
Jean-Marie Jacquet
Mieke Massink (Eds.)

 123

LN
CS

 1
03

19

19th IFIP WG 6.1 International Conference, COORDINATION 2017
Held as Part of the 12th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2017
Neuchâtel, Switzerland, June 19–22, 2017, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 10319

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jean-Marie Jacquet • Mieke Massink (Eds.)

Coordination Models
and Languages
19th IFIP WG 6.1 International Conference, COORDINATION 2017
Held as Part of the 12th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2017
Neuchâtel, Switzerland, June 19–22, 2017
Proceedings

123

Editors
Jean-Marie Jacquet
University of Namur
Namur
Belgium

Mieke Massink
CNR-ISTI
Pisa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-59745-4 ISBN 978-3-319-59746-1 (eBook)
DOI 10.1007/978-3-319-59746-1

Library of Congress Control Number: 2017942989

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9531-0519
http://orcid.org/0000-0001-5089-002X

Foreword

The 12th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Neuchâtel, Switzerland, during June 19–22, 2017. It was
organized by the Institute of Computer Science of the University of Neuchâtel.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues.

Each day of the federated event began with a plenary speaker nominated by one
of the conferences. The three invited speakers were Prof. Giovanna Di Marzo Seru-
gendo (UniGE, Switzerland), Dr. Marko Vukolić (IBM Research, Switzerland), and
Dr. Rupak Majumdar (MPI, Germany).

Associated with the federated event were also three satellite events that took place
during June 21–22, 2017:

– The 10th Workshop on Interaction and Concurrency Experience (ICE)
– The 4th Workshop on Security in Highly Connected IT Systems (SHCIS)
– The EBSIS-sponsored session on Dependability and Interoperability with

Event-Based Systems (DIEBS)

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the aforementioned conferences and workshops for their highly appreciated
efforts. The organization of DisCoTec 2017 was only possible thanks to the dedicated
work of the Organizing Committee, including Ivan Lanese (publicity chair), Romain
Rouvoy (workshop chair), Peter Kropf (finance chair), and Aurélien Havet (webmas-
ter), as well as all the students and colleagues who volunteered their time to
help. Finally, many thanks go to IFIP WG6.1 for sponsoring this event, Springer’s
Lecture Notes in Computer Science for their support and sponsorship, and EasyChair
for providing the reviewing infrastructure.

April 2017 Pascal Felber
Valerio Schiavoni

Preface

Modern information systems rely increasingly on combining concurrent, distributed,
mobile, adaptive, reconfigurable, and heterogeneous components. New models,
architectures, languages, and verification techniques are necessary to cope with the
complexity induced by these systems. Coordination models and languages have
emerged as a successful approach to that end, in that they provide abstractions that
cleanly separate behavior from communication, therefore increasing modularity, sim-
plifying reasoning, and ultimately enhancing software development. Building on the
success of the previous editions, this volume contains the papers presented at Coor-
dination 2017, the 19th IFIP WG 6.1 International Conference on Coordination Models
and Languages held in Neuchâtel, Switzerland, during June 19–22, 2017, as part of the
federated DisCoTeC conference. Coordination itself is part of a series whose pro-
ceedings have been published since 1996 in Springer’s Lecture Notes in Computer
Science (LNCS).

The Program Committee (PC) of Coordination 2017 consisted of 33 prominent
researchers from 18 different countries. In all, 31 submissions were received out of 37
submitted abstracts. Each submission was reviewed by three independent referees. The
review process included an in-depth discussion phase during which the merits of all the
papers were discussed. Based on quality, originality, clarity, and relevance criteria, the
PC finally selected 13 contributions for presentation and publication in the proceedings.
The program was further enhanced by an invited talk by Giovanna Di Marzo Seru-
gendo from the University of Geneva, entitled “Spatial Edge Services,” an extended
abstract of which is included in the these proceedings.

Many people contributed to the success of Coordination 2017. We first of all would
like to thank the authors for submitting high-quality papers. We also thank the Program
Committee members for their effort and time to read and discuss the papers and we
equally acknowledge the help of the additional reviewers who evaluated submissions in
their area of expertise. Furthermore, we wish to thank the Steering Committee of
Coordination and the Steering Board of DisCoTeC for their support and in particular
Giovanna Di Marzo Serugendo for her keynote address.

It is also our pleasure to thank Pascal Felber, the general chair of DisCoTec, Valerio
Schiavoni, the organizing chair of DisCoTec, Ivan Lanese, the publicity chair of
DisCoTec, and Francesco Tiezzi, the publicity chair of Coordination 2017. We would
also like to thank the providers of the EasyChair conference management system,
whose facilities greatly helped us run the review process and facilitate the preparation
of the proceedings. With respect to the latter, we also warmly thank Anna Kramer,
from Springer, for her help in producing the proceedings. Finally, we are indebted to
the conference attendees for keeping the Coordination research community lively and
interactive, and ultimately ensuring the success of this conference series.

June 2017 Jean-Marie Jacquet
Mieke Massink

Organization

Conference Chairs

Jean-Marie Jacquet University of Namur, Belgium
Mieke Massink CNR-ISTI, Italy

Publicity Chair

Francesco Tiezzi University of Camerino, Italy

Program Committee

Gul Agha University of Illinois at Urbana-Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Jacob Beal Raytheon BBN Technologies, USA
Simon Bliudze EPFL, Switzerland
Frank de Boer CWI and Leiden University, The Netherlands
Antonio Brogi University of Pisa, Italy
Roberto Bruni University of Pisa, Italy
Vincenzo Ciancia CNR-ISTI, Pisa, Italy
Dave Clarke Uppsala University, Sweden
Ferruccio Damiani Università di Torino, Italy
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT, School for Advanced Studies Lucca, Italy
Schahram Dustdar TU Wien, Austria
José Luiz Fiadeiro Royal Holloway, University of London, UK
Stephen Gilmore University of Edinburgh, UK
Paola Inverardi Università dell’Aquila, Italy
Jean-Marie Jacquet University of Namur, Belgium
Ramtin Khosravi University of Tehran, Iran
Eva Kühn Vienna University of Technology, Austria
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti Università degli Studi di Firenze, Italy
Mieke Massink CNR-ISTI, Italy
Hernan Melgratti Universidad de Buenos Aires, Argentina
Andrea Omicini University of Bologna, Italy
Ernesto Pimentel University of Malaga, Spain
Gwen Salaün University of Grenoble Alpes, France
Marjan Sirjani Malardalen University, Reykjavik University, Iceland
Carolyn Talcott SRI International, California, USA
Emilio Tuosto University of Leicester, UK
Vasco T. Vasconcelos LaSiGE and University of Lisbon, Portugal

Erik de Vink Eindhoven University of Technology, The Netherlands
Mirko Viroli University of Bologna, Italy
Takuo Watanabe Tokyo Institute of Technology, Japan
Danny Weyns Katholieke Universiteit Leuven, Belgium
Martin Wirsing Ludwig-Maximilians-Universität München, Germany

Steering Committee

Gul Agha University of Illinois at Urbana-Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Dave Clarke Uppsala University, Sweden
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT, School for Advanced Studies Lucca, Italy
Tom Holvoet KU Leuven, Belgium
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien The University of Texas at Austin, USA
Eva Kühn Vienna University of Technology, Austria
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Jose Proenca University of Minho, Portugal
Rosario Pugliese University of Florence, Italy
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, California, USA
Vasco T. Vasconcelos LaSiGE and University of Lisbon, Portugal
Mirko Viroli University of Bologna, Italy
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

Yehia Abd Alrahman
Maryam Bagheri
Roberto Casadei
Stefan Craß
Joeri De Koster
Kasper Dokter
Philipp Haller
Ahmad Ibrahim
Ali Jafari

Ehsan Khamespanah
Dimitrios Kouzapas
Diego Latella
Anastasia Mavridou
Florian Myter
Luca Padovani
Karl Palmskog
Danilo Pianini
Martin Planer

Sophie Therese Radschek
Guido Salvaneschi
Atul Sandur
Chris Shaver
Jacopo Soldani
Quentin Stievenart
Hugo Torres Vieira

X Organization

Contents

Invited Talk

Spatial Edge Services - From Coordination Model to Actual Applications . . . 3
Giovanna Di Marzo Serugendo

Languages and Tools

AErlang: Empowering Erlang with Attribute-Based Communication 21
Rocco De Nicola, Tan Duong, Omar Inverso, and Catia Trubiani

Simpler Coordination of JavaScript Web Workers . 40
Marco Krauweel and Sung-Shik T.Q. Jongmans

Optimally-Self-Healing Distributed Gradient Structures Through Bounded
Information Speed. 59

Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli

Development Tools for Rule-Based Coordination Programming in LINC 78
Maxime Louvel, François Pacull, Eric Rutten, and Adja Ndeye Sylla

Types

Session-ocaml: A Session-Based Library with Polarities and Lenses 99
Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Retractable and Speculative Contracts . 119
Franco Barbanera, Ivan Lanese, and Ugo de’Liguoro

A Denotational View of Replicated Data Types . 138
Fabio Gadducci, Hernán Melgratti,
and Christian Roldán

Resource, Components and Information Flow

Many-to-Many Information Flow Policies . 159
Paolo Baldan, Alessandro Beggiato,
and Alberto Lluch Lafuente

Modelling the Dynamic Reconfiguration of Application Topologies,
Faults Included . 178

Antonio Brogi, Andrea Canciani, and Jacopo Soldani

http://dx.doi.org/10.1007/978-3-319-59746-1_1
http://dx.doi.org/10.1007/978-3-319-59746-1_2
http://dx.doi.org/10.1007/978-3-319-59746-1_3
http://dx.doi.org/10.1007/978-3-319-59746-1_4
http://dx.doi.org/10.1007/978-3-319-59746-1_4
http://dx.doi.org/10.1007/978-3-319-59746-1_5
http://dx.doi.org/10.1007/978-3-319-59746-1_6
http://dx.doi.org/10.1007/978-3-319-59746-1_7
http://dx.doi.org/10.1007/978-3-319-59746-1_8
http://dx.doi.org/10.1007/978-3-319-59746-1_9
http://dx.doi.org/10.1007/978-3-319-59746-1_10
http://dx.doi.org/10.1007/978-3-319-59746-1_10

Constraint-Flow Nets: A Model for Building Constraints from Resource
Dependencies . 197

Simon Bliudze, Alena Simalatsar, and Alina Zolotukhina

Verification

Verifying Timed BPMN Processes Using Maude . 219
Francisco Durán and Gwen Salaün

Full-Abstraction for Must Testing Preorders: (Extended Abstract) 237
Giovanni Bernardi and Adrian Francalanza

Communication Requirements for Team Automata 256
Maurice H. ter Beek, Josep Carmona, Rolf Hennicker,
and Jetty Kleijn

Author Index . 279

XII Contents

http://dx.doi.org/10.1007/978-3-319-59746-1_11
http://dx.doi.org/10.1007/978-3-319-59746-1_11
http://dx.doi.org/10.1007/978-3-319-59746-1_12
http://dx.doi.org/10.1007/978-3-319-59746-1_13
http://dx.doi.org/10.1007/978-3-319-59746-1_14

Invited Talk

Spatial Edge Services - From Coordination
Model to Actual Applications

Giovanna Di Marzo Serugendo(B)

Centre Universitaire d’Informatique, Institute of Services Science,
University of Geneva, Geneva, Switzerland

giovanna.dimarzo@unige.ch

Abstract. Ubiquitous and context-aware sensors are increasing in num-
ber and aim at providing comfort and better life quality. They are spa-
tially distributed and their computation capacity is still under-exploited.
Spatial Edge Service are a new generation of services exploiting IoT and
spatially distributed data. They result from collective and decentralised
interactions of multiple computing entities. They rely on a logic and
chemical-based coordination model. Spatial edge services provide inno-
vation capabilities for the software industry, connected objects manufac-
turers and edge computing industry. This paper provides and overview
of Spatial Edge Services, their underlying coordination model, a set of
development tools, a series of case studies scenarios and future visions.

1 Introduction

Mobile phones, laptops, tablets locally connected to each other form huge comput-
ing and storage infrastructures, currently under-exploited, but available on motor-
ways, city-centers, inside buildings, etc. Those infrastructures pave the way for a
new category of services based on data propagation among devices, e.g. car traffic
control service through propagation of data from one car to another, information
dissemination in a crowd to better steer the crowd towards points of interest or
emergency exits, and alternative communication infrastructures in case of envi-
ronmental disasters. Such services are time-related: they may last just for a very
short time for a specific purpose exploiting current contextual data, as well as
space-related: these services have a meaning because the data they rely on or the
data they spread is spatially distributed over a geographic area.

Traditional service-oriented approaches allow programmers to combine
together into a new service diverse functionalities provided themselves under
the form of services. Typical approaches involve Web services or rely on APIs
mashups. Composition of services is generally foreseen at design-time, adap-
tation happens by choosing the actual services at run-time. Current service-
oriented approaches are not suited for the new generation of services, work-
ing on smart environments or exploiting Internet of Things scenarios. They do
not cope with the dynamicity involved by the underlying mobile and changing
computing infrastructures, the spatiality of the considered data, or time-related

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-59746-1 1

4 G. Di Marzo Serugendo

issues. There is a need for a paradigm shift in the notion of services along two
dimensions: (1) services make sense because they are spatially distributed, their
functionality is provided as the result of the interactions among several entities,
possibly distributed across several computational nodes; (2) services are built on
demand, e.g. users can query diffused clouds of data in a smart city, to retrieve
the closest vacant parking place, sensors, “things” and services spontaneously
collaborate to provide the answer to the query. We call such services spatial
edge services. This paper summarises our research works related to the notion
of spatial services.

2 Spatial Edge Services

Spatial edge services are a new generation of services that exploit spatially dis-
tributed data, enable smart environments, or exploit Internet of Things (IoT)
scenarios. This is a new category of decentralised services based on data prop-
agation among mobile devices and where the functionality of the service is
provided as the result of the collective interactions among multiple entities,
involving processes and calculations taking place across several spatially (geo-
graphically) distributed computational entities (i.e. sensors, mobile or stationary
computational nodes, actuators). Spatial edge services are built and composed
on-demand. Spatial edge services are based on Spatial Computing [29]. Spatial
computing thrives on decentralised computation, in a way similar to edge com-
puting, fog computing or jungle computing, where computation is pushed at
the edge of the network, away from centralised clouds, closer to end-users [23].
Spatial services bring an engineering dimension to spatial computing as they
provide ready to use services that can be deployed on-demand over physical
environments by higher-level services or applications. A spatial service is built
dynamically through collaboration with other services [17]. Spatial edge services
have time- and space-enabled capabilities: deposit data at geographic locations,
retrieve data, aggregate data, provide information to users, evaporate informa-
tion, or act on the environment. Geographically distributed data collectively
provides a specific meaning (e.g. artificial gradient).

Bio-inspired mechanisms. Self-organisation, as exhibited by natural systems,
provides an appealing approach to engineer spatial services where the function-
ality and coordination arises from the interactions among several autonomous
entities; no central control is required; and some robustness properties and
adaptation in dynamic large-scale environments are naturally provided. Self-
organisation is achieved by the use of self-organising mechanisms [21] (Fig. 1),
i.e., rules that autonomous entities employ to coordinate their behaviour, usually
following information gathered from their local environment. One of the main
ideas behind spatial service is to provide the above mechanisms under the form
of services, ready to use by other services. Therefore, among spatial services, we
distinguish on the one hand, Spatial User Services (like finding a vacant park-
ing place), and Spatial System Services, those services that implement spatial
self-organisation mechanisms like spreading or gradient for example.

Spatial Edge Services - From Coordination Model to Actual Applications 5

Fig. 1. Self-organising mechanisms Fig. 2. Spatial services

Spatial system services. [17] bring an engineering dimension to spatial com-
puting as they provide ready to use services that can be deployed on-demand over
physical environments by higher-level services or applications. Spatial system
services are based on self-organising mechanisms [21], they are time- and space-
related, work on a decentralised and autonomous manner, and are naturally
robust to some environmental perturbations, even though not to any perturba-
tion or environmental change [15]. Figure 1 depicts these self-organising mecha-
nisms as well as their inter-relations (e.g. gossip uses spreading and aggregation).

Spatial user services are the services offered at the application level (for exam-
ple the services offered by a smart city like help for parking, visually impaired
visitor guided across a campus). They are provided through dynamic selection
of underlying spatial system services. Figure 2 shows an example of such service,
parking place sensors communicate with the nearest street lamp. Information
about empty places spread, thanks to the Gradient system service among street
lamps, until it reaches the user requesting that information.

Chemical-based coordination platform. Spatial services rely on the
SAPERE coordination model that is built on chemical reactions and active
shared tuple spaces [30] and its corresponding middleware [4]. Depending on
their nature and location, objects are attached to diverse computational nodes
(e.g. cars, smartphones, raspberry pi, etc.). Each computational node runs an
instance of the coordination platform. Software agents run in the node and inter-
act on behalf of objects (e.g. lamps, cameras, etc.), services, or applications with
the coordination platform. They inject or retrieve information to/from the plat-
form, and are sensitive to data present in the platform. Software agents also
act on the objects (e.g. switch on/off a lamp, turn surveillance camera), update
data spread by a spatial service, or provide a parking place location. Figure 3
depicts the case of a computational node, running an instance of the coordina-
tion platform. Computational nodes are connected through low-level connection
mechanisms.

3 Design Patterns

Bio-inspired mechanisms. In biological systems, complex emergent behav-
iour can be achieved by letting agents follow a set of basic rules while having

6 G. Di Marzo Serugendo

Fig. 3. Coordination model

only partial knowledge of the environment. Typical bio-inspired self-organising
mechanisms are those using stigmergy, like ant foraging for coordinating behav-
iour, schooling and flocking for coordinating movements, or gradients based sys-
tems [5,18].

Bio-inspired design patterns. To ease the use of bio-inspired mechanisms
and to apply them more systematically, a series of authors proposed descrip-
tions of these mechanisms under the form of design patterns [1,14,22,25,27].
Results show that the bio-inspired decentralised approaches achieve better
results (in terms of robustness, optimisation and adaptability) than more tra-
ditional approaches based on formal modelling. To ease engineering of artificial
bio-inspired systems, we described a catalogue of bio-inspired mechanisms in
terms of modular and reusable design patterns organised into different layers [21],
shown on Fig. 1. The mechanisms presented are uniformly described and framed
using a software design pattern structure identifying when and how to use each
pattern, and describing the relationship between the different mechanisms and
their respective boundaries. This catalogue of mechanisms is a step forward to
engineering self-organising systems in a systematic way.

4 Suite of Spatial Services

Despite the interest in building self-organising systems, there is currently no
established way of designing and programming self-organising systems or appli-
cations in a systematic way. Applications are developed in an ad-hoc manner and
the functionality of the application is closely entangled with the underlying self-
organising mechanism. To implement a crowd steering application using digital
pheromones, in addition to programming the crowd steering application func-
tionality it is also necessary to implement the behaviour of the digital pheromone
itself. We then consider that for engineering self-organising systems it is impor-
tant to separate the concerns at different levels: (1) Separate functionality of
an application from the underlying mechanisms it uses; (2) Delegate underlying
mechanisms and their non-functional, self-managing aspects to the underlying
environment.

Self-organising mechanisms as services. In consequence, we propose that
self-organising mechanisms (e.g. gradients, digital pheromone or gossip) be pro-
vided to higher-level services or applications as ready-to-use services. This

Spatial Edge Services - From Coordination Model to Actual Applications 7

involves the design and implementation of a computational environment that
provides reliable low-level self-organising mechanisms in the form of services,
reusable by applications. This allows the implementation of self-organising appli-
cations in a modular way, favours reuse of mechanisms by decoupling them from
the application functionality and delegating responsibilities for them to the com-
putational environment.

Core service. Following the relationship among self-organising mechanisms,
Core services provided at the level of the infrastructure or computational envi-
ronment are: Spreading, Aggregation, Evaporation, Static Gradients. Higher-
level services, developed by re-using and extending low-level self-organising
services provided by the infrastructure, are: Dynamic Gradients, Chemotaxis,
Remote Query and Retrieval (a composed service that spreads a query using the
Gradient or Dynamic Gradient service and uses the Chemotaxis service to bring
back information from remote nodes [19]). We propose to program self-organising
systems using services that implement self-organising mechanisms, abstracting
away the implementation of those low-level mechanisms for the developer and
favouring the re-use of code.

Higher-level services. At the lower level, the computational environment pro-
vides reliable “Core” services, i.e. low-level self-organising mechanisms and pro-
poses them to higher-level services or to applications in the form of ready-to-use
“services” (e.g. spreading or evaporation). The implementation of higher-level
self-organising services (e.g. digital pheromone or dynamic gradient) uses and
exploits those low-level services. Higher-level services are themselves ready to be
used by actual applications. Finally, applications exploit both high-level and low-
level self-organising services. Their implementation happens then in a modular
way, reusing self-organising mechanisms, decoupling them from the application
functionality, as shown in Fig. 4.

Fig. 4. Spatial services

5 Coordination Models

Coordination models have proven useful for designing and implementing dis-
tributed systems. They are appealing for developing collective adaptive systems

8 G. Di Marzo Serugendo

working in a decentralised manner, interacting with their local environment,
since the shared tuple space on which they are based is a powerful paradigm to
implement bio-inspired mechanisms (e.g. stigmergy). Coordination infrastruc-
tures provide the basic mechanisms and the necessary middleware to imple-
ment and deploy coordinated systems. Different categories of coordination mod-
els have been developed: chemically-inspired models work as rewrite systems,
where states are interpreted as chemical substances, and where molecules rep-
resent the coordinated entities that interact according to some reaction rules
[30]. Physics-based models, are instead inspired by the way physical masses and
particles move and self-organise according to gravitational and electromagnetic
fields [2,26].

5.1 SAPERE

Our work derives from the SAPERE model [3], a coordination model for multi-
agent pervasive systems inspired by chemical reactions. It is based on four main
concepts: Live Semantic Annotations (LSAs), LSA Tuple Space, agents and eco-
laws. LSA are tuples of types (name, value) used to store applications data. For
example, a tuple of type (date, 04/04/1988) can be used to define a hypotheti-
cal date. LSAs belonging to a computing node are stored in a shared container
named LSA Tuple Space. Each LSA is associated with an agent, an external
entity that implements some domain-specific logic. For example, agents can
represent sensors, services or general applications that want to interact with
the LSA space - injecting or retrieving LSAs from the LSA space. Inside the
shared container, tuples react in a virtual chemical way by using a predefined
set of coordination rules named eco-laws, which can (i) instantiate relationships
among LSAs (Bonding eco-law), (ii) aggregate them (Aggregate eco-law), (iii)
delete them and (Decay eco-law) and (iv) spread them across remote LSA Tuples
Spaces (Spreading eco-law). When a tuple is modified by an eco-law, its relative
agent is notified. The implementation of the SAPERE model (Fig. 5(a)), named
SAPERE middleware permitted the development of several kinds of real distrib-
uted self-adaptive and self-organising applications [30].

5.2 Logic-Based Chemical Coordination Model (LFCM)

A well-known difficulty with self-organising systems stems from the analysis,
validation and verification (at design-time or run-time) of so-called emergent
properties - i.e. properties that can be observed at a global level but that none
of the interacting entities exhibit on its own. Few coordination models integrate
features supporting the validation of emergent properties, none of them relying
on the chemical metaphor. Recently we extended SAPERE and defined a coor-
dination model based on logic inference named Logic Fragments Coordination
Model (LFCM) [10] as well as its semantics [12] (Fig. 5(b)). Logic Fragments
are combinations of logic programs defining interactions among agents distrib-
uted over the nodes of the system. They are able to accommodate various types
of logics, ranging from classical up to many-valued paraconsistent ones. The

Spatial Edge Services - From Coordination Model to Actual Applications 9

logical formalisation makes it possible to express coordination in a rigorous and
predictable way, both at design-time and run-time. Our logic-based coordination
model allows agents to inject logic fragments into the shared space. An additional
eco-law, the logic fragement eco-law interprets those fragments based on the cur-
rent tuples in the tuple space (including neighbouring ones). Those fragments
actually define on-the-fly ad hoc chemical reactions that apply on matching data
tuples present in the system, removing tuples and producing new tuples, possibly
producing also new logic fragments. Our model is defined independently of any
specific logic, an actual instantiation and implementation of the model can use
its own logic(s). We also defined a spatial language to verify graph-based spatial
properties of self-organising systems [6], a multi-valued logic [7] and an approx-
imate reasoning [13]. The language encapsulates Logic Fragments in statements
that are evaluated in a distributed manner at run-time, involving several system
entities at the same time. The corresponding middleware for two-valued logic is
available. LFCM is composed of the following elements (Fig. 6):

• Agents: autonomous entities representing applications, services and sensors.
• Tuple space: shared space for all the agents running on the same node of the

system. The Tuple Space stores information under the form of tuples, which
can be passive (e.g. contextual-information, data input for service invocation,
etc.) and active (logic fragments).

• Logic fragments: combinations of logic programs manipulating passive data
stored in the Tuple Space and introduced either by Agents or generated by
other logic fragments. They can be injected, removed and copied among nodes
of the system at run-time. We consider many-valued logics with true, false,
unknown and inconsistent logical values.

LSA tuple space

Service

Agent

Application

Agent

LSALSA

Sensor

Agent

Spreading
Eco-law

LSA

Decay
Eco-law

Aggregate
Eco-law

Bonding
Eco-law

(a) SAPERE Coordination Model

LSA tuple space

Service

Agent

Application

Agent

Logic Program2
LSA

Logic Program
LSA

Sensor

Agent

Spreading
Eco-law

LSA

Logic
Eco-law

Decay
Eco-law

Aggregate
Eco-law

(b) Logic Fragment Coordination Model

Fig. 5. Coordination models

10 G. Di Marzo Serugendo

Fig. 6. Components of the Logic Fragment Coordination Model. Green tuples repre-
sent passive data injected by Agents, red ones depict information generated by logic
fragments. (Color figure online)

LFCM combines the benefits of chemical-based coordination models and for-
mal methods, offering a framework to rigorously design and implement self-
organising systems. In the LFCM logical formulae are represented by combina-
tions of logic programs, whereas the execution flow is controlled through predi-
cates and operators defining how logic programs are interpreted and how data
is manipulated through predicates (e.g. to create, aggregate, delete and spread
information).

– When designing complex coordination mechanisms, great emphasis is put on
the definition of the logic part, enforcing a rigorous formalisation of the algo-
rithm while hiding most of implementation details. In such a way, code of
system units becomes an essential set of logical rules defining the behaviour of
components with respect to the distributed state of the system. This aspect
ensures that the set of spontaneous interactions taking place in the system is
the one that is logically entailed from the rules.

– The usage of logic programming to design system units makes it possible to
adopt a uniform formal framework to specify, verify, synthesise system compo-
nents. This is possible because pure logic can be used as a language for system
specifications. When designing complex distributed systems these properties
become extremely important because they can be exploited to enforce correct-
ness at design-time.

– Given that system components are encapsulated into combinations of logic
programs, they can be easily added, removed and shared among nodes. This
feature enables the installation and removal of ad-hoc coordination primitives
on-the-fly.

– By resorting to logic programming, interactions among components are driven
by logic inference and system components can be considered as units perform-
ing formal reasoning processes on the distributed state of the system. By
resorting to this feature, components can be exploited to evaluate distributed
system properties at run-time [11].

Spatial Edge Services - From Coordination Model to Actual Applications 11

6 Prototyping Platforms

TheOne-SAPERE. TheOne-SAPERE is a prototyping tool [20] that integrates
the SAPERE middleware within The Opportunistic Network Environment (The
One) simulator [24], allowing us to prototype and validate applications with
realistic scenarios before deploying them. Indeed, it allows on the one hand to
simulate a large number of computational nodes movements and their communi-
cations, placing them in various configurations allowing stochastic evaluation of
parameters. On the other hand, each node is equipped with the actual SAPERE
middleware (actual code), allowing to execute from within the simulation actual
spatial system services (gradient, spreading, evaporation, etc.), thus providing
actual results relating to spatial system services behaviour (Fig. 7). The corre-
sponding video is available on-line1.

TheOne-LFCM. Following the above idea, we similarly developed a corre-
sponding simulator, called TheOne-LFCM, involving the actual LFCM middle-
ware in each simulated node.

Fig. 7. TheOne-SAPERE

7 Developed Applications

We discuss here a series of applications actually deployed on tablets and smart-
phones. For more IoT applications, see [16].

Confidential channel. The Confidential Channel service [8] provides an
encrypted channel for routing confidential communication between devices in
a mobile ad-hoc network. The computational power and memory available in
mobile devices, is increasing dramatically, and allows now the use of traditional
encrypting techniques that some years ago were available only in wired comput-
ers, such as laptops or PCs. Therefore, the Secure Channel service uses RSA
encryption on top of Dynamic Gradient and Chemotaxis services in order to
ensure and maintain confidential communication and routing even in complex

1 http://youtu.be/EGbPq2rejmM.

http://youtu.be/EGbPq2rejmM

12 G. Di Marzo Serugendo

mobile networks. Using a Gradient service, node A sends a public key and a
request for information. They are both propagated to all nodes in the network
along with additional gradient information about the sender’s distance (e.g. num-
ber of hops). When the Gradient reaches node B, the latter retrieves the query
and the public key. B encrypts the information using the received public key
and sends back the encrypted information using the Chemotaxis service using
the shortest available path. The gradient structure is updated periodically in
order to deal with network’s topology changes. We subsequently developed a
chat over the confidential channel.

SmartContent. This is a novel approach for content protection and privacy.
Documents are active and context-aware documents that sense and analyse their
current context, e.g. location, noise, neighbouring devices, social network, expi-
ration time, etc. Based on user provided policies, they grant, deny or limit access
and manipulation actions, or destroy themselves if necessary. The implementa-
tion leverages the SAPERE middleware. Context information (GPS location,
camera picture, etc.) is provided as tuples in the SAPERE middleware. Specific
agents, wrapping documents, enforce users’ policies. They are sensitive (bond)
to context information relevant to the document they protect and enact when
necessary the privacy policy (revealing or not the document) [9].

Context-aware data flows. The goal of this demonstration is to show-case
self-organising context-aware data flows with a particular emphasis on the self-
organising mechanisms [21] that are at the heart of it: (a) diffusion - propagates
information among the nodes; (b) aggregation - allows the system to reduce the
amount of information spread in the system or obtained from the environment;
(c) evaporation - periodically decreases the relevance of the information in order
to get rid of outdated information.

(a) Diffusion (b) Aggregation (c) Evaporation

Fig. 8. Self-organising mechanisms - concepts

In the first part of the demonstration, data flows of pictures spread, in a P2P
fashion, from one tablet to the other. Data flows are sensitive to their context
as follows: tapping tablets causes a new data flow to spread from one tablet
to the neighbouring one (Fig. 8(a)); similarly swiping creates a new flow in the
direction of the swipe; several flows meeting at the same time in the same tablet
aggregate with each other. Here a simple aggregation is chosen, where one of the
two flows is stopped (shown as an explosion in the demonstration) (Fig. 8(b)).

Spatial Edge Services - From Coordination Model to Actual Applications 13

Figure 8(c) shows an example of evaporation, with time data relevance fades away
and ultimately information disappears. In the second part of the demonstration,
data flows become services used to retrieve a friend in a crowd. A query first
spreads from tablet to tablet following the gradient principle - a type of diffusion
with a notion of distance [21]; once the message has reached the friend, the
answer follows back the path created by the gradient. This demonstration has
been featured at the ICT’13 Conference in Vilnius, the video is available here2.

Tracking mobile objects/runners - querying IoT. Runners are sensed
along the racetrack and their positions spread continuously in order to provide
a real-time tracking. A variety of devices (beacons), and nodes (raspberry pi
and smartphones) are exchanging data using Bluetooth Low Energy (BLE) to
track mobile objects in a peer-to-peer network. Let us consider that each run-
ner is equipped with a small device that emits continuously a signal. We also
deploy several nodes along the path sensing and relaying these signals. People
in the crowd with a smartphone and an appropriate mobile application request
informations about their favourite runners and receive a response in real-time.
In other words, people track their favourite runners while they are running and
follow their performance during the race.

(a) Live Scenario (b) Live Application

Fig. 9. Tracking runners

Each competitor runs with a beacon that emits a BLE signal. A beacon iden-
tifies a runner by communicating its runner identifier to its surrounding envi-
ronment. Several nodes, running a SAPERE application built over the SAPERE
middleware, are deployed along the path to sense BLE signals and compute their
position in the race, their location on the map, and the time they have been
running. Every node spreads received signals and people in the crowd interact
across a peer-to-peer network to request information about their favourite run-
ners (Fig. 9(a)). People track their favourite players while they are running and
know about their performance live during the race (Fig. 9(b)). The information
remains spatially available in the area only during the time when the event takes
place. A complete description and full details can be found here [28].

2 http://youtu.be/4S4J5wYvdNk.

http://youtu.be/4S4J5wYvdNk

14 G. Di Marzo Serugendo

Fig. 10. Warehouse and communicating shelf units.

Assessing IoT properties on-the-fly. We show here how to resort to the Logic
Fragment Coordination Model to design and implement a distributed monitoring
spatial edge service for an industrial warehouse in order to avoid safety hazards
arising from potential interactions among chemical compounds. The model of
the warehouse system includes: Containers (e.g. tanks); Shelf units supporting
the physical storage of containers in a particular point of the warehouse; Policies
constraints on physical positions of containers implementing safety regulations
(e.g. proximity relations among chemical compounds, etc.). Policies can be estab-
lished, replaced or removed at run-time. By resorting to a many-valued logic,
policies can be strongly violated, weakly violated, weakly accepted and strongly
accepted. Our warehouse model is composed of 12 shelf units connected in a grid
network; shelf units must be considered as autonomous agent entities, able to
perform computations and communicate with each other (Fig. 10). The moni-
toring service triggers an alarm signal when one or several policies are violated
on a particular shelf unit.

Whenever a policy is violated on a shelf unit, its associated logic fragment
generates a tuple of type Alam(Rule), where Rule is the identifier of the policy.
An additional logic fragment (controller of the system) aggregates all tuples of
type Alarm(Rule), generating a tuple Alarm with a logical level that represents
the level of criticality of the violated policies.

8 Future Works

Future works involve multiple paths: integrating learning aspects within agents,
analysing QoS for each of the different spatial services involved in an application
and their impact on each other, pursuing current efforts on privacy and secu-
rity, actually building spatial services on demand, arising from existing services,
sensors and actuators.

Spatial Edge Services - From Coordination Model to Actual Applications 15

Acknowledgements. This work has been supported by the EU-FP7-FET Proactive
project SAPERE Self-aware Pervasive Service Ecosystems, under contract no. 256873.
It is the result of the joint work of the SAPERE team. I would like to particularly thank
the Geneva team, namely: Akla Esso Tchao, Jose Luis Fernandez-Marquez, Francesco
Luca De Angelis, Houssem Ben Mahfoudh, Roberto Tomaylla.

References

1. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F.,
Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A.,
Urnes, T.: Design patterns from biology for distributed computing. ACM Trans.
Auton. Adapt. Sys. 1, 26–66 (2006)

2. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intell. Syst. 21(2), 10–19 (2006)

3. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Pervasive middleware goes social:
the sapere approach. In: Proceedings of the 2011 Fifth IEEE Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASOW 2011, pp. 9–14 (2011)

4. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Engineering pervasive service
ecosystems: the sapere approach. ACM Trans. Auton. Adapt. Syst. 10(1), 1:1–1:27
(2015). http://doi.acm.org/10.1145/2700321

5. de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms,
and Applications (Chapman & Hall/Crc Computer and Information Sciences).
Chapman & Hall/CRC (2006)

6. De Angelis, F., Di Marzo Serugendo, G.: A logic language for run time assessment
of spatial properties in self-organizing systems. In: IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, pp. 86–91 (2015)

7. De Angelis, F., Di Marzo Serugendo, G., Sza�las, A.: Graded rule-based reasoning.
Accepted to International Journal of Approximate Reasoning (2017, to appear)

8. De Angelis, F., Fernandez-Marquez, J.L., Di Marzo Serugendo, G.: Secure channel
for manets - demonstration. In: IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO2013). IEEE Computer Society (2013)

9. De Angelis, F.L., Di Marzo Serugendo, G.: Smartcontent - self-protected context-
aware active documents for mobile environments. Electronics 6(1), 1–22 (2017).
http://www.mdpi.com/2079-9292/6/1/17

10. Angelis, F.L., Marzo Serugendo, G.: Logic fragments: a coordination model based
on logic inference. In: Holvoet, T., Viroli, M. (eds.) COORDINATION 2015. LNCS,
vol. 9037, pp. 35–48. Springer, Cham (2015). doi:10.1007/978-3-319-19282-6 3

11. De Angelis, F.L., Di Marzo Serugendo, G.: A logic language for run time assessment
of spatial properties in self-organizing systems. On: 9th IEEE Conference on Self-
Adaptive and Self-Organizing Systems Workshops (SASOW). IEEE (2015)

12. De Angelis, F.L., Di Marzo Serugendo, G.: Logic fragments: coordinating entities
with logic programs. In: 7th International Symposium On Leveraging Applications
of Formal Methods Verification and Validation (ISOLA) (2016)

13. De Angelis, F.L., Di Marzo Serugendo, G., Dunin-Keplicz, B., Sza�las, A.: Hetero-
geneous approximate reasoning with graded truth values. In: International Joint
Conference on Rough Sets (2017)

http://doi.acm.org/10.1145/2700321
http://www.mdpi.com/2079-9292/6/1/17
http://dx.doi.org/10.1007/978-3-319-19282-6_3

16 G. Di Marzo Serugendo

14. De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-
organising emergent systems. Eng. Self-Organising Syst. 4335, 28–49 (2007)

15. Marzo Serugendo, G.: Robustness and dependability of self-organizing sys-
tems - a safety engineering perspective. In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 254–268. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05118-0 18

16. Di Marzo Serugendo, G., Abdennadher, N., Ben Mahfoudh, H., De Angelis, F.L.,
Tomaylla, R.: Spatial edge services. Global IoT Summit (2017)

17. Di Marzo Serugendo, G., Fernandez-Marquez, J.L., De Angelis, F.L.: Engineering
spatial services: concepts, architecture, and execution models. In: Ramanathan, R.,
Raja, K. (eds.) Handbook of Research on Architectural Trends in Service-Driven
Computing, pp. 136–159. IGI Global (2014)

18. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.): Self-Organising
Software - From Natural to Artificial Adaptation. Natural Computing Series, 1st
edn. Springer, Heidelberg (2011)

19. Fernandez-Marquez, J.L., Tchao, A.E., Di Marzo Serugendo, G., Stevenson, G.,
Ye, J., Dobson, S.: Analysis of new gradient based aggregation algorithms for
data-propagation in distributed networks. In: 1st International Workshop on Adap-
tive Service Ecosystems: Nature and Socially Inspired Solutions (ASENSIS) at
5th IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO2012) (2012)

20. Fernandez-Marquez, J.L., Angelis, F.D., Serugendo, G.D.M., Stevenson, G.,
Castelli, G.: The one-sapere simulator: a prototyping tool for engineering
self-organisation in pervasive environments. In: SASO, pp. 201–202. IEEE
Computer Society (2014). http://dblp.uni-trier.de/db/conf/saso/saso2014.html#
Fernandez-MarquezASSC14

21. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43–67 (2012)

22. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organizing multiagent
systems. In: Proceedings of EEDAS (2007)

23. Hajibaba, M., Gorgin, S.: A review on modern distributed computing paradigms:
cloud computing, jungle computing and fog computing. CIT - J. Comput. Inf.
Technol. 22(2), 69–84 (2014)

24. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE Simulator for DTN protocol eval-
uation. In: SIMUTools 2009: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques. ICST, New York (2009)

25. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. J. Syst. Archit. 52, 433–460 (2006)

26. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 15:1–15:56
(2009). http://doi.acm.org/10.1145/1538942.1538945

27. Nagpal, R.: A catalog of biologically-inspired primitives for engineering self-
organization. In: Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli,
F. (eds.) ESOA 2003. LNCS, vol. 2977, pp. 53–62. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24701-2 4

28. Tomaylla, R.: Bio-Inspired approach for tracking mobile entities in a Peer to Peer
MANET. An application of The SAPERE Project in Road Running events. Mas-
ter’s thesis, Centre Universitaire d’Informatique, University of Geneva, Geneva,
Switzerland (2016)

http://dx.doi.org/10.1007/978-3-642-05118-0_18
http://dx.doi.org/10.1007/978-3-642-05118-0_18
http://dblp.uni-trier.de/db/conf/saso/saso2014.html#Fernandez-MarquezASSC14
http://dblp.uni-trier.de/db/conf/saso/saso2014.html#Fernandez-MarquezASSC14
http://doi.acm.org/10.1145/1538942.1538945
http://dx.doi.org/10.1007/978-3-540-24701-2_4

Spatial Edge Services - From Coordination Model to Actual Applications 17

29. Zambonelli, F., Mamei, M.: Spatial computing: an emerging paradigm for auto-
nomic computing and communication. In: Smirnov, M. (ed.) WAC 2004. LNCS,
vol. 3457, pp. 44–57. Springer, Heidelberg (2005). doi:10.1007/11520184 4

30. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., Angelis, F.L.D.,
Serugendo, G.D.M., Dobson, S., Fernandez-Marquez, J.L., Ferscha, A., Mamei, M.,
Mariani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D., Risoldi, M., Rosi,
A., Stevenson, G., Viroli, M., Ye, J.: Developing pervasive multi-agent systems
with nature-inspired coordination. Pervasive Mobile Comput. Part B 17, 236–252
(2015). http://www.sciencedirect.com/science/article/pii/S1574119214001904, 10
years of Pervasive Computing’ In Honor of Chatschik Bisdikian

http://dx.doi.org/10.1007/11520184_4
http://www.sciencedirect.com/science/article/pii/S1574119214001904

Languages and Tools

AErlang: Empowering Erlang
with Attribute-Based Communication

Rocco De Nicola1(B), Tan Duong2(B), Omar Inverso2(B),
and Catia Trubiani2(B)

1 IMT Institute for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy
{tan.duong,omar.inverso,catia.trubiani}@gssi.it

Abstract. Attribute-based communication provides a novel mechanism
to dynamically select groups of communicating entities by relying on pred-
icates over their exposed attributes. In this paper, we embed the basic
primitives for attribute-based communication into the functional concur-
rent language Erlang to obtain what we call AErlang, for attribute Erlang.
To evaluate our prototype in terms of performance overhead and scalabil-
ity we consider solutions of the Stable Marriage Problem based on pred-
icates over attributes and on the classical preference lists, and use them
to compare the runtime performance of AErlang with those of Erlang and
X10. The outcome of the comparison shows that the overhead introduced
by the new communication primitives is acceptable, and our prototype can
compete performance-wise with an ad-hoc parallel solution in X10.

Keywords: Attribute-based communication · Erlang · Concurrency ·
Distributed programming · Collective adaptive systems · Stable marriage

1 Introduction

Collective adaptive systems (CAS) are typically large conglomerates of compo-
nents which are not entirely aware of themselves as members of a collectivity
and interact according to limited mutual knowledge and local rules, indirectly
triggering global system evolution [14]. Eventually, despite the simplicity of the
components in isolation, the global behaviour of the system may end up being
quite sophisticated, hardly predictable to seemingly chaotic.

These classes of systems pose challenges at many levels. Reasoning about
them is difficult. In fact, assessing specific properties, such as stability and con-
vergence, or forecasting emerging behaviour is usually really hard due to non-
linearity and non-determinism. Further sources of complexity are in the following
distinguishing features:

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 21–39, 2017.
DOI: 10.1007/978-3-319-59746-1 2

22 R. De Nicola et al.

– Anonymity: the identity of components is not known;
– Open-endedness: new components may enter or leave at any time;
– Adaptivity: rôles and interests of components may change;
– Scalability: the number of components might grow very fast and large.

All these features are fairly visible, for example, in ant colonies, as well as stock
markets, robot swarms, and social networks. In the presence of these features,
programming may be difficult. For instance, in an anonymous and open-ended
environment traditional mechanisms such as point-to-point communication are
hardly acceptable. Similarly, the limited expressiveness of mainstream program-
ming paradigms often makes it inconvenient to describe adaptive behaviour. In
addition, the size of the system exacerbates this situation and on a practical
standpoint is cause of concern about performance.

Some of the above issues can be addressed with adequate descriptive for-
malisms. Among these, Attribute-based Communication [2,12] is a particularly
appropriate one. With this approach, components are modelled as processes
exposing attributes, i.e., relevant features according to the problem domain and
to the local or global behaviours of interest, and process interaction is driven
by predicates over these. Communication takes place in an implicit selective
multicast fashion, and interactions among components are dynamically estab-
lished by taking into account “connections” as determined by predicates over
their attributes. A command send(v)@π expresses the intention of sending v to
all entities satisfying predicate π while receive(x)@π′ indicates willingness to
receive messages by entities satisfying predicate π′ while binding the received
values to x. Components can update their attributes via assignments, [a := v].
In this way, collectives are dynamically formed at the time of interaction by
considering the sets of receiving components that satisfy the sending predicates.

Let us now consider a social network scenario where users aim at forming
groups for language exchange. Such groups may be formed by only consider-
ing the language users wish to learn and the one potential partners are inter-
ested in. However in case of multiple alternatives it might be desirable to prefer
people with similar age and interests, or even knowledgeable of a second lan-
guage in common. Relevant attributes would then be spoken languages, age,
language of interest, and so on. Predicates are built by specifying conditions on
the attributes, e.g., age ≤ 25∧ language = English. Note that here the identity
of users is irrelevant for forming the groups, and no change in the predicates is
required when users join or leave the system, thus anonymity and open-endedness
are no longer a concern. In general, attribute-based programming allows to nat-
urally capture the essence of a system to a very good level of abstraction without
having to worry about a number of details that normally have to be taken under
due consideration when using more traditional alternatives.

In this paper, we seek to leverage the benefits of attribute-based communi-
cation at a programming level while addressing the performance concerns at the
same time. Our contribution is twofold.

As a first contribution, we combine attribute-based communication with
functional-style programming by instantiating attribute-based programming

AErlang: Empowering Erlang with Attribute-Based Communication 23

abstractions on top of the Erlang programming language. We targeted Erlang
as the host platform for our prototype language extension due to its native
support for concurrency and distribution, its scalability, and the inherent modu-
larity of functional-style programming. Its concurrency model is very lightweight
and has solid foundations based on Actors [1], thus, in principle, avoids thread-
and-lock problems. Moreover, it fits very well with the AbC process calculus [2],
since both consider processes as basic units of computation that communicate via
asynchronous message passing. Our prototype language extension, AErlang, is
a middleware enabling attribute-based communication among Erlang processes,
with the aim of preserving Erlang’s excellent scalability. AErlang plays the role
of global process registry which allows processes to register and update their
attributes. It also takes charge of forwarding messages from senders to receivers
by evaluating the predicates they supply. In this way, programmers are relieved
from the burden of working out details such as the explicit handling of attributes,
the evaluation of predicates, and so on. Our attribute-based programming tech-
nique can naturally model the main distinguishing features of collective adaptive
systems at no extra effort, whereas under a traditional programming setting such
a task would require major and time-consuming operations.

As a second contribution, we provide a performance evaluation of our pro-
totype in terms of efficiency and scalability. We assess the effectiveness of our
prototype by using it to program a solution to Stable Marriage [17] that aims at
matching members according to their preferences. For this problem, we consider
implementations of different variants in different languages. Namely, we first
consider a variant explicitly based on (predicates over) attributes and provide
an implementation in AErlang. Then, we derive preference lists from the pred-
icates and implement the classical algorithm in AErlang, Erlang, and X10, a
language specifically designed to scale with the number of cores [10]. The differ-
ent implementations are instrumental to compare performances of our solutions.
The experimental results show that the overhead resulting from using the new
communication primitives is acceptable, and our prototype successfully preserves
Erlang’s scalability. Moreover, on very large instances the AErlang program
for the attribute-based solution turns out to scale considerably better than a
state-of-the-art parallel version based on adaptive search and implemented in
X10 [30].

The rest of the paper is organized as follows. We describe how to extend
Erlang with attribute-based communication constructs in Sect. 2. Example pro-
grams of AErlang are presented in Sect. 3. In Sect. 4 we evaluate our prototype
in terms of efficiency and scalability. Related works are discussed in Sect. 5,
conclusions and future research directions are provided in Sect. 6.

2 AErlang

AErlang instantiates attribute-based communication on top of the Erlang pro-
gramming language.

24 R. De Nicola et al.

Erlang [4,35] is a concurrent functional programming language originally
designed for building telecommunication systems [7] and recently successfully
adapted to broader contexts, such as large-scale distributed messaging plat-
forms [29,31]. It supports concurrency [5] and inter-process communication
natively through a compact set of powerful primitives. The Erlang concurrency
model is based on the Actor Model [1,20]. Actors are processes that can asyn-
chronously exchange messages while preserving the order of outbound messages.
Each process has its own unlimited mailbox for storing incoming messages that
are retrieved via pattern matching. The lightweight and scalable concurrency
model and the modularity of functional-style programming [22,23] make Erlang
particularly appropriate for building massively scalable distributed systems.

AErlang lifts Erlang’s send and receive communication primitives to
attribute-based reasoning. In Erlang, the send primitive ! requires an explicit
destination address (e.g., registered name, process identifier) for message pass-
ing. In contrast, AErlang processes are not aware of the presence and identity
of each other, and communicate using predicates over attributes.

AErlang aims at relieving programmers from the burden of working out
details such as the explicit handling of attributes, the evaluation of predicates,
and so on, while at the same time preserving Erlang’s excellent scalability.
Our prototype extension is implemented as a middleware that plays the role of
global process registry and takes charge of forwarding messages from senders to
receivers by evaluating the predicates they supply.

2.1 Programming Interface

The programming interface of our prototype is presented in Fig. 1. Processes join-
ing the system need to register their details (e.g., process identifier, attributes)
using function register, which takes as input a process attribute environment
Env in form of a either a proper list or a map, i.e., pairs of attribute names and
their associated values. After the registration, processes can manage their local
environment by using the setAtt and getAtt functions. Processes leaving the
system may actively unregister, and when a process unregisters, then it is no
longer able to use attribute-based communication.

Fig. 1. AErlang programming interface.

AErlang: Empowering Erlang with Attribute-Based Communication 25

Registered AErlang processes interact via attribute-based send and receive
actions. Differently from standard Erlang, this pair of communication primi-
tives replace source and destination identifiers with arbitrary predicates over
the declared attributes. In particular, attribute-based send is used to send a
message Msg to all processes whose attributes satisfy predicate Pred. On the
other hand, attribute-based receive is used to receive messages sent by using
attribute-based send. The receipt of a message is conditioned by the attribute
values satisfying predicate Pred. A receive operation has the effect of retrieving
from the receivers’ mailbox any message that matches the receiving predicate.

Predicates are strings containing Boolean expressions. They can be over
attribute names (Erlang atoms), constants (written with a prefix underscore,
e.g., constant), process-local references to attributes (written as this.a), and
process-local variables representing values (written as $X) Apart from compari-
son operators and logical connectives, it is possible to use arithmetic operators,
such as +, ∗, /,− between predicate terms. Furthermore, predicates can contain
the operator in, which denotes the membership relation between an element and
a list, and allow the use of user-defined functions.

AErlang provides the possibility for processes to count with how many part-
ners they are currently interacting and to parallelize the communication, so
to increase both flexibility and performance without affecting expressiveness.
Although these primitives are not originally described in the AbC calculus, we
provide variants of attribute-based send and receive actions as shown in the right-
most column of Fig. 1. In particular, to(Pred) can return the number of selected
receivers (whom the middleware forwards the message to) at communication
time. On the other hand, the attribute-based multi-receive from(Pred,Count)
takes this as an extra argument and blocks until the given amount of incoming
messages is received. Internally the receive operation processes multiple incom-
ing messages satisfying the receiving predicates, up to the given count. This is
helpful when the sender is interested to hear back from its communication part-
ners. Count is the number of selected receivers at communication time, which
is always greater than the number of actual receivers, which in turn bounds the
number of receivers willing to answer. Therefore the sender knows the maximum
number of expected incoming messages before moving to the next action.

2.2 Prototype Architecture

There are two main components in AErlang: (i) a process registry that keeps
track of process details such as the process identifier and the current status, and
(ii) a message broker that undertakes the delivery of outgoing messages.

Process Registry. It is a generic server that accepts requests regarding process
(un)registration and internal updates. It stores process identifiers and all the
information used by the message broker to deliver messages.

26 R. De Nicola et al.

Our prototype uses as the main storage back-end Mnesia, Erlang’s built-in
distributed database. When a process joins the system, the register function
does several things. First, the process environment is stored into an ETS table
and the reference to this table is stored into the process dictionary. This infor-
mation is local to the process. Second, a service request to the process registry
is performed, to insert process details, including the attribute environment, into
an Mnesia table. We currently store attributes in separate columns for increased
performance and at the expense of some extra memory. All the above information
is removed when the unregistration procedure is invoked.

Message Broker. It is responsible for delivering messages between processes.
It is implemented as an Erlang server process listening for interactions from
attribute-based send. To address potential bottlenecks arising in the presence
of a very large number of processes, the message broker can be set up to run
in multiple parallel threads. Similarly to the process registry, Erlang’s runtime
system provides distribution for the message broker.

A sending action is characterized by a sending predicate, a message and
sender’s environment. All these elements are wrapped up into a single message
and passed to the message broker. When such a message arrives, the message
broker performs the following steps:

1. parse the predicates and converts them into a database query;
2. select the receivers by applying the query to the process database;
3. forward the message to all the selected receivers.

The exact behaviour depends, however, on the specific operating mode chosen
at the moment of initializing AErlang. More specifically, there are two kinds of
checks that need to be evaluated for a receiver to receive a message:

– the sending predicate is checked against the receiver’s environment,
– the receiving predicate is checked against the sender’s environment.

The current prototype implemented the following message forwarding strategies
for the message broker: (i) broadcast, i.e., the broker forwards any outbound
message to every components in the system, then these filter the received mes-
sages according to both the sending and receiving predicates; (ii) pushing, i.e.,
the broker only checks the sending predicates and forwards messages to selected
receivers that will use the receiving predicates to decide whether to accept any
incoming message; (iii) pulling, i.e., the broker only checks the receiving predi-
cates and only forwards messages from selected senders; the forwarded messages
are then filtered by the receiver according to the sending predicates; (iv) push-
pull, i.e., the message broker checks for both the sending and receiving predicates
before forwarding any message. The choice of one message forwarding policy
over the others depends on the specific class of problems under consideration.
For example, broadcast can guarantee consistency in highly dynamic systems,
but it is quite expensive due to the large number of forwarded messages. On the

AErlang: Empowering Erlang with Attribute-Based Communication 27

other hand, if consistency is not the major concern, then pushing is more suit-
able when attributes do not change frequently, while pushpull works well when
even the predicates are quite static.

3 Programming with AErlang

In this section we present attribute-based programming in AErlang. By adopting
as a case study the well-known problem of Stable Marriage (SM), we begin with
describing a program that implements the classical solution for this problem, and
then consider progressively more elaborate variants, with the purpose of showing
the convenience of using attributes and a suitable programming technique. At the
end of the section we discuss how the proposed approach can be generalised to
model realistic examples of collective adaptive systems such as social networks.

3.1 Stable Marriage

SM consists in finding a matching between sets of men and women, where each
person has a preference list of members of the opposite gender [17]. A matching
is a set of one-to-one assignments between men and women. Each assignment is
denoted by a pair (m,w), where m and w indicate the two matched partners. A
pair is blocking if, according to their respective preference lists, both the matched
man and woman prefer someone else to their partners. A matching is stable if
there is no blocking pair. A matching is complete when everybody is matched,
incomplete otherwise.

SM has many practical applications [19], and has been intensively studied in
the literature, together with its variants [24]. In the classical form, the prefer-
ence lists are strictly-ordered and complete. For this, Gale and Shapley gave an
efficient algorithm to find a stable matching [17]. It can be informally summa-
rized as follows. Each man actively proposes himself to his most favourite woman
according to his preference list. Whenever a man is rejected, he tries again with
the next woman in the list. On the other hand, each woman continuously waits
for incoming proposals. A woman without a partner immediately accepts any
proposal, otherwise she compares the proposer with her current partner. She
then rejects the man whom she likes less, according to her preference list. The
algorithm terminates when every man has a partner.

Variations of this algorithm consider other kinds of preference list: incom-
plete (SMI), with ties (SMT), or both (SMTI). While the first two variants
can be solved similarly to the classical case, SMTI is hard [25]. In this paper
we investigate a new variant of the algorithm where the matching happens by
taking into account the mutual interests of partners characteristics, rather than
preference lists of identifiers. We call this variant stable marriage with attributes
(SMA). Note that SMA can always be cast into SM by converting preferences
over attributes to preferences over identifiers. This can be done by assigning
a weight to each attribute and summing up all the attributes exposed by the
identifiers to obtain the preference list.

28 R. De Nicola et al.

Table 1. Correspondence between preference lists and predicate lists

3.2 Stable Marriage with Preference List

We now consider a variant of SM known as SMTI [25], in which the preference
list is incomplete and partially ordered, i.e., a man or a woman may like several
people at the same level. The preference list is thus a list of sets rather than
single elements and we refer to such sets as ties.

We model this problem in AErlang by introducing an attribute id to repre-
sent people identifiers and predicates over these to specify the preferences. As
an example, Table 1 shows the predicate lists induced from a SMTI instance (on
the left) where ties are enclosed by parentheses. To implement preference list we
use predicates over the attribute id, where ties are modelled by predicates with
logical disjunction on equality comparison. We refer to the newly derived lists
on the right table as predicate lists.

We then solve the problem under this new representation of preferences by
using a simple solution which is similar to the classical Gale-Shapley algorithm
described in Sect. 3.1, but uses a slightly different protocol and is converted to
message-passing style.

The AErlang program for STMI is shown in Fig. 2. Function man() takes
as arguments the preference list Prefs of a man and his identifier Id. The first
element in Prefs is bound to variable H by pattern matching on list (line 2). A
man goes through a proposing phase from lines 3 to 14. First, he sends a propose
message using "id in $H" as the sending predicate (line 3) which has the effect
of contacting all women whose id belongs to the list H. He then waits for enough
answers from the women he contacted using the attribute-based receive construct
with counting (line 4), with the same predicate used when sending. Inside the
body of this receive operation, the man is only interested in yes messages. He
becomes aware of his status by checking attribute partner (line 7) to take a
decision. If he has no partner, he sends a confirm message to the first woman
who said yes by using her identifier W attached in the reply message. He then
considers this woman as his current partner (line 10), and informs any other
interested women that he is no longer available by sending them a busy message
(line 12).

After the proposing phase, a man can either be alone or engaged (checked
by line 15). In the first case, he does not consider any woman in the current
predicate H and tries to propose himself again to the women in the remaining
part of his preferences (line 16). In the second case, he takes no action unless
he receives a goodbye message from his partner (lines 17–19), in which case he
tries proposing himself again using his current predicate unchanged (line 21).
The man keeps the predicate unchanged as it may include other women.

AErlang: Empowering Erlang with Attribute-Based Communication 29

Fig. 2. Stable marriage with preference lists in AErlang (SM-aerl).

Function woman() takes as arguments a preference list Prefs, an identifier
Id, and the partner’s identifier P. A woman always waits for proposals from men
who are better than her current partner. This comparison is performed with the
bof function (line 25) that checks if a proposer preceeds the current partner P
in the woman’s preference list. If this is the case, then the woman sends back
a yes message and waits for an confirm message from the new man M. After M
confirms to her, the woman gets engaged to him by keeping M in the recursive
call (line 33), after rejecting her current partner P. Otherwise, she keeps listening
for other proposals (line 35).

3.3 Stable Marriage with Attributes

In this variant each person has a set of attributes describing their own char-
acteristics and some preferences over the attributes of their potential partners.
Each attribute has a finite domain, while preferences are represented by logical
expressions over the attributes of the partners. For simplicity, in this section we
only consider simple predicates where preferences are conjunctions of equality
comparisons.

Table 2 shows an example of SMA instance of size four where each person has
two attributes, which in turn have two possible values. This example points out
the expressive power of attribute-based communication. In fact, our program
for SMA (Fig. 3) is very similar to the program proposed in previous section
(Fig. 2), and the differences are mostly accommodated by altering the predi-
cates. In addition, men can progressively adapt their preferences to increase the
chances to find a partner. For example, there is no woman in Table 2 satisfying
the requirements of man m1, hence he looks for partners partially matching his

30 R. De Nicola et al.

Table 2. Attributes and preferences for men and women.

Table 3. Predicate lists for men.

initial preferences. This adaptive behaviour is achieved by transforming plain
preferences into predicate lists, as shown in Table 3. For example, when man m1
relaxes his preferences and look for women with amber eyes only, then there
are women w1 and w2 satisfying such predicate. We assume that the ordering of
attributes within a predicate indicates their priority.

Figure 3 shows a possible AErlang implementation for SMA. Function man()
takes as arguments the predicates list Prefs of a man, his Id and characteristics
Atts. The first element in Prefs (i.e., the most demanding predicate) is bound
to variable H by pattern matching on list (line 2). The proposing phase of a
man is implemented via lines 3–14 and follows the same behaviour described in
previous section.

Fig. 3. Stable Marriage with Attributes in AErlang (SMA-aerl).

AErlang: Empowering Erlang with Attribute-Based Communication 31

Function woman() takes as arguments the preferences Prefs, an identifier Id,
in addition to arguments P and PA to keep the current partner’s information. A
woman waits for proposals from men whose attributes are better than her current
partner. This comparison is performed with the bof boolean function (line 25)
that checks if a proposer is characterized by attributes wealth, body better than
the partner P characterized by the variable PA. If this function provides true as
output, then the woman sends a yes message back and waits for an acknowledge
message confirm from this man M. If M confirms to her, the woman gets engaged
to him by keeping M and his characteristics MA in the recursive call (line 33),
after rejecting her current partner P. Otherwise, she keeps listening for other
proposals (line 35).

3.4 Social Networking with Attributes

By abstracting SM, we are able to deal with the more realistic setting of social
networking. In fact, this domain nicely fits with our new programming abstrac-
tions that can be naturally used to express attribute-based interaction. In partic-
ular, a generalization of stable marriage can be applied to open-ended systems
where many-to-many matchings are allowed and the stability requirement is
dropped. This appears indeed to be quite a common case in large-scale social
networks, as we are going to discuss shortly.

In the social networking domain, attributes can represent characteristics of
the users, such as their hobbies, musical preferences, current location, age, spo-
ken languages, personality, mood, groups they belong to, their contact list (if
they decide to make it public). Note that some of these attributes, for example
location and mood, can change dynamically.

Possible interactions between users could happen when the interests of two or
more users match. For example, people could mutually look for other people to
jointly participate in a certain activity according to some specific criteria which
could be expressed using a predicate over the given attributes. More concretely,
let us consider a language exchange scenario where initially one could only look
for the language she wishes to learn and the one their potential partners are
interested in. In addition, however, it might be convenient to prefer somebody
with similar age and interests, or even knowledgeable of a second language in
common. Possible attributes for one user joining the system are: the language
that a user already knows, the language of interest, age, hobby and so on.
Interaction might be naturally expressed by the following code snippets, where
users advertise their own interest by sending their proposal:
to("language = this.interest") ! {Language, Id}

Another user may set up a receive waiting for somebody knowing the lan-
guage that she is interested in, conditioned to the matching of the hobby and
only if the potential partner is at most five years older than the user:
from("this.age - age < 5 and this.hobby = hobby and language =
this.interest"), receive

{Language, Buddy} ->
to("id = $Buddy") ! {ok, Id}

end

32 R. De Nicola et al.

The language exchange scenario above demonstrates the high flexibility
and expressiveness provided by attribute-based communication over traditional
actor-to-actor communication [1]. The interactions among components flexibly
arise from the sending and receiving predicates whose expressiveness allows to
suitably select the communicating entities. The handling of attributes inevitably
introduces a performance overhead that results to be acceptable (see Sect. 4).

Besides this we also consider the case when new pairs can join or leave the
group of entities aiming at finding matching partners. Such situation can easily
be dealt with when the partner selection is predicate-based, but clearly requires
significant work when preferences are expressed via lists of identifiers, as these
have to be recalculated whenever the set of users in the system changes.

4 Performance Evaluation

In this section we present the performance evaluation of AErlang. The conducted
experimentation focuses on two main aspects: (i) the efficiency in terms of run-
time overhead, see Sect. 4.1; (ii) the scalability in terms of size of the instances
and hardware resources, see Sect. 4.2. Experimental results are reproducible since
our prototype is publicly available1.

4.1 Efficiency

To evaluate the efficiency of AErlang, we compared the runtime performance
of SMA-aerl, SM-aerl, and SM-erl, an Erlang program implementing the same
matching protocol used in SM-aerl. All three programs were used to solve the
SMA problem instances. We used the pushing message forwarding policy (see
Sect. 2.2) for this part of the experiments.

Firstly, we generated multiple random input instances by considering problem
sizes from 100 to 500. We considered two attributes for women and two for
men, each attribute having a domain of two values (like in Table 2), with a
probability of occurrence ranging from 0.1 to 0.9. We used the same ranges
for preferences. We selected 24 different combinations in the given probability
ranges, and generated 10 instances for each combination. Since SM-erl and SM-
aerl take preference lists as input, we have also converted the problem instances
to use preference lists. Finally, we ran each instance 10 times and took the
average execution times. The hardware environment is a machine consisting of
4 CPUs AMD Opteron 6376 2.3 GHz, 2 MB Cache, 64 GB RAM. The versions
of OS and Erlang were Linux 4.4.0-62-generic and 19.1, respectively.

Table 4 reports the runtime ratio of the SM-aerl and SMA-aerl programs with
respect to SM-erl. Here, columns list the instance size, whereas rows enumerate
the compared variants. We observe that the ratio is always within the same order
of magnitude, more precisely we found a maximum ratio of 2.99 (observed for
SM-aerl vs SM-erl with 100 instance size), as highlighted by the bold entry in

1 https://github.com/ArBITRAL/AErlang.

https://github.com/ArBITRAL/AErlang

AErlang: Empowering Erlang with Attribute-Based Communication 33

Table 4. Runtime ratio AErlang vs Erlang.

Table 4, and a minimum one of 1.36 (observed for SMA-aerl vs SM-erl with 200
and 300 instance size). This suggests that the new programming abstractions
introduce an acceptable performance overhead (always within the same order
of magnitude) which is minimized when attributes are considered for predicate
evaluation. In fact, in Table 4 we can notice that SMA-aerl always shows lower
ratios with respect to SM-aerl. This is not affected by the instance size, i.e., with
larger instance sizes the ratio remains within the min-max values observed for
rather small instance sizes.

It is worth to notice that the SMA-aerl variant always outperforms SM-aerl,
as showed in the last row of Table 4. I due to the different cost of predicate
evaluation, in fact the former uses sending predicates whose complexity is inde-
pendent from the input size (e.g., "hair=blonde and eye=amber") whereas the
corresponding predicates of the latter need to check membership of identifiers
within ties and therefore may be as large as the size of the tie itself (e.g., "id=w1
or id=w2 or ..."). Note that this also holds at the receiver side.

4.2 Scalability

The scalability of our prototype is demonstrated while increasing: (i) the size
of the input instances from 1 k to 5 k and comparing AErlang with AS-X10;
(ii) the number of cores from 2 to 48 and comparing AErlang with its Erlang
counterpart.

Comparison with AS-X10. In [30], the authors proposed adaptive search as an
efficient approach to solve the SMTI and SMI problems. They model SMTI as
a permutation problem and try to resolve blocking pairs until an acceptable
size of the matching is achieved. Their framework, implemented in the X10
programming language (AS-X10) can handle instances up to the size of 1000
pairs with good performance and scalability on a large number of cores thanks
to a fine-tuned cooperation mechanism between many parallel solvers.

In this experiment we used the inputs originally described in [18], which are
generated by using their tool2 that takes three parameters as input: (p1) size of
the instance, (p2) probability of incompleteness, (p3) probability of ties.

2 https://github.com/dannymrock/SMTI-AS-X10.

https://github.com/dannymrock/SMTI-AS-X10

34 R. De Nicola et al.

For this comparison we optimized for performance the SM-aerl program
shown in Fig. 2. In particular, we did tailor the selection mechanism of the
message broker to exploit the structure of the sending predicate of men (i.e.,
checking the membership of an identifier within a tie is eventually expanded
to disjunctions of identities checks). Note that our prototype allows arbitrarily
complex expressions and function calls, however their repeated parsing and eval-
uation affects performance. A way to avoid this is to set the receiving predicate
to true and to evaluate the function locally. Our prototype currently does not
implement such mechanism, but we simulated it by simply moving the compari-
son function (bof) from the predicate to the local code for women. Furthermore,
we used the pushpull message forwarding policy (see Sect. 2.2) as it performed
best in this specific case.

We have generated two classes of instances while considering instance sizes
up to 5 thousands pairs of elements and the following sets of parameters: (i)
80% of incompleteness and no-ties instances (i.e., p2 = 0.8, p3 = 0); (ii) 95% of
incompleteness and 80% of no-ties instances (i.e., p2 = 0.95, p3 = 0.8). These
parameters were intentionally selected to be in line with those chosen in the
evaluation of the adaptive search approach, for a fair comparison [30].

This part of the experiments was run on an idle local workstation equipped
with 128 GB of memory, a dual Intel Xeon processor E5-2643 v3 (12 physical
cores in total) clocked at 3.40 GHz, and running a 64-bit generic Linux kernel
version 4.4.0, Erlang/OTP version 19.1, and X10 version 2.4.2.

Figure 4 shows that X10 performs faster than AErlang only on small instances
with 1 thousands of pairs of elements. However we do notice that when increasing
the size of the instances the AErlang program turns out to scale considerably
better. This gap tends to increase with size, making the AErlang program very
suitable to larger instances.

Comparison with Erlang. We wrote an Erlang program for the classical algo-
rithm by Gale-Shapley, and used it to compare runtime performance with the
AErlang program for SMTI. In this experiment, AErlang is configured with
pushpull message dispatching policy (see Sect. 2.2). We also used the same input
generator to generate problem instances for both SMTI and SMI problems.

We ran the AErlang program for SMTI and the Erlang program for SMI to
safely exclude any hidden complexity due to the management of the ties. The
size of the instances is fixed to the largest available option, i.e., 10 thousands of
pairs of elements, and by ranging the number of cores from 2 to 48. We ran 10
instances, 10 times each, and collected the average execution times as previously.
This experiment was performed on a computing cluster [34] where we had access
to nodes with 64 Intel CPUs clocked at 2.3 GHz and 110 GB of memory running
a scientific Linux distribution.

The results are presented in Fig. 5, where the x-axis denotes the number of
cores and the y-axis reports the execution time in seconds on a logarithmic scale.
Interestingly, the pronounced fluctuations in the running times are consistent
for both AErlang and Erlang programs. This suggests that performance glitches
within the Erlang subsystem end up affecting our AErlang prototype too.

AErlang: Empowering Erlang with Attribute-Based Communication 35

Fig. 4. AErlang vs. AS-X10 Fig. 5. AErlang vs. Erlang

Summarizing, we can conclude that introducing the attribute-based program-
ming abstraction introduces a reasonable performance overhead. The experimen-
tal results confirm that nevertheless the scalability provided by the underlying
runtime system is not significantly affected. In practice it is still possible to
challenge and outperform ad-hoc state-of-art distributed algorithms conceived
for large-scale systems.

5 Related Work

Attribute-based communication has been explored in the context of autonomic
computing by the research centered around the SCEL paradigm [36]. It has been
used to model the dynamic formation of ensembles from interacting autonomic
components [12]. Notably, this novel communication paradigm can also be used
to model a wide range of adaptation patterns in autonomic systems [9]. In our
previous work [11] we provided a preliminary assessment of AErlang, where we
used a simple program for a stable marriage variant without ties, to give a hint
of what could be done with AErlang. No performance evaluation was considered.
In this paper, instead, we develop an extended programming interface allowing
counting and parallel message delivery, along with a comprehensive evaluation
of the approach in terms of efficiency and scalability.

To the best of our knowledge, only two more efforts have been made on instan-
tiating attribute-based communication, both on top of the Java programming
language. The first work enriches the language with the primitives of the AbC
calculus [3], but it only supports the broadcasting method. This simplifies the
design and implementation of the message broker, it introduces communication
overhead, especially in large systems. Being aware of this issue, AErlang’s mes-
sage broker includes three other message-dispatching strategies, allowing users to
trade off depending on the application domain. The second work is jRESP [26],
based instead on the SCEL paradigm, and more oriented towards autonomic

36 R. De Nicola et al.

and adaptive systems. jRESP designates ports with specific roles at nodes (or
components) for communication. Nodes agreeing to interact via a port and can
use the communication protocol (such as broadcast via a central server, mul-
ticast or point-to-point) that the port supports. The main difference with our
approach is that we also consider strategies which filter early group of partners
by exploiting updated predicates and attributes.

Erlang has been used as the host language for incorporating domain spe-
cific abstractions to deal with multi-agents and self-adaptive systems [13,28,33].
Among others, we mention ContextErlang [33] which is an extension of
Erlang according to Context-Oriented Programming [21]. ContextErlang extends
Erlang’s gen server behaviour with context agent whose callback functions
can be overridden by (functions implementing) variations at runtime. During
operation, a context change triggers the activation of the corresponding varia-
tions, which leads to changing the behaviour of context agents. The difference
from our approach is in that we exploit exposed attributes, thus processes can
adapt their behaviour implicitly using predicate-based message passing. In prac-
tice, via attributes that are updated by relying on appropriate sensors, we can
model context-awareness.

The use of source-to-source transformation for extending Erlang with new
primitives has been demonstrated in JErlang [32]. JErlang provides a receive-
like join construct inspired from Join-Calculus [16]. Apart from transformation,
their implementation intercepts the Erlang receive algorithm to incorporate the
joins resolution mechanism, together with low-level optimizes inside Erlang’s
VM. Our AErlang prototype on the other hand focuses on mediating message
passing based on predicates with appropriate handling of process attributes, and
leading to user-friendly communication primitives.

6 Conclusion

In this paper, we have been experimenting with attribute-based communica-
tion and functional-style programming. We have proposed a prototype language
extension, namely AErlang, that enables attribute-based communication among
Erlang processes. AErlang conveniently combines the benefits of this novel par-
adigm with the efficiency and scalability of Erlang. Our approach copes well with
the main sources of complexity of collective adaptive systems, such as anonymity,
adaptivity, open-endedness, and their large size. It allows programmers to con-
centrate on the essence of the system being implemented, by relieving them from
the burden of working out low-level details on a case-by-case basis.

We have evaluated the efficiency and scalability of our approach. Experiments
compared the runtime performance of functional-style implementations for a
known solution to a hard matching problem, and have shown that the overhead
resulting from using the new communication primitives is acceptable, and our
prototype successfully preserves Erlang’s efficiency and scalability.

We have also implemented a variant of the above matching problem that
requires a more involved interaction pattern. We compared this variant to an

AErlang: Empowering Erlang with Attribute-Based Communication 37

ad-hoc parallel version based on adaptive search implemented in X10 [30] that
can scale very well when increasing the number of cores. The experimental results
have shown that our prototype does not currently scale well when increasing the
number of cores. This is possibly partly due to known potential performance
drains within the underlying Erlang subsystem which are being actively inves-
tigated [6,8,27]. However, AErlang does indeed scale considerably well on large
instances, whereas these turn out to be progressively out of reach for the algo-
rithm based on adaptive search implemented in X10.

Further experimentation is needed to improve AErlang and make it more
attractive in practice. An extensive evaluation on arbitrarily large instances that
use complex predicates and frequently changing attributes would be useful to
assess the overall robustness. An in-depth performance evaluation to understand
whether the large size of the system stresses the underlying scheduling mech-
anisms would be very useful. A systematic evaluation of the cost of predicate
handling would be highly beneficial to improve efficiency. Indeed, since predi-
cates can have an arbitrary complexity, their evaluation may add a significant
overhead, and efficient predicate evaluation is known to be non-trivial [15]; look-
ing for more efficient ways to handle predicate evaluation is thus very important.
Lastly, handling process attributes does require complicated bookkeeping that
has to take into account synchronisation, possible data inconsistencies, and so
on. A comprehensive experimentation by varying the number of attributes, the
size of the domains, the frequency of their updates, and their probability distri-
bution would be very useful to devise different handling strategies according to
a finer-grained classification of the attributes.

