focus of these
industries is to identify novel chemical molecules that exhibit useful biological
activities, e.g. reducing an individual’s cholesterol level or killing the insect pest of
a crop [1]. Chemical patents hence need to contain not just the textual information
that one would find in any type of patent but also information about the chemical
molecules of interest. These may be represented in textual, numerical or graphical
form (chemical names, images, chemical properties, reaction conditions, etc.),
which may be used as part of the query formulation. However, they may also
describe the structural information contained in the patent, a concept which has led
to the development of specialised types of representation and search algorithm for
their efficient and effective access. These techniques are an important component of
what has come to be called chemoinformatics [2], i.e. ‘the application of informatics
methods to solve chemical problems’ [3].

Two types of molecular information are encountered in chemical patents. A
patent may mention or claim individual specific molecules, for which the techniques
that have been developed in chemoinformatics over many years may be applied, as
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discussed below. However, many chemical patents discuss (and claim protection
for) entire classes of structurally related molecules, described by generic, or
Markush, structures. A single generic structure can represent many thousands, or
even a potentially infinite number, of individual molecules, and the representational
and searching techniques required are accordingly far more complex than those
commonly encountered in chemoinformatics systems. In this chapter, we provide
an overview of the techniques that are used to handle both specific and generic
chemical structures. For further details of the techniques described below, the reader
is referred to the standard textbooks by Leach and Gillet [4] and by Gasteiger
and Engel [5] and the reviews by Kosata [6], Warr [7] and Barnard, Kenny and
Wallace [8]. These texts also provide excellent introductions to the many aspects
of chemoinformatics that are not, as yet, of direct relevance to the processing of
chemical patent information.

15.2 Searching Specific Chemical Structures

15.2.1 Representation of Chemical Structures

If one wishes to carry out computer-based searches of a chemical database, then
the molecules of interest must be encoded for searching, and we commence by
describing the three main ways in which one can provide a full description of a
chemical structure in machine-readable form: these are systematic nomenclature,
linear notations and connection tables. Before describing these, the reader should
note that we consider here (and in the remainder of this chapter) only the processing
of 2D chemical molecules, i.e. the planar chemical structure diagrams that are
conventionally used to represent molecules in the scientific literature and that
are exemplified by the structure diagram shown in Fig. 15.1. More sophisticated
techniques are required for the representation and searching of 3D chemical
molecules, i.e. where one has geometric coordinate information for all of a
molecule’s constituent atoms [4, 9].

Chemical compounds have had names associated with them ever since the days
of the alchemists, but it was many years before it was realised that there was a
need for systematic naming conventions to ensure that every specific molecule
would have its own unique name. This name should be unique, in the sense that
there should be only one possible name for a molecule, and unambiguous, in the
sense that it should describe that molecule and no other; moreover, it was soon
realised that there are advantages if the name describes the various substructural
components comprising the molecule, whereas common, non-systematic names
normally say little or nothing about a molecule’s components. For example, (2S)-
1-phenylpropan-2-amine is the systematic, explicit representation for the structure
shown in Fig. 15.1, which is also, and most commonly, called dexamphetamine.



15 Representation and Searching of Chemical Structure Information in Patents 393

Trivial name: dexamphetamine

IUPAC Name: (2S)-1-phenylpropan-2-amine

Wiswesser Line Notation: ZY1&1R

SMILES: C[C@H](N)Cc1ccccc1

InChI: InChI=1S/C9H13N/c1-8(10)7-9-5-3-2-4-6-9/h2-

6,8H,7,10H2,1H3/t8-/m0/s1

InChIKey: KWTSXDURSIMDCE-QMMMGPOBSA-N

MDL Connection Table:

CH
CH3

NH2

Fig. 15.1 A selection of names and linear notations for dexamphetamine with an MDL-format
connection table

Two systematic nomenclatures are in widespread use, these being the ones devel-
oped by the International Union of Pure and Applied Chemistry (IUPAC at http://
www.iupac.org) and by Chemical Abstracts Service (CAS at http://www.cas.org).
IUPAC is an association of 60 national chemical societies, seeking to establish
standards in nomenclature and physiochemical data measurement, while CAS is
a division of the American Chemical Society and the world’s largest provider
of chemical information, indexing articles from more than 10,000 journals and
patents from 60 national patent agencies. Systematic names continue to be widely
used in the chemical literature, but are of less importance in chemoinformatics

http://www.iupac.org/
http://www.cas.org/


394 G.M Downs et al.

systems since they are normally converted automatically into one of the two other
types of standard representation, i.e. linear notations or connection tables. A linear
notation is a string of alphanumeric characters that provides a complete, albeit in
some cases implicit, description of the molecule’s topology. A canonicalisation
procedure is normally invoked to ensure that there is a unique notation for each
molecule. The first notation to be widely used was the Wiswesser Line Notation,
which formed the basis for most industrial chemoinformatics systems in the 1960s
and 1970s. Two notations are of importance in present-day systems: the SMILES
(for Simplified Molecular Input Line Entry Specification) notation developed by
Daylight Chemical Information Systems Inc. [10] and the International Chemical
Identifier (or InChI), the development of which is being overseen by IUPAC [11].
SMILES was developed for use in in-house industrial chemoinformatics systems
(as is the case with much chemoinformatics software), while InChI, conversely, has
been developed as an open-source, non-proprietary notation. The SMILES and the
InChI for dexamphetamine are included in Fig. 15.1.

Notations provide a compact molecular representation and are thus widely used
for compound exchange and archival purposes. However, most chemoinformat-
ics applications require their conversion to a connection table representation of
molecular structure. A connection table is a data structure that lists the atoms
within a molecule and the bonds that link those atoms together (in many cases,
only ‘heavy’ atoms are included since the presence of hydrogen atoms can be
deduced automatically). The table provides a complete and explicit description
of a molecule’s topology, i.e. the way that it is connected together, whereas this
information is normally only implicit in a linear notation. There are many ways in
which the atoms and bonds can be encoded, with typical connection table formats
being exemplified by those developed by MDL Information Systems Inc. (which
is now part of Biovia and owned by Dassault Systèmes) [12]. The MDL MOL file
for dexamphetamine is shown in Fig. 15.1. Following some header lines, the first
section describes the atoms present, while the second section describes the chemical
bonds between them by referencing the sequence numbers of the atoms in the first
section; for example, atom 6 is connected to atom 4 with a single (type 1) bond.

Both line notation and connection tables are based on the principle that a
chemical structure can be regarded as a topological graph, which is a mathematical
construct in which a set of nodes or vertices (representing the atoms) are linked
pairwise by edges or arcs (representing the bonds). Though the analogy between
chemical structures and topological graphs is not perfect, graph theory is very
well understood [13, 14], and chemoinformatics has been able to draw on the
many algorithms that have been developed for processing graphs. Of particular
importance in the present context are the graph isomorphism algorithms that are
used to determine whether two graphs are identical and the subgraph isomorphism
algorithms that are used to determine whether one graph is contained within another,
larger graph [4, 5].
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15.2.2 Searching for Specific Molecules

An important search capability is full structure searching: the inspection of a
database to retrieve the information associated with a particular molecule (e.g. if
a chemist needed to know the molecule’s boiling point or to identify a synthesis
for it) or to confirm the molecule’s presence or absence in a database (e.g. if a
chemist wanted to check whether a newly synthesised molecule was completely
novel). Searching for a single molecule, based on its structure, typically involves
three basic steps—normalisation, canonicalisation and hash coding.

Firstly, the structures (both those in the database to be searched and the query
to be searched for) must be ‘normalised’ or ‘standardised’ to ensure that possible
variations in the way they are represented are eliminated. This avoids some of the
problems caused by the inexact correspondence between chemical structures and
topological graphs and involves applying ‘business rules’ to ensure that preferred
charge distribution, tautomeric and other forms are used [15].

Secondly, the connection table or line notation must be put into a unique
(or canonical) form, so that the same structure always has exactly the same
representation. This essentially involves selecting one of the N! (N-factorial) ways
of numbering the N atoms in the molecule. Several algorithms are commonly used
for this—the chemoinformatics literature has generally cited that due to Morgan
[16] and others based on it, while the computer science literature cites that due to
McKay [17]. The former is used in Chemical Abstracts Service’s databases, among
others, while the latter is used for InChI.

Thirdly, the canonical representation is ‘hashed’ to a shorter identifier which can
be conveniently used as a look-up key to the structure’s location in disk storage.
For example, the InChI key is a fixed-length hashed version of the InChI identifier.
Hashing is an approximate procedure, in that different records can yield the same
hashed key, a phenomenon that computer scientists refer to as a collision. A simple
string comparison of the full canonical representation (or, in the case of connection
tables, a graph isomorphism algorithm) can be used to ensure that a true match has
been found. The possibility of collisions means that a full representation cannot
be regenerated automatically from a hashed identifier, though if the frequency of
collisions is small, simple look-up tables can be constructed which lead from the
hash code to the full representation of a molecule that gives rise to it. Several
public websites are now available which provide this function for InChI keys and
are known as InChI Key Resolvers.

15.2.3 Searching for Chemical Substructures

Probably the single most important facility in a chemoinformatics system is the
ability to carry out a substructure search, i.e. the ability to identify all of those
molecules in a database that contain a user-defined query substructure. For example,
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in a search for molecules with antibiotic behaviour, a user might wish to retrieve all
of the molecules that contain a penicillin or cephalosporin ring system. Fig. 15.2
shows another example, where a pyridine ring is used as a query to retrieve four
matching structures. In graph-theoretic terms, this is an example of a subgraph
isomorphism search, a generalisation of the graph isomorphism search mentioned
above and ultimately involving an exhaustive atom-by-atom comparison of the
query and database structures. Though substructure search guarantees the retrieval
of all molecules matching the search criterion, it is intrinsically slow as subgraph
isomorphism belongs to the class of NP-complete computational problems for which
no ‘efficient’ algorithms are known to exist [4, 18].

Operational substructure searching is practicable for three reasons. First, the fact
that chemical graphs are both simple (they contain relatively few nodes, most of
which are of very low connectivity) and information rich (as one can differentiate
atoms and bonds by their element and bond types, respectively). These factors serve
to reduce the numbers of atom-to-atom and bond-to-bond mappings that need to
be considered by a subgraph isomorphism algorithm. Second, a lot of effort has
gone into the development of algorithms that can handle chemical graphs, as against
graphs in general, very efficiently, with the elegant matching techniques described
by Sussenguth [19] and by Ullmann [20] lying at the heart of current substructure
searching systems. Third, and most importantly, the subgraph isomorphism search is
preceded by an initial screening search in which each database structure is checked
for the presence of features, called screens, that are present in the query substructure.
For example, using the penicillin example mentioned above, any database structure
can be eliminated from further consideration if it does not contain the fused four-
membered and five-membered rings that comprise the penicillin nucleus.

A screen is a substructural feature, called a fragment, the presence of which is
necessary, but not sufficient, for a molecule to contain the query substructure. The
features that are used as screens are typically small, atom-, bond- or ring-centred
fragment substructures that are algorithmically generated from a connection table
when a molecule is added to the database that is to be searched. A common example
of a screen is the augmented atom fragment, which consists of an atom, and those
atoms that are bonded directly to the chosen central atom. A representation of
the molecule’s structure can then be obtained by generating an augmented atom

Fig. 15.2 Query substructure (pyridine ring) and some example hits



15 Representation and Searching of Chemical Structure Information in Patents 397

Fig. 15.3 Example of augmented atoms and a fingerprint

fragment centred on each atom in the molecule in turn. This information is encoded
for rapid searching in a fixed-length bit string, called a fingerprint, whose encoded
fragments hence provide a summary representation of a molecule’s structure in
just the same way as a few selected keywords provide a summary representation
of the full text of a document (see Fig. 15.3). The fingerprint representing the
query can then be matched against corresponding fingerprints representing each
of the molecules in the database that is to be searched. Only a very small subset
of a database will normally contain all of the screens that have been assigned to a
query substructure, and only this subset then needs to undergo the time-consuming
subgraph isomorphism search.

