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Preface

This book presents new developments in both the fundamen-
tal research and applications in the field of multi-agent systems
where a team of agents cooperatively achieve a common goal.
Multi-agent systems play an important role in defense and civil-
ian sectors and have the potential to impact on areas such as
search and rescue, surveillance, and transportation. Cooperative
control algorithms are essential to the coordination amongmul-
tiple agents and hence realization of an effectivemulti-agent sys-
tem.The contents of this book aim at linking basic research and
cooperative control methodologies with more advanced appli-
cations and real-world problems.
The chapters in this book seek to provide recent devel-

opments in the cooperative control of multi-agent systems
from a practical perspective. Chapter 1 provides an overview
of the state of the art in multi-agent systems and summa-
rizes existing works in consensus control, formation control,
synchronization and output regulation, leader and/or target
tracking, optimal control, coverage control, passivity-based
control, and event-triggered control. Chapter 2 develops sensor
placement algorithms for a team of autonomous unmanned
vehicles (AUVs) for a path covering problem with monitoring
applications in GPS-denied environments. Chapter 3 proposes
vision-based output-feedback MPC algorithms with mov-
ing horizon estimation for target tracking using fixed-wing
unmanned aerial vehicles (UAVs) in measurements gathering
and real-time decision-making tasks. Chapter 4 presents
the continuous-time projection-based consensus algorithms
for multi-UAV simultaneous arrival problem under velocity
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xviii Preface

constraints and finds the convergence rate of the proposed
consensus algorithms. Chapter 5 discusses the asset-based
weapon-target assignment (WTA) problem to find the optimal
launching time of a weapon to maximize the sum of asset values
with time-dependent rewards. Chapter 6 presents a coordinated
decision algorithm where a group of UAVs is assigned to a set
of targets to minimize some cost terms associated with the
mission. Chapter 7 provides a formal analysis of event-triggered
control and communication techniques for multi-agent average
consensus problems. Chapter 8 solves network topology design
and identification problems for dynamic networks. Chapter
9 discusses stochastic interaction for distributed multi-agent
systems and presents results about the probabilities to achieve
multi-agent coordination. Finally, Chapter 10 addresses a coop-
erative coverage control problem employing wheeled mobile
robots (WMRs) and UAVs.

August 2016 Yue Wang
Clemson University

Eloy Garcia
Air Force Research Laboratory,
Wright-Patterson AFB

David Casbeer
Air Force Research Laboratory,
Wright-Patterson AFB

Fumin Zhang
Georgia Institute of Technology
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1

Introduction
Yue Wang1, Eloy Garcia2, David Casbeer2 and Fumin Zhang3

1Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
2The Control Science Center of Excellence, Air Force Research Laboratory,
Wright-Patterson AFB, OH, USA
3School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

1.1 Introduction

Many military and civilian applications require a team of agents
to coordinate with each other to perform specific tasks without
human intervention. In those systems, individual agents (e.g.,
unmanned underwater/ground/aerial vehicles) have limited
capabilities due to short sensing and communication ranges,
and small computational power. However, their collective
behavior exhibits significant advantages compared to a single
sophisticated agent, including large-scale spatial distribution,
robustness, high scalability, and low cost [1]. The deployment
of large-scale multi-agent systems with constrained costs and
smaller sizes can thus achieve tasks that are otherwise unable to
be finished by a single agent. Teams of engineered multi-agent
systems can collect and process data and perform tasks coop-
eratively [2–8]. Multi-agent systems play an important role
in a wide range of applications such as search and rescue [9],
tracking/classification [10–14], surveillance [15, 16], space
exploration [17], and radiation shielding and site clearing [18].
Multi-agent systems have also been considered and utilized
in fields such as cooperative mobile robotics [19], distributed
artificial intelligence and computing [20–22], wireless sensor
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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networks [23], biology [24], social study [25], smart grids [26],
traffic management [27, 28], and supply-chain management
[29]. Therefore, the use of multi-agent system technologies
in both everyday modern society and national defense and
homeland security is bound to tremendously increase. In this
book, we aim to provide an overview of recent progresses
made in the cooperative control of multi-agent systems on both
fundamental theory development as well as applications.
In the control community, multi-agent system theory has

focused on developing vehicle motion control laws for various
tasks including consensus and formation control [2, 30–43],
coverage control [44–48], target search and tracking [3–5, 49,
50], task allocation problems [25, 51–53], sensor management
problems [14], output regulation [54, 55], optimization [56],
and estimation. Three types of control schemes for multi-agent
systems have been proposed in the open literature, that is,
centralized [57], decentralized [58], and distributed multi-agent
control [1]. The centralized control scheme assumes global
knowledge of the multi-agent system and seeks to achieve some
control objective considering all agents’ states, which inevitably
suffers from the scalability issue. The decentralized control
scheme computes control actions based only on an agent’s local
information while the more popular distributed control scheme
takes both the agent’s own information and neighboring agents’
information into account to calculate the control action. Both
the decentralized and distributed control algorithms provide
scalable solutions and can be implemented under minimal
connectivity properties. On the other hand, connectivity
preserving protocols are developed for multi-agent systems to
keep connected and hence guarantee motion stability [59, 60].
The problem has been considered in scenarios such as flocking
[61, 62], rendezvous [59, 63], and formation control [64, 65].The
control hierarchy for multi-agent systems can be categorized
into two classes, that is, top-down and bottom-up method-
ologies [66]. The top-down scheme assigns an overarching
objective for the multi-agent system and designs control action
for each individual agent to achieve this objective.The top-down
multi-agent task decomposition is often difficult. While the
bottom-up scheme directly defines each individual agent’s
local control action and their cooperation protocol, which
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however cannot guarantee any global objective. The paper [67]
provides an overview of progresses made in the distributed
multi-agent coordination. The books [64, 68] provide an
introduction to the distributed control of multi-agent systems.
The book [1] discusses the distributed control of multi-agent
systems from four main themes, or dimensions: distributed
control and computation, adversarial interactions, uncertain
evolution, and complexity management. A special category
of multi-agent systems, multi-robot systems, has become
one of the most important areas of research in robotics [19].
Significant advance has been made in distributed control and
collaboration of multi-robot systems in control theory and
artificial intelligence [68–70]. There are a considerable amount
of works on multi-agent consensus and formation control, and
synchronization. We briefly summarize the main results as
follows.
The multi-agent consensus control problem ensures that a

group of mobile agents stays connected and reaches agreement
while achieving some performance objective [64]. The papers
[71, 72] provide a good survey of consensus problems in
multi-agent cooperative control. In [64], the consensus problem
is considered over dynamic interaction graphs by adding
appropriate weights to the edges in the graphs. Theoretical
results regarding consensus seeking under both time-invariant
and dynamically changing information exchange topologies
are summarized. Applications of consensus protocols to
multi-agent coordination are investigated. In [73, 74], consensus
algorithms are extended for second-order nonlinear dynamics
in a dynamic proximity network. Necessary and sufficient
conditions are given to ensure second-order consensus. In
[75], leader-following consensus algorithms are developed for
a linear multi-agent system on a switching network, where the
input of each agent is subject to saturation. In [76], multi-agent
consensus based on the opinion dynamics introduced by Krause
is studied. A new proof of convergence is given with all agents
in the same cluster holding the same opinion (represented by a
real number). Lower bounds on the inter-cluster distances at a
stable equilibrium are derived. In [33], multi-agent consensus is
considered for an active leader-tracking problem under variable
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interconnection topology. The effects of delays on multi-agent
consensus have been considered in [77].
The paper [78] provides a survey of formation control of

multi-agent systems. The existing results are categorized into
position-, displacement-, and distance-based control. The
finite-time formation control for nonlinear multi-agent systems
is investigated in [43]. A small number of agents navigate the
whole team based on the global information of the desired
formation while the other agents regulate their positions by the
local information in a distributed manner. A class of nonlinear
consensus protocols is first ensured and then applied to the
formation control. In [79], a model-independent coordination
strategy is proposed for multi-agent formation control in
combination with tracking control for a virtual leader. The
authors show that the formation error can be stabilized if the
agents can track their respective reference points perfectly
or if the tracking errors are bounded. In [80], a decentralized
cooperative controller for multi-agent formation control and
collision avoidance is developed based on the navigation func-
tion formalism. The control law is designed as the gradient of a
navigation function whoseminimum corresponds to the desired
formation. Multi-agent formation control with intermittent
information exchange is considered in [81]. Energy-based
analysis is utilized to derive stability conditions. The paper [82]
investigates rotating consensus and formation control problems
of second-order multi-agent systems based on Lyapunov the-
ory. Both theoretical and experimental results are presented
in [42] on multi-agent decentralized control that achieves
leader–follower formation control and collision avoidance for
multiple nonholonomic robots.
In [83], synchronization approach is developed for trajec-

tory tracking of multiple mobile robots while maintaining
time-varying formations. In [84], synchronization algorithms
are designed in a leader–follower cooperative tracking control
problem where the agents are modeled as identical general
linear systems on a digraph containing a spanning tree. The
control framework includes full-state feedback control, observer
design, and dynamic output feedback control. In [54], a dis-
tributed control scheme is adopted for robust output regulation
in a multi-agent system where both the reference inputs and
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disturbances are generated by an exosystem. In [55], the output
regulation problem is extended to multi-agent systems where a
group of subsystems cannot access the exogenous signal. In [85],
output consensus algorithms are developed for heterogeneous
agents with parametric uncertainties. The multi-agent output
synchronization problem is also studied in [86] where the
coupling among the agents is nonlinear and there are communi-
cation delays. In [87], a general result for the robust output regu-
lation problem has been studied for linear uncertainmulti-agent
systems. In [88], finite-time synchronization is proposed for
a class of second-order nonlinear homogenous multi-agent
systems with a leader–follower architecture. A finite-time
convergent observer and an observer-based finite-time output
feedback controller are developed to achieve the goal.
In [89], distributed tracking control is developed for linear

multi-agent systems and a leader whose control input is
nonzero, bounded, and not available to any follower. The paper
[90] considers multi-agent tracking of a high-dimensional
active leader, whose state not only keeps changing but also may
not be measured. A neighbor-based local state-estimator and
controller is developed for each autonomous following agent.
A collision-free target-tracking problem of multi-agent robot
system is considered in [91], where a cost function using a
semi-cooperative Stackelberg equilibrium point component
with weights tuned by a proportional-derivative (PD)-like fuzzy
controller is formulated. The distributed finite-time tracking
control of second-order multi-agent systems is considered
in [92]. Observer-based state feedback control algorithms
are designed to achieve finite-time tracking in a multi-agent
leader-follower system and extended to multiple active lead-
ers. There are also a lot of works focusing on multi-agent
target tracking. In [93], the optimal sensor placement and
motion coordination strategies for mobile sensor networks are
developed in a target-tracking application. Gradient-descent
decentralized motion planning algorithms are developed in [94]
for multiple cooperating mobile sensor agents for the tracking
of dynamic targets. The problem of target tracking and obstacle
avoidance for multi-agent systems is considered in [95]. A
potential function-based motion control algorithm is proposed
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to solve the problem where multiple agents cannot effectively
track the target while avoiding obstacles at the same time.
The book [96] gives an overview of optimal and adaptive

control methods for multi-agent systems. In [56], a distributed
subgradient method is developed to solve a multi-agent convex
optimization problem where every agent minimizes its own
objective function while exchanging information locally with
other agents in the network over a time-varying topology. An
inverse optimality-based distributed cooperative control law is
designed in [97] to guarantee consensus and global optimality of
multi-agent systems, where the communication graph topology
interplays with the agent dynamics. The work [98] applies
stochastic optimal control theory to multi-agent systems, where
the agent dynamics evolve with Wiener noise. The goal is to
minimize some cost function of different agent–target combi-
nations so that decentralized agents are distributed optimally
over a number of targets. An optimal control framework for
persistent monitoring using multi-agent systems is developed in
[99] to design cooperative motion control laws to minimize an
uncertainty metric in a given mission space. The problem leads
to hybrid systems analysis, and an infinitesimal perturbation
analysis (IPA) is used to obtain an online solution.
Coverage control considers the problem of fully covering a

task domain using multi-agent systems. The problem can be
solved by either deploying multiple agents to optimal locations
in the domain or designing dynamic motion control laws for
the agents so as to gradually cover the entire domain. The
former solutions entail locational optimization for networked
multi-agent systems. Voronoi diagram–based approaches are
introduced in [100] to develop decentralized control laws for
multiple vehicles for optimal coverage and sensing policies.
Gradient descent–based schemes are utilized to drive a vehicle
toward the Voronoi centeriod for optimal localization. In [101],
the discrete coverage control law is developed and unified with
averaging control laws over acyclic digraphs with fixed and
controlled-switching topology. In [102], unicycle dynamics are
considered and the coverage control algorithms are analyzed
with an invariance principle for hybrid systems. The latter
solutions focus on the case when the union of the agents’ sensor
cannot cover the task domain and hence dynamic motion
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control needs to be designed so that the agents can travel and
collaboratively cover the entire domain [103]. A distributed cov-
erage control scheme is developed in [104, 105] formobile sensor
networks, where the sensor has a limited range and is defined
by a probabilistic model. A gradient-based control algorithm is
developed to maximize the joint detection probabilities of ran-
dom events taking place. Effective coverage control is developed
to dynamically cover a given 2D region using a set of mobile sen-
sor agents [46, 106]. Awareness-based coverage control has been
proposed to dynamically cover a task domain based on the level
of awareness an agent has with respect to the domain [48]. The
paper [107] extends the awareness coverage control by defining
a density function that characterizes the importance of each
point in the domain and the desired awareness coverage level as
a nondecreasing differentiable function of the density distribu-
tion. In [108], awareness and persistence coverage control are
addressed simultaneously so that the mission domain can be
covered periodically while the desired awareness is satisfied.
Passivity-based control approaches have also been developed

to guarantee the stability of multi-agent systems [109]. Passivity
is an energy-based method and a stronger system property that
implies stability [110, 111]. A system is passive if it does not
create energy, that is, the stored energy is less than the supplied
energy. The negative feedback interconnection and parallel
interconnection of passive systems are still passive. The paper
[112] discusses the stabilization and output synchronization
for a network of interconnected nonlinear passive agents by
characterizing the information exchange structure. In [113], a
passivity-based cooperative control is developed for multi-agent
systems and the group synchronization is proved with the pro-
posed backstepping controller using the Krasovskii–LaSalle
invariance principle. The paper [114] introduces a discrete-time
asymptotic multi-unmanned aerial vehicle (UAV) formation
control that uses a passivity-based method to ensure lm

2 stability
in the presence of overlay network topology with delays and data
loss. Passivity-based motion coordination has also been used
in [115] for the attitude synchronization of rigid bodies in the
leader–follower case with communication delay and temporary
communication failures. The work [116] uses the multiple
Lyapunov function method for the output synchronization of a
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class of networked passive agents with switching topology. The
concept of stochastic passivity is studied for a team of agents
modeled as discrete-time Markovian jump nonlinear systems
[117]. Passivity-based approaches have also been widely used in
the bilateral teleoperation of robots and multi-agent systems. A
good amount of work has utilized the scattering wave transfor-
mation and two-port network theory to provide stability of the
teleoperation under constant communication delays for velocity
tracking. A passifying PD controller is developed in [118] for the
bilateral teleoperation ofmultiplemobile slave agents coupled to
a single master robot under constant, bounded communication
delays. The paper [119] extends the passivity-based architecture
to guarantee state (velocity as well as position) synchronization
of master/slave robots without using the wave scattering trans-
formation. Passivity-based control strategies are also utilized
for the bilateral teleoperation of multiple UAVs [120].
Extensive results presenting algorithms and control method-

ologies for multi-agent systems cooperation rely on continuous
communication between agents. Continuous actuation and
continuous measurement of local states may be restricted
by particular hardware limitations. A problem in many sce-
narios is given by the limited communication bandwidth
where neighboring agents are not capable of communicating
continuously but only at discrete time instants. Limitations
and constraints on inter-agent communication may affect any
multi-agent network. Consensus problems, in particular, have
been analyzed in the context of noncontinuous actuation and
noncontinuous inter-agent communication. Several techniques
are devised in order to schedule sensor and actuation updates.
The sampled-data (periodic) approach [121–123], and [124]
represents a first attempt to address these issues. The imple-
mentation of periodic communication represents a simple
and practical tool that addresses the continuous communica-
tion constraint. However, an important drawback of periodic
transmission is that it requires synchronization between the
agents in two similar aspects: sampling period and sampling
time instants, both of which are difficult to meet in practice.
First, most results available require every agent to implement
the same sampling period. This may not be achievable in
many networks of decentralized agents and it is also difficult
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to globally redefine new sampling periods. Second, not only
the agents need to implement the same sampling periods,
but also they need to transmit information all at the same
time instants. Under this situation each agent is also required
to determine the time instants at which it needs to transmit
relevant information to its neighbors. Even when agents can
adjust and implement the same sampling periods, they also
need to synchronize and transmit information at the same time
instants for the corresponding algorithms to guarantee the
desired convergence properties. Besides being a difficult task
to achieve in a decentralized way, the synchronization of time
instants is undesirable because all agents are occupying network
resources at the same time instants. In wireless networks, the
simultaneous transmission of information by each agent may
increase the likelihood of packet dropouts since agents that are
supposed to receive information from different sources may not
be able to successfully receive and process all information at the
same time.
Therefore, event-triggered and self-triggered controls for

multi-agent systems have been considered for agents with
limited resources to gather information and actuate. The
event-triggered schemes allow each agent to only send infor-
mation across the network intermittently and independently
determine the time instants when they need to communicate
[57].Theuse of event-triggered control techniques for decentral-
ized control and coordination has spurred a new area of research
that relaxes previous assumptions and constraints associated
with the control of multiple agents. In event-triggered control
[125–130], a subsystem monitors its own state and transmits a
statemeasurement to the non-collocated controller only when it
is necessary, that is, only when a measure of the local subsystem
state error is above a specified threshold. In general, the state
error measures the difference between the current state and
the last transmitted state value. The controller transmits an
update by examining the measurement errors with respect to
some state-dependent threshold and hence requires continuous
monitoring of state error. In many instances, it is possible
to reduce communication instances using event-triggered
communication with respect to periodic implementations.
This is of great importance in applications where bandwidth
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or communication resources are scarce. Consensus problems
where all agents are described by general linear models [131,
132], have been studied assuming continuous communication
among agents. Event-triggered control and communication
methods for agents with linear dynamics were recently studied
in [133–138]. Event-triggered control methods have also been
applied to analyze consensus problems with limited actua-
tion rates. In [139], agents with single integrator dynamics
are considered and an event-triggered control technique is
implemented in order for each agent to determine the time
instants to update their control inputs. Continuous exchange
of information is assumed in [139] and the event-triggered
controller is only used to avoid continuous actuation at each
node. In general, the decentralized event-triggered consensus
problem with limited communication is a more challenging
problem than the event-triggered control for limiting actuation
updates. The main reason is that agents need to take decisions
(on when to transmit their state information) based on outdated
neighbor state updates. In this scenario, each agent has contin-
uous access to its own state; however, it only has access to the
last update transmitted by its neighbors. Several approaches for
the event-triggered consensus with limited communication are
documented in [140–145]. In this sense, event-triggered control
provides a more robust and efficient use of network bandwidth.
Its implementation in multi-agent systems also provides a
highly decentralized way to schedule transmission instants,
which does not require synchronization compared to periodic
sampled-data approaches. Different problems concerning the
transmission of information in multi-agent networks such as
communication delays and packet dropouts have been explicitly
addressed using event-triggered control methods [146]. In the
extended self-triggered control, each agent will compute its next
update time based on the available information from the last
sampled state, without the necessity to keep track of the state
error in order to determine when a future sample of the state
should be taken. In [140], an event-based scheduling is devel-
oped for multi-agent broadcasting and asymptotic convergence
to average consensus is guaranteed.This paradigm has also been
extended to distributed estimation and optimization [147].
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1.2 Chapter Summary and Contributions

Chapter 2 develops sensor deployment algorithms for a team
of autonomous unmanned vehicles (AUVs) for path cover-
age problem with monitoring applications in GPS-denied
environments. The approach used in this chapter tracks the
AUV position in GPS-denied environments by analyzing the
radio signals received from a suitably positioned network of
proxy landmarks. This problem is referred to as the landmark
placement problem (LPP) and it is required to use minimum
number of landmarks to cover the entire path of the AUV.
Two α-approximate (𝛼 = 13 and 5, respectively) algorithms
are proposed to solve the LPP in polynomial time and provide
solutions whose cost is at most 𝛼 times from the optimum. It is
assumed that a target in a vehicle’s path is defined to be covered
by a landmark and the distance between a target and a landmark
is at most equal to R. A greedy algorithm is first proposed for
a simpler LPP where all the targets lie within a vertical strip of
width equal to

√
3R and the landmarks are restricted to be on a

single, vertical line. The algorithm is then extended to a general
LPP by partitioning the plane into vertical strips of width

√
3R

with approximation ratio 𝛼 = 13. The second approximate
algorithm with 𝛼 = 5 is developed based on a 4-approximation
algorithm for a unit disc problem. Two phases are involved
in this algorithm: (i) identification of a subset of targets using
a simple greedy algorithm and (ii) addition of landmarks
in the vicinity of each target in the subset. Both theoretical
guarantees and numerical simulations are provided to show the
performance of the proposed approximation algorithms.
Chapter 3 proposes vision-based cooperative target tracking

control laws for two fixed-wing UAVs in measurements gath-
ering and real-time decision-making tasks. To mitigate a single
UAV’s inability to maintain close proximity to a target and hence
obtain accurate measurements for tracking purpose, multiple
UAVs are deployed for cooperative target tracking. In this
chapter, the standoff target tracking approach is used where two
UAVs orbit the target at a nominal standoff distance while
maintaining orthogonal viewing angles so as to minimize the
joint/fused geolocation error covariance. The work promotes
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a practical solution that yields robust coordination under
the following realistic conditions: unknown constant wind,
non-negligible roll dynamics with roll-angle setpoint limits,
unpredictable and evasive target motion, and the availability of
only noisy, partial information of the overall system’s states. The
motion of the individual vehicles is optimized and robust so as
to gather the best jointmeasurements of a given quantity, object,
or area of interest and take into account real-world conditions,
such as environmental disturbances and unmodeled dynamics.
An output-feedback control approach is deployed to achieve
the desired robustness, and a fourth-order Dubins vehicle
model with roll dynamics is considered. The tracking solution
incorporates adaptive estimates of the wind into the online
model predictive control (MPC) andmoving horizon estimation
(MHE) optimization. The MPC and MHE are combined into a
single min–max optimization, that is, a desired cost function is
maximized with respect to disturbance and measurement noise
variables and minimized with respect to control input variables.
Simulations are performed using aircraft models having six
degrees of freedom and target logs taken from live tracking
experiments.
Chapter 4 discusses how to find the convergence rate of

continuous-time consensus algorithms for multi-UAV simul-
taneous arrival problem. The requirement is that the UAVs
must achieve consensus on the expected time-to-arrival (ETA)
before any actual arrivals. Assume that a team of agents are
required to simultaneously visit some prespecified targets
and the path for each individual agent to follow has been
precomputed. To arrive at their targets at the same time,
agents have to adjust their velocities during the motion,
based on the information communicated with their neigh-
bors. Real-time planning schemes need to be developed to
overcome the uncertainties due to UAVs flying in dynamical
environments. This chapter considers the consensus-based
simultaneous arrival problem with fixed velocity constraints
under a connected and undirected communication graph. It
is challenging to analyze the stability and the convergence
rate of the consensus algorithms. Each UAV estimates its own
ETA and communicates it with its neighbors in real-time so
that they can reach consensus on the ETA. A continuous-time
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projection operator is introduced to ensure smoothness of the
state and input trajectories, when saturation happens due to
the velocity constraints. The projection-based operator is used
to enforce the constraints on the velocity. The convergence of
the resulting closed-loop system is proved. The aforementioned
consensus algorithm shows asymptotic property, and hence
simultaneous arrival will be reached in an infinite amount of
time. In practice, the length of the paths is always finite, and the
agents are required to achieve consensus in finite amount of
time. Hence, the ϵ-consensus approach is further investigated
for practical consideration. An upper bound on the convergence
rate is derived when ϵ-consensus can be achieved. A sufficient
condition in terms of the path length and UAVs’ minimal and
maximal velocity is presented to guarantee feasibility of the
simultaneous arrival problem.
Chapter 5 addresses the weapon–target assignment (WTA)

problem, that is, how to assign defensive weapons to intersect
the aimed targets to minimize the damage of assets or maximize
the probability of destroying the target and hence the damage of
targets.This work particularly focuses on time-dependentWTA
(TSWTA) problems that seek to find the optimal launching
time of a weapon to maximize the sum of asset values after
defensive weapons are assigned to corresponding targets. The
TSWTA problem is formulated as a mixed-integer nonlinear
program (MINLP), under the assumption that target–assets
engagements are independent of weapon–target engagement.
It is shown that the TSWTA exhibits the monotonically non-
decreasing property similar to other WTA problems. Based on
this property, the TSWTA can be formulated as the problem
that maximizes the nondecreasing objective function under a
partition matroid constraint. A provable suboptimality lower
bound of the value achieved by a greedy heuristic maximiza-
tion algorithm is obtained. Computational experiments are
also conducted to demonstrate good performance achieved
by the proposed heuristic algorithms for this combinatorial
optimization problem.
Chapter 6 presents a cooperative decision problem in which

a group of UAVs is tasked to eliminate a set of targets while
minimizing different cost terms during the duration of the
mission. The environment where the mission is performed
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contains a set of threats representing radar sites that are able
to identify and potentially harm the UAVs. The radar sites are
more effective in identifying a given UAV if the UAV travels near
the threat position. In a first instance of the problem, each UAV
needs to independently compute its own optimal path in order
to reach the destination point where a main target is located.
The optimal path is the one that minimizes a combined cost
that captures path length and threat risks. In order to minimize
threat risk, the approach followed in Chapter 6 is to design a
Voronoi diagram using the threat positions. This means that
the UAVs minimize exposure to threats when traveling along
the edges of the Voronoi diagram. The optimal trajectory to
reach a main target is transformed into a graph search where
the weights of each edge are determined by two factors: the
length of the edge and the threat risk that the UAV is exposed
to by traveling along that edge. The problem is further extended
by endowing the UAVs with extra munitions that can be used to
eliminate a subset of threats. A problem of distributed assign-
ment of threats is then formulated and solved by identifying
individual optimal decisions and by implementing a distributed
consensus-based auction algorithm. The assignment of threats
to eliminate is performed sequentially in order for UAVs to take
advantage of other UAVs decisions and assignments. In this
way, cooperation among UAVs is induced since the cost of the
new optimal path of each UAV can be significantly improved
not only by its own decisions but also by traveling along paths
where previous threats have already been eliminated by other
UAVs. The timing constraints associated with the distributed
decisions and assignments of threats is explicitly considered in
Chapter 6. In addition, the existence of multiple main targets
is considered and different approaches to assign UAVs to main
targets are proposed.
Chapter 7 studies event-triggered control and communication

techniques for multi-agent systems coordination. This work
provides an overview of several event-triggered control tech-
niques to achieve multi-agent coordination. The focus of the
chapter is on the problem of average consensus, where a group
of agents seek to agree on the average of their initial states. An
introduction is provided for event-triggered control strategies
applied to consensus problems. Centralized event-triggered
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control, decentralized event-triggered communication and
control, periodic event-triggered coordination are introduced
in detail. A detailed comparison among different techniques
is presented. Several aspects associated with the use of these
techniques such as decentralization, type of event threshold
employed, and continuous sensing of local states are analyzed.
The chapter provides formal analysis of several controllers and
event–threshold implementations. The conditions necessary
to achieve average consensus are also studied. Finally, open
problems within this important area of research are addressed.
Chapter 8 solves network topology design (NTD) and

identification problems. For the NTD problem, a limited
number of edges are considered, and these edges and the
associated edge weights are optimally allocated among multiple
agents to improve certain network performance. While the
network topology identification (NTI) problem is to satisfy
the response between specified input and observed output.
Solving both problems involves determining binary variables
and the combination of them is exponentially increasing. The
cardinality constraint on the edge set for the NTD problem is
handled as a rank constraint on the to-be-determined matrix,
and the NTD problem is formulated as a rank-constrained
optimization problem. The approach for solving NTI problem
handles unknown binary variables as continuous variables
by adding a quadratic constraint on each binary variable and
then reformulates the problem as a quadratically constrained
quadratic programming (QCQP) problem, which can be equiv-
alently transformed into a rank-one constrained optimization
problem. Then for both NTD and NTI problems, an iterative
rank minimization algorithm is proposed to solve the uniformly
formulated rank-constrained optimization problems, where
each iteration is formulated as a convex optimization problem.
Chapter 9 considers stochastic interaction among groups

of agents and presents relevant results about the probabilities
to achieve coordination on variables of interest. The results
presented in the chapter are roughly divided into two parts. The
first part is concerned with fixed interaction communication
graphs. In this case, the agents select the static undirected
communication links and, therefore, the fixed communica-
tion graph, from a set of available candidates. In terms of
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communication graphs, the set of candidate graphs considered
is the set of all possible undirected graphs. For each interaction
graph, only one adjacency (or Laplacian) matrix is associated
with it in order to uniquely define the interaction among
agents. A lower bound on the probability of coordination is
determined under this scenario. In addition, it is shown that
the probability of coordination is strictly increasing as the
number of agents increase. In the second part of Chapter 9,
the probability of coordination is analyzed for the case where
the directed interaction graph is switching. In this case, the
communication links are not static. Instead, directed links
between any two agents appear and disappear as time evolves.
Under this scenario, it is demonstrated that coordination with
probability 1, coordination in probability, and coordination in
the rth mean are equivalent.
Chapter 10 develops distributed motion control algorithms

of heterogeneous multi-agent systems for the coverage control
of unknown and large-scale (i.e., the union of sensor regions
cannot cover the entire domain) environments. To achieve full
coverage of an unknown domain, the coverage task is decom-
posed into two distinct, however closely related, subtasks, that
is, domain boundary tracking and coverage control. This work
considers UAVs with down-facing board view cameras for the
boundary tracking task and wheeled mobile robots (WMRs)
for the coverage control task. The UAVs can move quickly and
maintain a minimum altitude; however, it cannot lift a heavy
payload and has to delegate the analysis of its sensor data to
an off-board computer. Meanwhile, the WMRs move relatively
slow but can carrymore sensors and perform onboard computa-
tion. Nonholonomic constraints of the robots and nonisotropic
sensor models are considered in the control law development
for practical applications. A complete communication strategy
between the UAVs and WMRs is discussed for information
exchange. The inner (autopilot) and outer (wall follower motion
control) loop feedback control strategy is adopted for the UAVs.
Awareness-based coverage control law is developed for the
WMRs based on dynamic awareness dynamics, 2D Leibniz rule,
and practical consideration of actuation saturation. The state
of awareness represents how aware each coverage robot is of
the event occurring at the domain. Intermittent state updates
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between neighboring robots are considered for distributed
multi-agent systems for the mapped part of the task domain.
The awareness coverage error metrics are defined and proved to
converge to zero under the proposed motion control strategies
using Lyapunov-like analysis. A perturbation control law is
deployed if the robot is trapped in a local minimum.
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Localization is a critical technology required for navigation
of autonomous unmanned vehicles (UVs) in applications of
national importance such as disaster management, border
surveillance, and monitoring of civilian infrastructure including
oil pipelines, power grids, harbors, inland waterways, and
intelligent transportation systems where GPS signals can be
easily jammed either intentionally or unintentionally. The oil
pipeline network in the United States roughly consists of 1.9
million miles of pipeline, of which 155,000 miles of pipeline
transport hazardous liquids [1]. Monitoring and maintenance
of these large networks plays an important role in protecting
their structural integrity and functional reliability and is an
issue of national importance. A system of aerial UVs and ground
sensors are seen as ideal platforms for performing repeated
inspections of pipelines and can significantly aid in the detection
of oil leakages, discoloring of vegetation, earth movement, and
erosion around or near the pipelines [1, 2]. Aerial UVs have
already been used in maritime applications for monitoring
coastal regions for environmental protection and intelligence
gathering [3]. Recent events such as the unintentional jamming
by technicians in San Diego harbor [4], which disrupted the GPS
signals in the entire San Diego area, show that interferences,
design errors, and flawed management practices [4–6] can
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
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cause GPS service outages, which in turn can crucially affect
all the systems that depend on GPS information. This chapter
addresses a fundamental question that arises while deploying
a team of autonomous UVs for monitoring applications in
GPS-denied environments.
The position of a vehicle is estimated by combining its motion

information (accelerations, linear and angular velocity) from
intrinsic sensors (such as inertial measurement unit (IMU)
and encoder) and information (range and bearing angle from
vehicle external environment) from extrinsic sensors (camera,
laser range finder, GPS receiver). Among existing localization
techniques, simultaneous localization and mapping (SLAM)
methods are considered to be the holy grail for navigation
of autonomous robots in unknown environments [7, 8]. In
GPS-denied environments, relative position measurements
using range or bearing angle sensors to known landmarks can
be used to localize the vehicle. An extended Kalman filter (EKF)
or its information from extended information filter (EIF) can be
used to estimate the vehicle’s states. The estimation algorithm
will provide meaningful localization estimates (consistent and
bounded) if and only if the sensors provide enough information
for localization, or, in other words, if the system is observable.
It has been shown that the bound on uncertainty is related with
the eigenvalues of the observability gramian [9]. In our previous
work [10] where the vehicles carry bearing sensors, we have
shown that each vehicle needs at least measurements from two
different landmarks in order for the system to be observable at
any time.
In applications where known landmarks are not available

or standard estimation algorithms cannot be used, additional
localization vehicles or proxy landmarks can be suitably placed
to provide the required information (Figure 2.1). For example,
given a map of the test area, one way to track the position of
an aerial vehicle in the test area is to use vision sensors and
apply suitable image processing/filtering techniques across a
sequence of sensed images. These techniques are computation-
ally intensive for a small UV with resource constraints and can
significantly slow down the speed of the vehicle. An alternative
would be to track the position of the aerial vehicle by analyzing
the radio signals received from suitably positioned neighboring
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Landmark
Target

Figure 2.1 Scenario where the landmarks must be suitably placed to
facilitate accurate tracking of the vehicle’s paths visiting the targets.

vehicles, which act as proxy landmarks. A network of proxy
landmarks (or simply landmarks as referred in this chapter)
can be carefully placed to cover the entire path of the aerial
vehicle thus making use of the localization techniques [11–13].
Suitably placing landmarks applies to indoor robots also; for
example, landmarks with easily recognizable features can be
placed in an indoor environment where the robot simply uses
these landmarks to travel the given path.
This chapter addresses the fundamental problem of suitably

placing a minimum number of landmarks such that the position
of a vehicle traveling a given path can be estimated as precisely as
possible relative to the landmarks. The paths for the vehicles are
given in the form of way points. Based on our prior work [10], it
is assumed that the location of a vehicle can be estimated accu-
rately if there are at least two landmarks within a distance (say R)
from the vehicle’s location.The maximum bound R between the
landmarks and a vehicle’s path will ensure that the vehicle’s posi-
tion error is in an acceptable range and can be computed using
the uncertainty analysis in [9]. The landmarks are also placed so
that any two landmarks are at least separated by p units; this dis-
tance constraint is to ensure that the landmarks are separated
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sufficiently for collision avoidance and safety. This problem is
referred to as the landmark placement problem (LPP).
The LPP belongs to a class of geometric, multiset cover

problems [14–16], which has received significant attention in
the optimization community over the last five decades. LPP
is a generalization of the classic unit disk cover problem [14]
and is NP-hard. Therefore, we are interested in developing
approximation algorithms for this problem. An 𝛼- approxima-
tion algorithm is an algorithm that runs in polynomial time
and provides a solution whose cost is at most 𝛼 times from
the optimum for any instance of the problem. The factor 𝛼 is
commonly referred to as the approximation ratio or approxima-
tion factor of the algorithm. We are currently not aware of any
approximation algorithms for the LPP. However, for the case
when each target must be covered by just one landmark, there
are approximation algorithms in [14, 17]. In this chapter, we
develop two approximation algorithms with an approximation
ratio of 13 and 5, respectively, to solve the LPP. This chapter
builds on our preliminary work on this problem in [18]. In
addition to proving the theoretical guarantees, numerical
simulations are performed on thousands of problem instances
to corroborate the performance of the proposed algorithms.
These simulations show that the proposed algorithms produce
solutions with bounds that are significantly better than the
guarantees indicated by the approximation factor.

2.1 Problem Statement

A target waypoint in a vehicle’s path (also referred to as target)
is defined to be covered by a landmark if the distance between
the target and the landmark is at most equal to R. We assume
there are m targets. Each target i is located on a ground plane
with its position coordinates denoted as (xi, yi). The locations of
the targets are distinct; no two targets correspond to the same
position on the plane. The objective of the LPP is to place the
landmarks such that each target is covered using at least two
distinct landmarks, the distance between any two landmarks is
at least equal to p units, and the number of landmarks is min-
imized. We assume that p ≤

R
2
(this is a reasonable assumption
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Figure 2.2 A feasible solution to the landmark placement problem. For this
example, R was chosen to be 50 units and p was set to 5 units. A landmark
is present at the center of each circle. The circle shows the boundary of the
area covered by its respective landmark. One can verify that each target is
covered by at least two well-spaced landmarks in this example.

for all practical scenarios we consider). Refer to Figure 2.2 for an
illustration of a feasible solution to this problem.

2.2 Algorithm Approx1

We first present a greedy algorithm for a simpler LPP where all
the targets lie within a vertical strip of width equal to

√
3R and

the landmarks are restricted to be on a single, vertical line. We
will use this result to later present an approximation algorithm
for the general LPP. The feasible solution we generate both for
the simpler and the general LPP is referred to as a line-restricted
solution because we place all the landmarks only on vertical
lines. This simplification enables us to do a geometric analysis
and prove the approximation ratio.
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2.2.1 Algorithm for Targets That Lie Within a Strip

Let all the targets lie within a vertical strip such that the
x-coordinate of each target lies in the interval [−

√
3
2

R,+
√
3
2

R].
Each landmark must be placed on the y-axis such that each
target is covered by at least two landmarks. Consider the
following greedy algorithm for this problem:

• For any target i, let (0, 𝛼i) and (0, 𝛽i) (with 𝛼i > 𝛽i) be the two
points where the circle of radius R centered at target i inter-
sects the y-axis. Note that the line segment joining these two
intersection points will be of length greater than R but smaller
than 2R. Without loss of generality, sort all the targets such
that 𝛽i ≥ 𝛽j if i < j.

• For i = 1, 2,… ,m, do the following:
1) If target i is not covered by any landmark, then add two

landmarks at locations (0, 𝛽i + p) and (0, 𝛽i).
2) If target i is covered by only one landmark, then add

another landmark at location (0, 𝛽i).

Lemma 2.2.1 The greedy algorithm for the special case of the
LPP finds an optimal solution in the order of ms logms steps
where ms is the number of targets in the vertical strip.

Proof : Let ms ≥ 2 (the case of ms = 1 is trivial). The sorting
step in the greedy algorithm consumes the majority of the
computation time and requires ms log ms steps to implement.
Now, consider the steps inside the for − loop of the greedy
algorithm. A landmark is added in the line segment joining
(0, 𝛼i) and (0, 𝛽i) for target i only if target i has not been covered
by at least two landmarks at the end of the i − 1th iteration. Let
U = {i1, i2,… , ik} be the targets for which at least one landmark
was added during the greedy algorithm. Here, the notation
is such that i1 is the first uncovered target considered, i2 is
the second uncovered target considered, and so on. Without
loss of generality, we can assume that the union of all the line
segments corresponding to the targets forms a connected set;
if this is not the case, then the proof here can be applied to all
the line segments corresponding to each of the connected sets
separately.
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Note that the greedy algorithmproduces a solution that covers
all the targets in the vertical strip using |U| + 1 landmarks. The
lemma will follow if we can show that the optimal number of
landmarks needed to cover each and every target in U is equal to
|U| + 1.We show this claim in the following discussion: it is easy
to verify that the line segments corresponding to the selected
targets in U (from the greedy algorithm) satisfy the following
properties:
• For any two distinct targets a, b ∈ U , the line segment 1 corre-

sponding to a is not a subset of the line segment correspond-
ing to b and vice versa.

• For any target il, 𝛽il
> 𝛼iq

for any q ≥ l + 2. This essentially
states the fact that the line segment corresponding to target
il will not intersect with the line segment of any target iq for
q ≥ l + 2.

• If there are at least two targets in U , then 𝛽i1 + p > 𝛼i2 .
The first two properties imply that a landmark can only cover at
most two targets exactly once. The third property implies that
three landmarks are needed to cover targets i1 and i2. Therefore,
one needs at least |U| + 1 landmarks to cover all the targets in
U . Hence proved. ◽

2.2.2 Algorithm for a General Set of Points

The algorithm Approx for solving a general LPP is as follows:

1) Partition the plane into vertical strips of width
√
(3) R. Let

S represent the set of all the vertical lines running down the
center of each of these strips.

2) For each strip, apply the greedy algorithm to place landmarks
to cover all the targets in the strip.
As there are a finite number of strips and the greedy algo-

rithm runs in polynomial time for each of the strips,Approx runs
in polynomial time. In the following section, we prove that the
approximation factor of Approx is 13. We prove this result by
first showing that there is always a feasible line-restricted solu-
tion that covers any disk 2 C in an optimal solution using at most

1 A line segment can be viewed as a convex hull of its two end points.
2 A disk here refers to the set of all the points that are at most R units away
from a landmark in an optimal solution.
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13 landmarks.We construct this feasible solution independently
for each strip by covering each of the points in the strip using
at least two distinct landmarks. Since the greedy algorithm in
Approx finds an optimal solution for each strip independently,
the number of landmarks used by Approx is at most equal to the
number of landmarks used by the feasible solution. It then fol-
lows that the approximation ratio of Approx is 13. We first state
a result in [14], which reduces covering a set of points in a strip
into covering a pair of line segments on the boundary of the strip.
We then use this result in the lemmas that follow. We construct
a feasible solution for two distinct cases of the position of any
landmark in an optimal solution.

Proposition 2.2.2 (Liu and Lu [14]): consider a vertical strip of
width

√
3R and the line L running down the center of the vertical

strip. Let C denote the disk of radius R whose center is inside the
vertical strip. Let L′ and L′′ be the two line segments obtained
by intersecting C and the boundary of the vertical strip. Let S
be a set of landmarks on line L. Each and every common point
present in both the disk C and the vertical strip is covered by
the landmarks in S if and only if each and every point in line
segments L′ and L′′ is covered by the landmarks in S.

2.2.3 Proof of the Approximation Ratio

Lemma 2.2.3 Let C be the disk corresponding to a landmark
chosen in an optimal solution. Let the x-coordinate of the land-
mark (xc) be located anywhere in the interval ( 2−

√
(3)

2
R, 3

√
(3)−2
2

R).
Then, a feasible line-restricted solution can cover any target in C
twice using at most 10 landmarks.

Proof : Without loss of generality, let us assume that the land-
mark at the center of C is located on the x-axis, that is, at (xc, 0).
If xc ∈ ( 2−

√
(3)

2
R, 3

√
(3)−2
2

R), then C will intersect at most two ver-
tical strips in a line-restricted solution. Let the corresponding
center lines of the two strips be denoted by L1 and L2 as shown
in Figure 2.3. Let S1 and S2 be the set of all the common points
between the disk C and each of the two strips, respectively.
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(0,0) (xc,0)

√

L1
L2L12

(
3
√

3R
2−

First strip Second strip

, 0
√

3R
2

, 0
√

3R
2

, 0

3R, 0)

Figure 2.3 An illustration for the proof of Lemma 2.2.3.

Also, let L12 be the line segment obtained by intersecting C and
the boundary between the two strips (refer to the Figure 2.3).
The feasible solution must ensure that each of the points in S1
(S2) is covered twice by the landmarks placed on L1 (L2). From
Proposition 2.2.2, the landmarks placed in L1 can cover each and
every point in S1 at least twice if it can cover any point in L12 at
least twice. Due to the limits placed on xc, the length of the line
segment L12 must be smaller than 2R but greater than R 3. By
simple geometry, as shown in Figure 2.4, since 0 < p ≤

R
2
, one

can verify that five landmarks located at (0, 0), (0, R
2
), (0, R

2
+ p),

(0,−R
2
), (0,−R

2
− p) will cover every point in L12 at least twice.

Similarly, five landmarks located on line L2 at (
√
(3)R, 0),

(
√
(3)R, R

2
), (

√
(3)R, R

2
+ p), (

√
(3)R,−R

2
), (

√
(3)R,−R

2
+ p) will

cover any point in L12, and consequently any point in S2 at least
twice. Hence proved. ◽

3 To be precise, the length of the line segment L12 will be smaller than 2R but

greater than 2
√

2
√
3 − 3R.
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(0,0)

(0,R
2

(0,R
2

+ p)

(0, R
2

 p)

L1

L12)

(0, R
2

)−

−−

Figure 2.4 Placing
five landmarks at
the marked
locations will cover
every point in the
segment L12 at least
twice.

Lemma 2.2.4 Let C be the disk corresponding to a landmark
chosen in an optimal solution. Let the x-coordinate of the
landmark at the center of C be located anywhere in the interval
(− 2−

√
(3)

2
R, 2−

√
(3)

2
R). Then, a feasible, line-restricted solution can

cover any target in C completely using at most 13 landmarks.

Proof : Without loss of generality, let us assume that the land-
mark at the center of C is located on the x-axis, that is, at (xc, 0)
and xc ∈ (0, 2−

√
(3)

2
R). If xc ∈ (0, 2−

√
(3)

2
R), then C will intersect at

most three vertical strips in a line-restricted solution. Let the
corresponding center lines of the three strips be denoted by L1,
L2, and L3, as shown in Figure 2.5. Let S1, S2, and S3 be the set of
all the common points between the disk C and each of the three
strips. Also, let L12 be the line segment obtained by intersecting
C and the boundary between the first two strips, and let L23 be
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(xc, 0)

L12 L23
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3R, 0−

√
3R
2
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√
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3 , 0−
√

3R
2

3 , 0√
3R, 0

Figure 2.5 An illustration for the proof of Lemma 2.2.4.

the line segment obtained by intersecting C and the boundary
between the second and third strip. Due to the limits placed
on xc, the length of the line segment L12 must be smaller than
R while the length of L23 must be smaller than 2R but greater
than R. By simple geometry, one can verify that three landmarks
located at (−3

√
3
2

R, 0), (−3
√
3
2

R, p), (−3
√
3
2

R,−p) will cover every
point in L12 at least twice. Similarly, five landmarks located in
line L2 at (0, 0), (0, R

2
), (0, R

2
+ p), (0,−R

2
), and (0,−R

2
+ p) will

cover any point in L12 and L23 at least twice. Also, five landmarks
located in line L3 at (

√
(3)R, 0), (

√
(3)R, R

2
), (

√
(3)R, R

2
+ p),

(
√
(3)R,−R

2
), and (

√
(3)R,−R

2
+ p) will cover any point in L23

at least twice. Hence proved. ◽

Theorem 2.2.5 The approximation ratio of Approx is 13.

Proof : The feasible solution is constructed by considering each
strip independently and covering each of the points in each strip
using at least two distinct landmarks. Since the greedy algorithm
in Approx finds an optimal solution for each strip independently,
the number of landmarks used by Approx is at most equal to the
number of landmarks used by the feasible solution. In addition,
the feasible line-restricted solution can cover the disk of radius
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R centered at any landmark in an optimal solution using at most
13 landmarks. It then follows that the approximation ratio of
Approx is 13. ◽

Remark 2.2.6 we conjecture that the approximation factor
of Approx1 can be further improved to 6.5. Currently, the
approximation factor of 13 is proved by showing that it will
take at most 13 landmarks in the feasible solution constructed
by the algorithm to cover each and every target assigned to a
landmark in the optimal solution. However, this proof does
not exploit the fact that one needs at least two landmarks in
an optimal solution to cover any target, and, therefore, it could
only take ⌈ 13

2
⌉ landmarks in any feasible solution to cover each

target twice. However, we currently do not have a proof of this
conjecture.

The following sections present a second algorithm for the LPP
with an approximation factor of 5.

2.3 Algorithm Approx2

Our next algorithm Approx2 is based on a recent 4-
approximation algorithm developed for a unit disk prob-
lem in [17]. Approx2 works in two phases. In the first phase, a
subset of targets is identified such that the distance between
any two targets in the subset is greater than 2R. This subset can
be found using a simple greedy algorithm which we will outline
later. In the next phase, landmarks are added in the near vicinity
of each of the targets in the subset such that all the targets are
covered according to the constraints stated in the LPP. The
following are the main steps of the proposed algorithm:
Let S denote the set of all the targets. Let L denote all the cho-

sen landmarks. Also, let C represent the subset of S such that the
distance between any two targets inC is greater than 2R. Initially,
C and L are empty.

1) Phase 1:
(a) Choose a target i ∈ S with the least xi coordinate and the

least yi coordinate.



�

� �

�

2 Sensor Placement Algorithms for a Path Covering Problem 43

Target
Selected target in C

2R

Figure 2.6 Output after the greedy algorithm in phase 1 for a sample
instance. The targets selected in the set C are also shown. Each of the
semicircles is centered at a target in C and has a radius equal to 2R. Note
that every other target not in C is present within at least one of the
semicircles.

(b) Let Si ⊆ S be the set of all the targets such that the distance
between any target x ∈ Si and i is at most equal to 2R. Let
C ∶= C ∪ {i} and S ∶= S∖Si.

(c) Go to step (a) until S is empty. Refer to Figure 2.6.
2) Phase 2: For each i ∈ C, do the following:
(a) Add atmost 10 landmarks in the region surrounding target

i as shown in Figure 2.7. Let these landmarks be denoted
as Li. Then, L ∶= L ∪ Li. Note that each target in Si will be
covered by at least two landmarks in Li.

Lemma 2.3.1 Approx2 produces a feasible solution for the LPP
for any instance of the problem.

