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Preface

Correlations among several many-body systems manifest themselves at various
scales especially under extreme conditions. In collecting invited contributions for
this special volume, we especially had in mind many-electron systems both in
solids and in molecules or clusters, under high pressure or low temperature, and
especially in solids or molecular systems with reduced dimensionality.

These in fact embrace the main research interests of Prof. Renato Pucci, whose
70th birthday we would hereby like to celebrate. Professor Pucci started his career
immediately after he graduated in physics from the University of Catania (Italy) in
1968, where he eventually became full professor of structure of matter (condensed
matter theory) in 1990. During his long and fruitful career, he enjoyed a constant
collaboration with Prof. Norman H. March (Oxford University, UK), with regular
visits of Prof. Pucci to Oxford first and of Prof. March to Catania later. Professor
Pucci also collaborated with several other distinguished scientists, including Profs.
R.G. Parr (North Carolina University, USA), F. Flores (Universidad Autónoma de
Madrid, Spain), and L.S. Brizhik (Ukrainian Academy of Science, Kiev, Ukraine).
He is the author of more than 150 papers on several peer-reviewed international
journals and serves as referee for numerous national and international journals, such
as the Physical Review and the Physical Review Letters, and the Journal of
Chemical Physics.

Professor Pucci is quite well known within the high-pressure scientific com-
munity. After organizing two Archimedes Workshops on high-pressure science, he
chaired the European High Pressure Research Group (EHPRG) meeting in 1998
and the Joint International Conference of the International Association for the
Advancement of High Pressure Science and Technology (AIRAPT) and
of the EHPRG in 2007. He was also scientific secretary of the national congress
of the Italian Physical Society (SIF) in the International Year of Physics 2005. For
both the EHPRG and the AIRAPT, he has been the member of the respective
scientific committees for several terms.
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At the University of Catania, Prof. Pucci served as head of the undergraduate
program in physics, head of the Department of Physics (later: and Astronomy), dean
of the Faculty of Sciences (for two terms), and member of the Board of
Administration of the university.

His research interests are quite broad and span from chemistry to physics,
especially in the solid state. These are reflected, to some extent, in the topics
covered by the present volume, which includes invited contributions from collab-
orators, colleagues, and friends of Renato’s.1 In particular, Prof. Pucci has given
contributions to the fields of positron annihilation, to the many-body theory of
surfaces (see Chap. 2 by Flores and Goldberg), to nonlinear effects in electronic
transport in low-dimensional systems (see Chap. 15 by Brizhik and Chap. 10 by
Deretzis et al.), including polyacetylene (see Chap. 11 by Baldo).

Professor Pucci and his group devoted much attention to superconductivity in
novel compounds, such as the high-Tc superconductors (see Chap. 3 by Angilella),
especially under high pressure (see Chap. 4 by Schilling), or the ruthenocuprates
(see also Chap. 5 by Citro).

Within the field of high-pressure physics, Prof. Pucci and his group predicted
that the light alkali metals should become insulating (and then possibly reenter a
metallic phase) with increasing pressure (see the reprinted article by Siringo et al.
on Chap. 18). This has stimulated much research, both experimental and theoretical,
with the eventual identification of insulating phases occurring indeed in lithium and
sodium under pressure (see Chap. 3 by Angilella for a review). These findings may
also be relevant for the pressurized electronic phases of several electrides (see
Chap. 6 by Dong and Oganov).

In chemical and molecular physics, Prof. Pucci is probably best known for the
so-called Yang–Parr–Pucci formulae (see Chap. 19 by Echegaray et al.), which are
the key working equations for most practical applications of the Fukui functions—a
reliable descriptor of molecular electronic structure and chemical reactivity.
Together with N.H. March, Prof. Pucci has given contributions in the general area
of density functional theory (see the reprint in Chap. 21 by Pucci, for a review).

More recently, Prof. Pucci’s group has given contributions to the study of the
effect of strain on several transport (both electrical and optical) properties of gra-
phene (see Chap. 3, and especially Sect. 3.4, by Angilella, for a review, Chap. 12 by
Pellegrino, Chap. 13 by Deretzis and La Magna, and Chap. 14 by Pidatella and
Mazzarello).

Part IV contains some reprints or translations (and one original contribution by
Ruggieri, Chap. 24) of several papers by Prof. Pucci et al. on the philosophy and the
history of science and on the ‘correlations’ thereof with another deeply rooted
aspect of man’s endeavor toward knowledge, with its own peculiar ‘language,’ viz.
theology—a subject under ‘extreme conditions’ in its own respect!

1Some of these were delivered at a workshop which took place in Catania, on September 23, 2016.
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This volume is meant to be a testimony to Prof. Pucci’s scientific achievements
during his career thus far, a small token of our gratitude toward his efforts as a
group leader, and of course a hopeful encouragement for future successes!

Catania, Italy G.G.N. Angilella
September 2016 Antonino La Magna
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Chapter 1
Can the d-Orbital Splitting Unveil
the Local Structure of Cu2+ Ions? Study
on the K2ZnF4:Cu2+ Archetype

Fernando Rodríguez

Abstract Jahn-Teller (JT) transition-metal ions like Cu2+ (d9) or Mn3+ (d4) in
octahedral coordination exhibit larger distortions than non-JT ions like Mn2+ or
Fe3+ (both d5) in oxides and halides with perovskite type structure. Their mutual
interactions eventually determine the type of distortion and the way they couple
each other, being at the core of some relevant physical properties. When a JT ion is
introduced as an impurity in an octahedral or nearly octahedral site, it provokes a
low-symmetry lattice distortion as a consequence of the instability associated with
the electronic ground state degeneracy, eg(x2 − y2, 3z2 − r2). The distortion degree,
ρ, depends mainly on the electron-ion coupling interaction related to the E ⊗ e JT
effect, and it is modulated by the host crystal structure. This scenario explains for
example why Cu2+ induces a large distortion of the CuF6 octahedron, when Cu2+
replaces Zn2+ either in the perovskite KZnF3 or in the layered perovskite K2ZnF4.
However, there is a long debate about whether the splitting, Δe of the Oh eg(x2 −
y2, 3z2 − r2) orbitals into a1g and b1g is proportional to ρ or Δe contains additional
contributions from the rest-of-the-lattice (crystal anisotropy) aside ρ. Elucidation
of this controversy is important in order to establish structural correlations between
Δe and ρ, for an eventual local structure determination of JT impurities from optical
spectroscopy. Recent studies onK2ZnF4:Cu2+ report different views of this problem.
Here we show that Δe scales linearly with ρ. High pressure experiments and JT-ion
compound series of different dimensionality give support for the proposed scenario
and provide structural correlations relating ρ and Δe in Cu2+ and Mn3+ systems.

Introduction

Transition-metal (M) inorganic compounds with perovskite type structures AnMXm

(n = 1 − 3,m = 3 − 6, A: alkali or alkaline, X : O or halogen) display an ample vari-
ety of structureswith relevant physical phenomena such as high Tc superconductivity,

F. Rodríguez (B)
MALTA TEAM, DCITIMAC, Facultad de Ciencias, Universidad de Cantabria,
E-39005 Santander, Spain
e-mail: fernando.rodriguez@unican.es

© Springer International Publishing AG 2017
G.G.N. Angilella and A. La Magna (eds.), Correlations in Condensed Matter
under Extreme Conditions, DOI 10.1007/978-3-319-53664-4_1
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4 F. Rodríguez

colossal magnetoresistance, ferro-antiferro-non-magnetic behavior associated with
exotic high-spin to low-spinmagnetism,metal-insulating transition,multifunctional-
ity, piezochromism and piezomagnetism, or extreme polymorphism at high pressure,
which are induced by subtle structural changes around the M ion [1–6]. Correlations
between electronic structure and coordination geometry of M are, in most cases,
essential to interpret these phenomena. These correlations are particularly important
in compounds involving Jahn-Teller (JT) M ions [6–11] since additional structural
complexities arise. This situation is even more complicated if we deal with JT M
ions introduced as impurities in these materials [12, 13]. Compounds AnMXm form
lattices of interconnected polyhedra in which the M ion is octahedrally coordinated
to X anions as a MX6 cluster [14, 15]. The actual M coordination symmetry corre-
sponds to a perfect octahedron in case of a pure perovskite structure AMX3 (Pm3̄m).
But slight or large deviations of the octahedral symmetry can be attained depending
on the crystal structure (composition and dimensionality): structures associated with
MX6 rotations (i.e. as a result of softening of R25 and M3 phonon modes) [16], or
displacements of the anion lattice with respect to cation lattices (ferroelectric type
transitions) or those attained in low-dimensional systems: layered AMX4 or A2MX4

(with compressed or elongated MX6 octahedra); linear chains of elongated MX6

octahedra in A2MX5 or AMX3, or independent MX6 octahedra in A3MX6 or face-
sharing structures in AMX3 are some examples of how the X -sharing and packing of
MX6 octahedra influence their final symmetry [14, 15]. M ions with a 3d5 electronic
configuration like Fe3+ or Mn2+, which have a singlet orbital multielectronic ground
state (6A1g), are archetypal examples of this behavior. Nevertheless, octahedral dis-
tortions for these M are small and thus their corresponding coordination polyhedra
are usually considered as regular octahedra. In case of Mn2+ or Zn2+, they can pass
from a perfect octahedron in perovskites TlMnCl3 or RbMnF3 [17, 18] to a D3d dis-
torted octahedron in the one dimensional face-sharing CsMnCl3 or CsMnF3 (with
three short bonds Rs = 2.54 and 2.12Å, and three long bonds Rl = 2.58 and 2.16Å,
respectively.) [19, 20] or to a slightly tetragonal distortion in layered perovskites
with either compressed (Rb2MnCl4-4xReq = 2.525Å, and 2xRax = 2.495Å [21])
or elongated (Rb2MnF4-4xReq = 2.115Å, and 2xRax = 2.126Å [22]) octahedron.
The effects of crystal anisotropy on the octahedral distortion on passing from 0D
to 1D and 2D, can be measured through parameter ρ defined in terms of the M–

X bond distances, Ri , as ρ =
√∑6

i=1(Ri − R0)2, with R0 being the average M–X
distance. In case of tetragonal distortions, this parameter coincides with the normal
coordinate, Qθ , which is given in terms of the equatorial and axial bond distances as
Qθ = 2/

√
3(Rax − Req). This parameter varies with the dimensionality in the above

compounds by 0, 0.05, and −0.035 (and 0.013)Å, respectively.



1 Can the d-Orbital Splitting Unveil the Local Structure … 5

Results and Discussion

Structural Correlations in Octahedral Jahn-Teller
Transition-Metal Ions

Low-symmetry distortions in octahedralM ionswith a singlet electronic ground state
are significantly smaller than those attained in isostructural compounds in which M
has an orbitally degenerate ground state (JT ions). Mn3+ (3d4) in fluorides [8, 23,
24] or Cu2+ (3d9) in chlorides [25, 26] and fluorides [8, 12] provide examples of
isostructural compounds where the MX6 polyhedra display larger distortions than
those involving M ions with nondegenerate ground state, even dealing with com-
pounds of cubic symmetry. This well-known behavior is a consequence of the JT
effect exhibited by Mn3+ and Cu2+. More precisely, these ions have a doubly degen-
erate ground state in Oh symmetry (5Eg and 2Eg , respectively) both showing strong
electron-lattice couplings with lattice (or ligand) distortions of either tetragonal or

Fig. 1.1 Effect of crystal anisotropy represented through an effective axial stress in the ground-
state energy in (Qθ , Qε)-space given by the E ⊗ e Jahn-Teller theory [6–11]. The (Qθ , Qε)-space
ground-state energy surface is shown on the left. Note the evolution from elongated-to-compressed
coordination geometry upon increasing the axial stress. The collapse into the compressed geometry
takes place at Scrit = 9β. The parameter β contains anharmonic and second-order JT interactions
yielding warping of the Mexican-hat-type energy surface in (Qθ , Qε)-space. 2β corresponds to the
energy barrier for jumping among energy minima at S = 0. Structures shown on the right-hand
side illustrate CuF4−6 equillibrium geometries predicted by the perturbed JT model
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rhombic symmetry, described by local Oh modes (Qθ , Qε) of E symmetry: E ⊗ e
JT effect [6–12].

Such electron-ion couplings are eventually responsible for the large distortion of
the MX6 octahedra observed experimentally in Mn3+ and Cu2+ by x-ray diffraction
[8, 24, 26]. Phenomenological models based on E ⊗ e JT theory [9–12, 27, 28]
properly explain the wide variety of distortions of JT M ions in perovskite type
crystals. Starting from an octahedral symmetry and considering the linear electron-
ion coupling related to E(Qθ , Qε) distortions, A, the force constant associated with
the elastic distortion, k ′, the magnitude of the local distortion of the M , ρ, is basically
determined by

ρ = − A

k ′

√
Q2

θ + Q2
ε. (1.1)

Anharmonic effects and JT second-order terms of the electron-ion interaction, aswell
as external stresses (this is introduced to simulate crystal anisotropy effects), aside its
magnitude, determine the symmetry of the MX6 distortion as tetragonal elongated,
tetragonal compressed, or any other rhombic intermediate (Fig. 1.1). All possible
distortions arose from the warping of the Mexican hat energy surface describing the
first order E ⊗ e JT coupling configurations [9–12, 27, 28]. In this way the family
of Mn3+ and Cu2+ fluorides illustrate how JT ions exhibit larger octahedral distor-
tions than the singlet-orbital M counterparts. So that the ZnF6 octahedral distortion
in the cubic perovskite KZnF3 and tetragonal layered perovskite K2ZnF4, which
are Qθ = 0 (Rax = Req = 2.080Å) [29] and Qθ = −0.002Å (2xRax = 2.027Å;
4xReq = 2.029Å) [30], respectively, contrasts to distortions in KCuF3 and K2CuF4,
which are Qθ = 0.38Å, Qε = 0.16Å, ρ = 0.41Å, and Qθ = 0.42Å, Qε = 0.09Å,
ρ = 0.43Å [12], respectively, (Table1.1). A similar behavior is found for JT Mn3+
(2E ground state) and non-JT Fe3+ (6A1 ground state) fluorides. FeF6 and MnF6
distortions are: Qθ = 0 in Rb2KFeF6 [31] and 0.16Å in Na3MnF6 [24] (0D),
Qθ = 0.14Å in Cs2FeF5 [32] and 0.29Å in Tl2MnF5 [24] (1D), and Qθ = 0.09Å
in KFeF4 [33], and 0.37Å in CsMnF4 [24] (2D), thus emphasizing the additional
distortion displayed by Mn3+ due to the E ⊗ e JT coupling (Table1.1). A similar
situation is encountered for Cu2+ [8, 12, 25, 26, 34].

The different distortion ofMnF3−6 depending on the lattice dimensionality, i.e., dif-
ferent F-sharing lattices, is noteworthy. A similar situation is observed in Cu2+ fluo-
rides. In particular, the distortion degree increaseswith the number ofMn3+ (orCu2+)
sharing common ligands in the structure: none (0D) in Na3MnF6 (Qθ = 0.16Å), two
(1D) in Tl2MnF5 (Qθ = 0.29Å), and four (2D) in CsMnF4 (Qθ = 0.37Å) [24] or
K2CuF4 (Qθ = 0.42Å) [12]. Such a dimensionality-induced distortion can be easily
explained on the basis of the JT models if we take into account that, in an isolated
(not sharing; 0D) MnF3−6 or CuF4−6 system, tetragonal distortions are mainly given
by ρ0 ≈ Qθ = −A/k ′, which corresponds to the first-order energy-minimum con-
dition of E = Aρ + 1

2k
′ρ2, yielding EJT = − 1

2 Aρ0 ≈ − 1
2 AQθ . However, E(ρ) is

modified by JT-ion ligand sharing because the lattice distortion energy is shared by
neighboringMnF3−6 (or CuF4−6 ), and therefore the corresponding distortion increases
significantly with respect to isolated systems. In ligand-sharing structures, the
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distortion increases due to JT cooperative effect: E ≈ (1 + n/6)Aρ + 1
2k

′ρ2, where
n is the number of shared ligands in MnF3−6 (or CuF4−6 ). So that n = 0 in isolated
systems (0D), 2 in corner-sharing linear chains (1D), 4 in layered perovskites (2D),
and 6 in perovskite structure (3D). According to this model, the JT distortion of MX6

increases with the dimensionality as ρ0 ≈ −(1 + n/6)A/k ′:

ρ0D ≈ − A

k ′ , (1.2a)

ρ1D ≈ −4

3

A

k ′ , (1.2b)

ρ2D ≈ −5

3

A

k ′ , (1.2c)

ρ3D ≈ −2
A

k ′ . (1.2d)

This simple model explains why JT ions in ligand-sharing structures like layer
perovskites display octahedral distortions which are about twice as large as those
observed in structures with isolated JT ions (ligand sharing with non-JT ions).

In general, XRD-determined local distortions in MnF3−6 or CuF4−6 (and CuCl4−6 )
follow approximately this trend. Values of ρ = 0.2Å (0D), 0.29Å (1D), and 0.38Å
(2D) in Mn3+, and ρ = 0.2Å (0D) and 0.43Å (2D), 0.47Å (3D) in Cu2+ fluorides
(Table1.1) confirm it. This result clearly indicates that the M local distortion in JT
systems depends mainly on the electron-ion coupling interaction (A), the elastic
force constant associated with the local lattice distortion (k ′), and the number of
shared ligands with neighboring JT ions (n), aside other minor contributions due to
rest-of-the-lattice effects.

Electronic Structure in JT Octahedral-Distorted
Transition-Metal Ions

A salient feature concerning the JT distortion in MnF3−6 and CuF4−6 is the addi-
tional splitting shown by the parent octahedral eg and t2g d-orbitals of the M
ion. In particular, the splitting of eg into a1g + b1g can be measured by optical
spectroscopy (Fig. 1.2). The corresponding a1g → b1g transition energy gives Δe

(≈ 4EJT) directly. According to JT theory, there is a direct first-order relationship
between Δe and ρ, which is given by Δe = 2Aρ. Experimentally, the dependence
of Δe on ρ has been measured for compound series involving both MnF3−6 [24] and
CuF4−6 [12] (and CuCl4−6 [25, 26]). In these systems, the measured Δe and ρ show
a linear dependence (Figs. 1.3 and 1.4), from which we can extract suitable values
of the electron-ion JT coupling: A = 2.55eV/Å for MnF3−6 [24], A = 1.25eV/Å
for CuF4−6 (and A = 1.15eV/Å for CuCl4−6 ) [26], and A = 1.15eV/Å for CuO10−

6
(Fig. 1.4), the latter correlation being derived from pressure experiments in CuWO4
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Fig. 1.2 Optical absorption spectra of K3MnF6 (0D), Na2MnF5 (1D), and NaMnF4 (2D) Mn3+
compounds. The three bands shift to higher energies as dimensionality increases. Note that the
tetragonal splitting,Δe andΔt , increase with the distortion parameter ρ defined as a function of the
normal coordinates, Qθ and Qε , representing the tetragonal and rhombic distortions, respectively,
and the three variations ofMn–F distance with respect to the averageMn–F distance,ΔRax ,ΔReq1,
and ΔReq2. An Oh symmetry yielding splitting closure is produced for ρ = 0. An energy level
diagram of the Mn3+ d-orbitals are shown for octahedral and tetragoanl symmetries on the right-
hand side. The electronic transition energies are related to the tetragonal splitting of the Oh eg and
t2g orbitals as Δe = E1 and Δt = E3 − E2. Figure adapted from Fig. 4 of Ref. [28]

[35]. This result is remarkable since it establishes that the low-symmetry local distor-
tion of JTM ions in octahedral coordination can be derived fromoptical spectroscopy
provided that we know the relationship betweenΔe and ρ. Reciprocally, the splitting
Δe, and hence the JT energy as EJT = Δe/4, can be estimated from structural data (ρ)
if we know Δe(ρ). The experimentally observed linear relationship between Δe and
ρ along different crystal structures is significant. It means thatΔe mainly depends on
the low-symmetry distortion of MX6 irrespective of the particular crystal structure.
This implies that the local structure of MX6 essentially depends on the JT coupling
modulated by the type of crystal structure. In any case, the measured Δe reflects the
actual low-symmetry distortion ρ of MX6.

An important application of such structural correlations is the local structure
determination of JT M ions, which are placed as diluted impurities at octahe-
dral coordination sites through optical spectroscopy measurements. Interestingly,
this procedure is simpler and more direct than those based on x-ray absorption
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Fig. 1.3 Variation of the parent octahedral eg splitting, Δe, obtained by optical absortion, with the

low-symmetry distortion, ρ =
√∑6

i=1(Ri − R0)2 =
√
Q2

θ + Q2
ε), derived from XRD, in com-

pounds series invloving CuF4−6 [8, 12, 27], CuCl4−6 [25, 26], and MnF3−6 [8, 23, 24]. For Cu2+ in
six coordination oxides: CuO6, the corresponding variations of the eg- and t2g-orbital splittings Δe
and Δt as a function of Qθ were obtained from optical absorption at high pressure in CuWO4 for
low-pressure triclinic and high-pressure monoclinic phases. Results are shown in the top-left figure
(adapted from Ref. [35]). The coupling coefficient of the observed linear dependence between Δe
and ρ is included in each plot

spectroscopy (XAS). Besides, XAS has serious limitations if the impurity concen-
tration is below 0.1mol%.

According to this structural model, the local structure of Cu2+ in K2ZnF4—ZnF6
distortion: ρ = |Qθ | = 0.003Å [30]—can be derived from the absorption band asso-
ciated with the a1g → b1g transition located at 0.64eV [12, 34]. Therefore, the local
structure of the compressed CuF4−6 is then ρ = |Qθ | = 0.64/2.5 = 0.26Å. This dis-
tortion fairly agrees toReinen’s estimates (ρ = |Qθ | = 0.27Å) obtained fromoptical
spectroscopy and electronic spin resonance [12].

Recently, there has been a controversy for determining the JT distortion of Cu2+ in
K2ZnF4 on the basis of ab initio DFT calculations [13]. FollowingDFT estimates, the
idea of deriving ρ from Δe was ruled out in Ref. [13] as Δe in Cu2+-doped K2ZnF4
contains twomain contributions: one is due to the JT effect byCu2+, and the other one
comes from additional contributions to the tetragonal eg splitting due to rest-of-the-
lattice crystal field (beyondCuF6 coordination shell) due to crystal anisotropy. In fact,
the calculated tetragonal crystal-field contribution to the eg splitting, Δe(lattice), in
K2ZnF4 at the Zn2+-substituted Cu2+ site is about 50% of Δe, the remainder 50% is
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Fig. 1.4 Variation of the parent octahedral eg splitting,Δe, obtained by polarized optical absortion,
with the low-symmetry distortion, Qθ , derived from XRD, in the layered perovskites K2CoF4 (A),
K2NiF4 (B), K2CuF4 (C). Structural and spectroscopic data from Ba2CuF6 (D), CuZrF6 (E), CuF2
(F), KCuF3 (G), and CsAlCuF6 (H), are also included (Table1.1). Capital letters identify each
compound in the Δe(Qθ ) plot. Note the linear dependence between Δe and Qθ for all transition-
metal ions yielding electron-ion coupling coefficient: A = 1.25eV·Å−1

due to the JT effect byCu2+ [13]. However, this conclusion is somewhat controversial
in view of structural correlations established in compound series. Anyway, DFT
simulations rule out the use of such correlations to derive ρ in a JT M ion from
optical spectroscopy since Δe depends not only on ρ but also on the peculiarities of
crystal structure (anisotropy). On the basis of DFT estimates the local distortion as a
consequence of the JT coupling is Qθ = −0.13Å [13], while a value Qθ = −0.26Å
is obtained using the experimental structural correlations throughρ —i.e., none direct
contribution from rest-of-the-lattice to Δe.

In order to ascertain which method provides suitable values of the Cu2+ local
structure, it must be noted that DFT-based methodology in [13] involves two
contributions to Δe —JT effect and rest-of-the-lattice crystal field— as: Δe =
Δe(lattice) + Δe(JT). The Cu2+ local structure in K2ZnF4 derived from DFT is
Qθ = −0.13Å. Such a distortion yields Δe(JT) ≈ 0.3eV, the remainder 0.34eV
coming from Δe(lattice). In order to estimate Δe(lattice), the d-orbital splitting of
Cu2+ was calculated byDFT fixing the CuF4−6 structure to a perfect octahedron in the
K2ZnF4 lattice. With this constraint, the DFT splitting of the parent Oh eg orbitals of
Cu2+ is 0.34eV [13]. This together with the JT contribution accounts for the exper-
imental Δe. Nevertheless, such model estimates lack from experimental verification
due to the absence of real systems having Cu2+ in a perfect octahedral environment.
Actually, sixfold coordinated Cu2+ fluorides show large Oh-distorted equilibrium
geometries, irrespective of the host crystal structure.

A chief methodologic issue arises at this stage: whether the calculatedΔe(lattice)
for CuF4−6 in a regular octahedral coordination does really come from the K2ZnF4
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crystal field at Cu2+ beyond the 6F− coordination sphere, or it is caused by a non-
symmetric redistribution of the d-orbital electronic density due to instabilities asso-
ciated with the twofold degeneracy ground state (2E) in Oh Cu2+ (JT-like electronic
effect). In fact, such an electronic density redistribution of ‘tetragonal’ symmetry
was claimed elsewhere [13] but keeping artificially the CuF6 Oh symmetry (identi-
cal Cu–F distances). This latter possibility could be named as the static version of
the ‘forced’ JT effect —the instability response to freezing ions in Oh symmetry is
to modify the electronic density associated with the eg orbitals yielding Δe(lattice).
However, it must be pointed out that such a situation does not occur in real systems,
given that a nonsymmetric electronic density redistribution gives rise necessary to
a tetragonal CuF6 distortion, the degree of which depends mainly on the E ⊗ e JT
coupling and its type as tetragonal elongated or compressed, or any rhombic inter-
mediate, can be triggered by the crystal anisotropy. The stronger the JT coupling, the
larger instability yielding CuF6 tetragonal distortion in K2ZnF4.

In order to shed light on this controversy, proposed models deserve experimental
verification. Given the impossibility to find real systems involving CuF6 with Oh

symmetry, we focus on exploring Δe(lattice) in isostructural compounds involving
other M ions with nearly Oh symmetry. The tetragonal crystal-field strength at Zn2+
by the K2ZnF4 lattice beyond the 6F− coordination sphere must be ascertained in
isomorphous compounds having M ions in a regular octahedral symmetry, for which
Δe is knownbyoptical spectroscopy. Layered perovskitesK2CoF4 [36],K2NiF4 [37],
and K2ZnF4 [30], provide a nearly Oh symmetry for Co2+, Ni2+ and Zn2+, with a
c/a lattice parameter ratio (crystal anisotropy) of 3.21, 3.26, and 3.23, respectively,
(Table1.1). Interestingly, the crystal anisotropy in K2ZnF4 is in between K2CoF4 and
K2NiF4, and thus the tetragonal crystal-field splitting due to the rest-of-the-lattice,
Δe(lattice), can be firmly ascertained for this type of structures sinceΔe for Co2+ and
Ni2+ is known from polarized optical absorption [38, 39], and their local geometry
from XRD [30, 36, 37] (Table1.1).

The low temperature polarized optical absorption spectra of K2CoF4 and K2NiF4
[38, 39] provide information on the tetragonal crystal-field Ds and Dt parame-
ters (Δe = 4Ds + 5Dt ) [25, 40] by comparing the peak positions measured in the
spectra taken with E parallel to the principal axis of the refractive-index ellip-
soid (uniaxial system)—i.e. tetragonal c axis— and perpendicular to it. Polarized
absorption measurements indicate that Δe = −0.05 ± 0.03eV in K2CoF4 [38], and
Δe = 0.00 ± 0.03eV in K2NiF4 [39]. No difference between the two polarized spec-
tra was observed in the latter system (perfect Oh system). In fact, the measured Δe

is consistent with the slight Oh distortion of CoF4−6 (Qθ = −0.013Å) and NiF4−6
(Qθ = −0.003Å) in their respective lattices (Table1.1), and point out that the rest-of-
the-lattice contribution toΔe is negligible:Δe(lattice) ≈ 0. Figure1.4 shows the vari-
ation of the measuredΔe splitting for Ni2+, Co2+, and Cu2+ along the K2MF4 series
as a function of the local tetragonal distortion at M site, Qθ , measured by XRD. (Δe,
Qθ ) values for several Cu2+ fluorides are also included in Fig. 1.4. Indeed we observe
thatΔe depends linearly on Qθ (= ρ) asΔe = K Qθ with K = 2A = 2.5eV/Å.Curi-
ously, present results confirm that Δe scales with ρ (≈ Qθ ) irrespective of the M ion
and crystal anisotropy, i.e., Δe = Δe(JT) with Δe(lattice) ≈ 0.
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According to this, the spectroscopically measured Δe = 0.64eV for Cu2+ in
K2ZnF4 is thus consistent with a local distortion Qθ = −0.64/2.5 = −0.26Å (com-
pressed octahedron). It is worth noting that the local distortion of Cu2+ in K2ZnF4
is shorter than the distortion attained in K2CuF4 (elongated antiferrodistortive struc-
ture, Qθ = 0.47Å) due to JT sharing. In fact, this difference is consistent with the
estimates based on number of neighboring JT ions sharing common ions as described
above.

Conclusions

We showed that JT Cu2+ ions in sixfold octahedral coordination exhibit large low-
symmetry distortions due mostly to the JT effect. The distortion is modulated by the
lattice structure depending on the number of neighboring JT ions sharing common
ligands.We have established empirical correlations between the d-orbital splitting of
the parent octahedral eg(x2 − y2, 3z2 − r2) orbitals into a1g and b1g levels, Δe, and
the local structure, ρ, of JT ions Cu2+ and Mn3+, through crystal series of different
dimensionality and high pressure experiments. We demonstrated that Δe exhibits
a linear dependence with ρ as Δe = 2Aρ. The experimental correlations provide
the E ⊗ e JT electron-ion coupling coefficient, A, for Mn3+ fluorides and Cu2+ in
chlorides, fluorides, and oxides, as A = 2.5eV·Å−1 (Mn3+) and 1.2eV·Å−1 (Cu2+).
We have applied these structural correlations to determine the local structure in the
impurity system Cu2+-doped K2ZnF4 from the first absorption band associated to
the a1g → b1g transition, Δe = 0.64eV, yielding Qθ = −0.26Å. We demonstrated
that the contribution of the rest-of-the-lattice —beyond CuF6— to Δe is negligible.
Correlations in isostructural crystals K2CoF4 and K2NiF4, involving nearly octahe-
dral Co2+ and Ni2+, confirm it. The larger low-symmetry distortion displayed by
K2CuF4 (ρ = 0.43Å) in comparison to the spectroscopically determined distortion
in Cu2+in K2ZnF4 (ρ = |Qθ | = 0.26Å) is due to the lack of neighboring JT Cu2+
ions in the latter system as Cu2+ is introduced as impurity in the Zn2+ lattice.
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Chapter 2
Introducing the Inner Structure
of the Magnetic Atom in the Interaction
Between a Transition Metal Atom Impurity
and a Metal Surface

Fernando Flores and E.C. Goldberg

Abstract This paper presents a review of the work performed by the authors to
incorporate the inner structure of a d-shell magnetic atom in the description of the
many-body interaction between a transition metal atom impurity and a metal host.
Two main assumptions are made in this approach: (i) the magnetic atom has an
orbital singlet with a total electronic spin S (as corresponds to a case for which
the angular moment is quenched); (ii) the first Hund’s rule determines the inner
electronic structure of the magnetic atom. Using these two assumptions and the
rotational symmetry of the electronic spin, an ionic Hamiltonian is introduced and,
in a further step, the effective exchange metal atom coupling and the impurity Kondo
temperature are analyzed.

Introduction

Kondo related problems are still an important issue in many-body condensed
matter [1]. In the earliest approaches, very idealistic models [2–5] with a very poor
description of the inner structure of the magnetic atom involved in the problem were
introduced. This was a very convenient way for understanding the general proper-
ties of that basic problem. In particular, in the Anderson-like Hamiltonian a spin
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degenerate level, with an intra-site Coulomb interaction U , interacting with a metal
band is introduced. Kondo-like properties of this Hamiltonian are crucially depen-
dent on the correlation effects associated with its twofold degenerate level and the
U-value. In section “The Anderson Model Revisited”, we present a summary of the
well-known main properties of that Hamiltonian, including the effective exchange
coupling between the atom and the metal, and its Kondo temperature.

Although it has been a great success of nanoscience the realization of differ-
ent many-body systems in the quantum wells fabricated using different techniques,
Kondo resonances and their electron correlation properties have been found to play
also an important role in the interaction between d orbitals ( f orbitals) of transition
(rare-earth) metal impurities and the electrons of a metal band [6]. However, the
analysis of the properties of these impurities has not yet been fully developed except
for the so-called N -fold degenerate case [2].

Recent data in the experiments of inelastic tunneling spectroscopy of transition
metal magnetic atoms [7–9] or single atom transistors [10] also points out to the
need to understand the properties of those systems including the inner structure of
the atom with its Hund’s rule. A first attempt in this direction was taken by Hirst [11]
who introduced the following Hamiltonian:

ĤHirst =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
m

[
En−1|n − 1,m〉〈n − 1,m| + En|n,m〉〈n,m|]

+
∑
kσm

[
V ∗
kσ (m)ĉ†kσ |n − 1,m − σ 〉〈n,m|

+Vkσ (m)|n,m〉〈n − 1,m − σ |ĉkσ

]
, (2.1)

where, for simplicity, only fluctuations of one electron in the atom are considered. In
the Hamiltonian, Eq. (2.1), one electron from state |n,m〉, with n electrons and Sz =
m, jumps to a k, σ state leaving the atom in a |n − 1,m − σ 〉 state. Apparently, the
Hamiltonian, Eq. (2.1), is rather complicated because it requires many parameters to
specify it; however, using Hund’s rule and the spin symmetry of the states associated
with the d-shell we have introduced an ionic Hamiltonian that only depends on one
parameter [12].

In section “The Anderson Model Revisited”, the Anderson Hamiltonian is revis-
ited and used to introduce, in section “An Ionic Hamiltonian for d Electrons”,
the main ideas leading to our generalization of the Hirst Hamiltonian. Then, in
section “Effective Exchange Coupling and Kondo Temperature” we review the main
properties of that model, including its effective exchange coupling with the metal
and its Kondo temperature [13]. Finally, in section “Discussion and Conclusions”
we present our main conclusions.
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The Anderson Model Revisited

In the Anderson model [3], the interaction between an atom with a nondegenerate
d-level and a metal is described by the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint, (2.2)

where

Ĥ0 = ε0 [| ↑ 0〉〈↑ 0| + |0 ↓〉〈0 ↓ |] + (2ε0 +U )| ↑↓〉〈↑↓ | +
∑
kσ

εkĉ
†
kσ ĉkσ ,

(2.3)
|kσ 〉 being the metal states, and | ↑ 0〉, 0 ↓〉, | ↑↓〉 the single and configurations.
The atom-metal interaction is described by

Ĥint =
∑

k

{
Vk

[| ↑ 0〉〈00|ĉk↑ + |0 ↓〉〈00|ĉk↓ + | ↑↓〉〈0 ↓ |ĉk↑ − | ↑↓〉〈↑ 0|ĉk↓
] + c.c.

}

(2.4)

with electrons being transferred between the atom and the metal (the metal Fermi
energy, EF, is taken as the origin of energies). We stress that, for the convenience of
our discussion below, we are using the projector operators for the atom instead of
the more conventional creation and annihilation operators [14].

ThisHamiltonian has been analyzed usingmany different (exact and approximate)
solutions [2]; we mention here the solution obtained using a many-body technique
that uses aGreen functionmethod combinedwith an appropriate self-energy [15, 16].
Figure2.1 shows the DOS calculated with that approach takingU = 0.2,U/Γ = 10
(Γ is the usual linewidth of the one-electron problem: Γ = π |V |2ρ0, ρ0 being the
metal density of states and V = Vk assuming that Vk is k-independent), and different
values of ε (−0.1, −0.15, −0.2, and −0.25). For ε0 = −0.1, the solution has an
electron–hole symmetrywith a narrowKondopeak at the Fermi level; for ε0 = −0.15
the solution is asymmetric, but still there is a Kondo peak at EF; for ε0 = −0.20,
ε0 +U = 0, the Kondo peak disappears and the second electron level, ε0 +U , is
already the only one appearing practically in the DOS; finally for ε0 = −0.25 this
regime is completely developed and the one-electron solution coincides practically
with the many-body one.

The Hamiltonian, Eq. (2.2) can be transformed into an effective spin scattering
Hamiltonian by means of a Schrieffer-Wolff transformation [17], assuming that the
atom is mostly in a spin state with S = 1/2. We illustrate here briefly how this
transformation can be obtained using the projector operators just discussed; this will
also be useful for our discussion below.

Themain idea is to eliminate the atomic excited states, |00〉, | ↑↓〉, using a second-
order perturbation theory in Ĥint:
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(a) (b)

(c) (d)

Fig. 2.1 Upper panel (from Ref. [14]): DOS for U/Γ = 10, U = 0.2 and a ε0 = −0.1; b ε0 =
−0.15; c ε0 = −0.2, and d ε0 = −0.25. Dashed line one-electron solution without correlation
effects.Full linemany-body solution followingRef. [15]. Lower panel indicates the energywindow,
ε0 < EF < ε0 +U , for which the effective atom-metal exchange coupling is antiferromagnetic

Ĥeff = −
∑
n

Ĥint|n〉〈n|Ĥint

En − E
. (2.5)

Taking |n〉 = |00〉 and |n〉 = | ↑↓〉 in Eq. (2.5), and assuming the energy levels,
ε0 (ε0 +U ), much lower (higher) than the Fermi level, so that E0 − E ≈ |ε0| and
E↑↓ − E ≈ |ε0 +U |, Eq. (2.5) yields:

Ĥeff = −
∑
kk′σσ ′

[
VkV ∗

k′

|ε0| + VkV ∗
k′

|ε0 +U |
]

|σ 〉〈σ ′|ĉkσ ĉ
†
k′σ ′

= −
∑
kk′σσ ′

Jkk′ |σ 〉〈σ ′|ĉkσ ĉ
†
k′σ ′, (2.6)

where |σ 〉 = | ↑ 0〉 for σ = 1
2 , and |σ 〉 = |0 ↓〉 for σ = − 1

2 , and we have introduced

Jkk′ = VkV
∗
k′

[
1

|ε0| + 1

|ε0 +U |
]

. (2.7)
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Now, introducing the spin operators for the atom and the k states, respectively,

Ŝ+ = | 12 〉〈− 1
2 |; Ŝ− = | − 1

2 〉〈 12 |; Ŝz = 1

2

[| 12 〉〈 12 | − | − 1
2 〉〈− 1

2 |
]
, (2.8a)

ŝ+
kk′ = ĉ†k↑ĉk′↓; ŝ−

kk′ = ĉ†k↓ĉk′↑; ŝz,kk′ = 1

2

[
ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓

]
, (2.8b)

we can write Eq. (2.6) in the following way:

Ĥeff =
∑
kk′

Jkk′ Ŝ · ŝkk′ + 1

2

∑
kk′

Jkk′
[
ĉ†k↑ĉk′↑ + ĉ†k↓ĉk′↓

]
−

∑
k

Jkk. (2.9)

This equation can be written in a more transparent way if we assume a localized
description of the k-band states, φk = ∑

α a
k
αϕα , with the index α denoting the dif-

ferent metal local (Wannier) orbitals. If the k-band and the atom interact through a
single channel state α [18], the atomic spin part of Hamiltonian, Eq. (2.9), can be
written as follows:

Ĥ (spin)
eff = 2Jα Ŝ · ŝα, (2.10)

a Ŝ-ŝα antiferromagnetic interaction, with Jα = |Vα|2[1/|ε0| + 1/|ε0 +U |] (remem-
ber that we have assumed ε0 < EF < ε0 +U ). Equation (2.10) represents the s-
d model of the Anderson Hamiltonian [19]. Notice that in the limit of U → ∞,
Jα ≈ |Vα|2/|ε0|; however, when EF < ε0, Jα = −|Vα|2/|ε0|, so that the Ŝ-ŝα inter-
action becomes ferromagnetic. Likewise, if the (ε0 +U ) level is much closer to EF

than ε0, Jα ≈ |Vα|2/|ε0 +U |; but if EF < ε0 +U , Jα ≈ −|Vα|2/|ε0 +U |, show-
ing that there is a Ŝ-ŝα ferromagnetic interaction. This is shown schematically in the
lower panel of Fig. 2.1, where the window of energy is indicated, ε0 +U > EF > ε0,
for which there appears an antiferromagnetic interaction and, consequently, a Kondo
resonance, as it can be seen in the upper panel of Fig. 2.1.

ThisKondo-temperature, TK, can be calculated by applying the poorman’s scaling
method to the antiferromagnetic interaction given byHamiltonian, Eq. (2.6) [2, 3, 5],
whereby metal k-states in the energy intervals (D, D − δD) and (−D,−D + δD)

are removed from that Hamiltonian, Eq. (2.6); the metal states are characterized by
a constant density of states per spin, ρ0, and a bandwidth extending from −D to D.
This is achieved by using second-order perturbation theory and summing upon the
K-states in the following equation:

δHeff = −
∑
K

Ĥeff |K〉〈K|Ĥeff

EK − E0
, (2.11)

where |K〉 represents excited states like ĉ†kσ |σ ′〉 or ĉkσ |σ ′〉. This analysis yields the
following TK:

kBTK ≈ D exp
(− 1

2ρ0 J0
)
. (2.12)
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An Ionic Hamiltonian for d Electrons

We describe the interaction between a metal and a d-shell atom by the following
Hamiltonian:

Ĥ = Ĥ0 + Ĥint. (2.13)

In Eq. (2.13) Ĥ0 = ∑
kσ εkn̂kσ + Ĥatom includes the energy terms of both, the solid

and the atom. The solid is described by the conduction band energies εk with an
occupation number given by n̂kσ = ĉ†kσ ĉkσ . The atomic part, Ĥatom, in the extended
version appropriate for treating any multi-electron atom [20], takes the form:

Ĥatom =
∑
mσ

εmn̂mσ +
∑
m

Udn̂m↑n̂m↓ + 1

2

∑
m �=m ′,σ

Jd n̂mσ n̂m ′ −σ

+1

2

∑
m �=m ′,σ

(Jd − J x
d )n̂mσ n̂m ′σ − 1

2

∑
m �=m ′,σ

J x
d ĉ

†
mσ ĉm −σ ĉ

†
m ′ −σ ĉm ′σ . (2.14)

Here, ĉ†mσ (ĉmσ ) are the fermionic operators creating (annihilating) an electron with
spin projection σ in the orbital m and n̂mσ = ĉ†mσ ĉmσ ; the intra-atomic Coulomb
interactions Ud and Jd , as well as the intra-atomic exchange interaction J x

d , are
assumed to be constants independent of the orbital index m. The last term, related to
spin-flip processes, restores the invariance under rotation in spin space.

The interaction term, Ĥint, contemplates the charge exchange between the atom
and the solid through a one-electron tunnelingmechanism described by the following
expression:

Ĥint =
∑
kmσ

[
Vkmĉ

†
kσ ĉmσ + V ∗

kmĉ
†
mσ ĉkσ

]
. (2.15)

In transition metal atoms where the orbital contribution to the angular moment is
often quenched due to crystal field effects associated with the low symmetry of the
environment (this implies that the ground state of the atom is an angular singlet), the
maximum spin associated with a given number of electrons, say N , determines the
atomic ground state (first Hund rule). Figure2.2 shows the atomic states and their
corresponding energies as defined by the atomic Hamiltonian, Eq. (2.14), for N ≤ 5;
for N > 5, we find a hole–electron symmetry with respect to the previous case (their
energies are included in the caption of Fig. 2.2).

Then, we introduce the electronic states of total spin S and spin projection
M , |S, M〉e and |S, M〉h for N ≤ 5 and N > 5 respectively, to rewrite the atomic
Hamiltonian, Eq. (2.14), as follows:

Ĥatom =
∑
SM

[
ES,e|S, M〉e〈S, M |e + ES,h |S, M〉h〈S, M |h

]
, (2.16)
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Fig. 2.2 It is shown the atomic dN states and their energies for different number of electrons, N ;
S = N/2 and M is taken equal to S (N ≤ 5). For N > 5 we find: ES = 6εd +Ud + 14Jd − 14J xd
for N = 6; ES = 7εd + 2Ud + 19Jd − 19J xd for N = 7; ES = 8εd + 3Ud + 25Jd − 25J xd for
N = 8; ES = 9εd + 4Ud + 32Jd − 32J xd for N = 9 and ES = 10εd + 5Ud + 40Jd − 40J xd for
N = 10

where the energies ES are given in Fig. 2.2. In this way we reduce the configuration
space of Hamiltonian, Eq. (2.14), to the one spanned by those eigenvalues, so that
we have

∑
SM [|S, M〉e〈S, M |e + |S, M〉h〈S, M |h] = 1.

Notice that the one-electron levels, E(dN ), associated with the many-body
Hamiltonian, Eq. (2.16), are defined by the equation: E(dN ) = ES(N ) − ES− 1

2

(N − 1). This yields:

E(d1) = εd , (2.17a)

E(d2) = εd + Jd − J x
d , (2.17b)

E(d3) = εd + 2Jd − 2J x
d , (2.17c)

. . .

E(d5) = εd + 4Jd − 4J x
d , (2.17d)

E(d6) = εd +Ud + 4Jd − 4J x
d , (2.17e)

E(d7) = εd +Ud + 5Jd − 5J x
d , (2.17f)

. . .

E(d10) = εd +Ud + 8Jd − 8J x
d . (2.17g)
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For E(dN ) < EF < E(dN+1)we can expect the atom to have N electrons. However,
when EF approaches the levels E(dN ) or E(dN+1), the atom should start to have
fluctuations to either N − 1 or N + 1 electrons.

We describe those metal atom processes by assuming that an atomic ground state
with N electrons, |S, M〉, has fluctuations to the stateswith N − 1 or N + 1 electrons,
which for N < 5, correspond to the states |S − 1

2 , M〉e, |S + 1
2 , M〉e respectively. For

the sake of simplicity, we restrict our discussion to N < 5, and neglect the sub-index
e from the atomic states. Then, the corresponding interaction Hamiltonian has the
form:

Ĥint =
∑

kMσ

[
V S∗
kMσ ĉ

†
kσ

|S − 1
2 , M − σ 〉〈S, M | + V S

kMσ |S, M〉〈S − 1
2 , M − σ |ĉkσ

]

+
∑

kMσ

[
V
S+ 1

2 ∗
kMσ

ĉ†kσ
|S, M − σ 〉〈S + 1

2 , M | + V
S+ 1

2
kMσ

|S + 1
2 , M〉〈S, M − σ |ĉkσ

]
,

(2.18)

where the different interaction elements, V S
kMσ and V

S+ 1
2

kMσ , are calculated by ensur-
ing to have spin rotation invariance. This is illustrated in Fig. 2.3, where we

Fig. 2.3 Illustrates how to calculate the matrix elements between the states |S, M〉 and |S − 1
2 , M ′〉

due to the interaction:
∑

kσ

[
Vk ĉ

†
kσ ĉ1σ + V ∗

k ĉ
†
1σ ĉkσ

]
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consider states with S = 3
2 and S = 1, and assume to have the following interac-

tion:
∑

kσ

[
Vkĉ

†
kσ ĉ1σ + V ∗

k ĉ
†
1σ ĉkσ

]
between them, where 1 refers to the first d state

in the sequence of the 5 d-states shown in that figure. In Fig. 2.3, the different |S, M〉
or |S − 1

2 , M
′〉 states are generated by successive application of the operator Ŝ−. In

this way the following expression for the coupling terms, V S
kMσ in Eq. (2.18), with

N → N − 1, is calculated for the case of a half-filled or less than half-filled shell
(N ≤ 5) [21]:

V S
kMσ =

√
S + (−1)pM

2S
Vkd . (2.19)

For the sake of completeness, we also mention that for N ≥ 5 and fluctuation from
N to N + 1 (S to S − 1

2 in the hole picture), we obtain:

V S
kMσ = (−1)p

√
S − (−1)pM

2S
Vkd . (2.20)

Effective Exchange Coupling and Kondo Temperature

Equations (2.16), (2.18), and (2.19) define our ionic Hamiltonian. In this section,
we are going to analyze the effective exchange coupling and the Kondo tempera-
ture associated with it [13]. We calculate the effective exchange coupling by using
the Schrieffer–Wolff transformation as performed above for the case S = 1

2 . We
also start by considering only the atomic fluctuations, |S, M〉 → |S − 1

2 , M
′〉 and

N ≤ 5. Then, using Eq. (2.5), and |n〉 = |S − 1
2 , M〉 we find the following effective

Hamiltonian:

Ĥeff =
∑
kMσ

k′σ ′

V S
kMσ ĉkσ |S, M〉〈S, M − σ + σ ′|V ∗

k′M−σ+σ ′ σ ′ ĉ
†
k′σ ′

ES − ES− 1
2 − (εk′ − εk)

. (2.21)

Next, approximate ES − ES− 1
2 − (εk′ − εk) by ES − ES− 1

2 = E(dN ) ≡ −�, use
the expression, Eq. (2.19) for V S

kMσ , the following equations for Ŝ,

Ŝ+ =
∑
M

√
S(S + 1) − M(M + 1)|S, M + 1〉〈S, M |, (2.22a)

Ŝ− =
∑
M

√
S(S + 1) − M(M − 1)|S, M − 1〉〈S, M |, (2.22b)

Ŝz =
∑
M

M |S, M〉〈S, M |, (2.22c)
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and the expressions of ŝ+
kk′ , ŝ−

kk′ , and ŝz,kk′ given by Eq. (2.8b). All this leads to

Ĥeff =
∑
kk′

Jkk′

S
Ŝ · ŝkk′ +

∑
kk′

Jkk′

2

(
ĉ†k′↑ĉk↑ + ĉ†k′↓ĉk↓ − 2δkk′

)
(2.23)

which defines a Heisenberg exchange interaction between a local moment and the
conduction electrons with a coupling constant Jkk′ = VkV ∗

k′/�.
The spin part of this effective Hamiltonian in the case where the k-band and the

atom interact through a single channel is given by:

Ĥ (spin)
eff = Jα

S
Ŝ · ŝα, (2.24)

with Jα = |Vα|2/�. This is an antiferromagnetic exchange interaction between Ŝ
and ŝα with a coupling constant Jα/S when � > 0, or equivalently when E(S) −
E(S − 1

2 ) = E(dN ) < 0.
Up to this point, we have assumed the atom to fluctuate from the spin S (the

normal state of the atom) to spin S − 1
2 . If the atom fluctuates to S + 1

2 , our analysis
yields that the effective spin Hamiltonian is (written in the channel representation):

Ĥ (spin)
eff = − Jα

S + 1
2

Ŝ · ŝα, for S → S + 1

2
, (2.25)

where Jα = |Vα|2/�′, with �′ = E(dN+1). This is a ferromagnetic exchange inter-
action if E(dN+1) > 0.

Notice that in all these cases, there appear renormalization factors, S or S + 1
2 ,

changing the J -coupling, defined in the conventional way Jα = |Vα|2/�, to either
J/S or J/(S + 1

2 ). Then, we have that a large spin would imply a reduction in

the effective Ŝ · ŝα interaction and in the corresponding Kondo resonance for the
antiferromagnetic case. This is illustrated in the results shown in Fig. 2.4. In this
figure, we show the impurity atom spectral densities for 0 ≤ N ≤ 5 electrons in
the d-shell and S → S − 1

2 fluctuations. These ones have been obtained from the
imaginary part of the Green function defined in the projection operator language,

GSM
S− 1

2 M− 1
2
(t, t ′) = iθ(t − t ′)

〈{|S, M〉〈S − 1
2 , M − 1

2 |t ′ , |S − 1
2 , M − 1

2 〉〈S, M |t
}〉

(2.26)

and solved by using the equation of motion technique up to second order in the
coupling term Vk [12].

From this figure a decreasing antiferromagnetic exchange interaction between Ŝ
and ŝα accordingly with an effective coupling constant J/S results evident. Consis-
tently, the corresponding Kondo temperature should decrease with S (see below).
Experimental evidences of these results exist from long time ago [22] being recently
confirmed by using scanning tunneling spectroscopy [23]. Jamneala et al. have found
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Fig. 2.4 The impurity
density of states ρ(ω) around
the Fermi level for the
antiferromagnetic case with
� = 0.1D and Γ = 0.01D.
From up to down: d1 ↔ d0,
d2 ↔ d1, d3 ↔ d2,
d4 ↔ d3, d5 ↔ d4. The
energies ω are measured in
units of D. From Ref. [21]

that atoms near the middle of the 3d row, such as V, Cr, Mn and Fe, show no dis-
cernible features of the local density of states at low energy, while atoms near the
ends of the row, such as Ti, Co, and Ni, show narrow resonances near the Fermi
energy [23].

Although the cases S → S − 1
2 and S → S + 1

2 have been presented indepen-
dently, they can be combined simultaneously in one equation because, in the second-
order perturbation theory used to calculate the exchange interaction, both terms
appear as contributions that add to each other in the effective Hamiltonian. This
means that we can combine Eqs. (2.24) and (2.25) into the equation

Ĥ (spin)
eff = Jα

S
Ŝ · ŝα − J ′

α

S + 1
2

Ŝ · ŝα, for S → S − 1
2 and S → S + 1

2 (N < 5).

(2.27)

A similar argument can be applied to the case N ≥ 5, with the magnetic atom of
spin S fluctuating to spin S − 1

2 or S + 1
2 , S defining the normal state of the atom. In

general, our analysis yields the same result, Eq. (2.27), for the corresponding spin
effective Hamiltonian. It should be stressed, however, that there is an exception to
Eq. (2.27), when the normal state of the atom corresponds to the half-filled shell
(N = 5). In such a case the N to N − 1 fluctuation is related to the spin fluctuation
S → S − 1

2 within the electron picture, and the N to N + 1, in the hole picture, is
related to the same spin fluctuation S → S − 1

2 . Therefore, due to the hole–electron
symmetry of the problem we find that both fluctuations have an antiferromagnetic
character if E(dN ) < EF < E(dN+1). Then, the effective spin Hamiltonian reads as:

Ĥ (spin)
eff = Jα

S
Ŝ · ŝα + J ′

α

S
Ŝ · ŝα (S corresponds to the half-filled shell). (2.28)



28 F. Flores and E.C. Goldberg

On the other hand, it is worthmentioning that our results for the effectiveHamiltonian
keep the rotational symmetry of the problem in all the cases, giving an independent
confirmation to the validity of the ionicHamiltonian introduced for d-transitionmetal
atoms.

Regarding the Kondo temperature associated with our ionic Hamiltonian, we can
start our analysis with the spin effective Hamiltonians, Eqs. (2.27) and (2.28), and
write

Ĥ (spin)
eff = J ′ Ŝ · ŝα, (2.29)

where J ′ = (Jα/S) − (J ′
α + 1

2 ) for S �= 5
2 , or J ′ = (Jα/S) + (J ′

α/S) for S = 5
2 .

Equation (2.29) allows us to calculate the Kondo temperature for the antiferromag-
netic case by using results obtained by other researchers for the same Hamiltonian,
Eq. (2.29) [1, 4]. In this way, we can write:

kBTK ≈ D exp(−1/ρ0 J
′). (2.30)

Assuming that the term Jα/S dominates the J -value for the case S �= 5
2 , we obtain

the following Kondo temperature

kBTK ≈ D exp(−S/ρ0 Jα) (S �= 5
2 ). (2.31a)

This equation indicates how the Kondo temperature decreases with increasing values
of S. On the other hand, for S = 5

2 , if we assume that EF = [E(d6) + E(d5)]/2 and
Jα = J ′

α , we can write

kBTK ≈ D exp(−S/2ρ0 Jα) (S = 5
2 ). (2.31b)

Discussion and Conclusions

In this paper, we have discussed the properties of an ionic Hamiltonian introduced
to describe the interaction between a metal band and a d-shell magnetic atom with
an orbital singlet. As an introduction to that general problem, we have reviewed
in section “The Anderson Model Revisited” the properties of the Anderson Hamil-
tonian, where only one-electron d-level is introduced; in particular we have discussed
for this Hamiltonian the exchange coupling between the metal and the atomic spin
as well as the corresponding Kondo temperature.

In section “An Ionic Hamiltonian for d Electrons”, we have presented our ionic
Hamiltonian [12] and have shown how the different hopping parameters between the
metal and the atomic wave functions, |S, M〉, defined by the first Hund’s rule can be
calculated, up to a factor, using the spin rotational symmetry.

In section “Effective Exchange Coupling and Kondo Temperature”, we have
discussed [13] how to apply the Schrieffer–Wolff transformation to our ionic
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Hamiltonian to obtain the effective exchange coupling interaction between the
metal and the atom. Our results show that this effective interaction has the form:
Γ Ŝ · ŝ + γ Î , confirming that our Hamiltonian has the appropriate rotational spin
symmetry. Consider the case N < 5; S is related to the number of electrons in the
d-shell by the equation 2S = N . The atomic occupancy is determined by the posi-
tion of the Fermi level; for E(dN+1) > EF > E(dN ), we can expect the atom to
be in the dN -state (with N electrons and S = N/2), and to develop charge fluctua-
tions to states with either N + 1 (dN+1) or N − 1 (dN−1) electrons. Depending on
those fluctuations we find different effective spin interactions with the metal. If EF is
closer to the E(dN ) level, the system develops an antiferromagnetic (AF) interaction,
with N → N − 1 fluctuations; when EF approaches the E(dN+1) level, the effective
spin interaction is ferromagnetic (FM) and N → N + 1. Things are different when
E(d6) > EF > E(d5), which shows in both cases, for EF close to either E(d6) or
E(d5) an AF interaction; this is due to the electron–hole symmetry of the system
between the cases N < 5 and N > 5. For example, the case E(d2) > EF > E(d1) is
the symmetric of E(d8) < EF < E(d9), the system being in both cases AF if EF is
closer to either E(d8) or E(d2); for that AF interaction, we find the following fluctu-
ations d2(S = 1) → d1(S = 1

2 ) or d
8(S = 1) → d9(S = 1

2 ), and a similar effective

spin interaction, (Jα/S)Ŝ · ŝα , Eq. (2.24), with S = 1.
Notice an interesting similarity between the conventional d-shell atom, with a

fivefold orbital degeneracy, and the Anderson model. For the Anderson model we
have two levels, E(d1) and E(d2), and the system shows anAF behavior for E(d1) <

EF < E(d2) (see Fig. 2.1), while for the conventional d-shell atom we find the same
AF behavior for E(d6) > EF > E(d5). In this last model we find, however, that
for any other Fermi energy interval E(dN+1) > EF > E(dN ), N �= 5, the system
shows either an AF or a ferromagnetic behavior depending on the position of EF

with respect to E(dN ) or E(dN+1).
Finally, for an AF exchange interaction we expect to have a Kondo resonance in

the electronic density of states as shown in Fig. 2.4 [12]; we have also analyzed the
Kondo temperature associated with that resonance and have found that it decreases
exponentially with the total spin of the normal atomic state [13, 24].
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Chapter 3
Structural Effects on Electronic Properties
of Selected Materials

G.G.N. Angilella

Abstract Tuning structural properties, e.g., bymeans of external pressure or applied
uniaxial strain, can significantly modify the electronic properties of several solid
systems, thereby influencing, or even inducing, several electronic instabilities. We
specifically analyze the effect of pressure or strain on several superconducting mate-
rials, including the high-Tc cuprates, some organic salts, andmagnesium diboride, on
the light alkalis, where pressure can even destroy metallicity, and graphene, whose
remarkable electronic and transport properties can be tailored by applied strain.

Introduction

Most electronic transitions in the solid state clearly are directly influenced, when not
induced, by specific structural properties of thematerial under consideration. Notable
examples are superconductivity, which in BCS materials is made possible by the
formation and condensation of Cooper pairs (electrons pairs bound by exchanged
phonons), and some instances of insulator-to-metal transitions, and vice versa. Even
in the high-Tc cuprate superconductors, and some related materials, where more
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‘exotic’, purely electronic or nonexclusively phononic, pairing mechanisms have
been proposed, structural effects are nonetheless important in determining the super-
conducting properties, such as the critical temperature Tc itself. This is particularly
true in reduced-dimensionalmaterials, e.g., the same cuprate superconductors, where
the main electronic phenomena are believed to reside in the CuO2 layers. Of course,
this applies a fortiori to the electronic (e.g., band or transport) properties of graphene,
an atomically thin layer of carbon atoms in the honeycomb lattice, when subjected
to external strain or deformation.

In this chapter, a review will be presented of the main contributions by the group
led by Professor Renato Pucci in Catania, and collaborators also elsewhere, to the
understanding of the effects of structural deformation, as induced by external pres-
sure or strain, on the electronic properties of several superconducting materials, of
the ‘simple’ alkalis, and of graphene.

High-Tc Superconductors

High-Tc cuprate superconductors often crystallize in perovskite structures, and are
characterized by CuO2 planes alternated by charge ‘reservoirs’ of different elements,
often containing rare earths. On doping, these provide the CuO2 planes with the
charge carriers (usually, holes) which eventually take part in superconductivity below
the critical temperature Tc. That Tc is a characteristic, dome-shaped function of
the doping concentration or, rather, of the hole content n, say, was established by
several workers, including Zhang and Sato [1]. Further investigation envisaged a
universal correlation between the critical temperature Tc and the superfluid density
ρs , as proposed by Uemura et al. [2] (see also Refs. [3, 4]). Contributions along
these directions within the group led by Pucci concerned the dependence of Tc on
(i) pressure, (ii) the number of cuprate layers, and (iii) the symmetry of the order
parameter in different material classes.

The critical temperature of both elemental as well as compound superconduc-
tors is a function of external pressure, which can be exploited as a tool to boost
Tc [5, 6] (see also Chap.4 by Schilling in this volume [7]). Fruitful discussions
with Professor Jim Schilling at an international conference in Warsaw, Poland, in
1995, stimulated Pucci and collaborators to investigate the interplay among Tc, n,
and pressure P [8]. Assuming Tc = Tc(n, P), the effect of pressure in the cuprate
superconductors was recognized to be possibly twofold: either direct or intrinsic, or
indirect, through an implicit dependence of the hole content on pressure, n = n(P).
This led Pucci et al. [8] to extract phenomenologically the different contributions to

dTc
d P

= ∂Tc
∂P

+ dn

dP

∂Tc
∂n

. (3.1)

This study was later generalized by Pucci et al. to cuprates with several lay-
ers, by explicitly considering a possibly nonuniform distribution of hole content

http://dx.doi.org/10.1007/978-3-319-53664-4_4
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among inequivalent layers [9]. There, the interlayer tunneling mechanism of high-
Tc superconductivity was employed [10], which predicted a sharp anisotropy of the
superconducting order parameter, regardless of the pairing symmetry thereof, which
remained dependent on the in-plane pairing mechanism only [11].

More generally, Pucci et al. adopted the view proposed by Uemura et al. [2] that
Tc should correlate universally with the superconducting coherence length ξ , thus
embracing also othermaterial classes, including the heavy Fermion superconductors,
characterized by a different symmetry of the order parameter [12, 13]. Remarkably,
Pucci et al. were able to derive an analytical relation between superconducting and
normal state properties in non-s-wave superconductors, albeit for the simpler Cooper
pairing problem, in the form of the surprisingly compact formula [14]

ξ 2 = �
2

2m∗εF

[
4

3

1

x2
+ �(� + 1)

1 + x

(
1 − x ln x

1 + x

)]
. (3.2)

Here, m∗ is the effective mass of the individual constituents of a Cooper pair in the
normal state, which could be as high as ≈200me for the heavy Fermion supercon-
ductors, εF is their Fermi energy, implicitly related to their density (hole content n,
in the cuprates), x = |ε|/2εF is a dimensionless measure of the binding energy of a
Cooper pair, |ε|, in units of the energy of its unbound constituents, 2εF, and is thereby
a measure of the superconducting strength, as it merges into the superconducting gap
in the fully many-body problem. Finally, � = 0, 1, 2 is an orbital quantum number,
parametrizing the orbital symmetry of the superconducting gap as s-, p-, or d-wave,
respectively. Equation (3.2) is in good qualitative accord with the experimental data
for kBTc correlated with the characteristic energy εc = �

2/2m∗ξ 2 within various
material classes, with different symmetry of the order parameter [12–14].

Effect of Proximity to an Electronic Topological
Transition (ETT)

Applied pressure or uniaxial strain can also serve as a tool to evidence the depen-
dence of Tc or other superconducting characteristics on otherwise elusive details
of the electronic structure of materials, especially in the case of low-dimensional
ones. Again, this is the case of the high-Tc cuprates, these being characterized by
a nearly two-dimensional electronic band structure, due to the presence of CuO2

layers. As is generic of two-dimensional systems, the electronic density of states
(DOS) is expected to exhibit logarithmic divergences (Van Hove singularities) as a
function of energy [15]. This is a consequence of Morse theory [16], applied to the
band dispersion relation εk over the first Brillouin zone (1BZ). Since this is a peri-
odic, smooth function of quasimomentum k, it possesses critical points, and these
correspond to Electronic Topological Transitions (ETT), i.e., possible values of the
Fermi energy εF at which the ‘Fermi line’, implicitly defined by εk = εF, changes
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topology in momentum space. These are exactly the energy values at which the two-
dimensional DOS presents logarithmic singularities. Any proximity to these values
is therefore expected to induce remarkable behaviors either in the normal or in the
superconducting state of these materials [17].

ETTs were originally studied by I.M. Lifshitz [18], in connection with the elec-
tronic properties of three-dimensional (3D) metals (see Refs. [19–21] for reviews).
In contrast with the 3D case, Pucci and co-workers [22] found that Tc depends non-
monotonically on the Fermi energy, with a maximum Tmax

c close to an ETT. Fur-
thermore, this maximum monotonically increases as a function of the ratio r = t ′/t
between the next-nearest to nearest neighbor hopping parameters in a tight-binding
dispersion relation [22], in a characteristic way, also depending on the symmetry of
the order parameter (either s- or d-wave). Such a behavior was in good qualitative
agreement with the phenomenological trend examined by Pavarini et al. [23], by col-
lecting both experimental and theoretical (DFT) results for several cuprates. It was
also established that the proximity to an ETT influenced the superconducting fluctu-
ations of these layered superconductors [22, 24], again in agreement with available
data for the excess Hall conductivity for several cuprates and cuprate superlattices
[25–28].

One effective way to control the proximity to the ETT in the cuprates was recog-
nized as epitaxial strain, as is, e.g., induced by epitaxially growing a thin film of
La2−xSrxCuO4 in slightly mismatched substrates, thereby realizing either compres-
sive or tensile strains [29]. The strain effect is twofold, as it directly modifies the
in-plane electronic band structure, and thereby the ratio r = t ′/t , by means of a
modification of the in-plane crystal structure, and as it indirectly modifies the hole
content, bymeans of a deformation of the crystal structure in the direction perpendic-
ular to applied strain. Another achievement of the group led by Professor Pucci was
to show that this again correlates qualitatively well both with the non-monotonic,
dome-shaped dependence of Tc on hole content, and with the monotonic dependence
of its maximum, Tmax

c say, on the ratio r = t ′/t [30].

Organic Superconductors

Another class of quasi-two-dimensional materials characterized by the proximity to
ETTs are the BEDT-TTF–based organic salts, where BEDT-TTF is the acronym for
bis(ethylenedithia)tetrathiafulvalene. The κ-phase of the (BEDT-TTF)2-X organic
salts differ from theBechgaard salts in that the arrangement of the constituent organic
molecules is planar, rather than linear, with a number of planes stacked on top of each
other, and the anions X, where X = Cu(NCS)2, Cu[N(CN)2]Br, or Cu[N(CN)2]Cl,
acting as fillers and charge reservoirs between the planes. Such a structure gives rise to
a markedly anisotropic conductivity, similar to what happens in the high-Tc cuprates
[31]. However, due to the inequivalent orientation of the BEDT-TTF dimers within
the planes, next-nearest hopping is here restricted along the (110) direction only.
Thus, it turns out that a triangular lattice model is more appropriate to describe such
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compounds. Both in the cuprates and in the κ-BEDT-TTF organic salts, however, a
nonzero value of the hopping ratio r = t ′/t slightly modulates the shape of the Fermi
line. Changes in the Fermi energy, as well as changes in the band parameters and
thus in r , can be induced by hydrostatic pressure, as well as by anisotropic strain, or
by changing the doping level.

In the case of BEDT-TTF-based salts, the Fermi line changes topology twice:
once from electron-like to hole-like contours, and the second time from a singly-
connected hole-like contour to a doubly connected one, still retaining its hole-like
character. However, evidence for a non-monotonic dependence of Tc on uniaxial
strain in κ-(BEDT-TTF)2-X is still lacking, below ∼10kbar, thus suggesting that
higher pressures or anisotropic strains are required, in order to demonstrate the rel-
evance of ETTs in such quasi-2D organic salts [32] (see also [33]).

Magnesium Diboride (MgB2)

The concept of a proximity to an ETT has also been employed by Pucci and
co-workers to investigate the dependence of Tc on doping in a three-dimensional
superconductor, MgB2, whose band structure is usually described in terms of the
interplay between a σ and π subband. Indeed, in Al1−xMgxB2, at x = 0.66, the
overall monotonic dependence of Tc on the Mg content x displays a pronounced
kink, that has been related to a 3D–2D crossover of the Fermi surface associated
with the boron σ subband [34]. This tuning enhances the critical temperature by a
shape resonance [35–38] in the boron superlattice [38–41] that is analogous to the
Feshbach resonance in ultracold atoms. Within the two-band model of supercon-
ductivity, Pucci and co-workers [42] studied the effect of the proximity to a 3D–2D
crossover (or ETT) on the doping dependence of the critical temperature and of the
isotope effect. The proximity to the ETT correctly takes into account, both quanti-
tatively and qualitatively, for the enhancement of Tc as a consequence of a quantum
interference effect between the two electronic bands characterizing the diborides.

Alkali Metals Under Extreme Conditions

Because of their relatively simple electronic structure and relatively high electron
density, light alkali metals in normal conditions, including Li, Na, and K, have long
been considered to have a ‘simple’ metallic behavior [43]. The free-electron model
was also believed to work even better at higher pressure and electron density. Such
an assumption was first questioned by Siringo et al. [44], who, already in the title of
their work, explicitly posed the issue whether the light alkali metals are still metals
under high pressure. Siringo et al. [44] considered an extended Hubbard model on a
bcc lattice, characterized by an on-site electron repulsionU and an intersite electron
interaction V . The main result of their work was that such a model electron system
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should undergo a metal-to-insulator transition with increasing electron density. Such
a transition occurred at a critical value of the adimensional Wigner–Seitz radius of
rs = 2.6, corresponding to a pressure p = 100GPa for Na. Later works by the same
authors even predicted reentrant metallicity at yet higher pressure, corresponding to
oscillations between a symmetric (metallic) phase and a low-symmetry (dimerized
and insulating) phase, as a consequence of Friedel oscillations in the electron pair
potential [45, 46].

The original result by Siringo et al. [44] was followed soon after by Density
Functional Theory (DFT) studies on dense lithium byNeaton andAshcroft [47], who
predicted a structural instability of bcc Li toward a more complex Cmca structure at
high pressure. In this structure, each Li ion is coordinated by another ion only, and
the pairing thereof can give rise to a metal-to-insulator transition at some rs < 2.1.
According to Neaton and Ashcroft [47], the initial distortion is due to the Jahn–Teller
mechanism, while further distortion is due to a balance between the Peierls instability
and exchange effects.

The above theoretical findings immediately kindled much experimental interest
[48–50], which confirmed the tendency of the light alkali metals to lower their sym-
metry under high pressure. Low-symmetry phases have been indeed observed for Li
[49] and Na [51, 52]. In particular for Li, Hanfland et al. [49] established experimen-
tally and theoretically that a cI16 structure stabilizes at p � 40GPa and T � 180K.
The existence of a broken symmetry phase was confirmed by the observation of
Goncharov et al. [53] of a Raman vibrational band in Li above 70–120 GPa, the thus
confirming the theoretical prediction by Matsuoka et al. [54] and by Struzhkin et
al. [55] of the existence of two further phases of Li, viz. Li-VI and Li-VII, which
are stable at T = 25K and p = 69GPa and p = 86GPa, respectively. Furthermore,
Matsuoka and Shimizu [56], by performing electrical measurements up to 105 GPa,
have inequivocally found that ametal-to-insulator transition occurs in Li near 80GPa
at T < 50K. Preliminary calculations [57] seemed to indicate that both Li and Na
show a tendency toward the formation of atomic pairs, and a dimerized oC8 structure
was predicted to be themost stable phase above 165GPa forLi, and above 220GPa for
Na. According to more recent and compelling calculations, several proposals have
been made for the identification of the structures of the Li-VI and Li-VII phases,
including the oC88 and oC40 structures [58], the c2-24 and Aba2-24 structures [59],
and more recently an Aba2-40 structure [60, 61].

Analogies and differences between Li and Na under pressure have been described
in detail byRousseau et al. [62]. LikeLi,Na crystallizes in the bcc structure at ambient
conditions, and undergoes a structural transition toward the fcc phase at 65GPa [63].
Increasing pressure up to p = 103GPa, Na takes the Na-III phase [52, 64], which
has a cI16 symmetry, which is similar to the symmetry adopted by compressed Li.
However, above p = 117GPa, the Na-III phase transforms into the Na-IV phase
[64, 65], which is characterized by an oP8 symmetry. Yet two more phases of Na
have been discovered, viz. Na-V above p = 125GPa (Refs. [64, 65]), and Na-VI
above p = 200GPa (Ref. [66]). This latter phase presents a simple double-hexagonal
close-packed (dhcp) structure, with hP4 symmetry, and is typically transparent [66].
The hP4 structure has been confirmed also theoretically by Gatti et al. [67].
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The physical reason for dimerization is an open question. Ab initio electronic
structure calculations [68] indicated a tendency toward distance alternation, due to a
sizeable overlap of pπ orbitals in the interstitial regions, and to electron localization
between ions [69, 70]. On the other hand, it has been proposed [57, 71] that the
increase of s-p hybridization could give rise to a low coordination number. However,
even the fully dimerized phase is far from any standard covalent solid: the electron
density is uniformly spread and almost constant, while the first and second neighbors
distances are comparable. Such a dimerized phase is better described as a charge
density wave in a high density metal rather than a molecular solid. Such a low-
symmetry phase in distorted cubic-based structures, as those observed experimentally
in the compressed alkalis, has been connected by Angilella et al. [45, 46] to the
presence of Friedel oscillations in the electronic pair potential. These can ultimately
be traced back to the existence of a sharp Fermi surface, and should therefore be
generic to most metals.

The deceivingly ‘simple’ light alkali metals are a continuous source of
experimental surprises and theoretical challenges. Recently, earlier predictions of
superconductivity in compressed lithium [72] have been confirmed experimentally
[54, 55, 73, 74]. At variance with Li, the superconducting critical temperature Tc
of Na is predicted to be rather small (Tc < 1 K) also in fcc phase [75, 76]. If con-
strained in structures with reduced dimensionality (thin layers or wires), both lithium
and sodium have been predicted to exhibit other electronic instabilities, such as a
ferromagnetic one [77, 78]. A closer consideration of the phase diagram of both
lithium and sodium at high pressure indicates that these light alkali metals should
rather prefer the liquid state, with lithium being thus the elemental metal with the
lowest melting point [58, 64, 79–82]. Several theoretical works have also been per-
formed both on Li and on Na [83–88]. Further ab initio calculations [61, 89–91] at
yet higher pressure indicate more complicated crystal structures, a tendency toward a
metal-to-semiconducting transition, and the increasingly relevant role of core orbitals
in establishing the electronic behavior of the compressed alkalis. However, both for
lithium [56] and sodium [66] a metal-to-insulator transition at high pressure has now
been experimentally well established. (See also [92] for a recent review.)

Graphene Under Strain

Graphene is a single, atomically thick, sheet of carbon atoms regularly arranged in
the honeycomb lattice, which has been isolated quite recently in the laboratory [93].
Because of its truly remarkable electronic, structural, and transport properties at the
nanoscale, and its wide-ranging potential applications, the discovery of graphene has
kindled a tremendous outburst of both experimental and theoretical investigation [94].
It was clear at the outset (or even well before its discovery [95]) that the electronic
properties of graphene are directly related with its structural properties [96], i.e.,
its essentially two-dimensional character, and the bipartite nature of the honeycomb
lattice. Themost prominent feature is, notoriously, the occurrence of two inequivalent
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Dirac points, at K and K′ say, in the band dispersion, where the dispersion relation
is linear, thus making elementary excitations massless. It was immediately realized,
therefore, that a change in the structural properties of graphene would immediately
induce potentially relevant modifications in the electronic properties thereof.

Pucci and co-workers then started investigating1 modifications in the local elec-
tronic properties of graphene, as those being induced by the insertion of vacancies
or impurities, such as hydrogen [97, 98] (see also Chap.14 in the present volume
[99]). In particular, Pucci et al. [98] evaluated the local density of states (LDOS) as
a function of energy on an impurity located at high symmetry points in the direct
lattice and on its neighboring sites, as well as in reciprocal space, at an energy
corresponding to a bound state. The study was relevant to interpret the results of
Fourier-transformed scanning tunneling spectroscopy, as they show which states
mostly contribute to impurity-induced variations in the LDOS.2 It was also specu-
lated [101] that an analysis of the LDOS around an isolated impurity in graphene
could help discerning among the several symmetries of a superconducting order para-
meter compatible with the point symmetries of the honeycomb lattice, following the
proposal that graphene could sustain intrinsic superconductivity [102].

Pucci’s group then undertook an almost systematic study of various electronic,
transport, and optical properties of graphene under strain. Indeed, a deformation of
the lattice through the application of uniaxial strain or hydrostatic pressure is expected
to produce modifications also in the electronic structure of graphene. Recently, it has
been proposed that nanodevices based on graphene could be engineered on the basis
of the expected strain-inducedmodifications of the deformedgraphene sheet (origami
electronics) [103]. This is made possible by the exceptional mechanical properties of
graphene, as is the case of other carbon compounds. For instance, despite its reduced
dimensionality, graphene is characterized by a sizeable tensile strength and stiffness
[104], with graphene sheets being capable to sustain elastic deformations as large as
≈20% [105–109]. Larger strains would then induce a semimetal-to-semiconductor
transition, with the opening of an energy gap [110–113].

Uniaxial strain can be included in a standard, noninteracting model Hamiltonian
at the tight-binding level, i.e., through the introduction of strain-dependent hopping
parameters [111]. In particular, the strain-induced modification of the band structure
at a fixed chemical potential may again result in an ETT [18, 20, 114], as seen above
for the cuprates and other (especially) low-dimensionalmaterial classes. In graphene,
one of the main consequences of applied of strain is that of moving the Dirac points,
i.e., the points where the band dispersion relations vanish linearly, away from the
points of highest symmetry in the first Brillouin zone, and of deforming their low-
energy conical approximation.Moreover, for a sufficiently large strainmodulus and a
for a generic strain direction, two inequivalent Dirac pointsmaymerge, thus resulting

1Well before the Nobel Prize in Physics was awarded to Novoselov and Geim in 2010!
2It is amusing to recollect that the authors of Ref. [98] anticipated that the psychedelic LDOS maps
in momentum space (in false colors, of course!) might make them useful as tiles for a kitchen wall,
say. And indeed three samples of such a tile were crafted, after that anticipation was rewarded by
the Physical Review B, which selected that particular figure as the online cover of that issue! [100].

http://dx.doi.org/10.1007/978-3-319-53664-4_14
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in the opening of a band gap (at strains larger than the critical one) along one specific
direction across the degenerate Dirac point. This results in a sublinear density of
states exactly at the transition, which in turn gives rise to an unusual magnetic field
dependence of the Landau levels [115]. This may also be described as a quantum
phase transition, from a semimetal to a semiconductor state, of purely topological
origin [116], characterized by low-energy massless quasiparticles developing a finite
mass only along a given direction.

Interestingly, besides the cuprates, similar effects have been predicted also for
other low-dimensional systems, and that their overall features are genericwith respect
to their detailed crystal structure. In particular, a similar discussion applies as well to
cold atoms in two-dimensional optical lattices [115, 117], which have been proposed
to simulate the behavior of Dirac fermions [118].

In Ref. [119], Pellegrino, the present author, and Pucci evaluated the longitudinal
optical conductivity of strained graphene as a function of frequency. Their main
resultswere that (a) logarithmicpeaks appear in theoptical conductivity at sufficiently
high frequency, and can be related to the ETTs in the electronic spectrum under
strain, and depending on the strain direction; (b) the relative weight of the peaks
in general depends on the strain direction and field orientation, and contributes to
the generally anisotropic pattern of the optical conductivity as a function of field
orientation; (c) the opening of a band gap, where allowed, is signaled by a vanishing
optical conductivity. Thus, an experimental study of the optical conductivity in the
visible range of frequencies as a function of strain modulus and direction, as well as
of field orientation, should enable one to identify the occurrence of the three distinct
ETTs predicted for graphene [120].

This study was complemented by an analysis of the strain effect on the Drude
weight of graphene by the same authors [121]. They found a nonmonotonic strain
dependence of the Drude weight, related to the longitudinal polarization of graphene.
This can again be described as an effect of the proximity to several strain-induced
ETTs. Given the connection between the Drude weight and the long-wavelength
plasmon frequency [122, 123], such a dependence could be evidenced by infrared
spectroscopy [124].

More generally, Pellegrino, the present author, and Pucci [123] evaluated the
dynamical polarization under strain. This enabled to derive the dependence of the
plasmon dispersion relation of graphene on applied uniaxial strain. Besides electron
correlation at the level of the random phase approximation (RPA), these authors
also included local field effects (LFE) specific for the honeycomb lattice. As a con-
sequence of the two-band character of the electronic band structure, two distinct
plasmon branches were found. Besides recovering the square root behavior of the
low-energy branch, Pellegrino et al. [123] found a nonmonotonic dependence of the
strain-inducedmodification of its stiffness, as a function of thewavevector orientation
with respect to applied strain.

In Ref. [125], Pellegrino, the present author, and Pucci studied a generic lin-
ear response function for a deformed graphene sheet, relevant instances being the
density–density and current–current correlation functions. This enabled to derive the
strain dependence of the plasmon dispersion relation and of the optical conductivity.
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Specifically, Pellegrino et al. [125] found that the prefactor in the
√
q-dependence

of the plasmon frequency develops an anisotropic character, with maxima occur-
ring when the wavevector is orthogonal to the direction of applied strain. Moreover,
they derived a strain-induced anisotropic enhancement of the deviations from lin-
earity of the recently predicted transverse plasmon [126], which should facilitate its
experimental detection in suitably strained graphene samples. Also, Ref. [125] by
Pellegrino et al. contained results concerning the strain dependences of the magnetic
and electric susceptibilities, showing that strain enhances the response of strained
graphene to an applied electric field, while suppressing the response to a magnetic
field.

Refs. [127, 128] by Pellegrino et al. considered the transport properties across
strain-induced nonuniform velocity profiles in graphene, and the possibility that
resonant modes may be obtained in strain-induced graphene superlattices. A linear
dispersion relation around the Dirac points makes possible the realization of Klein
tunneling across potential barriers in graphene [129–133]. Single and multiple bar-
riers can be induced by strain [134, 135], but the main effect of strain has usually
been considered to be that of shifting the position of the Dirac points in recipro-
cal space. However, it has been demonstrated that a nonuniform space variation of
the underlying gate potential would result in a modulation of the Fermi velocity
[134, 136, 137]. Indeed, Pellegrino et al. [127] showed that both effects are of the
same order on the applied strain intensity, and should therefore be considered on
the same ground, when studying the transport properties of strained graphene. They
therefore explicitly considered not only the strain-induced displacement of the Dirac
points in reciprocal space, but also a strain-induced deformation of the Dirac cones,
resulting in a strain-dependent anisotropic Fermi velocity. Their results could be
generalized to the problem of transport through a tunneling structure, characterized
by a nonuniform variation of both the Fermi velocity and of the gate potential, as can
e.g., be brought about by a continuous deformation or applied uniaxial strain.