15.2.4 Similarity Searching

Substructure searching provides an invaluable tool for accessing databases of
chemical structures; however, it does require that the searcher is able to provide
a precise definition of the substructure that is required, and this may not be possible
in the early stages of a drug discovery project, where all that is known is the identity
of one or more active molecules, e.g. an existing drug from a competitor company.
In such circumstances, an alternative type of searching mechanism is appropriate,
called similarity searching [21, 22]. Here, the searcher submits an entire molecule,
which is normally called the reference structure, and the system then ranks the
database in order of decreasing similarity to the reference structure, so that the
molecules returned first to the searcher are those that are most closely related to
it in structural terms. The underlying rationale for similarity searching is the similar
property principle [23], which states that molecules that have similar structures
will have similar properties. Hence, if the reference structure has some interesting
property, such as reducing a person’s susceptibility to angina, then structurally
similar molecules are also likely to exhibit this characteristic.
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Fig. 15.4 Example of output from a similarity search

There are many different ways in which intermolecular structural similarity
can be quantified, with the most common similarity measures being based on the
comparison of molecular fingerprints to identify the numbers of fragments common
to a pair of molecules. This provides a very simple, but surprisingly effective,
way of identifying structural relationships, as exemplified by the molecules shown
in Fig. 15.4. Similarity-based approaches to searching for chemical structures in
patents have been proposed by a number of groups, including Weininger [24],
Rhodes et al. [25] and Fliri et al. [26, 27], and form an aspect of patent-based drug
discovery systems developed at AstraZeneca [28, 29].

15.2.5 Databases of Specific Structures from Chemical Patents

Several databases of specific chemical structure records from chemical patents are
available for searching using the techniques described in the preceding sections [30].
Some of these include molecules described in patents alongside those found in other
sources, such as journal articles, while others are derived entirely from the patent
literature. Some databases are manually curated by expert analysts, while others
are produced by automatic analysis of machine-readable patent text, identifying
and extracting chemical nomenclature and converting it automatically to connection
table representations [31]. Among those available are:

• Chemical Abstracts Service registry file (manually curated)
• Thomson Reuters Derwent Chemistry Resource (manually curated)
• Elsevier Reaxys (generated semi-automatically, and also including display of

Markush structures)
• SureChEMBL (generated automatically, and now maintained by the European

Bioinformatics Institute)
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In addition the PubChem database maintained by the National Institutes of Health
incorporates around 15 million molecules extracted from patent text by Thomson
Pharma, SureChemOpen, SCRIPDB [32] and IBM [25].

15.3 Searching Generic Chemical Structures

15.3.1 Markush Structure Representation

In order to ensure complete coverage of the scope of invention, and hence protect
the inventor’s property rights, patent documents tend to extend beyond the realm
of specific description but, instead, describe the invention using broader terms.
Those features which reflect the novelty of the invention are described in full and
unambiguous terms, while other features, although fundamental to the invention,
may be optional or alternative in nature. An example of the latter feature might be
a new refrigerator for which the internal light might be described using a vague
term such as ‘device for illuminating the interior’. The same is true of chemical
patents in which features of the compound that are fundamental to the novelty of
its operation are described using specific terms, and those for which alternatives
may be substituted are described generically. The result of this treatment is a single
description which can represent a potentially vast number of specific molecules,
many (or even most) of which will have never been synthesised or tested.

Figure 15.5 shows part of a US patent in which the main claim 1 is shown as
a ‘Markush’ structure. The essential parts of active molecules are shown in the
diagram using specific atoms, to which are attached ‘R-groups’ whose more generic
nature is described in the succeeding paragraphs. The more specific claim 10 lists
nine individual molecules, all covered by the Markush structure in claim 1, using
their systematic names. The third of these is the molecule actually marketed as
Viagra®, but the others have similar biological activity and are also protected by
the patent.

The logical and linguistic terminology that exists in the chemical patent literature
has been described in detail by Dethlefsen et al. [33], leading to a classification of
the structural variations which exist. These authors identified four types of structural
variation, which are exemplified in Fig. 15.6:

• Substituent (s-) variation involves an enumerated list of alternative substituents
that may appear at a particular place in the structure.

• Position (p-) variation involves a set of alternative points of attachment for a
substituent, normally, though not always, different positions on a ring.

• Frequency (f-) variation involves the variable repetition of a component either
within a linear ‘nose-to-tail’ sequence or as an attachment to a ring system.

• Homology (h-) variation involves specifying a generic class of substituents,
usually using nomenclatural or other verbal expressions, which defines the
component as being a member of a family of related chemical substituents (e.g.
R3 in Fig. 15.5 indicates an alkyl group containing up to six carbon atoms).
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Fig. 15.5 Example US patent

The Markush structures in Figs. 15.5 and 15.6 are relatively simple; Markush
‘cores’ consisting only of a set of connected R-groups, and repeated nesting of
variable groups, are common features in chemical patents, leading to complex
and often confusing structures. Enumeration of all of the specific molecules
covered is rarely an option due to storage requirements and computational costs.
Therefore, an alternative method of computer representation is required. The basic
structure adopted by current commercial systems [1, 30] is a logical tree of ‘partial
structures’ (shown as connection tables) in which the invariant core of the structure
becomes the root, and the various optional and alternative parts become branches.
Partial structures from the tree can be combined appropriately to form complete
molecules when enumeration is required, and searches can be performed across
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Fig. 15.6 Types of structural variation in chemical patents

their boundaries without the need for enumeration. These principles have also
been applied to the handling of Markush structures used to represent combinatorial
libraries [34].

While those partial structures in a Markush that are described in specific terms
(whether by nomenclature, line notation or structure diagram) can be represented
by connection tables, a different form of representation is required for generic
(homology-variant) groups, since they are not defined in a way that can be shown
as a simple topological graph. A number of approaches have been used [30, 35],
though they have certain features in common. Research work at Sheffield University
in the 1980s [36] used a set of quantitative structural ‘parameters’ to describe such
groups specifying, for example, the number and type of atoms present, the types
of bonds, the number and size of rings, etc. Other systems have used small sets of
special node types representing the main classes of homology-variant group. For
example, Thomson Reuters’ Merged Markush Service (MMS) database uses a set
of 22 ‘superatoms’, representing groups such as alkyl chains (the CHK superatom)
or fused heterocyclic groups (HEF). Qualitative attributes (e.g. ‘long chain’) or
quantitative ‘parameters’ (e.g. specifying the number and type of atoms present, or
the number of rings) can be applied to these to describe the group in greater detail.
In Chemical Abstracts Service’s MARPAT database, a hierarchically arranged set
of eight ‘generic group nodes’ (e.g. Ak for carbon chain, or Hy for heterocycle) is
used, with similar qualitative categories and quantitative attributes.

Recent work at the pharmaceutical company AstraZeneca [37] has included the
development of an XML-based Markush Input Language (MIL), in which specific
partial structures are described using SMARTS notation (an extension of SMILES,
used for representing substructural patterns). The publication illustrates the use of
MIL to represent the ‘original’ Markush structure (from a US patent for pyrazolone
dyes, filed in 1926 by Dr Eugene Markush), though in practice the language has so
far been used primarily to represent non-patent Markush structures, such as those
found in legislation for controlled substances.
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15.3.2 Searching in Markush Structures

The same principles of graph and subgraph isomorphism that are used for searching
in specific structure databases can be used for those parts of a Markush structure that
can be represented by atom–bond connection tables. There are, of course, additional
complications in handling the connections between different partial structures and
in the logical (AND/OR) relationships between them.

A more serious complication arises when trying to match groups described by
atom–bond connection tables with those homology-variant groups described in
other ways; this complication is sometimes called translation. Enumeration of all
possible members of the relevant homologous series is not normally a practicable
solution, because of the sheer numbers involved, though enumeration of subsets
may sometimes be useful [26, 27]. In general, it is possible to derive a generic
representation (e.g. based on structural parameters) from a specific group (based on
a connection table), while the reverse process is not possible. The comparison can
thus be done at the generic level, effectively showing, for example, that an ethyl
group (a specific group consisting of chain of two carbon atoms) is ‘consistent’ with
a C1-6 alkyl group (a chain of up to six carbon atoms), whereas it is not consistent
with a nitrogen-containing heterocylic ring system.

A further problem can arise as a result of the arbitrary boundaries between
different partial structures, making it difficult to establish which atoms from
a connection-table-represented group should be compared against a generically
represented group. Work at Sheffield developed the concept of reduced graphs [38],
in which all the atoms in a ring or in a chain of connected carbon or non-carbon
atoms are collapsed into a single node in the ‘reduced’ graph connection table,
which thus better mirrors the boundaries between generically described groups.
Similar ideas are used in most commercial systems.

The AstraZeneca work [37] mentioned earlier has also included the develop-
ment of a type of Markush structure search system, known as i3am (‘is it in a
Markush’). This contrasts somewhat with the commercial systems for searching
patent databases, in that its primary purpose is to determine whether or not any of a
(possibly very large) set of specific molecule queries is covered by any of a relatively
small set of Markush structures.

ChemAxon’s Markush search system [39] allows query formulation and limited
search functionality, and their JChem cartridge enables access to in-house Markush
data. The toolkit, which also allows structure enumeration, visualisation and
analysis, has been applied to Thomson Reuters’ IP Data Feeds, which includes
summary data from over half a million patents from the Derwent World Patents
Index®.
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15.3.3 Fragmentation Codes and Screening

Before the 1980s, structure-based retrieval systems operated almost exclusively
on the basis of fragmentation codes in which the structural components were
described using a series of fragment descriptors that were analogous in principle
to the fragments still used for screening substructure searches of databases of
specific molecules. Special codes were devised for patent databases, of which the
most notable were the Derwent CPI code and the GREMAS code; their respective
retrieval performance was compared by Franzreb et al. [40]. The Derwent CPI code
is still in use today for Thomson Reuters’ World Patents Index [41].

As with specific structure searching, graph-based generic systems also require an
initial fragment-based screening stage in order to reduce the number of compounds
being sent to more compute-intensive search strategies based on subgraph isomor-
phism algorithms. These screens use not only the types of fragment that are found in
specific molecule search systems but may also use screens based on the superatoms
and generic group nodes used to represent homology-variant groups. The Sheffield
research work used specific-level fragment descriptors generated from homology-
variant components [42] and used the logic tree structure of a Markush to identify
screens common to multiple alternative groups in the structure as a whole [43].

15.3.4 Commercial Markush Databases and Search Systems

Two commercial databases of Markush structures from patents have been available
since the late 1980s, each with its own dedicated online search system. These are
Thomson Reuters’ MMS (Merged Markush Service) database, which is searchable
using Questel’s Markush DARC software [44], and Chemical Abstracts Service’s
MARPAT database [45], searchable with its own MARPAT software [46]. The MMS
database resulted from a merger between the WPIM (World Patents Index Markush)
database, originally built by Derwent, and the Pharmsearch database originally built
by INPI, the French Patent Office. These MMS and MARPAT systems have changed
relatively little since their first launch and are compared by Schmuff [47] and Berks
[1]. Practical aspects of their use are discussed by Newbold [48] and by Cielen [49].

In recent years there has been increased interest in alternative or enhanced access
to these commercial databases, and Thomson Reuters have made their data available
to a number of collaborators. Barnard and Wright [50] have discussed the prospect
for ‘in-house’ access to Markush databases, and Csepregi [39] has described the
search software developed at ChemAxon. In addition Deng et al. [51, 52] have
described an improved visualisation system for the Markush structures from the
MMS database, which has been developed at Roche.
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15.3.5 Automatic Extraction of Markush Structures
from Patent Text

The manual curation of Markush databases, such as MMS and MARPAT, is
extremely time-consuming and expensive, and the success of automated data mining
techniques to extract structural and other information from chemical text [53] has
led to considerable interest in the possibility of automatic extraction of Markush
structure records from machine-readable patent specifications. This has included
work on automatic analysis of structure diagrams (‘chemical OCR’), especially
where these include features such as R-groups and position and frequency variation
[54, 55]. Direct attempts to extract searchable Markush structures by automatic
analysis of patent documents have been reported by Haupt [56] and by Eigner-
Pitto et al. [57], though with limited success; the often considerable complexities
of Markush structures and the way they are described in patent documents mean
that extracting Markush structures from them reliably is likely to continue to require
significant amounts of manual curation, at least for the foreseeable future.

15.4 Conclusions

The structures of chemical molecules are an important component of the infor-
mation contained in chemical patents. Individual molecules can be searched using
well-established techniques from chemoinformatics, and substantial enhancements
to these techniques have allowed them to be used for the representation and
searching of the generic chemical structures in patents, which can describe very
large numbers of structurally related molecules. In this chapter, we have summarised
the techniques that are currently available (as of May 2014) for structure and
substructure searching of both specific and generic structures. However, the reader
should note that the chemoinformatics software industry is in a state of constant
flux, with improvements in the data and searching techniques that will be available
to users in the future.