We plan to apply attribute-based communication to other concurrent lan-
guages, such as Go and Scala. Extending our experimentation across different
programming environments would certainly allow a deeper investigation on the
effectiveness of attribute-based communication.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). doi:10.1007/978-3-319-39570-8 1

3. Alrahman, Y.A., Loreti, M.: AbaCuS: a run-time environment of the AbC calculus
(2016). https://github.com/lazkany/AbC

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

5. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
6. Aronis, S., Papaspyrou, N., Roukounaki, K., Sagonas, K., Tsiouris, Y., Venetis,

I.E.: A scalability benchmark suite for Erlang/OTP. In: Proceedings of the
Eleventh ACM SIGPLAN Workshop on Erlang Workshop, pp. 33–42. ACM (2012)

7. Blau, S., Rooth, J., Axell, J., Hellstrand, F., Buhrgard, M., Westin, T., Wicklund,
G.: AXD 301: A new generation ATM switching system. Comput. Networks 31(6),
559–582 (1999)

http://dx.doi.org/10.1007/978-3-319-39570-8_1
https://github.com/lazkany/AbC

38 R. De Nicola et al.

8. Boudeville, O., Cesarini, F., Chechina, N., Lundin, K., Papaspyrou, N., Sago-
nas, K., Thompson, S., Trinder, P., Wiger, U.: RELEASE: a high-level paradigm
for reliable large-scale server software. In: Loidl, H.-W., Peña, R. (eds.) TFP
2012. LNCS, vol. 7829, pp. 263–278. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40447-4 17

9. Cesari, L., Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.: For-
malising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu, Z.,
Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Cham (2014).
doi:10.1007/978-3-319-07602-7 8

10. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: ACM SIGPLAN Notices, vol. 40, pp. 519–538. ACM (2005)

11. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang at work. In: Stef-
fen, B., Baier, C., Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOF-
SEM 2017. LNCS, vol. 10139, pp. 485–497. Springer, Cham (2017). doi:10.1007/
978-3-319-51963-0 38

12. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to auto-
nomic systems programming: the SCEL language. ACM Trans. Auton. Adapt.
Syst. (TAAS) 9(2), 7 (2014)

13. Dı́az, Á.F., Earle, C.B., Fredlund, L.Å.: eJason: an implementation of Jason in
Erlang. In: Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol.
7837, pp. 1–16. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38700-5 1

14. Ferscha, A.: Collective adaptive systems. In: ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pp. 893–895. ACM (2015)

15. Fontoura, M., Sadanandan, S., Shanmugasundaram, J., Vassilvitski, S., Vee, E.,
Venkatesan, S., Zien, J.: Efficiently evaluating complex boolean expressions. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pp. 3–14. ACM (2010)

16. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 372–385. ACM (1996)

17. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69(1), 9–15 (1962)

18. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties
and incomplete lists. In: Proceedings of the 15th European Conference on Artificial
Intelligence, pp. 141–145. IOS Press (2002)

19. Harrenstein, P., Manlove, D., Wooldridge, M.: The joy of matching. IEEE Intell.
Syst. 28(2), 81–85 (2013)

20. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for arti-
ficial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, pp. 235–245. Morgan Kaufmann Publishers Inc. (1973)

21. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)

22. Hu, Z., Hughes, J., Wang, M.: How functional programming mattered. Ntl. Sci.
Rev. 2(3), 349–370 (2015)

23. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

24. Iwama, K., Miyazaki, S.: A survey of the stable marriage problem and its vari-
ants. In: International Conference on Informatics Education and Research for
Knowledge-Circulating Society, ICKS 2008, pp. 131–136. IEEE (2008)

http://dx.doi.org/10.1007/978-3-642-40447-4_17
http://dx.doi.org/10.1007/978-3-642-40447-4_17
http://dx.doi.org/10.1007/978-3-319-07602-7_8
http://dx.doi.org/10.1007/978-3-319-51963-0_38
http://dx.doi.org/10.1007/978-3-319-51963-0_38
http://dx.doi.org/10.1007/978-3-642-38700-5_1

AErlang: Empowering Erlang with Attribute-Based Communication 39

25. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incom-
plete lists and ties. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). doi:10.1007/
3-540-48523-6 41

26. jRESP: Java Runtime Environment for SCEL Programs. http://jresp.sourceforge.
net/

27. Klaftenegger, D., Sagonas, K., Winblad, K.: On the scalability of the Erlang term
storage. In: Proceedings of the Twelfth ACM SIGPLAN Workshop on Erlang, pp.
15–26. ACM (2013)

28. Krzywicki, D., Turek, W., Byrski, A., Kisiel-Dorohinicki, M.: Massively concurrent
agent-based evolutionary computing. J. Comput. Sci. 11, 153–162 (2015)

29. Letuchy, E.: Facebook Chat (2008). http://web.archive.org/web/20160303044321/,
https://www.facebook.com/notes/facebook-engineering/facebook-chat/
14218138919/

30. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
hard stable matching problems via local search and cooperative parallelization. In:
29th AAAI Conference on Artificial Intelligence (2015)

31. O’Connell, A.: Inside Erlang, The Rare Programming Language
Behind WhatsApp’s Success (2014). http://web.archive.org/web/
20160715132942/, http://www.fastcompany.com/3026758/inside-erlang-the-rare-
programming-language-behind-whatsapps-success

32. Plociniczak, H., Eisenbach, S.: JErlang: Erlang with joins. In: Clarke, D., Agha, G.
(eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 61–75. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13414-2 5

33. Salvaneschi, G., Ghezzi, C., Pradella, M.: ContextErlang: a language for distributed
context-aware self-adaptive applications. Sci. Comput. Program. 102, 20–43 (2015)

34. Stalio, S., Di Carlo, G., Parlati, S., Spinnato, P.: Resource management on a VM
based computer cluster for scientific computing. arXiv preprint arXiv:1212.4658
(2012)

35. Thompson, S., Cesarini, F.: Erlang programming: a concurrent approach to soft-
ware development (2009)

36. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015)

http://dx.doi.org/10.1007/3-540-48523-6_41
http://dx.doi.org/10.1007/3-540-48523-6_41
http://jresp.sourceforge.net/
http://jresp.sourceforge.net/
http://web.archive.org/web/20160303044321/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
http://web.archive.org/web/20160715132942/
http://web.archive.org/web/20160715132942/
http://www.fastcompany.com/3026758/inside-erlang-the-rare-programming-language-behind-whatsapps-success
http://www.fastcompany.com/3026758/inside-erlang-the-rare-programming-language-behind-whatsapps-success
http://dx.doi.org/10.1007/978-3-642-13414-2_5
http://arxiv.org/abs/1212.4658

Simpler Coordination of JavaScript
Web Workers

Marco Krauweel1 and Sung-Shik T.Q. Jongmans1,2(B)

1 Department of Computer Science, Open University of the Netherlands,
Heerlen, The Netherlands

ssj@ou.nl
2 Department of Computing, Imperial College London, London, UK

Abstract. JavaScript is a popular sequential language for implement-
ing Web applications. To enable concurrent execution of JavaScript code,
modern JavaScript engines support the Web Workers API. Using this
API, developers can spawn concurrent background workers from a dis-
tinguished main worker. These workers, which run on the same machine
(e.g., to exploit multicore), interact via message-passing.

The Web Workers API is relatively low-level, which makes imple-
menting coordination protocols among background workers laborious
and error-prone. To simplify this, we propose to hide the Web Work-
ers API behind a coordination language that provides higher-level con-
structs. Importantly, developers already use JavaScript together with
domain-specific languages HTML (for markup/structure) and CSS (for
style/design); another domain-specific language (for coordination) seam-
lessly fits this practice. Using the coordination language Reo, we demon-
strate the advantages and feasibility of this approach by example. We
also present the necessary tool support (compiler; runtime library and
API; front-end).

1 Introduction

Context. JavaScript [7] is a sequential language originally invented to add
dynamic behavior to static Web pages. Together with domain-specific languages
HTML and CSS, JavaScript has become one of the most widely used languages
for implementing Web application clients. In recent years, JavaScript was popu-
larized also for writing server-side code and mobile apps. This makes JavaScript
a key language in contemporary software engineering.

Single pieces of JavaScript code are executed sequentially. To concurrently
execute multiple pieces of JavaScript code on the same machine (e.g., to exploit a
multicore processor), modern JavaScript engines support also the Web Workers
API [9]. This API “allows Web application authors to spawn background workers
running scripts in parallel to their main page”, which “allows for thread-like
operation with message-passing as the coordination mechanism.”

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 40–58, 2017.
DOI: 10.1007/978-3-319-59746-1 3

Simpler Coordination of JavaScript Web Workers 41

Problem. The Web Workers API is relatively low-level.
First, the Web Workers API provides no constructs for background workers to

send messages directly to each other; background workers can send messages only
to a distinguished main worker (“hierarchical communication” [21]). Second, the
Web Workers API provides no constructs for a background worker to correlate
messages sent to, and later received from, the main worker; workers cannot
reply to messages. Third, the Web Workers API provides no constructs for a
background worker to pause processing of the current message in anticipation of
receiving the next message; background workers cannot block.

Thus, sending messages end-to-end, replying to messages, and awaiting mes-
sages, can be implemented only in terms of lower-level constructs. This is labo-
rious and error-prone. For instance, it is already nontrivial to implement a back-
ground worker that simply needs to send a message to, and await a reply from,
another background worker as part of the same task.

Contribution. To simplify implementing coordination protocols using the low-
level Web Workers API, we propose to provide developers additional higher-level
constructs. Such constructs have, in fact, been under development already for
decades, in coordination languages. We therefore propose to hide the Web Work-
ers API behind a coordination language. An observation particularly relevant to
this approach is that developers already use JavaScript together with domain-
specific languages HTML (for markup/structure) and CSS (for style/design);
another domain-specific language (for coordination) seamlessly fits this practice.

In Sect. 2, we present preliminaries on JavaScript and the Web Workers API.
In Sect. 3, we illustrate the limitations of the Web Workers API. In Sect. 4, we
describe the existing coordination language Reo [10,11]. In Sect. 5, we demon-
strate how the use of Reo to hide the Web Workers API alleviates its limitations,
in theory. In Sect. 6, we present tool support (compiler; runtime library and API;
front-end) for developers to implement and run coordination protocols using Reo.
In Sect. 7, we demonstrate the feasibility of our approach, in practice. Section 8
concludes this paper, including related work. To our knowledge, this is the first
paper that presents high-level constructs to simplify implementing coordination
protocols among background workers in JavaScript and the Web Workers API.

2 JavaScript and the Web Workers API

– JavaScript provides first-class functions and the usual control constructs [7].
– The Web Workers API provides constructs for spawning background workers

from a main worker and constructs for sending/receiving messages [9].

Together, JavaScript and the Web Workers API constitute an actor language in
the style of active objects, in the taxonomy of De Koster et al. [13].

Every worker starts by performing some initial work (e.g., initializing vari-
ables). It then checks if, in the meanwhile, events have occurred that require
processing. Examples include message events (i.e., receipt of a message) and

42 M. Krauweel and S.-S.T.Q. Jongmans

timeout events (i.e., passage of time). If so, the worker executes event listeners
in response, until all events have been processed; otherwise, it suspends until the
next event occurs. Execution of event listeners is nonblocking and nonpreemp-
tive: event listeners run to completion in one go, uninterleaved with other event
listeners of the same worker.

A worker has an event handler for every type of event that it responds to.
For instance, every background worker has a message event listener to process
messages received from the main worker; as background workers cannot receive
messages directly from each other, no other message event listeners are necessary.
Conversely, the main worker receives messages from all background workers, and
it may need to respond differently to each of them; the main worker, therefore,
may have multiple message event listeners. Although many types of events exist,
only message and timeout events matter in this paper, w.l.o.g.

A worker’s cycle of awaiting and processing of events is called its event loop,
and it is repeated indefinitely; pending event listeners are stored in a private
FIFO queue. Furthermore, every worker has its own private heap. No memory
is shared; message-passsing is the only means of communication.

Fig. 1. main-pp.js Fig. 2. background.js

Example 1. Figures 1 and 2 show an example program. This program defines
two background workers, called Ping and Pong, who iteratively send "ping" and
"pong" to each other. Syntactically, a message event handler is a function, where
parameter e represents a message event to be processed; the message is accessed
through e.data. postMessage(m) sends message m. setTimeout(f,t) gener-
ates a timeout after t ms; subsequently, function f is called.

Figure 2 defines Ping (and Pong). Initially, Ping only sets his message event
handler (line 1–9); subsequently, he suspends. Whenever Ping receives a "pong"
message from the main worker, he resumes by sending back a "ping" message,
after a 1000 ms delay (lines 6–8); subsequently, he suspends again.

Figure 1 defines the main worker. Initially, the main worker spawns Ping and
Pong (lines 1–2), then it sets its message event handlers (lines 4–7), then it sends
an initial "pong" message to Ping (line 9); subsequently, it suspends. Whenever
the main worker receives a message from Ping or Pong, it resumes by forwarding
that message to Pong or Ping; subsequently, it suspends again.

Note that the main worker must call postMessage on a particular background
worker, to indicate the receiver. In contrast, background workers do not need to

Simpler Coordination of JavaScript Web Workers 43

Fig. 3. main-abc.js

Fig. 4. alice.js

Fig. 5. bob.js

Fig. 6. carol.js

call postMessage on the main worker; as background workers can send messages
only to the main worker, no confusion can arise about who is the receiver. ��

3 Limitations and Issues

Example 2. Figures 3, 4, 5 and 6 show an example program to illustrate the
limitations of the Web Workers API, stated in Sect. 1. This program defines
three background workers, called Alice, Bob, and Carol, operating in a pipeline:
Alice indefinitely produces initial values and sends them to Bob, Bob processes
initial values to final values and sends them to Carol, and Carol consumes final
values.

Figures 4 and 6 define Alice and Carol; they are straightforward. Alice’s mes-
sages record a serial number (used for bookkeeping by Bob) and an initial value.

Figure 5 defines Bob. Initially, Bob sets an empty list of pending serial num-
bers (line 1) and sets his message event handler (lines 15–21); subsequently he
suspends. Whenever Bob receives a message, he resumes. If Bob does not recog-
nize the serial number in the message (line 17), he starts a new processing cycle
for that serial number (line 18); otherwise, he continues a previous processing

44 M. Krauweel and S.-S.T.Q. Jongmans

cycle (line 20). In the former case, Bob processes the initial value to a final value
(line 4), then he sends a message to the main worker (lines 5–6), who forwards it
to Carol, then he registers the serial number (line 7); subsequently, he suspends
again. In the latter case, Bob unregisters the serial number (line 11) and finalizes
his processing cycle (line 12); subsequently, he suspends again.

Figure 3 defines the main worker. The main worker unconditionally forwards
messages received from Alice to Bob (line 7). As such, Alice communicates to
Bob via an unbounded buffer. In contrast, the main worker forwards messages
received from Bob to Carol (line 13) only if the number of buffered messages i is
smaller than a bound n (line 11). As such, Bob communicates with Carol via an
n-capacity buffer (e.g., to avoid excessive memory usage if Carol is slower than
Bob, and many large message from Bob would otherwise need to be buffered).
To prevent loss of messages, the main worker acknowledges a serial number sn
to Bob only once the corresponding message can be forwarded (line 12); Bob
awaits this acknowledgment before beginning the second half of its processing
cycle for sn. As such, the n-capacity buffer is blocking. If the main worker cannot
forward a message yet, it schedules an immediate retry (lines 16–17).1

This example program illustrates the limitations of the Web Workers API,
stated in Sect. 1. First, it illustrates that background workers cannot directly
send to, and receive from, each other. In particular, background workers can-
not obtain references to other background workers. Second, this example pro-
gram illustrates that background workers cannot directly understand replies to
messages. In particular, whenever Bob receives from the main worker a reply
(acknowledgment) to an earlier message, the context in which he sent that mes-
sage is gone; to Bob, the reply might just as well be a new forwarded message
from Alice. This is why messages need to be explicitly tagged with a serial num-
ber and why Bob needs to do extra bookkeeping. Third, this example program
illustrates that background workers cannot straightforwardly block. In particu-
lar, after Bob sends a message to the main worker, he needs to await an acknowl-
edgment, but the only means of waiting is through suspension and resumption
(event loop). As a result, Bob’s processing cycle is unnaturally split into two
functions. ��

The coordination protocol between Bob and Carol in the previous example
is among the simplest: asynchronous communication through a blocking FIFO
buffer of bounded capacity. Yet, due to limitations of the Web Workers API,
the implementation of this simple coordination protocol is not that simple at
all: as higher-level constructs are missing (sending message end-to-end, reply-
ing to messages, awaiting messages), key characteristics can be expressed only
indirectly (through forwarding, through serial numbers, through split functions).
This makes development laborious and error-prone.

Another issue is that “computation code” is entangled with “coordina-
tion code”. This lack of separation and modularity between computation and
coordination complicates development. For instance, changing the implemen-
tation of a coordination protocol typically requires global understanding of,
1 This is an inefficient implementation, but we aim for simplicity here.

Simpler Coordination of JavaScript Web Workers 45

Fig. 7. main-abbc.js

Fig. 8. Example connectors

and modifications to, larger parts of a program; it cannot be localized, because
implementations of coordination protocols are scattered across multiple work-
ers. Moreover, reusing the implementation of a coordination protocol in other
programs typically requires so much effort that it is practically infeasible.

Example 3. Suppose that we want to instantiate two Bobs instead of only one
(e.g., because Alice and Carol are twice as fast as Bob). Effectively, then, we need
to generalize the coordination protocol between Alice and Bob to multiple read-
ers, and the coordination protocol between Bob and Carol to multiple writers.
Figure 7 shows modifications to the main worker to achieve this (see Footnote 1).
Additionally, we crucially need to insert a postMessage({}) call between lines
12 and 13 in Fig. 5, through which a Bob informs the main worker that he is
ready for the next message. The latter illustrates that modifications cannot be
localized to one specific piece of code; global understanding and modifications
are necessary. ��

For more complex coordination protocols (e.g., tighter synchronization, many
control states), the impact of these limitations and issues becomes only more
serious. This is why we propose to provide developers additional higher-level
constructs that hide the low-level Web Workers API. Next, we present an existing
coordination language that achieves this aim.

4 Reo

Reo [10,11] is a graphical language for compositional construction of coordina-
tion protocols, manifested as circuits. Briefly, a circuit is a graph-like structure

46 M. Krauweel and S.-S.T.Q. Jongmans

Table 1. Common channels

consisting of typed channels (decorated edges), through which values flow, and
nodes (vertices), on which channel ends coincide. Figure 8 shows examples.

Every channel has a type, graphically indicated by (the absence of) a decora-
tion. The type of a channel determines how values flow through it—its behavior.
Every channel has two ends, each of which is either a source end or a sink end.
A source end accepts values into its channel, while a sink end offers values out of
its channel. A channel in Reo has either two source ends, or two sink ends, or a
source and a sink end. Table 1 shows common channels types. Users of Reo may
extend this set by defining their own channels (modeled in some formalism [18]).

The behavior of a node depends on its coincident channel ends.

– A node with only coincident source ends is a source node. A source node is
linked to an output port of a worker. By performing a put(v) operation on
an output port, a worker attempts to offer value v to the linked source node.
As soon as each of the coincident source ends of the source node is ready to
accept v, it synchronously replicates v into all of them, and the put returns;
until then, the pending put blocks the worker.

– A node with only coincident sink ends is a sink node. A sink node is linked to
an input port of a worker. By performing a get operation on an input port,
a worker attempts to accept a value from the linked sink node. As soon as
at least one of the coincident sink ends of the sink node is ready to offer a
value, the sink node nondeterministically selects a value v from one of them,
and the get returns v; until then, the pending get blocks the worker.

– The source and sink nodes of a circuit are its boundary nodes (light-gray
color). A node on which both source and sink ends coincide is a mixed node
(dark-gray color). Mixed nodes combine the behavior of source and sink nodes:
synchronously, a mixed node nondeterministically selects a coincident sink
end and replicates its value into all coincident source ends. Nodes cannot
temporarily store, generate, or lose values.

Simpler Coordination of JavaScript Web Workers 47

Before a value can flow through a circuit, its channels and nodes must first
reach consensus about their local behavior to ensure consistent global behavior.
For instance, a node should not locally (decide to) replicate a value into the
coincident source end of a fifo channel if the buffer of that channel is full.

Example 4. The circuit in Fig. 8(a) implements the coordination protocol
between Alice and Bob in Example 2; the circuit in Fig. 8(b) implements the
coordination protocol between Bob and Carol in Example 2. This shows that
Reo is expressive enough to define both nonblocking coordination protocols (e.g.,
between Alice and Bob) and blocking ones (e.g., between Bob and Carol); ulti-
mately, the programmer decides what kind of communication is needed. The
circuit in Fig. 8(c) implements the coordination protocol between the two Bobs
and Carol in Example 3.

The circuit in Fig. 8(c) works as follows. For a put(v) operation performed on
the top-left source node to return, this node must replicate v into the coincident
source end of the sync channel. This is possible only if the sync channel accepts v,
which depends on whether it can synchronously offer v through its sink end to
the connected mixed node. This is possible only if the mixed node accepts v,
which depends both on its nondeterministic selection and on whether it can
synchronously replicate v into the coincident source end of the fifon channel. The
latter is possible only if the fifon channel accepts v, which depends on whether its
buffer is not full. Thus, only if the mixed node makes the “right” nondeterministic
selection and the buffer is not full, only then flows v synchronously from the top-
left source node into the buffer (and put(v) returns).

Once the buffer is full, no value can flow from either of the two source nodes
into the buffer. The only thing that can happen at this point is the flow of a
value out of the buffer to the sink node. Subsequently, because the buffer is not
full anymore, a value can flow from one of the two source nodes into the buffer. ��

For Java developers to use Reo to implement and run coordination proto-
cols, a Reo-to-Java compiler, a Reo@Java runtime library, and a Reo@Java API
exist [16,17]. The idea is that developers implement workers as Java classes and
coordination protocols as Reo circuits. Then, the Reo-to-Java compiler computes
the semantics of the Reo circuits as state machines (more precisely, as constraint
automata [12,16]), and it generates Java classes for their runtime simulation.

At runtime, every hand-written worker object, and every compiler-generated
state machine object, runs in its own Java thread. Through the Reo@Java API,
every worker object has access to (data structures for) ports, on which it can
perform put and get operations. State machine objects monitor those ports:
whenever a worker object performs a put or get on one of its ports, a designated
state machine object checks whether this operation enables a transition out of
its current state; every transition represents a synchronous flow of values among
ports. If so, the state machine object makes the transition, distributes values
accordingly among participating ports, and completes all put and get operations
involved; if not, the state machine object does nothing and awaits the next put
or get. In accordance with the blocking nature of put and get, the execution

48 M. Krauweel and S.-S.T.Q. Jongmans

Fig. 9. workers-reo.js

Fig. 10. main-abc.reo

of worker objects is suspended so long as their puts and gets are pending. The
Reo@Java runtime library provides an implementation of the Reo@Java API.

5 Hiding the Web Workers API Behind Reo – In Theory

Reo enables developers to implement coordination protocols in terms of domain-
specific abstractions and higher-level constructs. As a coordination language that
hides the low-level Web Workers API, use of Reo has two main implications.

The first implication is the adoption of a syntactic separation between com-
putation and coordination: developers should implement workers in JavaScript,
while they should implement coordination protocols purely in Reo. This sepa-
ration leads to modularization (of workers and coordination protocols), which
has well-known advantages [23], including improved changeability and reusabil-
ity. The second implication is that programmers should no longer implement
communications with nonblocking postMessage from the existing Web Workers
API, but with blocking put and get from our new Reo@JS API. If necessary, as
demonstrated in Example 4, put and get can effectively be made nonblocking by
connecting them to a circuit with fifo buffers. Of course, nothing prevents pro-
grammers from implementing additional “covert communications” among back-
ground workers in an indirect way (e.g., using message channels or sockets), but
this is against the philosophy of our approach and therefore discouraged.

Example 5. Figure 9 shows implementations of Alice, Bob, and Carol in the
example program from Example 2, using the Reo@JS API instead of the Web
Workers API. Alice, Bob, and Carol are now implemented as functions, with
output ports and input ports as parameters. As put and get are blocking, espe-
cially function bob is significantly simpler than the code in Fig. 5 (fewer details
to worry about).

Simpler Coordination of JavaScript Web Workers 49

Figure 10 shows implementations of the coordination protocols between Alice
and Bob, and between Bob and Carol. This diagram also defines which work-
ers the program consists of, by which functions those workers are defined, and
how workers’ ports are linked to boundary nodes. Using higher-level constructs
to express coordination, as in Reo, developers are relieved from the burden of
working with low-level constructs provided by the Web Workers API. ��
Example 6. Figure 11 shows implementations of the coordination protocols
between Alice and the two Bobs, and between the two Bobs and Carol, in the
example program from Example 3. The “crossed” mixed node replicates a value
into only one of its coincident source ends (instead of all), selected nondeter-
ministically.2 Notably, Alice, the two Bobs, and Carol are defined by exactly the
same functions as those in Fig. 9. Such reusability is one of the advantages of
separating computation from coordination. Figure 12 shows an implementation
of a different coordination protocol between Alice and the two Bobs, where every
Bob now has its own unbounded buffer (instead of them sharing one). Making
these modifications at this level of abstraction is simple; at the level of abstrac-
tion of the Web Workers API, it is not. Figure 13 shows an implementation of yet
a different coordination protocol between Alice and the two Bobs, where values
from Alice are divided evenly over the two buffers (not guaranteed with Fig. 12).

The circuits in Fig. 11 are built from (the two simple) circuits in Fig. 10. This
shows that not only can coordination protocols be reused, but in fact, they can
be further composed into more complex ones. In plain JavaScript and the Web
Workers API, reusing and composing existing implementations of coordination
protocols is practically infeasible. ��

Examples 5 and 6 show how the limitations and issues of the Web Workers
API (Sect. 3) are alleviated when a coordination language, such as Reo, is used.
Hiding the Web Workers API behind Reo makes both workers and coordination
protocols simpler to implement, easier to change, and easier to reuse, in theory.
To actually reap these advantages in practice, developers need tool support. We
present such tools in the next section, to show that our approach is also feasible.

Fig. 11. main-abbc.reo

2 This node is, in fact, syntactic sugar for a complexer circuit (i.e., it can be composed).

50 M. Krauweel and S.-S.T.Q. Jongmans

Fig. 12. main-abbc2.reo (fragment) Fig. 13. main-abbc3.reo (fragment)

6 Tool Support

Overview. For developers to use Reo to implement and run coordination proto-
cols, they need a compiler and a runtime library. The “easy part” was developing
our new Reo-to-JS compiler, which works much in the same way as the existing
Reo-to-Java compiler. The “hard part” was developing our new Reo@JS runtime
library, which differs significantly from its Java counterpart.

Compiler. Most of the internals of the new Reo-to-JS compiler are reused
from the existing Reo-to-Java compiler (see Sect. 4). In particular, computation
and optimization of state machines for Reo circuits is independent of the target
language and works in exactly the same way for JavaScript as for Java.

The JavaScript code generated by the Reo-to-JS compiler is also conceptually
similar to the Java code generated by the Reo-to-Java compiler: in the same
event-driven way as explained in Sect. 4, the generated JavaScript code simulates
a computed state machine. This state machine is executed by the main worker.

The Reo-to-JS compiler also generates “wrappers” around the functions that
are linked to the boundary nodes of the circuit; these wrappers are executed
in separate background workers, using the Web Workers API. All necessary
initialization code is also generated. Thus, the only code that developers need to
write by hand are the functions that link to the boundary nodes (e.g., Fig. 9).

Runtime Library. The new Reo@JS runtime library contains auxiliary code
that simplifies and reduces the amount of code that needs to be generated. Most
of this code is similar to the code in the existing Reo@Java runtime library. The
two runtime libraries significantly differ, however, in their implementation of
ports, and particularly, the implementations of put and get. This is because Java
differs from JavaScript and the Web Workers API in two significant ways: Java
supports shared-memory concurrency and blocking constructs, which JavaScript
and the Web Workers API do not support. Shared memory in Java enables
straightforwardly linking worker objects to state machine objects by sharing the
same port objects between them; this is not possible in JavaScript. Blocking
operations in Java make implementing the blocking semantics of put and get
straightforward; this is also not possible in JavaScript.

Simpler Coordination of JavaScript Web Workers 51

(a) (b)

Fig. 14. (a) input-port.js (simplified), (b) input-port-proxy.js (simpl.)

We first explain our solution to the unshared memory complication. The
idea is to use two sets of output ports and input ports: one set for background
workers, and another set for the main worker. Figures 14(a) and (b) show sim-
plified3 versions of the code for input ports; the code for output ports is similar.
Figure 14(a) shows class InputPort, instances of which are used by background
workers. At the “background side”, whenever get is called, sndRequest is subse-
quently called (through a promise; see below). sndRequest essentially relays the
get call to the proxy of the main worker, by sending a null message. Then, at the
“main side”, this null message is processed by rcvRequest, which calls the real
get that is monitored by the state machine. The resulting value is eventually
sent back to the background worker, where it is processed by rcvResponse.

The nonblocking operations complication is trickier to solve, because it seems
impossible to implement blocking operations in JavaScript without exposing the
programmer to some of the required logic. The argument is as follows. JavaScript
has no blocking constructs, so we need to implement them ourselves. One option
is busy-waiting, where an event listener that needs to block repeatedly checks
the value of a variable until it is changed by another event listener of the same
worker (e.g., in response to a message receipt). But, as event listeners are never
preempted, they are never interleaved. This entails a causal loop that causes a
busy-waiting worker to busy-wait forever: the second event listener is not exe-
cuted until the busy-waiting is over, which does not happen until the variable
is updated, which is what the second event listener should do. The only viable
alternative to implement blocking, then, seems suspending the worker in its event
loop, by ending the current event listener. Importantly, just before suspending,
bookkeeping is required to register a continuation; otherwise, the worker does not

3 Compared to Figs. 14(a) and (b), the actual implementation also supports multiple
ports per workers, and it is protected against workers that perform the next get (or
put) before the previous one is completed. Details appear elsewhere [20].

52 M. Krauweel and S.-S.T.Q. Jongmans

know how to proceed later on. It seems inevitable to place the burden of book-
keeping for continuations on the developer. The main challenge is to minimize
this burden, encapsulating it in the Reo@JS runtime library wherever possible.

First, we use promises. A Promise object represents the eventual result of an
asynchronous computation, which may not have finished yet when the Promise
object is created. Upon calling the constructor of a Promise object, an execu-
tor (function) is passed that defines the asynchronous computation to be per-
formed; inside the constructor, the executor is called with a resolve (function)
as parameter. The resolve is called once the asynchronous computation finishes.
Initially, the resolve is empty. To “fill” the resolve, then can be called on the cre-
ated Promise object with a callback (function) as parameter. If the resolve has
already run at that point, the callback is immediately run; otherwise, the resolve
is filled with a call to the callback (which runs as soon as the asynchronous com-
putation finishes). Technically, then returns another Promise object, making it
possible to express a sequence of seemingly blocking computations by succes-
sively calling then. Such a chain of then calls nests promises in promises, which
asynchronously—interrupted in the event loop—resolve one after the other.

Example 7. As shown in Fig. 14(a), get returns a new Promise object; the same
holds for put. Figure 15 shows what a worker looks like if developers were to
express computations directly with promises. Note that the callbacks for the
two get operations have a formal parameter val (which contains, conceptually,
the value offered by the circuit); the actual parameter is passed on line 17,
Fig. 14(a) (at which point this.r refers to the callback). ��

The previous example shows that using promises to implement blocking,
still places a heavy burden on developers. To simplify this, we use generators.

Fig. 15. Promises, explicitly

Fig. 16. Promises, implicitly

Fig. 17. Looping on promises

Simpler Coordination of JavaScript Web Workers 53

A generator is a function that can be exited and re-entered: whenever a yield
is encountered during the execution of a generator, the context is saved, and the
generator is exited (optionally yielding a result). When the generator is later
re-entered, its saved context is restored, and it proceeds from where it left off.

We require that workers are implemented as generators instead of as normal
functions (indicated with an asterix), and that put and get are always used
together with yield. Subsequently, we can apply promise-based asynchronous
task running [28], where every background worker calls its generator, waits until
a promise from put or get is yielded, provides this promise a callback in which
the generator is re-entered, and suspends; the provided callback ensures that this
process repeats itself until the generator is done. Figure 17 shows this approach
in code. In this way, every background worker effectively runs a loop (but with
continuous interruptions through suspension and resumption) in which all code
is executed in callbacks, from one put/get to the next put/get. For instance,
“unrolling” the code in Fig. 16 results in the code in Fig. 15.

Using promises and generators, we largely relieve developers from the burden
of bookkeeping for continuations, with concise code as a result (e.g., Fig. 9).

Front-End. We hooked our Reo-to-JS compiler into PrDK [16,17]. PrDK con-
sists of plugins for Eclipse, including a graphical editor for Reo circuits that
allows developers to draw Reo diagrams as the ones in Figs. 10, 11, 12 and 13,
using a drag-and-drop interface. From this editor, the Reo-to-JS compiler can
directly be run to generate and package all JavaScript code, for client-side exe-
cution in browsers or for server-side execution in Node.js (using the tiny-worker
library [6]).

7 Hiding the Web Workers API Behind Reo –
In Practice

Examples 5 and 6 (Sect. 5) showed that, in theory, the limitations and issues
of the Web Workers API (Sect. 3) are alleviated when a coordination language,
such as Reo, is used. Our example programs were still abstract, though. In
this section, complementary, we report on a concrete example program that we
implemented using the tools presented in Sect. 6.

Example 8. To avoid bias, we took an existing program [1] (not ours) that uses
the Web Workers API. This program performs a nontrivial numerical computa-
tion, where n background workers cooperatively compute ab mod c. This calcula-
tion is also performed, for instance, in RSA decryption, where a is the encrypted
message, and where b and c constitute an agent’s private key.

In the original program, first, the main worker sends a message (a, bi, c)—a
“work package”—to every background worker 1 ≤ i ≤ n, such that

∑
bi = b.

Subsequently, every background worker i computes abi mod c and sends back
the result. Finally, the main worker aggregates these results into the final out-
come. Communication between the main worker and the background workers
thus follows a typical master–slaves pattern.

54 M. Krauweel and S.-S.T.Q. Jongmans

Using our tools, we adapted the original program to use the Reo@JS API,
effectively by replacing all postMessage calls with put and get calls on ports. We
also relieved the main worker from its original tasks of dividing the work and
aggregating the results, and placed these responsibilities with two new back-
ground workers. As a result, the background workers now exactly fit Alice, the
Bobs, and Carol in Example 3: Alice divides the work, the Bobs perform the
work and compute the results, and Carol aggregates the results. By instantiat-
ing Alice, the Bobs, and Carol in this way, Fig. 11 is directly applicable in this
case study, including all its previously explained advantages (Examples 5 and 6).

As a result of these changes, the coordination code that needed to be written
manually was reduced from 145 lines to 46 lines (reduction of nearly 70%).
Moreover, by implementing the coordination protocol in a separate module as a
Reo circuit, it became amenable to reuse; essentially, the changes to the original
program turned a specific implementation of master–slaves coordination into a
reusable generic one. Thus, the effort of designing the circuit (less than an hour
by a Reo expert) need not be remade in the future. ��
Example 9. Suppose that the original program “accidentally” (e.g., as the result
of a programming mistake) lets the main worker send all work packages to the
same background worker, so losing concurrency. As the implementation of the
coordination protocol is not an explicit module in the original program, there
is no obvious place to enforce that work packages should be evenly distributed
among background workers.

In contrast, using Reo, we can encode such constraints in the circuit, and the
compiler-generated code automatically enforces them. Figure 13 already showed
such a circuit for two Bobs, which can be generalized to n. Using this circuit, if
a faulty Bob performs multiple get operations, the circuit still ensures that the
other Bobs receive a work package before the faulty Bob receives its second one,
so preserving concurrency. Thus, new constraints (e.g., to improve robustness)
can directly be added in our approach, due to improved changeability. ��
Example 10. As a first indication of performance, we conducted the following
experiment. We took a synchronous variant of the circuit in Fig. 13 and a syn-
chronous variant of the circuit between the two Bobs and Carol in Fig. 11, then
we used the Reo-to-JS compiler to generate code, and finally we ran the result-
ing programs in Firefox on a machine with four hardware threads, processed
by two physical cores. We experimented with synchronous circuits, because we
wanted to test a worst-case scenario (asynchrony is cheaper than synchrony).
The computation to be performed was always 21024·106 mod 97777. We repeated
this for 1 ≤ n ≤ 10 Bobs, and we averaged our timing measurements over ten
runs per n; we did the same for the original program to make a comparison.

Figure 18(a) shows the begin-to-end execution times (error bars indicate stan-
dard deviation). The figure shows that scalability is quite well, so long as there
is hardware parallelism to harness (up to n = 4). Evaluating the effectiveness
of the parallelization is actually not our main concern, though; we are primarily
interested in the performance of the compiler-generated protocol implementation

Simpler Coordination of JavaScript Web Workers 55

Fig. 18. Experimental results

relative to the hand-written one in the original program. Figure 18(b) is, thus,
more interesting: it shows the execution times of only the coordination overhead
(measured by commenting out the computations of the workers).4 This figure
shows that the compiler-generated code is on average 20% slower. Given that we
have not seriously optimized our compiler and runtime library yet, we consider
this a promising result: it suggests that we can have the advantages in Sect. 5
without prohibitive performance costs. ��

4 Ideally, coordination overhead is completely independent of workload. In practice,
however, this is not always so. The memory footprint of a workload can, for instance,
affect the size of coordination overhead [16]. Generally, the larger a workload, the
smaller the ratio coordination

computation
, the less impact coordination overhead has on perfor-

mance, and the less important minimizing such overhead becomes; at that point,
other software qualities (changeability, reusability, etc.) may take precedence.

56 M. Krauweel and S.-S.T.Q. Jongmans

The examples in Sect. 5 and in this section, combined with the tools in Sect. 6,
provide first evidence that hiding the Web Workers API behind a coordination
language, such as Reo, is advantageous in theory and feasible in practice.

8 Conclusion

Related Work. Beside the Web Workers API, other proposals to incorporate
actor-based concurrency in JavaScript have been made. For instance, Stivan
et al. [26] ported the JVM-based implementation of the Akka framework to
JavaScript, called Akka.js. One of the differences between the Web Workers API
and Akka.js is that Akka.js allows actors on different JavaScript engines to com-
municate with each other. For Myter et al. [21], supporting both parallelism and
distribution was a key design consideration in developing the Spiders.js frame-
work. Spiders.js places particular emphasis on ease of programming, but not
on coordination protocols. Welc et al. [27] proposed generic workers to support
both parallelism and distribution in terms of an API very similar to the Web
Workers API. These approaches are complementary to ours: in this paper, we
simplify implementing coordination protocols among background workers run-
ning on the same machine, but a generalization to distributed actors would be
interesting.

There has also been work on incorporating data parallelism in JavaScript,
including the River Trail framework by Herhut et al. [14] and the WebCL ini-
tiative [8], which constitutes a JavaScript binding to OpenCL. In an emperical
study of twelve Web applications, Radoi et al. [25] found “a surprisingly large
quantity of compute-intensive loops of which many were latently parallel.”

Outside academia, several libraries have been developed to simplify program-
ming with the Web Workers API, including q-connection [5], parallel.js [4], Ham-
sters.js [2], and operative [3], but without emphasizing coordination protocols.

Technical differences aside, the main conceptual difference between all this
related work and our proposed approach is that we emphasize the importance
of coordination protocols as explicit programming artifacts, thereby enforcing
syntactic separation of coordination and computation. Such a separation makes
it easier to change and reuse coordination protocols.

This Work. We showed that implementing coordination protocols among back-
ground workers is difficult, because of limitations and issues with the low-level
Web Workers API (Sects. 2 and 3). To make this simpler, we proposed to hide
the Web Workers API behind a coordination language that provides higher-level
constructs. Using Reo (Sect. 4), we demonstrated the advantages and feasibility
of our approach by example (Sects. 5 and 7), and we presented the necessary
tool support in terms of a compiler, a runtime library and API, and a front-end
(Sect. 6). As Web application developers have a tradition of separating concerns
(HTML, CSS, JavaScript), Web applications may constitute a fertile new appli-
cation domain for existing coordination languages.

Simpler Coordination of JavaScript Web Workers 57

Future Work. We argued, by example, that use of a coordination language
makes implementing coordination protocols among background workers simpler
(i.e., it has particular advantages over directly using the Web Workers API).
Complementary proof for this claim would consist of a set of successful real
projects; we therefore aim to empirically evaluate the merits of our proposed
approach, and improve our tools in the process. Optimizing the Reo-to-JS com-
piler and Reo@JS runtime library is also high on our list, including a study of
impact on performance, which we barely touched upon in this paper.

An important aspect of the previously mentioned future work is studying the
scalability of our proposed approach, both in terms of usability and performance.
We expect modularity (separation of coordination and computation) to play an
enabling role in dealing with complex systems, but it requires a new way of
working from programmers; the consequences of this are unclear and should be
better studied. Also, tools (notably, the compiler) need to ensure performance
scalability as coordination protocols grow larger (i.e., involve more participants),
which generally is a nontrivial technical challenge [19].

We chose to use Reo in this work, because it is strongly rooted in separation
of computation and coordination. Reo, however, also has its limitations. For
instance, run-time parametrization in the number of workers is not yet possible.
It is therefore interesting to see if a JavaScript variant of, for instance, Pabble [22]
(based on multiparty session types [15]) is more suitable.

A special case of a background worker is one that only calls an asynchronous
API (e.g., the Geolocation API) and processes the result in a callback. In another
experiment with our tools [20] (omitted from this paper to save space), we
encountered several such distinguished background workers and already added
support for them in our tool (the tool automatically generates code to make
asynchronous API calls from our framework; the programmer does not need to
write such boilerplate code her/himself). Further research is necessary, however,
to study to what extent coordination languages can also be used to orchestrate
asynchronous API calls as a solution to “callback hells”, and whether there are
advantages compared to existing approaches; see Philips et al. [24].

References

1. Javascript Web Workers Test. http://pmav.eu/stuff/javascript-webworkers/
2. [library]: Hamsters.js. https://github.com/austinksmith/Hamsters.js
3. [library]: operative. https://github.com/padolsey/operative
4. [library]: parallel.js. https://github.com/parallel-js/parallel.js
5. [library]: q-connection. https://github.com/kriskowal/q-connection
6. [library]: tiny-worker. https://github.com/avoidwork/tiny-worker
7. [standard] Ecma International: ECMA-262. http://www.ecma-international.org/

publications/standards/Ecma-262.htm
8. [standard] Khronos Group: WebCL. https://www.khronos.org/webcl
9. [standard] W3C: Web Workers. https://www.w3.org/TR/workers

10. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comp. Sci. 14(3), 329–366 (2004)

http://pmav.eu/stuff/javascript-webworkers/
https://github.com/austinksmith/Hamsters.js
https://github.com/padolsey/operative
https://github.com/parallel-js/parallel.js
https://github.com/kriskowal/q-connection
https://github.com/avoidwork/tiny-worker
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.khronos.org/webcl
https://www.w3.org/TR/workers

58 M. Krauweel and S.-S.T.Q. Jongmans

11. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24933-4 9

12. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

13. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy of
actor models and their key properties. In: Proceedings of AGERE 2016, pp. 31–40.
ACM (2016)

14. Herhut, S., Hudson, R., Shpeisman, T., Sreeram, J.: River trail: a path to paral-
lelism in JavaScript. In: Proceedings of OOPSLA 2013, pp. 729–744. ACM (2013)

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. ACM
SIGPLAN Notices 43(1), 273–284 (2008). (Proceedings of POPL 2008)

16. Jongmans, S.-S.T.Q.: Automata-theoretic protocol programming. Ph.D. thesis,
Leiden University (2016)

17. Jongmans, S.-S.T.Q., Arbab, F.: PrDK: protocol programming with automata. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 547–552.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 33

18. Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo.
Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)

19. Jongmans, S.-S.T.Q., Arbab, F.: Can high throughput atone for high latency
in compiler-generated protocol code? In: Dastani, M., Sirjani, M. (eds.) FSEN
2015. LNCS, vol. 9392, pp. 238–258. Springer, Cham (2015). doi:10.1007/
978-3-319-24644-4 17

20. Krauweel, M.: Concurrent and asynchronous JavaScript programming using Reo.
Master’s thesis, Open University of the Netherlands (2017)

21. Myter, F., Scholliers, C., De Meuter, W.: Many spiders make a better web: a
unified web-based actor framework. In: Proceedings of AGERE 2016, pp. 51–60.
ACM (2016)

22. Ng, N., Yoshida, N.: Pabble: parameterised Scribble. Service Oriented Comput.
Appl. 9(3-4), 269–284 (2015)

23. Parnas, D.: On the criteria to be used in decomposing systems into modules. Com-
mun. ACM 15(12), 1053–1058 (1972)

24. Philips, L., De Koster, J., De Meuter, W., De Roover, C.: Dependence-driven
delimited CPS transformation for JavaScript. In: Proceedings of GPCE 2016, pp.
59–69. ACM (2016)

25. Radoi, C., Herhut, S., Sreeram, J., Dig, D.: Are web applications ready for paral-
lelism? In: Proceedings of PPoPP 2015. ACM (2015)

26. Stivan, G., Peruffo, A., Haller, P.: Akka. js: towards a portable actor runtime
environment. In: Proceedings of AGERE! 2015, pp. 57–64. ACM (2015)

27. Welc, A., Hudson, R., Shpeisman, T., Adl-Tabatabai, A.R.: Generic workers:
towards unified distributed and parallel Javascript programming model. In: Pro-
ceedings of PSI EtA 2010. ACM (2010)

28. Zakas, N.: Promises and Asynchronous Programming. In: Understanding
ECMAScript 6, Chap. 11, 1st edn., pp. 213–241. No Starch Press (2016)

http://dx.doi.org/10.1007/978-3-642-24933-4_9
http://dx.doi.org/10.1007/978-3-662-49674-9_33
http://dx.doi.org/10.1007/978-3-319-24644-4_17
http://dx.doi.org/10.1007/978-3-319-24644-4_17

Optimally-Self-Healing Distributed Gradient
Structures Through Bounded Information Speed

Giorgio Audrito1,2(B), Ferruccio Damiani1,2, and Mirko Viroli3

1 Dipartimento di Informatica, University of Torino, Torino, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

2 Centro di Competenza per il Calcolo Scientifico, University of Torino, Torino, Italy
3 DISI, University of Bologna, Cesena, Italy

mirko.viroli@unibo.it

Abstract. With the constant increase in the number of interconnected
devices in today networks, more and more computations can be described
by spatial computing abstractions. In this context, distances can be esti-
mated in a fully-distributed way by the so-called gradient self-organisation
pattern: it is a basic building block also for large-scale system coordina-
tion, frequently used to broadcast information, forecast pointwise events,
as carrier for distributed sensing, and as combinator for higher-level spa-
tial structures. However, computing gradients is very problematic in a
mutable environment: existing algorithms fail in reaching adequate trade
offs between accuracy and reaction speed to environment changes.

In this paper we introduce a new gradient algorithm, BIS (Bounded
Information Speed) gradient, which uses time information to achieve a
smooth and predictable reaction speed, which is proved optimal for algo-
rithms following a single-path-communication strategy. Following a pro-
posed methodology for empirical evaluation of performance of spatial
computing algorithms, we evaluate BIS gradient and compare it with
other approaches. We show that BIS achieves the best accuracy while
keeping smoothness under control.

Keywords: Aggregate programming · Gradient · Information speed ·
Reliability · Spatial computing

1 Introduction

The increasing availability of computational devices of every sort, spread through-
out our living and working environments, is creating new challenges in the engi-
neering of complex software systems, especially in contexts like the Internet-of-
Things, Cyber-Physical Systems, Pervasive Computing, and so on. Spatial com-
puting abstractions have been proposed as a means to take full opportunity of

This work has been partially supported by: EU Horizon 2020 project HyVar
(www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 59–77, 2017.
DOI: 10.1007/978-3-319-59746-1 4

http://www.hyvar-project.eu
http://www.cost-arvi.eu
http://runvar-project.di.unito.it/

60 G. Audrito et al.

such large-scale computational infrastructures, for their ability to provide perva-
sive and intelligent sensing, coordination, and actuation over the physical world
[5]: they provide models and mechanisms raising the abstraction layer, making it
possible to more easily capture the goal of a large-scale situated system.

In this context, “collective” programs can be seen as taking as input situ-
ated data changing over time, typically perceived by (virtual or physical) sen-
sors [9], and produce analogous data as outputs to feed (virtual or physical)
actuators, having an effect on other computational components, on the physical
world, or on humans in it. Such an input/output transformation is captured
by a computational process iteratively executing over space and time, involving
complex coordination patterns, and in need of satisfying multiple non-functional
requirements: scalability, resilience to unpredictable changes, and heterogeneity
and dynamism of the communication infrastructure. A key difficulty in engi-
neering collective applications of this kind, hence, is the lack of computational
frameworks and libraries of reusable algorithms with guaranteed resilience and
performance to match this level of complexity in application services. Even the
most basic “building block” algorithms one wants to rely upon, typically give
rise to inadequate behaviour when faced with such demanding requirements.

A prototypical example of this phenomenon is given by the shortest path (SP)
problem in a weighted network, which is fully solved in a traditional computation
setting by (among many) Dijkstra’s algorithm. In spatial computing, the SP
problem translates into the so-called gradient computation [4], which amounts
to computing shortest paths from all nodes to a given set of source nodes, through
a fully distributed process to be iteratively executed to promptly react to any
change in the environment. Gradients are known to be a basic building block
for self-organising coordination [3,15,20,30], being frequently used for a variety
of purposes: to broadcast information, forecast events, dynamically partition
networks, ground distributed sensing [6], anticipate future events [21], and to
combine into higher-level spatial structures [15]. However, the known algorithms
for gradient computation are not fully satisfactory, as they involve relevant trade-
offs between scalability, resiliency and precision.

In this paper we introduce a new gradient algorithm, the BIS (Bounded
Information Speed) gradient, which highly relies on time information to achieve
smooth reaction to changes with predictable speed. Given a rising speed v (i.e.,
increase in gradient estimate over time) as a parameter, it enforces an informa-
tion propagation speed (i.e., space travelled by information over time) equal to
v, so as to scale from the classic gradient (where essentially v = 0) to a reaction
speed that we prove to be optimal (among the single-path communication algo-
rithms) with v equal to the average information speed. If v is greater than such
an average, however, a metric distortion is induced that causes the algorithm to
systematically overestimate gradient values: it is thus crucial to tune correctly
the parameter in order to achieve the best accuracy.

To address this problem, we compute mathematical estimates of the average
single-path communication speed, and use them for validating the performance
of BIS gradient with respect to the three most performant algorithms proposed

Optimally-Self-Healing Distributed Gradient Structures 61

3.3

1.5

0

3.1

6.5

2.9

5

0

2.7

1.9

3.3

0.8

1.5

2.5

2.7
4.1

3.5

0.2

3.6

2.1

2.9

Fig. 1. Gradient computed in a sample network with two source devices.

in the spatial computing context: classic (propagating triangle inequality [30]),
CRF [4] and FLEX [3]. We thus show that the BIS gradient achieves the best
accuracy while keeping smoothness under control. This comparison is carried out
through a general approach we propose, as an empirical evaluation methodology
for the performance of all spatial computing algorithms (and gradient algorithms
in particular). Finally, we present a realistic case study application of crowd
steering towards multiple points of interest (POI), some of which can suddenly
become unavailable—faster healing algorithms are here needed to reduce the
“average travelling time” for people towards an available POI.

The remainder of this paper is organised as follows. Section 2 provides the
background for this paper and discusses related works, introducing the relevant
gradient algorithms. Section 3 describes the proposed BIS gradient algorithm
together with the mathematical estimates of average single-path information
speed. Section 4 proposes the methodology for empirical evaluation of spatial
computing algorithms, compares the various gradient algorithms and tests them
in the selected case study. Section 5 concludes and outlines possible directions of
future research.

2 Background and Related Work

2.1 Gradient-Based Approaches

In this paper we are concerned with coordination strategies for situated networks,
where the objective can be represented in terms of a global, system-level “pat-
tern” to be achieved by local interactions between neighouring devices, showing
inherent resilience with respect to unpredicted changes—in network topology,
scale, inputs coming from sensors, and so on. This viewpoint is endorsed by
a number of works in a recent thread of research, in the context of coordina-
tion models and languages [20,28,32], multiagent systems [10,14,29] and spatial
computing [2,5,6,15,17]. In spite of various differences and peculiarities, they
all promote the idea of creating complex distributed algorithms as spatial com-
putations, where few basic communication and coordination mechanisms are

62 G. Audrito et al.

provided to the programmer, who uses them by progressively stacking building
blocks into layers of increasing complexity.

In this context, gradient data structures, or gradients for short, are perva-
sively used as key building blocks [6,15]. They produce a map – also called a com-
putational field [12,13] – assigning to each device δ in a network N its estimated
distance from the closest source device (an input for the problem), computed by
the shortest-path through weighted links in the network (see Fig. 1).

Applications of gradients are countless. Other than to trivially estimate long-
range distances (possibly according to metrics computed during execution of the
algorithm), gradient computations enact an outward progressive propagation of
information along optimal paths. Thus, they are used as forward “carrier” for
broadcasting information, forecasting events, and dynamically partitioning net-
works [6]. Also, used backwards, one can make information flow back to the
source, to move or steer mobile agents or data towards the source, or to sum-
marise or average distributed information, i.e., to generally support distributed
sensing [6]. Other applications include: considering future events so as to provide
proactive “adaptation” [21]; managing semantic knowledge in situated environ-
ments [16], create high-level spatial structures [15], elect leaders on a spatial
basis [7], and so on.

Due to their usefulness, several works also study how to establish gradients
in contexts where local estimation of distances is not available [18,19,22], and
others take them as basic example to study self-stabilisation techniques [11,20].

2.2 Gradient-Based Implementations

According to the framework presented in [27], it is suggested to associate to
fundamental building blocks (including the gradient) a library of alternative
implementations, among which one has to pick the right implementation for
each specific use in the application at hand. It is therefore of interest to analyse
differnet trade-offs in the implementation of gradient algorithms, with the goal
of identifying approaches guaranteeing reactiveness and smoothness in the way
gradients (and the many applications on top) can respond to dynamic environ-
ments. In its most basic form, the gradient can be calculated through iterative
application of a triangle inequality constraint in each device δ, starting with ∞
everywhere:

G(δ) =

{
0 if source(δ)
min{G(δ′) + w(δ′, δ) : δ′ ∈ N linked with δ} otherwise

We call this procedure classic gradient. Repeated fair application1 of this cal-
culation in a fixed network will converge to the correct value at every point
[11].2 However, the performance of this algorithm in a mutable environment is
impaired by several limitations.
1 A sequence of updates is fair if every device updates his value infinitely often.
2 In finite time if every device can reach a source; at the limit otherwise (in this case,

distance estimates raise indefinitely towards the correct value ∞).

Optimally-Self-Healing Distributed Gradient Structures 63

0

3.1

6.5

2.9

5

4.1

3.5

0.2

3.6

2.1

t = 0

0

3.1

6.5

3.3

5

4.1

3.5

0.2

3.6

2.1

t = 1

0

3.5

6.6

3.3

5.4

4.1

3.5

0.2

3.6

2.1

t = 2

0

3.5

6.9

3.7

5.4

4.1

3.5

0.2

3.6

2.1

t = 3

0

3.9

7

3.7

5.8

4.1

3.5

0.2

3.6

2.1

t = 4

0

3.9

7.3

4.1

5.8

4.1

3.5

0.2

3.6

2.1

t = 5

0

4.1

7.4

4.1

6.2

4.1

3.5

0.2

3.6

2.1

t = 6

0

4.1

7.6

4.3

6.4

4.1

3.5

0.2

3.6

2.1

t = 8

Fig. 2. Evolution after loss of the right source. In each round all devices compute in
order, from the one holding the highest value to the one with the lowest. Each device
rises by 0.4 every two rounds, because of the short link at the middle of the graph.

– Speed Bias: if devices are continuously moving, the values produced by the
algorithm systematically underestimate3 the correct value of the gradient;
with an error which increases with the movement speed.

– Rising Value: in response to quick changes in the network (e.g., a change in
the set of source devices), the algorithm can rapidly correct values that need
to drop, while it is very slow in correcting values that need to rise. In other
words, the algorithm can badly underestimate values for long periods of time
after such changes. Precisely, the rising speed of this algorithm is bounded
by the distance between the pair of closest devices: Fig. 2 shows an example
of this phenomenon on a part of the network in Fig. 1. This problem is also
known as count-to-infinity in the context of routing algorithms [25].

– Smoothness: in the presence of error in distance estimates, it might be prefer-
able not to strictly follow the triangle inequality, so as to reduce the resultant
flickering in the output values. Moreover, if the distance estimates are used for
an higher-order coordination mechanism (e.g., for moving values towards the
sources by “descending” the shortest-paths tree obtained from the gradient),
then each variation in the estimates might change the resulting connection
tree, effectively disrupting the outcome of the coordination for some time.

In order to overcome these limitations, several refined algorithms have been
proposed. To the best of our knowledge, those that better address those problems
are J. Beal’s CRF gradient (Constraint and Restoring Force) [4] and FLEX
gradient (Flexible) [3].

CRF Gradient. The CRF gradient [4] is designed to address the rising value prob-
lem by ignoring some Constraints (i.e., neighbours4), while assuming a Restoring
Force inducing a uniform rise in absence of constraints. The algorithm takes as

3 Sporadic overestimation is also possible, however the “minimising” nature of the
algorithm propagates lower estimates and disperses higher ones.

4 Recall that in the classic gradient, the value G(δ) is obtained by combining the
“triangle-inequality” constraints G(δ) ≤ G(δ′) + w(δ′, δ) for each neighbour δ′.

64 G. Audrito et al.

parameter a fixed speed v0, and associates a “rising speed” v(δ) to each device so
that: if the value of the device is currently constrained (either by being a source
or by the value of some neighbour) then v(δ) = 0; otherwise if the value is not
constrained (i.e., all neighbours have been discarded) then v(δ) = v0. Before
applying the minimisation as in the classic gradient, the CRF gradient considers
a neighbour δ′ as “able to exert constraint” if and only if:

G(δ′) + w(δ′, δ) ≤ G(δ) − λ(δ′, δ) · v(δ)

where λ(δ′, δ) measures time lag, i.e., how old is the information in δ about δ′.
The above condition checks whether the constraint given by δ′ is able to bound
the currently (i.e., not yet updated) value of the gradient as shifted back to the
time when the constraint was calculated. If the current device is not yet rising,
the condition amounts to the constraint being able to reduce the current value;
otherwise it becomes more restrictive.

If some neighbour able to exert constraint exists, the value is calculated
similarly to the classic gradient. Otherwise, a fixed rising speed is enforced (thus
rising by v0Δt where Δt is the time interval between the last two rounds).

G(δ) =

⎧⎪⎨
⎪⎩

0 if source(δ)
min{G(δ′) + w(δ′, δ) : δ′ exerts constraint} if some δ′ exists
G(δ) + v0Δt otherwise

Through this algorithm the rising speed is then equal to v0, provided that v0 is
small enough, thus addressing the rising value problem.

FLEX Gradient. The FLEX gradient [3] is designed to improve smoothness
through application of a “filtering function” to the outcome of the minimisa-
tion, which reduces changes while granting an overall error of at most a given
parameter ε. Precisely, it first calculates the “maximum local slope”:

s(δ) = max
{

G(δ) − G(δ′)
w(δ′, δ)

: δ′ ∈ N linked with δ

}

This slope is then used to calculate the gradient estimation as:

G(δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if source(δ)
G(δ′) + (1 + ε)w(δ′, δ) if s(δ) > 1 + ε

G(δ′) + (1 − ε)w(δ′, δ) if s(δ) < 1 − ε

G(δ) otherwise

where δ′ is the device achieving maximum slope (according to the values avail-
able to the current device). The above formula, in other words, selects the closest
value to G(δ) in the interval from G(δ′)+(1−ε)w(δ′, δ) to G(δ′)+(1+ε)w(δ′, δ),
thus attempting to reduce local changes as much as possible while introducing
a metric distortion below ε. Two further optimisations are also introduced in

Optimally-Self-Healing Distributed Gradient Structures 65

FLEX gradient: first, the classical gradient formula is used instead of the above
one whenever the current value is over a factor 2 from the old value, or anyway
every once in a while (details can be found in [3])—this prevents a systematic
error of ε to persist indefinitely in a static environment after a network change;
second, a distorted metric w′(δ′, δ) = max(w(δ′, δ), k) is used, for a certain con-
stant k—this adds some further error in the output of the algorithm, but it also
ensures that the rising speed is at least k (since k becomes the shortest possible
“distorted” distance between devices).

3 BIS Gradient

3.1 Information Speed

In most spatial computing abstractions, a network of devices typically perform
an interaction through short-range message passing between neighbour devices.
The speed achieved by information in this process constitutes an upper bound
for responsiveness to environment and input changes, in a similar way to the
speed of light, which is an upper bound for causal relationship between events.
Depending on the pattern followed by information exchanges, we can distinguish
between two main achievable speeds: single-path and multi-path.

Definition 1 (Information Speed). The single-path information speed is the
space travelled over time by messages through a spanning tree in the network.
The multi-path information speed is the same quantity assuming messages are
exchanged through all possible links in the network.

Clearly, the upper bound for causal relationship in a network is given by the
multi-path information speed. This communication pattern requires multiple
informations to be aggregated in each node, in order to avoid a program state
explosion; and is thus typical of “aggregation” algorithms (such as broadcasting
and collecting). Conversely, communication in existing gradient algorithms (and
in particular in the BIS gradient we shall introduce in the next subsection) is
usually structured on an implicit (shortest-paths) spanning tree: messages from
all neighbours are received, but only one of them is selected and passed over for
subsequent computations. For this reason, in the remainder of this section we
shall focus on single-path information speed and estimate its average vavg in a
random network. This estimate would be crucial to determine the value to be
passed to BIS gradient for its parameter v.

Consider a network of computing devices, each of them running an algorithm
with a certain time period P on data available from neighbour devices within
a certain radius R. Let D be a random variable for the distance and T for the
time interval between the event of a device sending a message and the event of
another device using that message for computation. Then the average speed S
achieved by information can be expressed as:5

5 Following standard statistic notation, we use E(X) for the mean and V (X) for the
variance of a random variable X.

66 G. Audrito et al.

E(S) = E

(
D

T

)
=

E(D)
E(T)

(
1 +

V (T)
E(T)2

)

truncating the bivariate Taylor expansion of the ratio function to the second
order (see [26] for a complete proof of this fact).

The average distance crossed by a message can be calculated as the average
radius of communication R times the average distance of a uniformly chosen
random point in an n-dimensional unit ball, giving a total E(D) = n

n+1R. If
devices are moving at a certain average speed v, this estimate should be adapted
to take into account that messages with a certain lag T could come from a further
distance up to vT . An exact calculation of the expected distance in this setting
is complex and depends on many factors. However, if we assume the movement
to be sufficiently uniform and restrict ourselves to algorithms with a preference
for shortest-paths (as for gradients), we can just add up v

2T to the numerator
obtaining a roughly acceptable estimate E(S) = E

(
D
T

)
+ v

2 .
The average time interval between events depends heavily on the underlying

specific implementation of network communication. In many spatial computing
models, like field calculus [31] and Proto [2], a reasonable model of time delay
would be T = P · (I + IF), where: P represents the period of a random device,
I represents the imprecision of a single device, F represents a random phase
between devices, as a uniform distribution of values in [0, 1]. In this model,
E(T) = 3

2E(P)E(I) = 3
2Q (where Q is the average computation period) and:

1 +
V (T)
E(T)2

=
E(T 2)
E(T)2

=
E(P 2)
E(P)2

· E
(
(I + IF)2

)
E(I + IF)2

=
E(P 2)
E(P)2

·
(

1 +
V (I + IF)
E(I + IF)2

)

=
E(P 2)
E(P)2

·
(

1 +
V (I) + V (I)

3 + E(I)2

12
9
4E(I)2

)
=

(
1 +

V (P)
E(P)2

)
·
(

28
27

+
16
27

V (I)
E(I)2

)
.

Notice that V (X)
E(X)2 is the square of the relative standard error σ̂2(X). Thus the

average single-path information speed vavg can be estimated as:

vavg = E(S) =
2
3

n

n + 1
R

Q

(
1 + σ̂2(P)

) (
28
27

+
16
27

σ̂2(I)
)

+
v

2
(1)

where v is the movement speed of devices. This equation tells us that: the speed
is mainly proportional to the ratio of communication radius over computation
period; the speed increases with the dimensionality of the space, i.e., is lower for
devices aligned in a row and higher for devices in 3-dimensional space;6 the speed
increases with the relative error of computation periods, both among different
devices and inside a single device. Equation 1 will be used later to estimate the
v parameter of the BIS gradient algorithm. We remark that the average above

6 Gradient algorithms have preference for shortest-path links, so that information
tends to propagate linearly regardless of the dimensionality of the space. This fact
does not contradict the above estimate, which assumes that transmission links are
chosen randomly (assumption viable also for gradient algorithms in sparse networks).

Optimally-Self-Healing Distributed Gradient Structures 67

is computed for a single hop of communication. Over multiple hops, the relative
standard error decreases while the average does not change significantly. In case
the network parameters (average radius of communication, computation period,
etc.) cannot be assumed to be constant, a simple algorithm can still estimate
vavg continuously according to the formula above (by averaging the relevant
quantities through low-pass filters).

3.2 Computing Gradient Through Information Speed

As exemplified in Fig. 2, in presence of a rising value problem, distance increase
per round is bounded by the shortest link in the network �. We accordingly
obtain an average information speed proportional to 2�

3Q instead of 2nR
3(n+1)Q ,

which can be arbitrarily slower as � approaches zero. This fact suggests us to
prevent the rising value problem by lower bounding the information speed to
make this “slow” rise impossible.

The Bounded Information Speed (BIS) gradient improves over the classical
gradient by enforcing a minimum information speed v requested by the user. As
long as v does not surpass the average single-path communication speed, the
algorithm is able to compute correct estimates of the gradient with increased
responsiveness. Greater values of v induce instead a metric distortion, causing
the algorithm to systematically overestimate values. In the remainder of this
paper, we shall thus express v as a fraction of vavg (the average single-path
communication speed, which we estimate through Eq. 1).

For each device in the network, we compute both the usual gradient estimate
G(δ) and a lag estimate L(δ), representing the time elapsed since the message
started from a source. Lags are estimated through local time differences, so
that no overall clock synchronisation is required. When considering a candidate
neighbour δ′ of a device δ, the time lag relative to this neighbour is:

L(δ, δ′) = L(δ′) + λ(δ′, δ)

where λ(δ′, δ) is the lag of the message from δ′ to δ. We then take into account
this value when calculating the gradient estimate relative to this neighbour:

G(δ, δ′) = max {G(δ′) + w(δ′, δ), vL(δ, δ′) − r}
where w is the distance between devices and r is the communication radius.
This formula accounts to assuming that messages propagate at least at speed v,
so that the gradient estimate is lower bounded by vL(δ, δ′) (with the additive
constant −r to ensure that some error is taken into account).

The overall estimates of G(δ) and L(δ) are then obtained by minimising
G(δ, δ′) over neighbours (we assume that pairs are ordered lexicographically):

[G(δ), L(δ)] =

{
[0, 0] if source(δ)
min{[G(δ, δ′), L(δ, δ′)] : δ′ ∈ N linked with δ} otherwise

This algorithm generalises the classic gradient algorithm, as shown in the
following.

68 G. Audrito et al.

Theorem 1 (Degenerate BIS). The BIS gradient with v = 0 is equivalent to
the classic gradient.

Proof. If v = 0, G(δ, δ′) = max {G(δ′) + w(δ′, δ), 0 · L(δ, δ′) − r} is equal to
G(δ′) + w(δ′, δ) so that L(δ) is implicitly discarded.

In particular, the same result would hold for devices with no lag estimator
so that λ(δ, δ′) is always 0. For devices with an internal timer (so that a lag
estimator can be defined), tweaking the parameter v close to the average single-
path information speed provides a guaranteed reactivity, which is optimal among
algorithms with a single-path information flow.

Theorem 2 (Performance Bound). Information speed in BIS gradient, cal-
culated w.r.t. the gradient estimates, is at least v. Furthermore, values con-
strained by obsolete information increase at least at speed v.

Proof. Since G(δ, δ′) ≥ vL(δ, δ′)−r for all δ′, also G(δ) ≥ vL(δ)−r concluding the
first part. For the second part, consider an information that started propagating
from a certain source at time t0 and is now obsolete (e.g., the source has been
disconnected), and fix a device δ computing in times t1, . . . , tn constrained by
such obsolete information. Since L(δ) = ti − t0 in each computing round i ≤ n,
G(δ) ≥ vL(δ) − r = v(ti − t0) − r concluding the second part.

Theorem 3 (Optimality). The BIS gradient with v equal to the average
single-path information speed vavg attains optimal reactivity among algorithms
with a single-path information flow.

Proof. As a prototypical example, consider an already stabilised network with
a selected source device and its corresponding influence region, i.e., the set of
devices whose distances are calculated w.r.t. the selected source (red). Suppose
that the selected source device is suddenly disconnected at time t = 0. In any
algorithm with a single-path information flow, the information about this dis-
connection flows through the influence region at average speed v. For example,
device δ in Fig. 3 is reached by this information at time d0

v , and it cannot change
its value from d0 before that time.

In the best case scenario, after the information about the disconnection
reaches the border a new wave of information can bounce back towards the
inside of the region, bringing values calculated from other sources (green). Since
the shortest path from the disconnected source to the border and then back to
device δ has length d1 + d2 (black arrow) and information flows at speed v, the
earliest time when δ can reach the correct value is d1+d2

v . Notice that this value
is d1 + d2 since the distance from the border to the two sources is the same.

Then δ holds value d0 at time d0
v and value d1 + d2 at time d1+d2

v , effectively
rising at speed (d1+d2−d0)/(d1+d2

v − d0
v) = v. Since this is the best-case scenario,

a faster rising speed is not possible thus proving optimality of BIS gradient.

Optimally-Self-Healing Distributed Gradient Structures 69

d0

d1d1

d2δ

Fig. 3. Information flow upon disconnection of a source device. (Color figure online)

3.3 Reducing Volatility and Communication Cost

An improved reactivity to changes naturally translates into an increase in volatil-
ity of values, thus reducing the degree of smoothness. This holds true also for
the BIS gradient: in a mutable environment, even calculating the exact gradient
all the times would perform poorly on smoothness, since it would rapidly adapt
all the values as noise and small movements take place.

In order to improve smoothness of rapidly self-healing algorithms, it is then
necessary to insert a damping component. Also the FLEX gradient, designed for
improved smoothness, can be seen as the embedding of the following damping
function into the classical gradient computation:

damp(old, new) =

⎧⎪⎨
⎪⎩
new + εw(δ′, δ) if old > new + εw(δ′, δ)
new − εw(δ′, δ) if old < new − εw(δ′, δ)
old otherwise

In future works, it is therefore natural to investigate whether the insertion of
this damping function (or others) into algorithms other than the classic gradient
would achieve the same effect. In the next section, we shall show that this is true
to some extent, allowing the BIS gradient for an improved smoothness.

4 Analysis and Verification

4.1 Performance Indicators

In order to empirically evaluate the performance of an approximated localised
algorithm,7 several aspects need to be taken into account. We divide them into
environment characteristics, input properties, and output requirements.

Environment. A spatio-temporal computing environment is characterised by
its degree of steadiness, which both in time and in space can be further
specified through measures of noise and variability. We classify as noise the

7 With approximated localised algorithm we denote any spatially-distributed iterative
process which aim to approximate a target global input/output transformation (tak-
ing into account environmental data, as described in Sect. 1). For example, this is
the case for gradient algorithms which approximate shortest-path distances (output)
given a source set and an environmental configuration (input).

70 G. Audrito et al.

small high-frequency variations which are not intended to alter the expected
output of the algorithm: in space, it corresponds to short-range brownian
movements; in time, it corresponds to random error in the frequency of events
(in each device). We classify as variability the larger low-frequency variations
which are intended to alter the expected output: in space, it corresponds to
long-range directional movements; in time, it corresponds to systematic error
in the frequency of events (changing between devices or through time).

Input. To assess the performance of an algorithm, we need to split tests into
two further possible situations: constant input, to isolate and measure the
responses to environment variations; discontinuous input, where a sudden
change happens at a certain point in time, to measure the healing speed of
the algorithm.

Output. Given a test environment and input, we need to measure two different
qualities of the output generated by the algorithm: precision and smoothness.
Precision is the deviation from the ideal outcome: with a constant input, it
measures systematic error (e.g., speed bias for gradient algorithms); with a
discontinuous input, it measures healing speed (e.g., rising value for gradient
algorithms). Smoothness is the volatility of the output values, usually mea-
sured as the integral of absolute differences between consecutive values (first
derivative of the output), and aims for gradual and unidirectional changes in
the output values, absorbing noise. It needs to be measured both on constant
and discontinuous input.

Performance assessment of approximated localised algorithms thus requires
extensive testing over several different environments, combining diverse degrees
of noise and variability (both in space and in time). Among the different possi-
bilities, we recommend to include: zero-noise zero-variability (in both space and
time), in which the basic self-stabilisation property8 is measured [11]; high-noise
high-variability (in both space and time), in which a bottom line of guaran-
teed performance is measured in an extreme case; further intermediate cases,
which can help differentiate how performance is affected by the different types
of mutability (in space or time, as noise or variability), depending on the spe-
cific application. In each of those scenarios, performance is measured through
precision and smoothness; on an input which is first constant for a long enough
period of time to reach stable results, and then change discontinuously and keeps
the new value constant until stable results are reached again.

4.2 Comparison Between Gradient Algorithms

In order to compare the performance of the different gradient algorithms pre-
sented in this paper, we chose an environment able to trigger the issues presented
in Sect. 2:

– speed bias, by considering environments with increasing variability in space;
8 An algorithm is self-stabilising if given a constant environment, it eventually reaches

a correct output for any possible initial state.

Optimally-Self-Healing Distributed Gradient Structures 71

– rising value, through arranging devices densely into a long corridor with a
source at one end, so that the ratio between the longest and shortest distance
between devices is high;

– smoothness, by measuring it in each test scenario.

Following the guidelines introduced in Sect. 4.1, we thus tested the following
scenarios.

– Environment: we put 1000 devices with communication radius 10 m and aver-
age fire rate 1 s randomly into a 500 m × 20 m corridor, producing a network
50 hops wide. We tested this environment with increasing variability in space
(long range movements) from 0 (none), to 1 (moderated) and 3 (high). Several
conducted tests revealed that noise (both in space and in time) and variability
in time did not affect significantly the behaviour of any of the considered algo-
rithms, witnessing their intrinsic robustness. We thus only report graphs with
high noise and time variability (brownian motion and 50% relative standard
error in fire rate between different devices plus another 50% in each device). We
modelled randomly distributed events according to a Weibull distribution [33].

– Input: we provided the algorithms with a single source, steadily located on
the left end of the corridor until time 300, and then abruptly moved to the
opposite right end. In this way, reaction to discontinuous input is measured
(in the middle of the graphs) as well as behaviour under constant input (at
the sides of the graphs).

– Output: for each scenario we measured precision as absolute error w.r.t.
Euclidean distance and smoothness as absolute difference between values in
consecutive rounds (both averaged).

Figure 4 summarises the evaluation results, which were obtained (similarly
also to the experiments in next subsection) with Protelis [24] (an incarnation of
the Field Calculus [13]) as programming language to code the model, Alchemist
as simulator [23] and the Supercomputer OCCAM [1] to run the experiments.
We tested classic, CRF, FLEX, BIS with v = 0.5 vavg, BIS with v = 0.5 vavg
and FLEX damping, BIS with v = 0.9 vavg, BIS with v = 0.9 vavg and FLEX
damping. In all cases, the tolerance of the FLEX damping was set to 10%. We
run 10 instances of each scenario with different random seeds and averaged the
results.

The rising value problem corresponds to the spikes in the middle of the
graphs, which are considerably shorter (faster healing) for BIS gradient, even
when v = 0.5 vavg. Speed bias is visible from the increase in error baseline under
increasing space variability, and is more contained for BIS gradient (in particular
when v is high). The only setting where BIS does not achieve the best precision
is under constant input and zero space variability, where the error value is still
small and in fact determined by the small variations reported in smoothness.

As expected, the increase in precision corresponds to a decreased smooth-
ness, so that BIS gradient has the highest value volatility (increasing with v).
Embedding the FLEX damping into BIS proves to be effective in reducing fluc-
tuations for all values of v, so that BIS with v = 0.5 vavg and FLEX damping

72 G. Audrito et al.

Fig. 4. Precision (left) and smoothness (right) of gradient algorithms under increasing
space variability (from top to bottom) and high noise and time variability.

score better than CRF gradient and comparably similar to FLEX and classic
gradients, while still achieving a much higher precision.

