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Preface

Ever since the beginnings of mankind eons ago, the desire to control, regulate,
and track even under persistent disturbances has been a dominating influence
in the development of human civilization. It is so also in the development of
Automatic Control Theory and its Applications. The subject of output regula-
tion occupies a central theme in all endeavors of theoreticians and practition-
ers alike. Yet there is no book or monograph that brings all essential modern
developments on output regulation under a single cover. This book is intended
to fill this void.

Main topics that are brought together in this book include among oth-
ers, classical exact output regulation of linear systems along with its differ-
ent facets of well-posedness, internal model principle, and structural stability;
output regulation of linear systems with input amplitude and rate saturation
constraints; output regulation with transient performance specifications; per-
formance issues (such as H2, H∞, L1 and others) with an output regulation
constraint; generalized output regulation in which the set of tracking signals as
well as the set of disturbances that act on the plant are broadened beyond those
that are common in classical output regulation, and thus permitting us to deal
with exact as well as almost output regulation under a variety of controllers,
etc.

This book is designed to meet the needs of a variety of audiences includ-
ing practicing control engineers, graduate students, and researchers in control
engineering. Also, it is written to be suitable for self reading and appropriate
as a textbook or prime reference when teaching a first or second year gradu-
ate course in control theory. Recommended background for this book is (a)
linear algebra and matrix theory, (b) linear differential equations, (c) a course
in linear systems and state-space methods, and (d) a course in linear control
theory.

No work of this magnitude can be undertaken without any sacrifices. Our
families are the ones who sacrificed the time we could have spent with them,
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thus allowing us to complete this work. We owe a debt of gratitude to our
families, and it is natural that we dedicate this book to them.

Ali Saberi

Washington State University, Pullman, Washington, U.S.A.

Anton A. Stoorvogel

Eindhoven University of Technology, Eindhoven, The Netherlands

Peddapullaiah Sannuti

Rutgers University, Piscataway, New Jersey, U.S.A.

This book was typeset by the authors using LATEX. The simulations and nu-
merical computations were developed in MATLAB TM.
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Chapter 1

Introduction

1.1 Introduction

The subject of output regulation occupies a central role in modern as well as
classical control theory. The basic problem dealt with in output regulation
is to design a feedback controller which internally stabilizes a given linear
time-invariant plant such that the output of the resulting closed-loop system
converges to, or tracks, a certain reference signal of known frequencies in the
presence of external disturbances of known frequencies. The reference sig-
nals and external disturbances are modeled by a system known as exosystem
(or exogenous system). The subject of output regulation has many facets as-
sociated with it. These facets include but are not limited to internal model
principle, well posedness and structural stability. All these have been the sub-
ject of a number of studies during the late sixties, seventies and thereafter.
These studies are scattered throughout the literature. In spite of all such work,
and in spite of the significance of output regulation which resides in the core
of control system engineering, there exists so far no textbook that deals with
all essential aspects of the subject matter. As such one of our goals is to fill
this void. More importantly, we would like to couple the subject of output
regulation with several recent developments in modern control theory, e.g.
output regulation in the presence of omnipresent amplitude as well as rate sat-
uration of actuators, output regulation with optimal transient behavior of the
error signal, and output regulation in the presence of uncertainties and under
demanding performance requirements. In this regard we observe that the per-
formance and robustness issues have been providing the basic thrust behind
most of the modern control developments during the last two decades.

Let us expand and enumerate below our specific goals and attained results:
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(i) Several modern developments on the subject of output regulation are
scattered throughout the literature. We would like to bring all the sig-
nificant developments into focus in a single folder. While doing so,
we would like to elevate or enhance the subject by generalizing several
aspects of it. For instance, most of the available literature on output
regulation deals with the case where the measured output of the plant
that is used as the input to the feedback controller is simply the tracking
error signal, i.e. the difference between the desired and the actual output
of the plant. This restriction is often unnecessary. Thus, our first goal is
to reexamine the literature on output regulation while utilizing a mea-
sured output for feedback which is not necessarily the same as the error
signal. Such a reexamination enhances the entire subject including the
topics such as internal model principle, well-posedness, and structural
stability.

(ii) In any practical application, one of the important limiting factors is the
saturation of actuators. That is, in practical actuators, the amplitudes
and rates of change of signals are limited to certain maximum levels. In
the face of such limitations, we would like to reexamine the output reg-
ulation theory so as to come up with appropriate design of controllers
which take into account right at the onset of design the physical limit-
ing characteristics of actuators. The subject of output regulation in the
presence of saturating actuators has been thoroughly studied recently
in a series of papers by the authors and their coworkers. These studies
successfully came up with a variety of sound analysis as well as design
methodologies. Thus, our next goal in this book is to integrate into a
single folder all such methods of analysis and design for output regula-
tion in the presence of saturating actuators.

(iii) One of the shortcomings of classical output regulation is that it gives
importance only to steady state tracking error, namely rendering it ex-
actly to zero. The natural engineering issues regarding the transient
behavior of the error signal are not addressed at all. Such issues can
include minimizing the over-shoot or under-shoot of the error signal, or
more generally appropriate shaping of the error signal. In this regard,
for instance, one may like to impose in the statement of output regula-
tion problem certain requirements on the transient performance so that
one can shape appropriately the transient behavior of tracking error in
addition to the desired steady state requirements. One way to do so is
to achieve asymptotic tracking while minimizing a certain weighted en-
ergy of the error signal. This leads to optimal and suboptimal output
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regulation problems with the performance measure equal to the energy
of the error signal. Several issues related to optimal and suboptimal
output regulation are discussed. These issues include among others the
determination of an expression for the infimum of the performance mea-
sure, solvability conditions for the posed optimal and suboptimal out-
put regulation problems, construction of optimal and suboptimal output
regulators, relationships between the optimal performance and struc-
tural properties of the given system, perfect output regulation etc.

(iv) In modern control, one seeks a desired performance as measured by
certain properties of a transfer function from a certain input signal to a
certain output signal. A common formulation in this regard is to seek
a controller that results either in minimizing a certain norm (H2, H∞,
and L1 norms are popular) of the transfer function under focus or in
rendering this specified norm of the transfer function under focus less
than a priori given value. This leads to formulation of an H2 or H∞ or
L1 optimal control problem.

One can unite the objective of achieving the desired performance with
the objective of achieving output regulation. Such a unification results
in an optimal control problem with output regulation constraint. How-
ever, constrained optimal control problems are difficult to solve directly.
Here we provide a vehicle by which such problems can be solved both
in terms of analyzing them or synthesizing appropriate controllers to
solve them. That is, we transform the constrained optimal control prob-
lem with output regulation constraint for the given system to an uncon-
strained optimal control problem for a certain auxiliary system without
any output regulation constraint. This is done by constructing an aux-
iliary system from the given data in such a way that once we have an
internally stabilizing controller for the auxiliary system that achieves a
certain closed-loop transfer matrix from a certain specified input sig-
nal to a certain specified output signal equal to G, then one can easily
formulate a controller for the given system that achieves internal stabil-
ity, achieves asymptotic tracking, and more importantly also renders the
closed-loop transfer matrix from a certain specified input signal to a cer-
tain specified output signal equal to G. This implies that one can study
any optimization problem based on minimizing a certain norm of the
closed-loop transfer matrix along with the output regulation constraint
for the given system by equivalently studying an unconstrained opti-
mization problem for the auxiliary system. This allows us to formulate
the necessary and sufficient conditions under which output regulation as
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well as a specified performance measure can be obtained for the given
system. Also, it allows us to synthesize appropriate controllers.

One fundamental and significant issue that arises in solving an opti-
mization problem with the output regulation constraint is this; does the
added output regulation constraint compromise the achievable perfor-
mance? In this regard, our results show that when the performance
is measured by the H2 norm of a transfer function matrix, there is no
loss at all in the achievable performance. On the other hand, when the
performance is measured by the H∞ norm of a transfer function matrix,
there is in general a certain loss or decay in the achievable performance.
It turns out that a very explicit expression for this decay in performance
can be presented.

(v) In the literature, while developing the theory and methods of construct-
ing appropriate controllers, the exosystem is often coupled to a model
of the given plant. As mentioned earlier, the exosystem models and
generates reference signals as well as external disturbances that act on
the given plant. The exosystems considered in the literature are au-
tonomous linear dynamical systems. As a result, the disturbance signals
and reference signals generated by such exosystems obviously contain
only the frequency components of the exosystems. Thus, the class of
reference signals and disturbance signals considered in the traditional
approach is severely limited. To mitigate this drawback, and to bring
into focus several issues inherent in the context of output regulation,
one can model the reference and disturbance signals by the outputs of an
exosystem that, unlike the traditional approach, is not autonomous but
is driven. Here the reference or disturbance signal is still highly dom-
inated by the fixed frequencies but is nevertheless belongs to a much
more general class of signals. This leads us to formulate and study
what can be termed as generalized output regulation problems.

The generalized output regulation problem has many features. We men-
tion below a few among them:

• It lets us treat almost any arbitrary reference signal.
• It lets us utilize the derivative or feedforward information of refer-

ence signals whenever it is available.
• It opens up new avenues to pursue whenever exact output regula-

tion problem is not solvable; for instance, one can study almost
output regulation in which one can cast several performance mea-
sures one at a time on the asymptotic tracking error, e.g. the supre-
mum of asymptotic tracking error be less than a specified fraction
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of a specified norm of the reference signal.

The architecture of the book follows the same chronologically itemized
discussion as given above. After this first introductory chapter, Chapter 2
concerns with the classical exact output regulation. This chapter includes a
complete coverage of classical exact output regulation in a broad framework.
It reviews, reexamines, clarifies and extends several facets of output regula-
tion such as well-posedness of the output regulation problem, internal model
principle, and structural stability.

Chapters 3, 4, and 5 give a complete development of classical exact out-
put regulation when the actuators are subject to amplitude and rate saturation.
In particular, Chapters 3 and 4, for continuous- and discrete-time systems re-
spectively, consider the case when the actuators are subject to only amplitude
saturation, while Chapter 5 deals with the general case of both amplitude and
rate saturation of inputs for both continuous- and discrete-time systems.

Chapter 6 studies exact output regulation along with optimal transient per-
formance requirements.

Chapters 7, 8, 9, 10, and 11 are concerned with general performance and
robustness issues with an output regulation constraint. We first set the stage
by developing a key result in Chapter 7. We are interested in the transfer
function of the closed loop system from an exogenous input d to an exogenous
output z and achieving asymptotically tracking or disturbance rejection of an
exogenous signal w (generated by some exosystem) in the error signal e. Here,
we formulate an auxiliary system denoted by �̄. For each controller �̄C for
the auxiliary system, we formulate a corresponding controller �C for the given
system �, and in so doing we generate a class of controllers for the given
system. We note that a controller for �̄ can be related to a controller for �

and vice versa. Then, we develop our main result. It states that a certain
transfer function (say, from d̄ to z̄) of the auxiliary system with an internally
stabilizing controller �̄C, is exactly the same as the transfer function from d
to z in the given system with a controller �C that corresponds to �̄C. Also,
such a �C internally stabilizes �, and is such that the error e tends to zero
asymptotically. Thus, we basically transform any problem of performance
with output regulation constraint for the given system to a similar one for
the auxiliary system however without any output regulation constraint. This
transformation is valid whatever may be the chosen performance measure (H2,
H∞, L1, or any other) as long as it is based on the transfer function from d to
z in the given system.

Equipped with the basic result of Chapter 7, for continuous-time sys-
tems, Chapters 8 and 10, study H2 optimal and H∞ optimal control problems
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with the output regulation constraint. Chapters 9 and 11 do the same but for
discrete-time systems.

In Chapter 12, we consider the notion of robust output regulation which
requires output regulation in the presence of structured model uncertainties.

The subject of Chapter 13 is generalized output regulation. Essentially,
it generalizes the topic of exact output regulation as dealt with in Chapter 2
in several ways. By introducing a non-autonomous exosystem, the class of
reference signals to be tracked in the presence of external disturbance signals
is broadened considerably. In fact, almost any arbitrary reference signal can be
treated. Also, the derivative or feedforward information of reference signals
whenever it is available can be utilized. Next, it introduces and studies almost
output regulation in detail. Moreover, both exact and almost output regulation
are studied under a variety of controllers.

Chapters 14, 15, and 16 are counter parts of Chapters 3, 4 and 5, and
consider generalized output regulation. That is, in Chapters 14, 15, and 16,
we deal with generalized output regulation for linear systems with actuators
subject to amplitude and rate saturation.

Chapter 17 considers the issue of what can be done if classical output
regulation is not possible.

Finally, the Epilogue on page 451 poses some open problems.

The material of Chapter 2 is put together from several papers scattered
throughout the literature although several facets of it have been extended in
a number of ways. The material of the rest of chapters follows the recent
research work of the authors and their coworkers.

1.2 Notation and terminology

Throughout this book we shall adopt the following conventions and notations:

R := the set of real numbers,

R
+ := the set of positive real numbers,

C := the entire complex plane,

C
− := the open left-half complex plane,

C
0 := the imaginary axis,

C
+ := the open right-half complex plane,

C
� := the unit circle in complex plane,
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C
� := the set of complex numbers inside the unit circle,

C
⊗ := the set of complex numbers inside or on the unit circle,

C
⊕ := the set of complex numbers outside the unit circle,

I := an identity matrix,

Ik := the identity matrix of dimension k×k,

AT := the transpose of A,

λ(A) := the set of eigenvalues of A,

σmax(A) := the largest singular value of A,

σmin(A) := the smallest singular value of A,

r(A) := max
i

|λi(A)| (the spectral radius of A),

trace A := the trace of A,

ker A := the null space of A,

im A := the range space of A,

〈A | im B〉 :=
n−1∑
i=0

im Ai B, (the controllability subspace),

Cn := the set of n times continuously differentiable functions.

For a vector q = (q1, q2, . . . qk)
T, we define

‖q‖∞ = max
i

|qi |, and

‖q‖ = ‖q‖2 =
(

k∑
i=1

x(i)2

)1/2

,

Moreover, for a vector-valued function w(·) and T ≥ 0, we define

‖w‖∞ := sup
t

‖w(t)‖∞, ‖w‖∞,T := sup
t≥T

‖w(t)‖∞,

‖w‖p = (

∫ ∞

0
‖w(t)‖pdt)1/p, ‖w‖p,[0,T ] := (

∫ T

0
‖w(t)‖pdt)1/p,

for p ∈ [1,∞). An obvious notation is valid for discrete-time signals. For
each p ∈ [1,∞], the space L p (or �p) consists of all measurable vector valued
functions w(·) such that ‖w‖p ≤ ∞.

As usual, the H2 norm of a transfer function G of a continuous-time sys-
tem is defined as,

‖G‖2 :=
(

1

2π

∫ ∞

−∞
trace GT(−iω)G(iω)dω

)1/2

,
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and the H2 norm of a transfer function G of a discrete-time system is defined
as,

‖G‖2 :=
(

1

2π

∫ π

−π

trace GT(e−iω)G(eiω)dω

)1/2

.

The H∞ norm of a transfer function G of a continuous-time system is defined
as,

‖G‖∞ := sup
ω∈[−∞,∞)

σmaxG(iω),

where σmax denotes the largest singular value. Similarly, the H∞ norm of a
transfer function G of a discrete-time system is defined as,

‖G‖∞ := sup
ω∈[−π,π)

σmaxG(eiω).

For a continuous-time system with input w and output z with transfer matrix
G we also sometimes need the L p-Lq induced operator norm defined by,

‖G‖L p,Lq := sup
w �=0

‖z‖q

‖w‖p
.

Note that the L2-L2 induced operator norm is equal to the H∞ norm while
the L∞-L∞ induced operator norm is sometimes referred to as the L1 norm
because it is equal to the L1 norm of the impulse response of the system.
Similarly for discrete-time systems we define,

‖G‖�p,�q := sup
w �=0

‖z‖q

‖w‖p
,

and also in this case the �2-�2 induced operator norm is equal to the H∞ norm
while the �∞-�∞ induced operator norm is equal to the �1 norm of the impulse
response of the system.

The solvability conditions for certain output regulation problems posed in
the book are formulated in terms of well known invariant subspaces of the geo-
metric control theory whose definitions are recalled next. In these definitions,
C

g denotes a subset of complex plane C. C
g is closed under conjugation, and

for continuous-time systems is an unbounded subset of C. Often C
g is taken

as a stability set, that is for continuous-time systems C
g is taken as a subset

of the open left-half complex plane C
−, and for discrete-time systems C

g is
taken as a set of complex numbers inside the unit circle C

�.

We now recall the following standard definitions.
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Definition 1.2.1 Consider a linear system � characterized by a quadruple
(A, B, C, D). Then,

(i) The stabilizable weakly unobservable subspace Vg(A, B, C, D) is de-
fined as the maximal subspace of R

n which is (A + B F)-invariant and
contained in ker(C + DF) such that the eigenvalues of (A + B F)|Vg

are contained in C
g ⊆ C for some F.

(ii) The detectable strongly controllable subspace Sg(A, B, C, D) is de-
fined as the minimal subspace of R

n which is (A + KC) invariant and
contains im(B + K D) such that the eigenvalues of the map which is in-
duced by (A+ KC) on the factor space R

n/Sg are contained in C
g ⊆ C

for some K .

In the case of continuous-time systems, it is of interest to have C
g represent-

ing different sets in the complex plane, namely the entire complex plane C, the
open left-half complex plane C

−, the imaginary axis C
0, the closed left-half

plane C
− ∪ C

0, or the open right-half complex plane C
+. Whenever C

g rep-
resents respectively the sets C, C

−, C
0, C

− ∪ C
0, and C

+ the superscript g in
Vg and Sg is replaced by a superscript ∗, −, 0, −0, and +.

Similarly, in the case of discrete-time systems, it is of interest to have C
g

representing different sets in the complex plane, namely the entire complex
plane C, the unit circle C

�, the set of complex numbers inside the unit circle
C

�, the set of complex numbers either inside or on the unit circle C
⊗, or the

set of complex numbers outside the unit circle C
⊕. Whenever C

g represents
respectively the sets C, C

�, C
�, C

⊗, and C
⊕ the superscript g in Vg and Sg

is replaced by a superscript ∗, �, �, ⊗, and ⊕.

Definition 1.2.2 Consider a linear system � characterized by a quadruple
(A, B, C, D) with A ∈ R

n×n be given. We define the following increasing
sequence of subspaces:

S∗
0 (A, B, C, D) = B ker D

S∗
i+1(A, B, C, D) = B ker D + A(S∗

i (A, B, C, D) ∩ ker C)

Note that after a finite number (at most n) steps we have S∗
i+1(A, B, C, D) =

S∗
i (A, B, C, D). Moreover, in that case S∗(A, B, C, D) = S∗

i (A, B, C, D).

Definition 1.2.3 Consider a linear system � characterized by a quadruple
(A, B, C, D). Let a C

g be chosen such that it has no common elements with
the set of invariant zeros of �. Then the corresponding Vg(A, B, C, D),
which is always independent of the particular choice of C

g, is referred to
as the controllable weakly unobservable subspace R∗(A, B, C, D).
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Also, we will use the notation, C−1{im D} := { x | Cx ∈ im D }. This is
obviously valid even if C is not invertible.

The (invariant) zeros of a system with a realization (A, B, C, D) are those
points λ ∈ C for which

rank

(
λI − A −B

C D

)
< normrank

(
s I − A −B

C D

)
,

where by “normrank” we mean the rank of a matrix with entries in the field
of rational functions. A more formal definition (if one is concerned with mul-
tiplicities) is given via the Smith-McMillan form. The Smith-McMillan form
also allows us to define the invariant polynomials associated to the zero dy-
namics. For details we refer to for instance [87] and [61].

A linear system � characterized by a quadruple (A, B, C, D) is said to
be:

(i) minimum phase if it has all its invariant zeros in C
− for a continuous-

time system (respectively, in C
� for a discrete-time system),

(ii) weakly minimum phase if it has all its invariant zeros in C
− ∪ C

0 with a
restriction that any invariant zero on C

0 is simple for a continuous-time
system (respectively, in C

� ∪ C
� with a restriction that any invariant

zero on C
� is simple for a discrete-time system),

(iii) weakly non-minimum phase if it has all its invariant zeros in C
− ∪ C

0

with at least one invariant zero on C
0 non-simple for a continuous-time

system (respectively, in C
� ∪C

� with at least one invariant zero on C
�

non-simple for a discrete-time system),

(iv) non-minimum phase if it has at least one invariant zero in C
+ for a

continuous-time system (respectively, in C
⊕ for a discrete-time system).

Note that a zero λ is called simple if its multiplicity is equal to

normrank

(
s I − A −B

C D

)
− rank

(
λI − A −B

C D

)
,

and otherwise is referred to as non-simple.

We say that a matrix M is Hurwitz-stable if it has all its eigenvalues in the
open left-half plane, or Schur-stable if it has all its eigenvalues inside the unit
circle. Similarly, we say that a matrix M is anti-Hurwitz-stable if it has all its
eigenvalues in the closed right-half plane, or anti-Schur-stable if it has all the
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eigenvalues on or outside the unit circle. Along the same lines, we say that a
matrix is weakly Hurwitz-stable if all its eigenvalues are in the closed left half
plane while any eigenvalue on the imaginary axis has geometric multiplicity
equal to its algebraic multiplicity or equivalently the associated Jordan blocks
of it are of size 1 × 1. Similarly, we say that a matrix is weakly Schur-stable
if all its eigenvalues are inside or on the unit circle while any eigenvalue on
the unit circle has geometric multiplicity equal to its algebraic multiplicity
or equivalently the associated Jordan blocks of it are of size 1 × 1. Finally,
we say a matrix is weakly Hurwitz-unstable or weakly Schur-unstable if all
the eigenvalues are in the closed left-half plane and in the closed unit disc
respectively.

For simplicity of notation, for a mapping f , sometimes f (t) is denoted
by ft .
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Chapter 2

Classical exact output
regulation

2.1 Introduction

The precise formulation and study of the classical exact output regulation
problem is the topic of this chapter. We consider a system with an exogenous
input and a control input (both might be vector-valued). The exogenous input
is generated by an autonomous system (i.e. a system without inputs) which
is called the exosystem. The objective is to find a feedback controller such
that an output of the system converges to zero as time tends to infinity. This
can be used to model asymptotic tracking as well as asymptotic disturbance
rejection.

In Section 2.2, we formulate the problem in precise terms. For output reg-
ulation, one can consider a controller with state feedback or the more general
case of a controller with measurement feedback.

This leads to the formulation of two types of exact output regulation prob-
lems, (1) the exact output regulation problem with state feedback, and (2) the
exact output regulation problem with measurement feedback. These two prob-
lems are the subject of Sections 2.3 and 2.4 respectively. There we derive nec-
essary and sufficient conditions under which the problem is solvable. Also, if
the problem is solvable, we will present algorithms to compute appropriate
controllers. It turns out that the existence of either a state feedback regulator
or a measurement feedback regulator requires the solvability of what is known
as the regulator equation. Section 2.5 examines the conditions for the solvabil-
ity of the regulator equation. In the measurement feedback case it turns out
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that the controller often needs to incorporate a model of the exosystem. This
property which is often referred to as the internal model principle is the topic
of Section 2.6. Of course the solvability of the regulator equation depends on
the model of the given plant and on the exosystem that models the disturbance
and the reference signals. In practice such data is not precisely known. This
leads to issues regarding the “well-posedness” of output regulation problems.
Section 2.7 is concerned with such a discussion. It turns out, however, that
although the “well-posedness” of an output regulation problem is very much
desired, it by itself is not very useful from a practical point of view. This is
because the property of “well-posedness” guarantees merely the existence of a
controller that solves the output regulation problem for any system in a given
neighborhood of the given plant and the exosystem. However, the design or
construction of a regulator itself may need the actual data. This leads to the
study of what can be termed as a structurally stable output regulation problem
which seeks to find a controller that achieves output regulation for all plants
which are in a small neighborhood of the given nominal plant. This problem
is studied in Section 2.8.

It will be evident throughout the chapter that our development applies
equally well for both continuous- and discrete-time systems. As such, in this
chapter, we consider continuous- and discrete-time systems together. Often,
we only give the proofs for continuous-time systems, since the corresponding
proofs for discrete-time systems require only very minor modifications.

Classical exact output regulation has a long history. The primary and early
workers in the field were Davison, Francis, Wonham, and their coworkers (see
e.g. [13, 14, 16, 19]), for a later work among many others see the work of
Desoer and Wang [15] and Pearson, Shields, and Staats [51]. More recently,
Isidori, Byrnes, and their coworkers extended it to non-linear systems (see
e.g. [25]).

2.2 Problem formulation for exact output regulation

Suppose that we are given a linear multivariable plant which is subject to
three types of input signals and two output signals as denoted in Figure 2.1 on
the facing page. We design a controller with measurement signal y which
generates the input signal u. We have two objectives:

(i) Tracking. One exosystem generates a reference signal w2 and it is our
objective to track this reference signal by the output zc of the system.
Our objective is asymptotic tracking. As such by defining the error
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Exosystem

Exosystem zc

y

+ −
e

Controller

Plant

u

w1

w2

Figure 2.1: Basic setup

signal e = zc − w2, our objective becomes limt→∞ e(t) = 0.

(ii) Disturbance rejection. The second exosystem generates a disturbance
w1 for the system and our objective is to reduce the effect of the dis-
turbance w1 on the output zc. Note that due to linearity of the systems,
we can equivalently reduce the effect of w1 on e. Our objective is again
asymptotic, so we have the same objective that limt→∞ e(t) = 0.

We will study the above problem and others in detail in this book and all
kind of questions such as reducing not only the asymptotic effect but also
the transient effect will be discussed in later chapters. Both exosystems are
known autonomous systems which generate signals with known frequency but
unknown phase and amplitude. Often the exosystem will generate sinusoidal
signals as well as step functions.

By combining the two exosystems into one large exosystem we can trans-
form the block diagram in Figure 2.1 into the block diagram depicted in Fig-
ure 2.2. This gives us a simpler picture and in many of our derivations it will

Exosystem e

Controller

Plant

u

w

y

Figure 2.2: Configuration of plant, exosystem, and controller.
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simplify our formulae considerably. But in this universal picture we do lose
some additional information because tracking and disturbance rejection are
not the same objectives. For instance, in tracking, we often know the signal
w1 we want to track while in disturbance rejection it is quite unlikely that we
know the disturbance.

The dynamic equations of the plant � in Figure 2.2 on the page before are
as follows:

� :
⎧⎨
⎩

ρx = Ax + Bu + Eww

y = Cyx + Dyuu + Dyww

e = Cex + Deuu + Deww,
(2.1)

where ρ denotes the time derivative, ρx(t) = dx
dt (t), for continuous-time sys-

tems, and the shift, (ρx)(k) = x(k + 1), for discrete-time systems. The first
equation of the above system � describes the plant with state x ∈ R

n and
control input u ∈ R

m , subject to the effect of an exogenous disturbance rep-
resented by Eww where w ∈ R

s is the state of an exosystem (or exogenous
system) �E to be described shortly. The second equation is for the measure-
ment y ∈ R

p describing the information available to the controller. The final
equation defines the error e ∈ R

q between the actual controlled plant output
Cex and the reference signal −Deww. If Ew = 0 and Dyw = 0 then we obtain
a classical tracking problem where zc = Cex + Deuu should track the output
of an exogenous system. On the other hand, the case Ew �= 0 or Dyw �= 0 is
very useful to incorporate disturbance rejection in this setting for those cases
where we have specific frequency information about the disturbance.

We note that we can in almost all cases set Dyu = 0 without loss of
generality since it is well known that if we have a controller for the system
(2.1) with Dyu = 0 then it is straightforward to obtain a controller for the
original system (2.1) where Dyu is not necessarily equal to 0. Therefore in
many problems we will set Dyu = 0 to avoid messy formulae. However, in
some cases such as structural stability it will play a more intrinsic role.

The exosystem �E is an autonomous system having a state space realiza-
tion with state w ∈ R

s ,

�E : ρw = Sw. (2.2)

The above exosystem generates both the exogenous disturbances Eww and
Dyww that acts on the plant as well as the reference signal −Deww which the
plant output is required to track.



Control of linear systems with regulation and input constraints 17

We say that we have the state available if both the states x and w are
available for feedback, that is

y =
(

x
w

)
.

When we have the state available for feedback, we consider static feedback
controllers of the form,

u = Fx + Gw. (2.3)

Composing (2.1), (2.2), and (2.3) together yields a closed-loop system

ρx = (A + B F)x + (Ew + BG)w

ρw = Sw

e = (Ce + Deu F)x + (Dew + DeuG)w.
(2.4)

In the general case of any measurement y being available for feedback,
we consider dynamic feedback controllers of the form,

�C :
{

ρv = Acv + Bc y, v(t) ∈ R
nc

u = Ccv + Dc y.
(2.5)

The interconnection of (2.1), (2.2), and (2.5) yields a closed-loop system

ρx = (A + B(I − DcDyu)
−1 DcCy)x + B(I − DcDyu)

−1Ccv

+(Ew + B(I − DcDyu)
−1 Dc Dyw)w

ρv = Bc(I − Dyu Dc)
−1Cyx + (Ac + Bc(I − Dyu Dc)

−1 DyuCc)v

+Bc(I − Dyu Dc)
−1 Dyww

ρw = Sw

e = (Ce + Deu(I − DcDyu)
−1 DcCy)x + Deu(I − DcDyu)

−1Ccv

+(Deu(I − DcDyu)
−1 Dc Dyw + Dew)w.

(2.6)

As we discussed earlier, our objective is to find a controller, if possible, that
achieves internal stability of the plant as well as output regulation. Internal
stability means that, if we disregard the exosystem and set w equal to zero,
the closed-loop system comprising of the plant and the controller is asymp-
totically stable. Output regulation means that for any initial conditions of the
closed-loop system, we have e(t) → 0 as t → ∞. Formally, all of this can
be summarized in the following two definitions each of which formulates a
design problem.
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Problem 2.2.1 (Exact output regulation problem with state feedback) For a
system � as given in (2.1), find, if possible, a feedback law of the form (2.3)
such that the following conditions hold:

Internal Stability: The system ρx = (A + B F)x is asymptotically stable,
i.e. the matrix A + B F is Hurwitz-stable for continuous-time systems
and Schur-stable for discrete-time systems.

Output Regulation: For all x(0) ∈ R
n and w(0) ∈ R

s , the closed-loop sys-
tem given in (2.4) satisfies

lim
t→∞ e(t) = 0.

A controller that solves the exact output regulation problem with state feed-
back is called a state feedback regulator.

Obviously, one needs some natural assumptions on the given system (2.1)
in order to solve the above output regulation problem. To start with, the re-
quirement of internal stability of the closed-loop system comprising of the
plant and any feedback controller (but excluding the exosystem) requires that
the given plant is stabilizable, i.e. the pair (A, B) should be stabilizable.
On the other hand, one can assume that the matrix S is anti-Hurwitz-stable
for continuous-time systems and anti-Schur-stable for discrete-time systems.
This is without loss of generality because, as can be easily seen, the asymp-
totically stable modes in the exosystem do not affect the regulation of the
output as long as the closed-loop system is internally stable (as usual, for in-
ternal stability we disregard the exosystem). In fact, if S is Hurwitz-stable
for continuous-time systems and Schur-stable for discrete-time systems, the
exosystem ρw = Sw will have a non-trivial stable invariant subspace S−, and
any initial condition w(0) ∈ S− generates an exogenous input exponentially
decaying to zero as t tends to infinity. If the closed-loop system is internally
stable, as required, the error corresponding to this kind of exogenous input will
also exponentially decay to zero as t tends to infinity, for every initial state of
the plant and the controller. That is, for any initial condition w(0) ∈ S−, the
achievement of the property of output regulation is a trivial consequence of
the property of the internal stability. This shows that one can assume without
any loss of generality that S− = {0}. In Chapter 6 we also look at the transient
effect of the exosystem on the error signal e. In that case the stable dynamics
do play a role but without loss of generality we can also consider the stable
dynamics as a part of the given system.

For ease of referencing, we formulate the above assumptions as follows:
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A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable for continuous-time systems and
anti-Schur-stable for discrete-time systems.

Next, we define formally the measurement feedback output regulation prob-
lem. For clarity of presentation but without loss of generality, we assume that
Dyu = 0.

Problem 2.2.2 (Exact output regulation problem with measurement feed-
back) For a system � as given in (2.1), find, if possible, a measurement feed-
back law of the form (2.5) such that the following conditions hold:

Internal Stability: The system

ρx = (A + B DcCy)x + BCcv

ρv = BcCyx + Acv

is asymptotically stable, i.e. the matrix(
A + B DcCy BCc

BcCy Ac

)

is Hurwitz-stable for continuous-time systems and Schur-stable for di-
crete-time systems.

Output Regulation: For all x(0) ∈ R
n, v(0) ∈ R

nc , and w(0) ∈ R
s , the

closed-loop system given in (2.6) satisfies

lim
t→∞ e(t) = 0.

A controller that solves the exact output regulation problem with measurement
feedback is called a measurement feedback regulator.

Clearly, in order to guarantee the internal stability of the closed-loop sys-
tem comprising of the plant and any measurement feedback controller, (as
usual, for internal stability we disregard the exosystem), we need that (A, B)

be stabilizable and (Cy, A) be detectable. To make it easier to refer to, we
formulate this assumption and an additional one as follows:

A.3a. The pair (Cy, A) is detectable.
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A.3b. For all λ ∈ C with Re λ � 0 (continuous-time) or |λ| � 1 (discrete-
time)

ker

⎛
⎝λI − A −E

0 λI − S
Cy Dyw

⎞
⎠ = ker

⎛
⎜⎜⎝

λI − A −E
0 λI − S

Cy Dyw

Ce Dew

⎞
⎟⎟⎠ .

The last condition basically states that if an unstable eigenvalue is observable
from e then it must also be observable from y. This is obviously necessary
for output regulation since otherwise we cannot observe whether output reg-
ulation is achieved or not, and then we cannot find a measurement feedback
regulator either.

In the next two sections, we discuss in detail the solvability conditions for
the output regulation problems formulated here. Also, we construct appropri-
ate controllers that solve the posed output regulation problem whenever it is
solvable.

2.3 Exact output regulation with state feedback

Our primary goals in this section are twofold, (1) to establish the necessary
and sufficient conditions for the existence of a controller that solves the exact
output regulation problem with state feedback, and (2) to construct such a
controller whenever it exists. To this end, we have the following theorem.

Theorem 2.3.1 Consider the exact output regulation problem with state feed-
back as defined in Problem 2.2.1. Let Assumptions A.1 and A.2 hold. Then,
the considered problem is solvable if and only if there exist matrices 	 and 


which solve the following linear matrix equation (2.7) often called the regula-
tor equation,

	S = A	+ B
+ Ew, (2.7a)

0 =Ce	+Deu
+Dew. (2.7b)

Moreover, a suitable state feedback is then given by

u = Fx + (
 − F	)w (2.8)

where F is an arbitrary matrix such that A + B F is Hurwitz-stable for conti-
nuous-time systems and Schur-stable for discrete-time systems.
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Proof : We only prove this result for continuous-time systems. The proof for
discrete-time systems follows along the same lines with minor modifications.

First we prove the property that, under Assumptions A.1 and A.2, if there
exists a state feedback law u = Fx +Gw such that A+ B F is Hurwitz-stable,
then the error e(t) tends to zero as t tends to infinity if and only if there exists
a matrix 	 which solves the linear equation,

	S = (A + B F)	 + (Ew + BG), (2.9a)

0 = Ce	 + Deu(F	 + G) + Dew. (2.9b)

To show this property, we note that equation (2.9a) is a Sylvester equation (see
Appendix 2.A). By our assumptions, λ(A + B F) ∩ λ(S) = ∅ where λ(M)

denotes the spectrum of matrix M . Therefore, equation (2.9a) has a unique
solution 	. Consider now the coordinate transformation,

x̃ = x − 	w.

Then, using (2.4) and in view of 	 satisfying (2.9a), we obtain

ρ x̃ = (A + B F)x̃, (2.10)

and

e = (Ce + Deu F)x̃ + (Ce	 + Deu(F	 + G) + Dew)w.

Also, in view of (2.4) and (2.10), we get

x̃(t) = e(A+B F)t x̃(0), w(t) = eStw(0),

and therefore

e(t) = (Ce + Deu F)e(A+B F)t x̃(0)

+ (Ce	 + Deu(F	 + G) + Dew)eStw(0).

Since A + B F is Hurwitz-stable we note that e(t) → 0 as t → ∞, for every
(x(0), w(0)), if and only if

Ce	 + Deu(F	 + G) + Dew = 0.

This completes the proof of the property that the error e(t) tends to zero as t
tends to infinity if and only if there exists a matrix 	 which solves (2.9).

Now the necessity part of Theorem 2.3.1 is obvious from the above devel-
opment. Suppose a control law u = Fx + Gw exists solving the exact output
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regulation problem with state feedback. Then, as discussed above, equations
(2.9a) and (2.9b) must hold for some 	. Set


 = F	 + G,

and note that (2.9a) and (2.9b) reduce to (2.7a) and (2.7b) respectively.

The proof of the sufficiency part of Theorem 2.3.1 is constructive. By As-
sumption A.1, the pair (A, B) is stabilizable. Therefore, there exists a matrix
F such that A + B F is Hurwitz-stable. Suppose 	 and 
 are matrices which
satisfy (2.7a) and (2.7b), and consider the control law given in (2.8). We claim
that this control law solves the problem. Internal stability is guaranteed since
A + B F is Hurwitz-stable by the selection of F . Also, we note that the output
regulation occurs if F and G := 
 − F	 are such that (2.9a) and (2.9b) are
satisfied for some 	. But the choice of G is such that (2.9a) and (2.9b) are
identical to (2.7a) and (2.7b). Therefore we can conclude that the control law
given in (2.8) solves the exact output regulation problem with state feedback.

The construction described in the necessity part of the proof of Theorem
2.3.1 can be given a simple and expressive geometric interpretation. To this
end, we rewrite the dynamic equations of (2.4) in the form

ρxcl = Acl xcl

with

xcl =
(

x
w

)
, Acl =

(
A + B F Ew + BG

0 S

)
.

In the case of continuous-time systems, the (n + s)× (n + s) matrix Acl has n
eigenvalues in the open left half complex plane (the eigenvalues of A + B F)
and s eigenvalues in the closed right half complex plane (those of S). On the
other hand, in the case of discrete-time systems, the matrix Acl has n eigen-
values within the unit circle (the eigenvalues of A+ B F) and s eigenvalues on
or outside the unit circle (those of S). Let V− denote the invariant subspace
of Acl associated with its eigenvalues in the open left half complex plane for
continuous-time systems or its eigenvalues within the unit circle for discrete-
time systems. Let V+ denote the invariant subspace of Acl associated with the
rest of its eigenvalues.

It is immediate to realize that V− is spanned by the columns of the matrix

M− =
(

In

0

)
.
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In fact, the subspace spanned by the columns of M− is invariant under Acl and
the restriction of Acl to this subspace is precisely A + B F .

The subspace V+, being complementary to V− in R
n+s , will be spanned

by the columns of a matrix of the form,

M+ =
(

X
Is

)
, (2.11)

where X is a matrix of appropriate dimensions. It is easy to see that X coin-
cides with the solution 	 of (2.9a). In fact, to impose the condition that the
subspace spanned by the columns of M+ is invariant under Acl is equivalent
to the requirement that for each w ∈ R

s there exists a w̃ ∈ R
s satisfying(

A + B F Ew + BG
0 S

) (
X
Is

)
w =

(
X
Is

)
w̃.

By expanding the above, one obtains necessarily that

(A + B F)X + (Ew + BG) = X S. (2.12)

Equation (2.12) for X coincides with (2.9a) for 	. Thus the unique solution
	 of (2.9a) is such that the subspace spanned by the columns of (2.11) with
X = 	 is invariant under Acl . Moreover, (2.12) also shows that the restriction
of Acl to this invariant subspace is precisely S. Thus the columns of M+ span
the subspace V+.

In view of the above discussion, for the closed-loop system (2.4), equation
(2.9a) expresses the existence of an invariant subspace having the form,

V+ =
{(

x
w

)
∈ R

n+s

∣∣∣∣ x = 	w

}
, (2.13)

and the restriction of (2.4) reduces to

ρw = Sw.

On the other hand, the condition given in (2.9b) expresses the fact that the
error map e = Ce	x + (Deu(F	 + G) + Dew)w is zero at each point of this
invariant subspace V+.

From the above interpretation it is rather easy to deduce why output reg-
ulation occurs if and only if the unique solution 	 of (2.9a) satisfies (2.9b).
The necessity arises from the fact that if the initial condition of (2.4) is in
V+, the corresponding trajectory, which remains in V+ and is a copy of a
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trajectory of the exosystem, cannot converge to zero because the matrix S
is anti-Hurwitz-stable for continuous-time systems and anti-Schur-stable for
discrete-time systems. Thus, the only possibility of output regulation occur-
ring is when V+ is annihilated by the error map. The sufficiency derives from
the fact that all trajectories of (2.4) converge, as t tends to infinity, to V+ and
therefore produce an error which asymptotically decays to zero.

The above discussion leads us to a geometrical interpretation of the equa-
tions (2.7a) and (2.7b). We note that the equation (2.7a) expresses the fact
that the subspace V+ given in (2.13) is a controlled invariant subspace of the
system(

ρx
ρw

)
=

(
A Ew

0 S

)(
x
w

)
+

(
B
0

)
u,

that is, V+ is rendered invariant by an appropriate choice of a feedback con-
trol, in this case, given by

u = 
w.

Equation (2.7b), as we already observed, is equivalent to the fact that this
controlled invariant subspace is annihilated by the error map.

From the above it is also clear that


w(t) − u(t) → 0,

	w(t) − x(t) → 0

as t → ∞. In other words 
 and 	 have the interpretation as specifying the
asymptotic behavior of the input and the state respectively.

Design of a state feedback regulator:

For clarity, we now give a step by step design of a state feedback regulator.

Step 1 : Find a solution (	, 
) of the regulator equation (2.7).

Step 2 : Find a matrix F such that A + B F is Hurwitz-stable for continuous-
time systems and Schur-stable for discrete-time systems. Let G := 
 − F	,
and then finally construct the state feedback regulator u = Fx + (
 − F	)w

as given in (2.8).

2.4 Exact output regulation with measurement feed-
back

In the previous section, we considered the exact output regulation problem
for the case of state feedback. In this section, we consider the exact output
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regulation problem for the case of general measurement feedback. As in the
previous case, our primary goals here are two fold, (1) to establish the nec-
essary and sufficient conditions for the existence of a controller that solves
the exact output regulation problem with measurement feedback, and (2) to
construct such a controller whenever it exists.

We will establish the necessary and sufficient conditions for the existence
of a controller that solves the exact output regulation problem with measure-
ment feedback, and then construct such a controller. We first impose an addi-
tional assumption:

A.3. The pair (C̃, Ã) is detectable where

C̃ = (
Cy Dyw

)
, and Ã =

(
A Ew

0 S

)
. (2.14)

Note that this assumption implies that both Assumptions A.3a and A.3b are
satisfied. The general case without this additional assumption is discussed
after the following theorem. Again, for ease of presentation but without loss
of generality, we assume that Dyu = 0.

Theorem 2.4.1 Consider the problem of exact output regulation with mea-
surement feedback for the system (2.1) as defined in Problem 2.2.2. Let As-
sumptions A.1, A.2, and A.3 hold. Then, the considered problem is solvable if
and only if there exist matrices 	 and 
 which solve the regulator equation
(2.7). Moreover, a suitable measurement feedback controller is then given by(

ρ x̂
ρŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
u

+
(

K A

KS

)[(
Cy Dyw

) ( x̂
ŵ

)
− y

]
(2.15a)

u = (
F (
 − F	)

) ( x̂
ŵ

)
, (2.15b)

where F, KA, and KS are arbitrary matrices such that the matrices

A + B F and

(
A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)

are both Hurwitz-stable for continuous-time systems and Schur-stable for dis-
crete-time systems.
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Proof : As in the previous section, the proof is given for continuous-time
systems. The proof for discrete-time systems follows along the same lines
with minor modifications.

We first prove that a stabilizing measurement feedback law of the form
(2.5), i.e. a measurement feedback such that the matrix

(
A + B DcCy BCc

BcCy Ac

)
(2.16)

is Hurwitz-stable, has the property that the error e(t) tends to zero as t tends
to infinity if and only if there exist matrices 	 and � which solve the linear
equation,

	S = (A + B DcCy)	 + BCc� + (Ew + B Dc Dyw), (2.17a)

�S = Ac� + Bc(Cy	 + Dyw), (2.17b)

0 = Ce	 + Dew + Deu Dc(Cy	 + Dyw) + DeuCc�. (2.17c)

The two equations (2.17a) and (2.17b) together form the following Sylvester
equation,

(
	

�

)
S =

(
A + B DcCy BCc

BcCy Ac

)(
	

�

)
+

(
Ew + B Dc Dyw

Bc Dyw

)
. (2.18)

Assumption A.2 together with the fact that the matrix given in (2.16) is Hur-
witz-stable yields that the above Sylvester equation has a unique solution for
	 and �. We note that this solution is such that the columns of

M+ =
⎛
⎝	

�

Is

⎞
⎠

span the invariant subspace V+ of Acl associated with the eigenvalues in the
closed right half complex plane C

0 ∪ C
+, where

Acl =
⎛
⎝A + B DcCy BCc Ew + B Dc Dyw

BcCy Ac Bc Dyw

0 0 S

⎞
⎠ .

Consider now the coordinate transformation,

x̃ = x − 	w, ṽ = v − �w,
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and note that, in the new coordinates thus defined, the equations which de-
scribe the closed-loop system (2.6) assume the form,

ρ x̃ = (A + B DcCy)x̃ + BCcṽ

ρṽ = BcCyx̃ + Acṽ

ρw = Sw

e = (Ce + Deu DcCy)x̃ + DeuCcṽ

+(Ce	 + Dew + Deu Dc(Cy	 + Dyw) + DeuCc�)w.

Then, using the arguments identical to those used in the first part of the proof
of Theorem 2.3.1, it is easy to see that output regulation occurs, i.e. e(t) → 0
as t → ∞, for every (x̃(0), ṽ(0), w(0)), if and only if

Ce	 + Dew + Deu Dc(Cy	 + Dyw) + DeuCc� = 0.

Thus, output regulation occurs if and only if the unique solution 	,� of
(2.18) satisfies (2.17c).

In view of the above discussion, the necessity part of Theorem 2.4.1 is
obvious. Suppose a controller of the form (2.5) exists solving the exact output
regulation problem with measurement feedback. Then, as discussed above,
equations (2.17a), (2.17b), and (2.17c) must hold for some 	 and �. Set


 = Dc(Cy	 + Dyw) + Cc�,

and note that (2.17a) and (2.17c) reduce respectively to (2.7a) and (2.7b).

The proof of the sufficiency part of Theorem 2.4.1 is by the construction
of an appropriate controller having an observer based architecture. Assuming
the existence of a pair of matrices 	 and 
 that satisfy the regulator equation
(2.7), we first construct a control law that solves the exact output regulation
problem with state feedback. As discussed in Theorem 2.3.1, this can be
chosen as

u = Fx + (
 − F	)w,

where F is an arbitrary matrix such that A + B F is Hurwitz-stable. The
existence of such an F is implied by Assumption A.1.

Next, in order to estimate x and w, we construct an observer driven by the
measurement y. This observer has the form,

(
ρ x̂
ρŵ

)
=

(
A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)(
x̂
ŵ

)
−

(
KA

KS

)
y +

(
B
0

)
u,
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where the pair (KA, KS) is such that the matrix(
A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)

is Hurwitz-stable. The existence of such a pair (KA, KS) is implied by As-
sumption A.3. Finally, we define a measurement feedback controller as in
(2.15a) and (2.15b).

Now to prove the sufficiency part of Theorem 2.4.1, we note that the con-
troller given in (2.15) is of the form (2.5) with

Ac =
(

A + KACy + B F Ew + KA Dyw + B(
 − F	)

KSCy S + KS Dyw

)
,

Bc = −
(

KA

KS

)
, Cc = (

F 
 − F	
)
, and Dc = 0.

Thus the matrix(
A + B DcCy BCc

BcCy Ac

)

can be rewritten as⎛
⎝ A B F B(
 − F	)

−KACy A + KACy + B F Ew + KA Dyw + B(
 − F	)

−KSCy KSCy S + KS Dyw

⎞
⎠ .

A similarity transformation on the above matrix via

T =
⎛
⎝ I 0 0

−I I 0
0 0 I

⎞
⎠

yields⎛
⎝A + B F B F B(
 − F	)

0 A + KACy Ew + KA Dyw

0 KSCy S + KS Dyw

⎞
⎠ .

This matrix is block diagonal and the eigenvalues of the diagonal blocks are,
by construction, in C

−. Thus the closed-loop system comprising of the plant
and the controller is internally stable (as usual, for internal stability we disre-
gard the exosystem). Next, in order to prove that output regulation occurs, it
suffices to check that the pair 	 and � with

� =
(

	

I

)
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is a solution of the equations (2.17a), (2.17b), and (2.17c). Using that 	 and

 satisfy (2.7) this can be checked straightforwardly.

Remark 2.4.1 It is interesting to observe that under an additional Assump-
tion A.3, the conditions given in Theorem 2.3.1 to solve the exact output reg-
ulation problem with state feedback, also guarantee the solution of the exact
output regulation problem with measurement feedback.

Design of an observer based measurement feedback regulator:

For clarity, we now summarize the construction of an observer based mea-
surement feedback regulator for the case when Dyu = 0.

Step 1 : At first construct a state feedback regulator. That is, find the matrices
(	, 
) that solve the regulator equation (2.7), find a matrix F such that
A + B F is Hurwitz-stable for continuous-time systems and Schur-stable for
discrete-time systems, and let G := 
 − F	.

Step 2 : Design a full order observer so that we can implement the controller
with observer based architecture as given in (2.15). That is, find the matrix
gains KA and KS such that the matrix(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)

is Hurwitz-stable for continuous-time systems and Schur-stable for discrete-
time systems.

Step 3 : Implement the observer based measurement feedback regulator as
given in (2.15).

Remark 2.4.2 Measurement feedback output regulation as given in (2.15)
has a full order observer based architecture. It is easy to see from the proof
that one can also use reduced order observer based architecture for the con-
troller. We observe that a full order observer based measurement feedback
regulator is strictly proper, where as the reduced order observer based one is
proper.

Theorem 2.4.1 as well as the above development utilize the observer based
architecture to construct a measurement feedback regulator. In fact, one does
not have to resort to observer based architecture to construct measurement
feedback controllers that achieve output regulation. Indeed, under Assump-
tions A.1, A.2, and A.3, and whenever there exist matrices 	 and 
 which
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solve the regulator equation (2.7), any measurement feedback controller with
a desirable architecture (not necessarily observer based one) can be utilized to
construct a regulator. We give below a step by step procedure of constructing
such a regulator.

Design of a general measurement feedback regulator:

Again, without loss of generality, we assume here that Dyu = 0.

Step 1 : Consider the auxiliary system �̄ defined by

�̄ :
{

ρ x̄ = Āx̄ + B̄ū
ȳ = C̄y x̄ ,

(2.19)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, C̄y = (

Cy Dyw + Cy	
)
.

We note that the auxiliary system �̄ is constructed from the data of the given
system � and the exosystem �E respectively as in (2.1) and (2.2), and the
matrices 	 and 
 that solve the regulator equation (2.7).

Step 2 : Consider for �̄ a general class of measurement feedback controllers
with state space representation ( Āc, B̄c, C̄c, D̄c) and having any desirable ar-
chitecture. Let �̄C be given by

�̄C :
{

ρv̄ = Ācv̄ + B̄c ȳ
ū = C̄cv̄ + D̄c ȳ.

(2.20)

Design �̄C such that the closed-loop system comprising �̄ and �̄C is internally
stable.

Step 3 : Construct a controller �C having the structure,

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

ρv2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Cy	)v1),
(2.21)

where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄ =
(

C̄c,1

C̄c,2

)
and D̄ =

(
D̄c,1

D̄c,2

)
.

Then, it follows from Theorem 7.3.1 of Chapter 7 that the above controller
�C when applied to the given system � internally stabilizes it, and moreover
achieves output regulation as well.
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As discussed in Section 2.2, in order to solve the measurement feedback
output regulation problem, we need the Assumptions A.1, A.2, A.3a and A.3b.
However in Theorem 2.4.1, instead of A.3a, we used a stronger Assumption
than A.3a and A.3b, namely A.3.

To see that A.3 is stronger than A.3a, one can utilize the so called Hautus’
test for detectability. Hautus’ test states that a pair (Cy, A) is detectable if and
only if the matrix(

A − λI
Cy

)

has full column-rank for all λ in the closed right half plane for continuous-time
systems, or for all λ on or outside the unit circle for discrete-time systems.
Now, it is immediate to observe that if the pair (Cy, A) does not pass the
Hautus’ test for detectability, then necessarily also the pair (C̃, Ã) does not
pass such a test. This is because the matrix⎛

⎝A − λI Ew

0 S − λI
Cy Dyw

⎞
⎠

will then not have full column-rank for some λ in the closed right half plane
for continuous-time systems, or for some λ on or outside the unit circle for
discrete-time systems. As a consequence, Assumption A.3 implies A.3a. It is
also easy to see that A.3 implies A.3b.

At this time, it is natural to enquire why one needs the stronger Assump-
tion A.3 rather than A.3a and A.3b. After all the latter two assumptions are
necessary for output regulation while Assumption A.3 is not necessary. In
fact, one does not really need to replace A.3a and A.3b by A.3. However,
as it will become evident in a moment, Assumption A.3 is rather convenient,
has a natural motivation, and above all, as will be shown later, it does not in-
volve a loss of generality in solving the exact output regulation problem with
measurement feedback.

The motivation for using A.3 rather than A.3a and A.3b is simple. We al-
ready know, from Section 2.3, how to solve the exact output regulation prob-
lem by a control law of the form (2.8) which presupposes the availability of the
state x of the plant � and the state w of the exosystem �E. If the states x and
w are not available for measurement, then in order to implement the control
law (2.8), it is reasonable to expect that we need to be able to obtain at least an
asymptotic estimate of these states x and w from the available measurement y.
The needed assumption, under which one can obtain an asymptotic estimate



32 Chapter 2: Classical exact output regulation

of the states x and w from y, is indeed A.3. The reason why Assumption A.3
does not involve loss of generality is somewhat technical.

As it turns out, if A.3a and A.3b hold but not A.3, then it is always possible
to reduce the state space of the exosystem �E to that part which actually affects
the error; and the reduced exosystem thus obtained along with the given plant
satisfies the condition A.3. Clearly, without loss of generality, one can delete
the states that do not affect the error. To substantiate this discussion, we can
use the following proposition (see [16]).

Proposition 2.4.1 Suppose that Assumptions A.3a and A.3b hold but not As-
sumption A.3. Consider the augmented system

ρxa = Ãxa + B̃u
ya = C̃xa + D̃u

(2.22)

with Ã, B̃, C̃ and D̃ defined by

Ã =
(

A Ew

0 S

)
, B̃ =

(
B
0

)
,

C̃ =
(

Cy Dyw

Ce Dew

)
, D̃ =

(
Dyu

Deu

)
.

Then, there exists a coordinate transformation

x̃a = T axa

such that, in the new coordinates, Ã, B̃, and C̃ assume the form,

Ãa = T a Ã(T a)−1 =
(

A Ẽw

0 S̃

)
,

B̃a = T a B̃ =
(

B
0

)
,

C̃a = C̃(T a)−1 =
(

Cy D̃yw

Cy D̃ew

)
,

with S̃, Ẽw, D̃yw and D̃ew having a partitioned structure,

S̃ =
(

S11 0
S21 S22

)
, Ẽw = (

Ew,1 0
)
,

D̃yw = (
D̃yw,1 0

)
, D̃ew = (

D̃ew,1 0
)
.
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Moreover, S11, Ew,1, D̃yw,1, and D̃ew,1 are such that the pair(
Cy D̃yw,1

Ce D̃ew,1

)
,

(
A Ew,1

0 S11

)

is detectable.

Proof : As is well known, if the pair (C̃, Ã) is not detectable, by appropriately
changing the coordinates, one can transform this pair into a pair (C̃a, Ãa)

having the structure,

C̃a = (
C̃1 0

)
, Ãa =

(
A11 0
A21 A22

)
,

where the pair (C̃1, A11) is detectable. In the present situation, because of the
additional assumption that the pair (Cy, A) is detectable, one can choose the
transformation so as to obtain

A11 =
(

A Ew,1

0 S11

)
, A21 = (

0 S21
)
,

A22 = S22, C̃1 =
(

Cy D̃yw,1

Ce D̃ew,1

)
.

We can now use Proposition 2.4.1 to substantiate that the use of Assump-
tion A.3 instead of A.3a and A.3b is indeed without any loss of generality. To
do so, we consider a state variable transformation as(

x̃
w̃

)
= T a

(
x
w

)
,

where T a is as defined in Proposition 2.4.1. Also, consistent with the parti-
tioning indicated for S̃, Ẽw, and D̃yw, we partition w̃ into two parts as

w̃ =
(

w1

w2

)
. (2.23)

In the new coordinates x̃ and w̃, the original equations which describe the
plant are replaced by the equations of the form,

ρ x̃ = Ax̃ + Bu + Ew,1w1,

y = Cyx̃ + D̃yw,1w1,

e = C̃ex̃ + D̃ew,1w1 + Deuu,

(2.24)
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for some C̃e, while those describing the exosystem �E are replaced by the
equations of the form,

ρw1 = S11w1,

ρw2 = S21w1 + S22w2.

It is seen that only w1 affects x̃ and e, i.e. w2 does not play any role in the plant
equations as given in (2.24). Thus, solving the output regulation problem for
the original plant � and the given exosystem �E is equivalent to solving the
output regulation problem for the plant given in (2.24) where the exogenous
signal w1 is generated by the reduced exosystem,

ρw1 = S11w1. (2.25)

We finally note that for the plant (2.24) and exosystem (2.25), Assumption A.3
holds. It is obvious that the system is detectable from y and e. Assumption
A.3b then guarantees that the system is also detectable from y only.

Remark 2.4.3 There may be cases for which, in the notation of (2.23), the
component w1 of the state of the exosystem is vacuous. In these cases, since w

has no influence on e, the output regulation problem becomes a trivial problem
of finding a controller that internally stabilizes the plant.

2.5 Solvability conditions for the regulator equation

In the previous sections we saw that when S is anti-Hurwitz-stable for continu-
ous-time systems and anti-Schur-stable for discrete-time systems, and under
the stabilizability and detectability Assumptions A.1 and A.3, the necessary
and sufficient condition for the existence of a regulator with either a state feed-
back or a measurement feedback is the solvability of the regulator equation
(2.7). In this section we examine the solvability conditions for the regulator
equation. This discussion is based on the material in Appendix 2.A which
deals with the solvability conditions for general linear matrix equations.

Consider the regulator equation (2.7) which is rewritten here as

	S = A	+ B
+ Ew, (2.26a)

0 =Ce	+Deu
+Dew, (2.26b)

where, as seen earlier, A ∈ R
n×n , B ∈ R

n×m , Ew ∈ R
n×s , Ce ∈ R

q×n,
Deu ∈ R

q×m , Dew ∈ R
q×s , and S ∈ R

s×s . The above equation is of the form,

A1

(
	




)
− A2

(
	




)
S = R, (2.27)
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for

A1 =
(

A B
Ce Deu

)
, A2 =

(
I 0
0 0

)
and R = −

(
Ew

Dew

)
.

Thus, (2.27) is in the form of equation (2.48) of Appendix 2.A with A1, A2,
and R as given above while q1(λ) = 1 and q2(λ) = −λ.

We have the following corollary of Theorem 2.A.1 of Appendix 2.A re-
garding the universal solvability of (2.26). We remark that the terms universal
and individual solvability of an equation are defined in Appendix 2.A.

Corollary 2.5.1 The regulator equation (2.26) is universally solvable for 	

and 
 if and only if the matrix(
A − λI B

Ce Deu

)

has full row-rank for each λ which is an eigenvalue of S.

Proof : Note that in the notation of Theorem 2.A.1, A(λ) for the regulator
equation (2.26) is given by

A(λ) =
(

A B
Ce Deu

)
− λ

(
I 0
0 0

)
=

(
A − λI B

Ce Deu

)
.

The result is then an immediate consequence of Theorem 2.A.1.

Note that Theorem 2.A.1 also implies that if m = p and if the condi-
tions of Corollary 2.5.1 are satisfied then the solution 	 and 
 of (2.26) is
unique. The work of [22] also quite implicitly gives a general characterization
when the solution is unique. The following lemma states this result and gives
necessary and sufficient conditions under which the solution of the regulator
equation is unique. For the sake of completeness a proof is included.

Lemma 2.5.1 The regulator equation (2.26) has at most one solution 	 and

 if and only if the system (A, B, Ce, Deu) is left-invertible and its invariant
zeros are not eigenvalues of S.

Proof : Assume the conditions are not satisfied then(
A − λI B

Ce Deu

)
(2.28)
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does not have full-row rank for at least one eigenvalue λ of S. But then there
exists a left eigenvector v, with v a row vector, of S, i.e. we have vS = λS
and a vector (xT, uT)T in the kernel of the matrix in (2.28). But then it is easy
to check that

	0 = xv, 
0 = uv

satisfies

	0S = A	0 + B
0 and Ce	0 + Deu
0 = 0,

but then if 	 and 
 is a solution of the regulator equation then also 	 + 	0

and 
 + 
0 is a solution of the regulator equation, and hence the solution is
not unique.

Conversely, if the system (A, B, Ce, Deu) is square then uniqueness fol-
lows immediately from Theorem 2.A.1. If the system is not square, then we
have to do some work. Obviously it is sufficient to show that the only solution
of the set of equations

	S = A	 + B
 and Ce	 + Deu
 = 0 (2.29)

is zero. If the system is left-invertible then we can always find a suitable basis
for the state space and the output space such that with respect to this basis we
have,

A + KC =
(

A11 0
A21 A22

)
, B + K D =

(
0
B2

)
,

C =
(

C11 0
C21 C22

)
, D =

(
0

D2

)

with (A22, B2, C22, D2) square and invertible. The condition that no invariant
zero of (A, B, Ce, Deu) is an eigenvalue of S then implies that

• (C11, A11) has no unobservable eigenvalues which are eigenvalues of S.

• No invariant zero of (A22, B2, C22, D2) is an eigenvalue of S.

If we also decompose 	 in this new basis,

	 =
(

	1

	2

)
,

then (2.29) expressed in the new basis yields,

	1S = A	1, C11	1 = 0,
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and due to the fact that (C11, A11) has no unobservable eigenvalues which are
eigenvalues of S we find that 	1 = 0. Using this result we find the following
equations for 	2 and 


	2S = A22	2 + B2
 and C22	2 + D2
 = 0

but since the system (A22, B2, C22, D2) is square and its invariant zeros are
not eigenvalues of S, we find by applying Theorem 2.A.1 that 	2 = 0 and

 = 0.

Next we would like to examine the individual solvability of the regulator
equation (2.26). Before we do this, we first obtain a system �disc from the
following system,

� :
⎧⎨
⎩

ρx = Ax + Bu + Eww

ρw = Sw

e = Cex + Deuu + Deww,
(2.30)

which is the interconnection of the given plant � and the exosystem �E. The
system �disc is obtained from � by setting Ew = 0 and Dew = 0, and by
disconnecting the interconnections between the plant � and the exosystem
�E. Thus, �disc is given by

�disc :
⎧⎨
⎩

ρx = Ax + Bu
ρw = Sw

e = Cex + Deuu.
(2.31)

Let us also define two polynomial matrices P�(λ) and P� , disc(λ),

P�(λ) =
⎛
⎝λI − A −Ew −B

0 λI − S 0
Ce Dew −Deu

⎞
⎠ ,

P� , disc(λ) =
⎛
⎝λI − A 0 −B

0 λI − S 0
Ce 0 −Deu

⎞
⎠ .

Remark 2.5.1 We note that the matrix P�(λ) is the Rosenbrock’s system
matrix [54] for the interconnection of the given plant � and the exosystem
�E. Moreover, we observe that P� , disc(λ) is obtained from P�(λ) by setting
Ew = 0 and Dew = 0. That is, P� , disc(λ) is the Rosenbrock’s system matrix
for the system �disc given in (2.31).
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We now have the following corollary of Theorem 2.A.2 regarding the in-
dividual solvability of (2.26).

Corollary 2.5.2 The regulator equation (2.26) is individually solvable for 	

and 
 if and only if the polynomial matrices P�(λ) and P� , disc(λ) are uni-
modularly equivalent.

Proof : It follows from Theorem 2.A.2 that the regulator equation (2.26) has a
solution 	 and 
 for a given Deu , Ew, and Dew if and only if the polynomial
matrices P(λ) and Pdisc(λ) are unimodularly equivalent where

P(λ) =
⎛
⎝A − λI B −Ew

Ce 0 −Dew

0 0 λI − S

⎞
⎠ ,

Pdisc(λ) =
⎛
⎝A − λI B 0

Ce 0 0
0 0 λI − S

⎞
⎠ .

By row and column operations, we can now easily reduce P(λ) and Pdisc(λ)

to P�(λ) and P� , disc(λ). Hence the result.

With the help of the above discussion, we can now restate Theorem 2.4.1
as follows.

Theorem 2.5.1 Consider the problem of exact output regulation with mea-
surement feedback as defined in Problem 2.2.2. Let Assumptions A.1, A.2
and A.3 hold. Then, the considered problem is solvable if and only if the
given system �, given by (2.30), and the disconnected system �disc, given by
(2.31), have the same invariant polynomials. Moreover, a suitable measure-
ment feedback controller is given by (2.15a) and (2.15b) where F, KA, and
KS are arbitrary matrices such that the matrices

A + B F and

(
A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)

are both Hurwitz-stable for continuous-time systems and Schur-stable for dis-
crete-time systems.

Remark 2.5.2 Note that it is not sufficient in the above theorem that � given
by (2.30), and the disconnected system �disc, given by (2.31), have the same
invariant zeros. They also need to have the same invariant polynomials.
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Proof : It is known that two polynomial matrices are unimodularly equivalent
if and only if they have the same invariant polynomials (see Gantmacher [21,
section 6.5]). Then, the result follows from Theorem 2.4.1, Corollary 2.5.2,
and Remark 2.5.1.

The result of Theorems 2.4.1 and 2.5.1, under Assumptions A.1, A.2 and
A.3, describes a condition which is necessary and sufficient for the existence
of a solution to the exact output regulation problem with measurement feed-
back. From a different point of view, we may regard Assumptions A.1, A.2
and A.3 together with the condition that the regulator equation (2.26) is solv-
able, as a set of sufficient conditions for the existence of a solution to the
exact output regulation problem with measurement feedback. In the follow-
ing corollary, we provide a slightly different set of sufficient conditions which
might be easier to check.

Corollary 2.5.3 Consider the problem of exact output regulation with mea-
surement feedback as defined in Problem 2.2.2. Let Assumptions A.1, A.2,
A.3a and A.3b hold. Then, the considered problem is solvable if the matrix(

A − λI B
Ce Deu

)

has full row-rank for each λ which is an eigenvalue of S.

Proof : With the help of Proposition 2.4.1, we have seen that if Assumption
A.3a and A.3b hold but Assumption A.3 does not hold, without any loss of
generality, one can construct a reduced order exosystem such that Assumption
A.3 holds when that reduced order exosystem is used. Therefore, in view of
Theorems 2.4.1 and 2.5.1, in order to prove the corollary, it suffices to verify
that the regulator equation (2.26) is solvable; but this is obvious under the
hypotheses of this corollary and in view of Corollary 2.5.1.

2.6 The internal model principle

We would like to examine next the structure of a controller that solves the
exact output regulation problem with measurement feedback. It is well known
that the controller that solves the output regulation problem copies a part of the
dynamics of the exosystem. For instance, in the classical case treated in [16],
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where y = e, it is known that if a controller achieves exact output regulation,
then the controller must contain a copy of the exosystem. This is a celebrated
result, and is known as the internal model principle. Note that this result
appeared in [91] where it was connected to structural stability, the concept
that requires that output regulation should be preserved under arbitrarily small
perturbations of the plant parameters, which we will study in detail in Section
2.8.

Here we will consider whether we need a copy of the exosystem in the
controller to achieve output regulation independent of whether or not we have
structural stability. This result can be found in [16] but without proof. The
need of one or even more copies of the exosystem in the controller to guaran-
tee structural stability will be considered in the next Section 2.8.

We present below an extension of this classical result to the case where y
and e are not necessarily equal. A related result for the case that y and e are
different but in a frequency domain setting can be found in [50].

Theorem 2.6.1 Let Assumptions A.1, A.2, and A.3 hold. If the exact out-
put regulation problem via measurement feedback is solved by a certain con-
troller of the form (2.5) with a realization (Ac, Bc, Cc, Dc), then the regula-
tor equation (2.7) has a solution 	 and 
 such that the controller contains
a copy of the unobservable dynamics of the pair (Cy	 + Dyu
 + Dyw, S),
i.e. if there exists So and an injective matrix � such that S� = �So and
(Cy	 + Dyu
 + Dyw)� = 0, then there also exists �̄ injective such that
Ac�̄ = �̄So.

Proof : For ease of exposition we only prove this result for the case of Dyu =
0. The general result goes similarly but is much more technical.

Suppose that we have a controller of the form (2.5) with a realization
(Ac, Bc, Cc, Dc) that achieves output regulation. Then, it is easy to check that
e(t) tends to zero as t tends to infinity for all initial conditions if and only if
there exists 	,� satisfying the linear equation (2.17).

If we choose 
 = Cc� + Dc(Cy	 + Dyw), then it is obvious that we find
	 and 
 that satisfy the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.

For any eigenvector x of S with associated eigenvalue λ for which (Cy	 +
Dyw)x = 0, we obtain from (2.17b) that λ�x = �Sx = Ac�x , i.e. �x is
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an eigenvector of Ac. This shows that unobservable eigenvalues of (Cy	 +
Dyw, S) are also eigenvalues of Ac as soon as we have shown that �x �= 0.
The latter is easily seen by noting that the regulator equation (2.7) implies,
after a basis transformation, that the pair[(

Cy Cy	 + Dyw

)
,

(
A −B


0 S

)]

is detectable. This yields the required result if the matrix S is diagonalizable,
i.e. if the state space of the exosystem is spanned by the eigenvectors of S.

In order to prove the general case we define V to be the subspace spanned
by the eigenvectors of S which are unobservable with respect to Cy	 + Dyw.
We know that �|V is injective and that �V is an invariant subspace of Ac. By
choosing a suitable basis for the state space of the exosystem and for the state
space of the controller, we can bring the relevant matrices into the following
form:

S =
(

S1 S12

0 S22

)
, V = im

(
I
0

)
, � =

(−I �12

0 �22

)
,

Ac =
(

S1 Ac,12

0 Ac,22

)
, Bc =

(
Bc,1

Bc,2

)
, Cc = (

Cc,1 Cc,2
)
,


 = (

1 
2

)
, 	 = (

	1 	2
)
, Dyw = (−Cy	1 Dyw2

)
.

In the basis we have chosen we find that the following controller

ρv2 = Ac,22 v2 + Bc,2 y

ū =
(

Ac,12

Cc,2

)
v2 +

(
Bc,1

Dc

)
y

solves the output regulation problem for a new system given by

ρ x̄ =
(

A −B
1

0 S1

)
x̄ +

(
0 B
I 0

)
ū +

(−B
2

S12

)
w̄

ρw̄ = S22w̄

y = (
Cy 0

)
x̄ + (Cy	2 + Dyw2)w̄

e = (
Ce −Deu
1

)
x̄ + (

0 Deu

)
ū − Deu
2w̄.

which can be verified if we decompose the state space of the controller (v1, v2)

and the exosystem (w1, w2) accordingly and choose x̄1 = x − 	w, x̄2 =
v1 + w1 and w̄ = w2. Moreover, the above new system satisfies Assumptions
A.1, A.2, and A.3. Also, the regulator equation of the type (2.7) is solvable
for the new system. Therefore, we can use a similar argument as before.
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We define the space spanned by the unobservable eigenvectors of S22 and
prove that this part of the dynamics of the exosystem must be a part of the
controller. After a finitely many steps the exosystem is observable with respect
to y (given x̄). This then yields that the unobservable part was indeed copied
by the controller.

Trivially, if there is only one solution to (2.7) then the controller must
contain the unobservable dynamics associated with that unique solution.

Corollary 2.6.1 Let Assumptions A.1, A.2, and A.3a be satisfied. If there
exists a unique solution (	,
) of the regulator equation (2.7) and the output
regulation problem via measurement feedback is solved by a controller of the
form (2.5) with a realization (Ac, Bc, Cc, Dc), then this controller must contain
a copy of the unobservable dynamics of the pair (Cy	 + Dyu
 + Dyw, S),
i.e. if there exists So and an injective matrix � such that S� = �So and
(Cy	 + Dyu
 + Dyw)� = 0, then there also exists �̄ injective such that
Ac�̄ = �̄So.

Remark 2.6.1 We note that for an important subset of systems where the sub-
system characterized by (A, B, Ce, Deu) is left invertible and has no invariant
zeros which are eigenvalues of S, the solution of the regulator equation (2.7)
is unique. Hence in this case the above corollary can be applied.

In order to state the internal model principle for the case of non-unique
solutions to the regulator equation, we need to examine the unobservable dy-
namics of the pair (Cy	 + Dyu
 + Dyw, S) which obviously depends on 	

and 
. In general, the set of all (	,
) satisfying the regulator equation is
an affine set and the algebraic multiplicity of each unobservable eigenvalue
of the pair (Cy	 + Dyu
 + Dyw, S) is generically independent of the par-
ticular solution of the regulator equation, i.e. for an open and dense subset
R of all solutions the multiplicity is independent of the particular solution in
R. For non-generic points the algebraic multiplicity can only be higher. We
call solutions of the regulator equation in R generic solutions of the regulator
equation. We then have the following corollary.

Corollary 2.6.2 Let Assumptions A.1, A.2, and A.3a be satisfied. Let (	,
)

be a generic solution of the regulator equation (2.7). If the output regulation
problem via measurement feedback is solved by a certain controller of the
form (2.5) with a realization (Ac, Bc, Cc, Dc), then this controller has the prop-
erty that each unobservable eigenvalue of the pair (Cy	 + Dyu
 + Dyw, S)

is an eigenvalue of Ac with at least the same algebraic multiplicity.
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Proof : From Theorem 2.6.1 we know that there exist solutions 	 and 
 of
the regulator equation such that the controller contains a copy of the unobserv-
able dynamics of the pair (Cy	 + Dyu
 + Dyw, S). The associated algebraic
multiplicities are always higher than the algebraic multiplicities of the un-
observable dynamics of (Cy	 + Dyu
 + Dyw, S) associated with a generic
solution (	g, 
g) of the regulator equation.

Remark 2.6.2 To find a generic solution, we observe that a random choice
among all solutions will be generic with probability 1. Therefore, a reasonable
method is to randomly pick a number of solutions and look at the smallest
unobservable dynamics among the different solutions. The chance that there
is one solution for which the unobservable dynamics is too large is already 0,
so we can be quite certain that we did not pick only exception points.

Remark 2.6.3 (Error feedback and state feedback cases) We would like to
observe two special cases of Theorem 2.6.1; one special case corresponds to
the error feedback, i.e. y = e, and the other corresponds to state feedback, i.e.
both x and w are available for feedback. For the first case where y = e, we
have Ce = Cy, Deu = Dyu, and Dew = Dyw, and thus Cy	+ Dyu
 + Dyw =
0 by the definition of 	. Hence, in this case the controller must contain a
copy of the complete exosystem. For the second case of state feedback, it is
easy to check that the pair (Cy	 + Dyu
 + Dyw, S) is observable. Hence,
the controller does not need to copy any dynamics of the exosystem. In fact,
for this special case, as is shown in Theorem 2.3.1, a static state feedback
controller can achieve output regulation.

2.7 Well-posedness of the output regulation problem

In previous sections we considered output regulation problems with full in-
formation feedback, and with general measurement feedback. We showed
under which conditions such problems are solvable for the given system �.
Also, whenever such problems are solvable, we constructed appropriate con-
trollers. Basically, the existence of a solution to any output regulation problem
is equivalent to the existence of a solution to a special pair of linear matrix
equations called together as regulator equation. The solvability of the reg-
ulator equation depends on the data of the given system as specified by the
set of matrices (A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw) and the data of our
exosystem characterized by S. Our interest in this section is to study the so
called well-posedness of an output regulation problem for the given data. We
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note that a mathematical problem is called well-posed if it is solvable and
it remains solvable after a small perturbation or variation of the data of the
problem. Thus the purpose of this section is to examine how much our ability
of solving an output regulation problem is sensitive to variations of the pa-
rameters which characterize the model of the said controlled system and the
associated exosystem. In other words, we would like to examine here to what
extent the existence of a solution to the output regulation problem is influ-
enced by the unpredictable and ever present perturbations in the parameters
that define such a problem.

Let us next briefly discuss the nature of parameter variations in any given
system. As is well documented in the literature, in practical situations, the
equations that describe a given plant or system are always approximate for
a number of reasons. That is, the parameters of a given system �, namely
for our discussion the set of matrices (A, B, Ew, Ce, Deu , Dew, Cy , Dyu,
Dyw), are not exactly known. As such one assumes a set of nominal values
(A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0) for them. Similarly
the parameters of the matrix S are not exactly known and we also assume a
nominal value S0. In order to depict this situation, one can regard (A, B, Ew,
Ce, Deu , Dew, Cy , Dyu, Dyw, S) as an element of a space of parameters

P = R
n×n × R

n×m × R
n×s × R

q×n × R
q×m

× R
q×s × R

p×n × R
p×m × R

p×s × R
s×s .

Uncertainty in the values of the parameters, within known intervals around
certain nominal values, can be simply expressed by allowing the set (A, B,
Ew, Ce, Deu , Dew, Cy , Dyu, Dyw, S) to vary in some neighborhood P0 of a
nominal set (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in P .
Also, to emphasize that the parameters (A, B, Ew, Ce, Deu , Dew, Cy , Dyu,
Dyw, S) are known only with certain tolerances around the nominal values
(A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0), one can write the
equation

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) =
(A0 + δA, B0 + δB, Ew,0 + δEw, Ce,0 + δCe, Deu,0 + δDeu,

Dew,0 + δDew, Cy,0 + δCy, Dyu + δDyu, Dyw,0 + δDyw, S0 + δS0),

where the set (δA, δB, δEw, δCe, δDeu, δDew, δCy, δDyu, δDyw, δS) repre-
sents the variations of (A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) from the
nominal set (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0). In this
representation, we are assuming that all the parameters of the given plant or



Control of linear systems with regulation and input constraints 45

system are susceptible to variations. However, in a given situation because of
the physics of the plant or system, it may well be that the mathematical set of
parameters (A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) has a special structure
which causes these parameters to lie on a given hyper-surface in the parameter
space P . In our discussion, we would ignore this kind of special situation, i.e.
we always assume that all the parameters of the given system are susceptible
to variations. In fact, restricting the indeterminacy to only some, but not all,
parameters complicates the analysis, and indeed is not very useful.

In the literature, it is generally assumed that the exosystem characterized
by the matrix S is not subject to parameter variations. This is a reasonable
assumption when one recognizes that the exosystem is simply an artificial
device introduced to model the reference outputs as well as the disturbance
inputs affecting the system, and not a real object whose physical parameters
cannot exactly be determined. On the other hand, disturbances never behave
completely as expected and reference inputs will due to implementation dif-
ficulties never be completely equal to the modeled signal. We will show that
perturbations of S do not really affect well-posedness. This situation is very
different for structural stability as we will see in the next section.

Before we analyze the well-posedness of an output regulation problem,
we would like to consider the well-posedness of a set of linear equations. Let
X and Y be finite dimensional linear spaces and let A : X → Y be a linear
map and b ∈ Y. Consider the linear equation

Ax = b (2.32)

in the variable x . We say that equation (2.32) is well-posed at the nominal
parameter values (A0, b0) if there exists a neighborhood of (A0, b0) in the
parameter space such that (2.32) is solvable in this neighborhood. The fol-
lowing lemma characterizes the well-posedness of (2.32).

Lemma 2.7.1 Equation (2.32) in the variable x is well-posed at the nominal
parameter values (A0, b0) if and only if A0 is surjective.

Proof : If A0 is surjective, it will have a submatrix with non-zero determinant
of dimension equal to the number of rows. Since this determinant is a contin-
uous function of the entries of the matrix (in fact, a polynomial) it follows that
it will remain non-zero when the entries are perturbed a little bit. Hence A0

will remain surjective, after a small perturbation. Therefore, equation (2.32)
remains solvable for small perturbations of A0 and b0. Obviously, b0 can be
perturbed in an arbitrary way and not just locally.
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Conversely, if A0 is not surjective, im A0 is a proper subspace of Y. Also,
equation (2.32) is solvable if and only if b0 ∈ im A0. However, b0 cannot
be an interior point of im A0, since im A0 contains no interior points. Con-
sequently, an arbitrary small perturbation of b0 may take it out of im A0 and
hence destroys the solvability of (2.32).

We now proceed to examine the well-posedness of an output regulation
problem the precise meaning of which is given in the following definition.

Definition 2.7.1 (Well-posedness) For a system � as in (2.1), the exact output
regulation problem with state feedback or with measurement feedback as de-
fined respectively in Problems 2.2.1 and 2.2.2 is said to be well-posed at (A0,
B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if there exists a neigh-
borhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in
the parameter space P such that the considered problem is solvable for each
element (A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) of P0.

In studying the well-posedness of the exact output regulation problem
with either measurement feedback or state feedback, we note that Assump-
tions A.1, A.3 are invariant under small perturbations. Assumption A.2 is not
invariant to small perturbations. However, Assumption A.2 is needed to guar-
antee that the regulator problem is solvable only if the regulator equations are
solvable. If Assumptions A.1 and A.3 (but not necessarily Assumption A.2 are
satisfied then solvability of the regulator equation is always a sufficient con-
dition for solvability of the output regulation problem. Therefore, the output
regulation problem is well-posed (both in the case of measurement feedback
and in the case of state feedback) if and only if the regulator equation (2.7)
is solvable not only for the nominal parameters (A0, B0, Ew,0, Ce,0, Deu,0,
Dew,0, Cy,0, Dyu,0, Dyw,0, S0) but also for all the parameters (A, B, Ew, Ce,
Deu , Dew, Cy , Dyu, Dyw, S) sufficiently close to (A0, B0, Ew,0, Ce,0, Deu,0,
Dew,0, Cy,0, Dyu,0, Dyw,0, S0). In other words, the equation

	S − A	 − B
 = Ew, (2.33a)

Ce	 + Deu
 = −Dew, (2.33b)

with variables 	 and 
 should be well-posed at the nominal parameters (A0,
B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0). Now, from Lemma 2.7.1,
it follows that this is the case if and only if the linear map

L : (	,
) → (	S − A	 − B
, Ce	 + Deu
)
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is surjective at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0). In order
to check this condition, one can give a matrix representation of this map using
tensor products. However, utilizing the material in Appendix 2.A, one can
follow a different procedure, based on the general conditions on the solvability
of matrix equations. We conclude from this discussion that the well-posedness
of (2.33) is equivalent to the requirement that (2.33) be solvable for any Ew

and Dew at the nominal values of the parameters (A, B, Ce, Deu , S), i.e. when
they take the values (A0, B0, Ce,0, Deu,0, S0). In other words, we require the
universal solvability of (2.33) at (A0, B0, Ce,0, Deu,0) (see Appendix 2.A for
the definition of universal solvability). Now we can utilize the Corollary 2.5.1
to find the conditions for the well-posedness of the output regulation problem.
Since state feedback can be considered as a special case of the measurement
feedback, the following theorem formalizes the above discussion only for the
exact output regulation problem with measurement feedback.

Theorem 2.7.1 Consider a system � as in (2.1) and the exact output regu-
lation problem with measurement feedback as defined in Problem 2.2.2. Let
Assumptions A.1, A.2, A.3 hold, for the nominal values

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0).

Then the exact output regulation problem with measurement feedback for � is
well-posed at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if and
only if the matrix(

A0 − λI B0

Ce,0 Deu,0

)

has full row-rank for each λ which is an eigenvalue of S0.

Proof : To prove the sufficiency part of the theorem, we note that by continuity
there exists a neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0,
Dyu,0, Dyw,0, S0) such that, for each (A, B, Ew, Ce, Deu , Dew, Cy , Dyu, Dyw,
S) ∈ P0, (A, B) is stabilizable, and the matrix(

A − λI B
Ce Deu

)

has full row-rank for each λ that is not an eigenvalue of S. The later property
implies by Corollary 2.5.3 that the regulator equation (2.7) is solvable. There-
fore, by Theorem 2.4.1, the measurement feedback output regulation problem
is solvable for each (A, B, Ew, Ce, Deu , Dew, Cy , Dyu, Dyw, S) ∈ P0.
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To prove the necessity, we note that again by Corollary 2.5.3, if the con-
dition fails, the set of all (Ew, Dew) for which the linear equations,

	S = A0	 + B0
 + Ew,

0 = Ce,0	 + Deu,0
 + Dew,

are solvable, spans only a proper subspace of R
n×s × R

q×s . Thus, the exis-
tence condition expressed by Theorem 2.4.1 cannot be satisfied at each (A, B,
Ew, Ce, Deu , Dew, Cy , Dyu, Dyw,S) in a neighborhood P0 of (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0).

2.8 Structural stability of exact output regulation

The previous section considered the issue of well-posedness. Clearly, the
property of well-posedness by itself is not very useful from a practical point
of view. This is because, as our discussion in the previous section indicates,
the property of well-posedness guarantees merely the existence of a controller
that solves the exact output regulation problem in a neighborhood of the nom-
inal system. The design or construction of such a controller could very well
depend on the actual parameters. This implies that a redesigning of the con-
troller might be needed each time the parameter values change. This is very
unrealistic. To add to the difficulty, as discussed earlier, the actual parameter
values are seldom known in practice.

An interesting solution to the above predicament would be to seek a fixed
controller that solves the exact output regulation problem not only for the
nominal system but also for systems obtained by small perturbations of the
system parameters. Thus, even if the values of the system parameters drift but
are confined to the given neighborhood, the same controller always achieves
output regulation. In this sense, one fixed controller solves the exact output
regulation problem for a family of plants, i.e. the family of all plants whose
parameters range in a given neighborhood of the nominal point in a parameter
space. In the literature many different versions have been studied, see [14,
15, 18, 19, 51]. These papers do not use consistent definitions. They differ in
several ways:

• the choice of which system parameters are subject to perturbations,

• whether or not perturbations in the controller parameters are included,
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• whether or not the error signal is part of or equal to the complete mea-
surement signal.

A major issue is the exosystem. After almost any perturbations of the ma-
trix S, the closed-loop system will no longer achieve output regulation. This
is due to the fact that the system must have a zero from w to e at all fre-
quencies of the exosystem, i.e. for every eigenvalue of S. A system, unless
it achieves complete disturbance decoupling, will only have a finite number
of zeros. Therefore, any perturbation of S and its eigenvalues will result in
a closed-loop system which no longer achieves output regulation. This argu-
ment can also be made related to the internal model principle. After all since
the controller must generally copy all or part of the exosystem, a perturbation
of the exosystem without perturbing the controller will result in a lack of an
internal model and hence output regulation is no longer achieved. Therefore
in the literature, structural stability is always studied with perturbations of the
plant only.

Note that it is easy to see that if we allow for arbitrary perturbations on
Ce, Deu, Dew while the other system parameters remain fixed then we can
never find one controller that achieves output regulation for the perturbed sys-
tem. After all if the controller is designed to yield,

Cex + Deuu + Deww → 0 as t → ∞,

then we find that Cex + Deuu + (Dew + εI )w → 0 as t → ∞ only if w → 0
which is excluded by our basic Assumption A.2 and is any way a trivial case.
It will turn out that we need to restrict these changes to preserve a coupling
between the perturbations in Ce, Deu , Dew and Cy , Dyu , Dyw as given later on
in (2.36).

The fact that the property of output regulation cannot be preserved under
arbitrary perturbations of plant and exosystem parameters is actually not as
bad as it may seem. A more natural question would be to ask for continuity
with respect to parameter variations:

Given any nominal values for the system parameters (A0, B0,
Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) for which the
output regulation problem is solvable, find a controller such that
for each ε > 0 there exists a neighborhood P0 of (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in the parameter space
P such that the interconnection of the given controller with any
system with parameters (A, B, Ew, Ce, Deu , Dew, Cy , Dyu, Dyw,
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S) in P0 yields internal stability and

lim
t→∞ ‖e(t)‖ < ε.

This appears to be a more natural requirement which guarantees reason-
able performance in a neighborhood around the nominal plant and this is ac-
tually achieved by any controller that achieves output regulation. Obviously
additional requirements such as keeping ε small for a large neighborhood of
the nominal plant yield interesting problems which at the moment are still
unsolved.

We present here the output regulation problem with structural stability for
two reasons. One is historical; we want to clarify issues with respect to struc-
tural stability which are sometimes quite unclear in the literature. Secondly, it
yields a nice sufficient condition; obviously if we can achieve perfect tracking
in a neighborhood of the nominal plant with little effort then it is obviously a
nice property.

Before defining structural stability, we first state a fundamental structural
requirement on plant data which is needed for structural stability. This struc-
tural requirement was alluded to before and basically implies that the error
signal must be part of the measurements. In [19] the following result has been
shown.

Lemma 2.8.1 Consider a system � as in (2.1) with Deu = 0 and Dyu =
0. Let Assumption A.2 hold, i.e. let the matrix S be anti-Hurwitz-stable for
continuous-time systems and anti-Schur-stable for discrete-time systems. As-
sume that there exists a controller of the form (2.5) that achieves internal
stability, achieves output regulation and is such that output regulation is pre-
served for small perturbations of Ew. Then we must have

ker Ce ⊇ ker Cy.

If output regulation is preserved for small perturbations of Ew and Bc, then
we must have

ker
(
Ce Dew

) ⊇ ker
(
Cy Dyw

)
. (2.34)

In our case, where Deu and Dyu are present, the above result cannot be
applied but a similar result can be derived.

Lemma 2.8.2 Consider a system � as in (2.1). Let Assumption A.2 hold, i.e.
let the matrix S be anti-Hurwitz-stable for continuous-time systems and anti-
Schur-stable for discrete-time systems. Assume that there exists a controller of
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the form (2.5) that achieves internal stability, achieves output regulation and
is such that output regulation is preserved for small perturbations of Ew, Bc

and Cc. Moreover assume that the McMillan degree of the controller is larger
than m. Then we must have,

ker
(
Ce Deu Dew

) ⊇ ker
(
Cy Dyu Dyw

)
. (2.35)

Note that (2.35) implies that for a suitable choice of basis we have

y =
(

e
y1

)
.

In other words, essentially the error signal must be part of the measurements.
The only discomforting fact about these results is that they are based on per-
turbations of the controller and system parameters instead of only perturba-
tions of the system parameters. Of course, it is a nice property to be robust
against perturbations of controller parameters as well. However, perturbations
in controller parameters are strictly limited since the internal model principle
tells us that in general the controller must copy a specific part of the exosys-
tem and this is intrinsically not robust against perturbations in the controller.
Hence, as is done in [19], we can in a certain case allow for perturbations
of the controller input matrix Bc or even Cc as we did in our extension but it
is almost never possible to guarantee robustness with respect to the controller
state matrix Ac. But, as noted before, some additional structure in the problem
is needed since arbitrary perturbations of Ce, Deu, Dew, Cy, Dyu, Dyw will re-
move any possibility to achieve output regulation by one controller for all
perturbed systems in some neighborhood.

Based on the above discussion, in what follows, we will assume

Cy =
(

Ce

Cy2

)
, Dyu =

(
Deu

Dyu2

)
, Dyw =

(
Dew

Dyw2

)
. (2.36)

In other words, we assume that the error signal is a part of the measurement
signal and by perturbing Ce, Deu, Dew, Cy2, Dyu2, Dyw2 this property is pre-
served. This discussion leads to the following definition of a structurally stable
output regulation problem.

Definition 2.8.1 (Structurally Stable Output Regulation Problem) Consider
a system � as in (2.1) with the additional structure given in (2.36). A fixed
controller of the form given in (2.5) is said to solve a structurally stable output
regulation problem for � at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0,
Dyw2,0) if it satisfies the following properties:
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(i) The controller solves the exact output regulation problem with mea-
surement feedback as defined in Problem 2.2.2 when the plant in (2.1)
is characterized by the nominal set of parameters (A0, B0, Ew,0, Ce,0,
Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0).

(ii) There exist a neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0,
Cy2,0, Dyu2,0, Dyw2,0) such that the controller achieves internal stability
and output regulation for each set of perturbed plant parameters (A0 +
δA, B0 + δB, Ew,0 + δEw, Ce,0 + δCe, Deu,0 + δDeu, Dew,0 + δDew,
Cy2,0 + δCy2, Dyu2,0 + δDyu2, Dyw2,0 + δDyw2) in P0

The above definition obviously implies that, for the existence of a regu-
lator that solves the structurally stable output regulation problem, the exact
output regulation problem must necessarily be well-posed (with the obvious
modifications implied by (2.36) and the lack of perturbations in S).

As shown below, it turns out that the necessary and sufficient condition
given in Theorem 2.7.1 for the well-posedness of the exact output regulation
problem with measurement feedback is indeed also the necessary and suf-
ficient condition for the existence of a regulator that solves the structurally
stable output regulation problem.

Theorem 2.8.1 Consider a system � as in (2.1) with the structural constraint
(2.36) and the output regulation problem with measurement feedback as de-
fined in Problem 2.2.2. Let Assumptions A.1, A.2 and A.3 be satisfied.

Then, there exists a regulator that solves the structurally stable output
regulation problem for � at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0,

Dyw2,0) if and only if the matrix(
A0 − λI B0

Ce,0 Deu,0

)
(2.37)

has full row-rank for each λ which is an eigenvalue of S.

The proof of the necessity part is obvious from Theorem 2.7.1 (although
with some care since in well-posedness we perturbed the exosystem and in
structural stability we do not). Moreover, the sufficiency part is a direct con-
sequence of the following theorem:

Theorem 2.8.2 Consider a system � as in (2.1) with the structural constraint
(2.36) and the output regulation problem with measurement feedback as de-
fined in Problem 2.2.2. Let Assumptions A.1, A.2 and A.3 be satisfied.
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Assume the matrix (2.37) has full row-rank for each λ which is an eigen-
value of S. Then, there exists a regulator that solves the output regulation
problem for the nominal plant with parameters (A0, B0, Ew,0, Ce,0, Deu,0,

Dew,0, Cy2,0, Dyu2,0, Dyw2,0). Moreover, this controller achieves output regu-
lation for each set of perturbed plant parameters (A, B, Ew, Ce, Deu, Dew,

Cy2,0, Dyu2,0, Dyw2,0) for which the closed-loop system is internally stable.

Remark 2.8.1 The importance of the above theorem is obviously that, by de-
signing a controller which achieves robust stability for a large uncertainty set
and structural stability locally, we are guaranteed that the system will achieve
output regulation for any possible system perturbation in this large uncer-
tainty set. So we can not only achieve local structural stability but we also
obtain a methodology to achieve robust output regulation for systems subject
to a large uncertainty set. We will discuss this in more detail in Chapter 12.

Proof : The proof is by construction of an appropriate controller. A descrip-
tion of the construction is given in this section while a detailed proof is given
in Appendix 2.B.

Design of structurally stable measurement feedback regulators:

We will now describe how to find all controllers that achieve output reg-
ulation with structural stability. Note that this automatically implies that we
achieve output regulation for all system parameters which preserve internal
stability as considered in Theorem 2.8.2. Obviously we have to assume that
the conditions given in Theorem 2.8.1 are satisfied. The detailed construction
is divided into the following two parts:

(i) Given a plant and an exosystem as in (2.1) and (2.2), we apply a prelim-
inary static output feedback which guarantees that the system we obtain
has no poles in common with the exosystem.

(ii) We formulate an auxiliary output regulation problem with measurement
feedback based on the system obtained after the preliminary static out-
put feedback.

It will be shown that there actually exists a one-one correspondence be-
tween controllers which achieve output regulation for the auxiliary system
and controllers which achieve output regulation with structural stability for
the original system. Using this result it will also be shown that we always
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need q copies of the exosystem in the controller (where q is the dimension of
the error signal).

The first step is based on the following lemma which is proven in Ap-
pendix 2.B.

Lemma 2.8.3 Assume(
A0 − λI B0

Ce,0 Deu,0

)

has full-row rank for all eigenvalues λ of S. Then there exists a static prelim-
inary feedback u = Ne + ũ such that

Ā = A0 + B0N(I − Deu,0 N)−1Ce,0

has no eigenvalues in common with S.

We apply this preliminary feedback to the system (2.1) where we have the
additional structure of (2.36). Note that this preliminary feedback is possible
since e is part of the measurements y. Secondly, after we have proved exis-
tence of such a static preliminary feedback, it should be noted that any matrix
N with proper dimensions generically has the above property, so construction
of such an N is much easier than it might seem from the proof of the above
lemma. After we apply this preliminary static feedback to the nominal system
we obtain the following system

�̄ :
⎧⎨
⎩

ρx = Ā0x + B̄0ũ + Ēw,0w

y = C̄y,0x + D̄yu,0ũ + D̄yw,0w

e = C̄e,0x + D̄eu,0ũ + D̄ew,0w,
(2.38)

where

Ā0 = A0 + B0N(I − Deu,0N)−1Ce,0,

B̄0 = B0(I − N Deu,0)
−1,

Ēw,0 = Ew,0 + B0N(I − Deu,0 N)−1 Dew,0,

C̄e,0 = (I − Deu,0N)−1Ce,0,

D̄eu,0 = (I − Deu,0N)−1 Deu,0,

D̄ew,0 = (I − Deu,0N)−1 Dew,0,

C̄y,0 = Cy,0 + Dyu,0N(I − Deu,0 N)−1Ce,0,

D̄yu,0 = Dyu,0(I − N Deu,0)
−1,

D̄yw,0 = Dyw,0 + Dyu,0N(I − Deu,0N)−1 Dew,0.
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Note that perturbations of the above parameters are basically the same as per-
turbations of the original system (the shape of the neighborhood changes but
not the fact that the neighborhood is open). Therefore, achieving structural
stability for this new system is intrinsically the same problem as achieving
structural stability for the original system. The only thing to remember is that
the controllers are slightly different due to the preliminary feedback. Obvi-
ously we do have to take care that the perturbations preserve the structure in
(2.36). This basically means that for this new system the perturbed parameters
must satisfy,

C̄y =
(

C̄e

C̄y2

)
, D̄yu =

(
D̄eu

D̄yu2

)
, D̄yw =

(
D̄ew

D̄yw2

)
. (2.39)

The second step involves an extension of the exosystem. Let the plant
and the exosystem be given as in (2.1) and (2.2). Without loss of generality,
assume that the matrix S which characterizes the exosystem has already been
transformed into a block diagonal matrix of the form,

S =
(

S∗ 0
0 Smin

)
, (2.40)

in which S∗ is a certain matrix not of much concern to us, and Smin is a matrix
whose characteristic polynomial coincides with the minimal polynomial of S.
Moreover, Smin is a cyclic matrix, i.e. its characteristic and minimal polynomi-
als coincide. Note that Smin can be constructed out of S by taking in the Jordan
form for each eigenvalue one copy of the largest Jordan block associated with
that eigenvalue. The remaining Jordan blocks are dumped into S∗. Let the
integer s̃ be such that Smin ∈ R

s̃×s̃ .