It is hoped that such developments will address at least some of the problems
that still face the users of chemical patents. In 2008, the United States Patent and
Trademark Office actually went so far as to make proposals to restrict the types
of Markush structure that could be claimed [58], though these proposals were
later abandoned in the face of fierce opposition from the pharmaceutical industry.
However, the very generic descriptions that are sometimes used in patents mean that
very large hit lists can result even in response to quite specific structural queries: it
is hence likely that there will be much interest in the future in the use of procedures
that can rank search outputs so that attention can be focused on just the top-ranked
structures and patents.
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Chapter 16
Machine Translation and the Challenge
of Patents

John Tinsley

Abstract In this chapter, machine translation (MT) is first introduced in the context
of patent information, and we touch upon what role it can play at various points in
the intellectual property (IP) life cycle. We then step back to take a high-level look
at what exactly defines MT, how it works, what makes it such a difficult task, as well
as some of the more recent advances to overcome these hurdles and how we can go
about ensuring that MT systems we develop are actually fit for purpose.

We then explore patent information as an application area for MT and describe
how it presents a unique challenge not only for MT but for language technology in
general. Finally, we take a closer look at some use cases involving MT and patents
to show how they are already bringing significant value to consumers, but that there
remains plenty of room for improvement.

16.1 Introduction

Machine translation (MT) technology has matured significantly over the past decade
to the point that it has seen widespread adoption in many practical applications,
including numerous commercial use cases. This increase in popularity has been
driven to a large extent by a number of open-source initiatives supported by the
European Commission1 as well as a large and active developer community, both of
which have helped to lower the barrier to the adoption of MT.

However, MT still remains somewhat misunderstood for two broader reasons:
firstly, most users’ first experience with MT comes from free online services which,
while being very valuable tools for building awareness in the field of technology,
have many shortcomings with regard to practical application and often garner
attention for ‘humorous’ incorrect output. Furthermore, commercial vendors of MT

1Euromatrix (www.euromatrix.net), Euromatrix Plus (www.euromatrixplus.net), Moses Core
(www.statmt.org/mosescore)
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often make claims to deliver levels of service and performance that cannot yet be
met by the current state of the art (e.g. ‘fully automatic, human quality translation’),
and thus the more intrepid users who ventured to invest in the technology at an early
stage have been left disappointed.

That being said, the translation industry is at the point now where it is getting
closer to crossing the chasm towards more mainstream acceptance of MT. This
is being facilitated through the education of end users in order to better manage
expectations about what MT is capable of. Part of this learning includes identifying
specific application areas, for example, patent information, where MT can bring
real, quantifiable value to users and how it can be seamlessly deployed into existing
workflows.

The appreciation that MT has a significant role to play in patent information is
evidenced by the fact that ‘mutual machine translation’ is one of the ten foundation
projects identified by the IP5—a consortium of the five largest intellectual property
offices in the world—as being integral to the harmonisation and standardisation of
the patent information-sharing processes globally.2

16.2 Why Machine Translation?

The demand for translation in the world of patent information is ever increasing as
companies expand international operations and, as a consequence, seek to protect
their intellectual property globally. This is evidenced by the consistent increase in
patent applications over the last 20 years [1] and the fact that these patents are filed
in dozens of different languages, particularly Asian languages more recently.

The provision of human translation services is being outstripped by the demand
for patent translation, especially because patent translation often requires specialist
translators with subject matter expertise. While it is frequently necessary when
translations need to be 100 % legally accurate, in many cases, human translation
is simply not an option because of the large volumes of documents in question. This
is where machine translation has a significant role to play.

16.2.1 The Role of Machine Translation

There are a number of stages in the IP life cycle that translation is required and MT
can play a role in each one. During patent searches in particular, be it for novelty,

2http://www.fiveipoffices.org/projects/mutualmac.html

http://www.fiveipoffices.org/projects/mutualmac.html
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validity or infringement, MT can be used in a number of ways:

• To provide an on-demand ‘gist’ translation of foreign patents for information
purposes to determine relevance

• To pre-translate patent databases in order to make them searchable in multiple
languages

• To translate search queries into multiple languages to increase the coverage of
the search across collections

Furthermore, MT can be applied as an intermediary step in the human translation
process as a productivity tool. Rather than translating from scratch, translators can
choose to use MT output as a starting point and ‘post-edit’ it to full quality, in theory
reducing the overall time needed to translate the document. The net effect of this
for patent information specialists can be a reduction in the overall cost of sourcing
professional translation.

We will provide more detail on this approach and other specific use cases for MT
in Sect. 6.

16.3 Machine Translation: The Basics

In this section, we provide an overview of some of the fundamental concepts behind
modern approaches to machine translation as well as look at some alternative
approaches. We will describe the key prerequisite of developing MT systems,
namely, high-quality training data, and look at some of the more cutting-edge
techniques employed in state-of-the-art MT research and development, including
those that are most applicable to patent information.

16.3.1 Paradigms of MT

There are a number of different approaches to MT which have had varying degrees
of success over the past few decades. Two approaches in particular have been more
prominent than the rest, namely, rule-based MT (RBMT) and statistical MT (SMT).
In the following, we give an overview of both rule-based and statistical MT and go
into more detail about how the most common approach actually works.
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16.3.1.1 Rule-Based MT

Rule-based MT, or RBMT, involves the use of linguistic rules and dictionaries to
translate from one language (the source) into another language (the target3). For
a given language pair, say English and French, the starting point is: a set of rules,
or a grammar, describing English sentence structure; a grammar describing French
sentence structure; and a bilingual dictionary that allows us to map English words
to French words.

We define a set of rules, or a bilingual grammar, that describes the syntactic
transformations that need to take place to convert English grammar into French. We
use the rules to map the English structure to a French structure and use a dictionary
to translate the words.

RBMT systems have the advantage that they produce consistent and predictable
output because of the in-built grammar knowledge. However, developing these
systems requires significant human effort and linguistic expertise to produce the
rules for each language pair in addition to vast dictionaries. As such, it is not very
scalable or adaptable and does not handle exceptions or language variances well.

16.3.1.2 Statistical MT

Statistical MT, or SMT, is a data-driven approach whereby models of translation
are learned by analysing examples of previously translated documents. For a given
language pair, using a bilingual text corpus (pairs of documents that are translations
of one another), we calculate how frequently pairs of words and phrases occur
together in order to train a model of translation. We then use these models to
estimate the most likely translation of new unseen input. This approach is an
application of Bayes’ theorem and can be formally described by the formula below:

Qe D arg max
e2e� p .ej f / D arg max

e2e� p . f je/ p.e/

where e is the target language, f is the source language and ẽ is the MT output.
p( f je) represents the translation model and p(e) represents the target language
model.

SMT has the advantage that the core approach is language independent and new
systems can be built relatively quickly. The translations produced tend to be more
fluent than more literal rule-based output. However, SMT is heavily reliant on the
availability of sufficient amounts of good quality training (discussed in more detail
in Sect. 3.2). Furthermore, pure SMT is less suitable for language pairs with more
divergent grammar and sentence structure.

3Source and target are terms that will reoccur in this chapter in reference to the language pair in
question when carrying out machine translation.
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16.3.1.3 Best of Both Worlds

More recent approaches have sought to combine the strengths of both RBMT
and SMT into so-called hybrid MT (e.g. [2, 3]). Using this approach, one of
the paradigms takes the lead role in the translation process and is supported by
techniques from the other.

For example, in RBMT-driven hybrid approaches, the core translation is carried
out using linguistic rules, while statistical methods are used to automatically
enhance the translation output and fix errors. The more common approach, though,
is SMT enhanced with grammar rules where the estimation of statistics and the
translation process is better guided through linguistic knowledge of the languages in
question. This technique, often referred to as syntax-based SMT, can help to support
translation between more divergent language pairs and better capture phenomena
such as long-distance dependencies and highly inflectional morphology.

For the remainder of this chapter, we will discuss machine translation in the
context of the SMT paradigm, as it is the more prevalent approach to MT. The
following sections describe the processing involved in SMT from training, to
translation, to more advanced approaches.

16.3.2 Training Data

The starting point for all SMT systems is a training corpus. A corpus (pl. corpora)
is a collection of texts, in electronic format, in a single language. For SMT we
require bilingual, or parallel, corpora, which are collections of corresponding texts
in multiple languages, for example, a document and its translation or the European
Parliamentary Proceedings [4].

For patent MT, such parallel corpora can be mined using patent family informa-
tion to find a document and its family members in multiple languages. Similarly,
many national patent offices also publish titles and abstracts in English (where
English is not already an official language). Much of this mining process can be
automated and these techniques have been successfully applied to collect such
corpora for a number of languages [5, 6].

MT systems have been built using parallel corpora containing anywhere from
under 100,000 words to hundreds of millions of words. In general for SMT, the
more training data available, the better, as there are more translation examples to
learn from, though there are diminishing returns on the quality given more data.
However, for certain types of content, or domains, where there is limited vocabulary
or restricted writing style, it is possible to build MT systems on smaller amounts
of data. Patents, on the other hand, can vary greatly from document to document
in terms of content. There is a massive variance in vocabulary and styles across
technical fields and document classes. Even within patents, there are different
writing styles between the abstract, claims and description. For this reason, it is
better to have as much training data as possible, which can then be classified
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according to technical areas using the International Patent Classification System4

and used to develop advanced systems (described further in Sect. 5.1).
Once we have this data at hand, we need to know which sentences correspond

to which across the parallel documents. This non-trivial task is known as sentence
alignment and has itself been an active research field of natural language processing
([7, 8] among others). In the simplest case, there is a one-to-one mapping between
sentences. Where there is not, it needs to be determined whether sentences can be
combined to create the correct mapping or whether sentences need to be deleted
from the corpus. Manual intervention is often required to assist and verify the
automatic alignment process. This is particularly important when our bilingual
corpora are not truly parallel, but rather comparable, that is, describing the same
topic while not explicitly being direct translations, e.g. in patent information when
the target abstract is an enhanced translation that summarises the full text.

16.3.2.1 Key Elements: Quality, Quantity, Relevance

All of the information learned by SMT systems—word/phrase correspondences and
associated statistics—are derived from the examples seen in the training corpus.
Learning from bad examples causes the MT system to produce more erroneous
output. Therefore, it is essential that the data on which an MT system is trained
be of high quality. Errors that reduce the quality of the corpus include incorrect
sentence alignment and misspellings. Misspellings are often encountered when
the source text has been produced using optical character recognition (OCR) as
is frequently the case when dealing with patent information where many full-text
documents are only available in PDF format. Preparation of training data should
also include checks as pre- and post-processing steps that should ideally have some
human proofing if possible.

In addition to good quality data, we also need to ensure that we have sufficient
data in order to avoid sparse statistics and to make sure that we have seen as many
variations in style, sentence structure and vocabulary as possible. Sourcing large
amounts of quality, relevant data is a big challenge for MT developers. For certain
languages like English, French, German and Chinese, data is abundant. However, a
big issue remains the relative lack of resources for other languages, e.g. if we want
to build an MT system to translate patents between Croatian and English, finding
sufficient data will be a challenge as there were only 72 patents filed in Croatia
between 2012 and 2013.5

Finally, it is essential that the parallel corpus on which MT is trained is relevant
to and representative of the type of content that will be translated with the system.
The corpus should be homogenous in terms of style and content. This is known as

4http://www.wipo.int/classifications/ipc/en/
5http://www.epo.org/about-us/annual-reports-statistics/annual-report/2013/statistics-trends/
patent-filings.html

http://www.wipo.int/classifications/ipc/en/
http://www.epo.org/about-us/annual-reports-statistics/annual-report/2013/statistics-trends/patent-filings.html
http://www.epo.org/about-us/annual-reports-statistics/annual-report/2013/statistics-trends/patent-filings.html
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in-domain training data and it is a fundamental requirement of SMT. For instance,
if we train an English–French MT system on previously translated automobile
manuals, that system will not be useful for translating English chemical patents
into French because it will not have seen examples of the style or vocabulary that it
will encounter in the patent. While ‘out-of-domain’ data can be useful to increase
lexical coverage or improve fluency, in-domain data is essential at the core of the
MT system.

16.3.3 Learning from Previous Translations

Statistical MT systems translate new unseen text by essentially piecing together
segments of previously translated sentences. For example, if in our English–Spanish
training data we know that ‘I have a dog’ translates as ‘Tengo un perro’ and we also
know that ‘cat’ translates as ‘gato’, then, in theory, we can translate ‘I have a cat’
as ‘Tengo un gato’ even though we have not seen that full example in our training
data.

In the parallel corpus, we estimate which words correspond to one another
based on co-occurrence statistics: how often source and target words appear in the
same sentence pair together. This technique, called word alignment, is carried out
using the Expectation Maximisation algorithm as implemented in the so-called IBM
models [7].