As a possible application, Pellegrino et al. [128] then suggested that a strain-
induced graphene superlattice may serve as a mode filter for transport in graphene.
To this aim, they studied the condition for the occurrence of resonant quasiparticle
states for tunneling across such a strain-induced superlattice in graphene. They also
derived the band-like spectrum of bound states, as a function of conserved energy
and transverse momentum.

More recent developments on graphene can be found in Chap.12 of the present
volume [138].

Conclusions

Summarizing, a brief review has been presented of some of the most recent research
interests and results by Professor Renato Pucci and collaborators. These ranged
from superconductivity in several material classes, especially the high-Tc cuprates,
to themetal-to-insulator transition in the light alkalis under pressure, to the electronic

http://dx.doi.org/10.1007/978-3-319-53664-4_12
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and transport properties of strained graphene. Some keywords and leitmotifs among
these wide-ranging subjects are certainly the occurrence of electronic instabilities of
various kinds, such as superconducting pairing or the metal-to-insulator transition,
the relevance of lowdimensionality on the electronic spectrumand density of states of
these systems, the proximity to an electronic topological transition being a recurring
feature, and of course the possibility of tuning or even inducing any of these effects
by changing the structural properties of the systems under study, as can be brought
about by external pressure or applied uniaxial strain.
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Chapter 4
Anomalous Magnetism
and Superconductivity in Lanthanide
Metals at Extreme Pressure

James S. Schilling

Abstract Under ambient pressure the only lanthanide known to superconduct is La,
the superconducting state for the remaining lanthanides being suppressed by their
strong local-moment magnetism. Except for possibly Ce, this magnetism is conven-
tional and approximately obeys de Gennes scaling. Under high pressure both Ce
and Eu exhibit superconductivity that may be unconventional, whereas the magnetic
states of Dy, Tb, and Nd become anomalous, the magnetic ordering temperature of
Dy surpassing ambient temperature at Mbar pressures. We suggest that these anom-
alously high magnetic ordering temperatures are an heretofore unrecognized feature
of the Kondo lattice state.

Introduction

As well illustrated in the theoretical work of Professor Renato Pucci, high pressure is
a thermodynamic variable that is particularly well suited to further our understanding
of complex states of matter. The static multi-Mbar pressures available today through
diamond anvil cell technology are sufficient to increase the energy per atom by
1–10eV and thus are capable of significantly altering the ground states of matter. For
example, stable magnetic systems eventually destabilize under sufficient pressure,
leading to new and unexpected forms of magnetism and/or superconductivity.

In the Periodic Table of Superconductivity (see Fig. 4.1) [1, 2] the 30 elements
known to superconduct at ambient pressure appearwith a yellowbackgroundwhereas
light green adorns the additional 23 elements that only become superconducting
under high pressure. Of particular interest is the lanthanide series of elements where
the magnetic 4 f orbitals are successively filled with electrons, yielding a local-
ized magnetic state on each ion that suppresses superconductivity. Nonmagnetic La,
being devoid of 4 f electrons, is the only lanthanide that superconducts at ambient
pressure. La’s neighbor, Ce, is magnetic with one 4 f electron, but becomes super-
conducting under pressure at 5GPa [4]. As seen in Fig. 4.2, at 7kbar (0.7GPa) Ce
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Fig. 4.1 Periodic Table listing elements that superconduct at ambient pressure (yellow) or only
under high pressure (light green) [1, 2]. For each element the upper position gives the value of Tc(K)
at ambient pressure; middle position gives maximum value Tmax

c (K) in a high-pressure experiment
at the pressure P(GPa) (lower position). If Tc decreases under pressure, only the ambient pressure
value of Tc is given. Sources for Tc values are given in Ref. [3] (color figure online)

suffers a large 16% volume collapse within the fcc structure [5] whereby its mag-
netic moment appears to be quenched. Near this volume collapse pressure a dilute
(2 at.%) concentration of magnetic Ce impurities in La is seen to strongly suppress
La’s superconductivity over a narrow pressure region [6]. This is the hallmark of
Kondo effect phenomena with giant pair breaking [7]. A Kondo resistivity minimum
has also been observed in dilute La(Ce) alloys [8]. Ce’s volume collapse itself can
be accounted for within the Kondo volume collapse model of Allen and Martin [9].

The appearance of Kondo effect phenomena indicates that the magnetic state
of Ce is approaching an instability. Besides suppressing superconductivity, the
Kondo effect can also quench magnetic order, sometimes leading to exotic forms of
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Fig. 4.2 (upper) Molar
volume versus pressure in
kbar (0.1GPa), showing 16%
volume collapse at 0.7GPa
(γ − α transition) [5].
(lower) Superconducting
transition temperature of the
dilute magnetic alloy
La(2 at.% Ce) versus
pressure compared to that of
pure La [6]. The very large
superconducting
pair-breaking in the alloy
leads to a “sinkhole-like”
depression of Tc near 1GPa

Fig. 4.3 Magnetic ordering
temperature To plotted
versus the absolute value of
the negative exchange
parameter |J | according the
Doniach–Yang model
[10, 11]. Since To increases
only as |J |2, but the Kondo
temperature TK increases
exponentially with |J |, the
latter ultimately dominates
and quenches magnetic
ordering

superconductivity. This scenario is illustrated in Fig. 4.3 where the magnetic order-
ing temperature To is plotted versus the magnitude of the negative covalent mixing
exchange parameter |J |. This is the well-knownKondo latticemodel of Doniach [10]
and Yang [11]. Since the magnetic ordering strength TRKKY from the Ruderman–
Kittel–Kasuya–Yosida (RKKY) exchange interaction [12] initially increases as J 2,
but the Kondo temperature TK increases exponentially with |J |, the latter eventu-
ally overtakes the former as |J | increases and the magnetic order is quenched. The
author, and probably most, if not all, scientists working in the highly correlated elec-
tron research area, have tacitly assumed that the value of To from the negative covalent
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mixing exchange must be weaker than that arising from normal positive exchange.
Our present results suggest that the opposite is the case, as we will soon see.

Results and Discussion

Since the normal exchange interaction and the electronic properties of the con-
duction electrons change relatively slowly across the lanthanide series, the val-
ues of To would be expected to approximately obey de Gennes scaling, whereby
To ∝ (g − 1)2 Jt (Jt + 1) (see, e.g., Ref. [13]; here Jt is the total angular momentum
quantum number and g is the Landé-g factor. Ce is an exceptional case; To for Ce lies
at 13.7K in the hexagonal phase, a value four times higher than that (3.3K) expected
from simple de Gennes scaling compared to Gd, where To = 292K [14]. Likewise,
the suppression of the superconducting transition temperatureΔTc in dilutemagnetic
alloys should also follow de Gennes scaling [7]. Compared to the other magnetic lan-
thanides in dilute (1%) alloys with superconducting La, ΔTc for Ce is much larger
than anticipated [15]. The anomalously high value of the magnetic ordering temper-
ature To = 13.7K for Ce could have been a tip off that anomalously high values of
To might be possible within the Kondo lattice model.

At ambient pressure Eu is a divalent metal that orders antiferromagnetically
near To = 90K (see, e.g., Ref. [16]. Previous studies of the dependence of To on
pressure were restricted to P ≤ 42GPa [17]. In recent electrical resistivity and ac
magnetic susceptibility measurements to pressures as high as 142GPa, superconduc-
tivity in Eu was found to appear for pressures above 80GPa [18], as seen in Fig. 4.4.
Eu thus became the latest pressure-induced superconducting element. Unfortunately,
the magnetic ordering temperature of Eu could not be determined in this experiment
so it was not possible to investigate the possible interplay between the magnetic

Fig. 4.4 Real part of the ac
susceptibility versus
temperature for Eu metal as
pressure is increased from 76
to 142GPa [18]. The
superconducting transition
appears at 84GPa and shifts
slowly under pressure to
higher temperatures
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and superconducting states, as indicated for the Doniach–Yang model in Fig. 4.3.
Although the complete magnetic/superconducting phase diagram has yet to be
mapped out, a very recent SynchrotronMössbauer Spectroscopy (SMS) experiments
to 101GPa find that magnetic order in Eu vanishes near the same pressure (80GPa)
where the superconducting transition appears [19]. A parallel X-ray Emission Spec-
troscopy (XES) experiment on Eu to 119GPa found no evidence for a change in
either Eu’s local magnetic state or in its valence [19]. It would be very interesting to
accurately track in a single experiment the pressure dependence of both the magnetic
ordering To and superconducting Tc temperatures in Eu to at least 100GPa pressure.
In recent electrical resistivity measurements the pressure dependence of To has been
determined for Dy [20], Tb [21], Gd [21], and Nd [22] to pressures of ∼150GPa.

The magnetic ordering of the lanthanides at ambient pressure is well explained
[13, 23] by a conduction-band-driven indirect RKKY exchange interaction [12]. As
pointed out above, the magnetic ordering temperature To, as well as the strength of
superconducting pair breaking ΔTc, are both expected to scale with the de Gennes
factor (g − 1)2 Jt (Jt + 1)modulated by J N (E f ) [13], where J is the exchange inter-
action between the 4 f ion and the conduction electrons and N (E f ) is the density of
states at the Fermi energy. The heavy lanthanide Dy possesses a large local magnetic
moment and orders antiferromagnetically at 178K. The value of this ordering tem-
perature is approximately consistent with that of Gd at 292K since the de Gennes
factor of Dy is about half that of Gd.

In Fig. 4.5 are shown the pressure-dependent magnetic ordering temperatures of
Dy and Gd from recent electrical resistivity measurements in a diamond-anvil cell
to 157GPa for Dy and 105GPa for Gd [20]. Both lanthanides are seen to undergo

Fig. 4.5 Magnetic ordering temperature To of Dy and Gd versus pressure [20]. (+) earlier studies
to ∼8GPa on Dy [24]. References for crystal structures at top of graphs Dy [24], Gd [26]; vertical
dashed line gives pressure where 5–6% volume collapse occurs. In both plots the extended solid
line through data points is guide to the eye
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similar structural phase transitions over this pressure range and exhibit a∼4%volume
collapse near 60–70GPa, a much smaller value than that of Ce (16%). Up to 70GPa
the pressure dependences To(P) for Dy and Gd are seen to be very similar. The same
applies for Tb [21]. Since the deGennes factorwould not be expected to change under
pressure, unless a valence transition occurs, the very similar pressure dependences
To(P) of Gd and Dy to 70GPa point to a common mechanism and likely originate
from the pressure dependence of J N (E f ), facilitated by a series of nearly identical
phase transitions in Dy [24], Tb [25], and Gd [26] driven by increasing 5d-electron
concentration with pressure [27]. In fact, Fleming and Liu [28, 29] show that the
initial decrease in To with pressure for Dy, Tb, and Gd is a direct consequence of
energy shifts in the valence band structure.

Above 70GPa, however, the To(P) dependences for Dy andGd are seen in Fig. 4.5
to differ markedly, To(P) for Dy showing an extremely rapid increase with pressure,
extrapolating to 400K at the highest pressure of the experiment (157GPa) [20].
How rapid this increase really is most clearly demonstrated if To is plotted versus
relative sample volume V/Vo; in such a plot it can be seen that the increase in To
above 70GPa is far more rapid than the initial decrease with pressure [20]. For lan-
thanides the compressibility near 70GPa is approximately 10-times less than that at 1
bar [24, 25].

Note that the To(P) dependence for Gd shows only a slow increase with pressure,
in contrast to the results for Dy. Since the conduction electron properties of Dy and
Gd are so similar, the extremely rapid increase of To above 70GPa would suggest
that Dy’s magnetic state has changed in a significant way. This would be the case
if the magnetic state of Dy at these extreme pressure is becoming unstable leading
to an increase in the magnitude of the negative covalent mixing exchange parameter
|J | and consequently in the Kondo temperature TK. The question thus arises whether
the rapid increase in To under pressure for Dy might be mirroring the left part of
the Doniach–Yang phase diagram in Fig. 4.3 where To is seen to increase rapidly
with |J |. If this is the case, then, on the basis of Fig. 4.3, it would be expected that
at pressures well above 157GPa, To for Dy would begin to fall rapidly toward 0K.
Unfortunately, pressures appreciably above 157GPa are extremely difficult to obtain
in a true four-point resistivity experiment.

That the temperature-dependent resistivity gives a reliable value for the magnetic
ordering temperature To has been very recently confirmed through SMS measure-
ments by Bi et al. [30] on Dy to pressures as high as 141GPa.

Parallel experiments on the lanthanide Tb [21] yield results similar to those for
Dy. Above 80GPa To for Tb begins to rise with pressure extremely rapidly to the
highest pressure of the experiment at 141GPa.

Why does the To(P) dependence for Gd above 70GPa differ so markedly from
that of Dy and Tb? The absence of magnetic instabilities in Gd, even at extreme
pressures, is not surprising since the magnetic state of Gd with its half-filled 4 f 7

shell is by far the most stable of all elements, its 4 f 7 level lying ∼9eV below the
Fermi level [31]. A pressure of “only” 100GPa (1Mbar) is not nearly enough to
destabilize Gd. This is reflected in the slow monotonic increase of To with pressure
for Gd in the bcm phase seen in Fig. 4.4.
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Fig. 4.6 Superconducting
transition temperature Tc
versus pressure for Y(1 at.%
Dy) compared to that for Y
[20]. Inset shows similar
graph for Y(0.5 at.% Gd)
[32]. Vertical dashed line
marks pressure of volume
collapse for Dy at 73GPa
[24] and in inset for Gd at
59GPa [26]. At top of graph
are crystal structures taken
on by superconducting host
Y [33]. Extended solid line
through data points is guide
to the eye

It is well known that the electronic properties across the lanthanide series are
closely related. From La to Lu the number of d-electrons per atom decreases
monotonically, nicely accounting for the observed changes in crystal structure [27].
Under pressure the d-electron count per atom increases and leads to the same pro-
gression of crystal structures under pressure as from right to left across the lanthanide
series [27]. The conduction electron environment of themagnetic 4 f orbitals changes
only slowly across the series. A long-standing strategy [7, 15] to probe the magnetic
state of a given ion in a concentrated magnetic material is to alloy the magnetic
ion in dilute concentration with a superconductor and determine to what extent the
superconducting transition temperature is suppressed ΔTc. If the magnetic state of
Dy becomes unstable under pressures above 70GPa, one would expect that a dilute
concentration of Dy in superconducting La or Y would show an anomalously strong
suppression of superconductivity near this pressure.

That this actually occurs is seen in Fig. 4.6 where the pressure dependence of Tc
for pureY is compared to that of the dilutemagnetic alloyY(1 at.%Dy). Tc(P) for the
alloy begins to markedly pull away from that of Y above 70GPa, i.e., ΔTc increases
sharply! The pair-breaking near 120GPa is seen to be very strong, approaching
ΔTc ≈ 9K. A similar result is obtained for dilute alloys of Y with Tb [21].

On the other hand, alloying the ultrastable Gd ion into Y gives a very different
result. Tc(P) for both Y and Y(0.5 at.% Gd) track each other over the entire range of
pressure [32]. This result supports the scenario that the very rapid increase in To with
pressure above 70GPa for Dy and Tb has its origin in the increasing instability of
their magnetic states. Very recent X-ray Absorption Near Edge Structure (XANES)
studies confirm that no change in valence occurs in Dy to 115GPa [34], as was found
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earlier for Tb to 65GPa [32]. As the magnetic 4 f level approaches the Fermi level
with increasing pressure, the exchange interactionwith the conduction electrons takes
on a negative sign, signaling the onset of strong Kondo resonance phenomena. This
enhancement of the magnitude of |J | with pressure causes the magnetic ordering
temperature To ∝ |J |2 to increase until |J | becomes so large that the local magnetic
moment begins to be compensated through the exponentially increasing Kondo spin
screening, as anticipated in the simple Doniach–Yang Kondo lattice model [10, 11]
(see Fig. 4.3). This then leads to an anomalously high value of To, such as observed for
Dy and Tb at extreme pressure, a value surpassing that possible for normal positive
exchange interactions.

To establish whether or not a Doniach–Yang-like model is appropriate to inter-
pret the present results for Dy and Tb, much higher pressures would be necessary to
search for the sharp downswing in To(P) seen in Fig. 4.3. Since this is not currently
feasible experimentally, another option is to search for a lanthanide where the anom-
alous dependence in To(P) begins to occur at a much lower pressure. In very recent
resistivity measurements on Nd, Song et al. [22] have found a Doniach–Yang-like
To(P) dependence where To first rises slowly, then rapidly, but then passes through
a maximum and falls toward 0K under pressure. For dilute Nd magnetic impurities
in Y the suppression of superconductivity is found to be even more dramatic than for
Dy or Tb impurities. In addition, for pressures near 100GPa a Kondo resistivity min-
imum is found for Y(Nd) alloys. These results are the subject of a future publication
[22].

In summary, in contrast to themagnetically ultrastable lanthanideGd, themagnetic
ordering temperature To increases dramatically for pressures above 70GPa for Dy
and Tb and 20GPa for Nd. In the same pressure region dilute magnetic impurities of
Dy, Tb, and Nd in superconducting Y show giant pair-breaking effects. These results
are consistent with the scenario that under extreme pressures these three lanthanide
metals approach a magnetic instability and turn into Kondo lattices.

Lanthanide elements play a central role in many modern technologies, including
permanent magnets, computer memories, and applications requiring giant magne-
tostriction.Unfortunately, their sub-ambientmagnetic ordering temperatures To force
the addition of transition elements to substantially raise To, such as Fe orCo in SmCo5
and Nd2Fe14B, the two most powerful permanent magnetic materials. If the mecha-
nism(s) responsible for these anomalously high values of To under extreme pressure
can be clearly identified, one can try to reproduce these conditions in a suitable
compound at ambient pressure and possibly synthesize a superior permanent magnet
material. This strategy receives some support from the fact that the Curie temperature
of the ternary compound CeRh3B2 lies at 115K [35], a value even exceeding that of
GdRh3B2 and 100-times higher than that anticipated from simple de Gennes scaling.
We suggest that Dy under extreme pressure and CeRh3B2 at ambient pressure may
share a common mechanism for their anomalous magnetic properties.
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Chapter 5
Phonon Fingerprints on Low
and High-Energy Spectrum of Cuprate
Superconductors

R. Citro

Abstract The strongly correlated electron systems with low-dimensionality (one
and two) have attracted a great interest in the last 30 years, both for their experimental
realization and for the great numbers of theoretical techniques to study their relevant
models. To this class of systems belong the cuprate superconductors, whose physics
is described by the properties of the CuO2 planes. Our research has been focused on
the theoretical study of the interplay of electron–electron correlations and electron–
phonon interaction in these materials. In particular, we have been investigating the
lowandhigh-energy kink in the electron spectrumand the anomalous bond-stretching
(BS) in-plane phonon softening via a semi-phenomenological model. It describes
the coupling of the phonons to a charge mode in the mid-infrared energy range.
Experiments of oxygen isotope substitution on the phonon softening and linewidth
are suggested as a source of important information on the charge excitations and
equations describing isotope effects are derived. We discuss how the mid-infrared
scenario could offer an explanation of the high-energy kink and the anomalous BS
phonon softening, observed in different perovskites, in a unified framework.

Introduction

The role of phonons in the physics of high-Tc cuprates has attracted considerable
interest and many debates have been generated by different experiments in the last
decade. Essentially, there appears more evidence for the relevant contribution of
phonons to the low-energy electronic properties of these materials. In particular,
angular resolved photoemission spectroscopy (ARPES) experiments have revealed a
singularity (kink) in the single-particle dispersion at energies∼100meV [1, 2] which
persists both above and below the critical temperature and is observed in nodal as
well as in antinodal directions of the Brillouin zone. The kink is associated to the
“peak-dip-hump” structure in the spectral density which also shows a significant
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isotope effect. Paradoxically, the effect is highest in the high energy, hump region.
The velocity ratio, characterizing a change in the dispersion slope above and below
the singularity, shows a strong concentration dependence which saturates around
optimal doping. It should be mentioned that these features could not be explained
within the traditional weak-coupling scheme but can be naturally described within
the strong coupling picture. A crucial property consists in tight relation between
high and low-energy scales of the excitation spectrum and transfer of spectral weight
between them.

In this context, the latest advancement in the ARPES technique has allowed to
discover another kink in the electronic dispersion atmuch larger energy [3–5], around
0.4–0.5eV. Compared to the low-energy kink, the spectral weight of the other sin-
gularity has been found to be even larger. This kink is also characterized by a large
vertical drop in energy (comparable to the energy of the kink itself) at the momentum
corresponding to the singularity. The origin of this kink is even more controversial,
although different “magnetic” scenarios have already been put forward.

In this contribution, we review our previous work explaining the aforementioned
features in the cuprate superconductors. Namely, we have been proposing a scenario
in which both the high-energy kink in the ARPES spectra and the BS phonon soften-
ing could be related to the mid-infrared (MIR) structure of the charge response [6, 7].
The anomalous properties of this region of the spectrum have long been known from
optical experiments and have served as motivation for some semi-phenomenological
theories, such as marginal Fermi liquid. However existing experimental techniques
have not been able to resolve the charge excitations sufficiently in momentum space.
Although the energy scale of MIR can be suggestive in itself, most of existing infor-
mation comes from optical experiments, i.e., from zero momentum, and cannot be
directly applied to the analysis of the kink. However we show below that analysis of
the bond-stretching phonon mode can be very important for resolving this issue.

Low-Energy Kink in the Single-Particle Spectrum

Before discussing the high-energy features of the quasiparticle spectrum in cuprate
superconductors, let us briefly describe a model for the low-energy kink. In Ref. [6]
it has been shown that various experimental features of photoemission experiments
[1] can be qualitatively explained in a framework that considers both strong cor-
relations effect and the usual electron–phonon interaction. We have considered the
Hubbard–Holstein Hamiltonian in which Einstein phonons are coupled to local elec-
tron density on a square latticewith nearest-neighbor hopping and have calculated the
single-particle Green’s function. To calculate the phonon contribution to the electron
self-energy, we have assumed the adiabatic approximation for the phonons and we
have employed the Hubbard I approximation for the “bare” electronic Green’s func-
tion [6].Although the drawbacks of the latter arewell known, itwell captures themain
effect of correlations mentioned above. Namely, it allows to consider the concen-
tration dependence of the dispersion and spectral lineshape reported in experiments,
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Fig. 5.1 Quasiparticle
dispersion E − EF at
different dopings (indicated
in the figure) for the phonon
frequency ω0 = 0.035 and
coupling λ = 1.1, the
electron correlation U = 3,
temperature T = 0.003. The
energy unit is the bandwidth
W . A kink in the energy
dispersion is clearly visible
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Fig. 5.2 Evolution of the
Fermi surface (continuous
lines) and kink surface
(dashed lines) with electron
concentration in the first
quadrant of the Brillouin
zone. Note that c = 1 − δ

the dependence on isotope substitution, temperature and doping [6]. In particular, we
have found a good agreement with experiments of the calculated doping dependence
of the velocity ratio, i.e., the ratio of the two slopes characterizing the quasiparticle
linear dispersion before and after the kink (see Fig. 5.1).

We have also found an interesting new effect related to a topological change
of the kink surface with doping. Our results have also been able to describe the
experimentally observed situation in which, at optimal doping, the Fermi surface is
hole-likewhile the kink surface is electron-like (see Fig. 5.2). The kink in the electron
spectrum occurs at the energy of the phonon because it separates the quasiparticle
state at lower energy, renormalized by interaction with virtual phonons, from states at
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higher energywhere a real phonon is emitted. Such states correspond to the incoherent
part of the ARPES spectra (hump), while the kink is identified with the dip followed
by the quasiparticle peak in the vicinity of the Fermi surface.

The Mid-infrared Boson Scenario

The High-Energy Kink

In particular, the LEK is well reproduced by the coupling of the correlated electrons
with a phonon (boson mode) whose linewidth is about 5–10% of its energy, however,
the situation is quite different for the high-energy kink (HEK). Below we discuss
how the features of the HEK can be accounted for by assuming the “overdamped”
regime for the “boson”, i.e., that the linewidth of this excitation is significantly
larger than the characteristic energy. This assumption is motivated by the ubiquity of
the incoherent excitations in the mid-infrared (MIR) frequency range of the optical
spectra in cuprates as revealed, e.g., by Drude–Lorentz analysis. As explained below,
although the bare frequency of such excitation is larger than the HEK, the scale that
actually characterizes its effect on electron spectrum falls in the relevant energy range
where HEK appears. We consider the self-energy effects within a simple model of
electrons interacting with a bosonic mode in the form of damped oscillator. The
parameters of the oscillator are chosen to match the known experimental data, in
particular those fromARPES.As for instance, its coupling as extracted from the slope
of single particle spectrum in the region preceding theHEK(e.g., forBISCO2212 and
LBCO is λc = 1 − 1.5), momentum and energy location of the observed structures
etc. [8, 9].

We introduce the retarded bosonic propagator B (q, ω) in the form of damped
oscillator [10] with spectral density ρB (q, ω)

B (ω) = aqωq

ω2 − ω2
q + iγqω

, (5.1a)

ρB (ω) = ωγqaqωq/π(
ω2 − ω2

q

)2 + (
γqω

)2 . (5.1b)

The choice of Eq. (5.1) matches the generic form of the response function fre-
quently used in analyzing experimental data that, in turn, corresponds to physical
requirements, such as Kramers–Krönig relations. Coupling of this mode to elec-
tron excitations is considered in the second order of perturbation theory, i.e., non-
self-consistently. The scale of the boson frequency is assumed to allow the adiabatic
approximation to be reasonable at least for evaluation purposes. Using the spectral
representation for the Matsubara Green’s function, after carrying out the frequency
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summation and analytic continuation to real frequencies one obtains the second-order
expression for the retarded electron self-energy, e.g., [11, 12],

ΣR (k, ω) = 1

N

∑
q

g2 (k, q)

∫ ∞
−∞

∫ ∞
−∞

ρF (k − q, x) ρB (q, y)
nB (y) + nF (x)

ω + y − x + i0+ dxdy,

(5.2)

where g(q) is the coupling constant and nB,F are Boson, Fermion distribution
functions. When the linewidth of the electronic spectral function ρF (k − q, x) is
neglected, ρF (k − q, x) = δ

(
x − εk−q

)
, and a tight binding parametrization of the

band dispersion is used as explained above, that allows to focus on the scattering
mechanism due to the “boson”. If also the linewidth of ρB (ω) is neglected, the
expression Eq. (5.2) transforms into the one that has been often employed in describ-
ing the LEK (see, e.g., Ref. [13]) and results in the usual logarithmic singularity
of ReΣ(ω) at the boson frequency. To study the effect of the broad linewidth on
electron spectrum we neglect the dispersion in spectral function Eq. (5.1) and in the
coupling g(q). Then the self-energy becomes a local function

ΣR (ω) = λcγω2
0

∫ ∞

−∞
dy

y(
y2 − ω2

0

)2 + (γ y)2

∫
dEρ0(E)

(
nB (y) + nF (E)

ω + y − E + i0+

)
,

(5.3)

where ρ0(E) is the electronic density of states, λc is the dimensionless coupling
constant. The coupling constant λ determined from the slope of ReΣ(ω) is slightly
different from λc. The bandwidth of εk is taken as the energy unit in numerical
calculations.

The spectral density of the damped oscillator, Eq. (5.1a) is peaked at the frequency

Ω =
(
12 − 6R2 + 6

√
16 − 4R2 + R4

)1/2 × ω0/6, where R = γ /ω0. It is clear that

the effective frequency Ω is significantly lower than ω0 due to a large damping
typical for theMIR oscillator. As seen from Fig. 5.3, it is this effective frequency that

Fig. 5.3 Real and imaginary
parts of the self-energy
Σ(ω), Eq. (5.3), resulting
from interaction with the
overdamped oscillator with
spectral density ρB(ω).
Parameters are ω0 = 0.18,
γ = 0.3, λ = 1.3,
T = 0.001, δ = 0.15. The
flattening of ImΣ(ω)

corresponds to the
incoherent “waterfall” region
in ARPES with almost
constant linewidth
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determines the location of the high-energy kink. In the figurewe plot the ReΣ(ω) and
ImΣ(ω) together with the “boson” spectral function ρB(ω) to make the correlation
between the peaks clearly visible. The slope of the ReΣ(ω) corresponds to the
coupling constant 1.3 and the ratio of t ′/t = 0.1 was taken to model the LSCO
band εk . One can also see that the (−ImΣ(ω)) follows a ω2 at low energies and
its inflection point corresponds to Ω . After reaching its maximum at higher energy,
−ImΣ(ω) follows an almost flat region until it starts decreasing closer to the band
bottom. Such a behavior has been reported in Refs. [4, 14] for the linewidth of the
ARPES spectral function. In our calculations we clearly see the feature mentioned in
Ref. [15] and related to the finite bandwidth when the renormalized dispersion curve
crosses with bare one. The crossing occurs at certain nonzero frequency within the
waterfall region where ReΣ(ω) = 0.

The calculated dispersion of the spectral function peak along the two main sym-
metry directions of the Brillouin zone are presented in Fig. 5.4 for doping δ = 0.15
and band structure ofBISCO2212. The dashed curve shows the evolution of the curve
at larger doping, δ = 0.25, for the diagonal direction. The HEK is close to k0 � π/4
at E1 � Ω = 0.15 (�0.4eV), the “waterfall” is overcome by parabolic dispersion
at E2 � 0.33 (�0.85eV). The momentum of HEK k0 decreases with doping. These
results qualitatively agree with experimental data [4, 8] and appear to suggest that
the band structure is of primary importance for the location and the doping depen-
dence of the HEK, as the doping dependence of k0 follows the shrinking of the Fermi
surface. However, it should be taken into account that also the parameters of theMIR
oscillator depend on doping. In particular, the quantitatively weaker dependence of
k0, observed in experiments could be related to the decrease of ω0 with doping. The
temperature dependence ofΣ(ω) is very weak in the relevant region of energies. We
have found a broader linewidth in the (0, 1) and (1, 0) directions as compared to the
diagonal in agreement with the measurements presented in Ref. [16], indicating a
relevant anisotropy in the structure of the HEK. These results can be described within
the present model by introducing the anisotropy into the parameters of the oscillator.
For instance, the difference in energy of the kink for momentum cuts along different

Fig. 5.4 Dispersion of the
spectral density maximum
along the diagonal direction,
K = Kx = Ky , (continuous
line δ = 0.15, dashed line
δ = 0.25) and orthogonal
direction, K = Kx (Ky),
Ky(Kx ) = 0, (dotted line
δ = 0.15) of the Brillouin
zone. Parameters are:
ω0 = 0.18, γ = 0.21,
λ = 1.3, T = 0.001
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directions of the Brillouin zone found in Ref. [14] can be explained by a larger value
of Ω along the diagonal direction. In a different context, it has been noted that the
MIR peak in optics is affected by lattice oscillations [17]. It has also been suggested
[7] that the anomalous softening of the bond-stretching in-plane phonon mode is
related to an overdamped charge excitation in the same MIR part of the spectrum
and that the behavior of this mode could serve as an energy–momentum resolved
probe for the charge excitation, as we will discuss below. This raises an intrigu-
ing possibility that the same overdamped excitation is responsible for the phonon
anomaly and the HEK. One of its characteristics implied from the phonon analysis
is the anisotropy of the charge response at finite momentum in the energy range that
matches the grid-like patternmentioned in Ref. [18]. Namely that anomalous phonon
softening occurs in the (0, 1), (1, 0) directions and a much smaller effect is observed
in the (1, 1) direction. This anisotropy is related to a larger charge response located
at lower energies for the orthogonal direction as compared to more dispersive and
weaker response along the diagonal. The strength of the anisotropy depends on the
material and doping. Interestingly, in Refs. [8, 14] the energy of the kink (in absolute
value) in LBCO, BISCO 2212 was found to decrease significantly away from the
diagonal direction of the Brillouin zone. This behavior is also in agreement with the
MIR charge “boson” scenario proposed here. The broad incoherent spectrum above
the high-energy kink emerges due to the composite nature of electronic excitation
(in itself a source of finite linewidth) with emission of an “overdamped boson”. This
explains the qualitative difference between the high- and low-energy kinks. In the
latter case, the linewidth of the boson is not more than 10% of its energy scale, while
in the case of MIR it is an order of magnitude larger. At the same time, for a compa-
rable coupling constant, such linewidth accounts for the verticality of the dispersion
and linewidth of the waterfall. As we have seen, the ImΣ remains almost flat in
this region. At energies around 0.9eV the ImΣ starts to decrease and the dispersion
recovers the bare band parabolic shape, albeit shifted to higher energies. It should
be mentioned that the optical conductivity data have served only for estimations
and, as discussed above, one needs to have a probe for momentum resolved charge
excitations in the 0.4–0.5eV range to characterize the “overdamped boson”.

It follows from the proposed scenario that HEK should exist in the ARPES of
other perovskite materials where the incoherent MIR excitation has been observed
(and vice versa). For instance, in Ref. [19] the ARPES analysis is focused on the
LEK at 60meV in bilayer manganite La2−2xSr1+2xMn2O7. However, also the data
for higher energies are presented, where the existence of the other kink at around
0.45eV is clearly visible. It would also be interesting to carry out a similar search for
the HEA in ARPES experiments on a nonmagnetic perovskite such as Ba1−xKxBiO3

with a relatively high Tc that is also known to have an incoherent charge excitation
in the MIR about 0.4–0.6eV as well as anomalous softening of the bond-stretching
phonon mode [20].
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The BS Phonon Softening

Whether the high-energy kink is related to a boson strongly interactingwith electrons,
in analogy with low-energy kink, or it is due to another mechanism is yet unclear.
However, we have noted a striking universality of two anomalous features belonging
to the energy scales under question and appearing simultaneously in a large num-
ber of metallic perovskite materials (cuprates, bismuthates, manganites, nickelates,
ruthenates [20]), i.e., a strong softening of bond-stretching phonon mode and a broad
structure in the MIR region of the charge response. One can also note the similarity
of their doping dependence when comparing optical absorption experiments [21]
and unpolarized neutron scattering [22]. Thus, we have further investigated the pos-
sibility of connection between the BS phonon mode and the charge response in the
MIR, proposing a semi-phenomenological model in which the charge mode at high
energy is coupled to phonons, causing its anomalous softening. Namely, we have
assumed that renormalization of the phonon Green’s function can be described by a
polarization function of the form

P (q, ω) = βq

ω2 − Ω2
q + iΓqω

, (5.4)

with the oscillator strength βq , dispersionΩq , and width Γq of the charge mode to be
determined from experimental data on the phonon linewidth γq and dispersion ωq .
Note that the electron–phonon coupling constant can be absorbed into βq . Although
the damped oscillator form of P(q, ω) is much more simple than the one found
in microscopic approaches [23, 24], it is the most commonly used in analyzing,
e.g., optical experiments. However, our aim has not been to fit experimental data,
but to validate the use of such parametrization. As one can immediately see from
Eq. (5.4), the known behavior of γq and ωq is insufficient even for simple fitting of
the three unknown parameters. Nevertheless, one can easily show that even at this
stage the model, Eq. (5.4), sets some constraints that provide useful information on
the experiments. Indeed, by considering the real and imaginary parts of polarization
P(q, ω) one obtains a relation

Γq = γq
Ω2

q − ω2
q

ω2
0 − ω2

q

. (5.5)

Taking the typical values for ωq ∼ 100meV and γq ∼ 10meV, one can now check
if Eq. (5.5) gives back typical values for the structures observed in EELS or optics.
A priori it is not guaranteed that this constraint should be satisfied at all. For instance,
by inserting the energy of optical plasmon Ωpl ∼ 1 − 2eV into Eq. (5.5) we find
Γpl � 3eV, in clear contradiction with experiment. When the typical values for the
MIR response are substituted (Ω ∼ 0.5eV, Γ ∼ 0.7eV), the constraint is satisfied
with a surprising accuracy. The same is confirmed by analyzing the doping variation
of these parameters in several materials summarized in Ref. [25].
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Fig. 5.5 The effect of
isotope substitution on the
dispersion of the
bond-stretching phonon
mode in the (100) or (010)
directions of the Brillouin
zone. In contrast, the
horizontal lines represent the
uniform shift expected for
the diagonal direction (110)

Fig. 5.6 The effect of
isotope substitution on the
phonon linewidth in the
(100) or (010) directions of
the Brillouin zone

To derive new constraints following from the semi-phenomenological model, we
note that closer are in energy the two interacting excitations, the larger is their mutual
impact. Thus, if one changes the phonon frequency by isotope substitution, it could
be possible to obtain the required equations, for the unknown parameters.

In Figs. 5.5 and 5.6 we show the typical change of the phonon dispersion and
linewidthdue to isotope substitution

(
dm = m

(
18O

) − m
(
16O

)
, dωq = ωq

(
18O

)−
ωq

(
16O

))
.

In particular, one can define a momentum dependent isotope coefficient ᾱq =
dωq/(ω0d lnm) which, according to the model, gives

ᾱq � α0

√
1 − βq sin2 (qx/2)

Ω2
q

, (5.6)

where we have assumed for simplicity that terms ∼ (
ωq/Ωq

)
can be neglected. It is

also easy to obtain the change in phonon linewidth induced by such substitution
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dγq

γq
� −2α0

dm

m
. (5.7)

However these equations do not provide a third independent relation, although they
can serve for the consistency check of the model. As explained above, we expect
the main new effect to be the inhomogeneous deformation of the phonon dispersion
in the (100) and (010) directions due to isotope substitution. This suggests a new
independent quantity defined as

Δαq ≡ αq − α0, (5.8)

which results in the following expression

Δαq/α0 = βq sin
2 (q/2) ω2

0

(
Γq/Ωq

)2 − 1

Ω4
q

. (5.9)

An interesting consequence of this relation is that the sign of the coefficient corre-
sponds to the ratio of the linewidth and dispersion. A similar coefficient can also be
derived for the change of linewidth of the phonon.

One can now see that the number of equations is overcomplete and allows not
only to find all the parameters of the charge response, but also test the consistency
of the model. Clearly, the model can be further generalized to include additional
oscillators. Nevertheless there are good reasons to expect that the MIR structure
contributes to the renormalization of the bond-stretching phonon. In this case, the
latter could become a unique probe of momentum resolved charge response at these
energies in perovskite materials.

Conclusions

We have reviewed a semi-phenomenological model that can explain both the origin
of the high-energy kink observed in photoemission experiments and the anomalous
bond-stretching phonon mode softening in cuprate superconductors and some other
metallic perovskite oxides. It has been argued that both the high-energy anomaly
and the phonon softening are caused by the interaction with an overdamped charge
bosonic mode in the mid-infrared region of the optical spectrum. We have shown
that a large damping of the bosonic mode is an essential feature responsible for the
“waterfall” dispersion and linewidth of the spectral weight in ARPES experiments.
On the other side, we have proven that the energy scale of this charge mode is several
times larger than the phonon frequency, i.e., within 0.2–0.6eV, and its doping and
momentum dependence is discussed in relation to experimentally observed behavior
of the BS phonons. Experiments on the effect of oxygen isotope substitution on the
phonon softening and linewidth are suggested as a source of important information
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on the charge excitations, and equations describing isotope effects have been derived.
The set of equations is overcomplete and can therefore serve as a consistency test
for the model. The proposed mid-infrared scenario could offer an explanation of
the high-energy anomaly and phonon softening in different perovskites in a unified
framework.
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Chapter 6
Electrides and Their High-Pressure
Chemistry

Xiao Dong and Artem R. Oganov

Abstract Recently, electrides were discovered in many systems (especially those
containing alkali and alkali earthmetals) at highpressures.Anelectride canbedefined
as an ionic compound where the role of an anion is played by a strongly localized
electron density. High-pressure emergence of electrides is due to the Pauli expulsion
of valence electrons from the core, while some electrides are better described as orig-
inating frommulticenter covalent bonds. Not being bound directly to a nucleus, these
localized electrons are chemically active, making electrides the strongest reducing
agents known, able to interact even with such an extremely inert element as helium.

The Discovery of Electrides

In classical chemical systems, electron density is peaked on nuclei. However, in the
1970–1980s, a new type of compounds was established, in which bare electrons, not
bound to any particular nucleus, are concentrated in the interstitial space and behave
as anions. Such compounds were named electrides.

X. Dong (B)
Center for High Pressure Science and Technology Advanced Research,
Beijing 100193, China
e-mail: xiao.dong@hpstar.ac.cn

A.R. Oganov
Skolkovo Innovation Center, Skolkovo Institute of Science and Technology,
3 Nobel Street, Moscow 143026, Russia
e-mail: a.oganov@skoltech.ru

A.R. Oganov
State University of New York, Stony Brook, NY 11794-2100, USA

A.R. Oganov
Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny,
Moscow Region 141700, Russia

A.R. Oganov
International Center for Materials Design, Northwestern Polytechnical University,
Xi’an 710072, China

© Springer International Publishing AG 2017
G.G.N. Angilella and A. La Magna (eds.), Correlations in Condensed Matter
under Extreme Conditions, DOI 10.1007/978-3-319-53664-4_6

69



70 X. Dong and A.R. Oganov

Fig. 6.1 Structure of the organic electride Cs+(15-crown-5)2e−. Electron-trapping cavities and
channels are shown in pink, 15-crown-5 molecules in blue, and cesium cations in yellow. Inset
shows the ball-and-stick representation of the Cs+(15-crown-5)2 “sandwich,” with the Cs+ ion
drawn to scale [1] (color figure online)

The first clear report of an electride we could find dates back to 1981 [2], followed
by many other discoveries of chemically complex compounds (at first, only organic,
but then also inorganic [3]). In 1990, Dye [1, 4, 5] discovered that an organic crown
ether or cryptand can trap electrons as counterions, in alkali metal complexes, such as
Cs+(18-crown-6)2e− orCs+(15-crown-5)2e−. In such electrides as shown in Fig. 6.1,
the localized electrons are usually single electrons occupying the cavities, and there
is a weak spin–spin interaction between electrons occupying neighboring cavities.
So, electrides known at normal pressure are paramagnetic or antiferromagnetic.

Since high pressure favors spin pairing, such spin-polarized electrides will obvi-
ously give way to spin-paired electrides under compression. Another insight into the
nature of high-pressure electrides comes from a quantum-mechanical consideration
of the interaction between valence and core electrons.

In 2008, Rousseau and Ashcroft [6] modeled the effects of core electrons as a
hard potential v(r) = V0θ(rc − r), where rc is the ionic radius, θ is the Heaviside
step function and V0 a hard screening potential. Using this potential, they wrote the
Hamiltonian and the Schrödinger equation:

H(r) = − �
2

2m
∇2 +

∑
R

v(r − R), (6.1a)

Hϕ = Eϕ, (6.1b)

where R is the position of nucleus. To consider the effect of compression, they also
employed an average radius of ions, rs = 3

√
3Ω/4πN , where N is the number of

atoms and Ω the volume. In this way, the parameter rc/rs can describe the compres-
sion ratio.
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Fig. 6.2 Electronic properties calculated from Eq. (6.1b) with rc/rs = 0.7. a Electron density in
the z = 0 plane. b Band structure (eigenvalue spectrum) for excluding spheres. The Fermi energy
(green line) and the free electron Fermi energy (black line) are indicated [6] (color figure online)

Solving numerically the Schrödinger’s equation for the face-center cubic (fcc)
structure, they found that when rc/rs > 0.5, the wave function will deviate sig-
nificantly from the nearly free electron gas behavior and localize in the interstitial
regions (Fig. 6.2a). In the band structure, the bandwidth decreases with compression,
whichmeans the electrons aremore localized (Fig. 6.2b). Already this oversimplified
model gives an enlightening idea that electropositive atoms at strong compression
may experience band narrowing, interstitial localization of valence electrons, and
metal–insulator transition. The first anticipation of demetallization of alkali metals
under pressure came from Professor Pucci’s group in 1997 [7], although not through
the electride mechanism.

Then, Ma and Oganov [8] found a true high-pressure electride, transparent hP4
phase of sodium. In the high-pressure experiment,metallic sodium transformedunder
compression first to a poorly metallic incommensurate t I19 phase (black at 156GPa,
Fig. 6.3a) and then to the transparent phase hP4. In the hP4 structure, there are two
kinds of Na atoms, Na1 and Na2, in total four atoms of Na and two interstitial sites
with electron localization in the unit cell. Each interstitial site contains an electron
pair, and the chemical formula can be written as Na2(2e). From structural geometry,
one could imply pd and pd2 hybridizations for Na1 in the octahedral sites and Na2
in the triangular prismatic coordination, respectively (Fig. 6.3b). It has a wide band
gap—for example, GW calculations predict the band gap to be over 6eV at 600GPa,
which implies a colorless transparent insulator.

Similar electrides were also found for Li [9–12]. However, lithium atom has two
differences from sodium: (1) the core radius (i.e., the ionic Li+ radius, 0.76 Å) is
much smaller than its covalent radius (1.28Å) and van derWaals radius (1.82Å). This
means Li is quite compressible and easy to get into the electride state—compared
with Na (which becomes an electride at pressures ∼ 200GPa), Li only needs 60GPa
to get into the semiconducting phase C2cb–40 [10]. (2) Li is much smaller than
Na, thus the interstitial electrons are localized in a smaller space and nearer to each
other, which means that electrons can more easily tunnel from one interstitial site to
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Fig. 6.3 a Photographs of the Na sample taken under pressure in the diamond anvil cell (DAC),
showing an optically transparent sample at 199GPa. b Crystal structure of hP4-Na (space group
P63/mmc). c Band structure and partial densities of states (DOS) at 300GPa. From Ref. [8]

another, and over the potential barrier formed by the repulsion from core electrons.
As a result, the electride state is sensitive and easy to break: e.g., the band gap is
quite small (0.8 eV) and the external pressure causes a phase transition to the metallic
Cmca-24 phase at 90GPa [10].

Besides elementary substances, electride states were reported for Al [13], Mg3O2

[14], Na3Cl [15], andNa2He [16], SiO [17].Many of these compounds have chemical
formulas very different from those known at zero pressure.

The Effect of Core Electron and Anti-Wilson Phase
Transition

The free electron gas model is a convenient tool to show the expected effect of band
broadening under pressure. Besides being convenient, this model becomes exact (if
one neglects nuclear strong andweak interactions) for any chemical system at infinite
compression. In thismodel, the electronic dispersion relation is Ek = �

2k2/2m.Here,
the wave vector is in the momentum space, k ∈ (−π/a, π/a), where a is the lattice
parameter. So the band widthΔEk = �

2π2/2ma2. With pressure reducing the lattice
parameter, the range of both k and ΔE will increase, which is ruled by Heisenberg’s
uncertainty principle. This means that in this simple theoretical model, Heisenberg’s
uncertainty principle requires that the band width of solids increases with pressure.

For a semiconductor or insulator at high pressure, the broadening bandwill occupy
the energy space of forbidden band, thereby decreasing the band gap. If the pressure
is sufficiently high, the conduction band and valence bandwill finally overlap, and the
insulator–metal transition will occur, see Fig. 6.4. This mechanism was discovered
by Wilson, after whom it is named [18].
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Fig. 6.4 Evolution of the band structure under pressure in Wilson and anti-Wilson models

The band overlap originating from the Wilson mechanism affects the electronic
states near Fermi surface, and is normally accompanied with the strengthening
of electron–phonon coupling to cause the Peierls distortion, or other more com-
plex phonon and electron effects, often causing complex phase transitions. The
related pressure-induced insulator–metal phase transition is usually called theWilson
transition.

Wilson transition is indeed a common phenomenon at high pressure, but based
on a crude theoretical model of free electron gas, which ignores the effect of atomic
cores—i.e., strong Pauli and electrostatic repulsion of valence electrons from the
core orbitals. In quantum mechanics, valence orbitals must be radially orthogonal
with core electrons of the same angular momentum—and can be thought to be not
“allowed” to get close to the core due to the Pauli exclusion principle. If pressure is
sufficiently high, most of the free volume for such electrons will disappear and such
“expelled” electrons will have to localize in the intersticial space. This should be
accompanied by band narrowing—instead of band broadening, i.e., exactly opposite
to the Wilson model. As a result, with pressure increasing, one can often observe the
transformation of the initial metallic state into a poor metal with a decreased density
of states (DOS) at the Fermi level (NF ), such as t I19-Na [19] and CaLi2 [20] or
opening of the band gap, as in elemental Na [8] and Li [10]. However, at sufficiently
high pressures a reentrant metallization must occur: for example, Li and Na become
metal again at 95GPa [10] and 15.5 TPa [21], respectively. At pressures of order
of 1 a.u. (29.4 TPa), we expect the disappearance of the periodic law, which will
be replaced with the physics of the free electron gas to govern the behavior of all
compounds. At further compression, when the internuclear distances become much
smaller than the electronic de Broglie wavelength, electrons stop feeling nuclear
attraction—this is what happens in white dwarfs (pressures of order 1022 Pa) [22].
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Physical Form: Duality of Pseudoatoms and Multicenter
Bonds

Pseudoatoms

In classical crystal chemistry, there are four main types of bonding: covalent, metal-
lic, ionic, and van der Waals. Bader theory [23] is one of the ways to describe
bonding quantitatively. Electronic charge density ρ(x, y, z) is continuous through-
out the space, and has stationary points with ∂ρ/∂x = ∂ρ/∂y = ∂ρ/∂z = 0, i.e.,
∇ρ = 0. Considering second derivatives, density minima have ∂2ρ/∂x2, ∂2ρ/∂y2,
∂2ρ/∂z2 > 0, and maxima have negative second derivatives (and maxima coincide
with the positions of the nuclei—although in a static picture, density maxima at
nuclei have a cusp, rather than zero derivative of the density). Saddle points, called
bond critical points in Bader theory, can have negative Laplacian (∇2ρ < 0) when
the electrons are locally concentrated and shared by both nuclei (usually implying
covalent interactions) or positive Laplacian (i.e., ∇2ρ > 0) when the electrons are
concentrated around the atoms (implying closed-shell interactions).

However, for electrides a different picture emerges: they display significant charge
density maxima not corresponding to positions of nuclei, as shown in Figs. 6.2a, 6.5
and 6.6a. This implies that electronic concentration in electrides is much stronger
than in a normal covalent bond and even reverses the sign of the second derivative
to create a local maximum without a nucleus. The effect of electron concentration
can be clearly seen also in the deformation charge density [24] and electron localiza-
tion function (ELF) [25]. Deformation charge density is the difference between the
actual charge density and superposition of non-interacting atomic charge densities.
As shown in Fig. 6.6b, interstitial voids get the greatest increase of electron density—

Fig. 6.5 Electronic charge
density in a normal bond and
in an electride
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Fig. 6.6 a Computed charge density (eÅ−3) of Na2He at 300GPa, plotted in the [110] plane of
the conventional cell [16]. b Deformation charge density of hP4-Na plotted in the [110] plane [8].
c ELF of Na2He in the [110] plane [16]

in other words, when an electride state is formed, valence electrons concentrate in
the interstitial space. ELF distributions give a similar picture. ELF is defined in the
range [0, 1], with ELF = 1 corresponding to perfect localization, and ELF = 0.5 to
electron gas. In the electride Na2He (Fig. 6.6c), the interstitial electron has almost
ELF = 1, even higher than for the core 2s and 2p electrons of Na.

There are rather many elemental solids and compounds which have nonnuclear
charge density maxima. Only some of them have band gaps, while others are metals.
In metals, electron gas very effectively screens long-range electrostatic interactions.
Whether the system is metallic or not, depends on the height of the potential barrier
and the ability of the electrons to tunnel through it. For example, d-electrons penetrate
the core regions of K, Rb, and Cs, while core radius is too small to isolate the
localized electrons in some Li compounds such as Li6O. A proper distinction would
be between: (1) strong electrides (such as Na, Li, and Mg3O2), defined as insulators
or semiconductors with localized electrons playing the role of an anion in an ionic
crystal. (2) weak electrides (such asK, Ca,Mg,Al, Li6O), defined asmetallic systems
with non-nuclear charge density maxima.
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The electride state has been proven in many compounds and the origin of its
stability is interesting to explore. In quantum mechanics, without nuclear attrac-
tion, electronic wave function will delocalize throughout the entire space. This is
obviously in conflict with the charge density distributions observed in electrides. To
reconcile this contradiction, we add a volumetric constraint in the quantum system,
and discover another picture, quite different from the electron gas model. Here we
use a simplified wave packet model.

Related to the uncertainty principle, there is theRobertson-Schrödinger inequality,

〈A2〉〈B2〉 ≥ 1

4
|〈[A, B]〉|2, (6.2)

so

〈i2〉〈p2i 〉 ≥ �
2

4
, i = x, y, z, (6.3)

where px , py , pz is the momentum of the particle, and 〈x̄〉 = 〈ȳ〉 = 〈z̄〉 = 0, 〈 p̄x 〉 =
〈 p̄y〉 = 〈 p̄z〉 = 0.

If the particle is localized with a volumetric constraint, then

〈x2〉 〈y2〉 〈z2〉 ≤ V, (6.4)

where V is a constant, which means the wave function cannot extend infinitely. So
the kinetic energy is

Ek = 1

2m

(〈p2x 〉 + 〈p2y〉 + 〈p2z 〉
)

≥ 3

2m
3

√
〈p2x 〉 〈p2y〉 〈p2z 〉

≥ 3�2

8m

(〈p2x 〉 〈p2y〉 〈p2z 〉
)−1/3

≥ 3�2

8m
V−1/3. (6.5)

If and only if 〈p2x 〉 = 〈p2y〉 = 〈p2z 〉 (spherically symmetric localization), and
〈i2〉〈p2i 〉 = �

2/4 (i = x, y, z) (Gaussian wave packet), the kinetic energy reaches
its minimum. Next, we take a Gaussian wave packet as an example. We assume
that the wave packet has anisotropy, which means it is an ellipsoid with A, B, C
as its principal axes, where A = 1/2〈x2〉, B = 1/2〈y2〉, C = 1/2〈z2〉. So, its wave
function is

ϕ(x, y, z) =
(
ABC

π3

)1/4

e− 1
2 (Ax2+By2+Cz2 , (6.6)
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and its kinetic energy is

Ek = 〈ϕ|E |ϕ〉 = − �
2

2m

∫
ϕ∗∇2ϕ dxdydz

= �
2

4m
(A + B + C)

≥ 3�2

4m
(ABC)1/3

= 3�2

8m

(〈x2〉 〈y2〉 〈z2〉)−1/3
. (6.7)

Only if A = B = C , the inequality becomes an equality.
In simple words, if there is a limited volume available to the electron,

Heisenberg’s uncertainty principle requires an increased uncertainty in the momen-
tum space, increasing the kinetic energy of the electron and leading to its localization
as a spherical Gaussianwave packet (to decrease this kinetic energy). In aword, volu-
metric constraint and uncertainty principle are the driving forces behind the formation
of nonnuclear charge density maxima, characteristic of electrides.

With the localization as spherical Gaussian wave packets, such bare electrons
will behave as atomic particles—anions—and we can consider them as independent
particles. Compared to true atoms with central potentials from nucleus attraction,
interstitial electrons are compressible and easy to reshape. At high pressure, inter-
stitial electrons are usually spin-paired, which often means that an electron pair
occupies one interstitial area. It has a radius somewhat smaller than He atom, which
also contains one electron pair. For example, in Na2He compound, the radius of 2e
is about 0.9 of the radius of He.

Considering the interstitially localized electrons as pseudoatoms, we can evaluate
their interaction with cations and other anions. Normally, electrides have structures
similar to either alloys or ionic phases: for example, hP4-Na has the Ni2In structure,
where Na atoms occupy the positions of Ni atoms and interstitial electrons occupy
the In sites. The hP4 structure can be viewed as a strongly (∼ twofold) squeezed
along the c-axis double hexagonal close packing (. . . ABAC . . .) of Na atoms, or
as a nearly perfect hexagonal close packing of the localized electrons. This implies
that interstitial electrons have a nearly isotropic interaction, leading to close-packed
structure in this and other examples.

In 2014, Miao and Hoffmann [26] discovered a method to calculate the orbital
energies in atoms under pressure: they used a sufficiently large (3 × 3 × 3) supercell
of the perfect He fcc structure relaxed at a given pressure, where they consider He as
a chemically inert space filler and pressure transmitting medium. In that supercell,
they replaced the central He atom by the atom of interest, relaxed the structure,
and computed its electronic DOS. Assuming the highest occupied molecular orbital
(HOMO) of the heliummatrix fixed, irrespective of the inserted atom, one can get the
relative orbital energies at high pressure. Considering localized electrons as a new
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Fig. 6.7 Orbital energy of an electron on the corresponding orbital [26]. ISQ stands for “interstitial
quasi-atom”, which is set as reference zero energy

type of element, they also replaced the central He atom with an additional electron
to represent the electrides.

Using the He matrix method described above, one can get the orbital energies of
different elements (Fig. 6.7). At hundreds of GPa, the highest occupied orbitals of
Na, Li, Al, and Mg exceed the orbital level of interstitial electrons, which means the
donation of electrons to the interstices is energetically favorable.

For heavier akali metals, such as K, Rb, and Cs, high-pressure behavior is quite
different from light alkalis Li and Na. The difference comes from d-orbital effects
and s-d transfer [27]. At zero pressure, n s-orbitals with n − 1 nodes have lower
energy than (n − 1) d-orbitals with (n − 3) nodes, but at high pressure, (n − 1)
d-orbitals become energetically more favorable and become occupied. So, the n s-
electron will transfer to the (n − 1) d-orbital, making heavy alkali metals effectively
transition metals under pressure and, in some way, rearranging the Periodic Table
[22]. For example, the electronic configuration ofK changes from [Ar]4s1 to [Ar]3d1.
Additionally, with less Pauli exclusion from core electrons than ns electrons, (n − 1)
d-electrons are more localized in the core and easier to tunnel the energy barrier
formed by overlapped core electrons at high pressure. As a result, at high pressure, K,
Rb, and Cs, although they do have (diminished) nonnuclear charge density maxima,
aremetallic. The core localization of d-electrons and s-d transfer also lead to changes
in the chemical activity under pressure. This s-d transfer happens easily in K and
heavier alkalis: 4s-3d orbital transition requires moderate energy, whereas in Na the
3s-3d transition is energetically very costly and s-d transition is never complete (even
more so in Li). So the light active elements, such as Li, Na, very easily adopt the
electride state and can form semiconducting and insulating phases at high pressure,
but K, Rb and Cs cannot.
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Multicenter Bonds

In the above picture of valence electrons being “squeezed out” by core electrons,
the interatomic distances should be sufficiently small—smaller than the sum of the
core radius of one atom and valence orbital radius of the other. For example, the
shortest Na–Na distance in hP4-Na is 1.89 Å at 300GPa, and the 3s orbital radius
of Na is 1.71 Å, whereas the size of the core is best modeled by the ionic radius
of Na+ (1.02 Å). This indicates a strong core–valence overlap and core–core over-
lap. Due to short distances from nonnuclear density maxima to neighboring atoms,
these localized electrons can be considered as a multicenter bond formed at high
pressure—however, this description seems even more appropriate in those cases
where interatomic distances are longer than sum of core and valence radii (for exam-
ple, in the high-pressure compound SiO [17]).

Here we use a simplified model, Na8 cluster, to investigate this idea. Put eight
Na atoms in the vertices of a cube, then we get a Na8 cluster with symmetry group
Oh . We set a as the edge length, which is also the shortest bond length in the Na8
cluster. Every Na atom has 1 valence electron on the 3s orbital and Na8 cluster has
eight valence electrons and four new hybridized bonding orbitals. Because of the
high symmetry of Oh group, these four orbitals can be represented as 1 a1g orbital
and 3 triply degenerated t1u orbitals. Specifically, the a1g orbital is nearly spherical
and has s-wave symmetry, while the t1u orbital has p-wave symmetry. The whole
Na8 cluster is a quantum dot and behaves like a superatom.

With the bond length corresponding to atmospheric pressure, a = 3.7 Å, the
wave function is quite flat (around 0.025 a.u.) and its maximum is near the surface
of cube, as shown in Fig. 6.8a, b and e. It means that the electrons delocalize in
the space, displaying an electron gas-like behavior. However, when we compress
the cube to a = 2.0 Å (the ionic radius of Na+ is 1.02 Å, i.e., there is now some
core-core overlap), the wave functions are quite different. For a1g orbital, the charge
density maximum moves to the cube center, with an obviously strong concentration
of the wave function. This orbital can be seen as an eight-center two-electron (8c-2e)
bonds, because two electrons occupy this orbital and are shared by eight nuclei. For
t1u orbitals, the Na8 cluster is more like a single atom with p-wave than that with
a = 3.7 Å. The charge density is now concentrated far outside the Na8 cube, and can
be thought to be suitable for forming bonds with outside entities, while the 8c-2e
bond stabilizes the cluster itself.

Now we can expand this simplified model into a true system, Na2He, formed at
high pressure (>113GPa) [16]. The structure of Na2He belongs to the very dense
Heusler alloy structure (AlCu2Mn-type, related to Fe3Al-type): He atoms form a
cubic close packing, in which all tetrahedral voids are filled by Na atoms, and 2e
fill all octahedral voids. Every He atom (and every 2e) is coordinated by eight Na
atoms. Note that 2e form a cubic close packing of their own—just like in hP4-
Na, where they form a nearly perfect hexagonal close packing. In this geometry,
localized electrons are inside the Na8 cluster and occupy the a1g orbitals. Every Na
has sp3-hybridization and participates in four 8c-2e bonds. The hybridization of Na
and the existence of 8c-2c bonds is proven by solid-state adaptive natural density
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Fig. 6.8 Orbital wave functions of Na8 cluster. 	 is the edge length of Na8 cube. a the a1g orbital
with cube side a = 3.7 Å. b the t1u orbital with a = 3.7 Å. c the a1g orbital with a = 2.0 Å. d the
t1u orbital with a = 2.0 Å. e the radial wave function as a function of the distance from cube center
for a = 3.7 Å and 2.0 Å
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Fig. 6.9 Crystal structure of Na2He at 300GPa. a ball-and-stick representation (pink and gray
atoms represent Na and He, respectively) and b polyhedral representation, where half of Na8 cubes
are centered by He atoms (shown by polyhedra), and half by 2e (shown by red spheres) [16] (color
figure online)

Fig. 6.10 Crystal structure of a Li6O [32] with blue isosurface of ELF = 0.9 and bMg3O2 [14]. In
Mg3O2, there is a strong charge density localization between four Mg2 and two Mg1 atoms (color
figure online)

partitioning (SSAdNDP) [28, 29] and periodic natural bond orbital (NBO) methods
[30, 31] (Figs. 6.9 and 6.10).

The Novel Chemistry of Electrides

The interstitially localized electrons greatly change the electronic state of the ele-
ments and compounds, leading to altered chemical properties. It is known that Dye’s
zero-pressure electride has very low work function and is a strong reducing agent
[5]. Similarly, high-pressure electrides possess unusual chemical properties.
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The first chemical phenomenon originating from the electride state is the for-
mation of clusters of electropositive metals. Normal stoichiometries are governed
by valence ratios, and once compounds have more metal atoms than prescribed by
valence ratio, there must be bonds among the metal atoms: this happens in the sub-
oxides of caesium and rubidium: Rb9O2, Rb6O, Cs11O3, Cs4O, Cs7O, Cs11O3Rb,
Cs11O3Rb2, and Cs11O3Rb3 [33]. It is remarkable that in these zero-pressure metal-
rich compounds, big electropositive elements form a metallic framework and elec-
tronegative elements fill the interstices. Many of these are electrides.

At high pressure, smaller electropositive metals, such as Li, Na, and Mg, form
metal-rich compounds, which are unknown at zero pressure. The representative cases
are Li6O [32] and Mg3O2 [14]. In these compounds, there is hollow space inside
the clusters made of metal atoms, and these interstices are occupied by localized
electrons. These metal clusters are stabilized by two factors: (1) localized electrons
carry a negative charge and behave as anions, binding together the surrounding metal
cations. In this way, the whole system is built by Madelung field with two different
kinds of anions. (2) if we consider the localized electrons as multicenter bonds, the
cluster is combined and stabilized by this electron concentration.

Another chemical peculiarity of high-pressure electrides is their likely extreme
reducing ability. In fact, interstitial localization of the electrons is a compromise
solution: these electrons have nowhere else to go. Once an electride is combined
with other elements that have unoccupied low-energy orbitals, the electrons will
move into these orbitals. Like for zero-pressure electrides, we expect very low work
functions. A special feature of high-pressure electrides is their extreme chemical
activity: at high pressure, one of the most inert elements, He, can receive ∼0.1
electrons from Na [16]. We have found [22] that under pressure, Na has the lowest
electronegativity (closely followed by Mg) among all elements—even lower than
Cs, and this is directly related to its propensity to form the electride state.

Actually, electrides with metal clusters can be considered as normal compounds
reduced by elemental electrides. For example,MgO is a saturated systemwith normal
stoichiometry defined by the valence ratio. At high pressure, the electride Mg can
reduce it: reaction Mg + 2MgO = Mg2O3 occurs at pressures above 500GPa. In
this way, the formation of metal clusters is a manifestation of the extreme reducing
ability of electride.

In summary, we systematically surveyed high-pressure electrides, using theory,
model systems, and real compounds, and considering the nature of their stability,
as well as their physical and chemical properties. Electrides, with strongly localized
interstitial electron density maxima, which can be considered as pseudoatoms or
multicenter bonds, possess extreme chemical activity, reducing ability and can be
used as a path to a new branch of high-pressure chemistry.
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Chapter 7
Electron Correlation Effects Reflected
in Thermodynamic Properties of Light
Actinides

C.C. Matthai and N.H. March

Abstract Experimentally available thermodynamic data on the light actinides is
used to display the ratio BΩ/kBTm from Th through to Cm. Dramatic variation
through the series by a factor of 4 contrasts strongly with that found for the five heavy
rare-earth solids, also involving f -electrons, where the same ratio is approximately
50 to within a few percent.

Heavy rare-earth materials, involving f -electrons, are characterized by strong elec-
tron correlations [1–3]. Evidence of such correlations may be already found in some
thermodynamic properties of these metals. This idea has been developed for 3d-
transition metals by Friedel and Sayers [4], who studied the role of electron correla-
tions in the stability of phases in these transition metals in a semi-quantitative way
using a second-order perturbation formula related to Gutzwiller’s approximation.
Friedel and Sayers [4] found that the maximum effect on the surface tension and
cohesion occurs for a half-filled d-band.

Important background to this study can be found in the work by Bhatia and
March [5]. We shall need to give first a fairly substantial review of this work, in
order to gain appreciation to the progress on electron correlation effects reflected in
thermodynamic properties of light actinides.

In Faber’s fine book on liquid metals [6], he records a compact r-space formula
for the vacancy formation energy E f

v (best for close-packed crystals, as it neglects
atomic relaxation due to creating a vacancy).

Young et al. [7] have expressly given an alternative r-space expression of Faber’s
formula [see Eq. (7.4) below].
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Below, we shall concern ourselves, following a quite brief summary of presently
existingwork restricted to pair potentials, with demonstrating the importance of elec-
tron correlation in determining theoretically some of the thermodynamic properties
of light actinides.

First, it will be somewhat illuminating to display the dimensionless ratio for
the quantity BΩ , B being the bulkmodulus andΩ the atomic volume in relation to the
thermal energy of melting, kBTm . Table7.1 records the experimental results for the
ratio BΩ/kBTm (see also Fig. 7.1).

Some useful background can be found in the early theoretical work of Bhatia and
March [5]. These authors gave a pair potential theory involving the ratio E f

v /kBTm ,
where E f

v is the mono-vacancy formation energy. Their main result was that this
ratio could be found from the simple equation

Table 7.1 The last column shows the ratio of bulk modulus B times atomic volume Ω and the
thermal energy of melting kBTm for the actinides. The somewhat dramatic variation of the ratio
BΩ/kBTm through the seven elements listed above is to be contrasted strongly with that found for
the five heavy rare-earth solids, also involving f -electrons, where the same ratio is approximately
50 to within a few percent

Actinide Atomic number Ω (Å3) B (GPa) BΩ/kBTm

Th 90 32 61 67

Pa 91 25.5 129 129

U 92 21 126 136

Np 93 19 96 185

Pu 94 19.8 48 97

Am 95 29 30 44

Cm 96 30 37 50

Fig. 7.1 Variation of the
atomic volume Ω for the
actinide series [8]
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E f
v

kBTm
+ 1

2

BΩ

kBTm
� 20. (7.1)

Since materials scientists have a reliable ‘rule of thumb’ that

E f
v

kBTm
� 10, (7.2)

this yields from Eq. (7.1)
BΩ

kBTm
� 20, (7.3)

whereas the experimental ratio BΩ/kBTm ranged from ∼45 to ∼190 (cf. Table7.1).
Therefore, light actinides cannot be treated by pair potentials. Of course, it is clear
empirically that the f -electron correlations are large in this class of materials. How-
ever, the question of what, if any, account of electron correlations can be ‘embraced’
(if somewhat artificially) via pair potentials may perhaps be worthy of some further
study.

An alternative r-space expression of Faber’s formula has been provided by Young
et al. [7] as

E f
v + pΩ = −ρa

2

∫
g(r)φ(r) d3r − ρa

6

∫
r
∂φ

∂r
d3r, (7.4)

where g(r) is the liquid pair correlation function at the melting temperature Tm .
(Experimentally, E f

v is found to vary unimportantly with temperature.) Because of
known ‘rule of thumb’ correlation E f

v /kBTm ∼ 10 (accurate for a wide range of
metallic crystals, from experimental input), Bhatia and March [5] focussed on the
approximate evaluation of Eq. (7.4) in a hot solid near melting.

Of course, for any crystal, the calculation of the pair function g(r) in this case is
a major problem necessitating a full treatment of large effects due to anharmonicity.
To make progress in further understanding the status of the above empirical corre-
lations, Bhatia and March [5] specifically considered the case of condensed phases
of rare gases, where there are known to be no major changes of local coordination
on melting—in sharp contrast with, say, tetrahedrally bonded covalent solids like Ge
or Si, which melt into a dense metallic phase. They therefore argued that E f

v can be
evaluated in the hot solid by inserting the appropriate liquid structure, described by
the pair function g(r) at Tm .

Making this assumption, Bhatia and March [5] were able to approximately evalu-
ate the right-hand side of Eq. (7.4) for E f

v by inserting the appropriate liquid structure,
described by the pair function g(r) at Tm .

Invoking the virial equation for the pressure p, viz.

p = ρakBT − ρ2
a

6

∫
r
∂φ

∂r
g(r) d3r, (7.5)
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with pair potential φ(r), we note that putting p = 0 yields the second term of this
equation as −kBT . Since E f

v is known to be much larger than this quantity, it is
apparent that the term involving ∂φ/∂r canbeneglected.Thus, the problem is reduced
to an approximate evaluation of the integral

∫
gφ d3r from the above theory of Bhatia

and March [5].
The appropriate tool to employ for describing the structure turns out to be the so-

called Ornstein–Zernike direct correlation function c(r), which is related to g(r) =
h(r) + 1 by

h(r) = c(r) + ρa

∫
c(|r − r′|)h(r ′) d3r′. (7.6)

At this point, Bhatia and March [5] appealed to the available work of Woodhead-
Galloway et al. [9] on c(r) for liquid argon. These authors approximated c(r) by

c(r) = chard sphere(r) − 1

kBT
φlong range(r), (7.7)

where φlong range(r) = φ(r) outside a hard core of diameter σ . But Percus and Yevick
[10] early gave a solution of chard sphere(r) and noting that it is identically zero outside
r = σ in this approximate model, yields from Eq. (7.7) that

c(r) = −φ(r)

kBT
, r > σ. (7.8)

Straightforward evaluation then yields

E f
v

kBTm
= 1

2

[
ρa

∫
c(r) d3r + ρa

∫
h(r)c(r) d3r − 2

]
. (7.9)

Defining c̃(q) as the Fourier transform of c(r) through

c̃(q) = ρa

∫
c(r)eiq·rd3r, (7.10)

is shown readily to yield

ρa

∫
h(r)c(r) d3r = −[1 + c(r = 0)]. (7.11)

One then finds the desired pair potential result

E f
v

kBTm
� 1

2

[
c̃(q0

L) − c(r0L) − 3
]
T=Tm

. (7.12)
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This is Bhatia andMarch [5] result for E f
v in units of kBTm and the direct correlations

function c(r) at the melting temperature Tm .
But c̃(q = 0) is from the definitions of the direct correlation function immediately

related to the long-wave limit S(0)of the liquid structure factor S(q), via the definition
of c̃(q) as

c̃(q) = S(q) − 1

S(q)
, (7.13)

while S(0) is related to κT through the well-established result

S(0) = ρakBT κT = kBT

BΩ
, (7.14)

where κT is the isothermal compressibility. Hence, we have the basic result of Bhatia
and March [5] that, at the melting temperature Tm the ratio E f

v /kBTm satisfies

E f
v

kBTm
+ 1

2

BΩ

kBTm
� −1

2
c(r = 0)|T=Tm − 1. (7.15)

For many simple liquids near the melting temperature, this is well approximated by

E f
v

kBTm
+ 1

2

BΩ

kBTm
� 20. (7.16)
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Chapter 8
Equations of State for Solids Under Strong
Compression with Fingerprints
for Electronic Anomalies

Wilfried B. Holzapfel

Abstract Changes in the electronic structure of solids under strong compression can
be noticed in many cases by close inspection of the Equations of State (EOS), which
provide special information on the given thermodynamic system as partial derivatives
of the total energy. However, effects of anomalous changes in the electronic structure
may be often observed only, when the regular behaviour is well defined. On the basis
of an EOS-form interpolating with an Adapted Polynomial (APL) between very
strong and moderate compression differences between ‘regular’ and ‘anomalous’
compressive behaviour are illustrated with discussions of the EOS for Al, Cu, Ag,
and Au as regular in comparison with the EOS of Ce and Pr representing anomalous
cases.

Introduction

Thermodynamics of solids provide a link between the microscopic theoretical mod-
els describing all the possible quantum-mechanical states of the system and the
macroscopic properties, like free energy, entropy, heat capacity, thermal expansion,
and the EOS, which is given typically in the form p = p(V, T, N ) or inverted as
V = V (p, T, N ), where p represents the pressure, T the temperature, N the particle
number, and V the volume of the system.Most commonly not the total volume of the
system is used in general discussions but the reduced or specific volume v = V/N ,
the volume per particle or the volume per mole.

The modeling of the ‘system’ starts usually with the partition function:

Z(V, T, N ) = 〈e−H/kBT 〉 =
∑
n

e−En(V,N )/kBT , (8.1)

where H represents the Hamiltonian of the system, 〈· · · 〉 refers to the expectation
value, En(V, N ) stands for the energy of one specific eigenstate of the system, and

W.B. Holzapfel (B)
Department-Physik, University Paderborn, Paderborn, Germany
e-mail: holzapfel@physik.upb.de

© Springer International Publishing AG 2017
G.G.N. Angilella and A. La Magna (eds.), Correlations in Condensed Matter
under Extreme Conditions, DOI 10.1007/978-3-319-53664-4_8

91



92 W.B. Holzapfel

the sum runs over all the possible eigenstates numerated here in short just by the index
n. The partition function reflects all the thermodynamic properties of the system and
provides the link to the free energy: F(V, T, N ) = −kBT ln Z(V, T, N ).

This means, that the free energy as a function of the variables V , T , N determines
also all the thermodynamic properties of the system. The pressure, for instance,
is given as partial derivative: p(V, T, N ) = −∂F(V, T, N )/∂V and, as mentioned
before, one uses mostly the reduced volume and separates the thermal pressure from
the pressure at zero temperature in the form: p(v, T ) = pzp(v) + pth(v, T ).

Usually the thermal pressure pth(v, T ) is dominated by contributions from lat-
tice vibrations, which are treated mostly in the quasi-harmonic approximation with
various modifications of the Debye-Model [1–3] and further contributions from
anharmonicity [3–6], lattice defects [7], electronic excitations [8], and, in some
cases, additional contributions from magnetic spin interactions have to be taken
into account.

Although these different contributions to the thermal pressure represent a wide
field of current interest, Iwill restrict the present discussion primarily to the difference
between ‘regular’ and ‘anomalous’ behaviour noticed in the cold pressure related to
the ground state of the solid without any further excitations.

EOS for Regular Solids

Let us consider an ‘ideal’ (metallic) solid with an almost spherical Fermi surface,
not touching the Brillouin zone anywhere. In this case, we expect a smooth variation
of the volume with pressure or the pressure with respect to volume over very wide
ranges in compression with no anomaly at any pressure.

Most of the EOS forms proposed for wide ranges of pressure are based on special
assumptions leading to divergences with respect to well-established asymptotic high
pressure behaviour of a free electron gas presented by Fermi (1927) and Thomas
(1927) and discussed in many papers also more recently as for instance in [9].

As an example for the most commonly used EOS forms with wrong constraints
at strong compression I consider here at first the approach of Birch [10], who used
the classical finite strain theory to derive a series expansion in Eulerian strain in the
form

pBEL(x) = 3

2
K0x

−7(1 − x2)

(
1 +

L∑
k=2

(x−2 − 1)k−1

)
, (8.2)

with x = (V/V0)
1/3, where V represents the volume (or reduced specific volume)

and V0 stands for its value at zero (or ambient) pressure at the given temperature
with the (isothermal) bulk modulus K0. In this Birch equation with the label BEL,
L denotes the order of this form and mostly this isotherm BEL is used just in second
order with the notation BE2:
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pBE2(x) = 3

2
K0x

−7(1 − x2)
(
1 + cBE2(x

−2 − 1)
)
, (8.3)

where cBE2 = 3
4 (K

′
0 − 4) provides the relation to the isothermal pressure derivative

K ′
0 of the bulk modulus at ambient pressure and at the given temperature for this

isotherm. The use of Eulerian strain results in the fact that typical values for 3 <

K ′
0 < 8 lead to rather small values of this parameter −1 < cBE2 < 3. However, the

exponent−7 of the leading term in x and the negative exponents−2 of x in the series
expansion result in a strong divergences with respect to the well-known behaviour
of the Fermi gas at very strong compression. As we will see later, this constraint
effects also the evaluation of accurate values for K0 and K ′

0 from experimental EOS
data, when we considers K0 and K ′

0 not only as fitting parameters but as well-defined
thermodynamic entities. For instance, fitted values of K0 and K ′

0 depend on the range
of the data, especially when the range in pressure exceeds the value of K0.

On the other hand, Stacey et al. [11] started from a microscopic model using a
Rydberg potential [12] for the nearest-neighbour interaction in a close-packed solid
not noticing that the Rydberg potential was designed for molecular vibration around
the minimum of the potential with unrealistic constraint at very short distances given
by a finite energy at zero distance. The resulting effective Rydberg form has been
promoted byVinet et al. [13, 14] as ‘universal equation of state’without any reference
to theses earlier studies. Since this form corresponds to a second order approximation
I refer to it as ER2:

pER2(x) = 3K0
1 − x

x2
exp (cER2(1 − x)) , (8.4)

with cER2 = 3
2 (K

′
0 − 1). Due to the finite energy of the Rydberg potential the calcu-

lated pressures of this form diverge with respect to any realistic behaviour at very
strong compression, and the evaluation of K0 and K ′

0 from experimental EOS data
with this form may give again fitted parameters, which differ significantly from the
correct thermodynamic values due to the constraints build into this EOS form.

The unreasonable discussions of the ER2 form by Vinet et al. in [13] and in many
of their later publications made me so angry that I had to correct their mistakes by a
better form.

At first I corrected the leading exponent of x from −2 to −5 fitting to the limiting
value constraint by the Fermi gas: pFG(x) = aFG(Z/V0)

5/3x−5 = pFG0/x5, where
aFG = 0.02337 GPa · nm5 is a universal constant and Z refers to the total electron
number in the (atomic) volume V0 at zero pressure. At first I used a series expansion
in the exponential term [9]. Since this series expansion could not be integrated easily
in closed form to get the total energy, I proposed the following Adapted Polynomial
expansion with the ‘order’ L:

pAPL(x) = 3K0
1 − x

x5
ec0(1−x)

(
1 + x

L∑
n=2

cAPn(1 − x)n−1

)
, (8.5)
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where the exponential termwith c0 = − ln(3K0/pFG0) constrains the limitingbehav-
iour to an asymptotic value of the Fermi gas. The parameter cAP2 = 3

2 (K
′
0 − 3) − c0

takes care of the value for K ′
0, and higher order terms could be used to represent the

higher order derivatives of the bulk modulus at ambient conditions.
In second order we get the form AP2:

pAP2(x) = 3K0
1 − x

x5
ec0(1−x) (1 + cAP2x(1 − x)) , (8.6)

which provides the correct constraint at strong compression, and can be taken as
reference for ‘regular’ solids, when cAP2 is rather small. One may notice that for
large values of K ′

0 ≈ 8 the contribution from c0 leads typically still to small values
of cAP2. In the next section, I apply this form AP2 to the EOS of Al, Cu, Ag, and Au
as regular solids and illustrate the problems with the other EOS forms like BE2 and
ER2.

Comparison of Different EOS Forms for Regular Solids

If we want to compare experimental data and different EOS forms over wide ranges
in compression, we can see by comparison of the data for aluminium (Al) in Fig. 8.1

Fig. 8.1 Comparison of different EOS forms (pAP2, pBE2, pER2)with experimental and theoretical
data (p1, p2, p3, p4, p5, p6, p7, p8, p9 referring to [15–23] respectively) for Aluminium (Al) in the
range up to 600 GPa plotted versus reduced volume
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Fig. 8.2 Comparison of different EOS forms (pAP2, pBE2, pER2) with the same experimental
and theoretical data (p1, p2, p3, p4, p5, p6) for Aluminium (Al) in the range up to 106 GPa on
logarithmic scale plotted versus reduced volume

with 8.2 that it is favourable to use a logarithmic representation of the pressure to
show the regions of low and high pressure with similar resolution.

Both figures illustrate that the pAP2 fits best all the data and it should be noted
that I use here the ultrasonic values for K0 and K ′

0. On the other hand, both pBE2 and
pER2 deviate from the data at higher pressure. The black mark on the right-hand side
of Fig. 8.2 represents the value of the bulk modulus at ambient pressure and shows
that this deviation becomes very significant when the pressure exceeds this value of
K . If we divide all the pressures-data in this figure by the pressure of the Fermi gas,
the ratio R(x) = p(x)/pFG(x) enhances the resolution as seen in Fig. 8.3, and we
can compare now this variation with what we expect from the Thomas–Fermi theory
at very strong compression as shown by the thin straight line.

Here we see that both the theoretical data from SEAME [16] represented by R2
and extending to extremely high pressure as well as the ratio RAP for pAP2(x) both
approach very smoothly the Thomas–Fermi behaviour marked RTF. Now it becomes
evenmore clearly evident that both pBE2(x) and pER2(x) are constraint in such away
that they diverge with respect to any reasonable variation and cannot represent the
EOS behaviour of ‘regular’ solids under strong compression. Since I consider also
copper, silver, and gold as regular solids without any special electronic anomalies
under strong compression andwe have good EOS data for theses elements, I illustrate
with these additional examples what I would like to call a ‘regular solid’.

What can be noticed here for Copper (Fig. 8.4) is the fact that RAP falls nicely
in between the data R6 and R7 [27, 28] but some of the older shock-wave-reduced-
data R2 [25] deviate significantly due to the well-known problems in estimating the
thermal pressure in the shocked state [30–33]. On the other hand RAP approaches
RTF more steeply than in the case of Al.
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Fig. 8.3 Comparison of different EOS forms (pAP , pBE , pER) represented by solid, dotted, and
short dashed lines with experimental and theoretical data (p1, p2, p3, p4, p5, p6) for Aluminium
(Al) using pressure ratios R(x) with respect to pressure of the corresponding Fermi gas plotted on
logarithmic scale versus x

Fig. 8.4 Comparison of different EOS forms (pAP , pBE , pER) represented by solid, dotted and
short dashed lineswith experimental and theoretical data (p1, p2, p3, p4, p5, p6, p8, p9, [17, 20, 22,
24–29]) for Copper (Cu) using pressure ratios R(x) with respect to pressure of the corresponding
Fermi gas plotted on logarithmic scale versus x
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Fig. 8.5 Comparison of different EOS forms (pAP , pBE , pER) represented by solid, dotted and
short dashed lines with experimental and theoretical (p1, p2, p3, p4 [16, 24–26]) data for Silver
(Ag) using pressure ratios R(x) with respect to pressure of the corresponding Fermi gas plotted on
logarithmic scale versus x

In the case of Silver (Fig. 8.5) the theoretical data R4 from SESAME [16] seem
to show a large uncertainty or misprint at very strong compression by the strong
deviation of the secondlast data-circle. RAP2 overshoots slightly the theoretical data
and the Thomas–Fermi line in this region. With the fit of a third-order form pAP3(x)
I could take into account this deviation. However this difference reflects for me just
the present uncertainty of any extrapolation or calculation for this extreme range in
compression.