With Smin as defined above, we define now an auxiliary exosystem as

ρw̃ = S̃pw̃ (2.41)

where w̃ ∈ R
ps̃ and S̃p is a block diagonal matrix given by

S̃p =

⎛
⎜⎜⎜⎜⎝

Smin 0 · · · 0

0 Smin

. . .
...

...
. . .

. . . 0
0 · · · 0 Smin

⎞
⎟⎟⎟⎟⎠ .

We note that the auxiliary exosystem given in (2.41) is composed of p iden-
tical copies of a constituent exosystem where p is the dimension of the mea-
surement signal y. We decompose S̃p as follows:

S̃p =
(

S̃q 0
0 S̃p−q

)
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where S̃i has the obvious interpretation as a block-diagonal matrix composed
of i identical copies of Smin and q is the dimension of the error signal.

We define an auxiliary system composed of the extended plant (2.1) and
the auxiliary exosystem (2.41),

�̃ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̃ = Ā0 x̃ + B̄0ũ
ρw̃ = S̃pw̃

y = C̄y,0x̃ + D̄yu,0ũ + D̃yww̃

e = C̄e,0x̃ + D̄eu,0ũ + D̃eww̃

(2.42)

and the matrix D̃ew and D̃yw are partitioned as

D̃yw =
(

D̃ew

D̃yw2

)
=

(
D̃ew1 0

0 D̃yw22

)

where

D̃ew1 = (
D̃ew1,1 D̃ew1,2 · · · D̃ew1,q

)
,

D̃yw22 = (
D̃yw22,1 D̃yw22,2 · · · D̃yw22,p−q

)
.

Here the matrices D̃ew1 and D̃yw22 are selected so that the pairs of matri-
ces (D̃ew1, S̃q) and (D̃yw22, S̃p−q) are detectable. Construction of D̃ew1 and
D̃yw22 is actually quite easy. Choose any row-vector R such that (R, Smin) is
detectable which is possible since Smin is cyclic. Then we can choose

D̃ew1,i = ei R, D̃yw22,i = fi R

where ei (i = 1, . . . , q) form a basis of R
q while fi (i = 1, . . . , p − q) form

a basis of R
p−q .

In Appendix 2.B it is shown that the auxiliary system (2.42) satisfies As-
sumptions A.1, A.2, and A.3 and the regulator equation for this auxiliary sys-
tem are solvable due to the assumption that (2.37) has full row-rank for each
λ which is an eigenvalue of S.

We now proceed with the construction of a regulator that achieves output
regulation for the auxiliary system. We follow the design procedure presented
on page 29. Let F be an arbitrary matrix such that A0 + B0F is Hurwitz-stable
for continuous-time systems and Schur-stable for discrete-time systems. Also,
let the pair (K̃A, K̃S) be such that the matrix(

Ā0 + K̃AC̄y,0 K̃A D̃yw

K̃SC̄y,0 S̃p + K̃S D̃yw

)
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is Hurwitz-stable for continuous-time systems and Schur-stable for discrete-
time systems. Then, using the solution 	 and 
 of

	S̃p = Ā0	 + B̄0
, (2.43a)

0 = C̄e,0	 + D̄eu,0
 + D̃ew, (2.43b)

we construct the following controller(
ρ x̂
ρŵ

)
=

(
Ā0 0
0 S̃q

)(
x̂
ŵ

)
+

(
B̄0

0

)

+
(

KA

KS

)[(
C̄y,0 D̃yw

) ( x̂
ŵ

)
+ D̄yu,0u − y

]
(2.44a)

ũ = (
F (
 − F	)

) ( x̂
ŵ

)
. (2.44b)

This controller then solves the output regulation problem for the auxiliary
system.

It is shown in Appendix 2.B that any controller of the form (2.5) which
solves the output regulation problem for the extended plant (2.42) and the
exosystem (2.41) solves the structurally stable output regulation problem for
the system (2.38) with exosystem (2.2).

Moreover, assume a controller of the form (2.5) is given and is character-
ized by (Ac, Bc, Cc, Dc) such that it achieves structurally stable output regu-
lation for the system (2.38). Since this system is obtained by a preliminary
feedback u = Ne + ũ, we obtain that a controller which achieves structurally
stable output regulation for the original system (2.1) is parameterized by

(Ac, Bc, Cc, Dc +
(

N
0

)
).

One consequence of this result is given in the following corollary. This is
an extension of an earlier result from [14] which considered the case y = w.

Corollary 2.8.1 Any controller which achieves structural stability for the sys-
tem (2.1) must contain at least q copies of the reduced exosystem

ρxe = Sminxe.

Proof : The results in this section show that a controller �̃c with parameters
(Ac, Bc, Cc, Dc) achieves structural stability for the auxiliary system (2.42) if
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and only if the controller �C with parameters

(Ac, Bc, Cc, Dc +
(

N
0

)
).

achieves output regulation for the original system �. By the internal model
principle the controller �̃c must contain a copy of the unobservable dynamics
of (C̄y,0	+ D̄yu,0
+ D̃yw, S̃p) where 	 and 
 satisfy (2.43). Since we know
that C̄e,0	 + D̄eu,0
 + D̃ew = 0, we obtain that the controller must contain
the unobservable dynamics of (C̄y2,0	+ D̄yu,0
+ D̃yw2, S̃p). However, since
C̄y2,0	 + D̄yu,0
 + D̃yw2 has only p − q rows and S̃p contains p identical
copies of a cyclic matrix which is anti-Hurwitz-stable for continuous-time
systems and anti-Schur-stable for discrete-time systems, we find that at least
q copies of Smin must be unobservable.

Remark 2.8.2 Corollary 2.8.1 really points out a bad property of structural
stability. In order to achieve structural stability, the existence conditions are
not that strong but one really has to blow up the dimension of the controller
to actually do it. In the paper [15] it was shown that (for the case y = e)
even if we only perturb A, B, Ce then we already need to have q copies of the
exosystem in the controller. Even in the case of tracking when we have the
tracking signal w available for measurement, in order to achieve structural
stability we need these multiple copies. This is why alternative setups such
as continuity with respect to parameter variations as briefly outlined in the
beginning of this section are of interest since these setups do not require these
multiple copies of the exosystem in the controller.

As already indicated, there are many different setups for structural stabil-
ity which often vary in precisely which parameters are subject to perturbation.
A general setup would be as depicted in Figure 2.3 on the facing page. We
basically want to preserve output regulation when we vary � over a particu-
lar set. If this set is very small and can perturb a large subset of the system
parameters then we are close in spirit with structural stability. But if the class
over which � varies is large and only affects a small subset of the parameters
then we are closer in spirit with robust control where one asks to guarantee
performance for a particular set of model uncertainty. For details we refer to
Chapter 12.
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Figure 2.3: Output regulation with model uncertainty
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2.A Linear matrix equations

In this appendix, we consider the solvability of certain linear matrix equations
encountered often. The equations are of the form,

k∑
i=1

Ai X Si = R, (2.45)

where Ai , Si , and R are given matrices and X is an unknown. Hautus [23,
24] presents a detailed discussion on such equations while recalling historical
origins of them. Our exposition here is an extract of [23, 24]. Equation (2.45)
is said to be universally solvable if it has a solution for every R; on the other
hand, it is said to be individually solvable if it has a solution for a particular
given R.

A well known example of (2.45) is what is known as Sylvester Equation,

AX − X S = R (2.46)

where A and S are square matrices. It is seen that (2.46) is in the form of
(2.45) with A1 = A, S1 = I , A2 = I , and S2 = −S. As proved in 1884
by Sylvester [82], equation (2.46) is universally solvable if and only if the
matrices A and S have no eigenvalues in common.

A result for the general equation (2.45), in the same spirit as that of the
Sylvester Equation, is not known. Thus, we restrict ourselves here to the case
where the matrices Si are of the form Si = qi (S) for certain given polynomials
qi and a fixed square matrix S. We recall the following result.

Theorem 2.A.1 Let Ai ∈ R
n×m, S ∈ R

s×s , and R ∈ R
n×s . Also, let qi (λ) be

polynomials for i = 1, · · · , k. Consider a matrix polynomial in the variable
λ,

A(λ) :=
k∑

i=1

Ai qi (λ). (2.47)

Then the equation

k∑
i=1

Ai Xqi (S) = R (2.48)

is universally solvable if and only if the matrix A(λ) has full row-rank for each
λ which is an eigenvalue of S. If this is the case and A(λ) is square, then the
solution X is unique.
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Theorem 2.A.2 Let Ai , S, R, and qi (λ) be as in Theorem 2.A.1. Then the
equation (2.48) is individually solvable if and only if the polynomial matrices(

A(λ) R
0 λI − S

)
and

(
A(λ) 0

0 λI − S

)

are unimodularly equivalent1 .

It is easy to see that the Sylvester equation (2.46) is a special case of
equation (2.48) for A1 = A, q1(λ) = 1, A2 = I , and q2(λ) = −λ. Thus,
A(λ) = A − λI for the Sylvester equation, and hence we can conclude from
Theorem 2.A.1 that the Sylvester equation has a solution for every R if and
only if the matrices A and S have no eigenvalues in common.

2.B The construction of a structurally stable regulator

We first present a proof of Lemma 2.8.3.

Proof of Lemma 2.8.3 : Obviously since Deu,0 is a wide matrix there exists
a small perturbation of Deu,0 say D̃eu,0 such that D̃eu,0 is surjective with a
right-inverse D̃R

eu,0 and such that

(
A0 − λI B0

Ce,0 D̃eu,0

)

has full-row rank for all eigenvalues λ of S. Then it is easy to check that
A0 − B0D̃R

eu,0Ce,0 has no eigenvalues in common with S. Let α < 1 be such

that A0 − αB0D̃R
eu,0Ce,0 also has no eigenvalues in common with S and such

that I − αDeu,0 D̃R
eu,0 is invertible. Then

N = −α(I − αDeu,0 D̃R
eu,0)

−1 D̃R
eu,0

has the desired property.

Our next observation is that, if all the assumptions of Theorem 2.8.1 hold,
the auxiliary system (2.42) satisfies Assumptions A.1, A.2, and A.3. In fact,
we obviously have that S̃ is anti-Hurwitz-stable for continuous-time systems

1Two polynomial matrices M(λ) and N(λ) are called unimodularly equivalent if there exist
unimodular polynomial matrices P(λ) and Q(λ) such that M(λ)P(λ) = Q(λ)N(λ).
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and anti-Schur-stable for discrete-time systems, and that the pair ( Ā0, B̄0) is
stabilizable. Moreover, the pair[(

C̄y,0 D̃yw

)( Ā0 0
0 S̃p

)]

is detectable since (C̄y,0, Ā0) and (D̃yw, S̃p) are detectable and Ā0 and S have
no eigenvalues in common. On the other hand, the regulator equation (2.7) for
the auxiliary output regulation problem with error feedback assumes the form
(2.43). Now, if we partition 	 and 
 as

	 = (
	1 	2 · · · 	p

)
and 
 = (


1 
2 · · · 
p

)
(2.49)

in conformity with the partitioning of S̃p, D̃ew, and D̃yw, we can rewrite
(2.43a) and (2.43b) into a set of p equations of the form,

	i Smin = Ā0	i + B̄0
i , (2.50a)

0 = C̄e,0	i + D̄eu,0
i + D̃ew1,i (2.50b)

where D̃ew1,i = 0 for i > q. The solvability of the above set of equations
is guaranteed by the hypothesis that the matrix in (2.37) has full row-rank for
each λ which is an eigenvalue of S (thus, in particular, an eigenvalue of Smin).
It is then obvious that a controller as constructed in Section 2.8 will achieve
output regulation for the auxiliary plant.

Our aim now is to show that any controller of the form (2.5) which solves
the output regulation problem for the extended plant (2.42) and the exosystem
(2.41) solves the structurally stable output regulation problem for the system
(2.38) with exosystem (2.2). For simplicity we assume from now on that
D̄eu = 0 and D̄yu = 0. The general result is equally valid but the formulae
get much more complex. Let nc be the order of the controller.

We first check that the controller (2.5) stabilizes the nominal plant. In fact,
the interconnection of the nominal plant (2.38) and the controller is equal to
the interconnection of the auxiliary plant (2.42) and the controller when w

and w̃ are set to zero. Thus, their stability properties are the same. Since the
controller stabilizes the auxiliary plant by construction, it does so as well for
the original nominal plant.

In order to check the controller (2.5) indeed solves the structurally stable
output regulation problem for the original plant, we need to show that the
error converges asymptotically to zero no matter how the plant parameters are
perturbed as long as the perturbation is such that the corresponding closed-
loop system is internally stable (as usual, for internal stability we disregard
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the exosystem). Note that S is not subject to perturbation and, by assumption,
the perturbations preserve (2.36).

In view of the proof of Theorem 2.4.1, we can conclude that the proposed
controller indeed solves the structurally stable output regulation problem for
the extended plant (2.38) if the equation,

	S = ( Ā + B̄ DcC̄y,0)	 + B̄Cc� + Ēw + B̄ Dc D̃yw, (2.51a)

�S = Ac� + Bc(C̄y	 + D̄yw), (2.51b)

0 = C̄e	 + D̄ew, (2.51c)

has a solution for each set of perturbed plant parameters ( Ā, B̄, Ēw, C̄e, D̄ew,
C̄y2, D̄yw2), with the known structure (2.39), for which the closed-loop system
is internally stable, i.e. when the matrix(

Ā + B̄ DcC̄y B̃C̃c

B̃cC̃e Ãc

)
(2.52)

is Hurwitz-stable for continuous-time systems and Schur-stable for discrete-
time systems. We note further that since the proposed output regulator sta-
bilizes the nominal plant, as discussed earlier, the set of perturbed plant pa-
rameters ( Ā, B̄, Ēw, C̄e, D̄ew, C̄y2, D̄yw2) for which the closed-loop system is
internally stable (as usual, for internal stability we disregard the exosystem)
is a subset of P having ( Ā0, B̄0, Ē0, C̄e,0, D̄ew,0, C̄y2,0, D̄yw2,0) as an interior
point.

Our goal is now to show that the set of equations given by (2.51) has a
solution. To do so, we recall that by hypothesis the matrix S which char-
acterizes the exosystem has all its eigenvalues in the closed-right half plane
for continuous-time systems, or on or outside the unit circle for discrete-time
systems. Therefore, for each set of perturbed plant parameters for which the
closed-loop system is internally stable (as usual, for internal stability we dis-
regard the exosystem), the Sylvester equation,(

Ā + B̄ DcC̄y B̄C̄c

BcC̄y Ac

)(
	

�

)
−

(
	

�

)
S =

(
X
Y

)
, (2.53)

is solvable for 	 and � whatever may be the values of X and Y are on the
right hand side. Choosing(

X
Y

)
=

(−Ēw − B̄ Dc D̄yw

−Bc D̄ew

)
,

we obtain the equations,

( Ā + B̄ DcC̄y)	 + B̄Cc� + Ēw + B̄ Dc D̄yw = 	S, (2.54)
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and

Ac� − �S = −Bc(C̄y	 + D̄yw). (2.55)

Equation (2.54) is exactly the same as (2.51a). If we prove that this 	, �

satisfy (2.51c), the proof that the proposed regulator indeed solves the struc-
turally stable output regulation problem follows obviously. So, our effort now
is to prove this implication. With this goal in mind, we define the following
two linear mappings:

A : R
(nc+p−q)×s → R

nc×s

: � �→ A(�, V ) = Ac� − �S + Bc,2V ,

B : R
q×s → R

nc×s

: Z �→ B(Z) = Bc,1 Z

where nc is the order of the controller and Bc is partitioned conformably with
the partition of y into e and y1,

Bc y = Bc

(
e
y1

)
= Bc,1e + Bc,2 y1.

With this notation, equation (2.55) can be rewritten as

A(�, Cy2	 + Dyw2) = −B(Ce	 + Dew). (2.56)

Now, suppose we can prove that the images of A and B intersect at {0}. Then,
(2.56) would imply that

A(�, Cy2	 + Dyw2) = 0, (2.57)

B(C̃e	 + Dew) = 0. (2.58)

If we can also show that ker B = {0}, we can deduce the remaining equation
(2.51c).

In summary, the above discussion shows that the proposed regulator in-
deed solves the structurally stable output regulation problem if we can prove
that the mappings A and B satisfy the properties,

im A ∩ im B = {0}, (2.59)

ker B = {0}. (2.60)

In order to prove the above properties we first need a preliminary lemma.
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Lemma 2.B.1 Let S and Smin be as given in (2.40). Then there exist s inde-
pendent solutions of the linear matrix equation,

Smin X = X S. (2.61)

Proof : If S has a basis of eigenvectors then this property is straightforward.
Let {v1, . . . , vs} be independent left-eigenvectors with corresponding eigen-
values {λ1, λ2, . . . , λs}. Then because of the fact that Smin is cyclic and the
fact the minimal polynomials of Smin and S are equal, we find that there ex-
ist unique right eigenvectors {u1, . . . , us} with eigenvalues {λ1, λ2, . . . , λs}.
Note that the set {u1, . . . , us} is in general not independent. Then the ma-
trices Xi = uivi satisfy (2.61). Moreover, since the eigenvectors of S are
independent, the matrices Xi are independent and we have found precisely s
independent solutions.

Assume S does not have a full basis of eigenvectors then it does have a
basis of generalized eigenvectors. Assume vi1 , . . . , vi j are j generalized left-
eigenvectors of S belonging to the same Jordan block, or in other words

vik S = λvik + vik−1

for k > 1 and

vi1 S = λvik .

Due to construction of Smin and S, there exist a unique set of generalized eigen-
vectors ui1 , . . . , ui j of Smin such that

Sminuik = λuik + uik−1

for k > 1 and

Sminvi1 = λvik .

But then Xk = vik ui1 + vi1 uik satisfies (2.61) for k = 1, . . . , j and are obvi-
ously independent. Since we can repeat this argument for each Jordan block
we obtain s independent solutions.

In order to prove the properties (2.59) and (2.60) the following result plays
a central role.

Lemma 2.B.2 There exist at least ps independent solutions � of the equation

A(�, V ) = 0. (2.62)
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Proof : The fact that a controller achieves output regulation for the auxiliary
system (2.42) implies that there exist solutions 	̃ and �̃ of the set of equa-
tions,

	̃S̃p = Ā0	̃ + B̄0Cc�̃ + B̄0Dc(C̄y,0	̃ + D̃yw), (2.63a)

�̃S̃p = Ac�̃ + Bc,2(C̄y,0	̃ + D̃yw), (2.63b)

0 = C̄e,0	̃ + D̃ew. (2.63c)

By Lemma 2.B.1 there exist s independent solutions Li (i = 1, . . . , s) such
that

SminLi = Li S.

Let M j ( j = 1, . . . , p) be the projection on the j ’th copy of Smin in S̃p, i.e.,

M j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0s̃
...

0s̃

Is̃

0s̃
...

0s̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Is̃ and 0s̃ are the s̃ × s̃ identity and zero matrix respectively and the
identity matrix is at the j ’th spot. Note that S̃p M j Li = M j Li S. Then it is
easy to check that we have

A
(
�̃M j Li , (C̄y2,0	̃ + Dyw2,0)M j Li

)
= 0.

In other words we have found ps elements in the kernel of A. What remains
to be shown is that these elements are independent. Assume

r∑
i=1

s∑
j=1

αi j �̃M j Li = 0,

r∑
i=1

s∑
j=1

αi j (C̄y2,0	̃ + Dyw2,0)M j Li = 0. (2.64)

Then from equations (2.63a) and (2.63c) and the fact that Ā0 and S have no
eigenvalues in common, we get that

r∑
i=1

s∑
j=1

αi j 	̃M j Li = 0,
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but then we find from (2.63c) and (2.64) that

V =
r∑

i=1

s̃∑
j=1

αi j M j Li = 0

satisfies D̃ywV = 0 and S̃pV = V S which yields a contradiction with the
detectability of (D̃yw, S̃q) unless V = 0. The latter implies αi j = 0 for all i
and j which yields the required independence.

With the aid of Lemma 2.B.2, we proceed now to prove (2.59) and (2.60).
We observe that the existence of ps independent solutions of (2.62) shows that
the dimension of ker A is at least ps. Since A maps R

(nc+p−q)×s into R
nc×s ,

we deduce that

dim im A � (nc − q)s. (2.65)

where dim indicates the dimension. Moreover,

dim im B � qs, (2.66)

because the dimension of the image of a linear mapping cannot exceed that of
its domain (in this case qs).

Returning to (2.53), we use any arbitrary X and Y , denote the correspond-
ing solution by 	 and �, and note that by construction

BcC̄y	 + Ac� − �S = Y.

That is,

B(C̄e	) + A(�, C̄y2	) = Y.

Because of the arbitrariness of Y , this relation shows that

im A + im B = R
nc×s .

This, together with (2.65) and (2.66), yields

dim im A = (nc − q)s,

dim im B = qs.

These relations prove that (2.59) and (2.60) are true and therefore the con-
troller with parameters (Ac, Bc, Cc, Dc) achieves structurally stable output reg-
ulation for the system (2.38).
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We still would like to show that a controller which achieves structurally
stable output regulation for system (2.38) achieves output regulation for the
system (2.42). Because then we know a controller achieves structurally stable
output regulation if and only if it achieves output regulation for the auxiliary
system (2.42).

In order to see this property we will only perturb the matrices Ēw,0, D̄ew,0

and D̄yw2,0. Note that structurally stability requires that we achieve output
regulation for Ēw = Ēw,0, D̄ew = D̄ew,0 and D̄yw2,0 = D̄yw2,0 and also for
Ēw = Ēw,0, D̄ew = D̄ew,0 + εU and D̄yw2,0 = D̄yw2,0 + εV . Linearity of
the system dynamics then guarantees that we also achieve output regulation
for Ēw = 0, D̄ew = U and D̄yw2,0 = V . In other words we achieve output
regulation for arbitrary matrices D̄ew and D̄yw2,0. Next note that if we achieve
output regulation for Ēw = 0, D̄ew = U1 and D̄yw2,0 = V1 and also for
Ēw = 0, D̄ew = U2 and D̄yw2,0 = V2 then we must also achieve output
regulation for

Ēw = 0, D̄ew = (
U1 U2

)
and D̄yw2,0 = (

V1 V2
)

with a new exosystem

ρw̃ =
(

S 0
0 S

)
w̃.

Using these arguments it is easy to see that a controller that achieves struc-
turally stable output regulation for the original system must achieve output
regulation for the extended system (2.42).



Chapter 3

Classical output regulation with
actuators subject to amplitude
saturation – continuous-time
systems

3.1 Introduction

Chapter 2 considers exact output regulation for linear systems. As defined
there, solving an output regulation problem involves constructing an appro-
priate state or measurement feedback controller that renders the closed-loop
system internally stable (as usual, for internal stability we disregard the ex-
osystem) while the tracking error tends to zero as the time t tends to infinity.
In this chapter, we revisit the output regulation problem however for linear
continuous-time systems with actuators subject to amplitude saturation.

Since 1990 there has been a great deal of renewed interest in the study of
linear systems subject to input saturation, probably due to a wide recognition
of the inherent constraints on actuators. Since output regulation inherently
requires internal stabilization, let us first briefly review internal stabilization
of such systems. A crucial result on the subject of internal stabilization of lin-
ear continuous-time systems subject to input amplitude saturation appeared
in [68] where it was established that such systems can be globally asymp-
totically stabilized if and only if the system in the absence of saturation is
asymptotically null controllable with bounded controls1. Another crucial re-
sult related to the stabilization problem is that, in general, linear feedback
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control laws cannot be used for the purpose of global asymptotic stabilization
of linear systems subject to input saturation. This “negative result" was first
pointed out in [20] and elaborated on in [81]. A particular non-linear feedback
law using multiple saturation functions for the global asymptotic stabilization
of such systems was initiated in [84] and completed in [80]. In response to
the above “negative result”, the semi-global view-point for stabilization of
asymptotically null controllable (with bounded controls) systems subject to
input amplitude saturation was proposed in [35–38]. In [36], it was shown
that one can semi-globally exponentially stabilize a linear system subject to
input amplitude saturation using linear feedback laws if and only if the system
is asymptotically null controllable with bounded controls. In other words, the
basin of attraction of a linear system subject to input amplitude saturation can
be made arbitrarily large using appropriately tuned linear feedback laws if the
system is asymptotically null controllable with bounded controls.

In this chapter, for continuous-time systems, our focus will be on the semi-
global output regulation problem for linear asymptotically null controllable
(with bounded controls) systems subject to input amplitude saturation. We
will consider both state feedback and measurement feedback controllers. The
rationale behind the adoption of a semi-global framework for output regula-
tion problem is two-fold. Firstly, the semi-global framework allows us to use
linear feedback laws, which is obviously very appealing; and secondly, the
semi-global framework seems to be a natural choice when the global output
regulation problem, in general, does not have a solution. Hence, we extend
here the output regulation theory for linear systems without input amplitude
saturation developed in Chapter 2 to the class of linear systems subject to
input amplitude saturation which are asymptotically null controllable with
bounded controls. More specifically, we first provide a set of solvability con-
ditions for semi-global output regulation of such systems, and then we show
that our solvability conditions are also necessary for a fairly general class
of systems. We also show that, under certain weak assumptions, we cannot
weaken these solvability conditions by using non-linear feedback controllers.
However, when these assumptions are not satisfied, an example shows that a
non-linear feedback controller can achieve output regulation when no linear
feedback controller can do so. This chapter is based on the research of authors
and their coworkers, in particular [33] and [42].

A point that should be emphasized is this. As will be shown, under certain
solvability conditions, linear feedback controllers can be developed to solve

1A linear continuous-time system is asymptotically null controllable with bounded controls
if and only if it is stabilizable and all the poles of the open-loop system are in the closed left-half
plane.
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the posed semi-global regulation problems by using what is called a low-gain
design technique. Since low-gain controllers under utilize the available con-
trol capacity, often one finds that the convergence of the error signal to zero
as time progresses to infinity is rather slow. In these cases, under the same
solvability conditions, one could develop an improved technique called low-
high-gain design method. Such a design method utilizes the available control
capacity in a better way, and thus results in a better performance. It is worth
noting that, unlike for discrete-time systems that are to be discussed in the next
chapter, the feedback controllers that are developed by the improved design
technique remain linear.

3.2 Classical global output regulation for linear sys-
tems subject to input amplitude saturation

As we said above, our primary focus here is the output regulation of linear
systems subject to amplitude saturation. Thus we start by redefining the clas-
sical output regulation problem. To do so, we consider a time-invariant mul-
tivariable continuous-time system with inputs that are subject to amplitude
saturation together with a time-invariant exosystem that generates disturbance
and reference signals. That is, consider the system,

ẋ = Ax + Bσ (u) + Eww

ẇ = Sw

y = Cyx + Dyww

e = Cex + Deuσ (u) + Deww,

(3.1)

where, as usual, x ∈ R
n, w ∈ R

s , u ∈ R
m , y ∈ R

p, e ∈ R
q , and σ is a

vector-valued saturation function defined as

σ (s) = [σ̄ (s1), σ̄ (s2), · · · , σ̄ (sm)]T (3.2)

with

σ̄ (s) =

⎧⎪⎨
⎪⎩

s if |s| ≤ 1

−1 if s < −1

1 if s > 1.

(3.3)

Because of the presence of the saturation function σ , the system (3.1) is non-
linear. Note that we can also treat different saturation levels, even differences
between channels, by simple scaling. Compared to the system (2.1) as used in
Chapter 2, there is, beside the saturation, one more difference. The matrix Dyu
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equals 0 (compared with (2.1)). For control purposes this matrix can be easily
handled and it does not affect any of our solvability conditions. However, it
makes the formulae much more complex and therefore we opted to go for the
simple case with Dyu = 0.

Before we proceed further, we recall the following assumptions which
have already been defined earlier on pages 19 and 25.

A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable, i.e. all the eigenvalues of S have
non-negative real parts.

A.3. The pair

((
Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

The global output regulation problem for a non-linear system of the type
(3.1) is similar to the one in Chapter 2. However, one must specify the type
of internal stability requirement in the problem formulation. We first choose
a natural choice of global internal stability requirement which requires the
domain of attraction of the closed loop system while disconnected from the
exosystem to be the whole space.

Problem 3.2.1 (Global state feedback output regulation problem for linear
continuous-time systems subject to input amplitude saturation) For a system
� as given in (3.1), find, if possible, a feedback law u = α(x, w) such that
the following conditions hold:

(i) (Internal Stability) The equilibrium point x = 0 of

ẋ = Ax + Bσ (α(x, 0))

is globally asymptotically stable and locally exponentially stable.

(ii) (Output Regulation) For all x(0) ∈ R
n and w(0) ∈ R

s , the solution of
the closed-loop system satisfies

lim
t→∞ e(t) = 0.

Problem 3.2.2 (Global measurement feedback output regulation problem
for linear continuous-time systems subject to input amplitude saturation)
For a system � as given in (3.1), find, if possible, a dynamic feedback law
u = θ(z), ż = η(z, y) where v ∈ R

nc such that the following conditions hold:
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(i) (Internal Stability) The equilibrium point (x, z) = (0, 0) of

ẋ = Ax + Bσ (θ(z))
ż = η(z, Cy x)

is globally asymptotically stable and locally exponentially stable.

(ii) (Output Regulation) For all x(0) ∈ R
n, z(0) ∈ R

nc , and w(0) ∈ R
s ,

the solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0.

Remark 3.2.1 A set of sufficient conditions for the above problem, obviously,
include the necessary and sufficient conditions for global stabilization of the
plant in the presence of input amplitude saturation as established by [68], i.e.,
(A, B) is stabilizable and all the eigenvalues of A are in the closed left half
plane.

Global output regulation, as defined above, was first formulated by Teel
in [83] and is clearly a very desirable property. Unfortunately it turns out that
only in very special circumstances one can achieve global output regulation.
This can be seen by the following lemma.

Lemma 3.2.1 Consider a system � as given in (3.1). Let Assumptions A.1,
A.2 and A.3 hold. Also, assume that the eigenvalues of A are in the closed left
half plane. Moreover, assume that at least one unstable pole of the exosystem
is observable from the error signal. Then there exist initial conditions w0 for
w such that there exists no input u or initial condition x(0) for which the
system � satisfies limt→∞ e(t) = 0.

Proof : We first study the system (3.1) when rewritten in the form,

ẋ = Ax + Bv + Eww

ẇ = Sw

y = Cyx + Dyww

e = Cex + Deuv + Deww,

(3.4)

where v denotes an input signal considered bounded.

Let w0 with ‖w0‖ = 1 be an eigenvector of S belonging to an eigenvalue
λ of S which is detectable from e. Suppose λ is an eigenvalue with strictly
positive real part. Then we can decompose e into three components; one due
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to a possibly non-zero initial condition x0, another due to the bounded input
v, and the third one due to the initial condition w0. The first two can only
grow polynomially in time since all the eigenvalues of A are in the closed
left half plane and since the input signal v is considered to be bounded. On
the other hand the effect of w0 will, owing to the detectability assumption,
grow exponentially in time. Therefore e will also grow exponentially in time
and hence we cannot achieve output regulation without imposing additional
conditions.

If an eigenvalue λ of S does not have a strictly positive real part then, by
Assumption A.2, it must lie on the imaginary axis. In that case, w will be
periodic and bounded since w(t) = eλtw0. To analyze this situation further,
we next consider the minimal amplitude of an input signal which achieves
tracking, and then minimize it over all possible initial conditions of the plant.
That is, we consider

J(w0) := inf
v,x0

{ ‖v‖∞ | v is such that lim
t→∞ e(t) = 0

where x(0) = x0 and w(0) = w0 }.
Suppose J(w0) = 0. We take a minimizing sequence {vi , x0,i} for the above
optimization problem. For each vi there exists a Ti such that ‖e(Ti +t)‖ < 1/ i
for all t > 0 and w(Ti) = w0 (note that w is periodic). Define

v̄i (t) := vi(Ti + t).

Then ‖v̄i‖∞ � ‖vi‖∞ → 0 as i → ∞. The output ēi resulting from input v̄i

and initial conditions

x̄(0) = x̄0,i := x(Ti ),

and w̄(0) = w0 satisfies ‖ēi‖∞ < 1/ i . The latter is straightforward since
ēi (t) = e(Ti + t). We then pick any T > 0. On [0, T ] the input v̄i converges
in L∞ norm to 0. Similarly ēi converges to 0 uniformly on [0, T ].

Define f : R
n → L∞[0, T ] by [ f (z)](t) = CeeAt z. We can check that

g ∈ L∞[0, t] is in the closure of the image of f , where

g(t) :=
∫ t

0
CeeA(t−τ )Eww(τ)dτ + Deww(t).

Since f is a finite rank operator we know that the image is closed and hence
g is in the image of f , i.e. there exists an x̃0 such that f (x̃0) = −g. We find
that for t ∈ [0, T ]

(
Ce Dew

)
exp

[(
A Ew

0 S

)
t

](
x̃0

w0

)
= 0. (3.5)
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This immediately implies that (3.5) holds for all t . However, this contra-
dicts the fact that the eigenvalue λ was observable from e. Therefore we have
J(w0) > 0. Hence we find that for w(0) = 2w0/J(w0) any input v which
achieves output regulation satisfies ‖v‖∞ � 2. Therefore v = σ (u) will never
be able to achieve output regulation, i.e. no input u to (3.1) exists for which
e(t) → 0 as t → ∞.

The above involves complex inputs. By working with either the real or
complex part of the signals at a time we can avoid this technical problem.

Remark 3.2.2 As argued before, the Assumptions A.1, A.2, A.3, and the as-
sumption that the eigenvalues of A are in the closed left half plane are basi-
cally necessary. Therefore the above lemma tells us that we can only achieve
global output regulation if the open-loop system already achieves output reg-
ulation and the controller only needs to achieve stability without losing the
property of output regulation. This is a very exceptional case and therefore,
for all practical purposes, global output regulation is not possible when we
have input saturation.

Note that the classical case y = e implies that Assumptions A.2 and A.3
guarantee that all poles of the exosystem should be observable from e and
therefore global output regulation is not possible.

3.3 Classical semi-global output regulation for linear
systems subject to input amplitude saturation

Since in general global output regulation problems for a system of the type
(3.1) are not solvable, one basic question that arises is what type of initial
conditions of exosystem and plant should be considered realistically for out-
put regulation when the input is subject to amplitude saturation. Regarding the
initial conditions of the exosystem, the discussion at the end of the last section
is clearly in favor of the argument that we should restrict our attention only
to initial conditions w(0) lying inside a given compact set. Moreover, regard-
ing the initial conditions of the plant, in the theory of stabilization of linear
systems subject to amplitude saturation (e.g. see [35] and [36]), the step from
global initial conditions to initial conditions inside an arbitrarily given com-
pact set has already been made. This has been named semi-global stabiliza-
tion. Thus we need to direct our attention here only to a semi-global setting.
This, as we shall see, also yields the well-known advantage that the output
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regulation can be achieved using only linear feedback controllers. Motivated
by this we devote ourselves in this section to semi-global output regulation.

This section is split into two parts. In the first part we study the so called
classical semi-global linear state feedback output regulation problem where
we assume that the states x and w are available for feedback, and hence it
suffices to look at only static feedback controllers. In the second part we study
the so called classical semi-global measurement feedback output regulation
problem where only certain measurement signal is available for feedback, and
hence we have to resort to dynamic feedback. In this case, we design observer
based controllers.

3.3.1 Linear state feedback output regulation problem

The problem considered in this subsection is formulated as follows.

Problem 3.3.1 (Classical semi-global linear state feedback regulator prob-
lem for linear systems subject to input amplitude saturation) Consider the
system (3.1) and a compact set W0 ⊂ R

s . For any a priori given (arbitrarily
large) bounded set X0 ⊂ R

n, find, if possible, a linear static feedback law
u = Fx + Gw such that the following conditions hold:

(i) (Internal Stability) The equilibrium point x = 0 of

ẋ = Ax + Bσ (Fx) (3.6)

is asymptotically stable with X0 contained in its basin of attraction.

(ii) (Output Regulation) For all x(0) ∈ X0 and w(0) ∈ W0, the solution of
the closed-loop system satisfies

lim
t→∞ e(t) = 0. (3.7)

Remark 3.3.1 We would like to emphasize that our definition of classical
semi-global linear state feedback output regulation problem does not view
the set of initial conditions of the plant as given data. The set of given data
consists of the models of the plant and the exosystem and the set of initial
conditions for the exosystem. Therefore, any solvability conditions we obtain
must be independent of the set of initial conditions of the plant, X0.

Before discussing the solvability conditions for the output regulation prob-
lem, we would like to recall what is known as the low-gain [36] design method
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introduced earlier by Lin, Saberi and their coworkers. Such a low-gain design
method has been used successfully in connection with linear systems with am-
plitude saturating actuators, not only for internal stabilization [36], but also for
various other problems.

There are two methods for low gain design. One is Riccati based which is
discussed next and the other a direct method of design which is considered in
Appendix 3.B.

Review of Riccati-based low-gain design for linear systems:

We now recall a low-gain state feedback design algorithm from [36]. The
objective is to show that we can find stabilizing feedback control inputs with
arbitrarily small magnitude which stabilize a given linear system with all its
poles in the closed left-half plane. Such a design algorithm yields a family
of state feedback gains, parameterized in ε, which is instrumental in proving
our results on semi-global output regulation. There exist in the literature two
low-gain design algorithms; one is based on the solution of a continuous-time
algebraic Riccati equation, parameterized in ε, and the other is a direct con-
struction method based on an eigenvalue assignment method. The Riccati-
based method is conceptually appealing although solving the parameterized
Riccati equation might be numerically stiff. On the other hand, the alternative
direct method of explicit construction is numerically efficient but is somewhat
involved in details. For conceptual clarity, we present here the Riccati-based
method, and the alternative direct method is discussed at the end of this chap-
ter in Appendix 3.B.

Consider the linear system

ẋ = Ax + Bu (3.8)

where the state x ∈ R
n and the input u ∈ R

m . Assume that (A, B) is stabi-
lizable and all the eigenvalues of A are located in the closed left-half plane.
Consider the Riccati equation defined as

Pε A + AT Pε − Pε B BT Pε + Qε = 0 (3.9)

where Q : (0, 1] → R
n × n is a continuously differentiable matrix-valued

function such that Qε > 0, d Qε

dε
> 0 for any ε ∈ (0, 1], and limε→0 Qε = 0.

In what follows, we often take Qε = εI . We next form a family of low-gain
state feedback gain matrices Fε as

Fε = −BT Pε. (3.10)
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The following lemma recalls certain important properties of the Riccati
equation (3.9).

Lemma 3.3.1 Consider the Riccati equation (3.9). Assume that (A, B) is sta-
bilizable and all the eigenvalues of A are located in the closed left-half plane.
Also, let Qε be a continuously differentiable matrix-valued function such that
Qε > 0, d Qε

dε
> 0 for any ε ∈ (0, 1], and limε→0 Qε = 0. Then the Riccati

equation (3.9) has a unique positive definite solution Pε for any ε ∈ (0, 1].
Moreover, this positive definite solution Pε has the following properties:

(i) For any ε ∈ (0, 1], the unique solution Pε > 0 is such that A + B Fε is
Hurwitz-stable where Fε = −BT Pε.

(ii) limε→0 Pε = 0.

(iii) Pε is continuously differentiable with respect to ε and

d Pε

dε
> 0, for any ε ∈ (0, 1].

Proof : The existence and uniqueness of a positive semi-definite solution Pε

follows from [61]. It also follows from [61] that Pε is the unique solution
for which A − B BT Pε has all its eigenvalues in the closed left-half plane. For
ε = 0, it is trivial to see that the Riccati equation (3.9) has a solution P(0) = 0
since by assumption, A − B BT P(0) = A has all its eigenvalues inside or on
the unit circle. The fact that limε→0 Pε = 0 follows from standard continuity
arguments. Note that for ε > 0 the solution is actually positive definite and is
such that A − B BT Pε has all its eigenvalues in the open left-half plane.

Thus, we need to prove here only part (iii). To do so, we observe that the
continuous differentiability of Pε follows from the fact that the Hamiltonian
matrix associated with the Riccati equation (3.9) is a continuously differen-
tiable function of ε (see [28]). In order to show that d Pε

dε
> 0, we differentiate

the Riccati equation (3.9) to obtain the Lyapunov equation,

d Pε

dε
(A − B BT Pε) + (A − B BT Pε)

T d Pε

dε
= −d Qε

dε
. (3.11)

Now, it follows from the above equation that d Pε

dε
> 0 since A − B BT Pε is

asymptotically stable and d Qε

dε
> 0 for all ε > 0.

The family of state feedback gains (3.10) parameterized by ε, has the fol-
lowing property.
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Theorem 3.3.1 Consider the system (3.8). Assume that (A, B) is stabilizable
and A has all its eigenvalues in the closed left-half plane. Then, if we apply
the state feedback given by (3.10) to the system (3.8), the resulting closed-loop
system

ẋ = (A + B Fε)x (3.12)

is asymptotically stable for all ε > 0. Moreover, there exist κε > 0, ζε > 0
and ηε > 0 with κε, ζε → 0 as ε → 0 such that for all ε ∈ (0, 1],

‖Fε‖ ≤ κε, (3.13)

‖Fεe(A+B Fε)t‖ � ζεe−ηε t , (3.14)

Proof : The internal stability of the closed-loop system (3.12), and the in-
equality (3.13) follow trivially from Lemma 3.3.1. Next, we need to show
(3.14). Using the Riccati equation (3.9) we find that, for ε ∈ (0, 1],

d

dt
xT(t)Pεx(t) = −‖BT Pεx(t)‖2 − x(t)Qεx(t)

� −2ηε‖P1/2
ε x(t)‖2

where ηε = ‖Qε‖‖P(1)‖−1. Hence

‖P1/2
ε x(t)‖ � e−εηt‖P1/2

ε x(0)‖. (3.15)

Finally,

‖Fεe(A+B Fε)t x(0)‖ = ‖BT Pεx(t)‖
� ‖B‖‖P1/2

ε ‖e−εηt‖P1/2
ε x(0)‖. (3.16)

Since (3.16) is true for all x(0) ∈ R
n, it follows trivially that

‖Fεe(A+B Fε)t‖ ≤ ‖B‖‖P1/2
ε ‖2e−εηt = ‖B‖‖Pε‖e−εηt . (3.17)

The proof is then completed by taking ζε = ‖B‖‖Pε‖.

We next move on to obtain the solvability conditions for the classical
semi-global linear state feedback output regulation problem for linear sys-
tems subject to input amplitude saturation. The following theorem presents
such conditions.
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Theorem 3.3.2 Consider the system (3.1) and the given compact set W0 ⊂
R

s . The classical semi-global linear state feedback output regulation problem
is solvable if the following conditions hold:

(i) (A, B) is stabilizable and A has all its eigenvalues in the closed left half
plane.

(ii) There exist matrices 	 and 
 such that

(a) they solve the regulator equation (2.7), i.e.,

	S = A	+ B
+ Ew, (3.18a)

0 =Ce	+Deu
+Dew, (3.18b)

and

(b) there exist a δ > 0 and a T ≥ 0 such that ‖
w‖∞,T � 1 − δ for
all w with w(0) ∈ W0.

Proof : We prove this theorem by first explicitly constructing a family of linear
static state feedback laws, parameterized in ε, and then showing that for each
given set X0, there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗], both items (i)
and (ii) of Problem 3.3.1 hold. The family of linear static state feedback laws
we construct takes the form,

u = Fεx + (
 − Fε	)w, (3.19)

where Fε is a state feedback gain matrix, parameterized in ε and chosen in
such a way that A + B Fε is Hurwitz-stable for all ε > 0 and

‖Fεe(A+B Fε)t‖∞ ≤ υε, (3.20)

where υ is a positive-valued function satisfying limε→0 υε = 0. One way of
selecting such a gain matrix Fε is as in (3.10). With this selection of Fε, the
system (3.6) can be written as

ẋ = Ax + Bσ (Fεx). (3.21)

To show that item (i) of Problem 3.3.1 holds, let us next consider the system
(3.21) in the absence of the saturation elements. The system then takes the
form

ẋ = (A + B Fε)x . (3.22)
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It follows then from (3.20) that there exists an ε∗
1 > 0 such that for all ε ∈

(0, ε∗
1] we have

‖Fεx‖∞ ≤ 1, for all x(0) ∈ X0.

This shows that for all ε ∈ (0, ε∗
1] and for all x(0) ∈ X0, the system (3.21)

operates in the linear regions of the saturation elements and hence we can con-
clude that the equilibrium point x = 0 of the system (3.21) is asymptotically
stable with X0 contained in its basin of attraction.

To show that item (ii) of Problem 3.3.1 holds, let us introduce an invertible
coordinate change,

ξ = x − 	w. (3.23)

Then, using (3.18), we have

ξ̇ = ẋ − 	ẇ

= Ax + Bσ (u) + Eww − 	Sw

= Aξ + B(σ (u) − 
w). (3.24)

With the considered family of state feedback laws, the closed-loop system can
then be rewritten as

ξ̇ = Aξ + B [σ (Fεξ + 
w) − 
w] . (3.25)

Now by Condition (ii)b) of Theorem 3.3.2, ‖
w‖∞,T < 1 − δ. Moreover,
ξ(T ) belongs to a bounded set independent of ε since ξ(0) is bounded and
ξ(T ) is determined by a linear differential equation with bounded inputs σ (u)

and 
w. If we consider the system (3.25), from time T onwards, without
saturation element, we obtain

ξ̇ = (A + B Fε)ξ. (3.26)

Since ξ(T ) is bounded, (3.20) and (3.26) imply that there exists an ε∗
2 > 0

such that, for all ε ∈ (0, ε∗
2],

‖Fεξ‖∞,T ≤ δ.

We can conclude then that the system will operate within the linear region of
the saturation elements for all t ≥ T if ε ∈ (0, ε∗

2 ]. Also, in view of (3.19)
and (3.23), we find for t ≥ T that

e(t) = (Ce + Deu Fε)ξ(t) + (Ce	 + Deu
 + Dew)w(t).
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However, in view of (3.18b), e is given by e(t) = (Ce + Deu Fε)ξ(t), and thus,
owing to the stability of A + B Fε, we find that e(t) → 0 as t → ∞.

Finally, taking ε∗ = min{ε∗
1, ε

∗
2}, we complete our proof.

We note that Condition (i) of Theorem 3.3.2 is necessary for the existence
of a stabilizing feedback. On the other hand from Chapter 2, we know that
under Assumptions A.1 and A.2, Condition (ii)a) of Theorem 3.3.2 is nec-
essary to guarantee the solvability of the output regulation problem for the
system in the absence of the saturation element. The crucial condition for
the solvability of the classical semi-global linear state feedback output regu-
lation problem with amplitude saturating actuators is Condition (ii)b), which
is a sufficient condition. Combining the above theorem with the results from
Section 3.4 we obtain the following corollary.

Corollary 3.3.1 Consider the system (3.1). Let the system characterized by
the quadruple (A, B, Ce, Deu) be left-invertible without having invariant ze-
ros on the imaginary axis. Moreover, assume that S is weakly Hurwitz-stable.
Then, there exists a set of initial conditions W0 containing 0 in its interior for
which the classical semi-global linear state feedback output regulation prob-
lem is solvable if and only if the following conditions hold:

(i) (A, B) is stabilizable and A has all its eigenvalues in the closed left half
plane.

(ii) There exist matrices 	 and 
 that satisfy the linear matrix equations
(3.18).

Moreover, 
 is uniquely determined by (3.18), and if we define the set

W̄ :=
{

w0 ∈ R
nc | lim sup

t→∞
‖
w(t)‖∞ � 1

}
,

then the following properties hold:

(a) If W0 is contained in the interior of W̄ , then the classical semi-global
linear state feedback output regulation problem is solvable.

(b) If W0 is not contained in W̄ , then the classical semi-global state feed-
back output regulation problem is not solvable by linear or non-linear
state feedback.
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Proof : The first part of this corollary is a direct consequence of the (linear)
classical output regulation theorem of Chapter 2. The fact that 
 is uniquely
defined is a consequence of Lemma 2.5.1. Finally, property (a) is an immedi-
ate consequence of Theorem 3.3.2 and property (b) is a direct consequence of
Theorem 3.4.1.

Design of a low-gain state feedback regulator:

For clarity, we now give a step by step design of a low-gain state feedback
regulator.

Step 1 : Find a solution (	, 
) of the regulator equation (3.18).

Step 2 : Find a state feedback gain matrix Fε parameterized in ε in such a
way that A+ B Fε is Hurwitz-stable for all ε > 0 and such that equation (3.20)
holds for a positive-valued function υ satisfying limε→0 υε = 0. One way of
selecting such a gain matrix Fε is as in (3.10). Another way of doing so is via
an alternative direct method discussed at the end of this chapter in Section 3.B
of the appendix.

Step 3 : Given the sets X0 ⊂ R
n and W0 ⊂ R

s , find an ε∗ by the procedure
given in the proof of Theorem 3.3.2.

Then the state feedback controller given in (3.19) for some ε ∈ (0, ε∗]
solves the classical semi-global state feedback output regulation problem.

The following example illustrates the design procedure.

Example 3.3.1 (State feedback case) We consider the system (3.1) with

A =

⎛
⎜⎜⎝

1 2 1 0
1 1 1 0

−1 −2 −1.5 −0.5
5 6 4.5 −0.5

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎠ , Ew =

⎛
⎜⎜⎝

−1 0
0 1
0 0
0 0

⎞
⎟⎟⎠

S =
(

0 1
−1 0

)
, Ce =

(
3 2 1.5 −0.5
2 3 1.5 −0.5

)
,

Dew =
(−0.5 0

0 −1

)
, Deu = 0,

and W0 = {w ∈ R
2 : ‖w‖ ≤ √

2/4}. With this data, it is straightforward
to show that the solvability conditions for the classical semi-global linear
state feedback output regulation problem are satisfied. More specifically, the
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matrices,

	 =

⎛
⎜⎜⎝

1 −1
0.5 0

−1.25 1.75
3.25 −0.75

⎞
⎟⎟⎠ , and 
 =

(
1.25 0.25

−0.25 −1.25

)
, (3.27)

solve the regulator equation (3.18). Also, T = 0 and δ = 0.4697, since
‖
w‖∞ ≤ 0.5303 for all w(0) ∈ W0. Following the design procedure, and
taking the gain matrix Fε as in (3.10), we formulate the state feedback control
law as

u = −BT Pεx + [BT Pε	 + 
]w. (3.28)

With the above choice of control law, for the set given by X0 = {x ∈ R
4 :

‖x‖ ≤ 4}, a choice of ε∗ is 4 × 10−7. For ε = ε∗, the feedback law (3.19) is
given by

u =
(−0.01894 −0.03244 −0.01033 0.00807

−0.03244 −0.05779 −0.01711 0.01438

)
x

+
(

1.24602 0.25519
−0.25677 −1.24171

)
w.

Some simulation results are shown in Figure 3.1 on the next page. Plots (a)
and (b) show the error signals on the interval [0, 1000] which converge to 0.
Plots (c) and (d) give the corresponding input signals on the interval [0, 300]
(the inputs clearly settle to sinusoidal signals).

Design of a low-and-high-gain state feedback regulator:

The simulations in Figure 3.1 point out that the convergence of e(t) to
zero is very slow. This is a characteristic of the feedback law (3.28) which
utilizes a low-gain for Fε as given by (3.10). That is, low-gain based designs
under utilize the available control capacity. Our next goal is to recall a new
design methodology which yields significant improvement to the low-gain de-
sign method, and leads to a better utilization of the available control capacity
and hence better closed-loop performance. The improved design utilizes a
low-and-high gain feedback [33]. Such a control law is given by

u = −(µ + 1)BT Pεx + [(µ + 1)BT Pε	 + 
]w, µ ≥ 0. (3.29)

We note that when µ = 0 the low-and-high gain control law as given above
reduces to the low-gain based control law as given in (3.28). The control
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Figure 3.1: a) e1; b) e2; c) σ̄ (u1); d) σ̄ (u2).
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law (3.29) is parameterized in two variables, one is ε which is referred to as
a low-gain parameter, and the other is µ which is referred to as a high-gain
parameter. As will be shown next, for any value of µ, the family of feedback
control laws given by (3.29) also solves the classical semi-global linear state
feedback output regulation problem under the same solvability conditions as
in Theorem 3.3.2.

Theorem 3.3.3 Consider the system (3.1) and the given compact set W0 ⊂
R

s . Under the same solvability conditions as in Theorem 3.3.2, there exists
a controller, among the family of feedback control laws given by (3.29), that
solves the classical semi-global linear state feedback output regulation prob-
lem. More specifically, for any a priori given (arbitrarily large) bounded set
X0 ⊂ R

n, there exists an ε∗ > 0 such that for each ε ∈ (0, ε∗] and for each
µ ≥ 0, the controller in the family (3.29) has the following properties:

(i) The equilibrium point x = 0 of

ẋ = Ax + Bσ (−(1 + µ)BT Pεx) (3.30)

is asymptotically stable with X0 contained in its basin of attraction.

(ii) For any x(0) ∈ X0 and w(0) ∈ W0, the solution of the closed-loop
system satisfies

lim
t→∞ e(t) = 0. (3.31)

Proof : To show part (i), we rewrite (3.30) as

ẋ = Ãx + B
[
σ (−(1 + µ)BT Pεx) + BT Pεx

]
(3.32)

where

Ã = A − B BT Pε.

We can now select the Lyapunov function as

V = xT Pεx

for the closed-loop system (3.32). From Lemma 3.3.1, it follows that there
exists an ε∗ > 0 and a constant c > 0 such that for all ε ∈ (0, ε∗], we have
X0 ⊆ LV (c), and moreover x ∈ LV (c) implies that ‖BT Pεx‖ ≤ 1, where the
level set LV (c) is defined as

LV (c) = {x ∈ R
n | V (x) ≤ c}.
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Now, the derivative of V along the trajectories of the closed-loop system
(3.32) shows that for all x̃ ∈ LV (c),

V̇ = −xT
(
Qε + Pε B BT Pε

)
x

+ 2x Pε B
[
σ (−(1 + µ)BT Pεx) + BT Pεx

]
� −xT Qεx − 2

m∑
i=1

vi [σi((1 + µ)vi ) − σi(vi)]

≤ −xT Qεx

where we have defined v := −BT Pεx while vi is the i-th component of v.

The above development shows that for all ε ∈ (0, ε∗] and µ > 0, the
equilibrium point x̃ = 0 of the closed-loop system (3.32) is internally stable
with X̃0(ε) ⊆ LV (c) contained in its domain of attraction. This concludes
our proof of part (i).

We next show that there exists an ε∗
2 ∈ (0, 1] such that for each ε ∈

(0, ε∗
2] and for each µ ≥ 0, item (ii) of the theorem holds. To this end, let us

introduce an invertible coordinate change ξ = x −	w. Using condition (ii)a)
of Theorem 3.3.2, we have

ξ̇ = Aξ + B[σ (u) − 
w]. (3.33)

With the family of state feedback laws given by (3.29), the closed-loop system
can be written as

ξ̇ = Aξ + B[σ (
w − (µ + 1)BT Pεξ ) − 
w]. (3.34)

By condition (ii)a) of Theorem 3.3.2, ‖
w‖∞,T < 1 − δ. Moreover, for any
x(0) ∈ X0 and any w(0) ∈ W0, ξ(T ) belongs to a bounded set, say UT ,
independent of ε since X0 and W0 are both bounded and ξ(T ) is determined
by a linear differential equation with bounded inputs σ (·) and 
w.

We next pick a Lyapunov function

V (ξ) = ξ T Pεξ (3.35)

and let c > 0 be such that

c ≥ sup
ξ∈UT ,ε∈(0,1]

ξ T Pεξ. (3.36)

Such a c exists since limε→0 Pε = 0 by Lemma 3.3.1 and UT is bounded. Let
ε∗

2 ∈ (0, 1] be such that ξ ∈ LV (c) implies that ‖BT Pεξ‖∞ ≤ δ. The existence
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of such an ε∗
2 is again due to the fact that limε→0 Pε = 0. The evaluation of V̇

for t ≥ T , inside the set LV (c), using (3.9), now shows that

V̇ = −ξ T
(
Qε + Pε B BT Pε

)
ξ

+ 2ξ T Pε B[σ (
w − (µ + 1)BT Pεξ ) − 
w + BT Pεξ ]
≤ −ξ T Qεξ − 2vT[σ ((µ + 1)v + θ) − v − θ]

= −ξ T Qεξ − 2
m∑

i=1

vi [σ̄ ((µ + 1)vi + θi) − vi − θi ]

where we have denoted v := −BT Pεξ and θ := 
w with their i th components
denoted by vi and θi respectively.

Noting that sgn(σ̄ (s)) = sgn(s) and for ε ∈ (0, ε∗
1 ], |vi + θi | ≤ 1, we

observe that,

|(µ + 1)vi + θi | ≤ 1

=⇒ vi [σ̄ ((µ + 1)vi + θi ) − vi − θi ] = µv2
i ≥ 0,

(µ + 1)vi + θi > 1 =⇒ vi > 0

=⇒ vi [σ̄ ((µ + 1)vi + θi ) − vi − θi ] ≥ 0,

(µ + 1)vi + θi < −1 =⇒ vi < 0

=⇒ vi [σ̄ ((µ + 1)vi + θi ) − vi − θi ] ≥ 0.

Hence, we conclude that

V̇ ≤ −ξ T Qεξ. (3.37)

This shows that any trajectory of (3.34) starting at t = 0 from {ξ = x −
	w : x ∈ X0, w ∈ W0} remains inside the set LV (c) and approaches the
equilibrium point ξ = 0 as t → ∞. It is then easy to see that

e = Ce(ξ + 	w) + Deuσ
(−(µ + 1)BT Pε)ξ + 
w

) + Deww

and hence e(t) → 0 as t → ∞ since ξ(t) → 0 and using conditions (3.18b)
and (ii)b) of Theorem 3.3.2.

Finally, setting ε∗ = min{ε∗
1, ε

∗
2}, we conclude our proof of Theorem

3.3.3.

We now demonstrate the improvement on the closed-loop performance (as
the high gain parameter µ increases) by an example.
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Example 3.3.2 Consider the system (3.1) with the matrices A, B, Ew, S, Ce,
Deu, and Dew as given in Example 3.3.1. Also, as in Example 3.3.1, let w(0) ∈
W0 where W0 =

{
w : ‖w‖ <

√
2/4

}
. Then, the solvability conditions for

the semi-global linear state feedback output regulation problem are satisfied.
Also, 	 and 
 are as given in (3.27). Moreover, T = 0 and δ = 0.4697,
since ‖
w‖∞ ≤ 0.5303 for all w(0) ∈ W0. Let the set X0 be given by
X0 = {x : ‖x‖ ≤ 14, x ∈ R

4}. We choose

Qε = 10−4 ×

⎛
⎜⎜⎝

ε2 0 0 0
0 ε2 0 0
0 0 ε 0
0 0 0 ε

⎞
⎟⎟⎠ . (3.38)

Then, following the proof of Theorem 3.3.3, a choice of ε∗ is 1.5 × 10−4. For
ε = ε∗, the feedback law (3.29) for µ ≥ 0 is given by

u = −(µ + 1)10−3

(
6.4203 11.918 3.3628 −2.9767
11.918 22.623 6.113 −5.6505

)
x

+
(

(µ + 1)10−3

(−2.9799 3.3755
−4.2588 4.6980

)
+

(
1.25 0.25

−0.25 −1.25

))
w.

For the initial conditions x0 = (7, 7, 7, 7), w0 = (0.1, 0.1), Figures 3.2 on the
following page and 3.3 on page 91 show the control action and the closed-loop
performance for low-gain feedback (µ = 0) and low-and-high gain feedback
(µ = 1000) respectively. These simulation results illustrate that the low-and-
high gain feedback regulator (3.29) significantly out-performs the low-gain
feedback regulator as given in (3.28).

3.3.2 Dynamic measurement feedback controller

In this section, we consider the classical semi-global linear observer based
measurement feedback output regulation problem which can be formulated as
follows.

Problem 3.3.2 (Classical semi-global linear full-order observer based mea-
surement feedback output regulation problem) Consider the system (3.1) and
a compact set W0 ⊂ R

s . For any a priori given (arbitrarily large) bounded
sets X0 ⊂ R

n and Z0 ⊂ R
n+s , find, if possible, a measurement feedback law
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Figure 3.2: ε = 1.5 × 10−4, µ = 0. a) e1; b) e2; c) σ̄ (u1); d) σ̄ (u2).
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Figure 3.3: ε = 1.5 × 10−4, µ = 1000. a) e1; b) e2; c) σ̄ (u1); d) σ̄ (u2).
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of the form

( ˙̂x
˙̂w
)

=
(

A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (u)

+
(

KA

KS

)((
Cy Dyw

) ( x̂
ŵ

)
− y

)
u = Fx̂ + Gŵ

(3.39)

such that the following conditions hold:

(i) (Internal Stability) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

ẋ = Ax + Bσ (Fx̂ + Gŵ)( ˙̂x
˙̂w
)

=
(

A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (Fx̂ + Gŵ)

+
(

KA

KS

)((
Cy Dyw

) (x̂ − x
ŵ

)) (3.40)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) (Output Regulation) For all (x(0), x̂(0)) ∈ X0, ŵ(0) ∈ Z0 and w(0) ∈
W0, the solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0. (3.41)

Remark 3.3.2 We would like to emphasize again that our definition of the
above classical semi-global measurement feedback output regulation problem
does not view the set of initial conditions of the plant and the initial conditions
of the controller dynamics as given data. The set of given data consists of the
models of the plant and the exosystem and the set of initial conditions for the
exosystem. Therefore, the solvability conditions must be independent of the
set of initial conditions of the plant, X0, and the set of initial conditions for
the controller dynamics, Z0.

The solvability conditions for the above classical semi-global measure-
ment feedback output regulation problem are given in the following theorem.

Theorem 3.3.4 Consider the system (3.1) and the given compact set W0 ⊂
R

s . The classical semi-global measurement feedback output regulation prob-
lem is solvable if the following conditions hold:
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(i) (A, B) is stabilizable and A has all its eigenvalues in the closed left half
plane. Moreover, the pair

((
Cy Dyw

)
,

(
A Ew

0 S

))

is detectable.

(ii) There exist matrices 	 and 
 such that

(a) they solve the regulator equation (3.18), and

(b) there exists a δ > 0 and a T ≥ 0 such that ‖
w‖∞,T � 1 − δ for
all w with w(0) ∈ W0.

Proof : We prove this theorem by first explicitly constructing a family of linear
observer based measurement feedback laws of the form (3.39), parameterized
in ε, and then showing that for each pair of sets X0 ⊂ R

n and Z0 ⊂ R
n+s ,

there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗], both items (i) and (ii)
in Problem 3.3.2 are indeed satisfied. The family of linear observer based
measurement feedback laws we construct take the form,

˙̂x = Ax̂ + Bσ (u) + Ewŵ + KACy(x̂ − x) + KA Dyw(ŵ − w)
˙̂w = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w)

u = Fε x̂ + (
 − Fε	)ŵ,

(3.42)

where Fε is a state feedback gain matrix, parameterized in ε, chosen in such a
way that A + B Fε is Hurwitz-stable and

‖Fε‖ ≤ κε, (3.43)

‖Fεe(A+B Fε)t‖∞ ≤ υεe−ζε t , (3.44)

where κε, υε, ζε → 0 as ε → 0 and ζε > 0. The existence and the explicit
construction of such an Fε is established in Theorem 3.3.1. The matrices KA

and KS are chosen such that the matrix,

Ā :=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
, (3.45)

is Hurwitz-stable. The existence of such KA and KS is guaranteed by condition
(i) of the theorem.
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With this family of feedback laws, the closed-loop system consisting of
the system (3.1) and the dynamic measurement feedback laws (3.42) can be
written as,

ẋ = Ax + Bσ (Fε x̂ + (
 − Fε	)ŵ) + Eww
˙̂x = Ax̂ + Bσ (Fε x̂ + (
 − Fε	)ŵ) + Ewŵ

+KACy(x̂ − x) + KA Dyw(ŵ − w)
˙̂w = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w).

(3.46)

We then adopt the invertible change of state variables,

ξ = x − 	w

x̃ = x − x̂
w̃ = w − ŵ,

(3.47)

and then rewrite the closed-loop system (3.46) as

ξ̇ = Aξ + Bσ (Fεξ + 
w − 
w̃ − Fε x̃
+Fε	w̃) + (A	 − 	S + Ew)w

˙̃x = (A + KACy)x̃ + (Ew + KA Dyw)w̃
˙̃w = KSCyx̃ + (S + KS Dyw)w̃.

(3.48)

To show that item (i) of Problem 3.3.2 holds, we note that (3.39) is equal to
(3.46) for w = 0. Thus, for w = 0, (3.48) reduces to

ξ̇ = Aξ + Bσ (Fεξ − 
w̃ − Fε x̃ + Fε	w̃)
˙̃x = (A + KACy)x̃ + (Ew + KA Dyw)w̃
˙̃w = KSCyx̃ + (S + KS Dyw)w̃.

(3.49)

Recalling that the matrix Ā, defined in (3.45), is Hurwitz-stable, and using
(3.43), it readily follows from the last two equations of (3.49) that there exists
a T1 ≥ 0 such that, for all possible initial conditions x̃(0), w̃(0) and for all
ε ∈ (0, 1], we have

‖
w̃‖∞,T1 ≤ 1
4 , ‖Fε x̃‖∞,T1 ≤ 1

4 , ‖Fε	w̃‖∞,T1 ≤ 1
4 . (3.50)

We next consider the first equation of (3.49). ξ(T1) belongs to a bounded set
independent of ε since ξ(0) is bounded and since ξ is determined via a linear
differential equation with bounded input σ (u). Hence there exists an M1 such
that for all possible initial conditions,

‖ξ(T1)‖ ≤ M1, for all ε ∈ (0, 1]. (3.51)
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Let us now assume that, from time T1 onwards, the saturation elements are
non-existent. In this case, the first equation of (3.49) can be written as

ξ̇ = (A + B Fε)ξ − B Fε x̃ − B
w̃ + B Fε	w̃. (3.52)

Since x̃ → 0 and w̃ → 0 exponentially with a decay rate independent of ε as
t → ∞, it follows trivially from (3.43) and (3.44) that there exist an ε∗

1 > 0
and an M2 > 0 such that, for all possible initial conditions and all ε ∈ (0, ε∗

1],∫ ∞

T1

‖eζετ B[Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)]‖dτ ≤ M2. (3.53)

This in turn shows that, for t ≥ T1,

‖Fεξ(t)‖ =
∥∥∥∥Fεe(A+B Fε)tξ(T1) −

∫ t

T1

Fεe(A+B Fε)(t−τ )Bs(τ )dτ

∥∥∥∥
� υε M1 + υε

∫ ∞

T1

‖eζετ Bs(τ )‖dτ

� υε(M1 + M2).

where

s(τ ) = Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ).

Choose ε∗
2 ∈ (0, ε∗

1] such that, for all ε ∈ (0, ε∗
2 ],

‖Fεξ‖∞,T1 ≤ 1

4
. (3.54)

This, together with (3.50), shows that the system (3.49) will operate linearly
after time T1 and local exponential stability of this linear system follows from
the separation principle.

In summary, we have shown that there exists an ε∗
2 > 0 such that, for all

ε ∈ (0, ε∗
2 ], the equilibrium point (0, 0, 0) of the system (3.49) is asymptoti-

cally stable, with (X0,Z0) contained in its basin of attraction.

We now proceed to show that item 2 of Problem 3.3.2 also holds. To this
end, we consider the closed-loop system (3.48). Recalling that the matrix Ā is
Hurwitz-stable, and using (3.43), it readily follows from the last two equations
of (3.48) that there exists a T2 ≥ T such that, for all possible initial conditions
(x̃(0), w̃(0)) and for all ε ∈ (0, 1]

‖
w̃‖∞,T2 ≤ δ
4 , ‖Fε x̃‖∞,T2 ≤ δ

4 , ‖Fε	w̃‖∞,T2 ≤ δ
4 . (3.55)
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We next consider the first equation of (3.48). ξ(T2) belongs to a bounded set
independent of ε since ξ(0) is bounded and since ξ is determined via a linear
differential equation with bounded inputs σ (u) and w. Hence there exists an
M3 such that for all possible initial conditions,

‖ξ(T2)‖ ≤ M3, for all ε ∈ (0, 1]. (3.56)

Let us now assume that, from time T2 onwards, the equation (3.48) operates
without the saturation elements. In view of Condition (ii)a), the first equation
of (3.48) in the absence of the saturation elements is equal to the first equation
of (3.49), and hence also reduces to (3.52) after time T2. Hence, using a
similar argument as above, we can show that there exists an ε∗

3 > 0 such that,
for all ε ∈ (0, ε∗

3],

‖Fεξ‖∞,T2 <
δ

4
. (3.57)

This, together with (3.55) and Condition (ii)b), shows that the system (3.48)
will operate linearly after time T2, and thus the exponential stability of this
linear system follows from the separation principle.

Next, in view of (3.18b), it is easy to evaluate e(t) for t ≥ T2 as

e(t) = (Ce + Deu Fε)ξ(t) − Deu Fε x̃ − Deu(
 − Fε	)w̃.

This implies that e(t) → 0 as t → ∞.

Finally, taking ε∗ = min{ε∗
2, ε

∗
3}, we complete our proof.

As in the state feedback case, Condition (i) of Theorem 3.3.4 is necessary
to guarantee solvability of the measurement feedback output regulation prob-
lem for the system in the absence of the saturation element. Condition (ii)a)
is also necessary for the existence of a linear feedback controller which semi-
globally stabilizes the system (3.1) which is subject to amplitude saturation.
Clearly this time we also needed a detectability assumption. Finally, the cru-
cial condition for the solvability of classical semi-global linear observer based
measurement feedback output regulation problem is Condition (ii)a). This is
a sufficient condition.

Note the surprising fact that, except for the detectability assumption, the
solvability conditions for output regulation are the same for both the cases of
state feedback and dynamic measurement feedback.
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Design of a low-gain measurement feedback regulator:

For clarity, we now summarize the construction of an observer based mea-
surement feedback regulator.

Step 1 : At first construct a state feedback regulator. That is, find the matrices
(	, 
) that solve the regulator equation (3.18). Also, find a state feedback
gain matrix Fε parameterized in ε in such a way that A + B Fε is Hurwitz-
stable for all ε > 0 and such that equation (3.20) holds for a positive-valued
function υ satisfying limε→0 υε = 0.

Step 2 : Design a full order observer so that we can implement the controller
with observer based architecture as given in (3.42). That is, find the matrix
gains KA and KS in such a way that the matrix Ā given in (3.45) is Hurwitz-
stable.

Step 3 : Implement the observer based measurement feedback regulator as
given in (3.42).

Step 4 : Given the sets X0 ⊂ R
n, W0 ⊂ R

s , and Z0 ⊂ R
n, find an ε∗ by the

procedure given in the proof of Theorem 3.3.4.

Then for some ε ∈ (0, ε∗] the observer based measurement feedback reg-
ulator as given in (3.42) solves the classical semi-global measurement feed-
back output regulation problem.

The following example illustrates the design procedure.

Example 3.3.3 (Measurement Feedback Case) Consider the same plant as
in Example 3.3.1. However, assume that y = e is available for feedback,
instead of the states x and w. Recall that W0 = {w ∈ R

2 : ‖w‖ ≤ √
2/4},

T = 0 and δ = 0.4697. Following the design procedure given above, choose
KA and KS as

KA =

⎛
⎜⎜⎝

1.6021 × 106 1.0758 × 105

8.0176 × 105 1.2257 × 106

−5.6686 × 106 1.7878 × 106

−4.9298 × 106 1.1093 × 107

⎞
⎟⎟⎠ ,

KS =
(

7.4414 × 105 −1.8083 × 105

−4.2860 × 105 1.0281 × 106

)
.

These gains place the eigenvalues of Ā at

{−100,−110,−120,−130,−140, −150}.
Using a low-gain Fε as in (3.10), for X0 = {x ∈ R

4 : ‖x‖ ≤ 1} and for
Z0 = {z ∈ R

6 : ‖z‖ ≤ 1}, a choice of ε∗ is 2 × e−8. For ε = ε∗, the linear
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observer based feedback law (3.42) is given by

˙̂x = Ax̂ + Bσ (u) + Ewŵ + KACe(x̂ − x) + KA Dew(ŵ − w)
˙̂w = Sŵ + KSCe(x̂ − x) + KS Dew(ŵ − w)

u = −10−3

(−7.7148 −14.235 −4.0450 3.5547
−14.235 −26.870 −7.3084 6.7100

)
x̂

+10−1

(
12.482 2.5203

−2.5327 −12.464

)
ŵ.

Some simulation results are shown in Figure 3.4 on the facing page. Plots a
and b show the error signals on the interval [0, 1000] which converge to 0.
Plots c and d give the corresponding two input signals on two time intervals
[0, 0.4] and [0.4, 300]. The plots of the inputs on the interval [0, 0.4] show
that the inputs initially saturate. The plots on the interval [0.4, 300] show the
steady-state behavior of the inputs.

Design of a low-and-high gain measurement feedback regulator:

The simulations in Figure 3.4 on the next page point out that the conver-
gence of e(t) to zero is very slow. Again, as in the case of state feedback, this
is a characteristic of the feedback law (3.42) which utilizes a low-gain for Fε

as given by (3.10). Motivated by this, we recall next from [33] an improved
design which utilizes a low-and-high gain feedback.

As before, we first construct here a family of low-and-high gain measure-
ment feedback laws. Such a family of laws is parameterized in a low-gain
parameter ε, a high-gain parameter µ, and an observer parameter �. We then
show that such a family of low-and-high gain measurement feedback laws
solves the semi-global output regulation problem. Significant improvement on
the closed-loop performance over the earlier low-gain design (3.42) is again
shown by an example. The family of low-and-high gain measurement feed-
back laws we construct here is linear observer based and is composed by im-
plementing the low-and-high gain state feedback laws developed earlier with
the state of a fast observer. More specifically, it takes the following form

˙̂x = Ax̂ + Bσ (u) + Ewŵ + KA,�

[
Cyx̂ + Dywŵ − y

]
˙̂w = Sŵ + KS,�

[
Cy x̂ + Dywŵ − y

]
u = −(1 + µ)BT Pε x̂ + ((µ + 1)BT Pε	 + 
)ŵ

(3.58)

where KA,� and KS,� need to be chosen carefully. There are two ways of
designing the observers. One is Riccati-based which we cover here and the
other is a direct method which is covered in Appendix 3.C

The following lemma presents some of the basic properties of a dual Ric-
cati equation which we will need to derive our results.
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Lemma 3.3.2 Let the pair (H, F) be observable. Also, let Q� be the solution
of the following dual algebraic Riccati equation,

0 = (F + �I )Q + Q(F + �I )T − Q H H T Q + �I .

Then we have,

(F + Q� H H T)Q� + Q�(F + Q� H H T)T � −�I − �Q�. (3.59)

Moreover for any fixed t > 0,∥∥∥e(F+Q�H HT)t Q�e
(FT+H HT Q�)t

∥∥∥ → 0 (3.60)

as � → ∞.

Proof : The inequality (3.59) follows directly from the Riccati equation. How-
ever, to show (3.60) we need to do some work since Q� → ∞ as � → ∞.
Note that Q� has an interpretation as the optimal cost of the following optimal
control problem:

ẋ = FTx + H Tu, x(0) = ξ

and

ξ T Q�ξ = inf
u

∫ t

0
�‖e�sx(s)‖2 + ‖e�su(s)‖2ds + e2�t x(t)T Q�x(t).

There exists a M > 0 such that for any ξ there exists an input u such that
x(t/2) = 0, ‖u‖2 < M‖ξ‖ and ‖x‖2 < M‖ξ‖. When we choose this subop-
timal input in the above optimization problem we find that

ξ T Q�ξ � e�t/22M2‖ξ‖2.

On the other hand

x(t) = e(FT+H HT)tξ

and therefore

e2�tξ Te(F+H HT)t Q�e(FT+H HT)tξ = e2�t x(t)T Q�x(t) � ξ T Q�ξ

� e�t/22M2‖ξ‖2

which implies (3.60).
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Let R� be the stabilizing solution of the following dual algebraic Riccati
equation:

0 =
(

A + �I Ew

0 S + �I

)
R + R

(
A + �I Ew

0 S + �I

)T

− R

(
CT

y

DT
yw

)(
Cy Dyw

)
R + �I . (3.61)

On the basics of the above lemma we choose the observer gain as

K� =
(

KA,�

KS,�

)
= −R�

(
CT

y

DT
yw

)
. (3.62)

We then have the following result.

Theorem 3.3.5 Consider the system (3.1) and the given compact set W0 ⊂
R

s . Let the sufficient conditions given in Theorem 3.3.4 be satisfied. Also,
assume that the pair((

Cy Dyw

)
,

(
A Ew

0 S

))

is observable. Then, there exists a controller, among the family of low-and-
high gain measurement feedback laws (3.58), that solves the semi-global lin-
ear observer based measurement feedback output regulation problem. More
specifically, for any a priori given (arbitrarily large) sets X0 ⊂ R

n and
Z0 ⊂ R

n+s , there exists an ε∗ ∈ (0, 1], and for each ε ∈ (0, ε∗] and each
µ ≥ 0, there exists an �∗(ε, µ) > 0 such that for each ε ∈ (0, ε∗], each µ ≥ 0
and each � ≥ �∗(ε, µ), the controller in the family (3.58) has the following
properties:

(i) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

ẋ = Ax + Bσ (
ŵ − (1 + µ)BT Pε(x̂ − 	ŵ))
˙̂x = Ax̂ + Bσ (
ŵ − (1 + µ)BT Pε(x̂ − 	ŵ)) + Ewŵ

+KA,�Cy(x̂ − x) + KA,� Dywŵ
˙̂w = Sŵ + KS,�Cy(x̂ − x) + KS,� Dywŵ

(3.63)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) For any (x(0), x̂ (0), ŵ(0)) ∈ X0 × Z0 and w(0) ∈ W0, the solution of
the closed-loop system satisfies

lim
t→∞ e(t) = 0. (3.64)
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Proof : With the family of feedback laws (3.58), the closed-loop system can
be written as,

ẋ = Ax + Bσ (
ŵ − (1 + µ)BT Pε(x̂ − 	ŵ)) + Eww
˙̂x = Ax̂ + Bσ (
ŵ − (1 + µ)BT Pε(x̂ − 	ŵ)) + Ewŵ

+KA,�Cy(x̂ − x) + KA,�Dyw(ŵ − w)
˙̂w = Sŵ + KS,�Cy(x̂ − x) + KS,� Dyw(ŵ − w).

(3.65)

We then adopt the invertible change of state variables,

ξ = x − 	w,

x̃ = x − x̂,

w̃ = w − ŵ,

and then rewrite the closed-loop system (3.65) as

ξ̇ = Aξ + Bσ (−(1 + µ)BT Pεξ + 
w − 
w̃ + (1 + µ)BT Pε x̃
−(1 + µ)BT Pε	w̃) + (A	 − 	S + Ew)w

˙̃x = (A + KA,�Cy)x̃ + (Ew + KA,� Dyw)w̃
˙̃w = KS,�Cy x̃ + (S + KS,� Dyw)w̃.

(3.66)

We first note that the estimation error

x̃e(t) =
(

x̃(t)
w̃(t)

)

satisfies:

˙̃xe(t) = Ã� x̃e(t)

with

Ã� =
(

A Ew

0 S

)
− R�

(
CT

y

DT
yw

)(
Cy Dyw

)
and using the properties from Lemma 3.3.2 we find that

d

dt
x̃T

e (t)R� x̃e(t) � −�x̃T
e (t)R� x̃e(t) − �x̃T

e (t)x̃e(t). (3.67)

We are now in a position to show the items (i) and (ii) of the theorem. Let
T be such that ‖
w(t)‖ � 1 − δ for all t > T .

To show that item (i) of the theorem holds, we note that (3.63) is equal to
(3.65) for w = 0. Hence (3.65) reduces to

ξ̇ = Aξ + Bσ (−(1 + µ)BT Pεξ + (µ + 1)Mx̃e)˙̃xe = Ã� x̃e,
(3.68)



Control of linear systems with regulation and input constraints 103

where

M =
(

BT Pε 0
0 


µ+1 − BT Pε	.

)
,

For any x(0) ∈ X0, ξ(T + 1) belongs to a bounded set, say UT , independent
of ε since X0 is bounded and ξ(T + 1) is determined by a linear differential
equation with bounded input σ (·). Secondly, using Lemma 3.3.2, we find that
there exists an �∗

1 such that for all � > �∗
1 we will have x̃e(T + 1) ∈ XT where

XT = {
z̃ ∈ R

n+s | z̃T R� z̃ � 1
}

for any (x(0), x̂ (0), ŵ(0)) ∈ X0 × Z0.

Define a Lyapunov function

V (ξ, x̃e) = ξ T Pεξ + x̃T
e R� x̃e. (3.69)

Let c1 > 0 be such that

c1 ≥ sup
ξ∈UT ,z̃∈XT ,ε∈(0,1]

V (ξ, z̃). (3.70)

Such a c1 exists since UT is a bounded set and limε→0 Pε = 0 by Lemma
3.3.1. Let ε∗

1 ∈ (0, 1] be such that ξ ∈ LV (c1) implies that ‖BT Pεξ‖∞ ≤ δ.
The existence of such an ε∗

1 is again due to the fact that limε→0 Pε = 0.

The evaluation of V̇ , t ≥ T + 1, inside the set LV (c1), using (3.9) and
(3.67) and following the argument used in proving (3.37), shows that

V̇ = −ξ T(Qε + Pε B BT Pε)ξ − �x̃T
e R� x̃e − �x̃T

e x̃e

+ 2ξ T Pε B[σ (−(1 + µ)BT Pεξ + (µ + 1)Mx̃e) + BT Pεξ ]
≤ −ξ T Qεξ − �x̃T

e x̃e − ξ T Pε B BT Pεξ

+ 2ξ T Pε B[σ (−(1 + µ)BT Pεξ

+ (µ + 1)Mx̃e) − σ (−(1 + µ)BT Pεξ )]
≤ −ξ T Qεξ − �‖x̃e‖2 + 2β(µ + 1)‖M‖‖ξ T Pε B‖‖x̃e‖

− ‖ξ T Pε B‖2

where β is the Lipschitz constant of the function σ . It is now clear that, for
each ε ∈ (0, ε∗

1] and each µ ≥ 0, there is an �∗
2(ε, µ) > �∗

1 such that, for
� ≥ �∗

2(ε, µ),

(ξ, x̃e) ∈ LV (c) =⇒ V̇ ≤ −ξ T Qεξ − 1

2
�x̃T

e x̃e. (3.71)
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This, in turn, shows that, for any a priori given sets X0 and Z0, there exists an
ε∗

1 > 0 such that for each ε ∈ (0, ε∗
1], µ ≥ 0, � ≥ �∗

2(ε, µ), the equilibrium
point of (3.63) is asymptotically stable with X0 × Z0 contained in its basin of
attraction.

Now, in order to show that item (ii) of the theorem holds, consider (3.65).
Again, for any x(0) ∈ X0 and any w(0) ∈ W0, ξ(T +1) belongs to a bounded
set, say UwT , independent of ε since X0 is bounded and ξ(T + 1) is de-
termined by a linear differential equation with bounded inputs σ (·) and 
w.
Secondly, using Lemma 3.3.2, we find that there exists an �∗

3 > 1 such that for
all � > �∗

3 we will have x̃e(T +1) ∈ XT for any (x(0), x̂(0), ŵ(0)) ∈ X0 ×Z0

and for any w(0) ∈ W0.

For the same Lyapunov function as given by (3.69), we choose c2 > 0
such that

c2 ≥ sup
ξ∈UwT ,z̃∈XT ,ε∈(0,1]

V (ξ, z̃). (3.72)

Such a c2 exists since UwT is a bounded set and limε→0 Pε = 0 by Lemma
3.3.1. Let ε∗

2 ∈ (0, 1] be such that ξ ∈ LV (c1) implies that ‖BT Pεξ‖∞ ≤ δ.
The existence of such an ε∗

2 is again due to the fact that limε→0 Pε = 0.

Now, the evaluation of V̇ , t ≥ T +1, inside the set LV (c2), using the same
technique as above, yields

V̇ = −ξ T(Qε + Pε B BT Pε)ξ − �x̃T
e R� x̃e − �x̃T

e x̃e

+ 2ξ T Pε B[σ (−(1 + µ)BT Pεξ

+ (µ + 1)Mx̃e + 
w) − 
w + BT Pεξ ]
≤ −ξ T Qεξ − vTv − 2vT[σ ((µ + 1)v + θ + α) − v − θ] − x̃T

e x̃e

≤ −ξ T Qεξ − vTv − 2vT[σ ((µ + 1)v + θ + α) − v − θ] − δ2x̃T
e x̃e

≤ −ξ T Qεξ − 2
m∑

i=1

vi [σ̄ ((µ + 1)vi + θi + αi ) − vi − θi ]

−
m∑

i=1

vi
2 −

m∑
i=1

αi
2,

where we have denoted v := −BT Pεξ , α := (µ + 1)Mx̃e , and θ := 
w

with their i th components denoted by vi , αi and θi respectively. We have also
chosen �∗

4(ε, µ) > �∗
3 such that for each ε ∈ (0, ε∗

2 ], µ ≥ 0, � ≥ �∗
4(ε, µ),

‖(µ + 1)Mx̃e‖ < δ, which ensures that |θi + αi | < 1.
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Noting that sgn(σ̄ (s)) = sgn(s), and for ε ∈ (0, ε∗
2 ], � ≥ �∗

4(ε, µ), |vi +
θi | ≤ 1 and |αi + θi | < 1, we observe that,

|(µ + 1)vi + θi + αi | ≤ 1

=⇒ vi [σ̄ ((µ + 1)vi + θi + αi ) − vi − θi ] = µv2
i + viαi ,

(µ + 1)vi + θi + αi > 1 =⇒ vi > 0

=⇒ vi [σ̄ ((µ + 1)vi + θi + αi ) − vi − θi ] ≥ 0,

(µ + 1)vi + θi + αi < −1 =⇒ vi < 0

=⇒ vi [σ̄ ((µ + 1)vi + θi + αi ) − vi − θi ] ≥ 0.

Now, without loss of generality, let us assume that |(µ+ 1)vi + θi +αi | ≤
1, i = 1 . . . mα, for some 0 ≤ mα ≤ m. Hence we conclude that,

V̇ ≤ −ξ T Qεξ −
mα∑
i=1

(vi + αi)
2

≤ −ξ T Qεξ.

Then, it can be easily seen that, for all (x(0), x̂ (0), ŵ(0)) ∈ X0 × Z0,
there exists an ε∗

2 > 0, such that for each ε ∈ (0, ε∗
2] and each µ ≥ 0, there

exists an �∗
4(ε, µ) such that for each ε ∈ (0, ε∗

2], µ ≥ 0, � ≥ �∗
4(ε, µ), the

solution of the closed-loop system (3.66) satisfies

lim
t→∞ e(t) = 0. (3.73)

Finally, taking ε∗ = min{ε∗
1, ε

∗
2} and �∗(ε, µ) = max{�∗

2(ε, µ), �∗
4(ε, µ)},

we complete our proof of Theorem 3.3.5.

Following example illustrates our design procedure.

Example 3.3.4 We consider the same plant and the exosystem as in Example
3.3.1. However, we will utilize y = e for feedback. Let the sets W0 and X0

be the same as those in Example 3.3.1. Let the set Z0, be given by Z0 = {z :
‖z‖ ≤ 1, z ∈ R

6}. Following the proof of Theorem 3.3.5, a suitable choice
of ε∗ is 1.5 × 10−4. For the observer design we use the direct method as
described in Appendix 3.B. Placing all the eigenvalues of Ã at −4, a suitable
choice of �∗ for µ ≤ 1200 is 5. For ε = ε∗, µ ≤ 1200, and � = �∗, the
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Figure 3.5: ε = 1.5 × 10−4, µ = 0, � = 5. a) e1; b) e2; c) σ̄ (u1); d)
σ̄ (u2).
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Figure 3.6: ε = 1.5 × 10−4, µ = 1200, � = 5. a) e1; b) e2; c) σ̄ (u1); d)
σ̄ (u2).
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feedback law (3.58) is given by

˙̂x = Ax̂ + Bσ (u) + Ewŵ + KA(5)Ce(x̂ − x) + KA(5)Dew(ŵ − w)
˙̂w = Sŵ + KS(5)Ce(x̂ − x) + KS(5)Dew(ŵ − w)

u = −(µ + 1)10−3

(
6.4203 11.918 3.3628 −2.9767
11.918 22/623 6.1139 −5.6505

)
x̂

+(µ + 1)10−3

(−2.9799 3.3755
−4.2588 4.6980

)
ŵ

+
(

1.25 0.25
−0.25 −1.25

)
ŵ

(3.74)

where µ ≥ 0 and

KA(5) =

⎛
⎜⎜⎝

6.6148 × 103 8.8425 × 102

2.8146 × 103 5.3047 × 103

−2.4153 × 104 6.6806 × 103

−2.4947 × 104 4.7511 × 104

⎞
⎟⎟⎠ ,

KS(5) =
(

3.5526 × 103 −9.4147 × 102

−2.0833 × 103 4.0093 × 103

)
.

For the initial conditions x0 = (7, 7, 7, 7), w0 = (0.1, 0.1), x̂0 = (0, 0, 0, 0),
ŵ0 = (0, 0), Figures 3.5 on page 106 and 3.6 on the page before show the
control action and the closed-loop performance for low-gain feedback (µ = 0,
� = 5) and low-and-high gain feedback (µ = 1200, � = 5) respectively.
The simulation results illustrate that the low-and-high gain feedback regulator
significantly out-performs the low-gain feedback one given in (3.42).

3.4 Linear versus non-linear regulators

The classical semi-global state feedback output regulation problem as well as
the classical semi-global measurement feedback output regulation problem, as
defined earlier, require a regulator with a linear structure. That is, linear state
feedback laws or the implementation of linear state feedback laws utilizing
linear observers are required for output regulation. The sufficient conditions
for the existence of such “linear” regulators were given in Section 3.3. We ex-
amine in this section the necessity of these conditions. This must be examined
in two fronts.

The first is to examine the necessity of the solvability conditions given in
Section 3.3 for the existence of “linear” regulators. The second is to exam-
ine whether we can weaken the solvability conditions if we allow non-linear
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regulators in our definitions of the state and the measurement feedback output
regulation problems. It turns out that under certain mild conditions our solv-
ability conditions for the existence of “linear” regulators are basically neces-
sary. Moreover, these conditions cannot be weakened by allowing non-linear
regulators. We also make an interesting observation that whenever these mild
conditions are violated, there might be non-linear state feedback controllers
that achieve output regulation while no linear state feedback controllers would
do so.

The necessary condition for the existence of the classical semi-global state
feedback regulator using a general non-linear feedback law is given in the
following theorem.

Theorem 3.4.1 Consider the plant and the exosystem (3.1). Let Assumptions
A.1 and A.2 hold. Assume that in the absence of input saturation, the linear
state feedback output regulation problem is solvable, i.e., there exist matrices
	 and 
 which solve the regulator equation (3.18). Also assume that the
system characterized by the quadruple (A, B, Ce, Deu) is left-invertible and
has no invariant zeros on the imaginary axis. Then, a necessary condition for
the existence of a general, possibly non-linear, state feedback controller that
achieves semi-global output regulation for (3.1) is that, for all ε > 0, there
exists a T � 0 such that

‖
w‖∞,T � 1 + ε, for all w(0) ∈ W0. (3.75)

Proof : The proof of the above theorem depends on certain results described
in the Appendix 3.A. We will assume in the proof that the reader is familiar
with these results. Consider the system (3.1), however, without the saturation
element. That is, let

ẋ = Ax + Bv + Eww

ẇ = Sw

e = Cex + Deuv + Deww.

(3.76)

Suppose that we have some arbitrary non-linear feedback u = α(x, w) which
achieves output regulation for the system (3.1). Then the feedback v =
σ (α(x, w)) will achieve output regulation for the system (3.76). Note that
by our assumption, there exists also a linear feedback,

v = Fx + (
 − F	)w,

which achieves output regulation for the system (3.76). Moreover,

v(t) − 
w(t) → 0 as t → ∞. (3.77)
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We have two feedback laws which achieve output regulation for the linear sys-
tem (3.76). One is non-linear and satisfies a certain amplitude constraint. The
other is a linear feedback, of which we have no a priori knowledge regarding
its amplitude. Our aim is to show that the linear feedback must necessarily
satisfy an amplitude constraint asymptotically as t → ∞. To this end, we
define the difference between the two control inputs as

s(t) = [Fx + (
 − F	)w](t) − [σ (α(x, w))](t).
Suppose now that Condition (ii)b) of Theorem 3.3.2 is not true. In that case
there exist {tn}∞

n=1 and a δ > 0 such that tn → ∞ as n → ∞ and ‖
w(tn)‖ >

1 + 2δ for all n. Given the differential equation for w, it is not difficult to
see that this implies that there exists an ε > 0 such that, for all n and all
t ∈ [tn, tn + ε], we have ‖
w(tn)‖ > 1 + δ.

If we look at our definition for s(t), we see that the first component asymp-
totically converges to 
w. The second term is bounded by 1. Combining this
with the property for 
w that we just derived, it is easily seen that the vector-
valued signal s(t) has a component si (t) for which we have, for all n, either

si (t) > δ for all t ∈ [tn, tn + ε]
or

si (t) < −δ for all t ∈ [tn, tn + ε].
In other words s ∈ P (as defined in Definition 3.A.1 of the Appendix). Now,
if we apply the signal s to the system

ẋ = Ax + Bs
e = Cex + Deus

(3.78)

with zero initial conditions, then we have e(t) → 0 (since both the linear feed-
back and the non-linear saturating feedback achieve output regulation). This
is in contradiction with s ∈ P according to Theorem 3.A.2. This implies that
Condition (ii)b) of Theorem 3.3.2 is satisfied. Thus we find that the existence
of a, possibly non-linear, feedback achieving output regulation for the system
(3.1) implies that the conditions of Theorem 3.3.2 are satisfied.

Remark 3.4.1 The necessary conditions given in Theorem 3.4.1 are slightly
different from the sufficient conditions given in Theorem 3.3.2. Namely, Con-
dition (3.75) of Theorem 3.4.1 and Condition (ii)b) of Theorem 3.3.2 are not
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exactly the same, although they are almost equal. Hence, one can conclude
that under Assumption A.2 and the assumption that the system characterized
by (A, B, Ce, Deu) is left invertible and has no invariant zeros on the imagi-
nary axis, if the classical semi-global state feedback output regulation prob-
lem is solvable by a non-linear feedback regulator then it is generally solvable
by the linear feedback regulator as well.

An interesting question that arises now is whether one can weaken the
necessary condition given in Theorem 3.4.1 if the system characterized by
(A, B, Ce, Deu) is not left invertible and/or has invariant zeros on the jω axis.
The following example shows that, in fact, this is the case. More significantly,
this example shows that if the system characterized by (A, B, Ce, Deu) is not
left invertible, non-linear feedback controllers might achieve semi-global out-
put regulation while no linear feedback controller can do so.

Example 3.4.1 Consider the system

ẋ =
⎛
⎝−1 1 2

0 −2 0
0 0 −1

⎞
⎠x +

⎛
⎝ 1 0 −1

0 1 1
−1 1 0

⎞
⎠σ (u),

ẇ =
(

0 0
0 0

)
w,

e =
(

0 1 0
0 0 1

)
x +

(−0.5 0
0 −1

)
w,

(3.79)

with w(0) ∈ W0 where

W0 = convex hull

{(
2
0

)
,

(
0
2

)
,

(
2
2

)}
.

It is straightforward to show that for this example, in the absence of input
amplitude saturation, the linear state feedback output regulation problem is
solvable. In fact, the matrices 	 and 
 that solve the regulator equation (3.18)
are given by,

	 =
⎛
⎝π11 π12

0.5 0
0 1

⎞
⎠ , 
 =

⎛
⎝ 0.5π11 + 0.25 0.5π12 − 1.5

0.5π11 + 0.25 0.5π12 − 0.5
−0.5π11 + 0.75 −0.5π12 + 0.5

⎞
⎠ ,

where π11 and π12 are any real numbers.

In the presence of input amplitude saturation, however, the sufficient con-
ditions of Theorem 3.3.2 are not satisfied. More specifically, Condition (ii)b)
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of Theorem 3.3.2 cannot be satisfied. Hence, the design procedure developed
in Section 3.3 cannot be applied to this example. It is also evident that the
necessary condition (3.75) is not satisfied either. However, since the system
characterized by (A, B, Ce, Deu) in the given plant and the exosystem (3.79)
is not left invertible, it does not necessarily imply that there do not exist state
feedback laws that achieve semi-global output regulation for (3.79). In fact,
in what follows we will establish the following two facts for the plant and the
exosystem (3.79):

(i) The classical semi-global state feedback output regulation problem is
solvable for the system (3.79) even though the condition (3.75) is not
satisfied. This implies that the necessary conditions given in Theorem
3.4.1 can be weakened if the system characterized by (A, B, Ce, Deu) is
not left invertible.

(ii) There exist no linear state feedback controllers that can achieve semi-
global output regulation for the system (3.79). Yet suitable non-linear
controllers do exist. This establishes the important result that if the sys-
tem characterized by (A, B, Ce, Deu) is not left invertible, semi-global
output regulation might be achieved via non-linear feedback controllers
while no linear feedback controller can do so.

As the given plant is already asymptotically stable, let us consider a non-
linear feedback control law of only the exosystem state; and let it be of the
form,

u =
⎛
⎝ 0.5

0.5
−0.5

⎞
⎠ f (w) +

⎛
⎝0.5 −0.5

0.5 0.5
0.5 −0.5

⎞
⎠w, (3.80)

and

f (w) = (1 − α − β)
(−1 0

)
w,

where α and β are both � 0, and are such that α + β � 1, and

w(0) = α

(
2
0

)
+ β

(
0
2

)
+ (1 − α − β)

(
2
2

)
.

Note that for any w(0) ∈ W0, w ≡ w(0). Clearly, since α and β depend on
w, the function f is non-linear and hence the above controller is non-linear.
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We now study another system,

ẋ =
⎛
⎝−1 1 2

0 −2 0
0 0 −1

⎞
⎠x +

⎛
⎝1

0
0

⎞
⎠ v1 +

⎛
⎝0 0

1 0
0 1

⎞
⎠v2,

ẇ =
(

0 0
0 0

)
w,

e =
(

0 1 0
0 0 1

)
x +

(−0.5 0
0 −1

)
w.