Proof : By construction, phase 1 of Approx2 produces a sub-
set of targets C such that the distance between any two
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25°25°

i

R
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4

2

2R

3R

Landmark

Figure 2.7 The shaded region in the figure around target i is denoted by
i and is defined as {(x, y) ∶

√
(x − xi)2 + (y − yi)2 ≤ 2R, x ≥ xi}. Ten

landmarks are placed to cover each point in this region at least twice. Note
that the distance between any two landmarks is at least equal to p (≤ R

2
)

units.

targets in C is greater than 2R. Suppose i ∶= {(x, y) ∶√
(x − xi)2 + (y − yi)2 ≤ 2R, x ≥ xi} for any target i ∈ C. i is

the set of all the points that lie within a semicircle of radius 2R
with i as its center as shown in Figure 2.7. The landmarks are
placed in i such that the distance between any two of these
landmarks is at least equal to R

2
≥ p. Also, by construction,

note that for any distinct targets i, j ∈ C, the distance between
any landmark placed in i is at least R

2
units away from

any landmark placed in j. Therefore, the placement of the
landmarks satisfies the safety constraints outlined in LPP. The
10 landmarks are placed in j cover each point in j at least
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i

Landmark

Figure 2.8 Each circle shown in the figure is centered at a landmark and
has a radius equal to R. Any point in the area is covered by at least two
landmarks.

twice as shown in Figure 2.8. Also, each target not in C must
belong to i for some i ∈ C. Therefore, any target must be
covered by at least two landmarks. Hence proved. ◽

Theorem 2.3.2 The approximation ratio of Approx2 is 5, that
is, Approx2 finds a feasible solution in polynomial time with
the number of placed landmarks at most equal to five times the
optimum number of landmarks for the LPP.
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Proof : It is easy to verify that the number of steps required to
implement both the phases of Approx2 is linear in the given
number of landmarks. No landmark can cover more than one
target in C because the distance between any targets in C is
greater than 2R. Therefore, the number of landmarks required
to cover all the targets in C must be equal to 2|C|. Hence,
the number of landmarks in any optimal solution, n∗, must be
at least equal to 2|C|, that is, n∗ ≥ 2|C|. Also, the number of
landmarks placed in any feasible solution produced by Approx2,
nf , is equal to 10|C|. Now, 2|C| ≤ n∗ ≤ nf ≤ 10|C|. Therefore,
nf ≤ 5n∗. Hence proved. ◽

2.4 Numerical Results

The approximation algorithms were implemented on problem
instances with 30, 40, 50, 60, 70, 80, 90, and 100 targets. For a
given number of targets, we generated 1000 instances. Each tar-
get was uniformly sampled froma square area of 500 × 500 units.
A target is covered by a landmark if the distance between the
target and the landmark is atmostR = 50 units. Both the approx-
imation algorithms were implemented on each of the instances,
and we computed both the average and the worst-case perfor-
mance of the algorithms over the tested instances.
For a given problem instance I, the bound on the a posterior

guarantee provided by an approximation algorithm is defined as
nf

nlb
, where nf is the number of landmarks found by the approx-

imation algorithm and nlb is the lower bound on the optimal
number of landmarks for the LPP. All the algorithms were coded
in MATLAB and the computations were run on a Dell Precision
Workstation (Intel Xeon Processor @2.53GHz, 12 GB RAM).
The running time of both approximation algorithms was less
than a second for each of the tested instances.
The max and average a posterior guarantee of the solutions

found by the approximation algorithms are shown in Tables 2.1
and 2.2. Even though the theoretical guarantees of the algo-
rithms Approx1 and Approx2 were 13 and 5, respectively, the
numerical results show that the max and average a poste-
rior guarantee was less than 2.09 and 2.65, respectively, for
both approximation algorithms. In fact, Approx1 with a larger
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Table 2.1 Numerical guarantees obtained for Approx1.

No. of points Average a posteriori bound Max a posteriori bound

30 1.44 1.95
40 1.50 2.00
50 1.53 2.04
60 1.56 2.04
70 1.58 2.04
80 1.60 1.97
90 1.60 2.18
100 1.61 2.07

Table 2.2 Numerical guarantees obtained for Approx2.

No. of points Average a posteriori bound Max a posteriori bound

30 1.67 2.30
40 1.79 2.36
50 1.86 2.42
60 1.93 2.65
70 1.98 2.57
80 2.03 2.50
90 2.06 2.60
100 2.09 2.59

theoretical guarantee performed better in simulations compared
to Approx2. These results imply that the proposed algorithms
produced solutions with bounds that are significantly better
than the guarantees indicated by the approximation factor.
These results also lead to some open questions with regard to
the current theoretical results: the approximation ratio of 13 for
Approx1 can be significantly improved as outlined in Remark
2.2; the ideas presented in both algorithms may be combined
to develop algorithms with better theoretical and numerical
guarantees.
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2.5 Conclusions

This chapter presented two new approximation algorithms for
covering a set of targetway points at least twice using aminimum
number of landmarks. Simulation results were also presented to
corroborate the performance of the proposed algorithms.There
are several future directions for this work. First, this chapter
used simplistic assumptions on the model of a range sensor;
more general models where the performance of a range sensor
degradesmore smoothly as a function of distance from the land-
mark can be more useful. Second, as the landmark placement
relies very much on the target waypoints it needs to cover; path
planningmust be coupled with landmark placement.Third, sen-
sorsmay be heterogeneous; some sensorsmay be based on range
while the other sensors may be based on bearing. Sensor place-
ment algorithms that can address this heterogeneity are useful.
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Small unmanned aerial vehicles (UAVs) are relatively
inexpensive mobile sensing platforms that are finding increas-
ingly widespread use in both commercial and military sectors
due to their ability to autonomously perform tasks that would be
too demanding, dangerous, or mundane for a human operator.
Such tasks include agricultural monitoring, exploration and
mapping, search and rescue, and surveillance and tracking, to
name a few. As the proliferation of small UAVs has allowed
them to be manufactured at much lower costs than their larger
counterparts, these robotic agents are now being deployed as
multi-agent teams to performmissions in a cooperative fashion.
The increased numbers have enabled the fleet to overcome the
limitations of lower quality sensors and reduced computational
resources that typically accompany small, inexpensive mobile
robots, as they are able to distribute sensing and computation
across the fleet.The plural nature of the fleet also enables redun-
dancy and synoptic coverage of an object or area of interest.
One commonly underlying theme for UAV applications is that

these robotic agents are faced with gathering measurements
and making decisions without the aid of a human operator.
Furthermore, the decisionmakingmust not only bemade in real
time as new information becomes available but it must also be
done robustly to avoid mission failure. In addition, as a measure
of quality can typically be associated with the information

Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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gathered, the motion of the individual vehicles can be optimized
so as to gather the best joint measurements of a given quantity,
object, or area of interest. For example, a team of UAVsmight be
tasked with obtaining a diverse set of pressure measurements
in a hurricane, and in the military reconnaissance application
of target tracking, a UAV team might be tasked with tracking
a moving ground vehicle whose motion is unpredictable. In
both cases, the UAVs must coordinate their present actions in
light of future measurement gathering performance, and their
joint actions must be robust to real-world conditions, such
as environmental disturbances and unmodeled dynamics. If
fixed-wing aircraft are employed, as they often are for their
speed and endurance, the motion constraints of the vehicles,
namely airspeed limits and a minimum turning radius, pose
a significant challenge for any feedback control or motion
planning solution.
One final challenge for a team of UAVs is that typically only

noisy, partial information is available for decision making.
Hence, a state estimation algorithm is typically employed to
estimate unmeasured system states and improve the accuracy
of measured states. Thus, the corresponding decision-making
algorithm, which is usually independent of the state estimator,
must be inherently robust to noise in the estimated system states
to avert mission failure, and the overall control solution is one of
output feedback. In addition, parametric uncertainty may also
be present in the system dynamics, and thus estimation of the
unknown parameters may be done online in real time to over-
come the uncertainty.While such uncertaintymay take the form
of time constants in the vehicle dynamics, it may also be present
in the form of an environmental disturbance such as wind, which
can be detrimental to motion planning algorithms if neglected.
This is especially true for small or micro air vehicles where wind
constitutes a significant portion of the vehicle’s ground speed.
Thus, in this chapter, we first aim to highlight solutions for

the robust, coordinated control of multi-agent systems that
represent the state of the art, where a special emphasis is placed
on output-feedback approaches. Second, we present a novel,
output-feedback approach that both enables the robust, optimal
control of smaller multi-agent systems with nonlinear dynamics
and is suitable for real-world implementation, as corroborated
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by real-time, high-fidelity simulations. We do this in the context
of the particularly challenging problem of vision-based target
tracking with small, fixed-wing UAVs. In this application, one
employs multiple, camera-equipped UAVs traveling at a fixed
airspeed and constant altitude to jointly measure and track the
position of a moving ground vehicle whose motion is unpre-
dictable. The main benefit of focusing on this problem is that
it has nearly all of the aforementioned real-world conditions
to which agents in a coordinated, multi-agent system must
be robust. Namely, the motion planning for the team must be
robust to target vehicle motion that may be random, evasive, or
otherwise, and hence the evolution of some of the overall system
states is unpredictable andmay be adverse to the given objective.
In addition, planning must be done in spite of noisy, partial
information for all vehicle states and unmeasured, nonzero
wind conditions, and it must be done with significant foresight,
as the motion constraints of the UAVsmay cause greedy, myopic
approaches to either have poor long-term tracking performance
or lose the possibly evasive target altogether. And lastly, one
must utilize a motion model for the aircraft dynamics with a
sufficient degree of realism, else ignored dynamics will have a
detrimental effect on tracking performance.

3.1 Vision-Based Target Tracking

In vision-based target tracking, image processing software is
responsible for determining the centroid pixel coordinates of the
ground targetmoving in the image frame.Using these pixel coor-
dinates, alongwith the intrinsic and extrinsic camera parameters
and terrain data, one can estimate the three-dimensional loca-
tion of the target in inertial coordinates and compute the associ-
ated error covariance [1]. This vision-based measurement of the
target’s position is also referred to as the geolocation estimate.
The error associated with the geolocation estimate is highly sen-
sitive to the UAV’s position relative to that of the target. As the
UAV’s planar distance from the target increases, the measure-
ment error’s covariance grows, and the associated confidence
ellipse becomes significantly elongated in the viewing direction.
When a UAV is directly above the target, the measurement
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error is smallest, as the corresponding confidence ellipse is
circular. Thus, a UAV would ideally hover directly above the
target, but the relative dynamics between a fixed-wing UAV and
a moving ground target typically preclude this viewing position
from being maintained over a period of time. To mitigate a
single UAV’s inability to maintain close proximity to the target,
one can employ multiple UAVs to gather measurements, which
are then fused to obtain an improved geolocation estimate. This
is referred to as cooperative (or coordinated) target tracking.
Considerable work has been done in the general area of

coordinated target tracking, with coordinated standoff tracking
comprising the greatest body of work in this area. In standoff
tracking, two UAVs orbit the target at a nominal standoff
distance while maintaining orthogonal viewing angles. This
practice minimizes the joint/fused geolocation error covari-
ance at the fixed nominal standoff distance, as the confidence
ellipses corresponding to the individual measurement errors
are orthogonal [2]. Standoff tracking with perfect knowledge
of the target state has been studied in [3] and [4], where the
most prevalent control strategies involve the use of vector
fields and nonlinear feedback. Approaches with only partial
information of the target state are presented in [5, 6], and [7].
These works utilize observers, adaptive control, and extended
Kalman filtering, respectively, to estimate the full target state.
Note that [7] utilizes nonlinear model predictive control (MPC)
to achieve the desired standoff configuration for a target that
accelerates but is not necessarily evasive.
Theprecedingworks have designedUAVcoordination policies

that attempt to improve the estimate of the target state without
directly solving a dynamic optimization that minimizes some
metric of the estimation error. However, a number of works
have employed optimal control to achieve this objective. In
[8], Sinha et al. demonstrate a decentralized tracking approach
wherein eachmember of a UAV teammaximizes its information
regarding the target state while accounting for its teammates’
track states and survival and detection probabilities as well.
Miller et al. utilize the framework of partially observableMarkov
decision processes (POMDPs) in [9] to enable twoUAVs to track
amoving ground target and present a new approximate solution,
as nontrivial POMDP problems are typically intractable to solve
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exactly [10]. Stachura et al. [11] employ online receding horizon
control to enable two variable-airspeed UAVs to track a stochas-
tic ground target using bearing-only sensors in the presence of
packet losses when communicating with the base station where
target state estimation takes place. In [12], Ding et al. study the
problem of optimally controlling two Dubins vehicles and their
pan-tilt-zoom cameras to maximize the geolocation informa-
tion of a stochastic ground target and show that maintaining
orthogonal viewing angles is essential in the case of terrestrial
pursuit vehicles and less pronounced for airborne vehicles.
While the preceding optimization-based methods consider

short planning horizons, for example, 2–3 s, Quintero et al.
consider the optimal coordination of two UAVs to gather
the best joint vision-based measurements of a moving target
over considerably longer planning horizons of at least 30 s,
where no restrictions are placed on the vehicles other than
kinematics. First, in [13], Quintero et al. consider two Dubins
vehicles tracking a constant-velocity target in multiple scenarios
differentiated by target speeds. The results in all scenarios show
that coordination of the distances to target is more effective for
achieving the said goal than the traditional practice of solely
coordinating viewing angles. Second, in [14], Quintero et al.
advance the work in [13] by considering amore realistic problem
formulation that instead makes use of stochastic fourth-order
motion models for both the UAV team and ground target. Using
a novel regression-based dynamic programming approach, the
authors solve the formidable 9-D stochastic optimal control
problem offline and show that distance coordination can still
be achieved under more realistic settings that include UAV
roll dynamics, environmental disturbances, and dynamical
uncertainty.
There is another notable work in the area of target tracking

that is outside both of the aforementioned categories of standoff
tracking and optimization-based control. For example, in [15],
Triplett et al. focus on the challenges of communication, control,
and state estimation as multiple UAVs track a moving ground
vehicle. In this work, a decentralized extended Kalman filter is
used to estimate the target state while a turn-rate based steering
controller is utilized to have the pursuit group’s centroid track
the target, achieve a desired intervehicle spacing, and avoid
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obstacles. The results show that increased communication
frequency and sensor reliability improve the estimation perfor-
mance of the system. In addition, a few works, namely [16] and
[17], have proposed using sinusoidal turn-rate control inputs
that approximate the optimal behavior of [13] at higher speeds.
While all of the preceding works do not constitute an exhaus-

tive literature review on target tracking approaches, they are
representative of the primary techniques taken to address this
challenging problem. Furthermore, in all of the aforementioned
works, at least one or more assumptions are made that create
severe hindrances for real-world implementation. More specif-
ically, the works mentioned thus far assume at least one of the
following, either explicitly or implicitly:

1) Coordinated circular trajectories are optimal, namely those
trajectories resulting from coordinated standoff tracking.

2) The UAVs are controlled by commanding turn rate, so roll
dynamics are ignored.

3) The UAV airspeed can be changed quickly and reliably over a
significant range.

4) Target motion is predictable.
5) Greedy planning horizons are adequate for optimal tracking.
6) All system states are known exactly.

In addition, the approaches not relying on optimization do
not always place explicit constraints on the control effort. We
also highlight the fact that the target’s motion may not only be
unpredictable but also evasive, which was not considered in any
of the previous works and requires a robust planning solution
with adequate foresight to mitigate the effects of the inherent
dynamical limitations of the fixed-wing UAVs. The present
work avoids the said practices and assumptions to promote a
more practical solution that yields robust coordination under
the following realistic conditions: unknown constant wind,
non-negligible roll dynamics with roll-angle setpoint limits,
evasive target motion, and the availability of only noisy, partial
information of the overall system states.
An output-feedback control approach that can be used to

achieve the desired robustness was recently introduced by
Copp and Hespanha [18] and combines robust MPC with
moving horizon estimation (MHE). As described in [19] and
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[20], robust MPC involves an online dynamic optimization
aimed at minimizing a cost function over a finite planning
horizon in light of worst-case disturbances on a dynamical
system. MHE also involves an online optimization problem
but for the purpose of state estimation of nonlinear systems,
and it has been shown to have advantages over state-of-the-art
alternatives [21]. While the two optimizations have traditionally
been computed separately, in the framework of [18], the two
are combined into a single min–max optimization. More
specifically, a desired cost function is maximized with respect
to disturbance and measurement noise variables and minimized
with respect to control input variables. The min–max optimiza-
tion provides state estimates over a fixed, finite window into
the past and an optimal control input sequence into the future
that is simultaneously robust to worst-case estimates of the
state as well as worst-case disturbances to the plant. Through
real-time high-fidelity flight simulations, this combined robust
MPC/MHE approach is shown to be a viable, practical solution
for the present particularly challenging nonlinear problem of
autonomous vehicle coordination.
The work in this chapter is based on work that appears in

the conference paper [22] in a simpler form. In this chapter,
significant extensions to [22] have been made. Specifically,
whereas the traditional third-order Dubins vehicle model was
utilized in [22], here we consider a more realistic fourth-order
model that incorporates roll dynamics. Furthermore, the
problem formulation in the earlier conference paper considered
the ideal condition of no wind. As wind can have a considerable
effect on small unmanned aircraft, the present tracking solution
incorporates adaptive estimates of the wind into the online
MPC/MHE optimization, thereby explicitly addressing the
effects of wind and adding robustness to the motion planning of
the UAVs. Lastly, the Dubins vehicle model was used to validate
the approach taken in [22]. In contrast, Section 3.4 illustrates
the effectiveness of the approach in realistic environments by
using high-fidelity simulations that make use of an aircraft
model with six degrees of freedom and target logs from actual
tracking experiments at Camp Roberts, California, USA.
The remainder of the chapter is organized as follows.

Section 3.2 describes the dynamics and measurement model
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that compose the problem of vision-based target tracking.
Section 3.3 discusses the cost function and the robust
output-feedback MPC/MHE solution. Section 3.4 presents
and discusses simulation results for multiple scenarios. Finally,
Section 3.5 provides conclusions and plans for future work.

3.2 Problem Formulation

Consider two camera-equipped UAVs tasked with estimating
the state of a target vehicle moving evasively in the ground
plane. The UAVs are fixed-wing aircraft that fly at a constant
altitude and have an autopilot that regulates roll angle, airspeed,
and altitude to the desired setpoints via internal feedback loops.
Furthermore, these underactuated aircraft are assumed to fly
at a constant airspeed since the range of permissible airspeeds
for such small aircraft may be very limited, as noted in [23]
and Section 5.1 of [4]. The roll angle setpoint is hence the sole
control input that affects the horizontal plant dynamics. The
target vehicle moves in the ground plane and is subject to a
maximum acceleration andmaximum speed that is considerably
less than the slowest UAV’s airspeed, which means that the
groundspeed of each UAV will always exceed that of the target
in light wind conditions. Each UAVmakes measurements of the
target’s position using a gimbaled video camera, and we assume
that the target is detected at all times and kept in the center of
the camera’s field of view by onboard software. We first discuss
the dynamical models for each type of vehicle and then proceed
to describe their measurement models.

3.2.1 UAV Dynamics

The basis for our UAV motion model is the kinematic guidance
model given by Equation 9.20 of [24], where the altitude,
altitude rate, and airspeed states have been omitted since the
said quantities are treated as being constant in this work. Note
that similar models have also been used in [14, 25], and [26]. To
present the model, we assume that UAV j, where j ∈ {1, 2}, flies
at a constant airspeed sj and at a fixed altitude hj. Its roll-angle
setpoint is denoted by uj and has a maximum absolute limit of
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u ∈ ℝ
>0, which we take to be the same for both UAVs without

loss of generality. Accordingly, u ∈  ∶= [−u,u] × [−u,u].
The state of UAV j comprises its planar position 𝔭j ∈ ℝ2, its
heading angle 𝜓j ∈ ℝ, and its roll angle 𝜙j ∈ ℝ. Furthermore,
we denote the state of UAV j by 𝜉( j ) = [𝜉( j )

1 𝜉
( j )
2 𝜉

( j )
3 𝜉

( j )
4 ]⊤ ∈ ℝ4,

where (𝜉( j )
1 , 𝜉

( j )
2 ) ∶= 𝔭j, 𝜉

( j )
3 ∶= 𝜓j, and 𝜉

( j )
4 ∶= 𝜙j. The position

is given in an east-north-up coordinate frame while the roll
and heading angles are used in a 3-2-1 (yaw-pitch-roll) Euler
angle sequence that describes the transformation from the
vehicle-fixed inertial frame to the aircraft body frame, where the
pitch angle is assumed to be zero in this work. We also assume
that the UAV flies in a nonzero constant wind 𝑤 ∈ ℝ2, which is
an unknown quantity that must be estimated. Furthermore, we
assume that the wind speed is no more than half the minimum
UAV airspeed, that is, 𝑤 ∈  , where

 ∶= {𝑣 ∈ ℝ2|∥𝑣∥≤ 0.5min{s1, s2}}. (3.1)
Thus, the kinematicmodel for UAV j used in this work is given by

d𝜉( j )(t)
dt

= F(𝜉( j )
,uj) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

sj cos 𝜉
( j )
3 +𝑤1

sj sin 𝜉
( j )
3 +𝑤2

(𝛼g∕sj)𝜙j
−𝛼

𝜙,j(𝜙j − uj),

⎞
⎟
⎟
⎟
⎟
⎠

. (3.2)

where 𝛼g is the vertical acceleration due to gravity and 1∕𝛼
𝜙,j is

the time constant for UAV j’s roll dynamics that are governed
by the implementation of the autopilot’s control loops and state
estimator. Note that we have used the small-angle approxima-
tion for the roll angle in the heading rate dynamics, that is, �̇�j =
(𝛼g∕sj) tan𝜙j ≈ (𝛼g∕sj)𝜙j.The reasons for this are discussed next.
While the majority of work on target tracking treats the

problem in continuous time, this work addresses the problem
in discrete time since measurements of the target’s position are
available at discrete time instances t = kTs s, where k ∈ ℤ≥0
and Ts > 0 is the measurement sampling period. Accordingly,
we assume synchronized zero-order holds of Ts s on the UAVs’
control inputs. The corresponding discrete-time equations of
motion are denoted by

𝜉
( j )+ = fa(𝜉( j )

,uj) =
[

fa,p(𝜉( j )
,uj)

fa,o(𝜉( j )
,uj)

]
,
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where the subscript “a” refers to the fact that the discrete-time
dynamics are those of an air vehicle. Furthermore, we have par-
titioned the discrete-time dynamics into the position dynamics
fa,p(𝜉( j )

,uj) ∶ ℝ4 → ℝ2 corresponding to 𝔭j and the orientation
dynamics fa,o(𝜉( j )

,uj) ∶ ℝ4 → ℝ2 corresponding to (𝜓j, 𝜙j). As
the system of differential equations given by (3.2) does not read-
ily emit an analytic solution for the position update equations
fa,𝔭(𝜉( j )

,uj), we utilize a second-order Lie series approximation
that is well suited for numerical optimization. Namely, we
approximate the discrete-time position dynamics as follows:

fa,p(𝜉( j )
,uj)

≈
[

I2 𝟎2×2
𝟎2×2 𝟎2×2

](
𝜉
( j ) + TsF(𝜉( j )

,uj) +
T2

s

2
𝜕F
𝜕𝜉

( j ) F(𝜉( j )
,uj)

)
,

where In is an n × n identity matrix, 𝟎n×n is an n × n matrix of
zeros, and 𝜕F∕𝜕𝜉( j ) is the Jacobian of (3.2) and yields the follow-
ing:

𝜕F
𝜕𝜉

( j ) F(𝜉( j )
,uj) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝛼g𝜉
( j )
4 sin 𝜉( j )

3

−𝛼g𝜉
( j )
4 cos 𝜉( j )

3

(𝛼g𝛼𝜙,j∕sj)(𝜉
( j )
4 − uj)

𝛼
2(𝜉( j )

4 − uj)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

To determine the orientation dynamics, we note that

d
dt

[
𝜉
( j )
3 (t)
𝜉
( j )
4 (t)

]

=
[0 𝛼g∕sj

0 −𝛼
𝜙,j

][
𝜉
( j )
3

𝜉
( j )
4

]

+
[ 0
𝛼
𝜙,j

]
uj = Ao

[
𝜉
( j )
3

𝜉
( j )
4

]

+ bouj.

By defining the matrix Φ ∈ ℝ2×2 and vector Γ ∈ ℝ2 as Φ ∶=
exp(AoTs) and Γ ∶= ∫

Ts
0 exp(Ao𝜏)bod𝜏 , respectively, we have

fa,o(𝜉( j )
,uj) = Φ

[
𝜉
( j )
3

𝜉
( j )
4

]

+ Γuj.

Before presenting the target’s dynamics, we note that the use
of tan𝜙 for the heading rate dynamics in (3.2) leads to a more
complicated expression for (3.3), which includes multiplication
by tan𝜙 and division by cos2𝜙. Its use would also necessitate an
approximation to the heading rate dynamics as well. Further-
more, if one wished to employ a higher order Lie series for the
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solution of (3.2), the use of tan𝜙 adds even more complexity to
the results. As such complexity can pose a great deal of difficulty
for numerical optimization, we have avoided the use of tan𝜙
in (3.2). Nonetheless, we shall see that the small-angle and Lie
series approximations lend themselves to tractable nonlinear
optimizations that can be solved in real time to produce good
tracking performance.

3.2.2 Target Dynamics and Overall State Space

We place no nonholonomic constraints on the ground vehicle
and simply model the target as a double integrator moving
in the ground plane. The target’s planar position is denoted
by 𝔭g ∈ ℝ2 and is measured in the same local east-north-up
coordinate frame as the UAVs. The corresponding velocity
vector is 𝔳 ∈ ℝ2, and the acceleration input vector is d ∈ ℝ2.
The overall target state is 𝜂 = [𝜂1 𝜂2 𝜂3 𝜂4]⊤ ∈ ℝ4, where
(𝜂1, 𝜂2) ∶= 𝔭g and (𝜂3, 𝜂4) ∶= 𝔳. We assume a Ts-s ZOH on the
target’s acceleration input synchronized with that of both UAVs,
yielding the straightforward discrete-time linear dynamics

𝜂
+ = fg(𝜂, d) = A𝜂 + Bd, (3.4)

where

A =
[

I2 TsI2
𝟎2×2 I2

]
and B =

[
(T2

s ∕2)I2
TsI2

]
.

To keep the problem realistic andwell-posed, we take the target’s
acceleration input d to belong to

 ∶= {d ∈ ℝ2| ∥𝔳 + dTs∥2 ≤ 𝑣, ∥d∥∞ ≤ d},

where 𝑣 is the maximum allowable target speed, and d is the
maximum absolute acceleration along either the east or north
direction. Typically, we take 𝑣 to be less than the smaller of the
two UAV airspeeds so that the problem is well-posed.
Now that we have presented all vehicle models, we define the

overall state as x ∶= (𝜉(1), 𝜉(2), 𝜂) ∈ ℝ12.The overall dynamics are
thus given by

x+ = f (x,u, d) ∶=
⎛
⎜
⎜
⎝

fa(𝜉(1),u1)
fa(𝜉(2),u2)

fg(𝜂, d)

⎞
⎟
⎟
⎠
.
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3.2.3 Measurement Error Models

We turn our attention to the overall measurement model
in vision-based target tracking. The measurement vector
associated with the state of UAV j is denoted by y( j )

a ∈ ℝ4 and is
given by

y( j )
a = 𝜉

( j ) + n( j )
a , n( j )

a = [n( j )
a,1 n( j )

a,2 n( j )
a,3 n( j )

a,4]
⊤

, (3.5)
where (n( j )

a,1, n( j )
a,2) ∼  (0, 𝜎2

𝔭I2), (n
( j )
a,3, n( j )

a,4) ∼  (0, 𝜎2
𝜃

I2), 𝜎2
𝔭 is the

variance of the uncorrelated noise on the UAV’s north and east
position coordinates, and 𝜎

2
𝜃
is the variance on the UAV’s Euler

angles, namely roll and yaw (heading).
To describe the measurement error on the target’s position,

we primarily follow the work of [1] and summarize key ideas
here. Since we use similar notation for vectors and matrices,
we refer the reader to the aforementioned work for illustra-
tions of these quantities. We begin by noting that each UAV’s
camera makes image-plane measurements of the target. The
dominant source of geolocation error arises from the error in
the sensor attitude matrix TT

S (𝜽j) that relates the coordinates
of the line-of-sight vector 𝔲S

j , which is measured from the UAV
to the target in the north-east-down sensor frame (centered
at UAV j’s position), to the coordinates of the same vector in
the local east-north-up topographic coordinate frame. This
transformation is a nonlinear function of the 3-2-1 Euler-angle
sequence of yaw, pitch, and roll denoted by 𝜽j ∈ ℝ3. Image
tracking software controls the camera’s gimbal platform to keep
the target in the center of the camera’s field of view and reports
the Euler angles of the camera sensor as well as the line-of-sight
vector 𝔲S

j . Here, a superscript “S” denotes a quantity in the
sensor coordinate frame while the absence thereof indicates a
quantity in the topographic coordinate frame.
The three-dimensional target position measured by UAV j

with 3D position 𝔰j = [𝔭⊤

j , hj]⊤ is denoted by 𝔬j. Its estimate is
given by

�̂�j = �̂�j + r̂jTT
S ( ̂𝜽j)𝔲S

j = �̂�j + r̂j�̂�j,

where
�̂�j = 𝔰j + �̃�, �̃� ∼  (0, diag(𝜎2

𝔭I2, 𝜎2
a)),

̂𝜽j = 𝜽j + ̃𝜽, ̃𝜽 ∼  (0, 𝜎2
𝜃

I3), (3.6)
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and 𝜎
2
a denotes the variance of the measurement noise on the

UAVs’ altitude hj. Also, the 3D distance from UAV j to the tar-
get is denoted by rj =∥𝔬j − 𝔰j∥2, and its estimate r̂j is provided by
the flat-Earth approximation r̂j = (h0 − �̂�j,3)∕�̂�j,3, where h0 is the
height of the ground plane in the topographic coordinate frame
and is taken to be zero in this work without loss of generality.
Since all camera angles are measured with respect to the UAV
attitude, we take the noise on the estimate of the camera’s atti-
tude to be the same as that on the estimate of the UAV’s attitude.
Thus, for example, the noise on the estimate of UAV j’s heading
angle is the same as that on the estimate of its camera’s yaw angle,
that is, the first element of 𝜽j.
From the precedingmeasurement equation, one can show that

the covariance P𝔬,j ∈ ℝ3×3 associated with the error �̃�j ∶= �̂�j − 𝔬j
in the three-dimensional position of the target is proportional to
the product of r2j and the covariance of the Euler-angle sequence
estimate ̂𝜽j given in (3.6). The exact analytic expression for P𝔬,j
is derived in both [1] and [13] and is omitted here for brevity.
Since we are tracking in the ground plane, only the upper left
2 × 2 submatrix of P𝔬,j is relevant and is denoted by Pj ∈ ℝ2×2.
Since the UAVs collect independent measurements of the

target, the fused measurement yg of the target’s true position 𝔭g
can be computed using the best linear unbiased estimate, which
is as follows:

yg = (P−1
1 �̂�(1)

g + P−1
2 �̂�(2)

g ) (3.7)
= [I2 𝟎2×2]𝜂 + ng = 𝔭g + ng ,

where  = (P−1
1 + P−1

2 )−1, �̂�( j )
g = [I2 𝟎2×1]�̂�j, 𝟎m×n denotes the

m × n zeros matrix, and ng is noise that is adequately approxi-
mated by a zero-mean Gaussian distribution with covariance  .
The confidence ellipse corresponding to the fused geolocation
error covariance (GEC)  has the property that it is small when
at least one UAV is close to the target and only slightly less
when both aircraft are directly above the target. Therefore, it is
advantageous for at least one UAV to be near the target at any
given time. Note that the expressions for the true covariances
Pj are based on the true Euler angles and true vehicle altitudes,
which are unknown quantities, and hence estimates of the
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covariances ̂Pj based on the raw Euler angle estimates ̂𝜽j and
raw altitude estimates �̂�j,3 are used in (3.7) in practice.
Finally, the measurement model corresponding to the overall

state x is given by combining (3.5) and (3.7) as follows:

y ∶= (y(1)a , y(2)a , yg) = Cx + n, (3.8)

where n ∶= (n(1)
a , n(2)

a , ng) and C ∶= [I10 𝟎10×2]. Since the target
velocity is not measured directly, the control law used in this
framework will be based on output feedback.

3.3 Robust Output-Feedback MPC/MHE

If only one UAV is considered in the target tracking problem, the
problem can be posed as a two-player zero-sum game in which
the UAV tries to minimize its squared 3D distance to the target
while the target tries to maximize this same quantity. Moreover,
by seeking to minimize a scalar quantity proportional to its
individual covariance, the UAV’s aim becomes that of gathering
the best individual vision-based measurements of the target.
In the two-UAV case, the UAVs ideally coordinate their move-
ments in order to ensure that at least one UAV is close to the
target to keep the fused GEC comparatively low. This practice
translates into the UAVs gathering the best joint vision-based
measurements of the target. In addition, the UAVs should keep
their individual distances to the target sufficiently small to
maintain adequate resolution of the target in the camera’s image
plane for effective visual detection. This motivates us to choose
the following criterion that the UAVs (Player 1) would like to
minimize and the target (Player 2) would like to maximize:

g(x) ∶= 𝛽1
r21r22

r21 + r22
+ 𝛽2(r21 + r22). (3.9)

In this criterion, 𝛽1 and 𝛽2 are positive weighting constants. The
first term in (3.9) is motivated by noting that the size of the
confidence ellipse associated with Pj is proportional to r2j and
that the fused GEC has the form  = (P−1

1 + P−1
2 )−1. Moreover,

the previous matrix expression is simplified to one that is scalar
and more compatible with numerical optimization by replacing
the individual covariances with the respective 3D distances.This
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term enforces distance coordination so that one UAV is always
close to the target, which improves measurement quality just as
in [13]. The second term in (3.9) penalizes the individual UAV
distances to the target to ensure that the size of the target in
each UAV’s image plane is sufficiently large for reliable detection
by image processing software. While other optimality criteria
may be considered, we aim to utilize a simpler expression than
those found in [12] and [13] that achieves similar behavior and
lends itself to efficient numerical computation. We shall see that
the distance coordination of [13] is indeed induced by choosing
the criterion (3.9).
For our control approach, we use the output-feedback MPC

with MHE approach described in [18]. This requires us to solve
a finite-horizon online optimization problem at each step k.
Solving this online optimization problem uses the last L ∈ ℤ≥1
output measurements in order to give us an estimate of the
current state at step k (the MHE problem) while simultaneously
computing policies for both Players 1 and 2 to use for the next
K ∈ ℤ≥1 steps into the future (the MPC problem).
As previously discussed in Section 3.1, the problem we

address in this chapter is similar to that of coordinating UAVs
for target tracking described in [22], but here we incorporate the
more realistic UAV model given by (3.2) that includes unknown
wind disturbances. To solve this problem, while simultaneously
computing the state estimates and future control sequence, we
can estimate the unknown wind 𝑤 by including the estimate
�̂� ∈  as an optimization variable, where  is given by (3.1).
More details about using this combined MPC/MHE approach
for adaptive control and learning can be found in [27].
Given a discrete-time signal z ∶ ℤ≥0 → ℝn and two steps

k0, k ∈ ℤ≥0 with k0 ≤ k, we denote by zk0∶k the sequence
{zk0 , zk0+1,…,zk}. Then, formally, the control objective is to
select the control signal uk ∈  , ∀k ∈ ℤ≥0 so as to minimize a
criterion of the form

Jk(xk−L,uk−L∶k+K−1, dk−L∶k+K−1, yk−L∶k) ∶=
k+K∑

𝓁=k
g(x𝓁) +

k+K−1∑

𝓁=k
𝜆u ∥ u𝓁 − 𝜑𝓁∥2

−
k+K−1∑

𝓁=k−L
𝜆d ∥ d𝓁∥2 −

k∑

𝓁=k−L
𝜆n ∥ y𝓁 − Cx𝓁 ∥22, (3.10)



�

� �

�

66 Cooperative Control of Multi-Agent Systems

where g(x) is given in (3.9), the second term in the right-hand
side penalizes the difference between the roll command pair u𝓁
and the roll angle pair 𝜑𝓁 ∶= (𝜙1,𝓁 , 𝜙2,𝓁) ∈ ℝ2 at time 𝓁, and 𝜆u,
𝜆d, and 𝜆n are positive scalars. Here, 𝜙j,𝓁 refers to UAV j’s roll
angle at time 𝓁. The scalar 𝜆u is a tuning weight that determines
the penalty for the UAVs applying roll commands that are differ-
ent from their current roll angles. Therefore, 𝜆u may be chosen
large enough to ensure that the rate of change of the roll angle
does not exceed an actuator’s limitations. The scalar 𝜆d is a tun-
ing weight that determines how much of a penalty the target
incurs when using large accelerations. Finally, the scalar 𝜆n is a
tuning weight that can be thought of as determining how much
of a penalty is incurred for choosing less likely values for themea-
surement noise (in this case, larger values).
Defining the criterion as in (3.10) emphasizes the dependence

on the unknown initial state xk−L, the unknown input sequence
for the target dk−L∶k+K−1, the measured output sequence yk−L∶k ,
and the input sequence for the UAVs uk−L∶k+K−1. The input
sequence uk−L∶k+K−1 is comprised of two distinct sequences: the
(known) past inputs uk−L∶k−1 that have already been applied and
the future inputs uk∶k+K−1 that still need to be selected.
At a given step k ∈ ℤ≥0, we do not know the values xk−L

and dk−L∶k+K−1 on which the criterion (3.10) depends, so we
optimize this criterion under worst-case assumptions on these
variables, leading to the following finite-dimensional min–max
optimization

min
ûk∶k+K−1|k∈

max
x̂k−L|k∈ ,

̂dk−L∶k+K−1|k∈,�̂�∈

Jk(x̂k−L|k ,uk−L∶k−1, ûk∶k+K−1|k ,
̂dk−L∶k+K−1|k , yk−L∶k), (3.11)

where the arguments uk−L∶k−1, ûk∶k+K−1|k correspond to the
sequence uk−L∶k+K−1 in the definition of Jk(⋅) in (3.10). The
subscript ⋅|k in the (dummy) optimization variables in (3.11)
emphasizes that this optimization is repeated at each time step
k ∈ ℤ≥0.
At different time steps, these optimizations typically lead to

different solutions, which generally do not coincide with the
real control input, target input, and noise. We can view the
optimization variables x̂k−L|k , ̂dk−L∶k+K−1|k , and �̂� as (worst-case)
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estimates of the initial state, target input, and wind speed,
respectively, based on the past inputs uk−L∶k−1 and outputs
yk−L∶k available at time k. The past measurement noises nk−L∶k
are not included as explicit optimization variables because
they are uniquely defined by the output equation (3.8) and the
choices of the optimization variables x̂k−L|k and ̂dk−L∶k−1|k .
Inspired by MPC, at each time k, we use as the control input

the first element of the sequence

û∗
k∶k+K−1|k = {û∗

k|k , û∗
k+1|k , û∗

k+2|k ,…,û∗
k+K−1|k} ∈ 

that minimizes (3.11), leading to the following control law:

uk = û∗
k|k , ∀k ≥ 0.

3.4 Simulation Results

Nowwe demonstrate the effectiveness of theMPC/MHE control
approach to the problem of two fixed-wing UAVs performing
vision-based target tracking of a moving ground vehicle. To
underscore the robustness of the approach to real-world condi-
tions such as constant winds and unmodeled aircraft dynamics,
we present the results of several simulations that were per-
formed in real time using the flight simulator Aviones [28]. This
simulator utilizes an aircraft model with six degrees of freedom
and allows the user to simulate constant winds. Furthermore,
we simulate three different scenarios. The first scenario involves
tracking a constant-velocity target, which represents the “easi-
est” target to be tracked. The second scenario involves tracking
an evasive target, where the worst-case target acceleration d∗

k ,
computed by solving the optimization (3.11), is applied as the
target’s actual input. This results in the most “difficult” target
to be tracked. Finally, the third scenario uses an experimental
target log that was generated by a human physically driving
a vehicle casually yet unpredictably. This scenario represents
the most realistic target motion. In each of these scenarios,
realistic levels of noise and unmeasured wind disturbances are
included in the models presented in Section 3.2. For each of
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Table 3.1 Simulation parameters.

Parameter Description Value Units

u Max UAV roll angle 35 deg.
(s1, s2) UAV airspeeds (15, 15) m/s
d Max target accel. 3∕

√
2 m/s2

𝑣 Max target speed 10 m/s
𝜎
2
𝔭 N/E position variance 2.52 m2

𝜎
2
a Altitude variance 42 m2

𝜎
2
𝜃

Euler angle variance 32 deg.2

(h1, h2) UAV altitudes (40, 45) m
𝛽1 Coord. coefficient 0.04 —
𝛽2 Dist. coefficient 0.002 —
𝜆u UAV roll-angle coefficient 5 —
𝜆d Target acceleration coefficient 10 —
𝜆n Noise coefficient 40 —
Ts Sampling period 1 s
L Backward horizon 8 —
K Forward horizon 10 —

the three target scenarios, three different wind speeds are also
considered, namely 0, 3, and 6 m/s.
The parameters pertaining to all three simulation scenarios

are provided in Table 3.1. Given the maximum UAV turn
rate, the total time it takes a UAV to make a full loop is
2𝜋s1∕(𝛼g tanu) ≈ 13.72 s, where we have used the relationship
of bank angle to turn rate given by Equation 9.20 of [24]. Hence,
the future planning horizon of KTs = 10 s allows the UAVs to
consider the impact of beginning to loop around the target. In
addition, in the cost function (3.9), the coefficients 𝛽1 and 𝛽2 are
chosen to place a greater emphasis on distance coordination
than on keeping individual distances to the target small. The
maximum target speed of 10 m/s is chosen smaller than the
fixed airspeed of the UAVs (15 m/s) in order to make the prob-
lem well-posed for wind speeds less than 5 m/s. The UAVs fly
at fixed altitudes of 40 and 45 m, respectively. Other parameters
included in Table 3.1 include the scalar cost function weights
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Table 3.2 Computation time and percent of convergence.

Target scenario
Min.
(ms)

Mean
(ms)

Std. dev.
(ms) Converge (%)

Constant-Velocity, 0 m/s wind 30 37 19 93
Constant-Velocity, 3 m/s wind 30 90 61 94
Constant-Velocity, 6 m/s wind 29 82 56 95
Evasive, 0 m/s wind 31 49 26 97
Evasive, 3 m/s wind 31 45 26 97
Evasive, 6 m/s wind 30 45 30 99
Log, 0 m/s wind 30 42 24 92
Log, 3 m/s wind 30 51 37 91
Log, 6 m/s wind 30 54 29 95

𝜆u, 𝜆d, and 𝜆n, the forward and backward horizon lengths K and
L, respectively, as well as the variances for the UAVs’ positions,
altitudes, and Euler angles.
To solve the nonlinear, nonconvex, min–max optimization

problem (3.11) at each time step, we use a primal-dual-like
interior point method that is designed specifically for this
MPC/MHE approach and is described in [29]. Table 3.2 shows
the computation times using the C programming language on
a laptop with a 2.3 GHz Intel® CoreTM i7 processor for each
scenario that we investigated. If the solver does not converge to
a solution within a reasonable number of iterations (a maximum
of 140 in this case), the optimization is reattempted up to a
maximum of 4 additional times with a new random start con-
dition each time. If the solver fails to converge after 5 attempts,
the optimal control from the previous time step is used, that is,
uk = û∗

k|k−1. The last column in the table shows the percentage
of time steps for which the solver successfully converges in one
of those five allowed attempts and the total computation time
is less than the sampling time of Ts = 1 s. Even for this difficult
nonlinear, nonconvex problem, the solver converges over 90%
of the time for every scenario. We note that the percent of
convergence is highest for the evasive target scenario because
the true trajectories in this scenario best match the solution of
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the min–max optimization, which computes trajectories based
on worst-case evasive target motion.
The other columns in Table 3.2 show the minimum and mean

total computation times, as well as their standard deviations for
all of the time steps in which the solver converged. Regardless
of the scenario, the minimum computation time is about 30 ms.
The mean computation times vary, but all of them are between
37 and 90 ms. These computation times clearly show that this
problem can be solved in real time using the primal-dual-like
interior point method described in [29].
To determine the steady-state tracking performance of each

scenario, 5 min of steady-state behavior is considered, where the
effects of initial conditions have been removed by discarding 30 s
of initial data. During the initial 30 s, the UAVs circle a stationary
target, and the past measurement buffer is filled.

3.4.1 Constant-Velocity Target

We first consider a constant-velocity target, that is, dk ≡ 0 in
(3.4), where the target travels at 7.5 m/s (one half of the UAVs’
fixed speed) in the positive x-direction. The UAVs’ inputs are
computed by solving the min–max optimization (3.11) and
hence are prepared for worst-case target motion as well as
worst-case noise and wind.
The results for this scenario with the UAVs subjected to 6 m/s

wind to the east, that is, 𝑤 = [6 0]⊤, where 𝑤 is presented in
(3.2), are provided in Figures 3.1–3.3. In Figure 3.1, one can see
how the UAVs make loops so that their average (ground) speed
matches that of the target. Figure 3.2 indicates that this is done in

x (m)

0 500 1000 1500 2000

y
 (

m
)

–100

0

100
T A1 A2

Figure 3.1 Trajectories of two UAVs, subject to 6 m/s wind, tracking a
constant-velocity target over a 5-min window. The starting positions of all
vehicles are denoted by an “⚬” while the ending positions are indicated by
an “×”. In the legend,  corresponds to the target while 1 and 2 refer to
the UAVs.
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Figure 3.2 3D distances rj (a) and stage cost g(x) (b) for two UAVs, subject
to 6 m/s wind, tracking a constant-velocity target. The solid black line
shows min{r1, r2}.
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Figure 3.3 Estimate of the wind speed in the x-direction (a) and
y-direction (b) for the constant-velocity target scenario.
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a coordinated manner so that at least one UAV is never very far
from the target, as indicated by the solid black curve depicting
min{r1, r2}. This can also be seen by the alternating dark gray
(dashed) and light gray (dotted) curves that depict the individ-
ual UAV distances to the target. In this case, the wind is blowing
at 6 m/s in the positive x-direction, so it is helping the UAVs
catch up to the target. The estimate of the wind is initialized at
[0 0]⊤ but quickly converges close to the true value of the wind
and stays close to the true value for the rest of the simulation, as
shown in Figure 3.3.
A summary of the performance for this scenario and all

three different wind speeds considered is given in Table 3.3.
Note that for the various cases the wind’s magnitude changed
while its direction remained the same, which holds true for all
target motion scenarios considered. From the table, one can
see statistics associated with the cost g(x), the individual 3D
distances r1 and r2, the estimation error ∥𝔭g − �̂�g ∥, and the
actual measurement noise ng on the ground target’s position.
In addition, the degree of coordination between the UAVs is
indicated by the sample Pearson correlation coefficient 𝜚 for the
UAV distance pairs r1 and r2, where 𝜚 is in general a measure
of the linear correlation between two random variables and
belongs to the interval [−1, 1]. A more negative value for 𝜚

indicates stronger anticorrelation, which in the present setting
implies that when one UAV is relatively far from the target, the
other is likely to be rather close. Overall, while the average cost
is quite close for the various wind speeds, one should notice

Table 3.3 Constant velocity target.

Statistic Wind = 0 m∕s Wind = 3 m∕s Wind = 6 m∕s Units

avg g(x) 132.8 126.0 130.7 m2

var g(x) 3226 2608 1768 m4

avg(min{r1, r2}) 62.01 62.10 61.22 m
max{r1, r2} 169.3 138.0 139.7 m
avg ∥𝔭g − �̂�g ∥ 5.65 5.29 5.31 m
avg ∥ng ∥ 5.44 5.17 5.48 m
𝜚 −0.182 −0.079 −0.430 N/A
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that the cost variance var g(x) is quite different for each case and
decreases as the wind speed increases. In addition, for the wind
speed of 6 m/s, the Pearson correlation coefficient was most
negative, indicating that the greatest degree of coordination was
achieved by the UAVs at this speed. Moreover, the wind speed
of 6 m/s in the direction of travel of the target proved to be
beneficial to the UAVs’ coordination efforts, as it allowed them
to generally have at least one agent relatively close to the target
and thereby reduce the variability in the cost.

3.4.2 Evasive Target

We now consider an evasive target, where the optimal
worst-case d∗

k computed from the min–max optimization (3.11)
is applied as the target’s actual input. Results for the UAVs flying
in 3 m/s winds to the east, that is, 𝑤 = [3 0]⊤ with 𝑤 given in
(3.2), are provided in Figures 3.4–3.6.
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Figure 3.4 Trajectories of two UAVs, subject to 3 m/s wind, tracking an
evasive target over a 5-min window. The starting positions of all vehicles
are denoted by an “⚬” while the ending positions are indicated by an “×”. In
the legend,  corresponds to the target while 1 and 2 refer to the UAVs.
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Figure 3.5 3D distances rj (a) and stage cost g(x) (b) for two UAVs, subject
to 3 m/s wind, tracking an evasive target. The solid black line shows
min{r1, r2}.
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Figure 3.6 Estimate of the wind speed in the x-direction (a) and
y-direction (b) for the evasive target scenario.
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By observing the vehicle trajectories in Figure 3.4, one can see
that the optimal trajectory for the target is quite erratic. Indeed,
the target takes advantage of the UAVs’ kinematic constraints by
making sharp turns and forcing the UAVs to make loops at their
maximum allowable turn rate. The target also makes use of the
wind in this case as the target generally moves in the negative
x-direction, thereby forcing the UAVs to fly against the wind.
From Figure 3.5, the minimum UAV distance from the target

frequently peaks above 100m,whichmeans that bothUAVswere
often far from the target simultaneously. This is also reflected in
the fact that the stage cost peaks at values much higher than in
the case of a constant-velocity target. Furthermore, these peaks
correspond to the periods of time just after the sharpmovements
in the target’s trajectory shown in Figure 3.4.
A summary of the performance for this scenario and all three

different wind speeds considered is given in Table 3.4. From the
third column of the table, one can see that the evasive target can
especially take advantage of the wind in the case of 6 m/s wind
speed because the fixed airspeed of the UAVs is 15 m/s, and the
maximum speed of the ground target is 10m/s.Therefore, in this
case, the evasive target can move at its maximum speed directly
into thewind so that its speed of 10m/s is faster than the effective
ground speed of the UAVs flying directly into the wind (9 m/s),
which renders the UAVs unable to catch the target. While the
increase in all quantities considered is significant for this case, of
particular interest is the fact that the measurement noise mag-
nitude ∥ng ∥ went up considerably, as it is related to min{r1, r2},

Table 3.4 Evasive target.

Statistic Wind = 0 m∕s Wind = 3 m∕s Wind = 6 m∕s Units

avg g(x) 157.3 159.9 343.6 m2

var g(x) 6466 6956 9673 m4

avg(min{r1, r2}) 71.06 69.19 91.47 m
max{r1, r2} 159.3 173.7 235.5 m
avg ∥𝔭g − �̂�g ∥ 5.12 4.88 6.83 m
avg ∥ng ∥ 5.86 6.14 10.4 m
𝜚 0.582 0.272 0.622 N/A
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which also saw a drastic increase. Of course, the increased
measurement noise in turn caused a rise in the estimation error
magnitude ∥𝔭g − �̂�g ∥, which shows the overall importance of
coordinating UAV distances to the target when possible.
Overall, the target’s evasive maneuvers hinder UAV coordi-

nation efforts and thereby increase measurement noise. This
is especially evident by the fact that the Pearson correlation
coefficient is positive for all evasive target cases, which means
that the UAVs were often relatively far from the target at the
same time. In addition, the cost variance was also much higher
in all cases in comparison with the constant-velocity target
scenario. Nonetheless, for an evasive target, the UAVs are still
able to robustly track the target in the sense that their maximum
3D distance from the target is not only bounded, but is also
only slightly larger than in the case of constant target velocity,
provided that the UAVs’ groundspeed is able to match or exceed
the target’s speed at all times.