Overall, these results prove that BIS gradient achieves a much higher healing
speed and accuracy (especially when v is high), while still keeping smoothness
under control (especially when FLEX dumping is also used). This properties are
readily appreciable in practical applications where inputs cannot be assumed to
be constant: as we shall show in the next subsection, in these settings BIS gradi-
ent remains effective whereas other gradient algorithms fail to produce sensible
results, disrupting the higher-order coordination mechanisms relying on them.

Optimally-Self-Healing Distributed Gradient Structures 73

4.3 Case Study: Crowd Steering to Busy Resources

We now compare different gradient algorithms when used to implement a more
complex service in a realistic scenario: classic gradient, CRF gradient, FLEX
gradient and BIS gradient with v = 0.9 vavg. We considered a crowd steering
application run on people’s smartphones and local device-to-device interaction.
This service gives directions towards points-of-interest which can be invalidated:
e.g., an application steering pedestrians in a large exhibition center with sev-
eral food stands (restaurants), where it may happen that a restaurant suddenly
becomes full. We considered a 200 m × 300 m fair ambient, containing a 7 ×
2 grid of 20 m × 40 m obstacles (pavilions). On the four corners of the fair,
we located restaurants of random capacity (up to 1000 people). The simulation
encompassed 3000 rounds where 3000 individuals wandered randomly with a
connection range of 10 m. We assumed that people get hungry (thus starting to
look for a restaurant) at a random round between 50 and 1000; and that after
reaching a free restaurant, they stay there for up to 1000 rounds (eating) before
restarting wandering again. A 20% relative standard error in fire rate was taken
into account, both between different devices and among subsequent rounds on
the same device. We considered a relatively low average fire rate (5 s), in order
to emphasise the differences in performance of the different gradient algorithms.
We run 10 instances of each scenario with different random seeds and averaged
the results. A screen shot of this scenario is presented in Fig. 5.9

Fig. 5. A screen shot of the application scenario. The restaurant at the bottom left
corner is full and the application is steering hungry (blue) people towards the other ones
(as reflected by the colour hue, which is determined by the corresponding gradient).
(Color figure online)

9 For the sake of reproducibility, all the experiments made in this paper are available
at https://bitbucket.org/gaudrito/experiment-fast-gradient.

https://bitbucket.org/gaudrito/experiment-fast-gradient

74 G. Audrito et al.

Fig. 6. Percentage of people who found a restaurant over time (left), average and
maximum waiting time in minutes (right) for different gradient algorithms.

In this scenario, reactivity of the underlying gradient implementation to
input changes (restaurants getting full) was proven to be crucial. Slow reac-
tivity resulted in people reaching busy restaurants, and then waiting there until
some place was let free (effectively defeating the purpose of the crowd steering
application). Fast reactivity allowed people to direct themselves directly towards
restaurants with free places, reducing significantly the waiting time. This behav-
iour is clearly pictured in Fig. 6, both by the ratio of people reaching a restaurant
over time and by the maximum waiting time. The average waiting time, instead,
seems to suggest a smaller difference among the performance of the different
algorithms. This is due to the fact that only people with a determined wait-
ing time are considered, i.e., which have already reached a restaurant. Thus the
average waiting time is expected to keep rising until all the people have already
reached a restaurant (which is far from happening for CRF and classic gradient).

Overall, these results prove that using an inefficient gradient algorithm (as
e.g., classic gradient) can result in a final real-world application being unusable
(as e.g., only 13% of the people were able to eat after 250 min in this case).
Conversely, using BIS gradient for the underlying gradient routines represents
the best choice, outperforming all the other ones by a large amount.

5 Conclusions and Future Works

We have introduced BIS gradient, a new gradient algorithm of optimal self-
healing speed among algorithms with a single-path communication scheme.
Mathematical estimations to guide the selection of the parameter v are pro-
vided. Thorough validation is carried out, both in a realistic case study and in
isolation w.r.t. classic, CRF and FLEX gradients, showing the effectiveness of
the new algorithm in a variety of contexts. We also use and suggest an empirical
evaluation methodology for spatial computing algorithms, seemingly applicable
to all eventually consistent algorithms [8] and particularly, gradients. In the
future, we plan to test the present algorithm on a larger-scale case study with
real data.

Optimally-Self-Healing Distributed Gradient Structures 75

We believe, however, that there is still some margin for further improvements.
For instance, some form of broadcast could be used to surpass the theoretical
limit given by single-path communication speed. Smoothness could be further
improved by fine-tuning other damping functions other than the one given by
the FLEX gradient. The speed bias could be addressed directly by introducing a
metric distortion dependent on the movement speed of devices (in a similar way
as it is done in [19]), and several mobility models could be considered to fine-tune
both the information speed estimate and the metric distortion. Additionally, it is
possible that specific variants of the proposed algorithm can provide additional
benefits in specific applications of the gradient pattern; in particular, we are
interested in the cases where gradients are used to support distributed sensing
of information in highly heterogeneous and dense environments, specifically for
crowd engineering applications.

Acknowledgements. We thank the anonymous COORDINATION referees for their
comments and suggestions on improving the presentation.

References

1. Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Vallero, S., Rabellino, S.:
The open computing cluster for advanced data manipulation (OCCAM). In: The
22nd International Conference on Computing in High Energy and Nuclear Physics
(CHEP), San Francisco, USA (2016)

2. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous space programs for
robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

3. Beal, J.: Flexible self-healing gradients. In: Proceedings of the 2009 ACM Sympo-
sium on Applied Computing, SAC 2009, pp. 1197–1201. ACM (2009)

4. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In:
Proceedings of ACM SAC 2008, pp. 1969–1975. ACM (2008)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, Chap. 16, pp. 436–501. IGI
Global (2013). http://arxiv.org/abs/1202.5509

6. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
IEEE Computer 48(9), 22–30 (2015)

7. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: 2nd FoCAS Workshop on Fundamentals of Collective Systems,
pp. 8–13. IEEE CS (2014). doi:10.1109/SASOW.2014.6

8. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribu-
tion changes. In: Cabri, G., Picard, G., Suri, N. (eds.) 10th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2016, Augsburg,
Germany, 12–16 September 2016, pp. 60–69 (2016). Best paper of IEEE SASO
2016. doi:10.1109/SASO.2016.12

9. Bicocchi, N., Mamei, M., Zambonelli, F.: Self-organizing virtual macro sensors.
TAAS 7(1), 2:1–2:28 (2012)

10. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Engineering pervasive service
ecosystems: the SAPERE approach. TAAS 10(1), 1:1–1:27 (2015)

http://arxiv.org/abs/1202.5509
http://dx.doi.org/10.1109/SASOW.2014.6
http://dx.doi.org/10.1109/SASO.2016.12

76 G. Audrito et al.

11. Damiani, F., Viroli, M.: Type-based self-stabilisation for computational fields. Log-
ical Methods Comput. Sci. 11(4) (2015). doi:10.2168/LMCS-11(4:21)

12. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields.
Sci. Comput. Program. 117, 17–44 (2016). doi:10.1016/j.scico.2015.11.005

13. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 113–128. Springer, Cham (2015). doi:10.1007/
978-3-319-19195-9 8

14. Elhage, N., Beal, J.: Laplacian-based consensus on spatial computers. In: van der
Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
Toronto, Canada, 10–14 May 2010, vol. 1–3. pp. 907–914. IFAAMAS (2010)

15. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Natural Comput. 12(1), 43–67 (2013)

16. Fernandez-Marquez, J.L., Tchao, A., Serugendo, G.D.M., Stevenson, G., Ye, J.,
Dobson, S.: Analysis of new gradient based aggregation algorithms for data-
propagation in mobile networks. In: Sixth IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASOW 2012, Lyon, France,
10–14 September 2012, pp. 217–222. IEEE Computer Society (2012)

17. Giavitto, J.L., Michel, O., Cohen, J., Spicher, A.: Computation in space and space
in computation. Technical report 103–2004, Univerite d’Evry, LaMI (2004)

18. Katzenelson, J.: Notes on amorphous computing. In: MIT Artificial Intelligence
Laboratory. Citeseer (2000)

19. Liu, Q., Pruteanu, A., Dulman, S.: Gradient-based distance estimation for spatial
computers. Comput. J. 56(12), 1469–1499 (2013). doi:10.1093/comjnl/bxt124

20. Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. CoRR abs/1610.00253(2016). http://arxiv.
org/abs/1610.00253

21. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G.:
Injecting self-organisation into pervasive service ecosystems. Mobile Netw. Appl.
18(3), 398–412 (2013). doi:10.1007/s11036-012-0411-1

22. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from
local information on an ad hoc sensor network. In: Zhao, F., Guibas, L. (eds.)
IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003). doi:10.
1007/3-540-36978-3 22

23. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013)

24. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
ACM Symposium on Applied Computing 2015, pp. 1846–1853, April 2015

25. Royer, E.M., Toh, C.: A review of current routing protocols for ad hoc mobile
wireless networks. IEEE Personal Commun. 6(2), 46–55 (1999)

26. Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics, vol. 1. Edward
Arnold, London (1994). Copublished in the Americas by Halsted Press, Wiley,
New York, 6th edn

27. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organising systems by self-stabilising fields. In: IEEE 9th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pp. 81–90. IEEE (2015).
doi:10.1109/SASO.2015.16

http://dx.doi.org/10.2168/LMCS-11(4:21)
http://dx.doi.org/10.1016/j.scico.2015.11.005
http://dx.doi.org/10.1007/978-3-319-19195-9_8
http://dx.doi.org/10.1007/978-3-319-19195-9_8
http://dx.doi.org/10.1093/comjnl/bxt124
http://arxiv.org/abs/1610.00253
http://arxiv.org/abs/1610.00253
http://dx.doi.org/10.1007/s11036-012-0411-1
http://dx.doi.org/10.1007/3-540-36978-3_22
http://dx.doi.org/10.1007/3-540-36978-3_22
http://dx.doi.org/10.1109/SASO.2015.16

Optimally-Self-Healing Distributed Gradient Structures 77

28. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143–162. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02053-7 8

29. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of per-
vasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adap-
tive Syst. 6(2), 14:1–14:24 (2011). doi:10.1145/1968513.1968517

30. Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 163–
178. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43376-8 11

31. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, C.,
Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 114–128. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-45364-9 11

32. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION
2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30829-1 15

33. Weibull, W., et al.: A statistical distribution function of wide applicability. J. Appl.
Mech. 18(3), 293–297 (1951)

http://dx.doi.org/10.1007/978-3-642-02053-7_8
http://dx.doi.org/10.1145/1968513.1968517
http://dx.doi.org/10.1007/978-3-662-43376-8_11
http://dx.doi.org/10.1007/978-3-642-45364-9_11
http://dx.doi.org/10.1007/978-3-642-30829-1_15
http://dx.doi.org/10.1007/978-3-642-30829-1_15

Development Tools for Rule-Based Coordination
Programming in LINC

Maxime Louvel1(B), François Pacull2, Eric Rutten3, and Adja Ndeye Sylla1

1 Univ Grenoble Alpes, CEA, Leti, 38000 Grenoble, France
{maxime.louvel,AdjaNdeye.Sylla}@cea.fr

2 Bag-Era, Saint-Martin, France
francois.pacull@bag-era.fr

3 Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
Eric.Rutten@inria.fr

Abstract. During the last decades a lot of coordination models and
languages have been proposed in the literature. These approaches have
proven that they can greatly improve the development of distributed
applications that are now common. However, to be used by many devel-
opers, there is still a gap regarding the available tools.

This paper details a set of tools that have been built to develop appli-
cations in LINC, a coordination environment rooted in Linda tuple spaces
and Gamma chemical machine approaches. These tools allow developers
to design better coordination rules, to monitor and update a running dis-
tributed application. The tools proposed here include design and debug-
ging tools.

Keywords: Coordination environment · Development tools · Distrib-
uted systems

1 Introduction

Coordination models and languages [31] have been around for decades [28]. Ini-
tial works on tuple spaces with Linda [17] have paved the way to space and time
decoupling between data producer and data consumer through a very simple
API. The Gamma approach [3] brought the chemistry inspired programming to
move away from sequential programming. Since these early works, many pro-
posals have been made to improve them. An important trend has been to use a
distributed tuple space [5,16,22,25,27,30]. Another interesting trend has been to
extend the chemistry based programming to design self adaptive systems [32,37].
Coordination models have been used in many areas including mobile comput-
ing [8,27], context aware applications [19], cyber-physical systems, wireless sen-
sor networks [10] or scientific applications [15]. Several works have tried to for-
malise the coordination aspects to bridge the gap with the formal methods [2,12].

One of the main challenges that is left open for the adoption of coordina-
tion paradigms by software engineers is the lack of tools [28]. There is a need

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 78–96, 2017.
DOI: 10.1007/978-3-319-59746-1 5

Development Tools for Rule-Based Coordination Programming in LINC 79

for development tools that better capture the coordination models instead of
relying only on the understanding of software engineers. There is also a need
for debugging tools and tools to monitor, introspect and update applications
without restarting them.

This paper presents the development tools of the coordination environment
LINC [23]. LINC uses distributed tuple spaces, a rule based language and trans-
actional reactions implementing the chemical machine. LINC is used for distrib-
uted applications, possibly large scale, that may include cyber-physical systems
or the Internet of Things (IoT). This paper details the tools available to develop-
ers of LINC applications. This includes rule generation tools as well as analysis
and debugging tools. The former generate correct rules based on domain spe-
cific or formal models. The latter offer run time monitoring, run time debugging
and analysis of the coordination rules executions. To the best of the authors
knowledge there exist no equivalent set of development tools for tuple space pro-
gramming environment. This paper introduces several tools tailored to LINC but
that can be of interest, at least partially, to other coordination environments,
under some assumptions.

This paper is organised as follows. Section 2 briefly introduces the LINC
model. Section 3 details the modelling and analysis tools that are available to
developers of LINC applications. Then Sect. 4 presents a short summary of sev-
eral applications built with LINC and these tools. Section 5 presents related
works. Finally, Sect. 6 concludes the paper and presents future works.

2 LINC Model

To make this paper self-contained, this section presents an overview of the coordi-
nation environment LINC. More details on LINC can be found in [23]. Technical
information can also be found on the LINC wiki1.

2.1 Tuple Space Implementation

Bags: LINC uses a distributed tuple space [7] implemented as a set of bags. In
a bag all the tuples have the same number of fields. Bags are accessed through
three operations:

– rd(): takes a partially instantiated tuple as input parameter and returns a
stream of fully instantiated tuples matching the input pattern;

– put(): takes a fully instantiated tuple as input parameter and inserts it in
the bag;

– get(): takes a fully instantiated tuple as input parameter, verifies if a match-
ing tuple exists in the bag and consumes it.

1 http://linc.middlewares.info/.

http://linc.middlewares.info/.

80 M. Louvel et al.

Objects: LINC objects, or simply objects, are the deployment units of LINC.
An object contains one or more bags. An object has a type that defines its bags
and its internal implementation. For instance a Sensor object has a Sensor bag
(with the last sensors’ values) and a thread that periodically polls the sensors and
puts their values in the Sensor bag. Objects’ type can be inherited to include
new bags or to modify the object implementation. Bags are grouped within
objects according to application logic. For instance, all the bags managing a set
of devices that communicate with the same communication technology can be
grouped in the same object. Any object may execute coordination rules that
manipulate tuples in its own bags or in the bags of any other objects. From a
functional point of view, it makes no difference which object manipulates the
tuples of a bag. However from a run-time performance point of view, this may
have a strong impact on CPU, memory or network resources.

2.2 Coordination Rules

The three operations rd(), get() and put() are used within production rules [9].
A production rule is composed of a precondition phase and a performance phase.

The precondition phase is a sequence of rd() operations which detect or wait for
the presence of tuples in several given bags. The tuples are, for instance, values
from sensors, external events, or results of service calls. The output fields of a
rd() operation can be used to define input fields of subsequent rd() operations.
The precondition builds an inference tree with right propagation. A rd() is
blocked until at least one tuple corresponding to the input pattern is available.
In addition to read in the tuple spaces it is possible to call ASSERT and COMPUTE
functions. Both can execute any Python code. ASSERT functions return a boolean
value that stops the inference tree if false and triggers the subsequent token (rd,
ASSERT or COMPUTE) if true. COMPUTE functions can take as input any previously
instantiated variables; they return a tuple of variables. These variables can be
used by subsequent tokens or in the performance phase. When the last token of
the precondition is reached, the performance is triggered.

The performance phase combines the three rd(), get() and put() operations
to respectively verify that some tuples are present (e.g. the one(s) found in the
precondition phase), consume some tuples, and insert new tuples. In this phase,
the operations are embedded in one or multiple distributed transactions [4],
executed in sequence. Each transaction contains a set of operations that are
performed in an atomic manner. Hence, LINC guarantees that for operations
belonging to the same transaction, either all are executed successfully or none.

A LINC rule example is given in Listing 1.1. The precondition (before the symbol
::) first checks that “c1” is “true” (rd at line 1 on bag Condition belonging
to object O2). Then it waits for events (line 2). Then it reads the parameters
associated to the event (rd in line 3 with evt variable instantiated with the
value return by the previous rd). For every branch of the inference tree reaching

Development Tools for Rule-Based Coordination Programming in LINC 81

the last rd, a performance is triggered. This performance contains 1 transaction
(between curly brackets). It first checks that the condition is still valid (i.e.
(“c1”, “true”) is in the bag Condition), then it consumes the event (line 6
with variables instantiated in the precondition), then it adds this event in the
bag Stats of the object O1 (line 7) and puts the command “cmd1” with the
parameters p1 and p2 in the bag Cmd of the object O3 (line 8). Note that the
performance does not read again the Param bag, because the rule assumes that
this value does not change.

1[”O2” , ”Cond i t i o n ”] . r d (”c1” , ”t r u e ”) &
[”O1” , ”Event”] . r d (e v t , t ime) &

3[”O3” , ”Params”] . r d (e v t , p1 , p2) &
::

5{ [”O2” , ”Cond i t i o n ”] . r d (”c1” , ”t r u e ”) &
[”O1” , ”Event”] . ge t (”e v t 1 ” , p1 , p2) &

7[”O1” , ”S t a t s ”] . put (”e v t 1 ” , t ime , p1 , p2) &
[”O3” , ”Cmd”] . put (”cmd1” , p1 , p2) & } .

Listing 1.1. Example of LINC rule

Linda - LINC: read and out operations of Linda are respectively implemented in
LINC by rd in precondition and put in performance. The in operation of Linda
takes partially instantiated tuples and removes the matching tuples from the
tuple space. If no tuple matches, the in is blocked. In LINC, this is implemented
by a rd in the precondition and a get in the performance. In the precondition,
the rd uses a partially instantiated tuple and blocks when no tuple matches. A
performance is triggered for every matching tuple. In each performance, a get
is done with the fully instantiated tuples created by the precondition rd.

3 Coordination Rules Development and Debugging

Being based on the tuple spaces paradigm LINC has a very small API (rd, get
and put). Most of the complexity thus resides in how to use them best, or in
other words how to write coordination rules. Two sets of tools are now presented,
first to generate rules and second to analyse and debug them.

3.1 Rules Generation Tools

Two kinds of tools are available to developers. The first one consists in building
domain specific tools, the second one relies on formal languages to ensure the
correctness of the system. In both cases, rules are automatically validated and
generated from the models built by the developers. Hence the developers can
focus on the application logic and not the writing of rules. This paper presents a
synthesis of several tools, how they are related and how they can help developers.
Details on each tools can be found in papers cited in this section.

82 M. Louvel et al.

Domain Specific Tools. One solution to help developers is to provide them
a domain specific design tool. Such tool limits the expressiveness offered by the
coordination language to a valid subset. In addition, the tool uses knowledge on
the domain to build advanced validation of the rules written by developers. The
latter need only to be experts of their domains and not experts in coordination
models or distributed systems.

An example of such tool is the Coordination Scheme Editor (CSE) [24] to
design scenarios in building automation systems. CSE provides a drag an drop
interface to design rules for sensors and actuators. The precondition is a set of rd
on sensors and thresholds or ranges checks. The performance is a set of action on
actuators. Examples of verification done when generating rules are: valid ranges
in sensors, valid types of commands sent to actuators or invalid thresholds.

High-Level Reactive Language Support for Behavioural Specification

Motivation: As explained above, LINC provides applications with transactional
guarantees that ensure their reliability at run-time. But, although LINC ensures
the consistent execution of individual rules, it does not prevent from writing
erroneous rules. Individual rules can present bugs, as in all programming lan-
guages, but more importantly, because more difficult to detect and avoid, the set
of rules may contain design errors such as conflicts between rules, and violations
of applicative constraints that can bring the system in unsafe or undesirable
states. More precisely, a rule, written to achieve a given objective, can violate
one or several other objectives of other rules. An example of conflict is between
rule A which opens the window to decrease the CO2 level in the room and rule
B which closes the window and turns on the AC to decrease the room tempera-
ture. Moreover, the execution of a sequence of rules can bring the system in an
undesirable state or into an undesired circularity or endless loop of rules having
the effect of firing each other.

Therefore, when writing rules one has to control their resulting behaviours.
Developers have to manually avoid conflicts and violations of constraints by
adding the testing of numerous additional conditions on specific rules, and adding
new rules. For large applications, programmed by large sets of rules, manually
controlling the rules is a difficult combinatorial problem and is error prone.

Our Approach: To tackle this problem, we adopt the direction of high-level lan-
guage support for behavioural specification. We consider high-level languages
from the domain of reactive systems, related to transition systems, because they
can be equipped with formal verification or synthesis tools, based on models
for the behaviours of programs. On the other hand, we want them to be imple-
mented in such a way as to be concretely executable in the LINC environment.
We propose to combine the two reactive programming approaches in order to
support the safe design and execution of control systems, in the application
domain of smart environments. As illustrated in Fig. 1, data is gathered from
the controlled environment through the tuple spaces. A transition system takes

Development Tools for Rule-Based Coordination Programming in LINC 83

the correct decision and produces the commands executed by LINC transac-
tions. LINC transactions update both the actual system and the state of the
transition system. Hence if an action on the actual system fails (e.g. due to a
communication error or a hardware failure), the state of the transition system
is not updated and stays consistent with the actual system. For instance if a
window failed to open due to a communication error, the transition system will
not wrongly assume that it has been opened.

Fig. 1.

One approach, presented in [34], first models the application logic using
coloured Petri nets. Then, it verifies the designed model using a model-
checker [33], and finally, it generates the corresponding LINC rules. This app-
roach enables the verification of several properties (e.g. absence of conflicts and
violations of constraints) before execution. When generating LINC rules from
the coloured Petri nets specification, the state of the system is embedded in a
LINC bag. The transition and update of the state is performed in a transaction
together with the actions on the system. However, modelling the application
logic also requires to manually specify how to avoid conflicts and violations of
constraints, in the model. Moreover, when a target property is not satisfied, the
model has to be manually modified and verified again.

To overcome these limitations, we explore the use of a high-level language
based on transition systems to access another formal technique: Discrete Con-
troller Synthesis (DCS) [35]. Similarly to model-checking, DCS is an algorith-
mic technique that performs an exploration of the reachable state-space of a
transition system. However, whereas model-checking verifies the satisfaction of
a property in a programmed solution, DCS produces a solution from a more
declarative specification. This specification contains the possible behaviours and
properties to be enforced by control. More precisely, DCS takes (i) a transition
system modelling possible behaviours of a system, (ii) a partition of the set of
variables between controllable and uncontrollable ones, and (iii) a property to be
enforced (e.g. invariance of a predicate). Given this, DCS synthesises, if it exists,
the constraint on controllable variables in function of current values of state
and uncontrollable variables, so that the resulting constrained transition system
satisfies the property. This constitutes a controller that will avoid transitions
leading to incorrect states (i.e. violating the property), or to correct states from
which a sequence of uncontrollable conditions and transitions could lead to an
incorrect state. Concretely, LINC has been combined with the automata-based

84 M. Louvel et al.

language Heptagon/BZR [11]. Heptagon/BZR enables the verification and the
control of the system behaviour at compilation time. The generated executable
code is called from the execution of LINC rules. A related approach was used in
the context of ECA rules [6], different from tuple spaces, but with a similar goal
as a mean to coordinate the execution of rules so as to avoid inconsistencies,
circularities, and environment and application related constraints.

This way designers are provided for a support for both design-time and run-
time reliability. At design time the developers have language support and DCS to
generate a control function that can avoid conflicts, circularities and violations of
constraints. The generated function is then reliably executed using LINC which
enforces, through distributed transactions, the consistency between the states of
the automata and the states of the actual system. Advantages of our reactive
language-based approach are as follows:

– high-level language support for controller specification, less tedious and error-
prone than at lower level;

– correctness of the controller, w.r.t. specified properties, hard to enforce man-
ually, obtained by using formal methods and algorithms like model checking;

– automated synthesis of controllers, using DCS with declarative objectives,
which is more constructive than classical verification of a hard to write solu-
tion; our approach also ensures that developers need only to be expert of their
domain and not expert in formal models;

– automated generation of executable code compatible with LINC.

Extension to Other Coordination Languages. The tools presented in this
section generate LINC rules. Generating code or rules for other tuple spaces
based coordination languages is possible under certain conditions. Most of the
tuple spaces based languages will allow a level of abstraction similar to LINC.
However the tools presented above assume the following:

– the consistency between the state of the actual system and the state of the
transition system will be ensured only if a distributed consensus mechanism
(transactions in LINC) is available;

– a reactive environment that calls the transition system when necessary;
– LINC combines tuple spaces, production rules and transactions. This allows

to only consider the important states. For instance, consider a rule consuming
events A and B and producing C and D. The state where only A is consumed
or only C is produced is not possible in LINC. This simplifies the generation
of LINC rules and might not be directly available in other environments.

3.2 Analysis and Debugging Tools

The tools developed for rules generation are naturally not meant to completely
replace the hand writing of rules, but as a complement. The domain specific tools
provide a solution limited to a domain and a subset of the coordination model.

Development Tools for Rule-Based Coordination Programming in LINC 85

The tools based on formal models help to ensure the correctness of the coordi-
nation in the system. They can avoid conflict between rules, within the parts of
the systems modelled in the high-level languages. Moreover, advanced features
of LINC such as guards, alternative transactions, graceful degradation (see [23]
for more details) are not always available to developers. Hence a set of tools
are now described to monitor, analyse and debug applications. Note that these
tools can be used in combination with the modelling tools. Indeed, the latter
produce correct rules according to the assumptions made in the formal model or
the domain hypothesis. However, if an error occurs outside these assumptions,
the rules generated from the modelling tool will behave incorrectly. Therefore
rules have to be validated by analysis and debugging tools. This section now
presents tools to monitor, modify and analyse the execution of an application.

Monitor. When developing and debugging a distributed application, it is not
always easy to access the information of all the elements. Indeed they are spread
out, possibly in different networks. Furthermore, it is possible that they move
(e.g. due to load balancing, system update or failure). Hence the developer has
to keep track of what is where and how to access it. Then another challenge is
to know what to observe and how. In tuple spaces based models, the important
information is stored in the tuple spaces. It is thus fundamental to be able to
access them easily.

To answer these challenges, every object in LINC provides a web interface
to monitor its content and access the monitor interface of the other objects in
the application. The interface can be accessed from any web browser. It allows
to observe the content of any bags of any objects. This is particularly useful
when a rule is blocked. The developer can connect to the monitor and check if
the required tuples are there or not. In addition, the monitor interface allows
to modify the content of the bags of the object. Hence a developer can unlock
an application by adding a missing tuple. At the development stage, this can
help to move forward if a bug occurred. At the production stage, this allows the
maintenance to unlock the application while tracking the cause of the missing
tuple. Rules in LINC are also modelled as tuples. Hence it is possible, from the
monitor, to start, stop or update rules or group of rules by adding or removing
the corresponding tuples.

Debugging and Information Traces. In a distributed application it might
be a daunting task to gather all the traces generated in one application. To help
developers, a tracer is built for every LINC object. Instead of using print on
various files, the developer simply calls the tracer to add a trace. The tracer
contains all the traces that might be useful for the application (e.g. communica-
tion error, debug traces or traces defined by developers when writing new LINC
objects). For instance, when a developer creates an object to support a new
sensor protocol he/she will use traces to debug his/her own code. The traces
are saved to disk. The trace files are accessible through the Monitor interface
of each object; they can also be accessed offline, e.g. by downloading them in a

86 M. Louvel et al.

development computer. Trace files are generated incrementally. Hence they can
be periodically archived, possibly remotely, if needed.

Traces may have an important cost, in CPU and disk usage. To limit this,
several levels of traces are available, from −1 (error) to 3 (debug information).
The level of trace is set when starting an object. Then every trace with a level
higher than the trace level are ignored. This is actually very efficient because the
actual trace string is passed via a dictionary and is not evaluated if the trace is
ignored. This mechanism allows to leave traces in the code and activate them
only when necessary. Traces level can be dynamically changed. For instance the
level can be increased when an error occurred. If the application behaviour is
periodic or event based, the next loop or event handling will be traced with a
higher level. Once the problem is understood, the trace level can be decreased
again.

In the monitor, the traces are presented in a HTML table, sorted by date.
The last line contains the most recent trace. Inside the LINC object, the tracer
can either be used directly or cloned. All the clones of the tracer share the same
file. Two filters criteria are provided to find specific traces in the table. The tracer
clone displays traces of the selected clones only. The Level displays traces with a
level lower or equal to the filter. The tracer clones allow to filter on functionality
(e.g. communication traces or traces related to specific actions). Both filters can
be combined to display the traces of one or more clones which are lower than
a given level. It is then possible to search within the traces. This creates a new
filter that can be combined with the clone or level filters. A second level of search
is provided to filter again the traces.

Exploring Coordination Rules Executions. A LINC application is com-
posed of a set of rules defining the behaviour of the application. When executing
these rules, the LINC objects build inference trees (precondition) and execute
performances. All the preconditions and performances are logged in several log
files. Logs are organised by rule: for each rule there is one log. These log files
are then explored to help the developer understand the behaviour of its appli-
cation. The logs are dedicated to rules executions and capture the application
behaviour. They are complementary to traces.

Logger Interface. For each rule, the inference tree built can be walked through
a web interface. Three types of elements are presented for the precondition:

– rd: contains the precondition rd() executed (e.g. rd("evt-a", ts) to read
all the events "evt-a";

– result of rd, COMPUTE: contains the tuples returned (e.g. rd("evt-a",
"X32");

– result of ASSERT: successful calls are shown as a specific tuple, failed calls are
presented in red because they stop the inference tree.

When a performance is reached, successful transactions are displayed in green
without details. If the transaction failed, it is automatically expended to see

Development Tools for Rule-Based Coordination Programming in LINC 87

which operation caused the failure (displayed in red). Hence the developer can
understand why this performance did not execute.

The logger may help the developer to see where an execution is blocked.
Typically, when a rd has not returned matching tuples. From the logger interface,
the developer can be redirected to the monitor of the object and inspect the bags’
content. From there the developer can see for instance that the error comes from:

– an erroneous spelling and add the missing tuple to continue the execution;
– a missing tuple, meaning that another transaction (in the same rule or in

another rule) consumed the tuple or that it has never been produced.

Filters. Looking at all the inference tree might not be possible when its size
increases. However, most of the time the developer is only interested in some
particular tuples. Hence, the logger interface allows developer to search the logs
of interest. The search can be done in object, bag and/or tuple name. The
search can be done on one or more rules. If matching logs are found, they are
displayed in the interface. The developer can then browse them. For instance if
it filters on tuples matching "evt-a" only the actions including matching tuples
will be displayed (branches of the inference tree and transactions). If a rule
handles all the events (rd(evt, ts)), only the interesting ones (i.e. handling
evt-a) will be displayed. Figure 2a shows an example of log search on tuples
containing "alice". This example contains only preconditions for this tuple,
i.e. no performance with a tuple containing "alice" has been triggered. The
problem here can be that a tuple is not added as expected by the rule.

Fig. 2. Logger interface and search (Color figure online)

Logger Interface Example. To illustrate the use of the logger interface, let’s
consider an application which models people travelling with a metro. This appli-
cation has one object (Test) containing three bags. The bag Customer for cus-
tomer locations (containing the tuples ("alice", "A"), ("denis", "A")); the

88 M. Louvel et al.

bag Arrival for customer destinations (containing ("alice", "D"), ("denis",
"D")) and the bag Connection for metro connections (containing ("A", "D")).
The precondition of the rule Listing 1.2 reads the customer location and arrival
of each person and checks that a connection exists between the two stations. The
performance then gets the customer, its destination, the connection and puts the
customer in its arrival station. After executing the rule, the developer notices
that only alice reached its destination, denis is still in its initial location.

[”Tes t” , ”Customer”] . r d (name, d e p a r t u r e) &
2[”Tes t” , ”D e s t i n a t i o n ”] . r d (name, a r r i v a l) &

[”Tes t” , ”Connec t i on”] . r d (d epa r t u r e , a r r i v a l) &
4::

{ [”Tes t” , ”Customer”] . ge t (name, d e p a r t u r e) ;
6[”Tes t” , ”D e s t i n a t i o n ”] . ge t (name, a r r i v a l) ;

[”Tes t” , ”Connec t i on”] . ge t (d epa r t u r e , a r r i v a l) ;
8[”Tes t” , ”Customer”] . put (name, a r r i v a l) ; } .

Listing 1.2. Travel LINC rule

Figure 2b shows the log of the rule. The rule is executed twice (one start-
ing with the tuple ("alice","A") and the other starting with the tuple
("denis","A")). In this example, the two people make the same journey, and the
same connection tuple is used. The first transaction that executes succeeds and
gets the tuple ("A","D") which makes the second transaction fail because the
tuple seen in the precondition is not there anymore. In Fig. 2b, the third action of
the transaction (line 7 of Listing 1.2) for the second transaction (get("A","D"))
has failed which is shown in the log displayed. The solution here is to use a rd()
instead of a get() on the connection to avoid removing the tuple.

Current Inference Tree. The Logger interface contains all the coordination
actions done since the application started. To decrease the resources used (CPU,
memory), LINC objects periodically execute a garbage collector to remove
unnecessary branches in their inference tree. The garbage collection consists
in walking the tree and checking that the tuples seen are still in the bags. If not,
this means the performances that will be triggered by this branch will fail. To
avoid this, the branch is removed from the tree. It thus may be useful to know
the current inference tree of a LINC object. For that, an interface is provided
that displays the current tree in a textual form. This interface can help to under-
stand why the garbage collection has not been performed, for instance because
the same tuple is always produced (e.g. ("evt-a")). Here a solution is to use
different tuples to model different events (e.g. ("evt-a", "XX...")).

Analysing Coordination Rules Executions. The logger interface allows to
understand what has been done by the rule. This can solve functional errors or
highlight some performances issues. However it is not easy to draw high level
conclusion by looking at all the coordination actions. For that, two analysis
tools are provided; the first one focuses on data flow observations; the second
one focuses on a global view of the logs.

Development Tools for Rule-Based Coordination Programming in LINC 89

Data Flow. This tool provides a data flow view of the coordination actions done.
The information comes from the log files but is presented differently. This tool
gives a picture of the rules’ executions to link the data (tuples contained in bags)
to the control flow (coordination actions done by the LINC objects). Two kinds
of pictures are built, one for the preconditions and one for the performances.
Figure 3a and b respectively show the preconditions and the performances for
the execution of the rule in Listing 1.2. These pictures show the data flow between
rules and bags (rd, get and put). The size of the line is proportional (logarith-
mic) to the number of actions done. The number of actions is also added in
small on the line. By comparing the two pictures, one can see that there are
more preconditions operations (

∑
prec op = 1775) than performances operations

(
∑

perf op = 46). This means lots of preconditions never reach the performance
phase, in other words big inference trees are built for nothing.

Fig. 3. Rules analysis

It is also possible to build a bag centred picture. This time only one bag
is displayed with all the rules accessing this bag. This is particularly useful to
find out which rule gets or puts tuples in a bag. For all analysis, it is possible
to display only the successful performances, only the failed performances or
both. Figure 4a is centred on the bag Customer. Here one can see that rule
RU0001 is missing (compare to Fig. 3b) and that RU0002 does not access the
bag. RU0002 is shown in the picture because it is connected to the Customer
bag in the precondition. Figure 4b shows only the successful performances. Here
only RU0003 and RU0004 update tuples in the bag Customer. Finally, Fig. 4c
shows a picture of a rule that only copies data from a bag to another one.

All representations are also available in a table format with numbers instead
of arrows of different size. Both views can be interesting depending on the type
of patterns to observe, the number of bags, rules or tuples.

Error prone patterns that may be found with this tool are typically:

– overloading bags (a bag where more put than get are done);
– unused bags;
– performances which fail most of the time (meaning a lot of coordination is

done just to fail afterwards).

90 M. Louvel et al.

Fig. 4. Rules analysis - bag centered

This tool might also be useful to find or check some patterns such as a pro-
ducer/consumer relationship between two or several rules. Hence better choices
can be made for the deployment decision. Indeed, nothing prevents a rule to
access only bags physically far from the object executing the rule. However,
from a run-time performance point of view this may have a strong impact.

Global View on the Logs. The second tool for log analysis provides a global view
of the logs. For that, the tool relies on the D3JS javascript framework2. This
framework allows to easily build data driven document and to display them in
a web browser. Several interesting points may be analysed with this tool. For
instance, it is possible to view the size of the inference tree, if all the branches of
the tree lead to a performance, or the ratio of successful performances over the
number of performances tried. This tool can help developers to understand how
the rules they wrote perform in the system. The goal is to optimise the rules
in order to decrease the CPU and memory used by the LINC object executing
them. Such optimisation may be achieved by reducing the size of the inference
tree, the number of failing performances or the number of branches that lead to
no performance.

Figure 5 shows the overview of three rules with a radial tree display3. At the
centre is found the root node of the inference tree. The nodes of the inference
tree leading nowhere are displayed in grey, the nodes leading to successful (resp.
failing) performances are displayed in green (resp. red) and the nodes leading to
both successful and failing performances are displayed in orange. Failing ASSERT
in the precondition are displayed as failing performances. It is possible to click
on each node to have the information of the action done (e.g. rd("evt-a"),
put("action-b")). Figure 5 contains examples of log analysis for several rules.
Here we can see that rule Fig. 5a is more efficient with a smaller inference tree
and more green nodes than rule Fig. 5b which does a lot of work for nothing.
Rule Fig. 5c shows a rule that simply copies data from a bag to another one;
hence it is mainly green. The few orange points are failing ASSERT for tuples
that should not be processed by this rule.

2 https://d3js.org/.
3 https://bl.ocks.org/mbostock/4063550.

https://d3js.org/
https://bl.ocks.org/mbostock/4063550

Development Tools for Rule-Based Coordination Programming in LINC 91

Fig. 5. Examples of global views (Color figure omline)

It is possible to filter the global view of the logs on tuples, objects or bag
names and on time interval. This can help developers understand when a rule
did more or less work, or if some tuples (e.g. modelling events) triggered a lot
of work or none.

Extension to Other Coordination Languages. The tools presented in this
section help to design, analyse and debug LINC rules. They could be adapted
to other coordination environments with some assumptions.

The monitor is well suited for any tuple space environment because important
information is stored in tuple spaces. This tool provides a central point of view
to access all the information of the coordination entities (objects in LINC). To
be as useful as in LINC, the monitor requires full introspection and intersession
capacities of the coordination entities and tuple spaces. For the tracer tool, its
main interest is to provide relevant filters and being accessible from the monitor.

The analysing tools require to log all the coordination actions. This requires
to instrument the code of the coordination entities to log all relevant actions.
This is of particular interest for exogenous coordination languages [1] that do
not mix the coordination code within the computation code. For these languages
it seems possible to extract, as in LINC, the relevant coordination actions to
analyse them. Indeed the application state is stored in the tuple spaces and the
application logic is done by the coordination entities.

The interfaces of the analyses tools are relevant if an inference tree is used.
Some display are specific to LINC that uses rules with precondition and transac-
tions in performances (typically the logger interface). The data flow and global
view of the log could be adapted even if the rules execution paradigm is different.

4 Applications Developed with LINC

More than a dozen of demonstrators have been developed with LINC, within
European or national projects, with industrial partners, in several domains.

92 M. Louvel et al.

LINC is now transferred to industry through the start-up Bag-Era4 which is
responsible for its support and commercialisation. This section details a few
examples showing what LINC and its tools can be used for.

In the building automation domain, several demonstrators have been built
during the H2020 TOPAs and FP7 SCUBA projects. In these demonstrators
buildings have been controlled automatically. Some experiments ran for several
months. Data collection, on several buildings in Ireland and France, is ongoing to
continuously analyse the buildings’ behaviour (with ≈1000 data points updated
every minutes or ever 10 min). In such applications, with remote components,
the monitoring has proven really useful. The logger observation and analysis
tools have been useful to developers during the development stage.

In the Artemis Arrowhead project, a LINC application has been deployed
across three different and remote Local Area Networks [14]. A web interface to
control the application has been developed and used across Europe. Some of the
LAN provide no external access. The monitor was available on some parts of the
application. For the rest, the traces and log files were downloaded and analysed
locally, with the same tools executed by local objects.

In the frame of French project IRT Nanoelec, a smart parking has been devel-
oped [13]. LINC allowed to coordinate a dozen of independent products, some
off-the-shelf, some still under development. In this demonstrator, approximately
one hundred rules were written. Part of them have been generated from Coloured
Petri Nets [34]. The monitoring and log analysing tools, with their filtering and
search features have proven useful to developers.

Finally, LINC has been used by control scientists to develop advanced control
strategies [36]. In this work, LINC bridged the gap between the control scientists
assumption and devices of wireless sensor networks.

5 Related Works

In [21] the authors propose the Peer Model, a design tool for parallel and distrib-
uted applications. The model assumes a tuple space middleware. The authors
focus on some specific patterns commonly used in distributed applications such
as split or join of data flow. This approach is extended in [20] where the author
introduces design patterns dedicated to coordination. Similarly to our design
tools, this helps developer using coordination models. However, no help is pro-
vided at run time. In addition, our design tools offer verification at design time.

REO [2] is a coordination model focusing on the interaction between com-
ponents. A lot of efforts have been put to provide a formal model of REO and
connections with formal languages [12]. This is similar to our design tool based
on formal languages. However, REO focuses only on the interaction between
components whereas our approach provides developers with a complete model
of the environment and the application.

4 http://www.bag-era.fr/.

http://www.bag-era.fr/.

Development Tools for Rule-Based Coordination Programming in LINC 93

ReSpecT nets [38] is a language to map ReSpecT programs to Petri nets.
ReSpecT is a reactive language based on TuCSoN [29] and tuple spaces. However,
this fails to bridge the gap between (i) the large expression capabilities of tuple
space coordination languages and (ii) the set of Petri nets on which interesting
formal analysis can be done. Whereas, in our approach verification are done on
the model and then the coordination code is generated. It is thus possible to
limit in the model the expressiveness to provided formal guarantees. However
this language could be a good target for our rule generation tools.

Finally, in [26] the authors propose a software engineering methodology to
develop multiagent systems in the SAPERE project which target self awareness
in pervasive systems. The developers use an API and a development methodol-
ogy. However it is not clear if the authors provide any tools to help developers
understand how their applications are evolving and how to debug them.

6 Conclusion

Design and debugging tools are essential to make coordination models and lan-
guages accepted by a broader range of developers. This paper has presented the
development tools put in place with LINC, a coordination environment based on
tuple spaces and implementing the chemical machine paradigm. The design tools
detailed in this paper allow developers to generate rules that are validated with
domain specific knowledge or by the use of formal methods. In addition several
tools allow developers to monitor, analyse and update a distributed application.

To the best of the authors knowledge, there exists no other tuple space coor-
dination environment providing an equivalent set of tools. The tools developed
for LINC could be useful for other tuple spaces based coordination environments.
The paper initiates the analysis of what might be reused and what assumptions,
on the coordination environment, are made by the different tools.

Future works will focus on extending analysis tools to allow to re-execute
an application with the same scheduling as the original execution. This is not
guaranteed by default because most of the rules executions are not deterministic.
We means that the same result may be achieved with different histories if we
consider elementary actions (rd, get and put) order. In case of bug it could be
possible that a particular history is the cause of the bug. Thus restarting the
application is not enough to ensure that we will have the same sequence during
the second execution and thus the bug is not reproducible. By forcing at the
replay the order of the rd, get and put we can ensure that the order of the
different event is kept and thus this helps in reproducing the bug. Regarding
modelling tools, perspectives involve generalising the approach by integrating
the potentials of having multiple controllers and control loops. These loops will
require to be coordinated themselves, following a related approach involving
coordination controllers for autonomic loops [18].

Acknowledgment. This work is funded by the H2020 TOPAs (grant 676760).

94 M. Louvel et al.

References

1. Arbab, F.: What do you mean, coordination. Bull. Dutch Assoc. Theor. Comput.
Sci. NVTI 1122, 1–18 (1998)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

3. Banătre, J.-P., Fradet, P., Métayer, D.: Gamma and the chemical reaction model:
fifteen years after. In: Calude, C.S., PĂun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2000. LNCS, vol. 2235, pp. 17–44. Springer, Heidelberg (2001). doi:10.1007/
3-540-45523-X 2

4. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems, vol. 370. Addison-Wesley, New York (1987)

5. Cabri, G., Leonardi, L., Zambonelli, F.: Mars: a programmable coordination archi-
tecture for mobile agents. IEEE Internet Comput. 4(4), 26–35 (2000)

6. Cano, J., Delaval, G., Rutten, E.: Coordination of ECA rules by verification and
control. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459,
pp. 33–48. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43376-8 3

7. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32, 444–458 (1989)
8. Collins, J., Bagrodia, R.: Mobile application development with MELON. In: Guo,

S., Lloret, J., Manzoni, P., Ruehrup, S. (eds.) ADHOC-NOW 2014. LNCS, vol.
8487, pp. 265–278. Springer, Cham (2014). doi:10.1007/978-3-319-07425-2 20

9. Cooper, T., Wogrin, N.: Rule-based Programming with OPS5, vol. 988. Morgan
Kaufmann, San Fransisco (1988)

10. Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Teenylime: transiently shared
tuple space middleware for wireless sensor networks. In: Proceedings of the Inter-
national Workshop on Middleware for Sensor Networks, pp. 43–48. ACM (2006)

11. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller
synthesis. SIGPLAN Not. 45(4), 57–66 (2010)

12. Dokter, K., Jongmans, S.-S., Arbab, F., Bliudze, S.: Combine and conquer: relating
BIP and Reo. J. Logical Algebr. Methods Program. 86(Ice), 3–20 (2016)

13. Ducreux, L.F., Guyon-Gardeux, C., Louvel, M., Pacull, F., Thior, S.R., Vergara-
Gallego, M.I.: Rapid prototyping of complete systems, the case study of a smart
parking. In: 2015 International Symposium on Rapid System Prototyping (RSP),
vol. 2016, February, pp. 133–139, Amsterdam (2015)

14. Boutin, V., et al.: Energy optimisation using analytics and coordination, the exam-
ple of lifts. In 19th IEEE Conference on Emerging Technologies and Factory
Automation (2014)

15. Fernandez, H., Tedeschi, C., Priol, T.: Rule-driven service coordination middleware
for scientific applications. Future Gener. Comput. Syst. 35, 1–13 (2014)

16. Garnock-Jones, T., Felleisen, M.: Coordinated concurrent programming in syndi-
cate. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 310–336. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 13

17. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. (TOPLAS) 7(1), 80–112 (1985)

18. Gueye, S.M.K., Palma, N., Rutten, E.: Component-based autonomic managers for
coordination control. In: Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS,
vol. 7890, pp. 75–89. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38493-6 6

http://dx.doi.org/10.1007/3-540-45523-X_2
http://dx.doi.org/10.1007/3-540-45523-X_2
http://dx.doi.org/10.1007/978-3-662-43376-8_3
http://dx.doi.org/10.1007/978-3-319-07425-2_20
http://dx.doi.org/10.1007/978-3-662-49498-1_13
http://dx.doi.org/10.1007/978-3-642-38493-6_6

Development Tools for Rule-Based Coordination Programming in LINC 95

19. Julien, C., Roman, G.-C.: Egospaces: facilitating rapid development of context-
aware mobile applications. IEEE Trans. Softw. Eng. 32(5), 281–298 (2006)

20. Kühn, E.: Reusable coordination components: reliable development of cooperative
information systems. Int. Jo. Cooper. Inf. Syst. 25(4), 1740001 (2017)

21. Kühn, E., Craß, S., Joskowicz, G., Marek, A., Scheller, T.: Peer-based programming
model for coordination patterns. In: Nicola, R., Julien, C. (eds.) COORDINATION
2013. LNCS, vol. 7890, pp. 121–135. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38493-6 9

22. Kuhn, E., Riemer, J., Mordinyi, R., Lechner, L.: Integration of XVSM spaces with
the web to meet the challenging interaction demands in pervasive scenarios. Ubiq-
uit. Comput. Commun. J. CPE, 20–31 (2008). SI (Special issue of Coordination in
Pervasive Environments)

23. Louvel, M., Pacull, F.: LINC: a compact yet powerful coordination environment.
In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp.
83–98. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43376-8 6

24. Louvel, M., Pacull, F., Vergara-Gallego, M.I.: Coordination scheme editor for build-
ing management systems. In: IECON 2016 42nd Annual Conference of the IEEE,
pp. 7052–7057. IEEE (2016)

25. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 15 (2009)

26. Molesini, A., Omicini, A., Viroli, M., Zambonelli, F.: Engineering pervasive multi-
agent systems in SAPERE. In: Cossentino, M., Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS, vol. 8245, pp. 196–214. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45343-4 11

27. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: a coordination model and middle-
ware supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol.
15(3), 279–328 (2006)

28. Omicini, A., Viroli, M.: Coordination models and languages: from parallel com-
puting to self-organisation. Knowl. Eng. Rev. 26(01), 53–59 (2011)

29. Omicini, A., Zambonelli, F.: TuCSon: a coordination model for mobile information
agents. In: Proceedings of the 1st Workshop on Innovative Internet Information
Systems, vol. 138 (1998)

30. Omicini, A., Zambonelli, F.: Coordination for internet application development.
Auton. Agents Multiagent Syst. 2(3), 251–269 (1999)

31. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Com-
put. 46, 329–400 (1998)

32. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with alchemist. J. Simul. 7(3), 202–215 (2013)

33. Schmidt, K.: LoLA a low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). doi:10.
1007/3-540-44988-4 27

34. Sylla, A.N., Louvel, M., Pacull, F.: Coordination rules generation from coloured
petri net models. In: PNSE@ Petri Nets, pp. 325–326 (2015)

35. Sylla, A.N., Louvel, M., Rutten, E.: Combining transactional and behavioural reli-
ability in adaptive middleware. In: Proceedings of the 15th International Workshop
on Adaptive and Reflective Middleware, p. 5. ACM (2016)

http://dx.doi.org/10.1007/978-3-642-38493-6_9
http://dx.doi.org/10.1007/978-3-642-38493-6_9
http://dx.doi.org/10.1007/978-3-662-43376-8_6
http://dx.doi.org/10.1007/978-3-642-45343-4_11
http://dx.doi.org/10.1007/3-540-44988-4_27
http://dx.doi.org/10.1007/3-540-44988-4_27

96 M. Louvel et al.

36. Vergara-Gallego, M.I., Mokrenko, O., Louvel, M., Lesecq, S., Pacull, F.: Imple-
mentation of an energy management control strategy for WSNs using the LINC
middleware. In: Proceedings of the 2016 International Conference on Embedded
Wireless Systems and Networks, pp. 53–58 (2016)

37. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of per-
vasive services through chemical-inspired tuple spaces. CM Trans. Auton. Adapt.
Syst. 6(2), 14:1–14:24 (2011)

38. Viroli, M., Omicini, A.: Respect nets: towards an analysis methodology for respect
specifications. Electron. Notes Theor. Comput. Sci. 180(2), 123–144 (2007)

Types

Session-ocaml: A Session-Based Library
with Polarities and Lenses

Keigo Imai1(B), Nobuko Yoshida2, and Shoji Yuen3

1 Gifu University, Gifu, Japan
keigoi@gifu-u.ac.jp

2 Imperial College London, London, UK
3 Nagoya University, Nagoya, Japan

Abstract. We propose session-ocaml, a novel library for session-typed
concurrent/distributed programming in OCaml. Our technique solely
relies on parametric polymorphism, which can encode core session type
structures with strong static guarantees. Our key ideas are: (1) polarised
session types, which give an alternative formulation of duality enabling
OCaml to automatically infer an appropriate session type in a session
with a reasonable notational overhead; and (2) a parameterised monad
with a data structure called ‘slots’ manipulated with lenses, which can
statically enforce session linearity and delegations. We show applica-
tions of session-ocaml including a travel agency usecase and an SMTP
protocol.

1 Introduction

Session types [5], from their origins in the π-calculus [17], serve as rigorous
specifications for coordinating link mobility in the sense that a communication
link can move among participants, while ensuring type safety. In session type
systems such mobility is called delegation. Once the ownership of a session is
delegated (transferred) to another participant, it cannot be used anymore at the
sender side. This property is called linearity of sessions and appears indispensable
for all session type systems.

Linearity of session channels, however, is a major obstacle to adopt session
type disciplines in mainstream languages, as it requires special syntax extensions
for session communications [9], or depends on specific language features, such
as type-level functions in Haskell [11,16,20,26], and affine types in Rust [13], or
even falling back on run-time and dynamic checking [7,8,22,27]. For instance,
a common way in Haskell implementations is to track linear channels using an
extra symbol table which denotes types of each resource conveyed by a para-
meterised monad. A Haskell type for a session-typed function is roughly of the
form:

t1 → · · · → M {c1 �→ s1, c2 �→ s2, · · · } {c1 �→ s′
1, c2 �→ s′

2, · · · }α

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 99–118, 2017.
DOI: 10.1007/978-3-319-59746-1_6

100 K. Imai et al.

where M is a monad type constructor of arity three, α is a result type and the two
{· · · } are symbol tables before (and after) evaluation which assign each channel
ci to its session type si (and s′

i respectively). This symbol table is represented
at the type level, hence the channel ci is not a value, but a type which reflects an
identity of a channel. Since this static encoding is Haskell-specific using type-level
functions, it is not directly extendable to other languages.

This paper proposes the session-ocaml library, which provides a fully static
implementation of session types in OCaml without any extra mechanisms or
tools (i.e. sessions are checked at compile-time). We extend the technique posted
to the OCaml mailing list by Garrigue [4] where linear usage of resources is
enforced solely by the parametric polymorphism mechanism. According to [4],
the type of a file handle guarantees linear access to multiple resources using
a symbol table in a monad-like structures. Adapting this technique to session
types, in session-ocaml, multiple simultaneous sessions are statically encoded
in a parameterised monad. More specifically, we extend the monad structure to
a slot monad and the file handles to lenses. The slot monad is based on a type
(p, q, a)monad (hereafter we use postfix type constructor of OCaml) where p
and q are called slots which act like a symbol table. Slots are represented as a
sequence of types represented by nested pair types s1 *(s2 * · · ·). Lenses [15] are
combinators that provide access to a particular element in nested tuples and are
used to manipulate a symbol table in the slot monad. These mechanisms can
provide an idiomatic way (i.e. code does not require interposing combinators to
replace standard syntactic elements of functional languages) to declare session
delegations and labelled session branching/selections with the static guarantee
of type safety and linearity (unlike FuSe [22] which combines static and dynamic
checking for linearity, see Sect. 5).

To enable session-type inference solely by unification in OCaml,
session-ocaml is equipped with polarised session types which give an alternative
formulation of duality (binary relation over types which ensures reciprocal use
of sessions). In a polarised session type (p,q) sess, the polarity q is either serv

(server) or cli (client). The usage of a session is prescribed in the protocol type p
which provides an objective view of a communication based on a communication
direction of req (request; client to server) and resp (response; server to client).
For example, the protocol type for sending of a message type ’v from client to
server is [`msg of req * 'v * 's] and the opposite is [`msg of resp * 'v * 's]. Duality
is not necessary for protocol types as it shows a protocol common to both ends
of a session rather than biased by either end. Then the session type inference can
be driven solely by type unification which checks whether a protocol matches
its counterpart or not. For instance, the dual of (p, cli)sess is (p, serv)sess and
vice versa. When a session is being initiated, polarities are assigned to each end
of a session according to the primitives used, namely cli for the proactive peer
and serv for the passive peer. The protocol types also provide a usual prefixing
declaration of session types, which is more human-readable than FuSe types [22]
(see Sect. 5).

Session-ocaml: A Session-Based Library with Polarities and Lenses 101

The rest of the paper is as follows. Section 2 outlines programming with
session-ocaml. Section 3 shows the library design with the polarised session
type and the slot monads. In Sect. 4, we present two examples, a travel
agency usecase and SMTP protocol implementations. Section 5 discusses com-
parisons with session type implementations in functional languages. Section 6
concludes and discusses further application of our technique. Technical report
[10] includes the implementation of session-ocaml modules and additional exam-
ples. Session-ocaml is available at https://github.com/keigoi/session-ocaml.

2 Programming with session-ocaml

In this section, we overview session-typed programming with session-ocaml and
summarise communication primitives in the library.

Send and receive primitives. Listing 1 shows a server and client which
communicate boolean values. The module Session01 introduces functions of
session-ocaml in the scope. xor_ch (line 2) is a service channel (or shared chan-
nel) that is used to start communication by a client connecting (connect_) to
the server waiting (accept_) at it.2 The server (lines 3–7) receives (recv) a pair
of booleans, then calculates the exclusive-or of these values, transmits (send)
back the resulting boolean, and finishes the session (close). These communica-
tion primitives communicate on an implicit session endpoint (or session chan-
nel) which is connected to the other endpoint. For inferring session types by
OCaml, communication primitives are concatenated by the bind operations >>

and >>= of a parameterised monad [1] which conveys session endpoints. The
syntax let% pat = e1 in e2 binds the value returned by e1 to the pattern pat and
executes e2, which is shorthand for e1 >>= fun pat -> e2 (the % symbol indicates a
syntax extension point in an OCaml program). The client (lines 8–12) sends a
pair of boolean, receives from the server and finishes the session, as prescribed
in the following type. These server and client behaviours are captured by the
protocol type argument of the channel type inferred at xor_ch as follows:

[`msg of req * (bool * bool) * [`msg of resp * bool * [`close]]] channel

1 The suffix 0 means that it only uses the slot 0 (see later in this section).
2 The suffixed underscore means that they run immediately instead of returning a

monadic action (see later).

https://github.com/keigoi/session-ocaml

102 K. Imai et al.

The protocol type is the primary language of communication specification
in session-ocaml. Here, [`msg of r * v * p] is a protocol that represents commu-
nication of a message of type v before continuing to p. r ∈ {req,resp} indicates
a communication direction from client to server and vice versa, respectively.
[`close] is the end of a session. Thus the above type indicates that by a session
established at xor_ch, (1) the server receives a request of type bool * bool and
then (2) sends a response of type bool back to the client.

Branching and recursion. A combination of branching and recursion provides
various useful idioms such as exception handling. As an example, Listing 2 shows
a logical operation server. The protocol type inferred for log_ch is:

[`branch of req * [`bin of [`msg of req * binop *
[`msg of req * (bool * bool) * [`msg of resp * bool * 'a]]]

|`fin of [`close]]] as 'a

[`branch ofr * [· · ·|`labiofpi|· · ·]] represents a protocol that branches to pi when
label labi is communicated. Here r is a communication direction. t as 'a is an
equi-recursive type [24] of OCaml that represents recursive structure of a ses-
sion where 'a in t is instantiated by t as 'a. Lines 8–14 describe the body of
the server. It receives one of the labels bin or fin, and branches to a different
protocol. match%branch0 () with |· · ·| `labi -> ei|· · · is the syntax for branching to
the expression ei after label labi is received. Upon receipt of bin, the server
receives requests for a logical operation from the client (type binop and bool *
bool), sends back a response and returns to the branch (note that the server
is recursively defined by let rec). In the case of fin, the session is terminated.
[%select0 `lab] is a syntax to select one of branches with a label lab.3 A client
using selection is shown in lines 18–25: it selects the label bin, requests conjunc-
tion, and selects fin; then the session ends.

3 Here the bracket is another form of a syntax extension point applied to an expression
(see the OCaml manual).

Session-ocaml: A Session-Based Library with Polarities and Lenses 103

For the branching primitive on arbitrary labels, session-ocaml uses OCaml
polymorphic variants and syntax extensions. By using equi-recursive types,
recursive protocols are also directly encoded into OCaml types.

Link mobility with delegation. Link mobility with session delegation enables
one to describe a protocol where the communication counterpart dynamically
changes during a session. A typical pattern utilising delegation incorporates a
main thread accepting a connection and worker threads doing the actual work
to increase responsiveness of a service.

In session-ocaml, a program using delegation handles multiple sessions
simultaneously. We explicitly assign each session endpoint to a slot using slot
specifiers _0, _1, · · · which gives an idiomatic way to use linear channels. Listing 3
shows an example of a highly responsive server using delegation. The server
receives repeated connection requests on channel log_ch consisting of the main
thread and six worker threads. The module SessionN provides slot specifiers
and accompanying communication primitives, where the suffix N means that
it can handle on arbitrary number of sessions. The main thread (lines 3–7)
accepts a connection from a client (accept) with log_ch and assigns the estab-
lished session to slot 0 (~bindto:_0).4 Next, it connects (connect) to a worker
waiting for delegation at channel worker_ch (line 2) and assigns the session to
slot 1 (~bindto:_1). Finally it delegates the session with the client to the worker
(deleg_send), then ends the session with the worker and accepts the next con-
nection. The worker thread (lines 8–12) receives the delegated session from the
main thread (deleg_recv) and assigns the session to slot 0, then continues to
logic_server (Listing 2). Here, Session0 module used by logic_server implicitly
allocates the session type to slot 0, hence can be used with SessionN module.
Line 14 starts the main thread and workers. Here run is a function that executes
session-ocaml threads.

The protocol type of worker_ch is inferred as follows:
[`deleg of req * (logic_p, serv) sess * [`close]]

Here logic_p is the protocol type of log_ch and [`deleg of r * s * p] is the delegation
type. r is a communication direction, s is a polarised session type (a type with
protocol and polarity which we explain next) for the delegated session and p
is a continuation. By inferring the protocol types, session-ocaml can statically
guarantee safety of higher-order protocols including delegations.
4 ~arg:e is a labelled argument e for a named parameter arg.

104 K. Imai et al.

The polarised session types. Communication safety is checked by matching
each protocol type inferred at both ends. The polarised session type (p,q) sess

given to each endpoint plays a key role for protocol type inference. Here p is a
protocol type, and q ∈ {serv,cli} is the polarity determined at session initiation.
serv is assigned to the accept side and cli to the connect side. serv and cli are
dual to each other.

The polarised session type gives a simple way to let the type checker infer
a uniform protocol type according to a communication direction and a polar-
ity assigned to the endpoint. For example, as we have seen, we deduce resp

(response) from server transmission (send) and client reception (recv). Table 1
shows correspondences between polarities and communication directions.

Table 1. Correspondence between polarities and communication directions

Fig. 1. Session type changes in xor_server

To track the entire session, a polarised session type changes in its protocol
part as a session progresses. Figure 1 shows changes of the session type in slot 0 of
the xor server (here we use the SessionN module). The server first accepts a con-
nection and assigns the session type to slot 0, where the type before acceptance
is empty. After the subsequent reception of the pair of booleans and transmission
of the xor values of those booleans, req and resp are consumed, and becomes
empty again at the end of the session. Similar type changes occur on both main

and worker and their types would be:
unit -> (empty * (empty * 'ss), 'tt, 'a) session

Here the type (s, t, a)session specifies that it expects slot sequence s at the
beginning, and returns another slot sequence t and a value of type a. The type
empty * (empty * 'ss) denotes that slot 0 and 1 are empty at the beginning, and

Session-ocaml: A Session-Based Library with Polarities and Lenses 105

since they never return the answer (i.e. the recursion runs infinitely), the rest of
types 'tt and 'a are left as variables.

The type of logic_server in Listing 2 has a session type:
((logic_p, serv) sess * 'ss, empty * 'ss, unit) session

Here logic_server expects a session assigned at slot 0 before it is called, hence
it expects the session type (logic_p, serv)sess in its pre-type. A difference from
main and worker above is that since each of them establishes or receives sessions
by their own (by using accept, connect or deleg_recv), they expect that slots 0
and 1 are empty.

Table 2 shows the type and communication behaviour before and after the
execution of each session-ocaml communication primitive. Each row has a
pre-type (the type required before execution) and post-type (the type guaran-
teed after execution). The protocol type at serv is obtained by replacing req

with resp and resp with req. For example, the session send _n e has pre-type
([`msg of req * v * p], cli)sess at cli and ([`msg of resp * v * p], serv)sess at serv

where _n is a slot specifier, e is an expression, v is a value type and p is a

Table 2. session-ocaml primitives and protocol types

106 K. Imai et al.

protocol type. Selection [%select _n] has open polymorphic variant type [>. . .]

in pre-type to simulate subtyping of the labelled branches.

3 Design and Implementation of session-ocaml

In this section, we first show the design of polarised session types associated
with communication primitives (Sect. 3.1); then introduce the slot monad which
conveys multiple session endpoints in a sequence of slots and constructs the
whole session type for a session (Sect. 3.2). In Sect. 3.3, we introduce the slot
specifier to look up a particular slot in a slot sequence with lenses which are
a polymorphic data manipulation technique known in functional programming
languages. We present the syntax extension for branching and selection, and
explain a restriction on the polarised session types. This section mainly explains
the type signatures of the communication primitives. Implementation of the com-
munication behaviours is left to [10].

3.1 Polarity Polymorphism

The polarity polymorphism is accompanied within all session primitives in
that the appropriate direction type is assigned according to the polarity.
This resolves a trade-off of having two polarised session types for one trans-
mission. For instance, a transmission of a value could have two candidates,
[`msg of req * 'v * 's] and [`msg of resp * 'v * 's] but they are chosen accord-
ing to the polarity from which the message is sent. In order to relate the polarities
to the directions, cli and serv are defined by type aliases as follows:

type cli = req * resp type serv = resp * req

For each communication primitive, we introduce fresh type variables rreq and
rresp representing the communication direction, and put rreq ∗ rresp as the polar-
ity in its session type. When its polarity is cli, we put rreq for req and rresp
for resp, while when it is serv, we put rreq for resp and rresp for req. For exam-
ple, the pre-type of send is ([`msg of 'r1*'v*'p],'r1*'r2)sess and that of recv is
([`msg of 'r2*'v*'p],'r1*'r2)sess. The same discipline applies to branching and
delegation. The actual typing is deferred to the following subsections.

3.2 The Slot Monad Carrying Multiple Sessions

The key factor to achieve linearity is to keep session endpoints securely inside a
monad. In session-ocaml, multiple sessions are conveyed in slots using the slot
monad of type

(s0 * (s1 * · · ·), t0 * (t1 * · · ·), α) session

Session-ocaml: A Session-Based Library with Polarities and Lenses 107

which denotes a computation of a value of type α, turning each pre-type si of
slot i to post-type ti. We refer to slots before and after computation as pre-
and post-slots, respectively. The type signature of the slot monad is shown in
Listing 4. The operators >>= and >> (lines 3–4) compose computation sequentially
while propagating type changes on each slot by demanding the same type 'q in
the post-slots on the left-hand side and the pre-slots on the right-hand side.
Usually they construct compound session types via unification. For example, in
send And >> send (true, false) (from Listing 2 the left hand side (send Add) has
the following type:
(([`msg of req * binop * 'p1], cli) sess * 'ss1, ('p1, cli) sess * 'ss1, unit) session

While the type of the right hand side (send (true, false)) is:
(([`msg of req * (bool*bool) * 'p2], cli) sess * 'ss2, ('p2, cli) sess * 'ss2, unit) session

By unifying the post-type in the preceding monad with the pre-type in the fol-
lowing monad (and the rest of slots 'ss1 with 'ss2), the bind operation produces
a chain of protocol type in the pre-slots as follows:

(([`msg of req * binop * [`msg of req * (bool*bool) * 'p2]], cli) sess * 'ss2,
('p2, cli) sess * 'ss2, unit) session

In line 5, run executes the slot monad and requires all slots being empty before
and after execution, thus it precludes use of unallocated slots, and mandates that
all sessions are finally closed (which corresponds to the absence of contraction
in linear type systems). The type all_empty (line 1) is a type alias for OCaml
equi-recursive type empty * 'a as 'a,5 enabling use of arbitrarily many slots.

Table 3. Types for slot specifiers

5 In order to have such a type, we compile the code with the -rectypes option. If we
chose types for slots using objects or polymorphic variants, there is no need to use
this option.

108 K. Imai et al.

3.3 Lenses Focusing on Linear Channels

In order to provide access to session endpoints conveyed inside a slot monad, we
apply lenses [15] to slot specifiers _0, _1, · · · which are combinators to manipulate
a polymorphic data structure. The following shows the type of a slot specifier
which modifies slot n of a slot sequence:

type ('a, 'b, 's0 *(· · ·('sn−1 *('a *'ss))· · ·), 's0 *(· · ·('sn−1 *('b *'ss))· · ·)) slot

The type says that it replaces the type 'a of slot n in the slot sequence
's0 *(· · ·('sn−1 *('a *'ss))· · ·) with 'b and the resulting sequence type becomes
to 's0 *(· · ·('sn−1 *('b *'ss))· · ·). The type of each slot specifier (_0, _1, · · ·) is
shown in Table 3.

Listing 5 exhibits type signatures of accept, connect, close, send, recv,
deleg_send and deleg_recv which are compiled from lenses, the polarised session
types (Sect. 3.1), slot monads (Sect. 3.2), and pre- and post-types in Table 2
(Sect. 2). Note that bindto: and release: are named parameters of a primitive.

accept and connect (lines 1–4) assign a new session channel to the empty slot,
whereas close (lines 5–6) finishes the session and leave the slot empty again. send

and recv (lines 7–10) proceed the protocol type by removing a `msg prefix.
deleg_send and deleg_recv (lines 11–16) update a pair of slots; one is for the

transmission/reception and the other is for the delegated session. To update
the slots twice, they take a pair of slot specifiers which share an intermediate
slot sequence 'mid. They embody an aspect of linearity: deleg_send releases the
ownership of the delegated session by replacing the slot type to empty, while
deleg_recv allocates another empty slot to the acquired session.

Session-ocaml: A Session-Based Library with Polarities and Lenses 109

The primitives for binary selection select_left, select_right and branching
branch2 (lines 17–25) communicate left and right labels. branch2 takes a pair of
continuations as well as a pair of slot specifiers. According to the received label,
one of the continuations is invoked after the pre-type of the invoked continuation
is assigned to the corresponding slot.

Finally, we present how to embed slot type changes into a pair of slot
sequences in a slot monad where the position of the slot is specified by applying a
slot specifier. In each type signature, the first and second type arguments of type
slot prescribes how a slot type changes. The third and fourth arguments do not
specify a slot in the slot sequence conveyed by the slot monad. For example, the
type of function application close _1 is given by the following type substitution:

(change of the slot type specified by close)
'a �→ ([`close],'r1*'r2) sess, 'b �→ empty,

(change of the slot sequence type specified by _1)
'pre �→ 's0 * ([`close],'r1*'r2) sess * 'ss, 'post �→ 's0 * (empty * 'ss)

And the type completing the session at slot 1 is:
close _1: ('s0 * ([`close],'r1*'r2) sess * 'ss), 's0 * (empty * 'ss), unit) session

A note on delegation and slot assignment. The delegation
[`deleg of r * s * p] distinguishes polarity in the delegated session s. This results in
a situation where two sessions exhibiting the same communicating behaviour can-
not be delegated at a single point in a protocol, if they have different polarities from
each other. It is illustrated by the following (untypeable) example.

if b then connect ch1 ~bindto:_1 >> deleg_send _0 ~release:_1

else accept ch2 ~bindto:_1 >> deleg_send _0 ~release:_1

Recall that connect yields a cli endpoint while accept gives a serv. Due to the
different polarities in the delegated session types, the types of then and else

clause conflict with each other, even if they have the identical behaviour. In [32],
where polarity is not a type but a syntactic construct, such a restriction does
not exist. A similar restriction exists in GV [30] which has polarity in end (end!
and end?).

In principle, it is possible to automatically assign numbers to slot specifiers
locally in a function instead of writing them explicitly. However, since sequential
composition of the session monad requires each post- and pre-type to match with
each other, the global assignment of slot specifiers would require a considerable
amount of work and can be hard to predict its behaviour. As shown in Listing 3,
one can handle two sessions by just using two slot specifiers.

110 K. Imai et al.

Syntax extension for arbitrarily labelled branch. Since the OCaml type
system does not allow to parameterise type labels (polymorphic variants), we
provide macros for arbitrarily-labelled branching. Listing 6 provides helper func-
tions for the macros. For selection, the macro [%select _n`labi] is expanded
to _select _n(fun x -> `labi(x)), where the helper function _select transmits
label labi on the slot n. match%branch _n with | `lab1 -> e1|· · ·| `labk -> ek is
expanded to:

_branch_start _n ((function |`lab1(p1),q -> _branch _n (p1,q) (e1) | · · ·
|`labk(pk),q -> _branch _n (pk,q) (ek))
: [`labi of 'p1|· · ·|`labk of 'pk]*'x -> 'y)

The helper functions _branch_start and _branch have the type shown in Listing 6.
The anonymous function will have type

[`lab1 of p1 | · · · | `labk of pk] * q -> (pre, post, v) session

where q is the polarity and pi is the protocol type in the pre-type at slot n in
ei. When a label labi (i ∈ {1 . . . k}) is received, _branch_start _n f passes a pair
of witness `labi(pi) and q of a polarised session type (pi, q) sess to the function
f . The anonymous function extracts the witness and by _branch it rebuilds the
session type ('pi,'q)sess and passes the session to the continuation ei as the
pre-type. The type annotation [`labi of 'p1|· · ·|`labk of 'pk]*'x -> 'y erases the

Session-ocaml: A Session-Based Library with Polarities and Lenses 111

row type variable [<· · ·] generated by the anonymous function. The annotation
is necessary because the row type variable turns into a useless monomorphic row
type variable [_<· · ·] in the inferred protocol type. This may cause a problem
while compiling since the compiler requires monomorphic type variables to not
escape from compilation units.

4 Applications

4.1 Travel Agency

We demonstrate programming in session-ocaml using the Travel agency scenario
from [9], which consists of typical patterns found in business and financial pro-
tocols. The scenario is played by three participants: customer, agency and service

(Listing 7). customer and service initially do not know each other, and agency

mediates a deal between them by session delegation.
customer begins an order session with agency and binds it to their own slot 0

(each process has a separate slot sequence). Then customer requests and receives
the price for the desired journey after sending the quote label. In our scenario,
customer requests "London to Paris" and agency replies with a fixed price 80.0.

Then customer might send the agree label to proceed the transaction with the
current price. Or if customer does not agree with the price, customer can cancel
the transaction by sending the reject label. Or, customer can send quote again
and this will be repeated an arbitrary number of times for different journeys (we
omit this branch from the code). In our program, customer agrees with agency at
a price less than 100.0, or otherwise rejects it and terminates the transaction.

Next, if customer agrees with the price, agency opens the session with service

and binds it to slot 1. Then it delegates to service, through slot 1, the interac-
tions with customer remaining for slot 0. customer then sends the billing address
(unaware that he/she is now talking to service), and service replies with the
dispatch date (now()) for the purchased tickets. The transaction is complete.

The protocol type between customer and agency is inferred as:
[`branch of req *
[`quote of [`msg of req * string * [`msg of resp * float * 'a]]

|`reject of [`close]

|`agree of [`msg of req * addr * [`msg of resp * date * [`close]]]]] as 'a

Delegation from agency to service is inferred in the channel of service as:
[`deleg of req *

([`msg of 'r1 * addr * [`msg of 'r2 * date * [`close]]], 'r1*'r2) sess * [`close]]

The delegated type is polymorphic on the polarity and communication direc-
tions (Sect. 3.1), hence the service can handle both polarities. It reflects the part
after agree in the protocol above where 'r1 is req and 'r2 is resp. Thus delegation
with the polarised session types and slots effectively gives a way to coordinate
higher order communication incurred by link mobility.