(3.81)

We point out that the closed-loop system comprising of (3.79) and the control
law,

σ (u) =
⎛
⎝ 0.5

0.5
−0.5

⎞
⎠ v1 +

⎛
⎝0.5 −0.5

0.5 0.5
0.5 −0.5

⎞
⎠ v2, (3.82)

is indeed given by (3.81). In view of this connection between (3.79) and (3.81),
we can try to solve the output regulation problem for the system (3.81) subject
to the understanding that v1 and v2 thus obtained can be used in (3.82) in
order to form a control law for (3.79). A simple look at the output regulation
problem for (3.81) indicates that v1 does not affect e, and hence v1 can be
ignored. Also, we find that the transfer matrix from v2 to e is left-invertible.
Therefore we know that v2 when achieving output regulation has a unique
asymptotic behavior (except for some freedom as described in Theorem 3.A.2,
which cannot change the maximal amplitude). We find by solving the regu-
lator equation that v2 is equal to w at least asymptotically. However for all
w(0) ∈ W0, equation (3.82) must be solvable. For w(0) = (2 0)T and for
w(0) = (0 2)T, we find that v1 must be 0 when w = v2. If v1 depends linearly
on w, then for w(0) = (2 2)T, we must also choose v1 = 0 when w = v2.
However, in that case (3.82) is not solvable, and hence there exists no lin-
ear function from w to v1 such that output regulation can be achieved for all
w(0) ∈ W0. On the other hand, setting v1 = f (w) and v2 = w results in a
solvable equation (3.82) for all possible choices of w(0) ∈ W0. Moreover, the
controller (3.80) is then the unique solution. Therefore, it is straightforward to
check that the non-linear controller (3.80) indeed solves the output regulation
problem for (3.79).

We can now move on to consider the classical semi-global measurement
feedback output regulation problem, and pose questions similar to those we
posed earlier for the semi-global state feedback output regulation problem. In
fact, again, there is the question whether the conditions of Theorem 3.3.4 are
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actually necessary for the solvability of the classical semi-global measurement
feedback output regulation problem. But Theorem 3.4.1 basically resolves this
question since the conditions which are necessary for the state feedback are
clearly also necessary for the case of output feedback on the basis of the error
signal only. The only additional assumption we made in Theorem 3.3.4 is the
detectability assumption which is clearly necessary for the stabilization of our
system.

3.5 Issues of well-posedness and structural stability

We would like to reconsider the problems of well-posedness and structural
stability as introduced in the previous chapter but this time for linear systems
subject to actuator saturation. First of all note that solvability requires that the
eigenvalues of A are in the closed left half plane. This is obviously a property
that is not preserved for arbitrary parameter perturbations. But there is another
issue to consider. One of our solvability conditions requires

‖
w‖∞,T < 1 (3.83)

for some T > 0. If the perturbed exosystem has exponentially unstable
modes, then this must occur in the kernel of 
 since otherwise the above con-
dition can never be satisfied. But a small perturbation can obviously change

 and the unstable dynamics will then become visible in 
w and condition
(3.83) will fail for an arbitrarily small perturbation.

Hence in our definition of well-posedness we constrain perturbations of
A and S to avoid exponentially unstable eigenvalues. In other words, the
perturbed matrices A and S need to be weakly Hurwitz-unstable.

Definition 3.5.1 (Well-posedness) For a system � as in (3.1), the classical
semi-global linear observer based measurement feedback output regulation
problem as defined in Problem 3.3.2 is said to be well-posed at (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if there exists a neighborhood P0

of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in the parameter
space P such that the considered problem is solvable for each element (A, B,
Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) of P0 for which A and S have all its
eigenvalues in the closed left-half plane.

We have the following result.
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Theorem 3.5.1 Consider a system � as in (3.1) and the classical semi-global
linear observer based measurement feedback output regulation problem as
defined in Problem 3.3.2. Let the conditions of Theorem 3.3.4 be satisfied for
this system with nominal parameter values,

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0).

Then the considered problem for � is well-posed at (A0, B0, Ew,0, Ce,0, Deu,0,
Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if and only if S is weakly Hurwitz-stable and the
matrix(

A0 − λI B0

Ce,0 Deu,0

)
(3.84)

has full row-rank for each λ which is an eigenvalue of S0.

Remark 3.5.1 In the above theorem, we did not perturb the set of initial con-
ditions for the exosystem W0 but it is obvious that small perturbations of this
set will not affect well-posedness. Note that in the perturbations of A and S
we avoid exponentially unstable eigenvalues but it turns out to be necessary
that the nominal value for S satisfies the slightly stronger condition of being
weakly Hurwitz stable.

Proof : Let (	0, 
0) be the solution of the regulator equation for the nominal
system,

	0S = A0	0 + B0
0 + Ew,0,

0 = Ce,0	0 + Deu,0
0 + Dew,0.

such that there exists a T > 0 and a δ > 0 such that

‖
0w‖∞,T < 1 − δ (3.85)

for all initial conditions w(0) ∈ W0. The existence of such a solution of the
regulator equation is guaranteed by the fact that the nominal system satisfies
the conditions of Theorem 3.3.4.

By the results of Section 2.7 we know that for the perturbed system the
regulator equation is solvable. Obviously the solution of the regulator equa-
tion need not be unique but is obvious that if the parameter variations are small
then there exists a solution (	,
) of the regulator equation for the perturbed
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system with ‖
0 − 
‖ very small. Since the nominal exosystem is weakly-
Hurwitz-stable and the perturbed system has no exponentially unstable modes
we know that for small enough perturbations the perturbed exosystem will still
be weakly-Hurwitz-stable. But then, from (3.85), it is obvious that for small
enough perturbations we will have that ‖
w‖∞,T � 1 − δ/2 for all initial
conditions w(0) ∈ W0. Therefore by Theorem 3.3.4 the classical semi-global
measurement feedback output regulation problem is solvable.

From Theorem 2.7.1, we know that (3.84) is necessary to guarantee that
for the perturbed system the regulator equation is solvable. Next, assume S
is not weakly-Hurwitz-stable. Then there exists arbitrarily small initial con-
ditions for the exosystem such that w is unbounded. But then there exists an
arbitrarily small perturbation of 
, say 
̃, such that 
̃w is unbounded. Choose
Ẽw = S	−	A − B
̃ and D̃ew = −Ce	− Deu
̃ while the other parameters
remain the same. Then for this perturbed system the output regulation prob-
lem is not solvable since ‖
̃w‖∞,T is equal to infinity and therefore not less
than 1 for some T which is required for solvability of the output regulation
problem.

Next we consider the output regulation problem with structural stability.
As already discussed in Section 2.8, we need to restrict our perturbations of
the system parameters even more. As already discussed in connection with
well-posedness, we need to guarantee that even after perturbation, A still has
all its eigenvalues in the closed left-half plane. But based on Section 2.8 we
also need to exclude perturbations of the exosystem, i.e. we do not perturb S.
Finally we need that the error signal is part of the measurement signal y, i.e.
the parameters need to satisfy (2.36).

Definition 3.5.2 (Structurally stable output regulation problem) Consider a
system � as in (3.1) with the additional structure given in (2.36). A fixed
controller is said to solve the structurally stable output regulation problem for
� at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0) if it satisfies the
following properties:

(i) The controller solves the classical semi-global linear observer based
measurement feedback output regulation problem when the plant in
(2.1) is characterized by the nominal set of parameters (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0).

(ii) There exist a neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0,
Cy2,0, Dyu2,0, Dyw2,0) such that the controller achieves internal stability
and output regulation for each set of perturbed plant parameters (A0 +
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δA, B0 + δB, Ew,0 + δEw, Ce,0 + δCe, Deu,0 + δDeu, Dew,0 + δDew,
Cy2,0+δCy2, Dyu2,0+δDyu2, Dyw2,0+δDyw2) in P0 for which A0 +δA
has all its eigenvalues in the closed left-half plane.

In other words, as long as the perturbed parameters remain in P0, we
have limt→∞ e(t) = 0 for all x(0) ∈ R

n, v(0) ∈ R
nc , and w(0)) ∈ R

s .

The above definition obviously implies that, for the existence of a regu-
lator that solves the structurally stable output regulation problem, the exact
output regulation problem must necessarily be well-posed (with the obvious
modification implied by (2.36) and the fact that S is not perturbed).

A main technical complexity is the preliminary static output injection we
applied in Section 2.8 to guarantee that A0 and S have no common eigenval-
ues. This preliminary feedback is without loss of generality in the case of lin-
ear systems but due to the saturation this preliminary output injection changes
the structure of the system and makes the analysis complicated. However, first
of all in most cases A0 and S have no eigenvalues in common and then we do
not need any preliminary feedback. Secondly, we can make this preliminary
feedback arbitrarily small and this allows us to actually resolve all the diffi-
culties associated with this preliminary feedback. Due to its technicality we
do not discuss the details.

As shown below, it turns out that the necessary and sufficient condition
given in Theorem 3.5.1 for the well-posedness of the exact output regulation
problem with measurement feedback is indeed also the necessary and suf-
ficient condition for the existence of a regulator that solves the structurally
stable output regulation problem.

Theorem 3.5.2 Consider a system � as in (3.1) with the structural constraint
(2.36). Let the conditions of Theorem 3.3.4 be satisfied for this system with
nominal parameter values,

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0).

There exists a regulator that solves the structurally stable output regulation
problem for � at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0) if
and only if the matrix S is weakly Hurwitz-stable and the matrix(

A0 − λI B0

Ce,0 Deu,0

)
(3.86)

has full row-rank for each λ which is an eigenvalue of S0.
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For linear systems the parameter perturbations could be arbitrarily large
as long as stability is preserved. This is not the case here because the per-
turbations might be such that lim supt→∞ ‖
w(t)‖∞ > 1 and then obviously
output regulation is no longer possible.

We will only briefly indicate how the above result can be shown and how
a suitable controller can be found. For ease of exposition we assume here that
A0 and S have no eigenvalues in common. Define Smin, S̃p, D̃ew and D̃yw as in
Section 2.8.

We can now define an auxiliary system composed of the extended plant
(2.1) and the auxiliary exosystem (2.41),

�̃ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̃ = A0 x̃ + B0σ (ũ)

ρw̃ = S̃pw̃

ỹ = Cy,0x̃ + Dyu,0σ (ũ) + D̃yww̃

ẽ = Ce,0x̃ + Deu,0σ (ũ) + D̃eww̃.

(3.87)

We design a low-gain or a low-high gain measurement feedback controller for
this auxiliary system such that the system achieves output regulation for all
initial conditions under the condition that lim supt→∞ ‖
w̃(t)‖∞ < 1 − δ/2
where 
̃ is of course the solution of the regulator equations associated with
this system. We can then show that this controller achieves structural stability
for the original system if we know that the system (A0, B0, Ce,0, Deu,0) is
left-invertible. There are two important issues that need to be clarified at this
point:

• A low-gain and a low-high gain measurement feedback controller has
the property that when applied to the system (2.42), the controller will
asymptotically get out of saturation and therefore we get asymptotically
linear behavior where we can use the analysis of Section 2.8.

• We know that the controller achieves output regulation for the perturbed
system if we can guarantee that

lim sup
t→∞

‖
w̃(t)‖∞ < 1 − δ
2 (3.88)

where 
 satisfies the regulator equation for the perturbed system. Note
that if a controller achieves output regulation for a system, then we can
associate with that controller a unique solution (
,	) of the regulator
equation (because of our left-invertibility assumption). For the nominal
system the regulator equation has a solution (	0, 
0) such that

‖
0w̃‖∞,T < 1 − δ.
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If the perturbations in the system parameters are small enough, we can
then guarantee that 
 − 
0 is very small and then (3.88) immediately
follows.

Next we consider the case where the left-invertibility assumption is not
satisfied. We note that when we design our controller for the auxiliary system
then this controller is associated with a particular solution (	̃, 
̃) of the regu-
lator equation for an arbitrary perturbed system. We will then achieve output
regulation for this perturbed system for any initial condition which is small
enough to guarantee ‖
̃w̃‖∞,T < 1. But the question is whether for all initial
conditions in W0 we have ‖
̃w̃‖∞,T < 1.

In particular, this controller is then associated with a particular solution
(	̃0, 
̃0) of the regulator equation for the nominal system. But we are not
sure whether 
 = 
0 and therefore we are not sure that there exists a T > 0
such that ‖
̃0w̃‖∞,T < 1 for all w(0) ∈ W0. Therefore we are not sure
whether we achieve output regulation for all possible initial conditions of the
exosystem. This technicality can be removed but due to its complexity we do
not discuss the details.
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3.A Uniqueness of asymptotic behavior of the input

In this appendix we will prove that under rather weak assumptions the asymp-
totic behavior of the input is unique given that the output of the system tracks a
certain reference signal. This is a result which is used in the proof of Theorem
3.4.1.

The following theorem from [9] is a very powerful tool in the analysis of
the asymptotic behavior of the signals.

Theorem 3.A.1 Let R, S, V and W be matrix valued polynomials. Define k
as their maximal degree. The following conditions are then equivalent.

(i) For any vector-valued function u on [0,∞) which is k times differen-
tiable the conditions,

r := R

(
d

dt

)
u : r(t) = 0 for all t,

s := S

(
d

dt

)
u : s(t) → 0 as t → ∞, and

v := V

(
d

dt

)
u : sup

t
v(t) < ∞,

imply that

w := W

(
d

dt

)
u : w(t) → 0 as t → ∞.

(ii) Defining

M(s)R(s) + N(s)S(s) + L(s)V (s) = W (s), (3.89)

we have:

(a) for all α ∈ C
+ there exist rational matrices M, N and L which

do not have poles in α satisfying (3.89);

(b) for all α ∈ C
0 there exist rational matrices M, N and L which do

not have poles in α satisfying (3.89) and, moreover, L(α) = 0.

(c) there exist rational matrices M, N and L satisfying (3.89) and,
moreover, N is a proper and L is a strictly proper rational matrix.

Proof : This is given in [9].
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Remark 3.A.1 Note that the proof in [9] is set in a distributional setting.
Hence the above result still holds true if u is not smooth in which case all
the above derivatives are interpreted in a distributional setting. In particular,
if u = σ (v) where v is smooth and σ is our non-differentiable saturation
function, then the above result can still be applied.

We obtain the following corollary.

Corollary 3.A.1 Consider the system,

ẋ = Ax + Bv

y = Cx + Dv,
(3.90)

with x(0) = 0. Then, v = 0 is the only bounded input for which y(t) → 0
if and only if the system characterized by (A, B, C, D) is left-invertible and
has no invariant zeros on the imaginary axis and D is injective. Moreover,
v = 0 is the only bounded input which has a bounded derivative and for
which y(t) → 0 if and only if the system characterized by (A, B, C, D) is
left-invertible and has no invariant zeros on the imaginary axis.

Proof : We apply Theorem 3.A.1 with

R(s) := [ s I − A B ], (3.91)

S(s) := [ C D ], (3.92)

V (s) := [ 0 I ], and (3.93)

W (s) := [ 0 I ]. (3.94)

The extra condition that D must be injective or the derivative of v bounded
is really needed. A simple example is v(t) = cos(t2) for which the output
goes to zero as long as D = 0. Basically, v must either go to zero or start
oscillating more and more rapidly. To formalize this concept, we define the
following class of inputs.

Definition 3.A.1 We define P as the set of bounded vector-valued functions
v for which there exists a component vi of v for which there exist ε > 0, δ > 0
and a sequence {tn} (tn → ∞ as n → ∞) such that for all n, either

vi (t) > δ for all t ∈ [tn, tn + ε]
or

vi (t) < −δ for all t ∈ [tn, tn + ε].
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Our basic claim is that if v ∈ P then it can never result in an output which
converges to zero as long as the system is left-invertible and has no invariant
zeros on the imaginary axis. This is formalized in the following theorem.

Theorem 3.A.2 Assume that the system (3.90) is given where it is left-inver-
tible and has no invariant zeros on the imaginary axis. Moreover, assume that
v is bounded, and is such that y(t) → 0 as t → ∞. Finally, assume zero
initial conditions. In that case v �∈ P .

Proof : We prove this theorem by contradiction. Therefore, assume that ε,
δ and {tn} exist satisfying the conditions of the theorem. Let the transfer
matrix of (3.90) be given by G. We can factorize G = Ḡ H where Ḡ is
left-invertible, has no zeros on the imaginary axis, and its direct feedthrough
matrix is injective. Moreover, H is square, invertible and has no invariant
zeros. The construction of Ḡ and H can be based on Silverman’s algorithm
(see [67]). Suppose w ∈ R

m is such that Gw is strictly proper. Then, choose
k such that (s + α)kGw (with α > 0) is proper but not strictly proper. Let
	 be the projection onto w. Define G1 = G(I − 	) + G	(s + α)k and
H1 = (I − 	) + (s + α)−k	 for which we have G = G1 H1. If the direct
feedthrough matrix of G1 is not yet injective we repeat this procedure on G1

obtaining G2 and H2. We can then repeat the procedure on G2. After at most
m steps (say � steps) this procedure stops and we finally set Ḡ = G� and
H = H� H�−1 · · · H1. It is easy to check that these matrices satisfy all our
requirements.

Define s = Hv. Since H is asymptotically stable and v bounded, we
obtain from s = Hv that s is bounded. Moreover, we have y = Ḡs, and
owing to Corollary 3.A.1, we know that s(t) → 0 as t → ∞.

Let the matrices K , L , M , and N characterize H . Due to the way H
is constructed it is easy to see that in a suitable basis we have the following
additional structure:

M =
(

M1

0

)
, N =

(
0

N2

)
.

We denote the state of H by p. Define pn := p(tn), and define vn ∈ L2[0, ε]
by vn(s) := v(tn + s). For all s ∈ [0, ε], we have(

M1

0

)(
eK s pn +

∫ s

0
eK (s−τ )Lvn(τ ) dτ

)

+
(

0
N2

)
vn(s)s(tn + s) → 0 as n → ∞. (3.95)
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We know that vn is bounded, and owing to the stability of H , pn is also
bounded. Hence there exists a subsequence {pnr , vnr } such that pnr → p∗
as r → ∞ and vnr

w→ v∗. The latter convergence is a convergence in the
weak topology and the existence of the subsequence is based on the fact that
the unit ball in L2[0, ε] is weakly compact (see e.g. [56]).

Finally, we note that (3.95) then implies that for all s ∈ [0, ε], we have

MeK s p∗ +
∫ s

0
MeK (s−τ )Lv∗(τ ) dτ + Nv∗ = 0.

Because the system H is invertible and has no zeros, the above implies that
p∗ = 0 and v∗ = 0.

We complete our proof by showing that v∗ = 0 contradicts with the re-
quirements on v outlined in the theorem. The conditions in the theorem imply
that ∣∣∣∣

∫ ε

0
vn(s) ds

∣∣∣∣ > εδ

for all n. But this implies that

∣∣∣∣
∫ ε

0
v∗(s) ds

∣∣∣∣ > εδ,

which obviously contradicts with v∗ = 0. Hence, our initial assumption that
ε, δ and {tn} exist satisfying the conditions of the theorem was incorrect and
our proof is completed. (Note that v(t) = cos(t2) would indeed result in vn

which converges to zero in the weak topology.)

Remark 3.A.2 The above theorem basically states that either the amplitude
of v gets smaller as t → ∞ or the signal starts oscillating very rapidly as
t → ∞. Our previous example v(t) = cos(t2) clearly presents the latter
behavior. We use this result to show that the difference between two signals
achieving output regulation will never be in P . But then we can show that
any non-linear feedback can never have asymptotically smaller input than the
linear feedback provided both achieve output regulation. Hence we can prove
that if we can achieve output regulation via non-linear feedback then we can
also achieve output regulation via linear feedback.
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3.B Review of direct low-gain design for linear sys-
tems – an explicit construction

We construct here explicitly a family of low-gain state feedback gains based
on an eigenvalue assignment method.

Consider the linear system

ẋ = Ax + Bu (3.96)

where the state x ∈ R
n and the input u ∈ R

m . Assume that (A, B) is stabiliz-
able and all the eigenvalues of A are located in the closed left-half plane. We
have the following direct low-gain state feedback design algorithm.

Step 1 : Find the state transformation T ( [10]) such that (T −1 AT, T −1 B) is
in the following form

T −1 AT =

⎛
⎜⎜⎜⎜⎜⎝

A1 A12 · · · A1p A1c̄

0 A2 · · · A2p A2c̄
...

. . .
. . .

...
...

0 · · · 0 Ap Apc̄

0 · · · 0 0 Ac̄

⎞
⎟⎟⎟⎟⎟⎠ ,

T −1 B =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1 0 · · · 0 ∗
0 B2

. . .
...

...
...

. . .
. . . 0 ∗

0 · · · 0 Bp ∗
0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here ∗’s represent submatrices of less interest and for i = 1, 2, · · · , p,

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

−ai
ni

−ai
ni −1 −ai

ni −2 · · · −ai
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bi =

⎛
⎜⎜⎜⎜⎜⎝

0
...

0
0
1

⎞
⎟⎟⎟⎟⎟⎠ .

The transformation T is such that, for all i = 1, · · · , p, (Ai , Bi) is control-
lable, all the eigenvalues of Ai are in the closed left-half plane, and all the
eigenvalues of Ac̄ are in the open left-half plane.
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Step 2 : For each (Ai , Bi), let Fi (ε) ∈ R
1×ni be the state feedback gain such

that

λ(Ai − Bi Fi (ε)) = −ε + λ(Ai ) ∈ C
−
.

Note that Fi(ε) is unique.

Step 3 : Form a family of low-gain state feedback gain matrices Fε as

FεT = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(ε
v2) 0 · · · 0 0 0

0 F2(ε
v3)

. . .
...

...
...

...
. . .

. . . 0 0 0
0 · · · 0 Fp−1(ε

vp) 0 0
0 · · · 0 0 Fp(ε) 0
0 · · · 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.97)

where vi = (ri + 1)(ri+1 + 1) · · · (rp + 1) and ri is the largest algebraic
multiplicity of the eigenvalues of Ai .

With the above choice of Fε, we have the following theorem.

Theorem 3.B.1 Consider the linear system (3.96). Assume that all the eigen-
values of A are located in the closed left-half plane and that the pair (A, B) is
stabilizable. Then, for the state feedback gain given by (3.97), the closed-loop
system

ẋ = (A + B Fε)x (3.98)

is asymptotically stable for all ε > 0. Moreover, there exists an ε∗ > 0 such
that for all ε ∈ (0, ε∗],

‖Fε‖ ≤ αε, (3.99)

‖Fεe(A+B Fε)t‖ ≤ βεe−εγ t , (3.100)

where α and β are positive constants independent of ε, and γ is a positive
integer also independent of ε.

Proof : It is a consequence of [36].
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3.C Review of fast observer design – an explicit con-
struction

For the design of a fast observer we have a direct design as an alternative to
the Riccati-based approach.

Step 1 : Assuming that the pair((
Cy Dyw

)
,

(
A Ew

0 S

))

is observable, we choose a nonsingular state transformation TS and a nonsin-
gular output transformation TO such that

T −1
S

(
A Ew

0 S

)
TS

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 Ip1−1 b21 0 · · · bk1 0
b12 0 b22 0 · · · bk2 0
b13 0 b23 Ip2−1 · · · bk3 0
b14 0 b24 0 · · · bk4 0
...

...
...

...
. . .

...
...

b12k−1 0 b22k−1 0 · · · bk2k−1 Ipk−1

b12k 0 b22k 0 · · · bk2k 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

T −1
O

(
Cy Dyw

)
TS

=

⎛
⎜⎜⎜⎜⎜⎝

1 01×p1−1 0 0 · · · 0 0
0 0 1 01×p2−1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 01×pk−1

0 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where Ipi−1 is an identity matrix of dimension (pi − 1) × (pi − 1), and the
integers pi , i = 1, 2, · · · , k, are the so-called observability indices. Such a
transformation exists and is usually called the Brunovski transformation.

Step 2 : For each i = 1 to k, find an li1 ∈ R
(pi−1)×1 and a scalar li2 such that

the following matrix is Hurwitz-stable,

Ã1 =
(−li1 Ipi−1

−li2 0

)
.
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Step 3 : Compose the observer gain K� as follows:

T −1
S K�TO =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 + S p1−1(�)l11 b21 · · · bk1 0
b12 + �p1l12 b22 · · · bk2 0

b13 b23 + S p2−1(�)l21 · · · bk3 0
b14 b23 + �p2l22 · · · bk4 0
...

...
. . .

... 0
b12k−1 b22k−1 · · · bk2k−1 + S pk−1(�)lk1 0

b12k b22k · · · bk2k + �pk lk2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where for an integer r ,

Sr(�) =

⎛
⎜⎜⎜⎜⎝

� 0 · · · 0

0 �2 . . .
...

...
. . .

. . . 0
0 · · · 0 �r

⎞
⎟⎟⎟⎟⎠ .

Finally, we partition the matrix K� and obtain KA,� ∈ R
n×p and KS,� ∈ R

s×p

as follows

K� =
(

KA,�

KS,�

)
.

For this alternative design we find that Theorem 3.3.5 is still valid. For
details we refer to [33].
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Chapter 4

Classical output regulation with
actuators subject to amplitude
saturation – discrete-time
systems

4.1 Introduction

The previous chapter considers output regulation for continuous-time linear
systems with amplitude saturating actuators. This chapter considers the same
however for discrete-time linear systems. Although certain technical results
differ from similar ones of the previous chapter, there are definite structural
similarities between this chapter and the previous one.

Since output regulation inherently requires internal stabilization, let us
first briefly review internal stabilization of discrete-time linear systems with
amplitude saturating actuators. Analogous to the continuous-time case, Yang
[93] established that a linear discrete-time system subject to input amplitude
saturation can be globally asymptotically stabilized via feedback if and only
if all its poles are located inside or on the unit circle. Also, a non-linear glob-
ally stabilizing control law for such a system is explicitly constructed in [93].
Moreover, it is shown in [94] that similar to the continuous-time case, in gen-
eral, one must resort to non-linear control laws for global asymptotic stabi-
lization. On the other hand, in connection with the semi-global framework,
it is shown in [37] that one can semi-globally exponentially stabilize a linear
system subject to input amplitude saturation using linear feedback laws if and
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only if the given system is stabilizable with bounded controls and has all its
poles inside or on the unit circle. In other words, the basin of attraction of
a linear system subject to input amplitude saturation can be made arbitrarily
large using appropriately tuned linear feedback laws if the system is asymp-
totically null controllable 1 with bounded controls.

Our focus here, as in the case of continuous-time systems, would be on the
semi-global output regulation problem for linear asymptotically null control-
lable (with bounded controls) systems subject to input amplitude saturation.
As in the case of continuous-time systems, the rationale behind the adoption
of a semi-global framework for output regulation problem is two-fold. Firstly,
the semi-global framework allows us to use linear feedback laws, which is ob-
viously very appealing; and secondly, the semi-global framework seems to be
a natural choice when we show that the global output regulation problem, in
general, does not have a solution. We study here both state feedback and mea-
surement feedback. The dynamic measurement feedback output regulation
problem is solved by designing a linear observer based feedback. In this case,
although the controller has a linear structure, it has some non-linearity due
to input amplitude saturation. We introduce the notion of semi-global output
regulation problems for linear systems with amplitude saturating actuators by
extending the output regulation theory developed for linear systems in Chap-
ter 2. A set of solvability conditions for these problems is provided and it is
shown that for a fairly general class of systems these conditions are necessary.
We also show that, under certain weak assumptions, these solvability condi-
tions for semi-global output regulation problems cannot be weakened further
even if we resort to non-linear feedback laws. However, when these assump-
tions are not satisfied, an example shows that a non-linear feedback controller
can achieve output regulation when no linear feedback controller can do so.
This chapter is based on the research of authors and their coworkers, in par-
ticular [41] and [45].

A point that should be emphasized is this. As will be shown, under certain
solvability conditions, linear feedback controllers can be developed to solve
the posed semi-global output regulation problems by using what is familiarly
known as a low-gain design technique. Since low-gain controllers under uti-
lize the available control capacity, often one finds that the convergence of
the error signal to zero as time progresses to infinity is rather slow. In these
cases, under the same solvability conditions, one could develop an improved
technique of designing the appropriate feedback controllers. Such a design

1A linear discrete-time system is asymptotically null controllable with bounded controls if
and only if it is stabilizable and all its poles are inside or on the unit circle.
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technique utilizes the available control capacity in a better way, and thus re-
sults in a better performance. However, unlike in the continuous-time case,
for discrete-time systems, the feedback controllers that are developed by the
improved design technique turn out to be non-linear when the given system
has multiple inputs. For the single input case, we obtain feedback controllers
that remain linear.

4.2 Classical global output regulation for discrete-ti-
me systems subject to input amplitude saturation

As we said above, our primary focus here is output regulation of linear sys-
tems subject to amplitude saturation. Thus we start by redefining the classical
output regulation problem. To do so, we consider a time-invariant multivari-
able discrete-time system with inputs that are subject to amplitude saturation
together with a time-invariant exosystem that generates disturbance and refer-
ence signals. That is, we consider the system,

x(k + 1) = Ax(k) + Bσ (u(k)) + Eww(k)

w(k + 1) = Sw(k)

y(k) = Cyx(k) + Dyww(k)

e(k) = Cex(k) + Deuσ (u(k)) + Deww(k),

(4.1)

where as usual x ∈ R
n, w ∈ R

s , u ∈ R
m , y ∈ R

p, and e ∈ R
q . Also, as in the

continuous-time case, σ is a vector-valued saturation function defined as

σ (s) = [σ̄ (s1), σ̄ (s2), · · · , σ̄ (sm)]T (4.2)

with

σ̄ (s) =

⎧⎪⎨
⎪⎩

s if |s| ≤ 1

−1 if s < −1

1 if s > 1.

(4.3)

Because of the presence of the saturation function σ , the system (4.1) is non-
linear. Note that we can also treat different saturation levels, even differences
between channels, by simple scaling. The matrix Dyu equals 0 (compared
with (2.1)). For control purposes this matrix can be easily handled and it does
not affect any of our solvability conditions. However, it makes the formulae
much more complex and therefore we opted to go for the simple case with
Dyu = 0.

Before we proceed further, for ease of referencing, we formulate the fol-
lowing assumptions:
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A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Schur-stable, i.e. all the eigenvalues of S are on or
outside the unit circle.

A.3. The pair

((
Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

Note that these assumptions have been defined before on pages 19 and 25.

As discussed in the previous chapter, the global output regulation prob-
lem for continuous-time systems was first formulated by Teel in [83]. We
now translate Teel’s formulation of the global state feedback output regula-
tion problem and the global measurement feedback output regulation problem
into the discrete-time language.

Problem 4.2.1 (Global state feedback output regulation problem for linear
discrete-time systems subject to input amplitude saturation) For a system �

as given in (4.1), find, if possible, a feedback law u = α(x, w) such that the
following conditions hold:

(i) (Internal Stability) The equilibrium point x = 0 of

x(k + 1) = Ax(k) + Bσ (α(x(k), 0))

is globally asymptotically stable.

(ii) (Output Regulation) For all x(0) ∈ R
n, and w(0) ∈ R

s , the solution of
the closed-loop system satisfies

lim
k→∞

e(k) = 0.

Problem 4.2.2 (Global measurement feedback output regulation problem
for linear discrete-time systems subject to input amplitude saturation) For a
system � as given in (4.1), find, if possible, a dynamic measurement feedback
law u = θ(z), ρz = η(z, y), where z ∈ R

nc such that the following conditions
hold:

(i) (Internal Stability) The equilibrium point (x, z) = (0, 0) of

x(k + 1) = Ax(k) + Bσ (θ(z(k)))

z(k + 1) = η(z(k), Cyx(k))

is globally asymptotically stable.
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(ii) (Output Regulation) For all x(0) ∈ R
n, z(0) ∈ R

nc , and w(0) ∈ R
s ,

the solution of the closed-loop system satisfies

lim
k→∞

e(k) = 0.

The global output regulation as defined above is clearly a very desirable
property. Unfortunately it turns out that we can achieve global output regula-
tion only under very special circumstances. In fact, the global measurement
feedback output regulation problem as formulated in Problem 4.2.2 basically
has no solution. This is established in the following lemma.

Lemma 4.2.1 Consider a system � as given in (3.1). Let Assumptions A.1,
A.2 and A.3 hold. Also, assume that the eigenvalues of A are on or inside the
unit circle. Moreover, assume that at least one unstable pole of the exosystem
is observable from the error signal. Then there exist initial conditions w0 for
w such that there exists no input u or initial condition x(0) for which the
system � satisfies limk→∞ e(k) = 0.

Proof : We study the system (4.1) when it is rewritten as

x(k + 1) = Ax(k) + Bv(k) + Eww(k)

w(k + 1) = Sw(k)

y(k) = Cyx(k) + Dyww(k)

e(k) = Cex(k) + Deuv(k) + Deww(k),

(4.4)

where v denotes an input signal considered bounded.

Let w0 with ‖w0‖ = 1 be an eigenvector corresponding to an eigenvalue
λ of S belonging to an eigenvalue λ of S which is detectable from e. Suppose
λ is an eigenvalue with absolute value greater than one. We can decompose e
into three components. One due to the possibly non-zero initial condition x0,
one due to the bounded input v, and the other due to the initial condition w0.
The first two can only grow polynomially in time since all the eigenvalues of A
are inside or on the unit circle. On the other hand the effect of w0 will ensure,
due to the detectability assumption, that e(k) grows exponentially in time.
Therefore we cannot achieve output regulation without imposing additional
conditions.

If the absolute value of λ is not greater than one, then by Assumption
A.2, it must lie on the unit circle. In that case, w will be bounded since
w(k) = λkw0. Moreover for any natural number K , and ε > 0 there exists a
k > K such that ‖w(k) − w(0)‖ < ε.
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To analyze the situation further, we next define the minimal amplitude of
an input signal which achieves tracking, and then minimize this over all the
possible initial conditions of the plant. That is, we consider

J(w0) := inf
v,x0

{ ‖v‖∞ | v is such that lim
k→∞ e(k) = 0

where x(0) = x0 and w(0) = w0 }.
Suppose J(w0) = 0. We take a minimizing sequence {vi , x0,i} for the above
optimization problem. For each vi there exists a Ki such that ‖e(Ki + k)‖ <

1/ i for all k > 0 and ‖w(Ki ) − w0‖ < 1/ i . Define

v̄i (k) := vi (Ki + k).

Then ‖v̄i‖∞ � ‖vi‖∞ → 0 as i → ∞. The output ēi resulting from input v̄i

and initial conditions

x̄(0) = x̄0,i := x(Ki ),

and w̄i(0) = w(Ki), satisfies ‖ēi‖∞ < 1/ i . The latter is straightforward since
ēi (k) = e(Ki + k). We then pick any integer K > 0. On [0, K ] the input v̄i

converges in L∞ norm to 0. Similarly ēi converges to 0 uniformly on [0, K ].
Finally w̄i (0) converges to w0.

Define f : R
n → L∞[0, K ] by [ f (z)](k) = Ce Ak z. We can check that

g ∈ L∞[0, K ] is in the closure of the image of f where

g(k) :=
k−1∑
κ=0

Ce A(k−1−κ) Eww(κ) + Deww(k).

Since f is a finite rank operator we know the image is closed and hence g is
in the image of f , i.e. there exists an x̃0 such that f (x̃0) = −g. We find that

(
Cy Dyw

)(A Ew

0 S

)k (
x̃0

w0

)
= 0 (4.5)

for k ∈ [0, K ]. This immediately implies that (4.5) holds for all k. On the
other hand w(k) �→ 0 as k → ∞. However this contradicts the fact that the
eigenvalue λ was observable from e. Therefore we have J(w0) > 0.

Hence we find that, for w(0) = 2w0/J(w0), any input v which achieves
output regulation satisfies ‖v‖∞ � 2. Therefore v = σ (u) will never be able
to achieve output regulation, i.e. no input u to (4.1) exists for which e(k) → 0
as k → ∞.

The above involves complex inputs. By working with either the real or
complex part of the signals at a time we can avoid this technical problem.
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Remark 4.2.1 As argued before, Assumptions A.1, A.2, A.3, and eigenvalues
of A being on or inside of unit circle are basically necessary. Therefore the
above lemma tells us that we can only achieve global output regulation if the
open-loop system already achieves output regulation and the controller only
needs to achieve stability without losing the property of output regulation.
This is a very exceptional case and therefore, for all practical purposes, global
output regulation is not possible when we have input saturation.

Note that the classical case y = e implies that Assumptions A.2 and A.3
guarantee that all poles of the exosystem should be observable from e and
therefore global output regulation is not possible.

4.3 Classical semi-global output regulation for linear
systems subject to input amplitude saturation

Since in general global output regulation problems for a system of the type
(4.1) are not solvable, one basic question that arises is what type of initial
conditions of exosystem and plant should be considered realistic for output
regulation when the input is subject to amplitude saturation. Regarding the
initial conditions of the exosystem, the discussion at the end of the last sec-
tion is clearly in favor of the argument that we should restrict our attention
only to initial conditions w(0) lying inside a given compact set. Moreover, re-
garding the initial conditions of the plant, in the theory of stabilization of lin-
ear discrete-time systems subject to amplitude saturation, the step from global
initial conditions to initial conditions inside a compact set has already been
made. This has been named semi-global stabilization. Since, in most cases we
have to restrict attention to initial conditions for w inside a compact set, this
yields a good motivation anyway to direct our attention to a semi-global set-
ting. Of course this also yields the well-known advantage that we can achieve
output regulation with linear feedback controllers. Motivated by this, as in the
previous chapter, we devote ourselves here to semi-global output regulation.

We split this section into two parts. In the first part we solve the classical
semi-global linear state feedback output regulation problem where both the
states x and w are available for feedback. In this case, it suffices to look at
only static feedback controllers. In the second part we solve the classical semi-
global measurement feedback output regulation problem where only certain
measurement signal is available for feedback, and hence we need to resort to
dynamic feedback. In this case, we design observer based controllers.
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4.3.1 State feedback controllers

The problem considered in this subsection is formulated as follows.

Problem 4.3.1 (Classical semi-global state feedback output regulation pro-
blem for systems subject to input amplitude saturation) Consider the system
(4.1) and a compact set W0 ⊂ R

s . For any a priori given (arbitrarily large)
bounded set X0 ⊂ R

n, find, if possible, a static feedback law u = α(x, w)

such that the following conditions hold:

(i) (Internal Stability) The equilibrium point x = 0 of

x(k + 1) = Ax(k) + Bσ (α(x(k), 0)) (4.6)

is asymptotically stable with X0 contained in its basin of attraction.

(ii) (Output Regulation) For all x(0) ∈ X0 and w(0) ∈ W0, the solution of
the closed-loop system satisfies

lim
k→∞ e(k) = 0. (4.7)

Remark 4.3.1 We would like to emphasize that our definition of classical
semi-global state feedback output regulation problem does not view the set
of initial conditions of the plant as given data. The set of given data consists
of the models of the plant and the exosystem and the set of initial conditions
for the exosystem. Therefore, any solvability conditions we obtain must be
independent of the set of initial conditions of the plant, X0.

Before discussing the solvability conditions for the above posed output
regulation problem, we would like to recall what is known as a low-gain [37]
design method introduced earlier by Lin and Saberi and their coworkers. Such
a low-gain design method has successfully been used, in connection with lin-
ear systems with amplitude saturating actuators, not only for internal stabi-
lization, but also for various other problems.

Review of Riccati-based low-gain design for linear systems:

We now recall a low-gain state feedback design algorithm from [37]. The
objective is to show that we can find stabilizing feedback control inputs with
arbitrarily small magnitude which stabilize a given linear system with all its
poles located inside or on the unit circle. Such a design algorithm yields a
family of state feedback gains, parameterized in ε, which are instrumental in
proving our results here on semi-global output regulation. Analogous to the
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continuous-time case, there exist in the literature two low-gain design algo-
rithms; one is based on the solution of a discrete-time algebraic Riccati equa-
tion parameterized in ε, and the other is a direct construction method based
on an eigenvalue assignment method. The Riccati-based method is conceptu-
ally appealing although solving the parameterized Riccati equation might be
numerically stiff. On the other hand, the alternative direct method of explicit
construction is numerically efficient but is some what involved in details. For
conceptual clarity, we present here the Riccati-based method, and the alterna-
tive direct method is discussed at the end of this chapter in an appendix.

Consider the linear system

x(k + 1) = Ax(k) + Bu(k), (4.8)

where the state x ∈ R
n and the input u ∈ R

m . Assume that (A, B) is sta-
bilizable and all the eigenvalues of A are located inside or on the unit circle.
Consider the Riccati equation defined by

Pε = AT Pε A + Qε − AT Pε B(BT Pε B + I )−1 BT Pε A (4.9)

where Q : (0, 1] → R
n × n is a continuously differentiable matrix-valued

function such that Qε > 0, d Qε

dε
> 0 for any ε ∈ (0, 1], and limε→0 Qε = 0.

Often, Qε can be taken as εI , however a judicious choice of Qε is some times
necessary. We next form a family of low-gain state feedback gain matrices Fε

as

Fε = −(BT Pε B + I )−1 BT Pε A. (4.10)

The following lemma recalls from the literature certain important proper-
ties of the Riccati equation (4.9).

Lemma 4.3.1 Consider the Riccati equation given in (4.9). Let (A, B) be
stabilizable and all the eigenvalues of A be located inside or on the unit circle.
Let Qε be a continuously differentiable matrix-valued function such that Qε >

0, d Qε

dε
> 0 for any ε ∈ (0, 1], and limε→0 Qε = 0. Then the Riccati equation

(4.9) has a unique positive definite solution Pε for any ε ∈ (0, 1]. Moreover,
this positive definite solution Pε has the following properties:

(i) For any ε ∈ (0, 1], the unique solution Pε > 0 is such that A + B Fε is
Schur-stable where Fε is as in (4.10).

(ii) limε→0 Pε = 0.
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(iii) There exists an ε∗ > 0 such that, for ε ∈ (0, ε∗],
‖P1/2

ε AP−1/2
ε ‖ ≤ √

2. (4.11)

(iv) Pε is continuously differentiable with respect to ε and

d Pε

dε
> 0, for any ε ∈ (0, 1].

Proof : The existence and uniqueness of a positive semi-definite solution Pε

follows from [61]. It also follows from [61] that Pε is the unique solution for
which A − B(BT Pε B + I )−1 BT Pε A has all its eigenvalues on or inside the
unit circle. For ε = 0, it is trivial to see that the Riccati equation (4.9) has a
solution P(0) = 0 since by assumption, A− B(BT P(0)B + I )−1 BT P(0) = A
has all its eigenvalues inside or on the unit circle. The fact that limε→0 Pε = 0
follows from standard continuity arguments. Note that for ε > 0 the solution
is actually positive definite and is such that A − B(BT Pε B + I )−1 BT Pε A has
all its eigenvalues inside the unit circle.

To show part (iii), we observe that by pre- and post-multiplying both sides
of (4.9) with P−1/2

ε , we obtain

Vε

[
I − P1/2

ε B(BT Pε B + I )−1 BT P1/2
ε

]
V T

ε = I − εP−1/2
ε

where Vε = P−1/2
ε AT P1/2

ε . Since limε→0 Pε = 0, it follows from the above
equation that there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗],

P−1/2
ε AT Pε AP−1/2

ε ≤ 2I − 2εP−1/2
ε ≤ 2I .

This implies that

λmax
(
P−1/2

ε AT Pε AP−1/2
ε

) ≤ 2.

This completes the proof of part (iii).

To show the last property, we first note that the continuous differentiability
of Pε for ε > 0 follows the fact that the symplectic pencil associated with the
Riccati equation (4.9) is a continuously differentiable function of ε (see [28]).
Then, in order to show that d Pε

dε
> 0, we first observe that

d(BT Pε B + I )−1

dε
= −(BT Pε B + I )−1 BT d Pε

dε
B(BT Pε B + I )−1.
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Now, differentiating the Riccati equation with respect to ε, and using the above
equality, we get

d Pε

dε
= (AT + FT

ε BT)
d Pε

dε
(A + B Fε) + d Qε

dε
. (4.12)

It is now obvious that d Pε

dε
> 0.

We next move on to obtain the solvability conditions for the classical semi-
global linear state feedback output regulation problem for linear systems sub-
ject to input amplitude saturation. The following theorem presents such con-
ditions. In fact, the proof of the theorem shows that under the given solvability
conditions, a linear low-gain feedback controller can solve the problem.

Theorem 4.3.1 Consider the system (4.1) and the given compact set W0 ⊂
R

s . The classical semi-global state feedback output regulation problem is
solvable if the following conditions hold:

(i) (A, B) is stabilizable and A has all its eigenvalues inside or on the unit
circle.

(ii) There exist matrices 	 and 
 such that,

(a) they solve the regulator equation (2.7), i.e.,

	S = A	+ B
+ Ew, (4.13a)

0 =Ce	+Deu
+Dew. (4.13b)

(b) there exist a δ > 0 and a K ≥ 0 such that ‖
w‖∞,K � 1 − δ for
all w with w(0) ∈ W0.

Moreover, a linear state feedback controller of the form, u = Fx + Gw, can
solve the posed problem.

Proof : We prove this theorem by first explicitly constructing a family of linear
static state feedback laws, parameterized in ε, and then showing that for each
given set X0, there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗], both items (i)
and (ii) of Problem 4.3.1 hold. The family of linear static state feedback laws
we construct takes the form,

u = Fεx + (
 − Fε	)w, (4.14)
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where Fε is as in (4.10). It then follows from Lemma 4.3.1 that A + B Fε is
Schur-stable for all ε > 0. With this family of feedback laws, the system (4.6)
is written as

x(k + 1) = Ax(k) + Bσ (Fεx(k)). (4.15)

We proceed next to show part (i) of Problem 4.3.1. In view of (4.10), the
closed-loop system (4.15) can be rewritten as

ρx = Ax + Bσ
[−(BT Pε B + I )−1 BT Pε Ax

]
= (

A − B(BT Pε B + I )−1 BT Pε A
)

x

+ B[σ (u) − u]. (4.16)

Also, it follows from (4.9) that

AT
cl Pε Acl − Pε = −Qε − Q0 (4.17)

where

Acl := A − B(BT Pε B + I )−1 BT Pε A

Q0 := AT Pε B(BT Pε B + I )−2 BT Pε A ≥ 0.

We can now select the Lyapunov function as

V (x) = xT Pεx,

and let c be a strictly positive real number such that

c ≥ sup
x∈X0,ε∈(0,1]

xT Pεx . (4.18)

The right hand side is well defined since limε→0 Pε = 0 by Lemma 4.3.1 and
X0 is bounded. Let ε∗

1 be such that for all ε ∈ (0, ε∗
1 ], x ∈ LV (c) implies that

‖(BT Pε B + I )−1 BT Pε Ax‖ ≤ 1, where the level set LV (c) is defined as

LV (c) = {x ∈ R
n | V (x) ≤ c}.

Such an ε∗
1 exists because of Lemma 4.3.1 and the fact that limε→0 Pε = 0.
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The evaluation of the difference of V along the trajectory of the closed-
loop system (4.16), using (4.17), shows that for all x ∈ LV (c),

V (ρx) − V (x)

= −xT(εI + Q0)x + [σ (u) − u]T BT Pε B[σ (u) − u]
+ 2xT AT

cl Pε B[σ (u) − u]
≤ −εxTx − uTu + [σ (u) − u]T BT Pε B[σ (u) − u]

+ 2xT AT Pε B(BT Pε B + I )−1[σ (u) − u]
= −εxTx − uTu + [σ (u) − u]T BT Pε B[σ (u) − u]

− 2uT[σ (u) − u]
≤ −εxTx − uTu + (k − 1)2λmax(BT Pε B)uTu.

Again, recalling that limε→0 Pε = 0, we can easily see that there exists an
ε∗ ∈ (0, ε∗

1] such that, for all ε ∈ (0, ε∗], we have (k − 1)2λmax(BT Pε B) ≤ 1.
This shows that for any ε ∈ (0, ε∗],

x ∈ LV (c) → V (x(k + 1)) − V (x(k)) ≤ −εxT(k)x(k).

This in turn shows that, for any ε ∈ (0, ε∗], the equilibrium point x = 0 of
the closed-loop system is asymptotically stable and its domain of attraction
contains the set LV (c). This completes our proof of part (i) of Problem 4.3.1
since X0 ⊆ LV (c).

Next, we show that there exists an ε∗
2 ∈ (0, 1] such that for each ε ∈

(0, ε∗
2], item (i) of Problem 4.3.1 holds. To this end, let us introduce an invert-

ible coordinate change,

ξ = x − 	w. (4.19)

Using condition (ii)a), we have

ξ(k + 1) = x(k + 1) − 	w(k + 1)

= Ax(k) + Bσ (u(k)) + Eww(k) − 	Sw(k)

= Aξ(k) + B [σ (u(k)) − 
w(k)] .

(4.20)

With the family of state feedback laws given above, the closed-loop system
can be written as

ξ(k + 1) = Aξ(k) + B [σ (
w(k) + Fεξ(k)) − 
w(k)] . (4.21)

By Condition (ii)b), ‖
w(k)‖∞,K < 1 − δ. Moreover, for any x(0) ∈ X0

and any w(0) ∈ W0, ξ(K ) belongs to a bounded set, say UK , independent
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of ε since X0 and W0 are both bounded and ξ(K ) is determined by a linear
difference equation with bounded inputs σ (·) and 
w.

It follows from (4.9) that

(A + B Fε)
T Pε (A + B Fε) − Pε = −εI − FT

ε Fε. (4.22)

We then pick a Lyapunov function

V (ξ) = ξ T Pεξ, (4.23)

and let c > 0 be such that

c ≥ sup
ξ∈UK ,ε∈(0,1]

ξ T Pεξ. (4.24)

Such a c exists since Pε and UK are bounded. Let ε∗
2 ∈ (0, 1] be such that

ξ ∈ LV (c) implies that ‖Fεξ‖∞ ≤ δ where

LV (c) := {
ξ ∈ R

n | V (ξ) < c
}
.

The existence of such an ε∗
2 is again due to Lemma 4.3.1. Hence for k ≥ K ,

for all ξ ∈ LV (c), (4.21) takes the form

ξ(k + 1) = Aξ(k) + B Fεξ(k). (4.25)

The evaluation of the difference of V for k ≥ K , inside the set LV (c), using
(4.22), shows that for all ξ ∈ LV (c),

V (ξ(k + 1)) − V (ξ(k)) = −ξ(k)T
(
εI + FT

ε Fε

)
ξ(k). (4.26)

This shows that any trajectory of (4.21) starting at k = 0 from

{ ξ = x − 	w : x ∈ X0, w ∈ W0 }
remains inside the set LV (c) and approaches the equilibrium point ξ = 0 as
k → ∞. Also, in view of (4.14) and (4.19), we find that for k ≥ K ,

e(k) = (Ce + Deu Fε)ξ(k) + (Ce	 + Deu
 + Dew)w(k).

However, in view of (4.13b), e reduces to e = (Ce + Deu Fε)ξ , and thus, owing
to the stability of A + B Fε, we find that e(k) → 0 as k → ∞.

Finally, setting ε∗ = min{ε∗
1, ε

∗
2}, we conclude our proof of Theorem

4.3.1.
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Remark 4.3.2 In view of Yang’s results ( [93]) and the solvability conditions
for the state feedback output regulation problem for linear systems in the ab-
sence of input saturation as given in Chapter 2, it is obvious to observe that
Conditions (i) and (ii)a) of Theorem 4.3.1 are necessary. The crucial condi-
tion for the solvability of the classical semi-global linear state feedback output
regulation problem with amplitude saturating actuators is Condition (ii)b),
which is a sufficient condition. In Section 4.4 we will discuss the necessity of
Condition (ii)b).

Design of a low-gain state feedback regulator:

For clarity, we now give a step by step design of a low-gain state feedback
regulator.

Step 1 : Find a solution (	, 
) of the regulator equation (4.13).

Step 2 : Find a low-gain state feedback matrix either by the Riccati-based
design as in (4.10), or by direct method discussed at the end of this chapter in
Appendix 4.B.

Step 3 : Given the sets X0 ⊂ R
n and W0 ⊂ R

s , find an ε∗ by the procedure
given in the proof of Theorem 4.3.1.

Then the state feedback controller given in (4.14) for some ε ∈ (0, ε∗]
solves the classical semi-global state feedback output regulation problem.

The following example illustrates the design procedure.

Example 4.3.1 Consider the system,

x(k + 1) =

⎛
⎜⎜⎝

0 −1 −1 0
1 0 0 1
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠x(k) +

⎛
⎜⎜⎝

1 0
0 1
1 0
0 1

⎞
⎟⎟⎠σ (u(k))

+

⎛
⎜⎜⎝

0 2
−2 −2
−1 2
−2 −1

⎞
⎟⎟⎠w(k)

w(k + 1) =
(

0 1
−1 0

)
w(k)

e(k) =
(

1 0 0 0
0 1 0 0

)
x(k) +

(−1 0
0 −1

)
w(k)

(4.27)

with w(0) ∈ W0, where W0 = {
w ∈ R

2 : ‖w‖ < 0.5
}
. It is straightforward

to show that the solvability conditions for the classical semi-global linear
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state feedback output regulation problem are satisfied. More specifically, the
matrices,

	 =

⎛
⎜⎜⎝

1 0
0 1
1 0
0 1

⎞
⎟⎟⎠ , 
 =

(
1 0
0 1

)
, (4.28)

solve the regulator equation (4.13). Also, δ = 0.5, since ‖
w‖∞ ≤ 0.5 for all
w(0) ∈ W0. Let the set X0 be given by X0 = {x ∈ R

4 : ‖x‖ ≤ 2}.
Then, following the design procedure given above and the proof of Theo-

rem 4.3.1, a choice of ε∗ is 4.6 × 10−3. For ε = ε∗, the feedback law (4.14) is
given by

u = −
(

0.0529 −0.0335 −0.0563 −0.0340
0.0335 −0.0529 0.0340 0.0563

)
x

+
(

0.9966 −0.0675
0.0675 1.0034

)
w.

For the initial conditions x(0) = (1, 1, 1, 1)T, w(0) = (0.25,−0.25)T, Fig-
ure 4.1 on the facing page shows the control action and the closed-loop per-
formance of the regulator.

As seen from the above example, and as in the case of continuous-time
systems, low-gain based designs under utilize the available control capacity.
Our goal next is to recall a new design methodology which incorporates sig-
nificant improvement to the low-gain design method, and leads to a better
utilization of the available control capacity and hence better closed-loop per-
formance.

An improved design of the feedback regulator:

We now construct a family of non-linear state feedback laws, parameter-
ized in ε and µ, and then show that such a family of state feedback laws solves
the classical semi-global state feedback output regulation problem 4.3.1. This
family of non-linear feedback laws reduces to a linear one for the single input
case (m = 1), that is, the function α(x, w) as in Problem 4.3.1 reduces to the
form of Fx + Gw.

The new state feedback output regulator design is given as follows: Let Pε

be the solution of the Riccati equation (4.9) with Qε satisfying the properties
given in Lemma 4.3.1. Assume B injective and consider the control law,

u = [Fε + µκ(x, w,µ)Kε](x − 	w) + 
w, µ ∈ [0, 2], (4.29)
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Figure 4.1: ε = 4.6 × 10−3 . a) e1; b) e2; c) u1; d) u2.
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where

Fε = −(BT Pε B + I )−1 BT Pε A,

Kε = −(BT Pε B)−1 BT Pε Ac,

Ac = A + B Fε,

with κ : R
n × R

s × [0, 2] → R+ is defined as,

κ(x, w,µ) =
{

1 if m = 1

z∗(x, w,µ) if m > 1.
(4.30)

where

[z∗(x, w,µ)](k) =
max

z∈[0,1]
{z : ‖ [Fε + µzKε](x(k) − 	w(k)) + 
w(k)‖∞ ≤ 1}.

If, in the above maximization, there exists no z for which the inequality is
satisfied then z∗ is chosen equal to 0. We note that when µ = 0 the family of
state feedback laws as given in (4.29) reduces to the low-gain based family of
linear feedback laws as given in (4.14). Thus, as usual, ε is referred to as a
low-gain parameter.

As shown next, for any µ ∈ [0, 2], the family of state feedback laws (4.29)
solves the semi-global state feedback output regulation problem.

Theorem 4.3.2 Consider the system (4.1) and the given compact set W0 ⊂
R

s . Assume that the sufficient conditions given in Theorem 4.3.1 are satis-
fied and let B be injective. Then, there exists a controller, among the family
of state feedback laws as given in (4.29), that solves the semi-global state
feedback output regulation problem. More specifically, for any a priori given
(arbitrarily large) bounded set X0 ⊂ R

n, there exists an ε∗ ∈ (0, 1] such that
for each ε ∈ (0, ε∗] and for each µ ∈ [0, 2], the controller in the family (4.29)
has the following properties:

(i) The equilibrium point x = 0 of

ρx = Ax + Bσ [(Fε + µκ(x, 0, µ)Kε)x] (4.31)

is asymptotically stable with X0 contained in its basin of attraction.

(ii) For any x(0) ∈ X0 and w(0) ∈ W0, the solution of the closed-loop
system satisfies

lim
k→∞ e(k) = 0. (4.32)
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Proof : We prove this theorem by showing that for each given set X0, there
exists an ε∗ ∈ (0, 1] such that for all ε ∈ (0, ε∗] and all µ ∈ [0, 2], both items
(i) and (ii) of the theorem hold.

We first show that there exists an ε∗
1 ∈ (0, 1] such that for each ε ∈ (0, ε∗

1 ]
and for each µ ∈ [0, 2], item (i) of the theorem holds. To this end, rewrite
(4.31) as

ρx = Acx + B (σ [(Fε + µκ(x, 0, µ)Kε)x] − Fεx) . (4.33)

Consider the Lyapunov function

V1(x) = xT Pεx, (4.34)

and let c1 > 0 be such that

c1 ≥ sup
x∈X0,ε∈(0,1]

xT Pεx . (4.35)

Such a c1 exists since limε→0 Pε = 0 by Lemma 4.3.1, and X0 is bounded.
Let ε∗

1 be such that for all ε ∈ (0, ε∗
1 ], x ∈ LV1(c1) implies that ‖Fεx‖∞ ≤ 1,

where the level set LV1(c1) is defined as LV1(c1) = {x ∈ R
n : V1(x) ≤ c1}.

Such an ε∗
1 exists because of (4.11) and the fact that limε→0 Pε = 0.

It follows from (4.9) that,

AT
c Pε Ac − Pε = −εI − FT

ε Fε. (4.36)

For the case of multiple input (m > 1), by the definition of function κ ,
(4.30), for all x ∈ LV1(c1), the saturation functions in the closed-loop system
(4.33) operate in their respective linear regions, and hence the closed-loop
system remains linear. The evaluation of the difference of V1 along the trajec-
tories of this linear closed-loop system shows that, for x ∈ LV1(c1),

V1(ρx) − V1(x)

= −εxTx − xT FT
ε Fεx

− µκ(x, 0, µ)[2 − µκ(x, 0, µ)]xT AT
c Pε B(BT Pε B)−1 BT Pε Acx

≤ −εxTx . (4.37)

Now for the case of single input (m = 1), the evaluation of the difference of
V1 along the trajectories of (4.31) inside the set LV1(c1) gives,

V1(ρx) − V1(x) = −εxTx − xT FT
ε Fεx + φ1(γ1), (4.38)
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where φ1(γ1) = 2xT AT
c Pε Bγ1 + γ1 BT Pε Bγ1 and

γ1 = σ
[
(Fε − µ(BT Pε B)−1 BT Pε Ac)x

] − Fεx .

If we denote ζ1 = Fεx and ν1 = Kε then φ1(γ1) can be written as

φ1(γ1) = −2ν1(BT Pε B)[σ (ζ1 + µν1) − ζ1]
+ [σ (ζ1 + µν1) − ζ1](BT Pε B)[σ (ζ1 + µν1) − ζ1]

= [σ (ζ1 + µν1) − (ζ1 + 2ν1)](BT Pε B)[σ (ζ1 + µν1) − ζ1].
Noting that µ ∈ [0, 2], the definition of σ , and |ζ1| ≤ 1 for all x ∈ LV1(c1),
we have

|ζ1 + µν1| ≤ 1 =⇒ φ1(γ1) = −µ(2 − µ)(BT Pε B)ν2
1 ≤ 0;

ζ1 + µν1 > 1 =⇒ ν1 > 0, σ (ζ1 + µν1) − (ζ1 + µν1) < 0

=⇒ φ1(γ1) ≤ −(2 − µ)(BT Pε B)ν1[1 − ζ1] ≤ 0;
and

ζ1 + µν1 < −1 =⇒ ν1 < 0, σ (ζ1 + µν1) − (ζ1 + µν1) > 0

=⇒ φ1(γ1) ≤ −(2 − µ)(BT Pε B)ν1[−1 − ζ1] ≤ 0.

We conclude that for all x ∈ LV1(c1), φ1(γ1) ≤ 0 and hence

V1(x(k + 1)) − V1(x(k)) ≤ −εx(k)Tx(k).

At this time, it is appropriate to make a remark. It is clear from the above
derivation, the choice of κ(x, w,µ) as in (4.30) prevents the control input
from saturating the actuators while increasing the utilization of their capac-
ities. While the avoidance of actuator saturation is essential in establishing
(4.37) due to multi-input coupling, the choice of κ(x, w,µ) ≡ 1 for single
input case allows the control input to saturate the actuators and thus further
increases the utilization of their capacities.

So far, we have shown that for both the multiple input and single input
cases,

V1(x(k + 1)) − V1(x(k)) ≤ −εx(k)Tx(k), ∀x(k) ∈ LV1(c1). (4.39)

This implies that the closed-loop system (4.31) is locally exponentially stable
with X0 contained in its basin of attraction. We note here that the choice of µ

determines the decay rate of V1(x(k + 1)) − V1(x(k)) and hence the freedom
in choosing µ can be utilized to ensure fast convergence.
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Next, we show that there exists an ε∗
2 ∈ (0, 1] such that for each ε ∈

(0, ε∗
2], item (ii) of the theorem holds.

To this end, let us introduce an invertible coordinate change ξ = x −	w.
Using the condition (ii)a) (see Theorem 4.3.1), we have

ρξ = ρx − ρ	w

= Ax + Bσ (u) + Eww − 	Sw

= Aξ + B [σ (u) − 
w] .

(4.40)

With the family of state feedback laws given by (4.29), the closed-loop system
can be written as

ρξ = Aξ + B [σ (
w + (Fε + µκ(ξ + 	w,w,µ)Kε)ξ) − 
w]

= Acξ + B [σ (
w + (Fε + µκ(ξ + 	w,w,µ)Kε)ξ)

−
w − Fεξ ] . (4.41)

By Condition (ii)b) (see Theorem 4.3.1), ‖
w‖∞,K < 1 − δ. Moreover, for
any x(0) ∈ X0 and any w(0) ∈ W0, ξ(K ) belongs to a bounded set, say UK ,
independent of ε since X0 and W0 are both bounded and ξ(K ) is determined
by a linear difference equation with bounded inputs σ (·) and 
w.

We then pick a Lyapunov function

V2(ξ) = ξ T Pεξ, (4.42)

and let c2 > 0 be such that

c2 ≥ sup
ξ∈UK ,ε∈(0,1]

ξ T Pεξ. (4.43)

Such a c2 exists since Pε and UK are bounded. Let ε∗
2 ∈ (0, 1] be such that

ξ ∈ LV2(c2) implies that ‖Fεξ‖ ≤ δ where

LV2(c2) = {
ξ ∈ R

n | V2(ξ) < c2
}
.

The existence of such an ε∗
2 is again due to (4.11) and the fact that Pε → 0 as

ε → 0.

For the case of multiple input (m > 1), by the definition of function κ ,
(4.30), for all x ∈ LV1(c1) and k ≥ K , the saturation functions in the closed-
loop system (4.41) operate in their respective linear regions, and hence the
closed-loop system remains linear and hence reduces to

ρξ = Acξ + µκ(ξ + 	w,w,µ)B(BTPε B)−1 BT Pε Acξ.
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The evaluation of the difference of V2 along the trajectories of this linear
closed-loop system shows that, for ξ ∈ LV2(c2),

V2(ρξ) − V2(ξ)

= −εξ Tξ − ξ T FT
ε Fεξ − µκ(ξ + 	w,w,µ)[2 − µκ(ξ + 	w,w,µ)]ξ T

× AT
c Pε B(BT Pε B)−1 BT Pε Acξ

≤ −εξ Tξ.

Now for the case of single input (m = 1), the evaluation of the difference
of V for k ≥ K , inside the set LV2(c2), using (4.36), shows that for all ξ ∈
LV2(c2),

V2(ρξ) − V2(ξ) = −εξ Tξ − ξ T FT
ε Fεξ + φ2(γ2)

where φ2(γ2) = 2ξ T AT
c Pε Bγ2 + γ2 BT Pε Bγ2 and

γ2 = σ (
w + (Fε − µ(BT Pε B)−1 BT Pε Ac)ξ) − 
w − Fεξ.

Denoting θ2 = 
w, ζ2 = Fεξ and ν2 = Kεξ , φ2(γ2) can be written as

φ2(γ2) = −2ν2(BT Pε B)[σ (θ2 + ζ2 + µν2) − θ2 − ζ2]
+ [σ (θ2 + ζ2 + µν2) − θ2 − ζ2](BT Pε B)

× [σ (θ2 + ζ2 + µν2) − θ2 − ζ2]
= [σ (θ2 + ζ2 + µν2) − (θ2 + ζ2 + 2ν2)](BT Pε B)

× [σ (θ2 + ζ2 + µν2) − θ2 − ζ2].
Noting that µ ∈ [0, 2], the definition of σ , and |θ2 + ζ2| ≤ 1 for all ξ ∈
LV2(c2), we have

|θ2 + ζ2 + µν2| ≤ 1

=⇒ φ2(γ2) = −µ(2 − µ)(BT Pε B)ν2
2 ≤ 0,

θ2 + ζ2 + µν2 > 1

=⇒ ν2 > 0, σ (θ2 + ζ2 + µν2) − (θ2 + ζ2 + µν2) < 0

=⇒ φ2(γ2) ≤ −(2 − µ)(BT Pε B)ν2[1 − (θ2 + ζ2)] ≤ 0

and

θ2 + ζ2 + µν2 < −1

=⇒ ν2 < 0, σ (θ2 + ζ2 + µν2) − (θ2 + ζ2 + µν2) > 0

=⇒ φ2(γ2) ≤ −(2 − µ)(BT Pε B)ν2[−1 − (θ2 + ζ2)] ≤ 0.
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We conclude that for all ξ ∈ LV2(c2), φ2(γ2) ≤ 0 and hence

V2(ξ(k + 1)) − V2(ξ(k)) ≤ −εξ(k)Tξ(k).

This shows that any trajectory of the closed-loop system (4.41) starting from
{ξ = x − 	w : x ∈ X0, w ∈ W0} remains inside the set LV2(c2) and ap-
proaches the equilibrium point ξ = 0 as k → ∞. Now, it can easily be seen
that e(k) → 0 as k → ∞.

Finally, setting ε∗ = min{ε∗
1, ε

∗
2}, we conclude our proof of Theorem

4.3.1.

We now illustrate the use of the control law (4.29) by an example.

Example 4.3.2 Consider the system (4.27) of Example 4.3.1 with w(0) ∈ W0

where W0 = {
w ∈ R

2 : ‖w‖ < 0.9
}
. It is straightforward to show that the

solvability conditions for the semi-global linear state feedback output regula-
tion problem are satisfied. That is, 	 and 
 as in (4.28) solve the linear matrix
equations (4.13), while δ = 0.1, since ‖
w‖∞ ≤ 0.9 for all w(0) ∈ W0. Let
the set X0 be given by X0 = {x ∈ R

4 : ‖x‖ ≤ 10}.
Then, following the proof of Theorem 4.3.2, a suitable choice of ε∗ is

6.628 × 10−6. For ε = ε∗ and µ = 1, the feedback law (4.29) is given by

u(k) = − (−0.3037 −0.1523 0.2403
)

x(k)

+ (
0.9366 −0.1523

)
w(k).

For the initial conditions x(0) = (6, 6,−2)T, w(0) = (0.45,−0.45)T, Fig-
ure 4.2 on the next page shows the control action and the closed-loop perfor-
mance of the regulator for µ = 1. Figure 4.3 on the following page shows
the control action and the closed-loop performance of the regulator design
in [45], i.e. for µ = 0.

4.3.2 Linear observer based measurement feedback controller

In this section, we consider the classical semi-global linear observer based
measurement feedback output regulation problem which can be formulated as
follows.

Problem 4.3.2 (The classical semi-global linear observer based measure-
ment feedback output regulation problem) Consider the system (4.1) and a
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compact set W0 ⊂ R
s . For any a priori given (arbitrarily large) bounded sets

X0 ⊂ R
n and Z0 ⊂ R

n+s , find, if possible, a measurement feedback law of
the form

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (u)

+
(

KA

KS

)
(
(
Cy Dyw

) ( x̂
ŵ

)
− y)

u = α(x̂, ŵ)

(4.44)

such that the following conditions hold:

(i) (Internal Stability) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

ρx = Ax + Bσ (α(x̂, ŵ))

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (α(x̂, ŵ))

+
(

KA

KS

) (
Cy Dyw

) (x̂ − x
ŵ

) (4.45)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) (Output Regulation) For all (x(0), x̂(0), ŵ(0)) ∈ X0 ×Z0 and w(0) ∈
W0, the solution of the closed-loop system satisfies

lim
k→∞ e(k) = 0. (4.46)

Remark 4.3.3 We would like to emphasize that our definition of the classical
semi-global linear observer based measurement feedback output regulation
problem does not view the set of initial conditions of the plant and the initial
conditions of the controller dynamics as given data. The set of given data
consists of the models of the plant and the exosystem and the set of initial
conditions for the exosystem. Therefore, the solvability conditions must be
independent of the set of initial conditions of the plant, X0, and the set of
initial conditions for the controller dynamics, Z0.

The solvability conditions for the classical semi-global linear observer
based measurement feedback output regulation problem are given in the fol-
lowing theorem.

Theorem 4.3.3 Consider the system (4.1) and the given compact set W0 ⊂
R

s . The classical semi-global linear observer based measurement feedback
output regulation problem is solvable if the following conditions hold:
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(i) (A, B) is stabilizable and A has all its eigenvalues inside or on the unit
circle. Moreover, the pair((

Cy Dyw

)
,

(
A Ew

0 S

))

is detectable.

(ii) There exist matrices 	 and 
 such that,

(a) they solve the regulator equation (4.13),

(b) there exists a δ > 0 and a K ≥ 0 such that ‖
w‖∞,K � 1 − δ for
all w with w(0) ∈ W0.

Moreover the function α(x̂(k), ŵ(k)) in Problem 4.3.2 can be a linear function
of x̂(k) and ŵ(k).

Proof : We prove this theorem by first explicitly constructing a family of linear
observer based measurement feedback laws of the form (4.44), parameterized
in ε, and then showing that for each pair of sets X0 ⊂ R

n and Z0 ⊂ R
n+s ,

there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗], both items (i) and (ii)
in Problem 4.3.2 are indeed satisfied. The family of linear observer based
measurement feedback laws we construct take the form,

ρ x̂ = Ax̂ + Bσ (u) + Ewŵ − KA y + KA(Cyx̂ + Dywŵ)

ρŵ = Sŵ − KS y + KS(Cyx̂ + Dywŵ)

u = Fε x̂ + (
 − Fε	)ŵ,

(4.47)

where Fε := −(BT Pε B + I )−1 BT Pε A with Pε being the solution of the Ric-
cati equation (4.9). It follows from Lemma 4.3.1 that A + B Fε is Schur-stable
for all ε > 0. The matrices KA and KS are chosen such that the following
matrix is Schur-stable,

Ā :=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
. (4.48)

With the above family of feedback laws, the closed-loop system consisting of
the system (4.1) and the dynamic measurement feedback law (4.47) can be
written as (we do not write the equation w(k + 1) = Sw(k) explicitly but it is
of course always there),

ρx = Ax + Bσ (
ŵ + Fε(x̂ − 	ŵ)) + Eww

ρ x̂ = Ax̂ + Bσ (
ŵ + Fε(x̂ − 	ŵ)) + Ewŵ

+KACy(x̂ − x) + KA Dyw(ŵ − w)

ρŵ = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w).

(4.49)
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We then adopt the invertible change of state variables,

ξ = x − 	w, x̃ = x − x̂, w̃ = w − ŵ, (4.50)

and rewrite the closed-loop system (4.49) as

ρξ = Aξ + Bσ (Fεξ + 
w − 
w̃ − Fε ξ̃ )

+(A	 − 	S + Ew)w

ρ x̃ = (A + KACy)x̃ + (Ew + KA Dyw)w̃

ρw̃ = KSCyx̃ + (S + KS Dyw)w̃

(4.51)

where we have denoted ξ̃ = x̃ − 	w̃.

To show that item (i) of Problem 4.3.2 holds, we note that (4.45) is the
same as (4.49) for w(k) = 0. We know (4.49) is equivalent to (4.51) which
for w(k) = 0 reduces to

ρξ = Aξ + Bσ (Fεξ − 
w̃ − Fεξ̃ )

ρ x̃ = (A + KACy)x̃ + (Ew + KA Dyw)w̃

ρw̃ = KSCyx̃ + (S + KS Dyw)w̃.

(4.52)

Denoting m̃ = [x̃T, w̃T]T, we write (4.52) in the following compact form,

ρξ = Aξ + B
(
σ
[
Fεξ + Mm̃

])
ρm̃ = Ām̃.

(4.53)

Also, (4.51) can be written as,

ρξ = Aξ + B
(
σ
[
Fεξ + Mm̃ + 
w

] − 
w
)

ρm̃ = Ām̃,
(4.54)

where

M =
(−Fε 0

0 (Fε	 − 
)

)
.

Recalling that the matrix Ā defined in (4.48) is Schur-stable, it readily follows
from the second equation of (4.53) that there exists a K1 ≥ 0 such that, for all
possible initial conditions (x̃(0), w̃(0)),

‖Mm̃‖∞,K1 ≤ 1

2
, for all ε ∈ (0, 1]. (4.55)

For any x(0) ∈ X0, ξ(K1) belongs to a bounded set, say UK1 , independent of
ε since X0 is bounded and ξ(K1) is determined by a linear difference equation
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(4.53) with bounded input σ (·). Let ε∗
1 ∈ (0, 1] be chosen such that for all

ε ∈ (0, ε∗
1 ], ‖Fε‖ < 1/2, and ‖Fε	‖ < 1/2. This ensures that ‖M‖2 <

(1 + ‖
‖)2. Let us define β := (1 + ‖
‖)2(1 + ‖B‖2) for later use. Let P̃ be
the unique positive definite solution to the Lyapunov equation

P̃ = ĀT P̃ Ā + I . (4.56)

Such a P̃ exists since Ā is Schur-stable.

We next define a Lyapunov function

V (ξ, m̃) = ξ T Pεξ + (β + 1)m̃T P̃m̃, (4.57)

and let c1 > 0 be such that

c1 ≥ sup
ξ∈UK1 ,ε∈(0,1]

V (ξ, m̃). (4.58)

Such a c1 exists since UK1 is bounded and limε→0 Pε = 0. Let ε∗
2 ∈ (0, ε∗

1] be
such that ξ ∈ LV (c1) implies that ‖Fεξ‖∞ ≤ 1

2 . The existence of such an ε∗
2

is due to Lemma 4.3.1. Hence for k ≥ K1, (4.53) takes the form

ξ(k + 1) = (A + B Fε)ξ(k) + B Mm̃(k)

m̃(k + 1) = Ām̃(k).
(4.59)

Now, the evaluation of the difference of V for k ≥ K1, inside the set LV (c1),
using (4.9), shows that for all ξ ∈ LV (c1),

V (ρξ, ρm̃) − V (ξ, m̃)

= [(A + B Fε)ξ + B Mm̃]T Pε[(A + B Fε)ξ + B Mm̃]
− ξ T Pεξ − (β + 1)m̃Tm̃

= −εξ Tξ − ξ T FT
ε Fεξ + 2m̃T MT Fεξ + m̃T MT BT B Mm̃

− (β + 1)m̃Tm̃

≤ −ε‖ξ‖2 − ‖Fεξ‖2 + ‖Fεξ‖2 + ‖M‖2‖m̃‖2 + ‖B‖2‖M‖2‖m̃‖2

− (β + 1)‖m̃‖2

≤ −ε‖ξ‖2 − ‖m̃‖2.

Hence we conclude that, for any a priori given sets X0 and Z0, there exists
an ε∗

2 ∈ (0, ε∗
1 ] such that for each ε ∈ (0, ε∗

2], the equilibrium point (0,0,0) of
(4.45) is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

We now proceed to show that item (ii) of Problem 4.3.2 also holds. To this
end, we consider the closed-loop system (4.51). Recalling that the matrix Ā
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is Schur-stable, and using (4.51), which is equivalent to the system (4.54), it
readily follows from the last two equations of (4.51) that there exists a K2 ≥ K
such that, for all possible initial conditions (x̃(0), w̃(0)),

‖Mm̃‖∞,K2 ≤ δ

2
, for all ε ∈ (0, 1]. (4.60)

We then consider the first equation of (4.54). By Condition (ii)b), ‖
w‖∞,K <

1 − δ. Moreover, for any x(0) ∈ X0 and any w(0) ∈ W0, ξ(K2) belongs to
a bounded set, say UK2 , independent of ε since X0 and W0 are both bounded
and ξ(K2) is determined by a linear difference equation with bounded inputs
σ (u) and 
w. Then, using the same Lyapunov function as in (4.57), let c2 > 0
be such that

c2 ≥ sup
ξ∈UK2 ,ε∈(0,1]

V (ξ, m̃). (4.61)

Such a c2 exists since limε→0 Pε = 0, and UK2 is bounded. Let ε∗
3 ∈ (0, 1]

be such that ξ ∈ LV (c2) implies that ‖Fεξ‖∞ ≤ δ
2 . The existence of such

an ε∗
3 is again due to Lemma 4.3.1. Hence the system (4.54) operates in the

linear region after time K2. Using the same technique as before, it can then be
shown that the system (4.45) is asymptotically stable. Now, it can easily be
seen that e(k) → 0 as k → ∞.

Finally, taking ε∗ = min{ε∗
2, ε

∗
3}, we complete our proof.

Remark 4.3.4 As in the state feedback case, in view of Yang’s results ( [93])
and the solvability conditions for the measurement feedback output regula-
tion problem for linear systems in the absence of input saturation as given in
Chapter 2, it is obvious to observe that conditions (i) and (ii)a) of Theorem
4.3.3 are necessary. The crucial condition for the solvability of the classical
semi-global linear observer based measurement feedback output regulation
problem with amplitude saturating actuators is Condition (ii)a), which is a
sufficient condition. In Section 4.4 we will discuss the necessity of Condition
(ii)a).

Design of a low-gain measurement feedback regulator:

For clarity, we now summarize the construction of an observer based mea-
surement feedback regulator.

Step 1 : At first construct a low-gain state feedback regulator as in (4.10).

Step 2 : Design a full order observer so that we can implement the controller
with observer based architecture as given in (4.47). That is, find the matrix
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gains KA and KS in such a way that the matrix Ā given in (4.48) is Schur-
stable.

Step 3 : Implement the observer based measurement feedback regulator as
given in (4.47).

Step 4 : Given the sets X0 ⊂ R
n, W0 ⊂ R

s , and Z0 ⊂ R
n, find an ε∗ by the

procedure given in the proof of Theorem 4.3.3.

Then for some ε ∈ (0, ε∗] the observer based measurement feedback reg-
ulator as given in (4.47) solves the classical semi-global measurement feed-
back output regulation problem.

The following example illustrates the design procedure.

Example 4.3.3 We consider the same plant and the exosystem as in Example
4.3.1. However, this time, the states x and w are not available for feedback.
This forces us to use measurement feedback regulators. Let y = e, and also
let the sets W0 = {

w ∈ R
2 : ‖w‖ < 0.15

}
and X0 = {

x ∈ R
4 : ‖x‖ < 0.15

}
.

Let the set Z0, be given by Z0 = {z ∈ R
6 : ‖z‖ ≤ 0.2}.

For ε = ε∗, the feedback laws (4.47) are given by

x̂(k + 1) = Ax̂ (k) + Bσ (u(k)) + Ewŵ(k)

+KACe(x̂(k) − x(k)) + KA Dew(ŵ(k) − w(k))

ŵ(k + 1) = Sŵ(k)

+KSCe(x̂(k) − x(k)) + KS Dew(ŵ(k) − w(k))

u(k) = 100

(
3.53 −2.22 −3.68 −2.24
2.22 −3.53 2.24 3.68

)
x̂(k)

+
(

0.9986 −0.0446
0.0446 1.0014

)
ŵ(k).

(4.62)

Following the design procedure given above, and the proof of Theorem 4.3.3,
a suitable choice of ε∗ is 1.9325 × 10−3. It can be verified that the matrix Ā
as defined in (4.48) is asymptotically stable, if we choose,

KA =

⎛
⎜⎜⎝

1.2489 × 10−1 1.6643 × 10−2

−9.0244 × 10−1 −8.7426 × 10−1

−7.5000 × 10−1 0.0000 × 100

−7.7352 × 10−1 6.3254 × 10−4

⎞
⎟⎟⎠ and

KS =
(−3.7468 × 10−1 −4.9928 × 10−2

−3.8676 × 10−1 −3.7468 × 10−1

)
.
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For the initial conditions x(0) = (0.075, 0.075, 0.075, 0.075)T , w(0) =
(0.1,−0.1)T, x̂(0) = (0, 0, 0, 0)T, ŵ(0) = (0, 0)T, Figure 4.4 shows the con-
trol action and the closed-loop performance for the dynamic measurement
feedback regulator.

As seen from the above example, and as in the case of state feedback,
low-gain based designs under utilize the available control capacity. Our goal
next is to recall a new design methodology which incorporates significant im-
provement to the low-gain design method, and leads to a better utilization of
the available control capacity and hence better closed-loop performance.

An improved measurement feedback regulator design:

This section provides an improved design for the measurement feedback
regulators. The strategy taken in the new design is to implement the state feed-
back regulators as constructed in (4.29) with the state of a fast linear observer.
The observer is chosen to be of a deadbeat type. Arbitrary fast observers can
also be used, however, the use of a deadbeat type observer simplifies our proof
drastically since the states of the system will be exactly the same as those of
the observer in a finite time. More specifically, the new linear observer based
measurement feedback regulator takes the form,

ρ x̂ = Ax̂ + Bσ (u) + Ewŵ − KA y + KA(Cyx̂ + Dywŵ)

ρŵ = Sŵ − KS y + KS(Cyx̂ + Dywŵ)

u = (Fε + µκ(x̂, ŵ, µ)Kε)(x̂ − 	ŵ) − 
ŵ

(4.63)

where

Fε = −(BT Pε B + I )−1 BT Pε A,

Kε = −(BT Pε B)
−1 BT Pε A

with Pε being the solution of the Riccati equation (4.9), and the function κ

is as defined by (4.30). The matrices KA and KS are chosen such that all
eigenvalues of the following matrix

Ā =
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
(4.64)

are at the origin. Here we of course assumed that the pair((
Cy Dyw

)
,

(
A Ew

0 S

))
(4.65)

is observable.

We have the following results.
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Figure 4.4: ε = 1.9325 × 10−3. a) e1; b) e2; c) u1; d) u2.
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Theorem 4.3.4 Consider the system (4.1) and the given compact set W0 ⊂
R

s . Assume the sufficient conditions of Theorem 4.3.3 are satisfied. In addi-
tion, assume that the pair (4.65) is observable and that B is injective. Then,
there exists a controller, among the family of measurement feedback laws
(4.63), that solves the semi-global linear observer based measurement feed-
back output regulation problem. More specifically, for any a priori given (ar-
bitrarily large) set X0 ⊂ R

n and Z0 ⊂ R
n+s , there exists an ε∗ ∈ (0, 1], such

that for each µ ∈ [0, 2], the controller in the family (4.63) has the following
properties:

(i) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

ρx = Ax + Bσ (u)

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (u)

+
(

KA

KS

) (
Cy Dyw

)(x̂ − x
ŵ

)
u = Flh x̂ − (Flh	 − 
)ŵ

(4.66)

where Flh = Fε+µκ(x̂, ŵ, µ)Kε, is asymptotically stable with X0×Z0

contained in its basin of attraction.

(ii) For any (x(0), x̂ (0), ŵ(0)) ∈ X0 × Z0 and w(0) ∈ W0, the solution of
the closed-loop system satisfies

lim
k→∞ e(k) = 0. (4.67)

Proof : With the family of feedback laws as given by (4.63), the closed-loop
system consisting of the system (4.1) and the dynamic measurement feedback
laws (4.63) can be written as (we do not write the equation w(k +1) = Sw(k)

explicitly but it is of course always there),

ρx = Ax + Bσ (u) + Eww

ρ x̂ = Ax̂ + Bσ (u) + Ewŵ + KACy(x̂ − x)

+KA Dyw(ŵ − w)

ρŵ = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w)

u = (Fε + µκ(x̂, ŵ, µ)Kε)x̂
−((Fε + µκ(x̂, ŵ, µ)Kε)	 − 
)ŵ.

(4.68)

We then adopt the invertible change of state variables,

x̃ = x − x̂, w̃ = w − ŵ, (4.69)
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and rewrite the closed-loop system (4.68) as

ρx = Ax + Eww + Bσ
[

ŵ + (Fε

+µκ(x − x̃, w − w̃, µ)Kε(x̂ − 	ŵ)
]

ρ x̃ = (A + KACy)x̃ + (Ew + KA Dyw)w̃

ρw̃ = KSCyx̃ + (S + KS Dyw)w̃.

(4.70)

Since all eigenvalues of Ā are at the origin, it is easy to verify that for time
k ≥ n + s, x̃ ≡ 0 and w̃ ≡ 0. As a result, for k ≥ n + s, x̂ ≡ x and ŵ ≡ w.
On the other hand, for any x(0) ∈ X0, (x̂(0), ŵ(0)) ∈ Z0 and w(0) ∈ W0,
x(n + s) belongs to a bounded set. Hence, the rest of the proof becomes the
same as the proof of Theorem 4.3.1.

Example 4.3.4 We consider the same plant and the exosystem as in Example
4.3.2. However, this time, the states x and w are not available for feedback.
This forces us to use measurement feedback regulators. Let y = e, and also
let the sets W0 = {

w ∈ R
2 : ‖w‖ < 0.9

}
and X0 = {

x ∈ R
4 : ‖x‖ < 10

}
.

Let the set Z0 be given by Z0 = {z ∈ R
6 : ‖z‖ ≤ 2}. Following the proof of

Theorem 4.3.4, a suitable choice of ε∗ is 6.628 × 10−6. It can be verified that
the matrix Ā as defined in (4.64) has all its eigenvalues located at the origin
if we choose,

KA =
⎛
⎝−0.3748 0.8750

−1.3752 −0.1250
0.6252 0.8750

⎞
⎠ , and KS =

(−0.25 0.25
0.3752 0.125

)
.

For ε = ε∗ and µ = 1, the feedback laws (4.63) are given by

ρ x̂ = Ax̂ + Bσ (u) + Ewŵ

+KACe(x̂ − x) + KA Dew(ŵ − w)

ρŵ = Sŵ + KSCe(x̂ − x) + KS Dew(ŵ − w)

u = −(−0.3037 −0.1523 0.2403
)
x̂

+(
0.9366 −0.1523

)
ŵ.

(4.71)

For the initial conditions x(0) = (−6, 2, 6)T, w(0) = (0.45,−0.45)T,
x̂(0) = (0, 0, 0, 0)T, ŵ(0) = (0, 0)T, Figure 4.5 on the next page shows the
control action and the closed-loop performance for the dynamic measurement
feedback regulator for µ = 1. For the purpose of comparison, Figure 4.6 on
the facing page shows the same for the case of µ = 0.



Control of linear systems with regulation and input constraints 163

5 10 15 20 25 30
−10

0

10

a

5 10 15 20 25 30
−10

−5

0

5

b

5 10 15 20 25 30
−1

0

1

c

Figure 4.5: ε = 6.628 × 10−6, µ = 1. a) e1; b) e2; c) σ (u); .
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4.4 Necessary conditions – linear versus non-linear re-
gulator

The classical semi-global state feedback output regulation problem and the
classical semi-global measurement feedback output regulation problem as de-
fined in the previous section, can be solved using linear regulators under the
sufficient conditions for their existence as given in Theorems 4.3.1 and 4.3.3.
In this section we examine the necessity of these conditions. The necessity
issue must be examined in two fronts.

The first issue is to examine the necessity of the solvability conditions
given in Theorems 4.3.1 and 4.3.3 for the existence of linear regulators. The
second issue is to examine whether we can weaken the solvability conditions
if we consider non-linear regulators instead of linear regulators. It turns out
that under certain mild conditions our solvability conditions for the existence
of linear regulators are basically necessary. Moreover, these conditions cannot
be weakened by allowing non-linear regulators. We also make an interesting
observation that whenever these mild conditions are violated, there might be
non-linear state feedback controllers that achieve output regulation while no
linear state feedback controllers would do so.

The necessary condition for the existence of the classical semi-global state
feedback regulator using a general non-linear feedback law is given in the
following theorem.

Theorem 4.4.1 Consider the plant and the exosystem (4.1). Let Assumptions
A.1 and A.2 hold. Assume that in the absence of input amplitude saturation,
the linear state feedback output regulation problem is solvable, i.e., there exist
matrices 	 and 
 which solve the regulator equation (4.13). Also assume that
(A, B, Ce, Deu) is left-invertible and has no invariant zeros on the unit circle.
Then, a necessary condition for the existence of a general, possibly non-linear,
state feedback law that achieves semi-global output regulation for (4.1) is that,
for all ε > 0, there exists a K � 0 such that

‖
w‖∞,K � 1 + ε, for all w(0) ∈ W0. (4.72)

Proof : The proof of the above theorem depends on a result described in Ap-
pendix 3.A. We will assume in the proof that the reader is familiar with these
results. Consider the system (4.1) without the saturation element, i.e. let

x(k + 1) = Ax(k) + Bv(k) + Eww(k)

w(k + 1) = Sw(k)

e(k) = Cex(k) + Deuv(k) + Deww(k).

(4.73)
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Suppose that we have an arbitrary non-linear feedback u(k) = α(x(k), w(k))

which achieves output regulation for the system (4.1). Then the feedback
v(k) = σ (α(x(k), w(k))) will achieve output regulation for the system (4.73).

We note that

v = Fx + (
 − F	)w

is a linear feedback which achieves output regulation for the system (4.73).
Moreover,

v(k) − 
w(k) → 0 as k → ∞. (4.74)

We have two feedback controllers which achieve output regulation for the
linear system (4.73). One is non-linear and satisfies a certain amplitude con-
straint. The other feedback is a linear feedback of which we have no a pri-
ori knowledge regarding its amplitude. Our aim is to show that the linear
feedback must necessarily satisfy an amplitude constraint asymptotically as
k → ∞. We define the difference between the two control inputs,

s = [Fx + (
 − F	)w] − [σ (α(x, w))].
If we apply s to the system

x(k + 1) = Ax(k) + Bs(k)

e(k) = Cex(k) + Deus(k)
(4.75)

with zero initial conditions, then we have e(k) → 0 (since both the linear
feedback and the non-linear saturating feedback controllers achieve output
regulation). By applying Theorem 4.A.1 we find that s(k) → 0 as k → ∞.

If we look at our definition of s(k), we see that the first component asymp-
totically converges to 
w. The second term is bounded by 1. Therefore it is
easy to see that if s(k) converges to 0 we must necessarily have

lim sup
k→∞

‖
w(k)‖∞ � 1.

Remark 4.4.1 The necessary conditions given in Theorem 4.4.1 are slightly
different from the sufficient solvability conditions given in Theorem 4.3.1. It
is necessary that ‖
w(k)‖∞ is asymptotically less than or equal to 1 while in
our sufficient conditions we require that ‖
w(k)‖∞ is asymptotically strictly
less than 1. Hence, one can conclude that under Assumption A.1 and the
condition that (A, B, Ce, Deu) is left invertible and has no invariant zeros on
the unit circle, a non-linear feedback regulator cannot do strictly better than
a linear feedback regulator.
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An interesting question is whether one can weaken the necessary condi-
tion given in Theorem 4.4.1, if (A, B, Ce, Deu) is not left invertible and/or has
invariant zeros on the unit circle. The following example shows that, in fact,
this is the case. More significantly, this example shows that if (A, B, Ce, Deu)

is not left invertible, non-linear feedback controllers might achieve semi-glo-
bal output regulation while no linear feedback controller can do so.

Example 4.4.1 Consider the system

x(k + 1) = 0.5x(k) + σ (u(k))

w(k + 1) =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠w(k)

e(k) =
⎛
⎝1 −1 0 0

1 0 −1 0
1 0 0 −1

⎞
⎠x(k) − 2

7

⎛
⎝3 3 6

6 6 0
0 6 6

⎞
⎠w(k)

(4.76)

with w(0) ∈ W0 where

W0 = {
w ∈ R

3 | ‖w‖∞ < 1
}
.

It is straightforward to show that in the absence of input amplitude saturation
the linear state feedback regulator is solvable. In fact, the matrices 	 and 


that solve the linear matrix equation (4.13) are given by,


 = 1

7

⎛
⎜⎜⎝

f1 f2 + 6 f3

f1 − 3 f2 + 3 f3 − 6
f1 − 6 f2 f3

f1 f2 f3 − 6

⎞
⎟⎟⎠ , and 	 = 2
,

where f1, f2 and f3 are any real numbers.

In the presence of input amplitude saturation, however, the sufficient con-
ditions of Theorem 4.3.1 are not satisfied. More specifically, Condition (ii)b)
of Theorem 4.3.1 cannot be satisfied for any choice of f1, f2 and f3. Hence,
the design procedure developed in the previous section cannot be applied to
this example. It is also evident that the necessary condition (4.72) is not satis-
fied either. But, since (A, B, Ce, Deu) in the given plant is not left invertible,
Theorem 4.4.1 does not apply anyway. In what follows, we will establish the
following two facts for the plant and the exosystem (4.76):
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(i) There exist non-linear feedback controllers that achieve semi-global
output regulation. This implies that the necessary condition (4.72) given
in Theorem 4.4.1 are not valid if (A, B, Ce, Deu) is not left invertible.

(ii) There exist no linear state feedback controllers that can achieve semi-
global output regulation. This establishes an important result. That is, if
(A, B, Ce, Deu) is not left invertible, the semi-global output regulation
might be achieved via non-linear feedback controllers while no linear
feedback controllers can do so.

As the plant is already asymptotically stable, let us consider a non-linear
feedback of only the exosystem state of the form,

u =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ f (w) +

⎛
⎜⎜⎝

0 3 0
−1.5 1.5 −3
−3 0 0
0 0 −3

⎞
⎟⎟⎠w, (4.77)

and

f (w) = 6

7
(1 − λ1 − λ2 − λ3)

where λ1, λ2, λ3 are such that |λ1| + |λ2| + |λ3| � 1, and

w = λ1

⎛
⎝1

1
1

⎞
⎠+λ2

⎛
⎝ 1

1
−1

⎞
⎠+λ3

⎛
⎝−1

1
1

⎞
⎠+(1−λ1−λ2−λ3)

⎛
⎝ 1

−1
1

⎞
⎠ . (4.78)

In this way the λi are not uniquely determined and we make the special choice
of choosing those λi satisfying (4.78) with minimal λ1. Note that our feedback
is non-linear but continuous. Also, we know that for any w(0) ∈ W0, w ≡
w(0). It is then not hard to check that the above non-linear feedback law
achieves output regulation.

We still want to show that there does not exist a linear feedback controller
that achieves output regulation. Assume that the linear feedback controller
u = Fw achieves output regulation. Define

v =
⎛
⎝1 −1 0 0

1 0 −1 0
1 0 0 −1

⎞
⎠ σ (Fw). (4.79)



168 Chapter 4: Regulation under saturating actuators (discrete)

It is easy to see that this feedback controller achieves output regulation for the
system

ρx = 0.5x +

⎛
⎜⎜⎝

0 0 0
−1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎠v

ρw =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠w

e =
⎛
⎝1 −1 0 0

1 0 −1 0
1 0 0 −1

⎞
⎠x − 2

7

⎛
⎝3 3 6

6 6 0
0 6 6

⎞
⎠w

(4.80)

with w(0) ∈ W0. However, the following linear feedback controller also
achieves output regulation for the system (4.80),

v = 2

7

⎛
⎝3 3 6

6 6 0
0 6 6

⎞
⎠w. (4.81)

Since the system from v to e is left-invertible, we know from Theorem 4.A.1 that
the asymptotic behavior of signals achieving the output regulation is unique.
We have two feedback controllers (4.79) and (4.81) that achieve output regu-
lation. So asymptotically we must have,⎛

⎝1 −1 0 0
1 0 −1 0
1 0 0 −1

⎞
⎠σ (Fw) = 2

7

⎛
⎝3 3 6

6 6 0
0 6 6

⎞
⎠w.

Using that w is not dependent on time, and using a simple transformation,
we note that the existence of a linear feedback controller achieving regulation
requires the existence of a gain F satisfying∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

2
2
2
2

⎞
⎟⎟⎠ Fw +

⎛
⎜⎜⎝

0 6 0
−3 3 −6
−6 0 0
0 0 −6

⎞
⎟⎟⎠w

∣∣∣∣∣∣∣∣
� 7.

However, it is easily verified (and was explicitly worked out in [72]) that this
is not possible for this particular example.

Hence we can note in conclusion that for this example there does exist
a suitable non-linear feedback controller but not a suitable linear feedback
controller.
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Remark 4.4.2 We can pose similar questions regarding the classical semi-
global measurement feedback output regulation problem. Again, there is the
question whether the conditions of Theorem 4.3.3 are actually necessary for
the solvability of the classical semi-global measurement feedback output reg-
ulation problem. But Theorem 4.4.1 basically resolves this question since the
conditions which are necessary for the state feedback case are clearly also
necessary for the case of measurement feedback on the basis of the error sig-
nal only. The only additional assumption we made in Theorem 4.3.3 is the
detectability assumption which is clearly necessary for the stabilization of
our system.

4.5 Issues of well-posedness and structural stability

We would like to reconsider the problems of well-posedness and structural sta-
bility as introduced in Chapter 2 but this time for discrete-time linear systems
subject to actuator saturation. In this case, there are no intrinsic differences
between discrete- and continuous-time systems and therefore the results in
this section are almost identical with the obvious changes to the discrete-time
results of Section 3.5.

Definition 4.5.1 (Well-posedness) For a system � as in (4.1), the classical
semi-global linear observer based measurement feedback output regulation
problem as defined in Problem 4.3.2 is said to be well-posed at (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if there exists a neighborhood P0

of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in the parameter
space P such that the considered problem is solvable for each element (A, B,
Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) of P0 for which A and S have all its
eigenvalues inside or on the unit circle.

We have the following result.

Theorem 4.5.1 Consider a system � as in (4.1) and the classical semi-global
linear observer based measurement feedback output regulation problem as
defined in Problem 4.3.2. Let the conditions of Theorem 4.3.3 be satisfied for
this system with nominal parameter values,

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0).
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Then the considered problem for � is well-posed at (A0, B0, Ew,0, Ce,0, Deu,0,
Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if and only if the matrix S is weakly Schur-stable
and the matrix(

A0 − λI B0

Ce,0 Deu,0

)

has full row-rank for each λ which is an eigenvalue of S0.

Remark 4.5.1 In the above theorem, we did not perturb the set of initial con-
ditions for the exosystem W0 but it is obvious that small perturbations of this
set will not affect well-posedness.

Next we consider the output regulation problem with structural stability.
As already discussed in Section 3.5, we need to restrict our perturbations of
the system parameters even more. As in the case of well-posedness, we need
to guarantee that even after perturbation, A still has all its eigenvalues inside or
on the unit circle but we also need to exclude perturbations of the exosystem,
i.e. we do not perturb S. Finally we need that the error signal is part of the
measurement signal y, i.e. the parameters need to satisfy (2.36).