3.4.3 Experimental Target Log

Finally, we now consider target motion taken from the log
of a live tracking experiment at Camp Roberts, California,
USA, in which a person drove a car casually yet unpredictably.
Results with the UAVs subjected to 0 m/s wind are provided
in Figures 3.7–3.9. One should observe from these results that
the minimum 3D distance to the target is kept below 100 m,
and the cost is always less than 300 m2. Thus, even though the
target does not maintain a constant velocity, the UAVs are able
to coordinate and keep the cost quite low.
A summary of the performance for this scenario and all three

different wind speeds considered is given in Table 3.5, where
the wind direction is to the southeast in all instances of nonzero
wind, that is, for ∥ 𝑤 ∥≠ 0, 𝑤∕ ∥ 𝑤 ∥= (1∕

√
2)[1 − 1]⊤. From

the table, one can see that the average cost and averageminimum
distances are quite comparable to the constant-velocity
scenario, albeit the cost variances are somewhat higher in this
case. Nonetheless, the cost variances are still considerably
lower than in the evasive case. One should also take notice that
the correlation coefficient is always negative, meaning that the
UAVs are able to coordinate in all cases considered, whereas the



�

� �

�

3 Robust Coordination of UAVs for Target Tracking 77

–1800 –1600 –1400 –1200 –1000 –800 –600

400

500

600

700

800

900

1000

1100

1200

1300

1400

T

A1

A2

x (m)

y
 (

m
)

Figure 3.7 Trajectories of two UAVs, subject to 0 m/s wind, tracking a
target moving based on an experimental target log over a 5-min window.
The starting positions of all vehicles are denoted by a “⚬” while the ending
positions are indicated by a “×”. In the legend,  corresponds to the target
while 1 and 2 refer to the UAVs.
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Figure 3.8 3D distances rj (a) and stage cost g(x) (b) for two UAVs tracking
a target moving according to an experimental target log. The minimum
distance rj is shown as a solid black line.
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Figure 3.9 Estimate of the wind speed in the x-direction (a) and
y-direction (b) for the experimental target log scenario.

Table 3.5 Experimental target log.

Statistic Wind = 0 m∕s Wind = 3 m∕s Wind = 6 m∕s Units

avg g(x) 117.8 135.0 132.6 m2

var g(x) 2269 4112 4406 m4

avg(min{r1, r2}) 57.98 62.71 60.36 m
max{r1, r2} 167.4 204.8 169.6 m
avg ∥𝔭g − �̂�g ∥ 5.99 6.45 5.68 m
avg ∥ng ∥ 4.98 5.35 5.63 m
𝜚 −0.219 −0.030 −0.123 N/A

coefficients were always positive for an evasive target. Moreover,
through distance coordination, the UAVs are able to keep the
average measurement noise ng on the target’s position smaller
than in the evasive scenario, wherein the target was able to
thwart the UAVs’ coordination efforts and drive the average
magnitude of the state-dependent measurement noise higher.
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3.5 Conclusion and Future Work

We have presented an effective, optimization-based control
approach for two fixed-wing UAVs to robustly perform
vision-based target tracking of a moving ground vehicle under
realistic conditions. Namely, we utilized the novel approach
based on min–max MPC combined with MHE that was first
presented in [22] and adapted the approach to use fourth-order
UAV models with roll dynamics along with the parameter
estimation scheme of [27] to estimate constant winds. With
simulations performed in real time using aircraft models having
six degrees of freedom for the UAVs and target logs taken
from live tracking experiments, we showed that the MPC/MHE
approach produces a controller that is robust to unmodeled
aircraft dynamics, the unmeasured environmental disturbance
of wind, and information about the target state that is both
noisy and incomplete.
Regarding the effectiveness of the approach for target tracking,

the robust optimal controller enables the UAVs to coordinate
their distances to the target when the wind speeds and target
motion are not exceptionally adverse, even though the target
and wind velocities are unmeasured quantities. This coordina-
tion keeps the state-dependent measurement noise at modest
levels, thereby allowing the UAVs to effectively track the target.
When the target is evasive, the UAVs are generally not able to
coordinate their distances to the target. Nonetheless, for wind
conditions in which eachUAV’s groundspeed always exceeds the
target’s speed, the UAVs are still able to track the evasive target,
albeit at a somewhat reduced performance level. Finally, we note
that casual, yet unpredictable, target motion from live tracking
experiments with a nonholonomic ground vehicle results in
performance that is considerably better than that arising from
the worst-case evasive motion of a 2D double integrator, which
has fewer motion constraints than a typical ground vehicle and
is therefore more difficult for the underactuated UAVs to track.
Overall, we have shown that the output-feedback MPC/MHE

approach is a viable approach for addressing high-dimensional,
very nonlinear (nonconvex) problems involving the robust
coordination of mobile robots under realistic settings. We
foresee this being a powerful tool for solving nonlinear,
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multi-agent control problems with nonconvex objectives that
require explicit robustness to both adversarial disturbances and
parametric uncertainty in the dynamics, as well as noisy, partial
information about the system state.
Future research interests involve addressing the problem of

target tracking for a single UAV in three dimensions, as well
as the possible use of airspeed control to provide an additional
degree of freedom in the motion planning. In addition, we wish
to investigate both the behavior and tracking performance of
three UAVs with the present problem formulation in order
to evaluate whether or not there is a diminishing return on
investment.
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4.1 Introduction

Simultaneous arrival is one of the classic applications in coop-
erative control, where a group of cooperating unmanned aerial
vehicles (UAVs) must reach their assigned destinations simul-
taneously [1, 2]. Traditional approaches estimate the expected
time-to-arrival (ETA) ahead of time with the predefined profiles
on the paths and the velocity. Then, each UAV simply follows
its related profiles and attempts to reach its destination at the
predefined arriving time [3, 4]. Since the arriving time for every
UAV is the same in the profiles, they are supposed to arrive at
their destinations at the same moment eventually.
In practice, however, such offline design approaches may not

be suitable when flying in dynamical environments. For instant,
unanticipated events may happen (e.g., a strong wind may affect
the extreme speed of the UAV) and the predefined profiles may
no longer be valid. Sticking to the original profiles will only steer
the overall system away from its normal operating point and
eventually lead to mission failure. Instead, a real-time planning
scheme is more desirable. Each UAV estimates its own ETA
based on their position and speed telemetry and communicates
it with its neighbors in real time through the network so that
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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they can reach consensus on the ETA during the flight before
any UAV arrives at its destinations [5]. By doing so, even if
disturbances exist, the UAVs can still adjust their agreement on
the ETA based on the current situation.
One thing worth pointing out is that most of such real-time

approaches rely on consensus algorithms where a group of
agents attempt to reach an agreement on a common value in
a distributed way by negotiating with their neighbors [6, 7]. In
consensus-based simultaneous arrival, convergence rate plays
a very important role because consensus on the ETA must be
reached before any UAV arrives at its destination. Without
velocity constraints, it is well-known that convergence rate
of the consensus algorithm is related to the minimal positive
eigenvalue of the Laplacian of a connected graph [8–10]. When
velocity constraints exist, however, it becomes very challenging
to analyze stability and the convergence rate of consensus
algorithms.
There has been some work on constrained consensus. For

instance, system dynamics were considered in [11, 12] and
communication constraints were discussed in [13]. A more
detailed survey on constrained consensus can be found in
[14]. Speaking of state and input constraints, the work in
[15] and [16] addressed input saturation for continuous-time
and discrete-time multi-agent systems, respectively. The con-
vergence rate, however, was not provided. The work in [17],
based on set projection, presented discrete-time consensus
algorithms for systems with state constraints. Convergence
rate was derived for some specific cases. The work in [18]
extended the results in [17] to the case where communication
delay exists. Continuous-time consensus with state constraints
was studied in [19] where logarithmic barrier functions were
introduced to define the repulsive and attractive components
in the consensus protocol. This approach requires an agent
to transmit the auxiliary variable, in addition to its state, to
its neighbors. Moreover, it requires that the origin must be
included in all the constraint sets. Projection-based consensus
with state constraints was studied in our recent work [20]. A
special type of input saturation for continuous-time consensus
was presented in [21], where the control input can only take the
boundary value or 0, following the bang–bang control law.



�

� �

�

4 Projection-Based Consensus for Time-Critical Coordination 87

This chapter studies real-time coordination for simultaneous
arrival with fixed-velocity constraints, which is formulated
as a constrained continuous-time consensus problem. We
introduce a continuous-time projection operator [22–24] that
ensures smoothness of the state and input trajectories, when
saturation happens due to the velocity constraints. Based on this
projection operator, we present a continuous-time consensus
protocol for UAVs to coordinate their ETA and velocity. We
show the convergence of the resulting closed-loop system and
derive bounds on the convergence rate. Based on these results,
we provide a sufficient condition that guarantees the feasibility
of the simultaneous arrival problem, in terms of the length of
the paths as well as the UAVs’ minimal and maximal velocities.
Simulations verify the theoretical findings.
This chapter is organized as follows. Section 4.2 formulates

the problem.The projection-based consensus algorithm is intro-
duced in Section 4.3. The analysis of convergence, convergence
time, and problem feasibility can be found in Sections 4.4–4.6,
respectively. Simulation results are presented in Section 4.7.
Section 4.8 summarizes the results.

4.2 Problem Statement

4.2.1 Notations

We denote by ℝn the n-dimensional real vector space, by ℝ+

the set of the positive real numbers, and by ℝ+
0 the set of the

non-negative real numbers.We use ∥ ⋅ ∥ to denote the Euclidean
norm of a vector and the induced 2-norm of a matrix. The max-
imal and minimal singular values of a matrix P are denoted by
𝜎max(P) and 𝜎min(P), respectively. Given a collection of n scalars
𝜏1, 𝜏2,… , 𝜏n, let 𝜏 = (𝜏1,… , 𝜏n)⊤. Let 𝟏n = (1,… , 1)⊤ ∈ ℝn. For
a function of time x(t), sometimes we drop t and use just x for
brevity if it is clear in context.
For a team of n agents, the communication among them is

described by an undirected graph  = { , } in this chapter,
where  = {1, 2,… , n} denotes the agent set and  ⊆  × 

denotes the edge set. An edge (i, j) ∈  means that agent j
can obtain information from agent i. Since the undirected



�

� �

�

88 Cooperative Control of Multi-Agent Systems

graph is considered in this chapter, (i, j) ∈  implies (j, i) ∈  ,
which means that agent i can also obtain information from
agent j. If (i, j) ∈  , then agent i is called a neighbor of agent
j. The set i ∈  is called the neighboring set of agent i
and |i| is its cardinality. A path from agent i to agent j is a
sequence i, p1, p2,… , pk , j, where pl ∈  for l = 1, 2,… , k and
(i, p1), (pk , j), (pl, pl+1) ∈  for l = 1, 2,… , k − 1. A graph is
called connected if for any i, j ∈  , there exists at least a path
from i to j.
The adjacency matrix A ∈ ℝn×n of a graph  is defined by

aij = 1 if (i, j) ∈  and aij = 0 otherwise. Given an undirected
graph, aij = aji, which means A is symmetric. The Laplacian
matrix L of  is defined as L = D − A, where D represents
the degree matrix which is a diagonal matrix with entries
dii = |i| =

∑
j∈i

aij. Notice that L𝟏n = 0. If the graph is con-
nected, the corresponding Laplacian matrix has only one
eigenvalue equal to 0, 𝜆1(L) = 0, and the other eigenvalues are
positive and real, 𝜆i(L) > 0 for i = 2,… , n.

4.2.2 Problem Formulation

This section provides a rigorous formulation of the simultaneous
arrival problem for multi-agent systems. Suppose that a team of
n agents are tasked to simultaneously visit some prespecified tar-
gets and the path for each individual agent to follow has been
precomputed. To arrive at their targets at the same time, agents
have to adjust their velocity during the motion, based on the
information communicated with their neighbors.
Let li(t) and 𝑣i(t) denote the length of the remaining path and

the velocity of agent i at time t, respectively, where li ∶ ℝ+
0 →

ℝ+
0 and 𝑣i ∶ ℝ+

0 → ℝ+
0 for i = 1,… , n. Obviously, the following

relation holds:

li(t) = li(0) − ∫

t

0
𝑣(s)ds,

which implies
̇li(t) = −𝑣i(t), (4.1)

with the initial condition

li(0) = li,0 (4.2)
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𝑣i(0) = 𝑣i,0. (4.3)

The velocity of agent i must satisfy the following constraint:

𝑣i(t) ∈ [𝑣min
i , 𝑣

max
i ],

where 𝑣
min
i , 𝑣

max
i ∈ ℝ+

0 are known and 𝑣
min
i < 𝑣

max
i . Notice that

[𝑣min
i , 𝑣

max
i ] does not have to include 0 and 𝑣i,0 ∈ [𝑣min

i , 𝑣
max
i ].

At time t, the ETA of agent i is denoted by 𝜏i(t), which satisfies

𝜏i(t) =
li(t)
𝑣i(t)

. (4.4)

Obviously, when agent i arrives its destination at some time, say
t∗i , then 𝜏(t∗i ) = 0 and li(t∗i ) = 0.
Taking the time derivative of 𝜏i(t), we have the following dif-

ferential equation:

�̇�i =
𝑣i
̇li − li�̇�i

𝑣
2
i

= −1 −
𝜏i

𝑣i
�̇�i. (4.5)

Let

�̇�i(t) = ui(t), (4.6)

where ui(t) is the input that controls the velocity of agent i.
Within this framework, we are interested in consensus pro-

tocols under a connected and undirected communication graph
that can guarantee simultaneous arrival subject to the velocity
constraints.

4.3 Projection-Based Consensus Algorithm

To arrive simultaneously, agents have to achieve an agreement
on the ETA that is feasible to all of them before any agents
physically arrive at their destinations. Ideally, if there were no
constraints on the velocity, the consensus protocol can be easily
designed as

ui = −
c vi

𝜏i

∑

j∈i

(𝜏j − 𝜏i),

where i ⊆  is the neighboring set of agent i and c is a posi-
tive constant controlling the convergence rate. Assume that the
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communication graph is undirected, that is, if j ∈ i, then i ∈ j.
One can easily verify that this consensus protocol will guarantee
𝜏i(t) − 𝜏j(t) → 0 as t → ∞ [5].
When constraints are posed on the velocity, saturation will

happen when the velocity approaches the boundary value. To
ensure smoothness of the velocity over the interval [𝑣min

i , 𝑣
max
i ]

while still taking saturation into account, we introduce the fol-
lowing projection-based consensus protocol:

ui(t) = Proj [𝑣min
i ,𝑣

max
i ]

(

𝑣i,−
c 𝑣i

𝜏i

∑

j∈i

(𝜏j − 𝜏i)

)

. (4.7)

The projection-based operator Proj ∶ ℝ ×ℝ ×ℝ ×ℝ → ℝ is
defined as follows:

Proj [𝑣min
i ,𝑣

max
i ](𝑣i, a)

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

a if fi(𝑣i) ≤ 0

a if fi(𝑣i) > 0 and
𝜕fi(𝑣i)
𝜕𝑣i

a ≤ 0

a(1 − fi(𝑣i)) if fi(𝑣i) > 0 and
𝜕fi(𝑣i)
𝜕𝑣i

a > 0,

(4.8)
where

fi(𝑣i) =

(
𝑣i −

𝑣
min
i +𝑣max

i

2

)2
− (𝜌max

i )2

𝜖(𝜌max
i )2

(4.9)

𝜌
max
i =

𝑣
max
i − 𝑣

min
i

2
√
1 + 𝜖

, (4.10)

and 𝜖 ∈ (0, 1). Letting

𝑣 i = −𝜌max
i +

𝑣
max
i + 𝑣

min
i

2

𝑣i = 𝜌
max
i +

𝑣
max
i + 𝑣

min
i

2
,

we can easily verify that

• [𝑣i, 𝑣i] ⊂ [𝑣min
i , 𝑣

max
i ];

• fi(𝑣i) ≤ 0 when 𝑣i ∈ [𝑣i, 𝑣i];
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• 0 < fi(𝑣i) < 1 when 𝑣i ∈ (𝑣min
i , 𝑣i) ∪ (𝑣i, 𝑣

max
i );

• fi(𝑣min
i ) = fi(𝑣max

i ) = 1.

Notice that [𝑣i, 𝑣i] can be arbitrarily close to [𝑣min
i , 𝑣

max
i ] if 𝜖 is

close enough to 0. Obviously, at time t, if 𝜏i(t) ∈
[

li(t)
𝑣i
,

li(t)
𝑣i

]
, agent

i can arrive at its destination in 𝜏i(t) unit-of-time by maintaining
the velocity at time t (which is li(t)

𝜏i(t)
∈ [𝑣i, 𝑣i] ⊂ [𝑣min

i , 𝑣
max
i ]). So

𝜏i(t) is a feasible ETA for agent i at time t and we call the set[
li(t)
𝑣i
,

li(t)
𝑣i

]
the feasible set of the ETA of agent i at time t.

The projection-based operator is often used in adaptive
control [25]. It can enforce the estimated uncertainty always
stay inside a prespecified region with the guarantee of differ-
entiability. In our case, we use it to enforce the constraints
on the velocity. Notice that if 𝑣i,0 ∈ [𝑣min

i , 𝑣
max
i ], the inequality

𝑣i(t) ∈ [𝑣min
i , 𝑣

max
i ] always holds for any t ≥ 0 by the definition of

the projection-based operator [25]. Also, it generates a smooth
input ui(t), which is more suitable for UAV applications since
the smooth input profile can be more easily implemented
than an input with discontinuities. As a result, not only input
saturation is addressed, but, to some extent, saturation on the
input rate of change is dealt with as well.

4.4 Convergence Analysis

This section discusses the convergence of the proposed consen-
sus protocol. Let T∗ be the time when the first agent arrives at its
destination. Notice that before T∗, 𝜏i(t) > 0 and li(t) > 0 for any
i ∈  . Before introducing the result on convergence, we need the
following lemma.

Lemma 4.4.1 For any t ∈ [0,T∗], if

∩n
i=1

[ li(t)
𝑣i

,

li(t)
𝑣i

]
≠ ∅ (4.11)

and there exist i, j ∈  such that 𝑣i(t) ∈ [𝑣min
i , 𝑣i] and

𝑣j(t) ∈ [𝑣j, 𝑣
max
j ], then the inequality 𝜏i(t) ≥ 𝜏j(t)must hold.
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Proof : We prove this statement using contradiction method.
Suppose that 𝜏i(t) < 𝜏j(t) is true. Then

li(t)
𝑣i

≤
li(t)
𝑣i(t)

= 𝜏i(t) < 𝜏j(t) =
lj(t)
𝑣j(t)

≤
lj(t)
𝑣j

,

which means that
[

li(t)
𝑣i
,

li(t)
𝑣 i

]
∩
[

lj(t)
𝑣j
,

lj(t)
𝑣

j

]
= ∅ at time t. This

is contradicted with the assumption that ∩n
i=1

[
li(t)
𝑣i
,

li(t)
𝑣i

]
≠ ∅.

Therefore, 𝜏i(t) ≥ 𝜏j(t)must hold. ◾

Lemma 4.4.1 indicates that if the intersection of the feasible
sets of the ETAs is not empty, the agents whose velocity is close
to the minimum (𝑣i(t) ∈ [𝑣min

i , 𝑣i]) will have greater ETAs than
those agents with almost maximal velocity (𝑣i(t) ∈ [𝑣i, 𝑣

max
i ]).

This lemma will be often used in the following proofs, with
which we are able to present the first result in this chapter.

Theorem 4.4.2 If (4.11) holds for all t ∈ [0,T∗] using the con-
sensus protocol in equation (4.7), then 𝜏i(t) − 𝜏j(t) → 0 for any
i, j ∈  as T∗ → ∞ and t → ∞.

Proof : In the following discussion, we drop the index t if
it is clear in context. Let zi(t) =

∑
j∈i

(𝜏j(t) − 𝜏i(t)). Then
z(t) = −L𝜏(t), where L is the Laplacian of the graph. Consider
the potential function V (𝜏) = 1

2
𝜏
⊤L𝜏 .

V̇ = 𝜏
⊤L�̇� = 𝜏

⊤L

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−1 −
𝜏1

𝑣1
�̇�1

⋮

−1 −
𝜏n

𝑣n
�̇�n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Since L𝟏n = 0, the preceding equation can be further derived as

V̇ = 𝜏
⊤L

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−
𝜏1

𝑣1
�̇�1

⋮

−
𝜏n

𝑣n
�̇�n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= (−z1,… ,−zn)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−
𝜏1

𝑣1
�̇�1

⋮

−
𝜏n

𝑣n
�̇�n

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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=
n∑

i=1
zi ⋅

𝜏i

𝑣i
⋅ Proj [𝑣min

i ,𝑣
max
i ]

(
𝑣i,−

c𝑣i

𝜏i
zi

)
.

Let

(t) =
{

i ∈  | fi(𝑣i) > 0 and
𝜕fi(𝑣i)
𝜕𝑣i

(
−

c𝑣i

𝜏i
zi

)
> 0
}

,

where fi is defined in (4.9). Then

V̇ =
∑

i∈(t)
−z2i c(1 − fi(𝑣i)) −

∑

i∈∕(t)
cz2i .

This inequality implies that 𝜏(t) will converge to the equilibrium
𝜏
∗ = (𝜏∗1 ,… , 𝜏

∗
n ), where agent i satisfies either

𝑣
∗
i ∈ {𝑣min

i , 𝑣
max
i } (⇔ fi(𝑣∗i ) = 1), or

𝜏
∗
i = 1
|i|

∑

j∈i

𝜏
∗
j (⇔ z∗i = 0), (4.12)

and 𝑣
∗
i ∈ ℝ+ is the corresponding velocity of agent i.

We now show that 𝜏
∗
i = 1

|i|

∑
j∈i

𝜏
∗
j for all i ∈  using

contradiction method. Suppose that the set Λ = {i ∈  | 𝜏∗i
− 1
|i|

∑
j∈i

𝜏
∗
j ≠ 0} is not empty. According to the afore-

mentioned analysis, we have 𝑣
∗
i ∈ {𝑣min

i , 𝑣
max
i } for any

i ∈ Λ. Without the loss of generality, assume that the
set Λm = {i ∈ Λ | 𝑣∗i = 𝑣

min
i } has at least one element. Let

i0 = argmaxi∈Λm
𝜏
∗
i . Then the inequality

𝜏
∗
i0
<

1
|i0 |

∑

j∈i0

𝜏
∗
j (4.13)

must hold; otherwise, if 𝜏∗i0 >
1
|i0 |

∑
j∈i0

𝜏
∗
j , then −

𝑣
∗
i0

𝜏
∗
i0

∑
j∈i0

(𝜏∗j
− 𝜏

∗
i0
) > 0, given 𝜏i0 (t) > 0 over [0,T∗). Since 𝑣∗i0 = 𝑣

min
i0

, we have

fi0(𝑣
∗
i0
) = 1 > 0

𝜕fi0 (𝑣i0)
𝜕𝑣i0

|||||𝑣i0=𝑣
min
i0

=
𝑣
min
i0

− 𝑣
max
i0

𝜖(𝜌max
i0

)2
< 0.

Therefore,

𝜕fi0 (𝑣i0)
𝜕𝑣i0

|||||𝑣i0=𝑣
min
i0

⎛
⎜
⎜
⎝
−

c𝑣∗i0
𝜏
∗
i0

∑

j∈i0

(𝜏∗j − 𝜏
∗
i0
)
⎞
⎟
⎟
⎠
< 0.
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By the definition of the projection-based operator in (4.8), we
know

�̇�i0 = Proj[𝑣min
i0

,𝑣
max
i0

]

⎛
⎜
⎜
⎝
𝑣i0 ,−

c𝑣∗i0
𝜏
∗
i0

∑

j∈i0

(𝜏∗j − 𝜏
∗
i0
)
⎞
⎟
⎟
⎠

= −
c𝑣∗i0
𝜏
∗
i0

∑

j∈i0

(𝜏∗j − 𝜏
∗
i0
) > 0.

It implies that 𝑣i0(t) will move away from 𝑣
min
i0

, toward the cen-
ter of [𝑣min

i0
, 𝑣

max
i0

], which indicates that 𝑣∗i0 = 𝑣
min
i0

is no longer the
equilibrium.
With inequality (4.13), let i1 ∈ i0 be the agent satisfying

i1 = argmax
j∈i0

𝜏
∗
j . (4.14)

Obviously, 𝜏∗i0 < 𝜏
∗
i1
must hold. By the contrapositive statement of

Lemma 4.4.1, we know that 𝑣∗i1 ∉ (𝑣i1 , 𝑣
max
i1

]. Meanwhile, by the
definition of i0, 𝑣∗i1 ≠ 𝑣

min
i1

. Therefore, 𝑣∗i1 ∉ {𝑣min
i1

, 𝑣
max
i1

} and we
have

𝜏
∗
i1
= 1
|i1 |

∑

j∈i1

𝜏
∗
j (4.15)

according to (4.12). Since we consider an undirected graph, i0 ∈
i1 . With 𝜏

∗
i0
< 𝜏

∗
i1
, we know that there must exist i2 ∈ i1 such

that
𝜏
∗
i1
< 𝜏

∗
i2

according to (4.15). Keeping such reasoning, since the graph is
connected, we can sort all 𝜏∗i greater than 𝜏

∗
i0
, starting from 𝜏

∗
i0

and ending at maxi∈𝜏
∗
i . Then there always exists ik ∈ ik−1

that
satisfies

𝜏
∗
i0
< · · · < 𝜏

∗
ik−1

< 𝜏
∗
ik

(4.16)
𝜏
∗
ik
≥ 𝜏

∗
j ,∀j ∈ ik

𝜏
∗
ik−1

∈ ik
.

Obviously,

𝜏
∗
ik
>

1
|ik
|

∑

j∈ik

𝜏
∗
j ,
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which means that 𝑣∗ik
∈ {𝑣min

ik
, 𝑣

max
ik

} according to (4.12). By the
definition of i0, we know that 𝑣∗ik

= 𝑣
max
ik

. However, by Lemma
4.4.1, if 𝑣i0 (t) ∈ [𝑣min

i0
, 𝑣

i0
) and 𝑣ik

(t) ∈ (𝑣ik
, 𝑣

max
ik

], 𝜏∗i0 ≥ 𝜏
∗
ik
must

hold, which is contradicted with inequality (4.16). Similar anal-
ysis applies to the case when the set {i ∈ Λ | 𝑣∗i = 𝑣

max
i } has at

least one element. Therefore, we conclude that 𝜏∗i = 1
|i|

∑
j∈i

𝜏
∗
j

for all i ∈  , which means L𝜏∗ = 0. It implies 𝜏
∗
i = 𝜏

∗
j for any

i, j ∈  . ◾

Remark 4.4.3 Equation (4.11)means that the ETA feasible sets
of agents at least have one shared ETA that the agents can agree
with. A more general condition is that there exists t̂ ∈ [0,T∗)
such that (4.11) holds over [t̂,T∗], which implies that (4.11) ulti-
mately holds. However, we would like to point out that this more
general conditionwill not significantly change the analysis in this
chapter since we can always treat t̂ as the initial time. Another
important thing worth mentioning is that the assumption of
(4.11) can be relaxed in the later discussion where verifiable
conditions are presented to enforce the satisfaction of (4.11).

Theorem 4.4.2 shows asymptotic property of the consensus
algorithm. Notice that it will take infinite amount of time for
agents to converge to the exact equilibrium. We know that
to have simultaneous arrival, consensus on the ETA must be
achieved before any actual arrival. Since the algorithm needs
infinite amount of time to reach the equilibrium, the actual
arrival time theoretically should also be infinity so that it is
always later than the moment when consensus is achieved. That
is why we introduce the condition T∗ → ∞, which is to guaran-
tee the well-poseness of the algorithm, that is, to make sure that
the remaining path li(t) and the ETA 𝜏i(t) are always greater
than 0 during the converging process. Otherwise, if li(t) < 0 for
example, it means that agent i has passed its destination, which
does not make sense in simultaneous arrival. In fact, T∗ → ∞
implies that the path of each agent, li(t), is arbitrarily long.
In practice, however, the length of the paths is always finite.

It requires agents to achieve consensus in finite amount of time.
Instead of reaching the exact equilibrium, a more practical
way is to ensure that 𝜏i(t) − 𝜏j(t) enters and stays in a small
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neighborhood of the origin before any actual arrival happens.
Once 𝜏i(t) − 𝜏j(t) enters such sets, we claim that consensus is
achieved. Such an approach can be referred to 𝜀-consensus
[26]. In the following sections, we further explore this idea with
discussions on the convergence time of the consensus algorithm
and the feasibility of the simultaneous arrival problem.

4.5 Convergence Time

In this section, we develop bounds on the convergence time
when 𝜀-consensus can be achieved. Before presenting the
main results, we first introduce the following definition of
𝜀-consensus.

Definition 4.5.1 A protocol makes the agents reach
𝜀-consensus in finite time if there exist a finite time T > 0
and a small positive constant 𝜀 such that the state 𝜏(t) ∈ Φ for
all t ≥ T , where

Φ ≜ {𝜏 ∈ ℝn | V (𝜏) ≤ 𝜀} and (4.17)
V (𝜏) = 𝜏

⊤L𝜏. (4.18)

Notice that V (𝜏) =
∑

i∈
∑

j∈i
(𝜏j − 𝜏i)2. If 𝜏(t) stays in the set

Φ, |𝜏j(t) − 𝜏i(t)| will be bounded by a very small number. In that
case, we say that consensus on the ETA is reached. One impor-
tant thing for the simultaneous arrival problem is that the time
when all 𝜏i(t) enters the set Φ, denoted as T∗, should be earlier
than any actual arrival happens. To fulfill this objective, we need
to study when 𝜏(t) will enter the set Φ on the one hand. On the
other hand, we need to estimate when agents will arrive at their
destinations.
To address the question of when 𝜏(t) enters Φ, we study the

convergence rate of the consensus protocol and derive an upper
bound on the actual entering time T∗. We start from the fol-
lowing lemma, which provides the convergence rate of V over
a short time interval.

Lemma 4.5.2 Given t0 ∈ [0,T∗] and 𝛿0 ∈ ℝ+, assume that
(4.11) holds for any t ∈ [t0,T∗] and ∥ V (𝜏(t0)) ∥≤ 𝛿0. Given any
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positive constant 𝛿1 < 𝛿0, 𝜏i(t) will enter the set {𝜏 | V (𝜏) ≤ 𝛿1}
and t1 − t0 ≤

𝛿0−𝛿1
c 𝜉

2 , where t1 > t0 is the entering time instant,

𝜉 =
√
𝛿1

d
√

n𝜎max(L†)
, (4.19)

d = max
i0i1···ik∈

|i0 |

(

1 +
k−1∑

m=1

m∏

j=1
(|ij
| − 1)

)

, (4.20)

where L† is the pseudoinverse matrix of L satisfying L = LL†L,
and  denotes the set of all paths in the graph.

Proof : Let zi(t) =
∑

j∈i
(𝜏j(t) − 𝜏i(t)). Consider the time

derivative of V (𝜏) = 𝜏
⊤L𝜏 :

V̇ ≤ −
∑

i∈
bi(t)zi(t)2, (4.21)

where bi(t) = c(1 − fi(𝑣i(t))) if
i ∈ (t) =
{

i ∈  | fi(𝑣i(t)) > 0 and
𝜕fi(𝑣i)
𝜕𝑣i

(
−

c𝑣i(t)
𝜏i(t)

zi(t)
)

> 0
}

;

otherwise bi(t) = c.
Let iM = argmaxi 𝜏i and im = argmini 𝜏i. There are two possi-

ble cases: (i) bi ≠ c for both i = im and i = iM; (ii) bi = c for some
i ∈ {im, iM}.
Case I: We show that Case I does not hold, using con-

tradiction method. Suppose that bim
≠ c and biM

≠ c. Then
im, iM ∈ (t). First, consider im. The relation im ∈ (t) means
that 𝑣im

∈ (𝑣im
, 𝑣

max
im

] ∪ [𝑣min
im

, 𝑣im
) and

𝜕fim
(𝑣im

)
𝜕𝑣im

(

−
c𝑣im

𝜏im

zim

)

> 0. (4.22)

By the definition of im, we have
1
|im
|

∑

j∈im

𝜏j > 𝜏im
,

which means zim
> 0. Applying this inequality into inequality

(4.22) yields 𝜕fim (𝑣im )
𝜕𝑣im

< 0 and therefore 𝑣im
∈ [𝑣min

im
, 𝑣

im

) by the
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definition of fim
in (4.9). Similarly, we have 𝑣iM

∈ (𝑣iM
, 𝑣

max
iM

].
By Lemma 4.4.1, we know that 𝜏im

≥ 𝜏iM
must hold, which is

contradicted with the fact 𝜏im
< 𝜏iM

according to the definitions
of 𝜏im

and 𝜏iM
. Therefore, either bim

= c or biM
= c holds, or both.

Case II:Obviously, when 𝜏(t) enters the set {𝜏 | V (𝜏) ≤ 𝛿1}, it
will stay inside the set according to inequality (4.21). Let us con-
sider V̇ when V (𝜏(t)) > 𝛿1. Define Λt = {i ∈  | bi(t) = c}. By
the aforementioned analysis,Λt is always nonempty over [0,T∗].
When V (𝜏(t)) ≥ 𝛿1, we have

𝜎max(L†)z⊤z ≥ z⊤L†z = 𝜏
⊤L𝜏 = V (𝜏) ≥ 𝛿1,

where L† is the pseudoinverse matrix of L. Therefore, ∥ z(t) ∥≥√
𝛿1

𝜎max(L†)
, which means that there exists at least an i ∈  such

that

|zi(t)| ≥ 𝜂 ≜

√
𝛿1

n𝜎max(L†)
.

If i ∈ Λt , we know V̇ ≤ −c𝜂2 by inequality (4.21).
Consider the case when |zi| < 𝜂 for any i ∈ Λt . Then any i sat-

isfying |zi| ≥ 𝜂 belongs to ∕Λt . Without the loss of generality,
assume that at time t there exists at least an i ∈ ∕Λt such that
𝑣i ∈ (𝑣i, 𝑣

max
i ] and |zi| ≥ 𝜂. Let

Θt = {i ∈ ∕Λt | 𝑣i(t) ∈ (𝑣i, 𝑣
max
i ]and |zi(t)| ≥ 𝜂},

i0 = argmin
i∈Θt

𝜏i,

Ω = {j ∈  | 𝜏j < 𝜏i0}.

Notice that any i ∈  satisfying 𝑣i ∈ [𝑣min
i , 𝑣 i) and bi ≠ c does

not belong toΩ according to Lemma 4.4.1.Therefore, for any j ∈
Ω we know either bj = 1 or 𝑣j ∈ (𝑣j, 𝑣

max
j ] ∧ bj ≠ 1, besides |zj| <

𝜂.

Since i0 ∉ Λt , whichmeans bi0 ≠ c, we have 𝜕f (𝑣i0 )
𝜕𝑣i0

(
− c𝑣i0

𝜏i0

zi0

)
>

0. Notice that 𝑣i0 ∈ (𝑣i0 , 𝑣
max
i0

] implies 𝜕fi(𝑣i0 )
𝜕𝑣i0

> 0. Then

− c𝑣i0

𝜏i0

zi0 > 0, which means zi0 =
∑

j∈i0
(𝜏j − 𝜏i0) < −𝜂 < 0.

There exists at least i1 ∈ Ω ∩ i0 such that 𝜏i1 − 𝜏i0 < − 𝜂

|i0 |
.
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If bi1 ≠ c, which means 𝑣i1 ∈ (𝑣i1 , 𝑣
max
i1

], we have
∑

j∈i1
(𝜏j − 𝜏i1 ) < 0 following the same analysis for i0. Then

∑

j∈i1∕{i0}
(𝜏j − 𝜏i1 ) < 𝜏i1 − 𝜏i0 < − 𝜂

|i0 |
. (4.23)

Therefore, there exists at least i2 ∈ Ω ∩ i1∕{i0} such that 𝜏i2 −
𝜏i1 < − 𝜂

|i0 |(|i1 |−1)
. Otherwise, if bi1 = 1 and |zi1 | > 𝜉, then V̇ ≤

−c 𝜉
2; if bi1 = 1 and |zi1 | < 𝜉, then −𝜉 <

∑
j∈i1

(𝜏j − 𝜏i1 ) < 𝜉. So
∑

j∈i1∕{i0}
(𝜏j − 𝜏i1 ) < 𝜏i1 − 𝜏i0 + 𝜉 < − 𝜂

|i0 |
+ 𝜉.

Therefore, there exists at least i2 ∈ Ω ∩ i1∕{i0} such that

𝜏i2 − 𝜏i1 < − 𝜂

|i0 |(|i1 | − 1)
+ 𝜉

|i1 | − 1
.

Combining this inequality and inequality (4.23), we know that
either the aforementioned inequality holds or V̇ ≤ −c 𝜉2. Keep-
ing such reasoning, we reach some ik such that either

𝜏ik
− 𝜏ik−1

< − 𝜂

|i0 |
∏k−1

j=1 (|ij
| − 1)

+ 𝜉

k−1∑

m=1

1
∏k−1

j=m(|ij
| − 1)

(4.24)

𝜏ik
≤ 𝜏j, ∀j ∈ ik

(4.25)

or |zik
| ≥ 𝜉, which implies V̇ ≤ −c 𝜉

2. (To guarantee inequality
(4.25), we can always keep this process until the smallest 𝜏

∗
i

is reached where inequality (4.25) is trivially satisfied.) The
aforementioned inequalities imply

zik
=
∑

j∈ik

(𝜏j − 𝜏ik
) ≥ 𝜏ik−1

− 𝜏ik
(because of inequality (4.25))

>

𝜂

|i0 |
∏k−1

j=1 (|ij
| − 1)

− 𝜉

k−1∑

m=1

1
∏k−1

j=m(|ij
| − 1)

≥ 𝜉 > 0.
So |zik

| ≥ 𝜉 holds. Notice that even if 𝑣ik
∈ (𝑣ik

, 𝑣
max
ik

], we have
𝜕f (𝑣ik

)

𝜕𝑣ik

(
−

c𝑣ik

𝜏ik

zik

)
< 0, which implies bik

= 1. So, overall we have



�

� �

�

100 Cooperative Control of Multi-Agent Systems

V̇ ≤ −c 𝜉2 for the worst-case when d is maximized. Given this
decreasing rate, we know that t1 − t0 ≤

𝛿0−𝛿1
c 𝜉

2 . ◾

With Lemma 4.5.2, we have the following result on the conver-
gence time for V to decrease from V (𝜏(0)) to 𝜀.

Proposition 4.5.3 Given a positive constant 𝜀, let T∗ be the
time when 𝜏(t) enters the setΦ. If (4.11) holds for all t ∈ [0,T∗],
then

T∗
≤ T ≜

d2n𝜎max(L†)
c

ln
(

V (𝜏(0))
𝜀

)
. (4.26)

Proof : Partition the interval [𝜀,V (𝜏(0))] into p pieces
𝜀 = 𝜃0, 𝜃1,… , 𝜃p = V (𝜏(0)) with Δ𝜃 = 𝜃k − 𝜃k−1 =

V (𝜏(0))−𝜀
p

being the length of each subinterval. By Lemma 4.5.2, it takes at

most (𝜃k−𝜃k−1)d2n𝜎max(L†)
c𝜃k−1

for V to decrease from 𝜃k to 𝜃k−1. Thus,

T∗
≤

p∑

k=0

d2n𝜎max(L†)Δ𝜃
c𝜃k−1

.

Letting Δ𝜃 → 0, we have

T∗
≤ lim

Δ𝜃→0

p∑

k=0

d2n𝜎max(L†)Δ𝜃
c𝜃k−1

=
d2n𝜎max(L†)

c ∫

V (𝜏(0))

𝜀

1
𝜃

d𝜃

=
d2n𝜎max(L†)

c
ln
(

V (𝜏(0))
𝜀

)
.

◾

Remark 4.5.4 If the parameter d is large, the upper bound
on T∗ will be large, which means that it might take more time
for agents to reach consensus on the ETA. The parameter d
is completely determined by the topology of the graph. To be
more precise, it is determined by the degrees of agents. For
instant, if the connected graph of n agents forms a circle where
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the degree of each agent is 2, then d = 2n. Notice that for a
path of length k, i0, i1,… , ik , d is only affected by the degrees of
the first k agents. Since d is developed for the worst case, the
resulting upper bound T might be conservative. Fortunately, we
can still reduce T by setting a large c.

Remark 4.5.5 Notice that the bound on T∗, which is T , is also
affected by 𝜎max(L†). Since L† is the pseudoinverse of L, we have
𝜎max(L†) = 1

𝜆2(L)
, where𝜆2(L) is the smallest positive eigenvalue of

L. It is well known that 𝜆2(L) determines the connectivity of the
graph. By the definition of T in (4.26), strong connectivity will
result in large 𝜆2(L) and therefore small 𝜎max(L†) that helps to
reduce T . Meanwhile, it will lead to large d that may cause large
T . This is different from the case of unconstrained consensus,
where strong connectivity implies fast convergence.The relation
between connectivity and T will be an interesting research topic
to be investigated in the future.

4.6 Feasibility

This section discusses feasibility of the simultaneous arrival
problem: given a set of initial conditions, is simultaneous
arrival achievable under the proposed consensus protocol?
Although Proposition 4.5.3 shows the convergence time, the
result is based on the assumption of (4.11). The question that
follows naturally is whether this assumption holds given the
initial conditions. Obviously, we never expect the assumption
being violated before 𝜀-consensus is reached. Meanwhile, it
is unexpected that any agent arrives before 𝜀-consensus is
achieved. Therefore, the entering time T∗ must be smaller than
(i) the time when (4.11) is violated; and (ii) the time when the
first agent arrives at its destination.
We first study the time interval when (4.11) holds, starting

from the bounds on li(t). By (4.1), we know that −𝑣max
i ≤ ̇li ≤

−𝑣min
i . Therefore, we have

li(0) − 𝑣
max
i t ≤ li(t) ≤ li(0) − 𝑣

min
i t,
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which indicates

li(0) − 𝑣
max
i t

𝑣i
≤

li(t)
𝑣i

≤
li(0) − 𝑣

min
i t

𝑣i

li(0) − 𝑣
max
i t

𝑣i
≤

li(t)
𝑣i

≤
li(0) − 𝑣

min
i t

𝑣i
.

With these bounds, the feasible set of the time-to-arrival[
li(t)
𝑣
max
i
,

li(t)
𝑣
min
i

]
satisfies

[
li(0) − 𝑣

min
i t

𝑣i
,

li(0) − 𝑣
max
i t

𝑣i

]

⊆

[ li(t)
𝑣i

,

li(t)
𝑣i

]

⊆

[
li(0) − 𝑣

max
i t

𝑣i
,

li(0) − 𝑣
min
i t

𝑣i

]

. (4.27)

Obviously, if∩n
i=1

[
li(0)−𝑣min

i t
𝑣i

,

li(0)−𝑣max
i t

𝑣i

]
≠ ∅, then∩n

i=1

[
li(t)
𝑣i
,

li(t)
𝑣i

]
≠ ∅.

Lemma 4.6.1 If

max
i∈

li(0) − 𝑣
min
i t

𝑣i
≤ min

i∈

li(0) − 𝑣
max
i t

𝑣i
, (4.28)

then ∩n
i=1

[
li(0)−𝑣min

i t
𝑣i

,

li(0)−𝑣max
i t

𝑣i

]
≠ ∅.

Proof : The proof is straightforward. If the maximum of the
lower bounds of the sets is not greater than the minimum of the
upper bounds, then the intersection of these sets is nonempty.

◾

To enforce inequality (4.28) holds at least over a short period,
we need the condition that

max
i∈

li(0)
𝑣i

< min
i∈

li(0)
𝑣i

. (4.29)

This condition guarantees that inequality (4.28) holds when t =
0. Let T∩ denote the time when inequality (4.28) is violated for
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the first time, that is,

T∩ ≜ max

{

s ∈ ℝ+
|||||
max
i∈

li(0) − 𝑣
min
i t

𝑣i

≤ min
i∈

li(0) − 𝑣
max
i t

𝑣i
, ∀t ∈ [0, s]

}
.

Notice that when T∗
< T∩, consensus on the ETA is achieved

before the intersection of the ETA feasible sets becomes empty.
Another important point is that consensus is expected before

any agent arrives at its destination (li(t) = 0). Obviously, the
objective can be achieved if T∗

< mini∈
li(0)
𝑣
max
i
, where li(0)

𝑣
max
i

is the
shortest time for agent i to arrive at the destination. According
to these observations, we summarize the main result in the
following theorem:

Theorem 4.6.2 Consider the system defined by (4.1)–(4.6)
with a connected communication graph. Assume that
inequality (4.29) holds and the positive constant c is cho-
sen such that T < Tm, where T is defined in (4.26) and
Tm = min

{
mini∈

li(0)
𝑣
max
i
,T∩

}
. Then simultaneous arrival can

be achieved, that is, the ETA 𝜏i(t) will converge into the set Φ
defined in (4.17) before any agent’s arrival.

Proof : By the definition of Tm, we know that inequality (4.28)
holds for any t ∈ [0,Tm] and therefore for any t ∈ [0,T] since
T < Tm.Therefore, by Lemma 4.6.1,∩n

i=1

[
li(0)−𝑣min

i t
𝑣i

,

li(0)−𝑣max
i t

𝑣i

]
≠ ∅

holds over [0,T], which implies ∩n
i=1

[
li(t)
𝑣i
,

li(t)
𝑣i

]
≠ ∅ by (4.27). By

Proposition 4.5.3, 𝜏i(t) goes into the setΦ atT∗, which is less than
T . Notice that the definition of Tm ensures that li(0) ≥ 0 for all
t ∈ [0,Tm]. Since T∗ ≤ T < Tm, we can conclude that consensus
on the ETA can be achieved before any agent’s arrival. ◾

Remark 4.6.3 By the definition of T in (4.26), it can be
arbitrarily small by enlarging c. Thus, the condition T < Tm can
always be satisfied. The most critical condition for feasibility is
then inequality (4.29). Notice that if 𝜖 → 0 in (4.10), we have
𝑣i → 𝑣

max
i and 𝑣i → 𝑣

min
i . Therefore, inequality (4.29) actually
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places the requirement on the initial condition, in terms of
the length of the paths, and the maximal/minimum velocity.
Basically, Theorem 4.6.2 says that if the initial condition satisfies
inequality (4.29), simultaneous arrival can always be achieved
under our consensus protocol with c large enough.

4.7 Simulation

This section presents the simulation results. We first consider
the system with four agents, where the lengths of the paths are

l(0) = {6, 8, 5, 9}.

The velocity of each agent satisfies

𝑣1 ∈ [1, 5], 𝑣2 ∈ [2, 8],
𝑣3 ∈ [1, 5], 𝑣4 ∈ [2, 7].

We choose 𝜖 = 0.01. Then 𝑣i and 𝑣i are computed as follows:

𝑣1 = 1.0099, 𝑣2 = 2.0149, 𝑣3 = 1.0099, 𝑣4 = 2.0124,
𝑣1 = 4.9901, 𝑣2 = 7.9851, 𝑣3 = 4.9901, 𝑣4 = 6.9876.

Equation (4.29) can be verified as

max
i∈

li(0)
𝑣i

= 1.2880 < 3.9704 = min
i∈

li(0)
𝑣i

.

The communication graph is simply a chain, where agent i can
communicate with agent i − 1 and i + 1 except that agent 1 and
N only talk to agent 2 andN − 1, respectively.We set 𝜀 = 0.1, c =
40, and 𝑣i(0) = 𝑣i, the following parameters can be computed:

d = 4, Λmax(L†) = 1.7071, T = 0.5434,

T∩ = 0.7290, min
i∈

li(0)
𝑣
max
i

= 1,

which verifies the condition

T < Tm = min
{
min
i∈

li(0)
𝑣
max
i

,T∩

}
.

The simulation results are presented in Figures 4.1–4.3.
Figure 4.1 shows that history of the velocity of each individual
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Figure 4.1 The history of the velocity with c = 40.
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Figure 4.2 The history of the ETA with c = 40.
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Figure 4.3 The history of the remaining paths with c = 40.

agent, which eventually converges to a constant. Notice that the
velocity of agent 4 reaches its maximum from 𝑣4 since its path
is the longest. Figure 4.2 plots the history of the ETA. It can be
seen that the ETA converges after t = 0.6, which is close to the
derived bound on T∗ (T = 0.5434)1. The same observation can
also be found in Figure 4.1. Figure 4.3 shows the history of the
remaining path. We can see that eventually agents complete
their trips at the same time.
When the parameter c is changed to be 1, simultaneous

arrival cannot be achieved any more from Figures 4.4–4.6. From
Figure 4.6, we can find that when agent 2 first arrives, agents 1
and 3 are relatively close to their destinations, but agent 4 still
has a long distance to travel. Therefore, from Figure 4.4, we can
see that agent 2 reduces its velocity to wait for others. So does
agent 3 with a smaller decreasing rate. Agent 4 already reaches
the maximum of its velocity, trying to catch up with others.

1 Of course, T heavily depends on the size of the ultimate set determined by 𝜀.
If we reduce 𝜀, T will be larger.
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Figure 4.4 The history of the velocity with c = 1.
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Figure 4.5 The history of the ETA with c = 1.
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Figure 4.6 The history of the remaining paths with c = 1.

In this case, the convergence rate of the consensus is not fast
enough and arrival happens earlier than consensus is reached.
The third simulation considers time-varying constrains on

the velocity. The disturbances are added to affect the velocity
constraints as follows:

𝑣1 ∈ [1 +𝑤

1
(t), 5 +𝑤1(t)], 𝑣2 ∈ [2 +𝑤

2
(t), 8 +𝑤2(t)],

𝑣3 ∈ [1 +𝑤

3
(t), 5 +𝑤3(t)], 𝑣4 ∈ [2 +𝑤

4
(t), 7 +𝑤4(t)],

where 𝑤

i
(t) and 𝑤i(t) are randomly generated satisfying uni-

form distributed over [−0.3, 0.3]. the parameter c is set back
to 40. Figures 4.7–4.9 show the simulation results. We can find
in Figures 4.8 and 4.9 that simultaneous arrival can still be
achieved. However, in Figure 4.7, there is a small oscillation in
the velocity of agent 4 at the beginning, because at that time the
velocity is close to its upper limit and tends to increase while the
maximum velocity happens to be reduced by the disturbance.
The velocities of other agents are away from the boundary. So
they are not affected by disturbances. Another observation is
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Figure 4.7 The history of the velocity with disturbances.
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Figure 4.8 The history of the ETA with disturbances.
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Figure 4.9 The history of the remaining paths with disturbances.

that although consensus is reached, the velocity converges to a
different equilibrium, compared with the first simulation.