For Gold (Fig. 8.6) there are many data for the pressure range below 150 GPa and
all these data cluster around the RAP curve derived from pAP2(x) with input data Z ,
V0, K0, and K ′

0. only from ambient pressure. The theoretical data R8 for the range
up to 600 GPa [22] correspond to a softer behaviour and suggest the interpolating
curve RAP which fits here very smoothly also to the Thomas–Fermi line at very
strong compression.

I could add similar figures for many other ‘regular’ metals like Ni, Pd, Pt, Mo,
W, and others, but I believe the four examples Al, Cu, Ag, and Au shown here may
be sufficient to support my view that the form pAP2(x) reproduces the behaviour of
regular metals under strong compression very well and may serve as reference for
studies on the influence of special electronic anomalies on EOS.



98 W.B. Holzapfel

Fig. 8.6 Comparison of different EOS forms (pAP , pBE , pER) represented by solid, dotted and
short dashed lines with experimental and theoretical data (p1, p2, p3, p4, p5, p6, p7, p8 [20–22,
25, 26, 30, 31, 34]) for Gold (Au) using pressure ratios R(x) with respect to pressure of the
corresponding Fermi gas plotted on logarithmic scale versus x

Effects of Electronic Anomalies on the EOS of Cerium

Perhaps the best example for the influence of electronic anomalies on the EOS of
solids is presented by Cerium (Ce) already at moderate pressures, where not only
the EOS shows an unusual behaviour (at elevated temperatures) but more strikingly,
one observes a volume collapse transition similar to the transition between liquid
and gas without any change in symmetry. Both the low- and the high pressure face
have fcc structure [35]. The critical point of this phase transition and EOS data have
been studies by high pressure X-ray diffraction [36] and the results are reproduced
as circles in Fig. 8.7.

Many different models have been discussed in the literature [35] based on the idea
that the f -electrons somehow delocalize. This does not mean that the f -electrons
flip out from some inner localized orbitals completely into the conduction band but
they may flip or mix between two different ‘configuration’. Such a model of two
configurations now for the total energy of the solid with the same overall symmetry
would allow for configuration crossing with configuration interaction [37] and can
be used to model the EOS in the transition region. Like the formation of bonding and
anti-bonding orbitals in molecules, configuration interaction may effect the crossing
of the energy levels E1(a) and E2(a) of the two configurations indicated by the
crossing of the thin dashed and dash-dotted curves in Fig. 8.8, where a represents
the lattice parameter of the cubic unit cell. If we would take into account that the
total energy depends also on temperature, we would need a three-dimensional model
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Fig. 8.7 Experimental data (open circles [36]) and fitted theoretical curves of the present model
for four isotherms of Cerium (Ce) plotted versus the lattice parameter of the fcc unit cell. First order
phase transition marked by the grey zone

Fig. 8.8 Crossing of energy levels (dashed and dash-dotted curves) and level splitting by config-
uration interaction of the present model (solid curves) for Cerium (Ce) at 299K plotted versus the
length of the fcc unit cell
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with crossing of the energy planes, but I will restrict my discussion just to individual
isotherms.

With configuration interaction the levels E1(a) and E2(a) will mix and repulse
each other as shown schematically by the curve labelled Ehigh and Elow in Fig. 8.8.
I use for the configuration interaction the following form:

Em(x) = Er Ew√
(E1(x) − E2(x))2 + E2

w

. (8.7)

This gives for the two interacting levels

Ehigh = 1

2

(
E1(x) + E2(x) +

√
(E1(x) − E2(x))2 + E2

m(x)

)
, (8.8a)

Elow = 1

2

(
E1(x) + E2(x) −

√
(E1(x) − E2(x))2 + E2

m(x)

)
. (8.8b)

If I take E2(x) > E1(x) in the low pressure region as shown in Fig. 8.8, I get for the
corresponding EOS forms

phigh = 1

2

⎛
⎝p1(x) + p2(x) + (p1(x) − p2(x))

E1(x) − E2(x)√
(E1(x) − E2(x))2 + E2

m(x)

⎞
⎠ , (8.9a)

plow = 1

2

⎛
⎝p1(x) + p2(x) − (p1(x) − p2(x))

E1(x) − E2(x)√
(E1(x) − E2(x))2 + E2

m(x)

⎞
⎠ . (8.9b)

If I consider that the unperturbed pressures, p1(x) and p2(x), and energies, E1(x)
and E2(x), correspond to ‘regular’ behaviour represented by pAP2(x) and corre-
sponding EAP2(x) forms, I must select first Z , V0, K0, and K ′

0 for the two unper-
turbed isotherms and an appropriate difference Er between the two energy levels
at very large x to shift the level crossing to the appropriate value of x . With the
parameters Er and Ew, I can adjust the strength and the width of the configuration
interaction to get the ‘theoretical’ curves in Fig. 8.7.

After our low pressure study of Cerium in its region of the volume collapse more
recent X-ray diffraction work [38] provided additional structural and compression
data on Ce up to 208GPa. I have fitted their data for the bct phase in the range from 15
to 208GPa by the ‘regular’AP2 form and used this form also for the unperturbedEOS
at lower pressures assuming that the second-order fcc—bct transition has no strong
effect on the compressive behaviour. In this way, I obtained the room temperature
isotherm for Ce in the extended pressure range shown in Fig. 8.9.

The curve pF1 represents the theoretical curve in Fig. 8.7 for 299Kwith the transi-
tion between the unperturbed pressures p1(x) and p2(x) by configuration interaction.
pF1 approaches, therefore, continuously pF2 already around 10 GPa. We can now
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Fig. 8.9 The 299K isotherms of Cerium (Ce) with the low pressure data for the fcc phase from
Fig. 8.8 shown as circles, pSP , and thin curve, pF1, together with the high pressure data for the bct
phase [4] up to 208 GPa shown by the solid curve, pV B , with the data from the fitted AP2 form
represented as dotted line

Fig. 8.10 Room temperature isothermofCerium (Ce) fromFig. 8.9 scaled by theFermi gas pressure
as shownpreviouslywith the ratio R(x) of regularmetals covering here the full range of compression
from 0 to 200 pm with the volume collapse included

ask the question: Does Ce behave like a regular solid in the bct phase? On the bases
of Fig. 8.9, it is difficult to make a decision.

However, the ‘regular’ behaviour forAl, Cu,Ag, andAu illustrated in the Figs. 8.3,
8.4, 8.5, and 8.6 gives us a background for similar considerations for Ce when we
use the corresponding scaling by the Fermi gas pressure shown in Fig. 8.10.

First of all, we see that the anomaly at low pressure is very well recognized also in
the expanded view.On the other hand,we notice that RF2 approaches rather smoothly
the Thomas–Fermi behaviour at strong compression. However, this approach is not
as rapid as for Al, Ag, and Au. Does this reflect an anomaly?
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If we look at Fig. 8.4 for Cu, we see some similarity. This would mean that also
Ce behaves very regular after the (low pressure) volume collapse. Furthermore, we
may take into account that the high pressure X-ray diffraction data [38] may be
compatible also with a more rapid approach towards the Thomas–Fermi behaviour
due to the uncertainties still involved in the pressure standards used in this type of
experiments [3, 39, 40].

Effects of Electronic Anomalies on the EOS
of Praseodymium

Praseodymiummay be considered as prototype for a lanthanide element with volume
collapse phase transition where a significant volume collapse occurs together with a
structural phase transition in contrast to cerium, where this transition is isostructural.
We may ask here especially whether the phase transition leads directly to regular
compressive behaviour or still to a state with inter-configuration interaction. The
plot of the pressure ratio for the 299 K-isotherm (Fig. 8.11) shows at first the volume
collapse at the phase transition between the curve RF1 for the low pressure fcc-
and distorted-fcc phase and the high pressure α −U -phase. The best fit of an AP2-
EOS to the extended data for the α −U -phase [42] is illustrated by the curve RF2,
which extrapolates at higher pressures beyond the strait line for the Thomas–Fermi
behaviour. Since the Thomas–Fermi line is considered as upper boundary for any

Fig. 8.11 Compression data for Praseodymium (Pr) at room temperature [4, 41–43] scaled in R(x)
by pressure of the corresponding the Fermi gas (thick solid curves RF1 [41], RVV [42]) compared
with the limiting curve from the Thomas–Fermi model (thin lineRTF) and the pressure expected by
extrapolation of the best fitting pAP2(x) form (dotted curve RF2) and by pAP3(x) (slashed curve
RF3) expected for most regular behaviour
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EOS, we can only conclude that this extrapolation gives to high pressure values
due to the fact that Pr behaves still slightly anomalous in this range and should be
modelled by a third-order form pAP3 with the slope at ultimate compression fitted to
the Thomas–Fermi behaviour shown by the dashed line RF3 or by a model including
explicitly configuration interaction.

Since the differences in the EOS for different phases with ‘regular’ EOS should
become rather small at elevated pressure due to the fact that the structural energy
differences do not increase as much as the total energy under strong compression, we
can ask ourselves, whether it is still possible to observe inter-configuration-crossing
under these conditions.

Inter-configuration-crossing at Strong Compression

To test this question I have modelled a situation (Fig. 8.12), where this crossing
occurs at much higher compression than in the case of Cerium. Given this model,
I can calculate the corresponding EOS for the ground state level Elow of Fig. 8.12
as shown by the thick curve pM3 in Fig. 8.13. This curve looks so smooth that an
anomaly is difficult to notice. Different calculations indicated in Fig. 8.13 by the
thin lines pM2 and pM1 use the same strength Er in the coupling but much smaller
parameters Ew for the width. In fact the sharp change in pM1 corresponds to almost
zero width, which is unrealistic but illustrates the position of the level crossing.

Since the anomaly in pM3 is not easily noticed in Fig. 8.13, I plot the same data
in Fig. 8.14 as pressure ratios (RM1, RM2, RM3) with respect to the corresponding

Fig. 8.12 Model calculation for level crossing at strong compression, here at 69 pm with respect
to the minimum (zero pressure) at 100 pm and with moderate strength of the inter-configuration
coupling
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Fig. 8.13 Calculated EOS (solid curve pM3) for the ground state energy Elow of Fig. 8.12 compared
with the results for narrower coupling widths Ew shown by the thin lines spM2 and pM1

Fig. 8.14 Calculation of pressure ratios RM1 and RM3 for the EOS pM1 and pM3 of Fig. 8.13 for
the extended pressure range to very strong compression

Fermi gas. RM1 from pM1 shows the sharp crossover. RM3 from pM3 exhibits a
very clear anomaly and RM2 is hidden under RM3.

It should be noticed that the range in compression in Fig. 8.14 extends to a/pm =
0 in contrast to the moderate compression in Fig. 8.13. Nevertheless the anomaly is
very clearly noticed!

Conclusions

I hope to have shown that an EOS-form like pAP2(x) with the correct constraint for
very strong compression avoids the problems of the more commonly used EOS form
of Birch [10] or the effective Rydberg form [11, 12] and can be used to distinguish
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‘regular’ from ‘anomalous’ compressive behaviour of solids under strong compres-
sion. The corresponding differences are most clearly noticed, when the pressure ratio
R(x) of the actual pressure divided by the pressure of the Fermi gas for the same
total electron density is plotted for wide ranges in compression. Although I illustrated
anomalous behaviour only for the level crossing typical for lanthanides, also other
anomalies for instance from magnetic interaction may by studied in a similar way.
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Chapter 9
Band Gaps and Effective Oscillator Models
for Solid Hydrogen and H2O Ice at High
Pressure

Wai-Leung Yim, Hongliang Shi, Yunfeng Liang, Russell J. Hemley
and John S. Tse

Abstract The validity of simple effective oscillator models for extracting band gap
energies from frequency-dependent refractive index data of high pressure ice and
solid hydrogen was assessed through comparisons of theoretical dielectric response
functions obtained from Bethe–Salpeter equation and band gaps calculated from
the GW method. For model structures of solid hydrogen, the ‘effective’ band gap
trend with pressure estimated from experimental refractive index correlate well with
theoretical predictions. However, this is not the case for ice at high pressure. The suc-
cess in the former can be attributed to the lack of variation in the optical absorption
spectral profile with pressure due to the molecular-like localized electronic excita-
tions. In comparison, the width of the absorption band in ice broadened continuously
with compression. Single oscillator models are not expected to be reliable when
the spectral profile changes significantly with increasing pressure as we predict for
dense phases of solid hydrogen, where the molecules exhibit stronger intermolecular
interactions than in the lower pressure structures of solid hydrogen.
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Introduction

The energy of the gap separating the top of the valence band and bottom of the con-
duction band of an insulator is an important parameter characterizing the electronic
properties of the material [1]. Traditionally, band gap energies can be determined
from the absorption edge from the optical spectra. This technique, however, can-
not be used for the measurement of large band gap materials under pressure when
the absorption edge is higher than that of the anvil (e.g., in diamond anvil cells)
as the incident radiation is blocked by the strong ultraviolet absorption (i.e., above
4 eV or lower depending on the state of stress of the diamond anvils). The pres-
sure dependence of the refractive index and its dispersion of a material at visible
wavelengths contains information on the energy and intensity changes in electronic
excitations at higher energies, including excitations across the band gap. These shifts
have been constrained by analyses of visible refractive index data estimated using
simple effective oscillator models. One such model is that proposed by Wemple and
DiDomenico [2], which was shown to give satisfactory results in more than 100
widely different covalent and ionic solids and even liquids under ambient conditions
[2]. This model has thus been used in several studies to provide constraints on the
evolution of the electronic structure of several materials under pressure, including
estimates of predicted pressures of band gap closure.

The Fabry–Perot interference fringe technique for determination of the refractive
index of materials under pressure was pioneered by Grimsditch et al. [3] and applied
to solid H2 by van Straaten and Silvera [4] to estimate the high pressure equation
of state, a result that significantly underestimated the density later determined by
accurate X-ray diffraction measurements [5]. The method has also been used to
measure the refractive indices of dense rare gas solids He, Ne, and Xe [6], and
molecular solids H2O [7], and H2 [8, 9] at high pressure. Effective oscillator models
(EOM) have often been used to extract band gap information from the experimental
refractive index data. It is pertinent to test the validity of EOMpredictions using direct
electronic structure calculations. As will be presented below, the reliability of EOMs
strongly dependent on the profile of the empty states of the compressed materials.
In solid hydrogen, in which refractive indices have been measured at room and low
temperature to multimegabar pressures (up to 320 GPa) and onset of absorption in
the visible has been observed at the highest pressures [10, 11], the trend in band
gap energies derived from fitting the refractive index dispersion data to EOM is in
good agreement with electronic structure theory. In comparison, in ice VIII, even
though the theoretical refractive indices at high pressure are in good agreement with
experiment, the directly calculated band gaps were found to increase with increasing
pressure in contradiction with the values extracted from the EOM analysis.

Solid H2 holds a special position in high pressure science [12]. It was proposed in
1935 that at sufficiently high pressure, hydrogen would transform from an insulating
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molecular solid to ametallic atomic solid [13]. Later, itwas hypothesized thatmetallic
hydrogen will be a high temperature superconductor [14]. At low temperature, the
metallic phase was proposed to behave like a quantum solid with exotic properties,
such as superfluidity [15]. Most theoretical calculations, albeit without the detail
knowledge of the crystal structures, suggested hydrogen can bemetallized at pressure
higher than 300 GPa and subsequent calculations based on model structures have
predicted that metallic hydrogen can be superconducting with very high critical
temperatures [16, 17]. Because the realization and characterization of metallized
solid hydrogen remains an experimental challenge. Direct measurement of band gap
at high pressure is technically challenging. Significant progress has been made in
recent years that provide constraints on band gap closure [18–20]. The metallization
pressure also may be deduced from band gap closure by extrapolation of the gap
energies obtained from refractive index measurements at lower pressure [11]. It was
estimated that the band gap should close at 14-fold compression or approximately
275 GPa depending on the assumed equation of state [12]. It was also pointed out
that is it crucial to distinguish between the behavior of the direct and indirect gaps.

Zha et al. [7] measured the dispersion in refractive index of H2O ice VII in the
visible spectral range [7] up to 120 GPa (i.e., through the ice VII–X transition). The
effective band gaps estimated from the EOM was found to decrease with pressure.
In addition, the band gap shift shows a quasi-linear relationship with density; from
extrapolation into the highly compressed state gives gap closure around 4 TPa, which
is well beyond the expected stability field of ice X. Theoretical estimates of the
insulator–metal transition range from700GPa to2TPa [21, 22]. Furthermore, density
functional theory (DFT) calculations on a model structure for ice VII found the band
gap should increase with pressure to about 12 eV at 300 GPa [22]. Understanding
these electronic properties of high pressure ices is relevant to planetary physics. It has
been speculated that water exist in high pressure crystalline forms in some planetary
bodies may affect the electrodynamics of these planets. Therefore, it is essential to
understand and resolve the different trends of the band gap energy derived from
refractive index and theoretical DFT calculations.

The purpose of this paper is to assess the reliability of band gap energies obtained
from EOM analysis from experimental refractive index with accurate theoretical
calculations [23–27]. The dielectric functions [1] of selected model structures of
solid H2 at 100–250 GPa and of H2O ice at 2.85–88 GPa were calculated from
the Bethe–Salpeter equation (BSE) method [27]. The refractive indices were then
computed and compared to experiment. The energy gaps were also calculated with
the one-shot GW (G0W0) method [23–26]. We first present computational details
and the selection of the structural models used for solid H2 and dense ice. This is
followed by a discussion of the computational results and comparisons with available
experimental data. The paper ends with an assessment of the EOM approach for
constraining electronic properties of initially insulating materials at high pressure.
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Theoretical Background

Effective Oscillator Model

Relating the calculated frequency-dependent dielectric functions (ε(ω)) with the
measured refractive index, we note that the refractive index is a complex quantity
and the optical spectrum is just the imaginary part (ε′′) of the frequency-dependent
dielectric function [1]. In practice, only this information is needed since the real part
ε′(ω) can be evaluated through the Kramers–Kronig transformation. The frequency-
dependent refractive index (ñ(ω)) is also a complex quantity and is related to the
dielectric function, ñ(ω)2 = ε(ω) = ε′(ω) + iε′′(ω). Wemple and DiDomenico [2]
showed that at low frequencies, a large class of solids can be represented by an EOM,
ñ(ω)2 − 1 = Ed E0/[E2

0 − (�ω)2]2 [2]. This expression defines an “average energy
gap” (Eg) of a single-oscillator with energy E0 in conjunction with a “dispersion-
energy” (Ed ) that describes the energy-dependent dielectric constant with a threshold
absorption energy ET . These energy parameters are empirical terms determined from
the fits to refractive index dispersion data. The parameters, however, are interrelated
and determined by the profile of the optical absorption spectrum (ε′′(ω)), which in
turn can be characterized by spectral moments (nth moment) [2]

Mn = 2

π

∫ ∞

Et

ωnε′′(ω)dω.

It can be shown that, E2
0 = M−1/M−3, E2

d = M3−1/M−3, and E2
g = M1/M−1. Note

that (Ed/E0)
1/2 = (M−1)

1/2. The relevance of the spectral moments will become
clear in the ensuing discussion.

Many-Body Perturbation Theory

It is well known that the DFT method in the local density approximation (LDA) or
gradient corrected density approximation (GGA) often underestimates the electronic
band gap energy of solids. This deficiency arises from the neglect of the electron self-
energies due to Coulomb screening and many-body correlation effects. A solution
to this problem is to employ the GW (single particle Green function G and screened
interaction W ) [24] approximation on the top of DFT calculations within LDA for
the exchange-correlation functional. Recent studies have shown that this combined
approach corrects the largest part of the band gap error and improves the agreement of
theoretical estimates with experiment. Additional complications are involved in the
calculation of the optical absorption spectrum. In the absorption process, a photon is
absorbed, exciting an electron from the valence band to the conduction band to create
an electron–hole pair. In insulating solids, particularly large band gap materials, this
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electron–hole interaction is spatially localized leading to bound state excitations
with large oscillator strengths (excitons) below the valence-conduction energy gap.
The GW approximation deals only with single-particles state and does not take into
account the electron–hole interactions. To this end, a modern approach is to solve
the Bethe–Salpeter equation (BSE) [27] of an effective two-particle Hamiltonian
describing neutral excitations. In passing and pertinent to the present study, using
this technique, Hahn et al. [28] have successfully studied the water system upon
condensation and characterized the nature of the blue shift of the absorption edge
from the gas phase ∼7.4–8.7 eV in ice Ih . Garbuio et al. [29] have reported that the
first two peaks of liquid water can only be reproduced with the inclusion of excitonic
effects.

Computational Details

TheVienna ab intio simulation package (VASP) [30, 31] andQuantumEspresso (QE)
[32] electronic structure codes were used for the hydrogen calculations. For VASP,
the ‘hard’ H_h projected augmented potential (PAW) [33] with Perdew–Bueke–
Ernzerhof (PBE) [34] generalized gradient functional (GGA) was used. The energy
cutoff for the plane wave expansion was 850 eV. For QE, a norm-conserving H PBE
pseudopotential (NCPP) [35] was generated using a radius cutoff of 0.6 a.u. and an
energy cutoff of 85 Ry was used in the calculations. The quality of the pseudopo-
tentials and the choices of plane wave cutoff energies have been verified against all
electron calculations using the ELK code [36] with the PBE functional on a hypothet-
ical solid hydrogen crystal with a face center cubic structure. As shown in Fig. 9.1,
the calculated equations of states by the three different computer codes (viz. VASP,
QE, and NCPP) are almost identical up to 300 GPa. The k points mesh for Brillouin
zone sampling for Pca21, Pa3, C2/c, and Cmca were 10 × 6 × 6, 10 × 10 × 10,
8 × 8 × 8 and 8 × 8 × 8, respectively (the description of the structural models will
be discussed below). For GW calculations, both the VASP [29] and Yambo [37]
codes were used. Since solid molecular hydrogen initially has a large energy gap,
excitonic effects are expected to be important. For this reason, the dielectric func-
tions were calculated by the BSEmethod with the Yambo code where the correlation
effects between electron and hole pairs were taken into consideration. Calculations
with the random phase approximation (RPA) with and without local field effects did
not agree with the more accurate BSE results. It was found calculations including
180 and 60 bands, for GW and BSE receptively, were needed to achieve converged
results. In the BSE calculations, corrections of quasiparticle energies from the GGA
values were mimicked by a scissor operator [38] with a rigid energy derived from the
fits of GW corrected vs GGA energies for the valence and conduction bands. Pilot
GW calculations on the Pca21 at selected pressures using VASP and Yambo show
the average quasiparticle energy corrections are consistent with each other within
0.25 eV. Calculations were performed from 100 to 50 GPa and from 150 to 250 GPa
for model structures considered for phases II and III, respectively.
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Fig. 9.1 Equation of states
of a hypothetical FCC H
lattice (see text) by
pseudopotential (NCPP),
projector augmented
potential (PAW), and all
electrons full potential plane
wave methods compared
with experiment (see
Ref. [39] and references
therein)

Ice was modeled by a periodic system consists of 16 water molecules with
the proton-disorder structural parameters taken from Ref. [40]. Troullier–Martins
pseudopotentials [35] were used to describe valence electron–nuclei interactions
for H and O. Electronic orbitals were expanded in a plane wave basis set using
an energy cutoff of 80 Ry. The PBE [34] exchange-correlation energy functional,
which is known to reproduce ground state properties of ice and water [41], was
used. At each pressure, the calculations proceeded in three steps: (i) Kohn–Sham
eigenvalues and eigenfunctions that enter into the single- and two- particle Green’s
functions were computed after geometry optimization using the Quantum Espresso
package [32]; (ii) the electronic quasiparticle eigenvalues were calculated usingGW
within the plasmon-pole model within the random phase approximation (RPA); and
(iii) the BSE equation was solved for coupled electron–hole excitons. Steps (ii)
and (iii) were performed using Yambo, an ab initio plane wave code for MBPT
and optical properties calculations [37]. 64 valence and 86 conduction bands were
used in the calculation of the Green’s functions with a 2 × 2 × 2 k-point set. The
selected computational parameters were similar to those used previously [28, 29].
To test the convergence, a larger 4 × 4 × 4 k-point set was used on selected sys-
tems and the results were very similar. From preliminary calculations, it was found
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that 16,000 plane waves were sufficient to obtain converged self-energies. For the
plasmon-pole dielectric function [37], an 800 × 800 plane wave basis is necessary
to achieve convergence converged. In ensuing calculations, 16,000 plane waves and
1000 × 1000 plasmon-pole dielectric functions were employed.

Results and Discussion

Solid Hydrogen

The lack of precise experimental information on the crystal structures of the high
pressure phases of hydrogen have been a challenge to understand the behavior of this
important system. At room temperature, hydrogen freezes at 5.4 GPa and adopts a
hexagonal close-packed structurewith rotationally disorderedH2 molecules (phase I)
[12]. Above 100 GPa and temperature below 100K the ‘classical’ rotational motions
ceased and solid H2 enters phase II, an orientationally ordered or broken symmetry
phase. On further compression at low temperature to 150 GPa, phase II transforms
to phase III [42] which is notable for its significantly enhanced infrared H2 vibron
absorption. The strong vibron absorption is attributed to charge transfer between H2

molecules [42], which further increaseswith pressurewithin phase III [42, 43].When
compressed at room temperature the phase I structure persists up to 200 GPa and
then transforms to phase III [43]. Several different structures have been proposed
for phase II and III, and the exact structure under all conditions (e.g., ortho–para
ratio and temperature) is not fully settled. The present work is based largely on
calculations reported inRefs. [44–46] In this study, four different rotationally ordered
structures known by their space groups were considered: Pa3, Pca21, C2/c, and
Cmca (Fig. 9.2). The most stable low temperature structures predicted by theoretical
calculations in the pressure range of interest here are Pca21 [44] and C2/c for
phases II and III, respectively [46]. Based on spectroscopic constraints [47], the Pa3
structure cannot be ruled out for p-H2 in phase II, and this structure was also assumed
in a previous study of the dielectric properties of solid H2 [6]. The energetically
competitive Cmca structure is energetically competitive with C2/c in the region of
phase III stability and therefore also considered [46].

The lowest energy electronic transition for the H2 molecule in the gas phase
appears near 14 eV [39] and for the solid at zero pressure appears at about 11 eV [48].
In phase II the energy gap may be expected to be lower but remains indirect due to
weak interactions between neighboring H2. The Wannier function interpolated GW
band structure for Pca21 calculated at 150 GPa supports this expectation (Fig. 9.3a).
Figure9.4 shows the calculated imaginary part of the dielectric functions (ε′′) of the
Pca21 structure at selected pressures between 100 and 150 GPa. In the orthorhombic
Pca21, the H2 molecules are aligned parallel to the xy plane. Therefore, the xx and
yy components of ε′′(ω) are similar but the zz component differs (Fig. 9.3b). Apart
from a shift to lower energy of the main excitation (peak maximum) from 10 to
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Fig. 9.2 Structural models calculated here for solid hydrogen: Pa3, Pca21, Cmca, C2/c

Fig. 9.3 GW and PBE electronic band structure of Pca21 hydrogen 150 GPa (left) and C2/c
hydrogen at 200 GPa (right)
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Fig. 9.4 a Calculated imaginary part of the dielectric function (ε′′(ω)) of Pca21 hydrogen at
selected pressures. b the xx , yy and zz components of ε′′(ω) at 150 GPa

8 eV as the pressure increases, the spectral profiles are surprisingly similar. In fact,
the calculated full widths at half maximum of the absorption bands increase by
only <0.5 eV over the indicated pressure range. Hemley et al. [8] showed that the
predicted band gaps and refractive indices of hydrogen are linear in density over a
broad range. The refractive index calculated from the theoretical dielectric function
between 100 and 150 GPa are compared with experimental results in Fig. 9.5 where
both pressure and density behavior are shown. The refractive index increases with
pressure in an almost linear manner from 1.9 at 100 GPa to 2.1 at 150 GPa. The
rate dn(ω)/dP is calculated to be 0.006 GPa−1. Within the same pressure region,
the experimental refractive index measured at 300K increased from 2.14 to 2.38 at a
rate of 0.005 GPa−1. The theoretical values are about 10% lower than the observed
results but the trend is similar. It should be noted that even though the refractive
index was measured at room temperature, it was shown that the estimated band gap
energies with the EOM are very similar to the low temperature data. To the first
approximation, the neglect of the temperature dependence on the density at these
pressure is not unreasonable for the present purposes [5, 49].

The relevant indirect and direct band gap energies taken from the GGA and GW
calculations are depicted in Fig. 9.6. Between 100 and 150 GPa, the GGA indirect
gap decreases from 3.8 to 2.8 eV while the GW gap changes from 6.4 to 5.1 eV
or ∼2.8 eV cm−3 mol. In comparison, the GGA direct gap shows a small increase
in energy compared to a gradual decrease from 9.3 to 9.0 eV predicted by GW
calculations. In the same pressure region, the effective band gaps derived from
the fits to the EOM decrease from 6.6 to 5.2 eV with a rate of 3.0 eV cm−3 mol
(dEg/d(ρ/ρ0) = 0.96 eV) [7]. We note that it is not appropriate to compare directly



116 W.-L. Yim et al.

Fig. 9.5 Comparison of the theoretical refractive index for hydrogen in the Pca21 and Pa3 struc-
tures (a) and (b). c Calculated imaginary part of the dielectric function (ε′′(ω)) for Pa3 hydrogen
at selected pressures

Fig. 9.6 GGA and GW
direct and indirect band gaps
for solid hydrogen in the
Pca21 and C2/c structures
as a function of pressure
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Table 9.1 Spectral moments (Mn , n = 1,−1 and −3) of the calculated optical spectrum and
dispersion parameters (ET , E0, Ed , Eg) related the effective oscillator model for Pca21 structured
solid hydrogen

P (GPa) M1 M−1 M−3 E0 Ed Eg
√
Ed/E0

100 584 4.08 11.6 0.592 3.79 12.0 2.53

108 601 4.31 12.4 0.588 3.97 11.8 2.60

116 618 4.52 13.3 0.584 4.15 11.7 2.67

124 634 4.74 14.0 0.581 4.32 11.6 2.73

132 650 4.95 14.9 0.577 4.49 11.5 2.79

140 667 5.16 15.6 0.575 4.65 11.4 2.85

150 683 5.46 16.9 0.569 4.88 11.2 2.93

the effective gap with the theoretical GW indirect gap. Nevertheless, the decrease in
the effective gap energy of ∼0.6 eV from 100 to 150 GPa is consistent with the GW
indirect band gap values. The rate of 3.0 eV cm−3 mol also compares well with the
corresponding GW indirect gap value of 2.8 eV cm−3 mol. Therefore, the energy
gaps extracted from fits to EOM are in good accord with theoretical predictions.

The agreement between the experimental effective band gap energies with the
GW indirect gaps can be traced to the lack of variation on the calculated optical
spectrum profiles (Fig. 9.4). This fact is exemplified from the calculations of the
spectral moments as a function of pressure (Table9.1). As expected, the dispersive
energy, Ed , which governs the distribution of the excitations in the optical spectrum,
only changed slightly from 3.79 to 4.88 eV from 100 to 150 GPa. This lack of
variation may not affect the simple oscillator model significantly; thus, the results
obtained from the dispersion of the refractive indices are reasonable. Incidentally, the
effective band gap Eg determined from the analysis of the theoretical optical spectra
from 12.0 to 11.2 eV is also in good agreement with the variation of the exciton
peaks in the optical spectra (Fig. 9.4). The optical spectra at high pressure become
broader, thereby increasing the dispersive energy Eg so that it cannot be treated as a
constant parameter in the fit to the EOM. As will be shown later (vide supra), similar
results are observed in ice VII–X. The smaller overall band width of the excitations
in the calculated optical spectra for Pca21, and Pa3 hydrogen can be attributed to
small intermolecular interactions and the electronic transitions do not deviate too
much from isolated H2 molecules.

The calculated ε′′(ω) and refractive index of the Pa3 H2 at 100–150 GPa are
shown in Fig. 9.5. The optical spectra and the calculated refractive index are remark-
ably similar to that of the theoretically predicted Pca21 structure. Between 100
and 150 GPa, the refractive index again increases linearly from 1.82 to 1.98 with
a pressure derivative dn(ω)/dP of 0.003 GPa−1. In comparison with the Pca21
model both the absolute value and the pressure derivative of the refractive index are
slightly smaller. Once again the profiles of the optical spectra change little with pres-
sure. These results are to be expected since interactions in the Pa3 structure at the



118 W.-L. Yim et al.

Fig. 9.7 a Calculated Imaginary part of the dielectric function (ε′′(ω)) ofC2/c solid H2 at selected
pressures. b Comparison of the theoretical refractive index for solid H2 in the C2/c and Cmca
structures

densities considered are relatively weak. We further infer that the refractive index
is not affected adversely by the details of the crystal structure. Therefore, the band
gap trend derived from the EOM is reliable and the gaps energies are close to the
GW indirect gap or the absorption band edges. The hexagonal variant of the Pa3
structure was considered in a previous theoretical study [9] using the semi-empirical
Xα [50] model for the exchange-correlation potential. The dielectric functions were
evaluated from first-order perturbation theory. The results are qualitatively similar
to the present study. At approximately 93 GPa, the imaginary part of the dielectric
function also shows a narrow peak with an absorption edge at 9 eV. The calculated
refractive indices were also lower than the experimental data.

Since there is experimental evidence indicating significant intermolecular inter-
actions between H2 molecules [8, 45] in phase III, one would expect differences in
the as-yet unmeasured ultraviolet optical spectra compared to lower pressure phases
(see also Ref. [51]). Calculated optical spectrum for the H2 in the C2/c structure
at several pressures are presented in Fig. 9.7a. The calculated onset of the optical
excitations is significantly lower than for Pca21. At 160 GPa, the absorption edge
is ∼5.6 eV. At the highest pressure studied here (300 GPa), the onset is lowered to
3.6 eV. The theoretical results suggested the absorption edge drops into the visible
range at below that of the diamond anvils at the highest pressures and thus observ-
able in experiments at these conditions. Visible absorption is in fact observed at these
pressures for phase III, though measurements to date indicate a broad, featureless
absorption [10, 11, 20, 43, 52]. In this regard, we note that the absorption edge may
depend on the crystal structure. In addition, the optical spectra calculated for are
more complex strains and absorptions. Instead of a single strong peak, several peaks
spreading over 4–5 eV are predicted and the width of the bands; thus the dispersive
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energy Eg is on longer constant. In this regime, the effective band gap determined
from the EOM is not reliable.

The calculated refractive indices of the C2/c and Cmca models are compared in
Fig. 9.7b. At 160 GPa, the theoretical refractive index for C2/c is 2.41 and 2.58 for
the Cmca structure, a sudden jump relative to the Pca21 or Pa3 structures. A larger
refractive index is the consequent of lower onset energy of electronic excitations. It
is important to note that changes in the refractive index with pressure, dn(ω)/dP ,
of both structural models are quite similar and close to 0.006 GPa−1. There are
no experimental data available for direct comparison. However, the change of the
refractive index (1/n(ω))dn(ω)/dω over a broad pressure range up to 220 GPa has
been reported. A discontinuity is noticeable at 150 GPa (ρ = 0.41 mol cm−3) [9].

H2O Ice

Before proceeding to the dense ices, the optical spectra of ice and water at ambi-
ent pressure were computed to verify the computational procedures. The results are
compared with experiment [53–56] and previous theoretical calculations (Fig. 9.8)

Fig. 9.8 Calculated optical
spectra for ice Ih , and liquid
water at ambient pressure
and ice VII at selected
pressures. The theoretical
spectra for ice Ih and water
are compared with
experimental data (shown on
the top of the respective
theoretical pattern). For
liquid water, the solid curve
is the measurement by
inelastic X-ray scattering
[53] and the short dash curve
from vacuum ultraviolet
absorption [54]
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Fig. 9.9 Calculated DFT
band gap (squares), GW
band gap (circles) and
optical band gap (triangles)
of ice at different volumes
compared with results
deduced from refractive
index data (solid line). The
dashed lines are guides to the
eye for calculated GW and
BSE band gaps. Hydrostatic
compression is assumed

[16, 28]. The GW band gap of ice Ih of 8.9 eV is very close to the experimental
estimate of ∼9.0 eV [57]. The band gap of liquid water averaged over eight configu-
rations randomly selected from themolecular dynamics trajectory of 8.4 eV is within
the experimental estimated range of 8.7 ± 0.5 eV [58], consistent with previousGW
calculations [29, 59]. From the differences between the RPA and BSE spectra, it is
clear that excitonic effects are is substantial in these H2O phases.

The calculated optical spectra for ice VII using BSE and GW -RPA at selected
pressures are shown in Fig. 9.8. The band gap widens due to Madelung effects as the
system becomes more ionic at high pressure [22]. It is obvious that excitonic effects
are also important in ice at these pressures. The onset of the absorption edge of the
calculated optical spectra was found to increase with increasing pressure. The band
structure calculations predict that, ice VII has a direct band gap. The GW band gap
can be determined from the difference between the quasiparticle energies at the top
of the valence band and the bottom of the conduction band at �. The GW band gaps
at different pressure are shown in Fig. 9.9. A BSE band gap may be defined as the
difference of the energy at the onset of the exciton band and the quasiparticle GW
band gap (Fig. 9.9). As the pressure increases, the difference between the GW and
BSE gap grows. Thus, the electron–hole pairs become more strongly bound with
density, leading to stronger interactions. The theoretical GW band gap increases
almost linearly from 8.8 eV at 2.85 GPa to 12.5 eV at 88 GPa.

The above calculations contrast with the results of simple, effective band gap
energies derived from refractive index data, which show a decrease from 7 to 5.6 eV
in the same pressure range. To explain this discrepancy, the refractive indices of
the ice model under pressure were calculated. As discussed above, the optical spec-
trum is derived from the imaginary part ε′′(ω) of the frequency-dependent dielectric
function, ε(ω) = ε′(ω) + iε′′(ω) = ñ(ω)2, and the real part ε′(ω) can be calculated
through the Kramers–Kronig relations. To assess the numerical accuracy, we also
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Fig. 9.10 Comparison of
calculated refractive index
dispersion functions of ice at
five pressures with
experimental data (inset) [7].
The open green triangles are
calculated refractive indices
at 88 GPa employing the
effective oscillator model
with energy parameters
extracted from the moments
of the theoretical optical
spectrum at 88 GPa (color
figure online)

computed the refractive index of ice Ih and water at ambient pressure (Table9.2).
For water at ambient pressure, the calculated value at 589.29nm from the average of
8 liquid water1 configurations of 1.29 is close to the experimental value of 1.33 [60].
Similarly, the refractive index of ice Ih at 589.29nm is calculated to be 1.28, again
very close to the observed value of 1.31 [61]. The refractive indices calculated from
the theoretically optical spectra of ice VII are compared with the observed values in
Fig. 9.10. The predicted pressure trend is similar to experiment, though the calculated
refractive indices are systematically lower. The origin of this difference remains to
be determined. Notably, the refractive indices are found to increase with pressure.
For example at 1.7 eV, from 2.85 to 40 GPa, the refractive index changed from 1.43
to 1.59, a net difference of 0.16 (Fig. 9.10). In comparison, the observed refractive
index increased by 0.13, from 1.59 to 1.72 at 6.4 to 34.9 GPa. Thus, the pressure

1The structures of water were selected from the trajectory of an NVT ab initio molecular dynamics
simulations (CPMD) calculation at 320K using a model consisted of 316 water molecules in a
cubic unit cell. The starting structure was taken as ice VII (from Ref. [37]) but the density was
scaled to 321.320 g/cm3. A fictitious electron mass of 200 a.u. and a time step of 326 a.u. were used
for the integration of ionic motions. Brillouin zone sampling was restricted to the � point. After
randomization of the coordinates and thermal equilibration, MD was performed for 327.322 ps.
Eight snapshots were taken every 320.327 ps.
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dependence or the predicted refractive indices are in satisfactory agreement with the
experimental analysis, yet the infrared band gap energies differ.

To understand this discrepancy, we consider the assumptions underlying the effec-
tive oscillator model. As discussed above, effective oscillator models typically define
an “average energy gap” (Eg) of a single-oscillator with energy E0 in conjunction
with a “dispersion-energy” (Ed ) to describe the energy-dependent dielectric constant
with a threshold absorption energy ET . To test the validity of the EOM, E0, Eg and
Ed were evaluated for water, ice Ih and ice VII from the moment relationships from
the theoretical optical spectra (ε′′(ω)). Results are summarized in Table9.2. ET was
estimated from the onset of the optical spectrum. The calculated dispersion parame-
ters, E0 and Ed , for water of 10.98 and 11.10 eV, respectively can be compared with
the empirical values of 13.0 and 9.9 eV [7]. The “average” energy gap Eg using the
theoretical parameters is 13.86 eV is much larger to the GW energy gap of 8.4 eV. It
should be noted that Eg is a hypothetical average gap energy and no specific physical
significance can be attached to it. Themost revealing result is the effect of pressure on
the dispersion-energy Ed . As the pressure increases, Ed becomes larger. The value
of Ed at 88 GPa almost double that at 41 GPa. Since, there is a large redistribution
of oscillator strengths in the optical spectra. In fact, this is borne out from inspection
of the ε′′(ω) profiles (Fig. 9.10). As pressure increases, ε′′(ω) becomes broader and
the spectral weight shifts to higher energy, and M−1 becomes larger than M−3. To a
lesser extent, E0 also increases from 11.93 eV at 2.85 GPa to 15.09 eV at 88 GPa.
Within the EOM, the frequency-dependent refractive index (n(ω)) is related to E0

and Ed , as n(ω)2 − 1 = Ed E0/(E2
0 − �

2ω2)2. The refractive index at 88 GPa was
computed using the theoretical Ed and E0 values listed in Table9.2. The calculated
n(ω) is ∼2.02, which is significantly higher than the first-principles result of ∼1.65.
Moreover, the theoretical ratio (Ed/E0)

1/2 ((M−1)
1/2) is found to increase with pres-

sure (Table9.2), in contrast with the almost constant value of 1.5 obtained from the
fitting of experimental refractive indices [7]. The analysis shows that in this case the
optical spectrum cannot be adequately described by a few energy parameters and
the EOM is insufficient to describe the electronic spectrum of ice over this range. A
similar result was recently reported by Pan et al. [62].

We emphasize that purely hydrostatic conditions were considered in the present
calculations. Whereas these conditions may be reasonable for hydrogen, which
remains comparatively weak over a broad range of pressures, ice is a strong solid
and supports a significant uniaxial stress beginning at modest pressures [62]. Fur-
thermore, it has been established that the direct band gap of diamond, the strongest
known material, increases with pressure, but it decreases as a function of uniaxial
strain in different directions [63]. This result is consistent with the decreasing effec-
tive absorption edge of strained diamond anvil windows in high pressure experiments
[64], and thus the increase in the effective index of refraction that would be inferred
if it were assumed to be isotropic.
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Conclusions

The electronic band structures and optical spectra of model structure for H2O ice and
solid molecular hydrogen high pressure have been calculated using a combination
of first principle methods. Specifically, refractive indices were evaluated from the
theoretically determined frequency-dependent dielectric function for the structures.
Excitonic effects were found to be very important. In both cases, the predicted trends
on the pressure dependence of the refractive index are consistent with experiments.
However, in ice the band gap energy is found to increase with pressure, which con-
trasts with that determined from the effective oscillator model. This discrepancy
is shown to be inadequacies in the description of the ultraviolet optical spectrum
because of limited empirical energy parameters in the model. In solid hydrogen, the
predicted decreasing band gapwith pressure agrees with the results obtained from the
analysis of experimental refractive index by EOM. The success of the EOMmodel is
due to the electronic excitations that remain molecular-like, with little dispersion in
the profile of the optical spectra with pressure for the model lower pressure structure.
In contrast, the profile of the optical spectra changes with pressure for denser struc-
tures having more strongly interacting molecules; here the EOM is not expected to
be valid. In this regard, the EOM is expected to work well for rare gas solids at high
pressure. Further improvement on the theoretical approximations may be needed in
order to bring the theoretical results into better quantitative agreement with exper-
iment. Moreover, the effects of deviatoric stresses and uniaxial strains need to be
included in both the analysis of the experimental data as well as explicitly in the
calculations.
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Chapter 10
Nonequilibrium Steady States and Electron
Transport in Molecular Systems

I. Deretzis, S.F. Lombardo, G.G.N. Angilella, R. Pucci and A. La Magna

Abstract We discuss theoretically the correlation between atomic configurations
and coherent stationary electronic transport in molecular systems contacted with
metallic electrodes in stationary conditions. The nonequilibrium Green’s function
formalism is discussed as preliminary theoretical frameworkwhich allows, bymeans
of a suitablemapping of electron-onlyHamiltonians, the bridging between the atomic
structure of the molecule+contacts system and the electron dynamics. Contrarily to
the equilibrium case, the lack of a variational principle in nonequilibrium conditions,
even when the stationary state is achieved, does not permit a correct formal approach
to the correlation between the electron state in a biased molecular device and the
molecule’s configuration. A conjecture is proposed to extend the free energy Mer-
min’s functional, and the related variational procedure, for a system in contact with
two electron reservoirs ruled by two different electrochemical potentials. Results of
the proposed variational procedure are presented for realistic molecular systems, and
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the predicted anomalous effects of the biasing on both the atomic configurations and
the transport features are discussed.

Introduction

Fundamental investigations of the nonequilibrium electron kinetics in nano- and
molecular- systems in contact with macroscopic electrodes have been strongly
solicited by the recent advancements in the fields of nano- and molecular- elec-
tronics [1]. Moreover, these studies could also significantly support the electronic
characterization techniques with atomistic resolution, like tunneling spectroscopy
[2]. Contrary to the case either of conventional or of mesoscopic electron devices,
these systems manifest transport features which strongly depend on their internal
atomic configurations and on the atomic structure in the contact regions. Moreover,
also spin and charge instabilities of the electron system have a crucial role on the
electrical characteristic of these “few atom” devices [3].

The electron phonon interaction or,more generically, the effects of nuclear dynam-
ics on the electron could impact the electron transport in molecular components in
a way which cannot be quantitatively addressed by any perturbative theory. In par-
ticular, molecular devices manifest peculiar nonlinear characteristics (e.g., negative
differential resistance (NDR) or switching) [4–6], which can only be properly mod-
eled by releasing the common assumptions of the electron transport theory: i.e.,
(a) the derivation of the electron structure “freezing” the nuclei at the equilibrium
position, and (b) the kinetic pertubative approach to evaluate the scattering rates.
Recent alternative transport theories have indicated that the strong coupling between
a “nonstatic” nuclear configuration in molecular systems and the “nonequilibrium”
electron population is a possible explanation of these effects [4, 6, 7]. As a conse-
quence, considering model Hamiltonians, anomalous electron dynamics have been
obtained in the framework of nonequilibrium polaronic-like (i.e., variational) solu-
tions, derived in the adiabatic [5, 7], anti-adiabatic [8], and intermediate [4] regimes
of the interactions between electron and molecule deformations.

In this chapter these issues will be reviewed discussing the status of the method-
ologies and the unsolved issues which merit further in-depth analyses. This chapter
is organized as follows. In section “Quantum electron transport formalism,” the non-
equilibrium Green’s function formalism is presented as the reference approach to
quantify the coherent electron transport in molecular systems. The importance of a
correct determination of the atomic configuration for a contacted molecule is dis-
cussed in the beginning of section “Atomic configurations and space distribution of
mean-fields in nonequilibrium.” In the same section the problem of the variational
principle in nonequilibrium conditions induced by the biasing is discussed, and a
suitable approach to solve this question is proposed and applied to polyyne-based
devices. In section “Generalized trial states in nonequilibrium variational theories”
the importance of the choice of the correct variational state for the whole range of
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the coupling strength between molecules and contacts to study the electron transport
is analyzed. Finally, section “Conclusions” contains some concluding remarks.

Quantum Electron Transport Formalism

Electron transport in molecular systems cannot be correctly addressed by any semi-
classical approach generalizing the well-known drift diffusion model extensively
applied to the study of the behavior of electronic devices. Indeed, a full quantum
transport formalism is needed when the system size is well beyond the scattering and
coherence characteristic lengths as in the case of a molecular system [9]. A reliable
and convenient approach relies on the combination of the effective single-particle
scattering theory using Green’s function techniques with the Landauer derivation
for the transmission probability and the current [10]. This purely quantum theory is
very versatile since it allows immediate generalizations and further advancements
compatible to the underlying mean-field approximation. A brief overview of this
formalism, prerequisite of the subsequent theoretical derivations, is presented in this
Section.

Nonequilibrium Green’s Function

The Green’s function technique was introduced to isolate, and approximatively com-
pute, the effects of the part of the Hamiltonian (often the many-body component)
which does not allow a direct, possibly analytical, solution of the quantum problem
under study. In its nonequilibrium version this isolated interaction-like part includes
also the alteration to the quantum state of the system under study due to the presence
of contacts between a finite and two or more infinite systems [10–14].

Here, we consider the transport problem for a two-terminal geometry, where a
finite device part is embedded between semi-infinite left and right contacts, which do
not interact directly; however, the formalism can be extended to geometrieswithmore
than two terminals. Assuming that, using a suitable basis, a matrix representation of
the full Hamiltonian can be obtained as [9]

H =
⎛
⎝

HL −τL 0
−τ

†
L H0 −τ

†
R

0 −τR HR

⎞
⎠ , (10.1)

where H0 is the finite Hamiltonian of the molecular device, and HL ,R are the (semi-
infinite) bulk contact Hamiltonians, while τL ,R describe the coupling between con-
tacts and the device. In the case of an orthonormal basis set, the Green function G
can be defined as the solutions to the following formal equation
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(E I − H)G (E) = I, (10.2)

where E is the energy and I is the unitary matrix, which has to be replaced by
the overlap matrix between basis functions for a nonorthonormal basis. G is the
response in one state (e.g., orbital+position) of a system within a multiterminal
geometry from an excitation that takes places in a different state of the same sys-
tem. It could be formally related to the scattering matrix (S-matrix) [10], albeit its
applicability is more direct and general. Due the formal pole structure of Eq.10.2,
two equivalent solutions, which are called the advanced (G A) and the retarded (G R)
Green’s functions, can be derived, and they physically represent an incoming and an
outgoing wave that are formed due to the same excitation. In the continuum counter-
part of Eq.10.2 we can obtain mathematically one of the two solutions by imposing
suitable boundary conditions, which in our case correspond to adding or subtracting
an infinitesimal imaginary part to the energy. It is also straightforward to show that
(G R)† = G A [9].

We can separate the Green’s function that corresponds to the molecular system
(G0) and the contacts (GL ,R), and by substituting in Eq. (10.2) we have

⎛
⎝

E I − HL −τL 0
−τ

†
L E I − H0 −τ

†
R

0 −τR E I − HR

⎞
⎠

⎛
⎝

GL GL0 GLR

G0L G0 G0R

GRL GR0 GR

⎞
⎠ =

⎛
⎝

I 0 0
0 I 0
0 0 I

⎞
⎠ , (10.3)

which is equivalent to the following set of coupled matrix equations:

(E I − HL)GL0 − τLG0 = 0, (10.4a)

−τ
†
LGL0 + (E I − H0)G0 − τ

†
RGR0 = I, (10.4b)

(E I − HR)GR0 − τRG0 = 0. (10.4c)

In this coupled system Eqs. (10.4a) and (10.4c) give matrices with (∞, N ) dimen-
sions, whereas Eq. (10.4b) has (N , N ) dimensions, where N is the dimension of the
finite space where the molecular device Hamiltonian makes its action. If we solve
for GL0 and GR0, we have

GL0 = (E I − HL)
−1τLG0 = gLτLG0 (10.5a)

GR0 = (E I − HR)−1τRG0 = gRτRG0, (10.5b)

where gL ,R are the Green functions of the left and right contact, respectively. These
two (∞, N ) matrices (in the real-space) can be projected onto (N , N ) ones by sub-
stitution back into Eq. (10.4b) in order to obtain a finite expression. Such a procedure
usually takes advantage of the semi-infinite lattice symmetry of the two leads allow-
ing ak-space transformation of the real-spacematrices gL ,R(r) into gL ,R(k) followed
by their backward substitution in real coordinates. For a specific case, this can be done
either analytically [10], while iterative procedures allow the numerical approach to
this problem in the generic case [15]. The obvious advantage of such an approach is
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the use of (N , N )matrices incorporating the effect of infinite ones. From Eq. (10.4b)
we now obtain

− τ
†
LgLτLG0 + (E I − H0)G0 − τ

†
RgRτRG0 = I. (10.6)

If we now define the self-energies of the two contacts as

ΣL = τ
†
LgLτL (10.7a)

ΣR = τ
†
RgRτR, (10.7b)

we can obtain the final version of the nonequilibrium Green’s function matrix of the
system that takes also account for the interaction with the two contacts via the two
self-energy terms:

G = (E I − H0 − ΣL − ΣR)−1. (10.8)

Conceptually, one can think ofΣL ,R as matrices that account also for the exact effect
of the leads in terms of effective scattering terms.As a consequence, they are formally
considered as other types of interactions that take place in themolecular device during
conduction (e.g., electron–phonon interactions [10, 16]), although such extensions,
to be consistent with the one particle description here presented, turn out to be only
approximate.

In the following subsections, we can therefore focus on the quantities relevant to
transport that can be derived once the Green function is computed.

Spectral Functions

The spectral functions A and Γ of the device and the contact respectively are defined
by the anti-Hermitian part of the Green’s function and the self-energy’s function
respectively:

A = i(G − G †) (10.9a)

Γ = i(Σ − Σ†). (10.9b)

Usually, only A is referred to as the spectral function, and is related to the density
of states of the system, while the Γ matrix is also called broadening matrix and
physically represents the strength with which the contacts are bound to the device.

For the derivation of the relationship between the spectral function and the density
of states we need to expand Green’s function in the set of eigenfunctions. Without
lack of generality we start from an orthonormal set:

〈ψβ,ψα〉 = δβ,α, (10.10)
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where δβ,α is aKronecker delta. FromEq. (10.2) and considering the retardedGreen’s
function by adding an infinitesimal imaginary part to the energy, we obtain:

G R =
∑

α

|ψα〉〈ψα|
E + iη − εα

, (10.11)

where η is an infinitesimal positive number, and εα is the eigenvalue corresponding
to the eigenfunction ψα(r). From Eqs. (10.9a) and (10.11), we have:

A = i
∑
a

(
1

E + iη − εα

− 1

E − iη − εα

)
|ψα〉〈ψα|

=
∑
a

2η

(E − εα)2 + η2
|ψα〉〈ψα|. (10.12)

Since η → 0+, by integrating over E with a test function, we obtain [10]:

A = 2π
∑
a

δ(E − εα)|ψα〉〈ψα|. (10.13)

We know that the expression for the density of states of the system is [10]:

D =
∑
a

|ψα|2δ(E − εα). (10.14)

From the last two equations we obtain:

2πD = Tr A. (10.15)

Similarly, the broadening matrix can also be related to the electronic structure
of the system. As its name suggests, it gives rise to a broadening of the energy
levels in the channel, proportional to the strength of the coupling between the device
and the contacts. Furthermore, it introduces a finite lifetime for the electronic states,
suggesting that an electron introduced into a state after some time should escape to the
contact. Reference [10] proposes a detailed mathematical and conceptual derivation
of these physical aspects starting from simple toy models all the way up to second
quantization arguments. Finally, a useful identity between A and Γ that can be found
easily is [16]

A = GΓ G † = G †Γ G . (10.16)
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Nonequilibrium Electron Density

The electron density distribution in nonequilibrium conditions differs from the equi-
librium one, since, when the device is in contact with reservoirs at different Fermi
energies, each one of them tries to align the electrochemical potential device to its
own Fermi level by injecting or subtracting electrons. The density distribution can
be computed from the density (matrix) operator, which, if we consider the system in
equilibrium (i.e., the molecular device connected to just one contact), is given by

ρ =
∑

α

f0(εα − μ)|ψα〉〈ψα|, (10.17)

where μ is the electrochemical potential of the contact, and

f0(εα − μ) = 1

1 + e(εα−μ)/kBT
(10.18)

is the statistical Fermi–Dirac distribution of electrons. Equation (10.17) can be rewrit-
ten within the single-particle scattering theory notation as [10]

ρ = 1

2π

∫ ∞

−∞
dE f0(E − μ)A

= 1

2π

∫ ∞

−∞
dE f0(E − μ)[i(G − G †)]

= 1

2π

∫ ∞

−∞
dE f0(E − μ)GΓ G †. (10.19)

If we generalize now the previous equation to the case of two contacts, we obtain
the final form for the equation of the density operator as

ρ = 1

2π

∫ ∞

−∞
dE ( fLGΓLG

† + fRGΓRG
†), (10.20)

where fL ,(R) is the Fermi–Dirac function of the left (right) contact.

Transmission

The transmission formalism was developed by Landauer and afterwards expanded
by Büttiker for the calculation of current in point-like contacts/devices on the basis
of the summation of the transmission probability of each transverse mode of the
device channel [10]. This theory leads to the well-known Landauer’s formula for the
conductance:
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G = 2e2

h
MT . (10.21)

Here, G is the conductance, M the number of transverse (or propagating) modes
of the device, and T the average probability that an electron injected from the one
lead will transmit to the other. By defining T (E) = MT as the total transmission
probability of the channel for energy E , it is possible to demonstrate [10] that in the
case of coherent transport the total current can be derived from the relation:

I = 2e

h

∫ ∞

−∞
dE T (E)[ fL − fR]. (10.22)

Here, the contact Fermi functions represent the driving force for the propagation of
current in the sense that only carriers with energies in between the electrochemical
potentials of the two leads participate in the conduction process. The transmission
here is a general formal concept that can be computed within the single-particle
scattering formalism.

Out of equilibrium, the current that passes from a contact to the device is the
difference of an in-flux and an out-flux current [10]. We can write the out-flux from
the device to the left lead as:

Iout,L = e

h

∫ ∞

−∞
dE Tr(ΓLρ), (10.23a)

and the out-flux from the device to the right lead as:

Iout,R = e

h

∫ ∞

−∞
dE Tr(ΓRρ), (10.23b)

where ΓL ,(R)/h represent the rate at which electrons escape from the device to the
left (right) contact (considering that Γ matrices have the dimensions of energy), and
ρ is the density matrix given by Eq. (10.20). At equilibrium, the in-flux current from
the contacts to the device is equal to the out-flux current:

Iin,L = e

h

∫ ∞

−∞
dE Tr(ΓLρeq) (10.24a)

Iin,R = e

h

∫ ∞

−∞
dE Tr(ΓRρeq), (10.24b)

where

ρeq = 1

2π

∫ ∞

−∞
dE ( fL [GΓLG

† + GΓRG
†])

= 1

2π

∫ ∞

−∞
dE ( fR[GΓLG

† + GΓRG
†]), (10.25)
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sinceμL = μR , at equilibrium. In the nonequilibrium case the net current for contact
L is

I = Iin,L − Iout,L = e

h

∫ ∞

−∞
dE Tr(ΓLGΓRG

†)( fL − fR). (10.26a)

With a similar procedure, for the second contact we can derive that

I = Iin,R − Iout,R = e

h

∫ ∞

−∞
dE Tr(ΓRGΓLG

†)( fL − fR). (10.26b)

If we multiply Eqs. (10.26a) and (10.26b) by 2, in order to account for spin
degeneracy, and compare them with Eq. (10.22), we can write the transmission
probability as

T (E) = Tr(ΓLGΓRG
†)

= Tr(ΓRGΓLG
†)

= Tr(ΓL AR)

= Tr(ΓR AL). (10.27)

Electronic Hamiltonians

The theoretical evaluation of quantum transport properties follows the preliminary
determination of the electronic structure of the system under study by determining
the equilibrium atomic configuration and using the proper electronic Hamiltonian.
To this aim, ab initio and semiempirical approaches can be applied with an accu-
racy/efficiency mismatch between them. Ab initio (or first principles) methods use
only fundamental physical constants and calculate self-consistently the wavefunc-
tion of the studied system on the basis of the (equilibrium) variational principle of the
energy minimization. Semiemprirical methods on the other hand use parametrized
Hamiltonians that have to be calibrated ad hoc for the system under study on the
basis of experimental data or first-principles calculations.

It is noteworthy that the concept of self-consistency, which is on the basis of
the ab initio approach, should be partially extended also to the case of a transport
study applying semiemprirical models due to the effect of nonequilibrium charging
of the molecular device (i.e., the deviation of the electron density distribution with
respect to the equilibrium case). This additional electron interaction can be included
in the single-particle scattering theory, here discussed by means of a self-consistent
potential Usc that is a functional of the electron density [17]

H = H0 + qUsc, (10.28)
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where H0 is the bare device Hamiltonian without the presence of nonequilibrium
electron–electron interactions and q is the electronic charge. The calculation of Usc

takes places by numerically solving the Poisson equation

∇2Usc = −ρ f /ε, (10.29)

whereρ f is the nonequilibriumdensity ofmobile charges that can be easily calculated
within the Green function method [17], and ε is the dielectric constant of the material
in which the device part is embedded.

Summary

The nonequilibrium Green function is a quantum mechanical tool, in the single-
particle or mean field approximation, for the theoretical study of transport in molec-
ular devices that can incorporate efficiently all the scattering mechanisms (contacts,
electron–electron, electron–phonon). Derivation of all quantities relevant for trans-
port can take place with the appropriate definition of the Green matrix. This involves
the electronic Hamiltonian written at an appropriate basis set along with information
on electron–electron interactions (self-consistent potential Usc), scattering by the
contacts (self-energy matrices ΣL ,R), and other scattering mechanisms (self-energy
matricesΣext ). From theGreenmatrix derivation of the density of states, transmission
probability, charge carrier density, and current becomes straightforward. The theory
can also be extended to calculate conduction for systems where symmetry-breaking
mechanisms (e.g., spin or charge density wave) could occur. On the other hand, crit-
icism to the Landauer–Büttiker approach derives from the intrinsic single-electron
picture of the transmission probability that does not take into account for many-body
effects, which are enhanced in the nanoscale. Moreover, the variational principle
based on the energy functionals is strictly valid in thermodynamic equilibrium con-
ditions (i.e., in the presence of a single lead/reservoir), and eventual alterations of the
atomic configuration or order parameters due to nonequilibrium effects cannot be
properly computed, not even in stationary condition, being usually assumed frozen
to the ones estimated in equilibrium conditions.

Atomic Configurations and Space Distribution
of Mean-Fields in Nonequilibrium

Electronic structure and transport of molecular systems are strongly related to the
atomic configurations of the contacts+device systems. As example of the relevance
of such effects, in Figs. 10.1 and 10.2 we show the modification of the equilibrium
transmission spectra for a carbon nanotube resistor contacted to two gold leads when
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Fig. 10.1 Transmission as a function of energy for four snapshots of a (10, 0) 8-unit-cell system
with a varying contact distance of 2, 1.5, 1 Å

the atomic configurations in the contact region only are modified by changing the
average distance (Fig. 10.1), or the bond symmetry at fixed distance (Fig. 10.2; see
Ref. [17] for a complete discussion on this issue).

This interconnection between electron transport and atomic configuration is
enhanced in the presence of a symmetry-breaking induced by electron–electron and
electron-deformation (e.g., phonon) interactions. For example, carbon based chains,
both pure (i.e., polyyne) or conjugated (i.e. polyacetylene) could manifest dimerized
(stable) and symmetric (metastable) states with semiconductor andmetallic behavior
respectively, whereas the instability of the symmetric configuration is caused by the
electron–phonon interaction. In general, instabilities of the electron system could
lead to a formation of charge or spin density waves (e.g., an antiferromagnetic state,
as in the case of graphene ribbons with zig–zag geometry [18–20]) with the consis-
tent gap opening in the electron structure at the Fermi level, where for a symmetric
configuration the electron structure should have a nonzero density of states. In some
cases these density waves could be also related to oscillating bond length variations.

The study of the instabilities of many electron systems is a wide and well studied
topic of modern solid-state physics. However, thermodynamic equilibrium is usu-
ally assumed for the theoretical approaches applied to study this issue; including the
powerful variational methodologies often used to calculate self-consistently optimal
atomic configurations and/or the space distribution of the mean value of the order
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Fig. 10.2 (Upper panel) Contact-nanotube interface configurations used to calculate transmission
spectra shown in the lower panel for a (9, 0) (upper line) and a (10, 0) (lower line) CNT: a ‘standard’
configuration used throughout this paper; b anticlockwise rotation of the contact with respect to the
CNT by 10◦ and 20◦ for the (9, 0) CNT, and by 9◦ and 18◦ for the (10, 0) CNT; c an ‘arbitrary’
rotation andmovement of the contactswith respect to the center of theCNTs (the twofigures perCNT
represent left and right contacts). (Lower Panel) Transmission as a function of energy for a (9, 0)
and a (10, 0) CNT with altered contact-tube geometrical configurations with respect to previous
calculations (gray fillings): a (9, 0)CNTwith one contact rotated in an anticlockwisemanner by 10◦
(blue line) and 20◦ (red line); b (10, 0) CNT with one contact rotated in an anticlockwise manner
by 9◦ (blue line) and 18◦ (red line); c (9, 0) CNT with both contacts rotated by 10◦, −10◦ (blue
line) and 10◦, −20◦ (red line), respectively; d (10, 0) CNT with both contacts rotated by 9◦, −9◦
(blue line) and 9◦,−18◦ (red line), respectively; e (9, 0) CNTwith both contacts rotated and moved
according to c in the upper panel; f (10, 0) CNT with both contacts rotated and moved according
to c in the upper panel (color figure online)
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parameters (e.g., magnetization or other fields which break the symmetry of the ideal
state). Moreover, in absence of further information, the procedure for the transport
calculation for molecular devices is preceded by determination of the optimal con-
figuration at equilibrium: this configuration is then frozen andNEGF is applied using
the correspondent electron Hamiltonian.

The assumption of the stable configuration in equilibrium conditions could be
too stringent for several molecular systems. Indeed, a series of experiments have
demonstrated, in a wide class of structures, that nonlinear transport behavior (e.g.,
NDR or switching) occurs in molecular devices also caused by atomic configuration
changes provokedby adifferent (nonequilibrium) state of the electron system induced
by the biasing [4, 6]. Anyhow, the correct theoretical framework where such effect
could be studied is still under debate.

In the following, we present a theory for the understanding of anomalous elec-
tron dynamics based on a procedure which extends to biased systems the variational
principle well established in the thermodynamic equilibrium. The method can be
generally applied to any single-particle formulation (including mean field approx-
imation); moreover, it is consistent with Laundauer’s approach to the electronic
transport (and its extension in the NEGF formulation) since it relies on the same
general framework.

The Nonequilibrium Variational Theory

Variational theories have the merit to overcome the limits of pertubative methods
reshuffling the zero-point state of the system. In general, they are based on the trial
states, which are closer in terms of symmetry to the exact state and depend on
additional variables/fields to be suitably optimized. As a consequence, in solid state
applications, the procedure results often in the reduction of the original Hamiltonian
to an effective pure electron one H{ui }, where the many-body effects or the role
of additional quantum variables (e.g., nuclear positions) are taken into account by
means of a given set {ui } of variational variables. This procedure is rather simple
in the adiabatic approximation for the nuclear motion where the set {ui } practically
coincides with nuclear (quasi classical) coordinates, while the theory requires a more
complex ansatz in other cases [4].

Here, we assume that the reduced Hamiltonian H{ui } is a single-particle approx-
imation of the complete one. In the equilibrium conditions, i.e., assuming the system
in contact with a single-particle’s reservoir at temperature T and chemical potential
μ, we can determine the optimal values of the variational variables minimizing the
free energy functional [21]

Ωμ{ui } = −kBT
∫

ln
[
1 + exp((μ − ε)/kBT )

]
n(ε, {ui }) dε +UΩ{ui } + μN0.

(10.30)
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Here, N0 is the total number of electrons ruled byμ, n(ε, {ui }) is the density of states
at energy ε, andUΩ{ui } an eventual term independent on the electron occupancy.As a
consequence, the self-consistent estimates of {ui } can be obtained solving the electron
problem within the constraints imposed by the extremum conditions δΩμ{ui }/δ{ui },
which give the stable (and metastable) states of the system.

Parametric nonequilibrium theories have been proposed [6] and applied to the
electron transport substituting the nonequilibrium electron occupancy in the formal
expression for {ui } derived in equilibrium conditions. This procedure has not a gen-
eral validity, since it is not based on a variational principle, moreover the variational
equations are explicitly functions of the electron occupancy only in particular cases.
An extension of the variational principle, allowing a direct numerical minimization
procedure, has been introduced for the first time in Ref. [5] using a modification
of the functional in Eq. (10.30), which is consistent with Landauer’s scheme of the
electron transport for the case of stationary electron currents (cf. Ref. [10]).

Landauer’s theory, for a system which is in contact with two leads (i.e., with two
independent particle reservoirs) at chemical potentialsμL andμR , establishes that the
device states are populated by electrons (+k states) with distribution nL(ε, {ui }) =
Tr(GΓLG †)/2π in equilibriumwith the left contact and by electrons (−k states) with
distribution nR(ε, {ui }) = Tr(GΓRG †)/2π in equilibrium with the right contact.

According to the Gibbs prescription, in the equilibrium case, the chemical poten-
tialμ rules the charge fluctuation when the system is in contact with a single-particle
reservoir. As a consequence, we may assume that μL and μR play the same role in
the device configuration for +k and −k electron states, respectively. The conjecture
reported in Ref. [5] is that the extended free energy functional for the composition
of +k (−k) electron states should have a Mermin-like expression [21] ruled by the
two chemical potentials of the leads:

ΩμL ,μR {ui } = UΩ{ui } + μL NL + μRNR

−kBT
∫

ln
[
1 + exp((μL − ε)/kBT )

]
nL(ε, {ui }) dε

−kBT
∫

ln
[
1 + exp((μR − ε)/kBT )

]
nR(ε, {ui }) dε, (10.31)

where for symmetry considerations μL NL = μRNR = N0/2. Moreover, taking into
account the identity G (ΓL + ΓR)G † = i(G − G †), the functional in Eq. (10.31) cor-
rectly reduces to Eq. (10.30) when μL = μR = μ. After the optimization procedure
with respect to the {ui } variables, the current can be calculated by means of the
Landauer’s expression as

I = 2e

h

∫ ∞

−∞
T (ε, {ui })( fL − fR) dε (10.32)

for the coherent stationary case, where the transmission is formally similar to
Eq. (10.22).
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Electron Transport in Carbon Chains

As an application example of themethod presented in the previous section,we discuss
the behavior of a simple quantum resistor based on a pure carbon chain, i.e., a linear
arrangement of N bonded carbon atoms coupled by means of the first (n = 1) and
last (n = N ) ones to two semi-infinite metallic electrodes. We can assume that a
reliable model for this system is the well studied Su–Schrieffer–Heeger (SSH) [22]
Hamiltonian H [un], with the addition of the contacts and the device contact coupling:

H [un] +
∑

k∈{L ,R},σ
ε(k)c†k,σ ck,σ

+
∑

k∈{L},σ
Vkc

†
k,σ c1,�,σ + H.c.

+
∑

k∈{R},σ
Vkc

†
k,σ cN ,�,σ + H.c., (10.33)

where the SSH model reads

H [un] = −t0
∑
n,�,σ

c†n+1,�,σ cn,�,σ + c†n,�,σ cn+1,�,σ

+α
∑
n,�,σ

(un+1 − un)
[
c†n+1,�,σ cn,�,σ + c†n,�,σ cn+1,�,σ

]

+
∑
n

[
p2n
2M

+ (un+1 − un)
2

]
. (10.34)

Here, c†n,�,σ (cn,�,σ ) is the creation (annihilation) operator of an electron with spin
σ , un is the dimerization coordinate, pn the conjugated momentum, t0 = 2.7eV is
the hopping integral between carbons, and α the electron–phonon coupling energy.
The momentum k runs over the band states of the left (L) and right (R) contacts, and
Vk are the device-leads coupling parameters. A negligible mass parameter 1/M is
assumed (adiabatic approximation).

In the case of an infinite chain (with no contacts), the equilibrium ground state
(T = 0) energy as a functional of [un] can be analytically evaluated, assuming
un = (−1)n−1u0 and diagonalizing the resulting Hamiltonian in momentum space
(assuming two atoms per Aunit cell) by means of a Bogoliubov transformation as

E(k) = ε ±
√
t2 + t ′2 + 2t t ′ cos(kL), (10.35)

where t = t0 + 2αu0, t ′ = t0 − 2αu0, and L is the lattice periodicity. As a conse-
quence, the electronic structure of these systems has a gap whose value is related to
the equilibrium distance between the neighboring atoms to the bond length alterna-
tion (BLA) value, BLA = 4u0.
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Fig. 10.3 Transmission (color scale in G0 units) as a function of the applied voltage V and energy
E for N = 16 (a) and N = 30 (b) carbon chains contacted with < 111 > gold leads. c, d BLA as
a function of V for the same systems

In Fig. 10.3a, b we show the transmission T (E, V ), as a function of the applied
bias V and the energy E , calculated by means of the variational procedure based on
the Eqs. (10.31) and (10.32). Two systems are considered: the N = 16 and N = 30
carbon chains contacted with < 111 > gold leads. As expected, close to equilibrium
(V = 0) the transmission is practically zero in the energy gap while it is character-
ized by a sequence of peaks reaching a value ∼2G0 when the energy value is larger
(smaller) than the LUMO (HOMO) level. As we could expect, the equilibrium BLA
related gap Δ(N = 16) = 2.75 eV, Δ(N = 30) = 2.42 eV does not change signifi-
cantly for small values of the potential between the two electrodes. However, in the
V = 1.7 − 1.9V region, the gap decreases discontinuously and gradually disappears
for larger biases and the system manifests a ‘metallic-like’ transmission value. The
gap reduction is consistently related to a BLA reduction (i.e., to a polyyne-cumulene
transition), and both BLA and the gap tend to zero for large V (Fig. 10.3c, d).

In Fig. 10.4 the I -V curves (solid lines), calculated with Eq. (10.32) after the
optimization of {ui }, for the N = 16 (Fig. 10.4a) and N = 30 (Fig. 10.4b) systems
are shown and compared to those calculated with the equilibrium values of {ueqi }.
The nonequilibrium variational procedure, for the determination of the atomic con-
figurations {ui } of the chains, predicts a current–voltage dependence for this 1D
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Fig. 10.4 Self-consistently
calculated current voltage
characteristic (solid-line) for
carbon chains with N = 16
(a) and N = 30 (b) atoms
contacted with < 111 > gold
leads. I -V characteristics
calculated without
self-consistency are also
shown (dashes)

resistor characteristic of a insulator-metal transition; moreover, several diode-like
I -V s are calculated, when the equilibrium estimate {ueqi } is considered (dashed lines
in Fig. 10.4).

The change of atomic configuration of the C-chains, which is consistently related
to nonequilibrium charging, could similarly emerge in other molecular devices, since
the atomic configuration of the molecule is often strongly related to the electron
distribution in the molecular orbitals. For the particular case of the carbon chains the
biasing competeswith the Peierls instability: the nonequilibrium electron distribution
in the C orbitals makes the dimerized state progressively less favored until both BLA
and the gap are strongly reduced.
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Generalized Trial States in Nonequilibrium Variational
Theories

In the previous section, a theory which extends the variational procedure in nonequi-
librium stationary condition was discussed and applied to a standard case, where the
variational variables coincide with the nuclear coordinates (i.e., assuming the valid-
ity of the adiabatic limit for the nuclear kinetics). However, this Born–Oppenheimer
(BO) approximation, related to the smallness of the phonon energy scales ω with
respect to all the other relevant electron energy scales, in general is not valid in mole-
cular devices. Indeed, weak electron coupling Δ between lead states and molecular
states could arise in the realization of a molecular device which makes questionable
the validity of the BO approximation. Extremely weak coupling could be modeled
applying the opposite anti-adiabatic small polaron (SP) approximation [23]. How-
ever, variational states valid irrespectively of the strength of the electron, phonon,
and electron–phonon interactions can be formulated [23–25]. Here, we discuss the
results obtainedwhen this generalized variational approach is applied to the transport
through molecular orbitals.

Prototype Model for the Electronic Transport in Molecular
Orbitals: Equilibrium Solutions

In order to focus our problem to the essential element, we consider a minimal model
of the molecular device where the Hamiltonian, describing the system, consists of a
single spinless electron level coupled to a single vibrationalmode and to two identical
leads:

H = ε0c
†
0c0 + �ωa†a + χ

(
a† + a

)
c†0c0

+
∑

k∈{L ,R},σ
ε(k)c†kck

+
∑
k∈{L}

(
Vkc

†
kc0 + H.c.

)

+
∑
k∈{R}

(
Vkc

†
kc0 + H.c.

)
, (10.36)

where ε0 is the electron energy of the molecular state, ω the vibrational frequency,
χ the electron–phonon coupling energy, ε(k) the energy of the electron states in the
two leads L and R, and Vk the device-leads coupling. The BO approximation can be
obtained by means of the translation transformation
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T1 = exp

[
−

√
λ

�ω

(
a† − a

)
x̃0

]
, (10.37)

which introduces the related classical nuclear coordinate variable x̃0, where λ =
χ2/�ω. The opposite anti-adiabatic limit and the quantum state of the vibration for
the intermediate conditions Δ ∼ �ω, characterized by non-Gaussian fluctuations,
can be considered by the transformation

T2 = exp

[
−

√
λ

�ω
ϑ

(
a† − a

) (
c†0c0 − x̃0

)]
, (10.38)

and by the squeezed two-phonon state

|ph〉 = exp
[−α

(
aa − a†a†

)] |0ph〉, (10.39)

respectively. Here, ϑ and α are two additional variational variables improving the
description of the vibrational quantum state away form the adiabatic limit.

Following the variational procedure, the phonon operators are eliminated by
means of Eqs. (10.37)–(10.39), and the resulting electron Hamiltonian is

H = ε̃0c
†
0c0

+
∑

k∈{L ,R}c,σ
ε(k)c†kck

+
∑
k∈{L}

(
Ṽkc

†
kc0 + H.c.

)

+
∑
k∈{R}

(
Ṽkc

†
kc0 + H.c.

)

+λx̃20
(
1 − ϑ2) + �ω

(
τ 2 + τ−2) , (10.40)

where

Ṽk = Vk × exp

[
− λ

2�ω
τ 2ϑ2

]
, (10.41a)

ε̃0 = ε0 − λ + λ (1 − ϑ)2 (1 − 2x̃0) , (10.41b)

τ = exp (−2α) . (10.41c)

As can be easily argued from the analysis of the various expressions in the effec-
tive electron model Eq. (10.40), the coupling with the vibrational mode produces a
renormalization of the electron energy level ε̃0 and of the coupling strength between
the contact and the single level molecular device:
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Fig. 10.5 Ground state
energy estimate as a function
of the variation parameters n,
y (upper panel) for a fixed
value of τ = 0.7814. The
model parameters are
W = 20, Δ = 0.5, λ = 2,
ε0 = 2

Fig. 10.6 Region of the
Δ − λ plane where a
bi-stable solution occurs for
W = 100

Δ̃E = ΔE × exp

[
− λ

2�ω
τ 2ϑ2

]

=
⎡
⎢⎣2π

∑
k∈{L}
k∈{R}

|Vk |2δDirac (E − ε(k))

⎤
⎥⎦ × exp

[
− λ

2�ω
τ 2ϑ2

]
. (10.42)

Assuming that the bandwidth W of the contacts is very large, we can neglect the
energy dependence of the coupling strength ΔE � Δ, and at T = 0 the model can
be solved analytically [4, 8].

In Fig. 10.5, we show the analysis of the equilibrium (Vbias = μR − μL = 0) solu-
tion for the following set of parameters:W = 20, Δ = 0.5, λ = 2, ε0 = 2. (Here we
use the vibration energy �ω as unit for the energy). The global minimum for the
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Fig. 10.7 Average electron
density in the level as a
function of the applied bias
for the stable solutions (solid
line) and using the adiabatic
approximation (dashes). The
parameters are W = 20,
ΔL = 1.5, ΔR = 0.5,
λ = 6.5, ε0 = 6.4,
T = 50K. Outer roots are
plotted in black and red,
inner roots in green (color
figure online)

energy functional has been obtained for x̃0 = 0.5 (for the units under usage, the
adimensional displacement is equal to the average electron density in the level n),
ϑ = 0.5666, τ = 0.7841. Contrary to the adiabatic solution (ϑ = 0, τ = 1), the opti-
mal one does not show either the bi-stable character (as a function of the electron
occupancy level) of the adiabatic solution [7], or the lack of dependence on elec-
tron filling typical of the anti-adiabatic solution (ϑ = 1, τ = 1). Moreover, bi-stable
solutions, which could give rise to hysteresis in the I -V characteristics of this pro-
totype molecular device, are globally stable in only a limited portion of the model
parameters space (cf. Fig. 10.6). This fact has a crucial impact in the calculation of
the electron transport properties of the system.

Prototype Model for the Electronic Transport in Molecular
Orbitals: Nonequilibrium Solutions

Nonequilibrium solutions can be derived by the optimization of the proposed non-
equilibrium Mermin-like functional. An example of the electron filling analysis in
the single level of this prototype model as a function of the applied bias is shown
in Fig. 10.7 for the following set of the model parameters: W = 20, ΔL = 1.5,
ΔR = 0.5, λ = 6.5, ε0 = 6.4, T = 50K.

The optimal generalized solution has a bi-stable character at the thermodynamic
equilibrium (Vbias = 0); however, the behavior of the electron density as a function of
Vbias shows significant differences with respect to the solutions obtained within the
BO approximation. Indeed, the hysteresis cycles occur in different potential ranges
and, especially, have different amplitudes. We note that the asymmetric values of
the electron filling n for negative and positive voltage reflect the contact asymmetry.
Moreover, the inner root of the generalized solution shows two distinct particular
trends in the positive and negative bias regions.
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Fig. 10.8 Current–voltage curve of the different extremal solutions. Theparameters set areW = 20,
ΔL = 1.5, ΔR = 0.5, λ = 6.5, ε0 = 6.4, T = 50K. Outer roots are plotted in black and red, inner
roots in green. In the inset we show a magnification of the low-bias region (color figure online)

The current–voltage curves are tightly related to the density dependence on Vbias

and, in general, hysteresis cycles occur in the I (V ) curves corresponding to hysteresis
cycles in the n(V ) curves. In Fig. 10.8, the I (V ) estimated using the optimal solutions
for the same set of parameters as in Fig. 10.7 is shown and the correspondence
between I (V ) and n(V ) can be inferred.

NDR is predicted by the optimal solution for the larger value of the voltage outside
the bi-stability region and it is related to the behavior of the inner stable solution.
The nature of the NDR has been discussed in detail in Ref. [4], and it is due to the
decrease with Vbias of the effective coupling parameters Δ̃L and Δ̃R (i.e., the increase
of the expression which depends on the variational parameters in the exponent). In
addition, due to contact asymmetry the I (V ) trend in the potential regions where
the NDR occurs is strongly asymmetric for positive and negative values of the bias.
We note that the NDR related to potential-dependent polaronic-type corrections [23,
25] of the device-leads coupling parameters Δ̃L and Δ̃R cannot be evidenced in the
adiabatic solutions, since in this case the coupling parameters depend neither on the
variational parameters nor on the electron–phonon interactions.