A simple example of this process, known as word-based SMT, is illustrated in
Fig. 16.1, where, for the parallel corpus on the left, we count how often pairs of
words occur together. Then, for a given input sentence, we take the target words with
the highest counts (probability) and combine those to produce the final translation.

However, this method has severe drawbacks (which is why the output in the
example is not quite correct) as each word is being translated in isolation without
any contextual information. To improve on this, heuristics are used to estimate
which groups of words, or phrases, correspond to each other [9] and this is used to
build the core translation model, or phrase table. This approach, known as phrase-
based SMT, allows the MT system to produce output that has the capacity to capture
changes in word order and different variations on words, depending on the context.

The outputs proposed by the translation model are verified by calculating how
likely they are to be correct sentences in the target language. This is done using a
target language model which counts how frequently sequences of words of various
length, or n-grams, occur in typical use. This combination of the translation model,
p( f je), and the language model, p(e), to produce the most probable translation for
an input sentence is Bayes’ theorem, as described previously.
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Fig. 16.1 Overview of the parameter estimation and translation process in statistical MT (from
http://specgram.com/CLII.4/09.phlogiston.cartoon.iv.html)

16.3.4 Advanced Modelling

In addition to the core translation and language models which focus on the
sequential translation of words and phrases, MT systems can incorporate a number
of advanced models in order to capture more of the complex phenomena found in
language, including the following:

– Reordering models (e.g. [10]) try to capture changes in word order between
languages during translation. These models are most useful for local or short-
distance reordering such as changes in the order of nouns and adjectives between,
say, English and Spanish.

– Factored models (e.g. [11]) incorporate more linguistic information into the
translation process to cater for morphologically rich languages. These models
first translate the stem or root of a word and generate the rest of the translation
using information such as gender, tense and case, e.g. for English–Spanish
translation, ‘I went’ ! ‘Go C 1st person C past tense’ D ‘Ir C 1st person C
past tense’ ! ‘Fui’.

– Syntactic models (e.g. [12]) employ linguistic information such as context-free
grammars to capture structural divergences in statistical models. This approach

http://specgram.com/CLII.4/09.phlogiston.cartoon.iv.html
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can capture more complex phenomena, such as long-distance reordering, but
requires additional tools like parsers for language processing.

– Hierarchical models (e.g. [13]) make use of pseudo-linguistic structures on top
of the phrase-based models. This approach has some of the benefits of syntactic
models while also being language independent, i.e. no language-specific parsers
or tools are needed to produce the structures.

Any extremely comprehensive overview and subsequent detailed description of
these and many other techniques applied in the field can be found in Koehn [14].

16.3.5 State of the Art in MT

The state of the art in MT today sees a convergence of the statistical and rule-based
paradigms. These approaches try to combine the benefits of engineering parallel
training corpora with linguistic engineering techniques for specific languages and
domains. From a commercial MT perspective, different MT systems are deployed
depending on the task. For instance, a pure SMT system might suffice from the
translation of English–French news stories, whereas for Chinese–English patent
translation we need a system that combines a number of rule-based elements that
account for both the differences between the two languages and the complex nature
of the content being translated (more on this in Sect. 4).

In terms of research, there are a number of topics that have been of particular
interest recently due to their potential to increase the value of core MT systems.

16.3.5.1 Domain Adaptation

As we discussed previously, the lack of sufficient relevant training data is a big issue
for MT. Current research into domain adaptation (e.g. [15, 16]) explores how we can
use and combine data from different domains in a single MT system and for what
languages and tasks and with what type of data is this most effective. For example,
if we have a small Slovak–English patent MT system, can we use Europarl data to
improve translation accuracy? If so, how do we select which portions of the data to
use in order to positively affect the system without biasing it?

16.3.5.2 Quality Estimation

If we knew how good MT output quality was for any given input document or
language, it would have significant impact on a number of use cases. For instance,
if a translator post-editing MT output knew which sentences were translated well in
advance, they could choose to only edit those sentences and translate the rest from
scratch, thus boosting overall productivity.
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For this reason, there is significant research activity around developing methods
that estimate or predict the quality of MT on the fly (e.g. [17, 18]) and that can
determine the best output given the results from a number of MT systems [19]. Other
approaches also try to identify specific segments that the MT system was unsure
of, for example, highlighting a specific word in the output that had low estimated
quality.

16.3.5.3 Incremental Training

There are a number of strands of research exploring how MT systems can learn
from user corrections to improve subsequent translations. Using techniques such as
online learning, MT systems can rapidly incorporate post-edits made by translators
to update the core translation models (e.g. [20, 21]). This has the benefit of reducing
the need for a translator to fix systematic errors and can add new words to the
vocabulary of the system.

16.4 Why Is Machine Translation Difficult?

Languages are complex. The grammar rules governing the composition of words
and phrases are full of exceptions. This characteristic makes it a fascinating field to
study but also makes them difficult to learn. These complexities are magnified for
translation because we are dealing with more than one language.

Computers and artificial intelligence thrive on predictability. With machine
translation, we try to learn the ways in which a language is used so that we can
‘convert’ from one to another. The problem is that languages, and the use thereof,
are unpredictable. They are constantly evolving and there can be differences in
consistency depending on the speaker/author, the audience and many other factors.
These elements combine to present a real challenge for MT, and in the remainder of
this section, we will look at some specific characteristics of languages that contribute
to this challenge.

16.4.1 Ambiguity

Words and phrases can have more than one meaning in a given language, or across
languages, depending on the context and the usage. For example, the word ‘bank’
in English has multiple meanings, while the word ‘corner’ can be translated a
number of different ways into Spanish. Furthermore, consider the following two
sentences:

(1) ‘Joe saw the man with the telescope’.
(2) ‘The farm was used to produce produce’.
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In (1), we cannot tell if Joe has the telescope or if the man Joe sees has the
telescope. As a human, it is impossible to tell without more contextual information,
so this obviously causes an issue for the MT system when it has to determine how to
translate it. In (2), the word ‘produce’ has two different meanings within the same
sentence. The first occurrence is a verb and the second is a noun. An MT system
will need to have some information about the part of speech (or word class) in order
to translate this accurately.

This is why, for more general texts, it is better to have as much training data
as possible so that the MT system can learn as many variations of word usage as
possible.

16.4.2 Neologisms

Languages are constantly evolving and, as such, new words are being created all
the time. Among the most recent additions to the Oxford English Dictionary, we
have words like ‘mouseover’ and ‘scientificness’. In fact, in March 2014 there
were more than 150 new words added to the dictionary.6 This is especially relevant
for patent information where the content is inherently discussing something novel
and may include new words. For instance, new chemical names can be created by
compounding existing terms.

The challenge for MT here is that these words will not have been seen before in
the training data and thus they cannot be translated. MT systems for specific tasks
need to be kept up to date through the addition of new terminology.

16.4.3 Synonymy and Flexibility

It is frequently the case that there is more than one way to express the same meaning,
e.g. ‘New York’, ‘NYC’ or ‘The Big Apple’ or ‘car’, ‘automobile’ or ‘vehicle’.
When translating these words, the MT system again has to have seen all variations in
the training data. Similarly, when translating from another language, the MT system
has to choose the most appropriate variation of these words in English.

This flexibility in how we can make choices about the use of certain words
can be expanded to phrases and even sentence structure. Take, for example, the
Chinese sentence in Fig. 16.2 and the ten possible English translations. All of
these translations carry the same meaning and no one translation is less accurate
than the other. While this provides the MT system some flexibility itself, the big
challenge this phenomenon actually poses MT developers and users is how to

6http://public.oed.com/the-oed-today/recent-updates-to-the-oed/march-2014-update/new-words-
list-march-2014/

http://public.oed.com/the-oed-today/recent-updates-to-the-oed/march-2014-update/new-words-list-march-2014/
http://public.oed.com/the-oed-today/recent-updates-to-the-oed/march-2014-update/new-words-list-march-2014/
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Fig. 16.2 Ten possible English translations for a single Chinese sentence. Taken from [14]

evaluate the quality. If ten different MT systems produced these translations, how
do we determine which system performs best? We discuss this further in Sect. 4.5.

16.4.4 Structural Divergence

One of the most significant characteristics of language that presents a challenge for
(machine) translation is the fact that different languages simply construct sentences
in different ways. In terms of word order, some languages are subject–object–verb
(Japanese, German), some are subject–verb–object (English, Russian), while others
are verb–subject–object (Arabic, Irish). Languages also have different morphology,
from agglutinative languages like Turkish to inflected languages like Greek. We then
have various other phenomena such as noun compounding (German), mixed writing
scripts (Japanese) and languages that do not delimit between words in written text
(Chinese, Japanese).

In general, the closer two languages are in terms of their linguistic typology,
the ‘easier’ they are for MT. This is why MT quality is better for some languages
(English–French) than others (English–Japanese). Even within languages, this can
vary from text to text, depending on the content. If we look at the three examples in
Fig. 16.3, we get a sense of the varying degree of difficulty.

In the first example, between English and Spanish, the work order is relatively
close aside from a single noun–adjective reordering. Much of the rest of the sentence
is almost a direct word for word translation, so we might expect a well-trained
phrase-based SMT system to produce very accurate output.

In the second sentence, between English and German, again the word order is
relatively similar in general, but there is a more significant long-distance reordering
in which the German verb is moved to the end (because it is a subject–object–verb
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Fig. 16.3 Different levels of divergence in word order between languages

language). In order to capture this, the MT system will need to have some linguistic
information in the form of syntax-based rules in order to know what word to reorder
and to where.

In the final example, between English and Irish, the translation is completely non-
literal. Similar problems are found with idioms which do not necessarily correspond
across languages. Such examples typically need to be handled as exceptions by MT
systems.

16.4.5 Evaluating Machine Translation

There are a number of different ways to measure the quality of the output produced
by MT systems, each of which has its relative merits and drawbacks. These
approaches can be broadly categorised in two ways: automatic evaluation and
human evaluation.

16.4.5.1 Automatic Evaluation

Automatic evaluation involves the use of algorithms to judge the quality of an MT
system by comparing its output against a human-produced reference translation.
These algorithms—implemented in tools such as BLEU [22], METEOR [23] and
GTM [24], among others—use a variety of measures based on precision and recall
to calculate the similarity between the output and the reference, such as the number
of words (or n-grams) in common, the difference in length or how many alterations
(substitutions, deletions, insertions) need to be made to the MT output so that it
matches the reference(s).
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Automatic metrics have the advantage of being very quick and cheap to run, as
well as producing consistent results. Because of this, they are widely used both
in academia and in industry. However, the problems start with the concept we
introduced in Sect. 4.3, that there is not always a single correct translation. We
need multiple reference translations to overcome this, but these are frequently not
available. Similarly, these metrics cannot be used for new input where we do not
have a reference translation (which is an issue that quality estimation research, cf.
Sect. 3.5.2, is trying to overcome).

Finally, the scores produced by these metrics do not really hold any meaning on
their own. For example, knowing that an MT system had a BLEU score of 50 (out of
100) on a particular set of test documents does not tell us anything. These scores are
only effective for comparative purposes, for example, assessing the improvement of
an MT system over time or comparing two systems to see which is better on the
same test set.

This is why, ultimately, human input is required at some point in the MT system
development process.

16.4.5.2 Human Evaluation

Human evaluation involves the manual assessment of MT output, typically by
a bilingual evaluator. It is often employed at more critical stages in the MT
development cycle to validate automatic evaluation results, for instance, prior to
launching a production system or, from the end-user perspective, to inform a buying
decision.

This approach can take a number of forms including rating the output on a scale
to indicate how grammatical it is (fluency) or how well it conveys the main meaning
from the source text (adequacy). It can also include more detailed error analyses and
benchmarking against other MT systems.

While this approach is obviously robust and flexible, it is a slow and expensive
process and, frequently, multiple evaluators are required in order to smooth out any
subjectivity in the findings. More recent approaches [25] have sought to overcome
some of the drawbacks of human evaluation by taking a crowdsourcing approach
using services such as Amazon’s Mechanical Turk with relative success.

In order to extract the most value from human evaluation, however, it is advised
to design more focused task-based evaluations based on the proposed end use of the
MT output.