Definition 4.5.2 (Structurally stable output regulation problem) Consider a
system � as in (4.1) with the additional structure given in (2.36). A fixed
controller is said to solve a structurally stable output regulation problem for
� at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0) if it satisfies the
following properties:

(i) The controller solves the classical semi-global linear observer based
measurement feedback output regulation problem when the plant in
(2.1) is characterized by the nominal set of parameters (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0).

(ii) There exist a neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0,
Cy2,0, Dyu2,0, Dyw2,0) such that the controller achieves internal stability
and output regulation for each set of perturbed plant parameters (A0 +
δA, B0 + δB, Ew,0 + δEw, Ce,0 + δCe, Deu,0 + δDeu, Dew,0 + δDew,
Cy2,0+δCy2, Dyu2,0+δDyu2, Dyw2,0+δDyw2) in P0 for which A0 +δA
has all its eigenvalues inside or on the unit circle.

In other words, as long as the perturbed parameters remain in P0, we
have limt→∞ e(t) = 0 for all x(0) ∈ R

n, v(0) ∈ R
nc , and w(0)) ∈ R

s .
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A main technical complexity is the preliminary static output injection we
applied in Section 2.8 to guarantee that A0 and S have no common eigenval-
ues. These issues can be resolved as already alluded to in Section 3.5. As
shown below, it turns out that the necessary and sufficient condition given in
Theorem 4.5.1 for the well-posedness of the exact output regulation problem
with measurement feedback is indeed also the necessary and sufficient condi-
tion for the existence of a regulator that solves the structurally stable output
regulation problem.

Theorem 4.5.2 Consider a system � as in (4.1) with the structural constraint
(2.36). Let the conditions of Theorem 3.3.4 be satisfied for this system with
nominal parameter values,

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0).

Then, there exists a regulator that solves the structurally stable output regula-
tion problem for � at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0)

if and only if the matrix S is weakly Schur-stable and the matrix(
A0 − λI B0

Ce,0 Deu,0

)
(4.82)

has full row-rank for each λ which is an eigenvalue of S0.

For linear systems the parameter perturbations could be arbitrarily large
as long as stability is preserved. This is not the case here because the per-
turbations might be such that lim supk→∞ ‖
w(k)‖∞ > 1 and then obviously
output regulation is no longer possible.

We will only briefly indicate how the above result can be shown and how
a suitable controller can be found. For ease of exposition we assume here that
A0 and S have no eigenvalues in common. Define Smin, S̃p, D̃ew and D̃yw as in
Section 2.8.

We can now define an auxiliary system composed of the extended plant
(2.1) and the auxiliary exosystem (2.41),

�̃ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̃ = A0 x̃ + B0σ (ũ)

ρw̃ = S̃pw̃

ỹ = Cy,0x̃ + Dyu,0σ (ũ) + D̃yww̃

ẽ = Ce,0x̃ + Deu,0σ (ũ) + D̃eww̃.

(4.83)
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We design a low-gain or an improved low-gain measurement feedback con-
troller for this auxiliary system such that the system achieves output regulation
for all initial conditions under the condition that lim supk→∞ ‖
w̃(k)‖∞ <

1− δ/2 where 
̃ is of course the solution of the regulator equations associated
with this system. We can then show that this controller achieves structural sta-
bility for the original system if we know that the system (A0, B0, Ce,0, Deu,0)

is left-invertible.

Extensions to the case where A0 and S have common eigenvalues and/or
where (A0, B0, Ce,0, Deu,0) is not left-invertible are available but due to their
technicality have been omitted.
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4.A Uniqueness of asymptotic behavior of the input

In this section we will prove that under rather weak assumptions the asymp-
totic behavior of the input is unique given that the output of the system tracks a
certain reference signal. This is a result which is used in the proof of Theorem
4.4.1.

Theorem 4.A.1 Consider the system,

x(k + 1) = Ax(k) + Bv(k)

y(k) = Cx(k) + Dv(k),
(4.84)

with x(0) = 0. Assume that (A, B, C, D) is left-invertible, and has no invari-
ant zeros on the unit circle. Moreover, assume that v(k) is bounded, and is
such that y(k) → 0 as k → ∞. In that case v(k) → 0 as k → ∞.

Proof : Since we know that the system � with the realization (A, B, C, D)

is left invertible and has no invariant zeros on the unit circle, we know that
there exists a left-inverse �L with input-output operator GL which has no
poles on the unit circle. We split GL into a stable and an antistable part:
GL = G+

L +GL
− where G+

L has all poles outside the unit circle and G−
L has all

poles inside the unit circle. We know that v(k) = Gy(k) = G+
L y(k)+G−

L y(k).
Clearly since y(k) → 0 as k → ∞, we have that (G−

L y)(k) → 0 as k →
∞. On the other hand, G+

L might not be causal. We write G+
L = G+

L ,c H
where H consists of only backwards shifts in such a way that G+

L ,c has only
poles outside the unit circle and is causal. Moreover since H consists of only
shifts in time we know that z(k) = H y(k) satisfies z(k) → 0 as k → ∞.
Suppose we have a minimal realization (F, G, H, J ) for G+

L ,c where F has all
its eigenvalues outside the unit circle. Moreover, we know that the output of
G+

L ,c, given the input z(k), is bounded since v(k) is bounded. Since we have
a minimal realization this implies that the state x(k) of G+

L ,c is bounded. We
have,

x(k + T ) = FT

(
x(k) +

T −1∑
i=0

Fi+1−T Gz(k + i)

)
. (4.85)

Since F has all its eigenvalues outside the unit circle, we find that

‖
T −1∑
i=0

Fi+1−T Gz(k + i)‖ < M‖z‖∞,k
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where M is independent of k and T . Assume that there exists a time k such
that

‖x(k)‖ > M‖z‖∞,k .

Then from (4.85) we find that x(k) is unbounded which yields a contradiction.
Therefore,

‖x(k)‖ < M‖z‖∞,k → 0

as k → ∞. But since also z(k) → 0 as k → ∞ we find that

u(k) = H x(k) + J z(k) → 0

as k → ∞.

4.B Review of direct low-gain design for linear sys-
tems – an explicit construction

We construct here explicitly a family of low-gain state feedback gains based
on an eigenvalue assignment method.

Consider the linear discrete-time system

x(k + 1) = Ax(k) + Bu(k) (4.86)

where, as usual, the state x ∈ R
n and the input u ∈ R

m . Assume that (A, B)

is stabilizable and all the eigenvalues of A are located inside or on the unit
circle. We have the following low-gain state feedback design algorithm.

Step 1 : Find the state transformation T ( [10]) such that (T −1 AT, T −1 B) is
in the following form

T −1 AT =

⎛
⎜⎜⎜⎜⎜⎝

A1 A12 · · · A1p 0
0 A2 · · · A2p 0
...

. . .
. . .

...
...

0 · · · 0 Ap 0
0 · · · 0 0 A0

⎞
⎟⎟⎟⎟⎟⎠ ,

T −1 B =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1 0 · · · 0 ∗
0 B2

. . .
... ∗

...
. . .

. . . 0
...

0 · · · 0 Bp ∗
B01 B02 · · · B0p ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Here ∗’s represent submatrices of less interest, and for i = 1, 2, · · · , p,

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

−ai
ni

−ai
ni −1 −ai

ni −2 · · · −ai
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bi =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠ .

The transformation T is such that, (Ai , Bi) is controllable, and all the eigen-
values of Ai are on the unit circle, while those of A0 are strictly inside the unit
circle.

Step 2 : For each (Ai , Bi), let Fi (ε) ∈ R
1×ni be the state feedback gain such

that

λ(Ai − Bi Fi (ε)) = (1 − ε)λ(Ai ), ε ∈ (0, 1].

Note that Fi(ε) is unique.

Step 3 : The family of linear low-gain state feedback laws is given as follows,

u(k) = Fεx(k) (4.87)

where the state feedback gain matrix Fε is given as

Fε = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(ε
v2) 0 · · · 0 0 0

0 F2(ε
v3)

. . .
...

...
...

...
. . .

. . . 0 0 0
0 · · · 0 Fp−1(ε

vp) 0 0
0 · · · 0 0 Fp(ε) 0
0 · · · 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T −1 (4.88)

where vi = (ri + 1)(ri+1 + 1) · · · (rp + 1) and where ri is the largest algebraic
multiplicity of the eigenvalues of Ai .

With the above choice of Fε, we have the following theorem.

Theorem 4.B.1 Consider the linear system (4.86). Assume that all the eigen-
values of A are located inside or on the unit circle and that the pair (A, B)

is stabilizable. Then, for the state feedback gain matrices given by (4.88), the
following properties hold:
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(i) For each ε ∈ (0, 1], A + B Fε is Schur-stable.

(ii) There exists an ε∗ ∈ (0, 1] such that for all ε ∈ (0, ε∗],
‖Fε‖ ≤ κε (4.89)

‖(A + B Fε)
k‖ ≤ β

εγ
(1 − εγ )k/2 (4.90)

‖Fε(A + B Fε)
k‖ ≤ αε(1 − εγ )k/2 (4.91)

where γ ≥ 1 is an integer dependent only on the system data (A, B),
and α, β and κ are some positive constants also independent of ε.

Proof : It is a consequence of [36].



Chapter 5

Output regulation with
actuators subject to amplitude
and rate saturation

5.1 Introduction

The previous two chapters considered output regulation of linear systems with
actuators subject to amplitude saturation alone. In this chapter, we revisit
output regulation of linear systems, however, with actuators subject to both
amplitude and rate saturation. Rate saturation refers to the case when actuator
outputs cannot change faster than a certain value.

In contrast with the amount of literature that exists when there are only
amplitude bounds, not much literature exists when both amplitude as well as
rate saturation are present. If we have only rate saturation, we can approach
the study of the given system either for stabilization or for output regulation
by viewing the derivative of the input signal as a new fictitious input signal
which is then bounded only in magnitude; and hence we can readily apply
the development given in the previous two chapters. However, if we have
simultaneous bounds on the rate as well as on the magnitude, then such a
simple approach does not work out. We would like to point out right at the
outset that, unlike amplitude saturation which is a static non-linearity, the rate
saturation is a dynamic non-linearity.

In modeling amplitude and rate saturation for actuators, one can basically
choose one of the following two approaches.

• A natural way is to write down first the linear dynamic equations of an
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�u
Actuator �ua

Figure 5.1: Actuator

actuator (see block diagram of Figure 5.1), and then impose on such equations
both the amplitude and rate saturation as shown in the following equation,

ẋa = σβ(Aa xa + Bau)

ua = σα(Caxa)
(5.1)

where σα(·) and σβ(·) are standard saturation functions, say, defined as

σα(s) = sgn(s) min{|s|, α} and σβ(s) = sgn(s) min{|s|, β}.
Also, u ∈ R

m is the input signal and xa ∈ R
na is the state of the actuator and

ua ∈ R
m is the output of the actuator which is applied to the plant.

We would like to point out that it is rather difficult to incorporate the ‘nice’
external stability behavior of actuators into a state space model characterized
by the matrix triple (Aa, Ba, Ca). Anyway, having modeled the actuator as in
(5.1), the next obvious step is to augment (5.1) with the plant model in order
to obtain the model for both the actuator and the plant. It is well known that it
is hard to analyze and design dynamical systems which are modeled as such.
However, if one imposes a certain strong mathematical structure on the dy-
namics of the actuator given in (5.1), one can avoid the complexity in analysis
and design. The required mathematical structure is typically to assume that
Aa , Ba, and Ca are diagonal matrices. Essentially, such a mathematical struc-
ture implies that the actuator dynamics for each component of the input is a
first-order or scalar dynamics. This approach is taken in [7, 31, 32, 34]. We
note that [7, 34] deal with rate saturation while [31, 32] deal with amplitude
as well as rate saturation. It is obvious to see that in [34] with the imposed
structure of diagonality of the matrices Aa , Ba, and Ca, the control of lin-
ear systems with rate saturation reduces to the control of the augmented plant
with only input amplitude saturation. However, we would like to point out an
interesting but an undesirable aspect of this approach, namely the necessity of
using the state of the actuator for control feedback.

• The second approach is to model the constraints in such a way that they
can be incorporated as a part of the controller, and then to design the controller
so that its output is always in agreement with the constraints as dictated by the
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�v Constraint
Model

�u
Actuator �ua

Plant �

Figure 5.2: Constraint model, actuator, and plant

actuator. Thus, this method avoids overloading of the actuator. By incorporat-
ing the actuator constraints in the design of controllers, this method essentially
sidesteps the short comings of the first method. The work of [5] takes this ap-
proach to model the rate saturation. The block diagram in Figure 5.2 depicts
the philosophy of the method.

We take the second approach here, and model the constraints by introduc-
ing a non-linear operator that captures both amplitude and rate constraints. We
refer to the new non-linear operator as a standard amplitude+rate operator (see
Figure 5.3). Such an operator has a ‘dead-beat stability’ property. With such a
property being valid, we study and examine the state space realizations of this
operator. It turns out that, although one could obtain a useful state space real-
ization in discrete-time systems, one cannot do so in continuous-time systems.
This indicates that a framework that includes functional differential equations
for modeling the plant and amplitude as well as rate saturation constraints of
the actuator is indeed a natural framework.

�u
standard

amplitude+rate
saturation operator

� σ̄α,β(u)

Figure 5.3: Amplitude+rate saturation operator

Utilizing this functional differential framework and knowing that it sat-
isfies a ‘dead-beat stability’ property, we redefine the notions of semi-global
stabilization and output regulation. We then proceed to show that the same
low-gain design methodology that was successfully used in the previous two
chapters to design controllers for linear systems having only input amplitude
saturation can also successfully be used for linear systems with both ampli-
tude and rate saturation on the control input. In fact, we present here explicit
controller design methods via low-gain design methodology in order to semi-
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globally stabilize, and to regulate the output (i.e. to track a desired output
and/or to reject exogenous disturbances) of linear systems with both input am-
plitude as well as rate saturation. As illustrated in the previous two chapters,
controllers designed via low-gain design methodology exhibit unacceptably
slow transient behavior. For that reason, we also utilize low-and-high gain
controllers where the high gain component affects neither the stability and its
associated domain of attraction nor the class of exogenous signals for which
we can achieve output regulation. On the other hand, the high gain compo-
nent greatly improves the transient behavior. However, this low-and-high gain
controller cannot be obtained in the same way as in the previous two chapters
owing to the specific dynamic structure of a rate limiter.

Throughout this chapter, σh : R → R with σh(s) = sgn(s) min{h, |s|}
denotes the standard saturation function with amplitude h. We consider both
continuous- and discrete-time systems together in this chapter. This chapter is
based completely on the recent research work of the authors in [75].

5.2 Modeling issues – standard amplitude + rate sat-
uration operator

In this section, we present modeling aspects of actuators with both amplitude
and rate saturation.

5.2.1 Discrete-time

We will first consider a discrete-time system of the form,

x(k + 1) = Ax(k) + Bσα,β(u)(k). (5.2)

Here σα,β is a diagonal operator with identical non-linear elements on the
diagonal given by σ̄α,β which is uniquely defined by the following properties:

• We have

|σ̄α,β(u)(k)| � α, and |σ̄α,β(u)(k + 1) − σ̄α,β(u)(k)| � β

for all k.

• If u(k) > σ̄α,β(u)(k), then either

� u(k) > α and σ̄α,β(u)(k) = α, or
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� σ̄α,β(u)(k) = σ̄α,β(u)(k − 1) + β.

• If u(k) < σ̄α,β(u)(k), then either

� u(k) < −α and σ̄α,β(u)(k) = −α, or

� σ̄α,β(u)(k) = σ̄α,β(u)(k − 1) − β.

Obviously σ̄α,β is a dynamic non-linearity. We can also describe this operator
by a state space model,

x∞(k + 1) = β sgn(σα(u(k + 1)) − x∞(k)), x(0) = σα(u(0)) (5.3)

where σ̄α,β(u) = x∞. This is a good model for our amplitude+rate operator
which is consistent with our earlier description.

It is easy to see that σ̄α,β is dynamic and has initial conditions. It is not
difficult to see that σ̄α,β(u)(k) can be viewed as the state of this system at time
k. For our purpose, it will in general be sufficient to note that σ̄α,β is dead-beat.
We even have the stronger property that, if u is such that ‖u(k)‖∞ < α and
‖u(k)−u(k−1)‖∞ < β for k > K , then σ̄α,β(u)(k) = u(k) for k > K +α/β.
If we refer to arbitrary initial conditions of σ̄α,β at time 0, then we mean an
arbitrary input signal u in the interval [−α/β, 0]. In our definitions, we will
refer to the initial conditions of σ̄α,β as x̄s , and we will refer to the space of all
possible initial conditions for the operator σ̄α,β , namely the space of all signals
defined on the interval [−α/β, 0], as X̄s . Similarly, for the operator σα,β , we
denote the initial conditions by xs , and the space of all initial signals as Xs .

5.2.2 Continuous-time

We consider a continuous-time system of the form,

ẋ(t) = Ax(t) + Bσα,β(u)(t). (5.4)

Here again σα,β is a diagonal operator with identical non-linear elements on
the diagonal given by σ̄α,β . We seek an operator σ̄α,β with the following prop-
erties:

• For any continuously differentiable u, σ̄α,β(u) is differentiable and

|σ̄α,β(u)(t)| � α, and | d
dt σ̄α,β(u)(t)| � β

for all t .

• If u(t) > σ̄α,β(u)(t), then either
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� u(t) > α and σ̄α,β(u)(t) = α, or

� d
dt σ̄α,β(u)(t) = β.

• If u(t) < σ̄α,β(u)(t), then either

� u(t) < −α and σ̄α,β(u)(t) = −α, or

� d
dt σ̄α,β(u)(t) = −β.

However, in the above case of continuous-time systems, it is not clear whether
this uniquely determines the operator σ̄α,β . Moreover, for instance due to
measurement noise, we might have an input signal which is not smooth but
might only be piecewise continuous and for this general class of signals the
above definition is clearly not sufficient.

We now consider a different way of looking at σ̄α,β . Consider the class of
models,

ẋλ = σβ(λ(σα(u) − xλ)), xλ(0) = σα(u(0)). (5.5)

It is well known that this differential equation has a unique solution for any
measurable input signal u. Next, we define σ̄α,β by,

σ̄α,β(u) = lim
λ→∞ xλ. (5.6)

The following lemma shows that the operator as defined by (5.6) has all the
required properties.

Lemma 5.2.1 For any piecewise continuous function u, the limit in (5.6) ex-
ists in L∞, and the limit σ̄α,β(u) has an L∞ norm less than α and is Lipschitz-
continuous with Lipschitz constant β.

Proof : Let λ∗ > 0. For any λ1, λ2 > λ∗ we have xλ1(0) − xλ2(0) = 0.
Moreover, if xλ1(t) − xλ2(t) > 2β/λ∗ we have ẋλ1(t) − ẋλ2(t) � 0. After all,
we have only two possibilities:

• xλ1(t) > σα(u)(t)+β/λ∗ in which case ẋλ1(t) = −β and ẋλ2(t) � −β.
Therefore ẋλ1(t) − ẋλ2(t) � 0.

• xλ2(t) < σα(u)(t) − β/λ∗ in which case ẋλ1(t) � β and ẋλ2(t) = β.
Therefore ẋλ1(t) − ẋλ2(t) � 0.
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Similarly, if xλ1(t) − xλ2(t) < −2β/λ∗, we have ẋλ1(t) − ẋλ2(t) � 0. This
shows that for all λ1, λ2 > λ∗ we have

‖xλ1 − xλ2‖∞ � 2β

λ∗ .

Therefore, by definition, {xλ} is a Cauchy sequence and it has a limit which
we call x∞ ∈ L∞.

We know that xλ(t) � α implies that ẋλ(t) � 0, and xλ(t) � −α implies
that ẋλ(t) � 0. Combined with ‖xλ(0)‖ � α, we find then that ‖xλ‖∞ � α.
This obviously implies that

‖x∞‖ = lim
λ→∞ ‖xλ‖ � α.

Finally, we have ‖xλ(t2) − xλ(t1)‖ � β|t2 − t1| for any t1, t2 > 0. By letting
λ → ∞ we find that

‖x∞(t2) − x∞(t1)‖ � β|t2 − t1| for all t1, t2 > 0,

and hence x∞ is Lipschitz continuous with Lipschitz constant β.

Note that a Lipschitz continuous function is absolutely continuous and
hence it is easy to see that σ̄α,β(u) is differentiable almost everywhere, and
there exists an L∞ function w with L∞ norm less than β such that

σ̄α,β(u)(t) = σ̄α,β(u)(0) +
∫ t

0
w(t) dt.

However, σ̄α,β(u) need not be differentiable everywhere. An example is given
by the function,

u(t) =
{

0 t = 0

t sin
(

1
t

)
elsewhere,

for which σ̄α,β(u) is not differentiable in 0. Obviously, with the more precise
definition given in (5.6), σ̄α,β is uniquely determined. Moreover, as soon as u
is sufficiently smooth it is easy to verify that the mathematically precise defi-
nition given in (5.6) is consistent with our intuitive definition given initially.

Note that we might define the state model for σ̄α,β as,

ẋ∞ = β sgn(σα(u) − x∞), x(0) = σα(u(0)) (5.7)

with σ̄α,β(u) = x∞. This is consistent with our intuitive description and it
looks like the appropriate model given the state space models for xλ. However,
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note that if u satisfies the rate and saturation bounds then we expect that u =
x∞ (this can also be formally shown) but then the above differential equation
shows that ẋ∞ = 0 which obviously need not be the case. Therefore the model
given in (5.7) is incorrect.

Like in discrete-time, we see that σ̄α,β is dynamic and has initial condi-
tions. We note that again σ̄α,β(u)(t) can be viewed as the state of this system at
time t . For our purpose, it will in general be sufficient to note that σ̄α,β is dead-
beat. We again have the stronger property that if u is such that ‖u(t)‖∞ < α

and ‖u̇(t)‖∞ < β for t > t1, then σ̄α,β(u)(t) = u(t) for t > t1 + α/β. If we
refer to arbitrary initial conditions of σ̄α,β at time 0, then we mean an arbitrary
input signal u in the interval [−α/β, 0]. As in discrete-time systems, we will
refer to the initial conditions of σ̄α,β as x̄s , and we will refer to the space of all
possible initial conditions for the operator σ̄α,β , namely the space of all signals
defined on the interval [−α/β, 0], as X̄s . Similarly, for the operator σα,β , we
denote the initial conditions by xs , and the space of all initial signals as Xs .

In the literature, there have been many different models for a rate limit in
combination with a saturation. All other models use a form of modeling of
the form

ẋr = f (xr , u), xr ∈ R
k.

We do not model the actuator with its rate and amplitude limits. We model
these limits and constraints and view them as part of the controller. Namely,
we use an operator as part of the controller, which guarantees that the control
signal satisfies the bounds in the actuator and avoids overloading the actua-
tor. This is the important difference, but also the fact that our operator only
has a state space model in discrete-time and can only be approximated by
state space models in continuous-time yields differences in the analysis, while
leading to the fact that its state space equals [−α, α]. Our approach is really
different but, as we will see, very powerful since all results we have obtained
in the previous two chapters for saturation can be easily extended to the case
with rate limits including the low and high gain design which is difficult to
analyze for a state space model with xr ∈ R

k .

In summary, in view of the above discussions, the functional differential
equations (5.2) and (5.4) along with the definition for the constraint operator
σα,β given in equations (5.3), (5.5) and (5.6), are the appropriate models for
discrete- and continuous-time systems respectively whenever the actuators are
constrained by both amplitude and rated saturation.

5.3 Semi-global stabilization

We consider semi-global stabilization of given systems modeled by functional
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differential equations (5.2) and (5.4) along with the definition for the con-
straint operator σα,β given in equations (5.3), (5.5) and (5.6). We first give a
precise definition of the concept of semi-global stabilization for such systems.

Problem 5.3.1 (Semi-global stabilization problem via linear state feedback
laws) Consider a continuous- or discrete-time system of the form (5.4) and
(5.2) along with the definition for the constraint operator σα,β given in equa-
tions (5.3), (5.5) and (5.6). The problem of semi-global stabilization is to find,
if possible, a family of feedback gains {Fε}ε∈R+ such that for any a priori given
(arbitrarily large) bounded set X0 ⊂ R

n, there exists an ε∗ such that for all
ε < ε∗ the linear static feedback law u = Fεx is such that the equilibrium
x = 0, xs = 0 of the continuous-time system

ẋ(t) = Ax(t) + Bσα,β(Fx)(t) (5.8)

or the discrete-time system

x(k + 1) = Ax(k) + Bσα,β(Fx)(k) (5.9)

is locally exponentially stable with X0 × Xs contained in its basin of attrac-
tion.

We have the following necessary and sufficient conditions for the solv-
ability of the above problem. We first present the continuous-time result.

Theorem 5.3.1 Consider the continuous-time system (5.4) along with the def-
inition for the constraint operator σα,β given in equations (5.5) and (5.6). The
semi-global stabilization problem via linear state feedback laws is solvable if
and only if (A, B) is stabilizable and the eigenvalues of A are in the closed
left half plane.

Moreover, in that case the semi-global stabilization problem via linear
state feedback laws is solved by the family of feedback laws

u = Fεx = −BT Pεx

where

0 = AT Pε + Pε A − Pε B BT Pε + Qε, (5.10)

and where Qε is a continuously differentiable matrix-valued function such
that Qε > 0, d Qε

dε
> 0 for any ε ∈ (0, 1], and limε→0 Qε = 0.
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Proof : As we have seen in Chapter 3, the conditions that, (A, B) is stabiliz-
able and the eigenvalues of A are in the closed left half plane, are necessary
for semi-global stabilization if we only have amplitude saturation and no rate
limits. Therefore, obviously, they are still necessary when we have amplitude
saturation and rate limits.

To prove that these conditions are also sufficient, it is obviously sufficient
to verify that the given family of feedback laws has the desired properties. In
other words, while utilizing the given family of feedback laws, we need to
show that for each given set X0 × Xs , there exists an ε∗ > 0 such that, for
all ε ∈ (0, ε∗], we have local asymptotic stability with X0 × Xs contained in
its domain of attraction. In view of the known properties for Pε (see Lemma
3.3.1), it is easy to verify that for Fε = −BT Pε we have

‖Fεe(A+B Fε)t‖∞ � υεe−ζε t ,

‖Fε(A + B Fε)e(A+B Fε)t‖∞ � υεe−ζε t ,
(5.11)

where υ and ζ depend continuously on ε and are positive for ε > 0. Moreover
υ0 = ζ0 = 0. Also, we can rewrite (5.8) as

ẋ = Ax + Bσα,β(Fεx). (5.12)

In the absence of saturation elements, the above system takes the form,

ẋ = (A + B Fε)x . (5.13)

It then follows from (5.11) that there exists an ε∗
1 > 0 such that for all ε ∈

(0, ε∗
1] we have

‖Fεx‖∞ � α, ‖Fε ẋ‖∞ � β for all x(0) ∈ X0 and xs ∈ Xs.

This shows that for all ε ∈ (0, ε∗
1 ] and for all x(0) ∈ X0 and xs ∈ Xs ,

system (5.12) operates in the linear regions of saturation elements, and hence
we can conclude that the equilibrium x = 0 and xs = 0 of the system (5.12)
is asymptotically stable with X0 × Xs contained in its basin of attraction.

Next, we present the discrete-time version of the above result.

Theorem 5.3.2 Consider the discrete-time system (5.2) along with the defini-
tion for the constraint operator σα,β given in equation (5.3). The semi-global
stabilization problem via linear state feedback laws is solvable if and only if
(A, B) is stabilizable and the eigenvalues of A are in the closed unit disc.
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Moreover, in that case the semi-global stabilization problem via linear
state feedback is solved by the family of feedback laws

u = Fεx = −(BT Pε B + I )−1 BT Pε Ax

where

Pε = AT Pε A − AT Pε B(BT Pε B + I )−1 BT Pε A + Qε, (5.14)

and where Qε is a continuously differentiable matrix-valued function such
that Qε > 0, d Qε

dε
> 0 for any ε ∈ (0, 1], and limε→0 Qε = 0.

Proof : It follows directly using the same arguments as in the proof of Theo-
rem 5.3.1 and is based on Lemma 4.3.1.

As in the previous two chapters, the low gain techniques presented in this
section basically avoid saturation by squeezing the gain. This of course re-
sults in a very slow transient response. In the context of output regulation we
present an additional high gain that greatly improves the transient response.
This is also immediately applicable to the stabilization problem but in order
to be concise we do not present the details here. Similarly, the measurement
feedback case will only be presented for the problem of stabilization and out-
put regulation but the results presented there can be immediately applied to
the stabilization problem.

5.4 Output regulation via state feedback control

In this section, we consider output regulation while using state feedback con-
trollers. Consider a system as given below,

ρx = Ax + Bσα,β(u) + Eww

ρw = Sw

e = Cex + Deuσα,β(u) + Deww,

(5.15)

where as usual the first equation of these systems describes a plant, with state
x ∈ R

n, and input u ∈ R
m , subject to the effect of a disturbance represented

by Eww. The third equation defines the error e ∈ R
q between the actual plant

output Cex+Deuσα,β(u) and a reference signal −Deww which the plant output
is required to track. The second equation describes the exosystem, with state
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w ∈ R
s . As usual, the exosystem models the class of disturbance or reference

signals taken into consideration.

As usual, a state feedback controller is of the form,

u = Fx + Gw, (5.16)

and our objective is to achieve internal stability and output regulation. We
formally state the following synthesis problem.

Problem 5.4.1 Consider a system (5.4) along with the definition for the con-
straint operator σα,β given in equations (5.3), (5.5) and (5.6). Also, consider
a compact set W0 ⊂ R

s . The semi-global linear state feedback output reg-
ulation problem is defined as follows. For any a priori given (arbitrarily
large) bounded set X0 ⊂ R

n, find, if possible, a linear static feedback law
u = Fx + Gw such that the following hold:

(i) The equilibrium x = 0, xs = 0 of the system

ρx = Ax + Bσα,β(Fx) (5.17)

is locally exponentially stable with X0 × Xs contained in its basin of
attraction.

(ii) For all x(0) ∈ X0, xs ∈ Xs and w(0) ∈ W0, the solution of the closed-
loop system satisfies

lim
t→∞ e(t) = 0. (5.18)

First we can ask ourselves whether we can achieve global output regula-
tion where both the sets W0 and X0 can be chosen arbitrarily large. Unfortu-
nately, as shown earlier in the previous two chapters, global output regulation
is not possible (except in very special circumstances) when amplitude satu-
ration of actuators is present. Obviously, global output regulation is not pos-
sible either, in general, when both amplitude and rate saturation of actuators
are present. Therefore, as in the previous two chapters where only amplitude
saturation of actuators is considered, instead of making W0 large we view it
as a part of the a priori given system data. The output regulation problem does
not view the set of initial conditions of the plant as given data. The set of
given data consists of the models of the plant and the exosystem and the set of
initial conditions for the exosystem. Therefore, any solvability conditions we
obtain must be independent of the set of initial conditions of the plant, X0.

As usual, we make the following assumptions which among others enable
us to solve Problem 5.4.1.
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A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable for continuous-time systems and
anti-Schur-stable for discrete-time systems.

As discussed earlier, these assumptions are obviously without loss of general-
ity.

The solvability conditions for the semi-global linear state feedback output
regulation problem are given in the following theorem.

Theorem 5.4.1 Consider the system along with the definition for the con-
straint operator σα,β given in equations (5.3), (5.5) and (5.6). Also, consider
the given compact set W0 ⊂ R

s . The semi-global linear state feedback output
regulation problem is solvable if the following conditions hold:

(i) (A, B) is stabilizable, and A has all its eigenvalues in the closed left
half plane (continuous-time) or in the closed unit disc (discrete-time).

(ii) There exist matrices 	 and 
 such that

(a) they solve the regulator equation,

	S = A	 + B
 + Ew

0 = Ce	 + Deu
 + Dew , and
(5.19)

(b) there exist a δ > 0 and a T � 0 such that

‖
w‖∞,T � α − δ

and

‖
Sw‖∞,T � β − δ (continuous-time)

‖
(S − I )w‖∞,T � β − δ (discrete-time)

for all w with w(0) ∈ W0.

Moreover, if these conditions are satisfied, then in continuous-time a suitable
family of linear static state feedback laws is given by

u = −BT Pεx + (BT Pε	 + 
)w (5.20)

where Pε is defined by (5.10) while, in discrete-time, a suitable family of linear
static state feedback laws is given by

u = −(BT Pε B + I )−1 BT Pε A(x − 	w) + 
w (5.21)

where Pε is defined by (5.14).
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Proof : We prove this theorem only for continuous-time. The discrete-time
version can be derived similarly. Consider the family of feedback laws given
in (5.20). We know that (5.11) is satisfied for Fε = −BT Pε where υ is a
positive-valued function satisfying limε→0 υε = 0. For ε < ε∗

1 , the stability of
the closed-loop system for w = 0, as defined in item (i) of Problem 5.4.1, is
then a direct consequence of Theorem 5.3.1 and the corresponding proof.

To show that item (ii) of Problem 5.4.1 holds (i.e. the error e goes to zero
asymptotically), let us introduce an invertible coordinate change,

ξ = x − 	w. (5.22)

Then, using (5.19), we have

ξ̇ = ẋ − 	ẇ

= Ax + Bσα,β(u) + Eww − 	Sw

= Aξ + B(σα,β(u) − 
w). (5.23)

With the considered family of state feedback laws, the closed-loop system can
then be rewritten as

ξ̇ = Aξ + B
[
σα,β(Fεξ + 
w) − 
w

]
. (5.24)

Now by condition (ii)b) of Theorem 5.4.1, ‖
w‖∞,T < α−δ and ‖
ẇ‖∞,T <

β − δ. Moreover, ξ(T ) belongs to a bounded set independent of ε since
ξ(0) is bounded and ξ(T ) is determined by a linear differential equation with
bounded inputs σα,β(u) and 
w. If we consider the system (5.24), from time
T onwards, without the saturation element, we obtain

ξ̇ = (A + B Fε)ξ. (5.25)

Since ξ(T ) is bounded, (5.11) and (5.25) imply that there exists an ε∗
2 > 0

such that, for all ε ∈ (0, ε∗
2],

‖Fεξ‖∞,T � δ and ‖Fεξ̇‖∞,T � δ.

We can conclude then that the system (5.24) will operate within the linear
region of the saturation elements for all t � T if ε ∈ (0, ε∗

2]. Also, in view of
(5.20) and (5.22), we find that for t � T ,

e(t) = (Ce + Deu Fε)ξ(t) + (Ce	 + Deu
 + Dew)w(t).

However, in view of the second equation of (5.19), e(t) reduces to e(t) =
(Ce + Deu Fε)ξ(t), and thus, owing to the stability of A + B Fε, we find that
e(t) → 0 as t → ∞.



Control of linear systems with regulation and input constraints 191

Finally, by taking ε∗ = min{ε∗
1, ε

∗
2}, we complete our proof.

Under certain weak assumptions, the conditions given in Theorem 5.4.1
are very close to being necessary. As seen in the previous chapters, the con-
ditions (i) and condition (ii)a) are necessary for output regulation without any
kind of saturation in the actuator. Also, the bound on 
w is very close to be-
ing necessary as seen in the previous two chapters when amplitude saturation
is present in the actuator. It turns out that the bound on 
Sw is also close
to being necessary when amplitude as well as rate saturation is present in the
actuator. This is all precisely formulated in the following theorem.

Theorem 5.4.2 Consider the system (5.15) along with the definition for the
constraint operator σα,β given in equations (5.3), (5.5) and (5.6). Also, con-
sider the given compact set W0 ⊂ R

s . Assume that the system characterized
by (A, B, Ce, Deu) is left-invertible and has no zeros on the imaginary axis
(continuous-time) or on the unit circle (discrete-time). The semi-global linear
state feedback output regulation problem is solvable only if there exist 
 and
	 satisfying (5.19) and for each ε > 0 there exists a T > 0 such that

‖
w‖∞,T � α + ε (5.26)

and

‖
Sw‖∞,T � β + ε (5.27)

in continuous-time, or

‖
(S − I )w‖∞,T � β + ε (5.28)

in discrete-time for all w with w(0) ∈ W0.

In other words the above theorem shows that under some mild assump-
tions the conditions of Theorem 5.4.1 are very close to being necessary.

Proof : Our development focuses only on continuous-time systems. Similar
development is valid for discrete-time systems as well. The need for the exis-
tence of a solution (	,
) of (5.19) is obvious. It is shown in Corollary 3.3.1
that 
 is uniquely defined as a direct consequence of the left-invertibility of
the system characterized by (A, B, Ce, Deu). Using this result, the necessity
of (5.26) was already established in Theorem 3.4.1. In order to establish the
necessity of (5.27) in continuous-time we need to do some additional work.
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Consider the system (5.15), however, without the saturation element. That is,
let

ẋ = Ax + Bv + Eww

ẇ = Sw

e = Cex + Deuv + Deww.

(5.29)

Suppose that we have some arbitrary non-linear feedback law u = ζ(x, w)

which achieves output regulation for the system (5.15). Then the feedback
v = σα,β(ζ(x, w)) will achieve output regulation for the system (5.29). Note
that by our assumption, there exists also a linear feedback,

v = Fx + (
 − F	)w,

which achieves output regulation for the system (5.29). Moreover,

v(t) − 
w(t) → 0 as t → ∞. (5.30)

We have two feedback laws which achieve output regulation for the linear
system (5.29). One is non-linear and satisfies certain amplitude and rate con-
straints. The other is a linear feedback, of which we have no a priori knowl-
edge regarding any constraints. Our aim is to show that the linear feedback
must necessarily satisfy an amplitude as well as a rate constraint asymptoti-
cally as t → ∞. To this end, we define the difference between the two control
inputs as

s = [Fx + (
 − F	)w] − [σα,β(ζ(x, w))].
Although we proved (5.26) in Chapter 3, let us prove it here as well for the
purpose of continuity of our arguments. Suppose now that (5.26) is not true.
In that case there exist {tn}∞

n=1 and a δ > 0 such that tn → ∞ as n → ∞ and
‖
w(tn)‖ > 1 + 2δ for all n. Given the differential equation for w, it is not
difficult to see that this implies that there exists an ε > 0 such that, for all n
and all t ∈ [tn, tn + ε], we have ‖
w(t)‖ > 1 + δ.

If we look at our definition for s, we see that the first component asymp-
totically converges to 
w. The second term is bounded by α. Combining
this with the property for 
w that we just derived, it is easily seen that the
vector-valued signal s(t) has a component si(t) for which we have, for all n,
either

si (t) > δ for all t ∈ [tn, tn + ε] (5.31)

or

si (t) < −δ for all t ∈ [tn, tn + ε]. (5.32)



Control of linear systems with regulation and input constraints 193

Similarly, if (5.27) is not satisfied, there exist {tn}∞
n=1 and a δ > 0 such that

tn → ∞ as n → ∞ and ‖
ẇ(tn)‖ > 1 + 2δ for all n. Given the differential
equation for w, it is not difficult to see that this implies that there exists an
ε > 0 such that, for all n and all t ∈ [tn, tn + ε], we have ‖
ẇ(t)‖ > 1 + δ. If
we look at our definition for s, we see that the derivative of the first component
asymptotically converges to 
ẇ. The second term has a derivative which is
bounded by β. Combining this with the property for 
ẇ that we just derived,
it is easily seen that the vector-valued signal s(t) has a component si (t) for
which we have, for all n, that there exist a sequence sn and ε2 such that

ṡi (t) > δ for all t ∈ [sn, sn + ε2] (5.33)

or

ṡi (t) < −δ for all t ∈ [sn, sn + ε2]. (5.34)

For any n it is easy to see that, if (5.33) is satisfied, then either

|si (t)| > δ for all t ∈ [sn, sn + ε2/4]
or

|si (t)| > δ for all t ∈ [sn + ε2/3, sn + ε2].
This implies that either for tn = sn or for tn = sn + ε2/2 equation (5.31) or
(5.32) is satisfied with ε = ε2/4.

So we know that, if either (5.26) or (5.27) is not satisfied, then we can find
a sequence {tn} and ε for which either (5.31) or (5.32) is satisfied for each n.
Moreover, if we apply s(t) to the system

ẋ = Ax + Bs
e = Cex + Deus

(5.35)

with zero initial conditions, then we have e(t) → 0 (since both the linear
feedback and the non-linear saturating feedback achieve output regulation).
This is in contradiction with the results of Theorem 3.A.2, and therefore we
show, by contradiction, that (5.26) and (5.27) must be satisfied.

Design of a low-gain state feedback regulator:

For clarity, we now give a step by step design of a low-gain state feedback
regulator.

Step 1 : Find a solution (	, 
) of the regulator equation (5.19).
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Step 2 : For continuous-time systems, find a low-gain state feedback matrix
Fε = −BT Pε where Pε is defined by (5.10). Similarly, for discrete-time sys-
tems, find a low-gain state feedback matrix Fε = −(BT Pε B + I )−1 BT Pε A
where Pε is defined by (5.14).

Step 3 : Given the sets X0, Xs , and W0, find an ε∗ by the procedure given in
the proof of Theorem 5.4.1.

Then, for some ε ∈ (0, ε∗], the state feedback controller given in (5.20)
for continuous-time systems, or by (5.21) for discrete-time systems solves the
semi-global state feedback output regulation problem.

5.5 Output regulation via dynamic measurement feed-
back control

In this section, we consider the semi-global linear observer based measure-
ment feedback output regulation problem for the system,

ρx = Ax + Bσα,β(u) + Eww

ρw = Sw

y = Cyx + Dyww

e = Cex + Deuσα,β(u) + Deww

(5.36)

Here, as usual, y ∈ R
p is a measured output.

Problem 5.5.1 Consider the system (5.36) along with the definition for the
constraint operator σα,β given in equations (5.5) and (5.6). Also, consider a
compact set W0 ⊂ R

s . The semi-global linear observer based measurement
feedback output regulation problem is defined as follows. For any a priori
given (arbitrarily large) bounded sets X0 ⊂ R

n and Z0 ⊂ R
n+s , find, if

possible, a measurement feedback law of the form,

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σα,β(u)

+
(

KA

KS

)((
Cy Dyw

) ( x̂
ŵ

)
− y

)
u = Fx̂ + Gŵ

(5.37)

such that the following conditions hold:
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(i) The equilibrium (x, xs , x̂ , ŵ) = (0, 0, 0, 0) of

ρx = Ax + Bσα,β(Fx̂ + Gŵ)

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σα,β(Fx̂ + Gŵ)

+
(

KA

KS

)(
Cy Dyw

) (x̂ − x
ŵ

)

is asymptotically stable with X0 × Xs × Z0 contained in its basin of
attraction.

(ii) For all (x(0), xs , x̂(0), ŵ(0)) ∈ X0 × Xs × Z0 and w(0) ∈ W0, the
solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0. (5.38)

Remark 5.5.1 We would like to emphasize again that our definition of the
above semi-global measurement feedback output regulation problem does not
view the set of initial conditions of the plant and the initial conditions of the
controller dynamics as given data. The set of given data consists of the models
of the plant and the exosystem and the set of initial conditions for the exosys-
tem. Therefore, the solvability conditions must be independent of the set of
initial conditions of the plant X0 ×Xs , and the set of initial conditions for the
controller dynamics, Z0.

The solvability conditions for the above semi-global measurement feed-
back output regulation problem are given in the following theorem.

Theorem 5.5.1 Consider the system (5.36) along with the definition for the
constraint operator σα,β given in equations (5.3), (5.5) and (5.6). Also, con-
sider the given compact set W0 ⊂ R

s . The semi-global measurement feedback
output regulation problem is solvable if the following conditions hold:

(i) (A, B) is stabilizable and A has all its eigenvalues in the closed left
half plane (continuous-time) or in the closed unit disc (discrete-time).
Moreover, the pair((

Cy Dyw

)
,

(
A Ew

0 S

))
(5.39)

is detectable.

(ii) There exist matrices 	 and 
 such that



196 Chapter 5: Regulation with input amplitude and rate saturation

(a) they solve the regulator equation (5.19), and

(b) there exist a δ > 0 and a T � 0 such that

‖
w‖∞,T � α − δ

and

‖
Sw‖∞,T � β − δ (continuous-time)

‖
(S − I )w‖∞,T � β − δ (discrete-time)

for all w with w(0) ∈ W0.

Moreover, if these conditions are satisfied, then in continuous-time a suitable
family of linear static measurement feedback laws is given by,

ρ x̂ = Ax̂ + Bσα,β(u) + Ewŵ + KA

[
Cyx̂ + Dywŵ − y

]
ρŵ = Sŵ + KS

[
Cyx̂ + Dywŵ − y

]
u = Fε x̂ + (
 − Fε	)ŵ,

(5.40)

with Fε = −BT Pε with Pε defined by (5.10) in continuous-time, while in
discrete-time Fε = −(BT Pε B + I )−1 BT Pε A with Pε defined by (5.14).

The gains KA and KS are chosen such that the matrix,

Ā :=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
, (5.41)

is Hurwitz-stable for continuous-time systems and Schur-stable for discrete-
time systems.

Proof : We prove this theorem only for continuous-time. The discrete-time
version can be derived similarly. Consider the family of feedback laws given
in (5.20). We know that (5.11) is satisfied for Fε = −BT Pε where υ is a
positive-valued function satisfying limε→0 υε = 0.

The closed-loop system consisting of the given system (5.15) and the
given family of feedback laws can be written as,

ẋ = Ax + Bσα,β(Fε x̂ + (
 − Fε	)ŵ) + Eww
˙̂x = Ax̂ + Bσα,β(Fε x̂ + (
 − Fε	)ŵ) + Ewŵ

+KACy(x̂ − x) + KA Dyw(ŵ − w)
˙̂w = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w).

(5.42)
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We then adopt the invertible change of state variables,

ξ = x − 	w

x̃ = x − x̂
w̃ = w − ŵ,

(5.43)

and then rewrite the closed-loop system (5.42) as

ξ̇ = Aξ + Bσα,β(Fεξ + 
w − 
w̃ − Fε x̃ + Fε	w̃)

+(A	 − 	S + Ew)w
˙̃x = (A + KACy)x̃ + (Ew + KA Dyw)w̃
˙̃w = KSCyx̃ + (S + KS Dyw)w̃.

(5.44)

To show that item (i) of Problem 5.5.1 holds, we note that (5.37) is equal
to (5.42) for w = 0. Thus, for w = 0, (5.44) reduces to

ξ̇ = Aξ + Bσα,β(Fεξ − 
w̃ − Fε x̃ + Fε	w̃)
˙̃x = (A + KACy)x̃ + (Ew + KA Dyw)w̃
˙̃w = KSCyx̃ + (S + KS Dyw)w̃.

(5.45)

Recalling that the matrix Ā, defined in (5.41), is Hurwitz-stable, it readily
follows from the last two equations of (5.45) that there exists a T1 � 0 such
that, for all possible initial conditions (x̃(0), xs , w̃(0)),

‖
w̃‖∞,T1 � α

4
, ‖Fε x̃‖∞,T1 � α

4
, ‖Fε	w̃‖∞,T1 � α

4
, (5.46)

‖
 ˙̃w‖∞,T1 � β

4
, ‖Fε

˙̃x‖∞,T1 � β

4
, ‖Fε	 ˙̃w‖∞,T1 � β

4
, (5.47)

for all ε ∈ (0, 1]. We next consider the first equation of (5.45). Note that ξ(T1)

belongs to a bounded set independent of ε since ξ(0) is bounded and since ξ

is determined via a linear differential equation with bounded input σα,β(u).
Hence there exists an M1 such that for all possible initial conditions,

‖ξ(T1)‖ � M1, for all ε ∈ (0, 1]. (5.48)

Let us now assume that, from time T1 onwards, the saturation elements are
non-existent. In this case, the first equation of (5.45) can be written as

ξ̇ = (A + B Fε)ξ − B Fε x̃ − B
w̃ + B Fε	w̃. (5.49)

Since x̃ → 0 and w̃ → 0 exponentially with a decay rate independent of ε

as t → ∞, it follows trivially from (5.11) that there exist an ε∗
1 > 0 and an
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M2 > 0 such that, for all possible initial conditions x̃(0) and w̃(0) and all
ε ∈ (0, ε∗

1],∫ ∞

T1

‖eζετ B[Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)]‖dτ � M2. (5.50)

This in turn shows that, for t � T1,

‖Fεξ(t)‖ = ∥∥Fεe(A+B Fε)tξ(T1)

−
∫ t

T1

Fεe(A+B Fε)(t−τ )B
[
Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)

]
dτ

∥∥
� υε M1 + υε

∫ ∞

T1

‖eζετ B[Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)]‖dτ

� υε(M1 + M2).

Choose ε∗
2 ∈ (0, ε∗

1] such that, for all ε ∈ (0, ε∗
2 ],

‖Fεξ‖∞,T1 � α

4
. (5.51)

Similarly, we can show that there exists an ε∗
3 ∈ (0, ε∗

2 ] such that, for all
ε ∈ (0, ε∗

3],

‖Fε ξ̇‖∞,T1 � β

4
. (5.52)

These two bounds, together with (5.46), show that the system (5.45) will op-
erate linearly after time T1 and local exponential stability of this linear system
follows from the separation principle.

In summary, we have shown that there exists an ε∗
3 > 0 such that, for all

ε ∈ (0, ε∗
3], the equilibrium point (0, 0, 0, 0) of the system (5.45) is asymptot-

ically stable, with (X0,Xs,Z0) contained in its basin of attraction.

We now proceed to show that item (ii) of Problem 5.5.1 also holds. To
this end, we consider the closed-loop system (5.44). Recalling that the ma-
trix Ā is Hurwitz-stable, it readily follows from the last two equations of
(5.44) that there exists an T2 � T such that, for all possible initial conditions
(x̃(0), xs, w̃(0)),

‖
w̃‖∞,T2 � δ

4
, ‖Fε x̃‖∞,T2 � δ

4
, ‖Fε	w̃‖∞,T2 � δ

4
, (5.53)

‖
 ˙̃w‖∞,T2 � δ

4
, ‖Fε

˙̃x‖∞,T2 � δ

4
, ‖Fε	 ˙̃w‖∞,T2 � δ

4
, (5.54)
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for all ε ∈ (0, 1]. We next consider the first equation of (5.44). Note that ξ(T2)

belongs to a bounded set independent of ε since ξ(0) is bounded and since ξ

is determined via a linear differential equation with bounded inputs σα,β(u)

and w. Hence there exists an M3 such that for all possible initial conditions,

‖ξ(T2)‖ � M3, for all ε ∈ (0, 1]. (5.55)

Let us now assume that, from time T2 onwards, the equation (5.44) operates
without the saturation elements. In view of condition (ii)a) of the theorem, the
first equation of (5.44) in the absence of the saturation elements is equal to the
first equation of (5.45), and hence also reduces to (5.49) after time T2. Hence,
using a similar argument as above, we can show that there exists an ε∗

3 > 0
such that, for all ε ∈ (0, ε∗

3],
‖Fεξ‖∞,T2 <

δ

4
, ‖Fε ξ̇‖∞,T2 <

δ

4
. (5.56)

This, together with (5.53) and condition (ii)b) of the theorem, shows that the
system (5.44) will operate linearly after time T2, and thus the exponential
stability of this linear system follows from the separation principle.

Next, in view of the second equation of (5.19), it is easy to evaluate e(t)
for t ≥ T2 as

e(t) = (Ce + Deu Fε)ξ(t) − Deu Fε x̃ − Deu(
 − Fε	)w̃.

This implies that e(t) → 0 as t → ∞. This completes our proof.

Design of a low-gain measurement feedback regulator:

For clarity, we now summarize the construction of an observer based mea-
surement feedback regulator.

Step 1 : At first construct a low-gain state feedback gain matrix Fε as was
done in connection with state feedback.

Step 2 : Design a full order observer so that we can implement the controller
with observer based architecture as given in (5.40). That is, find the matrix
gains KA and KS in such a way that the matrix given in (5.41) is Hurwitz stable
for continuous-time systems or Schur-stable for discrete-time systems.

Step 3 : Implement the observer based measurement feedback regulator as
given in (5.40).

Step 4 : Given the sets X0, Xs , W0, and Z0, find an ε∗ by the procedure
given in the proof of Theorem 5.5.1 .

Then for some ε ∈ (0, ε∗] the observer based measurement feedback reg-
ulator as given in (5.40) solves the semi-global measurement feedback output
regulation problem.



200 Chapter 5: Regulation with input amplitude and rate saturation

5.6 Low-and-high-gain feedback regulator design

As already seen in the previous two chapters, low-gain based designs under-
utilize the available control capacity and the resulting convergence of e(t) to
zero is very slow. Clearly, the feedback law (5.20) utilizes a low-gain since Pε

as given by (5.10) converges to zero as ε becomes small. The same holds true
for the measurement feedback designs which are based on the same low-gain
state feedback. Our next goal is to recall a new design methodology which
incorporates a significant improvement to the low-gain design method, and
leads to a better utilization of the available control capacity and hence better
closed-loop performance.

The improved design utilizes the concepts of low-and-high gain feedback
as presented in the previous two chapters. If we just consider stability, then the
low gain feedback u = −BT Pεx for the continuous-time system (5.4) achieves
stability and the resulting domain of attraction is arbitrarily large for ε small
enough. In order to improve the transient performance, the modified feedback
u = −(µ + 1)BT Pεx was shown to achieve stability and the same domain
of attraction for any µ > 0 in the case of amplitude saturation. However,
this cannot be applied here because it is easy to construct examples to show
that, in the case of rate limits, for µ large the domain of attraction can become
arbitrarily small. The main problem is the fact that the rate limiter has memory
and hence if u was large for some time then it takes a while before the input
can become negative again and this delay causes the instability for large µ.
Therefore we first present a different low-gain design which is more suited for
this low-high gain methodology.

Consider the continuous-time system (5.15). We introduce the following
modified system,

ẋ(t) = Ax(t) + Bu(t) + Eww(t)
u̇(t) = σβ(v(t))
ẇ(t) = Sw(t)
e(t) = Cex(t) + Deuu(t) + Deww(t).

(5.57)

Then, for this system we derive a low-gain state feedback that solves the out-
put regulation problem. Let Pε,ζ be the solution of the following algebraic
Riccati equation

0 =
(

A B
0 0

)T

P + P

(
A B
0 0

)
− P

(
0 0
0 I

)
P +

(
Qε 0
0 ζ 2 I

)
. (5.58)
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Then, the feedback law

v = −(µ + 1)
(
0 I

)
Pε,ζ

(
x
u

)
+

(
(µ + 1)

(
0 I

)
Pε,ζ

(
	




)
+ 
S

)
w

(5.59)

for any fixed ζ solves the output regulation problem for the system (5.57) in
the sense that the closed-loop system is stable while for ε small enough the
domain of attraction can be chosen arbitrarily large and we achieve output
regulation for any w(0) ∈ W0. Moreover, W0 will remain inside the domain
of attraction for any µ � 0. Hence, by choosing µ large we can improve the
transient performance without affecting the domain of attraction. Then, we
can apply the following dynamic state feedback to the original system (5.15),

u̇ = σβ

(
−(µ + 1)

(
0 I

)
Pε,ζ

(
x
u

)

+
(

(µ + 1)
(
0 I

)
Pε,ζ

(
	




)
+ 
S

)
w

)
.

(5.60)

Obviously, this interconnection works beautifully if we only have rate con-
straints and no amplitude constraints because the interconnection of (5.15)
and (5.60) for α = ∞ is equal to the interconnection of (5.57) and (5.59). In
general this is not the case because of the amplitude saturation. However, we
will show that for a suitable choice for ε and ζ the above feedback (5.60) has
the desired properties when applied to the given system (5.15).

Theorem 5.6.1 Consider the continuous-time system (5.15) along with the
definition for the constraint operator σα,β given in equations (5.5) and (5.6).
Also, consider the given compact set W0 ⊂ R

s . Under the same solvability
conditions as in Theorem 5.4.1, there exists, for any a priori given (arbitrarily
large) bounded set X0 ⊂ R

n and any ζ ∈ (0, 1), an ε∗ > 0 such that for each
ε ∈ (0, ε∗] and for each µ � 0, the controller in the family (5.60) has the
following properties:

(i) The interconnection of (5.15) and (5.60) under the constraint w ≡ 0 is
locally exponentially stable with X0 × Xs × [−α, α]m contained in its
basin of attraction.

(ii) For any x(0) ∈ X0, xs ∈ Xs , u(0) ∈ [−α, α]m, w(0) ∈ W0 and ar-
bitrary initial conditions for the rate limiter, the solution of the closed-
loop system satisfies

lim
t→∞ e(t) = 0. (5.61)
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Remark 5.6.1 Note that for µ = 0, ζ → 0, and for a fixed ε, the controller
converges to the low-gain feedback as presented in Theorem 5.3.1.

Proof : First we show asymptotic stability and a suitable domain of attraction
for the interconnection with w = 0. There exists a compact set X1 such
that x(t) ∈ X1 for all t � α/β, any x(0) ∈ X0, any input u and any initial
condition for the rate limiter (because the input to the system is bounded).

Choose the Lyapunov function,

Vε(x, u) = (
xT uT

)
Pε,ζ

(
x
u

)
,

and let c � 0 be such that

sup
{

Vε(x, u) | x ∈ X1, u ∈ [−α, α]m, ε ∈ (0, 1] } � c.

Next we note that there exists an ε∗
1 ∈ (0, 1] such that∥∥∥∥(0 I

)
Pε,ζ

(
x
u

)∥∥∥∥
∞

< α

for all x, u such that V (x, u) < c and[(
0 I

)
Pε,ζ

(
x
u

)]
i

> 0

for any i = 1, . . . , m and all x, u such that V (x, u) < c and such that uqi � α

where [·]i denotes the i’th element of a vector. Because of symmetry we then
also have,[(

0 I
)

Pε,ζ

(
x
u

)]
i

< 0

for any i = 1, . . . , m and all x, u such that V (x, u) < c and such that ui �
−α.

The existence of ε∗
1 is guaranteed by the fact that

Pε,ζ →
(

0 0
0 ζ I

)
(5.62)

as ε → 0.

The above properties imply that u(0) ∈ [−α, α]m and V (x(t), u(t)) < c
for all t ∈ [0, T ] guarantee that u(T ) ∈ [−α, α]m for any T > 0. After all,
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if the i th coefficient of u becomes α, then the derivative is negative and if the
i th coefficient of u becomes −α then the derivative is positive.

Since ‖u(t)‖∞ < α and ‖u̇(t)‖∞ < β for all t ∈ [0, α/β], we find from
the characteristics of the rate limiter that (σα,β(u))(α/β) = u(α/β) indepen-
dent of the initial conditions for u and the rate limiter. We also know that
x(α/β) ∈ X1.

Consider the interconnection of (5.57) and (5.59) with the same initial
conditions as the interconnection of (5.15) and (5.60) at time t = α/β. We
can prove easily that the interconnection of (5.57) and (5.59) is stable and that
V (x(t), u(t)) < c for all t ∈ [α/β,∞). Therefore the interconnection of
(5.57) and (5.59) is such that ‖u(t)‖∞ is bounded by α for all t > α/β. The
latter then implies that the solution of the interconnection of (5.15) and (5.60)
is equal to the solution of the stable interconnection of (5.15) and (5.60) for all
t > α/β. This clearly implies stability and the required domain of attraction.

Next we need to show that we do achieve tracking. There exists a compact
set X2 such that x(t) ∈ X2 for all t � T + α/β, for any input u and for any
initial conditions w(0) ∈ W0, x(0) ∈ X0, u(0) ∈ [−α, α]m and any initial
conditions for the rate limiter (because σα,β(u) and 
w are both bounded).

Choose the Lyapunov function,

Vε(x − 	w, u − 
w) =
(

x − 	w

u − 
w

)
Pε,ζ

(
x − 	w

u − 
w

)

and let c � 0 be such that

sup{ Vε(x − 	w, u − 
w) | x ∈ X2, u ∈ [−α, α]m, ε ∈ (0, 1] } � c.

Next we note that there exists an ε∗
2 ∈ (0, ε∗

1 ] such that∥∥∥∥(0 I
)

Pε,ζ

(
x − 	w

u − 
w

)∥∥∥∥
∞

< α

for all x, u, w such that V (x − 	w, u − 
w) < c and[(
0 I

)
Pε,ζ

(
x − 	w

u − 
w

)]
i

> 0

for any i = 1, . . . , m and all x, u such that V (x −	w, u −
w) < c and such
that [u − 
w]i � δ.

Note that if [u]i (t) � α then [u − 
w]i > δ and hence [u̇]i(t) < 0 for
all t > T . Therefore there exists a T1 > T such that ‖u(t)‖∞ is bounded
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by α for all t ∈ [T1, T1 + α/β]. Obviously, ‖u̇(t)‖∞ is bounded by β for all
t ∈ [T1, T1 + α/β] and hence for t = T1 + α/β we have (σα,β(u))(t) = u(t).

Since ‖
Sw‖∞,T1
< β − δ we can see easily that the interconnection of

(5.57) and (5.59) achieves asymptotic tracking. We choose the initial condi-
tions at time T1 +α/β for the interconnection of (5.57) and (5.59) equal to the
same initial conditions for the interconnection from (5.15) and (5.60). Since
the solution of the interconnection of (5.57) and (5.59) is such that ‖u(t)‖∞
is bounded by α, we find that the solution of the interconnection of (5.15) and
(5.60) is equal to the solution of (5.57) and (5.59) and therefore also achieves
tracking.

Next we focus on discrete-time systems. Consider the discrete-time sys-
tem (5.15) with the additional assumption that m = 1 (single input). A more
general result can be obtained following a similar development as in Chapter
4 but is very technical. We introduce the following modified system,

x(k + 1) = Ax(k) + Bu(k) + Eww(k)

u(k + 1) = u(k) + σβ(v(k))

w(k + 1) = Sw(k)

e(k) = Cex(k) + Deuu(k) + Deww(k).

(5.63)

Then for this system we derive a low-gain state feedback law that solves the
output regulation problem. Let Pε,ζ be the solution of the algebraic Riccati
equation,

P =
(

A B
0 1

)T

P

(
A B
0 1

)
+

(
Qε 0
0 ζ 2

)

−
(

A B
0 1

)T

P

(
0
1

)[(
0 1

)
P

(
0
1

)
+ 1

]−1 (
0
1

)T

P

(
A B
0 1

)
. (5.64)

Then the feedback law

v = −(Fε,ζ + µKε,ζ )

[(
x
u

)
−

(
	




)
w

]
+ 
Sw (5.65)

for a fixed ζ where

Fε,ζ =
[(

0 1
)

Pε,ζ

(
0
1

)
+ 1

]−1 (
0
1

)T

Pε,ζ

(
A B
0 1

)
,

Kε,ζ =
[(

0 1
)

Pε,ζ

(
0
1

)]−1 (
0
1

)T

Pε,ζ Fε,ζ ,
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solves the output regulation problem for the system (5.57) in the sense that the
closed-loop system is stable while for ε small enough the domain of attrac-
tion can be chosen arbitrarily large and we achieve output regulation for any
w(0) ∈ W0. Moreover, by choosing µ ∈ [0, 2] we can improve the transient
performance without affecting the domain of attraction. Then, we can apply
the following dynamic state feedback to the original system (5.15),

ρu = u + σβ

(
−(Fε,ζ + µKε,ζ )

[(
x
u

)
−

(
	




)
w

]
+ 
Sw

)
. (5.66)

Obviously, this interconnection works beautifully if we only have rate con-
straints and no amplitude constraints because the interconnection of (5.15)
and (5.66) for α = ∞ is equal to the interconnection of (5.63) and (5.65). In
general this is not the case because of the amplitude saturation. However, we
will show that for a suitable choice for ζ the above feedback (5.66) has the
desired properties when applied to the system (5.15).

Theorem 5.6.2 Consider the discrete-time system (5.15) with m = 1 (sin-
gle input) along with the definition for the constraint operator σα,β given in
equation (5.3). Also, consider the given compact set W0 ⊂ R

s . Assume B
is injective and that the solvability conditions of Theorem 5.4.1 are satisfied.
In that case, there exists, for any a priori given (arbitrarily large) bounded
set X0 ⊂ R

n and any ζ ∈ (0, 1), an ε∗ > 0 such that for each ε ∈ (0, ε∗]
and for each µ ∈ [0, 2], the controller in the family (5.66) has the following
properties:

(i) The interconnection of (5.15) and (5.66) under the constraint w = 0 is
asymptotically stable with X0 × Xs × [−α, α] contained in its basin of
attraction.

(ii) For any x(0) ∈ X0, xs ∈ Xs , u(0) ∈ [−α, α], w(0) ∈ W0, and arbi-
trary initial conditions for the rate limiter the solution of the closed-loop
system satisfies

lim
k→∞ e(k) = 0. (5.67)

Remark 5.6.2 Note that for µ = 0, ζ → 0, and for a fixed ε, the controller
converges to the low-gain feedback as presented in Theorem 5.3.2.

Proof : In view of the proofs of Theorems 4.3.2 and 4.3.3, the proof of this
theorem can be obtained using the same kind of arguments as in the proof of
Theorem 5.6.1.
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We now proceed to discuss measurement feedback controllers while using
low-and-high-gain feedback. In connection with continuous-time systems, it
seems obvious that we can apply the same argument as before to improve the
performance of measurement feedback controllers by combining the observer
used in (5.40) with the low-high gain state feedback controller presented in
(5.60).

We define the following family of linear dynamic measurement feedback
laws,

˙̂x = Ax̂ + Bσα,β(u) + Ewŵ + KACy(x̂ − x) + KA,�Dyw(ŵ − w)
˙̂w = Sŵ + KS,�Cy(x̂ − x) + KS Dyw(ŵ − w)

u̇ = σβ

(
−(µ + 1)

(
0 I

)
Pε,ζ

(
x̂
u

)

+
[
(µ + 1)

(
0 I

)
Pε,ζ

(
	




)
+ 
S

]
ŵ

)
.

(5.68)

However, we will see that we need stronger conditions on the observer. It
is no longer sufficient to choose a fixed observer such that (5.41) is stable.
Therefore we choose the observer gain parameterized by �.

Let R� be the solution of the dual algebraic Riccati equation,

0 =
(

A + �I Ew

0 S + �I

)
R� + R�

(
A + �I Ew

0 S + �I

)T

− R�

(
CT

y

DT
yw

) (
Cy Dyw

)
R� + �I .

(5.69)

We recall that we have certain properties of this Riccati equation as outlined
in Lemma 3.3.2. We choose the following observer gain,

K� =
(

KA,�

KS,�

)
= −R�

(
Cy Dyw

)T
.

We have the following result.

Theorem 5.6.3 Consider the continuous-time system (5.36) along with the
definition for the constraint operator σα,β given in equations (5.5) and (5.6).
Also, consider the given compact set W0 ⊂ R

s . Under the solvability con-
ditions of Theorem 5.5.1 and the additional condition that the pair (5.39) is
observable, there exists, for any a priori given (arbitrarily large) bounded sets
X0 ⊂ R

n and Z0 ⊂ R
n+s and any ζ ∈ (0, 1), an ε∗ > 0 and a �∗(ε, µ) such

that for each ε ∈ (0, ε∗], µ � 0 and � > �∗(ε, µ) the controller (5.68) has the
following properties:
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(i) The interconnection of (5.36) and (5.68) under the constraint w ≡ 0 is
locally exponentially stable with X0 × Z0 × Xs × [−α, α]m contained
in its basin of attraction.

(ii) For any x(0) ∈ X0, xs ∈ Xs , (x̂(0), ŵ(0)) ∈ Z0, u(0) ∈ [−α, α]m,
w(0) ∈ W0, and arbitrary initial conditions for the rate limiter, the
solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0. (5.70)

Proof : We first note that the estimation error

ξ =
(

x̂ − x
ŵ − w

)

satisfies

ξ̇ (t) =
[(

A Ew

0 S

)
− R�

(
CT

y

DT
yw

) (
Cy Dyw

)]
ξ(t),

and, using the properties from Lemma 3.3.2, we find that

d

dt
ξ T(t)R�ξ(t) � −�ξ T(t)R�ξ(t) − �ξ T(t)ξ(t).

Moreover, for any given bounded set � and a T > 0 there exists an �∗ such
that for all � > �∗ we will have

ξ T(T )R�ξ(T ) � 1

for any ξ(0) ∈ �. The proof basically uses the same arguments as the proof of
Theorem 5.6.1 to relate this result to the result for the measurement feedback
case of Theorem 3.3.4.

In connection with discrete-time systems, we use the combination of the
observer used in (5.40) with the low-high gain state feedback controller pre-
sented in (5.66).

We define the following family of linear dynamic measurement feedback
laws,

ρ x̂ = Ax̂ + Bσα,β(u) + Ewŵ + KA

(
Cyx̂ + Dywŵ − y

)
ρŵ = Sŵ + KS

(
Cyx̂ + Dywŵ − y

)
ρu = u + σβ

(
−(Fε,ζ + µKε,ζ )

[(
x̂
u

)
−

(
	




)
ŵ

]
+ 
Sŵ

)
.

(5.71)

We choose the observer gain such that (5.41) has all its eigenvalues in the
origin. We have the following result.
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Theorem 5.6.4 Consider the discrete-time system (5.36) with m = 1 (single
input) and the given compact set W0 ⊂ R

s . Under the solvability conditions of
Theorem 5.5.1 and the additional conditions that the pair (5.39) is observable
and that B is injective, there exists, for any a priori given (arbitrarily large)
bounded sets X0 ⊂ R

n and Z0 ⊂ R
n+s and any ζ ∈ (0, 1), an ε∗ > 0 such

that for each ε ∈ (0, ε∗], µ ∈ [0, 2] the controller (5.71) has the following
properties:

(i) The interconnection of (5.36) and (5.71) under the constraint w ≡ 0 is
locally exponentially stable with X0 ×Z0 ×Xs ×[−α, α] contained in
its basin of attraction.

(ii) For any x(0) ∈ X0, xs ∈ Xs , (x̂(0), ŵ(0)) ∈ Z0, u(0) ∈ [−α, α],
w(0) ∈ W0 and arbitrary initial conditions for the rate limiter, the
solution of the closed-loop system satisfies

lim
k→∞

e(k) = 0. (5.72)

Proof : This proof can be obtained from Theorem 4.3.3 using the same kind
of arguments as presented earlier in this chapter.

5.7 Issues of well-posedness and structural stability

We would like to reconsider the problems of well-posedness and structural
stability as introduced in Chapter 2 but this time for linear systems subject
to actuator amplitude and rate saturation. In this case there are no intrinsic
differences between systems subject only to amplitude saturation and systems
which are subject to both rate and amplitude saturation and therefore the re-
sults in this section are almost identical with the obvious changes to the results
of Sections 3.5 and 4.5.

Definition 5.7.1 (Well-posedness) For a system � as in (5.36), the classical
semi-global linear observer based measurement feedback output regulation
problem as defined in Problem 3.3.2 is said to be well-posed at (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if there exists a neighborhood P0

of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in the parameter
space P such that the considered problem is solvable for each element (A,
B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S) of P0 for which A and S have all
its eigenvalues in the closed left-half plane (continuous-time) or in the closed
unit disc (discrete-time).
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We have the following result.

Theorem 5.7.1 Consider a system � as in (5.36) and the classical semi-
global linear observer based measurement feedback output regulation prob-
lem as defined in Problem 5.5.1. Let the conditions of Theorem 5.5.1 be satis-
fied for this system with nominal parameter values,

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0).

Then the considered problem for � is well-posed at (A0, B0, Ew,0, Ce,0, Deu,0,
Dew,0, Cy,0, Dyu,0, Dyw,0, S0) if and only if the matrix S is weakly Hurwitz-
stable for continuous-time systems and weakly Schur-stable for discrete-time
systems, and the matrix

(
A0 − λI B0

Ce,0 Deu,0

)

has full row-rank for each λ which is an eigenvalue of S0.

Remark 5.7.1 In the above theorem, we did not perturb the set of initial con-
ditions for the exosystem W0 but it is obvious that small perturbations of this
set will not affect well-posedness.

Next we consider the output regulation problem with structural stability.
As already discussed in Section 2.8, we need to restrict our perturbations of
the system parameters even more. As already discussed with well-posedness,
we need to guarantee that even after perturbation, A still has all its eigenvalues
in the closed left-half plane for continuous-time systems and inside or on the
unit circle for discrete-time systems. But based on Section 2.8 we also need
to exclude perturbations of the exosystem, i.e. we do not perturb S. Finally
we need that the error signal is part of the measurement signal y, i.e. the
parameters need to satisfy (2.36).

Definition 5.7.2 (Structurally stable output regulation problem) Consider a
system � as in (5.36) with the additional structure given in (2.36). A fixed
controller is said to solve a structurally stable output regulation problem for
� at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0) if it satisfies the
following properties:



210 Chapter 5: Regulation with input amplitude and rate saturation

(i) The controller solves the classical semi-global linear observer based
measurement feedback output regulation problem when the plant in
(2.1) is characterized by the nominal set of parameters (A0, B0, Ew,0,
Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0).

(ii) There exist a neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0,
Cy2,0, Dyu2,0, Dyw2,0) such that the controller achieves internal stability
and output regulation for each set of perturbed plant parameters (A0 +
δA, B0 + δB, Ew,0 + δEw, Ce,0 + δCe, Deu,0 + δDeu, Dew,0 + δDew,
Cy2,0+δCy2, Dyu2,0+δDyu2, Dyw2,0+δDyw2) in P0 for which A0 +δA
has all its eigenvalues in the closed left-half plane for continuous-time
systems and inside or on the unit circle for discrete-time systems.

In other words, as long as the perturbed parameters remain in P0, we
have limt→∞ e(t) = 0 for all x(0) ∈ R

n, v(0) ∈ R
nc , and w(0)) ∈ R

s .

The above definition obviously implies that, for the existence of a regu-
lator that solves the structurally stable output regulation problem, the exact
output regulation problem must necessarily be well-posed (with the obvious
modification implied by (2.36) and the fact that S is not perturbed).

A main technical complexity is the preliminary static output injection we
applied in Section 2.8 to guarantee that A0 and S have no common eigenval-
ues. These issues can be resolved as already alluded to in Section 3.5. As
shown below, it turns out that the necessary and sufficient condition given in
Theorem 4.5.1 for the well-posedness of the exact output regulation problem
with measurement feedback is indeed also the necessary and sufficient condi-
tion for the existence of a regulator that solves the structurally stable output
regulation problem.

Theorem 5.7.2 Consider a system � as in (5.36) with the structural con-
straint (2.36). Let the conditions of Theorem 5.5.1 be satisfied for this system
with nominal parameter values,

(A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw)

= (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0).

Then, there exists a regulator that solves the structurally stable output regula-
tion problem for � at (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy2,0, Dyu2,0, Dyw2,0)

if and only if the matrix S is weakly Hurwitz-stable for continuous-time sys-
tems and weakly Schur-stable for discrete-time systems, and the matrix(

A0 − λI B0

Ce,0 Deu,0

)
(5.73)
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has full row-rank for each λ which is an eigenvalue of S0.

For linear systems the parameter perturbations could be arbitrarily large
as long as stability is preserved. This is not the case here because the perturba-
tions might be such that lim supt→∞ ‖
w(t)‖∞ > α and then obviously out-
put regulation is no longer possible. Similarly, if lim supt→∞ ‖
Sw(t)‖∞ >

β (continuous-time) or lim supt→∞ ‖
(I − S)w(t)‖∞ > β (discrete-time) for
the perturbed system then output regulation is no longer possible.

We will only briefly indicate how the above result can be shown and how
a suitable controller can be found. For ease of exposition we assume here that
A0 and S have no eigenvalues in common. Define Smin, S̃p, D̃ew and D̃yw as in
Section 2.8.

We can now define an auxiliary system composed of the extended plant
(2.1) and the auxiliary exosystem (2.41),

�̃ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̃ = A0 x̃ + B0σα,β(ũ)

ρw̃ = S̃pw̃

ỹ = Cy,0x̃ + Dyu,0σα,β(ũ) + D̃yww̃

ẽ = Ce,0x̃ + Deu,0σα,β(ũ) + D̃eww̃.

(5.74)

We design a low-gain or a low-high gain measurement feedback controller
for this auxiliary system such that the system achieves output regulation for
all initial conditions such that ‖
̃w̃‖ < α − δ/2 and ‖
̃Sw̃‖ < β − δ/2
(continuous-time) or ‖
̃(I − S)w̃‖ < β − δ/2 (discrete-time) where 
̃ is of
course the solution of the regulator equation associated with this system. We
can then show that this controller achieves structural stability for the original
system if we know that the system (A0, B0, Ce,0, Deu,0) is left-invertible.

Extensions to the case where A0 and S have common eigenvalues and/or
where (A0, B0, Ce,0, Deu,0) is not left-invertible are available but due to their
technicality have been ommited.
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Chapter 6

Transient performance in
classical output regulation

6.1 Introduction

Chapter 2 deals with the classical output regulation problem. One of its short-
comings is that it gives importance only to steady state tracking error, namely
rendering it exactly equal to zero. The natural engineering issues regarding
the transient behavior of the error signal are not addressed at all. Such issues
can include minimizing the over-shoot or under-shoot of the error signal, or
more generally appropriate shaping of the error signal. In this regard, for in-
stance, one may like to impose in the statement of output regulation problem
certain requirements on the transient performance so that one can shape ap-
propriately the transient behavior of tracking error in addition to the desired
steady state requirements. This is what we consider in this chapter.

A related work to this chapter is the work of Qiu and Davison [52] who
consider servomechanism problems. However, this work has certain limita-
tions. In particular the work of Qiu and Davison [52] assumes that the external
disturbance signals and the signals that need to be tracked are either constant
or sinusoidal in nature. Moreover, it considers only state feedback controllers.
In this chapter, we rectify these short comings. We pose here several optimal
and suboptimal output regulation problems. Next, utilizing both state feed-
back and measurement feedback controllers, a number of issues related to
optimal and suboptimal output regulation are discussed. These issues include
among others the determination of an expression for the infimum of perfor-
mance measure, solvability conditions for the posed optimal and suboptimal
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output regulation problems, construction of optimal and suboptimal output
regulators, relationship between the optimal performance and the structural
properties of the given system, perfect output regulation etc. This chapter is
based on the recent research work of authors [64].

6.2 Problem formulation

We start with a linear system with state space realization,

� :
⎧⎨
⎩

ρx = Ax + Bu + Eww

e = Cex + Deuu + Deww

y = Cyx + Dyuu + Dyww,
(6.1)

where as usual ρ is an operator indicating the time derivative d
dt for continu-

ous-time systems and a forward unit time shift for discrete-time systems. As
before, � describes the plant with state x ∈ R

n, control input u ∈ R
m , mea-

sured output y ∈ R
p, and tracking error e ∈ R

q . The exogenous disturbance
input w ∈ R

s is generated by an exosystem �E with state space realization,

�E : {
ρw = Sw. (6.2)

Graphically, the given plant and the exosystem are depicted in Figure 6.1.

�

��C

�

� ��E

�

w

u y

e

Figure 6.1: Regulation problem

As in the previous chapters, the measurement feedback controllers we
seek are of the form,

�C :
{

ρv = Acv + Bc y,

u = Ccv + Dc y.
(6.3)
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As usual, the closed-loop system consisting of the given system � and the
controller �C is denoted by � × �C.

Although we have not yet formulated the problems we study in this chap-
ter, it is evident from Chapter 2 that in any regulation problem the following
assumptions are reasonable and almost necessary.

A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable for continuous-time systems, and it
is anti-Schur-stable for discrete-time systems.

A.3. The pair

((
Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

A.4. There exists the pair (	,
) that solve the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(6.4)

Note that Assumptions A.1, A.2, and A.3 have been defined earlier on pages
19 and 25. Also, as discussed in earlier chapters, the solvability of the regula-
tor equation is necessary to solve any problem with a regulation constraint.

We now recall the following statement of the classical output regulation
problem.

Problem 6.2.1 Consider the given system � as in (6.1) and the exosystem �E

as in (6.2). Then the classical output regulation problem is to find, if possible,
a controller �C of the form (6.3) such that the following two properties of
internal stability and output regulation as defined in items (i) and (ii) below
hold:

(i) (Internal Stability) In the absence of the disturbance w, the closed-loop
system � × �C is internally stable.

(ii) (Output Regulation) For all x(0) = x0 ∈ R
n and w(0) = w0 ∈ R

s , the
solution of the closed-loop system � × �C satisfies

lim
t→∞ e(t) = 0.

As usual, any controller �C that solves the above classical output regulation
problem is called a regulator.
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The conditions under which the above classical output regulation problem
can be solved are already known from the previous chapters and will be re-
called soon. Clearly, the above problem besides requiring the internal stability
of the closed-loop system, requires only that the steady state error e be zero.
It does not consider any aspects of the transient behavior of the error signal e.
That is, no performance measure is associated with the regulators. To rectify
this, we introduce below a performance measure for each regulator.

(Performance Measure) For any given x(0) = x0 ∈ R
n and w(0) = w0 ∈

R
s , and for any regulator, let a performance measure be given by

J (x0, w0, �C) =
∫ ∞

0
e(t)T Qe(t) dt (6.5)

for continuous-time systems, and

J (x0, w0, �C) =
∞∑

i=0

e(i)T Qe(i) (6.6)

for discrete-time systems, where the matrix Q is positive semi-definite, and
as usual T denotes the matrix transpose.

As we know by now, any regulator we construct is dependent on a so-
lution (	,
) of the regulator equation (6.4). However, in general, (	,
)

that solves (6.4) is not unique. In what follows, at first, we consider a class
of regulators which are derived based on a given specific solution (	,
) of
(6.4). For this given class of regulators and for a given x0 and w0, we denote
the infimum of the performance measure over all proper (or strictly proper)
measurement feedback regulators by J ∗

p (and J ∗
sp respectively). Moreover, for

the particular case of static state feedback regulators, we denote the infimum
of the performance measure by J ∗

s f . That is

J ∗
p (x0, w0,	,
) = inf {J (x0, w0, �C) | �C is a proper regulator

utilizing the given (	,
)},
J ∗

sp(x0, w0,	,
) = inf {J (x0, w0, �C) | �C is a strictly proper

regulator utilizing the given (	,
)},
J ∗

s f (x0, w0,	,
) = inf {J (x0, w0, �C) | �C is a state feedback

regulator utilizing the given (	,
)}.
The above infima of performance measures indeed define the best possible

transient performance that could be achieved for a given initial conditions x0

and w0 and for a given solution (	,
) of the regulator equation (6.4). In what
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follows one of the problems we deal with is to find the conditions under which
one can obtain the best possible transient performance.

In all the problems we formulate in this chapter we assume that the clas-
sical output regulation problem is solvable. Given a solution (	,
) of the
regulator equation (6.4), our first problem seeks a proper (or a strictly proper)
regulator that attains the optimal performance J ∗

p (J ∗
sp or J ∗

s f ) for a given x0

and w0.

Problem 6.2.2 Consider the given system � as in (6.1) and the exosystem
�E as in (6.2). Let x0 and w0 be given. Also, let (	,
) be a given solution
of the regulator equation (6.4). With this choice of (	,
) and the given x0

and w0, consider the corresponding optimal performance J ∗
p (x0, w0,	,
)

(J ∗
sp(x0, w0,	,
) or J ∗

s f (x0, w0,	,
)). Then the optimal output regulation
problem for a given x0 and w0 is to find, if possible, a proper (strictly proper or
state feedback) regulator that attains the optimal performance J ∗

p (x0, w0,	,


) (J ∗
sp(x0, w0,	,
) or J ∗

s f (x0, w0,	,
)).

Any regulator �C that solves the above optimal output regulation problem
for a given x0 and w0 is called an optimal regulator for the given x0 and w0.

It is transparent that the above problem deals with a given x0 and w0 at
a time. In this regard, we would like to emphasize that the optimal output
regulation problem for a given x0 and w0 as defined above seeks a controller
that achieves output regulation for all initial conditions of the system and ex-
osystem. However, it yields the best transient performance for the given initial
conditions x0 and w0. A fundamental question that arises immediately is this:
does a fixed regulator independent of x0 and w0 exist solving Problem 6.2.2
for the set of all x0 and w0 for which Problem 6.2.2 is solvable? This is for-
mally posed below.

Problem 6.2.3 Consider the given system � as in (6.1) and the exosystem
�E as in (6.2). Let (	,
) be a given solution of the regulator equation
(6.4). Then the optimal output regulation problem is to find, if possible, a
fixed proper (strictly proper or state feedback) regulator that attains the op-
timal performance J ∗

p (x0, w0,	,
) (J ∗
sp(x0, w0,	,
) or J ∗

s f (x0, w0,	,
))
for the set of all x0 and w0 for which Problem 6.2.2 is solvable.

Any regulator �C that solves the above optimal output regulation problem
is called an optimal regulator.

We would like to emphasize again that the optimal output regulation prob-
lem as defined above seeks a fixed controller that achieves output regulation
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for all initial condition of the system and exosystem. However, it yields the
best transient performance for the set of all x0 and w0 for which Problem 6.2.2
is solvable.

As will be discussed soon, the above problems are solvable in general
only for a set of initial conditions which satisfy some specific conditions. Such
conditions may not always be satisfied by the given system �. In an attempt to
weaken the conditions and thus broaden the set of initial conditions, one would
like to construct a “suboptimal” regulator. In the absence of a formal definition
of a suboptimal regulator, any regulator can be construed as a suboptimal
regulator. For a given solution (	,
) of the regulator equation (6.4) and for a
given x0 and w0, a good definition of suboptimality can be given through the
notion of ensuring that the performance is arbitrarily close to the infimum J ∗

p

(J ∗
sp or J ∗

s f ). In this regard, a sequence or a family of proper (strictly proper or
state feedback) regulators can be called suboptimal for the given x0 and w0 if
one can select a regulator from the family such that the resulting performance
is within an arbitrarily given value, say ε, from the infimum J ∗

p (J ∗
sp or J ∗

s f ).
A formal definition of a suboptimal output regulation problem for a given x0

and w0 is given below.

Problem 6.2.4 Consider the given system � as in (6.1) and the exosystem
�E as in (6.2). Let x0 and w0 be given. Also, let (	,
) be a given solution
of the regulator equation (6.4). With this choice of (	,
) and the given x0

and w0, consider the corresponding optimal performance J ∗
p (x0, w0,	,
)

(J ∗
sp(x0, w0,	,
) or J ∗

s f (x0, w0,	,
)). Then the suboptimal output regula-
tion problem for the given x0 and w0 is to find, if possible, a sequence of pa-
rameterized proper (strictly proper or state feedback) regulators { �C(ε) | ε >

0 } which satisfy the condition that, as ε → 0, the attained performance mea-
sure J (x0, w0, �C(ε)) tends to the infimum J ∗

p (x0, w0,	,
) (J ∗
sp(x0, w0,	,


) or J ∗
s f (x0, w0,	,
)).

The sequence of regulators { �C(ε) | ε > 0 } satisfying the above is re-
ferred to as a suboptimal regulator sequence for the given x0 and w0.

Obviously, the above problem deals with a given x0 and w0 at a time.
In this regard, we would like to emphasize again that the suboptimal output
regulation problem for a given x0 and w0 as defined above seeks a sequence
of controllers each member of which achieves output regulation for all initial
condition for the system and exosystem. However, by selecting an appropriate
regulator from the sequence one can come as close to the best transient perfor-
mance as desired for the given initial conditions x0 and w0. It is interesting to
enquire whether there exists a fixed sequence of regulators independent of x0
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and w0 which solves Problem 6.2.4 for all x0 and w0. This is formally posed
below.

Problem 6.2.5 Consider the given system � as in (6.1) and the exosystem
�E as in (6.2). Let (	,
) be a given solution of the regulator equation
(6.4). With this choice of (	,
), consider the corresponding optimal per-
formance J ∗

p (x0, w0,	,
) (J ∗
sp(x0, w0,	,
) or J ∗

s f (x0, w0,	,
)). Then
the suboptimal output regulation problem is to find, if possible, a fixed se-
quence of parameterized proper (strictly proper or state feedback) regula-
tors { �C(ε) | ε > 0 } which satisfy the condition that, as ε → 0, the at-
tained performance J (x0, w0, �C(ε)) tends to the infimum J ∗

p (x0, w0,	,
)

(J ∗
sp(x0, w0,	,
) or J ∗

s f (x0, w0,	,
)) uniformly for all x0 and w0.

The sequence of regulators { �C(ε) | ε > 0 } satisfying the above is re-
ferred to as a suboptimal regulator sequence.

Remark 6.2.1 The above suboptimal output regulation problem via proper
(or strictly proper) regulators for the case where J ∗

p (x0, w0,	,
) = 0 (J ∗
sp

(x0, w0,	,
) = 0 or J ∗
s f (x0, w0,	,
) = 0) for all x(0) = x0 ∈ R

n and
w(0) = w0 ∈ R

s , is referred to as a perfect output regulation problem [26].

In this chapter, we first establish that J ∗
p (x0, w0,	,
), J ∗

sp(x0, w0,	,
),
and J ∗

s f (x0, w0,	,
) are finite, and then give explicit expressions for them.
Next, we develop the conditions under which each of the above defined op-
timal and suboptimal output regulation problems is solvable. Whenever such
conditions are satisfied, we also develop explicit methods for constructing an
optimal regulator or a suboptimal regulator sequence that solves a specified
problem. Finally, we examine the relationship between the infima J ∗

s f (x0, w0,

	,
), J ∗
p (x0, w0,	,
), or J ∗

sp(x0, w0,	,
) and the structural properties of
the given system �. This chapter is organized as follows. Section 6.3 de-
velops certain preliminaries we need, while Sections 6.4 and 6.5 respectively
deal with state and measurement feedback controllers.

6.3 Preliminaries

Before we discuss the solution of the problems posed in the previous subsec-
tion, we need to develop certain preliminaries. It is well known that an L2

optimal control problem can be rewritten as an H2 optimal control problem.
Hence we can rewrite the optimal output regulation problem as an H2 optimal
control problem with the output regulation constraint. To do so, let us con-
struct an auxiliary system �a by utilizing the data of the given system � and
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the exosystem �E given by (6.1) and (6.2) respectively along with their initial
conditions x(0) = x0 and w(0) = w0,

�a :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρx = Ax + Bu + Eww + xor
ρw = Sw + wor
e = Cex + Deuu + Deww

y = Cyx + Dyuu + Dyww

z = Q1/2e = Czx + Dzuu + Dzww

(6.7)

where z is a controlled output while

Cz = Q1/2Ce , Dzu = Q1/2 Deu , Dzw = Q1/2 Dew,

and r is a fictitious scalar disturbance signal. Then, it can easily be seen that
the optimal output regulation problem for the given system � is equivalent to
an H2 optimal control problem for �a with an output regulation constraint.
That is, the optimal output regulation problem for � is equivalent to finding a
controller for �a which minimizes the H2 norm from r to z over all controllers
that internally stabilizes � and yield e(t) → 0 as t → ∞ for arbitrary initial
conditions of the system �a .

6.4 Optimal output regulation problem via state feed-
back

In this section, we study the optimal and suboptimal output regulation prob-
lems posed earlier by utilizing feedback from both the state vectors x and w.
In other words, we assume the state is available for feedback. That is, the
matrices Cy and Dyw take the form

Cy =
(

I
0

)
and Dyw =

(
0
I

)
. (6.8)

The solvability conditions for the posed optimal output regulation prob-
lems via state feedback will be expressed shortly in terms of the solution of
certain linear matrix inequalities. We recall below the needed linear matrix
inequalities. Consider first a continuous-time linear matrix inequality,

F(P̃) :=
(

AT P̃ + P̃ A + CT
z Cz P̃ B + CT

z Dzu

BT P̃ + DT
zuCz DT

zu Dzu

)
� 0. (6.9)

As shown in [61] and as explained further in Appendix 6.A, whenever the
pair (A, B) is stabilizable, there exists a unique symmetric semi-stabilizing
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solution P̃ of the linear matrix inequality given in (6.9). Moreover, such a
solution P̃ is positive semi-definite and is the largest among all symmetric
solutions.

Consider next a discrete-time linear matrix inequality,

F(P̃) :=
(

AT P̃ A − P̃ + CT
z Cz AT P̃ B + CT

z Dzu

BT P̃ A + DT
zuCz BT P̃ B + DT

zu Dzu

)
� 0. (6.10)

Again, as shown in [61] and as explained further in Appendix 6.B, when-
ever the pair (A, B) is stabilizable, there exists a unique symmetric semi-
stabilizing and strongly rank minimizing solution P̃ of the linear matrix in-
equality given in (6.10). Moreover, such a solution P̃ is positive semi-definite,
and is the largest among all such strongly rank minimizing symmetric solu-
tions.

Utilizing the unique symmetric semi-stabilizing solution P̃ of (6.9) for
continuous-time systems or the unique symmetric semi-stabilizing and strong-
ly rank minimizing solution P̃ of (6.10) for discrete-time systems, we can
define a pair of matrices CP and DP as(

CT
P

DT
P

)(
CP DP

) = F(P̃). (6.11)

6.4.1 Determination of J∗
s f

Under the natural Assumptions A.1, A.2, and A.4 of Section 6.2, the following
theorem shows that the infimum J ∗

s f (x0, w0,	,
) is finite and provides an
expression for it.

Theorem 6.4.1 Consider the optimal output regulation problem for a given
x0 and w0 (i.e., Problem 6.2.2) via state feedback for the system � and the
exosystem �E given by (6.1) and (6.2) respectively. Let Assumptions A.1, A.2,
and A.4 be satisfied. Also, let (	,
) be a given solution of the regulator
equation (6.4). Moreover, let P̃ be the unique symmetric semi-stabilizing so-
lution of (6.9) for continuous-time systems or the unique semi-stabilizing and
strongly rank minimizing solution of (6.10) for discrete-time systems. Then,
J ∗

s f (x0, w0,	,
) is finite and is given by

J ∗
s f (x0, w0,	,
) = (x0 − 	w0)

T P̃(x0 − 	w0). (6.12)

Proof : Consider the given x0 and w0, and (	,
) which is a given solution of
the regulator equation (6.4). Also, let x̄ = x − 	w and ū = u − 
w. Then
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�a given in (6.7) can be rewritten as

�̄ :
⎧⎨
⎩

ρ x̄ = Ax̄ + Bū + (x0 − 	w0)r
e = Cex̄ + Deuū
z = Czx̄ + Dzuū.

(6.13)

The dynamics ρw = Sw + w0r are omitted since in this new basis w has no
direct effect on e and z.

Now, in view of the results of Theorem 2.3.1, we note that any internally
stabilizing state feedback controller �̄C,

�̄C : {
ū = Fx̄, (6.14)

for �̄ defines a controller

u = Fx + (
 − F	)w

that achieves exact output regulation for the system � given in (6.1). Obvi-
ously, J ∗

s f (x0, w0,	,
) is then the square of the infimum of the H2 norm
of the transfer function from r to z over all possible internally stabilizing
state feedback controllers for the system �̄. Then, the expression (6.12) for
J ∗

s f (x0, w0,	,
) immediately follows from [61].

We would like to comment that the expression J ∗
s f (x0, w0,	,
) given in

(6.12) is equal to the minimal possible transient energy over all state feedback
controllers that achieve output regulation. As such it points out a fundamental
limitation or characteristic of the given system � and the exosystem �E.

6.4.2 Solvability conditions

In this subsection we develop the solvability conditions for the posed optimal
and suboptimal output regulation problems via state feedback.

We have the following result for continuous-time systems.

Theorem 6.4.2 For continuous-time systems, consider Problems 6.2.2 and
6.2.3 via state feedback for the system � and the exosystem �E given by (6.1)
and (6.2) respectively. Let Assumptions A.1, A.2, and A.4 of Section 6.2 hold.
Also, let (	,
) be a given solution of the regulator equation (6.4). Then, the
optimal output regulation problem for a given x0 and w0 (i.e. Problem 6.2.2)
is solvable via state feedback if and only if

im[x0 − 	w0] ⊆ V−(A, B, CP, DP) (6.15)



Control of linear systems with regulation and input constraints 223

where P̃ is the unique semi-stabilizing solution of the linear matrix inequality
(6.9) and the matrices CP and DP are as in (6.11).

Moreover, the optimal output regulation problem (i.e. Problem 6.2.3) is
solvable via state feedback. That is, there exist a fixed state feedback regu-
lator that attains the optimal performance J ∗

p (x0, w0,	,
) (or respectively
J ∗

sp(x0, w0,	,
)) for all x0 and w0 for which Problem 6.2.2 is solvable.

Proof : It is obvious from the proof of Theorem 6.4.1 that a controller u =
Fx + Gw solves the optimal output regulation problem for a given x0 and w0

via state feedback if and only if G = 
 − F	, and the matrix F is such that
the feedback ū = Fx̄ solves the H2 optimal control problem for the system
�̄ given in (6.13). Then, the results in H2 optimal control theory [61, see
Theorem 7.2.2] tell us that such a controller ū = Fx̄ exists if and only if
(6.15) is satisfied. Moreover, the results of Theorem 7.2.2 of [61] guarantee
that there exists a fixed state feedback regulator that solves Problem 6.2.3.

The following theorem is the analog of Theorem 6.4.2, however it deals
with discrete-time systems.

Theorem 6.4.3 For discrete-time systems, consider Problems 6.2.2 and 6.2.3
via state feedback for � and the exosystem �E given by (6.1) and (6.2) respec-
tively. Let Assumptions A.1, A.2, and A.4 of Section 6.2 hold. Also, let (	,
)

be a given solution of the regulator equation (6.4). Then, the optimal output
regulation problem for a given x0 and w0 (i.e. Problem 6.2.2) is solvable via
state feedback if and only if

im[x0 − 	w0] ⊆ V�(A, B, CP, DP) (6.16)

where P̃ is the unique semi-stabilizing and strongly rank minimizing solution
of the linear matrix inequality (6.10) and the matrices CP and DP are as in
(6.11).

Moreover, the optimal output regulation problem (i.e. Problem 6.2.3) is
solvable via state feedback. That is, there exist a fixed state feedback regulator
that attains the optimal performance measure J ∗

s f (x0, w0,	,
) for all x0 and
w0 for which Problem 6.2.2 is solvable.

Proof : It follows along the same lines as the proof of Theorem 6.4.2.

In order to ascertain the solvability of the optimal output regulation prob-
lem via state feedback, one needs to ascertain whether there exists a solution
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(	,
) of the regulator equation (6.4) such that the condition given in The-
orem 6.4.2 or in Theorem 6.4.3 holds. Secondly, we have to ask ourselves
whether the optimal performance depends on the specific choice for the solu-
tions (	,
) of the regulator equation (6.4).

Regarding the second issue we note that P̃ is independent of 	 and 
.
Moreover, the set of solutions (	,
) of the regulator equation (6.4) is an
affine set. Therefore minimizing (6.12) over the set of solutions (	,
) of the
regulator equation is straightforward. It can actually been shown that there
exists one solution (	,
) of the regulator equation which minimizes this cri-
terion for all x0 and w0.

Whether or not there exists a solution (	,
) of the regulator equation
(6.4) such that the condition given in Theorem 6.4.2 or in Theorem 6.4.3
holds, can be checked in a straightforward way. To see this, let H be a ma-
trix such that ker H = V−(A, B, CP, DP) for continuous-time systems, or
ker H = V�(A, B, CP, DP) for discrete-time systems. Then, the two alge-
braic equations that define the regulator equation (6.4) and the condition of
Theorem 6.4.2 or Theorem 6.4.3 can be merged into three algebraic equations
consisting of the two equations of the regulator equation (6.4), and the third
as

H (x0 − 	w0) = 0. (6.17)

Obviously then, the optimal output regulation problem via state feedback is
solvable whenever there exists a solution to the above set of three algebraic
equations. Note that V−(A, B, CP, DP) and V�(A, B, CP, DP), and thus H do
not depend on the solution 	 and 
.