10 Nonequilibrium Steady States and Electron Transport in Molecular Systems 149

Conclusions

The variational approach is an important methodology in theoretical physics which
complements the pertubative methods in the case of the lack of small parameters
ruling the interaction part of the model Hamiltonian. The method is well established
in the thermodynamic equilibrium when generic energy functionals can be properly
defined and utilized for the minimization procedure. Here, we have discussed the
question of the lack of energy functionals in stationary nonequilibrium conditions
when, for the particular case of the molecular device, intuitively a self-consistently
relationship between atomic coordinate and electronic transport should occur [26,
27]. An extension of the Mermin’s functional compatible with Landauer’s scheme
for the quantum coherent transport is proposed as a basis of a variational procedure in
nonequilibrium stationary conditions. This variational method can be extended also
to the phonon variables. It can be easily applied in any calculation based on the BO
approximation (e.g., DFT) but also for any other generic variational set of variables
[27]. Considering the results discussed above, the estimate of transport characteristics
could be crucially modified by including these nonequilibrium corrections to the
vatiational estimates. Moreover, since the method is not limited by the typology of
the variational variables, in future research works it could be extended to the study
of instabilities of the electron system caused by electron–electron interactions.
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Chapter 11
Peierls and Spin-Density Instability:
From Polyacetylene to Graphene

M. Baldo

Abstract The sp2 hydrocarbon conjugated molecules have remarkable properties
mainly due to their delocalized π -electron system. They are at the basis of novel
materials that have been produced and studied in the last few decades and which
have found an extensive number of applications and are expected to be more and
more involved in the development of nanostructures. The properties of these mole-
cules are determined not only by external factors, like doping, but also by their
intrinsic structure that can be affected by the presence of the Peierls and spin-density
instabilities. The paper presents a short overview on the effects of these types of struc-
tural rearrangements on the molecular properties and how they develop from strictly
one-dimensional to two-dimensional cases. Specifically, we will consider the one-
dimensional polyacetylene polymer, the two-dimensional graphene molecule and,
as a case intermediate between one and two dimensions, the quasi-one dimensional
polyacenes molecules.

Introduction

Low-dimensional sp2-based nanocarbons exhibit many peculiar properties and for
this reason they have been at the basis of an impressive development in materials
science. At the same time they are characterized by novel physical phenomena, that
are specific of this class of materials, but of great interest for physics as a whole [1].

Besides the peculiarities of the carbon atomand its hybridized bondorbitals,which
are at the origin of the mechanical properties of graphene and derived materials, the
main feature of the electronic structure of these molecules is the presence of an
extended system of delocalized π -electrons. In normal conditions the π -orbitals are
half-filled and this determines the electrical properties of the material. The essential
parameter is the value of the gap between the occupied and non-occupied orbitals,
that eventually can collapse to zero. The gap for an undoped molecule is affected by
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two types of structural instability, the Peierls distortion and the spin-density wave
formation. Both of them introduce a gap between occupied and unoccupied orbitals,
even if the undistorted molecule has zero gap. It is therefore essential, from the
theoretical point of view, to establish to what extent these types of instability are
present. It can be expected that their appearance depends on the dimensionality of
the molecules, i.e., if it is strictly one-dimensional, quasi one-dimensional, or two-
dimensional. Strictly, three-dimensional molecules of this type cannot exist, since
the π -electron system would be absent, like in diamond.

In this paper, we will consider the development of Peierls and spin-density insta-
bilities as we proceed from one-dimensional molecules to two-dimensional ones.
Throughout the paper only elementary methods will be used, which however shed
light on the main mechanisms that occur in fixing the electron structure of the π -
electron system, at least qualitatively.

We will start in section “Polyacetylene” with the one-dimensional polyacetylene
molecule, that has been studied extensively in the past since it is characterized by
peculiar phenomena. In section “Polyacenes”wewill go to the quasi one-dimensional
polyacene molecule, where carbon rings are fused one after the other to form a linear
chain. In the polymer limit the molecule can be viewed as two polyacetylene chains
bonded together.Wewill consider also the corresponding finite sizemolecules,which
will be studied as function of their length. In section “Graphene” we will consider
the graphene carbon system. Associated with this system we will consider also finite
molecule of different compactness, to see its influence on the electronic structure.
Summary and conclusions will be presented in section “Summary”.

Polyacetylene

The π -electron system in the polymer polyacetylene can be considered one-
dimensional, at least in the sense that the electrons can hop from one carbon p-
orbital to the other as along a linear chain. In a simple one-body picture, if all the
sp2 bonds are equal, the correspondingmolecular orbits (MO) are half-filled because
there is one single electron for each carbon sites. This is the undistorted model for
polyacetylene. Themolecular orbits can be readily obtained in theHückel (tight bind-
ing) approximation, where hopping can occur only between next-neighbor atomic
sites. The hopping hamiltonian V is therefore such that

〈i |V | j〉 = β
(
δ j,i+1 + δ j,i−1

)
(11.1)

where the indexes i, j number the carbon p atomic orbitals along the chain and β is
the hopping strength parameter (the well known resonant integral). The molecular
orbits are linear combination of atomic orbits (LCAO) and, taking into account the
periodicity of the system, they can be written as
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Fig. 11.1 Energies of the
occupied (lower curves) and
unoccupied (upper curves)
molecular orbitals in
polyacetylene. The full lines
correspond to the undistorted
molecule, the dashed lines to
the Peierls distorted one
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|k〉 =
∑
j

eika j | j〉 (11.2)

where
k = nπ

Na
, n = ±1,±2, . . . , (11.3)

where N is the total number of carbon sites and we have introduced for convenience
the (fictitious) step size a, which actually disappears in the exponential of Eq. (11.2),
but it gives a form to the MO that resembles the solid-state notation. The hopping
interaction V is diagonal in the MO of Eq. (11.2), and the corresponding energy Ek

is given by
Ek = ε − 2β cos(ka), (11.4)

where ε is the energy of the π -electron atomic orbit. The MO spectrum (solid line),
reported in the first Brillouin zone, is illustrated in Fig. 11.1, where the zero is at the
atomic energy ε, and energies are in unit of β. The energy of the occupiedMO, lower
curve, matches with the one of the unoccupied MO (upper curve) at the Fermi quasi-
momentum ka = π/2. Since the density of state is nonzero at the Fermi energy, the
molecule would be assimilated to a metallic character.

However, it is well known that polyacetylene has a dimerized structure, i.e., an
alternation of longer and shorter bond, corresponding to the alternation of the values
of the resonant integral. This is depicted in Fig. 11.2. As noticed in Ref. [2, 3]
the ground state must be in the dimerized form. To see this, let us calculate the
MO in the case that the resonant integral alternates between β − δ and β + δ, with
δ > 0 a parameter to be determined. In this case the unit cell contains two atoms,
or equivalently the polymer can be seen as two sublattices that are shifted with
respect to each other. One sublattice is formed by the carbon sites for which the
stronger hopping parameter is on the left, the other sublattice by the carbon sites
where the stronger hopping is on the right. To be definite let us enumerate the first
sublattice sites by even numbers 2 j , and the ones of the second sublattice by the
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Fig. 11.2 Scheme of the Peierls distorted polyacetylene molecule. A segment of n sites is indicated

odd numbers 2 j + 1, with j = 0,±1,±2, . . . ± N/4. The matrix elements of the
hopping interaction are then

〈2 j |V |2 j ′ + 1〉 = (β − δ)δ j, j ′ + (β + δ)δ j ′, j−1 (11.5)

and the complex conjugate thereof.
The quasi-momentum k is still diagonal, but the MO contain two amplitudes,

c1, c2, for the even and the odd sites, respectively, which are determined by a two-
dimensional linear system

− Eke
ika(2 j)c1 + [

(β + δ)eika(2 j−1) + (β − δ)eika(2 j+1)
]
c2 = 0, (11.6a)

−Eke
ika(2 j+1)c2 + [

(β − δ)eika(2 j) + (β + δ)eika(2 j+2)] c1 = 0. (11.6b)

From the secular equation for the energy Ek one gets

Ek = ± [
2(β2 + δ2) + 2(β2 − δ2) cos(2ka)

]1/2
. (11.7)

The spectrum, modified by the Peierls distorsion, is depicted in Fig. 11.1 (dashed
line), for δ/β = 0.2. A gap has opened at the Fermi energy, of width 2δ. Accordingly
thematerial can be associatedwith a semiconductor or insulator character, depending
on the value of δ. The main point is that, as noticed in Ref. [2, 3], the derivative with
respect to δ2 at δ = 0 is infinitely negative and therefore it dominates theminimization
toward a nonzero value of δ. This can be seen by calculating the ground state energy,
integrating over the occupied MO. After some algebra, one gets for the energy per
site E

E = − 4

π

∫ π/2

0
dy

[
β2 − (β2 − δ2) sin2 y

] 1
2 . (11.8)

It is readily verified that the derivative of the integral with respect to δ2 is diverging
at δ = 0. This means that the Peierls distorsion and the consequent opening of the
gap lower the ground state energy, at least in this simple Hückel approximation. The
Peierls distortion is confirmed by extensive ab initio calculations of the polyacety-
lene structure [4], where one can determine the actual values of the bond lengths,
which turn out to be in close agreement with the experimental data. The semicon-
ductor character of polyacetylene is confirmed by the measurements on the electric
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Fig. 11.3 Conductivity of
polyacetylene material as a
function of doping. In the
inset, the trans- and cis- form
of the polyacetylene
molecule is reported for
illustration (Redrawn after
Ref. [5].)

conductivity, as shown in Fig. 11.3 [5]. At vanishing doping, the residual conductivity
can be attributed to the thermally excited electrons.

It has to be noticed that the presence of the Peierls distorsion induces a density
ocillation along the chain. Indeed in the bond of shorter length (not to be confused
with the fictitious step size a introduced above) the two neighboring p orbitals have a
larger overlap, which produces a pile up of electron density. In the elementary theory
we have used this effect cannot be described.
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Polyacenes

The next class of molecules is the series of polyacenes, which are obtained by fusing
a certain number of benzene rings along a linear chain. Let us first consider the
polymer limit of the series, even if it has not been synthesized. The dimerized picture
of the polymer is reported in Fig. 11.4. It can be viewed also as two polyacetylene
polymers bonded together. The number of π -electron is still equal to the number
of sites. An additional resonance integral βt fixes the hopping amplitude between
the two polyacetylene chains. In order to analyze the possible Peierls distorsion
we calculate the total energy in the Hückel approximation as a function of δ. To
this purpose we need to find the MO and their energies. The unit cell contains four
sites, and the corresponding coefficients will be indicated as c(l,a), with l = 1, 2 and
a = u, d (for ‘upper’ and ‘down’), see Fig. 11.4. With the same convention as for
polyacetylene, the nonzero hopping matrix elements are

〈2 j, a|V |2 j ′ + 1, a〉 = (β + δ)δ j ′, j+1 + (β − δ)δ j ′, j−1 (11.9a)

〈2 j ′ + 1, u|V |2 j ′′ + 1, d〉 = 〈2 j ′ + 1, d|V |2 j ′′ + 1, u〉 = βtδ j, j ′ (11.9b)

The four coefficients cl,a are now determined by a four dimensional linear system,
where the two equations of the polyacetylene case (one for each chain) are coupled
together. The four-dimensional matrix of the system can be written

M̂ =
(
D β̂t

β̂t D

)
,

where the two-dimensional submatrix D coincides with the one for polyacetylene
and

β̂t =
(
0 βt

0 0

)
,

with a suitable choice of the indexes ordering. The secular equation is then

······

β + δ

β − δ

βt ······

(1,u)

(2,u)

(1,d)

(2,d)

Fig. 11.4 Schematic representation of the polyacene polymer. Indicated are the three basic reso-
nance integrals for the three distinct types of bond. The labels for each basic site are also indicated
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‖ D ‖2 −β2
t E

2
k = 0, (11.10)

which gives for the energies Ek

Ek = ±1

2
βt ± 1

2

√
β2
t + 16β2 − 16(β2 − δ2) sin2(ka). (11.11)

In total we have four bands, two occupied (±,−) and two unoccupied (±,+). They
reduce to the two of polyacetylene, Eq. (11.7), for βt → 0. The corresponding total
energy per site is

E = − 4

π

∫ π/2

0
dy

√
(βt/4)2 + β2 − (β2 − δ2) sin y2. (11.12)

For βt �= 0 the derivative of E with respect to δ2 at δ = 0 is limited. This brings
a drastic difference with respect to the one-dimensional polyacetylene chain. It is
likely that this result will hold true for any number of connected chain, i.e., even
for graphite ribbons or fully two-dimensional graphene. Of course the derivative is
still negative, and therefore dimerization tends to lower the energy, but it can be
contrasted by other electron correlations that stabilize the molecule. Only a more
refined treatment that includes electron–electron correlations and ion–ion repulsion
can give a definite answer.

Let us assume for the moment that the polyacene molecule is undimerized and
look for other types of structural instabilities of the simple mean field approximation.
InRef. [6] the excitation spectrumof the polyacenes serieswas studied in theRandom
Phase Approximation (RPA). It was found that the energy of the triplet excitation in
the B2u symmetry decreases at increasing number of rings and collapses for naph-
tacene. As it is well known, the instability of the RPA solution signals the instability
of the mean field and the appearance of a structural change. In this case, since the
instability is in the triplet channel, it corresponds to the formation of spin-density
oscillations along the molecule. The calculations thus predict the formation of spin-
density “waves” for a number of rings equal or larger than 4. The RPA calculations
were performed on the basis of a semi-empirical approximation for the repulsion
integrals, and therefore they have to be taken at a qualitative level. The indication
of the formation of a correlated ground state was confirmed in Ref. [7] within the
alternant molecular orbital theory (AMO) [8], which corresponds to the unrestricted
Hartree–Fock approximationwhere different orbitals are allowed for spin up and spin
down. The authors report the ratio between the chemical potential and the energy per
electron as a function of the number of rings in the Hückel approximation and in the
AMO scheme. The two predictions essentially coincide for a number of rings n less
or equal to 6, but they differ for n > 6, where the correlations play a relevant role.
However in the AMO method, at least in its standard formulation, the ground state
has not a definite total spin, and therefore is not suitable to fix the possible onset of
a triplet ground state. The most extensive microscopic theoretical study on the onset
of spin-density wave along the polyacenes series is probably the one of Ref. [9].
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Fig. 11.5 Experimental triplet-singlet gap for the polyacene series. On the left panel are reported
the well-established experimental values, together with two possible extrapolations to the polymer
limit. On the right panel are reported the corresponding calculated values up to decacene for a
representative set of energy density functionals among the ones of a much wider set. Both panels
are redrawn from Ref. [9]

The author presents a set of calculations of the gap between the lowest singlet and
triplet states based on a very wide choice of energy density functionals (EDF). They
found that for most of the EDF the gap reduces as the number of rings increases
and it changes sign for the nonacene molecule, where the triplet state become lower
than the singlet one. In Fig. 11.5, left panel, is reported the experimental position of
the lowest triplet state with respect to the singlet ground state. It is systematically
decreasing as the number of rings increases. As shown in the figure, the possible
extrapolations (full and dashed lines) to the polymer limit can give either a vanish-
ing small gap or a negative one. On the right panel of the same figure are reported
the results for the same quantity obtained with some of the considered EDF up to
decacene and again extrapolated to the polymer limit. They are representative of the
over 40 EDF considered in the analysis. Unfortunately, up to now it was not possible
to synthesize in a stable way polyacenes higher than hexacene. It has to be noticed
that the authors find that the Hartree–Fock solutions give the transition to a negative
gap for pentacene, in line with the results of Ref. [6].

The instability toward a triplet ground state can be understood in simple terms by
considering the triplet excitation as the number of rings increases. To this purpose
let us first consider the MO and the corresponding energies of the polymer. The
energies of the π -electron MO in the Hückel approximation are given by Eq. (11.11)
(for δ = 0) and are reported in Fig. 11.6, in units of the resonant integral β, and
βt = 0.8β is assumed for definiteness. Because of the half-filling of the MO, the
higher occupied MO and the lower unoccupied MO touches at ka = π/2, and they
are both tangent to the x-axis. Each MO has a definite point group symmetry. If we
take as point group D2h , in the Schoenflies notation [10], each MO energy band is
twofold degenerate, corresponding to two of the four irreducible representation A1,
A2, B1, and B2. The assignments are summarized in Table11.1.
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Fig. 11.6 Energies of the occupied (solid lower lines) and unoccupied (dash-dotted upper lines)
molecular orbitals in polyacene. The zero of the energy is taken at the Fermi energy. Energies in
unit of the resonant integral β, and βt = 0.8β

Table 11.1 Irreducible representations of the MO included in each energy band of polyacene

E1 E2 E3 E4

A1, B2 A2, B1 A1, B2 A2, B1

The degeneracy between E2 and E3 at ka = π/2 is removed if an attractive
interaction is present, however small it can be. The situation is similar to the one
in superconducting metals, where any attractive interaction at the Fermi momentum
will produce an electron–electron bound state [11]. In this case the system is mainly
one-dimensional, i.e., the “momentum” k has only one direction along the chain.
Notice anyhow that the density of single-particle states is in principle diverging at
ka = π/2. Furthermore the possible bound state is here between a particle and a
hole, rather than between two particles. Breaking such a bound state requires some
energy, and this produces a gap between occupied and unoccupied single-particle
states. That correlations can produce a gap is apparent in the AMO method, where
it has been shown [12] that the unrestricted HF orbitals have an energy

ei = ±
√
E2
i + Δ2, (11.13)

which indeed resembles the one for a superconductor. The parameter Δ is related to
the electron interaction (in the Hubbard approximation), and the gap is 2Δ. However,
this result does not fix the spin ground state,which remains undefined, and it is unclear
if the ground state has indeed a spin-density wave structure.

To see the mechanism that can create a particle-hole bound state in the triplet
channel, let us consider the scattering matrix of a particle and a hole. The MO can be
characterized by the quasi-momentum k and the band index i . The particle-hole pair
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can be labeled by its total momentum P , which is conserved, and relative momentum
q and their band indexes. Neglecting for the moment the band indexes, the scattering
matrix T satisfies the integral equation

T (q, q ′; P) = v(q, q ′; P) + a
∫

dq ′′v(q, q ′′; P)
1

ω − E(q ′′, P)
T (q ′′, q ′; P),

(11.14)
whereω is the entry energy, v(q, q ′′; P) is the particle-hole interaction and E(q ′′, P)

the particle-hole energy

E(q ′′, P) = Ep(P/2 + q ′′) − Eh(P/2 − q ′′). (11.15)

Here p indicates an unoccupied orbital and h an occupied one. The integration is
properly limited in such a way that all momenta are inside the Brillouin zone.We can
take the particle orbital as E3 and hole one as E2, see Fig. 11.6, since it is for these
orbitals that the interaction is critical. Expanding around ka = ±π/2, and assuming
Pa � π/2, one gets

E(q ′′, P) ≈ 16β2/βt (q
′′a − π/2)2. (11.16)

If the interaction v is attractive around the Fermi momenta±π/2a, then the homoge-
neous part of Eq. (11.14) has a solution for a definite negative value of the energy ω,
which signals the presence of a bound state in the correlated ground state. To see this,
let us take a constant interaction around the Fermi momentum. This is qualitatively
correct because the interaction is expected to be a smooth function of the momenta
and the density of state has a sharp peak at the Fermi momenta ±π/2a. Then the
scattering matrix is also independent of momenta, and putting v(q, q ′′) ≈ −|v0|, one
gets the implicit equation for the energy ωB of the bound state

1 = −|v0|
√

βt

8β

∫ ε0

0

dε√
ε

1

ωB − ε
, (11.17)

where ε0 is a suitable cutoff. For values of ω approaching zero from the negative
side, the integral will to diverge to −∞, and therefore there is necessarily a solution
for a finite negative value of ωB . This way of proceeding is closely parallel to the one
in Ref. [11] for a superconductor. The main difference is in the sharp peaking of the
density of state at the Fermi momenta, due to the quasi-one-dimensional character of
the molecule. Furthermore, the searched bound state is between a particle and a hole
and not between two particles. Despite that, the appearance of a gap in the spectrum
has a similar origin.

It remains to demonstrate that the interaction is indeed attractive in the triplet
channel. The first thing to be noticed is that the particle-hole interaction for the
triplet channel vT contains only the exchange term

(k1i, k2 j |vT |k ′
1l, k

′
2m) = −(k1i, k2 j |v|k ′

2m, k ′
1l), (11.18)
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where v is the (effective) electron-electron interaction, which is mainly determined
by the repulsion integrals. The exchange interaction is usually negative (attractive)
and this is indeed the case in some particle-hole channels involving the highest
occupied MO (E2) and the first non-occupied MO (E3). It can be verified that, in
the zero overlapping approximation, the matrix elements of Eq. (11.18) for vT are
indeed attractive near the Fermi momenta, provided the particle-hole configurations
are in the A2 irreducible representation. The symmetry can be obtained combining
A1 particle symmetry and A2 hole symmetry, or B2 particle symmetry and B1 hole
symmetry. Equation (11.14) is therefore more correctly a 2 × 2 system, but the
considerations developed above can be easily extended to such a situation.

It can be concluded that spin-density wave should appear for a long enough
polyacenes molecules. Which one is the critical number of rings can be decided only
by microscopic many-body calculations, as described above.

Graphene

The two-dimensional version of a polycyclic carbonmolecule is the graphene, which
was produced and isolated for thefirst timeonly in 2004 [13]. It is not possible tomake
justice in this short note to the countless works that have been devoted to the study of
graphene and to all the spectacular applications based on graphene and its variants.
Extensive reports on all that can be found in the excellent review articles existing in
the literature [1, 14]. We limit here to a discussion on the absence of distorsions and
charge fluctuations, which is one of the reason for its peculiar properties.

Graphene can be viewed as a single sheet of graphite. Figure11.7, redrawn from
Ref. [1], shows a portion of the honeycomb structure of graphene, together with
the unit cell in coordinates and in the momentum reciprocal lattice. For no bond
distorsions the band structure was first calculated by Wallace already in 1947 [15].
The no distorsion assumption is supported by the considerations developed in the
previous section “Polyacenes”, and we take it as established.

We sketch here the calculation of the standard results for the graphene MO. We
first observe that the honeycomb structure can be divided into two equivalent sublat-
tices. This is best illustrated if one performs a 30 degrees rotation with respect to the
Fig. 11.7. The result can be depicted as in Fig. 11.8, where the two equivalent sublat-
tice sites are marked by full and open circles, respectively. One notices that each site
of one sublattice has three bonded neighboring sites of the other sublattice (and no
other neighbor). The picture shows also the analogy with the polyacene polymer, see
Fig. 11.4. The symmetry here is even higher, since the three bonds are equivalent.

One can then follow the same tight binding procedure andfind theMO. In Fig. 11.7
the basis vectors of the Bravais lattice is shown. Taking in this configuration the hori-
zontal and vertical axes as x- and y-axis, respectively, we report here for definiteness
the standard result for the MO energies
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(a) (b)

Fig. 11.7 Graphene unit cell in configuration space (panel a) and in the momentum space of the
reciprocal lattice (panel b). The unit vectors of the Bravais lattice are also shown. Redrawn with
permission from Ref. [1]

Fig. 11.8 The honeycomb structure of graphene with the sites of the two sublattices indicated by
full and open circles, respectively

Ek = ±β

[
1 + 4 cos

(
3

2
kxa

)
cos(

√
3

2
kya) + 4 cos2

(√
3

2
kya

)] 1
2

, (11.19)

where the minus sign corresponds to the occupied orbitals and the plus sign to the
unoccupied ones. The orbitals are therefore composed by two symmetrical energy
surfaces (theFermi energy is taken again equal to zero). They are depicted inFig. 11.9.
One can see that occupied and unoccupied MO are separated, except for particular
points where they touch. They correspond to the points K , K ′ indicated in the panel
(b) of Fig. 11.7. The peculiarities of these points can be summarized as follows.

1. They are isolated in the two-dimensional k-space.
2. The energies around these points show a linear dependence on the deviation of

the momentum from the ones of the points.
3. They coincide with the Fermi level.
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Fig. 11.9 Graphene MO energies as a function of momentum. Upper surface corresponds to the
unoccupied MO, the lower one to the occupied MO. Credits to Naval Research Laboratory (http://
www.eurekalert.org/multimedia/pub/31816php)

For the property (2) these points are called “Dirac points,” since the energy-
momentum relationship is the same as for a massless relativistic particle.

All that give rise to many exceptional properties of graphene [1]. However, it
has to be checked that the picture of the MO of Fig. 11.9 is stable with respect to
possible distortions, in particular to spin-density oscillations, as the ones that seem to

http://www.eurekalert.org/multimedia/pub/31816php
http://www.eurekalert.org/multimedia/pub/31816php
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characterize the long polyacenes, as we have seen in the previous section
“Polyacenes”. Indeed one could argue that the effective particle-hole interaction
could be attractive in some particular channel. In this case a correlation gap could
be formed, and the electrical properties would be drastically modified. An equation
similar to Eq. (11.17) can be devised to show if there is a solution for a bound state.
However, it turns out that the density of state at the Dirac points is zero, and the
argument based on the divergence of the integral kernel fails. In fact the density of
state per spin N at the energy E near the Dirac points can be written as

N = 2π
∫

qdqδ(Eq − E) = 2πq/

∣∣∣∣
dEq

dq

∣∣∣∣ , (11.20)

where the momentum q and the energy Eq are measured from the Dirac point. Here,
Eq = E . Notice that the phase space in the integral is two-dimensional because the
Dirac point is isolated. The derivative in the denominator is a constant, because of
the linear behavior of the energy, and therefore N vanishes at q = 0. For this reason
graphene is considered a semi-metal. Of course these considerations are only semi-
quantitative and more refined calculations are desirable to establish on a firmer basis
these conclusions. One must say that the electron structure of graphene has not yet
been clarified in a satisfactory way. More work has still to be done in this direction.

In order to gain further insight on the difference between one-dimensional and
two-dimensional structure for polycyclic molecules, one can follow an approach
similar to the one described for polyacene, by considering molecules of finite size.
This method was followed in Ref. [16], where molecules with the same symmetry
of graphene (coronene and hexabenzocoronene) where studied in comparison with
more “elongated”molecules (ovalene and pyrene). Their bond structures are depicted
in Figs. 11.10 and 11.11, respectively. The lowest RPA excitation, which turns out
to be a triplet one in all cases, was calculated employing the same semi-empirical
interaction used for polyacene [6].

This eigenvalue is at 0.7 eV for coronene and hexabenzocoronene,which indicates
a certain stability with respect to the size of the molecule. With an extreme extrap-

Fig. 11.10 Skeletons of
hexabenzocoronene (left)
and coronene (right)
molecules. They have the
same symmetry of graphene
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Fig. 11.11 Skeletons of
ovalene (left) and pyrene
(right) molecules. They have
an “elongated” structure

olation one could argue that the graphene ground state indeed does not show any
spin-density instability. On the contrary in the more “elongated” pyrene and ovalene
molecules the eigenvalue decreases from 0.43 to 0.07 eV. This is suggestive of the
effect that the geometrical shape can have on the possible appearance of spin-density
instability, which is in line (roughly speaking!) with what happens going from the
quasi-one dimensional polyacene to the two-dimensional graphene.

Summary

We have shown how the possible instability of the π -electron molecules can develop
going from the one-dimensional polyacetylene to the two-dimensional graphene,
and considering the polyacene as a molecule of character intermediate between one
and two dimensions. As it is well known, polyacetylene presents a Peierls distortion,
which affects his properties and gives rise tomany chemical and physical phenomena.
The polyacene polymer is not expected to have Peierls distorsion, while the series of
polyacenemolecules display a transition to a triplet ground sate at increasing number
of rings, probably in octacene. This is confirmed by the study of the polyacene
polymer, where one can show that a particle-hole bound state is present, which gives
rise to a correlation gap, and consequently to a semiconductor or insulator behavior.
Unfortunately, very longpolyacenes have not been synthesized. The two-dimensional
graphene molecule has many peculiar properties. It can be shown that many of them,
in particular the electric properties, are a consequence of the absence of distorsions
like the spin-density oscillations, and in turn this is a consequence of the particular
honeycomb structure of the molecule.
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Chapter 12
Generalized Dicke Model of Graphene
Cavity QED

F.M.D. Pellegrino

Abstract We present a theory of the cavity quantum electrodynamics of graphene
cyclotron resonance.By employing a canonical transformation,wederive an effective
Hamiltonian for the system comprised of two neighboring Landau levels dressed by
the cavity electromagnetic field (integer quantum Hall polaritons). This generalized
Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic
field and respects gauge invariance, is then used to verify the impossibility of super-
radiant instability.

Introduction

Light-matter interactions in graphene, a two-dimensional (2D) honeycomb crystal
of carbon atoms [1–3], have been intensively explored in the past decade for both
fundamental and applied purposes [4–7]. Recent experimental advances have made
it possible to monolithically integrate graphene with optical microcavities [8, 9],
paving the way for fundamental studies of cavity quantum electrodynamics (QED)
[10] at the nanometer scale with graphene as an active medium. Another approach,
which has been successful [11] in achieving the so-called strong-coupling regime
of cavity QED [10] in conventional 2D electron systems in semiconductor quantum
wells, consists in coupling graphene carriers with the photonic modes of an array of
split-ring resonators [12].

Graphene-based cavity QED offers, at least in principle, a number of unique
advantages. First, graphene is a highly tunable active medium since its electrical and
heat transport properties can be easily controlled by employing gates [1–3]. Second,
graphene offers many pathways to achieve the strong-coupling regime: these include
(i) the exploitation of intrinsic Dirac plasmons [6, 7] and (ii) the combination of
graphene with other plasmonic nanostructures [13]. Third, the active medium can be
enriched by employing 2D vertical heterostructures [14–17] comprising graphene as

F.M.D. Pellegrino (B)
NEST and Scuola Normale Superiore and Istituto Nanoscienze-CNR,
Piazza Dei Cavalieri, 7, Pisa, Italy
e-mail: francesco.pellegrino@sns.it

© Springer International Publishing AG 2017
G.G.N. Angilella and A. La Magna (eds.), Correlations in Condensed Matter
under Extreme Conditions, DOI 10.1007/978-3-319-53664-4_12

167



168 F.M.D. Pellegrino

well as other 2D crystals/systems such as hexagonal boron nitride [18–20], transition
metal dichalcogenides [21, 22] (e.g., MoS2, WS2, WSe2), gallium arsenide quantum
wells [23, 24], etc.

A central role in cavity QED is played by the Dicke model [25], which describes
a non-dissipative closed system of identical two-level subsystems interacting with a
single-mode radiation field. For a sufficiently strong light-matter coupling constant,
the thermodynamic limit of the Dicke model exhibits a second-order quantum phase
transition to a super-radiant state [26] with macroscopic photon occupation and
coherent atomic polarization.

When an external magnetic field is applied to a 2D electron system, transitions
between states in full and empty Landau levels (LLs) are dispersionless [27–29],
mimicking atomic transitions and enabling [30] a condensed matter realization of
theDickemodel. The light-matter interaction in theDickeHamiltonian is linear in the
vector potentialAem of the cavity. For condensedmatter states described by parabolic
band models, a quadratic A2

em term whose strength is related to the system’s Drude
weight and f -sum rule [29, 31], also emerges naturally fromminimal coupling. It has
long been understood [32–34] that the Dicke model’s super-radiant phase transition
is suppressed when the quadratic terms are retained. Demonstrations of this property
are often referred to as no-go theorems.

The problem is more subtle in graphene, where electronic states near the charge
neutrality point are described in a wide range of energies by a 2D massless Dirac
fermion (MDF) Hamiltonian [2, 3]. The MDF Hamiltonian contains only one power
of momentum p: minimal coupling applied to this Hamiltonian does not generate a
term proportional to A2

em.
The main scope is to lay down a formal theory of the cavity QED of the graphene

cyclotron resonance. The key point is that one must derive a low-energy effective
Hamiltonian by taking into account the coupling of the two-level systems which
are resonant with the cavity photon field to all nonresonant states. This coupling
is crucially important in the strong-coupling regime, where all the terms that are
proportional to A2

em, which are generated by our renormalization procedure, must
be taken into account. Indeed, these guarantee gauge invariance as well as a no-go
theorem for the occurrence of a super-radiant phase transition.

This chapter is partially based on Ref. [35].

Generalized Dicke Hamiltonian

In this section, we derive an effective low-energy Hamiltonian for the cavity QED
of the graphene cyclotron resonance.
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Landau Levels in Graphene

At low energies, charge carriers in graphene are modeled by the usual single-channel
massless Dirac fermion Hamiltonian [2, 3]

HD = vDσ · p , (12.1)

where vD ≈ 106 m/s is the Dirac velocity. Here, σ = (σx , σy) is a 2D vector of
Pauli matrices acting on sublattice degrees-of-freedom, and p = −i�∇r is the 2D
momentum measured from one of the two corners (valleys) of the Brillouin zone.

A quantizing magnetic field B = Bẑ perpendicular to the graphene sheet is cou-
pled to the electronic degrees-of-freedom by replacing the canonical momentum p
in Eq. (12.1) with the kinetic momentum Π = p + eA0/c, where A0 is the vector
potential that describes the static magnetic fieldB. The correspondingHamiltonian is

H0 = vDσ · Π . (12.2)

We work in the Landau gauge A0 = −Byx̂. In this gauge the canonical momentum
along the x̂ direction, px , coincides with magnetic translation operator [29] along the
same direction and it commutes with the HamiltonianH0. Thus, the eigenvalues of
px are good quantum numbers. A complete set of eigenfunctions of the Hamiltonian
H0 in Eq. (12.2) is provided by the two component pseudospinors [36]

〈r|λ, n, k〉 = eikx√
2L

(
w−,nφn−1(y − �2Bk)
λw+,nφn(y − �2Bk)

)
, (12.3)

where λ = +1 (−1) denotes conduction (valence) band levels, n ∈ N is the Landau
level (LL) index, and k is the eigenvalue of the magnetic translation operator in the
x̂ direction. In Eq. (12.3)

w±,n = √
1 ± δn,0 (12.4)

guarantees that the pseudospinor corresponding to the n = 0 LL has weight only on
one sublattice. Furthermore, φn(y) with n = 0, 1, 2, . . . are the normalized eigen-
functions of a 1D harmonic oscillator with frequency equal to the MDF cyclotron
frequency ωc = √

2vD/�B . Here, �B = √
�c/(eB) � 25 nm/

√
B[Tesla] is the mag-

netic length.
The spectrum of the Hamiltonian (12.2) has the well-known form [36]

ελ,n = λ�ωc
√
n . (12.5)

Each LL has a degeneracy N = Nf S/(2π�2B), where Nf = 4 is the spin-valley
degeneracy and S = L2 is the sample area.
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Total Hamiltonian

We now couple the 2D electron system described by the Hamiltonian (12.2) to a
single photon mode in a cavity. We denote by the symbol Aem the vector potential
that describes the cavity photon mode. Carriers in graphene are coupled to the cavity
electromagnetic field via the minimal substitution:

Π → Π ′ = Π + e

c
Aem . (12.6)

The cavity vector potential Aem will be treated within the dipole approximation. We
can neglect the spatial dependence of the electromagnetic field in the cavity because
the photon wavelength is much larger than any other length scale of the system.

Introducing photon annihilation a and creation operators a† we can write

Aem =
√
2π�c2

εωV
eem(a + a†), (12.7)

where eem is a unit vector describing the polarization of the electromagnetic field,
ω is the photon frequency, ε is the cavity dielectric constant, and V = LzL2 is the
volume of the cavity. Here, Lz � L is the length of the cavity in the ẑ direction.

The total Hamiltonian reads

H = Hem + H0 + Hint , (12.8)

where the first term is the cavity photon Hamiltonian, the second term is the MDF
Hamiltonian in the presence of a quantizing magnetic field, i.e., Eq. (12.2), and the
third term describes the coupling between MDFs and the cavity photon mode. More
explicitly,

Hem = �ω

(
a†a + 1

2

)
, (12.9)

H0 =
∑
λ,n,k

ελ,nc
†
λ,n,kcλ,n,k , (12.10)

and

Hint = g√
N

∑
λ,λ′,n,n′,k

(
λwλ,ne

−
emδn′,n+1 + λ′wλ′,n′e+

emδn′,n−1
) (
a + a†

)
c†λ′,n′,kcλ,n,k .

(12.11)

In Eqs. (12.10) and (12.11) c†λnk (cλ,n,k) creates (annihilates) an electron with band
index λ, LL index n, and wave number k. Finally,

g ≡ �ωc

√
e2

2εLz�ω
, (12.12)
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and e±
em = exem ± ieyem, exem and eyem being the components of the polarization vector

eem.
We consider the integer quantum Hall regime in which a given number of LLs

are fully occupied and the remaining ones are empty. Since the MDF Hamiltonian is
particle-hole symmetric, we can consider, without loss of generality, the situation in
which graphene is n-doped and the Fermi energy lies in conduction band (λ = +).
We denote by n = M the highest occupied LL. The lowest empty LL is therefore
n = M + 1 and the Fermi energy lies in the middle between n = M and n = M + 1,
i.e.,

EM ≡ 1

2
�ωc(

√
M + 1 + √

M) . (12.13)

Canonical Transformation

The aim of this section is to present a systematic procedure that allows us to derive
an effective low-energy Hamiltonian for the LL doublet n = M, M + 1 as dressed
by light-matter interactions. We are interested in the case in which the cavity photon
is nearly resonant with the transition between the two conduction band LLs n =
M, M + 1:

�ω ≈ ΩM ≡ �ωc(
√
M + 1 − √

M) . (12.14)

We anticipate [37] that the effectiveHamiltonianwill be different from the bareDicke
Hamiltonian that one obtains from Eqs. (12.9), (12.10), and (12.11) by selecting
λ = +1 and n = M, M + 1, i.e.,

HDicke = Hem +
N∑
k=1

[
EMIk + ΩM

2
τ z
k + g√

N
(a + a†)(e−

emτ+
k + e+

emτ−
k )

]
.

(12.15)
By direct comparison of Eqs. (12.9)–(12.11) with Eq. (12.15), we see that the Pauli
matrices we have introduced are a shorthand for the following combinations of cre-
ation and destruction operators:

Ik = c†+,M+1,kc+,M+1,k + c†+,M,kc+,M,k , (12.16a)

τ z
k = c†+,M+1,kc+,M+1,k − c†+,M,kc+,M,k , (12.16b)

τ+
k = c†+,M+1,kc+,M,k , (12.16c)

τ−
k = c†+,M,kc+,M+1,k . (12.16d)

Here, Ik, τ
z
k , τ

±
k with k = 1 . . .N is a set of Pauli matrices that act in the 2N -fold

degenerate subspace of theLLdoublet n = M, M + 1, Ik being the 2 × 2 identity and
τ±
k ≡ (

τ x
k ± iτ y

k

)
/2. More precisely, the final result of the canonical transformation

yields a generalized Dicke Hamiltonian of the form—see Eq. (12.49):
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HGDH = HDicke + ΔM(a + a†)2 +
N∑
k=1

[
κ

N
(a + a†)2Ik − κ z

N
(a + a†)2τ z

k

]
.

(12.17)

We notice thatHGDH differs from the bare Dicke Hamiltonian (12.15) because of the
presence of three terms that are quadratic in the operator a + a†, and that renormalize
bothHem and the light-matter interaction Hamiltonian. Microscopic expressions for
the parameters ΔM , κ , and κ z are derived below.

We denote by the symbolSM the subspace of the fermionic Hilbert space spanned
by the two LLs which are resonantly coupled to the cavity field, i.e., n = M, M + 1,
and lay on opposite sides of the Fermi energy. The symbol SN , on the other hand,
denotes the subspace of the fermionicHilbert space,which is comprised of all LLs but
n = M, M + 1. We employ a canonical transformation with the aim of decoupling
the LL doublet n = M, M + 1 from the SN sector (see Refs. [38–40], and Chap.8
in Ref. [29]).

Before proceeding further, it is convenient to rewrite the Hamiltonian (12.8) in
the following manner:

H = Hem + H0 + VD + VO , (12.18)

where Hem and H0 have been introduced in Eqs. (12.9) and (12.10), respectively,
whereas the light-matter interaction Hamiltonian Hint has been written as the sum
of two terms: (i) VD, which connects states either belonging to the subspace SM

or to the subspace SN and (ii) VO, which connects states belonging to different
subspaces. Therefore VD is a block-diagonal operator with one block referring to the
SM subspace and the other one to theSN subspace. In the same representation,H0

is trivially a block-diagonal operator since it is a diagonal operator and Hem is also
a block-diagonal operator since it contains only photonic creation and annihilation
operators and therefore acts as the identity operator with respect to fermionic labels.
On the other hand, VO is a block-off-diagonal operator in the same representation.

We now introduce an unitary transformation

U = eS , (12.19)

where S is its anti-Hermitian generator. The transformed Hamiltonian reads

H ′ = eSH e−S . (12.20)

The spirit of the canonical transformation [38–40] is to transform the original Hamil-
tonianH onto anHamiltonianH ′ that has no block-off-diagonal terms.A necessary
condition to achieve this, is that the generator S be a block-off-diagonal operator.

The operator S can be found with the desired level of accuracy by following a
perturbative approach. We use the Baker–Campbell–Hausdorff formula to rewrite
Eq. (12.20):
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H ′ = H + [S,H ] + 1

2! [S, [S,H ]] + . . . , (12.21)

where [A, B] denotes the commutator between the two operators A and B.
We now expand the generator S in a power series:

S =
∞∑
j=1

S( j), (12.22)

where S( j) is proportional to (g) j , i.e., the j th power of a suitable dimensionless
coupling constant that is controlled by the strength g of light-matter interactions.

After inserting Eq. (12.22) in (12.21), we require that each term of the expansion
cancels the corresponding block-off-diagonal term, order by order in the perturbative
expansion in powers of g. This approach leads to a hierarchy of equations, one for
each order in perturbation theory.

For example, the equation for the generator S(1) up to first order in g reads as
follows:

[S(1),H0 + Hem] + VO = 0 . (12.23)

The transformed Hamiltonian is given by the following expression:

H ′ = Hem + H0 + VD + 1

2
[S(1), VO] + O(g3) . (12.24)

In sections “Explicit Form of the Canonical Transformation up to Order g” and
“Elimination of the Off-Diagonal Terms in HN and Pauli Blocking” we derive
the desired low-energy effective Hamiltonian by using the canonical transforma-
tion approach described in this section. The procedure is carried out in three steps:
(i) we first decouple the subspaceSN from the subspaceSM by applying the canon-
ical transformation S up to first order in the small parameter g—Eq. (12.23); (ii) we
then use a different canonical transformation to take care of inter-band transitions
between LLs belonging to the subspaceSN ; (iii) finally, we take into account Pauli
blocking.

Explicit Form of the Canonical Transformation up to Order g

Following the notation of section“Canonical Transformation”,we start from the orig-
inal Hamiltonian in Eq. (12.18). Here,H0, which has been introduced in Eq. (12.10),
refers to bare electrons in the presence of a quantizing magnetic field and it is diago-
nal with respect to spin projection, valley index, and the eigenvalue of the magnetic
translation operator in the x̂ direction. It does not couple states belonging to the
subspace SM with states belonging to the subspace SN :
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H0 =
∑

m∈SM

εmc
†
mcm +

∑
n∈SN

εnc
†
ncn . (12.25)

Here, c†m and c†n (cm and cn) are fermionic creation (annihilation) operators for a
bare electron. We emphasize that, in this section, the indices m and n are collective
labels for the spin projection along the ẑ axis, the valley index, the eigenvalue of the
magnetic translation operator in the x̂ direction, the intra-band LL integer label, and
the conduction/valence band label.

TheHamiltonian that couples electronic degrees-of-freedomwith the electromag-
netic field is written as a sum of a block-diagonal term VD and a block-off-diagonal
term VO:

VD =
∑

m,m ′∈SM

gmm ′√
N

(
a + a†

)
c†mcm ′ +

∑
n,n′∈SN

gnn′√
N

(
a + a†

)
c†ncn′ , (12.26)

and

VO =
∑

m∈SM ,n∈SN

[
gmn√
N

(
a + a†

)
c†mcn + gnm√

N

(
a + a†

)
c†ncm

]
. (12.27)

In Eqs. (12.26) and (12.27) we have introduced

gmn = δk,k ′
(
λwλ,n̄e

−
emδm̄,n̄+1 + λ′wλ′,m̄e

+
emδm̄,n̄−1

)
, (12.28)

where n (m) is the collective label n̄, λ, k (m̄, λ′, k ′). Each of these three numbers
represents an intra-band LL label (n̄, m̄), a band index (λ, λ′), and a collective label
(k, k ′) comprising the eigenvalue of the magnetic translation operator in the x̂ direc-
tion, together with the spin projection along the along the ẑ axis and the valley index.

By solving Eq. (12.23) we obtain an explicit expression for the anti-Hermitian
generator S up to first order in g:

S(1) =
∑

m∈SM ,n∈SN

(
gmn√
N

Aωc
†
mcn − gnm√

N
c†ncmA

†
ω

)
, (12.29)

where we have introduced the operator

Aω ≡ a

εmn − �ω
+ a†

εmn + �ω
. (12.30)

Given the first-order generator S(1), the commutator [S(1), VO] generates a new
block-diagonal term. Using the dipole selection rules, the commutator reads

[S(1), VO] = 2
(
a + a†

)2 ∑
m∈SM ,n∈SN

εmn

ε2mn − (�ω)2

gmngnm
N

(
c†mcm − c†ncn

) + Bω ,

(12.31)
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where

Bω = 2�ω

N

[
a, a†

] { ∑
m∈SM ,n∈SN

gmngnm
ε2mn − �2ω2

(
c†mcm + c†ncn

)

+
∑

m,m ′∈SM

∑
n,n′∈SN

[
gm ′n′gmn

ε2mn − �2ω2
c†m ′cn′c†mcn + gn′m ′gmn

ε2mn − �2ω2
c†n′cm ′c†mcn

+ gm ′n′gnm
ε2mn − �2ω2

c†m ′cn′c†ncm + gn′m ′gnm
ε2mn − �2ω2

c†n′cm ′c†ncm

]}
. (12.32)

Note that B0 = 0. More importantly, the operator Bω, being proportional to N −1,
is negligible in the limit of a macroscopic LL degeneracy (N � 1).

Using Eq. (12.24) and neglecting terms that areO(g3), we finally find the effective
Hamiltonian H ′, which is correct up to order g2:

H ′ = Hem + HM + HN . (12.33)

Here, HM is the sum of N independent contributions, one for each value of k =
1 . . .N , i.e.,HM = ∑N

k=1 Hk with

Hk = EMIk + ΩM

2
τ z
k + g√

N
(a + a†)(e−

emτ+
k + e+

emτ−
k )

− κ z

N
(a + a†)2τ z

k + κ

N
(a + a†)2Ik , (12.34)

where EM and ΩM have been introduced earlier in Eqs. (12.13) and (12.14), respec-
tively.

The quadratic terms in the electromagnetic field, i.e., the terms in the second
line of Eq. (12.34), stem from the canonical transformation. In Eq. (12.34) we have
introduced

κ z ≡ κ z
s − κ z

d , (12.35)

where the first term is independent of the cavity photon frequency while the second
term, that we define “dynamical,” explicitly depends on the cavity photon frequency:

κ z
s = g2

ΩM
(12.36)

and

κ z
d = ω2

ωc

g2

�

{ √
M + 1[ω2 − (4M + 5)ω2

c ]
[(2M + 3)ω2

c − ω2]2 − 4(M + 1)(M + 2)ω4
c

+
√
M[ω2 − (4M − 3)ω2

c ]
[(2M − 1)ω2

c − ω2]2 − 4M(M − 1)ω4
c

}
. (12.37)
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Note that κ z
d = 0 for ω = 0. Finally,

κ = ω2

ωc

g2

�

{ √
M + 1[ω2 − (4M + 5)ω2

c ]
[(2M + 3)ω2

c − ω2]2 − 4(M + 1)(M + 2)ω4
c

−
√
M[ω2 − (4M − 3)ω2

c ]
[(2M − 1)ω2

c − ω2]2 − 4M(M − 1)ω4
c

+
√
M + 1 − √

M

(
√
M + 1 + √

M)2ω2
c − ω2

}
. (12.38)

The second term in Eq. (12.33) reads as follows:

HN =
∑
n∈SN

⎡
⎣εn +

∑
m∈SM

εnm

ε2nm − (�ω)2

(
a + a†

)2 gmngnm
N

⎤
⎦ c†ncn

+
∑

n,n′∈SN

gnn′√
N

(
a + a†

)
c†ncn′ . (12.39)

Elimination of the Off-Diagonal Terms in HN and Pauli
Blocking

The Hamiltonian (12.33) is not yet the desired result, i.e., an effective Hamiltonian
for the n = M, M + 1 doublet. Indeed,HN contains fermionic operators that act on
the subspace SN .

In particular, we note that the last term in Eq. (12.39) is an off-diagonal contri-
bution in the labels n, n′ ∈ SN .We utilize a suitable canonical transformation that
eliminates this term. For the sake of simplicity, we here report only the final result.We
find a renormalized Hamiltonian operating on the subspace SN , which is diagonal
in the labels n, n′ ∈ SN :

H ′
N =

∑
n∈SN

εnc
†
ncn + (

a + a†
)2 ∑

n∈SN

∑
�

εn�gn�g�n

ε2n� − �2ω2
c†ncn , (12.40)

where the index � runs over all LLs.
Since the Dirac model applies over a large but finite energy region, we must regu-

larize [37] Eq. (12.40) by employing a cut-off νmax. Moreover, we treat the fermionic
portion of the renormalized Hamiltonian (12.40) as a mean field for the photons. We
therefore replace

c†ncn → nF(εn) ≡ 1

exp [(εn − μe)/(kBT )] + 1
, (12.41)
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where μe is the chemical potential of the electronic system.
In the low-temperature limit,

kBT � |εn − μe| , ∀n ∈ SN , (12.42)

we can replace the Fermi–Dirac function in Eq. (12.41) with a Fermi step.
We are therefore led to define the prefactor of the (a + a†)2 term in Eq. (12.40)

as
ΔM(νmax) =

∑
n∈SN

∑
�

εn�gn�g�n

ε2n� − �2ω2
�(μe − εn) , (12.43)

where the sums are regularized with the cut-off νmax. More explicitly, for every
M �= 0, we have:

ΔM(νmax) = −2εmax
g2

�2ω2
c

+ g2

�ωc
IM−1(νmax) − g2

ΩM−1

�
2ω2

Ω2
M−1 − �2ω2

, (12.44)

where εmax ≡ �ωc
√

νmax and

IM−1(νmax) =
νmax∑
�=M

[
(
√

� + 1 − √
�)ω2

ω2 − ω2
c (

√
� + √

� + 1)2
+ (

√
� − √

� − 1)ω2

ω2 − ω2
c (

√
� − 1 + √

�)2

]
.

(12.45)
As explained in Refs. [37, 41], we must regularize the expression in Eq. (12.44)
by subtracting the cut-off dependent term −2εmax g2/(�2ω2

c ). After applying this
regularization, one can take the limit νmax → ∞, discovering that the quantity

ΔM ≡ lim
νmax→∞

[
ΔM(νmax) + 2εmax

g2

�2ω2
c

]

= g2

�ωc
I ∞

M−1 − g2

ΩM−1

ω2

Ω2
M−1 − ω2

, (12.46)

with

I ∞
M ≡ lim

νmax→∞IM(νmax)

=
∞∑

�=M+1

[
(
√

� + 1 − √
�)ω2

ω2 − ω2
c (

√
� + √

� + 1)2
+ (

√
� − √

� − 1)ω2

ω2 − ω2
c (

√
� − 1 + √

�)2

]
,

(12.47)

is well defined.
Discarding constant terms [29] (i.e., terms that do not contain the photon field

operators a and a†), the renormalized Hamiltonian (12.40) becomes
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H ′
N = ΔM

(
a + a†

)2
. (12.48)

We stress that ΔM as defined in Eq. (12.46) depends both on the LL label M and the
photon frequency ω and that it vanishes in the static ω = 0 limit.

Final Result for the Effective Hamiltonian

In summary, the correct low-energy Hamiltonian is given by H ′ as in Eq. (12.33)
withHN replaced by H ′

N in Eq. (12.48), i.e.,

HGDH ≡ Hem + ΔM(a + a†)2 +
N∑
k=1

Hk , (12.49)

where Hk has been defined in Eq. (12.34) and, without loss of generality, we have
chosen a specific polarization of the electromagnetic field, i.e., eem = ux .

Equation (12.49) represents a low-energy effective Hamiltonian for the cavity
QED of the graphene cyclotron resonance. It is evident that HGDH differs from
the bare Dicke Hamiltonian (12.15) since it contains terms that are quadratic in the
electromagnetic field.Wewill therefore refer to the low-energy effectiveHamiltonian
(12.49) as to the generalized Dicke Hamiltonian (GDH).

For future purposes, it is useful to highlight the following identity,

ΔM = g2

ΩM
+ g2

�ωc
I ∞

M − κ z − κ , (12.50)

and the following inequality

FM(ω) ≤ I ∞
M ≤ FM+1(ω) , (12.51)

which is valid ω ≤ ωc

√
M . Here,

FM(ω) ≡ ω

2ωc
log

(
2ωc

√
M − ω

2ωc

√
M + ω

)
. (12.52)

For large M one therefore finds

I ∞
M � ω

2ωc
log

(
2EM − �ω

2EM + �ω

)
. (12.53)

In the resonant �ω = ΩM case, the quantities κ z and κ defined earlier in
Eqs. (12.35)–(12.38) reduce to:
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κ z = − g2

�ωc

1

2

√
M , (12.54)

and

κ = g2

�ωc

[
(M + 1)

√
M + 1 +

(
M − 1

2

)√
M

+ 1

4
√
M(M + 1)(

√
M + 1 + √

M)3

]
. (12.55)

Linear-Response Theory Analysis

In this section we demonstrate that the GDH, Eq. (12.49), is gauge invariant. To this
end, we treat the cavity electromagnetic field as a weak perturbation with respect
to the MDF Hamiltonian in the presence of a quantizing magnetic field. The cavity
electromagnetic field induces a matter current that can be calculated by the powerful
means of linear-response theory [29, 31]. In particular, the physical matter current in
response to the electromagnetic field is composed by paramagnetic and diamagnetic
contributions [29, 31].

It is easy to demonstrate that the paramagnetic response function of a system
described by the GDH (12.49) to the electromagnetic field is given by

χP(ω) = g2

N
〈〈τ x

tot; τ x
tot〉〉ω = g2

2ΩM

�2ω2 − Ω2
M

tanh

(
βΩM

4

)
, (12.56)

where τ x
tot = ∑N

k=1 τ x
k and β = 1/(kBT ). In Eq. (12.56) we have introduced theKubo

product [29]

〈〈A; B〉〉ω ≡ − i

�

∫ ∞

0
dt ei(ω+i0+)t 〈[A(t), B]〉 , (12.57)

where 〈. . . 〉 denotes a thermal average and A(t) is the operator A in the Heisenberg
representation, i.e., A(t) ≡ exp(iHGDHt)A exp(−iHGDHt).

Similarly, the diamagnetic response function is given by

χD(ω) = 2

N
〈〈κItot − κ zτ z

tot〉〉ω + 2ΔM = 2κ + 2ΔM + 2κ z tanh

(
βΩM

4

)
,

(12.58)
where τ z

tot = ∑N
k=1 τ z

k and Itot = ∑N
k=1 Ik .

The diamagnetic response function χD(ω) can be rewritten in a compact form as

χD(ω) = 2Ωg , (12.59)
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where

Ωg = Ωg(β) ≡ g2

ΩM
+ g2

�ωc
I ∞

M − κ z [1 − tanh (βΩM/4)] . (12.60)

In writing Eqs. (12.59) and (12.60) we have used the mathematical identity (12.50).
Therefore, the physical current–current response function is the sum of these two

contributions:

χJ(ω) = χP(ω) + χD(ω) = g2
2ΩM

�2ω2 − Ω2
M

tanh

(
βΩM

4

)
+ 2Ωg . (12.61)

In the static ω = 0 limit we have

χP(ω → 0) = − 2g2

ΩM
tanh

(
βΩM

4

)
(12.62)

and

χD(ω → 0) = 2κ z
s tanh

(
βΩM

4

)
= 2g2

ΩM
tanh

(
βΩM

4

)
. (12.63)

Paramagnetic and diamagnetic contributions in Eqs. (12.62) and (12.63) are equal in
magnitude and opposite in sign. Hence, a quasi-homogeneous vector potential does
not induce any response in the static limit: in this limit the vector potential represents
a pure gauge and cannot induce any physical effect unless gauge invariance is broken
[29, 31].

Alert readers will note that the paramagnetic contribution to the physical current–
current response functiondominates over thediamagnetic contribution in the resonant
limit �ω → ΩM . Indeed, χP(ω) has a pole at �ω → ΩM , while χD(ω) is finite
at the same frequency. As we will see below in section“No-Go Theorem for the
Super-Radiant Phase Instability”, however, the quadratic terms in the photon field
in Eq. (12.49), which yield a finite diamagnetic response, are absolutely crucial to
ensure thermodynamic stability of the system.

No-Go Theorem for the Super-Radiant Phase Instability

In this section, we verify the nonexistence of the super-radiant phase instability
of the GDH, Eq. (12.49). The simplest approximation to evaluate the ground state
energy is a mean-field approach, where the bosonic fields are treated as classical
fields, i.e., complex numbers, namely one replaces a and a† with φ and φ∗. This
approximation is a good one when the average photon number is macroscopic, i.e.,
when it is O(N ). This is precisely what occurs in a super-radiant phase. Under this
mean field approach, one finds a noninteracting two-level system coupled with an
external classical field
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HMF = N [�ωy2 + (�ω + 4ΔM + 4κ)x2] +
∑
k

(ΩM

2
− 4κz x

2
)
τ z
k + 2gxτ z

k ,

(12.64)
where φ = √

N (x + iy). By solving the eigenvalue problem, the ground state
energy up to O(g2) is expressed as

EMF = N [�ωy2 + (�ω + 4ΔM + 4κ)x2] −
√

(ΩM/2)2 − 4[g2 − ΩMκz]x2 ,

(12.65)
and it is a function of classical fields x and y. Since ω > 0, the ground state energy
is minimized for y = 0, while further remarks need about x . Since EMF depends on
x through x2, then x0 = 0 is always an extremum. Physically, the solution x0 = 0
corresponds to the “normal phase” in which the number of photons vanishes in the
thermodynamic limit. A finite extreme x0 �= 0 exists if and only if

(�ω + 4ΔM + 4κ)ΩM

4(g2 − ΩMκz)
< 1 , (12.66)

in this case the solution corresponds to the “super-radiant phase.”ByusingEq. (12.50)
and g/(�ωc) < 1, one finds that the previous condition is satisfied only if the dimen-
sionless function

f̄M(ω) ≡ −4
ωc

ω
I ∞

M , (12.67)

is larger than unity. Note that f̄M(ω) is independent of the cavity dielectric constant ε.
Since we are interested in the resonant regime, we can set ω = ΩM/� in Eq. (12.67).
In this case, f̄M becomes a function of the LL labelM only. Figure12.1 illustrates the
dependence of f̄M = f̄M(ω = ΩM/�) on M . We clearly see that f̄M(ω = ΩM/�) <

1 for every M . We can therefore conclude that x0 = 0 is always the only minimum
of EMF, and one can exclude the occurrence of a super-radiant instability.

In this section, we have verified the absence of super-radiant instability at zero
temperature within a mean field approach, in Ref. [35] within the path-integral for-
malism it is verified the impossibility to have a transition to a super-radiant phase

Fig. 12.1 Dependence of
the function f̄M defined in
Eq. (12.67) on the LL
index M

5 10 15 20 25 30 35 40

M

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

f̄ M



182 F.M.D. Pellegrino

at finite temperature, and the robustness of normal phase with respect to quantum
fluctuations of the electromagnetic field.

Finally we show that a super-radiant phase transition can occur when the quadratic
terms in the photon field are neglected [26].

In this case, a maximum of EMF at x0 �= 0 can occur if [26, 42]

�ωΩM

4g2
< 1 . (12.68)

This implies that, choosing a suitable cavity dielectric constant for a given M
or a value of the LL index M for a given ε, a super-radiant phase transition
is possible. Consider, for instance, a half-wavelength cavity and set �ω = ΩM ,
whereω = πc/(Lz

√
ε). In this case, g = �ωc

√
α/(2π

√
ε) and the critical condition

(12.68) becomes:
√
M + 1 + √

M > 2π
√

ε/α. A super-radiant phase transition is
therefore possible [42] for large enough values of M . If the condition (12.68) is
satisfied, the minimum of the ground state energy appears at

x0 = g

�ω

[
1 −

(
�ωΩM

4g2

)2
]1/2

(12.69)

in the zero-temperature limit.Hence, one cangain energywhen the photonoccupation
number becomes macroscopic, nph = x20N .

These are artifacts stemming from the neglect of quadratic terms in the photon
field.

Summary and Conclusions

We have presented a theory of the cavity QED of the graphene cyclotron resonance.
We have first employed a canonical transformation to derive an effectiveHamiltonian
for the system comprised of two neighboring Landau levels dressed by the cavity
electromagnetic field (integer quantum Hall polaritons). The final result is contained
in Eq. (12.49). This effective Hamiltonian, whichwe have termed “generalizedDicke
Hamiltonian,” respects gauge invariance and contains terms that are quadratic in the
electromagnetic field.We have then used Eq. (12.49) and a mean field approximation
to confirm that no super-radiant phase transitions are possible in the cavity QED of
the graphene cyclotron resonance.
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Chapter 13
A Comparison Between Quantum Transport
and Band Structure Unfolding in Defected
Graphene Nanoribbons

I. Deretzis and A. La Magna

Abstract This article considers a graphene-based quasi-one-dimensional system
and explores the impact of structural perturbations on the electronic and transport
properties of the material. Two phenomenologically different quantum mechanical
approaches are used to describe the perturbation, namely the spectral weight of the
unfolded band structure and the transmission coefficient of the propagated electrons.
We show that these two descriptions present strong qualitative similarities and yield
complementary information for the understanding of the induced electronic alter-
ations.

Introduction

During the last decade, the isolation of a stable and truly two-dimensional (2D)
system like graphene [1] has given the possibility to experimentally probe for the
quantummechanical nature of electronic transport in strongly confined systems, even
at elevated temperatures. Characteristic examples are the measurement of ballistic
transport for graphene systems on various substrates [2–5] and the manifestation of
a half-integer quantum hall effect [6–10]. Moreover, when a 2D graphene sheet is
further confined in a quasi one-dimensional (1D) structure through patterning and
nanolithography (usually referred to as a graphene nanoribbon), integer plateaus
on the conductance appear, corresponding to the presence of 1D sub-bands in the
electronic structure [11]. Finally, the signature of single defects or adatoms can be
resolved through scanning tunneling microscopy measurements [12].

Such fully quantum mechanical picture necessitates for an adequate theoretical
description of charge transport with an atomic accuracy, as alterations of the struc-
tural symmetry even in single lattice sites can induce significant modifications in
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the calculated conductance spectra [13]. A widespread paradigm of such methodol-
ogy is the non-equilibrium Green’s function formalism [14], used for the calculation
of transport in both ideal and defected/disordered graphene systems [13, 15–17].
Such formalism naturally incorporates the concept of electronic scattering either by
structural defects or by the metallic contacts. It is by now well-consolidated that
the presence of structural imperfections and the perturbations that these induce in
the otherwise ideal electronic structure is one of the main origins for conductance
degradation in graphene-based systems [15]. Hence, perturbation potentials can be
considered as the cause for such scatteringmechanisms, whereas conductance degra-
dation (with respect to the ideal value) their immediate consequence. Within this
picture, a key quantity for the determination of the current-carrying capacity of a
single quantum channel is the transmission coefficient T (ε) [14], which can obtain
values between zero and one, corresponding to complete reflection and perfect trans-
mission of the propagated electrons, respectively. The latter can be only retrieved for
ideal systems, whereas a lower value is usually calculated for strongly disordered
structures.

In the last years, a group of methodologies have been developed that are partic-
ularly suited for the calculation of the electronic structure in systems with defects.
They consist in using big supercells that contain the defects, calculating the electronic
properties for such supercells and consequently unfolding the supercell band struc-
ture [18–26]. The resulting unfolded band structure contains information not only
of the original unit-cell bands, but also on the impact of the induced perturbation
on the robustness of the total band structure. The key quantity here is the spectral
weight w(ε,k) of each unfolded band, whose value ranges form zero to one, and
indicates the degree of maintenance of the original bands in the defected supercell
[26]. The 0 < w(ε,k) < 1 range of the spectral weight with respect to the pertur-
bation potential, unavoidably brings to mind the respective 0 < T (ε) < 1 range of
the transmission coefficient in quantum transport calculations of defected systems.
In this article we attempt to explore the relationship between quantum transport and
band structure unfolding using a graphene nanoribbon with a single-vacancy defect
as a model system. We will show that strong qualitative similarities exist for the two
methods, making them complementary for the study of the electronic and transport
properties of systems with defects.

The article is organized as follows: In Sect.Methodology we will introduce the
theoretical methodology for both quantum transport and band structure unfolding
calculations. In Sect.Results we will confront the results obtained by the two for-
malisms. Finally, in Sect.Discussion we will discuss our results.

Methodology

The basis for the calculation of both electronic structure and quantum transport is
an appropriate definition of the electronic Hamiltonian. For the case of graphene,
the nearest-neighbor tight-binding (TB) model is sufficient for the description of
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the low-energy spectrum of the material, accounting only for the π atomic orbitals
(as σ states are too far away from the Fermi level). Hence, the TB Hamiltonian can
be written as

H = −t
∑

〈i, j〉,s
c†i,sc j,s + H.c., (13.1)

where ci (c
†
i ) is the annihilation (creation) operator for an electron with spin s at site

i , and t is the hopping integral with a typical value t = 2.7 eV. We point out that the
nearest-neighbor model gives a symmetric description of the valence and conduction
bands of ideal graphene that can be only lifted with higher accuracy Hamiltonians,
(e.g., by considering a second neighbor in the tight-binding scheme). Considering
that graphene has two atoms per unit cell, the eigenstates can be approximated by
a linear combination of the two atomic wavefunctions multiplied by a single phase
factor, which denotes translation of the entire supercell in space [27]:

�(k, r) =cA(k)�A(k, r) + cB(k)�B(k, r) =
= 1√

N

∑
j

eik·R j
[
cA(K )φ(r − RA

j ) + cB(k)φ(r − RB
j )

]

(13.2)

Here cA and cB are expansion coefficients of the φ(r) wave function of atomic
orbitals A and B, respectively, andN is the number of elementary cells. The R j =
na1 + ma2 vectors specify the position of the graphene unit-cell, with a1 and a2
being the lattice vectors. Equation (13.2) derives directly from Bloch’s theorem [27].

For the calculation of quantum transport, two-terminal graphene devices are con-
sidered, where a single graphene nanoribbon is contacted by two semi-infinite leads.
As the objective of the study is to comprehend the internal scattering mechanisms
due to the presence of defects, here we consider ideal contacts, i.e., contacts made of
graphene with the same lateral width as the channel material. According to the non-
equilibrium Green’s function formalism [14], the single-particle retarded Green’s
function matrix can be written as

G r (ε) = [εS − H − ΣL − ΣR]−1, (13.3)

where ε is the energy, H the real-space Hamiltonian, and S the overlap matrix, which
is identicalwith the unitarymatrix I in the case of an orthonormal basis set.Moreover,
ΣL ,R are self-energies that account for the effect of the contacts, calculated from the
expression:

ΣL(R) = τ
†
L(R)gL(R)τL(R). (13.4)

Here τL ,R are interaction Hamiltonians that describe the coupling between the con-
tacts and the device, while gL ,R are the contact surface Green functions. The trans-
mission coefficient of an incident Bloch state with energy ε can be thereon computed
as the trace of the matrix product:
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T (ε) = Tr{ΓLG
rΓR[G r ]†}, (13.5)

where
ΓL(R) = i{ΣL(R) − [ΣL(R)]†} (13.6)

are the spectral functions of the two contacts. According to the Landauer–Buttiker
theory [14], conductance can be calculated as:

G = 2e2

h
T, (13.7)

where G0 = 2e2/h ≈ 77.5µS is the conductance quantum.
For the calculation of the unfolded band structure, we consider the same graphene

nanorribon used in the quantum transport scheme. Such ribbon can be viewed as an
integer multiple of the ribbon’s unit cell along the transport direction. Based on the
TB Hamiltonian described above, the spectral weight of the unfolded bands on the
unit-cell Brillouin zone can be defined as [26]:

w(ε,k) = 1

N

∑
a∈PC

⎛
⎝

N∑
j

{(ca+ j (k))∗ · e−ik·R j }
⎞
⎠ ×

⎛
⎝

N∑
j

{ca+ j (k) · e−ik·R j }
⎞
⎠ ,

(13.8)
where a are the atoms that belong to the primitive cell. The important aspect of this
formula is that the sum of the expansion coefficients c should involve only equivalent
atoms within the elementary cells that comprise the supercell.

We consider single carbon vacancies as the origin of the structural/electronic
perturbation for our graphene system. Vacancies can be modeled within the nearest-
neighbor TB scheme by removing a π electron, either by switching to infinite the
related on-site energy term εi in the Hamiltonian, or equivalently, by switching to
zero the hopping ti j terms between the vacancy and the neighboring sites. However, a
more accurate treatment of the states introduced by such defect within the electronic
spectrum has to take into account the structural reconstruction around the vacancy.
This can be achieved through a multiscale approach, where first principles calcula-
tions are performed initially and the TB Hamiltonian is parameterized consequently,
on the basis of the ab initio results. In our implementation, we calibrate the TB para-
meters from density functional theory computations of defected graphene quantum
dots [28]. The optimized values for the on-site energy of the vacancy and the hop-
ping integral between this and its neighboring sites are εi = 10eV and ti j = 1.9eV,
respectively.
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Results

We consider a graphene nanoribbon with an armchair-type lateral confinement, hav-
ing a width of Na = 38 carbon dimer lines (≈4.5nm) and a length of Nz = 64 zigzag
chains (l ≈ 6.7nm), as seen in Fig. 13.1. By attaching two ideal semi-infinite con-
tacts along the zigzag confinement (i.e., by considering the ribbon infinite along its
length) we can calculate the quantum transport properties of this system using the
non-equilibrium Green’s function formalism. According to the TB scheme (where
ribbons with Na = 3p + 2 dimer lines are semi-metallic ∀p ∈ N and the rest are
semiconducting), the Na = 38 ribbon presents a semi-metallic character with a sec-
ondary band-gap of few meV. Figure13.2 shows the ideal transmission coefficient
and the respective density of states as a function of the energy (black lines). The con-
ductance is characterized by the presence of integer plateaus that correspond to the
number of available conduction channels (i.e., the number of 1D subbands) at a given
energy. Conductance steps take place at energieswhere vanHove singularities appear
in the density of states spectrum (see Fig. 13.2). If we now consider a single vacancy
defect, there are two plausible configurations that give rise to different conduction
characteristics. In the first case, if the vacancy is introduced at a Na = 3q position
(∀q ∈ N, q ≤ p), the defect states do not perturb the first conductance plateau around
the Fermi level [13] and the transmission coefficient is equal with the ideal value
(see results for V1 in Fig. 13.2c). When the vacancy is introduced at a Na 
= 3q site
(as V2), the defect perturbation influences the first conductance plateau (Fig. 13.2b)
and a dip in the transmission coefficient appears at the resonance of the defect state,

Fig. 13.1 Scheme of the armchair graphene nanoribbon with a width of 38 dimer lines and a
length of 64 zigzag chains, used for the quantum transport and band structure calculations. A single
vacancy is introduced in either the 27th (V1) or the 29th (V2) dimer line
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Fig. 13.2 a Density of states for the graphene nanoribbon with vacancy V1. b Density of states for
the graphene nanoribbon with vacancy V2. c Transmission coefficient for the graphene nanoribbon
with vacancy V1. d Transmission coefficient for the graphene nanoribbon with vacancy V2. Grey
lines show the ideal values for the non-defected nanoribbon

which is ∼ 0.4 eV below the Fermi level (Fig. 13.2d). It is important to point out
that in both configurations the ∼ −0.4 eV defect state is present, but perturbs the
ideal ribbon wave function only in the second case [13]. Above the first plateau, both
vacancy configurations show similar characteristics, with a small reduction of the
transmission probability mainly for the valence band, due to the presence of a higher
number of defect states bellow the Fermi level (in accordance with the acceptor-type
character of reconstructed single vacancies in graphene [28]).

Wenow turn into the band structure calculations for the samegraphene nanoribbon
as above. Considering the armchair-type lateral confinement and periodicity along
its length (i.e., considering that the ribbon has no zig-zag confinement, in accordance
with the quantum transport calculations), such ribbon can be described as a supercell
with 16 repetitions of the unit cell (see Fig. 13.1). If we unfold the calculated band
structure to the primitive Brillouin zone, we obtain the results shown in Fig. 13.3.
For the non-defected ribbon, unfolding ideally recovers the unit-cell band structure,
assigning a spectral weight value w = 1 for the original unit-cell bands, whereas
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Fig. 13.3 a Unfolded band
structure in the primitive
Brillouin zone for the
non-defected graphene
nanorribon of Fig. 13.1.
b Unfolded band structure
for the ribbon with V1.
c Unfolded band structure
for the ribbon with V2

w = 0 for the extra bands that are present due to the additional supercell atoms.
When performing the same calculation for the defected structures, the spectral weight
values range between zero and one also for the original bands, in proportion to the
perturbation of the wave functions induced by the defects. We note that for the V1

vacancy (Fig. 13.2b), the bands around the Fermi level (−0.45eV < EF < 0.45eV)
maintain the ideal w ≈ 1 value. On the contrary, the V2 vacancy (Fig. 13.3c) shows
w ≤ 1 also for the low-energy spectrum, with aminimumw ≈ 0 around−0.4 eV that
corresponds to the resonant energy of the defect state. Similarly as in the transport
calculations, for energies above and below the −0.45 eV < EF < 0.45 eV range,
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both defects give rise to a reduction of the spectral weight value that depends both on
the energy as well as on the wavenumber. Also here we note a bigger reduction trend
for the valence than for the conduction band. However such reduction is stronger
for the spectral weight with respect to the respective lowering of the transmission
coefficient.

Based on the previous results, a critical analysis of the two computational method-
ologies shows strong similarities as well as some subtle differences. Band structure
unfolding is a measure of the robustness of the intrinsic bands in the presence of
structural/electronic perturbations. The spectral weight measures the resemblance
between the unit-cell and the supercell wave functions. In this sense, each perturba-
tive event automatically signals a reduction in the value of the spectral weight. On
the other hand, the same perturbative events also give rise to the backscattering of the
propagated electrons when calculating the quantum transport. The direct relationship
between the cause (structural/electronic perturbation) and the result (diminishment
of both the spectral weight and the transmission coefficient) is at the origin of the sim-
ilarities for the two quantum mechanical methodologies. However, as noted above,
a general trend shows that the reduction of the spectral weight in the unfolded band
structure is stronger than the respective lowering of the transmission coefficient in
quantum transport calculations. The most probable explanation of such quantitative
misalignment reflects the fact that disordered states can still contribute in the propa-
gation of electrons through hopping interactions between the perturbed states. This
aspect should lower the negative impact of the perturbation even in the presence of
moderate disorder. On the other hand, the spectral weight is a direct measure of the
same disorder but does not account for tunneling or wave-function overlapping phe-
nomena as the transport formalism does. Notwithstanding such difference, the two
methodologies appear complementary, with band structure unfolding giving a robust
interpretation of the motivations for electron back-scattering in quantum transport
calculations.

Discussion

In this article we have compared the results obtained from two different computa-
tional methodologies that account for the effects of defects on the electronic and
transport properties of graphene nanoribbons. The first one calculates the quantum
transport properties within the non-equilibriumGreen’s function formalism, whereas
the second one computes the spectral weight of the ribbon’s unfolded band structure.
Our analysis has evidenced clear qualitative similarities between the transmission
coefficient of the propagated electrons and the spectral weight of the unfolded bands,
as well as some quantitative divergences due to the intrinsic differences between the
purely electronic and the quantum transport-related features. On the other hand,
a strong complementary character has emerged, with the spectral weight giving a
robust theoretical explanation for the origin of conductance degradation in the quan-
tum transport calculations of defected/disordered systems.
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Chapter 14
Defect-Induced Magnetism in Graphene:
An Ab Initio Study

A. Pidatella and R. Mazzarello

Abstract Graphene is an amazing two-dimensional system with exceptional physi-
cal and chemical properties. Potential applications in quantum information process-
ing have been proposed for C-based materials, in particular for graphene system,
where electron spin is a promising candidate for a solid-state qubit. The preservation
of long spin coherence time is the fundamental feature to get for efficient working
spin-qubit system. Despite graphene environment seems to suit the goal, defects in
the structure, interactions with impurities and edge states can be a source of alter-
ation of quantum information, since they could enhance the decoherence effects.
The present work is a computational analysis of defective systems. It focuses on the
investigations of various prototypical defect states (vacancies) and impurities inter-
acting with graphene surface (hydrogen, boron, nitrogen, and oxygen) by means of
density functional theory (DFT). We provide a preliminary study about the effects
of these interactions. Vacancy-type defects give rise to a breaking of graphene sym-
metry, promoting a localized state with a magnetic moment whose magnitude is
concentration-dependent. Hydrogen promotes a local hybridization of the structure,
providing a localized magnetic moment and giving rise to an enhancement of spin–
orbit interaction of about three orders of magnitude, showing the impact of hydrogen
on spin-relaxation time. Among boron, nitrogen, and oxygen, the work has shown
that the only one which returns a magnetic ground state is nitrogen. Boron provides
an n-doping of defective-graphene. Oxygen leads to a hybridization of carbon atoms
bonding, but its electronic structure does not allow a magnetic system. In the partic-
ular case of a bridge-like adsorption site. Among the different configurations for the
adsorption sites, the bridge-site is energetically the most stable one, showing as in
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the other configurations for nitrogen, a magnetic system. Nitrogen adatoms develop
a magnetic order (at zero temperature) which is always ferromagnetic independently
from the distance between two adjacent nitrogen atoms.

A Bird’s-Eye View at Graphene

Among systems with only carbon atoms, graphene—a two dimensional (2D)
allotrope of carbon—plays an important role since it is the basis for the understand-
ing of the properties of other carbon allotropes. Graphene is the name given to single
2-dimensional sheet of graphite which was isolated experimentally for the first time
in 2004 [1]. Before that, graphene had been investigated theoretically for over sixty
years, although its existence as a 2D crystal in free space was thought impossible
[2–4]. Since the isolation of a single-layer of graphene and the demonstration of its
excellent conductivity and optical properties, the research aiming at determining the
electronic properties and potential applications of the same, progressed at a rapid
pace. In the last ten years, graphene has been the most studied material in the world,
catching the attention of the scientific community for its fascinating physical and
chemical properties. Because graphene is made of only carbon atoms, pure graphene
is free of nuclear spins and should be an attractive material for electron-spin based
quantum circuits. However, carbon atom has no magnetic moment, hence realizing
magnetism in graphene is challenging. The first reason is the absence of d and f shell
electrons which are responsible for the magnetic coupling in conventional ferromag-
nets, so that ideal graphene is in itself nonmagnetic. Despite this fact, both theory
and experiments suggest that a magnetic order can exist in these carbon structures
under particular circumstances, related to the presence of impurities or defects in the
pristine structure. Magnetic moments originate from localized states in the presence
of point defects in the graphene lattice. One example of this kind is missing C atoms,
called vacancies, even if the mechanism at fundamental of the presence of magnetic
moments could be also linked to the interactions between graphene layer and other
elements (e.g., metals) moving on the surface as adatoms [5]. In the light of these
findings, the introduction of defects in graphene becomes a tool to investigate the
presence of relevant magnetic phenomena.

Defects in nanographites can be created intentionally by irradiating the material
with electrons or ions. By manipulating the conditions of irradiation, it is possible
to tune, in a flexible way, the properties of the carbon-based materials. Using these
techniques carbon atom can be removed from the π conjugation network of the
graphene sheet. The single-atom defects on the graphene lattice give rise to quasilo-
calized states at the Fermi level. As known, graphene lattice is a bipartite lattice, so
that when a defect is created in the A sublattice, only the pz orbitals of C atoms in
the B sublattice contribute to the quasilocalized state, and vice versa. These states
extend over several nanometers around the defect and the fact that these quasilocal-
ized states lie at the Fermi energy suggests that Stoner magnetism can be induced by
the electron exchange instability [5].
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Overview on Graphene for Quantum Information

Some potential applications in quantum information processing have been proposed
for graphene systems, where the electron spin is a very promising candidate for
a solid-state qubit [6]. Alternative devices, during the years, were introduced, and
great expectationswere posed about semiconductor heterostructures exploitingGaAs
technology for forming quantum-dot- based devices. One of themost important para-
meter to control to ensure the characteristics required for the quantum information,
is the spin coherence. The preservation of this feature is important with the aim to
obtain efficient and working systems. However, many sources of spin decoherence
have been identified, among these, the major ones are for sure the spin–orbit inter-
action, coupling the electron’s spin to the magnetic field generated by the electron’s
orbit and the hyperfine interaction of the electron spin with the surrounding nuclear
spins [7]. Therefore, it would be good to form qubits in quantum dots based on
other materials, where spin-orbit coupling and hyperfine interaction are consider-
ably weaker. Carbon-based materials are good candidates for many reasons. First,
spin-orbit coupling is weak in carbon due to its relatively low atomic weight, second,
natural C atoms consist predominantly of the zero-spin isotope 12C , for which the
hyperfine interaction is absent. Graphene quantum dot, in addition, seems to present
the perfect environment for developing this kind of device. Spin qubits in graphene
can not only be coupled (via Heisenberg exchange) between nearest-neighbor quan-
tum dots but also over long distances, giving rise to a system ideal for fault-tolerant
quantum computation and offering a low error rate due to the weak decoherence, in
combinationwith a high error threshold due to the possibility of long-range coupling.
Despite all these fascinating features offered by graphene, the presence of edges and
defects can drastically perturb the spin-coherence and spin-relaxation times. Further-
more, the presence of adatoms on graphene surface has been shown to enhance the
spin-orbit coupling [8]. Edges and defects, such as vacancy, and hydrogen adatoms
lead to the formation of localized electronic states [5]. Localized states give rise
to magnetic moment, due to the presence of a midgap state, occupied by just one
electron, thus providing an unpaired spin. One could think these additional spins as
pseudo-nuclear spins, as they are expected to interact with the qubit spin in the quan-
tum dot. It is expected that the central spin-defect spin interaction is much stronger
than for nuclear spins and that defect spins interact with each other too, so in the end
they could represent the dominant source of spin relaxation.

The absence of a corresponding theoretical study of interactions between defect
states and defect-induced magnetic impurities within the context of graphene qubits
urges to a better understanding of these processes. This work aims at a better under-
standing of the decoherence effects in graphene spin qubits caused by the presence of
localized states at the Fermi energy which inevitably interact with the latter ones. In
the following the results on the investigations of various prototypical defect states by
means of the density functional theory (DFT) are shortly reported. These can be con-
sidered as a preparatory work for a proactive target concerning the development of
realistic tight-binding models which describe defects and interactions between them.
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A greater understanding will be achieved once one derives low-energy theories from
the tight-binding models and by solving them, in order to establish graphene qubits
lifetimes. However, in this framework only the significant role that defects play is
shown.

Why it is important to control spin coherence for developing adequate system for
quantum information processing?

Only if sufficiently long computations can be performed, quantum algorithms,
which exploit the special properties of a quantum computer, can be implemented
successfully. This includes the storage of quantum information as well as the num-
ber of performable operations on the quantum bits. By exploiting two fundamental
principles of quantum mechanics, namely superposition and entanglement, a quan-
tum computer is able to solve specific problems with much higher efficiency than a
classical device. In a quantum computer, all information is stored in qubits which
are quantum mechanical two-level systems. Two complex numbers can be stored in
one single qubit. A set of N qubits is initialized in linear time and has 2N basis states
due to the superposition principle. In addition, a transformation can be applied to all
qubits at the same time which saves 2N steps compared to an individual application,
feature which is often discussed under the keyword quantum parallelism.

The requirements for an implementations of a quantum computer are summarized
by the famous DiVincenzo’s criteria [9]:

1. Scalability and well-defined qubits.
2. Well-defined initialization of the qubits in a simple state.
3. Long coherence times.
4. A universal set of quantum gates.
5. Measurement of selected qubits.