16.4.5.3 Task-Based Evaluation

The most important aspect to determine when evaluating an MT system is not
necessarily how good the output is in absolute terms, but rather whether it is fit
for its intended purpose. This relates to the notion that a translation that appears
to be well formed on the surface (high fluency) may not actually contain all of the
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Table 16.1 Fluency vs. adequacy in MT evaluation

Source (Spanish) La gran casa roja (translation: ‘the big red house’)
MT Output 1 The big blue house
MT Output 2 The big house red

information from the original source document. For example, in the translations in
Table 16.1, MT Output 1 is perfectly fluent, but has the wrong translation of an
important descriptive term. MT Output 2 is not completely fluent, but it conveys all
of the correct meaning in the original document. This is why it is important to carry
out a task-based evaluation rather than simply assessing the readability of the output.

Evaluation methodologies should be designed based on what the MT output
will be used for. In the case of patent machine translation for documents retrieved
during search, evaluations should seek to determine whether an expert reader can
understand the key technical aspects of the text and whether or not it is relevant to
their search. They should not overly focus on fluency or minor grammatical errors.

Similarly, when the end use for MT output is a task such as post-editing, rather
than attempting to assess the fluency and adequacy, the evaluation should focus on
quantifying the productivity gains (if any) from using MT.

These task-based evaluations can serve to feedback into a more task-driven
optimisation of the baseline MT systems. We introduce some specific tasks and
use cases in Sect. 6.

16.5 The Challenge of Patents

A controlled language, e.g. controlled English, is a subset of the full language with
restricted grammar and vocabulary designed to make content more understandable
by reducing complexity and ambiguity. Many years of research were carried out
specifically in the field of controlled language for machine translation aimed at
determining a set of guidelines and rules for authoring content that would be suitable
for MT. Patents do not comply with the majority of these rules.

Patents are highly technical in nature and often make use of established formula-
tions, for example, when authoring claims which typically include some preamble, a
transitional phrase (‘consisting of’, ‘comprising’) and a set of limitations.7 However,
as discussed by Rossi and Wiggins [26], it is not necessarily these characteristics that
present a challenge for MT development but rather the extreme syntactic complexity
of the sentences in patents which violate most of the controlled language guidelines.
This is principally a consequence of the freedom afforded to patent drafters when
writing documents which reduces the consistency even among patents in the same
technical field.

7http://www.uspto.gov/web/offices/pac/mpep/s2111.html

http://www.uspto.gov/web/offices/pac/mpep/s2111.html
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Table 16.2, modified from [26], presents a number of specific controlled language
rules with which patents do not comply. These rules are taken from both general
controlled language literature (e.g. [27]) and controlled language which has been
specifically proposed to improve MT (e.g. [28, 29]).

It is unlikely that the manner in which patents are authored will change
substantially in a way that will better suit MT. To that end, MT developers must
accept the fact that these are the characteristics of patents and develop MT systems
accordingly.

16.5.1 Developing MT Systems for Patents

In order to overcome the inherent challenges posed by patents, MT systems need to
be aware of and account for many of the very specific characteristics across technical
fields. The approach to adapting MT for a specific domain by training the systems on
relevant in-domain data, as described before, will not suffice alone. In this case, MT
needs to go beyond data engineering and exploit training and translation processes
that focus specifically on patents. These characteristics will vary across languages,
so in this respect language presents its own unique challenge for patent MT training
and must be considered too.

Figure 16.4 illustrates the basic data-driven approach to MT training and
translation augmented with patent-specific processing steps. These steps can include
a large variety of processes, including, but not limited to:

• The identification and tagging of chemical names for separate handling (across
different languages)

• The splitting of long sentences into smaller more ‘translatable’ segments
• The application of templates for the translation of formulaic elements
• The management of letter case when translating patent titles
• On-the-fly subdomain identification to prefer specific translation models and

terminology, e.g. separating translation models based on the IPC codes

There is a large body of (ongoing) research focused on developing such adapta-
tions to existing MT technology for the patent domain. The NTCIR project8 at the
National Institute of Informatics in Japan has run information retrieval workshops
since 1999 with a strong focus on patent search. In more recent editions, a patent
MT shared task with a focus on English–Chinese and English–Japanese was added.
Participants are encouraged to implement novel approaches to patent MT which are
then assessed during both human and task-based evaluations.

8http://research.nii.ac.jp/ntcir/index-en.html

http://research.nii.ac.jp/ntcir/index-en.html
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Fig. 16.4 Data-driven MT training enhanced with patent-specific processes

This workshop has spawned a number of interesting approaches to tackling
patent MT, including hierarchical MT [30], syntax-based MT [31], the use of
syntactic information to change word order to increase the convergences between
English and Japanese [32] and the use of external technical dictionaries [33].
Similarly, the Workshop on Patent Translation9 is a regular event designed to attract
research specific to patent MT.

In addition to these scheduled events, there have been a number of other
initiatives aimed at adapting MT technology for patents. The World Intellectual
Property Organization (WIPO) has been working since 200710 on developing
machine translation and cross-language IR (CLIR) tools for their patent search
service Patentscope. This has led to the release of a number of language tools,
including an MT service, adapted for translation of patent titles and abstracts [34].

Similarly, the EU FP7 project PLuTO, which ran from 2010 to 2013, brought
together a consortium of industry and academic partners to adapt existing technolo-
gies for patent translation. This project led to the development and launch of the
patent machine translation provider, Iconic Translation Machines11 [35].

9http://www.mtsummit2013.info/workshop1.asp
10http://www.wipo.int/edocs/mdocs/mdocs/en/wipo_patscope_ge_13/wipo_patscope_ge_13_2.ppt
11http://www.iconictranslation.com

http://www.mtsummit2013.info/workshop1.asp
http://www.wipo.int/edocs/mdocs/mdocs/en/wipo_patscope_ge_13/wipo_patscope_ge_13_2.ppt
http://www.iconictranslation.com/


16 Machine Translation and the Challenge of Patents 427

16.6 Use Cases for Machine Translation for Patent
Information

As we have shown in the previous section, there is a lot of interest in patent MT
in both research and commercial circles. This is due in part to the fact that MT
technology has reached a level of maturity whereby it can have many practical
industrial applications beyond anecdotal or spot translations. This is particularly
the case in the patent information community where the potential benefits of MT
have long been espoused due to the inherently multilingual nature of content in this
area.

In the following, we describe some of these applications along with examples of
initiatives that are already underway.

16.6.1 Facilitating Patent Search

One of the principal use cases for MT is as a support tool for patent information
specialists and other parties who carry out searches. There are three ways in which
MT can be used in this regard.

16.6.1.1 On-Demand Translation

Patent searchers have the ability to retrieve results in foreign languages based on
translations of the titles and abstracts. However, the full text in these cases is only
available in the original language. On-demand MT allows searchers to translate
these documents on the fly and gain a deeper understanding of the content.

Examples of such a service can be found in the EPO’s Espacenet offering,12

which integrates with the Google Translate13 API and allows users of the tool to
translate documents in the EPO collection into multiple languages, predominantly
the official languages of the EPO member states.

The approach has the advantage that the patent data provider does not need to
store and index vast amounts of documents in multiple languages. Also, as the
MT systems are updated and improved, all subsequent translations benefit from
this. However, end users still cannot search on the full-text documents and the
computational resources required to deliver such a service are extensive.

12http://www.espacenet.com
13http://translate.google.com

http://www.espacenet.com/
http://translate.google.com/
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16.6.1.2 Query Translation

To overcome the issue described above, there are two ways in which users can
be facilitating in searching full-text patent collections in multiple languages. The
first method uses an approach called query translation (also, keyword translation),
whereby the search terms are machine translated across languages and used to
carry out a native search on multilingual patent databases. This approach—an
instance of CLIR, as implemented in WIPO’s Patentscope service14—is then used
in conjunction with an on-demand MT service to translate the resulting foreign
language documents returned by the search.

16.6.1.3 Bulk Translation

The need for on-demand and query translation can be eliminated by using MT to
pre-translate entire full-text collections into multiple languages and indexing them
for search. This approach, known as bulk or batch translation, allows all users to
search and retrieve documents in their own language without the need for on-the-fly
translation and has been implemented in a number of commercial search offerings,
e.g. PatBase.15

However, there are a few issues associated with this approach. Firstly, as
mentioned previously, there is a significant overhead involved in storing multiple
versions of the patent collections across languages. Secondly, the MT quality is
fixed at the capability of the chosen MT system at the time of translation. It is not
practical to retranslate all of the patents each time the MT system improves (which
could be frequently). Finally, despite the ‘once-off’ nature of this approach, there is
still a need for ongoing translation of new patent records.

16.6.2 Professional Translator Productivity

Looking at the wider translation industry, MT is increasingly being used by
language service providers and professional translators as a tool to increase produc-
tivity and reduce overall translation times [36]. This is done through a process called
post-editing, whereby, rather than translate sentences from scratch, a translator will
use the MT output as a first draft and modify it to produce the final translation.

The consequences of this will percolate to users of patent information who are
frequently also buyers of professional translation services. They will begin to see
increasingly more competitive offerings from language service providers who will
be able to turn around larger translation jobs in a shorter space of time.

14http://www.wipo.int/patentscope/en/news/pctdb/2010/news_0002.html
15http://www.patbase.com/wnewinfo.asp?i=155&cc=fulltext

http://www.wipo.int/patentscope/en/news/pctdb/2010/news_0002.html
http://www.patbase.com/wnewinfo.asp?i=155&cc=fulltext
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16.7 Conclusions

We introduced this chapter by presenting the need for machine translation, particu-
larly in the area of patent translation, before introducing some of the basic concepts
behind the more commonly used approaches. We then presented a number of topics
that are of particular interest to the research community today and showed how they
can improve upon the current state of the art.

The inherent complex nature of language means that MT is a hard problem to
tackle. The problems of language for MT are exacerbated in patents which contrive
to combine many of the characteristics that cause issues for MT systems. However,
MT research has taken big strides over the past decade to the extent that there are
real-world practical applications for appropriate development solutions. That is to
imply that MT developed for a specific purpose, as opposed to general solutions,
e.g. online MT tools, can bring significant value to end users. This is especially the
case for patent information where a number of these applications have been put into
practice and are used extensively on a daily basis.

This trend of adoption is only going to continue upwards as the technology
improves and MT output becomes even more usable. Existing initiatives, as well
as those planned, will ensure that this will also remain the case within the patent
information community for the foreseeable future.
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Chapter 17
Future Patent Search

Barrou Diallo and Mihai Lupu

Abstract In this chapter we make some predictions for patent search in about 10
years’ time—in 2026. We base these predictions on the contents of the earlier part of
the book, the observed differences between this second edition and the first edition
of the book as well as on some data and trends not well represented in the book (for
one reason or another). We consider primarily incorporating knowledge of different
sorts of patent search into the patent search process; utilising knowledge of the
subject domain of the search into the patent search system; utilising multiple sources
of data within the search system; the need to address the requirement to deal with
multiple languages in patent search; and the need to provide effective visualisation
of the results of patent searches. We conclude the real need is to find ways to support
search independent of language or location.

17.1 Introduction

In this chapter we will try to move from the reviews of current professional practice
in patent search and of recent relevant scientific research to try to foresee how
the field will develop in the medium-term future. In particular we will try to
see how changes in available technology will impact the tools available to patent
professionals and the issues and pressures which will inhibit or accelerate these
changes.

We are writing this chapter 5 years after the first edition of this book, and
therefore we will also take a look at how existing technologies have already affected
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patent search. Some things will have remained the same, particularly those related
to the nature of the task and the required output.

One of the characteristics of patent search by professional searchers outside the
patent offices, which has not changed in the last half decade and is in fact unlikely
to change soon, is that it is usually driven by briefs from strategic-level business
managers or by patent attorneys, and it aims to produce a report summarising the
facts about a particular area. For example, whether a particular device may infringe
one or more existent patents, or the likelihood that one could in principle produce a
new substance of a particular type which neither infringes existing patents nor has
been previously published, and therefore may be legitimately patented. Present-day
systems rely on the searcher bringing together the data from several sources (e.g.
patent databases, academic journal collections and legal information sources) in a
coherent whole, in an essentially unsupported manner: future systems will explicitly
provide support.

Perhaps the biggest challenge here is integrating the search systems with
corporate and enterprise information systems (whether science and technology
support or business systems), especially given the move of patent search from being
an in-house operation to being outsourced. Generalised outsourcing operations are
unlikely to have access to the quality of information in-house operations would
have. Further, they are unlikely to be given access to the full range of confidential
information available in-house.