112 K. Imai et al.

Static checking of delegation makes it easier to find errors otherwise hard to
analyse due to the indirect nature of delegation. Consider a case that service

changes its behaviour to receive addr * paymeth. Now the inferred protocol type
at service would be:

[`deleg of req * ([`msg of 'r1 * (addr * paymeth) * [`msg of 'r2 * date * [`close

]]], 'r1*'r2) sess * [`close]]

Whereas that of agency remains same as before, it results in a type error at the
momentwhen a service channel is passed.Without static typing, the run-time error
would be deferred until the beginning of actual client-service communication.

4.2 An SMTP Protocol

This section shows an SMTP client implementation by session-ocaml. Listings 8
and 9 shows the protocol type of SMTP and message types representing SMTP
commands and replies; and Listing 10 shows the client implementation. Line 2
in Listing 10 generates a service channel for connecting to the SMTP server.
Here smtp_adapter is an adapter that converts a sequence of session messages to
a TCP stream. Its definition is shown in Listing 11 and built using the combina-
tors shown in Listing 12. The functions req and resp accept a function to convert
between a message of type ’v and a command string and construct an adapter.
bra and sel are branching and selection respectively, and cls is the end of the
session. The function with the same name as the message type is a function for

Session-ocaml: A Session-Based Library with Polarities and Lenses 113

converting to a string (or vice versa) and is responsible for actual stream
processing. In OCaml, f @@ g means function composition fun x -> f (g x),
and begin e end means (e). Since OCaml evaluates eagerly, each function is η-
expanded with a parameter ch so that it does not recurse infinitely.

The adapter for branch bra is asymmetric in its parameters [18]. bra has a
parser of type string -> ’v option on the left side since the adapter determines
a continuation in a branch according to the parsed result of a received string.
The adapter chooses left if the parser succeeds (returns Some(x)), and right if
it fails (None). By nesting bra, any nesting of branch can be constructed.

Comparing to the existing Haskell implementation in [11], an advantage is
that our OCaml version enjoys equi-recursive session types, so we avoid the
manual annotation of repeated unwind operations needed to unfold iso-recursive
types in Haskell. A shortcoming of the OCaml version is the explicit nature
of adapter. However, since the adapter and the protocol type have the same
structure, it can be generated semi-automatically from the type declaration in
Listing 8 when OCaml gains ad hoc polymorphism such as type classes. We
expect this to be possible with modular-implicits [31], which will be introduced
in a future version of OCaml. On the other hand, it is also possible to omit the
protocol type declaration in Listing 8 by inferring the type of the adapter.

114 K. Imai et al.

5 Related Work

We discuss related work focusing on the functional programming languages. For
other related work, see Sect. 1.

Implementations in Haskell. The first work done by Neubauer and Thie-
mann [18] implements the first-order single-channel session types with recur-
sions. Using parameterised monads, Pucella and Tov [26] provide multiple ses-
sions, but manual reordering of symbol tables is required. Imai et al. [11] extend
[26] with delegation, handling multiple sessions in a user-friendly manner by
using type-level functions. Orchard and Yoshida [20] use an embedding of effect
systems in Haskell via graded monads based on a formal encoding of session-
typed π-calculus into PCF with an effect system. Lindley and Morris [16] pro-
vide an embedding of the GV session-typed functional calculus [30] into Haskell,
building on a linear λ-calculus embedding by Polakow [25]. Duality inference is
mostly represented by a multi-parameter type class with functional dependen-
cies [14]; For instance, class Dual t t’| t -> t’, t’ -> t declares that t can
be inferred from its dual t’ and vice versa. However, all of the above works
depend on type-level features in Haskell, hence they are not directly applica-
ble to other programming languages including OCaml. See [21] for a detailed
survey. session-ocaml generalises the authors’ previous work in Haskell [11] by
replacing type-level functions with lenses, leading to wider applicability to other
programming languages.

Implementations in OCaml. Padovani [22] introduces FuSe, which imple-
ments multiple sessions with dynamic linearity checking and its single-session
version with static checking in OCaml. Our session-ocaml achieves static typ-
ing for multiple sessions with delegation by introducing session manipulations
based on lenses; and provides an idiomatic way to declare branching with arbi-
trary labels; while FuSe combines static and dynamic approach to achieve them.

The following example shows that session-ocaml can avoid linearity viola-
tion, while FuSe dynamically checks it at the runtime.

let rec loop () = let s = send "*" s in
match branch s with `stop s -> close s |`cont _ -> loop ()

loop sends "*" repeatedly until it receives label stop. Although the endpoint s

should be used linearly, the condition is violated at the beginning of the second
iteration since the endpoint is disposed by using the wildcard _ at the end of

Session-ocaml: A Session-Based Library with Polarities and Lenses 115

the loop. In FuSe 0.7, loop is well-typed and terminates in error InvalidEndpoint

at runtime. In session-ocaml, this error inherently does not occur since each
endpoint is implicit inside the monad and indirectly accessed by lenses.

[22] gives a micro-benchmark which measures run-time performance between
the static and dynamic versions of FuSe. Based on the benchmark, it is shown
that the overhead incurred by dynamic checking is negligible when implemented
with a fast communication library such as Core [12], and concludes that the static
version of FuSe performs well enough in spite of numerous closure creations in
a monad. The FuSe implementation has been recently extended to context free
session types [29] by adding an endpoint attribute to session types [23].

On duality inference, a simple approach in OCaml is firstly introduced by
Pucella and Tov [26]. The idea in [26] is to keep a pair of the current session
and its dual at every step; therefore the notational size of a session type is
twice as big as that in [5]. FuSe [22] reduces its size by almost half using the
encoding technique in [3] by modelling binary session types as a chain of linear
channel types as follows. A session type in FuSe (’a,’b) t prescribes input
(’a) and output (’b) capabilities. A transmission and a reception of a value ’v

followed by a session (’a,’b) t are represented as (_0,’v*(’a,’b) t) t and
(’v*(’a,’b) t,_0) t respectively, where _0 means “no message”; then the dual
of a session type is obtained by swapping the top pair of the type. A drawback
of these FuSe notations is it becomes less readable when multiple nestings are
present. For example, in a simplified variant of the logic operation server in
Listing 2 with no recursion nor branch, the protocol type of log_ch becomes:

[`msg of req * binop * [`msg of req * (bool*bool) * [`msg of resp * bool * [`close]]]]

In FuSe, at server’s side, the channel should be inferred as:
(binop * ((bool*bool) * (_0, bool * (_0,_0) t) t, _0) t, _0) t

Due to a sequence of flipping capability pairs, more effort is needed to understand
the protocol. To recover the readability, FuSe supplies the translator Rosetta
which compiles FuSe types into session type notation with the prefixing style
and vice versa. Our polarised session types are directly represented in a prefixing
manner with the slight restriction shown in Sect. 3.3.

6 Conclusion

We have shown session-ocaml, a library for session-typed communication which
supports multiple simultaneous sessions with delegation in OCaml. The contri-
butions of this paper are summarised as follows. (1) Based on lenses and the slot
monad, we achieved a fully static checking of session types by the OCaml type
system without adding any substantial extension to the language. Previously, a
few implementations were known for a single session [22,26], but the one that
allows statically-checked multiple sessions is new and shown to be useful. To the
authors’ knowledge, this is the first implementation which combines lenses and
a parameterised monad. (2) On top of (1), we proposed macros for arbitrarily
labelled branches. The macros “patch up” only the branching and selection parts
where linear variables are inevitably exposed due to limitation on polymorphic

116 K. Imai et al.

variants. (3) We proposed a session type inference framework solely based on the
OCaml built-in type unification. Communication safety is guaranteed by check-
ing equivalence of protocol types inferred at both ends with different polarities.

Type inference plays a key role in using lenses without the burden of writing
any type annotations. Functional programming languages such as Standard ML,
F# and Haskell have a nearly complete type inference, hence it is relatively easy
to apply the method presented in this paper. On the other hand, languages such
as Scala, Java and C# have a limited type inference system. However, by a recent
extension with Lambda expressions in Java 8, lenses became available without
type annotations in many cases (see a proof-of-concept at https://github.com/
keigoi/slotjava). The main difficulty for implementing session types is selection
primitives since they require type annotations for non-selected branches. Devel-
opment of such techniques is future work.

Our approach which uses slots for simultaneous multiple sessions resembles
parameterised session types [2,19], and it is smoothly extendable to the multi-
party session type framework [6]. We plan to investigate code generations from
Scribble [28] (a protocol description language for the multiparty session types)
along the line of [7,8] integrating with parameterised features [2,19].

Acknowledgments. We thank Raymond Hu and Dominic Orchard for their com-
ments on an early version of the paper. The third author thanks the JSPS bilat-
eral research with NFSC for fruitful discussion. This work is partially supported by
EPSRC projects EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1 and
EP/N028201/1; by EU FP7 612985 (UPSCALE), and COST Action IC1405 (RC); by
JSPS International Fellowships (S15051), and KAKENHI JP17K12662, JP25280023
and JP17H01722 from JSPS, Japan.

References

1. Atkey, R.: Parameterized notions of computation. J. Funct. Program. 13(3–4),
355–376 (2009)

2. Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, concurrent session
types for asynchronous multi-actor interactions. Sci. Comput. Program. 115–116,
100–126 (2016)

3. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of the 14th Symposium on Principles and Practice of Declarative Programming
(PPDP 2012), pp. 139–150. ACM, New York (2012)

4. Garrigue, J.: A mailing-list post (2006). https://groups.google.com/d/msg/fa.
caml/GWWtHOP35dI/IsrOze-qVLwJ

5. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

6. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008). A full version, JACM, 63(1), No. 9, 67 pages,
2016

https://github.com/keigoi/slotjava
https://github.com/keigoi/slotjava
https://groups.google.com/d/msg/fa.caml/GWWtHOP35dI/IsrOze-qVLwJ
https://groups.google.com/d/msg/fa.caml/GWWtHOP35dI/IsrOze-qVLwJ
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567

Session-ocaml: A Session-Based Library with Polarities and Lenses 117

7. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7_24

8. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54494-5_7

9. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-70592-5_22

10. Imai, K., Yoshida, N., Yuen, S.: Session-ocaml: a session-based library with polar-
ities and lenses. Technical report, Imperial College London (2017, to appear)

11. Imai, K., Yuen, S., Agusa, K.: Session type inference in Haskell. In: Postproceedings
of Thrid Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES 2010), vol. 69, pp. 74–91, March 2010

12. Jane Street Developers: Core library documentation (2016). https://ocaml.
janestreet.com/ocaml-core/latest/doc/core/

13. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming (WGP
2015), pp. 13–22. ACM (2015)

14. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP
2000. LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000). doi:10.1007/
3-540-46425-5_15

15. Kmett, E.: Lenses, folds and traversals (2012). http://lens.github.io/
16. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: Proceedings of

the 9th International Symposium on Haskell (Haskell 2016), pp. 133–145. ACM
(2016)

17. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

18. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24836-1_5

19. Ng, N., Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke, B.
(ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46663-6_11

20. Orchard, D., Yoshida, N.: Effects as sessions, sessions as effects. In: 43th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2016), pp. 568–581. ACM (2016)

21. Orchard, D., Yoshida, N.: Sessions types with linearity in Haskell. In: Gay, S.J.,
Ravara, A. (eds.) Behavioural Types: From Theory to Tools. River Publishers
(2017)

22. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27, e4 (2016)

23. Padovani, L.: Context-free session type inference. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 804–830. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54434-1_30

24. Pierce, B.C.: Recursive types. In: Types and Programming Languages, Chap. 20,
pp. 267–280. MIT Press (2002)

25. Polakow, J.: Embedding a full linear lambda calculus in Haskell. In: Proceedings
of the 2015 ACM SIGPLAN Symposium on Haskell (Haskell 2015), pp. 177–188.
ACM (2015)

http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-54494-5_7
http://dx.doi.org/10.1007/978-3-540-70592-5_22
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
http://dx.doi.org/10.1007/3-540-46425-5_15
http://dx.doi.org/10.1007/3-540-46425-5_15
http://lens.github.io/
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1007/978-3-662-54434-1_30
http://dx.doi.org/10.1007/978-3-662-54434-1_30

118 K. Imai et al.

26. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Proceedings
of the First ACM SIGPLAN Symposium on Haskell (Haskell 2008), pp. 25–36.
ACM (2008)

27. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: 30th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2016). LIPIcs, vol.
56, pp. 21:1–21:28. Dagstuhl (2016)

28. Scribble Project homepage. www.scribble.org
29. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Proceedings of the

21st ACM SIGPLAN International Conference on Functional Programming (ICFP
2016), pp. 462–475 (2016)

30. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2012), pp. 273–286.
ACM (2012)

31. White, L., Bour, F., Yallop, J.: Modular implicits. In: ACM SIGPLAN ML Family
Workshop (ML 2014), vol. 198, pp. 22–63. Electronic Proceedings in Theoretical
Computer Science (2015)

32. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: two systems for higher-order
session communication. Electron. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

www.scribble.org

Retractable and Speculative Contracts

Franco Barbanera1(B), Ivan Lanese2, and Ugo de’Liguoro3

1 University of Catania, Catania, Italy
barba@dmi.unict.it

2 Dipartimento di Informatica - Scienza e Ingegneria,
University of Bologna/INRIA, Bologna, Italy

ivan.lanese@gmail.com
3 Dipartimento di Informatica, University of Torino, Torino, Italy

ugo.deliguoro@unito.it

Abstract. Behavioral contracts are abstract descriptions of the com-
munications that clients and servers perform. Behavioral contracts come
naturally equipped with a notion of compliance: when a client and
a server follow compliant contracts, their interaction is guaranteed to
progress or successfully complete. We study two extensions of contracts,
dealing respectively with backtracking and with speculative execution. We
show that the two extensions give rise to the same notion of compliance.
As a consequence, they also give rise to the same subcontract relation,
which determines when one server can be replaced by another preserv-
ing compliance. Moreover, compliance and subcontract relation are both
decidable in polynomial time.

1 Introduction

Binary behavioral contracts [14,15,27] and binary session types [22] are abstrac-
tions of programs used to statically ensure that a client and a server inter-
act successfully (see the survey in [24]). Along the years, the basic theory has
been extended to deal with many features of clients and servers, such as excep-
tions [12], time [9], and so on. We consider here two new features: backtracking,
allowing one to go back to previous stages of the interaction, and speculative
execution [30], allowing one to try different alternatives concurrently. These two
features have quite different origin and aims. Backtracking is used to avoid fail-
ures due to wrong past decisions in a wide range of settings, from the undo button

This work was partially supported by the COST Action IC1405 on “Reversible
computation - extending horizons of computing”. The first and third authors were
partially supported also by the COST Action EUTYPES CA-15123 and, respec-
tively, Project FIR 1B8C1 of the University of Catania and Project FORMS 2015
of Turin. We thank Mariangiola Dezani-Ciancaglini for interesting discussions and
useful suggestions.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 119–137, 2017.
DOI: 10.1007/978-3-319-59746-1 7

120 F. Barbanera et al.

in web browsers, to the execution model of Prolog, to techniques for rollback-
recovery [1]. Speculative execution is used for efficiency reasons in different areas,
from simulation [13], to thread-level optimization [31], to web services [16].

We present two extensions of binary contracts (Sect. 2): retractable contracts
capturing backtracking, and speculative contracts capturing speculative execu-
tion. The two extensions are based on the same syntax, but naturally have dif-
ferent semantics. Essentially, they add to the session contracts of [3,10] (called
first-order session behaviors in [3]) an operator of external choice among output
operations. The most interesting case is when an external choice among outputs
and an external choice among inputs interact. In the retractable semantics, the
client and the server agree on which option to explore, but they rollback and try
a different possibility if the computation gets stuck. In the speculative semantics
all the possibilities are explored concurrently, and it is enough for one of them
to succeed to guarantee the success of the whole computation.

This paper defines retractable and speculative contracts, and studies the
related theory, considering the notions of compliance (Sect. 3), guaranteeing
that the interaction progresses or successfully completes, subcontract relation
(Sect. 4), determining when a server (resp. client) can be replaced by another
server (resp. client) preserving compliance, and dual contract (Sect. 4), that is
the most general contract (in terms of the subcontract relation) compliant with
a given contract. Our analysis provides two main insights:

– Even if retractable contracts and speculative contracts have different seman-
tics and give rise to different client-server interactions, the relations of compli-
ance, subcontract and duality in the two settings do coincide. While surprising
at first sight, this can be explained by noticing that in both the cases different
alternatives are explored (sequentially for retractable contracts, in parallel for
speculative contracts) and the success of one of them guarantees the success
of the whole computation. In other terms, the two semantics provide different
implementations of angelic nondeterminism, first described by Hoare [21].

– While retractable/speculative contracts are strictly more expressive than
session contracts (indeed they are a conservative extension, see Sect. 3.1),
their theory preserves the main good properties of the theory of session con-
tracts. In particular, compliance and subcontract relations are both decidable
(Sect. 3) in polynomial time (Sect. 5), and the dual of a contract always exists
and has a simple syntactic characterization (Sect. 4).

A natural way to ensure the existence of the dual contract is to introduce an
operator of internal choice among inputs. While this operator has limited practi-
cal impact, it makes the model more symmetric and the mathematical treatment
simpler.

A few preliminary results on the topic of this paper have been presented in a
workshop paper [7], which considers retractable session contracts, i.e., retractable
contracts without internal choice among inputs. The main result of [7] is the
decidability of the compliance relation (while we study here also the complexity),
which was obtained via an algorithm that we now know to be exponential. Here
we present a more refined, polynomial one (Fig. 7). In [7] the subcontract relation

Retractable and Speculative Contracts 121

and the dual contract were not studied, and indeed the dual contract did not
exist due to the absence of internal choice among inputs.

Proofs, additional examples and additional background material are available
in a companion technical report [8].

2 Contracts for Retractable and Speculative Interactions

We present below a uniform syntax for retractable and speculative contracts,
with two semantics. It can be obtained from the syntax of session contracts
of [3,10] (called first-order session behaviors in [3]), that we dub here SC,
just adding external retractable/speculative choice among outputs and inter-
nal choice among inputs. As a matter of fact our contracts can also be seen as
an extension of the retractable session contracts of [7], that we dub here rC,
simply adding internal choice among inputs. Basics of session contracts and
retractable session contracts are recalled in the companion technical report [8].

Definition 1 (Retractable/Speculative Contracts). Let N (set of names)
be some countable set of symbols and let N (set of conames) be {a | a ∈ N},
with N ∩ N = ∅. The set rsC of retractable/speculative contracts is defined as
the set of the closed expressions generated by the following grammar,

σ, ρ := | 1 success

| ∑
i∈I ai.σi external input choice

| ∑
i∈I ai.σi external output choice

| ⊕
i∈I ai.σi internal input choice

| ⊕
i∈I ai.σi internal output choice

| x variable

| recx.σ recursion

where I is non-empty and finite, the names and the conames in choices are
pairwise distinct and σ is not a variable in recx.σ.

Recursion in rsC is guarded and hence contractive in the usual sense. We take an
equi-recursive view of recursion by equating recx.σ with σ[recx.σ/x]. We use α
to range over N ∪N , with the convention α = a if α = a, and α = a if α = a. We
write α1.σ1+α2.σ2 for binary external input/output choice and α1.σ1⊕α2.σ2 for
binary internal input/output choice. They are both commutative by definition.
Also, α.σ denotes both internal and external unary choice. This is not a source
of confusion since internal and external choices do coincide in the unary case.
We also write αk.σk + σ′ for

∑
i∈I αi.σi where k ∈ I and σ′ =

∑
i∈(I\{k}) αi.σi

(and similarly for internal choices). When no ambiguity can arise, we call just
contracts the expressions in rsC. They are written by omitting all trailing 1’s.

We discuss below the two interpretations and the two semantics for our con-
tracts: the retractable one, and the speculative one.

122 F. Barbanera et al.

2.1 Retractable Semantics

The main novelty of the retractable semantics is that when an external choice
among outputs and an external choice among inputs interact, the client and the
server agree on which option to explore, but they rollback and try a different
possibility if the computation gets stuck.

In order to deal with rollbacks, we decorate contracts with their history, which
memorizes, for past choices, the alternatives that have been discharged and that
can be tried upon rollback. We use ‘◦’ to stand for no-remaining-alternatives.

Definition 2 (Contracts with History). Let Histories be the expressions gen-
erated by the grammar H ::= 〈 〉 | H :σ, where σ ∈ rsC∪{◦} and ◦ �∈ rsC. Histories
are hence stacks of contracts and ◦. Then the set of contracts with history is
defined by: rsCH = {H�σ | H ∈ Histories, σ ∈ rsC ∪ {◦} }.
We write just σ1 : · · · :σk for the stack (· · · (〈 〉 :σ1) : · · ·) :σk.

As standard for contracts, the definition of the retractable semantics is in
two stages: we first define a labeled transition system (LTS) for contracts with
history (Definition 3), and then we use it to define a reduction semantics for
pairs of contracts representing one client and one server (Definition 4).

Definition 3 (Semantics of Contracts with History).

(+) H�α.σ + σ′ α−→ H :σ′
�σ (⊕) H�α.σ ⊕ σ′ τ−→ H�α.σ

(α) H� α.σ
α−→ H :◦�σ (rb) H :σ′

�σ
rb−→ H�σ′

In the transition rule for external choice (+), the action α is executed, and the dis-
charged branches in σ′ are memorized. In internal choice (⊕), instead, the selec-
tion of one branch is represented by a label τ , and the history H is unchanged.
When a single action is executed (α), a ‘◦’ is added to the history, meaning that
the only possible branch has been tried and no alternative is left. Rule (rb) pops
the contract at the top of the stack, replacing the current one with it.

The client/server interaction is modeled by the reduction of their parallel
composition, that can be either forward, consisting of CCS-style synchronizations
and single internal choices, or backward, only when there is no possible forward
reduction, and the client is not satisfied, i.e., it is different from 1.

Definition 4 (Semantics of Retractable Client/Server Pairs).
The following rules, plus the rule symmetric to (τ) w.r.t. ‖, define the relation
−→ over pairs of contracts with history:

(comm)

H1�ρ
α−→ H′

1�ρ′ H2�σ
α−→ H′

2�σ′

H1�ρ ‖ H2�σ −→ H′
1�ρ′ ‖ H′

2�σ′

(τ)

H1�ρ
τ−→ H1�ρ′

H1�ρ ‖ H2�σ −→ H1�ρ′ ‖ H2�σ
(rbk)

H1�ρ
rb−→ H′

1�ρ′ H2�σ
rb−→ H′

2�σ′ ρ �= 1

H1�ρ ‖ H2�σ −→ H′
1�ρ′ ‖ H′

2�σ′

Rule (rbk) applies only if neither (comm) nor (τ) do.

Retractable and Speculative Contracts 123

The forward reduction −→f is the relation generated by rules (τ) and (comm).

Remark 1. The semantics defined above for retractable client/server pairs can
be seen as an instantiation on contracts of the standard reversible semantics
for process calculi, see, e.g., [17,25,26,29]. In particular, the semantics would
become a classic uncontrolled semantics (according to the terminology in [26])
by removing the four control mechanisms below:

1. the fact that only external choices are retractable;
2. the side condition ρ �= 1 in rule (rbk), which disallows backtrack after success;
3. the fact that rule (rbk) can be applied only if no other rule applies, ensuring

that backtrack is enabled only when no forward reduction is possible;
4. the fact that in external choices the selected path is not stored in the history,

so that each path can be tried at most once.

These mechanisms provide a semantic control of reversibility [26], specifying
which rollback steps are allowed, and when. We discuss in Remark 2 the impact
that removing the above control mechanisms would have on retractable contracts
and on their theory.

Example 1. Retractable contracts allow one to first try a preferred alternative,
but to accept also another alternative if the first one proves to be impossible to
obtain. In cloud computing settings, companies may hire virtual machines and
storing facilities from cloud providers with some agreed Quality of Service (QoS).
A company is willing to hire at some medium or low price a certain amount of
machines for online elaboration during day time, but, if the price is too high, it
is also willing to switch to offline night elaboration. In this last case it is only
willing to pay a low price.

A retractable contract with this behavior may be written as:

cloudClient = QoSday.(priceMed.ok + priceLow.ok) + QoSnight.priceLow.ok

Notice that the contract does not specify which alternative the client prefers:
this aspect of the client behavior is abstracted away. A sample server is:

cloudServer =
∑

QoS∈{QoSday,QoSnight,... }QoS.priceQoS.ok

A sample interaction is described in Fig. 1, where we assume that

priceQoSday = priceHigh and priceQoSnight = priceLow.

2.2 Speculative Semantics

The main idea of the speculative semantics is that in an external output choice
all the options are tried concurrently: if at least one of them succeeds, then the
whole computation succeeds. In order to represent concurrent trials we need
runtime contracts featuring multiple threads.

124 F. Barbanera et al.

〈 〉�
QoSday.(priceMed.ok

+ priceLow.ok)
+ QoSnight.priceLow.ok

‖ 〈 〉�
∑

QoS QoS.priceQoS.ok

−→ 〈 〉 : QoSnight.priceLow.ok
�priceMed.ok + priceLow.ok

‖ 〈 〉 :
∑

QoS �=QoSday QoS.priceQoS.ok

� priceHigh.ok

−→ 〈 〉� QoSnight.priceLow.ok ‖ 〈 〉�
∑

QoS �=QoSday QoS.priceQoS.ok

−→ 〈 〉 : ◦� priceLow.ok ‖ 〈 〉 :
∑

QoS �=QoSday,QoSnight QoS.priceQoS.ok

� priceLow.ok

−→ 〈 〉: ◦ : ◦�ok ‖ 〈 〉 :
∑

QoS �=QoSday,QoSnight QoS.priceQoS.ok : ◦
� ok

−→ 〈 〉: ◦ : ◦ : ◦�1 ‖ 〈 〉 :
∑

QoS �=QoSday,QoSnight QoS.priceQoS.ok: ◦ :◦
� 1

Fig. 1. An example of retractable interaction

Definition 5 (Contracts with Threads). Contracts with threads C, used
as runtime syntax for contracts, are parallel compositions of threads T. Each
thread is a contract prefixed by a sequence (possibly empty) of actions uniquely
identifying it.

C ::=T | (C | T) | (T | C) T ::= σ | α@T

We assume the operator ‘ |’ to be associative and commutative.

As for the retractable semantics, the definition of the speculative semantics is in
two stages: we first define an LTS for contracts with threads (Definition 6), and
then we use it to define a reduction semantics for pairs of contracts with threads
representing one client and one server (Definition 7).

Definition 6 (Semantics of Contracts with Threads).
In the LTS below, we use as labels actions α ::= a | a, sequences of actions
β ::= α | αβ, and complex labels βτ ::= τ | β | β,T.

(Fork)

α.σ + σ′ α,σ′
−−−→ α@σ

(⊕)

α.σ ⊕ σ′ τ−→ α.σ
(α)

α.σ
α−→ α@σ

(@-α)

T
β−→ T′

α@T
αβ−−→ α@T′

(@-α-T)

T
β,T′′
−−−→ T′

α@T
αβ,α@T′′
−−−−−−→ α@T′

(@-τ)

T τ−→ T′

α@T τ−→ α@T′

(ParL)

T
βτ−→ T′

T | C βτ−→ T′ | C

Retractable and Speculative Contracts 125

In the rule for external choice (Fork), when an action α is executed, its continu-
ation σ is prefixed by it. The other branches σ′ need to be executed in a freshly
spawned thread. Since such thread needs to be installed at top level, σ′ is added
to the label, and the actual installation is performed at the level of speculative
client/server pairs (see rule (comm) in Definition 7). The rule for internal choice
(⊕) simply selects one of the available options. A unary choice (α) executes the
action α and prefixes with it the continuation σ.

Because of rules (@-α), (@-α-T), and (@-τ), execution is allowed below an @
prefix. In rule (@-α), the prefix itself is added to the label β. Prefixes uniquely
identify threads, and ensure that each thread interacts only with the one with
dual prefix which is running on the communication partner. This is specified in
Definition 7 below. Rule (@-α-T) is analogous to rule (@-α), but the label also
contains a thread T′′, and the prefix α is added to both β and T′′. No prefix
is added to τ actions, propagated by rule (@-τ). Rule (ParL) simply allows
components of a parallel composition to execute (a symmetric rule is not needed
thanks to the commutativity of |).

The interaction of a client with a server is modeled by the reduction of their
parallel composition.

Definition 7 (Semantics of Speculative Client/Server Pairs).
The following rules, plus the rule symmetric to (τ) w.r.t. ‖, define the relation
−→ over pairs of contracts with threads. In the LTS below, ?T denotes either the
thread T or nothing. Hence, β, ?T and C |?T are respectively β and C if ?T is
nothing, and β,T and C | T otherwise. Also, the duality operator extends from
actions to sequences: αβ = αβ.

(comm)

C
β,?T−−−→ C′ C′′ β,?T′′

−−−−→ C′′′

C ‖ C′′ −→ C′ |?T ‖ C′′′ |?T′′

(τ)

C τ−→ C′

C ‖ C′′ −→ C′ ‖ C′′

Rule (comm) allows threads performing dual sequences of actions to interact.
This implies that both the actual actions and the prefixes of the threads per-
forming them should be dual. Threads in the labels, if present, are installed in
parallel. Rule (τ) simply propagates the τ action.

Example 2. A server provides access to multiple algorithms for SAT solving [35].
A client first sends the problem instance to be solved, then selects the algorithm,
and finally sends the relevant parameters. The server computes the solution
according to the received commands, and sends it back. Since the most efficient
technique depends on the problem instance [34], the server supports speculative
execution, to allow one to try different algorithms at the same time (this is called
the portfolio approach). The server contract is described by:

SATserver = inst.
∑

i
algi.

∑

j
parj .sol

A simple client that tries both the DPLL approach and the walksat approach
can be modeled as follows:

SATclient = inst.(DPLL.par.sol + walksat.par.sol)

126 F. Barbanera et al.

inst.(DPLL.sol + walksat.sol) ‖ inst.
∑

i algi.sol

−→ inst@(DPLL.sol + walksat.sol) ‖ inst@
∑

i algi.sol

−→ inst@DPLL@sol

| inst@walksat.sol
‖ inst@DPLL@sol

| inst@ ∑
{i|Ai �=DPLL} algi.sol

−→ inst@DPLL@sol

| inst@walksat@sol
‖

inst@DPLL@sol

| inst@walksat@sol

| inst@ ∑
{i|Ai �=DPLL,walksat} algi.sol

−→ inst@DPLL@sol

| inst@walksat@sol@1
‖

inst@DPLL@sol

| inst@walksat@sol@1
| inst@ ∑

{i|Ai �=DPLL,walksat} algi.sol

Fig. 2. An example of speculative interaction

A sample computation proceeds as described in Fig. 2, assuming that the server
supports both DPLL and walksat. To keep the example simple we drop the
choice of parameters. Let us see in more details how the creation of threads is
managed. The first reduction in Fig. 2 is due to rule (comm), since

inst.(DPLL.sol + walksat.sol)
inst−−→ inst@(DPLL.sol + walksat.sol)

and
inst.

∑

i
algi.sol

inst−−→ inst@
∑

i
algi.sol.

The second reduction is also due to rule (comm), since, on the client side

(Fork)

DPLL.sol + walksat.sol
DPLL, walksat.sol−−−−−−−−−−→ DPLL@sol

(@-α-T)

inst@(DPLL.sol + walksat.sol)
inst DPLL, inst@walksat.sol−−−−−−−−−−−−−−−−→ inst@DPLL@sol

whereas, on the server side,

(Fork)
∑

i algi.sol
DPLL,

∑
{i|Ai �=DPLL} algi.sol−−−−−−−−−−−−−−−−→ DPLL@sol

(@-α-T)

inst@
∑

i algi.sol
inst DPLL, inst@

∑
{i|Ai �=DPLL} algi.sol−−−−−−−−−−−−−−−−−−−−−−−→ inst@DPLL@sol

3 Compliance

The compliance relation for session contracts [3,10] consists in requiring that,
whenever no reduction is possible, all client’s requests and offers have been sat-
isfied, i.e. the client is in the success state 1. For retractable contracts, thanks

Retractable and Speculative Contracts 127

to the retractable operational semantics taking care of forward and backward
reductions, we can adopt the same definition. We use ∗−→ to denote the reflexive
and transitive closure of −→, and �−→ to specify that no −→ reduction exists.

Definition 8 (Retractable Compliance Relation

�

R).

(i) The relation

�

R on contracts with history is defined by:
H1�ρ

�R H2�σ if, for each H′
1,H

′
2, ρ

′, σ′ such that

H1�ρ ‖ H2�σ
∗−→ H′

1�ρ′ ‖ H′
2�σ′ �−→, we have ρ′ = 1

(ii) The relation

�

R on contracts is defined by: ρ

�

R σ if 〈 〉�ρ

�

R 〈 〉�σ.

For speculative contracts we need to take into account the fact that the whole
computation succeeds if at least one of its branches succeeds.

Definition 9 (Speculative Compliance Relation

�

S).
The relation

�

S on contracts is defined by:

ρ

�

S σ if for each Cρ,Cσ such that ρ ‖ σ
∗−→ Cρ ‖ Cσ �−→

there exist C, n, α1, . . . , αn such that Cρ = C | α1@...@αn@1

We now provide a formal system characterizing compliance on both retractable
and speculative contracts.

Definition 10 (Formal System for Compliance �).
Judgments in the formal system � are expressions of the form Γ � ρ �| σ, where
the environment Γ is a finite set of expressions of the form δ �| γ, with ρ, σ, δ, γ ∈
rsC. Axioms and rules are as in Fig. 3.

(Ax)
Γ � 1�| σ

(Hyp)
Γ, ρ �| σ � ρ �| σ

(+ · +)

Γ, α.ρ + ρ′ �| α.σ + σ′ � ρ �| σ
Γ � α.ρ + ρ′ �| α.σ + σ′

(⊕ · +)

∀h ∈ I. Γ,
⊕

i∈Iαi.ρi �|
∑

j∈I∪Jαj .σj � ρh �| σh

Γ �
⊕

i∈Iαi.ρi �|
∑

j∈I∪Jαj .σj

(+ · ⊕)

∀h ∈ I. Γ,
∑

j∈I∪J αj .ρj �|
⊕

i∈I αi.σi � ρh �| σh

Γ �
∑

j∈I∪Jαj .ρj �|
⊕

i∈I αi.σi

Fig. 3. System �

The only non standard rule of system � is (+ ·+), which ensures compliance
of two external choices when they contain respectively (at least) one α and the

128 F. Barbanera et al.

corresponding α, followed by compliant contracts. This contrasts with the rules
(⊕·+) and (+ ·⊕), where each α in an internal choice must have a corresponding
α in the external choice, followed by compliant contracts. No rule is provided for
the case (⊕·⊕) since two internal choices are compliant only if both of them are
unary choices (otherwise they may always get stuck by choosing incompatible
actions). Since unary internal choice coincides with unary external choice, this
case is taken into account by the rules we already have. Notice that rule (+ · +)
implicitly represents the fact that, in the decision procedure for two contracts
made of external choices, the possible synchronizing branches have to be tried,
until either a successful one is found or all fail. Looking at a derivation bottom-
up, at each application of a rule, the considered pair of contracts is added to
the environment Γ . In this way, if the same pair is reached again due to the
equi-recursive view of contracts, the derivation can be closed using rule (Hyp).
Rule (Ax) instead closes the derivation when the client reaches the success state
1. We write � ρ �| σ instead of Γ � ρ �| σ when Γ is empty.

Derivability in system � is decidable, since it is syntax-directed and proof
reconstruction does terminate.

Theorem 1. Derivability in the formal system � is decidable.

We can prove the soundness and the completeness of the formal system �
w.r.t. both the retractable and the speculative semantics (see [8] for the proofs).

Theorem 2 (Retractable Soundness and Completeness).

� ρ �| σ iff ρ

�

R σ

Theorem 3 (Speculative Soundness and Completeness).

� ρ �| σ iff ρ

�

S σ

By the soundness and completeness of system � w.r.t. both the relations of
retractable and speculative compliance, we immediately get that the two com-
pliance relations do coincide.

Corollary 1 (Retractable and Speculative Compliances Coincide).

�

R =

�

S

By the above, from now on we write

�

instead of

�

R or

�

S . So the following
also easily follows.

Corollary 2 (Compliance Decidability). The relation

�

is decidable.

Remark 2 We now discuss the impact on the compliance relation of the
four mechanisms for controlling reversibility in the semantics of retractable
client/server pairs (see Remark 1). In particular, we analyze what would happen
by dropping each one of them in isolation:

Retractable and Speculative Contracts 129

Drop “Not all reductions are retractable”: each reduction could be
undone. From the compliance point of view, all the choices would be
retractable. Hence, retractable contracts would not be a conservative exten-
sion (see Subsect. 3.1) of session contracts any more. The case we consider is
strictly more general, since we allow for both retractable and unretractable
choices.

Drop the side condition ρ �= 1 in rule (rbk) of Definition 4: any forward
finite interaction would be followed by a rollback. In particular, most of
the client/server pairs without recursion (except a few trivial ones, like
〈 〉�1 ‖ 〈 〉�σ) would end into 〈 〉� ◦ ‖ 〈 〉�◦. Thus all these pairs of con-
tracts would not be compliant.

Drop “rule (rbk) can be applied only if no other rule applies”:
interactions could rollback before succeeding. As in the case above, most
client/server pairs (except a few trivial ones, but including recursive ones)
could reduce to 〈 〉� ◦ ‖ 〈 〉�◦. Again all these pairs of contracts would not
be compliant.

Drop “in choices the chosen path is not memorized”: any client/server
pair that would not normally succeed with at least one retractable choice
could diverge by undoing and redoing the choice forever, thus trivially ensur-
ing compliance.

None of the last three scenarios provides a reasonable setting. The first one would
be reasonable, but the case we consider is strictly more general.

3.1 Conservativity Results

It is possible to show that all the relations on our retractable and speculative
contracts (rsC) are conservative extensions of corresponding notions on (first-
order) session contracts (SC) as defined in [3,10], and on the retractable session
contracts (rC) as defined in [7].

As previously said, it is not difficult to check that session contracts SC are
a subset of retractable session contracts rC, which, in turn, are a subset of the
contracts rsC we are presently investigating, namely: SC � rC � rsC. Obviously
the strict inclusion SC � rsC is not enough, by itself, to guarantee the retractable
and speculative operational semantics for rsC to be conservative extensions of the
operational semantics of SC. We prove that it is so in the following Proposition 1.
Informally, it states that both the forward retractable semantics −→f and the
speculative semantics −→ of pairs of contracts in SC are annotated versions of
their semantics in SC(recalled in the companion technical report [8]).

Proposition 1 (Operational Semantics Conservativity). Let ρ, σ ∈ SC.

(i) ρ ‖ σ
∗−→SC ρ′ ‖ σ′ iff H1�ρ ‖ H2�σ

∗−→f H′
1�ρ′ ‖ H′

2�σ′

for some H1,H2,H
′
1 and H′

2

(ii) ρ ‖ σ
∗−→SC ρ′ ‖ σ′ iff ρ ‖ σ

∗−→ α1@ . . . αn@ρ′ | Cρ ‖ α1@ . . . αn@σ′ | Cσ

for some n, α1, . . . , αn,Cρ and Cσ

130 F. Barbanera et al.

where −→SC denotes the reduction relation on SC pairs in the theory of session
contracts.

We do not take into account conservativity of the retractable operational
semantics for rsC over the one for rC because it is quite trivial, since the rules
in the two semantics are essentially the same. A conservativity result of the
speculative operational semantics for rsC over the one for rC would instead
consist in a rather cumbersome and uninteresting statement.

The conservativity result for the operational semantics is not enough, in itself,
to guarantee the theory of retractable compliance for rsC to be a conservative
extension of both the theory of compliance for rC and for SC. Also in this case,
however, we can prove it to be so, that is, the compliance relation for session
contracts SC is the restriction of the compliance relation

�

for our contracts to
pairs of session contracts SC, and similarly for the restriction of

�

to retractable
session contracts rC.

Proposition 2 (Compliances Conservativity).

(i) Let ρ, σ ∈ SC: ρ

�

SC σ iff ρ

�

σ
(ii) Let ρ, σ ∈ rC: ρ

�

rC σ iff ρ

�

σ

4 Duality and the Subcontract Relation

Unlike the retractable session contracts of [7], in the present setting it is possible
to get a natural notion of duality. The dual σ of an element σ of rsC is obtained,
as for session contracts, by interchanging any name a with a and + with ⊕.

The notion of dual contract allows one to combine pairs of contracts in the
compliance relation, as follows:

Proposition 3. For any ρ, σ, σ′ ∈ rsC, ρ

�

σ and σ

�

σ′ imply ρ

�

σ′

We will provide further properties of duality using the notion of subcontract
relation. Indeed, the notion of compliance naturally induces a substitutability
relation on servers, denoted �s, that we call subcontract relation for servers.
Such a relation may be used for implementing contract-based query engines (see
[28] for a detailed discussion). An analogous subcontract relation, denoted �c,
can be defined for clients.

Definition 11 (Subcontract Relations for Servers and for Clients). Let
σ, σ′ ∈ rsC. We define

(i) σ �s σ′ � ∀ρ ∈ rsC [ρ

�

σ implies ρ

�

σ′]
(ii) σ �c σ′ � ∀ρ ∈ rsC [σ

�

ρ implies σ′ �

ρ]

Using Proposition 3 we can characterize both �s and �c in terms of duality
and compliance, relate them and get their decidability.

Theorem 4. For any σ, σ′ ∈ rsC:

Retractable and Speculative Contracts 131

(i) σ �s σ′ iff σ

�

σ′
(ii) σ �c σ′ iff σ′ �

σ
(iii) σ �s σ′ iff σ′ �c σ
(iv) σ �s σ′ and σ �c σ′ are decidable.

By item (iii) above, from now on we can simply concentrate on the relation �s.
We can now characterize duality in terms of the subcontract relation for

servers: given a client ρ, its dual ρ is a least element among all its possible
servers, that is it is a possible server, and it is smaller than all the other possible
servers.

Proposition 4 (Dual as a Least Element w.r.t. �s).
Let ρ ∈ rsC. Then ρ is a server for ρ, namely ρ

�

ρ, and more
precisely it is a least element in the set of the servers of ρ, that is,

∀σ ∈ rsC: ρ

�

σ implies ρ �s σ

Since we have not yet proved that the subcontract relation is a partial order,
we do not know yet whether ρ is also a minimal, i.e. there is no smaller element,
neither whether other least elements or minimal elements exist. These questions
will be answered by Proposition 5.

As done for the compliance relation, we characterize now the subcontract
relation for servers in terms of derivability in the following formal system, where
the symbol � is used as syntactical counterpart of the relation �s.

Definition 12 (Formal System for Subcontract �). Judgments in the for-
mal system � are expressions of the form Γ � ρ � σ, where the environment Γ
is a finite set of expressions of the form δ � γ, with ρ, σ, δ, γ ∈ rsC. Axioms and
rules are as in Fig. 4.

(Ax -�s)
Γ � 1 � σ′ (Hyp -�s)

Γ, σ � σ′ � σ � σ′
(⊕ · + -�s)

Γ, α.σ1 ⊕ σ2 � α.σ′
1 + σ′

2 � σ1 � σ′
1

Γ � α.σ1 ⊕ σ2 � α.σ′
1 + σ′

2

(+ · +-�s)

∀h ∈ I. Γ,
∑

i∈Iαi.σi � ∑
j∈I∪Jαj .σ

′
j � σh � σ′

h

Γ �
∑

i∈Iαi.σi � ∑
j∈I∪Jαj .σ

′
j

(⊕ · ⊕ -�s)

∀h ∈ I. Γ,
⊕

j∈I∪Jαj .σj � ⊕
i∈Iαi.σ

′
i � σh � σ′

h

Γ �
⊕

j∈I∪Jαj .σ
′
j � ⊕

i∈Iαi.σ
′
i

Fig. 4. The formal system �

The rules in system � can be read as a translation of the rules in system
� via Theorem 4(i). As for �, in Γ � ρ � σ we may drop Γ if empty.

System � is sound and complete for the subcontract relation �s.

132 F. Barbanera et al.

a + b + c a + b + c

a + b a + c b + c a + b a + c b + c

a b c a b c

a ⊕ b a ⊕ c b ⊕ c a ⊕ b a ⊕ c b ⊕ c

a ⊕ b ⊕ c a ⊕ b ⊕ c

Fig. 5. Subcontract preorder: a sample

Theorem 5 (Soundness and Completeness of �). �σ�σ′ iff σ�sσ
′

System � can be used to show that �s is a partial order and hence, by
antisymmetry, ρ is also the minimum server of ρ: it is minimal, hence there is
no smaller server, and there is a unique minimal.

Proposition 5. �s is a partial order ∧ ∀ρ∈rsC, ρ is the minimum server of ρ.

The structure of the partial order is shown in Fig. 5, where the relations
between terms with a unique choice among actions a, b, c, a, b and c are pictured.

Remark 3. Analogously to what done in Subsect. 3.1, one can show the subcon-
tract relation �s to be a conservative extension of the corresponding notion in
SC. Moreover, the restriction of �s to rC provides a suitable notion of subcon-
tract for rC (which has never been studied before).

5 Complexity Issues

One can define a decision procedure for compliance as the recursive proof-search
algorithm obtained by reading bottom-up the rules of the formal system for
compliance in Fig. 3. A similar algorithm is described in [7]. We show below that
such an algorithm is strictly exponential.

To show it, roughly, it is possible to adapt the example presented in
[20](Sect. 11) concerning the subtyping relation for recursive arrow and prod-
uct types.

For each n ∈ N we define two contracts ρn and σn by induction, as follows.

ρ0 = a + b ρn+1 = recx.a.x + b.ρn

σ0 = recx.a.x σn+1 = a.σn ⊕ recx.b.x

As for the example in [20], the size of ρn and σn is linear in n, since ρn and σn

appear just once in the definitions of ρn+1 and σn+1, respectively. By complete
induction over n it is possible to prove that, for any n, ρn

�

σn. By recursive
breadth-first search, a derivation for � ρn �| σn is built in an actual exponential

Retractable and Speculative Contracts 133

(Ax∞)
� 1�| σ

(+ · +∞)
ρ �| σ

α.ρ + ρ′ �| α.σ + σ′

(⊕ · +∞)

∀h ∈ I. ρh �| σh
⊕

i∈Iαi.ρi �|
∑

j∈I∪Jαj .σj

(+ · ⊕∞)

∀h ∈ I. ρh �| σh
∑

j∈I∪Jαj .ρj �|
⊕

i∈I αi.σi

Fig. 6. The non-well founded system �∞

number of calls. Given n, the first part of the recursive-call tree looks as follows
(where we denote by “Ps” the Proof-search algorithm)

Prove(∅� ρn �| σn)
Prove(Γ1 � ρn �| σn−1) Prove(Γ2 � ρn−1 �| σn)

Prove(Γ3�ρn�| σn−2) Prove(Γ4�ρn−1 �| σn−1) Prove(Γ5�ρn−1 �| σn−1) Prove(Γ6�ρn−2 �| σn)
. etc.

where Γ4 = {ρn �| σn, ρn �| σn−1} �= {ρn �| σn, ρn−1 �| σn} = Γ5. So, any call
of the shape Prove(Γ � ρk �| σk) produces two calls Prove(Γ ′ � ρk−1 �| σk−1)
and Prove(Γ ′′ � ρk−1 �| σk−1) with Γ ′ �= Γ ′′; overall there are at least 2n calls.

However, the complexity of the compliance decision procedure can be dras-
tically reduced down to a polynomial complexity as detailed below.
A polynomial decision algorithm.
We first define a non-well founded, but equivalent version of system �.

Definition 13 (The non-well founded system �∞). We write �∞ ρ �| σ when-
ever there exists a finite or infinite derivation tree formed by the rules in Fig. 6
having ρ �| σ as conclusion, and such that each finite branch ends with an instance
of axiom (Ax∞).

Lemma 1 (Systems � and �∞ are equivalent). � ρ �| σ iff �∞ ρ �| σ

In Fig. 7 we present a decision algorithm Decide �, based on the procedures
P and P+. A run of the algorithm resembles a computation tree of an alternating
Turing machine, where nodes corresponding to rules (⊕ · +∞) and (+ · ⊕∞)
are universal, and nodes corresponding to (+ · +∞) are existential; P(A,F, L, b)
attempts to prove all statements in its goal list L, while P+(A,F, L, b) succeeds
if at least one goal in L is satisfiable.

The Provability procedure P is an adaptation of the concrete subtyping algo-
rithm for recursive arrow and product types of [20](Sect. 10) to the present, more
complex context. It consists of a proof reconstruction procedure for �∞ using a
depth-first technique. P accumulates in its first argument A all the judgments it
encounters during the search, in order to avoid looping over the same judgments
(a role similar to Γ in system �). With respect to the algorithm in [20](Sect. 10)
we have two further parameters, F and b. The argument F accumulates the judg-
ments for which it has been found that no derivation exists. When a rule (+ ·+)
is encountered, the algorithm proceeds by calling the procedure P+ which, in
case a premise is unprovable, goes on checking the other premises. The negative

134 F. Barbanera et al.

Decide �(ρ �| σ) = let (A,F, b) = P(∅, ∅, [ρ �| σ],ok) in b = ok
where

P(A,F, [], b) = (A,F, b)

P(A,F, (ρ �| σ):xs, b) =
-1- if ρ = 1 then P(A,F, xs, b)
-2- else if ρ �| σ ∈ A then P(A,F, xs, b)

-3- else if ρ �| σ ∈ F then (A,F, fail)

-4- else if ρ =
∑

i∈I αi.ρi and σ =
∑

j∈J αj .σj and I ∩ J = {i1, . . . , in}
-5- then let (A0,F0, b0) = P+(A∪{ρ �| σ},F, [ρi1�| σi1 . . . ρin�| σin], b)

-6- in if b0=fail then (A0,F0, fail)

-7- else P(A0,F0, xs, b0)

-8- else if ρ =
⊕

i∈I αi.ρi and σ =
∑

j∈J αj .σj and I ⊆ J and I = {i1, . . . , in}
-9- then let (A0,F0, b0) = P(A∪{ρ �| σ},F, [ρi1 �| σi1 . . . ρin �| σin], b)

-10- in if b0=fail then (A0,F0, fail)

-11- else P(A0,F0, xs, b0)

-12- else if ρ =
∑

i∈I αi.ρi and σ =
⊕

j∈J αj .σj and I ⊇ J and J = {j1, . . . , jn}
-13- then let (A0,F0, b0) = P(A∪{ρ �| σ},F, [ρi1 �| σi1 . . . ρjn �| σjn], b)

-14- in if b0=fail then (A0,F0, fail)

-15- else P(A0,F0, xs, b0)

-16- else if ρ = recx.ρ′ then P(A,F, ({recx.ρ′/x}ρ′ �| σ):xs, b)

-17- else if σ = recx.σ′ then P(A,F, (ρ �| {recx.σ′/x}σ′):xs, b)

-18- else (A,F ∪ {ρ �| σ}, fail)

and where

P+(A,F, [ρ �| σ], b) = P(A,F, [ρ �| σ], b)

P+(A,F, (ρ �| σ):xs, b)=

-19- let (A0,F0, b0) = P(A,F, [ρ �| σ], b) in

-20- if b0 = fail then P+(A ∪ A0,F ∪ F0, xs,ok) else (A0,F0, b0)

Fig. 7. The polynomial decision procedure for compliance

information inferred about unprovable judgments is stored in F and it is carried
along by the procedure P+ (as well as the positive information stored in A) in
order not to duplicate work. The argument b, that can be either ok or fail, is
used to record whether the last call was successful or not, and it is used by P+

to know whether it has to stop with success, or to check a new premise.
Let us note that, contrary to the previous treatment, while studying the

algorithm Decide �, we abandon the equi-recursive view of recursion, and we
represent a contract by a particular explicit (possibly) recursive expression.

Proposition 6 (Complexity of Deciding Compliance/Subcontract).
Given two contracts ρ, σ ∈ rsC, deciding whether ρ

�

σ (or ρ �s σ) holds has a
complexity O(n5), where n is the maximum size of ρ and σ.

Retractable and Speculative Contracts 135

Remark 4. It is worth noticing that the polynomial decision procedure Decide �

applies also to the formalism of retractable session contracts of [7] (in this case
clauses at lines -8- and -12- are never used) and to the formalism of sessions
contracts (some more clauses are never used).

6 Related Work and Conclusion

We have presented two conservative extensions of the session contracts of
[2,3,10], a formalism interpreting session types [22] into a subset of con-
tracts [14,15,27]. One extension deals with backtracking and one with specula-
tive execution. We have shown that they both give rise to the same compliance
relation, and, as a consequence, to the same subcontract (both for servers and
for clients) and duality relations. For each of these relations we provided syn-
tactic characterizations of the semantic concepts, allowing for efficient ways of
checking them.

We discussed in the Introduction the improvements w.r.t. the preliminary
results about retractable session contracts in [7]. Another closely related work
is [5,6], where a different form of contracts with rollback is presented. Our
retractable contracts depart from that model on three main aspects: (1) we
use rollback in a disciplined way to tolerate failures in the interaction (in [5,6]
it is an internal decision of a participant), thus improving compliance; (2) we
embed checkpoints in the structure of contracts, avoiding explicit checkpoints;
(3) we keep a stack of “pasts”, instead of just a single past as in [5,6].

Reversibility, generalizing backtracking by allowing one to go back to any
past state, has also been studied in the setting of binary session types [32,33].
There however the emphasis is on defining the reversible engine, based on causal-
consistent reversibility [26], and not on studying compliance or subtyping (which
would correspond to our subcontract relation).

Similarly to our retractable contracts, long running transactions with com-
pensations, and in particular interacting transactions [18], allow one to undo
past agreements. In interacting transactions, however, abort (which corresponds
to our backtracking) can occur at any time, not only when an agreement can-
not be found as in our case. Also, each transaction offers just two possibilities,
and they are sorted: first the normal execution, then the compensation. Finally,
compliance of interacting transactions has never been studied.

In [4] a game-theoretical interpretation of the retractable session contracts of
[7] has been provided. Such an interpretation is likely to extend to the retractable
contracts presented here.

We plan also to investigate whether our approach can be extended to multi-
party sessions [23]. An investigation of multi-party sessions with rollbacks and
named checkpoints has been already undertaken in [19]. In such a paper, however,
the cause of a rollback is not a synchronization failure, but it is completely
transparent to the calculus. Moreover, chosen branches are not discarded and
can be retried upon rollback.

Because of the relevance of higher-order features in type systems, and of
session delegation in type systems with sessions in particular, also higher-order

136 F. Barbanera et al.

session contracts, i.e. session contracts with delegation, have been investigated
[3,11]. It is hence worth studying the integration of backtracking (or speculative
execution) and session delegation.

A last line of future work is the study of how to extract retractable or spec-
ulative contracts from actual software based on backtracking or on specula-
tive parallelism, and how to propagate the results on contracts to the original
software.

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E.: Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans. Dep. Sec. Comput. 1(1),
11–33 (2004)

2. Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-based
client/server systems. In: PPDP, pp. 155–164. ACM Press (2010)

3. Barbanera, F., Liguoro, U.: Sub-behaviour relations for session-based client/server
systems. MSCS 25(6), 1339–1381 (2015)

4. Barbanera, F., de’Liguoro, U.: A game interpretation of retractable contracts. In:
Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686,
pp. 18–34. Springer, Cham (2016). doi:10.1007/978-3-319-39519-7 2

5. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Compliance for reversible
client/server interactions. In: BEAT, EPTCS, vol. 162, pp. 35–42 (2014)

6. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Reversible client/server
interactions. Formal Asp. Comput. 28(4), 697–722 (2016)

7. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., de’Liguoro, U.: Retractable con-
tracts. In: PLACES 2015, EPTCS, vol. 203, pp. 61–72. Open Publishing Associa-
tion (2016)

8. Barbanera, F., Lanese, I., de’Liguoro, U.: Retractable and speculative contracts
(TR) (2017). http://www.cs.unibo.it/∼lanese/tmp/TR-coord2017.pdf

9. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: Compli-
ance and subtyping in timed session types. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19195-9 11

10. Bernardi, G.T., Hennessy, M.: Modelling session types using contracts. Math.
Struct. Comput. Sci. 26(3), 510–560 (2016)

11. Bernardi, G.T., Hennessy, M.: Using higher-order contracts to model session types.
Logical Methods Comput. Sci. 12(2), 1–43 (2016)

12. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
402–417. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85361-9 32

13. Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224–253 (1999)

14. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of con-
tracts for web services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006). doi:10.1007/
11841197 10

15. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Prog. Lang. Syst. 31(5), 19:1–19:61 (2009)

http://dx.doi.org/10.1007/978-3-319-39519-7_2
http://www.cs.unibo.it/~lanese/tmp/TR-coord2017.pdf
http://dx.doi.org/10.1007/978-3-319-19195-9_11
http://dx.doi.org/10.1007/978-3-319-19195-9_11
http://dx.doi.org/10.1007/978-3-540-85361-9_32
http://dx.doi.org/10.1007/11841197_10
http://dx.doi.org/10.1007/11841197_10

Retractable and Speculative Contracts 137

16. Preda, M., Gabbrielli, M., Lanese, I., Mauro, J., Zavattaro, G.: Graceful interrup-
tion of request-response service interactions. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 590–600. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-25535-9 45

17. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). doi:10.1007/978-3-540-28644-8 19

18. Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15375-4 39

19. Dezani-Ciancaglini, M., Giannini, P.: Reversible multiparty sessions with check-
points. In: EXPRESS/SOS 2016, EPTCS, vol. 222, pp. 60–74 (2016)

20. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. J. Funct.
Program. 12(6), 511–548 (2002)

21. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, New York
(1985)

22. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

23. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM Press (2008)

24. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

25. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order π-
calculus. Theor. Comput. Sci. 625, 25–84 (2016)

26. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014)

27. Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74407-8 15

28. Padovani, L.: Contract-based discovery of web services modulo simple orchestra-
tors. Theoret. Comput. Sci. 411, 3328–3347 (2010)

29. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Alg.
Program. 73(1–2), 70–96 (2007)

30. Prabhu, P., Ramalingam, G., Vaswani, K.: Safe programmable speculative paral-
lelism. In: PLDI, pp. 50–61. ACM (2010)

31. Quiñones, C.G., et al.: Mitosis compiler: an infrastructure for speculative threading
based on pre-computation slices. In: PLDI, pp. 269–279. ACM (2005)

32. Tiezzi, F., Yoshida, N.: Towards reversible sessions. In: PLACES, EPTCS, vol.
155. pp. 17–24 (2014)

33. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth.
Program. 84(5), 684–707 (2015)

34. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

35. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 17–36. Springer,
Heidelberg (2002). doi:10.1007/3-540-45657-0 2

http://dx.doi.org/10.1007/978-3-642-25535-9_45
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1007/978-3-642-15375-4_39
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-540-74407-8_15
http://dx.doi.org/10.1007/3-540-45657-0_2

A Denotational View of Replicated Data Types

Fabio Gadducci1, Hernán Melgratti2,3, and Christian Roldán2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
2 Departamento de Computación, FCEyN,

Universidad de Buenos Aires, Buenos Aires, Argentina
croldan@dc.uba.ar

3 CONICET, Buenos Aires, Argentina

Abstract. “Weak consistency” refers to a family of properties concern-
ing the state of a distributed system. One of the key issues in their
description is the way in which systems are specified. In this regard, a
major advance is represented by the introduction of Replicated Data
Types (rdts), in which the meaning of operators is given in terms of
two relations, namely, visibility and arbitration. Concretely, a data type
operation is defined as a function that maps visibility and arbitration
into a return value. In this paper we recast such standard approaches
into a denotational framework in which a data type is seen as a func-
tion that maps visibility into admissible arbitrations. This characterisa-
tion provides a more abstract view of RDTs that (i) highlights some of
the implicit assumptions shared in operational approaches to specifica-
tion; (ii) accommodates underspecification and refinement; (iii) enables
a categorical presentation of RDT and the development of composition
operators for specifications.

1 Introduction

Distributed systems replicate their state over different nodes in order to satisfy
several non-functional requirements, such as performance, availability, and reli-
ability. It then becomes crucial to keep a consistent view of the replicated data.
However, this is a challenging task because consistency is in conflict with two
common requirements of distributed applications: availability (every request is
eventually executed) and tolerance to network partitions (the system operates
even in the presence of failures that prevent communication among components).
In fact, it is impossible for a system to simultaneously achieve strong Consistency,
Availability and Partition tolerance [6]. Since many domains cannot renounce to
availability and network partitions, developers need to cope with weaker notions

The first author has been partially supported by CONICET International Cooper-
ation Grant 995/15. Research partially supported by UBACyT project 2014–2017
20020130200092BA and CONICET project PIP 11220130100148CO.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 138–156, 2017.
DOI: 10.1007/978-3-319-59746-1 8

A Denotational View of Replicated Data Types 139

Fig. 1. A scenario for the replicated data type Register

of consistency by allowing, e.g., replicas to (temporarily) exhibit some discrep-
ancies, as long as they eventually converge to the same state.

This setting challenges the way in which data are specified: states, state
transitions and return values should account for the different views that a data
item may simultaneously have. Consider a data type Register corresponding
to a memory cell that is read and updated by using, respectively, operations
rd and wr. In a replicated scenario, the value obtained when reading a register
after two concurrent updates wr(0) and wr(1) (i.e., updates taking place over
different replicas) is affected by the way in which updates propagate among the
different replicas: it is perfectly possible that the result of the read is (i) unde-
fined (when the read is performed over a third replica that has not received
any of the updates), (ii) 0 or (iii) 1. Basically, the return value depends on
the updates that are seen by that read operation. Choosing the return value
is straightforward when a read sees just one update. This is less so if a read
is performed over a replica that knows both updates, for allowing all replicas
to (consistently) pick one of the available values. A common strategy for reg-
isters is that the last-write wins, i.e., the last update should be chosen when
several concurrent updates are observed. This strategy implicitly assumes that
all events in a system can be arranged in a total order. Several recent approaches
focus on the operational specification of replicated data types [2–5,7,8,12,14].
Usually, the specification describes the meaning of an operation in terms of two
different relations among events: visibility, which explains the causes for each
result, and arbitration, which totally orders events. Consider the visibility rela-
tion V in Fig. 1a and the arbitrations A1 and A2 in Fig. 1b and c, respectively.
The meaning of rd is defined such that rd(V,A1) = 1 and rd(V,A2) = 0. We
remark that operational approaches require specifications to be functional, i.e.,
for every operation, visibility and arbitration relation, there exists exactly one
return value. In this way operational specifications commit to concrete policies
for resolving conflicts.

This work aims at putting on firm grounds the operational approaches for
rdts by giving them a purely functional description and, eventually, a cate-
gorical one. In our view, rdts are functions that map visibility graphs (i.e.,
configurations) into sets of admissible arbitrations, i.e., all executions that gen-
erate a particular configuration. In this setting, a configuration mapped to an
empty set of admissible arbitrations stands for an unreachable configuration.
We rely on such an abstract view of rdts to highlight some of the implicit

140 F. Gadducci et al.

assumptions shared by most of the operational approaches. In particular, we
characterise operational approaches, such as [4,12], as those specifications that
satisfy three properties: besides the evident requirement of being functional (i.e.,
deterministic and total), they must be coherent (i.e., larger states are explained
as the composition of smaller ones), and saturated (e.g., an unobserved operation
can be arbitrated in any position, even before the events that it sees). We show
this inclusion to be strict and discuss some interesting cases that do not fall in
this class. Moreover, we show that functional characterisation elegantly accounts
for underspecification and refinement, which are standard notions in data type
specification.

Then, we develop a categorical presentation for specifications. We focus
on coherent specifications and show that there is a one-to-one correspondence
between coherent specifications and a particular class of functors from the cat-
egory I (L) of labelled directed acyclic graphs and injective past-reflecting mor-
phism (which are the dual notion of tp-morphisms [9]) to the category P (L) of
sets of paths and path-set morphisms preserving the initial object. As it is stan-
dard from classical results on algebraic specification theory, pullbacks and (a
weak form of) pushouts in I (L) provide basic operators for composing specifica-
tions, and thus our functorial presentation is the first step towards a denotational
semantics of rdts (see e.g. [1] and the references therein).

The paper has the following structure. Section 2 introduces the basic defin-
itions concerning labelled directed acyclic graphs. Section 3 discusses our func-
tional mechanism for the presentation of Replicated Data Types. Section 4 com-
pares our proposal with the classical operational one [2]. Section 5 illustrates a
categorical characterisation for our proposal. Finally, in the closing section we
draw some conclusions and highlight further developments.

2 Labelled Directed Acyclic Graphs

In this section we recall the basics of labelled directed acyclic graphs, which are
used for our description of replicated data types. We rely on countable sets E of
events e, e′, . . . , e1, . . . and L of labels �, �′, . . . , �1, . . .

Definition 1 (Labelled Directed Acyclic Graph). A Labelled Directed
Acyclic Graph (ldag) over a set of labels L is a triple G = 〈EG,≺G, λG〉 such
that EG is a set of events, ≺G ⊆ EG × EG is a binary relation whose transitive
closure is a strict partial order, and λG : EG → L is a labeling function. An ldag
G is a path if ≺G is a strict total order.

We write G(L) and P(L) to respectively denote the sets of all ldags and paths
over L. We use G to range over G(L) and P to range over P(L). Moreover, we write
<P instead of ≺P to make evident that paths are total orders. We say that P is a
path over E if EP = E and write P(E , λ) for {P | P is a path over E and λP = λ}.
We usually omit the subscript G (or P) when referring to the elements of G (of
P, respectively) when no confusion arises. We write ε for the empty ldag, i.e.,
such that Eε = ∅.

A Denotational View of Replicated Data Types 141

Definition 2 (Morphism). An ldag morphism f from G to G′, written f : G →
G′, is a mapping f : EG → EG′ such that λG = f;λG′ and e ≺G e′ implies f(e) ≺G′

f(e′).

Hereafter we implicitly consider ldags up-to isomorphism, i.e., related by a
bijective function that preserves and reflects the underlying relation.

Example 1. Consider the set L = {〈rd, 0〉, 〈rd, 1〉, 〈wr(0), ok〉, 〈wr(1), ok〉} of
labels describing the operations of a 1-bit register. Each label is a tuple 〈op, rv〉
where op denotes an operation and rv its return value. For homogeneity, we
associate the return value ok to every write operation. Now, take the ldag over
L defined as G1 = 〈{e1, e2, e3},≺, λ〉 where ≺= {(e1, e3), (e2, e3)} and λ is such
that λ(e1) = 〈wr(0), ok〉, λ(e2) = 〈wr(1), ok〉, λ(e3) = 〈rd, 0〉. A graphical repre-
sentation of G1 is in Fig. 2a. Since we consider ldags up-to isomorphism, we do
not depict events and write instead the corresponding labels when no confusion
arises. G2 is an ldag where ≺G2 is empty. Neither G1 nor G2 is a path, because
they are not total orders. P1 in Fig. 2c is an ldag that is also a path. Hereinafter
we use undirected arrows when depicting paths and avoid drawing transitions
that are obtained by transitivity, as shown in Fig. 2d. All ldags in Fig. 2 belong
to G(L), but only P1 is in P(L).

〈wr(0),ok〉 〈wr(1),ok〉

〈rd,0〉
(a) G1

〈wr(0),ok〉 〈wr(1),ok〉

(b) G2

〈wr(0),ok〉

〈rd,0〉

〈wr(1),ok〉
(c) P1

〈wr(0),ok〉

〈rd,0〉

〈wr(1),ok〉
(d) P1

Fig. 2. Two simple ldags and two paths.

2.1 ldag Operations

We now present a few operations on ldags, which will be used in the following
sections. We start by introducing some notation for binary relations. We write
Id for the identity relation over events and � for ≺ ∪ Id. We write − ≺ e (and
similarly − � e) for the preimage of e, i.e., − ≺ e = {e′| e′ ≺ e}. We use ≺|E for
the restriction of ≺ to elements in E , i.e. ≺|E = ≺ ∩(E×E). Analogously, λ|E is
the domain restriction of λ to the elements in E . We write E� for the extension
of the set E with a fresh element, i.e., E� = E ∪ {
} such that
 �∈ E .

Definition 3 (Restriction and Extension). Let G = 〈E ,≺, λ〉 and E ′ ⊆ E.
We define

– G|E′ = 〈E ′, ≺|E′ , λ|E′〉 as the restriction of G to E ′;
– G�

E′ = 〈E�,≺ ∪ (E ′ × {
}), λ[
 → �]〉 as the extension of G over E ′ with �.

142 F. Gadducci et al.

Restriction obviously lifts to sets X of ldags, i.e., X |E = {G|E | G ∈ X}. We
omit the subscript E ′ in G�

E′ when E ′ = E .

Example 2. Consider the ldags G1 and G2 depicted in Fig. 2a and b, respectively.
Then, G2 = G1|−≺e3

and G1 = G2〈rd,0〉.

The following operator allows for the combination of several paths and plays
a central rol in our characterisation of replicated data types.

Definition 4 (Product). Let X = {〈Ei, <i, λi〉}i be a set of paths. The product
of X is ⊗

X = {Q | Q is a path over
⋃

i

Ei and Q |Ei
∈ X }

Intuitively, the product of paths is analogous to the synchronous product of
transition systems, in which common elements are identified and the remaining
ones can be freely interleaved, as long as the original orders are respected.

Example 3. Consider the paths P1 and P2 in Fig. 3, and assume that they share
the event labelled 〈wr(2), ok〉. Their product has two paths P3 and P4, each of
them contains the elements of P1 and P2 and preserves the relative order of the
elements in the original paths. We remark that the product is empty when the
paths have incompatible orders. For instance, P3 ⊗ P4 = ∅.

Fig. 3. Product between two paths.

It is straightforward to show that ⊗ is associative and commutative. Hence,
we freely use ⊗ over sets of sets of paths.

3 Specifications

We introduce our notion of specification and applies it to some well-known data
types.

Definition 5 (Specification). A specification S is a function S : G(L) → 2P(L)

such that S(ε) = {ε} and ∀G. S(G) ⊆ 2P(EG,λG).

A Denotational View of Replicated Data Types 143

A specification S maps an ldag (i.e., a visibility relation) to a set of paths
(i.e., its admissible arbitrations). Note that P ∈ S(G) is a path over EG, and
hence a total order of the events in G. However, we do not require P to be a topo-
logical ordering of G, i.e., ≺G⊆<P may not hold. Although some specification
approaches consider only arbitrations that include visibility [5,7], our definition
accommodates also presentations, such as [2,4], in which arbitrations may not
preserve visibility. We focus later on in a few subclasses, such as coherent spec-
ifications, in order to establish a precise correspondence with replicated data
types. We also remark that it could be the case that S(G) = ∅, which means that
S forbids the configuration G (more details in Example 4 below). For technical
convenience, we impose S(ε) = {ε} and disallow S(ε) = ∅: S cannot forbid the
empty configuration, which denotes the initial state of a data type.

We now illustrate the specification of some well-known replicated data types.

Example 4 (Counter). The data type Counter provides operations for incre-
menting and reading an integer register with initial value 0. A read operation
returns the number of increments seen by that read. An increment is always
successful and returns the value ok. Formally, we consider the set of labels
L = {〈inc, ok〉} ∪ ({rd} × N). Then, a Counter is specified by SCtr defined
such that

P ∈ SCtr (G) if ∀e ∈ EG.λ(e) = 〈rd, k〉 implies k = #{e′ | e′ ≺G e and λ(e′)
= 〈inc, ok〉}

A visibility graph G has admissible arbitrations (i.e., SCtr (G) �= ∅) only when
each event e in G labelled by rd has a return value k that matches the number
of increments anteceding e in G. We illustrate two cases for the definition of SCtr

in Fig. 4. While the configuration in Fig. 4a has admissible arbitrations, the one
in Fig. 4b has not, because the unique event labelled by rd returns 0 when it
is actually preceded by an observed increment. In other words, an execution is
not allowed to generate such a visibility graph. We remark that SCtr does not
impose any constraint on the ordering <P.

In fact, a path P ∈ SCtr (G) does not need to be a topological ordering of G
as, for instance, the rightmost path in the set of Fig. 4a.

Fig. 4. Counter specification.

144 F. Gadducci et al.

Example 5 (Last-write-wins Register). A Register stores a value that can be
read and updated. We assume that the initial value of a register is undefined.
We take L = {〈wr(k), ok〉 | k ∈ N} ∪ ({rd} × N ∪ {⊥}) as the set of labels. The
specification SlwwR gives the semantics of a register that adopts the last-write-
wins strategy.

P ∈ SlwwR(G) if ∀e ∈ EG.

⎧
⎪⎨

⎪⎩

λ(e) = 〈rd, ⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) �= 〈wr(k), ok〉
λ(e) = 〈rd, k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k), ok〉 and

∀e′′ ≺G e. e′ <P e′′ implies ∀k′.λ(e′′) �= 〈wr(k′), ok〉

An ldag G has admissible arbitrations only when each event associated with
a read operation returns a previously written value. As per the first condition
above, a read operation returns the undefined value ⊥ when it does not see any
write. By the second condition, a read e returns a natural number k when it sees
an operation e′ that writes that value k. In such case, any admissible arbitration
P must order e′ as the greatest (accordingly to <P) of all write operations seen
by e.

Example 6 (Generic Register). We now define a Generic Register that does
no commit to a particular strategy for resolving conflicts. We specify this type
as follows

P ∈ SgR(G) if ∀e ∈ EG.

⎧
⎪⎨

⎪⎩

λ(e) = 〈rd, ⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) �= 〈wr(k), ok〉
λ(e) = 〈rd, k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k), ok〉 and

∀e′′.λ(e′′) = 〈rd, k′′〉 and − ≺G e = − ≺G e′′ implies k = k′′

As in Example 5, the return value of a read corresponds to a written value
seen by that read, but the specification does not determine which value should
be chosen. We require instead that all read operations with the same causes (i.e.,
− ≺G e = − ≺G e

′) have the same result. Since this condition is satisfied by any
admissible configuration G, it ensures convergence. The fact that convergence is
explicitly required contrasts with approaches like [2,4], where on the contrary
convergence is ensured automatically by considering only deterministic specifi-
cations. We remark that for the deterministic cases, e.g., Examples 4 and 5, we
do not need to explicitly require convergence.

3.1 Refinement

Refinement is a standard approach in data type specification, which allows for a
hierarchical organisation that goes from abstract descriptions to concrete imple-
mentations. The main benefit of refinement relies on the fact that applications
can be developed and reasoned about in terms of abstract types, which hide
implementation details and leave some freedom for the implementation. Con-
sider the specification SgR of the Generic Register introduced in Example 6,

A Denotational View of Replicated Data Types 145

which only requires a policy for conflict resolution that ensures convergence. On
the contrary, the specification SlwwR in Example 5 explicitly states that con-
current updates must be resolved by adopting the last-write-wins policy. Since
the latter policy ensures convergence, we would like to think about SlwwR as a
refinement of SgR. We characterise refinement in our setting as follows.

Definition 6 (Refinement). Let S1, S2 be specifications. We say that S1 refines
S2 and we write S1 � S2 if ∀G. S1(G) ⊆ S2(G).

Example 7. It can be easily checked that P ∈ SlwwR(G) implies P ∈ SgR(G) for
any G. Consequently, SlwwR is a refinement of SgR.

Example 8. Consider the data type Set, which provides (among others) the oper-
ations add, rem and lookup for respectively adding, removing and examining the
elements within the set. Different alternatives have been proposed in the litera-
ture for resolving conflicts in the presence of concurrent additions and removals
of elements (see [13] for a detailed discussion). We illustrate two possible alter-
natives by considering the execution scenario depicted in Fig. 5. A reasonable
semantics for lookup over G and P would fix the result V as either ∅ or {1}. In
fact, under the last-write-wins policy, the specification prescribes that lookup
returns {1} in this scenario. Differently, the strategy of 2P-Sets1 establishes that
the result is ∅.

The following definition provides a specification for an abstract data type
Set that allows (among others) any of the above policies.

P ∈ SSet(G) if ∀e ∈ EG.λ(e) = 〈lookup, V〉 implies Be ⊆ V ⊆ Ae and Conve,V

where

Ae = {k | e′ ≺G e and λ(e′) = 〈add(k), ok〉}
Be = Ae \ {k | e′ ≺G e and λ(e′) = 〈rem(k), ok〉}
Conve,V = ∀e′.λ(e′) = 〈lookup, V′〉 and − ≺G e = − ≺G e

′ implies V = V′

The set Ae contains the elements added to (and possibly removed from) the set
seen by e while Be contains those elements for which e sees no removal. Thus,
the condition Be ⊆ V ⊆ Ae states that lookup returns a set that contains at least
all the elements added but not removed (i.e., in Be). However, the return value
V may contain elements that have been added and removed (the choice is left
unspecified). Condition Conv ensures convergence, similarly to the specification
of SgR in Example 6.