4.8 Summary

The simultaneous arrival problem with velocity constraints is
formulated in this chapter as a continuous-time consensus prob-
lem. To deal with constraints, we introduce the projection-based
operator to smooth the saturation effect. With this operator, we
presented a continuous-time consensus algorithm, of which,
we show the convergence and derive the convergence rate. By
applying these results in the simultaneous arrival problem, we
obtain a sufficient condition on the problem feasibility as shown
in (4.29). There are still many open problems to be solved. For
instance, when deriving the convergence time, we consider
𝜀-consensus, which means that as long as |𝜏i(t) − 𝜏j(t)| ≤ 𝜀, we
claim that consensus on the ETA is reached. An alternative is
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to consider finite-time consensus, where the exact consensus
will be achieved [27]. Also, the convergence rate might be
conservative since it considers the worst-case over the entire
runtime. A less conservative convergence rate is expected in the
future work.
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5.1 Introduction

The weapon–target assignment (WTA) is a problem that
assigns defensive weapons appropriately to offensive targets to
minimize the damage of own-force assets (called asset-based
WTA) [1] or to maximize the damage of offensive targets (called
target-basedWTA) [2].TheWTAproblem can be formulated as
amixed-integer nonlinear program (MINLP), which is known to
be NP-complete [3]; thus, the computational cost exponentially
blows up as the number of targets and the defensive weapons
increases. Even for a small-sized WTA (e.g., with 20 weapons
for 20 targets), an exact algorithm has not been successfully
developed [4].
Therefore, most previous work has focused devising heuristics

(or meta-heuristic) methods for the WTA problem such as ant
colony optimization (ACO) [5], particle swarm optimization
(PSO) [6], Tabu search (TS) [7, 8], simulated annealing (SA)
[9], and genetic algorithm (GA) [10]. While the aforementioned
work just implemented the generic optimization methods to
WTAs, there have also been approaches that adapt/combine
meta-heuristics methods tailored toWTAs. ACO is adapted for
solving general WTA problem [11], and the search performance
of GA algorithms are enhanced by embedding ACO to have
locally optimal offspring [12]. In [13], the WTA problem is
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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solved with basic idea of PSO, called hybrid PSO algorithm.
And in [14], the advantages of PSO and GA are combined to
obtain rapid convergence and higher solution precision. In [15],
TS is utilized to improve the decision tree to solve the naval
warfare resource management problem, which is similar to
WTA problem. Xin et al. [16] proposed TS-based algorithms
to solve a generic asset-based DWTA problem. Lee et al. [17]
proposed a GA with greedy eugenics to apply to general WTA
problems. Hong et al. [18] proposed a heuristic algorithm to
improve a GA that generates the initial population. In [19],
GA, TS, SA, and variable neighborhood search combinatorial
optimization techniques are applied to the WTA problem and
their results are compared. A network flow-based construction
heuristic and a very large-scale neighborhood (VLSN) search
algorithm was suggested by Ahuja et al. [4].
WTA problems can often be categorized into two

groups—static WTA (SWTA) [20] and dynamicWTA (DWTA)
[21]. This categorization occurs with the difference of whether
an information feedback between previous and next assignment
stage exists. In other words, the DWTA problem is a general-
ization of its static counterpart; a method for the SWTA can be
utilized as a subroutine of the dynamic case [4]. In the general
SWTA problem, it is assumed that every parameter for agents,
targets, and defensive missiles is fixed, and all of the defensive
weapons are launched simultaneously. This simplified setting
may not be appropriate to present a real-world engagement
situation, in which some type of rules of engagements need to
be satisfied and geometric aspects of the weapon deployment
can make differences. One of the major factors this work
tries to focus on is the launching time of a defensive missile.
Usually, an aerial enemy target maneuvers at very high speed;
therefore, the length of the possible time interval for assigning
defensive missiles to the specific target is only from few to
tens of seconds. Also, the kill probability of the target by any
defensive weapons depends on time of engagement; there
exists the optimal launching time, which maximizes the kill
probability. If the defensive missile has not been assigned with
the optimal launching time, then the kill probability is expected
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to decrease as the assigned time gets further from the optimal
time. Hence, it is important to consider appropriate launching
time when assigning the defensive missiles to the targets. Here,
we define this kind of problem as time-dependent SWTA
(TSWTA) problem. Although there exist lots of research about
WTA problem, we are unaware of any studies that have con-
sidered the time-dependent reward in WTA problem. In these
days, with a high-powered radar, the model and the impact
point of each target can be predicted with a high degree of
accuracy.
In [22], the basic static (target-based)WTAproblemwas stud-

ied in the framework of combinatorial optimization theory, and
it was shown that the domain of the WTA problem constructs
a partition matroid with an objective function being monotone
nondecreasing. This chapter takes advantage of findings in
[22] and extends it to show that the TSWTA also exhibits the
monotonically nondecreasing property similar to other WTA
problems. This property allows for adoption of the greedy
maximization algorithm with provable suboptimality bound,
which is 1

1+𝜇
of the optimum with some positive number 𝜇.

The rest of the chapter is organized as follows: In Section 5.2,
the problem formulation is proposed to solve the TSWTA with
several constraints. The monotonically nondecreasing property
of the objective function is discussed in Section 5.3. Based on
this property, it is shown that the TSWTA can be formulated as
the problem, which maximizes the monotonically nondecreas-
ing function under a partitionmatroid constraint. In Section 5.4,
the details of the proposed algorithm are presented, while com-
putational results are reported in Section 5.5. Summary and con-
clusions are provided in Section 5.6.

5.2 Problem Formulation

For the purpose of this chapter, several terms are defined to
mean the following: An asset is a valuable property to be pro-
tected. A target is an object that threats an asset with a property
of destroying some portion of the aimed asset if finally impacts
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on it. To protect the given assets, defensive weapons (i.e., guided
missiles) are launched to intersect the aimed targets from one of
the weapon farms with a certain degree of probability that exists
in a time window to destroy the target (Figures 5.2, 5.3b, c).
From the decision-making perspective, each weapon farm plays
a role of decision-making agent; there are multiple of these
agents that cooperatively defense the assets by assigning their
resources. Figure 5.1 illustrates the engagement setup.
The TSWTA problem can be formulated as an MINLP with

the following set of variables and constraints, under the assump-
tion that the target–assets engagements are independent of
weapon–target engagements.

pt1,a1

mw3

mw2
mw1

γw3,t3

γw2,t2
γw1,t1

pt3,a3

pt2,a2

a1

a3

w1

t3

t2

t1

w2

w3

a2

Figure 5.1 Battlefield Diagram. The targets (three incoming missiles on the
upper right) are aimed to attack each asset (buildings at the bottom left)
along the arrows, and the defensive weapons (or interceptor missiles) from
each weapon farm (at the bottom) are launched to intercept targets along
the arrows and defend the assets. Each weapon farm may launch multiple
defensive weapons, although not depicted in the figure.
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5.2.1 Problem Variables

1) Input Parameters

T Set of all targets, t ∈ T .
A Set of all assets, a ∈ A.
W Set of all weapon farms, 𝑤 ∈ W .
M

𝑤
Set of all defensive weapons in weapon farm𝑤, m

𝑤
∈ M

𝑤
.

M Set of all weapons. M = (M1 ∪ M2 ∪… ∪ M|W |).
𝑣(a) Value of an asset a, 𝑣(a) ∈ ℝ+.
pt,a Target t’s destruction ratio for corresponding asset a,

pt,a ∈ [0, 1]. If a target t is not aimed to an asset a, then
pt,a is set to 0.

𝜏
d
𝑤

Launching time delay of a weapon farm 𝑤.
𝛾
𝑤,t(𝜏) Kill probability of target t by a missile launched from the

weapon farm𝑤. Here, 𝜏 is a missile launching time from a
weapon farm 𝑤. 𝛾

𝑤,t(𝜏) ∈ [0, 1], 𝜏 ∈ ℝ+

xa, xt , x𝑤. Position vector of asset a, target t, and weapon farm 𝑤

x ∈ ℝ2
,ℝ3

2) Decision Variables

𝜃
𝑤,t(m) ∈ 𝚯 Assignment of a missile m in weapon farm 𝑤. The

parameter “t” indicates that the weapon goes toward
the corresponding target. 𝜃

𝑤,t(m) ∈ {0, 1}. 𝜃
𝑤,t(m) = 1

if a missile m in weapon farm 𝑤 is assigned to target t,
otherwise 0

𝜏
𝑤
(m) ∈ T Scheduled launching time of a missile m in weapon

farm 𝑤. 𝜏
𝑤
(m) ∈ ℝ+

5.2.2 Constraints

The following constraints should be satisfied with the decision
of assignment:

1) Weapon assignment constraint
∑

t∈T
𝜃
𝑤,t(m) ≤ 1 ∀𝑤 ∈ W ,m ∈ M

𝑤
. (5.1)

Equation (5.1) states that each defensive weapon m can be
assigned to only single target.

2) Launching delay constraint

|𝜏
𝑤
(m1) − 𝜏

𝑤
(m2)| ≥ 𝜏

d
𝑤

∀𝑤 ∈ W ,m1,m2 ∈ M
𝑤
,m1 ≠ m2
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(5.2)

Equation (5.2) states that the gap of launching time between
missile m1 and m2 cannot be shorter than the weapon farm
𝑤’s launching time delay.

5.2.3 Objective Function

max J =
|A|∑

a=1

[

𝑣(a) ⋅
|T|∏

t=1

{

1 − pt,a

×

(
|W |∏

𝑤=1

|M
𝑤
|∏

m=1
(1 − 𝛾

𝑤,t(𝜏𝑤(m)) ⋅ 𝜃
𝑤,t(m))

)}]

.

(5.3)
The objective value J is the sum of asset values after defensive

weapons in weapon farms are assigned to corresponding targets.
Suppose the value of the asset a is 𝑣(a), and the target t is known
to attack the asset a with a destruction ratio pt,a. As the number
of the assigned defensive weapons to the target t increases and if
the targets t aim to the asset a, the termmultiplied with pt,a, that
is, the second line of the (5.3), becomes smaller, therefore the
value of J increases. Here, the kill probability 𝛾

𝑤,t depends on
the launching time 𝜏

𝑤
(m), so assigning the defensive weapons

to the target with appropriate time should be considered. And
𝜃
𝑤,t(m) represents that assigned defensive weapons are only con-
sidered when calculating the kill probability. The main purpose
is, by properly assigning weapons, to find the solution to max-
imize the overall survivability of the given assets threatened by
the offensive targets.

5.3 Properties of the Objective Function

In this section, it is shown that the problem formulated in
Section 5.2 is a maximization problem of a nondecreasing
function on a partition matroid (the definition of a matroid is
given later).1 By this, the lower bound of the value achieved by a
(sequential) greedy algorithm can be obtained.

1 In this section, the form of proof is referenced from [22].
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5.3.1 Preliminary—Greedy Algorithm

The greedy algorithm is a process to obtain an approximate
solution to a set selection problem with some respective objec-
tive function. The algorithm works in stages, as opposed to
simultaneously choosing a set, and picks the best (and feasible)
choice among possible alternatives at each stage. Thus, the
choice at each stage is locally optimal but may not result in the
optimal choice of the original set selection problem.
It has been known that the greedy algorithm produces the

optimal solution for the problems that satisfy the following two
properties: greedy choice property and optimal substructure
[23]. The first means that a prior selection does not affect the
result of future choices, and the second implies that an optimal
solution can be constructed efficiently from optimal solutions
of its subproblems.
Although the greedy algorithm does not guarantee solution

optimality unless the aforementioned two properties are sat-
isfied, it often produces a practically acceptable solution with
low computational complexity. In addition, for a certain class
of problems, we can prove that the greedy algorithm produces
a solution with guaranteeing the worst-case performance. The
following sections detail the derivation of the lower bound for
the WTA problem in this chapter.

5.3.2 Preliminary—Maximization of Set Function

Here, we focus on the following maximization problem. A
ground set X of n elements and a monotonically nondecreasing
set function f ∶ 2X → ℝ+ are given, and the object of the
problem is to find

max
S∈

f (S), (5.4)

where  ⊆ 2X is an independence family.
Matroid. A matroid is a pair  = (X,) where  ⊆ 2X is a

collection of independence family, satisfying (i) B ∈  and A ⊆ B
implies that A ∈ , and (ii) A,B ∈ , |A| < |B| implies that ∃i ∈
B∖A;A ∪ i ∈ .
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Partition Matroid. A matroid  = (X,) is a partition
matroid if X is partitioned into l sets X1,X2,… ,Xl with associ-
ated integers k1, k2,… , kl, and a set S ⊆ X is independent if and
only if |S ∩ Xi| ≤ ki.
Nondecreasing. A set function f is nondecreasing if f (A) ≤

f (B) for all A ⊆ B.
Submodular Function. A function f is submodular if

∀A ⊆ B ⊆ X and i ∈ X∖B, fi(A) ≥ fi(B) where fi(A) = f (A ∪
{i}) − f (A) and fi(B) = f (B ∪ {i}) − f (B).
Elemental Curvature. The elemental curvature of a mono-

tone nondecreasing function f is defined as

𝛼 = max
S⊂X,i,j∈X∖S,i≠j

fi(S ∪ {j})
fi(S)

. (5.5)

Or 𝛼 is the smallest value such that, for every S ⊂ X and i, j ∈
X∖S,

f (S ∪ {j} ∪ {i}) − f (S ∪ {j}) ≤ 𝛼[f (S ∪ {i}) − f (S)].
Here 𝛼 ∈ [0,+∞).

Theorem 5.3.1 Let X be a finite set and f ∶ 2X → ℝ+ a mono-
tone nondecreasing set function with f (∅) = 0 and elemental
curvature 𝛼. Then, the greedy algorithm achieves a 1

1+𝜇
approx-

imation for any matroid  = (X,), where 𝜇 = 𝛼 if 0 < 𝛼 ≤ 1,
and 𝜇 = 𝛼

K (1−𝛼K )
K(1−𝛼)

if 𝛼 > 1, and K is the cardinality of the largest
maximal independent sets.

Proof : Refer to [22], pp. 35–37. ◾

5.3.3 Weapon Target Assignment—Lower Bound
with Greedy Algorithm

Let the asset aimed by the target t be designated as a(t), and the
set of targets aimed at each asset a(t) as Ha (refer a in Section
5.2.1).
Defining a ground set X = {(t, 𝑤,m|t ∈ T ;𝑤 ∈ W ;m ∈ M},

, the independence family of X, is defined as follows:
 = {S ⊆ X ∶ (|S| ≤ |M|)∧

(∄m, t1 ≠ t2 ∶ (t1, 𝑤,m) ∈ S ∧ (t2, 𝑤,m) ∈ S)∧
(∄𝜏

𝑤
(m1),m1 ≠ m2 ∶ (t, 𝑤,m1) ∈ S ∧ (t, 𝑤,m2) ∈ S∧
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|𝜏
𝑤
(m1) − 𝜏

𝑤
(m2)| < 𝜏

d
𝑤
)}. (5.6)

Here,  follows the constraint equations described in
Section 5.2.2. Also define a function f on a subset S ∈ ,

f (S) =
|A|∑

a=1
𝑣(a) ⋅

[
∏

t∈Ha

{

1 − pt,a(t)

×

(
∏

(𝑤,m)∶(t,𝑤,m)∈S
(1 − 𝛾

𝑤,t(𝜏𝑤(m)))

)}

−
∏

t∈Ha

(1 − pt,a(t))

]

.

(5.7)
Note that there is a one-to-one correspondence between the

set S and the feasible solutions [𝚯;T] (set of decision variables
defined at Section 5.2.1) to the problem defined earlier, and
furthermore, the corresponding solutions have identical values.
Hence, the defined problem (Section 5.2, (5.3)) is equivalent to
solving maxS∈ f (S), Eq. (5.4).
And, assigning defensive weapons m ∈ M in each weapon

farm 𝑤 ∈ W to targets t ∈ T is essentially a set partition
problem, that is,  = (X,) is a partition matroid. Let X

𝑤,m =
{(1, 𝑤,m),… , (|T|, 𝑤,m)}, 𝑤 = 1,… , |W |,m = 1,… , |M

𝑤
| for

each 𝑤. It is apparent that X = X1,1 ∪… ∪ X1,M1
∪ X2,1 ∪… ∪

X|W |,|M|W ||
. Since each defensive weapon can only be assigned to

at most one target, ∀S ∈  and X
𝑤,m, we have |S ∩ X

𝑤,m| ≤ 1. It
follows that  is an independent set family and is a partition
matroid.
(a) Nondecreasing Property of f .

From (5.7), f (∅) = 0. Let 𝛿t,𝑤,m = (1 − 𝛾
𝑤,t(𝜏𝑤(m))) for simplic-

ity, and ∀S ∈ , s = (t1, 𝑤1,m1) ∈ X∖S.
f (S ∪ {s}) − f (S)

=
|A|∑

a=1
𝑣(a) ⋅

[
∏

t∈Ha

{

1 − pt,a(t) ⋅

(
∏

(𝑤,m)∶(t,𝑤,m)∈S∪{s}
𝛿t,𝑤,m

)}

−
∏

t∈Ha

{

1 − pt,a(t) ⋅

(
∏

(𝑤,m)∶(t,𝑤,m)∈S
𝛿t,𝑤,m

)}]

. (5.8)

This result shows that f is a monotone nondecreasing
function with f (∅) = 0.

(b) Optimal Lower Bound—Elemental Curvature 𝛂.
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Theelemental curvature 𝛼 of f is calculated here. For each S ∈
, s1 = (t1, 𝑤1,m1) ∈ X∖S, s2 = (t2, 𝑤2,m2) ∈ X∖S, and s1 ≠
s2. To compute 𝛼, there are three cases to be considered:
(1) If t1 = t2, then the assets aimed by t1, t2 − a(t1), a(t2) are

same.

f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})

= 𝑣(a(t1)) ×
∏

t∈Ha(t1 )

∖{t1}

(

1 − pt,a(t1) ⋅
∏

(𝑤,m)∶(t,𝑤,m)∈S
𝛿t,𝑤,m

)

×
∏

(𝑤,m)∶(t1,𝑤,m)∈S∪{s2}
(𝛿t1,𝑤,m) ⋅ pt1,a(t1)𝛾𝑤1,t1(𝜏𝑤1

(m1)),

(5.9)

f (S ∪ {s1}) − f (S)

= 𝑣(a(t1)) ×
∏

t∈Ha(t1 )∖{t1}

(

1 − pt,a(t1) ⋅
∏

(𝑤,m)∶(t,𝑤,m)∈S
𝛿t,𝑤,m

)

×
∏

(𝑤,m)∶(t1,𝑤,m)∈S
(𝛿t1,𝑤,m) ⋅ pt1,a(t1)𝛾𝑤1,t1 (𝜏𝑤1

(m1)). (5.10)

Dividing (5.9) by (5.10), the following equation is obtained:

f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})
f (S ∪ {s1}) − f (S)

= 1 − 𝛾
𝑤1,t1(𝜏𝑤1

(m1)) ≤ 1.

(5.11)

(2) If t1 ≠ t2, that is, targets are different and a(t1) = a(t2)
(targets are aiming at same asset),

f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})

= 𝑣(a(t1))
∏

t∈Ha(t1 )∖{t1}

(

1 − pt,a(t1) ⋅
∏

(𝑤,m)∶(t,𝑤,m)∈S{s2}
𝛿t,𝑤,m

)

,

×
∏

(𝑤,m)∶(t1,𝑤,m)∈S
(𝛿t1,𝑤,m) ⋅ pt1,a(t1)𝛾𝑤1,t1(𝜏𝑤1

(m1)) (5.12)

f (S ∪ {s1}) − f (S)
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= 𝑣(a(t1)) ×
∏

t∈Ha(t1 )∖{t1}

(

1 − pt,a(t1) ⋅
∏

(𝑤,m)∶(t,𝑤,m)∈S
𝛿t,𝑤,m

)

×
∏

(𝑤,m)∶(t1,𝑤,m)∈S
(𝛿t1,𝑤,m) ⋅ pt1,a(t1)𝛾𝑤1,t1(𝜏𝑤1

(m1)). (5.13)

Dividing (5.12) by (5.13), the following equation is
obtained:

f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})
f (S ∪ {s1}) − f (S)

=
1 − pt2,a(t1) ⋅

∏
(𝑤,m)∶(t2,𝑤,m)∈S∪{s2}

𝛿t2,𝑤,m

1 − pt2,a(t1) ⋅
∏

(𝑤,m)∶(t2,𝑤,m)∈S𝛿t2,𝑤,m

=
1 − pt2,a(t1) ⋅

∏
(𝑤,m)∶(t2,𝑤,m)∈S𝛿t2,𝑤,m ⋅ 𝛿t2,𝑤2,m2

1 − pt2,a(t1) ⋅
∏

(𝑤,m)∶(t2,𝑤,m)∈S𝛿t2,𝑤,m
≥ 1.

(5.14)

From the definition of the submodular function, the func-
tion f is not submodular in this case.

(3) If t1 ≠ t2, that is, targets are different and a(t1) ≠ a(t2)
(targets are aiming at different assets),

f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})

= 𝑣(a(t1)) ×
∏

t∈Ha(t1 )∖{t1}

(

1 − pt,a(t1) ⋅
∏

(𝑤,m)∶(t,𝑤,m)∈S
𝛿t,𝑤,m

)

,

×
∏

(𝑤,m)∶(t1,𝑤,m)∈S
(𝛿t1,𝑤,m) ⋅ pt1,a(t1)𝛾𝑤1,t1(𝜏𝑤1

(m1)), (5.15)

f (S ∪ {s1}) − f (S)

= 𝑣(a(t1)) ×
∏

t∈Ha(t1 )∖{t1}

(

1 − pt,a(t1) ⋅
∏

(𝑤,m)∶(t,𝑤,m)∈S
𝛿t,𝑤,m

)

×
∏

(𝑤,m)∶(t1,𝑤,m)∈S
(𝛿t1,𝑤,m) ⋅ pt1,a(t1)𝛾𝑤1,t1(𝜏𝑤1

(m1)). (5.16)

Therefore,

f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})
f (S ∪ {s1}) − f (S)

= 1 (5.17)
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From (5.11), (5.14), and (5.17),
f (S ∪ {s1} ∪ {s2}) − f (S ∪ {s2})

f (S ∪ {s1}) − f (S)

≤
1 − pt2,a(t1) ⋅

∏
(𝑤,m)∶(t2,𝑤,m)∈S𝛿t2,𝑤,m ⋅ 𝛿t2,𝑤2,m2

1 − pt2,a(t1) ⋅
∏

(𝑤,m)∶(t2,𝑤,m)∈S𝛿t2,𝑤,m

≤
1 − pt2,a(t1) ⋅ 𝛿t2,𝑤2,m2

1 − pt2,a(t1)
. (5.18)

From (5.5) and (5.18), the elemental curvature can be calcu-
lated as follows:

𝛼 = max
t∈T ,𝑤∈W ,m∈M

𝑤

1 − pt,a(t) ⋅ 𝛿t,𝑤,m
𝑤

1 − pt,a(t)
. (5.19)

𝛼 ≥ 1, since pt,a, 𝛿t,𝑤,m ∈ [0, 1].

5.4 Algorithmic Details

As discussed in Section 5.3.3, the performance of the greedy
algorithm applied to the static WTA in (5.3) can be lower
bounded. This section details the algorithmic process to imple-
ment the greedy approach, in particular, taking into account the
temporal dependence of the reward on the intercept time. The
proposed greedy algorithm works in two phases: (i) time slot
generation and (ii) greedy maximization.

5.4.1 Time Slot Generation

The first phase of the algorithm is to generate time slot for each
weapon farm and target pair, (𝑤, t) ∈ W × T . Since it is very
inefficient to search infinitely many candidates of launching
time 𝜏 for each (𝑤, t), the way of choosing possible launching
times is suggested with consideration of the launching time
delay of weapon farm 𝜏

d. Here the vector of chosen launching
times for each (𝑤, t) is defined as slot. Algorithm 1 shows the
way of the vector generation. For each (𝑤, t), an empty vector
is given and named as slot. And then, calculate whether the
weapon farm 𝑤 has a possibility of killing the target t. If it
has, then put the time value which maximizes 𝛾

𝑤,t at slot, else
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continue the procedure to the next (𝑤, t) pair. Put the next time
value at slot with obeying the launching time delay constraint
(5.2) until no more candidate has left. A simple result using this
phase is shown in Figure 5.2. The output vector of this phase,
slot, is used in the second phase to get the solution of TSWTA.

Algorithm 5.1 Generate Time Slot

1: procedure Gentimeslot (W ,T)
2: for 𝑤 ∶= 1to |W | do
3: for t ∶= 1to |T| do
4: slot(𝑤,t) ← ∅
5: temp_𝜏 = argmax

𝜏∈ℝ+

[
𝛾
𝑤,t(𝜏)

]

6: if 𝛾
𝑤,t(𝜏) = 0 then

7: continue
8: end if
9: while (1) do

10: temp_𝜏 ← argmax
𝜏∈ℝ+

[
𝛾
𝑤,t(𝜏)

]
with time interval

at least
𝜏

d
𝑤

among other elements in
slot(𝑤,t)

11: if 𝛾
𝑤,t(𝜏) = 0 then

12: break
13: else
14: slot(𝑤,t)(end + 1) ← temp_𝜏
15: end if
16: end while
17: end for
18: end for
19: Return slot
20: end procedure

5.4.2 GreedyMaximization

The second phase of this algorithm is to find the solution of the
TSWTA problem greedily. At first, the phase starts with initial-
izing several variables. The variable Jtempmax starts with the value
obtained using (5.20). Equation (5.20) is an objective function,
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Time (τ)

Weapon farm w

4 3 5 2 6

10 9 11 8 12

43 52 6 109 118 12

t1

slot(w,t1) 
=

γw,t(τ)

slot(w,t2) 
=

t2

Figure 5.2 An example of generating time slot by Algorithm 1.

without assigning any defensive weapons to the targets.

J =
|A|∑

a=1

[

𝑣i(a) ⋅

(
|T|∏

t=1

[
1 − pt,a

]
)]

. (5.20)

Using the result of the first phase, calculate the objective func-
tion value with adding one defensive weapon for every (𝑤, t) pair
for each iteration, and save the assignment that showed a biggest
marginal gain. During the assignment for each weapon farm 𝑤,
if there exists a launching time duplication between new assign-
ment and previously assigned solution, then remove the new one
and use next candidate by deleting the first element of slot

𝑤,t .
The iteration terminates when (i) all weapons in 𝑤 are assigned,
(ii) no elements are left in slot vector, or (iii) no improvement
happens on the objective value. Details of finding the heuristic
solution are shown in Algorithm 2.

5.5 Numerical Case Studies

5.5.1 Simple TSWTA Example

In this section, the properties of the TSWTA problem are
analyzed in detail. To check the property of objective function
values, a number of problem instances are created to change the
parameters for the simulation. Before investigating the char-
acteristics of the TSWTA problem, the simple instance with
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Algorithm 5.2 Greedy Maximization Algorithm

1: procedure GreedyMax (A,W ,T , slot)
2: Initialize X,Xtemp,Xtempmax ← 0 ∈ Rn

⊳ n : # of state vector element
3: Initialize J , Jtemp, Jtempmax ← 0
4: Jtempmax ← objfunc_no_defense()
5: while (true) do
6: for 𝑤 ∶= 1to |W | do
7: if 𝑤’s weapons are all allocated then
8: delete slot

𝑤,t[1]
9: end if

10: for t ∶= 1to |T| do
11: if slot

𝑤,t[1] is overlapping with 𝑤’s
preallocated weapons then

12: delete slot
𝑤,t[1]

13: end if
14: if slot(𝑤,t) = ∅ then
15: continue
16: end if
17: Xtemp ← X
18: modify Xtemp (assign additional weapon from

𝑤 to target t)
with launching time slot

𝑤,t[1]
19: Jtemp = objfunc(Xtemp)
20: if Jtempmax < Jtemp then
21: Xtempmax ← Xtemp
22: Jtempmax ← Jtemp
23: end if
24: delete slot

𝑤,t[1]
25: end for
26: end for
27: X ← Xtempmax
28: J ← Jtempmax
29: if slot = ∅ or no improvement of J then
30: break
31: end if
32: end while
33: Return X, J
34: end procedure
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Figure 5.3 Simple example of TSWTA problem, |A| = 3, |T| = 5, |W| = 2.
(a) Diagram of overall situation. 2D situation with time 𝜏 = 0. Left
rectangle: asset region, central rectangle: weapon farm region, right
rectangle: initial target-searching region. (b) Kill probability of defensive
weapons in weapon farm 1 to each target versus time. (c) Kill probability of
defensive weapons in weapon farm 2 to each target versus time.

|A| = 3, |T| = 5, and |W | = 2 is shown to help understand
how the simulation is executed. Overall situation is shown in
Figure 5.3. In Figure 5.3a, the position of the assets, weapon
farms, and the targets are marked with circles. Each target
has a destination asset, and it is indicated by a solid line. The
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figure describes when the time 𝜏 is 0, so the target would move
along the line as time goes on. Figure 5.3b and c show the kill
probability from weapon farms to targets with respect to time.
It is assumed in the simulation that the optimal launching time
from the weapon farm to the targets are known in advance, and
all of the kill probability graphs follow the trend of a normal
distribution function with the optimal launching time as the
central axis. The stems in Figure 5.3 indicate the assignment of
the defensive weapons in each weapon farm to the appropriate
targets by the algorithm proposed earlier.
Values of each parameter used in the simulation are

arranged in Table 5.1, and the simulation results are shown in
Figures 5.4–5.6. Table 5.1 shows that the simulation is done with
several stochastic parameters (initial position x, destruction
ratio pt,a, kill probability 𝛾

𝑤,t(𝜏), etc.). Even with this random
situation, some interesting properties can be found from the
simulation results. First, if the same number of defensive
weapons are assigned, the case with large number of weapon
farms showed the tendency of getting higher

∑
𝑣(a) value.

Table 5.1 Parameters for simple TSWTA example.

Parameters Values

Asset |A| 5, 10, 30
xa [0, 10] × [−10, 10](km)
𝑣(a) 1

Weapon farm |W | 1, 2, 5, 10

|M| 100
x
𝑤

[15, 20] × [−10, 10](km)
𝜏

d
𝑤

1(s)
Velocity [0.9, 1.1](km/s)
max 𝛾

𝑤,t(𝜏) [0.6, 0.8]

Target |T| 10, 20, 60
Initial xt [30, 50] × [−20, 20](km)
Velocity [1.5, 2.5](km/s)
pt,a [0.3, 0.7]
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This happens since the defender is more flexible from the
constraint of weapon launching time if the number of weapon
farm is bigger. There exists a certain time window that the kill
probability 𝛾

𝑤,t is nonzero value for each weapon farm–target
pair, and because of the time delay 𝜏

d
𝑤

when launching the
weapon in weapon farm 𝑤, there exists a limitation for the
number of weapon allocation even in the case that the weapon
farm𝑤 has infinitely many weapons. Second, all of the graphs in
Figures 5.4–5.6 are monotonically nondecreasing function.This
property is proven in Section 5.3. As the number of assigned
missiles increases, the objective function value increases
smoothly like a step function.This is because the objective func-
tion consists of the sum of product collections, which makes the
expectation of the asset value decreasing exponentially. It seems
that the heuristic algorithm assigns the missiles to the targets
that aim to a specific asset, which means the algorithm is trying
to protect certain assets with high probability assurance. If the
number of missile is not enough to protect all of the assets,
some are discarded from being protected.
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Figure 5.4 Simulation results for various cases. (a) |A| = 5, |T| = 10.
(b) |A| = 5, |T| = 20. (c) |A| = 5, |T| = 60.
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Figure 5.5 Simulation results for various cases.(a) |A| = 10, |T| = 10.
(b) |A| = 10, |T| = 20. (c) |A| = 10, |T| = 60.
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Figure 5.6 Simulation results for various cases. (a) |A| = 30, |T| = 10.
(b) |A| = 10, |T| = 20. (c) |A| = 10, |T| = 60.
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The computing time took less than few seconds for most of
the cases except the number of the targets and the weapon farms
became more than a hundred.

5.5.2 Realistic Interceptor-Ballistic Target Assignment

To identify the applicability of the suggested algorithm, a sim-
ulation for a real-world example is carried out. A situation is
similar to Figure 5.1. Trajectories of targets and location of each
target and asset used in the simulation are shown in Figure 5.7a.
Detailed assumptions are as follows:

• Battlefield is assumed as on Earth surface: longitude
∈ [100∘, 120∘], latitude ∈ [30∘, 45∘].

• Targets are assumed as ballistic missiles, and they are
launched from the northern region. Target launching time is
uniformly distributed in [0,300] (s).

• Targets are launched from four different launching sites; 4, 6,
8, and 10 missiles are launched from each site (totally 28 tar-
gets attacking the assets).

• The targets’ destination point is known a priori, and the
destruction ratio, pt,a is in [0.3, 0.7].

• Weapon farms and assets are in the southern region.
• Defense weapons are assumed as guidance missiles and

launched from a weapon farm.
• The number of assets, |A|, is 6, and each has same value,

𝑣(a) = 1.
• Number of targets assigned to each asset:

a1 = 14, a2 = 5, a3 = 4, a4 = 3, a5 = 2, a6 = 0
• Weapon farms are located in four different sites. Eight iden-

tical weapon launchers exist in each site (totally 32 weapon
farms), and each launcher has eight weapons. In other words,
each weapon farm site has 64 weapons, totally 256 weapons.

• A kill probability information of a defense weapon for
each target is given for the simplicity of the problem, and
max 𝛾

𝑤,t(𝜏) ∈ [0.6, 0.8].

The simulation results are shown in Figure 5.7. Totally 28
targets are fired, and each weapon has kill probability for each
target during the engagement. Eight weapons are given for
each weapon farm, and in Figure 5.7b each stem shows the
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Figure 5.7 Simulation result for the real-world case. (a) Targets are
launched from northern region and aiming at assets located in southern
region. Weapon farms are near the assets to protect the set of assets.
(b) One sample of a weapon farm’s assignment result. (c) Number of
assigned missiles versus sum of asset values.
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assignment of the weapons to the targets. Similarly to the earlier
section, Figure 5.7c shows a monotonically nondecreasing
property. As the number of the assigned weapon increases, the
sum of the expected asset survival value converges to six—which
means that all of the assets will be protected from a given threat.
The order of the assignment is not shown in the result figures,
but it is discovered that in the early stages the weapons are
assigned to the set of targets, which aim to asset a5. a5 is the
asset with minimal threat from enemy targets except for a6 from
the assumption of this simulation. And this phenomenon comes
from the characteristic of the suggested algorithm—which
assigns the weapon with the maximal marginal gain. From
Figure 5.7c, it seems that the user can decide the number of
weapons to assign during the engagement.

5.6 Conclusion

In this chapter, the problem called TSWTA problem is defined
and analyzed in the way of combinatorial optimization and
computational experiments. It is shown that the TSWTA
can be formulated as an optimization of a monotonically
nondecreasing function over a partition matroid. From the
property of nondecreasing function, it was shown that a greedy
maximization heuristic algorithm can guarantee at least 1

1+𝜇

optimality approximation, where 𝜇 = 𝛼
K (1−𝛼K )
K(1−𝛼)

. Numerical exper-
iments validated that the proposed heuristic algorithm gives
good performance within several seconds, and the applicability
of the suggested algorithm is identified with a simulation for
a real-world case. One of the possible future directions is to
decentralize the assignment decisions so that each weapon
farm agent assigns its resources based on information sharing
with neighboring agents (rather than based on the global
information).
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Coordinated Threat Assignments and Mission
Management of Unmanned Aerial Vehicles
Eloy Garcia and David Casbeer
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Wright-Patterson AFB, OH, USA

6.1 Introduction

Autonomous decentralized decision making and path planning
for a group of unmanned aerial vehicles (UAVs) in contested
environments represents a challenging problem in cooperative
control. This type of problem involves a coordinated choice
of actions such as which targets to attack and by which UAV
while minimizing the use of resources that include fuel, weapon
inventory (for survivability in uncertain environments), and
transmission of information. Additional constraints need to
be satisfied such as avoidance of certain areas, selection of
trajectories that minimize radar exposure, and plan paths that
satisfy vehicle dynamics and constraints.
Several authors have addressed related problems in different

ways and under different assumptions. The complexity of the
problem related to coordination of vehicles and uncertain
number of threats, their locations, and capabilities makes this
a challenging problem. In [1] coordinated path planning for
multiple vehicles in an environment containing multiple radar
sites was studied.The main UAV objectives in that reference are
theminimization of radar exposure and the simultaneous arrival
to the main target by all UAVs. A similar problem was described
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in [2]. In this case, there exist several targets, and UAVs need
to select the target to visit according to individual and group
criteria. Several algorithms for group path planning in uncertain
environments were presented in [3] where the authors consider
the probabilities of UAV loss and the effects on other UAV tasks.
The paper [4] proposes a decision policy for a group of combat
vehicles maneuvering in uncertain urban environments. The
unmanned vehicles need to follow some of the predefined paths
as given by the urban terrain and arrive simultaneously to the
main target location. In their way to the main target, vehicles
face adversarial ground units and need to decide the paths to
follow, which ground units to attack, and how to subdivide the
group agents into subgroups or formations. Other references
discussing path planning for multiple vehicles operating in
adversarial environments include [5–10].
The wide area search munitions (WASM) problem is a special

type of task assignment problem in the sense that several
tasks need to be performed on the same target and in strict
sequential order [11–16]. The UAVs are required to perform
different tasks on stationary targets with known locations.
The tasks for each one of the targets include classify, attack,
and verify the destruction of such targets. These tasks need
to be performed in sequential manner for any given target
and with relative timing constraints resulting in coupled
assignments of vehicles performing tasks on the same target.
The authors of [17] also addressed the WASM problem where
two classes of vehicles were considered: target recognition
vehicles and attack vehicles. Target recognition vehicles have
better sensor capabilities than attack vehicles and they are
able to perform classification and verification tasks. On the
other hand, attack vehicles are able to engage and strike the
targets. The additional task of searching is included and it is
assumed that both classes of vehicles are capable of performing
this task. The papers [18] and [19] proposed a load-balancing
method for the WASM problem that accounts for uncertain-
ties in the environment and on the communication between
agents.
The work in this chapter extends the results on [1] and [2] in

order to select the best threats to eliminate in order to obtain
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improved paths. Threat selection was first discussed in [20]
where the existence of only one main target was addressed. In
this chapter, we propose a distributed approach for selection
of threats to eliminate when more than one target is present.
This requires a joint optimal selection of main target to reach
and associated threats to eliminate. A decentralized approach
for multiple UAVs is proposed where agents bid and agree on
assignments and recalculate new paths and costs based on
assigned threats to other members of the team.
Decentralized assignment of tasks represents a challenging

problem in cooperative control and an interesting application
of UAVs. For instance, the authors of [21] presented a robust
task assignment algorithm for uncertain environments that
reduces communication between vehicles. In [22], an algorithm
for the assignment of targets to visit each vehicle in a group of
vehicles was proposed. Each vehicle turning constraints were
explicitly considered in order to determine the flyable paths for
each agent. In a related problem, the work in [23] address the
cooperative searching and coverage of polygon areas by a team
of heterogeneous UAVs.
In [24], the consensus-based bundle algorithm (CBBA) [25] is

extended to address replanning in dynamic environments and
considering agentswith different capabilities.The authors of [26]
used a similar approach, the asynchronous CBBA (ACBBA) for
agents that communicate over an asynchronous channel. The
CBBA has also been extended to consider coupled constraints
and different types of temporal constraints [27].
The chapter is organized as follows. The problem details are

presented in Section 6.2. Our approach for designing individual
optimal paths and for determining optimal threats to attack is
presented in Section 6.3. This section also considers decentral-
ized assignment of tasks. Two types of constraints related to the
decentralized selection of threats are described in Section 6.4.
In Section 6.5, we consider the case in which there exist mul-
tiple main targets; however, each UAV is only able to visit one
of those main targets. Then, it is necessary for the UAVs to not
only select the optimal threats to attack but also to determine the
optimal main target to visit. Relevant conclusions are presented
in Section 6.6.
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6.2 Problem Statement

6.2.1 Preliminaries

For a team of N agents, the communication among them can be
described by a directed graph  = { , }, where  = {1,… ,N}
denotes the agent set and  ⊆  ×  denotes the edge set. An
edge (i, j) in the set  denotes that agent j can obtain informa-
tion from agent i, but not necessarily vice versa. For an edge
(i, j) ∈  , agent i is a neighbor of agent j. The setj is called the
set of neighbors of agent j, and Nj is its cardinality. A directed
path from agent i to agent j is a sequence of edges in a directed
graph of the form (i, p1), (p1, p2),… , (p

𝜅−1, p
𝜅
)(p

𝜅
, j), where p𝓁 ∈

 ,∀𝓁 = 1,… , 𝜅. A directed graph is strongly connected if there is
a directed path from every agent to every other agent. A directed
graphhasa directed spanning tree if there exists at least one agent
with directed paths to all other agents.
The adjacency matrix  ∈ ℝN×N of a directed graph  is

defined by aij = 1 if (j, i) ∈  and aij = 0 otherwise. The Lapla-
cian matrix  of  is defined as  =  −, where represents
the degree matrix, which is a diagonal matrix with entries
dii =

∑
j∈i

aij. If a directed graph has a directed spanning
tree, then the corresponding Laplacian matrix has only one
eigenvalue equal to zero, 𝜆1 = 0, and the remaining eigenvalues
𝜆i, i = 2,… ,N , have positive real parts.

6.2.2 Mission Description

Consider a group of vehicles

 = {1, 2,… ,N} (6.1)

and a set of targets

 = {1, 2,… ,M}. (6.2)

In addition, let us consider a set of threats (radar sites)

 = {1, 2,… ,T}. (6.3)

Typically, we have that T ≫ M. The number of threats and their
location are obtained from a priori information such as infor-
mation resulting from a surveillance stage or measurements
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and threat detections by the N UAVs when first approaching the
adversarial area.
The approach we follow in order to minimize radar exposure

is similar to [1] and [2]. In this approach, a Voronoi diagram
is constructed based on the region of interest and the threat
locations. The construction of the Voronoi diagram involves the
partition of the region containing the targets and the threats
into T + M convex polygons or cells. Each cell of the Voronoi
diagram contains exactly one threat or one target, and every
location inside a particular cell is closer to the corresponding
threat or target than to any other of these elements. The choice
of traveling along edges of the Voronoi diagram provides
minimum threat exposure by maximizing the distance of the
UAV with respect to every threat.
In this work, we include the targets when constructing the

Voronoi diagram because the targets need to be visited at their
exact location. The choice of including the main targets helps
to easily find a small set of possible paths to reach a main target
from the closest vertices of the diagram and it also helps to avoid
traveling close to a threat while approaching a main target. Each
UAV is assumed to initially have a limited supply of two types
of munitions. Munitions of type I are used against threats. They
can be engaged from a certain distance and cause damage to
relatively small assets. Their use against threats is justified since
the threats represent radar sites of small dimensions. Munitions
of type II are used against main targets. They provide greater
damage but their use is limited by positioning the UAV at the
exact target location. Main targets represent valuable assets
that in general can extend over larger areas. In addition, the
elimination of main targets is of higher priority than that of
threats, and then the use of munitions inflicting greater damage
is needed in this case.
In the rest of the chapter, we consider the case in which each

UAV has resources of type II to attack only one main target;
therefore, each UAV is constrained to visit only one main target.
The attack of one target by one UAV does not guarantee total
elimination of the target. Thus, more UAVs can be assigned to
visit the same target in order to increase the damage inflicted
on the target. Elimination of main targets represents one of the
main goals of the mission; the other being the minimization of



�

� �

�

146 Cooperative Control of Multi-Agent Systems

threat risk or threat exposure by each UAV while performing
the mission.
In the presence of multiple targets, each UAV has to choose

the best target to visit according to local and global criteria.
This case is discussed in more detail in Section 6.5. For now,
we consider the particular case where only one main target
exists.This case helps to ease the presentation of the distributed
threat assignment method and to highlight its results in terms
of reduction of threat risk for the group of UAVs.
Figure 6.1 shows an example of a Voronoi diagram. The sce-

nario in this figure includes 1 UAV, 1 target, and 19 threats. In
the following, we describe the steps to construct our specific
Voronoi diagram.

1) We include artificial, regularly spaced, threats around the
main target. Each artificial threat lies on a virtual circle that
contains the domain of interest, that is, the circle surrounds
all threats and the target as well. The center of the circle is
the location of the main target and its radius, ra, is greater
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Figure 6.1 Voronoi diagram. Main target: •. threats: +. artificial threats: ×.
UAV: ▹.
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than the maximum distance from the target to any threat,
that is,

ra > maxj dm,j, (6.4)

where dm,j represents the distance from the main target
to threat j ∈  . The artificial threats are included in order
to generate paths around threats, that is, to enclose real
threats in convex polygons that consist only of finite vertices.
Otherwise, some threats will be inside cells that have vertices
at infinity, which severely limits the choice of possible paths.
Because the artificial threats do not represent any risk, they
are only used in motion planning by the UAVs but are not
considered when each UAV computes the costs associated to
threats. As we mentioned earlier, we view the main targets
as threats when constructing the initial Voronoi diagram.

2) New edges are added from the target’s closest vertices (ver-
tices corresponding to the target polygon) to the exact target
location. One of these edges provides the final edge of the
UAV optimal path, joining the path along edges to the exact
location of the final target. These edges are included because
main targets need to be visited at their exact location.

3) Each UAV adds one more artificial threat at its current loca-
tion. New edges are added from the current UAV location to
the finite vertices of its surrounding cell. This step provides
a simple approach for the UAV to join edges of the Voronoi
diagram at safe locations and to continue traveling along
these edges while avoiding to come close to a threat during
the process.

All edges are considered to be undirected (they can be trav-
eled in both directions) except for those connecting the initial
UAV position to the vertices of its Voronoi cell and the edges
connecting the target cell vertices to the target location.
The Voronoi diagram can be modified by eliminating certain

threats. The costs associated with distance to be traveled and
with threat risks can be significantly decreased by carefully
selecting the threats to be eliminated. This selection process is
thoroughly discussed in the following section.
Finally, once each UAV finds its optimal path to reach the

main target, the last step is to obtain a smooth trajectory that
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can be used by fixed-wing aircraft with minimum turning radius
constraint.The Dubins vehicle model is a simple representation,
yet, it captures important constraints associated to aircraft.
Each UAV dynamics is given by

ẋi = 𝑣i cos 𝜃i

yi = 𝑣i sin 𝜃i (6.5)
�̇�i = Ωiui,

where 𝑣i and Ωi represent the speed and the maximum turning
rate of vehicle i, and ui ∈ {−1, 0, 1} for i ∈  .
We assume that each vehicle travels at constant speed. Also,

for simplicity, we assume that all UAVs have the same speed and
the same maximum turning rate, that is, 𝑣i = 𝑣 and Ωi = Ω for
i ∈  .
Because the optimal paths are given by a subset of edges of the

Voronoi diagram, it is necessary to determine associated flyable
trajectories that satisfy the constraints (6.5). We implement the
method presented in [2] to generate the flyable trajectories based
on Voronoi diagram edges.

6.3 Decentralized Assignment of Threats

The focus of this section is, first, on determining the UAVs’ indi-
vidual optimal paths and preferred threats and, then, on achiev-
ing global agreements on the threats to be eliminated based on
a decentralized consensus algorithm.

6.3.1 Optimal Individual Paths and Selections

Two types of costs are associated to each one of the edges of
the Voronoi diagram constructed following steps 1–3 described
earlier: length cost and threat cost. The length cost of edge g,
denoted by Φlength,g , is simply the length of the edge

Φlength,g = Lg . (6.6)

The threat cost associated to a given edge g, which we denote as
Φthreat,g , is calculated based on radar exposure of a vehicle travel-
ing along that edge. To simplify the calculation of radar exposure,
it is assumed that the vehicle’s radar signature is uniform in all
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directions and it is proportional to 1∕d4, where d represents the
distance from the vehicle to the threat. In order to accurately cal-
culate the threat cost along a given edge, the integration of the
cost along the edge is required. Instead of integrating costs for
every edge we follow the muchmore computationally affordable
three-point approximation [2], which is given by

Φthreat,g =
𝛼Lg

3

T∑

j=1

(
1

d4
1∕6,g,j

+ 1
d4
1∕2,g,j

+ 1
d4
5∕6,g,j

)

. (6.7)

In this approximation, three points along edge g are used. The
points are Lg∕6, Lg∕2, and 5Lg∕6. The expressions d1∕6,g,j, d1∕2,g,j,
and d5∕6,g,j represent, respectively, the distance from each one of
the selected three points on edge g to threat j; 𝛼 > 0 is a constant
scale factor.
The total cost for traveling along edge g is given by a weighted

sum of its length and threat costs
Φg = 𝜅Φlength,g + (1 − 𝜅)Φthreat,g , (6.8)

where 𝜅 ∈ [0, 1] provides additional flexibility inweightingmore
the exposure to threats or the distance to travel.The total cost of
a path = {g1, g2,…} selected by agent i is represented by Ji and
it is given by the sum of the total costs of the edges {g1, g2,…}
making up that path

Ji =
∑

g∈
Φg . (6.9)

Let J∗i (0) represent the cost of the optimal path of agent i when
the agent is not yet tasked to eliminate any threat. Also, let J∗i (j)
represent the cost of the optimal path of agent i if the agent plans
to eliminate threat j, for j ∈  . Similarly, J∗i (j1, j2) is the cost of the
optimal path when agent i plans to eliminate both threats j1 and
j2.The notation can be extended in a similar way to include plans
with more than two threats that are planned to be eliminated.
Following the Voronoi diagrammethod, the search of optimal

paths is transformed into a search over a discretized space of
possible solutions, which can be implemented for online com-
putations and also for replanning assignments during mission
execution.The approach in [1] and [2] is extended in this chapter
by allowing agents to attack and destroy a limited number of
threats. A new Voronoi diagram is obtained by eliminating one
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or more threats. It is clear that a good selection of threats to
destroy brings a significant benefit from both points of view:
reducing length costs and reducing threat costs. Suppose a given
agent can spend resources to eliminate up toTi threats.Then, the
individual optimization problem that eachUAV tries to solve can
be expressed as follows:


∗

i (T
∗
i ) = minj1,j2,…,jTi

J∗i (j1, j2,… , jTi
) (6.10)

subject to the edges created by the associated Voronoi diagrams,
where the notation J∗i (j1, j2,… , jTi

) represents the estimatedmin-
imum total cost that results by eliminating the current selection
of threats j1, j2,… , jTi

. Note that this is a two-step optimization
process in which each UAV searches for the best combination
of Ti threats (that results in the optimal cost  ∗

i (T
∗
i )) to destroy

which, in turn, is based on the optimal costs (paths) of each indi-
vidual combination J∗i (j1, j2,… , jTi

).
The estimation of the new total cost when one or more threats

are scheduled to be attacked is performed by using the edges
of the new Voronoi diagram assuming those threats are elimi-
nated and only including threat costs associated to the remain-
ing threats. The solution of problem (6.10) provides the opti-
mal selection of threats that the particular UAV should attack
in order to minimize its own total cost subject to the conditions
imposed by the Voronoi partitions and the limited number of
resources it is able to use to attack threats.