Of course, this focuses on patent search from a technology user’s point of view,
whether it be the inventor, companies seeking freedom to operate or strategic
business managers. Another important group of users of patent search systems
consists of the patent offices themselves. Necessarily, a patent examiner in a patent
office has different needs from a commercial searcher, and future integrated systems,
which better reflect searchers’ needs and workflows, will inevitably therefore be
different to some degree. More automated, information-rich and task-aware patent
search systems can help patent offices achieve a particular implicit goal of the
patent offices: to increase the volume of applications dealt with by an examiner,
while simultaneously improving the quality of the granted patents. This is certainly
an effective way to address THE key challenge facing patent offices: reducing the
time between application and grant or rejection while improving the quality and in
particular the defensibility of the granted patents.

The intellectual property (IP) community sees the principal issues to be the
backlog of unexamined applications and the costs associated with the granting
process. But it is generally acknowledged there is little real benefit in rapidly
obtaining a patent which cannot be enforced in court, or which promotes lengthy and
complex litigation. This will not be in the interests of inventors, patent holders or
intending technology exploiters. Better technological support for the search process
can allow quality to be improved while reducing time-to-grant and human effort in
review.
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Further, some patents currently granted are of suspect validity because of the
weakness of past practices in searching non-English patent data (disproportionately
growing as a proportion of the whole, especially in Asia). This leaves aside the rarity
of searching of non-English non-patent public data for evidence of lack of novelty.

Having the possibility to obtain information is not equivalent to reviewing and
understanding the underlying information. As discussed elsewhere in this volume,
the reasons for performing a patent search are multiple. The most obvious is to
determine whether or not an applicant can get a patent or if its invention has already
been patented. Other reasons might include:

• Getting an idea of how an application and patent are drafted to help in the
preparation of a new application

• Learning more about a new technical field
• For competitive market information and tracking

17.2 Patent Search in 2026

Five years ago we identified six points that we expected should happen by 2021.
In 10 years’ time we expected to see patent search systems with a number of
characteristics not present in today’s search systems. We briefly repeat below the
ideas from 5 years ago, together with very short notes given our current state of
knowledge. Later, in Sect. 17.3 we show a more general view of the current state of
the art, followed by detailed descriptions of five of the six directions.

2011 Statement 2016 Observations

1. There will be a reflection of the
different sorts of patent search task,
their differing characteristics and
integrated tools which reflect the
domain: chemical versus mechanical
versus telecoms and so on and
event-driven legal status searches
versus document content-driven
searches

On the matter of domain specificity,
there has been some uptake in
academia [51]. However, while
domains with large differences (e.g.
chemical vs. business processes)
contain different processing pipeline
components, domains where the
difference lies predominantly on the
informant users side (rather than
document content) are harder to
distinguish



436 B. Diallo and M. Lupu

2. Systems will provide access to both
patent and non-patent literature in a
single integrated environment. There
will also be a firm separation between
data and the systems used to access
it—so that several data sources (we
avoid the term databases) can be
accessed by the searcher within a single
search and analysis environment

We see already significant steps in this
direction, as pointed out in Chap. 8
earlier in this book, as well as by the
continuous increase in data made
available by patent offices via public
APIs. Accessing data via Web services
has become a standard [18, 81, 90]

3. The tools will be inherently
multilingual—allowing the
English-speaking patent searcher to
deal with Chinese data more or less as
easily as English, for example

Chapter 16 showed earlier the kind of
progress already made in the direction
of translation services specifically
catering to patent data. After 10 years
of research, cross-lingual patent search
has become a standard [69, 88, 89]

4. Complex visualisations will be
provided to support not only specialist
tasks like technology landscape
mapping but also to help the searcher
focus their attention and effort on the
most productive parts of the inevitably
large results sets in some forms of
search. Currently some products focus
their efforts in knowledge exploration
[5] and correlation

There is still a lot of research in this
direction, as evidenced by the report in
Chap. 10. On top of this, recent
technology developments in 3D
visualisations and immersive interfaces
will move within the next 5 to 10 years
from exciting curiosities to practical
tools for large data exploration

5. There will be support for
collaborative working both groups
working in a single location (via, e.g.
complex interactive visualisations) and
at a distance with advanced support for
interaction through video, whiteboards
and multiply viewed screens, all of
which are available now within
applications, but not integrated and
adapted to the patent search task

Indeed, the enabling technologies are
today, 5 years after the writing of this
statement, better positioned to allow
users to interact at a distance. The
extent to which they will find their way
into patent search products depends on
the innovation ability of each product
maker

6. Multiple forms of query and
document sorting will be available: for
example, pile sorting metaphors as well
as simple keyword and Boolean search

Technology-wise, this is already
available. The integration in
commercial systems follows the
requirements of the users. We no
longer follow this thread separately in
this chapter, but rather include it under
points 1. and 4. above
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We will touch on all these issues in the rest of chapter, going into more depth
for some and greater depth in others, largely driven by the clarity we feel can be
brought to the issues at the time of writing. The five issues interrelate to each other
in a rather complex way, so we will use them as overarching themes, rather than as
a rigid framework with which to structure the discussion.

17.3 Current State of the Art

In 1999 Larkey [43] produced a paper on what was seen at the time as being a state
of the art in patent search technology, and since then many efforts have been made
to help patent practitioners making use of patent data to perform their job. They
have moved from a digitalised set of patent files to suites of toolboxes allowing
them to mine into the data and find information as described by Abbas, Zhang and
Khan [1]. Fifteen years ago, it was all about searching. Nowadays, it is about finding,
and finding (ideally) only the relevant documents which would allow professionals
to analyse content and take final decisions. Many commercial providers [74] have
gathered and organised subsets of patent collection and offered computerised access
to large companies and administrations. In particular, software suites available
from Thompson (i.e. Derwent, Delphion, Micropatent), Questel Orbit, LexisNexis
Univentio or IP.com are popular in the community of patent searchers. The whole
list of software producers specialised in patents is available from the PIUG.1

Dou [14] and Hunt, Nguyen and Rodgers [34] provided an exhaustive analysis of
their use. Nevertheless, as explained in Simmons’ article [71], the value of data is
to be correlated to its quality, which is itself correlated to the power of the computer
(tools) to exploit them.

As well as commercial offerings, there are also many advanced search engines
which have been developed and offered at the disposal of the general public and
companies, including:

• EPO Espacenet
• USPTO patent full-text and full-page image databases
• Intellectual property digital library of WIPO
• SIPO patent search and translation
• KIPRIS search service
• Google patent search

For most patent searchers, a mixture of high-quality data sources from the
commercial publishing sector and free-of-charge data, typically mounted under
relatively unsophisticated search engines, represents the current state of the art in
terms of day-to-day practice.

1See http://www.piug.org/vendors.php.

http://www.piug.org/vendors.php
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However, in considering the state of the art, one needs to make an important
distinction between invalidity (or validity) searches and topic or subject matter
searches, like state of the art or freedom to operate (see Chap. 1 of this volume).

Invalidity search describes a search triggered by a particular patent application or
granted patent against all prior art in a field. It is not limited to a traditional database
retrieval exercise but extends to all forms of documentation or disclosure potentially
invalidating the claims of the patent application (patentability, novelty factors).
Subject matter searches concern searching of a topic in a particular document
collection and frequently start with the patent literature, although they may involve
the use of non-patent literature at a later stage. Advanced tools have been developed
for technology intelligence, for instance [93].

The two kinds of searches exhibit slightly different characteristics. For instance,
Fujita et al. [26] have proven that the length of the patent document affects relevance
in invalidity searches (verbosity hypothesis—the hypothesis that the length of the
document is due to the fact that the authors use many words to express one thing
and therefore a high normalisation factor must be introduced), whereas it doesn’t in
topic searches (scope hypothesis—the hypothesis that the length of the document
is due to the fact that the authors talk about several topics in the document and
therefore a low normalisation factor must be introduced). This work has shown that
the verbosity factor (the length) provides a stronger protection for the patent in the
view of rights claimed and is more likely to be relevant to a particular search, since
rights claimed are likely to have a broader scope. If documents are considered as
being relevant to a topic, then the issue is to demonstrate that they are similar to
each other (similar characteristics). This refers to the ‘cluster hypothesis’ described
by van Rijsbergen [83]. In a nutshell, a set of documents being relevant to a query
should display some kind of similarity. Current retrieval strategies are based on that
assumption, which can be tested [84]. Practically, the cluster hypothesis (at least
in its simpler forms) is never fully the case and previous experiments have shown
that, for example, cluster-based searches were not effective. One reason may be the
vocabulary mismatch problem [27]. The consequence of a weak cluster hypothesis is
the possible endangering of the relevance feedback mechanisms [54] as in that case,
relevant documents might be more similar to non-relevant documents. Remember,
relevance feedback assumes that relevant documents have in common some terms
(which are not included in the query) and that these terms distinguish the relevant
documents from the rest of the collection. Similar should mean relevant, if the
cluster hypothesis is correct.

Earlier studies have revealed some other facts about the patent space [24, 25, 87].
Because the set of documents exposed to a patent searcher is usually too large
to be analysed on an individual basis, professionals have developed strategies to
both extrapolate a meta-understanding of the underlying data (e.g. through multiple
successive queries) and reduce logically the size of the corpus under investigation.
Experience shows that practical risk minimisation exercises do work, in the case
of database exploration/walking, if focused into a precisely defined technical
domain. Patent engineers and examiners, working on a daily basis over large sets
of documents, learn some ‘meta-information’ about the collection, which may be
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translated into searching strategies. They can then use their meta-information to
make better informed judgements about the value of continuing (or resuming) their
search at a particular point, as opposed to turning their attention to a more promising
avenue of search. Searching similar documents in a corpus is an iterative process,
where relevant documents are a priori accessible, thus enabling patent searchers to
converge towards their target. Azzopardi [6] has observed that accessibility to the
whole collection of data through a search engine is by no means guaranteed by
current technology. He demonstrated that a residual set of data is consistently not
‘visible’ to searchers, independently from the query language and the system. That
means yet another hypothesis to be tested in the case of patents, where such a bias
could be challenging. Patent searchers are even more concerned with this problem of
findability than general searchers, because of their regular use of several databases
concurrently. Nevertheless, the overall Boolean search process is guided by a set of
logical operators allowing them to apply some sort of intuitive reasoning coupled to
a firm knowledge of the querying language. Earlier in Chap. 7, Bashir and Rauber
investigated the issue of findability and its relation with retrieval effectiveness for
the specific case of patent collections. A new paradigm taking this study further
would involve not only new searching tools but new relations towards the machine’s
output as well.

Making the machine attempt reasoning instead of the user is a revolution to
come. What are required are mechanisms to allow the patent searcher to make
judgements about the reliability of the search system: we call this searcher trust.
In the end, searcher trust in a system is all about being able to analyse, understand
and confront output results in a logical, systematic way. Achieving such trust would
require explanations of the internal processing mechanism leading the displayed
results to be accessible and comprehensible to the searcher [28].

Further, as reflected in the previous chapters of this book as well as those of
the previous edition [50], patent search has become an active area of research
in recent years. More broadly, analysis and processing of patents has become a
research field per se and has been recognised as such by major stakeholders: the
community of users [4], the patent offices performing internal research [31], the
software developers and the academics [29, 49]. As early as 2000, the ACM SIGIR
conference addressed the subject in a special workshop on patent retrieval.2

Subsequently (as reported in Chaps. 3 and 4 in this book) international research
campaigns have taken place every few years to benchmark the effectiveness of the
latest prototypes against agreed quantitative measures [16]. The NTCIR [26, 35]
evaluation campaigns in Japan, as an example, were the first to clearly address
the issue of patent analysis and search as a research challenge. Other evaluation
campaigns focused on patent-related issues have been run as part of TREC3 or
CLEF.4

2See http://www.sigir.org/files/forum/S2000/Patent_report.pdf.
3See http://trec.nist.gov.
4See http://clef.iei.pi.cnr.it.

http://www.sigir.org/files/forum/S2000/Patent_report.pdf
http://trec.nist.gov
http://clef.iei.pi.cnr.it
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These activities have led to the public availability of (admittedly limited) sets
of patent data, standardised queries and assessments of the relevance of retrieved
documents.

Stimulated by the information retrieval facility (IRF), between 2008 and 2011,
the ACM Conference on Information and Knowledge Management has included
a series of workshops on patent information retrieval (PaIR).5 Later, the IPaMin
Workshop on Patent Mining and Its Applications was organised with KONVENS
in Germany in 2014 [37] and then independently in Beijing in 2015 [38]. These
workshops have allowed academic searchers to exchange patent-related research
results outside the context of formal evaluations and have also improved the
knowledge of scientific work among patent professionals.