Then, a concrete resolution policy such as 2P-Sets can be specified as follows

P ∈ S2P-Sets(G) if ∀e ∈ EG.λ(e) = 〈lookup, V〉 implies V = Be

Clearly, S2P-Sets is a refinement of SSets . Other policies can be specified anal-
ogously.

1 In 2P-Sets, additions of elements that have been previously removed have no effect.

146 F. Gadducci et al.

Fig. 5. A scenario for the replicated data type Set

3.2 Classes of Specifications

We now discuss two properties of specifications. Firstly, we look at specifications
for which the behaviour of larger computations matches that of their shorter
prefixes.

Definition 7 (Past-Coherent Specification). Let S be a specification. We
say that S is past-coherent (briefly, coherent) if

∀G. S(G) =
⊗

e∈EG

S(G|−�e)

Note that coherence implies that S(G)|−≺e ⊆ S(G|−≺e). Intuitively, sub-paths
are obtained from the interleaving of the paths belonging to the associated sub-
specifications.

Example 9. The specifications in Examples 4, 5 and 6 are all coherent, because
their definitions are in terms of restrictions of the ldags. Now consider the
specification S defined such that the equalities in Fig. 6 hold. S is not coherent

Fig. 6. A non-coherent specification.

A Denotational View of Replicated Data Types 147

because the arbitrations for the ldag in Fig. 6b should contain all the interleav-
ings for the paths associated with its sub-configurations, as depicted in Fig. 6a.
Instead, note that the arbitration of 〈o2, v2〉 before 〈o1, v1〉 in the leftmost path
on Fig. 6c would not hinder coherence by itself, even if it is not allowed by the
sub-configuration in Fig. 6b.

A second class of specifications is concerned with saturation. Intuitively, a
saturated specification allows every top element on the visibility to be arbitrated
in any position. We first introduce the notion of saturation for a path.

Definition 8 (Path Saturation). Let P be a path and � a label. We write
sat(P, �) for the set of paths obtained by saturating P with respect to �, defined
as follows

sat(P, �) = {Q | Q ∈ P(EP� , λP�) and Q|EP
= P}

A path P saturated with a label � generates the set of all paths obtained
by placing a new event labelled by � in any position within P. A saturated
specification thus extends a computation by adding a new operation that can be
arbitrated in any position.

Definition 9 (Saturated Specification). Let S be a specification. We say
that S is saturated if

∀〈G, P〉, �. P ∈ S(G�)
∣∣
EG

implies sat(P, �) ⊆ S(G�)

Example 10. The specifications in Examples 4, 5 and 6 are all saturated because
a new event e can be arbitrated in any position. In fact, the specifications in
Examples 4 and 6 do not use any information about arbitration, while the spec-
ification in Example 5 constrains arbitrations only for events that are not max-
imal. Figure 7 shows a specification that is not saturated because it does not
allow to arbitrate the top event (the one labelled 〈rd, 1〉) as the first operation
in the path. In a saturated specification, the equality in Fig. 4a should hold. We
remark that the specification is coherent although it is not saturated.

Fig. 7. A non-saturated specification

148 F. Gadducci et al.

4 Replicated Data Type

In this section we show that our proposal can be considered as (and it is actually
more general than) a model for the operational description of rdts as given
in [2,4]. We start by recasting the original definition of rdt (as given in [2,
Definition 4.5]) in terms of ldags. As hinted in the introduction, the meaning
of each operation of an rdt is specified in terms of a context, written C, which
is a pair 〈G, P〉 such that P ∈ P(EG, λG). We write C(L) for the set of contexts
over L, and fix a set O of operations and a set V of values. Then, the operational
description of rdts in [2,4] can be formulated as follows.

Definition 10 (Replicated Data Type). A Replicated Data Type (rdt) is
a function F : O × C(O) → V .

In words, for any visibility graph G and arbitration P, the specification F indi-
cates the result of executing the operation op over G and P, which is F (op, 〈G, P〉).
Example 11. The data type Counter introduced in Example 4 is formally spec-
ified in [2,4] as follows

Fctr (inc, 〈G, P〉) = ok
Fctr (rd, 〈G, P〉) = #{e | e ∈ G and λ(e) = inc}

Given a context 〈G, P〉 in C(O×V), we may check whether the value associated
with each operation matches the definition of a particular rdt. This notion is
known as return value consistency [2, Definition 4.8]. In order to relate contexts
with and without return values, we use the following notation: given G ∈ G(O ×
V), by G ∈ G(O) we denote the ldag obtained by projecting the labels of G in
the obvious way.

Definition 11 (Return Value Consistent). Let F be an rdt and
〈G, P〉 ∈ C(O × V) a context. We say that F is Return Value Consis-
tent (rval) over G and P and we write rval(F , G, P) if ∀e ∈ EG.λ(e) =
〈op, v〉 implies F (op, G

∣∣
−≺e

, P
∣∣
−≺e

) = v. Moreover, we define

prval(F , G) = {P | rval(F , G, P)}
Example 12. Consider the rdt Fctr introduced in Example 11. The context in
Fig. 8a is rval consistent while the one in Fig. 8b is not because Fctr requires
rd to return the number of inc operations seen by that read, which in this case
should be 2.

The following result states that return value consistent paths are all coherent,
in the sense that they match the behaviour allowed for any shorter configuration.

Lemma 1. Let F be an rdt and G an ldag. Then

prval(F , G) =
⊗

e∈EG

prval(F , G|−�e).

As for coherent specifications, the property prval(F , G)|−≺e ⊆ prval(F , G|−≺e)

also holds for return value consistent paths.

A Denotational View of Replicated Data Types 149

Fig. 8. rval consistency for Fctr .

4.1 Deterministic Specifications

We now focus on the relation between our notion of specification, as introduced
in Definition 5, and the operational description of rdts, as introduced in [2,4]
and formalised in Definition 10 in terms of ldags. Specifically, we characterise
a proper subclass of specifications that precisely correspond to rdts.

For this section we restrict our attention to specifications over the set of
labels O × V , i.e., S : G(O × V) → 2P(O×V).

Definition 12 (Total Specification). Let S be a specification. We say that
S is total if

∀〈G, P〉, op. ∃G1, v. G = G1 ∧ P ∈ S(G1〈op,v〉)
∣∣∣
EG1

Intuitively, a specification is total when every projection over O of a con-
text in C(O × V), as represented by 〈G, P〉 ∈ C(O), can be extended with the
execution of any operation of the data type. This is formalised by stating that
for any operation op and any admissible arbitration (sequence of operations) P
of a configuration G (once more, labelled only with operations), then P can be
extended into an admissible arbitration of the configuration G1〈op,v〉, where G1 is
just one of the possible configurations (the one labelled with the correct return
values) whose projection corresponds to G.

We remark that a total specification does not prevent the definition of an
operation that admits more than one return value in certain configurations, i.e.,
v in Definition 12 does not need to be unique. For instance, consider the Generic
Register in Example 6, in which operation rd may return any of the causally-
independent, previously written values. Albeit being total, the specification for
rd is not deterministic. On the contrary, a specification is deterministic if an
operation executed over a configuration admits at most one return value, as
formally stated below.

Definition 13 (Deterministic Specification). Let S be a specification. We
say that S is deterministic if

∀G, op, v, v′. v �= v′ implies S(G〈op,v〉)
∣∣∣
EG

∩ S(G〈op,v′〉)
∣∣∣
EG

= ∅

150 F. Gadducci et al.

A weaker notion for determinism could allow the result for an added operation
to depend also on the given admissible path. We say that a specification S is
value-deterministic if

∀G, op, v, v′. v �= v′ ∧ G �= ε implies S(G〈op,v〉)
∣∣∣
EG

∩ S(G〈op,v′〉)
∣∣∣
EG

= ∅

Finally, we say that a specification is functional if it is both deterministic
and total.

Example 13. Figure 9 shows a value-deterministic specification. Although a read
operation that follows an increment may return two different values, such dif-
ference is explained by the previous computation: in one case the increment
succeeds while in the other fails. The specification is however not deterministic
because it admits a sequence of operations to be decorated with different return
values.

Fig. 9. A value-deterministic and coherent specification.

Example 14. It is straightforward to check that the specifications in Exam-
ples 4 and 5 are deterministic. On the contrary, the specification of the Generic
Register in Example 6 is not even value-deterministic. It suffices to consider a
configuration in which a read operation sees two different written values. Simi-
larly, Set in Example 8 is not deterministic.

The lemma below states a simple criterion for determinism.

Lemma 2. Let S be a coherent and deterministic specification. Then

∀G1, G2. G1 = G2 implies G1 = G2 ∨ S(G1) ∩ S(G2) = ∅

So, if two configurations are annotated with the same operations yet with dif-
ferent values, then their admissible paths are already all different if we disregard
return values.

4.2 Correspondence Between rdts and Specifications

This section establishes the connection between rdts and specifications. We first
introduce a mapping from rdts to specifications.

A Denotational View of Replicated Data Types 151

Definition 14. Let F be an rdt. We write S(F) for the specification associated
with F , defined as follows

S(F)(G) = prval(F , G)

Next result shows that rdts correspond to specifications that are coherent,
functional and saturated.

Lemma 3. For every rdt F , S(F) is coherent, functional, and saturated.

The inverse mapping from specifications to rdts is defined below.

Definition 15. Let S be a specification. We write F(S) for the rdt associated
with S , defined as follows

F(S)(op, G, P) = v if ∃G1. G = G1 ∧ P ∈ S(G1〈op,v〉)
∣∣∣
EG1

Note that F(S) may not be well-defined for some S , e.g. when S is not deter-
ministic. The following lemma states the conditions under which F(S) is well-
defined.

Lemma 4. For every coherent and functional specification S , F(S) is well-
defined.

The following two results show that rdts are a particular class of specifica-
tions, and hence, provide a fully abstract characterisation of operational rdts.

Theorem 1. For every coherent, functional, and saturated specification S , S =
S(F(S)).

Theorem 2. For every rdt F , F = F(S(F)).

The above characterisation implies that there are data types that cannot
be specified as operational rdts. Consider e.g. Generic Register and Set, as
introduced respectively in Examples 6 and 8. As noted in Example 14, they
are not deterministic. Hence, they cannot be translated as rdts. We remark
that a non-deterministic specification does not imply a non-deterministic conflict
resolution, but it allows for underspecification.

5 A Categorical Account of Specifications

In the previous sections we provided a functional characterisation of RDTs.
We now proceed on to a denotational account of our formalism by providing a
categorical foundation which is amenable to the building of a family of operators
on specifications.

152 F. Gadducci et al.

5.1 Composing ldags

We start by considering a sub-class of morphisms between ldags, which account
for the evolution of visibility relation by reflecting the information about
observed events.

Definition 16 (Past-Reflecting Morphism). Let G1 and G2 be ldags and
f : G1 → G2 an ldag morphism. We say that f is past-reflecting if

∀e ∈ EG1 . f(− ≺ e) =
⋃

e′∈−≺f(e)

e′.

We can concisely write f(− ≺ e) = − ≺ f(e) and spell out the definition as

∀e ∈ EG1 . ∀e2 ∈ G2|−≺f(e) . ∃e1 ∈ G1|−≺e . f(e1) = e2

It is noteworthy that this requirement boils down to (the dual of) what are called
tp-morphisms in the literature on algebraic specification theory, which are an
instance of open maps [9]. As we will see, this property is going to be fundamental
in obtaining a categorical characterisation of coherent specifications.

Now, let G(L) be the category whose objects are ldags and arrows are
past-reflecting morphisms, and I (L) the sub-category whose arrows are injective
morphisms.

Proposition 1 (ldag Pullbacks/Pushouts). The category G(L) of ldags
and past-reflecting morphisms has (strict) initial object, pullbacks and pushouts
along monos.

Note that pushout squares along monos are also pullback ones. As often the
case, the property concerning pushouts does not hold in I (L), even if a weak
form does, since monos are stable under pushouts in G(L). For the time being,
we just remark that these properties guarantee a degree of modularity for our
formalism.

We need a last definition before giving a categorical presentation.

Definition 17 (Downward closure). Let G = 〈E ,≺, λ〉 be an ldag and E ′ ⊆
E. We say that E ′ is downward closed if

∀e ∈ E ′.− ≺ e ⊆ E ′.

It is easy to show that for any past-reflecting morphism f : G1 → G2 the
image of EG1 along f is downward closed. Should f be injective, we strengthen
the relationship.

Lemma 5. An injective morphism f : G1 → G2 is past-reflecting if and only if

1. f(e1) ≺G2 f(e2) implies e1 ≺G1 e2;
2.

⋃
e∈EG1

f(e) is downward closed.

A Denotational View of Replicated Data Types 153

This result tells us that past-reflecting injective morphisms f : G1 → G2 are
uniquely characterised as such by the properties of the image of E1 with respect
to G2.

Now, while the initial object of both G(L) and I (L) is the empty graph ε,
the pullback in the latter has an easy characterisation, thanks to the previous
lemma. Indeed, let fi : Gi → G be past-preserving injective morphisms, assuming
the functions on elements to be identities for the sake of simplicity, and let E =
EG1 ∩EG2 . Then, G1|E = G2|E and they correspond (with the obvious morphisms)
to the pullback of f1 and f2.

5.2 The Model Category

We now move to define the model category.

Definition 18 (Morphism Saturation). Let P(E1, λ1) and P(E2, λ2) be sets
of paths and f : E1 → E2 an injective function such that λ1 = f;λ2. The satura-
tion function sat(−, f) is defined as follows

sat(P, f) = {Q | Q ∈ P(E2, λ2) and P = Q|f(E1)
}

That is, each Q is the image of P via a morphism with underlying function
f. We can exploit saturation in order to get a simple definition of our model
category.

Definition 19 (Path-Set Morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2)
be sets of paths. A path-set morphism f : X1 → X2 is an injective function
f : E1 → E2 such that λ1 = f ;λ2 and

X2 ⊆
⋃

P∈X1

sat(P, f)

The property can be stated as

∀P2 ∈ X2. ∃P1 ∈ X1. P2 ∈ sat(P1, f)

thus each path in P2 is related to a (unique) path in P1 via a morphism induced
by f. Let P (L) be the category whose objects are sets of paths over the same
elements and labelling (i.e., subsets of P(E , λ) for some E and λ), and arrows
are path-set morphisms.

Proposition 2 (Path Pullbacks/Pushouts). The category P (L) of sets of
paths and path-set morphisms has (strict) initial object and pullbacks.

As for I (L), also P (L) admits a weak form of pushouts along monos.

Remark 1. The initial object is the set in 2P(∅,λ∅) including only the empty
path ε. As for pullbacks, let fi : Xi → X be path-set morphisms, assuming
the functions on elements to be identities for the sake of simplicity, and let E =
E1∩E2. Then, the pullback is the set X1|E ∪ X2|E in 2P(E,λ) with λ = λ1|E = λ2|E .
As for pushouts, let f : X → Xi be injective path-set morphisms, assuming the
functions on elements to be identities for the sake of simplicity, and E = E1 ∪E2.
Then, the “weak” pushout is the set X1 ⊗ X2 in 2P(E,λ) with λ the extension of
λ1 and λ2.

154 F. Gadducci et al.

5.3 A Categorical Correspondence

It is now time to move towards our categorical characterisation of specifications.
First, let us restrict our attention to functors F : I (L) → P (L) that preserve

the underlying set of objects, i.e., such that the underlying function on objects
ObF maps an ldag G into a subset of 2P(EG,λG) (and preserves the underling
function on path-set morphisms). We also say that F is coherent if F (G) =⊗

e∈EG
F (G|−�e) for all ldags G. Thus, any such functor F that preserves the

initial object (i.e., F (ε) = {ε}) gives raise to a specification: it just suffices to
consider the object function ObF : ObI(L) → ObP(L).

Proposition 3. Let F : I (L) → P (L) be a (coherent) functor preserving the
initial object. Then ObF is a (coherent) specification.

For the inverse we need an additional lemma.

Lemma 6. Let S be a coherent specification and E ⊆ EG downward closed. Then
S(G)|E ⊆ S(G|E).

The lemma above immediately implies the following result.

Proposition 4. A coherent specification S induces a coherent functor M(S) :
I (L) → P (L) preserving the initial object such that ObM(S) = S .

By using Propositions 3 and 4 we can state the main result of this section.

Theorem 3. There is a bijection between coherent specifications and coherent
functors I (L) → P (L) preserving the initial object.

6 Conclusions and Future Works

Our contribution proposes a denotational view of replicated data types. While
most of the traditional approaches are operational in flavour [4,7,8], we strived
for a formalism for specifications which could exploit the classical tools of alge-
braic specification theory. More precisely, we associate to each configuration
(i.e., visibility) a set of admissible arbitrations. Differently from those previous
approaches, our presentation naturally accommodates non-deterministic specifi-
cations and enables abstract definitions allowing for different strategies in conflict
resolution. Our formulation brings into light some properties held by mainstream
specification formalisms: beside the obvious property of functionality, they also
satisfy coherence and saturation. A coherent specification can neither prescribe
an arbitration order between events that are unrelated by visibility nor allow
for additional arbitrations over past events when a configuration is extended
(i.e., a new top element is added to visibility). Instead, a saturated specifica-
tion cannot impose any constraint to the arbitration of top elements. Note that
saturation does not hold when requiring that admissible arbitrations should be
also topological orderings of visibility. Hence, the approaches in [2,4] generate

A Denotational View of Replicated Data Types 155

specifications that are not saturated. We remark that this relation between vis-
ibility and arbitration translates in a quite different property in our setting,
and this suggests that consistency models defined as relations between visibility
and arbitration (e.g., monotonic and causal consistency) could have alternative
characterisations. We plan to explore these connections in future works.

Another question concerns coherence, which prevents a specification from
choosing an arbitration order on events that are unrelated by visibility and
forbids, e.g., the definition of strategies that arbitrate first the events coming
from a particular replica. Consequently, it becomes natural to look for those rdts
and consistency models that are the counterpart of non-coherent specifications,
still preserving some suitable notion of causality between events. We do believe
that the weaker property S(G)|−≺e ⊆ S(G|−≺e) (that is, no additional arbitration
over past events when a configuration is extended) is a worthwhile alternative,
accommodating for many examples that impose less restrictions on the set of
admissible paths (hence, that may allow more freedom to the arbitration).

These issues might be further clarified by our categorical presentation. Our
proposal is inspired by current work on the semantics of nominal calculi [11],
and it shares similarities with [10], since our category G is the sub-category
of their FinSet⇒ with past-reflecting morphisms. The results on Sect. 5 focus
on a functorial characterisation of specifications. We chose an easy way out
for establishing the bijection between functors and specifications by restricting
the possible object functions and by defining coherence “on the nose”, (i.e., by
considering functors F such that F (G) ⊆ 2P(EG,λG) and F (G) =

⊗
e∈EG

F (G|−�e)),
since requiring the specification to be coherent is needed in order to obtain
the functor in Proposition 4. A proper characterisation should depend on the
properties of F over the arrows of G (such as pullback/pushout preservation),
instead of the properties of the objects in its image on P .

The same categorical presentation may shed light on suitable operators on
specifications. Indeed, this is the usual situation when providing a functorial
semantics for a language (see e.g. [1], and the references therein, among many
others), and intuitively we have already a freshness operator F �(G) = F (G�),
along the lines of edge allocation in [10]. We plan to extend these remarks into
a full-fledged algebra for specifications.

References

1. Bonchi, F., Buscemi, M.G., Ciancia, V., Gadducci, F.: A presheaf environment for
the explicit fusion calculus. J. Autom. Reasoning 49(2), 161–183 (2012)

2. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1(1–2), 1–150 (2014)

3. Burckhardt, S., Gotsman, A., Yang, H.: Understanding eventual consistency. Tech-
nical Report MSR-TR-2013-39, Microsoft Research (2013)

4. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: speci-
fication, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014,
pp. 271–284. ACM (2014)

156 F. Gadducci et al.

5. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: Aceto, L., de Frutos-Escrig, D. (eds.) CONCUR
2015. LIPIcs, vol. 42. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

7. Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 585–609. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46669-8 24

8. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ‘Cause i’m
strong enough: reasoning about consistency choices in distributed systems. In:
Bod́ık, R., Majumdar, R. (eds.) POPL 2016, pp. 371–384. ACM (2016)

9. Joyal, A., Nielson, M., Winskel, G.: Bisimulation and open maps. In: LICS 1993,
pp. 418–427. IEEE (1993)

10. Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coalge-
braic semantics. Theor. Comput. Sci. 546, 188–224 (2014)

11. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

12. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 29

13. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Technical Report RR-7506,
Inria-Centre Paris-Rocquencourt (2011)

14. Sivaramakrishnan, K.C., Kaki, G., Jagannathan, S.: Declarative programming over
eventually consistent data stores. In: Grove, D., Blackburn, S. (eds.) PLDI 2015,
pp. 413–424. ACM (2015)

http://dx.doi.org/10.1007/978-3-662-46669-8_24
http://dx.doi.org/10.1007/978-3-662-46669-8_24
http://dx.doi.org/10.1007/978-3-642-24550-3_29

Resource, Components and Information
Flow

Many-to-Many Information Flow Policies

Paolo Baldan1, Alessandro Beggiato2, and Alberto Lluch Lafuente3(B)

1 Dipartimento di Matematica, Università di Padova, Padova, Italy
baldan@math.unipd.it

2 IMT School for Advanced Studies Lucca, Lucca, Italy
alessandro.beggiato@imtlucca.it

3 DTU Compute, Technical University of Denmark, Lyngby, Denmark
albl@dtu.dk

Abstract. Information flow techniques typically classify information
according to suitable security levels and enforce policies that are based
on binary relations between individual levels, e.g., stating that infor-
mation is allowed to flow from one level to another. We argue that
some information flow properties of interest naturally require coordi-
nation patterns that involve sets of security levels rather than individual
levels: some secret information could be safely disclosed to a set of con-
fidential channels of incomparable security levels, with individual leaks
considered instead illegal; a group of competing agencies might agree to
disclose their secrets, with individual disclosures being undesired, etc.
Motivated by this we propose a simple language for expressing informa-
tion flow policies where the usual admitted flow relation between indi-
vidual security levels is replaced by a relation between sets of security
levels, thus allowing to capture coordinated flows of information. The
flow of information is expressed in terms of causal dependencies and
the satisfaction of a policy is defined with respect to an event structure
that is assumed to capture the causal structure of system computations.
We suggest applications to secret exchange protocols, program security
and security architectures, and discuss the relation to classic notions of
information flow control.

Keywords: Information flow · Coordination · Concurrency · Declassi-
fication · Non-interference · Causality · Event structures

1 Introduction

As the number of interconnected devices increases, the focus on security-related
aspects of coordinated computations gains more and more relevance and appeal.
Techniques for controlling and enforcing the flow of information need to be
applied, and possibly extended to deal with coordination aspects. Typically, the
entities of a system are assigned a security level, and information flow policies
prescribe which interactions are legal and which are forbidden. This is normally
expressed via a relation that models the admitted flows between security levels.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 159–177, 2017.
DOI: 10.1007/978-3-319-59746-1 9

160 P. Baldan et al.

Motivation and Problem Statement. The information flow relations used in the
literature to model policies are almost invariably binary relations between indi-
vidual security levels. This paper is motivated by the observation that some
desired information flow properties naturally involve suitable coordinated sets
of security levels rather than mere individual levels.

Fig. 1. Information flow
example.

For example, some secret information (say, owned
by a government agency E, cf. Fig. 1) could be safely
disclosed to a set of confidential channels of incom-
parable security levels (say, corresponding to compet-
ing investors C and D) simultaneously, with individ-
ual leaks considered instead illegal or unfair. This is
for instance, the spirit of U.S. security and exchange
commission’s regulation fair disclosure [22]. Dually, a
group of competing companies (say A and B in Fig. 1)
may agree to collectively disclose their secrets (say to
the government agency E), with individual disclosures being undesired. This
paper is motivated by such scenarios and, in general, by the following question:
what is a natural notion of information flow policies that regulate flows among
sets of security levels?

Contributions. We address the question by proposing a simple policy specifi-
cation language that extends the usual security diagrams by allowing relations
between sets of security levels instead of just single levels. The clauses in our
policies are of the form A1, . . . ,Am � B1, . . . ,Bn, intuitively meaning that the
security levels A1, . . . ,Am are allowed to coordinate in order to let information
flow to security levels B1, . . . ,Bn.

In our approach the flow of information between entities is captured in terms
of the existence of causal dependencies between events representing occurrences
of actions of such entities. In particular, we use event structures [16,25] as a ref-
erence semantic model. The idea is that causal dependencies between events rep-
resent the transfer of some information. Thus causal dependencies are required
to obey to coordination patterns as prescribed by the information flow pol-
icy. For traditional intransitive binary policies any flow of information, i.e., any
(direct) causality a < b between events a and b needs to be allowed by the
policy, i.e., if the level of a is A and the level of b is B then the policy has
to include a clause A � B. We generalise this to many-to-many policies by
requiring that any direct causality a < b is part of a possibly more complex
interaction that conforms to a coordination pattern allowed by the policy, i.e.,
if A1 and B1 are the security levels of a and b, respectively, there must exist
a clause A1,A2 . . .An � B1,B2, . . . ,Bm in the policy and events a1, a2, . . . , an,
b1, b2, . . . , bm (with b equal to some bk) such that each event ai has level Ai, each
event bj has level Bj , and events a1, . . . an are (suitably coordinated) causes of
the events b1, . . . , bm.

As an example, consider the diagram of Fig. 1, where arrows represent direct
causalities between events and the security levels coincide with the principals.
For events we use the notation name : level. The direct causality from event

Many-to-Many Information Flow Policies 161

disclose : A to event collect : E is allowed by the policy A, B � E since
collect : E is also causally dependent on disclose : B, thus providing some guar-
antee of the fact that A and B disclose their secrets collectively. Analogously, the
direct causality from disclose : E to collect : C is allowed by the policy E � A,B
since there is a causality relation from disclose : E to collect : D as well, yielding
some sort of simultaneity in the disclosure of the secrets from E to C, D.

We study several properties of our policy language. In particular, we observe
that checking whether a system satisfies a policy is decidable for a general class
of event structures, the so-called regular trace event structures [24]. As a matter
of fact, policy satisfaction is expressible as a first-order property and the cor-
responding model checking problem is decidable [12]. We also discuss the rela-
tion with classical notions of information flow control, including non-interference
and declassification, and suggest applications beyond secret exchange protocols,
including program security and routing in security architectures.

Synopsis. Section 2 introduces several motivating examples, including a run-
ning example that is used throughout the paper. Section 3 provides some techni-
cal background on event structures. Section 4 presents the policy language, the
notion of policy satisfaction and a decidability result. Section 5 compares with
notions of information flow based on interleaving semantics, in particular with
trace- and bisimulation-based non-interference. Section 6 discusses other related
works. Section 7 concludes our paper and outlines future research.

2 Motivating Examples

We introduce here some examples that have motivated our work and that we
envisage as application domains for many-to-many information flow analysis.

Simultaneous Secret Exchange. Consider first the problem of exchanging a secret
between two parties, say Alice and Bob. We shall use this as a running example
throughout the paper. A way to solve the problem would be to proceed according
to the protocol in Fig. 2a, where Alice starts sending her secret to Bob, which then
replies with his own secret. The graphical representation (technically a security-
labelled event structure) will be explained later. Here it suffices to understand

Fig. 2. Two secret exchange protocols and a security policy.

162 P. Baldan et al.

that the figure represents the structure of the communication in an execution,
where an event put〈m〉@C : P, represents party P sending m on channel C, and
an event get〈t〉@C : P, represents party P receiving a message from channel C
to be saved according to the pattern t (binding/formal fields being denoted with
a leading question mark “?”). Arrows represent (direct) causal dependencies
between events. The protocol has essentially the same structure of classical key
exchange protocols [14] and does not solve one of the main concerns of the
so-called simultaneous secret exchange problem, which is to avoid or minimise
competitive advantage among the parties exchanging the secrets (see e.g. [17]).
If we assume to deal with information of two security levels (one for each party),
a standard approach to information flow does not help much in this scenario,
as we can just allow flows between Alice and Bob (and thus accept any protocol
with no guarantee) or forbid them (and thus reject all protocols).

One standard solution to the simultaneous secret exchange problem is to use
an intermediary (say Eve). Many-to-many information flow policies can be used
to specify some desired properties of intermediary-based protocols. For example,
we may require that the intermediary forwards information to Alice and Bob
simultaneously (denoted by an information flow policy Eve � Alice,Bob), and
that the intermediary accepts information from Alice and Bob only if collectively
disclosed (denoted by an information flow policy by Alice,Bob � Eve). A graph-
ical representation for this security policy, that will be refined and explained in
detail later, can be found in Fig. 2c. The protocol sketched in Fig. 2b, which uses
multi-party interactions, satisfies the desired information flow properties. The
protocol uses in particular an MPI-like gather operation to point-wise collect a
list messages from different sources, and MPI-like scatter operation to point-wise
broadcast the list of secrets.

Fig. 3. A secret exchange protocol satisfying a policy without intermediary.

We shall see that the causality approach to information flow allows one to pro-
vide stronger guarantees on secret exchange protocols, by only admitting infor-
mation to flow collectively and simultaneously between Alice and Bob, namely,
Alice,Bob � Alice,Bob (see Fig. 3b, for a graphical representation), even with-
out intermediaries. This is realised by the protocol in Fig. 3a, where vertical and
cross dependencies are control and data dependencies, respectively.

Language-Based Security and Declassification. We use a classic problem of
declassification in access control to illustrate how our approach can be used

Many-to-Many Information Flow Policies 163

to check information flow properties in the traditional sense [20], and how our
policies can be used to specify several useful forms of declassification [13,21].
The access control program below, on the left, written in a simple imperative
programming language in the style of [20], is checking a password and preparing
a reply to the user in a variable display. A causal semantics to the program can
be given based on the following idea: (i) events correspond to variable updates
or initialisations, (ii) an update x := e causally depends on previous updates of
all variables in e or their initialisation, (iii) if a control point is conditioned by
y then all updates in all branches of the control causally depend on the lat-
est update of y (or its initialisation), and (iv) conflict relations (represented as
dotted lines) capture branching. For the program at hand, the resulting event
structure can be found on the right.

if downgrade then
if check(user,password) then

display := “ok”;
log := log , 〈user,“ok”〉;

else
display :=“ko”;
log :=log , 〈user,“ko”〉;

downgrade := ...password := ... user := ...

display := “ok” display := “ko”

log := log , 〈user,“ok”〉 log := log , 〈user,“ko”〉

�� ���������������
��������������

��

��������������������

����
��

��
��

��
��

����
��

��
��

��
��

���������
���������

		

��������������������

Disregarding whether the password is correct or not, there is a flow of infor-
mation concerning the password to the user, represented as a causality relation
from the latest update of the password to the updates of variable display.

For simplicity assume that each variable has its own security level, coinciding
with the variable name. A standard security type system would consider the
program to be insecure and our approach would agree on that in absence of
a policy password � display allowing the leaks. Of course, such a policy is not
desirable in general (e.g. the user may be malicious). However, the program
provides some guarantees that make it acceptable from the security point of view.
First, the reply is also influenced by a check on variable downgrade, which may be
used to disable login (e.g. after several unsuccessful attempts). This provides a
standard form of controlled declassification. Requiring that the declassification
is controlled as desired can be done through a policy password, downgrade �
display. In addition, the program above is using a log to keep track of logging
attempts. This provides the additional desirable property that password leaks
are only possible when the information concerning the access attempt also flows
to the log (denoted user, password � display, log).

Security Architectures. A third motivating case are systems where information of
different security levels needs to traverse shared resources, like a routing network.
An archetypal example is the Multiple Independent Levels of Security (MILS)
architecture [19]. The diagram on the left of the figure below depicts a simplified
version of such an architecture, inspired by the case study of [11]. Informa-
tion from security level A (resp. B) should be allowed to flow into C (resp. D)
only. Messages are routed through a common network made of a multiplexer
component (M) that accepts messages from both A and B and forwards it to
a demultiplexer component (W), which dispatches the messages either to C or
to D, according to routing information.

164 P. Baldan et al.

The diagram on the left of the figure can be also
seen as an information flow policy (isomorphic to
the architecture) aiming at enforcing the desired
flows. The problem of this naive policy is that it
allows also for undesired flows, e.g., from A to D
and from B to C, indirectly through the network: a
protocol wrongly routing the information would be
admitted by the policy. Consider instead a policy
where individual flows from W to C and D are not allowed, and instead, they
need to be collectively produced with A and B, respectively (denoted A,W � C
and B,W � D). The new policy (sketched on the right of the figure) would reject
protocols wrongly routing the messages.

3 Event Structures

We model the causal behaviour of a system with prime event structures [16,25], a
well-studied semantic model of concurrency where causality is a primitive notion.
The way in which an event structure is associated to a specific formalism will
depend on the system features one intends to capture (data/control flow, etc.).

Definition 1 (event structure). An event structure E = 〈E,≤,#〉 consists
of a set E of events, a partial order relation ≤ ⊆ E ×E called causality, and an
irreflexive symmetric relation # ⊆ E × E called conflict such that:

(i) for all e ∈ E the set of causes [e] = {e′ ∈ E | e′ ≤ e} is finite (finitariness);
(ii) for all e, e′, e′′ ∈ E, if e#e′ and e′ ≤ e′′ then e#e′′ (conflict inheritance).

For e, e′ ∈ E we write e < e′ (e is a proper cause of e′) if e ≤ e′ and e �= e′.
We say that e is a direct cause of e′ (denoted e � e′) if e < e′ and for all e′′ ∈ E
if e ≤ e′′ ≤ e′ either e′′ = e or e′′ = e′. The causes of a set of events X ⊆ E are
defined as [X] =

⋃
e∈X [e]. We lift causality to sets of events, with a universal

interpretation, i.e., for X,Y ⊆ E, we write X < Y (resp. X � Y) if for all e ∈ X
and e′ ∈ Y we have e < e′ (resp. e� e′). For e ∈ E we define the set of its proper
causes as [e) = [e]\{e}. We say that e, e′ ∈ E are in direct conflict, written
e#μe′, when e#e′ and for all e′′ ∈ [e) it holds ¬(e′′#e′) and for all e′′′ ∈ [e′) it
holds ¬(e#e′′′), i.e., the conflict is not inherited.

Figures 2a and 3a show three event structures corresponding to different pro-
tocols in our running example. The set of events correspond to communication
operations, and are annotated with the initials of the principal executing the
action (which is actually the security level assigned to the event, as we shall
explain later). Causality is represented graphically by directed arrows, while
conflict (to be seen in subsequent examples) is represented by dotted undirected
lines. For the sake of a lighter notation, we follow the tradition of depicting direct
causalities and conflicts only.

Event structures describe the possible events in computations and their
mutual relations. When e < e′ then e must necessarily occur before e′, while

Many-to-Many Information Flow Policies 165

if e#e′ then the occurrence of e excludes e′ (and vice versa). Computations are
characterised as conflict-free sets of events, containing the causes of all events.

Definition 2 (configuration). Let E = 〈E,≤,#〉 be an event structure.
A configuration of E is a subset C ⊆ E such that ¬(e#e′) for all e, e′ ∈ C

and [C] = C. The set of configurations of E is denoted C(E).

For any event e, the causes [e] and the proper causes [e) are configurations.

Fig. 4. Configurations of the event structure in Fig. 3a.

Figure 4 depicts all the configurations of the event structure of Fig. 3a. They
are related by arrows that represent transitions, i.e., how a configuration can be
extended to another configuration by adding an event.

Definition 3 (extension). Let E = 〈E,≤,#〉 be an event structure, and let
C ∈ C(E). We say that an event e extends C when e �∈ C and C ∪ {e} ∈ C(E).
In this situation we write C ⊕ e for C ∪ {e}. The set of possible extensions of a
configuration C is PE(C) = {e ∈ E | C ⊕ e ∈ C(E)}.

The transition system semantics of an event structure is obtained considering
configurations as states and extensions as transitions.

Definition 4 (transition system). The transition system of an event struc-
ture E = 〈E,≤,#〉 is the tuple TS (E) = 〈C(E), {C → C ⊕e | C ∈ C(E)∧e ∈ E}〉.

The diagram of Fig. 4 represents the transition system of the event struc-
ture in Fig. 3a. When events carry a label, the above definition yields labelled
transition systems with transitions C

a→ C ⊕ e, where a is the label of e.

4 Many-to-Many Information Flow Policies

We introduce here our notion of many-to-many information flow policies, which
describe the legal interactions among sets of security levels. Section 4.1 presents
the policy language, Sect. 4.2 defines the semantics, Sect. 4.3 studies some of its
properties, and Sect. 4.4 provides a decidability result.

166 P. Baldan et al.

4.1 A Policy Language for Many-to-Many Information Flows

We start by introducing the syntax of many-to-many information flow policies.

Definition 5 (many-to-many information flow policy). Let L be a finite
set of security levels and C = {d, f} be a set of coordination constraints. A
many-to-many multi-level information flow policy is a pair Π = 〈L , � 〉 where
�⊆ 2L × 2C × 2L and (A, ∅,A) ∈� for all A ∈ L . We denote by P the set of
all policies.

We will write A
σ� B for (A, σ, B) ∈�, often dropping brackets from σ, A and

B. Security levels in L are ranged over by A,B, . . . and sets of security levels are
ranged over by A, B, The requirement that A � A for all A ∈ L is natural
in information flow: information is always allowed to flow within the same level
of security. Finiteness of the set of security levels L is a natural assumption. It
could be meaningful to allow L to be infinite only when security levels can be
generated dynamically. The theory in the paper could be adapted trivially apart
from the decidability result in Sect. 4.4, that relies on regularity of the model
which in turn implies the finiteness of L .

Note that an information flow policy can be seen as a directed hyper-graph
whose hyper-arcs are labelled by (possibly empty) subsets of the alphabet of
coordination constraints C (to be explained later). This analogy is exploited in
the visual representation of security policies.

Informally, a clause A
σ� B specifies that a group of entities whose set of

security levels is A is allowed to influence a group of entities whose set of security
levels is B, subject to the coordination constraints in σ. E.g., a policy

Alice,Bob � Eve (1)

allows Alice and Bob to influence Eve, while the policy

Eve � Alice,Bob (2)

allows Eve to influence Alice and Bob. We will see that the above two policies
can be combined to allow Alice and Bob to exchange their secrets using Eve as
an intermediary, and providing some fairness guarantees. A different policy that
would allow a similar flow of information is

Alice,Bob,Eve � Alice,Bob
Alice � Eve
Bob � Eve

(3)

that allows Alice, Bob and Eve to influence Alice and Bob, Alice to influence Eve,
and Bob to influence Eve. Intuitively, this can be used to specify that both Alice
and Bob can talk individually to the intermediary Eve, which in turn can talk
to Alice and Bob in coordination with them.

For a clause in A
σ� B the superscript σ ⊆ C allows one to specify some

additional coordination constraints on the interaction pattern among the levels

Many-to-Many Information Flow Policies 167

Fig. 5. Security policies, graphically.

in A and B. The superscript d requires all entities in A to influence all the
entities in B directly. For instance, for the policy (1) we might want Alice and
Bob to influence Eve directly, with no delegation among them or to another
intermediary. This leads to the policy Π1 � Alice,Bob d� Eve depicted in Fig. 5.

In general the flow of information to all of the entities in B is just potential,
i.e., the information is made available to entities in B simultaneously, but it could
happen that after one entity in B acquired the information (some of) the others
get disabled. The superscript f , that stands for “fair” disclosure, prevents the
above to happen: whenever information flows to one of the entities in B, then it
must eventually flow to all other entities in B.

It is worth to remark that the information flowing to the entities in B need
not be the same since causality in our approach represents in general the transfer
of some information. Ensuring that the same information is being transferred
depends on the actual causal semantics under consideration.

In our previous examples, for policies (2) and (3) it is natural to require
fairness to forbid competition among Alice and Bob. This leads to the policies
Π2 and Π3 in Fig. 5. Observe that fairness constraints are superfluous when
there is only one security level in the target, like Eve in Π1. Notice that in policy
Π3, the absence of the “direct” constraint allows Eve to act as an intermediary.
A variant of Π3 without intermediary is Π4 � Alice,Bob

d,f� Alice,Bob, which
specifies a direct exchange of information between Alice and Bob.

4.2 Semantics of Many-to-Many Policies

In our setting, a security model is an event structure used to capture the structure
of computations and flows. Events correspond to actions of some security level.

Definition 6 (causal security model). Let L be a set of security levels. A
(causal) security model in L is a pair 〈E , λ〉 where E = 〈E,≤,#〉 is an event
structure and λ : E → L is a security assignment.

The security assignment λ maps each event to a security level and can be
lifted to sets of events: given X ⊆ E we let λX = {A ∈ L | ∃e ∈ X .λ(e) = A}.
For X ⊆ E and A ⊆ L we write X : A if |X| = |A| and λX = A. We write
e : A instead of {e} : {A}. The event structures of Figs. 1, 2 and 3a are security
models, where the security assignment corresponds to the principal annotations.

168 P. Baldan et al.

We next formalise in which sense a clause A
σ� B justifies a situation in

which we have sets of events X and Y such that X : A, Y : B and the events
in X cause the events in Y . We do this by introducing a semantic counterpart
of the relation σ� over sets of events. We first define some properties of sets
of events that are related to the coordination constraints. We say that a set of
events X ⊆ E is flat if [X) is a configuration and for every e, e′ ∈ X it holds
e �< e′. Notice that when X is flat, all events in X are enabled at [X). The
events in a flat set X may disable each other or there can be future events that
disable some of them but not the others. We say that X is fair if for all events
e, e′ ∈ X and event e′′ ∈ E, we have e#e′′ iff e′#e′′. Note that in this case, since
the events in X have the same conflicts and conflict is irreflexive, either all or
none of them is executable.

Definition 7 (relation
σ�). Let E = 〈E,≤,#〉 be an event structure and let

X,Y ⊆ E. We write

(i) X � Y if X < Y , and Y is flat;
(ii) X

d� Y if X � Y and X � Y ;

(iii) X
f� Y if X � Y and Y is fair;

(iv) X
d,f� Y if X

d� Y and X
f� Y .

In words, we write X � Y whenever each event in X is a cause for each event
in Y , and the set Y is flat, ensuring that [Y) is a configuration enabling all events
in Y .

We write X
d� Y when additionally X � Y , i.e., causality is direct, meaning

that delegation is not permitted.
Notice that when X � Y events in Y are all enabled at configuration [Y),

so that the possibility of getting information from X is granted to all elements
of Y , but once an event in Y is executed other events in Y could get disabled: it
may be the case that the events in Y disable each other or, more generally, they
could be in conflict with different events. The constraint X

f� Y , asking that Y
is fair, guarantees, instead, that if the information reaches one of the events in
Y it will eventually reach all of them, or, more formally, that any configuration
intersecting Y extends to a configuration including Y . Note that, in absence of
conflicts, the fairness constraint becomes inessential since it is always trivially
satisfied.

We can now define what it means for a security model to satisfy a policy.

Definition 8 (security). Let Π = 〈L , � 〉 be an information flow policy,
E = 〈E,≤,#〉 be an event structure, let 〈E , λ〉 be a security model in L . Given
X,Y ⊆ E and σ ⊆ C , we say that the clause A

σ� B ∈ Π allows X
σ� Y ,

written A
σ� B |= X

σ� Y if X : A, Y : B.
We say that 〈E , λ〉 satisfies Π or that 〈E , λ〉 is Π-secure, denoted 〈E , λ〉 |= Π,

if for all e, e′ ∈ E such that e � e′ there exist X,Y ⊆ E with e′ ∈ Y such that
X

σ� Y and A
σ� B |= X

σ� Y for some A
σ� B ∈ Π such that λ(e) ∈ A.

When λ is clear from the context we sometimes write E |= Π.

Many-to-Many Information Flow Policies 169

Intuitively, a security model satisfies a policy if any direct causality e � e′ is
part of a (possibly larger) interaction X

σ� Y justified by some clause A
σ� B of

the policy. We require e′ ∈ Y in order to ensure that the flow to e′ is influenced
by X : A (recall that X < Y) and thus by all levels in A. On the other hand,
event e is not necessarily in X since the information of level λ(e) that is required
to flow to all levels in B might have been provided by another cause of e′. Still,
since e is a cause of e′, it will be part of any computation involving e′, hence it
will coordinate with the events in X to enable e′. This is fundamental, e.g., to
implement a simultaneous disclosure asynchronously as we shall explain later.

Table 1. Models versus policies.

Π1 ∪ Π2 Π3 Π4

P1

P3 �
P2 � �
P4

P5 �
P6 �

Table 1 summarizes the satisfaction of policies by the protocols of our running
example. The double horizontal lines separate protocols without intermediaries
(P1,P3) from those with intermediaries (P2,P4,P5,P6), and the vertical double
lines separates policies with intermediaries (Π1∪Π2 and Π3) from policies with-
out intermediaries (Π4). We start discussing the scenarios with intermediaries.

The security model of Fig. 2b (Protocol P2) satisfies the policies Π1 ∪
Π2 and Π3 of Fig. 5. For example, the direct causality put〈secA〉@AE : A �

gather〈?sec1, ?sec2〉@AE,BE : E is justified by clause Alice,Bob d� Eve of pol-
icy Π1, by choosing X = {put〈secA〉@AE : A, put〈secB〉@BE : B} and Y =
{gather〈?sec1, ?sec2〉@AE,BE : E}. In words, the disclosure to Eve is allowed
since it is collectively made by Alice and Bob. The direct causalities between
the multicast of Eve and the receptions by Alice and Bob are justified by
the clauses in policies Π2 or Π3. In order to see this for the only clause of
Π2, observe that we can choose X = {scatter〈sec2, sec1〉@EA,EB : E} and
Y = {get〈?sec〉@EA : A, get〈?sec〉@EB : B}. In words, both message receptions
of Alice and Bob depend on Eve sending the secrets, and they cannot be disabled,
hence they have the same (i.e., no) conflicts. For the only clause of Π3 the situa-
tion is a bit more involved: the idea is to select Y as before and X to be the rest
of the events. Intuitively, Eve acts as a delegated intermediary: the submission of
the secrets by Alice and Bob influence their final receptions, indirectly through
the events of Eve.

Consider now the event structures in Fig. 6, which represent variants of the
protocols of our running example where Eve is used as an intermediary. They
can be seen as alternatives to the protocol P2 in Fig. 2b. Protocol P4 is like P2

170 P. Baldan et al.

Fig. 6. Secret exchange protocols P4 (left), P5 (center) and P6 (right).

but the intermediary does not scatter the secrets; these are instead combined in
a composite message and sent to a channel C thus creating a conflict between
Alice and Bob since both expect to extract the (combined) secrets from C. In
protocol P5, Eve sends the messages asynchronously with point-to-point opera-
tions, first to Alice and then to Bob. Finally, in P6, the reception of the secrets
is asynchronous, with point-to-point operations.

None of these variants satisfies policy Π1 ∪ Π2. For instance, no clause in
Π1 ∪ Π2 justifies the direct causality put〈(sec1, sec2)〉@C : E � get〈?sec〉@C : A
in P4 due to the conflict between get〈?sec〉@C : A and get〈?sec〉@C : B. In P5

the direct causalities from Eve’s put events to the get events of Alice and Bob
cannot be justified since there is no Eve-labelled event that is a direct cause for
both get events. Notice that such causalities could be justified if we drop the
directness constraints from the clauses since the reception of the messages by
Bob and Alice are causally dependent by the first put of Eve. Similarly, the direct
causalities from Alice and Bob’s put events to Eve’s get events in P6 cannot be
justified.

The situation is different for Π3. Indeed, both P5 and P6 satisfy the policy.
Intuitively, the asynchronous collection of the secrets in P6 that could not be
justified in Π2 can now be justified since Alice and Bob are allowed to talk to
Eve independently. On the other hand, the asynchronous disclosure by Eve in
P5 is justified since it also depends on both Alice and Bob without directness
constraint.

Similarly, it can be seen that among the protocols not using intermediaries,
namely P1 (Fig. 2a) and P3 (Fig. 3a), only P3 satisfies the policy Π4. Proto-
col P3 is indeed the only one that guarantees that Alice and Bob collectively
make their secrets available to Alice and Bob simultaneously. Indeed, protocol
P3 has a unique advantage over P1: when Alice (resp. Bob) gets the secrets,
(s)he is not ensured to be in competitive advantage. Clearly, protocol P1 does
not have this property. Therefore, P3 offers a solution to the simultaneous secret
exchange problem with guarantees based on causality rather than on bounds on
the amount of different information obtained by the parties (as e.g. in [8]).

Many-to-Many Information Flow Policies 171

4.3 Semantic Properties

We next present some properties of security policies. We first observe that aggre-
gating security levels preserves the satisfaction of policies.

Proposition 1 (soundness of level aggregation). Let 〈E , λ〉 be a security
model in L and ρ : L → L , a total mapping between security levels (possibly
merging some of them). If 〈E , λ〉 |= Π then 〈E , ρ ◦ λ〉 |= ρ(Π).

In the above definition ρ(Π) is the homomorphic lifting of ρ to policies, i.e.,
ρ(Π ∪ Π ′) = ρ(Π) ∪ ρ(Π ′), ρ(A σ� B) = ρ(A) σ� ρ(B) and ρ(∅) = ∅.

Secondly, we discuss how policies can be related according to their strictness.

Definition 9 (strictness relation). The strictness relation � ⊆ P × P is
defined as the least transitive and reflexive relation among policies closed under

Π � Π ′ Π ′
1 ⊆ Π1

Π ∪ Π1 � Π ′ ∪ Π ′
1

(Ctx)
σ′ ⊆ σ

A
σ′� B � A

σ� B

(Constr)

A = A
′ ∪ A

′′

{A
′ σ� B, A′′ σ� B} � A

σ� B

(SplitL)
|B| = 1

A
σ∪{f}� B � A

σ� B

(ConstrF)

B = B
′ ∪ B

′′

{A
σ� B

′, A σ� B
′′} � A

σ� B

(SplitR)
|A| = |B| = 1

A
σ∪{d}� B � A

σ� B

(ConstrD)

The intuition is the following. Rule Ctx says that the strictness relation is
preserved under context closure (i.e., if Π � Π ′ then Π ∪ Π ′′ � Π ′ ∪ Π ′′). In
addition, the relation is preserved even if the weaker policy Π is embedded in a
larger context since the addition of clauses to a policy makes it more permissive.
By rule SplitL if the source A of a clause is split as A

′ ∪A
′′ then the clause can

be relaxed by replacing it with two clauses having the same coordination con-
straints, the same targets and A

′ and A
′′, respectively, as sources. This weakens

the policy since any direct causality from an event of level A ∈ A to an event
of level B ∈ B that is justified by A

σ� B can be justified by A
′ σ� B or by

A
′ σ� B. Rule SplitR is analogous, but with the split performed on the target.

Rule Constr says that a clause can be relaxed by removing coordination con-
straints in σ. The last two rules ConstrF and ConstrD capture the fact that
some constraints are trivially satisfied when clauses have a special shape. More
precisely, given a clause A

σ� B with |B| = 1 the fairness constraint is vacuously
satisfied and this motivates rule ConstrF. If, additionally, |A| = 1 the same
applies to the directness constraint and this leads to rule ConstrD.

When Π � Π ′ we say that Π is less restrictive than Π ′. For instance, the
policies Π1 and Π2 of our example are less restrictive than Π1∪Π2, and Π1∪Π2

and Π3 are incomparable.
An interesting result is that the strictness relation � is sound and complete

with respect to policy satisfaction.

Proposition 2 (� is sound and complete). Let Π = 〈L ,�〉,Π ′ = 〈L ,�′〉
be two policies. The following holds

172 P. Baldan et al.

(i) if Π ′ � Π then, for all models 〈E , λ〉 in L , 〈E , λ〉 |= Π implies 〈E , λ〉 |= Π ′;
(ii) if for all models 〈E , λ〉 in L , 〈E , λ〉 |= Π implies 〈E , λ〉 |= Π ′, then Π ′ � Π.

By soundness, whenever Π � Π ′ � Π, the policies Π and Π ′ are equivalent,
i.e., they are satisfied by exactly the same models. Syntactically different policies
can be equivalent because they have clauses that differ for constraints which are
vacuosly satisfied (see rules ConstrF and ConstrD). Moreover, equivalent
policies can differ for the presence of clauses which are useless because they are
subsumed by others (e.g., if a policy includes the clauses A

σ� B, and A
′ σ� B,

the addition of a clause A ∪ A
′ σ� B produces an equivalent policy).

It can be proved that the partial order induced by the preorder (P,�) is a
complete lattice. The (equivalence class of the) policy {(A,C ,A) | A ∈ L } is the
top element (the most restrictive policy, which admits flows within individual
security levels only), and (the equivalence class of) L × ∅ × L is the bottom
element (the most permissive policy, which accepts all flows).

It is interesting to observe that the most restrictive policy satisfied by a
security model does not exist in general. In fact, in order to determine such
policy the idea could be to start with the most permissive policy, allowing for
all binary flows, and keep using the rules (by joining or removing clauses, or
adding coordination constraints) in order to restrict it until no more rules can
be applied. This works, but the policy obtained is not uniquely determined, not
even up to equivalence. For example, consider the security model M on the left
of the figure below.

a :A b :B

c :C

��

�����
�

a′ :A a :A b :B

c :C
����

��
��

�� ����
��

aA b :B

c :C
����

��

and the policies Π1 = (A,B � C), (A � B) and Π2 = (A � B), (B � C).
Clearly, M satisfies both Π1 and Π2. Such policies are incomparable with respect
to � (none of them can be obtained from the other by removing or joining classes,
and indeed event structures can be found that satisfy one of them but not the
other like those at the middle and the right of the figure above). Hence Π1 and
Π2 are distinct minimal policies satisfied by model M: the most restrictive policy
satisfied by M does not exist.

4.4 Decidability on Regular Trace Event Structures

The event structure associated with a system exhibiting a cyclic behaviour is
infinite, since events represent “occurrences” of computational steps. Neverthe-
less, we can show that policy satisfaction is decidable once we focus on regular
trace event structures [24], a class of “effectively represented” event structures
enjoying suitable regularity properties. This result relies on the observation that
policy satisfaction can be expressed as a first order property and first order logic
(FOL) is known to be decidable on regular trace event structures [12].

Many-to-Many Information Flow Policies 173

Roughly speaking, for regular trace event structures dependencies are
required to be induced by a finite labelling, endowed with an independence rela-
tion. More precisely, recall that a trace alphabet consists of a pair M = 〈Σ, I〉
where Σ is a finite label alphabet and I ⊆ Σ ×Σ is an irreflexive relation called
the independence relation. An M -labelled event structure is an event structure
E , with a labelling function ξ : E → Σ satisfying (1) if e#μe′ then ξ(e) �= ξ(e′);
(2) if e� e′ or e#μe′ then (ξ(e), ξ(e′)) �∈ I; and (3) if (ξ(e), ξ(e′)) �∈ I then e ≤ e′

or e#e. Conditions (2) and (3) ensure that the concurrency relation of the event
structure (unordered events that are not in conflict) conforms to the indepen-
dence relation of M . Condition (1) asks that the Σ-labelled transition system
associated with E is deterministic. In addition, as in [12], we require the regular-
ity of the set of (labelled) sequences of execution from the empty configuration
in the event structure, i.e., of the set seq(E) = {σ ∈ Σ∗ | ∅ σ−→∗

C in TS (E)}.

Definition 10 (regular trace event structure). An event structure E is
regular trace if it is M -labelled for some trace alphabet M = 〈Σ, I〉 and seq(E) ⊆
Σ∗ is a regular language.

When we need to make the trace alphabet explicit, we say that the event struc-
ture E is M -regular trace. The class of regular trace event structures is quite
general. In [23] it has been shown to coincide with the class of event structures
associated with finite safe Petri nets by the unfolding construction [16].

We first instantiate the notion of regularity in the setting of security models.

Definition 11 (regular trace model). A security model 〈E , λ〉 in L is reg-
ular trace if there exists a trace alphabet M = 〈Σ, I〉 such that E is M -regular
trace via the labelling ξ : E → Σ and λ = λ′ ◦ ξ for some λ′ : Σ → L.

The encoding of policy satisfaction as a FOL sentence crucially relies on the
fact that, in order to check whether a causal dependency a � b is justified by
some clause A

σ� B, we need to find sets of events X : A, Y : B with bounded
cardinality |X| = |A| and |Y | = |B|. Then decidability follows from [12].

Proposition 3 (decidability on regular trace security models). Let Π =
〈L , � 〉 be an information flow policy and let 〈E , λ〉 be a regular trace security
model in L . The decision problem 〈E , λ〉 |= Π is decidable.

5 Non-interference

We discuss in this section how our causality-based notion of information flow
compares with notions of information flow based on non-interference for con-
current systems. The key differentiating factor resides in the semantic model:
causal semantics are normally finer than interleaving semantics. The paradig-
matic example is given by processes a | b and a.b + b.a which are equated in an
interleaving world but are different from a causal point of view. Hence we would
expect our notion of security, when confined to binary policies, to be more restric-
tive than those based on interleaving semantics. However, this is not always the

174 P. Baldan et al.

case mainly because observational non-interference approaches capture flows of
information due to conflicts (i.e., branching), which are instead not considered
in our notion of security. We will also briefly discuss how our approach could be
amended to consider conflict-related flows.

Consider, for example Strong Non-deterministic Non-Interference (SNNI) [3,
6,7]. Informally, a system S is SNNI whenever S\H (i.e., the low level system in
isolation) and S/H (i.e., the entire system where high H actions are unobservable)
are weak trace equivalent. Let us say that an event structure E is SNNI whenever
its transition system TS (E) is SNNI. Then it is easy to see that {L � H}-security
is strictly finer than SNNI. The easiest case is to show that SNNI does not imply
{L � H}-security. The counterexample is the event structure E0 below:

l : L h : H

l ′ : L
��

∅
{l} {h}

{l, h, l′}

l
�����

� h
			

	

l��

∅
{l}

{c}

l
�����

� ∅
{l} {h}

{l, h, l′}

l
�����

� τ
			

	

l��

E0 TS(E0) TS(E0)\H TS(E0)/H

Clearly E0 is SNNI since the set of traces of both E0\H and E0/H is {ε, l}, but
E0 is not {L � H}-secure since the direct causality h � l′ cannot be justified.

On the other hand, {L � H}-security implies SNNI: if E0 is {L � H}-secure
then it contains no direct causality e�e′ with e : L and e′ : H, and hence all traces
are such that high transitions are never necessarily followed by low transitions.
Hence, the traces of E0\H and the traces of E0/H coincide.

Observational non-interference properties are expressive enough to capture
information leakages arising from deadlocks and divergence. Particularly popular
in this tradition are notions based on weak bisimulation, like the Bisimulation-
based SNNI (BSNNI) and the finer Bisimulation-based Non-Deducibility on
Compositions (BNDC) [6,7]. BSNNI is like SNNI but with weak bisimulation
equivalence instead of trace equivalence. Note that BSNNI and {L � H}-
security are incomparable. First, it is easily seen that {L � H}-security does
not imply BSNNI.

l : L h : H

c

∅
{l} {h}

l
�����

� h
			

	 ∅
{l}

l
�����

� ∅
{l} {h}

l
�����

� τ
			

	

E1 TS(E1) TS(E1)\H TS(E1)/H

The event structure E1 above is {L � H}-secure (since there is no direct causal-
ity between l and h) but is not BSNNI, since TS (E1)\H and TS (E1)/H are not
weak bisimilar. Informally, the low part of the system can deduce that h occurred
by observing that l is not executable. Vice versa, one can show that BSNNI does
not imply {L � H}-security. Consider the event structure E2 below.

Many-to-Many Information Flow Policies 175

l : L h : H

h ′ : H l ′ : L
�� ��

∅
{l} {h}

{l, h′} {h, l′}

l
�����

� h
			

	

h�� l��

∅
{l}

l
�����

�
∅

{l} {h}

{l, h′} {h, l′}

l
�����

� τ
			

	

τ�� l��

E2 TS(E2) TS(E2)\H TS(E2)/H

Clearly, E2 is not {L � H}-secure since the direct causality h� l′ is not allowed.
On the other hand, E2 is BNNI since TS (E2)\H and TS (E2)/H are weak bisimilar.

For similar reasons, our notion of security is also incomparable to other obser-
vational notions of non-interference based on transition systems such as BNDC
and those that extend [18] by requiring the source and the target states of every
high transition to be (low) trace equivalent [1,7,9].

6 Related Work

Logic-based languages have been investigated as flexible formalisms to express
security properties. We mention, e.g., hyperproperties [5] and their logics (e.g. [4,
15]). Our policies can be easily integrated in logic-based languages to obtain a
richer policy language. For instance, the simplest solution is to combine our
policies by using standard propositional operators.

Another example is Paralocks [2], a language for specifying role-based infor-
mation flow policies. In Paralocks a data item x can be annotated with clauses
of the form Σ → a, specifying the conditions Σ under which x can flow into
actor a. Such policies can be related to many-to-one policies in our approach,
i.e., of the form A1 . . .Am � B1. It less clear how many-to-many policies, i.e.,
policies stating that data can flow to an agent a if it also flows to an agent b,
could be expressed in Paralocks.

In addition to FOL and MSO for event structures [12], our work can be
related to other logics motivated by causality. An example is Event Order Logic
(EOL) of [10], a logic based language used to specify boolean conditions on the
occurrence of events, with applications to safety analysis. EOL is inspired by
Linear-time Temporal Logic (LTL) and introduces ad-hoc operators to specify
the order of events. The more relevant operator is ψ1 ∧. ψ2 which allows one
to express that the events described by ψ1 occur before those described by ψ2.
Hence, a policy A1 . . .Am � B1 . . .Bn can be related to an EOL formula A1 ∨
. . . ∨ Am ∧. B1 ∨ . . . ∨ Bn. However, EOL does not feature operators to express
some of our coordination constraints.

7 Conclusion

We have presented a novel approach to many-to-many information flow policies
that allows one to specify patterns of coordination among several security levels.
In particular, each clause in a policy can specify that a certain set of levels is

176 P. Baldan et al.

allowed to cooperate to provide the flow collectively, and possibly simultane-
ously to another set of security levels. We believe that the approach can turn
useful in several scenarios including secret exchange protocols, security architec-
tures and systems with controlled forms of declassification. We have provided
decidability results and discussed the relation to some traditional notions of
security, including observational non-interference and language-based security.
We are currently investigating the development of verification and enforcement
mechanisms for concrete specification languages, like programming languages
and Petri nets. We are also investigating extensions of our work in several direc-
tions, including how to suitably deal with indirect flows of information due to
conflicts, and how to deal with the transfer of specific values.

References

1. Bossi, A., Piazza, C., Rossi, S.: Modelling downgrading in information flow security.
In: Proceedings of CSFW 2004, p. 187. IEEE Computer Society (2004)

2. Broberg, N., Sands, D.: Paralocks: role-based information flow control and beyond.
In: Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of POPL 2010, pp. 431–
444. ACM (2010)

3. Busi, N., Gorrieri, R.: Structural non-interference in elementary and trace nets.
Math. Struct. Comput. Sci. 19(6), 1065–1090 (2009)

4. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

5. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

6. Focardi, R., Gorrieri, R.: A taxonomy of security properties for process algebras.
J. Comput. Secur. 3(1), 5–34 (1995)

7. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Hei-
delberg (2001). doi:10.1007/3-540-45608-2 6

8. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). doi:10.1007/3-540-49162-7 5

9. Gorrieri, R., Vernali, M.: On intransitive non-interference in some models of con-
currency. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp.
125–151. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23082-0 5

10. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality com-
putation. IJCCBS 4(2), 119–143 (2013)

11. Li, X., Nielson, F., Nielson, H.R., Feng, X.: Disjunctive information flow for com-
municating processes. In: Ganty, P., Loreti, M. (eds.) TGC 2015. LNCS, vol. 9533,
pp. 95–111. Springer, Cham (2016). doi:10.1007/978-3-319-28766-9 7

12. Madhusudan, P.: Model-checking trace event structures. In: Proceedings of LICS
2013, pp. 371–380. IEEE Computer Society (2003)

13. Mantel, H., Sands, D.: Controlled declassification based on intransitive noninterfer-
ence. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 129–145. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30477-7 9

http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/3-540-45608-2_6
http://dx.doi.org/10.1007/3-540-49162-7_5
http://dx.doi.org/10.1007/978-3-642-23082-0_5
http://dx.doi.org/10.1007/978-3-319-28766-9_7
http://dx.doi.org/10.1007/978-3-540-30477-7_9

Many-to-Many Information Flow Policies 177

14. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978)

15. Milushev, D., Clarke, D.: Towards incrementalization of holistic hyperproperties.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 329–348.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28641-4 18

16. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. In:
Kahn, G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70, pp. 266–284.
Springer, Heidelberg (1979). doi:10.1007/BFb0022474

17. Okamoto, T., Ohta, K.: How to simultaneously exchange secrets by general assump-
tions. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., (eds.), CCS 1994,
Proceedings of the 2nd ACM Conference on Computer and Communications Secu-
rity, pp. 184–192. ACM (1994)

18. Rushby, J.: Noninterference, transitivity, and channel-control security policies.
Technical report, Stanford Research Institute (1992)

19. Rushby, J.: Separation and integration in MILS (the MILS constitution). Technical
report, Computer Science Laboratory SRI International (2008)

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

21. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

22. Selective disclosure and insider trading. Technical report. U.S. Securities and
Exchange Commission (SEC), August 2000

23. Thiagarajan, P.: Regular trace event structures. Technical Report RS-96-32,
BRICS (1996)

24. Thiagarajan, P.S.: Regular event structures and finite petri nets: a conjecture. In:
Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 244–253. Springer, Heidelberg (2002). doi:10.
1007/3-540-45711-9 14

25. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

http://dx.doi.org/10.1007/978-3-642-28641-4_18
http://dx.doi.org/10.1007/BFb0022474
http://dx.doi.org/10.1007/3-540-45711-9_14
http://dx.doi.org/10.1007/3-540-45711-9_14
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31

Modelling the Dynamic Reconfiguration
of Application Topologies, Faults Included

Antonio Brogi, Andrea Canciani, and Jacopo Soldani(B)

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. Fault-aware management protocols permit modelling the
management of application components (including potential faults) and
analysing the management behaviour of a multi-component application.
The analysis is driven by the application topology, and it assumes many-
to-1 dependencies among application components, i.e. each requirement
of a component can be satisfied by exactly one other component.

In this paper we extend fault-aware management protocols to account
for many-to-many dependencies among components, i.e. different appli-
cation components can be used to satisfy a requirement of another com-
ponent. The extension also accounts for dynamic changes in the topology,
hence enabling the analysis of the management behaviour of dynamically
reconfigurable multi-component applications.

1 Introduction

How to automatically manage composite applications is currently one of the
major concerns in enterprise IT [4,20]. Composite applications typically integrate
various heterogeneous components, like in microservice-based applications [15],
and the deployment, configuration, enactment, and termination of the compo-
nents forming a composite application must be suitably coordinated, by taking
into account all dependencies occurring among application components.

It is worth noting that, while coordinating the management of a composite
application, we must “enable failure” [19]. Namely, we must be aware that the
components forming a composite application may fail, and we should be able to
react to such failures by restoring the desired application configuration.

A convenient way to represent the structure of a composite application is
a topology graph [5], whose nodes represent the application components, and
whose arcs represent the dependencies occurring among such components. Each
topology node can be associated with the requirements of a component, the
capabilities it features, and the operations to manage it. Inter-node dependencies
associate the requirements of a node with capabilities featured by other nodes.

In [7] we showed how the management behaviour of topology nodes can be
modelled by fault-aware management protocols, specified as finite state machines

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 178–196, 2017.
DOI: 10.1007/978-3-319-59746-1 10

Modelling the Dynamic Reconfiguration of Application Topologies 179

whose states and transitions are associated with conditions defining the consis-
tency of a node’s states and constraining the executability of its management
operations. Such conditions are defined on the requirements of a node, and each
requirement of a node has to be fulfilled by a capability of another node. Fault-
aware management protocols also permit modelling how a node behaves when
a fault occurs (viz., when a node is assuming a requirement to be satisfied by a
capability, and such capability stops being provided by the corresponding node).
The management behaviour of a composite application can then be easily derived
by composing the management protocols of its nodes according to the depen-
dencies defined in its topology.

Fault-aware management protocols (as per their definition in [7]) assume
many-to-1 dependencies among components. Namely, while a capability can be
used to satisfy multiple requirements, a requirement can be satisfied only by
one capability. This is a quite strict assumption, which impedes modelling and
analysing applications where a requirement of a node can be satisfied by differ-
ent capabilities offered by different nodes (e.g., a microservice-based application
where a microservice requires a certain API, and alternative implementations of
such an API are offered by different microservices).

In this paper we present a proper extension of fault-aware management pro-
tocols that relaxes the above mentioned assumption, allowing application topolo-
gies to have many-to-many dependencies among components. More precisely, we
not only allow a capability to be connected to multiple requirements (viz., the
set of requirements it can satisfy), but also a requirement to be connected to
multiple capabilities (viz., the set of capabilities that can be used to satisfy such
requirement). Whenever a node needs one of its requirements, any capability
connected to such requirement can be used to satisfy it, and faults are raised
whenever a node stops providing a capability actually satisfying a requirement.
The extension also permits indicating whether the actual binding of a require-
ment can be dynamically changed while executing a management operation or
while handling a pending fault, hence allowing to dynamically reconfigure the
topology of an application.

We then illustrate how the management behaviour of a composite appli-
cation can be derived by composing the management protocols of its nodes
according to the static dependencies defined in its topology. We also show how
this permits automating various useful analyses, like determining whether a plan
orchestrating the management of a composite application is “valid”, which are
its effects (e.g., which capabilities are available after executing it, or whether
it can dynamically reconfigure an application), and finding management plans
achieving specific goals (e.g., reaching a desired application configuration, or
dynamically reconfiguring an application to recover it from a fault).

The rest of the paper is organised as follows. Section 2 illustrates a scenario
motivating the need for extending fault-aware management protocols to account
for many-to-many dependencies in application topologies. Such extension is then
formalised in Sect. 3. Section 4 shows how to automatically compose management
protocols to analyse and automate the management of a composite application

180 A. Brogi et al.

in presence of faults. Finally, Sects. 5 and 6 discuss related work and draw some
concluding remarks, respectively.

2 Motivating Scenario

Consider the (toy) microservice-based application in Fig. 1, which is composed by
a JavaScript-based microservice acting as web-based frontend of the application,
two alternative and interchangeable implementations of a backend microservice,
and a microservice hosting a Mongo database. The frontend microservice exposes
a requirement endp, as it needs to know which is the endpoint where to invoke
the RESTful api offered by the backend microservices. These in turn expose a
requirement db, as they need to set up a persistent connection to the microservice
hosting a Mongo database.

Fig. 1. Motivating example.

Suppose that we wish to orchestrate the deployment of the whole application
with a dedicated management plan. Since the represented application topology
does not include any management protocol, one may produce invalid manage-
ment plans. For instance, while Fig. 2 illustrates three seemingly valid plans, only
(a) is a valid plan. Plan (b) is not valid since the operation config of backend1
must be executed before actually starting the node (to provide backend1 with
the necessary information to set up the connection with the Mongo database).
Plan (c) is not valid either, since database must be running before backend1 and
backend2 can start (as this also results in connecting them to the database).

Suppose now that all microservices have been deployed, started, and properly
connected (e.g., by executing plan (a) in Fig. 2), with frontend being configured
to invoke the api offered by backend2. What happens if the operation stop of
backend2 is executed? The microservice backend2 is stopped, and this may gen-
erate a fault in frontend, as it becomes unable to serve its clients simply because
the api that it remotely invokes is not offered anymore by backend2. A simple yet
effective solution would be to dynamically reconfigure the microservice frontend

Modelling the Dynamic Reconfiguration of Application Topologies 181

Fig. 2. Example of deployment plans. Empty circles denote the start of plans, boxes
represent the execution of management operations, “plus” operators are used to start
and terminate parallel flows, and filled circles denote the end of plans.

to invoke the api offered by backend1. Even worse is the case when database is
stopped, as this causes a fault in backend1 and backend2, which become unable
to serve their clients, and this in turn causes a fault also in frontend.

Both the above mentioned cases fail because a microservice stops providing
its capabilities while other microservices are relying on them to continue to
work. In both cases we would like to recover our microservice-based application,
by automatically determining a valid reconfiguration plan capable of restoring
the desired application configuration.

In summary, while the validity of management plans can be manually veri-
fied, this is a time-consuming and error-prone process, especially in microservice-
based applications [19]. In order to enable the automated verification of the valid-
ity of plans, as well as the automated generation of valid plans reaching desired
application configurations, we need an explicit representation of the management
protocols of the nodes appearing in the topology of a composite application. Such
management protocols have to take into account the possibility of faults to occur,

182 A. Brogi et al.

and should permit reacting to them to recover the desired configuration of an
application, e.g., by dynamically reconfiguring the inter-connections among the
components of an application.

3 Fault-Aware Management Protocols

Most of the available languages for modelling composite applications permit
describing the states, requirements, capabilities, and management operations
of the nodes building the topology of a composite application (e.g., enterprise
topology graphs [5], TOSCA [24]). Fault-aware management protocols [7] permit
specifying the management behaviour of the nodes composing an application, i.e.
the behaviour of a node’s management operations, their relations with states,
requirements, and capabilities, and how a node reacts to the occurrence of a
fault.

However, fault-aware management protocols assume many-to-1 dependencies
among the nodes forming a topology (i.e., each requirement of a node is con-
nected to exactly one capability of another node, while each capability of a node
can be connected to multiple requirements of other nodes). We hereby present
an extension of fault-aware management protocols that relaxes such assumption,
by also allowing to specify whether the capability used to satisfy a requirement
may be dynamically changed (by choosing another capability connected to it in
the application topology).

Let N be a node modelling an application component, whose finite sets of its
states, requirements, capabilities, and management operations are denoted by
SN , RN , CN , and ON , respectively. Fault-aware management protocols permit
modelling the management behaviour of N by describing (i) the order in which
the management operations of N can be executed, (ii–iii) whether and how N
depends on other nodes providing the capabilities that satisfy its requirements,
and (iv) how N reacts when a fault occurs. More precisely:

(i) The order in which the operations of N can be executed is described by
a transition relation τN specifying whether an operation o ∈ ON can be
executed in a state s ∈ SN , and which state is reached by executing o in s.

(ii) The states and transitions of N can be associated with (possibly empty)
sets of requirements to indicate that the capabilities satisfying them are
assumed to be provided by the corresponding nodes.
– The requirements associated with a state s ∈ SN specify that the capabil-

ities satisfying them must (continue to) be offered by the corresponding
nodes in order for N to (continue to) work properly.

– The requirements associated with a transition t ∈ τN specify that the
capabilities satisfying them must be provided by the corresponding nodes
to enable the execution of t.

(iii) Each state s ∈ SN is also associated with the (possibly empty) set of capa-
bilities provided by N in s.

Modelling the Dynamic Reconfiguration of Application Topologies 183

(iv) N is affected by a fault whenever it is in a state assuming some require-
ment(s) to be satisfied, and some other node stops providing the capabilities
satisfying such requirement(s). The explicit fault handling of N is described
by a transition relation ϕN specifying how N changes its state from s to s′

(with s, s′ ∈ SN) when some of the requirements it assumes in s stop being
satisfied.

Definition 1 (Fault-aware management protocols). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node, where SN , RN , CN , and ON are the finite sets
of its states, requirements, capabilities, and management operations. MN =
〈sN , ρN , χN , τN , ϕN 〉 is a finite state machine defining the fault-aware man-
agement protocol of N , where:

– sN ∈ SN is the initial state,
– ρN : SN → 2RN is a function indicating which requirements must hold in

each state s ∈ SN ,
– χN : SN → 2CN is a function indicating which capabilities of N are offered

in each state s ∈ SN ,
– τN ⊆ SN ×2RN ×2RN ×ON ×SN is a set of quintuples modelling the transition

relation, i.e. 〈s, P,Δ, o, s′〉 ∈ τN denotes that in state s, and if the require-
ments in P are satisfied (with those in Δ ⊆ P potentially being satisfied by a
different capability after the transition), o is executable and leads to state s′,
and

– ϕN ⊆ SN × 2RN × SN is a set of triples modelling the explicit fault handling
for a node, i.e. 〈s,Δ, s′〉 ∈ ϕN denotes that the node will change its state
from s to s′ if a subset of the requirements in (ρ(s) − ρ(s′)) ∪ Δ stops being
satisfied (with the requirements in Δ potentially being satisfied by a different
capability after the transition)1.