According to these criteria, quantum dots with electron spins as qubits have a great
potential for the realization of a quantum computer. The spin of an electron confined
inside the dot is a well-defined qubit. Besides the identification of a single spin as
qubit, it is also possible to define a qubit in the basis of two or three spins. Solid-
systems are scalable by construction, but the implementation of systems with a
large number of qubits could certainly be challenging. The initialization of a lateral
quantum dot is achievable by relaxation or by populating the dots with selected spin
states. In addition, these system have relatively long coherence times.

Anyway, only if the coherence time of the qubit is sufficiently long, information
can be stored and an adequate number of computations can be executed. Concerning
the success of QIP, a fundamental concept is provided in quantum threshold theorem
(or quantum fault-tolerance theorem): if the average error rate (noise) of the quantum
gates is kept below a critical value, arbitrary long computations will be possible due
to quantum error correction, i.e., a quantum computer with noise can quickly and
accurately simulates an ideal quantum computer, provided the level of noise is below
the threshold value. This theorem implies that the error in quantum computers can
be controlled as the number of qubits scales up. Thus a lot of effort is put into
the development of quantum error correction. Alternatively, one can eliminate or
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reduce the sources of errors, aspect which implies a thorough investigation of the
decoherence effect induced by external influences.

For a single electron confined in a quantum dot, the hyperfine interaction between
the electron spin and the nuclear spins, together with spin-orbit coupling, seem to
be the dominating sources of decoherence of the electron spin. By spin–orbit inter-
action, the spin couples to the electronic degrees of freedom which are exposed to
various perturbing effects such as impurity scattering. Previous works have proven
how if spin-orbit coupling alone is the dominating mechanism for the decoherence,
a single electron spin confined in a quantum dot would exhibits very long dephasing
times, order of ms. However, experimental observations contradict with this theoret-
ical prediction. Measurements revealed strongly reduced dephasing times compared
to the relaxation time, thus spin-orbit coupling alone cannot be the major source of
decoherence for these systems. In general, it seems that decoherence is dominated
by the Fermi contact hyperfine interaction between the electron spin and the nuclear
spins in the dot. Although in general in quantum dot system based on semiconducting
heterostructures, hyperfine interaction seems to dominate decoherence effect, over-
coming the spin–orbit interaction, in graphene quantum dot the hyperfine interaction
is absent, due to the presence of zero-nuclear spin C atoms.

What Is a Graphene Quantum Dot?

Two fundamental problems need to be overcome before graphene can be used to
form spin qubits. The first one, is the difficulty in tuning the quantum dot due to
the absence of a gap in the spectrum. The phenomenon of Klein tunneling makes
it hard to realize a good confinement of particles. Furthermore, owing to the valley
degeneracy that exists in graphene, it is not trivial to form two-qubits gates using the
Heisenberg exchange coupling for spins in tunnel-coupled dots. These problems can
be solved by defining an appropriate system, i.e., in order to define a quantum dot
(QD) one can use the confinement provided by the transverse states in a graphene
nanoribbon [10] (as shown in Fig. 14.1). In such a device the valley degeneracy is
lifted, giving way to the appearance of Heisenberg exchange coupling for spins in
tunnel-coupled dots, enabling one to use graphene QDs for spin qubits. Moreover,
the coupling makes use of conduction-band to valence-band tunneling processes,
giving rise to an interaction at long distance, mechanism mainly based on the Klein
paradox in graphene. By solving the Dirac equation for the system it is possible to
establish how the boundary conditions impose a set of solutions which gives rise to
a confined structure, the QD, and to define the relation between the values of the
gate voltage and barrier voltage in order to shift appropriately the energy levels with
the final aim to create a resonance between them and thus a tunnel-connection (for
further details, see [10]).

It is interesting to see if the spins Si of these two QDs electrons (i = 1, 2)
are coupled through an exchange coupling, Hexch = J S1 · S2, in the same way
as for regular semiconductor QDs, because this coupling is, in combination with



200 A. Pidatella and R. Mazzarello

Fig. 14.1 Schematic diagram of a graphene double quantum dot. Dots with length L and width W
are based on ribbon of graphene (grey) cut, in this case, with armchair edges (white). Particles are
confined by tuning the voltages applied to the ‘barrier’ gates (blue) along the y direction, whereas
the confinement along x is achieved by means of edges. Additional gates (red) allow to shift the
energy levels of the dots [10] (color figure online)

single-spin rotations, sufficient to generate all quantum gates required for universal
quantum computation [6]. For the case with more than two dots in a line, it turns out
that we can couple any two of them with the others being decoupled by detuning.
Figure14.2 illustrates the situation of three dots in a line, where the left one and the

Fig. 14.2 Triple-quantum-dot setup. Illustration of the energy bands of a triple-quantum-dot setup
in which dot 1 is coupled to dot 3 via co-tunneling processes through the valence bands of barrier
2, barrier 3, and dot 2. The central dot is decoupled by detuning. The triple-dot example shows that
in a line of QDs, it is possible to strongly couple any two of them and decouple the others simply
by detuning, which is a unique feature of graphene and cannot be achieved in semiconductors, such
as GaAs, due to its larger gap [10]
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right one are strongly coupled whereas the central dot is decoupled by detuning. The
tunnel coupling between dot 1 and dot 3 is achieved via Klein tunneling through the
valence band of the two central barriers and the valence band of the central dot. The
most important fact is that the long-distance exchange coupling between 1 and 3 is
obtained via the valence band and not via the qubit level of the central dot, leaving the
qubit state of dot 2 unchanged, in other words, the qubit level in dot 2 is barely used
to couple dot 1 and dot 3. This is a unique feature of graphene QDs due to the small
and highly symmetric bandgap, which is not known to exist in other semiconducting
materials. The availability of non-local interactions is important in the context of
quantum error correction, as it raises the error threshold for fault-tolerant quantum
computation.

About the coherence time for graphene spin qubits, in the light of the only graphene
properties, one has clearly promising expectations which seem to ensure long-lasting
coherence times. However, as said previously, it is important to recognize the role
played by the defects in these structures to make stronger the model for realizing it
experimentally. It is this the right starting point for our investigations.

Defective-Graphene in a Nutshell

The analysis has been focused on the energetic, structural, electronic, and magnetic
properties of bulk defects (vacancies and adatoms). Considering vacancy defect and
several types of adatoms relevant for recent experiments carried out on these systems
[5, 11–13], including boron, nitrogen, and oxygen adatoms, it has provided a large
class of samples making in some way this study eventually extendable to other
systems, always with some precautions. To establish the robustness of calculations,
some preliminary simulations were needed to determine the most appropriate DFT
functional. Although a systematic study of the energetics of adatoms on graphene
and on their migration energies has been recently obtained using LDA functionals
[14], this work does not provide a thorough picture of the electronic structure of the
systems, nor discusses the limitations of the LDA approximation. Moreover, they
only consider non-magnetic configurations. Then, one could think that the use of
a GGA functional could return improved results, but in principle both functionals
are equipped with advantages and disadvantages, dependent on the physical context
under analysis.Generally,whennot specified,wehave chosen to performcalculations
using GGA functional of Perdew–Burke–Ernzerhof (PBE) [15], according to certain
reliable results from other works [5, 11, 16] and to some of our simulations on the
same structures with different functionals, which have been a proof of the strength
of GGA approximation for these systems. All the ab initio simulations have been
performed using Quantum Espresso (QE) [17], a parallelized DFT code developed
at SISSA, Trieste (Italy).

The general effect of this induced magnetic ground state is related to a possi-
ble coupling between the spin-defect and the central-spin of the QD, worsening
and destroying the coherence. My investigation led on different possible sources of
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Fig. 14.3 Vacancy-type defect spin-polarized magnetization density and density of states (DOS).
Left projection on xy-plane around the vacancy defect. Isolines are representative of the magnetic
influence of the defect on the odd-nearest neighbor atoms, whereas even-nearest neighbors are
anti-aligned. Right spin-resolved total density of states plot. In the figure, the red line shows the
density of states of the ideal graphene, whereas the black one represents the DOS of the defective
graphene. Labels indicate the character of the defect states. For the single-vacancy, together with the
quasilocalized states generated by p electrons and reported as pz orbital contribution, other localized
states are generated by the presence of σ dangling bonds, which contribute as sp2 hybridized orbital
(color figure online)

decoherence has provided that the simplest point defect in the solid state matter,
vacancy, breaks down the particle-hole symmetry of the graphene system, giving rise
to localized states which provide a magnetic moment different from zero (Fig. 14.3).
The totalmagneticmoment for these systems is determined by the contribution (1μB )
of the localized sp2 dangling bond state and the fractional contribution (<1 μB) of
the extended defect state ψd(r) localized close to the Fermi energy. The partial spin
polarization of ψd(r) could be explained in terms of self-doping (charge transfer
from the bulk to ψd(r), corresponding to p-doping of the pristine graphene, which
arises from the stabilization of the defect state). It has a magnitude depending on the
defect concentration, the greater the concentration, the lower the magnitude, reach-
ing a saturation value of 1.5 μB per cell. Another interesting feature is related to the
distributions of the electron spin magnetization density in the vicinity of the defect,
which shows a breaking of the characteristic

√
3 × √

3 pattern with an enhance-
ment of the localized magnetic moment associated with the dangling bond of the
unsaturated C atom. For this type of defect, as we said, the threefold symmetry
(manifested for example in the hydrogenated samples) is broken due to the Jahn–
Teller distortion and this is exhibited also in the spin magnetization density, from
which one can also evaluate a typical ferromagnetic configuration for atoms belong-
ing to the same sublattice, whereas atoms which belong to different sublattices will
have opposite spin projection, up (down). According to the Stoner scheme, the mag-
netic ordering is driven by the exchange energy Ex ∼ −∑

i M2
j , where M j is the

magnetization of the pz orbital of the j th carbon atom. It is possible to show that
ferromagnetic ordering is the only possibility for the magnetism originating from
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Fig. 14.4 Graphene+Hon top adsorption site, spin-resolvedmagnetization density, and projected-
DOS. Left projection on the xy plane. The effect induced by the hybridization does not affect
the characteristic

√
3 × √

3 pattern, respecting the threefold symmetry of the system. Magnetic
moment is mainly distributed around the H atom site, isolines show the influence of the adatom
on the magnetic alignment of the C-spins (red indicates spin-up density, blue denotes spin-down
density). Only the C atoms which occupies the sites belonging to the complementary sublattice
of the defect state are oriented in parallel with H spin orientation, the other ones are anti-aligned.
Right PDOS of system. Black line denotes the total PDOS; golden, red, and blue shaded regions
indicate the contribution to DOS due to C atom below H, first neighbor and second-neighbor C
atoms, respectively. Green line represents the contribution of H atom. Where the first-neighbors
are strongly hybridized by the H atom, clearly visible in the perfect agreement and overlap among
these states, H atom does not influence the second-neighbors. The sp3 hybridization induced by H
provides a localized state at the Fermi energy EF , which is spin-up component is totally occupied,
whereas the spin-down component (not reported in the figure) is above the EF and hence, not
occupied (color figure online)

quasilocalized states induced by defects in the same sublattice because of the non-
oscillating behavior of both (i) M j within the same sublattice and (ii) the indirect
(RKKY) coupling due to the semimetallic properties of graphene [18, 19]. On the
contrary, it is possible to see that for the case in which defect states belong to differ-
ent sublattice, Ex is minimized when the coupling is antiferromagnetic, due to the
indirect spin-polarization effect. The strength of the coupling between the defect-
induced magnetic moments located in different sublattices depends on the defect
concentration since Ex ∼ −∑

i M2
j and the contribution of the magnetic moment

associated with a single defect is
∑

i M2
j ∼ ∑

j |ψd(r)|4 ∼ log−2(N ), where 1/N is
the defect concentration [5].

Hydrogen interaction with graphene surface (physisorption on specific sites) pro-
duces similar effects, hybridizing locally the system and giving rise to a magnetic
moment (Fig. 14.4). The H adsorption causes the appearance of peak in the DOS at
the Fermi level which spin-splits due to electron–electron interactions. Remarkably,
this result is compatible with Lieb’s theorem for the Hubbard model on bipartite
lattices. According to this theorem, the removal of a single site in the bipartite lattice
gives rise to a ground state with S = 1/2. The covalent bond between the H atom and
the C atom underneath effectively suppresses the “site” (the pz orbital, where the π
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network conjugation is broken due to the sp3-hybridized C, establishing a localized
state with an unpaired electron, consequently subjected to a spin polarization), creat-
ing a vacancy in the underlying low-energyHamiltonian. It is worth noticing how this
result contrasts with that obtained for a vacancy. Vacancies could in principle give
rise to similar magnetic states. The difference with respect to the case of H adsorption
is that vacancies tend to reconstruct and the magnetic moment generated can actu-
ally vanish depending on the concentrations. Furthermore, H enhances the spin-orbit
coupling of about three orders of magnitude with respect to the intrinsic spin–orbit
interaction. Adatom locally breaks the reflection symmetry across the graphene plane
leading to an out-of-plane distortion by an angle φ relative to the plane. For φ �= 0,
the distortion mixes σ and π orbitals that are no longer orthogonal (for full sp3 these
states are degenerate) and hence the SO interaction becomes a first-order effect lead-
ing to a large enhancement of SOC for covalently bonded hydrogen impurities in
graphene. From the theoretical point of view, it is possible to demonstrate that while
the general reason to this enhancement of the SOC is related to sp3 hybridization,
specifically, the main enhancement appears due to pseudospin inversion asymmetry
(PIA), which generates novel spin-orbit coupling for conduction electrons [8]. The
SOC Hamiltonian can be derived by inspecting the reduction of the graphene point
group symmetry D6h—which allows for the intrinsic spin-orbit coupling only—to
the one corresponding to adatoms-graphene system. First, the C − H covalent bonds
break the space inversion symmetry and the point group reduces to C6v. Second, the
hydrogenated carbons on sublattice α cannot be interchanged with the nonhydro-
genated carbons on sublattice β. This breaks the pseudospin inversion symmetry,
and C6v → C3v (further details can be found in Ref. [8]). Because of this enhance-
ment, we are interested to evaluate if SOC can perturb our system. I have taken
account of the breaking of the space inversion symmetry due to sp3 hybridization,
in order to establish if energetically SOC gives rise to important differences in the
magnetic anisotropy energies of the ground state. I got that there are for sure ener-
getic differences due to the magnetic anisotropy of system, but they are very small
(order of aboutµeV), so that SOC is not able to remove the ground-state degeneracy,
at least at finite temperature. Studying the interactions between two hydrogen atoms
on the same supercell (playing with different configurations: same sublattices αα

or different sublattices αβ sites for positioning H), one can see the formation of a
ferromagnetic order when adatoms are located on the same sublattice, regardless of
the distance between them, whereas putting these on different sublattices, according
to Lieb’s theorem [20] derived for a half-filled single-band Hubbard model, the most
stable magnetic order is the antiferromagnetic one, appreciable only if the distance
between the adatoms is sufficient to avoid hybridization mechanisms which couple
the unpaired electrons belonging to the two independent impurities (≥16 Å). All
these results are in agreement with previous works in the literature.
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First-Principles Study of Adatom Adsorption on Graphene

Etched graphene quantum dots on hexagonal boron nitride (h-BN) are currently
investigated experimentally in many works in order to assess their suitability as spin
qubits. Stampfer et al. [13] have recently shown that these systems display very
stable single-dot characteristics (more stable than those of graphene nanostructures
deposited on SiO2) due to the low concentration of substrate-induced defects and the
small strain thanks to the lattice compatibility with the substrate. Investigations on
adatoms element such boron B, nitrogenN, and oxygenO are for sure preparatory for
a better understanding of the interaction and effects that presence of these elements
could generate on the system.

Let us try to summarize the results obtained. About the elements studied, and
their interactions with graphene monolayer system, in general we can say that the
adsorption energy evaluated for all the elements is always not less than 1 eV, which
means that boron, nitrogen, and oxygen in atomic form have a relatively strong
stability when they sit on the bridge site. The presence of adatoms onto graphene
can functionalize graphene in different ways, depending on the character and type of
interaction.Whereas for the boron B adatom has been shown that the connectionwith
graphene surface is defined bymeans of physisorption, which bonds electrostatically
the adatom to the surface, but without great deformation of the latter, in the nitrogen
N and oxygen O cases, both bonds with C atoms are covalent bonds, defining a
chemisorption of the latter ones, inducing a new status of hybridization of the system,
breaking in some way the ordinary scheme for graphene lattice.

The character of interaction is also related to the type of bonding, in fact among
the three elements the only one which does not show a covalent interaction, is B,
that establishes a ionic bonding, with a subsequent charge transfer from adatom
to graphene. In B case, this transfer leads to n-doping of graphene, changing the
band structure of the system. Moreover, the transfer of electronic charge to graphene
implies the loss of a possible magnetization mechanism related to spin-polarizability
of the localized p-state near the Fermi energy of system, so that the B has a nonmag-
netic ground-state. Boron is characterized by 5 electrons, four of them are in the inner
s shells (1s and 2s) and the remaining one belongs to 2p orbital. Figure14.5 shows
the PDOS for B on the bridge-site. One can see that the Dirac point of the boron-
graphene system (labeled with ED) is shifted at lower energy value with respect
to Fermi energy (which is set at zero energy). In other words, the Fermi level is
shifted higher in energy relative to ED , reflecting a partial occupation of graphene
conduction-band states. The 2p state of the B lies 1 eV above EF , where a small part
of this state is below the Fermi energy and showing a minimal interaction between
graphene states and boron state.

Although, the B case may look similar to that of H (since just one electron is
unpaired in the outer electronic shell), the type of interaction is extremely differ-
ent. Since H has just one available electron in the 1s shell, one cannot think that
there could be a charge transfer from H to graphene in order to provide an ionic
bonding, independently by the geometrical features, because physically it would be
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Fig. 14.5 Spin-up-resolved total projected-DOS for graphene monolayer with single-B atom on
bridge-site. Top PDOS of system. Black line denotes the total DOS; golden and green-shaded
region indicate the contribution to PDOS due to orbitals 2s and 2pz , respectively, of B atom. Red
line represents the contribution of pristine graphene DOS. It shows the Dirac point of the defective
system, labeled in the plot with E{D}, and the Fermi energy, E{F} at zero energy. Although it is
clear a hybridization between graphene states and states from 2s orbital of B at about −2.5 eV
and −9 eV, these states do not play a relevant role in magnetism, which is in principle due to the
localized peak of 2pz orbital, in this case above the Fermi energy, but partially occupied, showing
a n-doping provided by B to graphene. Bottom zoom-in of the same PDOS (color figure online)
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impossible for H to release its only one electron to graphene. Hence, the most stable
solution is forming a covalent bond. In the B case ionic bonding seems to be the
best solution, this also explains the small distance of B from the graphene sheet, to
reduce the electrostatic energy. Despite hybridization mechanisms are possible for
the s electrons of B with graphene states, these are irrelevant for properties which
depend mostly upon the states at EF , such as transport and magnetism. In agreement
with previous works [21], for all the III-group elements, including B, because of the
little occupation of this valence p-peak, the up- and down-spin states are degenerate
and there is no net magnetic moment for this group of elements.

In this direction, charge transfer for this kind of elements seems to be the bench-
mark to understand the annihilation of magnetic moment, resulting in a nonmagnetic
ground state. Extracting a quantitative value for charge transfer from ab initio cal-
culations is useful for comparing with both experiment and simple models. Charge
transfer is meaningful in the context of ionic bonding, since in the covalent-bonding
case, charge is shared in the bond between adsorbate and substrate, and thus the
charge-transfer concept is less relevant. However, charge transfer is an ambiguous
quantity and there is no unique definition.

In order to evaluate this quantitatively, in this work we use a definition of charge
transfer based on the shift in EF relative to the graphene DOS resulting from the
adatom adsorption. The DOS of the adatom-graphene system can be used to deter-
mine the charge transfer, assuming that graphene states remain unchanged due to the
adatom adsorption (aside form a rigid shift). This is a good assumption in the B case.
For the III-group-elements systems, electrons are donated to the graphene, filling the
rigid graphene states and thereby shifting the Fermi level up from the Dirac point.
To calculate the charge transfer from the adatom-graphene DOS, the Dirac point is
identified, and the shift in Fermi level

ΔEF = EF − ED (1)

is determined. The charge transfer ΔqDOS is given by the integral of the isolated
graphene DOS from ED to ED + ΔEF . The Fermi-level shift ΔEF and charge-
transferΔqDOS are provided in Table14.1 for each configuration, in order to show the
significant role played by geometrical configuration in terms of the charge transfer,
even if our interest is devoted to the bridge-site configuration.

Table 14.1 Charge-transfer DOS method. Fermi level shift relative to the graphene states ΔEF ,
charge transfer determined from the DOS ΔqDOS. In red, charge transfer for bridge-site case.
A positive charge transfer indicates transfer of electrons from the adatom to graphene; small differ-
ences in ΔEF can give significant differences in ΔqDOS
Atom (site) ΔEF (eV) ΔqDOS(e)

B (B) 0.7439 0.2818

B (T) 0.8904 0.3942

B (H) 0.9117 0.6309
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Although by comparing with previous work of Chan et al. [21], referring to their
analysis about III-group elements on hollow-site adsorption site, the value of charge
transfer obtained from our calculations in hollow-site configuration is somehow
in agreement with their results for other elements belonging to the III-group, the
values obtained for top-site and bridge-site are lower than this latter configuration.
In particular, one can expect that where the Fermi-level shift is similar, one has to
obtain the same charge transfer, since it is provided by an integral on the same energy
range of the same isolated-graphene sample. Analyzing the chemical properties of
B along group and period, in the periodic table, focusing on the electronegativity
values (commonly referred to as the Pauling scale) and ionization energies, one can
see that:

• along the III-group: B has the highest electronegativity and ionization-energy
values in the group, which are 2.0 and ∼800 kJ/mol, respectively, against average
values for Al, Ga, and In which are 1.65 and ∼570 kJ/mol;

• along the first period: the benchmark element is Li, comparing results on it [21]
with our calculations on B. According to these results, Li brings about the highest
charge transfer among metals analyzed (about 1 electron per adatom), with aΔEF

very similar to that of III-group elements. Although along the same period the
geometrical features of atoms do not significantly change, due to the low elec-
tronegativity and ionization energy (1.0, ∼500 kJ/mol, values very close to those
ones of III-group) lithium donates very easily its electron to graphene, unlike B.

Summarizing, what we suppose is that unlike elements belonging to the same
group of periodic table, the expectations concerning charge transfer in the case of B
should be reevaluated. This element appears to be more resistant to charge transfer,
since the energy required to rip out valence electron is almost double with respect
to other elements. We can conclude stressing that, the work of Chan et al. cannot
provide us a complete vision of the charge-transfer problem, since their investigations
do not include analysis of boron case and moreover, they study only the hollow-site
configuration for the other elements. So that, the use of their results as reference
for our ones might not return the best picture of the problem, since, assuming the
reliability of the method, they do not provide any information on B and the values
for charge transfer provided for other III-group elements refer to an integration of
graphene DOS which can differ from our, dependently by parameters used in DFT
calculations.

As proved by many works [16], substitutional N impurity in the graphene net-
work, thanks to its very similar geometric features with C atoms, does not affect the
graphene structure, resulting in a sp2-hybridized N atom, where the remaining two
electrons of the latter participate in the π -electron network of C atoms. The absence
of a breaking of symmetry or alteration of the structure, returns a ground state of
substitutional nitrogen which is always nonmagnetic.

If a N dopant does not occupy the substitutional sp2 site in the graphene network,
it will be adsorbed on graphene. Nitrogen is chemisorbed on graphene, binding to
irregular carbon structures in sp3 sites. The N adatom forms a bridgelike structure
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on the graphene surface. In fact the adsorption energy has its highest value in cor-
respondence of this configuration. The length of the C − N bond is 1.24 Å and the
length of the bond between the two C atoms bonded to the N is 1.54 Å. These two C
atoms become sp3-hybridized, whereas the C − N − C angles of all bridge adsorp-
tion indicate sp2 hybridization ofN,without breaking the C − Cbond underneath the
N atom. The underlying C − C bonds are weakened due to the local tension caused
by the N atom adsorption, in fact, contrary to the B case, a stronger deformation
of the in-plane distribution of C atoms is induced by the presence of N. This is a
signal that chemisorption of nitrogen has a strong influence on the structure, with a
consequent modification of electronic features.

In contrast with the substitutional case, significant magnetism has been observed
based upon spin-polarized calculations. The origin of the strong magnetism may
be the spin-polarization of the chemisorbed atom as well as symmetry-breaking
perturbations introduced by the chemisorbed atoms, and hence it may depend also on
the position of the adatom in crystal lattice. Let us try to provide a complete scheme
concerning magnetism in nitrogen-graphene system, first through the analysis of
interaction of single-N adatom onto graphene, second giving some results about the
interaction between two N adatoms in the same supercell, stressing differences in
the magnetic order.

For the bridgelike chemisorption the N adatom forms two single bonds with the
neighboring C atoms via sp2 hybridization (perpendicular to the graphene surface).
Two electrons participate in the single bonds with the C atoms while the other two
remain as lone-pair electrons. One electron resides in the remaining un-hybridized p
orbital which is oriented perpendicular to the local C − N − C plane (as shown in the
spin density projection in Fig. 14.6, providing, in the end the magnetization ∼1 μB .
In general, one can assert that the magnitude of the magnetic moment is related to
the coupling of this p orbital with the surface π orbitals, the stronger coupling, the
smaller the moment, since the charge transfer (or in this case, charge sharing) can
reduce the spin-polarization intensity. With respect to Krasheninnikov et al. [16],
the magnitude of magnetic moment is not fractional (their value is 0.57 μB /cell).
Assuming that calculations developed using PBE functional ensure robust results,
in order to have a better understanding about origins of this discrepancy, we provide
some results from calculations developed on a system with the same characteristics
of that used by Krasheninnikov et al. (a 5 × 5 supercell, grid of 5 k-points), but with
the exchange-correlation functional PBE, instead of Perdew–Wang [22] used in that
work. The results return a magnetic ground state with a fractional magnetic moment
of 0.54 μB , value very close to that provided by Krasheninnikov et al. Since we have
used a different functional with respect to their work, obtaining the same magnetic
moment value, we can not ascribe the origin of fractional magnetic moment to this
difference, but more probably the main cause is related to a too small k-points grid,
where a low-density grid could not correctly resolve the magnetic moment of the
system. To verify this suspicion we studied the same system, with a more dense
grid of k-points (about 20 points). This calculation returned a value of magnetic
moment close to 1 μB , providing an important confirmation of our hypothesis and a
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Fig. 14.6 Spin density projection (in μB/a.u.2). Top-Left 3D picture of the spin magnetiza-
tion density. The unpaired electrons are distributed orthogonally to the sp2-hybridization plane
(C − N − C,along the bonding line), giving rise to spin-up polarization, denoted by red isosurfaces.
Top-Right xz-plane section of the same. Bottom 2D-xy projection of spin density. White region rep-
resents the spin-density accumulation which promotes the up-polarization; isolines, strongly local-
ized around the adatom, are a measure of how the interaction affect only the region surrounding N
atom (color figure online)

clearer scheme of the possible cause for these “conflicting” results. Although these
discrepancies, our findings seem to be well described by this model.

Some interesting results about interactions between a pair of N adatoms adsorbed
on graphene can be shown. We consider a bridgelike configuration. The analysis of
properties for the single-N-graphene systems has been conducted in a 4 × 4 supercell,
since we regarded that the distance between adatoms periodic images was sufficient
to avoid any interaction. Here we consider a larger system. For a first analysis a 6 × 6
supercell is used (returning a coverage of 2 adatoms per 72 C atoms), where the dis-
tance between the two N atoms is about 10 Å (similar to the previous single-adatom
case). We expect that in the absence of strong interactions among the adatoms, the
behavior of these two is almost independent, as in the case of single-adatom adsorp-
tion, giving rise to a most stable ferromagnetic order (in this particular geometrical
configuration that in some way overlooks magnetic effects due to the bipartite lat-
tice, proved by Lieb theorem). Our calculations indicate that the most stable mag-
netic order is the ferromagnetic one (the antiferromagnetic configuration shows a
total energy which is ∼15 meV higher than ferromagnetic one. Although at finite
temperature this stability could be affected, at low temperature the system prefers
the expected ferromagnetic order, providing a total magnetization of 1.88 μB (in
Fig. 14.7 the spin-density is shown for this system). The resulting fractional mag-
netic moment raised the suspicion that the magnitude of the magnetic moment of the
system could depend on the size of system analyzed, since, if the two adatoms do
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Fig. 14.7 Spin-magnetization density for 2N-graphene 6 × 6 supercell system. Left 3D picture
of the spin polarization of states around the two adatoms. The magnetic order is ferromagnetic,
returning a fractional magnetic moment of 1.88 μB . Right 2D xy-plane section of spin density.
In agreement with the similarity concerning the spin distribution around the adatom in the single-
nitrogen system (Fig. 14.6), one can think that the distance between these N atoms is enough to
ensure that each one is independent from the other

not interact with each other and behave as two single adsorbed atoms, there should
not be reason to expect a total magnetic moment different with respect to the sum of
single moments, i.e., equal to 2 μB .

In order to investigate in this direction, we use a larger supercell, made up of
200 C atoms, a 10 × 10 supercell, so that one has a more diluted concentration of
adatoms onto the surface. By setting the two N atoms at different distances in the
same supercell, the smallest distance is ∼3 Å, whilst the greatest one is ∼23 Å,
we obtain that the solution is always ferromagnetic regardless of distance among
N atoms, providing a fractional magnetic moment of 1.48 μB , which is lower than
the previous one calculated for the 6 × 6 supercell. In some way not entirely clear,
the dilution of adatom concentration gives rise to a reduction of the magnitude of
magnetic moment in this system.

The bridgelike structure implies that O interacts with the two C bonded atoms
beneath, without breaking the bond among these, but just deforming the natural
sp2 hybridization status of the latter ones into C sp3-hybridized. This gives rise to
covalent bonding between C atoms and the sp2-hybridized O atom, in the plane
C − O − C perpendicular to the graphene surface. Oxygen has 6 electrons in the
outer shells, divided into 2 paired electrons in the 2s shell and the other 4 which
occupy the 2p orbitals, following the Hund’s rule. So that, 2 electrons of these 4,
remain unpaired. Unlike the nitrogen case, where one has three unpaired electron,
two of whose form bonds with C atoms beneath, and the other one remain unpaired,
providing a spin-polarizability of the system, here, O pairs the two unpaired electrons
belonging to 2p orbitals sharing the other two with the pz electron of C atoms, i.e.,
there is a saturation of the bonds, returning a nonmagnetic state. Figure14.8 shows
the charge localization around the bonded structure, representative of what we said
so far.
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Fig. 14.8 Electronic charge density representation for Oxygen-graphene system. Top-Left 3D
vision of the charge distribution around the O adatom (red). Isosurfaces [red (blue), charge accu-
mulation (depletion)] are indicative of the spatial localization of the charge shared by the total
system. Top-Right xz-plane section of the same. Bottom xy-plane section of the charge density. It
is clear how charge is more localized with respect to the B case, in agreement with the absence of a
doping mechanism and charge transfer. Isolines denote this aspect. The yellow region is indicative
of the charge sharing region, whilst the two violet spots denote the accumulation of charge which
surrounds the two covalent bonds with C atoms (color figure online)

Analyzing the PDOS of the system one can see that the presence of O does not
affect the DOS of clean graphene, except for peaks localized below and above EF in
the energy range of |1.5| eV (see Fig. 14.9). These peaks refer to the contribution of

Fig. 14.9 Spin-resolved total projected-DOS for graphene monolayer with single-O atom on
bridge-site. Top Black line denotes the clean-graphene DOS, whereas the violet one represents
the spin-resolved total projection of oxygen-graphene density of states (spin-up and spin-down
projection are perfectly overlapped). Violet shaded region denotes the contribution to DOS (up and
down) from O p-orbitals. Bottom we stress the surrounding of EF with the aim to mark two splitted
peaks (exchange interaction) representative of the localized state induced by the hybridization of C
atom below O. The interaction with oxygen does not alter the Fermi level position which matches
that one of the pristine sample (color figure online)
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two sp3-hybridized carbon atoms which bind with O. Since electrons of these states
are completely paired thanks to the sharing with electrons of O adatom, so that up-
and down-spin states are mirror images, with the same number of states/energy, the
resulting system is in a nonmagnetic ground state.

Conclusions

Graphene quantum dots (GQDs) are potential candidates for quantum information
processing thanks to their properties which ensure the highest coherence time for
electron spin confined inside the dot and the tunability of quantum dots (QDs) in
order to couple specific electron spins, even allowing a coupling in a long-range
distance between two different QDs.

Nevertheless, defects in the structure or interactions with impurities lead to the
formation of localized electronic states which give rise to magnetic moment, due to
the occupation of the state by just one unpaired electron (i.e., unpaired spin). This
localized spin can interact with the qubit spin in the QD, providing decoherence,
resulting in possible loss of information. In fact, the general effect of this induced
magnetic ground state is related to a possible coupling between the spin-defect and
the central-spin of QD, worsening and destroying the coherence. This investigation
led on different possible sources of decoherence has provided that vacancy, the sim-
plest point defect, breaks down the symmetry of the graphene system, giving rise
to localized states which provide a magnetic moment different from zero. It has
a magnitude depending on the defect concentration, the greater the concentration,
the lower the magnitude. Hydrogen interaction produces similar effects, hybridizing
locally the system and giving rise to a magnetic moment. Furthermore, it enhances
the spin-orbit coupling of about three orders ofmagnitudewith respect to the intrinsic
spin–orbit interaction. Studying the interaction between two hydrogen atoms on the
same supercell, one can see the formation of a ferromagnetic order when adatoms
are located on the same sublattice, regardless of the distance between them, whereas
putting these on different sublattices, according to Lieb’s theorem, the most stable
magnetic order is antiferromagnetic, appreciable only if the distance between the
adatoms is sufficient to avoid hybridization mechanisms which couple the unpaired
electrons belonging to the two independent impurities.

About the adatom interactions, boron, nitrogen, and oxygen have been considered
and their influence on the generation of magnetism in graphene has been studied.
In the end the only one element, in the bridgelike configuration, which provides
a magnetic character to graphene seems to be nitrogen N. The size of cell within
the adatom is adsorbed, i.e., the concentration of adatoms/cell seems to influence
the magnitude of the magnetic moment, in particular, fixing the number of adatom
per cell, the bigger is cell, the lower is the magnitude. Therefore, one should pay
attention to these results, since that in order to obtain a graphene quantum dot system
with the minimal influence on spin-relaxation and spin-coherence times for forming
reliable spin qubits, one should have no decoherence sources. Here N could be
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the main responsible of perturbation of spin qubit, since this can interact with the
electron-spin of adatom-graphene system, promoting the deterioration of quantum
information.
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Chapter 15
Electron Correlations in Molecular Chains

L.S. Brizhik

Abstract It is shown that in a one-dimensional molecular chain two extra electrons
with opposite spins interacting with acoustical phonons in the harmonic approxima-
tion form a bisoliton, which is a bound singlet state of the electrons trapped by a
self-created deformation of the chain. The harmonic approximation in description of
lattice vibrations can be violated for molecular chains which are relatively rigid, for
systems with relatively strong electron–lattice interaction (resulting in large defor-
mation of the chain) or under the external pressure applied to the system. In this
case, the deformation can be described taking into account anharmonic terms. It is
shown that the account of these terms leads to stabilization of bisolitons up to the
sound velocity in the chain, and to formation of bisolectrons, which can propagate
with the supersound velocity. In the case of finite number of electrons in a molecular
chain their ground state is a self-consistent cnoidal wave in the deformation potential.
This cnoidal wave at sufficiently small doping level corresponds to the condensate of
autolocalized bisolitons (bisolectrons). The dependence of the condensate gap width
on concentration of charge carriers is shown to have a nonmonotonic character. The
pressure dependence of the condensate critical temperature is analyzed and shown
to be of the type characteristic for HTSCs under pressure.

Introduction

It is widely known fact that low-dimensional molecular systems possess very unusual
physical properties. In many cases this is due to electron–lattice interaction which in
such systems can be relatively strong, plays a significant role and can result in for-
mation of polarons in such systems [1]. Examples are conducting polymers, polydi-
acetylene,macromolecules, organic, and high-temperature superconducting systems.
Many of such systems satisfy the adiabatic approximation and possess relatively
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strong electron–lattice coupling. It has been shown that under these conditions a
quasiparticle (extra electron or hole, or molecular excitation) is self-trapped in the
deformation potential and forms a soliton [2].

Two extra electrons with opposite spins interacting with acoustical phonons in a
one-dimensional molecular chain form a bisoliton which is a bound singlet state of
the electrons trapped by a self-created deformation of the chain [3]. In the case of
finite number of electrons in a molecular chain their ground state is a self-consistent
cnoidal wave in the deformation potential [4].

These results are obtained in the harmonic approximation for the lattice vibrations.
In many cases this approximation can be violated. Examples are relatively rigid
molecular chains, systems with relatively strong electron–lattice interaction which
results in large deformation of the chain, exposure of the system to external pressure,
etc. In these cases the deformation can be described taking into account anharmonic
terms describing lattice vibrations [5–7].

Some low-dimensional systems show significant dependence of their properties
on the charge carrier concentration and pressure, like, for instance, high-Tc supercon-
ductors (HTSC) [8–11]. So far to my knowledge the first theory which has expressed
doping and pressure influences on the critical temperature of HTSCs was suggested
in [12], and it was based on the bisoliton model [13].

Below we study properties of a bisoliton in a harmonic chain (section “Bisolitons
inHarmonic Lattices”), bisoliton condensate (section “BisolitonCnoidalWave”), the
dependence of the bisoliton energy gap on pressure and doping (section “Pressure
Dependence of the Critical Temperature”) and role of the lattice anharmonicity in
stabilizing bisolitons (section “Bisolitons in Anharmonic Lattices”).

Bisolitons in Harmonic Lattices

Let us consider an infinitely long relatively soft molecular chain. For simplicity we
assume there is a one atom in a unit cell of the chain, or, in other words, we assume
there is one active phonon mode, which is acoustical mode. At intermediate values
of the electron–lattice coupling constant the ground state of an extra electron in it
corresponds to the Davydov soliton, which is a localized solution of the system of
the nonlinear equations. In the linear approximation such a soliton corresponds to
the large polaron [2]. Such a system can be described by the Fröhlich Hamiltonian,
which in the case of extra two extra electrons with opposite spins can be written in
the following form:

H = Hel + Hph + Hel−ph + HCoul, (15.1)

Here, the electron Hamiltonian, Hel, has the form

Hel =
∑

n,s=1,2

[
E0A

†
n,s An,s − J A†

n,s

(
An+1,s + An−1,s

)]
, (15.2)
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where A†
n,s (An,s) are Fermi operators of creation (annihilation) an electron with spin

s on the lattice site n, E0 is the on-site electron energy and J is the electron exchange
interaction energy.

In the adiabatic approximation the lattice canbe described in semiclassical approx-
imation. In this case the Hamiltonian of acoustical phonons can bewritten as follows:

Hph =
∑
n

[
p̂2n
2M

+ Û
(
β̂n

)]
. (15.3)

Here, β̂n is the operator of the displacement of the nth unit cell from its equilibrium
position, p̂n is the operator of the canonically conjugated momentum, M is the mass
of a unit cell. In Eq. (15.3) the operator Û is the operator of the potential energy of
the lattice. Let us first consider the lattice in the harmonic approximation. Then this
operator reads as

Û
(
β̂n

)
= 1

2
w

(
β̂n − β̂n−1

)2
, (15.4)

where w is the coefficient of the elasticity of the chain.
We will consider the case when the dependence of the on-site electron energy on

the longitudinal displacements of unit cells exceeds the dependence of the inter-cite
electron energy. In this case, the Hamiltonian of the electron–lattice interaction is
given by the expression

Hel−ph = χ
∑

n,s=1,2

(
β̂n+1 − β̂n−1

)
A†
n,s An,s, (15.5)

where χ is the electron–lattice coupling constant.
The Coulomb repulsion between the electrons is given by the Hubbard-type

Hamiltonian
HCoul =

∑
n,m,s=1,2

Vnm A
†
n,s An,s A

†
m,s Am,s, (15.6)

where Vnm is the corresponding matrix element of the Coulomb interaction. Below,
we will omit this term of the Hamiltonian assuming that the Coulomb repulsion is
screened in the lattice, and will take it into account later on. The screening can be
significant in lattices with several atoms in a unit cell and in relatively soft molecular
chains so that the localization of electron wave functions is extended over several
lattice sites.

In the adiabatic approximation, we can choose the vector state of the system as
the product of the vector state of electrons and vector state of the lattice:

|Ψ (t)〉 = |Ψel(t)〉|Ψph(t)〉. (15.7)

In its turn, the vector state of the lattice has the form of the product of the operator
of coherent displacements of unit cells and vacuum state of the lattice, |0〉ph ,
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|Ψph(t)〉 = exp

{
− i

�

∑
n

[
βn(t) p̂n − pn(t)β̂n

]}
|0〉ph, (15.8)

where βn(t) and pn(t) are, respectively, the mean values of the displacements of unit
cells from their equilibrium positions and their canonically conjugated momenta in
the state Eq. (15.7).

The electron state vector for two excess electrons has the form

|Ψel(t)〉 =
∑

n1,n2,s1,s2

Ψ (n1, n2, s1, s2; t)A†
n1,s1 A

†
n2,s2 |0〉el. (15.9)

The two-electron wave function Ψ (n1, n2, s1, s2; t) for electrons with antiparal-
lel spins can be represented as the product of the symmetric coordinate function
Ψ (n1, n2, t) and antisymmetric spin function χ(s1, s2). Here, we set

Ψ (n1, n2, t) = 1√
2
[ψ1(n1, t)ψ2(n2, t) + ψ2(n1, t)ψ1(n2, t)] , (15.10)

where quasi-one-electronwave functionsψ j (n, t) satisfy the normalization condition

∑
n

|ψ j (n, t)|2 = 1. (15.11)

Recall, we use the term ‘quasi-one-electron wave functions’ for functions ψ j (x, t)
to distinguish them from a proper one-electron wave functions to indicate that they
determine the two-electron wave function in the given ansatz, Eq. (15.10), and only
formally look like a one-electron wave functions. It is worth to recall here that this
is not the only possible ansatz for the wave function, obviously. One can introduce
the function which depends on the center of mass coordinate and relative coordinate,
but this ansatz describes the state which has higher energy than the one we use here,
as it has been shown in [14].

For analytical study we will use the continuum approximation for which we
introduce the continuum variable z ≡ na instead of a discreet index n, assuming that
electron and lattice wave functions vary slowly in space. In fact such assumption is
valid at the intermediate values of the electron–lattice interaction, when self-trapped
soliton state is the ground state of an extra electron in the lattice, as comparing with
the small polaron state formed at strong electron–lattice interaction, and almost free
electron state in a limit of a very weak electron–lattice interaction. In our case the
soliton state is extended over few lattice cites, as we will see later. Therefore, the
continuum description is a good approximation to describe solitons.

The state vector, Eq. (15.7), defines the Hamiltonian functional

H = 〈Ψ (t)|H |Ψ (t)〉,
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corresponding to theHamiltonian operator, Eq. (15.1).Minimization of the functional
H with respect to electron and phonon variables gives us the system of coupled
equations

i�
∂Ψ (z1, z2, t)

∂t
+ J

(
∂2Ψ (z1, z2, t)

∂z21
+ ∂2Ψ (z1, z2, t)

∂z22

)

+ χa

(
∂β(z, t)

∂z
|z=z1 + ∂β(z, t)

∂z
|z=z2

)
Ψ (z1, z2, t) = 0,

(15.12a)

∂2β

∂t2
− V 2

ac
∂2β

∂z2
=

a

M
χ

(∫
dz2

∂|Ψ (z1, z2, t)|2
∂z1

|z1=z +
∫

dz1
∂|Ψ (z1, z2, t)|2

∂z2
|z2=z

)
.

(15.12b)

Here Vac is the sound velocity in the chain, Vac = a
√
w/M .

Let us introduce the function of the lattice deformation ρ(z, t) = −∂β(z, t)/∂z.
It is easy to see that for the ansatz Eq. (15.10) the system of equations (15.12) can be
reduced to the following system of coupled equations for quasi-one-electron wave
functions Ψ j (z, t) ( j = 1, 2) and lattice deformation:

i�
∂ψ j (z, t)

∂t
+ J

∂2ψ j (z, t)

∂z2
+ χaρ(z, t)ψ j (z, t) = 0, (15.13a)

∂2ρ(z, t)

∂t2
− V 2

ac
∂2ρ(z, t)

∂z2
= − a

χ

M

∂2

∂z2
∑
j=1,2

|ψ j (z, t)|2. (15.13b)

The latter equation has the solution

ρ(ξ) = χ

w(1 − s2)

∑
j=1,2

|ψ j (ξ)|2, (15.14)

where ξ is the running-wave coordinate, ξ ≡ (z − z0 − V t)/a, and the notation is
used s2 ≡ V 2/V 2

ac.
Substituting the solution, Eq. (15.14), into Eq. (15.13a), we obtain the two-

component nonlinear Schrödinger equation

i�
∂ψ j (z, t)

∂t
+ J

∂2Ψ j (z, t)

∂z2
+ 2Jg

[|ψ1(z, t)|2 + |Ψ2(z, t)|2
]
ψ j (z, t) = 0,

(15.15)
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where the dimensionless electron–phonon interaction coefficient is introduced

g = χ2

2Jaw(1 − s2)
= g0

1 − s2
, g0 ≡ χ2

2Jaw
. (15.16)

Here, we are interested in the localized lowest energy solutions and, taking
into account the identity of two electrons, except their spins, we can choose the
following ansatz |ψ2(z, t)|2 = |ψ1(z + la, t)|2 and, hence, can omit index j . In
the class of localized functions, whose modulus depends on ξ , we set ψ(z, t) =
φ(ξ) exp [im∗V z/� − iϕ(t)]. Here m∗ is the effective electron mass, m∗ = �

2/

(2Ja2). Substituting this into Eq. (15.15), we come to the equation

d2φ(ξ)

dξ 2
+ 2g

[
φ2(ξ) + φ2(ξ + l)

]
φ(ξ) = − εlφ(ξ), (15.17)

where the value

εl ≡ E − E0

J
=

∫
dξ

{(
dφ

dξ

)2

− 2gφ2(ξ)
[
φ2(ξ) + φ2(ξ + l)

]
}

(15.18)

corresponds to the eigenenergy of the solutions, measured in units of J .
It has been shown in [3] that the highest energy solution of Eq. (15.17) corresponds

to the case of two almost independent solitons of nonlinear Schrödinger equation
(NLSE), localized infinitely far from one another, i.e. to l → ∞:

φ(ξ) = φs(ξ) ≡
√
g

2
sech

(
gξ

2

)
. (15.19)

The lowest energy solution of Eq. (15.17) corresponds to the case when the dis-
tance between center of mass coordinates of quasi-one-electron wave functions van-
ishes, l = 0,

φ(ξ) = φbs(ξ) ≡
√
g

2
sech(gξ) (15.20)

This localized bound state of two electrons is called ‘bisoliton.’ Its eigenenergy,
as can be easily calculated from Eq. (15.18), is

εbs ≡ εl→0 = −g2. (15.21)

It exceeds the double eigenenergy of an isolated soliton,

εs ≡ εl→∞ = −g2

4
. (15.22)
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The binding energy of the bisoliton which is determined as the difference of the
total energy of the bisoliton solution, Eq. (15.20), and total energy of the almost
independent infinitely far localized solitons Eq. (15.19), including the energy of the
lattice deformation in the corresponding states, Ebind(V ) ≡ El→∞(V ) − El→0(V ),
is a function of the bisoliton velocity

Ebind = 1

2
Jg20

1 − 5s2

(1 − s2)3
. (15.23)

One can easily see, that the binding energy is positive only at |V | < Vac/
√
5, when

the loss of the energy because of the increase of the energy of the lattice deformation
in the bisoliton state, is less than the gain of the eigenenergy due to the binding of two
electrons. We remind here that this result is obtained in the harmonic approximation
for the lattice vibrations.

It is remarkable that the width of the bisoliton, κbs = g/π , is smaller than the
width of an isolated soliton, κs = 2g/π , according to Eqs. (15.20) and (15.19). This
width determines also the width of the lattice deformation in the corresponding state,
according to Eq. (15.14). Therefore, we conclude that in the bisoliton state electron-
induced lattice deformation is stronger, and, respectively, the deformational potential
is deeper than in the case of electrons in quasi-independent soliton state.

In the above considerations we have omitted the Coulomb repulsion between the
electrons.This repulsion inmolecular chains is screened and canbe taken into account
using the perturbation method. Thus, it has been shown in [3], that in the result of
this repulsion center of mass coordinates of quasi-one-electron wave functions, l,
in the bisoliton state takes some finite value, which depends on the interplay of the
gain in energy due to the binding of two electrons and loss of the energy due to the
Coulomb repulsion:

l = l0 ≡
(

e2

4πεaζ

)1/3

, (15.24)

where

ζ =
[
4

3

χ2a2ρ2
0g

MV 2
ac

− 1

3
wa2ρ2

0g
2.

]
(15.25)

Here, e is the effective electron charge with account of its screening in the mole-
cular chain due to the surrounding and complex structure of a unit cite, ε = εmε0
is the dielectric constant of the chain, which contains the dielectric constant εm of
the medium, ρ0 is the maximum value of the lattice deformation. Substituting in
Eqs. (15.24) and (15.25) the value

ρ0 = χg

w
, (15.26)
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which follows from (15.13b), l0 can be approximated by the following expression:

l0 =
(

3e2w

4πεχ2a3g3

)1/3

. (15.27)

Due to the Coulomb repulsion, the bisoliton wave function takes the form of a
single-bell envelope at small values of l0 and the double-bell envelope at large values
of l0 with the distance between the two maxima of the envelope, equal to l0.

Bisoliton Cnoidal Wave

Let us now consider in the same harmonic approximation the case when in the mole-
cular chain there are 2Ne charge carriers (electrons or holes) in the state when their
total spin is zero. For simplicity we will refer below to charge carriers as to electrons.
We have shown above that in the zero adiabatic approximation two electrons with
opposite spins interactingwith the local deformation of a chain, bind in the autolocal-
ized singlet spin bisoliton state. Although bisoliton is a singlet state, strictly speaking,
it is not a Bose-particle, there is spin interaction between the electrons. It has been
shown in [15] that, due to the Pauli principle, two bisolitons repel one another because
of this spin interaction. As the result, at some finite concentration of electrons, δe,
the periodic cnoidal wave is formed in a self-consistent deformation potential of the
chain [4]. Generalizing the vector state ansatz Eqs. (15.9) and (15.10) for the case of
2Ne electrons, we can show that the wave function Ψ2Ne of this cnoidal wave in the
continuum approximations satisfies the nonlinear Schrödinger equation

{
i�

∂

∂t
+ J

∂2

∂z2
+ 4Jg|Ψ2Ne(z, t)|2

}
Ψ2Ne(z, t) = 0 , (15.28)

where the dimensionless electron–phonon coupling coefficient has been determined
above in Eq. (15.16).

Two extra conditions are imposed on the wave function, the periodicity, and nor-
malization conditions, namely,

Ψ (z, t) = Ψ (z + La, t),
1

a

∫ La

0
|Ψ (z, t)|2dz = 1 , (15.29)

in which L = 1/δe is the period of the cnoidal wave measured in units of the lattice
constant a.

Equation (15.28) under the conditions Eq. (15.29) admits two qualitatively differ-
ent types of solutions, delocalized and localized ones. These solutions are separated
by the energy gap.
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In particular, the delocalized solution is described by the function with constant
envelope, and has the energy

|Ψdel(z, t)|2 = 1

L
, Edel(V ) = − 4Jg

L
+ m∗V 2 , (15.30)

respectively. Here m∗ is the effective mass of an electron, m∗ = �
2/2Ja2.

The second type solution is described by the cnoidal wave function

Ψcn(z, t) = φcn(ξ) exp

{
i

�

[
m∗V z − (E + m∗V 2

2
)t

]}
, ξ = (z − z0 − V t)/a ,

(15.31)

where E is the energy of the solution per period and the envelope function is deter-
mined by the Jacobi elliptic function:

φcn(ξ) =
√
g

2
E−1(m)dn

[
gξ

E(m)
,m

]
, (15.32)

where m is the modulus of the elliptic function, and E(m) is the complete elliptic
integrals of the second kind. In some textbooks on the elliptic functions the notation
is used m = k2.

The modulus m of the elliptic function is determined by the density of electrons
from the equation [4]

E(m)K(m) = g

2δe
, (15.33)

in which K (m) is the complete elliptic integrals of the first kind. The same equation
can be interpreted in another way as the equation which determines the electron
density as the function of the modulus of the elliptic function. It is shown in Fig. 15.1.

Thenumerical analysis of expressionEq. (15.37) shows that there exists the critical
value of electron density

δ(cr)
e = 2g0

π2
, (15.34)

above which the energy gap width vanishes (see also Fig. 15.1).
The localized solution corresponds to the condensate of a periodically distributed

lattice of ‘bisolitons’ moving coherently in the deformation potential along the chain.
The total energy of the system, calculated per period, includes the eigenenergy of
the cnoidal wave per period and energy of the lattice deformation:

Ecn(V ) = m∗V 2 + 2J
∫ L

0

[(
dφcn

dξ

)2

− 2g
1 − 3s2

1 − s2
φ4
cn

]
dξ. (15.35)
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Fig. 15.1 The dependence
of the electron density δe
(in units of g) on the
modulus of elliptic function

Substituting in this expression the explicit form of the cnoidal wave function and
carrying the integration, we get

Ecn(V ) = − 2

3
Jg2

E(m)(2 − m) + K(m)(1 − m)

E3(m)
. (15.36)

The width of the energy gap of the bisoliton condensate is determined by the
difference of the densities of energies corresponding to the solutions (15.30) and
(15.31) at zero velocities, and, hence, is the function of the electron density,

Δ = δe [Edel(0) − Ecn(0)] = 1

3
Jg30F(δe) , (15.37)

where the notation is used

F(δe) ≡ E(m)(2 − m) + K(m)(1 − m)

E4(m)K(m)
− 3

E2(m)K2(m)
. (15.38)

It follows fromEq. (15.37), that the gap attains themaximum value at small values
of density, when, according to Eq. (15.33), the modulus of the elliptic function
takes values close to one. Using the expansions of complete elliptic integrals in
the corresponding limit, equivalent to the limit of vanishing additional modulus,
m1 ≡ 1 − m 	 1, we get the following expression

Δ ≈ 2

3
Jg0δe(g0 − 6δe) , δe ≈ g0

2 ln(4/
√
m1)

, m1 	 1. (15.39)

Figure15.2 shows the dependence of the energy gapwidth on the density of charge
carriers.

From Eq. (15.39) we calculate the optimal electron density value and the width
of the corresponding energy gap
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Fig. 15.2 The width of the
bisoliton condensate energy
gap (in units of Jg3/3) as a
function of charge carrier
density δe (in units of g), as
obtained from the
approximate (15.39)
expression

δ(opt)
e = g0

12
, Δmax = Jg30

36
. (15.40)

Notice that in frame of the bisoliton model of superconductivity the critical
temperature Tc is proportional to the energy gap width at zero temperature [13],
Δ = αTc, where α is a numerical constant. By fitting the maximum value of the
critical temperature obtained in our model to the experimental value (Tc = 38 K for
lanthanum compound and Tc = 90 K for yttrium compound), we get [12] Q = 460
and Q = 1090, respectively, where Q is the characteristic dimensionless parameter:

Q ≡ Jg3

3α
. (15.41)

These results are in good agreement with the experimental data on the depen-
dence of Tc on δe, as it has been demonstrated in [12] (see Fig. 2 in [12]). So far to
our knowledge, it was the first model of high-temperature superconductivity which
explained the experimental data on the dependence of the critical temperature on the
density of charge carriers.

Pressure Dependence of the Critical Temperature

Another distinct feature of the high-temperature superconductivity is the dependence
of the critical temperature on applied pressure. Not only high-temperature supercon-
ductors show unusual impact of pressure. There are some organic low-dimensional
materials (Bechgaard salts) which undergo superconducting transition, when they
are exposed to external pressure. It is worth to recall that the common feature of
these two classes of materials is their strong anisotropy, or, in other words, their
low-dimensionality. So it seemed natural to extend the bisoliton model to explain the
pressure dependence of the critical temperature [12].
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For this aim the following relation is useful

∂Tc
∂P

= − Tc
B

∂ ln Tc
∂ ln V

≈ − Tc
3B

∂ ln Tc
∂ ln a

, (15.42)

where P, V, B, a are pressure, volume, bulk modulus, and lattice constant, respec-
tively.

As mentioned above, the critical temperature is connected with the energy gap
width at zero temperature by the relation Δ = αTc, in which α is a numerical
constant [4]. The logarithmic derivative of the energy gap follows from Eq. (15.39),

∂ lnΔ

∂ ln a
= ∂ ln J

∂ ln a
+

(
1 + g0

g0 − 6δe

)
∂ ln g0
∂ ln a

+
(
1 − 6δe

g0 − 6δe

)
∂ ln δe

∂ ln a
.

(15.43)

Here δe < δ(cr)
e , where δ(cr)

e is determined in Eq. (15.34).
In its turn, according to Eq. (15.16), the following equality is valid

∂ ln g0
∂ ln a

= 2
∂ ln χ

∂ ln a
− ∂ ln J

∂ ln a
− ∂ lnw

∂ ln a
. (15.44)

Substituting relation (15.44) into Eq. (15.42), we get

∂Tc
∂P

= − Q

3B

{
F

(
∂ ln J

∂ ln a
+ ∂ ln g0

∂ ln a
+ ∂ ln δe

∂ ln a

)
+ 2δe

g0

∂ ln g0
∂ ln a

− 12δ2e
g20

∂ ln g0
∂ ln a

}
,

(15.45)

where F is the function defined in (15.38), and parameter Q is defined in Eq. (15.41).
The parameters p = g, δe, χ, w, J , appearing in Eq. (15.45), can be estimated

as follows. The elasticity coefficient can be obtained from the potential energy of the
copper–oxygen ion interaction, which can be described by the Buckingham potential
U = −A1r−6 + A2 exp(−cr),

w =
[
d2U

dr2

]

r=a

= 6A1

a8
(ca − 7) , (15.46)

from which the logarithmic derivative follows

∂ lnw

∂ ln a
= − 7(ca − 8)

ca − 7
≈ −7 . (15.47)

The electron–phonon coupling constant can be estimated as the coefficient of the
term (u2n+2 − u2n) in the expansion of the energy of extra electron at an oxygen ion
in the chain

E = − Ze2

|R2n+1 − R2n| − Ze2

|R2n+1 − R2n+2| . (15.48)
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Here, Ze is the charge of the copper ion, R j = R0
j + u j is the coordinate of the j th

ion, u j is the displacement of copper ( j = 2n) or oxygen ( j = 2n + 1) ion from its
equilibrium position. Performing the expansion of expression (15.48), we get

χ = 4Ze2

a2
,

∂ ln χ

∂ ln a
= −2 . (15.49)

Finally, the copper–oxygen exchange integral in the tight-binding approximation
can be written as

J = −
∫

Ψ ∗
O(r)[W (r) − w(r)]ΨCu(r)dr , (15.50)

whereW (r) − w(r) is the potential energy of electron interactionwith all ions except
the one it occupies, ΨO(r) and ΨCu(r) are the wave functions of oxygen and copper
ions in states 2p5, 3d10, respectively. Substituting the explicit form of radial parts
of functions into Eq. (15.50) and carrying out the integration, we get

J ≈ A

(
12

ρ
sinh

ρ

12
− cosh

ρ

12

)
e−5ρ/12 ≈ ca2 exp(−βa) , (15.51)

where ρ = a/2aB ≈ 3.7 with aB being the Bohr radius, β = 5/(24aB), A, and c are
constants independent of the lattice constant. Differentiating expression (15.51), we
find

∂ ln J

∂ ln a
= 2 − βa ≈ 0.45 , (15.52)

which, together with Eqs. (15.44), (15.47) and (15.48), gives (∂ ln g)/(∂ ln a) ≈ 2.4.
Let us now analyze the pressure dependence of the charge carrier density δe. using

the values obtained experimentally fromHall effectmeasurements [16]. For instance,
for yttrium compound this value was estimated in [11] as (∂ ln δe)/(∂ ln a) = −90,
somewhat less value of (∂ ln δe)/(∂ ln a) is found for lanthanumcompound (see [17]).

Provided the charge density is less than the critical value determined inEq. (15.34),
the approximate equality follows from Eq. (15.45)

∂Tc
∂P

≈ − 2Cδe

3Bg0

[
∂ ln J

∂ ln a
+ 2

∂ ln g0
∂ ln a

+ ∂ ln δe

∂ ln a
− 6

δe

g0
(
∂ ln J

∂ ln a
+ ∂ ln g0

∂ ln a
+ 2

∂ ln δe

∂ ln a
)

]
.

(15.53)

Substituting into the last equation the values of the logarithmic derivatives of the
parameters J and g obtained above, and the experimental value of the logarithmic
derivative of δe, we can conclude that the critical temperature of the bisoliton conden-
sate can increase or decrease with the increase of pressure depending on the value of
the charge carrier density and its logarithmic derivative, which vary from experiment
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Fig. 15.3 Pressure derivative of critical temperature ∂Tc/∂P (K/GPa) as a function of composition
x in La2−xMxCuO4 compound. Solid line corresponds to logarithmic derivative of the electron
density equal to −80, dashed line to −90, bulk modulus is B = 180 GPa. The experimental data
are taken from [11]

to an experiment. In or opinion, this explains the wide scattering of the experimental
data on the pressure dependence of the critical temperature of HTSCs.

In conclusion, we represent in Fig. 15.3 the pressure derivative of the critical
temperature, ∂Tc/∂P , as a function of doping x for the compound La2−xMxCuO4

given by Eq. (15.53). The experimental data are taken from Fig. 12 in [17]. Note
that the bisoliton model reproduces well the general trend of the experimental data.
Strictly speaking, our model should be compared with the experimental data on
uniaxial compression of superconducting samples instead of hydrostatic pressure.
But, first, at present such experiments are very few, and second, the comparison we
have done indicates that the bisoliton model even in a one-dimensional formulation
without attraction of any extra mechanism or assumption describes very well the
behavior of superconducting oxides under pressure.

Bisolitons in Anharmonic Lattices

In the previous sections we have considered bisolitons and bisoliton condensate
in molecular chains in the harmonic approximation for the lattice vibrations. This
approximation is enough to describe soft chains, such as formed by hydrogen bonds.
In more rigid chains, such as Cu–O chains in copper oxides, or in systems under
high pressure this approximation can be violated. In such a case one has to take into
account the anharmonic terms. The simplest cases are cubic and/or quartic terms,
added to the harmonic potential. In particular, the operator of the lattice potential

Û
(
β̂n

)
in the phonon Hamiltonian Eq. (15.3) in these cases gives the following

expressions for the phonon potential energy.
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To get the explicit solutions we have to specify the lattice potential. Below we
will consider two cases of c, and, respectively, we will assign to the functions:

Uc(ρ) = 1

2
ρ2 + α

3
ρ3, Uq(ρ) = 1

2
ρ2 + β

4
ρ4, (15.54)

where ρ is the lattice deformation, α and β are anharmonicity coefficients in cubic
and quartic anharmonic potentials, and subscripts c or q correspond to cubic and
quartic anharmonic potentials, respectively.

It has been shown in [6, 7] that the anharmonic terms of the potential modify
the maximum value of the lattice deformation. While in the harmonic lattice this
value was given by the expression Eq. (15.26), in the anharmonic lattices it becomes
a function of the dynamically modulated inverse anharmonic stiffness coefficient
δ, ν = c, q, where

δc = 1 − s2

α
, δq = 1 − s2

β
. (15.55)

It follows from the numerical analysis of the expressions for ρ0(ν), that (i) the
maximum lattice deformation depends on the soliton velocity; (ii) the soliton ampli-
tude increases and its width decreases with the velocity increasing, attaining some
finite values at the sound velocity, V = Vac (i.e., when δ = 0); (iii) the soliton ampli-
tude increases with the electron–lattice coupling increasing; (iv) the quartic anhar-
monicity is dominant at small values of δ (large velocities),while cubic anharmonicity
is dominant at larger values of δ (small velocities).

Wewill omit here the details of the solution of the system of coupled equations for
electrons and lattice variables with the account of the anharmonic terms. Instead we
cite the final expressions final expressions for the bisoliton wave functions (see [18])

φc(ξ) =
√

ρ0(c)

2D
Sech(κcξ)

√
1 − s2 + αρ0(c)Sech2(κcξ), (15.56a)

φq(ξ) =
√

ρ0(q)

2D
Sech(κcξ)

√
1 − s2 + βρ2

0(q)Sech
4(κqξ), (15.56b)

where

κc =
√

σρ0(c)

2

√
4ρ0(c)

(
ρ0(c) + 2δc

)
/3 + δ2c

2ρ0(c) + δc
, (15.57a)

κq = 1

2

√√√√√σρ0(q)

(
3ρ2

0(q) + 2δq
)

ρ2
0(q) + 2δq

. (15.57b)

Here the notation is used D = χa/(MV 2
ac),
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The eigenenergy and the energy of the lattice deformation in lattice with cubic
anharmonicity are

E (bs)
c (V ) = −DMV 2

acρ0(c)
4ρ0(c) + 3δc
3(ρ0(c) + δc)

, (15.58)

Wc(V ) ≈ MV 2
ac

3
√
2σ

ρ
3/2
0(c)

(
8

15
αρ0(c) + 1 + s2

)
, (15.59)

respectively, and in lattice with quartic anharmonicity these two energies are

E (bs)
q (V ) = −1

2
DMV 2

acρ0(q)

3ρ3
0(q) + 2δq

ρ2
0(q) + δq

, (15.60)

Wq(V ) ≈ 8
MV 2

ac√
2σ

ρ
3/2
0(q)

[
1

3

(
s2 + 1

2
δβ

)
+ 2

35
βρ2

0(q)

]
. (15.61)

Two important conclusions follow from the above expressions. First of all, com-
paring the bisolectron energies with the energies of solectrons (see [5]), we conclude,
that there is positive binding energy of the bisolectron in the whole interval of veloc-
ities V 2 ≤ V 2

ac

E (bs)
bind(ν)(V ) = 2E (s)

tot(ν)(V ) − E (bs)
tot(ν)(V ), ν = c, q (15.62)

Here E (bs)
tot(ν)(V ) is the total energy of the system in the bisolectron state with account

of the energy of the lattice deformation, and E (s)
tot(ν)(V ) is the energy of the systemwith

one electron in a soliton state with account of the energy of the lattice deformation.
This means that anharmonic lattice soliton can capture two electrons with opposite
spins and that such a bisolectron state is energetically favorable as comparing with
two independent solectrons (lattice soliton bound with one electron).

Another important conclusion from the above results is that bisolectrons are stable
in the whole interval of the velocity up to the sound velocity in the chain. The
bisolectron energy and the energy of the lattice deformation take finite values at the
velocity of the bisolectron equal to the velocity of the sound in the chain, namely:

E (bs)
tot(c)(Vac) = mV 2

ac − 2

3
χaρ0(c) + 16

45
χaαρ2

0(c), (15.63)

E (bs)
tot(q)(Vac) = mV 2

ac − 3

2
χaρ2

0(q) + 8

35
χaβρ3

0(q). (15.64)
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Recall, in harmonic lattice bisolitons are stable at small velocities, s2 < 1/5, i.e.,
at |V | < Vac/

√
5, as it follows from Eq. (15.23).

These results can be directly generalized for the periodic solutions of the corre-
sponding system of equations for 2Ne electrons with total spin equal zero.

Conclusions

Thus, we have shown that two extra electrons with opposite spins interacting with
acoustical phonons in a one-dimensional molecular chain in the harmonic approxi-
mation for the lattice vibrations form a bisoliton. Such a bisoliton is a bound singlet
state of the electrons trapped by a self-created deformation of the chain. Bisolitons
in harmonic lattices are stable at small enough velocities due to the fast increase of
the energy of lattice deformation with the increase of the velocity.

In the case of finite number of electrons in a molecular chain their ground state
is a self-consistent cnoidal wave in the deformation potential. We have calculated
the bisoliton condensate energy gap and analyzed the dependence of the critical
temperature of the bisoliton condensate on pressure and doping. These results are
close to the corresponding experimental data for HTSCs.

We have also shown that in anharmonic lattices (with cubic or quartic anhar-
monicity), the bisolitons are stable in the whole interval of the velocities, up to the
velocity of the sound in the chain.
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Chapter 16
Hydrogen-Bonded Systems Under Intense
Electric Fields

G. Cassone, F. Saija, A.M. Saitta and P.V. Giaquinta

Introduction

Thermal effects induced on matter by electric fields are well known and largely
understood [1]. The same is not true for nonthermal effects and for the related micro-
scopic mechanisms that are triggered by intense electric fields [2, 3]. Our ignorance
on this matter is manifest over different scales. In fact, nonthermal effects are poorly
understood both at a subatomic, quantum, level as well as at molecular and macro-
scopic levels. An account of the current state of the art in this specific field has
recently appeared in the literature [4]. Aragones et al. have given the first experi-
mental evidence that an electric field can control chemical reactions, showing that
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the field strength, as well as its polarity, can actually drive, enhance, or even inhibit
a given reaction (e.g., a Diels–Alder reaction).

In order to explain such a “delay” in investigating and clarifying phenomenologi-
cal aspects of materials which, in some respects, would sound logically plausible – if
not absolutely trivial – even to a nonexpert, we should consider some experimen-
tal and theoretical boundary conditions on the nature of the problem. First of all,
very intense local electric fields are necessary in order to induce a rearrangement of
covalent bonds, definitely not an easy task on the experimental side. Second, only
very recently reliable theoretical approaches have been implemented and developed,
which are capable of treating, in the framework of a quantum description of matter,
field-induced effects. Such tools, thanks to the fast growth of available computing
power, have eventually allowed for the discovery of some fundamental “pieces” of
physics and chemistry when matter is being irradiated with electric fields.

The basic interaction between a stationary, spatially homogeneous electric field,
and one single molecule in the vacuum is well understood over a wide range of
intensities. By resorting to the theoretical tools provided by quantum mechanics and
Density Functional Theory (DFT), in conjunction with advanced computing tech-
niques, it is possible to simulate in a realistic way and, thus, finely describe all the
relevant degrees of freedom of such a simple model system. However, the situation
becomes much more intricate and complicated when dealing with condensed-matter
systems, in which also complex interactions between molecules have to be taken into
account. The subtle interplay between field-induced and neighbor-induced polariza-
tion effects, in addition to the role of thermodynamic conditions, makes the task
of the computational physicist much harder. But an even more fundamental reason
has represented, on this side, a tough hurdle when attempting at modelling and sim-
ulating realistic material samples under the effect of static electric fields. Indeed,
typical numerical experiments carried out over homogeneous samples are ordinar-
ily performed on a cell with periodic boundary conditions (PBC); in this way, one
avoids, to a large extent, the effects induced by the artificial spatial confinement of the
elementary interacting constituents, which would obviously inhibit any significant
comparison of the numerical results with the properties of a real-life homogeneous
material. In classicalmolecular dynamics (MD) simulations the electric field is imple-
mented as an additional force acting on each particle. However, the serious problem
in dealing with such force fields resides in the effective intermolecular potential
which is not able to account, in a reliable way, for polarization effects as well as,
more importantly, for the very quantum nature of matter.

Since, as previously pointed out, electric fields are able to induce the cleavage
and the formation of (intrinsically quantum) covalent bonds, it is clear that classical
simulations fail to be predictive in this specific context in that they do not provide a
complete physical representation of the involved phenomena. In order to model and
reproduce the whole spectrum of effects induced by the application of an electric
field, ab initio molecular dynamics (AIMD) simulations are mandatory for a twofold
reason. First, they are able to reproduce correctly intra and intermolecular structural
properties in many disparate systems because of the appropriate, more fundamental
description of the material (see Ref. [5] and references contained therein). Second,
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AIMD simulations are, by their own nature, intrinsically able to treat, in principle,
every kind of covalent-bond rearrangement and, hence, to deal with chemical reac-
tions.

Unfortunately, because of the nonperiodic nature of the quantumposition operator,
the implementation of electric fields in ab initio simulation codes is other than easy.
Indeed, only in 2002 Umari and Pasquarello [6] discussed and implemented the
first operational theoretical framework which, upon exploiting Berry’s phases and
the modern theory of polarization [7–9], was able to manage static electric fields in
first-principles simulations under PBC.

In this chapter, we review the microscopic phenomenology of hydrogen-bonded
liquid and solid systems under the action of a static and homogeneous electric field,
showing different shades of the effects produced by the application of the field.
Schematically, H-bonds have partial covalent, electrostatic, dispersed, and polarized
character [10]. Hence, with such multifaceted properties of electronic matrix, their
treatment by means of ab initio techniques is particularly suited. Moreover, as it
will be pointed out in the following sections, molecular dissociations can be induced
through proton transfers for high enough field intensities; correspondingly, related
simple and complex chemical reactions can be modeled and investigated. Hence,
from a theoretical perspective, AIMD simulations currently represent a unique tech-
nique for adequately treating, reproducing, and predicting many microscopic and
macroscopic phenomena which occur whenmatter is exposed to the action of intense
electric fields.

The chapter is structured as follows. In the next sections, various effects man-
ifested for increasing field strengths will be treated with a gradual approach: in
section “Low-to-Moderate Field Regime: The Response of the H-Bonded Network”
the response of liquid and solid H-bonded systems to low-to-moderate fields will
be presented; in section “Moderate-to-Strong Field Regime: Proton Transfer and
MolecularDissociation” several properties of proton transfer andmolecular dissocia-
tion inducedbymoderate-to-strongfieldswill be illustrated; finally, in section “Strong
Field Regime: Field-Induced Chemical Reactions” complex chemical reactions pro-
duced by very intense electric fields will be analyzed.

Low-to-Moderate Field Regime: The Response
of the H-Bonded Network

Liquids

By definition, H-bonds are formed in specific polar solvents, which are composed by
molecules that carry an intrinsic dipole moment. The fundamental coupling between
a static and homogeneous electric field and a single dipolar entity is a basic physics
textbook problem.However, whenwe consider a set ofmolecules interacting through
H-bonds at a finite temperature, the situation is clearly more complex.
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Let us first consider the seemingly most studied liquid in condensed-matter
physics, viz., water. What happens when water is subject to relatively low-strength
fields? Typically, the radial distribution functions (RDFs), describing the mutual
positional order of all the atomic species dissolved in a sample, represent a good
tool for analyzing the time-averaged structural changes induced by an external field.
An extensive analysis has been performed in neat liquid water at a nominal tem-
perature of 350K [11]. However, pure water is an abstraction; hence, we shall also
discuss the properties of salty water, in which sodium and chlorine ions have been
solvated at a molarity of 1.7M and at a temperature of 315K [12]. The rearrange-
ment of water molecules induced by the field is quite similar in both liquids since
the relatively low molarity of the electrolytic solution does not significantly alter the
local structure around a randomly chosen water molecule. In Fig. 16.1 we display the
oxygen–oxygen (O–O) and the oxygen–hydrogen (O–H) RDFs in salty water calcu-
lated byCassone et al. [12] for various field strengths.A zero-fieldCar-Parrinello [13]
dynamics about 28ps long was performed and then a field of increasing intensity was
applied. Density correlations between pairs of oxygen atoms and between oxygen
and hydrogen atoms get manifestly weaker andweaker as the field strength increases.
In fact, the maxima of both O–O and O–H RDFs are depressed, whereas the minima
rise; in other words, the aqueous solvent becomes more and more disordered at short
and medium distances, as also shown by Saitta, Saija, and Giaquinta [11] for neat
water.

The way in which the local structure of water changes in response to an external
field does not represent the general behavior necessarily exhibited by all H-bonded
systems. In fact, let us consider the simplest alcohol, i.e., methanol (CH3OH), a one-
donor H-bonded system which certainly constitutes an illustrative case in this con-
text. If the same kind of numerical experiment (i.e., exploiting the same DFT setup)
is carried out on liquid methanol at ambient temperature (300K), a dual response
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Fig. 16.1 Oxygen–oxygen (a) and oxygen–hydrogen (b) radial distribution functions in a 1.7M
solution of Na+ and Cl− ions in water, calculated for increasing strengths of the electric
field [12]; black solid lines E = 0V/Å; red dashed lines E = 0.15V/Å; blue dotted-dashed lines
E = 0.25V/Å; green dotted-dotted-dashed lines E = 0.35V/Å. The average response of the local
structure to the field is similar to that documented in Ref. [11] for neat water (color figure online)
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Fig. 16.2 Oxygen–oxygen (a) and oxygen–hydrogen (b) radial distribution functions of liquid
methanol calculated for increasing values of the electric field. Black solid line E = 0V/Å; red
dashed line E = 0.15V/Å; green dotted line E = 0.30V/Å; blue dotted-dashed line E = 0.45V/Å.
Inset heights of the first peak (black solid circles) and of the first dip (red solid circles) plotted as a
function of the field intensity (color figure online)

regime of the H-bonded network can be easily recognized. As shown in Fig. 16.2,
at variance with water pair correlations between oxygen atoms are enforced for rel-
atively low-field strengths. Indeed, liquid methanol gets more ordered at short and
medium distances as bothmaxima andminima of theO–ORDF are enhanced and the
whole shape is sharpened. However, as the field intensity grows, this trend eventually
changes in a significant way: in fact, the first peak of the O–O RDF, after reaching its
maximum value for E ≈ 0.15V/Å, abruptly drops to about 50% of its top value for
field intensities in the range between 0.25 and 0.35V/Å, and remains approximately
constant thereon (see the inset of Fig. 16.2a). Correspondingly, the first dip rises, as
also does the second peak. The first peak and the immediately following dip of the
O–H RDF behave in a similar way (see Fig. 16.2b). In addition, the first coordination
shell moves to moderately shorter distances and a weak shoulder gradually emerges
at about 1Å, which indicates an increasing freedom of hydrogen atoms in sampling
shorter relative distances from an oxygen atom. Hence, the H-bonded network of
liquid methanol shows an ambivalent response to different regimes of the field inten-
sity. In the low-field regime H-bonds are strengthened by the application of the field
whereas, for higher intensities, intermolecular correlations are depressed.

A further correlated consequence produced by the application of static electric
fields on H-bonded liquids, such as water and methanol, is the gradual aligning
of increasing fractions of molecular dipole moments along the field direction. Let
θ be the angle formed by dipoles with the field direction (z axis). As shown in
Fig. 16.3a for water and in Fig. 16.3b for methanol, in the absence of the field the
distribution P(θ ) of molecular dipole orientations exhibits a maximum for θ = 90◦,
since it is not normalized to the solid angle. However, when an electric field has been
switched on, the maximum of the distribution shifts, for both water and methanol,
to lower values of θ since molecules tend to align with the field, the larger the
number the stronger the field. Whereas intermolecular correlations are discouraged
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Fig. 16.3 Distribution of the angle θ formed by dipole moment vectors with the electric field axis in
water (a) and methanol (b). Black curve E = 0V/Å; red broken curve E = 0.25V/Å (color figure
online)

inwater at all the investigated field regimes, inmethanol the initialmolecular aligning
process increases the robustness of the H-bonded network because of the peculiar
spatial statistical distribution of the H-bond donor/acceptor sites which enhances the
probability of formation of H-bonds [14].

Solids

The field-induced aligning effect of molecular dipole moments discussed in the
previous section leads to peculiar phenomena in a solid sample. H-bonds are clearly
more stable in solids than in liquids. Hence, one would expect less striking effects in
solids when a static electric field has been applied. Indeed, in the ambient Ih ice phase
of water no significant field-induced molecular rotations or structural modifications
have been observed [15, 16]. On the other hand, some effects have been observed in
ice XI, the ferroelectric counterpart of ice Ih [15].

The external field produces a further notable effect in that it “flattens” the planes
parallel to its direction. This phenomenon ismore clearly resolved in iceXI, as shown
in Fig. 16.4, and can be assimilated to a sort of “pressure” exerted by the applied
field which forces the mutual alignment of molecular dipole moments [11, 17]. The
resulting polarization effect ultimately enhances the electrostatic coupling between
the molecular dipole moments and the external field in a powered manner. In ice
Ih the flattening of the planes was not observed as clearly as in the ferroelectric
case, because a larger energy is needed, on average, to align (pseudo)disordered
dipole moments with the field direction. The pressure exerted by the field increases
the capability of the water molecules of exploring shorter intermolecular distances.
This electrostatic mechanism triggers the crucial phenomena of proton transfer and
molecular dissociation which will be treated in the next section.
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Fig. 16.4 a The standard ice XI structure and b the field-induced planes flattening, with pertinent
angles labeled as Greek letters; panel a α = β = γ = δ = ε = ζ = 109.45◦; panel b: α = 113.2◦,
β = 112.9◦, γ = 102.3◦, δ = 114.8◦, ε = 114.8◦, and ζ = 102.4◦, a configuration which exhibits
a shortening of the in-plane intermolecular lengths (i.e., flattening)

Moderate-to-Strong Field Regime: Proton Transfer
and Molecular Dissociation

The strength of quantum-based MD calculations mainly resides with the capability
to treat covalent bonds and hence to reproduce (at least, in principle) any chemi-
cal reaction. The simplest mechanism by which a rearrangement of covalent bonds
occurs is that leading to the ionization of a molecule through the loss or gain of a
proton. This phenomenon is of paramount importance since it represents the foun-
dation of the concept of pH of an aqueous solution, of the functioning of many
ecological devices which exploit proton transfer (PT), such as Nafion membranes
and direct methanol fuel cells (DMFC), as well as of large parts of (neuro)biology
and biochemical sciences [18, 19].

The typical textbook example is obviously water. In liquid water the process
through which a H2O molecule dissociates, thus setting the acid or basic character
of an aqueous solution, is known as protolysis and occurs according to the reaction

2H2O � OH− + H3O
+ , (16.1)

in which, formally, a PT occurs between two water molecules, giving rise to the
formation of the hydroxide (OH−) and hydronium (H3O+) ions. This circumstance
also leads to an important conjugate redistribution ofH-bonds in the condensed phase
of water.

We have investigated PT and molecular dissociation mechanisms in water, salty
water and water ices, as well as in liquid methanol. Single-donor H-bonds make
bulk methanol a crucial system for understanding the PT mechanism which can be
basically schematized through the following reaction:
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2CH3OH � CH3O
− + CH3OH2

+ . (16.2)

Like water, liquid methanol displays a fast PT. This process takes place along the
H-bond structure via the general Grotthuss mechanism [20], whose exact nature has
been (and still is) a source of vivid controversies [21] and open debate.

As is well known, one of the main difficulties which arises when studying PT and
molecular dissociation is due to the fact that the protolysis reaction is an extremely
rare phenomenon. However, Saitta, Saija and Giaquinta [11] have shown that it is
possible to stimulate the PT process – and, hence, to investigate protolysis in a more
systematic way – by applying an external electric field. In this respect, the tools
provided by theoretical first-principles approaches are very well suited to tackling
and treating chemical reactions which occur at such length and time scales. By
directly following the atomistic dynamical evolution, it is possible to trace the relevant
physical quantities and the local structural changes which assist PT and molecular
dissociation.

An information that can be readily earned upon applying sufficiently strong elec-
tric fields is the effective threshold associated with PT and molecular dissociation,
respectively. In liquid water fields as intense as 0.25V/Å are needed to cleave cova-
lent bonds, whereas intensities equal or higher than 0.30V/Å are needed for the same
purpose in liquid methanol. Despite of this slight difference, which can be qualita-
tively correlated with the corresponding difference in the dissociation constants of
the two substances, more important insights can be gained through the analysis of
the (protonic) conductive regimes. In order to establish a measurable protonic cur-
rent both in water and in methanol, a field intensity of 0.35V/Å must be applied. As
shown in Refs. [11, 22], a feeble protonic current has been recorded above this field
strength threshold. A related ionic conductivity of 7.8S·cm−1 was calculated in liq-
uid water, a value that is more than one order of magnitude larger than that calculated
for methanol (i.e., 0.4S·cm−1). Such a significant difference in the ionic conduction
displayed by water and methanol can be explained as follows: on one hand, each
water molecule is statistically bonded to almost 4 other water molecules, whereas
each methanol molecule is bonded, on average, to 2 methanol molecules only. A
lower chance of proton migration is the outcome of the under-coordinated state of
the methanol molecule. On the other hand, some more specific considerations on the
charge carriers active in pure water and methanol are also in order. Indeed, although
the ionic complexes associatedwith a cooperative PT inwater and inmethanol are the
Zundel (H5O

+
2 ) and Zundel-like ([C2H6O2H3]+) ions (see Fig. 16.5a, b), the micro-

scopic ionic defects that are responsible for charge transport in such two systems are
the hydronium and the methyloxonium ions (i.e., H3O+ and CH3OH

+
2 ), respectively.