The lack of such standardised test collections was probably a major reason for
the gap between the SIGIR 2000 workshop and the first PAIR workshop in 2008.
Other more cultural reasons include low levels of European and North American
participation in the Japanese-led NTCIR activity, lack of awareness of the economic
importance of patent search among government research funders and structural
issues, like the USPTO being unable to fund relevant research directly from its
budget.

17.4 Reflecting Different Sorts of Patent Search

In the first chapter of this book, Alberts and colleagues laid out a classification of
patent search tasks. Although there are many ways of classifying these tasks, for a
technical information retrieval point of view, there are two main dimensions which
can usefully be followed.

First is the range of information to be covered by the search: essentially all
information available; all information proven to be publicly available prior to a
given date for a patentability search, or limited to enforceable patents; and patent
applications for a given jurisdiction and date when conducting freedom-to-operate
search.

Second is the scope of documents which needs to be retrieved. Patent search
is often characterised as a high-recall search task, but practical experience of
working with patent search professionals on formal evaluations of search system
effectiveness (see the chapters on NTCIR, TREC CHEM and CLEF IP elsewhere
in this volume) indicates this is not strictly the case. What searchers really need are
the most relevant documents up to some limit, which depends on the exact task at
hand (time available, type of search, audience for the report, etc.) and confidence
that these really are the most relevant documents; and if fewer than the set limit
were found, confidence that highly relevant documents have not been missed.

5See http://pair.ir-facility.org/.

http://pair.ir-facility.org/
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In current patent search professional practice, this is achieved by using multiple
search systems with different interfaces and different document collections, with the
inevitable cognitive load on the searchers and potential for error switching between
systems this entails. One of the few tools which attempts a more integrated approach
is the in-house EPOQUE and ANSERA [63] suites used by the European Patent
Office [58].

An ideal future search system will have a single integrated interface which can
access multiple collections in a uniform manner, allowing the searcher to specify
the numbers of documents they wish to review in detail and to engage in a simple
but (sufficiently) reliable dialogue to give them confidence that they are reviewing
the best available documents.

17.5 The Five Characteristics

Let us now return to the list of expectations for the future mentioned in Sect. 17.2
and see what the status is and how they will evolve.

17.5.1 Domain-Specific Intelligence

The current and efficient way of representing knowledge is to distinguish between
the description of content elements and their instantiation in terms of references
to concrete objects. Those concrete objects could be patent material such as the
documents themselves or a subpart of a patent file (such as the abstract or the
claims). The description of content elements is then captured by the so-called
ontologies. Ontologies of different levels of abstraction and different types can be
used (as described in Wanner et al. [86]):

• A common sense knowledge (core) ontology
• A number of domain-specific ontologies
• A number of patent material-specific ontologies that mediate between the highly

abstract core ontology and the concrete patent ontologies
• The linguistic ontologies

Such a system can be built up upon an ontology architecture such as the one
developed by the IEEE Standard Upper Ontology Working Group (SUMO). A series
of ontologies can be defined on the basis of the specific features of a patent
document:

• The figures ontology
• The patent document structure ontology
• The patent bibliography ontology (metadata associated to the description of the

invention: inventor, date of filing, date of publication, IPC class, etc.)
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Of course, technical field-specific ontologies have to be added to the search
system to allow specialists storing and retrieving specific knowledge (such as
in Markush formulas in chemistry or components in electronics) to improve the
effectiveness of searches in these fields. Those ontologies can be supplemented by
linguistic data extracted from professional thesauri available in the concerned field.

Considerable success has been had recently in using a variety of data-driven
techniques like maximum entropy Markov models [12] and especially conditional
random fields [42, 76] to handle chemical names in building and maintaining such
thesauri and ontologies, and it therefore seems likely these techniques will be
extended to other fields over the next 10 years or even less.

Automatic and semi-automatic building and maintenance of ontologies and
thesauri is a prerequisite for the development and adoption of genuinely semantic
search systems which are starting to prove they may be effective in contrast to
Boolean or more statistical indexing and retrieval systems [70, 80]. However, such
semantic systems are likely to prove of most value initially in domains where
quantities of available technical text (including patents) are small and there are large
quantities of available formally codified information about the domain.

It is unfortunate that in the patent search community, the term ‘semantic search’
has come to mean two quite different things: on the one hand techniques which rely
on statistical semantics emergent from the data like latent semantic analysis [13],
random indexing [67] and various related techniques which are now quite widely
used in patent search. On the other hand techniques which use additional, partially
or completely, hand-crafted resources reflecting human understanding of the texts
or domains under consideration [22].

The last 5 years has seen an explosion of interest in the research community, both
in information retrieval and in natural language processing, for statistical semantics
based on neural networks [7, 56, 62]. The use of neural networks is arguably not
something new. The revival is due to the availability of large amounts of digital text
and, compared with the 1980s when neural networks were last in the spotlight, the
exponential increase in computational power and memory capacity available today.
The utility of these methods has still to be proven in the context of patent search,
but then observations made for general English are thoroughly exciting.

In summary then, over the next 10 years, we are likely to see the adoption
of various sorts of technology which augment existing general text search with
formally represented information about the nature of the patent search task, the
structure of the patent documents themselves and topical content or domain of the
patents or other technical documents being searched.

17.5.2 Multiple Data Sources

As noted above, the ideal patent search system would provide a single environment
where many sources of data could be searched in a uniform manner. In particular,
many forms of patent search require access to the approved patents and pending
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patent applications from many different patent offices, the academic literature and
ideally any form of public information with a verifiable date.

Of course, this goes significantly beyond the scope of searches generally
conducted at the present time on a day-to-day basis by any patent searcher around
the world. In many cases, documents cited in procedures are published in the same
country as the case being searched. This does not necessarily reflect a geographical
bias in the retrieval, but is commonly due to the fact that the examiners at patent
offices prefer to deal with documents in familiar languages and so will often cite
a local family member when available [55]. However, this also underlines the fact
that access to the detailed meaning of documents written in foreign languages is still
difficult.

On the other hand, facilitating good practice has to be a good thing. The barriers
to improvement are now more legal and commercial than technical. Few commercial
providers wish to see their existing and new collections available outside their pay
walls. However, a countervailing force is the Open Science movement and the
pressure arising from the US National Institute for Health and others to provide
free at the point of use access to at least scientific literature. In fact, the last 5 years
have seen a consistent increase in open-access publications, reaching now almost a
quarter of all scientific publications [11].

The number of publicly available full-text patent documents has also increased
substantially over the past half decade. From the bulk downloads of US patents
available from Google6 to open APIs with access to the EPO data,7 the set of
available patent data sources continuously evolves.

It would be possible to write a book on this topic alone, but let us confine
ourselves to a small number of points concerning actions needed to improve the
situations:

1. There need to be pay mechanisms and models developed which allow the owners
and originators of information (including existing publishers) to derive fair
rewards from their curation and data organisation activities.

2. There needs to be activity to provide improved standardisation of document
searching to facilitate automatic indexing and analysis.

3. The search systems and document stores need to be separated to save searchers
from having to master new software and interfaces when accessing new sources
of information.

Discussions between patent offices and the existing commercial providers have
hitherto focused mainly on the information content of so-called ‘value-added’
data sources and any terms for making them available, rather than developments
in retrieval technology [15]. The US-based Coalition for Patent and Trademark
Information Dissemination specifically noted that development of new software was
not seen as part of the role of the public sector [32].

6https://www.google.com/googlebooks/uspto.html.
7http://www.epo.org/searching-for-patents/technical/espacenet/ops.html.

https://www.google.com/googlebooks/uspto.html
http://www.epo.org/searching-for-patents/technical/espacenet/ops.html
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17.5.3 Multilinguality

In the early part of this chapter, we noted multilingualism as a required property
of future patent search systems. This is because patent search, of whatever sort, is
primarily concerned with the underlying concept of an invention, rather than the
language in which it is described. Therefore, the patent searcher conducting an
invalidity search, for example, wishes to determine whether the idea in a patent has
been described in any language, in a patent filed at any patent office or indeed in an
academic paper in any language (or indeed any other public information), provided
of course the document predates the patent whose invalidity we are seeking to show.

Since much patent litigation covers the precise boundaries of the coverage of a
patent, the different ways the patent (especially the claims) is expressed in different
languages are clearly critical. Equivalent family members may not be a strict word-
for-word translation because word-for-word translations may not necessarily denote
the same coverage boundaries but also because these boundaries can be changed by
how each national office has granted the invention.

Patents then provide a very distinctive sort of challenge in multilingual document
processing (including machine translation). The need has been clearly established
by the widespread use of rough-draft statistical translation tools like Google
translate, despite the fact that these systems do not use models of the domain of
invention and patent-specific document structure, nor are they integrated in the
complex workflows of a patent search office.

As well as a research challenge, the patent area provides a challenge and an
opportunity for the application of a number of advanced computing technologies. In
particular, the fact that many patents exist in families with members in different lan-
guages, and often with manual translations of at least abstracts in several languages,
means that they provide a useful resource for machine learning of various sorts [66].
In particular they can allow the acquisition of statistical translation models specific
to the technical vocabulary of a domain (although often the data is rather sparse) and
they allow acquisition of the technical vocabulary, potentially with other domain
models and language resources like terminologies and ontologies [64].

Turning to one specific aspect of patent process, there is a considerable body
of existing work on multilingual patent classification. Even patents describe some
industrial applications to solution of the problem [32]. A number of patent offices
and other organisations have investigated and implemented systems of automated
categorisation and classification of patent documents using natural language pro-
cessing and analysis [72]. For instance, WIPO has also developed an online
categorisation assistance tool for the International Patent Classification (IPC)
system.8 It is mainly designed to help classify patents at IPC subclass level,
but it also allows the retrieval of similar documents from its database of patent
applications [19, 20]. Since that work, many tentative efforts have taken place in

8See http://www.wipo.int/ipccat/ipc.html.

http://www.wipo.int/ipccat/ipc.html
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order to allow programs categorising automatically patents for limiting this labour-
intensive task [47]. Li [44] adopted, for example, a kernel-based approach and
design kernel functions to capture content information and various citation-related
information in patents. Kim and Choi [40] proposed a KNN (k-nearest neighbour)
approach for classifying Japanese patent documents automatically, focusing on their
characteristics: claims, purposes, effects and embodiments of the invention, instead
of only considering the whole full-text document. Such an experiment could achieve
a 74 % improvement of categorisation performance over a baseline system that
does not use the structural information of patents. Trappey et al. [79] took another
approach and started the classification process by extracting key phrases from the
document. This first step is performed by means of automatic text processing to
determine the significance of key phrases according to their frequency in text.
Correlation analysis is applied to compute the similarities between key phrases, to
restrict the number of independent key phrases in the classifier.

It has been shown that machine learning can help in classifying if appropriate
data is available for training. Bel et al. [8] have studied two different cases:

1. Bilingual documents are available for training and testing, so that a classifier can
learn in two languages simultaneously.

2. The classifier learns from language A and then translates the most important
terms from language B into A to categorise documents written in language B.

This study based on a Winnow learning algorithm and Rocchio classifier has
been applied on a Spanish-English collection and the study has proven that the
combination of techniques is successful for intrinsic multilingual corpora. Many
other experiments took place with other languages such as Czech-English [59]
or even other algorithms. For instance, Rigutini et al. [65] employed MT to
translate English documents into Italian and classified them by using a Naïve-Bayes
approach. Definitely, language is not a barrier for machine learning, just another
obstacle for which MT techniques are already effective.

Since the last edition of this book, we also saw developing efforts for evaluating
machine translation both intrinsically and extrinsically (for a retrieval task) in the
context of the NTCIR conference, as detailed in Chap. 3. Given the increase in
available data, statistical methods are shown now to generally outperform rule-
based translation methods. Most recent results reported by Wang et al. [85] on
the benchmark data provided by NTCIR show that using new neural network
language models, one can obtain state-of-the-art results while significantly reducing
the learning and decoding time.

The critical point here is that the feasibility of various forms of advanced
multilingual patent processing has been demonstrated in research prototypes. These
prototypes represent solutions which show that various sections of the patent
community are willing to accept less than 100 % effective solutions: therefore, we
are likely to see the adoption of various of these (generally machine learning-based)
technologies in patent systems released for general use over the next few years.
Their quality will steadily improve over the next 10 years, not least because of
steadily increasing globalisation of the patent system, including enforcement. Glob-
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alisation of enforcement will promote multilingual invalidity searching resulting in
a steady increase of searching in the non-English (and perhaps non-Chinese) patent
bases, although English may well remain a dominant language perhaps joined by
Chinese in the future.