6.3.2 Decentralized Assignment Algorithm

An additional extension with respect to the work in [1] and [2] is
given by the implementation of a decentralized communication
scheme in order for agents to agree on the set of assignments.
In this work, we do not restrict the agents to form a complete
communication graph in which every agent can communicate
with every other agent. We relax this condition, and agents can
form a directed and strongly connected communication graph.
The task assignment algorithm used in this section is based on
the consensus-based auction algorithm (CBAA) [25]. Because of
the timing and coupling constraints, which are explained later,
we choose to execute this algorithm in a sequential planning
manner where agents select only one threat to bid at a time
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(Ti = 1) and only one assignment is made, that is, there is only
one winner after a single execution of the algorithm. Then, the
costs are updated and the algorithm is executed again until all
vehicles have their corresponding number of assignments. This
means that, although each UAV has resources to eliminate more
than one threat, the agents do not try to choose their preferred
threats all at once. Instead, they only search for one threat
assignment; then, they bid and agree on some threat assign-
ments. After every bidding process, all agents that still do not
have a complete list of individual assignments will search again
for a new threat to add to its list. The difference with respect to
the previous bidding process is that one of the threats has been
assigned to the group; hence, that threat is not considered by
any UAV in the new search. New Voronoi diagrams are obtained
after every assignment, which means that the preferences of any
UAV are not necessarily the same after every bidding process
regardless of which agent wins the assignments.
In this section, we present a modification of the CBAA [25],

and similar to [28], in order to make this series of assignments
and to obtain new costs for the remaining agents. Two variables
are defined for each agent: xi(𝜆), which represents the current
selected threat for agent i and yi(𝜆), which represents the associ-
ated bid to the current selected threat, where 𝜆 indexes the iter-
ations within the consensus algorithm. Define the vector 𝜒i(𝜆) =
[xi(𝜆) yi(𝜆) 𝜏i(𝜆)]T , where 𝜏i(𝜆) is defined in Section 6.4.

Initialization. Each UAV uses Dijkstra’s algorithm [29] to
compute the best path based on the edge costs (6.8). All edges
are considered to be undirected (they can be traveled in both
directions) except for those connecting the initial UAV position
to the vertices of its Voronoi cell and the edges connecting the
target cell vertices to the target location. Each UAV obtains
the best path for each threat option, J∗i (j) for j ∈  (t), that
is, Dijkstra’s algorithm is used once for every available threat
j ∈  (t). Then, the UAV selects the best threat to attack based
on the costs J∗i (j), which returns the optimal cost  ∗

i (1
∗). The

current set of tasks  (t) varies as the threats are assigned.Then,
every time that the UAVs find and transmit bids, the variable xi
is initialized as follows:

xi(0) = arg minj J∗i (j;  (t)). (6.11)
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For consistency, agents bid their best normalized gain in
performance

yi(0) =
J∗i (0;  (t)) −  ∗

i (1
∗;  (t))

J∗i (0;  (t))
. (6.12)

The notation for the calculated costs has been expanded in
order to clarify the dependence on the current set of available
threats to bid  (t). J∗i (0;  (t)) represents the optimal cost when
no threat is selected to be attacked at the current stage, that is,
the optimal cost considering all remaining threats j ∈  (t), and
 ∗

i (1
∗;  (t)) is the optimal cost obtained by choosing the best

single threat to attack from the available set  (t). yi(0) is the bid
that agent i places on its preferred threat to destroy which has
been stored in xi(0) and it represents a measure of how much
the optimal cost can be reduced by using resources to eliminate
that threat and according to the current conditions and previous
assignments.

Consensus process. The agents use the variables yi(𝜆) in order
to converge to the best possible value xi(𝜆). In this phase, the
agents receive the vectors 𝜒i(𝜆) from their neighbors, that is,
from agent i′ such that i′ ∈ i. Note that self-loops are used, that
is, aii = 1 for i ∈  , which means that i ∈ i for i ∈  . Then,
each agent i selects the best cost available. The best cost among
agents is selected according to the best normalized performance
gain, that is,

yi(𝜆 + 1) = max
i′∈i

{yi′ (𝜆)} (6.13)

and the new threat choice is updated according to the winning
bid,

xi(𝜆 + 1) = x
𝜈
(𝜆), (6.14)

where

𝜈 ∈ arg max
i′∈i

{yi′ (𝜆)}. (6.15)

It is unlikely that two ormore agents will initially obtain the same
exact bid for their preferred threats to destroy at the beginning of
a given bidding process.This is so because the agents are located
at different points and the individual optimal costs are heavily
dependent on the UAV’s current position. However, possible ties
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in selection of threats can be broken in different ways such as
using the vehicles identity.
The main difference between the CBAA in [25] and our pro-

posed algorithm is that our protocol makes all agents agree on a
single task instead of forcing them to take on different tasks each
one.This algorithm guarantees convergence to a single (same for
all agents) value and the convergence time is bounded as follows:

Theorem 6.3.1 [25] Consider a group of agents (6.1) that
communicate using a directed and strongly connected graph
and define dii′ as the shortest path between agents i and i′ for
i, i′ ∈  . Let D = maxii′ {dii′ } be the diameter of the graph.
Then all agents converge to the same value at time 𝜆 = 𝜆c, where
𝜆c satisfies

𝜆c ≤ 1 + D. (6.16)

The execution of the consensus protocol described earlier
guarantees only one assigned threat and knowledge by every
UAV of which threat has been assigned. After convergence
of the consensus process each agent compares its initial bid
(6.12) to the winning bid yi(𝜆c) to decide if it is the current
winner of the assignment. If the local agent is not the winner,
then it recomputes new costs with an updated set of threats:
 =  − {xi(𝜆c)}. If the local agent is the winner, it adds the
new assignment to its list of tasks. In addition, if the local agent
still has resources available to add more tasks to its list, that
is, it still does not have Ti threats assigned to itself, then, it
updates the set of remaining threats and recomputes new costs
according to the new threat set.
Note that when an agent has won its corresponding number of

assignments then it does not bid on new assignments but it col-
laborates as “communication link” during the consensus process
in order to keep a connected graph at every assignment process.

6.4 Assignment Constraints

One of the main effects of multiple UAVs eliminating different
threats is that costs for all other UAVs change when one UAV
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eliminates or it wins an assignment, and it is scheduled to
eliminate a given threat. This is a very important feature of
cooperation of multiple agents such that decisions by a given
agent can be improved by considering threats already assigned
to other agents. An agent can recompute the costs associated
to a Voronoi diagram that is constructed assuming assigned
threats are eliminated and obtain improved decisions on its
own. Two particular problems arise in the analysis of this
decentralized assignment problem: timing constraints and
coupling constraints.

6.4.1 Timing Constraints

Knowledge of assigned threats can be used to obtain better deci-
sions. However, the assigned threat is not eliminated immedi-
ately as it is assigned. If another vehicle decides to travel along
a path where that previously assigned threat is relatively near
and has not been destroyed yet, then the real threat cost of that
path is significantly higher than the estimated cost assuming the
threat has been eliminated. In this section, the timing constraint
just described is dealt with by estimating and transmitting the
time of attack of the assigned UAV. This information is used by
other UAVs to obtain more accurate threat costs when updat-
ing paths after an assignment has been agreed by all UAVs. The
time of attack is estimated by assuming the selected threat can
be engaged when the UAV reaches a certain position relative to
the threat.
Each UAV attaches the estimated time of attack 𝜏i(0) to its

selected threat to bid xi(0). 𝜏i(𝜆) corresponds to the third ele-
ment of the broadcasting vector 𝜒i(𝜆). This estimated variable
remains attached, so the winning bid has its associated time of
attack and every agent that does not win an assignment in the
current execution has access to this information when recom-
puting new costs.
During the consensus process, 𝜏i(𝜆) is updated as follows:

𝜏i(𝜆 + 1) = 𝜏
𝜈
(𝜆), (6.17)

where 𝜈 was defined in (6.15).
All UAVs that did not win an assignment after the first or

subsequent executions of the consensus problem recompute
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new paths and costs using a Voronoi diagram that now contains
time-varying threats. Since the computation of threat costs
along any edge is time independent (6.7), it is computationally
expensive to compute different costs for every edge according
to the time in which is traveled in every possible path. Instead,
each agent implements a simple approach, which is based on
first finding the k best (shortest) paths assuming the already
assigned threats are nonexistent, then adding the additional
threat costs associated to each assigned threat (just before
its time of attack) to every one of the k best paths, and then
selecting the best updated path. A generalization of Dijkstra’s
algorithm [29] to find the k shortest paths is implemented in
this case.

Lemma 6.4.1 Let H = {1, 2,… , k} be the ordered set of the k
best paths for agent i without considering the effect of assigned
threats. Let C = {c1, c2,… , ck} be the set of associated path
costs with c1 < c2 < · · · < ck . Let D = {d1, d2,… , dk} be the
corresponding set of new path costs when the assigned threats
are considered according to their time of attack. Let

̂d = minh{dh} (6.18)

for h ∈ H . Then, there exist an integer k > 1 such that
̂d < ck (6.19)

and
h∗ = arg minh{dh} (6.20)

for h ∈ H is the optimal path for agent i subject to the current
Voronoi partition and the already assigned threatswith their cor-
responding times of attack. The corresponding optimal cost is
d∗ = ̂d.

Proof : First, we show that dh ≥ ch for any h ∈ H . In order to
obtain dh, a non-negative threat cost is added to ch. The added
threat cost is equal to zero only when the assigned threats are
scheduled to be immediately attacked at the time of the assign-
ment process. The length costs remain unchanged.

The initial costs ch are obtained in a similar way to Ji in (6.9)
but without considering the threat cost associated to already
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assigned threats since these are time-varying costs. From (6.8)
the new path costs dh are only different than the path costs ch
by adding the time-dependent threat costs as follows:

dh = ch +
∑

g∈h
𝜙h,g , (6.21)

where

𝜙h,g = (1 − 𝜅) 𝛼Lg

3

∑Pa
j=1

(
𝜌1∕6,g (j,t)

d4
1∕6,g,j

+ 𝜌1∕2,g (j,t)
d4
1∕2,g,j

+ 𝜌5∕6,g (j,t)
d4
5∕6,g,j

)
,

(6.22)

Pa is the number of assigned threats and 𝜌1∕6,g(j, t) = 1 if the esti-
mated time when agent i reaches the point 1∕6 along edge g
following path h is less than the estimated time of attack cor-
responding to threat j, and 0 otherwise. The cost 𝜙h,g ≥ 0 repre-
sents the partial threat cost of edge g associated to the assigned
threats. Every edge g making up the path h is considered and the
resulting summation is added to ch as shown in (6.21).
Now, suppose (6.19) holds, then we have that ̂d < ck+𝜇 ≤ dk+𝜇

for 𝜇 = 0, 1, 2,…, which means that there is no other path with
smaller cost than h∗ and the optimal cost is d∗ = ̂d. It is easy
to see that for the case of large T (large number of remaining
threats) there exists an infinite number of increasing ch cost
paths by construction of the Voronoi diagram following steps
1–3 in Section 6.2.2. The existence of a k such that (6.19) holds
is guaranteed even for the case when all threats have been
assigned (T = 0) and the main targets remain. The addition
of artificial threats (step 1 in Section 6.2.2), which are never
removed when computing new Voronoi diagrams, provides
infinite number of paths around the target and assigned threats
(possibly encircling the target many times waiting until assigned
threats are eliminated) with increasing ch cost. Therefore, it is
always possible to find the integer k such that (6.19) holds. ◾
Lemma 6.4.1 suggests a smart way to find the best path con-

sidering the effects of assigned threats. Algorithm 1 describes a
method to quickly find the optimal path by limiting the num-
ber of new costs dh that need to be computed. Given a set H of
k best paths with associated costs C, the algorithm keeps track
of the current minimum new cost ̂d and checks condition in
Lemma 6.4.1 to decide if further new costs are unnecessary in
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order to terminate the search since the optimal path has been
obtained. Note that h∗ is the optimal path with respect to the
individual choice of threat to attack and the previous decisions,
which are the already assigned threats. Future assignments may
change the Voronoi diagram, the length, and the threat costs.
This coupling effect between past, current, and future assign-
ments is discussed in Section 6.4.2.

Algorithm 6.1 Find_best_path (H,C)
1: ̂d = ∞
2: while h ≤ k do
3: dh = ch +

∑
g∈h 𝜙h,g

4: ̂d=min
{
̂d, dh

}

5: ̂h=arg min
{
̂d, dh

}

6: if ̂d < ch+1 then
7: d∗ = ̂d
8: h∗ = ̂h
9: h = k + 1

10: else
11: h = h + 1
12: end if
13: end while

Remark 6.4.2 A different method to find the optimal path
and cost in which the time-varying threat costs are subtracted
instead of added, as it was done in Lemma 6.4.1, can also be
implemented. In this case, the initial costs correspond to paths
obtained based on the original Voronoi diagram containing all
threats (assigned and remaining) and considering the threat
costs associated to assigned threats. Then, partial threat costs
are subtracted according to the assigned threats’ times of attack.
However, this approach is more conservative since the paths
created from eliminating threats are not considered, which
potentially avoids good path choices. The approach used in this
section is riskier by allowing paths that may pass near assigned
threats when they still exist. This risky paths are dealt with
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using Algorithm 1, which considers the timing constraints for
every candidate path and disregards those that are deemed too
risky.

Remark 6.4.3 The velocity for each UAV is assumed to be
constant, although it can be different for every vehicle. In this
case, there are many alternatives for a UAV after one or more
assignments have beenmade. For instance, if the best initial path
with cost c1 is found to be highly risky because d1 increases by
a high amount with respect to c1, then a choice may be to fly to
a different area to maneuver far from the previous assignments
where the partial costs (6.22) are very small. Another choicemay
be to use a similar path to the one with cost c1 but with added
edges at the beginning in order to make time and use the similar
path when the assigned threats have already been eliminated
and do not add a significant cost to that modified path. The
best selection from all possible choices is given by Algorithm 1
in terms of length, threat, and time-varying threat costs. If the
assumption is relaxed such that velocity can be adjusted and/or
loiter is permitted then many other choices can be allowed.
However, the problem is further complicated not only by ana-
lyzing new variables but also the effects of reducing speed and
loitering with respect to calculation of threat costs need to be
analyzed.

6.4.2 Coupled DecisionMaking

The decentralized assignment of threats in this particular
problem creates different paths and associated costs as each
agent selects a threat to eliminate. An (centralized) optimal
set of decisions can be found by an exhaustive search of all
possible combinations assuming that a central unit is able to
obtain all the required information (locations of threats and
targets and current locations of UAVs), and it is also able to
communicate the decisions to the entire fleet. Since every agent
makes decisions on a limited set of information and it is not able
to directly communicate to every other agent then an overall
optimal solution is difficult to reach. A preliminary approach
that offers good results in terms of cooperative behavior is
based on sequential assignments where only agents without



�

� �

�

6 Coordinated Threat Assignments and Mission Management 159

X (mi)

0 5 10 15 20

Y
 (

m
i)

0

5

10

15

20

Figure 6.2 Assignment 1: UAV 1.

their complete number of assigned tasks recompute their paths
and costs and bid again on remaining threats.
Figures 6.2–6.7 show an example of the sequential assignment

of one threat to each one of three UAVs.Three total assignments
are made. Some of these figures show unsuccessful bids. The
scenario consists of 3 UAVs, 1 main target, and 23 threats. The
vehicles’ speed and maximum turning rate are, respectively,
𝑣 = 240 ft/s and Ω = 0.046 rad/s. The communication graph is
given by a12 = a21 = a23 = a32 = 1, and the remaining elements
of the adjacency graph are equal to zero. The individual com-
putation of optimal paths involves the calculation of length and
threat costs where the parameters 𝜅 = 0.45 and 𝛼 = 1 are used
by every UAV. Each assignment is resolved by following the
consensus algorithm described in Section 6.3.2. After one or
more threats have been assigned, the threat costs and optimal
paths are calculated based on Algorithm 1.
Figures 6.2–6.4 show the first computation of optimal threat

to attack by each UAV and the corresponding optimal path.
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Figure 6.3 Assignment 1: UAV 2.
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Figure 6.4 Assignment 1: UAV 3.



�

� �

�

6 Coordinated Threat Assignments and Mission Management 161

X (mi)

−5 0 5 10 15 20

Y
 (

m
i)

0

2

4

6

8

10

12

14

16

18

20

Figure 6.5 Assignment 2: UAV 1.
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Figure 6.6 Assignment 2: UAV 3.
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Figure 6.7 Assignment 3: UAV 3.

The optimal threat choice by each UAV is represented by
the encircled threat, while the optimal path resulting from
that choice is represented by the bold edges. The initial UAV
positions are given by UAV 1:(−2, 14), UAV 2:(−2.5, 9), and
UAV 3:(−2, 6). Each UAV bids on its own preferred threat
to destroy using its best gain in performance (6.12). In this
example, at the first iteration of the consensus algorithm,
each UAV bids on a different threat and UAV 2 wins the first
assignment. The remaining UAVs recompute the costs based on
a new Voronoi diagram and assuming the threat is eliminated
at time 𝜏2. These new diagrams and costs result in the choices
shown in Figures 6.5–6.6. Now, only agents 1 and 3 bid on their
preferred threats, and agent 1 wins this assignment. In the final
assignment, only agent 3 recomputes new costs, bids, and wins
the assignment, its optimal path is shown in Figure 6.7.The final
step is trajectory smoothing and computation of waypoints for
navigation considering the minimum turning radius constraint
of each vehicle. Here, we assume that the maximum turning
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rate is the same for all UAVs and they also travel at the same
speed. The generation of smooth trajectories is only performed
by the UAVs after they win their assignment. For instance,
Figure 6.3 shows a smooth trajectory since this figure represents
the assignment won by agent 2. Similarly, Figures 6.5 and 6.7
represent the assignments for agents 1 and 3, respectively; these
figures show the corresponding smooth trajectories for each
vehicle. On the other hand, Figures 6.2, 6.4, and 6.6 represent
unsuccessful bids, and it is not necessary to compute waypoints
for a constrained trajectory in these cases.
It is noteworthy to see how agents improve their decisions and

total costs based on previous threats assigned to teammates. For
instance, if UAV 3 would have won the first assignment it would
have reduced its cost by 20% with respect to its optimal cost
J3(0), the optimal cost obtained in the case no one of the threats
is eliminated. An additional reduction of 3% with respect to
J3(0) is obtained by considering the scheduled elimination (at
the associated time of attack) of the first threat assigned plus its
second choice. Considering two threats scheduled to be elimi-
nated plus its third and assigned choice, UAV 3 is able to obtain
an additional 2% reduction of its total cost with respect to J3(0)
(for a total of 25%) that was obtained thanks to its teammates
and using its teammates’ decisions in an intelligent way, that is,
taking the best advantage of the actions of other members of the
group. By comparing Figures 6.4, 6.6, and 6.7, we can easily see
this improved cost for UAV 3, where the length of its optimal
path shrinks and its exposure to radar sites is reduced as well.

6.5 Multiple Main Targets

In this section, we consider the existence of more than one main
target. An approach is proposed such that each UAV determines
both themain target to visit and the subset of threats it will elim-
inate in its way to reach the selected main target.
When multiple targets exist, each UAV needs to choose only

one of them. This is so because each UAV has limited resources
to attack only one target. In addition, it is allowed that several
UAVs can attack one particular target in order to increase the
inflicted damage on the targets.
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We first discuss a simple approach for each UAV to determine
its preferred target to visit without considering other UAVs
assigned to some of the targets. When UAVs only consider their
individual costs to reach a target, then the results provided
in Sections 6.3 and 6.4 can be repeated for each target. Every
UAV compares between optimal costs to reach each target
and finds the minimum cost among optimal paths for each
target.
Extending the notation used in previous sections let

 ∗
i ( , 1∗,m) represent the optimal cost obtained by choosing

the best single threat to attack from the available set  if the
agent chooses to visit target m ∈ . Agent i determines the
target to visit, denoted by m∗

i , by computing

m∗
i = arg min

m


∗
i ( , 1∗,m), (6.23)

Agent i still bids its normalized performance gain (6.12). The
search (6.23) is only performed by agent i when it has not been
assigned any threat yet. Once agent i chooses its target and the
first threat to attack, then other threat assignments are restricted
to only target q∗

i .
By employing the target selection criteria (6.23), it is likely that

one or more targets are never visited by any UAV. It can occur
that all UAVs choose the same target to attack.
Let us consider the following scenario: 4 UAVs are tasked to

visit 2 main targets in a hostile environment where 24 threats
are present. The UAV’s coordinates are given by UAV 1:(−6, 14),
UAV 2:(−5, 9), UAV 3:(−4.5, 6.5), and UAV 4:(−5.5, 2). The loca-
tions of the main targets are T1 ∶ (10, 12) and T2 ∶ (11, 7). The
problem parameters are 𝜅 = 0.5, 𝛼 = 1, 𝛾 = 0.7, 𝑣 = 240 ft/s, and
Ω = 0.046.
The communication graph is given by a12 = a21 = a23 = a32 =

a34 = a43 = 1 and the remaining elements of the adjacency
graph are equal to zero. We now consider the case where each
vehicle has resources to eliminate up to two threats, that is,
Ti = 2. The assignments with the corresponding estimated time
of attack and the destination target are shown in Table 6.1.
Figures 6.8–6.11 show the optimal trajectories of each one of

the four UAVs where all of them decided to visit target 1. Each
figure shows the second assigned threat to the particular UAV
and the optimal trajectory corresponding to that assignment.
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Table 6.1 Multiple targets.

Agent Threat coordinates (mi) Time of attack (s) Main target

3 (8,11) 143.71 1
1 (4,14) 61.61 1
3 (4,8) 30.16 1
1 (6,12) 109.48 1
2 (11,14) 281.24 1
2 (8,15) 262.71 1
4 (5,4) 181.62 1
4 (9,6) 283.22 1
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Figure 6.8 Multiple main targets: UAV 1.

For example, Figure 6.8 shows the second assignment of UAV 1,
which is the threat located at (6, 12). The previous assigned
threats are not visible. Those threats correspond to rows 1–3 in
Table 6.1.
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Figure 6.9 Multiple main targets: UAV 2.
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Figure 6.10 Multiple main targets: UAV 3.



�

� �

�

6 Coordinated Threat Assignments and Mission Management 167

X (mi)

−5 0 5 10 15 20 25

Y
 (

m
i)

0

5

10

15

20

Figure 6.11 Multiple main targets: UAV 4.

Because one of the main goals of the mission is to attack
as many targets as possible, the UAVs should find a trade-off
between spreading their attack (visit many targets instead of
all of them attacking only one target) and maintaining low
length and threat costs. Overall, the objective of UAVs is to
reach different targets as long as the underlying cost (distance
and threat risk) does not increase too much. The method that
is being proposed relies on reward functions for every main
target.These functions depend on the number of UAVs assigned
to each particular target; in detail, the target reward decreases
as more vehicles plan to visit the target.
Let the reward associated to target m ∈  be given by

Rm(𝜇m) = e−𝛾𝜇m
, (6.24)

where 𝛾 > 0 is a design parameter and 𝜇m is a non-negative inte-
ger representing the number of UAVs that choose to visit target
m.The variables𝜇m, form ∈ , vary during the assignment pro-
cesses as UAVs make their decisions on which target to visit.
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Finally, in order for each UAV to account for the rewards when
deciding what target to visit, (6.23) is modified as follows:

m∗
i = arg min

m

 ∗
i ( , 1∗,m)

Rm(𝜇m)
. (6.25)

The parameter 𝛾 > 0 represents a tuning parameter that bal-
ances the global objective of spreading (visit many targets) and
the local objective of keeping low individual cost.
Consider the same previous scenario. In this case, UAVs 1

and 3 have the same assignments at about the same attack
times. Their optimal paths are similar to the ones shown in
Figures 6.8 and 6.10, respectively. The new list of assignments is
shown in Table 6.2. Now, agents 2 and 4 choose to visit target 2.
Figures 6.12 and 6.13 show the optimal trajectories for UAVs 2
and 4, respectively.
Still, there will be scenarios where some targets may be

relatively far and/or heavily guarded. The approach based on
reward functions allows for an intelligent decision by the UAVs
where they may decide to leave a target unvisited if it is deemed
to be too risky. For example, consider the scenario where three
UAVs, which are initially positioned at UAV 1:(0, 10), UAV
2:(1, 7.5), and UAV 3:(0.5, 5), are tasked to visit any of the two
targets located at Target_1:(17, 8) and Target_2:(22, 19). The
hostile environment contains 30 threats. In this example, many
of the threats are in the vicinity of target 2. The UAVs use the
following parameters: 𝜅 = 0.45, 𝛼 = 1, and 𝛾 = 0.56. The list of

Table 6.2 Multiple targets with target rewards.

Agent Threat coordinates (mi) Time of attack (s) Main target

3 (8,11) 143.71 1
2 (14,10) 330.91 2
1 (4,14) 61.61 1
3 (4,8) 30.16 1
2 (7,8) 114.78 2
4 (9,6) 283.27 2
1 (6,12) 109.48 1
4 (4,11) 167.09 2
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Figure 6.12 Rewards: UAV 2.
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Figure 6.13 Rewards: UAV 4.
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Table 6.3 Multiple Targets: three UAVs.

Agent Threat coordinates (mi) Time of attack (s) Main target

1 (8,11) 24.78 1
1 (12,8) 123.96 1
2 (15,7) 180.03 1
2 (14,11) 150.74 1
3 (15,14) 261.80 1
3 (17,14) 317.49 1
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Figure 6.14 HR: UAV 1.

assignments is shown in Table 6.3. It can be seen that target 2
was considered to be too risky and all UAVs eventually decided
to visit target 1 as it is shown in Figures 6.14–6.16.
The use of reward functions allows for different constraints to

be imposed in the assignment of targets. For instance, if each
target needs to be visited by at least one UAV, then the tuning
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Figure 6.15 HR: UAV 2.
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Figure 6.16 HR: UAV 3.
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parameter 𝛾 can be appropriately increased in away that the high
risk associated to one target is compensated by the assignment
of UAVs to less riskier targets.

6.6 Conclusions

A decentralized scheme for cooperation and coordination of
actions of multiple UAVs has been presented. The problem
scenario involves the selection by every UAV of which threats
to eliminate and which target to visit in order to minimize
a combined cost that includes radar exposure and length of
travel to main target. It has been shown that the decentralized
selection of the best set of threats to attack is a complex problem
due to coupling and timing constraints. In order to decouple
the resulting decisions, the approach taken by each UAV is to
optimize its decisions subject to previous assigned threats but
disregarding possible future assignments. Timing constraints
have been integrated into the proposed solution where every
agent considers the existence of assigned threats with their
associated time of attack and plans accordingly.
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7.1 Introduction

In this chapter, we look at one of the canonical driving examples
for multi-agent systems: average consensus. In this scenario,
a group of agents seek to agree on the average of their initial
states. Depending on the particular application, such states
might correspond to sensor measurements, estimates about
the position of a target, or some other data that need to be
fused. Due to its numerous applications in networked systems,
many algorithmic solutions exist to the multi-agent average
consensus problem; however, a majority of them rely on agents
having continuous or periodic availability of information
from other agents. Unfortunately, this assumption leads to
inefficient implementations in terms of energy consumption,
communication bandwidth, network congestion, and processor
usage. Motivated by these observations, our main goal here
is the design of provably correct distributed event-triggered
strategies that autonomously decide when communication and
control updates should occur so that the resulting asynchronous
network executions still achieve average consensus.
The literature and motivation behind multi-agent average

consensus is Extensive; see, for example, [1–4] and refer-
ences therein. This chapter aims to provide a conceptual
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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introduction to event-triggered control strategies applied to
consensus problems. Triggered controllers seek to understand
the trade-offs between computation, communication, sensing,
and actuator effort in achieving a desired task with a guaranteed
level of performance. Early works [5] only consider tuning
controller executions to the state evolution of a given system,
but these ideas have since been extended to consider other tasks
such as when to take the sample of a state or when to broadcast
information over a wireless network; see [6] and references
therein for a recent overview. Among the many references in the
context of multi-agent systems, [7] specifies the responsibility of
each agent in updating the control signals, [8] considers network
scenarios with disturbances, communication delays, and packet
drops, and [9] studies decentralized event-based control that
incorporates estimators of the interconnection signals among
agents. These works are all concerned with designing event
triggers that ultimately determine when control signals should
be updated in addition to how. Several works have explored
the application of event-triggered ideas to the acquisition of
information by the agents rather than only for actuation. To
this end, [10–12] combine event-triggered controller updates
with sampled data that allow for the periodic evaluation of the
triggers. Instead, some works [13] drop the need for periodic
access to information by considering event-based broadcasts,
where agents decide with local information only when to obtain
further information about neighbors. Self-triggered control
[14, 15] relaxes the need for local information by decidingwhen a
future sample of the state should be taken based on the available
information from the last sampled state. Team-triggered coordi-
nation [16] combines the strengths of event- and self-triggered
control into a unified approach for networked systems.

7.1.1 Organization

Table 7.1 shows the progression of event-triggered consensus
problems that are covered in this chapter. It should be noted
that this is a very narrow scope on the field of event-triggered
consensus problems intended to introduce the high-level ideas
behind event-triggered communication and control laws and
provide insight into how they are designed. In particular, this
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chapter only discusses works that consider single-integrator
dynamics and no uncertainties (e.g., disturbances, noise, quan-
tization, wireless communication issues). Given that this is
currently an active area of research, it goes without saying that
there are many important related works that are not highlighted
here. Examples include scenarios with disturbances, sensor
noise, delayed communication, quantized communication,
packet drops, more general dynamics, dynamic topologies, and
heterogeneous agents, to name a few. Lastly, it should also be
noted that although the table references journal articles that
first present these ideas going back to 2012, preliminary results
from these works have been presented at various conferences as
early as 2008. The contents of the chapter are summarized next.
The first application of event-triggered control to the

multi-agent consensus problem was in [17], where the authors
propose a Lyapunov-based event-triggered control strategy that
dictates when agents should update their control signals. Unfor-
tunately, its implementation relies on each agent having perfect
information about their neighbors at all times. Identifying
this limitation, the authors in [19] propose an event-triggered
communication and control law that not only determines
when agents should update their control signals but also when
they should broadcast state information to their neighbors.
However, the drawback of the proposed algorithm is that it
is a time-dependent triggering rule with design parameters
that are difficult to choose to yield good performance. Instead,
a state-dependent triggering rule is proposed in [20], which
better aligns the events with the desired task; this is explained
in more detail later. Lastly, all the aforementioned algorithms
assume that continuous evaluation of some function is possible
to determine exactly when some event has occurred. Even in
scenarios where Zeno behavior (an infinite number of events
occurring in a finite period of time) can be provably avoided,
the time between events may still be arbitrarily small, which
can be problematic for digital implementations. Consequently,
the works [12, 21–23] propose algorithms that only require
triggering functions to be evaluated periodically rather than
continuously. Finally, we close the chapter by identifying some
shortcomings of the current state of the art and ideas for
future work.
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7.2 Preliminaries

This section introduces some notational conventions and
notions on graph theory. Let ℝ, ℝ

>0, ℝ≥0, and ℤ
>0 denote

the set of real, positive real, nonnegative real, and positive
integer numbers, respectively. We denote by 𝟏N and 𝟎N ∈ ℝN

the column vectors with entries all equal to 1 and 0, respec-
tively. We let || ⋅ || denote the Euclidean norm on ℝN . We let
diag(ℝN ) = {x ∈ ℝN | x1 = … = xN} ⊂ ℝN be the agreement
subspace inℝN . For a finite set S, we let |S| denote its cardinality.
Given x, y ∈ ℝ, Young’s inequality states that, for any 𝜖 ∈ ℝ

>0,

xy ≤
x2

2𝜖
+

𝜖y2

2
. (7.1)

A weighted directed graph (or weighted digraph)  = (V ,E,W )
is comprised of a set of vertices V = {1,… ,N}, directed edges
E ⊂ V × V andweighted adjacencymatrix W ∈ ℝN×N

≥0 . Given an
edge (i, j) ∈ E, we refer to j as an out-neighbor of i and i as an
in-neighbor of j. The sets of out- and in-neighbors of a given
node i are  out

i and  in
i , respectively. The weighted adjacency

matrix W ∈ ℝN×N satisfies 𝑤ij > 0 if (i, j) ∈ E and 𝑤ij = 0 oth-
erwise. The graph  is undirected if and only if 𝑤ij = 𝑤ji for all
i, j ∈ V . A path from vertex i to j is an ordered sequence of ver-
tices such that each intermediate pair of vertices is an edge. A
digraph  is strongly connected if there exists a path from all
i ∈ V to all j ∈ V . The out- and in-degree matrices Dout and Din

are diagonal matrices where

dout
i =

∑

j∈ out
i

𝑤ij, din
i =

∑

j∈ in
i

𝑤ji,

respectively. A digraph is weight-balanced if Dout = Din. The
(weighted) Laplacian matrix is L = Dout − W . Based on the
structure of L, at least one of its eigenvalues is 0 and the rest of
them have nonnegative real parts. If the digraph  is strongly
connected, 0 is a simple eigenvalue with associated eigenvector
𝟏N . The digraph  is weight-balanced if and only if 𝟏T

N L = 𝟎N
if and only if Ls =

1
2
(L + LT ) is positive semidefinite. For a

strongly connected and weight-balanced digraph, zero is a
simple eigenvalue of Ls. In this case, we order its eigenvalues as
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𝜆1 = 0 < 𝜆2 ≤ … ≤ 𝜆N , and note the inequality

xT Lx ≥ 𝜆2(Ls)||x − 1
N
(𝟏T

N x)𝟏N ||
2
, (7.2)

for all x ∈ ℝN . The following property will also be of use later,

𝜆2(Ls)xT Lx ≤ xT L2
s x ≤ 𝜆N (Ls)xT Lx. (7.3)

This can be seen by noting that Ls is diagonalizable and rewrit-
ing Ls = S−1DS, where D is a diagonal matrix containing the
eigenvalues of Ls.

7.2.1 Event-Triggered Control of Linear Systems

Here, we provide a very basic working introduction to the gen-
eral idea of event-triggered control by working through a simple
linear control problem. The exposition closely follows [24]. The
remainder of this chapter then focuses on how these elementary
ideas are extended to be applied to much more in the context
of multi-agent consensus on networks. We refer the interested
reader to [6] for further details on the subject of event-triggered
control in general.
Consider a linear control system

ẋ = Ax + Bu, (7.4)

with x ∈ ℝn and u ∈ ℝm. Our starting point is the availability of
a linear feedback controller u∗ = Kx such that the closed-loop
system

ẋ = (A + BK)x,

is asymptotically stable. Given a positive definite matrix
Q ∈ ℝn×n, let P ∈ ℝn×n be the unique solution to the Lyapunov
equation (A + BK)T P + P(A + BK) = −Q. Then, the evolution
of the Lyapunov function Vc(x) = xT Px along the trajectories of
the closed-loop system is

V̇c = xT ((A + BK)T P + P(A + BK))x = −xT Qx.

Consider now a sample-and-hold implementation of the con-
troller, where the input is not updated continuously, but instead
at a sequence of to-be-determined times {t𝓁}𝓁∈ℤ≥0

⊂ ℝ≥0,

u(t) = Kx(t𝓁), t ∈ [t𝓁 , t𝓁+1). (7.5)
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Such an implementation makes sense in practical scenarios
given the inherent nature of digital systems. With this controller
implementation, the closed-loop system can be written as

ẋ = (A + BK)x + BKe,
where e(t) = x(t𝓁) − x(t), t ∈ [t𝓁 , t𝓁+1), is the state error. Then,
the objective is to determine the sequence of times {t𝓁}𝓁∈ℤ≥0

to
guarantee some desired level of performance for the resulting
system. To make this concrete, define the function

V (t, x0) = x(t)T Px(t),
for a given initial condition x(0) = x0 (here, t → x(t) denotes the
evolution of the closed-loop system using (7.5)). We define the
performance of the system via a function S ∶ ℝ≥0 ×ℝn → ℝ≥0
that upper bounds the evolution of V . Then, the sequence of
times {t𝓁} can be implicitly defined as the times at which

V (t, x0) ≤ S(t, x0) (7.6)
is not satisfied. More specifically, this is an event-triggered
condition that updates the actuator signal whenever V (t𝓁 , x0) =
S(t𝓁 , x0). Assuming that solutions are well defined, it is not
difficult to see that if the performance function satisfies
S(t, x0) ≤ 𝛽(t, |x0|), for some 𝛽 ∈ , then the closed-loop
system is globally uniformly asymptotically stable. Moreover, if
𝛽 is an exponential function, the system is globally uniformly
exponentially stable.
Therefore, one only needs to guarantee the lack of Zeno behav-

ior. We do this by choosing the performance function S so that
the inter-event times t𝓁+1 − t𝓁 are lower bounded by some con-
stant positive quantity.This can be done in a number of ways. For
the linear system (7.4), it turns out that it is sufficient to select S
satisfying V̇ (t𝓁) < ̇S(t𝓁) at the event times t𝓁 (this fact is formally
stated inTheorem 7.2.1). To do so, choose R ∈ ℝn×n positive def-
inite such that Q − R is also positive definite. Then, there exists
a Hurwitz matrix As ∈ ℝn×n such that the Lyapunov equation

AT
s P + PAs = −R

holds. Consider the hybrid system,
ẋs = Asxs, t ∈ [t𝓁 , t𝓁+1),

xs(t𝓁) = x(t𝓁),
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whose trajectories we denote by t → xs(t), and define the perfor-
mance function S by

S(t) = xT
s (t)Pxs(t).

Letting y = [xT
, eT ]T ∈ ℝn ×ℝn, wewrite the continuous-time

dynamics as
ẏ = Fy, t ∈ [t𝓁 , t𝓁+1),

where

F =
[

A + BK BK
−A − BK −BK

]
.

With a slight abuse of notation, we let y𝓁 = [xT (t𝓁), 0T ]T be the
state y at time t𝓁 . Note that e(t𝓁) = 0, for all 𝓁 ∈ ℤ≥0, by defini-
tion of the update times. With this notation, we can rewrite

S(t) = (CeFs(t−t𝓁)y𝓁)T P(CeFs(t−t𝓁)y𝓁),
V (t) = (CeF(t−t𝓁)y𝓁)T P(CeF(t−t𝓁)y𝓁),

where

Fs =
[

As 0
0 0

]
, C =

[
I 0

]
.

The condition (7.6) can then be rewritten as
f (t, y𝓁) = yT

𝓁 (e
FT (t−t𝓁)CT PCeF(t−t𝓁) − eFT

s (t−t𝓁)CT PCeFs(t−t𝓁))
y𝓁 ≤ 0.

Note that because we consider a deterministic system here, with
the information available at time t𝓁 , it is possible to determine
the next time t𝓁+1 at which (7.6) is violated by computing
t𝓁+1 = h(x(t𝓁)) as the time for which

f (h(x(t𝓁)), y𝓁) = 0. (7.7)

The following result from [24] provides a uniform lower bound
tmin on the inter-event times {t𝓁+1 − t𝓁}𝓁∈ℤ≥0

.

Theorem 7.2.1 (Lower bound on inter-event times for
event-triggered approach) Given the system (7.4) with con-
troller (7.5) and controller updates given by the event-triggered
policy (7.7), the inter-event times are lower bounded by

tmin = min{t ∈ ℝ
>0 | det(M(t)) = 0} > 0,
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where

M(t) =
[
I 0

] (
eFtCT PCeFt − eFstCT PCeFst)

[
I
0

]
.

Note that the aforementioned result can also be interpreted in
the context of a periodic controller implementation: any period
less than or equal to tmin results in a closed-loop system with
asymptotic stability guarantees.

7.3 Problem Statement

We let  denote the connected, undirected communication
graph that describes the communication topology in a network
of N agents. In other words, agent j can communicate with
agent i if j is a neighbor of i in . We denote by xi ∈ ℝ the state
of agent i ∈ {1,… ,N} and consider single-integrator dynamics

ẋi(t) = ui(t). (7.8)

Then, the distributed controller

u∗
i (x) = −

∑

j∈i

(xi − xj) (7.9)

is known to drive the states of all agents to the average of the
initial conditions [1, 25]. This is formalized inTheorem 7.3.1.

Theorem 7.3.1 (Continuous controller) Given the dynam-
ics (7.8), if all agents implement the control law (7.9), then
multi-agent average consensus is achieved; that is,

lim
t→∞

xi(t) =
1
N

N∑

j=1
xj(0) (7.10)

for all i ∈ {1,… ,N}.

Unfortunately, implementing (7.9) in a digital setting is
not possible since it requires all agents to have continuous
access to the state of their neighbors, and the control inputs
ui(t) must also be updated continuously. This is especially
troublesome in the context of wireless network systems
since this means agents must communicate with each other
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continuously as well. Instead, this chapter is interested in
event-triggered communication and control strategies to relax
these requirements.

7.4 Centralized Event-Triggered Control

Consider the dynamics (7.8) and the ideal control law (7.9).
Letting x = (x1,… , xN )T and u = (u1,… ,uN )T , the closed-loop
dynamics of the ideal system is given by

ẋ(t) = −Lx(t). (7.11)

As stated before, implementing this requires all agents to
continuously update their control signals, which is not real-
istic for digital controllers. Instead, following the basic idea
for event-triggered control presented in Section 7.2.1, let us
consider a digital implementation of this ideal controller

u(t) = −Lx(t𝓁), t ∈ [t𝓁 , t𝓁+1), (7.12)

where the event times {t𝓁}𝓁∈ℤ≥0
are to be determined such

that the system still converges to the desired state. Let
e(t) = x(t𝓁) − x(t) for t ∈ [t𝓁 , t𝓁+1) be the state measurement
error. For simplicity, we denote by x̂(t) = x̂(t𝓁) for t ∈ [t𝓁 , t𝓁+1)
as the state that was used in the last computation of the control
signal. The closed-loop dynamics of the controller (7.12) is then
given by

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (7.13)

The problem can now be formalized as follows.

Problem 7.4.1 (Centralized event-triggered control)
Given the closed-loop dynamics (7.13), find an event trigger
such that the sequence of times {t𝓁}𝓁∈ℤ≥0

ensures multi-agent
average consensus (7.10) is achieved.

Following [17], to solve this problemwe consider the Lyapunov
function

V (x) = xT Lx.
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Given the closed-loop dynamics (7.13), we have

V̇ = xT Lẋ = −xT LL(x + e) = − ||Lx||2
⏟⏟⏟

“good”

− xT LLe
⏟⏟⏟

“bad”

.

For simplicity, we are not interested in characterizing any
specific performance as in Section 7.2.1. Instead, we are only
interested in asymptotic stability. The main idea of event-
triggered control is then to determine when the controller
should be updated (i.e., when e should be set to 0) by balancing
the “good” term against the “bad” term.More specifically, we are
interested in finding conditions on the error e such that V̇ < 0
at all times. Using norms, we can bound

V̇ ≤ −||Lx||2 + ||Lx||||L||||e||.

Then, if we enforce the error e to satisfy

||e|| ≤ 𝜎

||Lx||
||L||

,

with 𝜎 ∈ (0, 1) for all times, we have

V̇ ≤ (𝜎 − 1)||Lx||2,

which is strictly negative for all Lx ≠ 0.The following centralized
event trigger ensures that this is satisfied at all times.

Theorem 7.4.2 (Centralized event-triggered control)
Given the closed-loop dynamics (7.13), if the update times are
determined as the times when

f (x, e) ≜ ||e|| − 𝜎

||Lx||
||L||

= 0, (7.14)

then the system achieves multi-agent average consensus.

In other words, given a control update at time t𝓁 , the next time
t𝓁+1 is given by

t𝓁+1 = min{t′ > t𝓁 | ||e(t′)|| = 𝜎

||Lx(t′)||
||L||

}.

The algorithm is formalized in Table 7.2.
The proof of convergence to the desired state then follows

directly from the proof of Theorem 7.3.1 and the fact that the
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Table 7.2 Centralized event-triggered control.

At times t ∈ [t𝓁 , t𝓁+1), system (continuously)
performs:
1: set x̂(t) = x(t𝓁)
2: set e(t) = x̂(t) − x(t)
3: if ‖e(t)‖ = 𝜎

‖Lx(t)‖
‖L‖

then
4: set t𝓁+1 = t
5: set x̂(t) = xi(t𝓁+1)
6: set 𝓁 = 𝓁 + 1
7: end if
8: set u(t) = −Lx̂(t)

sum of all states is still an invariant quantity. Furthermore,
the authors in [17] are able to rule out the existence of Zeno
behavior (formally defined later) by showing there exists a
positive time

𝜏 = 𝜎

||L||(1 + 𝜎)
bounding the inter-event times, that is,

t𝓁+1 − t𝓁 ≥ 𝜏

for all 𝓁 ∈ ℤ≥0.

Definition 7.4.3 (Zeno behavior) If there exists T > 0 such
that t𝓁 ≤ T for all𝓁 ∈ ℤ≥0, then the system is said to exhibitZeno
behavior.

The centralized event-triggered controller (7.12) with trig-
gering law (7.14) relaxes the requirement that agents need to
continuously update their control signals, but it still has many
issues. One of them is that the event trigger f (x, e) requires full
state information to implement. Next, we provide a distributed
solution instead of a centralized one.

7.5 Decentralized Event-Triggered Control

In the previous section, we presented a centralized event-
triggered control law to solve the multi-agent average consensus
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problem. Unfortunately, implementing this requires a central-
ized decision maker and requires all agents in the network to
update their control signals simultaneously. In this section, we
relax this requirement by following [17].
Let us nowconsider a distributed digital implementation of the

ideal controller (7.9). In this case, we assume that each agent ihas
its own sequence of event times {ti

𝓁}𝓁∈ℤ≥0
. At any given time t,

let x̂i(t) = xi(ti
𝓁) for t ∈ [ti

𝓁 , ti
𝓁+1) be the state of agent i at its last

update time. The distributed event-triggered controller is then
given by

ui(t) = −
∑

j∈i

(x̂i(t) − x̂j(t)). (7.15)

It is important to note here that the latest updated state x̂j(t) of
agent j ∈ i appears in the control signal for agent i.This means
that when an event is triggered by a neighboring agent j, agent i
also updates its control signal accordingly. As in the centralized
case, let ei(t) = xi(ti

𝓁) − xi(t) be the state measurement error for
agent i. Then, letting x̂ = (x̂1,… , x̂N )T and e = (e1,… , eN )T , the
closed-loop dynamics of the controller (7.15) is given by

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (7.16)

The problem can now be formalized as follows.

Problem 7.5.1 (Decentralized event-triggered control)
Given the closed-loop dynamics (7.16), find an event trigger for
each agent i such that the sequence of times {ti

𝓁}𝓁∈ℤ≥0
ensures

multi-agent average consensus (7.10) is achieved.

Following [17], to solve this problem we again consider the
Lyapunov function

V (x) = xT Lx.

Given the closed-loop dynamics (7.16), we have

V̇ = −||Lx||2 − xT LLe.

As before, we are interested in finding conditions on the error e
such that V̇ < 0 at all times; however, we must now do this in a
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distributed way. For simplicity, let Lx ≜ z = (z1,… , zN )T . Then,
expanding out V̇ yields

V̇ = −
N∑

i=1
z2i −

∑

j∈i

zi(ei − ej)

= −
N∑

i=1
z2i − |i|ziei +

∑

j∈i

ziej.

Using Young’s inequality (7.1) and the fact that  is symmetric,
we can bound this by

V̇ ≤ −
N∑

i=1
(1 − a|i|)z2i +

1
a
|i|e2i

for all a > 0. Letting a ∈ (0, 1∕|i|) for all i, if we can enforce the
error of all agents to satisfy

e2i ≤
𝜎ia(1 − a|i|)

|i|
z2i

with 𝜎i ∈ (0, 1) for all times, we have

V̇ ≤

N∑

i=1
(𝜎i − 1)(1 − a|i|)z2i ,

which is strictly negative for all Lx ≠ 0. The following
decentralized event trigger ensures that this is satisfied at
all times.

Theorem 7.5.2 (Decentralized event-triggered control)
Given the closed-loop dynamics (7.16), if the updates times of
each agent i are determined as the times when

fi(xi, ei, {xj}j∈i
) ≜ e2i −

𝜎ia(1 − a|i|)
|i|

z2i = 0, (7.17)

with 0 < a < 1∕|i|, then the system achieves multi-agent aver-
age consensus.

Note that the trigger (7.17) can be evaluated by agent i using
only information about its own and neighbors’ states. The algo-
rithm is formalized in Table 7.3.
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Table 7.3 Decentralized event-triggered control.

At times t ∈ [ti
𝓁 , ti

𝓁+1), agent i (continuously) performs:

1: set zi(t) =
∑

j∈i
(xi(t) − xj(t))

2: set ei(t) = x̂i(t) − xi(t)
3: if ei(t)2 =

𝜎ia(1−a|i|)
|i|

zi(t)2 then
4: set ti

𝓁+1 = t
5: broadcast x̂i(t) = xi(ti

𝓁+1) to neighbors j ∈ i
6: set 𝓁 = 𝓁 + 1
7: end if
8: set ui(t) = −

∑
j∈i

(x̂i(t) − x̂j(t))

The proof of convergence to the desired state then directly
follows from the proof of Theorem 7.3.1 and the fact that the
sum of all states is still an invariant quantity. Furthermore,
the authors in [17] are able to show that at all times there
exists one agent i for which the inter-event times are strictly
positive. Unfortunately, this is not enough to rule out Zeno
behavior (an infinite number of triggers occurring in a finite
time period), which is quite problematic, both from a pragmatic
and theoretical viewpoint, as the trajectories of the system are
no longer well defined beyond the accumulation point in time.

Remark 7.5.3 (Convergence and Zeno behavior) It should
be noted here that when we refer to a “proof of convergence”
for any closed-loop dynamics, it is only valid for trajectories that
do not exhibit Zeno behavior. Consequently, being able to guar-
antee Zeno behaviors do not occur is extremely important in
validating the correctness of a given algorithm. ◾

Remark 7.5.4 (Directed graphs) All the work from [17] has
also been extended to consider weight-balanced directed graphs
in [18]. For brevity, we defer the discussion on directed graphs
to Section 7.6.1. ◾

The decentralized event-triggered controller (7.15) with
triggering law (7.17) relaxes the requirement that agents need
to continuously update their control signals; however, there
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are still some severe issues. Although each agent now has
a local event-triggering condition, it requires continuous
information about all of its neighbors to implement it. This is
still troublesome in a wireless network setting where this implies
continuous communication among agents is still required. We
address this next.