These short-lived ionic species are respectively threefold and twofold coordinated,
via H-bond links, to their own local environment. Since for moderate-to-strong field
intensities, higher than 0.35V/Å, the H-bonded network is clearly perturbed, being
characterized by lower average life times [22], the fluctuations of the average H-bond
number around each molecule increase. In liquid water this circumstance leads to
an increase of the PT probability as a result of the increased H-bond fluctuations in
the first solvation shell of the H3O+ species. In fact, the first coordination shell of
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Fig. 16.5 The Zundel ion H5O
+
2 formed a by two water molecules with an evenly shared proton

and its variant (b), observed during proton transfer events, in methanol (two methanol molecules
with an evenly shared proton form the ionic complex [C2H6O2H3]+)

H3O+ includes, on average, three water molecules. The formation of a positive ion
implies that the coordination number of a water molecule must change from a value
of almost 4 (neutral molecule) to 3 (cation), an event that is statistically amplified by
the external electric field. In methanol the increase of the rate of H-bond breaking
and reforming processes (i.e., of fluctuations in the H-bond network) due to the field
cannot lead to a PT enhancement comparable with that of water. In fact, the aver-
age coordination number of a neutral methanol molecule is 2 and the same value is
obviously found for the protonated species CH3OH2

+. Hence, larger H-bond fluctu-
ations do not give rise to a significant increase of the PT activity as observed in liquid
water. This is the additional reason why in methanol just a feeble protonic current

Fig. 16.6 Ionic current–voltage characteristics for cubic cells of comparable sides a in water and
bmethanol. The proton conduction process is characterized by an ohmic behavior provided that the
current threshold has been overcome. The dots represent the calculated values, while the solid lines
are just guides for the eye. Note that the current intensity scale of panel b has been reduced by one
order of magnitude with respect to that for water in panel a. The estimated protonic conductivities
of liquid water and methanol are 7.8 and 0.4S·cm−1, respectively
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eventually flows even for intense field strengths. In fact, although the onset of a net
proton flow has been observed for the same field intensity recorded for liquid water
(0.35V/Å) [11, 22], the efficiency of the process is extremely lower than in water:
very weak currents of the order of tenths of µA are induced by fields with a strength
of 0.35−0.50V/Å, as shown in the current–voltage diagrams of Fig. 16.6.

We finally note that the current–voltage characteristics of both samples show an
(ionic) ohmic response once a net proton flow has been activated.

Strong Field Regime: Field-Induced Chemical Reactions

In the previous section, we have already discussed the capability of an external
field of driving some “simple” chemical reactions through a local rearrangement
of covalent bonds. In fact, electric fields are able to trigger, drive, or promote even
very complex reactions, as recently shown, for instance, for a specific Diels–Alder
reaction [4]. Actually, in 1953 Stanley Miller reported a series of experiments in
which he had observed the spontaneous formation of aminoacids from a mixture of
simple molecules reacting under an electric discharge [23]. By all means, this finding
gave birth to a new multidisciplinary research field: prebiotic chemistry. Hence, the
role played by electric fields in increasing the reactivity of atoms in matter had been
already ascertained more than 60 years ago. However, the chemical reactions leading
to the formation of aminoacids, as those which occur in Miller’s experiments, have
never been studied at the atomic level before the advent of the extremely powerful
computing techniques that have become available in more recent times. Again, ab
initio methods have proven to be particularly suited for this purpose: in 2014 the
first in silico Miller experiments have been reported [24], showing for the first time
the active role of molecules such as formic acid and formamide as direct precursors
of the simplest aminoacid glycine. In this pioneering study, several cubic supercells
were set up in order to study and amplify the different reaction steps, as long as
they were successively observed. All systems were studied in the canonical NVT
ensemble at a constant temperature of 400K, with a cubic cell side chosen so as
to obtain a density of 1.0g/mL, under the action of progressively stronger external
electric fields, up to intensities of the order of about 0.5V/Å. As pointed out in the
previous sections, such high values of the field intensity are needed to dissociate
water molecules within the picosecond time-scale of AIMD [11, 15, 16], and are
compatible with the experimental values of water dissociation in the presence of
electrical discharges [25–27] and, thus, with the presumed conditions of Miller’s
experiments.

Moreover, the same order of magnitude (and even higher) has been recorded
in the naturally occurring electric fields at the surface of minerals [28, 29], also
involved in the prebiotic geochemical reactions and in solutions with solvated ionic
species [30–32]. Upon choosing appropriate proportions of the atoms composing the
different numerical samples so as to mimic different stages of the Miller–Strecker
reactions, the expected synthesis of glycine has been observed. In particular, it has



16 Hydrogen-Bonded Systems Under Intense Electric Fields 243

Fig. 16.7 Trajectory snapshots of the electric-field-driven evolution of dehydroglycine into glycine.
At first a H2 molecule splits and the two H atoms bond to the α-carbon atom and to the nitrogen
atom of two nearby dehydroglycine molecules, respectively (left panel, shown by arrows); after
about 90 fs the two α-carbon atoms of both molecules approach (middle panel, indicated by the
arrow), and the extra proton jumps from one of the twomolecules onto the other one, thus producing
glycine (right panel, indicated by the arrow)

been demonstrated that, starting from water, ammonia, methane, carbon monoxide,
andmolecular nitrogen, the synthesis of glycine can be achieved with a field intensity
of 0.5V/Å. Complex chemical reactions have been observed even for lower strengths
(0.35V/Å) in such numerical experiments, in which formic acid and formamide
molecules have been produced. In such a way, the atomic mechanistic aspects of the
synthesis of the simplest building blocks leading to the emergence of life have been
revealed for the first time. As shown in Fig. 16.7, the final steps of the formation
of glycine have been recorded just after the formation of dehydroglycine from the
intermediate molecules that lead to the fundamental carbon-to-carbon bond. The just
describedfield-driven chemical reactions are the topof the iceberg of the full chemical
landscape that the application of a static electric field can producewhen it is applied to
a material. As an example, even in the methanol case molecular dissociations are not
the only chemical reactionswhich take place. Indeed, depending on the field strength,
a progressive complexification of the system has been recently emphasized [33].

Another “textbook” chemical reaction has been observed and analyzed with var-
ious DFT tools and advanced metadynamics methods [34, 35]. In particular, the
following nominal reaction has been revealed at ambient temperature (i.e., at 300K),
for field intensities above 0.5V/Å,

2CH3OH
E−→ H2CO + CH4 + H2O , (16.3)

which, leading to the formation of formaldehyde, methane, and water, represents the
disproportionation of the methanol molecule. This rather simple chemical reaction
has never been observed before and represents a clear example of the way computa-
tional experiments can pave the way to laboratory experiments.

A final remark on the action of an external electric field is now in order. In the
reactions described above the mere presence of reactive charged species in solution
is not sufficient. This aspect has been carefully checked by running several zero-
field simulations of the same initial set of Miller molecules, but replacing all water
and ammonia molecules with their ionic OH− and NH+

4 counterparts. Although the
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proportion of ionic species was thusmuch larger than in any instantaneous configura-
tion ever observed under a nonzero finite field, no reactions other than proton jumps
occurred, until the full neutralization of all molecules had been achieved, which
proves the indispensable role of the external field in Miller’s reactions. In a way,
this finding also confirms that the electric field is not just a mere source of chemical
energy and that it plays an “order-maker” role that inherently favors the assembling of
larger chemical units from smaller ones and, thus, complexity. This crucial aspect has
been confirmed also for the (maybe simpler) methanol case. Moreover, as checked in
detail for the chemical reaction observed in liquid methanol, it has been argued that,
by switching off the external field once the first reaction products have been formed
in the system, they were stable. In particular, by performing a dynamics longer than
20ps, during which the (de)protonated methanol species neutralize by recombining
(i.e., via several proton transfers), persistent amounts of formaldehyde, methane, and
water have been found in the sample. It has also been proven that switching on an
external electric field drastically modifies the reaction network of methanol, lower-
ing some activation barriers, stabilizing the reaction products, and opening otherwise
difficult to achieve chemical routes [33].

Conclusions

In this chapter, we have reviewed the phenomenological evidence that has recently
emerged from state-of-the-art ab initio simulations on the structural and transport
properties of complex molecular systems under the action of a static and homo-
geneous electric field. The old and challenging problem of treating in detail the
interaction between matter and intense electric fields is currently developing in an
impressive way thanks to the growth of computational resources and of the predictive
character acquired, at a semi-quantitative level, by first-principle numerical calcu-
lations. Just a couple of years ago applying these numerical methods to such tough
problems, closely related to biophysics and biochemistry, as those discussed in this
chapter was almost unthinkable.
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Chapter 17
Miniature Spherical Sapphire Anvil Cell
for Small Angle Neutron Scattering

X. Wang, N.A. Parzyk, D.M. Paul, C.D. Dewhurst, G. Giriat
and K.V. Kamenev

Abstract We report the design of a compact sapphire anvil cell for small angle neu-
tron scattering. Based on turnbuckle-opposed anvil technique, the dimensions of this
cell are minimized for use with a small-bore magnets using finite element analysis.
This cell is the smallest sapphire anvil cell to date. The cell body is approximately
14mm diameter cylinder and 13mm length, the overall length of the assembled cell
is less than 17mm. Inside the cell, two spherical-shaped sapphire anvils are used
to ensure compactness and anvil’s strength, and at the same time to provide suffi-
cient sample volume for a neutron scattering experiment. The sample volume of the
cell used in the SANS experiment was as large as 0.4mm3, which is approximately
40 times larger than the conventional diamond anvil cell. The cell has been used in
a SANS study of a niobium single crystal at D22 Institut Laue-Langevin with the
maximum pressure of 4GPa being achieved with the liquid pressuremedium. During
the tests the cell demonstrated that it was capable of achieving pressure to 6GPa with
a powder sample.

Introduction

Small angle neutron scattering (SANS) is a powerful neutron technique that uses
elastic neutron scattering at small scattering angles to study material structure at
length scale from1–1000nm,which canbe coupledwith auxiliary equipment to study
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crystallographic andmagnetic properties of materials at the extremes of temperature,
field, and pressure. Recently, SANS experiments combined high pressure became a
fast growing field of study in material science [1–3], bimolecular systems and soft
condensed matter [4–8]. Conventional piston cylinder high pressure cells are not
ideal for SANS as the beam passing through the metallic cell body would result in
the micro structure of high pressure alloy interfering with the scattering from the
sample [7]. Though diamond anvil cells (DAC) had been used in neutron diffraction
experiments since 1980s [9], small sample size results in unreasonably long data
collection times.

Single crystal sapphires are widely used in construction of high pressure cells for
SANS due to the material’s high hardness, good neutron transmission, low incoher-
ent background scattering, and optical transparency. Apart from that, large sample
volumes can be achieved in cells using sapphire. All but one of the existing high
pressure cells for SANS can be categorized as sapphire windows cells [3, 4, 6, 8].
This type of cell is designed to generate pressure less than 500MPawith large sample
volume. The external compressor can be used to provide pressure jump techniques
which enable researchers to explore the kinetics of phase behavior and structure
formation in complex matter. Opposed anvil cells can generate much higher pres-
sures. Bonetti and Calmettes [5] developed the first sapphire anvil cell for SANS in
2005. The pressure capability is still limited to 530MPa as large culet sapphire anvils
were used. Apart from limited pressure capability, the existing high pressure cells
developed for SANS are also massive and complicated as most of loading methods
involve use of a hydraulic system. The aim of this work is to design a cell which
has higher pressure capability and large enough sample volume for SANS study.
The operation of the cell needs to be simple and user friendly. Most importantly for
studies of magnetic properties of materials, the dimensions of such a cell needs to
be minimised for use with a magnet/cryostat on a SANS beamline.

Design

Cell Structure

One of the smallest existing designs of a pressure cell is that of a turnbuckle diamond
anvil cells were pioneered by S.W. Tozer [10–14] initially for use with high pulsed
magnetic fields. The design of our cell is shown in Fig. 17.1. It is based on a scale-up
version of a previous turnbuckle magnetic diamond anvil cell (TM-DAC) reported
by Giriat et al. [15]. The cell consists of two end-nuts, two spherical sapphire anvils
and a cell body. The end-nuts are identical but with external M10×0.5 threads cut
in opposite direction. These match the internal threads at the top and the bottom of
the cell body. Fine resolution of anvil displacement is assured by a fine custom-cut
M10×0.5 thread. All the parts are machined out from hardened nonmagnetic beryl-
lium copper alloy (BERYLCO-25), which has a tensile strength of 1.4GPa. Central
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Fig. 17.1 a Cross-section view of the assembled pressure cell (LH and RH stand for left-hand and
right-hand thread, respectively); b CAD drawing with key dimensions; c the dimensions of the
spherical anvil

holes are drilled in both end-nuts to allow the neutron beam to pass through axially. In
addition, the holes can be used for sample observation and pressure measurement by
ruby fluorescence method [16]. The strength of the thread has been assessed by finite
element analysis (FEA). The simulation presented in Fig. 17.2 shows the threads are
capable of holding up to 20kN load before the thread starts to yield.

Spherical Sapphire Anvil

Spherical sapphire anvils used in our cell have been used in several designs which
demonstrated their performance and cost effectiveness [17–21]. Sapphire balls are
widely available commercially and can be easily formed into anvils by grinding two
parallel surfaces on them. One face is used as a culet to compress the sample and the
gasket. Truncating the opposite end of the sphere eliminates the optical distortion
from the curved surface, thus enabling the clear optical access for alignment and
pressuremeasurement by rubyfluorescence. The highest sample pressure of 12.6GPa
was reported by Takano and Wakatsuki [18] with 12.5kN load. This was achieved
using a pair of 3/8 in. sapphire balls with the culet diameter of 1.5mm and the
sample volume being around 10−2 mm3. As shown in Fig. 17.1, we employ two
8mm diameter spherical sapphire anvils in our cell. To improve the compactness of
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Fig. 17.2 FEA stress analysis shows that the first four turns of the thread is the main stress
concentration area.When the anvil is subjected to 20kN load on the culet, Von-Mises stress becomes
equal to the yield strength of the material

Fig. 17.3 a In-house polisher modified to grind conical bevels on the sapphire anvil; b surface
finish of the beveled spherical sapphire anvil

the cell, 140◦ bevel angle is lapped on the anvil with in-house polisher as shown
in Fig. 17.3a. The sapphire ball is mounted on the swing arm and ground against
a spinning disk. Slurry which contains diamond powder was used on the disk to
improve the surface finish. To form the bevel, modification was made on the original
polisher. A motor was installed on the arm (Fig. 17.3a) to rotate the sapphire around
its own axis for lapping the bevel. The culet is polished to 2.5mm diameter. Another
flat surface is lapped on the opposite site of the anvil for optical observation and
pressure measurement. As ruby fluorescence method was used to measure sample
pressure, the chromium impurity in the ball is reduced to less than 1ppm by the
supplier.
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The surface finish on the culet plays a critical role for successful loading. Scratches
on the culet would behave as a stress riser which would significantly compromise
the strength of the anvil and lead to premature surface failure [22]. To avoid this, the
surface finish of the culet needs to be enhanced asmuch as possible. Visible scratches
observed on the culet were manually polished off by a soft cloth impregnated with
1µm diamond paste. Figure17.3b shows no visible scratches with 4×magnification
under microscope.

Loading Test

To assess the performance of the design, several copies of the pressure cell wereman-
ufactured for loading and pressure testing (Fig. 17.4a). Similarly to the
TM-DAC [15], a bracket and two supports (Fig. 17.4b) are needed to apply load
onto the cell as shown in Fig. 17.4c. The pressurization of the cell requires a hy-
draulic press. In addition, a load cell is placed under the bracket to monitor the load.
The load is applied to move the anvils toward each other and to reduce friction within
the threads in order to lock the cell. The cell is clamped by rotating the body using a
spanner. Sample pressure can be checked after removing the cell from the hydraulic
press and the bracket.

Fig. 17.4 a Key parts of the cell; b disassembled cell with the bracket and supports; c figure of
the cell in a loading test, a load cell is placed beneath the bracket to monitor the compressive force
from the press
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Fig. 17.5 Loading test with a copper gasket which was pre-indented to 220µm thick; the final
thickness varies from 60 to 40µm; a 1.4GPa with 9.84kN load; b 4.2GPa with 13.58kN load;
c 5.8GPa with 17.33kN load; d 6.4GPa with 19.6kN load

Soft nonmagneticmetal gaskets (copper or unhardenedBeCu)were used in tests as
harder gaskets were found to cause premature failure. This observation is consistent
with the previously reported use of the sapphire anvil cell [17–21]. Hard gasket
can induce high shear stress on the culet, which usually lead to surface damages of
sapphire anvil (e.g., cracks, scratches, and chippings). In the test shown in Fig. 17.5,
the thickness of the gasket was pre-indented from 500 to 220µm. A 0.6mm diameter
sample hole was drilled in the centre of the gasket to accommodate NaCl powder
pressure medium and a ruby chip. With these parameters, the initial sample volume
is larger than 0.06mm3. In the loading test, the cell was tested close to the maximum
allowable load of the cell (as predicted by FEA modeling) and no anvil failure was
observed. The highest generated pressure was 6.4 GPawith 19.6kN load. Figure17.5
shows the deformation of the sample hole with increasing pressure. The final gasket
thickness was between 40–60µm, which can be used as the means of assessing the
quality of the anvil alignment and the taper angle between the culets. The test result
shows the attainable pressure of our cell is much higher than the existing pressure
cells developed for SANS.Moreover, the anvils demonstrate better performance than
the cell reported by Takano [18] by holding 6.4GPa with similar sample volume.
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However, the sample size is limited for the copper gasket because of the thinning
of the gasket. Thus, only powder sample or small single crystal can be placed into
copper gasket to avoid crushing.

High Pressure SANS Experiment on Single Crystal Niobium

This section demonstrates an application of the cell in high pressure SANS exper-
iment (Fig. 17.6). A single crystal of niobium was loaded into the cell to study the
pressure dependence of the flux line lattice (FLL) of the crystal by using SANS tech-
nique. The sample was around 1mm long and 0.3mm thick as shown in Fig. 17.6a.
Accordingly, a thick gasket is needed for this experiment to suit the height of the
sample. Copper gasket cannot be used in this case due to its low strength and thin-
ning under high pressure. To contain the sample, a BeCu gasket with 1mm diameter
sample hole and 0.5mm thick was used. The initial sample volume was equivalent to
0.4mm3. Mixture of Fluorinert (FC 72: FC 84) was used as the pressure medium to
create the hydrostatic pressure environment. As the sample hole is larger than those
in previous tests, the culets of the anvils were polished to 3mm diameter accordingly
to prevent the sample hole from blowing out in the early pressurization stage.

In the experiment, the highest attainable pressure was 4GPa with 17kN load.
The pressurized cell was mounted on the aluminium sample holder as shown in
Fig. 17.6b. To reduce the scattering background, the cell was covered with neutron
absorbing cadmium foil. The pressurized cell was loaded into a cryomagnet [23] on

Fig. 17.6 SANS experiment at D22, ILL: a the single crystal Niobium in the gasket; b the loaded
cell covered by cadmium foil; c SANS neutron data with flux line lattice appearing as four red spots
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D22 beamline, Institut Laue–Langevin (ILL). The cell was cooled down to 1.8K and
Fig. 17.6c shows the collected data after the cell was exposed to the neutron beam
for 10min.

Summary

We have developed a compact turnbuckle sapphire anvil cell for SANS experiment.
The dimensions of our cell is even smaller than the “egg” cell which was considered
as the smallest sapphire cell reported by Goncharenko [9]. This cell can be used
with any existing cryomagnet even with a small bore [23] and the cooling rate is
much higher due to its small size. The compactness, non-magnetic body and large
sample volume (up to 0.4mm3) facilitate the potential implementation with other
experimental techniques. In this design, the weakest part of this cell was found to be
the sapphire anvils. It is worthwhile to conduct investigation into how to improve the
durability of the spherical sapphire anvil, such as high temperature annealing [22,
24, 25], shape optimization, etc.
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Chapter 18
Are Light Alkali Metals Still Metals
Under High Pressure?

F. Siringo, R. Pucci and G.G.N. Angilella

Abstract The extended Hubbard Hamiltonian on a bcc lattice is studied at half-
filling and for a finite hopping between next-nearest neighbours, in mean-field
approximation. An ionic insulating broken-symmetry phase is predicted for any
hydrogenoid bcc solid in the density range 1.0 < rs < 2.6. The occurrence of an
ionic phase would explain the failure to achieve hydrogen metallization at high pres-
sures. Moreover, a metal–insulator transition is expected for sodium in the 100GPa
region.

Alkali metals crystallize in a bcc phase under ordinary thermodynamic conditions.
In 1935, Wigner and Huntington [1] proposed that even hydrogen should undergo a
metal–insulator (MI) transition from a molecular to a monatomic bcc crystal, under
high pressure in analogy to alkali metals. During the last years new excitement arose
after several claims for the reach of hydrogen’s metallization [2–6]. However, it is
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now out of doubt that all the observed phases of hydrogen are still molecular, and
there is no evidence of metallization induced by a band overlap mechanism up to
191GPa [7]. From this point of view, hydrogen seems to be quite different from the
halogens, for which MI transitions have been observed [8, 9].

The nature of the high pressure A phase of hydrogen still remains unexplained,
and several hypotheses have been advanced. The recent proposal by Baranowski [10]
that the hydrogen molecules may develop electric dipole moments is challenging for
different reasons: (i) first of all, such a phase would be per se interesting, being a
broken-symmetry ground state of the symmetric H2 molecular system; (ii) in addi-
tion, the existence of such an ionic phase could move a possible monatomic phase
further towards higher pressures; (iii) finally, given the similarity of hydrogen with
the alkali metals, the possible existence of an ionic instability should show up even
in lithium or sodium under the proper thermodynamic conditions.

Provided that such a broken-symmetry ionic crystal does exist, it would be desir-
able tofix the boundaries between the ionic and themonatomic bcc phases.Approach-
ing the boundary from the bcc phase,we look for an ionic instability of themonatomic
crystal, or, in other words, for a charge density wave (CDW) instability, commensu-
rate with the cubic lattice. The existence of such a CDW has been recently observed
in the ground state of sodium and potassium, under ordinary thermodynamic con-
ditions [11, 12]. Such instabilities of the Fermi gas had been predicted [13] as a
consequence of the Coulomb electron–electron (e–e) repulsion, but do not give rise
to any MI transition, since the CDW is not commensurate with the lattice. Such
very small effect does not prevent us from considering the alkali metals as simple
‘free-electron’ metals for most aspects. On the other hand, a nearest neighbour tight-
binding model on a bipartite bcc lattice gives rise to a perfectly nested cubic Fermi
surface at half-filling, and any small e–e repulsion would drive the system towards
a spin density wave (SDW) or towards a CDW commensurate with the lattice.

In this Letter we show that, even without nesting of the Fermi surface, a
hydrogenoid bcc crystal undergoes aMI transition towards a broken-symmetry com-
mensurate CDW phase, for an appropriate bounded range of density values. Such a
conclusion emerges from a careful analysis of the mean-field phase diagram for an
extended Hubbard Hamiltonian, modified in order to take in due account the long
range Coulomb interactions and the hopping between next-nearest neighbours. Even
for a spherical Fermi surface, themodel predicts the occurrenceof a broken-symmetry
insulating ground state, provided that the nearest neighbour repulsive interaction V
exceeds some critical value. The latter is a function of the other energy scales and
mainly of the on-site Hubbard repulsion U between two electrons sharing the same
lattice site. While U is only slightly affected by any increase in density, V scales as
a−1, being a the cubic lattice spacing. Under high pressure, V may reach its critical
value, giving rise to a MI transition, albeit in an intermediate density range; then,
at very high densities, the large increase of the Fermi energy, scaling as a−2, would
eventually stabilize the monatomic phase. In other words, we expect that under high
pressure both lithium and sodium should undergo aMI transition from a simplemetal
to an ionic insulator. On the other hand, such a high density instability of the bcc
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crystal would suggest that, in order to stabilize a hydrogen monatomic phase, higher
densities are required than previously estimated.

The extended Hubbard Hamiltonian reads as:

H = −t1
∑
〈i j〉 σ

c†iσ c jσ − t2
∑

〈〈i j〉〉 σ

c†iσ c jσ +U
∑
i

ni↑ni↓ + 1

2

∑
i �= j σσ ′

Vi jniσn jσ ′ ,

(18.1)

where ciσ (c†iσ ) denote the annihilation (creation) operators for an electron in the
Wannier state centred on the i th site of a bcc lattice, with spin projection σ ∈ {↑,↓}
niσ = c†iσ ciσ , t1, t2 > 0, and 〈i j〉, 〈〈i j〉〉 restricting the sums over nearest and next-
nearest neighbour couples, respectively.

The Hamiltonian, Eq. (18.1), incorporates two major approximations: (i) it
neglects all bond-bond and bond-ion interactions; (ii) it neglects any hopping term
other than those between nearest or next-nearest neighbours. Approximating the
Wannier states by atomic hydrogen ground state wave functions, for a density corre-
sponding to rs ≈ 2.2, the larger bond-ion interaction term does not exceed the 30%
of the corresponding ion–ion interaction. Of course, any extrapolation to higher den-
sities would require some caution. Regarding the neglected hopping terms, we must
notice that the insertion of such exponentially decreasing terms does not change the
shape of the Fermi surface in a significant way. A ratio t2/t1 ≈ 0.6 ÷ 0.7 allows for
an almost spherical Fermi surface, up to a 3% deviation.

The model may be solved in mean-field (MF) approximation by inserting 〈niσ 〉 =
1
2 + Δiσ and neglecting second-order terms in the fluctuations δniσ = niσ − 〈niσ 〉.
Since we are looking for a commensurate CDW instability, we assume Δiσ =
Δ cos(Q · Ri ), being Q = (

2π
a , 0, 0

)
the exact nesting vector of the Fermi surface

when t2 = 0. Working in the reciprocal lattice, i.e., introducing:

c†iσ = 1√
N

∑
k

e−ik·Ri c†kσ , (18.2)

with k summed over the N points inside the first Brillouin zone, and neglecting
second-order fluctuation terms, the Hamiltonian Eq. (18.1) reads (up to a constant)
as:

HMF =
∑
kσ

ε(k)c†kσ ckσ + Γ
∑
kσ

c†k+Qσ ckσ − NΓ Δ, (18.3)

where Γ = Δ(U − 16W ), ε(k) = ε1(k) + ε2(k), and:

ε1(k) = −4t1 cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kza

2

)
, (18.4a)

ε2(k) = −t2[cos(kxa) + cos(kya) + cos(kza)]. (18.4b)
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Here W is a renormalized interaction parameter summing up all the long range
Coulomb interactions:

W = 1

8

∞∑
m=1

(−1)m+1zmV
(m), (18.5)

where, for m = 1, 2, . . . ∞, V (m) denotes the Vi j interaction term for nearest neigh-
bours, next-nearest neighbours, etc., and zm is the corresponding coordination
number.

TheMFHamiltonian, Eq. (18.3), is easily diagonalized by a canonical transforma-

tion. Let us introduce the spinorial notation Ψ
†
kσ =

(
c†kσ , c†k+Qσ

)
, with k restricted

inside the cube |kα| < π/a (α = x, y, z), which is exactly half the first Brillouin
zone. Actually the transformation k → k + Q maps such reduced zone onto the
complementary half-zone. The Hamiltonian Eq. (18.3) now reads:

HMF =
∑
kσ

Ψ
†
kσh(k)Ψkσ − NΓ Δ, (18.6)

where the 2 × 2 matrix h(k) is defined as:

h(k) =
(

ε1(k) + ε2(k) Δ(U − 16W )

Δ(U − 16W ) ε2(k) − ε1(k)

)
, (18.7)

and is promptly diagonalized yielding the spectrum:

E±(k) = ε2(k) ±
√

ε1(k)2 + Γ 2. (18.8)

A gap opens between the two bands, E±(k), whenever Γ > 2t2: in such a regime,
the system is an insulator, and the total energy Etot is readily evaluated by summing
E− over the doubly occupied half-zone:

Etot =
∑
kσ

[ε2(k) −
√

ε1(k)2 + Γ 2] − NΓ Δ. (18.9)

A gap equation is obtained by differentiating Etot with respect to the order parame-
ter, Δ:

1

16W −U
= a3

2

∫
d3k

(2π)3

1√
ε1(k)2 + Γ 2

. (18.10)

A finite Γ always solves the latter condition at any coupling strengths but, for sake
of consistency with the above assumption of dealing with an insulating phase, Γ

must exceed the critical value, Γc = 2t2. A consistent minimum for the total energy
is, e.g., found for (16W −U )/t1 > 3.84 if t2/t1 = 0.8.
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Fig. 18.1 U–V phase
diagram for a CDW
instability, for t2/t1 = 0.8.
The boundary between
normal metal (M) and ionic
insulator (I) is reported as a
solid line. The dashed line
represents the equation of
state for a light alkali as
hydrogen: the squares
correspond to rs = 0.6 ÷ 2.8
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In the insulating phase, the Coulomb interaction is not screened by the conduction
electrons, and long range contributions cannot be neglected. We should evaluate the
parameters U , V (m) as diagonal matrix elements of the bare Coulomb interaction
in the Wannier representation. If we assume Vi j ∼ 1/|Ri − R j |, the renormalized
parameter W follows from its definition, Eq. (18.5), as W ≈ 1

8αMV , being αM the
Cs–Cl Madelung constant, αM = 1.763 (see, e.g., [14]), and V ≡ V (1) the first term
in the expansion, Eq. (18.5), i.e., the nearest neighbour repulsive interaction. The
problem is thus mapped back onto the standard extended Hubbard model with an
effective number of nearest neighbour sites z∗ = αM, to be compared with the bcc
value z1 = 8. For the reasonable choice t2/t1 = 0.8,1 the U–V phase diagram for
the CDW instability is shown in Fig. 18.1.

The boundary between the metallic and the ionic insulating phases is given by the
simple linear relation U/t1 = −γ + 2αMV/t1, being γ the minimum value of the
ratio (16W −U )/t1, as emerging from Eq. (18.10) for Γ = Γc = 2t2 (γ = 3.84 for
t2/t1 = 0.8). In principle, an ionic metallic phase may exist just over the boundary,
since the gap closure is due to band overlap, while a finite order parameter Δ always
arises from the gap Eq. (18.10). However, in presence of a band overlap, the total
energy, Eq. (18.9), is incorrect, since the energy levels must be summed up to the
Fermi value inside both the bands E±. Thus, Eq. (18.10) is not correct in the metallic

1A slight change of the ratio t2/t1 does not affect too much the phase diagram. In general, a smaller
value than 0.8 would be expected, thus giving rise to an enlargement of the ionic region in the phase
diagram.
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phase and the existence of a stable broken-symmetry ground state is questionable in
the metallic regime. Moreover, all the Coulomb interaction terms would be strongly
screened by the conduction electrons, so that the symmetric Δ = 0 ground state is
expected to be more favoured for the metallic phase. The phase diagram is incom-
plete, since we have not taken in consideration the possible occurrence of SDW
instabilities, which are likely to be present for U � V , though irrelevant for the
following considerations.

Let us first discuss the U–V phase diagram in relation with the behaviour of
solid hydrogen under pressure. The possible bcc phase of dense hydrogen would
be a simple ‘free-electron’ metal, with an almost spherical Fermi surface and a
Fermi energy comparable with the free electron value EF = 1.84/r2s a.u., which also
reproduces the observed Fermi energies for the alkali metals. In the metallic phase,
neglecting any interaction term, the model Fermi energy arises from the unperturbed
spectrum given by Eqs. (18.4a) and (18.4b) in terms of the parameters t1, t2 as
EF = ε(kF) − ε(0), where kF is the Fermi vector, akF ≈ (6π2)1/3. Comparing the
latter with the definition for EF in the free electron case yields an estimate of t1
for any chosen ratio t2/t1, and for any fixed density. If we fix t2/t1 = 0.8, then
t1 = 0.259/r2s a.u.Approximating theWannier states by 1s hydrogenwave functions,
bothU and V follow, in a.u. [15], asU = 5

8 , V = 1
R − e−2R

(
1
R + 11

8 + 3
4 R + 1

6 R
2
)
,

where the nearest neighbour distance R = (
√
3π)1/3rs has been used. For large rs

values, U/t1 ∼ r2s , while V/t1 ∼ rs , so that the equation of state for hydrogen in
theU/t1–V/t1 phase diagram of Fig. 18.1 is just a parabola. Some possible states of
dense hydrogen are reported on Fig. 18.1 At very high density, the equation of state
deviates from the parabolic behaviour, since V saturates for rs → 0. However, the
very high density limit is questionable, and must be considered as an extrapolation
out of the range where the adopted approximations are reasonable.

The phase diagram is not significatively altered by a change of the ratio t2/t1, since
both the boundary line and the equation of state are shifted in the same direction and
their relative changes compensate.

If we rely on the emerging scenario, even in the very high density limit, then we
would predict that hydrogenmetallization requires rs < 1, since the bcc phase would
be unstable towards an insulating ionic phase for 1.0 < rs < 2.6. The occurrence of
such an ionic phase could explain the failure of all the attempts to reach themonatomic
state at the currently achievable densities. In fact, as discussed by Chen et al. [7] and
Ashcroft [16, 17], the occurrence of an IR active vibron mode could be justified by
the presence of permanent dipole moments. Besides, the occurrence of any other
molecular ionic phase cannot be ruled out by our approach, which only prevents the
stability of the monatomic bcc structure for a given high density range. However, the
high density limit rs � 1 is only qualitatively correct, as previously discussed, being
the approximations out of control in this very high density regime. Therefore, we do
not find any contrast with the Monte Carlo prediction [18] of a transition towards
the monatomic phase for rs ≈ 1.3. Moreover, that numerical calculation evidenced
the equivalence of the monatomic ground state energies in both the fcc and in the
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bcc phases. Thus the ionic instability, lowering the ground state energy, should be
relevant even if an fcc structure were the most stable monatomic phase.

While the lower bound of the ionic phase is only qualitatively determined by the
present approach, the upper limit rs < 2.6 is much more reliable. Any hydrogenoid
bcc solid should undergo a MI transition around that critical density value,2 thus
realizing an unexpected broken-symmetry ionic phase. At room pressure, rs = 3.94
for sodium and rs = 3.25 for lithium, so that according to Fig. 18.1 both the elements
are correctly predicted to be stable in the monatomic bcc phase. In order to reach the
critical density rs ≈ 2.6, a very high pressure is required [19–21]. Such a pressure
could be really prohibitive for K, Rb and Cs. Besides, these heavier alkali elements
undergo several pressure induced structural transitions which are believed to be
driven by the electronic transfer to upper empty bands [19]. Therefore, our attention
should be focused on the lightest alkali, since such transfer mechanism is negligible
and the required pressure could be reached by modern diamond anvil cell apparatus.
Lithium has been compressed up to rs ≈ 2.8 [20], and a phase transition from bcc to
fcc has been observed for P = 6.9GPa (rs ≈ 2.9). The occurrence of the fcc phase
could in principle invalidate our discussion, even if the ground state energies of such
cubic monatomic structures are so close that the ionic instability cannot be ruled out
at higher densities.Mostly, the best alkali with whichwemay compare our prediction
is sodium: (i) it has an almost spherical Fermi surface; (ii) its 3s orbital is expected
to be comparable for extension with the 1s orbital of hydrogen3; (iii) no structural
phase transition has been observed up to rs ≈ 2.9 [21]; (iv) the first empty d band
is far from the Fermi energy. A structural phase transition has been predicted [23]
from bcc to hcp at the very high density rs � 2.5, which should be reachable in
the 100GPa region [19]. According to Fig. 18.1, a MI transition should occur first,
around rs ≈ 2.6, then the ionic phase could push to higher densities the structural
transition.

At this stage, we should reverse our starting question, and we should ask instead:
Why is sodium a metal? In a broken-symmetry ionic phase, the inter-ion Coulomb
interactions add a considerable contribution to the total ground state energy. This
very same term amounts to the almost entire cohesive energy of any ionic crystal. We
cannot neglect such interactions, even at high densities, in comparisonwith the Fermi
energy.On the other hand, the rôle played by the on-siteHubbardU and by the nearest
neighbour effective interaction W is competitive, as it is evident from Eqs. (18.9)
and (18.10). The former favours a SDW instability, whereas the latter is responsible
for the onset of a CDW. In sodium, under normal thermodynamic conditions, such
interaction terms compensate each other, precluding any instability. The ground state
is a metal, the interactions are strongly screened by the Fermi liquid, and give only
rise to a small renormalization of the band parameters. In other words, the symmetric

2Notice that for rs ∼ 2.6, V is almost independent of the atomic size, while U is slightly smaller
for larger atomic orbitals, so that the critical rs value could be even larger for the other alkali metals.
3From the minimal basis set of Clementi and Raimondi [22], the effective 3s atomic radius is
a0 = 3/(z − σ) a.u., where z = 11 and the shield constant σ = 8.4927 for sodium, thus yielding
a0 = 1.196, to be compared with a0 ≡ 1 for hydrogen.
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metallic phase is basedon the equilibriumbetween competing interactions.Whenever
we alter such an equilibrium (e.g., increasing W by compressing the distances) the
system falls into a broken-symmetry insulating phase, where the interactions are no
longer screened and play an essential rôle. Such a phase is expected for sodium in
the 100GPa region, for rs ≈ 2.6. The ionic phase could explain the failure to reach
hydrogen metallization, and would give a possible interpretation of the anomalous
IR active vibron mode observed in the high pressure A phase. A very high density is
required in order to reduce the rôle of the interactions in comparison with the kinetic
electronic energy, and to restore symmetry. For a perfectly nested Fermi surface
(t2 = 0), such a density is infinite, since the integral in the gap Eq. (18.10) diverges
for Γ = 0. Out of nesting (t2 > 0), a metallic phase arises around the U ≈ 2αMV
region (Fig. 18.1), which also explains the behaviour of all the alkali metals.

Note added in proof

After this work was completed (and released as preprint arXiv:cond-mat/-
9512011), we received the information that the hypothesis of a CDW instability
in hydrogen under pressure was first advanced by Ashcroft [24]. Furthermore, some
months later we got news that Edwards and Ashcroft [25] performed a density func-
tional calculation where they show that a CDW is present in hydrogen under high
pressure, due to the exchange contribution to the total energy.

Quite recently, Hemley et al. [26], from an analysis of new measurements of the
high infrared vibron mode of solid hydrogen above 150GPa, have argued that the
effective charge of hydrogen reaches 0.04e at 216GPa (85K). This rules out (up to
this pressure) full ionization of the hydrogen molecules, but it is not in contradiction
with a CDW instability.

References

1. E. Wigner, H.B. Huntington, J. Chem. Phys. 3(12), 764 (1935). DOI 10.1063/1.1749590
2. J.H. Eggert, K.A. Goettel, I.F. Silvera, Europhys. Lett. 11(8), 775 (1990). DOI 10.1209/0295-

5075/11/8/014
3. J.H. Eggert, K.A. Goettel, I.F. Silvera, Europhys. Lett. 12(4), 381 (1990). DOI 10.1209/0295-

5075/12/4/017
4. H.K. Mao, R.J. Hemley, Science 244(4911), 1462 (1989). DOI 10.1126/science.244.4911.

1462
5. L. Cui, N.H. Chen, I.F. Silvera, Phys. Rev. Lett. 74, 4011 (1995). DOI 10.1103/PhysRevLett.

74.4011
6. M. Hanfland, R.J. Hemley, H. Mao, Phys. Rev. Lett. 70, 3760 (1993). DOI 10.1103/

PhysRevLett.70.3760
7. N.H. Chen, E. Sterer, I.F. Silvera, Phys. Rev. Lett. 76, 1663 (1996). DOI 10.1103/PhysRevLett.

76.1663
8. R. Pucci, F. Siringo, in Molecular systems under high pressure: Proceedings of the II

Archimedes Workshop on Molecular Solids Under Pressure, Catania, Italy, 28–31 May 1990,
ed. by R. Pucci, G. Piccitto (North Holland, Amsterdam, 1991), pp. 97–115

http://dx.doi.org/10.1063/1.1749590
http://dx.doi.org/10.1209/0295-5075/11/8/014
http://dx.doi.org/10.1209/0295-5075/11/8/014
http://dx.doi.org/10.1209/0295-5075/12/4/017
http://dx.doi.org/10.1209/0295-5075/12/4/017
http://dx.doi.org/10.1126/science.244.4911.1462
http://dx.doi.org/10.1126/science.244.4911.1462
http://dx.doi.org/10.1103/PhysRevLett.74.4011
http://dx.doi.org/10.1103/PhysRevLett.74.4011
http://dx.doi.org/10.1103/PhysRevLett.70.3760
http://dx.doi.org/10.1103/PhysRevLett.70.3760
http://dx.doi.org/10.1103/PhysRevLett.76.1663
http://dx.doi.org/10.1103/PhysRevLett.76.1663


18 Are Light Alkali Metals Still Metals Under High Pressure? 265

9. H. Fujihisa, Y. Fujii, K. Hase, Y. Ohishi, N. Hamaya, K. Tsuji, K. Takemura, O. Shi-
momura, H. Takahashi, T. Nakajima, High Press. Res. 4(1-6), 330 (1990). DOI 10.1080/
08957959008246112

10. B. Baranowski, Polish J. Chem. 66, 1737 (1992)
11. T.M. Giebultowicz, A.W. Overhauser, S.A. Werner, Phys. Rev. Lett. 56, 1485 (1986). DOI 10.

1103/PhysRevLett.56.1485. Erratum Phys. Rev. Lett. 56, 2228 (1986)
12. P.G. Coulter, W.R. Datars, Phys. Rev. B 34, 2963 (1986). DOI 10.1103/PhysRevB.34.2963
13. A.W. Overhauser, in Highlights of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P.

Tosi (North-Holland, Amsterdam, 1985), p. 194
14. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publ., Fort Worth, 1976)
15. J.C. Slater, Quantum theory of molecules and solids, vol. 1 (McGraw-Hill, New York, 1963)
16. N.W. Ashcroft, Physics World 8(7), 43 (1995). DOI 10.1088/2058-7058/8/7/30
17. N.W. Ashcroft, Phys. Rev. B 41, 10963 (1990). DOI 10.1103/PhysRevB.41.10963
18. D. Ceperley, in Simple Molecular Systems at Very High Density: Proceedings of a NATO

Advanced Research and EPS Workshop, Les Houches, 1988, NATO ASI Series, vol. B186, ed.
by A. Polian, P. Loubeyre, N. Boccara (Plenum Press, New York, 1989)

19. H. Olijnyk,W.Holzapfel, Phys. Lett. A 99(8), 381 (1983). DOI 10.1016/0375-9601(83)90298-
0

20. B. Olinger, J.W. Shaner, Science 219(4588), 1071 (1983). DOI 10.1126/science.219.4588.
1071

21. I.V.Alexandrov, S.M. Stishov,V.N.Kachinsky, I.Makarenko, inProceedings of the XXEHPRG
Meeting (Stuttgart, 1982)

22. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38(11), 2686 (1963). DOI 10.1063/1.1733573
23. J.A. Moriarty, A.K. McMahan, Phys. Rev. Lett. 48, 809 (1982). DOI 10.1103/PhysRevLett.

48.809
24. N.W. Ashcroft, in Elementary processes in dense plasmas, ed. by S. Ichimaru, S. Ogata

(Addison-Wesley, Reading, MA, 1995)
25. B. Edwards, N.W. Ashcroft (1995). Private communication
26. R.J. Hemley, I.I. Mazin, A.F. Goncharov, H.K. Mao, M. Hanfland, M. Li, in Annual March

Meeting of the American Physical Society (APS, 1996). Abstract #N27.04

http://dx.doi.org/10.1080/08957959008246112
http://dx.doi.org/10.1080/08957959008246112
http://dx.doi.org/10.1103/PhysRevLett.56.1485
http://dx.doi.org/10.1103/PhysRevLett.56.1485
http://dx.doi.org/10.1103/PhysRevB.34.2963
http://dx.doi.org/10.1088/2058-7058/8/7/30
http://dx.doi.org/10.1103/PhysRevB.41.10963
http://dx.doi.org/10.1016/0375-9601(83)90298-0
http://dx.doi.org/10.1016/0375-9601(83)90298-0
http://dx.doi.org/10.1126/science.219.4588.1071
http://dx.doi.org/10.1126/science.219.4588.1071
http://dx.doi.org/10.1063/1.1733573
http://dx.doi.org/10.1103/PhysRevLett.48.809
http://dx.doi.org/10.1103/PhysRevLett.48.809


Part II
Molecular Chemistry



Chapter 19
Negative Condensed-to-Atom Fukui
Functions: A Signature of Oxidation-Induced
Reduction of Functional Groups

E. Echegaray, A. Toro-Labbe, K. Dikmenli, F. Heidar-Zadeh,
N. Rabi, S. Rabi, P.W. Ayers, C. Cardenas, Robert G. Parr
and J.S.M. Anderson

Abstract We show that the orbital relaxation contribution to the Fukui function,
first derived by Yang, Parr, and Pucci in 1984, is decisive for predicting redox-
induced electron transfer. Specifically, we study a dinuclear cobalt complex which
has been shown to exhibit redox-induced electron transfer, and show that this effect is
associated, computationally, with negative values of the condensed Fukui functions.
This establishes that not only can the Fukui function be negative, but negative values
of the Fukui function are chemically significant.
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Background

The Fukui Function

In 1984, Yang, Parr, and Pucci defined the Fukui function as the change in electron
density due to a change in the number of electrons, at fixed external potential [1, 2],

f (r) =
(

∂ρ(r)
∂N

)

v(r)
. (19.1)

Owing to the derivative discontinuity of the energy, electron density, and other mole-
cular properties [3, 4], this derivative does not exist for isolated molecules (which
always have an integer number of electrons), and should be replaced by the deriva-
tive from above (often called the electrophilic Fukui function, or simply the Fukui
function from above)

f +(r) =
(

∂ρ(r)
∂N

)+

v(r)
= lim

h→0+

ρ(r; N + h) − ρ(r; N )

h
= ρ(r; N + 1) − ρ(r; N )

(19.2)
and the derivative frombelow (often called the nucleophilic Fukui function, or simply
the Fukui function from below)

f −(r) =
(

∂ρ(r)
∂N

)−

v(r)
= lim

h→0+

ρ(r; N ) − ρ(r; N − h)

h
= ρ(r; N ) − ρ(r; N − 1).

(19.3)
The final equality in Eqs. (19.2) and (19.3) is a consequence of the piecewise linear
dependence of the energy and other properties on the number of electrons [5, 6]. The
electrophilic Fukui function is largewhere it ismost favorable for amolecule to accept
electrons, and therefore serves as the fundamental density-based reactivity indicator
for the location where the molecule is most susceptible to nucleophilic attack. The
nucleophilic Fukui function is large where it is most favorable for a molecule to
donate electrons, and therefore indicates where the molecule is most susceptible to
attack by an electrophile. The Fukui function is one of the most important reactivity
indicators in conceptual density functional theory [7–11]. It is the key indicator for
regioselectivity in density-based approaches to chemical reactivity [6, 12].

The Fukui functionwas named because it is the density functional theoretic analog
of the frontier molecular orbital reactivity indicators developed by Kenichi Fukui
[13–17]. This link is made more clear when the Fukui function is rewritten in terms
of the Kohn–Sham orbitals [2, 18],



19 Negative Condensed-to-Atom Fukui Functions: A Signature … 271

f −(r) = |φHOMO(r)|2 +
∑

i≤HOMO

(
∂|φi (r)|2

∂N

)

v(r)
, (19.4a)

f +(r) = |φLUMO(r)|2 +
∑

i≥LUMO

(
∂|φi (r)|2

∂N

)

v(r)
, (19.4b)

where HOMO and LUMO denote the highest occupied molecular orbital and the
lowest unoccupied molecular orbital, respectively. The first term in these expressions
is the frontier molecular orbital contribution, while the second term includes the
effects of orbital relaxation. While usually the frontier-orbital term is dominant (in
which case, the Fukui functionmirrors the frontiermolecular orbital theory of Fukui),
there are important cases where quantitative, and even qualitative, effects of orbital
relaxation are important [19–29]. When orbital relaxation is important, the simple
frontier molecular orbital approach fails, but the Fukui function is still a reliable
descriptor of molecular electronic structure and chemical reactivity. Equation (19.4)
are popularly known as the Yang–Parr–Pucci formulae [2]. They are the key working
equations for most practical applications of the Fukui function.

Redox-Induced Electron Transfer (RIET)

One of the greatest successes of the Fukui function was its use in predicting the
phenomenon of redox-induced electron transfer (RIET) [30] prior to the recent surge
of experimental interest in this phenomenon [31–35]. In RIET, the oxidation (or
reduction) of a molecule leads to the reduction (or oxidation) of one of the moieties
within it. Such a phenomenon can happen only for compounds with at least three
redox-active components like metal centers and noninnocent ligands [28]. Since
adding (or subtracting) electrons from the molecule as a whole is associated with a
decrease (or increase) of the electron population on one of the redox centers, RIET is
associated with negative values of the Fukui function f +(r) (or f −(r)). To quantify
the change of the Fukui function on the molecular region associated with an atom in
a molecule, one frequently uses the condensed Fukui function, which can be defined
as the change in atomic population associated with the addition (or subtraction) of
an electron [36]. Alternatively, in terms of the charges on the atoms in a molecule,
qα , one has

f +
α = qα(N ) − qα(N + 1), (19.5a)

f −
α = qα(N − 1) − qα(N ). (19.5b)

RIET is associated with molecules where the condensed Fukui function is signifi-
cantly less than zero on one or more atoms or functional groups within the molecule
[30]. In this chapter, we present the first computational study of the condensed Fukui
function for a molecule that is known to undergo RIET, [TPyA-CoII-CA2−-CoII-
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TPyA]2+ [31]. The definition of the condensed Fukui function is somewhat ambigu-
ous [37], and the entire concept of the Fukui function is problematic for molecules
with degenerate or quasidegenerate ground states [38, 39]. In this paper, however,
we will ignore these nuances and use Eq. (19.5) as working formulas for the Fukui
function of a molecular site.

System and Method

Redox-Induced Electron Transfer
in the TPyA-CoII-CA2−-CoII-TPyA Dication

Min et al. synthesized and characterized the [TPyA-CoII-CA2−-CoII-TPyA]2+ dinu-
clear transition metal complex, where TPyA denotes the tetradentate Tris(2-pyridyl-
methyl)amine ligand and CA is the chloranilate ligand [31]. The chloranilate ligand
is a noninnocent (i.e., redox-active) aromatic ligand that links the two antiferromag-
netically coupled (d7, high spin) CoII metal centers. When the system is oxidized,
one would expect an electron to be removed from the HOMO (which, based on our
calculations is located on theCoII centers), thereby obtaining amixed-oxidation-state
compound with one CoII and one CoIII metal center. This is not what is observed
experimentally: instead both metal centers become oxidized to (d6, low-spin) CoIII,
while the chloranilate linker ligand is reduced to the CA3− radical [31]. This complex
therefore undergoes RIET, whereby oxidation of [TPyA-CoII-CA2−-CoII-TPyA]2+
gives [TPyA-CoIII-CA·3−-CoIII-TPyA]3+, a metal complex in which the chloranilate
ligand is reduced. This presumably occurs because as the cobalt ions become more
positive, they stabilize the orbitals on the chloranilate ligand between them, so that it
is more favorable to have the “extra” electron on the chloranilate ligand than on one
of the metal centers. That is, we can envision this as a two-step process. In the first
step, removing an electron from the HOMO of [TPyA-CoII-CA2−-CoII-TPyA]2+
results in the [TPyA-CoIII-CA2−-CoII-TPyA]3+ complex. However, the loss of anti-
ferromagnetic coupling destabilizes the remaining CoII center, and the loss of an
electron from the coordinating cobalt center stabilizes the lowest unoccupied orbital
on the chloranilate ligand. This makes it favorable for an electron to transfer from
the remaining CoII center to the chloranilate, giving the [TPyA-CoIII-CA·3−-CoIII-
TPyA]3+ complex.

Because of the RIET effect, if one computes f −(r) for [TPyA-CoII-CA2−-CoII-
TPyA]2+, one expects the Fukui function to have substantial positive values on the
metal centers and significant negative values on the chloranilate ligand. The goal of
this chapter is to test this hypothesis computationally.
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Computational Approach

We performed calculations on the metal complex [TPyA-CoII-CA2−-CoII-TPyA]2+
in both its oxidized and reduced states using the BLYP density functional [40, 41].
The initial guesses for these calculations were constructed by combining fragments
(ligands and metal ions) that had been precomputed with the charge and spin mul-
tiplicity suggested by the experiment [31]. The initial geometry was taken from the
crystal structure; geometry optimization with the LANL2DZ basis set (for Cobalt)
and the 6-31G(d) basis set (all other atoms) led to only very small changes inmolecu-
lar geometry. The relaxed molecular geometry is shown in Fig. 19.1. Atomic charges
and spin densities were computed at the optimized geometry using the larger 6-
311+G(d) basis set for all atoms. The spin densities agree with what is expected
from the experiment: [TPyA-CoII-CA2−-CoII-TPyA]2+ has high-spin antiferromag-
netically coupled cobalt atoms (Fig. 19.2a), and the chloranilate ligand is essentially
closed shell, with negligible spin density. After oxidation to [TPyA-CoIII-CA·3−-
CoIII-TPyA]3+, an unpaired electron is localized on the chloranilate ligand and the
cobalt ions become low spin (Fig. 19.2b). All calculations were performed using the
Gaussian09 program [42, 43].

Fig. 19.1 The optimized structure of [TPyA-CoII-CA2−-CoII-TPyA]2+. The essentially planar
chloranilate anion is in the center of the picture, linking the Cobalt ions. The TPyA ligands bind
the top, bottom, and back side of the Cobalt ions



274 E. Echegaray et al.

Fig. 19.2 The spin density on the complex α-spin (in yellow) and β-spin electrons (in blue) density
of studied complex. a [TPyA-CoII-CA2−-CoII-TPyA]2+ has high-spin antiferromagnetically cou-
pled CoIII centers. b [TPyA-CoIII-CA3−-CoIII-TPyA]3+ has low-spin CoIII centers and an unpaired
electron on the chloranilate trianion radical (color figure online)

Results

We computed the atom-condensed Fukui function using the differences of atomic
charges adhering to the fragment of molecular response approach, i.e.,

f −
α = qα

([
CoIII − CA·3− − CoIII

]3+)
− qα

([
CoII − CA2− − CoII

]2+)
. (19.6)

Because atomic charges are inherently ambiguous [44, 45] we selected two different
approaches. The iterative Hirshfeld [46] approach of Bultinck et al. [47] is based
on finding the atoms in a molecule whose densities maximally resemble those of
the isolated atom/ion in an information-theoretic sense [44, 48–52], but with an
additional step that ensures that the reference ion and the atom in a molecule have
the same charge [47]. The electrostatic potential fitting method of Breneman and
Wiberg, CHELPG [53], chooses the atomic charges so that the electrostatic potential
on the exterior of the molecule is reproduced as accurately as possible.

As shown in Table19.1, both methods of computing atomic charges give similar
results, with the chloranilate ligand having an overall negative condensed Fukui
function, with decisively negative values on the carbon atoms that are closest to
the cobalt centers. The fact that the condensed Fukui function is not minus one
on the ligand should not be surprising: upon oxidation of the metal centers and
reduction of the chloranilate ligand, the cobalt ions are better electron acceptors
and the chloranilate ligand is a better electron donor. Therefore, if one imagines
the redox process as a two-step procedure, where at the end of the first step the
chloranilate ligand has an additional electron, and then in the next step inductively
donates electrons to the oxidized metal atoms, one expects that the total value of
the condensed Fukui function on the chloranilate ligand should be negative, but far
greater thanminus one. This is consistentwith Fig. 19.2, where the unpaired electrons
from the metal are slightly donated to the chloranilate ligand in the reduced complex,
but the unpaired electron from the chloranilate ligand is slightly donated to the cobalt
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Table 19.1 The condensed Fukui functions on the chloranilate ligand, computed using iterative
Hirshfeld (iH) andCHELPGcharges. The numbering scheme of the atoms is shown in Fig. 19.3. The
total condensed Fukui function (including the oxygens) of the chloranilate ligand is also included

Atom labels Atomic charge method

iH CHELPG

C 1 0.074 0.016

C 2 −0.096 −0.142

C 3 −0.077 −0.024

C 4 −0.077 −0.018

C 5 −0.096 −0.146

C 6 0.074 0.019

O 8 0.024 0.038

O 9 −0.020 0.095

O 11 0.024 0.037

O 12 −0.020 0.096

Cl 7 0.003 0.025

Cl 10 0.003 0.025

total −0.192 −0.245

Fig. 19.3 The numbering
scheme for the atoms in the
chloranilate ion that is used
in Table19.1

ions in the oxidized complex. It is also consistent with the computed value of about
−0.2 for the condensed Fukui function of the chloranilate ring system.

Discussion

The Fukui function of Parr, Yang, and Pucci extends the frontier molecular orbital
theory of Fukui by including the effects of electron correlation and orbital relax-
ation. This is especially important for chemical processes where orbital relaxation is
crucial. Among these processes, perhaps the most interesting is the effect of redox-
induced electron transfer (RIET). RIET, and its less extreme version called redox-
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induced electron rearrangement, depends critically on orbital relaxation, and cannot
be described using simple frontier molecular orbital theory.

To test the ability of the Fukui function to model RIET, we considered the [TPyA-
CoII-CA2−-CoII-TPyA]2+ complex that was synthesized and studied by Min et al.
[31]. When this compound is oxidized, one would predict that the electron should be
removed from the highest occupied molecular orbital. The electron density would
then decrease everywhere in space

ρ(r) → ρ(r) − |φHOMO(r)|2. (19.7)

This is not what is observed either experimentally or theoretically. Experimentally,
it is observed that oxidization of the metal complex is associated with a reduction of
the noninnocent chloranilate ligand, which is confirmed by the negative values of the
condensed Fukui function on this ligand, indicating that the chloranilate ligand gains
electrons even though the overall complex loses an electron. This means that for
RIET in this complex, and presumably also in other molecules, the orbital relaxation
term in the Yang–Parr–Pucci equations (Eq. (19.4)) is decisive. Negative values of
the condensed Fukui function are thereby established as the hallmark of RIET. More
generally, this study resolves the question of whether the Fukui function can ever be
negative: negative values of the Fukui function not only exist, but signify chemically
important effects.
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Chapter 20
Simple Approaches to Calculate Correlation
Energy in Polyatomic Molecular Systems

A. Grassi, G.M. Lombardo and G. Forte

Abstract Ab initio calculation including electron correlation are still extremely
costly, except for the smallest atoms and molecules. In this paper we present some
simple semi-empiricalmethods to obtain correlation energy. Thesemethods are based
on the relation between energy and the off-diagonal density matrix elements, which
represent the bonding between atoms in the molecule. The results of our previous
studies are reported here and compared with the results obtained by using more
accurate techniques.

Introduction

The terms ‘electron correlation’ and correlation energy was first used by Wigner [1]
indicating an energy difference between the “exact” nonrelativistic molecular energy
and energy obtained from a Hartree–Fock calculation, i.e.: Ec = Eexact, nonrel − EHF.
Independent particle models, such as Hartree and Hartree–Fock methods, neglect
this correlation at various level of approximation. In the Hartree model, there is an
unphysical finite probability to find two electron in the same place, whereas the
Hartree–Fock model electrons with parallel spin are prevented from overlapping but
not those with antiparallel spin. Indeed, in the previous definition Ec includes also
the “basis set error” which is present in a simple HF calculation. For this reason
some authors define the correlation energy Ec as Ec = Eexact, nonrel − EHF, limit, i.e.,
the energy difference with respect to a HF calculation with an “infinite” basis set.
The value of EHF, limit can be obtained as limit value of various HF calculations on
increasing the basis set.
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Now, to account for electron correlation, several post-HF analytical techniques
have been proposed, such as the Møller–Plesset perturbation theory (MP) [2],
Configuration Interaction (CI) [3] or the Multi-configurational self-consistent field
(MCSCF) [4] techniques, where the correlation is included at various levels within
theHF calculation. Unfortunately, thesemethods are computationally very expensive
even for small molecular systems.

Therefore, in the last 20 years alternative approaches to calculate the correlation
energy have been developed. In these methods the electron correlation energy Ec is
related to somemolecular properties, such as single- or two-particle electron density,
bond order, bond distances, overlap populations, and so on. Some of these techniques
are ‘semi-analytical’ methods, because they need an a priori empirical estimation
of some parameters [5]. In general, the parameters are related to some atomic and
atom–atom pair properties. It is worth to note how these methods are quite accurate,
giving comparable results with respect to the analytical ones, and furthermore, they
require lightweight computational efforts. The detailed exposition of these analytical
or semi-analytical methods are beyond the scope of this paper. Therefore, in the
following, we will expose in detail the methods that we have developed to calculate
the correlation energy for simple or polyatomic molecules.

Methods

Correlation Energy versus Electron Number

Starting from a study of March and Wind [6], where the functional density theory
(DFT) was used to explain the approximately linear variation in neutral atom correla-
tion energy with atomic number Z , we have extended the model to treat some neutral
diatomic molecules. As in Ref. [7], the starting point was to rewrite the correlation
energy as:

Ec =
∫

εc(r)ρ(r)dr, (20.1)

where εc(r) is the correlation energy per electron (CEPE) at r and ρ(r) is the electron
density. Following the classical LCAO (Linear Combination of Atomic Orbitals)
procedure, we expand the molecular wavefunction in an atomic basis set φμ(r). So
that we rewrite Eq. (20.1) as:

Ec =
A∑
μ

Pμμ

∫
εc(r)φ2

μ(r)dr +
B∑
μ

Pμμ

∫
εc(r)φ2

μ(r)dr

+
∑
μ �=ν

Pμν

∫
εc(r)φμ(r)φν(r)dr,

(20.2)
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where Pμν are density matrix elements partitioned into atomic (A e B) and overlap
terms. Assuming that the function εc(r) varies in r-space slowly with respect to
φ2

μ(r), we can rewrite Eq. (20.2) as a sum of atomic and overlap contribution, i.e.:

Ec = Eatomic
c + Eoverlap

c = εA

A∑
μ

Pμμ + εB

B∑
μ

Pμμ + ε0
∑
μ �=ν

PμνSμν. (20.3)

The first two terms refer to the atomic contribution, whereas the last refers to the
interatomic one. In particular, εA, εB and ε0 are the CEPE for atom A and B (taken
from experimental tabulated values [8]) and for the overlap terms represented by Sμν ,
the overlap matrix obtained from ab initio calculations. The assumption of Eq. (20.3)
is to treat the overlap term at same level as for atoms, i.e., that correlation energy
per electron for the overlap part is constant. This assumption is partially supported
by the work of Gombas [9], who shows that εc is not to strongly varying function of
ρ(r) which, in the overlap region, is a smoothly varying function of r. Recalling the
orthonormality of the atomic basis set, the term

∑
μ �=ν PμνSμν represents the total

overlap population (n0(AB)), and the term
∑A

μ Pμμ effective electron charge on the
atom (neff(A)). Then, we can rewrite Eq. (20.3) as:

Ec = εAn
eff(A) + εBn

eff(B) + ε0n
0(AB). (20.4)

Now, three different approaches have been taken in order to estimate the value
of ε0:

(i) ε0 � k(i)N , where N is the total number of electrons in the molecules. This
assumption is based on the work of March and Wind [6], which shows that
for atoms with small atomic number Z , the CEPE is nearly proportional to
the total number of electrons; k(i) is a constant, calculated by the least square
minimization procedure.

(ii) ε0 � (εAZA + εBZB)/2. In this approach the overlap term of the CEPE is
obtained as a mean value between total atomic correlation energy EA and EB.

(iii) ε0 � k(iii)n0(AB). At variance of (i) the overlap CEPE is proportional to the
total overlap population, i.e., to the bond electron density. A detailed test of
his assumption is showed in [10]. The constant k(iii) was also calculated by the
least square minimization procedure.

In Table20.1 we have reported the experimental and calculated ones of the corre-
lation energies for some diatomic molecules. Note that for method (i) the value of the
constant k(i) was found to be equal to 12.5mhartree/electron2, whereas for method
(iii) the value of the constant k(iii) is equal to 136.8mhartree/electron2.

In Fig. 20.1 we report the difference (in mhartree) between the experimental Ec

values with respect to the various theoretical methods.
In particular, the top figure shows that for the hydride molecular systems better

results are obtained with the more sophisticated methods as HS [5] or GCP. Whereas
in homonuclear systems X2 our methods appear to be more accurate.
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Table 20.1 Experimental and calculated correlation energies for some diatomic molecules. In
columns the experimental values, taken from [8], the calculated values with our methods (columns
(i), (ii) and (iii)), Hollister and Sinanoglu (HS) [5], Savin et al. (SPP) [8], Langreth et al. (GCL) [8]
and Perdew et al. (GCP) [8]

System Exp (i) (ii) (iii) HS SPP GCL GCP

LiH 83 72 52 136 79 113 98 93

BH 153 155 148 187 154 181 165 163

NH 243 254 251 278 239 249 251 255

FH 387 356 366 362 380 364 381 380

Li2 122 140 115 191 112 171 139 134

C2 514 471 479 456 422 398 405 399

N2 546 566 584 518 522 489 511 506

F2 746 691 714 670 713 674 684 697

Fig. 20.1 Correlation
energy difference between
the experimental Ec and the
calculated values for the
various theoretical methods.
Top figure the hydride
systems (XH). Bottom figure
the homonuclear systems
(X2). All values are in
mhartree
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It is noteworthy that in our method there is a direct relation between bond cor-
relation energy and electron number of the molecular system. On the basis of this
hypothesis and according to the work of Kais et al. [11], which expands the atomic
Ec in term of Z , we have shown [12] that this relation holds also for homonuclear
diatomic systems.

Finally, we can infer that, despite the simplicity of the methods, our results reflect
qualitatively the correct general trends of the correlation energy in diatomic mole-
cules, and, for some systems, the difference found with respect to the experimental
Ec is smaller than those obtained by using more sophisticated methods reported in
Table20.1.

Correlation Energy and Bond Order

In order to treat molecular systems containing more than two atoms, following
Cremer’s work [13], we define the correlation energy Ec as:

Ec = ES − EHF, (20.5)

where EHF is the molecular Hartree–Fock energy and ES is the so called Schrödinger
energy, which is obtained by the exact solution of the Schrödinger equation when
vibrational, rotational and relativistic effects are excluded. This definition, as for-
merly stated, includes also than the “basis set error” which is present in a simple HF
calculation.

Now, taking into account the formation reaction of a generic molecule,

A + B = C + binding energy, (20.6)

the molecular energy can be partitioned as follows:

E(C) = E(A) + E(B) − binding energy = E(A) + E(B) + E(AB). (20.7)

The first step is to consider this Schrödinger molecular energy ES partitioned as
follows:

ES =
N∑

A=1

ES(A) +
∑
all AB

ES(AB), (20.8)

where N is the number of atoms in the molecule, ES(A) is the Schrödinger energy of
the atom A and ES(AB) is the Schrödinger binding energy of the two bonded atoms
A and B. Likewise, the total HF molecular energy can be written as:

EHF =
N∑

A=1

EHF(A) +
∑
all AB

EHF(AB). (20.9)
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Molecular correlation energy is obtained subtracting Eq. (20.9) from Eq. (20.8), i.e.:

Ec = ES − EHF =
N∑

A=1

Ec(A) +
∑
all AB

Ec(AB). (20.10)

The Bond Order

In the framework of LCAO-MO theory (linear combination of atomic orbitals–
molecular orbital), the definition of bond order in a polyatomic molecule was given
first by Coulson [14] in the context of the Hückel MO approximation [15]. These
bond orders are the off-diagonal elements Tμν of the first-order density matrix T .
More explicitly:

Tμν =
occ∑
i=1

niciμc
∗
iν, (20.11)

where ni is the occupation number of the ith MO, and ciμ is the coefficient of the
ith atomic orbital in the μth MO. This definition of bond order is applicable when
the AOs (atomic orbitals) are mutually orthogonal and only one AO is considered
for each atom. Various definitions for bond order have been proposed, e.g. Löwdin
definition [16], which gives an orthogonal first-order density matrix Q by using the
transformation:

Q = S1/2TS1/2, (20.12)

where S is the overlap matrix. In this framework the bond order PAB between the
atoms A and B in a closed shell molecule is defined as:

PAB =
A∑
μ

B∑
ν

QμνQνμ. (20.13)

More detailed treatments of the bond order for both closed shell and open shell
systems is reviewed by Sannigrahi [17].

Bond Order Correlation Energy (BOCE)

The starting point is to relate the bond order population to the correlation energy,
assuming that Ec(AB) can be developed as series function of the bond order PAB, we
have:

Ec(AB) =
∑
m

am,AB(PAB)
m. (20.14)
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Table 20.2 a1,AB
(mhartree/electron) as defined
by Eq. (20.14)

A—B a1,AB A—B a1,AB

C—H 35.12 F—F 167.50

C—C 31.70 Cl—Cl 131.44

O—H 60.54 F—H 113.77

C—O 49.11 Cl—H 77.00

O—O 72.04 F—Si 127.33

H—H 39.55 Cl—Si 102.46

Si—H 62.38 Cl—F 158.62

The coefficient am,AB are determined for a bond between two equal or different atom
types (C−C,C−O,O−O, etc.), selecting a set ofmolecules containing the bond types
reported in Table20.2.Without loss of generality, we have retained only the first term
of the expansion. Detailed procedure followed to obtain the bond parameters am,AB,
and the selected molecular systems used in the best fit are reported in Refs. [18–20].
In Table20.2 are reported the parameters a1,AB derived for the 6-31G** basis set.

In the first paper, Ref. [18], the BOCE methods were applied to calculate the
correlation energies of 20 molecules containing C, O, and H atoms. In the next work,
Ref. [19], the method was applied to calculate the molecular dissociation energies
(D0) and heats of formation (ΔH). Finally in Ref. [20], the procedure was extended
to calculate correlation energies in polyatomic molecules containing Si, F, and Cl
atoms.

In Table20.3we have reported the Schrödinger and theBOCEmolecular energies,
EBOCE = EHF + EBOCE

c , for some molecules containing the atoms of Table20.2.

Table 20.3 Schrödinger and BOCE molecular energies (hartree) for some polyatomic molecules

ES EBOCE ES EBOCE

C6H6 −232.24219 −232.24129 SiH3F −391.14909 −391.13615

C2H4 −78.58567 −78.58084 SiH2F2 −490.47468 −490.46072

C2H2 −77.33430 −77.31958 SiHF3 −589.79953 −589.79277

H2CO −114.50344 −114.50278 SiH3Cl −751.37713 −751.37455

CH3OH −115.72137 −115.72340 SiH2Cl2 −1210.93407 −1210.92994

H2C=CO −152.60000 −152.59566 SiHCl3 −1670.49132 −1670.48676

CO2 −188.58504 −188.60229 SiH2FCl −850.697705 −850.69489

(CH3)CHO −153.82924 −153.82682 SiHF2Cl −950.024261 −950.02430

(CH2)CHOH −153.81314 −153.80838 SiHFCl2 −1310.25583 −1310.25538

HCOOH −189.76370 −189.77838 SiF2Cl2 −1409.57885 −1409.58379

CO −113.31751 −113.32008 SiF3Cl −1049.35506 −1049.35384

Cyclopropane −117.89065 −117.88280 SiFCl3 −1769.81401 −1769.81308

Furane −230.01980 −230.00899 SiH2 −290.56195 −290.53928

t-Butene −157.21942 −157.21007 SiF2 −489.21821 −489.20621

c-Butene −157.21848 −157.20760 SiCl2 −1209.69956 −1209.67880
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Fig. 20.2 Absolute relative energy difference between the Schrödinger and the calculated (BOCE)
energy values for various molecular systems. In the top figure, molecular systems containing C, O
and H atoms. In the bottom figure, molecular systems containing Si, F, Cl and H atoms

The very good agreement of the calculated energies using the BOCE techniques
with respect to the Schrödinger ones, appears clearly form the values in Table20.3.
The highly accurate values of the correlation energy obtained using BOCE approach,
for all molecules of the series, are confirmed from the calculated relative errors with
respect to the Schrödinger energies, reported in Fig. 20.2.

However, it is important to add a comment: some calculated BOCE energies
are lower than experimental (Schrödinger) energies. This is explained by taking
into account that these values are obtained from various experimental data and any
experimental measurement is subject to an error that, in general, is about ±5%.
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The BOCE results, for the molecular systems in the series, obtain values which are
in the range of ±0.007% of the Schrödinger energy, which are much lower than the
experimental error.

Finally, the good results obtained from BOCE technique in the molecular energy
calculation is confirmed in the calculation of the molecular dissociation energy (D0)
as well as in the estimation of the molecular heat formation. Both molecular quan-
tities were compared with experimental values and with the values calculated by
using a very accurate, but computationally expensive, method (G2) [21], as shown
in Ref. [20].

In conclusion, despite the simplicity of the BOCE approach, the results obtained
byusing this approach in themolecular energy calculation andother relatedmolecular
quantities are well comparable with the results obtained by using more accurate and
very computationally expensive techniques.
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Chapter 21
Novel Common Methodologies Between
Physics and Theoretical Chemistry:
Density Functional Theory

R. Pucci

Introduction

Over the last five decades, theoretical chemistry has often been considered a highly
systematic discipline, which attempts at solving Schrödinger equation for increas-
ingly complex systems, with greater accuracy. Since then, this research programme
has been believed as largely successful. In this context, the following quote by
Clementi [1] is clarifying: «We can calculate everything».

But ‘to calculate’ a molecule does not mean ‘to understand’ it [2], as the calcu-
lations do not unveil by themselves the fundamental laws of physics and chemistry.
Nor even accurate calculations on the single systems can evidence regularities and
universalities in atomic and molecular systems.

An effort toward the quest of new methodologies has been done by physicists,1

who, despising brute-force ab initio calculations, devised simple models [3], which

1The distinction between molecular physicists and theoretical chemists is purely academic, and is
here employed for the sake of mere comodity, essentially to indicate different methodologies, rather
than different research fields. In this context, I would like to report a quote by C.A. Coulson: «There
are no physicists and chemists, but problems and people who are able to solve them, and people
who are not» (N.H. March, private communication).

Translated from Italian by G.G.N. Angilella, with kind permission of Società Italiana di Fisica from
R. Pucci, ‘Nuove metodologie comuni tra fisica e chimica teorica: la teoria del funzionale della
densità’, Giornale di Fisica, 27 (1986), pp. 257–266 c© Società Italiana di Fisica.
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introduce drastic approximations [4, 5]. However, these approximations are not
always able to yield results with the required accuracy, from the ‘chemical’ point
of view. Therefore, theoretical chemists have always considered the methods of
molecular physics as interesting and ‘extravagant,’ but scarcely useful for practical
purposes.

On the other hand, physicists too need ever more realistic models and accurate
calculations.

During the Archimedes Workshop on Molecular Theory, held at the Department
of Physics, University of Catania, Italy, in June 1985,2 it was evidenced that new
methodologies were emerging, which combine the techniques of both physics and
chemistry. During that workshop, the right balance of physicists and chemists among
the conveners enabled a lively debate and a proficuous exchange of experiences.

It would be beyond the scopes of the present article to enumerate all the con-
tributions on the various topics covered by the workshop.3 Therefore, I will only
propose, as an example of what has been said previously, density functional theory.
This theory allows to analyze the concept of electronegativity and several regularities
in atoms and molecules.

Another important subject, which was covered by the workshop and where the
collaboration among chemists and physicists appears essential, is gas chemisorption
on surfaces. I will come back on this topic more in detail in the conclusions.

Density Functional Theory

The theory of the inhomogeneous electron gas, or density functional theory (DFT),
was originated by the seminal works of Thomas [8] and Fermi [9]. The so-called
Thomas–Fermi (TF) approximation already provides good results for the binding
energy of atomic ions [10], but it is not able to reproduce the richness of the periodic
table of the elements, which is connected with the orbital structure of atoms. This is
why Hartree theory [11–13] enjoyed a wider diffusion.

The introductionwithin TF theory of the exchange term is due toDirac [14], and in
Hartree’s theory to Fock [15]. Later, Slater [16] demonstrated that an approximation
of the Hartree–Fock (HF)methodwas equivalent to the Thomas–Fermi–Dirac (TFD)
approximation. One often ignores that the so-called ‘Xα method’ can be obtained as
an approximation of density functional theory [17].

It was thanks toGombas [18] and others that correlation effects were introduced in
a consistent way within TFD theory. For some time several physicists were sceptical
about the reliability of a theory based on the description of atomic and molecular
properties in terms of the electronic density, but in 1964 Hohenberg and Kohn’s

2A second Archimedes Workshop was held afterwards in 1990. See Ref. [6] [Translator’s Note].
3Suffice it here tomention the contribution onElectron density and response theory, byR.McWeeny,
that on Nonadditive dispersion forces, by E.A. Power, and that on Cloud of virtual photons around
a hydrogen atoms, by F. Persico. See Ref. [7].
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theorem [19] achieved the formal completion of the theory. Hohenberg and Kohn’s
theorem [19] demonstrates that the total energy of a system of N electrons is a unique
functional of the electronic density. Evidently, Hohenberg and Kohn’s theorem [19]
is a proof of the existence of such a functional, but does not indicate its explicit
form. Much progress, however, has been made toward the determination of such
a functional, at least in some of its limiting forms. Nowadays, density functional
theory is a well-established theory, whereby several ‘reasonable’ approximations
have been derived. These have been largely successful in explaining several problems
in molecular as well as solid-state physics, as witnessed by several books and review
articles [5, 17, 20–31].

However, density functional theory found it hard to get established among
chemists, because of the difficulties inherent to systems with a relatively small num-
ber of electrons.

The papers by March [28] and Parr [17] did however demonstrate that this theory
can greatly contribute to the development of fundamental concepts in chemistry, and
the number of its practical applications are ever increasing [22].

In the following sections, I will review the concept of electronegativity and some
regularities in atomic and molecular systems.

Chemical Potential and Electronegativity

Electronegativity is a relevant quantity for chemistry. It is connected with the
‘attitude’ of an atom or a molecule to attract electrons. Several definitions are avail-
able, each yielding a different scale of electronegativity [32, 33], but none of them
is derived from first principles. Quite a successful definition of the electronegativity
χ is due to Mulliken [34]:

χM = I + A

2
, (21.1)

where I is the potential of first ionization, and A the electronic affinity.
Electronegativity should fulfill two conditions: (i) it should have the same value

in any point of the system under consideration, and (ii) if one merges two systems
A and B having electronegativities χA and χB , the resulting system C will have a
unique electronegativity χC . The fundamental physical quantity appearing in density
functional theory which actually fulfills requirements (i) and (ii) is denoted by μ. It
is introduced in the theory as a Lagrange multiplier, in order to take into account of
the condition ∫

ρ(r) dr = N , (21.2)

where ρ is the electronic density and N the total number of electrons. The variational
principle for the total energy E with respect to density ρ then takes the form
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δ(E − μN )

δρ
= 0. (21.3)

Hohenberg andKohn’s theorem [19] then allows one towrite the exact Euler equation
as

μ = δT

δρ
+ VH + δεxc

δρ
, (21.4)

where T is the total kinetic energy, VH is Hartree potential energy, and εxc is the
exchange-correlation potential energy. Within the statistical theory, where energy is
a continuous function of N , μ coincides with the chemical potential,

μ = d E

d N
. (21.5)

However, for a system characterized by a finite, and often relatively small, value of
N , it has not been demonstrated that E is a continuous function of N , and that it
is possible to define E for even slightly noninteger values of N . This poses serious
difficulties to the fundamentals of quantum mechanics in the study of systems with
a finite N .

One way to overcome this difficulty has been proposed by March and the present
author [35]. This suggests to adopt μ, as defined by Euler equation, Eq. (21.4),
as a definition of electronegativity. Equation (21.4) is a formally exact expression,
allowing for several approximations. Particularly interesting are those obtained in
the limit r → ∞, where

μ = −I + lim
r→∞

δεxc

δρ
. (21.6)

We note at this point that Parr et al. [36] strongly favor Eq. (21.5) also for finite
systems. Then they demonstrate that

μ = −χM, (21.7)

namely that the chemical potential equals the opposite of Mulliken’s electronegativ-
ity. Equations (21.1), (21.6), and (21.7) provide evidence of the remarkable impor-
tance that the potential of first ionization I and electronic affinity A have toward the
determination of the equilibrium conditions for an atomic or molecular system.

This suggests the possibility that density functional theory may serve to establish
more firmly the theory of frontier orbitals [37, 38]. More precisely, March and Pucci
[39] have demonstrated, within the HF approximation and making use of Koopmans
theorem, that

δT

δρ
= − �

2

2m

∇2ψhomo

ψhomo
, (21.8)

where the quantity on the left-hand side is the same appearing in Eq. (21.4) (but here
evaluated at the HF level), and ψhomo is the eigenfunction of the highest occupied
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molecular orbital. A generalization of Eq. (21.8) for Kohn–Sham orbitals [40] has
been derived by Yang et al. [41].

The still open debate on the questions mentioned above concerns several funda-
mental aspects of density functional theory, thus demonstrating the relevance thereof
toward the development of concepts and calculation methods in chemistry.

Regularities in Atoms

One of the most interesting aspects of density functional theory, which has been
emphasized since its early stages, is that such a theory enables to evidence regularities
in some atomic andmolecular properties, that would be otherwise difficult to identify
on the basis of other calculations, even very accurate, but valid on a ‘case by case’
basis.

I shall try to illustrate this aspect by considering the moments of the radial density,
the atomic scattering factors, and the relation between total energy and diamagnetic
susceptibility. In the following section, I will deal with diatomic molecules and
quasi-spherically symmetric polyatomic molecules.

Since the energy E of the ground state is a functional of the electronic density
ρ, let us consider a simple representation of ρ for the closed-shell atomic ions. It is
convenient to employ the Fourier transform of ρ, namely the atomic scattering factor

f (K) =
∫ ∞

0
4πr2ρ(r)

sin Kr

Kr
dr. (21.9)

The series expansion at small K of this expression above is given by [42]

f (K ) = N + a2K 2〈r2〉 + · · · a2n K 2n〈r2n〉, (21.10)

where use has been made of the normalization condition
∫ ∞

0
D(r)dr ≡

∫ ∞

0
4πr2ρ(r)dr = N , (21.11)

and the moments 〈r2n〉 are defined by

〈r2n〉 ≡
∫ ∞

0
D(r)r2ndr. (21.12)

It is known [43] that the term in 〈r2〉 determines the Langevin–Paulimagnetic suscep-
tibility, and possesses therefore a direct physicalmeaning.Using the exact asymptotic
form of the electronic density [44]

ρ(r) = Arγ exp[−2(2I )1/2r ] (21.13)
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and the approximate relation I ∝ Z−1/3, Pucci and March [45] demonstrated that

〈r2n〉
〈r2n−2〉 ∝ 1

I
. (21.14)

This relation allowed to derive, for neutral atoms with N = Z , the identity

f (K ) − Z − a2K 2〈r2〉
K 2〈r4〉 = G

(
K√

I

)
, (21.15)

where G is a universal function of K/
√

I . Although G is not known analytically, it
has been reported for the neutral atoms Ar and Kr, using HF calculations [45]. The
results obtained are in complete agreement with the predictions of Eq. (21.15).