Of course, increased use and effectiveness of automatic and semi-automatic
multilingual tools can never supplant the use of human translation, especially, for
patent domain translations produced by legal or technical experts with relevant
expertise and for particular purposes, like litigation.

17.5.4 Visualisation

Work in patents (and in fact other forms of complex technical information, like gene
sequencing data) cannot be adequately represented by simple arrangements of text.
On the one hand it is too complex and multidimensional to allow this. On the other
hand the needs of patent searchers are too complex, subtle and variable to allow
one-size-fits-all standardised solutions even in areas like presentation of ranked lists
of results.

It is important to recognise there are essentially two forms of graphical visuali-
sation of data which are needed by patent professionals:

1. Visualisation of content potentially at the individual document level: content like
diagrams, engineering drawings, chemical structures, gene sequences and related
text

2. Visualisation of the structure of large information spaces and results to allow the
searcher to effectively overview the space and navigate to relevant areas

Obviously there are a number of current applications which allow various sorts of
graphical views of patent data spaces. Considering the problem of large information
spaces and result sets, currently searchers still use series of pure textual Boolean
searches (with operators such as ‘and’, ‘or’ and ‘not’) to obtain an overview of
the space. Boolean searches are advantageous for experienced searchers who have a
clear understanding of the query, as well as the limitations of the database. However,
Boolean searches can be difficult for the uninitiated and inappropriate to multiple
growing databases. On top of that, learning to master a Boolean search is time-
consuming, basically consisting of trial and error, which, in a current competitive
environment, is not scalable. The goal to achieve is more user-friendly systems
to help the researcher to obtain information quickly without a learning phase.
Developing methods to access, analyse and report on patent information in a quicker
manner is a challenge shared by both patent offices and patent professionals. Several
search forums, such as the conferences organised by the Patent Information User
Group in the United States, or those organised by the European Patent Office in
Europe, aim at gathering the needs and offering the chance to software developers
to register the large variety of requirements.
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Patent processing systems are now active in assisting the searchers in their
repetitive tasks. They can provide suggestions, take the initiative of rewriting
the search queries and perform new subsequent searches based on their own
understanding.

There is also a growing body of other relevant researches. For example, in
case of unsupervised neural network clustering, Huang et al. [33] have proposed a
SOM (self-organising map) dedicated to patent structures. These authors distinguish
between explicit structures (subject, abstract, paragraphs) and implicit structures.
Implicit structures are referring to writing styles such as ‘comprising’ in the claims
(composition style) or ‘as claimed in’ (precondition style). This structure analysis
occurs as a preprocessing before the SOM and allows a higher robustness to
language ambiguities, especially in Chinese language. This clustering is not the first
implementation of a SOM for patent documents (e.g. see [52]); nevertheless, the
application of clustering is targeting much higher expectations. Indeed, the goal is
to compare (cluster) patents showing similar claim contents and to help the patent
examiner take critical decisions on the acceptability of a patent application. But
note that such a technique, even if perfected, could only assist the general patent
searcher in those types of search where the claim language is an important aspect
of the target, e.g. freedom-to-operate searching, and would be less helpful in some
aspects of patentability searching where disclosures in the body of the specification
are equally or more important. By using a clustering method, conflicting patents can
be detected, clustered and ranked according to the degree of similarity. On top of
that, a graphical representation is a natural way of displaying SOMs. Topic maps
are well-known derivatives.

In the past, several initiatives took place to develop visualisation techniques [23,
45, 75]. Mapping tools enabling the display of multiple patent records, but with no
direct interaction with the end users, have often appeared in the literature [9, 46].
Until recently, probably due to a lack of computer resources (and thus interactivity),
many attempts to provide immersive interaction failed to gain widespread support
among the users. Supported by the need in specific industries or services, such
as pharmaceutical research or trend analysis, new developments have nevertheless
been proposed [17, 41, 78], and as we saw in Chap. 10 earlier in this book, there are
options beyond the self-organising maps paradigm.

Visualisation techniques are in practice supported by text analysis methods, in
order to generate the raw data that underlie the graphical illustrations. In parallel, a
lot of effort has therefore been devoted to text mining techniques.

Text mining techniques are designed to extract non-trivial pieces of knowledge
(also called patterns). It is expected that a greater synergy between text mining,
knowledge discovery and visualisation is going to improve patent processing
methods. Fattori et al. [21] found relevant techniques for the purpose of exploring
the patent domain. Visual data mining (VDM) for patents would help the end user
build a mental model of a particular data set and allow him to understand the
global structure in addition to the local trends in complex sets. It places the end
user in a position of a cognitive agent navigating in a visual information space and
building his own internal cognitive map. In a nutshell, the computer runs heavy
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processing over millions of records, whereas, simultaneously, the user models the
virtual document space into its own world. It is desirable that the user establishes a
connection between his representation and the system by avoiding the unnecessary
underlying complexity.

Tools for VTM (visual text mining) have been proposed in the past [48], but
not yet in the context of industrial property. Only recently, Yang et al. proposed
text mining approaches in conjunction with independent visual tools to find patent
documents [91, 92]. Most recently, Madani and Weber [53] show how based on
currently available information we can combine bibliographic and text analysis for
patent mining. Related attempts have been published in the past, including topic
maps,9 but mostly concentrated on unstructured corpora such as Web content. Patent
documents are composed of both structural aspects and a freestyle content, which
makes the clustering followed by the rendering much less challenging because it
is dependent on the variety of user’s expectations (ranging from regular listings to
discovery experiences). Results can thus be evaluated more systematically on the
user’s criteria.

Harper and Kelly [30], for example, have shown a pile sorting metaphor to be
effective in a slightly more complex than average information access task. It would
certainly be worth exploring the implications of this result for patent search.

From an internal computer representation to a user-friendly rendering, a series
of steps should be put in place. One of them relates to space projection. Multidi-
mensional spaces have to be represented on a 2D screen in order to be displayed.
The visual representation of the space should nevertheless be compatible with the
internal cognitive representation of the user. This poses both a projection issue and a
user interface issue. The projection issue finds its practical solutions through many
geometrical techniques [60, 61].

Van Ee [82] proposes a patent organisation viewer for reviewing a collection
of documents which uses multi-touch interaction (gesture set and stacks). An
automatic organisation method using the Local Affine Multidimensional Projection
(LAMP [36]) technique has been used to support the user in interactively grouping
and stacking patents. This has been the first attempt in visual patent browsing by
using a touchscreen dedicated implementation.

The user interface problem is addressed through an interactive way of handling
subsets of databases and requires computing power capable of scaling with the
amount of data. It is essential that methods adequately reflect the content-based
neighbourhood relations between documents, according to their similarity. Projec-
tions have to be accurate in order to allow the end user to effectively analyse the
space.

9ISO/IEC 13250:1999.
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In the near future, we might see 3D visualisations, which are a potentially
significant increase from 2D. The dimensionality reduction will still have to
be there, however, as text analytics methods commonly work in hundreds or
thousands of dimensions. 3D (virtual reality) interfaces could well represent the
next major shift in the patent professionals’ work processes, of the same magnitude
as the shift from paper to computer. Text visualisations in this space are actively
researched and demos are currently available [3].

17.5.5 Cooperation

In recent years there have been significant advances in the technologies for virtual
meetings, going well beyond the very degraded forms of interaction one gets with
simple video conferencing systems. See, for example, Yu and Nakamaru [94] or
Nijholt, Zwiers and Perciva [57].

Therefore, in the next 10 years we will see the widespread adoption of large
format screens, highly interactive complex visualisations, with an ability to reor-
ganise the data on the fly according to the current needs of the searcher. These
visualisations will actively support cooperative and team working between different
professionals whether colocated or working at different locations.

A combination of needing to control the costs of patent work, especially in very
high-value areas like prosecution, more globalised working (at the same time as
trying to reduce travel) as well as technical opportunities and reducing cost of
technology will be driven.

In addition to shared visualisations and shared virtual environments, cooperative
search methods need to support the users in managing the commonly found
resources, in distributing subtasks and unifying their results.

In the database community there is a relatively long research track record
of leveraging query logs to generate new complex queries [39]. In its simplest
form, this is the query suggestion mechanism commonly available now in most
search engines. Going beyond the use of logs, towards true technology-supported
collaboration, system designers have to consider a series of fundamental aspects
(adapted from [77]):

• Fundamental notions

– Dimensions of collaboration
– Collaboration paradigms
– Behaviour processes

• Models

– Algorithmic-driven division of labour-based document ranking models
– Role-based document ranking models
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• Perspectives

– User-driven collaborative search models
– Standardisation and evaluation

Typically, directly addressing patent searchers’ needs raises real research problems,
such as the need to set up meta-search engines capable of performing searches in
all (or some specified) separate search systems and document collections in parallel
and then merging the results intelligently before presenting the results back to the
user. Another issue is the data fusion aspect implementing the ‘intelligent’ merging
of results mentioned above.

However, what is really required is a separation of the tools for the indexing,
search, access and analysis of the patent and other data (especially academic
literature) from the data itself. This will greatly facilitate the rapid adoption in
the patent community of new software developed elsewhere. Integrating these tools
goes beyond this: but it will allow the patent community to effectively take part in
developments like the open linked data initiative10 and the semantic Web services
initiative11 which will provide the basis of integrated software systems in the future,
although there is the danger that the specialised needs of patent searchers may be
subsumed under the needs of larger communities and thereof not fully addressed.

17.6 Report Generation Support

Now all these advanced technologies are all very well, but for the foreseeable
future most sophisticated patent searches will result in a paper report (or maybe
an electronic form like PDF which is essentially a 2D paper which can easily be
transmitted and viewed electronically).

Therefore it is important, for the practical patent searcher, that the results of all
these advanced information access processes can be converted into report form.

We are not going to analyse and review how this is done: this brief section is more
of a warning and reminder to technology developers and researchers, but see [2] for
a longer discussion of some related issues.

10See http://linkeddata.org/.
11See http://www.swsi.org/.

http://linkeddata.org/
http://www.swsi.org/
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17.7 Conclusions

In 1982, Salton started his article describing the SMART retrieval system with
the following sentence: ‘The need to construct complex Boolean queries in order
to obtain the benefit of the existing retrieval operations constitutes a substantial
burden for the users’. Since the pioneering work of Salton [68] and Sparck-
Jones [73] in the early 1970s, considerable progress has been made to make the
content of text depositories more easily available to users. Nevertheless, progress
has been slow and after more than three decades, many professional users are still
facing crucial difficulties in extracting valuable information from data sets. Patent
professionals are among them. The issue is no longer to secure a valid search in
textual information, but instead to find the relevant piece of information (whatever
the data type) and to display it into a framework ready for decision-making.

We have pointed out that a series of different sorts of progress in various
scientific fields is needed to address the challenge of processing patent data. Both
basic information retrieval (IR) technologies and advanced linguistic paradigms are
proven to be useful for coping with the multilingual nature of patents. Moreover,
the continuous exponential growth of patent documents available in the world
raises scalability issues far from being solved. Expectations are at the level of a
global economy where language data is at the centre of a full dematerialisation of
knowledge. The industrial need to refer to a strong intellectual property portfolio
pushes the trend of enhancing computer tools specialised in processing patent
documents. Thanks to coordinated research efforts such as those of the IRF,
involving both professionals and the scientific community, users can finally expect
consolidated software suites reaching the level they deserve.

As demonstrated in its time by the pioneering EU project PatExpert [86],
and subsequently by its follow-up project TOPAS [10], emerging technologies
addressing these challenges are successful in finding practical research solutions.
In the context of managing patent digital data, PatExpert has shown that many
concurrent professional issues appeared in the field of industrial property (IP).
The current chapter focuses on some prospective themes, which the IP community
will face in the coming years. As such, and since more and more patent-related
projects are initiated, making use of industrial property corpora has become a full
subject for academic research and applied research. Expected impacts appear at
several orthogonal levels: economical, societal, legal and technical. Although it is
not possible to dissociate the legal aspects from the technical one on the user side
of the project, it is clear that addressing the information technology (IT) side of
the issues can solve many practical aspects. For instance, the academic field of
information retrieval (IR), which has a long history in developing algorithms and
methods for exploiting the content of large corpora, has shown interest in focusing
its activities on IP. It is now facing a series of use cases potentially showing a
great economical impact, thanks to the importance of Internet-based solutions. In
parallel, the IP community is morphing from a focus on a librarian-style document
management setup to online, on-the-fly, live and interactive methods.
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We predict that in 10 years this will drive real changes in the patent search busi-
ness, leading to the widespread adoption of tools which support a truly globalised
intellectual property market, and therefore supported shared search independent of
language or location.
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