7.6 Decentralized Event-Triggered
Communication and Control

In the previous sections, we presented event-triggered control
laws to determine when control signals should be updated; how-
ever, this relied on the continuous availability of some state infor-
mation. In particular, each agent i requires exact state informa-
tion about their neighbors j ∈ i to evaluate the trigger (7.17)
and determine when its control signal ui should be updated.
Instead, we are now interested in developing event-triggered
communication and control laws such that each agent i must
not only determine when to update its control signal but also
when to communicate with its neighbors. For simplicity, we
refer to communication and control together as “coordination.”
As in the previous section, we assume each agent i has its own

sequence of event times {ti
𝓁}𝓁∈ℤ≥0

. However, these update times
now correspond to when messages are broadcast in addition to
when control signals are updated. At any given time t, let x̂i(t) =
xi(ti

𝓁) for t ∈ [ti
𝓁 , ti

𝓁+1) be the last broadcast state of agent i.Then,
at any given time t, agent i only has access to the last broadcast
state x̂j(t) of its neighbors j ∈ i rather than exact states xj(t).
The distributed event-triggered controller is then still given by

ui(t) = −
∑

j∈i

(x̂i(t) − x̂j(t)). (7.18)

It is important to note here that the latest broadcast state x̂j(t)
of agent j ∈ i appears in the control signal for agent i. This
means that when an event is triggered by a neighboring agent
j, agent i also updates its control signal accordingly. As before,
let ei(t) = xi(ti

𝓁) − xi(t) be the state measurement error for
agent i. Then, letting x̂ = (x̂1,… , x̂N )T and e = (e1,… , eN )T , the
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closed-loop dynamics of the controller (7.15) is given by
ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (7.19)

The problem can now be formalized as follows. However, it
should be noted that we are now looking for a strictly local event
trigger for each agent i that does not require exact information
about its neighbors. More specifically, we recall the result of
Theorem 7.5.2 and notice that the event trigger for agent i
depends on the exact state xj(t) of all its neighbors j ∈ i. In
this section, we are interested in finding a trigger that only
depends on the last broadcast information x̂j(t) instead.
Problem 7.6.1 (Decentralized event-triggered coordina-
tion) Given the closed-loop dynamics (7.16), find a local event
trigger for each agent i such that the sequence of times {ti

𝓁}𝓁∈ℤ≥0

ensures multi-agent average consensus (7.10) is achieved.
Here, we present two classes of event-triggered coordination

solutions to the aforementioned problem: time-dependent and
state-dependent triggers. The time-dependent event trigger to
solve this problem was first developed in [19] and is presented
next. The algorithm is formalized in Table 7.4.

Theorem 7.6.2 Decentralized event-triggered coordination
(time-dependent) Given the closed-loop dynamics (7.16), if
the updates times of each agent i are determined as the times
when

fi(ei(t), t) ≜ ||ei(t)|| − (c0 + c1e−𝛼t) = 0, (7.20)

Table 7.4 Decentralized event-triggered
coordination (time-dependent).

At times t ∈ [ti
𝓁 , ti

𝓁+1), agent i (continuously)
performs:
1: set x̂i(t) = xi(ti

𝓁)
2: set ei(t) = x̂i(t) − xi(t)
3: if |ei(t)| = c0 + c1e−𝛼t then
4: set ti

𝓁+1 = t
5: broadcast x̂i(t) = xi(ti

𝓁+1) to neighbors j ∈ i
6: set 𝓁 = 𝓁 + 1
7: end if
8: set ui(t) = −

∑
j∈i

(x̂i(t) − x̂j(t))
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with constants c0, c1 ≥ 0 and c0 + c1 > 0, then the system
reaches a neighborhood of multi-agent average consensus
upper-bounded by

r = ||L||
√

Nc0∕𝜆2(L).

Moreover, if c0 > 0 or 0 < 𝛼 < 𝜆2(L), then the closed-loop sys-
tem does not exhibit Zeno behavior.

The proof of convergence is shown in the appendix; however,
we are now also interested in guaranteeing that Zeno behavior
does not occur to verify the correctness of the algorithm as
mentioned earlier.
The main drawback of the event-triggered communication

and control law proposed in Theorem 7.6.2 is that although the
parameters c0, c1, and 𝛼 play very important roles in the perfor-
mance of the algorithm (e.g., convergence speed and amount of
triggers), there is no good way of choosing these parameters a
priori, without any global knowledge. Furthermore, the initial
condition also plays an important role in the performance of the
algorithm.
In particular, we focus our discussion here on the parameters

c0 and 𝛼 and their effects on convergence and possible Zeno
behaviors. We begin with the more desirable c0 = 0 case, as in
this case the result of Theorem 7.6.2 states that the system will
asymptotically achieve exact multi-agent average consensus as
defined in (7.10). However, in this case we require 𝛼 < 𝜆2(L) to
guarantee Zeno behaviors can be avoided and, unfortunately,
𝜆2(L) is a global quantity that requires knowledge about the
entire communication topology to compute. There are indeed
methods for estimating this quantity in a distributed way (see,
e.g., [26, 27]), but we do not discuss this here. On the other
hand, when c0 > 0, we can guarantee that Zeno behaviors are
avoided regardless of our choice of 𝛼; however, we lose the
asymptotic convergence guarantee. That is, for c0 > 0 we can
only guarantee convergence to a neighborhood of the desired
average consensus state.
As a result of the aforementioned discussion, we see that

there is no way the agents can choose the parameters c0, c1, and
𝛼 to ensure asymptotic convergence to the average consensus
state while also guaranteeing Zeno executions are avoided.
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Consequently, more recent works have proposed a local
Lyapunov-based event-triggering condition that only relies on
currently available information and no exogenous signals (e.g.,
time). This also naturally aligns when events are triggered with
the progression of the task as encoded in the Lyapunov function.
The state-dependent event trigger to solve this problem was
first developed in [20] and improved upon in [23] (removed
global parameter a requirement); we present this next.
Following [23], to solve this problem we consider a different

Lyapunov function,

V (x) = 1
2
(x − x𝟏)T (x − x𝟏),

where x = 1
N

∑N
i=1 xi(0) is the average of all initial conditions.

Then, given the closed-loop dynamics (7.16), we have
V̇ = −xT ẋ − x𝟏T ẋ = −xT Lx̂ − x𝟏T Lx̂ = −xT Lx̂,

where we have used the fact that the graph is weight-balanced
in the last equality. As before, we are interested in finding con-
ditions on the error e such that V̇ < 0 at all times; however, we
must now do it without access to neighboring state information.
Recalling ei(t) = x̂i(t) − xi(t), we can expand this out to

V̇ = −x̂T Lx̂ + eT Lx̂

= −
N∑

i=1

∑

j∈i

(1
2
(x̂i − x̂j)2 − ei(x̂i − x̂j)

)
.

Using Young’s inequality for each product (see [23] for the
reason why this choice)

ei(x̂i − x̂j) ≤ e2i +
1
4
(x̂i − x̂j)2

yields

V̇ ≤ −
N∑

i=1

∑

j∈i

(1
2
(x̂i − x̂j)2 − e2i −

1
4
(x̂i − x̂j)2

)

= −
N∑

i=1

∑

j∈i

(1
4
(x̂i − x̂j)2 − e2i

)

=
N∑

i=1
ei|i| −

∑

j∈i

(1
4
(x̂i − x̂j)2

)
.
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If we can enforce the error of all agents to satisfy

e2i ≤ 𝜎i
1

4|i|

∑

j∈i

(x̂i − x̂j)2

with 𝜎i ∈ (0, 1) for all times, we have

V̇ ≤

N∑

i=1

𝜎i − 1
4

∑

j∈i

(x̂i − x̂j)2,

which is strictly negative for all Lx̂ ≠ 0.The following decentral-
ized event trigger ensures this is satisfied at all times.

Theorem 7.6.3 (Decentralized event-triggered coordination
(state-dependent)) Given the closed-loop dynamics (7.16), if
the update times of each agent i are determined as the times
when

fi(ei) ≜ e2i − 𝜎i
1

4|i|

∑

j∈i

(x̂i − x̂j)2 ≥ 0, (7.21)

then the system achieves multi-agent average consensus.

It should be noted here that unlike all the other triggers
presented so far, this trigger is given by an inequality rather than
an equality. This is a result of the state-dependent triggering
function that agents use to determine when to communicate.
Since agents are asynchronously sending each other messages,
the information they have about one another is also changing
discontinuously (Table 7.5).

7.6.1 Directed Graphs

Up until now we have assumed that the communication graph
was always undirected. Here, we extend the previous results to
cases where the communication graph  is directed but strongly
connected and weight-balanced.
More specifically, we say that agent i can only send messages

to its out-neighbors j ∈  out
i . Similarly, it can only receive mes-

sages broadcast by its in-neighbors j ∈  in
i . Conveniently, the

closed-loop system dynamics is still given by (7.16) where the
only difference now is L is not symmetric. However, because it
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Table 7.5 Decentralized event-triggered coordination
(state-dependent).

At times t ∈ [ti
𝓁 , ti

𝓁+1), agent i (continuously) performs:

1: set x̂i(t) = xi(ti
𝓁)

2: set ei(t) = x̂i(t) − xi(t)
3: if ei(t)2 ≥ 𝜎i

1
4|i|

∑
j∈i

(x̂i(t) − x̂j(t))2 then
4: set ti

𝓁+1 = t
5: broadcast x̂i(t) = xi(ti

𝓁+1) to neighbors j ∈ i
6: set 𝓁 = 𝓁 + 1
7: end if
8: set ui(t) = −

∑
j∈i

(x̂i(t) − x̂j(t))

is weight-balanced we still have that the sum of all states is an
invariant quantity,

d
dt

(𝟏T
N x(t)) = 𝟏T

N ẋ(t) = −𝟏T
N L x̂(t) = 0.

Remark 7.6.4 (Weight-balanced assumption) It should
be noted that the weights of the directed graph for any
digital implementations are design parameters that can be
chosen to make a given directed communication topology
weight-balanced. The works [28, 29] present provably correct
distributed strategies that, given a directed communication
topology, allow a network of agents to find such weight edge
assignments.

Remarkably, the same analysis from the previous section
almost directly follows and admits a similar triggering law.More
specifically, it can be shown that if we can enforce the error of
all agents to satisfy

e2i ≤ 𝜎i
1

4dout
i

∑

j∈ out
i

(x̂i − x̂j)2,

with 𝜎i ∈ (0, 1) for all times, we have

V̇ ≤

N∑

i=1

𝜎i − 1
4

∑

j∈ out
i

𝑤ij(x̂i − x̂j)2, (7.22)
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Table 7.6 Decentralized event-triggered coordination on
directed graphs.

At times t ∈ [ti
𝓁 , ti

𝓁+1), agent i (continuously) performs:

1: set x̂i(t) = xi(ti
𝓁)

2: set ei(t) = x̂i(t) − xi(t)
3: if ei(t)2 ≥ 𝜎i

1
4dout

i

∑
j∈ out

i
𝑤ij(x̂i(t) − x̂j(t))2 then

4: set ti
𝓁+1 = t

5: broadcast x̂i(t) = xi(ti
𝓁+1) to in-neighbors j ∈  in

i
6: set 𝓁 = 𝓁 + 1
7: end if
8: set ui(t) = −

∑
j∈ out

i
𝑤ij(x̂i(t) − x̂j(t))

which is strictly negative for all Lx̂ ≠ 0.The following decentral-
ized event trigger ensures this is satisfied at all times (Table 7.6).

Theorem 7.6.5 (Decentralized event-triggered coordina-
tion on directed graphs) Given the closed-loop dynamics
(7.16), if the communication graph  is weight-balanced and the
updates times of each agent i are determined as the times when

fi(ei) ≜ e2i − 𝜎i
1

4dout
i

∑

j∈i

𝑤ij(x̂i − x̂j)2 ≥ 0, (7.23)

then the system achieves multi-agent average consensus.

Unfortunately, most of the algorithms presented here are
not guaranteed to avoid Zeno behaviors making them risky to
implement on real systems. Moreover, the one algorithm that
can in some cases guarantee no Zeno behavior requires some
global information. In some cases, modifications can be made
to theoretically ensure that no Zeno behavior occurs; however,
there may still be an arbitrarily small amount of time between
any two events (see, e.g., [23]) making it undesirable from an
implementation viewpoint. This is addressed in Remark 7.6.6
and the following section.

Remark 7.6.6 (Implementation) We note here an impor-
tant issue regarding the connection between Zeno executions



�

� �

�

7 Event-Triggered Communication and Control 199

and implementation. In general, dedicated hardware can only
operate at some maximum frequency (e.g., a physical device
can only broadcast a message or evaluate a function a finite
number of times in any finite period of time). This means that
ensuring that a system does not exhibit Zeno behavior may not
be enough to guarantee that the algorithm can be implemented
on a physical system if the physical hardware cannot match the
speed of actions required by the algorithm. More specifically, it
is guaranteed that Zeno behavior does not exist if the sequence
of times ti

𝓁 → ∞ as 𝓁 → ∞; however, this is not as strong as
ensuring that there exists a minimum time in between triggers
ti
𝓁+1 − ti

𝓁 ≥ 𝜏
min

> 0, which is a more pragmatic constraint when
considering physical hardware. ◾

In light of Remark 7.6.6, we consider enforcing a minimum
time between events in the following section.

7.7 Periodic Event-Triggered Coordination

Throughout this chapter, we have assumed that all event triggers
can be evaluated continuously. That is, the exact moment
at which a triggering condition is met, an action (e.g., state
broadcast and control signal update) is carried out. However,
this may still be an unrealistic assumption when considering
digital implementations. More specifically, a physical device
cannot continuously evaluate whether a triggering condition
has occurred or not. This observation motivates the need for
studying sampled-data (or periodically checked) event-triggered
coordination strategies.
Specifically, given a sampling periodh ∈ ℝ

>0, we let {t𝓁′ }𝓁′∈ℤ≥0
,

where t𝓁′+1 = t′𝓁 + h, denote the sequence of times at which
agents evaluate the decision of whether to broadcast their state
to their neighbors. This type of design is more in line with
the constraints imposed by real-time implementations, where
individual components work at some fixed frequency, rather
than continuously. An inherent and convenient feature of this
strategy is the lack of Zeno behavior (since inter-event times are
naturally lower bounded by h).
Consequently, we begin by revisiting the result of Theorem

7.6.5. Intuitively, as long as the sampling period h is small
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enough, the closed-loop system with a periodically checked
event-triggering condition will behave similarly to the system
with triggers being evaluated continuously. The proof of con-
vergence for the triggering law in Theorem 7.6.5 hinges on the
fact that

e2i (t) ≤ 𝜎i
1

4dout
i

∑

j∈i

𝑤ij(x̂i(t) − x̂j(t))2

for all times t. Instead, since we now assume that the triggering
function 7.17 can only be evaluated periodically, we have that

e2i (t𝓁′ ) ≤ 𝜎i
1

4dout
i

∑

j∈i

𝑤ij(x̂i(t𝓁′ ) − x̂j(t𝓁′ ))2 (7.24)

is only guaranteed at the specific times {t𝓁′ }𝓁′∈ℤ≥0
at which the

triggering function can be evaluated. The algorithm is formal-
ized in Table 7.7.
It should be noted that this algorithm is identical to the one

in Table 7.6 except it is only executed periodically now rather
than continuously.The following result then provides a sufficient
condition on how small the period h has to be to guarantee con-
vergence. The result is obtained by analyzing what happens to
the Lyapunov function V in between these times.

Theorem 7.7.1 (Periodic event-triggered coordination)
Given the closed-loop dynamics (7.16), if the communication
graph  is weight balanced and the update times of each agent i
are determined as the times t′ ∈ {0, h, 2h,…} when

fi(ei) ≜ e2i − 𝜎i
1

4dout
i

∑

j∈i

𝑤ij(x̂i − x̂j)2 ≥ 0,

Table 7.7 Periodic event-triggered coordination on directed graphs.

At times t ∈ {0, h, 2h,…}, agent i performs:
1: set x̂i(t) = xi(ti

𝓁)
2: set ei(t) = x̂i(t) − xi(t)
3: if ei(t)2 ≥ 𝜎i

1
4dout

i

∑
j∈ out

i
𝑤ij(x̂i(t) − x̂j(t))2 then

4: set ti
𝓁+1 = t

5: broadcast x̂i(t) = xi(ti
𝓁+1) to neighbors j ∈  in

i
6: set 𝓁 = 𝓁 + 1
7: end if
8: set ui(t) = −

∑
j∈ out

i
𝑤ij(x̂i(t) − x̂j(t))
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and h ∈ ℝ
>0 satisfies

𝜎max + 4h𝑤max|
out
max| < 1, (7.25)

where 𝑤max = maxi∈{1,…,N},j∈ out
i
𝑤ij and | out

max| = maxi∈{1,…,N}
| out

i |, then the system achievesmulti-agent average consensus.

Note that checking the sufficient condition (7.25) requires
knowledge of the global quantities 𝜎max, 𝑤max, and  out

max.
Ensuring that this condition is met can either be enforced a
priori by the designer or, alternatively, the network can execute
a distributed initialization procedure, for example, [3, 30], to
compute these quantities in finite time. Once known, agents can
compute h by instantiating a specific formula to select it that is
guaranteed to satisfy (7.25).
A drawback of this algorithm is that the period h must be

the same for all agents, requiring synchronous action. It is not
difficult to envision asynchronous versions of this algorithm
for which correctness guarantees have not currently been
established.

7.8 Conclusions and Future Outlook

This chapter has presented a high-level overview of the ideas
behind event-triggered communication and control applied to
multi-agent average consensus problems. Although Table 7.1
makes it look like there is a complete story concerning
event-triggered consensus problems, this is certainly not true
as there still remain many issues to be addressed regarding
asynchronism, guarantees on non-Zeno behavior, and practical
considerations. There are indeed still exciting new directions
being explored at the time of writing that would only serve to
expand this table in the future. For instance, all event-triggered
protocols discussed in this chapter assume that all agents are
able to “listen” for incoming messages at all times. In other
words, when a message is broadcast by an agent i, this message
is immediately received by a neighboring agent j ∈ i who
immediately (or within some reasonable time due to delays,
etc.) reacts to this event by updating its control signal. However,
this may not be possible in all scenarios, which presents a whole
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new set of technical challenges. For example, some recent
preliminary results have been developed in this setup motivated
by the need for coordinating submarines [31, 32], where agents
can only communicate when they are at the surface of the water.
While a submarine is submerged, any message broadcast by
another submarine cannot be received until it resurfaces.
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Appendix

Proof ofTheorem 7.3.1: Consider the Lyapunov function

V (x) = 1
2

xT Lx.

Then, given the dynamics (7.8) and the continuous control law
(7.9),

V̇ (x) = xT Lẋ = −xT LT Lx = −||Lx||2,

where we have used the fact that L is symmetric. It is now clear
that using the continuous control law (7.9) we have V̇ (x) < 0 for
all Lx ≠ 0. Using LaSalle’s Invariance Principle [33], it can then
be shown that

x(t) → {Lx = 0} = {xi = xj∀i, j ∈ {1,… ,N}}

as t → ∞. Combining this with the fact that the sum of all states
is an invariant quantity concludes the proof,

d
dt

(𝟏T
N x(t)) = 𝟏T

N ẋ(t) = −𝟏T
N Lx(t) = 0.

◾

Proof of Theorem 7.6.2: Let 𝛿(t) = x(t) − x𝟏, where
x = 1

N

∑N
i=1 xi(0) is the average of all initial conditions. Then,

�̇�(t) = −L𝛿(t) − Le(t), yielding

𝛿(t) = e−Lt
𝛿(0) −

∫

t

0
e−L(t−s)Le(s)ds.

Taking norms,

||𝛿(t)|| ≤ ||𝛿(0)e−Lt|| +
∫

t

0
||e−L(t−s)Le(s)||ds

≤ e−𝜆2(L)t||𝛿(0)|| +
∫

t

0
e−𝜆2(L)(t−s)||Le(s)||ds,

where the second inequality follows from [19, Lemma 2.1].
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Using the condition
|ei(t)| ≤ c0 + c1e−𝛼t

,

it follows that
||𝛿(t)|| ≤ e−𝜆2t||𝛿(0)|| + ||L||

√
N

∫

t

0
e−𝜆2(t−s)(c0 + c1e−𝛼s)ds

= e−𝜆2t
(
||𝛿(0)|| − ||L||

√
N
( c0
𝜆2

+
c1

𝜆2 − 𝛼

))

+ e−𝛼t ||L||
√

Nc1
𝜆2 − 𝛼

+
||L||

√
Nc0

𝜆2
.

The convergence result then follows by taking t → ∞. ◾

Proof of Theorem 7.7.1: Since (7.24) is only guaranteed at the
sampling times under the periodic event-triggered coordination
algorithmpresented inTable 7.7, we analyzewhat happens to the
Lyapunov function V in between them. For t ∈ [t𝓁′ , t𝓁′+1), note
that

e(t) = e(t𝓁′ ) + (t − t𝓁′ )Lx̂(t𝓁′ ).

Substituting this expression into V̇ (t) = −x̂T (t)Lx̂(t) +
eT (t)Lx̂(t), we obtain

V̇ (t) = −x̂T (t𝓁′ )Lx̂(t𝓁′ ) + eT (t𝓁′ )Lx̂(t𝓁′ )
+(t − t𝓁′ )x̂T (t𝓁′ )LT Lx̂(t𝓁′ ),

for all t ∈ [t𝓁′ , t𝓁′+1). For a simpler exposition, we drop all
arguments referring to time t𝓁′ in the sequel. Following a similar
discussion to Section 7.6, it can be shown that

V̇ (t) ≤
N∑

i=1

𝜎i − 1
4

∑

j∈ out
i

𝑤ij(x̂i − x̂j)2 + (t − t𝓁′ )x̂T LT Lx̂.

Note that the first term is exactly what we have when we are able
to monitor the triggers continuously (7.22).
Using the fact that

(∑p
k=1 yk

)2
≤ p

∑p
k=1 y2k (which follows

directly from the Cauchy–Schwarz inequality), we bound

x̂T LT Lx̂ =
N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈ out
i

𝑤ij(x̂i − x̂j)
⎞
⎟
⎟
⎠

2
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≤

N∑

i=1
| out

i |𝑤max
i

∑

j∈ out
i

𝑤ij(x̂i − x̂j)2

= | out
max|𝑤max

N∑

i=1

∑

j∈ out
i

𝑤ij(x̂i − x̂j)2, (7.26)

where 𝑤max
i = maxj∈ out

i
𝑤ij. Hence, for t ∈ [t𝓁′ , t𝓁′+1),

V̇ (t) ≤
N∑

i=1

(
𝜎i − 1
4

+ h𝑤max|
out
max|

) ∑

j∈ out
i

𝑤ij(x̂i − x̂j)2

≤

(
𝜎max − 1

2
+ 2h𝑤max|

out
max|

)
x̂T Lx̂.

Then, by using (7.25), it can be shown that there exists  > 0
such that

V̇ (t) ≤ 1
2

(
𝜎max + 4h𝑤max|

out
max| − 1

)
V (x(t)),

which implies the result. See [23] for details. ◾
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8.1 Introduction

Network structure/topology is essential in many types of
multi-agent involved missions, where interaction among agents
is determined by the underlying network structure. For example,
successful control of leader–follower network toward desired
states requires identifying node indices of leaders, connectivity
between leaders and followers, and interaction relationship
among followers [1]. In fact, designing or obtaining network
topology is a prerequisite for operations such as spacecraft
formation, mobile robot rendezvous, unmanned aerial vehicle
flocking [2]. In this chapter, we address two types of prob-
lem, network topology design (NTD) and network topology
identification (NTI), both of which are classified as NP-hard
problems.
Related works in the area of network design have been

pursued predominately for allocating edge weights [3–5]. For
geometry-dependent networks, efforts have been focused on
determining the location of mobile nodes to establish or main-
tain a connected network [6, 7].Thework described here focuses
on the combinatorial problem of determining both the topology
and edge weights of a nongeometric undirected network that
will optimize a desired performance index with constraint on
the cardinality of edge set. In practical applications, that is,
establishing a communication network, the cost of constructing
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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a connected network is evaluated by the number of edges.
Therefore, considering cardinality constraint on the edge set
has economic impacts and benefits. For a nongeometric-based
network, if the existence and absence of an edge between a pair
of nodes is represented by binary values, then the off-diagonal
entries of the adjacency matrix are all expressed as binary values
as well. The objective is to determine these binary values and
their associated weights in order to optimize the performance
index when the number of edges has an upper bound.
Due to the cardinality constraint on the edge set, the NTD

problem can be cast as an optimal resource allocation problem,
where the edge set is handled as limited resources. We refer
to such problems as cardinality-constrained optimization
problems. Cardinality-constrained optimization problems
have extensive applications in feedback control and networked
sensing systems. Due to the nonconvex cardinality function, a
surrogate model, that is, L1 norm function, is generally used
to approximately represent the cardinality function [8–11].
In general, the L1 norm method is able to find at least a fea-
sible solution when aiming to design a sparse linear system
[12–14]. However, when the cardinality function appears in the
constraint, these surrogate models are no longer applicable to
cardinality-constrained optimization problems, as an approx-
imate model cannot guarantee satisfying the exact cardinality
inequality constraint. Heuristic search, that is, genetic algorithm
[15, 16], and branch-and-bound method [17, 18] have been
applied to small-scale NTD as both of them are time consuming.
Based on the fact that cardinality of a vector equals to the rank
of a diagonal matrix with such vector as the diagonal elements,
the cardinality-constrained optimization is a special case of
rank-constrained optimization problem (RCOP).
Meanwhile, extensive work has been developed in the area of

identification for a linear time-invariant (LTI) system, which is
controllable and observable. The well-known Kung et al. [19]
and subspace methods [20] find “similar” state-space matrices
that match the response between input and output. Such a
“black box” model constructed by input–output data is applied
in this chapter for solving NTI problems. We assume that the
dynamics of each node in a connected network is governed
by the consensus protocol. Thus, the linear transfer matrix
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of LTI systems is defined by the negative graph Laplacian
that directly reflects the network topology. However, finding
“similar” state-space matrices is far away from the objective
of identifying the exact network topology. Previous work in
[21] used the “black-box” setup to establish the generating
function of graph Laplacian by observing input–output data
from selected network nodes. Another work in [22] used an
integrated spectral characterization of graphs and similarity
transformation approach to find an approximate graph Lapla-
cian. Reconstruction of tree-like networks and sparse networks
can be found in the recent work of [23–26]. However, mapping
the exact graph Laplacian from the “similar” state-space matri-
ces constructed by input–output data is very challenging. The
major reason comes from the involvement of unknown binary
variables representing the edge set of the network. For a network
with given number of nodes, the number of network topology
configurations is an exponential function about its number of
nodes. It will be extremely time consuming to find the exact
graph Laplacian that has the closest spectra to the “similar”
state transfer matrix while keeping the similarity properties.
The similarity transformation between graph Laplacian and

“similar” state-space matrices as bilinear constraints. The NTI
problem is then transformed as an optimization problem with
bilinear constraints, as well as constraints on the Laplacian
structure. We further generalize the NTI problem as a noncon-
vex quadratically constrained quadratic programming (QCQP)
problem. A general QCQP can be equivalently transformed
into a linear matrix programming problem by introducing a
to-be-determined rank-one matrix [27]. Through these conver-
sions, the NTI problem is also equivalently formulated as an
RCOP, where the constrained rank is equal to 1.
RCOPs are to minimize a convex function subject to a

convex set of constraints and rank constraints on unknown
matrices. They have received extensive attention due to their
wide applications in signal processing, model reduction, and
system identification, just to name a few [28–30]. Due to the
discontinuous and nonconvex nature of the rank function, most
of the existing methods solve relaxed or simplified RCOPs by
introducing an approximate function, that is, log-det or nuclear
norm heuristic methods [31, 32]. However, a relaxed function
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cannot represent the exact rank function and performance of
the heuristic method is not guaranteed in general. In the worst
case, when the unknown matrix is positive semidefinite and has
equality trace constraint, the nuclear norm heuristic method
is not applicable to such type of problems. Other methods for
RCOPs mainly focus on alternating projection-based methods
[33–36] and combined linearization and factorization algo-
rithms [37, 38]. However, these iterative approaches depend on
the initial guess, and fast convergence cannot be guaranteed.
After reviewing the literature, we come to a conclusion

that a more efficient approach for general RCOPs is required.
This chapter introduces an iterative rank minimization (IRM)
method to solve RCOPs, where each iteration is formulated
as a semidefinite programming (SDP) problem. To validate
the effectiveness and efficiency of the proposed algorithm, we
apply IRM to two representative NTD problems and one NTI
problem where dynamics of each node is driven by consensus
protocol. One type of NTD is to pursue a fast convergence
rate of consensus-based multi-agent system and the other is to
minimize the total effective resistance of an electrical resistor
network. For small-scale NTD and NTI problems where global
optimal solution can be determined by exhaustive examination
of all feasible solutions, results from IRM are compared to the
best result from exhaustive search.
This chapter is organized as follows. Section 8.2 introduces the

formulations of two types of NTD problems. In Section 8.3, we
formulate the NTI problem and transform the original formu-
lation into QCQPs and then rank-one constrained optimization
problems. We then introduce an iterative method in Section 8.4
to solve RCOPs. Simulation results forNTDandNTIwith differ-
ent nodes are presented in Section 8.5. We conclude the chapter
in Section 8.6.

8.2 Network Topology Design Problems

We consider an undirected, weighted network  = ( , ) with
vertex set  = {1, 2,… , n} and edge set E consisting of two
element subsets of  . We use nodes or agents interchange-
ably with vertices. The Laplacian matrix of  is defined as
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 = diag(g)T , where  ∈ ℝn×m is the incidence matrix,
g ∈ ℝm are weights of the edge set, and m ≤ n(n − 1)∕2. Note
that if {𝑣i, 𝑣j} ∉  , the corresponding edge weight is 0.

8.2.1 Network Design for Fast Convergence of Consensus
Protocol

For a multi-agent system, the consensus protocol of the overall
system is represented as

ẋ = −()x, (8.1)

which will drive states of each agent to the consensus set
 = {x ∈ ℝn|xi = xj,∀ 𝑣i, 𝑣j ∈ } by exchanging state infor-
mation with connected agents in the specified network .
It is well known that () is positive semidefinite, and we
sort the eigenvalues of () in the nondecreasing order as
0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆n. We quote the following well-known
Lemma [39], which can be used to determine the rate of con-
vergence to the consensus set. It is known that for a connected
network , the (undirected) consensus protocol converges to
the consensus set  with a rate of convergence that is dictated
by 𝜆2().
With 𝜆2() assigned as the objective to be maximized, our

goal is to design the weighted topology of a connected network
such that the sum of the edges weights and cardinality of
the edge set are bounded. Mathematically, this type of NTD
problem can be formulated as

J = maxg 𝜆2()
s.t. gj ≥ 0, j = 1,… ,m

𝟏Tg = gt (8.2)
𝜆2() > 0

Card(g) ≤ r,

where gt is the upper bound on sum of the weights, r is the
upper bound on cardinality of g, and Card(•) denotes the
cardinality of “•.” However, 𝜆2 in (8.2) is not an explicit function
of the design variables, g. In addition, computing the second
smallest eigenvalue of a to-be-determined matrix is computa-
tionally complicated and nonlinear. A similarity transformation
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method is discussed later to transform the network connectivity
constraint into a linear matrix inequality (LMI) constraint.
An orthogonal matrix P = [p1, p2,… , pn−1, 𝟏∕

√
n] is con-

structed here with unit vectors pi’s chosen as pT
i 𝟏 = 0

(i = 1, 2,… , n − 1) and pT
i pj = 0 (i ≠ j). By the similarity

transformation, we get
 ∼ PT

()P, (8.3)
where symbol “∼” indicates the similarity between twomatrices.
Lemma 8.2.1 For a graph Laplacian (), 𝛼 > 𝜆2 if and only if
() + 𝛼𝟏𝟏T∕n ⪰ 𝜆2I [17].
Proof : It is easy to confirm that the matrix 𝛼𝟏𝟏T∕n has one
eigenvalue equal to 𝛼 with corresponding eigenvector of 𝟏
and the remaining eigenvalues are all equal to zero. Let us
assume that the eigenvectors of matrix 𝛼𝟏𝟏T∕n are denoted by
P = [p1, p2,… , pn−1, 𝟏∕

√
n], where all elements of P satisfies

conditions stated earlier. From (8.3), one has

PT
()P ∼ PT

⎛
⎜
⎜
⎝

𝜆1 0 0
0 ⋱ 0
0 0 𝜆n

⎞
⎟
⎟
⎠

P,

where 𝜆1 = 0 with eigenvector 𝟏. We can now proceed to deter-
mine the eigenvalues of matrix () + 𝛼𝟏𝟏T∕n,

PT (() + 𝛼𝟏𝟏T∕n)P ∼ PT

⎛
⎜
⎜
⎜
⎝

𝜆1 + 𝛼 0 0 0
0 𝜆2 0 0
0 0 ⋱ 0
0 0 0 𝜆n

⎞
⎟
⎟
⎟
⎠

P.

As we assigned 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆n, () + 𝛼𝟏𝟏T∕n ⪰ 𝜆2I is
satisfied if and only if 𝛼 ≥ 𝜆2. ◾

Based on the LMI representation of connectivity constraint,
the original NTD problem is reformulated as

J = maxg,𝜆2𝜆2

s.t. g ≥ 0
𝟏Tg = gt (8.4)
𝜆2() > 0

Card(g) ≤ r
() + 𝛼𝟏𝟏T∕n ⪰ 𝜆𝟐I,
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where 𝜆2 is handled as an unknown variable to be determined
together with g and 𝛼 is selected as a large number. Aswewant to
maximize 𝜆2 and () + 𝛼𝟏𝟏T∕n acts as an upper bound on 𝜆2,
formulation in (8.4) is an equivalent conversion of the original
problem formulated in (8.2). The objective function and con-
straints, except for the cardinality constraint, are convex, thus
problem in (8.4) is classified a cardinality-constrained optimiza-
tion problem.

8.2.2 Network Design for Minimum Total Effective
Resistance

In a connected resistor network, the effective resistance between
a pair of vertices is evaluated by the conductance of each edge in
the network. In practical applications, that is, infusing control
commands into the network, it is necessary to minimize the
total effective resistance such that maximum currents between
two vertices can be obtained. The authors of [40] determined
that the design of edge weights of a network with given topology
while ignoring cardinality constraints is a convex problem.
In this chapter, we consider a similar problem to design the
weighted network topology with an upper bound on Card(g).
Following the formulation of network design problem for mini-
mum total effective resistance in [40], our problem considering
cardinality constraint on edge set can be expressed as

J = ming,Y ntrace(Y )
s.t. 𝟏Tg = gt

gj ≥ 0, j = 1,… ,m (8.5)
[
 + 𝟏𝟏T∕n I

I Y

]
⪰ 0

Card(g) ≤ r,

where Y ∈ 𝕊n is a slack matrix, 𝕊 denotes a symmetric matrix,
and the rest variables are defined similar to those in problem
(8.2). Moreover, work in [40] indicated that the optimum of (8.5)
is a complete graph without the cardinality constraint on edge
set. It is obvious that the weighted NTD problem formulated in
(8.5) is again a cardinality-constrained optimization problem.
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8.2.3 Equivalent Conversion from Cardinality-Constrained
Optimization Problems to RCOPs

The two types of NTD problems described in Sections 8.2.1 and
8.2.2 can be classified as a general cardinality-constrained opti-
mization problem formulated as

J = minx f (x)
s.t. x ∈ 

Card(x) ≤ r,
(8.6)

where x ∈ ℝp, f (x) is a convex function, and  is a convex
set. Based on the fact that cardinality of a vector x equals
to the rank of a diagonal matrix with diagonal elements x,
the cardinality function can be equivalently reformulated
as Card(x) = rank(diag(x)). Then a cardinality-constrained
optimization problem can be equivalently transformed into a
RCOP in the form of

J = minX f (X)
s.t. X ∈  (8.7)

rank(X) ≤ r,

where X ∈ 𝕊p
+ is an unknown positive semidefinite matrix.

8.3 Network Topology Identification
Problems

8.3.1 LTI System Identification

We start with introducing the black-box approach of identifying
an LTI system by observing input–output data. Consider a linear
continuous system in state-space format

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) , (8.8)

where x ∈ ℝn is the state vector, u ∈ ℝr is the input vector,
y ∈ ℝr is the output vector, A ∈ ℝn×n, B ∈ ℝn×r , and C ∈ ℝr×n

are the state-space matrices. Through discrete integration, the
continuous linear differential equation in (8.8) can be integrated
at discrete sampling time tk , k = 1,… ,K , and reformulated as
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discrete LTI system in the format
x(tk+1) = Adx(tk) + Bdu(tk)

y(tk) = Cdx(tk)
, (8.9)

where Ad = etk A, Bd = (∫ tk
0 eAtdt)B, and Cd = C. For a given Ad,

A = 1∕tk logM Ad, where logM denotes the matrix logarithm. By
propagation, the input–output expression for discrete LTI at
sampling sequence p is expressed as

y(p) = H(p)u(p), (8.10)

where H(p) = Γ(p)Ω(p) denotes the Hankel matrix and matri-
ces Γ(p) and Ω(p) are defined by the Ad,Bd,Cd in (8.9) as

Γ(p) =
⎡
⎢
⎢
⎢
⎣

Cd
CdAd
⋮

CdAp−1
d

⎤
⎥
⎥
⎥
⎦

and Ω(p) =
[
Bd AdBd … Ap−1

d Bd
]
, respec-

tively. By tracking a series of input and output data at discrete
sampling time, the Hankel matrix can be constructed via
impulse response parameters [19] or least-square estimation
method [20]. There are many methods to reconstruct the
extended controllability and observability matrices, Γ(p) and
Ω(p), from the Hankel matrix. For example, a commonly
used one is the singular value decomposition method [19].
Results of this identification procedure lead to the realization
of “similar” state-space matrices set (AT ,BT ,CT ) that represents
the identified LTI system

ẋ(t) = AT x(t) + BT u(t)
y(t) = CT x(t) (8.11)

while satisfying the input–output response. Furthermore, from
Kalman’s theorem [41], the set (A,B,C) and (AT ,BT ,CT ) are lin-
early related by a nonsingular matrix T ∈ ℝn×n such that

AT = TAT−1
, BT = TB, C = CT−1

. (8.12)

This system identification procedure can be applied to the NTI
problem where the state-space transfer matrix is solely deter-
mined by the network topology.
We assume that the nodes belonging to the set  ∈  , which

has cardinality r , are selected to receive infused control sig-
nals u. Meanwhile, nodes set ∈  with cardinality r is used to
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observe output response y. Recall that when xi denotes the state
of dynamic agent i in the connected network , the consensus
protocol of the overall system with input u is represented by

ẋ(t) = −()x(t) + Bu(t), (8.13)

which will drive each agent to the consensus set  = {x ∈ ℝn ∣
xi = xj,∀ 𝑣i, 𝑣j ∈ } by exchanging state information with
connected agents in the specified network . B ∈ ℝn×r is the
control matrix with element Bi,j set as one if node i, i = 1,… , n,
is selected as the jth input, where j = 1,… , r . For the output,
we have

y(t) = Cx(t), (8.14)

where C ∈ ℝr×n is the observation matrix with element Cj,i
set as one if node i, i = 1,… , n, is selected as the jth output,
where j = 1,… , r. An illustrative example is demonstrated in
Figure 8.1.
Here, we assume that the LTI system governed by (8.13) and

(8.14) is controllable and observable. Furthermore, the network
to be identified is connected. Under these assumptions, the
system identification procedure introduced earlier is applied
to construct the “similar” state-space matrices set (AT ,BT ,CT ).
The detailed steps of constructing (AT ,BT ,CT ) can be referred
to [22]. However, the system identification procedure does not
lead to the exact A,B,C matrices of the original system, nor
does the matrix AT share the graph Laplacian properties. Our

u

y4

32

1

1 0

0 1

0 0

0 0

B =

C = [0 0 0 1]

Figure 8.1 An illustrative example of NTI concept.
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focus is to find the exact graph Laplacian from the obtained
(AT ,BT ,CT ) set such that the final state-space matrices
(−(),B,C) satisfy the linear similarity relationship stated in
(8.12) while constraining the graph Laplacian () with the
defined structure.

8.3.2 Formulation of NTIs as QCQPs

In summary, the NTI problem is to find (−(),B,C) from
constructed matrices set (AT ,BT ,CT ) obtained through system
identification procedure. The desired matrix −(), sharing
the same spectrum of AT , has the minimum distance from
AT in the Frobenius norm [42]. In addition, the matrices set
(−(),B,C) is constrained by the similarity relationship and
() is constrained by the Laplacian structure. The aforemen-
tioned statement of NTI can be summarized as a constrained
optimization problem, written as

J = minA,T ∥A − AT∥2F
s.t. AT = T AT−1

BT = TB
CT = CT−1 (8.15)

Ai,j = Aj,i ∈ {0, 1},∀ 𝑣i, 𝑣j ∈ V , i ≠ j
A𝟏 = 0,

where A = −(). The aforementioned formulation including
both binary variables in A and continuous variables in T (which
is nonsingular asmentioned before) under nonlinear constraints
is a mixed-integer nonlinear optimization problem. In addition,
asAT is supposed to be similar to a negative Laplacianmatrix of a
graph, itmust have the same eigenstructure, namely, all eigenval-
ues should be negative except the one which is zero. This can be
used to check the feasibility of (8.15) or the system identification
procedures. For a given matrix Φ ∈ ℝn×n, its Frobenius norm

is determined by ∥Φ∥F ∶=
√

trace(ΦTΦ) =

(
n∑

i=1

n∑

j=1
Φ2

i,j

) 1
2

.

Furthermore, the binary variables Ai,j can be constrained via
quadratic functions Ai,j(Ai,j − 1) = 0,∀ 𝑣i, 𝑣j ∈ V , i ≠ j. With
these transformations, problem in (8.15) can be transformed
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into a quadratic optimization problem with quadratic and linear
constraints in the form of

J = minA,T

n∑

i=1

n∑

j=1
(Ai,j − AT i,j)2

s.t. TA − AT T = 0
BT = TB
CT T = C (8.16)

Ai,j(Ai,j − 1) = 0,∀ 𝑣i, 𝑣j ∈ V , i ≠ j
Ai,j = Aj,i

A𝟏 = 0.
Thefirst three constraints are from (8.12) and the following three
are the properties of a graph Laplacian matrix. It is obvious that
the quadratic constraints such as the binary variable constraints
and bilinear constraints in (8.16) are nonconvex. The NTI prob-
lem is then transformed as a nonconvex inhomogeneous QCQP
problem.

8.3.3 Equivalent Conversion fromQCQPs to RCOPs

In general, the inhomogeneous QCQP problem can be formu-
lated as

J = minxT Q0x + q0
T x

s.t. xT Qjx + qj
T x + cj ≤ 0, ∀ j = 1,… ,m, (8.17)

where x ∈ ℝp
,Qj ∈ 𝕊p

,qj ∈ ℝp
, j = 0,… ,m. In particular, linear

constraints can be included aswell if theHessianmatrix,Qj, is set
as a zero matrix. For the cases where Qj is negative semidefinite,
indefinite, or the quadratic constraints have equality ones, the
problem can be considered to be concave, which is NP-hard.
The aforementioned QCQP problem with inhomogeneous

quadratic function can be transformed into homogeneous
ones by introducing a new variable t ∈ ℝ and a new quadratic
constraint t2 = 1 in the following formulation:

J = min
[
xT t

] [ Q0 q0∕2
qT
0 ∕2 0

] [
x
t

]

s.t.
[
xT t

] [ Qj qj∕2
qT

j ∕2 0

] [
x
t

]
+ cj ≤ 0,∀j = 1,...,m,

t2 = 1.
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Then, x∗∕t∗ will be the solution of the original problem stated in
(8.17) while (x∗

, t∗) is the solution pair of (8.18). In addition, lin-
ear constraints in (8.17) can be rewritten in the aforementioned
quadratic form as well by setting Qj = 𝟎. The homogeneous
QCQP problem is formulated as

J = min xT Q0x (8.18)
s.t. xT Qj x ≤ cj,∀ j = 1,… ,m.

Based on this fact, any inhomogeneous QCQP can be trans-
formed into a homogeneous one. Without loss of generality,
the following approach to solve nonconvex QCQP problems
focuses on homogeneous QCQPs.
In order to solve the nonconvex QCQP in (8.18), the semidef-

inite relaxation method is first introduced to find a tight lower
bound on the optimal objective value. By applying interior
point method, the relaxed formulation can be solved via an
SDP solver [43]. After introducing a rank-one positive definite
matrix X = xxT , the nonconvex QCQP problem in (8.18) is
equivalent to

J = minX ⟨X,Q0⟩ (8.19)
s.t. ⟨X,Qj⟩ ≤ cj,∀ j = 1,… ,m

X = xxT ,

where “⟨⋅⟩” denotes the inner product of two matrices, that is,
⟨A,B⟩ = trace(AT B). The nonconvex QCQP problem formu-
lated in (8.19) can be classified as one type of RCOPs expressed
in (8.7) where rank of the unknownmatrix is constrained by one.

8.4 Iterative Rank Minimization Approach

Satisfying the rank constraint for an unknown matrix is
computationally complicated. Existing methodologies for
rank-constrained problems are mainly focused on matrix
factorization and/or linearization [33, 44], which have slow
convergence rate and are sensitive to the initial guess.
In fact, the number of nonzero eigenvalues of a matrix is

identical to its rank. For an unknown square matrix U ∈ 𝕊p
+, it

is not feasible to examine its eigenvalues before it is determined.
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We focus on the fact that when a matrix rank is r, it has r
nonzero eigenvalues. Therefore, instead of making constraint
on the rank, we focus on constraining the eigenvalues of U such
that the p − r eigenvalues of U are all zeros. The eigenvalue
constraints on matrices have been used for graph design [45]
and are applied here for rank-constrained problems. Before
addressing the detailed approach for rank-constrained prob-
lems, we first provide necessary observations that will be used
subsequently in the approach.

Proposition 8.4.1 The (r + 1)th largest eigenvalue Λp−r of
matrix U ∈ 𝕊p

+ is less equal than e if and only if eIp−r − V T UV ⪰
0, where Ip−r is the identity matrix with a dimension of p − r,
V ∈ ℝp×( p−r) are the eigenvectors corresponding to the p − r
smallest eigenvalues of U .

Proof : Assume that the eigenvalues of U are sorted in descend-
ing orders in the form of [Λp,Λp−1,… ,Λ1]. Since the Rayleigh
quotient of an eigenvector is its associated eigenvalue, then

V T UV =
⎡
⎢
⎢
⎢
⎣

Λp−r 0 · · · 0
0 Λp−r−1 · · · 0
⋮ · · · ⋱ ⋮
0 0 · · · Λ1

⎤
⎥
⎥
⎥
⎦

.

Hence,

eIp−r − V T UV =
⎡
⎢
⎢
⎢
⎣

e − Λp−r 0 · · · 0
0 e − Λp−r−1 · · · 0
⋮ · · · ⋱ ⋮
0 0 · · · e − Λ1

⎤
⎥
⎥
⎥
⎦

.

Therefore, e ≥ 𝜆p−r if and only if eIp−r − V T UV ⪰ 0. ◾

Corollary 8.4.2 When e = 0 and U is a positive semidefinite
matrix, rank(U) ≤ r holds if and only if eIp−r − V T UV ⪰ 0,
where V ∈ ℝp×( p−r) are eigenvectors corresponding to the p − r
smallest eigenvalues of U .

However, for problem (8.7), before we solve X, we cannot
obtain the exact V matrix, that is, the eigenvectors of X.
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Therefore, an iterative method is proposed to solve (8.7) by
gradually approaching the constrained rank. At each step k, we
solve the following SDP problem formulated as

J = minXk ,ek
f (Xk) +𝑤kek

s.t. Xk ∈ 

Xk ⪰ 𝟎
ekIp−r − V T

k−1XkVk−1 ⪰ 0

, (8.20)

where 𝑤k = 𝑤0tk is the weighting factor at iteration k. 𝑤k is
increasing with the increment of k when t > 1 and 𝑤0 > 0
are given parameters. Vk−1 ∈ ℝp×( p−r) are the eigenvectors
corresponding to the p − r smallest eigenvalues of X solved at
previous iteration k − 1. At each step, we are trying to optimize
the original objective function and at the same time minimize
parameter e such that when e = 0, the rank constraint on X
is satisfied. The weighting factor, 𝑤k , acts as a regularization
factor, and increasing its values at each step will enforce the
r + 1th largest eigenvalue to gradually reduce to zero. The
aforementioned approach is repeated until e ≤ 𝜖, where 𝜖 is a
small threshold for the stopping criteria. It is straightforward
to extend (8.20) to problems with multiple rank constraints.
For brevity, the simplest version with one rank constraint is
described here.
In addition, an initial starting point, V0, is required at the first

iteration k = 1. It is intuitive to use the relaxed solution by drop-
ping the last constraint and the penalty term in the objective
function in (8.20) for starting point. Under this assumption, X0
is obtained via

J = minX0
f (X0)

s.t. X0 ∈ 

X0 ⪰ 𝟎
, (8.21)

and V0 are the eigenvectors corresponding to p − r smallest
eigenvalues of X0.
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The IRM approach is summarized here for general RCOPs,
and proof of its linear convergence to local optimality can be
referred to [46, 47].

Algorithm: Iterative Rank Minimization for Solving (8.7)
Input: Problem information C, w0 > 0, t > 1, ε
Output: X∗ withminimum f(X)
begin

1) Initialize Set k = 0, solve the relaxed problem in (8.21)
V0 from Xk via eigenvalue decomposition.

k = k + 1
2) while ek ≥ ε
3) Solve subproblem (8.20) and obtain Xk, Yk, Zk, ek

4) UpdateVk fromXk via eigenvalue decomposition.
5) k = k + 1
6) Update wk via wk = wk−1 ∗ t
7) end while
8) FindX∗

end

to obtain
set

8.5 Simulation Examples

In this section, simulation examples for the two types of NTD
problems described in Section 8.2 and the NTI problem
described in Section 8.3 are demonstrated to verify feasibility
and efficiency of the proposed method. For small-scale NTD
or NTI problems with small number of vertices, that is, n ≤ 7,
exhaustive search is able to find a global optimal solution within
reasonable computational time after examining all feasible
solutions. In order to do so, we enumerate all feasible solutions
satisfying the specified constraints and find the one with best
performance to compare with the result obtained from IRM.
In addition, large-scale problems where exhaustive search
is infeasible to find an optimal solution within reasonable
computational time are demonstrated to verify the improved
scalability and computational performance of proposedmethod.
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All simulation is run on a desktop computer with a 3.50GHz
processor and a 16.0 RAM.

8.5.1 Example for Designing Fast Converging
Consensus-based Network

The first example is to design the weighted network topology to
support fast convergence of consensus-based network formu-
lated in (8.4). We first consider a case in relatively small scale
with n = 6, r = 7, and gt = 1. In general, there are

(
n(n−1)∕2

r

)

possible configurations satisfying the cardinality constraint for a
graph with n vertices and cardinality constraint of r on the edge
set. The histogram in Figure 8.2 indicates the distribution of all
feasible solutions satisfying the cardinality constraint. When
𝜆2 ranging from 0.0923 to 0.2228, Figure 8.2 demonstrates the
number of feasible configurations for corresponding 𝜆2 value.
Result from IRM is among one of the feasible configurations
yielding the largest 𝜆2. Figure 8.3 shows the optimal topology
with designed weight noted for each edge. For the exhaustive
search, the average computational time to design edge weights
for each configuration is 0.13 secs and there are

(
15
7

)
= 6435

configurations. Therefore, the overall computational time after
examining all of the configurations is 846.86 s. However, it takes
the IRM 5.51 s to converge to an optimal solution.
The second example sets n = 20, r = 100, and gt = 10 where

the global optimal solution cannot be obtained within rea-
sonable computational time on a standard desktop. Figure 8.4
demonstrates the designed topology obtained from IRM and
the value of ek at each iteration is shown in Figure 8.5. Since
ek ≤ 10−5 at the 18th iteration of IRM, it verifies that the
cardinality constraint is satisfied according to the statement of
Proposition (8.4.1). In addition, Figure 8.6 shows the designed
edge weights at each iteration. For a complete network without
cardinality constraint on the edge set, the optimal solution leads
to 45 edges for this case. With the cardinality constraint, at least
25 edges should have an edge weight equals to zero. In fact,
certain edge weights in Figure 8.6 fluctuate between zero and
nonzero, which demonstrates the design results on the network
topology at each iteration and how it eventually converges to a
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Figure 8.2 Distribution of all feasible solutions satisfying the cardinality
constraint on edge set to maximize 𝜆2 for a network with n = 6, r = 7.
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Figure 8.3 Optimal
topology from IRM
for maximum 𝜆2
with n = 6, r = 7.
The total
computation time
for 44 iterations is
5.5100 s.

solution satisfying the cardinality constraint. It takes the IRM
7.00 s to find a convergent solution with 17 iterations.