Fig. 21.1 ln I versus ln〈r2〉
for the isoelectronic
sequences with N = 6, 7, 8,
9, and 11. All quantities are
in a.u. Values of I are taken
from Ref. [46], while 〈r2〉
has been derived from HF
calculations by Mann
[47, 48]
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Equation (21.15) indicates that ρ depends considerably on I and 〈r2〉. There-
fore, one may expect that E = E[ρ] is also approximately a function of I and 〈r2〉
(Fig. 21.1).

It has been found that for numerous isoelectronic sequences the following relation
between I and 〈r2〉 holds [45]

ln I = α(N ) ln〈r2〉 + β(N ). (21.16)

This is verified very well using experimental values for I and HF results for 〈r2〉,
as is illustrated by Fig. 21.1. Equation (21.16) allows to write the total energy in the
form

E(Z , N ) = I +
N−1∑
n=1

〈r2〉Z ,nα(n) exp[β(n)]. (21.17)

Equations (21.15)–(21.17) unveil unexpected relations among independent physical
quantities, and are indicative of some universal behaviors, at leastwithin some classes
of systems.

Regularities in Some Classes of Molecules

The combined use of Thomas–Fermi statistical theory and the 1/Z -expansion of the
energy [10] have been very useful to study some regularities in neutral atoms and
atomic ions [45, 49]

The generalization of that approach to diatomic molecules allowed Pucci and
March [50] to demonstrate that (R2

e /Z5/3)|E | is a universal function of Z R3
e .

Evidently, in this case it is the equilibrium internuclear distance Re to play a funda-
mental role in the theory. For B2, C2, B2, and F2 the relation between (R2

e /Z5/3)|E |
and Z R3

e is linear, therefore the equilibrium lengths can be evaluated from the relation

|E | = aZ8/3Re + bZ5/3R2
e , (21.18)

witha = 8.53 andb = 60.42 in a.u. The same regularity is found for heavier homonu-
clear diatomic molecules.

The theoretical generalization of the arguments above to heteronuclear diatomic
molecules is more complicated. For the halides of Li, Na, and K it is however pos-
sible to find some empirical regularities [51], similar to the ones above, between
E2

e E/N 5/3 and Z̄ R3
e , where N is the total number of electrons and Z̄ = (Z1Z2)

1/2

is the geometric average between the nuclear charges Z1 and Z2 of the molecule.
An approximate justification of the scaling laws of the Hamiltonian, in the case

of heteronuclear diatomic molecules, can be derived when Z1 � Z2 [51].
In the opposite limit in which Z2 → ∞ and Z1e is kept fixed, a better model is

employed, in which the charge Z1e is smeared over a spherical surface with radius



296 R. Pucci

Fig. 21.2 Z2/Re versus Z2
for the tetrahedral fluorides.
Experimental values of Re
(Å) are taken from Ref. [53]

equal to the equilibrium distance [52]. Assuming such a model and making use of
TF theory, it is possible to demonstrate [51] that the bond length Re tends to a finite
value, when Z2/Z1 → ∞ (Fig. 21.2).

The above model [21] is particularly useful to treat quasi-spherical polyatomic
molecules, such as tetrahedral or octahedralmolecules. In these cases, it is the nuclear
charge Z2e of the heaviest central atom which is to infinity, while one uniformly
smears on aspherical surface the charge Npe of the external nuclei (e.g., the charge
of the 4 protons in the CH4 molecule). Again making use of this model and of the
TF approximation, it is possible to find an analytical expression for the bond length
Re [51]

Re = 1

Z1/3
1

12

[3(1 − d)]1/3
(

3

32π2

)2/3 h2

2me2
, (21.19)

where d is determined by the geometry of the molecule. Such a prediction of a finite
bond length as Z2 → ∞ is completely consistent [54] with experimental data not
only for the series CH4, . . . PbH4, but also for the tetrahedral fluorides, chlorides, and
bromides, for the octahedral molecules, and for the diatomic hydrides. An example
of this behavior is depicted in Fig. 21.2.

The dominant role of geometry and dimensionality in determining the electronic
structure is a fundamental property also of the conjugated polymers. It is now agreed
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[55] that polyacetylene is a quasi-linear systemwith a semiconducting band structure
characterized by a gap caused by a Peierls distortion, i.e., alternating bond lengths.
Actually, in this linear chain with one electron per atom, both the Peierls distortion
and an antiferromagnetic staggering are present. Indeed, a nonalternating linear chain
possesses an antiferromagnetic ground state [56], due to the Coulombic repulsion
between electrons with opposite spins on each atomic site. Such a repulsion increases
the dimerization [57]. Moreover, electronic correlations are essential to describe the
excited states of finite polyenes [58].

A study of linear polyacenes demonstrated [59] that the corresponding linear
polymer should be characterized again by a semiconductor-like ground state, but
with a gap due to spin-waves, without any Peierls distortion.

The link between linear polyacenes and graphite (which is known as a bidimen-
sional conductor) is provided by the nonlinear polycyclic hydrocarbons [60]. One
has therefore a smooth crossover from one- to two-dimensional systems, which is
accompanied by a semiconductor to conductor transition.

Conclusions and Perspective

It seems that a close interchange between the methods of molecular physics and the
concepts of theoretical chemistry is not only proficuous, but also necessary.

This has been illustrated by analyzing density functional theory. The topics that
have been treated more in detail have been (a) electronegativity and chemical poten-
tial, (b) theory of the frontier orbitals, (c) regularities in atoms and in somemolecular
systems. The concept of electronegativity is not only important for the problems
of chemical recativity, but also for the study of polymers [61], as well as of gas
chemisorption in metals [62]. In this case, the chemical potential of one of the two
systems under consideration, and precisely that of the metal surface, evidently coin-
cides with the Fermi energy EF.

Both in the case of polymers, and in particular of polyacetylene, and in the case of
chemisorption, Seel [63] showed how two complementary descriptions, namely the
cluster model (which emphasizes local effects) and the Green function formalism
(which includes the effects of the solid), can be combined to maximize the informa-
tion.

Chemisorption is at the basis of several physico-chemical processes. In particular,
chemisorption of atoms on transition metals is the first step toward many catalysis
processes. However, even the simplest case of hydrogen chemisorption on transition
metals is characterized by remarkable theoretical difficulties.

Recent experimental techniques allowed to measure the chemisorption energies,
the corresponding vibrational frequencies, and the bond lengths [64]. In the follow-
ing, we shall refer in particular to chemisorption of H on Ni(100), Ni(111), and
W(110).

Almost every method available in solid state and molecular physics have been
applied to the problem of hydrogen chemisorption on transition metals. Among
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these, particularly successful have been (1) the Anderson-Newns (AN) model
[65, 66], (2) the ‘immersion’ (ES) method [67, 68], and (3) the cluster calculations
(CC) [69].

The AN method emphasizes the role of d electrons in the H–metal bond, and of
electronic correlations on the adatom. Recently [70], a generalization of this model
has been presented,which allows to treat also the effects of s-p electrons, and to study
the various observable quantities, for different surface geometries, and for different
positions of the adatom with respect to the surface.

The ES method originates from the works of Lang and Kohn [71] on the jellium
model of the surface. It was developed by Inglesfield [67, 72] and several other
authors [73, 74]. A common feature of all these works is to emphasize the almost
complete screening on the adatom due to the s electrons.

The cluster calculations employ severalmodels, ranging from the extendedHückel
method to ab initio methods. These are particularly indicated to clarify the nature of
the chemical bond between the H adatom and the metal surface.

All these theories account sufficiently well for the experimental data, but they
sometimes provide quite different physical descriptions. In particular, according to
some ES schemes, the charge distribution around the adatom is essentially made
by an H− ion, surrounded by a localized positive hole, induced by the electron gas
on the surface. On the contrary, within the AN model, the adatom remains almost
neutral, with a small excess of negative charge. Naturally, it is difficult to resolve
experimentally such a discrepancy, since the total charge is similar in the various
models. Also in this case, like in numerous other problems in molecular physics, it
is necessary to recourse to methods which compensate physical concepts with those
of chemistry (Fig. 21.3).

Fig. 21.3 Energy Ec (eV) of hydrogen chemisorption in a plane parallel to the W(110) surface at
the equilibrium distance de = 1.7 a.u. [Figure21.3, in false colors, was used as the cover image
of Giornale di fisica 27(4), and of several of its issues after the appearance of the present paper
(Translator’s Note)]
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Some work in this direction has been achieved by our group. We developed a
model [66], based on the AN Hamiltonian, which takes into account of the corre-
lations on the adatom, and allows to obtain relatively simple expressions for the
quantities of interest for chemisorption. An extension of this model [70] allowed
to evaluate entirely the energy surface of an hydrogen atom in the proximity of a
metal surface. This has been possible through the extended Hückel approximation
for the estimate of the hopping integral, and with the inclusion of core–core repul-
sion. The model displays the correct asymptotic behavior at large distances, and was
applied to H/Ni(100), H/Ni(111), and H/W(110). The results show that it is possible
to obtain an accurate description of all the observable physical quantities involved
in the process of chemisorption. In the case of H/W(110), our results demonstrate
a clear competition between the trigonal and ‘long bridge’ positions, and therefore
a vibration parallel to the surface, as shown in Fig. 21.3. Such a vibration has been
recently observed experimentally [75], and the theoretical value of the vibrational
frequency is close to the value observed experimentally.
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Chapter 22
Electron Density, Kohn–Sham Frontier
Orbitals, and Fukui Functions

Weitao Yang, Robert G. Parr and R. Pucci

In this note we shall show that the ground-state electron density ρ(r) is a functional
of the highest occupied orbital in Kohn–Sham [1] theory, ψmax. The functionals
ρ[ψmax] for an (M + δ)-electron system are resolved into three cases and connected
to three Fukui functions defined by Parr and Yang [2].

We follow the formalism of Janak [3] and define a self-consistent problem for a
system with continuous occupation number,

[
−1

2
∇2 + vH (r) + vxc(r)

]
ψi = εiψi , (22.1)

ρ(r) =
∑
i

ni |ψi (r)|2, (22.2)

also

E[ρ] = Ts[ρ] +U [ρ] + Exc[ρ]. (22.3)
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In these equations, vH (r) = δU [ρ]/δρ is the classical electrostatic potential and
vxc(r) = δExc[ρ]/δρ is the exchange-correlation potential;

Ts[ρ] =
∑
i

ni

∫
ψ∗
i (r)

(
−1

2
∇2

)
ψi (r)dτ

is the Kohn–Sham noninteracting kinetic energy functional.
Recent results of Perdew et al. [4] show that the highest occupied orbital energy

of the Kohn–Sham formalism is identical with the chemical potential μ = εmax. We
have therefore for the ground state of an (M + δ)-electron system [5]: μ+ = εM+1,
for δ > 0; μ− = εM , for δ < 0; μ0 = (εM+1 + εM)/2, for δ = 0. In the same way
that March and Pucci [6] proved that ρ(r) is a functional of ψHOMO in Hartree–Fock
theory, we demonstrate that ρ(r) = ρ[ψmax] for Kohn–Sham theory.

For a slightly negative ion (δ > 0), Eq. (22.1) for the highest occupied orbital
becomes (

−1

2
∇2 + v+

H (r) + v+
xc(r)

)
ψ+

M+1 = ε+
M+1ψ

+
M+1, (22.4)

where ψ+
M+1 is the (M + 1)th Kohn–Sham orbital with eigenvalue ε+

M+1 for the
(M + δ)-electron system. As δ → 0,ψ+

M+1 approachesψM+1, the (M + 1)th orbital
for theM-electron system. The Euler equation for E[ρ] in Eq. (22.3) to beminimum,
under the constraint that ρ integrates to M + δ, is

δTs[ρ+]
δρ

+ v+
H (r) + v+

xc(r) = μ+. (22.5)

From Eqs. (22.4) and (22.5), we find for a slightly negative ion,

δTs[ρ+]
δρ(r)

= −1

2

∇2ψ+
M+1

ψ+
M+1

. (22.6)

We conclude that ρ+(r) is a functional ρ[ψ+
M+1] for a slightly negative ion, since

the left-hand side of Eq. (22.6) is a functional of ρ, while the right-hand side is an
explicit functional of ψ+

M+1.
For a slightly positive ion (δ < 0), Eq. (22.1) for the highest occupied orbital is

(
−1

2
∇2 + v−

H (r) + v−
xc(r)

)
ψ−

M = ε−
Mψ−

M . (22.7)

The same procedure as above leads to

δTs[ρ−]
δρ(r)

= −1

2

∇2ψ−
M

ψ−
M

. (22.8)
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Thus ρ−(r) is ρ[ψ−
M ].

Now we consider a neutral system. The Euler equation is

μ0 = δTs[ρ0]
δρ

+ v0H (r) + v0xc(r). (22.9)

From Eqs. (22.4) and (22.7) we have

ε−
M + ε+

M+1

2
= − 1

4

(
∇2ψ−

M

ψ−
M

+ ∇2ψ+
M+1

ψ+
M+1

)

+ 1

2

(
v+
H (r) + v−

H (r)
) + 1

2

(
v+
xc(r) + v−

xc(r)
)
.

(22.10)

Since the classical electrostatic potential is continuous as δ → 0, and v0xc(r) =
1
2 limδ→0[v+

xc(r) + v−
xc(r)], even though vxc(r)may contain a discontinuity as δ → 0

[7], comparison of Eqs. (22.9) and (22.10) at limit δ → 0 gives

δTs[ρ0]
δρ

= −1

4

(∇2ψM

ψM
+ ∇2ψM+1

ψM+1

)
, (22.11)

and we conclude that ρ0[ψM , ψM+1].
Another way to obtain these results is to note that the Kohn–Sham effective

potential vH + vxc is determined (up to a constant) by any one of the solutions of
Eq. (22.1); hence M and one of the orbitals determine the total ρ. Equation (22.6)
contains specific information about this functional relation.

In summary, we have proved in Janak’s generalization of Kohn–Sham the-
ory for a system of (M + δ) electrons, the general functional relations, in the
limit δ → 0: ρ+ = ρ[ψM+1] = ρ[ψLUMO] for δ > 0, ρ− = ρ[ψM ] = ρ[ψHOMO] for
δ < 0, ρ0 = ρ0[ψM+1, ψM ] = ρ0[ψLUMO, ψHOMO] for δ = 0. The total electron den-
sity is a functional of the appropriate frontier orbital or orbitals.

It follows immediately that the Fukui functions f + and f −, defined by Parr and
Yang [2] as the right and left limits of the function ∂ρ(r)/∂N , and f 0 as the average
of f + and f −, to characterize chemical reactivity of molecules, are functionals of
the appropriate frontier orbital(s).

We may derive an explicit expression for the Fukui functions in terms of Kohn–
Sham orbitals. Let us consider the ground-state density of an (M + δ)-electron sys-
tem with δ > 0. Its occupation numbers have to satisfy [3] ni = 1 for i ≤ M , and
nM+1 = δ. That is to say,

ρM+δ(r) =
M∑
i=1

|ψ+
i (r)|2 + δ|ψ+

M+1(r)|2, (22.12)
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so that

f +(r) = lim
δ→0+

∂ρM+δ(r)
∂N

= |ψM+1(r)|2 +
M∑
i=1

∂

∂N
|ψi (r)|2. (22.13)

Similarly, for an (M + δ)-electron ground state with δ < 0, ni = 1 for i ≤ M − 1,
and nM = 1 + δ. Thus,

f −(r) = lim
δ→0−

∂ρM+δ(r)
∂N

= |ψM(r)|2 +
M−1∑
i=1

∂

∂N
|ψi (r)|2. (22.14)

All the above results put the ‘frozen-core’ approximations [2] of equating the
Fukui functions to the corresponding frontier densities on a sound mathematical
basis: they are well-defined first approximations. The importance of this is that f (r)
is identically the quantity δμ/δv(r) in density functional theory [5].
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Chapter 23
From Condensed Matter to QCD: A Journey
Through Gauge Theories on Board
of a Variational Tool

Fabio Siringo

Abstract Starting with a review of the thermal fluctuations in superconductors, the
Gaussian Effective Potential is shown to be a powerful variational tool for the study
of the breaking of symmetry in gauge theories. A novel rederivation of the massive
expansion for QCD is presented, showing its variational nature and its origin from
the Gaussian potential that also provides a variational proof for chiral symmetry
breaking and dynamical generation of a gluon mass.

Introduction

Since 1873, when Lord Rayleigh [1] described a variational method for calculat-
ing the frequencies of mechanical systems, the Rayleigh–Ritz method has become
an important tool for the approximate solution of physical problems in quantum
mechanics and quantum field theory. My personal experience on variational meth-
ods dates back to 1985, when I was a graduate student of Professor Renato Pucci’s.
He proposed to put an hydrogen molecule inside a rigid box and evaluate the energy.
His key idea was the insertion of a dielectric constant for simulating the effects of
the other molecules as if it were in a very dense phase under high pressure [2]. That
very physical idea was successful and since then Renato Pucci has been contributing
to the physics of solids under pressure with many model calculations based on the
remarkable physical ideas. Hydrogen was believed to become a superconductor in its
solid phase under pressure and the fascinating Anderson-Higgs mechanism of gauge
symmetry breaking was one of the milestones in Professor Pucci’s teaching. That
is where my personal journey has begun, going from the scalar U (1) gauge theory
of superconductivity [3, 4], through the SU (2) ×U (1) theory of weak interactions
[5–9], up to SU (3) theory and QCD [10–16]. Still collaborating with Renato Pucci
in 2003, we found that a variational tool like the Gaussian Effective Potential (GEP)
can describe the thermal fluctuations of a superconductor in its broken-symmetry
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phase [3, 4]. While the same variational tool had been very successful for describ-
ing the breaking of symmetry in a scalar theory [17], its potentiality in the study of
gauge theories were not fully explored yet. The idea was then developed through
several papers attempting to enlarge the gauge group [5, 6], introduce fermions [18,
19] and eventually describe other mechanisms of symmetry breaking, like the chiral
symmetry breaking of QCD [16, 20–23] where the gluon and quark masses emerge
without any breaking of the gauge symmetry.

In this contribution, after reviewing the use of the GEP for the study of supercon-
ductivity [3, 4], the massive expansion [16, 21, 22] is rederived from the GEP and
shown to be a powerful variational tool for addressing the problem of mass genera-
tion in Yang–Mills theories and QCD, even when the gauge symmetry is not broken.
While the massive expansion provides an analytical description of the propagators of
QCD from first principles [16, 21] and is in remarkable agreement with the data of
lattice simulations [22, 23], its variational nature is hided and disguised to look like
a perturbative method. The present novel and alternative derivation of the massive
expansion illustrate its direct origin from the GEP. Moreover, in chiral QCD the GEP
provides a variational proof of chiral symmetry breaking and dynamical generation
of the gluon mass.

GEP and Superconductivity

The standard Ginzburg–Landau (GL) effective Lagrangian still provides the best
framework for a general description of the phenomenology ofU (1) gauge symmetry
breaking and superconductivity (the Anderson-Higgs mechanism). The GL action
can be seen as a power expansion of the exact action around the critical point and is
recovered by anymicroscopic theory around the transition. TheGaussian fluctuations
can be studied by the GEP forU (1) scalar electrodynamics in three space dimensions
[3, 4],where it represents the standard staticGLeffectivemodel of superconductivity.

At variance with the approach of Ibañez–Meier et al. [24] who computed the GEP
by use of a general covariant gauge, we work in unitarity gauge, in order to make
the physical content of the theory more evident. It has been shown to be formally
equivalent to a full gauge-invariant method once all the gauge degrees of freedom
have been integrated out [25]. The variational method provides a way to evaluate
both the correlation length ξ and the penetration depth λ as a solution of coupled
equations. The GL parameter κGL = λ/ξ is found to be temperature dependent in
contrast to the simplemean-field description and its behavior turns out to be in perfect
agreement with many experimental data [3, 4].

Let us consider the standard static GL action (see, e.g., [26])

S =
∫

d3x

[
1

4
FμνF

μν + 1

2
(Dμφ)∗(Dμφ) + 1

2
m2

Bφ∗φ + λB(φ∗φ)2
]

. (23.1)
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where φ is a complex (charged) scalar field, its covariant derivative is defined accord-
ing to

Dμφ = ∂μ + ieB Aμ (23.2)

and μ, ν = 1, 2, 3 run over the three space dimensions. The magnetic field compo-
nents are Fμν = ∂μAν − ∂ν Aμ. We may assume a transverse gauge ∇ · A = 0, and
then switch to unitarity gauge in order to make φ real.

By a pure variational argument [4] the longitudinal gauge field can be integrated
out yielding the effective action

S =
∫

d3x

[
1

2
(∇φ)2 + m2

B

2
φ2 + λBφ4 + e2Bφ2A2

2
+ 1

2
(∇ × A)2 + (∇ · A)2

2ε

]
.

(23.3)

The partition function is expressed as a functional integral over the real scalar field φ

and the generic three-dimensional vector field A, with the extra prescription that the
parameter ε is set to zero at the end of the calculation. As usual, the free energy (effec-
tive potential) follows by inserting a source term and by a Legendre transformation
[3, 4].

The GEPmay be evaluated by the δ expansionmethod [24, 27] and is a variational
estimate of the exact free energy. We introduce a shifted field

φ̃ = φ − ϕ (23.4)

then we split the Lagrangian into two parts

L = L0 + Lint (23.5)

where L0 is the sum of two free-field terms describing a vector field Aμ with mass
Δ and a real scalar field φ̃ with mass Ω:

L0 =
[
+1

2
(∇ × A)2 + 1

2
Δ2AμA

μ + (∇ · A)2

2ε

]
+
[
1

2
(∇φ̃)2 + 1

2
Ω2φ̃2

]
.

(23.6)
The interaction then reads

Lint = v0 + v1φ̃ + v2φ̃
2 + v3φ̃

3 + v4φ̃
4+

+ 1

2

(
e2Bϕ2 − Δ2) AμA

μ + e2BϕAμA
μφ̃ + 1

2
e2B AμA

μφ̃2 (23.7)

where

v0 = 1

2
m2

Bϕ2 + λBϕ4, v1 = m2
Bϕ + 4λBϕ3,

v2 = 1

2
m2

B + 6λBϕ2 − 1

2
Ω2, v3 = 4λBϕ, v4 = λB . (23.8)
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The nonconventional splitting of the Lagrangian has two important effects: arbi-
trary mass parameters are inserted in the free part; mass counterterms are inserted
in the interaction in order to leave the Lagrangian unmodified. Then the standard
perturbation theory is used for determining the first-order effective potential. The
sum of vacuum graphs up to first-order yields the free energy density

Veff [ϕ] = I1(Ω) + 2I1(Δ)+
+
[
λBϕ4 + 1

2
m2

Bϕ2 + 1

2

{
m2

B − Ω2 + 12λBϕ2 + 6λB I0(Ω)
}
I0(Ω)

]

+ (e2Bϕ2 + e2B I0(Ω) − Δ2
)
I0(Δ) (23.9)

where the divergent integrals In are defined according to

I0(M) =
∫

d3k

(2π)3

1

M2 + k2
, I1(M) = 1

2

∫
d3k

(2π)3
ln(M2 + k2) (23.10)

and must be regularized somehow.
The free energy (23.9) now depends on the mass parametersΩ andΔ. Since none

of them was present in the original GL action of Eq. (23.3), the free energy should
not depend on them, and the minimum sensitivity method [28] can be adopted in
order to fix the masses: the free energy is required to be stationary for variations of
Ω and Δ. On the other hand the stationary point can be shown to be a minimum for
the free energy and the method is equivalent to a pure variational method [24]. At
the stationary point the masses give the inverse correlation lengths for the fields, the
so-called coherence length ξ = 1/Ω and penetration depth λ = 1/Δ.

The stationary conditions

∂Veff

∂Ω2
= 0,

∂Veff

∂Δ2
= 0 (23.11)

give two coupled gap equations:

Ω2 = 12λB I0(Ω) + m2
B + 12λBϕ2 + 2e2B I0(Δ) (23.12)

Δ2 = e2Bϕ2 + e2B I0(Ω). (23.13)

For any value of ϕ, the equations must be solved numerically and the minimum-point
values Ω and Δ must be inserted back into Eq. (23.9) in order to get the Gaussian
free energy Veff(ϕ) as a function of the order parameter ϕ. For a negative and small
enough m2

B , we find that Veff has a minimum at a non zero value of ϕ = ϕmin > 0,
thus indicating that the system is in the broken-symmetry superconducting phase.
Of course the masses Ω , Δ only take their physical value at the minimum of the free
energy ϕmin. That point may be found by requiring that
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∂Veff

∂ϕ2
= 0 (23.14)

where as usual the partial derivative is allowed as far as the gap equations (23.12),
(23.13) are satisfied [17]. The condition (23.14) combined with the gap equation
(23.12) yields the very simple result

ϕ2
min = Ω2

8λB
. (23.15)

However, we notice that here the mass Ω must be found by solution of the coupled
gap equations. Thus Eqs. (23.15), (23.12) and (23.13) must be regarded as a set of
coupled equations and must be solved together in order to find the physical values
for the correlation lengths and the order parameter.

Insertion of Eq. (23.15) into Eq. (23.13) yields a simple relation for the GL para-
meter κGL

κ2
GL =

(
λ

ξ

)2

= κ0
1

1 + I0(Ω)

ϕ2
min

(23.16)

where κ0 = e2B/(8λB) is themean-fieldGL parameter which does not depend on tem-
perature. Equation (23.16) shows that theGLparameter is predicted to be temperature
dependent through the nontrivial dependence of Ω and ϕmin. At low temperature,
where the order parameter ϕmin is large, the deviation from the mean-field value κ0
is negligible. Conversely, close to the critical point, where the order parameter is
vanishing, the correction factor in Eq. (23.16) becomes very important [3, 4].

It is instructive to look at the effective potential in the limitϕ → 0 of the unbroken-
symmetry phase and at the chiral point mB = 0 where the original Lagrangian is
scaleless. In that limit Eq. (23.9) reads

Veff [0] = [I1(Ω) + 2I1(Δ)] − 1

2

[
Ω2 I0(Ω) + 2Δ2 I0(Δ)

]

+ 3λB [I0(Ω)]2 + e2B I0(Ω)I0(Δ) (23.17)

and is a function of the mass parameters. Its minimum might fall at a finite set of
masses Δ0, Ω0 yielding a generation of mass from a scaleless Lagrangian. That
property turns out to be useful for addressing the problem of mass generation in
chiral QCD, where the gauge symmetry is not broken. Moreover, we observe that
all the terms in Eq. (23.17) arise from the sum of the vacuum graphs up to first
order, as shown in Fig. 23.1, where the internal lines are the massive propagators that
can be read from the free-particle Lagrangian L0 of Eq. (23.6). We obtain a mas-
sive expansion, with massive free-particle propagators in the loops, from a massless
Lagrangian.
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The Gaussian Effective Potential Revisited

The massive expansion can be seen as an expansion around the vacuum of massive
particles. The search for the best vacuum is the aim of the GEP that has been studied
by several authors, mainly in the context of spontaneous symmetry breaking and
scalar theories. While the GEP is a genuine variational method, several extensions to
higher orders have been proposed. However, being a first-order approximation, the
GEP fails to predict any useful result for the fermions of the standard model, because
of the minimal gauge interaction that requires a second-order graph at least [12, 19].
Even the idea of an expansion around the optimized vacuum of the GEP is not new
[29] but has not been developed further.

In the next section, the pure variational nature of the GEP is used as a tool for
demonstrating that the standard vacuum of QCD is unstable toward the vacuum of
massive gluons and quarks. Expanding around the optimized vacuum we recover
the massive expansion that has been recently developed for pure Yang–Mills theory
[16, 20, 21]. Thus, the unconventional massive perturbative expansion can be seen
to emerge from the GEP formalism in a natural way.

One of the important merits of the GEP is its paradox of being a pure variational
method disguised as a perturbative calculation, making use of the standard graphs of
perturbation theory. In this section, we set the formalism of the expansion, starting
with the simple scalar theory and then moving toward Yang–Mills theory and QCD
in the next section.

Let us revise briefly the method for the simple case of a self-interacting scalar
theory [17] where the effective potential is given by three vacuum graphs as shown
in Fig. 23.1 (to be compared with the six graphs of the scalar electrodynamics of
section“GEP and Superconductivity”). The Lagrangian density reads

L = 1

2
φ
(−∂2 − m2

B

)
φ − λ

4!φ
4 (23.18)

where mB is a bare mass. We can then split the total Lagrangian asL = L0 + Lint

where the trial free part is

+ + SCALAR

+ + + SU(N)

U(1)   SCALAR

2nd ORDER

+ + ++ + + + + QCD

+ + + + +

Fig. 23.1 Vacuum graphs contributing to the GEP for different theories
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L0 = 1

2
φ
(−∂2 − m2

)
φ (23.19)

and describes a free scalar particle with a trial massm �= mB . The interaction follows
as

Lint = − λ

4!φ
4 − 1

2

(
m2

B − m2
)
φ2 (23.20)

so that the total Lagrangian has not been changed. If we neglect the interaction, then
a free Hamiltonian H0 is derived from L0 and its ground state |m〉 satisfies

H0|m〉 = E0(m)|m〉 (23.21)

and depends on the trial massm. Restoring the interactionLint , the full Hamiltonian
reads H = H0 + Hint and by standard perturbation theory, the first-order energy
of the ground state reads

E1(m) = E0(m) + 〈m|Hint |m〉 = 〈m|H |m〉 (23.22)

and is equivalent to the first-order effective potential V1(m) evaluated by standard
perturbation theory with the interaction Lint . Thus, the stationary condition

∂V1(m)

∂m
= ∂E1(m)

∂m
= 0 (23.23)

gives the best value of m that minimizes the vacuum energy of the ground state |m〉.
While being a pure variational method, the first-order effective potential V1(m) =
E1(m) can be evaluated by the sum of all the vacuum graphs up to first order (the
three loop graphs in Fig. 23.1). The resulting optimized effective potential is the GEP.
Usually, the effective potential is evaluated for any value of the average ϕ = 〈φ〉 and
the best m also depends on that average. If the symmetry is not broken, then the
minimum of the effective potential is at ϕ = 0 where V1(m) is a function of the trial
mass, to be fixed by the stationary condition Eq. (23.23). We assume that the gauge
symmetry is not broken in QCD so that V1(m) at ϕ = 0 is the effective potential we
are interested in. The variational nature of the method ensures that the true vacuum
energy is smaller than the minimum of V1(m). At the minimum, |m〉 provides an
approximation for the vacuum and is given by the vacuum of a free massive scalar
particle with mass equal to the optimized mass parameter m �= mB . Of course, the
optimal state |m〉 is just a first approximation and the actual vacuum is much richer.
However, we expect that a perturbative expansion around that approximate vacuum
would be the best choice for the Lagrangian L , prompting toward an expansion
with an interaction Lint and a free part L0 that depend on m and can be optimized
by a clever choice of the parameter m. Different strategies have been proposed for
the optimization, ranging from the stationary condition of the GEP, Eq. (23.23), to
Stevenson’s principle of minimal sensitivity [28]. A method based on the minimal
variance has been recently proposed for QCD and other gauge theories [10–14]. In all
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those approaches, the underlying idea is that an optimal choice ofm could minimize
the effect of higher orders in the expansion. Since the total Lagrangian does not
depend on m, the physical observables are expected to be stationary at the optimal
m, thus suggesting the use of stationary conditions for determining the free parameter.
As a matter of fact, if all graphs were summed up exactly, then the dependence on
m would cancel in the final result, so that the strength of that dependence measures
the weight of the neglected graphs at any order.

Leaving aside the problem of the best choice of m, we observe that at ϕ = 0 the
calculation of the first-order effective potential V1(m) is quite straightforward and
follows from the first-order expansion of the effective action Γ (ϕ)

eiΓ (ϕ) =
∫

1P I
Dφe

i S0(φ+ϕ)+i Sint (φ+ϕ) (23.24)

where the functional integral is the sum of all one-particle irreducible (1PI) graphs
and S = S0 + Sint is the action. The effective potential then follows as V1(m) =
−Γ (0)/V4 where V4 is a total space-time volume. Moreover, being interested in the
chiral limit, let set mB = 0 in the interaction Eq. (23.20) and study a massless scalar
theory.

The vertices of the theory can be read from Lint in Eq. (23.20) where we set
mB = 0 and are used in Fig. 23.1 in the vacuum graphs up to first order. The usual
four-point vertex −iλ is accompanied by the counterterm im2 that is denoted by a
cross in the graphs. This counterterm must be regarded as part of the interaction so
that the expansion in not loopwise andwefind one-loop and two-loop graphs summed
together in thefirst-order effective potential. That iswhere thenon-perturbative nature
of the method emerges since the expansion in not in powers of λ but of the whole
interaction Lint . The zeroth-order (massive) propagator iΔm follows from L0

iΔm(p) = i

p2 − m2
(23.25)

and is shown as a straight line in the vacuum graphs.
The tree term is the classical potential and vanishes in the limit ϕ → 0. The first

one-loop graph in Fig. 23.1 gives the standard one-loop effective potential, containing
some effects of quantum fluctuations. It must be added to the second one-loop graph
in Fig. 23.1, the crossed graph containing one insertion of the counterterm. It is
instructive to see that the exact sum of all one-loop graphs with n insertions of the
counterterm gives the standard vacuum energy of a massless particle. In other words,
if we sum all the crossed one-loop graphs the dependence on m disappears and we
are left with the standard one-loop effective potential of Coleman andWeinberg [30]
V 0
1L = −Γ 0

1L/V4 where Γ 0
1L is the standard one-loop effective action at ϕ = 0

eiΓ
0
1L =

∫
Dφe

i
∫

1
2 φ(−∂2)φd4x ∼ [Det(Δ−1

0 )
]−1/2

(23.26)
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+ + + + + . . . .

Fig. 23.2 Pictorial display of the right hand side of Eq. (23.28)

and Δ−1
0 = p2 is the free-particle propagator of a massless scalar particle.

Up to an additive constant, not depending on m, Eq. (23.26) can be written as

V 0
1L = −i

2V4
Tr log(Δ−1

m + m2) (23.27)

then expanding the log we obtain a massive expansion

V 0
1L = −i

2V4
Tr

{
log(Δ−1

m ) + m2Δm − 1

2
m2Δmm

2Δm + · · ·
}

(23.28)

that is shown pictorially in Fig. 23.2 as a sum of crossed one-loop vacuum graphs.
While the sum cannot depend on m, if we truncate the expansion at any finite order
we obtain a function of the mass parameter. As a test of consistency, one can easily
check that, once renormalized, the sum of all the crossed one-loop vacuum graphs
in Fig. 23.2 gives zero exactly.

The calculation of the GEP requires the sum of only the first two terms of
Eq. (23.28), the two one-loop graphs in Fig. 23.1. We cannot add higher order terms
without spoiling the variational method since the average value of the Hamiltonian
in the trial state |m〉 is E1(m) = V1(m), according to Eq. (23.22). Using the identity

Δm = − ∂

∂m2
log(Δ−1

m ) (23.29)

the sum of one-loop graphs in Fig. 23.1 can be written as

V1L(m) =
(
1 − ∂

∂m2

)
I1(m) = I1(m) − 1

2
m2 I0(m) (23.30)

where the diverging integrals I1(m), I0(m) generalize Eq. (23.10) and are defined as

I1(m) = 1

2i

∫
d4 p

(2π)4
log(−p2 + m2), I0(m) = −i

∫
d4 p

(2π)4

1

−p2 + m2

(23.31)
so that

∂ I1(m)

∂m2
= 1

2
I0(m). (23.32)

We recognize I1(m) as the standard one-loop effective potential of Weinberg and
Coleman for a massive scalar particle in the limit ϕ → 0. This term contains the
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quantum fluctuations at one-loop. The second term is a correction coming from the
counterterm and arises because the exact Lagrangian was massless. The calculation
of the GEP also requires the two-loop graph in Fig. 23.1 that is first-order in λ. A
lazy way to evaluate it is by substituting the vertex im2 in the crossed one-loop graph
with the seagull one-loop self energy graph −iΣ1L that reads [12]

Σ1L = λ

2
I0(m) (23.33)

and adding a 1/2 symmetry factor. The resulting two-loop term is

V2L(m) = λ

8
[I0(m)]2. (23.34)

The GEP follows as the sum V1L + V2L

VGEP(m) = I1(m) − 1

2
m2 I0(m) + λ

8
[I0(m)]2. (23.35)

At this stage we just recovered the GEP in the limit ϕ → 0 and Eq. (23.35) agrees
with the well-known GEP in that limit [12, 17, 27, 31] (also compare to Eq. (23.17)
by setting 4!λB = λ, Ω = m and neglecting gauge field loops).

More precisely, VGEP is the GEP whenm is optimized by the stationary condition
Eq. (23.23) that reads

∂VGEP(m)

∂m2
= 1

2

(
∂ I0(m)

∂m2

)[
λI0(m)

2
− m2

]
= 0 (23.36)

yielding the usual gap equation of the GEP

m2 = λI0(m)

2
. (23.37)

From a mere formal point of view, the GEP predicts the existence of a mass for the
massless scalar theory. That is of special interest because formB = 0 the Lagrangian
in Eq. (23.18) has no energy scale, just like Yang–Mills theory and QCD in the chiral
limit. Thus, it can be regarded as a toy model for the more general problem of mass
generation and chiral symmetry breaking.

Actually, the integrals I0, I1 are badly diverging, and a mass scale arises from the
regulator that must be inserted in order to get a meaningful theory. We can see that,
in dimensional regularization, by setting d = 4 − ε, the integral I0 is

I0(m) = − m2

16π2

[
2

ε
+ log

μ̄2

m2
+ 1 + O(ε)

]
(23.38)
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where μ̄ = (2
√

πμ) exp(−γ /2) is an arbitrary scale. Integrating Eq. (23.32) and
neglecting an integration constant (that does not depend on m)

I1(m) = − m4

64π2

[
2

ε
+ log

μ̄2

m2
+ 3

2
+ O(ε)

]
. (23.39)

If we follow the usual approach of Coleman andWeinberg [30], the divergences must
be absorbed by the physical renormalized parameters. Thus, let us define a physical
renormalized energy scale Λ as

logΛ2 = log μ̄2 + 2

ε
+ 1 (23.40)

and write the integrals I1, I0 as simply as

I0(m) = m2

16π2
log

m2

Λ2

I1(m) = m4

64π2

[
log

m2

Λ2
− 1

2

]
. (23.41)

This approach is the same that is usually followed in lattice simulations of QCD:
the lattice provides a scale that can be changed without affecting the physical scale
which remains fixed at a phenomenological value. We assume that when ε → 0 the
scale μ̄ also changes, keeping Λ fixed at a physical value which cannot be predicted
by the theory, but must come from the phenomenology.

First of all, we observe that by our renormalization scheme the standard one-
loop effective potential is recovered, since that is equal to I1(m) in Eq. (23.41) and
can be recognized as the mass-dependent term of the standard one-loop effective
potential in the limit ϕ → 0. That term has a relative maximum atm = 0, is negative
for m < Λ exp(1/4) and has the absolute minimum at m = Λ. Thus, the one-loop
effective potential would predict a massive vacuum if the symmetry were not broken
and the physical vacuum were at ϕ = 0.

The full renormalized GEP is finite in terms of the physical scale Λ and can be
written as

VGEP(m) = Λ4

128π2
U (α,m2/Λ2) (23.42)

where the adimensional potential U (α, x) is

U (α, x) = x2
[
α(log x)2 − 2 log x − 1

]
(23.43)

and α is the effective coupling α = λ/(16π2).
The behavior of the potential U (α, x) is shown in Fig. 23.3. For any coupling α

the point x = 0 is a relative minimum while the potential has a relative maximum
at x = 1/e. The absolute minimum is at x0 = exp(2/α) where U (α, x0) = −x20 <
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Fig. 23.3 The adimensional
potential U (α, x) of
Eq. (23.43) is shown for
different values of the
effective coupling α
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0. The two stationary points x = 1/e and x = x0 are the points, where the first
or second factor in Eq. (23.36) is zero, respectively. Thus, the absolute minimum
m2/Λ2 = x0 = exp(2/α) is the solution of the gap equation, Eq. (23.37). However,
since the original theory has no scale, the quantitative value of m remains arbitrary
as it depends on the unknown scale Λ. We can only predict that, since the GEP
provides a genuine variational approximation for the vacuum energy, the massless
vacuum must be unstable toward the vacuum of a massive scalar particle with an
exact effective potential Vexact (m) ≤ VGEP(m) < 0.

In the chiral limit, the GEP can be easily extended to more complex theories by
just adding up the graphs of Fig. 23.1. It is instructive to see how Eq. (23.17) can
be recovered by the graphs for scalar U (1) electrodynamics. In the next section, the
GEP is evaluated for the chiral limit of QCD.

QCD in the Chiral Limit

The full Lagrangian of QCD, including N f massless chiral Quarks, can be written
as

LQCD = LYM +
N f∑
i=1

Ψ̄i

[
i∂� −gA� a T̂a

]
Ψi (23.44)

whereLYM is the full SU (N ) Yang–Mills Lagrangian, including a covariant gauge-
fixing term and the ghost terms arising from the Faddeev–Popov determinant. The
generators of SU (N ) satisfy the algebra

[
T̂a, T̂b

]
= i fabcT̂c (23.45)
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with the structure constants normalized according to

fabc fdbc = Nδad . (23.46)

In a background field Ãμ
a the effective action Γ ( Ã) is the sum of 1PI graphs that can

be formally given by the functional integral

eiΓ ( Ã) =
∫

1P I
DΨ,A,ωe

i S[A+ Ã,Ψ,ω] (23.47)

where ωa are the ghost fields. Assuming that the gauge symmetry is not broken, we
are interested in the study of the limit Ã → 0 and write the effective action as

eiΓ =
∫

1P I
DA,ωe

i SYM[A,ω]+iΓΨ [A] (23.48)

where SYM is the action of pure Yang–Mills theory and the effective action ΓΨ is
given by a functional integral over quark fields

eiΓΨ [A] =
∫

DΨ e
i
∫

Ψ̄ D̂(A)Ψ d4x (23.49)

with the operator D̂(A) that is given by

D̂(A) = i∂� −gA� a T̂a . (23.50)

The quark fields can be integrated exactly, yielding, up to a constant,

iΓΨ (A) = logDetD̂(A). (23.51)

While SYM contains the vertices of pure Yang–Mills theory, the expansion of ΓΨ in
powers of gAμ

a provides the standard insertions of quark–gluon vertices, yielding
the usual Feynman rules of QCD. Some vacuum graphs, up to second order and two
loops, are shown in Fig. 23.1.

As already noticed for the scalar theory, the calculation of the GEP requires the
first-order effective potential that results from the sum of connected vacuum graphs
up to first order. Thus, we may focus on the one-loop graphs in Fig. 23.1 and on the
only first-order two-loop graph (the fourth for SU (N ) in Fig. 23.1). All other graphs
are second order at least, starting from the other two-loop graphs of Fig. 23.1. Thus,
at first order, the effective potential V1 is just the sum of independent ghost, gluon and
quark terms. This is an important limit of the GEP that cannot take in due account
the second-order graphs, leaving us with a decoupled description of quarks, gluons,
and ghosts. We can write the first-order effective potential as

V1 = VYM + VΨ (23.52)
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where the quark term contains only the one-loop zeroth-order vacuum graph that
arises from Eq. (23.51) at g = 0

VΨ = i

V4
logDetD̂0 (23.53)

having defined the zeroth-order operator D̂0 = i∂� . The Yang–Mills term VYM is the
first-order effective potential of pure Yang–Mills theory and can be written as

VYM = i

V4
log
∫

1st−order
DA,ωe

i SYM[A,ω] (23.54)

and is given by the one-loop ghost graph plus the one-loop and two-loop gluon graphs
in Fig. 23.1.

At this stage, the whole calculation might seem to give trivial constant terms.
However, we are interested in the change of these terms when a massive zeroth-
order propagator is taken from the beginning for gluons and quarks. As already seen
for the scalar theory, we have the freedom of adding a mass term in the zeroth-order
Lagrangian provided that we subtract the same mass term in the interaction. The
resultingmassive expansion contains new two-point vertices (themass counterterms)
and their insertion in a graph does not change the number of loops but increases the
order of the graph. Moreover, the first-order vacuum graphs in Fig. 23.1 remain
uncoupled when any number of counterterms is inserted, so that we can study the
change induced by the masses on VΨ and VYM separately. It is instructive to see
how the massive expansion [16, 21] of Yang–Mills theory emerges naturally in the
calculation of the GEP and can be extended to chiral quarks.

Pure Yang–Mills Theory

In a generic linear covariant ξ -gauge, the first-order effective potential VYM can be
written as the sum of the second and fourth graph in Fig. 23.1, namely the zeroth-
order gluon loop and the first-order two-loop graph which contains one insertion
of the four-gluon vertex. We may drop the decoupled ghost loop that only gives an
additive constant to the effective potential.

By the same notation of section“The Gaussian Effective Potential Revisited”, we
denote by V 0

1L the one-loop graph that gives the standard one-loop effective potential
in the limit of a vanishing background field

V 0
1L = i

V4
log
∫

DAe
i
∫
AaμΔ−1

0
μν

Aaνd4x (23.55)

containing the quadratic part of SYM in Eq. (23.54) written in terms of the gluon
propagator
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Δ
μν
0 (p) = ΔT

0 (p)tμν(p) + ΔL
0 (p)lμν(p) (23.56)

where tμν , lμν are the transversal and longitudinal Lorentz projectors

tμν(p) = gμν − pμ pν

p2
, lμν(p) = pμ pν

p2
(23.57)

and the corresponding free-particle scalar functions are

ΔT
0 (p) = 1

−p2
, ΔL

0 (p) = ξ

−p2
. (23.58)

The determinant of Δ0 can then be written as a product of determinants in the
orthogonal Lorentz subspaces, DetΔ0 = (DetΔT

0 )(DetΔL
0 ), yielding

V 0
1L = i

2V4

[
Tr logΔT

0 + Tr logΔL
0

]
. (23.59)

From now on, we work in the Landau gauge and take the limit ξ → 0. In that
limit ΔL

0 → 0 and the longitudinal part gives an (infinite) additive constant that we
drop. The relevant part we will focus on reads

V 0
1L = NA

2i

∫
d4 p

(2π)4
log
(
ΔT

0
−1
)

(23.60)

where NA is a factor arising from the trace over color and Lorentz indices.
Following the same steps that lead to the GEP for a scalar theory, we may mod-

ify the quadratic part of the Lagrangian, i.e., Δ−1
0 in SYM, provided that we add a

counterterm to the total Lagrangian in order to leave it unchanged. Thus, we add a
mass term to the transversal part ΔT

0 , leaving the longitudinal part unmodified. That
would be a reasonable choice in any gauge since the longitudinal part ΔL

0 is left
unmodified by the interaction at any order of perturbation theory. We define a new
massive zeroth-order propagator ΔT

m as

ΔT
m

−1 = ΔT
0

−1 + m2 = −p2 + m2 (23.61)

and insert the counterterm
δLc = m2tμν AaμAaν (23.62)

in the Lagrangian density. Then we look at the change of the first-order effective
potential as a function of the mass parameter m, including the counterterm as a
vertex of the theory. The result is formally equivalent to that obtained for themassless
scalar theory in Eq. (23.28) and Fig. 23.2. By insertion of the counterterm, the one-
loop gluon loop gives rise to an infinite sum of crossed loops where the straight line
in Fig. 23.2 is now given by the massive propagator of Eq. (23.61) and the crosses
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denote the insertion of a two-point vertex −im2tμν . Even in a generic ξ -gauge the
longitudinal part of the gluon propagator would not add any higher order contribution
because of the transversal projector in the counterterm. Since everything is transversal
in the Landau gauge, from now on we drop any projector tμν and the superscript T
in the transverse propagator. Writing log(Δ−1

0 ) = log(Δ−1
m − m2) in Eq. (23.60) and

expanding the log, the one-loop graph V 0
1L , that does not depend on m, reads

V 0
1L = NA

2i

∫
d4 p

(2π)4

{
logΔ−1

m −
∞∑
n=1

(m2Δm)n

n

}
. (23.63)

As before, in order to evaluate the GEP we must truncate the expansion and retain
terms up to the first order, namely the zeroth-order gluon loop and the first-order
crossed loop that are the first two graphs in Fig. 23.2. Then, at first-order, the one-
loop effective potential is

V1L(m) = NA

(
1 − ∂

∂m2

)
I1(m) (23.64)

that is the same result of Eq. (23.30) scaled by the trace factor NA.
The GEP also includes the two-loop first-order graph, the fourth graph in Fig. 23.1

with the propagator replaced by the massive propagator Δm and no insertions of the
counterterm that would raise the order of the graph. By the same argument that leads
to Eq. (23.34), the two-loop graph is easily evaluated by substituting the vertex−im2

in the crossed one-loop graph with the one-loop seagull self energy graph −i�1L

that reads [15]

�1L = −9Ng2

4
I0(m) (23.65)

and adding a 1/2 symmetry factor. The resulting two-loop term is

V2L(m) = 9NANg2

16
[I0(m)]2. (23.66)

Adding the one-loop terms the GEP reads

VGEP(m) = NA

{
I1(m) − 1

2
m2 I0(m) + 9Ng2

16
[I0(m)]2

}
(23.67)

which is exactly the same result of Eq. (23.35) for a scalar theory with an effective
coupling λ = 9Ng2/2, scaled by the trace factor NA. Then by dimensional regular-
ization, in the same scheme of section“The Gaussian Effective Potential Revisited”,
the GEP of pure Yang–Mills theory can be written as

VGEP(m) = Λ4NA

128π2
U (α,m2/Λ2) (23.68)
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where the effective coupling α = λ/(16π2) = 9Nαs/(8π), αs = g2/(4π) and Λ is
an unknown scale that must be fixed by the phenomenology. The a dimensional
potential U (α, x) was defined in Eq. (23.43) and shown in Fig. 23.3.

Including Chiral Fermions

The inclusion of a set of chiral quarks is straightforward. As shown in Fig. 23.1,
up to first order, the fermions are decoupled in the effective potential and we must
just add the two one-loop graphs for the quarks. Let us derive them by the same
method of section“Pure Yang–Mills Theory”. For fermions, the standard one-loop
effective potential VΨ of Eq. (23.53) can be written as

VΨ = i

V4
logDet

(
D̂M + M

)
(23.69)

where the massive inverse propagator D̂M = D̂0 − M and the parameter M is an
arbitrary trial quark mass. The exact expansion of Fig. 23.2 is recovered again as

VΨ = i

V4
Tr
[
log D̂M

]
+ i

V4
Tr

⎡
⎢⎣

∞∑
n=1

(
D̂−1

M M
)n

n
(−1)n+1

⎤
⎥⎦ . (23.70)

yielding a massive expansion for the fermions. The GEP contains only graphs up to
first order and is given by the first two terms, the two fermion loops in Fig. 23.1. The
first term in the expansion, the zeroth-order loop, is

V (0)
Ψ = i Tr

∫
d4 p

(2π)4
log(p� −M) = −4I1(M) (23.71)

while the second term, the crossed first-order loop, by Eq. (23.32) reads

V (1)
Ψ = −M

∂

∂M
V (0)

Ψ = 4M2 I0(M). (23.72)

We observe that, without the crossed graph, the one-loop vacuum energy would be
given by V (0)

Ψ = −4I1(M)which is unstable and unbounded frombelow according to
Eq. (23.41). On the other hand, with one counterterm insertion, the first-order crossed
graph makes the GEP bounded and yields the total first-order effective potential

VΨ = −4
[
I1(M) − M2 I0(M)

]
(23.73)

which is exactly the GEP found in Ref. [32] by a direct variational method, provided
that we take the chiral limit and set the external gluon field to zero. By dimensional
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regularization, inserting Eq. (23.41), the quark contribution to the GEP reads

VΨ (M) = 3M4

16π2

[
log

M2

Λ2
+ 1

6

]
(23.74)

and has a minimum at M2
0 = Λ2e−2/3 where VΨ (M0) = −3M4

0/(32π
2) < 0.

Discussion

Let us summarize the main findings of the previous sections.
The GEP for the GL model of superconductivity, namely U (1) scalar electro-

dynamics, is recovered by a more general analysis based on a massive expansion,
yielding a mass generation even when the original model is scaleless. The derivation
of the GEP for pure SU (N )Yang–Mills theory and chiral QCD also gives an original
independent way to introduce themassive expansion: a change of the expansion point
with massive propagators in the internal lines of the loops. The expansion acquires
an evident variational meaning and emerges from the same variational argument that
leads to the GEP. However, while the GEP is limited because of its first-order nature
that leaves the fermions decoupled, in the massive expansion higher order terms can
be easily included, yielding a powerful analytical tool for the study of QCD in the
infrared and providing two-point functions that are in very good agreement with the
results of lattice simulations [16, 21–23].

That said, the GEP gives a variational proof for chiral symmetry breaking and
dynamical mass generation. Even if the actual values of the masses cannot be trusted
because the quarks are decoupled, the variational nature of the calculation gives a
proof that the vacuum of massless gluons and quarks is not stable. The Yang–Mills
effective potential is given by the function U (α, x) of Eq. (23.43) and is shown in
Fig. 23.3. An interesting feature is the occurrence of an unstable relative minimum at
m = 0 and a stable minimum at m > 0. We could speculate and see an analogy with
the double solution that occurs in the Dyson–Schwinger formalism: an unphysical
massless scaling solution and a physical massive gluon propagator. Even if decou-
pled, the quark term of theGEP has an absoluteminimum at a finiteM > 0 according
to Eq. (23.74), predicting the breaking of chiral symmetry of QCD.

We can see the absolute minimum of the GEP as a best expansion point for the
massive expansion. In that sense, it is relevant to note that, once the crossed graph
is included, the quark term of the GEP is also bounded from below. In fact, the
counterterm keeps trace of the scaleless nature of the original Lagrangian and is
needed for imposing that the Lagrangian is not modified in the expansion.

We are left with two independent mass parameters, m and M , that must be deter-
mined by the phenomenology since their explicit expressions depend on the unknown
renormalized scale Λ. Assuming that the scale Λ is the same in the gluon and quark
sector, which is not obvious, the minimum of the GEP would give a best ratio of
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masses by Eqs. (23.68), (23.74)

M0

m0
= e

⎛
⎝1
3

+ 2

3α

⎞
⎠

(23.75)

linking together the dynamical generation of the gluonmasswith the chiral symmetry
breaking. While highly non-perturbative and nonanalytic in the limit α → 0, the
suggested ratio of Eq. (23.75) suffers the limitations of the quark-gluon decoupling
in the GEP and can be only regarded as a starting point for more refined calculations.
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Philosophy and History of Science



Chapter 24
The Languages of Science, Religion,
and Theology

G. Ruggieri

To Renato Pucci.

Introduction

At the end of his well-known conference on ethics, Ludwig Wittgenstein wrote [1]

«Ethics so far as it springs from the desire to say something about the ultimate meaning of
life, the absolute good, the absolute valuable, can be no science. What it says does not add
to our knowledge in any sense. But it is a document of a tendency in the human mind which
I personally cannot help respecting deeply and I would not for my life ridicule it.»

Wittgenstein thus admitted that, in addition to those languages which are func-
tional to the ‘knowledge of things’, there are also ‘tendencies in the human mind’
that are better expressed by means of something different than scientific language.
The desire to express the ultimate meaning of life ‘cannot be a science’, but should be
‘profoundly respected’. This statement by Ludwig Wittgenstein will be the starting
point of my reflections on the diversity and the relationship among three different
kinds of language, which nonetheless are tightly intertwined: the language of science,
the language of religion, and the language of theology. Concerning the latter, let me
hasten to clarify that I plan to speak exclusively of the language of theology that has
developed within the Christian tradition. In fact, I am not sufficiently competent in
other theological traditions (e.g. Buddhism, Islam, etc.), which I am acquainted with
only superficially.

Translated from Italian by G.G.N. Angilella.
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The Language of Science

My own knowledge of the scientific language is only indirect. Indeed, it does not
belong to my direct experience. I am only acquainted with it via the effects that it has
and continues to have in the practice of the Christian faith. And I deem those effects
quite positive, notwithstanding the temporary conflicts and the difficulty to under-
stand the reach of their respective statements. For instance, the results of palaeontol-
ogy on the origin of the species have modified the Christian view of the beginnings
of human history [2], as well as the interpretation of the dogma of the so-called
‘original sin’ [3]. Even without denying that the existing universe is the result of the
incessant creation of God, no theologian nowadays thinks that a ‘specific and direct’
intervention of God is required on the origin of the human species. And assertions
which were earlier considered as absolutely necessary for the dogma of the original
sin, such as the descendance from a single human couple, today are not considered
so any longer, since a deeper understanding of the biblical language, induced by the
very true scientific results, is now open even to a polygenistic or polyphyletic origin
of man.

On the other hand, it is beyond doubt that also theology had an influence on
scientific practice. There exists in this regard a study which is to me a ‘classic’, but
which limits itself only to the seventeenth century [4]. On the contrary, there is no
study on the theological assumptions of contemporary scientific practice. Indeed,
I would be curious to understand whether the debate between relativity and quan-
tum mechanics ultimately descends from some sort of metaphysical or religious
assumptions [5]. However, the main conclusion is that for an actually existing man
there is never a ‘separate’ language from all his other fundamental attitudes and their
respective languages, whereas there does exist a contamination among the various
languages. Einstein’s famous motto «God does not play dice» is not a scientific state-
ment, and I believe that as such it is not even the expression of a religious attitude,
but it only signifies the contamination between scientific language and assumptions
which are often unconscious—a contamination basically induced by the unity of the
human subject, who ‘says himself’ through the different languages in the various
approaches to the reality that he puts into being.

At any rate, the theologian, even without using the scientific language directly
as his own, if he wishes to reflect on the necessary conditions to communicate the
faith, then he must understand closely the logic surmised by such a language. This
is the logic of the ™pist»mh (episteme), of the true knowledge. But the meaning of
™pist»mh is no longer that of Aristotle, who identified it with the knowledge of the
causes of the phenomena (cognitio rei per causas). Inmypersonal case, in order to get
acquainted with the logic of the scientific practice, I relied on Karl Popper [6]. And
my choice was motivated by my job as a theologian. Indeed, a follower of Popper’s,
Karl Albert, undertook a lively debate not only with the theological hermeneutics
of Gerhard Ebeling, but also against a theology open towards the scientific practice,
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such as that of Wolfhart Pannenberg.1 In order to gain more insight, I have then read
Popper’s book [6], and I was both surprised by his criticism to the Circle of Vienna,
and by the ‘humble’, albeit vigorous, character of his thinking. Scientific knowledge
does not constitute the only understanding of reality, but distinguishes itself from
all others by its criterion of ‘truth’, intended as the best possible approximation
of the various theories to the actually existing, or objective, reality. Any scientific
theory is, by its very nature and as long as it wishes to remain such, subject to
the criteria of universal intersubjective control. Popper then speaks of the criterion
of falsifiability (i.e. the possibility of establishing the false character of a given
statement) in order to distinguish the ‘true’ language of science, i.e. the one which
approaches the knowledge of reality through the contributions of everyone, from all
the other languages, which cannot claim to be ‘true’.

The Language of Religion

At variance with scientific language, which looks for a true knowledge of reality
through ever more adequate approximations, the language of ‘religion’ is character-
ized by its claim for ‘absolute’ statements on the sense of reality, thus necessitating
a behaviour coherent with such statements. This is why religion is considered funda-
mentally equal tomoral inKant’s philosophy.During the first decades of the twentieth
century, the positivism of the school of Vienna considered the assertions of religion
as nonsense. On the other hand Wittgenstein, in his maturity, correctly noticed that
it is not possible to provide an interpretation of language as a whole, since human
language is a collection of expressions with quite different functions, depending on
their respective contexts, and obeying rules which cannot be fixed once and for all
(the so-called Sprachspiele, or ‘linguistic games’).

First of all one should therefore identify those real situations whose sense is
conveyed by the language of religion. Such situations, as Ian T. Ramsey has in my
opinion clarified, are those in which an illumination takes place, which breaks the
rind of everyday observations and at the same time urges to act [9]. He proposes
the following example: when one sees a child who is about to drown in a river,
one perceives that such a fact would not be merely a consequence of human errors,
whereto another observer would be indifferent, but that something deeper is going
to take place, something which involves the fate and the happiness of several people,
so that one is urged to immediately dive into the water to save the child, even at
the risk of his own life. In such a situation there would be no certitude, however
one’s involvement, which is due to one’s free will, is not senseless. Several centuries

1Cf. Ref. [7]. W. Pannenberg takes sides against Albert in Wissenschaftstheorie und Theologie
(1973), only partly accepting his assumptions, and even conceding that God be only a hypothesis
to be verified. However, Albert does not agree with Pannenberg’s interpretation on the conjectural
character of any science; cf. Ref. [8].
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earlier, and in a completely different context, Blaise Pascal would have said: my bet
is that the stake on which I am effectively compelled to wager is worth the bet even
if I should lose, since placing such a bet would change anyway my life for better.2

The language which conveys what happens in these situations of discernment-
engagement is the ethical-religious language,where one can see ‘objects and behind’,
where ‘behind’ stands for the illumination, the discovery of a sense of reality which
is observable not from the physical point of view, but within an inner illumination. To
use an example belonging to the Christian context, while reading the Gospel’s tales
of the death of Jesus of Nazareth, through the facts described by the evangelical nar-
rators, it becomes extremely clear to me the depth of Jesus’ attitude without opposing
any resistance, in order to be faithful to the mission that he had earlier recognized as
God’s will. This discernment, to the extent that it touches my conscience, induces my
existence to adequate my behaviour to itself, and my whole life gets changed by it.
The language used to convey such an experience is the one that my cultural environ-
ment makes available to me, however it is changed by some ‘qualifiers’ (in Ramsey’s
words), whichmodify it so as tomake it adequate to express what I have experienced.
Common language offers the ‘templates’ wherewith to think and communicate to
the others my own experience (God as ‘cause’, God as ‘love’, etc.), whereas the
‘qualifiers’ indicate the difference, the specificity of the sense that I have caught
(an ‘ultimate’ and not immediate cause, an ‘infinite’ and ‘absolute’, unconditioned
love, etc.).

The ethical-religious language, in the above sense, is not peculiar to any specific
religious practice, be it Christian or of other religions, from Buddhism to Islam,
from animism to any refined theism. It is also present in ‘nonreligious’ forms, even
in atheism, to the extent in which they are characterized by an ‘absolute’ engagement.
The Greek philosopher Heraclitus said «’′Hϑoj ¢nϑrèpJ da…mwn» (fr. 119). In any
way one translated theGreek term ½ϑoj (ethos)—habit, abode (Heidegger), character
(Pasquinelli)—it is sure that Heraclitus gathers exactly the constitutive way in which
the human character is anchored to the divine. Man cannot avoid founding his choice
between the good to be done, and the evil to be averted, in something that overhangs
him as a maxim of which man cannot dispose (cf. Kant himself, in Die Religion
innerhalb der Grenzen der bloßen Vernuft, 1793) [11].

2In Blaise Pascal’s own words (Pensées, ed. Brunschvicg, n. 233): «Yes; but you must wager. It is
not optional. You are embarked. Which will you choose then? Let us see. Since you must choose,
let us see which interests you least. You have two things to lose, the true and the good; and two
things to stake, your reason and your will, your knowledge and your happiness; and your nature has
two things to shun, error and misery. Your reason is no more shocked in choosing one rather than
the other, since you must of necessity choose. This is one point settled. But your happiness? Let us
weigh the gain and the loss in wagering that God is. Let us estimate these two chances. If you gain,
you gain all; if you lose, you lose nothing. Wager, then, without hesitation that He is.»[10].
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The Language of Theology

As I have stated at the outstart, when speaking about the language of theology, I will
mainly keep within the scopes of the Christian faith. Contrary to Ramsey, the ethical-
religious language should not be confused with the language of theology. The word
theology, in the current meaning of ‘scientific’ understanding of the experience of
the Christian faith, was born at the beginning of the thirteenth century in connection
with the foundation of the universities and under the influence of the Aristotelian-
ism. However, a ‘reflection’, i.e. a second-order, reflected understanding, has always
been accompanying the Christian experience, starting from the first writer of the
New Testament, Paul of Tarsus, who made use of the rabbinic hermeneutics towards
the interpretation of the Old Testament, and applied it to the Christian faith. Indeed,
Gerhard Ebeling notices that theology develops from the encounter of faith with
thought, because «faith by itself induces to comprehension, in a manner adequate to
the situation of comprehension.» [12] It is not that faith does not involve some sort
of thinking, but just because it has always involved a comprehension of reality, since
it is an ‘understanding’ of God and of man and of the things, this comprehension,
comparing itself with the other ones which characterize human existence in its spe-
cific historical substance, drives towards a further comprehension, thereby creating
a new inner equilibrium of the human spirit.

The language of theology is subjected to the language of the believer (which, as a
language, stays on the ethical-religious level), but at the same time modifies it. How-
ever, modifying it means to ‘shift’ it from the ethical-religious level, to the ‘rational’
level. This is a fact already acknowledged by mediaeval theologians, exactly when
the language of the Aristotelian ™pist»mh begins to settle in the European uni-
versities. Suffice it to quote here Bonaventura da Bagnoregio (ca. 1217/1221–1274).
Bonaventura develops his conception of theological reason both in the first four issues
introducing his comment of the first book of the Sentences (Liber Sententiarum, by
Peter Lombard), and in his own Breviloquium. What strikes most, in the foreword
to the comment to the Sentences is the qualification of theological reason as simple
ratio probabilitatis. Indeed, whereas what is believed has in itself the ratio primae
veritatis and pertains to the faith, and whereas the auctoritates have in themselves
their own ratio (ratio auctoritatis), which pertains to the Christian doctrine on the
Scriptures, since, with Saint Augustine, its authority is greater than the perspicacity
of the intellect, theology indeed adds only a ratio probabilitatis (cf. I Sent. Prœm.
Q. 1 concl. 5.6). But this implies that, for Bonaventura, theology is part of a con-
stellation centred in the act of faith, around which everything revolves, whose object
contains in itself the ratio primae veritatis. The reason of theology’s weakness is best
understood starting from what he writes about the determinatio distrahens. With this
category, again in the comment to the Sentences by Peter Lombard (Prœm. Q. 2),
he explained the use of the ratio in the comprehension of the Scriptures. Indeed, the
Scriptures are related to what is believed, the ‘credible’, in the parlance of Scholas-
ticism. On the other hand, theology, by introducing reason in the consideration of
the Scriptures, distrahit, i.e. effects a distraction, a displacement that reduces to the
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Sacred Scriptures the principles of reason in the fashion of some sort of subordina-
tion. Indeed, Scriptures sunt de credibili ut credibili, while Scriptures in theology
sunt de credibili ut facto intelligibili. And this determinatio distrahit. Indeed, what
we believe, we owe it to the authority (of God), and what we understand, we owe it to
reason (here Bonaventura quotes Augustine’s De utilitate credendi). Thus the degree
of certitude that one extracts from the Scriptures is superior to that of theology, which
derives its certitudes from reason.

In the attempt to translate Bonaventura’s thinking using a terminology closer to
ourselves, I shall say that theology, as a rigorous reflection on faith and its history by
believers, ‘shifts’ (dis–tracts) the attention from the object of the faith itself, which is
an existential answer to amessage, whose origin is perceived as divine, to concentrate
such an attention on the ways in which such a message is perceived: e.g. on the
peculiar signifiers employed to convey a meaning, on the historical character of the
message, on the context withinwhich themessagemust be placed, on the relationship
between such a message and other analogous messages, etc. This distraction or
shift of the attention takes place through ‘reason’, and this ‘reason’ is historically
well-determined. The ‘reason’ employed to analyze the faith by an author of the
fourth century AD was influenced by Stoicism and/or Neoplatonism. The reason
employed by protestant theologians in the second half of the nineteenth century
was mainly the Kantian-idealistic one on one side, and the critical-positivistic one
in the analysis of literary documents on the other side. The reason employed by
the first Catholic theologians of the so-called Tübingen school was mainly that of
idealistic Romanticism, while in the second half of the nineteenth century it is the
Neoscholastic reason to prevail among Catholics. But this implies that all rational
use in theology, as ‘human’, should not overcome the threshold of what is probable.

This observation constitutes the main difficulty of every theological practice.
Indeed, every theologian has the moral duty to use reason, since faith, albeit of
divine origin, remains a totally human act, and therefore always risks to become
devious, corrupt. Thus the task of a theologian is that of using all rational tools at his
disposal in order to correct such deviations, to help other believers to let their own
faith become evermore authentic.However, he is not alone in accomplishing this task.
The faith of the believers is helped and gets stimulated by others than theologians:
by prophets, by those who witness in an exemplary way faith itself in their own lives,
by those who have the responsibility of keeping in unity all the believers, and so
forth. The theological practice is thus just an element of a collection of practices
that have always marked the history of faith. Therefore, conflicts are inevitable. But
they are useful, rather than dangerous, for the growth of everyone. There remains the
possibility, however, that, without the use of reason, the community of the believers
risks the fundamentalism, the fanaticism, the intolerance.

But, above all, theological practice is necessary for the communication of faith.
Actually, the problem remains of the communicability of this language or, to use
E. Jüngel’s words, of the communicability of the ‘Gospel as an analogous
discourse on God’ [12], within the other human languages, wherewith we articulate
our fundamental approaches to reality, ranging from science to art, from law to ethics
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(which should of course be distinguished from the Gospel of Jesus of Nazareth),3

and so forth. Or, if you wish, the problem is that of the analogy of languages in their
reciprocal irreducibility.

Is Communication Possible Among the Various Languages?

First of all one should stress again that only secondarily is the theologian the one
who communicates the faith. The subject of such a communication is primarily the
believer as such, as it is clear from the history of Christianism and its diffusion
since the origins. With respect to such a communication having the believer as the
main subject, the theologian plays a completely secondary and subordinate role. It is
probably better to say that he can theologize only in harmony with the other subjects
of the faith [14].

Theology should therefore respect the intimate reason of the faith, its original
lÒgoj, the reason that Bonaventura calls ratio primae veritatis, which we might
translate as the ‘self-evidence of the truth which is God’. Faith indeed possesses its
‘own’ reason, with its own evidence, as appearing in the immediate language of faith,
in whose original narrative structure a truthful claim is already present. Even in its
simplest forms, in fact, the faith constitutes a linguistic event with its own lÒgoj,
presumed by the very act of theologizing. And obviously I am not referring to the
descriptions, albeit authoritative, of faith, such as that of the constitutionDei Filius of
Vatican I, all oriented towards the intellectual adhesion to the revealed truths, or that
of the Dei Verbum, with a different attention towards the personalistic dimension. It
is actually the very experience of faith in itself that represents already a linguistic
event, the saying (lšgein) of a lÒgoj, i.e. the articulation of a ‘reason’ constituted
by the event of Jesus of Nazareth, seen—whichever way one poses the emphasis,
according to sensibility, period of time, culture—as a constitutive reference to one’s
own existence. Not any intervening description of faith can constitute the linguistic
event of faith itself. The saying (lšgein) of the Christian lÒgoj rather is all in the
original experience, in the act of faith, since this is the kindling of a relationship
with an event that precedes me and arrives to me only in its narrations, be they made
explicit, as in preaching, in the announcement, in the catechesis, be they simply lived
without words, as in the witnessing of the deed, however made intelligible thanks to
their link with a horizon of otherwise known signs.

To this observation one should add another, namely that theology as such, char-
acterized by the addition to the fides of the ratio commonly agreed upon by men of
their own time, finds its own place in an order, a t£xij, wherein only it does receive
its depth and specific function. Should it for instance transform its own ratio in that
of faith itself, then both theology and faith would be corrupted at the same time.

3Recently, I have expressed my own view on the relationship between Gospel and ethics in my
essay on Gospel, moral, and civil law [13].
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How does one communicate the ratio primae veritatis? That is, how does the
believer communicate this ratio to all the other rationes?The place of communication
is language, and only an analysis of the intimate nature of language can answer this
question. In this context, I have always found illuminating two early writings by
Walter Benjamin [15, 16].

To Benjamin, language is the communicability itself of spiritual beings. In the
spiritual being which is man, the communication of everything, of all reality, takes
place through the language. More than that, the linguistic essence of things is their
language. Therefore, the linguistic essence of man is his language. But the language
of man speaks through words. Therefore man communicates his spiritual essence
(since it is communicable as such) saying all the things through words, giving names
to things. In this ‘giving names to things’, indeed, there is not only the communication
of things to man, but also the communication of man to himself and to the others.
Within every language one should find indeed the pure language, the reine Sprache.
This, which is inseparably found in every language, is the assumption of any possible
‘translation’ and ‘communication’ from one language to another. This pure language
is to Benjamin a relationship, a Nennen, it amounts to saying the name, and not just
a definition of the object, a circumscription of its meaning. Now, man does not
communicate his spiritual being through the names that he gives to things, but rather
in themselves, in the act by which he gives those names. The conception according to
whichman communicates an object to anothermanviawords is considered secondary
by Benjamin. This conception can only be applied to the language of things, which
are communicated through the saying of man, through his giving names to things.
However, in the pure language of man there is no means, no object, no recipient of
the communication, since ‘in the name is the spiritual being communicated to God’
[16]. It seems to me that, to Benjamin, God as absolute Spirit, and therefore original
power of any spirituality/communication, is within the communication of man.

From Benjamin’s observation we can draw the main conclusion that there is a
common root to the various languages, even the most distant from one another, such
as that objectifying of science and that invoking of faith, which is aware of tending
to an ever greater Truth. This common root, Benjamin’s ‘pure language’, is the basis
of their analogy. And this basis resides in the fact that in all linguistic acts, man
expresses himself as opening to the other by himself and ultimately in his ‘saying
himself to God’ (albeit unconsciously, and even when negating the name of God).
The believer does not communicate to the other the object of his own faith, but in
witnessing his own hope he discloses to the other the lÒgoj that moves his opening,
that same lÒgoj inducing the other towards the search for knowledge, as adequate
as possible, for the law which moves everything, or for the beauty that shines in the
world, or for the right that could eliminate violence from any relationship, and so
forth.

To gain a deeper insight into Benjamin’s thought, a further note is appropri-
ate at this point. The double dimension of the language (the objectifying one, and
the spiritual one of the ‘pure language’) is not equally ‘loud’. We will always per-
ceive the sound of the objectifying dimension which is present in the act of Nennen,
of giving a name to reality, but we do not always perceive the sound of the pure
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language. Such a perception is not an obvious event. There exists a language which
opens, and one which closes, depending on the circumstances and the ways in which
it is employed. In other words, not all linguistic acts in its actual happening allow
the pure language to be unveiled.

It is on this particular point that Western theology is playing a big match. This,
in my opinion, is linked with the very birth of the ‘scientific’ language of Scholas-
tic theology. I would like to illustrate this point with a comparison that may seem
incorrect, at a first sight: that between Anselm’s Proslogion and one of the ques-
tions in Saint Thomas Aquinas’ De potentia. Thus, Anselm in his Proslogion takes
a definitive turn, when he overcomes the register of the objectifying knowledge and
addresses the reader beyond this objectifying knowledge (cf. Ref. [17], pp. 90–94).
This is not always noticed in the ‘philosophical’ interpretations of his writing. In
this objectifying knowledge, indeed, after the break of Chap.14, the ensuing chapter
makes a leap forward. One abandons the register of understanding or, better, the
register of understanding appears only as a step to be passed, coherently and without
the sacrificium intellectus, to a completely different register. Thus, Chap.15 reads:

«Therefore, O Lord, not only are You that than which a greater cannot be thought, but You
are also something greater than can be thought.»

Thus, he recovers the non objectifying dimension of language that had been exalted
especially in the works of Dionysius the Aeropagite. At the beginning of the sixth
century, the latter wrote indeed a pamphlet, entitledDe mystica theologia, which was
going to have a great influence not only on the forthcoming Eastern theology, but also
on the Latin Middle Ages. There, it was stated that our understanding is necessary to
ascend to God, but that our conceptions, even the highest and the most divine, are not
God, but only the acme of our intellectual labour, overwhelmed by a presence which
transcends them.4 However Thomas transmitted to the West a distorted vision of the
Aeropagite’s thought. In fact, the Aquinas interprets the three dionysian ways (the
negative way: one should negate any attribute to God which involves imperfection;
the positive way: one can assert any attribute to God which implies perfection; the
way of eminence: even in the positive assertions, one should speak in such a way
that everything is realized in Him to the highest level, higher than for any other
creature) as different knowledge methodologies of the mystery of God, which find
their realization in an effective correspondence between the concept and its actual
objective reference in the divine substance. Thus, to Thomas the question is whether
nomina such as good, right and wise significent divinam substantiam or not.5 On the
other hand, to Dionysius, and to the great majority of Eastern tradition, the function
of the theological concept, i.e. of the nomina used in theology, is different.

In Thomas one can also find examples of a less ‘objectifying’ conception of the
theological knowledge. Thomas himself, in fact,while quotingDionysius, asserts that
theology proceeds «not only by learning (maϑ ω̃n), but also by suffering (paϑ ω̃n)

4PG 3, p. 997 ff. (Ref. [18]).
5De potentia, q. 7 a. 5.

http://dx.doi.org/10.1007/978-3-319-53664-4_14
http://dx.doi.org/10.1007/978-3-319-53664-4_15
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divine realities.»6 But it cannot be denied that the occidental equilibrium in theology
will be diverted ever more towards discere, i.e. learning, and ever less towards pati,
i.e. the experience of harbouring the presence of God. But it is the sound of the ‘pure
language’ which emits suitable vibrations to be in harmony with God and with the
others, and not the objectifying one of the Nennen, of the nomina which we give to
reality.

These observations tell us then that every language, as far as together with the
objectifying of naming one is given with the ‘pure language’, may become a place
for Christian communication. This is at least the believer’s conviction, and therefore
also of the theologian. Indeed, the believer is aware that Jesus Christ represents
the definitive Yea of God to man, not abstractedly, but in its well-defined historicity,
even though plagued by sin:

«For while we were still weak, at the right time Christ died for the ungodly. Indeed, rarely
will anyone die for a righteous person—though perhaps for a good person someone might
actually dare to die. But God proves his love for us in that while we still were sinners Christ
died for us.» (Rom 5, 6–8).

Thanks to the absolute character of the relationship set by Christ with the historically
determined man, every human situation is ‘called’ by God, every historically deter-
mined language, and not only in its abstract essence, can then become a place for
the communication of the Christian truth, and is therefore suitable for a translation
of the Gospel of Jesus of Nazareth.

Due to the final and ultimate (eschatological) character of the relationship set by
Christ as God’s and man’s truth, the assertion that all languages may be assumed as
a place for the translation of the Christian truth, is equivalent to saying implicitly
that the ‘ultimate’ truth of every experience, expressed in its specific language, is
somehow in its ‘possible’ relationship with the lÒgoj of the Christological event,
and therefore with its being ‘called’ by God. This last and profound attitude of every
language is the one which enables the translation (and therefore the interpretation)
of the experience of Jesus of Nazareth in the experience and in the language of faith
(from the first disciples, up to ourselves, in the historical succession of testimony),
thanks to the action of the Spirit. This translation does not belong as such to theol-
ogy, and is substantially equivalent to conversion, in the Christian-biblical parlance.
However it is also a linguistic conversion, effected according to different rhythms
and timings (substantially identical to the rhythms and the seasons of existence), into
the proper language of each man, from everyday language to the most specialistic
one, in which he expresses his fundamental relationship with things. For this rea-
son it is the first perception (Wahr-nehmung) of Christ’s truth. This perception of
truth takes place in the conscious experience of the fundamental acceptance of one’s
alterity in Jesus Christ and, from here, in the experience of the ‘fruits’ that this new
acceptance generates in the believer, like the ability of new relationships with the
other, in that permission of new relationships that de Certeau indentified with faith’s
establishing breaking, that sets ourselves forever in a relationship with the other

6Summa theologica, 1 q. 1 a. 6; cf. De divinis nominibus, PG 3, 648B (Ref. [18]).
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[19]. It is a conversion that is condition for the knowledge of the truth of Christ.
Paraphrasing Paul in Fil. 3, 10: when man conforms himself to the death of Christ,
i.e. he translates into his own experience the absolute Yea pronounced on the Cross,
it is then that he ‘knows the Christ’; he thus knows ‘the energy of his resurrection
and the communion with his sufferings.’ Indeed, through the conversion of his own
language, made homogeneous to the logic of the acceptance of the other as disclosed
on the Cross, this language becomes itself accepting, and participates to the energy
of the Christological event: it acquires the ability of ‘universal’ communication.

In the Christian conversion, however, languages ‘conform’ to the Christian nar-
ration, they translate the truth of the Christological event, according to several irre-
ducible paths, just because it is not ‘immediately’ a conversion of signifiers and
meanings in which every language is articulated, but of the linguistic essence of man
who says himself, communicates himself in them. Thus, truth received in conversion
does not determine by itself the truth of the meanings expressed in every language.
To dare a well-defined example, then the translation of the language of faith in the
language of the palaeontologist Teilhard de Chardin does not imply a change of the
logic implant of the scientific language of Teilhard, but of what can be communicated
in it (thus not through it, to employ Benjamin’s distinction). This is equivalent to say
that the translation of the language of faith in the language of science of Teilhard
does not tell anything yet on the ‘scientific’ truth of the language itself, of the lan-
guage as the language through which one says the things. However, history shows
also other translations, more unobtrusive, with different modalities, and even those
which express themselves as the rule of the silence about anything which cannot be
spoken of, about anything which in fact cannot be told by words.

The Role of Theology

The ‘creativity’ of translation does not belong to the theologian as such. Theology
analyzes the conditions of possibility of the translation by analyzing the narrations
present in the tradition of the Christian language, revealing its profound grammar by
means of the reason, criticizing incoherences, opening new possibilities. However, it
does not offer the criteria of ‘truth’ for the translation. Its criteria, those of the ratio,
are essentially two: that of coherence with the history of narration itself (historical
reason), and that of internal coherence of the assumed language (critical reason, be
it ‘philosophical’ or ‘scientific’, etc.). The language of theology is therefore by its
own nature ‘contaminated’ by other languages, including the language of science.

If the creativity of translation does not belong to the theologian as such, it is
nonetheless true that the theologian is a believer by himself, he experienced and
daily experiences the ‘Yea’ of the Father, he belongs to the confessing community
and operates its translations. In the creativity of faith, the believer theologian thus
assumes languages and rationes that reveal the fecundity of Christian truth even
within the reflected rationality, and not only at the level of the immediate rationality
or of the ‘surface grammar’. The creativity of the great theologians, from Origen to
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Augustine, from Thomas to Nicholas of Cusa, from Möhler to Newman or Barth,
resides in this happy symbiosis between faith and ratio.

What does then theology add to the ratio primae veritatis? Both through the
knowledge of the history of the tradition of the believers, and through the assimilation
of the critical instruments accumulated by contemporary knowledge, and through
his personal genius and the intensity of the his personal conversion experience, the
theologian adds to the ratio primae veritatis accepted and lived by the common
believer (and firstly by himself in person) the knowledge of the grammar subtended
by faith itself and its enrichment, its exaltation, above all when he becomes able of a
new reading of beauty, but also of the contradictions and troubles of human existence.
In this context, suffice it to call forth a few names, in order to let these assertions
become clear: from Augustine to Thomas, from Eckhart to Nicholas of Cusa, from
Luther to Kirkegaard, from Rosmini to Newman, from Barth to Bonhoeffer, from
Przywara to von Balthasar, etc. but also those humble workers who have contributed
so much to the critical understanding of the Christian tradition. In the latter case,
rather than individual names, we should rather speak of the various choirs: that of
the critical exegesis, that of the recovery of the Fathers, that of the recovery of the
Middle Ages, from the renovated knowledge of the mediaeval schisms and of the
Reformation, up to ourselves.
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Chapter 25
Symmetries and Physics

R. Pucci

Opening Address
Magnificent Rector, Authorities, Colleagues, Students, Technical

and Administrative Personnel, Ladies and Gentlemen - - -

I feel honoured and science symmetry privileged to hold the opening lecture of
the academic year 2002–2003. The subject of my lecture, symmetries and physics, is
a “classic” theme in physics and is, at the same time, at the basis of frontier research.
Physics is, I believe, quite distant from the experience of themajority of the audience.
Therefore, I will make my best efforts to employ not a too technical language. I will
also make use of both examples and historical information.