Obviously, we can combine the above issues to try to find a solution
(	,
) that minimizes the optimal cost and which is such that the optimal
cost can be attained.

In view of Theorems 6.4.2 and 6.4.3, it is clear that in general the optimal
output regulation via state feedback is possible only for a subset of initial
conditions x0 and w0 which satisfy the condition (6.15) for continuous-time
systems or the condition (6.16) for discrete-time systems. This leads to a
fundamental question: when does there exist a fixed regulator which achieves
optimal output regulation for all x0 ∈ R

n and w0 ∈ R
s . The following theorem

deals with this issue.

Theorem 6.4.4 Consider the given system � and the exosystem �E given by
(6.1) and (6.2) respectively. Let Assumptions A.1, A.2 , and A.4 of Section
6.2 hold. Also, let (	,
) be any solution of the regulator equation (6.4).
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Then, there exists a fixed state feedback regulator u = Fx that achieves the
performance measure J ∗

s f (x0, w0,	,
) for all x0 ∈ R
n and w0 ∈ R

s if and
only if the following conditions hold:

(i) for continuous-time systems, the matrix Dzu is injective and the system
characterized by the quadruple (A, B, Cz, Dzu) has no invariant zeros
on the imaginary axis,

(ii) for discrete-time systems, the system characterized by the quadruple
(A, B, Cz, Dzu) is left invertible and has no invariant zeros on the unit
circle.

Proof : In view of the proof of Theorem 6.4.1, a simple look at H2 optimal
control theory (e.g. see [61]) shows that the results of this theorem follow if
and only if the H2 optimal control problem via state feedback for the system �̄

given in (6.13) is regular. The conditions for the H2 optimal control problem
for �̄ to be regular are indeed the conditions given in the theorem.

Optimal output regulation seeks to achieve the best possible transient per-
formance. However, as seen above, this demands certain conditions to be
satisfied by the given system and the given initial conditions. It is natural then
to enquire whether a compromise is possible between the required conditions
on the given system or initial conditions and the level of transient performance
that is sought. This leads to the study of suboptimal output regulation prob-
lems. The following theorem shows that, under some natural assumptions, the
suboptimal output regulation problem is solvable via state feedback for both
continuous- and discrete-time systems.

Theorem 6.4.5 For both continuous- and discrete-time systems, consider the
Problems 6.2.4 and 6.2.5 via state feedback for � as in (6.1) and the exosys-
tem �E as in (6.2). Let Assumptions A.1, A.2, and A.4 of Section 6.2 hold.
Also, let (	,
) be any solution of the regulator equation (6.4). Moreover, let
J ∗

s f (x0, w0,	,
) be the corresponding optimal performance for a given x0

and w0. Then, the suboptimal regulation problem as formulated in Problem
6.2.4 is always solvable via state feedback for any given x0 and w0. Moreover,
the suboptimal regulation problem as formulated in Problem 6.2.5 is also al-
ways solvable via state feedback. That is, to be precise, there exists a fixed
suboptimal state feedback regulator sequence {�C(ε) | ε > 0 } such that the
attained performance measure J (x0, w0, �C(ε)) tends to J ∗

s f (x0, w0,	,
) as
ε tends to zero for all x0 ∈ R

n and w0 ∈ R
s .
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Proof : The H2 suboptimal control problem via state feedback for the system
�̄ given in (6.13) is solvable whenever Assumption A.1 holds [61]. Thus, the
proof of this theorem is obvious when we follow the same lines as in the proof
of Theorem 6.4.2.

Obviously, Theorem 6.4.5 is very appealing. It shows that under natural
assumptions, there exists a fixed sequence of state feedback regulators such
that one can choose from it a regulator that achieves a transient performance
arbitrarily close to the optimal transient performance. This is in contrast with
Theorems 6.4.2 and 6.4.3 which seek to achieve the optimal transient perfor-
mance. However, we remark that the suboptimal output regulation is obtained
at some cost; for instance, in continuous-time systems in order to obtain sub-
optimal output regulation, one need to employ high-gain feedback controllers
whereas optimal output regulation, whenever it is feasible, does not require
high-gain feedback controllers.

6.4.3 Perfect output regulation

Earlier in Remark 6.2.1, we alluded to what is referred to as a perfect output
regulation problem. We say that perfect output regulation is attainable via
state feedback if we can achieve, uniformly for all x0 ∈ R

n and w0 ∈ R
s ,

transient performance arbitrarily close to zero, i.e. if one can solve the subop-
timal output regulation problem (Problem 6.2.5) with the additional property
that J ∗

s f (x0, w0,	,
) equals zero for all x0 ∈ R
n and w0 ∈ R

s . In other
words, the notion of perfect output regulation seeks the satisfaction of two
conditions, (1) having J ∗

s f (x0, w0,	,
) equal to zero for all x0 ∈ R
n and

w0 ∈ R
s , and (2) the existence of a fixed sequence {�C(ε) | ε > 0 } of regula-

tors by selecting a member of which one can render the attained performance
J (x0, w0, �C(ε)) arbitrary small uniformly for all x0 ∈ R

n and w0 ∈ R
s . The

perfect output regulation problem via state feedback has a long history (e.g.
see Kwakernaak and Sivan [27], Francis [17], Kimura [26], Lin et al. [39,40]).
A more recent but generalized result is given in [61]. The following theorem
gives the conditions under which perfect output regulation via state feedback
is possible.

Theorem 6.4.6 Consider the given system � as in (6.1) and the exosystem
�E as in (6.2). Let Assumptions A.1, A.2, and A.4 of Section 6.2 hold. Then,
perfect output regulation can be achieved via state feedback if and only if the
following conditions hold:
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(i) For continuous-time systems, the system characterized by the quadruple
(A, B, Cz, Dzu) is right invertible and has all its invariant zeros in the
closed left-half plane, i.e. in C

− ∪ C
0 (the system it is either minimum

phase, weakly minimum phase, or weakly non-minimum phase).

(ii) For discrete-time systems, the system characterized by the quadruple
(A, B, Cz, Dzu) is right invertible, has all its invariant zeros inside or
on the unit circle, i.e. in C

⊗ (the system is either minimum phase, weakly
minimum phase, or weakly non-minimum phase), and has no infinite
zeros of order greater than or equal to one.

Proof : As discussed in the proof of Theorem 6.4.1, J ∗
s f (x0, w0,	,
) is the

square of the infimum of the H2 norm of the transfer function from r to z
over all possible internally stabilizing state feedback controllers for the system
�̄ given in (6.13). Then, the results of this theorem are a consequence of
Theorem 5.8.1 (for continuous-time systems) and Theorem 6.8.1 (for discrete-
time systems) of [61].

Note that perfect regulation is possible if and only if P̃ in Theorem 6.4.1 is
equal to zero. Since P̃ is independent of the specific solution 	,
 of the reg-
ulator equations, we find that perfect regulation is independent of the specific
solution of the regulator equations.

6.4.4 Construction of optimal and suboptimal state feedback reg-
ulators

In this subsection, we give a procedure of constructing the optimal and subop-
timal regulators whenever the solvability conditions developed in the previous
subsections are satisfied. In fact, Theorems 6.4.1 and 6.4.2, and their proofs
suggest the following step by step procedure of constructing an optimal state
feedback regulator.

Construction of an optimal state feedback regulator:

Step 1 : Choose a solution (	,
) of the regulator equation (6.4) such that
there exists a matrix H satisfying the algebraic equation (6.17).

Step 2 : Let Ě be such that im Ě = V−(A, B, CP, DP) for continuous-time
systems, and im Ě = V�(A, B, CP, DP) for discrete-time systems. Consider
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the system,

ρ x̄ = Ax̄ + Bū + Ěr
e = Cex̄ + Deuū
z = Czx̄ + Dzuū.

(6.18)

Find an H2 optimal state feedback controller ū = Fx̄ for the above system
using the COGFMDZ algorithm for continuous-time systems and DOGFMDZ
algorithm for discrete-time systems as given in [61].

Step 3 : Form the state feedback controller,

u = Fx + (
 − F	)w.

The controller constructed above is an optimal state feedback regulator for the
given system �.

Similarly, we can give the following procedure to construct a suboptimal
regulator sequence.

Construction of a suboptimal state feedback regulator sequence:

Step 1 : Choose a solution (	,
) of the regulator equation (6.4).

Step 2 : Construct a sequence of state feedback gains { Fε | ε > 0 } such that
the sequence of state feedback controllers of the type ū = Fε x̄ is a sequence
of H2 suboptimal controllers for the system given in (6.18).

Step 3 : Form the sequence of state feedback controllers,

u = Fεx + (
 − Fε	)w.

The sequence of controllers constructed above is a suboptimal state feedback
regulator sequence for the given system �.

We remark that an algorithm based on a perturbation method is developed
in [61] to construct a sequence of state feedback gains { Fε | ε > 0 } such that
the sequence of state feedback controllers of the type u = Fεx is a sequence
of H2 suboptimal state feedback controllers for any given system. However,
perturbation methods although conceptually simple are extremely sensitive to
numerical errors. An alternative direct method of computing that is insensitive
to numerical errors is developed in [39, 40] to construct a similar sequence of
state feedback gains { Fε | ε > 0 }. This alternative method enables us to
construct a sequence of H2 suboptimal state feedback controllers.

We would like to state that constructing a sequence of state feedback regu-
lators that achieve perfect output regulation is exactly the same as constructing
a sequence of suboptimal state feedback regulators.
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6.4.5 Relationships between J∗
s f and the structural properties of

�

In the previous subsection we derived an expression for the optimal perfor-
mance J ∗

s f (x0, w0,	,
) as is given by (6.12). In this subsection, we would
like to identify the part of the dynamics of the given system that is responsible
for J ∗

s f (x0, w0,	,
). In view of the proof of Theorem 6.4.1, we remark that
the expression for J ∗

s f (x0, w0,	,
) given in (6.12) is obtained by studying
the H2 optimal state feedback control problem for �̄ given in (6.13) which
has been obtained from the system �a of (6.7) by the change of variables,
x̄ = x − 	w and ū = u − 
w. We now rewrite �̄ by setting the fictitious
disturbance signal r to zero,

�̄ :
{

ρ x̄ = Ax̄ + Bū
z = Cz x̄ + Dzuū.

(6.19)

To proceed with our development, we observe that, other than the ini-
tial conditions, there are two matrices that contribute to J ∗

s f (x0, w0,	,
)

and these are (1) P̃ the unique symmetric semi-stabilizing solution of (6.9)
for continuous-time systems or the unique semi-stabilizing and strongly rank
minimizing solution of (6.10) for discrete-time systems, and (2) 	 which is a
solution of the regulator equation (6.4). Of course, both of these contributing
matrices depend on the dynamics of the given system. It turns out that we can
separate a part of the dynamics of the given system which determines P̃ . It
has been shown earlier (e.g. see [59]) that under cheap control certain state
and output variables of the given system � attain their equilibrium values rel-
atively fast while others do so relatively slowly. That is, under cheap control,
a given system � exhibits multiple time-scale structure. As discussed below,
the dynamics that exhibits the slowest time-scale structure under cheap control
(the so called slow dynamics) influences heavily the structure and magnitude
of P̃ .

We proceed now to extract the subsystem of the given system that exhibits
the slowest time-scale structure under cheap control. To do so, we need to
rewrite the system given in (6.19) in a special coordinate basis (s.c.b) [60, 66]
that can explicitly display the finite and infinite zero structures of any linear
system. For this purpose, let us assume without loss of generality that B and
Cz are of maximal rank. Also, without loss of generality, assume that

Dzu =
(

Im0 0
0 0

)
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where Im0 is an identity matrix of order m0 × m0. Partition B and Cz in
conformity with the partitioning of Dzu ,

B = (
B0 B1

)
, and Cz =

(
C0

C1

)
.

Then it follows from [60,66] that there exist non-singular matrices 
s ∈ R
n×n ,


o ∈ R
p×p, and 
i ∈ R

m×m such that


−1
s (A − B0C0)
s

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A−
aa 0 0 L−

abCb 0 L−
adCd

0 A0
aa 0 L0

abCb 0 L0
adCd

0 0 A+
aa L+

abCb 0 L+
adCd

0 0 0 Abb 0 LbdCd

Bc E−
ca Bc E0

ca Bc E+
ca Bc Ecb Acc LcdCd

Bd E−
da Bd E0

da Bd E+
da Bd Edb Bd Edc Ad

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.20)


−1
s

(
B0 B1

)

i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B−
a0 0 0

B0
a0 0 0

B+
a0 0 0

Bb0 0 0

Bc0 0 Bc

Bd0 Bd 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.21)

and


−1
o

(
C0

C1

)

s =

⎛
⎜⎝

C−
0a C0

0a C+
0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0

⎞
⎟⎠ , (6.22)

where the pair (Cb, Abb) is observable, and the pair (Acc, Bc) is controllable.
Also, the eigenvalues of A−

aa , A0
aa , and A+

aa are the invariant zeros of the
system given in (6.19), and they are in the open left-half complex plane, on
the imaginary axis, and in the open right-half complex plane respectively for
continuous-time systems, while they are inside the unit circle, on the unit cir-
cle, and outside the unit circle respectively for discrete-time systems. More-
over, the system characterized by the quadruple (Ad , Bd, Cd, 0) is invertible
and is free of any invariant zeros. Furthermore, CdCT

d = Iρ̄−m0 with ρ̄ being
the normal rank of Cz(s I − A)−1 B + Dzu.
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Shortly, we also need the decomposition of the state x̄ of the system given
in (6.19) in accordance with the special coordinate basis (s.c.b). Let

x̄ := x − 	w := 
s

(
(x−

a )T (x0
a)

T (x+
a )T xT

b xT
c xT

d

)T
. (6.23)

Based on the above development, we can now study P̃ which is the unique
symmetric semi-stabilizing solution of (6.9) for continuous-time systems or
the unique semi-stabilizing and strongly rank minimizing solution of (6.10)
for discrete-time systems. There are structurally profound differences be-
tween the solution P̃ of (6.9) and that of (6.10). As such, we treat continuous-
and discrete-time systems separately.

For continuous-time systems, in view of Property 4.3.2 (page 124) of [61],
we see that the unique semi-stabilizing solution P̃ of the linear matrix inequal-
ity (6.9) can be written in the form,

P̃ = (
−1
s )T

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 Ps 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠
−1

s (6.24)

where the symmetric positive semi-definite matrix Ps is the solution of the
algebraic Riccati equation,

Ps As + AT
s Ps + CT

s Cs

− (Ps Bs + CT
s Ds)(DT

s Ds)
−1(BT

s Ps + DT
s Cs) = 0, (6.25)

and where

As :=
(

A+
aa L+

abCb

0 Abb

)
, Bs :=

(
B+

a0 L+
ad

Bb0 Lbd

)
, (6.26)

Cs := 
o

⎛
⎝0 0

0 0
0 Cb

⎞
⎠ , Ds := 
o

⎛
⎝Im0 0

0 Iρ̄−m0

0 0

⎞
⎠ . (6.27)

Remark 6.4.1 Note that (6.24) is an explicit way of describing the fact that

ker P = V−0(A, B, Cz, Dz) + S∗(A, B, Cz, Dz)

which has a direct connection with the solvability of (almost) disturbance de-
coupling problems as discussed in Section 13.2.
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The matrix Ps of (6.25) can be given a physical meaning. Let

xs =
(

x+
a

xb

)
.

Also, consider a linear quadratic control problem for a continuous-time sys-
tem �sub,

�sub :
{

ρxs = As xs + Bsus

z = Csxs + Dsus ,
(6.28)

with a performance measure

Jsub =
∫ ∞

0
zTz dt. (6.29)

The infimum of performance measure Jsub over all possible state feedback
controllers is given by

J ∗
sub(xs(0)) = xs(0)T Ps xs(0). (6.30)

Thus the study of J ∗
s f (x0, w0,	,
) for continuous-time systems is reduced

to the study of J ∗
sub(xs(0)) in which Ps is the solution of the algebraic Riccati

equation (6.25) whose dimension is in general smaller than that of the linear
matrix inequality (6.9). In fact, the above development leads to the following
lemma.

Lemma 6.4.1 For continuous-time systems, consider the optimal output reg-
ulation problem for a given x0 and w0 via state feedback, i.e. Problem 6.2.2.
Let Assumptions A.1, A.2, and A.4 of Section 6.2 hold. Also, assume that
the system (6.19) which is characterized by the quadruple (A, B, Cz, Dzu) is
already in the form of the special coordinate basis (s.c.b). Then, we have

J ∗
s f (x0, w0,	,
) = J ∗

sub(xs(0)).

It is important to recognize that, in view of (6.23), the state xs is a compo-
nent of x − 	w, and hence xs(0) is a component of x0 − 	w0.

For continuous-time systems, the above lemma clearly points out that the
dynamics given by the subsystem �sub is indeed the one that is responsible for
the non-zero J ∗

s f (x0, w0,	,
). Subsystem �sub has two types of dynamics.
The first type of dynamics is represented by the state x+

a , and it is present only
when the system �̄ given in (6.19) has invariant zeros in the open right-half
plane C

+. In the literature, the dynamics represented by x+
a is often called the



Control of linear systems with regulation and input constraints 233

unstable zero dynamics. The second type of dynamics in �sub is represented
by the state xb, and it is present only when the system �̄ is not right invertible.

The above development leads to the following important remarks.

Remark 6.4.2 We remark that the state x+
a is non-existent if the system �̄

given in (6.19) has no invariant zeros in the open right-half plane C
+ (i.e. it

is either minimum phase, or weakly minimum phase, or weakly non-minimum
phase). Similarly, the state xb is non-existent if the system �̄ is right invertible.
Thus, for continuous-time systems, Ps = 0 and hence P̃ = 0 whenever the sys-
tem �̄ is right invertible and is either minimum phase, weakly minimum phase,
or weakly non-minimum phase. Under these conditions, J ∗

s f (x0, w0,	,
) is
indeed identically zero as already discussed in Theorem 6.4.6.

Remark 6.4.3 (Energy interpretation) In view of Lemma 6.4.1, whenever the
system �̄ given in (6.19) is already in the special coordinate basis, we know
that J ∗

s f (x0, w0,	,
) equals J ∗
sub(xs(0)). This gives an interesting energy

interpretation. If �̄ is right invertible, one can interpret J ∗
s f (x0, w0,	,
) as

the minimum energy required to stabilize the unstable zero dynamics of �̄.

One can also write J ∗
s f (x0, w0,	,
) explicitly in terms of the open right half

plane zeros of �̄ which is characterized by the quadruple (A, B, Cz, Dzu). Let
us illustrate this for the case when the reference/disturbance signal is a step
function, i.e., w is a constant. For simplicity, we also assume that �̄ is right
invertible and is already in the form of the special coordinate basis. For this
case, As = A+

aa and is an invertible matrix. The steady state value of xs ,
denoted by x̄s , must satisfy

A+
aa x̄s + Bsūs = 0.

Using the properties of the special coordinate basis, it is easy to see that

ūs = z̄

where z̄ is the steady state value of z. Hence

x̄s = (A+
aa)

−1 Bsz̄.

Let x(0) = x0 = 0. Then, whenever output regulation is attained, one can see
that xs(0) = x̄s . Thus for the particular initial condition x(0) = 0, we have

J ∗
s f (x0, w0,	,
) = J ∗

sub(x̄s) = J ∗
sub((A+

aa)
−1 Bsz̄)

= [
(A+

aa)
−1 Bs z̄

]T
Ps

[
(A+

aa)
−1 Bsz̄

] = z̄T Mz̄ (6.31)
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where M = [(A+
aa)

−1 Bs]T Ps[(A+
aa)

−1 Bs]. But for the case we are considering,
Riccati equation (6.25) reduces to

Ps A+
aa + (A+

aa)
T Ps − Ps Bs BT

s Ps = 0. (6.32)

By utilizing the properties of the trace operator and (6.32), it can be seen that

trace M = 2 trace(A+
aa)

−1 = 2
�∑

i=1

1

ζi
(6.33)

where ζi , i = 1, 2, · · · , � are the eigenvalues of A+
aa or equivalently the open

right half plane zeros of �̄ which is characterized by the matrix quadruple
(A, B, Cz, Dzu). This result was obtained earlier by [52].

Remark 6.4.4 The equations (6.31) and (6.33) lead to an interesting insight.
They show that the closer the open right half plane invariant zero is to the
imaginary axis the larger is its contribution to the minimum possible tran-
sient energy J ∗

s f (x0, w0,	,
). There also exists a curious phenomena which
points out a discontinuity. It is clear that the invariant zeros on the imagi-
nary axis do not contribute to J ∗

s f (x0, w0,	,
). However, the open right half
plane invariant zeros close to the imaginary axis can lead to arbitrarily large
transient error.

We consider now discrete-time systems. Following Property 4.4.2 (page
140) of [61], we see that the unique semi-stabilizing and strongly rank min-
imizing solution P̃ of linear matrix inequality (6.10) can be written in the
form,

P̃ = (
−1
s )T

⎛
⎝0 0 0

0 0 0
0 0 P̆s

⎞
⎠
−1

s (6.34)

where the symmetric positive semi-definite matrix P̆s is the solution of the
discrete algebraic Riccati equation,

ĂT
s P̆s Ăs − P̆s + C̆T

s C̆s

− ( ĂT
s P̆s B̆s + C̆T

s D̆s)(B̆T
s P̆s B̆s + D̆T

s D̆s)
−1(B̆T

s P̆s Ăs + D̆T
s C̆s) = 0,

(6.35)
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and where

Ăs =
⎛
⎝ A+

aa L+
abCb L+

adCd

0 Abb LbdCd

Bd E+
da Bd Edb Ad

⎞
⎠ , B̆s =

⎛
⎝B+

a0 0
Bb0 0
Bd0 Bd

⎞
⎠ , (6.36)

C̆s = 
o

⎛
⎝0 0 0

0 0 Cd

0 Cb 0

⎞
⎠ , D̆s = 
o

⎛
⎝Im0 0

0 0
0 0

⎞
⎠ . (6.37)

Remark 6.4.5 Note that (6.34) is an explicit way of describing the fact that

ker P̃ = V⊗(A, B, Cz, Dzu).

The above expression has a direct connection with the solvability of (almost)
disturbance decoupling problems as discussed in Section 13.2.

Again, the matrix P̆s of (6.35) can be given a physical meaning. Let x̆s =
((x+

a )T xT
b xT

d)
T. Consider a linear quadratic control problem for a discrete-

time system �̆sub,

�̆sub :
{

ρ x̆s = Ăs x̆s + B̆sŭs

z = C̆s x̆s + D̆sŭs ,
(6.38)

with a performance measure

J̆sub =
∞∑

i=0

zT(i)z(i) . (6.39)

The infimum of possible performance measure J̆sub over all possible state feed-
back controllers is then given by

J̆ ∗
sub(x̆s(0)) = x̆s(0)T P̆s x̆s(0). (6.40)

Thus the study of J ∗
s f (x0, w0,	,
) for discrete-time systems is reduced to

the study of J̆ ∗
sub(x̆s(0)) in which P̆s is the solution of the algebraic Riccati

equation (6.35) whose dimension is in general smaller than that of the linear
matrix inequality (6.10). In fact, as in the case of continuous-time systems,
the above development leads to the following lemma.

Lemma 6.4.2 For discrete-time systems, consider the optimal output regula-
tion problem for a given x0 and w0 via state feedback, i.e. Problem 6.2.2. Let
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Assumptions A.1, A.2, and A.4 of Section 6.2 hold. Also, assume that the sys-
tem �̄ of (6.19) which is characterized by the quadruple (A, B, Cz, Dzu) is
already in the form of the s.c.b. Then, we have

J ∗
s f (x0, w0,	,
) = J̆ ∗

sub(x̆s(0)).

Again, it is important to recognize that, in view of (6.23), the state xs is a
component of x − 	w, and hence x̆s(0) is a component of x0 − 	w0.

For discrete-time systems, the above lemma clearly points out that the
dynamics given by the subsystem �̆sub is indeed the one that is responsible for
non-zero J ∗

s f (x0, w0,	,
). Subsystem �̆sub has three types of dynamics. The
first type of dynamics is represented by the state x+

a , and it is present only
when the system �̄ given in (6.19) has invariant zeros in C

⊕ (outside the unit
circle). Again, the dynamics represented by x+

a is often called unstable zero
dynamics. The second type of dynamics in �̆sub is represented by the state xb,
and it is present only when �̄ is not right invertible. Finally, the third type of
dynamics in �̆sub is represented by the state xd , and it is present only when �̄

has infinite zeros of order greater than or equal to one.

The above development leads to the following important remarks.

Remark 6.4.6 As we said earlier, the state x+
a is non-existent if the system �̄

given in (6.19) has no invariant zeros in C
⊕ (i.e. it is either minimum phase, or

weakly minimum phase, or weakly non-minimum phase). Similarly, the state
xb is non-existent if �̄ is right invertible. Also, the state xd is non-existent if �̄

has no infinite zeros of order greater than or equal to one. Thus, for discrete-
time systems, P̆s = 0 and hence P̃ = 0 whenever the system �̄ is right
invertible, has no infinite zeros of order greater than or equal to one, and is
of either minimum phase, or weakly minimum phase, or weakly non-minimum
phase. Under these conditions, J ∗

s f (x0, w0,	,
) is indeed identically zero as
already discussed in Theorem 6.4.6.

Remark 6.4.7 (Energy interpretation) In view of Lemma 6.4.2, whenever the
system �̄ given in (6.19) is already in the special coordinate basis, we know
that J ∗

s f (x0, w0,	,
) equals J̆ ∗
sub(x̆s(0)). As before, this gives an interesting

energy interpretation for discrete-time systems as well. If �̄ is right invert-
ible and has no infinite zeros of order greater than or equal to one, one can
interpret J ∗

s f (x0, w0,	,
) as the minimum energy required to stabilize the
unstable zero dynamics of �̄. We would like to stress a profound difference
between continuous- and discrete-time systems. Unlike in the continuous-time
case, for discrete-time systems, in order to have the above interpretation, the
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subsystem �̆ while being right invertible must also have no infinite zeros of
order greater than or equal to one.

6.5 Optimal output regulation via measurement feed-
back

In this section, we study again the optimal output regulation problems posed
in Section 6.2 however via measurement feedback rather than state feedback.
That is, we consider the system �a as given in (6.7) and along with a mea-
surement feedback controller of the form as given in (6.3). Throughout this
section, for simplicity, we assume that Dyu = 0.

In order to study the optimal output regulation problem and similarly con-
strained problems, our philosophy here (as well as in the upcoming chapters)
follows the work of [77]. We first assume that a solution (	,
) of the reg-
ulator equation (6.4) exists. Given (	,
), we formulate an auxiliary system
denoted by �̄.

There exists a 1 − 1 relationship between an internally stabilizing con-
troller �̄C for the auxiliary system �̄ and an internally stabilizing controller
�C for the original system � which achieves output regulation and is asso-
ciated to the particular solution 	 and 
 of the regulator equation. In other
words, for each internally stabilizing controller �̄C for the auxiliary system
�̄, we can formulate a corresponding controller �C for the system � which
achieves internal stability, output regulation, and is associated to 	,
. Con-
versely any controller �C for the system � which achieves internal stability,
output regulation and is associated to 	,
 yields an internally stabilizing
controller �̄C for the auxiliary system �̄.

In fact, we construct �̄ in such a way that a certain transfer function (say,
from r̄ to z̄) of �̄ with an internally stabilizing controller �̄C, is exactly the
same as the transfer function from r to z in �a with a controller �C that cor-
responds to �̄C. Recall that the H2 norm of the closed loop transfer function
from r to z in �a with a controller �C is equal to the transient tracking error
for given initial conditions x0 and w0.

This lets us to transform easily the optimal output regulation problem for
� via measurement feedback to an H2 optimal control problem for �̄ via mea-
surement feedback without any regulation constraint. We follow this philoso-
phy in the upcoming chapters as well where different performance measures
are used.
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Let us consider an auxiliary system defined by

�̄ :
⎧⎨
⎩

ρ x̄ = Āx̄ + B̄ū + Ēr̄
ȳ = C̄y x̄
z̄ = C̄z x̄ + D̄zuū

(6.41)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, Ē =

(
x0 − 	w0

w0

)
C̄z = (

Cz −Dzu

)
, D̄zu = (

0 Dzu

)
, (6.42)

C̄y = (
Cy (Dyw + Cy	)

)
.

The motivation behind considering the above auxiliary system will be evident
in the next chapter. Let us next consider a controller for the above auxiliary
system in the form,

�̄C :
{

ρv̄ = Ācv̄ + B̄c ȳ
ū = C̄cv̄ + D̄c ȳ.

(6.43)

Suppose (	,
) solve the regulator equation (6.4). Then a controller �C for
the original system � induced by �̄C takes the following form,

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

ρv2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Cy	)v1)

(6.44)

where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄c =
(

C̄c,1

C̄c,2

)
and D̄c =

(
D̄c,1

D̄c,2

)
.

To establish the connection between the interconnection of � and �C and
the interconnection of �̄ and �̄C we used the following basis transformation:
x̄1 = x − 	w, x̄2 = v1 + w, ū2 = 
v1 + u, and v̄ = v2, where x̄ and ū are
partitioned in accordance with the partitioning of Ā and B̄,

x̄ =
(

x̄1

x̄2

)
and ū =

(
ū1

ū2

)
.

We now state the following key result.
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Lemma 6.5.1 Consider the given system � as in (6.1) and the exosystem �E

as in (6.2) or equivalently consider �a as given in (6.7). Let Assumptions
A.1, A.2, A.3, and A.4 be satisfied. Also, let a solution (	,
) of the regulator
equation (6.4) be given. Then, there exists a controller of the form �C which,
when applied to � and �E, solves the classical output regulation problem,
and which achieves a closed-loop transfer matrix G from r to z when applied
to �a if and only if the following condition holds:

There exist a controller �̄C of the form (6.43) which internally
stabilizes the auxiliary system �̄ given in (6.41). Moreover, when
such an internally stabilizing controller �̄C is applied to �̄, the
achieved closed-loop transfer matrix from r̄ to z̄ equals G.

Furthermore, given any such controller �̄C for the auxiliary system �̄, the
correspondingly constructed controller �C given in (6.44) internally stabilizes
the given system �, achieves output regulation when applied to (6.1) and
(6.2), and also yields a closed-loop transfer matrix from r to z equal to G.

Proof : The proof of this lemma follows more or less that of Theorem 7.3.1
given in the next chapter.

Remark 6.5.1 It is important to note that in the connection that we obtain
between �C and �̄C that the controller �C is strictly proper if and only if the
controller �̄C of the form (6.43) has the property that

D̄c =
(

D̄c,1

0

)

or, in other words, D̄c,2 = 0. Therefore the problem of minimizing the transient
error over the class of strictly proper controllers can also be solved using the
above lemma but for the auxiliary system we have a slightly nonstandard H2

control problem because of the constraint on its direct feedthrough matrix.

Obviously, for our present purpose, the above lemma transforms the op-
timal output regulation problem for �a (which is a constrained optimization
problem) to an unconstrained optimization problem, namely an H2 optimal
control problem for �̄ where in one seeks a controller to minimize the H2

norm of the closed-loop transfer matrix from r to z̄. In other words, the op-
timal output regulation problem for �a can be examined in detail through a
study of the H2 optimal control problem for �̄.
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Analogous to the case of state feedback, the solvability conditions for
the optimal output regulation problem via measurement feedback will be ex-
pressed shortly in terms of the solutions of certain linear matrix inequalities.
We recall below for both continuous- and discrete-time systems the needed
linear matrix inequalities.

In connection with continuous-time systems, we first introduce two conti-
nuous-time linear matrix inequalities,

F̄(P̄) :=
(

ĀT P̄ + P̄ Ā + C̄T
z C̄z P̄ B̄ + C̄T

z D̄zu

B̄T P̄ + D̄T
zuC̄z D̄T

zu D̄zu

)
� 0, (6.45)

and

Ḡ(Q̄) :=
(

ĀQ̄ + Q̄ ĀT + Ē ĒT Q̄C̄T
y

C̄y Q̄ 0

)
� 0. (6.46)

Again, as shown in [61] and as explained further in Appendix 6.A, whenever
the pair ( Ā, B̄) is stabilizable (or equivalently (A, B) is stabilizable), there ex-
ists a unique semi-stabilizing solution P̄ of the linear matrix inequality given
in (6.45). Similarly, whenever the pair (C̄y, Ā) is detectable (or equivalently
Assumption A.3 is satisfied), there exists a unique semi-stabilizing solution Q̄
of the linear matrix inequality given in (6.46). Moreover, such solutions are
positive semi-definite and are the largest among all symmetric solutions.

In connection with discrete-time systems, we introduce two discrete-time
linear matrix inequalities,

F̄(P̄) :=
(

ĀT P̄ Ā − P̄ + C̄T
z C̄z ĀT P̄ B̄ + C̄T

z D̄zu

B̄T P̄ Ā + D̄T
zuC̄z B̄T P̄ B̄ + D̄T

zu D̄zu

)
� 0, (6.47)

and

Ḡ(Q̄) :=
(

ĀQ̄ ĀT − Q̄ + Ē ĒT ĀQ̄C̄T
y

C̄y Q̄ ĀT C̄y Q̄C̄T
y

)
� 0. (6.48)

Again, as shown in [61] and as explained further in Appendix 6.B, whenever
the pair ( Ā, B̄) is stabilizable (or equivalently (A, B) is stabilizable), there
exists a unique symmetric semi-stabilizing and strongly rank minimizing so-
lution P̄ of the linear matrix inequality given in (6.47). Similarly, whenever
the pair (C̄y, Ā) is detectable (or equivalently Assumption A.3 is satisfied),
there exists a unique symmetric semi-stabilizing and strongly rank minimiz-
ing solution Q̄ of the linear matrix inequality given in (6.48). Moreover, such
solutions P̄ and Q̄ are positive semi-definite, and are the largest among all
such strongly rank minimizing solutions.
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Utilizing the unique symmetric semi-stabilizing solutions P̄ and Q̄ of
(6.45) and (6.46) for continuous-time systems or the unique semi-stabilizing
and strongly rank minimizing solutions P̄ and Q̄ of (6.47) and (6.48) for
discrete-time systems, we can define a pair of matrices C̄P and D̄P and an-
other pair of matrices ĒQ and D̄Q as

(
C̄T

P

D̄T
P

)(
C̄P D̄P

) = F̄(P̄) and

(
ĒQ

D̄Q

)(
ĒT

Q D̄T
Q

) = Ḡ(Q̄). (6.49)

It is worth noting that the optimal and suboptimal regulation problems via
proper or strictly proper measurement feedback as formulated in Problems
6.2.3 and 6.2.5 are in general not solvable. In other words, in general there
does not exist a fixed optimal regulator solving the Problem 6.2.3. Also,
in general there does not exist a sequence of fixed proper (strictly proper)
measurement feedback regulators by selecting a member of which one can
attain a transient performance measure as close as desired to the infimum
J ∗

p (x0, w0,	,
) (J ∗
sp(x0, w0,	,
)) uniformly for all x0 ∈ R

n and w0 ∈ R
s .

Obviously in many cases we do not know the initial conditions and this
is actually a prime reason for using measurement feedback regulators which
in most cases contain an observer to estimate the state. The question is then
which controller should be used since there does not exist a measurement
feedback regulator which is uniformly optimal or close to optimal for all initial
conditions. It seems then reasonable to minimize an average cost. Let ei

(i = 1, . . . , n) and fi (i = 1, . . . , s) be bases of the state spaces of the system
and the exosystem respectively. We can then use the cost function,

J̃ (	,
) =
n∑

i=1

J (ei , 0, �C) +
s∑

j=1

J (0, fi , �C),

where �C is a regulator associated with the solution (	,
) of the regulator
equations. Having defined J̃(	,
), we can define optimal and suboptimal
regulation problems associated with this cost similar to the ones formulated
in Problems 6.2.3 and 6.2.5. We will use J̃ ∗

p (	,
) and J̃ ∗
sp(	,
) for the

infimum of J̃ (	,
) over all proper and strictly proper controllers respectively
which achieve output regulation and are associated with the solutions (	,
)

of the regulator equations.

A first question is whether this cost function J̃ (	,
) depends on the spe-
cific bases we choose for the state spaces of the system and the exosystem. It
turns out that as long as we take orthonormal bases, this cost is independent of
the choice of bases. Actually, if we choose as a basis ei = Q1ẽi (i = 1, . . . , n)
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and fi = Q2 f̃i (i = 1, . . . , s) with ẽi (i = 1, . . . , n) and f̃i (i = 1, . . . , s)
as orthonormal bases, then the matrices Q1 and Q2 play the role of weighting
functions which can be used to incorporate a priori information about the ini-
tial conditions. By making Q1 large in a certain direction, we actually weigh
that direction more heavily in the cost function and this can be used to reflect
that, on the basis of a priori information, this direction is considered more
likely.

Finally note that the classical H2 norm which is normally interpreted as
the trace of the covariance of the output given white noise inputs can also be
interpreted in terms of this average cost. Let G be the transfer function with
realization (A, B, C, 0). Let e1, . . . , em (i = 1, . . . , m) be an orthonormal
bases of the input space. Then we have,

‖G‖2
2 =

m∑
i=1

‖zi‖2
2,

where zi is the output of the system with initial condition Bei and zero input.

6.5.1 Determination of J∗
p , J∗

sp, J̃∗
p , J̃∗

sp

We are now ready to determine the optimal performance for the given ini-
tial conditions J ∗

p (x0, w0,	,
) and J ∗
sp(x0, w0,	,
) as well as the optimal

average performance J̃ ∗
p (	,
) and J̃ ∗

sp(	,
).

For continuous-time systems, the following theorem presents the condi-
tions under which the infimum J ∗

p (x0, w0,	,
) (or J ∗
sp(x0, w0,	,
)) exists

and gives an expression for it.

Theorem 6.5.1 For continuous-time systems, consider the system � as in
(6.1) and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and
A.4 of Section 6.2 hold. Also, let a solution (	,
) of the regulator equation
(6.4) be given. Moreover, let Ā, B̄, Ē, C̄z, D̄zu, and C̄y be given by (6.42).

Let P̄ and Q̄ be the unique symmetric semi-stabilizing solutions of (6.45)
and (6.46) respectively. Moreover, let C̄P, D̄P, ĒQ, and D̄Q be defined as in
(6.49). Then, J ∗

p (x0, w0,	,
) and J ∗
sp(x0, w0,	,
) exist, and are given by

J ∗
p (x0, w0,	,
) = J ∗

sp(x0, w0,	,
)

= Ē T P̄ Ē + trace[C̄P Q̄C̄T
P]

= Ē T P̄ Ē + trace[( ĀT P̄ + P̄ Ā + C̄T
z C̄z)Q̄]

= trace[C̄z Q̄C̄T
z ] + trace[(Q̄ ĀT + ĀQ̄ + Ē Ē T)P̄].

(6.50)
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Proof : It follows from Lemma 6.5.1 when appropriate results from H2 op-
timal control theory are utilized, see [61]. In general, the infimum over the
class of controllers of the form (6.43) with D̄c,2 = 0 (which have a 1 − 1
relationship to strictly proper regulators for �) might obviously be larger than
or equal to the infimum over proper controllers and might be smaller than or
equal to the infimum over strictly proper controllers. However, we note that
the infimum of performance measure for proper and strictly proper controllers
for the auxiliary system are the same in general. This proves the above theo-
rem.

For continuous-time systems, the following theorem presents the condi-
tions under which the infimum for the average cost J̃ ∗

p (	,
) (or J̃ ∗
sp(	,
))

exists and gives an expression for it.

Theorem 6.5.2 For continuous-time systems, consider the system � as in
(6.1) and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and
A.4 of Section 6.2 hold. Also, let a solution (	,
) of the regulator equation
(6.4) be given. Finally, let the basis, with respect to which the average cost is
defined, be given by ei = Q1ẽi (i = 1, . . . , n) and fi = Q2 f̃ i (i = 1, . . . , s)
with ẽi (i = 1, . . . , n) and f̃i (i = 1, . . . , s) as orthonormal bases. Moreover,
let Ā, B̄, C̄z, D̄zu, and C̄y be given by (6.42), but define Ē by

Ē =
(

Q1 − 	Q2

Q2

)
. (6.51)

Let P̄ and Q̄ be the unique symmetric semi-stabilizing solutions of (6.45)
and (6.46) respectively. Moreover, let C̄P, D̄P, ĒQ, and D̄Q be defined as in
(6.49). Then, J̃ ∗

p (	,
) and J̃ ∗
sp(	,
) exist, and are given by

J̃ ∗
p (	,
) = J̃ ∗

sp(	,
)

= Ē T P̄ Ē + trace[C̄P Q̄C̄T
P]

= Ē T P̄ Ē + trace[( ĀT P̄ + P̄ Ā + C̄T
z C̄z)Q̄]

= trace[C̄z Q̄C̄T
z ] + trace[(Q̄ ĀT + ĀQ̄ + Ē Ē T)P̄]. (6.52)

Proof : It follows from Lemma 6.5.1 when appropriate results from H2 op-
timal control theory are utilized, see [61]. For the strictly proper case, the
arguments from the proof of Theorem 6.5.1 also apply in this case.
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In order to present a result similar to the above one for discrete-time sys-
tems, we need to define a matrix R̄∗ by

R̄∗ := (D̄T
P )

†(D̄T
P C̄P Q̄C̄T

y)(D̄T
Q)

† (6.53)

where the generalized inverse (or Moore-Penrose inverse) of a matrix M is
denoted by M†. We can now present, for discrete-time systems, the fol-
lowing theorem which first gives the conditions under which the infimum
J ∗

p (x0, w0,	,
) (or J ∗
sp(x0, w0,	,
)) exists, and then gives an expression

for it.

Theorem 6.5.3 For discrete-time systems, consider the system � as in (6.1)
and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and A.4 of
Section 6.2 hold. Also, let a solution (	,
) of the regulator equation (6.4) be
given. Moreover, let Ā, B̄, Ē, C̄z, D̄zu, and C̄y be given by (6.42).

Let P̄ and Q̄ be the unique semi-stabilizing and strongly rank minimizing
solutions of (6.47) and (6.48) respectively. Moreover, let C̄P, D̄P, ĒQ, and D̄Q

be given by (6.49). Also, let R̄∗ be as in (6.53). Then, J ∗
p (x0, w0,	,
) and

J ∗
sp(x0, w0,	,
) exist, and are given by

J ∗
p (x0, w0,	,
) = Ē T P̄ Ē + trace[C̄P Q̄C̄T

P] − trace[R̄∗(R̄∗)T]
= Ē T P̄ Ē + trace[( ĀT P̄ Ā − P̄ + C̄T

z C̄z)Q̄]
− trace R̄∗(R̄∗)T

= trace[C̄z Q̄C̄T
z ] + trace[( ĀQ̄ ĀT − Q̄ + Ē Ē T)P̄]

− trace R̄∗(R̄∗)T, (6.54)

J ∗
sp(x0, w0,	,
) = Ē T P̄ Ē + trace C̄P Q̄C̄T

P

= Ē T P̄ Ē + trace[( ĀT P̄ Ā − P̄ + C̄T
z C̄z)Q̄]

= trace C̄z Q̄C̄T
z + trace[( ĀQ̄ ĀT − Q̄ + Ē Ē T)P̄].

(6.55)

Proof : It follows from Lemma 6.5.1 when appropriate results from H2 opti-
mal control theory are utilized, see [61]. For the proper case this is immediate.
For the strictly proper case we need to find the infimum over all stabilizing
controllers of the form (6.43) with

D̄c =
(

D̄c,1

D̄c,2

)
=

(
D̄c,1

0

)
.
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Note that Lemma 6.5.4 of [61] gives a lower bound for the achievable H2

norm for a fixed direct feedthrough matrix. For the auxiliary system we need
to look for direct feedthrough matrices with a specific structure but the lower
bound of Lemma 6.5.4 can be shown to be independent of the specific direct
feedthrough matrix (this makes actually use of Lemma 8.4.1 which is pre-
sented later in this book). Using this specific structure the result then follows
directly from the arguments in [61].

Remark 6.5.2 Let us emphasize that, in contrast with the case of continuous-
time systems, for discrete-time systems the optimal performance depends on
whether proper or strictly proper controllers are used.

We note that the expressions for J ∗
p (x0, w0,	,
) and J ∗

sp(x0, w0,	,
)

given in (6.50), (6.54), and (6.55) indeed point out the minimal possible tran-
sient energy one could possibly attain under proper or strictly proper mea-
surement feedback controllers as the case may be. As such they point out a
fundamental limitation or characteristic of the given system � of (6.1) and the
exosystem �E of (6.2).

For discrete-time systems, the following theorem presents the conditions
under which the infimum for the average cost J̃ ∗

p (	,
) (or J̃ ∗
sp(	,
)) exists

and gives an expression for it.

Theorem 6.5.4 For discrete-time systems, consider the system � as in (6.1)
and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and A.4 of
Section 6.2 hold. Also, let a solution (	,
) of the regulator equation (6.4) be
given. Moreover, let Ā, B̄, C̄z, D̄zu, and C̄y be given by (6.42), but define Ē
by (6.51).

Let P̄ and Q̄ be the unique semi-stabilizing and strongly rank minimizing
solutions of (6.47) and (6.48) respectively. Moreover, let C̄P, D̄P, ĒQ, and D̄Q

be defined as in (6.49). Also, let R̄∗ be as in (6.53). Then, J̃ ∗
p (	,
) and

J̃ ∗
sp(	,
) exist, and are given by

J̃ ∗
p (	,
) = Ē T P̄ Ē + trace[C̄P Q̄C̄T

P] − trace[R̄∗(R̄∗)T]
= Ē T P̄ Ē + trace[( ĀT P̄ Ā − P̄ + C̄T

z C̄z)Q̄]
− trace R̄∗(R̄∗)T

= trace[C̄z Q̄C̄T
z ] + trace[( ĀQ̄ ĀT − Q̄ + Ē Ē T)P̄]

− trace R̄∗(R̄∗)T, (6.56)
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J̃ ∗
sp(	,
) = Ē T P̄ Ē + trace C̄P Q̄C̄T

P

= Ē T P̄ Ē + trace[( ĀT P̄ Ā − P̄ + C̄T
z C̄z)Q̄]

= trace C̄z Q̄C̄T
z + trace[( ĀQ̄ ĀT − Q̄ + Ē Ē T)P̄]. (6.57)

Proof : It follows from Lemma 6.5.1 when appropriate results from H2 opti-
mal control theory are utilized, see [61]. For the strictly proper case we need
the same arguments as given in the proof of Theorem 6.5.3.

6.5.2 Solvability conditions

In this subsection we develop the solvability conditions for the optimal and
suboptimal output regulation problems posed in Section 6.2 via measurement
feedback. The proofs in this section for the proper controllers are a conse-
quence of Lemma 6.5.1 when the necessary and sufficient conditions for the
existence of a proper H2 optimal controller for the system �̄ are taken into
consideration (see [61]). Hence we omit the proofs. For the strictly proper
case we have to be a bit more careful because of imposing an additional struc-
ture on its direct feedthrough matrix in finding an H2 optimal controller for
the auxiliary system.

For continuous-time systems, we have the following theorem that deals
with using proper measurement feedback regulators.

Theorem 6.5.5 For continuous-time systems, consider Problem 6.2.2 via pro-
per measurement feedback for � as in (6.1) and the exosystem �E as in (6.2).
Let Assumptions A.1, A.2 , A.3 , and A.4 of Section 6.2 hold. Also, let (	,
)

be any solution of the regulator equation (6.4). Then, the optimal output regu-
lation problem for a given x0 and w0 (i.e. Problem 6.2.2) is solvable via proper
measurement feedback for � if and only if the following holds:

The H2 optimal control problem for �̄ given in (6.41) is solvable
via proper measurement feedback. That is, the following condi-
tions hold:

(i) im ĒQ ⊆ V−( Ā, B̄, C̄P, D̄P) + B ker D̄P,

(ii) ker C̄P ⊇ S−( Ā, ĒQ, C̄y, D̄Q) ∩ C̄−1
y {im D̄Q},

(iii) S−( Ā, ĒQ, C̄y, D̄Q) ⊆ V−( Ā, B̄, C̄P, D̄P),
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where P̄ and Q̄ are respectively the unique semi-stabilizing solu-
tions of the linear matrix inequalities (6.45) and (6.46), and the
matrices C̄P, D̄P, ĒQ, and D̄Q are as in (6.49).

The following theorem is the analog of Theorem 6.5.5, however it consid-
ers the use of strictly proper measurement feedback regulators.

Theorem 6.5.6 For continuous-time systems, consider Problem 6.2.2 via stri-
ctly proper measurement feedback for � as in (6.1) and the exosystem �E

as in (6.2). Let Assumptions A.1, A.2 , A.3 , and A.4 of Section 6.2 hold.
Also, let (	,
) be any solution of the regulator equation (6.4). Then, the
optimal output regulation problem for a given x0 and w0 (i.e. Problem 6.2.2)
is solvable via strictly proper measurement feedback for � if and only if the
following holds:

The H2 optimal control problem for �̄ given in (6.41) is solvable
via strictly proper measurement feedback. That is, the following
conditions hold:

(i) im ĒQ ⊆ V−( Ā, B̄, C̄P, D̄P),

(ii) ker C̄P ⊇ S−( Ā, ĒQ, C̄y, D̄Q),

(iii) AS−( Ā, ĒQ, C̄y, D̄Q) ⊆ V−( Ā, B̄, C̄P, D̄P),

(iv) S−( Ā, ĒQ, C̄y, D̄Q) ⊆ V−( Ā, B̄, C̄P, D̄P),

where P̄ and Q̄ are respectively the unique semi-stabilizing so-
lutions of linear matrix inequalities (6.45) and (6.46), and the
matrices C̄P, D̄P, ĒQ, and D̄Q are as in (6.49).

Proof : We know that we are looking for an H2 optimal controller for the aux-
iliary system with the additional structure that D̄c,2 = 0. Assume we fix the
direct feedthrough matrix D̄c of the controller. Then after a preliminary feed-
back ū = D̄c ȳ + ũ we are looking for an H2 optimal strictly proper controller
from ȳ to ũ. The resulting existence conditions are known from [61]. It is then
straightforward to check that due to the structure of the direct feedthrough
matrix we have D̄P D̄c = 0. But then by a direct verification we obtain that
the existence of an optimal controller is independent of the specific direct
feedthrough matrix we have started with. Therefore, we can equally well
choose D̄c = 0 and find a strictly proper controller for the auxiliary system.



248 Chapter 6: Transient performance in classical regulation

Remark 6.5.3 The conditions for the existence of a proper optimal regulator
for a given x0 and w0 as given in Theorem 6.5.5 are weaker than those for
the existence of a strictly proper optimal regulator for a given x0 and w0 as
given in Theorem 6.5.6. That is, the conditions in Theorem 6.5.5 are implied
by those in Theorem 6.5.6. Thus, it is possible for a system to have a proper
optimal regulator for a given x0 and w0 while not having a strictly proper
optimal regulator.

For discrete-time systems, the following theorem considers the use of
proper measurement feedback regulators.

Theorem 6.5.7 For discrete-time systems, consider Problem 6.2.2 via proper
measurement feedback for � as in (6.1) and the exosystem �E as in (6.2). Let
Assumptions A.1, A.2 , A.3 , and A.4 of Section 6.2 hold. Also, let (	,
) be
any solution of the regulator equation (6.4). Then, the optimal output regula-
tion problem for a given x0 and w0 (i.e. Problem 6.2.2) is solvable via proper
measurement feedback for � if and only if the following holds:

The H2 optimal control problem for �̄ given in (6.41) is solvable
via proper measurement feedback. That is, the following condi-
tions hold:

(i) im[ĒQ + B̄ D̄†
P R̄∗] ⊆ V�( Ā, B̄, C̄P, D̄P) ,

(ii) ker[C̄P − R̄∗ D̄†
QC̄y] ⊇ S�( Ā, ĒQ, C̄y, D̄Q),

(iii) S�( Ā, ĒQ, C̄y, D̄Q) ⊆ V�( Ā, B̄, C̄P, D̄P),

(iv) ( Ā − B̄ D̄†
P R̄∗ D̄†

QC̄y)S
�( Ā, ĒQ, C̄y, D̄Q)

⊆ V�( Ā, B̄, C̄P, D̄P),

where P̄ and Q̄ are respectively the unique semi-stabilizing and
strongly rank minimizing solutions of linear matrix inequalities
(6.47) and (6.48), and the matrices C̄P, D̄P, ĒQ, and D̄Q are as in
(6.49).

Similarly, for discrete-time systems, the following theorem considers us-
ing strictly proper measurement feedback regulators.

Theorem 6.5.8 For discrete-time systems, consider Problem 6.2.2 via strictly
proper measurement feedback for � as in (6.1) and the exosystem �E as in
(6.2). Let Assumptions A.1, A.2 , A.3 , and A.4 of Section 6.2 hold. Also, let
(	,
) be any solution of the regulator equation (6.4). Then, the optimal out-
put regulation problem for a given x0 and w0 (i.e. Problem 6.2.2) is solvable
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via strictly proper measurement feedback for � if and only if the following
holds:

The H2 optimal control problem for �̄ given in (6.41) is solvable
via strictly proper measurement feedback. That is, the following
conditions hold:

(i) im ĒQ ⊆ V�( Ā, B̄, C̄P, D̄P) ,

(ii) ker C̄P ⊇ S�( Ā, ĒQ, C̄y, D̄Q),

(iii) AS�( Ā, ĒQ, C̄y, D̄Q) ⊆ V�( Ā, B̄, C̄P, D̄P),

(iv) S�( Ā, ĒQ, C̄y, D̄Q) ⊆ V�( Ā, B̄, C̄P, D̄P),

where P̄ and Q̄ are respectively the unique semi-stabilizing and
strongly rank minimizing solutions of linear matrix inequalities
(6.47) and (6.48), and the matrices C̄P, D̄P, ĒQ, and D̄Q are as in
(6.49).

Proof : This follows via the same arguments as in the proof of Theorem
6.5.6 and [61]. Note that the direct feedthrough matrix of an H2 optimal con-
troller in discrete-time is normally determined via an optimization as given in
Lemma 6.5.5 of [61] but due to the imposed structure of the direct feedthrough
matrix it can be shown that any feedthrough matrix is optimal with respect to
this optimization.

As studied by various theorems above, optimal output regulation problem
for a given x0 and w0 (i.e. Problem 6.2.2) is solvable provided certain condi-
tions are satisfied by the given system and by the given initial conditions. We
emphasize that in general the optimal output regulation problem (i.e. Prob-
lem 6.2.3) is not solvable via proper or strictly proper measurement feedback
regulators. In other words, in general there does not exists a fixed proper
or strictly proper measurement feedback regulator that attains the opti-
mal performance J ∗

p (x0, w0,	,
) (or J ∗
sp(x0, w0,	,
)) for all x0 and w0

for which Problem 6.2.2 is solvable.

Looking from a different point of view, optimal output regulation that
seeks to achieve exactly the best possible transient performance is perhaps a
rigid requirement. It is natural then to enquire whether a compromise is pos-
sible by relaxing the requirement on the transient performance that is sought.
This leads to the study of suboptimal output regulation problems.

The following theorem shows that, under some natural assumptions, the
suboptimal output regulation problem for a given x0 and w0 is solvable via
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proper or strictly proper measurement feedback for both continuous- and dis-
crete-time systems.

Theorem 6.5.9 For both continuous- and discrete-time systems, consider the
Problem 6.2.4 via proper or strictly proper measurement feedback for � as
in (6.1) and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and
A.4 hold. Also, let (	,
) be any solution of the regulator equation (6.4).
Moreover, let J ∗

p (x0, w0,	,
) and J ∗
sp(x0, w0,	,
) be the corresponding

optimal performance for a given x0 and w0. Then, the suboptimal regula-
tion problem as formulated in Problem 6.2.4 is solvable via proper or strictly
proper measurement feedback for any given x0 ∈ R

n and w0 ∈ R
s .

Obviously the conditions for solvability of controllers which are optimal
with respect to the average cost are also of interest. These results are available
but only amount to changing Ē in the above theorems.

The above Theorems 6.5.5 (continuous-time, proper), 6.5.6 (continuous-
time, strictly proper), 6.5.7 (discrete-time proper), 6.5.8 (discrete-time, strictly
proper), and 6.5.9 (suboptimal) give conditions for the existence of an optimal
output regulator with respect to the initial conditions x0, w0 where Ē is defined
by (6.42). The existence of optimal and suboptimal measurement feedback
regulators with respect to the average cost yields exactly the same solvability
conditions except for the fact that Ē is no longer defined by (6.42) but is given
by

Ē =
(

Q1 − 	Q2

Q2

)

where the bases, with respect to which the average cost is defined, are given by
ei = Q1ẽi (i = 1, . . . , n) and fi = Q2 f̃i (i = 1, . . . , s) with ẽi (i = 1, . . . , n)
and f̃i (i = 1, . . . , s) as orthonormal bases.

6.5.3 Perfect output regulation

As discussed earlier in Subsection 6.4.3, the notion of perfect output regula-
tion consists of two parts, (1) J ∗

p (x0, w0,	,
) = 0 (or J ∗
sp(x0, w0,	,
) =

0) for all x0 ∈ R
n and w0 ∈ R

s , and (2) the existence of a fixed sequence
{�C(ε) | ε > 0 } of regulators by selecting a member of which one can ren-
der the attained performance J (x0, w0, �C(ε)) as small as desired uniformly
for all x0 ∈ R

n and w0 ∈ R
s . In other words, the problem of perfect

output regulation is tantamount to the suboptimal output regulation problem
(Problem 6.2.5) with the additional property that J ∗

p (x0, w0,	,
) = 0 (or
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J ∗
sp(x0, w0,	,
) = 0). In Subsection 6.4.3 we formulated structural con-

ditions on the given system � under which perfect output regulation can be
achieved via state feedback. In this subsection, we revisit the topic of per-
fect output regulation while using measurement feedback regulators instead
of state feedback regulators. Unlike in the case of state feedback, a close ex-
amination of the topic reveals that for a given system � one can almost never
achieve perfect output regulation via measurement feedback regulators.

On the other hand, instead of seeking conditions on the given system �

under which the transient performance measure can be achieved as close to
zero as desired uniformly for all initial conditions x0 ∈ R

n and w0 ∈ R
s ,

one can seek a limited formulation. Namely, for a given system �, one can
seek a set of initial conditions x0 and w0, say Sx0w0 , such that the transient
performance measure J (x0, w0, �C) can be attained as close to zero as desired
uniformly for all initial conditions x0 and w0 in Sx0w0 , i.e. J ∗

p (x0, w0,	,
)

(or J ∗
sp(x0, w0,	,
)) is equal to zero uniformly for all initial conditions x0

and w0 in Sx0w0 .

Lemma 6.5.1 comes to our aid in characterizing the set Sx0w0 as well.
In view of Lemma 6.5.1, the problem of characterizing the set of all initial
conditions x0 and w0 for which J ∗

p (x0, w0,	,
) (or J ∗
sp(x0, w0,	,
)) is

equal to zero is equivalent to characterizing all x0 and w0 for which we can
make the H2 norm of the transfer function from r̄ to z̄ of the auxiliary system
�̄ arbitrarily close to zero.

The problem of making the H2 norm of the transfer function from r̄ to z̄
of the auxiliary system �̄ arbitrary small is nothing else than the so called H2-
ADDPMS (H2 Almost Disturbance Decoupling Problem with Measurement
feedback and Stability) for �̄. In view of (6.42), since one of the coefficient
matrices, namely Ē , that describes �̄ depends on x0 and w0, by studying the
structural conditions under which H2-ADDPMS can be achieved for �̄, one
can characterize the set Sx0w0 .

We have the following result for continuous-time systems when either
proper or strictly proper measurement feedback regulators are used.

Theorem 6.5.10 For continuous-time systems, consider the system � as in
(6.1) and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and
A.4 of Section 6.2 hold. Also, let (	,
) be a given solution of the regulator
equation (6.4). Then, J ∗

p (x0, w0,	,
) and J ∗
sp(x0, w0,	,
) are equal to

zero uniformly for all initial conditions x0 and w0 that satisfy the following
conditions:

(i) im

(
x0 − 	w0

w0

)
⊆ S∗( Ā, B̄, C̄z, D̄zu) + V−0( Ā, B̄, C̄z, D̄zu).
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(ii) V∗( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ∩ S−0( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ⊆ ker C̄z.

(iii) V∗( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ∩ S−0( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0)

⊆ S∗( Ā, B̄, C̄z, D̄zu) + V−0( Ā, B̄, C̄z, D̄zu).

The set Sx0w0 is indeed the set of all x0 and w0 that satisfy the above conditions.

Proof : It follows from Lemma 6.5.1 when appropriate conditions to solve
H2-ADDPMS for �̄ via proper or strictly proper measurement feedback con-
trollers are taken into account, see Theorem 5.9.1 of [61].

An important question arises at this point as to whether there exists a fixed
sequence {�C(ε) | ε > 0 } of regulators by selecting a member of which one
can render the attained performance measure J (x0, w0, �C(ε)) as arbitrarily
small as desired uniformly for all initial conditions x0 and w0 that belong to
the set Sx0w0 characterized in Theorem 6.5.10.

In the following theorem we provide sufficient conditions for the existence
of such a sequence of regulators. To do so, let Ě be such that

im Ě = S∗( Ā, B̄, C̄z, D̄zu) + V−0( Ā, B̄, C̄z, D̄zu). (6.58)

Theorem 6.5.11 For continuous-time systems, consider the system � as in
(6.1) and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and
A.4 of Section 6.2 hold. Also, let (	, 
) be a given solution of the regulator
equation (6.4). Moreover, consider the set Sx0w0 that is characterized in The-
orem 6.5.10. Then, there exists a fixed sequence of proper (or strictly proper)
measurement feedback regulators {�C(ε) | ε > 0 } such that the attained per-
formance measure J (x0, w0, �C(ε)) tends to zero as ε tends to zero uniformly
for all initial conditions x0 and w0 that belong to the set Sx0w0 if the following
conditions hold:

(i) V∗( Ā, Ě, C̄y, 0) ∩ S−0( Ā, Ě, C̄y, 0) ⊆ ker C̄z,

(ii) V∗( Ā, Ě, C̄y, 0) ∩ S−0( Ā, Ě, C̄y, 0)

⊆ S∗( Ā, B̄, C̄z, D̄zu) + V−0( Ā, B̄, C̄z, D̄zu),

where Ě is as defined in (6.58).
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Proof : It is obvious since the conditions given in this theorem (which are
independent of x0 and w0) imply that the conditions given in Theorem 6.5.10
hold for all x0 and w0 that belong to the set Sx0w0 .

The above theorem gives only sufficient conditions; providing conditions
that are both necessary and sufficient is still an open problem.

We now proceed with discrete-time systems. Unlike in continuous-time
systems, we need to consider proper and strictly proper measurement feed-
back regulators separately for discrete-time systems. The following theorem
characterizes the set Sx0w0 when strictly proper measurement feedback regu-
lators are used.

Theorem 6.5.12 For discrete-time systems, consider the system � as in (6.1)
and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and A.4 of
Section 6.2 hold. Also, let (	,
) be a given solution of the regulator equa-
tion (6.4). Then, J ∗

sp(x0, w0,	,
) is equal to zero uniformly for all initial
conditions x0 and w0 that satisfy the following conditions:

(i) im

(
x0 − 	w0

w0

)
⊆ V⊗( Ā, B̄, C̄z, D̄zu).

(ii) S⊗( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ⊆ ker C̄z.

(iii) ĀS⊗( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ⊆ V⊗( Ā, B̄, C̄z, D̄zu).

The set Sx0w0 is indeed the set of all x0 and w0 that satisfy the above conditions.

Proof : It follows from Lemma 6.5.1 when appropriate conditions to solve
H2-ADDPMS for �̄ via strictly proper measurement feedback controllers are
taken into account, see Theorem 6.9.1 of [61].

In the following theorem we provide sufficient conditions for the existence
of such a strictly proper measurement feedback regulator sequence. To do so,
let Ě be defined by

im Ě = V⊗( Ā, B̄, C̄z, D̄zu). (6.59)
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Theorem 6.5.13 For discrete-time systems, consider the system � as in (6.1)
and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and A.4 of
Section 6.2 hold. Also, let (	,
) be a given solution of the regulator equa-
tion (6.4). Moreover, consider the set Sx0w0 that is characterized in Theorem
6.5.12. Then, there exists a fixed sequence of strictly proper measurement
feedback regulators {�C(ε) | ε > 0 } such that the attained performance mea-
sure J (x0, w0, �C(ε)) tends to zero as ε tends to zero uniformly for all initial
conditions x0 and w0 that belong to the set Sx0w0 if the following conditions
hold:

(i) S⊗( Ā, Ě, C̄y, 0) ⊆ ker C̄z,

(ii) ĀS⊗( Ā, Ě , C̄y, 0) ⊆ V⊗( Ā, B̄, C̄z, D̄zu),

where Ě is as defined in (6.59).

Proof : It is obvious since the conditions given in this theorem (which are
independent of x0 and w0) imply that the conditions given in Theorem 6.5.12
hold for all x0 and w0 that belong to the set Sx0w0 .

The above theorem gives only sufficient conditions; providing necessary
and sufficient conditions is still an open problem.

For discrete-time systems, the following theorem characterizes the set
Sx0w0 when proper measurement feedback regulators are used.

Theorem 6.5.14 For discrete-time systems, consider the system � as in (6.1)
and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and A.4
of Section 6.2 hold. Also, let (	,
) be a given solution of the regulator
equation (6.4). Then, J ∗

p (x0, w0,	,
) is equal to zero uniformly for all initial
conditions x0 and w0 that satisfy the following conditions:

(i) im

(
x0 − 	w0

w0

)
⊆ V⊗( Ā, B̄, C̄z, D̄zu) + B̄ ker D̄zu.

(ii) S⊗( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ∩ ker C̄y ⊆ ker C̄z.

(iii) S⊗( Ā,

(
x0 − 	w0

w0

)
, C̄y, 0) ⊆ V⊗( Ā, B̄, C̄z, D̄zu).

The set Sx0w0 is indeed the set of all x0 and w0 that satisfy the above conditions.
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Proof : It follows from Lemma 6.5.1 when appropriate conditions to solve
H2-ADDPMS for �̄ via proper measurement feedback controllers are taken
into account, see Theorem 6.9.2 of [61].

In the following theorem we provide sufficient conditions for the existence
of such a strictly proper measurement feedback regulator sequence. To do so,
let Ě be defined by

im Ě = V⊗( Ā, B̄, C̄z, D̄zu) + B̄ ker D̄zu. (6.60)

Theorem 6.5.15 For discrete-time systems, consider the system � as in (6.1)
and the exosystem �E as in (6.2). Let Assumptions A.1, A.2, A.3, and A.4
of Section 6.2 hold. Also, let (	,
) be a given solution of the regulator
equation (6.4). Moreover, consider the set Sx0w0 that is characterized in The-
orem 6.5.14. Then, there exists a fixed sequence of proper measurement feed-
back regulators {�C(ε) | ε > 0 } such that the attained performance measure
J (x0, w0, �C(ε)) tends to zero as ε tends to zero uniformly for all initial con-
ditions x0 and w0 that belong to the set Sx0w0 if the following conditions hold:

(i) S⊗( Ā, Ě, C̄y, 0) ∩ ker C̄y ⊆ ker C̄z,

(ii) S⊗( Ā, Ě, C̄y, 0) ⊆ V⊗( Ā, B̄, C̄z, D̄zu),

where Ě is as defined in (6.60).

Proof : It is obvious since the conditions given in this theorem (which are
independent of x0 and w0) imply that the conditions given in Theorem 6.5.14
hold for all x0 and w0 that belong to the set Sx0w0 .

The above theorem gives only sufficient conditions; providing necessary
and sufficient conditions is still an open problem.

6.5.4 Construction of a sequence of measurement feedback regu-
lators that achieve perfect output regulation

We now proceed to construct a fixed sequence of proper or strictly proper mea-
surement feedback regulators for all initial conditions x0 and w0 that belong
to the set Sx0w0 .

Step 1: Construct (	,
), a solution of the regulator equation (6.4).
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Step 2: For continuous-time systems construct a matrix Ě satisfying the
equation (6.58). Similarly, for discrete-time systems construct a matrix Ě sat-
isfying the equation (6.59) or (6.60) depending upon whether strictly proper
or proper measurement feedback controllers are used.

Consider the system,

�̄ :
⎧⎨
⎩

ρ x̄ = Āx̄ + B̄ū + Ěr̄
ȳ = C̄y x̄
z̄ = C̄z x̄ + D̄zuū.

(6.61)

Construct a parameterized sequence of H2 suboptimal proper (or strictly pro-
per) measurement feedback controllers for the above system where in the H2

norm of the transfer function from r̄ to z̄ is the performance index. Let such
a sequence be characterized by the sequence of quadruples given by { Āc(ε),
B̄c(ε), C̄c(ε), D̄c(ε), ε > 0}.
Step 3: Utilizing the sequence of quadruples { Āc(ε), B̄c(ε), C̄c(ε), D̄c(ε),
ε > 0}, construct a sequence of controllers {�C(ε), ε > 0} each member of
which is as given in (6.44).

The sequence of proper or strictly proper measurement feedback con-
trollers {�C(ε), ε > 0} constructed above achieves perfect output regulation
for all initial conditions x0 and w0 that belong to the set Sx0w0 .

6.6 Transient performance in structurally stable out-
put regulation

In this section, we would like to study structurally stable output regulation
while taking into account transient performance requirements. It can be seen
from Section 2.8 that such a study is equivalent to achieving output regulation
for an auxiliary system given in (2.42) while taking into account transient
performance requirements.

Consider the case where we additionally want to ensure optimal transient
performance for a particular set of initial conditions for the nominal system.
A problem we encounter here is that the auxiliary system has a totally dif-
ferent exosystem (2.41) and there is not a transparent way to connect initial
conditions of the original exosystem to initial conditions of the exosystem for
the auxiliary system.

A solution for this problem exists and we will briefly outline its main
idea. We first follow the design methodology as described in Section 2.8 and



Control of linear systems with regulation and input constraints 257

construct the auxiliary system (2.42) and the corresponding exosystem (2.41).
Next we consider the following system,

�̃ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̃ = Ā0 x̃ + B̄0ũ + Ēw,0w

y = C̄y,0x̃ + D̄yu,0ũ + D̃yww̃ + D̄yw,0w

e = C̄e,0 x̃ + D̄eu,0ũ + D̃eww̃ + D̄ew,0w

z = C̄z,0x̃ + D̄zu,0ũ + D̃zww̃ + D̄zw,0w

(6.62)

which has two exosystems

ρw̃ = S̃pw̃

and the original exosystem

ρw = Sw

and where

C̄z,0 = Q1/2C̄e,0, D̄zu,0 = Q1/2 D̄eu,0, D̄zw,0 = Q1/2 D̄ew,0,

D̃zw = Q1/2 D̃ew.

Note that, for w̃ = 0, we obtain the original nominal system after the pre-
liminary feedback u = Ny + ũ. Clearly we must therefore achieve output
regulation with respect to w. For structural stability it is necessary that we
obtain output regulation with respect to w̃. Linearity then guarantees that we
must also achieve output regulation with respect to both w̃ and w.

But now it is easy to see that achieving optimal transient performance for
initial conditions x(0) = x0, and w(0) = w0 with a structurally stable output
regulation requirement for the original system is equivalent to achieving op-
timal transient performance for initial conditions x(0) = x0, w̃(0) = 0 and
w(0) = w0 with a standard output regulation requirement for this auxiliary
system. The latter problem can of course be solved by the tools introduced in
this chapter.
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6.A Continuous-time linear matrix inequalities

Our goal here is to introduce briefly continuous-time linear matrix inequalities
and their properties to the extent needed for our purpose. Our presentation
here is an extract of [61] where linear matrix inequalities are dealt with in
detail along with the required proofs for their properties.

We introduce a continuous-time linear matrix inequality in the following
definition.

Definition 6.A.1 Continuous-time linear matrix inequality Let A ∈ R
n×n,

B ∈ R
n×m, Q ∈ R

n×n, R ∈ R
m×m, and S ∈ R

n×m with Q and R being
symmetric. The matrix inequality of the form

L(X) ≥ 0, (6.63)

with unknown X ∈ R
n×n where

L(X) :=
(

Q + AT X + X A X B + S

BT X + ST R

)
,

is called a continuous-time linear matrix inequality (CLMI). Moreover, when
X satisfies (6.63), it is referred to as a solution of the linear matrix inequality.
Note that L(X) ≥ 0 implies that R ≥ 0, i.e. R cannot be indefinite.

We often encounter a linear matrix inequality in which the matrices Q, R,
and S satisfy the positive semi-definite condition, namely(

Q S

ST R

)
� 0. (6.64)

Under the above condition, it follows that there exists matrices C ∈ R
p×n and

D ∈ R
p×m with

(
C D

)
of full rank such that

(
Q S

ST R

)
= (

C D
)T (

C D
)
.

As shown in [61], an important property of a solution X of a linear matrix
inequality with matrices Q, R, and S satisfying the positive semi-definite
condition (6.64) is that XS∗(A, B, C, D) = 0 where the detectable strongly
controllable subspace S∗(A, B, C, D) is as in Definition 1.2.1.
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We denote the set of all real symmetric solutions of the linear matrix in-
equality in (6.63) as �, i.e.

� := {
X ∈ R

n×n | X = X T and L(X) ≥ 0
}
. (6.65)

A relevant set of solutions of a linear matrix inequality in the context of H2

optimal control theory is a set of what are called rank minimizing solutions.
In order to develop a definition for such solutions, we first need to state some
properties of linear matrix inequalities.

To start with we observe that for every X ∈ �, there exists real matrices
CX and DX such that

L(X) = (
CX DX

)T (
CX DX

)
,

and such that
(
CX DX

)
is of full rank. Then we can define a system �X

characterized by the quadruple (A, B, CX, DX). The transfer function of �X is
then given by

HX(s) := CX(s I − A)−1 B + DX.

We have the following lemma.

Lemma 6.A.1 Let X ∈ �. Then we have

normrank HX := ρ(X) = ρ := normrank Ĥ ,

where Ĥ(s) is defined as

Ĥ (s) := (
BT(−s I − AT)−1 I

) (Q S

ST R

)(
(s I − A)−1 B

I

)
.

Remark 6.A.1 It follows from Lemma 6.A.1 that the normal rank of HX(s) is
independent of X for any X ∈ �.

The following lemma provides a lower bound on the rank of L(X) for any
X ∈ �.

Lemma 6.A.2 For any X ∈ �, we have

rank L(X) ≥ ρ

and, moreover, the equality holds if and only if �X is right invertible.
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Now we are ready to define the set of rank minimizing solutions of a linear
matrix inequalities.

Definition 6.A.2 A solution X ∈ � is said to be rank minimizing if

rank L(X) = ρ.

Moreover, we denote the set of all rank minimizing solutions of the linear
matrix inequality (6.63) by �min, i.e.

�min := {
X ∈ � | rank L(X) = ρ

}
. (6.66)

Also, the set of all positive semi-definite rank minimizing solutions of the lin-
ear matrix inequality in (6.63) is defined as �

psd
min,

�psd
min := {

X ∈ �min | X ≥ 0
}
.

Similarly, the set of all positive definite rank minimizing solutions of the linear
matrix inequality (6.63) is denoted by �

pd
min,

�pd
min := {

X ∈ �min | X ≥ 0
}
.

The following lemma says that under a very weak condition that the pair
(A, B) is stabilizable, the set �min is non-empty.

Lemma 6.A.3 Consider a linear matrix inequality as in (6.63) with the matri-
ces Q, R, and S satisfying the positive semi-definite condition (6.64), and the
pair (A, B) being stabilizable. Then there exists at least one rank minimizing
solution to the linear matrix inequality (6.63), i.e. �min is non-empty.

Remark 6.A.2 The condition of Lemma 6.A.3 can be weakened further. In
fact, in [74] it is shown that the result of Lemma 6.A.3 holds under the con-
dition that the uncontrollable eigenvalues of (A, B), say λ1, λ2, · · · , λk , are
such that λi +λ j �= 0 for any i and j . This condition is obviously weaker than
the requirement of (A, B) being stabilizable.

We next have the following additional definition regarding semi-stabiliz-
ing and stabilizing solutions.

Definition 6.A.3 Consider a matrix pencil

N(s, X) :=
(

M(s)

L(X)

)
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where M(s) := (
s I − A −B

)
. Then a solution X ∈ �min is said to be a

semi-stabilizing solution if all the finite zeros of the matrix pencil N(s, X) are
in the closed left half plane, i.e. in C

0 ∪ C
−. Similarly, a solution X ∈ �min

is said to be a stabilizing solution if all the finite zeros of N(s, X) are in the
open left half plane, i.e. in C

−. The set of all semi-stabilizing solutions of a
linear matrix inequality is denoted by �ss

min. Similarly, the set of all stabilizing
solutions of a linear matrix inequality is denoted by �s

min.

Remark 6.A.3 For the case when the matrices Q, R, and S satisfy the pos-
itive semi-definite condition (6.64), and when the matrix D is injective, Defi-
nition 6.A.3 for a semi-stabilizing or a stabilizing solution can be simplified.
That is, X ∈ � is a semi-stabilizing solution if the matrix

A − B(DT D)−1(BT X + DTC) (6.67)

has all its eigenvalues in the closed left-half complex plane C
0∪C

−. Similarly,
X ∈ � is a stabilizing solution if the matrix (6.67) has all its eigenvalues in
the open left-half complex plane C

−.

We now begin to judiciously compile some important properties of the
linear matrix inequality in (6.63).

Property 6.A.1 Consider a linear matrix inequality as in (6.63) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.64), and
the pair (A, B) being stabilizable. Then the following hold:

(i) A real symmetric semi-stabilizing solution, say Xss, if it exists, is larger
than any solution X of the given linear matrix inequality, i.e. Xss ≥ X
for all X ∈ �.

(ii) A real symmetric semi-stabilizing solution Xss, if it exists, is unique, i.e.
�ss

min is at most a singleton set.

(iii) A real symmetric semi-stabilizing solution of it, if it exists, is also posi-
tive semi-definite.

We would like to study next the existence conditions for some specific
types of solutions to a linear matrix inequality. We have the following theo-
rem.

Theorem 6.A.1 Consider a linear matrix inequality as in (6.63) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.64). Then
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there exists a positive semi-definite rank minimizing solution, i.e. �
psd
min is non-

empty, if and only if

X−(A) + 〈A | im B〉 + V∗(A, B, C, D) = R
n,

where, X−(A) is the stable modal subspace of R
n related to A, 〈A | im B〉 is

the controllable subspace of the pair (A, B), and V∗(A, B, C, D) as given in
Definition 1.2.1 represents the weakly unobservable subspace of the system �

characterized by the quadruple (A, B, C, D).

Theorem 6.A.2 Consider a linear matrix inequality as in (6.63) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.64), and
the pair (A, B) being stabilizable. Then, there exists a unique semi-stabilizing
solution of it. Moreover, this solution is positive semi-definite and is larger
than any other symmetric solution of it.

Theorem 6.A.3 Consider a linear matrix inequality as in (6.63) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.64), and
the pair (A, B) being stabilizable. Then X = 0 is a unique positive semi-
definite semi-stabilizing solution of it if and only if the system represented by
(A, B, C, D) is right invertible and has no invariant zeros in the open right-
half plane C

+.

Theorem 6.A.2 guarantees that there exists a unique positive semi-definite
semi-stabilizing solution of a linear matrix inequality whenever the matrices
Q, R, and S satisfy the positive semi-definite condition (6.64), and when the
pair (A, B) is stabilizable. We would like to examine next the continuity of
such a solution with respect to the parameters Q, R, and S. To start with, we
parameterize the matrices Q, R, and S with a scalar parameter ε, and rewrite
the linear matrix inequality (6.63) as

Lε(X ε) :=
(

Qε + AT X ε + X ε A X ε B + Sε

BT X ε + (Sε)T Rε

)
� 0, (6.68)

where the matrices Qε, Rε, and Sε satisfy the positive semi-definite condi-
tion (6.64), and where the pair (A, B) is stabilizable. It follows from The-
orem 6.A.2 that for each ε there exists a unique positive semi-definite semi-
stabilizing solution of the linear matrix inequality (6.68). Let this solution
be denoted by X ε

ss . The following theorem establishes the continuity of the
mapping ε → X ε

ss .
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Theorem 6.A.4 Consider a linear matrix inequality as in (6.68). Let the fol-
lowing hold:

A1. (A, B) is stabilizable.

A2. The matrices Qε, Rε, and Sε satisfy the positive semi-definite condition
(6.64) for each ε ∈ [0, δ] for some δ > 0.

A3. The mapping ε →
(

Qε Sε

(Sε)T Rε

)
is continuous at ε = 0.

A4.
(

Q
ε1 S

ε1

(S
ε1
)T R

ε1

)
�

(
Q

ε2 S
ε2

(S
ε2
)T R

ε2

)
for all 0 � ε1 � ε2 � δ.

Then the unique positive semi-definite semi-stabilizing solution X ε
ss of the lin-

ear matrix inequality (6.68) is continuous at ε = 0. That is, X ε
ss → X0

ss as
ε → 0.

6.B Discrete-time linear matrix inequalities

Our goal here is to introduce briefly discrete-time linear matrix inequalities
and their properties to the extent needed for our purpose. As in the case of
continuous-time linear matrix inequality, only what are called rank minimiz-
ing solutions of linear matrix inequality are of interest to us. However, a subset
of all rank minimizing solutions which we shall refer to as a set of strongly
rank minimizing solutions is the one that is pertinent to H2 optimal control
theory. As such, our focus here is on strongly rank minimizing solutions.

To preserve conceptual thought process, the notations used for several ob-
jects here are the same as those in Section 6.A which discusses continuous-
time linear matrix inequality. However, whenever we refer to a particular re-
sult, we shall distinguish between continuous- and discrete-time linear matrix
inequalities by quoting appropriate definitions or equations.

Our presentation here is again an extract of [61] where linear matrix in-
equalities are dealt with in detail along with the required proofs for their prop-
erties.

We introduce a discrete-time linear matrix inequality in the following def-
inition.

Definition 6.B.1 Discrete-time linear matrix inequality Let A ∈ R
n×n, B ∈

R
n×m, Q ∈ R

n×n, R ∈ R
m×m, and S ∈ R

n×m with Q and R being symmetric.



264 Chapter 6: Transient performance in classical regulation

The matrix inequality of the form

L(X) ≥ 0, (6.69)

with unknown X ∈ R
n×n where

L(X) :=
(

Q + AT X A − X AT X B + S

BT X A + ST BT X B + R

)
,

is called a discrete-time linear matrix inequality (DLMI). Moreover, when X
satisfies (6.69), it is referred to as a solution of the linear matrix inequality.

As in Appendix 6.A, we require often that the matrices Q, R, and S in
(6.69) to satisfy the positive semi-definite condition, namely(

Q S

ST R

)
� 0. (6.70)

Under the above condition, it follows that there exists matrices C ∈ R
p×n and

D ∈ R
p×m with

(
C D

)
of full rank such that(

Q S

ST R

)
= (

C D
)T (

C D
)
.

We denote the set of real symmetric solutions of the linear matrix inequal-
ity in (6.69) as �, i.e.

� := {
X ∈ R

n×n | X = X T and L(X) ≥ 0
}
. (6.71)

As shown in [61], an important property of a solution X of a linear ma-
trix inequality with matrices Q, R, and S satisfying the positive semi-definite
condition (6.70) is that

R∗(A, B, C, D) ⊆ ker X

where the subspace R∗(A, B, C, D) is as in Definition 1.2.3.

We next introduce a certain transfer function Ĥ(z) which plays a strong
role in the study of linear matrix inequalities,

Ĥ (z) := (
BT(−z I − AT)−1 I

) (Q S

ST R

)(
(z I − A)−1 B

I

)
. (6.72)

It turns out that the set of solutions of a linear matrix inequality coincides with
that of an appropriate general discrete-time algebraic Riccati inequality. This
is explored in the following lemma.
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Lemma 6.B.1 Consider a linear matrix inequality as in (6.69) and its solu-
tion set � as in (6.71). Then the solution set � coincides with the set of all real
symmetric solutions of the general discrete-time algebraic Riccati inequality
defined by

BT X B + R ≥ 0, (6.73a)

ker(BT X B + R) ⊆ ker(AT X B + S), (6.73b)

and

AT X A − X − (AT X B + S)(R + BT X B)†(BT X A + ST)+ Q ≥ 0. (6.73c)

As in the case of continuous-time, it turns out that a relevant set of solu-
tions of a discrete-time linear matrix inequality in the context of H2 optimal
control theory is a set of what are called rank minimizing solutions. In order to
develop a definition for such solutions, as in the case of continuous-time, we
first need to state some properties of discrete-time linear matrix inequalities.

To start with we observe that for every X ∈ �, there exists real matrices
CX and DX such that

L(X) = (
CX DX

)T (
CX DX

)
, (6.74)

and such that
(
CX DX

)
is of full rank. Then we can define a linear system

�X characterized by the quadruple (A, B, CX, DX). The transfer function of
�X is then given by

HX(z) := CX(z I − A)−1 B + DX.

We have the following lemma.

Lemma 6.B.2 Let X ∈ �. Then we have

normrank HX := ρ(X) = ρ := normrank Ĥ ,

where Ĥ(z) is as defined in (6.72).

The following lemma provides a lower bound on the rank of L(X) for any
X ∈ �.

Lemma 6.B.3 For any X ∈ �, we have

rank L(X) ≥ ρ

and, moreover, the equality holds if and only if �X is right invertible.
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Now we are ready to define the set of rank minimizing solutions of a linear
matrix inequality.

Definition 6.B.2 A solution X ∈ � is said to be rank minimizing if

rank L(X) = ρ.

Moreover, we denote the set of all rank minimizing solutions of the linear
matrix inequality (6.69) by �min, i.e.

�min := {
X ∈ � | rank L(X) = ρ

}
. (6.75)

We introduce next the notions of semi-stabilizing and stabilizing solutions
of linear matrix inequalities.

Definition 6.B.3 Consider a matrix

N(z, X) :=
(

M(z)

L(X)

)

where M(z) := (
z I − A −B

)
. Then a solution X ∈ �min is said to be a

semi-stabilizing solution if all the finite zeros of the matrix pencil N(z, X)

are inside or on the unit circle, i.e. in C
� ∪ C

�, and if the number of zeros at
infinity of N(z, X) is equal to the rank of L(X). Similarly, a solution X ∈ �min

is said to be a stabilizing solution if all the finite zeros of N(z, X) are inside
the unit circle, i.e. in C

�, and if the number of zeros at infinity of N(z, X)

is equal to the rank of L(X). The set of all semi-stabilizing solutions of a
linear matrix inequality is denoted by �ss

min. Similarly, the set of all stabilizing
solutions of a linear matrix inequality is denoted by �s

min.

A subset of all rank minimizing solutions, which we shall refer to as
strongly rank minimizing solutions, are pertinent to H2 optimal control theory.
We recall below their formal definition.

Definition 6.B.4 A solution X ∈ � is said to be a strongly rank minimizing
solution if

rank L(X) = rank(BT X B + R). (6.76)

Moreover, we denote the set of all strongly rank minimizing solutions of the
linear matrix inequality (6.69) as

Lmin := {
X ∈ � | rank L(X) = rank(BT X B + R)

}
.



Control of linear systems with regulation and input constraints 267

Also, the set of all positive semi-definite strongly rank minimizing solu-
tions of the linear matrix inequality (6.69) is defined as Lpsd

min,

Lpsd
min := { X ∈ Lmin | X ≥ 0} .

Similarly, the set of all positive definite strongly rank minimizing solutions of
the linear matrix inequality (6.69) is defined as Lpd

min,

Lpd
min := { X ∈ Lmin | X > 0} .

The following theorem discusses the conditions under which Lmin is non-
empty.

Theorem 6.B.1 Consider a linear matrix inequality as in (6.69) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.70), and
the pair (A, B) being stabilizable. Then there exists at least one strongly rank
minimizing solution, i.e. Lmin is non-empty.

Now we are ready to say that Lmin ⊆ �min. This is formulated as the
following lemma.

Lemma 6.B.4

Lmin ⊆ �min.

A natural question that arises next is under what conditions Lmin coincides
with �min. This is answered in the next lemma.

Lemma 6.B.5

Lmin = �min

if the matrix pencil⎛
⎜⎝

Q S z−1 I − AT

ST R −BT

z I − A −B 0

⎞
⎟⎠ (6.77)

has no zeros at infinity.
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It turns out that the stabilizing and semi-stabilizing solutions of a linear
matrix inequality are in fact its strongly rank minimizing solutions. The fol-
lowing lemma formalizes this.

Lemma 6.B.6 A semi-stabilizing or a stabilizing solution of a linear matrix
inequalities indeed a strongly rank minimizing solution of it. That is,

�ss
min ⊆ Lmin.

Remark 6.B.1 Definition 6.B.3 can be rewritten as follows. A solution X
of a linear matrix inequality is said to be a stabilizing (respectively, semi-
stabilizing) solution if all the eigenvalues of the matrix

A − B(BT X B + R)†(BT X A + ST)

− B(I − (BT X B + R)†(BT X B + R))F

are inside the unit circle (respectively, inside and/or on the unit circle) for
some suitably chosen matrix F.

As in the case of continuous-time linear matrix inequalities, one can easily
obtain the following property of a discrete-time linear matrix inequality.

Property 6.B.1 Consider a linear matrix inequality as in (6.69) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.70), and
the pair (A, B) being stabilizable. Then the following hold:

(i) A real symmetric semi-stabilizing solution, say Xss, if it exists, is larger
than any solution X of the given, linear matrix inequalities i.e. Xss ≥ X
for all X ∈ �.

(ii) A real symmetric semi-stabilizing solution Xss, if it exists, is unique, i.e.
�ss

min is at most a singleton set.

(iii) A real symmetric semi-stabilizing solution of it, if it exists, is also posi-
tive semi-definite.

Remark 6.B.2 It is shown in [74] that a semi-stabilizing solution of a linear
matrix inequality (6.69), if it exists, is a stabilizing solution if and only if the
matrix pencil⎛

⎝ Q S z−1 I − AT

ST R −BT

z I − A −B 0

⎞
⎠

has the full rank for all z on the unit circle C
�.
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We study next the existence conditions for some specific types of solutions
to a linear matrix inequality. We have the following theorems.

Theorem 6.B.2 Consider a linear matrix inequality as in (6.69) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.70), and
the pair (A, B) being stabilizable. Also, assume that the system represented
by (A, B, C, D) has no invariant zeros on the unit circle C

�. Then the given
linear matrix inequality has a unique stabilizing solution. Moreover, this so-
lution is positive semi-definite and is the largest among all the real symmetric
solutions of it.

Theorem 6.B.3 Consider a linear matrix inequality as in (6.69) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.70), and
the pair (A, B) being stabilizable. Then there exists a unique semi-stabilizing
solution of it. Moreover, this solution is positive semi-definite and is the largest
among all strongly rank minimizing solutions.

Theorem 6.B.4 Consider a linear matrix inequality as in (6.69) with the ma-
trices Q, R, and S satisfying the positive semi-definite condition (6.70), and
the pair (A, B) being stabilizable. Then X = 0 is a unique positive semi-
definite semi-stabilizing solution of it if and only if the system represented by
(A, B, C, D) is right invertible, has no invariant zeros in C

⊕, and has no
infinite zeros of order greater than or equal to one.

Theorem 6.B.3 guarantees that there exists a unique semi-stabilizing so-
lution of a linear matrix inequality whenever the matrices Q, R, and S satisfy
the positive semi-definite condition (6.70), and when the pair (A, B) is stabi-
lizable. We now examine the continuity of such a solution with respect to the
parameters Q, R, and S. To start with, we parameterize the matrices Q, R,
and S with a scalar parameter ε, and rewrite the linear matrix inequality (6.69)
as

Lε(X ε) :=
(

Qε + AT X ε A − X ε AT X ε B + Sε

BT X ε A + (Sε)T BT X ε B + Rε

)
≥ 0, (6.78)

where the matrices Qε, Rε, and Sε satisfy the positive semi-definite condition
(6.70), and where the pair (A, B) is stabilizable. It follows from Theorem
6.B.3 that for each ε there exists a unique semi-stabilizing solution of the
linear matrix inequality (6.78). Let this solution be denoted by X ε

ss . The
following theorem establishes the continuity of the mapping ε → X ε

ss .
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Theorem 6.B.5 Consider a linear matrix inequality as in (6.78). Let the fol-
lowing hold:

A1. (A, B) is stabilizable.

A2. The matrices Qε, Rε, and Sε satisfy the positive semi-definite condition
(6.70) for each ε ∈ [0, δ] for some δ > 0.

A3. The mapping ε →
(

Qε Sε

(Sε)T Rε

)
is continuous at ε = 0.

A4.
(

Q
ε1 S

ε1

(S
ε1
)T R

ε1

)
≤

(
Q

ε2 S
ε2

(S
ε2
)T R

ε2

)
for all 0 ≤ ε1 ≤ ε2 ≤ δ.

Then the unique semi-stabilizing solution X ε
ss of the linear matrix inequality

(6.78) is continuous at ε = 0. That is, X ε
ss → X0

ss as ε → 0.



Chapter 7

Achieving a desired
performance with an output
regulation constraint

7.1 Introduction

So far we have studied the output regulation problem which seeks to find
a controller that internally stabilizes a given plant or system while asymp-
totically tracking a reference signal even in the presence of persistent dis-
turbances. In the last chapter, we considered an additional performance re-
quirement of optimizing the transient performance. In this chapter we explore
output regulation with a more general performance constraint.

It is common in modern control theory to formulate the design of appro-
priate controllers that achieve a desired performance as optimization prob-
lems. In an analytical design of control systems, certain given specifications
are at first transformed into a performance criterion, and then control laws are
sought which would achieve a desired performance criterion. Typically, per-
formance is measured by the H2 or H∞ norm of a chosen transfer function
matrix although any other norm such as the L1 norm could be used. When the
performance is measured by, say the H2 or H∞ norm, one casts the problem
of finding an appropriate controller as an H2 or H∞ optimal control problem.

Our focus in this chapter is to study here a multi-objective problem where
we seek to find a controller that results in a desired performance as indicated
by a certain closed-loop transfer function matrix (or its characteristics such as
H2, H∞ or L1 norm) while simultaneously achieving output regulation. Our
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goal is to establish the necessary and sufficient conditions under which the
multi-objective problem we pose admits a solution, and then provide a ve-
hicle for designing suitable controllers that solve such a problem. Since the
multi-objective problem we pose has a performance requirement as well as
the output regulation constraint, such a problem when looked at it directly
turns out to be a constrained optimization problem, and as such it is diffi-
cult to solve it in a straightforward manner. Our technique to solve such a
problem is somewhat indirect. Our method basically amounts to transforming
the constrained optimization problem for a given system to an unconstrained
optimization problem, however, for a certain auxiliary system which is to be
explicitly constructed. The auxiliary system is obtained by adding to the plant
dynamics certain other dynamics which are directly related to the internal
model principle.

In this chapter we do not consider explicitly any specific performance
measure. Our development here, for both continuous- and discrete-time sys-
tems, is general and it simply concentrates on transforming the constrained
optimization problem for a given system to an unconstrained optimization
problem for the auxiliary system in such a way that the closed-loop transfer
function matrix is the same for both the constrained and the unconstrained
optimization problems. In order to measure performance, one can use any
norm of the closed-loop transfer function matrix. In the subsequent chapters,
we revisit the problem while using the H2 or H∞ norm measures.

We would like to say next that the multi-objective problem of achiev-
ing a desired performance along with the output regulation constraint can be
strengthened further by requiring structurally stable output regulation. As we
discussed in Section 2.8, structurally stable output regulation is a well known
classical concept that requires output regulation to be maintained even in the
presence of arbitrarily small perturbation of the data from its nominal value of
the given plant (but not of the exosystem). Requiring structurally stable output
regulation does not add any complexity as it can be reduced to the classical
problem of output regulation. As such our main focus in this chapter is only
on the problem of achieving a desired closed-loop transfer function along with
output regulation.

This chapter is based on the recent research work of authors [77].



Control of linear systems with regulation and input constraints 273

7.2 Problem formulation and assumptions

We start with a linear system with state space realization,

� :

⎧⎪⎪⎨
⎪⎪⎩

ρx = Ax + Bu + Eww + Edd
e = Cex + Deuu + Deww

z = Czx + Dzuu + Dzdd
y = Cyx + Dyuu + Dyww + Dydd,

(7.1)

where, as usual, ρ denotes the time derivative, ρx(t) = dx
dt (t), for continuous-

time systems, and the shift, (ρx)(k) = x(k + 1), for discrete-time systems.
In the above representation, � describes the plant with state x ∈ R

n, control
input u ∈ R

m , measured output y ∈ R
p, tracking error e ∈ R

q , and the
controlled variable (for performance requirement) z ∈ R

�. The exogenous
disturbance input w ∈ R

s is generated by an exosystem �E with state space
realization,

�E : ρw = Sw. (7.2)

Finally, the variable d denotes an external disturbance. Graphically, the given
plant and the exosystem are depicted in Figure 7.1.

�

��C

�

�

� �

�

�E

�

w

d

u y

z

e

Figure 7.1: Performance with output regulation

As in previous chapters, in general, we seek measurement feedback con-
trollers which are of the form,

�C :
{

ρv = Acv + Bc y,

u = Ccv + Dc y.
(7.3)
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The closed-loop system consisting of the given system � and the controller
�C is denoted by � × �C. Also, the transfer matrix from d to z of � × �C is
denoted by Td,z(� × �C).

The specific multi-objective problem which we shall refer to as the prob-
lem of performance with output regulation constraint is stated below.

Problem 7.2.1 (Problem of achieving a desired performance with output
regulation constraint) Consider the system � and the exosystem �E as given
in (7.1) and (7.2). Find, if possible, a controller �C of the form (7.3) such that
the following conditions hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C is internally stable.

(ii) (Performance Measure) A desired performance measure based on the
transfer matrix Td,z(� × �C) is obtained.

(iii) (Output Regulation) For any d ∈ L2 (continuous-time) or d ∈ �2

(discrete-time), and for all x(0) ∈ R
n and w(0) ∈ R

s , the solution
of the closed-loop system � × �C satisfies

lim
t→∞ e(t) = 0.

Remark 7.2.1 The part (iii) of the above problem formulation is equivalent
to the following: In the absence of external signal d, i.e. when d = 0, �C

achieves output regulation for �.

The above statement of the problem of achieving a desired performance
with output regulation constraint is intentionally general. No specific perfor-
mance measure is prescribed. Any performance measure based on the trans-
fer matrix Td,z(� × �C) can be used. As we said earlier, in this chapter, we
focus our attention in getting a desired matrix for Td,z(� × �C). However,
in subsequent chapters, our focus will be mainly on H2 or H∞ performance
measures. That is, one of the desired performance objectives could be to at-
tain ‖Td,z(� × �C)‖2 equal to the infimum of such norms. This leads to the
H2 performance measure. Another desired performance objective could be to
attain ‖Td,z(� × �C)‖∞ at most a specified value γ , i.e. to achieve an H∞
γ -suboptimal performance. This leads to the H∞ performance measure. We
note that when the performance measure is removed, the above problem of
achieving a desired performance with output regulation constraint is simply
the output regulation problem which was our main focus in previous chapters.
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Note that the direct feedthrough matrix Ded from d to e and the direct
feedthrough matrix Dzw from w to z are zero because they are irrelevant in
this problem. We only consider the effect of w on e and not on z. Similarly,
we only consider the effect of d on z and not on e.