Remark. Note that we permit specifying which requirements may be satisfied
by different capabilities after a transition to enable dynamic reconfiguration
(as we will see in Sect. 4). Intuitively, for each requirement r that is assumed
to hold in a given application configuration, only one among the capabilities
connected to r is actually used to satisfy r (provided that the corresponding node
is actually offering such capability). A transition 〈s, P,Δ, o, s′〉 ∈ τN ensures that
the capabilities used to satisfy the requirements in P −Δ continue to be the same
after the transition, while the capabilities used to satisfy the requirements in Δ
may be dynamically changed. Similarly, a transition 〈s,Δ, s′〉 ∈ ϕN permits
dynamically changing the capabilities used to satisfy the requirements in Δ. �	
Example 1. Figure 3 shows the management protocols of the nodes composing
our motivating scenario (thick arrows represent τ , dashed arrows represent ϕ).

Consider, for instance, the management protocol Mfrontend, which describes
the management behaviour of the microservice frontend. In states uninstalled

1 A transition 〈s, Δ, s′〉 ∈ ϕN permits handling the fault of a requirement r either by
leading to a state s′ not assuming r any more (when r ∈ ρ(s)−ρ(s′)), or by changing
its actual binding (when r ∈ Δ).

184 A. Brogi et al.

Fig. 3. Example of fault-aware management protocols.

Modelling the Dynamic Reconfiguration of Application Topologies 185

(initial) and installed it does not require nor provide anything. The same does
not hold in the running state, where frontend assumes the requirement endp to
(continue to) be satisfied. If the requirement endp is faulted, and there exists
a different capability (with respect to that currently bound to endp) that can
satisfy it, it is possible to remain in state running by executing the fault-handling
transition dynamically changing the actual binding of endp. If instead there is
no capability capable of satisfying endp, then the microservice frontend goes
back to its state installed. Finally, the protocol specifies that operations install,
and uninstall do not need any requirement to be performed, while start and stop
require endp to be satisfied.

Mbackend1 is another example of management protocol worth looking at. It
indeed includes a state offering a capability (viz., backend1 is offering its capabil-
ity api only in the state running), and a transition to dynamically reconfigure the
actual binding of a requirement (viz., backend1 can change the actual binding of
the requirement db by executing the operation config in state configured). �	

In the following, we assume fault-aware management protocols to be well-
formed, deterministic, and race-free [6,7]. Also, as the management protocol of
a node may leave unspecified how it will behave in case some requirements stop
being fulfilled in some states, we assume that management protocols have been
automatically completed by adding transitions for all unhandled faults2.

4 Analysing the Management of Composite Applications

In this section we illustrate how to analyse and automate the management of
composite applications in a fault-resilient manner, by also taking that the appli-
cation topology may be dynamically reconfigured while the application is man-
aged. More precisely, we show how to automatically determine the management
behaviour of an application by composing the protocols of its nodes accord-
ing to the application topology (Sect. 4.1). We then describe how this permits
automating various useful analyses, like checking the validity of a management
plan, which are its effects, or how to automatically determine a valid manage-
ment plan reaching a desired application configuration (Sect. 4.2).

4.1 Management Behaviour of an Application

We hereby show how to determine the fault-aware management behaviour of
an application by composing the fault-aware management protocols of its com-
ponents. In doing so, we exploit some shorthand notations to denote generic
composite applications, the nodes in their topology, and the connections among
the requirements and capabilities of such nodes.

2 The procedure to automatically complete management protocols is discussed in [7].
Essentially, they are completed by adding transitions for all unhandled faults, all
leading to a “sink” state that requires and provides nothing.

186 A. Brogi et al.

Definition 2 (Composite application). We denote with A = 〈T,B〉 a
generic composite application, where T is the finite set of nodes in the appli-
cation topology3, and where inter-node connections are described by a binding
relation

B ⊆ RT × CT , with RT =
⋃

N∈T

RN and CT =
⋃

N∈T

CN ,

which associates each requirement of each node with the capabilities that can be
used to satisfy it.

Formally, the semantics of the management protocols of a composite appli-
cation A = 〈T,B〉 can be defined by a labelled transition system over configura-
tions that denote the states of the nodes in T and the association between each
requirement assumed by a node in T and the capability of another node in T
that is actually used to satisfy such requirement. Intuitively, 〈G, b〉 o→A〈G′, b′〉 is
a transition denoting that operation o can be executed (on a node) in A when
the “global state” of A is G and the “actual binding” among requirements and
capabilities is b, making A evolve into a new global state G′ with a new actual
binding b′. We next formally define the notions of global state and actual binding
for a composite application.

The global state G of an application A stores the current state of each of its
nodes, while the actual binding b of an application A stores the current associ-
ation between the requirements assumed by the nodes in A and the capabilities
used to satisfy them.

Definition 3 (Global state). Let A = 〈T,B〉 be a composite application, and
let N = 〈SN , RN , CN , ON ,MN 〉. A global state G of A is a set of states such
that:

G ⊆
⋃

N∈T

SN ∧ ∀N ∈ T.∃!s ∈ G : s ∈ SN .

Notation 1. Let G be a global state of a composite application A = 〈T,B〉. We
denote with ρ(G) the set of requirements that are assumed to hold by the nodes
in T when A is in G, and with χ(G) the set of capabilities that are provided by
such nodes in G. Formally:

ρ(G) =
⋃

N∈T

{ρN (s) | s ∈ G ∧ s ∈ SN}, and

χ(G) =
⋃

N∈T

{χN (s) | s ∈ G ∧ s ∈ SN}.

An actual binding is a partial function from the requirements RT to the capa-
bilities CT of an application A = 〈T,B〉 which, informally speaking, defines a
“subset” of the binding relation B.
3 For simplicity, and without loss of generality, we assume that the names of states,

requirements, capabilities, and operations of a node are all disjoint. We also assume
that, given two different nodes in a topology, the names of their states, requirements,
capabilities, and operations are disjoint.

Modelling the Dynamic Reconfiguration of Application Topologies 187

Definition 4 (Actual binding). Let A = 〈T,B〉 be a composite application.
An actual binding b of A is a partial function from the requirements in T to the
capabilities in T , which is defined as follows:

b : RT → CT ∧ ∀r ∈ RT : (b(r) = ⊥ ∨ 〈r, b(r)〉 ∈ B).

We now define a function f to denote the set of pending faults in an applica-
tion A when its global state is G and when its actual binding is b. Intuitively, the
faults that are pending in A are the requirements assumed in G that (according
to b) are bound to capabilities that are not provided in G or not bound at all.

Definition 5 (Pending faults). Let A = 〈T,B〉 be a composite application.
The function f denotes the set of pending faults in A:

f(G, b) = {r ∈ ρ(G) | b(r) /∈ χ(G) ∨ b(r) = ⊥}
where G is a global state of A, and b is an actual binding of A.

We also define a function hN to denote the set of settling handlers for handling
all the faulted requirements of a node N that are pending in f(G, b). Such
handlers are all fault handling transitions 〈s,Δ, s′〉 ∈ ϕN such that:

– s ∈ G, i.e. 〈s,Δ, s′〉 is executable from the current state s of N in G,
– ρN (s′) − Δ ⊆ ρN (s) − f(G, b), i.e. 〈s,Δ, s′〉 handles all faulted requirements

of N (as its target state s′ is not assuming any of the requirements faulted
in f(G, b) but those that can be dynamically rebound), and

– ∀r ∈ Δ.∃c ∈ χ(G) : 〈r, c〉 ∈ B, i.e. for each requirement r that can be
dynamically rebound by 〈s,Δ, s′〉, there exists a capability c that is actually
offered in G and that is capable of satisfying r.

Definition 6 (Settling handlers). Let A = 〈T,B〉 be a composite application,
and let G and b be a global state and an actual binding of A, respectively. Let
N = 〈SN , RN , CN , ON ,MN 〉 be a node in T , with MN = 〈sN , ρN , χN , τN , ϕN 〉.
The function hN denotes the set of settling handlers for the faults pending in
f(G, b) and affecting N :

hN (G, b) = {〈s,Δ, s′〉 ∈ ϕN | s ∈ G ∧
ρN (s′) − Δ ⊆ ρN (s) − f(G, b) ∧
∀r ∈ Δ.∃c ∈ χ(G) : 〈r, c〉 ∈ B }

The management behaviour of a composite application A = 〈T,B〉 is defined
by a labelled transition system over pairs denoting the global state and actual
binding of A. The transition system is characterised by two inference rules, (op)
for operation execution and (fault) for fault propagation. The former permits
executing a management operation o on a node N ∈ T only if there are no
pending faults and all the requirements needed by N to perform o are satisfied
(by the capabilities provided by other nodes in T). The latter defines how to
execute settling handlers when there are pending faults.

188 A. Brogi et al.

Example 2. Consider again the application in our motivating scenario (Sect. 2),
and suppose that it is in the following global state G (Definition 3):

frontend.running backend1.configured

backend2.running database.running

Suppose also that the actual binding b of the application (Definition 4) is the
following:

b(frontend.endp) = backend1.api

b(backend1.db) = database.db

b(backend2.db) = database.db

In the above situation, the set of pending faults f(G, b) (Definition 5) is the
following:

frontend.endp

The set of settling handlers hfrontend(G, b) (Definition 6) for the above pending
fault is the following:

〈frontend.running, {frontend.endp}, frontend.running〉
〈frontend.running, {}, frontend.installed〉

�	
Definition 7 (Management behaviour of a composite application). Let
A = 〈T,B〉 be a composite application, and let N = 〈SN , RN , CN , ON ,MN 〉 with
MN = 〈sN , ρN , χN , τN , ϕN 〉. The management behaviour of A is modelled by
a labelled transition system whose configurations are pairs 〈G, b〉, where G is a
global state of A and b is an actual binding for A, and whose transition relation
is defined by the following inference rules:

f(G, b) = ∅ s ∈ G 〈s, P,Δ, o, s′〉 ∈ τN G′ = G − {s} ∪ {s′}
∀r ∈ ρ(G) : r /∈ Δ ⇒ b′(r) = b(r) ∀r ∈ ρ(G′) : 〈r, b′(r)〉 ∈ B

∀r ∈ P : b′(r) ∈ χ(G) ∧ 〈r, b′(r)〉 ∈ B

〈G, b〉 o→〈G′, b′〉
(op)

f(G, b) �= ∅ s ∈ G 〈s,Δ, s′〉 ∈ hN (G, b) G′ = G − {s} ∪ {s′}
∀r ∈ ρ(G) : r /∈ Δ ⇒ b′(r) = b(r) ∀r ∈ ρ(G′) : 〈r, b′(r)〉 ∈ B

∀r ∈ Δ : b′(r) ∈ χ(G) ∧ 〈r, b′(r)〉 ∈ B
∀〈s, , s′′〉 ∈ hN (G, b) : ρ(s′′) ⊆ ρ(s′)

〈G, b〉 ⊥→〈G′, b′〉
(fault)

Modelling the Dynamic Reconfiguration of Application Topologies 189

The (op) rule defines how the global state of a composite application is
updated when a node N performs a transition 〈s, P,Δ, o, s′〉 ∈ τN . Such transi-
tion can be performed if there are no pending faults (viz., f(G, b) = ∅), and if
there exists a new actual binding b′ such that:

– ∀r ∈ ρ(G) : r /∈ Δ ⇒ b′(r) = b(r), i.e. b′ preserves the actual binding of the
requirements that are assumed in G and that cannot be dynamically changed
by the transition,

– ∀r ∈ ρ(G′) : 〈r, b′(r)〉 ∈ B, i.e. all requirements assumed after the transition
are bound to capabilities that can satisfy them (according to B), and

– ∀r ∈ P : b′(r) ∈ χ(G) ∧ 〈r, b′(r)〉 ∈ B, i.e. all requirements needed to perform
the transition are bound to capabilities actually provided in the global state
G and that can satisfy them (according to B).

As a result, the application configuration 〈G, b〉 is changed to 〈G′, b′〉, where G′

is obtained from G by updating the state of N (viz., G′ = G − {s} ∪ {s′}), and
where b′ is a new actual binding satisfying the above explained conditions.

The (fault) rule instead models fault propagation. It defines how the global
state G of a composite application A is updated when executing a settling han-
dler 〈s,Δ, s′〉 for a node N . A settling handler 〈s,Δ, s′〉 ∈ hN can be executed if
there are pending faults (viz., f(G, b) �= ∅), and if there exists a new actual bind-
ing b′ satisfying conditions analogous to those imposed by the (op) rule. Also,
among all settling handlers, 〈s,Δ, s′〉 is the handler whose target state s′ assumes
the biggest set of requirements4 (viz., ∀〈s, , s′′〉 ∈ hN (G, b).ρ(s′′) ⊆ ρ(s′)). As
a result, the application configuration 〈G, b〉 is changed to 〈G′, b′〉, where G′ is
obtained from G by updating the state of N (viz., G′ = G − {s} ∪ {s′}), and
where b′ is a new actual binding satisfying the above explained conditions.

4.2 Analysing the Management Behaviour of Applications

The management behaviour defined in Definition 7 permits analysing and
automating the management of a composite application. For instance, we can
easily determine which sequences (or, more in general, which workflows) of man-
agement operations can be considered valid in a given application configuration.
To simplify definitions, we introduce some shorthand notations to observe only
the (transitions corresponding to) management operations executed while man-
aging a composite application.

Notation 2. Let A = 〈T,B〉 be a composite application. The observable behav-
iour of A is denoted by a labelled transition system whose configurations are
pairs 〈G, b〉 (where G is a global state of A and b is an actual binding for A),
and whose transition relation is defined by the following inference rules:

〈G, b〉 o→〈G′, b′〉
〈G, b〉 o�→〈G′, b′〉

〈G, b〉 ⊥→〈G′, b′〉 〈G′, b′〉 o�→〈G′′, b′′〉
〈G, b〉 o�→〈G′′, b′′〉

4 In this way, fault-handling transitions are guaranteed (to handle all the faults on a
node and) to minimise the amount of requirements that stop being assumed.

190 A. Brogi et al.

Intuitively, a sequence of operations o1o2 . . . on is valid in a given application
configuration 〈G, b〉 if (i) o1 is executable in 〈G, b〉, and (ii) whatever is the
application configuration 〈G′, b′〉 reached by executing o1 in 〈G, b〉, the sequence
o2 . . . on can always be performed in 〈G′, b′〉. Validity of plans follows from that
of their sequential traces.

Definition 8 (Valid plan). Let A = 〈T,B〉 be a composite application. Let
also G and b be a global state and an actual binding of A, respectively. A sequence
of management operations o1o2 . . . on is valid in 〈G, b〉 iff it is empty or

(i) ∃〈G′, b′〉 : 〈G, b〉 o1�→〈G′, b′〉, and
(ii) ∀〈G′, b′〉 : 〈G, b〉 o1�→〈G′, b′〉 ⇒ o2 . . . on is valid in 〈G′, b′〉.
A workflow W orchestrating the management operations in A is a valid plan in
〈G, b〉 iff all the sequential traces of W are valid in 〈G, b〉.

The introduced modelling can be exploited for various other purposes besides
checking plan validity. For instance, since different sequential traces of a valid
plan may lead to different global states, it is interesting to characterise deter-
ministic plans.

Definition 9 (Deterministic plan). Let A = 〈T,B〉 be a composite applica-
tion. Let also G and b be a global state and an actual binding of A, respectively.
A sequence of management operations o1 . . . on in 〈G, b〉 is deterministic iff

o1 . . . on is valid in 〈G, b〉 ∧ ∃!G′.〈G, b〉 o1�→ . . .
on�→〈G′, 〉.

A workflow W orchestrating the management operations in A is a deterministic
plan in 〈G, b〉 iff all its sequential traces are deterministic in 〈G, b〉 and reach
the same global state G′.

Example 3. One can readily check that plan (a) in Fig. 2 is valid and determin-
istic. Indeed, all its sequential traces are valid in the initial application config-
uration (i.e., when database is unavailable, backend1, backend2 and frontend are
uninstalled, and the actual binding is empty), and they all bring the application
to the global state where all microservices are running. Note that the above holds
independently from the fact that the requirement endp of frontend will be bound
to the capability api offered by backend1 or to that offered by backend2.

Plan (b) is instead not valid in the initial application configuration. This
is because all sequential traces starting with database.run · backend1.install ·
backend1.start are not valid (because the management protocol of backend1 does
not allow to execute start before config — see Mbackend2 in Fig. 3).

Plan (c) is not valid either in the initial application configuration, because
all the sequential traces starting with backend1.install · backend1.config are not
valid. This is because the management protocol of backend1 constrains the exe-
cutability of config to the satisfaction the requirement endp of backend2 (see
Mbackend2 in Fig. 3). The latter can only be satisfied by the capability db of data-
base, which is however not provided by database in its starting state unavailable
(see Mdatabase in Fig. 3). �	

Modelling the Dynamic Reconfiguration of Application Topologies 191

Checking whether a given plan is valid or deterministic corresponds to vis-
iting the graph generated by the transition system of an application’s manage-
ment behaviour (Definition 7), which also models the non-determinism due to
the choice of the new actual binding b′. It is worth noting that, thanks to the
constraints on management protocols and to the way they are combined, both
the possible global states and the possible actual bindings are finite, hence guar-
anteeing that the above mentioned visit of the graph eventually terminates.

It is also worth noting that the effects of a deterministic workflow W on
the states of an application’s components, as well as on the requirements and
capabilities that are available, can be directly determined from the global state
reached by performing any of the sequential traces of W .

Moreover, the problem of finding whether there is a deterministic plan that
starts from an application configuration and achieves a specific goal (e.g., bring-
ing some components of an application to specific states, or making some capa-
bilities available) can also be solved with a visit of the graph associated with the
transition system of an application’s management behaviour. This is especially
useful to automatically determine plans dynamically reconfiguring the topology
of an application, or to restore a desired application configuration after some
application components got stuck because of a fault5 (as we discussed in our
motivating scenario — Sect. 2).

Finally, it is worth characterising a weaker notion of validity, to denote those
plans whose sequential traces may fail depending on the actual bindings chosen
while executing them. Intuitively, a sequence of operations is weakly valid if there
exists an application configuration 〈G′, b′〉 reached by executing o1 in 〈G, b〉 such
that o2 . . . on can all be performed. Weak validity of plans follows from that of
their sequential traces.

Definition 10 (Weakly valid plan). Let A = 〈T,B〉 be a composite applica-
tion. Let also G and b be a global state and an actual binding of A, respectively.
The sequence o1o2 . . . on of management operations in A is weakly valid in 〈G, b〉
iff it is empty or

∃〈G′, b′〉 : 〈G, b〉 o1�→〈G′, b′〉 ∧ o2 . . . on is weakly valid in 〈G′, b′〉
A workflow W orchestrating the management operations in A is a weakly valid
plan in 〈G, b〉 iff one of its sequential traces is weakly valid in 〈G, b〉.

A weakly valid plan warns that it may fail. By observing its sequential traces,
it is possible to understand whether such a warning can be ignored when deploy-
ing and managing a concrete instance of the application (e.g., since a problematic
actual binding will never be chosen because of security policies), or whether they
5 In [7] we illustrate how to recover application that are stuck because a fault was

not properly handled, or because of unforeseen faults (e.g., due to non-deterministic
application bugs). The approach is based on the idea of automatically determining
valid plans restoring a desired application configuration, and (despite [7] assumes
many-to-1 dependencies among application components) it can be easily adapted to
cope with the notion of validity presented in this paper.

192 A. Brogi et al.

can cause real issues at runtime. Notably, such issues can be avoided by exploit-
ing the above explained planning techniques to find a deterministic plan (if any)
reaching the same global state reached by the successful traces of a weakly valid
plan.

5 Related Work

The problem of automating composite application management is one of the
major trends in today’s IT [20]. Management protocols [6,8], as well as Aeo-
lus [12], permit automatically deploying and managing multi-component cloud
applications. The underlying idea of both approaches is quite simple: Developers
describe the behaviour of their components through finite-state machines, and
such descriptions can be composed to model the management behaviour of a
composite application. Engage [14] is another approach for processing applica-
tion descriptions to automatically deploy applications. Fault-aware management
protocols [7] extend management protocols [6], and differ from Aeolus [12] and
Engage [14], since they permit explicitly modelling possible faults of components,
as well as how to react when such faults occurs.

However, the fault-aware management protocols in [7] assume many-to-1
dependencies among the nodes forming a topology. The approach presented in
this paper properly extends fault-aware management protocols by relaxing this
assumption, and by also allowing to specify whether the capability used to sat-
isfy a requirement may be dynamically changed (by choosing among the many
available and connected to it in the application topology).

Other approaches worth mentioning are Rapide [22], Darwin [23] and
π-ADL [25]. Rapide, Darwin and π-ADL are very close in the spirit to our app-
roach, as they are languages for describing composite systems, whose components
expose require and provide ports (corresponding to our notions of requirements
and capabilities, respectively). The structure of a system is given by interconnect-
ing such ports, and it can dynamically be changed while execution progresses.
Rapide, Darwin and π-ADL however differ from our approach as they only per-
mit many-to-1 interconnections among components, since they assume applica-
tion components to be stateless (viz., once instantiated, a component assumes
all its require ports to be satisfied, and it offers all its provide ports), and since
they do not permit explicitly specifying how to handle the faults affecting a
component (when one of the requirements it assumes stop being satisfied).

The rigorous engineering of fault-tolerant systems is a well-known problem
in computer science [9], with many existing approaches targeting the design and
analysis of such systems. For instance, [17] proposes a way to design object-
oriented systems by starting from fault-free systems, and by subsequently refin-
ing such design by handling different types of faults. [3,26] instead focus on
fault-localisation, thus permitting to redesign a system to avoid the occurrence
of such a fault. These approaches differ from ours because they aim at obtain-
ing applications that “never fail”, since all potential faults have been identified
and properly handled. Our approach is instead more recovery-oriented [10], since

Modelling the Dynamic Reconfiguration of Application Topologies 193

we focus on applications where faults possibly occur, and we permit designing
applications capable of being recovered.

Similar considerations apply to [1,16,18], which however share with our app-
roach the basic idea of modelling faults in single components and of composing
the obtained models according to the dependencies between such components
(i.e., according to the application topology).

[13] proposes a decentralised approach to deploy and reconfigure cloud appli-
cations in presence of failures. It models a composite application as a set of
interconnected virtual machines, each equipped with a configurator managing
its instantiation and destruction. The deployment and reconfiguration of the
whole application is then orchestrated by a manager interacting with virtual
machine configurators. [13] shares with our approach the objective of providing
a decentralised and fault-aware management of a composite application, by spec-
ifying the management of each component separately. However, it differs from
our approach since it focuses on recovering virtual machines that have been ter-
minated only because of environment faults, while we also permit describing how
components react to application-specific faults.

[21] proposes an approach to identify failures in a system whose components’
behaviour is described by finite state machines. Even though the analyses are
quite different, the modelling in [21] is quite similar to ours. It indeed relies on
a sort of requirements and capabilities to model the interaction among compo-
nents, and it permits “implicitly” modelling how components behave in presence
of single/multiple faults. Our modelling is a strict generalisation of that in [21],
since a component’s state can evolve not only because of requirement unsatis-
faction but also because of invoked operations, and since we permit “explicitly”
handling faults (i.e., fault handling transitions are distinct from those modelling
the normal behaviour of a component). Similar considerations apply to [11],
whose modelling is also based on finite state machines with input and output
channels (which permit fault communication and propagation by components).

In summary, to the best of our knowledge, the approach we propose in this
paper is the first that permits automatically orchestrating the management of
composite applications (i) accounting for many-to-many dependencies among
application components, (ii) allowing to dynamically change/reconfigure appli-
cation topologies, and (iii) assuming that faults possibly occur while managing
composite applications.

6 Conclusions

Fault-aware management protocols [7] are a modular and reusable way to model
the management behaviour of application components (including how they react
to potential faults), and to analyse and automate the management of a complex
application composed by multiple components. However, the fault-aware man-
agement protocols in [7] assume many-to-1 dependencies among the nodes in an
application topology (viz., a capability can be used to satisfy multiple require-
ments, while a requirement can be satisfied only by a given capability), and this

194 A. Brogi et al.

does not permit dealing with composite applications having multiple nodes that
can satisfy a given requirement of another node (such as the microservice-based
application in our motivating scenario — Sect. 2).

In this paper we have presented an extension of fault-aware management
protocols, which permits modelling and analysing composite applications whose
topologies have many-to-many dependencies among components. The proposed
extension is such that any capability connected to a requirement can be used to
satisfy such requirement when the latter is needed by the corresponding node.
The proposed extension also permits specifying whether the capability used to
satisfy a requirement of a node can be dynamically changed (when executing
a management operation or handling a fault), hence allowing to dynamically
reconfigure the topology of an application.

The proposed extension of fault-aware management protocols paves the way
for their exploitation for modelling and analysing elasticity and live updates
of the components forming a composite application. Both cases require to
add/remove replicas of nodes, as well as of their ingoing and outgoing dependen-
cies, to/from the topology of a composite application, hence requiring to support
many-to-many dependencies and dynamic reconfiguration. The proposed exten-
sion of fault-aware management protocols includes such support, and it can
hence be exploited to model the evolution of the states of node replicas. The
formalisation of the above is in the scope of our immediate future work.

We believe that the proposed modelling and analysing techniques can also
pave the way towards the development of self-adaptive composite applica-
tions. Self-adaptive applications are controlled by the so-called MAPE (Monitor,
Analyse, Plan and Execute) loop [27]. Indeed, our techniques can be exploited
during the Analyse and Plan steps of the MAPE loop controlling a compos-
ite application. The Monitor and Execute instead require to adapt and integrate
existing approaches to work with fault-aware management protocols. Such adap-
tation and integration are left for future work.

It is also worth noting that, even if some of the analyses we presented in
Sect. 4 have exponential time complexity in the worst case, they still consti-
tute a significant improvement with respect to state-of-the-art, as currently the
management of composite applications is coordinated manually (e.g., by devel-
oping ad-hoc scripts), and it is hardly reusable since it is tightly coupled to the
application. We plan to further improve the support for the analyses in Sect. 4,
by offering a tool capable of validating management plans and of automatically
determining valid plans reaching desired goals (by extending the prototype6 for
the fault-aware management protocols of [7]).

Finally, it is worth noting that fault-aware management protocols do not take
into account costs nor QoS, since their focus is on automatically coordinating the
management of the components forming a composite application. Cost and QoS
are however important factors [2], and they should be taken into account when
modelling and analysing the management of composite applications. This could
be solved by further extending management protocols by allowing to specify the

6 https://github.com/di-unipi-socc/barrel.

https://github.com/di-unipi-socc/barrel

Modelling the Dynamic Reconfiguration of Application Topologies 195

amount of resources actually offered by a capability, and “how many” of such
resources are needed to satisfy a requirement connected to such capability. The
extension of fault-aware management protocols to include cost and QoS is in the
scope of our future work.

References

1. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B., Benbernou, S.: Bottom-up
fault management in service-based systems. ACM Trans. Internet Technol. 15(2),
7:1–7:40 (2015)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

3. Betin Can, A., Bultan, T., Lindvall, M., Lux, B., Topp, S.: Eliminating synchroniza-
tion faults in air traffic control software via design for verification with concurrency
controllers. Autom. Softw. Eng. 14(2), 129–178 (2007)

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

5. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the cloud
through enterprise topology graphs. In: 2012 IEEE 5th International Conference
on Cloud Computing (CLOUD), pp. 742–749. IEEE (2012)

6. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS,
vol. 9306, pp. 19–33. Springer, Cham (2015). doi:10.1007/978-3-319-24072-5 2

7. Brogi, A., Canciani, A., Soldani, J.: Fault-aware application management proto-
cols. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC
2016. LNCS, vol. 9846, pp. 219–234. Springer, Cham (2016). doi:10.1007/
978-3-319-44482-6 14

8. Brogi, A., Canciani, A., Soldani, J., Wang, P.W.: A petri net-based approach to
model and analyze the management of cloud applications. In: Koutny, M., Desel,
J., Kleijn, J. (eds.) ToPNoC XI. LNCS, vol. 9930, pp. 28–48. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53401-4 2

9. Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.): Rigorous Devel-
opment of Complex Fault-Tolerant Systems. LNCS, vol. 4157. Springer, Heidelberg
(2006)

10. Candea, G., Brown, A.B., Fox, A., Patterson, D.: Recovery-oriented computing:
building multitier dependability. Computer 37(11), 60–67 (2004)

11. Chen, L., Jiao, J., Fan, J.: Fault propagation formal modeling based on stateflow.
In: Proceedings of the 1st ICRSE, pp. 1–7. IEEE (2015)

12. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inform. Comput. 239, 100–121 (2014)

13. Durán, F., Salaün, G.: Robust and reliable reconfiguration of cloud applications.
J. Syst. Softw. 122, 524–537 (2016)

14. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: Proceedings of the 33rd PLDI, pp. 263–274. ACM (2012)

15. Fowler, M., Lewis, J.: Microservices. ThoughtWorks (2016). https://www.
thoughtworks.com/insights/blog/microservices-nutshell

http://dx.doi.org/10.1007/978-3-319-24072-5_2
http://dx.doi.org/10.1007/978-3-319-44482-6_14
http://dx.doi.org/10.1007/978-3-319-44482-6_14
http://dx.doi.org/10.1007/978-3-662-53401-4_2
https://www.thoughtworks.com/insights/blog/microservices-nutshell
https://www.thoughtworks.com/insights/blog/microservices-nutshell

196 A. Brogi et al.

16. Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-driven safety evaluation with
state-event-based component failure annotations. In: Heineman, G.T., Crnkovic,
I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 33–48. Springer, Heidelberg (2005). doi:10.1007/11424529 3

17. Johnsen, E., Owe, O., Munthe-Kaas, E., Vain, J.: Incremental fault-tolerant design
in an object-oriented setting. In: Proceedings of 2nd APAQS, pp. 223–230 (2001)

18. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th SCS, pp. 37–46. Australian Comp. Soc., Inc. (2003)

19. Killalea, T.: The hidden dividends of microservices. Commun. ACM 59(8), 42–45
(2016)

20. Leymann, F.: Cloud computing. it. Inform. Technol. 53(4), 163–164 (2011)
21. Liggesmeyer, P., Rothfelder, M.: Improving system reliability with automatic fault

tree generation. In: Proceedings of the 28th FTCS, pp. 90–99. IEEE (1998)
22. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:

Specification and analysis of system architecture using rapide. IEEE Trans. Softw.
Eng. 21(4), 336–355 (1995)

23. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT
Softw. Eng. Notes 21(6), 3–14 (1996)

24. OASIS: Topology and Orchestration Specification for Cloud Applications (2013).
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

25. Oquendo, F.: π-adl: an architecture description language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
SIGSOFT Softw. Eng. Notes 29(3), 1–14 (2004)

26. Qiang, W., Yan, L., Bliudze, S., Xiaoguang, M.: Automatic fault localization for
BIP. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 277–283.
Springer, Cham (2015). doi:10.1007/978-3-319-25942-0 18

27. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)

http://dx.doi.org/10.1007/11424529_3
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://dx.doi.org/10.1007/978-3-319-25942-0_18

Constraint-Flow Nets: A Model for Building
Constraints from Resource Dependencies

Simon Bliudze1(B), Alena Simalatsar2, and Alina Zolotukhina1

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{simon.bliudze,alina.zolotukhina}@epfl.ch

2 University of Applied Sciences Western Switzerland, Sion, Switzerland
alena.simalatsar@hevs.ch

Abstract. The major research in the resource management literature
focuses primarily on two complementary sub-problems: (1) specification
languages for formulating resource requests and (2) constraint problems
modelling allocation and scheduling. Both directions assume the knowl-
edge of the underlying platform architecture and the dependencies it
induces on the usage of the various resources. In this paper, we bridge
this gap by introducing constraint-flow nets (cfNets). A cfNet is defined
by a set of resources and dependencies between them, each dependency
having an associated constraint schema. The model is inspired by Petri
nets, with resources corresponding to places and dependencies—to tran-
sitions. Given an architecture of dependent resources, an initial resource
request is propagated through the dependencies. The generated con-
straints are then conjuncted into the global allocation constraint. We
study the notion of conflicts in cfNets and prove that for conflict-free
cfNets the global allocation constraint can be constructed unambigu-
ously. Furthermore, we provide an SMT-based algorithm for conflict
detection and discuss the use of priorities to dynamically resolve con-
flicts at run-time. Finally, we illustrate the use of cfNets on a case study
inspired by the Kalray MPPA architecture.

Keywords: Resource management · Resource dependencies ·
Constraint-flow nets · Petri nets · Marking reachability · Conflict
detection

1 Introduction

Providing resource management is of key importance to many different areas,
from embedded systems domain to distributed resource management in large-
scale systems or in a cloud.

In the literature, two main complementary sub-problems are investigated:
specification languages for formulating resource requests [8,13,20,31] and
resource management architectures [10,11,17,19,24]. The former provides appli-
cation developers with the means to specify application resource requirements,
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 197–216, 2017.
DOI: 10.1007/978-3-319-59746-1 11

198 S. Bliudze et al.

whereas the latter is using the request information to build a constraint prob-
lem, which is then solved by a satisfiability modulo theories (SMT) [2,26] or
a constraint solver [29] to find a satisfactory resource allocation. However, for
non-trivial architectures, this approach presents a substantial gap. Indeed, on
one hand, the resource manager assumes that an application completely spec-
ifies all its resource requirements. On the other hand, specification languages
provide request primitives formulated in terms of 〈required amount/resource
type〉 pairs, e.g. “5 Mb of memory” or “1 thread”. Ignoring the physical nature
of the resources and the dependencies among them makes it impossible for appli-
cations to define sufficiently complete resource requests. Furthermore, we argue
that such completeness is not desirable. In order to avoid strong platform depen-
dencies, applications should have the possibility to operate on a more abstract
level. For a simple example, consider a multicore Network-on-Chip (NoC) plat-
form (e.g. [16]), where each core has a dedicated local memory, but can also
access that of the other cores through the NoC. Depending on the location of
the requested memory and under the assumptions above, application developers
must also explicitly request access to the NoC. Another example is provided by
modular platforms, where resources, such as memory, channels or threads, can
be created dynamically: applications should be allowed to specify requests for a
certain type of resources without having the knowledge of their structure. While
some advanced compilation tools, e.g. [15,26,27] provide ad-hoc solutions for
specific target platforms, the objective of the work presented in this paper is to
bridge this gap in a generic manner, sufficient to describe resource dependencies
for a wide class of platforms.

We consider an environment with a global set of resources R and an entity
(application) that makes a request for a subset of these resources. In general,
the information contained in the request is not sufficient to find a satisfactory
resource allocation, due to potential dependencies among the resources (in the
above example, remote memory access requires the use of the NoC). To model
such dependencies we introduce the notion of Constraint-Flow Nets (cfNets),
inspired by Petri nets with inhibitor arcs. Inhibitor arcs are used to limit depen-
dency applications (e.g. there is no need to repeat a request for a given resource, if
it has already been requested). In order to specify relations between the amounts
of the resources requested by the application and the necessary amounts of the
resources introduced by dependencies, we associate constraint schemata to all
transitions of a cfNet. These constraint schemata are then used to build the
global constraint problem associated to the initial resource request. We prove
that such global constraint problems can be unambiguously built for conflict-free
cfNets. Furthermore, we provide a technique for detection of conflicts and their
resolution by introducing priority relations among the conflicting transitions.
Hence, given a cfNet with a priority model, the global constraint can always be
built unambiguously.

The paper is structured as follows. Section 2 presents the motivating example
that we use to illustrate our theory throughout the paper. Section 3 introduces
cfNets and their semantics in terms of the process leading to constraint problems

Constraint-Flow Nets 199

corresponding to resource requests. Section 4 focuses on the notion of conflict in
cfNets, providing an algorithm for detecting conflicts and introducing priorities
to resolve them. Section 5 provides a complete cfNet modelling the Kalray archi-
tecture described in Sect. 2. Section 6 provides a short overview of related work.
Section 7 concludes the paper and discusses some future research directions.

Additional material and proofs of all results in this paper are provided as a
technical report available online [7].

2 Motivating Example

Fig. 1. Compute cluster reference architec-
ture with arbitration points

Our running example is inspired by
the many-core architecture of Kalray
MPPA-256 [16], which consists of 256
processing elements (PE), i.e. cores,
grouped into compute clusters of 16
cores each. Within a cluster, cores
communicate through a shared mem-
ory, which consists of 16 independent
memory banks grouped into two sides:
left and right. In this paper, we will
consider a simplified Kalray cluster
composed of four cores and four mem-
ory banks as shown in Fig. 1.

Two cores cannot access the same memory bank at the same time. Cores
are organised in pairs. Each pair shares two data-buses: one for each of the
memory sides [12]. Therefore, the access to memory banks is arbitrated by two
stages of arbiters implementing the Round Robin (RR) arbitration policy. Our
goal in this paper will be to allocate cores, buses and memory banks, such that
there will be at most one request for any arbiter queue, making the resource
unavailable otherwise. Thus, we assume that two cores of one pair can access
different memory sides simultaneously and two cores from different pairs may
access different memory banks of the same side.

3 Modelling Resource Dependencies

3.1 Flow Nets

In this section, we introduce fNets, which we use to model resource dependencies.
Syntactically, fNets are Petri nets with inhibitor arcs. The semantics of fNets can
be compared to that of Coloured Petri nets with inhibitor arcs and capacities
(each place has capacity 1 with respect to each token colour). The colour of a
token in an fNet depends on the transition that has produced this token. The
main difference between fNets and Petri nets is the following: firing a transition
does not remove tokens from its pre-places. Therefore, the capacity restriction
effectively prevents any transition from being fired more than once.

200 S. Bliudze et al.

Definition 1. Consider a tuple N = (R, T, F, I), where R is a finite set of
places (resources); T is a finite set of transitions (dependencies), such that R
and T are disjoint; F ⊆ (R×T)∪ (T ×R) is a set of arcs and I ⊆ R×T a ×T ,
with T a def= T ∪ {∗}, for some fresh symbol ∗ �∈ T , is a set of inhibitor arcs.

For t ∈ T , we denote by R−(t) def= {r ∈ R | (r, t) ∈ F} the set of its pre-places
and by R+(t) def= {r ∈ R | (t, r) ∈ F} the set of its post-places. Similarly, for
r ∈ R, we denote T−(r) def= {t ∈ T | (t, r) ∈ F} the set of its incoming transitions.
If (r, t′, t) ∈ I, for some t′ ∈ T a, we say that r is an inhibitor place for t. Finally,
we denote I(t) def= {(r, t′) ∈ R × T a | (r, t′, t) ∈ I}.

N is a flow net (fNet), if (1) R−(t) ∩ R+(t) = ∅, for any t ∈ T (i.e. there
are no looping transitions), and (2) t′ ∈ T−(r), for all (r, t′, t) ∈ I.

As will be apparent from the following definitions, an inhibitor arc (r, t′, t)
checks for the absence of a token in the place r produced by the transition t′.
The asterisk ∗ represents a virtual initial transition (see Definition 2 below).

Definition 2. A marking of an fNet (R, T, F, I) is a set of tokens M ⊆ R ×
T a. We say that a token (r, t) ∈ R × T a, has the colour t and denote TM

def=
{t ∈ T a | (r, t) ∈ M} the set of colours involved in the marking M . A marking M
is initial if TM = {∗}.

Below, we will identify a marking M with its characteristic function M :
R×T a → B, where B = {tt, ff}. We now provide the formal semantics of fNets.

Definition 3. A transition t ∈ T of an fNet (R, T, F, I) is enabled with a mark-
ing M if the following three conditions hold: (1) for each r ∈ R−(t), there is a
token (r, t′) ∈ M ; (2) for each r ∈ R+(t), the corresponding token is not in M ,
i.e. (r, t) �∈ M ; (3) for each (r, t′, t) ∈ I, the corresponding token is not in M ,
i.e. (r, t′) �∈ M . A marking is final if it does not enable any transitions.

The marking M ′ obtained by firing a transition t ∈ T enabled with M

(denoted M
t−→ M ′) is defined by putting M ′ def= M ∪ {(r, t) | r ∈ R+(t)}.

Notice that each transition can consume any token regardless of its colour:
colours are relevant only for post-places and inhibitor arcs of transitions. Fur-
thermore, transitions do not remove tokens from their pre-places.

In the rest of the paper, we use the following convention for the graphical
representation of fNets: transitions that have not been fired are shown in black,
whereas transitions that have already been fired—and therefore cannot be fired
again—are shown in white. Moreover, in all the illustrations in the paper, token
colours can be unambiguously derived by considering which transitions have been
fired (visible from the black or white colour of the transition in the diagram).
Therefore, we use the usual graphical notation for tokens in Petri nets, i.e. a
bullet within the corresponding place.

Example 1 (Memory and Bus). Whenever an application requires a core and
a memory bank on a Kalray platform, access to the bus is required implicitly.

Constraint-Flow Nets 201

p

t

m

b

(a) Initial marking for the request {p,m}

p

t

m

b

(b) Final marking for the request {p,m}

Fig. 2. The cfNet modelling the dependency from Example 1

This dependency is modelled by the fNet shown in Fig. 2. The fNet has three
places, p, m and b, corresponding to the processor, the memory and the bus. The
resource dependency is modelled by the transition t with incoming arcs from p
and m, and one outgoing arc to b.

Consider an initial resource request R = {p,m}. The corresponding initial
marking M0 of the fNet has two tokens: (p, ∗) and (m, ∗) (Fig. 2a). Transition t

is enabled and can be fired, generating the token (b, t). Thus, we have M0
t−→ M

with M shown in Fig. 2b. Since t is not enabled with M , this marking is final.

Definition 4. A run of an fNet from a marking M0 is a sequence M0
t1−→ M1

t2−→
. . .

tn−→ Mn. When such a run exists, we say that Mn is reachable from M0 and

write M0
〈t1,...,tn〉−−−−−−→ Mn. We say that a marking is reachable if it is reachable

from some initial marking.

Notice that, for any marking M obtained by firing a sequence of transitions,
TM (see Definition 2) is the set comprising ∗ and these transitions (see Proposi-
tion 1 below).

Definition 5. A marking M of an fNet (R, T, F, I) is well-formed if, for all
t ∈ TM \ {∗}, the following three conditions hold:

1. for all r ∈ R−(t), there exists a token (r, t′) ∈ M , for some t′ ∈ T−(r) ∪ {∗};
2. for all r ∈ R+(t), (r, t) ∈ M ;
3. for all (r, ∗) ∈ I(t), (r, ∗) �∈ M .

In Definition 5, conditions 1 and 3 are necessary for the transition t to have
been enabled. They are not sufficient, since, for the transition to be enabled,
inhibitor tokens referring to colours other than ∗ must also be absent from the
marking. However, we cannot include this stronger requirement in the definition
of well-formedness. Indeed, such inhibitor tokens can appear once t has already
been fired. Condition 2 requires that all the tokens generated by firing t be,
indeed, present in the marking.

202 S. Bliudze et al.

Proposition 1. Let M ′ be a marking reachable from an initial marking M0 with

M0
〈t1,...,tn〉−−−−−−→ M ′. Then M ′ is well-formed and TM ′ = {∗, t1, . . . , tn}.

Marking well-formedness over-approximates reachability: all reachable mark-
ings are well-formed, but some well-formed markings are not reachable.

3.2 Constraints

For each resource r ∈ R, we assume that possible amounts form an additive
group 〈Dr,+, 0〉. We extend the definition of fNets by associating to each transi-
tion a constraint schema, instantiated into a constraint for a given final marking.

Definition 6. Consider an fNet (R, T, F, I). For any transition t ∈ T , denote
Xt

def= {xr | r ∈ R−(t) ∪ R+(t)}, where each xr is a variable ranging over Dr. A
constraint schema ct associated to t is a predicate over Xt.

Definition 7. A constraint-flow net (cfNet) is a tuple (R, T, F, I, C), where
(R, T, F, I) is an fNet and C = {ct | t ∈ T} is a set of constraint schemata asso-
ciated to the transitions in T .

We build global constraint problems encoding resource allocations compatible
with the causal dependencies defined by a cfNet. A constraint problem is based
on an initial resource request and the constraint schemata associated to the
transitions constituting a run of the cfNet. To this end, we introduce, for each
place-colour pair (r, t) ∈ R × T a, a variable dt

r with the domain value Dr.

Definition 8. Let M be a well-formed marking of a cfNet (R, T, F, I, C). We
define a platform constraint

C[M] def=
∧

t∈TM

ct

⎡

⎣

⎛

⎝
∑

t′:(r,t′)∈M

dt′
r

⎞

⎠
/

xr

∣∣∣∣∣∣
r ∈ R−(t)

⎤

⎦
[
dt

r

/
xr

∣∣ r ∈ R+(t)
]
, (1)

where we denote by E[x/y |C] the expression obtained by substituting in E all
occurrences of y, which satisfy the condition C, by x. Thus, each conjunct in
(1) is obtained by replacing, in the corresponding constraint schema ct, (1) for
each r ∈ R−(t), the variable xr with the sum of all variables dt′

r corresponding
to all the tokens (r, t′) ∈ M ; (2) for each r ∈ R+(t), the variable xr with the
corresponding variable dt

r.

Notice that the conjuncts in (1) are unambiguously defined, since, by Defin-
ition 1, there are no looping transitions in the cfNet, i.e. R−(t) ∩ R+(t) = ∅, for
all t ∈ T . Hence the two substitutions operate on disjoint sets of variables.

Example 2 (Memory and Bus—continued). Building on Example 1, we introduce
the constraint linking the actual resource requirements. Since any data to be
written or read from the memory must transit through the bus, we associate to

Constraint-Flow Nets 203

the transition t a constraint schema ct = (xb ≥ xm), imposing that the required
bus capacity be greater than or equal to the requested amount of memory.

Consider again the initial request R = {p,m} with the corresponding initial
marking in Fig. 2a. The variables corresponding to the initial tokens are d∗

p and
d∗

m. Since the final marking M in Fig. 2b contains a token (b, t), we also intro-
duce the corresponding variable dt

b. Substituting these variables in the constraint
schema for t, we obtain the platform constraint

C[M] = ct

[
d∗

p/xp, d
∗
m/xm, dt

b/xb

]
= (dt

b ≥ d∗
m) .

r

t

r1 r2

(a) Initial marking for the request {r}

r

t

r1 r2

(b) Final marking for the request {r}

Fig. 3. The cfNet modelling the dependency from Example 3

Example 3 (Virtual resources). Recall that the architecture of our running
example consists of four identical processing elements p1, p2, p3 and p4, two
identical memory sides left L and right R, each consisting of pairs of identical
memory banks (m1, m2) and (m3, m4). An application may request a process-
ing element and some memory. This request can be for a specific processing
element, e.g. p1 and a specific memory bank, e.g. m1. However, if one of the
requested resources is unavailable, the request will not be satisfied. Alterna-
tively, the request can be made without specifying which of pi and mi is needed,
allowing for a more flexible resource allocation. This can be modelled by intro-
ducing a “virtual” resource p for processing elements, L and R for memory sides
or even more generally m for memory sides and banks as shown in Sect. 5.

Let us abstract from our example architecture and consider a system with
two physical resources of the same type, r1 and r2, and a virtual resource r
representing this resource type, modelled with a cfNet shown in Fig. 3. These
resources could be, for example, two processing cores, memory sides or banks.

When the virtual resource is requested, the actual allocation depends on the
policy that the system implements, for instance:

– Dispatching the request: one of r1 or r2 must provide the requested amount;
– Redundant allocation: both r1 and r2 must provide the requested amount;
– Joint allocation: part of the requested amount is provided by one of the two

physical resources and the rest is provided by the other.

204 S. Bliudze et al.

p

t1 t2

p1 p2
t2t1

(a) Initial marking

p

t1 t2

p1 p2
t2t1

(b) Firing transition t1

p

t1 t2

p1 p2
t2t1

(c) Firing transition t2

Fig. 4. The cfNet modelling virtual processing cores using inhibitor arcs

The request for dispatching allocation, when only one of the resources is
actually allocated, is suitable for modelling the request of a processing core,
while redundant and joint allocation can be used for memory request.

The constraint scheme of the transition depends on the policy:

Dispatching the request: ct = (xr1 = xr ∧ xr2 = 0) ∨ (xr1 = 0 ∧ xr2 = xr) ,

Redundant allocation: ct = (xr1 = xr ∧ xr2 = xr) ,

Joint allocation: ct = (xr1 + xr2 = xr) .

Consider the initial request R = {r} with the joint allocation policy. The
corresponding initial marking M0 is shown in Fig. 3a. The variable corresponding
to the initial token is d∗

r . Since the final marking M in Fig. 3b contains tokens
(r1, t) and (r2, t), we also introduce the corresponding variables dt

r1
and dt

r2
.

Substituting these variables in the constraint schema for t for the joint allocation
policy, we obtain the platform constraint

C[M] = ct

[
d∗

r/xr, d
t
r1

/xr1 , d
t
r2

/xr2

]
= (dt

r1
+ dt

r2
= d∗

r) .

Example 4, below, presents an alternative approach for modelling virtual
resources with the dispatching policy. This approach relies on inhibitors to gen-
erate simpler platform constraints involving less variables.

Example 4 (Virtual resources with inhibitors). Consider a different model of
“virtual” resources, shown in Fig. 4 representing two processing cores of the
Kalray architecture. The constraint schemata associated, respectively, to transi-
tions t1 and t2 are ct1 = (xp = xp1) and ct2 = (xp = xp2).

In the dispatching allocation of Example 3, the constraint schemata ensured
that only one core can be allocated for a single request. In the cfNet of Fig. 4, this
is ensured by the inhibitor arcs (p1, t1, t2) and (p2, t2, t1). The initial marking
for the request of a “virtual” processing core p is shown in Fig. 4a. Figures 4b
and c show the two possible runs of the cfNet, where the firing of transition t1
inhibits the firing of transition t2 and vice versa.

Constraint-Flow Nets 205

Notice that the constraint schemata associated to the transitions t1 and t2
involve less variables than the dispatching schema in Example 3, simplifying the
task of the constraint solver.

3.3 Allocation Constraint Problem

In the following, we assume that a partial cost function costr : Dr → R is
associated with each resource r ∈ R. When defined, the value costr(d) represents
the cost of allocating the amount d ∈ Dr of the resource r. When costr(d) is
undefined, this means that it is not possible to allocate the amount d of the
resource r (e.g. d is greater than the resource capacity).

Definition 9. Let R ⊆ R be a set of resources. A utility function over R is a
partial function u :

∏
r∈R Dr → R such that u is constant on all Dr for r /∈ R

(i.e. u depends only on resources belonging to R).

Definition 10. An allocation over a set of resources R ⊆ R is a value d =
(dr)r∈R ∈

∏
r∈R Dr, such that dr = 0 for all r /∈ R.

Consider a system of resource dependencies defined by a cfNet N . Let R0 ⊆ R
be a set of resources corresponding to an initial request, and let u be a utility
function over R0. Let M0 = {(r, ∗) | r ∈ R0} be the initial marking corresponding
to R0, and let M be a final marking obtained by running N . Let C[M] be the
corresponding platform constraint (see Definition 8). Finally, let costr, for all
r ∈ R, be the corresponding cost functions.

Definition 11. An allocation d = (dr)r∈R over R is valid, if the predicate

CM (d) def= C[M] ∧
∧

r∈R

(
dr =

∑

t:(r,t)∈M

dt
r

)
(2)

evaluates to true and if the following value is defined:

UM (d) def= u(d) −
∑

r∈R
costr(dr). (3)

We call the function UM (d) the global utility of the allocation d.

Finding an optimal resource allocation for a request R0 is then formalised by
the following constrained optimisation problem: argmax{d | CM (d)} UM (d).

Notice that both the notions of validity and global utility, and the optimisa-
tion problem above depend on the marking M obtained by running the cfNet. In
the next section we characterise those cfNets, where this dependency does not
hold and provide a disambiguating mechanism for the rest of cfNets.

206 S. Bliudze et al.

4 Conflicting Dependencies

r1 t1

t2

r2
∗

∗

Fig. 5. Mutual depen-
dency

In the previous section, we have introduced the notion
of cfNets and shown how the constraint problem asso-
ciated to a resource request is built by running one. In
particular, we have shown (Examples 3 and 4) that, in
cfNets, where only one among a set of alternative depen-
dencies is to be activated, the use of inhibitors leads to
simpler constraint problems with fewer variables.

Figure 5 shows another example, where inhibitors
are useful. It models a system with two resources that
must be used together: if one is requested, the other one
should be included also; however, if both are requested
initially, there is no need to introduce additional con-
straints. This example cannot be realised without inhibitors.

Thus, inhibitor arcs increase the expressiveness of cfNets and are benefi-
cial for the complexity of the resulting constraint problems. On the other hand,
inhibitors can introduce conflicts between transitions, thereby introducing poten-
tial ambiguity in the definition of a constraint problem associated to a given
initial marking. Below, we show that any cfNet that does not contain inhibitor
arcs referring to token colours other than ∗, is conflict-free. We then provide a
method for conflict detection in cfNets that do contain such inhibitors.

4.1 Conflicting Transitions

Definition 12. A cfNet (R, T, F, I, C) under marking M has a conflict, if there
exist two distinct enabled transitions t1, t2 ∈ T , such that M

t1−→ M ′ and t2 is
disabled with M ′.

We also say that transitions t1, t2 ∈ T are in conflict under the marking M .
A cfNet is conflict-free if it does not have conflicts under any reachable marking.

Proposition 2. Any transition t, enabled with a marking M of a conflict-free
cfNet, is also enabled with any marking reachable from M without firing t.

An important consequence of Proposition 2 is that a platform constraint
obtained by running a conflict-free cfNet depends only on the initial marking.
Indeed, for a given initial marking the runs of the cfNet can only differ in the
order of transition firing. However, the set of transitions is the same, generating
the same conjuncts contributing to the platform constraint (1).

Proposition 3. Let (R, T, F, I, C) be a cfNet and t1, t2 ∈ T (with t1 �= t2) be
two transitions in conflict under some marking M . Then there exists a place
r ∈ R, such that either (r, t2, t1) ∈ I or (r, t1, t2) ∈ I.

A simple corollary of Proposition 3 is that any cfNet that does not contain
inhibitor arcs referring to token colours other than ∗, is conflict-free. Notice,
however, that Proposition 3 does not rely on the reachability of markings. Indeed,

Constraint-Flow Nets 207

a conflict-free cfNet can still have conflicting transitions, provided that they are
not enabled together under any reachable marking.

Definition 13. Transitions t1 and t2 are mutually exclusive if no reachable
marking enables them both.

r1

t1

r3

r2

∗
t2

t1

r4

Fig. 6. A simple net with mutually exclusive transitions

Figure 6 shows an example of two mutually exclusive transitions. Transitions
t1 and t2 cannot be enabled simultaneously, since the place r2 has a regular arc
to t2 and an inhibitor arc to t1, thus one transition requires a token in r2 while
the other requires the place to be empty.

Definition 14. An inhibitor arc (r, t′, t) (with t′ �= ∗) is called non-conflicting
if t is mutually exclusive with t′.

Theorem 1. A cfNet is conflict-free if and only if all its inhibitor arcs refer to
initial tokens or are non-conflicting.

Lemma 1. Let (R, T, F, I, C) be a conflict-free cfNet, M be a marking enabling
two transitions t1 �= t2 and M

t1−→ M ′
1

t2−→ M ′
2 and M

t2−→ M ′′
1

t1−→ M ′′
2 be two

possible runs of N . Then M ′
2 = M ′′

2 .

Theorem 2. A conflict-free cfNet is terminating and confluent, i.e. for any
initial marking M0, there exists a unique final marking M reachable from M0.

Theorem 2 implies that in a conflict-free cfNet, the platform constraint (1)
depends only on the initial marking M0, given by a request R0. Therefore, the
problem of finding a resource allocation defined by Eqs. (2) and (3) in a conflict-
free cfNet is defined uniquely.

4.2 Conflict Detection

Theorem 1 provides a criterion characterising conflict-free cfNets: all the
inhibitor arcs must refer to initial tokens or be non-conflicting. In order to
determine whether an inhibitor arc (r, t′, t) is non-conflicting, we must check

208 S. Bliudze et al.

whether t and t′ are mutually exclusive. Mutual exclusiveness of two transi-
tions requires that there be no reachable marking enabling them simultaneously
(Definition 13). However, checking the existence of such a reachable marking
by direct exploration is complex: in the worst case, the number of possible
markings is of the order of 2|T a|×|R|, since each transition—including the ini-
tial request—can potentially generate a token in each of the places. Instead, we
exploit the notion of marking well-formedness, which over-approximates reacha-
bility (Proposition 1). Given two conflicting transitions of a cfNet (R, T, F, I, C)
(fixed for the remainder of this sub-section), we proceed in three steps:

1. We encode the existence of a well-formed marking enabling both transitions
as a Boolean satisfiability problem and submit it to a SAT-solver.

2. If the problem is unsatisfiable, the two transitions are mutually exclusive.
Otherwise, the satisfying valuation returned by the SAT-solver encodes a
well-formed marking, reachability whereof can be efficiently checked.

3. If this marking is reachable, the two transitions are not mutually exclusive.
Otherwise, we repeat step 1 with a refined encoding excluding this marking.

Boolean encoding of transition enabledness. With each place-colour pair
(r, t) we associate a Boolean variable yt

r, evaluating to tt iff the corresponding
token is present in a given marking. For a transition t ∈ T , we define the following
four predicates on markings (T stands for tokens, I stands for inhibitors):

T −
t

def=
∧

r∈R−(t)

(∨

t∈T −(r)

yt
r

)
, // tokens are present in pre-places of t (4)

T +
t

def=
∧

r∈R+(t)

yt
r , // tokens are present in post-places of t (5)

I∗
t

def=
∧

(r,∗,t)∈I

y∗
r , // tokens are absent from initial inhibitors of t (6)

I◦
t

def=
∧

(r,t′,t)∈I, t′ 	=∗
yt′

r . // tokens are absent from non-initial inhibitors of t (7)

For a well-formed marking M , if the transition t has already been fired in
the run leading to M , then T +

t (M) evaluates to tt. Thus, t is enabled under M

iff Et(M) def= T −
t ∧ T +

t ∧ I∗
t ∧ I◦

t = tt.

Lemma 2. If a transition t is enabled with a marking M , then holds the equality
Et(M) = tt. Conversely, if Et(M) = tt and M is well-formed then t is enabled.

Lemma 2 provides a characterisation of transition enabledness under well-
formed markings. The following results provide a similar characterisation of the
well-formedness of a marking.

Transition t may have been enabled in the run leading to a marking M only
if Bt(M) def= T −

t ∧ I∗
t = tt. Notice that the stronger predicate T −

t ∧ I∗
t ∧ I◦

t does

Constraint-Flow Nets 209

not characterise the desired property, since some of the tokens inhibiting t may
have been generated after t has been fired (clearly, this cannot be the case for
the initial tokens). Notice also that once Bt(M) holds for some marking M , it
will hold for all markings reachable from M .

The well-formedness of a marking essentially means that, for every non-initial
token, there is a transition that could have generated it. Thus, a marking M is
well-formed iff W(M) def=

∧
r∈R

∧
t∈T −(r)

(
yt

r ⇒ Bt ∧ T +
t

)
= tt.

Thus, the fact that two transitions, t1 and t2 can be both enabled with the
same well-formed marking is encoded by the predicate Et1 ∧ Et2 ∧ W. If this
predicate is not satisfiable then transitions t1 and t2 are mutually exclusive.
Recall from Sect. 3.1 that well-formedness is an over-approximation of reach-
ability. Therefore, the converse does not hold: given a marking M satisfying
Et1 ∧ Et2 ∧ W, one has to check whether M is reachable.

Marking reachability. Let M ⊆ R × T a be a well-formed marking of a cfNet
(R, T, F, I, C). We associate to the marking M the corresponding causality graph,
which is a directed hyper-graph GM

def= (V,E) with vertices V = TM and the set
E ⊆ TM × 2TM of edges representing the “must be fired before” relation among
the corresponding transitions: an edge (t, T) with T ∈ 2TM means that, for the
transition t to be fired, at least one transition in T must be fired before t.

We put E = E1 ∪ E2 with E1 and E2 defined by (8) and (9) below.
For a place r ∈ R, denote Tr

def= {t ∈ TM | (r, t) ∈ M} the set of colours of the
tokens in r present in the marking M . We put

E1
def=

{
(t, Tr) ∈ TM × 2TM

∣∣∣ t ∈ TM , r ∈ R−(t)
}

. (8)

By Definition 3, for any transition t to be fired, it is necessary that in each place
r ∈ R−(t) there be at least one token. Hence, at least one of the transitions
generating such tokens must be fired before t.

Furthermore, if firing a transition t′ generates a token that inhibits some
transition t, then firing of t cannot happen after that of t′. Thus, we put

E2
def=

{
(t′, {t}) ∈ TM × 2TM

∣∣∣ ∃r ∈ R : (r, t′, t) ∈ I
}

. (9)

Notice that, if such (r, t′, t) ∈ I actually exists, necessarily (r, t′) ∈ M , since
t′ ∈ TM . Thus, we do not have to state this condition explicitly in (9).

Definition 15. Let G = (V,E) with E ⊆ V × 2V be a hyper-graph. A path
in G is a sequence (ei)n

i=0, with ei = (vi, Si) ∈ E, such that vi+1 ∈ Si, for all
i < n. When n ∈ N, we say that the path is finite, otherwise, when n = ∞, it is
infinite. We say that the path starts with the edge e0.

Definition 16. A hyper-graph G = (V,E) with E ⊆ V ×2V has a cycle C ⊆ V ,
if there exists a set of finite paths {(ej

i)
nj

i=0}j∈J , with ej
i = (vj

i , S
j
i) ∈ E, such that

C = {vj
i | j ∈ J, i ∈ [0, nj]} and, for all j ∈ J and i ∈ [0, nj], we have Sj

i ⊆ C.
Otherwise, G is said to be free from cycles.

210 S. Bliudze et al.

Theorem 3. Let M be a well-formed marking and GM its causality graph. The
marking M is reachable iff GM is free from cycles.

Cycle-freedom of a hyper-graph can be checked in linear time [7].
Encoding refinement. Let M ⊆ R×T a be a well-formed marking of a cfNet N ,
enabling two conflicting transitions t1 and t2. If M is reachable, N has a conflict.
If it is not reachable, the encoding has to be refined to exclude M . Let Φ be the
predicate used at the previous step of the process (initially Φ = Et1 ∧ Et2 ∧ W).
We refine this predicate by taking Φ∧ΦM , where ΦM =

∧
(r,t)∈M yt

r ∧
∧

(r,t) 	∈M yt
r

is the characteristic predicate of the marking M .

4.3 Priority

As shown in Sect. 4.1, conflict-free cfNets are confluent: the same platform con-
straint is obtained by any run of the cfNet, for a given initial marking. In other
words, enabled transitions can be fired in arbitrary order. This is not the case for
cfNets with conflicts: firing one of two conflicting transitions disables the other
one, generating different platform constraints. Thus, for reachable conflicts, the
choice of which of the two conflicting transitions should be fired, has to be
resolved externally to the cfNet. This can be achieved by introducing priority
among the conflicting transitions.

For a cfNet N = (R, T, F, I, C), a priority relation is a partial order > ⊆ T ×T
on its set of transitions. For two transitions t1 and t2, a priority t1 > t2 means
that when both transitions are enabled, t1 must be fired before t2. Priorities can
be defined statically or dynamically, depending, for example, on the availability
of the resources corresponding to the post-places of the two transitions.

Example 5 (Virtual resources with inhibitors—continued). In Example 4 we
have presented a cfNet modelling a “virtual” resource p (see Fig. 4) represent-
ing two processing cores p1 and p2. With the initial request p there can be two
possible runs of the cfNet as shown in Fig. 4a and c.

The fact that a virtual resource is used to represent the two cores implies that
they are functionally equivalent. However, we can consider a scenario, where the
two cores differ in their non-functional properties. For instance, suppose that p1
has better energy efficiency than p2. Imposing the priority t1 > t2 for the cfNet
in Fig. 4a, would ensure that p1 is allocated rather than p2.

Consider now the second scenario, where two applications are running on this
platform, both requiring a processing core, but unaware of the platform archi-
tecture. In the first cycle, one of the applications requests p and p1 is allocated
as discussed above. In the next cycle, the second application also requests p.
Since, p1 is not available (indicated by its cost function being undefined for all
values), we inverse the priority, setting t1 < t2. Thus, t2 will be fired leading to
an allocation of p2 to the second application.

Finally, notice that, if none of p1 and p2 is available, the choice of priority is
irrelevant, since the constraint problems generated from both markings in Fig. 4b
and c will be unsatisfiable.

Constraint-Flow Nets 211

5 The Kalray Architecture Case Study

Figure 7 shows the complete cfNet modelling a single cluster of the Kalray archi-
tecture described in Sect. 2. For the sake of clarity, we group the resources in
several boxes: one for each group of processors, one for each memory side and
one for each bus. In order to further unclutter the figure, the smaller rectangles
on the sides of each box allow us to group the arcs of the cfNet. For instance, the
thicker red arc in the figure represents four arcs of the cfNet, going from places
p1 and p2 to transitions t61 and t62.

Each memory side box repeats the virtual resource pattern (Example 3).
The arcs between a processor box, a memory box and a bus box reproduce the
memory and bus example (Example 1).

The architectural constraints are modelled as follows: (1) transition t1 ensures
mutual exclusion among processors p1, p2, p3 and p4; (2) transition t2 ensures
the mutual exclusion among memory sides, and t3, t4—among memory banks of
each side respectively; (3) transitions t51, t52, t61, t62, t71, t72, t81 and t82 ensure
that only one of the processors from one group can have access to one memory
side using a dedicated bus.

It is possible to request either a virtual processing core p or a specific one
out of p1, p2, p3 or p4. Similarly, it is possible to request virtual memory m, a
specific memory side L or R, or a specific memory bank m1, m2, m3 or m4.

The resource allocation constraints for the existing transitions implementing
the dispatching policy are as follows (S4 is the symmetric group on {1, 2, 3, 4}):

ct1(xp, xp1 , xp2 , xp3 , xp4) =
∨

σ∈S4

(xpσ(1) = xp ∧ xpσ(2) = xpσ(3) = xpσ(4) = 0),

ct2(xm, xL, xR) = (xL = xm ∧ xR = 0) ∨ (xR = xm ∧ xL = 0),
ct3(xL, xm1 , xm2) = (xm1 = xL ∧ xm2 = 0) ∨ (xm2 = xL ∧ xm1 = 0),

ct51(xm1 , xp3 , xp4 , xbusL34) =
(
xbusL34 > 0 ∧ xm1 > 0 ∧
((xp3 = 0 ∧ xp4 > 0) ∨ (xp4 = 0 ∧ xp3 > 0))

)

∨
(
xbusL34 = 0 ∧ ((xp3 = 0 ∧ xp4 = 0) ∨ xm1 = 0)

)
,

ct4 is similar to ct3 , whereas ct52 , ct61 , ct62 , ct71 , ct72 , ct81 , ct82 are similar to ct51 .
The initial cost functions for the resources are as follows: (1) for all i ∈

[1, 4], costpi
(d) = 0, if d ∈ {0, 1} and undefined otherwise; (2) for all i ∈ [1, 4],

costmi
(d) = 0, if 0 ≤ d ≤ 128 and undefined otherwise; (3) for i ∈ {L,R} and

j ∈ {12, 34}, costbusij
(d) = 0, if d ∈ {0, 1} and undefined otherwise; (4) the cost

function for p, m, L, R are defined everywhere as constant 0.
Here, the focus is on resource availability, rather than the actual cost. Hence,

all cost functions are 0 when defined. Notice also, that we require the whole bus
once a memory is requested, regardless of the amount of data to be passed.

212 S. Bliudze et al.

t1

p

p1 p2 p3 p4

m

t2

L R

t3 t4

m1 m2 m3 m4

busL12 busL34 busR34busR12

t51 t52t62t61 t71 t72 t82t81

Fig. 7. A cfNet modelling a Kalray cluster

6 Related Work

The idea of using Petri nets for resource management is not novel. A number
of works explore Resource Allocation Systems (RAS) in the context of Flexible
Manufacturing Systems (FMS) [9] and introduce different subclasses of Petri
nets to account for various allocation requirements [14,28]. In [21] the authors
investigate how the methods used in FMS can be extended to software applica-
tions with concurrent processes competing for shared resources. They propose a
new subclass of Petri nets, PC2R, where the resources of different types, their
availability and control flow of each process are represented as a unique sys-
tem. A small change in the process flow or resources set will require a change
of this model. In contrast, we are applying the separation of concerns principle
by providing distinct models for systems of interdependent resources with their
available capacities and for resource requests from abstract applications.

Numerous works study constraints and dependencies, such as temporal,
causality and resource constraints, in various contexts by considering the under-
lying dependency graphs, e.g. [1,4,18,25]. Due to their syntactic structure
inspired from Petri nets, cfNets generalise these approaches.

The term “constraint-flow net” can be confused with “network of constraints”,
a notion initially proposed in [22]. In fact, these two formalisms are very differ-
ent. Constraint-flow nets consist of places and transitions, representing, respec-
tively, resources and dependencies among them. Each transition has an associated
constraint schema, whereof the arity is the total number of incoming and outgo-
ing arcs of the transitions. These constraint schemata are used to generate con-
straints imposed on the possible resource allocations by the execution platform
modelled by the cfNet. On the other hand, networks of constraints have been pro-
posed in [22] to palliate the combinatorial explosion, when a given relation among

Constraint-Flow Nets 213

n variables (constraint) is represented by an n-dimensional (0, 1)-matrix. Instead,
such n-ary constraint can be optimally approximated by a network of n binary
ones, thereby considerably reducing the size of the representation.

Constraint-flow nets bear some similarity with event structures [23], in par-
ticular the more recent generalisations involving conflict [30] and dynamic-
ity [3]. Event structures encode causality and conflict relations among concurrent
events. The generalisation proposed in [30] matches the expressive power of arbi-
trary Petri nets. This suggests that it should be capable of encoding the flow part
of cfNets: in our context, an event structure configuration would represent the set
of transitions having been fired. However, since places—representing resources
in cfNets—do not appear explicitly in event structures, it is not immediately
clear how the initial requests and constraint schemata should be encoded. We
leave a more detailed study of the correspondence between the various forms of
event structures and cfNets for future work.

Constraint-flow nets are specifically tailored to provide a natural way of incor-
porating constraint schemata that allow expressing quantitative dependencies
among amounts of allocated resources. To the best of our knowledge, such com-
binations of constraint schemata with an underlying graph structure have not
been studied in existing literature.

7 Conclusion

In this paper, we have introduced constraint-flow nets (cfNets) that allow mod-
elling resource dependencies, thereby bridging a gap in the current state-of-
the-art approaches to the specification of requests for resources and resource
allocation to applications: resource allocation commonly relies on the assump-
tion that the requested resources are completely specified, whereas specification
languages operate with high-level abstractions of resources, e.g. “memory” or
“thread”, leaving the resource manager to endow these with precise semantics.

The cfNet model provides a means to formally specify the structure of
resources provided by the platform and the dependencies among them. This
specification serves as an abstraction layer, which allows designers to focus on
the resources immediately relevant to the application functionality, while tak-
ing care of low-level structure and dependencies inherent to the specific target
platform. Thus, our approach simplifies application design and greatly enhances
portability. This is particularly useful for platforms with complex resource archi-
tectures, such as the Massively Parallel Processor Arrays (MPPA) (e.g. Kalray),
or cloud platforms, where the resource architecture can change dynamically at
run time.

In this paper, we have defined the cfNet model and provided its semantics,
defining a constraint problem for a given initial resource request. The cfNet
model comprises inhibitor arcs. On one hand, these increase the expressiveness
of the model and simplify certain constraint problems by reducing the num-
ber of variables involved. On the other hand, inhibitors can generate conflicts
introducing ambiguity in the constraint problem definition. We have provided a

214 S. Bliudze et al.

sufficient condition—which can be easily checked syntactically—for the cfNet to
be conflict-free. For cfNets that do not satisfy this condition, we have provided
an efficient method for determining whether a given inhibitor induces a conflict.
As shown by the virtual resources example, reachable conflicts can appear, for
example, when the use of different instances of the same similar resource type
are preferable in different situations. Such conflicts can be dynamically resolved
by defining priorities between conflicting transitions.

In future work, we are planning to further improve the conflict detection algo-
rithm: the encoding refinement presented in this paper excludes only one mark-
ing; by exploiting the causality hyper-graph, more unreachable markings could
be excluded in one step. Similarly, the structure of a cfNet could be exploited for
building concurrent or distributed resource allocators. We also consider imple-
menting the cfNet model in the JavaBIP [5,6] component coordination frame-
work in order to evaluate the practical performance, using various SMT and
constraint solvers.

Acknowledgements. This paper has received a large number of very constructive
comments. Although—mostly due to space and time limitations—we did not manage
to address all of them, we are very grateful to the anonymous reviewers for their
suggestions that we hope to implement in our future work.

References

1. Agarwal, M.K., Appleby, K., Gupta, M., Kar, G., Neogi, A., Sailer, A.: Problem
determination using dependency graphs and run-time behavior models. In: Sahai, A.,
Wu, F. (eds.) DSOM 2004. LNCS, vol. 3278, pp. 171–182. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30184-4 15

2. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Satisfiability modulo
theories: an efficient approach for the resource-constrained project scheduling prob-
lem. In: Symposium on Abstraction, Reformulation, and Approximation (2011)

3. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event
structures. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039,
pp. 83–97. Springer, Cham (2015). doi:10.1007/978-3-319-19195-9 6

4. Berson, D.A., Gupta, R., Soffa, M.L.: GURRR: a global unified resource require-
ments representation. SIGPLAN Not. 30(3), 23–34 (1995)

5. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Coordination of software
components with BIP: application to OSGi. In: Proceedings of the 6th International
Workshop on Modeling in Software Engineering, MiSE 2014, pp. 25–30. ACM, New
York (2014)

6. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordination
of concurrent software components with JavaBIP. Software: Practice and Experi-
ence (2017). Early view: http://dx.doi.org/10.1002/spe.2495

7. Bliudze, S., Simalatsar, A., Zolotukhina, A.: Modelling resource dependencies.
Technical report 218599, EPFL. https://infoscience.epfl.ch/record/218599

8. Chien, A.A., Casanova, H., Kee, Y.-S., Huang, R.: The virtual grid description
language: vgDL. Technical report CS2005-0817, Department of Computer Science
and Engineering, University of California, San Diego (2004)

http://dx.doi.org/10.1007/978-3-540-30184-4_15
http://dx.doi.org/10.1007/978-3-319-19195-9_6
http://dx.doi.org/10.1002/spe.2495
https://infoscience.epfl.ch/record/218599

Constraint-Flow Nets 215

9. Colom, J.M.: The resource allocation problem in flexible manufacturing systems.
In: Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 23–35.
Springer, Heidelberg (2003)

10. Cui, Y., Nahrstedt, K.: QoS-aware dependency management for component-based
systems. In: Proceedings of the 10th IEEE International Symposium on High Per-
formance Distributed Computing, pp. 127–138 (2001)

11. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.,
Tuecke, S.: A resource management architecture for metacomputing systems. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSp. 1998. LNCS, vol. 1459, pp. 62–82.
Springer, Heidelberg (1998). doi:10.1007/BFb0053981

12. de Dinechin, B.D., van Amstel, D., Poulhiès, M., Lager, G.: Time-critical comput-
ing on a single-chip massively parallel processor. In: Proceedings of the Conference
on Design, Automation & Test in Europe, DATE 2014, p. 97: 1–97: 6, 3001 Leuven,
Belgium, Belgium, European Design and Automation Association (2014)

13. Ensel, C., Keller, A.: An approach for managing service dependencies with XML
and the resource description framework. J. Netw. Syst. Manage. 10(2), 147–170
(2002)

14. Ezpeleta, J., Colom, J., Mart́ınez, J.: A Petri net based deadlock prevention policy
for flexible manufacturing systems. IEEE Trans. Robot. Autom. 11, 173–184 (1995)

15. Giannopoulou, G., Stoimenov, N., Huang, P., Thiele, L., de Dinechin, B.: Mixed-
criticality scheduling on cluster-based manycores with shared communication and
storage resources. Real-Time Syst. 51(4), 1–51 (2015)

16. Kalray. Kalray MPPA-256, March 2015. http://www.kalray.eu/IMG/pdf/FLYER
MPPA MANYCORE.pdf

17. Kee, Y.-S., Logothetis, D., Huang, R.Y., Casanova, H., Chien, A.A.: Efficient
resource description and high quality selection for virtual grids. In: CCGRID, pp.
598–606. IEEE Computer Society (2005)

18. Kountouris, A.A., Wolinski, C.: Hierarchical conditional dependency graphs for
conditional resource sharing. In: Proceedings of the 24th Euromicro Conference,
vol. 1, pp. 313–316,., August 1998

19. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Softw. Pract. Experience 32(2),
135–164 (2002)

20. Lassila, O., Swick, R.R.: Resource description frame-work (RDF) model and syn-
tax specification. Technical report REC-rdf-syntax-19990222, World Wide Web
Consortium (W3C), February 1999

21. López-Grao, J.-P., Colom, J.-M.: A petri net perspective on the resource allocation
problem in software engineering. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.)
ToPNoC V. LNCS, vol. 6900, pp. 181–200. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29072-5 8

22. Montanari, U.: Networks of constraints: fundamental properties and applications
to picture processing. Inf. Sci. 7, 95–132 (1974)

23. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theoret. Comput. Sci. 13(1), 85–108 (1981)

24. Raman, R., Livny, M., Solomon, M.: Matchmaking: an extensible framework for
distributed resource management. Cluster Comput. 2(2), 129–138 (1999)

25. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource
allocation constraints. Inform. Syst. 30(5), 399–422 (2005)

26. Tendulkar, P., Poplavko, P., Galanommatis, I., Maler, O.: Many-core scheduling of
data parallel applications using SMT solvers. In: 2014 17th Euromicro Conference
on Digital System Design (DSD), pp. 615–622. IEEE (2014)

http://dx.doi.org/10.1007/BFb0053981
http://www.kalray.eu/IMG/pdf/FLYER_MPPA_MANYCORE.pdf
http://www.kalray.eu/IMG/pdf/FLYER_MPPA_MANYCORE.pdf
http://dx.doi.org/10.1007/978-3-642-29072-5_8
http://dx.doi.org/10.1007/978-3-642-29072-5_8

216 S. Bliudze et al.

27. Tendulkar, P., Poplavko, P., Maselbas, J., Galanommatis, I., Maler, O.: A run-
time environment for real-time streaming applications on clustered multi-cores.
Technical report, Verimag (2015)

28. Tricas, F., Garcia-Valles, F., Colom, J.M., Ezpeleta, J.: A Petri net structure-
based deadlock prevention solution for sequential resource allocation systems. In:
Proceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion, ICRA 2005, pp. 271–277, April 2005

29. Van, H.N., Tran, F.D., Menaud, J.M.: SLA-aware virtual resource management for
cloud infrastructures. In: Ninth IEEE International Conference on Computer and
Information Technology, CIT 2009, vol. 1, pp. 357–362,., October 2009

30. Glabbeek, R., Plotkin, G.: Event structures for resolvable conflict. In: Fiala, J.,
Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 550–561.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28629-5 42

31. Vanderham, J., Dijkstra, F., Travostino, F., Andree, H., Delaat, C.: Using RDF to
describe networks. Future Gener. Comput. Syst. 22(8), 862–867 (2006)

http://dx.doi.org/10.1007/978-3-540-28629-5_42

Verification

Verifying Timed BPMN Processes Using Maude

Francisco Durán1(B) and Gwen Salaün2

1 University of Málaga, Málaga, Spain
duran@lcc.uma.es

2 University of Grenoble Alpes, LIG, CNRS, Grenoble, France

Abstract. A business process is a collection of structured activities
producing a particular product or software. BPMN is a workflow-based
graphical notation for specifying business processes. Formally analyzing
such processes is a crucial challenge in order to avoid erroneous execu-
tions of the corresponding software. In this paper, we focus on timed
business processes where execution time can be associated to several
BPMN constructs. We propose an encoding of timed business processes
into the Maude language, which allows one to automatically verify several
properties of interest on processes such as the maximum/minimum/av-
erage execution time or the timed degree of parallelism that provides
a valuable guide for the problem of resource allocation. The analysis is
achieved using the rewriting-based tools available in Maude, which also
provides other techniques (e.g., reachability analysis and model check-
ing) for verifying BPMN specifications. We applied our approach on a
large set of BPMN processes for evaluation purposes.