Introduction

By symmetry, physicists mean that different “points of view” exist, from which a
system appears to be the same. Take, for instance, a sphere and a cylinder (Fig. 25.1).
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Fig. 25.1 Different points of
view from which a sphere
and a cylinder can be looked
at (color figure online)

The projection of a sphere onto a plane will be seen as a circle by any observer,
regardless of the direction she looks at it.

As far as a cylinder is concerned, observers looking at it perpendicularly to its axis
will see a rectangle, while those looking at it according to a direction parallel to the
axis will see a circle. This implies that the cylinder is endowed by less symmetry than
the sphere, and that an observer looking at the cylinder from a single “point of view”
cannot realize all the symmetries of the system. There may be hidden symmetries!
And that’s exactly one of physicists’ most exciting tasks [1]: uncovering the hidden
symmetries of nature. It is in this sense that physics may be considered one of men’s
creative activities, which drives them towards an intellectual adventure unique in its
genre.

«It is by making use of all the tools of our logical, mathematical, and technical apparatus,
that we try to demonstrate that our hypotheses were false. Instead of the latter, we surmise
new unjustified and unjustifiable hypotheses, new rough and premature prejudices.» [2]

What is important is that symmetries are closely connectedwith the laws of nature.
Indeed, the discovery of the laws of physics is based on the research of the symmetries
of space, time, and matter.

As I have already anticipated, I shall oftenmake reference to the history of science.
I shall start fromAristotle’s physics, and I shall then emphasize howGalilean relativ-
ity paved the way towards contemporary physics. I shall indicate how the energy and
momentum conservation laws may be derived from the symmetry of space and time,
and how from such conservation laws the laws of motion may be derived. Guided by
the history of science, I shall show how symmetries played a fundamental role for
two important scientific revolutions: Einstein’s relativity and quantum mechanics.
The importance in physics of simple “models” will be shown by the introduction
of the homogeneous electron gas due to Thomas and Fermi and by the relevance
of this theory in the study of atoms, molecules and solids. I shall also introduce the
theory of “symmetry breaking”, and I shall show how the latter gives rise to the
various laws that govern nature. I shall eventually bring two instances of what I have
said, namely the solids under very high pressure, and the high critical temperature
superconductors.
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Galilean Relativity

What is taken for granted nowadays, was not always so. Indeed, for many centuries
people had a completely different conception of the physical laws. Aristotle’s theory
of motion [3] was based upon the existence of natural places, i.e. privileged places
in the Universe. The natural place of an heavy body was, for example, the centre of
the Earth, while that of celestial bodies was above the Moon’s orbit.

This amounts to say that the laws of physics vary depending on whether one
performs an experiment at home, or at the centre of the Earth, or on the Moon.
According to Aristotle, a stone falls towards the ground if I am at home, it stays still
at the centre of the Earth, while it cannot reach the Moon anyhow.

The scientific revolution [4] which will lead towards classic physics, especially
through the contributions ofGalileo andNewton, beginswith thework ofCopernicus.

The approximations introduced by Copernicus’ theory, with respect to Ptolemy’s
theory, were very important to Copernicus, since they reflected that peculiar mathe-
matical harmony that, according to him,Universe “must possess”. It was not conceiv-
able that God created such a complicatedUniverse, as the one described by Ptolemy’s
theory. Copernicus’ theory of the Universe is endowed with an extraordinary amount
of symmetry: the Universe could not have had any other form, than that described
by him.

A new theory of motion was however required, in order for Copernicus’ math-
ematical model to become a new cosmology. Indeed, if the Copernican theory was
not a mere mathematical invention, it should explain why towns were not uprooted
from the Earth because of the motion thereof around the Sun.

Galileo afforded a new theory of motion via the principle of inertia. He made use
of the approach known nowadays as “Galilean relativity”.

Theprinciple of inertia states that a body stays at rest or keeps onmovinguniformly
along a straight line, provided there are not external agents acting upon it. Within his
“experimental method”, he faces the problem of relativity in the following way:

« Close you up with some friends in the largest room below the deck of some large vessel. [A
detailed description of several experiments follow...] After you carefully observed all these
things, although there is no doubt that, while the vessel is at rest they should not take place
in a different way, let the vessel move with an arbitrary speed. Then, provided the motion be
uniform and not fluctuating at all, you will not recognize any change whatsoever in all the
aforementioned effects, nor you will be able, from any of them, to understand whether the
vessel moves or is rather still.» [5]

In otherwords, there is noway, bymeans of any experiment of classicalmechanics,
to conclude whether a body is at rest or is moving with uniform rectilinear motion.
Every observer, movingwith uniform rectilinearmotion onewith respect to the other,
will see and describe the motion of a given body in the same way.

Space is homogeneous (i.e. it is the same everywhere) and isotropic (i.e. it is
the same in all directions); time is uniform (i.e. every clock always beats at the
same rhythm). The homogeneity of space implies that the laws of physics must be
independent of the place where they are measured, and vice versa. The uniformity
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of time implies that the laws of nature are the same yesterday, today and tomorrow,
i.e. they are the same regardless of when they are measured.

Galileo’s theory was completed by Newton’s axiomatic work. Newton’s theory of
gravitation is one of the highest achievements of human intellect: it can be applied
to two arbitrary bodies both on the Earth and in the Universe. Together with the laws
of motion, the theory of gravitation allows to predict the trajectory of a projectile, as
well as that of the Earth orbiting around the Sun.

Galileo and Newton were the first who attempted at deriving some consequences
from the fact that the laws of nature must be independent from space and time. It
was demonstrated that from space homogeneity it is possible to derive the law of
momentum conservation and that, from the uniformity of time, one may derive the
law of energy conservation (i.e. energy does not vary with time). Conversely, from
these two conservation laws, all Newton’s laws of motion can be derived. In other
words, the symmetries of space and time completely determine the laws of classical
mechanics.

Einstein’s Relativity

Newton was quite concerned about how the force of gravity could be transmitted
across the apparently “vacuum” space. Therefore, he made the hypothesis that space
was actually filled with a material medium, viz. the ether. Moreover, he introduced
the concepts of absolute space and time that, as Kant stated later, are the a priori
forms which guarantee the order, the understanding, and the very condition of our
perception of the inertial reference systems.

Einstein upset in a fundamental way the concepts of absolute space and time, as
well as the existence of the ether.

All of Einstein’s three fundamental works of 1905 begin by the statement of
formal asymmetries or other inconsistencies, of basically aesthetic nature, in the
previous theories [6]. In order to eliminate such asymmetries, he then suggests a
general principle and some experimental proofs thereof.

It is not without meaning that Einstein’s paper “On the electrodynamics of moving
bodies” [7], where he actually introduces special relativity, begins as:

« It is known that Maxwell’s electrodynamics —as usually understood at the present time—
conceived at present— when applied to moving bodies, leads to asymmetries which do not
appear to be inherent in the phenomena.» [7]

AsGalileo stated that there was noway to establishwhether a ship is still or ismoving
uniformly along a straight line, bymeans of experiments of classicalmechanics, in the
same way Einstein states that this is impossible also if one performs electromagnetic
experiments.

The consequences of this quest for new symmetries are amazing: not only the
concepts of absolute space and time were abandoned, but a new structure of space
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and time was discovered. Space and time cannot be put apart from each other, but
they build up a single entity, called spacetime.

Einstein demonstrated that, if one wants to preserve both the laws of classical
mechanics and those of classical electromagnetism, every observer must measure
the same velocity of light. The only way by which this can be obtained is that space
and time are measured differently by different observers. An observer moving with
respect to another, will see the other’s rule contract, and the other’s clock accelerate.

Quantum Mechanics

Within classicalmechanics therewere twowell-separatedworlds: theworld ofwaves,
and that of particles. For instance, the phenomenon of interference took place in the
former, while it did not in the latter. It was Einstein himself who, in his first work of
1905 [8], the one by which he was awarded the Nobel prize, demonstrated that the
photoelectric effect can be explained only if one admits that electromagnetic waves
behave like particles: the photons.

At the beginning of this work, Einstein writes:

« A profound formal difference exists between the theoretical concepts that physicists have
formed about gases and other ponderable bodies, and Maxwell’s theory of electromagnetic
processes in the so-called empty space.» [8]

The discrepancy that Einstein puts forward, and that on the contrary seemed “natural”
and acceptable by all the other physicists, is between the discontinuous or discrete
character of particles and their energy, and the continuity of the functions relative to
the electromagnetic waves and their energy per unit surface.

Einstein then deals with the electromagnetic waves as with an ensemble of par-
ticles, the photons, having discrete amounts of energy. Moreover, only an integer
number of photons can be emitted and absorbed, as if they were indivisible corpus-
cles.

On the other side, de Broglie [9] associated a wave to the elementary particles.
One can then deduce that particles too can develop an interference pattern, as was
widely confirmed experimentally.

Quantum mechanics thus originated from the elimination of the asymmetry
between particles and waves: every object at a microscopic level is a wave-particle or
a particle-wave, or whatever we would like to call them [10]. As Heisenberg demon-
strated [11], this is possible only if one gives up with determinism: it is not possible
to associate to a particle at a given instant of time a position and a velocity, with
arbitrary precision.

Upset by such a statement, Einstein himself reportedly said that it was as ifwe were
feeling lost. According to Galileo’s lesson, one can make physics only neglecting the
irrelevant aspects of a phenomenon. What we have said above shows, however, that
some aspects that are irrelevant at a scale of the order of a centimetre, say, are not
irrelevant at a scale of the order of 10−8 cm.
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Usually, different symmetries, and thus different physical laws, are associated
with different scales. That’s why it is important to specify the limits of validity of
our theories.

The Fermi Gas

Besides the symmetries of spacetime and of particles-waves, also the symmetries
of matter play a fundamental role in physics. In the following, I shall introduce this
topic by speaking of the Fermi gas, which is one of the most important “models” of
condensed matter physics.

Physical systems are usually quite complex, so that it is indispensable to introduce
approximations, or models. Some models can work very well, therefore one tries to
exploit them up to their limits of applicability.

In the 1920s, Thomas [12] and, independently, Fermi [13] introduced a model
whereby the electrons in an atom were treated as an homogeneous gas of electrons,
i.e. a gas characterized by a constant density (the density is the number of electrons
per unit volume). As a matter of fact, the electron density in an atom is not constant
at all. Yet Fermi and Thomas applied the model “locally”, by assuming that in every
point there was a neighbourhood where many electrons had a constant density. Such
amodel, corroborated by Fermi’s statistics [14] and by Heinseberg’s indetermination
principle [11], affords a different method, with respect to Schrödinger’s method, to
solve quantum mechanical problems. Energy is not expressed in terms of a wave-
function, but rather in terms of the electron density, which is an observable quantity
of the system. One can then avoid some of the paradoxes of quantum mechanics.
One can moreover derive [15] useful relationships among the properties of the atoms
as the atomic number Z is varied. Such relations cannot be obtained with more
sophisticated methods.

The Fermi gas model has been generalized to molecules [16], solids [17], and
recently also to fullerenes [18]. Nowadays, most refined calculations of the energy
levels of the solids are performed by means of density functional theory, which is
a development of Fermi–Thomas theory. It is interesting to note how the Fermi–
Thomas equation enables to derive the properties of all atoms, provided lengths are
properly scaled for each atomic species.

Symmetry Breaking

Many a scientist agrees upon the reductionist hypothesis, consisting in reducing
everything to its simplest and most fundamental roots. In a certain sense, this implies
that everything can be traced back to the four fundamental forces of nature: the
strong, weak, electromagnetic and gravitational force. Indeed, physicists hope that
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everything can be reduced to one single force, and some important achievements
have been obtained in this direction.

On the other hand, what cannot be agreed upon is the “constructionist” hypothesis,
i.e. that every law of nature can be derived only from these four forces.

The presumption of some physicists in this respect is well synthesized by P.A.M.
Dirac’s contribution to a conference, where he said that physicists discovered the
electromagnetic force, “all the rest is chemistry”.

A specific answer toDirac’s statement has been provided by another distinguished
physicist, P.W. Anderson [19]. The physical laws of a system cannot be extrapolated
to those of another system, if the two systems have different symmetries. For example,
we cannot hold that the laws governing the atoms, having spherical symmetry, are
the same as those of diatomic molecules, that are symmetric only along the axis
between the two nuclei. Every time that a “symmetry is broken”, the laws of nature
do change!

« At each stage entirely new laws, concepts, and generalizations are necessary, requiring
inspiration and creativity to just as great a degree as in the previous one.» [19]

Anderson’s work emphasizes the importance of the study of symmetry breaking.
Another kind of symmetry breaking can take place in systems endowed with a

very large number of atoms or molecules, such as the crystals. In a crystal, e.g. all the
molecules may be “oriented” along a given direction, thus giving rise to a privileged
axis. Actually, all the molecules may be oriented in exactly the opposite direction,
but the system is so large that no quantum or thermal fluctuation can make it oscillate
from a configuration to the other: the molecules of the crystal always stay oriented
in one direction only, and the overall symmetry is thus effectively broken.

In many cases, we may conclude that a large system, built up by many small
elements, is not only a larger system, but is also qualitatively different by each of its
parts: to quote Anderson again, “Many is different” [19]. Moreover, it is important
to recognize that, if one considers a very large number of particles, as a function
of parameters such as pressure, temperature, or volume, one may have “phase tran-
sitions”, such as that between a liquid and a gas, in which both the macroscopic
properties and the microscopic symmetries of the system change completely.

One studies the fundamental physical properties of a system by studying the
different phases of a system, and the transitions between one another. A characteristic
of phase transitions is that there are particular values of pressure and temperature,
defining a critical point,where it is not possible to distinguish two ormore coexisting
phases. In this case, the system looks like the same at every scale whatsoever. In
other words, whatever unit we adopt to measure lengths (decimetre, millimetre, or
thousandths of millimetre), the system will appear always identical. This particular
kind of symmetry is known as scale invariance [20] (Fig. 25.2).

Another characteristic of phase transitions is the existence of an order parameter,
i.e. of some quantity that takes on different values in the different phases. Phase tran-
sitions having an order parameter with the same symmetries are absolutely identical
to one another (universality). That is why it is of the utmost importance to study
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Fig. 25.2 “Big fleas have
little fleas/Upon their backs
to bite’em;/Little fleas have
smaller fleas,/And so ad
infinitum”. (Jonathan Swift,
On scaling laws in Biology,
1733)

also the symmetries of the order parameter. Once more, symmetry determines the
dynamics and the nature of the transition.

Solids Under High Pressure

Concerning materials, crystals provide the clearest example of the relationship
between symmetries and the properties of a system. On the basis of the fact that
a crystal has a given structure, which repeats itself rigidly and periodically in space,
thus forming a lattice, one is able to derive the properties of the electrons moving
within the crystal. From the particular symmetries of the crystalline lattice and of
the atoms composing it, one may establish whether a given material is an insulator,
or a metal, or a semiconductor.

The most “natural” phase of a solid should be the most symmetric one, where all
the ions are found at equal distances from their nearest neighbours, immersed in a
Fermi gas. Such a behaviour should take place, at least, at very high pressures (of the
order of those encountered e.g. in the white dwarfs), where all the chemical bonds
are broken.



25 Symmetries and Physics 353

“Fortunately”, there are elements that behave according to the model described
above also at atmospheric pressure. These elements are the alkaline metals (Li, Na,
K, ...), which possess only one electron in the outermost orbital. These electrons
delocalize within the crystal, thus forming the Fermi gas, having metallic properties.

In 1935, Wigner and Huntington [21] asked themselves “why hydrogen, hav-
ing a single electron, forms an insulating molecular solid at low pressure?” These
workers proposed that solid hydrogen at high pressure should undergo a molecu-
lar to monoatomic transition and, therefore, an insulator to metal transition. Since
then, quite a number of papers, both theoretical and experimental, have attempted at
detecting such a new phase of hydrogen, to no avail.

The quest for broken symmetries prompted us [22, 23] quite the opposite question,
namely why, at low pressure, the alkalis do not exhibit a broken symmetry, like
hydrogen?

In 1997, my collaborators and I published a paper with the provocative title “Are
the light alkali metals still metals at high pressure?” [22]. In that paper, we suggested
that under high pressure (not so high as those found in the white dwarfs), the alkalis
could be unstable towards less symmetric crystalline structures. This means that the
ions can pair themselves, thus forming a less symmetric phase. One then has a broken
symmetry phase, of the kind just described (Fig. 25.3).

Recently, some experimental confirmations of our hypothesis have been pub-
lished [24].

Fig. 25.3 Lithium under
high pressure (P � 44GPa)
in the cI16 structure. The
background shows the
electronic charge density
distribution evaluated at
48.8GPa. (Redrawn after
Ref. [24]) (color figure
online)
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High Critical Temperature Superconductors

Superconductivity [25–27], namely the uninterrupted flow of electrical current below
some critical temperature Tc, is a phase transition [28, 29]. Indeed, it is probably the
transition in which a spontaneous symmetry breaking manifests itself in the most
uncontroversial way.

While in the normal state one may describe the electrons by means of the Fermi
gas model, in the superconducting state electron pairs are formed, which condense
in a collective state [30]. If a material is in such a state, photons cannot enter its
bulk (the Meissner–Ochsenfeld effect [31]). Therefore, they acquire a mass (it is as
if photons would slow down and become heavy [32]).

The condensation of electron pairs in a collective state implies the formation of a
gap between the energy of such a state and the first available state. The energy gap
is the order parameter of the superconducting transition. It vanishes in the normal
state, and is different from zero in the superconducting state.

Up to 1987, the maximum value reached for Tc was about 30K. In that date,
however, Bednorz and Müller [33] discovered a new family of compounds with
much larger critical temperatures. Nowadays, critical temperatures of the order of
140K have been reached.

The high-Tc superconductors are strongly anisotropic materials. They are char-
acterized by different properties in the direction parallel to the layers containing the
atoms, than in the direction perpendicular to them. One has a large conductance in
the direction parallel to the layers, e.g. than in the direction perpendicular to them.
That’s why the high-Tc superconductors are considered quasi-bidimensional systems
(Fig. 25.4).

Fig. 25.4 Alternative representations of the structure of a typical cuprate high-Tc superconductor:
La2CuO4 (color figure online)
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Fig. 25.5 Possible symmetries of the superconducting order parameter: s, p, d (left to right) (color
figure online)

The order parameter, viz. the energy gap, is not characterized by the spherical
symmetry (s-wave), which is typical of the “conventional” superconductors, but is
rather characterized by a d-wave symmetry [34, 35] (Fig. 25.5).

A satisfactory theory of high-Tc superconductivity is not yet available, to date,
but many a scientist is convinced that the symmetry of the lattice (i.e. its quasi-
bidimensional character) and the symmetry of the order parameter must play a
prominent role in the quest for the solution of such a problem.

Conclusions and Perspectives

In this opening lecture, I tried to show that it is not a paradox to state that symmetries
are the physics, and that the quest for hidden symmetries has been, and probably
will be, the main guideline to uncover the fundamental laws of nature.

Einstein, e.g. demonstrated how the symmetries of space and time, found by
Galileo and Newton, could be unified in more general symmetries of the spacetime.

As far as the symmetries of matter are concerned, Wilson [36] demonstrated that
there exists an amazing parallel between the physics of superconductors and that of
the elementary particles. Probably, it is fair to say that elementary particles have a
mass for the same reason why photons cannot enter a superconductor.

At a certain scale one may have broken symmetries, which can manifest itself at a
different scale. Clear instances of such an aspect are found both in condensed matter
theory, and in the electroweak theory (a theory which unifies electromagnetism and
the physics of weak interactions).

Symmetries determine the physical quantities required to describe the phenomena,
and the dynamical equations governing them. To reveal the symmetries of a system
thus amounts to discover its fundamental properties.

One of the most important symmetries found in nature is scale invariance. This
is found at the critical point of a phase transition, and consists in the system being
perfectly identical to itself, when we change the length units.
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The study of phase transitions, the idea of scale invariance and the renormalization
method have been important precursors of the theory of chaos [37]. Also in the latter
case, bymeans of computer “experiments”, unexpected symmetrieswere found, such
as bifurcations, strange attractors and fractals [38]. In phenomena where nonlinear
effects are relevant [39], these ideas have often found important applications. In this
case, I am not only referring to physics (including turbulence, nonlinear optics, etc.),
but also to several other fields of science, such as biology, meteorology and geology.

Some researchers are convinced that the origin of the Universe may be described
by a critical point, and that therefore there was a “scale invariance” at the beginning.
It is perhaps this symmetry, at present hidden to our eyes, that we should unveil to
fully understand the Universe, in its simplicity and beauty.

Acknowledgements I thank G.G.N. Angilella, B. Mercurio, A. Milone, A. Rapisarda, and
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Chapter 26
Science and Religion: A Difficult Relationship

R. Pucci and G.G.N. Angilella

Introduction

The relationship between science and religion is not a well-posed question, at least
over the last decades. Indeed, it was long agowhen scientists such asBoyle orNewton
endeavoured to justify in which way their faith could be reconciled with their own
scientific discoveries. Nowadays, most scientists seem to share the conviction that
region has been and still is a hindrance towards scientific progress. On the other hand,
most theologians seem to consider scientists as bold and incapable to understand that,
beyond their experiments and calculations, there exists a deeper word on the human
being.

Recently, the main attitude of scientists has been reinvigorated by Rovelli [1].
Rovelli emphasizes that science could only be born when men (he often makes
reference to the ancient Greek philosopher Anaximander) could get free of their own
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mythical-religious conceptions. Indeed, it was with Thales and Anaximander when
natural phenomena found an explanation without making recourse to any deity. It
is possible to explain the universe through a rational investigation: the supernatural,
as introduced by mythology, disappears. The idea of a mutation cycle makes its
appearance: a cycle which, from air, earth, and water, through plants and animals,
gets back again to air, earth, and water [2].

Rovelli [1] underlines several elements that made this revolution possible, among
which: (1) Anaximander learnt a lot from his mentor Thales, but was able to radically
change some aspects of the latter’s teachings; (2) within a Greek polis, not subject
to any emperor, citizens were more likely to devise their own laws, rather than have
them imposed from above; (3) an increase in the exchange of goods and the mobility
of people induced an encounter among different civilizations, such as the Greek and
Egyptian ones; this naturally favoured the birth of the critical sense.

Even though these ideas are fully reasonable, in what follows we shall try to
emphasize some tracts of the religious thinking that, in our opinion, did contribute
to the development of science. Finally, we will surmise that theology evolved as a
consequence of scientific thinking. Due to our scarce knowledge of other religions,
we will principally make reference to the Judeo-Christian religious tradition.

Popper and Kuhn

One of the most relevant contribution to modern epistemology was provided by
Popper through his theory of falsificationism [3]. This approach allowed to draw a
boundary between what is scientific and what is not. What is scientific, is what can
be falsified, not what can be verified. For instance, the statement ‘God exists’ is not a
scientific proposition as it cannot be falsified. At variance with the principle of veri-
fiability, this approach endows with dignity and autonomy all human activities other
than science, such as art, economy, psychology, politics, and religion. In addition,
Popper insists that the true scientist must seek all that can confute his own theory,
and not proofs in favour of the latter.

Kuhn’s reply [4] could not be more devastating: never in the history of science
did the revolutions evolve as Popper would have wished. On the contrary, in scien-
tific revolutions conservatives and innovators struggled between each other making
recourse to all the weapons at their disposal, even the less dignified. Kuhn, moreover,
connects scientific revolutions to profound changes in economy, society and politics.
Thus, science does not appear as an isolated castle, but rather as a palace embedded
in a great town. Even though each of these two important authors tried to polish his
own thought so as to take into account the other’s criticism, the discrepancy between
the two appears insanable.

Nonetheless, we believe that one should recognize Popper’s merit of having
defined the peculiarity of scientific thinkingwithout denigrating other forms of think-
ing, and Kuhn’s merit of having underlined that different forms of thinking are often
not isolated, but rather influence one another. We will not be surprised, therefore,
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if in the following, even admitting that science and religion are different languages
[5], we shall look for possible reciprocal influences, which have been recognized
historically.

Job, and the Scientist as a Rebel

In his book The scientist as a rebel, Dyson writes [6]

There is no such thing as a unique scientific vision, any more than there is a unique poetic
vision. Science is a mosaic of partial and conflicting visions. But there is one common
element in these visions. The common element is rebellion against the restrictions imposed
by the locally prevailing culture,Western or Eastern as the casemay be. The vision of science
is not specifically Western. …And what is true of science is also true of poetry.

Rovelli [1] is even more precise, by saying that a scientist introduces relevant
advances if he is capable to contradict hismasters’ teachings in anyof their fundamen-
tal aspects. Rovelli illustrates the above statement by describing the aforementioned
case with Anaximander as an example. At variance with his master Thales, Anaxi-
mander does not believe that the world is made of water, neither he believes that the
Earth floats on water, nor that earthquakes are due to the fluctuations of the Earth’s
disk in the medium where it floats. To Anaximander, [1]

the Earth is not lying on something else (columns, turtles, an ocean, earth down forever), but
rather it floats free in space. The sky is not just above our heads: it is all around us, including
under our feet.

There is not even other water underneath [5]. Rovelli [1] recognizes in Anaximan-
der the promotor of a ‘third way’. He leans on some of Thales’ achievements, but
criticizes some essential traits. Similarly is how Copernicus behaves with respect
to Ptolemy. In his De revolutionibus, Copernicus keeps the epicycles and deferents
from Ptolemy’s Almagest, but sets the Sun at the centre of the Universe, rather than
the Earth. Such a ‘third way’ is halfway between unrestricted criticism, as is e.g.,
the case in the Bible for the Babylonian religion, and the acritical acceptation of
his master, “as it was for Saul of Tarsus with respect to Jesus” [1]. In our opinion,
the example by Rovelli [1] is however not quite correct. Saul (Paul the Apostle) did
not confront himself with Jesus. He states that he does not know him by the flesh,
and that such a way of knowledge is completely useless (2 Cor 5, 16). Saul only
confronted himself with the apostolic announcement, that is with the Crucifix, dead
and resurrected, as a way of salvation. We do not know anything else.

It is appropriate to note, at this point, that such a ‘third way’ was also that of
Job’s with respect to God, who was much more than a teacher for him. Job does
not abjure God, nor does he maledicts him, but asks him to account why He, the
Just, lets an innocent suffer. Job legitimately claims that God participates in a direct
confrontation with him. According to the Jewish legislation, this is actually a ryb,
which, as is explained by Zagrebelsky [7], used to be a debate between two subjects,
where each aimed not to destroy his own adversary, but rather to make him repent,
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thus recuperating the relationship between the two. Another ryb is, for example,
that of Christ with respect to his own people, who unjustly condemnates him. In his
silence, he emphasizes the enormous injustice that is being perpetrated by his people,
whereto he has offered himself as a ‘silent sheep’. This is probably one of the largest
problems of modern democracies: is it possible to establish a right that avoids the
sufferings of the innocent?

The poetic corpus of Job’s book is likely to date back to the seventh–sixth cen-
tury bc, but one can certainly finds precursors to Job already in 2000 bc [8, 9]. But
the genius of the author of the book of the Old Testament consists “in changing the
ancient legend of patient and submissive Job into the tragedy of Job the rebel, who
dismantles the tradition and struggles against God” [8]. The parallelism between
Anaximander’s and Job’s attitudes has been here mentioned to remind that what
Rovelli calls the ‘third way’ [1] was not alien to Jewish culture and probably also to
other cultures [8, 9]. One may recognize the spirit of rebellion of Anaximander of
Miletus, now in Turkey, with respect to his master also, and more vigorously, in the
relationship between Job and his God.

Hints of Influence of the Religious Thinking in the
Development of Scientific Thought

It is more difficult to find examples of ryb in the debates between two scientists, or
two currents of scientific thought. That’s because these debates are more similar to
usual trials in a tribunal: the two opponents are judged by a third subject, which in
this case is the rest of the scientific community, or even better the experimental data.

One of the most notable, and probably unique, example of ryb in the scientific
context can be found in the epistolary between Bohr and Einstein [10]: that is a ryb
which did not result in a positive outcome. But if the influence of the Jewish literature
on authors such as Anaximander, as described above, may seem uncertain, we can
assert with relative certainty that Christian theology did have a relevant role on the
birth of modern Western science.

If by theology we mean any proposition on God [11], including those based
on stories, myths, believes and rhytes, every religion obviously possesses its own
theology. But we are here referring to the critical and rational theology, that one
which had one of its greatest exponents e.g., in St Thomas Aquinas. Such a theology
is a characteristic only of Christianism. Again Dyson writes [6]

It is probably not an accident that modern science grew explosively in Christian Europe and
left the rest of the world behind. A thousand years of theological disputes nurtured the habit
of analytical thinking that could also be applied to the analysis of natural phenomena. On the
other hand, the close historical relations between theology and science have caused conflicts
between science and Christianity that does not exist between science and other religions.

Evidently, this close relationship between science and Christian theology was also
source of conflicts between themselves, with no holds barred.
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The last aspect that we would like to underline within the relationship outlined
above is nothing but a mere suggestion. In support to Kuhn’s thesis that scientific
revolutions more easily take place where also economical, political or social rev-
olutions are in progress, several authors [12, 13] asked themselves why quantum
mechanics was mainly born in Germany. Ciccotti [12] and Baracca [13] emphasized
that the Industrial revolution, albeit landed to Germany after the English counterpart,
was in Germany shorter and deeper, thus influencing more decidedly teaching and
scientific research in that country.

Such an analysis looks sufficiently convincing, but if one wants to underline that
scientific revolutions arise in those places where criticism and rationalism is more
diffused and better rooted, so as to react against the consolidated believes of a given
society, then, in order to study the development of science, one should study that
cultural climate of rebellion, which established itself in Germany at the beginning
of the sixteenth century, because of Protestantism.

It is appropriate at this point to emphasize thatReformationdid not at the beginning
stimulate any scientific revolution. On the other hand, Protestants, and in particular
Lutherans, condemned Copernicanism quite rapidly and severely. They considered
it a false and dangerous system, as it was in contrast with the Bible. Marin Luther
reportedly [14] said, in one of his Tischreden (dinner-table conversations), in open
contrast against Copernicus,

There is talk of a new astrologer who wants to prove that the earth moves and goes around
instead of the sky, the Sun, the Moon, just as if somebody were moving in a carriage or ship
might hold that he was sitting still and at rest while the Earth and the trees walked andmoved.
But that is how things are nowadays: when a man wishes to be clever he must needs invent
something special, and the way he does it must needs be the best! The fool [Copernicus]
wants to turn the whole art of astronomy upside-down. However, as Holy Scripture tells us,
so did Joshua bid the sun to stand still and not the earth.

The considerations above suggest that the interaction between religious and scientific
culture sometimes takes place directly, as was the case with Galileo, Darwin, etc.,
but often takes place in a fashion mediated by the dominant culture in a given society.
Any scientific revolution should first finds its roots in culture, then in society, and it
will be eventually accepted by the Church’s establishment. That is why there have
been delays even of centuries between the occurrence of a scientific revolution, and
its acceptance by religion. The converse is probably true as well.

God and Symmetries

If God created the world, then the laws governing the latter must be simple and sym-
metrical. This conviction has been deeply shared by many men of science, who also
were believers in God. Therefore, they sought manifestations of divine perfection in
the study of Nature. As already said, Copernicus maintained almost all the ptolemaic
model, with the exception of equants. However, he claimed that the simplifications
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introduced in his theory, with the Sun, rather than the Earth, at the centre of the Uni-
verse, reflected of that harmony that theUniverse ‘must have’. It was not possible that
God had created such a complicated Universe, such as Ptolemy’s. Copernicus was
convinced of the simplicity and harmony of the Universe, and these two attributes
are valid elements in support of his model [15].

Even Descartes wrote [16]

Besides, I have pointed out what are the laws of nature; and, with no other principle upon
which to found my reasonings except the infinite perfection of God, I endeavored to demon-
strate all those about which there could be any room for doubt, and to prove that they are
such, that even if God had created more worlds, there could have been none in which these
laws were not observed.

The fundamental fact is that symmetries are closely related with the laws of
Nature. Space and time invariance imply the conservation laws of momentum and
energy, respectively, and from these it is possible to derive the laws of motion [17].
It is remarkable that Einstein’s paper on special relativity [18] begins with the words

It is known that Maxwell’s electrodynamics —as usually understood at the present time—
when applied to moving bodies, leads to asymmetries which do not appear to be inherent in
the phenomena.

Similarly, it is possible to assume that Quantum mechanics was originated by the
attempt of removing the asymmetries which are present in classical physics between
waves and particles [17]. Thus, the quest for symmetries has become even more
importantly a method to study the laws of Nature, also for scientists who are non-
believers. On the other hand, it has been observed that both the fundamental forces
and some properties of matter appear as they do, because the breaking of a given
symmetry has taken place. To reveal the symmetries of a system is equivalent to
discover its fundamental properties, also for the physics of matter. The quest for
hidden symmetries has become one of the most powerful means of investigation of
Nature. One has succeeded to unify three out of four fundamental forces of Nature,
and present efforts are aimed at adding to these three also the gravitational force. One
endeavours to overcome the apparent contradictions between relativity and quantum
mechanics within a more symmetrical scheme. The quest for hidden symmetries is
also fundamental in the study of phase transitions and in several other fields. Coming
back to the original point, one might say that Anaximander may have concluded that
theEarth floats in the void anddoes not fall, from the observation that all the directions
along which it might have fallen are equivalent.

Hints of Influence of Scientific Thinking in the Development
of Religion

For nearly four centuries, the ‘Galileo affair’ has been a paradigmof the clash between
science and the Church hierarchy, and is still nowadays the object of several con-
troversies [19, 20]. Without getting involved with the numerous different issues of
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the problem, we would just like wot emphasize, with Melloni [21], that the ‘Galileo
affair’ has become for the fathers of the Second Vatican Council a ‘spyglass’, where-
with to scan

(i) the abuse, as it gets manifested concretely in well ascertained facts; (ii) the theological
basis over which that abuse had been founded, and the resistance to disclaim it.

One has to acknowledge, however, that this message, rather than from the official
proceedings of the Council, emerges from the interpretation thereof by Pope John
Paul ii, during his address to the Pontifical Academy of Sciences, on November 30,
1979, on the occasion of the centennial of Albert Einstein’s birth. On that occasion,
he reminded [22] that Galileo Galilei

had to suffer much […] owing to men and bodies of the Church.

According to him, Galileo also suffered from one of those ‘undue interventions’
already condemned by the Second Vatican Council.

This fact, in our opinion, is suggestive not only that the Catholic Church has
recognizedmost achievements of scientific research, but also of the profound changes
occurred in theology. It would be absurd for theologians to claim that the Scripture
should be interpreted literally. On the other hand, those who wish to interpret the
Bible should find out what the author is likely to tell us, through the metaphors and
the myths he adopts, well conscious that he is embedded in the culture of his times
[11].

The exegetical research of the twentieth century operated a process of demythol-
ogizing of the Old Testament, to the aim of distinguishing between “the mythical
vision of the world, which conditions the language of the Bible, and the message
thereby conveyed” [11]. One may therefore surmise that the typical conviction of
scientific research, that our knowledge is precarious and not definitive, has been trans-
ferred to the religious thinking, at least in part. Indeed, it is believed that the Scripture
will become clearer through deeper study and religious attitude. In his Homiliæ in
Hiezechielem prophetam (i, 7, 8), Pope Gregory the Great (twelfth century ad) used
to say

Scriptura crescit cum legente
[Scriptures grow with him, who reads it].

In so saying, he meant that our knowledge of the Bible gets enriched by the thoughts
of the men of faith that pursue it with heart sincere and free from prejudices.

Conclusions

In this brief paper, we addressed the question whether the issue of God be compatible
with the new scientific knowledge, even though this question has been dealt with
quite recently [23]. We have shared Popper’s epistemologic attitude, according to
which religious and scientific thinkings are sharply distinct from each other. AsKuhn
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observes, however, it is possible to remark that such a distinction is not historically
found. Dyson [6] notes that an interference between the two forms of thinking occurs
especially when Christian religion comes into play. Scientists belonging to other
religious confessions do not usually feel the urge to justify their being scientists and
believers.

On the contrary, Christian scientists feel rather obliged to justify their being scien-
tists and Christians at the same time. This is probably due to the fact that science and
Christianism have almost always suffered from conflicts, at least in their public man-
ifestations. Among the several examples that could be quoted, suffice here tomention
the anecdote recently reported by Boncinelli [24]. In 1860, at the end of Huxley’s
conference on Darwin’s evolutionism in Oxford, Anglican bishopWilderforce asked
him whether he descended from the apes from his mother’s, or his father’s side.

Quietly Huxley replied that he did not consider a shame to have an ape as an ancestor, but
rather to be kindred with a man who employed his own intelligence to hide the truth. [24]

It is appropriate here to mention that Lennox [25] remarks that this story, quite
known in the account reported above, is not quite correct from the historical point
of view, for several reasons, among which: (a) the clash was not between science
and religion, but between two different scientific models; (b) the struggle did not end
in a striking victory on behalf of Huxley, but rather quits. Nonetheless, the fact that
scientists often report the contrast between Huxley and Wilderforce along the terms
reported by Boncinelli [24] above, thereby ignoring the historical facts, denotes the
fact that there is still some diffuse and sometimes justified fear among them, that
the ecclesiastical hierarchy might hinder the development of scientific research. On
the other hand, it is not difficult to find numerous theologians quite convinced that
scientists, with their scientificmethod, are refractory to any other form of knowledge.

We believe that this situation is due to easily change in the near future, but we
hope that the present contribution by two Christian scientists might be useful to calm
down the controversy. After all, we have here surmised, even though some of our
statements could be questioned, that there exist historical evidence that scientific
and religious thinking, sometimes unconsciously, have reciprocally served to the
development of each other.
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Chapter 27
The Bold and the Humble: Physics
and Epistemology

R. Pucci and G.G.N. Angilella

For many years, the epistemological debate in Italy has been polarized between
‘internists’ and ‘externists’. That is, between those who think that the scientific
‘progress’ should be explained by means of criteria internal to science itself (and
these are related to Popper), and those who think that scientific revolutions could
be understood only in connection with economical, political, and social revolutions.
To Popper, the true scientist is he, who tries to demonstrate, with all means, that
his own theory is false. When he succeeds in doing so, he abandons it, and tries
and introduces a new theory, which he will endeavour to falsify again, but with a
progressive shift of the problems. To the latter proposal, Kuhn objects that scientists
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never behave this way, but rather make recourse to all means, including rhetorics, to
try and convince their opponents that their own theory is correct. Scientific revolutions
do not take place thanks to geniuses, but rather in connection with other revolutions
of society. Young scientists adhere to a new paradigm more as an act of faith, rather
than because a new theory is well established. Kuhn brilliantly demonstrates his
thesis in several papers, including his most beautiful book, entitled The structure of
scientific revolutions [1].

Our unconditioned admiration for Kuhn’s work is apparent. There is, however,
one aspect in Popper’s falsificationism, viz. that on the distinction between scien-
tific and non-scientific propositions, which is fundamental for modern epistemology,
which has been not yet overcome, in our opinion. Certainly, Popper’s falsifiction-
ist criterion is more convincing that the criterion of verifiability introduced by the
neopositivists. Kuhn does not face such a problem. In our opinion, the humbler posi-
tion by Popper in contrast to the arrogance of the neopositivists leads him to support
that non-scientifical disciplines have all the same dignity. Not everybody agree with
this connection, and among these is e.g., Gillies [2] (recently edited in Italian by
Giorello [3]).

It is beyond any doubt, however, that Popper provides convincing arguments
to prove that metaphysics is endowed with its own meaning, and that in certain
cases it can even somehow positively influence science, as it was evidenced in the
aforementioned work. It is true, therefore, that one cannot detect a clear borderline
between science and other human activities, but it is also true that each of these
activities possesses its own methodologies, that differentiate it from all the others.
Therefore, it is important to have a criterion to distinguish them. Popper’s criterion is
not absolute, but is up to now the best, in order not to erect insurmountable barriers
between one discipline and the other, but to understand that each of these is looking
for its own way towards truth.

An arrogant attitude, similar to that of the positivists’, can be recognized in some
elementary particle physicists. According to these, the only fundamental aspects
of Nature are elementary particles and the fundamental interaction forces among
them. All the rest can be deduced by these, and if not, then it is meaningless. We
will illustrate this through an anecdote. At the beginning of quantum mechanics,
when there used to be congresses where both physicists and chemists participated,
Dirac reportedly said “Physicists discovered the electromagnetic force. All the rest
is …chemistry.” Coulson then replied “Physicists are those who know what to do,
but do not know how.”

Amuch more profound answer was provided, several years later, by another great
physicist, P.W. Anderson, in his seminal paper entitled More is different [4]. In his
work, Anderson distinguishes between a reductionist approach to science, i.e., in
which one tries to reduce all phenomena to some fundamental ‘bricks’ (viz. the
elementary particles) and the fundamental interactions among them, and a construc-
tionist approach, which makes use of such bricks to ‘reconstruct’ the entire building
of Nature, as it is observed at the various scales. Anderson says that the reductionist
approach intrinsically excludes the possibility that new phenomena may emerge in
systems of many particles, as a consequence of the complexity of these systems, due
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both to the large number of constituent particles, and to the hierarchy and intensity
of the interactions among them.

Almost all physicists agree on the fact that it is necessary to go ever deeper in
looking for the simplest constituents of theUniverse, its fundamental laws.One hopes
to find the most elementary particles and to unify all forces in a single force. Up to
now, it has not been possible to unify quantum mechanics and general relativity, two
sometimes contradicting theories, but there is still hope to find a new theory which
will eventually able to eliminate the discrepancies between the two.

It is not correct, Anderson says, to think that reductionism implies construc-
tivism, i.e., the possibility to construct, starting from a few fundamental laws, the
whole Universe. Such an impossibility is due to the fact that when a system changes
symmetry, i.e., there is a spontaneous symmetry breaking, the observed phenomenca
can change, even drastically. For instance, it is not possible to extend the properties
of a single atom to a diatomic molecule, since an atom is spherically symmetric,
while a diatomic molecule is characterized by an axial symmetry, which is a reduced
symmetry with respect to spherical symmetry, which thus appears broken. Another
fundamental aspect concerns the comparison between a molecule and a solid, which
is typically made of a large number of molecules of the same kind, of the order
of 1023. If to each molecule we associate an arrow, we have the same probability
of finding the molecule with the arrow pointing upwards or downwards, but if we
consider 1023 molecules of the same kind all with the arrows pointing upwards, at a
sufficiently low temperature there are no enough thermal fluctuations which can flip
the molecules’ arrows downwards: more is different!

The laws governing solids are different, but equally fundamental, than those gov-
erning molecules or elementary particles.

Naturally, the same reasoning may be extended to chemistry, biology, economy,
and possibly also to human ‘sciences’, such as psychology. It is appropriate at this
point to emphasize the difference between science and technology. Up to now, we
have made reference to science, but it is important to clarify that science is different
from technology. On the other hand, many people think that science and technology
are the same thing, and the modern society of consumerism and information unfor-
tunately contributes (sometimes deliberately) to level out the intrinsic differences
between these two concepts. One then tends to attribute to science all the positive
or negative aspects typical of technological applications, which, according to the
various points of view, have changed human life for better or for worse.

Wewill again illustrate this point with an anecdote. In 1983, one of us attended the
Varenna summer school in physics. In that occasion, on one evening, he happened
to share the same table for dinner with John Bardeen,1 who told the following story

1John Bardeen (1908–1991) was the only scientist to receive two Nobel prizes, both for physics:
one (in 1956, withWilliam Shockley andWalter Brattain), for the invention of the transistor, and the
other (in 1972, with LeonN. Cooper and JohnRobert Schrieffer) for the theory of superconductivity.
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On a day, I invited for lunch a friend of mine, a lawyer, and his wife. He arrived with
a transistor radio, and told me: ‘John, I apologize if I’m going to take advantage of our
friendship, but since you invented the transistor, could you please repair my radio?’ At
which I replied: ‘I can explain why the radio works, not how it works.’

From this statement one can understand most clearly the difference between science
and technology.

Going back now to the extrapolation pointed forward previously from physics to
psychology, we must conclude that such an extension is less trivial, when applied to
religion. Indeed, in this case man must make a further act of humility: he cannot find
the laws by himself, but must accept that another will provide him with them. The
good news is that such laws, which for Christians reduce to a single one, viz. that of
love, correspond to the most profound sense of the human being.

Such laws convey a message of hope, of joy, and of peace, but it is not always
easy to accept them. On the other hand, we usually find ourselves to struggle with
a mysterious God who would like to crash us, as Pino Ruggieri states in his last
book [5]. We share what Bonhöffer terms an anticlerical attitude: “that sniffing the
track-of-the-human-sins to frame humanity.”On the other hand, we must recognize,
as ever more people do in the world, that the meeting with Pope Francis with the
Popular Movements of October 28, 20142 establishes a deep turning point in the
active participation of Catholic Church in the contrast against the injustices and social
inequalities. As in the Gospel, it becomes even now evident, in what the believers
think and do, the centrality of paupers, of excluded people, of those who are at the
margins of the world. The struggle of those should also be our struggle, the life of
the Church.

In this context, three dimensions have been singled out: the country, the house,
and the job, which must be an asset of everybody, and not just a privilege of a few.
These problems should be felt with a profound spirit of ‘solidarity’ and in connection
with the problems of peace achievement and environment protection. Scientists who
share this life programme cannot but be of service of their own brethren.
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Chapter 28
Ettore Majorana’s Early Scientific
Production

R. Pucci and G.G.N. Angilella

Abstract Among Ettore Majorana’s (1906–1938) earliest works, there is a brief
memory on the Thomas–Fermi model, and a paper on the chemical bond in the
helium molecular ion. Here, we emphasize Majorana’s hypercritical attitude even
towards his own work. Besides describing Majorana’s contributions to the Thomas–
Fermi model and to the understanding of the molecular bond, we argue that some
of Majorana’s seminal contributions in molecular physics already prelude to the
idea of exchange interactions (or Heisenberg–Majorana forces) in his later works on
theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at
the basis of a physical problem, as well as the limitations, rather than the advantages,
of the approximations of the method employed.
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Introduction

Ettore Majorana’s most famous, seminal contributions are certainly those on the
relativistic theory of a particle with an arbitrary instrinsic angular momentum [2],
on nuclear theory [3] and on the symmetric theory of the electron and the positron
[4]. In particular, the latter paper already contains the idea of the so-called Majorana
neutrino [4], as has been correctly emphasized [5]. The quest for Majorana neutrinos
is still the object of current fundamental research (see, e.g. Refs. [6] and [7] for a
general overview).

In this note, we would like to reconsider twomore papers byMajorana [8, 9], both
on atomic and molecular physics, and show how they are precursor to his theoretical
work on the exchange nuclear forces, the so-called Heisenberg–Majorana forces [3].
Wewill also try and emphasize his critical sense and great ability to catch the relevant
physical aspects of a given problem, beyond his celebrated mathematical skills, as
witnessed by contemporaries and colleagues who met him personally [10–12] (see
especially Ref. [13] for more references).

Both Amaldi and Segrè have provided us with a vivid account of Majorana’s first
meeting with Enrico Fermi. Majorana and Fermi first met in 1928 at the Physical
Institute in Via Panisperna, Rome. At that time, Fermi was working on his statistical
model of the atom, known nowadays as the Thomas–Fermi model, after the names
of the two authors who derived it independently [14–16]. Such a model provides an
approximate alternative to solving Schrödinger equation [17], and paved the way to
density functional theory [18].

Thomas–Fermi Model

Within Thomas–Fermi approximation, the electronic cloud surrounding an atom is
described in terms of a completely degenerate Fermi gas. Following Ref. [17], one
arrives at a local relation between the electron density ρ(r) at position r with respect
to the nucleus, and themomentum pF(r) of the fastest electron (Fermimomentum), as

ρ(r) = 2 · 4π
3

p3F(r), (28.1)

where the factor of two takes into account for Pauli exclusion. In Eq. (28.1), the
Fermi momentum pF(r) depends on position r through the self-consistent potential
V (r) as

p2F(r) = 2m[EF − V (r)], (28.2)

where EF is the Fermi energy, and m is the electron mass. Fermi energy EF is then
determined via the normalization condition
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∫
ρ(r) d3r = N , (28.3)

where N is the total electron number, equalling the atomic number Z for a neutral
atom. Inserting Eq. (28.2) into Eq. (28.1), making use of Poisson equation, and
introducing Thomas–Fermi screening factor φ through

V (r) − EF = − Ze2

r
φ(r), (28.4)

one derives the adimensional Thomas–Fermi equation for a spherically symmetric
electron distribution,

d2φ

dx2
= φ3/2

x1/2
, (28.5)

where
r = bx, (28.6)

and b sets the length scale as

b = 1

4

(
9π2

2Z

)1/3

a0 = 0.8853

Z1/3
a0, (28.7)

with a0 the Bohr radius.
Equation (28.5) is ‘universal’, in the sense that the sole dependence on the atomic

number Z comes through Eq. (28.7) for b. Once Eq. (28.5) is solved, the self-
consistent potential for the particular atom under consideration is simply obtained
by scaling all distances with b.

Asymptotic Behaviour of the Solution to Thomas–Fermi
Equation

Fermi endeavoured to solve Eq. (28.5) analytically without success. On the occasion
of his first meeting with Majorana, Enrico succinctly exposed his model to Ettore,
and Majorana got a glimpse of the numerical results he had obtained over a week
time, with the help of a primitive calculator. The day after Majorana reappeared and
handled a short note to Fermi, where he had jotted down his results. Majorana was
amazed that Fermi’s results coincided with his own.

How could Majorana solve Eq. (28.5) numerically in such a short time without
the help of any calculator? Various hypotheses have been proposed. Did he find
an analytical solution? At any rate, there are no physically acceptable analytical
solutions to Eq. (28.5) in thewhole range 0 ≤ x < +∞. The only analytical solution,
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φ(x) = 144

x3
, (28.8)

would have been found later by Sommerfeld in 1932 [19], and is physically mean-
ingful only asymptotically, for x � 1.

The most likely hypothesis is probably that of Esposito [20], who, together with
other authors [21], has found an extremely original solution to Eq. (28.5) in Majo-
rana’s own notes (see also Ref. [22]). The method devised by Majorana leads to
a semi-analytical series expansion, obeying both boundary conditions for a neutral
atom

φ(0) = 1, (28.9a)

φ(∞) = 0. (28.9b)

In a recent work, Guerra and Robotti [23] have rediscovered a not well-known
short communication byMajorana, entitled Ricerca di un’espressione generale delle
correzioni di Rydberg, valevole per atomi neutri o ionizzati positivamente (Quest for
a general expression of Rydberg corrections, valid for either neutral or positively
ionized atoms) [8]. In that work, perhaps in the attempt of improving the asymptotic
behaviour of the solution toThomas–Fermi equation,Ettore requires that the potential
vanishes for a certain finite value of x , say x0, both for neutral atoms and for positive
ions. He writes the self-consistent potential as

V (r) = Ze

r
φ + C, (28.10)

where, for an atom positively ionized n times (n = Z − N ), the constant C equals

C = n + 1

bx0
e, (28.11)

where

b = 0.47
1

Z1/3

(
Z − n

Z − n − 1

)2/3

Å, (28.12)

and the boundary conditions to Eq. (28.5) now read

φ(0) = 1, (28.13a)

φ(x0) = 0, (28.13b)

−x0φ
′(x0) = n + 1

Z
. (28.13c)

One immediately notices that, due to the new boundary conditions, Eq. (28.10)
does not reduce to Eq. (28.4) even for n = 0, i.e. for a neutral atom. In other words,
Majorana does not consider the potential V (r) in a generic location of the electron
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Fig. 28.1 Thomas–Fermi
screening factor φ for the
self-consistent potential of a
neutral Ne atom
(Z = N = 10). Solid line is
Fermi’s solution, dashed line
is Majorana’s solution, while
the light dashed line has
been obtained within
Hartree–Fock approximation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

φ 
( r

 )

r [ A ]

Thomas-Fermi
Majorana

Hartree-Fock

cloud, but the effective potential acting on a single electron, thus excluding the
interaction of an electron with itself.

Probably, owing to his profound critical sense (let us remind that his colleagues in
the Panisperna group nicknamed him the ‘Great Inquisitor’),Majoranamust have not
excessively relied on his own solution [20], which however reproduced the numer-
ical solution of Thomas–Fermi equation quite accurately. Probably, Majorana was
looking for a solution which should not decrease so slowly as x → ∞, as Eq. (28.8)
does.

In Fig. 28.1 we report Thomas–Fermi screening factor φ as a function of r for
a neutral Ne atom (Z = N = 10). The solid line refers to Fermi’s numerical solu-
tion, with boundary conditions given by Eqs. (28.9), the dashed line refers to Majo-
rana’s solution, with boundary conditions given by Eqs. (28.13) with n = 0, while
the light dashed line has been obtained within the Hartree–Fock approximation (see
App. “Appendix: Derivation of Thomas–Fermi screening factor withinHartree–Fock
self-consistent approximation” for a derivation). As it can be seen, Majorana’s solu-
tion introduces only a minor correction to Fermi’s solution at finite x values, but is
strictly zero for x ≥ x0.

In his work on positive ions [24], Fermi considers a potential vanishing at a finite
value x = x0. However, instead of Eqs. (28.13), he employs the boundary conditions

φ(0) = 1, (28.14a)

−x0φ
′(x0) = n

Z
, (28.14b)

which in particular imply Eq. (28.9b) in the case n = 0, corresponding to a neutral
atom.

In Fig. 28.2, we again report Thomas–Fermi screening factor φ as a function
of r according to Fermi, Majorana and Hartree–Fock, respectively, but now for a
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Fig. 28.2 Thomas–Fermi
screening factor φ for the
self-consistent potential of
the Ne+ ion (Z = 10,
N = 9). Solid line is Fermi’s
solution, dashed line is
Majorana’s solution, while
the light dashed line has
been obtained within
Hartree–Fock approximation
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positively ionized Ne atom, Ne+ (Z = 10, N = 9, n = 1).Majorana’s solution again
differs but marginally from Fermi’s solution, but while for a neutral Ne atom Fermi’s
solution decreases too slowly, it decreases too rapidly for Ne+.

Here,we are not disputingwhetherMajorana’s note,Ref. [8], should be considered
as a ‘full’ paper [25], nor dowewant to undervalue the importance of the contribution
analyzed inRef. [20].Wewould rather like to emphasize thatMajoranawas conscious
that his correction1 did not lead to substantial modifications to Fermi’s solution of
Eq. (28.5), including in the asymptotic limit (x � 1) [28].

Ettore never published anything else on this subject.
Although the present work is mainly based on Majorana’s actually published

works, rather than on speculations, it is remarkable that Majorana’s work (Ref. [8]),
which was presented by Majorana himself at the 22nd Adunanza Generale of the
Italian Physical Society, and which was therefore certainly known to the group of the
Via Panisperna boys, would never be referred to byMajorana’s colleagues. Actually,
Majorana’s correction [8] is reported in full in the work by Fermi and Amaldi [27],
but without any reference to the work (Ref. [8]) itself.

One may draw several hypotheses as to the reason of that, but we agree with
Esposito’s opinion [25], that this was due to Majorana’s own ‘hypercritical’ attitude,
which led him not to divulge the results of his own research, before these had reached
a degree of completeness which was satisfactory to him.2

At the end of this section, we would like to mention that Ettore Majorana’s most
important contribution to atomic physics was Ref. [29], which deals with the behav-
iour of oriented atoms in a varying magnetic field. In this work [29], Majorana not
only sets out the problem, but also provides it with a theoretical solution, employ-
ing for the first time the concept of ‘Bloch sphere’ and ‘generalized Bloch sphere’.

1Flügge [26] erroneously attributes this correction to Amaldi. Probably, he was only aware of Fermi
and Amaldi’s final work, Ref. [27].
2See also below on the ‘discovery’ of the neutron.
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Actually, Felix Bloch himself, in his 1945 work with Isidor Rabi [30], makes exten-
sive reference to Majorana’s paper, emphasizing its fundamental importance for the
solution of the problem. Remarkably enough, the title of Bloch and Rabi’s paper [30]
is almost literally the English translation of the title of Majorana’s paper [29]. (See
also Refs. [31–33] for further comments.)

Helium Molecular Ion

In his successive work [9], Majorana deals with the formation of the molecular ion
He+

2 . There again, Majorana demonstrates his exceptional ability to focus on the
main physical aspects of the problem, while showing the limitations of his own the-
oretical approximations. He immediately observes that the problem is more similar
to the formation of the molecular ion H+

2 , than to the reaction He + H. The most
relevant forces, especially close to the equilibrium distance, are therefore the reso-
nance forces, rather than the polarization ones. By exchanging the two nuclei, the
system remains unchanged. Majorana makes then use of the method of Heitler and
London [34], and emphasizes the importance of inversion symmetry with respect to
the middle point between the nuclei, set at a distance R apart.

Heitler and London [34] introduced a relatively simple expression for the wave-
function ψ of the two electrons in a hydrogen molecule H2 in terms of the wave-
function a and b of one electron in the atomic orbital corresponding to atom A and
B, respectively:

ψ(1, 2) = a(1)b(2) ± b(1)a(2), (28.15)

where 1 and 2 denote the coordinates of the two electrons, respectively. The wave-
functionψS , corresponding to the choice of the plus sign in Eq. (28.15), is symmetric
with respect to the exchange of the coordinates of both electrons and nuclei, while
ψA (minus sign in Eq. (28.15)) is antisymmetric. The full wave-function is globally
anti-symmetric, but here we are neglecting its spin part, since the Hamiltonian is spin
independent.

Despite its simplicity, the success of Heitler–London approximation relies on the
fact that it explained the stability of the H2 molecule, and could reproduce with
remarkable accuracy the dependence of the total electronic energy EI on the inter-
nuclear distance R. One obtains the attractive solution in correspondence with the
eigenfunction ψS . It is relevant to stress at this point that, if one had considered only
a(1)b(2), or b(1)a(2), in Eq. (28.15), the agreement with experimental data would
have been rather poor. Therefore, the resonance or exchange term is quite decisive
for establishing the chemical bond.

Heitler–London theory is even more accurate than the method of molecular
orbitals [35–38] (see, e.g. Ref. [39] for a more detailed discussion), which in addition
to Eq. (28.15) takes into account also for the ion-like configurations

a(1)a(2) and b(1)b(2), (28.16)
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corresponding to having both electrons on atom A, or B, respectively, on the same
footing and with equal weights as the terms in Eq. (28.15). However, the theory
can be improved by adding to Eq. (28.15) the two contributions in Eq. (28.16) with
appropriate weights, to be determined variationally. In the large R range, also the
polarization contributions become relevant, and the importance of ionic terms is even
larger for the doubly ionized He molecule, He++

2 [40].
Owing to his usual critical sense, Majorana does employ Heitler–London approx-

imation3 for He+
2 , but he notes [9] that their approximation becomes

«unreliable for distant atoms.»

Therefore, instead of performing any numerical calculation, he introduces an effec-
tive nuclear charge, Zeff , which affords an analytical solution. The fundamental effect
he considers is nowadays dubbed as screening: a single electron does not see a bare
nuclear charge Ze, but rather a reduced one, Zeffe, because of the screening cloud
of the other electrons.

The concept of an effective nuclear charge, already introduced for the heliumatom,
had been extended by Wang [41] to the hydrogen molecule. Probably Majorana was
not aware ofWang’s work, since he does not refer to it in his 1931 paper. In any case,
Majorana is the first one to make use of such a method for He+

2 . In making reference
to his own work [42], where Zeff is used as a variational parameter for He+

2 , Pauling
reports in a footnote4

«The same calculation with Zeff given the fixed value 1.8 was made by E. Majorana [9].»

The above statement byPauling is not quite correct. It seems to suggest the conclusion
that Majorana did not perform a variational calculation to estimate Zeff in the case of
He+

2 , but this is not possible. The only values known at that time for Zeff were those for
the helium atom (Zeff = 1.69) [17], and for the hydrogen molecule (Zeff = 1.166)
[41]. Majorana could determine the value Zeff = 1.8 for He+

2 only performing a
variational calculation, even though this calculation was not explicitly reported. The
variational value successively obtained by Pauling forHe+

2 was, in fact, Zeff = 1.833.
By making use of his results, Majorana evaluates the equilibrium internuclear

distance as d = 1.16 Å, in good agreement with the experimental value 1.087 Å. He
can then estimate the vibrational frequency as n = 1610 cm−1, which he compares
with the experimental value 1628 cm−1. Majorana concludes his paper by stating [9]
that his own result is

«casually in perfect agreement with the experimentally determined value»

(our italics). Any other author would have emphasized such a striking agreement as
a success of his own method, whereas Majorana rather underlines the drawbacks of
his own approximations.

3In analogy with Heitler–London, Majorana writes the wave functions for He+
2 as linear combina-

tions of products of three atomic-like wave functions, of which at least one is relative to one of the
two nuclei.
4See footnote on p. 359 of Ref. [43].
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Fig. 28.3 Variational
energies of the molecular ion
He+

2 , as a function of the
internuclear distance R.
Solid line refers to the
symmetric wave-function in
Eq. (28.15), dashed-dotted
line to the antisymmetric
one, while dashed line refers
to the ‘non-bonding’ case,
where position exchange is
neglected. Redrawn after
Ref. [42] (see also Ref. [40])
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We would like to remind that he also estimates the minimum energy, i.e. the
dissociation energy, finding the value Emin = −1.41eV, but he had no available
experimental data to compare with, at that time. However, he is not satisfied with
such a result and collects [9]

«all the errors of the method under the words ‘polarization forces’,»

which he estimates for very distant nuclei using the polarizability of the neutral He
atom. He then finds Emin = −2.4eV. More recent theoretical calculations, using the
method of configuration interactions [44] or ab initio variational methods [45], have
estimated the value Emin = −2.47eV. The experimental value has been accurately
determined quite recently [46] as Emin = −2.4457 ± 0.0002eV. We are not claim-
ing that Ettore’s result is more accurate than the theoretical results mentioned above.
However, he certainly understood the essential physical effects for that system, and
made use of appropriate approximations to estimate them. In particular, it is interest-
ing how he emphasizes the quest for the symmetries of the system (see the translation
of a paper by Majorana in Ref. [21]). As in the case of H2, also for He

+
2 it is essential

to include the position exchange term betweenHe andHe+, in order to have chemical
bonding, as it can be seen in Fig. 28.3, redrawn after Ref. [40]. If one had neglected
the resonance He : He+ � He+ : He (see dashed line in Fig. 28.3), chemical bonding
would have been impossible.

Recently, further considerations on Majorana and Pauling’s works, in relation to
the variational method and the genesis of the quantum theory of the chemical bond,
have been made by Esposito and Naddeo [47–49].
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The Discovery of the Neutron

Rutherford’s pioneering work [50] paved the way not only to Bohr’s atomic model,
but also to nuclear physics.

In 1930 Bothe and Becker [51], like Rutherford, employed α particles against a
berillium target in a scattering experiment. They observed the emission of a very
penetrating radiation, which they interpreted as γ rays. In successive experiments,
Irène Curie and Frederic Joliot [52, 53], her husband, developed further these exper-
iments, but they arrived at similar conclusions. According to Emilio Segrè’s account
[54], Majorana thus commented the Joliots’ results:

«They haven’t realized they have discovered the neutral proton.»

At this point we should remind that at that time it was believed that the nucleuswas
composed by protons and electrons. It was Chadwick [55] who soon after demon-
strated that the radiation emitted in the Joliots’ experiments was made up by neutral
particles, whose mass is very close to the proton’s mass. It was probably Fermi [54]
who first distinguished between the neutrinos conjectured by Pauli, and the neutrons
discovered by Chadwick.

Meanwhile, Majorana developed a theory of the nucleus containing protons and
neutrons and then, according to Segrè [54],

«he analyzed, as far as it was possible, the nuclear forces on the basis of the available
experimental results, and he estimated the binding energies of the lightest nuclei. When he
presented his work to Fermi and ourselves, we immediately recognized its importance. Fermi
encouraged Majorana to publish his own results, but Majorana refused to do so, saying they
were yet too incomplete.»

More than that, when Fermi asked Majorana whether he could make reference to his
results during a forthcoming conference in Paris, Ettore mockingly replied he would
agree, provided the reference was attributed to an old professor of electrochemistry,
who was also going to attend the same conference. Obviously, Fermi could not
accept Majorana’s condition, and no reference was then made to his results during
the conference.

Meanwhile, people started feeling the lack of a theory of nuclear forces, con-
veniently taking into account for the presence of both protons and nucleons in the
nucleus. But where to begin with?

Heisenberg–Majorana Forces

To this aim, in three fundamental contributions [56–58], Heisenberg assumed hydro-
gen molecular ion H+

2 as a model. He recognizes that the most important nuclear
forces are not the polarization forces among the neutrons, or Coulombic repulsion
among protons, but the exchange forces between protons and neutrons.
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Fig. 28.4 Exchange
interactions. Resonant forms
in the hydrogen molecular
ion, H : H+ � H+ : H
(upper row), and in the
proton–nucleon pair inside a
nucleus, p : n � n : p
(lower row)

p p p p
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Heisenberg emphasizes that neutrons obey to Fermi statistics. Moreover, since a
neutron possesses spin 1

2�, it cannot be simply thought of as composed of a proton
plus an electron, unless the latter has zero spin, when inside a neutron.5 A neutron is
an elementary particle per se. The interactions postulated by Heisenberg are charac-
terized by the exchange of both position coordinates and spins of the two nucleons.

Similarly, Majorana assumed that the fundamental nuclear forces are of exchange
nature between protons and neutrons. However, he fully exploits the analogy with
H+

2 (see Fig. 28.4), regardless of spin.6

Let r1, σ1 and r2, σ2 stand for the position and spin coordinates of the first and
the second nucleon, respectively, and let ψ(r1, σ1; r2, σ2) be the wave-function for
a given nucleon pair [60]. Then Heisenberg exchange PH implies

PHψ(r1, σ1; r2, σ2) = ψ(r2, σ2; r1, σ1), (28.17)

whereas Majorana exchange PM implies

PMψ(r1, σ1; r2, σ2) = ψ(r2, σ1; r1, σ2). (28.18)

In Majorana’s own notation (a part from a minus sign here included in the definition
of J (r)), the exchange interaction then reads [3]

(Q′, q ′|J |Q′′, q ′′) = J (r)δ(q ′ − Q′′)δ(q ′′ − Q′), (28.19)

where Q andq are the position coordinates of the neutron and the proton, respectively,
and r = |q ′ − Q′| is their relative distance. Majorana then plots a qualitative sketch
of J (r) (cf. Fig. 2 in Ref. [3]), which closely resembles the behaviour of the potential
energy in H+

2 , when the internuclear repulsion is neglected (Fig. 28.5).
In the same paper [3], in addition to his knowledge ofmolecular physics,Majorana

fully exploits also his acquaintance with the atomic statistical model. Indeed, he

5Besides considerations concerning the spin, such a model would require an enormous amount of
energy to localize the electron within the neutron [57].
6Current literature usually employs the formalism of isotopic spin to describe the exchange char-
acter of the nuclear forces. However, as noted by Blatt and Weisskopf [60], this is equivalent to a
description which makes use of the forces of Bartlett, Heisenberg, Majorana and Wigner.
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Fig. 28.5 Kinetic, potential
and total energies for the
ground state of H+

2 ,
excluding nuclear repulsion,
within the linear combination
of atomic orbitals (LCAO)
approximation. Cf. Fig. 2.4
in Ref. [59], where the same
quantities have been obtained
within a variational method
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defines the nuclear density as

ρ = 8π

3h3
(P3

n + P3
p ), (28.20)

in complete analogy with Eq. (28.1), where Pn and Pp are the Fermi momenta
of neutrons and protons, respectively. From this model, he derives an asymptotic
expression (ρ → ∞) for the exchange energy per particle,

a(ρ)|ρ→∞ = − n2
n1 + n2

J (0), (28.21)

wheren1 andn2 are the numbers of neutrons andprotons, respectively.As inThomas–
Fermi model, the kinetic energy per particle, t say, is given by

t ∝ ρ2/3. (28.22)

From the competition between kinetic and potential energy, the total energy attains
a minimum as a function of r (cf. Fig. 1 in Ref. [3]).

Majorana’s model explains two fundamental properties of nuclear physics [60]:
(a) the density of nucleons is about the same for all nuclei (density saturation); (b)
the binding energy per nucleon is about the same for all nuclei (binding energy
saturation).

Concluding Remarks

In some of his fundamental papers, Majorana mainly focussed on the asymptotic
properties of the potential and of thewave-function of an atomic ormolecular system.
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This is clearly demonstrated in his work on helium molecular ion, He+
2 [9]. On

the basis of his hypercritical spirit, Majorana was probably unsatisfied with the
asymptotic behaviour of the screening factor φ within Thomas–Fermi model, but his
note [8] is too short to confirm that. What we can certainly emphasize is his taste
for the quest of symmetries, and their relevance to determine the main properties of
a physical system [25]. This led him to demonstrate that the exchange symmetry is
essential to the formation of the chemical bond. Exchange symmetry is also central
in his model of the nuclear forces.

The quest for symmetries is evident in his famous work on the symmetrical theory
of the electron and the positron [4]. There, he notes that

«all devices suggested to endow the theory [61] with a symmetric formulation, without
violating its contents, are not completely satisfactory. […] It can be demonstrated that a
quantum theory of the electron and the positron can be formally symmetrized completely by
means of a new quantization procedure. […] Such a procedure not only endows the theory
with a fully symmetric formulation, but also allows one to construct a substantially new
theory for chargeless [elementary] particles (neutrons and hypothetical neutrinos).»

Several important experiments [6, 7] are currently underway to observe the ‘Majo-
rana neutrino’.

Acknowledgements The authors are grateful to Professor M. Baldo for useful comments and
for carefully reading the manuscript before publication, and to Professor N.H. March for close
collaboration and many stimulating discussions over the general area embraced by this note. The
authors also acknowledge helpful discussions with Dr. G. Piccitto.

Appendix: Derivation of Thomas–Fermi Screening Factor
within Hartree–Fock Self-Consistent Approximation

The solution of Hartree–Fock equations enables one to determine the (spherically
symmetric) radial electron density

D(r) = 4πr2ρ(r), (28.23)

normalized to the total electron number as
∫ ∞

0
D(r) dr = N (28.24)

(see, e.g. Ref. [62]). Figure28.6 shows D(r) for a neutral Ne (solid line; cf. Fig. 8.6 in
Ref. [62]) and for Ne+ (dashed line). The two peaks refer to the 1s and 2s 2p shells,
respectively. Although D(r) is always strictly different from zero over the whole r
range, it is an exponentially decreasing function of r , with D(r) ≈ 0 roughly defining
the atomic (respectively, ionic) radius.

By relating the electric field
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Fig. 28.6 Radial electron
density D(r) within
Hartree–Fock self-consistent
approximation for neutral Ne
(solid line) and singly
ionized Ne+ (dashed line)
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corresponding to the self-consistent potential, Eq. (28.4), to that generated by the
nucleus and the electron cloud within a distance r from the nucleus, by Gauss law,

|E| =
∑

r ′≤r Q

r2
= 1

r2

[
Ze − e

∫ r

0
D(r ′) dr ′

]
, (28.26)

one finds

φ′ = 1

r

[
φ − 1 + 1

Z

∫ r

0
D(r ′) dr ′

]
, (28.27a)

φ(0) = 1, (28.27b)

where a prime here refers to derivation with respect to r .
Within Thomas–Fermi approximation, φ(r0) = 0, where r0 is the ionic radius,

and the integration in the normalization condition, Eq. (28.24), should actually be
performed up to r = r0. Then, Eq. (28.27a) yields

− r0φ
′(r0) = 1 − N

Z
, (28.28)

in agreement with Fermi’s boundary condition, Eq. (28.14b).
Within Hartree–Fock approximation, D(r) is in general nonzero at any finite r .

However, as r → ∞, the potential experienced by a test charge is that of a charge
(Z − N )e, i.e.

V (r) − EF ∼ − (Z − N )e2

r
. (28.29)
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Comparing the above asymptotic behaviour of the potential with the definition of the
screening function φ in Eq. (28.4), one has

lim
r→∞ φ(r) = 1 − N

Z
. (28.30)

On the other hand, making use of the latter result, from Eq. (28.27a) it follows that

lim
r→∞ rφ′(r) = 0, (28.31)

thus implying thatφ′(r) vanishes as r → ∞more rapidly that 1/r (in fact, it vanishes
exponentially).

Finally, from Poisson equation

− ∇2V = 4πe2[−Zδ(r) + ρ(r)], (28.32)

for a given electron charge distribution, Eq. (28.23), one obtains

φ′′ = 1

Z

D(r)

r
(28.33)

at any r > 0. Integrating once between r and ∞, and making use of the limiting
value Eq. (28.31), one obtains

φ′(r) = − 1

Z

∫ ∞

r

D(r ′)
r ′ dr ′, (28.34)

which combined with Eq. (28.27a) yields the desired screening factor

φ(r) = 1 − 1

Z

∫ r

0
D(r ′) dr ′ − r

Z

∫ ∞

r

D(r ′)
r ′ dr ′ (28.35)

in terms of the Hartree–Fock self-consistent radial density D(r). In particular,
Eq. (28.35) manifestly fulfills the boundary conditions

φ(0) = 1 (28.36a)

φ(∞) = 1 − N

Z
. (28.36b)

In Figs. 28.1 and 28.2, light dashed lines represent Eq. (28.35), with D(r) numeri-
cally obtained within Hartree–Fock self-consistent approximation for Ne and Ne+,
respectively, as shown in Fig. 28.6.
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Chapter 29
Einstein and His Struggle for Peace

R. Pucci and G.G.N. Angilella

This year [2015] is the centennial of the publication of Einstein’s paper (1915) on
general relativity [1–5]. Among the numerous celebrations of Einstein’s life and
works, we will here remind a probably less emphasized aspect of his activity: the
quest for peace in the world. Let us move from a pamphlet by Albert Einstein and
Sigmund Freud [6]. This contains several short essays published by Freud in 1915,
and the epistolary between Einstein and Freud in 1932. In the recent Italian edition,
published by Boringhieri, the only contribution by Einstein is a five-pages letter sent
to Freud. Its importance, evidently, resides in the author, rather than in the number
of pages. The occasion of this epistolary stems from a proposal made to Einstein by
the League of Nations and by International Institute of Intellectual Co-operation at
Paris, led by Freud, “to invite a person, to be chosen by Einstein, to a frank exchange
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of views on any problem that Einstein himselfmight select.”Most people, including
Freud himself, expected that Einstein would choose a “problem at the frontiers of
today’s knowledge” (Freud’s words). On the other hand, Einstein invites Freud to
debate on the theme “Is there any way of delivering mankind from the menace of
war?”

Einstein is fully conscious of his own enormous popularity and therefore of the
great influence that his statements and ideas might have. However, he chooses to
make use of such an influence not to exalt further his own name or his discoveries,
but to rather spread a message of peace. In other words, he feels as a moral duty to
employ his authoritativeness to induce the world to get organized in order to avoid
war. To this mission he constantly devoted himself during his public life, which
was dedicated and concerned, even in the remoteness implied by the severity of his
studies.

This civil engagement begins with the countermanifest, written in 1914 by
Einstein, Nicolai and Förster, in protest against the manifest in support of the war
signed by 93 German intellectuals. WorldWar I is about to break out, and Freud does
in fact join with enthusiasm the idea of this possibility. This should not surprise, as
many German, Austrian and Hungarian Jewish people participated with enthusiasm
to the Great War, since they hoped therefore to finally become full citizens of the
Fatherland they had chosen for themselves.

However, Freud soon realizes his own mistake, and is overwhelmed by a tremen-
dous bewilderment. Not only has war upset the lives of men, but also the traditional
way in which death has been conceived.

But let us get back to 1932. Einstein is not primarily concerned to assess the
correctness of relativity (he knows it is correct),1 rather than try to avertWorldWar II,
which he feels is initiating. The only solution he can imagine is the establishment of a
supernational political organization, whereto the individual countries would entrust
the authority to compose the inevitable reciprocal quarrels. Every state must waive
some of its own jurisdiction.

Einstein does not behave naïvely: he can easily see the difficulties in such a pro-
posal, and addresses several questions to Freud, which should provide him with
advice on how to achieve his goals. Einstein’s questions were: (a) How is it possible
that a minority can enslave to its own greed the people’s mass, which would only
suffer from a war? (b) How is it possible that such a mass allows to get excited by
the communication media, the school, and sometimes even by the religious organi-
zations, up to the fury and its own holocaust? (c) Is there any possibility to guide

1In 1919, Sir Arthur Eddington led one of the expeditions organized in order to obtain an experi-
mental verification of one of the predictions of Einstein’s general relativity: the measurement of the
gravitational deflection of light. Such a measurement can be performed only during a solar eclipse
[7]. Therefore, Eddington and collaborators had to go to the island of Príncipe, near Africa. Despite
some clouds, the observation was effected on May 29, 1919, and it fully confirmed the predic-
tions of the new theory. Some time later, a journalist asked Einstein how he would have reacted if
Eddington’s observations did not confirm his theory. Einstein mildly replied: “I would have been
very sorry for that nice gentleman [Eddington]. The theory is correct”.
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men’s psychic evolution, so that they become able to resist to the psychosis of hate
and destruction?

Freud provides Einstein with precise answers to each of his questions, and notes
that some answers are already contained in his letter (such as that the supernational
structure should be endowed with some force, otherwise its deliberations would not
be respected, or that of a school which should be able to kindle the fire of peace
in its pupils’ hearts), but also makes recourse to his psychoanalytic instruments to
illustrate his opinion.

As days pass by, the wave of anti-Zionism increases in Germany, along with the
hate towards Einstein and his ‘Jewish’ science. Einstein moves to Belgium, but even
that country is too close to Germany, and he could thus be easily reached by killers.
At the beginning of 1933, when the Nazi took the power, the path of his emigration to
the United States of America had been already laid out, and in winter 1933 Einstein
started his new appointment at the Institute of Advanced Studies, which had been
recently established byFlexner in Princeton. (In 1930, LouisBamberger andCaroline
Frank Fuld had donated 5 millions dollars to the aim of founding this Institute.) It
should be noted that Einstein entered the USA as a visitor: at the beginning he had
no residence permit, let alone the US citizenship.

Some feminist associations opposed to Einstein’s entrance into the US, since in
their opinion he favoured subversive and pacifist doctrines. In this respect, Einstein
oncedeclared to a representative of theAssociatedPress:“Why should oneadmit such
a man, as vulgar as to oppose to any war, but the inevitable one with his own wife?”
[8] Similarly, with the same seriousness, he stated to the New York Times (June 20,
1932): “Only a life lived for others is the life worth while.” With time, however,
he won the liking of a large part of the American people with his anticonformism,
not only through his way of dressing himself, but because of his ideas: his constant
rejection to take sides with an ever more inhuman society.

Meanwhile,WorldWar II is approaching, andmany scientists are aware that it will
be probably fought with new and terrific weapons, the atomic bombs. Two physicists
from Columbia University, Enrico Fermi and Leó Szilárd, a Hungarian national who
fled away from Berlin University, and Eugene Wigner, a physicist from Princeton, a
Hungarian himself and a Nobel prize awardee, tried to convince President Roosevelt
on the opportunity to build the atomic bomb. Their efforts were not successful, and so
they inducedEinstein tomake use of his great authoritativeness. Einstein, a convinced
pacifist, realized that the Nazi could indeed build the atomic bomb themselves, and
that, in the hands of that raving insane of Hitler, could only mean the end of human
civilization and of individual rights.

On August 2, 1939, Einstein sent a letter to President Roosevelt, its first sentences
being as follows:

Some recent work by E. Fermi and L. Szilard… leads me to expect that the element uranium
may be turned into a new and important source of energy in the immediate future. … A
single bomb of this type, carried by boat and exploded in a port, might very well destroy the
whole port together with some of the surrounding territory.

Thus the Manhattan Project got started.
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When the first atomic bomb, significantly called ‘Trinity’, exploded in Alamo-
gordo, on July 16, 1945, everybody knows that Oppenheimer said “The physicists
have known sin; and this is a knowledge which they cannot lose.” In an interview
after the event, Oppenheimer then said

We knew the world would not be the same. A few people laughed, a few people cried, most
people were silent. I remembered the line from the Hindu scripture, the Bhagavad-Gita;
Vishnu is trying to persuade the Prince that he should do his duty and, to impress him, takes
on his multi-armed form and says, ‘Now I am become Death, the destroyer of worlds.’ I
suppose we all thought that, one way or another.

Several scientists, includingEinstein, tried, to no avail, to prevent any further use of
the atomic bomb, which was launched on Hiroshima and Nagasaki. Some physicists
had a crisis of conscience. Oppenheimer himself was indicted with communism,
for having delayed the construction of the hydrogen bomb, and he was forbidden
to access to military classified information. Rasetti, one of the Via Panisperna boys,
not only refused to take part in the Manhattan Project, but even changed job, and
successfully dedicated himself to biology.

When the war was over, Einstein undertook again his struggle for peace. Hewrites
many papers, among which the most important are ‘Atomic war or peace’ (1947),
and ‘The war is won but peace is not’ (1945). In this latter essay [9], he writes

Alfred Nobel invented the most powerful explosive ever known up to his time, a means of
destruction par excellence. In order to atone for this, in order to relieve his human conscience,
he instituted his awards for the promotion of peace and for achievements of peace.

Today, the physicists who participated in forging themost formidable and dangerous weapon
of all times are harassed by an equal feeling of responsibility, not to say guilt. We cannot
desist from warning, and warning again, we cannot and should not slacken in our efforts to
make the nations of the world, and especially their governments, aware of the unspeakable
disaster they are certain to provoke unless they change their attitude toward each other and
toward the task of shaping the future.

We helped in creating this new weapon in order to prevent the enemies of mankind from
achieving it ahead of us, which, given the mentality of the Nazis, would have meant incon-
ceivable destruction and the enslavement of the rest of the world.

We delivered this weapon into the hands of the Americans and the British people as trustees
of the whole [of] mankind, as fighters for peace and liberty. But so far, we fail to see any
guarantee of peace. We do not see any guarantee of the freedoms that were promised to the
nations in the Atlantic Charter. The war is won, but the peace is not.

…Otherwise, human civilization will be doomed.

Einstein proposes again, with numerous more details, the idea of a supernational
government to guarantee peace in the world His position is now shared by many,
among whom Emery Reves, a collaborator of Churchill’s, who writes in his book
‘The anatomy of peace’

Today, sovereignty has far too narrow a basis; it no longer has the power it should and
was meant to have. The word is the same. The conception it expresses is the same. But the
surroundings have changed. The conditions of the world have changed. And this changed
situation calls for corresponding changes in the interpretation of this basic principle, if we
desire to preserve this, the only foundation of democratic society yet discovered.
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However,many are still accusing him to be an idealist, without any practical sense.
Or worse! In the United States, there are some who accuse him to be a communist. In
1947, he sends an open letter to the General Assembly of the United Nations. There,
Einstein denounces that

The progress of technological development has not increased the stability and the welfare of
humanity. Because of our inability to solve the problem of international organization, it has
actually contributed to the dangers which threaten peace and the very existence of mankind.

He then makes his own proposal.
From the Soviet Union, several scientists (S.I. Vavilov, A.N. Frumkin, A.F.

Ioffe, and N.N. Semyonov) reply with an open letter entitled ‘The wrong ideas of
DrEinstein’ (1947). Basically, they surmise that Einstein is proposing a supernational
government in order to have the whole world ruled by the United States [9].

To no avail there came Einstein’s reply. Einstein continued to struggle for a dif-
ferent school, a school which would teach the ideals of freedom and peace, for con-
scientious objection up to civil disobedience, a point of view which he shared with
don Milani, for disarmament and the end of armies, for a Jewish state in Palestine.

On April 11, 1955, for the last time, he undersigned a pacifist manifesto (this
time written by Bertrand Russell), in which all Nations were invited to give up with
nuclear weapons. On the morning of April 13, the ambassador of Israel paid a visit to
Einstein to record a message that he wanted to convey to the radio and the television,
on the occasion of the forthcoming Yom ha-Atzma’ut, Israel’s Independence Day.
The incomplete text ended thus

Not one statesman in a position of responsibility has dared to pursue the only course that
holds out any promise of peace, the course of supranational security, since for a statesman to
follow such a course would be tantamount to political suicide. Political passions, once they
have been fanned into flame, exact their victims.

These were probably Einstein’s last words.
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