Our objectives in this chapter are two fold, the first is to find the necessary
and sufficient conditions under which the above posed problem can be solved.
The second and our main objective in this chapter is to transform the above
posed problem to another problem of achieving a desired performance without
having any output regulation constraint.

With regards to the first objective, we make the following assumptions.
Later on we will show how the posed problem can be solved under these
assumptions.

A.1. (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable for continuous-time systems and
anti-Schur-stable for discrete-time systems.

A.3.
((

Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

A.4. There exist 	 and 
 solving the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(7.4)

Note that these assumptions have been defined earlier, for instance on page
215.

Let us briefly comment why the above assumptions are necessary to solve
the problem we posed. From Chapter 2, we know that Assumptions A.1, A.3a,
and A.3b (defined on page 19) are necessary for achieving output regulation.
If Assumption A.3 is not satisfied, but only the necessary condition Assump-
tions A.3a, A.3b are satisfied, then a reduction technique, discussed in Chapter
2, can be used to reduce a given output regulation problem that does not sat-
isfy A.3 to another output regulation problem that does satisfy A.3. Note that
this applies to both continuous- and discrete-time systems having detectability
and stabilizability with respect to the negative half plane or the unit disc. As
explained in Chapter 2, Assumption A.2 is often made because, in the absence
of it, output regulation is a mere consequence of internal stabilization. Also,
from Chapter 2, we know that when Assumptions A.1, A.2, and A.3 hold,
Assumption A.4 is a necessary and sufficient condition for the existence of a
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solution to the output regulation problem. Thus, each one of the Assumptions
A.1, A.2, A.3, and A.4 is obviously necessary to solve any output regulation
problem, and thus the problem of achieving a desired performance with output
regulation constraint.

Note that in Chapter 6, where we optimized transient performance, we
basically considered a configuration which is very close to the configuration
as illustrated in Figure 7.1 on page 273. The main difference is that we had
an external signal (which was called r) which effects both the system and
the exosystem as illustrated in Figure 7.2. In Chapter 6 it was then shown that
minimizing the H2 norm from r to z is equivalent to optimal output regulation.
This shows that the basic setup of this chapter is closely related to a more

�
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� � �
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�
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e

Figure 7.2: Performance with transient performance

specific problem of output regulation with optimal transient performance.

In the case when the regulator equation (7.4) has a non-unique solution
for (	, 
), for simplicity of presentation, we assume throughout the chapter
that a solution (	, 
) of (7.4) has been chosen, and all our development here
builds on such a solution.

7.3 Reduction of a constrained optimal control prob-
lem to an unconstrained optimal control problem

As we stated earlier, basically our goal in this chapter is to study how to
achieve performance under the output regulation constraint. One normally
solves an optimization problem in order to achieve as much performance as
possible. Thus, the problem at hand is obviously a constrained optimization
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problem which is known to be complex and hard to deal with directly. Our ob-
jective in this section is to solve such a constrained optimization problem for
the given system by transforming it to an unconstrained optimization problem
for a certain auxiliary system.

To do so, we first formulate the auxiliary system denoted by �̄. For each
controller �̄C for the auxiliary system, we formulate a corresponding con-
troller �C for the given system �, and in so doing we generate a class of
controllers for the given system. We note that a controller for �̄ can be re-
lated to a controller for � and vice versa. Then, we develop our main result.
It states that a certain transfer function (say, from d̄ to z̄) of the auxiliary sys-
tem with an internally stabilizing controller �̄C, is exactly the same as the
transfer function from d to z in the given system with a controller �C that cor-
responds to �̄C. Also, such a �C internally stabilizes �, and is such that the
error e tends to zero asymptotically. Thus, we basically transform the problem
of achieving a desired performance with output regulation constraint for the
given system to a similar one for the auxiliary system however without any
output regulation constraint. This transformation is valid whatever may be
the chosen performance measure as long as it is based on the transfer matrix
Td,z(� × �C) from d to z.

Before we proceed further, let us recall from Section 2.6 and Theorem
2.6.1 what the so-called internal model principle says: a controller that a-
chieves output regulation (for d = 0) must contain a (partial) copy of the
exosystem. A careful examination of the internal model principle guides us
to construct the following auxiliary system �̄, its controller �̄C, and a corre-
sponding controller �C for the given system �. Consider the auxiliary system
�̄ defined by

�̄ :
⎧⎨
⎩

ρ x̄ = Āx̄ + B̄ū + Ēd d̄
z̄ = C̄z x̄ + D̄zuū + Dzdd̄
ȳ = C̄y x̄ + D̄yuū + Dydd̄,

(7.5)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, Ēd =

(
Ed

0

)
, (7.6a)

C̄z = (
Cz −Dzu


)
, D̄zu = (

0 Dzu

)
, (7.6b)

C̄y = (
Cy (Dyw + Cy	)

)
, D̄yu = (

0 Dyu

)
. (7.6c)

We note that the auxiliary system �̄ is constructed from the data of the given
system � and the exosystem �E respectively as in (7.1) and (7.2), and the
matrices 	 and 
 that solve the regulator equation (7.4).
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It turns out that two subsystems of the above auxiliary system �̄ have the
same zeros as two other subsystems of the given system � have. This property
is needed in the subsequent chapters.

We have the following lemma.

Lemma 7.3.1

• The zeros of the system characterized by ( Ā, B̄, C̄z, D̄zu) are those of
the system characterized by (A, B, Cz, Dzu). This does not depend on
the eigenvalues of S.

• The zeros of the system characterized by ( Ā, Ēd , C̄y, Dyd) are those
of the system characterized by (A, Ed , Cy, Dyd) plus a subset of the
eigenvalues of S.

Proof : This follows directly from the definition of invariant zeros as points
were Rosenbrock’s system matrix loses rank.

We will next consider for �̄ a general class of measurement feedback
controllers with a state space representation ( Āc, B̄c, C̄c, D̄c). Consider a con-
troller �̄C given by

�̄C :
{

ρv̄ = Ācv̄ + B̄c ȳ
ū = C̄cv̄ + D̄c ȳ.

(7.7)

Next, for any measurement feedback controller �̄C that is constructed for
the auxiliary system �̄, we can define a corresponding controller �C for the
given system �. Besides being parameterized in the parameters Āc, B̄c, C̄c,
and D̄c as in the case of �̄C, the controller �C depends on the data of the given
system � and the exosystem �E as well as the matrices 	 and 
 that solve
the regulator equation (7.4). The controller �C is given by

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Dyu
 + Cy	)v1)

ρv2 = Ācv2 + B̄c(y + (Dyw + Dyu
 + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Dyu
 + Cy	)v1),

(7.8)

where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄c =
(

C̄c,1

C̄c,2

)
, and D̄c =

(
D̄c,1

D̄c,2

)
.
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In order to understand the motivations in introducing the auxiliary system
(7.5), consider the following intermediate auxiliary system,

�̄a :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ x̄ = Āx̄ + B̄ū + Ēdd
ρw = Sw

z = C̄z x̄ + D̄zww + D̄zuū + Dzdd
e = C̄e x̄ + D̄euū
ȳ = C̄y x̄ + D̄yuū + Dydd,

(7.9)

where

C̄e = (
Ce −Deu


)
, D̄zw = Cz	 + Dzu
, D̄eu = (

0 Deu

)
.

(7.10)

It is then immediate to check that the interconnection of � and �C is then
equal to the interconnection of �̄C and �̄a . This can be done by observing the
following relationships between different variables,

x̄1 = x − 	w, x̄2 = v1 + w, ū2 = u + 
v1, and v̄ = v2 (7.11)

where x̄1, x̄2, ū1 and ū2 are obtained by partitioning x̄ and ū in conformity
with the partitioning of Ā, B̄, and Ēd ,

x̄ =
(

x̄1

x̄2

)
, and ū =

(
ū1

ū2

)
.

Next, if we look at the structure of �̄a then it is obvious that w does not effect
either ȳ or e. Therefore, no matter what controller from ȳ to ū we apply to
this system, w does not effect the error signal e. Obviously w does effect the
signal z. However, our objective is to minimize the effect of w on e (which is
automatically achieved) while our performance objective is not related to the
effect of w on z but only the effect of d on z. Therefore, we can equally well
omit w and its dynamics. We then obtain the system �̄. Hence our objective
becomes to find a controller �̄C for the system �̄ which internally stabilizes
and achieves a desired performance for the transfer matrix from d̄ to z̄. This is
an unconstrained performance objective where we do not have to worry about
the output regulation constraint for the original system.

Next, we consider the converse question. We have seen that every sta-
bilizing controller �̄C for the auxiliary system �̄ which yields a closed loop
transfer matrix G from d̄ to z̄, generates a controller �C for the original sys-
tem which internally stabilizes � (omitting as usual the unstable dynamics
of w), achieves output regulation, and achieves the transfer matrix G from d
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to z. This class of controllers that achieves output regulation for the original
system might be limited. Perhaps, there are other controllers which achieve
output regulation and a better performance from d to z but which cannot be
generated via a stabilizing controller for the auxiliary system. The following
theorem is a key to our development and shows the converse. Namely, any
controller �C which achieves output regulation for the system and a transfer
matrix G from d to z generates a stabilizing controller �̄C for the auxiliary
system �̄ with the transfer matrix G from d̄ to z̄. This result strongly depends
on the internal model principle as derived in Section 2.6.

Theorem 7.3.1 Consider the given system � as in (7.1), and the exosystem
�E as in (7.2). Let Assumptions A.1, A.2, and A.3 hold. Also, let 	 and 
 be a
solution of the regulator equation (7.4). Then, there exists a controller of the
form

ρv = Acv + Bc y
u = Ccv + Dc y

(7.12)

which, when applied to � and �E of (7.1) and (7.2), solves the output regula-
tion problem, and achieves a closed-loop transfer matrix G from d to z if and
only if the following condition holds:

There exists a finite dimensional controller �̄C of the form (7.7)
which internally stabilizes the auxiliary system �̄ given in (7.5).
Moreover, when such an internally stabilizing controller �̄C is
applied to �̄, the achieved closed-loop transfer matrix from d̄ to
z̄ equals G.

Furthermore, given any such controller �̄C for the auxiliary system �̄, the
correspondingly constructed controller �C given in (7.8) internally stabilizes
the given system �, achieves output regulation when applied to (7.1) and
(7.2), and also yields a closed-loop transfer matrix from d to z equal to G.

Remark 7.3.1 Note that there does not exist a 1 − 1 relationship between
strictly proper stabilizing controllers for the auxiliary system �̄ and strictly
proper controllers that achieve output regulation for the system �. Instead
there exists a 1−1 relationship between strictly proper controllers that achieve
output regulation for the system � and proper stabilizing controllers for the
auxiliary system �̄ whose direct feedthrough matrix satisfies the structural
constraint,

D̄c =
(

D̄c,1

0

)
.
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Proof : For ease of exposition we prove this result only for the case Dyu = 0.

Suppose that we have a controller of the form (7.12) which when applied
to � achieves output regulation as well as a transfer matrix from d to z equal
to certain G. Also, as already noted in the proof of Theorem 2.6.1, there exist
	 and � satisfying (2.17), that is,

	S = A	 + Ew + B Dc(Cy	 + Dyw) + BCc�, (7.13)

�S = Ac� + Bc(Cy	 + Dyw), (7.14)

0 = Ce	 + Dew + Deu Dc(Cy	 + Dyw) + DeuCc�. (7.15)

In what follows, we first claim that there always exists a controller which
when applied to � solves the output regulation problem, and achieves the
transfer matrix from d to z equal to G, and furthermore the corresponding �

is injective. To see this, given the results of Theorem 2.6.1, we know that in a
suitable basis we have

S =
(

S1 S12

0 S22

)
, V = im

(
I
0

)
, � =

(−I �12

0 �22

)
,

Ac =
(

S1 Ac,12

0 Ac,22

)
, Bc =

(
Bc,1

Bc,2

)
, Cc = (

Cc,1 Cc,2
)
,

Dyw = (−Cy	1 Dyw2
)
, 
 = (


1 
2
)
, 	 = (

	1 	2
)
,

such that the pair (Cy	2 + Dy2, S22) is observable. Choose Bc,3 such that

Ac,33 = S22 − Bc,3(Cy	2 + Dy2)

is Hurwitz-stable for continuous-time systems and Schur-stable for discrete-
time systems. Then the controller characterized by the matrices,

Ãc =
⎛
⎝S1 Ac,12 0

0 Ac,22 0
0 0 Ac,33

⎞
⎠ , B̃c =

⎛
⎝Bc,1

Bc,2

Bc,3

⎞
⎠ ,

C̃c = (
Cc,1 Cc,2 0

)
, D̃c = Dc,

yields the same closed-loop system from d to z, and solves the output regula-
tion problem. On the other hand for this controller, (7.13), (7.14), and (7.15)
are satisfied with the same 	 but the following �,

� =
⎛
⎝−I �12

0 �22

0 I

⎞
⎠ .
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Obviously this new � is injective.

If � is injective then in a suitable basis we can guarantee that � =(−I 0
)T

. In this new basis the controller takes a special form,

Ac =
(

S + Bc,1(Cy	 + Dyw) Ac,12

Bc,2(Cy	 + Dyw) Ac,22

)
, Bc =

(
Bc,1

Bc,2

)
,

Cc = (−
 + Dc(Cy	 + Dyw) Cc,2
)
,

while Dc remains the same as before. It is then obvious that this controller
applied to (7.1) yields the same closed loop dynamics as the controller �̄C of
(7.7) when applied to the auxiliary system �̄a of (7.5) provided Āc = Ac,22,
B̄c = Bc,2, C̄c,1 = Ac,12, C̄c,2 = Cc,2, D̄c,1 = Bc,1, and D̄c,2 = Dc and we
substitute the relations given in (7.11).

The controller �C internally stabilizes � and hence the only unstable dy-
namics in the interconnection of �C and � is the dynamics of the exosystem.
But then also the only unstable dynamics in the interconnection of �̄C and �̄a

is the dynamics of the exosystem. Obviously, the interconnection of �̄C and
�̄a achieves output regulation since for d = 0 we have that e(t) → 0 as t → 0
since the unstable dynamics do not affect the error signal e and the stable dy-
namics obviously converges to 0. Suppose we omit this unstable dynamics
of the exosystem from the interconnection of �̄C and �̄a. We then obtain the
same dynamics as the interconnection of �̄C and �̄a which must therefore be
internally stable. Finally if we look at the transfer matrix from d to z in the
interconnection of �C and � then this is the same as the transfer matrix from
d to z in the interconnection of �̄C and �̄a. But this transfer matrix obviously
is independent of any initial conditions and therefore we can without loss of
generality set w(0) = 0 and hence w = 0. But then the the transfer matrix
from d to z in the interconnection of �̄C and �̄a is clearly equal to the transfer
matrix from d̄ to z̄ in the interconnection of �̄C and �̄.

We will now consider two special cases of measurement that is available
for feedback. The first case corresponds to state feedback where the state x
of � and the state w of �E are both available for feedback, and the second
corresponds to full information feedback where states x , w as well as the dis-
turbance d are available for feedback. For these cases, the auxiliary system
�̄ simplifies and has the same dimension n as that of the given system �.
Also, one can use only static feedback to solve the posed problems. We will
consider each of them separately.

State feedback case:
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As said above, in this case, we assume that both the states x and w are
available for feedback, i.e. in the notation of equations (7.1) and (7.2), we
assume that,

y =
(

x
w

)
, Cy =

(
I
0

)
, Dyw =

(
0
I

)
, and Dyd = 0.

For this case, the construction of the auxiliary system �̄ can be simplified.
Consider the simplified auxiliary system �̄ given by

�̄ :
⎧⎨
⎩

ρ x̄ = Ax̄ + Edd + Bū
z̄ = Cz x̄ + Dzdd + Dzuū
ȳ = x̄ .

(7.16)

For �̄ given in (7.16), we consider a general class of static state feedback
controllers given by

�̄C : ū = F̄ x̄ . (7.17)

For any static state feedback controller �̄C of (7.17) that is constructed for
the auxiliary system �̄ of (7.16), we can define a corresponding controller �C

for the given system �. Besides being parameterized in F̄ , the controller �C

depends on the matrices 	 and 
 that solve the regulator equation (7.4), and
it is given by

�C : u = F̄(x − 	w) + 
w. (7.18)

We have the following theorem.

Theorem 7.3.2 Consider the given system � as in (7.1), and the exosystem
�E as in (7.2). Let Assumptions A.1 and A.2 hold. Also, let 	 and 
 be a
solution of the regulator equation (7.4). Then, there exists a static feedback
controller of the form u = Fx x + Gww, which, when applied to � and �E of
(7.1) and (7.2), solves the output regulation problem, and achieves a closed-
loop transfer matrix G from d to z if and only if the following condition holds:

There exists a static feedback controller �̄C of the form (7.17)
which internally stabilizes the auxiliary system �̄ given in (7.16).
Moreover, when such an internally stabilizing controller �̄C is
applied to �̄, the achieved closed-loop transfer matrix from d̄ to
z̄ equals G.
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Furthermore, given any such controller �̄C for �̄, the correspondingly con-
structed controller �C given in (7.18) internally stabilizes the given system �,
achieves output regulation when applied to (7.1) and (7.2), and also yields a
closed-loop transfer matrix from d to z equal to G.

Proof : It follows along the same lines as the proof of Theorem 7.3.1.

We will now consider the other special case.

Full information feedback:

In this case we assume not only both the states x and w are available for
feedback, but also the disturbance d is available for feedback. That is, we
assume that

y =
⎛
⎝x

w

d

⎞
⎠ , Cy =

⎛
⎝I

0
0

⎞
⎠ , Dyw =

⎛
⎝0

I
0

⎞
⎠ , and Dyd =

⎛
⎝0

0
I

⎞
⎠ .

For this case, the construction of the auxiliary system �̄ can be simplified as

�̄ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̄ = Ax̄ + Edd + Bū
z̄ = Cz x̄ + Dzdd + Dzuū

ȳ =
(

x̄
d

)
.

(7.19)

For �̄ given in (7.19), we consider a general class of static state feedback
controllers given by

�̄C : {
ū = F̄ x̄ + Ḡd. (7.20)

For any static state feedback controller �̄C of (7.20) that is constructed for the
auxiliary system �̄ of (7.19), we can define a corresponding controller �C for
the given system �. Besides being parameterized in F̄ and Ḡ, the controller
�C depends on the matrices 	 and 
 that solve the regulator equation (7.4),
and it is given by

�C : u = F̄(x − 	w) + 
w + Ḡd. (7.21)

We have the following theorem.

Theorem 7.3.3 Consider the given system � as in (7.1), and the exosystem
�E as in (7.2). Let Assumptions A.1 and A.2 hold. Also, let 	 and 
 be a
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solution of the regulator equation (7.4). Then, there exists a static feedback
controller of the form u = Fx x + Gww + Gdd which, when applied to � and
�E of (7.1) and (7.2), solves the regulator problem, and achieves a closed-loop
transfer matrix G from d to z if and only if the following condition holds:

There exists a static feedback controller �̄C of the form (7.20)
which internally stabilizes the auxiliary system �̄ given in (7.19).
Moreover, when such an internally stabilizing controller �̄C is
applied to �̄, the achieved closed-loop transfer matrix from d̄ to
z̄ equals G.

Furthermore, given any such controller �̄C for �̄, the correspondingly con-
structed controller �C given in (7.21) internally stabilizes the given system �,
achieves output regulation when applied to (7.1) and (7.2), and also yields a
closed-loop transfer matrix from d to z equal to G.

Proof : It follows along the same lines as the proof of Theorem 7.3.1.

It is obvious that, with the help of Theorems 7.3.1, 7.3.2, and 7.3.3, we
can transform the problem of achieving a desired performance with output
regulation constraint for the given system to a similar one for the auxiliary
system however without any output regulation constraint. This transformation
is valid whatever may be the chosen performance measure as long as it is based
on Td,z(� × �C). There are a number of multivariable design techniques that
can make use of the above theorems. In particular, we can name H2 optimal
control, H∞ optimal control, closed-loop transfer recovery [57] among many
others. Thus, Theorems 7.3.1, 7.3.2, and 7.3.3 enable us to invoke the standard
optimization theory without any constraints to find a suitable controller for
the auxiliary system, and thus for the given system. There is only a problem
if a solution to the regulator equation is not unique since then there are many
different auxiliary systems which one has to check to be guaranteed of optimal
performance. For H2 and H∞ optimal control problems this turns out to be
rather straightforward as can be seen in the subsequent chapters.

7.4 Achieving a desired performance with structurally
stable output regulation constraint

The output regulation requirement in our problem of achieving a desired per-
formance with output regulation constraint as defined in Section 7.2 can be
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further strengthened by requiring structurally stable output regulation. Let
us briefly recall the concept of structurally stable output regulation which
strengthens the concept of output regulation and thus renders it practically
useful. In any given practical situation, the data of the plant cannot always
be determined exactly. The data usually lies in a given neighborhood. With
this in background, the structurally stable output regulation seeks a fixed con-
troller that solves the output regulation problem not only for the nominal plant
but also for plants obtained by arbitrarily small perturbations of their parame-
ters from their nominal values. Thus, even if the values of the plant parameters
drift but are confined to the given neighborhood, the same controller always
achieves output regulation. In this sense, one fixed controller solves the output
regulation problem for a family of plants, i.e. the family of all plants whose
parameters range in a given neighborhood of the nominal point in a parame-
ter space. The concept of structurally stable output regulation is a classical
concept as discussed in Section 2.8 and Appendix 2.B, and it is known that
to achieve structurally stable output regulation the controller should contain
multiple copies of the exosystem.

Now, coming back to our problem, instead of simply considering the prob-
lem of achieving a desired performance with output regulation constraint, we
can consider in an obvious way a strengthened problem of achieving a desired
performance with structurally stable output regulation constraint. However, it
turns out that the problem of achieving a desired performance with structurally
stable output regulation constraint can be reduced to a problem of achieving
a desired performance with output regulation constraint. It is feasible to do
so since, as pointed out in Section 2.8, a structurally stable output regulation
problem for a given system can be solved by transforming it to the output
regulation problem for another auxiliary system, provided that the matrix

(
A0 − λI B0

Ce,0 0

)
(7.22)

has full row-rank for each λ which is an eigenvalue of S0, where A0, B0, and
Ce,0 are the nominal values of A, B, and Ce respectively. Let a system

� :

⎧⎪⎪⎨
⎪⎪⎩

ρx = Ax + Bu + Eww + Edd
e = Cex + Deuu + Deww + Dedd
z = Czx + Dzuu + Dzdd
y = Cyx + Dyuu + Dyww + Dydd,

(7.23)

and an exosystem �E as in (7.2) be given. Obviously we need that the error
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signal as a component of the measurement signal, that is

Cy =
(

Ce

Cy2

)
, Dyu =

(
Deu

Dyu2

)
, Dyw =

(
Dew

Dyw2

)
, Dyd =

(
Ded

Dyd2

)
.

(7.24)

We included here the term Dedd in e, although it has no effect on the output
regulation, it might be needed in order to have the error signal part of the
measurements. But we can set this matrix Ded to an arbitrary value since it
does not effect our performance requirements.

We provide next the steps to transform a problem of achieving a desired
performance with structurally stable output regulation constraint into a prob-
lem of performance with the output regulation constraint.

(i) We apply a preliminary feedback u = Ne + ũ such that

A0 + B0N(I − Deu,0N)−1Ce,0

and S have no eigenvalues in common and we obtain the system,

�̄ :

⎧⎪⎪⎨
⎪⎪⎩

ρx = Ā0x + B̄0ũ + Ēw,0w + Ēd,0d
y = C̄y,0x + D̄yu,0ũ + D̄yw,0w + D̄yd,0d
e = C̄e,0x + D̄eu,0ũ + D̄ew,0w + D̄ed,0d
z = C̄z,0x + D̄zu,0ũ + D̄zw,0w + D̄zd,0d,

(7.25)

where

Ā0 = A0 + B0N(I − Deu,0 N)−1Ce,0,

B̄0 = B0(I − N Deu,0)
−1,

Ēw,0 = Ew,0 + B0N(I − Deu,0 N)−1 Dew,0,

Ēd,0 = Ed,0 + B0N(I − Deu,0 N)−1 Ded,0,

C̄e,0 = (I − Deu,0N)−1Ce,0,

C̄y,0 = Cy,0 + Dyu,0N(I − Deu,0N)−1Ce,0,

C̄z,0 = Cz,0 + Dzu,0N(I − Deu,0 N)−1Ce,0,

D̄eu,0 = (I − Deu,0N)−1 Deu,0,

D̄ew,0 = (I − Deu,0N)−1 Dew,0,

D̄ed,0 = (I − Deu,0N)−1 Ded,0,

D̄yu,0 = Dyu,0(I − N Deu,0)
−1,

D̄yw,0 = Dyw,0 + Dyu,0N(I − Deu,0N)−1 Dew,0.
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D̄yd,0 = Dyd,0 + Dyu,0N(I − Deu,0N)−1 Ded,0.

D̄zu,0 = Dzu,0(I − N Deu,0)
−1,

D̄zw,0 = Dzu,0N(I − Deu,0 N)−1 Dew,0,

D̄zd,0 = Dzd,0 + Dzu,0N(I − Deu,0N)−1 Ded,0.

(ii) Given a system � and an exosystem �E as in (7.23) and (7.2), we
formulate an auxiliary system �̃ and another auxiliary exosystem �̃E.
Without loss of generality assume that the matrix S of �E is of block
diagonal form,

S =
(

S∗ 0
0 Smin

)
,

in which S∗ is a certain matrix not of much concern to us, and Smin is
a matrix whose characteristic polynomial coincides with the minimal
polynomial of S (thus, Smin is a cyclic matrix, i.e. its characteristic and
minimal polynomials coincide). Now define the auxiliary exosystem
�̃E as

�̃E : ρw̃ = S̃qw̃ (7.26)

where w̃ ∈ R
qs̃ and S̃q is a block diagonal matrix given by

S̃q =

⎛
⎜⎜⎜⎜⎝

Smin 0 · · · 0

0 Smin

. . .
...

...
. . .

. . . 0
0 · · · 0 Smin

⎞
⎟⎟⎟⎟⎠ .

We note that the auxiliary exosystem given in (7.26) is composed of q
identical copies of a constituent exosystem where q is the dimension of
the measurement vector y. Next we define the auxiliary system �̃ as

�̃ :

⎧⎪⎪⎨
⎪⎪⎩

ρ x̃ = Ā0 x̃ + B̄0ũ + Ēd,0d
y = C̄y,0x̃ + D̄yu,0ũ + D̃yww̃ + D̄yd,0d
e = C̄e,0 x̃ + D̄eu,0ũ + D̃eww̃ + D̄ed,0d
z = C̄z,0x̃ + D̄zu,0ũ + D̄zd,0d

(7.27)

and the matrix D̃ew and D̃yw are partitioned as,

D̃yw =
(

D̃ew

D̃yw2

)
=

(
D̃ew1 0

0 D̃yw22

)
,



Control of linear systems with regulation and input constraints 289

where

D̃ew1 = (
D̃ew1,1 D̃ew1,2 · · · D̃ew1,q

)
,

D̃yw22 = (
D̃yw22,1 D̃yw22,2 · · · D̃yw22,p−q

)
.

Here the matrices D̃ew1 and D̃yw22 are selected so that the pairs of ma-
trices (D̃ew1, S̃q) and (D̃yw22, S̃p−q) are detectable. Note that we can set
D̄ed equal to zero without loss of generality since D̄ed does not effect
any of our performance objectives.

(iii) Solve the problem of achieving a desired performance with the output
regulation constraint for the auxiliary systems �̃ and �̃E utilizing The-
orem 7.3.1.

(iv) The above solution is the solution to the problem of performance with
structurally stable output regulation constraint for the original system
� and the exosystem �E.
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Chapter 8

H2 optimal control with an
output regulation constraint –
continuous-time systems

8.1 Introduction

In Chapter 7, we dealt with the problem of achieving a desired performance
subject to an output regulation constraint. We showed how one can solve such
a problem without solving directly a constrained optimization problem. The
method we developed there basically amounts to transforming the constrained
optimization problem for a given system to an unconstrained optimization
problem, however, for a certain auxiliary system. The development in Chap-
ter 7 is general i.e. it does not consider explicitly any specific performance
measure; typically any performance measure can be used. In this chapter,
we will use the H2 norm of the closed-loop transfer function matrix as the
performance measure.

To be explicit, the multi-objective problem we consider in this chapter is
an H2 optimal (or suboptimal) control problem along with the added output
regulation constraint. That is, we seek a controller that achieves output regu-
lation and results in the smallest possible (or arbitrarily close to the minimum
possible) H2 norm of a transfer function from a certain input signal to a de-
sired output signal of the system. Such a problem clearly takes into account
certain performance requirements. This is obvious when we recognize that the
H2 norm, being an integral square operation, takes into account performance
measures such as mean square error, total energy consumed etc.
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Utilizing the results of Chapter 7, the H2 optimal (or suboptimal) control
problem with the added output regulation constraint for the given system is
solved by transforming it to an H2 optimal (or suboptimal) control problem
without any output regulation constraint for the auxiliary system. It is inter-
esting to point out that even if one starts with an H2 optimal control problem
for the originally given system (ignoring the output regulation constraint) that
satisfies the regularity conditions, the corresponding H2 optimal control prob-
lem for the auxiliary system inherently does not satisfy the regularity con-
ditions [61], i.e. in general it turns out to be a singular H2 optimal control
problem. We can then obtain a solution to such a singular H2 optimal control
problem for the auxiliary system by using the recently developed methods
discussed in [61, 71].

It is clear that the H2 optimal (or suboptimal) control problem with the
regulation constraint for the given system can be solved via solving an uncon-
strained H2 optimal (or suboptimal) control problem for the auxiliary system.
However, a fundamental and significant issue that still remains to be clarified
is this; does the added output regulation constraint compromise the achiev-
able performance? In this regard, for continuous-time systems, we will show
that in the present case where we measure performance by the H2 norm of a
transfer function matrix, there is no loss at all in the achievable performance.

The H2 optimal control problem with the added output regulation con-
straint has been studied earlier in [3, 4, 69]. The methods pursued there to
solve the posed problem restrict attention to certain special cases, and the
general problem is not considered. Our objective here is to present an ele-
gant and to the point derivation based on combining results from a number of
recent papers to solve the general problem without unnecessary restrictions.

The mathematical aspects of our development depends on whether we
consider continuous- or discrete-time systems. As such, in this chapter, we
focus on continuous-time systems while the next chapter considers discrete-
time systems. This chapter is based on the recent research work of authors
[77].

This chapter is organized as follows. Section 8.2 formulates H2 optimal
and suboptimal control problems with the output regulation constraint, while
Section 8.3 presents solvability conditions for such problems and also devel-
ops methods of constructing regulators that solve such problems whenever
they are solvable. Finally Section 8.4 shows that the added output regulation
constraint in the given H2 optimal control problem does not compromise the
achievable performance.
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8.2 Problem formulations

As in Chapter 7, we start with a linear system with state space realization,

� :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = Ax + Bu + Eww + Edd
e = Cex + Deuu + Deww

z = Czx + Dzuu
y = Cyx + Dyww + Dydd,

(8.1)

where, as usual, x ∈ R
n, u ∈ R

m , y ∈ R
p, e ∈ R

q , and z ∈ R
�. The

exogenous disturbance input w ∈ R
s is generated by an exosystem �E with

state space realization,

�E : ẇ = Sw. (8.2)

As before, the variable d denotes an external disturbance. We seek measure-
ment feedback controllers which are of the form,

�C :
{

v̇ = Acv + Bc y,

u = Ccv + Dc y.
(8.3)

The closed-loop system consisting of the given system � and the controller
�C is denoted by � × �C. Also, the transfer matrix from d to z of � × �C is
denoted by Td,z(� × �C). As usual, we define,

‖Td,z(� × �C)‖2

:=
(

1

2π

∫ ∞

−∞
trace Td,z(� × �C)

T(−iω)Td,z(� × �C)(iω)dω

)1/2

.

Before we state formally the specific multi-objective problems of interest
here, we define the following notations:

γ ∗
2p,r = inf { ‖Td,z(� × �C)‖2 | �C is a proper controller that

achieves output regulation for � },
γ ∗

2p = inf { ‖Td,z(� × �C)‖2 | �C is a proper controller that

internally stabilizes � },
γ ∗

2sp,r = inf { ‖Td,z(� × �C)‖2 | �C is a strictly proper controller

that achieves output regulation for � },
γ ∗

2sp = inf { ‖Td,z(� × �C)‖2 | �C is a strictly proper controller

that internally stabilizes � }.
We can now state formally the H2 optimal control problem with the output

regulation constraint.
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Problem 8.2.1 (H2 optimal control problem with the output regulation con-
straint) Consider the system � and the exosystem �E as given in (8.1) and
(8.2). Find, if possible, a proper (or a strictly proper) controller �C such that
the following conditions hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C is internally stable.

(ii) (Performance Measure) ‖Td,z(� × �C)‖2 is equal to the infimum γ ∗
2p,r

(or γ ∗
2sp,r ).

(iii) (Output Regulation) For any d ∈ L2, and for all x(0) ∈ R
n and w(0) ∈

R
s , the solution of the closed-loop system � × �C satisfies

lim
t→∞ e(t) = 0.

Remark 8.2.1 The part (iii) of the above problem formulation is equivalent
to the following: In the absence of external signal d, i.e. when d = 0, �C

achieves output regulation for �.

We can also define the H2 suboptimal control problem with the output
regulation constraint.

Problem 8.2.2 (H2 suboptimal control problem with the output regulation
constraint) Consider the system � and the exosystem �E as given in (8.1) and
(8.2). Find, if possible, a parameterized family { �C(ε) | ε > 0 } of proper
controllers of the form (8.3) (or a parameterized family { �C(ε) | ε > 0 } of
strictly proper controllers of the form (8.3) with Dc = 0) such that the follow-
ing conditions hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C(ε) is internally stable.

(ii) (Performance Measure) As ε → 0, we have ‖Td,z(� × �C(ε))‖2 tend-
ing to the infimum γ ∗

2p,r (or γ ∗
2sp,r ).

(iii) (Output Regulation) For any d ∈ L2, and for all x(0) ∈ R
n and w(0) ∈

R
s , the solution of the closed-loop system � × �C(ε) satisfies

lim
t→∞ e(t) = 0.

We note that when the output regulation constraint is removed from the
above problem formulations, the resulting problems are simply unconstrained
H2 optimal and suboptimal control problems.
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8.3 Solvability conditions

As we discussed in Chapter 7, the following assumptions are reasonable and
almost necessary to solve the problems defined above:

A.1. (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable, i.e. it has all its eigenvalues in the
closed right-half plane.

A.3.
((

Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

A.4. There exist 	 and 
 solving the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(8.4)

Note that these assumptions have been defined earlier, say for instance on
page 215.

In the case when the regulator equation (8.4) has a non-unique solution
for (	, 
), for simplicity of presentation, we assume throughout the chapter
that a solution (	, 
) of (8.4) has been chosen, and all our development here
builds on such a solution.

Following the results of Chapter 7, a solution to the H2 optimal or sub-
optimal control problems with output regulation constraint for � is given in
terms of a solution to the H2 optimal or suboptimal control problem without
any output regulation constraint for the auxiliary system �̄ which is as in
(7.5), and is repeated below for convenience:

�̄ :
⎧⎨
⎩

˙̄x = Āx̄ + B̄ū + Ēd d̄
z̄ = C̄z x̄ + D̄zuū
ȳ = C̄y x̄ + Dydd̄ ,

(8.5)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, Ēd =

(
Ed

0

)
, (8.6a)

C̄z = (
Cz −Dzu


)
, D̄zu = (

0 Dzu

)
, (8.6b)

C̄y = (
Cy (Dyw + Cy	)

)
. (8.6c)
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For �̄, a controller �̄C with state space representation ( Āc, B̄c, C̄c, D̄c) is given
by

�̄C :
{ ˙̄v = Ācv̄ + B̄c ȳ

ū = C̄cv̄ + D̄c ȳ.
(8.7)

For each controller �̄C for the auxiliary system �̄, we formulate a corre-
sponding controller �C for the given system �. It is given by

�C :
⎧⎨
⎩

v̇1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

v̇2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Cy	)v1),
(8.8)

where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄c =
(

C̄c,1

C̄c,2

)
, and D̄c =

(
D̄c,1

D̄c,2

)
.

We note that there is a 1−1 relationship between the proper controller �̄C

as given in (8.7) and the proper controller �C as given in (8.8). Furthermore,
we observe that with the constraint that D̄c,2 = 0, the controller �C as given
in (8.8) is strictly proper. In other words, by imposing the constraint that
D̄c,2 = 0 in �̄C, we can generate the class of strictly proper controllers �C

for the given system �. We denote below the class of controllers �̄C with the
constraint D̄c,2 = 0 by �̄s

C,

�̄s
C :

⎧⎨
⎩

˙̄v = Ācv̄ + B̄c ȳ

ū =
(

C̄c,1

C̄c,2

)
v̄ +

(
D̄c,1

0

)
ȳ.

(8.9)

The following theorems provide the conditions under which the H2 opti-
mal control problem with output regulation constraint can be solved via proper
or via strictly proper controllers. Also, they provide a procedure of construct-
ing an appropriate controller that solves the posed problem whenever it is
solvable.

Theorem 8.3.1 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (8.1), and the exosystem �E as in (8.2). Also, consider
the auxiliary system �̄ as in (8.5). Then, the following statements hold:
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The H2 optimal control problem with output regulation constraint
for � is solvable via a proper controller if and only if the H2 op-
timal control problem for �̄ is solvable via a proper controller.
Moreover, a proper controller �̄C of the form given in (8.7) is a
proper H2 optimal controller for �̄ if and only if the correspond-
ing proper controller �C of the form given in (8.8) solves the H2

optimal control problem with the output regulation constraint for
�.

Proof : The proof follows from Theorem 7.3.1.

Theorem 8.3.2 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (8.1), and the exosystem �E as in (8.2). Also, consider
the auxiliary system �̄ as in (8.5). Then, the following statements hold:

The H2 optimal control problem with output regulation constraint
for � is solvable via a strictly proper controller if and only if
the H2 optimal control problem for �̄ is solvable via a strictly
proper controller. Moreover, a strictly proper controller of the
form given in (8.7) with D̄c = 0 is an H2 optimal controller for
�̄ if and only if the corresponding strictly proper controller �C

of the form given in (8.8) solves the H2 optimal control problem
with the output regulation constraint for �.

Remark 8.3.1 Note that by restricting controllers of the auxiliary system to
be strictly proper instead of the more general form �̄s

C, we do not lose perfor-
mance but we might lose some flexibility in the sense that we do not capture
all optimal controllers.

Proof : We apply Theorem 7.3.1. It is then clear that H2 optimal control prob-
lem with output regulation constraint for � is solvable via a strictly proper
controller if and only if the H2 optimal control problem for �̄ is solvable via a
controller of the form �̄s

C. However, for the auxiliary system �̄ there exists an
H2 optimal controller of the form �̄s

C if and only if there exists a strictly proper
H2 optimal controller. The latter follows directly from the conditions in [61],
the special structure of the parameters of the auxiliary system and the special
structure of the semi-stabilizing solution of the linear matrix inequality as we
will establish in Lemma 8.4.1.
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We can now state the following theorems which provide the conditions
under which the H2 suboptimal control problem with output regulation con-
straint can be solved. Also, they provide a procedure of constructing an ap-
propriate sequence of controllers that solves the posed problem.

Theorem 8.3.3 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (8.1), and the exosystem �E as in (8.2). Also, consider
the auxiliary system �̄ as in (8.5). Then, the following statements hold:

The H2 suboptimal control problem with output regulation con-
straint for � is solvable via a family {�̄C(ε) | ε > 0} of proper
(or strictly proper) controllers.

Moreover, a family {�̄C(ε) | ε > 0} of proper controllers of the
form (8.7) is H2 suboptimal for �̄ if and only if the correspond-
ing family {�C(ε) | ε > 0} of proper controllers of the form (8.8)
solves the H2 suboptimal control problem with the output regula-
tion constraint for �.

Similarly, a family {�̄s
C(ε) | ε > 0} of controllers of the form (8.9)

is H2 suboptimal for �̄ if and only if the corresponding family
{�C(ε) | ε > 0} of strictly proper controllers of the form (8.8)
solves the H2 suboptimal control problem with the output regula-
tion constraint for �.

Remark 8.3.2 By exploiting the structure of the problem it can be shown that
there exists a family {�̄s

C(ε) | ε > 0} of controllers of the form (8.9) which
is H2 suboptimal for �̄ if and only if there exists a family {�̄C(ε) | ε > 0}
of controllers of the form (8.7) with D̄c = 0 which is H2 suboptimal for �̄.
In other words, it is sufficient to look for strictly proper controllers for the
auxiliary system �̄.

Proof : The proof is obvious from Theorem 7.3.1 when one takes into account
the fact that the H2 suboptimal control problem for �̄ is solvable under the
Assumptions A.1 and A.3.

Design of a measurement feedback regulator that solves the H2 optimal
control problem with output regulation constraint:

Theorems 8.3.1 and 8.3.2 suggest the following two step procedure:

Step 1: Construct a controller �̄C of the form (8.7) (or a controller �̄C of the
form (8.7)) with D̄c = 0 so that it solves the H2 optimal control problem for
�̄.
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Step 2: Knowing the parameters Āc, B̄c, C̄c, and D̄c of the controller �̄C (or
�̄s

C) obtained in Step 1, construct a corresponding controller �C as given in
(8.8).

Clearly �C constructed in Step 2 solves the H2 optimal control problem with
output regulation constraint for � via a proper (or a strictly proper) controller.

The above procedure can be modified in an obvious way to obtain a se-
quence of proper (or strictly proper) controllers that solves the H2 subopti-
mal control problem with output regulation constraint for �. Also, as will
be shown shortly in Theorem 8.4.2 of Section 8.4, we have γ ∗

2p,r = γ ∗
2p =

γ ∗
2sp,r = γ ∗

2sp. Hence one can design without any penalty a sequence of either
proper or strictly proper controllers to solve the H2 suboptimal control prob-
lem with output regulation constraint. In what follows, we simply give the
design of a sequence of proper controllers.

Design of a sequence of measurement feedback regulators that solves the
H2 suboptimal control problem with output regulation constraint:

Step 1: Construct a family {�̄C(ε) | ε > 0} of proper or strictly proper mea-
surement feedback regulators that solves the H2 suboptimal control problem
for �̄.

Step 2: Knowing the parameterized matrix quadruples {( Āc(ε), B̄c(ε), C̄c(ε),

D̄c(ε)) | ε > 0} that characterize {�̄C(ε) | ε > 0} in Step 1, construct a corre-
sponding sequence of proper or strictly proper measurement feedback regula-
tors {�C(ε) | ε > 0} each element of which is as given in (8.8).

Clearly {�C(ε) | ε > 0} constructed in Step 2 solves the H2 suboptimal con-
trol problem with output regulation constraint for � via a sequence of proper
controllers.

8.4 Relationship between γ ∗
2 p,r , γ ∗

2sp,r , γ ∗
2 p, and γ ∗

2sp

Our primary objective in this section is to study how the achievable perfor-
mance is affected by having the output regulation constraint. It turns out that
there is no loss at all in the achievable performance, i.e. γ ∗

2p,r , γ ∗
2sp,r , γ ∗

2p, and
γ ∗

2sp are all equal to each other.

To proceed, we need to recall certain results from [61, 71]. Consider
the system � described by (8.1), and for any matrix P ∈ R

n×n , define a
continuous-time linear matrix inequality as

F(P) ≥ 0, (8.10)
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where

F(P) :=
(

AT P + P A + CT
z Cz P B + CT

z Dzu

BT P + DT
zuCz DT

zu Dzu

)
.

As shown in [61] and as explained further in Appendix 6.A, whenever the pair
(A, B) is stabilizable, there exists a unique semi-stabilizing solution P of the
linear matrix inequality (8.10). Moreover, such a solution P is positive semi-
definite, rank minimizing, and is the largest among all symmetric solutions.

Let us also define a dual version of the above linear matrix inequality. For
any matrix Q ∈ R

n×n , let

G(Q) ≥ 0, (8.11)

where

G(Q) :=
(

AQ + Q AT + Ed ET
d QCT

y + Ed DT
yd

Cy Q + Dyd ET
d Dyd DT

yd

)
.

Again, whenever the pair (Cy, A) is detectable, there exists a unique semi-
stabilizing solution Q of the linear matrix inequality (8.11). Moreover, such a
solution Q is positive semi-definite, rank minimizing, and is the largest among
all symmetric solutions.

We will next recall a theorem from [61, 71] that gives an expression for
the minimal achievable H2 norm of Td,z(� × �C) for any arbitrary system,
and in particular for the given system �.

Theorem 8.4.1 Consider the system (8.1) with w = 0. Assume that (A, B) is
stabilizable and (Cy, A) is detectable. Then, the infimum of the H2 norm of
Td,z(� × �C) over all proper or strictly proper controllers of the form (8.3)
which internally stabilize � is equal to

γ ∗
2p = γ ∗

2sp = (
trace ET

d P Ed + trace(AT P + P A + CT
z Cz)Q

)1/2
,

where P and Q are respectively the unique semi-stabilizing, and thus positive
semi-definite and rank minimizing solutions of (8.10) and (8.11).

In order to study the possibility that γ ∗
2p,r equals γ ∗

2p or γ ∗
2sp,r equals γ ∗

2sp,
we need to compare the achievable H2 norms for the systems � and �̄. We
study this by relating the associated semi-stabilizing, rank-minimizing solu-
tions of the linear matrix inequalities for the two systems. We have the fol-
lowing lemma.
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Lemma 8.4.1 Let P and Q be respectively the unique semi-stabilizing so-
lutions of the linear matrix inequalities (8.10) and (8.11) for the system �.
Similarly, let P̄ and Q̄ be respectively the unique semi-stabilizing solutions of
the linear matrix inequalities corresponding to (8.10) and (8.11) defined for
the auxiliary system �̄. Then we have,

P̄ =
(

P 0
0 0

)
, and Q̄ =

(
Q 0
0 0

)
.

Conversely, let P̄ and Q̄ be respectively the unique semi-stabilizing solutions
of the linear matrix inequalities corresponding to (8.10) and (8.11) defined
for the auxiliary system �̄. Decompose P̄ and Q̄ to be compatible with the
decompositions in (8.6),

P̄ =
(

P11 P12

P21 P22

)
and Q̄ =

(
Q11 Q12

Q21 Q22

)
.

Then P11 and Q11 are the unique semi-stabilizing solutions of the linear ma-
trix inequalities (8.10) and (8.11) for the system �.

Proof : Given P and Q are respectively the unique semi-stabilizing solutions
of the linear matrix inequalities (8.10) and (8.11) for the system �, it is easy
to check that(

P 0
0 0

)
and

(
Q 0
0 0

)

are the semi-stabilizing solutions of the linear matrix inequalities correspond-
ing to (8.10) and (8.11) defined for the auxiliary system �̄. Then, the result
follows right away since such solutions are unique.

Conversely, if P̄ and Q̄ are respectively the unique semi-stabilizing so-
lutions of the linear matrix inequalities corresponding to (8.10) and (8.11)
defined for the auxiliary system �̄, then it is straightforward to check that P11

and Q11 are indeed respectively the unique semi-stabilizing solutions of the
linear matrix inequalities (8.10) and (8.11) defined for �.

The above lemma enables us to present the main result of this section
given in the next theorem.

Theorem 8.4.2 Let the system � with realization (8.1) be given. Also, let
Assumptions A.1, A.2, A.3, and A.4 hold. Then, we have γ ∗

2p,r = γ ∗
2p =

γ ∗
2sp,r = γ ∗

2sp.
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Proof : By Theorem 8.4.1 we have,

γ ∗
2p = γ ∗

2sp = (
trace ET

d P Ed + trace(AT P + P A + CT
z Cz)Q

)1/2
.

On the other hand, if we restrict attention to the special class of controllers of
the form (8.8), then we know that we achieve output regulation. Moreover,
obviously we have γ ∗

2p � γ ∗
2p,r , and γ ∗

2sp � γ ∗
2sp,r , where

γ ∗
2p,r = γ ∗

2sp,r =
(

trace
(
ET

d 0
)

P̄

(
Ed

0

)
+ trace

[(
AT 0

−
T BT ST

)
P̄

+P̄

(
A −B


0 S

)
+

(
CT

z

−
T DT
zu

) (
Cz −Dzu


)]
Q̄

)1/2

.

Using Lemma 8.4.1, it is then immediate that γ ∗
2p,r = γ ∗

2p = γ ∗
2sp,r = γ ∗

2sp. We
note from [61] that the imposition of a constraint on a feedthrough matrix of
a class of controllers for H2 optimal control of continuous-time systems does
not affect the infimum.

Remark 8.4.1 It turns out that the achievable performance of the auxiliary
system is independent of the specific solution of the regulator equation used
in the construction of the auxiliary system. Hence even in the case of multiple
solutions of the regulator equation, it is easy to find a suitable controller.
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H2 optimal control with an
output regulation constraint –
discrete-time systems

9.1 Introduction

This chapter is a discrete-time analog of Chapter 8. That is we formulate here
an output regulation problem which seeks to achieve simultaneously the infi-
mum (or arbitrarily close to the infimum) H2 norm of a closed-loop transfer
function. Such a problem can equivalently be viewed as an H2 optimal (or
suboptimal) control problem with the output regulation constraint. As we dis-
cussed in the previous chapter, although a suitable controller which solves the
posed problem for the given system can be constructed via the construction of
a controller that solves an H2 optimal (or suboptimal) control problem without
the output regulation constraint for a certain auxiliary system, one fundamen-
tal question still needs to be answered. Namely, whether the added output
regulation constraint in a problem compromises the achievable performance.
In this regard, we will show again, as in the previous chapter, that there is
no loss at all in the achievable performance because of the added output reg-
ulation constraint whenever proper (or strictly proper) controllers are used.
However, although the achievable performance is not compromised because
of the added output regulation constraint, as well known in H2 optimal control
theory, the achievable performance for discrete-time systems is different over
the class of proper controllers compared to that over the class of strictly proper
controllers. This chapter is based on the recent research work of authors [77].
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This chapter is organized as follows. Section 9.2 formulates H2 opti-
mal and suboptimal control problems with the output regulation constraint,
while Section 9.3 presents solvability conditions for such problems and also
develops methods of constructing regulators that solve such problems when-
ever they are solvable. Section 9.4 shows that the added output regulation
constraint in the given H2 optimal control problem does not compromise
the achievable performance whenever optimization is done over the class of
proper (or strictly proper) controllers.

9.2 Problem formulations

As in Chapter 8, we start with a linear system with state space realization,

� :

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) = Ax(k) + Bu(k) + Eww(k) + Edd(k)

e(k) = Cex(k) + Deuu(k) + Deww(k)

z(k) = Czx(k) + Dzuu(k)

y(k) = Cyx(k) + Dyww(k) + Dydd(k),

(9.1)

where, as usual, x ∈ R
n, u ∈ R

m , y ∈ R
p, e ∈ R

q , and z ∈ R
�. The

exogenous disturbance input w ∈ R
s is generated by an exosystem �E with

state space realization,

�E : w(k + 1) = Sw(k). (9.2)

As before, the variable d denotes an external disturbance. We seek measure-
ment feedback controllers which are of the form,

�C :
{

v(k + 1) = Acv(k) + Bc y(k),

u(k) = Ccv(k) + Dc y(k).
(9.3)

The closed-loop system consisting of the given system � and the controller
�C is denoted by � × �C. Also, the transfer matrix from d to z of � × �C is
denoted by Td,z(� × �C). As usual, we define,

‖Td,z(� × �C)‖2

:=
(

1

2π

∫ π

−π

trace Td,z(� × �C)
T(e−iω)Td,z(� × �C)(e

iω)dω

)1/2

.
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Before we state formally the specific multi-objective problems of interest
here, we define the following notations:

γ ∗
2p,r = inf { ‖Td,z(� × �C)‖2 | �C is a proper controller that

achieves output regulation for � },
γ ∗

2p = inf { ‖Td,z(� × �C)‖2 | �C is a proper controller that

internally stabilizes � },
γ ∗

2sp,r = inf { ‖Td,z(� × �C)‖2 | �C is a strictly proper controller

that achieves output regulation for � },
γ ∗

2sp = inf { ‖Td,z(� × �C)‖2 | �C is a strictly proper controller

that internally stabilizes � }.

We can now state formally the H2 optimal control problem with the output
regulation constraint.

Problem 9.2.1 (H2 optimal control problem with the output regulation con-
straint) Consider the system � and the exosystem �E as given in (9.1) and
(9.2). Find, if possible, a proper (or a strictly proper) controller �C of the
form (9.3) such that the following conditions hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C is internally stable.

(ii) (Performance Measure) ‖Td,z(� × �C)‖2 is equal to the infimum γ ∗
2p,r

(or γ ∗
2sp,r ).

(iii) (Output Regulation) For any d ∈ �2, and for all x(0) ∈ R
n and w(0) ∈

R
s , the solution of the closed-loop system � × �C satisfies

lim
k→∞

e(k) = 0.

Remark 9.2.1 The part (iii) of the above problem formulation is equivalent
to the following: In the absence of external signal d, i.e. when d = 0, �C

achieves output regulation for �.

We can also define the H2 suboptimal control problem with the output
regulation constraint.

Problem 9.2.2 (H2 suboptimal problem with the output regulation constrai-
nt) Consider the system � and the exosystem �E as given in (9.1) and (9.2).
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Find, if possible, a parameterized family { �C(ε) | ε > 0 } of proper controllers
of the form (9.3) (or a parameterized family { �C(ε) | ε > 0 } of strictly proper
controllers of the form (9.3) with Dc = 0 ) such that the following conditions
hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C(ε) is internally stable.

(ii) (Performance Measure) As ε → 0, we have ‖Td,z(� × �C(ε))‖2 tend-
ing to the infimum γ ∗

2p,r (or γ ∗
2sp,r ).

(iii) (Output Regulation) For any d ∈ l2, and for all x(0) ∈ R
n and w(0) ∈

R
s , the solution of the closed-loop system � × �C(ε) satisfies

lim
k→∞

e(k) = 0.

We note that when the output regulation constraint is removed from the
above problem formulations, the resulting problems are simply unconstrained
H2 optimal and suboptimal control problems.

9.3 Solvability conditions

As we discussed in Chapter 7, the following assumptions are reasonable and
almost necessary to solve the problems defined above:

A.1. (A, B) is stabilizable.

A.2. The matrix S is anti-Schur-stable, i.e. all its eigenvalues are on the unit
circle or outside the unit circle.

A.3.
((

Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

A.4. There exist 	 and 
 solving the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(9.4)

Note that these assumptions have been defined before, for instance on page
215.

In the case when the regulator equation (9.4) has a non-unique solution
for (	, 
), for simplicity of presentation, we assume throughout the chapter
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that a solution (	, 
) of (8.4) has been chosen, and all our development here
builds on such a solution.

Following the results of Chapter 7, a solution to the H2 optimal or subopti-
mal control problem with output regulation constraint for � is given in terms
of a solution to the H2 optimal or suboptimal control problem without any
output regulation constraint for the auxiliary system �̄ which is as in (7.5),
and is repeated below for convenience:

�̄ :
⎧⎨
⎩

x̄(k + 1) = Āx̄(k) + B̄ū(k) + Ēd d̄(k)

z̄(k) = C̄z x̄(k) + D̄zuū(k)

ȳ(k) = C̄y x̄(k) + Dydd̄(k),
(9.5)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, Ēd =

(
Ed

0

)
, (9.6a)

C̄z = (
Cz −Dzu


)
, D̄zu = (

0 Dzu

)
, (9.6b)

C̄y = (
Cy (Dyw + Cy	)

)
. (9.6c)

For �̄, a controller �̄C with state space representation ( Āc, B̄c, C̄c, D̄c) is given
by

�̄C :
{

v̄(k + 1) = Ācv̄(k) + B̄c ȳ(k)

ū(k) = C̄cv̄(k) + D̄c ȳ(k).
(9.7)

For each controller �̄C for the auxiliary system �̄, we formulate a correspond-
ing controller �C for the given system �. It is given by

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

ρv2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Cy	)v1),
(9.8)

where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄c =
(

C̄c,1

C̄c,2

)
, and D̄c =

(
D̄c,1

D̄c,2

)
.

We note that there is a 1−1 relationship between the proper controller �̄C

as given in (9.7) and the proper controller �C as given in (9.8). Furthermore,
we observe that with the constraint that D̄c,2 = 0, the controller �C as given
in (9.8) is strictly proper. In other words, by imposing the constraint that
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D̄c,2 = 0 in �̄C, we can generate the class of strictly proper controllers �C

for the given system �. We denote below the class of controllers �̄C with the
constraint D̄c,2 = 0 by �̄s

C,

�̄s
C :

⎧⎨
⎩

v̄(k + 1) = Ācv̄(k) + B̄c ȳ(k)

ū(k) =
(

C̄c,1

C̄c,2

)
v̄(k) +

(
D̄c,1

0

)
ȳ(k).

(9.9)

The following theorems provide the conditions under which the H2 opti-
mal control problem with output regulation constraint can be solved via proper
or via strictly proper controllers. Also, they provide a procedure of construct-
ing an appropriate controller that solves the posed problem whenever it is
solvable.

Theorem 9.3.1 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (9.1), and the exosystem �E as in (9.2). Also, consider
the auxiliary system �̄ as in (9.5). Then, the following statements hold:

The H2 optimal control problem with output regulation constraint
for � is solvable via a proper controller if and only if the H2 op-
timal control problem for �̄ is solvable via a proper controller.
Moreover, a proper controller �̄C of the form given in (9.7) is a
proper H2 optimal controller for �̄ if and only if the correspond-
ing proper controller �C of the form given in (9.8) solves the H2

optimal control problem with the output regulation constraint for
�.

Proof : The proof follows from Theorem 7.3.1.

Theorem 9.3.2 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (9.1), and the exosystem �E as in (9.2). Also, consider
the auxiliary system �̄ as in (9.5). Then, the following statements hold:

The H2 optimal control problem with output regulation constraint
for � is solvable via a strictly proper controller if and only if the
H2 optimal control problem for �̄ is solvable via a strictly proper
controller. Moreover, a controller �̄C of the form given in (9.7) is
an H2 optimal controller for �̄ if and only if the corresponding
strictly proper controller �C of the form given in (9.8) solves the
H2 optimal control problem with the output regulation constraint
for �.
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Remark 9.3.1 Note that by restricting controllers of the auxiliary system to
be strictly proper instead of the more general form �̄s

C, we do not lose perfor-
mance but we might lose some flexibility in the sense that we do not capture
all optimal controllers.

Proof : From Theorem 7.3.1, it is clear that the H2 optimal control problem
with output regulation constraint for � is solvable via a strictly proper con-
troller if and only if the H2 optimal control problem for �̄ is solvable over
the class of controllers of the form �̄s

C as given in (9.9). Next, as will be ev-
ident from the proof of Theorem 9.4.3 of Subsection 9.4.2, whenever the H2

optimal control problem for �̄ is solvable over the class of controllers of the
form �̄s

C as given in (9.9), there exists an H2 optimal controller with a direct
feedthrough term equal to zero, i.e. D̄c,1 = 0. Hence the result follows.

We can now state the following theorems which provide the conditions
under which the H2 suboptimal control problem with output regulation con-
straint can be solved. Also, they provide a procedure of constructing an ap-
propriate sequence of controllers that solves the posed problem.

Theorem 9.3.3 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (9.1), and the exosystem �E as in (9.2). Also, consider
the auxiliary system �̄ as in (9.5). Then, the following statements hold:

The H2 suboptimal control problem with output regulation con-
straint for � is solvable via a family {�̄C(ε) | ε > 0} of proper
(or strictly proper) controllers.

Moreover, a family {�̄C(ε) | ε > 0} of proper controllers of the
form (9.7) is H2 suboptimal for �̄ if and only if the correspond-
ing family {�C(ε) | ε > 0} of proper controllers of the form (9.8)
solves the H2 suboptimal control problem with the output regula-
tion constraint for �.

Similarly, a family {�̄s
C(ε) | ε > 0} of controllers of the form (9.9)

is H2 suboptimal for �̄ if and only if the corresponding family
{�C(ε) | ε > 0} of strictly proper controllers of the form (9.8)
solves the H2 suboptimal control problem with the output regula-
tion constraint for �.

Proof : In view of Theorem 7.3.1 and the proof of Theorem 9.3.2, the proof
of this theorem is obvious when one takes into account the fact that the H2
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suboptimal control problem for �̄ is solvable under the Assumptions A.1 and
A.3.

Design of a measurement feedback regulator that solves the H2 optimal
control problem with output regulation constraint:

Theorems 9.3.1 and 9.3.2 suggest the following two step procedure:

Step 1: Construct a proper or strictly proper controller �̄C of the form (9.7)
which solves the H2 optimal control problem for �̄.

Step 2: Knowing the parameters Āc, B̄c, C̄c, and D̄c of the controller �̄C

obtained in Step 1, construct a corresponding controller �C as given in (9.8).

Clearly �C constructed in Step 2 solves the H2 optimal control problem with
output regulation constraint for � via a proper (or a strictly proper) controller.

The above procedure can be modified in an obvious way to obtain a se-
quence of proper (or strictly proper) controllers that solves the H2 suboptimal
control problem with output regulation constraint for �.

Design of a sequence of measurement feedback regulators that solves the
H2 suboptimal control problem with output regulation constraint:

Theorem 9.3.3 suggests the following two step procedure.

Step 1: Construct a family {�̄C(ε) | ε > 0} (or {�̄C(ε) | D̄c(ε) = 0, ε > 0})
of measurement feedback regulators that solves the H2 suboptimal control
problem for �̄.

Step 2: Knowing the parameterized matrix quadruples {( Āc(ε), B̄c(ε), C̄c(ε),

D̄c(ε)) | ε > 0} that characterize {�̄C(ε) | ε > 0} in Step 1, construct a cor-
responding family {�C(ε) | ε > 0} of proper (or strictly proper) measurement
feedback regulators of the form (9.8).

Clearly {�C(ε) | ε > 0} constructed in Step 2 solves the H2 suboptimal control
problem with output regulation constraint for � via a sequence of proper (or
strictly proper) controllers.

9.4 Relationship between γ ∗
2 p,r , γ ∗

2sp,r , γ ∗
2 p, and γ ∗

2sp

Our primary objective in this section is to study how the achievable perfor-
mance is affected by having the output regulation constraint. As in Chapter
8, it turns out that there is no loss at all in the achievable performance if op-
timization is done over the class of proper (or strictly proper) controllers, i.e.
γ ∗

2p,r = γ ∗
2p, and γ ∗

2sp,r = γ ∗
2sp.
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To proceed with, we need to recall first some results from [61, 86]. Con-
sider the system � described by (9.1), and for any matrix P ∈ R

n×n , define a
discrete-time linear matrix inequality as

F(P) ≥ 0, (9.10)

where

F(P) :=
(

AT P A − P + CT
z Cz CT

z Dzu + AT P B

DT
zuCz + BT P A DT

zu Dzu + BT P B

)
.

As shown in [61] and as explained further in Appendix 6.B, whenever the pair
(A, B) is stabilizable, there exists a unique semi-stabilizing solution P of the
linear matrix inequality (9.10). Moreover, such a solution P is positive semi-
definite, strongly rank minimizing, and is the largest among all strongly rank
minimizing solutions.

Let us also define a dual version of the above linear matrix inequality. For
any matrix Q ∈ R

n×n , let

G(Q) ≥ 0, (9.11)

where

G(Q) :=
(

AQ AT − Q + Ed ET
d Ed DT

yd + AQCT
y

Dyd ET
d + Cy Q AT Dyd DT

yd + Cy QCT
y

)
.

Again, whenever the pair (Cy, A) is detectable, there exists a unique semi-
stabilizing solution Q of the linear matrix inequality (9.11). Moreover, such
a solution Q is positive semi-definite, strongly rank minimizing, and is the
largest among all strongly rank minimizing solutions.

We will next recall a theorem from [61, 86] that gives an expression for
the minimal achievable H2 norm of Td,z(� × �C) for any arbitrary system,
and in particular for the given system �.

Theorem 9.4.1 Consider the system (9.1) with w = 0. Assume that (A, B) is
stabilizable and (Cy, A) is detectable. Then, the infimum of the H2 norm of
Td,z(� ×�C) over all the proper controllers of the form (9.3) which internally
stabilize � is equal to

γ ∗
2p = (

trace ET
d P Ed + trace(AT P A − P + CT

z Cz)Q

− trace R∗(R∗)T
)1/2

,
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where P and Q are respectively the unique semi-stabilizing, and thus posi-
tive semi-definite and strongly rank minimizing, solutions of the linear matrix
inequalities (9.10) and (9.11), and R∗ is defined by

R∗ := [(DT
zu Dzu + BT P B)1/2]†[(DT

zuCz + BT P A)QCT
y + BT P Ed DT

yd]
× [(Dyd DT

yd + Cy QCT
y)

1/2]†. (9.12)

Here for a given matrix M, we denote by M† its Moore-Penrose inverse.

Also, the infimum of the H2 norm of Td,z(� × �C) over all the strictly
proper controllers of the form (9.3) with Dc = 0 which internally stabilize �

is equal to

γ ∗
2sp = (

trace ET
d P Ed + trace(AT P A − P + CT

z Cz)Q
)1/2

,

where again P and Q are respectively the unique semi-stabilizing, and thus
positive semi-definite and strongly rank minimizing, solutions of the linear
matrix inequalities (9.10) and (9.11).

In order to study the relationship between γ ∗
2p,r and γ ∗

2p, as well as the
relationship between γ ∗

2sp,r and γ ∗
2sp, we need to relate the associated semi-

stabilizing, strongly rank-minimizing solutions of the linear matrix inequali-
ties for the two systems � and �̄. We have the following lemma.

Lemma 9.4.1 Let P and Q be respectively the unique semi-stabilizing and
strongly rank minimizing solutions of the linear matrix inequalities (9.10) and
(9.11) for the system �. Similarly, let P̄ and Q̄ be respectively the unique
semi-stabilizing and strongly rank minimizing solutions of the linear matrix
inequalities corresponding to (9.10) and (9.11) defined for the auxiliary sys-
tem �̄. Then we have,

P̄ =
(

P 0
0 0

)
, and Q̄ =

(
Q 0
0 0

)
.

Conversely, let P̄ and Q̄ be the unique semi-stabilizing and strongly rank
minimizing solutions of the linear matrix inequalities corresponding to (9.10)
and (9.11) respectively defined for the auxiliary system �̄. Decompose P̄ and
Q̄ to be compatible with the decompositions in (9.6),

P̄ =
(

P11 P12

P21 P22

)
and Q̄ =

(
Q11 Q12

Q21 Q22

)
.

Then P11 and Q11 are respectively the unique semi-stabilizing and strongly
rank minimizing solutions of the linear matrix inequalities (9.10) and (9.11)
for the system �.
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Proof : Let P and Q be the unique semi-stabilizing and strongly rank mini-
mizing solutions of the linear matrix inequalities (9.10) and (9.11) respectively
for the system �. Then it is easy to check that(

P 0
0 0

)
and

(
Q 0
0 0

)

are the semi-stabilizing and strongly rank minimizing solutions of the linear
matrix inequalities corresponding to (9.10) and (9.11) defined for the auxiliary
system �̄. Then, the result follows right away since such solutions are unique.

Conversely, if P̄ and Q̄ are respectively the unique semi-stabilizing and
strongly rank minimizing solutions of the linear matrix inequalities corre-
sponding to (9.10) and (9.11) defined for the auxiliary system �̄, then it is
straightforward to check that P11 and Q11 are indeed respectively the unique
semi-stabilizing and strongly rank minimizing solutions of the linear matrix
inequalities (9.10) and (9.11) defined for �.

9.4.1 Relationship between γ ∗
2 p,r and γ ∗

2 p

In this subsection, we study γ ∗
2p,r and γ ∗

2p, and show that γ ∗
2p,r = γ ∗

2p.

Theorem 9.4.2 Let the system � with realization (9.1) be given. Also, let
Assumptions A.1, A.2, A.3, and A.4 hold. Then, we have γ ∗

2p,r = γ ∗
2p.

Proof : By Theorem 9.4.1 we have,

γ ∗
2p = (

trace ET
d P Ed +trace(AT P A−P +CT

z Cz)Q−trace R∗(R∗)T
)1/2

.

On the other hand, if we restrict attention to the special class of controllers of
the form (9.8), then we know that we achieve output regulation. Moreover,
obviously we have γ ∗

2p � γ ∗
2p,r , where

γ ∗
2p,r =

(
trace

(
ET

d 0
)

P̄

(
Ed

0

)
+ trace

[(
AT 0

−
T BT ST

)
P̄

(
A −B


0 S

)

−P̄ +
(

CT
z

−
T DT
zu

)(
Cz −Dzu


)]
Q̄ − trace R̄∗(R̄∗)T

)1/2

,

where R̄∗ is equal to R∗ as defined in (9.12) for the system �̄. Using Lemma
9.4.1, it is then immediate that γ ∗

2p = γ ∗
2p,r .
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Remark 9.4.1 It turns out that the achievable performance of the auxiliary
system is independent of the specific solution of the regulator equation used
in the construction of the auxiliary system. Hence even in the case of mul-
tiple solutions of the regulator equation, it is easy to find a suitable proper
controller.

9.4.2 Relationship between γ ∗
2sp,r and γ ∗

2sp

In this subsection, we study γ ∗
2sp,r and γ ∗

2sp, and as in the previous subsection
show that they are equal to one another.

Theorem 9.4.3 Let the system � with realization (9.1) be given. Also, let
Assumptions A.1, A.2, A.3, and A.4 hold. Then, we have γ ∗

2sp,r = γ ∗
2sp.

Proof : We first explicitly calculate γ ∗
2sp and γ ∗

2sp,r . In fact, by Theorem 9.4.1
we have,

γ ∗
2sp = (

trace ET
d P Ed + trace(AT P A − P + CT

z Cz)Q
)1/2

.

On the other hand, if we restrict attention to the special class of strictly proper
controllers which are of the form (9.8) with the constraint D̄c,2 = 0, then we
know that we achieve output regulation. Moreover, utilizing Theorem 9.3.2
and using Lemma 6.5.5 of [61], we can calculate γ ∗

2sp,r . To do so, let us define

�(D̄c) = 2 trace[DT
yd D̄T

c B̄T P̄ Ēd ] + 2 trace[D̄cC̄y Q̄(C̄zu D̄zu + ĀT P̄ B̄)]
+ trace[(D̄P D̄c D̄Q)(D̄P D̄c D̄Q)

T],
where

D̄P = (D̄T
zu D̄zu + B̄T P̄ B̄)1/2, D̄Q = (Dyd DT

yd + C̄y Q̄C̄T
y)

1/2.

Also, let

�∗ := min

{
�(D̄c) | D̄c =

(
D̄c,1

0

)
∈ R

(m+n)×p

}
.

It is easy to see that D̄c,1 = 0 is a solution to the above minimization, and this
leads to �∗ = 0. Then, from Lemma 6.5.5 of [61], we have

γ ∗
2sp,r =

(
trace

(
Ed

0

)T

P̄

(
Ed

0

)
+ trace

[(
AT 0

−
T BT ST

)
P̄

(
A −B


0 S

)

−P̄ +
(

CT
z

−
T DT
zu

) (
Cz −Dzu


)]
Q̄

)1/2

.
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Using Lemma 9.4.1, it is then immediate that γ ∗
2sp,r = γ ∗

2sp.

Remark 9.4.2 A remark similar to Remark 9.4.1 can be made. That is, the
achievable performance of the auxiliary system is independent of the specific
solution of the regulator equation used in the construction of the auxiliary
system. Hence even in the case of multiple solutions of the regulator equation,
it is easy to find a suitable strictly proper controller.
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Chapter 10

H∞ optimal control with an
output regulation constraint –
continuous-time systems

10.1 Introduction

For continuous-time systems, we consider here an output regulation problem
which seeks to achieve simultaneously a desired H∞ norm of a closed-loop
transfer function. That is, we seek here a controller that achieves output reg-
ulation while resulting in at most a specified value for the H∞ norm of a
transfer function from a certain input signal to a desired output signal of the
system. Such a multi-objective problem clearly takes into account certain per-
formance requirements. This is obvious when we recognize that the H∞ norm
can identify robustness to unstructured plant uncertainties.

The above posed problem can be viewed as an H∞ optimal control prob-
lem with an added output regulation constraint. As discussed in the previous
chapters, utilizing the results of Chapter 7, such a problem for the given sys-
tem is solved by transforming it to an H∞ optimal control problem without
any output regulation constraint for a certain auxiliary system. As in Chap-
ters 8 and 9, it can be seen that for the originally given system even if one
starts with an H∞ optimal control problem (ignoring the output regulation
constraint) that satisfies the regularity conditions, the corresponding H∞ op-
timal control problem for the auxiliary system inherently does not satisfy the
regularity conditions, i.e. in general it turns out to be a singular H∞ optimal
control problem. We can then obtain a solution to such a singular H∞ opti-
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mal control problem for the auxiliary system by using the recently developed
methods discussed in [73].

Also, as in Chapters 8 and 9, one fundamental issue arises. Does the added
output regulation constraint compromise the achievable performance? In this
regard, we will show that in the present case where we measure performance
by the H∞ norm of a transfer function matrix, there is a certain loss or decay
in the achievable performance due to the added output regulation constraint.
We will present a very explicit expression for such a decay in performance.
This decay will be expressed in terms of a static optimization problem.

The H∞ optimal control problem with an added output regulation con-
straint has been studied earlier in [1, 92]. The methods pursued there to solve
the posed problem restrict attention only to certain special cases, and a gen-
eral problem is not considered. To avoid the unnecessary restrictions and to
solve a general problem, our objective as in previous chapters is to present an
elegant and to the point derivation based on combining results from a number
of recent papers.

The mathematical aspects of our development depends on whether we
consider continuous- or discrete-time systems. As such, in this chapter, we
focus on continuous-time systems while the next chapter considers discrete-
time systems. This chapter is based on the recent research work of authors
[77].

This chapter is organized as follows. Section 10.2 formulates the H∞ γ -
suboptimal control problem with the output regulation constraint, while Sec-
tion 10.3 presents solvability conditions for such a problem and also develops
methods of constructing a regulator that solves such a problem whenever it is
solvable. Section 10.4 shows that the added output regulation constraint in the
given H∞ γ -suboptimal control problem indeed compromises the achievable
performance, and an explicit expression is derived showing such a compro-
mise.

10.2 Problem formulation

As in previous chapters, we start with a linear system with state space realiza-
tion,

� :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = Ax + Bu + Eww + Edd
e = Cex + Deuu + Deww

z = Czx + Dzuu
y = Cyx + Dyww + Dydd,

(10.1)
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where, as usual, x ∈ R
n, u ∈ R

m , y ∈ R
p, e ∈ R

q , and z ∈ R
�. The

exogenous disturbance input w ∈ R
s is generated by an exosystem �E with

state space realization,

�E : ẇ = Sw. (10.2)

As before, the variable d denotes an external disturbance. We seek measure-
ment feedback controllers which are of the form,

�C :
{

v̇ = Acv + Bc y,

u = Ccv + Dc y.
(10.3)

The closed-loop system consisting of the given system � and the controller
�C is denoted by � × �C. Also, the transfer matrix from d to z of � × �C is
denoted by Td,z(� × �C). As usual, we define,

‖Td,z(� × �C)‖∞ := sup
ω∈[−∞,∞)

σmax
[
Td,z(� × �C)(iω)

]
,

where σmax denotes the largest singular value.

Before we state formally the specific multi-objective problems of interest
here, we define the following notations:

γ ∗
∞ p,r = inf { ‖Td,z(� × �C)‖∞ | �C is a proper controller that

achieves output regulation for � },
γ ∗

∞ p = inf { ‖Td,z(� × �C)‖∞ | �C is a proper controller that

internally stabilizes � },
γ ∗

∞ sp,r = inf { ‖Td,z(� × �C)‖∞ | �C is a strictly proper controller

that achieves output regulation for � },
γ ∗

∞ sp = inf { ‖Td,z(� × �C)‖∞ | �C is a strictly proper controller

that internally stabilizes � }.

Note that it is known that for a system with a direct feedthrough matrix
from d to z with norm less than γ (in our case it is even zero) then we have
in continuous-time that γ ∗∞ sp = γ ∗∞ p. If the norm of this direct feedthrough
matrix is not less than γ than we must have a preliminary static output injec-
tion which makes this direct feedthrough matrix less than γ . In the resulting
system we can make the closed loop H∞ norm strictly less than γ by strictly
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proper controllers if and only if we can achieve this objective via proper con-
trollers. For details we refer to [70].

We can now state the specific multi-objective problem of interest here,
namely the H∞ γ -suboptimal control problem with output regulation con-
straint.

Problem 10.2.1 (H∞ γ -suboptimal control problem with the output regu-
lation constraint) Consider the system � and the exosystem �E as given in
(10.1) and (10.2). Find, if possible, a controller �C of the form (10.3) such
that the following conditions hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C is internally stable.

(ii) (Performance Measure) ‖Td,z(� × �C)‖∞ is strictly less than a speci-
fied value γ , i.e. an H∞ γ -suboptimal performance is obtained.

(iii) (Output Regulation) For any d ∈ L2, and for all x(0) ∈ R
n and w(0) ∈

R
s , the solution of the closed-loop system � × �C satisfies

lim
t→∞ e(t) = 0.

Remark 10.2.1 The part (iii) of the above problem formulation is equivalent
to the following: In the absence of external signal d, i.e. when d = 0, �C

achieves output regulation for �.

We note that when the output regulation constraint is removed from the
above problem formulation, the resulting problem is simply an unconstrained
H∞ γ -suboptimal control problem.

10.3 Solvability conditions

As we discussed in Chapter 7, the following assumptions are reasonable and
almost necessary to solve the problem defined above:

A.1. (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable, i.e. it has all its eigenvalues in the
closed right-half plane.
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A.3.
((

Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

A.4. There exist 	 and 
 solving the regulator equation,{
	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(10.4)

Note that these assumptions have been defined before, for instance on page
215.

In the case when the regulator equation (10.4) has a non-unique solution
for (	, 
), for simplicity of presentation, we assume throughout the chapter
that a solution (	, 
) of (10.4) has been chosen, and all our development here
builds on such a solution.

Following the results of Chapter 7, a solution to the H∞ γ -suboptimal
control problem with output regulation constraint for � is given in terms of a
solution to the H∞ γ -suboptimal control problem without any output regula-
tion constraint for the auxiliary system �̄ which is as in (7.5), and is repeated
below for convenience:

�̄ :
⎧⎨
⎩

˙̄x = Āx̄ + B̄ū + Ēd d̄
z̄ = C̄z x̄ + D̄zuū
ȳ = C̄y x̄ + Dydd̄ ,

(10.5)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, Ēd =

(
Ed

0

)
, (10.6a)

C̄z = (
Cz −Dzu


)
, D̄zu = (

0 Dzu

)
, (10.6b)

C̄y = (
Cy (Dyw + Cy	)

)
. (10.6c)

For �̄, a controller �̄C with state space representation ( Āc, B̄c, C̄c, D̄c) is
given by

�̄C :
{ ˙̄v = Ācv̄ + B̄c ȳ

ū = C̄cv̄ + D̄c ȳ.
(10.7)

For each controller �̄C for the auxiliary system �̄, we formulate a corre-
sponding controller �C for the given system �. It is given by

�C :
⎧⎨
⎩

v̇1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

v̇2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c2v2 + D̄c,2(y + (Dyw + Cy	)v1),
(10.8)
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where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄c =
(

C̄c,1

C̄c,2

)
, and D̄c =

(
D̄c,1

D̄c,2

)
.

We note that there is a 1−1 relationship between the proper controller �̄C

as given in (10.7) and the proper controller �C as given in (10.8). Furthermore,
we observe that with the constraint that D̄c,2 = 0, the controller �C as given
in (10.8) is strictly proper. In other words, by imposing the constraint that
D̄c,2 = 0 in �̄C, we can generate the class of strictly proper controllers �C

for the given system �. We denote below the class of controllers �̄C with the
constraint D̄c,2 = 0 by �̄s

C,

�̄s
C :

⎧⎨
⎩

˙̄v = Ācv̄ + B̄c ȳ

ū =
(

C̄c,1

C̄c,2

)
v̄ +

(
D̄c,1

0

)
ȳ.

(10.9)

The following theorems provide the conditions under which the H∞ γ -
suboptimal control problem with output regulation constraint can be solved
via proper or via strictly proper controllers. Also, they provide a procedure of
constructing an appropriate controller that solves the posed problem whenever
it is solvable.

Theorem 10.3.1 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (10.1), and the exosystem �E as in (10.2). Also, consider
the auxiliary system �̄ as in (10.5). Then, the following statements hold:

The H∞ γ -suboptimal control problem with output regulation
constraint for � is solvable via a proper controller if and only
if the H∞ γ -suboptimal control problem for �̄ is solvable via a
proper controller.

Moreover, a proper controller �̄C of the form given in (10.7) is a
proper H∞ γ -suboptimal controller for �̄ if and only if the corre-
sponding proper controller �C of the form given in (10.8) solves
the H∞ γ -suboptimal control problem with the output regulation
constraint for �.

Proof : The proof follows from Theorem 7.3.1.
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Theorem 10.3.2 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (10.1), and the exosystem �E as in (10.2). Also, consider
the auxiliary system �̄ as in (10.5). Then, the following statements hold:

The H∞ γ -suboptimal control problem with output regulation
constraint for � is solvable via a strictly proper controller if and
only if the H∞ γ -suboptimal control problem for �̄ is solvable
via a strictly proper controller.

Moreover, a strictly proper controller is an H∞ γ -suboptimal
controller for �̄ if and only if the corresponding strictly proper
controller �C of the form given in (10.8) solves the H∞ γ -sub-
optimal control problem with the output regulation constraint for
�.

Remark 10.3.1 To have a complete 1 − 1 relationship between an H∞ γ -
suboptimal controller for �̄ and a strictly proper controller �C of the form
given in (10.8) that solves the H∞ γ -suboptimal control problem with the
output regulation constraint for �, we need to consider a controller �̄s

C of
the form given in (10.9) for �̄. However, by restricting attention to strictly
proper controllers for �̄, we know that we do not lose performance because
the achievable H∞ norm for �̄ is less than γ over the class of proper con-
trollers if and only if the achievable H∞ norm is less than γ over the class of
strictly proper controllers.

Proof : The proof follows from Theorem 7.3.1 combined with the fact that we
can make the H∞ norm less than γ by controllers of the form �̄s

C as given in
(10.9) if and only if we can make the H∞ norm less than γ by strictly proper
controllers.

Design of a measurement feedback regulator that solves the H∞ γ -sub-
optimal control problem with output regulation constraint:

Theorems 10.3.1 and 10.3.2 suggest the following two step procedure:

Step 1: Construct a proper or strictly proper controller �̄C so that it solves
the H∞ γ -suboptimal control problem for �̄.

Step 2: Knowing the parameters Āc, B̄c, C̄c, and D̄c of the controller �̄C

obtained in Step 1, construct a corresponding controller �C as given in (10.8).

Clearly �C constructed in Step 2 solves the H∞ γ -suboptimal control prob-
lem with output regulation constraint for � via a proper (or a strictly proper)
controller.
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10.4 The relationship between γ ∗∞ p,r , γ ∗∞ p, γ ∗∞ sp,r and
γ ∗∞ sp

Our primary objective in this section is to study how the achievable perfor-
mance is affected by having the output regulation constraint. From the pre-
vious section we know that it does not matter whether we consider proper or
strictly proper controllers since we know that γ ∗∞ sp,r = γ ∗∞ p,r and γ ∗∞ p =
γ ∗∞ sp.

It turns out that there exists in general a certain loss in the achievable
performance because of the output regulation constraint; i.e. γ ∗∞ p,r � γ ∗∞ p

and γ ∗∞ sp,r � γ ∗∞ sp. We will find here a precise relationship between them.

Before we relate them, we need to recall first some results from [61, 73].

Consider the system � described by (10.1), and for matrices P ∈ R
n×n

and Q ∈ R
n×n , we define two continuous-time quadratic matrix inequalities,

Fγ (P) ≥ 0, Gγ (Q) � 0, (10.10)

where

Fγ (P) :=
(

AT P + P A + CT
z Cz + γ −2 P Ed ET

d P P B + CT
z Dzu

BT P + DT
zuCz DT

zu Dzu

)
,

Gγ (Q) :=
(

AQ + Q AT + Ed ET
d + γ −2QCT

z Cz Q QCT
y + Ed DT

yd

Cy Q + Dyd ET
d Dyd DT

yd

)
.

If Fγ (P) � 0, we say that P is a solution of the quadratic matrix inequality
and if Gγ (Q) � 0, we say that Q is a solution of the dual quadratic matrix
inequality. We also note that in Appendix 10.A it is shown that each quadratic
matrix inequality is related to a matrix pencil. Hence we define the following
two matrix pencils which are related to the two quadratic matrix inequalities
defined before,

NFγ
(s, P) :=

((
s I − A − γ −2Ed ET

d P −B
)

Fγ (P)

)
, (10.11)

NGγ
(s, Q) :=

((
s I − A − γ −2 QCT

z Cz

−Cy

)
Gγ (Q)

)
. (10.12)

We now recall a theorem from [61, 73].

Theorem 10.4.1 Consider the system (10.1) with w = 0, and let γ > 0 be
given. Then the following two statements are equivalent:
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(i) For the system (10.1), there exists a controller �C such that the result-
ing closed-loop system is internally stable, and the closed-loop transfer
matrix from d to z, namely Td,z(� × �C) has an H∞ norm less than γ ,
i.e. ‖Td,z(� × �C)‖∞ < γ .

(ii) The following hold:

(a) There exist semi-stabilizing, and rank-minimizing solutions P and
Q of the quadratic matrix inequalities Fγ (P) � 0 and Gγ (Q) �
0 which satisfy r(P Q) < γ 2.

(b) The number of zeros on the imaginary axis, counting multiplici-
ties, of the matrix pencil NFγ

(s, P) is equal to the number of zeros
on the imaginary axis of the system characterized by (A, B, Cz,
Dzu).

(c) The number of zeros on the imaginary axis, counting multiplici-
ties, of the matrix pencil NGγ

(s, Q) is equal to the number of ze-
ros on the imaginary axis of the system characterized by (A, Ed ,
Cy, Dyd).

(d) For any zero λ on the imaginary axis of the system characterized
by (A, B, Cz, Dzu) or of the system characterized by (A, Ed , Cy,
Dyd), there exists a matrix � such that λI −A−B�Cy is invertible
and

‖(Cz + Dzu�Cy)(λI − A − B�Cy)
−1(Ed + B�Dyd)

+ Dzu�Dyd‖∞ < γ. (10.13)

Remark 10.4.1 We note that in contrast to the H2 case of Chapter 8, the semi-
stabilizing, and rank-minimizing solutions P and Q of the quadratic matrix
inequalities (10.10) are not uniquely determined. However, later on we work
with a particular semi-stabilizing, and rank-minimizing solution which has a
special structure and turns out to be the smallest positive semi-definite, semi-
stabilizing, and rank-minimizing solution.

Remark 10.4.2 The existence of a suitable � can be most easily checked via
a variation on the Youla parameterization. Let F and H be such that A + B F
and A + HCy are Hurwitz-stable. Define
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T1(s) = (
Cz + Dzu F −Dzu F

)
×

(
s I − A − B F B F

0 s I − A − HCy

)−1 (
Ed

Ed + H Dyd

)
,

T2(s) = (Cz + Dzu F)(s I − A − B F)−1 B + Dzu,

T3(s) = Cy(s I − A − HCy)
−1(Ed + H Dyd) + Dyd.

Then the last condition of the theorem is satisfied if for any zero λ on the imag-
inary axis of the system (A, B, Cz, Dzu) or of the system (A, Ed , Cy, Dyd)

there exists a matrix Q0 such that

‖T1(λ) + T2(λ)Q0T3(λ)‖∞ < γ.

This is obviously a straightforward convex feasibility problem.

Theorem 10.4.1 gives conditions to check whether we can make the H∞
norm of the closed-loop transfer function matrix less than γ for any arbitrary
system. As in Chapter 8, in order to study the relationship between γ ∗∞ p,r and
γ ∗∞ p we need to compare the achievable H∞ norms of the closed-loop transfer
function matrices for the systems �, given by (10.1), and �̄, given by (10.5).
We do so by relating the associated semi-stabilizing, and rank-minimizing
solutions of the quadratic matrix inequalities for the two systems. We have
the following lemma.

Lemma 10.4.1 Let P and Q be the smallest positive semi-definite rank-mini-
mizing semi-stabilizing solutions of the quadratic matrix inequalities associ-
ated to the system � which satisfy r(P Q) < γ 2. We define,

P̄ =
(

P 0
0 0

)
, and Q̄ =

(
Q 0
0 0

)
.

Then P̄ and Q̄ are the smallest positive semi-definite rank-minimizing semi-
stabilizing solutions of the quadratic matrix inequalities associated to the sys-
tem �̄ which satisfy r(P̄ Q̄) < γ 2.

Conversely, let P̄ and Q̄ be positive semi-definite rank-minimizing semi-
stabilizing solutions of the quadratic matrix inequalities associated to the sys-
tem �̄ which satisfy r(P̄ Q̄) < γ 2. Decompose P̄ and Q̄ to be compatible
with the decompositions in (10.6a),

P̄ =
(

P11 P12

P21 P22

)
and Q̄ =

(
Q11 Q12

Q21 Q22

)
.

Then P11 and Q11 are positive semi-definite matrices that satisfy the condi-
tions of Theorem 10.4.1 for the system � which satisfy r(P11 Q11) < γ 2.
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Proof : It is easy to check that

(
P 0
0 0

)
, and

(
Q 0
0 0

)
,

are positive semi-definite, semi-stabilizing, and rank-minimizing solutions of
the quadratic matrix inequalities associated with the system �̄. Therefore, the
smallest positive semi-definite, semi-stabilizing, and rank-minimizing solu-
tions of the quadratic matrix inequalities will have the same structure, i.e. we
have

P̄ =
(

P̃ 0
0 0

)
, and Q̄ =

(
Q̃ 0
0 0

)
,

with P̃ � P and Q̃ � Q because of the fact that P̄ and Q̄ are the smallest
positive semi-definite, semi-stabilizing, and rank-minimizing solutions of the
quadratic matrix inequalities associated with the system �̄. Conversely, it is
easy to check that P̃ and Q̃ are positive semi-definite, semi-stabilizing, and
rank-minimizing solutions of the quadratic matrix inequalities associated with
the system �. Since P and Q were the smallest matrices with this property
we find P̃ � P and Q̃ � Q. Combining the above yields P̃ = P and Q̃ = Q
and the result follows.

Finally, if P̄ and Q̄ are positive semi-definite matrices that satisfy the
conditions of Theorem 10.4.1, then it is straightforward to check that P11 and
Q11 are positive semi-definite matrices that satisfy the conditions of Theorem
10.4.1 for the system �.

If we forget condition (10.13), then the above lemma implies the fol-
lowing; if part (2) of Theorem 10.4.1 is satisfied for �, then it is also sat-
isfied for the system �̄. In order to study the condition (10.13), we note that
Lemma 7.3.1 yields an explicit relationship between the zeros of subsystems
of the systems � and �̄. It is easy to check then that the condition (10.13)
for �̄ is satisfied for the zeros of systems characterized by (A, B, Cz, Dzu)

and (A, Ed , Cy, Dyd) (except for possibly eigenvalues of S) assuming that the
condition (10.13) is satisfied for the system �. With respect to the eigenvalues
of S we define the following:

Definition 10.4.1 Denote by γS the smallest γ such that there exist 
 and 	

satisfying (10.4) such that for any eigenvalue λ of S, there exists a matrix �
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satisfying the property,

∥∥[(Cz −Dzu

) + (

0 Dzu

)
�

(
Cy (Dyw + Cy	)

)]
[
λI −

(
A −B


0 S

)
−

(
0 B
I 0

)
�

(
Cy (Dyw + Cy	)

)]−1

[(
Ed

0

)
+

(
0 B
I 0

)
�Dyd

]
+ (

0 Dzu

)
�Dyd

∥∥∥∥
∞

< γ.

Finding a matrix � such that the norm given above is less than γ can be
reduced to finding a matrix Q0 such that

‖T1(λ) + T2(λ)Q0T3(λ)‖∞ < γ

for suitably chosen transfer matrices T1, T2, and T3 in the same way as de-
scribed after Theorem 10.4.1.

Note that, in the special case that the system characterized by (A, B,
Ce, Deu) is left-invertible, the matrices 	 and 
 are uniquely determined by
(10.4). Hence, for this special case, the determination of γS is greatly simpli-
fied.

We can now present a relationship between γ ∗∞ p,r and γ ∗∞ p, as well as
between γ ∗∞ sp,r and γ ∗∞ sp, and it is given in the following theorem.

Theorem 10.4.2 Let the system � with realization (10.1) be given, and also
let Assumptions A.1, A.2, A.3, and A.4 hold. Then, we have

γ ∗
∞ sp,r = γ ∗

∞ p,r = max{γS, γ
∗
∞ p}.

Proof : According to Lemma 10.4.1 there exist matrices P and Q that satisfy
the conditions of Theorem 10.4.1 for the system � if and only if there exist
matrices P̄ and Q̄ that satisfy the conditions of Theorem 10.4.1 for the system
�̄. Therefore the only difference in achievableH∞ norm has to be caused by
the additional assumption (10.13). Then, given the definition of γS, the result
follows immediately.

Remark 10.4.3 The intuitive reason why H2 performance does not change
when you impose output regulation constraint but H∞ does is related to the
fact that in the frequency where we have a pole we get constraints on the
amount with which we can reduce the peak. This increases unavoidably the
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H∞ norm. However, for H2 a high peak which is very narrow has a small
norm and therefore even though the peak cannot be lowered by making the
peak more narrow its affect on the H2 norm can be reduced enough to avoid
an increase in H2 norm.
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10.A Continuous-time quadratic matrix inequalities

As it is well known, algebraic Riccati equations are primary tools used in solv-
ing what is known as the regular H2 and H∞ control problems. However, as
Riccati equations do in the case of regular problems, quadratic matrix inequal-
ities introduced earlier by Stoorvogel [70] play a central role in solving the
singular H∞ control problems. It turns out that quadratic matrix inequalities
have properties which are somewhat similar to those of linear matrix inequal-
ities discussed earlier in Appendix 6.A. We introduce now a continuous-time
quadratic matrix inequality (CQMI) in the following definition.

Definition 10.A.1 Let A ∈ R
n×n, B ∈ R

n×m, Q ∈ R
n×n, R ∈ R

m×m, S ∈
R

n×m, and E ∈ R
n×� with Q and R being symmetric. The matrix inequality

of the form

Q(X) ≥ 0, (10.14)

with X ∈ R
n×n where

Q(X) :=
(

Q + AT X + X A + X E ET X X B + S

BT X + ST R

)
,

is called a continuous-time quadratic matrix inequality (CQMI). Moreover,
when X satisfies (10.14), it is referred to as a solution of the quadratic matrix
inequality.

Remark 10.A.1 Note that the quadratic matrix inequality in (10.14) when the
quadratic term X E ET X is dropped is precisely the same as the linear matrix
inequality given in (6.63).

We restrict ourselves here to the case when the matrices Q, R, and S
satisfy the positive semi-definite condition(

Q S

ST R

)
� 0. (10.15)

In particular, we assume that there exists matrices C ∈ R
p×n and D ∈ R

p×m

with
(
C D

)
of full rank such that

Q = CTC, R = DT D, and S = CT D.
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This restriction is not necessary; however, we have chosen it here merely for
the sake of simplicity. Moreover, this special class of quadratic matrix in-
equalities is relevant to H∞ control theory. With the above restriction, the
quadratic matrix inequality in (10.14) is rewritten as

Q(X) =
(

CTC + AT X + X A + X E ET X X B + CT D

BT X + DTC DT D

)
≥ 0. (10.16)

We denote the set of real symmetric solutions of the quadratic matrix inequal-
ity in (10.14) as �, i.e.

� := {
X ∈ R

n×n
∣∣ X = X T and Q(X) ≥ 0

}
. (10.17)

As discussed in [61], whenever X is a solution of the quadratic matrix in-
equality (10.16), we have XS∗(A, B, C, D) = 0 where the detectable strongly
controllable subspace S∗(A, B, C, D) is as in Definition 1.2.1.

As in the case of linear matrix inequalities, a relevant set of solutions of
a quadratic matrix inequalities in the context of H∞ theory is the set of rank
minimizing solutions. Before we develop the definition of rank minimizing
solutions, we need to examine the following property.

Lemma 10.A.1 Consider the quadratic matrix inequality in (10.16). Let the
normal rank of D + C(s I − A)−1 B be denoted by ρ̄. Then, for all X ∈ �, the
rank of Q(X) is always greater than or equal to ρ̄, i.e.

rank{ Q(X)} ≥ ρ̄ ∀ X ∈ �.

Now, we are ready to define the set of all rank minimizing solutions of a
quadratic matrix inequality

Definition 10.A.2 A solution X ∈ � is said to be rank minimizing if

rank Q(X) = ρ̄.

Also, let us denote the set of all rank minimizing solutions of the quadratic
matrix inequality in (10.16) as �min , i.e.

�min := {
X ∈ � | rank Q(X) = ρ̄

}
. (10.18)

A rank minimizing solution X such that X ≥ 0 is said to be a positive semi-
definite rank minimizing solution, and similarly a rank minimizing solution X
such that X > 0 is said to be a positive definite rank minimizing solution.
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We next have the following definition regarding semi-stabilizing and sta-
bilizing solutions of a quadratic matrix inequality.

Definition 10.A.3 Consider a matrix pencil

N(s, X) :=
(

M(s, X)

Q(X)

)

where M(s, X) := (
s I − A − E ET X −B

)
. Then a solution X ∈ �min is

said to be a semi-stabilizing solution if all the finite zeros of the matrix pencil
N(s, X) are in the closed left half plane, i.e. in C

0 ∪ C
−. Similarly, a solution

X ∈ �min is said to be a stabilizing solution if all the finite zeros of N(s, X)

are in the open left half plane, i.e. in C
−.

It turns out that the problem of obtaining the existence conditions for
semi-stabilizing, or stabilizing, or positive semi-definite, or positive definite
solutions of a quadratic matrix inequality reduces to the one of obtaining the
existence conditions for similar solutions of an associated continuous-time al-
gebraic Riccati equation. Also, in the H∞ literature, a pertinent solution of a
quadratic matrix inequality that has been used often is a stabilizing solution.
As shown in [61], a stabilizing solution of a quadratic matrix inequality, if it
exists, is also unique. Methods of constructing semi-stabilizing or stabilizing
solutions as well as other solutions of a quadratic matrix inequality are given
in [61]. Such methods are based on transforming a given quadratic matrix
inequality to an associated Riccati equation.

Finally, we would like to make a comment on discrete-time quadratic ma-
trix inequalities. Although discrete-time quadratic matrix inequalities can be
discussed following the concepts introduced in this section for continuous-
time quadratic matrix inequalities, we note that nothing has yet been done in
this regard in the existing literature. This may be because of the lack of a
clear understanding as to the potential of such discrete-time quadratic matrix
inequalities.