1 Introduction

Business Process Model and Notation (BPMN) [14] is a graphical modelling
language for specifying business processes. A business process is a collection
of structured activities or tasks that produce a specific product and fulfill a
specific organizational goal for a customer or market. More precisely, a process
aims at modelling activities, their causal and temporal relationships, and specific
business rules that process executions have to comply with. Business process
modelling is an important area in software engineering since it supports the
development of workflow-based software, such as information and distributed
systems. BPMN is the de facto notation for designing business processes and
was published as an ISO standard in 2013.

When modelling processes using BPMN, many questions arise: is my work-
flow precisely modelling what I expect from it? Is my workflow free of errors
and bugs? Are certain properties of interest preserved? What is the degree of
parallelism of my process? What is the minimum execution time of my work-
flow? All these questions are meaningful, but they are not that simple to answer,
particularly when modelling complex processes involving many tasks and intri-
cate combinations of gateways. Some of these questions (and corresponding

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 219–236, 2017.
DOI: 10.1007/978-3-319-59746-1 12

220 F. Durán and G. Salaün

computations) may even turn out to be undecidable if the whole expressiveness
of BPMN is considered (e.g., cyclic behaviours, data aspects, or time).

In this paper, we focus on software development based on a subset of BPMN
where we can model process behaviours (tasks, sequence flows, gateways) and
time aspects (duration associated to tasks and flows). We propose automated
analysis techniques for verifying that certain properties of interest are satisfied
for timed business processes modelled with BPMN. In this work, we focus on
properties that are application independent, which allows us to provide press-
button verification techniques without requiring any input from the developer.
Properties of interest are for instance the minimum/maximum/average execu-
tion time of a process and the timed degree of parallelism, which is a valuable
information for resource allocation. Our approach also enables one to carry on
other kinds of analysis such as reachability analysis to search, e.g., for deadlock
states, or state-based LTL model checking to verify the satisfaction of temporal
properties (safety and liveness). In these cases, since the properties depend on
the input process, they have to be provided by the developer, who can reuse
well-known patterns for timed properties as those presented in [12,15].

Our approach relies on an encoding of the BPMN execution semantics into
the rewriting-logic-based language Maude [7]. The three challenges of this encod-
ing were to properly translate all gateways (including the inclusive merge gate-
way), to describe time durations and passing, and to support loops and unbal-
anced workflows. Unbalanced workflows are those processes that exhibit an
unbalanced structure with no exact correspondence between split and merge
gateways. The expressive power of the Maude language allowed us to model
these features in a uniform way. Moreover, Maude is equipped with a large vari-
ety of analysis tools, which can be used for automatically verifying properties
of interest such as the aforementioned execution time measures and the timed
degree of parallelism. We applied our approach on many business processes for
validation purposes and verification times turn out to be reasonable for real-size
examples.

To sum up, the main contributions of this work with respect to existing results
on this topic are the following: (i) an encoding into Maude of a subset of BPMN
including time aspects, inclusive gateways, looping behaviours, and unbalanced
workflows; (ii) automated analysis techniques for verifying properties of interest
on timed BPMN models using reachability analysis and model checking tools;
and (iii) tool support for automating the transformation to Maude and validation
of the approach by application to many BPMN processes.

The organization of the rest of the paper is as follows. Section 2 introduces
the BPMN notation and Maude. Section 3 explains our Maude encoding of
the considered subset of BPMN, with emphasis on the handling of time. In
Sect. 4, we present our techniques for automatically analyzing properties on
BPMN processes. This section also presents experimental results. Section 5 sur-
veys related work and Sect. 6 concludes the paper.

Verifying Timed BPMN Processes Using Maude 221

2 Preliminaries

In this section we provide a brief account of BPMN and Maude.

2.1 BPMN

BPMN is a graphical notation for modelling business processes as collections
of related tasks that produce specific services or products for particular clients.
BPMN is an ISO/IEC standard [14], and BPMN processes can be simulated
by using different process interpretation engines (e.g., Activiti, Bonita BPM, or
jBPM). The semantics of BPMN is described informally in official documents
(see, e.g., [14,23]), and some attempts have been made for giving a formal seman-
tics to BPMN (see, e.g., [9,17,19,24,29]).

In this paper, our goal is not to consider the whole expressiveness of the
BPMN language, but to concentrate on the BPMN elements related to control-
flow modelling and on time aspects that can be represented in BPMN constructs.
This enables us to focus on those aspects and show how automated analysis is
possible for them. Specifically, we consider the node types event, task, and gate-
way, and the edge type sequence flow. Start and end events are used, respectively,
to initialize and terminate processes. A task represents an atomic activity that
has exactly one incoming and one outgoing flow. A gateway is used to control
the divergence and convergence of the execution flow. A sequence flow describes
two nodes executed one after the other, i.e., imposing the execution order.

Gateways are crucial since they are used to model control flow branching in
BPMN and therefore influence the overall process execution. There are five types
of gateways in BPMN: exclusive, inclusive, parallel, event-based and complex
gateways. We consider all of them except complex gateways, because they are
used to model complex synchronization behaviours especially based on data
control, and we do not take data objects, nor conditions on flows outgoing of
split gateways, into account.

Gateways with one incoming branch and multiple outgoing branches are
called splits, e.g., split inclusive gateway. Gateways with one outgoing branch
and multiple incoming branches are called merges, e.g., merge parallel gateway.
An exclusive gateway chooses one out of a set of mutually exclusive alternative
incoming or outgoing branches. For an inclusive gateway, any number of branches
among all its incoming or outgoing branches may be taken. A parallel gateway
creates concurrent flows for all its outgoing branches or synchronizes concurrent
flows for all its incoming branches. For an event-based gateway, it takes one of
its outgoing branches or accepts one of its incoming branches based on events.
In the following, we call the branches that are taken by a gateway during an
execution as active branches. In this work, we support unbalanced workflows,
meaning that each merge gateway does not necessarily have a corresponding
split gateway with an exact correspondence of the branches among outgoing
and incoming flows. We also support workflows with looping behaviours.

The execution semantics of BPMN constructs can be described using tokens
as depicted in Fig. 1. The start event node can be triggered once at any moment,

222 F. Durán and G. Salaün

which creates a token in its outgoing sequence flow. Whenever a token is present
in the incoming sequence flow of an end event, this execution flow can terminate
by consuming this token. If a token is in a sequence flow, then the destination
node for this sequence flow can be triggered. The semantics of gateways is also
given, emphasizing that specific care should be taken when considering inclusive
split/merge gateways since all possible combinations should be generated and
all triggered branches should be awaited for at the merge synchronization point.
The inclusive merge is particularly problematic from a semantic point of view
as discussed in [6]. We will show in the next section how our Maude executable
semantics allows the encoding of these BPMN gateways.

In addition to these classic BPMN constructs, one can also specify notions
of time. In this paper, we consider time as a duration, which can be associated
to tasks or flows. When a flow has a duration d greater than zero, it means that
the destination node is triggered after d units of time. If the duration is zero,
that node is immediately triggered. Similarly, a task triggers its outgoing flow at
once for a duration equal to zero and waits for d units of time when a duration
d greater than zero is associated to that task.

In this paper, we assume that BPMN processes are syntactically correct. This
can be enforced using existing works, e.g., [11], or using a BPMN engine, e.g.,
the Activiti BPM platform, Bonita BPM, or the Eclipse BPMN Designer.

Running example. The process we use as running example (Fig. 2) aims at
monitoring the organization of a business trip. The process starts by reserving
flight tickets and by completing the mission paperwork. Flight booking may take
some time, because in many companies this task is subcontracted to a third party
company. Once the flight tickets are issued, accommodation reservation and
other additional services (insurance, vaccines, etc.) are tackled in parallel. Visa
process is initiated only when all reservations (flights and hotel) are completed
and when the paperwork is finished. Once all the aforementioned prerequisites
of the trip are completed, the mission details are stored in a specific database.

2.2 Maude and Real-Time Maude

Real-Time Maude [22] is a rewriting-logic-based specification language and for-
mal analysis tool that extends the Maude system [7] to support the formal spec-
ification and analysis of real-time systems. Real-Time Maude provides support
for symbolic simulation through timed rewriting, and time-bounded temporal
logic model checking and search for reachability analysis.

Rewriting logic [20] is a logic of change that can naturally deal with states
and non-deterministic concurrent computations. A rewrite logic theory is a tuple
(Σ,E ∪A,R), where (Σ,E ∪A) is a membership equational logic [3] theory with
Σ its signature, E a set of conditional equations, A a set of equational axioms
such as associativity, commutativity and identity, so that rewriting is performed
modulo A, and R is a set of labeled conditional rules. In rewriting logic, a distrib-
uted system is axiomatized by an equational theory, describing its set of states
as an algebraic data type, and a collection of conditional rewrite rules, specifying

Verifying Timed BPMN Processes Using Maude 223

Fig. 1. BPMN execution semantics

its dynamics. Rewrite rules are written crl [l] : t => t′ if C, with l the rule label,
t and t′ terms, and C a condition. We may have rules without label or condition.
An unlabelled unconditional rule would be written rl t => t′. Rules describe the
local, concurrent transitions that are possible in the system, i.e., when a part of

224 F. Durán and G. Salaün

Fig. 2. BPMN running example

the system state fits the pattern t, then it can be replaced by the corresponding
instantiation of t′. The guard C acts as a blocking precondition, in the sense
that a conditional rule can only be fired if its condition is satisfied.

In Maude, object-oriented systems are specified by object-oriented modules
in which classes and subclasses are declared. A class is declared with the syntax
class C | a1:S1, ..., an:Sn, where C is the name of the class, ai are attribute
identifiers, and Si are the sorts of the corresponding attributes. Objects of a
class C are then record-like structures of the form <O : C | a1:v1, ..., an:vn>,
where O is the name of the object, and vi are the current values of its attributes.

In a concurrent object-oriented system, the concurrent state has the structure
of a multiset made up of objects and messages. Such state evolves by concurrent
rewriting using rules that describe the effects of the communication events. The
general form of such rewrite rules is:
cr l [r] :

< O1 : C1 | atts1 > . . . < On : Cn | attsn >
M1 . . . Mm

=>

< Oi1 : C′
i1

| atts′
i1

> . . . < Oik
: C′

ik
| atts′

ik
>

< Q1 : C′′
1 | atts′′

1 > . . . < Qp : C′′
p | atts′′

p >

M ′
1 . . . M ′

q

i f Cond .

where r is the rule label, M1...Mm and M ′
1...M

′
q are messages, O1...On and

Q1...Qp are object identifiers, C1...Cn, C ′
i1

...C ′
ik

and C ′′
1 ...C ′′

p are classes, i1...ik
is a subset of 1...n, and Cond is a condition (the rule’s guard). The result of
applying such a rule is that: (a) messages M1...Mm disappear, i.e., they are
consumed; (b) the state, and possibly the classes of objects Oi1 ...Oik may change;
(c) all the other objects Oj vanish; (d) new objects Q1...Qp are created; and
(e) new messages M ′

1...M
′
q are created, i.e., they are posted.

Real-Time Maude provides a sort Time to model the time domain, which
can be either discrete or dense time (we use discrete time in this paper).

Verifying Timed BPMN Processes Using Maude 225

Given a constructor { , } of sort GlobalSystem, time passing is modelled by rewrite
rules known as tick rules:
cr l [l] : {t , T} => {t′ , T + τ} i f C .

where t is the state of the system, T is its global time, and τ is the duration of the
rewrite. Since tick rules affect the global time, in Real-Time Maude time elapse
is usually modeled by one single tick rule, and the system dynamic behaviour
by instantaneous transitions [22]. Although there are other strategies, the most
flexible one models time elapse by using two functions, namely, delta, which
defines the effect of time elapse over every model element, and mte (maximal
time elapse), which defines the maximum amount of time that can elapse before
any action is performed.
cr l [tick] : {t , T} => {delta (t) , T + τ} i f τ := mte (t) /\ τ > 0 /\ C .

In Maude, rule conditions may be given as a short-circuited conjunction of
conditional terms using operator /\. In the previous rule, Boolean expressions
and assignments are used as conjuncts (see [7] for further details).

3 The Encoding of BPMN Processes into Maude

In this section, we present our encoding of our subset of BPMN into Maude. This
encoding consists of two parts: the syntactic encoding of a BPMN process into
Maude and the set of rewrite rules encoding the BPMN execution semantics. The
encoding of the BPMN process into Maude (Sect. 3.1) depends on the example,
so the corresponding Maude code has to be generated for each new process. This
transformation is fully automated by applying a Python script we implemented.
The rewrite rules have been encoded once and for all, and we will present in
Sect. 3.2 the rules corresponding to the handling of some of the constructs in
our BPMN processes. The complete Maude specification with all the rules and
examples of BPMN processes is available online [1].

3.1 Process Encoding

We represent a BPMN process as a set of flows and a set of nodes. A flow is
represented as a term flow(sfi, t), with sfi an identifier and t a duration. If there
is no duration associated to a flow, the duration value is zero. We distinguish
different kinds of nodes: start, end, task, split, and merge. A start (end, resp.)
node consists of an identifier and an output (input, resp.) flow identifier. A task
node involves an identifier, a task description, two flow identifiers (input and
output), and a duration (zero if no duration is associated to this task). A split
node includes a node identifier, a gateway type (exclusive, parallel, inclusive,
or event-based), an input flow identifier, and a set of output flow identifiers.
A merge node includes a node identifier, a gateway type, a set of input flow
identifiers, and an output flow identifier.

These constructs are illustrated in Fig. 3, which shows an excerpt of the rep-
resentation of the running example. Constants fls and nds represent, respectively,
its set of flows and its set of nodes.

226 F. Durán and G. Salaün

1 eq fls = (flow (sf1 , 0) , flow (sf2 , 0) , . . .) . --- flows
2

3 eq nds = (start (initial , sf1) , --- nodes
4 end (final , sf13) ,
5 split (g1 , parallel , sf1 , (sf2 , sf14)) ,
6 . . .
7 task (t7 , " transportation " , sf6 , sf9 , 1) ,
8 task (t8 , " vaccination " , sf7 , sf10 , 14)) .
9

10 eq initSystem
11 = < p : Process | nodes : nds , flows : fls >
12 < s : Simulation | tokens : token (initial , 0) , gtime : 0 > .

Fig. 3. Running example in Maude

3.2 Execution Semantics

The execution of BPMN activities is modeled using tokens, which are associated
to tasks and flows, and circulate along activities as the execution evolves (see
Sect. 2.1). For instance, split gateways produce tokens for their outgoing flows,
and merge gateways collect tokens from their incoming flows and produce one
single token. This simple approach allows us to support unbalanced workflows
where there is no strict correspondence between splits and merges, as well as
looping behaviours.

The execution semantics of BPMN is defined using Maude rewrite rules,
which operate on systems composed of a process object and a simulation object.
The process object represents the BPMN process, and it does not change. The
simulation object keeps information on the execution of the process.
class Process | nodes : Set{ Node } , flows : Set{ Flow} .
class Simulation | tokens : Set{ Token } , gtime : Time .

A simulation involves a set of tokens and a global time (gtime) described using
a natural number (discrete time). Tokens are used to represent the evolution
of the workflow during its execution. These tokens correspond to flow or task
identifiers, plus a time that express a delay, used to model duration of flows and
tasks. Thus, a token token(t8, t) indicates that the task t8 has a token, and that
such task will be completed in t time units. The operator initSystem in Fig. 3
represents the initial state for the process introduced in Fig. 2.

Tick rule. A tick rule is necessary to simulate the time evolution, which is
modelled by the increase of the global time and the decrease of the tokens’
timers. Given appropriate definitions of functions mte and delta, the tick rule is
written as in Fig. 4. The delta function is straightforward, since it just increments
the global time present in the simulation object of the indicated amount of time
and decrements the timers of the tokens by the same amount. The mte function is
more subtle. Although one could think that it is enough taking the smallest of the
tokens’ delays, notice that parallel and inclusive merges may require additional
delays in the incoming branches, requiring a more intricate calculation. A parallel
merge is not activated until all its incoming flows are active, meaning that there
can be tokens with time zero that have to wait until all these flows get their

Verifying Timed BPMN Processes Using Maude 227

1 cr l [tick] :
2 < PId : Process | nodes : Nodes , Atts >
3 < SId : Simulation | tokens : Tks , gtime : T >
4 =>
5 < PId : Process | nodes : Nodes , Atts >
6 < SId : Simulation |
7 tokens : delta (Tks , T1) , --- updates all tokens
8 gtime : (T + T1) > --- increments the global time
9 i f T1 := mte (Nodes , Tks)

10 /\ 0 < T1 .

Fig. 4. Tick rule

tokens. The case of inclusive merges is similar, although in this case we do not
know beforehand how many tokens are to be expected. Thus, each incoming flow
must be traversed backwards to check whether that flow must be awaited for or
discarded in the calculation of the mte function.

The semantics we choose for describing time obliges to execute actions and
move tokens in the process as soon as possible. The time cannot elapse when
there are timers to zero and thus possible actions to be triggered in the process.

Start/end events. We assume that the initial set of tokens includes a token
token(initial, 0). Thus, the start rule (Fig. 5) is triggered when this token is avail-
able (line 6). When the startProc rule is applied, the initial token is consumed
and another one is added to the set of current tokens (line 13), which indicates
that the flow outgoing from the start event has been activated (FId). The time
assigned to this new token is the delay of the flow FId (line 11).

1 r l [startProc] :
2 < PId : Process |
3 nodes : (start (NId , FId) , Nodes) ,
4 flows : (flow (FId , T) , Flows) >
5 < SId : Simulation |
6 tokens : (token (NId , 0) , Tks) , --- init token available
7 Atts >
8 =>
9 < PId : Process |

10 nodes : (start (NId , FId) , Nodes) ,
11 flows : (flow (FId , T) , Flows) >
12 < SId : Simulation | --- token for FId with flow duration
13 tokens : (token (FId , T) , Tks) ,
14 Atts > .

Fig. 5. Start event rule

The end event rule is triggered when there is a token for the incoming flow
with zero time duration. In that case, the simulation consumes this token without
generating new ones, which terminates this flow execution. Note that there is no
specific rules for flows. It is enough to have tokens representing flow activations
and the tick rule we have presented before in this section makes the time evolves
for these tokens, thus for these flows once they are activated.

Tasks. A task execution is encoded with two rules to express the possibility
that a task may take time if a duration is associated to it. An initiation rule

228 F. Durán and G. Salaün

1 r l [execTask] :
2 < PId : Process |
3 nodes : (task (NId , TaskName , FId1 , FId2 , T) , Nodes) ,
4 flows : Flows >
5 < SId : Simulation |
6 tokens : (token (NId , 0) , Tks) , --- token available with 0 time
7 Atts >
8 =>
9 < PId : Process |

10 nodes : (task (NId , TaskName , FId1 , FId2 , T) , Nodes) ,
11 flows : Flows >
12 < SId : Simulation | --- new token for outgoing flow FId2
13 tokens : (token (FId2 , retrieveTimeFlow (FId2 , Flows)) , Tks) ,
14 Atts > .

Fig. 6. Task completion rule

activates the task when a token representing the incoming flow is available. In
that case, we generate a new token with the task identifier and the task duration.
A second rule is used for representing the task completion. This rule is triggered
when there is a token for that task with time zero. In that case, this token is
consumed and a new one is generated for the outgoing flow (Fig. 6).

Gateways. The semantics of exclusive (event-based, resp.) gateways is encoded
with two rules, one rule for the split gateway and one rule for the merge gateway.
The rule for the exclusive split gateway fires when a token with time zero is
available in the input flow and non-deterministically generates a token for one
of the output branches. The exclusive merge gateway executes when there is one
token for one of the incoming flows. In that case, the token is consumed and a
token is generated for the merge outgoing flow.

The parallel split gateway rule is triggered when a token corresponding to the
input flow is available. If so, the token is consumed and one token is added for
each outgoing flow. The merge rule for the parallel gateway (Fig. 7) is executed
when there is a token for each incoming branch (function allTokensParallel in Fig. 7,
line 12). In that case, these tokens are removed (function removeTokensParallel,
line 11) and a new token is generated for the outgoing flow.

The semantics of inclusive gateways is more intricate [6]. An inclusive split
gateway can trigger any number of outgoing flows (at least one). To do so, we
generate tokens for a non-deterministic number of outgoing flows to simulate the

1 cr l [mergeParallelGateway] :
2 < PId : Process |
3 nodes : (merge (NId , parallel , FIds , FId) , Nodes) ,
4 flows : (flow (FId , T) , Flows) >
5 < SId : Simulation | tokens : Tks , Atts >
6 =>
7 < PId : Process |
8 nodes : (merge (NId , parallel , FIds , FId) , Nodes) ,
9 flows : (flow (FId , T) , Flows) >

10 < SId : Simulation |
11 tokens : (token (FId , T) , removeTokensParallel (FIds , Tks)) , Atts >
12 i f allTokensParallel (FIds , Tks) . --- - all incoming flows activated

Fig. 7. Parallel merge gateway rule

Verifying Timed BPMN Processes Using Maude 229

concurrent execution of those flows. The inclusive merge gateway is one of the
most subtle parts of this encoding. This gateway is triggered when all expected
tokens are available. However, we cannot know beforehand the number of active
branches, and therefore, the only way is to traverse the process backwards and
look for active branches (available tokens), similar to the procedure described for
the mte function. Function allTokensInclusive (line 14, Fig. 8) explores the process
upstream looking for active flows and deduces whether all the expected tokens
are present in order to fire the merge gateway or if other tokens must be expected
before executing this gateway. To avoid unnecessary computations, this checking
is only performed when a token has reached the gateway (atLeastOneToken, line
13, Fig. 8). Once this rule is executed, all expected tokens are consumed and a
fresh token is added for the outgoing flow.

1 cr l [mergeInclusiveGateway] :
2 < PId : Process |
3 nodes : (merge (NId , inclusive , FIds , FId) , Nodes) ,
4 flows : (flow (FId , T) , Flows) >
5 < SId : Simulation | tokens : Tks , Atts >
6 =>
7 < PId : Process |
8 nodes : (merge (NId , inclusive , FIds , FId) , Nodes) ,
9 flows : (flow (FId , T) , Flows) >

10 < SId : Simulation |
11 tokens : (token (FId , T) , removeTokensInclusive (FIds , Tks)) ,
12 Atts >
13 i f atLeastOneToken (FIds , Tks)
14 /\ allTokensInclusive (FIds , Tks , (merge (NId , inclusive , FIds , FId) , Nodes)) .

Fig. 8. Inclusive merge gateway rule

4 Rewriting-Based Verification of Timed Processes

In this section, we successively present the verification of properties on timed
processes, other kinds of analysis (simulation, reachability, model checking), and
experimental results. It is worth stressing that by using an encoding into an
existing framework (Maude here), we can reuse and take advantage of all the
existing tools without having to develop new algorithms (from scratch) for com-
puting execution times and checking timed properties.

Verification of timed properties. There are several properties of interest to
be checked on timed processes. We focus on the minimum/maximum/average
execution time and on the degree of parallelism in this work. These metrics are
independent of any concrete BPMN process instance, which makes these checks
generic and easily reusable.

Given a module M including a BPMN process to analyze and an initial
system I (Process and Simulation objects), the function execTime(M , I) gener-
ates all solutions (states where an end node has been reached) and computes
their minimum, maximum and average execution times. The calculation of
these values relies on the search and meta-programming capabilities of Maude.

230 F. Durán and G. Salaün

The search takes place following a breadth-first strategy. In order to avoid infinite
runs of our system, which may happen when processes include infinite loops, one
can either bound the search depth or the global time. By using Maude’s facili-
ties, solutions are considered one by one, making the computation more efficient
and saving storage space.

As far as the parallelism degree is concerned, for a specific process, we traverse
all reachable states (and not only the final solutions) to search the state with
the maximum number of tokens, which corresponds to the degree of parallelism.

Simulation and reachability analysis. Simulation is very useful for exploring
system executions. In Maude, simulation relies on rewriting, which consists in
successively applying equations and rewrite rules on an initial term (a BPMN
process here), with the possibility of using some strategy language to guide the
execution. Since systems may be rewritten in many different ways, Maude also
provides a search command, which allows us to explore the reachable state space
up to a certain depth. Thus, we can perform analysis on the reachability of
states satisfying certain conditions, e.g., when searching for deadlock states or
other undesired situations. For example, given our running example in Fig. 2,
and its corresponding Maude representation InitSystem in Fig. 3, the following
search command checks that there is no reachable final state with tokens in it,
which shows that there is no deadlock.
> search InitSystem =>! Conf such that getNumberTokens (Conf) =/= 0 .
No solution .

Notice the use of ‘=>!’ to limit the check to final states. Variants of this command
allows us to carry on other types of search.

Model checking. We can also take advantage of our encoding for using other
analysis tools available in the Maude system. For instance, Maude’s Linear Tem-
poral Logic (LTL) explicit-state model checker [10] can be used for analyzing all
possible executions of a business process. Maude’s model checker allows one to
check whether every possible behaviour starting from a given initial state (the
start node in BPMN) satisfies a given LTL property. It can be used to check
safety and liveness properties of systems when the set of states reachable from
an initial state is finite. Full verification of invariants in infinite-state systems
can be accomplished by verifying them on finite-state abstractions [21] of the
original infinite-state system, that is, on an appropriate quotient of the origi-
nal system whose set of reachable states is finite. In our context, beyond classic
properties such as deadlock-freeness, the properties that can be verified depend
on the example and should be specified by the developer, e.g., a certain task
is always achieved after another specific task. In order to make the property
writing easier, the developer can rely on well-known patterns as those presented
in [12,15] for timed properties.

For instance, given propositions FlightBooking and VisaProcess, which are true
in states in which the process is executing these respective tasks, i.e., there is
a token in the corresponding task, we can check that the visa request is always
processed after a flight booking as follows:

Verifying Timed BPMN Processes Using Maude 231

> reduce modelCheck (InitSystem , [] (FlightBooking −> <> VisaProcess)) .
result Bool : true

Experimental evaluation. We made experiments on about 100 examples,
some of them taken from the literature on this topic, e.g., [24,27,31], or hand-
crafted for testing some special structures such as multiple nested gateways. Our
main goal was to see how our verification approach scales in terms of time and
explored state space depending on the size of the input process. We used a Mac
OS laptop running on a 2.9 GHz Intel Core i5 processor with 16 GB of memory.
We present in Table 1 some of these results. The table gives for each process the
number of tasks, the number of sequence flows, and the number of gateways.
The exploration is characterized giving the number of solutions and the total
number of states. As for verification, for each example, we give the results for
process execution times and for the degree of parallelism. The last column shows
the analysis time for the parallelism degree calculation, which is the operation
that takes longer.

Table 1. Experimental results

BPMN Size Exploration Proc. exec. time Parall. Analysis

Proc. Tasks Flows Sol States Min Max Avg degree time

1 8 19 – 4 2 2 138 15 17 16 5 0.07 s

2 7 14 2 2 – 2 59 4,837 5,322 5,079 2 0.02 s

3 8 17 – 5 – 1 44 3,863 3,863 3,863 4 0.02 s

4 8 16 – – 4 3 127 3,288 5,095 3,913 3 0.05 s

5 12 24 – – 6 6 1,051 2,902 3,900 3,547 6 0.6 s

6 20 39 – – 8 35 8,760 4,529 8,222 6,423 7 10.3 s

7 20 43 – 6 6 7 2,653 5,649 7,341 6,453 7 3.7 s

8 40 87 14 9 2 24 28,327 7,619 9,235 8,332 7 49.7 s

9 40 87 12 9 4 24 55,693 7,619 9,235 8,332 8 1 m 48 s

10 40 87 10 9 6 24 288,025 7,619 9,235 8,332 12 24 m 20 s

11 16 31 – – 2 13 225,378 1,370 3,024 2,274 13 6 m 23 s

12 213 215 4 6 4 22 5,844 4,189 21,199 17,367 6 16.8 s

First of all, it is worth noting that we made experiments varying time dura-
tions (durations between 0 and 10 units of time, between 0 and 100, between 0
and 1000). This does not impact analysis times because the function mte avoids
an execution where the time would elapse unit by unit. Therefore, this function
speeds up the time passing whatever maximum time is considered for task and
flow duration. Regarding the experimental results presented in Table 1, we set
flow and task durations between 0 and 1000 units of time.

Example 1 is the running example. The minimum time (15 days) is obtained
when the vaccination task is not executed in the inclusive gateway. When this
task is required, we obtain the maximum time (17 days). The degree of paral-
lelism (5) corresponds to the case where both hotel reservation and paperwork

232 F. Durán and G. Salaün

tasks are not yet completed, and the three tasks in the inclusive gateway are all
triggered in parallel.

The analysis time is short for small and medium size examples, even when
there are several nested inclusive or parallel gateways (see examples 5–7 in the
table). Example 3 exhibits the same minimum, maximum, and average times
because it involves only parallel gateways, and in that case, all behaviours are
systematically executed. We made experiments with variants of the same exam-
ple (rows 8–10) to observe how our approach scales. These examples are quite
large, involving 40 tasks and more than 20 gateways (most of them nested). We
can see how, by increasing the number of inclusive gateways and reducing the
number of exclusive gateways, the analysis time goes from 52 s (example 8) to
over 24 min (example 10). These times are long because the number of states
to explore is rather large. Let us emphasize that we may encounter realistic
processes larger than those ones in terms of number of tasks, but we have not
seen yet a real example with as many nested gateways as in those examples
(8–10). Example 12 shows an example with more than 200 tasks. This process
mainly exhibits sequential behaviours. In that case, we can see that the number
of states is lower and thus the analysis time is quite short (16 s).

5 Related Work

Several works focus on providing formal semantics and verification techniques for
business processes using Petri nets. [16] proposes to formalize business processes
and more specifically composition of Web services using Petri nets. Decker and
Weske present in [8] an extension of BPMN 1.0 (iBPMN) in the direction of inter-
action modelling. They also propose a formal semantics for iBPMN in terms of
interaction Petri nets. [9] presents a mapping from BPMN to Petri nets that
enables the static analysis of BPMN models. [26] presents a double transforma-
tion from BPMN to Petri nets and from Petri nets to mCRL2. This allows one to
use both Petri nets based tools and the mCRL2 toolset for searching deadlocks,
livelocks, or checking temporal properties. [2] describes how BPMN processes
can be represented using the Reo coordination language, which admits formal
analysis using model checking and bisimulation techniques. Compared to these
results, our encoding also gives a semantics to BPMN by translation to Maude,
yet it was not our primary goal. The main difference with respect to these related
works is our focus on timed aspects.

Another line of works aimed at using process algebras for formalizing and
verifying BPMN processes. The authors of [29] present a formal semantics for
BPMN by encoding it into the CSP process algebra. They show in [30] how this
semantic model can be used to verify compatibility between business participants
in a collaboration. This work was extended in [31] to propose a timed semantics
of BPMN with delays. [5,18,19] focus on the semantics formalized in [29,31]
and propose an automated transformation from BPMN to timed CSP, as well
as composition verification techniques for checking properties using the FDR2
model checker. In [25], the authors present an encoding of an untimed subset

Verifying Timed BPMN Processes Using Maude 233

of BPMN into the LNT process algebra for supporting the analysis of process
evolution. [13,24] address the issue of checking whether a BPMN choreography
is realizable by computing participant implementations using projection. We go
one step farther compared to these related works because we provide verifica-
tion techniques for a timed version of BPMN including all main gateways (in
particular inclusive gateways), loops, and unbalanced structures for workflows.

Another paper [11] attempted to translate BPMN to Maude for verification
purposes. In this work, the authors focus on data objects semantics and data-
based decision gateways, and provide new mechanisms to avoid structural issues
in workflows such as flow divergence. To do so, they introduce the notion of
well-formed BPMN processes, which allows one to guarantee structural prop-
erties of the workflows. This paper mainly handles syntactic issues and aims
at avoiding incorrect syntactic patterns. The main difference compared to our
contributions here is that the authors have a specific interest on data-centric
workflows whereas we look at behavioural and timed features of processes. One
can also take advantage of our Maude encoding and verification framework for
checking other timed properties, such as those presented in [4,28] (sojourn time,
synchronization time, waiting time).

[17] proposes a general approach for computing the degree of parallelism of
BPMN processes using model checking techniques. To do so, the authors propose
a transformation to process algebra and a low-level model for BPMN processes
based on Labelled Transition Systems. However, the subset of BPMN considered
in [17] makes abstraction of times and durations possibly associated to tasks
and flows. [27] focuses on timed aspects and proposes several algorithms for
directly calculating the degree of parallelism of a BPMN process. In this work,
a duration constraint is associated to each task. They do not consider inclusive
gateways and propose different algorithms for special cases of processes, e.g.,
processes with only one type of gateways or acyclic processes with only parallel
gateways. Our work focuses on BPMN processes with time constraints too, but
we associate durations not only to tasks but also to flows. In addition, we consider
any combination of gateways as well as cyclic processes.

6 Concluding Remarks

BPMN is now widely used by companies for supporting the workflow-based
development of their information and management systems. However, we are
still far from having press-button analysis techniques integrated in the existing
modelling and development BPMN frameworks. This work is a contribution in
that direction, that is, to provide automated techniques for analyzing BPMN
processes. In this paper, we have focused on a subset of BPMN containing the
main behavioural constructs (tasks, sequence flows, gateways) and time aspects
associated to flows and tasks. We have proposed an encoding of this BPMN
subset into the input language of the rewriting-based system Maude. Maude
was expressive enough for representing unbalanced BPMN processes with mod-
erate effort using a token-based semantics. The whole approach consisting of the

234 F. Durán and G. Salaün

translation to Maude and of the verification of several properties of interest on
concrete BPMN processes is fully automated. In particular, we have showed how
several measures of execution time (minimum, maximum, average) or the degree
of parallelism can be computed with Maude. Several other tools can be used,
such as simulation, reachability analysis, or LTL model checking. Our encoding
and verification approach was validated through experiments we achieved on a
significant number of BPMN processes, showing that these checks are completed
in a reasonable time for real-size examples.

A first perspective of this work is to extend our approach with other BPMN
constructs. We have focused in this paper on the behavioural part of BPMN,
which allows us to formally analyze important properties, and we have dis-
carded data aspects. Dataless models are over-approximations of the correspond-
ing processes. This may generate false negative results, that is, our approach
may return that a process has a deadlock for example whereas it is not the
case because the blocking case actually never occurs. We plan to take data into
account and in particular conditions that may be associated to outgoing flows
for split gateways. As far as activities are concerned, we would like to support
not only tasks but also interactions and message sending/reception. This exten-
sion would require to accept the description of distributed systems using BPMN
collaboration diagrams. Finally, we intend to extend our time analysis capabil-
ities by considering inter-activity and inter-process temporal constraints (e.g.,
process deadline, timers, or time conflicts).

Acknowledgements. This work has been partially supported by MINECO/FEDER
project TIN2014-52034-R and Universidad de Málaga, Campus de Excelencia Interna-
cional Andalućıa Tech.

References

1. http://maude.lcc.uma.es/MaudeBPMN/
2. Arbab, F., Kokash, N., Meng, S.: Towards using reo for compliance-aware business

process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 108–123. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88479-8 9

3. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theor. Comput. Sci. 236(1), 35–132 (2000)

4. Bruni, R., Corradini, A., Ferrari, G., Flagella, T., Guanciale, R., Spagnolo, G.:
Applying process analysis to the Italian eGovernment enterprise architecture. In:
Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176, pp. 111–127.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29834-9 9

5. Capel Tuñón, M.I., Mendoza Morales, L.E.: Automating the transformation from
BPMN models to CSP+T specifications. In: Proceedings of SEW 2012, pp. 100–
109. IEEE Computer Society (2012)

6. Christiansen, D.R., Carbone, M., Hildebrandt, T.: Formal semantics and imple-
mentation of BPMN 2.0 inclusive gateways. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 146–160. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19589-1 10

http://maude.lcc.uma.es/MaudeBPMN/
http://dx.doi.org/10.1007/978-3-540-88479-8_9
http://dx.doi.org/10.1007/978-3-642-29834-9_9
http://dx.doi.org/10.1007/978-3-642-19589-1_10
http://dx.doi.org/10.1007/978-3-642-19589-1_10

Verifying Timed BPMN Processes Using Maude 235

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-71999-1

8. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Syst. 36(2), 292–312 (2011)

9. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

10. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Proceedings of WRLA 2002. ENTCS, vol. 71, pp. 115–142. Elsevier (2002)

11. El-Saber, N., Boronat, A.: BPMN formalization and verification using Maude. In:
Proceedings of BM-FA 2014, pp. 1–8. ACM (2014)

12. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electr. Notes
Theor. Comput. Sci. 153(2), 117–133 (2006)

13. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: VerChor: a framework for the
design and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–
660 (2016)

14. ISO/IEC: International Standard 19510, Information technology - Business Process
Model and Notation (2013)

15. Konrad, S., Cheng, B.H.C.: Real-time Specification Patterns. In: Proceedings of
ICSE 2005, pp. 372–381. ACM (2005)

16. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31984-9 3

17. Mateescu, R., Salaün, G., Ye, L.: Quantifying the parallelism in BPMN processes
using model checking. In: Proceedings of CBSE 2014, pp. 159–168. ACM (2014)

18. Morales, L.E.M., Tuñón, M.I.C., Pérez, M.A.: A formalization proposal of timed
BPMN for compositional verification of business processes. In: Filipe, J., Cordeiro,
J. (eds.) ICEIS 2010. LNBIP, vol. 73, pp. 388–403. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19802-1 27

19. Mendoza Morales, L.E., Capel Tuñón, M.I., Pérez, M.A.: Conceptual framework for
business processes compositional verification. Inf. Softw. Technol. 54(2), 149–161
(2012)

20. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

21. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. In: Baader,
F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 2–16. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45085-6 2

22. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. High.
Order Symb. Comput. 20(1–2), 161–196 (2007)

23. OMG: Business Process Model and Notation (BPMN) - Version 2.0, January 2011
24. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In:

Proceedings of SAC 2012, pp. 1927–1934. ACM Press (2012)
25. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In:

Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 36–53.
Springer, Cham (2017). doi:10.1007/978-3-319-57666-4 4

26. Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers,
L.: Transformation of BPMN models for behaviour analysis. In: Proceedings of
MSVVEIS 2007, pp. 126–137 (2007)

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-31984-9_3
http://dx.doi.org/10.1007/978-3-540-31984-9_3
http://dx.doi.org/10.1007/978-3-642-19802-1_27
http://dx.doi.org/10.1007/978-3-540-45085-6_2
http://dx.doi.org/10.1007/978-3-319-57666-4_4

236 F. Durán and G. Salaün

27. Sun, Y., Su, J.: Computing degree of parallelism for BPMN processes. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 1–15.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25535-9 1

28. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
discip. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)

29. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum, T.,
Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-88194-0 22

30. Wong, P., Gibbons, J.: Verifying business process compatibility. In: Proceedings of
QSIC 2008, pp. 126–131. IEEE (2008)

31. Wong, P.Y.H., Gibbons, J.: A relative timed semantics for BPMN. Electr. Notes
Theor. Comput. Sci. 229(2), 59–75 (2009)

http://dx.doi.org/10.1007/978-3-642-25535-9_1
http://dx.doi.org/10.1007/978-3-540-88194-0_22

Full-Abstraction for Must Testing Preorders

(Extended Abstract)

Giovanni Bernardi1(B) and Adrian Francalanza2

1 IRIF, Université Paris-Diderot, Paris, France
gio@irif.fr

2 University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Abstract. The client must preorder relates tests (clients) instead of
processes (servers). The existing characterisation of this preorder is
unsatisfactory for it relies on the notion of usable clients which, in turn,
are defined using an existential quantification over the servers that ensure
client satisfaction. In this paper we characterise the set of usable clients
for finite-branching LTSs, and give a sound and complete decision pro-
cedure for it. We also provide a novel coinductive characterisation of the
client preorder, which we use to argue that the preorder is decidable,
thus positively answering the question opened in [3,6].

1 Introduction

The standard testing theory of De Nicola–Hennessy [12,15] has recently been
employed to provide theoretical foundations for web-services [9,25] (where
processes denote servers). To better fit that setting, in [6] this theory has been
enriched with preorders for clients (tests) and peers (where both interacting
parties mutually satisfy one another). Client preorders also tie testing theory
with session type theory, as is outlined in [2]: they are instrumental in defining
semantic models of the Gay & Hole subtyping [14] for first-order session types
[3, Theorem 6.3.4] and [5, Theorem 5.2].

The testing preorders for clients and peers are contextual preorders, defined
by comparing the capacity of either being satisfied by servers or the capacity of
peers to mutually satisfy one another. This paper focuses on the client preorder
due to the must testing relation [12,15]: a client r2 is better than a client r1,
denoted r1 �∼clt

r2, whenever every server p that must pass r1 also must pass r2.
Although this definition is easy to understand, it suffers from the endemic uni-
versal quantification over contexts (servers) and, by itself, does not give any
effective proof method to determine pairs in the preorder. To solve this prob-
lem, contextual preorders usually come equipped with behavioural characterisa-
tions that avoid universal context quantification thereby facilitating reasoning.
In [6] the authors develop such characterisations for the client and the peer must
preorders; these preorders are however not fully-abstract, for they are defined
modulo usable clients, i.e., clients that are satisfied by some server.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 237–255, 2017.
DOI: 10.1007/978-3-319-59746-1 13

238 G. Bernardi and A. Francalanza

Fig. 1. LTS depictions of the behaviours described in Eq. (1)

Usability is a pivotal notion that appears frequently in the literature of
process calculi and web-service foundations, cf. viability in [18,26] and control-
lability in [8,24], and has already been studied, albeit for restricted or different
settings, in [6,7,18,25,26]. In general though, the characterisation of usability
is problematic, for solving it requires finding the conditions under which one
can either (a) construct a server p that satisfies a given client, or (b) show that
every p does not satisfy a given client. Whereas proving (b) is complicated by
the universal quantification over all servers, the proof of (a) is complicated by
the non-deterministic behaviour of clients. In particular, the approach in (a) is
complicated because client usability is not compositional. For instance consider
the following clients, whose behaviours are depicted in Fig. 1:

r1 = c.(a. 1 + b. 0) and r2 = c.(a. 0 + b. 1) (1)

where 1 denotes satisfaction (success). Both clients are usable, since r1 is satisfied
by the server c.a. 0, and r2 is satisfied by server c.b. 0. However, their composi-
tion r1 + r2 is not a usable client, i.e., p �must r1 + r2 for every p; intuitively,
this is because r1 and r2 impose opposite constraints on the processes that pass
one or the other (e.g., c.(a. 0 + b. 0) does not satisfy r1 + r2). A composi-
tional analysis is even more unwieldy for recursive tests. For instance, the client
μx.

(
c.(a. 1 + b.x) + c.(a. 0 + b. 1)

)
is not usable because of the non-determinism

analogous to r1 + r2, and the unsuccessful computations along the infinite trace
of interactions (c.b)∗; this argument works because infinite unsuccessful compu-
tations are catastrophic wrt. must testing.

This paper presents a sound and complete characterisation for usable clients
with finite-branching LTSs. Through the results of [6] — in particular, the equiv-
alence of usability for clients and peers stated on [6, p. 11] — our characteri-
sation directly yields a fully-abstract characterisation for the must preorder for
clients and peers. We go a step further and use this characterisation to develop
a novel coinductive and fully-abstract characterisation of �∼clt

, which we find
easier to use than the one of [6] when proving inequalities involving recursive
clients. This coinductive characterisation turns out to be informed by our study
on usability, and differs from related coinductive characterisations for the server
preorder [18,25] in a number of respects. Finally, our inductive definition for

Full-Abstraction for Must Testing Preorders 239

usable clients also provides deeper insights into the original client preorder of
[6]: we show that limiting contexts to servers offering only finite interactions
preserves the discriminating power of the original preorder. Our contributions
are:

– a fully-abstract characterisation of usable clients, Theorem2;
– a coinductive, fully-abstract characterisation of the client preorder �∼clt

, The-
orem 5;

– a contextual preorder �∼f
clt

that is equivalent to �∼clt
but relies only on non-

recursive contexts Theorem 6;
– decidability results for usable clients and the client preorder, Theorem7.

The solutions devised here addressing client usability are directly rele-
vant to controllability issues in service-oriented architectures [21,30]. Our tech-
niques may also be extended beyond this remit. The ever growing sizes of
test suites, together with the ubiquitous reliance on testing for the increasing
quality-assurance requirements in software systems, has directed the attention
to non-deterministic (or flaky) tests. Such tests arise frequently in practice and
their impact on software development has been the subject of various studies
[19,20,22]. By some measures, ≈4.56% of test failures of the TAP (Test Any-
thing Protocol) system at Google are caused by flaky tests [19]. We believe that
our concepts, models and procedures can be extended to such testing method-
ologies to analyse detrimental non-deterministic behaviour arising in test suites,
thereby reducing the gap between empirical practices and theory.

Structure of the paper: Sect. 2 outlines the preliminaries for client must test-
ing. Section 3 tackles client usability and gives a fully-abstract definition for it.
Section 4 uses this result to give a coinductive characterisation for client pre-
orders. In Sect. 5 we present expressiveness results for servers with finite interac-
tions together with decidability results for client usability and the client testing
preorder. Section 6 concludes.

2 Preliminaries

Let a, b, c, . . . ∈ Act be a set of actions, and let τ, � be two distinct actions not
in Act; the first denotes internal unobservable activity whereas the second is
used to report success of an experiment. To emphasise their distinctness, we use
α ∈ Actτ to denote Act ∪ {τ}, and similarly for λ ∈ Actτ �. We assume Act has
an involution function, with a being the complement to a.

A labelled transition system, LTS, consists of a triple 〈Proc, Actτ �, −→ 〉,
where Proc is a set of processes and −→ ⊆ (Proc × Actτ � × Proc) is a transition
relation between processes decorated with labels drawn from the set Actτ �; we
write p

λ−→ q in lieu of (p, λ, q) ∈ −→. An LTS is finite-branching if for all
p ∈ Proc and for all λ ∈ Actτ �, the set { q | p

λ−→ q } is finite. For s ∈ (Act�)�

we also have the standard weak transitions, p
s=⇒ q, defined by ignoring the

occurrences of τs.

240 G. Bernardi and A. Francalanza

Fig. 2. Syntax and Semantics of recursive CCSµ with 1.

We limit ourselves to finite-branching LTSs. Whenever sufficient, we describe
such LTSs using a version of CCS with recursion [23] and augmented with a
success operator, denoted as 1. The syntax of this language is depicted in Fig. 2
and assumes a denumerable set of variables x, y, z . . . ∈ Var. For finite I, we use
the notation

∑
i∈I pi to denote the resp. sequence of summations p1 + . . . + pn

where I = 1..n. Similarly, when I is a non-empty set, we define
⊕

i∈I pi =
∑

i∈I τ.pi to represent process internal choice. The transition relation p
λ−→ q

between terms of the language is the least one determined by the (standard)
rules in Fig. 2. As usual, μx.p binds x in p and we identify terms up to alpha
conversion of bound variables. The operation p{µx.p/x} denotes the unfolding of
the recursive process μx.p, by substituting the term μx.p for the free occurrences
of the variable x in p.

To model the interactions taking place between the server and the client
contracts, we use the standard binary composition of contracts, p || r, whose
operational semantics is given in Fig. 2. A computation consists of sequence of τ
actions of the form

p || r = p0 || r0
τ−→ p1 || r1

τ−→ . . .
τ−→ pk || rk

τ−→ . . . (2)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn || rn

τ

�−→.
We say (2) is client-successful if there exists some k ≥ 0 such that rk

�−→.

Definition 1 (Client Testing preorder [6]). We write p must r if every
maximal computation from p || r is client-successful, and write r1 �∼clt

r2 if, for
every p, p must r1 implies p must r2. �
Although intuitive, the universal quantification on servers in Definition 1 compli-
cates reasoning about �∼clt

. One way of surmounting this is by defining alternative
characterisations for �∼clt

of Definition 1, that come equipped with practical proof
methods.

Full-Abstraction for Must Testing Preorders 241

2.1 Characterising the Client Preorder

In [6, Definition 3.10, p. 9], an alternative characterisation for the preorder �∼clt

is given and proven to be sound and complete. We recall this characterisation,
restating the resp. notation. The alternative characterisation relies on unsuc-
cessful traces: r

s=⇒� � r′ means that r may weakly perform the trace of external
actions s reaching state r′ without passing through any successful state; in par-
ticular neither r nor r′ are successful. Formally, r

s=⇒� � r′ is the least relation

satisfying (a) r
�

�−→ implies r
ε=⇒� � r, and (b) if r′′ s=⇒� � r′ and r

�
�−→ then (i)

r
a−→ r′′ implies r

as=⇒� � r′, and (ii) r
τ−→ r′′ implies r

s=⇒� � r′. The unsuccessful
acceptance set of r after s, are defined as

Acc� �(r, s) = {S(r′) | r
s=⇒� � r′ τ

�−→ } (3)

where S(r) = { a ∈ Act | r
a−→ } denotes the strong actions of r. Intuitively,

for the client r, the set Acc� �(r, s) records all the actions that lead r out of
potentially deadlocked (i.e. stable) states that it reaches performing unsuccessfully
the trace s. It turns out that these abstractions are fundamental to characterise
must-testing preorders and also compliance preorders [3,6,25]. In the sequel, we

shall also use r
α−→� �r′ whenever r

α−→ r′, r
�

�−→ and r′ �
�−→ hold.

Example 1. For client r3 = τ.(1 + τ. 0) we have Acc� �(r3, ε) = ∅, but for
r′
3 = r3 + τ. 0 we have Acc� �(r′

3, ε) = { ∅ }. We also have Acc� �(r′′
3 , ε) = ∅ for

r′′
3 = r3 + μx.x. �

Note that, whenever Acc� �(r, s) = ∅, then any sequence of moves with trace s
from r to a stable reduct r′ must pass through a successful state, for otherwise
we would have S(r′) ∈ Acc� �(r, s) for some r′.

Definition 2 (Usable Clients). U = { r | there exists p. p must r }. �

Example 2. Recall clients r1 and r2 from (1) in Sect. 1. We show that despite
being individually usable, the sum of these clients is not: p �must r1 + r2 for
every p. Fix a process p. If p does not offer an interaction on c, then, plainly,
p �must r1 + r2. Suppose that p

c−→ p′; to prove p �must r1 + r2, it suffices to
show that there exists a client r reached by r1 + r2 by performing action c (i.e.,
r ∈ { a. 1 + b. 0, a. 0 + b. 1 }) such that p′ �must r. Indeed, for r = a. 1 + b. 0, if
p′ must r implies p′ has to interact on a and not on b, but then such a p′ does not
satisfy the derivative r = a. 0 + b. 1, i.e., p′ �must r (because the composition
p′ || r is stable but not client-successful). Using a symmetric argument we deduce
that if p′ must a. 0 + b. 1 then p′ �must a. 1 + b. 0, and thus no process p exists
that satisfies r1+r2; note that the argument above crucially exploits the external
non-determinism of r1 + r2. The client μx.

(
c.(a. 1 + b.x) + c.b. 1

)
from Sect. 1

is unusable for similar reasons, the analysis being more involved due to infinite
computations. �

242 G. Bernardi and A. Francalanza

We let (r after � � s) = { r′ | r
s=⇒� � r′ }, and call the set (r after � � s) the

residuals of r after the unsuccessful trace s. We extend the notion of usability
and say that r is usable along an unsuccessful trace s whenever r usbl� � s,
which is the least predicate satisfying the conditions (a) r usbl� � ε when-
ever r ∈ U , and (b) r usbl� � as whenever (i) r ∈ U and (ii) if r

a=⇒ � � then⊕
(r after � � a) usbl� � s. If r usbl� � s, any state reachable from r by performing

any unsuccessful subsequence of s is usable [6]. Finally, let uaclt(r, s) = { a ∈
Act | r

sa=⇒� � implies r usbl� � sa } denote all the usable actions for a client r
after the unsuccessful trace s.

Definition 3 (Semantic client-preorder). Let r1 �clt r2 if, for every s ∈
Act� such that r1 usbl� � s, we have (i) r2 usbl� � s, (ii) for every B ∈Acc� �(r2, s)
there exists a A∈Acc� �(r1, s) such that A∩uaclt(r1, s) ⊆ B, (iii) r2

s=⇒� � implies
r1

s=⇒� � . �

Theorem 1. In any finite branching LTS, r1 �∼clt
r2 if and only r1 �clt r2.

Proof. Follows from [6, Theorem 3.13] and König’s Infinity Lemma.

Definition 3 enjoys a few pleasing properties and, through Theorem1, sheds
light on behavioural properties of clients related by �∼clt

. Concretely, it shares a
similar structure to well-studied characterisations of the (standard) must-testing
preorder of [12,15], where process convergence is replaced by client usability,
and traces and acceptance sets are replaced by their unsuccessful counterparts
(modulo usable actions). Unfortunately, Definition 3 has a major drawback: it
is parametric wrt. the set of usable clients U (Definition 2), which relies on an
existential quantifications over servers. As a result, the definition is not fully-
abstract, and this makes it hard to use as proof technique and to ground decision
procedures for �∼clt

on it.

3 Characterising Usability

We use the behavioural predicates of Sect. 2.1, together with the new predicate in
Definition 4, to formulate the characterising properties of the set of usable clients
U (Proposition 1). We use these predicates to construct a set Ubhv that coincides
with U (Theorem 2); this gives us an inductive proof method for determining
usability.

Definition 4. We write r ⇓� whenever for every infinite sequence of internal
moves r

τ−→ r1
τ−→ r2

τ−→ . . ., there exists a state ri such that r1
�−→. �

Recalling Eq. (3), let Acc� �(r) = Acc� �(r, ε). Proposition 1 crystallises the
characteristic properties of usable clients, providing a blue print for our alterna-
tive definition Definition 5. Instead of giving a direct proof of this proposition,
we obtain it indirectly as consequence of our other results.

Full-Abstraction for Must Testing Preorders 243

Proposition 1. For every r ∈ Proc, r ∈ U if and only if

1. r ⇓�, and
2. if A ∈ Acc� �(r), then there exists a ∈ A.

(
r

a=⇒� � implies
⊕

(r after � � a) ∈ U)
.

��
The proposition above states that a client r is usable if and only if, for every
potentially deadlocked state r′ reached via silent moves by r, there exists an
action a that leads r′ out of the potential deadlock, i.e., into another state r′′

where r′′ is certainly usable.

Example 3. We use Proposition 1 to discuss the (non) usability of clients from
previous example. Recall r3 = τ.(1 + τ. 0), r′

3 = r3+τ. 0 and r′′
3 = r3+μx.x from

Example 1. Since we have r3 ⇓� and Acc� �(r3) = ∅, r3 satisfies both condition
of Proposition 1, with the second one being trivially true. As a consequence r3 is
usable, and indeed 0 must r3. On the contrary, we have Acc� �(r′

3) = { ∅ }, thus
r′
3 violates Proposition 1(2) and thus r′

3 is unusable. Client r′′
3 is unusable as

well, but violates Proposition 1(1) instead. Conversely, client r′′′
3 = r3 + τ.(1 +

μx.x) satisfies both conditions of Proposition 1, and it is usable. For instance,
0 must r′′′

3 .
A more involved client is r1 + r2 from Example 2. There we proved that

r1 + r2 �∈ U , and indeed r1 + r2 does not satisfy Proposition 1(2). This is true
because Acc� �(r1 + r2) = { { c } }, and r′ �∈ U , where

r′ =
⊕(

(r1 + r2) after � � c
)

= τ.(a. 1 + b. 0) + τ.(a. 0 + b. 1).

In turn, the reason why r′ is not usable is that Acc� �(r′) = { { a, b } }, and
Proposition 1(2) requires us to consider every set in { { a, b } } — we have only
{ a, b } to consider — and show that for some action a′ ∈ { a, b },

⊕
(r′ after � �

a′) ∈ U . It turns out that neither action in { a, b } satisfies this condition. For
instance, in the case of action b, we have

⊕
(r′ after � � b) = τ. 1 + τ. 0 and

Acc� �(τ. 1 + τ. 0) = { ∅ }, so
⊕

(r′ after � � b) violates Proposition 1(2) and as a
result

⊕
(r′ after � � b) �∈ U . The reasoning why action a is not a good candidate

either is identical. �

Definition 5. Let F : P(Proc) −→ P(Proc) be defined by letting r ∈ F(S)
whenever

1. r ⇓�, and
2. if A ∈ Acc� �(r), then there exists an a∈A.

(
r

a=⇒� � implies
⊕

(r after � � a)∈S
)
.

We let Ubhv = μx.F(x), the least fix-point of F . �

The function F is continuous over the CPO 〈P(Proc),⊆〉, thus Kleene fixed point
theorem [31, Theorem 5.11] ensures that μx.F(x) (the least fix-point of F) exists
and is equal to

⋃∞
n=0 Fn(∅) where F0(S) = S and Fn+1(S) = F(Fn(S)).

The bulk of the soundness result follows as a corollary from the next lemma,
which also lays bare the role of non-recursive servers in proving usability of
clients.

244 G. Bernardi and A. Francalanza

Lemma 1. For every n ∈ N and r ∈ Proc, r ∈ Fn(∅) implies that there exists
a non-recursive server p such that p must r. ��

An inductive argument is used to prove that Ubhv is complete wrt. U , where we
define the following measure over which to perform induction. We let MC (r, p)
denote the set of maximal computations of a composition r || p and, for every
computation c ∈ MC (r, p), we associate the number #itr(c) denoting the num-
ber of interactions that take place between the initial state of c, and the first
successful state of the computation c (#itr(c) = ∞ whenever c is unsuccessful).
Let itr(r, p) = max{#itr(c) | c ∈ MC (r, p) }. For instance, if r = μx.a.x + b. 1,
we have itr(r, a.a.b. 0) = 3, but itr(r, μx.a.x + b. 0) = ∞.

Lemma 2. Let T be a tree with root v. If T is finite branching and it has a
finite number of nodes, then the number of paths v −→ . . . is finite. ��
Lemma 3. In a finite branching LTS, p must r implies the number itr(r, p) is
finite.

Proof. If p must r, every c ∈ MC (r, p) reaches a successful state after a finite
number of reductions. Since the number of interactions is not more than the
number of reductions:

for every c ∈ MC (r, p). #itr(c) ∈ N (4)

A set of successful computations from r || p, e.g., MC (r, p), may also be seen
as a computation tree, where common prefixes reach the same node in the tree.
In general, such a tree may have infinite depth. Consider the computation tree
T obtained by truncating all the maximal computations of r || p at their first
successful state, and let TMC (r, p) be the set of all the computations obtained
this way. It follows that

{#itr(c) | c ∈ MC (r, p) } = {#itr(c) | c ∈ TMC (r, p) } (5)

From itr(r, p) = max{#itr(c) | c ∈ MC (r, p) }, (4) and (5) we know that that
itr(r, p) is finite if the set { c | c ∈ TMC (r, p) } is finite. This will follow from
Lemma 2 if we prove that the tree T has a finite number of nodes. By the
contrapositive of König’s Lemma [16,17], since every node in the tree T above is
finitely branching, and there are no infinite paths, then T necessarily contains a
finite number of nodes. By Lemma 2, { c | c ∈ TMC (r, p) } must also be finite,
and hence we can put a (finite) natural number itr(r, p) ∈ N as an upper bound
on the number of interactions required to reach success. ��

If the LTS is not image-finite then Lemma 3 is false. To see why, consider the
infinite branching client r and the server p depicted in Fig. 3. Since r engages in
finite sequences of a actions which are unbounded in size, and the p offers any
number of interactions on action a, we have that p must r, but the set MC(r, p)
contains an infinite amount of computations, and the number itr(r, p) is not finite.
Dually, even if the LTS of a composition r || p is finite branching and finite state,

Full-Abstraction for Must Testing Preorders 245

Fig. 3. Servers and clients to discuss the hypothesis in Lemma 3

it is necessary that p must r for itr(r, p) to be finite. Lemma 3 lets us associate a
rank to every usable client r, defined as rank(r) = min{ itr(r, p) | p must r }.
The well-ordering of N ensures that rank(r) is defined for every usable r. When
defined, the rank of a client r gives us information about its usability,1 where
we can stratify U as follows:

U =
⋃

i∈N
U i, where U i = { r ∈ Proc | rank(r) = i } (6)

Lemma 4. For every i ∈ N, r ∈ U i implies r ∈ F(F j(∅)) for some j ≤ i. ��
We are now ready to prove the main result of this section.

Theorem 2 (Full-abstraction usability). The sets U and Ubhv coincide.

Proof. To show U ⊆ Ubhv, pick an r ∈ U . By (6), r ∈ U i for some i ∈N, and by
Lemma 4 we obtain r∈Fj(∅)⊆Ubhv for some j ∈ N

+. To show Ubhv ⊆U , pick an
r ∈Ubhv. Definition 5 ensures that Ubhv ⊆ ⋃∞

n=0 Fn(∅), thus r ∈ Fn(∅) for some
n ∈ N. Lemma 1 implies that r ∈U . The reasoning applies to any r ∈Ubhv, thus
Ubhv⊆U . ��

4 The Client Preorder Revisited

By combining the definition of �clt with Ubhv of Definition 5, Theorem 2 yields
a fully-abstract characterisation of the client preorder �∼clt

. In general, however,
this characterisation still requires us to consider an infinite number of (unsuc-
cessful) traces to establish client inequality. In this section, we put forth a novel
coinductive definition for the client preorder and exploit the finite-branching
property of the LTS to show that this definition characterises the contextual
preorder �∼clt

, Theorem 5. We also argue that this new characterisation is easier
to use in practice than Definition 3, a claim that is substantiated by showing how
this coinductive preorder can be used to prove the second result in this section,
namely that servers offering a finite amount of interactions are sufficient and
necessary to distinguish clients, Theorem 6. Subsequently, in Theorem 7, we also
show that the coinductive preorder is decidable for our client language.

1 Function min is not defined for empty sets, thus rank(r) is undefined whenever r is
unusable.

246 G. Bernardi and A. Francalanza

Example 4. The use of �clt is hindered, in practice, by the universal quantifica-
tion over traces in its definition. Consider, for instance, clients r4 and r5,

r4 = a. 1 + μy.(a.r′′
3 + b.y + c. 1) and r5 = (μz.(b.z + c. 1)) + d. 1

where r′′
3 = (τ.(1 + τ. 0)) + μx.x from Example 1. One way to prove r4 �∼clt

r5
amounts in showing that r4 �clt r5, even though this task is far from obvious.
Concretely, the definition of �clt requires us to show that for every trace s ∈ Act�

where r4 usbl� � s holds, clauses (i), (ii) and (iii) of Definition 3 also hold. In this
case, there are an infinite number of such unsuccessful traces s to consider and,
a priori, there is no clear way how to do this in finite time. Specifically, there
are (unsuccessful) traces that r4 can perform while remaining usable at every
step, such as s = bn, but also (unsuccessful) traces that r4 cannot perform
(which trivially imply r4 usbl� � s according to the definition in Sect. 2.1), such
as s = d(bn), s = (db)n or s = (ac)n.

The definition of r4 usbl� � s does however rule out a number of traces to
consider, and Definition 5 helps us with this analysis. For instance, for s = a,
we have ¬(r4 usbl� � a) because

⊕
(r4 after � � a) = (τ. 1+τ.r′′

3 + τ. 0+τ.μx.x)
and, by using similar reasoning to that in Example 3 for r′′

3 , we know that
¬((r4 after � � a) ⇓�) which implies

⊕
(r4 after � � a) �∈ Ubhv and, by Theorem2,

we have
⊕

(r4 after � � a) �∈ U . ��
To overcome the problems outlined in Example 4, we identify three proper-

ties of the preorder �∼clt
, stated in Lemma 5, which partly motivate the condi-

tions defining the transfer function G in Definition 6. Conditions (ii) and (iii) are
explained in greater detail as discussions to points (2) and (3c) of Definition 6
below.

Lemma 5. r1 �∼clt
r2 implies (i) if r2

τ−→� �r′
2 then r1 �∼clt

r′
2; (ii) if r2

�
�−→ then

r1
�

�−→ (iii) if r2
a−→� � then

(
r1

a=⇒� � and
⊕

(r1 after � � a) �∼clt

⊕
(r2 after � � a)

)
.

��
Definition 6. Let G : P(Proc × Proc) −→ P(Proc × Proc) be the function such
that (r1, r2) ∈ G(R) whenever all the following conditions hold:

1. if r2
τ−→� �r′

2 then r1 R r′
2

2. if r2
�

�−→ then r1
�

�−→
3. if r1 ∈ Ubhv then

(a) r2 ∈ Ubhv

(b) if B ∈ Acc� �(r2) then there exists an A ∈ Acc� �(r1) such that A ∩
uabhv(r1) ⊆ B

(c) if r2
a−→� � then

(
r1

a=⇒� � and
⊕

(r1 after � � a) R
⊕

(r2 after � � a)
)

where uabhv(r) = { a | r
a=⇒� � implies

⊕
(r after � � a) ∈ Ubhv }. Let �clt =

νx.G(x) where νx.G(x) denotes the greatest fixpoint of G. The function G is
monotone over the complete lattice 〈P(Proc×Proc),⊆〉 and thus νx.G(x) exists.

��

Full-Abstraction for Must Testing Preorders 247

The definition of G follows a similar structure to that of the resp. definitions
that coinductively characterise the must preorder for servers [18,25]. Definition 6,
however, uses predicates for clients, i.e., unsuccessful traces and usability, in place
of the predicates for servers, i.e., traces and convergence. Note, in particular, that
we use the fully-abstract version of usability, Ubhv, from Definition 5 and adapt
the definition of usable actions accordingly, uabhv(r). Another subtle but crucial
difference in Definition 6 is condition (2). The next example elucidates why such
a condition is necessary for �clt to be sound.

Counterexample 3. Let Gbad be defined as G in Definition 6, but without
part (2). In this case, we prove that the pair of clients (1, τ. 1) is contained
in the greatest fixed point of Gbad, and then proceed to show that this pair is not
contained in �∼clt

. Let R = { (1, τ. 1) }. It follows that R ⊆ Gbad(R) if all the
conditions for Gbad are satisfied: condition (1) in is trivially true, condition (3a)
is true because 0 must 1 and 0 must τ. 1, condition (3b) holds trivially because
Acc� �(τ. 1) = ∅, whereas condition (3c) is satisfied because τ. 1 does not perform
any strong actions. It therefore follows that (1, τ. 1) ∈ μx.Gbad(x). Contrarily,
1 ��∼ clt τ. 1 because the divergent server τ∞ distinguishes between the two clients:
whereas τ∞ must 1 since the client succeeds immediately, we have τ∞ �must τ. 1
because the composition τ. 1 || τ∞ has an infinite unsuccessful computation due
to the divergence of τ∞. �

A more fundamental difference between Definition 6 and the coinductive
server preorders in [18,25] is that, in Definition 6(3c), the relation R has to
relate internal sums of derivative clients on both sides. Although non-standard,
this condition is sufficient to compensate for the lack of compositionality of
usable clients (see clients r1 and r2 (1) from Sect. 1). Using the standard weaker
condition makes the preorder �clt unsound wrt. �∼clt

, as we proceed to show in
the next example.

Counterexample 4. Let Gbad be defined as G in Definition 6, but replacing the
condition (3c) with the relaxed condition in (3bad) below, which requires each
derivative r′

2 to be analysed in isolation. We show that the greatest fixpoint of
Gbad, �bad

clt , contains client pairs that are not in �∼clt
.

if r2
a−→� �r′

2 then
(
r1

a=⇒� � and
⊕

(r1 after � � a) R r′
2

)
(3bad)

Consider the clients r6 = c.r′
6 and r7 = (r1 + r2) + τ. 1 where

r′
6 = τ.ra

6 + τ.rb
6 ra

6 = a. 0 + τ. 1 rb
6 = b. 0 + τ. 1

and r1 and r2 are the clients defined in (1) above. On the one hand, we have
that r6 ��∼ clt r7, because c. 0 must r6 whereas c. 0 �must r7. On the other
hand, we now show that r6 �bad

clt r7. Focusing on condition Definition 6(3), we
start by deducing that r6 ∈ Ubhv (either directly using Definition 5 or indirectly
through c. 0 must r6, recalling Theorem2). Now, Definition 6(3a) is true because

248 G. Bernardi and A. Francalanza

0 must r7, thus r7 is usable, and thanks to Theorem2 we have r7 ∈ Ubhv. Also
point (3b) is satisfied, because Acc� �(r7) = Acc� �(r6) = { { a } }.2 To prove that
the (relaxed) condition (3bad) holds, we have to show that

rc
6 �bad

clt a. 1 + b. 0 and rc
6 �bad

clt a. 0 + b. 1, with rc
6 = r′

6 + τ.ra
6 + τ.rb

6

(7)

Let r′
7 = a. 1 + b. 0. We only show the proof for the inequality rc

6 �bad
clt r′

7, since
the proof for the other inequality is analogous. We focus again on conditions
(3a), (3b), and (3bad). Condition (3a) is true because 0 must rc

6, and thus
rc
6 ∈ U = Ubhv, and because r′

7 ∈ U = Ubhv as well (e.g., a. 0 must r′
7). Condition

(3b) holds because Acc� �(r′
7) = { { c } } and Acc� �(rc

6) = { { b }, { c } }. Finally for

(3bad) we only have to check the case for r′
7

b−→� � 0, which requires us to show
that τ. 0 �bad

clt 0; this latter check is routine. As a result, we have rc
6 �bad

clt r′
7. Since

we can also show that rc
6 �bad

clt a. 0 + b. 1 holds, we obtain (7), and consequently
r6 �bad

clt r7. �

After our digression on Definition 6, we outline why �clt coincides with �∼clt
.

A detailed proof can be found in the full version of this paper [4].

Lemma 6. Whenever r1 �clt r2, for every s ∈ Act�, r1 usbl� � s implies r2 usbl� �
s and also that for every B ∈ Acc� �(r2, s), there exists an set A ∈ Acc� �(r1, s)
such that A ∩ uaclt(r2, s) ⊆ B; and that if r2

s=⇒� � then r1
s=⇒� � . ��

Theorem 5. In any finite branching LTS r1 �∼clt
r2 if and only if r1 �clt r2.

Proof. We have to show the set inclusions, �∼clt
⊆ �clt and �clt ⊆ �∼clt

. Lemma 5
and Theorem 1 imply that �∼clt

⊆ G(�∼clt
), and thus, by the Knaster-Tarski theo-

rem, we obtain the first inclusion. The second set inclusion follows from Theo-
rem 1 and Lemma 6. ��
Example 5. Recall clients r4 = a. 1 + μy.(a.r′′

3 + b.y + c. 1) and r5 = (μz.(b.z +
c. 1)) + d. 1 from Example 4, used to argue that the alternative relation �clt is
still a burdensome method for reasoning on �∼clt

. By contrast, We now contend
that it is simpler to show r4 �∼clt

r5 by proving r4 �clt r5, thanks to Theorem 5
and the Knaster-Tarski theorem. By Definition 6, it suffices to provide a witness
relation R such that (r4, r5) ∈ R and R ⊆ G(R). Let R = { (r4, r5), (r′

4, r
′
5) }

where r′′
3 = (τ.(1 + τ. 0))+μx.x from Example 1, r′

4 = μy.(a.r′′
3 + b.y + c. 1), and

r′
5 = μz.(b.z + c. 1). Checking that R satisfies the conditions in Definition 6 is

routine work. To prove condition (3b), though, note that Acc� �(r5)=Acc� �(r′
5)=

{ { b, c } } and that Acc� �(r4)={ { a, b, c } }. However uabhv(r4)={ b, c } and thus
the required set inclusion ({ a, b, c }∩{ b, c })⊆{ b, c } holds. �

The coinductive preorder of �clt may also be used to prove that two clients are
not in the contextual preorder �∼clt

: by iteratively following the conditions of Def-
inition 6 one can determine whether a relation including the pair of clients exists.
2 The restriction of the left hand side of the inclusion of Definition 6(3b) by uabhv(r6)

is superfluous.

Full-Abstraction for Must Testing Preorders 249

This approach is useful when guessing a discriminating server is not straightfor-
ward; in failing to define a such relation R one obtains information on how to
construct the discriminating server.