8.5.2 Example for DesigningMinimum Total Effective
Resistance Network

In the second example, IRM is applied to design the weighted
network topology to obtain the minimum total effective resis-
tance network formulated in (8.5). In this case, the number of
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Figure 8.4 Optimal topology
for maximum 𝜆2 with
n = 20, r = 100.
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Figure 8.5 Convergence history of ek for maximum 𝜆2 with
n = 20, r = 100.

vertices and cardinality constraint on the edge set are set as
n = 20, r = 100. Figures 8.7 and 8.8 demonstrate the designed
topology and the history of edge weights, respectively. It takes
the IRM 67.90 s to find a convergent solution with 65 iterations.

8.5.3 Example of NTI with Agent Dynamics Driven
by Consensus Protocol

The third example provides a simulation results for identifying
the topology of a six-node graph, where dynamics of the nodes
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Figure 8.6 Designed edge weights for maximum 𝜆2 with n = 20, r = 100
at each iteration.

are governed by the Consensus Protocol. From the system iden-
tification procedures introduced in Section 8.3.1, the “similar”
state-space matrices set (AT ,BT ,CT ) is listed here,

AT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.873 −0.720 0.183 −0.480 1.594 0.393
−0.720 −4.227 −1.197 −0.076 −0.927 −0.723
0.183 −1.197 −5.17 0.139 0.368 0.351

−0.479 −0.077 0.139 −4.625 0.726 0.678
1.594 −0.927 0.368 0.726 −2.813 0.908
0.398 −0.723 0.351 0.678 0.908 −2.325

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

BT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5152 −0.0319 −0.3207
−0.0319 0.9979 −0.0211
−0.3207 −0.0211 0.7878
−0.2928 −0.0193 −0.1937
−0.5515 −0.0363 −0.3649
−0.4906 −0.0323 −0.3246

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Figure 8.7 Optimal
topology for minimum
total effective
resistance with
n = 20, r = 100.
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Figure 8.8 Designed edge weights for the minimum total effective
resistance with n = 20, r = 100 at each iteration.

and CT = B′
T . We define the nodes with indices i = 1, 2, 3 as the

selected input and output nodes. Under this assumption, matri-

ces B and C are set as B =
⎡
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥
⎥
⎦

T

and C = BT , respec-

tively.
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By formulating the NTI problem in the format described in
(8.16) and applying the IRMmethod, the optimal transformation
matrix T and the graph Laplacian are found as

Topt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.515 −0.031 −0.320 −0.292 −0.551 −0.490
−0.031 0.997 −0.021 −0.019 −0.036 −0.032
−0.320 −0.021 0.787 −0.193 −0.364 −0.324
−0.292 −0.019 −0.193 0.823 −0.333 −0.296
−0.551 −0.036 −0.364 −0.333 0.372 −0.558
−0.490 −0.032 −0.324 −0.296 −0.558 0.503

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Lopt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −1 −1 0 −1 0
−1 4 0 −1 −1 −1
−1 0 4 −1 −1 −1
0 −1 −1 4 −1 −1

−1 −1 −1 −1 4 0
0 −1 −1 −1 0 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.22)

Comparing with the original network demonstrated in
Figure 8.9, it is verified that the network topology obtained
from the proposed identification procedure is identical to the
original one. In addition, the history of the second smallest
eigenvalue at each iteration of the IRM algorithm is shown in
Figure 8.10. It indicates that ek in (8.20) quickly reduces to zero
within 18 steps, where the stopping threshold is set as 𝜖 = 10−4.

Figure 8.9 Original graph topology with six nodes for the simulation
example of network identification problem.
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Figure 8.10 Simulation example for network identification of a six-node
graph: convergence history of ek at each iteration.

This fact verifies that we obtain a rank one matrix of X within a
few iterative steps.

8.6 Conclusions

This chapter investigates the NTD and identification problems.
The NTD problems include designing weighted edges for
fast converging consensus-based network and minimum total
effective resistance network, with cardinality constraint on
the edge set. For the NTI problem, we assume dynamics of
agents in the network is governed by consensus protocol. We
formulate both NTD and NTI problems as RCOPs, and an
iterative method with each iteration formulated as a convex
optimization problem is proposed to solve general RCOPs. The
effectiveness and efficiency of the proposed approach is verified
by different types of simulation examples.
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9.1 Introduction

Distributed multi-agent coordination refers to the collective
behavior that a team of networked agents reaches some desired
configuration via distributed control protocols, also referred
to as distributed control algorithms. One powerful tool in the
design of distributed control algorithms is consensus, whose
goal is to develop proper control algorithms such that net-
worked agents reach some common state. If all agents can reach
agreement on their final states, one can modify the algorithms
such that the agents reach desired configuration. Recently, con-
sensus has been used to develop numerous algorithms to solve
various distributed coordination problems such as formation
stabilization [1], flocking [2, 3], and coordinated tracking [4, 5].
One fundamental problem in the study of distributed coor-

dination is to find the condition on the interaction graph such
that coordination can be reached, where the interaction graph
is a model of the information exchange pattern among a team
of networked agents. It is natural that coordination can not be
reached for an arbitrary initial state if the agents do not trade
information. In other words, information exchange among these
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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agents is necessary to guarantee coordination. Until now, sig-
nificant research effort has been devoted to find the minimum
condition on the interaction graph such that coordination can
be reached. For agents with single-integrator kinematics, also
referred to as first-order systems, theminimum condition is that
for any time t, there exists some T such that the union of the
(directed) interaction graphs over the time period [t, t + T] has
a directed spanning tree [6, 7] (see Section 9.2.1 for the definition
of “a directed spanning tree”).
Recently, distributed coordination research has started to

consider stochastic interaction topologies. More specifically,
the interaction graph is chosen randomly from some given
set, and due to the randomness, the minimum condition
mentioned in the previous paragraph, in general, does not
hold and distributed coordination cannot be guaranteed. For
example, research has been conducted to find the condition
on the interaction graph such that consensus can be reached
in probability [8, 9], with probability 1 [10, 11], and in the
mean-square sense [12], where it is assumed that the interaction
graphs are independent over time and the system dynamics
are linear. By converting the consensus problem to a stability
problem, the three, namely consensus in probability, consensus
with probability 1, and consensus in the mean-square sense, are
shown to be equivalent under an independent and identically
distributed (i.i.d.) process for a stochastic linear system [13].
The contribution of the chapter is threefold. First, in the static

case, a lower bound for the probability of coordination is calcu-
lated when each interaction graph is equally likely to be selected
among the set containing all possible undirected graphs. We
then show that the (exact) probability of coordination for
n agents is strictly increasing with respect to n, whenever
n ≥ 3. Second, when the undirected fixed interaction graph
is chosen randomly, with (possibly) unequal possibility, from
the set containing all possible undirected graphs, it is shown
that the probability of coordination for n agents approaches
one as n → ∞. Third, under a directed switching interaction
graph, it is shown that (i) coordination with probability 1, (ii)
coordination in probability, and (iii) coordination in the rth
mean are equivalent by studying coordination in the sense of
probability, without requiring an i.i.d. process and linear system
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dynamics. This differs from the existing work in [8–13], where
consensus in the sense of probability is considered for linear
systems and assuming temporal independence of the interaction
graphs. Moreover, the study of distributed coordination in the
sense of probability reveals some explicit relationship between
deterministic and stochastic coordination.
The remainder of the chapter is organized as follows. In

Section 9.2, graph theory notions and problem statement are
presented as preliminaries.Themain body of the chapter is given
in Sections 9.3 and 9.4, where coordination is studied in the
sense of probability under, respectively, a fixed interaction graph
and a switching interaction graph. A short conclusion is given
in Section 9.5 to summarize the contribution of the chapter.

9.2 Preliminaries

9.2.1 Graph Theory Notions

For a system with n networked agents, the interaction among
them can be modeled by a directed graph (also called digraph)
 = ( , ), where  = {1, 2,… , n} and  ⊆ 2 represent,
respectively, the agent set and the edge set. Each edge denoted
as (i, j) means that agent j can receive the (state) information
from agent i but not necessarily vice versa. Accordingly, agent i
is a neighbor of agent j and the neighbor set of agent j is defined
as j = {i|(i, j) ∈ }. For any set k ⊆  , the neighbor set of
the set k is defined as k

= {i|(i, j) ∈  ,∀i ∉ k , j ∈ k}.
The notation dim() denotes the number of edges in . A path
from j1 to jm in a directed graph is a sequence of edges in a
directed graph of the form (j1, j2), (j2, j3),… , (jm−1, jm) where
jk ∈  , k = 1,… ,m. A directed graph has a directed spanning
tree if there exists at least one agent that has directed paths to
all other agents. An undirected graph is a special type of the
directed graphs, where (i, j) ∈  implies that (j, i) ∈  . That is,
the information exchange between agents is bidirectional. A
path between j1 and jm in an undirected graph is defined anal-
ogously to that in a directed graph with a further requirement
that the information exchange be bidirectional. An undirected
graph is connected if there exists a path between every pair of
agents. For an undirected graph , the number of undirected
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edges is dim()
2

since the edges are always bidirectional. For
graphs 1 = ( , 1), 2 = ( , 2), …, and 𝓁 = ( , 𝓁) sharing
the same agent set  , the union graph of them is defined as⋃𝓁

i=1 𝓁 ≜ ( ,
⋃𝓁

i=1 i).
The adjacency matrix,  = [aij] ∈ ℝn×n, for a team of n

networked agents is constructed such that aii = 0 and aij > 0
if ( j, i) ∈  , otherwise aij = 0. The (nonsymmetric) Laplacian
matrix  = [𝓁ij] ∈ ℝn×n is defined as 𝓁ii =

∑n
j=1,j≠i aij and 𝓁ij =

−aij, i ≠ j.

9.2.2 Problem Statement

Consider a group of n networked agents described by

ṙi(t) = ui(t), i = 1,… , n, (9.1)

where ri(t) ∈ ℝ and ui(t) ∈ ℝ are, respectively, the state and the
control input associated with agent i at time t. The objective of
distributed coordination is to ensure that (ri − di) − (rj − dj) →
0, where di − dj is the desired relative configuration. Based on
the well-studied consensus algorithm [14–16], the following dis-
tributed coordination algorithms can be designed

ui(t) = −
n∑

j=1
aij(t)[ri(t) − di − rj(t) + dj], i = 1,… , n, (9.2)

where aij(t) is the (i, j)th entry of the adjacency matrix 

associated with the directed graph  at time t. The objective
of (9.2) is to guarantee coordination, that is, |ri(t) − rj(t)| →
di − dj,∀i, j ∈ {1,… , n}, as t → ∞ for an arbitrary initial con-
dition ri(0), i = 1,… , n. Under a sampled-data setting, that is,
ui(t) = ui(kT),∀t ∈ [kT , (k + 1)T), the closed-loop system of
(9.1) using (9.2) can be written as

ri[k + 1] = ri[k] − T
n∑

j=1
aij[k](ri[k] − di − rj[k] + dj), (9.3)

for i = 1,… , n, where ri[k] = ri(kT), aij[k] = aij(kT), k is the
discrete-time index, and T is the sampling period.
The existing research answers the question, “what is the

necessary and/or sufficient condition on the interaction graph
such that coordination is reached deterministically [7, 14–17]
or stochastically [8–12]?” This chapter comes from a different
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perspective and investigates coordination when the condition
on the interaction graph is not necessarily guaranteed. Instead,
it determines the probability of coordination for stochastic
interaction topologies.
In the following, we focus on the sampled-data model in

(9.3). Nevertheless, the same conclusion still holds for the
continuous-time model given by the closed-loop system of (9.1)
using (9.2). Define xi ≜ ri − di and x as the column vector of all
xi. The closed-loop system of (9.3) can be written in a vector
form as

x[k + 1] = Wkx[k], (9.4)

where Wk ≜ In − T[k] with [k] = (kT) and In ∈ ℝn×n being
the identity matrix. Distributed coordination is achieved for
(9.1) using (9.2) if and only if xi − xj → 0 for all i, j ∈ {1,… , n},
which is equivalent to the statement that consensus is reached
for agents with states xi. Therefore, in the following text,
we focus on analyzing the probability that consensus can
be reached under the closed-loop system (9.4). Since the
focus of this chapter is on the impact of the interaction
graph on consensus and not on the discrete sampling, we
let T < min i=1,…,n,k=1,2,…

1
∑n

j=1 aij[k]
. It then follows that Wk are

stochastic matrices.

9.3 Fixed Interaction Graph

In this section, we study distributed coordination in the sense
of probability for a team of n networked agents when the
interaction graph is fixed and undirected and randomly chosen
from some given set f . That is, [k] in (9.4) is constant. If the
interaction graph associated with  is connected for any  ∈ f ,
the probability of coordination is always one because any graph
chosen from the set f must be connected. Similarly, if the
interaction graph associated with  is not connected for any
 ∈ f , the probability of coordination is always zero. In the rest
of the section, we consider two cases: (i) Equal Possibility: each
element in f is chosen with equal probability, and (ii) Unequal
Possibility: each element in f is chosen with (possibly) unequal
possibility.
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Note that the adjacency matrix (correspondingly, Laplacian
matrix) associated with an interaction graph is not necessarily
unique because different aij can be chosen for any aij > 0. This
case is excluded in the context of the section. Accordingly, we
make the following assumption.

Assumption 9.3.1 For any interaction graph, there exists only
one adjacency matrix (correspondingly, Laplacian matrix) asso-
ciated with it.

Before proceeding, let
(

n
m

)
≜

n!
m!(n−m)!

and Nn ≜
1
2

n(n − 1),
where n and m are two positive integers with n > m.

9.3.1 Equal Possibility

In this section, we consider the case when the set f is given by

f ≜

{
 ∣  = {1,… , n}, dim()

2
∈ {0, 1,… ,Nn}

}
. (9.5)

Recall that dim()
2

denotes the number of undirected edges in
. Under Assumption 9.3.1, f in (9.5) refers to all possible
undirected graphs with n agents and an arbitrary number of
edges.1 Let dim(f ) denote the number of elements in f . Under
Assumption 9.3.1, dim(f ) = 2Nn . Note that dim(f ) ≠ dim()
since dim(f ) refers to the number of undirected graphs while
dim() refers to the number of undirected edges. It is expected
that dim(f ) is larger than dim() because the number of
undirected graphs, in general, is larger than one for a given
number of edges since different graphs can be created by using
the same number of edges. By equal possibility, we make the
following assumption.

Assumption 9.3.2 Any element in f is chosen independently
with probability 1

dim(f )
.

Let pi,j denote the probability of the existence of the undirected
edge between agents i and j. Then, for any  ≜ ( , ) ∈ f , the

1 For a team of n agents, dim()
2

is always within the set {0, 1,… ,Nn}.
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probability that  is chosen under Assumptions 9.3.1 and 9.3.2
is given by

√∏
(i,j)∈pi,j

∏
(i,j)∉ (1 − pi,j), where the existence of

the square root is due to the double count of (i, j) and (j, i) for an
undirected graph.Therefore, Assumption 9.3.2 is true if and only
if the probability of the existence of the undirected edge between
any pair of agents is equal to the probability of the nonexistence
of the undirected edge between them. Equivalently, the proba-
bility of the existence of the undirected edge between any pair of
agents is equal to 1

2
.

For a fixed and undirected interaction graph, consensus
is reached if and only if the undirected interaction graph is
connected [15]. Due to Assumptions 9.3.1 and 9.3.2, when the
interaction graph is chosen from the set f , the probability of
coordination can be written as

Pf
n ≜

The number of connected graphs in f

dim(f )
, (9.6)

where Pf
n denotes the probability of coordination for a team

of n agents when the interaction graph is chosen from the set
f . Before stating the main result in this section, the following
lemma is needed.

Lemma 9.3.3 Let 𝜙(m) ≜ m!(n − m)!2m(n−m), where m and n
are positive integers with n > m. Then, min m=1,…,n−1𝜙(m) =
𝜙(n − 1) for any n ≥ 2.

Proof : When n = 2, the proof of the lemma is trivial. We next
consider the case when n ≥ 3.
The natural logarithm of 𝜙(m) is given by

ln 𝜙(m) =
m∑

i=1
ln i +

n−m∑

j=1
ln j + m(n − m) ln 2.

Define𝜓(m) ≜ ln 𝜙(m + 1) − ln 𝜙(m). By computation,𝜓(m) is
given by

𝜓(m) = ln (m + 1) − ln (n − m) + (n − 2m − 1) ln 2.

Note that 𝜙(m) = 𝜙(n − m),∀m = 1,… , n − 1. When n is
odd, minm=1,…,n−1𝜙(m) = minm= n−1

2
,…,n−1𝜙(m). When m = n−1

2
,
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𝜓(m) = ln ( n+1
2
) − ln ( n+1

2
) + (n − 2m − 1) ln 2 = 0. In addition,

𝜓(m) − 𝜓(m − 1) is given by

𝜓(m) − 𝜓(m − 1) = ln m + 1
2m

+ ln n − m + 1
2(n − m)

≤ 0.

Therefore, 𝜓(m) ≤ 0 for m =
{

n−1
2
,… , n − 1

}
. By recall-

ing the definition of 𝜓(m), it follows immediately that
minm=1,…,n−1𝜙(m) = 𝜙(n − 1).
When n is even, the proof is similar to that for the case when

n is odd. ◾

UnderAssumptions 9.3.1 and 9.3.2, we then have the following
theorem regarding Pf

n .

Theorem 9.3.4 Under Assumptions 9.3.1 and 9.3.2, the
probability of coordination Pf

n for (9.3) is lower bounded by
1 − n(n−1)

2n .Moreover, as n → ∞, Pf
n → 1.

Proof : Because distributed coordination is achieved for (9.1)
using (9.2) if and only if xi − xj → 0 for all i, j ∈ {1,… , n}, which
is equivalent to the statement that consensus is reached for
agents with states xi. Therefore, in the following, we focus on
analyzing the probability that consensus can be reached under
the closed-loop system (9.4).
We first prove that Pf

n is lower bounded by 1 − n(n−1)
2n . Then,

the key is to compute the number of connected graphs in f
according to (9.6). Because it is difficult to directly compute the
number of connected graphs in f , we turn our focus to the
computation of the number of disconnected graphs in f .
By definition, an undirected graph is disconnected if there

does not exist a path between some pair of agents. Equivalently,
an undirected graph is disconnected if there exist at least two
nonempty subgroups 1 ⊂  and 2 ⊂  such that the following
three conditions are satisfied:

1

⋃
2 =  ,

1

⋂
2 = ∅, (9.7)

1

⋂
2

= ∅, (9.8)
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where ∅ denotes the empty set,1
and2

refer to the neigh-
bor sets of, respectively, 1 and 2 (see Section 9.2.1 for the defi-
nition). An undirected graph for a team of n networked agents is
composed of m, 2 ≤ m ≤ n, disconnected subgroups if and only
if there exists a series of nonempty sets 1,… ,m, such that

• For any i, j ∈ {1, 2,… ,m} and i ≠ j, i and j satisfy (9.7)
and (9.8)

•
⋃m

𝓁=1 𝓁 =  .

Then, the number of the disconnected graphs in f is given
by

∑n
k=2 k , where k , k = 2,… , n, denotes the number of

undirected graphs that are composed of k disconnected sub-
groups. For the notational simplicity, we use ds

k , k = 2,… , n, to
denote the set of the undirected graphs that are composed of k
disconnected subgroups. Note that it is challenging to compute∑n

k=2 k directly. We next show that
n∑

k=2
k ≤

1
2

n−1∑

m=1

( n
m

)
2Nm2Nn−m . (9.9)

This is the key step to prove the theorem.
Note that

(
n
m

)
refers to the number of choices such that

any m agents are chosen from a set of n agents and 2Nm2Nn−m

refers to the total number of undirected graphs whenever the
m agents and the other n − m agents are disconnected, where
2Nm (respectively, 2Nn−m ) denotes the number of undirected
graphs for m (respectively, n − m) agents. Essentially, the
value of

(
n
m

)
2Nm2Nn−m refers to the number of undirected

graphs such that any m agents, chosen from a set of n agents,
and the remaining n − m agents are disconnected. Naturally,
1
2

∑n−1
m=1

(
n
m

)
2Nm2Nn−m refers to the number of undirected graphs

such that any m,m = 1,… , n − 1, agents, chosen from a set of n
agents, and the remaining n − m agents are disconnected. Here
the factor 1

2
is used because

•
(

n
m

)
2Nm2Nn−m is unchanged if m is replaced by n − m;

• Both
(

n
m

)
2Nm2Nn−m and

(
n
m

)
2Nm2Nn−m with m replaced by

n − m are counted in
∑n−1

m=1

(
n
m

)
2Nm2Nn−m .
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Note that each ds
k , k = 2,… , n, is always a subset of the set of

the undirected graphs such that any m,m = 1,… , n − 1, agents,
chosen from a set of n agents, and the remaining n − m agents
are disconnected by letting the number of an arbitrary subgroup,
out of the k subgroups, be m. Note also that ds

k
⋂

ds
l = ∅,∀k ≠

l, k, l ∈ {2,… , n}. Therefore, (9.9) holds apparently.
Based on (9.9), it follows that Pf

n is lower bounded by

1 −
1
2

∑n−1
m=1

(
n
m

)
2Nm2Nn−m

dim(f )

= 1 − 1
2

n−1∑

m=1

n!
m!(n − m)!

2m(m−1)∕22(n−m)(n−m−1)∕2

2n(n−1)∕2

= 1 − 1
2

n−1∑

m=1

n!
m!(n − m)!2m(n−m)

≥ 1 − n − 1
2

max
m=1,…,n−1

n!
m!(n − m)!2m(n−m) .

It then follows from Lemma 9.3.3 that

Pf
n ≥ 1 − n − 1

2
n!

min m=1,…,n−1m!(n − m)!2m(n−m)

= 1 − n − 1
2

n!
(n − 1)!2n−1

= 1 − n(n − 1)
2n .

This completes the proof of the first statement.
The second statement is a direct consequence of the first

statement. ◾

Although the exact number of connected graphs in f can be
written explicitly [18–20], it can be noticed that the exact form is
given in terms of recurrence and the computation is rather com-
plicated.Thus, it is challenging to compute the exactPf

n . Instead,
we show in Theorem 9.3.4 that Pf

n is always lower bounded by
1 − n(n−1)

2n , which is easily obtained given an arbitrary number of
agents. In addition, it becomes possible to analyze someproperty
of Pf

n based on the lower bound.
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Figure 9.1 The lower bound of the probability of coordination for n agents.

Figure 9.1 illustrates the lower bound of the probability of
coordination for n agents. It can be observed that the lower
bound of the probability of coordination increases as the num-
ber of agents increases. In particular, when the number of agents
grows to 20, the probability of coordination almost reaches 1.
Theorem 9.3.4 implies that the number of connected graphs

is significantly larger than that of disconnected graphs when the
number of agents is significantly large. As the number of agents,
n, tends to infinity, the probability of coordination approaches
one. In other words, coordination is always reached statistically
as n → ∞. Since the lower bound of the probability of coordina-
tion has been given in Theorem 9.3.4, it is also possible to find
the minimum number of agents, although conservative, such
that coordination is reached given any confident level pc ∈ (0, 1)
under Assumptions 9.3.1 and 9.3.2 when f is given in (9.5).
One thing that is not mentioned in the proof ofTheorem 9.3.4

is how conservative the lower bound could be. As analyzed in
the proof of Theorem 9.3.4, 1

2

∑n−1
m=1

(
n
m

)
2Nm2Nn−m refers to the
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number of undirected graphs such that any m,m = 1,… , n − 1,
agents, chosen from a set of n agents, and the remaining n − m
agents are disconnected.Then, the number of undirected graphs
with three disconnected subgroups will be counted multiple
times in 1

2

∑n−1
m=1

(
n
m

)
2Nm2Nn−m because the number of each sub-

group can be considered m. Similarly, the number of undirected
graphs with more than three disconnected subgroups will also
be counted multiple times in 1

2

∑n−1
m=1

(
n
m

)
2Nm2Nn−m . One inter-

esting property regarding the exact Pf
n is given in the following

theorem without knowing the exact formulation of Pf
n .

Theorem 9.3.5 UnderAssumptions 9.3.1 and 9.3.2, Pf
n < Pf

n+1
for n ≥ 3.

Proof : To prove the theorem, it is crucial to analyze the change
Pf

n+1 − Pf
n . In other words, it is essential to study how the

numbers of disconnected graphs and connected graphs evolve
as n increases by one. Denote Nc(n) and Nt(n) as, respec-
tively, the number of connected graphs for n agents and the
number of undirected graphs for n agents. Then, Nt(n + 1)
satisfies Nt(n + 1) = Nt(n)

∑n
i=0

(
n
i

)
, where

∑n
i=0

(
n
i

)
denotes

the number of choices when one extra agent is added to an
n-agent network to form a (n + 1)-agent network. By definition,
Pf

n+1 =
Nc(n+1)

Nt(n)
∑n

i=0

(
n
i

) . Then, the theorem holds if Nc(n + 1) >

Nc(n)
∑n

i=0

(
n
i

)
= Nc(n)

∑n
i=1

(
n
i

)
+ Nc(n) for n ≥ 3.

Let Nc(n + 1) = N1
c (n + 1) + N2

c (n + 1), where N1
c (n + 1)

denotes the total number of connected graphs that are com-
posed of n agents forming a connected graph plus one extra
agent, labeled as ne, and N2

c (n + 1) denotes the total number
of connected graphs that are composed of n agents forming a
disconnected graph plus ne. Note that if the undirected graph for
a team of n networked agents is connected, the undirected graph
for the n agents plus ne is connected if and only if ne has at least
one neighbor. Therefore, N1

c (n + 1) = Nc(n)
∑n

i=1

(
n
i

)
. To prove

the theorem, it then suffices to prove that N2
c (n + 1) > Nc(n) for

n ≥ 3. Let us further divide the n agents into two subsets SS1 and
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SS2, where SS1 has only one agent while SS2 has the remaining
n − 1 agents. To guarantee that the n agents are disconnected,
it suffices to assume that there is no interaction between SS1
and SS2. Let SS2 = SS2

⋃
ne. Then, SS2 has n agents and their

interaction can be randomly chosen. Therefore, the number of
connected graphs for SS2 is Nc(n). Since we can let that ne and
the agent in SS1 be connected, the number of connected graphs
for SS1

⋃
SS2 is not smaller than Nc(n). Because the choice of

SS2 and SS1 is not unique for n ≥ 3, the number of connected
graphs for SS1

⋃
SS2 is strictly larger than Nc(n). This completes

the proof of the theorem. ◾

Remark 9.3.6 The study of coordination in the sense of prob-
ability is presented in this section, where the interaction graph is
fixed and undirected. Until now, it is unclear if a similar con-
clusion in this section is applicable to the case of a fixed and
directed graph when f , by abuse of notation, refers to all possi-
ble directed graphs for a teamof n agents. Due to the asymmetric
nature associated with a directed graph, it is difficult to com-
pute the probability that a directed graph either does or does
not have a directed spanning tree. Meanwhile, the computation
of Pf

n+1 based on Pf
n is unclear since adding one or more edges

between a group of n agents and an extra agent could possibly
result in an unknown number of directed graphs that do not
have a directed spanning tree even if the directed graph for the n
agents has a directed spanning tree. As a consequence, the study
of coordination in the sense of probability is challenging when
the interaction graph is fixed and directed. It is our conjecture
that Pf

n → 1 as n → ∞ and Pf
n < Pf

n+1 for n ≥ 3 are still valid for
a fixed and directed interaction graph under Assumptions 9.3.1
and 9.3.2.

9.3.2 Unequal Possibility

In this section, we consider the case of unequal possibility, where
each element inf is not necessarily chosen with equal probabil-
ity.That is, the probability of the existence of the undirected edge
between any pair of agents is not necessarily equal to 1

2
. Further-

more, it is assumed in this subsection that any two aij are chosen
independently.
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Let T(n, q) denote the number of undirected graphs with n
agents and q undirected edges. Let t(n, q) denote the number
of undirected graphs with n agents and q undirected edges
that are connected. Let 𝛽(n, q) = t(n,q)

T(n,q)
denote the ratio that

an undirected graph with n agents and q undirected edges is
connected. Before stating the main result, the following two
lemmas are needed.

Lemma 9.3.7 [21] As n → ∞, the following results hold: (1)
𝛽(n, q) → 0 if 𝜓 ≤ 0; and (2) 𝛽(n, q) → 1 as 𝜓 → +∞, where
𝜓 ≜

2q−n log n
n

.

Lemma 9.3.8 For an undirected interaction graph where
aij = aji = 1 with probability p and aij = aji = 0 with probability
1 − p, where p ∈ (0, 1), the probability that the number of
undirected edges is less than ⌊n log n⌋ is equal to zero as n → ∞,
where ⌊n log n⌋ refers to the minimum integer that is not less
than n log n.

Proof : When any two aij are chosen independently, the
probability that the number of undirected edges is less than
⌊n log n⌋ can be written as

∑⌊n log n⌋−1
j=0

(
Nn

j

)
pj(1 − p)Nn−j, where

(
Nn

j

)
pj(1 − p)Nn−j is the probability when there exist j, j =

0, 1,… , ⌊n log n⌋ − 1, undirected edges. We then obtain that

lim
n→∞

⌊n log n⌋−1∑

j=0

(
Nn

j

)
pj(1 − p)Nn−j

≤ lim
n→∞

(⌊n log n⌋) max
j=0,…,⌊n log n⌋−1

(Nn)j

j!
pj(1 − p)Nn−j

≤ lim
n→∞

Nn max
j=0,…,⌊n log n⌋−1

(Nn)j

j!
pj(1 − p)Nn−j

= max
j=0,…,⌊n log n⌋−1

lim
n→∞

Nj+1
n

j!

(
p

1 − p

)j[
(1 − p)

Nn
j+1

]j+1
,

where we have used the fact that limn→∞⌊n log n⌋ < limn→∞Nn
to derive the last inequality. When p

1−p
≤ 1, it follows that
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lim
n→∞

⌊n log n⌋−1∑

j=0

(
Nn

j

)
pj(1 − p)Nn−j

≤ max
j=0,…,⌊n log n⌋−1

lim
n→∞

(Nn)j+1

j!

[
(1 − p)

Nn
j+1

]j+1

= max
j=0,…,⌊n log n⌋−1

lim
n→∞

[
Nn(1 − p)

Nn
j+1

]j+1

j!
.

Based on the definition of Nn, it then follows that limn→∞ Nn

(1 − p)
Nn
j+1 = limn→∞

n(n−1)
2

(1 − p)
n(n−1)
2(j+1) . Taking j ≤ ⌊n log n⌋ − 1

into account yields that

lim
n→∞

Nn(1 − p)
Nn
j+1 ≤ lim

n→∞

n(n − 1)
2

(1 − p)
n(n−1)

2(⌊n log n⌋)

≤ lim
n→∞

n(n − 1)
2

(1 − p)
n(n−1)

2(n log n+1)

= lim
n→∞

n(n − 1)
2

(1 − p)
n

2 log n ,

where we have used the fact that ⌊n log n⌋ ≤ n log n + 1 to
derive the last inequality. When p ∈ (0, 1), it is obvious that
n(n−1)

2
(1 − p)

n
2 log n → 0 as n → ∞. Thus, limn→∞Nn(1 − p)

Nn
j+1 = 0

when p ∈ (0, 1). When p
1−p

≥ 1, it follows that

lim
n→∞

⌊n log n⌋−1∑

j=0

(
Nn

j

)
pj(1 − p)Nn−j

≤ max
j=0,…,⌊n log n⌋−1

lim
n→∞

(
Nn

p
1−p

)j+1

j!

[
(1 − p)

Nn
j+1

]j+1
.

By following a similar analysis to that for the case when
p

1−p
≤ 1, it can also be obtained that limn→∞

∑⌊n log n⌋−1
j=0

(
Nn

j

)
pj

(1 − p)Nn−j = 0. ◾

Lemma 9.3.7 characterizes the relationship between the prob-
ability of connectedness and the number of undirected edges
as n → ∞. Lemma 9.3.8 shows that the number of undirected
edges is less than some function of the number of agents with a
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probability zero as n → ∞. Both of them are used in the proof
of the following theorem.

Theorem 9.3.9 For an undirected interaction graph where
aij = aji = 1 with probability p and aij = aji = 0 with probability
1 − p, where p ∈ (0, 1), the probability of coordination for (9.3)
satisfies that Pf

n → 1 as n → ∞.

Proof : As discussed in Section 9.3.1, the probability of coordina-
tion Pf

n is identical to the probability that the undirected graph
is connected. Note that f = uc

⋃
(f ∖uc), where uc denotes

the set of undirected graphs with the number of undirected
edges being less than ⌊n log n⌋ and f ∖uc, by notation, denotes
the set of undirected graphs with the number of undirected
edges being not less than ⌊n log n⌋. It is clear that uc ⊂ f . In
order to prove the theorem, it is sufficient to show that

1. dim(uc)
dim(f )

→ 0 as n → ∞, where dim(uc) and dim(f ) denote
the number of elements in, respectively, uc and f ;

2. The probability that an arbitrary graph chosen from f ∖uc is
connected is equal to one as n → ∞.

Note that statement 1 is shown in Lemma 9.3.8. In order
to prove the theorem, it suffices to prove statement 2.
When q ≥ ⌊n log n⌋, it follows that 𝜓 → +∞ as n → ∞,
where 𝜓 is defined in Lemma 9.3.7. It then follows from
Lemma 9.3.7 that 𝛽(n, q) → 1 as n → ∞. By definition, the
probability that an arbitrary graph chosen from f ∖uc is

connected is given by
∑Nn

q=⌊n log n⌋ t(n,q)
∑Nn

q=⌊n log n⌋ T(n,q)
. Because limn→∞𝛽(n, q) =

limn→∞
t(n,q)
T(n,q)

= 1 for any q ≥ ⌊n log n⌋, it follows from the fact

that min q≥⌊n log n⌋𝛽(n, q) ≤
∑Nn

q=⌊n log n⌋ t(n,q)
∑Nn

q=⌊n log n⌋ T(n,q)
≤ max q≥⌊n log n⌋𝛽(n, q)

that limn→∞

∑Nn
q=⌊n log n⌋ t(n,q)

∑Nn
q=⌊n log n⌋ T(n,q)

= 1. This completes the proof. ◾

In Theorem 9.3.9, it is assumed that for any pair of i and j,
where i, j ∈ {1,… , n} and i ≠ j, the possibility of aij = 1 is always
equal to some common p ∈ (0, 1). A generalization of Theorem
9.3.9 is given in the following corollary.
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Corollary 9.3.10 For an undirected interaction graph where
aij = aji = 1with probability pi,j and aij = aji = 0with probability
1 − pi,j, where i ∈ {1,… , n}, j < i, and pi,j ∈ (0, 1), the probabil-
ity of coordination for (9.3) satisfies that Pf

n → 1 as n → ∞.

Proof : The proof is similar to that of Theorem 9.3.9 by proving
statements 1 and 2 in the proof of Theorem 9.3.9. ◾

It is expected that the probability of coordination for a finite
number of agents whose interaction graph is chosen to satisfy
Theorem9.3.9 depends on p. However, as n → ∞, the probability
of coordination Pf

n → 1 regardless of the value of p.

9.4 Switching Interaction Graph

In this section, we study coordination in the sense of probabil-
ity under a switching interaction graph. In the context of the
section, we assume that the interaction graph is piecewise con-
stant. More specifically, the interaction graph  is assumed to
be constant for t ∈ [(k − 1)T , kT), k = 1, 2,…, and switches at
kT , where T is a positive constant. Instead of assuming an undi-
rected interaction graph as in Section 9.3, the interaction graph
is assumed to be directed. In addition, Assumptions 9.3.1 and
9.3.2 are not needed here.
Before presenting the main result, we first define coordination

in probability, coordination with probability 1, and coordination
in the rthmean, which will be used later in the section. Note that
the following definitions are rather standard.

Definition 9.4.1 For the closed-loop system (9.4), coordina-
tion is reached in probability if for any 𝜀 > 0,

lim
k→∞

Pr(|ri[k] − di − rj[k] + dj| ≥ 𝜀) = 0,∀i, j ∈ {1,… , n},
(9.10)

where Pr(⋅) denotes the probability that an event happens.

Definition 9.4.2 For the closed-loop system (9.4), coordina-
tion is reached with probability 1 or almost surely if

lim
k→∞

Pr(|ri[k] − di − rj[k] + dj| = 0) = 1.∀i, j ∈ {1,… , n}.
(9.11)
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Definition 9.4.3 For the closed-loop system (9.4), coordina-
tion is reached in the rth mean if for some r ≥ 1,

lim
k→∞

E(|ri[k] − di − rj[k] + dj|
r) = 0, ∀i, j ∈ {1,… , n},

where E(⋅) denotes the expected value.

Recall that the study of coordination in the sense of probability
depends on the result on coordination under a deterministic set-
ting (c.f. Section 9.3). The next lemma concerning coordination
under a deterministic setting is necessary before proceeding.

Lemma 9.4.4 [6, 7] For the closed-loop system (9.4) with an
arbitrary initial state, consensus is reached if and only if there
exists a positive integer 𝜅 such that for any k > 0, the union of
the interaction graphs across [kT , (k + 𝜅)T) has a directed span-
ning tree.

Clearly, a crucial role in determining whether or not coor-
dination can be reached is the condition that there exists a
positive integer 𝜅 such that the union of the interaction graphs
across [kT , (k + 𝜅)T] has a directed spanning tree for any k > 0.
For notational simplicity, we define Ξ as the event that there
exists a positive integer 𝜅 such that the union of the interaction
graphs across [kT , (k + 𝜅)T) has a directed spanning tree for
any k > 0. Then, we have the following theorem regarding
the probability of coordination under a switching interaction
graph.

Theorem 9.4.5 For the closed-loop system of (9.3) with an
arbitrary initial state, the probability of coordination is equal to
the probability of event Ξ.

Proof : Due to the equivalence of (9.3) and (9.4) , the theorem is
a direct result of Lemma 9.4.4 in the sense of probability. ◾

Remark 9.4.6 When Wk are i.i.d., it is shown in [11] that con-
sensus is reached either almost surely or almost never. Another
interpretation is that the probability of consensus is either 1 or 0
(due to the Kolmogorov’s 0–1 law). Nevertheless, when Wk are
not necessarily i.i.d., the probability of consensus could be in the
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interval (0, 1). For example, consider a team of four agents with
the interaction graph for t ∈ [(k − 1)T , kT), k = 1, 2,…, being
chosen randomly from

{
{1,2} with some probability, k mod 2 = 0,
{2,3} with some probability, k mod 2 = 1,

where i, i = 1,… , 3, are given in Figures 9.2–9.4. If a graph
is first chosen randomly from {2,3} and the selected graph
is applied every time k mod 2 = 1, then the probability of
consensus is equivalent to the probability of choosing 3 in the
set {2,3}.

The probability of coordination under a switching interaction
graph is given in Theorem 9.4.5, where the probability of coor-
dination is determined by the probability of event Ξ. In particu-
lar, the dependence of the interaction graphs over different time
intervals might result in a probability of coordination that is nei-
ther zero nor one. We next study the necessary and sufficient
condition on the interaction graph such that coordination can
be reached in probability, with probability 1, and in the rth mean

1 2 3 4

Figure 9.2 1. The nodes represent the agents and the line connecting a
pair of agents represents the undirected interaction between them.

1 2 3 4

Figure 9.3 2. The nodes represent the agents and the line connecting a
pair of agents represents the undirected interaction between them.

1 2 3 4

Figure 9.4 3. The nodes represent the agents and the line connecting a
pair of agents represents the undirected interaction between them.
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without assuming the independence of the interaction graphs
over different time intervals.

Lemma 9.4.7 For the closed-loop system (9.3) with an arbi-
trary initial state, coordination is reached with probability 1 or
almost surely if and only if the probability of event Ξ is equal
to one.

Proof : From Theorem 9.4.5, the probability of coordination is
equal to the probability of event Ξ.Then, the probability of coor-
dination is equal to one if and only if the probability of event Ξ
is equal to one. ◾

Remark 9.4.8 To understand Lemma 9.4.7, it is important to
interpret the meaning behind the statement that the probability
of event Ξ is equal to one. Recall that event Ξ refers to a property
of some graph sequence whose length is infinite. Based on the
definition of probability, we divide the graph sequences into two
sets Ω1 and Ω2, where Ω1 denotes the set of graph sequences
such that each element in Ω1 satisfies the property while Ω2
denotes the set of graph sequences such that each element
in Ω2 does not satisfy the property. Let dim(Ω1) and dim(Ω2)
denote, respectively, the number of elements in Ω1 and the
number of elements in Ω2. If each element in Ω1

⋃
Ω2 is chosen

independently with equal probability, the probability of event Ξ
is given by dim(Ω1)

dim(Ω1)+dim(Ω2)
. If dim(Ω1)

dim(Ω1)+dim(Ω2)
= 1, the probability of

coordination is equal to one. However, event Ξ does not hold
for any element in Ω2.

In [11], a similar conclusion to that in Lemma 9.4.7 was shown
by using ergodicity and probabilistic arguments whenWk in (9.4)
are i.i.d. stochastic matrices with positive diagonal entries. By
considering the problem in the sense of probability, Lemma 9.4.7
provides a different view of the problem with easy interpreta-
tion and proof.Moreover, the relationship between coordination
under a deterministic setting and that under a stochastic setting
is revealed thanks to the concept of probability. It is not required
in Lemma 9.4.7 that Wk in (9.4) be i.i.d. stochastic matrices.
We next study the necessary and sufficient condition on the

interaction graph to guarantee coordination in probability.
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Lemma 9.4.9 For the closed-loop system (9.3) with an arbi-
trary initial state, coordination is reached in probability if and
only if the probability of event Ξ is equal to one.

Proof : (Necessity) We prove this part by contradiction. Assume
that coordination is reached in probability does not necessarily
imply that the probability of event Ξ is equal to one. Note that
(9.10) implies that for any 𝜀 > 0 and 𝜖 > 0, there exists a positive
integer 𝜅 such that for all k ≥ 𝜅,

Pr(|xi[k] − xj[k]| ≥ 𝜀) < 𝜖, ∀i, j ∈ {1,… , n}. (9.12)
Combining with the assumptionmeans that (9.12) does not nec-
essarily imply that the probability of event Ξ is equal to one. In
other words, the probability of event Ξ is less than 1 when (9.12)
holds. Note from Lemma 9.4.4, event Ξ happens if and only if

lim
k→∞

|xi[k] − xj[k]| = 0, ∀i, j ∈ {1,… , n}.

The statement that the probability of event Ξ is less than
1 implies that there exists at least a pair of agents l and m
such that limk→∞|xl[k] − xm[k]| ≠ 0 with a nonzero probability
because otherwise the probability of event Ξ is equal to 1. This
in turn implies that there does not exist a positive integer 𝜅 such
that for any 𝜀 > 0 and 𝜖 > 0,

Pr(|xl[k] − xm[k]| ≥ 𝜀) < 𝜖, ∀k ≥ 𝜅,
which is a contradiction of the statement that for any 𝜀 > 0 and
𝜖 > 0, there always exists a positive integer 𝜅 such that (9.12)
holds. The proof of the necessity part is completed.
(Sufficiency) When the probability of event Ξ is equal to one,

it follows from Lemma 9.4.7 that coordination is reached with
probability 1, or almost surely. Then, the sufficiency part is
proved by recalling the relationship between convergence in
probability and convergence with probability 1. ◾

Again, the next lemma presents the necessary and sufficient
condition on the interaction graph to guarantee coordination in
the rth mean.

Lemma 9.4.10 For the closed-loop system (9.3) with an arbi-
trary initial state, coordination is reached in the rth mean if and
only if the probability of event Ξ is equal to one.
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Proof : (Necessity) When the probability of event Ξ is equal to
one, it follows from Lemma 9.4.9 that coordination is reached
in probability. Then, the necessity part is proved by recall-
ing the relationship between convergence in probability and
convergence in the rth mean.
(Sufficiency) If event Ξ happens, it follows from Lemma

9.4.4 that coordination can be reached, which in turn implies
that limk→∞|xi[k] − xj[k]|r = 0,∀i, j ∈ {1,… , n}. Moreover, it is
always valid that |xi[k] − xj[k]| ≤ max𝓁x𝓁[0] −min𝓁x𝓁[0],∀i, j ∈
{1,… , n}, k = 1, 2,…, for the closed-loop system (9.4). Given
that the probability of event Ξ is equal to pΞ, it follows from the
definition of expectation that

lim
k→∞

E(|xi[k] − xj[k]|r)

≤ 0 × pΞ + lim
k→∞

max
i,j∈{1,…,n}

|xi[k] − xj[k]|r × (1 − pΞ)

≤ (max
𝓁

x𝓁[0] − min
𝓁

x𝓁[0])r × (1 − pΞ), i, j ∈ {1,… , n}.

When pΞ = 1, it follows that limk→∞E(|xi[k] − xj[k]|r) ≤ 0.
Because limk→∞E(|xi[k] − xj[k]|r) ≥ 0 due to the fact that
|xi[k] − xj[k]|r ≥ 0, it then follows that limk→∞E(|xi[k] − xj[k]|r)
= 0. This completes the proof of the sufficiency part. ◾

Theorem 9.4.11 For the closed-loop system (9.3) with a ran-
dom switching interaction graph and an arbitrary initial state,
the following four statements are equivalent:
1. Coordination is reached in probability.
2. Coordination is reached with probability 1 or almost surely.
3. Coordination is reached in the rth mean.
4. The probability of event Ξ is equal to one.

Proof : The theorem is a direct result of Lemmas 9.4.7, 9.4.9, and
9.4.10. ◾

Note that linear system dynamics are assumed in the previous
part of the chapter. Instead of assuming linear dynamics as in
(9.4), the next corollary presents a general case when nonlinear
dynamics are assumed. We refer to the nonlinear discrete-time
model used in [6] as

x𝓁(i + 1) = f𝓁(i, x1(t),… , xn(t)), 𝓁 = 1,… , n, (9.13)
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where fj, j = 1,… , n, are continuous functions satisfying
Assumption 1 in [6].

Corollary 9.4.12 For the nonlinear system (9.13) with a ran-
dom switching interaction graph and an arbitrary initial state,
the four statements inTheorem 9.4.11 are equivalent.

Proof : To prove the corollary, it is sufficient to show that Lem-
mas 9.4.7, 9.4.9, and 9.4.10 are still valid for the nonlinear system
(9.13). Based on the proofs of Lemmas 9.4.7, 9.4.9, and 9.4.10,
the three lemmas are still valid if |xi[k] − xj[k]| ≤ max𝓁x𝓁[0] −
min𝓁x𝓁[0],∀i, j ∈ {1,… , n}, k = 1, 2,…, for the closed-loop sys-
tem (9.13) and the conclusion presented in Lemma 9.4.4 still
holds for the nonlinear system (9.13). Note that both of them
are shown in [6]. This completes the proof of the corollary. ◾

The existing research on the topic of coordination under
a stochastic setting focuses on deriving the condition on the
interaction graph such that coordination can be reached in
probability [8, 9], almost surely [10, 11], in the mean-square
sense [12]. A similar statement concerning the equivalence of
them, as shown inTheorem 9.4.11, is given in [13], where a pro-
jection technique is used to convert the coordination problem
to a stability problem. Note that Wk in (9.4) are assumed to be
i.i.d. stochastic matrices in [13]. In addition, a linear system is
needed in order to guarantee that Proposition III.2 in [13] holds.
As a contrary, the equivalence of coordination in probability,
coordination with probability 1, and coordination in the rth
mean, is shown in Theorem 9.4.11 and Corollary 9.4.12, where
Wk in (9.4) are stochastic matrices that are not necessarily i.i.d.
and the agent dynamics are not necessarily linear. Moreover,
different from the techniques in [8–11, 13], coordination under
a stochastic setting is studied here in the sense of probability.
The study of coordination in the sense of probability reveals a
direct connection between coordination under a deterministic
setting and that under a stochastic setting.

Simulation examples. To demonstrate the validity of the main
results in this section, we conduct simulations for a team of four
agents. In particular, we consider four different communication
graphs whose Laplacian matrices are chosen as
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L1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

L2 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

L3 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

⎤
⎥
⎥
⎥
⎥
⎦

,

and

L4 =
⎡
⎢
⎢
⎢
⎣

1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎤
⎥
⎥
⎥
⎦

.

The sampling period T = 0.1.
We consider two different cases:

1. The Laplacian matrix associated with the interaction graph
for t ∈ [(k − 1)T , kT), k = 1, 2,…, is chosen randomly as

{
{L1, L2} with probability 0.5, k mod 2 = 1,
{L3, L4} with probability 0.5, k mod 2 = 0.

2. The Laplacianmatrix associated with the interaction graph is
chosen randomly with equal probability from {L1, L3}.

Figure 9.5 shows the simulation examples for Case 1 by run-
ning 100 repeated tests. It can be observed that all agents con-
verge toward the same final state. In other words, coordination is
expected. This is consistent with the main results in this section
because the probability of Ξ is 1 in this case.
Figure 9.6 shows the simulation examples for Case 2 by

running 100 repeated tests. Because the probability of Ξ is less
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Figure 9.5 Simulation results for Case 1 with 100 repeated tests.
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Figure 9.6 Simulation results for Case 2 with 100 repeated tests.
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than 1,2 it can be observed that the four agents cannot reach
team coordination. However, two pairs can reach coordination
on their final states. In particular, the first two agents will reach
coordination because Ξ is one for the two agents. Similarly, the
last two agents will reach coordination as well because Ξ is also
one for them.