Chapter 11

H∞ optimal control with an
output regulation constraint –
discrete-time systems

11.1 Introduction

This chapter is a discrete-time analog of Chapter 10. That is we formu-
late here an output regulation problem with an H∞ optimal control constraint.
Such a problem can equivalently be viewed as an H∞ optimal control problem
with the output regulation constraint. As in the previous chapters, although a
suitable controller which solves the posed problem for a given system can
be constructed via the construction of a controller that solves an H∞ optimal
control problem without the output regulation constraint for a certain auxil-
iary system, a fundamental and significant issue still needs to be answered.
Namely, whether the added output regulation constraint in a problem compro-
mises the achievable performance. In this regard, as in Chapter 10, there is a
certain loss or decay in the achievable performance due to the added output
regulation constraint, and this decay will be explicitly expressed in terms of a
static optimization problem.

This chapter is based on the recent research work of the authors [77], and
is organized as follows. Section 11.2 formulates the H∞ γ -suboptimal con-
trol problem with the output regulation constraint, while Section 11.3 presents
solvability conditions for such a problem and also develops methods of con-
structing a regulator that solves such a problem whenever it is solvable. Fi-
nally, Section 11.4 shows that the added output regulation constraint in the
given H∞ γ -suboptimal control problem indeed compromises the achievable
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performance, and an explicit expression is derived showing such a compro-
mise.

11.2 Problem formulation

As in previous chapters, we start with a linear system with state space realiza-
tion,

� :

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) = Ax(k) + Bu(k) + Eww(k) + Edd(k)

e(k) = Cex(k) + Deuu(k) + Deww(k)

z(k) = Czx(k) + Dzuu(k)

y(k) = Cyx(k) + Dyww(k) + Dydd(k),

(11.1)

where, as usual, x ∈ R
n, u ∈ R

m , y ∈ R
p, e ∈ R

q , and z ∈ R
�. The

exogenous disturbance input w ∈ R
s is generated by an exosystem �E with

state space realization,

�E : w(k + 1) = Sw(k). (11.2)

As before, the variable d denotes an external disturbance. We seek measure-
ment feedback controllers which are of the form,

�C :
{

v(k + 1) = Acv(k) + Bc y(k),

u(k) = Ccv(k) + Dc y(k).
(11.3)

The closed-loop system consisting of the given system � and the controller
�C is denoted by � × �C. Also, the transfer matrix from d to z of � × �C is
denoted by Td,z(� × �C). As usual, we define,

‖Td,z(� × �C)‖∞ := sup
ω∈[−π,π)

σmax
[
Td,z(� × �C)(e

iω)
]
,

where σmax denotes the largest singular value.

Before we state formally the specific multi-objective problems of interest
here, we define the following notations:

γ ∗
∞ p,r = inf { ‖Td,z(� × �C)‖∞ | �C is a proper controller that

achieves output regulation for � },
γ ∗

∞ p = inf { ‖Td,z(� × �C)‖∞ | �C is a proper controller that

internally stabilizes � },
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γ ∗
∞ sp,r = inf { ‖Td,z(� × �C)‖∞ | �C is a strictly proper controller

that achieves output regulation for � },
γ ∗

∞ sp = inf { ‖Td,z(� × �C)‖∞ | �C is a strictly proper controller

that internally stabilizes � }.

We can now state the specific multi-objective problem of interest here,
namely the H∞ γ -suboptimal control problem with output regulation con-
straint.

Problem 11.2.1 (H∞ γ -suboptimal control problem with the output regu-
lation constraint) Consider the system � and the exosystem �E as given in
(11.1) and (11.2). Find, if possible, a controller �C of the form (11.3) such
that the following conditions hold:

(i) (Internal Stability) In the absence of the disturbances w and d, the
closed-loop system � × �C is internally stable.

(ii) (Performance Measure) ‖Td,z(� × �C)‖∞ is at most a specified value
γ , i.e. an H∞ γ -suboptimal performance is obtained.

(iii) (Output Regulation) For any d ∈ �2, and for all x(0) ∈ R
n and w(0) ∈

R
s , the solution of the closed-loop system � × �C satisfies

lim
k→∞

e(k) = 0.

Remark 11.2.1 The part (iii) of the above problem formulation is equivalent
to the following: In the absence of external signal d, i.e. when d = 0, �C

achieves output regulation for �.

We note that when the output regulation constraint is removed from the
above problem formulation, the resulting problem is simply an unconstrained
H∞ γ -suboptimal control problem.

11.3 Solvability conditions

As we discussed in Chapter 7, the following assumptions are reasonable and
almost necessary to solve the problem defined above:

A.1. (A, B) is stabilizable.
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A.2. The matrix S is anti-Schur-stable, i.e. all the eigenvalues of S are on the
unit circle or outside the unit circle.

A.3.
((

Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

A.4. There exist 	 and 
 solving the regulator equation,{
	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(11.4)

Note that these assumptions have been defined before, for instance on page
215.

In the case when the regulator equation (11.4) has a non-unique solution
for (	, 
), for simplicity of presentation, we assume throughout the chapter
that a solution (	, 
) of (11.4) has been chosen, and all our development here
builds on such a solution.

Following the results of Chapter 7, a solution to the H∞ γ -suboptimal
control problem with output regulation constraint for � is given in terms of a
solution to the H∞ γ -suboptimal control problem without any output regula-
tion constraint for the auxiliary system �̄ which is as in (7.5), and is repeated
below for convenience:

�̄ :
⎧⎨
⎩

x̄(k + 1) = Āx̄(k) + B̄ū(k) + Ēd d̄(k)

z̄(k) = C̄z x̄(k) + D̄zuū(k)

ȳ(k) = C̄y x̄(k) + Dydd̄(k),
(11.5)

where

Ā =
(

A −B


0 S

)
, B̄ =

(
0 B
I 0

)
, Ēd =

(
Ed

0

)
, (11.6a)

C̄z = (
Cz −Dzu


)
, D̄zu = (

0 Dzu

)
, (11.6b)

C̄y = (
Cy (Dyw + Cy	)

)
. (11.6c)

For �̄, a controller �̄C with state space representation ( Āc, B̄c, C̄c, D̄c) is
given by

�̄C :
{

v̄(k + 1) = Ācv̄(k) + B̄c ȳ(k)

ū(k) = C̄cv̄(k) + D̄c ȳ(k).
(11.7)

For each controller �̄C for the auxiliary system �̄, we formulate a corre-
sponding controller �C for the given system �. It is given by

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

ρv2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Cy	)v1),
(11.8)
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where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Ā,

C̄c =
(

C̄c,1

C̄c,2

)
, and D̄c =

(
D̄c,1

D̄c,2

)
.

We note that there is a 1−1 relationship between the proper controller �̄C

as given in (11.7) and the proper controller �C as given in (11.8). Furthermore,
we observe that with the constraint that D̄c,2 = 0, the controller �C as given
in (11.8) is strictly proper. In other words, by imposing the constraint that
D̄c,2 = 0 in �̄C, we can generate the class of strictly proper controllers �C

for the given system �. We denote below the class of controllers �̄C with the
constraint D̄c,2 = 0 by �̄s

C,

�̄s
C :

⎧⎨
⎩

v̄(k + 1) = Ācv̄(k) + B̄c ȳ(k)

ū(k) =
(

C̄c,1

C̄c,2

)
v̄(k) +

(
D̄c,1

0

)
ȳ(k).

(11.9)

The following theorems provide the conditions under which the H∞ γ -
suboptimal control problem with output regulation constraint can be solved
via proper or via strictly proper controllers. Also, they provide a procedure of
constructing an appropriate controller that solves the posed problem whenever
it is solvable.

Theorem 11.3.1 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (11.1), and the exosystem �E as in (11.2). Also, consider
the auxiliary system �̄ as in (11.5). Then, the following statements hold:

The H∞ γ -suboptimal control problem with output regulation
constraint for � is solvable via a proper controller if and only
if the H∞ γ -suboptimal control problem for �̄ is solvable via a
proper controller.

Moreover, a proper controller �̄C of the form given in (11.7) is a
proper H∞ γ -suboptimal controller for �̄ if and only if the corre-
sponding proper controller �C of the form given in (11.8) solves
the H∞ γ -suboptimal control problem with the output regulation
constraint for �.

Proof : The proof follows from Theorem 7.3.1.
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Theorem 11.3.2 Let Assumptions A.1, A.2, A.3, and A.4 hold. Consider the
given system � as in (11.1), and the exosystem �E as in (11.2). Also, consider
the auxiliary system �̄ as in (11.5). Then, the following statements hold:

The H∞ γ -suboptimal control problem with output regulation
constraint for � is solvable via a strictly proper controller if and
only if the H∞ γ -suboptimal control problem for �̄ is solvable
via a strictly proper controller.

Moreover, a strictly proper controller is an H∞ γ -suboptimal
controller for �̄ if and only if the corresponding strictly proper
controller �C of the form given in (10.8) solves the H∞ γ -sub-
optimal control problem with the output regulation constraint for
�.

Remark 11.3.1 To have a complete 1 − 1 relationship between an H∞ γ -
suboptimal controller for �̄ and a strictly proper controller �C of the form
given in (10.8) that solves the H∞ γ -suboptimal control problem with the
output regulation constraint for �, we need to consider a controller �̄s

C of the
form given in (10.9) for �̄. However, by restricting attention to strictly proper
controllers for �̄, we know that we do not lose performance due to the specific
structure as illustrated in the proof.

Proof : We need to establish that the H∞ γ -suboptimal control problem for �̄,
is solvable via a controller �̄s

C of the form given in (11.9) if and only if H∞ γ -
suboptimal control problem for �̄, is solvable via a strictly proper controller.
The rest of the proof follows from Theorem 7.3.1.

In [76] the discrete-time H∞ control problem with a structural constraint
on the direct feedthrough matrix has been considered. Using the structure
we will establish in Lemma 11.4.1, the above result then follows intrinsically
directly from [76]. However, [76] assumes that the system has no zeros on the
unit circle; an assumption which is never satisfied in our case. Nevertheless,
combining the paper [76] with the results from [73], the result can be obtained
straightforwardly.

Design of a measurement feedback regulator that solves the H∞ γ -sub-
optimal control problem with output regulation constraint:

Theorems 11.3.1 and 11.3.2 suggest the following two step procedure:

Step 1: Construct a controller �̄C of the form (11.7) (or a controller �̄s
C of the

form (11.9)) so that it solves the H∞ γ -suboptimal control problem for �̄.
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Step 2: Knowing the parameters Āc, B̄c, C̄c, and D̄c of the controller �̄C (or
�̄s

C) obtained in Step 1, construct a corresponding controller �C as given in
(11.8).

Clearly �C constructed in Step 2 solves the H∞ γ -suboptimal control prob-
lem with output regulation constraint for � via a proper (or a strictly proper)
controller.

11.4 The relationship between γ ∗∞ p,r , γ ∗∞ p, γ ∗∞ sp,r and
γ ∗∞ sp

Our primary objective in this section is to study how the achievable perfor-
mance is affected by having the output regulation constraint. As in Chapter
10, it turns out that there exists in general a certain loss in the achievable per-
formance because of the output regulation constraint; i.e. γ ∗∞ p,r � γ ∗∞ p and
γ ∗∞ sp,r � γ ∗∞ sp. We will find here a precise relationship between them.

Before we relate them, we need to recall first some results from [73].

Theorem 11.4.1 Consider the system (11.1) with w = 0, and let γ > 0 be
given. The following statements are equivalent:

(i) There exists a controller �C for the system (11.1), such that the result-
ing closed-loop system is internally stable, and the closed-loop transfer
matrix from d to z, namely Td,z(� × �C), has an H∞ norm less than γ ,
i.e. ‖Td,z(� × �C)‖∞ < γ .

(ii) There exist symmetric matrices P � 0 and Q � 0 such that the follow-
ing hold:

(a) We have R > 0 where

V := BT P B + DT
zu Dzu,

R := γ 2 I − ET
d P Ed + ET

d P BV † BT P Ed .

(b) There exists a semi-stabilizing solution P of the generalized dis-
crete-time algebraic Riccati equation1 ,

1In Appendix 11.A, we develop briefly certain definitions regarding generalized Riccati
equations as well as certain properties of them as needed for our purposes here.
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P = AT P A + CT
z Cz

−
(

BT P A + DT
zuCz

ET
d P A

)T

G(P)†

(
BT P A + DT

zuCz

ET
d P A

)
,

(11.10)

where

G(P) :=
(

DT
zu Dzu 0
0 −γ 2 I

)
+

(
BT

ET
d

)
P
(
B Ed

)
. (11.11)

(c) We have T > 0 where

W := Dyd DT
yd + Cy QCT

y,

T := γ 2 I − Cz QCT
z + Cz QCT

yW †Cy QCT
z .

(d) There exists a semi-stabilizing solution Q of the dual generalized
Riccati equation,

Q = AQ AT + Ed ET
d

−
(

Cy Q AT + Dyd ET
d

Cz Q AT

)T

H (Q)†

(
Cy Q AT + Dyd ET

d

Cz Q AT

)
,

(11.12)

where

H (Q) :=
(

Dyd DT
yd 0

0 −γ 2 I

)
+
(

Cy

Cz

)
Q
(
CT

y CT
z

)
. (11.13)

(e) r(P Q) < γ 2 where r(·) denotes the spectral radius.

Finally, for any zero λ on the unit circle of the system (A, B, Cz, Dzu)

or of the system (A, Ed , Cy, Dyd), there exists a matrix � such that
λI − A − B�Cy is invertible, and

‖(Cz + Dzu�Cy)(λI − A − B�Cy)
−1(Ed + B�Dyd)

+ Dzu�Dd‖∞ < γ. (11.14)

Remark 11.4.1 We note that in contrast to the H2 case of Chapter 9, the
matrices P and Q are not uniquely determined. However, later on we work
with a particular semi-stabilizing solution which has a special structure and
turns out to be the smallest positive semi-definite, semi-stabilizing solution.
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Remark 11.4.2 The definition of a semi-stabilizing or stabilizing solution as
given in [73] looks different from our Definition 11.A.6 given in Appendix
11.A. For instance, in order to guarantee P is a stabilizing solution of (11.10)
and Q is a stabilizing solution of (11.12), in [73] the following conditions are
imposed:

(i) For all z ∈ C
� ∪C

⊕, the solution P of the generalized Riccati equation
(11.10) must be such that its associated matrix pencil, namely

⎛
⎝ z I − A −B −Ed

BT P A + DT
zuCz BT P B + DT

zu Dzu BT P Ed

ET
d P A ET

d P B ET
d P Ed − γ 2 I

⎞
⎠ ,

(11.15)

has normal rank equal to

n + �d + normrank{Cz(z I − A)−1 B + Dzu}
where �d is the dimension of the disturbance vector d.

(ii) Similarly, for all z ∈ C
�∪C

⊕, the solution Q of the generalized Riccati
equation (11.12) must be such that its associated matrix pencil, namely⎛

⎝z I − A AQCT
y + Ed DT

yd AQCT
z

−Cy Cy QCT
y + Dyd DT

yd Cy QCT
z

−Cz Cz QCT
y Cz QCT

z − γ 2 I

⎞
⎠ (11.16)

has normal rank equal to

n + � + normrank{Cy(z I − A)−1 Ed + Dyd}
where � is the dimension of the vector z.

However, with some simple straightforward manipulations, one can show that
the above conditions are equivalent to those imposed by Definition 11.A.6.

Theorem 11.4.1 gives conditions to check whether we can make the H∞
norm of the closed-loop transfer function matrix less than γ for any arbitrary
system. As in Chapter 10, in order to study the relationship between γ ∗∞ p,r

and γ ∗∞ p, or between γ ∗∞ sp,r and γ ∗∞ sp, we need to compare the achievable H∞
norms of the closed-loop transfer function matrices for the systems �, given
by (11.1), and �̄, given by (11.5). We do so by relating the associated semi-
stabilizing, rank-minimizing solutions of the quadratic matrix inequalities for
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the two systems. We have the following lemma the proof of which is based
on an identical argument as used in the proof of Lemma 10.4.1. Note that
solutions of two generalized Riccati equations (using the notation of Theorem
11.4.1) need to satisfy R > 0 and T > 0. We denote by R and T these
two matrices associated to the system � and by R̄ and T̄ these two matrices
associated to the system �̄.

Lemma 11.4.1 Let P and Q be the smallest positive semi-definite semi-stabi-
lizing solutions of the generalized Riccati equations associated to the system
� which satisfy r(P Q) < γ 2 and yield R > 0 and T > 0. We define,

P̄ =
(

P 0
0 0

)
, and Q̄ =

(
Q 0
0 0

)
.

Then, P̄ and Q̄ are the smallest positive semi-definite semi-stabilizing solu-
tions of the generalized Riccati equations associated to the system �̄ which
satisfy r(P̄ Q̄) < γ 2 and yields R̄ > 0 and T̄ > 0.

Conversely, let P̄ and Q̄ be positive semi-definite semi-stabilizing solu-
tions of the generalized Riccati equations associated to the system �̄ which
satisfy r(P̄ Q̄) < γ 2 and yield R̄ > 0 and T̄ > 0. Decompose P̄ and Q̄ to be
compatible with the decompositions in (11.6),

P̄ =
(

P11 P12

P21 P22

)
and Q̄ =

(
Q11 Q12

Q21 Q22

)
.

Then P11 and Q11 are positive semi-definite positive semi-definite semi-stabi-
lizing solutions of the generalized Riccati equations associated to the system
� which satisfy r(P11 Q11) < γ 2 and yields R > 0 and T > 0.

If we forget condition (11.14), then the above lemma implies that if part
(ii) of Theorem 11.4.1 is satisfied for �, then it is also satisfied for the system
�̄. In order to study this last condition we note that Lemma 7.3.1 points out an
explicit relationship between the zeros of subsystems of the systems � and �̄.
It is easy to check then that the final condition of part (ii) for �̄ is satisfied for
the zeros of systems characterized by (A, B, Cz, Dzu) and (A, Ed , Cy, Dyd)

(except for possibly eigenvalues of S) assuming that part (ii) is satisfied for
the system �. With respect to the eigenvalues of S we have the following
definition.

Definition 11.4.1 Denote by γS the smallest γ such that there exist 
 and 	

satisfying (11.4) such that for any eigenvalue λ of S there exists a matrix �
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satisfying the property,

∥∥[(Cz −Dzu

) + (

0 Dzu

)
�

(
Cy (Dyw + Cy	)

)]
[
λI −

(
A −B


0 S

)
−

(
0 B
I 0

)
�

(
Cy (Dyw + Cy	)

)]−1

×
[(

Ed

0

)
+

(
0 B
I 0

)
�Dyd

]
+ (

0 Dzu

)
�Dyd

∥∥∥∥
∞

< γ.

Note that in the special case that the system (A, B, Ce, Deu) is left-inver-
tible the matrices 	 and 
 are uniquely determined by (11.4). Hence, for
this special case the determination of γS is greatly simplified. However, in
general it can always be transformed into a convex optimization using the
same arguments as in Remark 10.4.2.

We can now present a relationship between γ ∗∞ p,r and γ ∗∞ p, as well as
between γ ∗∞ sp,r and γ ∗∞ sp, and it is given in the following theorem.

Theorem 11.4.2 Let the system � with a realization (11.1) be given. Also, let
Assumptions A.1, A.2, A.3, and A.4 hold. Then, we have

γ ∗
∞ p,r = max{γS, γ

∗
∞ p} and γ ∗

∞ sp,r = max{γS, γ
∗
∞ sp}.

Proof : The proof follows along the same arguments used in the proof of
Theorem 10.4.2.
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11.A Discrete-time algebraic Riccati equations

As the continuous-time algebraic Riccati equations do, the discrete-time alge-
braic Riccati equations play important roles. The intent of this section is to
study briefly Riccati equation as well as a generalization called the generalized
Riccati equation.

Our presentation here is again an extract of [61] where Riccati equations
are dealt with in detail along with the required proofs for their properties.

We introduce a discrete-time Riccati equation in the following definition.

Definition 11.A.1 Discrete-time Riccati equation Let A ∈ R
n×n, B ∈ R

n×m,
Q ∈ R

n×n, R ∈ R
m×m, and S ∈ R

n×m with Q and R being symmetric. Then
the constrained quadratic matrix equation for an unknown n × n matrix X
given by

X = AT X A − (AT X B + S)(R + BT X B)−1(BT X A + ST) + Q, (11.17)

is called a discrete-time algebraic Riccati equation.

The following is a special Riccati equation that satisfies R + BT X B > 0,
and is called an H2 Riccati equation because of its occurrence in some H2

optimal control problems.

Definition 11.A.2 H2 Riccati equation Let A ∈ R
n×n, B ∈ R

n×m, Q ∈
R

n×n, R ∈ R
m×m, and S ∈ R

n×m with Q and R being symmetric. Then the
constrained quadratic matrix equation for an unknown n × n matrix X given
by

R + BT X B > 0, (11.18a)

and

X = AT X A − (AT X B + S)(R + BT X B)−1(BT X A + ST) + Q, (11.18b)

is called an H2 discrete-time algebraic Riccati equation.

Definition 11.A.3 A solution of the Riccati equation (11.17) (or the H2 Ric-
cati equation in (11.18)) is said to be a semi-stabilizing solution if A− B(R +
BT X B)−1(BT X A + ST) has each of its eigenvalues either on the unit circle
or within the unit circle of the complex plane, i.e. in C

⊗. Similarly, a solu-
tion of the Riccati equation is said to be a stabilizing solution if A − B(R +
BT X B)−1(BT X A + ST) has all its eigenvalues entirely within the unit circle
of the complex plane, i.e. in C

�.
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A more general discrete-time algebraic Riccati equation that has been used
in the optimal control literature is defined next.

Definition 11.A.4 (Generalized discrete-time Riccati equation) Given A ∈
R

n×n, B ∈ R
n×m, Q ∈ R

n×n, R ∈ R
m×m, and S ∈ R

n×m with Q and R being
symmetric. Then the matrix equation for an unknown matrix X ∈ Rn×n given
by

X = AT X A − (AT X B + S)(R + BT X B)†(BT X A + ST) + Q, (11.19a)

and

ker[R + BT X B] ⊆ ker[AT X B + S], (11.19b)

is called a generalized discrete-time algebraic Riccati equation where, as
usual, A† denotes the generalized or Moore-Penrose inverse of A.

Remark 11.A.1 Whenever R + BT X B is invertible, obviously the subspace
inclusion in (11.19b) is automatically satisfied, and thus the generalized Ric-
cati equation in (11.19) reduces to the Riccati equation in (11.17).

We introduce next a special generalized Riccati equation that satisfies R +
BT X B ≥ 0. It is called an H2 generalized Riccati equation.

Definition 11.A.5 H2 generalized Riccati equation Let A ∈ R
n×n, B ∈

R
n×m, Q ∈ R

n×n, R ∈ R
m×m, and S ∈ R

n×m with Q and R being sym-
metric. Then the constrained quadratic matrix equation for an unknown n ×n
matrix X given by

X = AT X A − (AT X B + S)(R + BT X B)†(BT X A + ST) + Q, (11.20a)

ker R + BT X B ⊆ ker AT X B + S, (11.20b)

and

R + BT X B ≥ 0, (11.20c)

is called an H2 generalized Riccati equation.

Definition 11.A.6 Consider a matrix

N(z, X) :=
(

M(z)

L(X)

)
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where

M(z) := (
z I − A −B

)
and

L(X) :=
(

Q + AT X A − X AT X B + S

BT X A + ST BT X B + R

)
.

Then a solution X of the generalized Riccati equation in (11.19) (or the H2

generalized Riccati equation in (11.20)) is said to be a semi-stabilizing solu-
tion if the rank of N(z, X) is equal to its normal rank for all z outside the unit
circle of the complex plane, i.e. for all z ∈ C

⊕. Similarly, a solution X of the
generalized Riccati equation is said to be a stabilizing solution if the rank of
N(z, X) is equal to its normal rank for all z on the unit circle or outside the
unit circle, i.e. for all z ∈ C

� ∪ C
⊕.

Remark 11.A.2 Obviously, Definition 11.A.6 reduces to Definition 11.A.3
whenever the matrix (R + BT X B) is non-singular.

Remark 11.A.3 Definition 11.A.6 can be rewritten as follows. A solution
X of a generalized Riccati equation is said to be a stabilizing (respectively,
semi-stabilizing) solution if all the eigenvalues of the matrix

A − B(BT X B + R)†(BT X A + ST)

− B(I − (BT X B + R)†(BT X B + R))F

are inside the unit circle (respectively, inside or on the unit circle) for some
suitably chosen matrix F.

We often require that the matrices Q, R, and S in the above definitions of
(generalized) Riccati equations to satisfy the positive semi-definite condition,
namely(

Q S

ST R

)
� 0. (11.21)

Under the above condition, it follows that there exists matrices C ∈ R
p×n and

D ∈ R
p×m with

(
C D

)
of full rank such that(

Q S

ST R

)
= (

C D
)T (

C D
)
.
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Let us next define a rational matrix Ĥ(z),

Ĥ (z) := (
BT(z−1 I − AT)−1 I

) (Q S

ST R

)(
(z I − A)−1 B

I

)
. (11.22)

We note that, whenever the matrices Q, R, and S satisfy the positive semi-
definite condition (11.21), we can rewrite Ĥ(z) as

Ĥ (z) = GT(z−1)G(z)

where G(z) is the transfer function of the system characterized by the matrix
quadruple (A, B, C, D).

We observe that the only difference between a standard and a generalized
Riccati equation, as formulated in our Definitions 11.A.1 and 11.A.4, concerns
with whether (R + BT X B) is non-singular or not. A revealing fundamental
property of a generalized Riccati equation is that either all or none of the so-
lutions have the property that the corresponding (R + BT X B) is non-singular.
That is, a given generalized Riccati equation cannot have one solution, say
X1, for which (R + BT X1 B) is non-singular, and another solution, say X2, for
which (R + BT X2 B) is singular. Thus, in one case the study of a generalized
Riccati equation is exactly the same as that of a standard Riccati equation,
while in another case it is not. The distinction between the two cases depends
on the normal rank of the rational matrix Ĥ(z) being full or not. Similarly, the
difference between an H2 generalized and standard Riccati equation, as for-
mulated in our definitions, is the additional assumption that R + BT X B ≥ 0
in the case of a generalized Riccati equation. Again, a revealing fact is that
either all or none of the solutions of the generalized Riccati equation satisfy
the condition R + BT X B ≥ 0 depending on the normal rank of Ĥ(z).

We have the following lemma [74].

Lemma 11.A.1 Consider a generalized Riccati equation as in (11.19). Let X
be any symmetric solution of it. Then the following hold:

(i) Ĥ (z) has full normal rank if and only if BT X B + R is invertible.

(ii) The inertia2 of BT X B + R is equal to the inertia of Ĥ (z) for all but
finitely many z on the unit circle.

2The inertia of a matrix is defined as the triple of the number of eigenvalues outside the unit
circle, the number of eigenvalues on the unit circle, and the number of eigenvalues inside the
unit circle.
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(iii) BT X B + R � 0 if and only if Ĥ (z) � 0 for any point z on the unit
circle.

The last point in the above lemma is basically a special case of the second
point but listed separately since it plays an important role. Note that the above
lemma implies that a necessary condition for the existence of a solution to
a generalized Riccati equation is that the inertia of Ĥ (z) is independent of z
except for some possible singularities. A necessary condition for the existence
of a solution with BT X B + R � 0 (i.e. a solution to an H2 generalized Riccati
equation) is that Ĥ(z) � 0 for all z on the unit circle. Finally, note that Ĥ(z),
being of full normal rank, guarantees that the generalized inverse in (11.19a)
is a normal inverse and that (11.19b) is automatically satisfied, and thus then
a generalized Riccati equation reverts back to a standard Riccati equation.

There are certain strong relationships between the solutions of generalized
and standard discrete-time Riccati equations and certain appropriately defined
continuous-time Riccati equations. Details can be found in [61]. From such
interconnections, one can study the conditions under which semi-stabilizing
solutions of a generalized discrete-time Riccati equation exist. In general,
when such solutions exist, they are not necessarily unique.



Chapter 12

Robust output regulation

12.1 Introduction, problem formulation and some dis-
cussions

In Section 2.8 we considered the problem of structural stability. There are a
few issues in this respect we would like to discuss in this chapter:

• For structural stability we needed to restrict perturbations in the system
parameters since otherwise structural stability is never achievable. We
cannot perturb the exosystem and, in the case of saturation, we have
to take care that the eigenvalues of A remain in the closed left half
plane for continuous-time systems and within or on the unit circle for
discrete-time systems.

• By definition it only considers arbitrarily small perturbations of the
closed-loop system and does not guarantee that output regulation is pre-
served for larger perturbations.

• In robust control, it has been an established fact that there is often a lot
of a priori information about model uncertainty, and using this a priori
information gives us much stronger results. In some cases only cer-
tain parameters are subject to perturbation instead of all the parameters.
Also, sometimes there is uncertain dynamics which requires dynamic
uncertainty instead of parametric uncertainty.

• In view of Corollary 2.8.1 we know that any controller that achieves
structural stability must contain q copies of the exosystem where q is
the dimension of the error signal. This is a serious limitation since this
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might make the order of the controller too large to apply it in many
applications.

Note that the restrictions in structural stability such as no uncertainty in the
exosystem are not related to a priori information but are fundamental limita-
tions of the concept of structural stability. Also note that Theorem 2.8.2 tells
us that we actually guarantee output regulation for all perturbations which pre-
serve stability in the closed-loop system. This partially addresses the second
point. However, it still leaves the question on how to find a controller which
achieves output regulation and guarantees internal stability for all possible
perturbations.

We already briefly noted on page 49 that perhaps structural stability is not
the right question to ask. To ask for perfect tracking for all possible pertur-
bations is a lot to ask for. Perhaps, keeping the tracking error small over all
possible perturbations is more natural. We first restate the concept as already
formulated on page 49:

Problem 12.1.1 (Local practical structurally stable output regulation prob-
lem) Given any nominal values for the system parameters (A0, B0, Ew,0, Ce,0,
Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) for which the output regulation problem
is solvable, for any ε > 0, find a controller, if it exists, such that there exists a
neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0)
in the parameter space P such that the interconnection of the given controller
with any system with parameters (A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S)
in P0 yields internal stability and

lim
t→∞ ‖e(t)‖ < ε.

It is not hard to see that any controller that achieves internal stability and
output regulation also achieves practical structural stability as defined in the
above problem. We define below another related problem.

Problem 12.1.2 (Practical structurally stable output regulation problem)
Given any nominal values for the system parameters (A0, B0, Ew,0, Ce,0,
Deu,0, Dew,0, Cy,0, Dyu,0, Dyw,0, S0) for which the output regulation prob-
lem is solvable, and given a neighborhood P0 of (A0, B0, Ew,0, Ce,0, Deu,0,
Dew,0, Cy,0, Dyu,0, Dyw,0, S0) in the parameter space P , for any ε > 0, find
a controller, if it exists, such that the interconnection of the given controller
with any system with parameters (A, B, Ew, Ce, Deu, Dew, Cy, Dyu, Dyw, S)
in P0 yields internal stability and

lim
t→∞ ‖e(t)‖ < ε.
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This problem is much more difficult than Problem 12.1.1. In particular, the
question is how the solvability depends on the set P0. We obviously need to be
able to achieve robust stability when the parameters vary over the set P0. The
big question is how far almost output regulation imposes additional constraints
on P0 and whether we still need the multiple copies of the exosystem in the
controller. Unfortunately these problems are still open.

To address the problem regarding structure in the model uncertainty and
increasing the size of allowed perturbations we consider the model as given in
Figure 12.1. where � is given by:

� �

�

�

�

�E

�

�

�C

�d

w

u y

e

z

Figure 12.1: Output regulation with model uncertainty

� :

⎧⎪⎪⎨
⎪⎪⎩

ρx = Ax + Bu + Eww + Edd
e = Cex + Deuu + Deww

z = Czx + Dzuu
y = Cyx + Dyww + Dydd.

(12.1)

As is common in H∞ optimal control (see any standard textbook such as [44,
95]), the � indicates the model uncertainty. It is less than γ in H∞ norm and
can have all kind of additional structure such as square or (block) diagonal,
dynamic or static, linear or nonlinear, time-invariant or time-varying. For ease
of exposition we denote by � the set of possible �’s. We can then formulate
the following two problems which are in our view the crucial questions in
robust output regulation.



352 Chapter 12: Robust output regulation

Problem 12.1.3 (Robust exact output regulation problem) Consider the in-
terconnection in Figure 12.1 on the page before. Find a controller which
yields internal stability and

lim
t→∞ e(t) = 0

for all � ∈ �.

However, as we have seen in structural stability, exact output regulation
after perturbation often requires multiple copies of the exosystem in the con-
troller. Therefore by weakening exact output regulation to almost output regu-
lation we can hope that these multiple copies are no longer needed. The robust
almost output regulation problem is formulated in the following problem.

Problem 12.1.4 (Robust almost output regulation problem) Consider the in-
terconnection in Figure 12.1 on the preceding page. For each ε > 0 find a
controller which yields internal stability and

lim
t→∞ ‖e(t)‖ < ε

for all � ∈ �.

12.2 A result (sufficient condition)

In [2], the robust exact output regulation problem was studied with the addi-
tional requirement that the system achieves structural stability. We feel that
this paper offers an interesting sufficient condition to the robust exact output
regulation problem but we also feel that imposing the structural stability re-
quirement is badly motivated but is crucial in this paper to obtain a solution.
Actually, also the results from Chapters 10 (continuous-time) and 11 (discrete-
time) allow us to solve this problem with this additional requirement. We
describe this solution ihere.

Theorem 12.2.1 Consider the interconnection in Figure 12.1 on the page be-
fore. Let the system � be given by (7.23). Let Assumptions A.1, A.2, A.3, and
A.4 of Chapter 7 hold for the system (7.23). The robust exact output regulation
problem is solvable if there exists a controller which achieves regulation and
robust stability for the auxiliary system (7.27).
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This result is an immediate consequence of the property we showed in
section 2.8 that if we achieve structural stability (which is formulated on the
basis of arbitrary small perturbations) then we are guaranteed that we also
achieve regulation for any perturbation which preserves internal stability. We
know that we achieve structural stability for the system (7.23) if and only
if we achieve regulation for the system (7.27). Moreover, for a particular
uncertainty �, i.e. d = �z, the interconnection of the controller and (7.23) is
internally stable if and only if the interconnection of the controller and (7.27)
is internally stable since for w = 0 both systems are the same.

The next question is how to achieve regulation and robust stability for the
auxiliary system (7.27). Here we can actually use the arguments as illustrated
in the design of a general measurement feedback regulator on page 30. We
basically design another auxiliary system such that stabilizing controllers for
this second auxiliary system have a 1 − 1 relationship with stabilizing con-
trollers that achieve regulation for the first auxiliary system. Then the prob-
lem of achieving robust stability for the second auxiliary system is a classical
robust control problem. The controller we then obtain is connected with a
controller which achieves robust stability and regulation for the first auxiliary
system. Moreover, this same controller achieves structural stability and robust
stability for the original system and therefore the problem is solved.

We emphasize the following aspects:

• In Chapters 10 and 11, we analyzed the loss in performance due to the
output regulation constraint. This can obviously also be used to analyze
the loss of performance due to a structural stability constraint. Note
that structural stability is not necessary to solve the problems of exact
or almost robust output regulation and using this analysis of the loss of
performance we can check how conservative our results are.

• The main problem of this sufficient condition is the need of multiple
copies of the exosystem in the controller which might in many cases
not be needed for exact robust output regulation. At the moment we
have no method available to obtain controllers which do not contain
multiple copies of the exosystem. Also robust almost output regulation
might help us to reduce the complexity of the controller but this problem
remains open.
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Chapter 13

Generalized output regulation

13.1 Introduction

The classical output regulation problem we dealt with so far, although it occu-
pies a marked status in modern control literature, has certain shortcomings. To
motivate our work in this chapter, we mention below some of the prominent
shortcomings.

(i) In the classical output regulation problem, both the reference signals to
be tracked and the external disturbances that act on the plant are mod-
eled by an autonomous linear dynamic system called the exosystem.
Since the exosystem is autonomous, the reference signal as well as the
external disturbances could have only known frequency components.
This implies that the class of signals to be tracked as well as the class
of external disturbances that act on the plant are rather narrow.

(ii) In some classes of problems the system is affected by exogenous sig-
nals which are basically unknown but for which information is avail-
able such as being differentiable with bounded derivative which cannot
be handled via a classical weighting function because this weighting
function would be intrinsically unstable.

Our motivation here to reconsider the classical output regulation problem
arises from a desire to stamp out the above shortcomings among others. By
generalizing the modeling of exosystem, we have the following advantages:

• Any arbitrary reference signal can be treated.
• The derivative or feedforward information of reference signals whenever

it is available can be utilized.
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• It opens up new avenues to pursue whenever exact output regulation
problem is not solvable; for instance, one can study almost output reg-
ulation in which we quantify the asymptotic tracking error via one of
several possible performance criteria, e.g. the supremum of asymptotic
tracking error, is less than a specified fraction of a specified norm of the
reference signal.

The modeling method we follow here can easily be introduced via the
example illustrated by the master/slave block diagram of Figure 13.1. The
master is a non-autonomous dynamic system that produces a desirable behav-
ior for the slave while also modeling external disturbances. The controller or
regulator has access to two sets of information, measured outputs of the slave
(plant) as well as a certain output of the master, and it generates an input u
for the slave. The slave (plant) controlled by this input u produces an output
which tries to track the desired behavior dictated by the master. The job of
the controller is to generate u so that the tracking error e has certain desir-
able and specified characteristics. The master/slave configuration of Figure
13.1 has applications in other areas of engineering, e.g. synchronization in
communication systems.

�r

�

�

�
u

�

� �
e

+
−

Master

Controller

Slave

Figure 13.1: Master/Slave topology.

The generalized output regulation as developed here depends critically on
the classical notions of exact and almost disturbance decoupling. However,
these notions of exact and almost disturbance decoupling have to be exam-
ined under a very broad category of controllers beyond the classical state and
measurement feedback. This aspect is developed in Section 13.2. Section
13.3 re-formulates the output regulation problem under a generalized model.
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Steady state tracking performance is examined in Section 13.4. Here, we
formulate and study three hierarchically ordered layers of problems all deal-
ing with steady state tracking performance. The first layer of problems is
concerned with the strongest requirement on the steady state tracking error.
As in the case of classical output regulation problems, we seek here to render
the steady state tracking error exactly zero. The second layer concerns with
a weaker requirement of rendering the steady state tracking error arbitrarily
close to zero. The third layer imposes the weakest requirement. Here we
seek the norm of the amplitude of steady state tracking error be in a specified
acceptable range.

This chapter is based mostly on the recent research work of authors [65]
and [62, 63].

13.2 Exact and almost disturbance decoupling prob-
lems

Our purpose in this section is to examine the classical concepts of exact and
almost disturbance decoupling under a variety of controllers. As the results
available in the literature are not stated in the form necessary for our devel-
opment in subsequent sections, we need to carefully examine the notions of
exact and almost disturbance decoupling and state the new results as needed.
The results we present here are indeed generalizations of the existing classical
results (see, for instance, [49,58,78,85,88–91]). As in the literature, the solv-
ability conditions of the exact and almost disturbance decoupling problems
are expressed in terms of some geometric subspaces defined in Section 1.2.

We proceed now with our development of exact or almost disturbance
decoupling. As usual, ρ will denote an operator indicating the time derivative
d
dt for continuous-time systems and a forward unit time shift for discrete-time
systems. We consider the following linear system,

ρx = Ax + Bu + Err
y = Cyx + Dyr
z = Czx + Dzuu,

(13.1)

where x ∈ R
n is the state, u ∈ R

m is the control input, z ∈ R
� is the to be

controlled output, and r stands for a disturbance input.

Our goal in this section is to develop conditions under which the con-
trolled output variable z is insensitive (to be made precise soon) to the distur-
bance r by an appropriate choice of a controller among any prescribed class
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of controllers. Traditionally, as well as earlier in this book, only two classes
of controllers have been used, (1) state feedback controllers, and (2) mea-
surement feedback controllers. In addition to these classes of controllers, in
this chapter, we will also use enhanced versions of these controllers in which
certain information regarding the signal r(t) is available for feedback, such
as information about r(t), its derivatives or its future values on an interval
[t, t + T ] for continuous-time systems; information about r(k) or future val-
ues on an interval [k, k + j ] for discrete-time systems. Information about r
is often only available for part of the signal r , e.g. command signals are often
available for feedback while disturbances are generally unknown. We assume
that information about

r̄ = Rr

is known for some matrix R and the rest of the signal r is unknown and not
available for feedback.

We enumerate below different classes of controllers which we will use:

(i) State Feedback Controllers: In this case, the control law for both
continuous- and discrete-time systems is of the form,

�C1 : u = Fx . (13.2)

(ii) State Feedback + PD Controllers: In this case, for both continuous-
and discrete-time systems the control law is of the form,

�C2 : u = Fx +
j∑

i=0

Hiρ
i r̄ , (13.3)

for some integer j where for continuous-time systems ρ i r̄ denotes di r̄
dt i

and ρ0r̄ = r̄ while, for discrete-time systems, (ρ i r̄)(k) = r̄(k + i).

(iii) State Feedback + j -th order PD Controllers: In this case the control
law is of the form (13.3) but j is no longer a design parameter but a
prescribed integer.

(iv) Measurement Feedback Controllers: In this case, the control law for
both continuous- and discrete-time systems is of the form,

�C3 :
{

ρv = Acv + Bc y
u = Ccv + Dc y.

(13.4)
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(v) Measurement Feedback + PD Controllers: In this case, for both
continuous- and discrete-time systems, the control law is of the form,

�C4 :
{

ρv = Acv + Bc y + ∑ j
i=0 Giρ

i r̄
u = Ccv + Dc y + ∑ j

i=0 Hiρ
i r̄

(13.5)

for some integer j .

(vi) Measurement Feedback + j -th order PD Controllers: In this case,
the control law is of the form (13.5) but j is no longer a design param-
eter but a prescribed integer.

(vii) Measurement Feedback + PD + Feedforward Controllers: In this
case, for continuous-time systems, the control law is of the form,

�C5 :
{

v̇ = Acv + Bc y + ∑ j
i=0 Giρ

i r̄ + Gr̄
u = Ccv + Dc y + ∑ j

i=0 Hiρ
i r̄ + H r̄

(13.6)

where G and H are the operators,

(Gr̄)(t) =
∫ t+T

t
g(t)r̄(t)dt, (H r̄)(t) =

∫ t+T

t
h(t)r̄(t)dt

for a fixed T and for arbitrary continuous functions g and h.

Remark 13.2.1 We observe that the state feedback + 0-th order PD con-
trollers with R = I , i.e. controllers of the form u = Fx + H0r, are tradition-
ally called full information feedback controllers.

We would like to make an important comment on various PD controllers
described by �C2, �C4 and �C5. For discrete-time systems, the controllers de-
scribed by �C2, �C4 utilize at every time step k the disturbance r̄(k) as well
as its forward shifted values. This implies that these PD controllers anticipate
the disturbance that would act on the system in the future. An analogous situa-
tion holds for continuous-time systems. In this case, the controllers described
by �C2, �C4 utilize at every time instant t the disturbance r̄(t) as well as the
values of its time derivatives while the controller described by �C5 utilizes at
time t the disturbance r on a time interval [t, t + T ].

Our basic objectives in utilizing any and each of the above classes of con-
trollers are stated precisely in the following two definitions.
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Problem 13.2.1 Exact disturbance decoupling problem: For the linear sys-
tem given by (13.1), the exact disturbance decoupling problem with internal
stability via any prescribed class of controllers is to find a feedback controller
in that class such that the following properties hold:

(i) The poles of the closed-loop system consisting of the given plant (13.1)
and the controller are in C

g with C
g ⊆ C

− for continuous-time systems,
and C

g ⊆ C
� for discrete-time systems.

(ii) For all initial conditions and all r , we have z(t) → 0 as t → ∞.

Remark 13.2.2 Note that the above defined problem is termed as the ex-
act disturbance decoupling problem since, whenever a controller exists that
solves the above problem, the closed-loop transfer matrix from r to z is equal
to 0.

Problem 13.2.2 Almost Disturbance Decoupling Problem: For the linear
system given by (13.1), the almost disturbance decoupling problem with in-
ternal stability via any prescribed class of controllers is to find a family of
feedback controllers parameterized by ε > 0 (i.e. every parameter in the pre-
scribed family of controllers is considered to be a function of a scalar param-
eter ε > 0) such that the following properties hold:

(i) The poles of the closed-loop system consisting of the given plant (13.1)
and any controller in the family of feedback controllers are in C

g with
C

g ⊆ C
− for continuous-time systems, and C

g ⊆ C
� for discrete-time

systems.

(ii) For all initial conditions, and all r ∈ L∞ (or r ∈ �∞), the solution of
the closed-loop system satisfies

lim sup
t→∞

‖z(t)‖ � ε‖r‖∞.

Remark 13.2.3 We would like to note that part (ii) is equivalent to the condi-
tion that the feedback is such that for all initial conditions there exists a T > 0
such that for all r ∈ L∞ (or r ∈ �∞), the solution of the closed-loop system
satisfies for all t > T ,

‖z(t)‖ � ε (‖r‖∞ + 1) . (13.7)

It is also equivalent to internal stability combined with the property that for
all zero initial conditions we have

‖z‖∞ � ε‖r‖∞.
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Therefore the above defined problem is termed as the almost disturbance de-
coupling problem since, whenever a family of controllers exists that solves
the above problem, the closed-loop input-output operator from r to z has an
L∞-induced (or �∞-induced) operator norm less than ε.

Note that due to the relationship between the H∞ norm and the L∞-in-
duced (or �∞-induced) operator norm we know that the almost disturbance
decoupling problem is solvable with an L∞-induced (or �∞-induced) operator
norm if and only if it is solvable with respect to an L2-induced (or �2-induced)
operator norm. Solvability with respect to an H2 norm yields slightly weaker
solvability conditions.

We categorized earlier different classes of controllers any one of which
can be utilized for the purpose of achieving either exact or almost disturbance
decoupling. We proceed now to study the solvability conditions for exact and
almost disturbance decoupling problems via each of the classes of controllers
categorized earlier. At first we like to make certain general observations. Our
first observation is well known and concerns exact disturbance decoupling.
For any specified type of controller and for a specified stability set C

g ⊆
C

− for continuous-time systems and C
g ⊆ C

� for discrete-time systems, the
solvability conditions for exact disturbance decoupling are the same for both
continuous- and discrete-time systems except for the obvious difference that
the controlled and conditioned invariant subspaces are taken with respect to
different stability sets.

An important question that arises next is this. For a given class of con-
trollers, by relaxing the requirement, say from exact disturbance decoupling to
almost disturbance decoupling, can the solvability conditions be weakened?
In this regard, it is known that, when continuous-time systems are consid-
ered, for any specified type of controller, the solvability conditions required
to achieve almost disturbance decoupling are significantly weaker than those
required to achieve exact disturbance decoupling. This observation is due to
the wise use of asymptotic theory of low-gain and high-gain which plays a
crucial role in the realm of continuous-time systems. However, this observa-
tion does not quite hold for discrete-time systems since high-gain asymptotic
theory does not help us for discrete-time systems due to the bounded stability
set. As such, for discrete-time systems, if C

g is closed, one cannot weaken
the solvability conditions by relaxing the requirement from exact to almost
disturbance decoupling. On the other hand, if C

g is not closed, the solvability
conditions can be slightly weakened for almost disturbance decoupling owing
to the possible use of low-gain asymptotic theory.

Another fundamental query that arises is this. In the context of distur-
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bance decoupling, what is the impact of the availability of r(t) and its deriva-
tives or r(k) and its feedforward values on the solvability conditions required
to achieve a given type of (exact or almost) disturbance decoupling? The
following observation answers this query for continuous-time systems when
state feedback controllers are utilized.

Observation 13.2.1 For continuous-time systems, if there exists a state feed-
back + PD controller that renders the L p induced norm of the closed-loop
input-output operator from the disturbance r to the controlled output z ex-
actly equal to a certain value γ , then for any arbitrarily specified ε > 0, there
exists as well a state feedback controller that renders the L p induced norm of
the closed-loop input-output operator from r to z exactly equal to γ + ε.

The above fundamental observation leads to an important corollary of it,
namely for continuous-time systems whenever a state feedback + PD con-
troller exists that achieves exact disturbance decoupling, there exists as well
a state feedback controller of the type �C1 that achieves almost disturbance
decoupling.

A second corollary of the above observation is also possible, namely for
continuous-time systems whenever a family of state feedback + PD con-
trollers exists that achieves almost disturbance decoupling, there exists as well
a family of state feedback controllers that achieve almost disturbance decou-
pling.

The basic reason why Observation 13.2.1 and its corollaries hold for con-
tinuous-time systems is that one can use for them wisely the notion of high-
gain asymptotic theory. Observation 13.2.1 and its corollaries do not hold for
discrete-time systems because a state feedback + PD controller can actually
use future values of the reference signal. That is, for discrete-time systems,
the existence of a state feedback + PD controller that renders the �p induced
norm of the closed-loop input-output operator from the disturbance r to the
controlled output z exactly equal to a certain value γ , does not necessarily
imply the existence of a state feedback controller that renders the �p induced
norm of the closed-loop input-output operator from r to z less than γ + ε

for any arbitrarily specified ε > 0. In fact, it turns out that, for discrete-time
systems, when we are interested in achieving almost disturbance decoupling
by utilizing state feedback, the availability of r(k) at each step k already sig-
nificantly weakens the solvability conditions compared to the case of state
feedback controllers.

The above discussion concerns with state feedback controllers. On the
other hand, when we utilize measurement feedback controllers, the following
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observation shows the impact of the availability of r on the required solvability
conditions to achieve either exact or almost disturbance decoupling.

Observation 13.2.2 For both continuous- and discrete-time systems, when
we utilize measurement feedback controllers, the availability of the signal r(t)
at each instant t alleviates the conditions needed for the existence of an ap-
propriate observer.

Throughout this section, the pair (A, B) is said to be C
g-stabilizable if the

uncontrollable eigenvalues of A are in the set C
g. Similarly, the pair (Cy, A)

is said to be C
g-detectable if the unobservable eigenvalues of A are in the set

C
g. Also, a given matrix is said to be C

g-stable if all its eigenvalues are in the
set C

g.

We have the following specific results regarding exact disturbance decou-
pling.

Theorem 13.2.1 Consider the system given in (13.1) for both continuous- and
discrete-time systems. Let C

g ⊆ C
− for continuous-time systems, and C

g ⊆
C

� for discrete-time systems. Then, the necessary and sufficient conditions
under which the exact disturbance decoupling problem with internal stability
via any specified class of controllers is solvable are categorized below under
each class of controllers:

(i) State feedback controllers of the type �C1 as given in (13.2):

(a) (A, B) is C
g-stabilizable.

(b) im Er ⊆ Vg(A, B, Cz, Dzu).

(ii) State feedback + PD controllers of the type �C2 as given in (13.3) with
j a design parameter:

(a) (A, B) is C
g-stabilizable.

(b) Er ker R ⊆ Vg(A, B, Cz, Dzu).

(c) im Er ⊆ Vg(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(iii) State feedback + j -th order PD controllers of the type �C2 as given in
(13.3) with j fixed:

(a) (A, B) is C
g-stabilizable.

(b) Er ker R ⊆ Vg(A, B, Cz, Dzu).

(c) im Er ⊆ Vg(A, B, Cz, Dzu) + S∗
j (A, B, Cz, Dzu).
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(iv) Measurement feedback controllers of the type �C3 as given in (13.4):

(a) (A, B) is C
g-stabilizable and (Cy, A) is C

g-detectable.

(b) im Er ⊆ B ker Dzu + Vg(A, B, Cz, Dzu).

(c) ker Cz ⊇ C−1
y im Dy ∩ Sg(A, Er , Cy, Dy).

(d) Sg(A, Er , Cy, Dy) ⊆ Vg(A, B, Cz, Dzu).

(v) Measurement feedback + PD controllers of the type �C4 as given in
(13.5) with j a design parameter:

(a) (A, B) is C
g-stabilizable and (Cy, A) is C

g-detectable.

(b) Er ker R ⊆ B ker Dzu + Vg(A, B, Cz, Dzu).

(c) im Er ⊆ Vg(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(d) ker Cz ⊇ C−1
y im Dy ∩ Sg(A, Er Q, Cy, Dy Q).

(e) Sg(A, Er Q, Cy, Dy Q) ⊆ Vg(A, B, Cz, Dzu).

Here and in what follows Q is such that ker R = im Q.

(vi) Measurement feedback + j -th order PD controllers of the type �C4 as
given in (13.5) with j fixed:

(a) (A, B) is C
g-stabilizable and (Cy, A) is C

g-detectable.

(b) Er ker R ⊆ B ker Dzu + Vg(A, B, Cz, Dzu).

(c) im Er ⊆ Vg(A, B, Cz, Dzu) + S∗
j (A, B, Cz, Dzu).

(d) ker Cz ⊇ C−1
y im Dy ∩ Sg(A, Er Q, Cy, Dy Q).

(e) Sg(A, Er Q, Cy, Dy Q) ⊆ Vg(A, B, Cz, Dzu).

(vii) Measurement feedback + PD + feedforward controllers of the type
�C5 as given in (13.6): The conditions are the same as in item (v).

Remark 13.2.4 We would like to emphasize that, unlike the case of almost
disturbance decoupling to be discussed shortly, Theorem 13.2.1 which con-
cerns with exact disturbance decoupling holds for any stability set C

g, no
matter whether it is closed or open, for instance C

g equal to C
−.

For continuous-time systems we can of course also have derivative infor-
mation and information of future values with either j fixed or a design param-
eter. But also in that case the information on future values does not weaken
solvability conditions.
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Remark 13.2.5 For state feedback + 0-th order PD controllers with R = I ,
i.e. for full information feedback controllers of the type u = Fx + H0r , the
solvability conditions given in item (iii) of the above theorem still hold, how-
ever in this case S∗

0 (A, B, Cz, Dzu) can equivalently be replaced by B ker Dzu.

Proof : Part (i) and (iv) are standard results which can for instance be found
in [78]. (ii) is a consequence of (iii) and (v) is a consequence of (vi) when
we note that from Definition 1.2.2 that S∗

i is increasing and equal to S∗ after a
finite number of steps.

It remains to show (iii), (vi) and (vii). It is easy to see that conditions in
(vi) are necessary. Conditions (vi)a),(vi)d) and (vi)e) are necessary to solve
the disturbance decoupling problem with measurement feedback for the sub-
set of disturbances r satisfying Rr = 0. We can parameterize this subset of
disturbances by r̃ where r = Qr̃ and it is obviously necessary for our prob-
lem that the disturbance decoupling problem with measurement feedback is
solvable for this subset of disturbances since in this case Rr = 0.

Conditions (vi)b) and (vi)c) are necessary to solve disturbance decoupling
with state feedback + PD information and are hence obviously also necessary
to solve the measurement feedback + PD information disturbance decoupling
problem. Finally for (iii) it is obviously necessary that disturbance decoupling
with state feedback is solvable for r = Qr̃ which yields conditions (iii)a) and
(iii)b). The necessity of (iii)c) follows almost directly from the definition of
Vg(A, B, Cz, Dzu) and S∗

i (A, B, Cz, Dzu).

Finally we show that the conditions in (iii) and (vi) are also sufficient.
Note that from the definition of S∗

i (A, B, Cz, Dzu) it follows almost directly
that there exist F0, F1, . . . , Fi such that for any Ẽ such that im Ẽ ⊆ S∗

i we
obtain for

ur =
j∑

i=0

B Fi Ẽρ ir,

and for zero initial conditions, z = 0 for the system

ρx = Ax + Bur + Ẽr,
z = Czx + Dzuur .

Similarly there exists a F such that A + B F is Hurwitz-stable for continuous-
time systems and Schur-stable for discrete-time systems and for any im Ẽ ⊆
Vg(A, B, Cz, Dzu) with u = Fx and for zero initial conditions we get z = 0
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for the system

ρx = Ax + Bu + Ẽr,
z = Czx + Dzuu.

Combining the above it is easy to see that there exist F, F0, F1, . . . , Fi such
that for any Ẽ such that

im Ẽ ⊆ Vg(A, B, Cz, Dzu) + S∗
i (A, B, Cz, Dzu),

and for

ur = Fx +
j∑

i=0

B Fi Ẽρ ir,

with zero initial conditions, we obtain z = 0 for the system

ρx = Ax + Bur + Ẽr
z = Czx + Dzuur .

Note that this matrix F must be such that Vg(A, B, Cz, Dzu) is (A + B F)-
invariant and contained in ker(C + DF). Our claim is that the controller

ur = Fx +
j∑

i=0

B Fi Er R†ρ i r̄,

will then solve our disturbance decoupling problem where R† denotes the
Moore-Penrose generalized inverse of R. We note that we can always decom-
pose r = r1 + r2 = R† Rr + (I − R† R)r . If r = r1 then Er R†r̄ = Err1 and
condition (iii)c) guarantees z = 0. On the other hand if r = r2 then r̄ = 0
and hence u = Fx . But then condition (iii)b) guarantees that z = 0. Due to
linearity of the system and controller, any linear combination of r1 and r2 then
must also yield an output z = 0.

Next we consider the measurement feedback problem. According to [61]
we can solve the disturbance decoupling problem for the following system

ρx = Ax + Bu + Er Qr
y = Cyx + Dy Qr
z = Czx + Dzuu

(13.8)

by a controller of the form

ρv = Av + Bu + K (Cyv − y)

u = F̃v + N(Cyv − y),
(13.9)
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and because the F we constructed before in the state feedback case has the
property that A + B F is Hurwitz-stable for continuous-time systems and
Schur-stable for discrete-time systems, and Vg is (A + B F)-invariant and
contained in ker(C + DF), we know that we can choose F̃ = F .

We claim that the following controller (13.10) then solves the disturbance
decoupling problem with internal stability for the original system (13.1),

ρv = Av + Bu + K (Cyv + Dy R†r̄ − y) + Er R†r̄
u = F̃v + N(Cyv + Dy R†r̄ − y) + ∑ j

i=0 B Fi Er R†ρ i r̄ .
(13.10)

That this controller achieves internal stability is obvious. In order to show
that it achieves disturbance decoupling we again decompose r = r1 + r2 =
R† Rr +(I − R† R)r . If r = r2 then r = Qr̃ and r̄ = 0. Then from the fact that
the controller (13.9) achieves z = 0 for the system (13.8), we immediately find
that the controller (13.10) achieves z = 0 for the original system (13.1). On
the other hand if r = r1 then in the interconnection of (13.10) and (13.1) it is
immediate that for zero initial conditions we obtain x = v and y = Cyv+Dyr .
But then

u = Fx +
j∑

i=0

B Fi Erρ
i r

and we already know that in that case we have z = 0. Since both r1 and r2

yield z = 0 and the system and controller are linear, we find that also for
arbitrary linear combinations of r1 and r2 we get z = 0.

A proof in full detail of (vii) requires quite some work. However, intu-
itively it is quite obvious. Using the Youla parameterization we can see that
we have to find stable Qs such that T1 − T2 Qs T3 = 0 where Ti are all sta-
ble rational transfer matrices but then it is obvious that if there exists a Qs

which solves this equation then there also exists a rational Qs that solves the
equation. But obviously a rational Qs corresponds to a controller of the form
(13.5). Obviously it is restrictive if we impose that Qs must be proper but
nonrational solutions for instance controllers of the form (13.6) will not help
us.

Theorem 13.2.1 deals with the exact disturbance decoupling. We now
proceed to study the solvability conditions for the almost disturbance decou-
pling. Unlike in the case of exact disturbance decoupling, the solvability
conditions for almost disturbance decoupling depend on whether we consider
continuous- or discrete-time systems. Also, they depend on the nature of the
stability set C

g.
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We have the following results regarding almost disturbance decoupling for
continuous-time systems.

Theorem 13.2.2 Consider the system given in (13.1) for continuous-time sys-
tems. Assume that C

g = C
−. Then, the necessary and sufficient conditions

under which the almost disturbance decoupling problem with internal stability
via any specified class of controllers is solvable are categorized below under
each class of controllers:

(i) State feedback controllers of the type �C1 as given in (13.2):

(a) (A, B) is C
−-stabilizable.

(b) im Er ⊆ V−0(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(c) Let F be such that A + B F is Hurwitz-stable. For any invariant
zero λ on the imaginary axis of the system characterized by the
quadruple (A, B, Cz, Dzu), we have

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu].

(ii) State feedback + PD controllers of the type �C2 as given in (13.3) with
j a design parameter: The conditions are the same as in item (i).

(iii) State feedback + j -th order PD controllers of the type �C2 as given in
(13.3) with j fixed: The conditions are the same as in item (i).

(iv) Measurement feedback controllers of the type �C3 as given in (13.4):

(a) (A, B) is C
−-stabilizable and (Cy, A) is C

−-detectable.

(b) im Er ⊆ V−0(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(c) ker Cz ⊇ S−0(A, Er , Cy, Dy) ∩ V∗(A, Er , Cy, Dy).

(d) S−0(A, Er , Cy, Dy) ∩ V∗(A, Er , Cy, Dy)

⊆ V−0(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(e) Let F and K be such that A + B F and A + KCy are Hurwitz-
stable. For any invariant zero λ on the imaginary axis of the sys-
tem characterized by the quadruple (A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu],
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while for any invariant zero λ on the imaginary axis of the system
characterized by the quadruple (A, Er , Cy, Dy),

ker[Cy(λI − A − K Cy)
−1Er + Dy]

⊆ ker Cz(λI − A − Cy K )−1 Er .

(v) Measurement feedback + PD controllers of the type �C4 as given in
(13.5) with j a design parameter:

(a) (A, B) is C
−-stabilizable and (Cy, A) is C

−-detectable.

(b) im Er ⊆ V−0(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(c) ker Cz ⊇ S−0(A, Er Q, Cy, Dy Q) ∩ V∗(A, Er Q, Cy, Dy Q).

(d) S−0(A, Er Q, Cy, Dy Q) ∩ V∗(A, Er Q, Cy, Dy Q)

⊆ V−0(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(e) Let F and K be such that A + B F and A + KCy are Hurwitz-
stable. For any invariant zero λ on the imaginary axis of the sys-
tem characterized by the quadruple (A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu],
while for any invariant zero λ on the imaginary axis of the system
characterized by the quadruple (A, Er , Cy, Dy),

ker R ∩ ker[Cy(λI − A − KCy)
−1 Er + Dy]

⊆ ker Cz(λI − A − Cy K )−1 Er .

In all the above conditions, again Q is such that ker R = im Q.

(vi) Measurement feedback + j -th order PD controllers of the type �C4 as
given in (13.5) with j fixed: The conditions are the same as in item (v).

(vii) Measurement feedback with feedforward controllers of the type �C5

as given in (13.6): The conditions are the same as in item (v).

Remark 13.2.6 Theorem 13.2.2 considers the case when C
g is C

−. If C
g is

not C
− but it is any closed set in C

−, the results of Theorem 13.2.2 would
still hold provided two modifications are made, (1) the super-scripts −0 in
the conditions given in Theorem 13.2.2 is replaced by g, and (2) the condi-
tions associated with the invariant zeros on the imaginary axis of a system
characterized by either the quadruple (A, B, Cz, Dzu) or (A, Er , Cy, Dy) are
removed.
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Proof : Part (i) and (iv) are standard results which can for instance be found
in [61]. Note that in that book, the authors minimize the H2 or H∞ norm
of the closed-loop transfer matrix from r to z while we use the L∞ induced
operator norm. However, we have the following relationship between L∞
induced operator norm and H∞ norm as can be found in [8],

‖G‖H∞ � ‖G‖L∞,L∞ � (2n + 1)‖G‖H∞

where n is the McMillan degree of G. Since the controllers that solve the
H∞ almost disturbance decoupling problem have bounded McMillan degree,
this shows that H∞ almost disturbance decoupling and almost disturbance de-
coupling in the L∞ induced operator norm are equivalent. It is also known
that the derivative information does not help in almost disturbance decou-
pling. Therefore the solvability conditions of (iii) and (ii) are the same as in
(i).

Although in the measurement feedback case the derivative information
does not help us, the fact that Rr is known yields additional information.
Therefore the result in part (v) can be obtained from the standard almost dis-
turbance decoupling literature by using the following modified measurement
equation,

ỹ =
(

Cy

0

)
x +

(
Dy

R

)
r.

Parts (vi) and (v) have the same solvability conditions because again the deri-
vative information does not weaken the solvability conditions.

Finally, (vii) is a consequence of the known fact that in the H∞ control
problem using feedforward information does not help us in reducing the clo-
sed-loop H∞ norm. The state feedback version of this result is explicitly given
in [70] while the measurement feedback case follows from a detailed analysis
of the proof in [70] of the measurement feedback H∞ control problem.

The following theorem deals with almost disturbance decoupling for dis-
crete-time systems.

Theorem 13.2.3 Consider the system given in (13.1) for discrete-time sys-
tems. Assume that C

g = C
�. Then, the necessary and sufficient conditions

under which the almost disturbance decoupling problem with internal stability
via any specified class of controllers is solvable are categorized below under
each class of controllers:

(i) State feedback controllers of the type �C1 as given in (13.2):
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(a) (A, B) is C
�-stabilizable.

(b) im Er ⊆ V⊗(A, B, Cz, Dzu).

(c) Let F be such that A+ B F is Schur-stable. For any invariant zero
λ on the unit circle of the system characterized by the quadruple
(A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu].

(ii) State feedback + PD controllers of the type �C2 as given in (13.3) with
j a design parameter:

(a) (A, B) is C
�-stabilizable.

(b) Er ker R ⊆ V⊗(A, B, Cz, Dzu).

(c) im Er ⊆ V⊗(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(d) Let F be such that A+ B F is Schur-stable. For any invariant zero
λ on the unit circle of the system characterized by the quadruple
(A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu].

(iii) State feedback + j -th order PD controllers of the type �C3 as given in
(13.3) with j fixed:

(a) (A, B) is C
�-stabilizable.

(b) Er ker R ⊆ V⊗(A, B, Cz, Dzu).

(c) im Er ⊆ V⊗(A, B, Cz, Dzu) + S∗
j (A, B, Cz, Dzu).

(d) Let F be such that A+ B F is Schur-stable. For any invariant zero
λ on the unit circle of the system characterized by the quadruple
(A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu].

(iv) Measurement feedback controllers of the type �C3 as given in (13.4):

(a) (A, B) is C
�-stabilizable and (Cy, A) is C

�-detectable.
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(b) im Er ⊆ B ker Dzu + V⊗(A, B, Cz, Dzu).

(c) ker Cz ⊇ C−1
y im Dy ∩ S⊗(A, Er , Cy, Dy).

(d) S⊗(A, Er , Cy, Dy) ⊆ V⊗(A, B, Cz, Dzu).

(e) Let F and K be such that A + B F and A + KCy are Schur-
stable. For any invariant zero λ on the unit circle of the system
characterized by the quadruple (A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu],
while for any invariant zero λ on the unit circle of the system char-
acterized by the quadruple (A, Er , Cy, Dy),

ker[Cy(λI − A − K Cy)
−1Er + Dy]

⊆ ker Cz(λI − A − Cy K )−1 Er .

(v) Measurement feedback + PD controllers of the type �C4 as given in
(13.5) with j a design parameter:

(a) (A, B) is C
�-stabilizable and (Cy, A) is C

�-detectable.

(b) Er ker R ⊆ B ker Dzu + V⊗(A, B, Cz, Dzu).

(c) im Er ⊆ V⊗(A, B, Cz, Dzu) + S∗(A, B, Cz, Dzu).

(d) ker Cz ⊇ C−1
y im Dy ∩ S⊗(A, Er Q, Cy, Dy Q).

(e) S⊗(A, Er Q, Cy, Dy Q) ⊆ V⊗(A, B, Cz, Dzu).

(f ) Let F and K be such that A + B F and A + KCy are Schur-
stable. For any invariant zero λ on the unit circle of the system
characterized by the quadruple (A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu],
while for any invariant zero λ on the unit circle of the system char-
acterized by the quadruple (A, Er , Cy, Dy),

ker R ∩ ker[Cy(λI − A − KCy)
−1 Er + Dy]

⊆ ker Cz(λI − A − Cy K )−1 Er .

(vi) Measurement feedback + j -th order PD controllers of the type �C4 as
given in (13.5) with j fixed:
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(a) (A, B) is C
�-stabilizable and (Cy, A) is C

�-detectable.

(b) Er ker R ⊆ B ker Dzu + V⊗(A, B, Cz, Dzu).

(c) im Er ⊆ V⊗(A, B, Cz, Dzu) + S∗
j (A, B, Cz, Dzu).

(d) ker Cz ⊇ C−1
y im Dy ∩ S⊗(A, Er Q, Cy, Dy Q).

(e) S⊗(A, Er Q, Cy, Dy Q) ⊆ V⊗(A, B, Cz, Dzu).

(f ) Let F and K be such that A + B F and A + KCy are Schur-
stable. For any invariant zero λ on the unit circle of the system
characterized by the quadruple (A, B, Cz, Dzu),

im Cz(λI − A − B F)−1Er

⊆ im[Cz(λI − A − B F)−1 B + Dzu],
while for any invariant zero λ on the unit circle of the system char-
acterized by the quadruple (A, Er , Cy, Dy),

ker R ∩ ker[Cy(λI − A − KCy)
−1 Er + Dy]

⊆ ker Cz(λI − A − Cy K )−1 Er .

Remark 13.2.7 Theorem 13.2.3 considers the case when C
g is C

�. If C
g is

not C
� but it is any closed set within the unit circle, the results of Theorem

13.2.3 do not hold as given. To be specific, when C
g is a closed set within

the unit circle, by relaxing the requirement of exact disturbance decoupling to
almost disturbance decoupling the solvability conditions do not change at all.
In other words, whenever C

g is a closed set within the unit circle, the solvabil-
ity conditions as given in Theorem 13.2.1 with the super-scripts � replaced by
g hold irrespective of whether we require exact or almost disturbance decou-
pling.

Remark 13.2.8 For state feedback + 0-th order PD controllers with R = I ,
i.e. for full information feedback controllers of the type u = Fx + H0r, the
solvability conditions given in item (iii) of the above theorem still hold, how-
ever in this case S∗

0 (A, B, Cz, Dzu) can equivalently be replaced by B ker Dzu.

Proof : Part (i) and (iv) are standard results which can for instance be found
in [61] since due to the relationship between L∞ induced operator norm and
H∞ norm as can be found in [8], we can use the results from H∞ almost distur-
bance decoupling. Also, (ii) is a consequence of (iii) and (v) is a consequence
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of (vi) when we note that from Definition 1.2.2 that S∗
i is increasing and equal

to S∗ after a finite number of steps.

It remains to show (iii) and (vi). It is easy to see that conditions in (vi)
are necessary. Conditions (vi)a), (vi)d), (vi)e), and (vi)f) are necessary to
solve the almost disturbance decoupling problem with measurement feedback
for r = Qr̃ which is obviously necessary for our problem as well since in
this case Rr = 0. Conditions (vi)b) and (vi)c) are necessary to solve almost
disturbance decoupling with state feedback + PD information and are hence
obviously also necessary to solve the measurement feedback + PD informa-
tion disturbance decoupling problem. Finally for (iii) it is obviously necessary
that disturbance decoupling with state feedback is solvable for r = Qr̃ which
yields conditions (iii)a) and (iii)b). The necessity of (iii)c) follows almost
directly from the interpretation of V⊗(A, B, Cz, Dzu) as an almost invariant
subspace and the definition of S∗

i (A, B, Cz, Dzu).

Finally, we show that the conditions in (iii) and (vi) are also sufficient. We
already noted in the proof of Theorem 13.2.1 that there exists F0, F1, . . . , Fi

such that for any Ẽ such that im Ẽ ⊆ S∗
i (A, B, Cz, Dzu) we obtain for

ur =
j∑

i=0

B Fi Ẽρ ir,

and for zero initial conditions, z = 0 for the system

ρx = Ax + Bur + Ẽr,
z = Czx + Dzuur .

Similarly for all ε > 0 there exists a Fε such that A + B Fε is Schur-stable
and for any im Ẽ ⊆ V⊗(A, B, Cz, Dzu) with u = Fεx and for zero initial
conditions, we get ‖z‖∞ � ε‖Ẽr‖ for the system

ρx = Ax + Bu + Ẽr,
z = Czx + Dzuu.

Combining the above it is easy to see that there exists Fε, F0, F1, . . . , Fi such
that for any Ẽ such that

im Ẽ ⊆ Vg(A, B, Cz, Dzu) + S∗
i (A, B, Cz, Dzu),

for

ur = Fx +
j∑

i=0

B Fi Ẽρ ir,
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and for zero initial conditions, we obtain ‖z‖∞ � ε‖Ẽr‖ for the system

ρx = Ax + Bur + Ẽw

z = Czx + Dzuur .

Our claim is that the controller

ur = Fεx +
j∑

i=0

B Fi Er R†ρ i r̄ ,

will then solve our almost disturbance decoupling problem where R† denotes
the Moore-Penrose generalized inverse of R. We note that we can always
decompose r = r1 + r2 = R† Rr + (I − R† R)r . If r = r1 then Er R†r̄ = Err1

and condition (iii)c) guarantees ‖z‖∞ � ε‖Err1‖∞. On the other hand if
r = r2 then r̄ = 0 and hence u = Fx . But then condition (iii)b) guarantees
that ‖z‖∞ � ε‖Err2‖∞. Due to linearity of the system and controller, any
linear combination of r1 and r2 then also yields an output z with the property

‖z‖∞ � ε‖Err1‖∞ + ε‖Err2‖∞ � εM‖r‖∞.

Next we consider the measurement feedback problem. According to [58,
61] we can solve the almost disturbance decoupling problem for the following
system

ρx = Ax + Bu + Er Qr
y = Cyx + Dy Qr
z = Czx + Dzuu

(13.11)

by a controller of the form

ρv = Av + Bu + Kε(Cyv − y)

u = F̃εv + Nε(Cyv − y),
(13.12)

and because the Fε we constructed before has the property that it achieves
almost disturbance decoupling for any Ẽ with Ẽ ⊆ V⊗(A, B, Cz, Dzu) we
know that we can choose F̃ε = Fε.

We claim that the following controller (13.13) then solves the almost dis-
turbance decoupling problem with internal stability for the original system
(13.1),

ρv = Av + Bu + Kε(Cyv + Dy R†r̄ − y) + Er R†r̄
u = Fεv + Nε(Cyv + Dy R†r̄ − y) + ∑ j

i=0 B Fi Er R†ρ i r̄ .
(13.13)
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That this controller achieves internal stability is obvious. In order to show that
it achieves almost disturbance decoupling we again decompose r = r1 + r2 =
R† Rr + (I − R† R)r . If r = r2 then r = Qr̃ and r̄ = 0. Then from the
fact that the controller (13.12) achieves ‖z‖ � ε‖r2‖ for the system (13.11),
we immediately find that the controller (13.13) achieves ‖z‖ � ε‖r2‖ for the
original system (13.1). On the other hand if r = r1 then it is immediate that, in
the interconnection of (13.13) and (13.1), we have for zero initial conditions
x = v and y = Cyv + Dyr . But then

u = Fx +
j∑

i=0

B Fi Erρ
i r,

and we already know that in that case we have ‖z‖ � ε‖Err1‖. Since r2 =
0 yields ‖z‖ � ε‖Err1‖ and r1 = 0 yields ‖z‖ � ε‖r2‖ and system and
controller are linear we find that also for arbitrary linear combinations of r1

and r2 we get ‖z‖ � M2ε‖r‖ for some M2 and hence we can make the induced
norm arbitrarily small.

13.3 Generalized output regulation

In this section we revisit output regulation with a generalized model for the
exosystem. As discussed earlier, in classical output regulation problems, both
the external disturbances that act on the given plant as well as the desired out-
put signals that are to be tracked are modeled by an autonomous exosystem.
Unlike in the classical case, we propose here a non-autonomous exosystem,
i.e. a system driven by a reference signal denoted by r(t). As will be seen
later on such a non-autonomous model for the exosystem leads us to achieve
all the objectives outlined in introduction, namely, (1) broadening of the class
of signals that one can track and broadening of the class of signals that one
can reject, and (2) formulating and studying a hierarchy of output regulation
problems in which the requirements on steady state tracking error are grad-
ually relaxed from being exactly zero to almost zero or in some acceptable
range.

The basic configuration of the proposed output regulation scheme is de-
picted in Figure 13.2.

The analytical model of the plant and the exosystem as depicted in Figure
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Figure 13.2: Configuration of the proposed output regulation scheme

13.2 is described by the multivariable linear system given below,

ρx = Ax + Bu + Eww

ρw = Sw + Dwrr
y = Cyx + Dyww + Dyrr
e = Cex + Deuu + Deww

(13.14)

where, as usual, the first equation of this system describes a plant, with state
x ∈ R

n, and input u ∈ R
m , subject to the effect of a disturbance represented

by Eww. The third equation describes the measurement signal y ∈ R
p and

the last equation defines the error e ∈ R
q between the actual plant output

Cex + Deuu and a reference signal −Deww which the plant output is required
to track. The second equation, describes the non-autonomous exosystem, with
state w ∈ R

s and an external driving signal r . The exosystem models the class
of disturbance or reference signals taken into consideration.

The system represented by equation (13.14) can also be viewed as a mas-
ter/slave system. In this point of view, the master system consists of the ex-
osystem driven by the signal r , namely

ρw = Sw + Dwrr,

where as the slave consists of the plant,

ρx = Ax + Bu + Eww

y = Cyx + Dyww + Dyrr.

The controller is to be designed so that the slave obeys the master such
that the so called error signal e,

e = Cex + Deuu + Deww,
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has certain desirable properties. Such a master/slave configuration of Figure
13.1 has applications not only here in connection with output regulation but
also elsewhere.

A straightforward advantage in utilizing the configuration of Figure 13.2
and the analytical model (13.14) is this. In the classical case where the exosys-
tem is autonomous, one has to know explicitly all the frequency components
of the signal that needs to be tracked in order to come up with a model for
the exosystem. However, it is clear that, by utilizing a non-autonomous ex-
osystem driven by a reference signal r(t) or r(k), one does not necessarily
need to have such a knowledge. In fact, by an appropriate selection of the
driving signal r , a non-autonomous exosystem can be constructed so that any
arbitrarily specified signal can be modeled as a signal that needs to be tracked.
Moreover, the class of external disturbances that could act on the given plant
can significantly be broadened.

The following example illustrates how a common tracking problem that is
often discussed in the literature can be cast as a special case of the formulation
of Figure 13.2 and system (13.14).

Example 13.3.1 Consider a continuous-time linear system,

ẋ = Ax + Bu
y = Cyx,

where x ∈ R
n is the state, u ∈ R

m is the control input and y ∈ R
p is the

output. Suppose we want to design a control law that would cause the output
y to track any desired yd ∈ C(s−1) for some fixed s � 1. This problem can be
recast to fit the above formulation of the output regulation problem. Indeed,
the exosystem in this case is given by

ẇi = wi+1, i = 1, 2, · · · , s − 1
ẇs = y(s−1)

d .

By considering y(s−1)
d as the reference signal r, the above exosystem equation

can be rewritten as

ρw = Sw + Dwrr,

where S and Dwr are of dimension s × s and s × 1 respectively, and

S =
(

0 I
0 0

)
, and Dwr =

(
0
1

)
.
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The plant is not disturbed by w, i.e. Ew = 0. The error signal e is formed by

e = Cex + Deww

where Ce = Cy, Deu = 0, and Dew = (
1 0 · · · 0

)
.

Remark 13.3.1 The problem dealt with in [29, 30] is a special case of the
above example. In fact, by taking the dimension of the exosystem equal to 1,
one obtains the problem dealt with in [29, 30].

Obviously, the proposed scheme of Figure 13.2 and equation (13.14) is a
generalization of the classical output regulation scheme as it introduces the
driving signal r to the exosystem. Although such an introduction of the driv-
ing signal r appears to be simple and straightforward, as alluded to earlier,
it opens up several avenues to generalize the classical output regulation the-
ory. As pointed out earlier, the goal of the classical output regulation theory
has been to render the steady state tracking error to zero even under the influ-
ence of persistent disturbances. In this regard, the following section studies a
hierarchy of problems seeking different properties for the steady state error.

As in the previous chapters, we need in this chapter as well the following
three assumptions.

A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable for continuous-time systems and
anti-Schur-stable for discrete-time systems.

A.3. The pair (
(
Cy Dyw

)
,

(
A Ew

0 S

)
) is detectable.

13.4 Steady state tracking performance

In this section, we formulate and study three hierarchically ordered layers of
problems all dealing with steady state tracking performance. The first layer of
problems concerns with the strongest requirement on the steady state tracking
error. As in the case of classical output regulation problems, we seek here to
render the steady state tracking error exactly zero. The second layer concerns
with a weaker requirement of rendering the steady state tracking error arbitrar-
ily close to zero. The third layer imposes the weakest requirement. Here we
seek the norm of the amplitude of steady state tracking error be in a specified
acceptable range.
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Since our goal is output regulation, various controllers we utilize here are
called as usual regulators. Six classes of regulators can be used, (1) state feed-
back regulators, (2) state feedback + PD regulators, (3) state feedback + j -th
order PD regulators, (4) measurement feedback regulators, (5) measurement
feedback + PD regulators, and (6) measurement feedback + j -th order PD
regulators. Obviously we could also use the class of measurement feedback
+ feedforward + PD regulators like we did in (almost) disturbance decou-
pling. But it was already noted there that it does not weaken the solvability
conditions and generally does not help us. Really, the continuous-time equiv-
alent of feedforward shifted values of reference signals is the use of derivative
information. This is most obvious in the frequency domain but in all the solv-
ability conditions this equivalence is also clearly present.

We devote a subsection to each layer, and study the different types of out-
put regulation problems for each particular class of regulators. Every problem
is studied not only to develop the conditions under which it can be solved, but
also to synthesize appropriate regulators that can solve such a problem. Our
study benefits significantly by the notions of exact and almost disturbance de-
coupling which we reviewed in Subsection 13.2.

13.4.1 Exact steady state tracking – exact output regulation

In this subsection, as in the case of classical output regulation, our concern is
to render the steady state tracking error exactly zero. We formulate and study
six different problems each using a particular class of regulators.

We first have the following precise problem statement.

Problem 13.4.1 Let a system of the form (13.14) be given. The exact output
regulation problem via state feedback regulators is to find, if possible, a state
feedback law of the form u = Fx + Gw such that the following properties
hold:

(i) The system ρx = (A + B F)x is asymptotically stable.

(ii) For all initial conditions, and for any signal r (piecewise continuous in
continuous-time) the solution of

ρx = (A + B F)x + (Ew + BG)w

ρw = Sw + Dwrr
e = (Ce + Deu F)x + (Dew + DeuG)w

(13.15)

satisfies limt→∞ e(t) = 0.
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We have the following solvability conditions for the exact output regula-
tion problem via state feedback regulators.

Theorem 13.4.1 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Then,
the exact output regulation problem via state feedback regulators is solvable
if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Deu
 + Dew.
(13.16)

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−(A, B, Ce, Deu),

and for discrete-time systems we have

im 	Dwr ⊆ V�(A, B, Ce, Deu).

Moreover, by knowing 	 and 
 that solve the regulator equation (13.16),
and by developing a feedback law ũ = Fx̃ that solves the exact disturbance
decoupling problem via state feedback for the system,

ρ x̃ = Ax̃ + Bũ − 	Dwrr
e = Cex̃ + Deuũ,

(13.17)

we can solve the posed exact output regulation problem by utilizing the feed-
back law,

u = Fx + (
 − F	)w. (13.18)

Proof : Suppose that we have a controller of the form u = Fx + Gw that
achieves output regulation. First we assume r = 0. Then it is easy to check
that u = Fx + Gw yields limt→∞ e(t) = 0 for all initial conditions if and
only if there exists a 	 such that

	S = (A + B F)	 + (Ew + BG), Ce	 + Deu(G + F	) + Dew = 0.

If we choose 
 = G + F	 then it is obvious that (i) is satisfied.
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Next we consider the general case where r is not necessarily 0. Then
for our controller u = Fx + Gw, which is known to achieve exact output
regulation, the closed-loop system in the new coordinate x̃ = x − 	w can be
written as in equation (13.17) where

ũ = Fx̃ . (13.19)

It is clear then that the exact disturbance decoupling problem via state feed-
back for the system (13.17) is solved by the feedback law (13.19), and hence
by using Theorem 13.2.1 we find that (ii) is satisfied.

In order to show sufficiency we assume that (i) and (ii) are satisfied. By
(ii) we know that there exists a feedback law u = Fx̃ for the system (13.17)
that achieves exact disturbance decoupling problem via state feedback. But
then it is easy to check that (13.18) solves the exact output regulation problem
via state feedback.

Sometimes we know all the derivatives of the signal r(t) in continuous-
time systems, or all the forward shifted values of r(k) in discrete-time systems.
In this case, the solvability conditions can be relaxed. This is formulated in
the following problem.

Problem 13.4.2 Let a system of the form (13.14) be given. The exact output
regulation problem via state feedback + PD regulators is to find, if possible, a
feedback law of the form

u = Fx + Gw +
j∑

i=0

Hiρ
i r̄ (13.20)

for some j � 0 with r̄(t) = Rr(t), such that the following properties hold:

(i) The system ρx = (A + B F)x is asymptotically stable.

(ii) For all initial conditions, and for all signals r (in continuous-time r ∈
C j ) the solution of

ρx = (A + B F)x + (Ew + BG)w + B
∑ j

i=0 Hiρ
i r̄

ρw = Sw + Dwrr
e = (Ce + Deu F)x + (Dew + DeuG)w + Deu

∑ j
i=0 Hiρ

i r̄

(13.21)

is such that limt→∞ e(t) = 0.
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The solvability conditions for the above problem are given in the following
theorem.

Theorem 13.4.2 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Then,
the exact output regulation problem via state feedback + PD regulators is
solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

	Dwr ker R ⊆ V−(A, B, Ce, Deu),

im 	Dwr ⊆ V−(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

	Dwr ker R ⊆ V�(A, B, Ce, Deu),

im 	Dwr ⊆ V�(A, B, Ce, Deu) + S∗(A, B, Ce, Deu).

Moreover, under the above conditions, for some j ≥ 0, there exists a feedback
law of the form ũ = Fx̃ + ∑ j

i=0 Hiρ
i r̄ that solves the exact disturbance

decoupling problem for the system (13.17). In that case, utilizing such F and
Hi , the exact output regulation problem via state feedback + PD regulators is
solved by the feedback law,

u = Fx + (
 − F	)w +
j∑

i=0

Hiρ
i r̄ . (13.22)

Proof : It follows from the straightforward application of Theorems 13.2.1
and 13.4.1.

In the case when we know only some derivatives of the signal r in con-
tinuous-time systems, or some forward shifted values of the sequence r in
discrete-time systems, we can also relax the solvability conditions to some
extent. We begin with the following problem formulation.

Problem 13.4.3 Let a system of the form (13.14) be given. The exact output
regulation problem via state feedback + j -th order PD regulators is to find, if
possible, a feedback law of the form (13.20) for a specified j � 0 such that
the following properties hold:
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(i) The system ρx = (A + B F)x is asymptotically stable.

(ii) For all initial conditions and for all signals r (in continuous-time r ∈
C j ) the solution of (13.21) is such that limt→∞ e(t) = 0.

The solvability conditions for the above problem are given as follows.

Theorem 13.4.3 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Then, the
exact output regulation problem via state feedback + j -th order PD regulators
is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

	Dwr ker R ⊆ V−(A, B, Ce, Deu),

im 	Dwr ⊆ V−(A, B, Ce, Deu) + S∗
j (A, B, Ce, Deu),

and for discrete-time systems we have

	Dwr ker R ⊆ V�(A, B, Ce, Deu),

im 	Dwr ⊆ V�(A, B, Ce, Deu) + S∗
j (A, B, Ce, Deu).

Moreover, by knowing 	 and 
 that solve the regulator equation (13.16), and
by developing a feedback law ũ = Fx̃ + ∑ j

i=0 Hiρ
i r̄ that solves the exact

disturbance decoupling problem via state feedback for the system (13.17).
In that case, utilizing such F and Hi , we can solve the posed exact output
regulation problem by utilizing the feedback law (13.22).

Proof : It follows from the straightforward application of Theorems 13.2.1
and 13.4.1.

So far we have considered state variable feedback regulators. We next
move on to consider the case when only the measurement variable y is avail-
able for feedback. We have the following basic problem.

Problem 13.4.4 Let a system of the form (13.14) be given. The exact output
regulation problem via measurement feedback regulators is to find, if possible,
a measurement feedback law of the form,

ρv = Acv + Bc y
u = Ccv + Dc y,

(13.23)

such that the following properties hold:
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(i) The system

ρx = (A + B DcCy)x + BCcv

ρv = BcCyx + Acv
(13.24)

is asymptotically stable.

(ii) For all initial conditions, and all signals r (piecewise continuous in
continuous-time), the solution e of the interconnection of (13.23) and
(13.14) satisfies limt→∞ e(t) = 0.

We have the following result concerning the above problem.

Theorem 13.4.4 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied.
Let C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time

systems. Then, the exact output regulation problem via measurement feedback
regulators is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) im 	Dwr ⊆ Vg(A, B, Ce, Deu) + im B ker Deu.

(iii) ker
(
Ce Deu

) ⊇ Sg(Ae, Dwr,e, Cy,e, Dyr) ∩ C−1
y,e im Dyr .

(iv) Sg(Ae, Dwr,e, Cy,e, Dyr) ⊆ Vg(A, B, Ce, Deu) ⊕ R
s .

Here Ae, Dwr,e, and Cy,e are defined by

Ae =
(

A −B


0 S

)
, Dwr,e =

(−	Dwr

Dwr

)
, and

Cy,e = (
Cy Cy	 + Dyw

)
.

Moreover, if conditions (i)-(iv) are satisfied, then there exists a proper con-
troller characterized by the matrix quadruple ( Āc, B̄c, C̄c, D̄c) that solves the
exact disturbance decoupling problem via measurement feedback for the sys-
tem (13.25),

ρ x̄ =
(

A −B


0 S

)
x̄ +

(
0 B
I 0

)
ū +

(−	Dwr

Dwr

)
r

e = (
Ce −Deu


)
x̄ + (

0 Deu

)
ū

ȳ = (
Cy Cy	 + Dyw

)
x̄ + Dyrr.

(13.25)
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In that case the exact output regulation problem via measurement feedback
regulators is solved by the controller or regulator,

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1(y + (Dyw + Cy	)v1)

ρv2 = Ācv2 + B̄c(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2v2 + D̄c,2(y + (Dyw + Cy	)v1),
(13.26)

where C̄c,1, C̄c,2, D̄c,1, and D̄c,2 are obtained by partitioning C̄c and D̄c in
conformity with the partitioning of Āe,

C̄c =
(

C̄c,1

C̄c,2

)
, and D̄c =

(
D̄c,1

D̄c,2

)
. (13.27)

Proof : Suppose that we have a controller of the form (13.23) that achieves
output regulation. Then, as in (2.17), it is easy to check that limt→∞ e(t) = 0
for all initial conditions if and only if there exists 	 and � such that

	S = A	 + Ew + B Dc(Cy	 + Dyw) + BCc�, (13.28a)

�S = Ac� + Bc(Cy	 + Dyw), (13.28b)

0 = Ce	 + Dew + Deu Dc(Cy	 + Dyw) + DeuCc�. (13.28c)

We first claim that, given our controller that achieves output regulation, there
always exists a new controller that achieves output regulation and the same
transfer matrix from w to r but in this case with a � which is injective. Given
the results of Theorem 2.6.1, we know that in a suitable basis we have the
following forms for various matrices such that the pair (Cy	2 + Dyw2, S22)

is observable,

S =
(

S1 S12

0 S22

)
, � =

(
I �12

0 �22

)
, (13.29)


 = (

1 
2

)
, Cc = (

Cc,1 Cc,2
)
, 	 = (

	1 	2
)
, (13.30)

Ac =
(

S1 Ac,12

0 Ac,22

)
, Bc =

(
Bc,1

Bc,2

)
, Dyw = (−Cy	1 Dyw2

)
.

(13.31)

Choose Bc,3 such that

Ac,33 = S22 − Bc,3(Cy	2 + Dyw2)

is Hurwitz-stable for continuous-time systems, or Schur-stable for discrete-
time systems. Then the new controller described by,

Ac =
⎛
⎝S1 Ac,12 0

0 Ac,22 0
0 0 Ac,33

⎞
⎠ , Bc =

⎛
⎝Bc,1

Bc,2

Bc,3

⎞
⎠ , Cc = (

Cc,1 Cc,2 0
)
,
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and the direct feedthrough matrix equal to Dc (the direct feedthrough matrix
from our original controller) yields the same closed-loop system from w to r
and achieves output regulation. On the other hand for this controller, equation
(13.28), is satisfied with the same 	 but a new � given by

� =
⎛
⎝I �12

0 �22

0 I

⎞
⎠ .

Obviously this new � is injective.

If � is injective, then in a suitable basis we can guarantee that � =(
I 0

)T
. In this new basis the controller takes a special form,

Ac =
(

S − Bc,1(Cy	 + Dyw) Ac,12

−Bc,2(Cy	 + Dyw) Ac,22

)
, Bc =

(
Bc,1

Bc,2

)
,

Cc = (

 − Dc(Cy	 + Dyw) Cc,2

)
,

with the same direct feedthrough matrix Dc. It is then obvious that this con-
troller solves the exact output regulation problem via measurement feedback
regulators if and only if the controller

ρv = Ac,22v + Bc,2 y

u =
(

Cc,2

Ac,12

)
v +

(
Dc

Bc,1

)
y

(13.32)

achieves exact disturbance decoupling via measurement feedback controllers
for the system (13.25).

As in the case of state feedback regulators, whenever we know part of the
signal r and some of its derivatives or forward shifted values we can use this
additional information.

Problem 13.4.5 Let a system of the form (13.14) be given. The exact output
regulation problem via measurement feedback + PD regulators is to find, if
possible, a measurement feedback law of the form

ρv = Acv + Bc y + ∑ j
i=0 Giρ

i r̄
u = Ccv + Dc y + ∑ j

i=0 Hiρ
i r̄

(13.33)

for some j � 0, such that the following properties hold:

(i) The system (13.24) is asymptotically stable.
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(ii) For all initial conditions and all signals r (in continuous-time r ∈ C j ),
the solution of the interconnection of (13.14) and (13.33) yields e(t) →
0 as t → ∞.

We have the following solvability conditions for the above problem.

Theorem 13.4.5 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied.
Let C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time

systems. Then, the exact output regulation problem via measurement feedback
+ PD regulators is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) im 	Dwr ⊆ im B ker Deu + Vg(A, B, Ce, Deu) + S∗(A, B, Ce, Deu).

(iii) 	Dwr ker R ⊆ im B ker Deu + Vg(A, B, Ce, Deu).

(iv) ker
(
Ce Deu

) ⊇ Sg(Ae, Dwr,e Q, Cy,e, Dyr Q) ∩ C−1
y,e im Dyr Q,

where

Ae =
(

A −B


0 S

)
, Dwr,e =

(−	Dwr

Dwr

)
, and

Cy,e = (
Cy Cy	 + Dyw

)
.

(v) Sg(Ae, Dwr,e Q, Cy,e, Dyr Q) ⊆ Vg(A, B, Ce, Deu) ⊕ R
s .

Moreover, if conditions (i)-(v) are satisfied, then there exists a controller of
the form given below in (13.34) that solves the exact disturbance decoupling
problem via measurement feedback + PD controllers for the system (13.25),

�̄C :
{

ρv̄ = Ācv̄ + B̄c ȳ + ∑ j
i=0 Ḡi ρ i r̄,

ū = C̄cv̄ + D̄c ȳ + ∑ j
i=0 H̄iρ

i r̄ .
(13.34)

In that case the exact output regulation problem via measurement feedback +
PD regulators is solved by the controller or regulator,

�C :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρv1 = Sv1 + C̄c,1v2 + D̄c,1 y̌ + ∑ j
i=0 H̄i2ρ

i r̄
ρv2 = Ācv2 + B̄c y̌ + ∑ j

i=0 Ḡi ρ i r̄
y̌ = y + (Dyw + Cy	)v1

u = −
v1 + C̄c,2v2 + D̄c,2 y̌ + ∑ j
i=0 H̄i1ρ

i r̄ ,
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(13.35)

where C̄c,1, C̄c,2, D̄c,1, D̄c,2, H̄i1, and H̄i2 are obtained by partitioning C̄c, D̄c,
and H̄i in conformity with the partitioning of Āe,

C̄c =
(

C̄c,1

C̄c,2

)
, D̄c =

(
D̄c,1

D̄c,2

)
, and H̄i =

(
H̄i1

H̄i2

)
. (13.36)

Proof : This follows from the same arguments as in the proof of Theorem
13.4.4 combined with the result of Theorem 13.2.1.

In the case when we know only some derivatives of the signal r in con-
tinuous-time systems, or some forward shifted values of the sequence r in
discrete-time systems, we can also relax the solvability conditions to some
extent. We begin with the following problem formulation.

Problem 13.4.6 Let a system of the form (13.14) be given. The exact output
regulation problem via measurement feedback + j -th order PD regulators is
to find, if possible, a measurement feedback law of the form (13.33) for a
specified j � 0 such that the following properties hold:

(i) The system (13.24) is asymptotically stable.

(ii) For all initial conditions and all signals r (in continuous-time r ∈ C j )
the interconnection of (13.33) and (13.14) satisfies limt→∞ e(t) = 0.

We have the following theorem that develops the solvability conditions for
the above problem.

Theorem 13.4.6 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied.
Let C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time

systems. Then, the exact output regulation problem via measurement feedback
+ j -th order PD regulators is solvable if and only if the following conditions
are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) im 	Dwr ⊆ im B ker Deu + Vg(A, B, Ce, Deu) + S∗
j (A, B, Ce, Deu).

(iii) im 	Dwr Q ⊆ im B ker Deu + Vg(A, B, Ce, Deu).
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(iv) ker
(
Ce Deu

) ⊇ Sg(Ae, Dwr,e Q, Cy,e, Dyr Q) ∩ C−1
y,e im Dyr Q,

where

Ae =
(

A −B


0 S

)
, Dwr,e =

(−	Dwr

Dwr

)
, and

Cy,e = (
Cy Cy	 + Dyw

)
.

(v) Sg(Ae, Dwr,e Q, Cy,e, Dyr Q) ⊆ Vg(A, B, Ce, Deu) ⊕ R
s .

Moreover, if conditions (i)-(v) are satisfied, then there exists a controller of
the form (13.34) that solves the exact disturbance decoupling problem via
measurement feedback + j -th order PD controllers for the system (13.25). In
that case the exact output regulation problem via measurement feedback +
j -order PD regulators is solved by the controller or regulator (13.35) using
the partitions as in (13.36).

Proof : This follows from the same arguments as in the proof of Theorem
13.4.4 combined with the result of Theorem 13.2.1.

13.4.2 Almost steady state tracking – almost output regulation

In the previous section, we had formulated and discussed several linear output
regulation problems seeking to render the steady state tracking error exactly
zero. Often in practice one may not need exact output regulation. What is
needed in engineering applications, is perhaps an “almost” output regulation,
i.e. tracking of a reference signal and/or rejection of a disturbance signal to an
arbitrary degree of precision. Such an “almost” output regulation is the subject
of this subsection. As in the previous subsection, we formulate and study
six different problems each using a particular class of regulators. The proofs
this time are basically the same as for exact steady state output regulation
except that they are all based on almost disturbance decoupling instead of
exact disturbance decoupling and hence the proofs are omitted.