Example 6. Recall the clients r6 and r7 considered in Counterexample 4. By
virtue of the full-abstraction result, we can show directly that r6 ��∼ clt r7 by
following the requirements of Definition 6 and arguing that no relation exists
that contains the pair (r6, r7) while satisfying the conditions of the coinductive
preorder. Without loss of generality, pick a relation R such that r6 R r7:we have
to show that R ⊆ G(R). Since r6 ∈ Ubhv, r7

c−→� � and r6
c=⇒� � , Definition 6(3c)

requires that we show that

rc
6 R τ.r′

7 + τ.r′′
7 where rc

6 =
⊕

(r6 after � � c) and (τ.r′
7 + τ.r′′

7)=
⊕

(r7 after � � c)
(8)

and rc
6, r′

7 and r′′
7 are the clients defined earlier in Counterexample 4. Since we

want to show that R �⊆ G(R), the condition Definition 6(3a) requires that, if
rc
6 ∈ Ubhv, then (τ.r′

7 + τ.r′′
7) ∈ Ubhv. However, even though rc

6 ∈ Ubhv, we have
(τ.r′

7 + τ.r′′
7) �∈ Ubhv, violating Definition 6(3a) and thus showing that no such R

satisfying both (r6, r7) ∈ R and R ⊆ G(R) can exist. We highlight the fact that
whereas (7) of Counterexample 4 resulted in r6 �bad

clt r7, (8) is instrumental to
conclude that r6 ��clt r7. Note also that the path along c leading to a violation of
the requirements of Definition 6 is related to the discriminating server c. 0 used
in Counterexample 4 to justify r6 ��∼ clt r7. �

5 Expressiveness and Decidability

We show that servers with finite interactions suffice to preserve the discriminat-
ing power of the contextual preorder �∼clt

in Definition 1, which has ramifications
on standard verification techniques for the preorder, such as counter-example
generation [11]. We also show that, for finite-state LTSs, the set of usable clients
is decidable. Using standard techniques [27] we then argue that, in such cases,
there exists a procedure to decide whether two finite-state clients are related
by �∼clt

.

5.1 On the Power of Finite Interactions

We employ the coinductive characterisation of the client preorder, Theorem5, to
prove an important property of the client preorder of Definition 1, namely that
servers that only offer a finite amount of interactions to clients are necessary
and sufficient to distinguish all the clients according to our touchstone preorder
�∼clt

of Definition 1. Let CCSf ::= 0 | 1 | α.p | p + q | τ∞, and

�∼f
clt

= { (r1, r2) | for every p ∈ CCSf . p must r1 implies p must r2 }
U f = { r | there exists p ∈ CCSf . p must r }

250 G. Bernardi and A. Francalanza

In what follows, we find it convenient to use the definitions above: CCSf

excludes recursively-defined processes, but explicitly adds the divergent process
τ∞ because of its discriminating powers (see Counterexample 3). Accordingly,
�∼f

clt
and U f restrict the resp. sets to the syntactic class CCSf .

Corollary 1. The sets U and U f coincide.

Proof. The inclusion U f ⊆ U is immediate. Suppose that r ∈ U . By Theorem 2
we have r ∈ Ubhv. By Lemma 1, there exists a non-recursive p ∈ CCSf such that
p must r, thus r ∈ U f follows. ��
Theorem 6. In any finite-branching LTS r1 �∼f

clt
r2 if and only if r1 �∼clt

r2.

Proof. The inclusion �∼clt
⊆ �∼f

clt
follows immediately from the resp. definitions.

On the other hand, Theorem5 provides us with a proof technique for showing the
inclusion �∼f

clt
⊆ �∼clt

: if we show that �∼f
clt

⊆ G(�∼f
clt
) then �∼f

clt
⊆ �clt = �∼clt

. In view
of the Knaster-Tarski theorem it suffices to show that �∼f

clt
⊆ G(�∼f

clt
). In turn, this

requires us to prove the three conditions stated in Definition 6. The argument for
the first two conditions is virtually the same to that of Lemma5. Similarly, the
arguments for the third condition follow closely those used in Theorem1 (albeit
in a simpler setting of unsuccessful traces of length 1). The only new reasoning
required is that servers that exists because of r1 ∈ U also belong to CCSf , which
we know from Corollary 1. ��
An analogous result should also hold for the server-preorder, for the proofs of
completeness in [6, Theorem 3.1] rely on clients that can be written in the
language CCSf .

5.2 Deciding the Client Preorder

Figure 4 describes the pseudo-code for the eponymous function isUsable(r, acm),
which is meant to determine whether a client r is usable. It adheres closely to
the conditions of Definition 5 for Ubhv, using acm as an accumulator to keep
track of all the terms that have already been explored. Thus, if an r is revisited,
the algorithm rejects it on the basis that a loop of unsuccessful interactions
(leading to an infinite sequence of unsuccessful interactions that makes the client
unusable) is detected (lines 2–3). If not, the algorithm checks for the conditions
in Definition 5 (lines 4–9). In particular, line 4 checks that infinite sequences of
internal moves are always successful (using function convtick defined on lines
11–17) and that partially deadlocked clients reached through a finite number
of unsuccessful internal moves, Acc� �(r) �= ∅, contain at least one action that
unblocks them to some other usable client (lines 7–8). This latter check employs
the function existsUnblockAction (defined on lines 19–26) which recursively calls
isUsable to determine whether the client reached after an action is indeed usable.
isUsable(r, acm) of Fig. 4 relies on the LTS of r being finite-state in order to
guarantee termination via the state accumulation held in acm. This is indeed
the case for our expository language CCSμ of Fig. 2. Concretely, we define the

Full-Abstraction for Must Testing Preorders 251

Fig. 4. An algorithm for deciding inclusion in the set U

set of internal-sums for the derivatives that a client r reaches via all the finite
traces ∈ Act�, and show that this set is finite. Let

sumsRdx(r) = {
⊕

(r after � � s) | for some s ∈ Act� },

Lemma 7. For every r ∈ CCSμ, the set sumsRdx(r) is finite. ��

Proof. Let Reachr = { r′ | r
s=⇒ r′ for some s ∈ Act� } denote the set of

reachable terms from client r, and PwrRr = {⊕
B | B ∈ P(Reachr) } denote

the elements of the powerset of Reachr, expressed as internal summations of
the elements of P(Reachr). By definition, we have that sumsRdx(r) ⊆ PwrRr.
Hence, it suffices to prove that Reachr is finite to show that PwrRr is finite,
from which the finiteness of sumsRdx(r) follows. The proof of the finiteness of
Reachr is the same as that of Lemma 4.2.11 of [29] for the language serial-CCS,
which is homologous to CCSμ of Fig. 2 modulo the satisfaction construct 1. ��

252 G. Bernardi and A. Francalanza

Theorem 7. For every r ∈ Proc we have that

(i) r ∈ U iff isUsable(r, ∅) = true,
(ii) r �∈ U iff isUsable(r, ∅) = false.

Proof. For the only-if case of clause (i), we use Theorem 2 and show instead that
r ∈ Ubhv implies isUsable(r, ∅) = true; we do so by numerical induction on n ∈ N

+

where r ∈ Fn(∅). For the if case, we dually show that isUsable(r, ∅) = true implies
r ∈ Ubhv, by numerical induction on the least number n ∈ N

+ of (recursive)
calls to isUsable that yield the outcome true. We note that in either direction
of clause (i), there is a direct correspondence between the respective inductive
indices (e.g., for the base case n = 1, r ∈ F1(∅) = F(∅) implies that r ⇓� and
that Acc� �(r) = ∅).

For the second clause (ii), the statements
(
r �∈ U implies isUsable(r, ∅) =

true
)

and
(
isUsable(r, ∅) = false implies r �∈ U)

contradict the first clause
(i) which we just proved. The required result thus holds if we ensure that
isUsable(r, ∅) is defined for any r ∈ Proc. This follows from Lemma 7. ��

From Theorems 5, 7 and Lemma 7, we conclude that Definition 6 can be used
to decide �∼clt

for languages such as CCSμ of Fig. 2. We can do this by adapting the
algorithm of [27, Chapter 21.5], and proving that in our setting [27, Theorems
21.5.9 and 21.5.12] are true. In particular, using the terminology of [27] we have
that reachableG(X) is finite, essentially because the resp. LTS is finite-state, and
thus the decidability of �clt follows from Theorem 21.5.12.

6 Conclusion

We present a study that revolves around the notion of usability and preorders
for clients (tests). Preorders for clients first appeared for compliance testing [2],
and were subsequently investigated in [3,6] for must testing [12] and extended to
include peers. The characterisations given in [6] relied fundamentally on the set
of usable terms U which made them not fully-abstract and hard to automate.
This provided the main impetus for our study. In general, recursion poses obsta-
cles when characterising usable terms, but the very nature of must testing —
which regards infinite unsuccessful computations as catastrophic — let us treat
recursive terms in a finite manner (see Definition 5).

We focus on the client preorder, even though [6] presents preorders for both
client and peers; note however that [6, Theorem 3.20] and Theorem 2 imply full-
abstraction for the peer preorder as well. Our investigations and the resp. proofs
for Theorem 2, Theorems 5 and 6 are conducted in terms of finitely-branching
LTSs, which cover the semantics used by numerous other work describing client
and server contracts [6,8,9,18] — we only rely on an internal choice construct to
economise on our presentation, but this can be replaced by tweaking the resp.
definitions so as to work on sets of processes instead. As a consequence, the
results obtained should also extend to arbitrary languages enjoying the finite-
branching property. Theorem7 relies on a stronger property, namely that the

Full-Abstraction for Must Testing Preorders 253

language is finite-state. In [29], it is shown that this property is also enjoyed by
larger CCS fragments, and we therefore expect our results to extend to these
fragments as well.

6.1 Related Work

Client usability depends both on language expressiveness and on the notion of
testing employed. Our comparison with the related work is organised accordingly.

Session types [14] do not contain unsuccessful termination, 0, restrict internal
(resp. external) choices to contain only pair-wise distinct outputs (resp. inputs)
and are, by definition, strongly convergent [25] (i.e., no infinite sequences of τ -
transitions). E.g., τ.!a. 1 + τ.!b.?c. 1 corresponds to a session type in our language
(modulo syntactic transformations such as those for internal choices), whereas
τ.!a. 0 + τ.!b.?c. 1, τ.!a. 1 + τ.!a.?b. 1 and ?a. 1 + ?a.!b. 1 do not. Since they
are mostly deterministic — only internal choices on outputs are permitted —
usability is relatively easy to characterise. In fact [7, Section 5] shows that every
session type is usable wrt. compliance testing (even in the presence of higher-
order communication) whereas, in [26, Theorem 4.3], non-usable session types
are characterised wrt. fair testing. First-order session types are a subset of our
language, and hence, Theorem2 is enough to (positively) characterise usable
session types wrt. must testing; we leave the axiomatisation of U in this setting
as future work.

Contracts [25] are usually formalised as (mild variants of) our language CCSμ.
In the case of must testing, the authors in [6, Theorem 6.9, Lemma 7.8(2)] char-
acterise non-usable clients (and peers) for the sublanguage CCSf as the terms
that can be re-written into 0 via equational reasoning. Full-abstraction for usable
clients wrt. compliance testing has been solved for strongly convergent terms in
[25, Proposition 4.3] by giving a coinductive characterisation for viable (i.e.,
usable wrt. compliance) contracts. If we restrict our language to strongly con-
vergent terms, that characterisation is neither sound nor complete wrt. must
testing. It is unsound because clients such as μx.a.x are viable but not usable.
It is incomplete because of clients such as r = 1 + τ. 0; this client is usable wrt.
must because, for arbitrary p, any computation of p || r is successful (since we
have r

�−→ immediately). On the other hand, r is not viable wrt. compliance
testing of [25] (where every server is strongly convergent), because for any server
p we observe the computation starting with the reduction p || r

τ−→ p || 0, and
once p stabilises to some p′, the final state p′ || 0 contains an unsuccessful client.
This argument relies on subtle discrepancies in the definitions of the testing
relations: in must testing it suffices for maximal computations to pass through a
successful state, whereas in compliance testing the final state of the computa-
tion (if any) is required to be successful. This aspect impinges on the technical
development: although our Definition 5(2) resembles [25, Definition 4.2], the two
definitions have strikingly different meanings: we are forced to reason wrt. unsuc-
cessful actions and unsuccessful acceptance sets whereas [25, Definition 4.2] is
defined in terms of (standard) weak actions and acceptance sets (note that Def-
inition 5(1) holds trivially in the strongly convergent setting of [25]). We note

254 G. Bernardi and A. Francalanza

also that our Definition 5 is inductive whereas [25, Definition 4.2] is coinduc-
tive. More importantly, our work lays bare the non-compositionality of usable
terms and how it affects other notions that depend on it, such as Definition 6
(and consequently Theorem5). We are unaware of any full-abstraction results
for contract usability in the case of should-testing [8,24,28].

Future work: In the line of [10], we plan to show a logical characterisation of the
client and peer preorder. We also intend to investigate coinductive characterisa-
tions for the peer preorder of [6] and subsequently implement decision procedures
for the server, client, and peer preorders in Caal [1]. Usability is not limited to
tests. We expect it to extend naturally to runtime monitoring [13], where it can
be used as a means of lowering runtime overhead by not instrumenting unusable
monitors.

Acknowledgements. This research was supported by the COST Action STSMs
IC1201-130216-067787 and IC1201-170214-038253. The first author was supported by
the EU FP7 ADVENT project. The second author is partly supported by the RANNIS
THEOFOMON project 163406-051. The authors acknowledge the Dagstuhl seminar
17051 and thank L. Aceto, M. Bravetti, A. Gorla, M. Hennessy, C. Spaccasassi and
anonymous reviewers for their help and suggestions.

References

1. Andersen, J.R., Andersen, N., Enevoldsen, S., Hansen, M.M., Larsen, K.G., Olesen,
S.R., Srba, J., Wortmann, J.K.: CAAL: concurrency workbench, Aalborg edition.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399,
pp. 573–582. Springer, Cham (2015). doi:10.1007/978-3-319-25150-9 33

2. Barbanera, F., de’Liguoro, F.: Two notions of sub-behaviour for session-based clien-
t/server systems. In: PPDP (2010)

3. Bernardi, G.: Behavioural equivalences for web services. Ph.D. thesis, TCD (2013)
4. Bernardi,G., Francalanza, A.: Full-abstraction for must testing preorders (extended

abstract). https://www.irif.fr/gio/papers/BFcoordination2017.pdf
5. Bernardi, G., Hennessy, M.: Modelling session types using contracts. In: SAC

(2012)
6. Bernardi, G., Hennessy, M.: Mutually testing processes. LMCS 11(2), 1–23 (2015)
7. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types.

LMCS 12(2), 1–43 (2016)
8. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party

service composition. Fundam. Inf. 89(4), 451–478 (2008)
9. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.

ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)
10. Cerone, A., Hennessy, M.: Process behaviour: formulae vs. tests. In: EXPRESS

(2010)
11. Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms, applica-

tions. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772,
pp. 208–224. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39910-0 9

12. De Nicola, R., Hennessy, M.: Testing equivalences for processes. TCS 34(1–2),
83–93 (1984)

http://dx.doi.org/10.1007/978-3-319-25150-9_33
https://www.irif.fr/gio/papers/BFcoordination2017.pdf
http://dx.doi.org/10.1007/978-3-540-39910-0_9

Full-Abstraction for Must Testing Preorders 255

13. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49630-5 9

14. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

15. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
16. Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-

mental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City
(1997)

17. König, D.: Über eine schlussweise aus dem endlichen ins unendliche. Acta Litt. ac.
sci. Szeged 3, 121–130 (1927)

18. Laneve, C., Padovani, L.: The Must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74407-8 15

19. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: FSE (2014)

20. Marinescu, P., Hosek, P., Cadar, C.: Covrig: a framework for the analysis of code,
test, and coverage evolution in real software. In: ISSTA (2014)

21. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31984-9 3

22. Memon, A.M., Cohen, M.B.: Automated testing of GUI applications: models, tools,
and controlling flakiness. In: ICSE (2013)

23. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

24. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for
service replaceability. J. Log. Algebr. Program. 79(3–5), 233–244 (2010)

25. Padovani, L.: Contract-based discovery of web services modulo simple orchestra-
tors. TCS 411(37), 3328–3347 (2010)

26. Padovani, L.: Fair subtyping for multi-party session types. MSCS 26(3), 238–302
(2016)

27. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)
28. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
29. Spaccasassi, C.: Language support for communicating transactions. Ph.D. thesis,

TCD, (2015)
30. Weinberg, D.: Efficient controllability analysis of open nets. In: Bruni, R., Wolf, K.

(eds.) WS-FM 2008. LNCS, vol. 5387, pp. 224–239. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-01364-5 14

31. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-540-74407-8_15
http://dx.doi.org/10.1007/978-3-540-31984-9_3
http://dx.doi.org/10.1007/978-3-540-31984-9_3
http://dx.doi.org/10.1007/978-3-642-01364-5_14

Communication Requirements for Team
Automata

Maurice H. ter Beek1(B), Josep Carmona2, Rolf Hennicker3, and Jetty Kleijn4

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 Universitat Politècnica de Catalunya, Barcelona, Spain
3 Ludwig-Maximilians-Universität, Munich, Germany

4 LIACS, Leiden University, Leiden, The Netherlands

Abstract. Compatibility of components is an important issue in the
quest for systems of systems that guarantee successful communications,
free from message loss and indefinite waiting for inputs. In this paper, we
investigate compatibility in the context of systems consisting of reactive
components which may communicate through the synchronised execu-
tion of common actions. We model such systems in the team automata
framework, which does not impose any a priori restrictions on the syn-
chronisation policy followed to combine the components. We identify
a family of representative synchronisation types based on the number
of sending and receiving components participating in synchronisations.
Then, we provide a generic procedure to derive, for each synchronisa-
tion type, requirements for receptiveness and for responsiveness of team
automata that prevent that outputs are not accepted and inputs are not
provided, respectively. Due to the genericity of our approach w.r.t. syn-
chronisation policies, we can capture compatibility notions for various
multi-component system models known from the literature.

1 Introduction

Modern systems are often large-scale concurrent and distributed systems of inter-
connected, reactive components which collaborate through message exchange.
For their correct functioning it is not only important that each component satis-
fies application-specific properties, but it is also essential that no communication
failures, like message loss or indefinite waiting for input, occur during system
execution. This requires a deep understanding of the typical communication and
interaction policies used in such multi-component systems. To establish that
components within a system interact correctly, a concept known as compatibility
is useful. In [1], a characterisation was given for compatibility of two components
that should engage in a dialogue free from message loss and indefinite waiting.
In [2], this binary notion of compatibility was lifted to multi-component systems,
in which communication may take place between more than two components at

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 256–277, 2017.
DOI: 10.1007/978-3-319-59746-1 14

Communication Requirements for Team Automata 257

the same time (e.g. broadcasting). Compatibility failures detected in a distrib-
uted, modular system model may reveal important problems in the design of
one or more of its components, to be repaired before implementation. Compat-
ibility checks considering various communication and interaction policies thus
significantly aid the development of correct component-based systems.

I/O-transition systems are frequently used as a model for reactive compo-
nents on which to formally define and analyse compatibility. To express reac-
tivity, I/O-transition systems rely on distinguished output (active), input (pas-
sive) and internal (privately active) actions. They come in several flavours, like
I/O automata [3,4], team automata [5,6], interface automata [7,8], component-
interaction automata [9] or modal I/O automata [10]. Several compatibility
notions studied in the literature are influenced by the interface automata
approach, which uses synchronous point-to-point communication. Two inter-
face automata are said to be compatible if no illegal state can be reached
autonomously in the synchronous product of the two. A state is illegal if “one of
the automata may produce an output action that is an input action of the other
automaton, but not accepted” [7]. The notion was weakened in [11] by allowing
a component to still perform some internal actions before accepting the input.
Outputs which are not accepted as input are considered as message loss or as
unspecified receptions [12,13]. If any (autonomously chosen) output is accepted,
we call this receptiveness [14]. An orthogonal issue concerns the viewpoint of
a component waiting to receive an input. It expects an appropriate output to
be provided. But in this case the environment can choose which input to serve.
Here we refer to this kind of communication requirement (which was already
considered as part of a notion of I/O-compatibility in [1]) as responsiveness.

Conditions for receptiveness and responsiveness have been considered in [13]
for services and in [2] for team automata. Both approaches support compat-
ibility in multi-component environments for synchronous products, which are
known for their appealing compositionality and modularity properties [4,15–18].
A first exploration on how compatibility notions could be generalised to arbi-
trary synchronisation policies was performed in [14] in the framework of team
automata. However, due to the very loose nature of synchronisation policies in
team automata, a systematic methodology on how to formalise compatibility
conditions in such general settings is still missing. It is the motivation for this
work.

The present paper uses as a foundation again the team automata framework,
but we additionally define a representative set of communication patterns, called
synchronisation types, which help to classify the synchronisation policies that
can be realised in team automata. A synchronisation type (snd, rcv) can spec-
ify ranges for the number of senders and receivers which can take part in a
communication inside the system (possibly based on side conditions). Any syn-
chronisation type uniquely determines a synchronisation policy if the underlying
system of components is closed. Otherwise, synchronisation policies with the
same type may vary concerning options for interaction with the environment
of the system. In any global state of a system S, one of its components or—

258 M.H. ter Beek et al.

more generally—a group of components in S may require certain communica-
tions with other components in the system depending on the currently enabled
actions. If (common) outputs are enabled in a group of components this leads to
requirements for reception. Conversely, enabled inputs lead to requirements for
providing appropriate output, i.e. responsiveness requirements. This allows us to
define a notion of compatibility for team automata in terms of their compliance
with communication requirements. A team automaton is said to be compliant
with communication requirements if the desired communications can immedi-
ately occur in the team; it is said to be weakly compliant if the communication
can eventually occur after some internal actions have been performed.

In this paper, we propose a general procedure to systematically derive
receptiveness and responsiveness requirements from any synchronisation type.
Then we can check for any team automaton of synchronisation type (snd, rcv)
whether it is compliant with the receptiveness and/or responsiveness require-
ments derived from (snd, rcv). Thus we get a family of compatibility notions
indexed by synchronisation types. Our methodology is illustrated with several
examples. We show that our notions can be instantiated with well-known com-
patibility notions from the literature where particular synchronisation types are
considered. In particular, our approach can express two different paradigms
for compatibility in open systems, often called the optimistic and pessimistic
approaches (cf. [19]).

The paper is organised as follows. In Sect. 2, we introduce team automata
followed by the notion of synchronisation types in Sect. 3. In Sect. 4, we define
communication requirements for receptiveness and responsiveness and the com-
pliance of team automata with such requirements. In Sect. 5, we show how to
derive these requirements from synchronisation types, how known compatibility
notions from the literature can be captured and how our theory can be applied.
We conclude with a summary of our achievements and some pointers to future
work in Sect. 6.

2 Component Automata and Team Automata

Component automata and team automata are defined as (reactive) automata
without final states which distinguish input, output and internal actions and
which can be combined by synchronisations on common actions according to
synchronisation policies. First we fix some notation.

Given a finite index set I = {1, . . . , n}, we denote the Cartesian product of
sets V1, . . . , Vn as

∏
i∈I Vi. If v = (v1, . . . , vn) ∈

∏
i∈I Vi and i ∈ I, then the i-th

entry of v is obtained by applying the projection function proji :
∏

i∈I Vi → Vi

defined by proji(v1, . . . , vn) = vi.

Definition 1 (Component automaton). A component automaton is a tuple
A = (Q,Σ, δ, I), with set Q of states; set Σ of actions, such that Q ∩ Σ = ∅,
and Σ is the union of three pairwise disjoint sets Σinp, Σout and Σint of input,
output and internal actions, respectively; δ ⊆ Q × Σ × Q is its set of (labelled)
transitions; and ∅ �= I ⊆ Q its set of initial states. ��

Communication Requirements for Team Automata 259

A (component) automaton (Q,Σ, δ, I) with input, output and internal actions
Σinp, Σout and Σint, respectively, may be specified as (Q, (Σinp, Σout, Σint), δ, I).
By Σext we denote the set Σinp ∪ Σout of external actions. Especially in figures,
we may emphasise the role of external actions by appending input actions with ?
and output actions with ! For an action a ∈ Σ, we define the set of a-transitions
as δa = δ ∩ (Q × {a} × Q). We may write p

a−→A p′ instead of (p, a, p′) ∈ δ.
The behaviour of an automaton A is determined by the execution of actions

enabled at its current state. We say that a is enabled in A at state p ∈ Q, denoted
by a enA p, if there exists p′ ∈ Q such that p

a−→A p′. The (finite, sequential)
computations of A, denoted by C(A), are those sequences p0a1p1 · · · pk−1akpk

such that k ≥ 0, p0 ∈ I and pi−1
ai−→A pi for all i ∈ {1, . . . , k}. For X ⊆ Σ, we

write p
X−→ ∗

A p′ if there exists p0
a1−→A p1, . . . , pj−1

aj−→A pj for some j ≥ 0, with
p0, . . . pj ∈ Q, a1, . . . , aj ∈ X, p = p0, and p′ = pj . A state p ∈ Q is reachable

if p0
Σ−→ ∗

A p (with p0 ∈ I) and the set of reachable states of A is denoted by
R(A).

As usual, we may omit subscripts referring to A if no confusion can arise.
Team automata consist of component automata that collaborate through

synchronised executions of shared actions. When and which actions are executed
and by how many components depends on the chosen synchronisation policy.

Let I = {1, . . . , n} be a finite index set. Let S = {Ai | i ∈ I} be a set of com-
ponent automata defined, for each i ∈ I, as Ai = (Qi, (Σi,inp, Σi,out, Σi,int), δi, Ii)
with Σi = Σi,inp ∪Σi,out∪Σi,int. S is composable if Σi,int∩

⋃n
j=1,j �=i Σj = ∅ for all

i ∈ I. Thus in a composable system, internal actions are not shared. Note that
every subset of a composable set of component automata is again composable.

Σ =
⋃

i∈I Σi is the set of actions of S, Σint =
⋃

i∈I Σi,int its set of internal
actions and Σext =

⋃
i∈I Σi,ext its set of external actions. Moreover, Σcom =⋃

i∈I Σi,inp ∩
⋃

i∈I Σi,out is the set of communicating actions of S. Hence, an
action (of S) is communicating if it occurs in Σext both as an input action of
one of the automata and as an output action of an automaton.

For an action a ∈ Σ, its domain in S, denoted by doma(S), consists of the
indices of all automata from S in which it appears as an action. So, doma(S) =
{i | a ∈ Σi}. Hence in a composable system, the domain of an internal action
is always a singleton set. For a ∈ Σext, we let doma,inp(S) = {i | a ∈ Σi,inp} be
its input domain (in S) and doma,out(S) = {i | a ∈ Σi,out} its output domain (in
S). Hence an action is a communicating action of S if both its output and its
input domain in S are not empty.

Finally, we say that S is open if it has external actions that are not com-
municating (they appear only as an input or only as an output action). If S is
not open, it may be referred to as closed ; in this case all its external actions are
communicating (all have at least one communication partner).

Notation. For the remainder of this paper, we fix I and S as above. Moreover,
S is composable. We refer to Q =

∏
i∈I Qi as the state space of S and to Σ,

Σint, Σext and Σcom as its set of actions, internal actions, external actions and
communicating actions, respectively.

260 M.H. ter Beek et al.

Definition 2 (System transition). A tuple (q, a, q′) ∈ Q × Σ × Q is a tran-
sition on a (in S) if there exists an i ∈ I such that (proji(q), a,proji(q′)) ∈ δi,
and if for all i ∈ I, either (proji(q), a,proji(q′)) ∈ δi or proji(q) = proji(q′).

For a ∈ Σ, Δa(S) is the set of all transitions on a in S, while Δ(S) =⋃
a∈Σ Δa(S) is the set of all transitions in S. ��

If (q, a, q′) ∈ Δ(S), then any component Ai for which (proji(q), a,proji(q′)) ∈ δi

is said to be involved in (q, a, q′). By definition, in all transitions in S, at least one
component is involved through a ‘local’ transition. Moreover, all transitions in
Δa(S) are combinations of existing a-transitions from the component automata
in S and all possible combinations occur in Δa(S). As in earlier papers, we will
often refer to the elements of Δa(S) as synchronisations on a also when no more
than one component is actively involved. In particular, when a is an internal
action of a component automaton, then all transitions on a are executed by that
component alone. Moreover, for each transition on an external action in one of
the automata, Δ(S) will also contain all synchronisations that involve only that
component through that particular local transition. When a synchronisation on
an external action a involves both a component in which a is an input action
and one in which it is an output action, it is called a communication.

All team automata over S will have Σ as their set of actions, consisting of the
external actions Σext of the components and the internal actions Σint comprising
all internal actions of the components. In addition, we need to define the sets
of input and output actions. We follow the idea from [6] that components have
control over their output actions whereas input actions are passive, i.e. driven
by the environment. As a consequence, actions that appear as an output action
in one or more of the components are considered to be under the control of the
team and hence will be output actions of the team (even if they are input to
some other components). Input actions that do not appear as output, are input
actions of the team. Formally, Σout =

⋃
i∈I Σi,out and Σinp = (

⋃
i∈I Σi,inp)\Σout.

Furthermore, Q =
∏

i∈I Qi will be the set of states of every team automaton
over S and I =

∏
i∈I Ii its set of initial states.

Finally, it is the choice of synchronisations, thus the choice of a subset δ of
Δ(S), that defines a specific team automaton. As internal actions are assumed
to be under the control of the component automata, all transitions on internal
actions will always be included as transitions of any team automaton over S.
Subsets δ of Δ(S), such that δa = Δa(S) for all a ∈ Σint, are referred to as
synchronisation policies (over S).

Definition 3 (Team automaton). The team automaton over S with syn-
chronisations δ is the component automaton T = (Q, (Σinp, Σout, Σint), δ, I). ��

Each team automaton determines a synchronisation policy over S and vice versa.
Since every team automaton is a component automaton, team automata can be
used in hierarchical constructions (systems of systems).

Communication Requirements for Team Automata 261

3 Synchronisation Types

We have seen that team automata over a composable system are defined by syn-
chronisation policies. For all states of the system and for each external action
enabled at the corresponding local state of at least one of its components, it has
to be decided which synchronisations on that action to include as a (team) tran-
sition. In practice, this will seldom be decided individually for every candidate
synchronisation. The system designer will most likely have a certain synchroni-
sation pattern in mind. In this section, we introduce so-called synchronisation
types which allow us to define in a compact way specific synchronisation policies.

Synchronisation types specify lower and upper bounds on the number of
components involved in a synchronisation or they indicate that the synchroni-
sation is of an action-indispensible or state-indispensible type. These notions
were originally introduced in [6]. There an action-indispensible synchronisation
policy requires for every team transition on a given action the involvement of
all components to which that action belongs; a policy is state-indispensible if in
every team transition on a given action all components that could be involved
(because that action is enabled at the current local state) are involved. Here, we
apply this idea to communicating actions and distinguish between their input
and output roles. We use ai and si to indicate the number of input or output
components that could maximally be involved in a synchronisation on a com-
municating action (having that action as input or output, respectively, and for
si the action is moreover enabled at the current local state).

The next definition introduces synchronisation types as pairs that can be used
to specify for a synchronisation on a communicating action, possible numbers
of components involved as sending components (for which the action executed
is an output action) and as receiving components (for which the action is an
input).

Definition 4 (Synchronisation type). A synchronisation type is a pair
(snd, rcv) such that for x = snd and for x = rcv either x is an interval [k,m]
with 0 ≤ k and (k ≤ m or m = ∗) or x ∈ {ai , si}. We call snd and rcv the
sending and receiving multiplicity, respectively, of the synchronisation type. ��

Next, we turn to synchronisations. For (p, a, p′) ∈ Δ(S), the number of automata
involved as output or input component in (p, a, p′) is denoted as follows:

outa(p, a, p′) = #{i ∈ I | (proji(p), a,proji(p
′)) ∈ δi and a ∈ Σi,out}

inpa(p, a, p′) = #{i ∈ I | (proji(p), a,proji(p
′)) ∈ δi and a ∈ Σi,inp}

To be able to deal with si , we denote the number of automata, for which an
output or input action a ∈ Σcom is locally enabled at state p ∈ Q, as follows:

outsi(p, a) = #{i ∈ I | a enAi
proji(p) and a ∈ Σi,out }

inpsi(p, a) = #{i ∈ I | a enAi
proji(p) and a ∈ Σi,inp}

In what follows, � ∈ N is said to satisfy an interval [k,m] with 0 ≤ k ≤ m
whenever k ≤ � ≤ m; and � satisfies [k, ∗] if k ≤ �.

262 M.H. ter Beek et al.

Definition 5 (Typed synchronisation policy). Let a ∈ Σcom, p ∈ Q and
(p, a, p′) ∈ Δ(S). Then

(p, a, p′) is of type (snd, rcv) if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

snd = [o1, o2] and outa(p, a, p′) satisfies [o1, o2]
snd = ai and outa(p, a, p′) = #doma,out(S)
snd = si and outa(p, a, p′) = outsi(p, a)
rcv = [i1, i2] and inpa(p, a, p′) satisfies [i1, i2]
rcv = ai and inpa(p, a, p′) = #doma,inp(S)
rcv = si and inpa(p, a, p′) = inpsi(p, a)

We say that a synchronisation policy δ ⊆ Δ(S) is of type (snd, rcv) if δ contains,
for all a ∈ Σcom, all transitions on a of type (snd, rcv) and no other transitions on
a. A team automaton T over S with synchronisation policy δ is of type (snd, rcv)
if δ is of type (snd, rcv). ��

From Definition 5 it follows that for closed systems where all external actions
are communicating, a synchronisation type (snd, rcv) determines a unique syn-
chronisation policy δ and hence a team automaton. Synchronisation types do
not apply to non-communicating external actions and so, if the system is open,
a synchronisation policy of a certain type may contain any subset of transitions
(p, a, p′) ∈ Δ(S) with actions a ∈ Σext\Σcom. If all of them are selected, then
the synchronisation policy is called maximal.

Note that a transition in S may be of several, different types. Furthermore,
a team automaton may have a synchronisation policy that includes communica-
tions that do not have a common synchronisation type.

Let us now consider some familiar synchronisation types which occur in the
literature and in concrete systems.

([1, 1], [1, 1]) : binary communication, meaning that a communicating action can
be executed only as a synchronisation involving exactly one component for
which it is an output action and exactly one for which it is an input action.

([1, 1], [0, 1]) : as directly above, but now over a lossy channel, meaning that a
communicating action can be lost (i.e. involving exactly one component for
which it is an output action and at most one for which it is an input action).

([1, 1], [0, ∗]) : multicast communication, meaning that a communicating action
can be executed only as a synchronisation involving exactly one component
for which it is an output action and any number of the components in which
it is an input action. This is called weak synchronisation in BIP [20].

([1, 1], si) : broadcast communication, meaning that whenever a communicating
action is executed it occurs exactly once in its output role in that transition
with as many as possible (all currently enabled) input components involved.

([1, 1], ai) : strong broadcast communication, as directly above, but now with all
input components involved. This is called strong synchronisation in BIP.

(ai , ai) : transitions on communicating actions are always ‘full’ synchronisations,
meaning that all components that share a communicating action are involved
in all transitions on that action. When all external actions are communicating
(S is a closed system), this means that we are dealing with the classical
synchronous product of automata (cf., e.g., [2,14,21]).

Communication Requirements for Team Automata 263

([1, ∗], [0, ∗]) : transitions on communicating actions always involve at least one
component where that action is an output action. This is the idea of ‘master-
slave’ communication (cf. [6]), according to which a master (output) can
always be executed and slaves (input) never proceed on their own.

([1, ∗], [1, ∗]) : as directly above, but now at least one slave has to ‘obey’ (the
master). This is called ‘strong master-slave’ communication (cf. [6]), by which
a master (output) can always be executed and slaves (input) must be involved.

([0, 1], [0, 1]) : not obligatory binary communication (communicating actions may
also be executed as stand alone) like in CCS [22]. ��

These synchronisation types define team automata based on one type of syn-
chronisation only, but for future work combinations could be imagined as well.

Example 1. We consider the system Sys1 = {Runner1,Runner2, Controller}
depicted in Fig. 1. Here and in all subsequent examples components have exactly
one initial state denoted by 0. All actions apart from the internal actions run1

and run2 are communicating. We want to combine these components in a team
in a way that the controller component starts both runner components at the
same time, but each runner can separately signal to the controller when it has
reached the finish line. To this aim, the synchronisation type (ai , ai) with all
transitions on communicating actions being full synchronisations is appropriate.
Thus we obtain the team automaton T1 of type (ai , ai) over Sys1. (Since the
system is closed, this team is unique.) ��

Fig. 1. Automata Runner i, with i ∈ {1, 2}, and Controller of Sys1

Example 2. Now we consider the system Sys2={Runner ′
1,Runner ′

2, Controller ′}
depicted in Fig. 2. The idea is similar to Example 1. As before, the controller
should start the runners at the same time and each runner should separately send
its finish signal to the controller. The difference with Sys1 is that both runners use
the same finish signal to communicate with the controller. Therefore we cannot
use the synchronisation type (ai , ai) but choose the type ([1, 1], ai) instead. The
sending multiplicity [1, 1] enforces that communication in the system will always
involve exactly one sender, which precludes the two runners sending their finish
signal together. The receiving multiplicity is ai since the two runners must receive

264 M.H. ter Beek et al.

Fig. 2. Automata Runner ′
i, with i ∈ {1, 2}, and Controller ′ of Sys2

the start signal together. This leads to the team automaton T2 of type ([1, 1], ai)
over the system Sys2. ��

4 Communication Requirements

In this paper, we are interested in the communications between components in a
team built over the system S. In any state p of S, one of its components or, more
generally, a group of components in S may require certain communications with
other components in the system. This is formally expressed by communication
requirements. In the following, we represent a group of components in S by their
indices, i.e. by a non-empty subset J ⊆ I. By abuse of terminology, we will
often identify J with the group of components represented by J .

For a communicating action a∈Σcom, a group J ⊆doma,out(S) in the output
domain of a may have a communication requirement (J , a) at some state p, if
(output) action a is enabled in the local states projj(p) of all components Aj

with j ∈ J . This requirement expresses that at least one component in the input
domain of a should communicate with group J and receive a in the current
state. Thus (synchronised groups of) sending components can have demands
w.r.t. the reception of an output action and therefore (J , a) will be called a
receptiveness requirement . According to Definitions 7 and 8 below, it will depend
on the synchronisation policy of a team whether receptiveness requirements are
fulfilled.

Similarly, we consider groups J ⊆ doma,inp(S) in the input domain of a.
Then a communication requirement (J , a) can be given for a state p, if (input)
action a is enabled in the local states projj(p) of all components Aj with j ∈ J .
According to this requirement at least one component in the output domain of
a should communicate with the group and send a in the current state. Thus
(synchronised groups of) receiving components may require output from other
components and then (J , a) will also be called a responsiveness requirement
(although it is not necessarily a response to a former call). Again it will depend
on the synchronisation policy of a team whether responsiveness requirements are
satisfied (cf. Definitions 7 and 8).

Communication requirements can be combined by conjunction and disjunc-
tion. As we shall see in Sect. 5, the former will be in particular useful for combin-
ing receptiveness requirements and the latter for responsiveness requirements.

Communication Requirements for Team Automata 265

Definition 6 (Communication requirement)

(i) A receptiveness requirement at p ∈ Q is a pair (J , a) with a ∈ Σcom and
∅ �= J ⊆ doma,out(S) such that a enAj

projj(p) for all j ∈ J .
(ii) A responsiveness requirement at p ∈ Q is a pair (J , a) with a ∈ Σcom and

∅ �= J ⊆ doma,inp(S) such that a enAj
projj(p) for all j ∈ J .

(iii) An atomic communication requirement at p ∈ Q is either the trivial require-
ment true or a receptiveness requirement at p or a responsiveness require-
ment at p.

(iv) A communication requirement at p ∈ Q is either an atomic communication
requirement or a conjunction ψ1 ∧ ψ2 or a disjunction ψ1 ∨ ψ2 of commu-
nication requirements ψ1 and ψ2 at p. ��

When all non-trivial atomic requirements occurring in a communication require-
ment ϕ are receptiveness (responsiveness) requirements, we also refer to ϕ as a
receptiveness (responsiveness) requirement, respectively.

Definition 7 (Compliance). A team automaton T over S with synchroni-
sation policy δ is compliant with a communication requirement ϕ at p ∈ Q if
either p /∈ R(T) or ϕ = true, or

(a) ϕ = (J, a) is a receptiveness requirement at p and there exist i ∈ doma,inp(S)
and a transition p

a−→T p′ such that (projk(p), a,projk(p′)) ∈ δk for all k ∈
J ∪ {i};

(b) ϕ = (J, a) is a responsiveness requirement at p and there exist i ∈
doma,out(S) and a transition p

a−→T p′ such that (projk(p), a,projk(p′)) ∈ δk

for all k ∈ J ∪ {i};
(c) ϕ = ψ1 ∧ ψ2 and T is compliant with ψ1 at p and with ψ2 at p;
(d) ϕ = ψ1 ∨ ψ2 and T is compliant with ψ1 at p or with ψ2 at p. ��

Note that when T is compliant with an atomic receptiveness requirement at a
state p, then according to (a) above, the output a from the components defined
by J can be received by a component Ai, but this may be realised through a syn-
chronisation at p involving more components from the output and input domains
of a. A similar remark holds for compliance with responsiveness requirements.

Communication requirements can be used to express various properties that
may emerge during the computations of a team automaton, such as progress
properties. As an example, when a team automaton T is compliant with a non-
trivial communication requirement at state p, then communication progress is
possible at p, i.e. a enT p for some a ∈ Σcom.

In general, the definition of compliance as we have it now, may be too strong
in the sense that it could be natural to allow the team to execute some inter-
mediate, internal (‘silent’) actions before it would be ready for the required
communication. This leads to the notion of weak compliance following the ideas
of weak compatibility introduced in [11].

Definition 8 (Weak compliance). A team automaton T over S with syn-
chronisation policy δ is weakly compliant with a communication requirement ϕ
at p ∈ Q if either p /∈ R(T) or ϕ = true, or

266 M.H. ter Beek et al.

(a) ϕ = (J, a) is a receptiveness requirement at p and there exist q ∈ Q
with projj(p) = projj(q), for all j ∈ J , and i ∈ doma,inp(S) such that

p
Σint−−→ ∗

T q
a−→T p′ holds and (projk(q), a,projk(p′)) ∈ δk for all k ∈ J ∪ {i};

(b) ϕ = (J, a) is a responsiveness requirement at p and there exist q ∈ Q
with projj(p) = projj(q), for all j ∈ J , and i ∈ doma,out(S) such that

p
Σint−−→ ∗

T q
a−→T p′ and (projk(q), a,projk(p′)) ∈ δk for all k ∈ J ∪ {i};

(c) ϕ = ψ1 ∧ ψ2 and T is weakly compliant with ψ1 at p and with ψ2 at p;
(d) ϕ = ψ1 ∨ ψ2 and T is weakly compliant with ψ1 at p or with ψ2 at p. ��

Obviously, compliance implies weak compliance. Observe furthermore that we
require that the components defined by J do not change their local state as a
result of the execution of the silent actions. This implies that these components
do not (have to) execute internal actions to reach the global state where the
required communication would be possible. Moreover, the definition given here
makes it possible that also components not involved in the eventual communi-
cation, take part in the silent computation needed to reach a team state where
that communication could take place. This phenomenon is known as ‘state-
sharing’ (cf. [6,23]) and allows components to influence potential synchronisa-
tions through their local states without being involved in the actual transition.

Example 3. We consider the team automaton T1, introduced in Example 1, with
synchronisation type (ai , ai). We denote the states of T1 by triples (q1, q2, q3)
where q1 is a state of Controller , q2 a state of Runner1, and q3 a state of Runner2.
Examples for receptiveness requirements are:

({Controller}, start) at (0, 0, 0)
({Runner1},finish1) ∧ ({Runner2},finish2) at (1, 2, 2)

The first one expresses that in the initial state the start signal of the controller
should be received (by at least one runner); the second one that in state (1, 2, 2)
each runner wants its finish signal to be received (by the controller). Obviously,
the team automaton T1 is compliant with both receptiveness requirements.

Examples for responsiveness requirements are:
({Runner1,Runner2}, start) at (0, 0, 0)
({Controller},finish1) ∨ ({Controller},finish2) at (1, 1, 1)

The first requirement concerns the group consisting of the two runners which
together request to be started. The second one expresses that in state (1, 1, 1)
the controller expects a finish signal either from Runner1 or from Runner2.
This illustrates the use of disjunctions to reflect external choice of inputs. Note
that T1 is not compliant but only weakly compliant with this requirement at
(1, 1, 1). In this state, neither finish1 nor finish2 can be sent immediately to the
controller, but either one can be sent when the respective component has done
its running (an internal action). ��

Communication Requirements for Team Automata 267

Theorem 1. Let T be a team automaton over S and, for each p∈R(T), let φp be
a non-trivial1 communication requirement such that T is weakly compliant with
each φp at p. Then at all reachable states of T , at least one action is enabled.2

Proof. For every reachable state p of T there is at least one atomic communi-
cation requirement with which T is compliant. Hence, in state p, the requested
action a can eventually be executed in the team. ��

5 Deriving Communication Requirements

In the previous section, we have introduced the concepts of communication
requirement and compliance of team automata. However, we provided no
methodological guidelines outlining when which requirements would be mean-
ingful. Consider, for instance, the team automaton T2 of Example 2 with syn-
chronisation type ([1, 1], ai). The global state (1, 2, 2) is a reachable state of T2

at which for both runner components, the output action finish is locally enabled.
Hence, ({Runner1,Runner2},finish) is formally a receptiveness requirement at
(1, 2, 2). This requirement does not make much sense, though, because of the
sending multiplicity [1, 1] by which always exactly one sender participates in
the execution of a communicating action. Therefore, the choice of suitable com-
munication requirements should take the synchronisation type of the team into
account.

In this section, we propose a general procedure to derive communication
requirements from an arbitrary synchronisation type. The approach was inspired
by initial ideas for a generic definition of compatibility of components relative
to the adopted synchronisation policy in [14] (where no classification of synchro-
nisation types was considered and no derivation procedure was envisioned). We
will do so separately for receptiveness (Sect. 5.1) and responsiveness requirements
(Sect. 5.2). Thus, we get for all synchronisation types introduced in Definition 4, a
compatibility notion w.r.t. receptiveness (Definition 9) and responsiveness (Def-
inition 10) suitable for all team automata with a synchronisation policy of that
type.

5.1 Deriving Receptiveness Requirements

We first formulate receptiveness requirements for each synchronisation type
(snd, rcv). We distinguish the following cases.

Case: snd arbitrary, rcv = [0, i2] or rcv = si . In this case, the synchro-
nisation policy allows that sending components progress also when their output
will not be received. Thus we have no more than the trivial receptiveness require-
ment true at all states p ∈ Q.

In the following cases, we assume that neither rcv = [0, i2] nor rcv = si and
proceed with a case distinction on snd.
1 i.e. it cannot be logically reduced to true.
2 i.e. R(T) contains no deadlock states.

268 M.H. ter Beek et al.

Case: snd = [o1, o2]. In this case, the subsets relevant to our considerations
are those J ⊆I with o1≤|J |≤o2. Let p∈Q be a global state. For each such J , we
consider all communicating (output) actions a which are simultaneously enabled
at the current local states projj(p) of the components Aj , i.e. a enAj

projj(p) for
all j ∈ J . This leads to the following receptiveness requirement at p:

∧
{(J , a) | ∅ �= J ⊆ I, o1 ≤ |J | ≤ o2,

and, for all j ∈ J , a ∈ Σj,out ∩ Σcom and a enAj
projj(p)}

We use conjunction here to reflect that whatever output action will be executed,
a corresponding input is required. If the set of all pairs (J , a) considered above
is empty, then there is no proper receptiveness requirement at p other than the
trivial requirement true.

To conclude, a team automaton T over S of type ([o1, o2], rcv) (such that
neither rcv = [0, i2] nor rcv = si) is (weakly) compliant with the receptiveness
requirements at p if whenever a group of components wants to perform an output
a, then the team can (eventually) carry out a synchronisation such that a is sent
by the group and received by some (at least one) other component.

Case: snd = ai . In this case, an action a is only executed as an output action
if all components in its output domain are at a state at which a is enabled. Hence
we formulate the following receptiveness requirements for states p ∈ Q:
∧

{(J , a) | ∅ �= J = doma,out(S), a∈Σcom and, for all j ∈J , a enAj
projj(p)}

These receptiveness requirements apply, in particular, to the synchronous prod-
uct where the synchronisation type is (ai , ai).

Case: snd = si . This case is similar to snd = ai , but taking into account
that now an (output) action can be executed in any synchronisation involving
all components where it is locally enabled at p.

∧
{(J , a) | ∅ �= J = {i ∈ I | a enAi

proji(p) and a ∈ Σi,out}, a ∈ Σcom}

Combining the synchronisation types from Definition 4 with the above receptive-
ness requirements gives rise to the following definition.

Definition 9 (Receptive team automaton). Let T be a team automaton of
type (snd, rcv) over S. T is (weakly) receptive if it is (weakly) compliant at all
p ∈ R(T) with the receptiveness requirements derived above for (snd, rcv). ��

5.2 Deriving Responsiveness Requirements

We now formulate responsiveness requirements for each synchronisation type
(snd, rcv). We distinguish the following cases.

Case: snd = [0, o2] or snd = si , rcv arbitrary. In this case, the synchro-
nisation policy allows that receiving components progress also without being

Communication Requirements for Team Automata 269

triggered by output. Thus we have no more than the trivial responsiveness
requirement true at all states p ∈ Q.

In the following cases, we assume that neither snd = [0, o2] nor snd = si and
proceed with a case distinction on rcv.

Case: rcv = [i1, i2]. In this case, the subsets relevant to our considerations
are those J ⊆I with i1≤|J |≤ i2. Let p∈Q be a global state. For each such J , we
consider all communicating (input) actions a which are simultaneously enabled
at the current local states projj(p) of the components Aj , i.e. a enAj

projj(p) for
all j ∈ J . This leads to the following responsiveness requirement at p:

∨
{(J , a) | ∅ �= J ⊆ I, o1 ≤ |J | ≤ o2,

and, for all j ∈ J , a ∈ Σj,inp ∩ Σcom and a enAj
projj(p)}

We use disjunction here to reflect that the choice of a particular input action
is made by the environment, but (at least) one of the inputs must be served.
If the set of all pairs (J , a) considered above is empty, then there is no proper
responsiveness requirement at p other than the trivial requirement true.

To conclude, a team automaton T over S of type (snd, [i1, i2]) (such that
neither snd = [0, o2] nor snd = si) is (weakly) compliant with the responsiveness
requirements at p if whenever a group of components can perform an input
action a, then the team can (eventually) carry out a synchronisation such that
a is sent by some (at least one) component of the group.

Case: rcv = ai . In this case, an action a is only executed as an input action
if all components in its input domain are at a state at which a is enabled. Hence
we formulate the following responsiveness requirements for states p ∈ Q:
∨

{(J , a) | ∅ �= J = doma,inp(S), a∈Σcom and, for all j ∈J , a enAj
projj(p)}

These responsiveness requirements apply, in particular, to the synchronous prod-
uct where the synchronisation type is (ai , ai).

Case: rcv = si . This case is similar to rcv = ai , but taking into account
that now an (input) action can be executed in any synchronisation involving all
components where it is locally enabled at p.

∧
{(J , a) | ∅ �= J = {i ∈ I | a enAi

proji(p) and a ∈ Σi,inp}, a ∈ Σcom}

Combining the synchronisation types from Definition 4 with the above respon-
siveness requirements gives rise to the following definition.

Definition 10 (Responsive team automaton). Let T be a team automaton
of type (snd,rcv) over S. T is (weakly) responsive if it is (weakly) compliant at
all p∈R(T) with the responsiveness requirements derived above for (snd, rcv). ��

270 M.H. ter Beek et al.

5.3 Examples

Example 4. We consider the team automaton T1 of Example 1 with synchroni-
sation type (ai , ai). It is sufficient to consider communication requirements only
for those states which are reachable. First we derive receptiveness requirements
according to Sect. 5.1:

({Controller}, start) at (0, 0, 0)
true at (1, 1, 1)
({Runner1},finish1) at (1, 2, 1)
({Runner2},finish2) at (1, 1, 2)
({Runner1},finish1) ∧ ({Runner2},finish2) at (1, 2, 2)
true at (2, 0, 1)
({Runner2},finish2) at (2, 0, 2)
true at (3, 1, 0)
({Runner1},finish1) at (3, 2, 0)

All receptiveness requirements are straightforward and express our intuition that
if a component can send an action then the other component(s) should be ready
to receive it. Obviously, T1 is compliant with all receptiveness requirements.

Let us now derive responsiveness requirements according to Sect. 5.2. We get:
({Runner1,Runner2}, start) at (0, 0, 0)
({Controller},finish1) ∨ ({Controller},finish2)

at {(1, 1, 1), (1, 2, 1), (1, 1, 2), (1, 2, 2)}
({Controller},finish2) at {(2, 0, 1), (2, 0, 2)}
({Controller},finish1) at {(3, 1, 0), (3, 2, 0)}

The first requirement at (0, 0, 0) concerns the group of the two runners which
both together request to be started. The responsiveness requirements at states
(1, 1, 1), (1, 2, 1), (1, 1, 2) and (1, 2, 2) all express that the controller component
wants to receive a finish signal either of Runner1 or of Runner2. This illustrates
the use of disjunctions to reflect external choice of inputs. The responsiveness
requirements at states (2, 0, 1) and (2, 0, 2) express that the controller wants to
receive a finish signal from Runner2. The requirements at states (3, 1, 0) and
(3, 2, 0) are analogous. As discussed in Example 3, T1 is not compliant with all
responsiveness requirements, but it is weakly compliant with all of them. ��

Example 5. As an open system, we consider Sŷs1 depicted in Fig. 3. The differ-
ence with Sys1 is that the runner component Rûnner2 may decide not to wait
for the start signal of the controller and start by performing an input action
go. This is an external action but not a communicating action, which may be
called by the system’s environment.3 Thus, in contrast to Sys1, Sŷs1 has an open
input.

We consider again the synchronisation type (ai , ai) but, since the system is
open, the synchronisation policy is not uniquely determined by the synchronisa-
tion type. Let us first choose the maximal synchronisation policy over (ai , ai).
Then the state (0, 0, 1) becomes reachable with the external go action. For

3 For instance, a false start signal coming from the outside.

Communication Requirements for Team Automata 271

this state, our method derives receptiveness requirement ({Controller}, start)
at (0, 0, 1). Clearly, the team is not (weakly) compliant with this receptiveness
requirement at (0, 0, 1), since the second runner would also be needed to start.
So we must choose a different synchronisation policy. The solution is simple. We
just omit the transition with input action go from state (0, 0, 0) to state (0, 0, 1).
Then (0, 0, 1) is no longer reachable and the new team is compliant with all
receptiveness requirements. Removal of the ‘bad’ open input transition matches
the approach of interface automata in [7], where components are considered to
be compatible if they can work properly together in a ‘helpful’ environment. ��

Fig. 3. Automata Runner1, Rûnner2 and Controller of Sŷs1

Example 6. Consider team automaton T2, introduced in Example 2, with syn-
chronisation type ([1, 1], ai). From sending multiplicity [1, 1] we derive, for
instance, the receptiveness requirement ({Runner1},finish) ∧ ({Runner2},
finish) at (1, 2, 2). It is easy to verify that the team automaton T2 is compli-
ant with this requirement and with all other derived ones not shown here.

Let us play a bit with this example to see the importance of synchronisation
types. Assume we would have chosen the sending multiplicity [1, 2] instead. The
corresponding synchronisation policy δ′ would then allow that the two runners
send simultaneously the finish signal to the controller, i.e. we get an additional
transition from state (1, 2, 2) to state (2, 0, 0) labelled with finish. Then we derive
responsiveness requirement ({Controller},finish) ∨ ({Runner1,Runner2}, start)
at the newly reachable state (2, 0, 0). Clearly this requirement is not fulfilled by
the team with synchronisation policy δ′ (and hence it was a good idea to choose
the sending multiplicity [1, 1] for the system Sys1). ��

5.4 Related Compatibility Notions

In the literature, compatibility notions are often considered for systems built
according to a specific synchronisation type. For instance, interface automata [7]
and many others, like [10,19,24,25], consider synchronous compositions of com-
posable I/O-transition systems with (binary) point-to-point communication,
i.e. the synchronisation type is ([1, 1], [1, 1]). These papers moreover deal with

272 M.H. ter Beek et al.

the aspect of receptiveness only. We can say that a team automaton of type
([1, 1], [1, 1]) over a (closed or open) system of components A1 and A2 is receptive
in the sense of Definition 9 iff A1 and A2 are strongly synchronously compatible
in the sense of [25] iff they are receptive in the sense of [1]. Weak receptive-
ness corresponds to weak synchronous compatibility in [25] and is also captured
by unspecified receptions compatibility in [13]. An even more liberal notion of
compatibility was used in [24] for assemblies of modal interfaces. It allows that
before accepting a message issued by one component the other components can
still communicate (cf. Definition 8 and Sect. 5.1 in [24]).

For open systems there are variations of compatibility notions discriminated
by so-called “pessimistic” and “optimistic” approaches (cf. [19] for a discussion
and formalisation of both of them). The difference is that in the pessimistic
approach, followed by [1,13,25], all states of the synchronous product are con-
sidered and responsiveness must be guaranteed for all of them. As we have just
seen above, we can express the pessimistic approach. The idea of the optimistic
approach, proposed for interface automata in [7], is that responsiveness must only
be guaranteed for those states which are autonomously reachable when compo-
nents work together. Then two components forming an open system (with open
inputs) are compatible if there exists a ‘helpful’ environment which avoids to
send messages to the system which would lead the system to an illegal state.
As we have seen, synchronisation types uniquely define synchronisation policies
only for closed systems, while for open systems we can decide to restrict the set
of transitions with external, non-communicating actions. Therefore, we can find
an appropriate policy to make two components in an open system receptive iff
they are compatible in the sense of optimistic compatibility in [7].

We are aware of only a few approaches that consider compatibility w.r.t.
responsiveness. In [1], responsiveness is captured by deadlock-freeness and in [13]
it is expressed by part of the definition of bidirectional complementarity com-
patibility which, however, does not support choice of inputs as we do.

5.5 Applications

The contributions of this paper enable to explore component-based modelling
and composition according to a wide range of synchronisation policies, not lim-
ited to the classical synchronous product, bringing upfront the communication
requirements that must be fulfilled to derive a compliant system.

We foresee many application areas where the perspective taken in this paper
can play an important role to enhance the interaction and communication poli-
cies that are used. In Swarm Intelligence, for instance, agents communicate by
means of sensors, actuators and connectors. Such sensors and actuators allow
communication through the receiving and sending of signals. This communi-
cation often concerns a small selection of agents that changes over time, thus
deviating from the synchronous product [26]. Being able to construct swarm net-
works that fulfil certain compatibility guarantees on alternative communication
policies, like the ones considered in this paper, may represent an important step
towards their satisfactory application.

Communication Requirements for Team Automata 273

Another application area is Software Engineering. In particular, the provision
of compatibility theories that go beyond limited formalisms like UML statecharts
composed according to the synchronous product, will rise the expressibility level,
thus widening the applicability scope to cover much more real-world situations.

Also concurrent asynchronous programming languages can benefit from hav-
ing a general theory of compatibility such as the one we envision in this paper.
Erlang [27] is a prominent example: its asynchronous communication mode
allows for a very flexible communication architecture, but if used incorrectly
it may lead to invalid/suboptimal system implementations. To the best of our
knowledge, current approaches follow a post-mortem approach to verify proper-
ties like liveness and safety of Erlang programs. Instead, correct-by-construction
design might become applicable if the theories described in this paper were used
in the specification of Erlang programs.

Finally, the field of Web services may also be a nice application arena for
the ideas put forward in this paper. Like in some of the previous examples, we
are only aware of notions of compatibility for the composition of Web services
defined over the restricted synchronous product [28,29].

We close this section with a more realistic example than the ones of Sect. 5.3,
which were intended to illustrate our definitions. Some aspects of this example
are covered by our current approach while others cannot as yet be dealt with,
but we give a preview of what is needed in the future.

Fig. 4. Automata Arbiter , Client i and Server j , with 1 ≤ i ≤ m and 1 ≤ j ≤ n

Example 7. We consider a distributed chat system where buddies can interact
once they register into the system. The system is formed by three types of
components (cf. Fig. 4): servers, clients and an arbiter. To increase the robustness
of the system, not one but several servers are devoted to control both new entries
into or exits from the chat, as well as to coordinate the main activity in the
chat, viz. forwarding client messages to the chat. Communicating actions are

274 M.H. ter Beek et al.

partitioned into chat access actions (join, leave, confirm), chat messaging (msg ,
fwdmsg) and arbiter selection of the forwarding server (ask i, grant i). The overall
messaging protocol is that clients communicate messages to the servers (action
msg) which, upon approval by the Arbiter, broadcast the received messages to
the whole set of clients in the chat (through action fwdmsg). Note that in some of
the states, servers contain an internal action timeout to allow a server to return
to its initial state whenever it does not participate in the communication.

Consider team automaton Tchat constructed over the aforementioned sys-
tem with synchronisation type ([1, 1], [1, ∗]). We assume the system to contain
n servers, m clients and one arbiter. States in this system are expressed as
n + m + 1 tuples (q1, . . . , qn, qn+1, . . . , qn+m, qn+m+1), i.e. the first n states cor-
respond to server states, the second m states denote client states and the final
state corresponds to the arbiter state.

Let us now derive an example of a receptiveness requirement (cf. Sect. 5.1):

({Serverj}, fwdmsg) at (q1, . . . , qj−1, 5, qj+1, . . . , qn+m+1)

The requirement expresses that the message forwarded to the chat by a server
will be received by the clients. It is fulfilled by Tchat whenever some client is still
in the chat, i.e. ∃i, n + 1 ≤ i ≤ n + m : qi = 2.

An example of a responsiveness requirement is the following (cf. Sect. 5.2):

({Serverj}, join) ∨ ({Server j}, leave) ∨ ({Server j},msg)
at (q1, . . . , qj−1, 0, qj+1, . . . , qn, . . . , qn+m+1)

This responsiveness requirement at state 0 of Server j provides a choice concern-
ing the server’s functionality: it can either coordinate joining or leaving actions
from a client, or messages sent to the chat. The requirement is fulfilled by Tchat

whenever there are at least as many clients as servers in the team.
We now continue this example to point out two limitations of our current

approach, which can be overcome by two planned generalisations of our notion
of compatibility, as mentioned in the previous section and listed as future work
in the next section. First, consider the following receptiveness requirement:

({Clienti}, join) at (q1, . . . , qn, . . . , qn+i−1, 0, qn+i+1, . . . , qn+m+1)

This requirement expresses that in state 0 of Client i, join actions should be
received by at least one server. This receptiveness obligation is currently not
fulfilled by Tchat , which can be seen as follows. Assume that we have two clients
and one server and note that the server, after communication with one of the
clients and the arbiter, is in state 5. If the second client now wants to join the
chat, then it expects, according to the [1, 1] output multiplicity of Tchat , to find
exactly one communication partner, in this case the server, that can receive an
input join. However, to satisfy the definition of receptiveness in case of weak
compliance (cf. Definition 8(b)) the server would be allowed to move to state 0
(where it can indeed receive join) only with an internal action and not with a
communication on fwdmsg with the first client (as would be the case for this
example). The more liberal notion of compatibility from [24] mentioned in the
previous section would allow such a communication before receiving join.

Communication Requirements for Team Automata 275

Second, a client currently might send a message to two servers, who can
then both forward the message (upon approval from the arbiter). This could
be avoided by generalising our approach such that synchronisation types are
no longer uniform, but can be specified per action, since this would allow us
to define the synchronisation type ([1, 1], [1, 1]) for action msg , thus solving the
problem of duplicate message forwarding. ��

6 Conclusions and Future Work

We have investigated compatibility notions concerning receptiveness and respon-
siveness in the team automata framework. Team automata are characterised by
the synchronisation policy they use to coordinate the components of a given
system. There is a huge variety of possible synchronisation policies. The syn-
chronisation types as we introduced them here support a systematic approach
to the investigation of compatibility notions related to communication. To find
appropriate compatibility notions, we first analysed what kind of communica-
tion requirements can occur when components are composed. We distinguished
receptiveness and responsiveness requirements and we showed how such require-
ments can be systematically derived depending on a synchronisation type. A
team automaton is compliant with a communication requirement if (groups of)
components in the team issuing requests for communication can successfully find
partners to join. If this is the case for all receptiveness (responsiveness) require-
ments, then the team automaton is receptive (responsive, respectively). We have
also considered weak compliance, where communication requirements need not
be fulfilled immediately but only after some internal actions have been executed.
We plan to generalise this concept even further by using the more liberal ideas
defined for receptiveness in synchronous products in [24] and explained briefly
in Sect. 5.4.

Our approach is appropriate for both closed and open systems. A team
automaton over an open system is itself a reactive component and thus gives
rise to hierarchical composition. One of the next steps in our research will be
to study compatibility in the context of hierarchical composition and of syn-
chronisation policies that are not necessarily uniform but combine different syn-
chronisation types. The latter would also concern an investigation of compat-
ibility notions tailored to particular connectors as used, e.g., in BIP and Reo
(cf. [30] for a comparison). Also the incorporation of asynchronous communica-
tion in synchronisation policies and the study of compatibility notions in this
case [25,31,32] is a topic for future research. Then it would be interesting to
generalise synchronisation types to the asynchronous context and to consider
different types of communication channels. Currently asynchronous compatibil-
ity notions are mainly studied for point-to-point communication, like for multi-
party session types in [31]. However, when unbounded message queues are used
for communication then decidability of compatibility becomes an issue, since it
is generally undecidable [12]. Moreover, appropriate notions of equivalences and
refinements for team automata and how they behave w.r.t. our receptiveness and
responsiveness notions are interesting questions to consider.

276 M.H. ter Beek et al.

Acknowledgments. We thank the reviewers for their comments. J. Carmona is sup-
ported by the Spanish Ministry for Economy and Competitiveness (MINECO) and the
EU (FEDER funds) under grant COMMAS (TIN2013-46181-C2-1-R).

References

1. Carmona, J., Cortadella, J.: Input/output compatibility of reactive systems. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–
377. Springer, Heidelberg (2002). doi:10.1007/3-540-36126-X 22

2. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013)

3. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC 1987, pp. 137–151. ACM (1987)

4. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989). https://ir.cwi.nl/pub/18164

5. Ellis, C.A.: Team automata for groupware systems. In: GROUP 1997, pp. 415–424.
ACM (1997)

6. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team
automata for groupware systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003)

7. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109–
120. ACM (2001)

8. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 195,
pp. 83–104. Springer, Dordrecht (2005)

9. Brim, L., Cerná, I., Vareková, P., Zimmerova, B.: Component-interaction automata
as a verification-oriented component-based system specification. ACM Softw. Eng.
Notes 31(2), 4 (2006)

10. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 6

11. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12002-2 15

12. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

13. Durán, F., Ouederni, M., Salaün, G.: A generic framework for n-protocol compat-
ibility checking. Sci. Comput. Program. 77(7–8), 870–886 (2012)

14. ter Beek, M.H., Carmona, J., Kleijn, J.: Conditions for compatibility of compo-
nents. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 784–
805. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2 55

15. Jonsson, B.: Compositional specification and verification of distributed systems.
ACM Trans. Program. Lang. Syst. 16(2), 259–303 (1994)

16. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45236-2 22

17. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55, 161–183 (2005)

http://dx.doi.org/10.1007/3-540-36126-X_22
https://ir.cwi.nl/pub/18164
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1007/978-3-642-12002-2_15
http://dx.doi.org/10.1007/978-3-642-12002-2_15
http://dx.doi.org/10.1007/978-3-319-47166-2_55
http://dx.doi.org/10.1007/978-3-540-45236-2_22

Communication Requirements for Team Automata 277

18. ter Beek, M.H., Kleijn, J.: Modularity for teams of I/O automata. Inf. Process.
Lett. 95(5), 487–495 (2005)

19. Lüttgen, G., Vogler, W., Fendrich, S.: Richer interface automata with optimistic
and pessimistic compatibility. Acta Inf. 52(4–5), 305–336 (2015)

20. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM 2006, pp. 3–12. IEEE (2006)

21. Arnold, A.: Finite Transition Systems: Semantics of Communicating Systems.
Prentice Hall, Englewood Cliffs (1994)

22. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

23. Engels, G., Groenewegen, L.: Towards team-automata-driven object-oriented col-
laborative work. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) For-
mal and Natural Computing. LNCS, vol. 2300, pp. 257–276. Springer, Heidelberg
(2002). doi:10.1007/3-540-45711-9 15

24. Hennicker, R., Knapp, A.: Moving from interface theories to assembly theories.
Acta Inf. 52(2–3), 235–268 (2015)

25. Hennicker, R., Bidoit, M., Dang, T.-S.: On synchronous and asynchronous com-
patibility of communicating components. In: Lluch Lafuente, A., Proença, J. (eds.)
COORDINATION 2016. LNCS, vol. 9686, pp. 138–156. Springer, Cham (2016).
doi:10.1007/978-3-319-39519-7 9

26. Isokawa, T., et al.: Computing by swarm networks. In: Umeo, H., Morishita, S.,
Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191,
pp. 50–59. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79992-4 7

27. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
28. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web service composition approaches:

from industrial standards to formal methods. In: ICIW 2007. IEEE (2007)
29. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services

composition: a decade’s overview. Inf. Sci. 280, 218–238 (2014)
30. Dokter, K., Jongmans, S.-S., Arbab, F., Bliudze, S.: Combine and conquer: relating

BIP and Reo. J. Log. Algebr. Meth. Program. 86(1), 3–20 (2017)
31. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating

automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966,
pp. 174–186. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2 18

32. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theor.
Comput. Sci. 503, 1–30 (2013)

http://dx.doi.org/10.1007/3-540-45711-9_15
http://dx.doi.org/10.1007/978-3-319-39519-7_9
http://dx.doi.org/10.1007/978-3-540-79992-4_7
http://dx.doi.org/10.1007/978-3-642-39212-2_18

Author Index

Audrito, Giorgio 59

Baldan, Paolo 159
Barbanera, Franco 119
Beggiato, Alessandro 159
Bernardi, Giovanni 237
Bliudze, Simon 197
Brogi, Antonio 178

Canciani, Andrea 178
Carmona, Josep 256

Damiani, Ferruccio 59
De Nicola, Rocco 21
de’Liguoro, Ugo 119
Di Marzo Serugendo, Giovanna 3
Duong, Tan 21
Durán, Francisco 219

Francalanza, Adrian 237

Gadducci, Fabio 138

Hennicker, Rolf 256

Imai, Keigo 99
Inverso, Omar 21

Jongmans, Sung-Shik T.Q. 40

Kleijn, Jetty 256
Krauweel, Marco 40

Lanese, Ivan 119
Lluch Lafuente, Alberto 159
Louvel, Maxime 78

Melgratti, Hernán 138

Pacull, François 78

Roldán, Christian 138
Rutten, Eric 78

Salaün, Gwen 219
Simalatsar, Alena 197
Soldani, Jacopo 178
Sylla, Adja Ndeye 78

ter Beek, Maurice H. 256
Trubiani, Catia 21

Viroli, Mirko 59

Yoshida, Nobuko 99
Yuen, Shoji 99

Zolotukhina, Alina 197

	Foreword
	Preface
	Organization
	Contents
	Invited Talk
	Spatial Edge Services - From Coordination Model to Actual Applications
	1 Introduction
	2 Spatial Edge Services
	3 Design Patterns
	4 Suite of Spatial Services
	5 Coordination Models
	5.1 SAPERE
	5.2 Logic-Based Chemical Coordination Model (LFCM)

	6 Prototyping Platforms
	7 Developed Applications
	8 Future Works
	References

	Languages and Tools
	AErlang: Empowering Erlang with Attribute-Based Communication
	1 Introduction
	2 AErlang
	2.1 Programming Interface
	2.2 Prototype Architecture

	3 Programming with AErlang
	3.1 Stable Marriage
	3.2 Stable Marriage with Preference List
	3.3 Stable Marriage with Attributes
	3.4 Social Networking with Attributes

	4 Performance Evaluation
	4.1 Efficiency
	4.2 Scalability

	5 Related Work
	6 Conclusion
	References

	Simpler Coordination of JavaScript Web Workers
	1 Introduction
	2 JavaScript and the Web Workers API
	3 Limitations and Issues
	4 Reo
	5 Hiding the Web Workers API Behind Reo -- In Theory
	6 Tool Support
	7 Hiding the Web Workers API Behind Reo -- In Practice
	8 Conclusion
	References

	Optimally-Self-Healing Distributed Gradient Structures Through Bounded Information Speed
	1 Introduction
	2 Background and Related Work
	2.1 Gradient-Based Approaches
	2.2 Gradient-Based Implementations

	3 BIS Gradient
	3.1 Information Speed
	3.2 Computing Gradient Through Information Speed
	3.3 Reducing Volatility and Communication Cost

	4 Analysis and Verification
	4.1 Performance Indicators
	4.2 Comparison Between Gradient Algorithms
	4.3 Case Study: Crowd Steering to Busy Resources

	5 Conclusions and Future Works
	References

	Development Tools for Rule-Based Coordination Programming in LINC
	1 Introduction
	2 LINC Model
	2.1 Tuple Space Implementation
	2.2 Coordination Rules

	3 Coordination Rules Development and Debugging
	3.1 Rules Generation Tools
	3.2 Analysis and Debugging Tools

	4 Applications Developed with LINC
	5 Related Works
	6 Conclusion
	References

	Types
	Session-ocaml: A Session-Based Library with Polarities and Lenses
	1 Introduction
	2 Programming with session-ocaml
	3 Design and Implementation of session-ocaml
	3.1 Polarity Polymorphism
	3.2 The Slot Monad Carrying Multiple Sessions
	3.3 Lenses Focusing on Linear Channels

	4 Applications
	4.1 Travel Agency
	4.2 An SMTP Protocol

	5 Related Work
	6 Conclusion
	References

	Retractable and Speculative Contracts
	1 Introduction
	2 Contracts for Retractable and Speculative Interactions
	2.1 Retractable Semantics
	2.2 Speculative Semantics

	3 Compliance
	3.1 Conservativity Results

	4 Duality and the Subcontract Relation
	5 Complexity Issues
	6 Related Work and Conclusion
	References

	A Denotational View of Replicated Data Types
	1 Introduction
	2 Labelled Directed Acyclic Graphs
	2.1 ldag Operations

	3 Specifications
	3.1 Refinement
	3.2 Classes of Specifications

	4 Replicated Data Type
	4.1 Deterministic Specifications
	4.2 Correspondence Between rdts and Specifications

	5 A Categorical Account of Specifications
	5.1 Composing ldags
	5.2 The Model Category
	5.3 A Categorical Correspondence

	6 Conclusions and Future Works
	References

	Resource, Components and Information Flow
	Many-to-Many Information Flow Policies
	1 Introduction
	2 Motivating Examples
	3 Event Structures
	4 Many-to-Many Information Flow Policies
	4.1 A Policy Language for Many-to-Many Information Flows
	4.2 Semantics of Many-to-Many Policies
	4.3 Semantic Properties
	4.4 Decidability on Regular Trace Event Structures

	5 Non-interference
	6 Related Work
	7 Conclusion
	References

	Modelling the Dynamic Reconfiguration of Application Topologies, Faults Included
	1 Introduction
	2 Motivating Scenario
	3 Fault-Aware Management Protocols
	4 Analysing the Management of Composite Applications
	4.1 Management Behaviour of an Application
	4.2 Analysing the Management Behaviour of Applications

	5 Related Work
	6 Conclusions
	References

	Constraint-Flow Nets: A Model for Building Constraints from Resource Dependencies
	1 Introduction
	2 Motivating Example
	3 Modelling Resource Dependencies
	3.1 Flow Nets
	3.2 Constraints
	3.3 Allocation Constraint Problem

	4 Conflicting Dependencies
	4.1 Conflicting Transitions
	4.2 Conflict Detection
	4.3 Priority

	5 The Kalray Architecture Case Study
	6 Related Work
	7 Conclusion
	References

	Verification
	Verifying Timed BPMN Processes Using Maude
	1 Introduction
	2 Preliminaries
	2.1 BPMN
	2.2 Maude and Real-Time Maude

	3 The Encoding of BPMN Processes into Maude
	3.1 Process Encoding
	3.2 Execution Semantics

	4 Rewriting-Based Verification of Timed Processes
	5 Related Work
	6 Concluding Remarks
	References

	Full-Abstraction for Must Testing Preorders
	1 Introduction
	2 Preliminaries
	2.1 Characterising the Client Preorder

	3 Characterising Usability
	4 The Client Preorder Revisited
	5 Expressiveness and Decidability
	5.1 On the Power of Finite Interactions
	5.2 Deciding the Client Preorder

	6 Conclusion
	6.1 Related Work

	References

	Communication Requirements for Team Automata
	1 Introduction
	2 Component Automata and Team Automata
	3 Synchronisation Types
	4 Communication Requirements
	5 Deriving Communication Requirements
	5.1 Deriving Receptiveness Requirements
	5.2 Deriving Responsiveness Requirements
	5.3 Examples
	5.4 Related Compatibility Notions
	5.5 Applications

	6 Conclusions and Future Work
	References

	Author Index