9.5 Conclusion

In this chapter, we studied distributed coordination in the
sense of probability for both fixed interaction and switching
interaction graphs. When the undirected fixed interaction
graph is chosen randomly, with equal possibility, from the set
containing all possible undirected graphs, we derived a lower
bound for the probability of coordination and then showed that
the (exact) probability of coordination for n agents is increasing
with respect to n whenever n ≥ 3. When the undirected fixed
interaction graph is chosen randomly, with (possibly) unequal
possibility, from the set containing all possible undirected
graphs, the probability was shown to approach one as the
number of agents approaches infinity. For the case of a directed
switching interaction graph, the equivalence of coordination in
probability, coordination with probability 1, and coordination
in the rth mean was shown without requiring an i.i.d. random
process or linear system dynamics.
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10.1 Introduction

Recent advancements in wireless communication, sensing,
computing, and control technologies give rise to cyber-physical
systems (CPS) [1]. Through the tight integration of the comput-
ing and communication in the cyber world with the physical
world, CPS will transform how humans interact with and
control the physical world [2]. Distributed multi-robot systems
constitute a typical application of CPS [1, 3]. Various commu-
nication and network effects have already been considered in
multi-robot CPS, for example, reconfiguration [4], time-delay
[5], node failure [6], and packet loss [7]. However, dynamically
formed heterogeneous multi-robot CPS induce more challenges
to the control of the systems, especially when there is little
knowledge about the environments [8].There is a need for novel
distributed real-time communication and control strategies
with heterogeneous multi-robot CPS [9].
Multi-robot coverage control has attracted considerable

attention because of its versatile applications in demining,
search and rescue, and monitoring and surveillance [10–13].
Take oil leakage [14] or wildfire [15] scenario as an example;
coverage control tasks may be interpreted as oil cleaning or fire
extinguishing. Most of the existing results assume that the task
domain is static and known beforehand and consider first-order
kinematics for homogeneous agents. However, inmany practical
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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applications, the task domains are dynamically changing and
unknown beforehand. For example, in a large-scale oil leakage
monitoring application [14], the polluted area is unknown
before the monitoring task and the leaked oil is constantly
diffusing to nearby areas. Furthermore, the coverage control
laws developed for autonomous agents may not be directly
applicable to robots. These make effective coverage control
in large-scale unknown environments an open challenge for
researchers.
In this chapter, we discuss the utilization of heterogeneous

multi-robot systems to perform coverage control task in
large-scale unknown environments based on the work proposed
in [13] for awareness coverage control in foreknown task
domains using homogeneous multi-robot systems. The state of
awareness represents how aware each agent/robot is of the event
occurring at the domain. In order to achieve full awareness of
the task domain and improve task efficiency, the coverage task
in the unknown environment is decomposed into two distinct,
however, closely related subtasks, that is, domain boundary
tracking and coverage control in the currently known domain.
Motion control strategies for the heterogeneous multi-robot
team are developed to achieve satisfactory awareness of the
unknown task domain.
We first review some related literature on coverage control

for unknown environments. In [16], the deployment of mobile
sensor network in unknown environments is considered, which
however requires a large number of nodes to cover a large-scale
area. In [17], Morse decomposition is developed to provide
a coverage path planner for the robot to achieve complete
coverage in unknown environments. In [18], an online terrain
coverage algorithm is developed for an autonomous underwater
vehicle in an unknown underwater environment. Multi-robot
exploration of an unknown environment with reduced odom-
etry error is investigated in [19]. Dynamic coverage of mobile
objects is discussed in [11] based on maximum entropy princi-
ple with first-order kinematics for agents. However, coverage
control strategies formulated in [17–19] only considered one or
two robots, which are not scalable for multi-robot systems.
Heterogeneous multi-robot systems composed of comple-

mentary types of robots offers great flexibility and capabilities
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over homogeneous systems in performing complex tasks [20].
However, heterogeneity in multi-robot teams introduces a
particular challenge to efficiently coordinate the different
capabilities of the robots [21]. Reliable coverage control using
both coverage and coordination vehicles are investigated in [22].
In [23], distributed coverage control laws for a network of
heterogeneous robots are derived by incorporating location
optimization framework to cover nonconvex task domain.
However, only simplified single-integrator dynamics and omni-
directional sensor models are adopted in both [22] and [23]. A
decentralized cooperative control strategy for heterogeneous
vehicle groups composed of both ground vehicles and aerial
vehicles is proposed in [24] for formation control problem.
In contrast to most works on coverage control which con-

sider single-integrator agents with isotropic sensors, we model
wheeledmobile robots (WMRs) with nonholonomic constraints
and nonisotropic sensors in this chapter. In [10], coverage con-
trol using WMRs is investigated. In [25], gradient-descent
coverage algorithms are presented for a group of nonholonomic
vehicles via hybrid modeling. However, both works imply that
the task domain is small scale, that is, the union of sensor
regions can cover the entire domain. In [26], limited-range
anisotropic sensor model is adopted for coverage control
using multi-robot network, but first-order kinematics for both
angular and linear velocities are adopted. In [27], the effect of
nonisotropic sensor model is investigated in Voronoi-based
coverage control problem, but the assumption of fixed and
equal sensor orientation limits its application.
In summary, themain contribution of this chapter is threefold:

(i) performing coverage control in large-scale unknown envi-
ronments; (ii) the consideration of nonholonomic WMR model
and nonisotropic limited-range sensor model in the derivation
of coverage control laws, which enables a practical coverage
control strategy ready to be implemented on physical robots;
and (iii) coordinating heterogeneous robots with complemen-
tary capabilities to collaboratively explore the geometry of
unknown task domain and achieve full coverage of the domain.
The use of heterogeneous multi-robot systems contributes to
higher efficiency and improved task performance.



�

� �

�

268 Cooperative Control of Multi-Agent Systems

The organization of the rest of the chapter is as follows. In
Section 10.2, we introduce the robot models, the sensor models,
communication strategies, and the state of awareness dynamics.
In Section 10.3, distributed motion control strategies for both
the boundary-tracking unmanned aerial vehicles (UAVs) and the
ground coverageWMRs are developed to collaboratively achieve
full awareness of the unknown task domain. Detailed simulation
results are demonstrated in Section 10.4 to confirm the effective-
ness of the overall control strategy. We conclude the chapter in
Section 10.5.

10.2 Problem Formulation

In this chapter, a heterogeneousmulti-robot teamwill be used to
perform awareness coverage control in unknown environments.
Two types of robots, boundary-tracking UAVs and ground cov-
erage WMRs, are considered to perform two distinct, however,
closely related subtasks simultaneously and communicate with
each other in real time. The boundary-tracking UAVs equipped
with down-facing board view cameras will be used to track the
boundary of the task domain and provide map information to
the coverage robots. The UAVs can move quickly and maintain
a minimum altitude; however, it cannot lift a heavy payload and
has to delegate the analysis of its sensor data to an off-board com-
puter. Meanwhile, each ground coverageWMR is equipped with
camera-like sensors with limited sensing capabilities to collabo-
ratively perform awareness coverage control task in the domain
detected by boundary-tracking UAVs. The WMRs move rela-
tively slow but can carry more sensors and perform onboard
computation.

10.2.1 Robot Models

Denote the set of boundary-tracking UAVs by = {1, 2,… , n}
and the set of ground coverageWMRs by = {1, 2,… ,m}. Let
the unknown domain to be covered by the robots be Df ⊂ ℝ2.
We assume that the task domain is

1) convex and bounded without any inner island;
2) unknown to the robots before the task;
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3) large scale, that is, the union of the sensing and communica-
tion regions of the coverage robots cannot cover the entire
unknown task domain.

The boundary-tracking UAVs (e.g., AR. Drone, AscTec Pelican
quadrotors) are assumed to be hovering at a fixed altitude zi with
constant roll and pitch angle. Hence, the pose of an UAV can be
simplified as a planar representation pb

i = [xb
i , yb

i , 𝜃
b
i ]

T ∈ ℝ3
, i ∈

 , where xb
i , yb

i are the Cartesian coordinates of the UAV’s cen-
ter of mass projected onto the horizontal plane, 𝜃b

i is the ori-
entation of the UAV in the plane. Following [28, 29], under the
assumption of fixed altitude and ignoring wind effect in the envi-
ronments, the simplified 2D dynamics of an UAV can be given
as follows:

ṗb
i =

⎡
⎢
⎢
⎢
⎣

ẋb
i

ẏb
i

�̇�
b
i

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑣
b
i cos 𝜃

b
i

𝑣
b
i sin 𝜃

b
i

𝜔
b
i

⎤
⎥
⎥
⎥
⎦

, i ∈  , (10.1)

where 𝑣b
i , 𝜔

b
i are the forward linear velocity and angular velocity

of the boundary-tracking UAV. Note that here 𝑣
b
i are 𝜔

b
i com-

mand velocities instead of inertial velocities under the assump-
tions given in [29]. Denote pbr

i = [xb
i , yb

i ]
T ∈ ℝ2 as the reduced

2D form of pb
i ∈ ℝ3 with no angular component.

For the ground coverage WMRs, nonholonomic differ-
ential drive robots (e.g., Khepera III, P3DX) are considered
(Figure 10.1). Denote the pose of the coverage robot as

Figure 10.1 Nonholonomic
differential drive wheeled
mobile robot model.
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pc
i = [xc

i , yc
i , 𝜃

c
i ]

T ∈ ℝ3
, i ∈ , where xc

i , yc
i are the Cartesian

coordinates of the center of mass, and 𝜃c
i is the robot orientation

in the inertial Cartesian frame. Denote pcr
i = [xc

i , yc
i ]

T ∈ ℝ2 as
the reduced 2D form of pc

i ∈ ℝ3 with no angular component.
The kinematic equation of motion of a differential driveWMR

satisfying the nonholonomic constraints is

ṗc
i =

⎡
⎢
⎢
⎢
⎣

ẋc
i

ẏc
i

�̇�
c
i

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑣
c
i cos 𝜃

c
i − dc

i𝜔
c
i sin 𝜃

c
i

𝑣
c
i sin 𝜃

c
i + dc

i𝜔
c
i cos 𝜃

c
i

𝜔
c
i

⎤
⎥
⎥
⎥
⎦

, i ∈ , (10.2)

where 𝑣c
i , 𝜔

c
i are the forward linear velocity and angular velocity

of the robot, and dc
i is the offset between the center of mass G

and the middle point C of the rear axle as shown in Figure 10.1.
The nonholonomic constraints [30]

ẋc
i sin 𝜃

c
i − ẏc

i cos 𝜃
c
i + dc

i �̇�
c
i = 0 (10.3)

restrict the robot tomove only in the direction normal to the axis
of the driving wheels as long as theWMR satisfies the condition
of pure rolling and nonslipping.

10.2.2 Sensor Models

A downward-facing vision sensor model with rectangu-
lar field-of-view is adopted for the UAVs as illustrated in
Figure 10.2. The UAVs are assumed to be flying at a fixed
altitude zi with constant roll and pitch angles. Hence, the area
of the UAV’s field-of-view is also fixed. This fixed altitude of

UAV i

S0
S1

Figure 10.2 An UAV tracks the boundary of the task domain. The
boundary line is represented by the solid line starts from S0 and ends at S1.
The shaded area represents the camera sensing range.
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Figure 10.3 Camera
sensor model with
pose pc

i = [0, 0, 𝜋

4
],

where Mi = 1,
Ri = 10,Θi =

5

9
𝜋.

−5 0 5 10
−5

0

5

10

0

0.2

0.4

0.6

0.8

1

X

Y

the UAVs can be determined by maximizing the area that
can be detected by the vision sensor while preserving enough
resolution for accurate boundary tracking.
A vision-based nonisotropic camera sensor model, which is

inspired byWang andHussein [31] and illustrated in Figure 10.3,
is adopted for the ground coverage WMRs. We assume that the
camera is mounted in the front of the robot and the orientation
vector of the camera is the same as that of the robot and can
be denoted as ⃗i(pc

i ). Let Ai(di, 𝛼i) be the coverage function of the
sensor in the body-fixed polar frame of the WMR

Ai(di, 𝛼i) =

{Mi(d2
i −R2

i )
2(𝛼2

i −Θ
2
i )

2

R4
i Θ

4
i

if di ≤ Ri, 𝛼i ≤ Θi

0 otherwise,
(10.4)

where Ri and Θi is the maximum radial and angular sensing
range, respectively, di = ||pcr

i − q̃||,∀q̃ ∈ Df is the radial distance
from the sensor position to an arbitrary point q̃ in the unknown
domain Df , and 𝛼i = ∠(⃗i(pc

i ), q̃ − pcr
i ) represents the angle from

the maximum sensing direction. When the value of di and 𝛼i
increases, the sensing ability of the camera decreases until it
becomes zero at di = Ri and 𝛼i = Θi. The maximum sensing
capability is denoted as Mi at di = 0 and 𝛼i = 0. We denote the
sensing domain of robot i at time t as  c

i (t). Depending on
specific applications, any other (non)isotropic sensor models
can also be considered and the control laws to be developed in
Section 10.3 will still hold.



�

� �

�

272 Cooperative Control of Multi-Agent Systems

10.2.3 Communication Strategies

Let the communication range of boundary-detecting
UAVs and coverage robots be 𝜌

b and 𝜌
c, respectively. The

boundary-tracking UAVs incrementally gather map information
of the unknown task domain and broadcast their map informa-
tion to the neighboring ground coverage WMRs. It is assumed
that 𝜌

b is much larger than 𝜌
c, and a boundary-detecting

UAV can always broadcast its map information to at least one
neighboring coverage robot during the task execution process.
For UAV i ∈  , let


b
i, = {j ∈  |||pbr

j − pbr
i || ≤ 𝜌

b
, i ≠ j}

be the set of neighboring UAVs of i, and


b
i, = {j ∈ |||pbr

j − pcr
i || ≤ 𝜌

c
, i ≠ j}

be the set of neighboring coverage robots. Similarly, for coverage
robot i ∈ , let


c
i, = {j ∈  |||pcr

j − pbr
i || ≤ 𝜌

b
, i ≠ j}

be the set of neighboring UAVs, and


c
i, = {j ∈ |||pcr

j − pcr
i || ≤ 𝜌

c
, i ≠ j}

be the set of neighboring coverage robots.
Four different types of communication strategies are consid-

ered here.Denote i, j ∈  as twoboundary-detectingUAVs, and
k, l ∈  as two coverage robots.

• Type 1: When ||pcr
k − pcr

l || ≤ 𝜌c, two coverage robots k and l
update both map and awareness coverage information with
each other.

• Type 2: When 𝜌c < ||pbr
k − qcr

i || ≤ 𝜌b, boundary-detecting
UAV i broadcasts map information to coverage robot k. Note
that this type of communication is unidirectional.

• Type 3: When ||pbr
k − qcr

i || ≤ 𝜌c, the coverage robot k not only
gains new map information from the UAV i, but also relays
other UAVs’ map information to the neighboring UAV i.

• Type 4:When ||pbr
k − qbr

l || ≤ 𝜌b, two boundary-tracking UAVs
i and j update map information with each other.
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10.2.4 State of Awareness Dynamics

We now introduce the notion of state of awareness proposed in
[13]. In the distributed framework, each robot has its own state
of awareness distribution xi(q̃, t) as a measure of how “aware”
the robot is of the event occurring at every point q̃ ∈ Df at time t.
Without loss of generality, assume that xi(q̃, t) ∈ [−1, 0].The ini-
tial awareness is assumed to be xi(q̃, t0) = −1,∀q̃ ∈ Df to repre-
sent no awareness at the beginning of the task. More negative
values can be used to indicate the lack of awareness.The desired
full awareness is set to be 0. The awareness dynamics are given
as

ẋi(q̃, t) = −Ai(q̃,pc
i )xi(q̃, t), i ∈ . (10.5)

Since Ai is a function of both q̃ and pc
i according to (10.4), we use

the notation Ai(q̃,pc
i ) here for the sake of simplicity.

Similarly, the dynamics of the overall awareness achieved by
all the coverage robots in can be defined as

ẋ(q̃, t) = −
∑

i∈
Ai(q̃,pc

i )x(q̃, t). (10.6)

Whenever there are coverage robots within the communica-
tion range of robot i, they will share awareness information with
each other at these moments. During these intermittent infor-
mation sharing of robot i, the awareness update dynamics are
given by

xi(q̃, t+) = −1, q̃ ∈ Di(t+)∖Di(t),
ẋi(q̃, t+) = −xi(q̃, t)

∑

j∈i

max (0, xj(q̃, t) − xi(q̃, t))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

neighbors’ awareness

−Ai(q̃,pc
i )xi(q̃, t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

self-awareness

, q̃ ∈ Di(t+), (10.7)

where t+ represents the instantaneous information sharing
moment. We assume that the UAVs will share mapping infor-
mation with the UGVs and Di(t) is the dynamically evolving
map of the unknown domain stored within robot i ∈  ∪ at
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time t before the update, and Di(t+) is the map updated at t+

Di(t+) =

{
{q̃ ∈ Ω(t)|𝛿Ω(t) =

⋃n
k=1 Ci,k(t)

⋃n
k=1 Ei,k(t)}, t ≤ tf

Df , t > tf

whereCi,k(t) denotes robot i’s knowledge of the partial boundary
information provided by boundary-tracking UAV k ∈  at
time t, Ei,k(t) denotes the missing part of the boundary between
neighboring Ci,k(t) constructed by linear interpolation, 𝛿Ω(t)
denotes the boundary of Ω(t), tf is the time when the entire
task domain is successfully constructed. Figure 10.4 shows an
example of constructing the map using three UAVs.
Because the map of the unknown domain provided by

the boundary-tracking UAVs is gradually increasing before the
whole map is complete, all the points q̃ ∈ Di(t+)∖Di(t) in the
newly gained part of the map at time step t+ are assigned with
initial awareness of −1. The dynamics for awareness update
under intermittent communications are composed of two parts:
the awareness gained from robot i’s neighbors and the awareness
gained from sensor measurements of the coverage robot i itself
as given by (10.5). The dynamics of awareness gained from the
neighbors are developed based on two intuitive beliefs: (i) a
robot will gainmore awareness information from its neighbors if
its neighbors have better awareness.This is indicated by the term
max (0, xj(q̃, t) − xi(q̃, t)); and (ii) a robot with less awareness
information will gain more awareness through the interactions
with its neighbors as shown by the term−xi(q̃, t).The awareness
gained from neighbors will become zero when every coverage
robot reaches the same awareness level or when the neighboring
robots lose communication. At these moments, the state of
awareness update dynamics is switched back to (10.5).

Ci,1(t)
Ei,1(t)

Ci,2(t)

Ei,2(t)

Ci,3(t)

Ei,3(t)

Figure 10.4 An illustrative
example of robot i’s map
construction with
information from three
boundary-tracking UAVs.
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Remark 10.2.1 Note that the newly added term in (10.7) will
not cause any unbounded decrease or instability in awareness
update. On the contrary, it will contribute to increased speed
of convergence to the desired awareness level (see the detailed
analysis in Section 10.3.2 in the proof of Theorem 10.3.4).

10.3 Cooperative Control
of Heterogeneous Multi-Robot Systems

10.3.1 Motion Control for Boundary-Tracking UAVs

As illustrated in Figure 10.2, a boundary-trackingUAV equipped
with down-facing camera extracts the boundary geometry of the
task domain from captured images and then tracks the boundary
trajectory as flight guidance. Similar to most flight applications,
we adopt the inner and outer loop feedback control strategy [28].
For the inner loop feedback control, an autopilot is adopted to
maintain a fixed altitude of the UAV. For the outer loop feed-
back control, the wall follower motion control algorithm in [32]
is adopted to track the boundary of the task domain

ub
i (t) =

[
𝑣

b
i (t)

𝜔
b
i (t)

]

=
⎡
⎢
⎢
⎢
⎣

𝑣
b
i0

−k
𝑣

̇dr
i + kp(dr

i0 − dr
i )

𝑣
b
i0 cos 𝜃

r
i

⎤
⎥
⎥
⎥
⎦

, (10.8)

where ub
i (t) is the motion control law for the boundary-tracking

UAV i, 𝑣b
i (t) and 𝜔

b
i (t) are the corresponding linear and angular

velocity control components as given in (10.1), dr
i and 𝜃

r
i are

the relative distance and relative angle between the pose of the
UAV projected on the horizontal plane and the closest segment
of the domain boundary, 𝑣b

i0 is some constant linear velocity, dr
i0

is the desired distance from the boundary, and k
𝑣
, kp are some

positive designed controller gains.

10.3.2 Awareness Coverage Control for Coverage Robots

10.3.2.1 Awareness Metric
Consider the following global awareness metric

egi(t) = ∫
i(t)

1
2
x2i (q̃, t)dq̃, i ∈ , (10.9)
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which represents the global awareness error over the entire task
domain up to time t as achieved by coverage robot i. The cov-
erage goal of each coverage robot is to guarantee that the global
awareness metric decreases and ultimately converges to a neigh-
borhood of zero.
In a similar manner, we can define the local awareness error

function for coverage robot i. This metric is used to develop a
nominal motion control law for the robot, which will drive the
awareness error within the sensory domain to a neighborhood
of zero

ei(t) = ∫
 c

i (t)

1
2
x2i (q̃, t)dq̃. (10.10)

10.3.2.2 Domain Coverage Algorithm
A distributed motion control law uc

i (t) is developed based on
the global awareness metric (10.9) and local awareness error
function (10.10) to achieve full awareness of the unknown task
domain. The overall control law uc

i (t) consists of a nominal
control law uc

i (t) and a perturbation control law =u
c
i (t). At the

beginning of the coverage task, coverage robot i ∈  adopts
the nominal control law, which drives the robot to minimize
its local awareness error in  c

i (t). Compared to static coverage
schemes, the nominal control law drives the robot toward the
point with least awareness within the sensory domain such that
the local awareness level can be achieved dynamically. The local
awareness error will be eventually driven to a neighborhood of
zero. When ||xi(q̃, t)|| ≤ 𝜖,∀q̃ ∈  c

i (t), where 𝜖 is defined as the
awareness threshold value, the robot is said to have achieved
local minimum. Then, the coverage robot will switch to the
perturbation control law, which drives the robot out of local
minimum to the area with insufficient awareness. By switching
back and forth between those two control laws, full awareness
will eventually be achieved in the entire task domain.

10.3.2.2.1 Nominal Control Law
Here, we develop a novel nominal control law uc

i (t) consider-
ing the nonholonomic constraints (10.3) ofWMRs as well as the
nonisotropic sensor model (10.4).We prove that this control law
will eventually drive xi(q̃, t) to zero for every point in the sensory
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domain  c
i , that is, the full local awareness has been achieved.

Let

uc
i (t) =

[
𝑣

c
i (t)

𝜔
c
i (t)

]
=
[−sat

𝑣
c
max
(h(xi(q̃, t),pc

i (t)))
−sat

𝜔
c
max
( f (xi(q̃, t),pc

i (t)))

]
(10.11)

h(xi(q̃, t),pc
i (t)) = ∮

𝛿 c
i (t)

1
2
x2i (s, t) ⋅ ⃗i(pc

i ) ⋅ n⃗(s, t)ds

f (xi(q̃, t),pc
i (t)) = ∮

𝛿 c
i (t)

1
2
x2i (s, t) ⋅ r(s) ⋅ ⃗j(s, t) ⋅ n⃗(s, t)ds,

where 𝑣c
max and 𝜔c

max are the maximum linear velocity and angu-
lar velocity allowed by the robot. A saturation function [33] illus-
trated in Figure 10.5 is used to set a limit on 𝑣

c
i (t) and 𝜔

c
i (t) so

that the linear and angular velocity control will not exceed the
robot’s capability. We use satl(x) ∶ ℝ → ℝ to denote the satura-
tion function

satl(x) = sgn(x) min{l, |x|}. (10.12)

For a vector u ∈ ℝb, we use satl(u) to denote the vector satura-
tion function, where satl(u) = [satl1 (u1), satl2 (u2),… , satlb

(ub)].
𝛿 c

i (t) is the boundary of the local sensory domain  c
i (t). The

dummy variable s is the curvilinear coordinate of a point q̃ on
𝛿 c

i (t) as illustrated in Figure 10.6, ds is the element of curve
length. The curvilinear coordinate of a point is given by the
curve length from pc

i to that point along the boundary curve of
the sensory domain in the counterclockwise direction. ⃗i(pc

i ) is
the orientation of the robot as well as the sensor, n⃗(s, t) is the
normal unit vector at point q̃ with respect to 𝛿 c

i (t), ⃗j(s, t) is a

Figure 10.5 Saturation function.
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i(pc
i )

pc
i

q̃

δWc
i (t)

n(s, t)

j(s, t)

r(s)

Ri

θi

ds

Figure 10.6 Vectors within the
sensor range.

unit vector in the angular velocity’s direction at point q̃, and the
distance is r(s) = ||pcr

i − q̃||.
We first consider the following 2D Leibniz rule [34], which

will be applied to prove the convergence of local awareness error
function (10.10) under the nominal control law.

Lemma 10.3.1 For any function F ∶ ℝ2 ×ℝ → ℝ, we have

d
dt∫ c

i (t)
F(q̃, t)dq̃

=
∮
𝛿 c

i (t)
F(s, t) ⋅ 𝑣(s, t) ⋅ n⃗(s, t)ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Motion of domain

+
∫
 c

i (t)

𝜕

𝜕t
F(q̃, t)dq̃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Change of integrand

,

where 𝑣(s, t) denotes the velocity of a point q̃ ∈ 𝛿 c
i (t) with

curvilinear coordinate s on the boundary of sensory domain.

Proof : The derivation of the 2D Leibniz rule, also known as
the differentiation under integral sign for time-varying pla-
nar domain, is given in [34]. By applying the chain rule, the
differentiation is separated into two terms: contribution from
the motion of domain and the change of integrand function.
In our case, the motion of the domain is governed by the
velocity uc

i = [𝑣c
i , 𝜔

c
i ]

T of the coverage robot, and the change of
integrand function is governed by the dynamics of awareness
update. ◾
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Next, consider the following condition.

Condition 10.3.2 xi(q̃, t) = 0,∀q̃ ∈  c
i (t).

This condition corresponds to the case when all the points in
the coverage robot i’s sensory domain  c

i (t) has full awareness
coverage and the local awareness error ei(t) is zero.

Lemma 10.3.3 For any t ≥ 0, Condition 10.3.2 holds for
coverage robot i, if and only if ei(t) = 0 for some time t ≥ 0 for
coverage robot i.

Proof : See [13] for detailed proof. ◾

Theorem 10.3.4 The nominal control law uc
i (t) given by

(10.11) can guarantee that the local awareness error function
ei(t) converges asymptotically to zero, under the velocity satu-
ration constraints as well as the intermittent awareness updates
with neighboring coverage robots.

Proof : Take the local awareness error function (10.10) as
the Lyapunov function V (t) = ei(t) ≥ 0. From Lemma 10.3.3,
V (t) = 0 if and only if Condition 10.3.2 holds. Thus, function
V (t) is positive definite.
Next, take the derivative of the Lyapunov function, according

to Lemma 10.3.1, we get

V̇ (t) = d
dt ∫

 c
i (t)

1
2
x2i (q̃, t)dq̃

=
∮
𝛿 c

i (t)

1
2
x2i (s, t) ⋅ 𝑣(s, t) ⋅ n⃗(s, t)ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

First term

+
∫
 c

i (t)

1
2
𝜕

𝜕t
x2i (q̃, t)dq̃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Second term

. (10.13)

By decomposing the velocity vector into linear and angular
velocities, we can get 𝑣(s, t) = 𝑣

c
i (t) ⋅ ⃗i(p

c
i ) + 𝜔

c
i (t) ⋅ r(s) ⋅ ⃗j(s, t).
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Thus, the first term in (10.13) can be rewritten as

∮
𝛿 c

i (t)

1
2
x2i (s, t) ⋅ [𝑣c

i (t) ⋅ ⃗i(p
c
i ) + 𝜔

c
i (t) ⋅ r(s) ⋅ ⃗j(s, t)] ⋅ n⃗(s, t)ds

=
∮
𝛿 c

i (t)

1
2
x2i (s, t) ⋅ 𝑣c

i (t) ⋅ ⃗i(p
c
i ) ⋅ n⃗(s, t)ds

+
∮
𝛿 c

i (t)

1
2
x2i (s, t) ⋅ 𝜔c

i (t) ⋅ r(s) ⋅ ⃗j(s, t) ⋅ n⃗(s, t)ds.

Because 𝑣c
i (t),𝜔

c
i (t) are only functions of time but not s, they can

be pulled outside of the integration. Based on (10.11), we have

𝑣
c
i (t) ⋅ ∮

𝛿 c
i (t)

1
2
x2i (s, t) ⋅ ⃗i(pc

i ) ⋅ n⃗(s, t)ds

+ 𝜔
c
i (t) ⋅ ∮

𝛿 c
i (t)

1
2
x2i (s, t) ⋅ ⃗j(s, t) ⋅ n⃗(s, t)ds

= − sat
𝑣

c
max
(h(xi(q̃, t),pc

i (t))) ⋅ h(xi(q̃, t),pc
i (t))

− sat
𝜔

c
max
(f (xi(q̃, t),pc

i (t))) ⋅ f (xi(q̃, t),pc
i (t)).

Because the saturation applied on the linear and angular veloci-
ties of the robot does not change the direction of the velocity, we
prove that the first term of (10.13)

∮
𝛿 c

i (t)

1
2
x2i (s, t) ⋅ 𝑣(s, t) ⋅ n⃗(s, t)ds ≤ 0. (10.14)

It also shows that the saturation on uc
i (t) will not affect the sta-

bility proof.
For the second term, when there are no intermittent commu-

nications between neighboring coverage robots, consider the
dynamics of awareness in (10.5), we obtain

∫
 c

i (t)

1
2
𝜕

𝜕t
x2i (q̃, t)dq̃ = −

∫
i(t)

x2i (q̃, t)Ai(q̃,pc
i )dq̃ ≤ 0.

(10.15)

When the effect of neighboring robots is taken into consider-
ation during intermittent communications, both the awareness



�

� �

�

10 Awareness Coverage Control in Unknown Environments 281

gained from sensor measurements and neighbors are incorpo-
rated. According to (10.7), we can get the following:

∫
 c

i (t)

1
2
𝜕

𝜕t
x2i (q̃, t)dq̃

= −
∫
 c

i (t)
x2i (q̃, t)[Ai(q̃,pc

i )

+
∑

j∈i

max (0, xj(q̃, t) − xi(q̃, t))]dq̃ ≤ 0. (10.16)

Therefore, the awareness updates will not cause instability
of the system, instead it contributes to increased speed of
convergence. According to (10.13)–(10.16), the derivative of the
Lyapunov function V̇ (t) ≤ 0.
Note that the equality holds if and only if Condition

10.3.2 holds. This can be seen as follows: First, if Con-
dition 10.3.2 holds, both the first and second term in
(10.13) equal to zero, hence V̇ (t) = 0. Second, if V̇ (t) = 0,
but ∃q̃ ∈ i(t), such that xi(q̃, t) ≠ 0, the second term in
(10.13) will always be nonzero. Thus, function V̇ (t) is neg-
ative definite. According to asymptotic stability theorem,
the nominal control law (10.11) will drive the local aware-
ness error function (10.10) to zero. This completes the
proof. ◾

10.3.2.2.2 Perturbation Control Law
It has been proved that the nominal control law (10.11) will
eventually drive the local awareness metric (10.10) to zero.
However, this does not necessarily guarantee that the global
awareness metric (10.9) will also be driven to zero. Let us
consider the following condition:

Condition 10.3.5 ||xi(q̃, t)|| ≤ 𝜖,∀q̃ ∈  c
i (t), where 𝜖 > 0 is

the awareness tolerance.

This condition corresponds to the case when the local aware-
ness error is within a neighborhood of zero, that is, the robot gets
“stuck” in the local region, and makes little progress in coverage
task. Using the nominal control law (10.11), the coverage robot
is guaranteed to reach Condition 10.3.5 according to Theorem
10.3.4. Under this circumstance, a perturbation control law is
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adopted to drive the robot to the area with insufficient aware-
ness level. Let i(t) be the set of all the points in the task domain
Di(t) that have lower awareness than 𝜖, that is,

i(t) = {q̃ ∈ Di(t)|||xi(q̃, t)|| ≥ 𝜖}.

Denote the set  i(t) as

 i(t) = {q̃ ∈ i(t)|q̃ = argminq̃∈i(t)||p
cr
i − q̃||},

which contains the points in set i(t) that are also closest to the
robot position pcr

i .
The perturbation control law is given as

=u
c
i (t) = −kisatuc

max
(pcr

i − q∗(ts)), (10.17)

where ts is the switching time,q∗(ts) ∈  i(ts), ki is a feedback con-
troller gain. A detailed discussion about the choice of q∗(ts) can
be found in [13].
Note that for the perturbation control law, we simply consider

the X,Y coordinates of the robot and develop =u
c
i (t) = [uc

x,uc
y]

as the control law. This is because we do not have orientation
requirement for the robot to move from pc

i to q
∗(ts). Hence, the

perturbation control can be easily implemented in two steps:
first rotate the robot to orient to q∗(ts), then drive to destina-
tion point q∗(ts) with linear velocity =u

c
i (t). If there is orientation

requirement for q∗(ts), the problem can be simplified into driv-
ing a robot from current pose pc

i to arbitrary desired pose pd.
There are abundant literature on position and orientation con-
trol of nonholonomic mobile robots. For example, the simple PI
controller developed in [30] can be used to perform this task.

Theorem 10.3.6 If a coverage robot i reaches Condition 10.3.5
and the set i(t) is nonempty, then the designed perturbation
control law given by (10.17) will drive the system away from
Condition 10.3.5.

Proof : If Condition 10.3.5 holds and the set i(t) is nonempty,
the coverage robot switches to the perturbation control law.The
coverage robot i will converge asymptotically to a neighborhood
of q∗(ts). At this time, Condition 10.3.5 no longer holds. ◾
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10.3.2.2.3 Overall Control Strategy
Combine the nominal control law (10.11) and the perturbation
control law (10.17) with the switching condition, we obtain the
following result:

Theorem 10.3.7 The overall control law:

uc
i (t) =

{
uc

i (t), if Condition 10.3.5 does not hold
=u

c
i (t), if Condition 10.3.5 holds (10.18)

can drive the global awareness error metric egi(t), i ∈  to a
neighborhood of zero.

Proof : According to Theorem 10.3.4, the nominal control law
(10.11) will eventually drive the local awareness error (10.10) to
a neighborhood of zero, that is, Condition 10.3.5. Then if the
set i(t) is nonempty, the robot will switch to perturbation con-
trol law (10.17) and drive the system away fromCondition 10.3.5
according toTheorem 10.3.6. Hence, the robot i will switch back
to nominal control law (10.11). This procedure is repeated until
such a point q∗(ts) does not exist. That is to say, only when Con-
dition 10.3.5 holds and ||xi(q̃, t)|| ≤ 𝜖,∀q̃ ∈ Df , the coverage task
is said to be accomplished and no further switching will be per-
formed.
To complete the proof, we need to show that there will be

finite switchings between the nominal control law (10.11) and
perturbation control law (10.17). During the boundary-tracking
process, the set i(t) is almost always growing when t ≤ tf .
This is because the initial awareness for the newly constructed
part of the map q̃ ∈ Di(t+)∖Di(t) is always set to −1, and added
into set i(t). However, after the map of the task domain Df
is fully constructed at time tf , there will be no new elements
added into set i(t). When t > tf , because of the existence of
the perturbation control law, the number of elements in set
i(t) begins to decrease until no element is left. Because the
task domain is unknown but bounded, Di(t) will reach the final
map Df in finite time and the decreases of elements in i(t)
will also occur finitely. When i(t) = ∅, it means there is no
point q̃ ∈ Df with awareness level lower than the threshold 𝜖.
This fact guarantees that there will be finite switchings between



�

� �

�

284 Cooperative Control of Multi-Agent Systems

the nominal control law and perturbation control law to reach
egi(t) ≤ 𝜖, where 𝜖 is an upper bound given by

egi(t) = ∫
f

1
2
x2i (q̃, t)dq̃ = ||

∫
f

1
2
x2i (q̃, t)dq̃||

=
∫
f

1
2
||x2i (q̃, t)||dq̃ ≤

𝜖
2ADf

2
= 𝜖,

where t > tf , and ADf
is the area of the final task domain Df .

This means that after the map of the task domain is fully
constructed, the global awareness error egi(t) will be driven to
a neighborhood of zero, and full awareness of the entire task
domain is guaranteed to be achieved. ◾

10.4 Simulation Results

In the Matlab simulation, we consider a scenario of using
two boundary-tracking UAVs and three coverage robots
cooperatively to cover an unknown environment. Two
boundary-tracking UAVs are sent out simultaneously from the
same starting point in opposite directions of the task domain to
detect the boundary of the domain. Three coverage robots are
deployed near the boundary-tracking UAVs. Figure 10.7 shows
the simultaneous boundary tracking and domain coverage pro-
cess. The magenta arrows and rectangles represent orientations
and sensing ranges (length 15 × width 8) of boundary-tracking
UAVs. The arrows and sectors represent orientations and sens-
ing ranges (Ri = 10, 𝜃i =

5
9
𝜋) of ground mobile coverage robots.

It is assumed that the boundary-tracking UAVs can share their
map information with the ground mobile coverage robots in
real time. The communication ranges of the coverage robots
are 𝜌

c = 10 and are visualized with dashed circles. The overall
awareness level of the task domain is visualized with color map.
For the sake of simplicity, dc

i is set to be zero in the simulation.
Note that the boundary-tracking UAVs continue flying around
the boundary to broadcast map information after t ≥ tf = 86.
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The evolution of the global awareness error metric (10.9),
the local awareness metrics (10.10), and pose of the coverage
robots are shown in Figure 10.8. As illustrated in Figure 10.8a,
the global awareness metrics keep increasing when t ≤ tf = 86.
This is because the map of the task domain is growing when
the boundary-tracking UAVs are constructing the map and
the growth rate of the map outpaces the covering rate of the
coverage robots. Three abrupt drops occur at time steps t = 58
(as also shown in Figure 10.7b), t = 200 (as also shown in
Figure 10.7d), and t = 229 (as also shown in Figure 10.7e)
because the coverage robots enter into each other’s neighbor-
hood and the information sharing improves their awareness
level. Time step t = tf = 86 (as also shown in Figure 10.7c)
corresponds to the moment when the boundary-tracking task
is finished and a complete map of the task domain is obtained.
Global full awareness of the unknown task domain is achieved
at time step t = 255 (as also shown in Figure 10.7f ), that is, the
entire domain is covered with desired awareness level by the
coverage robots. In Figure 10.8b, the local awareness metrics
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Figure 10.7 Simulated simultaneous boundary tracking and domain
coverage. Time steps (a) t = 4, (b) t = 58, (c) t = 86, (d) t = 200, (e) t = 229,
and (f ) t = 255.
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Figure 10.8 Coverage metrics
and robot poses. (a) Global
awareness metrics. (b) Local
awareness metrics. (c) Pose of
coverage robots.

oscillate between high and low values due to the frequent
switchings between the nominal control law (10.10) and pertur-
bation control law (10.17). Both the global awareness metrics
and local awareness metrics are shown to converge to zero.
Figure 10.8c shows the poses of three coverage robots during
the entire process. Due to the distributed nature of the control
strategy, there are some redundancy in the coverage process.
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10.5 Conclusion

In this chapter, we proposed a novel distributed control strategy
for heterogeneous multi-robot systems to accomplish full
awareness coverage of unknown environments. The task was
decomposed into a boundary-tracking subtask performed by
UAVs and a domain coverage subtask performed by WMRs.
The nonholonomic constraints of WMR, nonisotropic sensor
model, and awareness-based error metrics are considered
when deriving motion control strategies. The performance
of the cooperative boundary tracking and domain coverage
tasks performed by the heterogeneous multi-robot system was
demonstrated by Matlab simulations.

References

1 Fink, J., Ribeiro, A., and Kumar, V. (2012) Robust control
for mobility and wireless communication in cyber-physical
systems with application to robot teams. Proceedings of the
IEEE, 100 (1), 164–178.

2 Rajkumar, R.R., Lee, I., Sha, L., and Stankovic, J. (2010)
Cyber-physical systems: the next computing revolution,
in Proceedings of the 47th Design Automation Conference,
pp. 731–736.

3 Kim, M., Stehr, M.O., Kim, J., and Ha, S. (2010) An
application framework for loosely coupled networked
cyber-physical systems, IEEE/IFIP 8th International Con-
ference on Embedded and Ubiquitous Computing (EUC),
December 2010, pp. 144–153.

4 Olfati-Saber, R. and Murray, R.M. (2002) Graph rigidity and
distributed formation stabilization of multivehicle systems,
in Proceedings of the 41st IEEE Conference Decision and
Control, vol. 3, pp. 2965–2971.

5 Olfati-Saber, R. and Murray, R.M. (2004) Consensus prob-
lems in networks of agents with switching topology and
time-delays. IEEE Transactions on Automatic Control, 49 (9),
1520–1533.



�

� �

�

288 Cooperative Control of Multi-Agent Systems

6 Olfati-Saber, R., Fax, A., and Murray, R.M. (2007) Consensus
and cooperation in multi-agent networked systems? Proceed-
ings of the IEEE, 95 (1), 215–233.

7 Sinopoli, B., Schenato, L., Franceschetti, M., Poola, K.,
Jordan, M.I., and Sastry, S.S. (2004) Kalman filtering with
intermittent observations. IEEE Transactions on Automatic
Control, 49 (9), 1453–1464.

8 Jones, E.G., Browning, B., Dias, M.B., Argall, B., Veloso, M.,
and Stentz, A. (2006) Dynamically formed heterogeneous
robot teams performing tightly-coupled tasks, in Proceedings
of IEEE International Conference Robotics and Automation
(ICRA), pp. 570–575.

9 Sha, L., Gopalakrishnan, S., Liu, X., and Wang, Q. (2008)
Cyber-physical systems: a new frontier? IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustwor-
thy Computing, Taichung, Taiwan, June 11-13, 2008.

10 Cortés, J., Martinez, S., Karatas, T., and Bullo, F. (2004)
Coverage control for mobile sensing networks. IEEE Trans-
actions on Robotics and Automation, 20 (2), 243–255.

11 Sharma, P., Salapaka, S.M., and Beck, C.L. (2012)
Entropy-based framework for dynamic coverage and cluster-
ing problems. IEEE Transactions on Automatic Control, 57
(1), 135–150.

12 Hussein, I.I. and Stipanovic, D.M. (2007) Effective coverage
control for mobile sensor networks with guaranteed collision
avoidance. IEEE Transactions on Control Systems Technology,
15 (4), 642–657.

13 Wang, Y. and Hussein, I.I. (2010) Awareness coverage
control over large-scale domains with intermittent com-
munications. IEEE Transactions on Automatic Control, 55
(8), 1850–1859.

14 Crone, T.J. and Tolstoy, M. (2010) Magnitude of the 2010
Gulf of Mexico oil leak. Science, 330 (6004), 634.

15 Yu, L., Wang, N., and Meng, X. (2005) Real-time forest fire
detection with wireless sensor networks, in International
Conference on Wireless Communications, Networking and
Mobile Computing, vol. 2, pp. 1214–1217.

16 Howard, A., Mataric, M.J., and Sukhatme, G.S. (2002)
Mobile sensor network deployment using potential fields:



�

� �

�

10 Awareness Coverage Control in Unknown Environments 289

a distributed, scalable solution to the area coverage prob-
lem, in Proceedings of the 6th International Symposium
on Distributed Autonomous Robotics Systems (DARS02),
pp. 299–308.

17 Acar, E.U. and Choset, H. (2002) Sensor-based coverage of
unknown environments: incremental construction of Morse
decompositions. International Journal of Robotics Research,
21 (4), 345–366.

18 Hert, S., Tiwari, S., and Lumelsky, V. (1996) A
terrain-covering algorithm for an AUV. Autonomous Robots,
3 (2), 91–119.

19 Rekleitis, I.M., Dudek, G., and Milios, E.E. (1997)
Multi-robot exploration of an unknown environment, effi-
ciently reducing the odometry error. International Joint
Conference on Artificial Intelligence, 15, 1340–1345.

20 Parker, L.E., Kannan, B., Tang, F., and Bailey, M. (2004)
Tightly-coupled navigation assistance in heterogeneous
multi-robot teams, in Proceedings of IEEE International
Conference on Intelligent Robots and Systems (IROS), vol. 1,
Sendai, Japan, pp. 1016–1022.

21 Parker, L.E. (2000) Lifelong adaptation in heterogeneous
multi-robot teams: response to continual variation in
individual robot performance. Autonomous Robots, 8 (3),
239–267.

22 Hussein, I.I., Stipanovic, D.M., and Wang, Y. (2007) Reli-
able coverage control using heterogeneous vehicles, in 46th
IEEE Conference on Decision and Control, December 2007,
pp. 6142–6147.

23 Pimenta, L., Kumar, V., Mesquita, R.C., and Pereira, G.
(2008) Sensing and coverage for a network of heterogeneous
robots, in 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008, pp. 3947–3952.

24 Tanner, H.G. and Christodoulakis, D.K. (2007) Decentral-
ized cooperative control of heterogeneous vehicle groups.
Robotics and Autonomous Systems, 55 (11), 811–823.

25 Kwok, A. and Martìnez, S. (2010) Unicycle coverage con-
trol via hybrid modeling. IEEE Transactions on Automatic
Control, 55 (2), 528–532.



�

� �

�

290 Cooperative Control of Multi-Agent Systems

26 Laventall, K. and Cortés, J. (2009) Coverage control by
multi-robot networks with limited-range anisotropic sensory.
International Journal of Control, 82 (6), 1113–1121.

27 Gusrialdi, A., Hirche, S., Hatanaka, T., and Fujita, M. (2008)
Voronoi based coverage control with anisotropic sensors, in
American Control Conference, June 2008, pp. 736–741.

28 Regina, N. and Zanzi, M. (2009) 2D tracking and over-flight
of a target by means of a non-linear guidance law for UAV,
in IEEE Aerospace Conference, pp. 1–11.

29 Ren, W. and Beard, R.W. (2003) CLF-based tracking con-
trol for UAV kinematic models with saturation constraints,
in Conference on Decision and Control, December 2003,
pp. 3924–3929.

30 Bara, A. and Dale, S. (2009) Dynamic modelling and stabi-
lization of wheeled mobile robot, in Proceedings of the 5th
WSEAS International Conference on Dynamical Systems and
Control, pp. 87–92.

31 Wang, Y. and Hussein, I.I. (2007) Cooperative vision-based
multi-vehicle dynamic coverage control for underwater
applications, in IEEE International Conference on Control
Applications, pp. 82–87.

32 Das, A.K., Fierro, R., Kumar, V., Southall, B., Spletzer, J.,
and Taylor, C.J. (2001) Real-time vision-based control of a
nonholonomic mobile robot. IEEE International Conference
on Robotics and Automation, 2, 1714–1719.

33 Hu, T. and Lin, Z. (2001) Control Systems with Actuator Sat-
uration: Analysis and Design, Birkhauser, pp. 1–9.

34 Flanders, H. (1973) Differentiation under the integral sign.
American Mathematical Monthly, 80 (6), 615–627.



�

� �

�

291

Index

a
Adaptive control 91
Adjacency matrix 16, 88, 144,

210, 240, 242
Asymptotic stability 185, 187,

281
Average consensus 177, 185

c
Cardinality 88, 181, 209
Cardinality constrained

optimization 210, 215
Combinatorial optimization

13, 117
Communication topology

185, 197
Connectivity 101
Consensus 12, 213
Consensus algorithm 240
Consensus-based auction

algorithm 150
Constrained consensus 86
Controllability/observability

matrix 217
Convergence rate 86, 96
Convex optimization 15
Cooperative control 2, 85, 141

Cooperative/coordinated target
tracking 54

Cooperative target tracking
11

Coverage control 16, 265
Cyber-physical systems (CPS)

265

d
Decentralized control 2, 4, 6,

9
Decision-making 118
Degree matrix 88, 144
Deterministic system 184
Differential drive 270
Differentiation under integral

sign 278
Dijkstra’s algorithm 151, 155
Directed graph 191, 196, 239
Directed spanning tree 144,

238, 249, 254
Distributed control 237
Distributed event-triggered

control 192
Distributed multi-agent

coordination 237
Distributed threat assignment

146
Cooperative Control of Multi-Agent Systems: Theory and Applications, First Edition.
Edited by Yue Wang, Eloy Garcia, David Casbeer, and Fumin Zhang.
© 2017 JohnWiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Dubins vehicle model 12, 57,
148

e
𝜀-consensus 96
Eigenvalue 88, 144, 214, 222
Eigenvector 214, 222
Elemental curvature 122,

126
Euclidean norm 87, 181
Euler angle sequence 59
Event-triggered

communication/control
177, 178, 180, 182, 187,
189

Event-triggered control 9,
14

f
Finite horizon online

optimization problem
65

Frobenius norm 219

g
Geolocation estimate 53
Globally uniformly

asymptotically stable
183

Globally uniformly
exponentially stable
183

Graph theory 181, 239
Greedy algorithm 36
Greedy maximization 117,

127, 129

h
Hankel matrix 217
Hessian matrix 220
Hybrid system 183

i
Impulse response parameters

217
Incidence matrix 213
Iterative rank minimization

(IRM) 212, 221, 224

k
Kill probability 116, 120, 131
Kolmogorov’s 0–1 law 255

l
Landmark placement problem

(LPP) 34
Laplacian matrix 16, 88, 144,

181, 212, 240, 242
Launching time 120, 126
Leader-follower network 209
Least-square estimation 217
Leibniz rule 278
Lie series approximation 60
Linear matrix inequality (LMI)

214
Linear time invariant (LTI)

system 210
L1 norm function 210
Lyapunov 17, 279
Lyapunov equation 182, 183
Lyapunov function 182, 186,

195, 200

m
Matroid 121
Maximal/minimal singular

value 87
Minimal positive eigenvalue

86
Min-max optimization 12, 57
Mixed-integer nonlinear

program (MINLP) 13,
115
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Model predictive control
(MPC) 12, 54

Motion planning 147
Moving horizon estimation

(MHE) 12, 56
Multi-agent systems 1, 52, 88,

177
Multi-robot systems 265

n
Network topology design

(NTD) 209
Network topology

identification (NTI)
209

Nonconvex cardinality function
201

Nonholonomic constraints
16, 61, 270

Nonisotropic sensor model
267, 271

Nonlinear optimization 61

o
Optimal resource allocation

problem 210
Orthogonal matrix 214
Output-feedback control 12,

56

p
Partition matroid 122
Periodically checked

event-triggered
coordination 199

Potential function 92
Probability of coordination

241, 244, 256
Projection-based consensus

85

Pseudoinverse matrix 97, 98

q
Quadratically constrained

quadratic programming
(QCQP) problem 211

r
Rank-constrained optimization

15
Rank-constrained optimization

problem (RCOP) 210
Rank-one constrained

optimization 212
Rayleigh quotient 222
Robustness 67
Roll dynamics 59

s
Sample-and-hold 182
Sampled data model 241
Self-triggered control

178
Semidefinite programming

(SDP) 212, 221
Sensor deployment 11
Set partition problem 123
Similarity transformation

211, 214
Simultaneous arrival 85, 96
Singular value decomposition

217
Small-angle approximation

59
Spectrum 219
State transfer matrix 211
Stochastic interaction topology

238, 241
Submodular function 122,

125
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t
Time of attack 154
Timing constraint 154
Total effective resistance 215
Two-player zero-sum game

64

u
Undirected graph 87, 239,

245
Unmanned aerial vehicle (UAV)

7, 51, 85, 141, 268

v
Vision-based target tracking

53
Voronoi diagram 14, 145, 146,

147, 150

w
Weapon-target assignment

13, 115
Weight balanced 181, 197
Weighted adjacency matrix

181
Weighted graph 181
Wheeled mobile robots (WMR)

16, 267, 269

x
Young’s inequality 181, 190,

195

y
Zeno behavior 180, 183, 188,

191, 194, 198
Zero-order hold 59
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