It is worth noting that the solvability conditions for any given problem in
this subsection are much weaker for continuous-time systems than for discre-
te-time systems since the former allows the utilization of high-gain feedback.

We consider first state feedback regulators.

Problem 13.4.7 Let a system of the form (13.14) be given. The almost output
regulation problem via state feedback regulators is to find, if possible, a family
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of state feedback laws of the form u = Fεx + Gεw parameterized by ε > 0
such that for any given ε the following properties hold:

(i) The system ρx = (A + B Fε)x is asymptotically stable.

(ii) For all initial conditions, and for all signals r (piecewise continuous
in continuous-time), the solution of (13.15) where F and G are respec-
tively replaced by Fε and Gε satisfies

lim sup
t→∞

‖e(t)‖ � ε‖r‖∞.

Remark 13.4.1 Note that part (ii) implies that for all initial conditions and
r ≡ 0, the solution of

ρx = (A + B Fε)x + (Ew + BGε)w

ρw = Sw

e = (Ce + Deu Fε)x + (Dew + DeuGε)w

(13.37)

yields e(t) → 0 as t → ∞. In other words, the almost output regulation prob-
lem via state feedback regulators requires exact output regulation via state
feedback in the classical sense.

The following theorem develops the solvability conditions for the above
problem.

Theorem 13.4.7 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Let
C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time sys-

tems. Then, the almost output regulation problem via state feedback regula-
tors is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

im 	Dwr ⊆ V⊗(A, B, Ce, Deu).
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(iii) Let F be such that A + B F is Hurwitz-stable for continuous-time sys-
tems and Schur-stable for discrete-time systems. For any invariant zero
λ on the imaginary axis (continuous-time) or unit circle (discrete-time)
of the system characterized by the quadruple (A, B, Ce, Deu),

im Ce(λI − A − B F)−1	Dwr

⊆ im[Ce(λI − A − B F)−1 B + Deu].

Moreover, under the above conditions, there exists a family of feedback laws
ũ = Fε x̃ that solves the almost disturbance decoupling problem for the system
(13.17). In that case, utilizing such Fε, the almost output regulation problem
via state feedback regulators is solved by the family of feedback laws

u = Fεx + (
 − Fε	)w.

Sometimes we know all the derivatives of the signal r in continuous-time
systems, or all the forward shifted values of r in discrete-time systems. In
this case, the solvability conditions can be relaxed. This is formulated in the
following problem.

Problem 13.4.8 Let a system of the form (13.14) be given. The almost output
regulation problem via state feedback + PD regulators is to find, if possible, a
state feedback law parameterized by ε > 0 and is of the form,

u = Fεx + Gεw +
j∑

i=0

Hi,ερ
i r̄ (13.38)

for some j � 0 such that the following properties hold:

(i) The system ρx = (A + B Fε)x is asymptotically stable.

(ii) For all initial conditions and all signals r (in continuous-time r ∈ C j ),
the solution of

ρx = (A + B Fε)x + (Ew + BGε)w + B
∑ j

i=0 Hi,ερ
i r̄

ρw = Sw + Dwrr
e = (Ce + Deu Fε)x + (Dew + DeuGε)w + Deu

∑ j
i=0 Hi,ερ

i r̄

(13.39)

is such that

lim sup
t→∞

‖e(t)‖ � ε‖r‖∞.
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The following theorem develops the solvability conditions for the above
problem.

Theorem 13.4.8 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Let
C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time sys-

tems. Then, the almost output regulation problem via state feedback + PD
regulators is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

	Dwr ker R ⊆ V⊗(A, B, Ce, Deu),

im 	Dwr ⊆ V⊗(A, B, Ce, Deu) + S∗(A, B, Ce, Deu).

(iii) Let F be such that A + B F is Hurwitz-stable for continuous-time sys-
tems and Schur-stable for discrete-time systems. For any invariant zero
λ on the imaginary axis (continuous-time) or unit circle (discrete-time)
of the system characterized by the quadruple (A, B, Ce, Deu),

im Ce(λI − A − B F)−1	Dwr

⊆ im[Ce(λI − A − B F)−1 B + Deu].

Moreover, under the above conditions, for some j ≥ 0 , there exists a family
of feedback laws of the form ũ = Fε x̃ + ∑ j

i=0 Hi,ερ
i r̄ that solves the almost

disturbance decoupling problem for the system (13.17). In that case, utilizing
such Fε and Hi,ε , the almost output regulation problem via state feedback +
PD regulators is solved by the feedback law

u = Fεx + (
 − F	)w +
j∑

i=0

Hi,ερ
i r̄ . (13.40)

In the case when we know only some derivatives of the signal r in con-
tinuous-time systems, or some forward shifted values of the sequence r in
discrete-time systems, we can also relax the solvability conditions to some
extent. We begin with the following problem formulation.
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Problem 13.4.9 Let a system of the form (13.14) be given. The almost output
regulation problem via state feedback + j -th order PD regulators is to find, if
possible, a feedback law of the form (13.38) for a specified j � 0 such that
the following properties hold:

(i) The system ρx = (A + B Fε)x is asymptotically stable.

(ii) For all signals r (in continuous-time r ∈ C j ) and for all initial condi-
tions, the solution of (13.39) is such that

lim sup
t→∞

‖e(t)‖ � ε‖r‖∞.

The following theorem develops the solvability conditions for the above
problem.

Theorem 13.4.9 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Let
C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time sys-

tems. Then, the almost output regulation problem via state feedback + j -th
order PD regulators is solvable if and only if the following conditions are
true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

	Dwr ker R ⊆ V⊗(A, B, Ce, Deu),

im 	Dwr ⊆ V⊗(A, B, Ce, Deu) + S∗
j (A, B, Ce, Deu).

(iii) Let F be such that A + B F is Hurwitz-stable for continuous-time sys-
tems and Schur-stable for discrete-time systems. For any invariant zero
λ on the imaginary axis (continuous-time) or unit circle (discrete-time)
of the system characterized by the quadruple (A, B, Ce, Deu),

im Ce(λI − A − B F)−1	Dwr

⊆ im[Ce(λI − A − B F)−1 B + Deu].
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Moreover, under the above conditions, there exists a family of parameterized
feedback laws of the form ũ = Fε x̃ +∑ j

i=0 Hi,ερ
i r̄ that solves the almost dis-

turbance decoupling problem for the system (13.17). Then, utilizing such Fε

and Hi,ε , the posed almost output regulation problem is solved by the feedback
law (13.40).

So far we have considered state variable feedback regulators. We next
move on to consider the case when only the measurement variable y is avail-
able for feedback. We have the following basic problem.

Problem 13.4.10 Let a system of the form (13.14) be given. The almost output
regulation problem via measurement feedback regulators is to find, if possible,
a family of measurement feedback laws parameterized by ε > 0 and is of the
form,

ρv = Ac,εv + Bc,ε y
u = Cc,εv + Dc,ε y,

(13.41)

such that for any ε > 0 the following properties hold:

(i) The system

ρx = (A + B Dc,εCy)x + BCc,εv

ρv = Bc,εCyx + Ac,εv
(13.42)

is asymptotically stable.

(ii) For all initial conditions, and all signals r (piecewise continuous in
continuous-time) the solution e of the interconnection of (13.41) and
(13.14) is such that

lim sup
t→∞

‖e(t)‖ � ε‖r‖∞.

Remark 13.4.2 Note that, similar to the state feedback case, part (ii) implies
that for all initial conditions, for r ≡ 0, and for any ε > 0 the solution of

ρx = (A + B Dc,εCy)x + BCc,εv + (Ew + B Dc,ε Dyw)w

ρv = Bc,εCyx + Ac,εv + Bc,ε Dyww

ρw = Sw

e = (Ce + Deu Dc,εCy)x + DeuCc,εv + (Dew + Deu Dc,ε Dyw)w

(13.43)

is such that e(t) → 0 as t → ∞. In other words, the almost output regulation
problem via measurement feedback regulators requires the exact regulation
via measurement feedback regulators in the classical sense.
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We have the following result concerning the above problem.

Theorem 13.4.10 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied. Let
C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time sys-

tems. Then, the almost output regulation problem via measurement feedback
regulators is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

im 	Dwr ⊆ V⊗(A, B, Ce, Deu) + im B ker Deu.

(iii) For continuous-time systems we have

ker
(
Ce Deu

)
⊇ S−0(Ae, Dwr,e, Cy,e, Dyr) ∩ V∗(Ae, Dwr,e, Cy,e, Dyr).

where

Ae =
(

A −B


0 S

)
, Dwr,e =

(−	Dwr

Dwr

)
, and

Cy,e = (
Cy Cy	 + Dyw

)
.

Similarly, for discrete-time systems we have

ker
(
Ce Deu

) ⊇ S⊗(Ae, Dwr,e, Cy,e, Dyr) ∩ C−1
y,e im Dyr .

(iv) For continuous-time systems we have

S−0(Ae, Dwr,e, Cy,e, Dyr) ∩ V∗(Ae, Dwr,e, Cy,e, Dyr)

⊆ (
V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu)

) ⊕ R
s.

Similarly, for discrete-time systems we have

S⊗(Ae, Dwr,e, Cy,e, Dyr) ⊆ V⊗(A, B, Ce, Deu) ⊕ R
s.
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(v) Let F and K be such that A + B F and AK = Ae + KCy,e are Hurwitz-
stable for continuous-time systems and Schur-stable for discrete-time
systems. For any invariant zero λ on the imaginary axis (continuous-
time) or unit circle (discrete-time) of the system characterized by the
quadruple (A, B, Ce, Deu), we have

im Ce(λI − A − B F)−1	Dwr

⊆ im[Ce(λI − A − B F)−1 B + Deu],
while for any invariant zero λ on the imaginary axis (continuous-time)
or unit circle (discrete-time) of the system characterized by the quadru-
ple (Ae, Dwr,e, Cy,e, Dyr), we have

ker
[
Cy,e(λI − AK )−1 Dwr,e + Dyr

]
⊆ ker

(
Ce −Deu


)
(λI − AK )−1 Dwr,e.

Moreover, whenever the above conditions hold, there exists a family of proper
controllers characterized by the quadruples ( Āc,ε, B̄c,ε, C̄c,ε, D̄c,ε) that solves
the almost disturbance decoupling for the system (13.25). In that case, the al-
most output regulation problem via measurement feedback regulators is solved
by the family of controllers,

�C :
⎧⎨
⎩

ρv1 = Sv1 + C̄c,1,εv2 + D̄c,1,ε(y + (Dyw + Cy	)v1)

ρv2 = Āc,εv2 + B̄c.ε(y + (Dyw + Cy	)v1)

u = −
v1 + C̄c,2,εv2 + D̄c,2,ε(y + (Dyw + Cy	)v1),
(13.44)

where C̄c,1,ε, C̄c,2,ε, D̄c,1,ε, and D̄c,2,ε are obtained by partitioning C̄c,ε and
D̄c,ε in conformity with the partitioning of Āe,

C̄c,ε =
(

C̄c,1,ε

C̄c,2,ε

)
, and D̄c,ε =

(
D̄c,1,ε

D̄c,2,ε

)
. (13.45)

As in the case of state feedback regulators, whenever we know all the
derivatives of the signal r in continuous-time systems or all the forward shifted
values of r in discrete-time systems, the solvability conditions can be relaxed.
We begin with the following problem formulation.

Problem 13.4.11 Let a system of the form (13.14) be given. The almost output
regulation problem via measurement feedback + PD regulators is to find, if
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possible, a family of measurement feedback laws parameterized by ε > 0 and
is of the form

ρv = Ac,εv + Bc,ε y + ∑ j
i=0 Gi,ερ

i r̄
u = Cc,εv + Dc,ε y + ∑ j

i=0 Hi,ερ
i r̄,

(13.46)

for some j � 0 such that for any ε > 0 the following properties hold:

(i) The system (13.42) is asymptotically stable.

(ii) For all initial conditions and for all signals r (in continuous-time r ∈
C j ) the interconnection of (13.46) and (13.14) is such that

lim sup
t→∞

‖e(t)‖ � ε‖r‖∞.

We have the following theorem that develops the solvability conditions for
the above problem.

Theorem 13.4.11 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied. Let
C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time sys-

tems. Then, the almost output regulation problem via measurement feedback
+ PD regulators is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

	Dwr ker R ⊆ V⊗(A, B, Ce, Deu) + B ker Deu,

im 	Dwr ⊆ V⊗(A, B, Ce, Deu) + S∗(A, B, Ce, Deu).

(iii) For continuous-time systems we have

ker
(
Ce Deu

) ⊇ S−0(Ae, Dwr,e Q, Cy,e, Dyr Q)

∩ V∗(Ae, Dwr,e Q, Cy,e, Dyr Q),

where

Ae =
(

A −B


0 S

)
, Dwr,e =

(−	Dwr

Dwr

)
, and

Cy,e = (
Cy Cy	 + Dyw

)
.
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Similarly, for discrete-time systems we have

ker
(
Ce Deu

) ⊇ S⊗(Ae, Dwr,e Q, Cy,e, Dyr Q) ∩ C−1
y,e{im Dyr Q}.

(iv) For continuous-time systems we have

S−0(Ae, Dwr,e Q, Cy,e, Dyr Q) ∩ V∗(Ae, Dwr,e Q, Cy,e, Dyr Q)

⊆ (
V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu)

) ⊕ R
s.

Similarly, for discrete-time systems we have

S⊗(Ae, Dwr,e Q, Cy,e, Dyr Q) ⊆ V⊗(A, B, Ce, Deu) ⊕ R
s.

(v) Let F and K be such that A + B F and AK = Ae + KCy,e are Hurwitz-
stable for continuous-time systems and Schur-stable for discrete-time
systems. For any invariant zero λ on the imaginary axis (continuous-
time) or unit circle (discrete-time) of the system characterized by the
quadruple (A, B, Ce, Deu),

im Ce(λI − A − B F)−1	Dwr

⊆ im[Ce(λI − A − B F)−1 B + Deu],
while for any invariant zero λon the imaginary axis (continuous-time)
or unit circle (discrete-time) of the system characterized by the quadru-
ple (Ae, Dwr,e, Cy,e, Dyr), we have

ker R ∩ ker
[
Cy,e(λI − AK )−1 Dwr,e + Dyr

]
⊆ ker

(
Ce −Deu


)
(λI − AK )−1 Dwr,e.

Moreover, whenever the above conditions hold, there exists a family of param-
eterized feedback controllers of the form given below in (13.47) that solves
the almost disturbance decoupling problem via measurement feedback + PD
controllers for the system (13.25),

�̄c,ε :
{

ρv̄ = Āc,εv̄ + B̄c,ε ȳ + ∑ j
i=0 Ḡi,ε ρ i r̄ ,

ū = C̄c,εv̄ + D̄c,ε ȳ + ∑ j
i=0 H̄i,ερ

i r̄ .
(13.47)

In that case, the almost output regulation problem via measurement feedback
+ PD regulators is solved by the controller or regulator,

�C :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρv1 = Sv1 + C̄c,1,εv2 + D̄c,1,ε y̌ + ∑ j
i=0 H̄i2,ερ

i r̄
ρv2 = Āc,εv2 + B̄c,ε y̌ + ∑ j

i=0 Ḡi,ε ρ i r̄
y̌ = y + (Dyw + Cy	)v1

u = −
v1 + C̄c,2,εv2 + D̄c,2,ε y̌ + ∑ j
i=0 H̄i1,ερ

i r̄ ,
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(13.48)

where C̄c,1,ε, C̄c,2,ε, D̄c,1,ε, D̄c,2,ε, H̄i1,ε, and H̄i2,ε are obtained by partitioning
C̄c,ε, D̄c,ε, and Hi,ε in conformity with the partitioning of Āe,

C̄c,ε =
(

C̄c,1,ε

C̄c,2,ε

)
, D̄c,ε =

(
D̄c,1,ε

D̄c,2,ε

)
, and H̄i,ε =

(
H̄i1,ε

H̄i2,ε

)
. (13.49)

In the case when we know only some derivatives of the signal r in con-
tinuous-time systems, or some forward shifted values of the sequence r in
discrete-time systems, we can also relax the solvability conditions to some
extent. We begin with the following problem formulation.

Problem 13.4.12 The almost output regulation problem via measurement
feedback + j -th order PD regulators is to find, if possible, a measurement
feedback law of the form (13.46) for a fixed j ≥ 0 and parameterized by ε > 0
such that for any ε > 0 the following properties hold:

(i) The system (13.42) is asymptotically stable.

(ii) For all initial conditions and for all signals r (in continuous-time r ∈
C j ) the solution of the interconnection of (13.46) and (13.14) satisfies

lim sup
t→∞

‖e(t)‖ � ε‖r‖∞.

We have the following theorem that develops the solvability conditions for
the above problem.

Theorem 13.4.12 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied. Let
C

g = C
− for continuous-time systems, and C

g = C
� for discrete-time sys-

tems. Then, the almost output regulation problem via measurement feedback
+ j -th order PD regulators is solvable if and only if the following conditions
are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For continuous-time systems we have

im 	Dwr ⊆ V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu),

and for discrete-time systems we have

	Dwr ker R ⊆ V⊗(A, B, Ce, Deu) + B ker Deu,

im 	Dwr ⊆ V⊗(A, B, Ce, Deu) + S∗
j (A, B, Ce, Deu).
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(iii) For continuous-time systems we have

ker
(
Ce Deu

)
⊇ S−0(Ae, Dwr,e, Cy,e, Dyr) ∩ V∗(Ae, Dwr,e, Cy,e, Dyr),

where

Ae =
(

A −B


0 S

)
, Dwr,e =

(−	Dwr

Dwr

)
, and

Cy,e = (
Cy Cy	 + Dyw

)
.

Similarly, for discrete-time systems we have

ker
(
Ce Deu

) ⊇ S⊗(Ae, Dwr,e, Cy,e, Dyr) ∩ C−1
y,e im Dyr .

(iv) For continuous-time systems we have

S−0(Ae, Dwr,e, Cy,e, Dyr) ∩ V∗(Ae, Dwr,e, Cy,e, Dyr)

⊆ (
V−0(A, B, Ce, Deu) + S∗(A, B, Ce, Deu)

) ⊕ R
s.

Similarly, for discrete-time systems we have

S⊗(Ae, Dwr,e, Cy,e, Dyr) ⊆ V⊗(A, B, Ce, Deu) ⊕ R
s.

(v) Let F and K be such that A + B F and AK = Ae + KCy,e are Hurwitz-
stable for continuous-time systems and Schur-stable for discrete-time
systems. For any invariant zero λ on the imaginary axis (continuous-
time) or unit circle (discrete-time) of the system characterized by the
quadruple (A, B, Ce, Deu), we have

im Ce(λI − A − B F)−1	Dwr

⊆ im[Ce(λI − A − B F)−1 B + Deu],
while for any invariant zero λ on the imaginary axis (continuous-time)
or unit circle (discrete-time) of the system characterized by the quadru-
ple (Ae, Dwr,e, Cy,e, Dyr), we have

ker R ∩ ker
[
Cy,e(λI − AK )−1 Dwr,e + Dyr

]
⊆ ker

(
Ce −Deu


)
(λI − AK )−1 Dwr,e.
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Moreover, whenever the above conditions hold, there exists a family of pa-
rameterized feedback controllers of the form given in (13.47) that solves the
almost disturbance decoupling problem via measurement feedback + j -th or-
der PD controllers for the system (13.25). In that case, the almost output
regulation problem via measurement feedback + j -th order PD regulators is
solved by the controller (13.48).

13.4.3 Steady state tracking with a pre-specified level of perfor-
mance – γ -level output regulation

In the previous sections the problem formulations required that the distur-
bance (or reference) signal was rejected (tracked) either precisely or with ar-
bitrary precision. Clearly in many cases this is too ambitious. In this section
we will show that the techniques of the previous section allow us to to formu-
late and solve relaxed forms of output regulation. We still require asymptotic
regulation in the classical sense but this time we only require that the closed-
loop transfer matrix from r to e be small in some arbitrary induced operator
norm.

In the proof of Theorem 13.4.1, it is clear that a state feedback controller
that achieves output regulation is of the form (13.18). The interconnection of a
controller of the form (13.18) and the system (13.17) and the interconnection
of the controller (13.18) and the system (13.14) yield the same closed-loop
transfer matrix. Therefore, also the induced operator norm is the same. We
can therefore concentrate for our design on the system (13.17) without taking
output regulation into account and then obtain in a straightforward manner a
controller for the original system with the same transfer matrix from r to z and
which achieves regulation. In other words we can transform a control problem
with the output regulation constraint into an unconstrained control problem.
The same is also true for more general controllers of the form (13.20).

In the measurement feedback a similar situation arises. From the proof
of Theorem 13.4.4, it is clear that a measurement feedback controller that
achieves output regulation (after a transformation that does not effect out-
put regulation or the effect of r on z) is of the form (13.26). The inter-
connection of a controller of the form (13.26) and the system (13.14), and
the interconnection of the controller characterized by the matrix quadruple
( Āc, B̄c, C̄c, D̄c) and the system (13.25), both yield the same closed-loop trans-
fer matrix. Therefore also the induced operator norm is the same. We can
therefore concentrate for our design on the system (13.17) without taking out-
put regulation into account and then obtain in a straightforward manner a con-
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troller for the original system with the same transfer matrix from r to z and
which achieves output regulation. In other words, we can transform a control
problem with the output regulation constraint into an unconstrained control
problem. Again, this is also true for more general controllers of the form
(13.5). Using these arguments we can obtain a number of results for the case
that (almost) output regulation is not possible.

As usual, we consider first state feedback regulators.

Problem 13.4.13 Let a system of the form (13.14) be given. The output reg-
ulation problem with L∞ (or �∞) performance level γ via state feedback reg-
ulators is to find, if possible, a state feedback law of the form u = Fx + Gw

such that the following properties hold:

(i) The system ρx = (A + B F)x is asymptotically stable.

(ii) For all ε > 0 and for all signals r (piecewise continuous in continuous-
time) there exists a T > 0 such that

‖e‖∞,[T ,∞) � γ ‖r‖∞,[0,∞) + ε. (13.50)

Remark 13.4.3 Note that the above problem formulation is equivalent to the
definition used in [79].

We note that in the above problem, if we choose zero initial conditions
in part (ii), we need that ‖e‖∞,[0,∞) � γ ‖r‖∞,[0,∞). On the other hand by
choosing r ≡ 0, we need that for all initial conditions the solution of (13.15)
satisfies limt→∞ e(t) = 0. In other words, the controller must achieve output
regulation in the classical sense. Also, we would like to note that the role of ε

and T in the above conditions is to ensure that the effect of initial conditions
is small enough (less than ε) if we wait long enough (T large enough).

We can also formulate the above problem with other performance criteria
such as an L p-Lq (or �p-�q) induced operator norm. In that case we require
that for all initial conditions, and for all signals r (piecewise continuous in
continuous-time) we have

lim
T →∞

‖e‖p,[0,T ]) − γ ‖r‖q,[0,T ]
T

� 0. (13.51)

Note that the problem formulations (13.50) is not suitable for L p (or �p)
norms with p less than ∞, and conversely (13.51) is not suitable for p = ∞
or q = ∞, but the two problem formulations are obviously closely connected.
In [43] an H∞ control problem with unstable weights was formulated. If these
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weights are at the input, then this is intrinsically equivalent to minimizing the
criterion in (13.51). This has been further exploited in [46–48]. However, the
motivation for this problem with an H∞ criterion is rather weak. In [43] the
main argument was that it can be used to solve the problem of H∞ optimal
control with the output regulation constraint. However, for that problem we
have a complete solution in Chapters 10 and 11 and we feel that the problem
formulations in those chapters are more appropriate since the performance
from r to z is not of interest; we only want to guarantee that we achieve out-
put regulation.

We have the following solvability conditions for the above problem.

Theorem 13.4.13 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Then,
the output regulation problem with L∞ (or �∞) performance level γ via state
feedback regulators is solvable if and only if the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) There exists a stabilizing state feedback law ũ = Fx̃ for the system
(13.17) such that the L∞[0,∞) (or �∞[0,∞)) induced operator norm
from r to e for zero initial conditions is less than γ .

Moreover, if we have F, 	, and 
 satisfying (i) and (ii), then a controller
solving the output regulation problem with L∞ (or �∞) performance level γ

via state feedback regulators is given by (13.18).

Again we can use derivative information of forward shifted values of part
of the signal r and in this way relax the solvability conditions. This is formu-
lated in the following problem.

Problem 13.4.14 Let a system of the form (13.14) be given. The output regu-
lation problem with L∞ (or �∞) performance level γ via state feedback + PD
regulators is to find, if possible, a feedback law of the form (13.20) for some
j � 0, such that the following properties hold:

(i) The system ρx = (A + B F)x is asymptotically stable.

(ii) Given any ε > 0, for all initial conditions and for all signals r (in
continuous-time r ∈ C j ) the solution of (13.21) is such that (13.50) is
true.
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The solvability conditions for the above problem are given in the following
theorem.

Theorem 13.4.14 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Then,
the output regulation problem with L∞ (or �∞) performance level γ via state
feedback + PD regulators is solvable if and only if the following conditions
are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For some j ≥ 0, there exists a feedback law of the form ũ = Fx̃ +∑ j
i=0 Hiρ

i r̄ for the system (13.17) such that the L∞ (or �∞) induced
operator norm from r to e for zero initial conditions is less than γ .

Moreover, in that case, utilizing such F and Hi , the output regulation problem
with L∞ (or �∞) performance level γ via state feedback + PD regulators is
solvable by the feedback law (13.22).

As usual when we know only some derivatives of the signal r in continu-
ous-time systems, we get different solvability conditions. We begin with the
following problem formulation.

Problem 13.4.15 Let a system of the form (13.14) be given. The output regu-
lation problem with L∞ (or �∞) performance level γ via state feedback + j -th
order PD regulators is to find, if possible, a feedback law of the form (13.20),
such that the following properties hold:

(i) The system ρx = (A + B F)x is asymptotically stable.

(ii) Given any ε > 0, for all initial conditions, and for all signals r (in
continuous-time r ∈ C j ) the solution of (13.21) is such that (13.50) is
true.

The solvability conditions for the above problem are given as follows.

Theorem 13.4.15 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1 and A.2 be satisfied. Then,
the output regulation problem with L∞ (or �∞) performance level γ via state
feedback + j -th order PD regulators is solvable if and only if the following
conditions are true:
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(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For a specified j � 0, there exists a feedback law of the form ũ =
Fx̃ + ∑ j

i=0 Hiρ
i r for the system (13.17) such that the L∞[0,∞) (or

�∞[0,∞)) induced operator norm from r to e for zero initial conditions
is less than γ .

Moreover, in that case, utilizing such F and Hi , the output regulation problem
with L∞ (or �∞) performance level γ via state feedback + j -th order PD
regulators is solvable by the feedback law (13.22).

So far we have considered state variable feedback regulators. We next
move on to consider the case when only the measurement variable y is avail-
able for feedback. We have the following basic problem.

Problem 13.4.16 The output regulation problem with L∞ (or �∞) perfor-
mance level γ via measurement feedback is to find, if possible, a measurement
feedback law of the form (13.23) such that the following properties hold:

(i) The system (13.24) is asymptotically stable.

(ii) Given any ε > 0, for all initial conditions, and for all signals r (piece-
wise continuous in continuous-time), there exists a T > 0 such that the
solution of the interconnection of (13.23) and (13.14) satisfies (13.50).

We have the following solvability conditions for the above problem.

Theorem 13.4.16 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied.
Then, the output regulation problem with L∞ (or �∞) performance level γ

via measurement feedback regulators is solvable if and only if the following
conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) There exists a stabilizing feedback of the form (13.23) for the system
(13.25) such that the L∞[0,∞) (or �∞[0,∞)) induced operator norm
from r to e, for zero initial conditions, is less than γ .

Moreover, if we have 	, 
, and a controller characterized by the quadruple
( Āc, B̄c, C̄c, D̄c) satisfying (i) and (ii), then a controller solving the output
regulation problem with L∞ (or �∞) performance level γ via measurement
feedback is given by (13.26).
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As in the case of state feedback regulators, whenever we know all the
derivatives of the signal r in continuous-time systems or all the forward shifted
values of r in discrete-time systems, the solvability conditions can be relaxed.
We begin with the following problem formulation.

Problem 13.4.17 Let a system of the form (13.14) be given. The output regu-
lation problem with L∞ (or �∞) performance level γ via measurement feed-
back + PD regulators is to find, if possible, a measurement feedback law of
the form (13.33) for some j � 0 such that the following properties hold:

(i) The system (13.24) is asymptotically stable.

(ii) Given any ε > 0, for all initial conditions, and for all signals r (in
continuous-time r ∈ C j ) the interconnection of (13.33) and (13.14) is
such that (13.50) is true.

We have the following solvability conditions for the above problem.

Theorem 13.4.17 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied.
Then, the output regulation problem with L∞ (or �∞) performance level γ via
measurement feedback + PD regulators is solvable if and only if the following
conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For some j ≥ 0, there exists a feedback law of the form (13.34) for the
system (13.25) such that the L∞[0,∞) (or �∞[0,∞)) induced operator
norm from r to e for zero initial conditions is less than γ .

Moreover, if we have 	, 
, and a controller of the form (13.34) satisfying
(i) and (ii), then a controller solving the output regulator problem with L∞
(or �∞) performance level γ via measurement feedback + PD regulators is
solvable by the feedback law (13.35).

If we have a limit on the number of derivatives or the number of forward
shifted values of the signal r , then the solvability conditions are obviously
stronger. We begin with the following problem formulation.

Problem 13.4.18 Let a system of the form (13.14) be given. The output regu-
lation problem with L∞ (or �∞) performance level γ via measurement feed-
back + j -th order PD regulators is to find, if possible, a measurement feedback
law of the form (13.33) for a specified j � 0 such that the following properties
hold:
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(i) The system (13.24) is asymptotically stable.

(ii) Given any ε > 0, for all initial conditions, and for all signals r (in
continuous-time r ∈ C j ) the interconnection of (13.33) and (13.14) is
such that (13.50) is true.

Remark 13.4.4 In earlier problems we have seen that using controllers of
the form (13.6) in continuous-time does not help us in weakening solvability
conditions. Here we would like to note that it does help. The L∞ induced
operator norm can be reduced more by using future information of the ex-
ogenous signal r̄ = Rr. For details we refer to [12] where it is shown that
optimal causal controllers have delays and from which it easy to conclude that
future information on r would be useful. This result is in contrast to H2 and
H∞ norms where future information on r does not help in reducing the norm.
Although we do not give all the details for this case, we would like to note that
the above theorem does apply with obvious changes also when using future
information of r.

We have the following solvability conditions for the above problem.

Theorem 13.4.18 Consider the system given in (13.14) for both continuous-
and discrete-time systems. Let Assumptions A.1, A.2, and A.3 be satisfied.
Then, the output regulation problem with L∞ (or �∞) performance level γ via
measurement feedback + j -th order PD regulators is solvable if and only if
the following conditions are true:

(i) There exist matrices 	 and 
 that solve the regulator equation (13.16).

(ii) For a specified j ≥ 0, there exists a feedback law of the form (13.34)
for the system (13.25) such that the L∞[0,∞) (or �∞[0,∞)) induced
operator norm from r to e for zero initial conditions is less than γ .

Moreover, if we have 	, 
, and a controller of the form (13.34) satisfying (i)
and (ii), then a controller solving the output regulation problem with L∞ (or
�∞) performance level γ via measurement feedback via measurement feed-
back + j -th order PD regulators is solvable by the feedback law (13.35).

If we view Theorems 13.4.13 and 13.4.16 in the L2-induced operator
norm, then these results can be reinterpreted as H∞ control problems with
unstable weighting functions. This problem has been considered in [47]. Our
results provide an alternative way to solve this problem.
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Note that the construction of appropriate regulators in all the above theo-
rems involves the construction of controllers with different architectures that
can achieve L∞ (or �∞) induced norm of the operator from r to e smaller than
a prescribed γ when applied to the auxiliary systems (13.17) and (13.25). For
such a construction for the general case of L p-Lq , we refer the reader to [70]
for p = q = 2, to [11] for p = q = ∞, to [61] for the p = 2, q = ∞ (SISO
case) and to [55] for p = 2, q = ∞ (MIMO case).

13.5 Classical output regulation with uncertain exo-
system

In structural stability (see Section 2.8) we investigated the effect of perturba-
tions of the system parameters. We wanted to arrive at a one fixed controller
which achieves regulation for all possible system parameters in an open neigh-
borhood around the nominal value. However, perturbation of the exosystem
was explicitly excluded in the problem formulation. This was necessary be-
cause it follows directly from the internal model principle as discussed in Sec-
tion 2.6 that the controller must contain a partial copy of the exosystem and
then there obviously nearly always exist arbitrarily small perturbations such
that after perturbation the controller no longer contains an internal copy and
therefore does not achieve regulation.

As discussed in Section 12.1 the root of the problem might be that we
do not pose the right question. Maybe we should require that after perturba-
tion the asymptotic error is arbitrarily small instead of being exactly equal to
zero. The latter problem can be very nicely formulated in terms of generalized
regulation.

Assume S is weakly Hurwitz-stable (continuous-time) or weakly Schur-
stable (discrete-time) with nominal value S0. Then we have:

ρw = Sw = S0w + (S − S0)w = S0w + r

with r = (S − S0)w. A natural question then is to ask for

‖e‖∞,[T ,∞) � ε‖w‖∞,[0,∞)

for all perturbations of the exosystem such that ‖S − S0‖ � δ. But then a very
natural sufficient condition amounts to requiring that

‖e‖∞,[T ,∞) � ε

δ
‖r‖∞,[0,∞)
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is satisfied for the nominal system. But this is precisely the problem that we
have studied in this chapter.

This can then be combined with perturbations of the other system param-
eters, and it shows that generalized regulation yields a very nice tool to attack
the problem of structural stability with perturbations of the exosystem.



Chapter 14

Generalized output regulation
with saturating actuators –
continuous-time systems

14.1 Introduction and problem formulation

We have formulated in Chapter 3 the semi-global linear feedback output reg-
ulation problem for linear systems subject to input saturation. Chapter 3 fol-
lows the traditional formulation of linear output regulation problems where
the exosystem is autonomous. As a result, the disturbances and the references
generated by the exosystem contain only the frequency components of the ex-
osystem. In an effort to broaden the class of disturbance and reference signals,
we formulate in this section the generalized semi-global linear feedback out-
put regulation problem in which an external driving signal to the exosystem
is included. Unlike in Chapter 13 where we considered different layers of
output regulation problems under a broad category of controllers, we consider
here only exact output regulation problems under the classical state as well as
measurement feedback regulators. This chapter is based on the work of [33].

We consider a multivariable system with inputs that are subject to satu-
ration together with an exosystem that generates disturbance and reference
signals as described by the system,

ẋ = Ax + Bσ (u) + Eww

ẇ = Sw + r
y = Cyx + Dyww

e = Cex + Deww

(14.1)
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where, as usual, x ∈ R
n, w ∈ R

s , u ∈ R
m , y ∈ R

p, and e ∈ R
q , while r ∈ C0

is an external signal to the exosystem. Also, σ is a vector-valued saturation
function as defined by (3.2), that is

σ (s) = [σ̄ (s1), σ̄ (s2), · · · , σ̄ (sm)]T (14.2)

with

σ̄ i(s) =

⎧⎪⎨
⎪⎩

s if |s| ≤ 1

−1 if s < −1

1 if s > 1.

(14.3)

In what follows, we formulate two generalized output regulation prob-
lems, one utilizing the state feedback, and the other measurement feedback.
The block diagram of Figure 14.1 depicts this.

Plant

Controller

Exosystem
��w

�

x

� y

�
�

y

�r

u

�w
�r

e

Figure 14.1: Generalized output regulation scheme

The generalized semi-global linear state feedback output regulation prob-
lem and the generalized measurement feedback output regulation problem are
formulated as follows.

Problem 14.1.1 (Generalized semi-global linear state feedback output reg-
ulation problem) Consider the system (14.1), a compact set W0 ⊂ R

s , and a
bounded set R ⊂ L∞. For any a priori given (arbitrarily large) bounded set
X0 ⊂ R

n, find, if possible, a linear static feedback law u = Fx + Gw + Hr,
such that the following conditions hold:

(i) (Internal Stability) The equilibrium point x = 0 of

ẋ = Ax + Bσ (Fx) (14.4)

is asymptotically stable with X0 contained in its basin of attraction.
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(ii) (Output Regulation) For all x(0) ∈ X0, w(0) ∈ W0, and r ∈ R, the
solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0. (14.5)

Problem 14.1.2 (Generalized semi-global linear observer based measure-
ment feedback output regulation problem) Consider the system (14.1), a
compact set W0 ⊂ R

s and a bounded set R ⊂ L∞. For any a priori given
(arbitrarily large) bounded sets X0 ⊂ R

n and Z0 ⊂ R
n+s , find, if possible, a

linear observer based measurement feedback law of the form,( ˙̂x
˙̂w
)

=
(

A Ew

0 S

)(
x̂
ŵ

)
+

(
Bσ (u)

r

)

+
(

KA

KS

)((
Cy Dyw

)( x̂
ŵ

)
− y

)
u = Fx̂ + Gŵ + Hr,

(14.6)

such that the following conditions hold:

(i) (Internal Stability) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

ẋ = Ax + Bσ (Fx̂ + Gŵ)( ˙̂x
˙̂w
)

=
(

A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (Fx̂ + Gŵ)

+
(

KA

KS

)
(
(
Cy Dyw

) (x̂ − x
ŵ

)
)

(14.7)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) (Output Regulation) For all (x(0), x̂(0), ŵ(0)) ∈ X0×Z0, w(0) ∈ W0,
and all r ∈ R, the solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0. (14.8)

Remark 14.1.1 As in Chapter 3, we would like to emphasize again that our
definition of the generalized semi-global linear state feedback [respectively,
linear observer based measurement feedback] output regulation problem does
not view the set of initial conditions of the plant as given data. The set of
given data consists of the models of the plant and the exosystem, the set of
initial conditions for the exosystem, and the set of external inputs to the ex-
osystem. Moreover, the generalized semi-global linear state feedback [re-
spectively, measurement feedback] output regulation problem reduces to the
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classical semi-global linear state feedback [respectively, measurement feed-
back] output regulation problem as formulated in Problem 3.3.1 [respectively,
Problem 3.3.2] when the external input r to the exosystem is non-existent.

In what follows, we will give the solvability conditions for the above two
problems. For clarity, we present these solvability conditions in two separate
subsections, one for the state feedback case and the other for the measurement
feedback case. As a special case of the generalized semi-global linear feed-
back output regulation problems, the solvability conditions for semi-global
linear feedback tracking problems for a chain of integrators are obtained read-
ily. The same set of solvability conditions for the global state feedback track-
ing problem for a chain of integrators were given earlier in [83], where non-
linear feedback laws were resorted to.

As it is clear from previous chapters, it is reasonable to formulate the
following assumptions:

A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Hurwitz-stable, i.e. all the eigenvalues of S are in
the closed right-half plane.

A.3. The pair

((
Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

14.2 State feedback output regulation problem

The solvability conditions for the generalized semi-global linear state feed-
back output regulation problem is given in the following theorem.

Theorem 14.2.1 Consider the system (14.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ L∞. Let Assumptions A.1 and A.2 hold. Then,
the generalized semi-global linear state feedback output regulation problem
is solvable if the following conditions hold:

(i) A has all its eigenvalues in the closed left half plane.

(ii) There exist matrices 	 and 
 such that,

(a) they solve the regulator equation (2.7), i.e.,

	S = A	 + B
 + Ew,

0 = Ce	 + Dew,
(14.9)
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(b) for each r ∈ R, there exists a function r̃ ∈ L∞ such that 	r =
Br̃,

(c) there exists a δ > 0 and a T ≥ 0 such that ‖
w + r̃‖∞,T � 1 − δ

for all w with w(0) ∈ W0 and all r ∈ R.

Remark 14.2.1 We would like to make the following observations on the solv-
ability conditions as given in the above theorem:

(i) As expected, the solvability conditions for the generalized semi-global
linear state feedback output regulation problem as given in the above
theorem reduces to those for the semi-global linear state feedback out-
put regulation problem as formulated in Problem 3.3.1 when the exter-
nal input to the exosystem is non-existent.

(ii) If im 	 ⊆ im B, then Condition 2 (b) is automatically satisfied for any
given set R.

(iii) If im 	 ∩ im B = {0}, then Condition 2 (b) can never be satisfied for
any given R except for R = {0}.

Proof of Theorem 14.2.1 : The proof of this theorem is similar, mutatis
mutandis, to that of Theorem 3.3.2. As in the proof of Theorem 3.3.2, we
prove this theorem by first constructing a family of linear static state feedback
laws, parameterized in ε, and then showing that for each given set X0, there
exists an ε∗ > 0 such that for all ε ∈ (0, ε∗], both items 1 and 2 of Problem
14.1.1 hold. The family of linear static state feedback laws we construct takes
the form,

u = Fεx + (
 − Fε	)w + r̃ , (14.10)

where Fε is constructed by a Riccati-based design as given by (3.10). That is,

Fε = −BT Pε. (14.11)

The rest of the proof is the same as that of Theorem 3.3.2 except that (3.24)
takes instead the following slightly different form,

ξ̇ = Aξ + B(σ (u) − 
w − r̃). (14.12)
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Theorem 14.2.1 presents the conditions under which the Problem 14.1.1
can be solved. Also, as pointed out in the proof of Theorem 14.2.1, to solve
such a problem one could construct a low-gain state feedback controller of
the form (14.10) with Fε as in (14.11). However, in order to improve the
convergence of e(t) to zero, one can alternatively use a low-high-gain state
feedback controller. Consider the feedback control law,

u = −(µ + 1)BT Pεx + [(µ + 1)BT Pε	 + 
]w + r̃, µ ≥ 0 (14.13)

where Pε is as given in (3.9).

We have the following theorem.

Theorem 14.2.2 Consider the system (14.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ C0. Then, under the same solvability conditions
as in Theorem 14.2.1, there exists a controller, among the family of feedback
control laws given by (14.13), that solves the generalized semi-global linear
state feedback output regulation problem. More specifically, for any a priori
given (arbitrarily large) bounded set X0 ⊂ R

n, there exists an ε∗ > 0 such
that for each ε ∈ (0, ε∗], and for each µ ≥ 0, the controller in the family
(14.13) has the following properties:

(i) The equilibrium point x = 0 of

ẋ = Ax + Bσ (−(1 + µ)BT Pεx) (14.14)

is asymptotically stable with X0 contained in its basin of attraction.

(ii) For any x(0) ∈ X0, w(0) ∈ W , and r ∈ R, the solution of the closed-
loop system satisfies

lim
t→∞ e(t) = 0. (14.15)

Proof : The proof of this theorem is the same as that of Theorem 3.3.2 except
that (3.24) takes instead the slightly different form given in (14.12).

14.3 Dynamic measurement feedback

The solvability conditions for the generalized semi-global linear observer ba-
sed measurement feedback output regulation problem is given in the following
theorem.
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Theorem 14.3.1 Consider the system (14.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ L∞. Let Assumptions A.1, A.2, and A.3 hold.
Then, the generalized semi-global linear observer based measurement feed-
back output regulation problem is solvable if the following conditions hold:

(i) A has all its eigenvalues in the closed left half plane.

(ii) There exist matrices 	 and 
 such that,

(a) they solve the regulator equation (14.9),

(b) for each r ∈ R, there exists a function r̃(t) ∈ L∞ such that
	r(t) = Br̃(t) for all t ≥ 0,

(c) there exist a δ > 0 and a T ≥ 0 such that ‖
w + r̃‖∞,T � 1 − δ

for all w with w(0) ∈ W0 and all r ∈ R.

Remark 14.3.1 As expected, the solvability conditions for the generalized
semi-global linear observer based measurement feedback output regulation
problem as given in the above theorem reduces to those for the semi-global
linear observer based measurement feedback output regulation problem as
formulated in Problem 3.3.2 when the external input to the exosystem is non-
existent.

Proof of Theorem 14.3.1 : The proof of this theorem is similar, mutatis mu-
tandis, to that of Theorem 3.3.4. As in the proof of Theorem 3.3.4, we prove
this theorem by first constructing a family of linear observer based measure-
ment feedback laws, parameterized in ε, and then showing that both items 1
and 2 of Problem 14.1.2 indeed hold if ε is selected appropriately. The family
of observer based measurement feedback laws we construct takes the form,

˙̂x = Ax̂ + Bσ (u) + Ewŵ + KACy(x̂ − x) + KA Dyw(ŵ − w)
˙̂w = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w) + r
u = Fε x̂ + (
 − Fε	)ŵ + r̃,

(14.16)

where KA and KS are such that the following matrix Ā is Hurwitz-stable,

Ā :=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
.

The rest of the proof is the same as that of Theorem 3.3.4 except that (3.48)
takes instead the form,

ξ̇ = Aξ + Bσ
[

(w − w̃) − Fε(x̃ − ξ − 	w̃) + r̃

]
+(A	 − 	S + Ew)w − 	r

˙̃x = (A + KACy)x̃ + (Ew + KA Dyw)w̃
˙̃w = KSCyx̃ + (S + KS Dyw)w̃.
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Remark 14.3.2 From the above proof of Theorem 14.3.1, we note that the
linear state feedback law (14.10) interconnected with any exponentially stable
observer (where x and w are replaced by their respective estimates which
converge exponentially to the real x and w as t → ∞) will solve the semi-
global measurement feedback output regulation problem.

Theorem 14.3.1 presents the conditions under which the Problem 14.1.2
can be solved. Also, as pointed out in the proof of Theorem 14.3.1, to solve
such a problem one could construct an observer based measurement feedback
controller (14.16) with Fε as in (3.10). However, in order to improve the con-
vergence of e(t) to zero, one can alternatively use a low-high-gain state feed-
back controller. Consider the family of observer based measurement feedback
control laws,

˙̂x = Ax̂ + Bσ (u) + Ewŵ + KA,�Cy(x̂ − x) + KA,�Dyw(ŵ − w)
˙̂w = Sŵ + KS,�Cy(x̂ − x) + KS,� Dyw(ŵ − w) + r
u = −(1 + µ)BT Pε x̂ + ((µ + 1)BT Pε	 + 
)ŵ + r̃

(14.17)

where Pε is as given in (3.9), and KA,� and KS,� are as given in (3.62).

Theorem 14.3.2 Consider the system (14.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ C0. Then, under the same solvability conditions
as in Theorem 14.3.1, and under the assumption that the pair

((
Cy Dyw

)
,

(
A Ew

0 S

))

is observable, there exists a controller, among the family of feedback con-
trol laws given by (14.17), that solves the generalized observer based mea-
surement feedback output regulation problem. More specifically, for any a
priori given (arbitrarily large) sets X0 ⊂ R

n and Z0 ⊂ R
n+s , there ex-

ists an ε∗ ∈ (0, 1], and for each ε ∈ (0, ε∗], and each µ ≥ 0, there ex-
ists an �∗(ε, µ) > 0 such that for each ε ∈ (0, ε∗], each µ ≥ 0, and each
� ≥ �∗(ε, µ), the controller in the family (14.17) has the following properties:
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(i) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

ẋ = Ax + Bσ (u)( ˙̂x
˙̂w
)

=
(

A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (u)

+
(

KA,�

KS,�

)
(
(
Cy Dyw

) (x̂ − x
ŵ

)
)

u = −(µ + 1)BT Pε x̂ + ((µ + 1)BT Pε	 + 
)ŵ

(14.18)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) For any (x(0), x̂(0), ŵ(0)) ∈ X0 × Z0, and w(0) ∈ W , the solution of
the closed-loop system satisfies

lim
t→∞ e(t) = 0. (14.19)

Proof : The proof of this theorem is similar, mutatis mutandis, to that of
Theorem3.3.5, except that, in this case, (3.48) takes instead the form

ξ̇ = Aξ + Bσ (−(1 + µ)BT Pεξ + 
w − 
w̃

+(1 + µ)BT Pε x̃ − (1 + µ)BT Pε	w̃ + r̃)

+(A	 − 	S + Ew)w − 	r
˙̃x = (A + KA,�Cy)x̃ + (Ew + KA,� Dyw)w̃
˙̃w = KS,�Cy x̃ + (S + KS,� Dyw)w̃.

(14.20)
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Chapter 15

Generalized regulation with
saturating actuators –
discrete-time systems

15.1 Introduction and problem formulation

We have formulated earlier in Chapter 4 the semi-global linear feedback out-
put regulation problems for linear systems subject to input saturation. Chap-
ter 4 follows the traditional formulation of linear output regulation problems
where the exosystem is autonomous. As a result, the disturbances and the ref-
erences generated by the exosystem contain only the frequency components
of the exosystem. In an effort to broaden the class of disturbance and refer-
ence signals, we formulate in this section the generalized semi-global linear
feedback output regulation problem in which an external driving signal to the
exosystem is included. Unlike in Chapter 13 where we considered different
layers of output regulation problems under a broad category of controllers, we
consider here only exact output regulation problems under the classical state
as well as measurement feedback regulators.

We consider a multivariable system with inputs that are subject to satu-
ration together with an exosystem that generates disturbance and reference
signals as described by the system,

x(k + 1) = Ax(k) + Bσ (u(k)) + Eww(k)

w(k + 1) = Sw(k) + r(k)

y(k) = Cyx(k) + Dyww(k)

e(k) = Cex(k) + Deww(k),

(15.1)
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where, as before, x ∈ R
n, w ∈ R

s , u ∈ R
m , y ∈ R

p, and e ∈ R
q , while r ∈

L∞ is an external signal to the exosystem, and σ is a vector-valued saturation
function as defined by (4.2), that is

σ (s) = [σ̄ (s1), σ̄ (s2), · · · , σ̄ (sm)]T (15.2)

with

σ̄ (s) =

⎧⎪⎨
⎪⎩

s if |s| ≤ 1

−1 if s < −1

1 if s > 1.

(15.3)

In what follows, we formulate two generalized output regulation prob-
lems, one utilizing the state feedback, and the other measurement feedback.
The block diagram of Figure 15.1 depicts this.

Plant

Controller

Exosystem
��w

�

x

� y

�
�

y

�r

u

�w
�r

e

Figure 15.1: Generalized output regulation scheme

The generalized semi-global linear state feedback output regulation prob-
lem and the generalized linear observer based measurement feedback output
regulation problem are formulated as follows.

Problem 15.1.1 (Generalized semi-global state feedback output regulation
problem) Consider the system (15.1), a compact set W0 ⊂ R

s and a bounded
set R ⊂ L∞. For any a priori given (arbitrarily large) bounded set X0 ⊂ R

n,
find, if possible, a static feedback law of the type u = α(x, w, r), such that
the following conditions hold:

(i) (Internal Stability) The equilibrium point x = 0 of

x(k + 1) = Ax(k) + Bσ (α(x(k), 0, 0)) (15.4)

is asymptotically stable with X0 contained in its basin of attraction.
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(ii) (Output Regulation) For all x(0) ∈ X0, w(0) ∈ W0 and r ∈ R, the
solution of the closed-loop system satisfies

lim
k→∞ e(k) = 0. (15.5)

Problem 15.1.2 (The generalized semi-global linear observer based mea-
surement feedback output regulation problem) Consider the system (15.1),
a compact set W0 ⊂ R

s and a bounded set R ⊂ L∞. For any a priori given
(arbitrarily large) bounded sets X0 ⊂ R

n and Z0 ⊂ R
n+s , find, if possible, a

linear observer based measurement feedback law of the form,(
x̂(k + 1)

ŵ(k + 1)

)
=

(
A Ew

0 S

)(
x̂(k)

ŵ(k)

)
+

(
Bσ (u(k))

r(k)

)

+
(

KA

KS

)((
Cy Dyw

) ( x̂(k)

ŵ(k)

)
− y(k)

)
u(k) = α(x̂(k), ŵ(k), r(k)),

(15.6)

such that the following conditions hold:

(i) (Internal Stability) The equilibrium point (x, x̂ , ŵ) = (0, 0, 0) of

x(k + 1) = Ax(k) + Bσ (α(x̂(k), ŵ(k), 0))(
x̂(k + 1)

ŵ(k + 1)

)
=

(
A Ew

0 S

)(
x̂(k)

ŵ(k)

)
+

(
B
0

)
σ (α(x̂(k), ŵ(k), 0))

+
(

KA

KS

) (
Cy Dyw

)(x̂(k) − x(k)

ŵ(k)

)
(15.7)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) (Output Regulation) For all (x(0), x̂(0), ŵ(0)) ∈ X0×Z0, w(0) ∈ W0,
and all r ∈ R, the solution of the closed-loop system satisfies

lim
k→∞

e(k) = 0. (15.8)

Remark 15.1.1 As in Chapter 4, we would like to emphasize again that our
definition of the generalized semi-global linear state feedback [respectively,
linear observer based measurement feedback] output regulation problem does
not view the set of initial conditions of the plant as given data. The set of
given data consists of the models of the plant and the exosystem, the set of
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initial conditions for the exosystem, and the set of external inputs to the ex-
osystem. Moreover, the generalized semi-global linear state feedback [re-
spectively, measurement feedback] output regulation problem reduces to the
classical semi-global linear state feedback [respectively, measurement feed-
back] output regulation problem as formulated in Problem 4.3.1 [respectively,
Problem 4.3.2] when the external input r to the exosystem is non-existent.

Remark 15.1.2 We would also like to emphasize that unlike the traditional
output regulation problem where all interesting cases arise when the poles
of the exosystem are outside or on the unit circle, for the generalized output
regulation problem, there are interesting cases even when the exosystem is
asymptotically stable.

We will give the solvability conditions for the above two problems. For
clarity, we present these solvability conditions in two separate subsections,
one for each of the two problems.

As it is clear from previous chapters, it is reasonable to formulate the
following assumptions:

A.1. The pair (A, B) is stabilizable.

A.2. The matrix S is anti-Schur-stable, i.e. all the eigenvalues of S are on or
outside the unit circle.

A.3. The pair

((
Cy Dyw

)
,

(
A Ew

0 S

))
is detectable.

15.2 State feedback output regulation problem

The solvability conditions for generalized semi-global state feedback output
regulation problem is given in the following theorem.

Theorem 15.2.1 Consider the system (15.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ L∞. Let Assumptions A.1 and A.2 hold. The
generalized semi-global state feedback output regulation problem is solvable
if the following conditions hold:

(i) A has all its eigenvalues on or inside the unit circle.

(ii) There exist matrices 	 and 
 such that
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(a) they solve the regulator equation (2.7), i.e.,

	S = A	 + B
 + Ew,

0 = Ce	 + Dew,
(15.9)

(b) for each r ∈ R, there exists a function r̃ ∈ L∞ such that 	r =
Br̃,

(c) there exists a δ > 0 and a K ≥ 0 such that ‖
w + r̃‖∞,K � 1 − δ

for all w with w(0) ∈ W0 and all r ∈ R.

Moreover, a linear state feedback controller of the form u(k) = Fx̂(k) +
Gŵ(k) + Hr̃(k) can solve the posed problem.

Remark 15.2.1 We would like to make the following observations on the solv-
ability conditions as given in the above theorem:

(i) As expected, the solvability conditions for the generalized semi-global
linear state feedback output regulation problem as given in the above
theorem reduce to those for the classical semi-global linear state feed-
back output regulation problem as formulated in Problem 4.3.1 when
the external input to the exosystem is non-existent.

(ii) If im 	 ⊆ im B, then Condition 2 (b) is automatically satisfied for any
given set R.

(iii) If im 	 ∩ im B = {0}, then Condition 2 (b) can never be satisfied for
any given R except for R = {0}.

Proof of Theorem 15.2.1: The proof of this theorem is similar, mutatis mu-
tandis, to that of Theorem 4.3.1. As in the proof of Theorem 4.3.1, we prove
this theorem by first constructing a family of linear static state feedback laws
parameterized in ε, and then showing that for each given set X0, there exists
an ε∗ > 0 such that for all ε ∈ (0, ε∗], both items 1 and 2 of Problem 15.1.1
hold. The family of linear static state feedback laws we construct takes the
form,

u = Fεx + (
 − Fε	)w + r̃ (15.10)

where Fε := −(BT Pε B + I )−1 BT Pε A with Pε being the solution of the Ric-
cati equation (4.9). The rest of the proof is the same as that of Theorem 4.3.1
except that (4.20) takes the following slightly different form

ξ(k + 1) = Aξ(k) + B(σ (u(k)) − 
w(k) − r̃(k)).
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Theorem 15.2.1 presents the conditions under which the Problem 15.1.1
can be solved. Also, as pointed out in the proof of Theorem 15.2.1, to solve
such a problem one could construct a low-gain state feedback controller of the
form (15.10) with Fε constructed by a Riccati-based design as in (4.10). How-
ever, in order to improve the convergence of e(k) to zero, when B is injective,
one can alternatively use an improved state feedback controller. Consider the
feedback control law,

u = [Fε + µκ(x, w,µ)Kε]x
− [(Fε + µκ(x, w,µ)Kε)	 − 
]w + r̃, µ ∈ [0, 2], (15.11)

where,

Fε = −(BT Pε B + I )−1 BT Pε A,

Kε = −(BT Pε B)−1 BT Pε A,

Ac = A + B Fε,

and Pε being the solution of the Riccati equation (4.9) with limε→0 Qε = 0.
Also, the function κ is as defined by (4.30).

We have the following theorem.

Theorem 15.2.2 Consider the system (15.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ L∞. Let the solvability conditions given in The-
orem 15.2.1 be satisfied and let B is injective. Then, there exists a controller,
among the family of controllers given in (15.11), that solves the generalized
semi-global state feedback output regulation problem. More specifically, for
any a priori given (arbitrarily large) bounded set X ∈ R

n, there exists an
ε∗ ∈ (0, 1] such that for each ε ∈ (0, ε∗] and for each µ ∈ [0, 2], the con-
troller in the family (15.11) has the following properties:

(i) The equilibrium point x = 0 of

ρx = Ax + Bσ (Fεx + µκ(x, 0, µ)Kε x)

is asymptotically stable with X0 contained in its basin of attraction.

(ii) For any x(0) ∈ X0, w(0) ∈ W0, and r ∈ R, the solution of the closed-
loop system satisfies

lim
k→∞

e(k) = 0.

Proof: The proof is similar, mutatis mutandis, to that of Theorem 4.3.2,
except that (4.41) takes the following slightly different form,

ρξ = Acξ + B
[
σ (
w + (Fε + µκ(x, w,µ)Kε)ξ − 
w − Fεξ − r̃

]
.
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15.3 Dynamic measurement feedback

The solvability conditions for the generalized semi-global linear observer ba-
sed measurement feedback output regulation problem is given in the following
theorem.

Theorem 15.3.1 Consider the system (4.1) and given a compact set W0 ⊂ R
s

and a bounded set R ⊂ L∞. Let Assumptions A.1, A.2, and A.3 hold. Then,
the generalized semi-global linear observer based measurement feedback out-
put regulation problem is solvable if the following conditions hold:

(i) A has all its eigenvalues inside or on the unit circle.

(ii) There exist matrices 	 and 
 such that,

(a) they solve the linear matrix equation (15.9),

(b) for each r ∈ R, there exists a function r̃ ∈ L∞ such that 	r = Br̃
for all k ≥ 0,

(c) there exist a δ > 0 and a K ≥ 0 such that ‖
w + r̃‖∞,K � 1 − δ

for all w with w(0) ∈ W0 and all r ∈ R.

Moreover the function α(x̂(k), ŵ(k), r(k)) in Problem 15.1.2 can be a linear
function of x(k), w(k), and r(k).

Remark 15.3.1 As expected, the solvability conditions for the generalized
semi-global linear observer based measurement feedback output regulation
problem as given in the above theorem reduces to those for the classical semi-
global linear observer based measurement feedback output regulation prob-
lem as formulated in Problem 4.3.2 when the external input to the exosystem
is non-existent.

Proof of Theorem 15.3.1 : The proof of this theorem is similar, mutatis mu-
tandis, to that of Theorem 4.3.3. As in the proof of Theorem 4.3.3, we prove
this theorem by first constructing a family of linear observer based measure-
ment feedback laws, parameterized in ε, and then showing that both items 1
and 2 of Problem 15.1.2 indeed hold. The family of linear observer based
measurement feedback laws we construct takes the following form

x̂(k + 1) = Ax̂ (k) + Bσ (u(k)) + Ewŵ(k) − KA y(k)

+KA(Cyx̂(k) + Dywŵ(k))

ŵ(k + 1) = Sŵ(k) − KS y(k) + KS(Cyx̂(k) + Dywŵ(k)) + r(k)

u(k) = Fε x̂(k) + (
 − Fε	)ŵ(k) + r̃
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(15.12)

where Fε := −(BT Pε B + I )−1 BT Pε A with Pε being the solution of the Ric-
cati equation (4.9), and KA and KS are such that the following matrix Ā is
Schur-stable,

Ā :=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
.

The rest of the proof is the same as that of Theorem 4.3.3 except that (4.51)
takes instead the form,

ξ(k + 1) = Aξ(k) + Bσ (
(w(k) − w̃(k))

−Fε(x̃(k) − 	w̃(k) − ξ(k)) + r̃(k))

−B
w(k) − 	r(k)

x̃(k + 1) = (A + KACy)x̃(k) + (Ew + KA Dyw)w̃(k)

w̃(k + 1) = KSCy x̃(k) + (S + KS Dyw)w̃(k).

Theorem 15.3.1 presents the conditions under which the Problem 15.1.2
can be solved. Also, as pointed out in the proof of Theorem 15.3.1, to solve
such a problem one could construct a linear observer based controller (15.12)
with Fε as in (4.10). However, in order to improve the convergence of e(k) to
zero, one can alternatively use an improved measurement feedback controller.
Consider the family of linear observer based measurement feedback laws,

ρ x̂ = Ax̂ + Bσ (u) + Ewŵ − KA y
+KA(Cyx̂ + Dywŵ)

ŵ(k + 1) = Sŵ − KS y + KS(Cyx̂ + Dywŵ) + r
u = (Fε + µκ(x̂, ŵ, µ)Kε)x̂

−((Fε + µκ(x̂, ŵ, µ)Kε)	 − 
)ŵ + r̃,

(15.13)

with Pε being the solution of the Riccati equation (4.9), and the function κ

is as defined by (4.30). The matrices KA and KS are chosen such that all the
eigenvalues of the following matrix

Ā =
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
(15.14)

are at the origin.
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Theorem 15.3.2 Consider the system (15.1) and given a compact set W0 ⊂
R

s and a bounded set R ⊂ L∞. Assume that the sufficient conditions given
in Theorem 15.3.1 hold. Also, assume that the pair((

Cy Dyw

)
,

(
A Ew

0 S

))

is observable and that B is injective. Then, the generalized semi-global linear
observer based measurement feedback output regulation problem is solvable.
More specifically, consider the family of control laws (15.13). Then, for any
a priori given (arbitrarily large) bounded set X0 ∈ R

n and Z0 ∈ R
n+s , there

exists an ε∗ ∈ (0, 1] such that for each ε ∈ (0, ε∗] and for each µ ∈ [0, 2],
the controller in the family (15.13) has the following properties:

(i) The equilibrium (x, x̂ , ŵ) = (0, 0, 0) of

ρx(k + 1) = Ax + Bσ (u)

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σ (u)

+
(

KA

KS

) (
Cy Dyw

)(x̂ − x
ŵ

)
u = (Fε + µκ(x̂, ŵ, µ)Kε)x̂

−((Fε + µκ(x̂, ŵ, µ)Kε)	 − 
)ŵ

(15.15)

is asymptotically stable with X0 × Z0 contained in its basin of attrac-
tion.

(ii) For any (x(0), x̂ (0) ∈ X0, ŵ(0)) ∈ Z0, w(0) ∈ W0, and all r ∈ R, the
solution of the closed-loop system satisfies

lim
k→∞

e(k) = 0. (15.16)

Proof : The proof is similar to that of Theorem 4.3.4.
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Chapter 16

Generalized output regulation
with actuators subject to
amplitude and rate saturation

16.1 Introduction and problem formulation

We have formulated earlier in Chapter 5 the semi-global linear feedback out-
put regulation problems for linear systems with actuators which are subject to
rate and amplitude saturation. Chapter 5 follows the traditional formulation
of linear output regulation problems where the exosystem is autonomous. In
Chapter 13 it was argued that a more general framework has attractive fea-
tures. In the last two chapters this concept was introduced for linear sys-
tems subject to amplitude saturation for continuous and discrete-time systems
respectively. The objective of this chapter is to introduce this concept for
systems with rate and amplitude saturation. We treat both continuous and
discrete-time systems in this chapter.

We first formulate the problem of semi-global generalized output regula-
tion via linear state feedback for linear systems with inputs subject to both am-
plitude and rate saturations. Consider the following continuous- or discrete-
time system

ρx = Ax + Bσα,β(u) + Eww

ρw = Sw + r
e = Cex + Deww

y = Cyx + Dyww

(16.1)

where x ∈ R
n, u ∈ R

m, w ∈ R
s, e ∈ R

q and y ∈ R
p. Here σα,β denotes the
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functional differential operator which we use to enforce that the actual control
input σα,βu will satisfy the amplitude and rate constraints. It is important
to recall that σα,β can be viewed as a part of the controller. For details, we
refer to Chapter 5. Also, as in Chapter 5, for the operator σα,β , we denote the
initial conditions by xs , and the space of all initial signals as Xs . Note that
the exosystem is driven by an external signal r which, in continuous-time,
we assume to be continuous. These non-autonomous exosystems have been
defined before in Chapter 13.

Plant

Controller

�r

�

Exosystem �w

Deww

�w

�

u x

�

�

�
�e

Figure 16.1: Generalized output regulation with state feedback

The problem of semi-global generalized output regulation via state feed-
back is formulated as follows (see Figure 16.1).

Problem 16.1.1 (Semi-global generalized output regulation via state feed-
back) Consider the system (16.1), a compact set W0 ⊂ R

s and a bounded set
R ⊂ L∞. The problem of semi-global generalized output regulation via state
feedback is defined as follows:

For any a priori given (arbitrarily large) bounded set X0 ⊂ R
n, find, if

possible, a linear static feedback law u = Fx + Gw + Hr, such that the
following properties hold:

(i) The equilibrium x = 0, xs = 0 of the system

ρx = Ax + Bσα,β(Fx)

is locally exponentially stable with X0 × Xs contained in its basin of
attraction.

(ii) For all x(0) ∈ X0, xs ∈ Xs, w(0) ∈ W0 and r ∈ R, the solution of
the closed-loop system satisfies

lim
t→∞ e(t) = 0.
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Figure 16.2: Generalized output regulation with measurement feedback

Next we consider the problem of semi-global generalized output regula-
tion via observer based measurement feedback (see Figure 16.2).

Problem 16.1.2 (Semi-global generalized output regulation via measure-
ment feedback) Consider the system (16.1), a compact set W0 ⊂ R

s and a
bounded set R ⊂ L∞. The problem of semi-global generalized output regu-
lation via observer based measurement feedback is defined as follows:

For any a priori given (arbitrarily large) bounded sets X0 ⊂ R
n and

Z0 ⊂ R
n+s , find, if possible, a linear observer based feedback law of the

form,

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
Bσα,β(u)

r

)

+
(

KA

KS

)((
Cy Dyw

) ( x̂
ŵ

)
− y

)
u = Fx̂ + Gŵ + Hr

such that the following properties hold:

(i) The equilibrium (x, x̂ , ŵ) = (0, 0, 0), xs = 0 of

ρx = Ax + Bσα,β(Fx̂ + Gŵ))

ρ

(
x̂
ŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
σα,β(u)

+
(

KA

KS

)((
Cy Dyw

) (x̂ − x
ŵ

))

is locally exponentially stable with X0 ×Xs ×Z0 contained in its basin
of attraction.
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(ii) For all (x(0), x̂(0), ŵ(0)) ∈ X0 × Z0, xs ∈ Xs, w(0) ∈ W0, and all
r ∈ R, the solution of the closed-loop system satisfies

lim
t→∞ e(t) = 0.

The solvability conditions for the two problems formulated above are
given in the next two subsections.

16.2 Generalized output regulation via state feedback

The solvability conditions for the problem of semi-global generalized output
regulation via state feedback are given in the following theorem.

Theorem 16.2.1 Consider the system (16.1) and the given compact set W0 ⊂
R

s . The problem of semi-global generalized output regulation via linear state
feedback is solvable if the following conditions are true:

(i) (A, B) is stabilizable and A has all its eigenvalues in the closed left half
plane (continuous-time) or in the closed unit disc (discrete-time);

(ii) There exist matrices 	 and 
 such that:

(a) they solve the regulator equation,

	S = A	 + B
 + Ew,

0 = Ce	 + Dew.
(16.2)

(b) for each r ∈ R, there exists a function r̃ ∈ C1 such that 	r = Br̃.

(c) There exist a δ > 0 and a T � 0 such that ‖
w + r̃‖∞,T �
α − δ and ‖
Sw + 
r + ˙̃r‖∞,T � β − δ (continuous-time) or
‖
(S − I )w(k)+
r(k)+ r̃(k +1)− r̃(k)‖∞,T � β − δ (discrete-
time) for all w with w(0) ∈ W0 and all r ∈ R.

Moreover, under these conditions, a family of linear static state feedback laws
is given by

u = −BT Pεx + (BT Pε	 + 
)w + r̃ (16.3)

in continuous-time where Pε is defined by the Riccati equation (5.10). For the
discrete-time a family of linear static state feedback laws is given by

u = −(BT Pε B + I )−1 BT Pε A(x − 	w) + 
w + r̃ (16.4)

where Pε is defined by the Riccati equation (5.14).
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Proof : We prove this theorem only for the continuous-time system. The
counterpart proof for the discrete-time system is similar. Consider the family
of feedbacks given in (16.3). Let Fε = −BT Pε. Then as derived earlier (see
(5.11)), we have

‖Fεe(A+B Fε)t‖∞ � υεe−ζε t , ‖Fε(A + B Fε)e
(A+B Fε)t‖∞ � υεe−ζε t

(16.5)

where υε is a positive-valued function satisfying limε→0 υε = 0. By Theorem
5.3.1, there exists an ε∗

1 such that for all ε ∈ (0, ε∗
1] the closed-loop system

is asymptotically stable when w = 0 and r = 0. Furthermore, X0 × Xs

is contained in the domain of attraction. This shows the item (i) of Problem
16.1.1.

To show that item (ii) of Problem 16.1.1 holds (i.e. the error e goes to zero
asymptotically), let

ξ = x − 	w.

Then, using the regulator equation (16.2), we have

ξ̇ = ẋ − 	ẇ

= Ax + Bσα,β(u) + Eww − 	Sw − 	r

= Aξ + B(σα,β(u) − 
w − r̃).

By the family of state feedback laws (16.3), the closed-loop system becomes

ξ̇ = Aξ + B
[
σα,β(Fεξ + 
w + r̃) − (
w + r̃)

]
, (16.6)

where Fε = −BT Pε. Now by condition 2(c) in the theorem, ‖
w + r̃‖∞,T <

α − δ and ‖
ẇ + ˙̃r‖∞,T < β − δ. Also notice that ξ(T ) belongs to a bounded
set independent of ε since ξ(0) is bounded and ξ(T ) is determined by a linear
differential equation with bounded inputs σα,β(u) and 
w + r̃ . If we consider
the system (16.6) from time T onwards, without saturation element, we obtain

ξ̇ = (A + B Fε)ξ. (16.7)

Since ξ(T ) is bounded, (16.5) and (16.7) imply that there exists an ε∗
2 > 0

such that, for all ε ∈ (0, ε∗
2],

‖Fεξ‖∞,T � δ, ‖Fεξ̇‖∞,T � δ.

We can conclude then that the closed-loop system (16.6) will operate within
the linear region of the saturation elements for all t � T if ε ∈ (0, ε∗

2 ]. Hence,
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ξ(t) → 0 as t → ∞. By the definition of ξ(t) and the regulator equation
(16.2), it is easy to see that

e(t) = Ceξ(t) + (Ce	 + Dew)w(t) = Ceξ(t).

It follows then that e(t) → 0 as t → ∞. We conclude the proof by taking
ε∗ = min{ε∗

1, ε
∗
2}.

16.3 Generalized output regulation via measurement
feedback

The solvability conditions for the problem of semi-global generalized output
regulation via measurement feedback are given in the following theorem.

Theorem 16.3.1 Consider the system (16.1) and the given compact set W0 ⊂
R

s . The problem of semi-global generalized output regulation via measure-
ment feedback is solvable if the following conditions hold:

(i) (A, B) is stabilizable and A has all its eigenvalues in the closed left
half plane for continuous-time systems or within or on the unit circle
for discrete-time systems. Moreover, the pair((

Cy Dyw

) (A Ew

0 S

))

is detectable.

(ii) There exist matrices 	 and 
 such that

(a) they solve the regulator equation (16.2), and

(b) there exists a δ > 0 and a T � 0 such that ‖
w + r̃‖∞,T �
α − δ and ‖
Sw + 
r + ˙̃r‖∞,T � β − δ (in continuous-time)
or ‖
(S − I )w(k) + 
r(k) + r̃(k + 1) − r̃(k)‖∞,T � β − δ (in
discrete-time) for all w with w(0) ∈ W0.

Moreover, under these conditions, in continuous-time a family of linear dy-
namic error feedback laws is given by,( ˙̂x

˙̂w
)

=
(

A Ew

0 S

)(
x̂
ŵ

)
+

(
Bσα,β(u)

r

)

+
(

KA

KS

)((
Cy Dyw

)( x̂
ŵ

)
− y

)
u = Fε x̂ + (
 − Fε	)ŵ + r̃ ,

(16.8)
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where Fε = −BT Pε and Pε is defined by the Riccati equation (5.10), while in
discrete-time a family of linear dynamic measurement feedback laws is given
by,

(
x̂(k + 1)

ŵ(k + 1)

)
=

(
A Ew

0 S

)(
x̂(k)

ŵ(k)

)
+

(
Bσα,β(u)(k)

r(k)

)

+
(

KA

KS

)((
Cy Dyw

) ( x̂(k)

ŵ(k)

)
− y(k)

)
u(k) = Fε x̂(k) + (
 − Fε	)ŵ(k) + r̃(k),

(16.9)

where Fε = −(BT Pε B + I )−1BT Pε A and Pε is defined by the Riccati equation
(5.14). Here KA and KS are chosen such that the matrix,

Ā :=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)

is Hurwitz-stable (continuous-time) or Schur-stable (discrete-time).

Proof : We prove this theorem only for continuous-time. The discrete-time
counterpart can be proved similarly. By the given family of feedback laws,
the closed-loop system consisting of the system (16.1) and the dynamic error
feedback laws (16.8) can be written as,

ẋ = Ax + Bσα,β(Fε x̂ + (
 − Fε	)ŵ + r̃) + Eww
˙̂x = Ax̂ + Bσα,β(Fε x̂ + (
 − Fε	)ŵ + r̃) + Ewŵ

+KACy(x̂ − x) + KA Dyw(ŵ − w)
˙̂w = Sŵ + KSCy(x̂ − x) + KS Dyw(ŵ − w) + r.

(16.10)

Introduce new state variables,

ξ = x − 	w

x̃ = x − x̂
w̃ = w − ŵ,

and rewrite the closed-loop system (16.10) as

ξ̇ = Aξ + Bσα,β(Fεξ + 
w − 
w̃ − Fε x̃ + Fε	w̃ + r̃)

−B(
w + r̃)
˙̃x = (A + KACy)x̃ + (Ew + KA Dyw)w̃
˙̃w = KSCyx̃ + (S + KS Dyw)w̃.

(16.11)
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We first show that item (i) of Problem 16.1.2 holds. Let w = 0 and r = 0,
then (16.11) reduces to

ξ̇ = Aξ + Bσα,β(Fεξ − 
w̃ − Fε x̃ + Fε	w̃)( ˙̃x
˙̃w
)

=
(

A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)(
x̃
w̃

)
.

(16.12)

Note that the matrix Ā defined above is Hurwitz-stable, due to the detectabil-
ity, it readily follows from the second part of (16.12) that there exists a T1 � 0
such that, for all possible initial conditions (x̃(0), w̃(0)),

‖
w̃‖∞,T1 � α
4 , ‖Fε x̃‖∞,T1 � α

4 , ‖Fε	w̃‖∞,T1 � α
4

‖
 ˙̃w‖∞,T1 � β

4 , ‖Fε
˙̃x‖∞,T1 � β

4 , ‖Fε	 ˙̃w‖∞,T1 � β

4

(16.13)

for all ε ∈ (0, 1]. We next consider the first equation of (16.12). ξ(T1) belongs
to a bounded set independent of ε since ξ(0) is bounded and since ξ is deter-
mined via a linear differential equation with bounded input σα,β(u). Hence
there exists an M1 such that for all possible initial conditions,

‖ξ(T1)‖ � M1, for all ε ∈ (0, 1]. (16.14)

Let us now assume that, from time T1 onwards, the saturation elements are
nonexistent. In this case, the first equation of (16.12) can be written as

ξ̇ = (A + B Fε)ξ − B Fε x̃ − B
w̃ + B Fε	w̃. (16.15)

Since x̃ → 0 and w̃ → 0 exponentially with a decay rate independent of ε

as t → ∞, it follows trivially from (16.5) that there exist an ε∗
1 > 0 and an

M2 > 0 such that, for all possible initial conditions x̃(0) and w̃(0) and all
ε ∈ (0, ε∗

1],∫ ∞

T1

‖eζετ B[Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)]‖dτ � M2.

This in turn shows that, for t � T1,

‖Fεξ(t)‖ = ∥∥Fεe(A+B Fε)tξ(T1)

−
∫ t

T1

Fεe(A+B Fε)(t−τ )B
[
Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)

]
dτ

∥∥
� υε M1 + υε

∫ ∞

T1

‖eζετ B[Fε x̃(τ ) + 
w̃(τ) − Fε	w̃(τ)]‖dτ

� υε(M1 + M2).
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Choose ε∗
2 ∈ (0, ε∗

1] such that, for all ε ∈ (0, ε∗
2 ],

‖Fεξ‖∞,T1 � α

4
.

Similarly, we can show that there exists an ε∗
3 ∈ (0, ε∗

2 ] such that, for all
ε ∈ (0, ε∗

3],

‖Fε ξ̇‖∞,T1 � β

4
.

These two bounds, together with (16.13), shows that the system (16.12) will
operate linearly after time T1 and local exponential stability of this linear sys-
tem follows from the separation principle.

In summary, we have shown that there exists an ε∗
3 > 0 such that, for all

ε ∈ (0, ε∗
3], the equilibrium point (ξ, x̃, w̃) = (0, 0, 0), xs = 0 of the system

(16.12) is asymptotically stable, with X0 × Xs × Z0 contained in its basin of
attraction.

We now proceed to show that item (ii) of Problem 16.1.2 also holds. To
this end, we consider the closed-loop system (16.11). Recalling that the ma-
trix Ā is Hurwitz-stable, it readily follows from the last two equations of
(16.11) that there exists an T2 � T such that, for all possible initial condi-
tions (x̃(0), w̃(0)),

‖
w̃‖∞,T2 � δ
4 , ‖Fε x̃‖∞,T2 � δ

4 , ‖Fε	w̃‖∞,T2 � δ
4 ,

‖
 ˙̃w‖∞,T2 � δ
4 , ‖Fε

˙̃x‖∞,T2 � δ
4 , ‖Fε	 ˙̃w‖∞,T2 � δ

4

(16.16)

for all ε ∈ (0, 1]. We next consider the first equation of (16.11). ξ(T2) be-
longs to a bounded set independent of ε since ξ(0) is bounded and since ξ is
determined via a linear differential equation with bounded inputs σα,β(u) and

w + r̃ . Hence there exists an M3 such that for all possible initial conditions,

‖ξ(T2)‖ � M3, for all ε ∈ (0, 1].
Let us now assume that, from time T2 onwards, the equation (16.11) operates
without the saturation elements. In view of condition (ii)b) in the theorem, the
first equation of (16.11) in the absence of the saturation elements is the same
as the first equation of (16.12), and hence also reduces to (16.15) after time
T2. Hence, using a similar argument as above, we can show that there exists
an ε∗

3 > 0 such that, for all ε ∈ (0, ε∗
3],

‖Fεξ‖∞,T2 <
δ

4
, ‖Fε ξ̇‖∞,T2 <

δ

4
.
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These, together with (16.16) and condition (ii)b), show that the closed-loop
system (16.11) will operate linearly after time T2, and thus the exponential
stability of this linear system follows from the separation principle.

Next, by the regulator equation (16.2), it is easy to see that

e(t) = Ceξ(t).

This implies that e(t) → 0 as t → ∞. Finally, taking ε∗ = min{ε∗
2, ε

∗
3}, we

complete our proof.



Chapter 17

What does one do if output
regulation is not possible?

17.1 Introduction

We studied so far output regulation whether it be exact or almost type under
a variety of transient, robustness and other performance constraints. Also, we
studied output regulation when actuators are subject to amplitude and rate sat-
uration. As discussed throughout the book, output regulation is not always
possible. It requires certain conditions. One of the important conditions that
needs to be satisfied is the solvability of a couple of algebraic equations which
together are generally known as regulator equation. One of the questions that
arises is this; what can a designer do if either exact or almost output regulation
is not possible? To answer this question, let us first interpret the error signal e
whenever output regulation is possible. Obviously, in that case e is an energy
signal. On the other hand, whenever output regulation is not possible, under
some mild conditions, e can be seen to be a power signal. In this case, since
e does not asymptotically go to zero, one could minimize in the asymptotic
sense the power of the signal e. In other words, in the classical output reg-
ulation we seek to render e asymptotically zero, where as whenever it is not
possible to do so we could seek to render the power of e as small as possible.

We remark that a regulator that minimizes in the asymptotic sense the
power of e has the same degree of freedom as in the case when e is an energy
signal and when we seek to render it asymptotically zero. Such a freedom can
be utilized to study transient performance requirements (as was done in the
classical case in Chapter 6). In this regard, a couple of performance measures
can be introduced and the resulting output regulation problems that achieve
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optimal performance can be studied. Moreover as was done in the classical
case in Chapters 7 to 12, controller design problems which seek to achieve
desired performance (such as H2, H∞, and L1 norm based ones) with output
regulation constraint in the sense of minimizing the power of error signal e
can be studied as well.

17.2 Output regulation in the sense of minimizing the
power of the error signal

Consider the following system,

� :
{

ρx = Ax + Bu + Eww

e = Cex + Deuu + Deww,
(17.1)

Obviously, it does not make sense to consider systems which are not stabiliz-
able and therefore it is natural to assume that Assumption A.1 is satisfied, i.e.
(A, B) is stabilizable. We know that without loss of generality we can assume
that the exosystem,

�E : ρw = Sw, (17.2)

satisfies Assumption A.2, i.e. the matrix S is anti-Hurwitz-stable for conti-
nuous-time systems and anti-Schur-stable for discrete-time systems. Then we
know that the output regulation problem is solvable if and only if the regulator
equations are solvable, i.e. there exist 	,
 such that

	S = A	 + B
 + Ew

0 = Ce	 + Deu
 + Dew ,

As explained in introduction, the question we want to consider in this chapter
is what can we do if these regulator equations are not solvable. Can we make
the steady state error arbitrarily small if we cannot make it exactly equal to
zero or is there a strict lower limit in what we can achieve? In the latter
case, a second question of course arises as to how to characterize this lower
limit. Note that if the dimension of the error signal is less than or equal to
the number of inputs then the regulator equations are generically solvable and
therefore we are almost sure that regulation can be achieved. On the other
hand if the dimension of the error signal is larger than the number of inputs
then generically the regulator equations are not solvable and therefore it is
very unlikely that we can achieve output regulation.
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Our first result of this chapter gives us a tool to compute the minimally
achievable power of the error signal. We define the power of error signal e by

‖e‖2
Power = lim sup

T →∞
1

T

∫ T

0
‖e(t)‖2 dt

in continuous-time, while in discrete-time

‖e‖2
Power = lim sup

T →∞
1

T

T∑
k=0

‖e(k)‖2 .

Note that the power is not a real norm since there exist non-zero signals e
which satisfy ‖e‖Power = 0. Clearly if a signal converges to zero as time tends
to infinity then the power is equal to zero. It is easy to see that the power is a
suitable measure for the asymptotic behavior of a signal as it is independent
of the transient behavior of the signal.

The first question is whether we can always make the power of the error
signal finite. The following lemma is quite obvious.

Lemma 17.2.1 Consider the system (17.1) and the exosystem (17.2) which
satisfy Assumptions A.1 and A.2. If the exosystem is weakly Hurwitz-stable
in continuous-time or weakly Schur-stable in discrete-time, then there exists a
stabilizing feedback such that the error signal has finite power for any initial
conditions for the system and exosystem.

Proof : If the exosystem is weakly Hurwitz-stable in continuous-time or wea-
kly Schur-stable in discrete-time, then the state of the exosystem is bounded.
A controller which stabilizes the system automatically guarantees that the er-
ror signal is bounded for any initial condition and any bounded input signal.
Therefore, it has finite power.

Note that if the power cannot be made finite, then there are other perfor-
mance measures that can be considered. In [6] a specific criterion of “overtak-
ing” was considered: a controller �opt is considered optimal if for any other
controller �C there exists a T1 > 0 such that for all initial conditions, we have∫ T

0
‖e1(t)‖2 dt �

∫ T

0
‖e2(t)‖2 dt

for all T > T1 where e1 is the error signal resulting from the controller �opt

while e2 is the error signal resulting from the controller �C. A controller
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which is optimal with respect to this “overtaking criterion” is also optimal in
the sense of minimizing the power. However, the converse is not true because
the power ignores transient effects while the “overtaking criterion” minimizes
the transient effect as well. This will be briefly noted in Section 17.3.

The next question considers the problem of finding an optimal controller
which minimizes the power for the error signal. For ease of exposition we
assume that the the exosystem is weakly Hurwitz-stable in continuous-time or
weakly Schur-stable in discrete-time in which case the above lemma guaran-
tees that any stabilizing controller yields a finite power for the error signal.

Theorem 17.2.1 Consider the system (17.1) and the exosystem (17.2) which
satisfy Assumptions A.1 and A.2. Moreover, assume that the exosystem is
weakly Hurwitz-stable in continuous-time or weakly Schur-stable in discrete-
time. Consider given initial conditions x0 and w0 for the given system and
exosystem. Then the minimum of the power of e over all stabilizing state
feedback controllers of the form u = Fx + Gw is given by

J ∗(x0, w0) = inf { ‖(Ce	 + Deu
 + Dew)w‖Power | 
,	 such that

	S = A	 + B
 + Ew } (17.3)

Moreover, the associated optimal controller is given by,

u = Fx + (
 − F	)w, (17.4)

where F is such that A+ B F is Hurwitz-stable in continuous-time and Schur-
stable in discrete-time while 	 and 
 are the optimal solutions for the mini-
mization problem in (17.3).

Finally, there exists 	 and 
 such that for any F for which A + B F is
Hurwitz-stable in continuous-time and Schur-stable in discrete-time we have
the controller (17.4) satisfying

‖e‖Power = J ∗(x0, w0)

for all initial conditions x0 and w0.

Proof : We show this theorem for continuous-time systems. The discrete-
time result follows analogously. Note that we want to minimize the following
criterion,

lim sup
T →∞

1

T

∫ T

0
‖e(t)‖2 dt.
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We first minimize this criterion for a fixed T ,∫ T

0
‖e(t)‖2 dt. (17.5)

This is a standard finite-horizon linear quadratic control problem and it is
known that there exist time-varying feedbacks of the form

u(t) = FT (t)x(t) + GT (t)w(t) (17.6)

such that the criterion (17.5) is arbitrarily close to its infimum. One particu-
lar choice for this feedback is the controller which minimizes the following
perturbed criterion,∫ T

0
‖e(t)‖2 + ε‖x(t)‖2 + ε‖u(t)‖2 dt. (17.7)

For the family of controllers which minimize (17.7) it can be shown that there
exist matrices F0 and G0 such that

lim
T →∞ FT (t) = F0, lim

T →∞ GT (t) = G0

for all t > 0. Note that the limit is independent of t . Then a candidate near-
optimal feedback for the problem of minimizing the power is given by,

u = F0x + G0w. (17.8)

There are two problems that needs to be resolved before we can show that
this feedback is indeed optimal. Namely stability and the interchange of a
limit and an infimization. The fact that this feedback stabilizes the system
for w = 0 is a direct consequence of linear quadratic control since it is well
known that u = F0x is a stabilizing feedback that minimizes the criterion,∫ ∞

0
‖e(t)‖2 + ε‖x(t)‖2 + ε‖u(t)‖2 dt

when w = 0. The second problem is that although (17.6) is an optimal con-
troller for the criterion∫ T

0
‖e(t)‖2 + ε‖x(t)‖2 + ε‖u(t)‖2 dt, (17.9)

it is not clear that (17.8) is an optimal controller for the criterion,

lim sup
T →∞

1

T

∫ T

0
‖e(t)‖2 + ε‖x(t)‖2 + ε‖u(t)‖2 dt. (17.10)
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This result was proven for linear quadratic control problems when the underly-
ing dynamics are stabilizable. However, in our case the underlying dynamics
are the dynamics of both the system and the exosystem and obviously the dy-
namics of the exosystem is not stabilizable. Nevertheless, in our case as well,
this result can be shown, and it relies on the fact that the unstable dynamics is
almost periodic (since the exosystem is weakly stable and has all its eigenval-
ues on the boundary of the stability domain). Since the ideas are quite simple
although the details are quite technical because the exosystem is not periodic
but only almost periodic, we do not give a formal proof of this claim. Note
that this immediately shows that we can find a controller which is near optimal
for arbitrary initial conditions for the system and exosystem.

If we apply any feedback u = Fx + Gw to the system such that A + B F
is Hurwitz-stable in continuous-time and Schur-stable in discrete-time, then
it is easily seen that there exist 	 and 
 such that asymptotically we have
u = 
w and x = 	w where 	 and 
 satisfy 	S = A	 + B
 + Ew. But
then asymptotically e = (Ce	 + Deu
 + Dew)w. Therefore it is immediate
that the infimum is given by (17.3). It is obvious that the controller is then of
the form (17.4).

The feedback u = F0x + G0w we constructed was near optimal for all
initial conditions. Therefore if we consider the associated 	 and 
 to this
feedback then we have a near-optimal solution of the optimization in (17.3)
for any initial condition. We can then construct a family 	i , 
i such that

J ∗(x0, w0) = lim
i→∞ ‖(Ce	i + Deu
i + Dew)w‖Power

for all initial conditions. If 	i → 	0 and 
i → 
0 as i → ∞, then the
feedback u = Fx + (
0 − F	0)w would be optimal for all initial conditions.
Actually even if the family 	i , 
i is bounded then there exists a convergent
subsequence which would also yield a feedback which is optimal for all initial
conditions. Using the fact that we are optimizing a quadratic criterion in 	

and 
 subject to a linear constraint, it is easy to show that we can always
keep the family 	i , 
i bounded and therefore there exists such an optimal
feedback. This is done by noting that the only unbounded component of 	

and 
 can occur in the kernel of (Ce Deu) and since the part in the kernel
of this matrix does not effect the criterion we can keep it as small as possible
subject to our requirement that 	 and 
 must satisfy 	S = A	 + B
 + Ew.
In this way be obtain a bounded sequence.

Remark 17.2.1 Note that the optimization in (17.3) is equal to minimizing
a quadratic function of 	 and 
 subject to a linear constraint and is hence
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quite feasible. In particular it is a convex optimization problem. It is however
unclear to us how to conclude from the optimization in (17.3) that we can
find an optimal controller which is independent from the initial conditions of
the system and exosystem. Only the alternative approach of exploiting the
relationship with a finite horizon linear quadratic control problem enables us
to establish that fact.

Next, we consider the measurement feedback case,

� :
⎧⎨
⎩

ρx = Ax + Bu + Eww

y = Cyx + Dyuu + Dyww

e = Cex + Deuu + Deww,
(17.11)

where we look for a controller of the form,

�C : ρv = Acv + Bc y,

u = Ccv + Dc y.
(17.12)

As clearly argued in Chapter 2, we can assume essentially without loss of
generality that Assumptions A.1, A.2, and A.3 stated there are satisfied.

Theorem 17.2.2 Consider the system (17.1) and the exosystem (17.2) which
satisfy Assumptions A.1, A.2 and A.3. Consider given initial conditions x0 for
the system and w0 for the exosystem. Then the minimum of the power of e over
all stabilizing measurement feedbacks of the form (17.12) is given by (17.3).
Moreover, an optimal controller is given by,(

ρ x̂
ρŵ

)
=

(
A Ew

0 S

)(
x̂
ŵ

)
+

(
B
0

)
u

+
(

K A

KS

)[(
Cy Dyw

) ( x̂
ŵ

)
+ Dyuu − y

]
(17.13a)

u = (
F (
 − F	)

) ( x̂
ŵ

)
, (17.13b)

where F, KA, and KS are arbitrary matrices such that the matrices

A + B F and

(
A + KACy Ew + KA Dyw

KSCy S + KS Dyw

)
(17.14)

are both Hurwitz-stable for continuous-time systems and Schur-stable for dis-
crete-time systems while 	 and 
 are the optimal solutions for the minimiza-
tion problem in (17.3).
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Finally, there exists 	 and 
 such that for any F , KA, and KS for which
the matrices in (17.14) are Hurwitz-stable in continuous-time and Schur-sta-
ble in discrete-time, we have the controller (17.4) satisfying

‖e‖Power = J ∗(x0, w0)

for all initial conditions x0 and w0.

Proof : Consider the optimal state feedback controller as obtained from The-
orem 17.2.1. Combine this with an arbitrary stable observer. Then we have
that x̂(t) − x(t) → 0 and ŵ(t) − w(t) → 0 as t → ∞. But then we know
that asymptotically our control input is given by (17.4). Since the transient
does not affect our performance measure, we find that the controller (17.4)
and the controller (17.13) achieve the same performance and hence in partic-
ular (17.13) is an optimal measurement feedback controller.

17.3 Transient performance

As already discussed in Chapter 6, a classical regulator problem is only con-
cerned with asymptotic behavior and ignores the transient effect. Therefore it
is of interest to use the available flexibility to minimize the transient behav-
ior. Also in our case we have controllers of the form (17.4) in state feedback
and (17.13) in measurement feedback where 	 and 
 are chosen carefully to
have minimal tracking error but where F , KA, and KS are still quite arbitrary
and we can try to find suitable controllers which minimize the transient error.
Obviously, we cannot minimize∫ ∞

0
‖e(t)‖2 dt,

since if regulation is not possible then we cannot achieve e(t) tending to zero
as t tends to ∞. Here we can use the “overtaking criterion” as mentioned
before which was defined in [6]. A controller �opt is considered optimal if for
any other controller �C there exists a T1 > 0 such that for all initial conditions:∫ T

0
‖e1(t)‖2 dt �

∫ T

0
‖e2(t)‖2 dt

for all T > T1 where e1 is the error signal resulting from the controller �opt

while e2 is the error signal resulting from the controller �C. We briefly sketch
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how this can be done. We first obtain optimal 	 and 
 from theorem 17.2.2.
Then we consider the following criterion:∫ ∞

0
‖e(t)‖2 − ‖(Ce	 + Deu
 + Dew)w‖2 dt

By choosing the feedback u = Fx + (
 − F	)w we can keep this criterion
finite and hence if we minimize this criterion that it is bounded from above.
Since 	 and 
 are optimal we can also show that this criterion is bounded
from below. Therefore the following optimization problem:

min
u

∫ ∞

0
‖e(t)‖2 − ‖(Ce	 + Deu
 + Dew)w‖2 dt

is well-posed. Note that in a sense we subtracted a known signal which is not
effected by the input u so the optimal u really minimizes the error signal e.
We subtracted the steady state behavior of e and therefore this criterion really
minimizes the transient effect of the error signal. Note that this problem is
not completely solved but it is basically a standard indefinite linear quadratic
control problem and the latter is a problem which has been studied thoroughly
in the literature. We refer to for instance [53].
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Epilogue

As we conclude this book, we like to reflect on some aspects of this work and
suggest some issues that are still open and need to be explored.

Our first concern relates to structural stability the topic of Section 2.8.
This topic needs a further examination perhaps with a different perspective.
The structurally stable output regulation problem as defined in Definition
2.8.1 concerns itself with the issue of robustness of output regulation against
arbitrarily small perturbations in the given system parameters at their nom-
inal values. To guard against arbitrarily small parameter perturbations, the
problem seeks a fixed regulator or controller, if it exists, that solves the exact
output regulation problem (while maintaining of course the internal stabil-
ity of the closed-loop system) not only for the nominal parameter values of
the given system but also for arbitrarily small parameter perturbations at their
nominal values. Thus, even if the values of the system parameters drift but are
confined to a given neighborhood, the same controller always achieves output
regulation. Although the conditions needed for the existence of a controller
that solves the structurally stable output regulation problem are not restrictive,
there are still issues that need to be examined. As treated now, the problem
does not consider any perturbations in the exosystem, i.e. the frequencies of
signals that need to be tracked as well as the frequencies of the external dis-
turbances must be known exactly. The second and more important issue is the
high dimensionality of the controller that is required. As discussed in Sections
2.8 and 2.B, any controller that preserves structural stability must have in its
dynamics q copies of the exosystem where q is the dimension of the error
signal. This implies that the dynamic order of the required controller must
be unusually large. Such a high-order controller is not practically feasible.
In other words, although the structural stability output regulation problem as
defined presently is mathematically interesting, it appears to be not a proper
avenue to address the robustness of a regulator against arbitrarily small per-
turbations of the system parameters at their nominal values. As such, other
avenues to deal with robustness must be explored. One promising avenue
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seems to be through what can be called Practical structurally stable output
regulation problem as defined in Definition 12.1.2. This practical structurally
stable output regulation problem and or any other avenues to deal with the
issue of robustness of a regulator need to be examined carefully.

Our second concern relates to output regulation of linear systems with
input constraints such as input amplitude and rate limitations. As presented
in Chapters 3, 4, and 5, as well as in Chapters 14, 15, and 16, both classi-
cal exact output regulation as well as generalized output regulation are dealt
with successfully for systems with input constraints. Moreover, the solvabil-
ity conditions for the output regulation problems for such a class of systems
have been obtained. Also, efficient design methodologies to synthesize ap-
propriate regulators are developed. However, what is profoundly missing is
how and when prescribed performance measures can be achieved while main-
taining internal stability and asymptotic output regulation. For example, one
can pose the following questions: How do we shape the transient behavior
of the error signal while maintaining internal stability and asymptotic output
regulation? Or more generally, how do we solve multi-objective problems in
which the internal stability of the closed-loop system, asymptotic output reg-
ulation, and optimization of a given performance index are sought? We note
that for linear systems without any constraints on the input amplitude and
rate, we answered the first question in Chapter 6, while the second question
is answered in detail in Chapters 7, 8, 9, 10, and 11. However, formulating
of the proper performance criteria in order to shape transient response and
considering other performance requirements and incorporating them with the
output regulation problem when actuators are subject to amplitude and rate
constraints still remain as very complex research tasks.

Our third concern relates to generalized output regulation. A new method
of modeling for generalized output regulation as presented in Chapter 13
opens up several avenues to pose and solve different exact and almost output
regulation problems. It appears to us that the full potential of new modeling
introduced in Chapter 13 has not been explored completely. This and other
concerns will be topics of our future work.
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